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I 

The aim of this paper is twofold. I shall discuss here some of the 
abstractions in mathematical schemata suggested by the problems of the 
physical world, and their autonomous development, which in turn leads to 
our formulation of physical theories; and I shall present some general 
considerations involving branching processes, including the interactions 
between pairs (and more general k-tuples of such), and problems involving 
random walks of elements which interact among themselves to produce 
more elements of this sort. 

The dichotomy between two points of view, one considering the 
mathematics and logic itself as a primary basis in the Kantian sense, and 
the other complementary view considering our ideas as formed by the 
actions of the external world, is very old. The idea of the number system, 
the integers, the rational numbers, the continuum of real and complex 
numbers, developing in the more abstruse elements of more general 
algebras, may be not only stimulated but forced by the nature and the 
property of the physical worlds. The same could be asserted for the ideas 
of geometry as creations of our mind; or else these may be regarded as a 
result of the experience of our senses and experimentation. 

Modern theoretical physics has become increasingly abstract in its basic 
formulations. Dirac and some other physicists express the view that the 
criterion of whether a theory may ultimately turn out to be true [sic!] 
depends on the beauty of the principles, and the mathematical formulation 
of the basic laws. So, for example, Heisenberg, in a speech given a few 
years ago, contended that the principles of symmetry in the mathematical 
patterns of physical theories, together with their simplicity, will guide us to 
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new and more comprehensive physical insights. But f&senbag himself, 
and certainly Einstein, were not in favor of too much complication or 
sophistication in the mathematical concepts to be used. Whether the 
degree of complexity is largely a question of time and habit is very hard to 
say. 

I intend to indicate several areas where new mathematical questions 
might be stimulated by the present indications of the behavior of physical 
realities in the world of the very small, the subatomic regions, and in the 
large, with perhaps the intervention of actual infinities which could play a 
role in the foundations of physical theories. 

Geometry, which in its origins could be considered a physical reality, 
developed the ideas of the Euclidean spaces to ever more intricate 
mathematical systems. If we consider for the moment only the topology of 
space, at present almost exclusively assumed to be locally Euclidean in 
most physical ideas, one may already ask for justifications. Einstein’s 
program of geometrizing all fundamental physics is based on not only the 
locally Euclidean topological character, but on differentiable if not 
analytic metrics on it. Differentiability of course implies smoothness and 
linearity in the small. This is certainly adequate for phenomena involving 
gravitational forces alone. The world of atoms and the nuclei show an 
increasingly stronger and violent local behavior, the electromagnetic forces 
being more powerful than the gravitational ones by a factor of 1040, and 
still more in the nuclear and subnuclear dimensions. An attempt to build a 
geometry to describe the physical phenomena in such regions-philosophi- 
cally and epistemologically one of the most wonderful ideas promulgated 
by Einstein-cannot proceed through classical mathematical analysis. At 
distances of, say, lo-*cm, not to mention lo-” or 10-13, when the 
phenomena of nuclear interactions take place, some other possible metric 
geometry or perhaps even before that, the topology itself of space-time, 
may be different. As Hardy has said, mathematicians, who are, among 
other things, makers of patterns, have provided other ones which may suit 
the new physical insights. The topology may be non-Euclidean locally-it 
could be “granular’‘-which does not necessarily mean finite. There need 
not be a minimal length which is not consistent with the invariants under a 
Lorentz group of transformations, but there could be arbitrarily small 
distances, actual or “potential,” an infinity of such, not necessarily leading 
to a Euclidean continuum. In fact, in Everett and Ulam [l], we have 
discussed the analogs of the Lorentz group defined for transformations of 
a space topologically equivalent to a Cantor discontinuum and algebrai- 
cally defined as a product of a three-variable p-iadic number system 
(“space”) and a one-dimensional p-iadic continuum (“time”) where the 
transformations preserve the “light cones,” that is, sets whose three-dimen- 
sional p-iadic norms are equal to the fourth-time-norm. This turns out to 
be a group different from the Lorentz group. 
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Of course one should not take literally this particular construction as 
physically meaningful, but one could imagine space-time structures of this 
sort corresponding to subatomic dimensions. Indeed, for distances of the 
order 10m6 or lo-’ cm, the world seems to be very well described locally 
by the Euclidean metric. If one wants to have changes in the much smaller 
dimensions, one should therefore do it so that the transition is not too 
abrupt. As Everett once said in a discussion of this matter, one would have 
to do it in such a way that the “seams would not show” when you sew 
together the geometry in the exceedingly small and the more macroscopic 
dimensions. 

But what about the nature of the topology itself? Is the topology or the 
metric more primary or fundamental? Mathematicians in general would 
say that it is the former. 

Assuming now, for the time being, a Euclidean topology, locally or even 
in the large, we might ask the question: What kind of metric consistent 
with this topology is the most “natural”? 

I would like to mention here a problem concerning this question: In a 
special case, let us suppose that our space is Euclidean-one, two, three, or 
more dimensions. Let us consider all possible metrics which give this 
topology, but would allow the greatest possible freedom of transformations 
or motions preserving the given metric-the isometric transformations of 
the space onto itself. These form a group. For the Euclidean metric, these 
are translations, rotations, and inversions. Given some other metric, given 
still the Euclidean topology, consider the group of isometric transforma- 
tions preserving it. The problem which I formulated some two years ago is: 
Do there exist metrics for which the group of their isometries would be 
maximal in the sense that for any other metric, the corresponding group, 
considered as an abstract group would be a proper subgroup of it, and in 
addition not isomorphic to the whole group? I do not know the answer to 
this question, in this generality, even for a small number of dimensions. E. 
Ihrig has informed me in a letter that he can show, under the assumption 
that the metrics are analytically “decent,” that the Euclidean metric is 
maximal in this sense or in that respect “natural.” Of course, the problem 
has sense on any topological space, and in particular one can pose it for 
the Cantor discontinuum. Perhaps for this space there is no “natural” 
metric in the above sense. There are curious metrics on it; for example, if 
we consider the example of Antoine, who imbedded the Cantor set in 
three-dimensional space in such a way that a closed curve linking it cannot 
be contracted to a point outside. 

One might say that questions of this sort could have been considered a 
long time ago, even by physicists, viz., the discussion by Poincart in one of 
his general books under the heading, “Why is Space Three-Dimensional?“. 

Similar questions should be asked about space-time. There one needs a 
more general setup since the idea of distance used is not metric in the sense 
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mathematicians employ, since it need not be positive-definite. On the 
whole there is very little in the literature dealing with a possible generaliz+ 
tion of the Lorentz space definition to more general spaces, not merely the 
spaces endowed with Riemannian metrics-m analogy to the generaliza- 
tions of the Euclidean and classical spaces to more abstract, general metric 
ones. As an aside I should mention that there are of course other mathe- 
matical ways to “characterize” the Euclidean metric by general properties, 
For example, if a convex body has all its plane sections isometric to each 
other, it must be a sphere. If all its plane sections through a certain point 
are equivalent by affine transfomrations, it is an ellipsoid. This was proved 
in three dimensions [2]. One might ask analogous questions in Hilbert 
space, etc. 

The relations between metrics and linearity is evident through a theorem 
ascertaining that all isometric transformations of a Banach vector space 
are linear [3]. This relation is one indication of the role of linearity in 
problems of mathematical physics. Many of the most important equations 
of mathematical physics are linear. (I remember a remark made by Fermi 
in a conversation: “I do not believe that it says in the Bible that all the 
laws of physics should be linear!“) I might mention in this connection 
some problems about nonlinear transformations or functional equations, 
some of which are quite recent. 

A number of studies were stimulated by a numerical work using early 
electronic computers by Fermi, Pasta, and myself [4] on the behavior of a 
vibrating string in which a small nonlinear term was added to Hooke’s law 
(e.g., a quadratic one). The behavior of the vibrations presented a rather 
unexpected periodicity instead of a gradually increasing complication and 
“ergodicity.” The high modes were not activated, but instead the first few 
modes played a sort of game of musical chairs among themselves. After 
some thousand or so would be linear variation periods the string would 
come quite close to its original starting single sinusoidal shape. The 
problem was considered on a discrete system of points by iteration in time 
of a nonlinear recurrence. 

Much subsequent work was and is being done both in the differential or 
difference equation formulation. The phenomena of solitons are increas- 
ingly being studied with some results leading to possible applications in 
describing phenomena involved in nuclear and elementary particle physics. 

Parallel to these studies an investigation is proceeding on a rather broad 
front of the mathematics of iteration of transformations which are nonlin- 
ear but still rather simple algebraically, for example, quadratic and broken 
linear ones acting on the Euclidean spaces or manifolds (the circumference 
of a circle, the sphere, etc.). In Stein and Ulam [5], we have undertaken a 
systematic investigation of iterates of certain quadratic (or cubic) transfor- 
mations in a plane-three or more dimensions. A wealth of rather strange 
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phenomena was discovered through numerical work. The iterates show in 
some cases convergence to an invariant system of points and in some cases 
are finite and periodic in the limit on these points; in some other cases, in 
three or more dimensions, the iterates of starting points converge to rather 
strange or “pathological”-looking sets which may be continuous curves or 
Cantor discontinua. 

As an example of such quadratic transformations I might mention two 
to give an idea of the forms which have been investigated on a great 
number of such examples. 

1. There are three types of particles. We assume that 

type 2 with type 2 produce type 1, 
type 3 and type 3 produce type 1, 
type 1 and type 2 produce type 1, 
type 1 and type 3 produce type 2, 
type 2 and type 3 produce type 2, 
type 1 and type 1 produce type 3. 

If we start with a very large number of particles of this type, their fractions 
of the total being denoted by x,, x2, xj, respectively (xi + x, + x3 = l), 
then in the next generation the fractions will become 

x1 ’ = x2’ + x; + 2x,x*, 

x; = 2x,x, + 2X2X3’ 

x3 
‘=x 2 

1’ 

II. With an analogous notation for four variables (“colors”), the trans- 
formation could be, for example, 

x; = x; + 2x,x, + 2x2x3 + xi, 

x; = xf + 2x,x,, 

x; = 2x,x, + 2x,x,, 

xi = x3’ + 2x,x,. 

Often the behavior and morphology of the iterates limiting configura- 
tions depend very sensitively on the value of the numerical parameters in 
the transformation. Already in problems in one dimension the existence of 
a finite periodic limiting set changes abruptly to very chaotic and quasi- 
ergodic behavior. A number of papers on results on the “chaos” of such 
sorts has been written during the last few years. 

One interpretation of quadratic transformations of this sort might be the 
following one: If we imagine a great number of particles, each of one of 
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the several, say three, kinds of “colors,” we may consider random pairings 
between such with the subsequent production of particles whose color 
depending on the colors of the parents is prescribed by a given rule. In this 
way we obtain a new generation of particles and the process continues by 
repetition or iteration. This latter refers to the transformation describing 
the ratios of the number of proportion of particles of each hind as the 
number of generations grows indefinitely. The numbers in each generation 
are given by the variables obtained by iteration from the initial ones given 
by the above type of recurrence relations. 

II 

By an elementary branching process we mean a probabilistic schema of 
the following sort: Starting with one, or a number of elements, we assume 
probabilities, for each of these elements to produce, in one unit of time 
0, 1, 2, . . . ) or n new elements. We assume the probability for that to be 
given: po, pl, . . . , P,. In the simplest case we assume that these are 
constant in time and the process repeats. So, starting with one particle we 
obtain a tree which graphically represents a history of such a process. As 
an interpretation we may take the problem of neutron multiplication- 
starting with one, we may obtain more of these which in turn produce still 
more, etc. The mathematics of such a discrete branching process is 
conveniently formulated by the use of generating functions: 

f(x) = p. + p,x + pzx2 + - - * +p,x* + * * - * 

The generating function for the number of particles in the second 
generation will be 

ET(x) = f(f(x)>. 

In general, the generating function for the number of elements in the kth 
generation is given by f”(x) = f(f”- ‘(x)). 

If the elements or particles are of different kinds, say two, “red” and 
“black,” we have a more general generating transformation in two vari- 
ables. 

T: I X’ = fi(x,Y) = i,zoPi,jxY. 

I 
y’ = f2( x, y) = 5 ri,ixLj. 

i, j-0 
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The coefficients pi,j denote the probability that the “x” (black) particles 
will produce i black ones and j (red) ones. Correspondingly, the ri, j is the 
probability of the production of i black and j red ones by a “y” red 
particle. The iteration of this transformation gives the probabilities of 
numbers of red and black particles in the subsequent generation. 

One of the important theorems concerns the ratio of the number of the 
red to the black particles. Assuming that the system is supercritical, that is, 
that if it does not die out with probability 1, the theorem asserts that with 
probability 1 the ratio will tend to the value given by the eigenvector of the 
linear transformation defined by the expected values of the production of 
“x” and “y” by black and red particles and the expected values from the 
production by red ones. This linear transformation in our example in two 
dimensions has the characteristic vector given by the Frobenius-Perron 
theorem. Everett and I have proved the above “strong ratio theorem” for 
this type of transformation in n dimensions [6]. 

The theorem can be formulated in a concise way using the idea of 
measure in the space of all trees corresponding to such multicolored 
branching processes [7]. 

A branching process of the above type represents a “mitosis” process 
where one particle by itself may produce 0, 1, . . . particles of various 
types. A more general theory, with more and wider applications in several 
schemata of physical processes involves a production and transmutation of 
elements which combine in pairs to produce other particles. In a biological 
formulation it would correspond to sexual reproduction. A graphical 
representation of such a schema would not involve a tree but rather a 
number of trees whose segments combine in pairs (say at random) and 
each initiates 0, 1, 2, . . . new particles with various probability. These 
then combine again to produce the next generation, etc. 

We shall illustrate now how such processes involving transmutations and 
“pair production” may serve as a stage for a number of fundamental 
physical processes. We shall try to indicate how the various “colors” may 
correspond not only to the various kinh of particles but to positions, 
momenta, or points in space-time of the particles, much as in the branch- 
ing process discussed above, the colors could be interpreted as correspond- 
ing to location, velocities, and directions of the neutrons in an active 
assembly. 

In the linear problems one can have of course, as a special case, such 
interpretations: 

Consider the time-independent Schriidinger equation, 

A++[& V(x)]lc,=O. 

V(x) is a given potential; E is the eigenvalue. We may introduce a new 
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function 

U = e--%(x, y), 

where t is a parameter, not necessarily interpretable as time. The new 
function will obey the equation 

This corresponds to a process of diffusion where the Laplacian describes 
the random walk and V(x) the potential, that is, a multiplication at a place 
x. Numerically, we may try to solve this equation by discrete steps in t or 
by iteration. From the Frobenius-Perron theorem we know that asymptot- 
ically for large values of t a “steady state” in the distribution of the 
function a,!(x) will be established, that is, the ratios of the population in 
various positions will tend to fixed values, the population itself everywhere 
changing exponentially. In this fashion one may establish a numerical way 
to get an idea of the function q(x), at least for the largest value E. As a 
matter of fact Fermi and I tried such computations for some special forms 
of V(x). 

How does one obtain the remaining eigenvalue and eigenfunction? For 
the moment suppose we want to consider the second one. One way to do it 
is to consider a population of “particles” of two colors, black and red. 
These will diffuse in x in time t through random walk and multiply in each 
step according to the values V(x), but encountering each other they will 
annihilate each other. In this fashion we will approach for large t .a 
distribution corresponding to the second largest eigenvalue. (Actually this 
bookkeeping of black and red is used in financial accounts.) 

Here we get the first example of what will be further elaborated for 
processes involving random walks by multicolored elements which produce 
other elements: If the production is by the particles themselves according 
to a prescribed V, we have a model of the linear S&r&linger equation. 
Suppose now that in addition to the process of annihilation which we 
described above, we have production by a pair of elements which “col- 
lide.” This will then be an approximate formulation of a nonlinear equa- 
tion of S&r&linger type but with a potential replaced now by the action of 
densities of the particles of different colors. For example, we could get a 
process which, in the limit, is describable by a nonlinear system of partial 
differential equations with a potential being replaced or complemented by 
the nonlinear, say quadratic or cubic, terms. 

We may imagine further that the “particles” performing the random 
walk are elements of a more general algebraic nature. The colors may 
correspond to, not as in the first example, values 1, - 1, which upon 
contact annihilate each other or produce 0, but they could be complex 
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numbers, the colors corresponding to 1, - 1, i, - i, and the rule of produc- 
tion could be quite general. In fact, one may imagine that the elements 
performing the random walk are matrices. 

In such more general cases we have a process of “pair trees,” an example 
of which was mentioned above. 

A great deal of mathematical work is required to prove the analogs of 
what is known for the linear case of the branching processes. A conjectural 
theorem would assert the existence of ergodic limits, that is, the first means 
in time of the ratios of the density of population of various colors. More 
precisely one would like to know whether given a cone of directions issuing 
from the origin, the given quadratic transformation iterates fall into this 
cone in a sequence of times in such a way that the first mean of sojourn in 
this cone exists. Moreover, the above, which could be true for almost every 
(in the sense of measure) starting point in space, has a sojourn limit whose 
values, given the cone, may assume only a finite number of values 
depending on the initial point. 

A number of numerical experiments made at the Los Alamos Scientific 
Laboratory seem to support this conjecture. Actually, in the cases ex- 
amined, such pair production processes led to spatial configurations with 
the points of a given color congregating in definite regions. 

As an example of such transformations I shall write the following: 

x&x+xandx 
y&y-+xandz 
z&z-+yandy 
x& y+xandyandz 
x&z+yandz 
y& z+z 

x & x + 0 (nothing) 
y&y-+yandz 
z& z+xandz 
x& y-+xandyandz 
x& z+xandz 
y& z+y andy 

The symbol & means the confluence of particles of the type x, y or x, z, 
etc.; x & x means two particles of type x combining. 

If you assume a very large number of particles of each type paired by 
the symbol & at random and producing the next generation, we may 
consider the fractions of the total number of the particles of each type - - - denoted by the symbols x, y, z, etc. The transformation governing the 
change of these variables may be given by a general quadratic form, 
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F; = X,+X&,, 3, plus linear terms corresponding to production by trans- 
mutation of single particles. 

The example of the quadratic transformation, studied previously with P. 
Stein, describes the case where pairs of elements produce a single element 
or, say two elements of the same color, given a pair of parents. In the 
general case, which may serve as a model for a number of physical 
situations symbolically, the colors of the offspring from a pair of parents 
may differ. Needless to say, one really could study a more general case 
where more than two offspring are produced. As we shall intimate later, 
this would be the case to model multiple production of “photons, elec- 
trons, neutrinos” from a single collision between two particles of a given 
kind. 

In addition to theorems which would throw light on the relative propor- 
tion of elements of each color one would like to have an algorithm 
permitting estimation of behavior in time (i.e., as a function of the index of 
iteration), the growth, decay, periodicity, or quasi-periodicity of this num- 
ber. 

As we shall see later, however, in a very general formulation of a pair 
production process in which we consider the positions in space and in 
physical time as “colors” themselves, the morphology of spatial and time 
configurations becomes describable by the frequencies of occupation of 
these in the sequence of iterations themselves. 

As one of the very simplest possible examples, let us consider a problem 
of particles of two colors, red and black, distributed on a division of the 
circumference of a circle; let us say each is distributed uniformly on 100 
points as a subdivision of a circle. The game was played with the following 
rules: Each of the particles, red or black, moves with equal probability 
clockwise or counterclockwise to the next point. The red particles produce, 
by themselves, on the average 1.10 particles of the same type; the black 
ones only 1.05. (This is obtained by assuming that each particle reproduces 
itself with probability 9/ 10 and produces two with probability l/ 10, if it is 
red, itself with probability 0.95 and two like itself with probability 0.05 if it 
is black. This process of multiplication and random walking is repeated 
cycle by cycle. We assume after the initial start that the red and black 
particles occupying the same position annihilate each other. Under a 
number of initial distributions the repetition of the process may lead to a 
distribution of the red elements on one-half of the circumference, the black 
ones occupying the remaining positions. The problem may lead to a 
“critical” system if the number of positions on the circle and the probabili- 
ties of multiplication (“potential”) are in a certain relation to each other. 

The Schriidinger type of equation governing this would have the diffu- 
sion term depending on the number of positions given on the circum- 
ference of the circle. The “potential” is the probability of multiplication of 
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each type by itself and the “critical” size of the population, that is, the case 
where neither population grows or diminishes under the iterations x 
corresponds to the case where the eigenvalue E = 1. Since we have both 
positive and negative “particles,” we really have a solution for the second 
eigenfunction and its eigenvalue. The “critical” system would correspond 
to the case where E = 1 when the number of positions, i.e., the length of 
the step and of the diffusion, is related in a certain way to the “multiplica- 
tion” V. 

Several problems were run on a computer where the multiplication 
depends on the presence of the particle of the opposite color. This 
corresponds to the system of nonlinear Schrodinger-type equations. 

Our experiments performed on the computer in Los Alamos with R. 
Schrandt were for the case of the circumference of a circle. One may of 
course study such systems on the surface of a sphere, on the entire space, 
or on various manifolds. 

A simple problem was studied computationally by imagining a number 
of particles whose colors may be interpreted as the energies of the 
particles. A great number, e.g., 100 or more, are assumed to start with, and 
the values of the colors are interpreted numerically from 1 to 100 with, say, 
a uniform initial distribution. We then assume that the particles are paired 
at random and each pair produces two new ones with the values of their 
energies adding up to the original sum of the energies of their parents. 
Otherwise the two energies (“colors”) can be assumed, for example, to be 
distributed at random by, for instance, taking the first one at random 
uniformly from 1 to the value of the sum of the parents and taking for the 
second the complement to the sum which the parents have in their 
collision. Obtaining a new set of these energies we repeat the process and 
iterate it a great number of times. 

As expected, of course, the new distribution of energy tends to an 
exponential (Boltzmann type of distribution). 

The recipe for defining the energy of the two colliding elements could be 
different: One can take a number a from 0 to 1 uniformly and give the 
energies to the progeny by putting 1 to sin’s of the total energy of the 
parents and cos2a to the second offspring. When this recipe is applied and 
the process is iterated again, a limiting distribution seems to have been 
approached, but this time of the shape of the Maxwell type. 

A third recipe could be to take two numbers a, fl uniformly on (0, 1) 
and then form two numbers a’ = a/(a + /?) and /?’ = fi/(a + p). Again 
there seems to be a convergence to a Maxwell-type distribution after many 
iterations, but shifted with respect to the one in our second exercise. 

More generally, if the recipe involves a distribution of the energies after 
collision given by a functionf(a) (a is the fraction of the total energy), the 
fraction of the total energy of the parents to be given to the first particle is 



18 s. ULAh4 

f(o) and 1 -j(a) to the second, then the iteration of the process may 
presumably, at least for certainf(x), yield a convergence to a function g(x) 
for the distribution of the energies. In a certain sense g(x) would be a sort 
of “collision transform” of f(x). 

A more interesting exercise would involve a schematized treatment by 
our pairing process to imitate the conservation of both the energy and the 
momenta, all treated as discrete colors. We inted to pursue such model 
calculations in the future. 

Conceptually such extremely simple and schematic models as the above 
are first steps toward a more fundamental and physically interesting one. 
In the problems of statistical mechanics the interaction between particles 
of various types is compounded by an iteration process if one assumes 
sufficiently short times between steps. The two famous papers by Fermi 
[8], one dealing with the theory of radiation (i.e., emission and absorption 
of photons interacting with atoms, and of course both with each other), the 
second on the theory of fi decay and interactions between nuclei and 
electrons and neutrinos, are monumental examples of a study of specific, 
complicated physical systems requiring a very great number of variables if 
one wanted to use the terminology of colors, also for positions and 
momenta. 

If one wanted to take physical interpretation of the mathematics of 
transmuting and pair production systems somewhat more seriously, one 
could imagine that the entities like the + functions correspond to assem- 
blies of an enormous number of virtual or fictitious particles transmuting 
according to certain algebraic rules somewhat like above. Even considering 
the substrata for the $3, that is, the space or the space-time as being 
“manufactured” by such processes. For example, a branching process with 
transmutations, i.e., a system of many-colored elements, can serve to 
define a discrete metric in the following way: 

Suppose, in a simple case, we have two variables, x and y, which we 
interpret as steps on a grid in the plane in two directions; each step is 
taken with equal probability = i, in either direction and in a plus or in a 
minus unit of distance. Starting with a great number of particles at the 
origin, we may consider the probability of occupation of a point with 
integer-valued coordinates, (x, y). We can define a distance from the origin 
to a point as a function of the inverse of the probability of getting there or 
else a function of the inverse of the density of the occupation at this point. 
Analogously, of course, for a distance between any two points, (xi, y,) and 
(x2,y& This kind of distance on a discrete graph or, as we may call it-a 
tree-of the transmutations of the colors corresponding to the two vari- 
ables and the absolute value of the number of steps may serve, in the limit 
of the numbers tending to infinity, as an approximation to, say, the 
Euclidean metric in a space of the two variables, (x,y). Similarly, of 
course, in three or more dimensions. In this way, one may consider the 
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metric to be of combinatorial or probabilistic origin. The non-Euclidean 
character would come through a “bias” in the manufacture of the “space 
symbols.” 

One could even try to define nonpositive definite metrics by using, 
instead of + 1 and - 1 as steps, imaginary units. 

In order to obtain, heuristically, a feeling for the behavior of such 
systems, a number of numerical problems were run with Myron Stein and 
Robert Schrandt on the Los Alamos Laboratory computer. (The work with 
Paul Stein referred to earlier was now paralleled by using broken linear 
transformations instead of quadratic ones.) The following two could serve 
as examples: 

x’ =(2x + 3y + z) mod 1 
y’ ‘(X + y + 2z) mod 1 
z’ = 1 - x’ - y’ 

with the new variables normalized 
to have sum = 1 

x’ =2.5x -y - z - 5w 
y’=3x+y+2z+2w 
z’ =4x + 3y + z + w 
w’ =2x + 3y + 2z + 2w 

again normalized to have the new variables 
have the sum = 1 

Again the behavior of the iterates resembles in its morphology; that 
exhibited by the quadratic and cubic transformations. Perhaps combina- 
torially such transformations, the graphs of which are broken lines or 
polyhedra, are simpler to discuss theoretically. 

A simple class of production of elements by pairs of elements is the 
group operation. One could imagine that our “particles” are elements of a 
group. Combining pairs of such particles, one may, for example, define as 
their products two elements: If x, y are two elements of a group which 
were associated, their offspring are the two elements x . y and y - x which 
in a noncommutative group will be, in general, different. Assume now that 
we make a pairing of all the elements of a group at random and by the rule 
above produce a new set of elements of the group. (This may in general 
lead to a smaller set.) 

One such problem involved starting with the group of the 120 elements 
of all the permutations of five letters. Many computations were run 
showing that in the majority of cases the number of elements after the 
iterations oscillated somewhat, but remained in the neighborhood of about 
half of the total. (It was never quite the normal subgroup of even 
permutations!) In order to obtain statistics of the behavior under repeated 
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iterations one had to run a number of cases since the pairing of elements in 
each stage was made at random. 

A problem corresponding to the above but starting with the semigroup 
of all transformations of a set on itself rather than the one-to-one permuta- 
tions led, after a number of iterations as expected, to a radical diminution 
of the number of transformations remaining. 

Similar problems were considered for some few finite groups of matrices 
under composition. 

Another pastime was to start with a number of elements, each an integer 
from 1 top - 1 where p is a prime. The rule of composition was to assign 
to two integers a, b two new ones, for example, a’, b’ where a’ = a . b mod 
p and b’ = a + b modp. This led, of course, after a number of iterations, 
to a much smaller number of elements which transform into themselves 
periodically under iteration. 

Some other calculations run on computers involve rules of generation of 
progeny leading to sometimes three or sometimes just one or zero new 
elements. The results of our exploratory numerical work will be published 
in new Los Alamos Reports by R. Schrandt and myself, and by Myron 
Stein and myself. 

Perhaps one may consider mathematical exercises of this type merely as 
a preparation for some rules of composition which have more tangible 
physical interpretation. Purely schematically some of the concepts of 
modern physics, e.g., the consideration of elementary particles as being 
built themselves from combinations of others-quarks or partons-are of 
this sort. It might be, of course, that the elements whose transmutations 
and combinations form new systems are themselves representable as col- 
lections resulting from combinations of a perhaps very great number of 
still other ones of a previous stage. This process could even go back 
through an infinity of such stages. 

In a sense processes of construction and growth appearing in biological 
situations have features common to the ones we have described. In a series 
of papers written with Schrandt [9, 10; see also 111, we have studied a 
construction of “cells” growing on a rectangular or cubic grid in space 
produced by single or pairs of adjacent cells with rules involving changes 
of kind (“color”) and some expressing the properties of “contact inhibi- 
tion.” In the terminology of this paper the occupation of new positions in 
the next generation is also a change of “color”. The organization of 
cellular automata involves inter alia also such processes. 
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