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Recently, Khachian [3] presented a short algorithm for determining the 
consistency, i.e., solvability, of a finite set of linear inequalities in R” (cf. 
also [5]). More precisely, if 

a,,x, + . . . +%A < b, 
a,,,,~, + . . , +amnx,, < b,,, 

x, >o,...,x, >o 
(*) 

is a system of inequalities in R” for which the ati’s and hi’s are integers, the 
algorithm will determine whether or not (*) has a solution, and locate a 
solution if there is one. Furthermore, it does this in such a way that the 
required accuracy, memory requirements, and running time are bounded 
by fixed polynomials in n and L, where L is the complexity of the system 
as measured by the number of bits needed to encode (a). 

Remarks. 1. The requirement that the solution set lie in the positive 
orthant is a standard one in linear programming, and a problem without 
this constraint can very easily be replaced by an equivalent one satisfying 
this requirement (cf. [l, p. 861). 

2. As is shown in [2], the consistency of an integer system in which 
the inequalities are weak, i.e., of the form “ I ” can be made equivalent to 
that of a system of strict integer inequalities. Moreover, a system of weak 
integer inequalities can in practice be approximated by a system of 
rational, and hence integer strict, inequalities. Finally, if a problem in- 
volves an auxiliary linear form which is to be maximized subject to a 
system of weak inequalities, it can be changed into a system without a 
maximization constraint by adjoining the dual problem, together with the 
requirement that the forms to be extremalized in the respective problems 
be equal (cf. [l, p. 1291). 

The papers of Khachian and Shor are in the style of brief research 
announcements and do not contain proofs of several assertions required to 
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establish the algorithm. Some proofs have recently been provided in [2]. 
All of these papers focus mainly on algebraic descriptions of the algorithm, 
and in the case of [3], on the necessary detailed accuracy, memory, and 
running time estimates. It is the purpose of this paper to sketch briefly the 
extremely simple geometric idea involved in the algorithm, and then 
describe a possible improvement suggested by A. T. Vasquez. 

Basically, the technique is very evocative of one of the standard ap- 
proaches to the Heine-Bore1 theorem-repetitive bisection. The new idea 
is that since the bisecting hyperplanes which arise can be tilted in random 
ways, it is extremely advantageous to make the repeated bisections involve 
a figure which is invariant under affine transformations, e.g., a half- 
ellipsoid. In particular, because of this affine invariance, a certain circum- 
scribing lemma has the same geometric form at all stages of the process. 

In more detail, after setting A, = jaUj + 1, Bi = jbil + 1, and M = (the 
product of all the Ati’s and Bi’s), one begins with the following simple 
observations: 

A. If (*) is consistent, then the coordinate entries of any vertex are 
rational numbers whose numerators and denominators are less than M. 
Thus, if (*) is consistent, it always has a solution within the open ball B, of 
radius fi M about the origin. 

B. If (*) is consistent, the volume of the portion of the solution set 
which lies in B, is greater than I’, = (,!)-‘M-(n+‘). (As is remarked in [2], 
the quantity V, is itself of the form 2-‘(“, L), where P(n, L) is a linear 
polynomial in n and L.) 

A and B are proved in [2], and are also familiar from the geometry of 
numbers. To prove A, one observes that any coordinate entry of a vertex 
of the solution polyhedron must be a solution of an n by n integer linear 
system with entries of the form 0, 1, aii, and bi, and hence, is expressible as 
the quotient of two determinants with such entries. Each determinant can 
be trivially bounded by replacing it by the product of the sums of the 
absolute values of the rows, which in turn is dominated by M, which 
proves A. To prove B, one observes that the solution polyhedron must 
have at least one vertex, since it is contained in the positive orthant. Such a 
vertex must, of course, lie in B,. The solution polyhedron may or may not 
have n + 1 vertices in general position, but if it does not, the problem can 
be augmented by the additional constraints x, < M, . . . , x, < M without 
disrupting the presence of a vertex, and hence, a solution within B,. These 
additional constraints cause the solution polyhedron to have compact 
closure, and hence, certainly produce n + 1 vertices in general position in 
x0. The volume of the simplex spanned by these vertices is 
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where u,, . . . , u,, , are column vectors representing the vertices. Since the 
determinant is a rational number whose numerator is not zero, and since 
the denominators of the entries of any fixed vertex are all the same and 
less than M, the result follows immediately, if we combine the formal 
expansion of the determinant into a single fraction. 

The next observation is of a purely geometric character. If E, is an open 
ellipsoid in R”, and ET denotes the intersection of E, with a closed 
half-space not containing more than half of E, and having boundary 
hyperplane H, then there exists a second open ellipsoid E2, such that E, 
contains E:, and (vo~( E,))/(vol(E,)) < e - ‘iZn. Since the truth of this 
assertion is an affine invariant, it suffices to establish it in the case in 
which E, is the unit ball centered at the origin, and H is given by xn = d, 
with 0 I d < 1 (Fig. 1). 

If we require the circumscribing ellipsoid to be rotationally invariant 
about the x,, axis, it follows quickly from the calculus that the center of the 
minimal circumscribing ellipsoid is located at distance (nd + l)/(n + 1) 
from the origin, and its short semi-axis is (n/ (n + l))(l - d), while the 
long semi-axes are identical, and of length (n’/ (rz’ - 1))‘12( 1 - d2)‘j2. It 
follows that the ratio of the volume to that of the unit ball in the worst 
possible case when d = 0 is (n/ (n + l))(n”/ (n’ - l))(“-I)” = r,,. This 
quantity is less than 1 if and only if its logarithm is less than zero. After a 
little manipulation, the statement about logarithms becomes log(1 + n-i) 
+ #I - 1) log(1 - rr-‘) > 0, which follows from the power series expan- 
sions for log(1 + x) and log(1 - x2). Although r,, + 1 as n -+ cc, it follows 
immediately from the power series expansions that r,, is always less than 
e-‘i2”. Finally, if E, is specified by giving both its center p,, and the 
symmetric matrix E; of the quadratic form inverse to the form defining the 
ellipsoid obtained by parallel translating E, to the origin, and if one is 
given the hyperplane H, then the determination of the center of E2 and the 
matrix E; is not very time-consuming. Indeed, suppose that T, is a linear 
transformation which takes the unit ball into E,. (To save notation, we 
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assume that T, is symmetric.) Now the hyperplane H will in practice be 
given by one of the inequalities in (*). If a = (ail, . . . , a,,) is the vector 
corresponding to this inequality, it is a simple exercise in affine geometry 
to show that the image under T, of the point of tangency of the circum- 
scribing ellipsoid in the ball model is s]I T,a]] - ‘Tfu, where 
S = Si!Zn(bi - (GPJ), and hence, the center of E, is obtained by displac- 
ing the center of E, by s(nd + l)(n + 1))‘~(T,u~l-‘T&z = s(nd + l)(n + 
l)-‘(Ei’u, u)-‘/~E;u. (The algorithm as stated in [2] has the wrong sign for 
the displacement vector.) 

To find E; we proceed as follows. Suppose B is a unit vector. Denote by 
E,*(d) the ellipsoid obtained by translating the circumscribing ellipsoid of 
Fig. 1 to the origin and then subjecting it to an orthogonal transformation 
which takes the north pole into 9. It is then evident that E,*(d) is the image 
of the unit ball under a transformation of the form c,Z + c2PB, where 
PO is the projection along 8, cl =(n2/ (n’ - 1))li2(1 - d2)‘i2, and 
c2 =(n/ (n + l))(l - d) - cl. A transformation taking the unit ball into 
E2 will then be given by T2 = T,(c,Z + c,P,), which is generally not 
symmetric. (Note that the matrix PO is simply (O,$) = 80’, if 8 is written as 
a column vector with entries O,, . . . , O,.) 

NOW Ei = T2Ti = T,(c,Z + c~P~)~T, = cfTf + (2c,c, + c$TIPBT1. In 
the case at hand, 8 = s]I T,~ll-~T,u. It follows that 

p* = II ~141-2(~14(~14 = 11~1~11-2(~,)(~)(~)‘(~,), 

so 

T,PoT, = II ~,~ll-2(~:)(~)(~)‘(T,)2 
= IlT,uIl-“(T;u)(2’$z)~ = (E;u, a)-‘(E;a)(E;u)‘; 

i.e., 

Ei = c,E; + (2~1~2 + Ci)(E;Uy a)-‘(E;a)(E;a)‘* 

It remains to calculate d. But it is evident from affine geometry that d 
can be very simply calculated as follows: Let D be the distance from the 
origin to the point of intersection of the hyperplane H with the line 
determined by a. Let D’ = )I T,all-‘IIT$l( = (E;u, u)-‘/~~IE~u~(. Then 
d = D/Or. 

We now describe the algorithm and then the proposed modification. The 
algorithm is this. Define a sequence E,, E2, . . . of ellipsoids as follows: 
Set E, = B,. As has been remarked, if (*) is consistent, then E, must 
contain a piece S of the solution set having volume at least V,,. Assuming 
for the moment that (*) is consistent, we take as our first trial solution the 
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origin. If the origin satisfies (q) we are done. If not, there exists an 
inequality in (*) which is violated at the origin. Take the hyperplane H 
corresponding to this inequality, and parallel translate it to the center of 
E,. Call the result H’. (See Fig. 2.) 

Let i E, be the intersection of E, with the half-space determined by H’ 
which contains S. By a previous argument, there exists an ellipsoid E2 
containing i E,, and such that vol( E2) 5 r,, vol(E,) (note that E, contains 
S). Take the center of E, as the next trial solution. If it satisfies (*) stop. If 
not, there is an inequality in (*) which is violated at the center of E,. If this 
is the case, repeat the just-described process. In this way, one constructs a 
sequence E,, E,, . . . of ellipsoids, each one of which contains S, and the 
volumes of which are decreasing exponentially. Ultimately this will come 
into conflict with the fact that S has volume greater than V,, so a solution 
must be obtained before this happens. The number of repetitions of the 
process required to achieve this for a fixed n will be O(log R), where 
R = (vol(B,))/ I’,, and this estimate is polynomial in n and L. Since rn + 1 
as n + 00, the adjusting constant implicit in the estimate will tend to 
infinity as n + 00. On the other hand, since r,” < e-i/*, it is evident that 
there exists a constant C, such that at the very worst the number of 
repetitions is bounded by Cn log R, which is also a polynomial estimate in 



6 BURTON RANDOL 

n and L. Finally, note that if (*) is not consistent, this will be detected by 
the algorithm, since if it has not obtained a solution after the above 
number of repetitions, then there cannot be a solution. 

We conclude with the modification, which at this point can be stated 
very quickly. It seems quite clear that it may be very inefficient to 
repeatedly translate H back to H’, and so always deal with half-ellipsoids. 
As we have seen, very little additional computational complexity is in- 
troduced by circumscribing instead the intersection of Ej with the “good” 
side of H. Computationally, the modified algorithm is the same as the 
original algorithm, with the change that c, and c2 now involve d, and 
hence, are changing at each step. Additionally, it should be worthwhile to 
search for a distant H at each stage. Clearly, the estimated running time of 
the modified algorithm will depend on the accumulated products of the 
ratios (vol Ei+,)/(vol Ei), but can in no case be longer than the estimated 
running time of the original algorithm. Finally, we remark that recently 
several additional modifications of an empirical character have been 
proposed to accelerate the procedure, and as experience accumulates, some 
of these may be incorporated into various working versions of the algo- 
rithm (cf., e.g., [4, 6, and 71). 
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