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Preface

1 Preface

Many students find that the obligatory Statistics course comes as a shock. The set textbook is
difficult, the curriculum is vast, and secondary-school maths feels infinitely far away.

“Statistics” offers friendly instruction on the core areas of these subjects. The focus is overview.
And the numerous examples give the reader a “recipe” for solving all the common types of exer-
cise. You can download this book free of charge.
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2 Basic concepts of probability theory

2.1 Probability space, probability function, sample space, event

A probability space is a pair (Ω, P ) consisting of a set Ω and a function P which assigns to each
subset A of Ω a real number P (A) in the interval [0, 1]. Moreover, the following two axioms are
required to hold:

1. P (Ω) = 1,

2. P (
⋃∞

n=1 An) =
∑∞

n=1 P (An) if A1, A2, . . . is a sequence of pairwise disjoint subsets of Ω.

The set Ω is called a sample space. The elements ω ∈ Ω are called sample points and the subsets
A ⊆ Ω are called events. The function P is called a probability function. For an event A, the
real number P (A) is called the probability of A.

From the two axioms the following consequences can be deduced:

3. P (Ø) = 0,

4. P (A\B) = P (A) − P (B) if B ⊆ A,

5. P (�A) = 1 − P (A),

6. P (A) � P (B) if B ⊆ A,

7. P (A1 ∪ · · · ∪ An) = P (A1) + · · · + P (An) if A1, . . . , An are pairwise disjoint events,

8. P (A ∪ B) = P (A) + P (B) − P (A ∩ B) for arbitrary events A and B.

EXAMPLE. Consider the set Ω = {1, 2, 3, 4, 5, 6}. For each subset A of Ω, define

P (A) =
#A

6
,

where #A is the number of elements in A. Then the pair (Ω, P ) is a probability space. One can
view this probability space as a model for the for the situation “throw of a dice”.

EXAMPLE. Now consider the set Ω = {1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6}. For each subset A of Ω,
define

P (A) =
#A

36
.

Now the probability space (Ω, P ) is a model for the situation “throw of two dice”. The subset

A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

is the event “a pair”.

2.2 Conditional probability

For two events A and B the conditional probability of A given B is defined as

P (A | B) :=
P (A ∩ B)

P (B)
.

12
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We have the following theorem called computation of probability by division into possible causes:
Suppose A1, . . . , An are pairwise disjoint events with A1 ∪ · · · ∪ An = Ω. For every event B it
then holds that

P (B) = P (A1) · P (B | A1) + · · · + P (An) · P (B | An) .

EXAMPLE. In the French Open final, Nadal plays the winner of the semifinal between Federer
and Davydenko. A bookmaker estimates that the probability of Federer winning the semifinal is
75%. The probability that Nadal can beat Federer is estimated to be 51%, whereas the probability
that Nadal can beat Davydenko is estimated to be 80%. The bookmaker therefore computes the
probability that Nadal wins the French Open, using division into possible causes, as follows:

P (Nadal wins the final) = P (Federer wins the semifinal)×
P (Nadal wins the final|Federer wins the semifinal)+
P (Davydenko wins the semifinal)×
P (Nadal wins the final|Davydenko wins the semifinal)

= 0.75 · 0.51 + 0.25 · 0.8
= 58.25%

A N N O N C E
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2.3 Independent events

Two events A and B are called independent, if

P (A ∩ B) = P (A) · P (B) .

Equivalent to this is the condition P (A | B) = P (A), i.e. that the probability of A is the same as
the conditional probability of A given B.

Remember: Two events are independent if the probability of one of them is not affected by
knowing whether the other has occurred or not.

EXAMPLE. A red and a black dice are thrown. Consider the events

A: red dice shows 6,
B: black dice show 6.

Since
P (A ∩ B) =

1
36

=
1
6
· 1
6

= P (A) · P (B) ,

A and B are independent. The probability that the red dice shows 6 is not affected by knowing
anything about the black dice.

EXAMPLE. A red and a black dice are thrown. Consider the events

A: the red and the black dice show the same number,
B: the red and the black dice show a total of 10.

Since
P (A) =

1
6

, but P (A | B) =
1
3

,

A and B are not independent. The probability of two of a kind increases if one knows that the sum
of the dice is 10.

2.4 The Inclusion-Exclusion Formula

Formula 8 on page 12 has the following generalization to three events A, B, C:

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C) .

This equality is called the Inclusion-Exclusion Formula for three events.

EXAMPLE. What is the probability of having at least one 6 in three throws with a dice? Let A1 be
the event that we get a 6 in the first throw, and define A2 and A3 similarly. Then, our probability
can be computed by inclusion-exclusion:

P = P (A1 ∪ A2 ∪ A3)
= P (A1) + P (A2) + P (A3) − P (A1 ∩ A2) − P (A1 ∩ A3) − P (A2 ∩ A3)

+P (A1 ∩ A2 ∩ A3)

=
1
6

+
1
6

+
1
6
− 1

62
− 1

62
− 1

62
+

1
63

≈ 41%

14
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The following generalization holds for n events A1, A2, . . . , An with union A = A1 ∪ · · · ∪ An:

P (A) =
∑

i

P (Ai) −
∑
i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak) − · · · ± P (A1 ∩ · · · ∩ An) .

This equality is called the Inclusion-Exclusion Formula for n events.

EXAMPLE. Pick five cards at random from an ordinary pack of cards. We wish to compute the
probability P (B) of the event B that all four suits appear among the 5 chosen cards.

For this purpose, let A1 be the event that none of the chosen cards are spades. Define A2, A3,
and A4 similarly for hearts, diamonds, and clubs, respectively. Then

�B = A1 ∪ A2 ∪ A3 ∪ A4 .

The Inclusion-Exclusion Formula now yields

P (�B) =
∑

i

P (Ai) −
∑
i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak) − P (A1 ∩ A2 ∩ A3 ∩ A4) ,

that is

P (�B) = 4 ·

(
39
5

)

(
52
5

) − 6 ·

(
26
5

)

(
52
5

) + 4 ·

(
13
5

)

(
52
5

) − 0 ≈ 73.6%

We thus obtain the probability

P (B) = 1 − P (�B) = 26.4%

EXAMPLE. A school class contains n children. The teacher asks all the children to stand up and
then sit down again on a random chair. Let us compute the probability P (B) of the event B that
each pupil ends up on a new chair.

We start by enumerating the pupils from 1 to n. For each i we define the event

Ai : pupil number i gets his or her old chair

Then
�B = A1 ∪ · · · ∪ An .

Now P (�B) can be computed by the Inclusion-Exclusion Formula for n events:

P (�B) =
∑

i

P (Ai) −
∑
i<j

P (Ai ∩ Aj) + · · · ± P (A1 ∩ · · · ∩ An) ,

thus

P (�B) =

(
n

1

)
1
n
−

(
n

2

)
1

n(n − 1)
+ · · · ±

(
n

n

)
1
n!

= 1 − 1
2!

+ · · · ± 1
n!

15
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We conclude
P (B) = 1 − P (�B) =

1
2!

− 1
3!

+
1
4!

− · · · ± 1
n!

It is a surprising fact that this probability is more or less independent of n: P (B) is very close to
37% for all n ≥ 4.

2.5 Binomial coefficients

The binomial coefficient

(
n

k

)
(read as “n over k”) is defined as

(
n

k

)
=

n!
k!(n − k)!

=
1 · 2 · 3 · · ·n

1 · 2 · · · k · 1 · 2 · · · (n − k)

for integers n and k with 0 � k � n. (Recall the convention 0! = 1.)
The reason why binomial coefficients appear again and again in probability theory is the fol-

lowing theorem:

The number of ways of choosing k elements from a set of n elements is

(
n

k

)
.

A N N O N C E
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For example, the number of subsets with 5 elements (poker hands) of a set with 52 elements (a
pack of cards) is equal to (

52
5

)
= 2598960 .

An easy way of remembering the binomial coefficients is by arranging them in Pascal’s tri-
angle where each number is equal to the sum of the numbers immediately above:

(
0
0

)
1

(
1
0

) (
1
1

)
1 1

(
2
0

) (
2
1

) (
2
2

)
1 2 1

(
3
0

) (
3
1

) (
3
2

) (
3
3

)
1 3 3 1

(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
1 4 6 4 1

(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
1 5 10 10 5 1

(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
1 6 15 20 15 6 1

...
...

One notices the rule (
n

n − k

)
=

(
n

k

)
, e.g.

(
10
7

)
=

(
10
3

)
.

2.6 Multinomial coefficients

The multinomial coefficients are defined as(
n

k1 · · · kr

)
=

n!
k1! · · · kr!

for integers n and k1, . . . , kr with n = k1 + · · ·+ kr. The multinomial coefficients are also called
generalized binomial coefficients since the binomial coefficient

(
n

k

)

is equal to the multinomial coefficient (
n

k l

)

with l = n − k.
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3 Random variables

3.1 Random variables, definition

Consider a probability space (Ω, P ). A random variable is a map X from Ω into the set of real
numbers R.

Normally, one can forget about the probability space and simply think of the following rule of
thumb:

Remember: A random variable is a function taking different values with different probabilities.

The probability that the random variable X takes certain values is written in the following way:

P (X = x): the probability that X takes the value x ∈ R,
P (X < x): the probability that X takes a value smaller than x,
P (X > x): the probability that X takes a value greater than x,
etc.

One has the following rules:

P (X ≤ x) = P (X < x) + P (X = x)
P (X ≥ x) = P (X > x) + P (X = x)

1 = P (X < x) + P (X = x) + P (X > x)

3.2 The distribution function

The distribution function of a random variable X is the function F : R → R given by

F (x) = P (X ≤ x) .

F (x) is an increasing function with values in the interval [0, 1] and moreover satisfies F (x) → 1
for x → ∞, and F (x) → 0 for x → −∞.

By means of F (x), all probabilities of X can be computed:

P (X < x) = limε→0 F (x − ε)
P (X = x) = F (x) − limε→0 F (x − ε)
P (X ≥ x) = 1 − limε→0 F (x − ε)
P (X > x) = 1 − F (x)
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3.3 Discrete random variables, point probabilities

A random variable X is called discrete if it takes only finitely many or countably many values.
For all practical purposes, we may define a discrete random variable as a random variable taking
only values in the set {0, 1, 2, . . . }. The point probabilities

P (X = k)

determine the distribution of X . Indeed,

P (X ∈ A) =
∑
k∈A

P (X = k)

for any A ⊆ {0, 1, 2, . . . }. In particular we have the rules

P (X ≤ k) =
∑k

i=0 P (X = i)

P (X ≥ k) =
∑∞

i=k P (X = i)

The point probabilities can be graphically illustrated by means of a pin diagram:

A N N O N C E
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3.4 Continuous random variables, density function

A random variable X is called continuous if it has a density function f(x). The density function,
usually referred to simply as the density, satisfies

P (X ∈ A) =
∫

t∈A
f(t)dt

for all A ⊆ R. If A is an interval [a, b] we thus have

P (a ≤ X ≤ b) =
∫ b

a
f(t)dt .

One should think of the density as the continuous analogue of the point probability function in the
discrete case.

3.5 Continuous random variables, distribution function

For a continuous random variable X with density f(x) the distribution function F (x) is given by

F (x) =
∫ x

−∞
f(t)dt .

The distribution function satisfies the following rules:

P (X ≤ x) = F (x)

P (X ≥ x) = 1 − F (x)

P (|X| ≤ x) = F (x) − F (−x)

P (|X| ≥ x) = F (−x) + 1 − F (x)

3.6 Independent random variables

Two random variables X and Y are called independent if the events X ∈ A and Y ∈ B are in-
dependent for any subsets A, B ⊆ R. Independence of three or more random variables is defined
similarly.

Remember: X and Y are independent if nothing can be deduced about the value of Y from
knowing the value of X .

20
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Expected value and variance

EXAMPLE. Throw a red dice and a black dice and consider the random variables

X: number of pips of red dice,
Y : number of pips of black dice,
Z: number of pips of red and black dice in total.

X and Y are independent since we can deduce nothing about X by knowing Y . In contrast, X

and Z are not independent since information about Z yields information about X (if, for example,
Z has the value 10, then X necessarily has one of the values 4, 5 and 6).

3.7 Random vector, simultaneous density, and distribution function

If X1, . . . ,Xn are random variables defined on the same probability space (Ω, P ) we call X =
(X1, . . . ,Xn) an (n-dimensional) random vector. It is a map

X : Ω → Rn .

The simultaneous (n-dimensional) distribution function is the function F : Rn → [0, 1] given by

F(x1, . . . , xn) = P (X1 ≤ x1 ∧ · · · ∧ Xn ≤ xn) .

Suppose now that the Xi are continuous. Then X has a simultaneous (n-dimensional) density
f : Rn → [0,∞[ satisfying

P (X ∈ A) =
∫

x∈A
f(x) dx

for all A ⊆ Rn. The individual densities fi of the Xi are called marginal densities, and we obtain
them from the simultaneous density by the formula

f1(x1) =
∫

Rn−1

f(x1, . . . , xn) dx2 . . . dxn

stated here for the case f1(x1).

Remember: The marginal densities are obtained from the simultaneous density by “integrating
away the superfluous variables”.

4 Expected value and variance

4.1 Expected value of random variables

The expected value of a discrete random variable X is defined as

E(X) =
∞∑

k=1

P (X = k) · k .

The expected value of a continuous random variable X with density f(x) is defined as

E(X) =
∫ ∞

−∞
f(x) · x dx .

Often, one uses the Greek letter µ (“mu”) to denote the expected value.

21
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4.2 Variance and standard deviation of random variables

The variance of a random variable X with expected value E(X) = µ is defined as

var(X) = E((X − µ)2) .

If X is discrete, the variance can be computed thus:

var(X) =
∞∑

k=0

P (X = k) · (k − µ)2 .

If X is continuous with density f(x), the variance can be computed thus:

var(X) =
∫ ∞

−∞
f(x)(x − µ)2 dx .

The standard deviation σ (“sigma”) of a random variable X is the square root of the variance:

σ(X) =
√

var(X) .

A N N O N C E
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4.3 Example (computation of expected value, variance, and standard deviation)

EXAMPLE 1. Define the discrete random variable X as the number of pips shown by a certain
dice. The point probabilities are P (X = k) = 1/6 for k = 1, 2, 3, 4, 5, 6. Therefore, the expected
value is

E(X) =
6∑

k=1

1
6
· k =

1 + 2 + 3 + 4 + 5 + 6
6

= 3.5 .

The variance is

var(X) =
6∑

k=1

1
6
· (k − 3.5)2 =

(1 − 3.5)2 + (2 − 3.5)2 + · · · + (6 − 3.5)2

6
= 2.917 .

The standard deviation thus becomes

σ(X) =
√

2.917 = 1.708 .

EXAMPLE 2. Define the continuous random variable X as a random real number in the interval
[0, 1]. X then has the density f(x) = 1 on [0, 1]. The expected value is

E(X) =
∫ 1

0
x dx = 0.5 .

The variance is

var(X) =
∫ 1

0
(x − 0.5)2 dx = 0.083 .

The standard deviation is
σ =

√
0.083 = 0.289 .

4.4 Estimation of expected value µ and standard deviation σ by eye

If the density function (or a pin diagram showing the point probabilities) of a random variable is
given, one can estimate µ and σ by eye. The expected value µ is approximately the “centre of
mass” of the distribution, and the standard deviation σ has a size such that more or less two thirds
of the “probability mass” lie in the interval µ ± σ.

23
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4.5 Addition and multiplication formulae for expected value and variance

Let X and Y be random variables. Then one has the formulae

E(X + Y ) = E(X) + E(Y )
E(aX) = a · E(X)
var(X) = E(X2) − E(X)2

var(aX) = a2 · var(X)
var(X + a) = var(X)

for every a ∈ R. If X and Y are independent, one has moreover

E(X · Y ) = E(X) · E(Y )
var(X + Y ) = var(X) + var(Y )

Remember: The expected value is additive. For independent random variables, the expected value
is multiplicative and the variance is additive.

4.6 Covariance and correlation coefficient

The covariance of two random variables X and Y is the number

Cov(X, Y ) = E((X − EX)(Y − EY )) .

One has
Cov(X, X) = var(X)
Cov(X, Y ) = E(X · Y ) − EX · EY

var(X + Y ) = var(X) + var(Y ) + 2 · Cov(X, Y )

The correlation coefficient ρ (“rho”) of X and Y is the number

ρ =
Cov(X,Y )

σ(X) · σ(Y )
,

where σ(X) =
√

var(X) and σ(Y ) =
√

var(Y ) are the standard deviations of X and Y . It is
here assumed that neither standard deviation is zero. The correlation coefficient is a number in the
interval [−1, 1]. If X and Y are independent, both the covariance and ρ equal zero.

Remember: A positive correlation coefficient implies that normally X is large when Y large, and
vice versa. A negative correlation coefficient implies that normally X is small when Y is large,
and vice versa.

EXAMPLE. A red and a black dice are thrown. Consider the random variables

X: number of pips of red dice,
Y : number of pips of red and black dice in total.
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Expected value and variance

If X is large, Y will normally be large too, and vice versa. We therefore expect a positive correla-
tion coefficient. More precisely, we compute

E(X) = 3.5
E(Y ) = 7

E(X · Y ) = 27.42
σ(X) = 1.71
σ(Y ) = 2.42

The covariance thus becomes

Cov(X, Y ) = E(X · Y ) − E(X) · E(Y ) = 27.42 − 3.5 · 7 = 2.92 .

As expected, the correlation coefficient is a positive number:

ρ =
Cov(X, Y )

σ(X) · σ(Y )
=

2.92
1.71 · 2.42

= 0.71 .
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The Law of Large Numbers

5 The Law of Large Numbers

5.1 Chebyshev’s Inequality

For a random variable X with expected value µ and variance σ2, we have Chebyshev’s Inequal-
ity:

P (|X − µ| ≥ a) ≤ σ2

a2

for every a > 0.

5.2 The Law of Large Numbers

Consider a sequence X1, X2, X3, . . . of independent random variables with the same distribution
and let µ be the common expected value. Denote by Sn the sums

Sn = X1 + · · · + Xn .

The Law of Large Numbers then states that

P

(∣∣∣∣
Sn

n
− µ

∣∣∣∣ > ε

)
→ 0 for n → ∞

for every ε > 0. Expressed in words:

The mean value of a sample from any given distribution converges to the expected value of that
distribution when the size n of the sample approaches ∞.

5.3 The Central Limit Theorem

Consider a sequence X1, X2, X3, . . . of independent random variables with the same distribution.
Let µ be the common expected value and σ2 the common variance. It is assumed that σ2 is positive.
Denote by S′

n the normed sums

S′
n =

X1 + · · · + Xn − nµ

σ
√

n
.

By “normed” we understand that the S′
n have expected value 0 and variance 1. The Central Limit

Theorem now states that
P (S′

n ≤ x) → Φ(x) for n → ∞

for all x ∈ R, where Φ is the distribution function of the standard normal distribution (see section
15.4):

Φ(x) =
∫ x

−∞

1√
2π

e−
1
2
t2dt .

The distribution function of the normed sums S′
n thus converges to Φ when n converges to ∞.

This is a quite amazing result and the absolute climax of probability theory! The surprising
thing is that the limit distribution of the normed sums is independent of the distribution of the Xi.
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Descriptive statistics

5.4 Example (distribution functions converge to Φ)

Consider a sequence of independent random variables X1, X2, . . . all having the same point prob-
abilities

P (Xi = 0) = P (Xi = 1) =
1
2
.

The sums Sn = X1 + · · · + Xn are binomially distributed with expected value µ = n/2 and
variance σ2 = n/4. The normed sums thus become

S′
n =

X1 + · · · + Xn − µ/2√
n/2

.

The distribution of the S′
n is given by the distribution function Fn. The Central Limit Theorem

states that Fn converges to Φ for n → ∞. The figure below shows Fn together with Φ for n =
1, 2, 10, 100. It is a moment of extraordinary beauty when one watches the Fn slowly approaching
Φ:

6 Descriptive statistics

6.1 Median and quartiles

Suppose we have n observations x1, . . . , xn. We then define the median x(0.5) of the observations
as the “middle observation”. More precisely,

x(0.5) =

{
x(n+1)/2 if n is odd

(xn/2 + xn/2+1)/2 if n is even

where the observations have been sorted according to size as

x1 ≤ x2 ≤ · · · ≤ xn .
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Descriptive statistics

Similarly, the lower quartile x(0.25) is defined such that 25% of the observations lie below
x(0.25), and the upper quartile x(0.75) is defined such that 75% of the observations lie below
x(0.75).

The interquartile range is the distance between x(0.25) and x(0.75), i.e. x(0.75)−x(0.25).

6.2 Mean value

Suppose we have n observations x1, . . . , xn. We define the mean or mean value of the observa-
tions as

x̄ =
∑n

i=1 xi

n

6.3 Empirical variance and empirical standard deviation

Suppose we have n observations x1, . . . , xn. We define the empirical variance of the observa-
tions as

s2 =
∑n

i=1(xi − x̄)2

n − 1
.

A N N O N C E
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Statistical hypothesis testing

The empirical standard deviation is the square root of the empirical variance:

s =

√∑n
i=1(xi − x̄)2

n − 1
.

The greater the empirical standard deviation s is, the more “dispersed” the observations are around
the mean value x̄.

6.4 Empirical covariance and empirical correlation coefficient

Suppose we have n pairs of observations (x1, y1), . . . , (xn, yn). We define the empirical covari-
ance of these pairs as

Covemp =
∑n

i=1(xi − x̄)(yi − ȳ)
n − 1

.

Alternatively, Covemp can be computed as

Covemp =
∑n

i=1 xiyi − nx̄ȳ

n − 1
.

The empirical correlation coefficient is

r =
empirical covariance

(empirical standard deviation of the x)(empirical standard deviation of the y)
=

Covemp

sxsy
.

The empirical correlation coefficient r always lies in the interval [−1, 1].

Understanding of the empirical correlation coefficient. If the x-observations are independent of
the y-observations, then r will be equal or close to 0. If the x-observations and the y-observations
are dependent in such a way that large x-values usually correspond to large y-values, and vice
versa, then r will be equal or close to 1. If the x-observations and the y-observations are dependent
in such a way that large x-values usually correspond to small y-values, and vice versa, then r will
be equal or close to –1.

7 Statistical hypothesis testing

7.1 Null hypothesis and alternative hypothesis

A statistical test is a procedure that leads to either acceptance or rejection of a null hypothesis
H0 given in advance. Sometimes H0 is tested against an explicit alternative hypothesis H1.

At the base of the test lie one or more observations. The null hypothesis (and the alternative
hypothesis, if any) concern the question which distribution these observations were taken from.

7.2 Significance probability and significance level

One computes the significance probability P , that is the probability – if H0 is true – of obtaining
an observation which is as extreme, or more extreme, than the one given. The smaller P is, the
less plausible H0 is.
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The binomial distribution Bin(n,p)

Often, one chooses a significance level α in advance, typically α = 5%. One then rejects H0

if P is smaller than α (and one says, “H0 is rejected at significance level α”). If P is greater than
α, then H0 is accepted (and one says, “H0 is accepted at significance level α” or “H0 cannot be
rejected at significance level α”).

7.3 Errors of type I and II

We speak about a type I error if we reject a true null hypothesis. If the significance level is α,
then the risk of a type I error is at most α.

We speak about a type II error if we accept a false null hypothesis.
The strength of a test is the probability of rejecting a false H0. The greater the strength, the

smaller the risk of a type II error. Thus, the strength should be as great as possible.

7.4 Example

Suppose we wish to investigate whether a certain dice is fair. By “fair” we here only understand
that the probability p of a six is 1/6. We test the null hypothesis

H0 : p =
1
6

(the dice is fair)

against the alternative hypothesis

H1 : p >
1
6

(the dice is biased)

The observations on which the test is carried out are the following ten throws of the dice:

2, 6, 3, 6, 5, 2, 6, 6, 4, 6 .

Let us in advance agree upon a significance level α = 5%. Now the significance probability P

can be computed. By “extreme observations” is understood that there are many sixes. Thus, P is
the probability of having at least five sixes in 10 throws with a fair dice. We compute

P =
10∑

k=5

(
10
k

)
(1/6)k(5/6)10−k = 0.015

(see section 8 on the binomial distribution). Since P = 1.5% is smaller than α = 5%, we reject
H0. If the same test was performed with a fair dice, the probability of committing a type I error
would be 1.5%.

8 The binomial distribution Bin(n, p)

8.1 Parameters

n: number of tries
p: probability of success

In the formulae we also use the “probability of failure” q = 1 − p.
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The binomial distribution Bin(n,p)

8.2 Description

We carry out n independent tries that each result in either success or failure. In each try the
probability of success is the same, p. Consequently, the total number of successes X is binomially
distributed, and we write X ∼ Bin(n, p). X is a discrete random variable and takes values in the
set {0, 1, . . . , n}.

8.3 Point probabilities

For k ∈ {0, 1, . . . , n}, the point probabilities in a Bin(n, p) distribution are

P (X = k) =
(

n

k

)
· pk · qn−k .

See section 2.5 regarding the binomial coefficients

(
n

k

)
.

EXAMPLE. If a dice is thrown twenty times, the total number of sixes, X , will be binomially
distributed with parameters n = 20 and p = 1/6. We can list the point probabilities P (X = k)

A N N O N C E
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The binomial distribution Bin(n,p)

and the cumulative probabilities P (X ≥ k) in a table (expressed as percentages):

k 0 1 2 3 4 5 6 7 8 9
P (X = k) 2.6 10.4 19.8 23.8 20.2 12.9 6.5 2.6 0.8 0.2
P (X ≥ k) 100 97.4 87.0 67.1 43.3 23.1 10.2 3.7 1.1 0.3

8.4 Expected value and variance

Expected value: E(X) = np.

Variance: var(X) = npq.

8.5 Significance probabilities for tests in the binomial distribution

We perform n independent experiments with the same probability of success p and count the
number k of successes. We wish to test the null hypothesis H0 : p = p0 against an alternative
hypothesis H1.

H0 H1 Significance probability
p = p0 p > p0 P (X ≥ k)
p = p0 p < p0 P (X ≤ k)
p = p0 p �= p0

∑
l P (X = l)

where in the last line we sum over all l for which P (X = l) ≤ P (X = k).

EXAMPLE. A company buys a machine that produces microchips. The manufacturer of the ma-
chine claims that at most one sixth of the produced chips will be defective. The first day the
machine produces 20 chips of which 6 are defective. Can the company reject the manufacturer’s
claim on this background?

SOLUTION. We test the null hypothesis H0 : p = 1/6 against the alternative hypothesis H1 :
p > 1/6. The significance probability can be computed as P (X ≥ 6) = 10.2% (see e.g. the table
in section 8.3). We conclude that the company cannot reject the manufacturer’s claim at the 5%
level.

8.6 The normal approximation to the binomial distribution

If the parameter n (the number of tries) is large, a binomially distributed random variable X

will be approximately normally distributed with expected value µ = np and standard deviation
σ =

√
npq. Therefore, the point probabilities are approximately

P (X = k) ≈ ϕ

(
k − np
√

npq

)
· 1
√

npq

where ϕ is the density of the standard normal distribution, and the tail probabilities are approxi-
mately

P (X ≤ k) ≈ Φ

(
k + 1

2 − np
√

npq

)
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The binomial distribution Bin(n,p)

P (X ≥ k) ≈ 1 − Φ

(
k − 1

2 − np
√

npq

)

where Φ is the distribution function of the standard normal distribution (Table B.2).

Rule of thumb. One may use the normal approximation if np and nq are both greater than 5.

EXAMPLE (continuation of the example in section 8.5). After 2 weeks the machine has produced
200 chips of which 46 are defective. Can the company now reject the manufacturer’s claim that
the probability of defects is at most one sixth?

SOLUTION. Again we test the null hypothesis H0 : p = 1/6 against the alternative hypothesis
H1 : p > 1/6. Since now np ≈ 33 and nq ≈ 167 are both greater than 5, we may use the normal
approximation in order to compute the significance probability:

P (X ≥ 46) ≈ 1 − Φ

(
46 − 1

2 − 33.3
√

27.8

)
≈ 1 − Φ(2.3) ≈ 1.1%

Therefore, the company may now reject the manufacturer’s claim at the 5% level.

8.7 Estimators

Suppose k is an observation from a random variable X ∼ Bin(n, p) with known n and unknown
p. The maximum likelihood estimate (ML estimate) of p is

p̂ =
k

n
.

This estimator is unbiased (i.e. the expected value of the estimator is p) and has variance

var(p̂) =
pq

n
.

The expression for the variance is of no great practical value since it depends on the true (un-
known) probability parameter p. If, however, one plugs in the estimated value p̂ in place of p, one
gets the estimated variance

p̂(1 − p̂)
n

.

EXAMPLE. We consider again the example with the machine that has produced twenty microchips
of which the six are defective. What is the maximum likelihood estimate of the probability param-
eter? What is the estimated variance?

SOLUTION. The maximum likelihood estimate is

p̂ =
6
20

= 30%

and the variance of p̂ is estimated as

0.3 · (1 − 0.3)
20

= 0.0105 .
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The binomial distribution Bin(n,p)

The standard deviation is thus estimated to be
√

0.0105 ≈ 0.10. If we presume that p̂ lies within
two standard deviations from p, we may conclude that p is between 10% and 50%.

8.8 Confidence intervals

Suppose k is an observation from a binomially distributed random variable X ∼ Bin(n, p) with
known n and unknown p. The confidence interval with confidence level 1 − α around the point
estimate p̂ = k/n is

[
p̂ − u1−α/2

√
p̂(1 − p̂)

n
, p̂ + u1−α/2

√
p̂(1 − p̂)

n

]
.

Loosely speaking, the true value p lies in the confidence interval with the probability 1 − α.
The number u1−α/2 is determined by Φ(u1−α/2) = 1 − α/2 where Φ is the distribution

function of the standard normal distribution. It appears e.g. from Table B.2 that with confidence
level 95% one has

u1−α/2 = u0.975 = 1.96 .

EXERCISE. In an opinion poll from the year 2015, 62 out of 100 persons answer that they intend
to vote for the Green Party at the next election. Compute the confidence interval with confidence

A N N O N C E

34

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://www.nidostudentliving.com/Bookboon


Statistics

 
35 

The Poisson distribution Pois(λ)

level 95% around the true percentage of Green Party voters.

SOLUTION. The point estimate is p̂ = 62/100 = 0.62. A confidence level of 95% yields α =
0.05. Looking up in the table (see above) gives u0.975 = 1.96. We get

1.96

√
0.62 · 0.38

100
= 0.10 .

The confidence interval thus becomes

[0.52 , 0.72] .

So we can say with a certainty of 95% that between 52% and 72% of the electorate will vote for
the Green Party at the next election.

9 The Poisson distribution Pois(λ)

9.1 Parameters

λ: Intensity

9.2 Description

Certain events are said to occur spontaneously, i.e. they occur at random times, independently
of each other, but with a certain constant intensity λ. The intensity is the average number of
spontaneous events per time interval. The number of spontaneous events X in any given concrete
time interval is then Poisson distributed, and we write X ∼ Pois(λ). X is a discrete random
variable and takes values in the set {0, 1, 2, 3, . . . }.

9.3 Point probabilities

For k ∈ {0, 1, 2, 3 . . . } the point probabilities in a Pois(λ) distribution are

P (X = k) =
λk

k!
exp(−λ) .

Recall the convention 0! = 1.

EXAMPLE. In a certain shop an average of three customers per minute enter. The number of
customers X entering during any particular minute is then Poisson distributed with intensity λ =
3. The point probabilities (as percentages) can be listed in a table as follows:

k 0 1 2 3 4 5 6 7 8 9 ≥ 10
P (X = k) 5.0 14.9 22.4 22.4 16.8 10.1 5.0 2.2 0.8 0.3 0.1

9.4 Expected value and variance

Expected value: E(X) = λ.

Variance: var(X) = λ.
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The Poisson distribution Pois(λ)

9.5 Addition formula

Suppose that X1, . . . ,Xn are independent Poisson distributed random variables. Let λi be the
intensity of Xi, i.e. Xi ∼ Pois(λi). Then the sum

X = X1 + · · · + Xn

will be Poisson distributed with intensity

λ = λ1 + · · · + λn ,

i.e. X ∼ Pois(λ).

9.6 Significance probabilities for tests in the Poisson distribution

Suppose that k is an observation from a Pois(λ) distribution with unknown intensity λ. We wish
to test the null hypothesis H0 : λ = λ0 against an alternative hypothesis H1.

H0 H1 Significance probability
λ = λ0 λ > λ0 P (X ≥ k)
λ = λ0 λ < λ0 P (X ≤ k)
λ = λ0 λ �= λ0

∑
l P (X = l)

where the summation in the last line is over all l for which P (X = l) ≤ P (X = k).
If n independent observations k1, . . . , kn from a Pois(λ) distribution are given, we can treat

the sum k = k1 + · · · + kn as an observation from a Pois(n · λ) distribution.

9.7 Example (significant increase in sale of Skodas)

EXERCISE. A Skoda car salesman sells on average 3.5 cars per month. The month after a radio
campaign for Skoda, seven cars are sold. Is this a significant increase?

SOLUTION. The sale of cars in the given month may be assumed to be Poisson distributed with a
certain intensity λ. We test the null hypothesis

H0 : λ = 3.5

against the alternative hypothesis
H1 : λ > 3.5 .

The significance probability, i.e. the probability of selling at least seven cars given that H0 is true,
is

P =
∞∑

k=7

(3.5)k

k!
exp(−3.5) = 0.039 + 0.017 + 0.007 + 0.002 + · · · = 0.065 .

Since P is greater than 5%, we cannot reject H0. In other words, the increase is not significant.
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The Poisson distribution Pois(λ)

9.8 The binomial approximation to the Poisson distribution

The Poisson distribution with intensity λ is the limit distribution of the binomial distribution with
parameters n and p = λ/n when n tends to ∞. In other words, the point probabilities satisfy

P (Xn = k) → P (X = k) for n → ∞

for X ∼ Pois(λ) and Xn ∼ Bin(n, λ/n). In real life, however, one almost always prefers to use
the normal approximation instead (see the next section).

9.9 The normal approximation to the Poisson distribution

If the intensity λ is large, a Poisson distributed random variable X will to a good approximation
be normally distributed with expected value µ = λ and standard deviation σ =

√
λ. The point

probabilities therefore are

P (X = k) ≈ ϕ

(
k − λ√

λ

)
· 1√

λ

where ϕ(x) is the density of the standard normal distribution, and the tail probabilities are

P (X ≤ k) ≈ Φ

(
k + 1

2 − λ
√

λ

)
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The Poisson distribution Pois(λ)

P (X ≥ k) ≈ 1 − Φ

(
k − 1

2 − λ
√

λ

)

where Φ is the distribution function of the standard normal distribution (Table B.2).

Rule of thumb. The normal approximation to the Poisson distribution applies if λ is greater than
nine.

9.10 Example (significant decrease in number of complaints)

EXERCISE. The ferry Deutschland between Rødby and Puttgarten receives an average of 180
complaints per week. In the week immediately after the ferry’s cafeteria was closed, only 112
complaints are received. Is this a significant decrease?

SOLUTION. The number of complaints within the given week may be assumed to be Poisson
distributed with a certain intensity λ. We test the null hypothesis

H0 : λ = 180

against the alternative hypothesis
H1 : λ < 180 .

The significance probability, i.e. the probability of having at most 112 complaints given H0, can
be approximated by the normal distribution:

P = Φ

(
112 + 1

2 − 180
√

180

)
= Φ(−5.03) < 0.0001 .

Since P is very small, we can clearly reject H0. The number of complaints has significantly
decreased.

9.11 Estimators

Suppose k1, . . . kn are independent observations from a random variable X ∼ Pois(λ) with un-
known intensity λ. The maximum likelihood estimate (ML estimate) of λ is

λ̂ = (k1 + · · · + kn)/n .

This estimator is unbiased (i.e. the expected value of the estimator is λ) and has variance

var(λ̂) =
λ

n
.

More precisely, we have
nλ̂ ∼ Pois(nλ) .

If we plug in the estimated value λ̂ in λ’s place, we get the estimated variance

v̂ar(λ̂) =
λ̂

n
.

38

Download free eBooks at bookboon.com



Statistics

 
39 

The geometrical distribution Geo(p)

9.12 Confidence intervals

Suppose k1, . . . , kn are independent observations from a Poisson distributed random variable X ∼
Pois(λ) with unknown λ. The confidence interval with confidence level 1 − α around the point
estimate λ̂ = (k1 + · · · + kn)/n is


 λ̂ − u1−α/2

√
λ̂

n
, λ̂ + u1−α/2

√
λ̂

n


 .

Loosely speaking, the true value λ lies in the confidence interval with probability 1 − α.
The number u1−α/2 is determined by Φ(u1−α/2) = 1 − α/2, where Φ is the distribution

function of the standard normal distribution. It appears from, say, Table B.2 that

u1−α/2 = u0.975 = 1.96

for confidence level 95%.

EXAMPLE (continuation of the example in section 9.10). In the first week after the closure of the
ferry’s cafeteria, a total of 112 complaints were received. We consider k = 112 as an observation
from a Pois(λ) distribution and wish to find the confidence interval with confidence level 95%
around the estimate

λ̂ = 112 .

Looking up in the table gives u0.975 = 1.96. The confidence interval thus becomes
[

112 − 1.96
√

112 , 112 + 1.96
√

112
]
≈ [91 , 133]

10 The geometrical distribution Geo(p)

10.1 Parameters

p: probability of success

In the formulae we also use the “probability of failure” q = 1 − p.

10.2 Description

A series of experiments are carried out, each of which results in either success or failure. The
probability of success p is the same in each experiment. The number W of failures before the first
success is then geometrically distributed, and we write W ∼ Geo(p). W is a discrete random
variable and takes values in the set {0, 1, 2, . . . }. The “wait until success” is V = W + 1.

10.3 Point probabilities and tail probabilities

For k ∈ {0, 1, 2 . . . } the point probabilities in a Geo(p) distribution are

P (X = k) = qkp .
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The geometrical distribution Geo(p)

In contrast to most other distributions, we can easily compute the tail probabilities in the geomet-
rical distribution:

P (X ≥ k) = qk .

EXAMPLE. Pin diagram for the point probabilities in a geometrical distribution with probability
of success p = 0.5:

A N N O N C E
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The hypergeometrical distribution HG(n,r,N)

10.4 Expected value and variance

Expected value: E(W ) = q/p.

Variance: var(W ) = q/p2.

Regarding the “wait until success” V = W + 1, we have the following useful rule:

Rule. The expected wait until success is the reciprocal probability of success: E(V ) = 1/p.

EXAMPLE. A gambler plays lotto each week. The probability of winning in lotto, i.e. the proba-
bility of guessing correctly seven numbers picked randomly from a pool of 36 numbers, is

p =
(

36
7

)−1

≈ 0.0000001198 .

The expected wait until success is thus

E(V ) = p−1 =
(

36
7

)
weeks = 160532 years .

11 The hypergeometrical distribution HG(n, r, N)

11.1 Parameters

r: number of red balls

s: number of black balls

N : total number of balls (N = r + s)

n: number of balls picked out (n ≤ N )

11.2 Description

In an urn we have r red balls and s black balls, in total N = r + s balls. We now pick out
n balls from the urn, randomly and without returning the chosen balls to the urn. Necessarily
n ≤ N . The number of red balls Y amongst the balls chosen is then hypergeometrically dis-
tributed and we write Y ∼ HG(n, r, N). Y is a discrete random variable with values in the set
{0, 1, . . . ,min{n, r}}.

11.3 Point probabilities and tail probabilities

For k ∈ {0, 1, . . . ,min{n, r}} the point probabilities of a HG(n, r,N) distribution are

P (Y = k) =

(
r

k

)
·

(
s

n − k

)

(
N

n

) .
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The hypergeometrical distribution HG(n,r,N)

EXAMPLE. A city council has 25 members of which 13 are Conservatives. A cabinet is formed by
picking five council members at random. What is the probability that the Conservatives will have
absolute majority in the cabinet?

SOLUTION. We have here a hypergeometrically distributed random variable Y ∼ HG(5, 13, 25)
and have to compute P (Y ≥ 3). Let us first compute all point probabilities (as percentages):

k 0 1 2 3 4 5
P (Y = k) 1.5 12.1 32.3 35.5 16.1 2.4

The sought-after probability thus becomes

P (Y ≥ 3) = 35.5% + 16.1% + 2.4% = 54.0%

11.4 Expected value and variance

Expected value: E(Y ) = nr/N .

Variance: var(Y ) = nrs(N − n)/(N2(N − 1)).

11.5 The binomial approximation to the hypergeometrical distribution

If the number of balls picked out, n, is small compared to both the number of red balls r and the
number of black balls s, it becomes irrelevant whether the balls picked out are returned to the urn
or not. We can thus approximate the hypergeometrical distribution by the binomial distribution:

P (Y = k) ≈ P (X = k)

for Y ∼ HG(n, r, N) and X ∼ Bin(n, r/N). In practice, this approximation is of little value
since it is as difficult to compute P (X = k) as P (Y = k).

11.6 The normal approximation to the hypergeometrical distribution

If n is small compared to both r and s, the hypergeometrical distribution can be approximated by
the normal distribution with the same expected value and variance.

The point probabilities thus become

P (Y = k) ≈ ϕ


 k − nr/N√

nrs(N − n)/(N2(N − 1))


 · 1√

nrs(N − n)/(N2(N − 1))

where ϕ is the density of the standard normal distribution. The tail probabilities become

P (Y ≤ k) ≈ Φ


 k + 1

2 − nr/N√
nrs(N − n)/(N2(N − 1))
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The multinomial distribution Mult(n, p1,...pr)

P (Y ≥ k) ≈ 1 − Φ


 k − 1

2 − nr/N√
nrs(N − n)/(N2(N − 1))




where Φ is the distribution function of the standard normal distribution (Table B.2).

12 The multinomial distribution Mult(n, p1, . . . , pr)

12.1 Parameters

n: number of tries
p1: 1st probability parameter
...
pr: rth probability parameter

It is required that p1 + · · · + pr = 1.

12.2 Description

We carry out n independent experiments each of which results in one out of r possible outcomes.
The probability of obtaining an outcome of type i is the same in each experiment, namely pi. Let

A N N O N C E
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The negative binomial distribution NB(n,p)

Si denote the total number of outcomes of type i. The random vector S = (S1, . . . , Sr) is then
multinomially distributed and we write S ∼ Mult(n, p1, . . . , pr). S is discrete and takes values in
the set {(k1, . . . kr) ∈ Zr | ki ≥ 0 , k1 + · · · + kr = n}.

12.3 Point probabilities

For k1 + · · · + kr = n the point probabilities of a Mult(n, p1, . . . , pr) distribution are

P (S = (k1, . . . , kr)) =

(
n

k1 · · · kr

)
·

r∏
i=1

pki
i

EXAMPLE. Throw a dice six times and, for each i, let Si be the total number of i’s. Then
S = (S1, . . . , S6) is a multinomially distributed random vector: S ∼ Mult(6, 1/6, . . . , 1/6).
The probability of obtaining, say, exactly one 1, two 2s, and three sixes is

P (S = (1, 2, 0, 0, 0, 3)) =

(
6

1 2 0 0 0 3

)
· (1/6)1 · (1/6)2 · (1/6)3 ≈ 0.13%

Here, the multinomial coefficient (see also section 2.6) is computed as
(

6
1 2 0 0 0 3

)
=

6!
1!2!0!0!0!3!

=
720
12

= 60 .

12.4 Estimators

Suppose k1, . . . , kr is an observation from a random vector S ∼ Mult(n, p1, . . . , pr) with known
n and unknown pi. The maximum likelihood estimate of pi is

p̂i =
ki

n
.

This estimator is unbiased (i.e. the estimator’s expected value is pi) and has variance

var(p̂i) =
pi(1 − pi)

n
.

13 The negative binomial distribution NB(n, p)

13.1 Parameters

n: number of tries

p: probability of success

In the formulae we also use the letter q = 1 − p.
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The exponential distribution (λ)

13.2 Description

A series of independent experiments are carried out each of which results in either success or
failure. The probability of success p is the same in each experiment. The total number X of failures
before the n’th success is then negatively binomially distributed and we write X ∼ NB(n, p). The
random variable X is discrete and takes values in the set {0, 1, 2, . . . }.

The geometrical distribution is the special case n = 1 of the negative binomial distribution.

13.3 Point probabilities

For k ∈ {0, 1, 2 . . . } the point probabilities of a NB(k, p) distribution are

P (X = k) =
(

n + k − 1
n − 1

)
· pn · qk .

13.4 Expected value and variance

Expected value: E(X) = nq/p.

Variance: var(X) = nq/p2.

13.5 Estimators

The negative binomial distribution is sometimes used as an alternative to the Poisson distribution
in situations where one wishes to describe a random variable taking values in the set {0, 1, 2, . . . }.

Suppose k1, . . . , km are independent observations from a NB(n, p) distribution with unknown
parameters n and p. We then have the following estimators:

n̂ =
k̄2

s2 − k̄
, p̂ =

k̄

s2

where k̄ and s2 are the mean value and empirical variance of the observations.

14 The exponential distribution Exp(λ)

14.1 Parameters

λ: Intensity

14.2 Description

In a situation where events occur spontaneously with the intensity λ (and where the number of
spontaneous events in any given time interval thus is Pois(λ) distributed), the wait T between
two spontaneous events is exponentially distributed and we write T ∼ Exp(λ). T is a continuous
random variable taking values in the interval [0,∞[.
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The normal distribution

14.3 Density and distribution function

The density of the exponential distribution is

f(x) = λ · exp(−λx) .

The distribution function is
F (x) = 1 − exp(−λx) .

14.4 Expected value and variance

Expected value: E(T ) = 1/λ.

Variance: var(T ) = 1/λ2.

15 The normal distribution

15.1 Parameters

µ: expected value

σ2: variance

Remember that the standard deviation σ is the square root of the variance.

A N N O N C E
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The normal distribution

15.2 Description

The normal distribution is a continuous distribution. If a random variable X is normally distribut-
ed, then X can take any values in R and we write X ∼ N(µ, σ2).

The normal distribution is the most important distribution in all of statistics. Countless natu-
rally occurring phenomena can be described (or approximated) by means of a normal distribution.

15.3 Density and distribution function

The density of the normal distribution is the function

f(x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
.

It is symmetric, i.e.
f(−x) = f(x) .

The distribution function of the normal distribution

F (x) =
∫ x

−∞

1√
2πσ2

exp
(
−(t − µ)2

2σ2

)
dt

is difficult to compute. Instead, one uses the formula

F (x) = Φ
(

x − µ

σ

)

where Φ is the distribution function of the standard normal distribution which can be looked up in
Table B.2. From the table the following fact appears:

Fact: In a normal distribution, about 68% of the probability mass lies within one standard devi-
ation from the expected value, and about 95% of the probability mass lies within two standard
deviations from the expected value.

15.4 The standard normal distribution

A normal distribution with expected value µ = 0 and variance σ2 = 1 is called a standard normal
distribution. The standard deviation in a standard normal distribution equals 1 (obviously). The
density ϕ(t) of a standard normal distribution is

ϕ(t) =
1√
2π

exp
(
−1

2
t2

)
.

The distribution function Φ of a standard normal distribution is

Φ(x) =
∫ x

−∞

1√
2π

exp
(
−1

2
t2

)
dt .

On can look up Φ in Table B.2.
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The normal distribution

15.5 Properties of Φ

The distribution function Φ of a standard normally distributed random variable X ∼ N(0, 1)
satisfies

P (X ≤ x) = Φ(x)

P (X ≥ x) = Φ(−x)

P (|X| ≤ x) = Φ(x) − Φ(−x)

P (|X| ≥ x) = 2 · Φ(−x)

Φ(−x) = 1 − Φ(x)

15.6 Estimation of the expected value µ

Suppose x1, x2, . . . , xn are independent observations of a random variable X ∼ N(µ, σ2). The
maximum likelihood estimate (ML estimate) of µ is

µ̂ =
x1 + · · · + xn

n
.

This is simply the mean value and is written x̄. The mean value is an unbiased estimator of µ (i.e.
the estimator’s expected value is µ). The variance of the mean value is

var2(x̄) =
σ2

n
.

More precisely, x̄ is itself normally distributed:

x̄ ∼ N(µ,
σ2

n
) .

15.7 Estimation of the variance σ2

Suppose x1, . . . , xn are independent observations of a random variable X ∼ N(µ, σ2). Normally,
the variance σ2 is estimated by the empirical variance

s2 =
∑

(xi − x̄)2

n − 1
.

The empirical variance s2 is an unbiased estimator of the true variance σ2.

Warning: The empirical variance is not the maximum likelihood estimate of σ2. The maximum
likelihood estimate of σ2 is ∑

(xi − x̄)2

n

but this is seldom used since it is biased and usually gives estimates which are too small.
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The normal distribution

15.8 Confidence intervals for the expected value µ

Suppose x1, . . . , xn are independent observations of a normally distributed random variable X ∼
N(µ, σ2) and that we wish to estimate the expected value µ. If the variance σ2 is known, the
confidence interval for µ with confidence level 1 − α is as follows:

[
x̄ − u1−α/2

σ√
n

, x̄ + u1−α/2
σ√
n

]
.

The number u1−α/2 is determined by Φ(u1−α/2) = 1 − α/2 where Φ is the distribution function
of the standard normal distribution. It appears from, say, Table B.2 that

u1−α/2 = u0.975 = 1.96

for confidence level 95%.
If the variance σ2 is unknown, the confidence interval for µ with confidence level 1 − α is

[
x̄ − t1−α/2(n − 1)

√
s2

n
, x̄ + t1−α/2(n − 1)

√
s2

n

]

where s2 is the empirical variance (section 6.3). The number t1−α/2 is determined by F (u1−α/2) =
1 − α/2, where F is the distribution function of Student’s t distribution with n − 1 degrees of
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Distribution connected with the normal distribution

freedom. It appears from, say, Table B.4 that

n 2 3 4 5 6 7 8 9 10 11 12
t1−α/2 12.7 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.23 2.20

for confidence level 95%.

15.9 Confidence intervals for the variance σ2 and the standard deviation σ

Suppose x1, . . . , xn are independent observations of a normally distributed random variable X ∼
N(µ, σ2). The confidence interval for the variance σ2 with confidence level 1 − α is:

[
(n − 1)s2

χ2
α/2

,
(n − 1)s2

χ2
1−α/2

]

where s2 is the empirical variance (section 6.3). The numbers χ2
α/2 and χ2

1−α/2 are determined
by F (χ2

α/2) = α/2 and F (χ2
1−α/2) = 1 − α/2 where F is the distribution function of the χ2

distribution with n − 1 degrees of freedom (Table B.3).
Confidence intervals for the standard deviation σ with confidence level 1 − α are computed

simply by taking the square root of the limits of the confidence intervals for the variance:
[ √

(n − 1)s2

χ2
α/2

,

√
(n − 1)s2

χ2
1−α/2

]

15.10 Addition formula

A linear function of a normally distributed random variable is itself normally distributed. If, in
other words, X ∼ N(µ, σ2) and a, b ∈ R (a �= 0), then

aX + b ∼ N(aµ + b, a2σ2) .

The sum of independent normally distributed random variables is itself normally distributed.
If, in other words, X1, . . . ,Xn are independent with Xi ∼ N(µi, σ

2
i ), then we have the addition

formula
X1 + · · · + Xn ∼ N(µ1 + · · · + µn, σ2

1 + · · · + σ2
n) .

16 Distributions connected with the normal distribution

16.1 The χ2 distribution

Let X1, . . . ,Xn ∼ N(0, 1) be independent standard normally distributed random variables. The
distribution of the sum of squares

Q = X2
1 + · · · + X2

n

is called the χ2 distribution with n degrees of freedom. The number of degrees of freedom is
commonly symbolized as df .
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Distribution connected with the normal distribution

A χ2 distributed random variable Q with df degrees of freedom has expected value

E(Q) = df

and variance
var(Q) = 2 · df .

The density of the χ2 distribution is

f(x) = K · x
df
2
−1 · e−

x
2

where df is the number of degrees of freedom and K is a constant. In practice, one doesn’t use
the density, but rather looks up the distribution function in Table B.3. The graph below shows the
density function with df = 1, 4, 10, 20 degrees of freedom.

16.2 Student’s t distribution

Let X be a normally distributed random variable with expected value µ and variance σ2. Let the
random variables X̄ and S2 be the mean value and empirical variance, respectively, of a sample
consisting of n observations from X . The distribution of

T =
X̄ − µ√

S2/n

is then independent of both µ and σ2 and is called Student’s t distribution with n− 1 degrees of
freedom.

A t distributed random variable T with df degrees of freedom has expected value

E(T ) = 0

for df ≥ 2, and variance

var(T ) =
df

df − 2

for df ≥ 3.
The density of the t distribution is

f(x) = K ·
(

1 +
x2

df

)−(df+1)/2
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Distribution connected with the normal distribution

where df is the number of degrees of freedom and K is a constant. In practice, one doesn’t use
the density, but rather looks up the distribution function in Table B.4. The graph below shows
the density of the t distribution with df = 1, 2, 3 degrees of freedom and additionally the density
ϕ(x) of the standard normal distribution. As it appears, the t distribution approaches the standard
normal distribution when df → ∞.

16.3 Fisher’s F distribution

Let X1 and X2 be independent normally distributed random variables with the same variance. For
i = 1, 2 let the random variable S2

i be the empirical variance of a sample of size ni from Xi. The
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Tests in the normal distribution

distribution of the quotient

V =
S2

1

S2
2

is called Fisher’s F distribution with n1 − 1 degrees of freedom in the numerator and n2 − 1
degrees of freedom in the denominator.

The density of the F distribution is

f(x) = K · xdf1/2−1

(df2 + df1x)df/2

where K is a constant, df1 the number of degrees of freedom in the numerator, df2 the number
of degrees of freedom in the denominator, and df = df1 + df2. In practice, one doesn’t use the
density, but rather looks up the distribution function in Table B.5.

17 Tests in the normal distribution

17.1 One sample, known variance, H0 : µ = µ0

Let there be given a sample x1, . . . , xn of n independent observations from a normal distribution
with unknown expected value µ and known variance σ2. We wish to test the null hypothesis

H0 : µ = µ0 .

For this purpose, we compute the statistic

u =
√

n(x̄ − µ0)
σ

=
∑n

i=1 xi − nµ0√
nσ2

.

The significance probability now appears from the following table, where Φ is the distribution
function of the standard normal distribution (Table B.2).

Alternative Significance
hypothesis probability

H1 : µ > µ0 Φ(−u)
H1 : µ < µ0 Φ(u)
H1 : µ �= µ0 2 · Φ(−|u|)

Normally, we reject H0 if the significance probability is less than 5%.

17.2 One sample, unknown variance, H0 : µ = µ0 (Student’s t test)

Let there be given a sample x1, . . . , xn of n independent observations from a normal distribution
with unknown expected value µ and unknown variance σ2. We wish to test the null hypothesis

H0 : µ = µ0 .

For this purpose, we compute the statistic

t =
√

n(x̄ − µ0)
s

=
∑n

i=1 xi − nµ0√
n · s2

,
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where s2 is the empirical variance (see section 6.3).
The significance probability now appears from the following table where FStudent is the dis-

tribution function of Student’s t distribution with df = n − 1 degrees of freedom (Table B.4).

Alternative Significance
hypothesis probability
H1 : µ > µ0 1 − FStudent(t)
H1 : µ < µ0 1 − FStudent(−t)
H1 : µ �= µ0 2 · (1 − FStudent(|t|))

Normally, we reject H0 if the significance probability is less than 5%.

EXAMPLE. The headmaster of a school wishes to confirm statistically that his students have per-
formed significantly miserably in the 2008 final exams. For this purpose, n = 10 students are
picked at random. Their final scores are

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

7.6 7.7 7.5 5.8 5.7 7.9 5.4 6.7 7.9 9.4

The national average for 2008 is 8.27. It is reasonable to assume that the final scores are normally
distributed. However, the variance is unknown. Therefore, we apply Student’s t test to test the null
hypothesis

H0 : µ = 8.27

against the alternative hypothesis
H1 : µ < 8.27 .

We compute the mean value of the observations as x̄ = 7.17 and the empirical standard deviation
as s = 1.26. We obtain the statistic

t =
√

10(7.17 − 8.27)
1.26

= −2.76 .

Looking up in Table B.4 under df = n−1 = 9 degrees of freedom gives a significance probability

1 − FStudent(−t) = 1 − FStudent(2.76)

between 1% and 2.5%. We may therefore reject H0 and confirm the headmaster’s assumption that
his students have performed significantly poorer than the rest of the country.

17.3 One sample, unknown expected value, H0 : σ2 = σ2
0

THEOREM. Let there be given n independent observations x1, . . . , xn from a normal distribution
with variance σ2. The statistic

q =
(n − 1)s2

σ2
=

∑n
i=1(xi − x̄)2

σ2

is then χ2 distributed with df = n − 1 degrees of freedom (here s2 is the empirical variance).
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Let there be given a sample x1, . . . , xn of n independent observations from a normal distribution
with unknown expected value µ and unknown variance σ2. We wish to test the null hypothesis

H0 : σ2 = σ2
0 .

For this purpose, we compute the statistic

q =
(n − 1)s2

σ2
0

=
∑n

i=1(xi − x̄)2

σ2
0

where s2 is the empirical variance.
The significance probability can now be read from the following table where Fχ2 is the distri-

bution function of the χ2 distribution with df = n − 1 degrees of freedom (Table B.3).

Alternative Significance
hypothesis probability
H1 : σ2 > σ2

0 1 − Fχ2(q)
H1 : σ2 < σ2

0 Fχ2(q)
H1 : σ2 �= σ2

0 2 · min{Fχ2(q), 1 − Fχ2(q)}

Normally, H0 is rejected if the significance probability is smaller than 5%.

Note: In practice, we always test against the alternative hypothesis H1 : σ2 > σ2
0 .
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17.4 Example

Consider the following twenty observations originating from a normal distribution with unknown
expected value and variance:

91 97 98 112 91 97 116 108 108 100
107 98 92 103 100 99 98 104 104 97

We wish to test the null hypothesis

H0: the standard deviation is at most 5 (i.e. the variance is at most 25)

against the alternative hypothesis

H1: the standard deviation is greater than 5 (i.e. the variance is greater than 25).

The empirical variance is found to be s2 = 45.47 and we thus find the statistic

q =
(20 − 1) · 45.47

52
= 34.56 .

By looking up in Table B.3 under df = 19 degrees of freedom, we find a significance probability
around 2%. We can thus reject H0.

(Actually, the observations came from a normal distribution with expected value µ = 100 and
standard deviation σ = 6. The test is thus remarkably sensitive.)

17.5 Two samples, known variances, H0 : µ1 = µ2

Let there be given a sample x1, . . . , xn from a normal distribution with unknown expected value
µ1 and known variance σ2

1 . Let there in addition be given a sample y1, . . . , ym from a normal
distribution with unknown expected value µ2 and known variance σ2

2 . It is assumed that the two
samples are independent of each other.

We wish to test the null hypothesis

H0 : µ1 = µ2 .

For this purpose, we compute the statistic

u =
x̄ − ȳ√

σ2
1/n + σ2

2/m
.

The significance probability is read from the following table where Φ is the distribution function
of the standard normal distribution (Table B.3).

Alternative Significance
hypothesis probability
H1 : µ1 > µ2 Φ(−u)
H1 : µ1 < µ2 Φ(u)
H1 : µ1 �= µ2 2 · Φ(−|u|)

Normally, we reject H0 if the significance probability is smaller than 5%.

Note: In real life, the preconditions of this test are rarely met.

56

Download free eBooks at bookboon.com



Statistics

 
57 

Tests in the normal distribution

17.6 Two samples, unknown variances, H0 : µ1 = µ2 (Fisher-Behrens)

Let the situation be as in section 17.5, but suppose that the variances σ2
1 and σ2

2 are unknown. The
problem of finding a suitable statistic to test the null hypothesis

H0 : µ1 = µ2

is called the Fisher-Behrens problem and has no satisfactory solution.
If n, m > 30, one can re-use the test from section 17.5 with the alternative statistic

u∗ =
x̄ − ȳ√

s2
1/n + s2

2/m

where s2
1 and s2

2 are the empirical variances of the x’s and y’s, respectively.

17.7 Two samples, unknown expected values, H0 : σ2
1 = σ2

2

Let there be given a sample x1, . . . , xn from a normal distribution with unknown expected value
µ1 and unknown variance σ2

1 . In addition, let there be given a sample y1, . . . , ym from a normal
distribution with unknown expected value µ2 and unknown variance σ2

2 . It is assumed that the
two samples are independent of each other.

We wish to test the null hypothesis

H0 : σ1 = σ2 .

For this purpose, we compute the statistic

v =
s2
1

s2
2

=
empirical variance of the x’s
empirical variance of the y’s

.

Further, put

v∗ = max
{

v,
1
v

}
.

The significance probability now appears from the following table where FFisher is the distribution
function of Fisher’s F distribution with n − 1 degrees of freedom in the numerator and m − 1
degrees of freedom in the denominator (Table B.5).

Alternative Significance
hypothesis probability
H1 : σ2

1 > σ2
2 1 − FFisher(v)

H1 : σ2
1 < σ2

2 1 − FFisher(1/v)
H1 : σ2

1 �= σ2
2 2 · (1 − FFisher(v∗))

Normally, H0 is rejected if the significance probability is smaller than 5%.
If H0 is accepted, the common variance σ2

1 = σ2
2 is estimated by the “pooled” variance

s2
pool =

∑n
i=1(xi − x̄)2 +

∑m
i=1(yi − ȳ)2

n + m − 2
=

(n − 1)s2
1 + (m − 1)s2

2

n + m − 2
.
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17.8 Two samples, unknown common variance, H0 : µ1 = µ2

Let there be given a sample x1, . . . , xn from a normal distribution with unknown expected value
µ1 and unknown variance σ2. In addition, let there be given a sample y1, . . . , ym from a normal
distribution with unknown expected value µ2 and the same variance σ2. It is assumed that the
two samples are independent of each other.

We wish to test the null hypothesis

H0 : µ1 = µ2 .

For this purpose, we compute the statistic

t =
x̄ − ȳ√

(1/n + 1/m)s2
pool

where s2
pool is the “pooled” variance as given in section 17.7.

The significance probability now appears from the following table where FStudent is the dis-
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tribution function of Student’s t distribution with n + m − 2 degrees of freedom (Table B.4).

Alternative Significance
hypothesis probability
H1 : µ1 > µ2 1 − FStudent(t)
H1 : µ1 < µ2 1 − FStudent(−t)
H1 : µ1 �= µ2 2 · (1 − FStudent(|t|))

Normally, H0 is rejected if the significance probability is smaller than 5%.

17.9 Example (comparison of two expected values)

Suppose we are given seven independent observations from a normally distributed random vari-
able X:

x1 = 26 , x2 = 21 , x3 = 15 , x4 = 7 , x5 = 15 , x6 = 28 , x7 = 21

and also four independent observations from a normally distributed random variable Y :

y1 = 29 , y2 = 31 , y3 = 17 , y4 = 22 .

We wish to test the hypothesis
H0 : E(X) = E(Y ) .

In order to be able to test this, we need to test first whether X and Y have the same variance.
We therefore test the auxiliary hypothesis

H∗
0 : var(X) = var(Y )

against the alternative
H∗

1 : var(X) �= var(Y ) .

For this purpose, we compute the statistic

v =
s2
1

s2
2

=
52.3
41.6

= 1.26

as in section 17.7, as well as

v∗ = max
{

v,
1
v

}
= 1.26 .

Looking up in Table B.5 with 7 − 1 = 6 degrees of freedom in the numerator and 4 − 1 = 3
degrees of freedom in the denominator shows that the significance probability is clearly greater
than 20%, and we may therefore accept the auxiliary hypothesis H∗

0.
Now we return to the test of H0 against the alternative hypothesis

H1 : E(X) �= E(Y ) .

The “pooled” variance is found to be

s2
pool =

6s2
1 + 3s2

2

9
= 48.8 .
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The statistic thereby becomes

t =
x̄ − ȳ√

(1/7 + 1/4)s2
pool

=
19 − 24.8√

(1/7 + 1/4)48.8
= −1.31 .

Therefore, the significance probability is found to be

2 · (1 − FStudent(|t|)) = 2 · (1 − FStudent(1.31)) ≈ 2 · (1 − 0.90) = 20%

by looking up Student’s t distribution with 7 + 4 − 2 = 9 degrees of freedom in Table B.4.
Consequently, we cannot reject H0.

18 Analysis of variance (ANOVA)

18.1 Aim and motivation

Analysis of variance, also known as ANOVA, is a clever method of comparing the mean values
from more than two samples. Analysis of variance is a natural extension of the tests in the previous
chapter.

18.2 k samples, unknown common variance, H0 : µ1 = · · · = µk

Let X1, . . . ,Xk be k independent, normally distributed random variables, with expected values
µ1, . . . , µk and common variance σ2. From each Xi, let there be given a sample consisting of ni

observations. Let x̄j and s2
j be mean value and empirical variance of the sample from Xj .

We wish to test the null hypothesis

H0 : µ1 = · · · = µk

against all alternatives. For this purpose, we estimate the common variance σ2 in two different
ways.

The variance estimate within the samples is

s2
I =

1
n − k

k∑
j=1

(nj − 1)s2
j .

The variance estimate between the samples is

s2
M =

1
k − 1

k∑
j=1

nj(x̄j − x̄)2 .

s2
I estimates σ2 regardless of whether H0 is true or not. s2

M only estimates σ2 correctly if H0 is
true. If H0 is false, then s2

M estimates too high.
Now consider the statistic

v =
s2
M

s2
I

.
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The significance probability is
1 − FFisher(v)

where FFisher is the distribution function of Fisher’s F distribution with k − 1 degrees of freedom
in the numerator and n − k degrees of freedom in the denominator (Table B.5).

18.3 Two examples (comparison of mean values from three samples)

Let three samples be given:

sample 1: 29, 28, 29, 21, 28, 22, 22, 29, 26, 26

sample 2: 22, 21, 18, 28, 23, 25, 25, 28, 23, 26

sample 3: 24, 23, 26, 20, 33, 23, 26, 24, 27, 22

It is assumed that the samples originate from independent normal distributions with common
variance. Let µi be the expected value of the i’th normal distribution. We wish to test the null
hypothesis

H0 : µ1 = µ2 = µ3 .

(As a matter of fact, all the observations originate from a normal distribution with expected value
25 and variance 10, so the test shouldn’t lead to a rejection of H0.) We thus have k = 3 samples
each consisting of ni = 10 observations, a total of n = 30 observations. A computation gives the
following variance estimate within the samples:

s2
I = 10.91

and the following variance estimate between the samples:

s2
M = 11.10

(Since we know that H0 is true, both s2
I and s2

M should estimate σ2 = 10 well, which they also
indeed do.) Now we compute the statistic:

v =
s2
M

s2
I

=
11.10
10.91

= 1.02 .

Looking up in Table B.5 under k − 1 = 2 degrees of freedom in the numerator and n − k = 27
degrees of freedom in the denominator shows that the significance probability is more than 10%.
The null hypothesis H0 cannot be rejected.

Somewhat more carefully, the computations can be summed up in a table as follows:
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Sample number 1 2 3
29 22 24
28 21 23
29 18 26
21 28 20
28 23 33
22 25 23
22 25 26
29 28 24
26 23 27
26 26 22

Mean value x̄j 26.0 23.9 24.8
Empirical variance s2

j 10.22 9.88 12.62

x̄ = 24.9 (grand mean value)

s2
I = (s2

1 + s2
2 + s2

3)/3 = 10.91 (variance within samples)

s2
M = 5

∑
(x̄j − x̄)2 = 11.10 (variance between samples)

v = s2
M/s2

I = 1.02 (statistic)
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If we add 5 to all the observations in sample 3, we get the following table instead:

Sample number 1 2 3
29 22 29
28 21 28
29 18 31
21 28 25
28 23 38
22 25 28
22 25 31
29 28 29
26 23 32
26 26 27

Mean value x̄j 26.0 23.9 29.8
Empirical variance s2

j 10.22 9.88 12.62

x̄ = 26.6 (grand mean value)

s2
I = (s2

1 + s2
2 + s2

3)/3 = 10.91 (variance within samples)

s2
M = 5

∑
(x̄j − x̄)2 = 89.43 (variance between samples)

v = s2
M/s2

I = 8.20 (statistic)

Note how the variance within the samples doesn’t change, whereas the variance between the
samples is now far too large. Thus, the statistic v = 8.20 also becomes large and the significance
probability is seen in Table B.5 to be less than 1%. Therefore, we reject the null hypothesis H0 of
equal expected values (which was also to be expected, since H0 is now manifestly false).

19 The chi-squared test (or χ2 test)

19.1 χ2 test for equality of distribution

The reason why the χ2 distribution is so important is that it can be used to test whether a given
set of observations comes from a certain distribution. In the following sections, we shall see many
examples of this. The test, which is also called Pearson’s χ2 test or χ2 test for goodness of fit, is
carried out as follows:

1. First, divide the observations into categories. Let us denote the number of categories by k and
the number of observations in the i’th category by Oi. The total number of observations is thus
n = O1 + · · · + Ok.

2. Formulate a null hypothesis H0. This null hypothesis must imply what the probability pi is that
an observation belongs to the i’th category.
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The chi-squared test (or x2 test)

3. Compute the statistic

χ2 =
k∑

i=1

(Oi − Ei)2

Ei
.

As mentioned, Oi is the observed number in the i’th category. Further, Ei is the expected number
in the i’th category (expected according to the null hypothesis, that is): Ei = npi. Incidentally,
the statistic χ =

√
χ2 is sometimes called the discrepancy.

4. Find the significance probability

P = 1 − F (χ2)

where F = Fχ2 is the distribution function of the χ2 distribution with df degrees of freedom
(look up in Table B.3). H0 is rejected if P is smaller than 5% (or whatever significance level one
chooses). The number of degrees of freedom is normally df = k−1, i.e. one less than the number
of categories. If, however, one uses the observations to estimate the probability parameters pi of
the null hypothesis, df becomes smaller.

Remember: Each estimated parameter costs one degree of freedom.

Note: It is logical to reject H0 if χ2 is large, because this implies that the difference between the
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observed and the expected numbers is large.

19.2 The assumption of normal distribution

Since the χ2 test rests upon a normal approximation, it only applies provided there are not too few
observations.

Remember: The χ2 test applies if the expected number Ei is at least five in each category. If,
however, there are more than five categories, an expected number of at least three in each category
suffices.

19.3 Standardized residuals

If the null hypothesis regarding equality of distribution is rejected by a χ2 test, this was because
some of the observed numbers deviated widely from the expected numbers. It is then interesting
to investigate exactly which observed numbers are extreme. For this purpose, we compute the
standardized residuals

ri =
Oi − npi√
npi(1 − pi)

=
Oi − Ei√
Ei(1 − pi)

for each category. If the null hypothesis were true, each ri would be normally distributed with
expected value µ = 0 and standard deviation σ = 1. Therefore:

Remember: Standardized residuals numerically greater than 2 are signs of an extreme observed
number.

It can very well happen that standardized residuals numerically greater than 2 occur even though
the χ2 test does not lead to rejection of the null hypothesis. This does not mean that the null hy-
pothesis should be rejected after all. In particular when one has a large number of categories, it
will not be unusual to find some large residuals.

Warning: Only compute the standardized residuals if the null hypothesis has been rejected by a
χ2 test.

19.4 Example (women with five children)

EXERCISE. A hospital has registered the sex of the children of 1045 women who each have five
children. Result:

Oi

5 girls 58
4 girls + 1 boy 149
3 girls + 2 boys 305
2 girls + 3 boys 303
1 girl + 4 boys 162
5 boys 45
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Test the hypothesis H0 that, at every birth, the probability of a boy is the same as the probability
of a girl.

SOLUTION. If H0 is true, the above table consists of 1045 observations from a Bin(5, 1/2) distri-
bution. The point probabilities in a Bin(5, 1/2) distribution are

pi

5 girls 0.0313
4 girls + 1 boy 0.1563
3 girls + 2 boys 0.3125
2 girls + 3 boys 0.3125
1 girl + 4 boys 0.1563
5 boys 0.0313

The expected numbers Ei = 1045 · pi then become

Ei

5 girls 32.7
4 girls + 1 boy 163.3
3 girls + 2 boys 326.6
2 girls + 3 boys 326.6
1 girl + 4 boys 163.3
5 boys 32.7

The statistic is computed:

χ2 =
(58 − 32.7)2

32.7
+

(149 − 163.3)2

163.3
+

(305 − 326.6)2

326.6
+

(303 − 326.6)2

326.6
+

(162 − 163.3)2

163.3
+

(45 − 32.7)2

32.7
= 28.6 .

Since the observations are divided into six categories, we compare the statistic with the χ2 distri-
bution with df = 6− 1 = 5 degrees of freedom. Table B.3 shows that the significance probability
is well below 0.5%. We can therefore with great confidence reject the hypothesis that the boy-girl
ratio is Bin(5, 1/2) distributed.

Let us finally compute the standardized residuals:

ri

5 girls 4.5
4 girls + 1 boy –1.2
3 girls + 2 boys –1.4
2 girls + 3 boys –1.6
1 girl + 4 boys –0.1
5 boys 2.2

We note that it is the numbers of women with five children of the same sex which are extreme and
make the statistic large.

66

Download free eBooks at bookboon.com



Statistics

 
67 

The chi-squared test (or x2 test)

19.5 Example (election)

EXERCISE. At the election for the Danish parliament in February 2005, votes were distributed
among the parties as follows (as percentages):

A B C F O V Ø others
25.8 9.2 10.3 6.0 13.3 29.0 3.4 3.0

In August 2008, an opinion poll was carried out in which 1000 randomly chosen persons were
asked which party they would vote for now. The result was:

A B C F O V Ø others
242 89 98 68 141 294 43 25

Has the popularity of the different parties changed since the election?

SOLUTION. We test the null hypothesis H0 that the result of the opinion poll is an observation
from a multinomial distribution with k = 8 categories and probability parameters pi as given in
the table above. The expected observations (given the null hypothesis) are:

A B C F O V Ø others
258 92 103 60 133 290 34 30
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Now we compute the statistic χ2:

χ2 =
8∑

i=1

(Oi − Ei)2

Ei
=

(242 − 258)2

258
+ · · · + (25 − 30)2

30
= 6.15 .

By looking up in Table B.3 under the χ2 distribution with df = 8 − 1 = 7 degrees of freedom, it
is only seen that the significance probability is below 50%. Thus, we have no statistical evidence
to conclude that the popularity of the parties has changed.

Let us ignore the warning in section 19.3 and compute the standardized residuals. For category
A, for example, we find

r =
242 − 1000 · 0.258√
1000 · 0.258 · 0.742

= −1.16 .

Altogether we get

A B C F O V Ø others
–1.16 –0.33 –0.52 1.06 0.74 0.28 1.57 –0.93

Not surprisingly, all standardized residuals are numerically smaller than 2.

19.6 Example (deaths in the Prussian cavalry)

In the period 1875–1894 the number of deaths caused by horse kicks was registered in 10 of the
regiments of the Prussian cavalry. Of the total of 200 “regiment-years”, there were 109 years with
no deaths, 65 years with one death, 22 years with two deaths, three years with three deaths, and
one year with four deaths. We wish to investigate whether these numbers come from a Poisson
distribution Pois(λ).

In order to get expected numbers greater than five (or at least to come close to that), we group
the years with three and four deaths into a single category and thus obtain the following observed
numbers Oi of years with i deaths:

i Oi

0 109
1 65
2 22

≥ 3 4

The intensity λ is estimated as λ̂ = 122/200 = 0.61, since there were a total of 122 deaths during
the 200 regiment-years. The point probabilities of a Pois(0.61) distribution are

i pi

0 0.543
1 0.331
2 0.101

≥ 3 0.024
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The expected numbers thus become

i Ei

0 108.7
1 66.3
2 20.2

≥ 3 4.8

The reader should let himself be impressed by the striking correspondence between expected and
observed numbers. It is evidently superfluous to carry the analysis any further, but let us compute
the statistic anyway:

χ2 =
(109 − 108.7)2

108.7
+

(65 − 66.3)2

66.3
+

(22 − 20.2)2

20.2
+

(4 − 4.8)2

4.8
= 0.3 .

Since there are four categories and we have estimated one parameter using the data, the statistic
should be compared with the χ2 distribution with df = 4 − 1 − 1 = 2 degrees of freedom. As
expected, Table B.3 shows a significance probability well above 50%.

Incidentally, the example comes from Ladislaus von Bortkiewicz’s 1898 book Das Gesetz der
kleinen Zahlen.
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20 Contingency tables

20.1 Definition, method

Suppose that a number of observations are given and that the observations are divided into cate-
gories according to two different criteria. The number of observations in each category can then
be displayed in a contingency table. The purpose of the test presented here is to test whether there
is independence between the two criteria used to categorize the observations.

METHOD. Let there be given an r × s table, i.e. a table with r rows and s columns:

a11 a12 . . . . . . a1s

a21 a22 . . . . . . a2s

...
...

...

...
...

...

ar1 ar2 . . . . . . ars

It has row sums Ri =
∑s

j=1 aij , column sums Sj =
∑r

i=1 aij , and total sum

N =
∑
i,j

aij .

These are the observed numbers O. The row probabilities are estimated as

p̂i· =
Ri

N
,

and the column probabilities as

p̂·j =
Sj

N
.

If there is independence between rows and columns, the cell probabilities can be estimated as

p̂ij = p̂i·p̂·j =
RiSj

N2
.

We can thus compute the expected numbers E:

R1S1
N

R1S2
N . . . . . . R1Ss

N

R2S1
N

R2S2
N . . . . . . R2Ss

N

...
...

...

...
...

...

RrS1
N

RrS2
N . . . . . . RrSs

N
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since the expected number in the (i, j)’th cell is

E = Np̂ij = RiSj/N .

Now we compute the statistic

χ2 =
∑ (O − E)2

E
=

∑ (aij − RiSj/N)2

RiSj/N

where the summation is carried out over each cell of the table. If the independence hypothesis
holds true and the expected number is at least 5 in each cell, then the statistic is χ2 distributed
with

df = (r − 1)(s − 1)

degrees of freedom.

Important! If the data are given as percentages, they must be expressed as absolute numbers
before insertion into the contingency table.

20.2 Standardized residuals

If the independence hypothesis is rejected by a χ2 test, one might, as in section 19.3, be interest-
ed in determining which cells contain observed numbers deviating extremely from the expected
numbers. The standardized residuals are computed as

rij =
Oij − RiSj/n√(

RiSj/n
)(

1 − Ri/n
)(

1 − Sj/n
) .

If the independence hypothesis were true, each rij would be normally distributed with expected
value µ = 0 and standard deviation σ = 1. Standardized residuals numerically greater than 2 are
therefore signs of an extreme observed number.

20.3 Example (students’ political orientation)

EXERCISE. At three Danish universities, 488 students were asked about their faculty and which
party they would vote for if there were to be an election tomorrow. The result (in simplified form)
was:

A B C F O V Ø Ri

Humanities 37 48 15 26 4 17 10 157
Natural Sci. 32 38 19 18 7 51 2 167
Social Sci. 32 24 15 7 12 69 5 164
Sj 101 110 49 51 23 137 17 488

Investigate whether there is independence between the students’ political orientation and their
faculty.
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SOLUTION. We are dealing with a 3 × 7 table and perform a χ2 test for independence. First, the
expected numbers

E =
RiSj

488
are computed and presented in a table:

A B C F O V Ø
Humanities 32.5 35.4 15.8 16.4 7.4 44.1 5.5
Natural Sci. 34.6 37.6 16.8 17.5 7.9 46.9 5.8
Social Sci. 33.9 37.0 16.5 17.1 7.7 46.0 5.7

Now the statistic

χ2 =
∑ (O − E)2

E

can be computed, since the observed numbers O are the numbers in the first table:

χ2 =
(37 − 32.5)2

32.5
+ · · · + (5 − 5.7)2

5.7
= 60.9 .

The statistic is to be compared with a χ2 distribution with df = (3 − 1)(7 − 1) = 12 degrees of
freedom. Table B.3 shows that the significance probability is well below 0.1%, and we therefore
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confidently reject the independence hypothesis.

Let us now compute the standardized residuals to see in which cells the observed numbers are
extreme. We use the formula for rij in section 20.2 and get

A B C F O V Ø
Humanities 1.1 2.9 –0.2 3.0 –1.6 –5.8 2.4
Natural Sci. –0.6 0.1 0.7 0.2 –0.4 0.9 –2.0
Social Sci. –0.5 –3.0 –0.5 –3.2 1.9 4.9 –0.4

We find that there are extreme observations in many cells.

20.4 χ2 test for 2 × 2 tables

A contingency table with two rows and two columns is called a 2×2 table. Let us write the
observed numbers as follows:

a b

c d

The statistic thus becomes

χ2 =
(

ad − bc

N

)2 (
1

E11
+

1
E12

+
1

E21
+

1
E22

)

where N = a+b+c+d is the total number of observations, and Eij is the expected number in the
ij’th cell. The statistic χ2 is to be compared with the χ2 distribution with df = (2−1)(2−1) = 1
degree of freedom.

If we wish to perform a one-sided test of the independence hypothesis, the statistic

u =
(

ad − bc

N

) √(
1

E11
+

1
E12

+
1

E21
+

1
E22

)

is used instead. Under the independence hypothesis, u will be standard normally distributed.

20.5 Fisher’s exact test for 2 × 2 tables

Given a 2 × 2 table, nothing stands in the way of using the χ2 test, but there is a better test in this
situation called Fisher’s exact test. Fisher’s exact test does not use any normal approximation,
and may therefore still be applied when the number of expected observations in one or more of
the cells is smaller than five.

METHOD. Let there be given a 2×2 table:

a b

c d

with row sums R1 = a+ b and R2 = c+d and column sums S1 = a+ c and S2 = b+d and total
sum N = R1 + R2 = S1 + S2 = a + b + c + d. We test the independence hypothesis H0 against

73

Download free eBooks at bookboon.com



Statistics

 
74 

Distribution-free costs

the alternative hypothesis H1 that the “diagonal probabilities” p11 and p22 are greater than what
they would have been had there been independence. (This situation can always be arranged by
switching the rows if necessary.) The conditional probability of obtaining exactly the 2×2 table
above, given that the row sums are R1 and R2, and that the column sums are S1 and S2, is

Pconditional =
R1!R2!S1!S2!
N ! a! b! c! d!

.

The significance probability in Fisher’s exact test is the sum of Pconditional taken on all 2×2 tables
with the same row and column sums as in the given table, and which are at least as extreme as the
given table:

PFisher =
min{b,c}∑

i=0

R1!R2!S1!S2!
N ! (a + i)! (b − i)! (c − i)! (d + i)!

.

The independence hypothesis H0 is rejected if PFisher is smaller than 5% (or whatever signifi-
cance level one has chosen).

ADDENDUM: If a two-sided test is performed, i.e. if one does not test against any specific alter-
native hypothesis, the significance probability becomes 2 · PFisher. It is then necessary that the
2×2 table is written in such a way that the observed numbers in the diagonal are greater than the
expected numbers (this can always be obtained by switching the rows if necessary).

20.6 Example (Fisher’s exact test)

In a medical experiment concerning alternative treatments, ten patients are randomly divided into
two groups with five patients in each. The patients in the first group receive acupuncture, while
the patients in the other group receive no treatment. It is then seen which patients are fit or ill at
the end of the experiment. The result can be presented in a 2 × 2 table:

fit ill
acupuncture 4 1
no treatment 2 3

The significance probability in Fisher’s exact test is computed as

PFisher =
1∑

i=0

5! 5! 6! 4!
10! (4 + i)! (1 − i)! (2 − i)! (3 + i)!

= 26% .

With such a large significance probability, there is no evidence that acupuncture had any effect.

21 Distribution-free tests

In all tests considered so far, we have known something about the distribution from which the
given samples originated. We knew, for example, that the distribution was a normal distribution
even though we didn’t know the expected value or the standard deviation.

Sometimes, though, one knows nothing at all about the underlying distribution. It then be-
comes necessary to use a distribution-free test (also known as a non-parametric test). The two
examples considered in this chapter are due to Frank Wilcoxon (1892–1965).
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21.1 Wilcoxon’s test for one set of observations

Let there be given n independent observations d1, . . . , dn from an unknown distribution. We test
the null hypothesis

H0: The unknown distribution is symmetric around 0.

Each observation di is given a rank which is one of the numbers 1, 2, . . . , n. The observation
with the smallest numerical value is assigned rank 1, the observation with the second smallest
numerical value is assigned rank 2, etc. Now define the statistics

t+ =
∑

(ranks corresponding to positive di),

t− =
∑

(ranks corresponding to negative di).

(One can check at this point whether t+ + t− = n(n + 1)/2; if not, one has added the numbers
incorrectly.) If H0 holds true, then t+ and t− should be more or less equal. When to reject H0

depends on which alternative hypothesis is tested against.

If we test H0 against the alternative hypothesis

H1: The unknown distribution primarily gives positive observations,

then H0 is rejected if t− is extremely small. Choose a significance level α and consult Table B.8
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under n and α. If t− is smaller than or equal to the table value, H0 is rejected. If t− is greater than
the table value, H0 is accepted.

If we test H0 against the alternative hypothesis

H1: The unknown distribution primarily gives negative observations,

then H0 is rejected if t+ is extremely small. Choose a significance level α and consult Table B.8
under n and α. If t+ is smaller than or equal to the table value, H0 is rejected. If t+ is greater than
the table value, H0 is accepted.

If we don’t test H0 against any particular alternative hypothesis, the null hypothesis is rejected
if the minimum t := min{t+, t−} is extremely small. Choose a significance level α and consult
Table B.8 under n and α/2 (if, for example, we choose the significance level α = 5%, then we
look up in the table under n and 0.025). If t is smaller than or equal to the table value, we reject
H0. If t is greater than the table value, we accept H0.

The above test applies in particular when two sets of observations x1, . . . , xn and y1, . . . , yn

are given and di is the difference between the “before values” xi and the “after values” yi, i.e.
di = xi − yi. If there are only random, unsystematic differences between the before and after
values, it follows that the di’s are distributed symmetrically around 0.

21.2 Example

An experiment involving ten patients is carried out to determine whether physical exercise lowers
blood pressure. At the beginning of the experiment, the patients’ blood pressures are measured.
These observations are denoted x1, . . . , x10. After a month of exercise, the blood pressures are
measured again. These observations are denoted y1, . . . , y10. We now test the null hypothesis

H0: Physical exercise has no influence on blood pressure. The ten differences di = xi − yi are
therefore distributed symmetrically around 0,

against the alternative hypothesis

H1: Physical exercise causes the blood pressure to decrease. The ten differences di are therefore
primarily positive.

We compute the ranks and t+ and t−:

Person 1 2 3 4 5 6 7 8 9 10
Before xi 140 125 110 130 170 165 135 140 155 145
After yi 137 137 102 104 172 125 140 110 140 126
Difference di 3 –12 8 26 –2 40 –5 30 15 19
Rank 2 5 4 8 1 10 3 9 6 7

t+ = 2 + 4 + 6 + 7 + 8 + 9 + 10 = 46,

t− = 1 + 3 + 5 = 9.
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We shall reject H0 if t− = 9 is extremely small. Table B.8 with significance level α = 5% shows
that “extremely small” means � 10. Conclusion: The test shows that the null hypothesis H0 must
be rejected against the alternative hypothesis H1 at significance level 5%.

21.3 The normal approximation to Wilcoxon’s test for one set of observations

Table B.8 includes values up to n = 50. If the number of observations is greater, a normal dis-
tribution approximation can be applied. Indeed, if the null hypothesis is true, the statistic t+ is
approximately normally distributed with expected value

µ =
n(n + 1)

4

and standard deviation

σ =

√
n(n + 1)(2n + 1)

24
.

The significance probability is therefore found by comparison of the statistic

z =
t+ − µ

σ

with Table B.2 of the standard normal distribution.

EXAMPLE. Let us use the normal approximation to find the significance probability in the previous
example (even though n here is smaller than 50 and the approximation therefore is not highly
precise). We get µ = 27.5 and σ = 9.81. The statistic therefore becomes z = 1.89, which gives
a significance probability of 2.9%. The conclusion is thus the same, namely that H0 is rejected at
significance level 5%.

21.4 Wilcoxon’s test for two sets of observations

Suppose we have two sets x1, . . . , xn and y1, . . . , ym of independent observations. We test the
null hypothesis

H0: The observations come from the same distribution.

Each of the n + m observations is assigned a rank which is one of the numbers 1, 2, . . . , n + m.
The observation with the smallest numerical value is assigned rank 1, the observation with the
second smallest numerical value is assigned rank 2, etc. Define the statistic

tx =
∑

(ranks of the xi’s).

Whether H0 is rejected or not depends on which alternative hypothesis we test against.

If we test H0 against the alternative hypothesis

H1: The xi’s are primarily smaller than the yi’s,

then H0 is rejected if tx is extremely small. Look up in Table B.9 under n and m. If tx is smaller
than or equal to the table value, then H0 is rejected at significance level α = 5%. If tx is greater
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than the table value, then H0 is accepted at significance level α = 5%.

If we test H0 against the alternative hypothesis

H1: The xi’s are primarily greater than the yi’s,

then one has to switch the roles of xi’s and yi’s and continue as described above.

If we don’t test H0 against any particular alternative hypothesis, then the null hypothesis is reject-
ed if the minimum

t := min{tx, n(n + m + 1) − tx}

is extremely small. Look up in Table B.9 under n and m. If t is smaller than or equal to the table
value, then H0 is rejected at significance level α = 10%. If t is greater than the table value, then
H0 is accepted at significance level 10%.

21.5 The normal approximation to Wilcoxon’s test for two sets of observations

Table B.9 applies for moderate values of n and m. If the number of observations is greater, one
can use a normal distribution approximation. Indeed, if the null hypothesis holds true, the statistic
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tx is approximately normally distributed with expected value

µ =
n(n + m + 1)

2

and standard deviation

σ =

√
nm(n + m + 1)

12
.

The significance probability is then found by comparing the statistic

z =
tx − µ

σ

with Table B.2 of the standard normal distribution.

22 Linear regression

22.1 The model

Suppose we have a sample consisting of n pairs of observations

(x1, y1), (x2, y2), . . . , (xn, yn) .

We propose the model that each yi is an observation from a random variable

Yi = β0 + β1xi + Ei

where the Ei’s are independent normally distributed random variables with expected value 0 and
common variance σ2. Thus we can express each yi as

yi = β0 + β1xi + ei

where ei is an observation from Ei. We call yi the response variable, xi the declaring variable
and ei the remainder term.

22.2 Estimation of the parameters β0 and β1

Let x̄ be the mean value of the xi’s and ȳ the mean value of the yi’s. Define the sum of products
of errors as

SPExy =
n∑

i=1

(xi − x̄)(yi − ȳ)

and the sum of squares of errors as

SSEx =
n∑

i=1

(xi − x̄)2

The parameters β0 and β1 of the regression equation are now estimated as



β̂1 =
SPExy

SSEx

β̂0 = ȳ − β̂1x̄
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22.3 The distribution of the estimators

If the model’s assumptions are met, the estimator β̂0 is normally distributed with expected value
β0 (the estimator thus is unbiased) and variance σ2(1/n + x̄2/SSEx). In other words, it holds
that

β̂0 ∼ N

(
β0, σ

2

(
1
n

+
x̄2

SSEx

))
.

Moreover, the estimator β̂1 is normally distributed with expected value β1 (this estimator is there-
fore unbiased too) and variance σ2/SSEx. In other words, it holds that

β̂1 ∼ N

(
β1,

σ2

SSEx

)
.

22.4 Predicted values ŷi and residuals êi

From the estimates β̂0 and β̂1, the predicted value of yi can be computed for each i as

ŷi = β̂0 + β̂1xi .

The i’th residual êi is the difference between the actual value yi and the predicted value ŷi:

êi = yi − ŷi .

The residual êi is an estimate of the remainder term ei.

22.5 Estimation of the variance σ2

We introduce the sum of squares of residuals as

SSR =
n∑

i=1

ê2
i .

The variance σ2 of the remainder terms is now estimated as

s2 =
SSR

n − 2
.

This estimator is unbiased (but different from the maximum likelihood estimator).

22.6 Confidence intervals for the parameters β0 and β1

After estimating the parameters β0 and β1, we can compute the confidence intervals with confi-
dence level 1 − α around the estimates β̂0 and β̂1. These are




β̂0 ± t1−α/2s

√
1
n

+
x̄2

SSEx

β̂1 ± t1−α/2
s√

SSEx

The number t1−α/2 is determined by F (u1−α/2) = 1 − α/2, where F is the distribution function
of Student’s t distribution with n − 1 degrees of freedom (see also section 15.8).
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22.7 The determination coefficient R2

In order to investigate how well the model with the estimated parameters describes the actual
observations, we compute the determination coefficient

R2 =
SSEy − SSR

SSEy
.

R2 lies in the interval [0, 1] and measures the part of the variation of the yi’s which the model
describes as a linear function of the xi’s.

Remember: The greater the determination coefficient R2 is, the better the model describes the
observations.

22.8 Predictions and prediction intervals

Let there be given a real number x0. The function value

y0 = β0 + β1x0

is then estimated, or predicted, as
ŷ0 = β̂0 + β̂1x0 .

A N N O N C E
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The confidence interval, or prediction interval, with confidence level 1 − α around the estimate
ŷ0 is

ŷ0 ± t1−α/2s

√
1 +

1
n

+
(x0 − x̄)2

SSEx
.

The number t1−α/2 is determined by F (u1−α/2) = 1 − α/2, where F is the distribution function
of Student’s t distribution with n − 2 degrees of freedom (see also section 15.8).

22.9 Overview of formulae
Sx =

∑n
i=1 xi The sum of the xi’s

x̄ = Sx/n The mean value of the xi’s

SSx =
∑n

i=1 x2
i The sum of the squares of the xi’s

SSEx =
∑n

i=1(xi − x̄)2 = SSx − S2
x/n The sum of the squares of the errors

s2
x = SSEx/(n − 1) Empirical variance of the xi’s

SPxy =
∑n

i=1 xiyi The sum of the products

SPExy =
∑n

i=1(xi − x̄)(yi − ȳ) = SPxy − SxSy/n The sum of the products of the errors

β̂1 = SPExy/SSEx The estimate of β1

β̂0 = ȳ − β̂1x̄ The estimate of β0

ŷi = b̂e0 + β̂1xi Predicted value of yi

êi = yi − ŷi The i’th residual

SSR =
∑n

i=1 ê2
i = SSEy − SPE2

xy/SSEx The sum of the squares of the residuals

s2 = SSR/(n − 2) The estimate σ2

R2 = 1 − SSR/SSEy The determination coefficient

22.10 Example

EXERCISE. It is claimed that the temperature in the Andes Mountains decreases by six degrees per
1000 metres. The following temperatures were measured simultaneously at ten different localities
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in the same region:
Altitude xi Temperature yi

(metres) (degrees)
500 15

1000 14
1500 11
2000 6
2500 –1
3000 2
3500 0
4000 –4
4500 –8
5000 –14

We use a linear regression model
yi = β0 + β1xi + ei

where the remainder terms ei are independent normally distributed with expected value 0 and the
same (unknown) variance σ2.

1) Estimate the parameters β0 and β1.

2) Determine the confidence interval with confidence level 95% for β1.

3) Can the hypothesis H0 : β1 = −0.006 be accepted?

4) To how large degree can the difference of temperature be explained as a linear function of the
altitude?

SOLUTION. First we perform the relevant computations:

Sx =
∑10

i=1 xi = 27500 Sy =
∑10

i=1 yi = 21

x̄ = Sx/10 = 2750 ȳ = Sy/10 = 2.1

SSx =
∑10

i=1 x2
i = 96250000 SSy =

∑10
i=1 y2

i = 859

SSEx = SSx − S2
x/10 = 20625000 SSEy = SSy − S2

y/10 = 814.9

SPxy =
∑10

i=1 xiyi = −68500 SPExy = SPxy − SxSy/10 = −126250

β̂1 = SPExy/SSEx = −0.0061 β̂0 = ȳ − β̂1x̄ = 18.9

SSR = SSEy − SPE2
xy/SSEx = 42.1 s2 = SSR/8 = 5.26

R2 = 1 − SSR/SSEy = 0.948

1) It appears directly from the computations that the estimates of β0 and β1 are

β̂0 = 18.9 , β̂1 = −0.0061 .
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2) Table B.4, under df = 10 − 1 = 9 degrees of freedom, shows that t0.975 = 2.26 (see also
section 15.8). The confidence interval around β̂1 thus becomes

[
−0.0061 − 2.26

√
5.26√

20625000
, −0.0061 + 2.26

√
5.26√

20625000

]
= [−0.0072 , −0.0050] .

3) The hypothesis H0 : β1 = −0.006 is accepted, since this value lies within the confidence
interval.

4) The part of the temperature difference describable as a linear function of the altitude is nothing
other than the determination coefficient

R2 = 94.8% .

The fact that R2 is large (close to 100%) shows that the actual temperatures are quite close to those
predicted. This also appears from the figure below, which shows that the actual temperatures are
very close to the regression line:

A N N O N C E
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A Overview of discrete distributions

Distribution Description Values Point proba-
bilities

Mean
value

Variance

Binomial
distribution
Bin(n, p)

Number of
successes in
n tries

k = 0, 1, . . . , n

(
n

k

)
pkqn−k np npq

Poisson
distribution
Pois(λ)

Number of
spontaneous
events in a
time interval

k = 0, 1, . . . λk

k! e
−λ λ λ

Geometrical
distribution
Geo(p)

Number
of fail-
ures before
success

k = 0, 1, . . . qkp q/p q/p2

Hyper-
geometrical
distribution
HG(n, r, N)

Number of
red balls
among n

balls

k = 0, . . .
. . . ,min{n, r}

(
r

k

)(
s

n − k

)

(
N

n

) nr/N nrs(N−n)
N2(N−1)

Negative
binomial
distribution
NB(n, p)

Number
of failures
before the
n’th success

k = 0, 1, . . .

(
n + k − 1

n − 1

)
· pn · qk nq/p nq/p2

Multi-
nomial-
distribution
Mult(n, . . . )

Number
of sample
points of
each type

(k1, . . . , kr)
where∑

ki = n

(
n

k1 · · · kr

)
·
∏

pki
i — —
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B Tables

B.1 How to read the tables

Table B.2 gives values of the distribution function

Φ(u) =
∫ u

−∞

1√
2π

exp
(
−1

2
t2

)
dt

of the standard normal distribution.

Table B.3 gives values of x for which the distribution function F = Fχ2 of the χ2 distribution
with df degrees of freedom takes the values F (x) = 0.500, F (x) = 0.600, etc.

Table B.4 gives values of x for which the distribution function F = FStudent of Student’s t distri-
bution with df degrees of freedom takes the values F (x) = 0.600, F (x) = 0.700, etc.

Table B.5, Table B.6 and Table B.7 give values of x for which the distribution function F =
FFisher of Fisher’s F distribution with n degrees of freedom in the numerator (top line) and
m degrees of freedom in the denominator (leftmost column) takes the values F (x) = 0.90,
F (x) = 0.95, and F (x) = 0.99, respectively.

A N N O N C E
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Table B.8 and Table B.9 give critical values for Wilcoxon’s tests for one and two sets of observa-
tions. See Chapter 21 for further details.
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B.2 The standard normal distribution

u Φ(u) Φ(−u)
0.00 0.5000 0.5000
0.01 0.5040 0.4960
0.02 0.5080 0.4920
0.03 0.5120 0.4880
0.04 0.5160 0.4840
0.05 0.5199 0.4801
0.06 0.5239 0.4761
0.07 0.5279 0.4721
0.08 0.5319 0.4681
0.09 0.5359 0.4641
0.10 0.5398 0.4602
0.11 0.5438 0.4562
0.12 0.5478 0.4522
0.13 0.5517 0.4483
0.14 0.5557 0.4443
0.15 0.5596 0.4404
0.16 0.5636 0.4364
0.17 0.5675 0.4325
0.18 0.5714 0.4286
0.19 0.5753 0.4247
0.20 0.5793 0.4207
0.21 0.5832 0.4168
0.22 0.5871 0.4129
0.23 0.5910 0.4090
0.24 0.5948 0.4052
0.25 0.5987 0.4013
0.26 0.6026 0.3974
0.27 0.6064 0.3936
0.28 0.6103 0.3897
0.29 0.6141 0.3859
0.30 0.6179 0.3821
0.31 0.6217 0.3783
0.32 0.6255 0.3745
0.33 0.6293 0.3707
0.34 0.6331 0.3669
0.35 0.6368 0.3632

u Φ(u) Φ(−u)
0.36 0.6406 0.3594
0.37 0.6443 0.3557
0.38 0.6480 0.3520
0.39 0.6517 0.3483
0.40 0.6554 0.3446
0.41 0.6591 0.3409
0.42 0.6628 0.3372
0.43 0.6664 0.3336
0.44 0.6700 0.3300
0.45 0.6736 0.3264
0.46 0.6772 0.3228
0.47 0.6808 0.3192
0.48 0.6844 0.3156
0.49 0.6879 0.3121
0.50 0.6915 0.3085
0.51 0.6950 0.3050
0.52 0.6985 0.3015
0.53 0.7019 0.2981
0.54 0.7054 0.2946
0.55 0.7088 0.2912
0.56 0.7123 0.2877
0.57 0.7157 0.2843
0.58 0.7190 0.2810
0.59 0.7224 0.2776
0.60 0.7257 0.2743
0.61 0.7291 0.2709
0.62 0.7324 0.2676
0.63 0.7357 0.2643
0.64 0.7389 0.2611
0.65 0.7422 0.2578
0.66 0.7454 0.2546
0.67 0.7486 0.2514
0.68 0.7517 0.2483
0.69 0.7549 0.2451
0.70 0.7580 0.2420
0.71 0.7611 0.2389

u Φ(u) Φ(−u)
0.72 0.7642 0.2358
0.73 0.7673 0.2327
0.74 0.7704 0.2296
0.75 0.7734 0.2266
0.76 0.7764 0.2236
0.77 0.7794 0.2206
0.78 0.7823 0.2177
0.79 0.7852 0.2148
0.80 0.7881 0.2119
0.81 0.7910 0.2090
0.82 0.7939 0.2061
0.83 0.7967 0.2033
0.84 0.7995 0.2005
0.85 0.8023 0.1977
0.86 0.8051 0.1949
0.87 0.8078 0.1922
0.88 0.8106 0.1894
0.89 0.8133 0.1867
0.90 0.8159 0.1841
0.91 0.8186 0.1814
0.92 0.8212 0.1788
0.93 0.8238 0.1762
0.94 0.8264 0.1736
0.95 0.8289 0.1711
0.96 0.8315 0.1685
0.97 0.8340 0.1660
0.98 0.8365 0.1635
0.99 0.8389 0.1611
1.00 0.8413 0.1587
1.01 0.8438 0.1562
1.02 0.8461 0.1539
1.03 0.8485 0.1515
1.04 0.8508 0.1492
1.05 0.8531 0.1469
1.06 0.8554 0.1446
1.07 0.8577 0.1423
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u Φ(u) Φ(−u)
1.08 0.8599 0.1401
1.09 0.8621 0.1379
1.10 0.8643 0.1357
1.11 0.8665 0.1335
1.12 0.8686 0.1314
1.13 0.8708 0.1292
1.14 0.8729 0.1271
1.15 0.8749 0.1251
1.16 0.8770 0.1230
1.17 0.8790 0.1210
1.18 0.8810 0.1190
1.19 0.8830 0.1170
1.20 0.8849 0.1151
1.21 0.8869 0.1131
1.22 0.8888 0.1112
1.23 0.8907 0.1093
1.24 0.8925 0.1075
1.25 0.8944 0.1056
1.26 0.8962 0.1038
1.27 0.8980 0.1020
1.28 0.8997 0.1003
1.29 0.9015 0.0985
1.30 0.9032 0.0968
1.31 0.9049 0.0951
1.32 0.9066 0.0934
1.33 0.9082 0.0918
1.34 0.9099 0.0901
1.35 0.9115 0.0885
1.36 0.9131 0.0869
1.37 0.9147 0.0853
1.38 0.9162 0.0838
1.39 0.9177 0.0823
1.40 0.9192 0.0808
1.41 0.9207 0.0793
1.42 0.9222 0.0778
1.43 0.9236 0.0764
1.44 0.9251 0.0749

u Φ(u) Φ(−u)
1.45 0.9265 0.0735
1.46 0.9279 0.0721
1.47 0.9292 0.0708
1.48 0.9306 0.0694
1.49 0.9319 0.0681
1.50 0.9332 0.0668
1.51 0.9345 0.0655
1.52 0.9357 0.0643
1.53 0.9370 0.0630
1.54 0.9382 0.0618
1.55 0.9394 0.0606
1.56 0.9406 0.0594
1.57 0.9418 0.0582
1.58 0.9429 0.0571
1.59 0.9441 0.0559
1.60 0.9452 0.0548
1.61 0.9463 0.0537
1.62 0.9474 0.0526
1.63 0.9484 0.0516
1.64 0.9495 0.0505
1.65 0.9505 0.0495
1.66 0.9515 0.0485
1.67 0.9525 0.0475
1.68 0.9535 0.0465
1.69 0.9545 0.0455
1.70 0.9554 0.0446
1.71 0.9564 0.0436
1.72 0.9573 0.0427
1.73 0.9582 0.0418
1.74 0.9591 0.0409
1.75 0.9599 0.0401
1.76 0.9608 0.0392
1.77 0.9616 0.0384
1.78 0.9625 0.0375
1.79 0.9633 0.0367
1.80 0.9641 0.0359
1.81 0.9649 0.0351

u Φ(u) Φ(−u)
1.82 0.9656 0.0344
1.83 0.9664 0.0336
1.84 0.9671 0.0329
1.85 0.9678 0.0322
1.86 0.9686 0.0314
1.87 0.9693 0.0307
1.88 0.9699 0.0301
1.89 0.9706 0.0294
1.90 0.9713 0.0287
1.91 0.9719 0.0281
1.92 0.9726 0.0274
1.93 0.9732 0.0268
1.94 0.9738 0.0262
1.95 0.9744 0.0256
1.96 0.9750 0.0250
1.97 0.9756 0.0244
1.98 0.9761 0.0239
1.99 0.9767 0.0233
2.00 0.9772 0.0228
2.01 0.9778 0.0222
2.02 0.9783 0.0217
2.03 0.9788 0.0212
2.04 0.9793 0.0207
2.05 0.9798 0.0202
2.06 0.9803 0.0197
2.07 0.9808 0.0192
2.08 0.9812 0.0188
2.09 0.9817 0.0183
2.10 0.9821 0.0179
2.11 0.9826 0.0174
2.12 0.9830 0.0170
2.13 0.9834 0.0166
2.14 0.9838 0.0162
2.15 0.9842 0.0158
2.16 0.9846 0.0154
2.17 0.9850 0.0150
2.18 0.9854 0.0146
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u Φ(u) Φ(−u)
2.19 0.9857 0.0143
2.20 0.9861 0.0139
2.21 0.9864 0.0136
2.22 0.9868 0.0132
2.23 0.9871 0.0129
2.24 0.9875 0.0125
2.25 0.9878 0.0122
2.26 0.9881 0.0119
2.27 0.9884 0.0116
2.28 0.9887 0.0113
2.29 0.9890 0.0110
2.30 0.9893 0.0107
2.31 0.9896 0.0104
2.32 0.9898 0.0102
2.33 0.9901 0.0099
2.34 0.9904 0.0096
2.35 0.9906 0.0094
2.36 0.9909 0.0091
2.37 0.9911 0.0089
2.38 0.9913 0.0087
2.39 0.9916 0.0084
2.40 0.9918 0.0082
2.41 0.9920 0.0080
2.42 0.9922 0.0078
2.43 0.9925 0.0075
2.44 0.9927 0.0073
2.45 0.9929 0.0071
2.46 0.9931 0.0069
2.47 0.9932 0.0068
2.48 0.9934 0.0066
2.49 0.9936 0.0064
2.50 0.9938 0.0062
2.51 0.9940 0.0060
2.52 0.9941 0.0059
2.53 0.9943 0.0057
2.54 0.9945 0.0055
2.55 0.9946 0.0054

u Φ(u) Φ(−u)
2.56 0.9948 0.0052
2.57 0.9949 0.0051
2.58 0.9951 0.0049
2.59 0.9952 0.0048
2.60 0.9953 0.0047
2.61 0.9955 0.0045
2.62 0.9956 0.0044
2.63 0.9957 0.0043
2.64 0.9959 0.0041
2.65 0.9960 0.0040
2.66 0.9961 0.0039
2.67 0.9962 0.0038
2.68 0.9963 0.0037
2.69 0.9964 0.0036
2.70 0.9965 0.0035
2.71 0.9966 0.0034
2.72 0.9967 0.0033
2.73 0.9968 0.0032
2.74 0.9969 0.0031
2.75 0.9970 0.0030
2.76 0.9971 0.0029
2.77 0.9972 0.0028
2.78 0.9973 0.0027
2.79 0.9974 0.0026
2.80 0.9974 0.0026
2.81 0.9975 0.0025
2.82 0.9976 0.0024
2.83 0.9977 0.0023
2.84 0.9977 0.0023
2.85 0.9978 0.0022
2.86 0.9979 0.0021
2.87 0.9979 0.0021
2.88 0.9980 0.0020
2.89 0.9981 0.0019
2.90 0.9981 0.0019
2.91 0.9982 0.0018
2.92 0.9982 0.0018

u Φ(u) Φ(−u)
2.93 0.9983 0.0017
2.94 0.9984 0.0016
2.95 0.9984 0.0016
2.96 0.9985 0.0015
2.97 0.9985 0.0015
2.98 0.9986 0.0014
2.99 0.9986 0.0014
3.00 0.9987 0.0013
3.10 0.9990 0.0010
3.20 0.9993 0.0007
3.30 0.9995 0.0005
3.40 0.9997 0.0003
3.50 0.9998 0.0002
3.60 0.9998 0.0002
3.70 0.9999 0.0001
3.80 0.9999 0.0001
3.90 1.0000 0.0000
4.00 1.0000 0.0000
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B.3 The χ2 distribution (values x with Fχ2(x) = 0.500 etc.)

df 0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 0.999
1 0.45 0.71 1.07 1.64 2.71 3.84 5.02 6.63 7.88 10.83
2 1.39 1.83 2.41 3.22 4.61 5.99 7.38 9.21 10.60 13.82
3 2.37 2.95 3.66 4.64 6.25 7.81 9.35 11.34 12.84 16.27
4 3.36 4.04 4.88 5.99 7.78 9.49 11.14 13.28 14.86 18.47
5 4.35 5.13 6.06 7.29 9.24 11.07 12.83 15.09 16.75 20.52
6 5.35 6.21 7.23 8.56 10.64 12.59 14.45 16.81 18.55 22.46
7 6.35 7.28 8.38 9.80 12.02 14.07 16.01 18.48 20.28 24.32
8 7.34 8.35 9.52 11.03 13.36 15.51 17.53 20.09 21.95 26.12
9 8.34 9.41 10.66 12.24 14.68 16.92 19.02 21.67 23.59 27.88

10 9.34 10.47 11.78 13.44 15.99 18.31 20.48 23.21 25.19 29.59
11 10.34 11.53 12.90 14.63 17.28 19.68 21.92 24.72 26.76 31.26
12 11.34 12.58 14.01 15.81 18.55 21.03 23.34 26.22 28.30 32.91
13 12.34 13.64 15.12 16.98 19.81 22.36 24.74 27.69 29.82 34.53
14 13.34 14.69 16.22 18.15 21.06 23.68 26.12 29.14 31.32 36.12
15 14.34 15.73 17.32 19.31 22.31 25.00 27.49 30.58 32.80 37.70
16 15.34 16.78 18.42 20.47 23.54 26.30 28.85 32.00 34.27 39.25
17 16.34 17.82 19.51 21.61 24.77 27.59 30.19 33.41 35.72 40.79
18 17.34 18.87 20.60 22.76 25.99 28.87 31.53 34.81 37.16 42.31
19 18.34 19.91 21.69 23.90 27.20 30.14 32.85 36.19 38.58 43.82
20 19.34 20.95 22.77 25.04 28.41 31.41 34.17 37.57 40.00 45.31
21 20.34 21.99 23.86 26.17 29.62 32.67 35.48 38.93 41.40 46.80
22 21.34 23.03 24.94 27.30 30.81 33.92 36.78 40.29 42.80 48.27
23 22.34 24.07 26.02 28.43 32.01 35.17 38.08 41.64 44.18 49.73
24 23.34 25.11 27.10 29.55 33.20 36.42 39.36 42.98 45.56 51.18
25 24.34 26.14 28.17 30.68 34.38 37.65 40.65 44.31 46.93 52.62
26 25.34 27.18 29.25 31.79 35.56 38.89 41.92 45.64 48.29 54.05
27 26.34 28.21 30.32 32.91 36.74 40.11 43.19 46.96 49.64 55.48
28 27.34 29.25 31.39 34.03 37.92 41.34 44.46 48.28 50.99 56.89
29 28.34 30.28 32.46 35.14 39.09 42.56 45.72 49.59 52.34 58.30
30 29.34 31.32 33.53 36.25 40.26 43.77 46.98 50.89 53.67 59.70
31 30.34 32.35 34.60 37.36 41.42 44.99 48.23 52.19 55.00 61.10
32 31.34 33.38 35.66 38.47 42.58 46.19 49.48 53.49 56.33 62.49
33 32.34 34.41 36.73 39.57 43.75 47.40 50.73 54.78 57.65 63.87
34 33.34 35.44 37.80 40.68 44.90 48.60 51.97 56.06 58.96 65.25
35 34.34 36.47 38.86 41.78 46.06 49.80 53.20 57.34 60.27 66.62
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df 0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 0.999
36 35.34 37.50 39.92 42.88 47.21 51.00 54.44 58.62 61.58 67.99
37 36.34 38.53 40.98 43.98 48.36 52.19 55.67 59.89 62.88 69.35
38 37.34 39.56 42.05 45.08 49.51 53.38 56.90 61.16 64.18 70.70
39 38.34 40.59 43.11 46.17 50.66 54.57 58.12 62.43 65.48 72.05
40 39.34 41.62 44.16 47.27 51.81 55.76 59.34 63.69 66.77 73.40
41 40.34 42.65 45.22 48.36 52.95 56.94 60.56 64.95 68.05 74.74
42 41.34 43.68 46.28 49.46 54.09 58.12 61.78 66.21 69.34 76.08
43 42.34 44.71 47.34 50.55 55.23 59.30 62.99 67.46 70.62 77.42
44 43.34 45.73 48.40 51.64 56.37 60.48 64.20 68.71 71.89 78.75
45 44.34 46.76 49.45 52.73 57.51 61.66 65.41 69.96 73.17 80.08
46 45.34 47.79 50.51 53.82 58.64 62.83 66.62 71.20 74.44 81.40
47 46.34 48.81 51.56 54.91 59.77 64.00 67.82 72.44 75.70 82.72
48 47.34 49.84 52.62 55.99 60.91 65.17 69.02 73.68 76.97 84.04
49 48.33 50.87 53.67 57.08 62.04 66.34 70.22 74.92 78.23 85.35
50 49.33 51.89 54.72 58.16 63.17 67.50 71.42 76.15 79.49 86.66
51 50.33 52.92 55.78 59.25 64.30 68.67 72.62 77.39 80.75 87.97
52 51.33 53.94 56.83 60.33 65.42 69.83 73.81 78.62 82.00 89.27
53 52.33 54.97 57.88 61.41 66.55 70.99 75.00 79.84 83.25 90.57
54 53.33 55.99 58.93 62.50 67.67 72.15 76.19 81.07 84.50 91.87
55 54.33 57.02 59.98 63.58 68.80 73.31 77.38 82.29 85.75 93.17
56 55.33 58.04 61.03 64.66 69.92 74.47 78.57 83.51 86.99 94.46
57 56.33 59.06 62.08 65.74 71.04 75.62 79.75 84.73 88.24 95.75
58 57.33 60.09 63.13 66.82 72.16 76.78 80.94 85.95 89.48 97.04
59 58.33 61.11 64.18 67.89 73.28 77.93 82.12 87.17 90.72 98.32
60 59.33 62.13 65.23 68.97 74.40 79.08 83.30 88.38 91.95 99.61
61 60.33 63.16 66.27 70.05 75.51 80.23 84.48 89.59 93.19 100.89
62 61.33 64.18 67.32 71.13 76.63 81.38 85.65 90.80 94.42 102.17
63 62.33 65.20 68.37 72.20 77.75 82.53 86.83 92.01 95.65 103.44
64 63.33 66.23 69.42 73.28 78.86 83.68 88.00 93.22 96.88 104.72
65 64.33 67.25 70.46 74.35 79.97 84.82 89.18 94.42 98.11 105.99
66 65.33 68.27 71.51 75.42 81.09 85.96 90.35 95.63 99.33 107.26
67 66.33 69.29 72.55 76.50 82.20 87.11 91.52 96.83 100.55 108.53
68 67.33 70.32 73.60 77.57 83.31 88.25 92.69 98.03 101.78 109.79
69 68.33 71.34 74.64 78.64 84.42 89.39 93.86 99.23 103.00 111.06
70 69.33 72.36 75.69 79.71 85.53 90.53 95.02 100.43 104.21 112.32
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B.4 Student’s t distribution (values x with FStudent(x) = 0.600 etc.)

df 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995 0.999
1 0.32 0.73 1.38 3.08 6.31 12.71 31.82 63.66 318.31
2 0.29 0.62 1.06 1.89 2.92 4.30 6.96 9.92 22.33
3 0.28 0.58 0.98 1.64 2.35 3.18 4.54 5.84 10.2
4 0.27 0.57 0.94 1.53 2.13 2.78 3.75 4.60 7.17
5 0.27 0.56 0.92 1.48 2.02 2.57 3.36 4.03 5.89
6 0.26 0.55 0.91 1.44 1.94 2.45 3.14 3.71 5.21
7 0.26 0.55 0.90 1.41 1.89 2.36 3.00 3.50 4.79
8 0.26 0.55 0.89 1.40 1.86 2.31 2.90 3.36 4.50
9 0.26 0.54 0.88 1.38 1.83 2.26 2.82 3.25 4.30

10 0.26 0.54 0.88 1.37 1.81 2.23 2.76 3.17 4.14
11 0.26 0.54 0.88 1.36 1.80 2.20 2.72 3.11 4.02
12 0.26 0.54 0.87 1.36 1.78 2.18 2.68 3.05 3.93
13 0.26 0.54 0.87 1.35 1.77 2.16 2.65 3.01 3.85
14 0.26 0.54 0.87 1.35 1.76 2.14 2.62 2.98 3.79
15 0.26 0.54 0.87 1.34 1.75 2.13 2.60 2.95 3.73
16 0.26 0.54 0.86 1.34 1.75 2.12 2.58 2.92 3.69
17 0.26 0.53 0.86 1.33 1.74 2.11 2.57 2.90 3.65
18 0.26 0.53 0.86 1.33 1.73 2.10 2.55 2.88 3.61
19 0.26 0.53 0.86 1.33 1.73 2.09 2.54 2.86 3.58
20 0.26 0.53 0.86 1.33 1.72 2.09 2.53 2.85 3.55
21 0.26 0.53 0.86 1.32 1.72 2.08 2.52 2.83 3.53
22 0.26 0.53 0.86 1.32 1.72 2.07 2.51 2.82 3.50
23 0.26 0.53 0.86 1.32 1.71 2.07 2.50 2.81 3.48
24 0.26 0.53 0.86 1.32 1.71 2.06 2.49 2.80 3.47
25 0.26 0.53 0.86 1.32 1.71 2.06 2.49 2.79 3.45
26 0.26 0.53 0.86 1.31 1.71 2.06 2.48 2.78 3.43
27 0.26 0.53 0.86 1.31 1.70 2.05 2.47 2.77 3.42
28 0.26 0.53 0.85 1.31 1.70 2.05 2.47 2.76 3.41
29 0.26 0.53 0.85 1.31 1.70 2.05 2.46 2.76 3.40
30 0.26 0.53 0.85 1.31 1.70 2.04 2.46 2.75 3.39
35 0.26 0.53 0.85 1.31 1.69 2.03 2.44 2.72 3.34
40 0.26 0.53 0.85 1.30 1.68 2.02 2.42 2.70 3.31
50 0.25 0.53 0.85 1.30 1.68 2.01 2.40 2.68 3.26

100 0.25 0.53 0.85 1.29 1.66 1.98 2.36 2.63 3.17
∞ 0.25 0.52 0.84 1.28 1.64 1.96 2.33 2.58 3.09
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B.5 Fisher’s F distribution (values x with FFisher(x) = 0.90)

1 2 3 4 5 6 7 8 9 10
1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
18 3.02 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
19 3.01 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96
20 3.00 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
21 2.98 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
22 2.97 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
23 2.96 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
24 2.95 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88
25 2.94 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
26 2.93 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
27 2.92 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
28 2.92 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
29 2.91 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83
30 2.90 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
31 2.90 2.48 2.27 2.14 2.04 1.97 1.92 1.88 1.84 1.81
32 2.89 2.48 2.26 2.13 2.04 1.97 1.91 1.87 0.84 1.81
33 2.89 2.47 2.26 2.12 2.03 1.96 1.91 1.86 1.83 1.80
34 2.88 2.47 2.25 2.12 2.02 1.96 1.90 1.86 1.82 1.79
35 2.88 2.46 2.25 2.11 2.02 1.95 1.90 1.85 1.82 1.79
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B.6 Fisher’s F distribution (values x with FFisher(x) = 0.95)

1 2 3 4 5 6 7 8 9 10
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.43 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
19 4.41 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38
20 4.38 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
21 4.35 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
22 4.33 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
23 4.31 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
24 4.29 3.40 3.01 2.78 2.62 2.51 2.42 2.36 4.62 2.25
25 4.27 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
26 4.25 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
27 4.24 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.22 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
29 4.21 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18
30 4.20 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
31 4.18 3.30 2.91 2.68 2.52 2.41 2.32 2.25 2.20 2.15
32 4.17 3.29 2.90 2.67 2.51 2.40 2.31 2.24 2.19 2.14
33 4.16 3.28 2.89 2.66 2.50 2.39 2.30 2.23 2.18 2.13
34 4.15 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17 2.12
35 4.15 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11
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B.7 Fisher’s F distribution (values x with FFisher(x) = 0.99)

1 2 3 4 5 6 7 8 9 10
1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59
18 8.30 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
19 8.22 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43
20 8.13 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37
21 8.05 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
22 7.98 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
23 7.91 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21
24 7.85 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17
25 7.80 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13
26 7.75 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09
27 7.71 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
28 7.67 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
29 7.63 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00
30 7.59 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98
31 7.56 5.36 4.48 3.99 3.67 3.45 3.28 3.15 3.04 2.96
32 7.53 5.34 4.46 3.97 3.65 3.43 3.26 3.13 3.02 2.93
33 7.50 5.31 4.44 3.95 3.63 3.41 3.24 3.11 3.00 2.91
34 7.47 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.98 2.89
35 7.45 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88

97

Download free eBooks at bookboon.com



Statistics

 
98 

Tables

B.8 Wilcoxon’s test for one set of observations
n 0.005 0.010 0.025 0.050
5 − − − 0
6 − − 0 2
7 − 0 2 3
8 0 1 3 5
9 1 3 5 8

10 3 5 8 10
11 5 7 10 13
12 7 9 13 17
13 9 12 17 21
14 12 15 21 25
15 15 19 25 30
16 19 23 29 35
17 23 27 34 41
18 27 32 40 47
19 32 37 46 53
20 37 43 52 60
21 42 49 58 67
22 48 55 65 75
23 54 62 73 83
24 61 69 81 91
25 68 76 89 100
26 75 84 98 110
27 83 92 107 119

n 0.005 0.010 0.025 0.050
28 91 101 116 130
29 100 110 126 140
30 109 120 137 151
31 118 130 147 163
32 128 140 159 175
33 138 151 170 187
34 148 162 182 200
35 159 173 195 213
36 171 185 208 227
37 182 198 221 241
38 194 211 235 256
39 207 224 249 271
40 220 238 264 286
41 233 252 279 302
42 247 266 294 319
43 261 281 310 336
44 276 296 327 353
45 291 312 343 371
46 307 328 361 389
47 322 345 378 407
48 339 362 396 426
49 355 379 415 446
50 373 397 434 466
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B.9 Wilcoxon’s test for two sets of observations, α = 5%

m = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 3 3 3 4 4 4 4 5 5 6 6
3 5 5 6 6 7 8 8 9 10 10 11 11 12 13 13
4 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22
5 14 15 16 17 19 20 21 23 24 26 27 28 30 31 33
6 20 21 23 24 26 28 29 31 33 35 37 38 40 42 44
7 27 28 30 32 34 36 39 41 43 45 47 49 52 54 56
8 35 37 39 41 44 46 49 51 54 56 59 62 64 67 69
9 44 46 49 51 54 57 60 63 66 69 72 75 78 81 84

10 54 56 59 62 66 69 72 75 79 82 86 89 92 96 99
11 65 67 71 74 78 82 85 89 93 97 100 104 108 112 116
12 77 80 83 87 91 95 99 104 108 112 116 120 125 129 133
13 90 93 97 101 106 110 115 119 124 128 133 138 142 147 152
14 104 108 112 116 121 126 131 136 141 146 151 156 161 166 171
15 119 123 127 132 138 143 148 153 159 164 170 175 181 186 192
16 135 139 144 150 155 161 166 172 178 184 190 196 201 207 213
17 152 156 162 168 173 179 186 192 198 204 210 217 223 230 236
18 170 175 180 187 193 199 206 212 219 226 232 239 246 253 259
19 190 194 200 207 213 220 227 234 241 248 255 262 270 277 284
20 210 214 221 228 235 242 249 257 264 272 279 287 294 302 310
21 231 236 242 250 257 265 272 280 288 296 304 312 320 328 336
22 253 258 265 273 281 289 297 305 313 321 330 338 347 355 364
23 276 281 289 297 305 313 322 330 339 348 357 366 374 383 392
24 300 306 313 322 330 339 348 357 366 375 385 394 403 413 422
25 325 331 339 348 357 366 375 385 394 404 414 423 433 443 453
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C Explanation of symbols

A, B,C events
Ω sample space
P probability function, significance probability
P (A|B) conditional probability of A given B

∩, ∪ intersection, union
∧, ∨ and, or
A ⊆ Ω A is a subset of Ω
ω ∈ Ω ω belongs to Ω
�A complement of the set A

A\B difference of the sets A and B (“A minus B”)
f : Ω → R f is a map from Ω into R
:= equals by definition
|x| absolute value of x (e.g. | − 2| = 2)
N, Z, R the set of natural, integral, real numbers
Ø the empty set
[0,∞[ the interval {x ∈ R | x ≥ 0}
X, Y random variables
E(X) the expected value of X

var(X) the variance of X

Cov(X, Y ) the covariance of X and Y

µ expected value
σ2 variance
σ standard deviation
Bin binomial distribution
Pois Poisson distribution
Geo geometrical distribution
HG hypergeometrical distribution
Mult multinomial distribution
NB negative binomial distribution
Exp exponential distribution
N normal distribution
s2 empirical variance
s empirical standard deviation
F (x) distribution function
f(x) density function
Φ(x) distribution function of standard normal distribution
ϕ(x) density function of standard normal distribution
n number of observations or tries
λ intensity (in a Poisson process)
R2 determination coefficient
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Explanation of symbols

ρ correlation coefficient
x̄, ȳ mean value
df number of degrees of freedom
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Indeks
accept, 29
addition formula, 24
addition formula for normal distribution, 50
alternative hypothesis, 29
analysis of variance, 60
ANOVA, 60
automobiles, 36
auxiliary hypothesis, 59

binomial coefficient, 16
binomial distribution, 30
black balls, 41
Bortkiewicz, Ladislaus von, 69

cabinet, 42
Central Limit Theorem, 26
Chebyshev’s inequality, 26
chi-squared, 63
chi-squared distribution, 50
city council, 42
conditional probability, 12
contingency table, 70
continuous random variable, 20
correlation coefficient, 24
covariance, 24
cumulative probabilities, 32

declaring variable, 79
density, 20
density function, 20
determination coefficient, 81
discrepancy, 64
discrete random variable, 19
disjoint events, 12
distribution function, 18
distribution-free test, 74
division into possible causes, 13

empirical correlation coefficient, 29
empirical covariance, 29
empirical standard deviation, 28

empirical variance, 28
equality of distribution, 63
errors (of type I and II), 30
event, 12
expected number, 64
expected value, 21, 24
exponential distribution, 45

F distribution, 52
Fisher’s exact test, 73
Fisher’s F, 52
Fisher-Behrens problem, 57
French Open, 13

generalized binomial coefficients, 17
geometrical distribution, 39
Gesetz der kleinen Zahlen, 69
goodness of fit, 63
Green Party, 34

hypergeometrical distribution, 41

inclusion-exclusion, 14
independent events, 14
independent random variables, 20
intensity, 35, 45
interquartile range, 28

Law of Large Numbers, 26
linear regression, 79
lower quartile, 28

marginal density, 21
mean, 28
mean value, 28
median, 27
moment of extraordinary beauty, 27
multinomial coefficients, 17
multinomial distribution, 43
multiplication formula, 24

negative binomial distribution, 44
non-parametric test, 74
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normal distribution, 46
normed sum, 26
null hypothesis, 29

observed number, 64

parameter, 30
Pascal’s triangle, 17
Pearson’s test, 63
pin diagram, 19
point probability, 19
Poisson distribution, 35
pooled variance, 57
predicted value, 80
probability function, 12
probability of failure, 30
probability of success, 30
probability space, 12
Prussian cavalry, 68

quartile, 28

random variables, 18
random vector, 21
rank, 74
red balls, 41
regression, 79
reject, 29
remainder term, 79
residual, 80
response variable, 79

sample point, 12
sample space, 12
school class, 15
significance level, 29
significance probability, 29
simple linear regression, 79
simultaneous density, 21
simultaneous distribution function, 21
Skoda, 36
spontaneous event, 35, 45
standard deviation, 22
standard normal distribution, 47

standardized residuals, 65, 71
strength, 30
Student’s t, 51

t distribution, 51
test, 29
throw of a dice, 12
toss of a coin, 27
two-times-two table, 73
type I and II, 30

unbiased estimator, 33
upper quartile, 28
urn, 41

variance, 22, 24
variance between samples, 60
variance within samples, 60

Wilcoxon’s test, 74
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