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Abstract. We present here a procedure to obtain the Hamiltonians of the toric
code and Kitaev quantum double models as the low-energy limits of entirely two-
body Hamiltonians. Our construction makes use of a new type of perturbation
gadget based on error-detecting subsystem codes. The procedure is motivated by
a projected entangled pair states (PEPS) description of the target models, and
reproduces the target models’ behavior using only couplings that are natural in
terms of the original Hamiltonians. This allows our construction to capture the
symmetries of the target models.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 13 (2011) 053039
1367-2630/11/053039+47$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:cbrell@physics.usyd.edu.au
http://www.njp.org/


2

Contents

1. Introduction 2
2. Results and methods 3

2.1. The quantum double models . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Example: the toric code 10
3.1. Projected entangled pair states (PEPS) representation of the toric code . . . . . 10
3.2. Solving the code gadget Hamiltonians . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Perturbation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Review of quantum double models 15
4.1. Simplifications in the case of cyclic groups . . . . . . . . . . . . . . . . . . . 17

5. Our construction for the cyclic quantum double models 18
5.1. Code gadgets on lattice edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2. Coupling the code gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6. Our construction for general quantum double models 23
6.1. Code gadget operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2. Code gadget Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3. Coupling the code gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Acknowledgments 33
Appendix A. Perturbation theory 33
Appendix B. Extension to arbitrary graph 34
Appendix C. Proof of theorem 1 35
Appendix D. Proof of theorem 3 36
Appendix E. Error operations in general quantum double models 41
References 45

1. Introduction

There has been a surge of interest recently in spin lattice models exhibiting topological order
in their ground states, because of their strange and interesting properties. From the perspective
of condensed matter physics and quantum many-body theory, these models have recently led to
major advances in the understanding of the nature of quantum phase transitions and topological
order in two-dimensional (2D) systems. The topological properties of these models are also of
interest in quantum computing and quantum error correction. A system with topological order
can possess intrinsic error correction or protection capabilities. These are exploited for quantum
data storage [1–3] or quantum information processing [4–6] with high error thresholds. The
encoded logical operations in topological models are associated with nontrivial homology cycles
on a lattice of spins. A lattice that has a nontrivial topology (such as a torus or punctured disc)
can encode quantum information into its ground states that is robust to small local perturbations
of the Hamiltonian.

Many models that are relatively simple (from a theoretical point of view) contain
topologically ordered ground states. The toric code and its generalization to the quantum
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double models [7] constitute a significant class of exactly solvable models containing a
range of different topological orders. Quantum double models of non-Abelian groups can
support non-Abelian anyons, quasiparticles whose exchange statistics transcend the traditional
Bose–Einstein/Fermi–Dirac dichotomy that is ubiquitous in three dimensions. Braiding such
quasiparticles can be used in universal quantum computation [8–11].

However, these models (and other more general topological models [12]) consist of many-
body interactions that are quite challenging to implement experimentally, as they usually involve
interactions between four or more bodies. By contrast, most natural couplings are only two-
body. It is therefore of interest to find systems with only two-body interactions that can realize
topologically ordered phases.

An example of a two-body system with a topologically ordered ground state is the Kitaev
honeycomb model [13]. This well-studied model is being pursued experimentally in a number
of systems, but unfortunately it cannot be used for universal quantum computation.

Aside from explicitly finding two-body models that reproduce a particular desired type
of topological order (certainly challenging), one can use perturbative techniques to reproduce
an existing many-body model as the low-energy effective behavior of a two-body system. The
perturbative gadgets approach [14–17] is the standard tool for achieving this, but it has a number
of drawbacks. By tailoring the perturbation gadgets to specific classes of models, one might
hope to obtain a simpler construction circumventing many of these difficulties.

Here we present a new type of perturbation gadget that works by encoding the logical
qudits of the target models in quantum error-detecting codes. This allows us to reproduce the
properties of topological models as the low-energy effective Hamiltonians of two-body systems.
Here we concentrate specifically on the quantum double models, but we anticipate that a similar
mechanism could be tailored to other classes of models (e.g. string net models [12]). Our
construction is natural, in the sense that all the interactions of our system are very closely related
to the interactions of the target model, and because of this, an extensive number of symmetries
of the target model are preserved exactly from the level of the physical lattice.

Unlike Kitaev’s honeycomb model, our constructions are not exactly solvable. However,
our results are a significant extension of Kitaev’s method in that they can yield any type of
topological order (i.e. different types of anyons) within the class spanned by the quantum double
models, including those that are universal for quantum computation.

2. Results and methods

In this section, we give an overview of our results and the methods used to obtain them. To avoid
obscuring the essence of our work with unnecessary technical details, we will use the toric code
model as a concrete example in many places. However, we stress that our results immediately
carry over to all of the cyclic (Zd) quantum double models, and extend to general non-Abelian
quantum double models with just minor adjustments.

2.1. The quantum double models

The quantum double models [7] are a class of spin-lattice models that exhibit topological order.
They can be used as topological quantum error-correcting codes based on the algebra of the
Drinfeld double D(G) of a group G. The simplest member, corresponding to the group Z2, is
the well-studied toric code model.
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Figure 1. The toric code defined on a square lattice with qubits on the edges.
Each colored region represents one of the two types of terms in the Hamiltonian.
The star terms (in red) act around a vertex v with a Pauli X on each qubit and the
plaquette terms (in blue) act on the qubits around the boundary of p with a Pauli
Z operator.

For simplicity, we define the quantum double models on a square lattice (although they
can be defined on any oriented graph) with qudits (d-level quantum systems) on the edges, as
in figure 1. The lattice can be embedded into any 2D orientable surface, such as a torus. The
Hamiltonian for the model takes the form

HQD =−

∑
v

A(v)−
∑

p

B(p), (1)

where v denotes a vertex of the lattice and p denotes a plaquette. In the simple case of the toric
code, the vertex and plaquette operators are defined by

A(v)≡
⊗

e∈+(v)

Xe and B(p)≡
⊗

e∈�(p)

Ze, (2)

where the form of the star of a vertex +(v) and the boundary of a plaquette �(p) can be seen in
figure 1, and Xe and Ze are Pauli matrices acting on the qubit located on the edge e. Since we
are working on a square lattice, each of these terms are clearly four-body. For more complicated
quantum double models, the A(v) and B(p) operators take slightly different forms, but will
always consist of operators acting on the star of a vertex or the boundary of a plaquette. The
exact details of the quantum double construction can be found in section 4.

When the surface in which the lattice is embedded has genus g, the ground space of the
toric code is 4g-fold degenerate and thus can encode 2g qubits. This particular encoding has
generated much interest because it is in some ways naturally robust to local errors [1, 7, 18, 19].
The dimension of the codespace for a non-Abelian quantum double model is more complicated,
but on a torus the degeneracy of the ground space is equal to the total number of particle
types [20, 21].
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Figure 2. PEPS description on a square lattice. Each qubit (for the toric code, or
qudit in general) on an edge in the original model is replaced by four qubits
(or qudits in general). Qubits connected by a wavy line are in a maximally
entangled state. Each blue circle represents a projection down to a single encoded
qubit. The quantum states in the support of these projectors are encoded qubits,
entangled with each other. The global state space contains exactly the states
in the ground space of the original toric code model. With toroidal boundary
conditions, the ground space is fourfold degenerate. Our construction proceeds
by simulating these local projections and the entangling interactions with
two-body Hamiltonians.

2.2. Methods

2.2.1. Overview of our construction. Our main result is the construction of a wholly two-body
Hamiltonian that reproduces the quantum double Hamiltonian of (1) as its low-energy limit.
Our procedure uses only qudits of the same dimension as in the target model. Furthermore, the
couplings that we use have the same form as in the original model. As an example, note how
each A(v) and B(p) term from (2) consists of the tensor product of four Pauli X terms or four
Pauli Z terms, respectively. Our construction for the toric code will involve products of only
two Pauli X terms or Z terms.

Each qudit on the edges of the original model is encoded in four physical qudits, shown in
figure 2. The two-body interactions among these four qudits will give us an effective single-qudit
degree of freedom in the low-energy limit. This gives a fourfold increase in the number of qudits
required to construct our model as compared with the target model. We will couple neighboring
encoded qudits perturbatively, and the perturbation expansion will yield the desired Hamiltonian
at fourth order. This order is related to the coordination number of the underlying lattice and the
number of edges bordering each plaquette, both of which are four for a square lattice. In contrast,
on a honeycomb lattice terms will arise at third and sixth order in perturbation theory (although
there would still only be a fourfold increase in the number of physical qudits required).

We achieve these results with a blend of techniques from condensed matter physics and
quantum information theory. Before sketching how we use the techniques, let us briefly describe
each technique.
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2.2.2. Projected entangled pair states (PEPS). Our construction is inspired by PEPS, a
class of quantum states particularly well suited for describing the ground states of interacting
quantum many-body systems [22–27]. Indeed, for the case of 1D systems this is provably the
case [28]. The basic idea of these states is to use virtual pairs of entangled systems to simulate
correlations. For every coupling between neighboring systems on a lattice, a maximally
entangled state (of some chosen dimension) is introduced between the systems. These virtual
entangled pairs are then projected down to a ‘physical’ subspace with a dimension equal to that
of the spins in the original model. An illustrative construction is depicted in figure 2 for the
special case of a square lattice.

One would expect the kinds of models we are studying to have efficient PEPS
representations of their ground spaces because of the facts that they obey an area law, possess
a spectral gap above the ground state and contain finite correlations. In fact, the PEPS
representation of the toric code ground space has been studied by Verstraete et al [29], and a
PEPS representation of general quantum double models is also known [30]. PEPS descriptions
have also been developed for all of the string-net ground spaces [31, 32], and the symmetries
of these PEPS descriptions have been explored [30]. The quantum double models on trivalent
lattices can be mapped to string net models [33], and generalizations of the quantum double
models are also being interpreted as extended string net models [34]. In our construction we have
an implicit PEPS representation for the quantum double models that is presumably equivalent
to those already known (this is provably the case for our construction of the toric code).

2.2.3. Perturbation gadgets. The next technique that we use is that of perturbation
gadgets [14–17]. Perturbation gadgets are a method for systematically reducing the complexity
of a many-body coupling between a large number of quantum systems. The gadgets generally
consist of introducing some ancilla qudits that act as conductors, in the sense of the conductor
of an orchestra. By having a strong coupling to the conductor, n separate primary qudits can
synchronize their behavior in a way that mimics an n-body coupling at low energies, but
by using couplings having only a fraction of the ‘body-ness’. By recursively applying these
general constructions, one can arrive at a strictly two-body Hamiltonian for an arbitrary n-body
coupling. The cost is that this coupling only occurs at a higher order in perturbation theory.

Our construction is a new variant on the perturbative gadgets approach. The concept is
very similar, but instead of beginning from the original lattice and adding ancilla qubits to break
up many-body interactions, we begin by encoding the qudits of the original lattice into a four-
qudit system. These systems are then coupled via relatively weak two-body interactions, which
enables us to treat the entire model perturbatively and show that it reproduces the target model in
the low-energy limit. We will refer to these four-qudit encoded systems as ‘code gadgets’. Apart
from the intrinsic interest of a new approach, we also manage to bypass a number of pitfalls that
a naive application of perturbation gadgets can encounter. In particular, the resource cost of
perturbative gadget schemes scales poorly with the system complexity, and a naive application
of the technique can lead to the energy gap scaling with the system size or the fidelity of the
topologically ordered states [17, 35]. While this can be avoided, it remains a problem when
applying the method in general. Additionally, while the couplings can be reduced to only two-
body, the nature of these two-body couplings is in general vastly different from that of the
couplings of the original model. It is possible that by taking advantage of structure a much
simpler construction could be devised that is specifically tailored to the model, using couplings
that exploit this structure. This is the approach taken by Koenig [36], who showed that a simple
‘clock’ gadget could reduce the complexity of the quantum double models to only three-body
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terms. Our construction also follows a similar strategy in some sense, but uses perturbative
couplings that are direct analogues of the original models’ terms on simple surfaces.

The types of gadgets that we use are adapted for use with states that are ground states of
local Hamiltonians and have a simple PEPS description [37]. The virtual entangled pairs of the
PEPS description are promoted into real physical systems with a coupling such that their ground
state is a maximally entangled state. Then the PEPS projection can be done by using strong
interactions between the systems within a code gadget that energetically favors the subspace
defined by the PEPS projection. When this coupling within a site is much stronger than the
entangling coupling between sites, the resulting Hamiltonian at low energy approximates the
desired many-body Hamiltonian, with the same ground space up to perturbative corrections.
This technique was originally used [37, 38] to find two-body Hamiltonians whose ground
state encodes the cluster state [39], a state that is universal for measurement-based quantum
computing. Our technique is very similar, in that the target models are reproduced in an encoded
manner, i.e. the four-qudit code gadgets of our construction serve as the logical spins of the
target model.

2.2.4. Subsystem quantum error-detecting codes. Finally, we make use of quantum error-
detecting codes [40–42] to ensure that all the undesirable terms in the perturbative expansion
do not couple to the low-energy sector of our model. Recall that a quantum error-detecting code
consists of a subspace of a larger Hilbert space, which is protected from a set of errors on the
large Hilbert space. This protected subspace, the codespace, is used to store encoded logical
information. The mapping between the codespace and the physical Hilbert space defines the
encoded logical operators. Detectable errors move the system out of the codespace and so can
be detected by a suitable measurement.

Specifically, we use a particular type of quantum code known as a subsystem code [43, 44].
Compared to stabilizer codes, subsystem codes are no more powerful in terms of the number
of errors they can detect; rather, their power lies in a simplification of the recovery operations
required for fixing the errors. The physical Hilbert space is partitioned into distinct subsystems:
the logical subsystem and a gauge subsystem. As in a stabilizer code [42], stabilizer operators
are defined such that the logical codespace is in the mutual +1 eigenspace of these operators. If
an error moves the system out of this +1 eigenspace, it can be detected by the measurement of
the stabilizer and must actively be corrected. In contrast, the logical state is taken to be invariant
under a transformation on the gauge system and so any errors that occur on this gauge space are
passively avoided.

The code we use in our gadget construction is designed so that any operations contributing
to unwanted terms in the perturbative expansion will be detected as errors, and map the ground
space to another energy eigenspace with higher energy. In this way, the code ensures that the
low-energy behavior of our system will remain error-free, in the sense that only desirable terms
(i.e. those of the target model) will remain. Errors that move the system out of the codespace
need not explicitly be corrected, because they will be suppressed heavily by an energy penalty
for doing so. Note that the ‘errors’ that occur in the gadget code are unrelated to errors appearing
in the target model we are trying to replicate. Instead, they mix the protected low-energy sector
with higher-energy (unprotected) sectors, thus preventing our system from mimicking the target
model perfectly.

Our models are similar in many respects to the topological subsystem codes of
Bombin [45]. These models, based on the color codes [46, 47] and their qudit generalizations
[48], yield a subsystem code using local two-body gauge generators. We note that the
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construction of [45] requires a three-colorable lattice, whereas our method applies to any
lattice for which the desired model possesses a PEPS description. Additionally, Bombin’s
models possess an exactly degenerate ground space, while our models’ ground spaces are only
approximately degenerate (as in the Kitaev honeycomb model [13]), but where the degeneracy
is only broken at very high order (roughly the linear size of the system). One consequence
of this exact degeneracy in the Bombin model is that it is straightforward to define quantum
error correction in the ground space [49], where perfect recovery operations will yield perfect
recovery from correctable errors. By contrast, in our model even perfect recovery operations
will yield some small error due to the splitting of the ground space. While the small error in
recovery seems unavoidable in our model, it might still be the case that our model yields higher
thresholds due to the substantially simpler stabilizer measurements that are required. It is an
open problem to define error correction and exactly quantify the errors incurred by the splitting
for our model. Aside from both of our constructions being viewed as a generalization of the
honeycomb model, we are not aware of any deeper connection between them.

2.3. Discussion

Our results allow us to replicate in the low-energy limit the Hamiltonians of certain topological
models, but a more ambitious goal is to reproduce the topological order in the ground state
wavefunctions of these models, as well as in their low-lying excited states. To demonstrate that
our constructions reproduce all the topological properties of the original models, we would
need to show additional properties. First, we would need to show that these topological orders
are stable under the kinds of perturbative corrections that our procedure introduces. There are
two separate types of corrections that could threaten the stability of the topological properties
of our models. The first are the very high-order corrections where perturbation terms can
form nontrivial homology cycles on the surface of the model. These will occur at order 2L
in perturbation theory (with L being the smallest linear dimension of the surface) and split the
ground space degeneracy of the encoded model. They can be heavily suppressed by increasing
L or by increasing the bare energy gap of the system. The second kinds of corrections to
consider are those which leave the protected ground space of our code gadgets. These allow
transitions into higher energy subspaces where our encodings fail. These kinds of corrections
are suppressed energetically by the energy gap. Thus, we would also need to demonstrate the
stability of the energy gap in the thermodynamic limit. It would also be quite interesting to
compute the topological entanglement entropy in the ground state [50–53]. Like the toric code
model in two dimensions [1, 54, 55], the topological order of Kitaev’s non-Abelian quantum
double model is not expected to persist at finite temperature. We expect that our models will have
similar behavior to the original quantum double model at finite temperature, and in particular
that they will suffer from the same ‘thermal fragility’ of the topological order.

Even more ambitiously, one might hope to show that our models remain gapped even
in the presence of arbitrary local perturbations, with only very small splitting of the ground
state degeneracy and the degeneracy of the excited states. For topological models whose
Hamiltonians consist of the sum of commuting projectors, just such a result was shown by
Bravyi et al [18, 19]. Unfortunately, their techniques cannot be directly applied to our models
since our Hamiltonians are not sums of commuting projectors. In fact, our models do not have
frustration-free ground states either (meaning that the ground states are not minimum-energy
eigenstates of each term separately in the Hamiltonian) and hence other results on frustration-
free systems also do not apply.
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As one might expect from a perturbative construction, our effective Hamiltonian can be
thought of as the target Hamiltonian plus perturbative corrections. Generically in this type of
construction, the symmetries of the target model will be recovered approximately, up to these
corrections. In our model, the encoded string operators of the target models will not commute
with the perturbative terms in the Hamiltonian, and the corresponding ground space degeneracy
will also be split. This splitting will be exponentially suppressed by the size of the lattice (as
noted above), and so these symmetries will be recovered approximately as one might expect. In
the quantum double models, there are also an extensive number of vertex and plaquette operators
that commute with the Hamiltonian and form a quantum double algebra. It is possible to
construct encoded counterparts of these operators on our model, that also commute with our full
Hamiltonian and form an equivalent algebra. In contrast to a generic perturbative construction,
this large symmetry group is reproduced exactly by our model. This symmetry group severely
constrains the arbitrarily high-order terms arising from the perturbation expansion, and prevents
undesirable terms from appearing. In fact, higher order terms in our effective Hamiltonian will
act on the logical codespace as products of (commuting) lower-order terms until the perturbative
order is sufficiently high to form nontrivial loops over the lattice and break the ground space
degeneracy.

As well as capturing symmetries of the target models, our construction is also natural in the
sense that it is built from miniature quantum double models overlaid on each other. In the case
of Abelian quantum double models (including the toric code), there is an exact correspondence
between our constructions and quantum double models on simple surfaces. For these models,
the ground space of our code gadget is chosen to coincide with a subspace of the quantum double
ground space on a four-qudit torus (see section 6.2). That is, our codespace is stabilized by the
same operators as the ground space of the quantum double Hamiltonian on this torus. These
stabilizers would normally be four-body, so in order for our codespace to obtain this property
from a two-body Hamiltonian we must sacrifice the degeneracy of one of the two qudits a torus
can typically encode. In addition, the perturbative bond terms we introduce can be interpreted
as quantum double models on a two-qudit sphere (see section 6.3). All the terms present in our
model reflect the construction of the quantum double models on small surfaces. In non-Abelian
models, the correspondence in the Hamiltonian is not as precise due to the distinction between
left and right regular representations. However, it will still be true that the ground spaces of our
code gadgets will correspond to a subspace of the quantum double ground space on a four-qudit
torus, and the ground space of the perturbative bond terms will correspond to the ground space
of the relevant quantum double model on a two-qudit sphere.

Our work is inspired by the construction of Bartlett and Rudolph [37], who used encoded
qubits to reproduce the cluster state as the ground state of a two-body Hamiltonian. As with the
model we present, the encoding is closely related to the PEPS description of the target state. Our
work generalizes this type of construction by using a subsystem code (as opposed to a subspace
code). In order to reproduce the PEPS space as the ground space of a two-body Hamiltonian, we
have had to sacrifice the extra gauge degrees of freedom in our model. This would not have been
possible if we had used a subspace code, where these gauge degrees of freedom are not available.

The procedure we present reproduces the quantum double Hamiltonian in the perturbative
coupling limit. If we consider the opposite (strong coupling) limit in our model, the system will
act as a disconnected set of maximally entangled pairs. In this limit, the lattice can be thought
of as a set of disconnected quantum double models on spheres (up to the caveats noted above).
There must be some phase transition(s) between these states, and the respective topologies in the
two limits are suggestive of the kind of behavior studied by Gils et al [56]. The phase transition
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would be between different topologies in the sense that the quantum double model would act on
the entire lattice together in one limit, and at some critical coupling strength break down to act
on disconnected portions of it.

A robust topologically ordered system would also have anyonic low-energy excitations
which, ideally, would be similar to those of the desired quantum double model. One would need
to consider the effect of the perturbative corrections in our model on these anyons and any other
excitations, as for example in [57–59].

It would also be interesting to explicitly and rigorously show that cooling our Hamiltonians
by coupling to a local bath can bring them to the ground space quickly. (Cooling to a particular
ground state of the degenerate ground space is more difficult, but also quite interesting.) Because
of the frustration in the model, it is not immediately obvious that this can be achieved efficiently,
i.e. in an amount of time polynomial in the size of the system. But because the low-energy
effective theory is frustration-free, it certainly seems plausible that the cooling can be done
efficiently.

It is noteworthy that the codes we utilize in our construction for general quantum double
models are examples of extensions of the stabilizer formalism to non-Abelian groups. This has
not been closely studied previously, and in that sense the quantum codes we use may be of
interest in their own right.

We believe that the kind of approach we employ here to reproduce topological orders may
be more generally applicable to other systems with efficient PEPS representations. Some work
toward extending this treatment to the class of string net models [12] supports this belief, with
some caveats, and will be presented in a future publication.

3. Example: the toric code

As a simple and illustrative example of our scheme, we now demonstrate how to construct a
two-body Hamiltonian for which the low-energy behavior reproduces the standard toric code
Hamiltonian on a square lattice. This simple example possesses all of the key features of our
general construction for the quantum double models.

3.1. Projected entangled pair states (PEPS) representation of the toric code

We begin our construction by replacing each qubit on the edges of the toric code lattice with
four qubits, as in figure 2. We use the term bond to refer to the wavy lines in figure 2 that connect
the maximally entangled pairs of physical qubits. By contrast, we use the word edge to denote
the edges of the original lattice. In the PEPS description, the projection operators acting on each
edge will entangle these four qubits into a single qubit. We achieve this projection in the ground
space of a Hamiltonian defined on each edge e.

H(e) = − X I

IX

e

− I X

XI

e

− Z Z

II

e

− I I

ZZ

e

. (3)

This notation is a convenient visual shorthand for the tensor product of the operators acting
on the given physical qubits. For each edge, the collection of four-qubit forms our ‘code gadget’.
The Hamiltonian contains only two-body terms acting within the gadget itself.
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Instead of the explicit projection mechanism of the PEPS scheme to reduce the Hilbert
space, our model simply suppresses by energy penalty states that lie outside the desired PEPS
projection. It can be shown that the projectors to the ground space of our edge Hamiltonian are
equivalent to the projectors in [29] since they are equal modulo the gauge freedom in choosing
the PEPS description; however, explicitly demonstrating this equivalence is tedious (although
straightforward) and so we omit this.

Next, we introduce entanglement across the bonds by coupling sites on different edges.
Thus for each bond b, define the perturbation term

V (b) = X X
b

Z Z
b

, (4)

chosen because it possesses a maximally entangled state as its ground state6. Our unperturbed
Hamiltonian is summed over all edges e:

H0 =

∑
e

H(e), (5)

and our perturbation term is summed over all bonds b:

V =
∑

b

V (b). (6)

For those readers familiar with PEPS, it may seem counterintuitive to treat the bond term
as small compared to the code gadget Hamiltonian (which is simulating the PEPS projection).
We will see that this is in fact the correct approach to recover the target model. We introduce a
coupling strength λ, which is a small parameter compared to the strength of the main terms in
our Hamiltonian (which we have taken to have unit norm). The full Hamiltonian describing our
lattice is then given by

H = H0 + λV . (7)

Now we need to compute the perturbative low-energy effective Hamiltonian to leading
nontrivial order in λ. We will find the exact ground space of H(e) in the next section and then
show that the perturbations λV will generate operators that reproduce an encoded toric code
Hamiltonian (1) and (2) at fourth order in λ.

3.2. Solving the code gadget Hamiltonians

We must first demonstrate that H(e) of an edge e has a 2D degenerate ground space. We will
show that this ground space is in fact the codespace of a subsystem quantum error-detecting
code, which will greatly assist the perturbative analysis in the next section. Our analysis of this
Hamiltonian for the toric code construction follows Bacon [61]. Because we are always working
on a particular arbitrary edge (within a particular code gadget), we will suppress the label e in
this section.

6 An alternative choice would be V (b) = Y Y
b

. This choice also approximately realizes the toric code
Hamiltonian in the small λ limit. The resulting Hamiltonian (7) is precisely equivalent to Kitaev’s exactly solvable
honeycomb model on a mosaic tiling [60]. We do not consider this possibility further since it is unclear how to
generalize it to more complicated quantum double models. It is interesting to note, however, that this alternative
choice results in a model with topological order in the large λ limit, in contrast to our models that become valence
bond solids.
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The code gadget Hamiltonian H (3) possesses a number of constants of motion. That is,
we can define operators that commute with each other, and with the Hamiltonian. In fact, some
of these operators are the stabilizers of a quantum code, and so we label them S. They form a
commutative group and are generated by

SX ≡ X X

XX
and SZ ≡ Z Z

ZZ
. (8)

We can also define other joint operators to complete the algebra of our code gadget. We will
call these operators gauge operators and logical operators, and denote them with appropriate
subscripts.

XG ≡ I X

XI
, ZG ≡ Z Z

II
and XL ≡ X X

II
, ZL ≡ I Z

ZI
. (9)

We see immediately that these operators encode two orthogonal copies of the Pauli algebra,
and so they define two encoded qubits. In terms of these new operators, we can rewrite the
gadget Hamiltonian

H(e)=−XG(1 + SX)− ZG(1 + SZ). (10)

The protected subspace of our code, also corresponding to the ground space of the
Hamiltonian, is a subspace of the +1 eigenspace of the stabilizers SX and SZ . Any single-
qubit error will anticommute with at least one of these and so could be detected (although
not unambiguously) by measurement of the stabilizers. This means that any single-qubit error
will necessarily move the system out of its ground space, and will be suppressed by the energy
penalty for doing so.

We can easily check that the logical operators XL and ZL also commute with H . However,
neither XG nor ZG commutes with H . Given all these facts, H decomposes into a direct sum
of four copies of L⊗G, each labeled by the pairs of eigenvalues (±1,±1) of SX and SZ , and
furthermore the energies in the logical space are degenerate. Thus, we only have to solve the
Hamiltonian on the gauge subspace of each stabilizer eigenvalue to find the ground space.

It turns out that the ground space is contained in the (+1,+1) block, and it is exactly twofold
degenerate. In appendix D we provide a proof of this statement and its generalization to all
quantum double models. It can be shown that within this codespace the encoded computational
basis states take the (unnormalized) form:

|0L〉 =
(
1 +
√
2
) |0〉 |0〉

|0〉|0〉
+
|1〉 |1〉
|1〉|1〉

+
|0〉 |1〉
|1〉|0〉

+
|1〉 |0〉
|0〉|1〉 (11)

|1L〉 = .
(
1 +
√
2
) |1〉 |1〉

|0〉|0〉
+
|0〉 |0〉
|1〉|1〉

+
|1〉 |0〉
|1〉|0〉

+
|0〉 |1〉
|0〉|1〉 (12)
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Now that we have determined that the ground space encodes a qubit in an error-detecting
code, we can perform perturbative analysis to compute the low-energy effective Hamiltonian.

3.3. Perturbation analysis

We now introduce the perturbative coupling of (4) between our encoded qubits on the lattice. We
use the Green’s function perturbation method, following Kitaev [13] (see also [62]), to calculate
the leading nontrivial order in the effective Hamiltonian, defined as Heff = E0 +6(E0), with
the unperturbed ground state energy of the lattice E0, and 6 is the self-energy. In this, we
have approximated the self-energy as being independent of E for E ≈ E0. More details of our
perturbation formalism are given in appendix A.

The key to our analysis is the fact that quantum codes map detectable errors to orthogonal
states. In terms of the gadget Hamiltonians H(e), this means that any single-qubit Pauli operator
anti-commutes with either (or both) SX or SZ , and hence maps ground states to orthogonal states,
since these states must lie in some block of H(e) other than the (+1,+1) block.

The consequence is that the perturbation analysis greatly simplifies. It immediately gives
the result that all odd-order perturbation terms will vanish, as they will necessarily leave two
code gadgets in excited states. The terms at second order only contribute an energy shift, since
those that do not vanish act twice on the same qubits; hence they act proportionally to the
identity. The first nontrivial terms appear at fourth order, and we can write the fourth-order
effective Hamiltonian as follows:

H (4)
eff = λ

4ϒV (G0(E0)V )
3
ϒ, (13)

where ϒ is the projector to the ground space of the unperturbed system and G0(E)=
(E − H0)

−1(1−ϒ) is the Green’s function (resolvent) projected to vanish on ground states.
The ϒ will project the stabilizer and gauge degrees of freedom down to a single state, but will
act identically on the logical degree of freedom.

The nontrivial fourth-order terms arise by constructing joint operators around a plaquette
or around a vertex which leave all the code gadgets in the ground space. By expanding (13) and
ignoring constant energy shifts, we can express the effective Hamiltonian to fourth order as

Heff ∝−λ
4
∑
v

ϒ Â(v)ϒ − λ4
∑

p

ϒ B̂(p)ϒ, (14)

where v and p sum over all vertices and plaquettes, respectively. The operators Â(v) and B̂(p)
are each a sum of two terms,

Â(v)= Â(X, v)+ Â(Z , v) and B̂(p)= B̂(X, p)+ B̂(Z , p), (15)

where these terms are quite cumbersome to express algebraically, so we define them pictorially
in figure 3. Basically, these operators act on those pairs of qubits in an edge that are closest to
the center of a given plaquette or vertex.

We can derive from figure 3 that Â(X, v) acts as a tensor product of logical XL operators
on each of the edges surrounding v. This is not immediately obvious; we must use the fact that
in the ground space XL = SX XL to exchange the action of the logical operators between pairs of
qubits at a particular edge. Similarly, B̂(Z , p) acts as a tensor product of logical ZL operators
around the plaquette p. The other operators Â(Z , v) and B̂(X, p) act as gauge operators in a
similar fashion. When these encoded gauge operators are mapped back to the ground space by
ϒ , they contribute only a constant energy shift, which we can ignore.
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v
Â( , v) = pB̂( , p) =

Figure 3. Encoded operators. For each operator, the nontrivial operator acts on
the colored qubits. For example, Â(X, v) is a tensor product of X operators on
each of the colored qubits surrounding the vertex v.

We can think of these Â and B̂ operators as acting equivalently to some logical operators
within the ground space. If we define

ÂL(v)≡
⊗

e∈+(v)

X e
L and B̂L(p)≡

⊗
e∈�(p)

Z e
L, (16)

then we can see that within the codespace, they are equivalent (up to muliplicative and additive
constants) to Â and B̂, respectively. That is,

ϒ ÂL(v)ϒ ∝ ϒ Â(v)ϒ − const and ϒ B̂L(p)ϒ ∝ ϒ B̂(p)ϒ − const. (17)

We can think of the logical Hamiltonian acting within the codespace as being comprised
of these operators, such that

HL =−λ
4
∑
v

ÂL(v)− λ
4
∑

p

B̂L(p). (18)

When restricted to the codespace, this is exactly the effective Hamiltonian we previously
derived (again, up to multiplicative constants and energy shifts), so that

Heff ∝ ϒHLϒ + const. (19)

Noting that the logical operators ÂL and B̂L act on the logical state exactly like the toric
code vertex and plaquette terms, we can see that on the logical space, our effective Hamiltonian
is the toric code Hamiltonian of (2) up to constants, as claimed.

The higher-order terms in the expansion for the self-energy (see appendix A) will generally
act on the logical space-like products of the terms appearing in (18). Moreover, for low energies
all these terms will be negative, since the perturbation term and the Green’s function will both
be non-positive and so each term in the expansion will be negative. All these terms in the self-
energy expansion will commute, and so the ground space should remain the +1 eigenspace
of the terms in (18), as desired. There will be some corrections to the excited spectrum of the
effective Hamiltonian due to these higher-order corrections and due to the energy dependence of
the self-energy, as discussed in appendix A. But as we are mainly interested in the topologically
ordered ground space, this does not concern us especially. At very high order it will be possible
to construct terms that run all the way around the torus. These errors will corrupt the logical
state. If the linear size of the torus is N , these terms will appear at 2N th order, and will be
suppressed by a factor of λ2N .

This result allows us to take a system of only two-body couplings and in the low-energy
limit reproduce the Hamiltonian of the toric code. This means we might expect to be able to
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v+

v−

p− p+

e

(a) (b)

Figure 4. (a) A directed square lattice, and the orientation of + and − vertices
and plaquettes relative to the edge direction. Each vertex consists either of all
‘inward’ edges or all ‘outward’ edges. Plaquettes consist of alternately directed
edges as you traverse their boundary. (b) If an edge spans the pair of vertices
(v+, v−), then the edge is oriented toward v+. The plaquettes are labeled with
signs, where p+ is on the right of the edge, following the given orientation.

use the topological properties of the toric code to protect quantum information without the
requirement for experimentally problematic many-body couplings. A similar result of obtaining
the toric code in a limit was observed in Kitaev’s honeycomb model [13]. In contrast to our
construction, this honeycomb model is exactly solvable. Although we can only solve our model
perturbatively, we can generalize it relatively easily to more complicated quantum double
models (and lattices other than square), as will be seen in the following sections.

4. Review of quantum double models

The quantum double models consist of coupled finite-dimensional quantum systems on the
edges of a lattice, and their ground states exhibit topological order [7]. In this section, we will
define the quantum double Hamiltonian that will become the target model of the perturbative
two-body systems that we will work with in the subsequent sections.

As with the toric code, we will work with a square lattice for concreteness. The lattice
can be embedded into any orientable two-dimensional surface. With each edge e of the lattice
we will associate an orientation, as in figure 4. Although this orientation could be arbitrary, we
chose the orientation in figure 4 because it has the convenient feature that each vertex can be
labeled with either a ‘+’ or a ‘−’ sign. In fact, any bipartite lattice can be partitioned in such a
way.

We associate each quantum double model with a finite group G, and a local Hilbert space
for each edge C|G|, with |G| being the order of the group. On each edge e of the lattice, there
exists a natural orthonormal basis {|g〉e, g ∈ G} for these degrees of freedom. The total Hilbert
space is then the tensor product of the local Hilbert spaces over all the edges.
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We now define a number of operators that act on these edge degrees of freedom. For each
edge e, define operators associated with left (+) and right (−) group multiplication and group
projectors as follows:

Lg
+(e)≡

∑
h

|gh〉〈h|e, Lg
−(e)≡

∑
h

|hg−1
〉〈h|e, (20)

T g
+ (e)≡ |g〉〈g|e, T g

−(e)≡ |g
−1
〉〈g−1
|e. (21)

The operators on a single edge form an algebra defined by commutation relations

Lg
±T h
±
= T gh

± Lg
±, Lg

±T h
∓
= T hg−1

∓ Lg
±. (22)

Clearly, operators acting on different edges commute. We also associate a sign ± with each
vertex and plaquette relative to their incident edge. This is illustrated in figure 4. If an edge
spans the vertices (v−, v+), then the arrow along the edge points away from v− and toward v+.
Plaquettes to the left of an edge when looking along its direction are labelled p−, while those to
the right are labeled p+.

It is convenient to associate a particular operator with a (plaquette, edge) pair or a (vertex,
edge) pair. That is, depending on the sign of the vertex or plaquette under consideration at the
time (v± or p±) with respect to the edge under consideration, the sign of the group multiplication
and projection operators can be inferred. Explicitly, we define

Lg(e, v±)≡ Lg
±(e), T g(e, p±)≡ T g

±(e). (23)

The L operators play the role of a generalized Pauli X operator in the group element basis,
insofar as they move a particular state |g〉 through the space of elements. To make the analogy
to the toric code more apparent, we can also construct some operators that act as generalized
Pauli Zs for an arbitrary group algebra. Let π be a unitary irreducible representation of G. Then
we can define a type of Fourier transform by

Z
πi j
± ≡

∑
g

[π(g)]i j T
g
±, (24)

where [π(g)]i j is the (i, j)th element of the representation matrix for group element g in
representation π . Equivalently, we can invert this expression to obtain

T g
± =

1

|G|

∑
π

dπ
∑

i j

[π(g)]i j Z
πi j
± , (25)

where the sum is over the complete set of unitarily inequivalent irreps of G and dπ is the
dimension of the irrep π . Although the quantum doubles are typically defined in terms of T
operators, the algebra of these generalized Z operators gives the most convenient form for a
particular calculation later on.

Given these preliminary operators, for each vertex v we can define operators

Ag(v)≡
⊗

e∈+(v)

Lg(e, v), (26)

where +(v) is the set of edges incident on the vertex v (recall figure 1). We can average these
operators over the group to give the projector

A(v)≡
1

|G|

∑
g

Ag(v). (27)
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Given a plaquette p and a fiducial edge on its boundary that we label e1, we can define an
operator

Bg(p)≡
∑

gk ···g1=g

⊗
ei∈�(p)

T gi (ei , p), (28)

where ei are the boundary edges taken as the plaquette is traversed clockwise starting with e1,
and there are k total edges on the boundary of p. These operators are all orthogonal projectors,
but note that this definition depends on the choice of the fiducial edge e1. However, if we
consider the operator

B(p)≡ B1(p), (29)

where 1 is the identity element of the group G, then it is easy to see that B no longer depends
on the choice of this fiducial edge.

For all p and all v, the B(p) operators and the A(v) commute pairwise amongst themselves
and with each other. Finally, the following Hamiltonian defines the quantum double model,

H =−
∑
v

A(v)−
∑

p

B(p), (30)

in a manner that directly generalizes the toric code.

4.1. Simplifications in the case of cyclic groups

It will be instructive to treat the cyclic groups Zd before moving on to the general case. For
that reason, we revisit the above discussion specialized to this setting. Because each of the
|G| representations of the (Abelian) groups Zd is 1D, we can relate the L and Z operators
by a simple discrete Fourier transform for these groups. In cyclic groups (with d = |G|), the
group multiplication operation is addition (modulo d), and so the left and right multiplication
operations are equivalent. Following this, the convention for the identity element in cyclic
groups is 0 as opposed to 1 for general groups. With no need for unique left and right
multiplication operators, we define the cyclic L operator by

L ≡
d−1∑
h=0

|h + 1〉〈h|. (31)

The addition within the ket is performed modulo d. Note that the group action of any other
element can be achieved in these models by taking powers of this (unitary) operator. We also
define a set of group projection operators

T g
≡ |g〉〈g|. (32)

Following the general case, we also define a generalized Pauli Z operator. As
representations of the cyclic groups are 1D, we can define a primitive Z corresponding to a
representation ω:

Z ≡
d−1∑
h=0

ωhT h, (33)

where ω is a primitive dth root. Other representations of the group correspond to powers of ω,
so to obtain the operators corresponding to these representations we need only take powers of
this Z operator. Thus we regard the powers of Z as being labeled by representations of Zd .
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If we take a discrete Fourier transform on the basis |g〉, we obtain

|γ 〉 =
1
√

d

∑
j

ωγ j
| j〉, (34)

where we label the Fourier basis with Greek letters (corresponding to irreps). This
transformation diagonalizes the L operators:

L =
∑
γ

ω−γ |γ 〉〈γ |, (35)

and so we can see that the Z and L operators are simply a basis change away from each other in
these cyclic models, as was the case with the Pauli matrices for the toric code. As they are both
unitary, we can also say that

L†
= L−1

= Ld−1, (36)

Z †
= Z−1

= Z d−1. (37)

In terms of the definition of the quantum double model for cyclic groups, the only changes
we need to make to become consistent with this simplified set of operators is to slightly redefine
the associations of L and T operators with ± vertices and plaquettes, i.e.

Lg(e, v±)≡ L±g(e), T g(e, p±)≡ T±g(e). (38)

With this in mind, the quantum double Hamiltonian is defined exactly as in the general
case.

5. Our construction for the cyclic quantum double models

In this section, we will show how our construction on the toric code generalizes naturally to the
quantum doubles of cyclic groups. The toric code model corresponds to the quantum double of
the group Z2; here we extend this treatment to the quantum double of G = Zd , where |G| = d
is the order of the group. This analysis could be extended to general Abelian groups. However,
for simplicity, and because the fully general case is considered in the next section, we restrict
our attention to cyclic groups in this section.

In order to reproduce the cyclic quantum double models, two features must be added to
the simple toric code construction. To begin with, qubits at each site must be replaced by d-
dimensional qudits, with appropriate generalized Pauli operators defined on them, as introduced
in section 4. The group multiplication operator L plays the role of the X operator in the toric
code, and the newly generalized Z operator plays the role of the Pauli Z . These operators obey
the commutation relation

Z a Lb
= ωab Lb Z a. (39)

The other feature we will add to our construction at this juncture is the notion of directed
edges, as discussed in section 4. As in the toric code (Z2) case, we will now proceed with our
construction explicitly on the square lattice.

5.1. Code gadgets on lattice edges

We use a very similar construction to the toric code to encode our qudits for cyclic quantum
double models. Each logical qudit is encoded using a subsystem code constructed from four
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physical qudits (figure 2 shows the scheme). The d4-dimensional space of these edges is
partitioned as

H(e)=
⊕

S

HL⊗HG, (40)

where the direct sum is over eigenvalues of stabilizers S. Our codespace is in the +1 eigenspace
of two stabilizer operators SL and SZ defined below. The remaining d-dimensional degrees of
freedom are encoded as qudits, one of which (the gauge qudit HG) we fix in a single state in
the codespace. The other qudit is used as our logical space HL. If an error occurs, it will flip a
stabilizer operator, move the code gadget out of the codespace and incur an energy penalty.

Physically, we provide the codespace with these properties as the ground space of a two-
body Hamiltonian. Before we write it, we will first introduce the gauge, logical and stabilizer
joint operators as we did for the toric code.

SL ≡ L L

L†L†

e

, LG ≡ I L†

LI

e

, LL ≡ L L

II

e

,

SZ ≡ Z Z†

Z†Z

e

, ZG ≡ Z† Z
II

e

, ZL ≡ I Z

ZI

e

.

(41)

To avoid confusion as much as possible, we will distinguish typographically G for gauge
and G for group and similarly L for logical and L for group multiplication. It is simple to
verify that the operators defining each separate degree of freedom commute with each other
(i.e. stabilizers commute with gauge and logical operators, and gauge operators commute with
logical operators). It can also be seen that the logical operators satisfy the desired algebra of the
cyclic quantum double models:

Z a
L Lb

L = ω
ab Lb

L Z a
L (42)

and the gauge operators satisfy an equivalent algebra:

Z a
GL−b

G = ω
ab L−b

G Z a
G. (43)

We define the Hamiltonian on a single code gadget (associated with edge e) as

H(e)=−
1

d

∑
k

[
Lk

G + (Lk
GSk

L)
† + Z k

G + (Z k
GSk

Z)
†
]

e
. (44)

This equation can be represented diagrammatically as

H(e) = −1
d

∑

k

I L−k

LkI

e

+ L−k I
ILk

e

+ Z
−k Zk

II

e

+ I I

ZkZ−k

e

. (45)

In this form, it is easy to see that each term in the Hamiltonian acts only on two qudits.
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Multiplication by the stabilizers (as in LGSL) effectively moves a gauge operator from two
qudits onto the opposite two. In the d = 2 case, this Hamiltonian does not directly reduce to
the one quoted for the toric code earlier (equation (10)) because of the inclusion of the identity
(k = 0) term. However, this term only induces a constant energy shift and so can be disregarded
for our purposes.

We now turn to the properties of the ground space of this Hamiltonian. It is clear that this
Hamiltonian commutes with the logical operators, but it is less obvious whether its ground space
possesses the other properties we require. In appendix C, we prove the following theorem.

Theorem 1. The Hamiltonian (44) has a d-fold degenerate ground space that is in the common
+1 eigenspace of both SL and SZ .

This result, combined with the fact that our logical operators commute with the
Hamiltonian, gives us a ground space to use as an encoded logical codespace HL.

5.2. Coupling the code gadgets

The lattice is connected exactly as is the case for the toric code (figure 2), with qudits from
neighboring edges linked via an entangling bond. We have an unperturbed Hamiltonian for
each edge qudit given as in the previous section,

H0 =

∑
e

H(e), (46)

where the index e denotes a particular edge qudit. We then introduce the bond term

V =
∑

b

V (b) (47)

= −
b

d−1

k=0
Lk Lk

b
+ Zk Z−k

b

(48)

coupling the physical qudits connected by bond b. The ground state of this bond term is a
maximally entangled state of dimension d between the two qudits.

We are interested in reproducing the quantum double Hamiltonian in an encoded form, so
to concisely state our objective, we define the encoded A and B operators,

Â(v)≡
1

|G|

∑
g

⊗
e∈+(v)

Lg
L(e, v), (49)

B̂(p)≡
∑

gk ...g1=0

⊗
ei∈�(p)

T gi
L (ei , p), (50)

with being LL defined in (41) and TL =
1
d

∑
k ω

k Z k
L is the encoded group projection operator.

We can then state the main result of this section as theorem 2.

Theorem 2. The Hamiltonian H = H0 + λV with H0 and V defined as in (46) and (47) on a
square lattice has a low-energy behaviour described by an effective Hamiltonian of the form

Heff = cI I −
(
cAλ

4
)∑

v

Â(v)−
(
cBλ

4
)∑

p

B̂(p)+O(λ5) (51)

for some constants c independent of λ, where N is the number of sites on the lattice.
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The consequence of this theorem is our system’s low-energy effective Hamiltonian
replicating the low-energy sector of the quantum double model (for cyclic groups at this
stage).

Proof of theorem 2. We again follow the perturbative analysis as described in appendix A.
As such, this will require evaluating terms in the perturbative expansion of the self-energy at
order n:

6(n)(E0)= λ
nϒV (G0(E0)V )

(n−1)ϒ, (52)

with G0 being the Green’s function for the system (vanishing on ground states) and ϒ is the
projector to the mutual ground space of each of the code gadgets.

Before we begin presenting our proof in earnest, it is useful to comment on the kinds of
terms that will be preserved and those that will vanish in the ground space. All the operators
defined for cyclic groups have some commutation relation M N = αN M for some complex α. It
is then a simple result to show that for our set of stabilizers any operator that does not commute
with each stabilizer will necessarily excite a ground state to an orthogonal state. This means that
an operator M with α 6= 1 for N any stabilizer will become a detectable error on the gadget’s
quantum code and will take the gadget to an orthogonal subspace. This implies that it will vanish
in our perturbative treatment, as terms arising in our effective Hamiltonian are restricted to the
ground space. In this way we need only consider error-free terms (i.e. terms that commute with
all stabilizers) in our effective Hamiltonian.

From this discussion, we immediately see that first order terms will vanish, as they will
necessarily leave two code gadgets in excited states. The only non-vanishing second order terms
will be proportional to identity. In contrast to the toric code presented earlier, there will be non-
vanishing third order terms due to the inclusion of an identity component in the perturbation
term (48). However, these terms will be proportional to the second order terms, and so will be
trivial. At fourth order we find the nontrivial vertex and plaquette terms that survive. To write
each of these terms more explicitly, we must now distinguish between inwards-directed vertices
(v+) and outward-directed vertices (v−), as well as the two kinds of plaquettes. We will label
the plaquettes as left (pl) and right (pr ), depending on the orientation of the top edge. In this
scheme, the effective Hamiltonian will take the form

H (4)
eff = const−

d−1∑
k=0

[∑
v+

H k
v+

+
∑
v−

H k
v−

+
∑

pl

H k
pl

+
∑

pr

H k
pr

]
. (53)

We can write each of these parts individually using the notation of figure 5:

H k
v+
= κ L

v λ
4ϒ Â(Lk, Lk, v)ϒ + κ Z

v λ
4ϒ Â(Z k, Z−k, v)ϒ, (54)

H k
v−
= κ L

v λ
4ϒ Â(Lk, Lk, v)ϒ + κ Z

v λ
4ϒ Â(Z k, Z−k, v)ϒ, (55)

H k
pl
= κ L

p λ
4ϒ B̂(Lk, L−k, p)ϒ + κ Z

p λ
4ϒ B̂(Z k, Z k, p)ϒ, (56)

H k
pr
= κ L

p λ
4ϒ B̂(Lk, L−k, p)ϒ + κ Z

p λ
4ϒ B̂(Z k, Z k, p)ϒ. (57)

The κ are constants that take into account the sum of products of the Green’s functions in
the perturbation. They can be calculated for a given d once the spectrum of H0 has been found.
They must be nonzero for each of these terms because they do not return to the ground state
before the end of the perturbation and so the Green’s function will never vanish.

New Journal of Physics 13 (2011) 053039 (http://www.njp.org/)

http://www.njp.org/


22

v
Â( , , v) = pB̂( , , p) =

†
†

†
†

†
†

†
†

Figure 5. Physical operators for a cyclic quantum double model. Qudits at
locations denoted by open circles will be acted upon by the same single-qudit
operator (and similarly for those represented by full circles). The adjoint (†) of
a given operator is applied to the qudits so labeled. Note the similarity of this
diagram to figure 3; however, in contrast to the toric code case, the operators
acting on adjacent qubits are now different.

v
Â(x, v) = x x

x

x

pB̂(x, y, p) = x x

y

y

Figure 6. Encoded operators for a cyclic quantum double model. Here each of
x or y represents a four-qudit logical or gauge operator. We use an overloaded
notation here for Â and B̂ such that when their arguments are encoded four-
qudit operators they take this form, whereas when the arguments are single-qudit
operators, they take the form of figure 5.

In terms of encoded logical, gauge and stabilizer operators, we can use a similar notation
(as seen in figure 6) to write these terms:

H k
v+
= κ L

v λ
4ϒ Â(Lk

LS−k
L , v)ϒ + κ Z

v λ
4ϒ Â(Z−k

G S−k
Z , v)ϒ, (58)

H k
v−
= κ L

v λ
4ϒ Â(Lk

L, v)ϒ + κ Z
v λ

4ϒ Â(Z−k
G , v)ϒ, (59)

H k
pl
= κ L

p λ
4ϒ B̂(Lk

G, L−k
G S−k

L , p)ϒ + κ Z
p λ

4ϒ B̂(Z−k
L S−k

Z , Z k
L, p)ϒ, (60)

H k
pr
= κ L

p λ
4ϒ B̂(Lk

GSk
L, L−k

G , p)ϒ + κ Z
p λ

4ϒ B̂(Z−k
L , Z k

L Sk
Z , p)ϒ. (61)

We now evaluate the ϒ projectors. Stabilizers SZ & SL→ I in the ground space by
theorem 1, and each gauge operator will simply evaluate as a constant (expectation value) in
the ground space. We can again disregard these constant terms as irrelevant energy shifts. This
leaves us with

H k
v+
= κ L

v λ
4ϒ Â(Lk

L, v)ϒ, (62)

H k
v−
= κ L

v λ
4ϒ Â(Lk

L, v)ϒ, (63)
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H k
pl
= κ Z

p λ
4ϒ B̂(Z−k

L , Z k
L, p)ϒ, (64)

H k
pr
= κ Z

p λ
4ϒ B̂(Z−k

L , Z k
L, p)ϒ. (65)

By substituting the definitions of the Z operators in terms of T projectors, and using the
orthogonality of the characters ω, it is simple to verify that these B terms are identical to the
B terms of (29). Although the ± signs associated with the vertices (and edges in general) in
these definitions may not immediately seem consistent with the quantum double Hamiltonian
presented earlier (30) for cyclic groups, we have the freedom to rearrange the sums over k in the
Hamiltonian. When we consider that we can take k→−k whenever we like, it becomes clear
that these terms are indeed identical to those appearing in the quantum double Hamiltonian.
This gives the result that the effective Hamiltonian will take form (51). ut

At all orders < 2L (L is the smallest linear dimension of the surface into which the model
is embedded) the terms in the self-energy expansion (see appendix A) will act on the logical
state like products of the fourth-order terms. These terms all commute and will not map the
ground space of the quantum double model out of the +1 eigenspace of the encoded vertex and
plaquette terms (62)–(65).

6. Our construction for general quantum double models

General quantum double models can have a much more complicated algebra than the simple
cyclic ones studied previously (see section 4). However, this class includes non-Abelian models
that are able to perform universal quantum computation, and so they are of key interest in this
study.

6.1. Code gadget operators

As in the previously studied Zd quantum double models, we encode each logical qudit in a code
gadget consisting of four strongly coupled physical qudits (the scheme is again as in figure 2).
For a given group G, the code gadget on each edge then has a |G|-fold degenerate ground space,
which we use as a logical qudit. The difference in this scheme is that the generalizations of the
gauge operators and stabilizers will not commute in general and so these degrees of freedom are
not separable. This is contrary to the normal use of the terms ‘stabilizer’ and ‘gauge’, but we will
abuse the terminology and continue to use these terms in analogy to their cyclic counterparts.
The operators we define here directly generalize those used in the previous sections. The
differences arise from the non-commutativity of the group multiplication operations and the
fact that the irreducible representations of these general groups can be multidimensional (as
opposed to the cyclic groups, which have 1D irreps). With this in mind, we can define logical
and ‘gauge’ operators on the code gadget as follows:

LgL+ ≡
Lg+
I
Lg+
I

, T gL+ ≡
g2g3=g

I
I
T g2+
T g3+

,

LgG− ≡
I
I
Lg−
Lg+

, T gG+ ≡
g1g2=g

T g1−
I

T g2+
I

(66)
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We can also define operators to describe the ‘stabilizer’ degrees of freedom:

SgL ≡
Lg

−1
−
Lg

−1
+

Lg
−1
−
Lg

−1
+

L ≡ 1
|G|

g

SgL ,

SgT ≡
g1g2g3g4=g

T g1−
T g4−

T g2+
T g3+

, S

, ST ≡ S1T ,
(67)

where the identity group element is denoted by 1. These operators are clearly defined in a very
natural way with respect to the quantum double algebra. In these models, the only operators we
strictly require to stabilize (act identically within) the ground space of our edge qudits are the
projectors SL and ST . In spite of this, we will extend our notational abuse and continue to refer
to Sg

L and Sg
T as ‘stabilizer operators’.

The operators we have defined now constitute a minimum operator basis for the degrees of
freedom of our encoded qudit. We can also define additional operators:

LgL− ≡
I
Lg−

I
Lg−

, T gL− ≡
g4g1=g

T g1−
T g4−

I
I
,

LgG+ ≡
Lg−
Lg+

I
I
, T gG− ≡

g3g4=g

I
T g4−

I
T g3+

.

(68)

The + and − subscripts on the joint operators here refer to whether these operators possess
the algebra of left or right multiplication (or projection) operators, i.e.

Lg
±T h
±
= T gh

± Lg
±, (69)

Lg
±T h
∓
= T hg−1

∓ Lg
±. (70)

The stabilizer operators themselves satisfy the quantum double algebra

Sg
L Sh

T = Sg−1hg
T Sg

L . (71)

The logical operators commute with both the gauge and stabilizer operators, but in this
scheme the gauge and stabilizer operators do not commute with each other.

We can also derive the Z operators corresponding to our T operators (see section 4):

Z
πij
L+ =

m

I
I
Zπim+
Z
πmj
+

πij
G+ =

m

Zπim−
I

Z
πmj
+
I

Z
πij
L− =

m

Z
πmj
−
Zπim−

I
I

, Z

, Z
πij
G− =

m

I
Z
πmj
−

I
Zπim+

.

,

(72)

By construction, these operators satisfy the relevant algebra for Z operators.
We have now defined operators on the code gadget corresponding to both the left regular

representation and the right regular representation of the group G for the encoded gauge and
logical qudits. These definitions are redundant, in that the gauge or logical state can be uniquely
defined through the action of only one L operator and only one T operator (or equivalently
Z operator). This gives us some freedom in the definition of the logical state. We will choose
to define it through the action of Lg

L− and T g
L+. The action of Lg

L+ and T g
L− will then be poorly
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defined in general with respect to the logical state, but we will choose the codespace such that
they act appropriately within it.

In order to understand how these operators act on the logical state, it is useful at this point
to explicitly identify the encoding scheme of our code gadget. We can label the state of each
physical qudit within a given code gadget as follows:

ha, hb, kG, kL〉 = |ha〉
h .−1
b h

−1
a kL

|kGha〉
h−1a k

−1
G kL

(73)

Here the logical and gauge states of the system are labelled by kL and kG, respectively, and
will transform under the action of the logical or gauge operators. The remaining labels h define
how the stabilizers SL and SG act on the system. We can directly see the action of our encoded
operators on these states. For example,

Lg
L−|ha, hb, kG, kL〉 = |ha, hb, kG, kLg−1

〉, (74)

T g
L+|ha, hb, kG, kL〉 = δgkL|ha, hb, kG, kL〉. (75)

We chose to define the logical state kL by the action of these two operators and as such they
act on kL as might be expected. The stabilizer operators act as

Sg
L |ha, hb, kG, kL〉 =

∣∣hag, g−1hbg, kG, kL

〉
, (76)

Sg
T |ha, hb, kG, kL〉 = δghb |ha, hb, kG, kL〉 . (77)

The action of the remaining encoded operators is not so simple. In general, these will mix
the logical or gauge states with the ha or hb. However, we will construct the codespace such that
within it logical operators will act only on the logical state, and gauge operators similarly act
appropriately.

6.2. Code gadget Hamiltonian

Now that we have defined a set of operators we consider the Hamiltonian of a code gadget. We
require that this Hamiltonian consist only of two-body terms and possess a ground space that
can be used as a codespace for our logical qudit. For this to happen, the ground space must
be stabilized by SL and ST , and be exactly |G|-fold degenerate. The significance of these two
stabilizers is that they are terms in the quantum double Hamiltonian defined on a small four-
qudit torus (as depicted in figure 7). In that sense, we are creating a code that is very similar to
a miniature quantum double model. Of course, our code gadget will consist of only two-body
terms, and to achieve this we must sacrifice the gauge degrees of freedom in our model.

To this end, we generalize the Hamiltonian we used for cyclic groups previously to give

H(e)=−
JL

|G|

∑
g

[
Lg

G+ + Lg
G−

]
−

JZ

|G|

∑
π,i

dπ
[
Zπi i

G+ + Zπi i
G−

]
(78)

=−
JL

|G|

∑
g

[
Lg

G+ + Lg
G−

]
− JZ

[
T 1

G+ + T 1
G−

]
. (79)

These two forms can be seen to be equivalent using the definitions of the ZG operators
(72). In the latter form, it is clear that our unperturbed Hamiltonian is very closely related to
the quantum double Hamiltonian (30). It is also clear that the logical operators will commute
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p1

p2

v1

v1

v2v2

Figure 7. The four-qudit torus is constructed by identifying the opposite vertices
of a square. The dashed horizontal (red) lines are identified, and the dashed
vertical (blue) lines are identified. There are two equivalent plaquette stabilizers
corresponding to p1 and p2 and two (generally inequivalent) vertex stabilizers
corresponding to v1 and v2 in this quantum double model. Our stabilizers SL and
ST are obtained by choosing one of each. For Abelian models, the two vertex
stabilizers are also equivalent, and so SL and ST generate the full stabilizer group
of the quantum double model on this surface for those groups.

with the Hamiltonian (as each term is a gauge operator) and so we can expect at least the
|G|-fold degeneracy of our logical qubit. The following theorem encapsulates the remaining
requirements of our codespace.

Theorem 3. The Hamiltonian (78) has a |G|-fold degenerate ground space that is in the
common +1 eigenspace of SL and ST .

We provide a proof of this theorem in appendix D. This theorem places restrictions on
the form of the ground space which ensure that undesirable terms in the effective Hamiltonian
will couple to higher-energy sectors and vanish. Now that we have a suitable codespace for our
logical qudit, we proceed to reproducing the target model.

6.3. Coupling the code gadgets

We place our code gadgets on the edges of the lattice and couple them using the same
geometric scheme as the toric code and cyclic group cases (illustrated in figure 2), where each
physical qudit is perturbatively coupled to a physical qudit from a neighboring code gadget. Our
uncoupled (unperturbed) Hamiltonian for each edge of the lattice is as given in (78).

H0 =

∑
e

H(e) (80)

=

∑
e

[
−

JL

|G|

∑
g

[
Lg

G+ + Lg
G−

]
−

JZ

|G|

∑
π,i

dπ
[
Zπi i

G+ + Zπi i
G−

]]
e

. (81)

As before, the subscript e refers to a particular edge (a particular code gadget). The
perturbation term is generalized straightforwardly from the cyclic case to take the form

V =
∑

b

V (b) (82)

= −
b k

Lk Lk
b

+
π,k,m

dπ Zπkm Zπmk
b

(83)
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p1

p2

v1

v2

Figure 8. The two-qudit sphere is constructed by identifying every point on
the boundary of a plane. This boundary is represented by dashed red lines.
The solid lines correspond to edges on the lattice, with a qudit located on each
edge. The loop formed by these edges is homologically equivalent to an equator
around the sphere. There exists a plaquette stabilizer for each plaquette p1 and
p2 and similarly a vertex stabilizer for each vertex v1 and v2 in this quantum
double model. The terms in our bond Hamiltonian are obtained by choosing
one plaquette and one vertex stabilizer from these. For Abelian models the two
vertex stabilizers are also equivalent, as are the two plaquette stabilizers, and so
the bond Hamiltonian consists of a full generating set of the stabilizer group of
the quantum double model on this surface for these groups.

where the L or Z operator associated with a particular qudit has definite ± subscript depending
on its location as follows:

L :
+
−
+
− Z .:

−
−
+
+ (84)

For example, an L operator in the top right-hand corner of a code gadget (with the edge
taken running up the page) will take the form L+. This is motivated by the definitions of v±
and p± of the quantum double model in section 4. As in the Zd models, it is clear that the
coupling terms are very closely related to the quantum double Hamiltonian. In fact, these bond
terms could be considered a quantum double Hamiltonian on a small (two-qudit) sphere, with
the corresponding nondegenerate ground state (see figure 8).

Again we must define the encoded A and B operators we will reproduce in our perturbative
expansion (with 1 being the identity group element for general groups):

Â(v)≡
1

|G|

∑
g

⊗
e∈+(v)

Lg
L(e, v), (85)

B̂(p)≡
∑

gk ...g1=1

⊗
ei∈�(p)

T gi
L (ei , p). (86)

The main result of this section is theorem 4.

Theorem 4. The Hamiltonian H = H0 + λV with H0 and V defined as in (80) and (82) on a
square lattice has a low energy behaviour described by an effective Hamiltonian of the form

Heff = cI I −
(
cAλ

4
)∑

v

Â(v)−
(
cBλ

4
)∑

p

B̂(p)+O(λ5) (87)

for some constants c independent of λ and N, where N is the number of sites on the lattice. The
encoded low energy behavior of the system to this order is described by the quantum double
Hamiltonian (30) up to additive and multiplicative constants.
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This theorem implies that our effective Hamiltonian correctly reproduces the low-energy
sector of the quantum double Hamiltonian for any group. Before we prove it, we make some
comments on the operators that will arise in the perturbative treatment. For cyclic models, we
were able to make some general arguments to exclude all unwanted operators from arising in the
effective Hamiltonian. Unfortunately, no equivalent general argument has been found in the case
of the general quantum double models. For this reason, we have explicitly shown this property
for the relevant operators in appendix E. The results are an intuitive generalization of the cyclic
case, in that the only nonvanishing operators will be those contributing encoded operators that
act on the gauge or logical subspaces. We use these results now to calculate the nonvanishing
terms in the effective Hamiltonian.

Proof of theorem 4. We follow the same perturbative treatment as used previously (see
appendix A). The results of appendix E effectively show that no second order terms are able
to survive except those proportional to identity (exactly as in the cyclic case). Similarly, all
first order, and all non-trivial third order, terms will vanish. It is clear then that no nontrivial
operators will appear below fourth order. The effective Hamiltonian at order 4 is then given by

H (4)
eff = λ

nϒV (G0(E0)V )
(n−1)ϒ, (88)

with G0 being the Green’s function vanishing on ground states (taken at the unperturbed ground
state energy E0) and ϒ again the projector to the ground space of the code gadgets. At this
order, we will find nontrivial terms around plaquettes and vertices consisting of products of Z
or L operators. As in the Zd case, it is useful to distinguish the two different kinds of vertices
and the two different kinds of plaquettes here (see figure 4). We have defined the lattice such
that vertices can either consist of all inwardly directed edges (v+) or all outwardly directed edges
(v−). Plaquettes can have their top edge directed either left (pl) or right (pr ).

Disregarding constant energy shifts, we can then separate terms in the Hamiltonian by
vertex or plaquette type:

H (4)
eff =−ϒ

[∑
v+

Hv+ +
∑
v−

Hv− +
∑

pl

Hpl +
∑

pr

Hpr

]
ϒ. (89)

As we did for the cyclic groups, we will write these operators pictorially to make the
physical location of a particular operator obvious. For simplicity, we have neglected to draw
those qudits on the outer edge of the vertex/plaquette under consideration, where these terms
will act trivially. With this in mind, individual terms in the effective Hamiltonian can be written
as

Hv+ = κ
L
v λ
4
∑

g

v

Lg+ Lg+

Lg+

Lg+

Lg+Lg+

Lg+

Lg+

+κZv d
4
πλ
4
∑

π,i,r,m,n

∑

j

v

Z
πrj
+ Z

πji
−

Z
πij
+

Z
πjm
−

Z
πmj
+Z

πjn
−

Z
πnj
+

Z
πjr
−

(90)
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Hv− = κ
L
v λ
4
∑

g

v

Lg− Lg−

Lg−

Lg−

Lg−Lg−

Lg−

Lg−
+κZv d

4
πλ
4
∑

π,i,r,m,n

∑

j

v

Z
πrj
− Z

πji
+

Z
πij
−

Z
πjm
+

Z
πmj
−Z

πjn
+

Z
πnj
−

Z
πjr
+

(91)

Hpl = κ
L
p λ
4
∑

g

p

Lg+ L
k−1L gkL−

L
k−1L gkL−

Lg+

Lg+L
k−1L gkL−

L
k−1L gkL−

Lg+

+κZp d
4
πλ
4
∑

π,i,r,m,n

∑

j

p

Z
πjr
− Z

πij
−

Z
πji
+

Z
πmj
+

Z
πjm
−Z

πnj
−

Z
πjn
+

Z
πrj
+

(92)

Hpr = κ
L
p λ
4
∑

g

p

L
k−1L gkL− Lg+

Lg+

L
k−1L gkL−

L
k−1L gkL−Lg+

Lg+

L
k−1L gkL−

+κZp d
4
πλ
4
∑

π,i,r,m,n

∑

j

p

Z
πjr
+ Z

πij
+

Z
πji
−

Z
πmj
−

Z
πjm
+Z

πnj
+

Z
πjn
−

Z
πrj
−

.

(93)

Here the κs are proportionality constants arising from the pertubation treatment. For a
specific model, they can readily be calculated. It should be reasonably clear that no other
nontrivial fourth-order terms (or lower) than those shown above will survive (see appendix E).
The higher-order terms will act in the logical space as products of the fourth order terms, until
the order is sufficiently high to form noncontractible loops over the lattice.
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The most illustrative of the fourth order terms are the plaquette Z terms. As such, we will
present a brief demonstration of how these operators arise. On our plaquette, at the fourth order
the most general Z operator to be constructed has the form

Υ p

Zπsr− Z
πij
−

Z
πji
+

Zπmn+

Zπnm−Z
πtq
−

Z
πqt
+

Zπrs+

Υ

Here we have already used the fact that Z operators with different representations will
move out of the ground space and so we have only used one representation π . From equations
(E.12) and (E.14), we find the condition j = s = n = q for nonvanishing terms. From this, we
immediately obtain the term appearing above in the effective Hamiltonian for this plaquette.
Similar considerations give the other plaquette and vertex terms.

Given the operators (90)–(93) in their current form, it is difficult to immediately see how
many of them act on the logical state. In order to study this, we must revisit the encoding scheme
defined in (73) and the ground space studied in appendix D. We will study the action of each
operator on the basis

|σmn, h, kG, kL〉 ≡

√
dσ
√
|G|

∑
gσ∈G

[σ(gσ )]mn|gσ , g−1
σ hgσ , kG, kL〉, (94)

particularly in the ground space where σmn = I11 and h = 1. From this, we can examine the
effect on the logical state kL in the codespace. The operators in question act on these states as
follows:

Lg+

L
k−1L gkL−

I
I
|I11, 1, kG, kL〉 = 1

|G| gσ
|ggσ, 1, kGg−1, kL〉 (95)

=
1
√
|G|

∑
g̃σ

|g̃σ , 1, kGg−1, kL〉 (96)

= |I11, 1, kGg−1, kL〉 (97)

and

I
I

Lg+

L
k−1L gkL−

|I11, 1, kG, kL〉 = 1
|G|
∑

gσ

|gσ, 1, gkG, kL〉 (98)

= |I11, 1, gkG, kL〉. (99)
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In the codespace, these operators have the effective action equivalent to Lg
G− or Lg

G+,
respectively. They differ from the previously defined versions, but the key is that they act only
on the gauge state in this subspace. We will denote these operators as Lg

G′− and Lg
G′+. In a similar

way, we can look at the action of the Z -like operators:

m

Z
πmj
−
I

Zπim+
I

|I11, 1, kG, kL〉 = [π(kG)]ij |I11, 1, kG, kL〉. (100)

This operator acts quite similarly (identical up to conjugacy) to Z
πi j

G+ . In the ground space,
we will be able to ignore it as a constant expectation value (as the gauge state will be fixed).
As such, we will denote this operator Z

πi j

G′+. The second of the Z operators is a little more
complicated. To this end, we must consider the exact form of the ground states:

|ψ0〉 = |I11, 1, 1, kL〉+ |I11, 1, I11, kL〉. (101)

This allows us to see the action of these operators.

∑

m

I
Zπim−

I
Z
πmj
+

|I11, 1, 1, kL〉 = [π(k−1L kL)]ij |I11, 1, 1, kL〉 (102)

= δi j |I11, 1, 1, kL〉, (103)

∑

m

I
Zπim−

I
Z
πmj
+

|I11, 1, I11, kL〉 = 1
|G| gπ

[π(k−1L g
−1
π kL)]ij |I11, 1, gπ, kL〉. (104)

On the ground space, this acts not dissimilarly to Z
πi j

G−. The gauge state becomes mixed
up somewhat, but because of the particular definite gauge state we have in the codespace, an
operator of this form can be evaluated as a constant. This is a result of the fact that the overlap
of this state (104) with the ground space is independent of kL (as can be easily verified). With
this in mind, we will write this operator as Z

πi j

G′− from now on.
Given these definitions, we can now write the terms in the effective Hamiltonian in a more

succinct format:

Hv+ = κ
L
v λ
4
∑

g

v

LgL+

LgL+

LgL+

LgL+ + κ
Z
v λ
4
∑

π,i,r,m,n

dπ
v

ZπriG′+

ZπnrG′+

ZπmnG′+

ZπimG′+ (105)

Hv− = κ
L
v λ
4
∑

g

v

LgL−

LgL−

LgL−

LgL− + κ
Z
v λ
4
∑

π,i,r,m,n

dπ
v

ZπriG′−

ZπnrG′−

ZπmnG′−

ZπimG′− (106)
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Hpl = κ
L
p λ
4
∑

g

pLgG′+ LgG′+

LgG′−

LgG′−

+ κZp λ
4
∑

π,i,r,m,n

dπ pZπmiL+ ZπrnL+

ZπnmL−

ZπirL−

(107)

Hpr = κ
L
p λ
4
∑

g

pLgG′− LgG′−

LgG′+

LgG′+

+ κZp λ
4
∑

π,i,r,m,n

dπ pZπmiL− ZπrnL−

ZπnmL+

ZπirL+

(108)

We have been able to treat each code gadget in the Z terms separately, even though in the
previous definitions they shared a common index ( j). The reason why we are able to separate
them in this way is because in the ground space for any given j we can use (E.12)–(E.18) to
rewrite each term as an average over all values of j . This allows us to rewrite each term as a
summation over different indices, which gives us their quoted form. The factor of dπ appearing
in the terms (105)–(108) then comes from the remaining sum over j . As a simplified explicit
example, consider

Υ
j

Z
πjm
−
I

Z
πij
+
I

⊗ Z
πjp
−
I

Z
πmj
+
I

Υ = Υ
j j′

1
dπ

Z
πj′m
−
I

Z
πij′
+
I

⊗ Z
πjp
−
I

Z
πmj
+
I

Υ. (109)

We can disregard all the terms in the Hamiltonian that do not act on the logical subspace
(as they will only introduce some constant energy shift for our purposes). We now also drop
the ± subscript on logical operators, with the observation that they are consistent with the edge
orientation conventions introduced in section 4. With this in mind, our effective Hamiltonian
reduces to

Heff = −λ4Υ
∑

v

κLv
∑

g

v

LgL

LgL

LgL

LgL +
∑

p

κZp
∑

π,i,r,m,n

dπ pZπmiL ZπrnL

ZπnmL

ZπirL

Υ

,

(110)

with each operator defined as in equations (105–108), and the± of the logical operators defined
by the edge orientation. Using the definitions of the Z operators in terms of T operators, and
the orthogonality of group characters, it is not difficult to show that these operators are indeed
equivalent to those of the target quantum double Hamiltonian. This gives our Hamiltonian the
form (87), as claimed. ut

As in the Abelian case, all orders < 2L (L being the smallest linear dimension of the
surface into which the model is embedded) of the self-energy expansion (see appendix A) will
act on the logical state like products of the fourth order terms. These terms all commute and
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will not map the ground space of the quantum double model out of the +1 eigenspace of the
encoded vertex and plaquette terms (62)–(65). Beyond this order perturbative corrections to the
self-energy will be able to form homologically nontrivial loops on the surface. These will be
heavily suppressed for large L and large energy gap.
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Appendix A. Perturbation theory

We will now give a brief introduction to the formalism we use to perform perturbation
calculations, such as to introduce lattice couplings between edge qudits. We follow the resolvent
or Green’s function approach in [13] and, in general, we are only interested in the leading
nonconstant order in the effective Hamiltonian. Given the Hamiltonian

H = H0 + λV, (A.1)

where H0 has a subspace of degenerate eigenvectors with energy E0, let ϒ be the projector
onto the eigenspace of the eigenvalue E0 of H0. In our case we are interested in the situation
where E0 is the ground state energy of H0. In degenerate perturbation theory, one generally
aims to find an effective Hamiltonian Heff that acts on the subspace given by ϒ and that has
the same eigenvalues as H , in other words, an effective Hamiltonian that describes how the
perturbation term V acts within the ground space of the unperturbed Hamiltonian. We use the
Green’s function formalism of [13] for this calculation and find the self-energy 6(E), which is
given by the perturbation expansion:

6(E)= ϒ
(
λV + λ2V G0(E)V + λ3V G0(E)V G0(E)V + · · ·

)
ϒ. (A.2)

At the lowest nontrivial order of perturbation theory, we have

Heff ' E0 +6(E0). (A.3)

The unperturbed Green’s function for excited states of H0 is denoted by G0(E)=
(E − H0)

−1(1−ϒ), such that this function vanishes in the ground space. At higher orders in
perturbation theory, one would need to take into account the E dependence of the self-energy
around E ≈ E0 in order to find the effective Hamiltonian; however, as we are interested only in
the lowest nontrivial order in perturbation theory throughout this paper, we do not do so.

We can expand the self-energy order by order as follows (neglecting constant energy
shifts):

6(E0)=
∑

n

6(n)(E0), (A.4)

6(n)(E0)= λ
nϒV (G0(E0)V )

(n−1)ϒ. (A.5)
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Figure B.1. A section of a simple directed graph.

The Green’s function G0 is always evaluated at the unperturbed ground state energy E0, and
will be nonpositive.

The product of operators obtained between ϒs will vanish unless it remains within (or at
least overlaps in some nontrivial way) the ground space of every code gadget on the lattice. It
will be simple to eliminate many operators that will vanish or act trivially on the ground space.
At the nth order, the self-energy will consist of a sum of terms

6(n)(E0)=
∑

j

λnϒκ j A jϒ, (A.6)

with κ j being constants. They take into account the Green’s function terms appearing in the
perturbative analysis. Summed over each possible ordering of the V terms that will give the
same A j , κ j is the product of the (n− 1) Green’s functions appearing in the nth-order terms.
In our case, this sum will run over the n! ways of ordering the perturbations, which multiply
together to give the operator A j .

Appendix B. Extension to arbitrary graph

It is not difficult to extend our treatment from the explicit square lattice to an arbitrary
directed graph. As each edge is associated with two plaquettes on any nonintersecting 2D
graph (neglecting boundaries), each edge qudit is associated with exactly four nearest neighbors
regardless of the form of the lattice. This allows us to retain our previous definitions for edge
qubit gauge and logical operators as in section 6.1.

If we apply a perturbation to the uncoupled edge qudits exactly as before, we will again
see plaquette and vertex terms arising in the effective Hamiltonian. Of course, they may not
arise at the same order in this treatment (e.g. for a hexagonal lattice, plaquettes arise at sixth
and vertices arise at third order, and on a general graph, plaquette boundaries and vertex stars
will not be uniform in size). It is possible that this may have some undesirable effect on excited
states of the effective Hamiltonian, but the higher-order terms that will be able to survive the
perturbation will act in the logical space as products of existing (commuting) terms until the
perturbative order is high enough to form nontrivial homology cycles over the lattice. Below
this order, the ground space of the effective Hamiltonian will remain within the ground space of
the encoded quantum double Hamiltonian.

We can see, in figure B.1, part of a simple directed graph. If we consider the perturbation
term exactly as in the general group square lattice treatment (82), the vertex term will take the
form (up to additive and multiplicative constants)

H(v)∼ ϒ
∑

g

∏
e→v

Lg
L+

∏
e←v

Lg
L−ϒ +ϒ

∑∏
e→v

ZG′+

∏
e←v

ZG′−ϒ, (B.1)
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where e← v denotes those edges that run out of the vertex v, and e→ v denotes those that run
toward the vertex. The exact form of the Z term is not difficult to calculate but is only sketched
in this notation for clarity. In any case, the vertex Z term will evaluate as a constant in the
ground space and so can be disregarded for our purposes. This leaves the products of the terms
for inwards-directed edges and outwards-directed edges. If we again look at the definitions of
the quantum double model in section 4, we can see that this will give a vertex term consistent
with the target Hamiltonian.

Similarly, as we traverse a plaquette, two kinds of terms will arise:

H(v)∼ ϒ
∑

g

∏
e→p

Lg
G−

∏
e←p

Lg
G+ϒ +ϒ

∑∏
e→v

ZL+

∏
e←v

ZL−ϒ. (B.2)

Here the notation e→ p is taken to mean that the edge is on the left of the plaquette when
looking along e and similarly e← p has the edge on the right of p. The indices of the Z terms
are suppressed here for clarity, but they can easily be restored by comparing with (110) and
can be verified to be consistent with the quantum double Hamiltonian. Of course, the gauge L
term will be evaluated as a constant and disregarded. This will leave us with only the desired
logical operators on both plaquettes and vertices, and we will have successfully reproduced the
quantum double Hamiltonian (with the caveat that the terms may arise at different order, and
with different coefficients).

Appendix C. Proof of theorem 1

Proof. We will label eigenstates of Z by group elements |h〉, and the corresponding eigenstates
of L by (unitary, irreducible) representations |σ 〉 = 1

√
d

∑
h ω

σh
|h〉. Note that for these cyclic

groups, the representations are all 1D. We begin by defining projectors

Pk
i =

1

d

∑
l

ωkl Sl
i , (C.1)

with inverses

Sk
i =

∑
l

ω−kl P l
i , (C.2)

where i ∈ {L , Z}. We can then write our Hamiltonian as

H =−
1

d

∑
k

[
Lk

G

(
1 +

∑
h

ω−kh Ph
L

)
+ Z k

G

(
1 +

∑
σ

ω−kσ Pσ
Z

)]
. (C.3)

If we block diagonalize with respect to both h and σ , our proof will amount to showing
that the unique ground state is in the h = 0 and σ = 0 block. In group theoretic terms, this
corresponds to h the identity group element and σ the trivial representation (which we will
denote now as σ = I ). Our Hamiltonian within the (h, σ ) block takes the form

H h,σ
=−

1

d

∑
k

[
Lk

G(1 +ω−kh)+ Z k
G(1 +ω−kσ )

]
. (C.4)
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We can rewrite the
∑

k Lk
G and

∑
k Z k

G operators as projectors on the gauge subspace onto
group elements or representations:∑

k

ω−kh Lk
G = d|h〉〈h| and

∑
k

ω−kσ Z k
G = d|σ 〉〈σ |, (C.5)

with |σ 〉 being a representation state and |h〉 a group element state. The representation states are
discrete Fourier transforms of the element states. Then we have

H h,σ
=−

[
|0〉〈0|+ |h〉〈h|+ |I 〉〈I |+ |σ 〉〈σ |

]
. (C.6)

Here |0〉 is the group identity element and |I 〉 corresponds to the trivial representation of
the group. Since H h,σ is a negative sum of projectors, all its eigenvalues are nonpositive. We
can then write a triangle inequality for the magnitude of least eigenvalue by taking the operator
norm,

‖H h,σ
‖6 ‖|0〉〈0|+ |I 〉〈I |‖+ ‖|h〉〈h|+ |σ 〉〈σ |‖. (C.7)

We know that this inequality is saturated only if (|0〉〈0|+ |I 〉〈I |) is parallel to (|h〉〈h|+
|σ 〉〈σ |) in their largest eigenspace. But unless (h, σ )= (0, I ), these vectors are never parallel.
Then we have

‖H 0,I
‖ = 2‖|0〉〈0|+ |I 〉〈I |‖> ‖H h,σ

‖ when (h, σ ) 6= (0, I ). (C.8)

We can now say that the ground space must have h = 0 and σ = I . Furthermore, when this
is the case, we see from (C.6) that the only nonvanishing eigenvectors of this block are linear
combinations of |0〉 and |I 〉. We find by inspection that the two independent eigenvectors are

|ψ±〉 = |0〉± |I 〉, (C.9)

with eigenvalues

λ± =−2

[
1±

1
√

d

]
. (C.10)

This gives for the unique ground state of the gauge qudit

|ψG
0 〉 = |0〉+ |I 〉. (C.11)

Given that the stabilizer and gauge degrees of freedom have a unique ground state and
the fact that the Hamiltonian commutes with the logical operators, we can also say that the
Hamiltonian (44) has a d-fold degenerate ground space encoding the logical state. ut

Appendix D. Proof of theorem 3

Proof. We wish to prove that our Hamiltonian (78) is stabilized as claimed. The key to proving
this theorem is choosing a suitable basis. We have previously defined the states as in the physical
basis of (73). Here, we will need to look at some more sophisticated bases that make the actions
of our encoded operators even more transparent. ut
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D.1. Alternative bases

Consider first the gauge representation basis:

|σmn, h, πi j , kL〉 ≡

√
dπdσ
|G|

∑
gπ ,gσ∈G

[π(gπgσ )]i j [σ(gσ )]mn|gσ , g−1
σ hgσ , gπ , kL〉. (D.1)

Here, π and σ are (unitary irreducible) representations of dimension dπ and dσ ,
respectively. The πi j variable defines the gauge state, which is why we call this the gauge
representation basis. It is clear that there are a total of |G|4 basis states, as needed, and
orthonormality can be easily verified. We would like to know how the

∑
g Lg

G± projectors in
the Hamiltonian (78) will act on this basis.

It can be easily verified that these operators act in the following way on the physical basis:

L g̃
G+ |ha, hb, kG, kL〉 = |ha g̃−1, g̃hb g̃−1, kGha g̃h−1

a , kL〉, (D.2)

L g̃
G− |ha, hb, kG, kL〉 = |ha, hb, kGha g̃−1h−1

a , kL〉. (D.3)

This gives for the action of the L projectors in our new basis
1

|G|

∑
g̃

L g̃
G+|σmn, h, πi j , kL〉

=

√
dπdσ
|G|2

∑
gπ ,gσ ,g̃

[π(gπgσ )]i j [σ(gσ )]mn|gσ g̃−1, g̃g−1
σ hgσ g̃−1, gπgσ g̃g−1

σ , kL〉. (D.4)

Introducing the substitutions

g′σ = gσ g̃−1, (D.5)

g′π = gπgσ g̃g−1
σ , (D.6)

we find that
1

|G|

∑
g̃

L g̃
G+|σmn, h, πi j , kL〉

=

√
dπdσ
|G|2

∑
g′π ,g

′
σ ,g̃

∑
s

[π(g′πg′σ )]i j [σ(g
′

σ )]ms[σ(g̃)]sn|g
′

σ , g′−1
σ hg′σ , g′π , kL〉. (D.7)

The grand orthogonality theorem (E.10) can then be used over g̃ to give

1

|G|

∑
g̃

L g̃
G+|σmn, h, πi j , kL〉 = δσ I

√
dπdσ
|G|

∑
g′π ,g

′
σ

[π(g′πg′σ )]i j [σ(g
′

σ )]11|g
′

σ , g′−1
σ hg′σ , g′π , kL〉 (D.8)

= δσ I |σmn, h, πi j , kL〉, (D.9)

where I is the trivial irrep of the group G. We can perform a similar treatment for the other L
projector, giving

1

|G|

∑
g̃

L g̃
G−|σmn, h, πi j , kL〉

=

√
dπdσ
|G|2

∑
g′π ,gσ ,g̃

∑
s

[π(g′πgσ )]is[π(g̃
−1)]s j [σ(gσ )]mn|gσ , g−1

σ hgσ , g′π , kL〉 (D.10)
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with substitutions

g′π = gπgσ g̃g−1
σ . (D.11)

Again, this can be simplified through orthogonality to give

1

|G|

∑
g̃

L g̃
G−|σmn, h, πi j , kL〉 = δπ I

√
dπdσ
|G|

∑
g′π ,gσ

[π(g′πgσ )]11[σ(gσ )]mn|gσ , g−1
σ hgσ , g′π , kL〉

(D.12)

= δπ I |σmn, h, πi j , kL〉. (D.13)

To treat the TG± operators analogously, we need to look at another basis in which the gauge
state takes a particular group element as opposed to an element of a representation. We define
this gauge element basis as

|σmn, h, kG, kL〉 ≡

√
dσ
√
|G|

∑
gσ∈G

[σ(gσ )]mn|gσ , g−1
σ hgσ , kG, kL〉, (D.14)

i.e. instead of using a representation for the gauge degree of freedom, here a single group
element is used. In terms of the physical basis, the T 1

G± projectors act in the following way:

T 1
G+ |ha, hb, kG, kL〉 = δ1kG |ha, hb, kG, kL〉 , (D.15)

T 1
G− |ha, hb, kG, kL〉 = δ(hahbh−1

a )kG
|ha, hb, kG, kL〉 , (D.16)

where 1 is the identity group element. We are now in a position to demonstrate that the T
operators explicitly project to single states in the gauge element basis:

T 1
G+|σmn, h, kG, kL〉 = δ1kG

√
dσ
√
|G|

∑
gσ

[σ(gσ )]mn|kG, σmn, h, kL〉 (D.17)

= δekG|Rmn, h, kG, kL〉, (D.18)

T 1
G−|σmn, h, kG, kL〉 = δ(gσ g−1

σ hgσ g−1
σ )kG

√
dσ
√
|G|

∑
gσ

[σ(gσ )]mn|gσ , g−1
σ hgσ , kG, kL〉 (D.19)

= δhkG|σmn, h, kG, kL〉. (D.20)

D.2. Solving the Hamiltonian

The Hamiltonian of interest is given by

H =−
∑

g

Lg
G+−

∑
g

Lg
G−− T 1

G+− T 1
G−. (D.21)

Given that we now know explicitly to what states each of these terms project, we can write
instead

H =−
∑
πi j ,h,kL

|I11, h, πi j , kL〉〈I11, h, πi j , kL| −

∑
σmn,h,kL

|σmn, h, I11, kL〉〈σmn, h, I11, kL|

−

∑
σmn,h,kL

|σmn, h, 1, kL〉〈σmn, h, 1, kL| −

∑
σmn,h,kL

|σmn, h, h, kL〉〈σmn, h, h, kL|. (D.22)
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Each of these terms are pairwise orthogonal for different values of h or kL. We can then
immediately block diagonalize the Hamiltonian by these two variables. As these labels will not
participate overtly in the calculation, we will suppress them henceforth for clarity. We can also
block diagonalize by a representation and one of its indices as follows:

H h,kL
σ,n =−

∑
m

[
|I11, σmn〉〈I11, σmn|+ |σmn, I11〉〈σmn, I11|+ |σmn, 1〉〈σmn, 1|+ |σmn, h〉〈σmn, h|

]
.

(D.23)

That the projectors in each block are orthogonal to those in different blocks can be verified
by examining the inner products presented in section D.3.

Looking at only one block of the Hamiltonian, we can split the terms into two vectors:

− H h,kL
σ,n =

[∑
m

|I11, σmn〉〈I11, σmn|+
∑

m

|σmn, 1〉〈σmn, 1|
]

+
[∑

m

|σmn, I11〉〈σmn, I11|+
∑

m

|σmn, h〉〈σmn, h|
]
. (D.24)

We can bound the length of each of these vectors individually by considering them as
sub-Hamiltonians:

−HA =

∑
m

|I11, σmn〉〈I11, σmn|+
∑

m

|σmn, 1〉〈σmn, 1|, (D.25)

−HB =

∑
m

|σmn, I11〉〈σmn, I11|+
∑

m

|σmn, h〉〈σmn, h|. (D.26)

Each of these sub-Hamiltonians can be further block diagonalized by m:

−H m
A = |I11, σmn〉〈I11, σmn|+ |σmn, 1〉〈σmn, 1|, (D.27)

−H m
B = |σmn, I11〉〈σmn, I11|+ |σmn, h〉〈σmn, h|. (D.28)

We can solve these sub-Hamiltonians in each block by calculating the overlap of the two
projectors (these calculations are shown in section D.3):

〈I11, σmn|σmn, 1〉 =
1
√
|G|

, (D.29)

〈σmn, I11|σmn, h〉 =
1
√
|G|

. (D.30)

It can be shown that the eigenvalues of these sub-Hamiltonians will then be

λm =−1± |C |, (D.31)

where C is the inner product calculated above. As such, we can say that the norms of the sub-
Hamiltonians are equal, independent of m block, and have the value 1 + 1

√
|G|

. Importantly, their
length is independent of the choice of σmn, πi j , h and kL.

In terms of the full Hamiltonian and block structure, we have two vectors whose lengths
are constant for a given group. We can then bound the eigenvalues of the full Hamiltonian as
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follows. We can use a triangle inequality argument to give

‖H h,kL
σ,n ‖6

∥∥∥∑
m

|I11, σmn〉〈I11, σmn|+
∑

m

|σmn, 1〉〈σmn, 1|
∥∥∥

+
∥∥∥∑

m

|σmn, I11〉〈σmn, I11|+
∑

m

|σmn, h〉〈σmn, h|
∥∥∥. (D.32)

We know that each individual vector has a constant length. We also know that this
inequality will only be saturated when the two vectors are parallel (which will only happen when
they are equal). This is also when σ = I , n = 1 and h = e. As desired, there is no dependence
on kL.

Since the eigenvectors of H are nonpositive, the largest magnitude eigenvalue will
correspond to the ground space. The triangle inequality argument amounts to showing that
the ground state must rest in the block defined by H 1,kL

I,1 . By inspection, there will be two
independent eigenvectors in this block for each value of kL (we return the h index, but the
kL index remains suppressed here)

|ψ±〉 = |I11, 1, 1〉± |I11, 1, I11〉 (D.33)

with eigenvalues

λ± =−2

(
1±

1
√
|G|

)
.

Clearly |ψ+〉 defines a |G|-fold degenerate ground space of our system. It is simple to verify
that the stabilizers have the desired relations with this state∑

g

Sg
L |ψ+〉 = |ψ+〉, (D.34)

S1
T |ψ+〉 = |ψ+〉 (D.35)

and thus the Hamiltonian (78) behaves as claimed. �

D.3. Useful inner products

Here we wish to calculate inner products between states in the gauge representation basis and
the gauge element basis. In general, we have

〈σmn, h, πi j , kL|σ
′

m′n′, h′, kG, k ′L〉 =

√
dπdσ ′dσ
|G|3/2

∑
gπ ,gσ ,gσ ′

[π(gπgσ )]
∗

i j [σ(gσ )]
∗

mn[σ ′(gσ ′)]m′n′

×〈gσ , g−1
σ hgσ , gπ , kL|gσ ′, g−1

σ ′ h′gσ ′, kG, k ′L〉 (D.36)

=

√
dπdσ ′dσ
|G|3/2

∑
gπ ,gσ ,gσ ′

[π(gπgσ )]
∗

i j [σ(gσ )]
∗

mnσ
′(gσ ′)]m′n′δgσ gσ ′δhh′δgπ kGδkLk′L (D.37)

=

√
dπdσ ′dσ
|G|3/2

δhh′δkLk′L

∑
gσ

[π(kGgσ )]
∗

i j [σ(gσ )]
∗

mn[σ ′(gσ )]m′n′ . (D.38)
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In particular, the special cases we are interested can be simplified. With I the trivial
representation, we have

〈σmn, h, I11, kL|σ
′

m′n′, h′, kG, k ′L〉 =

√
dσ ′dσ
|G|3/2

δhh′δkLk′L

∑
gσ

[σ(gσ )]
∗

mn[σ ′(gσ )]m′n′ (D.39)

=
1

|G|1/2
δhh′δkLk′Lδσσ ′δmm′δnn′ ∀kG (D.40)

and

〈I11, h, πi j , kL|σ
′

m′n′, h′, kG, k ′L〉 =

√
dπdσ ′

|G|3/2
δhh′δkLk′L

∑
gσ

[π(kGgσ )]
∗

i j [σ
′(nR)]m′n′ (D.41)

=

√
dπdσ ′

|G|3/2
δhh′δkLk′L

∑
gσ

∑
s

[π(kG)]
∗

is[π(gσ )]
∗

s j [σ
′(nR)]m′n′ (D.42)

=
1

|G|1/2
δhh′δkLk′Lδπσ ′δ jn′[π(kG)]

∗

im′, (D.43)

particularly,

〈I11, h, πi j , kL|σ
′

m′n′, h′, 1, k ′L〉 =
1

|G|1/2
δhh′δkLk′LδG R′δim′δ jn′ ∀kG. (D.44)

The orthonormality of the gauge representation basis is also useful when written in the
form

〈I11, h, πi j , kL|σmn, h′, I11, k ′L〉 = δπσδσ Iδi1δnjδm1δn1δhh′δkLk′L . (D.45)

Appendix E. Error operations in general quantum double models

In the case of cyclic quantum double models, we were able to provide a simple general argument
as to why many of the terms in the effective Hamiltonian vanished. In the more general case,
this kind of simple argument is no longer applicable, and so we are forced to take an exhaustive
survey of the terms that may arise in the effective Hamiltonian. We aim to show that any
undesired terms will vanish in the ground space.

In order to undertake this study, it is useful to note the following relations:

Z
πi j
± Lg

± =

∑
k

[π(g)]ik Lg
±Z

πk j
± , (E.1)

Z
πi j
± Lg

∓ =

∑
k

Lg
∓Zπik
±

[π(g−1)]k j . (E.2)

The kinds of operators we consider will take the form

za =
Z
πij
−
I

Zσkl+
I

, zb =
I
Z
πij
−

I
Zσkl+

, z ,c =
I
I
Z
πij
+
Zσkl+

, zd =
Z
πij
−
Zσkl−

I
I

la =
Lg+
I
Lg

′
+
I

, lb =
I
Lg−

I

Lg
′
−
, lc = .

I
I

Lg+
Lg

′
−
, ld =

Lg+
Lg

′
−

I
I

(E.3)
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We will refer to these as ‘error terms’ or ‘error operators’. For each error term Ê , we will
calculate ϒ Êϒ , where ϒ is the projector on to the ground state. Note that ϒ = Sϒ for either
of the stabilizers ST or SL . First consider the error term zc:

ϒzcϒ = ϒzc SLϒ (E.4)

=
1

|G|

∑
g

ϒzc Sg
Lϒ (E.5)

=
1
|G|

g

Υ
Lg

−1
−
Lg

−1
+

Z
πij
+ L

g−1
−

Zσkl+ L
g−1
+

Υ (E.6)

=
1
|G|

g

Υ(Sg
−1
L )†

m,n

[π(g)]mj [σ(g−1)]kn
I
I
Zπim+
Zσnl+

Υ. (E.7)

Now, because the ground state is stabilized by the projector SL , it is easy to check that it
must also be stabilized by each of Sg

L individually. This allows us to write

ΥzcΥ =
1
|G|Υ

m,n,g

[π(g)]mj [σ(g−1)]kn
I
I
Zπim+
Zσnl+

Υ, (E.8)

=
1
|G|Υ

m,n,g

[π(g)]mj [σ(g)]∗nk
I
I
Zπim+
Zσnl+

Υ, (E.9)

where we have used the unitarity of the representation σ in the last line. Now we make use of
the grand orthogonality theorem for unitary representations:∑

g

[π(g)]∗i j [σ(g)]kl =
|G|

dπ
δπσδikδ jl (E.10)

and we can write

ΥzcΥ = Υ
m,n

1
dπ
δπσδmnδjk

I
I
Zπim+
Zσnl+

Υ (E.11)

= Υ
m

1
dπ
δπσδjk

I
I
Zπim+
Zσml+

Υ. (E.12)

This gives us the result that all errors of this type will vanish from the effective Hamiltonian
unless they satisfy the conditions π = σ and j = k. It also allows us to rewrite an operator of
the form zc satisfying these conditions as an average over the shared index in the ground state.
This will become important when we performed the perturbation calculations.

We can find analogous results for the other z-error terms,

ΥzdΥ = Υ
m,n,g

[π(g−1)]im[σ(g)]nl
Z
πmj
−
Zσkn−

I
I
Υ

(E.13)
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= Υ
m

1
dπ
δπσδil

Z
πmj
−
Zσkm−

I
I
Υ, (E.14)

ΥzaΥ = Υ
m,n,g

[π(g−1)]im[σ(g)]nl
Z
πmj
−
I

Zσkn+
I

Υ (E.15)

= Υ
m

1
dπ
δπσδil

Z
πmj
−
I

Zσkm+
I

Υ, (E.16)

ΥzbΥ = Υ
m,n,g

[π(g)]mj [σ(g−1)]kn
I
Zπim−

I
Zσnl+

Υ (E.17)

= Υ
m

1
dπ
δπσδjk

I
Zπim−

I
Zσml+

Υ. (E.18)

The l error terms require a slightly different treatment. Consider first la:

ϒlaϒ = ϒla S1
Tϒ (E.19)

= Υ
g1g2g3g4=1

Lg+T
g1
−

T g4−
Lg

′
+T

g2
+

T g3+
Υ (E.20)

= Υ
g1g2g3g4=1

T g1g
−1

−
T g4−

T g
′g2
+
T g3+

laΥ (E.21)

= Υ
g1gg′−1g2g3g4=1

T g1−
T g4−

T g2+
T g3+

laΥ. (E.22)

The first operator is now orthogonal to the projector S1
T unless g′g−1

= 1. Because the
ground space is stabilized by S1

T , we can say that this vanishes unless g = g′. This gives

ΥlaΥ = Υδgg′
Lg+
I
Lg

′
+
I

Υ. (E.23)

i.e. error terms of the form la will vanish unless they obey g = g′. The procedure for lb proceeds
similarly to yield

ΥlbΥ = Υ
g1g2g3g′g−1g4=1

T g1−
T g4−

T g2+
T g3+

lbΥ (E.24)

= Υδgg′
I
Lg−

I

Lg
′
−
Υ. (E.25)
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The error operators lc and ld are more complicated:

ΥlcΥ = Υlc
g1g2g3g4=1

T g1−
T g4−

T gg2+
T g3g

′−1
+

Υ. (E.26)

We can imagine the second operator acting on the state |ha, hb, kG, kL〉. This leads to this
operator vanishing unless

h−1
a g−1kLg′k−1

L hahb = 1.

In the ground subspace, we know hb = 1; this implies that

g = kLg′k−1
L , (E.27)

i.e. the nonvanishing operators of the form lc depend explicitly on the logical state. A similar
result is obtained for the error term ld :

ΥldΥ = Υld
g1g2g3g4=1

T g1g
−1

−
T g

′g4
−

T g2+
T g3+

Υ. (E.28)

The second operator vanishes unless

h−1
a gkLg′−1k−1

L hahb = 1. (E.29)

In the codespace this is equivalent to

g = kLg′k−1
L . (E.30)

There are two remaining kinds of terms that will arise in our perturbation treatment. They
may take a diagonal form, e.g.

Ê ∼ Â
I

I

B̂

in which case they will not contribute to low-order terms (and will have little impact on the form
of higher-order terms). A similar treatment to appendix E and equations (95)–(104) reveals that
these operators act as both gauge and logical operators, just as in the cyclic case.

Alternatively, error operators may consist of mixed L and Z operators, e.g.

Ê ∼ Z
πij
−
I

Lg+
I

It is a simple calculation to show that these kinds of operators will vanish except when
π = I (the trivial representation) and g = 1. That is, the only nonvanishing operator of this
form is the identity operator. These results show that the encoding we use will indeed
prevent undesirable excitations from being permitted, leaving only the terms from the target
Hamiltonian to arise in our perturbative treatment.
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