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Abstract

We investigate a few-body mixture of two bosonic components, each consisting of two particles
confined in a quasi one-dimensional harmonic trap. By means of exact diagonalization with a
correlated basis approach we obtain the low-energy spectrum and eigenstates for the whole range of
repulsive intra- and inter-component interaction strengths. We analyse the eigenvalues as a function
of the inter-component coupling, covering hereby all the limiting regimes, and characterize the
behaviour in-between these regimes by exploiting the symmetries of the Hamiltonian. Provided with
this knowledge we study the breathing dynamics in the linear-response regime by slightly quenching
the trap frequency symmetrically for both components. Depending on the choice of interactions
strengths, we identify 1 to 3 monopole modes besides the breathing mode of the centre of mass
coordinate. For the uncoupled mixture each monopole mode corresponds to the breathing oscillation
of a specific relative coordinate. Increasing the inter-component coupling first leads to multi-mode
oscillations in each relative coordinate, which turn into single-mode oscillations of the same frequency
in the composite-fermionization regime.

1. Introduction

The physics of ultra-cold atoms has gained a great boost of interest since the first experimental realization of an
atomic Bose—Einstein condensate [ 1, 2], where research topics such as collective modes [3-5], binary mixtures
[6, 7] and lower-dimensional geometries [8—10] were in the focus right from the start. In most of the
experiments on ultra-cold gases the atoms are but weakly correlated and well described by a mean-field (MF)
model, the well-known Gross—Pitaevskii equation (GPE), or in case of mixtures by coupled GPEs [11-13]. Bose—
Bose mixtures exhibit richer physics compared to their single component counterpart. For instance, different
ground state profiles can be identified depending on the ratios between the intra- and inter-species interaction
strengths, being experimentally tunable by e.g. Feshbach resonances (FRs) [14]: the miscible, immiscible
symmetry-broken (SB) or immiscible core—shell structure, also called phase separation (PS) [15-17].
Comparing the experimentally obtained densities to numerical MF calculations [18, 19] provides a sensitive
probe for precision measurements of the scattering lengths or, if known, the magnetic fields used to tune them
[16]. Another possibility to access the interaction regime and thus the scattering lengths is by exciting the system
and extracting the frequencies of low-lying excitations [20]. In contrast to a single-species case the collective
modes of mixtures exhibit new exciting phenomena: doublet splitting of the spectrum containing in-phase and
out-of-phase oscillations, mode-softening for increasing inter-component coupling, onset of instability of the
lowest dipole mode leading to the SB phase as well as minima in the breathing mode frequencies w.r.t.
interaction strength [21-23].

The breathing or monopole mode, characterized by expansion and contraction of the atomic density, has in
particular proven to be a useful tool for the diagnostics of static and dynamical properties of physical systems. It
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is sensitive to the system’s dimensionality, spin statistics as well as form and strength of interactions [24-27]. In
the early theoretical investigations on quasi-one-dimensional single-component systems [28] it was shown that
different interaction regimes can be distinguished by the breathing mode frequency, which has been used in
experiments [10, 29, 30]. Furthermore, the monopole mode provides indirect information on the ground state
[31], its compressibility [32] and the low-lying energy spectrum such that an analogy has been drawn to
absorption/emission spectroscopy in molecular physics [27].

From a theoretical side, those of the above experiments which are concerned with quasi-1D set-ups are in
particular interesting, since correlations are generically stronger, rendering MF theories often inapplicable.
Here, confinement induced resonances (CIR) [8] can be employed to realize the Tonks—Girardeau limit [33, 34],
where the bosons resemble a system of non-interacting fermions in many aspects. While this case can be solved
analytically [35, 36], strong but finite interactions are tractable only to numerical approaches, which limits the
analysis to few-body systems. For instance, a profound investigation of the ground state phases of a few-body
Bose—Bose mixture [37, 38] showed striking differences to the MF calculations: for coinciding trap centres, a
new phase with bimodal symmetric density structure, called composite fermionization (CF), is observed while
SB is absent for any finite inter-component coupling. Only in the limit of infinite coupling the ground state
becomes two-fold degenerate enabling to choose between CF and SB representations [39], while the MF theory
predicts the existence of SB already for finite couplings. This observation accentuates the necessity to include
correlation effects.

In this work we solve the time-independent problem of the simplest Bose—Bose mixture confined in a quasi-
1D HO trap with two particles in each component, covering the whole parameter space of repulsive intra- and
inter-species interactions, thereby complementing the analysis of some previous studies [39-41]. To accomplish
this, an exact diagonalization method based on a correlated basis is introduced. We unravel how the
distinguishability of the components renders the spectrum richer and complexer compared to a single
component case [42]. Furthermore, these results are used to investigate the breathing dynamics of the composite
system. While the breathing spectrum of a single component was recently investigated comprehensively in
[43—49], reporting a transition from a two mode beating of the centre of mass ()¢ and relative motion €
frequencies for few atoms to a single mode breathing for many particles, the breathing mode properties of few-
body Bose—Bose mixtures are not characterized so far. For this reason, we analyse the number of breathing
frequencies and the kind of motion to which they correspond in dependence on the intra- and inter-component
interaction for the binary mixture at hand.

This work is structured as follows. In section 2 we introduce the Hamiltonian of the system. In section 3 we
perform a coordinate transformation to construct a fast converging correlated basis. Using exact diagonalization
with respect to this basis we study in section 4 the low-lying energy spectrum for various interaction regimes.
Section 5 is dedicated to the breathing dynamics within the linear response regime. An experimental realization
is discussed in section 6 and we conclude the paper with a summary and an outlook in section 7.

2.Model

We consider a Bose—Bose mixture containing two components, which are labelled by o € {A, B}, confinedina
highly anisotropic harmonic trap. We assume the low temperature regime, where the inter-particle interactions
may be modelled via a contact potential, and strong transversal confinement allowing us to integrate out frozen
degrees of freedom leading to a quasi-1D model. Our focus lies on a mixture of N, = 2 particles, which have the
same mass 1, = m and trapping frequencies w,, | = wy, W,,| = w in the transversal, longitudinal direction,
respectively. This can be realized by choosing different hyperfine states of the same atomic species. By further
rescaling the energy and length in units of /w and ay, = /72 /(mw) one arrives at the dimensionless
Hamiltonian:

H=>"H, + Hp, (D

a

with the single-component Hamiltonians H,

N S N 5
H, = Z::l 20, 0] + 86001 = X0, Q)
and inter-component coupling Hap
2
Hup = ga D 6(xai — x5,), 3)

ij=1

where g, ~ (2aPw) / (wap,) with a’P the 3D s-wave scatteringlengthand o € {A, B, AB} are effective (off-
resonant) interaction strengths.
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3. Methodology: exact diagonalization in a correlated basis

To obtain information on the low-energy excitation spectrum we employ the well-established method of exact
diagonalization [50]. However, instead of taking bosonic number states w.r.t. HO eigenstates for the underlying
basis as done in e.g. [40], we pursue a different approach by using a correlated atom-pair basis. This allows us to
study arbitrary intra-component interactions g (even infinity) exactly, whereas HO number states are much
more inefficient in handling strong intra-component interactions. At the same time our method converges
quickly for inter-component couplings g,, < 10 requiring at most 700 basis states. In comparison, a
straightforward treatment in the laboratory frame requires typically ~ 10> HO number states for obtaining
converged ground-state results [38]. For even larger g4 couplings, the chosen basis becomes less appropriate
such that our basis size has then to be significantly increased in order to obtain accurate results. Going, however,
beyond g,, = 10 would not give qualitatively new physical phenomena. Essentially all effects of the strong-
coupling regime can be investigated by studying the crossover from g,, = 0to g, , = 10.

Actually, the idea of choosing optimized basis sets to speed up the convergence with respect to the size of
basis functions can be also seen in the context of the potential-optimized discrete variable representation [51].
Here, one employs eigenstates of conveniently constructed one-dimensional reference Hamiltonians in order to
incorporate more information on the actual Hamiltonian into the basis compared to the standard DVR
technique [52, 53]. Another approach, stemming from nuclear physics, uses an effective two-body interaction
potential instead of an optimized basis for solving ultra-cold many-body problems [54-56].

In order to construct a tailored basis, which already incorporates intra-component correlations, we apply a
coordinate transformation to the relative frame Y = (Rey, Rup, 4, 13)" defined by:

« total CM coordinate

Rem = ZUZLI Xo,i/ 4,

« relative CM coordinate

2 2
Rap = Zi:]xA,i/z - Zi:le’i/z’

+ relative coordinate for each 0 component

Iy = Xo,1 — Xo,2-

In this frame, the Hamiltonian (1) attains the following form:

H = Hg., + Hry + Y. H, + g,:H. (4)
o=A,B

Here, the total CM separates, H = Hg,, + H,e, and is simply governed by a harmonic oscillator (HO)
Hamiltonian with mass M = 4:
1

8 ORZy
featuring the spectrum ES™ = n + 1/2with n € Ny. The remainder of the Hamiltonian can be decomposed

as Hyy = Hy + g,,H,, where Hy = Hg,, + >, H, canbesolved analytically and H; couples the eigenstates of
H():

+ 2R\ (5)

Rem =

1 0? 1,
AB = T T + _R > 6
R 2oRE, 2 AB (6)
0? 1
Hrg = _8_1’(3 + Zr,,z- + g(,(S(ra)) (7)
2
H=3 6(RAB + (—1)1‘%‘ + (—1)1‘%3). ®)

ij=1

So Hy,, isa HO Hamiltonian of mass M = 1and H, leads to the Weber differential equations for its eigenstates
with delta-function constraint. The corresponding solutions are normalized as well as symmetrized parabolic

5f”(r) + (n+ % — %rz)f(r) = Owithr € Rand i € R.
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cylinder functions® (PCF) & (17) o< Dyyg,m(|75]) of the relative coordinate with 14(g,,, 1) being a real valued
quantum number depending on the intra-component interaction strength g, and the excitationlevel n € N,
which is obtained by solving a transcendental equation stemming from the delta-function constraint [57]:

(")

8o = —2— ©)
F(7 2)
Now to diagonalize H,; we choose the eigenvectors of Hy as basis states and label them as |k, I, m) with
k, I, m € Ny. Their spatial representation and corresponding eigenenergies read:
(Rap> 14> 18lk, I, m) = @ (Rap) ;' (ra) @2 (1p), (10)
o _ 3
Ek,z,m— k + (g, D+ (g m) + 5» (1D

where @8 are HO eigenstates of Hy, . We note that all @7 (1) are of even parity because of the bosonic nature of
the particles of each component.

The main challenge now is the calculation of the matrix elements of H;, which are complicated 2D integrals
at first sight and need to be tackled numerically. In the appendix we provide a circumvention of this problem via
the Schmidt decomposition [58], allowing us to replace one 2D integral by multiple 1D integrals, which results in
faster computation times. In quantum chemistry, the algorithm for achieving such a representation is known as
POTFIT [59]. In the appendix, we moreover point out several symmetries which can be utilized for efficiently
evaluating these 1D integrals and discuss in detail, why our computational strategy is much more efficient than
the direct evaluation of the 2D integrals for the problem at hand.

To summarize, the coordinate transformation to the chosen relative frame (i) decouples the CM motion and
(if) naturally guides us to employ the analytically known eigenstates of H, as the basis states in order to
incorporate intra-component correlations into our basis.

4. Stationary properties

By means of the correlated basis introduced above and an efficient strategy for calculating the Hamiltonian
matrix to be diagonalized, we can easily obtain the static properties of our system for arbitrary intra-component
interaction strengths ¢_and inter-component coupling g,, < 10. The most representative choices of
interaction strengths (g,, g5, g,5) are the subject of this section and in order to get a deeper understanding of the
spectral properties a thorough discussion of the symmetries of H is necessary.

4.1. Symmetry analysis

In the laboratory frame, there are only a few obvious symmetries: (i) the total parity Py, (i.e. simultaneous
replacement of all coordinates x, ; by —x, ;), (ii) an interchange of the two A particles S, or of the two B particles
Sp, (iii) in the case of equal intra-component couplings g4 = gg a simultaneous interchange of two A particles
with two B particles Sy and (iv) given all couplings to be equal, the exchange S;; of any two particles being
labelled by i, j. In the relative frame though, additional symmetries become apparent. The total Hamiltonian H
commutes with each individual parity operator Py, of the relative frame coordinates (Py, replaces Y; by —Y; while
leaving the other coordinates of the relative frame invariant). In these regards, we note that P, . does not
commute with the individual terms in equation (8) but only with the whole sum of these four terms. The
eigenvectors of B, are restricted to even parity because of the bosonic character of our components,
corresponding to the S, operation. In contrast to the former operations, the symmetry transformations Pg,,
and Py, are highly non-trivial in the laboratory frame involving improper rotations of the four-dimensional
coordinate system. Due to the decoupling of Hp_,, it is sufficient to consider only the ground state of the total
CM motion, which is of even Rcy parity, in the following. Then, the parity of the R4 degree of freedom
completely determines the total parity of the eigenstates. Finally, a further symmetry arises if one chooses equal
intra-component interaction strengths g . In this case, the Hamiltonian H is invariant under an exchange of the
relative coordinates r4 < 75, which we define as the S, transformation in the following. Contra-intuitively, S, is
not the same as the S, g transformation. In total, the chosen relative frame indicates a set of additional
symmetries, which are hidden in the laboratory frame.

4.2. Energy spectra
In figure 1 we show the total energy spectrum as a function of g, for various fixed values of g4 and gz. The total

CM is assumed to be in its ground state. Figure 1(a) depicts the non-interacting intra-component scenario

6 2 . . . > . .
D,(Ir]) = 25e s U(—%u, %, %rz) with U (a, b, x) denoting the Tricomi’s hypergeometric function.

4
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Figure 1. Energy spectrum of H as a function of g4 for different fixed g, and gs. The decoupled total CM is assumed to be in its ground
state. The total parity is thus determined solely by the R4 parity and is marked by black lines (even states) and red lines (odd states). In
figures (a) (b) (d) solid curves correspond to symmetric (+1) and dashed to antisymmetric (—1) eigenstates under the S, operation.
The indicated (avoided) crossings are exemplary and simply outline specific features. In (b) and (c), we label the excited states which
are relevant for the lowest monopole excitations as discussed in section 5 by the corresponding excitation frequencies {245 etc. The
labels for the ground-state phases are as follows: Bose—Einstein condensate (BEC), Tonks—Girardeau (TG), composite fermionization
(CF), full fermionization (FF), phase separation (PS). All quantities are given in HO units.

g, = 0.For g,, = 0 the Hamiltonian represents two uncoupled non-interacting bosonic species and we will
label this regime as BEC-BEC following the nomenclature of [40]. The eigenenergies are integers with equal
spacings of 7w, which is 1 in our units. In this limit the PCFs are even HO eigenstates of mass m = 1/2. The

eigenenergies are thus E,, = ESM + Elgol)m

=EQ, .=k + 21+ 2m+ 2.

For g,, = 0, the ith eigenenergy corresponding to only even (odd) R sp-parity eigenstatesis (i + 2)!/(2!i!)
fold degenerate with i € Nj. Already a small inter-component coupling lifts all these degeneracies such that
branches of eigenenergies arise. In the following, we label these resulting branches as the ith even or odd
R, p-parity branch, respectively. Note that this grouping of the energy levels into branches will be used in the
following for all values of g4z and in particular for the analysis of the breathing dynamics in section 5. As we
further increase the inter-component coupling strength, we observe that states corresponding to branches of
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opposite R, p-parity incidentally cross, as they are of different symmetry and consequently not coupled by the H;
perturbation.

For very strong g4 values, i.e. in the CF limit [37, 38], we observe a restoration of degeneracies, butin a
different manner, namely the lowest states merge pairwise forming a two-fold degeneracy. In this regime the two
components spatially separate for the ground state, where one component locates on the left side of the trap,
while the other is pushed to the right side due to the strong inter-component repulsion. The two-fold degeneracy
of the ground state reflects actually the two possible configurations: A left Bright and A right Bleft. This
behaviour can be observed in the relative frame densities, discussed later in this section. Another striking
peculiarity for g, , — oo are non-integer eigenvalues and unequal energy spacings, meaning that for CF no ‘TG-
like’ mapping to a non-interacting HO system exists.

Avery similar analysis concerning this specific choice of interactions (g = 0 and arbitrary g5) was
performed in [39], where an effective interaction approach was employed to greatly improve the convergence
properties of exact diagonalization in order to access properties of a Bose—Bose mixture withup to N = 10
particles. However, the analysis only covered a single line of the (g, g3, g,;) parameter space. Another similar
work [40] deals with the system’s properties for an even wider range of intra- and inter-component interactions,
however the main focus lies on the ground state properties. Here, we extend the analysis of [39, 40] by studying
both the ground state and the low-lying excitations for weak, strong as well as intermediate interactions g .

In figure 1(b) we show the impact of moderate but symmetric intra-component interactions of strength
g = g, = 2. Alreadyin the uncoupled regime (g, , = 0) we observe fewer degeneracies comparedtothe g = 0
case. Nevertheless, we group the eigenstates into branches of even/odd R sg-parity also for finite g_by
continuously following the eigenenergies to the g — 0+ limit. The reason for the reduced degeneracies is that
the PCFs are not HO eigenstates anymore, while the PCFs of both components coincide pairwise. The
eigenenergies read Eéf)k)’ m =k + p(g, 1) + p(g, m) + 2.Toroughly estimate the energetic orderingit is
sufficient to know that the real-valued quantum number p (g, n) fulfillsfor 0 < g < oo the following relations:

s 2n< pu(g, n) <2n+1
cplgn) +F1<pulgnt+ 1) <ulgn +2

meaning that a single excitation of the relative motion 7, is energetically below a double excitation of the R4
degree of freedom. E.g. the first even R p-parity branch in the uncoupled non-interacting regime (BEC-BEC in
figure 1(a)) contains three degenerate states: |2, 0, 0),]0, 1, 0)and |0, 0, 1) (equation (10)). By choosing finite
g, values |2, 0, 0) acquires a higher energy than |0, 1, 0) and |0, 0, 1)leading to reduced degeneracies in the
spectrum. Another striking feature is the appearance of additional crossings between states of the same
Rp-parity due to the S, symmetry. States, which possess different quantum numbers concerning the S,
transformation (+1 or —1), are allowed to cross as they ‘randomly’ do throughout the g4 3 variation. Of course,
such crossings are also present in the previous non-interacting case, it being also component-symmetric. An
avoided crossing between a state of the first even R z-parity branch and a state of the second even R4 -parity
branch is worth mentioning, which is present for all values of g (see the exemplary arrow in figures 1(b) or (d)).
States of the same symmetry obviously do not cross according to the Wigner-von Neumann non-crossing

rule [60].

In figure 1(c) we asymmetrically increase the intra-component interactions g as compared to the non-
interacting case, namely to g4 = 1 and gz = 2. For the uncoupled scenario (g,, = 0) all the degeneracies are
lifted, because now PCFs of the A and the Bcomponents are different. The energy is
Eéo,g m = k + p(gy 1) + p(gy m) + 2.The energetic state ordering is far from obvious, which becomes
apparent upon closer inspection of the 1 (g, n) function. E.g. consider again the first even R, -parity branch. Its
lowest energy state is a single excitation of r, followed by a single excitation of r4. The highest energy of this
branch corresponds to a double R4 excitation. The ordering pattern for higher order branches is even more
complicated. For intermediate values of g, s we observe that crossings from the previous scenario (with g = 2)
between states of the same R, 3-parity are replaced by avoided crossings because of the broken S, symmetry. The
strong coupling regime displays less degeneracies as compared to the component-symmetric cases of figures 1(a)
and (b) with the two-fold ground state degeneracy remaining untouched.

In figure 1(d) we choose very strong intra-component interaction strengths g = 100. When the
gap-coupling is absent, we have two hard-core bosons in each component. The system can thus be mapped to a
two-component mixture of non-interacting fermions [35, 61] and will be referred to as TG-TG limit. The PCFs
become near degenerate with odd HO eigenstates, which again leads to integer-valued eigenenergies
Eéok)lm ~ k + 21 + 2m + 4 with equal spacings and the same degree of (near-)degeneracies as in the non-
interacting case (figure 1(a)). The limit of strong inter-component coupling displays a completely different
structure of the spectrum. The so-called full fermionization (FF) [36] phase can be mapped to a non-interacting
ensemble of four fermions with the ground state energy N2/2 = 8. However, in contrast to the single-

6
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component case of four bosons, we need to take into account that the components are distinguishable. Thus, the
degeneracy of the ground state is expected to be N!/(Ny!Ng!) = 6-fold and corresponds to the different
possibilities of ordering the laboratory frame coordinates while keeping in mind the indistinguishability of
particles of each component. This limit of all interactions strengths going to infinity can be treated analytically by
using the so-called ‘snippet’ basis [62, 63].

For strong but finite couplings, i.e. 1/g, < 1, recent research also unveiled the existence of a mapping to an
effective spin-chain model by employing perturbation theory with respect to the ‘snippet’ basis. Various
intriguing ground-state configurations have been revealed depending on the ratio and the sign of the interaction
parameters: Heisenberg antiferromagnet (AFM)/ferromagnet (FM), Ising AFM /FM and XY phase [64—68].
Such a mapping is applicable not only for Bose—-Bose mixtures, but also Bose—Fermi and Fermi—Fermi mixtures
may be treated with this approach.

Thelast case we discuss is the highly asymmetric case g4 = 0 and gg = 100 in figure 1(e). For g, . = 0 (BEC-
TG) one expects, based on the previous considerations, integer eigenvalues Eé)ok)) m = k421 + 2m + 3and
thus equal spacings as for the cases g = 0 and g = 100 depicted in figures 1(a) and (d), because the PCF of the
A component is an even HO eigenstate and the PCF of the B component is degenerate with an odd HO
eigenstate. Very peculiar is the strong coupling case, where we observe a non-degenerate ground state, the so-
called PS phase [40], where the A component occupies the centre of the harmonic trap, while the B component,
in order to reduce its intra-component interaction energy, forms a shell around the A component.

4.3. Relative-frame densities
Let us now inspect the relative-frame probability densities p, (Y;) instead of the usually studied one-body
densities p, (x,) of the laboratory frame as e.g. in [40]. We will see that these quantities can be used to identify
regions of most probable relative distances and provide a more detailed picture of particle arrangements than
their laboratory frame counterparts. Moreover, in the quench dynamics study, the subject of the next section, an
occupation of a certain eigenstate of H will lead to the breathing oscillation of only one relative-frame density,
making it possible to connect different breathing modes to specific relative motions within the system, at least
for the weakly coupled case g, , < 1.

We define these quantities as follows:

AP0 = [T1 d% KFIE)P, (12)

p=i

where |E;) is the jth eigenstate of H and we trace out all the degrees of freedom of the relative frame Y except
for one.

Let us compare our results concerning the ground state densities for some limiting cases to the ones obtained
in [40]. In figure 2 we show the densities for all the degrees of freedom except for Rcyy, which trivially obeys a
Gaussian distribution. In the BEC-BEC case all the densities are characterized by a Gaussian density profile,
since the Hamiltonian consists of completely decoupled HOs for each degree of freedom.

When the g4 5 coupling is turned off, the ground state is known analytically: &4 (R4) Spﬁ(g,p 0 (Ta) gpﬁ 0 (r).

Thus, by tracing out the 7, coordinates we acquire the same pio) (Ryp) for arbitrary intra-component
interactions, which explains the identical distributions for the BEC-BEC and TG-TG phase in figure 2(a). While
the PCF cpz ©.0) (r,) isidentical to the HO ground state for g = 0, for any finite positive g_ it splits into two

symmetric peaks with a cusp at the origin, which tends to zero as § — 00 [57]. In this limit it becomes equivalent
to the modulus of the first excited HO eigenstate, which explains the shape of the TG-curves in figures 2(b), (c).
We remark that going beyond ¢ = 100 does not induce substantial changes on the densities, which justifies our
interpretation of this parameter regime as TG limit.

The CF phase is in some sense a complete counter-part to the TG-TG case. Now p(lo) (Ryp) features two
maxima and a minimum in between, a result of A and B strongly repelling each other. This feature is blurred in
the one-body density distributions pio) (x,) of the laboratory frame and one needs to additionally consider the
two-body density function p(20) (x4, xp) to verify this behaviour [37]. The density distribution of pgo) (r,) ismore
compressed compared to the BEC-BEC case due to the tighter confinement induced by the other component.

Finally, the PS phase corresponds to a core—shell structure, where pio) (Ryp) and pio) (r4) show a more
pronounced peak, while pio) (rp) obeys a bimodal distribution with two density peaks being much further apart
than both in the CF and in the TG-TG case. This can be understood in the following way: firstly, the fact that A
locates in the trap centre and not the other way around is because B needs to minimize its repulsive intra-
component interaction energy by separating its particles. Secondly, the need to minimize the repulsive inter-
component energy pushes the B particles even further along the harmonic trap at the cost of increased potential
energy until these two energies balance themselves out. The two A particles are compressed to closer distances as
compared to the BEC-BEC case because of a tighter trap induced by B, while at the same time A modifies the HO
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Figure 2. Ground state relative frame probability densities: (a) pio) (Rap) (b) pio)(rA) and (¢) p§0) (7). The depicted limiting cases are
BEC-BEC (g, = g4 = 0), TG-TG (g, = 100, g, = 0),CF (g, = 0, g, = 10)and PS (g4 =0, gz =100, g, = 10). Thelabels
for the ground-state phases are as follows: Bose—Einstein condensate (BEC), Tonks—Girardeau (TG), composite fermionization (CF),
phase separation (PS). Note that the p{o) (Rap) distributions in the BEC-BEC and TG-TG regime are identical. All quantities are given

in HO units.

potential to a double well for B. This results in stronger localization of particles, which leads to a more
pronounced peak in the R 4 distribution.

5. Breathing dynamics

The spectral properties discussed above can be probed by slightly quenching a system parameter such that the
lowest lying collective modes are excited. Here, we focus on a slight quench of the trapping frequency in order to
excite the breathing or monopole modes being characterized by a periodic expansion and compression of the
atomic density. While in the single-component case two lowest lying breathing modes of in general distinct
frequencies exist, being associated with a motion of the CM and the relative coordinates [24, 43], respectively,
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the number of breathing modes, their frequencies and the associated ‘normal coordinates’ are so far unknown
for the more complex case of a binary few-body mixture and shall be the subject of this section.

Experimentally, breathing oscillations can be studied by measuring the width of the o species density
distribution f dx, x? p; (x5, t) where we have omitted the subtraction of the mean value f dx, x,p,(x5 1)
squared, which vanishes due to the parity symmetry. From a theoretical point of view, it is fruitful to define a
breathing observableas 3 2 ;> whose expectation value is essentially the sum of the widths of the A and the B
component.

To study the breathing dynamics we will perform a slight and component-symmetric quench of the HO
trapping frequency, where our HO units will be given with respect to the post-quench system. The initial state
for this quench scenario is the ground state |[¥(+ = 0)) = |Ey),,, of the pre-quench Hamiltonian H (w,) with
harmonic trapping frequency wy 2> 1, where H (wj) is obtained from equation (1) by multiplying the harmonic
potential terms with the pre-factor w. Attime t = 0 asudden quench is performed to w = 1. The time
evolution is thus governed by the post-quench Hamiltonian H (see equation (1)) as follows:

[U(1)) = e HEg),, ~ > cje B E)), (13)
i=0

where |Ej) = |E;j),and ¢; = (Ej|Eo).,, is the overlap between the initial state and the jth eigenstate |E;) of the
post-quench Hamiltonian H. Since both the pre- and post-quench Hamiltonian are time-reversal symmetric,
we assume their eigenstates and thereby also the overlap coefficients ; to be real-valued without loss of
generality. A small quench ensures that |¢y| ~ 1and only the nlowest excited states are of relevance. Symmetry
considerations further reduce the number of allowed contributions. E.g. states of odd Rcp-parity or odd

R, p-parity have zero overlap with |Ey),,, because the initial state is of even Rcyy- and Ry p-parity and the quench
does not affect any of the symmetries discussed in the previous section. Similarly, in the component-symmetric
case g4 = gp, States, which are antisymmetric w.r.t. the S, operation, have no overlap with the pre-quench
ground state being symmetric under S,.

For the weakly coupled regime, the relative-frame coordinates turn out to be extremely helpful for
characterizing the participating breathing modes. Therefore, we study in particular the reduced densities of the
relative-frame coordinates. Employing the expansion in post-quench eigenstates from equation (13), their time-
evolution may be approximated within the linear-response regime as

n
P (Y 1) = cg p0(Y) + 23 cocip™ (V) cos (A1), (14)
j=1

neglecting terms of the order c;c;for i, j > 0.So p,(Y;, t) can be decomposed into the stationary background
pio)(Y}) and time-dependent modulations of the form pio’j) (Y) = f I, dy, (17|E0) (Ejl 17>, further called
transition densities, with oscillation frequency A; = E; — E,. Below we discuss how to calculate the overlaps ¢;
(see equations (18), (19)) to a good approximation only in terms of the post-quench Hamiltonian eigenstates for
sufficiently weak quenches. Thus, we can fully simulate the time-evolution of p, (Y;, t) by using only the post-
quench Hamiltonian properties obtained in section 4.

In the following, we regard the excitations of the first even R 4 g-parity branch as the lowest monopole modes
and show that each monopole mode is directly connected to the breathing modulation of a single relative-frame
density, if the two components are but weakly coupled. This behaviour changes for increasing g4 3, where each
coordinate begins to exhibit an oscillation with more than one frequency. By inspecting the modulations of the
variances of each relative-coordinate and taking the excitation amplitudes into account, we show that four
(three) breathing modes are excited for g, = g, (g4 = gp) in the weakly coupled regime, while only two
breathing modes are of relevance in the strongly coupled regime. First, we inspect the component-asymmetric
case of figure 1(c) in detail to illustrate some peculiarities of the involved breathing modes, since it contains the
most relevant features. Thereafter, we unravel differences to the component-symmetric case of figure 1(b).

5.1. Component-asymmetric case

Because of the low amplitude quenching protocol, we will excite four breathing modes simultaneously in the
component-asymmetric case (g4 = 1, gg = 2). Three of them stem from the first even R, z-parity branch of
figure 1(c). Remember, however, that the total CM was assumed to be in the ground state to keep the spectrum
discernible. One obtains the full energy spectrum by including all CM excitations, meaning duplicating and up-
shifting depicted energy curvesby AE = nwith n € N. This reveals a forth mode, namely a double total CM
excitation. It features the same parity symmetries and is energetically of the same order as the states from the first
even R, p-parity branch ensuring a considerable overlap with the initial state. The total CM trivially oscillates

7 In this work, we call coordinates normal if they completely decouple the Hamiltonian, implying the possibility to excite each degree of
freedom independently.
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Figure 3. Relative frame density modulations for the component-asymmetric case of figure 1(c). Figures (a)—(c): the decoupled
regime g, = 0.(a) p;(Ra, t) oscillates solely due to the |2, 0, 0) eigenstate with the frequency Qap = 2, (b) p, (74, t) dueto

|0, 1, 0) with the frequency 4, (c) p, (75, t) dueto |0, 0, 1) with the frequency €25. Figures (d)—(f): strongly coupled regime

g = 10.(d) py(Ra, 1), (&) py(ra, 1), () p,(rp, t). All the profiles oscillate with the same frequency €245. Not shown is the breathing
motion of p;(Rcwm, t) with the constant frequency of Qcy = 2, itbeing a decoupled motion of a single-particle HO. Quench strength
bw = —0.1. All quantities are given in post-quench HO units.

with the constant frequency Q0o = 2 independent of any interactions g, it being a decoupled degree of
freedom with the single-particle HO Hamiltonian (equation (5)) [25, 43]. The other three modes, which are
excited, are known analytically, when there is no coupling between the components, and we label the
corresponding mode frequencies as (see also the labels in figure 1(c)):

(i) 10) ) < (g =0) = p(gy, 1) — plgy, 0),
(i) 10}10, 0, 1) < Qp(gy = 0) = pu(gp 1) — p(g 0)
(iii) 10)|2, 0, 0) «— Up(gz = 0) = 2,

) )

@iv) [2)]0, 0, 0

0,1, 0

— QCM - 2)

where we have prepended the CM eigenstate |) for a complete characterization of the involved states. States of
higher order even R, g-parity branches as well as higher excitations of the CM coordinate are negligible due to
small overlaps with the initial state.

In the uncoupled regime g,, = 0, one can show analytically that each relative-coordinate density oscillates
with a single frequency, each corresponding to exactly one eigenstate of the first even R g-parity branch (see
figures 3(a)—(c)). E.g. for p,(Rap, 1), the only transition density pgo’j ) (Ry4p) which survives taking the partial trace
is the one corresponding to |0) |2, 0, 0), while the contributions from the remaining excited states vanish. This
leads to the breathing motion in the R4 coordinate with a single frequency 45. Analogously one can show that
|0} |0, 1, 0) solely induces density modulation in p, (r,) with the frequency 4, while p, (1) oscillates with g
exclusively due to |0) |0, 0, 1). Thereby, the relative-frame coordinates render ‘normal coordinates’ in the
uncoupled regime, which is also a valid picture for extremely weak couplings.

By introducing a larger coupling between the components one observes that each relative frame density,
except for p,(Rcwm, t), begins to oscillate with up to three frequencies simultaneously. So all the modes begin to
contribute to the density modulation of each relative coordinate. However, there are some peculiarities we
observe, for the visualization of which the densities are not well suited any more. Instead, we will transform the
breathing observable to the relative frame and consider the expectation values of individual terms it decomposes
into:

2 2 2 1, 1,
2 %o, = 4R + Rip + 7k + 5. (15)

o,1
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The expectation value of each observable with respect to the time-evolved state |¥(¢)) is directly related to the
respective relative-frame density:

WOIIED) = [d% ¥ o\ (%, 1. (16)

Inserting the time-evolution of the relative frame density from equation (14) one finds that the observables
decompose into a stationary value and a time-dependent modulation as well. In particular, we are interested in
the amplitudes of modulations, when the inter-component coupling is varied, since they determine how many
frequencies are of essential relevance for the considered motion. The amplitude of the jth mode is essentially
composed of the overlap ¢;and of the transition element:

(BIYAES) = [d¥; Y2 o™ (%), a7)

In order to evaluate the overlaps ¢; = (Ej|Eo).,, with j = 0 in terms of only the post-quench Hamiltonian
eigenstates, we perform a Taylor approximation with respect to the weak quench strength éw = w — wy,
namely |Eg)y, = |Eo)y — &u%lEO)w evaluated at w = 1, and arrive at

Cj ~ —<Ej

Applying the (off-diagonal) Hellmann—Feynman theorem [69], one obtains:

7W<E] | Zi)o_xfa

Ej — Eo

d
o ‘ E0>6w. (18)

Eo)
) (19)

— | E
dw‘0>

The overlaps are hence connected to the transition elements of each relative-frame breathing observable
(equation (15)), weighted with the inverse of the mode frequency, which leads to a damping of contributions
from higher order branches. This relation enables us to calculate the amplitude A;, with which the jth mode
contributes to the oscillation of the observable Y7:

.
Ai(Y) = ‘ 6—:}<EJ-|ZZ|EO> , (20)

which may be interpreted as the susceptibility of the Y; observable for the excitation of the state |E;).

In figure 4(a) we show the values of possible breathing mode frequencies, obtained from the spectrum of
figure 1(c). Q2cm = 2 does not depend on any interaction strength g . In contrast to this, {14 is degenerate with
Qcwm for g, = 0,and when increasing g4 5, decreases to a minimum first and then increases with the tendency to
asymptotically reach {2¢y; again. This behaviour strongly resembles the dependence of the relative-coordinate
breathing-mode frequency in the single-component case [43]. €4 and () have qualitatively akin curve shapes,
varying much stronger with g4 5. In particular, we note that these frequencies reach values below the frequency of
the CM dipole mode being equal to unity.

The breathing mode frequencies discussed above are labelled according to the peculiarity of the uncoupled
regime, where each eigenstate from the first even R 4p-parity branch leads to a breathing motion of some specific
relative-frame coordinate. Indeed, if we look at the amplitudes A;in figures 4(b)—(d) in the decoupled regime
(g, = 0), werecognize that the amplitude for the coordinate Y;is non-zero only for one mode, namely the one
with which p, (Y, t) oscillates in figures 3(a)—(c). When we increase the inter-component coupling, the
eigenstates cease to be simple product states in the relative coordinate frame resulting in contamination of each
density modulation with the frequencies from the other modes as well, which leads to a three-mode oscillation.
Nevertheless, we label the frequencies corresponding to the uncoupled case and follow the states continuously
throughout the g4 variation.

Another peculiarity worth noting arises in the strongly coupled regime: The €2,, oscillations become strongly
suppressed for all the observables making (245 and ¢y, the main contributors to the density modulations,
which reminds us of the single-component behaviour [43]. Furthermore, the dependence of )45 on g4 has
striking resemblance to the dependence of €2, on g for the single component gas. In figures 3(d)—(f) we show
that all the relative-coordinate densities oscillate with the same frequency )45. We highlight that in the CF
regime each density peak of the bimodal distribution p,(R4p, t) does not only breath periodically but also its
maximum height position performs dipole-mode like oscillations, see figure 3(d). Our intuitive picture for this
effect is as follows: in the CF phase the two species are located on opposite sides of the HO trap and feel a tighter
effective trap induced by the other component, which is in accordance to the tighter localization of the 7,
coordinates, see figures 2(b) and (c). Upon inducing the quench dynamics by instantly lowering the trap
frequency, the two species separate even further. When the turning point is reached, they move back towards the
centre of the trap, fail, however, to penetrate each other due to a strong mutual repulsion, which results in
dipole-like oscillation of each of the two p, (Ra3, t) density fragments. These dipole oscillations quite likely act as
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Figure 4. (a) Breathing mode frequencies as a function of the inter-component coupling g4 for the component-asymmetric case gs
= 1.0and gg = 2.0. The modes are labelled with respect to the uncoupled regime, where each mode can be identified with a particular
relative-frame motion (figures 3(a)-(c)). (b)-(d) Amplitudes A; (equation (20)) of the modes depicted in (a) (same colour coding),
which determine the relevance of the contribution to the oscillation of the observable Y7 as a function of the inter-component
coupling g45: (b) Aj(Rap), (¢) Aj(ra),(d) Aj(rp). The red dotted lines stem from the states of the second even R, p-parity branch. All
quantities are given in post-quench HO units.

adriving force for the r, coordinates making them to oscillate with the same frequency thereby suppressing €2,
modes.

5.2. Component-symmetric case

Now we compare the above results with the component-symmetric case of figure 1(b), where g, = g, = 2.
Figure 5(a) depicts the possible breathing-mode frequencies. Here, two main differences arise: first, the (245
curve features two minima due to two avoided crossings with an eigenstate of the second even R4 z-parity
branch. Second, the other two breathing mode frequencies of the relative coordinates are degenerate for

g3 = 0, then separate with increasing g4z and approach one another asymptotically. Instead of using the labels
Q4 and ) as in the component-asymmetric case, we label these two modes with 2, and €2_, since the
corresponding excited eigenstates are symmetric and antisymmetric w.r.t. S,, respectively (see figure 1(b)). The
latter frequency, however, does not give any contribution to the breathing dynamics, it being symmetry
excluded.
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Figure 5. (a) Breathing mode frequencies as a function of the inter-component coupling g4 for the component-symmetric case

g, = 2.0.(b)~(d) Amplitudes A; (equation (20)) of the modes shown in (a) (same colour pattern), which determine the relevance of
the contribution to the oscillation of the observable Y7 as a function of the inter-component coupling g4 5: (b) Aj(Ryp), (€) Aj(rp), (d)
Aj(rp). The red dotted lines stem from the states of the second even R 45-parity branch. All quantities are given in post-quench HO
units.

The motion of the 1, and rp coordinates is identical due to the imposed component-symmetry and in the
uncoupled regime (g, = 0) they both oscillate solely with the €2 frequency (see figures 5(c) and (d)). Similarly
to the component-asymmetric case, we see that when increasing g4 the {45 (€21) mode contributes also to the
observable r§ (R3p).

However, in the intermediate interaction regime 3.7 < g, < 8.3 we observe a strong suppression of the
Q45 mode contribution for all observables, which is in stark contrast to the component-asymmetric case.
Instead, a state of the second even R, g-parity branch gains relevance. These two eigenstates actually participate
in the avoided crossing exemplary indicated by an arrow in the spectrum (see figure 1(b)) and thereby exchange
their character. According to equation (20) the breathing amplitude is determined by the transition elements
(16) as well as the overlap coefficients (18), which in turn depend also on the transition elements due to
equations (19) and (15). While the energy denominator of equation (19) does not single out one of the two states
participating in the avoided crossing, the values of the individual transition elements strongly depend on the
character of the respective eigenstate. Thereby, the energetically slightly lower mode has a large amplitude before
the crossing and after the crossing the composition character of states changes such that the higher mode
dominates. By further increasing g, 3 we observe another exchange of roles, which is attributed to the presence of
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asecond avoided crossing (see figure 5(a)) such that the strong inter-component coupling regime shows again
the absolute dominance of the {245 mode over the other lowest breathing modes besides Q.

6. Experimental realization

The few-body Bose—Bose mixture studied here should be observable with existing cold atom techniques.
Quantum gas microscopes allow the detection of single particles in a well controlled many-body or few-body
system [70, 71] and recent progress also allows for spin-resolved imaging in 1D systems using an expansion in
the perpendicular direction [72, 73]. In these set-ups, the single-particle sensitivity relies on pinning the atoms in
adeep lattice during imaging and experiments have so far focused on lattice systems. However, bulk systems
might be imaged with high spatial resolution by freezing the atomic positions in a lattice before imaging. For fast
freezing, this would allow a time-resolved measurement of the breathing dynamics. Moreover, spin order was
recently observed in very small fermionic bulk systems via spin-selective spilling to one side of the system [74].

Deterministic preparation of very small samples was demonstrated for fermions via trap spilling [75] and for
bosons by cutting out a subsystem of a Mott insulator [76]. The tight transverse confinement for a 1D system can
be obtained from a 2D optical lattice, while the axial confinement would come from an additional optical
potential, which can be separately controlled to initialize the breathing mode dynamics.

Choosing two hyperfine states of the same atomic species ensures the same mass of the two bosonic species.
Possible choices include “Li, *K or 8’Rb. While the former have usable FRs to tune the interaction strengths,
the latter allows selective tuning via CIR in a spin-dependent transversal confinement as can be realized for
heavier elements. Note that the longitudinal confinement needs to be spin-independent in order to ensure the
same longitudinal trap frequencies and trap centres assumed in the calculations. The inter-component
interaction strength can be tuned via a transverse spatial separation as obtained e.g. from a magnetic field
gradient [77]. In the case of " and °K, the inter-component background scattering lengths are negative [14]
leading to negative g4, but although not reported, inter-component FRs might exist. Alternatively, g4 might be
tuned via a CIR, which selectively changes g4 5 at magnetic fields, where the intra-component scattering lengths
are very different.

In the following we give concrete numbers for a choice of “Li. The density distribution has structures on the
scale of the HO unit ay,, (figure 2). Choosing the trap parameters asin [75] as w/(27) = 1.5kHzand
wy /(2m) = 15kHz, yields an, = 1 pm, i.e. larger than a typical optical resolution of 0.8 yim. At the same time,
temperatures much lower than /aw/kg = 72 nK are state of the art. The breathing dynamics will occur on a time
scale of several 100 s, which is easily experimentally accessible. Choosing a smaller wwould make the imaging
easier, but would impose stricter requirements on the temperature.

For the observation of the breathing mode dynamics, one would record the positions of all four particles in
each experimental image and obtain the widths (R&y,)» (Rig):, (r2); by averaging the occurring relative
coordinates over many single-shots after a fixed hold time #.

7. Discussion and outlook

In this work we have explored a few-body problem of a Bose-Bose mixture with two atoms in each component
confined in a quasi-1D HO trapping potential by exact diagonalization. By applying a coordinate transformation
to a suitable frame we have constructed a rapidly converging basis consisting of HO and PCF. The latter stem
from the analytical solution of the relative part of the two-atom problem [57] and include the information about
the intra-species correlations, which renders our basis superior to the common approach of using HO
eigenstates as basis states.

We have then explored the behaviour of the low-lying energy spectrum as a function of the inter-species
coupling for various fixed values of intra-species interaction strengths. Hereby we have covered the strongly
coupled limiting cases of CF, FF and PS, studied also intermediate symmetric and asymmetric values of g4 and g5
and related the ground state relative-frame densities of some limiting cases to the known laboratory frame
results [40]. We have discussed the evolution of degeneracies and explained appearing (avoided) crossings in
terms of the symmetries of the Hamiltonian, which become directly manifest in the chosen relative-coordinate
frame.

Finally, the obtained results were used to study the dynamics of the system under a slight component-
symmetric quench of the trapping potential. We have derived expressions for the time evolution of the relative-
frame densities within the linear response regime and observed that in the uncoupled regime (g,, = 0) the
density of each relative frame coordinate performs breathing oscillations with a single frequency corresponding
to a specific excited state of the first even R 3-parity branch of the spectrum. The total CM coordinate performs
breathing oscillations with the frequency Qcy = 2 (HO units). For asymmetric choices of g values, three
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additional monopole modes participate in the dynamics, each of them corresponding to the motion of a
particular relative coordinate: €2, for the relative coordinate of the A component, )3 for the relative coordinate
of the Bcomponent and €25 for the relative distance of the CMs of both components. In contrast to this, the
symmetric case g4 = gp leads to only two additional modes because of a symmetry-induced selection rule: 2, for
the relative coordinates of both components and €24 for the relative distance of the CMs of both components.

For not too strong inter-component coupling, each relative coordinate exhibits multi-mode oscillations and
we have explored their relevance for the density modulations by analysing the behaviour of suitably chosen
observables as one gradually increases the coupling between the components for symmetric and asymmetric
choices of intra-component interactions strengths. Thereby, we have found that for strong couplings, where CF
takes place, the €2, (£2,) modes become highly suppressed, leaving only two monopole modes in this regime:
Qap and Qcp. We have observed the same effect for the case of PS (results not shown). Interestingly, the
dependence of {4 on gu 3 strongly resembles the behaviour of the relative-coordinate breathing frequency in
the single-component case [43]. All in all, we have obtained 2 to 4 monopole modes for the quench dynamics
depending on the strength of the inter-component coupling and the symmetry of the intra-species interactions,
which is in strong contrast to the single-component case [43] as well as to the MF results, where two low-lying
breathing modes can be obtained, namely an in-phase (out-of-phase) mode for a component-symmetric
(component-asymmetric) quench [23]. Finally, we have argued that the experimental preparation of the
considered few-body mixture and measurement of the predicted effects are in reach by means of state-of-the-art
techniques.

This work serves as a useful analysis tool for future few-body experiments. Measurements of the monopole
modes can be mapped to the effective interactions within the system such that precise measurements of the
scattering lengths or external magnetic fields can be performed. The numerical method used here can be applied
to Bose—Fermi and Fermi—Fermi mixtures with two particles in each component simplifying the numerics,
because the PCFs have to be replaced by odd HO eigenstates, if a bosonic component is switched to a fermionic
one, which significantly accelerates the calculation of integrals. Further, it would be interesting to see how the
frequencies and the amplitudes of the monopole modes vary for an increasing number of particles. Exploring
the spectrum for negative values of interaction parameters is also a promising direction of future research.
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Appendix

In the following, we discuss how to efficiently calculate matrix elements of the coupling operator H; from
equation (8) with respect to the basis (10). Because of the already mentioned even parity of 7 one can make
simple substitutions of the form 7, = —7, to show that each delta in the sum of H, gives the same contribution,
such that after performing an integral over R ,g one obtains:

A + 1 T4 + 1
(a, b, c|Hk, I, m>:4fdv\fdr3 (I,;AB( A . B)(I)?B( A - B)

x o (ra) i (ra) ©® (1) 02 (). (A1)

At this point it is important to notice that the integral vanishes for odd (a 4 k) because of the parity symmetries
of ®48 and 7, which can be seen by transforming to relative and centre-of-mass coordinates r = r4 — 73,
R = (r4 + ) /2. Inthe following, we assume that the quantum numbers for the R4 coordinate are restricted
toa, k € {1, ..., nyg}and for ther, coordinatesto b, ¢, I, m € {1, ..., 1 }. Now our computation strategy
consists of three steps:

First, we circumvent evaluating the 2D integral from equation (A1) by viewing the product of the two HO
eigenstates ®/°®{'¥ as a pure, in general not normalized state ¥, , depending on the two coordinates r, and
and applying the Schmidt decomposition [58] or, equivalently, the so-called POTFIT algorithm [59].
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A + 1 A + 1
sy = (2 g )

d
~ Z )\Ea,k) WiA;(a,k)(rA) WiB;(a,k) (15). (A2)

=0
Here”, |)\E“’k) ? coincides with the ith eigenvalue of the reduced one-body density matrix corresponding to the
degree-of-freedom r, and w? @k () denotes the corresponding eigenvector, which can be shown to feature a
definite parity symmetry. We remark that (i) we may choose wl-A‘(“’k) (r) = WiB;(”’k) (r) = wi(“’k)(r) because of
Xak (Ta> 8) = X, 1 (18, 74) withoutloss of generality and that (ii) the decomposition of equation (A2) becomes
exact for d — oo. Having ordered the coefficients )\5“”‘) in decreasing sequence w.r.t. to their modulus, we
choose d such that only terms with |)\§“’k) / )\E)”’k) | > 107° are taken into account, which results in an accurate
approximation to 2D integrals with a relative accuracy of 10>, valid for all interactions and quantum numbers
considered below. We perform this decomposition for all the relevant HO quantum numbers (g, k), meaning
a < k < napwith (a 4 k) even. This procedure is independent of any interactions g, and needs to be executed
only once.

By inserting equation (A2) into (A1) we obtain the following expression:

d
(a, by ek, 1 m) ~ 430 AP [ di w0 () o7 ()

i=0

x f drs w9 (1) 9P (1) 0 (). (A3)

As one can see, the 2D integral is replaced by a sum of products of 1D integrals. In order to greatly overcome the
numerical effort for computing a 2D integral d should be preferably a small number (see below).

The second step consists in the calculation of 1D integrals and here we provide an efficient strategy to
circumvent redundant computations. Consider the integral:

[ar web @ e er, (A4)
with s < t < 1. The PCFs are of even parity and thus only even w,»(“‘k) actually contribute allowing to reduce
the number of expansion terms in equation (A3) to |d/2 |. Both PCFs ¢ and ¢} depend on the same interaction
strength g, meaning that the above integral does not distinguish between the two subsystems such that the index
o can be dropped for the moment. Now we fix the PCFs by specifying the strength of intra-component
interaction g and further we fix the HO quantum numbers (a, k), which determine the functions w(*®, as well as
PCF quantum numbers (s, t). We loop over all i and save the integral values, labelled as (g, 4, k, s, t). This
procedure is performed for a set I of multiple values of g we are interested in and for all the relevant quantum
number configurations a < k < mypwith (a + k)evenand s < t < #yq.

In the last step we calculate the matrix elements from equation (A3). For HO quantum numbers (a, k) we
extractall the expansion coefficients \{* M) obtained in the first step, and for the chosen interactions parameters
(g,> &) and PCF quantum numbers (b, ¢, I, m) we pick the appropriate integral values corresponding to
g=gpa k s=0b,t=10and(g = g a, k, s = ¢, t = m). The advantage of this procedure is that not only
symmetric choices of intra-component interaction strengths are accessible, but also an arbitrary asymmetric
combination (g,, g;) € I x I.Additionally, the proposed scheme can be easily parallelized. However, adding
new g values to the set I is in general very time-consuming as one needs to calculate a bunch of 1D integrals for all
the relevant quantum number configurations.

Now let us analyse quantitatively the speed-up obtained by our algorithm in contrast to the straightforward
evaluation of 2D integrals. Since the energy spacing of the PCF modes is approximately twice the energy spacing
of the HO modes corresponding to the R4 3 motion, we assume n,,] = (143 — 1) /2 with an odd 45 to keep the
number of even and odd R, g-parity basis states the same. The number of 1D integrals one needs to compute for
each g € I inorder to construct the H; matrix is approximately (d /64)[(1np + 1)(14p + 3)]%, where d isan
average number of terms in (A3), as the criterion |)\§”’k) JAEP| > 1076 requires more terms for larger values of
a, k. The number of 2D integrals amounts to (1,/256)[(nap + 1)(nap + 3)). For checking the convergence (see
below), we have chosen n4p = 21and n,) = 10, i.e. 2662 basis states. The number of expansion terms varies in
theinterval d € {50, ..., 100} resulting in d = 75.Thus, we need to either evaluate 326 700 1D integrals or
574 992 2D integrals. Not only is the number of 1D integrals smaller, the computation of one 2D integral takes
also significantly longer than of one 1D integral, especially for higher quantum numbers. Moreover, in order to
build the Hamiltonian matrix forall (g,, g;) € I x I, the 2D integrals (A1) would have to be evaluated for the
ny(n, + 1) /2 distinct combinations g, < g, where ny denotes the cardinality of I, while the 1D integrals (A4)
must be calculated only forall g € I, i.e. n, distinct values, which renders this approach much more efficient.

Note that in contrast to the usual convention we do not require the coefficients AE“"" to be semi-positive without loss of generality.
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For the spectra shown in section 4 we have chosen 145 = 17 and n,¢] = 8, i.e. 1458 basis states. Since we
know that basis states of different R 4 z-symmetry do not couple, we can split the H matrix into subspaces of even
and odd R, p-parity, leading to (729 X 729)-size matrices for each subspace such that the computational effort
for the diagonalization becomes negligible. Since the inter-component coupling g4 5 enters the matrix
H = Hy + g,,H, tobe diagonalized only as a pre-factor, a very fine g,z scan can be easily performed. We note
that for the covered g, , € [0, 10] space the convergence check provides us with the relative energy change
below 1% for the low-lying energy spectrum.
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