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Abstract

Classical computation is modular. It exploits plug n’ play architectures which allow us to use pre-
fabricated circuits without knowing their construction. This bestows advantages such as allowing
parts of the computational process to be outsourced, and permitting individual circuit components to
be exchanged and upgraded. Here, we introduce a formal framework to describe modularity in the
quantum regime. We demonstrate a ‘no-go’ theorem, stipulating that it is not always possible to make
use of quantum circuits without knowing their construction. This has significant consequences for
quantum algorithms, forcing the circuit implementation of certain quantum algorithms to be rebuilt
almost entirely from scratch after incremental changes in the problem—such as changing the number
being factored in Shor’s algorithm. We develop a workaround capable of restoring modularity, and
apply it to design a modular version of Shor’s algorithm that exhibits increased versatility and reduced
complexity. In doing so we pave the way to a realistic framework whereby ‘quantum chips’ and remote
servers can be invoked (or assembled) to implement various parts of a more complex quantum
computation.

Modern computing relies crucially on the philosophy that we need not redesign the wheel. Every practical
programming language supplies a library of built-in functions. In executing complex computations, we call
these functions at will, taking for granted that we need not understand their exact logical or physical
implementation. A modern sorting algorithm, for example, generally calls on a comparison function u(x, y)
that outputs 0 or 1 depending on whether x should be listed before y. By supplying different comparison
functions, we may easily adapt such a program to sort a sequence of data by any number of different parameters.
The sorting algorithm itself need not change; just the choice of which comparison function to use. Thus,
modular architecture bestows immense flexibility [ 1-3].

As computations become more complex, modular design holds significant practical value. The evaluation of
acomplex function # may require immense computational resources and only be implementable by specialized
facilities, meanwhile the server may not want to disclose their method for evaluating u. A modular design allows
aclient to construct devices that invoke these complex functions as subroutines through a standardized interface
without any knowledge of their remote implementation. This lack of knowledge has many advantages; should a
server find a better way to implement u, either through a new algorithm or new physics, he need not inform his
clients. A client may casually select amongst the services of many competing servers, knowing that her device
need not be altered to fit the particular implementation of 1. Meanwhile, the server ensures that the clients gain
no more information about his computational method—outside what is available from its input—output
relations.

These advantages of modular design would particularly benefit practical quantum technologies. The
immense challenges of quantum processing imply that the near future will likely see various institutions each
synthesizing particular quantum processes. This motivates distributive computational schemes; such as a
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Figure 1. Modularity can be interpreted in a black-box framework: suppose that Alice can call upon a black-box that implements a
unitary U, and wants to use this box to implement some U-dependent quantum process P[U]. Modularity allows Alice to construct
some U-independent ‘plug n’ play device’ P[o], where ‘0’ is being used as a dummy variable which ranges over the set of possible
input unitaries { U}. That is colloquially ‘o’ represents the slot where the box implementing the unitary can be plugged in. Connecting
the input (output) interfaces of a black-box which implements U, to an appropriate port in P[o], allows Alice to immediately realize
PLU]. Similarly if Alice is also supplied with a black-box that implements U’, then she can realize P[U’] simply by switching the
boxes.

repository of external servers, each specialized in executing specific quantum algorithms on supplied input. To
what extent can a client, Alice, construct a universal device that invokes such a server —much as one invokes
built-in functions on Mathematica—such that her device automatically performs a computation P[U],
whenever the server’s algorithm transforms an input | ) into U|¢)?

This question is particularly important for a prominent class of quantum algorithms that encompasses
quantum factoring, solution of linear equations, and the DQC1 (the power of one bit of quantum information)
algorithm for evaluating the normalized trace of unitary matrices [4—11]. These algorithms share the common
property that their classical input x is encoded within a suitable unitary operator U,. Quantum speed-up
explicitly exploits the property that U, can scale exponentially, and yet still be represented by a polynomial sized
quantum circuit. The algorithm then operates by realizing some U,-dependent complex quantum process
P[Us], whose output statistics compute some desired function f(x).

Modularity is naturally desirable as each input x requires a different operator U,. A naive synthesis of P[ U]
would involve creating a different quantum circuit for each possible input which is far from ideal. Could Alice
adopt a more modular approach? One may envision a series of different black-boxes, each promising to output
U|¢) when given input |¢). Can Alice then construct some fixed ‘plug n’ play device’, such that by ‘plugging in’ a
black-box that implements a specific U,, her device computes P[U;] (see figure 1)? If possible, such a device is
clearly advantageous. Different laboratories could engineer implementations of different U, that exploit the
advantages of specific physical realizations; which can then be interchanged freely by Alice to compute f(x) for
different values of x.

This article introduces the framework of modular design in the quantum mechanical setting. We formulate
the ‘modularity constraint’, as a general principle that specifies the exact conditions where modularity is
unattainable. We show how this inflects surprising inflexibility on many celebrated quantum algorithms. We
will see, for example, that the quantum circuit for standard factoring protocols would need to be tailored
specifically for each number we wish to factor [12, 13]. This forces us to build a new circuit implementation
almost from scratch every time we change numbers.

Simultaneously, we describe how the modularity constraint can guide us in developing new algorithms that
do admit modular designs—indicating whether a given quantum algorithm can be made modular without
sacrificing its functionality, and if not, what functionality needs to be sacrificed. We apply this methodology to
design two new quantum algorithms—modular DQC1 and modular factoring. The former can evaluate the
normalized modulus of the trace of a completely unknown physical process, and the latter can perform the full
functionality of factoring with a polynomial reduction in the number of elementary gates over Shor’s algorithm.
Both algorithms exhibit the full advantages of modularity—greatly reducing the extent to which their circuits
need to be tailored to specific inputs.

Finally, we discuss how the modularity constraint changes when all black-boxes are promised to only
transform input information subject to certain restrictions (e.g. using a particular physical architecture). We
illustrate how this additional knowledge can significantly change what can be made modular. We connect our
results to existing studies on controlling an unknown unitary on a quantum degree of freedom [14—18]. We
illustrate that the diversity of conclusions about whether this is possible naturally emerges from different
implicit assumptions about how the unknown unitary is physically realized.
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1. Framework

Modularity can be formalized in the server client framework. Consider Alice, a client, who wishes to invoke the
services of Bob, a server, to perform part of a computation. To do this, Alice and Bob must first agree on a public
interface, a mutually agreed contract between Alice and Bob that defines how quantum information is
communicated between them. The interface specifies

1. The physical system Sy, the exact Hilbert space H;, and computational basis By, in which Alice will deliver
input quantum information, p,, for processing to the server.

2. The physical system S, the exact Hilbert space H,,; and computational basis B, in which the server will
return processed quantum information, g, to Alice.

This contract ensures that Alice can invoke Bob to perform part of a computation with no ambiguity. Note that
the interface does not restrict Alice from sending in a bipartition of a larger entangled system, nor preclude S;, or
Sout from having degrees of freedom beyond H;, and H . It merely establishes an agreed basis for the exchange
of quantum information.

Meanwhile, Bob’s computation can be specified by a quantum algorithm—an explicit sequence of
elementary operations that describes how Bob transforms a given S;, encoding p,, to some S, encoding g, .. At
the fundamental level, this is expressed as an ordered list of elementary physical operations specific to the
physical set-up Bob makes use of (e.g. switching on a certain magnetic field for a set duration, inclusion of a
beamsplitter). In many cases though, this is often abstracted—analogous to programming languages for classical
computing. A common method involves the quantum circuit representation, which lists a sequence of one and
two qubit gates U, Uy, ..., Ux onarelevant Hilbert space, with the understanding that each Uy in this list can be
translated into some subsequence of elementary physical operations (for 1 < k < K). Ifapplication of an
algorithm A on S, thatencodes p, always produces a S, that encodes Up, U, we say that A is an algorithmic
realization of U.

This framework allows for a formal definition of modularity. We pose the question: can Alice construct a
U-independent device that takes advantage of the public interface, such that it implements P[U] whenever
Bob’s algorithm A is an algorithmic realization of U? If this is possible, we say that P[U] can be made modular
with respect to U. Note that in this definition, Bob makes no promises to Alice outside what is specified by the
publicly agreed upon interface. This ensures that Alice has a device that satisfies the following properties:

+ Independence of realization: If Alice findsa new server, Charlie, that computes U with a more efficient
algorithm A’, Alice’s device can make use of Charlie’s service without any modification—provided Charlie
adheres to the same public interface.

+ Independence of function: If Alice wishes to implement P[U’], she does not need to modify her device. Alice
needs only to convince Bob (or some other server) to build an algorithm that computes U’ in place of U.

These advantages mirror that of modular architectures in classical computing. Bob is free to use any algorithm
A, and Alice’s device will continue to function. He is free to manipulate any quantum information in S, stored
outside H;y, as he wishes, and use whatever physical process he likes to generate g, . None of these changes
should affect Alice, she can remain blissfully unaware of these details and be confident that her device
implements P[U] for whatever U that Bob computes.

One can think of A as being encased inside a black-box, such that only its inputs and outputs are accessible.
Alice wishes to make use of this box in her laboratory to synthesize P[U], without any knowledge of its internal
configuration (see figure 1). Note that we do not assume P[U] is necessarily a unitary process—its input and
output states can differ in both entropy and dimension.

Examples. These features are particularly relevant for quantum protocols which operate by encoding an
input x within a x-dependent unitary U,, with the end goal of retrieving information about some function f (x).
The DQCI1 algorithm is a simple example (see figure 2(a)) [4]. In DQC]1, the goal is to estimate the normalized
trace of a unitary matrix M of dimension d = 2", i.e., estimate f (M) = tr[M]/d. Thisis done by encoding M
within a unitary operator Uy, whose matrix representation is precisely M. The protocol then operates by
realizing the quantum operation Ppqci[ Uy ] which—when acting on an appropriate quantum state—results in
asingle qubit that can be used to estimate f(M). If Ppqci[ U] can be made modular with respect to U, then Alice
would be able to build a universal device, that is able to evaluate f (M) when given any stand-alone unit that is
promised to realize U,,. Note thatin DQCI, the encoding Uy; = M is trivial. Thus, the usual convention to use
Uand M interchangeably and DQCI is often said to evaluate f (U). We will adopt this convention.
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Figure 2. DQC1 (a) can be implemented by applying a unitary U to a register of completely mixed qubits, controlled on a single pure
qubit in state H|0) = (|0) 4 [1))/+/2, where a control unitaryis defined as Cy : |y)|#) — |y) U?|¢) for y =0, 1. The resulting
1

process Ppqci[ U] outputs a single qubit in state p, = ﬁzi)jzo)ltr[Ui‘f] |#) ( jl, whose X (Y) measurement statistics allows for the

estimation of Re[tr[U]] /d (and Im[tr[U]] /d respectively), where we have denoted U as U~!. The standard factoring circuit (b)
encodes the number Ninside an operation U, : |g) — |(g * a)mod N) where all arithmetic is modulo N. We can find a factor of N by
stringing together a series of controlled Uaz)C operations, followed by a quantum Fourier transform modulo 2L (QFT). The latter is
implemented by a series of Hadamard and R; gates, where R; = [0) (0| + 1) (1] exp(—2mi3"; M;_/2¥) such that M;_j = 1if

(j — k)™ detector clicked and 0 if it did not (k indexes previous detectors). The resulting process Pr[U;] outputs a binary decimal
approximation of the fraction j/r, for some j € {0, ..., r — 1} selected at random.

Similar benefits pertain to quantum factoring. To factor an input N = pq, one introduces a Hamiltonian H,,
with eigenspectrum {j/r : a" = 1mod N, j = 0, ..., r — 1} for some suitable a < N (see appendix B for
details). The rest of the algorithm then involves determining r through quantum phase estimation. Specifically, this
involves constructing a series of unitary matrices U;x = exp(2*2miH,),for x =0,1,...,L — 1 € O(log,N)
that effectively encode the desired N. The quantum algorithm then incorporates this information within a
sophisticated quantum process Pg[ Uuzx]. Application of this quantum process on an appropriate, fixed, initial
quantum state allows for output statistics that can be used to recover the value of 7 (see figure 2(b)). Here,
modularity implies that Alice can construct a universal factoring circuit that factors all numbers—provided circuits
for applying U2 are inserted into the right locations. This would significantly reduce how much a quantum circuit
needs to be specifically tailored to factor different numbers, and—as we will see—has corollary benefits in reducing
the circuit’s gate complexity.

2. Constraints on modularity

We now turn to the question: when can P[U]be made modular with respect to U? In some cases, this question is
fairly trivial. Consider the process Py[U] : |¢) — VU|¢) for any fixed unitary V. This clearly can be made
modular with respect to U. Alice needs only encode her input in Sy, as stipulated by the public interface, and then
apply V'to the state returned. Regardless of what algorithm the server employs, or unitary U it computes, Alice
recovers VU|@). For more complex quantum processes P[U], the answer is less obvious. Here, we introduce the
modularity constraint, a condition that any P[ U] must satisfy in order to be modular with respect to U.

The constraint invokes the notion of black-box properties [19]. Let A be the set of all possible algorithms the
server can use (for now, this set will contain all possible algorithms). A property on A is a function
p: A — {0, 1} that maps each element of A to a binary number. Black-box properties are properties that
depend only on the input-output relations of A: ifany two algorithms, A and A’, have statistically
indistinguishable output on all coinciding input, then p(A) = p(A’). The name ‘black-box’ refers to the idea
that if an algorithm is executed inside a black-box such that only the input and output is visible, an external
observer can only determine its black-box properties.

For example, the truth value of the statement ‘A outputs |0) on input |1)’ is a black-box property. Any two
quantum algorithms where this property differs will have statistically distinguishable output upon appropriate
input. Meanwhile, the truth value of * A involves five two-qubit interactions’ is a not a black-box property; two
algorithms with differing numbers of two-qubit interactions can have statistically identical input-output
relations.

Suppose now Alice outsources some algorithm A to Bob via the aforementioned public interface. How
much information can Alice retrieve about which algorithm A € .4 Bob decided to use? Given that Alice has
access only to what inputs she gives Bob, and what outputs Bob returns to her, it seems unlikely that Alice can
determine any information about this question beyond what is accessible through its black-box properties. This
line of thought can be formalized (see appendix A for formal proof), giving constraints on when a computation
‘PIU] can be made modular with respect to U:

Proposition 1 (The Modularity Constraint). Let A be the set of all possible quantum algorithms. Suppose P[U]
can be made modular with respect to U, then P[U ] cannot be used to reveal information about which algorithm
A € A aserver used to implement U beyond what is attainable from its black-box properties.
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Consequences. This constraint significantly limits what computations can be made modular. In DQC1, the
itimplies any quantum operation P[U] that accurately estimates tr[U] /d cannot be made modular with
respect to U. This is because determination of tr[U] /d automatically reveals information to Alice about a
server’s choice of A € A beyond what is possible through its black-box properties. Specifically consider two
algorithms A,, p € {0, 1} thateach implement U, specified by gate sequence U;, U,, ..., (—1)?U; on H,,
followed by a swap operation to transfer the resulting state into .. Note that all black-box properties of A,
and A; must coincide, as all inputs to A, will result in statistically indistinguishable output (as any two quantum
states that differ by a global phase are operationally indistinguishable). Nevertheless the value of the complex
number tr[U] /d differs by a factor of (— 1) between the two cases p = 0and p = 1. Hence the requirement that
DQCI1 directly estimates tr[U] /d, implies that that the operational statistics of any such P[U] could be used to
discriminate p = 0 fromp = 1.

The modularity constraint also applies to more elementary circuit components. This allows us to determine
which part(s) of the algorithm precludes its modular implementation. In the standard DQCI circuit, the only
U-dependent component is a unitary quantum process P.[ U], which involves the application of

1; 0
Cy=1 U= . 1
v=1® (0 U) (D

Physically, this represents applying U to a d-dimensional subspace of an extended Hilbert space of dimension
2d. If this extension is achieved through an ancillary qubit, this corresponds to controlling U on a quantum
mechanical ancilla. This process cannot be made modular with respect to U, as .[U] can also distinguish
whether a server used A or A;. This retrieves a result that has received significant recent attention—it is
impossible to implement the control of a completely unknown unitary [15]. We will touch on this topic again in
section 4.

The latter observation precludes any quantum algorithm that makes use of 2.[U] from being modular with
respect to U, alist that would include phase estimation, quantum factoring, and the solution of linear equations
amongst many others. This presents a rather negative outlook for achieving non-trivial modular architectures in
the quantum regime. We will, however, see in the next section that we can sometimes work around the
modularity constraint. Certain computational tasks that currently make use of 2.[U] can be redesigned to use
more modular components.

3. Building modular quantum algorithms

Suppose now Alice wishes to evaluate some f (x) by executing some x-dependent quantum operation P[U,] and
yetall current constructions are non-modular, we observe two possibilities:

(i) If f(x) can be used to violate the modularity constraint (it can be used to distinguish two different
algorithms, A, A’ with identical black-box properties), then any P[U,] that can compute f(x) strictly cannot
be modular.

(ii) If f(x) does not directly violate the constraint, then it implies that current methods for evaluating f(x) have
inadvertently invoked some non-modular P[U,].

In case (i), we need to isolate information in f(x) that distinguishes A and A’. By discarding this information, we
can define some approximation of f (x), say g(x) that does admit a modular implementation. In case (ii), lack of
modularity is a feature of existing constructions—rather than a consequence of a fundamental no-go theorem.
Thus, we may be able to find alternative quantum operations that allow evaluation of f(x), and remain modular.

The task of DQC1—to evaluate f (U) = tr[U]/d—is an example of case (i), while we will see that quantum
factoring falls under case (ii). We now illustrate these in detail, and in doing so, demonstrate two new algorithms,
modular DQCI and modular quantum factoring.

Modular DQC1. How close can we get to computing f (U) = tr[U]/d in a way that is modular with respect
to U? Consider computing not f(U), but rather its modulus g (U) = | f (U)|. The resulting function g(U) no
longer distinguishes any A and A’ with identical black-box properties. Furthermore, one can show that this
compromise is in some sense optimal—knowing any more information about f(U) would necessarily violate
modularity (see appendix A).

Indeed there exists a quantum operation P[U] that computes g(U) in a modular fashion (see figure 3). This
involves using a single pure control qubit and two completely mixed registers of n qubits. Two controlled-SWAP
operations interspersed by the application of U on one register—followed by a measurement of the control
qubit—completes the algorithm. Note that the implementation of U can be freely outsourced to a third party via
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Figure 3. The modular DQCI1 protocol is based on coherently swapping two registers of completely mixed qubits, controlled on a
single pure control qubitin state H|0) = (]0) + |1))/+/2. The protocol uses two such control swap operations, interspersed by
application of U on a single reservoir. The output is a single (control) qubit whose X-measurement statistics allow estimation of

[te[U]]/d.
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Figure 4. It is possible to factor using a polynomial series of application of the modular DQC1 protocol. Acting on an input constituted
by pure control qubits in state |0) and two reservoirs of completely mixed qubits, this basic building block functions identically to a
controlled- Uazx ® UZ'T. When coupled to a QFT modulo 2~ this algorithm outputs a binary decimal approximation to the difference
(j — k)/r,forsome j, k € {0, ..., r — 1}, between two eigenvalues of H,,.

apublic interface (see figure 3), and the resulting device then allows for the estimation of |tr[U]| without
knowing which U the third party applied.

While evaluation of |tr[ U] | is a more limited computation than the evaluation of tr[ U], modular DQC1 can
have significant benefits. The algorithm can treat U as an arbitrary input—in the true spirit of a plug n’ play
interface. One can use this circuit as a ‘probe’, where exposed quantum wires are connected to the (input) output
of the (second) first swap gate. These wires can then be directly connected to an arbitrary unknown unitary
processes, allowing for the measurement of the absolute value of its trace.

Modular quantum factoring. Unlike DQC1, the desired output information in quantum factoring does not
conflict with the modularity constraint. Recall that in quantum factoring, the number N = pq that we wish to
factor is encoded within a unitary U,, whose Hamiltonian generator H, has eigenspectrum
{j/r:a"=1modN,j=0,...,r — 1}.Successin determining r to sufficient accuracy allows us to compute a
factor of N. Standard methods of quantum factoring involve using quantum phase estimation to determine the
eigenvalues of U, i.e., each Aj=j/r. This information, however, violates the modularity constraint. The
algorithmic constructions of U, and ¢2™/7(U,) share identical black-box properties, and nevertheless differing
eigenvalues. This precludes these standard approaches from being modular—implying the quantum circuit
must be adapted for factoring each specific N.

This conflict is avoidable. Collecting information about each individual ); is unnecessary. Information
about r can be entirely retrieved by evaluating the gap A\; — A;j_; = 1/r between consecutive energy eigenvalues
of U,’s Hamiltonian generator. Unlike the eigenvalues themselves, this gap is completely fixed by the black-box
properties of an algorithm and hence its evaluation cannot violate the modularity constraint. This suggests that
factoring can be made modular without any compromise to efficiency or output information.

In appendix C, we demonstrate an explicit construction. The core idea involves the use of a polynomial
sequence of modular DQCI circuits—connected in a serial configuration (see figure 4). The resulting algorithm
recovers the differences between eigenvalues; in general these are also of the form k/rfor k = 0, ..., r — 1. For
the purposes of factoring, these differences contain the same amount of useful information as the spectrum
itself. In the appendix, we prove our construction factors successfully in approximately

Pq
O] ———————log 2
((p— Dg-1 ° Ogr) @

runs. This is comparable to Shor’s algorithm which typically succeeds in O (log log r) runs.

This results in a significantly more modular implementation of Shor’s protocol. Such a construction has
dual advantage. Recall that each U, must be tailored specifically to the number N we wish to factor. A modular
architecture thus allows each individual laboratory to optimize the synthesis of each U?", using whichever
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physical realization they fancy (ion traps, photonic qubits, etc.) and a third party can ‘mix n’ match’ these
realizations to factor the number they wish.

Furthermore, the modular design has an immediate side benefit in reducing the complexity of quantum
factoring. In conventional quantum factoring, each unitary U,fx is supplied via its algorithmic construction—an
explicit sequence Uj, ..., Uk of elementary one and two qubit gates. The factoring circuit then synthesizes C s

by adding a control to each individual gate in the sequence, i.e., implementation of Cy,, ..., Cy,. This would ’
require O (n?) controls per operator [20]. In contrast, in this enhanced factoring algorithm, the number of
controls can be significantly reduced—we need only O(n) controlled-SWAP gates, all of which can be reused
regardless of which number we factor.

4. Modularity with partial knowledge

Our work has focused on the most general form of modularity—where the server has complete freedom in how
and what Uis implemented, and Alice’s device must synthesize PP[U] regardless. What about more restricted
situations, where Alice limits herself to dealing with specific types of servers, and thus has extra knowledge about
what algorithms her device is required to work with? This is formalized by an additional agreement in the public
interface, where the server promises any algorithm A he applies will be restricted to some strict subset, A C A
of all possible algorithm. Armed with this promise, many additional P[U] may become modular. The intuition
is that while a given P[U ] may distinguish two algorithms A and A; in A that share identical black-box
properties, one or both of these algorithms may not liein A .

Before making a general statement, we illustrate this situation by example. Consider a public interface where
Alice communicates with complying servers via the (non-degenerate) energy levels {|k) } ; of an atom
S = Sin = Sour- Theyagreetouse, B = {|0),...,|d — 1)}, the first d energy levels, to encode relevant quantum
information. Let H be the Hilbert space spanned by this basis. When Alice supplies an atom S that encodes | $) in
H, Bob promises to manipulate the atom using some algorithm A € A such that the resulting state encodes
U|¢) for some U. Alice now wants to harness this interface to build a universal device that estimates the
normalize trace, f (U) = tr[U]/d.In the sections above, we established this violates the modularity constraint.
No quantum operation P[U] that accurately estimates f (U), can be made modular with respect to U.

This changes with appropriate extra knowledge. Firstdefine B’ = {|d), |d + 1), ..., |2d — 1)} asthenextd
energy levels of S. Now suppose that the server makes one additional promise: All algorithms A it applies, will lie
in A, the set of algorithms that leaves invariant (i) any quantum information in B’ (ii) all quantum coherence
between B and B'. i.e., if Alice were to supply Bob a state | ¢’) with support on B U B, Bob promises to return
the state

(U e lplg’) = (LO] ﬂod)lcb’), ®)

where 1; denotes an identity operator. The output of the above equation now exhibits different statistics for each
possible choice of U—including those that differ by a global phase (i.e., Uand e**U). Thus any information f(U)
reveals about Uis no longer a black-box property, and therefore estimation of tr[U] /d no longer violates the
modularity constraint. Indeed, we can relabel the B U B’ basis elements as |b),;|k),, for b € {0, 1} and
k € {0, ...,d — 1}. Thus Bob’s promise can be reinterpreted as a contract to implement U on target register ‘r2’
controlled on the virtual qubit ‘r1’. On reception of S, Alice can estimate tr[U] /d by measuring ‘r1’ in the
Pauli X (and Y) bases on repeated runs.

In contrast, if the server’s choice of algorithms is unrestricted, the above argument breaks down. Consider
for example, two algorithms A,, p = {0, 1}, each consisting of first a measurement projecting the state into 3,
followed by application of a gate sequence Vy, Vj, ... (—1)P Vi acting only on the basis B (i.e.each V; = U; © 1y).
Clearly Apand A have identical black-box properties. Yet, if Alice could accurately estimate estimate
(—1)?tr[U] /d—a quantity that depends on p—she would be able to discern between Ay and Aj, and thereby
violating the modularity constraint. Therefore while computing f (U) violates the modularity constraint in the
general scenario—it can still field a modular implementation provided Alice has additional information
regarding Bob’s algorithmic construction. We can capture the above observations formally by adapting the
modularity constraint for general A .

Proposition 2 (modularity with partial knowledge). Let A be a subset of all possible algorithms. We say that
P[U] can be made modular with respect to U and A only if Alice can build a U -independent device that implements
P[U] whenever the server implements U using only algorithms in A . Suppose P[U can be made modular with
respectto U and A , then P[U] cannot be used to reveal information about which algorithm A € A a server used to
implement U beyond what is attainable from its black-box properties.
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The proofis identical to that of the standard modularity constraint, substituting A for A. In the example
above, both Aj and A, have identical black-box properties, yet any P[U] that computes f(U) can differentiate
Ay from A;. Thus such a P[U] would violate the general modularity constraint. However, both Ag and A, lie
outside A , and thus P[U] need not violate the modularity constraint with respect to A.In particular,
equation (3) implies that any two algorithms A ;and A | that lie within .4 with the same black-box properties
must synthesize the exact same U with the exact same global phase on 5. Therefore when Alice has
preknowledge that all algorithms implemented by the server lie inside A , the modularity constraint no longer
prohibits computation of DQCI.

Indeed, this problem has been explored in significant detail for the special case where P[U] = P.[U]. This
aligns with the longstanding problem of whether it is possible to control an unknown U on a quantum
mechanical degree of freedom. The motivation was the seemingly paradoxical observation that proposals to add
controls to unknown unitaries have been experimentally demonstrated [ 16]—despite formal proofs showing its
mathematical impossibility [15]. A resolution of the puzzle was given by Friis et al [ 14], noting that all existing
methods assumed knowledge of specific physical architectures to realize U. Here, we see how these discussions
fit within the general context of modularity. P.[U]indeed cannot be made modular with respect to U, in
agreement with no-go results on controlling unknown unitaries. However, one can side-skirt this problem with
preknowledge, as demonstrated in [14, 16, 17].

5. Discussion

Our research can be summarized in two parts. In the first, we formalized modularity in the context of quantum
computation within the server client framework—where modularity ensures a client can construct a
U-independent device that implements a quantum operation P[U] by blindly invoking a server to implement
U. We proposed necessary constraints on such modular architectures, and explored their impact on existing
quantum algorithms—encompassing quantum factoring and DQC1—that operate by probing the properties of
some input dependent unitary operator U. The resulting ‘modularity constraint’ indicates that the
aforementioned algorithms are generally non-modular, making it impossible to prefabricate devices that work
for each possible input—forcing their circuits to be tailored for each specific input.

The second part explored ways to circumvent this constraint. We ascertain what sacrifices in functionality, if
any, are required to refine existing algorithms to restore modular implementation. This resulted in two new
algorithms: (i) a universal device that evaluates the normalized modulus of the trace of any exponentially large
unitary U, even when this unitary is completely unknown and supplied within a black-box. (ii) a modular
factoring algorithm that can factor numbers while recycling a far larger portion of its circuit architecture,
allowing for a significant reduction in the number of control gates required for implementation.

One avenue of future research is to investigate applications of modular architectures outside pure
computation. A natural scenario, for example, originates in the fields of metrology and sensing. Here universal
devices that probe the properties of different physical processes, without making assumptions about what
unitary operations they implement, can streamline and simplify both the state preparation and read-out stages
of the metrology protocol [21]. Meanwhile, a second natural direction is to better understand the mathematical
properties of such architectures, and thus better identify what plug n’ play devices are achievable in quantum
mechanics. One way to proceed is to consider whether the class of P[o] that field a modular implementation
exactly coincides with quantum supermaps—a mathematical formalism that defines transformations between
quantum maps [22].

On a more fundamental level, combinatorial evolution postulates that advanced technology evolves by
combining technologies that already exist, and in turn becomes new building blocks for potential future
technology [23]. This modular approach has demonstrated success in the context of designing classical circuits
[24]. Similarly, more complex quantum technologies will likely evolve from taking existing quantum
technologies as their basic building blocks.
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Appendix A. Constraining modularity

Proof of modularity constraint: Here, we provide a formal proof of the modularity constraint. First, let A be
the set of all possible algorithms available to the server. Each property p then divides .4 into two equivalence
classes. Thus given a particular A in A, knowledge of p(A) progressively better isolates which algorithm was
used. We can then define the equivalence relation ~ on A such that two algorithms A, A’ € A satisfy A ~ A’ if
and only if all of their black-box properties coincide.

Consider the following statements.

(i) P[U] can be made modular with respect to U: Alice can construct a U-independent device that
implements the quantum operation P[U], where all U dependence comes from its call to a public interface:
The device can send Bob a quantum system S;, that encodes a quantum state p,  in a pre-agreed Hilbert
space H;,. If Bob returns a quantum system S, that encodes Up, U, then Alice’s device automatically
performs the quantum operation P[U].

(ii) P[U] can reveal information regarding which A Bob used beyond its black-box properties: We can find
some Ay, g = {0, 1}suchthat Ay ~ Ay, and nevertheless the operational behavior of P[U] depends on
whether Bob used Aj or A;.

The modularity constraint states that (i) and (ii) cannot both be true. We will assume the truth of both and derive
acontradiction. Let A, g = {0, 1} be two algorithms that satisfy (ii). Suppose now that Alice constructs the
U-independent device outlined in (i). Let 7, be the resulting quantum operations Alice’s device performs when
Bob applies A,. Now (ii), implies the output statistics of 7 and 7P, must differ, and thus depend on the value
ofq.

As the only g dependence lies in Bob’s choice of A, this implies that there exist some p; that Alice’s device
can send to Bob, such that the output state g, is dependent of . Let this state be denoted p', depending on
Bob’s choice of g. Since 7, depends on g, this implies that Alice’s device provides a method to discern between
pg)lzt and pglu)t. Thus pgt and pggt are statistically distinguishable despite having coinciding input p, . This implies
that Apand A; do not have coinciding input-output statistics. In particular, we can define a property p that
evaluates the truth value of the statement ‘does A output pgozt oninput p, ?. As pis clearly a black-box property,
Ao ~ Ajand we arrive at a contradiction.

Discarding minimal information to restore modularity. Here we elaborate further on the modular DQC1
algorithm, and show that it is the optimal modular approximation to the DQC1 algorithm. Specifically, suppose
f = f(U) is some function of U that we wish to evaluate. If f (U) violates the modularity constraint, it implies
that fcan be used to distinguish two algorithms A and A’ that lie in the same equivalence class (as defined above),
i.e., Alice’s universal device that computes f(U) whenever the server it invokes applies U will give differing
values, depending on whether the server implements A or A’.

We can rephrase this in terms of unitaries. Let A be named an algorithmic realization of Uif it implements
that unitary operator U. That is, if the server receives a state p encoded within basis Bj, in Sy,, then application of
A on S;,, will result in a system S,y that encodes UpU " in basis By First note that if A and A both realize the
same U, then A ~ A. Then we can define an equivalence relation on the set of all unitaries, such that U ~ U’ if
all algorithmic realizations of Uand U’ lie in the same equivalence class. Clearly, there necessarily exists two
algorithms A ~ A’ for which f(U) takes on different valuesiff f (U) = f (U’) for some U ~ U’.

Given fsuch that f (U) = f (U’) for some U ~ U’, consider some approximation g(U) such that (i)

g(U) = g(U")whenever Uand U’ lie in the same equivalence class and (ii) there exists a Uin each equivalence
class such that f (U) = g(U). Then by from above g(U) does not reveal any more information about which

A € A theserver used beyond its black-box properties. Thus the modularity constraint does not prohibit the
existence of some P[U] that can accurately estimate g(U), and simultaneously be modular with respect to U.
Furthermore, it is an optimal candidate—in the sense that if g(U) contained any more information about f (U),
then it would violate (i) and hence no longer admit modular realization. One can check that the modular DQC1
satisfies these properties, by setting f (U) = tr[U]/d and g(U) = |f (U)|.

Appendix B. Intuition behind modular factoring

To efficiently factor, it is sufficient to have an efficient algorithm that solves the order finding problem
[12,13,25]: Givenaninputa € N,1 < a < N, output the first value of rsuch that a” = 1 mod N. Ifais chosen
atrandom, the value of r will, with good probability, reveal the factors of N.

Quantum factoring algorithms function by determining the eigenvalues of a modular exponentiation
operator
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Uilx) = |(x * a) mod N), 4

which encode the value of . Note that (U], )" is the N-dimensional identity matrix. This last constraint forces the
eigenvalues of this operator to be the rth roots of unity; these are complex numbers w™ which carry information
about rthrough w = exp 2mi/rand j = 1, ..., r — 1.If we can measure the phase of an eigenvalue for which j/r
is an irreducible fraction then we can find r.

Due to the closure of the rth roots of unitary under multiplication the eigenvalues of U, @ U, arealso rth
roots of unity. Hence it is functionally equivalent to find the phase associated with an eigenvalue of
V, = U, ® UJ. Thus, noting that the modular DQC1 protocol with input U,, is equivalent to DQC1 with input
V,, we may replace each control U, with its more modular variant with negligible loss in efficiency.

Appendix C. Proof of correctness

Firstly we characterize the modular exponentiation operator defined in equation (4). Every eigenvector of this
N ® N unitary operator can be expressed in terms of some natural number g, < N, as:

1 . _
;) = ?(wd—h(lngd % ay + ... + wg 0D|g, x a)),
d

where r,;is an exponent satisfying g7 a = g, mod N while the coefficients are defined through w; = exp 27/

and j, € {0, ..., r; — 1}. Theassociated eigenvalue is w’. Note that the case g;= 1 has r eigenvectors and
associated eigenvalues of the form wi = exp 2mij/rfor j = 0, ..., r — 1, whilein general 14|r (i.e. r;divides r)
because a” = 1 mod N.Furthermore whenever N = pqis coprime with g, the relation
g,(a" — 1) = 1 mod N implies r; = r; these conditions are metby (p — 1)(q — 1) natural numbers less than
N.Implying thatat most p + q — 1possible values of g; correspond to eigenrelations for U, where the phase of
w, has denominator r; = r [13].

With respect to the eigenbasis |1); ) we write the operator U, as

U= S wiw,) @l (5)

d [jd:0> c 1g—1]

where the first sum, indexed by d, runs over the set {g,} and the nested sum runsover j; = 0, ..., 7; — L.
We now use this information to analyze the circuit in figure 4 in the main text. We simplify the calculation by
using the binary decimal expansion

1 1 1
0.C1Cl+1...Cm = ECZ + ZCH.] + ...+ Wcm. (6)
In this convention a measurement of the control register at the end of the circuit yields a number
-1
c=> 2%, ()
i=0

where the binary digit ¢; is 1 if the ith detector clicked and 0 otherwise, while the binary decimal ¢ /2% is the best
estimate to the phase of some eigenvalue of U, ® U, To achieve sufficient accuracy we require L = log, t
ancillary qubits where ¢ is the power of 2 satisfying N? < t < 2N?[13].

The probability of obtaining a specific binary number ¢ when measuring the circuit in figure 4 in the main
textis:

1

P(c) = N

>3 CIGR, 8)

ad’ ji,

where

—1 : !
G=Yexp [zwbi(ﬁ . 5)] ©)
b=0

Ta P t

We deliberately chose the number of control qubits so that our measurement ¢/t can resolve j, /r; — ];j/ /ritoan
accuracy sufficient for determining r: this implies their exists an eigenvalue for which our estimate has a bounded
amount of error:

< —. (10)

Under these conditions we inherit alower bound on |G> > 4t2/7?[13], seealso [12] for amore detailed
argument.

10
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If we are going to be successful in retrieving any information about r from ¢/t then (a) we need j, / ra—J; / r
to have denominator rand (b) we need the numerator to be coprime with r.

Firstly thereare (p — 1)(q — 1) values of gwhich are coprime with N permittingatleast (p — 1)(q — 1) /7,
values of 7; = r [13]. For each value of r; = r the number of eigenvalues corresponding to irreducible fractions
j/rwhere j € {0, ..., r — 1}isdefined through Euler’s totient function ¢ (r); which follows the relation
¢(r)/r > 6/loglogr foraconstant 6[12, 13, 26].

In the next section we demonstrate that for every j, /r; satisfying r; = r and ged(j;, r) = 1thereisafaction
Ja / T — ];j/ / rj satisfying both (a) and (b); by symmetry this argument should apply equally to ]!; / r;. Hence the
number of eigenvalues j, /r; — j; /r; from which we can successfully determine r is:

Num, = N? — (N — x)* = XN — x), an

where y = w. And the probability our circuit succeeds (that is estimates a fraction with
denominator rand numerator coprime with r) is
P/() = Num, # P(6) > — v N 12
(c) = Num, * (C)/WX( - X 12)
For a direct comparison with Shor’s result [ 12] we give the lower bound on the success probability:
4 P(r)
- D(@g—1)——-. 13
5~ D@~ DT (13)

This scales as the same order in N as standard factoring algorithms [12, 13]; in fact, asymptotically the probability
of success using the modular DQC1 protocol goeslike P * (2 — P) where Pis the probability of success for
Parker and Plenio’s factoring routine [ 13]; so to first order in P (which tends to 0 as N — oo) we get a doubling
in the success probability of the modular DQCI protocol over that of Parker and Plenio, which recovers the cost
of the extra register qubits used in our construction.

Appendix D. The number of fraction j, /r; — ][; /rd" which have denominator rand a
coprime numerator

This section contains information required to derive equation (11).

Firstly fix the eigenvalue ]; / rjand assume r; = r then

, , j = kaj,
Ja/ta = Jyfri = ——= (14)
where we havelet rj = r/k; for some integer k; (which is always possible because 7 divides 7).

Now for a fixed value of j; / r) there are r possible numerators in equation (14) corresponding to the possible
valuesof j = 0, ..., r — 1. We want to establish a one to one correspondence between values of j which are
coprime with rand values of the numerator of equation (14) which are coprime with r (for a fixed j / ).

Since we have fixed k;j; weknow j — kjj; = 0, ...,7 — 1modr (ie.,when j = 0, ..., — Iso
does j — kjj; mod r).

Additionally for any o, 8 € Z wehave: a + (3 * r is coprime with rif and only if o is coprime with r (this
follows very quickly from the contrapositive).

We show the relation in one direction o + (3 * r coprime with r — « coprime with r using the
contrapositive. First assume « shares a common factor with r; thatislet « = A * 7and r = A * x (for integers
k, T, A). Thisimplies « + 3 * r = A(7 + 0 * k) andtherefore « + ( * r is not coprime with r.

It follows that for a fixed ]d' / rj; ifthe conditions: (a) fraction has denominator rand (b) numerator is
coprime with r, are satisfied by j, /r; then there is a corresponding value of j, / Ty — ]d' / rj also satisfying (a) and
(b). This argument is symmetric and can also be applied to ]ﬂ; / .

So the number of eigenvalues j, /r; — ]; /rqwhich cannot be used to determine r is the number of pairs
(Jy / T j; / ry) for which is it impossible to determine r from either j, /r, or j ; / rj. Equation (11) is simply the total

number of eigenvalues of U, ® U, minus the number that can not be used to determine .

Appendix E. Equivalence of the modular DQC1 subroutine to a control unitary on a
completely mixed register

We characterize the resulting action of the modular DQCI protocol for the general case where the two reservoirs
are initialized in arbitrary states p and 0. We compare this to the use of a control U @ U operation. We
demonstrate equivalence when the case of the factoring protocol.

11
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(2

0) 0] — H —@ (A 10) (O — H T ]»
P U = F i
. - &

Figure 5. A modular DQCI circuit (a) is formally equivalent to a pair of controlled unitary transformations: [0) (0] ® U ® 1 + |1)
(Il®1®1and]0) (0] ® 1 ® 1 + [1)(1] ® 1 ® U, respectively shown in (b). This equivalence holds for an arbitrary p, 5, and U.
The measurement of the control qubit at the end yields the value of tr[Up] x tr[cUT].

)

Consider two states [¢)) = >k il > k)and|p) = ik Biklis j» k) which are each composed of three
qubits. The tensor product of these states is
|¢> ® |¢> = E Z O‘ijkﬁlmnlil) jm, kn> (15)
ijk Imn

We define the operator S which swaps the mth qubit of 1) with mth qubit of ¢:

SIY) @ |o) =SS5 i Bumlil, jm, kn) 16)
ijk Imn
=3 @i Bimlli, mj, nk) an
ijk Imn
=1¢) ® [¢). as)
This furnishes a SWAP operator which interchanges two m qubit registers pand o
pPRO—SpRIS=0®p. (19)

When the registers are initialized as two arbitrary m qubit states, p and o, due to the relation
U® l,p® cSU" ® 1,,S = Up ® o UT,thestate of the modular DQCI circuit after the second
SWAP in figure 5 is

1 p®c Up®oUt
TBB = 57 i N (20)
22mH N\ pUT @ Uos p @ UoU'?
When pand o are eigenstates of U with eigenvalues e and e~ respectively then the final state of the
circuit is
! PR ei()\p*/\n)p Q0o
8B = 22m+1 [ei(Ag)\,,)p Q0 PR ) o)

By comparison the state of a circuit implementing a controlled-U ® U on two registers initialized as p and o is:

1 pR o pU ® U
TueUt = S5l + | (22)
22" \U'p @ Uo U'pU ® UoU
In general the final state of these circuits are the same when the registers are initialized as eigenstates of U:
1 PR ei(/\ﬂ—%)p QR o
TUugut = H2m+1 (ei(/\,,—/\/,)p ® o pP® 0 . (23)

Due to the linearity of quantum mechanics, the two circuits are equal for any input state that is an improper
mixture of eigenstates of U, i.e. any density operator that is diagonal in the eigenbasis of U. This clearly includes
complete mixed states, and all inputs during the operation of the modular factoring algorithm.

In the most general case, the modular DQCI1 circuit as represented in equation (20) is formally equivalent to
a pair of controlled unitary transformations as outlined in figure 5.
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