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Introduction 

The purpose of the present article is to give an exposition of some of 
the developments in contemporary differential geometry, such as the theo- 
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ry of connections in fiber bundles, the theory of holonomy groups of 
linear and Riemannian connections, the results on transformation groups 
of a geometric object, and differential geometry of homogeneous spaces. 

We wish to explain what we mean by contemporary differential 
geometry as contrasted to classical differential geometry. Classical 
differential geometry, such as we understand as a title for a course, is 
a study of curves and surfaces in 3dimensional Euclidean space whose 
principal method is differential calculus. A generalization of intrinsic 
geometry of surfaces is, of course, Riemannian geometry, which dates 
from the time of Riemann himself. Not only in this branch of differential 
geometry, but also in other branches such as affine, projective, or con- 
formal differential geometry, there is such a vast amount of literature 
that we would not venture to give a historic account of the development 
of differential geometry. But one thing seems certain. That is that the 
work of Elie Cartan [l-4] on connections, holonomy groups, and homoge- 
neous spaces, is the source of all that is interesting in contemporary 
differential geometry. These theories are not only of their own interest 
but also serve as the best foundation of all work in differential geometry. 

Contemporary differential geometry is the study of a geometric 
object given on a differentiable manifold. We shall again not try to 
define “geometric objects.” It is sufficient to understand, for example, 
a connection, a linear connection, a Riemannian metric, or a Kahlerian 
metric, and so on. Given such a structure Ton a differentiable manifold M, 
the first object is to study the properties of r..Then, there are problems 
such as the study of the group of automorphisms A(r) of the structure 
P and its relation to properties of r, or the study of relationship between 
properties of r and the topological properties of the manifold M. 

It is only after the concept of a differentiable manifold was introduced 
that the work of Elie Cartan has been fully clarified, understood, and 
developed. As for the so-called global theory of Lie groups, the book 
of C. Chevalley [l] appeared in 1946. The concept of a connection in 
a fiber bundle was first defined rigorously by Ehresmann [l] in 1950. 
It was then possible to develop the theory of connections in a form 
which is completely intelligible to mathematicians of today. Functions, 
mappings, vector fields, and so on, which come up in the study, will 
have a definite domain of definition, thus eliminating ambiguities which 
existed even in the statements of theorems, as we often find in books 
and papers before this period. The emphasis of “global” aspects of a 
geometric structure has been apparent in connection with the topological 
structure, once the notion of the differentiable manifold took the place 
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of an ambiguous term like “space of x1, . ..> A?.” But even in the study 
of local aspects, many things have remained unclarified until very 
recently. In fact, one of the interesting problems in differential geometry 
is to study the variation of local phenomena from point to point and 
relate them to global phenomena. We shall discuss a few problems of 
this nature in this article. 

Thus, if the concept of a differentiable manifold has given a topological 
background for contemporary differential geometry and opened a new 
field “differential geometry and topology,” there are still two more 
characteristic features of contemporary differential geometry. One is the 
emphasis of the algebraic point of view. For example, tangent vectors 
are treated not just individually, but are considered as elements of a 
vector space which they form. Instead of defining them as objects with 
components with respect to a coordinate system, they are better defined 
as derivations of the algebra of differentiable functions into the real 
number field. Similarly, covariant differentiation associated with a 
linear connection is understood not as a mere rule of computation but 
as a derivation of the algebra of tensor fields into the tensor algebra 
over the tangent space at each point of the manifold. This approach 
not only simplifies and clarifies many definitions and proofs, but it 
also makes it possible to distinguish algebraic aspects of tensor calculus 
from analytical aspects. The algebraic method becomes indispensable 
when we deal with holonomy groups or transformation groups. Elemen- 
tary knowledge of Lie theory simplifies and unifies many results which 
were individually verified by tedious computation before. More profound 
knowledge on Lie groups and Lie algebras is needed for the deeper 
study of holonomy groups and transformation groups. 

Now the last point we wish to mention is the question related to 
analytical assumptions for a manifold and its geometric structure in 
question. In classical literature, for example, analyticity of a Riemannian 
metric was often assumed without explicit mention. We now make 
clear what degree of differentiability we assume in the beginning of 
any theory. The most frequent one is that of class C”. Here, an important 
problem is to distinguish results which are valid under differentiability 
assumptions and those which are valid only under analyticity assump- 
tions. We shall mention a few examples of this nature in our article. 

What we mean by contemporary differential geometry should now 
be clear. In this article, we shall give a .brief survey of the foundation 
of the theory of connections and holonomy groups and its apphcations 
which have been developed since about 1950. The selection of material 
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to be included was made so as to give a few central ideas about the 
problems and methods in this branch of differential geometry rather 
than to give a complete account of the development. It goes without 
saying that there are many more important contributions to contemporary 
differential geometry that are not mentioned at all in this article. 

The references at the end are listed by authors. They have been 
kept to the minimum since more of the related references are easily 
found in the papers and books on our list. For a detailed account of the 
theory of connections and holonomy groups, see Ehresmann [l], 
Chern [I], Lichnerowicz [3], Nomizu [5], and Kobayashi [5]. A survey 
of recent results is found in Lichnerowicz [2, 41 and Nomizu [6]. For 
applications of the concept of a connection to cohomology theory, 
which we did not mention in this article, see H. Cartan [l] and Chern [l]. 

Preliminaries 

The basic concepts on differentiable manifolds, Lie groups and fiber 
bundles, are now standard (see Chevalley [I], Steenrod [l], Nomizu [5]). 
We shall give here a brief rCsumC of definitions and notations which 
we use in this article. 

By differentiability, we always mean that of class c”. Let M be a 
differentiable manifold of dimension n. The tangent space at U, denoted 
by Z’,(M), is an n-dimensional real vector space consisting of all tangent 
vectors X at u. A tangent vector X at u is a linear mapping of the algebra 
of all differentiable functions on M into the real number field R such 
that xv-d = w-l i?(u) + f(u) -2 f or arbitrary differentiable functions 
f and g. A vector field X on M is an assignment of a tangent vector X, 
to each point u E M. We consider differentiable vector fields, that is, 
vector fields X such that the function Xf defined by (XflU = X,f, 
u E M, is differentiable whenever f is so. For two differentiable vector 
fields, X and Y, the bracket [X, yl is a vector field defined by [X, yl 
f = X(Yf) - Y(Xfi, where f is an arbitrary differentiable function. 
We have the Jacobi identity: [[X, yl, ZJ + [[Y, ZJ, x] + [[Z, Xj, yl = 0. 
The set of all differentiable vector fields on M forms a Lie algebra 
over R (of infinite dimensions). 

Over each tangent space T,(M), we consider the tensor algebra T(u) 
which is the direct sum of tensor spaces T:(u) of type (r, s) (r: contra- 
variant degree, s: covariant degree). A tensor field K of type (I, s) is an 
assignment of an element Ku E Z’,‘(U) to each point u, and differentiability 
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can be defined suitably. In particular, a tensor field K of type (1,l) 
can be considered as a field of linear transformations of each tangent 
space T,(M). A tensor field K of type (1, s) can be considered as a 
field of multilinear mappings of T,(IM) x . . . x Z’,(M) (s-times product) 
into T,(M), denoted by X(X,, . . . . X8) E T,(M), where X,, . . . . K, E T,(M). 

By an r-dimensional distribution A on M, we mean a field of r-dimen- 
sional subspace A, of T,(M), u E M. It is called differentiable, if for 
each point U, there is a neighborhood U of u and r differentiable vector 
fields X1, . . . . X, on U which span the subspace A, at each point v E U. 
It is called involutive, if, for vector fields X and Y which belong to A 
(that is, X,, Y, E A, for each u), [X, yl belongs to A. The Frobenius 
theorem in a global formulation says that for any differentiable and 
involutive distribution, there is a unique maximal integral manifold 
through each point. 

A differential form of degree r is a skew-symmetric covariant tensor 
field of degree T. For a l-form w, we have the formula 

2(&o) (X, Y) = X&(Y) - Y.w(X) - w([X, YJ) 

for arbitrary vector fields X and Y, where X. w(Y) is the function obtained 
by applying the vector field X to the function w(Y). If V is a finite- 
dimensional vector space, a V-valued differential form w  of degree r 
on M is defined as a skew-symmetric multilinear mapping, at each u E M, 
of T,,(M) x . . . x T,(M) (r-times) into Z’. When a basis (e,, . . . . ek> of 
V is chosen, w  is of the form w  = 2&r OJ~ ei, where wl, . . . . OJ~ are 
usual r-forms on M. The exterior derivative is defined as du = 
Tgml (dfd) ei. 

A Lie group G is a group which is at the same time a differentiable 
manifold such that the group operations are differentiable. The connected 
component Go of the identity e is an open (and hence closed) subgroup 
of G. We usually impose the condition that G satisfies the second axiom 
of countability, which is equivalent to the condition that the coset 
space G/Go is at most countable. It is known that a Lie group admits 
a structure of real analytic manifold such that the group operations are 
analytic. 

Given a Lie group G, the Lie algebra g of G is defined as the set of 
all left invariant (or right invariant) vector fields on G, where the bracket 
[X, yl is naturally defined. As a vector space, g is isomorphic with 
the tangent space T,(G) since a left invariant vector field is completely 
determined by its value at e. The Maurer-Cartan form 0 on G is defined 
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as a g-valued l-form on G such that 6,(X) = L;;l. X for any tangent 
vector X at a E G, where L, denotes the differential of the left transla- 
tion L, by a. 

A Lie subgroup G’ of a Lie group G is defined as a subgroup of G 
which is at the same time a submanifold of G, G’ itself a Lie group 
with respect to its differentiable structure. We do not assume G’ to be 
closed in G. There is a natural l-l correspondence between the set of 
connected Lie subgroups of G and the set of subalgebras of g. In parti- 
cular, every element A E g generates a l-parameter subgroup denoted 
by exp tA. A theorem of Yamabe-Kuranishi says that an arcwise 
connected subgroup of a Lie group is a Lie subgroup. 

A Lie group G is said to be a Lie transformation group on a differen- 
tiable manifold M if the following conditions are satisfied: 

(a) For each a E G, there corresponds a differentiable transformation 
of M, denoted by x --+ ax; x E M. 

(b) If a, b E G, then a(bx) = (ab)x for every x E M. 
(c) The mapping (a, CC) E G x M -+ ax E M is differentiable. 

We say that G acts effectively on M if ax = x for every x E M implies 
that a = e. G acts freely on M if ax = x for some x E M implies that 
a = e; in other words, no other element than e has a fixed point in M. 
A l-parameter group of transformations on M is the real additive group 
R acting on M as a Lie transformation group. When G is a Lie trans- 
formation group on M, we have a natural homomorphism of the Lie 
algebra g (of right invariant vector fields) into the Lie algebra of all 
differentiable vector fields on 1M: for any X E g, let the corresponding 
vector field X* be defined by 

X,*f = $5 -+ [f(ev 04 4 - fO41 

at each u E M and for any differentiable function f on M. In case G 
is effective, this homomorphism is an isomorphism. In case G acts 
freely, X* has no zero point for any nonzero element X E g. 

Let M be a differentiable manifold and G a Lie group. A differentiable 
manifold P is called a principal fiber bundle over the base space M 
with structure group G if the following conditions are satisfied: 

(a) G acts on P differentiably and freely; we denote the action by 
(x, a) E P x G ---t xa E P. 

(b) M is the quotient space of P by the equivalence relation induced 
by G and the canonical projection n : P 4 M is differentiable. 
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(c) P is locally trivial, that is, every point u l M has a neighborhood 
U such that v”(U) has a diffeomorphism x E +(U) -+ (V(X), 4(x)) E 
U x G such that #(~a) = +((x) a for every a E G. 

For each u E M, +(u) is a closed submanifold, called the fiber 
over I(. For any x E P, the fiber through x, which is n-l(7r(x)), is diffeo- 
morphic with the space G. For each x E P, A E g + A$ is an iso- 
morphism of the vector space g onto the tangent space at x to the fiber 
through X. For each.A E g, the fundamental vector field A* is defined 
as the image of the natural homomorphism of g into the Lie algebra 
of all vector fields on P. 

Let P(M, G) be a principal fiber bundle over M with structure group 
G. If F is a differentiable manifold on which G acts differentiably: 
(CZ, 5) E G x F + a5 E F, we can construct an associated fiber bundle 
E(M, F G, P) over M with standard fiber F and structure group G. 
An element x E P can be regarded as a diffeomorphism of F onto the 
fiber of E over u = n(x). The most important example of this situation 
in differential geometry is P = bundle of frames over a differentiable 
manifold, with structure group GL(n, R), E = tangent bundle whose 
standard fiber is an n-dimensional real vector space with a fixed basis 
(el, . . . . 4. 

For a fiber bundle E(M, F, G, P), a cross section is a differentiable 
mapping f of M into E such that rr.f = identity. A cross section always 
exists if M satisfies the second axiom of countability, and if the standard 
fiber F is diffeomorphic with Euclidean space Rk. 

In the text, we shall assume that a given manifoId M is connected and 
satisfies the second axiom of countability. 

1. Theory of Connections 

1.1. Connection in a Principal Fiber Bundle. Let P(M, G) be a 
principal fiber bundle over the base manifold M with structure group 
G. At each point x of P, let P, be the tangent space at x of P and G, 
the subspace of P, tangent to the fiber through x. A connection I’ on P 
is an assignment of a subspace Qz of P, to each point x of P which 
satisfies the following conditions: 

(a) P, = G, + Qz (direct sum). 
(b) For every a E G and x E P, Q2. is the image of Qz by R,. 
(.c) Qz depends differentiably on x. 

The last condition means the following. Given an arbitrary vector 
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field X on P, we have at each point x E P a unique decomposition 
X, = Y, + Z,, with Y, E G, and Z, E Qz. Thus, we get a vector 
field Y: x + Yz, called the vertical component of X, and a vector 
field Z: x + Z,, called the horizontal component of X. Condition (c) 
means that if X is differentiable, so is Y (and hence Z). A tangent 
vector at x is called horizontal if it is in Qz. A differentiable curve is 
called horizontal if its tangent vectors are all horizontal. 

Given a connection r in P, we define a l-form w on P with values 
in the Lie algebra g of G as follows. We know that the subspace G, is 
the set of all vectors of the form A,*, A E g, where A* is the fundamental 
vector field corresponding to A. We define w, as a linear mapping of 
P, into g which maps (A*), upon A E g, and which maps every Z E Qz 
into 0. As a consequence of condition (b) the connection form w  has the 
property that 

Rz w = ad(a-l) w 

for a E G. We shall say that w is of type ad(G). 
A connection r in P enables us to define the notion of parallel dis- 

placement. Given any piecewise differentiable curve I( t, 0 I t 5 1, in M, 
we shall obtain an isomorphism of the fiber 4(u0) upon the fiber 
?r-l(ui), namely, a diffeomorphism which commutes with the action of 
the structure group. This is done by taking a horizontal curve xt starting 
from each point x E +(u,,) which projects on the given curve I(~ ; the 
end point of such a curve will be the image of x by the parallel dis- 
placement along ut. Intuitively speaking, suppose a given curve is an 
integral curve of a vector field X on M. We may get a horizontal vector 
field X* on P which projects on X. The integral curve of X* through x 
then gives a horizontal curve which projects upon ut. The local existence 
of parallel displacement follows from this argument. More precisely, 
we can prove the following: 

Proposition. For any piecewise differentiable curve T : ut, 0 5 t 5 1, 
in M, and for any point x in +(u,,), there is a unique horizontal curve xt 
such that x0 = x, and r(xt) = ut. 

The parallel displacement along 7 will be denoted by the same letter T. 
Now the natural thing is to consider the effects of parallel displacement 
along all closed curves at a point u. Let u be an arbitrary point of M 
and let us fix an arbitrary point x over u. For any closed curve T at u, 
the parallel displacement T is an isomorphism of the fiber r-i(u) onto 
itself such that +a) = T(Y) a for every point y and a E G. Thus, 
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7 is completely determined by a unique element a E G such that T(X) = 
xa, since then for any point y E ~-l(a) we have y = xb for some b E G 
and T(Y) = xab. If T and TV are two closed curves at U, the parallel 
displacement along the composite curve T . p is simply the product of 
the parallel displacements along p and 7. In fact, if r(x) = xa, and 
p(x) = xb, then (T * p) (x) = r(xb) = T(x) b = xab. The set of parallel 
displacements along all closed curves 7 at u forms a group of transforma- 
tions of the fiber over u, which is isomorphic with a subgroup Qz of G 
consisting of all a E G such that T(x) = xa for some closed curve T  at IL. 
We call @, the holonomy group of the given connection at x. If we 
change a reference point x either in the same fiber or elsewhere, we get 
essentially isomorphic groups. 

The first step in the study of the holonomy group is to show that 
it is a Lie group. Once this is done, we can talk about its Lie algebra 
which will be closely related to the invariants which can be defined 
infinitesimally from a given connection. 

From the construction of parallel displacement along a curve it 
follows that if T8 is a family of curves from a0 to ui depending differen- 
tiably on the parameter s, then the parallel displacement also depends 
differentiably on s. We define the restricted holonomy group @E (with 
reference point x) as the subgroup of the holonomy group CD, consisting 
of parallel displacements along all closed curves which are homotopic 
to zero. Then @(I: is isomorphic with an arcwise connected subgroup 
of the structure group G. By a theorem of Kuranish-Yamabe, it follows 
that @E is a connected Lie group, which is an invariant subgroup of @,. 
Now consider the fundamental group ri(M) and a natural homo- 
morphism of r,(M) onto @,$Z$. Since r,(M) is countable when M 
satisfies the second axiom of countability, @J@E is also countable. We 
can therefore make Gz into a differentiable manifold such that CD: is an 
open submanifold. It is in this manner that we regard Qz as a Lie group. 

1.2. Curvature Form. Let w  be the connection form of a given 
connection r in P(M, G). We define the curvature form i.2 of r in the 
following way. The exterior differential dw is a 2-form on P with values 
in g. We define 

qx, Y) = (dw) (hX, hY) 

for any vector fields X and Y on P, where h denotes the horizontal 
component. It is clear from this definition that Sz is again a a-form 
on P with values in g and that &(X, Y) = 0 if X, or Y, is vertical. 
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From the fact that exterior differentiation d and the operation of taking 
horizontal components commute with the action of a E G on P, it 
follows that D satisfies, just like the connection form itself, the condition 

for any a E G. 

R:O = ad(&) 8 

The curvature form Sz of a connection corresponds to the curvature 
tensor of Riemannian geometry. In fact, we shall later see that in the 
case of a linear connection, the classical curvature tensor can be derived 
from the curvature form. We have two important identities concerning 
the curvature form of an arbitrary connection. 

The first on is the following structure equation: 

QV> Y) = (da) K y> + (8) c+v, 471 

which is valid for all vector fields X and Y on P. The proof is given by 
checking the equation in the following three cases: (1) X and Y are 
horizontal; (2) X is horizontal and Y is vertical; (3) X and Y are vertical. 
In particular, when X and Y are horizontal, the equation reduces to 
the definition of a since w(X) = w(Y) = 0. But we have also 
2(dw) (X, Y) = X.w(Y) - Y.w(X) - w([X, yl) = - w([X, Y-J) so 
that w([X, YJ) = - u2(X, Y). If the vertical component of [X, yl at 
x E P is equal to A,*, where A E g, then A = - 2&(X, Y). This fact 
plays an important role later. 

Another identity on the curvature form is that dn(X, Y, 2) = 0 if 
X, Y, and 2 are horizontal. This equation is a generalization of Bianchi’s 
identity in Riemannian geometry. 

1.3. Homomorphism of Connections. Let Q(M, H) be a principal 
fiber bundle over M with structure group H. A differentiable mapping 
f of Q into P = P(M, G) is called a homomorphism if f(xa) = f(x) $(a) 
for all x E Q and a E 29, where+ is a certain differentiable homomorphism 
of the Lie group H into G, and if the induced mapping of the base 
space M is a diffeomorphism of M onto itself. This concept includes 
the following special cases: 

(a) Q = P and 4 is the identity automorphism of H = G; f is then 
called an automorphism of the principal fiber bundle P(M, G). 

(b) H is a Lie subgroup of G, C$ is the injection of H into G, and the 
induced mapping f of the base is the identity transformation. In this 
case, we say that f is an injection, and that Q(M, H) is a subbundle of 
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P(kZ, G). We shall also say that the structure group G of a given bundle 
P(M, G) is reducible to a Lie subgroup H if there is a principal bundle 
Q(M, H) with an injection f into P. 

Let f be a homomorphism of Q(M, H) into P(M, G) corresponding 
to a homomorphism I$ : H -+ G. Given a connection r, in Q, we can 
obtain a connection I-, in P in such a way that f maps the horizontal 
subspace at each x E P upon the horizontal subspace at f(x) E P. It is 
sufficient to define the horizontal subspace at each f(x), x E P, to be 
the image of the horizontal subspace at x by f and translate it to any 
other point of the same fiber by the action of the structure group G. 
In general, when a homomorphism f maps a connection l-” in Q(M, H) 
into a connection r, in P(M, G) in this manner, we say that f preserves 
the given connections. It is almost clear that such a mapping f maps 
horizontal curves in Q into horizontal curves in P and induces a natural 
homomorphism of the holonomy group of Z-‘, with reference point x into 
the holonomy group of I’, with reference point f(x). 

This fairly formal argument is very useful in two ways. The first 
application is, of course, to the construction of a connection in P from 
a connection in a smaller bundle Q. The second is the converse. Given 
a connection r, in a bundle P(M, G), we say that r, can be reduced 
to a connection r, if there is a reduced bundle Q(M, H) with an injection 
f into P and a connection r, in Q which is mapped upon r, by f. In 
this case, properties of r, can be studied from those of r,. 

As a general theorem, we have the following. 

Reduction theorem. Let P(M, G) be a principal fiber bundle with a 
connection r. Let Q, be the holonomy group of with reference point x in P. 
Then, the structure group G is reducible to @‘, and the connection r is 
reducible to a connection in the reduced bundle Q(M, 0) whose holonomy 
group is exactly CD. 

To get an intuitive picture of this theorem, let Q be the set of points 
in P which can be joined to x by a horizontal curve. For every a E CD, 
the point xa is, of course, in Q. More generally, if y E Q, then ya E Q 
for every a E CD. In fact, denoting by y N z the fact that two points y 
and z can be joined by a horizontal curve, we see that y - x, x - xa 
so that ya - x because y - z implies that yb - zb for every b E G. 
This means that the group Q, leaves the set Q invariant. We can prove 
rigorously that Q is a principal bundle over M with structure group @. 
From the definition of Q, it is clear that at any pointy of Q the horizontal 
curves starting from y are all contained in Q and hence the horizontal 
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subspace at y is tangent to Q. This means that Q has a natural connection 
related to r, as desired. 

Finally, in case f is an automorphism of P(M, G) which preserves a 
given connection r, we say that f is an automorphism of the connection 
P. For a general connection, the group of all automorphisms is not a 
Lie group; that is, there are always many more automorphisms than 
can be controlled by a finite number of parameters. 

1.4. Holonomy Theorem. We are now in a position to state the 
following theorem, originally due to E. Cartan [l] and rigorously 
proved by Ambrose-Singer [ 11. 

THEOREM. Let r be a connection in P(M, G), and let @ be the holonomy 
group of r at x E P. The holonomy algebra (Lie algebra of @) a’s the sub- 
algebra of g (Lie algebra of G) which is generated by all elements of the 
form l&(X, Y), where y is an arbitrary point of P which can be joined 
to x by a ho+zontal curve, and X and Y are arbitrary horizontal vectors 
at y. 

To prove this theorem, let Q be the reduced bundle consisting of all 
points y which can be joined to x by a horizontal curve. We know 
that Q has a natural connection r, induced from that of P. Since the 
curvature form of l-o is simply the restriction of that of r, it is sufficient 
to prove the theorem for r,. Thus in the original bundle P(M, G), we 
may assume that every point y of P can be joined to x by a horizontal 
curve. Now let g’ be the subalgebra generated by all elements of the 
form J&(X, Y) as stated in the theorem. We show that g’ = g. At each 
pointy, let A, be the subspace of P, spanned by the horizontal subspace 
Qy and the subspace gi = {A$ 1 A E g’>. Admitting that the distribution 
A is differentiable and involutive, we immediately get the theorem 
because the maximal integral manifold P(x) of A through x contains 
all horizontal curves starting from x and thus coincides with P. This 
implies that dim g’ = dim g, and hence, g’ = g. Thus, it remains to 
verify that A is differentiable-and integrable. The first condition is 
easy to verify. To prove the second, let X and Y be vector fields which 
belong to the distribution A and we show that [X, yl belongs to A. 
The essential case is the case where X and Y are both horizontal. If we 
recall the remark we made about the structure equation, we see that 
the vertical component of [X, Yly is of the form A$, where A = 
- uZ,(X, Y) belongs to g’. Thus, the vertical component as well as the 
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horizontal component of [X, yl belong to 4. We have thus proved 
the theorem. 

In the above theorem, we make the following observation. If we take 
the smallest linear subspace m of g containing all elements D&X, Y), 
then it is a subalgebra and hence, by the theorem, coincides with the 
Lie algebra of @. In fact, using R,*Q = ad(&) Sz, we see that the linear 
subspace m is invariant by ad (@). Since exp X, X E m, is contained in 
@ by the theorem, we see that [X, m] c m for every X E m; that is, 
m itself is closed with respect to the bracket operation. 

The theorem in this section will serve as a basic lemma in a more 
profound study of the holonomy group which we shall take up later. 

1.5. Existence of Connections. We have not said a word about the 
existence of connections in a principal fiber bundle yet. A princzipal 
fiber bundle P(M, G) I y d t a wa s a mz s a connection, provided it satisfies the 
second axiom of countability as we always assume in the whole theory. 
In case the structure group G is connected, one can prove the existence 
of a connection as follows. By a theorem in fiber bundles, the structure 
group G can be reduced to any one of its maximal compact subgroups, 
that is, there is a bundle Q(M, H) with compact structure group H 
which admits an injection into P(M, G). In the principal bundle Q, 
we take an arbitrary Riemannian metric, and by the standard averaging 
process, we can obtain a Riemannian metric g invariant by the action 
of H. At each point x of Q, we take the horizontal subspace to be the 
orthogonal complement of the tangent subspace to the fiber with respect 
to g. It is easy to see that we actually get a connection in Q. By a previous 
result, this connection can be extended to a connection in P. 

This proof assumes the existence of a Riemannian metric on any 
differentiable manifold (satisfying the second axiom of countability), 
which in turn can be proved either by applying the existence theorem of a 
cross section or, more directly, by using a partition of unity(seeSection :. 1). 
Similar methods will prove the existence of a connection in an arbitrary 
principal fiber bundle in the following form of extension theorem: 

THEOREM. Let P(M, G) b e a p rincipal$ber bundle. Let U and V be 
open sets in M such that 0 c V. For any connection r’ in T-I(V), there 
is a connection in P which coincides with r’ in r-l(U). 

An interesting result follows from this extension theorem and the 
holonomy theorem. It is essentially the converse to the reduction theorem, 
and it shows us that the holonomy group can be quite arbitrary. 
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THEOREM. (Nomizu [3]). Let P(M, G) be a principal fiber bundle, 
and assume that the structure group can be reduced to a connected Lie 
subgroup H of G. Then, there exists a connection in P whose restricted 
holonomy group is exactly H. 

In particular, let M be an arbitrary manifold and G an arbitrary 
connected Lie group. In the product bundle P = M x G, there is a 
connection whose holonomy group is precisely G, showing that an 
arbitrary connected Lie group can be realized as the holonomy group of a 
certain connection in a bundle over an arbitrary manifold. For example, 
an arbitrary connected Lie subgroup G of GL(n, R) can be realized as the 
holonomy group of a linear connection on n-dimensional Cartesian space 
R” (J. Hano and H. Ozeki [I]). 

1.6. Local and Infinitesimal Holonomy Groups. Generalizing the 
work of Nijenhuis [l] on the holonomy groups of linear connections, 
Ozeki [l] gave a systematic study of local and infinitesimal holonomy 
groups of an arbitrary connection. We shall now give a brief sketch of 
the main results. 

Let P(M, G) be a principal fiber bundle with a connection r. For 
each x E P, we define the local holonomy group at x in the following 
way. Let @(U, x) be the holonomy group of r restricted to the bundle 
C’(U), where U is an arbitrary connected open neighborhood of 
u = r(x). We define the local holonomy group G*(x) as the intersection 
of all @(U, x) (regarded as subgroups of the structure group G) where 
U is an arbitrary open neighborhood of u = V(X). If U,, h = 1,2, . . . . 
form a complete system of neighborhoods of u which are connected, 
simply connected, and open, then we have a decreasing sequence of 
connected Lie subgroups @(U,, x) of G, By the dimension argument, 
we see that after some positive integer, all @(U,, x) must be the same, 
and thus G*(x) = @(U,, x) for almost all K, showing that the local 
holonomy group G*(x) is a connected Lie subgroup of the holonomy 
group G(x). If we choose xa, a E G, instead of x as a reference point, 
we easily see that @*(xa) = ad(a-l) C?*(X) just like @(xa) = ad(a-l) 0(x) 
for the holonomy groups. Thus dim G*(x) is constant on each fiber, and 
we define r*(u) = dim G*(x) with V(X) = u. We can easily verify that 
r*(u) is an upper semicontinuous function on M; that is, the set of 
points u with r*(u) 5 OL is open for any integer oz. We have 
then: 
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THEOREM 1. The restricted holonomy group @O(x) is generated by all 
O*(y), where y is an arbitrary point P which can be joined to x by a hori- 
zontal cume. 

THEOREM 2. If dim @*( ) x is constant on P, then @O(x) coincides 
with Q*(x), where x is an arbitrary point of P. 

Now we define the infinitesimal holonomy group. At each x E P, let 
ma(x) be the subspace of the Lie algebra g of G which is spanned by ail 
Qz(X, Y), where X and Y are arbitrary horizontal vectors at x. By 
induction, we define m,(x) to be the subspace of g spanned by mk+(x) 
and by the elements of g of the form 

where X, Y, V,, . . . . V, are arbitrary horizontal vector fields defined in 
a neighborhood of x. Set m’(x) to be the union of all mk(x), k = 0, 1,2, . . . . 
We can prove that m’(x) is a subalgebra of g, and that it is contained in 
the Lie algebra of the local holonomy group Q*(x). We define the infini- 
tesimal holonomy group Q’(x) to be the Lie subgroup of G which corres- 
ponds to the subalgebra m’(x). Again, it is not difficult to see that 
@‘(~a) = ad(a-l) @‘( ) x , w  lc is essentially a consequence of the fact h’ h 
that the curvature form is of type ad(G). Thus we may define a function 
on M by Y’(U) = dim G’(x) with r(x) = u. Contrary to the function 
Y*(U), Y’(U) is lower semicontinuous ; that is, the set of points u of M 
such that r’(u) 2 01 is open for any integer a. We have then: 

THEOREM 3. The restricted holonomy group @O(x) is generated by all 
Q’(y), where y is an arbitrary point of P which can be joined to x by a 
horizontal curve. 

THEOREM 4. If dim Q’(x) is constant on P, then W(x) = Q*(x) = 
@O(x) for an arbitrary point x of M. 

THEOREM 5. In case the bundle P(M, G’) and its connection are real 
analytic, dim W(x) is constant on P. 

In the nonanalytic case, it is easy to give an example that dim Q’(x) 
is not constant on P. We can give a little more precise analysis of this 
situation. At any rate, this is one of the examples which show an 
essential distinction between the analytic assumptions and differentiable 
assumptions as mentioned in the introduction. 
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1.7. Invariant Connection. Let P(M, G) be a principal fiber bundle, 
and let K be a Lie transformation group consisting of automorphisms 
of the bundle P. We ask whether there exists a connection on P which 
is invariant by every element of K. 

We first consider the case of a 1 -parameter group $t of automorphisms 
of P which leaves a connection r invariant. Let X be the vector field 
induced by4, on P. Let x be an arbitrary but fixed point of P and consider 
the orbit xt = dt(x). Let ut = 7r(xt) in M and denote by T$ the parallel 
displacement along the curve from q, to ut. Then, for each t, 7~1 xt 
being a point in the same fiber as x0 = x, we have 7r~l xt = xt s;r for 
some st E G. We thus obtain a curve st in G with so = e. The first 
observation is that st is a l-parameter subgroup of G, as follows from 
the following calculation. Let Yt be the horizontal curve which starts at 
x,, and which projects on the curve z(+ Then we have Yt = xt St. The 
tangent vector yt of this curve being of the form yt = xt st + xt St, 
we have for the connection form w  

and hence 

0 = w(yt) = s+’ st + ad(s;‘) W(xt) 

-1 - St St - - 44 

The connection form w  being invariant by &, we have 

4%) = 4k x0) = 4x0) = 4-q 

Thus st s;l = - A, where A = wz(x> E g, which shows that st = 
exp (- tA); that is, s;l is the l-parameter subgroup exp (tA). 

Now assume that a connected Lie group K acts as a group of auto- 
morphisms on the bundle P, and assume that K is fiber-transitive; that 
is, for any two fibers of P, there is an element k E K which maps one 
into the other. For an arbitrary fixed point x0 of P, let u,-, = ~(x,,) as 
before. By assumption, for any point II of M, there is an element k E K 
which, in the base M, maps I(,, into u. Thus, the base space M is acted 
upon by K transitively: M = K/H, where H denotes the isotropy 
group at u,,. Since H maps the fiber through x,, into itself, we can define 
a mapping I/ of H into the structure group G by setting h(x,) = x,$(h). 
The mapping # is a homomorphism of H into G. We denote by the 
same letter I/J the corresponding homomorphism of the Lie algebra h 
into g. 

Under these assumptions, we have the .following theorem. 
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THEOREM. (Wang [l]) Th ere is a one-one correspondence between the 
set of K-invariant connections on P and the set of linear mappiqs Y of 
the Lie algebra t of K into g which satisfis the following two conditions: 
(1) Y coincides with 4 on 6; (2) Y[ad(h)] = ad[+(h)] Y for every h E H. 

In fact, for any K-invariant connection, we set Y(X) = 0=,(X*) for 
each X E k, where X* is the vector field on P induced by the l-para- 
meter group rjt = exp (tX) acting on P. The element A = Y(X) has 
the geometric meaning which we have explained. It is easy to prove 
that the mapping Y has properties (1) and (2). Conversely, given such 
a mapping Y of f into g, we can define the horizontal subspace at x0 
to be the set of tangent vectors of the form (X*),0 - (Y(X)).& where X 
runs through 8, and (Y(X))* is the fundamental vector field corres- 
ponding to Y(X) E g. Using (1) and (2), we can show easily that by 
translating this horizontal subspace at x0 to any point of P by the actions 
of K and the structure group G, we get a K-invariant connection on P. 

In particular, in the case where M = K/H is reductive, let f = m + lj, 
with ad(H) m = m. Then, the mapping Y, which is 0 on m, and coin- 
cides with $ on lj, gives rise to an invariant connection, which we call 
the canonical connection on P (corresponding to the choice of m). This 
connection has a remarkable property. Let X be an arbitrary element 
in the subspace m and let & = exp (tx). By the geometric interpretation 
of Y(X) = 0, it follows that the l-parameter subgroup st consists of 
the identity element so that the orbit xt = &(x,,) itself is a horizontal 
curve. This means that the parallel displacement along the curve ut = r(xt) 
of thefiber over uO coincides with the I-parameter group of transformations$t. 
This is a generalization of a basic property of the canonical linear 
connection on a symmetric homogeneous space which we shall discuss 
later. 

2. Linear Connections 

2.1. Basic Concepts. Let M be a differentiable manifold. The notion 
of a linear connection will enable us to define, for each piecewise 
differentiable curve T from a point u to another point v, a well determined 
linear isomorphism of the tangent space T,(M) onto T,(M), called the 
parallel displacement along T. We define a linear connection on M as 
connection in the principal fiber bundle L(M), called the bundle of 
linear frames, which we explain : At each point u of M, a frame is an 
ordered basis x = (Xi, . . . . X,), n = dim M, of the tangent space T,(M). 
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Let L(M) be the set of all frames at all points of M. If U is a coordinate 
neighborhood in M with local coordinates (~9, . . . . ZP), then an arbitrary 
frame at any point of U can be expressed as 

i = 1, 2, . . . . 12. It is possible to introduce a differentiable structure in 
L(M) in such a way that (Us, al), i, i = 1, . . . . n, form local coordinates 
in the set r-l(U) of L(M), w  h ere x is the projection of L(M) onto M 
defined by 4x) = u for a frame x at U. We can let the general linear 
group GL(n, R) act on L(M) by 

(2 

n 
x-a = 

3-l 
4-G . . . . 2; 1 uzq 

x = (Xl, . . . . X,) and a = (~3) E GL(n, R) and show thatL(M) forms for 
a principal fiber bundle over M with structure group GL(n, R). 

We briefly indicate how the parallel displacement of tangent spaces 
is obtained from a connection in L(M). Let 7 be a curve from u to w  
in M. For an arbitrary point x = (Xi, . . . . X,J in L(M) over U, we can 
take a unique horizontal curve T* in L(M) which starts at x and which 
projects on T. The end point of 7* is a certain frame y = ( Y1, . . . . Y,,) 
at w. Let T be the linear mapping of T,(M) onto T,,(M) which maps 
X, upon Yi for all i = 1, 2, . . . . n. This mapping is independent of the 
choice of a frame x at u because if we take xu instead of x, then the end 
point of the horizontal curve will change into yu, and the linear mapping 
determined by the frames xu and yu is the same as 7. 

Once the parallel displacement of tangent vectors is defined, we 
define a geodesic as a curve ut in M whose tangent vectors ut are parallel 
along the curve. We can also define the parallel displacement of tensors 
of various types. Let T be the parallel displacement of T,(M) onto 
Z’,(M). We can extend 7 to a linear isomorphism of the tensor algebra 
over T,(M) onto the tensor algebra over T,(M) (by using the inverse 
of the transpose of 7 for the covariant tensors). We denote by the same 
letter 7 this isomorphism of the tensor algebras. 

We now introduce the concept of covuriunt differentiation. Let X be 
a vector field defined on M or in a neighborhood of a point u. Let K 
be an arbitrary tensor field, say, of type (I, s), defined in a neighborhood 
of u. Let ut be the integral curve of X with origin I(. Denoting by 7t 

the parallel displacement (of vectors and tensors) along the curve U: 
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from q, = u to ut, 7;l (K),* is a tensor of type (Y, S) at IL. We define 

which is again a tensor of type (I, s) at u. This tensor is called the co- 
variant derivative of the tensor field K with respect to X at u. (V,K), 
can be defined essentially in the same way in case K is defined only 
along the integral curve of X through u. It is also to be noted that ( VxK)u 
depends only on the value of X at u, so that VxK makes sense if 
X E T,(M), and if K is defined in a neighborhood of u. 

If K is a tensor field of type (T, s), then the covariant derivative VxK 
is of the same type. K and VxK can be regarded as a linear mapping 
o$ T,(M) x . . . x T,(M) (s-times product) into the vector space of 
contravariant tensors of degree r at IL. We define the covariant differential 
VK of the tensor field K as a tensor field of type (Y, s + 1) which, as a 
linear mapping of T,(M) x . . . x T,(M) [(s + I)-times product] into 
the vector space of contravariant tensors of degree I, maps (Xi, X2, . . . . 
XT+,) upon (VxlK) (X2, . . . . XT). 

For a tangent vector X at a point u, covariant differentiation Vx is a 
derivation of the algebra of tensor fields on M into the tensor algebra 
at u, namely, a linear mapping which satisfies the following conditions: 

(a) It preserves the type. 

(b) VAK @ L) = (V,K) @ L + K @ (V,L), where @ denotes the 
tensor product. 

(c) VACK) = C(VxK) f or any contraction C on a fixed pair of 
upper and lower indices. Let us recall that a linear mapping of a vector 
space V into itself can be extended to a derivation of the tensor algebra 
over V. Applying this, we see that a linear endomorphism A of T,(M) 
can be extended to a derivation of the tensor algebra at u, or, it can be 
regarded as a derivation of the algebra of tensor fields into the tensor 
algebra at EL. 

We have the following theorem, due to Kostant [l]. 

THEOREM. Let M be a differentiable manifold with a linear connection. 
Every derivation of the a&ebra of tensw fields on M into the tensor algebra 
at a point u E M is of the form Vx + A, where X is a certain tangent 
vector at u, and A is the derivation which is given by a certain linear 
endomorph&m of the tangent space T,(M). 
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2.2. Curvature and Torsion. LetL(M) be the bundle of linear frames 
over a differentiable manifold M of dimension rz. If V, denotes a vector 
space with a fixed basis (e,, . . . . e,,), every element x E L(M) may be 
regarded as a linear isomorphism of V, onto the tangent space T,(M), 
where u = r(x), which maps each ei upon Xi if x is a frame (Xi, . . . . X,J 
at U. The structure group GL(n, 1p) and its Lie algebra gf(n, R) act 
linearly on V,; if x E L(M), and a E GL(n, R), then x . (~5) = (xa) .f 
for every &V,. 

Assume now that there is a linear connection r on M. The curvature 
form 52 of the corresponding connection in L(M) is a gl(n, @-valued 
2-form on L(M) of type ad[GL(n, R)]. We can derive the classical 
curvature tensor field R of the linear connection r as follows. For each 
u E M and X, Y E T,(M), we define R(X, Y) to be the linear endo- 
morphism of Tu(M) given as the composite x . Q%(X*, Y*) . x-l, where 
x is an arbitrary point of L(M) with r(x) = u and X*, Y* are horizontal 
vectors at x with 4X*) = X and ?r(Y*) = Y. It is easy to verify that 
the linear endomorphism x . In,(X*, Y*) . x-l is independent of the 
choice of x with r(x) = U. Now R is the tensor field of type (1,3) which 
associates to a triple (X, Y, 2) of tangent vectors at u the vector 
R(X, Y) . 2. Since Q(Y*, X*) = - Q(X*, Y*), it follows that 
R(Y, x) = R(X y). 

A special feature of the linear connection compared with a connection 
in an arbitrary fiber bundle is that there is another natural form, called 
the torsion form, which will give the classical torsion tensor field on M. 
First, we define a V,-valued l-form 0 on L(M) independently of any 
connection. At each x E L(M), we set 6(X) = x-l. n(X) for an arbitrary 
tangent vector X at x. The form 8 satisfies R,*e = a-l0 for every 
a E GL(n, R). When a linear connection is given, its torsion form is 
defined by &(X, Y) = (de), (AX, hY) for any tangent vectors X and 
Y at x. The torsion tensor field T of the linear connection is derived as 
follows. For each U, T,(X, Y) = x. 6%(X*, Y*), where x, X*, and Y* 
have the same meanings as in the case of the curvature tensor. The 
torsion tensor field is the tensor field of type (1,2) which associates to 
a pair of tangent vectors X, Y at u the tangent vector T(X, I’). We have 
T(Y, X) = - T(X, Y). 

The torsion and curvature tensor fields are the basic invariants of a 
given linear connection. In many problems concerning a linear connec- 
tion, however, the successive covariant differentials VT, V2T, . . . . PT, 
. . . . VR, V2R, . . . . VkR, . . . also come in. When the torsion tensor T is 
identically zero (as in the case of a Riemannian connection which we 
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discuss later), the curvature tensor R and its successive covariant differen- 
tials determine the geometric properties of the given linear connection, 
at least locally. We shall see later how these tensors determine the 
holonomy group and the automorphism group of a given linear connec- 
tion. 

2.3. Holonomy Groups. Given a linear connection r on M, the 
holonomy group of the connection in L(M) is defined as a subgroup 
of GL(n, R) whenever a reference point x is fixed. We may 
also consider the holonomy group of r as a group of linear 
transformations of T,(M) when a reference point u is fixed in M. 
In fact, given a closed curve T at U, the parallel displacement along 
7 is a linear transformation of T,(M), and the totality of these 
linear transformations for all closed curves forms the holonomy 
group. The restricted holonomy group is the subgroup consisting of 
parallel displacements along all closed curves which are homotopic to 
zero. 

We can define, as a special case of the general theory we treated in 
Section 1, the local holonomy group and the infinitesimal holonomy 
group at U. The former is defined by taking closed curves at u which 
stay in a sufficiently small neighborhood of u. A rigorous definition is 
obtained easily. The infinitesimal holonomy group for a linear connec- 
tion, on the other hand, can be defined using the curvature tensor and 
all its successive covariant differentials [that is, without going to the 
bundle L(M)] in the following way. At each U, consider linear endo- 
morphisms of T,(M) of the form R(X, Y), (F’=R) (X, Y), (FwVzR) 
(X, Y), . . . (all covariant derivatives), where X, Y, 2, IV, . . . are arbitrary 
tangent vectors at U. All these linear endomorphisms span a subalbegra 
m’ of the Lie algebra consisting of all linear endomorphisms of T,(M). 
The Lie subgroup generated by m’ is the infinitesimal holonomy group 
at u (regarded as a subgroup of the group of all linear transformations 
of T,(M)). The results in Section 1.6 are valid, of course, in this case. 
The main result is that if the infinitesimal holonomy group has the 
same dimension at every point u of M (which is the case when the 
manifold M and its linear connection are analytic), then the restricted 
holonomy group is equal to the infinitesimal holonomy group at every 
point. This means that in the analytic case, the curvature tensor and all 
its successive covariant differentials at a single point determine the 
restricted holonomy group completely. 
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2.4. Invariant Linear Connections on a Homogeneous Space. Let 
M be a homogeneous space G}H of a connected Lie group G over a 
closed subgroup H. The existence and properties of invariant linear 
connections on G/H (invariant by the natural action of G) were studied 
by Nomizu [l]. A generalization of this study has since been made by 
Wang [l]. Here we shall derive the linear case from the general results 
which we discussed in Section 1.7. 

Let o be the origin of G/H, namely, the point represented by the 
coset H. Let us assume that G/H is reductive; that is, the Lie algebra g 
is the direct sum of the subalgebra E, corresponding to H and a subspace 
m such that ad(H) m = nt. By considering the bundle G over G/H 
with structure group H acting on G to the right, we may regard m as 
the horizontal subspace at e of a G-invariant connection on the bundle G 
(G acting on itself to the left). Since the projection of G onto G/H 
maps m isomorphically onto T,,(G/H), we may identify nt with T,(G/H). 
Every element h E H leaves o invariant and induces a linear transforma- 
tion R of T,,(G/H). Th e set of all these linear transformations forms 
what is called the linear isotropy group fiat o. The structure group 
GL(n, R) of the bundle of linear frames L(M) can be regarded as the 
group of all linear transformations of T,,(G/H) (by fixing a certain basis 
in it). The mapping h E H + k E GL(n, R) is essentially the homo- 
morphism # in the notation of Section 1.7. In terms of m, the mapping 
#(h) is the restriction of ad(h) in g to the subspace m because for any 
X E m, r(M) = rr((ad h) X) . h = n(ad (h) X) so that LX = ad(h) X 
by identifying m and T,(G/H). The Lie algebra homomorphism $ of E, 
into gI(n, R) is then given by $(X) = ad(X) in m. 

Now according to a general result, there is a l-l correspondence 
between the set of G-invariant linear connections on G/H and the set 
of linear maljpings Y of g into the vector space of all linear endomorphisms 
of m such that F(X) = ad(X) for X E h and Y(ad(h) X) = ad(h)Y(X) 
ad(h)-l for every X E m and h E H. Thus, it is essentially the mapping 
Y of m into the vector space of all linear endomorphisms of m which 
determines a G-invariant linear connection on G/H. 

When a G-invariant linear connection I’ is given on G/H, all the 
tensor fields on G/H which naturally arise from it are invariant by G 
and thus determined by their values at the origin o. There is a l-l 
correspondence between the G-invariant tensor fields on G/H and the 
set of tensors over the vector space m which are invariant by ad(H) 
acting on m. In particular, the torsion tensor T and the curvature tensor 
R of r can be expressed as follows: 
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z-(X, Y) = Y(X) Y - Y(Y) x - [X, Ylm 

R(X Y) = IYV), WV- W-T Yl,J - =W, 3,) 

where X, Y E m and [X, YJ,, (resp. [X, YJ,) denotes the m-component 
(resp. h-component) of the element [X, yl in g = m + lj. Similarly, 
the covariant derivatives of these tensor fields can be expressed alge- 
braically in terms of m. For example, 

(V.8) (X, Y) = Eww(K Y)l - R(Y(2) x, Y) - R(X, Y(Z) Y) 

for all X, Y, 2 E m, where the first term of the right hand side is the 
bracket of two linear endomorphims of m. 

We note that a homogeneous space G/H is a real analytic manifold, 
and that any G-invariant linear connection on G/H is real analytic. 
Thus, we can apply the results on the infinitesimal holonomy groups 
to the determination of the holonomy group of a G-invariant linear 
connection on G/H. The general result in this case appears to be the 
following. 

THEOREM. (N omizu [2]) The holonomy algebra of a G-invariant 
linear connection r on G/H determined by Y is equal to the smallestLie 
algebra Ij* of endomorphisms of m such that (1) R(X, 3’) E ij* for all 
X, Y E m, and (2) [?P(X), lj*] clj* for every X E m. 

The proof is purely algebraic and consists of showing that h* coin- 
cides with the Lie algebra of the infinitesimal holonomy group which 
is spanned by R(X, Y), (OzR) (X, Y), (VwYzR) (X, I’), . . . . 

2.5. Symmetric Homogeneous Spaces. An interesting class of ho- 
mogeneous spaces is the following. Let G be a connected Lie group, 
and let u be an automorphism of G of period 2. Let H, be the set of 
all elements x of G such that x” = x. H,, is a closed subgroup. Now a 
homogeneous space G/H is called a symmetric homogeneous space (for u) 
if the closed subgroup H lies between H and its identity component. 

Let G/H be a symmetric homogeneous space for the involutive auto- 
morphism CT. Since CJ leaves every element of H invariant, it induces 
an involutive diffeomorphism a,, of G/H onto itself, which has the origin o 
as an isolated fixed point. In the Lie algebra g of G, let m be the set of 
elements X E g such that X” = - X, and let lj be the set of elements 
X E g such that X” = X, where u again denotes the automorphism of 
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g induced by the group automorphism 0’. We see that g is the direct 
sum of the subspace m and the subalgebra h. By assumption on H, 
it follows that $ is nothing but the Lie subalgebra corresponding to H. 
For a symmetric homogeneous space G/H, we use this natural decomposi- 
tion g = m + h, where [m, m] c l$ 

Let us consider an invariant linear connection on symmetric G/H 
which is given by Y such that Y(X) = 0 for every X E m. This is a 
special case of what we called the canonical connection in Section 1.7. 
By the formulas in the preceding section, we see that the torsion tensor 
T is identically zero, and that the curvature tensor R is given by 

R(X, Y) = - ad ([A-, Y]) 

for X, Y E m, where [X, yl E lj. The covariant dilgerential VR of the 
curvature tensor is equal to zero. As a consequence of the theorem in 
Section 2.4, the holonomy algebra is generated by ad([X, Y-J) for all 
X, Y E m. If we denote by $, the linear subspace of E, spanned by all 
[X, yl, X, Y E m, we easily see that $, is a subalgebra, in fact, an ideal, 
of l). 

THEOREM 1. The holonomy algebra of the canonical connection on 
symmetric G/H is an ideal of ad(Q) acting on m. In other words, the restricted 
holonomy group is contained in the isotropy group H. 

We have also: 

THEOREM 2. The canonical connection is invariant by the symmetry 
q, and by the symmetry around any point of G/H. 

Some of the remarkable properties of the canonical connection on 
symmetric G/H are shared by certain connections on a reductive homo- 
geneous space G/H. Let us fix a decomposition g = m + b where 
ad(H) m = m. The canonical connection of the Jirst kind on G/H is the 
invariant linear connection determined by Y such that 

wu y = (8) K Yfm, X,YEm 

The torsion tensor of this connection is zero, while the expression of 
the curvature torsion is rather complicated in terms of the bracket opera- 
tion in g. For each X E m, the l-parameter subgroup exp (tX) projects 
on a geodesic in G/H. We have also the canonical connection of the 
second kind which is the invariant linear connection determined by the 
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mapping Y such that F(X) = 0 for every X E m. The torsion tensor 
T is given by T(X, Y) = - [X, Y-j,,,, while the curvature tensor R is 
given by R(X, Y) = - ad([X, Y-J,). The restricted holonomy group is 
contained in the linear isotropy group just as in the case of the canonical 
connection of symmetric G/H. In the case of a symmetric homogeneous 
space, the canonical connections of the first kind and of the second kind 
coincide because then [X, urn = 0 for X, Y E m. This explains why 
the canonical connection on symmetric G/H behaves so nicely. 

THEOREM 3. For the canonical connection of the second hind on 
reductive G/H, the covariant differentials of the torsion tensor and the 
curvature tensor are both zero: VT = 0 and VR = 0. 

Conversely, the property VT = 0 and VR = 0 characterizes a 
reductive homogeneous space (with canonical connection of the second 
kind) at least locally. 

THEOREM 4. (Nomizu [l]) Let M be a differentiable manifold with 
a linear connection such that VT = 0 and VR = 0. Then M is locally 
isomorphic with a certain reductive homogeneous space with canonical 
connection of the second hind. 

THEOREM 5. (Kobayashi [l]) If M is simpZy connected and complete, 
moreover, then M is isomorphic with a reductive homogeneous space G/H 
with canonical connection of the second hind. 

This last theorem is proved by using an interpretation of the condi- 
tions VT = 0 and VR = 0 in terms of the bundle of frames over M 
(also see Nomizu [5, pp. 69-731). Another characterization of such 
spaces was given by Kostant [3]. 

A supplementary result is the following. Let G/H be a homogeneous 
space with an invariant linear connection. If the restricted holonomy group 
is irreducible and contained in the linear isotropy group H, then VT = 0 
and VR = 0 (Nomizu [4]). 

3. Riemannian Connections 

3.1. Riemannian Metrics and Orthogonal Bundles. Let M be a 
differentiable manifold of dimension n. By a Riemannian metric on M, 
we mean a positive definite symmetric covariant tensor field of degree 2 
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on M. Thus, a Riemannian metric g defines, at each point u of M, a 
positive definite inner product in the tangent space T,(M) which we 
shall denote by gU(X, Y), where X, Y E T,(M). 

Let g be a Riemannian metric on M. An orthogonal frame at u E M 
is an orthonormal basis (X,, . . . . X,,) of T,,(M) with respect to the inner 
product determined by g. The set of all orthonormal frames at all points 
of M forms a subset O(M) of the bundle of frames L(M). We can 
make O(M) into a principal fiber bundle over M with orthogonal group 
O(n) as structure group, just in the same way as we made L(M) into a 
principal fiber bundle with general linear group GL(n, R) as structure 
group. Indeed, O(M) is then a subbundle of L(M). This means that a 
given Riemannian metric g on M gives a reduction of L(M) to an ortho- 
gonal bundle with structure group O(n). 

Conversely, assume that we are given a reduction of L(M) to an 
orthogonal bundle O(M). We regard, as before, each point x of L(M) a~ 
a linear isomorphism of the vector space V, with fixed basis (e,, . . . . e,) 
onto T,(M) with r(x) = u. In V,, we consider the inner product which 
makes (e,, . . . . e,) an orthonormal basis so that (e, ei) = Sij (Kronecker’s 
delta). Now for each point u E M, we take an arbitrary point x E O(M) 
over u and define gU(X, Y) = (X-IX, .-lY). This value is independent 
of the choice of x E O(M) over u, because if we choose y E O(M) over u, 
then y = xa for some a E O(n), and hence (y-lx, y-rY) = (a-%+X, 
a-%+Y) = (x-lx, x-‘Y). Thus, b y making use of the given orthogonal 
bundle O(M), we can define an inner product in each tangent space 
T,(M) and get a Riemannian metric on M. 

The above argument shows that a choice of a Riemannian metric 
on M corresponds to a choice of a reduction of the structure group 
GL(n, R) to O(n). As suming that M satisfies the second axiom of 
countability, such a reduction is always possible because the factor 
space GL(n, R)/O(n) is diff eomorphic with Euclidean space of suitable 
dimensions. This gives an existence proof for Riemannian metrics. 
Another proof can be provided by using a partition of unity. Let {U,} 
be a countable locally finite covering of M by open sets diffeomorphic 
with a cube in R”, and let (+J b e a partition of unity subordinated to 
{ UJ, namely, a family of nonnegative differentiable functions such 
that each & has a compact support contained in some Uj and that 
&I& = 1 on M. We may choose any Riemannian metric gk in each uk 
and set g = &&.& At each u IS M, and for any X, Y E T,(M), 
g(x, y) = xk$k(“)gk(X, y) is well defined as a finite sum and gives 
an inner product in T,,(M), thus defining a Riemannian metric g on M. 
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We shall mention two examples. 
(a) Let M be a Riemannian manifold, namely, a differentiable mani- 

fold with a fixed choice of Riemannian metric g. Let N be a differentiable 
manifold immersed in M; that is, a differentiable manifold which admits 
a differentiable mapping f into M which is regular at every point of N 
(when f is l-l, N is an imbedded submanifold). For each u E N we 
define the inner product in T,(N) by setting h,(X, Y) = g,,(fX,m 
for X, Y E T,,(N). The R iemannian metric h on N so obtained is called 
the induced metric. In particular, any immersed manifold in Euclidean 
space has a naturally induced metric. In case of a 2-dimensional 
surface immersed in R3, it is the metric considered in classical surface 
theory. 

(b) Let G/H b e a homogeneous space of a connected Lie group 
over a compact subgroup H. At the origin o represented by the coset e, 
the tangent space T&G/H) is acted upon by the linear isotropy group H. 
Since H is compact, we can choose an inner product g, in T,(G/H) 
which is invariant by I?. For an arbitrary point u of G/H, we choose 
a E G with u = a.0 and define gU(X, Y) = g,,(a-‘X, u-‘Y) for X, Y E 
T,(M). This value is independent of the choice of a E G with a.0 = IL. 
The Riemannian metric g on G/H so obtained is clearly invariant by 
every a E G. With a fixed choice of G-invariant Riemannian metric, 
G/H will be called a Riemannian homogeneous space. In particular, 
if G is a compact Lie group, it may be looked upon as a homogeneous 
space of the direct product G x G over the diagonal subgroup 
H = ((a, a) 1 a E G} in such a manner that (a, b) E G x G acts on 
G by x + ax&’ for every x E G. An invariant metric on (G x G)/H 
is then a Riemannian metric on G which is invariant by left as well as 
right translations. In the case of the compact semisimple Lie group G, 
there is a particular important choice of bi-invariant Riemannian metric 
on it. Let g be the Lie algebra of G as identified with the tangent space 
T,(G) at the identity element. Let 4(X, Y) be the Killing form on g 
defined by 4(X, Y) = trace [ad(X) ad(Y)] for X, Y E g. Since G is 
compact and semisimple, we know that 4 is a negative definite symmetric 
bilinear form on g x g. By choosing g, = - r$, and translating the 
inner product g, to other points of G by left translations, we get a 
Riemannian metric on G. This metric is invariant by right translations 
too, because the Killing form + and hence g, is invariant by ad(G) 
acting on g. 

Homogeneous spaces and, in particular, compact Lie groups provided 
with suitable invariant Riemannian metrics are important objects of 
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study in differential geometry in connection with the theory of Lie 
groups. 

Let M be a differentiable manifold and g a fixed Riemannian metric 
on M. An arbitrary connection in the orthogonal bundle O(M) associated 
to g is called a metric connection on M. The geometric significance is 
that such a connection can be considered as a connection in the bundle 
of frames L(M) (hence as a linear connection on M) and the parallel 
displacement of tangent vectors with respect to that connection is an 
isometric mapping between tangent spaces each provided with the inner 
product determined by g. This last property is equivalent to the con- 
dition P’g = 0, that is, the covariant derivative of the metric tensor g 
is equal to 0. 

The choice of a metric connection for a given Riemannian metric 
is by no means unique. The first important theorem in Riemannian 
geometry is the following. 

THEOREM. Given a Riemannian metric g, there is a unique metric 
connection whose torsion tensor is zero. 

The unique connection is called the Riemannian connection (or Levi- 
Civita connection) associated with the given Riemannian metric g. 
Unfortunately, the known proofs of this basic theorem all involve a 
certain amount of calculations, in terms of coordinates or otherwise. 
It will be interesting, at least esthetically, to find an intrinsic proof 
which accounts for the condition that the torsion is zero. Here we shall 
indicate how the Riemannian connection can be obtained in terms of 
covariant differentiation. Given g, we define for any vector fields X 
and Y on M the operation of covariant differentiation VxY by the 
following formula: 

+ gu, Yl, Z) + gw-9 xl, y> + d-T [Z? xl) 

where 2 is an arbitrary vector field on M. We can show that V,Y 
determined in this way is the covariant differentiation with respect to 
a unique Riemannian connection. 

Once the Riemannian connection is introduced, we can talk about 
its holonomy group. In the orthogonal bundle O(M) with structure 
group O(n), the holonomy group of the Riemannian connection is 
obtained as a subgroup of O(n). In terms of the parallel displacement of 
tangent vectors, the holonomy group with a reference point u E M 
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consists of orthogonal transformations of T,(M) provided with the 
inner product g,. Orthogonality allows us to study the holonomy group 
much more closely than the case of a general linear connection as we 
shall see later. 

3.2. Basic Concepts. On a differentiable manifold M with a linear 
connection, it is known that we can choose the so-called normal coordi- 
nates. For any point u E M, there is a neighborhood U of u with local 
coordinates (ul, . . . . u”) with origin u such that every geodesic in U 
issuing from u can be expressed by a system of linear equations ui = aQ, 
i = 1, 2, . . . . n, where (a’, . . . . a”) are a set of constants which determine 
the direction of the geodesic, and t is the parameter. This fact remains 
valid in a Riemannian manifold. A Riemannian manifold has a stronger 
property of having convex neighborhoods in the following precise 
sense. 

THEOREM. Eeach point u of a Riemannian manifold M has a neighbor- 
hood W such that (1) any two points o and w  can be joined by a geodesic C 
which is the shortest among all geodesics in M joining v and w  ; (2) such a 
geodesic C is unique and lies in W; (3) C is a unique geodesic i@ng in W 
which joins v and w. 

Stated and proved in this precise form, Theorem 1 has many applica- 
tions. For example, we can prove the existence of a simple covering 
of a differentiable manifold. For any open covering (Vi> of an arbitrary 
differentiable manifold M, there is an open covering {Vi} such that 
(a) the closure of Vi is compact and contained in some U*; (b) {Vi) is 
locally finite (that is, every compact subset of M meets only a finite 
number of V,‘s; (c) any nonvoid intersection of a finite number of 
Vi’s is diffeomorphic with an open cell in R”. The proof consists of 
using any Riemannian metric on M and choosing Vi’s satisfying (a) 
and (b) by standard technique with the requirement that each of them 
is convex. If each Vi is chosen to be convex in the sense of the preceding 
theorem, then any nonvoid intersection is still convex in the sense that 
any two points can be joined by a unique shortest geodesic in M which 
lies in the intersection. This implies that the intersection is diffeo- 
morphic with an open cell. The existence of a simple covering was 
utilized by A. Weil [l] in his proof of the de Rham theorem on cohomo- 
logy of differential forms. 

Another important concept on a Riemannian manifold is that of 
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distance. For any two points IL and w  of M, let d(u, 0) be the infinimum 
of the length of all curves joining u and V; the length of a curve u(t), 
a 5 t 5 b, being defined by p g(ut, u#/~ dt where ut denote the tangent 
vectors of the curve. We canaprove that d(u, V) satisfies the axioms of 
distance and that it gives the same topology on il4 as the original manifold 
topology. 

The natural metric d on a Riemannian manifold M has close relation- 
ship with differential geometric properties of M. First of all, the Rieman- 
nian metric g itself can be canonically reconstructed from the metric d, 
as was shown by Palais [2]. In particular, any homeomorphism of M 
onto itself which preserves the metric d turns out to be a diffeomorphism 
which preserves the Riemannian metric g (result originally due to 
Myers and Steenrod [I]). The central idea for the proof is the following 
formula which shows that the Riemannian metric can be locally ap- 
proximated by the usual Euclidean metric. Let o be an arbitrary point 
of M and let x(s) and y(s) be two geodesics in the directions of unit 
vectors X and Y, respectively, where s is the arc length on each geodesic. 
Let L(s) be the length of the unique geodesic joining the two points 
x(s) and y(s) for sufficiently small s. Then the angle 8 between X and Y 
is given by 

When s is sufficiently small so that x(s) and y(s) stay in a convex neigh- 
borhood of o, we have of course d(o, x(s)) = d(o, y(s)) = s and L(s) = 
4W Y(S)). Th e a b ove formula expresses the angle 0 in terms of the 
metric d. Once the angle 0 is obtained, the inner product g(X, Y) is 
equal t0 cos 8. 

A similar result is this: A continuous curve u(t) in a metric space 
is called a segment if 

for any values tl s tz 5 t3 of the parameter. In a Riemannian manifold 
M, a segment is a geodesic. 

In order to deal with global properties of M, the most important 
concept is that of completeness. A Riemannian manifold M is called 
complete if the metric d is complete; that is, if every Cauchy sequence 
with respect to d has a limit point. This condition is equivalent to either 
of the following two conditions (Hopf-Rinow): (1) every geodesic of M 
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can be extended in&finitely with respect to its arc-length; (2) every bounded 
set (with respect to d) ~3 relatively compact. 

If M is complete, any two points u, v of M can be joined by a geodesic 
whose length is equal to d(u, v). (For the proof, see de Rham [ 13, Appendix.) 

Another useful property of a complete Riemannian manifold is that 
it cannot be imbedded as an open submanifold of another Riemannian 
manifold. 

A Riemannian homogeneous space M = G/H (H compact) is always 
complete, because the metric d is also G-invariant, and hence, M is 
uniformly locally compact; that is, there exists E > 0 such that the 
&-neighborhood of every point of M is relatively compact. 

Another condition which is often imposed on a Riemannian manifold 
M is that of simply-connectedness. When M is not simply connected, 
we take the simply connected covering manifold l@ of M and introduce 
a natural Riemannian metric on J? by using the projection ?r: @ + M, 
which is an immersion mapping. The Riemannian properties of i@ 
and M are locally the same so that, for example, a geodesic in fi projects 
on a geodesic of M and, conversely, a geodesic of M can be lifted to a 
geodesic in l@. The restricted holonomy group of M is the same as the 
holonomy group of i@. 

3.3. Holonomy Groups. We now study the holonomy groups of a 
Riemannian manifold M in detail. Let @ be the holonomy group of M 
with reference point u E M which is a group of orthogonal transforma- 
tions of T,(M). Suppose that T,(M) admits a nontrivial subspace 
T: which is invariant by @. For any point v E M, let T be an arbitrary 
curve which joins u and v. The parallel displacement of Ti along T 
gives rise to a subspace TL of T,(M). Since T: is invariant by CD, the 
subspace TL is determined independently of the choice of r. We thus 
get a distribution T’ which assigns to each point v E M the subspace TL. 
The distribution 2” is differentiable and involutive. In order to prove 
that it is involutive, we have to show that if vector fields X and Y 
belong to T’, so does [X, Yj. Since the torsion tensor T[X, YJ = 
VXY - vxx - [X, Y-J is zero, it is sufficient to show that VxY (as 
well as VxX) belongs to T’. Now if Y belongs to T’, then VxY belongs 
to T’ for an arbitrary vector field X. In fact, (G’xY)a is equal to lim,, 
t-y+ . Yvt - Y.), where vt is the integral curve of X with origin v, 
and Tt is the parallel displacement along the curve vt from v to v,. 
Since Ye, belongs to T’, so does ~7~ . Y,,,, because T’ is obtained by 
parallel displacement from T:. Thus (V’Y), belongs to TJ. 
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Let M’ be the maximal integral manifold of the distribution T’ 
through U. M’ has an induced Riemannian metric. It turns out that M 
is a totally geodesic submanifold of M, that is, every geodesic in M’ is 
a geodesic in M. From this it follows that if M is complete so is M’. 

NOW going back to @ acting on T,(M), let Tz be the orthogonal 
complement of T$ Then T,(M) is the direct sum of two subspaces 
TL and T:’ which are both invariant by @. From the subspace TL we 
obtain a distribution T” and the maximal integral manifold M” of T” 
through is. From the consideration of these two mutually complementary 
distributions, it follows that there are neighborhoods V, V’ and V” of u 
in M, M’ and M” respectively, such that V is the direct product of V’ 
and Y,‘. There exists a system of local coordinates (ul, . . . . UP, z@‘+l, . . . . u”) 
in V such that (zS, . . . . UP) are coordinates in v’ and (@+l, . . . . u”) are 
coordinates in V”. After this purely topological argument, we can show 
that the Riemannian metric in V is the direct product of the metrics 
of V’ and V”, in terms of coordinates, &a/ad, a/a&), i, j = 1, 2, . . . . p 
(resp. i,j = p + 1, . . . . n) are independent of @+I, . . . . ZP (resp. ul, . . . . up). 
It follows that the holonomy group of V is the direct product of the 
holonomy groups of V’ and V”. 

Thus we have obtained a local decomposition of M when the holonomy 
group is not irreducible. 

We now consider a most natural decomposition of T,(M). Let TO be 
the set of tangent vectors at tl which are fixed by every element of @. 
Then T,(M) is the direct sum of T,, and its orthogonal complement T’. 
We can obtain a decomposition of T,(M) into the direct sum T, + Tl + 
. . . + Tk of mutually orthogonal subspaces with irreducible Ti( 1 5 i 5 k). 

Assuming that M is simply connected, we can prove the following. 
According to a decomposition T,(M) = TO + Tl + . . . + Tk, the 
holonomy group @ is the direct product @,, x @r x . . . x Qk, where 
@,, is the identity on T,(M), and each Qi(l 5 i 5 k) acts trivially on 
T* for j # i and irreducibly on Ti. The proof makes use of the local 
decomposition of M corresponding to the decomposition of T,,(M) and 
the following factorization lemma, a convenient form of the principle 
of monodromy. 

Factorization Lemma. (Lichnerowicz [2]) In a topological space M, 
let U, be a ne&hborhood of a point x E M chosen once for all for each 
x E M. Every closed curve which is homotopic to zero can be transformed, 
by substituting a curve of the form 7-1 * T (4 is the curve obtained by 
reve~si~ the orientation of the curwe 7, and the dot means the product of 
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curves, namely, the succession of two curves) by a trivial curve, or vice 
versa, into a product of curves each of the form T * p . -r-l, where r is a 
curve froth q point, say, x, to another, say, y, and p is a closed curve at y 
which is contained in U,. As consequences of these considerations, we 
have the following results. 

THEOREM 1. (Borel-Lichnerowicz [l]) The restricted holonomy 
group of a Riemannian manifold is a closed subgroup of SO(n). 

THEOREM 2. (de Rham [l]) The decomposition T,(M) = T, + 
Tl + . . . Tk with properties mentioned above is unique up to the order. 

The local decomposition of M based on T,(M) = T,, + Tl + . . . + TI, 
can be made into a global decomposition when M is simply connected 
and complete. We have, namely, the following important theorem: 

THEOREM 3. (de Rham [l]) A simply connected and complete 
Riemannian manifold M is the direct product M0 x Ml x . . . x M,, 
where M,, is a Euclidean space, and each Mi, 1 5 i 5 k, is an irreducible 
Riemannian manifold. 

Many problems concerning a complete Riemannian manifold can 
be reduced to the case of an irreducible Riemannian manifold by first 
going to the universal covering and then using the above theorem. 

Irreducible Riemannian manifolds thus play the role of simple Lie 
groups, while the Euclidean spaces correspond to abelian Lie groups. 
The analogy, however, is not quite complete. Berger [l, 21 studied 
the classification of irreducible Riemannian manifolds. 

3.4. Induced Connections. Among other general results on Rieman- 
nian connections and holonomy groups, we shall state a result on the 
submanifolds imbedded in a Euclidean space. 

Let Rn+k be a Euclidean space of (n + k)-dimensions. Let Mn,k be 
the Grassmann manifold of n-planes in P+k, namely, the set of all 
n-planes through the origin of R” fk. If R” is a fixed n-plane and Rk is 
its orthogonal complement, then we may identify M,,k with the homo- 
geneous space O(n + k)/O(n) x O(k), where O(n) is the orthogonal 
subgroup of O(n + k) which leaves Rk pointwise fixed, and O(k) is the 
orthogonal subgroup which leaves R” pointwise fixed. Let P,,k = 
O(n + k)/O(k) be the Stiefel manifold. It is a principal fiber bundle 
over MnSk with structure group O(n) in the natural fashion. 

2 
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We first introduce a connection in the bundle P,,k over Mn,k. 
Denoting the Lie algebra of O(n) by o(n), we have 

where o(n + K) consists of all skew-symmetric matrices of degree 
n + K, o(n) consists of all matrices of the form 

/IA OI/ 0 0 
with skew-symmetric A of degree n, o(k) consists of all matrices of the 
form 

IO 0 
II II 0 B 

with skew-symmetric B of degree K, and G,~ consists of all matrices 
of the form 

where C is an arbitrary K x n matrix. The above decomposition is a 
direct sum of vector subspaces such that m,k is invariant by &(0(n) 
x O(K)) acting on o(n + A). On the group O(n + A), let 8 be the left 
invariant Maurer-Cartan form with values in o(n + K). Let w be the 
o(n)-component of 8 with respect to the above decomposition. Since 
O(n) and O(K) commute elementwise as subgroups of O(n + K), it 
follows that w induces an o(n)-valued form on P,,k in the natural fashion. 
This form, still denoted by w, satisfies the conditions of a connection 
form, and thus defines a connection in the bundle Pn,k over M+ The 
connection so obtained is called the canonical connection in P,, K. 

Now let us consider an imbedded submanifold M of dimension 
n in Rnik. We define a mapping f of M into M,,k as follows. For each 
point u E M, f(u) is a point of M,,k represented by the n-plane through 
the origin which is parallel to the tangent plane of M at u in Rn+k. 
Let O(M) be the bundle of orthogonal frames over M. We define a 
mapping f of O(M) into P,,k as follows. For each x E O(M) which is 
an orthogonal frame at u E M, we take the orthogonal n-frame at the 
origin of R”+k and add K more vectors to obtain an orthogonal (n + A)- 
frame. The matrix represented by this (n + A)-frame is an element of 
O(n + K). The point of P,,k = O(n + K)/O(K) represented by this 
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orthogonal matrix depends only on x and not on the way of adding 
K more vectors in the above process. In this way, we obtain a mapping! 
of O(M) into Pn,+ It can be verified thatf is a bundle mapping of O(M) 
over M into Pn;k over Mn,k which induces the mapping f of the base 
M into M,,,. 

The main result here is the following. By the bundle mapping f 
of O(M) into P+ we get the o(n)-valued form f *.w from the canonical 
connection form on O(M). The form f *.w coincides with the connection 
form if the Riemannian connection of the embedded submanifold M 
(Kobayashi [2]). 

If M is an oriented n-dimensional submanifold in P+k, let SO(M) 
be the bundle of oriented orthogonal frames over M with structure 
group SO(n). Instead of Pn+ over M,,+, we consider P& = SO(n + h)/ 
SO(k) which is a bundle over M = M,,, = SO(n + h)/SO(h) x (SO(n) 
with structure group SO(n). By defining the canonical connection w  
on P,+ and the mappings f, f, we have the same result as above. In 
particular, let M be an oriented n-dimensional hypersurface in Rn+l. 
Then P,,l = SO(n + I), Mn, 1 = SO(n + 1)/80(n) = Sn, and the 
mapping f of M into SW is nothing but the spherical map of Gauss. The 
above result then gives an interpretation of the classical Levi-Civita 
connection. 

More detailed study of the questions related to the mapping M -N M,,k 
are found in Kobayashi [2, 3, 41, and Chern [2]. In the case of a sub- 
manifold M imbedded in a Riemannian manifold iV, a similar result 
was given by S. Takizawa [l]. These are all closely related to the study 
of characteristic classes. 

3.5. Killing Vector Fields. Let M be a Riemannian manifold. A 
diffeomorphism 0 of M which preserves the Riemannian metric is 
called an isometry. Let X be a vector field defined on M. For each 
point u E M, there exists a neighborhood V of u, a positive number 
E > 0, and a family of transformations +t, 1 t 1 < E, such that: 

(a) For each t with 1 t 1 < E, +t is a diffeomorphism of V onto an 
open set &( v) of M. 

(b) The mapping (t, w) + +t( v) is differentiable. 

(4 If I t I9 I s I, I t + s I < E, and if $t(w) E V, w  E V, then+, .&(v) = 
#s+t(v); and which is related to X by 

(4 J&f = limt,O (l/t) Lf(4t(~)) -f(w)] for every w  E V and for every 
differentiable function f. 
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The family +t is called a local group of local transformations generated 
by X in a neighborhood of the point u. In particular, if c$~(w) is defined 
for all real numbers t and for all points o of M, we say that dt is the 
(global) l-parameter group of transformations of M generated by X 
and that X is globally integrable. 

A vector field X is called a Killing vector field if a local l-parameter 
group of local transformations 4t generated by X in a neighborhood of 
each point consists of local isometries, that is, if each +t preserves the 
Riemannian metric. We have the following: 

THEOREM. (Kobayashi [5]) If M is a complete Riemannian manifold, 
every Killing vector jield is globally integrable. 

For any arbitrary vector field X on M, we define a tensor field Ax 
of type (1, l), that is, a field of linear endomorphisms of tangent spaces, 
by A,(Y) = - VyX for every tangent vector Y. Since the torsion 
tensor T(X, Y) = c7,X - VyX - [X, Y’J is zero, we have 

Lx= Vx+Ax 

where Lx is the Lie differentiation with respect to X which is considered 
as a derivation of the algebra of tensor fields together with Vx and Ax 
The vector field X is Killing if and only if L,g = 0, where g is the 
Riemannian metric. Rewriting this condition, we have: 

(1) X is Killing if and only ;f A, is a skew-symmetric endomorphism 
at each point. 

The following two lemmas can be proved with a little amount of 
tensor calculus. 

(2) If X and Y are Killing vector jields, then 

AIX.YI = [Ax, AYI - R(X, Y). 

(3) If X is a Killing vector Jield, then 

0,X= -Ax.V and Vv(Ax) = W-T V 

for an arbitrary erector V (the first is nothing but the definition of A,; 
see Kostant [l]). 

Let us denote by f(M) the set of all Killing vector fields X defined 
on M. From (l), it follows that I(M) forms a vector space over the real 
number field R. From (2), it follows that f(M) is closed with respect 
to the bracket operation [X, yl so that t(M) forms a Lie algebra over R. 
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Assuming that M is connected, we prove that f(M) is finite-dimensional. 
Let o be an arbitrary point of M. For any curve r.~~ from o to an arbitrary 
point D E M, let I’, be the family of tangent vectors. If we denote by Xt 
and A, the restrictions of the vector field X and the associated tensor 
field A, to the curve nt, respectively, then X, and A, satisfy the system 
of differential equations 

Since the system admits a unique solution (X,, A,) for any initial 
condition at o, we see that the mapping X E f(M) + (X0, (A,),) is l-l. 
In fact, this is a linear isomorphism of t(M) into the vector space g,,(M) = 
T,(M) + E,(2M), where E,,(M) is the vector space consisting of all 
skew-symmetric endomorphisms of the tangent space Y’,(M). Since 
dim go(M) = n + n(n - 1)/2, we see that dim f(lM) 5 tr + n(n - 1)/2. 

Thus, we have shown that f(M) forms a finite-dimensional Lie 
algebra over the real number field. It is this fact that lies in the back- 
ground of the theorem that the group I(M) of all isometries of M can 
be made into a Lie group (Myers-Steenrod [l]). When M is complete, 
the Lie algebra of I(M) is precisely f(M). When M is not complete, 
the Lie algebra of I(iV) is the subalgebra of f(M) consisting of all 
globally integrable vector fields in f(M). These results follow from a 
general theory of Lie transformation groups as developed by Palais [l]. 
We shall not go into this theory but shall indicate how t(M) is deter- 
mined from the curvature tensor R and its covariant differentials PR. 

At each point u, we have already considered the vector space 

su = L(M) + WW In sup we define the subspace f(u) consisting 
of all pairs (X, A) E gU satisfying the conditions (0, + A). (PR) = 0 
for all m = 0, 1 . . . . where Ox, A, and their sum, are considered as 
derivations of the algebra of tensor fields into the tensor algebra at u. 

On the other hand, let Z*(U) be the set of all germs of Killing vector 
fields defined in a neighborhood of u. Every element of l*(u) is a Killing 
vector field defined in some neighborhood of u, and two such Killing 
vector fields are defined to be the same element of f*(u) if they coincide 
with each other in a sufficiently small neighborhood of u. As before, 
r*(u) is a finite-dimensional Lie algebra. 

Let X be a Killing vector field defined in a neighborhood of u. Since 
Lx .g = 0, it follows that Lx . (PR) = 0 for all m = 0, 1, . . . . 
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Thus (X,, (A,),) belongs to f(u). We thus obtain a natural linear 
mapping of f*(u) into T(U). On the other hand, by restriction of the 
domain of definition, we have a linear mapping of f(M) into f*(u) 
for every u E M. 

The determination of k(M) from the curvature tensor and all its 
covariant differentials is carried out in two steps. First, under what 
conditions is the mapping f*(u) + t(u) onto ? Second, under what 
conditions is the mapping t(M) -+ f*(u) onto ? The second is a topo- 
logical question of extending a local Killing vector field to a global 
Killing vector field where the principle of monodromy plays a role. 
The first is concerned with the determination of a local Killing vector 
field from an algebraic tensor structure at one point, and illustrates the 
significance of tensor analysis in differential geometry. The analogy of 
these two questions to the study of local and infinitesimal holonomy 
groups is apparent. We now state the main results (Nomizu [7]). 

A point u E M is called f-regular (resp. f*-regular) if dim t(e)) 
[resp. dim t*(w)] is constant in a neighborhood of a. 

THEOREM 1. If M and its Rkmannian metric are analytic, then 
every point is f-regular. 

THEOREM 2. A f-regular point is E*-regular. 

THEOREM 3. If u is T-regular, the mapping t*(u) + f(u) is onto. 

THEOREM 4. If M is simply connected, and if every point is f*- 
regular, the mapping f(M) --* f*(u) is onto for every u. 

Thus, if an analytic Riemannian manifold M is simply connected, 
f(M) is completely determined by the curvature tensor and all its 
covariant differentials at one point. If, moreover, M is complete, the 
group I(M) is completely determined by the same invariants. This 
corresponds to the fact that a simply connected and complete analytic 
Riemannian manifold is determined from any small piece. 

A classical result is that t(u) = g(u) for every u if and only if M is 
of constant curvature. The various possibilities for the dimension of 
I(M) have been studied by various authors (see Yano [l]). 

We now come to another type of problem concerning Killing vector 
fields. In Section 2, we indicated the relationship between the holonomy 
group and the isotropy group of a homogeneous space G/H with the 
canonical connection of the second hind. On a Riemannian manifold M, 
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the following question has been studied. Let X be a Killing vector 
field and Ax the associated tensor field of type (l,l). At an arbitrary 
point u of M, does the endomorphism Ax belong to the holonomy 
algebra at u ? In general, A, belongs to the normalizor of the holonomy 
algebra. Concerning this problem, we have: 

THEOREM 5. (Lichnerowicz [1]) If a Riemanniun manifold M is 
irreducible, and the Ricci tensor is not zero, ‘then Ax belongs to the holonomy 
algebra at every point. 

THEOREM 6. (Kostant [l]) If a R iemannian manifold M is compact, 
the same conch&on holds as in Theorem 5. 

The proof of Theorem 5 depends on the algebraic argument on the 
irreducibility combined with the consideration of a Kahlerian connection 
which M may admit (we shall discuss this question in Section 4). 
The proof of Theorem 6 utilizes the Green-Stokes formula in the form 
J, div Y dv =- 0 f or an arbitrary vector field Y on a compact Riemannian 
manifold M with volume element dv. The Ricci tensor is closely related 
to Killing vector fields as is suggested by Theorem 5 and by the following 
theorem: 

THEOREM 7. (Bochner [1]) If the Ricci tensor of a compact Riemannian 
manifold M is negative definitive, M admits no nontrivial Killing vector 
$eld. 

The basic formula for this theorem is 

div (Ax * X) = - S(X, X) - trace (Ax)p 

where X is a Killing vector field and S is the Ricci tensor. 

3.6. Riemannian Symmetric Spaces. Let G/H be a symmetric 
homogeneous space. If the subgroup H is compact, G/H admits a 
G-invariant Riemannian metric, and any such metric gives rise to the 
canonical connection on G/H which we explained in Section 2.5. These 
Riemannian symmetric homogeneous spaces were first studied by 
E. Cartan [2]. As consequences of a more.general theory we developed in 
Section 2, we have the following results for such spaces GJH. The 
symmetry around each point of G/H is an isometry. The covariant deriva- 
tives of an arbitrary G-invariant tensor field are zero. In particular, 
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VR = 0 and every invariant di&ential form on G/H is closed. The 
restricted holonomy group is contained in the linear isotropy group. 

A Riemannian manifold M is called locally symmetric if VR = 0. 
This condition is equivalent to the following. For each u in M, there is 
an involutive isometry of a certain neighborhood U of u onto itself 
which admits u as an isolated fixed point. M is called globally symmetlic 
if, for each u, M admits an involutive isometry which has u as an isolated 
fixed point. A complete globally symmetric Riemannian space can be 
expressed as a symmetric homogeneous space G/H. If a locally symmetric 
Riemannian space M is simpb connected and complete, M is globally 
symmetric. 

The inclusion of the holonomy group in the linear isotropy group 
characterizes a locally symmetric Riemannian space. Let M be a Rieman- 
nian manifold. For each u E M, let H,, be the set of all isometries of M 
which fix u. 

THEOREM. (Nomizu [4]) If M is complete, and if the holonomy 
group at u E M is contained in the linear isotropy group H, fo7 every u, 
then M is locally symmetric. 

Riemannian homogeneous spaces which are not symmetric have 
been studied by Nomizu [2] and Kostant [2]. Among them, an important 
class consists of Riemannian homogeneous spaces G/H whose Riemannian 
metric gives rise to the canonical connection of the first kind with respect 
to a certain decomposition g = m + h, ad(H) m = m, of the Lie 
algebra g of G. If G is compact, G/H always admits this kind of metric. 
A symmetric G/H, of course, has this property. For this class of 
Riemannian homogeneous spaces G/H, we can prove that if G is simple, 
then the restricted holonomy group is irreducible (see Nomizu [6]). 

4. Klhlerian Connections 

4.1. Complex Structure on a Real Vector Space. Let V be afinite- 
dimensional vector space over the field of real numbers R. A complex 
structure I on Y is a linear transformation of I’ such that I2 = - E, 
where E denotes the identity transformation. When a complex structure I 
is given, V can be made into a vector space over the field of complex 
numbers C by defining scalar multiplication by: 

(a + b 1/--I) x = ax + blx, XE V,a,bER 
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V admits a basis {e,, . . . . e,, le,, . . . . le,} so that dim V = 2n. In the 
vector space V considered over C, the elements e,, . . . . e, form a basis. 
We shall denote by V,,, the original real vector space with a complex 
structure I and by V,,(C) the complex vector space obtained from 
V,, by the above process. 

Conversely, if V(C) is a complex vector space, the set V(C) can be 
regarded as a real vector space where we can define a complex structure 
I by Ix = 1/-- 1 x, x G V. 

Let V,, be a real vector space with complex structure I. An inner 
product on V,, will be called hermitian if (IX, 1~) = (x, y) for all X, y E V,,. 
In the complex vector space V,,(C), we define (x, y)* = (x, y) - 
2/q (Ix, y). We have easily (x, y)* = (Y, and (01x, y)* = a(x, y)* 
for 01 E C. Thus (x, y)* is a hermitian inner product in the complex 
vector space V,(C). 

A linear transformation A of V,, which commutes with I can be 
considered as a linear transformation of Vn(C), since 

f[(u + 6 6-i xl = f(M: + brx) = uf(x) + brf(x) = (a + b d-=T)f(x) 

for x E V,(C) and a, b E A. When V,, admits a hermitian inner product, 
any orthogonal transformation of V,, can be considered as a unitary 
transformation of V,(C) with respect to the hermitian inner product 
( 9 I*- 

We can treat the concept of a quaternion structure on a real vector 
space V in a similar fashion. It is defined as a pair of linear transforma- 
tions (1, J) such that I2 = - E, J2 = - E and JI = - IJ. In this 
case, K = IJ is again a linear transformation with K2 = - E, and 
1, J, and K behaving just like quaternion units i, i, and K with respect 
to multiplication. If V admits a quaternion structure (I, J, K), dim V = 
4n and V,, = V can be made into a vector space V,(Q) over the field 
of quaternions Q in such a way that 

(a + bi + 4 + dk) x = ax + bIx + c Jx + dKx 

for x E V,(Q) = V and a, b, c, d E R. A linear transformation of V,, 
which commutes with 1, J (and hence with K) can be considered as a 
linear transformation of V=(Q). An inner product on V,, which is 
invariant by 1, J gives rise to a symplectic inner product on V,(Q) in 
the natural fashion. 
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4.2. Almost Complex Structure on a Differentiable Manifold. Let 
M be a differentiable manifold. An almost complex structure on M is a 
tensor field I of type (1,l) such that I2 = - E. At each point of M, 
the endomorphism I, defines a complex structure in the tangent space 
T,(M). Thus, if M admits an almost complex structure I, dim M = 2n. 
A complex manifold M, when considered as a real analytic manifold, 
admits of course a natural almost complex structure I in the following 
way. For any point x of M, let (zl, . . . . P) be complex coordinates with 
origin x. The complex analytic homeomorphism (~9, . . . . z”) + (%‘? 9, 
. . . . 1/=-l 9) o a neighborhood of x onto itself fixes the point x and f 
induces a linear transformation I, of the tangent space Z”,(M), considered 
as the tangent space of a real analytic manifold M. The linear trans- 
formation I, is independent of the choice of complex coordinates (zl, 
. . . . z”). 

Given an almost complex structure I on a differentiable manifold M, 
we define a tensor field J of type (1,2) by 

J(X, Y) = I[X, Y] - [IX, Y] - [X, IY] - I[IX, IY] 

where X and Y are arbitrary vector fields on M. J is just like the torsion 
tensor of a linear connection and is skew-symmetric in X and Y. The 
following theorem has been known for a real analytic manifold and an 
analytic almost complex structure for many years (see, for example, 
Frohlicher [I]), but has been recently proved under differentiability 
assumptions (Newlander-Nirenberg Cl]). 

THEOREM. An almost complex structure I is integrable (that is, it 
arks from a complex structure on M) if and only if the associated tensor 
J is identically zero. 

From the point of view of differential geometry, we first consider a 
linear connection which has a particular property with respect to a 
given almost complex structure I on M. A linear connection r will be 
called almost Kcihlerian if the covariant differential of the tensor field I 
is equal to zero. This condition is clearly equivalent to the condition 
that the parallel displacement along an arbitrary curve in M is compatible 
with the complex structures of the tangent spaces at both ends of the 
curve. In particular, every transformation belonging to the holonomy 
group with reference point x commutes with I, so that the holonomy 
group can be regarded as a subgroup of GL(n, C), where dim M = 2n. 
On an almost complex manifold M, an almost KPhlerian linear connec- 
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tion always exists. In fact, from the point of view of fiber bundles, the 
structure GL(2n, R) of the bundle of frames over M can be reduced 
to the subgroup GL(n, C) [naturally imbedded in GL(2n, R)] and an 
arbitrary connection in the reduced bundle determines an almost 
Kierian linear connection on M. 

The torsion tensor of any such linear connection has a close relation 
with the tensor J. In fact, we have: 

THEOREM. If an almost complex manifold M admits an almost 
Kiihlerian linear connection whose torsion tensor is zero, then M is a complex 
manifold. 

Conversely, on a complex manifold, there is always a linear connection 
with zero torsion such that 171 = 0. For the proof of these results, see, 
for example, Frijhlicher [I]. 

Particularly important are complex manifolds which admit a Rieman- 
nian metric whose Riemannian connection satisfies VI = 0. More 
precisely, let M be a complex manifold. Regarded as a real analytic 
manifold with complex structure 1, M will be denoted by Mm. A 
Riemannian metric g on Mz, is called a Kiihlerian metric if it is her- 
mitian: g(lX, IY) = g(X, Y) f or arbitrary vectors X and Y, and if the 
Riemannian connection satisfies VI = 0. The pair (1, g) is called a 
K&lerian structure on Mz,. 

On a KIhlerian manifold MS,,, we define a 2-form F by F(X, Y) = 
g(IX, Y) for arbitrary tangent vectors X and Y. From the conditions 
VI = 0 and Vg = 0, it follows that VF = 0 and hence dF = 0, since 
dF is equal to the alternation of the covariant differential VF: In case 
M,, admits a Riemannian metric g satisfying g(lx, Iy> = g(X, Y) with 
respect to the complex structure 1, we can still define the 2-form F. 
It can be proved that if dF = 0, then g is a K%hlerian metric (see 
Frohlicher [l]). The condition dF = 0 is sometimes taken as the 
definition of a Klhlerian metric. At any rate, F with VF = 0 is a harmonic 
form and, in case M is compact, defines a nontrivial 2-dimensional 
cohomology class. Likewise, Fk is a harmonic form and gives a non- 
trivial cohomology class of dimension 2K, 1 5 K 5 n - 1. For the 
cohomology of KZhlerian manifolds, see Lichnerowicz [3] and Weil [2]. 

4.3. Holonomy Groups and Ricci Curvature. Let (I,g) be a Kiihlerian 
structure on M,,. For an arbitrary point u in M,,, every element of the 
holonomy group @,, leaves g, invariant and commutes with the complex 
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structure I,, so that it can be considered as a subgroup of the unitary 
group U(n). Infinitesimally, the endomorphisms of the form R(X, Y), 
(V.8) (X, Y), *-* (Al successive covariant derivatives) commute with 
1, and are skew-symmetric with respect to g,. The Ricci tensor S can 
be given the following expression 

S(X, Y) = - * trace (I . R(X, Y)) 

where X and Y are arbitrary tangent vectors. Using this formula we 
can prove: 

THEOREM. (Lichnerowicz [ 11) The Ricci tensor is not identicah’y 
zero if and only ;f the restricted holonomy group has a nondiscrete center. 

In other words, the Ricci tensor is identically zero if and only if the 
restricted holonomy group is contained in the special unitary group 
W(n). 

As an application of this theorem, we obtain the following result 
which gives Theorem 5, Section 3.5. Let M be a Riemannian manifold. 
If the restricted holonomy group @ is irreducible and the Ricci tensor is 
not zero, then the identity component N”(Go) of the normaZizor iV(@O) of 
Qi” in O(n) coincides with @O. 

In fact, consider the set A of all endomorphisms of T,(M) which 
commute with every element of @O. Since @O is irreducible, A turns 
out to be a finite-dimensional division algebra over the real number 
field. By a well known theorem in algebra, A is isomorphic with either 
R or C or Q. In case A is isomorphic with R, it follows easily that the 
center of Go is, at most, one-dimensional. In case A is isomorphic 
with C or Q, A contains an endomorphism I, of T,(M) such that I,” = 
- E (E: identity). By going to the universal covering if necessary, we 
can define a complex structure I on M by parallel displacement of I,, 
and prove that (1, g) is a KPhlerian structure on M. Now then, by the 
above theorem, @O has a nondiscrete center. Since Go can be regarded 
as irreducible as a subgroup of U(n), the center must be of dimension 1. 
We have thereby proved that, at any rate, the center of @JO is of dimen- 
sion 5 1. Since @ is a compact connected Lie group with, at most, 
a one-dimensional center, the connected component of the group of 
automorphisms coincides with the group of inner automorphisms. This 
implies that No(@O) = P. 

For a Kglhlerian structure (I,g) on M, we can ask the following 
question. Let I(M) be the group of all isometries of M with respect to g, 
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and K(M) the group of all transformations of M which preserve the 
complex structure (namely, the group of all complex analytic trans- 
formations). What is the relationship between I(M) and K(IM)? This 
problem has been treated by several authors (see, for example, Kobayashi- 
Nomizu [l], Y. Matsushima [2], and the references there). 

4.4. Examples. (a) Let N be a complex submanifold imbedded in 
a Kahlerian manifold M. The induced metric of N is then Kihlerian. 
The complex projective space Pm(C) admits the so-called Fubini-Study 
metric which is KPhlerian. Thus any nonsingular algebraic variety in 
P,(C) admits a natural KHhlerian structure. Conversely, a compact 
KPhlerian manifold which satisfies a certain condition (the condition of 
the Hodge metric that the form F represents a rational cohomology 
class) is known to be an algebraic variety (a result of Kodaira [l]). 

(b) A bounded domain D in the space C” of several complex variables 
admits the so-called Bergman metric (Bergman [I]), which is Ktihlerian. 
This metric is invariant by every complex analytic transformation of the 
domain D. Differential geometric properties such as the completeness 
condition of the Bergman metric, can be studied in relation to function- 
theoretic properties of the domain (see Kobayashi [6] and the references 
there). 

(c) KPhlerian homogeneous spaces, namely, homogeneous spaces 
G/H which admit a G-invariant Kahlerian structure, are particularly 
interesting and important. The problem of E. Car-tan [4] whether a homo- 
geneous bounded domain is symmetric or not has been answered 
affirmatively by Hano [I] in the case in which it admits a transitive 
unimodular group of complex analytic transformations, but negatively 
by Pyateckii and Sapiro [l] in the general case. For this subject, see 
E. Cartan [4L Lichnerowicz [l], Hano-Matsushima [l]. Matsushima [I], 
Hano [l], and the references there. 
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