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0. Introduction 

In the present article we will give a classification in terms of numerical 

invariants of certain saturated topological abelian groups, or equivalently of the 

corresponding complete theories. It is intended to provide a topological analog of 

results of Eklof and Fisher in the discrete (i.e. non-topological) case [2]. Let us 

first review the background. 

0.1. Model theory of abelian groups 

Traditional model theory deals with first-order theories of algebraic systems. A 

basic result in the model theory of abelian groups, obtained by Szmielew [13] in 

1955, is the decidability of the full theory of abelian groups. Szmielew uses the 

method of elimination of quantifiers, which typically produces the sharpest results. 

More abstract model theoretic methods can be used to obtain Szmielew’s 

results. In the process the results lose some of their effectivity, but gain in 

algebraic content. Eklof and Fisher [2] reworked Szmielew’s results in terms of a 

detailed analysis of saturated abelian groups. They were able to give a complete 

classification of somewhat (i.e. wl-) saturated abelian groups. As it turned out, the 

algebraic tools needed for this are all to be found in Kaplansky’s monograph [7]. 

0.2. Model theory of topological abelian groups: negative results 

More recently a topological model theory has been developed which deals with 

the first-order theories of topological algebraic systems. It was not clear initially 

what one should mean by ‘first-order logic’ in a topological context, but a 

* The bulk of this research was carried out while the first author was at Tiibingen with the support of 

the Alexander-von-Humboldt Foundation (1978-1979). 
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convincing candidate emerged in the form of the logic L’ (t for ‘topological’) 

introduced by McKee [lo] and developed in [3, 5, 141. This logic will be presented 

in Section 1 below. 

When we began to look systematically at the possibility of extending the results 

of Szmielew and Eklof-Fisher to a topological context it became clear that there 

are substantial obstructions to such a program, as manifested for example by: 

Fact A [I]. The theory of torsionfree HausdorfS topological abelian groups is 
undecidable. 

The proof of this fact led us to examine the class of locally pure topological 

abelian groups. For our present purposes these may be taken to be the topological 

abelian groups possessing a neighborhood basis of pure open subgroups at the 

identity (alternatively one may consider more generally groups which are elemen- 

tarily equivalent to such a group). A second negative result should be mentioned: 

Fact B [l]. The theory of locally pure Hausdorff topological abelian groups is 

undecidable. 

The analysis of topological abelian groups which are both torsionfree and 

locally pure turned out be be more fruitful. 

0.3. The present paper 

Main Theorem. The isomorphism types of saturated, torsionfree, locally pure to- 
pological abelian groups can be classified in terms of simple numerical invariants. In 

fact all such groups are of the form 

(*) discrete@ Trivial @exp(A, & CL) 

where a trivial group is one with no proper open subset, and exp(A, B, p) is a group 
which is described explicitly in Definition 2.11 below, in terms of a pair of (discrete) 
torsionfree abelian groups B E A and a cardinal CL. 

At the request of the referee we have rewritten the paper to bring out more 

clearly the algebraic content of the analysis, since the saturation hypothesis is used 

in a limited number of ways. Algebraists unfamiliar with saturation may think of it 

as a completeness or compactness condition analogous to algebraic compactness. 

Notice that we do not classify WI-saturated groups of the stated type, but only 

the fully saturated ones. We do not see how one could analyze the topological 

structure under weaker hypotheses. 

One technical point which should be emphasized is the connection of the work 

reported here with the work of Kokorin and Kozlow [S]. Our numerical invariants 

will be just the Szmielew invariants of the first two factors in (*) together with the 
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Kokorin-Kozlow invariants for the pair (A, B). There is, however, a ‘missing 

link’. As it stands, the work of Kokorin and Kozlow does not look much like what 

we do here, but in [12] their results are reworked in the manner of [2] and in the 

process the relationship to the present paper becomes evident. 

Returning to the question of decidability, which guided us in our initial 

investigations, we derive as an immediate corollary to the main theorem: 

Corollary. The L’-theory of torsionfree, locally pure topological abelian groups is 

decidable. 

Ziegler has pointed out that this corollary can be obtained quite rapidly from 

Gurevich’s remarkable decidability result for ordered abelian groups [6]. On the 

other hand a ‘saturated models version’ of Gurevich’s result has been sought for 

some time without success. 

The paper is structured as follows: After reviewing the logic L’ and discussing 

the key notion of local purity in Section I below, we will describe in Section 2 our 

set of elementary invariants associated with topological abelian groups. The Main 

Theorem will be proved in Section 3. 

In particular the first two sections are devoted entirely to preliminaries, 

culminating in the introduction of our ‘standard invariants’ in Definition 2.28. 

Lemma 2.29 states that these are indeed L’ elementary invariants, and Theorem 
-.._ 2.30 states that they art: a compiete set of eiementary invariants, which is the 

model theoretic form of our main result. In Section 2 we give only the trivial part 

of the proof of this theorem, namely the passage from the structural form of the 

main theorem to its model-theoretic form. 

1. Preliminaries: local purity 

1.1. The logic L’ 

We will present the first-order topological logic L’ in a form specifically 

adapted to the discussion of first-order properties of topological groups. 

Definition 1.1. Let LG be the usual first-order language of group theory (written 

additively) and let LG” be the extension of LG to the following weak second- 

order logic: 

(1) Syntax: Conventional second-order logic with second-order variables 

X, Y, . . , second-order constants, and the binary relation symbol E. The class of 

formulas is closed under second-order quantification. 

(2) Semantics: a structure for LG” is a group G with a family 3 of subsets 

of G. 



52 G. Cherlin, P.H. Schmitt 

(3) Interpretation: E represents membership. Second-order variables range 

over 3. 

The logic L’ is obtained as a sublogic of LG”. 

Definition 1.2. (1) An occurrence of a second-order variable X in an LG” 

formula cp is said to be positive (resp. negative) if it is governed by an even (resp. 

odd) number of negation symbols, (in this connection we take the propositional 

connectives to be 1, v, & only; thus cp -+ 4 abbreviates lcp v +). 

(2) L’ is a sublogic of LG” with the same semantics but a restricted syntax: a 

formula cp of LG” belongs to L’ iff for each subformula 3x4 (resp. VX$) of cp 

all occurrences of X in +!I are negative (resp. positive). 

Example. The following three sentences of L’: 

(1) vxvY3zvx(xEz~xEx&xEY), 

(2) VX(0 E X), 
(3) VX3YVx,y(xEY& yEY+x-YEX) 

assert that the family 53 constitutes a neighborhood basis at 0 for a topology T on 

G such that (G, T) is a topological group. 

Notation. Elementary equivalence with respect to the logic L’ is denoted: et. 

The following are easily verified [3,5, 111. 

Fast 1.3. If S,, 913~ are neighborhood bases for the same topology on the topological 

group G, then: 

(G, 3,) -t (G, 32). 

Fact 1.4. The logic L’ satisfies the Compactness Theorem. 

Definition 1.5. Let (G, 3) be a structure for L’. A type C over (G, 93) is a set of 

formulas of L’ involving a fixed finite set of first- and second-order variables 

x,, . . , x,, X1, . . . , X,,, such that 

(1) all constants occurring in formulas in 2 denote elements of G or sets in 93 ; 

(2) the variables Xi occur only negatively in formulas of 2; 

(3) ;I; is finitely satisfiable in (G, 5%) (using elements a,, . . , a,, in G and sets 

A,, . . . , A,,, in 6%). 

Remark. It is easy to dispense with condition (2) above, but including this 

restriction yields a smoother general theory. 

Deli&ion 1.6. (1) For CL an infinite cardinal (G, 5%) is k-saturated iff each type .Z 

over (G, 9) which involves fewer than p constants in (G, $93) is realized in (G, 93). 
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(2) (G, 93) is saturated iff (G, 93) is p-saturated for p =card(GUB). 

(3) G is u-saturated (resp. saturated) iff there is a neighborhood basis 24 for G 
such that (G, 8) is p-saturated (resp. saturated). 

Remark. The types referred to in clause (1) above may be taken to involve a 
single free variable. 

Fact 1.7. Let t.~ be a regular cardinal. Then each L’-structure (G, 52) is L’- 
elementarily equivalent to a u+-saturated structure of cardinality 2’“. 

Fact 1.8. If G, G’ are saturated topological groups of the same cardinality and 
G =,G’, then G is topologically isomorphic to G’. 

Fact 1.9. Suppose that H is an L’-definable subgroup of the u-saturated topological 

group G. Then H (resp. G/H if H is normal) is u-saturated in the induced topology. 

1.2. Saturation and local purity 

Recall that a topological space is called a P-space if any countable intersection 

of open sets is open (equivalently, any countable intersection of neighborhoods of 
p is a neighborhood of p, for each point p). If a topological group is a P-space, we 
will call it a P-topological group. 

We deal with topological groups as pointed topological spaces equipped with a 
distinguished basis for the neighborhoods at the identity. In this context, if 92 is 
the distinguished basis, then let G,(B) denote the collection of all countable 
intersections of members of $24. In particular, if the space is a P-space, then the 
elements of G,(‘B) are neighborhoods of the base point, 

Lemma 1.10. If G is u-saturated, then the intersection of fewer than u open sets is 
open. In particular if u is uncountable, then G is a P-topological group. 

Proof. Fix a neighborhood basis 93 for G at 0 such that (G, .%) is p-saturated. 
Let {W,: (Y <A} be a family of open sets and h <p. For any x E W = 
n{ W,: a <A} there are U, E $52 such that x + U, E W,. The set of L’-formulas 

{“XC u,“: CY <A} 

with X a second-order variable is a finitely satisfiable type in L’ over (G, 93). 
Letting U E B realize this type yields x + U E W, for all cy <h. Thus W is open. 

Lemma 1.11. If G is a P-topological group, then there is a neighborhood basis for 
G at 0 consisting exclusively of open subgroups of G. More precisely, if 93 is any 
basis for G at 0, then G,(B) contains such a basis. 

Proof. For any neighborhood A of 0 choose sets B, in 3 such that: 

&GA, B,+l-B,+l~Bn for each n. 
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Let A’ = n{B,: n E o}. Then A’ is in G,(9), so A’ is a neighborhood of 0. A’ is a 

subgroup by construction and hence A’ is also open. 

Corollary. Any topological group is elementarily equivalent to a topological group 

having a neighborhood basis of open subgroups at the origin. 

Definition 1.12. Let G be a topological abelian group. 

(1) G is locally pure iff G has a neighborhood basis of pure open subgroups 

at 0. 

(2) G is of locally pure type iff G satisfies the following axiom for all primes p: 

(LP-p) VX3YVx (PXE Y-+3 zEX(pZ=px)). 

Lemma 1.13. Let G be an o,-saturated topological abelian group. Then G is 

locally pure iff G is of locally pure type. 

Proof. In the nontrivial direction, assume that G is of locally pure type. Fix a 

basis 93 of neighborhoods of 0 for G such that (G, 93) is o,-saturated. Let U be 

an arbitrary neighborhood of 0. Since G is a P-topological group we can apply 

the definiiion of ‘locally pure type’ to construct a sequence of open subgroups B, 

of G contained in U such that: 

For all primes p: B,,+, fl pG E pB,, (1) 

B, is in G,(9). (2) 

Let I? = n(I3,: n E a}. Then B is an open subgroup of G contained in U. It 

remains to be seen that I3 is pure in G. Fix b E B 13 pG and consider the L’-type 

To make this be a type over (G, 93) we have to read ‘x E B,’ as the set 

1x E Bn,k : k E o} where Bn,k E $33 and B, = n{B,,k: k E o}. If a E G is an element 

realizing the above type, then pa = b and a E B, as desired. 

Remarks. (1) If G is torsionfree the final argument is superfluous, so it is then 

enough to assume that G is a P-topological group. 

(2) The pure open subgroups B arising in the above proof are in G,(9). 

Corollary. Every group of locally pure type is elementarily equivalent to a locally 
pure group. Hence the theory of the class of locally pure groups is axiomatized by 
the axioms for topological groups together with the axioms (LP-p) above for each 
prime p. 
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2. Numerical invariauts 

2. I. Szmielew invariants 

We review the definition and basic properties of the Szmielew invariants using 

the notation.of [2] with minor alterations. 

Notation 2.1. 

C,,, = the cyclic group of order p”: 

2, = the group of rational p-adic integers (i.e. rational numbers with 

denominators prime to p under addition): 

C,-. = the Priifer p-group, realizable e.g. as the additive group Q/Z,; 

Q = the additive group of rationals. 

Notation 2.2. Let A be an abelian group, p a cardinal, m, n integers. 

(I) A (@) is the direct sum of F copies of A. AW is the direct product of p copies 

of A. 

(2) A[n]={uEA: na=O}, mA[n]=(mA)[n]. 

(3) If pA = {0} for some prime p, then dim A denotes the dimension of A as a 

vector space over the Galois field F,. 

Definition 2.3. (Szmielew invariants). Let G be an abelian group. 

a,,,(G) = 
i 

zm(p 
“-‘G[p]/p”G[p]) if this is finite, 

otherwise; 

{ 

lim dim(p”G/p”+‘G) if this is finite. 

P,(G)= n 
SC otherwise; 

li? dim(p”G[p]) if this is finite, 

r&G) = 
Yj otherwise; 

if G is of bounded exponent, 

otherwise. 

Thus for any invariant L =(Y~,~, &,, yp, 6, L(G) IS a natural number or the symbol m. 

In the torsionfree case CQ,~ = rp = 0, 6 = = (for G nontrivial) and for all n 3 0 

P,(G) = dim(p”G/p”‘lG). 

The following topological terminology is useful in the discussion of (non- 

topological) abelian groups. A variant of it will be introduced below in the context 

of topological groups and will be a basic tool in our analysis. 
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Definition 2.4. Let G be an abelian group. 

(1) For p a prime, the p-adic topology on G is determined by the neighbor- 

hood basis: 

{p”G: n 3 O}. 

(2) The Z-topology on G is the join of the p-adic topologies. A basis for the 

Z-topology is given by: 

{nG: n 2 1). 

(3) If G is Hausdorff in the Z-topology (i.e. G contains no infinitely divisible 

element), then C? denotes the completion of G in the Z-topology. (The p-adic 

topologies, and hence the Z-topology, are associated with an obvious choice of 

pseudometrics). In particular: 

(4) z, is the completion of Z,, namely the additive group of all p-adic integers. 

We can now state the main technical result of [2]. 

Fact 2.5. Let p be an uncountable cardinal. If G is a p-saturated abelian group, 

where for L any invariant: 

L’ 
= L(G) if this is finite, 

z/J if L(G) = to. 

Remark. In particular every p-saturated abelian group for uncountable p is 

Z-complete. 

We mention a useful additivity property: 

Fact 2.6. If B is a pure subgroup of the abelian group A and L is one of the 

Szmielew invariants, then: 

L(A) = L(B) + b(A/B) 

with the usual rules governing the symbol m. 

This follows from the following two facts: 

Fact 2.7. If B is a Z-complete pure subgroup of the abelian group A, then B is a 
direct summand of A, ([4, Theorem 39.11.) 

Fact 2.8. For each Szmielew invariant L and each integer n there is a set S(L, n) of 
first-order sentences such that an abelian group G satisfies S(L, n) iff L(G) > n. 
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We will need a more precise statement: 

Supplement to Fact 2.8. If we adjoin new predicates D,,(x) to the language of 

abelian groups and add corresponding axioms 

“Vx(D,,(x) ++ n divides x)” 

to the axioms for abelian groups, then the sets S(L, n) described in Fact 2.8 may be 
taken to be existential. 

Fact 2.9. If A, H s G are abelian groups with H Z-complete, A II H = (0) and 
A@H pure in G, then there is a subgroup K of G such that 

ASK and G=K@H. 

Proof. Apply Fact 2.7 to G/A and HA/A. 

2.2. Local divisibility 

To obtain additional numerical invariants for topological abelian groups we 

introduce a further notion which plays a fundamental role in our analysis. 

Definition 2. Let G be a topological abelian group, g E G, p a prime and n E w 
(1) n locally divides g iff G satisfies VX 3x (g-nx E X), 
(2) Gp,n =(x E G: p” locally divides x}, 

(3) G,,- = n{G,,, : n E 01. 

Notice that G,,,, G,, are subgroups of G. Indeed Gp+ is the closure in G of 

p”G. 

It is useful to consider these notions in conjunction with the following example. 

Definition 2.11. Let p be a cardinal and let A, B be abelian groups with B c A. 

(1) A’” is the direct product of p copies of A equipped with the topology 

determined by the neighborhood basis 

where U, ={xEA@: xi =0 for all icay). 

(2) exp(A, B, p) = {x E A’” : for some bEB, CY<~ we have Vi(cr<i<p+ 

xi = b)}. Give exp(A, B, p) the topology induced by A’. 

(3) exp(A, P) = exp(A, (01, CL). 
If B is identified with the group of B-valued constant functions in A”, then 

exp(A, B, P) = exp(A, PKBB. 

Remark. Jf G = exp(A, B, p) and G, = exp(A, p), then for any prime p and n E w : 

G,,,=p"G@(B~fA), 

GP,_ = pmGo@(B 0 pmA) where pmH = n{p”H: n E w}. 
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The following example is particularly incisive. In fact our main technical result 
(Theorem 3.19) states that essentially only examples of the following type need be 
considered. 

Example 2.12. Set 

A = Q(“@n (&@A,,) 
P 

where: 

(1) A,=C{A,,:O<n<~}; 
(2) A,o=Z~~,,,,‘~Zb~““‘; 

(3) A,,, = Z(,pr,.“’ for 0 <n <m; 
(4) A,,,= the divisible hull of B,,,. 

Set 

where 

(5) D is a divisible subgroup 
(6) B,=~{B,,:O<n<~}; 

of Q@‘; 

(7) BE = completion of B, in the topology induced on B, by the p-adic 
topology on A; 

(8) B,,. = Z;“~~~~’ E A,,,,; 
(9) B,,, = p”A,,, for O< n <=; 

(10) B,,,=(Z;‘+ E A,,. 
(Here _ denotes the completion of Z, (‘n=’ in its own Z-adic topology, in particular 

B,, is Hausdorff with respect to this topology.) 

(Up to elementary equivalence all pairs of torsionfree abelian groups are of this 
form [8].) 

Here 6 and the betas are freely chosen cardinals. 

Example 2.12. (continued). Let G = exp(A, B, F) and G,,=exp(A, F) for some 
cardinal CL. Then for any prime: 

(11) G/G,, = Go/pGo@BI(B npA) 

= exp(AlpA PI@ B,,dp&,,, 

=exp(C~‘)@C~np~~‘, with c = k&+ c PP.,,; 
n<= 

(12) G,,/(pG,,,-, + G,,,,,,) = 03 I-I p”AMp(B n p”-‘A) + (B n $‘+‘A)) 

= Bp,n/pBp,n = CL”+ 

(13) Gp,JpGp,a= (B n p”A)lp(B n p”A) 

z B,,,/pB,,, = C;“+ 
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This example suggests the introduction of the following numerical invariants: 

Definition 2.13. If G is a topological abelian group set: 

(I) P,,,(G) = dim G/G,.,; 

(2) P,.,(G) = dim(G,,,/(pG,,,_, + Gp,n+l) for 0~ n <m; 

(3) P,,,,(G) = inf dim(G,,,/(G,, n pG ). n 

Lemma 2.14. (i) For any locally pure torsion free group 

G,., n pG = pG,, 

(ii) For any w,-saturated topological abelian group 

and 

G,, n PG = PG,.~ 

&,,(G)=dim G,J(G,,npG). 

It will be important that the second part of (ii) can be stretched a little to yield: 

(iii) If (G, 93) is a p+-saturated topological abelian group, Ha pure open subgroup 

which is the intersection of p_ elements of 3, then 

B,JH) = dim H,.,/(H,,, n pH). 

Proof. Easy. Cl 

The remainder of this subsection is devoted to establishing general properties of 

these invariants. We begin with a definability lemma. 

Lemma 2.15. Let p be a prime, k E w, 0 s n <m, then 
(1) If L = &,n then there is an L’-sentence S(L, k) such that for all topological 

abelian groups G: 

G satisfies S(L, k) iff B,,(G) > k. 

(2) If L = &,.z, then there is a set S(L, k) of L’-sentences such that for all 
topological abelian groups G : 

G satisfies S(L, k) iff p&G)> k. 

Proof. Obvious. q 

Lemma 2.16. Let H be a pure open subgroup of the topological group G. Then for 
all II, 0 < n Sm: 

P,,,(G) = P,,,(H). 
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Proof. If H is a direct factor of G, then the claim may be verified by a simple and 

explicit calculation. 

To prove the lemma in general, consider an w,-saturated elementary extension 

(G’, H’) of the pair (G, H). Then H’ will be a direct summand of G’ by Fact 2.7 

and we will have using Lemma 2.15: 

P,,,(C) = P,,,(G’) = Pp,,W’) = &n(H). q 

The invariant p,,” requires a different analysis, as one would expect in view of 

the discrepancy between Example 2.12 (11) and Definition 2.13 (1). 

Lemma 2.17. If H is a pure open subgroup of the torsionfree topological abelian 
group G, then: 

B,,,(G) = P,(GIW + k&o(H). 

Proof. Arguing as in the first part of the preceding proof, we may suppose that 

there is a direct decomposition G = G’@H, where G’ carries the discrete topol- 

ogy and H carries the induced topology. Then: 

G,,, = PG’BH,,, 

GIG,,, = G’IpG’03H/H,,, 

and since G’ is torsionfree: 

&,(G/H) = &(G’) = dim(G’/pG’). 

The result follows. Cl 

Remark. If G=exp(A, B, F) where B c A are as in Example 2.12, then we can 

retrieve the cardinals &,n 0 < n 5 00 used in the construction of the pair (A, B) in 

an Lt-definable way from G. The same is not true for /3,,” or pb,” and the 

L’-theory of G also does not give information on the divisible group D. This is 

the reason for requiring (1) and (2) in Theorem 3.19 below. 

2.3. Tight groups and kernels 

In this subsection we will show how to split off the uninteresting portions of a 

saturated torsionfree locally pure topological abelian group. 

Definition 2.18. Let G be a topological abelian group and let L be one of the 

Szmielew invariants or &O for some prime p. 

(1) L*(g)=inf{L(H): H a pure open subgroup of G}, 

(2) L*(G) = sup{~(G/H): H a pure open subgroup of G}. 

Thus L*(G), L*(G) are natural numbers or the symbol 00. 
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Lemma 2.19. If L is a Szmielew invariant or p,,(, for some prime p and if n is an 

integer, then there is a set s*(L, n) of L’-sentences such that for all locally pure 
topological abelian groups G: 

G satisfies s*(L, n) iff b*(G)>n. 

Proof. Suppose first that L is a Szmielew invariant and let S(L, n) be the set of 

sentences described in Fact 2.8 and its supplement, formulated as existential 

sentences in an expanded language with divisibility predicates 0,. If cp = 3x qo,,(x) 

is such a sentence and cp,” is the translation of ‘p. back into the ordinary language 

of abelian groups, set 

cp* = VX 3x E x (p;,(x) 

and take 

s*(~, n) = {cp+: cp E s(~, n)). 

Since the restriction of a divisibility predicate D,, from G to a pure subgroup H 

yields the divisibility predicate on H, the set s*(L, n) has the desired meaning. 

Consider now the case L = &). Examining the definition of /3P,,1, we see that the 

condition ‘&,,,(G) > n’ can be expressed by a sentence of the form: 

~(L,~)=~~~Y~Y~YY~,(X,Y) 

where cpo is quantifier-free in the language containing divisibility predicates. Set 

s*(~, n) = {‘VX 3x E X 3Y V y E Y +3:,(x, y)‘}. 

It is again easy to see that this has the intended meaning. 0 

Lemma 2.20. For each prime p and nEm there is an L’-sentence (p*(p, n) such that 
any locally pure torsionfree topological abelian group G satisfies ‘p*(p, n) just in case 

Sz(G)>n. 

Proof. As we now consider only torsionfree groups s(& n) may be taken to 

contain only a single sentence cp. Let X be a second-order variable which may be 

thought of intuitively as representing an open subgroup, and let CplX be a natural 

formalization of G/X b q. Inspection of cp will reveal that X only occurs negatively 

in q/X, and hence 

is an L’sentence, which we will denote q*(p, n). Clearly this sentence has the 

intended meaning. 0 

Definition 2.21. The topological abelian group G is tight if for L any Szmielew 

invariant or L = &,(,, we have for all n: 

G satisfies s*(L, n) iff L(G) 2 n. 
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Lemma 2.22. If G is a locally pure P-topological abelian group, then there is a pure 

open subgroup H of G so that: 

(1) H is tight, 

(2) L(H) = L*(G) for all Szmielew invariants L. 

(3) P,,(H) = P,,,*(G) for all primes P, 
(4) L(G/H) = L*(G) for all Szmielew invariants L. 

Furthermore, if B is any basis for G at 0, then: 

(5) H can be taken to be in G,(B). 

Proof. We remark that (1) follows from (2) and (3), since L*(H) = L*(G). Now for 
HI E HZ pure open subgroups of G we can derive from Fact 2.6 and Lemma 2.17 
for L a Szmielew invariant and p a prime: 

(i) b(HJ d 4HJ; 
(ii) L(G/H,) > L(G/H*); 

(iii) B,dHJ s Pp,dH2). 

Consider now a Szmielew invariant L. If L*(G) = 00 set H*(L) = G and otherwise 
choose a pure open subgroup H*(L) of G so that 

OH*) = L*(G). 

Similarly, if L*(G) is finite, fix a pure open subgroup H*(L) such that 

L(G/H*(L)) = L*(G), 

while if I* = m choose for each k a pure open subgroup Hk such that 

L(G/Hk)b k 

and let 
H*(L) = n{Hk: k E o}. 

In the same way associate to each prime p a pure open subgroup H(p) satisfying; 

P,,,(H(p)) = P,,,,,.,(G). 

Finally take 

HE n [H*(L) n ff*(~)I n n H(p) L P 

a pure open subgroup of G, and use (i)-(iii) to verify that H is a suitable 
subgroup. El 

Remark 2.23. For groups G satisfying the assumptions of Lemma 2.21 we have 
for all Szmielew invariants L: 

L*(G)+L*(G)= L(G). 

Indeed, let H be the pure open subgroup constructed in the above lemma. by 
Lemmas 2.19 and 2.20 we may assume that the pair (G, H) is o,-saturated. NOW 
Fact 2.6 may be applied. 
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Lemma 2.24. If G is a locally pure topological abelian group, then for any prime p: 

Pp,o,dG 1 = o or P,,,,,(G) = =. 

Proof. Suppose that /3,,o,*(G) <rlc: and that HEG is a pure open subgroup such 

that &,JH) = n <SC. Choose representatives a,, , . , uk for all non-zero elements 

of H/H,. , and choose a pure open subgroup H, s H such that for all 1s i s k: 

(y+H,)npH=@. 

For any h E H,, h$ HP,, there is an element a = ai with a-h E HP,,, and thus 

there is h’ E H, such that a -h - h’ E pH, so (a + H,) 17 pH# 8, a contradiction. 

Thus H, z HP., and therefore 

P,,,(H,) = o 

and B,,,,,(G) = 0 as claimed. q 

Lemma 2.25. If G is a topological abeliun group such that P,,,(G) = 0, then 
B,.,(G) = 0 for all n Cm. 

Proof. If on the contrary P,,,(G)>0 and XEG~,~ but x$G,,,+,, then choose a 

neighborhood X for which 

(x+X)np”+‘G=@ 

Choose a neighborhood Y for which Y - Y z X and choose y E Y, g E G with 

x-y=p”g. 

Now since &,,,,(G) = 0 we have g E G,,, and we obtain easily 

(X-y+Y)npn+‘G#P) 

yielding a contradiction. 0 

Remark 2.26. For any topological abelian group G 

(I) P,(G) = m if P,,,(G) = =? 

(2) P,(G) = P,,AG) if P,,,(G) = 0; 

(3) P;(G) = ~3 if P,,,,*(G) = 30. 
If G is a tight, locally pure P-topological group, then also 

(4) P:(G) = 0 if /3,,,,(G) = 0. 

We will now consider a notion which is in some vague sense dual to the notion 

of a tight subgroup. 

Definition 2.27. The kernel N of a topological group G is the intersection of all 

neighborhoods at 0. 
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Notice that N is a closed, L’-definable, normal subgroup of G. By Fact 1.9 N 

and G/N inherit whatever degree of saturation G possesses. 

At this point we can give a precise formulation of our classification of saturated 

torsionfree topological abelian groups of locally pure type. 

Definition 2.28. Let G be a topological abelian group with kernel N. We 

associate to G the following family T(G) of standard invariants of G: 
(1) L(N) for each Szmielew invariant L; 

(2) L*(G/N) for each Szmielew invariant L; 

(3) P,,,,*(G/N) for each prime p; 
(4) &,(G/N) for each prime p and 0 < n da; 

(5) &(G/N) (this simply signals whether or not G/N is discrete). 

Lemma 2.29. Any two L’-equivalent torsionfree topological abelian groups of 
locally pure type have the same standard invariants. 

Proof. Combine Fact 2.8, Lemma 2.15, Lemma 2.19 and Lemma 2.20. 0 

Our main result is that the converse of this lemma is also true. As we will now 

show, the converse of Lemma 2.29 is a consequence of Theorem 3.20 and Lemma 

3.21 below. 

Theorem 2.30. If G1, Gz are locally pure, torsionfree, topological abelian groups 

having the same standard invariants, then 

Proof. We will make use of Theorem 3.20 and Lemma 3.21 stated and proved in 

Section 3 below. In particular let p be as stated in Theorem 3.20 and assume 

(G,, a,), (G,, 3,) are F-saturated with card(Gi) = card(%Ii) = p for i = 1,2. The 

kernels N, of G, are pure in Gi since they are intersections of pure torsionfree 

subgroups. By Fact 2.7 there are algebraic isomorphisms: 

fi : Gi + GJN, @ Ni 

such that fi is the identity on Ni. Givin, 0 Ni the trivial topology and GJN, the 

quotient topology, we find that fi is a topological isomorphism. 

The topological groups Gi = G,/N, are again p-saturated with saturation bases 

g3, of the form {X/N, : XE %&}, card (Gi) = card(ai) = CL. Notice that the groups Gi 

are Hausdorff. If the Gi are discrete, then /3&G,) = &,(G,). Thus G, = G,. If both 

Gi are not discrete, then choose, using Lemma 2.22, tight pure open subgroups 

Hi Z G,, satisfying: 

(1) &(Gi/Hi)=Bp(Gi) for all P, 
(2) Hi is the intersection of countably many sets in Bi. Then again using 
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saturation and Fact 2.7 we find algebraic isomorphisms 

gi 1 Ci + (Gi/Hi)@ fii 

such that g, is the identity on ni, and g, becomes a topological isomorphism if we 

give Hi the induced topology and take Gi/ni to be discrete. 

NOW Lemma 2.16, tightness, and our hypothesis yield for 0 < II <m: 

Theorem 3.20 and Lemma 3.21, then yield a topological isomorphism: 

By construction the groups G,/fi, and (?,/I& have the same Szmielew invariants, 

and the saturation of G,, G2 may be combined with [2] to yield an algebraic 

isomorphism between these groups, which of course is a topological isomorphism 

since they carry the discrete topology. Similarly N, z1N2. Combining these three 

topological isomorphisms yields the desired result: 

3. Structural analysis of locally groups 

3.1. Preliminaries 

In this subsection we will establish notation used in the structural analysis of 

locally pure groups, particularly saturated ones. For the convenience of the reader 

the more important items of notation together with the main structural relation- 

ships between them will be collected in a table at the end of Section 3. 

Definition 3.1. Let G be a topological abelian group. 

(1) The local p-a&c topology on G is determined by the neighborhood basis: 

{G,,, : n 2 0). 

(2) The local Z-topology on G is the join of the local p-adic topologies on G. 

(3) If G is Hausdorff in the local Z-topology, then 6 denotes the completion 

of G in the local=Z-topology. 

The notation G is usually applied in contexts in which the local Z-topology 

coincides with one of the local p-adic topologies. As stated previously, a single 
bar denotes the Z-completion of a Z-Hausdorff group. When G is not Hausdorff 

we do not attempt to define either G or 6, but we may in any case say that G is 

compZete iff every Cauchy sequence converges to at least one limit. 

Remark 3.2. If G is an w,-saturated topological abelian group, then G is both 

Z-complete and locally Z-complete (cf. Lemma 1.2 of [2]). 
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We recall also the following general fact concerning Z-complete abelian 
groups. 

Fact 3.3. If G is Z-complete, then for each prime p and each g E G there is an 
element g, in G such that: 

(1) ~-~,EP~G; 

(2) g, is p’-divisible. 

Proof. See e.g. [2, Lemma 1.31 and [4, Theorem 39.11. 0 

(Notation 3.4. For a prime p we call an element g of an abelian group G 
$-divisible if g is divisible by every n relatively prime to p. G is $-divisible if 
every g E G is.) 

Proposition 3.5. Let G be a Z-complete abelian group. Define: 

D is the kernel of G in the Z-topology, 

Then: 

(1) 

D is the maximal divisible subgroup of G. 

Choose an arbitrary complement R to D: 

G=R@D. 

Define: 

(2) 

(3) 

R, = {r E R: r is p’-divisible}. 

Then: 

R-nR, (4) 

R an: all the R, are Z-complete. (5) 

Notes on the proof. (2) is easy and depends directly on Z-completeness. Fact 3.3 is 
used to prove (4). (2) is used to get (3). For (5): any direct factor of a Z-complete 
group is Z-complete. 

Convention. All of the notation established in the above proposition is fixed for 
the remainder of this paper. 

Lemma 3.6. Let G be a Z-complete torsionfree topological abelian group, then 
R, 0 G,, is a direct summand of R,. 

Proof. By torsionfreeness G,,, is a pure subgroup of G and therefore R, n G,,_ is 
a pure subgroup of G and a fortiori of R,. Z-completeness of R, II G,,_ follows 
easily from the Z-completeness of R, and we may then appeal to Fact 2.7. 0 
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Remark. Consider R, = H as a topological subgroup of G. It might be tempting 

to conjecture that H n G,,, = H,,, for all n SW, but this is false. Consider 

G = exp(Q, Z,, w). The maximal divisible subgroup D of G is identified as 

D = exp(Q, 0). Let H be the subgroup of G consisting of all constant functions 

with value in Z,,. Then G = D@H. We get G,,, = G for all 0~ n sm. But the 

topology induced on H by the topology of G is discrete; thus Hp,n = p”H 

OSn <=, H,,_= {O}. 

Notation 3.7. ( 1) R (p, XI) = R, n G,,; 

(2) R, = R(p, x)@R;; 

(3) R(p, n)=RLnG,, for O~n<x. 

Thus we have in particular R(p, 0) = RL. 

Lemma 3.8. Zf G is a Z-complete, locally Z-complete torsionfree topological 

abelian group, then R; is Z-complete and locally Z-complete (with respect to the 

local Z-topology on G 1. 

Proof. As a direct summand of a Z-complete group RA is Z-complete. For the 

local Z-completeness notice that we have a decomposition G = RA@RE taking 

We have to check that any limit in G of a local Z-Cauchy sequence in RL projects 

to a limit in RL and this is clear since Rz g G,,_. q 

For the remainder of this subsection G is a Z-complete, locally Z-complete 

torsionfree topological abelian group. 

Lemma 3.9. (1) G,,, =R(p, n)@G,,,, for O<n<m; 

(2) ‘&co= R(P, -)CB~q+p R,. 

Proof. (1) R(p, n) n G;,, = (0) follows right from the definition. For g E G,., write 

g = g’+ g” with g’~ Rk and g” E R,, then g’~ R(p, n) and g” E G,,,. 

(2) Follows easily from n,+, Rq E G,,_. q 

Lemma 3.10. (1) R(p, O)lR(p, 1) = G/G,,; 
(2) for O<n<m 

R(p, n)l(pR(p, n - ~)+R(P, n + 1)) = Gp,J(~GP,,-~+ Gp,,,+J; 

(3) R(P, r-UPNP, ml= G,~/pG,cm. 
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Proof. (1) The natural injective homomorphism from R(p, O)/R(p, 1) into G/G,,, 

is surjective by Lemma 3.9(l). 

(2) Similarly the natural homomorphism 

7 : R(P, nMpR(p, n - 1) + R(P, n + 1)) + Gp,,I(pGp,,~, + G,,,+J 

is surjective by Lemma 3.9(l). To see that it is injective fix TE 

R(P, n) n (pG,,,p, + Gp,n+l ) and suppose I = pg, + g, with gIE Gp,n--l and gZE 

G p,n+l. Applying the projection from G to RL it follows that TE 

PRCP, n-U+R(p, n+l). 

(3) The natural homomorphism 

(r : R (P, +PNP, a) + Gp,JpGp,cc 

is surjective by Lemma 3.9(2). R(p, a is a pure subgroup of G as the intersection > 
of two torsionfree pure subgroups. Hence R(p, m)fIpG,,,= pR(p, a) and (T is 

injective. q 

Notation 3.11. 

(1) VP, 0) = R (P, OUR (P, 1) ; 

V(p, n)=R(p, n)/(pR(p, n- l)+R(p, n+l)) for O<n<m. 

These are vector spaces over the Galois field F,. 

(2) X(p, n) = a set of representatives in R(p, n) for a basis of V(p, n). Since for 

O<n sm the groups R(p, n) are p’-divisible and torsionfree we can regard them as 

Z,-modules. Hence we may define: 

(3) R(p, n)O = the Z,-span of X(p, n) in R(p, n) for 0~ n <m; 

(4) R(p, m)“=some p-basic submodule of R(p, m); 
(5) X(p, a)=&-basis for R(p, m)‘. 

Thus we have R(p, m)=[R(p, m)“]-. 

(6) BP = (C{R(p, n)“: O<n<a})‘; 

(7) B = n, B,; 

(8) B, = II, NP, =‘I. 

Remark 3.12. G,,,gpG + (B,@R(p, a)). This follows immediately from Lemma 

3.9(l) and the definition of R(p, 1)“. Notice that V(p, 1) = R(p, l)/pRb. 

For maximal efficiency we will now prove one technical result from which the 

remaining assertions in this subsection will follow: 

Theorem 3.13. Let x=x(x,: O~rn<m} with x,~R(p, n)O and all but jinitely 

many of the x,,, equal 0. Then for each n: 
(1) x E p”G ifi for all m x, E p”‘R(p, m)“, 

(2) xc Gp,n iff for all m <n x, E p”-“R(p, m)O. 



Locally pure topological abelian groups 69 

Proof. We treat both cases simultaneously, but in dealing with (2) we may 

suppose without loss of generality that x, = 0 for m > n. The implications from 

right to left are trivial. Going the other way, we proceed by induction on ~1, the 

case n = 0 being trivial. Consider therefore the passage from n to n + 1. If each x,,, 

is p-divisible, we conclude at once by induction. Every x,,, # 0 may be represented 

as 
x, = pi(m)y, 

with 

y,ER(p,m)\(pR(p,m-l)+R(p,m+l)) for O<m<a 

and 

Y,,ER,\R(P> 1). 

Indeed, set x, =C {z(x) . x: x E X(p, m)} for certain Z(X)E Z, and 0 = z(x) for 

almost all x. Take i(m) to be the largest i for which pi divides all z(x) in &. Take 

ym = p-ix,. 

If not all x, are p-divisible, let m, be the least index such that x,,,” is not 

p-divisible. Thus x,,,” f 0 and i(m,) = 0, and m,. < n + 1 in the second case. Now 

XEP “+‘G (resp. x E Gp_+J yields: 

Ym,,E R(P> 1) if mo=O; 

ym,E pR(p, mo- I)+ R(p, mO+ 1) if O< mo<m 

contradicting our choice for ym. 

Corollary 3.14. The sum 1 {R(p, n)‘: 0~ n <a} is direct. 

Proof. If X(X,,,: Osm<m}=O with x, gR(p, m)‘, then Theorem 3.13(l) shows 

x,~R(p, m)npmG={O}. 0 

Corollary 3.15. For 0~ m <a the p-adic topology and the local p-adic topology on 
G induce the same topology on R(p, m)O. 

Proof. By Theorem 3.13 R(p, m)” II p”G = R(p, m)’ II G,,,,,. q 

Lemma 3.16. Rb= (@{R(p, n)“: OS n <m})=. 

Proof. The inclusion 2 follows from Lemma 3.8. So it remains to show that 

1 {R(p, n)“: 0 c n Cm} is locally p-adically dense in RL. It suffices to show: 

(m) For m <cc and rgR(p, m) there is an element box {R(p, n)“: Osn <a} 

such that 

rgb + R(p, m + 1). 
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This is done by induction on m. The case m = 0 is easy, and for m >O there is an 

element a E R(p, m)” so that 

rpaEpR(p,m-l)+R(p,m+l) 

so that for some r’E R(p, m - 1) we have 

rEa+pr’+R(p,m+l). 

By induction hypothesis write r’E b’+ R(p, m) with b' EC {R(p, n)“: 0s n <a} and 

taking b = a + pb’ we conclude 

rEb+R(p, m+l). U 

Lemma 3.17. For all kM: 

(1 {R(p, n)“: k 5 n <m)= = n {[R(p, n)“]-: k s n <a}. 

Proof. Set E=C{R(p, n)“: k 6n cm}. By Corollary 3.14 there are canonical 

projections 

rr,:E+[R(p,n)“] for ksn<m 

which are continuous in view of Theorem 3.13(2). Hence we obtain continuous 

extensions: 

em: E= + [R(p, n)“]- 

which can be combined into a map 

rr:E’+n{[R(p, n)“lP: ksn<m} 

which is again continuous. It remains to be seen that rr is an isomorphism. 

Irrjectiuity. If b E EC and r(b) = 0 let b = lim, bi in the local p-topology, b, E E. 
Then for each m 2 k limi r,,,(bi) = 0 in the p-adic topology on R(p, m)‘. Then for 

m fixed and n large: 

rri(b,)Ep”‘R(p, 1) for Oslsrn. 

So by Theorem 3.13(2) b,ER(p,m). Thus bEn{R(p, m): m~k}flR~={O}. 

Surjectivity. If for i 2 k ai E R(p, i)” and b, = 1 {ai : k <i G n}, then {b,,},,, is a 

Cauchy-sequence in the local p-adic topology, hence converges to some b E E= 
and it is easily checked that for all i G= k r,(b) = ai. 0 

Corollary 3.18. B is Z-complete. 

Proof. By Lemma 3.17 RL=[R(p, O)“]@B,. Thus B, is Z-complete as a direct 

summand of the Z-complete group RL. Now Z-completeness of B follows. 0 

3.2. The structure theorem 

We can now state a structure. theorem for the appropriate class of saturated 
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topological abelian groups. The proof of this result will occupy this and the next 

two subsections. 

Theorem 3.19. Let F be an uncountable regular cardinal such that h” <CL for all 
h CF. Let (G, 5%) be a saturated torsionfree, tight Hausdofl topological abelian 
group of locally pure type of cardinality p with card(B) = p, then 

G = exp(A, C, P) 

where A, C have the form described in Example 2.12 and satisfy in addition the 
following restrictions: 

(1) D=COI; 

(2) P,,o = (1, P;.,, = P,,,(G 1; 
(3) s=m. 

We will in fact prove a little more. In the following version of Theorem 3.19 we 
isolate exactly what consequences of saturation we will use: 

Theorem 3.20. Let p be an uncountable regular cardinal such that A” < t.~ for all 
A <k. Let G be a torsionfree, tight, Hausdofl, topological abelian group of locally 

pure type with card(G) = p such that 
(I) G is Z-complete. 
(2) G is locally Z-complete. 

(3) There is a neighborhood basis at 0 {Hz: (Y < CL} with the properties 
(3.1) Hjt is a pure open subgroup of G. 
(3.2) Hz is Z-complete. 
(3.3) For cy <@ HUE Hz. 
(3.4) For limit 6: Hi = n {Hz: (Y <S}. 
(3.5) For all cy <CL: G(H~~/H~+,) = p and @,(Hz/H’k,) = P,,,(G) for each p. 
(3.6) G is F-pseudocomplete relative to the chain {Ho,: cx <CL}, i.e. for each 

0 < CL, if {gi : i < B} is a sequence of elements of G such that g, E gi + Hi+ 1 for j > i 
then there is an element g E G with g E g, + Hi +, for all i < p. 

(4) For all primes p: 

P,.J G I= dim G,,,J(G,, f~ pG). 

Then the conclusions of Theorem 3.19 hold true. 

Of course we have to convince our readers that every group satisfying the 

hypotheses of Theorem 3.19 also satisfies the hypotheses of Theorem 3.20. We 

will do better: 

Lemma 3.21. Let t_~ be an uncountable cardinal and (G*, 9) a saturated torsion- 
free Hausdofl topological abelian group of locally pure type, G” = card(B) = F, and 
G a tight. pure open subgroup of G” which is the intersection of less than p elements 
in 3. 

Then G satisfies the hypotheses of Theorem 3.20. 
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Proof. (l), (2), and (4) pose no problem (cf. Remark 3.2 and Lemma 2.14(iii)). 

The groups Hz will be constructed inductively on a and every Hz will be the 

intersection of less than p many sets in 9. This will automatically make Remark 

3.2 and Lemma 3.6 true. At limit stages 6 we take Hz = n {Hz: cx ~6). Now 

consider the step from cy to cy + 1. For every p we will construct a pure open 

subgroup K, E G,(9) such that 

P,(H%,) = P,,o(G). 

By Lemma 2.24, the fact that G is tight and the intersection of less than p many 

elements in 93 and F-saturation of (G”, 93) there are only two possibilities: 

P,.o(G) = 0 or P,,(G) = P. 

If &,,(G) = 0, then let K, be any pure open subgroup in G,(9). Otherwise we 

have by tightness and the Remark 2.26 for every pure open subgroup K’ of G 

S,(K’) 2 %. This allows to choose a sequence (U,,),,, of sets from 93 such that 

(1) U, _c Hz for all n, 

(2) f-j {U,,: n E co} is a pure open subgroup of G, 

(3) for all y <p the types 

{{x,E U,,: v<y, n~~}U{~{h,x,: VEJ}#O: J a finite subset of y 

and A : J + C,,, not constant = 0} 

are finitely satisfiable. 

Now we take K, = n {U,: ~1 E 0). Analogously we construct a pure open 

subgroup K. E G,(B) such that 

6 U-f:/K,,) = p. 

Finally Hztl = K,, rl n {K, : p a prime}. 0 

Our immediate goal is to recast Theorem 3.20 in a more explicit form, see 

Theorem 3.23 below. The latter will eventually be reduced to Theorem 3.26 of 

Section 3.3. 

Definition 3.22. Let G be a locally pure topological abelian group, p a cardinal. 

(1) A fundamental chain for G of length p is a family {H,: cy < /J} of pure 

open subgroups of G such that: 

(1.1) {H, : a < w} is a neighborhood basis for G. 

(1.2) H,= G. 

(1.3) H, EHp for /3 <a. 

(1.4) H, = n {H,: LY <S} for limit ordinals 6. 

(1.5) G is p-pseudocomplete relative to the chain {H,: a! <EL}. 

(2) A fundamental chain {H,: CY < p} for G is complemented if there is a family 

Wa,p : a < p < p} of subgroups of G such that: 

(2.1) H, =A,,,@& for a!<p<~; 

(2.2) A,,, = A,,* @A@,, for CY < p <y < I*. 
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Given such a complemented fundamental chain for G we adopt the following: 

Notation. (1) A, = A,,,,, ; 

(2) ?=r a : G -+ H, is the projection associated to the decomposition G = 

Ao,, @ K ; 
(3) %-;=7ra-7T&,. 

Examples. In the notation of Definition 2.11, if G = exp(A, B, p), then 

{U, n G: (Y <CL} is a fundamental chain for G with complements: 

A,,,=n{A,:cr<i<p} 

where Ai is the ith copy of A. 

Theorem 3.23. Under the hypotheses of Theorem 3.20 there exist: 

(i) a fundamental chain {H,: cy < F} for G with complements A,,,: 
(ii) abelian groups Cc A 

(iii) isomorphisms f. : A, * A 

with the following properties: 

(‘I A = @*‘@n &,,I @ n (( c 
P P o<n<r 

A,,)-$A,,,) 

(1.1) A,,,=Z~P~~(~)) for O<n<m; 

(1.2) A,,=the divisible hull of Cz,. 

(2.1) C,,, =pnAp,” O<n<a; 
(2.2) C =Z’L’G” 

(Here - dektes c:mpletion with respect to the Z-adic topology on A and Cg,, 

denotes the completion of C,,, in its own p-adic topology.) 
(3) For any g E G the function: 

is eventually constant with a value in C and every element of C is the eventual value 
of such a function S. 

Now we show that this result implies Theorem 3.20. 

Proof of Theorem 3.20. We use the notation of Theorem 3.23. Set 

H=n{A,: a</~} 

equipped with the topology defined by the neighborhood basis consisting of the 

subgroups U, defined by 

U,={hEH: h,=O for @<a}. 
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Define a map-:G-+H by: 

(g)a = rrL(g) for g E G. 

We show: 

(a) For LEG: ~EH, iff ~EU,. 

The inclusion fia c U, is clear, and the reverse is proved by induction on cy. The 

main point is that if (Y = p + 1 and g E U,, then also g E U, and thus g E HP by the 

induction hypothesis. Then the condition m;(g) = 0 yields am = rrD(g) = g, SO 

g E Ha as claimed. 

As a particular consequence of (CL), if g = 0, then g belongs to each H, and 

hence g = 0. It follows using ((Y) that G is topologically isomorphic with the 

topological subgroup G of H. 

We combine the isomorphisms fu : A, + A to get a topological isomorphism 

f:H+A. 

Condition (3) of Theorem 3.23 implies that: 

f[Glcexp(A, C, EL) 

and to complete the proof it suffices to show that this inclusion can be improved 

to equality. 

Let k, = {h E H: for all p 2 (Y h, = O}. In view of condition (3) of Theorem 3.23 

it suffices to show that K, _C G. Indeed we claim: 

(IQ K, = AR,. 

The inclusion A o,u c K, is clear and the reverse is proved by induction on (Y. In 

this connection we have to deal primarily with the case of a limit ordinal cy. 

Suppose then that h E K, and by the induction hypothesis choose gi E A”,i for 

i <a satisfying: 

(Si)j = { 
h, for j-‘i, 

0 for j> i. 

Applying clause (1.5) of Definition 3.22 yields an element x of G satisfying: 

X-~EH,,, for i<a. 

Let g be the projection of x on AU,_. Then for iaa r&)=0 and for i<a: 

n-;(g) = T;(X) = n;(g) = hi. 

Thus the proof is complete. 0 

3.3. Theorem 3.26 

This subsection will be devoted to a further reformulation of Theorem 3.20 

which will be stated as Theorem 3.26 below. The notation associated with the 

preliminary analysis given in Section 3.1 will now begin to play a role. 
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Definition 3.24. A subgroup I of 

NJ ) 
= 

R(P, n1° @R(p, w) =B@B, 
P <n<m I 

is rectangular, if 

(I) I= rI,r<c,,<“<m WWP, 4(?=e(rnR(p, 41; 

(2) c,n = I n R (p, n)” = Z, -span of I n X(p, n) for 0 < n < 50; 

(3) I,,,=mNp, w)=(mx(p, a)>-. 

Notation 3.25. Fix a family {I,: a < p} of rectangular subgroups such that 

(1) IabrEIfl for cy<p<p; 

(2) U{I,:cu<CL)=np((CO<n<~R(P,n)“)=~R(P,oo); 
(3) card(l,)<p for all (Y <F. 

Our condition on p that A”’ <CL for A <CL, is imposed in order to ensure the 

existence of such a family of rectangular subgroups. 

Theorem 3.26. If G is as in Theorem 3.20, then there is a fundamental chain 
{H, : a < p} for G with complements {Aa,p : a <p < p) so that: 

(1) &(A,) = P,,,(G) for all primes p, 6(A,) = I-L. 

(2) Setting &(p, n) = TTL[I, nR(p, n)“] for Ocn <a and R,(p, 00) = 

TX& n R (P, 41 
(2.1) rr: is injective on I,; 
(2.2) R,(p, n) G p”A for 0 <n ~a; 

(2.3) r(.xOCnCm P +R(p, n))-CBp-“R(p, m)] is a pure subgroup of A, for each 

prime p (here pmmRa(p, 00) is the divisible hull of RJp, a) and - denotes the 
completion in the Z-adic topology on A,). 

(3) For g E G and (Y < Al. : if ma(g) is divisible, then for some 0 < k m@(g) = 0. 
(4) For g E G and cx < I*: if na(g) is p’-divisible, then for some p 7Tp(g) E G,.,. 

Reduction of 3.23 to 3.26. Let {H,: p -=c p} be a fundamental chain for G with 

complements {A,,@ : (Y <p < p} as supplied by Theorem 3.26. We must produce 

groups A, C and isomorphisms fa : A, * A. 

Set: 
k(p) = (a<;<_ P-“R(P> 4)-i 

2, = l--I RAP); 

&(p, L)=divisible hull of R,(p, 00); 

&cO=n RAP, 00). 
P 

It follows from clause (2.3) that C {Z&(p): p prime} has intersection (0) with the 

maximal divisible subgroup 0, of A,. Thus we find a complementary summand 
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A; such that 

A,=D,@A; and &(p)~ AL for all p 

Since A, is Z-complete as a direct summand of the Z-complete group G we get 

AL = n A,,, with A,,, = {a E A:: a is p’divisible}. 
P 

Since l?,(p) is PI-divisible we get I?.,(p) G A,,, and thus fi, may be embedded 

into AA. Since for all p card(Zi; (p, a))<~ we may also embed n, Z?Jp, m) into 0,. 

Set: C,(P) = (c,<;<m R,(P> n)) 

(where _ denotes completion in the p-adic topology of A,) 

C, = I-I C,(P), C,,m = n %(P, ml. 
P P 

Since &@R,,, is a pure Z-complete subgroup of A, we have a decomposition: 

A, = A:,&,@&,. 

Since card(Ei, @ I&,_) < p therefore AA has by clause 3.26(l) the same invariants 

as A, and hence is isomorphic with A,. 

Now define isomorphisms fa,p : A, -+ A, for (Y < p <p and subgroups S, c A, 

for (Y <p satisfying: 

(1) ({A,}, {fu,@}) is a directed system. 

(2) S, is a direct summand of AA having the same Szmielew invariants. 

(3) fa,plSJ~ s,. 
(4) If x E X(p, n) fl I, with 0 <n ~00, then fa,J7rA(x)) = rrTF;J(x). 

To see that such a collection of maps and subgroups can be constructed, 

proceed by induction on /3. If we have constructed fa,p for (Y < f3 and S, for (Y c p, 

then it is easy to choose SO+, and ffi,p+I suitably, bearing in mind the structure of 

Aa and An+, and making use of clause 3.26(2.1) in connection with (4) above. 

To carry through the induction at a limit ordinal 6, suppose that fa,@ and S, 

have been constructed for LY < p < 6. Then 

({A, : a < a), {fa,p : a < P -c 61) 

is a directed system whose limit (IL, (8,)) is isomorphic to each of the A,. The 

limit of the groups C, @C,,, is a subgroup of L which may be identified with the 

subgroup U {I, : a < 6) of I,. 

Choose a subgroup S, of AE, and an isomorphism g : L + As carrying lin_r S, 

into a subgroup of S, and extending the natural map from Iin+r(C, @Cc,,,) into 

GBC,,,. Take fa,* = g . g,. This completes our description of the inductive 

construction. 

Now let (A, {fa: a < p}) be the direct limit of the system so constructed. Let C 

be the limit of ({C, @C,,,}, {fo,p}) as a subgroup of A. As F > w is regular, the 
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group C = lim(I?, @I?_) is a Z-complete pure subgroup of A, hence has a 

complement A’= A/c. Since furthermore lim S, is isomorphic with a pure 

subgroup of A/C it is clear that A’ has the same invariants as lim S,. Thus: 

6(A') = 6(G), P&U = P,,(G) 

Thus clauses (1) and (2) of Theorem 2.23 are satisfied. 

We conclude with the verification of clause (3) of Theorem 3.23. By our 

construction, for each b E B QB, f, (r;(b)) is eventually constant. It remains to be 

seen that for every g in G f,(rrA(g)) is eventually constant with value in C. To this 

end it will suffice to show that for some (Y: 

In view of clause (3) of Theorem 3.26 we may suppose that g E R. For each 

prime p let g, be the projection of g on R,. It will suffice to prove the following 

for each prime p: 

(P) There is an (Y < p and b, E B@ B, such that: 

(*) (g, - b,) E p”G. 

Indeed, granted (p) for all p, then for CK <CL large there are b, E B@B, SO that 

(*) holds for all p. There is then by Z-completeness of B@B, some 

bEB@B, so that 

b-b, E p-G for all p 

and therefore: 

na(g - b) is divisible. 

Then in view of clause (3) of Theorem 3.26 rr@(g - b) = 0 for large p and our 

claim follows. 

Thus we need only prove (p). Let p be fixed. We claim that for each n: 

(n) There is an a<~ and b,EB@B, so that na(gP-bbn)EpnG, 

This then easily yields (p) by a limit argument. 
We prove (n) by induction, starting at n = 0. Suppose then that b, is given, and 

let us find b,,+,. Set -rr,(g- b,) = p”g’. It will then suffice to find b E B@B, for 

which rr@(g’- b) E pG for some p. 

By clause (4) of Theorem 3.26 we may suppose that g’ E G,,,. Then Remark 

3.12 completes the proof. 

3.4. Proof of Theorem 3.26 

Let us formulate the result to be proved a little more precisely. Fix an 

enumeration {g” : a -C F} of G. 
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Reformulation 3.27. Under the hypotheses of Theorem 3.26 we seek a com- 

plemented fundamental chain {II, : a < p} satisfying: 

(1) & (2) as given in Theorem 3.26. 

(3’) For all (Y <w: if i = i(a) is the least index such that am is divisible and 

nonzero, then rra+i(gi) = 0. 

(4’) For all (Y < j._~ and all primes p: if i = i(a, p) is the least index such that 

n,(g’) is p’-divisible but not in G,,i, then na+i(gi)E G,,,. 

(5) I-L+, s IX. 
(6) For all (Y <CL there is some y such that H, = IIt. 

Clearly we will then have Theorem 3.26. 

The construction of such a fundamental chain is carried out inductively. The 

case cx = 0 is trivial and we will now check that the case (Y = 6 a limit ordinal is 

straightforward. 

Construction at limit steps 3.28. Assume therefore that IIn, A,, for /? < y < 6 

have been constructed. Then it is only required to find I-&, A,, satisfying the 

requirements for a complemented fundamental chain, as the other conditions are 

vacuous. Set 

ff,=nw,:p<sh A=z{AO,p: /3<6}. 

We have I& = IIt for some y<p by assumption (3.4) of Theorem 3.20 and 

II, s Hz for all 0 < 6 certainly implies I& c I-I:. Obviously A tl Ifs = (0) and it is 

easily seen that A@& is pure in G. As I&, = Ht is Z-complete there is by Fact 

2.9 a complement A,,, to I& in G containing A. Define the remaining comple- 

ments by: 

A p,s = A,,, nH, for p ~6. 

It is not difficult to check: 

(1) I& = A,, @I&i, 

(2) Ap.6 = A,, @A,,,. 
However, the treatment of our induction at successor stages is more demand- 

ing. It is necessary to construct H,+l, A, satisfying the stipulations above. The 

remaining complements may then be defined by 

A p,,+i = A,, @A,. 

The necessary construction will be described in the remainder of this subsection. 

It is accordingly assumed that Hi has been constructed for i G a! and Ai,j has been 

constructed for i <j < (Y, satisfying the relevant stipulations. Hence rri has been 

determined for i s a. 

Lemma 3.29. (I) If x E B @El, and ma(x) E pG, then x E pG. 
(2) TT~ induces an isomorphism of BCBB, onto Q[B@B,]. 
(3) ‘TF,[B@B,] is a pure, Z-complete subgroup of Ha. 
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Proof. (1) B@B,E G,,,. Fix h in Ha so that x - h E pG. Applying the projection 

onto A O,a yields: x - ma(x) E pG and the claim follows. 

(2) The claim is that the restriction of rra to I3 @B, is injective. This will follow 

from (1) using the relation: (B@B,) nn,pmG ={O}. 

(3) (BCTSB,) is a pure, Z-complete subgroup of G. 

Now using Fact 2.7 and Lemma 3.29(3) decompose H, as follows: 

Furthermore decompose HA in the usual fashion: 

HA= D,@R,, Ra = n Ra,, 

with Da divisible, R, reduced and R,,, p’-divisible. 0 

As these decompositions are not at all canonical they need not be compatible 

with the original decomposition of G, but we have some useful information: 

Lemma 3.30. (1) R,,, flG,, = pRa,,. 

(2) P,(R,,,) = &o(G). 

Proof. (1) If rE R,,, n GP,l, then by Remark 3.12 we find b E B@B, such that 

r - b E pG. Projecting into H,: 

r-n,(b)EpH,. 

R,,, @ma[B@B,] is a direct summand of Ha, so r E pR,,,. 

(2) In view of (l), there is a canonical monomorphism: 

r : R,,,IPR,,, + W(K),, 

which is clearly surjective. Hence: 

P,(%,) = P.&J = 13,,,(G) 

since G is tight. Cl 

Returning to our construction, in connection with conditions (3’), (4’) of 

reformulation 3.27 we establish the following notation: 

g, = rra(g’(a)) if this is divisible and nonzero; 

rP = the projection of ~~(g~(~*~) ) on &,p if the latter element is p’-divisible, but 

not in G,,,. 

In the event that some of these elements fail to exist, the corresponding parts of 

the following construction may be omitted. 

Fixing a Z,-basis X,,,, for a dense free submodule of Ra,p for each p, we may 

define rectangularity for subgroups of Ra@~a[B@Bm] in the obvious way. Let I 
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be a rectangular subgroup of R, @ rr,[B @B,] such that 

(1) card(l) < p ; 
(2) In 57,rmkI= 7d~,l; 
(3) rP E I for all p. 

Taking into account the properties of p such an I certainly exists. 

We are now ready to choose H,,,, but we first isolate a preparatory lemma. 

Lemma 3.31. If I, D, are subgroups of G of cardinality less than t_~, then there is 
p -C F such that: 

(1) D”nH;={o}, 

(2) In (H$+p”G) s G,,, for all p and 0 < n ~00. 

Proof. Let Do \{O} = {d,: j < r} and I = {ii: j < r’} with y, y’ <CL. For each p and 

O<n<a if &$G,,,, then there is some p(j, p, n) < p such that ii& HPCj,P,nl + p”G. 
Set p = sup{p(j, p, n): p, j, n}. Since F is uncountable and regular we have p <p 

and Hi satisfies (2) for 0 <n <x. The case n=m follows easily from this. Since G 

is Hausdorff and j_~ regular, we can easily shrink HE to satisfy (1). q 

Now the desired group H,,, may be selected as the group H of the following 

proposition. 

Proposition 3.32. There is some p < t.~ such that for H = Hi: 

(1) 
(2) 
(3) 
(4) 
(5) 

t: ;,$‘H = (0); 

In(H+p”G) Gp,n for all p and O<ncm; 

P,(HJH) = P,JJ(G) for all p; 
S(H,/H) = S(G). 

Proof. Easy consequence of Lemma 3.31 and assumption (3.5) of Theorem 3.20. 

Our final objective is to construct a suitable complementary summand A, to 

H=H,+, in H,. This requires considerable care. 

We will first construct a homomorphism h : I + H in such a way that we can 

subsequently make 7~,+~ coincide on I with h. The construction of h proceeds in 

two steps. 

Notation. I, = fl, (I rl T~[&,,J). Thus by rectangularity 

Lemma 3.33. There is a divisible subgroup D’s H, and a homomorphism: 

h,: I,+ H 
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such that: 

(1) goED’; 
(2) D’f-lH={O}; 

(3) x - h,(x) ED’ for x E I,. 

Proof. Set X = In ~~[[x(p, a)] where X(p, m) is our fixed basis for R(p, a). For 

each XEX and each n E w there is because of X s G,,_ an element h(n, x) E H 

such that x - h(n, X)E p”G. W.1.o.g. we may choose h(n, x) to be p’-divisible. 

Then Vr(n, x)],,, is a Z-Cauchy-sequence in H and since H is Z-complete 

lim, h(n, x) = h, E H exists, where we may again assume w.1.o.g. that h, is 

p’-divisible. Thus for all x E X 

x-h, is divisible. 

W.1.o.g. let h, be in some fixed reduced part H’ of H. 

Since H is Z-complete, H’ is Z-complete and Z-Hausdorff, thus the map 

x + h, 

for x E U {I fl ~[x(p, a)]: p prime} extends to a homomorphism 

h,: I,-+ H. 

Let D’ be the divisible hull of ({a-h,(a): a E I,)U{g,}) in G. D’ is a divisible 

group and by Proposition 3.32(2) D’ tl H = {O}. 0 

The next problem is to extend h, to a homomorphism from I to H. More 

precisely: 

Lemma 3.34. There is a homomorphism 

h:I-+H 

extending h, such that 

(1) If x E I fl q[J3 CBB,] fl G,,,, 0 < n < 33, then X’ E p”G; 

(2) h(x)=0 for xEInR,. 

Here we are introducing the abbreviation x’ = x - h(x). 

Proof. As I is rectangular we decompose it as follows: 

I=l,@I,@I,, 

I, = I n R,, r,=In9~&3], I, = I n 7~, [EL] (as above). 

We shall construct homomorphisms 

h,:Il-+H, h2 : I, + H, h,:I,+H 

so that the desired homomorphism will be: 

h=h,@h2CBh,:I*H. 
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h, has been constructed in Lemma 3.33 and we set h, = 0 in accordance with (2). 

By rectangularity and simple properties of the projection ra we have: 

(A) I2 = In ~F,[B] = n (In7dBJ). 
P 

=If-l 
( 

c 7TJR(p,n)"] = 
O<n<- ) 

= 

(Cl dL n R(p, 401= z, . TJ, n x(P, 41. 

Since X(p, n) c Gp,” we find for each x E I, rl X(p, n) some element h, E H such 

that 

(D) x-h,Ep”G. 

W.1.o.g. we may choose h, E H’ and h, p’-divisible. Thus it is possible to extend 

x -+ h, 

to a homomorphism 

h p,n : dL n R (P, n)Ol+ H. 

By Corollary 3.13 and Lemma 3.29(2) we may combine h,,, for O< n <m to 

obtain a homorphism 

h;:ra 2 (1, n R(P, n>O) -+ ff. 
o<n<= 1 

By (D) and Lemma 3.13(2) we have: 

(E) for all x E dom(hL) fl GP+: x - h;(x) E p”G. 

By Lemma 3.13 hb is continuous from the local Z-topology to the Z-topology. 

Since we have arranged Im(hk) s H’ and If’ is Z-complete and Z-Hausdorff we 

can extend h; to hz: 

Finally again using Z-completeness of H we set: 

It is easily checked that (E) implies (1). 0 

The construction of A, depends on two lemmas. 



Locally pure topological abelian groups 83 

Lemma 3.35. If A, H are pure subgroups of G such that 

(1) An(H+pG)spG for all p and 

(2) A II H is Z-Hausdorff, 

then A nH={O} and ACBH is pure in G. 

Proof. For a E A fl H it follows by repeated application of (1) that for all primes 

p:aEp-G. Hence by (2) u=O. Now if aEA,hEH and a+hEpG, then aE 

An(H+pG)cpG, so a~pA. Hence hEpH and a+hEp(A@H), 0 

Notation. In the notation of Lemma 3.34 set 

I’={x’: XEIC%r,[B@B,]}. 

Let A be the divisible hull in G of D’ + 1’. 

Lemma 3.36. (1) AflH={O}. 

(2) AC3H is pure in G. 

Proof. We verify the two conditions of Lemma 3.35. 

Condition 1: If a E A n (H+ pG), then by definition there are m > 0, d E D’ 
and xEInra[B@3B,] with 

ma = x’ + d. 

W.1.o.g. d = 0. Let m = pkmo with (p, m,,)= 1. Then 

X’E m(H+pG)g H+pk”G. 

Thus by Proposition 3.32(3): 

xM%rJB@B,]n(pk+lG+H)EGp,k+l. 

Now Lemma 3.34(l) yields: 

X’EP k+‘G. 

Thus m,a E pG and a E pG follows. 

Condition 2. If a EA fl Hnn{nG: n >O} write again mu = x’+d as above. 

This implies 

xEInqJB@B,]n(H+p”G). 

Thus by Proposition 3.32(3) 

x E G,,-. 

Now Lemma 3.33(3) implies x’ E D’ and therefore ma = x’ + d E D’ fl H, which 

gives by Lemma 3.33(2) a = 0. 
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Applying Fact 2.9 and the previous two lemmas we find a group %. = A,,,+i 
satisfying: 

H,=A,@H and AEA,. 

Notice that h and ~~+i coincide on I. 0 

Lemma 3.37. For bgl n T~[B@B,] and all primes p: 

p” divides r:(b) in A, i# b E GP,,. 

Proof. If b E In -rr,[B6BB,] cl G,,,, then by 3.34(l) 

m:(b) E p”G II A, = p”A,. 

If conversely n:(b) E p”G, then by Proposition 3.32(3) b E Gp,” as claimed. Cl 

We claim now that the requirements of Theorem 3.26 as reformulated in 3.27 
are satisfied: 
3.26(l) follows from 3.32(4)(5). 
3.26(2.1) follows from 3.32(2). 
3.26(2.2) follows from 3.33(3) and 3.34(l). 
3.26(2.3) follows from 3.37 and the construction of h2 in 3.34. 
3.26(3’) follows from g, E A,. 
3.26(4’) follows from 3.34(2), since this implies r,+l(gi(a’P)) E rr~+JB@B,] c 
G P,l. 

Index of notation and structural relationships 

G = D@R (D = maximal divisible subgroup of G) 
R = &, R, (R, = {r E R : r is p’-divisible}) 

R (P, 00) = R, n G,,- 
R, = R;@R(p,“) 

R(p, n) = R; n Gp,n (for 0 s n < =Q) 

Gp,n = R (P, n) @ G,,- 
V(P, 0) = R(P, O)lR(p, 1) 
V(p, n) = R(P, n)/(pR(p, n - 1) + R(P, n + 1)) (O< n <m) 
X(p, n) = set of representatives in R(p, n) for a basis of 

V(p, n) (OSn<m) 
R(p, n)” = q-span of X(p, n) (0 s y1 Cc=) 
R(p, m)‘=basic submodule of R(p, 00) 
X(p, m)=Z,-basis for R(p, a)” 

B,=(C{R(p, n)‘: O<n<~})= 

B =I-&& 
EL = l-I, R(P, ~9 

(R(p, n)“)- = (R(p, n)‘)= (OS n Cm) 

3.5 
3.5 
3.7 
3.7 
3.7 
3.9(l) 
3.11(l) 
3.11(l) 

3.11(2) 
3.11(3) 
3.11(4) 
3.11(5) 
3.11(6) 
3.11(7) 
3.11(S) 
3.15 
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R;=(@{R(p, II)“: Osn<m})= 

=&{[R(p, n)“]-: Osn<a} 
B=&,{[R(p, n)“lP: O< n cm} 

UK%: ff <CLl=B@Ec VJ,<, family of rectangular subgroups 
{H,: CY < p} complemented fundamental chain 

K = &,p @Hp (a < B < F) 
A = Aa., @ A,, 

2: = A,,,+1 

(a!<P<Y<P) 

ra : G *H, projection 
rr:,=rra-lra+l 

I rectangular subgroup of R, 43 m_[B @B,] 

m7-0m,l= 5-J,] 
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3.16 
3.17 
3.17 
3.25 
3.22 
3.22(2.1) 
3.22(2.2) 
p. 73 
p. 73 
p. 74 
3.26(2) 
3.26(2) 
p. 79 
p. 79 
p. 79 
p. 79 
p. 80 
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