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1. I~R~DUCTION 

In this work we solve a problem in analysis which has been stimulated 
by the theory of inviscid flow in fluid dynamics and by problems in 
singular perturbations. It is a well-known fact that the functions ei, 
i-0,1,... are “too narrow a family of functions to describe the asymp- 
totic expansion of a function y(t, E) at e = 0.” The most trivial initial-value 
problem, 

Ey’ +y = 0, Y(0) = 1, 0 < t, l > 0, 

has the solution y(t, c) 

y(t, E) = exp - tc-‘. 

Any attempt to find an asymptotic expansion 

with y,(t), v = 0, 1, . . . continuous functions of t for 0 I t 22 1 fails to 
preserve all values of y(t, z) for e > 0 and l small. This manifests itself in 
the fact that for all v = 0, 1, . . . , y,(t) E 0, and one of the explanations 
that accounts for this phenomenon is that y,(t) solves “differential equa- 
tions” (actually in this case algebraic ones) of “lower order.” Therefore, 
not all the boundary conditions of the “higher-order equation,” ey’ + y = 
0 could be taken care of by the y,(t), v = 0, 1, . . . . If one tries a 
generalized asymptotic representation 
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such that 

H. GINGOLD 

h(E) = 4+“+lw~ v= l,... 

&J(E) = 1, 

(see [7, p. 25]), then still no remedy is obtained. This state of affairs 
stimulated the idea that in order to construct at a first stage the limit 

lim y(t, e) = y(t, 0+) 
c-+0+ 

one should start from a “different basis.” If we let y(t, e) denote the 
solution of the somehow vague singularly perturbed differential equation 
Ly = 0 with the somehow vague boundary conditions By = 0, we would 
like to construct a pointwise representation of y(t, e) such that one and the 
same representation will yield the values of y(t, E) as well as the values of 
y(t, O+). From all the optional techniques to solve this problem we chose 
one which was most promising for solving nonlinear singularly perturbed 
problems. The price paid for choosing this method, which we call the 
“discrete power series method,” is an extra assumption. It says that y(t, l ) 
is a holomorphic function of l , for e in some open domain 0, such that E, 
0 < E < co, belongs to D, and therefore c = 0 is the closure of 0,. For 
many practical problems this assumption is reasonable. For instance, the 
Burger equation (solved explicitly by Hopf and Cole; see [5] and [2], 
respectively), 

lit + uy = q.., 4x3 0) = f(x), 

possesses holomorphic solutions for all E # 0. For E + O+ there exists a 
limit. (See [9, Chap. 31.) It is an obvious expectation to produce y(t, O+) 
from the values of y(t, e) for z bounded away from e = 0 by virtue of the 
holomorphic property of y(t, E). We would like to stress that from the point 
of view of applied math and physics, this technique has the ability to 
conwuct y(t, E) for E + O+, even in the absence of a rigorous asymptotic 
analysis. 

In the language of fluid dynamics the technique says that we are going 
to calculate the inviscid flow from the knowledge of the flow with high 
coefficients of viscosity. In cases where a procedure for the construction of 
a solution to an inviscid flow problem is not available, a good guess of the 
proper domain DC mentioned above may lead to the desired result. We 
now detach ourselves from the “small parameter e” and formulate the 
problems we will solve. 

Let m 
Ix Y”(W (1.1.1) 

?I=0 
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be a power series convergent in the disk D, 

D = (~1 IuI < l}. (1.1.2) 

The coefficients y,(t) are functions (scalar or vectorial) of the variable 
t E .Z where J is an interval 

J= {tlO<tl l} (1.1.3) 

and J, is the interval 

J, = {t IO I t < co}. (1.1.4) 

The series (1.1.1) represents an analytic function y(t, U) of the variable u 
on 

z= {UI- 1 <u < l}. (1.1.5) 

1. Find in terms of y,(t) a new representation of y(t, u) which is valid 
for u E Z and u close to 1 and such that if 

lim y(t, u) = r(t, l), u+1- 
(1.1.6) 

then the new representation will yield the value y(t, 1). 
Moreover, let the analytic function y(t, U) have an asymptotic expansion 

Y(C u) - “$Ml - UT (1.1.7) 

for certain values of t E J. 

2. Find in terms of y,(t), n = 0, 1, . , . the coefficients q,(t), v = 
0, 1, . . . of the asymptotic expansion. Another important problem that is 
worth mentioning is how to find the asymptotic expansion for t + cc. 

In order to solve these problems we turn to an old idea, namely, the 
expansion of y( t, u) in terms of orthogonal polynomials on Z with a certain 
weight w(u). Since we need a pointwise representation of y(t, u) on Z (i 
being the closure of I) rather than an L:(Z) expansion, we will have to 
appeal to summalility matrix methods. The combination of 

W(U) = (1 - u2y2 (1.1.8) 

which induces Tshebysheff’s polynomials of the second kind and Cesaro’s 
summability method-(C, 2) (see [4, p. 96]), turns out to do a good job. 

In order to achieve this goal we use the triangular scheme shown in Fig. 
1.1 (where u,.(t) are the Fourier coefficients of y( t, u)). 
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=O,l, 

FIGURE 1 

In step A we mimic well-known formulas (for the sake of self-contain- 
ment) in order to obtain information on y,(t), n = 0, 1, . . . from the 
behavior of y(t, u). Step A is the subject of Section 2. 

In step B, we assume some rate of growth on y,(t), n = 0, 1, . . . in 
order to express ai( i = 0, 1, . . . in terms of y,(t), n = 0, 1, . . . . This is 
accomplished in Section 3. 

In step C we reproduce pointwise the function y(t, U) for u close to 
u = 1 by y,(t), n = 0, 1, . . . via u,(t), i = 0, 1, . . . . This is the topic of 
Sections 4 and 5. The main result of this work is a representation theorem. 
It is formulated in Section 6 with an application. 

It is worth noting that there are techniques provided by summability 
theory (e.g., see [4, p. 1871) which take a divergent series ZraOy, into the 
“correct value” on condition that u = 1 is in “the polygon of sununabil- 
ity.” 

This means that u = 1 is a point where the function (1.1.1) is holomor- 
phic. The result to be demonstrated in this work provides a transformation 
which takes Zr y,, into the “correct value” even if u = 1 is a singularpoint 
of (l.l.l), for example, an essential singularity. This is the case in many 
flow problems and in singular perturbations. 

We remark that for the sake of clarity we end each proof of a lemma or 
a theorem by E.O.P. 

2. ESTIMATION LEMMAS FOR y,(t) 

ASSUMPTION 1.2.1. The function y(t, U) is holomorphic in D for each 
1 E J (or t E J,). 

ASSUMPTION 1.2.2. We denote y(t, U) E HP, p > 1 if 

(1 I/P 

SUP 2”IY(~~ re”)Jpd3 < 00. 
O<r<I 0 1 
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LEMMA 1.2.1. Let assumptions 1.2.1 and 1.2.2 hold. Then for some M(t) 

IYnW 5 wo9 n=O,l,... . (1.2.1) 

If we have 

IYk 41 5 m(t) (1.2.2) 

for IuI < 1, then 

lY,Wl 2 m(t). (1.2.3) 

Proof: By Cauchy’s formula 

Y,W = &/ 
2n 

y(t, reie)eei”‘dfi. 
0 

(1.2.4) 

Using Holder’s inequality one obtains 

2nly(t, Ip*)IpdB)“p( ~2w~%&9)“q 2 s q(t), 

where 
(1.2.5) 

(1.2.6) 

VP + I/4 = 1, p > 1. 

Letting r + 1 - in (1.2.5) yields the desired result with 

(1.2.7) 

M(t) = Qg qt>. (1.2.8) 

Moreover, if q(t) is bounded for t f J, we let 

supIr$(t) = &A sup M(c) = M, (l-2.9) 
t t 

and obtain 
IYM 2 M- 

It is quite obvious that if 

Iv{& f-@)I I m(t), 

for 0 I r < 1, 0 I 6 < 2a, we obtain by Cauchy’s formula 

IYM 5 40. 

(1.2.10) 

(1.2.11) 

(1.2.12) 

E.O.P. 
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The conditions of Lemma 1.2.1 are sufficient to produce (1.2.1) and 
(1.2.3) but are not necessary. 

The function y = (1 + u2j)-’ with j > 0 has the expansion 

y = 5 (+p 
k=O 

IYA 5 1 (1.2.14) 

but does not satisfy any condition of Lemma 1.2.1. 

(1.2.13) 

LEMMA 1.2.2. Assume k a nonnegative integer and 

Ykt”): = rlFe 
a544 u> 

aUk with u = reie (1.2.15) 

to be an integrable function of 8 for 0 < B < VT for t fixed. Then, for any 
6 > 0 sufficient& small, there exists no(t) such that for n > no(t), 

ly,(t)l I 6n-k. (1.2.16) 

If, in addition, a fyt(t, qa uk is Lipschitzian of order a, 0 < a I 1, name&, 
that uniformly for 0 I 8 I T, u = re”, 

aky(t, U + h) _ a’L@, u, < IhlcXrn(t) 
auk auk- ’ 

(1.2.17) 

then there exists no(t) such that for n > no(t), 

for some fi(t). 

jr,(t)1 I G(t)nmk+” (1.2.18) 

Proof. We have (1.2.16) by the Riemann-Lebesgue method (see [8, p. 
403]), and (1.2.17) follows by [8, p. 4261. E.O.P. 

It is possible to derive Lemmas ’ 1.2.1 and 1.2.2 such that the bounds 
obtained on y,,(t) will hold uniformly for t E j, where j is some subset 
of J. 

The modifications needed then are as follows. In Lemma 1.2.1, if we 
assume that Assumptions 1.2.1 and 1.2.2 hold uniformly for t E J, then 
M(t) in (1.2.1) will be bounded by some M independent of t. If we assume 
in (1.2.2) that m(t) is independent of t, then the same bound will appear in 
(1.2.3). 
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Similarly in Lemma 1.2.2, if (1.2.15) holds uniformly for t E .& then n,(t) 
accompanied by (1,2.16) will be the same for all t E J. If (1.2.16) holds 
uniformly for t E J, then an #z(t) in (1.2.17) independent of t could be 
found. 

3. THE FOURIER COEFFICIENTS 

LEMMA 1.3.1. Let q(t) be the Fourier coefficients of the expansion of 
y(t, u) in terms of Tshebysheff’s polynomials of the second kind. (See [6, p. 
1141.) 

Consider 

c#$&,: = I 
’ (1 - u2)v2u~ sin(i + 1) arc cos u 

du, 
-1 (1 - u2)“2 

i = 0, 1,. . . , v = 0, 1,. . . . (1.3.1) 

(1.3.2) 

be convergent for i = 0, 1, . . . . Then 

az,(t) = 
(= 

$20+24 2shw)\/ij;; 3 l=O,l,..., (1.3.3) 

~2,+,W = ( 5 I = 0, 1,. . . * 
s-0 

a,+,,,+,v,,,(t))* , 

(1.3.4) 

Proof. By use of the substitution 

u = cos 8, -sinOdB= du, (1.3.5) 

one obtains 

@iv = J natty 8 sin(i + 1) 8 sin 8 de. 
0 

(1.3.6) 

By the well-known orthogonality property of the sequence sin kB, k = 
1, 2, . . . ) we notice immediately that 

(P, = 77/z f#Qo = 0, * . . Y +io = 0, i= 1,2,... . (1.3.7) 
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In order to obtain the general result we rewrite (1.3.6) in the form 

+ii, =q scosy fl[ cos it9 - cos( i + 2)f3], (1.3.8) 

and use [3, p. 374, formula 171 to define qiP by 

I+$, = /ovcosv 8 cos i9 d0 = [ 1 + (- l)V+i] ~r’2co~p 0 cos ifI de, 

i = 0, 1,. . . , v = 0, 1, . . . . (1.3.9) 

We obtain from (1.3.9) that 

Jli, = 0 (1.3.10) 

for 

v+i=2k+l, k=O, l,... . (1.3.11) 

By [3, p. 374, formula 171 we also have 

&, =[1 + (-l)“+i] 

c 
V. I 

‘(i - v)(i - v + 2) . * . (i + v) 
for v < i 

x <- ,,“+I (v -‘i)/2 ( 1 
forisvandv-i=2k 

(2k + l)!! (Lt + 2k + l)!! 
fori<vandv-i=2k+ 1 

k = 0, 1,. . . (1.3.12) 

and in case v < i above 

.S= 0 for i - v = 2k, 
= 1 for i - v -4k+ 1, (1.3.13) 
=- 1 fori - v = 4k - 1. 

We denote 

(2k + l)!! = 1 . 3 . 5 . . . (2k - 1)(2k + 1). (1.3.14) 

A second conclusion, that 

+iv = O (1.3.15) 
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for v < i, also immediately follows from (1.3.12), (1.3.13). This is so since 
(v + i) is an odd (even) number iff Iv - iI is odd (even). Since (1.3.12) 
implies 

1 + (- l)‘+’ = 0 

for (v + i) odd, it is enough to consider the case (v + i) even for v < i. By 
(1.3.13) we find s = 0 when (v + i) is even and (1.3.15) follows. 

Thus let (v + i) be an even integer. Then 

for v 2 i and (v + i) is even. (1.3.16) 

In all other cases qi,, = 0. Therefore, by (1.3.8) we have for (v + i) even 

hi, = 4% - 4++2, Y = $ 
K 

(y -‘i)/J - ( (v - i” 2)/2)]. 

In particular, we have 

f$sii = a/2’ 

%i+l = O 

(1.3.17) 

(1.3.18) 

(1.3.19) 

1 
I I 

‘iF’=% (‘:i~~~vlii!-jv-:-2jjjv+:+2)! 

s v! (i + 1) =- 
2’ 

( 
v-i-2)!(v;i)!*(v-i)(v4+i+2) 

for (i + 2) I v, (v + i) even, (1.3.20) 

( 2(i + 1) 
= $ (V -‘Q/Z (v + i + 2) ’ 1 

(1.3.21) 

If we adopt the convention that (;) = 0 for k = - 1, - 2, . . . , we obtain 

(1.3.22) 
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Let us write down the form of the upper triangular infinite matrix cpi,,: 

1 0 l/22 0 . . . 

0 l/2 0 l/22 . . . 

(pi”) = ~ O 0 1/22 0 . . . 
00 0 l/23 . . . 

I . . . . . . 
i = 0, 1,. . . , Y = 0, 1,. . . . 

By (1.3.4), 

(1.3.23) 

Let i = 21, I = 0, 1, . . . . Then, since we just showed that +2,, y = 0 for v 
odd, one deduces (1.3.3) and 

Let i = 21 + 1, I = 0, 1, . . . . Then, since G2,+ ,, y = 0 for v even, we 
deduce (1.3.4) and 

E.O.P. 

LEMMA 1.3.2. Let y(t, u), a function of u E Z and of the parameter t E J, 
be defined by the absolute& converging series, 

Ix YAW = Y(C u), u E I. (1.3.26) 
n=o 

Denote by ai( t), i = 0, 1, . . . its Fourier coefficients. Let t be such that 

lu(t, u)I I m(t) < 00 (1.3.27) 

for u E I, for some m(f). Zf 

xi = i=O,l,... (1.3.28) 
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converge, then 

a,(t) = xi, i=O,l,... . 

Proof. Consider the function 

y(t, XU) = -g y,(t)u”x” 
??=O 

(1.3.29) 

of the parameter x, 0 < x < 1. It is easily verified that also 

ly(t, XU)I I m(f) < aJ 

for 0 < x < 1, u E I. Moreover, 

lim y(t, xu) = y(t, U) 
x-D- 

for u E 1. 

(1.3.30) 

(1.3.31) 

By the Lebesgue-dominated convergence theorem [8, p. 3451, 

y(t, xu)(l - U*)1’2 
sin(i + 1) arc cos u 

(1 - U2)1’2 
du = q(t). 

But for 0 < x < 1 we may write by Abel’s theorem [8, p. 91 

and the result follows. 

LEMMA 1.3.3. tit 

Iv&N 5 WY” 
with 

a < 0.5. 

Then 

5 hYv(t) 

v=o 

are absolutely convergent for i = 0, 1, . . . . 

(1.3.32) 

(1.3.33) 

E.O.P. 

(1.3.34) 

(1.3.35) 

(1.3.36) 
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Let us find out the asymptotic behavior of c&, %, &,+ ,, &+, by use of 
Stirling’s formula [8, p. 58, formula (3)]. 

ln?= -(v- l)ln2+lnv!-1nT. (~-9,~~~ 

+ln(i + 1) - ln(v + i + 2) 

= - (v - 1) In 2 + ln(i + 1) - ln(v + i + 2) 

+(v+l-f)ln(v+l)-(u+l)+lnV% 

- 

(1.3.37) 
(The o(l) symbol is with respect to Y + cc.) 

It follows by letting 

v-i 
- = k, 

2 
k=O,l,... (1.3.38) 

that 

ln 2&, 2k + i - = 1 - lnfi + o(l) + ln(i + 1) + h(i, k) (1.33) 
IT 

with 

h(i, k) = (2k + i + i) ln(2k + i + 1) - (k + i) ln(k + 1) 

-(k+i+$)ln(k+i+i) 

- (2k + i - 1) In 2 - In 2(k + i + 1). (1.340) 

(The o( 1) should be interpreted now with respect to k + oo .) 
We may rewrite h(i, k) as follows: 

h(i, k) = (2k + i + i) ln(k + ((i + 1)/2)) - (k + 4) ln(k + 1) 

- (k + i +i) ln(k + i +i) 

+fln2-ln(k+i+ 1) 

= [2k+i+i)-(k+i)-(k+i+i)]Ink+fln2 

-ln(k + i + 1) +f(i, k) 

= -1nfi (k + i + 1) + iln 2 + f(i, k) (1.3.41) 
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with 

f(k k) = ( Zk+i+f)ln(l+G)-(k+i)ln(l+i) 

k+i+f)ln(l +T). (1.3.42) 

Thus, we have so far 

lrn 2+i, 2k+i 

IT 
= 1 - lnfi + ln(i + 1) - lnfi (k + i + 1) 

+f(i, k) + o(l). (1.3.43) 

We use Cauchy’s theorem to obtain for x > 0, 

(a + /lx) ln( 1 + 0x) 
X 

= /? ln(1 + 0x*) + (a + @*) 
(1 + 8x*) 

for some x*, 0 < x* < x. If we let x = k-‘, then 

forO<x: <k-l, 

(k + i) ln(l + i) = iln(l + x;) + ll:‘zx (1.3.45) 

for0 <x; <km’, and 

1 +(i+i)x: 

+ 1 + (i +i)x: 
(1.346) 

forO<x,* <k-l. 
From (1.3.44), (1.3.45), and (1.3.46) it turns out that for i fixed and 

k + + 00, f(i, k) + 0. By elaborating a little bit on (1.3.44), (1.3.45), and 
(1.3.46), one can estimate the rate of convergence of f(i, k) to 0. 

This will show that for fixed i, 

f(i, k) = O(k-‘). ( 1.3.47) 
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We return now to (1.3.43) to obtain 

&2k+i =G 
(i + 1)e 

vx (k + I) 
[ 1 + o(l)]. (1.3.48) 

Therefore, (1.3.34) and (1.3.35) imply 

The series on the right of (1.3.49) are absolutely convergent and the result 
follows. E.O.P. 

The fact is that 
$Il u,(t) = 0 (1.3.50) 

follows immediately by application of the Riemann-Lebesgue theorem. 
The proof that under certain circumstances (1.3.50) holds uniformly in 
t E J needs a bit of explanation. This is offered in the following lemma. 

LEMMA 1.3.4. Let ly(t, u)l I Mfor u E Z and t E J, 

where w(u) E C(Z) is a nonnegative function and P,(u), u = 0, 1, . . . are 
the orthogonal polynomials corresponding to w(u) on I. 

Let r,(t) be the notation of 

r,(t) = $j u:(t). (1.3.52) 
Y=R 

Then 
pl u,(t) = 0 (1.3.53) 

uniformIy in t E J. 

ProojI We first assume that we have already proved that u,(t), Y = 
0, 1, . . . are continuous functions of t for t E J. Also, 

/ 
’ y’(t, u)w(u) du = 2 u;(t) 

-1 v=o 

is a continuous function of t for t E J. 
Therefore, the functions r,(t), n = 0, 1, . . . are all continuou. functions 

of t in t E j, and therefore, each r,,(t) attains its maximum in J at a point 
t n* 
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In fact, we will prove that uniformly for t E j 

p& r,(t) = 0. (1.3.55) 

Assume, on the contrary, that for any 8 > 0, 0 arbitrarily small, there are 
tEi 

r,(t) < 0 

for n sufficiently large. This implies that there exists an infinite sub- 
sequence of ni and an infinite sequence of ti E .? such that 

r,(t;) 2 t9 > 0. (1.3.56) 

We are going to show that this leads to a contradiction. Let 

AIn, = max rq( t) = r,(t,) 2 r,(ti) 2 e > 0 t (1.3.57) 

for some tm, ta E i Without loss of generality, assume that t,+, i = 
0, 1, . . . is an infinite sequence such that 

lim tn, = t^ 
i-cc 

lim Mn, = J? = lim sup M,. 
i+w 

For any 6(n) > 0, n = 0, 1, . . . there exists a p(n) > 0 s.t. 

implies 

It - il < CL(n) (1.3.60) 

I%(t) - %(;)I < Nn), n=O, l,... (1.3.61) 

Pick up a sequence of tk(,,) s.t. 

Itk(n) - 4 < P(n) 

implies 

v=k(n) 
a;(;) < 8(n) 

u=k(n) 

or 

(1.3.58) 

(1.3.59) 

(1.3.62) 

(1.3.63) 

(1.364) 
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Then 

5 a&?(i) - s(n) I Mk(“, I kgz;(lQ + 6(n). 
k(n) 

(1.3.65) 

But by the convergence of ZT a:(i), it turns out that 

lim 2 a:(i) = 0. 
‘-+uz k(n) 

(1.3.66) 

Obviously, we may choose k(n) + 00 for n + co. We may also choose a 
sequence S(n) -+ 0. Then, we find by (1.3.65) that 

lim MkCn, = 0. (1.3.67) n+w 

This contradicts (1.3.56) with 0 > 0 and the result follows. E.O.P. 

It is possible to find estimates on the rate of convergence of u,(t) to zero 
uniformly for t by imposing more conditions on y(t, u). 

Let us prove the following lemma. 

LEMMA 1.3.5. Let y(t, u) be such that 

I.Y(t, - 1)1 2 K 

where K is a constant. Let P,(u) in (1.3.51) correspond to 

W(U) =v-i7. 

Let 

iT( $ [ y(t, cos 0) sin 0])2 de I M, 

where M is a constant. Then, there exists a constant p > 0 s.t. 

Mt)l 5 P/ (v + 1) 

v=O,l,..., tE.7. 

ProojI By applying the transformation 

u = c0se 

to (1.3.51), one finds that 

u&,(t) = f 
0 

‘iiF(t, f3) sin(v + i)e da, 
0 

(1.3.68) 

(1.3.69) 

(1.3.70) 

(1.3.71) 

(1.3.72) 

(1.3.73) 
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where 

F(t, 0): = y(t, cos 6) sin 0. (1.3.74) 

By integration by parts one finds 

gm =[ F( t, 04) - F( t, T)( - l)V+’ 
(v + 1) 1 + -$, (1.3.75) 

where 

L(t) = jyF,( t, e) cos(v + 1)e de. (1.3.76) 

But Schwarz’s inequality yields 

IW)l I (/-F;(t, 8) dfy2dqi . 
0 

(1.3.77) 

By (1.3.77) we get 

IL(t)/ I lm dq . (1.3.78) 

AlSO, 

F(& 72) = 0. 

In order to estimate F(t, O+) we use the identity 

F(t, 0) = leFo(t, s) dr. 
97 

(1.3.79) 

(1.3.80) 

Since F,(t, s) belongs to L2(0, T) it also belongs to L’(0, S) [8, p. 3811. 
Therefore, 

IF(t, O+)l 2 m. (1.3.81) 

Combining (1.3.78) with (1.3.79) and (1.3.81) in formula (1.3.75) yields 
(1.3.71) with 

/3=(1+ti)Vx. (1.3.82) 

E.O.P. 
Since we want to use the results of this chapter in singularly perturbed 
problems, it is instructive to notice that y(t, u), the solution of 

(1 - u)y’ + y = 0, y(0) = 1, 

satisfies the conditions of the above lemma. 
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4. REPRODUCING THE LIMIT VALUE 

Let T be a regular matrix summability method. See [4, p. 431. Let (C, k), 
(H, k), k = 1,2,. . . denote the Cesaro and Holder regular methods [4, 
pp. 94-971, respectively. We adopt the following conventions. 

If 

is an infinite series and A,, k = 0, 1, . . . is the sequence of its partial sums 

A,:= i a,, 
i=O 

(1.4.2) 

then 

[(H, l)A&= (PI + l)-’ , (1.4.3) 

[(HP %c], = (N + I)-’ 2 [(HP 1)&l,. (1.4.4) 
!I=0 

DEFINITION 1.4.1. We say that the sequence A, is summable (H, 2) to 
the sum A if 

and we denote 

We denote by 

lim [(H, 2)A,], = A 
N-XC 

A; = i A, 
k=O 

N 
A; = 2 A; (1.4.8) 

k=O 

2A,: 
[(CT 2)AJN = (N + 4(N + 1)' 

(1.4.5) 

(1.4.6) 

(1.4.7) 

(1.4.9) 
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DEFINITION 1.4.2. We say that the sequence A, is summable (C, 2) to 
the limit A if 

lim [(C, 2)A,], = A 
N-*CC 

and we write in this case 

(C,2) gui =A. 
( ) i=o 

(1.4.10) 

(1.4.11) 

In what follows, we also use the notation 

(1.4.12) 

(1.4.13) 

etc. 

LEMMA 1.4.1. Let y(t, cos t3) be un integrable function of 8 for 0 I 8 5 
B. Let 

f 
sin(i + 1)arc cos u 

: FoaJt) v- = S,(t, u) (1.4.14) 

be the Fourier expansion of y( t, u) in terms of Tshebysheff s polynomials of 
the second kind on I. L.et 

(1.4.15) 

be the expansion of (1.4.14) at-u = 1. Let y(t, u) be a continuous function of 
u for u = 1 s.t. for some t E J, 

lim v( t, u) = y(t, 1). 
u+1- (1.4.16) 

Then, 

(C, 2)( 2 (i + I)o,(t)) = y(t, l)a . (1.4.17) 
i-o 

More precisely, for l arbitrarily small, c > 0, there exists N,(t) s.t. 

Ii 
(C, 2) 5 (i + l)q(t) 

i=O 1 -lQZ$y(t, 1) I e (1.4.18) 
N 

if N 2 N,(t). 
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Proof. We have by [6, p. 681 with 

(1.4.19) 

that 

where [6, p. 1151 

wn(l) = 
f’ 

; s14n +,;;; 6x3 9) n = 0, 1, . . 

are Tshebysheff’s polynomials of the second kind. 
Using the substitution 

one obtains 

arc cos q = 13, OlOlT, (1.4.22) 

d0 = -dq/j/s. 

Also, let 

u = cos Ijl, OI\cI<T. 

Also, by [6, p. 1071 it follows that 

%+I =$ 

(1.4.23) 

(1.4.24) 

(1.4.25) 

It is easily verified that 

(a/4)($(& u) - Y(C u 1) = oh, W, de, (1.4.26) 

where 

sin 8 
R(@, 4) = sin 

y(t, cos 0) - y(t, cos #) 
cos 8 - cos lj5 1 (1.4.27) 

(1.4.21) 

A, = sin(n + 2)8 sin(n + l)rc/ - sin(n + 2)+ sin(n + l)tJ. 

(1.4.28) 
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Using the trigonometric identities, 

2 sin a! sin p = cos(cu - /3) - cos(a + p), 
2 cos a sin /3 = sin( @ - a) + sin( /3 + a), 

one obtains 

(1.4.29) 

(1.4.30) 

4 = $ [cos(n + l)(e - #) - cos(n + l)(e + $)](cos 8 - cos #) 

+sin(n + l)(O + J/)[ sin e - sin $1 + sin( n + l)(# - 0) 

x (sin 8 - sin #)I. (1.4.31) 

Let us focus on the integrand R(O, +)A, as a function of both variables 
in the rectangle B, 

B = {(&#)lO 5 8 Sn,O Ia/ IT}. 

Let us write 

Rt’% &4, = [w% 4) + a% lr/>] [ Y(G WS 0) - ~(6 WS $)I9 
(1.4.32) 

where 

K,(e, q) = L sin 2 sin + [dn + w - $1 - costn + w + $11 (1.4.33) 

K,(e, J/) = 1 sin 2 sin Ic, [sin(n + i)(e + $) + sin(n + l)(+ - t9)] 

x -cot?). (1.4.34) 
( 

It is easily verified that 

sin e - sin 1c, 
2 sin ’ - ’ -cosB 

2 2 
cos e - cos +b = - 2 ~in.!I-!k~i~.!A-!k = 

-coty . (1.4.35) 

2 2 

Using trigonometric identities, one obtains 

K,(e, 4) = sin B(sin(n + i)e) sin(n + I)$ 
SiIl\c/ (1.4.36) 

ue, 44 = - sin O(cotT)(cos(n + i)e)( Sin(~~~)+). (1.4.37) 
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Consider the coefficient K,(B, #) in (1.4.36). Obviously K,(8, $) is a con- 
tinuous function of 8,$ for 

-60<e<+o3, -co<~<+co. 

Moreover, 

pw Jq& 4) = 0, j=o, 21, ?2,... 

uniformly for - cc < J, < + cc since 

fw, 44 = we -i#(n + 1)) 

with respect to 8 + jr. 

(1.4.38) 

Let us show that K2(0, $) is a bounded function of 8, J/ for 0 I 0 I T, 
0 I \c, I rr. It suffices to consider 

a6 $1 = 
sin e 

sin((8 + #)/2) * 
(1.4.39) 

The only problematic points of possible nonboundedness in the rectangle 
B may occur at 

(6 + +)/2 = j?r, j = 0, 1, . . . . (1.4.40) 

But forj = 0 we need consider only 8, # small and positive. Obviously, 

(1.4.41) 

For 

0 c 8 c m/2, 0 < JI < a/2 (1.4.42) 

e/ (e + 4) 5 1. (I .4.43) 

A similar discussion forj = 1 leads to consideration of values of 8, 4 close 
to ?T. Since 

, qe, 4) = 
sin 

sin(n i r)+ , 

( 
77 - - 

2 1 

it suffices to consider 

(1.4.44) 



SINGULARLY PERTURBED PROBLEMS 89 

which satisfies 

n-e 
(7r - e) + (7T - I)) s l (1.4.45) 

for 

0 < 7T - 9 < e/2, 0 < 77 - l/J < 7r/2. (1.4.46) 

Moreover, for any 0 < 6 < T, one finds that K3(t9, JI) is a continuous 
function of 8, # for 

62e2T-6, 61$In-6, (1.4.47) 

Since we are interested in particular in the evaluation of (1.4.26) for u = 1 
or $I = 0, we find that by (1.4.36) and (1.4.37), 

uk(e): = K,(h), 0) = k(sin ke) sin e (1.4.48) 

b&(e): = K2(e, 0) = (1.4.49) 

Let us compute the arithmetic means of uk, bk by use of the identities from 
[3, pp. 30-31, 24-251: 

8 8 e 
cos(2n + l)? - cosz 1 csc- ) 

2 
(1.4.50) 

i ksinkB=+sin(n + 1)0 ’ 8 e 
k=O 

csc2y - $(n + 1) cos(2n + l)zcsc~, 

(1.4.51) 

&iocos kf3 = isin(2n + l):csci + +, (1.4.52) 

i k cos kt’ - - -sin(2n + 1):~s~: - $(l - COS(~I + i)e) CSC~:. (n + 1) 

k-0 2 

(1.4.53) 

The arithmetic means of the sequence a,(0), k = 1,2, . . . is found by 
(1.4.48), 

z9,‘(8):= (n + 1)-l i: a,(e) 
k=O 

= 
[ f( 

n + I)-’ sin(n + i)e cs$f - +cos(2n + l)tcsc: 1 sin 8. 

(1.4.54) 
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It is easily verified that H,,‘(0) is bounded for 0 I 8 I ?r, n = 1, 2, . . . . 
Denote this bound by M, so that 

IH;(e)l I M, = (; - 1). (1.455) 

Consider 

Zl(S) = p;w[ Y( t, cos 19) - y(t, l)] dt3. (1.4.56) 

It is easily deduced that 

(1.457) 

We denote by ( ) the absolute value and by (1 llEa we denote 

IIll& E, = sup1 I. 

Let 

(1.4.58) 

t, cos e) - y(t, i)] de. (1.4.59) 

Then by the Lebesgue-Riemann theorem we know there exists an 
absolutely continuous function +((t, 8) on 0 5 0 < s such that 

1~0, ~0s 8) - ~0, 1) - dt, e)l I p, (1.4.60) 

where p is arbitrarily small, and therefore, 

where 

Z,(r) = K,(a) + &(a), (1.4.61) 

and 

zw = ~“H.‘wp(t, COS e) - u(t, 1) - +(t, e)] de, (1.462) 

ZC~(~) = J”zz;(e)+(t, e) de. 
6 

(1.4.63) 

Obviously, 

(1.464) 
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and 

By straightforward integration we have 

k;(8) d0 
I 
I (csc*b/Z)(n + I)-‘cu, (1.466) 

where a is some positive constant. This implies that there exists h > 0 such 
that 

It turns out that 

Iz&(Tr)I 2 &(?I + 1)-l csc2 6/2. (1.4.67) 

11,(r)/ I p(s - S)(; - 1) + Gi(n + l)-’ csc* 6/2. (1.4.68) 

Let us consider now the arithmetic means of bk(0). By (1.4.53), one obtains 

B,’ = (n + I)-’ 

( 
ee i = sin(2n + l)Tcscz - -sin2(n + l)~csc?~ 

(n + 1) 
)( -cos$). 

(1.4.69) 

One sets 

where 

B; = (c,, + eJ( -cos2;), 

c, = -sin(2n + l)icsc:, 

1 8 e e = -sin2(n + I)5csc2z. 
n (n+l) 

Let us estimate 

En:= E,(6) + E,,(s) 

(1.4.70) 

(1.4.71) 

(1.4.72) 

(1.4.73) 
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with 

cos2; [ y(t, cos 8) - y(t, l)] dti (1.4.74) 

En(@) = j8”e.W cos2; [ y(t, cos 6’) - y(t, I)] d8. (1.4.75) 

This integral involves a nonnegative kernel which simplifies the task of 
finding the estimates: 

sin2(n + l)~csc2~cos2~(y(f, cos 0) - y(t, 1)) de. 

Let 

A&(6): = Ll”sin2(n + l)icos’i csc2B - 
(n + 1) 0 [ 2 (ff12)-‘] 

Since 
x [Y(C cm fl) - Y(C l)] de- 

g(e) = csc2; - (f)-’ 

(1.4.76) 

(1.4.77) 

(1.4.78) 

is a continuous function for 0 I 8 I T, one obtains 

IAW)l 5 &)SllYO, cos fl) - Yk ~)llE~(ll d~)llEJ- (1.4.79) 

Therefore, the estimation of E,,(6), can be done via the estimation of 
(1.4.79) and 

-2 
sin2(n + l)~cos2~(y(,, cos fl) - y(t, 1)) d0, 

(1.4.80) 

&w 2 IlY(b cm 8) - Y(4 lNlE$m (1.4.81) 

-2 8 
sin2(n + l)~cos2~d0. (1.4.82) 

Performing the transformation 

(n + 1,; = y, (1.4.83) 

de = - 
.Ldy , (1.4.84) 
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we have 

q,(6) = 2icn+ ‘I’ yp2 sin2 y cos’&&, (1.4.85) 

or 

with 

(1.4.86) 

q: = 2i*yp2 sin’ y dy. (1.4.87) 

So, we are left with the evaluation, 

cos2; [ y(t, cos e) - y(t, I)] de. (1.4.88) 

We apply to the sequence C,,‘, the arithmetic means and thus obtain by [3, 
p. 30, formula 1.342, No. 31, 

c,’ = (n + 1)-l i ck’ 
k=O 

1 =- 
(n + 1) I 0 

?rsin2(n + l)~csc2~cos2~(y(t, cos 4) - y(t, 1)) de. 

(1.4.89) 

Comparison of (1.4.89) with the formula (1.4.73) for E,, shows that 

E,, = C,‘. (1.4.90) 

Let us show that given e > 0, E arbitrarily small, N,(t) can be found s.t. for 
N > No(t) and (1.4.18) holds. 

By (1.4.54), (1.4.56), (1.4.59) (1.4.69)-(1.4.78), (1.4.80), and 
(1.4.88)-( 1.4.90) we have 

‘N: = [ (ff, 2)(S,,(ty u, - y(h u))], 

= ;[ [(X l)&(S) + Z,b>>], +[(K ‘>JT~]~ - C:]. (1.4.91) 

Let p > 0 be a small number. Since (1.4.16) holds, there exists a 6 s.t. for 
05ea<T, 

IY(C ~0s 0) - ~0, 1)1 < P. (1.4.92) 
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This implies 

Ilr(t, cos 0) - Y(C l)llE* s P, (1.4.93) 

and therefore, 

IZl(S)l < b(; - 1). (1.4.94) 

We choose in (1.4.68), ZA = p and after 6 is fixed we find nl(t) large enough 
that for n 2 n,(t) 

l/ (?I + 1) < p. (1.4.95) 

We deduce from (1.4.68) and (1.4.95) that 

IZ,(n)l 5 ((77 - a,( p - 1) + & csc2 6/2) (1.4.96) 

for n > n,(t). By what we have just said (1.4.95) implies that for n > n,(t), 

WnWl 2 h211 gWl14, (1.4.97) 

I&,(Ql 5 P49 (1.4.98) 

and 

IW>l 5 PW VW (1.499) 

(E,,(a) is estimated in a manner similar to the way Z,(B) was estimated with 
/II some positive constant.) 

We notice by the definition of the (H, l), (C, 1) methods that if a 
sequence A,, n = 0, 1, . . . satisfies 

IAnI 2 a, (1.4.100) 

then also 

I[ (H9 1k],l 5 a* (1.4.101) 

Now combine (1.4.94) with (1.4.96) and (1.4.97)-( 1.499) to obtain 

[I,( 2 p[ T( f - 1) + 2 csc2 a/2], (1.4.102) 

I&I 5 P[ 4 + ( csc2 mP + &AI d~)II,]. (1.4.103) 

However, by virtue of (1.4.100), (1.4.101) and (1.4.102), (1.4.103), we obtain 

(1.4.104) 
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with 

K:=[*(~-1)+2q+(d+28)csc26/2+26plIg(e)lIE]. 

(1.4.105) 

Choose now 

Q-1 
P=4 (1.4.106) 

and the result follows. E.O.P. 
Remark. If (1.4.16) holds uniformly with respect to t E J,, J, c J, then 

one can show that N,(t) associated with (1.4.18) can be chosen indepen- 
dent of t, t E J,. 

COROLLARY. The conclusions of Lemma 1.4.1 hold with (H, l), (H, 2) 
replaced, respectiwly, by (C, l), (C, 2). 

Proof. This is a result of the equivalence of the (H, k) and the (C, k) 
methods. See [4, p. 1031. 

Remark. The singular point u = - 1 or J/ = n can be treated similarly 
by considering the function y(t, u) 

atu = 1. 

Jqt, u): = y(t, -u) (1.4.107) 

5. REPRODUCING THE FUNCTION 

LEMMA 1.5.1. Let y(t, u) be continuous at u = uO E I. 
Let y(t, cos fl) be an integrable function of 0 for 0 < 13 I s. 
Let (1.4.14) be its Fourier expansion in Tshebysheff s polynomials of the 

second kind. Then given E arbitrarily small, there exists no(t) s. t. 

lfi i :zi ui(r) 

sin(i+ 1)arccosu 

vi=-2 
- y(t, u) < 6 (1.5.1) 

for k > k,(t) and u = uO 

Proof. As we did before, we proceed to find estimates. We rewrite the 
formula (1.4.14) as follows: 

/ 
*zwt #)[ Y(t, COS e) - Y(t, COS Icl)] de = J,, - J2k (1.5.2) 

0 
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with 

J,k = I =V,, dt’ 
a 

J 2k = 
J 

T&k db’ 
a 

V Ik = ; gcos k(B - $)[y(t, cos 8) - y(t, cos l))] 

V 2k = ; zcos k(8 + $qy(r, cos 8) - y(t, cos I))]. 

Using the transformation in Jlk, 

f3-#=a, 

and using the transformation in J,, 

one finds that 
B+l+Q=a, 

(1.5.3) 

(1.5.4) 

(1.5.5) 

(1.5.6) 

(1.5.7) 

(1.53) 

J 
1 n-#sin(cY + #) 

Ik = - 
s 2 -4, 

sin + ~0s ka[u(t, cos(a f #)) - ~(6 ~0s #>I da 

(1.5.9) 

J 
1 r+lLsin(cu - 4) 

2k = “i 
s + sin # cos ka[ y(t, cos(a - t//) - y(t, cos I))] da. 

We set 

with 

(1.5.10) 

Jut - J2k = J3,c + Ja + Js, + J6k (1.5.11) 

J 3k = 2 ’ I”-“(cos ka)y(t, cm 4) 
sin(ol - 4) - sin(a + $) 

* sin +b da (1.5.12) 

J 
1 

I 
r-4 

4k = 2 cos kcw 
4J 

Mff ++lv(t, cos(a + $>) - sin(a - $)y(t, cos(a - 4)) 
sin \I, I 

da 

(1.5.13) 

J 
1 4 sin(a + $) 

Sk=2 _ 
J 

4J 

sin 3 cos ka[ r(t, cos(a + 4)) - y(t, cos #))I da 

(1.5.14) 

J 6k = cos ka[y(t, cos(cx - 4) - y(t, cm $)I da. 

(1.5.15) 
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Letting in (1.4.16), 

a=n+u, (1.5.16) 

we obtain 

J 
(- l)k 4 sin(a - \c/) 

6k = - 2 / -$ sin I/J cos ka[y(t, -cos(a - I))) - y(t, cos #)I da. 

(1.5.17) 

We substitute in J,, the identities 

and 

sin(a - 4) - sin(a: + #) = - 2 sin 1c/ cos (Y (1.5.18) 

2 cos ka cos a = cos(k + l)a + cos(k - ~)cx. (1.5.19) 

We obtain 

Jsk = +Jv-” 

4 
y(t, cos $)[cos(k + 1)o + cos(k - l)a] da 

sin(k + l)(~ - #) - sin(k + I)# 
k+l 

+ sin(k - l)(~ - +) - sin(k - 1)s 
(k - 1) 1 

= $(l, cos I)) sin 2(k + l)lr, + sin 2(k - l)# 
k+ 1 (k - 1) I . 

(1.5.20) 

We now have a set of identities which will be used for future estimations of 
the contributions of K,(8,$) to the value of (1.4.26). 

Let us turn now to the corresponding identities which will help us 
estimate the contributions of I$(@, #) in the evaluation of (1.4.26). 

The procedure is very much the same. 
The main change in the identities corresponding to K2(0, J/) will essen- 

tially be due to the replacement of sin 8 in V,,, V,, by 

- sin 0 cot? (1.5.21) 

as a result of the additional factor cot((8 + #)/2). 
A slight change in form is also due to the fact that we will deal with 

sin ka rather than with cos ka. 



98 H. GINGOLD 

We let 

J 0 
?iK,M #)[ Y(C cm 0) - r(t, cos $41 de = L,, - bk, (1.5.22) 

with 

L Ik = / 
CW,k de, (1.5.23) 

0 

L 2k = = w,, de, (1.5.24) 

WI, = 
1 sin 8 

- -cotysin k(e - #)[ y(t, cos 8) - y(t, cos +)I, 2 sin 3 

(1.5.25) 

w2k 
1 sin 8 

= - -cotFsin k(8 + ~jl)[ y(t, cos 0) - y(t, cos $)I da. 
2 sin tc, 

We use in Llk, Lzk the transformations (1.5.7), (1.5.8) to obtain 

1 
Llk = 2 s 

n-$sin(a + #) cot((a/2) + I+) 
-~ sin 4 

x sin ka[ y(r, cos(a + +!J)) - y(t, cos #)I da, 

L2k = ; / 
n+ + sin(a - 4) cot(a/2) sin ka 

4 sin il, 

We let 

with 

x [Y(C cos(a - Icl)) - ~(6 ~0s +)I da. 

L Ik - hk = L,, + L& + L,, + L6k, 

(sin ka)y(t, cos #)(sin(a - #) cot(a/2) 
-sin(a + 4) cot((a/2) + #) 

sin $ 1 dcy 3 

(1.5.26) 

(1.5.27) 

(1.5.28) 

(1.5.29) 

(1.5.30) 

sin ka[sin(a + 4) cot((a/2) + #)y(t, cos(a + 4) 
-sin(a - II/) cot(a/2)y(l, cos(a - #) da 

sin $ 9 

(1.5.31) 
L = 1 + Ma + $1 cot((aP) + 4) 

I 5k 2 _ 4 sin $ 

X sin ka[ y(t, cos(a + $)) - y(t, cos +)I da, (1.5.32) 

L 1 
6k= 

n++ sin(a - +) cot(a/2) sin ka -- 
2 J 77 _ # sin 4 

x [ y(t, cos(a - $1) - v(t, ~0s $11 da. (1.5.33) 
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We substitute (15.16) in (15.33) to obtain 

L 
( - l)k 

/ 
# 

= - 

sin(a - #) tan(a/2) sin ka 
6k 2 -4 sin $ 

x [y(t, -cos(a - I))) - y(t, ax J/)1 da. (1.5.34) 

We are ready now to proceed with the estimations. 
By (15.12) we obtain 

(1.5.35) 

Let q(a, #) be an absolutely continuous function of (Y, 0 I cy I n s.t. 

Isin(a + ~))y(cos(a + I/J)) - sin(a - #)v(t, cos(a - #)) - da, #)I 5 c14; 

(1.5.36) 

then, 

lJ4ic1 
< CLq In - WI 

2 sin J/ 
+ k-, [24 +la - WI4J 

sin $ ’ (1.5.37) 

The inequality (1.5.37) was deduced by integration by parts 

1 

L I 
n-‘c~~ kaq(a, #) da 

n - #, +) - (sin k#)q(+ 4) 

- 
/ 

n-‘(sin ka)q,(a, 4) da 
+ 1 (1.5.38) 

and by estimation with the constants @, & which satisfy 

Ma, #>I 2 4, O<aIIr, 

14Ja, #)I 5 da7 O<alr. 

(1.5.39) 

(1.540) 

Let ql(a, +) be an absolutely continuous function of a for - II/ I a I JI s.t. 

Ir(t, cos(a + 4)) - At, cos 4) - da, +)I 5 ky (1.5.41) 



loo H. GINGOLD 

then it is possible to find the estimation 

1 + sin(a + 4) 
2 -$, s sin + (COS kah(ay +)da 

k-’ sin 2# =-- 
2 sin + 

cos kt,b - G 

X 
/ -:s [Ma + +)4, + sin(a + #)ql, ,(a, #)I da. 

(1.5.43) 

Similarly, let q2(a, 4) be an absolutely continuous function of a for 
- 4 I a I rc/ s.t. 

Then 

Ir(t, -cos(a - #)) - Y(G cos $) - q*(a, 44 2 Pcj. (1.5.44) 

IJ,J I /A,&, + k-f w + &(B + &,a)] (1.5.45) 

with 
k&Y #)I 2 b (1.5.46) 

1(42)J% $4 5 &co (1.5.47) 

((q,),, (q&, means differentiation w.r.t. a. 
We now turn to the estimation of Ljk,j = 3, 4, 5, 6. Let ps(a, #) be an 

absolutely continuous function such that 

Jsin(a - $J) cot; - sin(a + \I/) cot( T + $) - ps(a, +)I 5 Y3 (1.5.48) 

for 4 I a < n - 4. Then, 

b - 24b(f7 ‘OS $11 + k-, led’, ‘OS $11 
2 sin II/ sin $ 

where &, (I is a constant such that 

IP3, a(a9 #>I 5 p’3,01* (1.5.50) 

This inequality can be improved since it holds uniformly for 0 < # < T. 
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Let p4(~, #) be an absolutely continuous function of (Y, for # I (Y I n - IJ 
s.t. 

sin(cr + $) cot 
(2 1 

‘y + 4 y(t, cOs(a + 4)) 

-sin(a - $) cotGJy(t, COS(a - $) - Pd(a, #)( I Y4. 

Then 

where p4, (I is a constant s.t. 

IP4,ab 411 5 F4,u3 

for 4 I (Y < T - #. 

(1.5.53) 

We would like to mention that according to inequalities (1.4.43), (1.4.45) 
we can stipulate that in the corresponding domains of integration, we have 
for suitable constants 

sin(cu - #) cot: I C,, ( 1.5.54) 

(1.5.51) 

(1.5.52) 

sin(cw + #) cot f + 4 I C,, 
( )I 

(1.5.55) 

uniformly for 0 < JI < 7r. 
Let ps(o, #), ~,&a, 4) be absolutely continuous functions of (Y for - 4 I 

a I 1c/ s.t. 

Isin(o + Ir/) cot( f + #)v(k cos(a + 4)) - r(t, cos 4) - PS(o, $))I 5 Y5, 

(1.5.56) 

I(sin(a - 4) tant)y(& -cos(a - #)) - ytfy cos #) - pS(“, $))I 5 Y6 

(1.5.57) 
Then 

(1.5.58) 

(1.5.59) 

(1.5.60) 

(1.5.61) 
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Let E > 0 be arbitrarily small. Obviously, 

k-l 

2 
i-o 

ai 

sin(i + 1) arc cos u 

vi-7 - 

(1.5.62) 

with 

b = i &I + ILjkl). 
j=3 

(1.5.63) 

We let in (1.5.36), (1.5.41), (1.5&I), (1.5.48), (1.5.51), (1.5.56), (1.5.57), 

P = c14 = & = p6 = Y3 = Y4 = YS = Yg. (1.564) 

This is possible since b, j = 4, 5, 6 and 3, j = 3, 4, 5, 6 could be chosen 
arbitrarily small. 

Therefore, 

b I pa, + k-‘a,, 

where 

IT - 2rc/I + 4rc, + $7 - 2~llu(t, cos #)I 
a, = 

sin 4 
(1.5.65) 

a2 = 

(1.5.66) 

Since a,, a2 are bounded, we choose k,(t) s.t. 

1/k,(t) 5 Pa 

Then for k > k,,(t), 

(1.5.67) 

b 5 p k,(t) aI + ka2 I da, + a2). 

We choose 

and the result follows. 

P = 4 (a1 + a21 

(1.5.68) 

(1.5.69) 

E.0.P 
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Remark. One can obtain uniform bounds with respect to t, t E J,, 
J, c J, if proper assumptions are made on the continuity of y(t, U) at 
U=U 0’ 

6. A REPRESENTATION THEOREM 

We can now formulate a representation theorem. 

(REPRESENTATION) THEOREM 1.6.1. (i) Let y( t, C) be a holomorphic func- 
tion of E for Re z > 0, and t E J. 

(ii) Let 

Y(h dull = 2 v,(tW (1.6.1) 
v=o 

be the power series expansion of y(t, u) in the disk D where 

u = (a - (r)/ (a + e). (1.6.2) 

(The transformation (1.6.2) takes Re c > 0 onto D. See [8,p. 1931.) 
(iii) Assume 

IY”(Ol = we (1.6.3) 

with a < 0.5. 
(iv) Assume y( t, e(cos 0)) to be an integrable function of 0 on 0 I 8 5 

v. Then 
(I) if y(t, C) is continuous at E = co where q, is any point on 0 5 E < 

00 including 6 = 0 (continuity at q, = 0 means that there exists y( t, O+)), we 
have 

y(t, c) = y,,(t) + A, (1.6.4) 

where 

(1.6.5) 

+ii, are given by (1.3.6) and CFso cpip,( t), i = 0, 1, . . . are absolutely 
converging series; 

(II) in addition, if there exists 

~(00, c): = lim y(t, C) 
I-m (1.6.6) 
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for Re c > 0, then there exists 

Y&4: = &Y”(t) V’O, l,...; (1.6.7) 

(III) ij 

Y”(W) = w+ 

with a < 0.5, then (1.6.5) hoI& for all E with t = 00 in (1.6.4). 

(1.6.8) 

Proof: Since y(t, E(COS 0)) is an integrable function of 8, all the Fourier 
coefficients of its expansion in terms of Tshebysheff’s polynomials of the 
second kind exist. Moreover, since (1.6.3) holds, ai( i = 0, 1, . . . are 
given thanks to Lemma 1.3.3 by the absolutely converging series 
(1.3.3)-(1.3.4). 

If E = ee > 0 is a continuity point of y(t, E) corresponding to u = ue, 
then by Lemma 1.5.1, the series in (1.4.14) converges. 

Since (C, 2) is a regular summability method applied to a converging 
series, the same limit is obtained. In case E = q, = 0 we use Lemma 1.4.1 
and the result follows by extracting in each ai the term with +ioyo(t) and 
noticing that &, = 0 for i = 1, 2, . . . . 

Assume now that (1.6.6) holds. By Cauchy’s formula (1.67) also holds. 
Moreover, for all Ju[ < 1, 

(1.6.9) 

is a holomorphic function in 1 U( < 1. 
We apply the previous argument and the result follows. E.O.P. 

A WORKED EXAMPLE. Consider the most elementary singularly per- 
turbed problem 

cy’ +y = 0 Y(O) = 1, OIt<co,E>o. (1.6.10) 

Its solution is 

y = exp - tea’, 

which is a bounded function for all t E J, and Re c > 0. Also, y is a 
holomorphic function for Re E > 0. 

We take Re e > 0 into Ju( < 1 by 

l-u 
c=a1+u, a>0 (1.6.11) 

and expand y in a power series of u. 
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Carrying out the expansion in (1.6.10) yields the recursive set of differen- 
tial equations 

ay;, + Yo = 0, YOW = 17 (1.6.12) 

ar: + Y” = UYl-1 - Yy-1, Y,(O) = 0, v = 1, 2,. . . .(1.6.13) 

By induction, one obtains 

aYl + Y, = -2(Yo + Y, + . . . Yv-,)7 v = 1, 2, . . . . (1.6.14) 

We set 
Y, = YOP”I v= 1,2,... 

to obtain the set of equations 

P,' = -2a-'(PO + P, + . * . P,-J. (1.6.15) 

We prove now by induction that 

P,(t) = (zl()[ 1 + zJJ-‘Po, 

where (~1;) is an operator which has to be interpreted as 

( zl,ypo = zyy ';;yy ' P,(s) ds. 

(1.6.16) 

(1.6.17) 

We take PO E 1. For Y = 1 we have from (1.6.13) 

"Pi = -2P, 

so that 

P, = -z I ~Po(s)d.s 
0 

(1.6.18) 

in accordance with (1.6.16). 
Assume (1.6.16) to hold for 1, . . . , V. We substitute in (1.6.15) for Y + 1 

to obtain 

P' v+l = z P,(t) + i z,'[ 1 + zs]k-'Po(s)] 
[ k-l 0 

(1.6.19) 
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Integration of (1.6.19) yields the desired result. 
Since PO E 1, all P,(t) turn out to be polynomials. So it turns out that 

(1.6.20) 

Formula (1.6.20) can be verified rigorously by some other method. We 
have 

liioy(t, e) = 1 if t = 0, 

= 0 if t > 0, (1.6.21) 
and 

lim y(t, e) = 0 for Re e > 0. t+cc (1.6.22) 

We recall the coefficients r#+, given by (1.3.8) and more explicitly by 
(1.3.9)-(1.3.22). 

Since 

lu(h <)I 5 1 for t E J,, Re e > 0, (1.6.23) 

by virtue of Lemma 1.3.3 all conditions of Representation Theorem 1.6.1 
hold, (with a = 0 in (1.6.3)); therefore, 

with 

exp - te-’ = exp - ta-’ + A (1.6.24) 

A:=~(C,2)i~0~sin[(i+ l)arccosz] 
ae 

co 

z &, exp - ta-’ 
&,=I 

;g; ( ’ ; ‘) ‘-;$+‘). (1.6.25) 

In particular, 

,by+exp - te-’ = exp - ta-’ + 4 

with 

A0 = $(C, 2) g (i + 1) 
i - 0 

(1.6.26) 

co 

2 &, exp - ta-i 
v=l 

(I!; ( ’ ; ’ ) ‘-;;‘;;;+’ )]. (1.6.27) 
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Of course, for t = 0, 4 becomes 0, and for t > 0, there is convergence 
which cannot be uniformly valid for all I 0 < I I M. Since 

lim JJ~(~)P,(~) = 0, v = 0, 1,. . . ) 
t*+CO 

we get from the representation theorem the value of 

lim y(t, e) = 0, 
t-03 

Re E > 0. (1.6.28) 
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