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Abstract
We investigate a few-bodymixture of two bosonic components, each consisting of two particles
confined in a quasi one-dimensional harmonic trap. Bymeans of exact diagonalizationwith a
correlated basis approachwe obtain the low-energy spectrum and eigenstates for thewhole range of
repulsive intra- and inter-component interaction strengths.We analyse the eigenvalues as a function
of the inter-component coupling, covering hereby all the limiting regimes, and characterize the
behaviour in-between these regimes by exploiting the symmetries of theHamiltonian. Providedwith
this knowledgewe study the breathing dynamics in the linear-response regime by slightly quenching
the trap frequency symmetrically for both components. Depending on the choice of interactions
strengths, we identify 1 to 3monopolemodes besides the breathingmode of the centre ofmass
coordinate. For the uncoupledmixture eachmonopolemode corresponds to the breathing oscillation
of a specific relative coordinate. Increasing the inter-component coupling first leads tomulti-mode
oscillations in each relative coordinate, which turn into single-mode oscillations of the same frequency
in the composite-fermionization regime.

1. Introduction

The physics of ultra-cold atoms has gained a great boost of interest since the first experimental realization of an
atomic Bose–Einstein condensate [1, 2], where research topics such as collectivemodes [3–5], binarymixtures
[6, 7] and lower-dimensional geometries [8–10]were in the focus right from the start. Inmost of the
experiments on ultra-cold gases the atoms are butweakly correlated andwell described by amean-field (MF)
model, thewell-knownGross–Pitaevskii equation (GPE), or in case ofmixtures by coupledGPEs [11–13]. Bose–
Bosemixtures exhibit richer physics compared to their single component counterpart. For instance, different
ground state profiles can be identified depending on the ratios between the intra- and inter-species interaction
strengths, being experimentally tunable by e.g. Feshbach resonances (FRs) [14]: themiscible, immiscible
symmetry-broken (SB) or immiscible core–shell structure, also called phase separation (PS) [15–17].
Comparing the experimentally obtained densities to numericalMF calculations [18, 19] provides a sensitive
probe for precisionmeasurements of the scattering lengths or, if known, themagnetic fields used to tune them
[16]. Another possibility to access the interaction regime and thus the scattering lengths is by exciting the system
and extracting the frequencies of low-lying excitations [20]. In contrast to a single-species case the collective
modes ofmixtures exhibit new exciting phenomena: doublet splitting of the spectrum containing in-phase and
out-of-phase oscillations,mode-softening for increasing inter-component coupling, onset of instability of the
lowest dipolemode leading to the SB phase aswell asminima in the breathingmode frequencies w.r.t.
interaction strength [21–23].

The breathing ormonopolemode, characterized by expansion and contraction of the atomic density, has in
particular proven to be a useful tool for the diagnostics of static and dynamical properties of physical systems. It
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is sensitive to the system’s dimensionality, spin statistics as well as form and strength of interactions [24–27]. In
the early theoretical investigations on quasi-one-dimensional single-component systems [28] it was shown that
different interaction regimes can be distinguished by the breathingmode frequency, which has been used in
experiments [10, 29, 30]. Furthermore, themonopolemode provides indirect information on the ground state
[31], its compressibility [32] and the low-lying energy spectrum such that an analogy has been drawn to
absorption/emission spectroscopy inmolecular physics [27].

From a theoretical side, those of the above experiments which are concernedwith quasi-1D set-ups are in
particular interesting, since correlations are generically stronger, renderingMF theories often inapplicable.
Here, confinement induced resonances (CIR) [8] can be employed to realize the Tonks–Girardeau limit [33, 34],
where the bosons resemble a systemof non-interacting fermions inmany aspects.While this case can be solved
analytically [35, 36], strong butfinite interactions are tractable only to numerical approaches, which limits the
analysis to few-body systems. For instance, a profound investigation of the ground state phases of a few-body
Bose–Bosemixture [37, 38] showed striking differences to theMF calculations: for coinciding trap centres, a
newphase with bimodal symmetric density structure, called composite fermionization (CF), is observedwhile
SB is absent for anyfinite inter-component coupling. Only in the limit of infinite coupling the ground state
becomes two-fold degenerate enabling to choose betweenCF and SB representations [39], while theMF theory
predicts the existence of SB already forfinite couplings. This observation accentuates the necessity to include
correlation effects.

In this workwe solve the time-independent problemof the simplest Bose–Bosemixture confined in a quasi-
1DHO trapwith two particles in each component, covering thewhole parameter space of repulsive intra- and
inter-species interactions, thereby complementing the analysis of some previous studies [39–41]. To accomplish
this, an exact diagonalizationmethod based on a correlated basis is introduced.We unravel how the
distinguishability of the components renders the spectrum richer and complexer compared to a single
component case [42]. Furthermore, these results are used to investigate the breathing dynamics of the composite
system.While the breathing spectrumof a single component was recently investigated comprehensively in
[43–49], reporting a transition from a twomode beating of the centre ofmass WCM and relativemotion Wrel

frequencies for few atoms to a singlemode breathing formany particles, the breathingmode properties of few-
body Bose–Bosemixtures are not characterized so far. For this reason, we analyse the number of breathing
frequencies and the kind ofmotion towhich they correspond in dependence on the intra- and inter-component
interaction for the binarymixture at hand.

This work is structured as follows. In section 2we introduce theHamiltonian of the system. In section 3we
perform a coordinate transformation to construct a fast converging correlated basis. Using exact diagonalization
with respect to this basis we study in section 4 the low-lying energy spectrum for various interaction regimes.
Section 5 is dedicated to the breathing dynamics within the linear response regime. An experimental realization
is discussed in section 6 andwe conclude the paperwith a summary and an outlook in section 7.

2.Model

Weconsider a Bose–Bosemixture containing two components, which are labelled by s Î { }A B, , confined in a
highly anisotropic harmonic trap.We assume the low temperature regime, where the inter-particle interactions
may bemodelled via a contact potential, and strong transversal confinement allowing us to integrate out frozen
degrees of freedom leading to a quasi-1Dmodel. Our focus lies on amixture of =sN 2 particles, which have the
samemass ºsm m and trapping frequencies w wºs ^ ^, , w wºs , in the transversal, longitudinal direction,
respectively. This can be realized by choosing different hyperfine states of the same atomic species. By further
rescaling the energy and length in units of w and  w= ( )a mho one arrives at the dimensionless
Hamiltonian:

å= +
s

s ( )H H H , 1AB

with the single-componentHamiltonians sH
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+ + -s
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s s s s
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where w w»a a ^( ) ( )g a a2 3D
ho with aa3D the 3D s-wave scattering length and a Î { }A B AB, , are effective (off-

resonant) interaction strengths.
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3.Methodology: exact diagonalization in a correlated basis

To obtain information on the low-energy excitation spectrumwe employ thewell-establishedmethod of exact
diagonalization [50]. However, instead of taking bosonic number states w.r.t. HO eigenstates for the underlying
basis as done in e.g. [40], we pursue a different approach by using a correlated atom-pair basis. This allows us to
study arbitrary intra-component interactions sg (even infinity) exactly, whereasHOnumber states aremuch
more inefficient in handling strong intra-component interactions. At the same time ourmethod converges
quickly for inter-component couplings g 10AB requiring atmost 700 basis states. In comparison, a
straightforward treatment in the laboratory frame requires typically~105 HOnumber states for obtaining
converged ground-state results [38]. For even larger gAB couplings, the chosen basis becomes less appropriate
such that our basis size has then to be significantly increased in order to obtain accurate results. Going, however,
beyond =g 10AB would not give qualitatively newphysical phenomena. Essentially all effects of the strong-
coupling regime can be investigated by studying the crossover from =g 0AB to =g 10AB .

Actually, the idea of choosing optimized basis sets to speed up the convergence with respect to the size of
basis functions can be also seen in the context of the potential-optimized discrete variable representation [51].
Here, one employs eigenstates of conveniently constructed one-dimensional referenceHamiltonians in order to
incorporatemore information on the actualHamiltonian into the basis compared to the standardDVR
technique [52, 53]. Another approach, stemming fromnuclear physics, uses an effective two-body interaction
potential instead of an optimized basis for solving ultra-coldmany-body problems [54–56].

In order to construct a tailored basis, which already incorporates intra-component correlations, we apply a
coordinate transformation to the relative frame º


( )Y R R r r, , ,AB A B

T
CM defined by:

• total CMcoordinate

å å=
s s=

R x 4,CM i i1

2
,

• relative CMcoordinate

å å= -
= =

R x x2 2,AB i A i i B i1

2
, 1

2
,

• relative coordinate for eachσ component

= -s s sr x x .,1 ,2

In this frame, theHamiltonian (1) attains the following form:

å= + + +
s=

s ( )H H H H g H . 4R R
A B

r AB
,

1ABCM

Here, the total CM separates, = +H H HR relCM
, and is simply governed by a harmonic oscillator (HO)

HamiltonianwithmassM=4:
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featuring the spectrum = +E n 1 2n
CM with În 0. The remainder of theHamiltonian can be decomposed
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So HRAB
is aHOHamiltonian ofmassM=1 and sHr leads to theWeber differential equations5 for its eigenstates

with delta-function constraint. The corresponding solutions are normalized aswell as symmetrized parabolic
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cylinder functions6 (PCF)j µs
s m ss

( ) (∣ ∣)( )r D rn g n, of the relative coordinate with m s( )g n, being a real valued
quantumnumber depending on the intra-component interaction strength gσ and the excitation level În 0,
which is obtained by solving a transcendental equation stemming from the delta-function constraint [57]:

= -s

G

G -

m

m

-( )
( ) ( )g 2 . 9

3
2

1

2

2

Now to diagonalizeHrel we choose the eigenvectors ofH0 as basis states and label them as ñ∣k l m, , with
Îk l m, , 0. Their spatial representation and corresponding eigenenergies read:

j já ñ = F∣ ( ) ( ) ( ) ( )R r r k l m R r r, , , , , 10AB A B k
AB

AB l
A

A m
B

B

m m= + + +( ) ( ) ( )( )E k g l g m, ,
3

2
, 11k l m A B, ,

0

where Fk
AB areHO eigenstates of HRAB

.We note that alljs
s( )ri are of even parity because of the bosonic nature of

the particles of each component.
Themain challenge now is the calculation of thematrix elements ofH1, which are complicated 2D integrals

atfirst sight and need to be tackled numerically. In the appendix we provide a circumvention of this problem via
the Schmidt decomposition [58], allowing us to replace one 2D integral bymultiple 1D integrals, which results in
faster computation times. In quantum chemistry, the algorithm for achieving such a representation is known as
POTFIT [59]. In the appendix, wemoreover point out several symmetries which can be utilized for efficiently
evaluating these 1D integrals and discuss in detail, why our computational strategy ismuchmore efficient than
the direct evaluation of the 2D integrals for the problem at hand.

To summarize, the coordinate transformation to the chosen relative frame (i) decouples theCMmotion and
(ii)naturally guides us to employ the analytically known eigenstates ofH0 as the basis states in order to
incorporate intra-component correlations into our basis.

4. Stationary properties

Bymeans of the correlated basis introduced above and an efficient strategy for calculating theHamiltonian
matrix to be diagonalized, we can easily obtain the static properties of our system for arbitrary intra-component
interaction strengths sg and inter-component coupling g 10AB . Themost representative choices of
interaction strengths ( )g g g, ,A B AB are the subject of this section and in order to get a deeper understanding of the
spectral properties a thorough discussion of the symmetries ofH is necessary.

4.1. Symmetry analysis
In the laboratory frame, there are only a few obvious symmetries: (i) the total parityPtot (i.e. simultaneous
replacement of all coordinates sx i, by- sx i, ), (ii) an interchange of the twoA particles SA or of the twoB particles
SB, (iii) in the case of equal intra-component couplings gA= gB a simultaneous interchange of twoAparticles
with twoB particles SAB and (iv) given all couplings to be equal, the exchange Sij of any two particles being
labelled by i, j. In the relative frame though, additional symmetries become apparent. The totalHamiltonianH
commutes with each individual parity operator PYi

of the relative frame coordinates (PYi
replacesYi by-Yi while

leaving the other coordinates of the relative frame invariant). In these regards, we note that PRAB
does not

commutewith the individual terms in equation (8) but only with thewhole sumof these four terms. The
eigenvectors of sPr are restricted to even parity because of the bosonic character of our components,
corresponding to the Sσ operation. In contrast to the former operations, the symmetry transformations PRCM

and PRAB
are highly non-trivial in the laboratory frame involving improper rotations of the four-dimensional

coordinate system.Due to the decoupling of HRCM
it is sufficient to consider only the ground state of the total

CMmotion, which is of evenRCMparity, in the following. Then, the parity of theRAB degree of freedom
completely determines the total parity of the eigenstates. Finally, a further symmetry arises if one chooses equal
intra-component interaction strengths sg . In this case, theHamiltonianH is invariant under an exchange of the
relative coordinates «r rA B, whichwe define as the Sr transformation in the following. Contra-intuitively, Sr is
not the same as the SAB transformation. In total, the chosen relative frame indicates a set of additional
symmetries, which are hidden in the laboratory frame.

4.2. Energy spectra
Infigure 1we show the total energy spectrum as a function of gAB for various fixed values of gA and gB. The total
CM is assumed to be in its ground state. Figure 1(a) depicts the non-interacting intra-component scenario

6 m= -m
-

m ( )(∣ ∣)D r U r2 e , ,1

2

1

2

1

2
2r

2

2

4 with ( )U a b x, , denoting the Tricomi’s hypergeometric function.
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=sg 0. For =g 0AB theHamiltonian represents two uncoupled non-interacting bosonic species andwewill
label this regime as BEC–BEC following the nomenclature of [40]. The eigenenergies are integers with equal
spacings of w , which is 1 in our units. In this limit the PCFs are evenHOeigenstates ofmass =m 1 2. The
eigenenergies are thus = + º = + + +=

( ) ( )E E E E k l m2 2 2n k l m k l mtot 0
CM

, ,
0

0, , ,
0 .

For =g 0AB , the ith eigenenergy corresponding to only even (odd)RAB-parity eigenstates is +( )! ( ! !)i i2 2
fold degenerate with Îi 0. Already a small inter-component coupling lifts all these degeneracies such that
branches of eigenenergies arise. In the following, we label these resulting branches as the ith even or odd
RAB-parity branch, respectively. Note that this grouping of the energy levels into branches will be used in the
following for all values of gAB and in particular for the analysis of the breathing dynamics in section 5. As we
further increase the inter-component coupling strength, we observe that states corresponding to branches of

Figure 1.Energy spectrumofH as a function of gAB for different fixed gA and gB. The decoupled total CM is assumed to be in its ground
state. The total parity is thus determined solely by theRAB parity and ismarked by black lines (even states) and red lines (odd states). In
figures (a) (b) (d) solid curves correspond to symmetric (+1) and dashed to antisymmetric (−1) eigenstates under the Sr operation.
The indicated (avoided) crossings are exemplary and simply outline specific features. In (b) and (c), we label the excited states which
are relevant for the lowestmonopole excitations as discussed in section 5 by the corresponding excitation frequencies WAB etc. The
labels for the ground-state phases are as follows: Bose–Einstein condensate (BEC), Tonks–Girardeau (TG), composite fermionization
(CF), full fermionization (FF), phase separation (PS). All quantities are given inHOunits.
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oppositeRAB-parity incidentally cross, as they are of different symmetry and consequently not coupled by theH1

perturbation.
For very strong gAB values, i.e. in theCF limit [37, 38], we observe a restoration of degeneracies, but in a

differentmanner, namely the lowest statesmerge pairwise forming a two-fold degeneracy. In this regime the two
components spatially separate for the ground state, where one component locates on the left side of the trap,
while the other is pushed to the right side due to the strong inter-component repulsion. The two-fold degeneracy
of the ground state reflects actually the two possible configurations:A leftB right andA rightB left. This
behaviour can be observed in the relative frame densities, discussed later in this section. Another striking
peculiarity for  ¥gAB are non-integer eigenvalues and unequal energy spacings,meaning that for CF no ‘TG-
like’mapping to a non-interactingHO system exists.

A very similar analysis concerning this specific choice of interactions ( =sg 0 and arbitrary gAB)was
performed in [39], where an effective interaction approachwas employed to greatly improve the convergence
properties of exact diagonalization in order to access properties of a Bose–Bosemixture with up toN=10
particles. However, the analysis only covered a single line of the ( )g g g, ,A B AB parameter space. Another similar
work [40] deals with the system’s properties for an evenwider range of intra- and inter-component interactions,
however themain focus lies on the ground state properties. Here, we extend the analysis of [39, 40] by studying
both the ground state and the low-lying excitations forweak, strong as well as intermediate interactions ag .

Infigure 1(b)we show the impact ofmoderate but symmetric intra-component interactions of strength
º =sg g 2. Already in the uncoupled regime ( =g 0AB )we observe fewer degeneracies compared to the =sg 0

case. Nevertheless, we group the eigenstates into branches of even/oddRAB-parity also forfinite sg by
continuously following the eigenenergies to the  +sg 0 limit. The reason for the reduced degeneracies is that
the PCFs are notHO eigenstates anymore, while the PCFs of both components coincide pairwise. The
eigenenergies read m m= + + +( ) ( )( )E k g l g m, , 2k l m0, , ,

0 . To roughly estimate the energetic ordering it is
sufficient to know that the real-valued quantumnumber m ( )g n, fulfills for < < ¥g0 the following relations:

• m< < +( )n g n n2 , 2 1

• m m m+ < + < +( ) ( ) ( )g n g n g n, 1 , 1 , 2

meaning that a single excitation of the relativemotion sr is energetically below a double excitation of theRAB

degree of freedom. E.g. the first evenRAB-parity branch in the uncoupled non-interacting regime (BEC–BEC in
figure 1(a)) contains three degenerate states: ñ∣2, 0, 0 , ñ∣0, 1, 0 and ñ∣0, 0, 1 (equation (10)). By choosing finite

sg values ñ∣2, 0, 0 acquires a higher energy than ñ∣0, 1, 0 and ñ∣0, 0, 1 leading to reduced degeneracies in the
spectrum. Another striking feature is the appearance of additional crossings between states of the same
RAB-parity due to the Sr symmetry. States, which possess different quantumnumbers concerning the Sr
transformation (+1 or−1), are allowed to cross as they ‘randomly’ do throughout the gAB variation. Of course,
such crossings are also present in the previous non-interacting case, it being also component-symmetric. An
avoided crossing between a state of thefirst evenRAB-parity branch and a state of the second evenRAB-parity
branch is worthmentioning, which is present for all values of sg (see the exemplary arrow infigures 1(b) or (d)).
States of the same symmetry obviously do not cross according to theWigner-vonNeumann non-crossing
rule [60].

Infigure 1(c)we asymmetrically increase the intra-component interactions sg as compared to the non-
interacting case, namely to gA= 1 and gB= 2. For the uncoupled scenario ( =g 0AB ) all the degeneracies are
lifted, because nowPCFs of theA and theB components are different. The energy is

m m= + + +( ) ( )( )E k g l g m, , 2k l m A B0, , ,
0 . The energetic state ordering is far fromobvious, which becomes

apparent upon closer inspection of the m ( )g n, function. E.g. consider again thefirst evenRAB-parity branch. Its
lowest energy state is a single excitation of rB, followed by a single excitation of rA. The highest energy of this
branch corresponds to a doubleRAB excitation. The ordering pattern for higher order branches is evenmore
complicated. For intermediate values of gABwe observe that crossings from the previous scenario (with =sg 2)
between states of the sameRAB-parity are replaced by avoided crossings because of the broken Sr symmetry. The
strong coupling regime displays less degeneracies as compared to the component-symmetric cases offigures 1(a)
and (b)with the two-fold ground state degeneracy remaining untouched.

Infigure 1(d)we choose very strong intra-component interaction strengths =sg 100.When the
gAB-coupling is absent, we have two hard-core bosons in each component. The system can thus bemapped to a
two-componentmixture of non-interacting fermions [35, 61] andwill be referred to as TG–TG limit. The PCFs
become near degenerate with oddHOeigenstates, which again leads to integer-valued eigenenergies

» + + +( )E k l m2 2 4k l m0, , ,
0 with equal spacings and the same degree of (near-)degeneracies as in the non-

interacting case (figure 1(a)). The limit of strong inter-component coupling displays a completely different
structure of the spectrum. The so-called full fermionization (FF) [36] phase can bemapped to a non-interacting
ensemble of four fermionswith the ground state energy =N 2 82 . However, in contrast to the single-

6
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component case of four bosons, we need to take into account that the components are distinguishable. Thus, the
degeneracy of the ground state is expected to be =! ( ! !)N N N 6A B -fold and corresponds to the different
possibilities of ordering the laboratory frame coordinates while keeping inmind the indistinguishability of
particles of each component. This limit of all interactions strengths going to infinity can be treated analytically by
using the so-called ‘snippet’ basis [62, 63].

For strong butfinite couplings, i.e. a g1 1, recent research also unveiled the existence of amapping to an
effective spin-chainmodel by employing perturbation theorywith respect to the ‘snippet’ basis. Various
intriguing ground-state configurations have been revealed depending on the ratio and the sign of the interaction
parameters: Heisenberg antiferromagnet (AFM)/ferromagnet (FM), Ising AFM/FMandXYphase [64–68].
Such amapping is applicable not only for Bose–Bosemixtures, but also Bose–Fermi and Fermi–Fermimixtures
may be treatedwith this approach.

The last casewe discuss is the highly asymmetric case gA= 0 and gB= 100 infigure 1(e). For =g 0AB (BEC-
TG) one expects, based on the previous considerations, integer eigenvalues » + + +( )E k l m2 2 3k l m0, , ,

0 and
thus equal spacings as for the cases =sg 0 and =sg 100 depicted in figures 1(a) and (d), because the PCF of the
A component is an evenHOeigenstate and the PCF of theB component is degenerate with an oddHO
eigenstate. Very peculiar is the strong coupling case, wherewe observe a non-degenerate ground state, the so-
called PS phase [40], where theA component occupies the centre of the harmonic trap, while theB component,
in order to reduce its intra-component interaction energy, forms a shell around theA component.

4.3. Relative-frame densities
Let us now inspect the relative-frame probability densities r ( )Yi1 instead of the usually studied one-body
densities r s( )x1 of the laboratory frame as e.g. in [40].Wewill see that these quantities can be used to identify
regions ofmost probable relative distances and provide amore detailed picture of particle arrangements than
their laboratory frame counterparts.Moreover, in the quench dynamics study, the subject of the next section, an
occupation of a certain eigenstate ofHwill lead to the breathing oscillation of only one relative-frame density,
making it possible to connect different breathingmodes to specific relativemotions within the system, at least
for theweakly coupled case g 1AB .

We define these quantities as follows:

ò r = á ñ
¹


( ) ∣ ∣ ∣ ( )( ) Y Y Y Ed , 12j

i
p i

p j1
2

where ñ∣Ej is the jth eigenstate ofH andwe trace out all the degrees of freedomof the relative frame

Y except

for one.
Let us compare our results concerning the ground state densities for some limiting cases to the ones obtained

in [40]. Infigure 2we show the densities for all the degrees of freedom except forRCM,which trivially obeys a
Gaussian distribution. In the BEC–BEC case all the densities are characterized by aGaussian density profile,
since theHamiltonian consists of completely decoupledHOs for each degree of freedom.

When the gAB coupling is turned off, the ground state is known analytically: j jF m m( ) ( ) ( )( ) ( )R r rAB
AB g

A
A g

B
B0 ,0 ,0A B
.

Thus, by tracing out the sr coordinates we acquire the same r ( )( ) RAB1
0 for arbitrary intra-component

interactions, which explains the identical distributions for the BEC–BEC andTG–TGphase infigure 2(a).While
the PCFjm

s
s

s
( )( ) rg ,0 is identical to theHOground state for =sg 0, for any finite positive sg it splits into two

symmetric peakswith a cusp at the origin, which tends to zero as  ¥g [57]. In this limit it becomes equivalent
to themodulus of thefirst excitedHOeigenstate, which explains the shape of the TG-curves infigures 2(b), (c).
We remark that going beyond =sg 100 does not induce substantial changes on the densities, which justifies our
interpretation of this parameter regime as TG limit.

TheCF phase is in some sense a complete counter-part to the TG–TG case. Now r ( )( ) RAB1
0 features two

maxima and aminimum in between, a result of A andB strongly repelling each other. This feature is blurred in
the one-body density distributions r s( )( ) x1

0 of the laboratory frame and one needs to additionally consider the

two-body density function r ( )( ) x x,A B2
0 to verify this behaviour [37]. The density distribution of r s( )( ) r1

0 ismore
compressed compared to the BEC–BEC case due to the tighter confinement induced by the other component.

Finally, the PS phase corresponds to a core–shell structure, where r ( )( ) RAB1
0 and r ( )( ) rA1

0 show amore

pronounced peak, while r ( )( ) rB1
0 obeys a bimodal distributionwith two density peaks beingmuch further apart

than both in theCF and in the TG–TG case. This can be understood in the followingway:firstly, the fact thatA
locates in the trap centre and not the otherway around is becauseBneeds tominimize its repulsive intra-
component interaction energy by separating its particles. Secondly, the need tominimize the repulsive inter-
component energy pushes theB particles even further along the harmonic trap at the cost of increased potential
energy until these two energies balance themselves out. The twoA particles are compressed to closer distances as
compared to the BEC–BEC case because of a tighter trap induced byB, while at the same timeAmodifies theHO

7

New J. Phys. 20 (2018) 015006 MPyzh et al



potential to a double well forB. This results in stronger localization of particles, which leads to amore
pronounced peak in theRAB distribution.

5. Breathing dynamics

The spectral properties discussed above can be probed by slightly quenching a systemparameter such that the
lowest lying collectivemodes are excited.Here, we focus on a slight quench of the trapping frequency in order to
excite the breathing ormonopolemodes being characterized by a periodic expansion and compression of the
atomic density.While in the single-component case two lowest lying breathingmodes of in general distinct
frequencies exist, being associatedwith amotion of theCMand the relative coordinates [24, 43], respectively,

Figure 2.Ground state relative frame probability densities: (a) r ( )( ) RAB1
0 (b) r ( )( ) rA1

0 and (c) r ( )( ) rB1
0 . The depicted limiting cases are

BEC–BEC ( = =sg g 0AB ), TG–TG ( =sg 100, =g 0AB ), CF ( =sg 0, =g 10AB ) and PS (gA= 0, gB= 100, =g 10AB ). The labels
for the ground-state phases are as follows: Bose–Einstein condensate (BEC), Tonks–Girardeau (TG), composite fermionization (CF),
phase separation (PS). Note that the r ( )( ) RAB1

0 distributions in the BEC–BEC andTG–TG regime are identical. All quantities are given
inHOunits.
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the number of breathingmodes, their frequencies and the associated ‘normal coordinates’7 are so far unknown
for themore complex case of a binary few-bodymixture and shall be the subject of this section.

Experimentally, breathing oscillations can be studied bymeasuring thewidth of theσ species density
distribution ò rs s s( )x x x td ,2

1 wherewe have omitted the subtraction of themean value ò rs s s( )x x x td ,1

squared, which vanishes due to the parity symmetry. From a theoretical point of view, it is fruitful to define a
breathing observable asås sxi i, ,

2 , whose expectation value is essentially the sumof thewidths of theA and theB
component.

To study the breathing dynamics wewill perform a slight and component-symmetric quench of theHO
trapping frequency, where ourHOunits will be givenwith respect to the post-quench system. The initial state
for this quench scenario is the ground state Y = ñ = ñw∣ ( ) ∣t E0 0 0

of the pre-quenchHamiltonian w( )H 0 with
harmonic trapping frequency w 10 , where w( )H 0 is obtained from equation (1) bymultiplying the harmonic
potential termswith the pre-factor w0

2. At time t=0 a sudden quench is performed to w = 1. The time
evolution is thus governed by the post-quenchHamiltonianH (see equation (1)) as follows:

åY ñ = ñ » ñw
-

=

-∣ ( ) ∣ ∣ ( )t E c Ee e , 13Ht

j

n

j
E t

j
i

0
0

i j
0

where ñ º ñw∣ ∣E Ej j and = á ñw∣c E Ej j 0 0
is the overlap between the initial state and the jth eigenstate ñ∣Ej of the

post-quenchHamiltonianH. Since both the pre- and post-quenchHamiltonian are time-reversal symmetric,
we assume their eigenstates and thereby also the overlap coefficients cj to be real-valuedwithout loss of
generality. A small quench ensures that »∣ ∣c 10 and only the n lowest excited states are of relevance. Symmetry
considerations further reduce the number of allowed contributions. E.g. states of oddRCM-parity or odd
RAB-parity have zero overlapwith ñw∣E0 0

, because the initial state is of evenRCM- andRAB-parity and the quench
does not affect any of the symmetries discussed in the previous section. Similarly, in the component-symmetric
case gA= gB, states, which are antisymmetric w.r.t.the Sr operation, have no overlapwith the pre-quench
ground state being symmetric under Sr.

For theweakly coupled regime, the relative-frame coordinates turn out to be extremely helpful for
characterizing the participating breathingmodes. Therefore, we study in particular the reduced densities of the
relative-frame coordinates. Employing the expansion in post-quench eigenstates from equation (13), their time-
evolutionmay be approximatedwithin the linear-response regime as

år r r» + D
=

( ) ( ) ( ) ( ) ( )( ) ( )Y t c Y c c Y t, 2 cos , 14i i
j

n

j
j

i j1 0
2

1
0

1
0 1

0,

neglecting terms of the order c ci j for >i j, 0. So r ( )Y t,i1 can be decomposed into the stationary background

r ( )( ) Yi1
0 and time-dependentmodulations of the form òr =  á ñá ñ¹

 
( ) ∣ ∣( ) Y Y Y E E Ydj

i p i p j1
0,

0 , further called
transition densities, with oscillation frequencyD = -E Ej j 0. Belowwe discuss how to calculate the overlaps cj
(see equations (18), (19)) to a good approximation only in terms of the post-quenchHamiltonian eigenstates for
sufficiently weak quenches. Thus, we can fully simulate the time-evolution of r ( )Y t,i1 by using only the post-
quenchHamiltonian properties obtained in section 4.

In the following, we regard the excitations of the first evenRAB-parity branch as the lowestmonopolemodes
and show that eachmonopolemode is directly connected to the breathingmodulation of a single relative-frame
density, if the two components are butweakly coupled. This behaviour changes for increasing gAB, where each
coordinate begins to exhibit an oscillationwithmore than one frequency. By inspecting themodulations of the
variances of each relative-coordinate and taking the excitation amplitudes into account, we show that four
(three) breathingmodes are excited for ¹g gA B (gA= gB) in theweakly coupled regime, while only two
breathingmodes are of relevance in the strongly coupled regime. First, we inspect the component-asymmetric
case offigure 1(c) in detail to illustrate some peculiarities of the involved breathingmodes, since it contains the
most relevant features. Thereafter, we unravel differences to the component-symmetric case offigure 1(b).

5.1. Component-asymmetric case
Because of the low amplitude quenching protocol, wewill excite four breathingmodes simultaneously in the
component-asymmetric case (gA= 1, gB= 2). Three of them stem from the first evenRAB-parity branch of
figure 1(c). Remember, however, that the total CMwas assumed to be in the ground state to keep the spectrum
discernible. One obtains the full energy spectrumby including all CMexcitations,meaning duplicating and up-
shifting depicted energy curves byD =E n with În . This reveals a forthmode, namely a double total CM
excitation. It features the same parity symmetries and is energetically of the same order as the states from thefirst
evenRAB-parity branch ensuring a considerable overlapwith the initial state. The total CM trivially oscillates

7
In this work, we call coordinates normal if they completely decouple theHamiltonian, implying the possibility to excite each degree of

freedom independently.

9

New J. Phys. 20 (2018) 015006 MPyzh et al



with the constant frequency W = 2CM independent of any interactions ag it being a decoupled degree of
freedomwith the single-particleHOHamiltonian (equation (5)) [25, 43]. The other threemodes, which are
excited, are known analytically, when there is no coupling between the components, andwe label the
correspondingmode frequencies as (see also the labels infigure 1(c)):

(i) m mñ ñ « W = = -∣ ∣ ( ) ( ) ( )g g g0 0, 1, 0 0 , 1 , 0A AB A A ,

(ii) m mñ ñ « W = = -∣ ∣ ( ) ( ) ( )g g g0 0, 0, 1 0 , 1 , 0B AB B B ,

(iii) ñ ñ « W = =∣ ∣ ( )g0 2, 0, 0 0 2AB AB ,

(iv) ñ ñ « W =∣ ∣2 0, 0, 0 2CM ,

wherewe have prepended theCMeigenstate ñ∣n for a complete characterization of the involved states. States of
higher order evenRAB-parity branches as well as higher excitations of theCMcoordinate are negligible due to
small overlapswith the initial state.

In the uncoupled regime =g 0AB , one can show analytically that each relative-coordinate density oscillates
with a single frequency, each corresponding to exactly one eigenstate of the first evenRAB-parity branch (see
figures 3(a)–(c)). E.g. for r ( )R t,AB1 , the only transition density r ( )( ) Rj

AB1
0, which survives taking the partial trace

is the one corresponding to ñ ñ∣ ∣0 2, 0, 0 , while the contributions from the remaining excited states vanish. This
leads to the breathingmotion in theRAB coordinate with a single frequency WAB. Analogously one can show that
ñ ñ∣ ∣0 0, 1, 0 solely induces densitymodulation in r ( )rA1 with the frequency WA, while r ( )rB1 oscillates with WB

exclusively due to ñ ñ∣ ∣0 0, 0, 1 . Thereby, the relative-frame coordinates render ‘normal coordinates’ in the
uncoupled regime, which is also a valid picture for extremely weak couplings.

By introducing a larger coupling between the components one observes that each relative frame density,
except for r ( )R t,1 CM , begins to oscillate with up to three frequencies simultaneously. So all themodes begin to
contribute to the densitymodulation of each relative coordinate. However, there are some peculiarities we
observe, for the visualization of which the densities are notwell suited anymore. Instead, wewill transform the
breathing observable to the relative frame and consider the expectation values of individual terms it decomposes
into:

å = + + +
s

s ( )x R R r r4
1

2

1

2
. 15

i
i AB A B

,
,

2
CM
2 2 2 2

Figure 3.Relative frame densitymodulations for the component-asymmetric case offigure 1(c). Figures(a)–(c): the decoupled
regime =g 0AB . (a) r ( )R t,AB1 oscillates solely due to the ñ∣2, 0, 0 eigenstate with the frequency W = 2AB , (b) r ( )r t,A1 due to

ñ∣0, 1, 0 with the frequency WA, (c) r ( )r t,B1 due to ñ∣0, 0, 1 with the frequency WB. Figures(d)–(f): strongly coupled regime
=g 10AB . (d) r ( )R t,AB1 , (e) r ( )r t,A1 , (f) r ( )r t,B1 . All the profiles oscillate with the same frequency WAB. Not shown is the breathing

motion of r ( )R t,1 CM with the constant frequency of W = 2CM , it being a decoupledmotion of a single-particleHO.Quench strength
dw = -0.1. All quantities are given in post-quenchHOunits.
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The expectation value of each observable with respect to the time-evolved state Y ñ∣ ( )t is directly related to the
respective relative-frame density:

ò ráY Y ñ =( )∣ ∣ ( ) ( ) ( )t Y t Y Y Y td , . 16i i i i
2 2

1

Inserting the time-evolution of the relative frame density from equation (14) one finds that the observables
decompose into a stationary value and a time-dependentmodulation aswell. In particular, we are interested in
the amplitudes ofmodulations, when the inter-component coupling is varied, since they determine howmany
frequencies are of essential relevance for the consideredmotion. The amplitude of the jthmode is essentially
composed of the overlap cj and of the transition element:

ò rá ñ =∣ ∣ ( ) ( )( )E Y E Y Y Yd . 17j i i i
j

i
2

0
2

1
0,

In order to evaluate the overlaps = á ñw∣c E Ej j 0 0
with ¹j 0 in terms of only the post-quenchHamiltonian

eigenstates, we perform aTaylor approximationwith respect to theweak quench strength dw w w= - 0,
namely dwñ » ñ - ñw w w w∣ ∣ ∣E E E0 0

d

d 00 evaluated at w = 1, and arrive at

w
dw» - ( )c E E

d

d
. 18j j 0

Applying the (off-diagonal)Hellmann–Feynman theorem [69], one obtains:

å
w

w
á ñ =

- á ñ

-
s s

( )E E
E x E

E E

d

d
. 19j

j i i

j
0

, ,
2

0

0

The overlaps are hence connected to the transition elements of each relative-frame breathing observable
(equation (15)), weightedwith the inverse of themode frequency, which leads to a damping of contributions
fromhigher order branches. This relation enables us to calculate the amplitudeAj, withwhich the jthmode
contributes to the oscillation of the observableYi

2:

dw
= á ñ( ) ∣ ∣ ( )A Y

c
E Y E , 20j i

j
j i

2
0

whichmay be interpreted as the susceptibility of theYi
2 observable for the excitation of the state ñ∣Ej .

Infigure 4(a)we show the values of possible breathingmode frequencies, obtained from the spectrumof
figure 1(c). W = 2CM does not depend on any interaction strength ag . In contrast to this, WAB is degenerate with
WCM for =g 0AB , andwhen increasing gAB, decreases to aminimum first and then increases with the tendency to
asymptotically reach WCM again. This behaviour strongly resembles the dependence of the relative-coordinate
breathing-mode frequency in the single-component case [43]. WA and WB have qualitatively akin curve shapes,
varyingmuch strongerwith gAB. In particular, we note that these frequencies reach values below the frequency of
theCMdipolemode being equal to unity.

The breathingmode frequencies discussed above are labelled according to the peculiarity of the uncoupled
regime, where each eigenstate from the first evenRAB-parity branch leads to a breathingmotion of some specific
relative-frame coordinate. Indeed, if we look at the amplitudesAj infigures 4(b)–(d) in the decoupled regime
( =g 0AB ), we recognize that the amplitude for the coordinateYi is non-zero only for onemode, namely the one
withwhich r ( )Y t,i1 oscillates infigures 3(a)–(c).Whenwe increase the inter-component coupling, the
eigenstates cease to be simple product states in the relative coordinate frame resulting in contamination of each
densitymodulationwith the frequencies from the othermodes aswell, which leads to a three-mode oscillation.
Nevertheless, we label the frequencies corresponding to the uncoupled case and follow the states continuously
throughout the gAB variation.

Another peculiarity worth noting arises in the strongly coupled regime: The Ws oscillations become strongly
suppressed for all the observablesmaking WAB and WCM themain contributors to the densitymodulations,
which reminds us of the single-component behaviour [43]. Furthermore, the dependence of WAB on gAB has
striking resemblance to the dependence of Wrel on g for the single component gas. Infigures 3(d)–(f)we show
that all the relative-coordinate densities oscillate with the same frequency WAB.We highlight that in theCF
regime each density peak of the bimodal distribution r ( )R t,AB1 does not only breath periodically but also its
maximumheight position performs dipole-mode like oscillations, seefigure 3(d). Our intuitive picture for this
effect is as follows: in theCF phase the two species are located on opposite sides of theHO trap and feel a tighter
effective trap induced by the other component, which is in accordance to the tighter localization of the sr
coordinates, seefigures 2(b) and (c). Upon inducing the quench dynamics by instantly lowering the trap
frequency, the two species separate even further.When the turning point is reached, theymove back towards the
centre of the trap, fail, however, to penetrate each other due to a strongmutual repulsion, which results in
dipole-like oscillation of each of the two r ( )R t,AB1 density fragments. These dipole oscillations quite likely act as
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a driving force for the rσ coordinatesmaking them to oscillate with the same frequency thereby suppressing Ws

modes.

5.2. Component-symmetric case
Nowwe compare the above results with the component-symmetric case offigure 1(b), where = =g g 2A B .
Figure 5(a) depicts the possible breathing-mode frequencies. Here, twomain differences arise:first, the WAB

curve features twominima due to two avoided crossings with an eigenstate of the second evenRAB-parity
branch. Second, the other two breathingmode frequencies of the relative coordinates are degenerate for

=g 0AB , then separate with increasing gAB and approach one another asymptotically. Instead of using the labels
WA and WB as in the component-asymmetric case, we label these twomodeswith W+ and W-, since the
corresponding excited eigenstates are symmetric and antisymmetric w.r.t. Sr , respectively (see figure 1(b)). The
latter frequency, however, does not give any contribution to the breathing dynamics, it being symmetry
excluded.

Figure 4. (a)Breathingmode frequencies as a function of the inter-component coupling gAB for the component-asymmetric case gA
= 1.0 and gB= 2.0. Themodes are labelledwith respect to the uncoupled regime, where eachmode can be identifiedwith a particular
relative-framemotion (figures 3(a)–(c)). (b)–(d)AmplitudesAj (equation (20)) of themodes depicted in (a) (same colour coding),
which determine the relevance of the contribution to the oscillation of the observable Yi

2 as a function of the inter-component
coupling gAB: (b) ( )A Rj AB , (c) ( )A rj A , (d) ( )A rj B . The red dotted lines stem from the states of the second evenRAB-parity branch. All
quantities are given in post-quenchHOunits.
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Themotion of the rA and rB coordinates is identical due to the imposed component-symmetry and in the
uncoupled regime ( =g 0AB ) they both oscillate solely with the W+ frequency (see figures 5(c) and (d)). Similarly
to the component-asymmetric case, we see that when increasing gAB the WAB (W+)mode contributes also to the
observable sr

2 (RAB
2 ).

However, in the intermediate interaction regime  g3.7 8.3AB we observe a strong suppression of the
WAB mode contribution for all observables, which is in stark contrast to the component-asymmetric case.
Instead, a state of the second evenRAB-parity branch gains relevance. These two eigenstates actually participate
in the avoided crossing exemplary indicated by an arrow in the spectrum (see figure 1(b)) and thereby exchange
their character. According to equation (20) the breathing amplitude is determined by the transition elements
(16) aswell as the overlap coefficients (18), which in turn depend also on the transition elements due to
equations (19) and (15).While the energy denominator of equation (19) does not single out one of the two states
participating in the avoided crossing, the values of the individual transition elements strongly depend on the
character of the respective eigenstate. Thereby, the energetically slightly lowermode has a large amplitude before
the crossing and after the crossing the composition character of states changes such that the highermode
dominates. By further increasing gABwe observe another exchange of roles, which is attributed to the presence of

Figure 5. (a)Breathingmode frequencies as a function of the inter-component coupling gAB for the component-symmetric case
=sg 2.0. (b)–(d)AmplitudesAj (equation (20)) of themodes shown in (a) (same colour pattern), which determine the relevance of

the contribution to the oscillation of the observable Yi
2 as a function of the inter-component coupling gAB: (b) ( )A Rj AB , (c) ( )A rj A , (d)

( )A rj B . The red dotted lines stem from the states of the second evenRAB-parity branch. All quantities are given in post-quenchHO
units.
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a second avoided crossing (seefigure 5(a)) such that the strong inter-component coupling regime shows again
the absolute dominance of the WAB mode over the other lowest breathingmodes besides WCM.

6. Experimental realization

The few-body Bose–Bosemixture studied here should be observable with existing cold atom techniques.
Quantumgasmicroscopes allow the detection of single particles in awell controlledmany-body or few-body
system [70, 71] and recent progress also allows for spin-resolved imaging in 1D systems using an expansion in
the perpendicular direction [72, 73]. In these set-ups, the single-particle sensitivity relies on pinning the atoms in
a deep lattice during imaging and experiments have so far focused on lattice systems.However, bulk systems
might be imagedwith high spatial resolution by freezing the atomic positions in a lattice before imaging. For fast
freezing, this would allow a time-resolvedmeasurement of the breathing dynamics.Moreover, spin order was
recently observed in very small fermionic bulk systems via spin-selective spilling to one side of the system [74].

Deterministic preparation of very small samples was demonstrated for fermions via trap spilling [75] and for
bosons by cutting out a subsystemof aMott insulator [76]. The tight transverse confinement for a 1D system can
be obtained from a 2Doptical lattice, while the axial confinement would come from an additional optical
potential, which can be separately controlled to initialize the breathingmode dynamics.

Choosing two hyperfine states of the same atomic species ensures the samemass of the two bosonic species.
Possible choices include Li7 , K39 or Rb87 .While the former have usable FRs to tune the interaction strengths,
the latter allows selective tuning via CIR in a spin-dependent transversal confinement as can be realized for
heavier elements. Note that the longitudinal confinement needs to be spin-independent in order to ensure the
same longitudinal trap frequencies and trap centres assumed in the calculations. The inter-component
interaction strength can be tuned via a transverse spatial separation as obtained e.g. from amagnetic field
gradient [77]. In the case of 7Li and K39 , the inter-component background scattering lengths are negative [14]
leading to negative gAB, but although not reported, inter-component FRsmight exist. Alternatively, gABmight be
tuned via aCIR, which selectively changes gAB atmagnetic fields, where the intra-component scattering lengths
are very different.

In the followingwe give concrete numbers for a choice of Li7 . The density distribution has structures on the
scale of theHOunit aho (figure 2). Choosing the trap parameters as in [75] as w p =( )2 1.5 kHz and
w p =^ ( )2 15kHz, yields =a 1ho mm, i.e. larger than a typical optical resolution of 0.8 mm. At the same time,
temperaturesmuch lower than w =k 72B nK are state of the art. The breathing dynamics will occur on a time
scale of several 100 ms, which is easily experimentally accessible. Choosing a smallerωwouldmake the imaging
easier, butwould impose stricter requirements on the temperature.

For the observation of the breathingmode dynamics, onewould record the positions of all four particles in
each experimental image and obtain thewidths á ñR tCM

2 , á ñRAB t
2 , á ñsr t

2 by averaging the occurring relative
coordinates overmany single-shots after afixed hold time t.

7.Discussion and outlook

In this workwe have explored a few-body problemof a Bose-Bosemixturewith two atoms in each component
confined in a quasi-1DHO trapping potential by exact diagonalization. By applying a coordinate transformation
to a suitable framewe have constructed a rapidly converging basis consisting ofHO andPCF. The latter stem
from the analytical solution of the relative part of the two-atomproblem [57] and include the information about
the intra-species correlations, which renders our basis superior to the common approach of usingHO
eigenstates as basis states.

We have then explored the behaviour of the low-lying energy spectrum as a function of the inter-species
coupling for various fixed values of intra-species interaction strengths.Herebywe have covered the strongly
coupled limiting cases of CF, FF and PS, studied also intermediate symmetric and asymmetric values of gA and gB
and related the ground state relative-frame densities of some limiting cases to the known laboratory frame
results [40].We have discussed the evolution of degeneracies and explained appearing (avoided) crossings in
terms of the symmetries of theHamiltonian, which become directlymanifest in the chosen relative-coordinate
frame.

Finally, the obtained results were used to study the dynamics of the systemunder a slight component-
symmetric quench of the trapping potential.We have derived expressions for the time evolution of the relative-
frame densities within the linear response regime and observed that in the uncoupled regime ( =g 0AB ) the
density of each relative frame coordinate performs breathing oscillations with a single frequency corresponding
to a specific excited state of thefirst evenRAB-parity branch of the spectrum. The total CMcoordinate performs
breathing oscillations with the frequency W = 2CM (HOunits). For asymmetric choices of sg values, three
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additionalmonopolemodes participate in the dynamics, each of them corresponding to themotion of a
particular relative coordinate: WA for the relative coordinate of theA component, WB for the relative coordinate
of theB component and WAB for the relative distance of theCMs of both components. In contrast to this, the
symmetric case gA= gB leads to only two additionalmodes because of a symmetry-induced selection rule: W+ for
the relative coordinates of both components and WAB for the relative distance of theCMs of both components.

For not too strong inter-component coupling, each relative coordinate exhibitsmulti-mode oscillations and
we have explored their relevance for the densitymodulations by analysing the behaviour of suitably chosen
observables as one gradually increases the coupling between the components for symmetric and asymmetric
choices of intra-component interactions strengths. Thereby, we have found that for strong couplings, where CF
takes place, the Ws (W+)modes become highly suppressed, leaving only twomonopolemodes in this regime:
WAB and WCM.We have observed the same effect for the case of PS (results not shown). Interestingly, the
dependence of WAB on gAB strongly resembles the behaviour of the relative-coordinate breathing frequency in
the single-component case [43]. All in all, we have obtained 2 to 4monopolemodes for the quench dynamics
depending on the strength of the inter-component coupling and the symmetry of the intra-species interactions,
which is in strong contrast to the single-component case [43] aswell as to theMF results, where two low-lying
breathingmodes can be obtained, namely an in-phase (out-of-phase)mode for a component-symmetric
(component-asymmetric) quench [23]. Finally, we have argued that the experimental preparation of the
considered few-bodymixture andmeasurement of the predicted effects are in reach bymeans of state-of-the-art
techniques.

This work serves as a useful analysis tool for future few-body experiments.Measurements of themonopole
modes can bemapped to the effective interactions within the system such that precisemeasurements of the
scattering lengths or externalmagnetic fields can be performed. The numericalmethod used here can be applied
to Bose–Fermi and Fermi–Fermimixtures with two particles in each component simplifying the numerics,
because the PCFs have to be replaced by oddHOeigenstates, if a bosonic component is switched to a fermionic
one, which significantly accelerates the calculation of integrals. Further, it would be interesting to see how the
frequencies and the amplitudes of themonopolemodes vary for an increasing number of particles. Exploring
the spectrum for negative values of interaction parameters is also a promising direction of future research.
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Appendix

In the following, we discuss how to efficiently calculatematrix elements of the coupling operatorH1 from
equation (8)with respect to the basis (10). Because of the alreadymentioned even parity ofjs

i one canmake
simple substitutions of the form = -s sr̃ r to show that each delta in the sumofH1 gives the same contribution,
such that after performing an integral overRAB one obtains:

ò ò
j j j j

á ñ = F
+

F
+
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⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
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, , , , 4 d d
2 2
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A B a
AB A B

k
AB A B

b
A

A l
A
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B

B m
B

B

1

At this point it is important to notice that the integral vanishes for odd +( )a k because of the parity symmetries
of FAB andjs, which can be seen by transforming to relative and centre-of-mass coordinates = -r r rA B,
= +( )R r r 2A B . In the following, we assume that the quantumnumbers for theRAB coordinate are restricted

to Î ¼{ }a k n, 1, , AB and for the rσ coordinates to Î ¼{ }b c l m n, , , 1, , rel . Nowour computation strategy
consists of three steps:

First, we circumvent evaluating the 2D integral from equation (A1) by viewing the product of the twoHO
eigenstates F Fa

AB
k
AB as a pure, in general not normalized state ca k, depending on the two coordinates rA and rB

and applying the Schmidt decomposition [58] or, equivalently, the so-called POTFIT algorithm [59].
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Here8, l∣ ∣( )
i
a k, 2 coincides with the ith eigenvalue of the reduced one-body densitymatrix corresponding to the

degree-of-freedom rσ and
s

s( )( )w ri
a k; , denotes the corresponding eigenvector, which can be shown to feature a

definite parity symmetry.We remark that (i)wemay choose = º( ) ( ) ( )( ) ( ) ( )w r w r w ri
A a k

i
B a k

i
a k; , ; , , because of

c c=( ) ( )r r r r, ,a k A B a k B A, , without loss of generality and that (ii) the decomposition of equation (A2) becomes

exact for  ¥d . Having ordered the coefficients l( )
i
a k, in decreasing sequence w.r.t. to theirmodulus, we

choose d such that only termswith l l > -∣ ∣( ) ( ) 10i
a k a k,

0
, 6 are taken into account, which results in an accurate

approximation to 2D integrals with a relative accuracy of 10−5, valid for all interactions and quantumnumbers
considered below.We perform this decomposition for all the relevantHOquantumnumbers (a, k), meaning
 a k nAB with +( )a k even. This procedure is independent of any interactions ag and needs to be executed

only once.
By inserting equation (A2) into (A1)we obtain the following expression:
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As one can see, the 2D integral is replaced by a sumof products of 1D integrals. In order to greatly overcome the
numerical effort for computing a 2D integral d should be preferably a small number (see below).

The second step consists in the calculation of 1D integrals and herewe provide an efficient strategy to
circumvent redundant computations. Consider the integral:

ò j js s( ) ( ) ( ) ( )( )r w r r rd , A4i
a k

s t
,

with  s t nrel. The PCFs are of even parity and thus only even
( )wi
a k, actually contribute allowing to reduce

the number of expansion terms in equation (A3) to⌊ ⌋d 2 . Both PCFsjs
s andj

s
t depend on the same interaction

strength gσmeaning that the above integral does not distinguish between the two subsystems such that the index
σ can be dropped for themoment. Nowwefix the PCFs by specifying the strength of intra-component
interaction g and furtherwefix theHOquantumnumbers (a, k), which determine the functions ( )wi

a k, , as well as
PCF quantumnumbers (s, t).We loop over all i and save the integral values, labelled as ( )g a k s t, , , , . This
procedure is performed for a set I ofmultiple values of gwe are interested in and for all the relevant quantum
number configurations  a k nAB with +( )a k even and  s t nrel.

In the last stepwe calculate thematrix elements from equation (A3). ForHOquantumnumbers (a, k)we
extract all the expansion coefficients l( )

i
a k, , obtained in thefirst step, and for the chosen interactions parameters

( )g g,A B and PCF quantumnumbers ( )b c l m, , , wepick the appropriate integral values corresponding to
= = =( )g g a k s b t l, , , ,A and = = =( )g g a k s c t m, , , ,B . The advantage of this procedure is that not only

symmetric choices of intra-component interaction strengths are accessible, but also an arbitrary asymmetric
combination Î ´( )g g I I,A B . Additionally, the proposed scheme can be easily parallelized. However, adding
new g values to the set I is in general very time-consuming as one needs to calculate a bunch of 1D integrals for all
the relevant quantumnumber configurations.

Now let us analyse quantitatively the speed-up obtained by our algorithm in contrast to the straightforward
evaluation of 2D integrals. Since the energy spacing of the PCFmodes is approximately twice the energy spacing
of theHOmodes corresponding to theRABmotion, we assume = -( )n n 1 2ABrel with an odd nAB to keep the
number of even and oddRAB-parity basis states the same. The number of 1D integrals one needs to compute for
each Îg I in order to construct theH1matrix is approximately + +( )[( )( )]d n n64 1 3AB AB

2, where d is an
average number of terms in (A3), as the criterion l l > -∣ ∣( ) ( ) 10i

a k a k,
0

, 6 requiresmore terms for larger values of
a k, . The number of 2D integrals amounts to + +( )[( )( )]n n1 256 1 3AB AB

3. For checking the convergence (see
below), we have chosen =n 21AB and =n 10rel , i.e. 2662 basis states. The number of expansion terms varies in
the interval Î ¼{ }d 50, , 100 resulting in =d 75. Thus, we need to either evaluate 326 700 1D integrals or
574 992 2D integrals. Not only is the number of 1D integrals smaller, the computation of one 2D integral takes
also significantly longer than of one 1D integral, especially for higher quantumnumbers.Moreover, in order to
build theHamiltonianmatrix for all Î ´( )g g I I,A B , the 2D integrals (A1)would have to be evaluated for the

+( )n n 1 2g g distinct combinations g gA B, where ng denotes the cardinality of I, while the 1D integrals (A4)
must be calculated only for all Îg I , i.e. ng distinct values, which renders this approachmuchmore efficient.

8
Note that in contrast to the usual conventionwe do not require the coefficients l( )

i
a k, to be semi-positive without loss of generality.
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For the spectra shown in section 4we have chosen =n 17AB and =n 8rel , i.e. 1458 basis states. Sincewe
know that basis states of differentRAB-symmetry do not couple, we can split theHmatrix into subspaces of even
and oddRAB-parity, leading to ´( )729 729 -sizematrices for each subspace such that the computational effort
for the diagonalization becomes negligible. Since the inter-component coupling gAB enters thematrix

= +H H g HAB0 1 to be diagonalized only as a pre-factor, a very fine gAB scan can be easily performed.Wenote
that for the covered Î [ ]g 0, 10AB space the convergence check provides uswith the relative energy change
below 1% for the low-lying energy spectrum.
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