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Abstract
Classical computation ismodular. It exploits plug n’ play architectures which allowus to use pre-
fabricated circuits without knowing their construction. This bestows advantages such as allowing
parts of the computational process to be outsourced, and permitting individual circuit components to
be exchanged and upgraded.Here, we introduce a formal framework to describemodularity in the
quantum regime.We demonstrate a ‘no-go’ theorem, stipulating that it is not always possible tomake
use of quantum circuits without knowing their construction. This has significant consequences for
quantumalgorithms, forcing the circuit implementation of certain quantum algorithms to be rebuilt
almost entirely from scratch after incremental changes in the problem—such as changing the number
being factored in Shor’s algorithm.We develop aworkaround capable of restoringmodularity, and
apply it to design amodular version of Shor’s algorithm that exhibits increased versatility and reduced
complexity. In doing sowe pave theway to a realistic frameworkwhereby ‘quantum chips’ and remote
servers can be invoked (or assembled) to implement various parts of amore complex quantum
computation.

Modern computing relies crucially on the philosophy that we need not redesign thewheel. Every practical
programming language supplies a library of built-in functions. In executing complex computations, we call
these functions at will, taking for granted that we need not understand their exact logical or physical
implementation. Amodern sorting algorithm, for example, generally calls on a comparison function ( )u x y,
that outputs 0 or 1 depending onwhether x should be listed before y. By supplying different comparison
functions, wemay easily adapt such a program to sort a sequence of data by any number of different parameters.
The sorting algorithm itself need not change; just the choice of which comparison function to use. Thus,
modular architecture bestows immense flexibility [1–3].

As computations becomemore complex,modular design holds significant practical value. The evaluation of
a complex function umay require immense computational resources and only be implementable by specialized
facilities,meanwhile the servermay notwant to disclose theirmethod for evaluating u. Amodular design allows
a client to construct devices that invoke these complex functions as subroutines through a standardized interface
without any knowledge of their remote implementation. This lack of knowledge hasmany advantages; should a
serverfind a better way to implement u, either through a new algorithmor new physics, he need not informhis
clients. A clientmay casually select amongst the services ofmany competing servers, knowing that her device
need not be altered tofit the particular implementation of u.Meanwhile, the server ensures that the clients gain
nomore information about his computationalmethod—outsidewhat is available from its input–output
relations.

These advantages ofmodular designwould particularly benefit practical quantum technologies. The
immense challenges of quantumprocessing imply that the near future will likely see various institutions each
synthesizing particular quantumprocesses. Thismotivates distributive computational schemes; such as a

OPEN ACCESS

RECEIVED

12August 2017

REVISED

20October 2017

ACCEPTED FOR PUBLICATION

10November 2017

PUBLISHED

4 January 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa99b3
mailto:cqttjed@nus.edu.sg
mailto:gumile@ntu.edu.sg
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa99b3&domain=pdf&date_stamp=2018-01-04
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa99b3&domain=pdf&date_stamp=2018-01-04
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


repository of external servers, each specialized in executing specific quantum algorithms on supplied input. To
what extent can a client, Alice, construct a universal device that invokes such a server—much as one invokes
built-in functions onMathematica—such that her device automatically performs a computation [ ]U ,
whenever the server’s algorithm transforms an input fñ∣ into fñ∣U ?

This question is particularly important for a prominent class of quantum algorithms that encompasses
quantum factoring, solution of linear equations, and theDQC1 (the power of one bit of quantum information)
algorithm for evaluating the normalized trace of unitarymatrices [4–11]. These algorithms share the common
property that their classical input x is encodedwithin a suitable unitary operatorUx. Quantum speed-up
explicitly exploits the property thatUx can scale exponentially, and yet still be represented by a polynomial sized
quantum circuit. The algorithm then operates by realizing someUx-dependent complex quantumprocess
[ ]Ux , whose output statistics compute some desired function f (x).

Modularity is naturally desirable as each input x requires a different operatorUx. A naive synthesis of [ ]Ux

would involve creating a different quantum circuit for each possible input which is far from ideal. CouldAlice
adopt amoremodular approach?Onemay envision a series of different black-boxes, each promising to output
fñ∣U when given input fñ∣ . CanAlice then construct some fixed ‘plug n’ play device’, such that by ‘plugging in’ a

black-box that implements a specificUx, her device computes [ ]Ux (see figure 1)? If possible, such a device is
clearly advantageous. Different laboratories could engineer implementations of differentUx that exploit the
advantages of specific physical realizations; which can then be interchanged freely byAlice to compute f (x) for
different values of x.

This article introduces the framework ofmodular design in the quantummechanical setting.We formulate
the ‘modularity constraint’, as a general principle that specifies the exact conditions wheremodularity is
unattainable.We showhow this inflects surprising inflexibility onmany celebrated quantumalgorithms.We
will see, for example, that the quantum circuit for standard factoring protocols would need to be tailored
specifically for each numberwewish to factor [12, 13]. This forces us to build a new circuit implementation
almost from scratch every timewe change numbers.

Simultaneously, we describe how themodularity constraint can guide us in developing new algorithms that
do admitmodular designs—indicating whether a given quantumalgorithm can bemademodular without
sacrificing its functionality, and if not, what functionality needs to be sacrificed.We apply thismethodology to
design two new quantumalgorithms—modularDQC1 andmodular factoring. The former can evaluate the
normalizedmodulus of the trace of a completely unknown physical process, and the latter can perform the full
functionality of factoring with a polynomial reduction in the number of elementary gates over Shor’s algorithm.
Both algorithms exhibit the full advantages ofmodularity—greatly reducing the extent towhich their circuits
need to be tailored to specific inputs.

Finally, we discuss how themodularity constraint changes when all black-boxes are promised to only
transform input information subject to certain restrictions (e.g. using a particular physical architecture).We
illustrate how this additional knowledge can significantly changewhat can bemademodular.We connect our
results to existing studies on controlling an unknownunitary on a quantumdegree of freedom [14–18].We
illustrate that the diversity of conclusions aboutwhether this is possible naturally emerges fromdifferent
implicit assumptions about how the unknownunitary is physically realized.

Figure 1.Modularity can be interpreted in a black-box framework: suppose that Alice can call upon a black-box that implements a
unitaryU, andwants to use this box to implement someU-dependent quantumprocess [ ]U .Modularity allowsAlice to construct
someU-independent ‘plug n’ play device’ [◦], where ‘◦’ is being used as a dummy variable which ranges over the set of possible
input unitaries { }U . That is colloquially ‘◦’ represents the slot where the box implementing the unitary can be plugged in. Connecting
the input (output) interfaces of a black-boxwhich implementsU, to an appropriate port in [◦], allows Alice to immediately realize
[ ]U . Similarly if Alice is also suppliedwith a black-box that implements ¢U , then she can realize  ¢[ ]U simply by switching the
boxes.
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1. Framework

Modularity can be formalized in the server client framework. Consider Alice, a client, whowishes to invoke the
services of Bob, a server, to performpart of a computation. To do this, Alice andBobmust first agree on a public
interface, amutually agreed contract betweenAlice and Bob that defines howquantum information is
communicated between them. The interface specifies

1. The physical system Sin, the exact Hilbert space in and computational basis in in which Alice will deliver
input quantum information, rin, for processing to the server.

2. The physical system Sout the exact Hilbert space out and computational basis out in which the server will
return processed quantum information, rout toAlice.

This contract ensures that Alice can invoke Bob to performpart of a computationwith no ambiguity. Note that
the interface does not restrict Alice from sending in a bipartition of a larger entangled system, nor preclude Sin or
Sout fromhaving degrees of freedombeyondin andout. Itmerely establishes an agreed basis for the exchange
of quantum information.

Meanwhile, Bob’s computation can be specified by a quantum algorithm—an explicit sequence of
elementary operations that describes howBob transforms a given Sin encoding rin to some Sout encoding rout. At
the fundamental level, this is expressed as an ordered list of elementary physical operations specific to the
physical set-upBobmakes use of (e.g. switching on a certainmagnetic field for a set duration, inclusion of a
beamsplitter). Inmany cases though, this is often abstracted—analogous to programming languages for classical
computing. A commonmethod involves the quantum circuit representation, which lists a sequence of one and
two qubit gates ¼U U U, , , K1 2 on a relevantHilbert space, with the understanding that eachUk in this list can be
translated into some subsequence of elementary physical operations (for  k K1 ). If application of an
algorithm A on Sin that encodes rin always produces a Sout that encodes r †U Uin , we say that A is an algorithmic
realization ofU.

This framework allows for a formal definition ofmodularity.We pose the question: canAlice construct a
U-independent device that takes advantage of the public interface, such that it implements [ ]U whenever
Bob’s algorithm A is an algorithmic realization ofU? If this is possible, we say that [ ]U can bemademodular
with respect toU. Note that in this definition, Bobmakes no promises to Alice outsidewhat is specified by the
publicly agreed upon interface. This ensures that Alice has a device that satisfies the following properties:

• Independence of realization: If Alice finds a new server, Charlie, that computesUwith amore efficient
algorithm ¢A , Alice’s device canmake use of Charlie’s servicewithout anymodification—provided Charlie
adheres to the same public interface.

• Independence of function:If Alice wishes to implement  ¢[ ]U , she does not need tomodify her device. Alice
needs only to convince Bob (or some other server) to build an algorithm that computes ¢U in place ofU.

These advantagesmirror that ofmodular architectures in classical computing. Bob is free to use any algorithm
A, andAlice’s device will continue to function.He is free tomanipulate any quantum information in Sin stored
outsidein as hewishes, and usewhatever physical process he likes to generate rout. None of these changes
should affect Alice, she can remain blissfully unaware of these details and be confident that her device
implements [ ]U for whateverU that Bob computes.

One can think of A as being encased inside a black-box, such that only its inputs and outputs are accessible.
Alice wishes tomake use of this box in her laboratory to synthesize [ ]U , without any knowledge of its internal
configuration (see figure 1). Note that we do not assume [ ]U is necessarily a unitary process—its input and
output states can differ in both entropy and dimension.

Examples.These features are particularly relevant for quantumprotocols which operate by encoding an
input xwithin a x-dependent unitaryUx, with the end goal of retrieving information about some function f (x).
TheDQC1 algorithm is a simple example (see figure 2(a)) [4]. InDQC1, the goal is to estimate the normalized
trace of a unitarymatrixM of dimension =d 2n, i.e., estimate =( ) [ ]f M M dtr . This is done by encodingM
within a unitary operatorUM, whosematrix representation is preciselyM. The protocol then operates by
realizing the quantumoperation  [ ]UMDQC1 which—when acting on an appropriate quantum state—results in
a single qubit that can be used to estimate f (M). If  [ ]UDQC1 can bemademodular with respect toU, thenAlice
would be able to build a universal device, that is able to evaluate f (M)when given any stand-alone unit that is
promised to realizeUM. Note that inDQC1, the encoding =U MM is trivial. Thus, the usual convention to use
U andM interchangeably andDQC1 is often said to evaluate f (U).Wewill adopt this convention.
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Similar benefits pertain to quantum factoring.To factor an inputN= pq, one introduces aHamiltonianHa,
with eigenspectrum º = ¼ -{ }j r a N j r: 1 mod , 0, , 1r for some suitable <a N (see appendixB for
details). The rest of the algorithm then involves determining r throughquantumphase estimation. Specifically, this
involves constructing a series of unitarymatrices p= ( )U iHexp 2 2a

x
a

2x

, for = ¼ - Î ( )x L O N0, 1, , 1 log2
that effectively encode thedesiredN. Thequantumalgorithm then incorporates this informationwithin a
sophisticated quantumprocess  [ ]UaF

2x

. Application of this quantumprocess on an appropriate,fixed, initial
quantumstate allows for output statistics that canbeused to recover the value of r (seefigure 2(b)).Here,
modularity implies that Alice can construct a universal factoring circuit that factors all numbers—provided circuits
for applyingUa

2x

are inserted into the right locations. Thiswould significantly reducehowmuch aquantumcircuit
needs to be specifically tailored to factor different numbers, and—aswewill see—has corollary benefits in reducing
the circuit’s gate complexity.

2. Constraints onmodularity

Wenow turn to the question: when can [ ]U bemademodular with respect toU? In some cases, this question is
fairly trivial. Consider the process  f fñ  ñ[ ] ∣ ∣U VU:V for anyfixed unitaryV. This clearly can bemade
modular with respect toU. Alice needs only encode her input in Sin as stipulated by the public interface, and then
applyV to the state returned. Regardless of what algorithm the server employs, or unitaryU it computes, Alice
recovers fñ∣VU . Formore complex quantumprocesses [ ]P U , the answer is less obvious.Here, we introduce the
modularity constraint, a condition that any [ ]U must satisfy in order to bemodular with respect toU.

The constraint invokes the notion of black-box properties [19]. Let be the set of all possible algorithms the
server can use (for now, this set will contain all possible algorithms). A property on is a function
  { }p : 0, 1 thatmaps each element of to a binary number. Black-box properties are properties that

depend only on the input-output relations of A: if any two algorithms, A and ¢A , have statistically
indistinguishable output on all coinciding input, then = ¢( ) ( )p A p A . The name ‘black-box’ refers to the idea
that if an algorithm is executed inside a black-box such that only the input and output is visible, an external
observer can only determine its black-box properties.

For example, the truth value of the statement ‘A outputs ñ∣0 on input ñ∣1 ’ is a black-box property. Any two
quantumalgorithmswhere this property differs will have statistically distinguishable output upon appropriate
input.Meanwhile, the truth value of ‘A involvesfive two-qubit interactions’ is a not a black-box property; two
algorithmswith differing numbers of two-qubit interactions can have statistically identical input–output
relations.

Suppose nowAlice outsources some algorithm A to Bob via the aforementioned public interface. How
much information canAlice retrieve aboutwhich algorithm ÎA Bob decided to use?Given that Alice has
access only towhat inputs she gives Bob, andwhat outputs Bob returns to her, it seems unlikely that Alice can
determine any information about this question beyondwhat is accessible through its black-box properties. This
line of thought can be formalized (see appendix A for formal proof), giving constraints onwhen a computation
[ ]U can bemademodular with respect toU:

Proposition 1 (TheModularity Constraint). Let be the set of all possible quantum algorithms. Suppose [ ]U
can bemademodular with respect toU , then [ ]U cannot be used to reveal information about which algorithm

ÎA a server used to implementU beyondwhat is attainable from its black-box properties.

Figure 2.DQC1 (a) can be implemented by applying a unitaryU to a register of completelymixed qubits, controlled on a single pure
qubit in state ñ = ñ + ñ∣ (∣ ∣ )H 0 0 1 2 , where a control unitary is defined as f fñ ñ  ñ ñ∣ ∣ ∣ ∣C y y U:U

y for y= 0, 1. The resulting
process  [ ]UDQC1 outputs a single qubit in state r = å ñá=

-[ ]∣ ∣U i jtrc d i j
i j1

2 , 0,1 , whoseX (Y)measurement statistics allows for the

estimation of [ [ ]]U dRe tr (and [ [ ]]U dIm tr respectively), where we have denoted †U as -U 1. The standard factoring circuit (b)
encodes the numberN inside an operation ñ  * ñ∣ ∣( )U q q a N: moda where all arithmetic ismoduloN.We can find a factor ofN by

stringing together a series of controlledUa
2x
operations, followed by a quantumFourier transformmodulo 2L (QFT). The latter is

implemented by a series ofHadamard andRj gates, where p= ñá + ñá - å -∣ ∣ ∣ ∣ ( )R i M0 0 1 1 exp 2 2j k j k
k such that =-M 1j k if

-( )j k th detector clicked and 0 if it did not (k indexes previous detectors). The resulting process  [ ]UF a outputs a binary decimal
approximation of the fraction j/r, for some Î ¼ -{ }j r0, , 1 selected at random.
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Consequences.This constraint significantly limits what computations can bemademodular. InDQC1, the
it implies any quantumoperation [ ]U that accurately estimates [ ]U dtr cannot bemademodular with
respect toU. This is because determination of [ ]U dtr automatically reveals information toAlice about a
server’s choice of ÎA beyondwhat is possible through its black-box properties. Specifically consider two
algorithms Ap, Î { }p 0, 1 that each implementU, specified by gate sequence ¼ -( )U U U, , , 1 p

k1 2 onin,
followed by a swap operation to transfer the resulting state intoout. Note that all black-box properties of A0

and A1must coincide, as all inputs to Ap will result in statistically indistinguishable output (as any two quantum
states that differ by a global phase are operationally indistinguishable). Nevertheless the value of the complex
number [ ]U dtr differs by a factor of -( )1 between the two cases p=0 and p=1.Hence the requirement that
DQC1directly estimates [ ]U dtr , implies that that the operational statistics of any such [ ]U could be used to
discriminate p=0 from p=1.

Themodularity constraint also applies tomore elementary circuit components. This allows us to determine
which part(s) of the algorithmprecludes itsmodular implementation. In the standardDQC1 circuit, the only
U-dependent component is a unitary quantumprocess  [ ]Uc , which involves the application of


= Å = ⎜ ⎟⎛

⎝
⎞
⎠ ( )C U

U
0

0
. 1U d

d

Physically, this represents applyingU to a d-dimensional subspace of an extendedHilbert space of dimension
d2 . If this extension is achieved through an ancillary qubit, this corresponds to controllingU on a quantum
mechanical ancilla. This process cannot bemademodular with respect toU, as  [ ]Uc can also distinguish
whether a server used A0 or A1. This retrieves a result that has received significant recent attention—it is
impossible to implement the control of a completely unknownunitary [15].Wewill touch on this topic again in
section 4.

The latter observation precludes any quantumalgorithm thatmakes use of  [ ]Uc frombeingmodular with
respect toU, a list that would include phase estimation, quantum factoring, and the solution of linear equations
amongstmany others. This presents a rather negative outlook for achieving non-trivialmodular architectures in
the quantum regime.Wewill, however, see in the next section that we can sometimes work around the
modularity constraint. Certain computational tasks that currentlymake use of  [ ]Uc can be redesigned to use
moremodular components.

3. Buildingmodular quantumalgorithms

Suppose nowAlice wishes to evaluate some f (x) by executing some x-dependent quantumoperation [ ]Ux and
yet all current constructions are non-modular, we observe two possibilities:

(i) If f (x) can be used to violate the modularity constraint (it can be used to distinguish two different
algorithms, ¢A A, with identical black-box properties), then any [ ]Ux that can compute f (x) strictly cannot
bemodular.

(ii) If f (x) does not directly violate the constraint, then it implies that current methods for evaluating f (x) have
inadvertently invoked some non-modular [ ]Ux .

In case (i), we need to isolate information in f (x) that distinguishes A and ¢A . By discarding this information, we
can define some approximation of f (x), say g(x) that does admit amodular implementation. In case (ii), lack of
modularity is a feature of existing constructions—rather than a consequence of a fundamental no-go theorem.
Thus, wemay be able tofind alternative quantumoperations that allow evaluation of f (x), and remainmodular.

The task ofDQC1—to evaluate =( ) [ ]f U U dtr —is an example of case (i), while wewill see that quantum
factoring falls under case (ii).We now illustrate these in detail, and in doing so, demonstrate two new algorithms,
modularDQC1 andmodular quantum factoring.

ModularDQC1.How close canwe get to computing =( ) [ ]f U U dtr in a way that ismodular with respect
toU? Consider computing not f (U), but rather itsmodulus =( ) ∣ ( )∣g U f U . The resulting function g(U)no
longer distinguishes any A and ¢A with identical black-box properties. Furthermore, one can show that this
compromise is in some sense optimal—knowing anymore information about f (U)would necessarily violate
modularity (see appendix A).

Indeed there exists a quantumoperation [ ]U that computes g(U) in amodular fashion (see figure 3). This
involves using a single pure control qubit and two completelymixed registers of n qubits. Two controlled-SWAP

operations interspersed by the application ofU on one register—followed by ameasurement of the control
qubit—completes the algorithm.Note that the implementation ofU can be freely outsourced to a third party via

5
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a public interface (see figure 3), and the resulting device then allows for the estimation of ∣ [ ]∣Utr without
knowingwhichU the third party applied.

While evaluation of ∣ [ ]∣Utr is amore limited computation than the evaluation of [ ]Utr , modularDQC1 can
have significant benefits. The algorithm can treatU as an arbitrary input—in the true spirit of a plug n’ play
interface. One can use this circuit as a ‘probe’, where exposed quantumwires are connected to the (input) output
of the (second)first swap gate. Thesewires can then be directly connected to an arbitrary unknownunitary
processes, allowing for themeasurement of the absolute value of its trace.

Modular quantum factoring.UnlikeDQC1, the desired output information in quantum factoring does not
conflict with themodularity constraint. Recall that in quantum factoring, the numberN= pq that wewish to
factor is encodedwithin a unitaryUa, whoseHamiltonian generatorHa has eigenspectrum

º = ¼ -{ }j r a N j r: 1 mod , 0, , 1r . Success in determining r to sufficient accuracy allows us to compute a
factor ofN. Standardmethods of quantum factoring involve using quantumphase estimation to determine the
eigenvalues ofU, i.e., each l = j rj . This information, however, violates themodularity constraint. The

algorithmic constructions ofUa and p ( )e Ui r
a

2 share identical black-box properties, and nevertheless differing
eigenvalues. This precludes these standard approaches frombeingmodular—implying the quantum circuit
must be adapted for factoring each specificN.

This conflict is avoidable. Collecting information about each individual lj is unnecessary. Information
about r can be entirely retrieved by evaluating the gap l l- =- r1j j 1 between consecutive energy eigenvalues
ofUaʼsHamiltonian generator. Unlike the eigenvalues themselves, this gap is completely fixed by the black-box
properties of an algorithm and hence its evaluation cannot violate themodularity constraint. This suggests that
factoring can bemademodular without any compromise to efficiency or output information.

In appendix C,we demonstrate an explicit construction. The core idea involves the use of a polynomial
sequence ofmodular DQC1 circuits—connected in a serial configuration (see figure 4). The resulting algorithm
recovers the differences between eigenvalues; in general these are also of the form k/r for = ¼ -k r0, , 1. For
the purposes of factoring, these differences contain the same amount of useful information as the spectrum
itself. In the appendix, we prove our construction factors successfully in approximately

- -

⎛
⎝⎜

⎞
⎠⎟( )( )

( )O
pq

p q
r

1 1
log log 2

runs. This is comparable to Shor’s algorithmwhich typically succeeds in ( )O rlog log runs.
This results in a significantlymoremodular implementation of Shor’s protocol. Such a construction has

dual advantage. Recall that eachUamust be tailored specifically to the numberNwewish to factor. Amodular
architecture thus allows each individual laboratory to optimize the synthesis of eachUa

2x

, usingwhichever

Figure 3.ThemodularDQC1protocol is based on coherently swapping two registers of completelymixed qubits, controlled on a
single pure control qubit in state ñ = ñ + ñ∣ (∣ ∣ )H 0 0 1 2 . The protocol uses two such control swap operations, interspersed by
application ofU on a single reservoir. The output is a single (control) qubit whoseX-measurement statistics allow estimation of
∣ [ ]∣U dtr .

Figure 4. It is possible to factor using a polynomial series of application of themodular DQC1protocol. Acting on an input constituted
by pure control qubits in state ñ∣0 and two reservoirs of completelymixed qubits, this basic building block functions identically to a

controlled- Ä †U Ua a
2 2x x

.When coupled to aQFTmodulo 2L this algorithmoutputs a binary decimal approximation to the difference
-( )j k r , for some Î ¼ -{ }j k r, 0, , 1 , between two eigenvalues ofHa.
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physical realization they fancy (ion traps, photonic qubits, etc.) and a third party can ‘mix n’match’ these
realizations to factor the number theywish.

Furthermore, themodular design has an immediate side benefit in reducing the complexity of quantum
factoring. In conventional quantum factoring, each unitaryUa

2x

is supplied via its algorithmic construction—an
explicit sequence ¼U U, , K1 of elementary one and two qubit gates. The factoring circuit then synthesizes C

Ua

x
2

by adding a control to each individual gate in the sequence, i.e., implementation of ¼C C, ,U UK1
. This would

require ( )O n3 controls per operator [20]. In contrast, in this enhanced factoring algorithm, the number of
controls can be significantly reduced—weneed onlyO(n) controlled-SWAP gates, all of which can be reused
regardless of which numberwe factor.

4.Modularitywith partial knowledge

Ourwork has focused on themost general formofmodularity—where the server has complete freedom in how
andwhatU is implemented, andAlice’s devicemust synthesize [ ]U regardless.What aboutmore restricted
situations, where Alice limits herself to dealingwith specific types of servers, and thus has extra knowledge about
what algorithms her device is required toworkwith? This is formalized by an additional agreement in the public
interface, where the server promises any algorithm A he applies will be restricted to some strict subset,  

-Ì
of all possible algorithm. Armedwith this promise,many additional [ ]U may becomemodular. The intuition
is that while a given [ ]U may distinguish two algorithms A0 and A1 in that share identical black-box
properties, one or both of these algorithmsmay not lie in

-
.

Beforemaking a general statement, we illustrate this situation by example. Consider a public interface where
Alice communicates with complying servers via the (non-degenerate) energy levels ñ{∣ }k k of an atom
= =S S Sin out. They agree to use,  = ñ ¼ - ñ{∣ ∣ }d0 , , 1 , thefirst d energy levels, to encode relevant quantum

information. Let be theHilbert space spanned by this basis.WhenAlice supplies an atom S that encodes fñ∣ in
, Bob promises tomanipulate the atomusing some algorithm Î -

A such that the resulting state encodes
fñ∣U for someU. Alice nowwants to harness this interface to build a universal device that estimates the

normalize trace, =( ) [ ]f U U dtr . In the sections above, we established this violates themodularity constraint.
No quantumoperation [ ]U that accurately estimates f (U), can bemademodular with respect toU.

This changes with appropriate extra knowledge. First define ¢ = ñ + ñ ¼ - ñ{∣ ∣ ∣ }d d d, 1 , , 2 1 as the next d
energy levels of S. Now suppose that the servermakes one additional promise: All algorithms A it applies, will lie
in

-
, the set of algorithms that leaves invariant (i) any quantum information in ¢ (ii) all quantum coherence

between  and ¢. i.e., if Alice were to supply Bob a state f¢ñ∣ with support on  È ¢, Bob promises to return
the state




f fÅ ¢ñ = ¢ñ⎜ ⎟⎛
⎝

⎞
⎠( )∣ ∣ ( )U

U 0
0

, 3d
d

where d denotes an identity operator. The output of the above equation now exhibits different statistics for each
possible choice ofU—including those that differ by a global phase (i.e.,U and fe Ui ). Thus any information f (U)
reveals aboutU is no longer a black-box property, and therefore estimation of [ ]U dtr no longer violates the
modularity constraint. Indeed, we can relabel the  È ¢ basis elements as ñ ñ∣ ∣b kr r1 2 for Î { }b 0, 1 and
Î ¼ -{ }k d0, , 1 . Thus Bob’s promise can be reinterpreted as a contract to implementU on target register ‘r2’

controlled on the virtual qubit ‘r1’. On reception of Sout, Alice can estimate [ ]U dtr bymeasuring ‘r1’ in the
PauliX (andY) bases on repeated runs.

In contrast, if the server’s choice of algorithms is unrestricted, the above argument breaks down. Consider
for example, two algorithms Ap, = { }p 0, 1 , each consisting offirst ameasurement projecting the state into  ,
followed by application of a gate sequence ¼ -( )V V V, , 1 p

k0 1 acting only on the basis  (i.e. each = ÅV Uj j d).
Clearly A0 and A1have identical black-box properties. Yet, if Alice could accurately estimate estimate
-( ) [ ]U d1 trp —a quantity that depends on p—shewould be able to discern between A0 and A1, and thereby
violating themodularity constraint. Therefore while computing f (U) violates themodularity constraint in the
general scenario—it can stillfield amodular implementation providedAlice has additional information
regarding Bob’s algorithmic construction.We can capture the above observations formally by adapting the
modularity constraint for general

-
.

Proposition 2 (modularitywith partial knowledge). Let- be a subset of all possible algorithms.We say that
[ ]U can bemademodular with respect toU and

-
only if Alice can build aU -independent device that implements

[ ]U whenever the server implementsU using only algorithms in
-
. Suppose [ ]U can bemademodular with

respect toU and
-
, then [ ]U cannot be used to reveal information about which algorithm Î -

A a server used to
implementU beyondwhat is attainable from its black-box properties.
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The proof is identical to that of the standardmodularity constraint, substituting
-

for. In the example
above, both A0 and A1have identical black-box properties, yet any [ ]U that computes f (U) can differentiate
A0 from A1. Thus such a [ ]U would violate the generalmodularity constraint. However, both A0 and A1 lie
outside

-
, and thus [ ]U need not violate themodularity constraint with respect to

-
. In particular,

equation (3) implies that any two algorithms -A 0 and
-A 1 that lie within

-
with the same black-box properties

must synthesize the exact sameUwith the exact same global phase on  . Therefore whenAlice has
preknowledge that all algorithms implemented by the server lie inside

-
, themodularity constraint no longer

prohibits computation ofDQC1.
Indeed, this problemhas been explored in significant detail for the special case where  =[ ] [ ]U Uc . This

alignswith the longstanding problemofwhether it is possible to control an unknownU on a quantum
mechanical degree of freedom. Themotivationwas the seemingly paradoxical observation that proposals to add
controls to unknownunitaries have been experimentally demonstrated [16]—despite formal proofs showing its
mathematical impossibility [15]. A resolution of the puzzle was given by Friis et al [14], noting that all existing
methods assumed knowledge of specific physical architectures to realizeU. Here, we see how these discussions
fit within the general context ofmodularity.  [ ]Uc indeed cannot bemademodular with respect toU, in
agreementwith no-go results on controlling unknownunitaries. However, one can side-skirt this problemwith
preknowledge, as demonstrated in [14, 16, 17].

5.Discussion

Our research can be summarized in two parts. In the first, we formalizedmodularity in the context of quantum
computationwithin the server client framework—wheremodularity ensures a client can construct a
U-independent device that implements a quantumoperation [ ]U by blindly invoking a server to implement
U.We proposed necessary constraints on suchmodular architectures, and explored their impact on existing
quantumalgorithms—encompassing quantum factoring andDQC1—that operate by probing the properties of
some input dependent unitary operatorU. The resulting ‘modularity constraint’ indicates that the
aforementioned algorithms are generally non-modular,making it impossible to prefabricate devices that work
for each possible input—forcing their circuits to be tailored for each specific input.

The second part exploredways to circumvent this constraint.We ascertainwhat sacrifices in functionality, if
any, are required to refine existing algorithms to restoremodular implementation. This resulted in two new
algorithms: (i) a universal device that evaluates the normalizedmodulus of the trace of any exponentially large
unitaryU, evenwhen this unitary is completely unknown and supplied within a black-box. (ii) amodular
factoring algorithm that can factor numbers while recycling a far larger portion of its circuit architecture,
allowing for a significant reduction in the number of control gates required for implementation.

One avenue of future research is to investigate applications ofmodular architectures outside pure
computation. A natural scenario, for example, originates in the fields ofmetrology and sensing.Here universal
devices that probe the properties of different physical processes, withoutmaking assumptions aboutwhat
unitary operations they implement, can streamline and simplify both the state preparation and read-out stages
of themetrology protocol [21].Meanwhile, a second natural direction is to better understand themathematical
properties of such architectures, and thus better identify what plug n’ play devices are achievable in quantum
mechanics. Oneway to proceed is to consider whether the class of [◦] thatfield amodular implementation
exactly coincides with quantum supermaps—amathematical formalism that defines transformations between
quantummaps [22].

On amore fundamental level, combinatorial evolution postulates that advanced technology evolves by
combining technologies that already exist, and in turn becomes new building blocks for potential future
technology [23]. Thismodular approach has demonstrated success in the context of designing classical circuits
[24]. Similarly,more complex quantum technologies will likely evolve from taking existing quantum
technologies as their basic building blocks.
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AppendixA. Constrainingmodularity

Proof ofmodularity constraint:Here, we provide a formal proof of themodularity constraint. First, let be
the set of all possible algorithms available to the server. Each property p then divides  into two equivalence
classes. Thus given a particular A in, knowledge of ( )p A progressively better isolates which algorithmwas
used.We can then define the equivalence relation∼ on such that two algorithms ¢ ÎA A, satisfy ~ ¢A A if
and only if all of their black-box properties coincide.

Consider the following statements.

(i) [ ]U can be made modular with respect to U: Alice can construct a U-independent device that
implements the quantumoperation [ ]U , where allU dependence comes from its call to a public interface:
The device can send Bob a quantum system Sin that encodes a quantum state rin in a pre-agreedHilbert
spacein. If Bob returns a quantum system Sout that encodes r †U Uin , thenAlice’s device automatically
performs the quantumoperation [ ]U .

(ii) [ ]U can reveal information regarding which A Bob used beyond its black-box properties: We can find
some Aq, = { }q 0, 1 such that ~A A0 1, and nevertheless the operational behavior of [ ]U depends on
whether Bob used A0 or A1.

Themodularity constraint states that (i) and (ii) cannot both be true.Wewill assume the truth of both and derive
a contradiction. Let Aq, = { }q 0, 1 be two algorithms that satisfy (ii). Suppose now that Alice constructs the
U-independent device outlined in (i). Let q be the resulting quantumoperations Alice’s device performswhen
Bob applies Aq. Now (ii), implies the output statistics of 0 and 1must differ, and thus depend on the value
of q.

As the only q dependence lies in Bob’s choice of Aq, this implies that there exist some rin that Alice’s device

can send toBob, such that the output state rout is dependent of q. Let this state be denoted r
( )q
out depending on

Bob’s choice of q. Since q depends on q, this implies that Alice’s device provides amethod to discern between

r( )
out
0 and r( )

out
1 . Thus r( )

out
0 and r( )

out
1 are statistically distinguishable despite having coinciding input rin. This implies

that A0 and A1do not have coinciding input-output statistics. In particular, we can define a property p that
evaluates the truth value of the statement ‘does A output r( )

out
0 on input rin?’. As p is clearly a black-box property,

A A0 1 andwe arrive at a contradiction.
Discardingminimal information to restoremodularity.Herewe elaborate further on themodularDQC1

algorithm, and show that it is the optimalmodular approximation to theDQC1 algorithm. Specifically, suppose
= ( )f f U is some function ofU that wewish to evaluate. If f (U) violates themodularity constraint, it implies

that f can be used to distinguish two algorithms A and ¢A that lie in the same equivalence class (as defined above),
i.e., Alice’s universal device that computes f (U)whenever the server it invokes appliesUwill give differing
values, depending onwhether the server implements A or ¢A .

We can rephrase this in terms of unitaries. Let A be named an algorithmic realization ofU if it implements
that unitary operatorU. That is, if the server receives a state ρ encodedwithin basis in in Sin, then application of
A on Sin will result in a system Sout that encodes r †U U in basis out. First note that if A and Ā both realize the
sameU, then ~ ¯A A. Thenwe can define an equivalence relation on the set of all unitaries, such that ~ ¢U U if
all algorithmic realizations ofU and ¢U lie in the same equivalence class. Clearly, there necessarily exists two
algorithms ~ ¢A A for which f (U) takes on different values iff ¹ ¢( ) ( )f U f U for some ~ ¢U U .

Given f such that ¹ ¢( ) ( )f U f U for some ~ ¢U U , consider some approximation g(U) such that (i)
= ¢( ) ( )g U g U wheneverU and ¢U lie in the same equivalence class and (ii) there exists aU in each equivalence

class such that =( ) ( )f U g U . Then by fromabove g(U) does not reveal anymore information aboutwhich
ÎA the server used beyond its black-box properties. Thus themodularity constraint does not prohibit the

existence of some [ ]U that can accurately estimate g(U), and simultaneously bemodular with respect toU.
Furthermore, it is an optimal candidate—in the sense that if g(U) contained anymore information about f (U),
then it would violate (i) and hence no longer admitmodular realization.One can check that themodularDQC1
satisfies these properties, by setting =( ) [ ]f U U dtr and =( ) ∣ ( )∣g U f U .

Appendix B. Intuition behindmodular factoring

To efficiently factor, it is sufficient to have an efficient algorithm that solves the order finding problem
[12, 13, 25]: Given an input Îa , < <a N1 , output the first value of r such that ºa N1 modr . If a is chosen
at random, the value of rwill, with good probability, reveal the factors ofN.

Quantum factoring algorithms function by determining the eigenvalues of amodular exponentiation
operator
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ñ = * ñ∣ ∣( ) ( )U x x a Nmod , 4a

which encode the value of r. Note that ( )Ua
r is theN-dimensional identitymatrix. This last constraint forces the

eigenvalues of this operator to be the rth roots of unity; these are complex numbers w-j which carry information
about r through w p= i rexp 2 and = ¼ -j r1, , 1. If we canmeasure the phase of an eigenvalue forwhich j/r
is an irreducible fraction thenwe canfind r.

Due to the closure of the rth roots of unitary undermultiplication the eigenvalues of Ä †U Ua a are also rth
roots of unity.Hence it is functionally equivalent tofind the phase associatedwith an eigenvalue of

= Ä †V U Ua a a . Thus, noting that themodularDQC1protocol with inputUa is equivalent toDQC1with input
Va, wemay replace each controlUawith itsmoremodular variant with negligible loss in efficiency.

AppendixC. Proof of correctness

Firstly we characterize themodular exponentiation operator defined in equation (4). Every eigenvector of this
ÄN N unitary operator can be expressed in terms of some natural number <g Nd , as:

y w wñ = * ñ + ¼ + * ñ- -∣ ( ∣ ∣ )( ) ( )
r

g a g a
1

,j
d

d
j

d d
j r

d
r1

d
d d d d

where rd is an exponent satisfying º*g a g Nmod
d

r
d

d while the coefficients are defined through w p= i rexp 2d d

and Î ¼ -{ }j r0, , 1d d . The associated eigenvalue is wd
jd. Note that the case gd= 1 has r eigenvectors and

associated eigenvalues of the form w p= ij rexp 2j for = ¼ -j r0, , 1, while in general ∣r rd (i.e. rd divides r)
because ºa N1 modr . FurthermorewheneverN= pq is coprimewith gd the relation

- º( )g a N1 1 modd
rd implies =r r;d these conditions aremet by - -( )( )p q1 1 natural numbers less than

N. Implying that atmost + -p q 1possible values of gd correspond to eigenrelations forUawhere the phase of
wd has denominator ¹r rd [13].

With respect to the eigenbasis y ñ∣ jd
wewrite the operatorUa as

å å y y= ñá
= ¼ -

∣ ∣ ( )
[ ]

U w , 5a
d j r

d
j

j j
0, , 1d d

d
d d

where thefirst sum, indexed by d, runs over the set { }gd and the nested sum runs over = ¼ -j r0, , 1d d .
We nowuse this information to analyze the circuit in figure 4 in themain text.We simplify the calculation by

using the binary decimal expansion

= + + ¼ ++ + - +
( )c c c c c c0. ...

1

2

1

4

1

2
. 6l l m l l m l m1 1 1

In this convention ameasurement of the control register at the end of the circuit yields a number

å=
=

-

( )c c2 , 7
i

L
i

i
0

1

where the binary digit ci is 1 if the ith detector clicked and 0 otherwise, while the binary decimal c 2L is the best
estimate to the phase of some eigenvalue of Ä †U Ua a . To achieve sufficient accuracywe require =L tlog2
ancillary qubits where t is the power of 2 satisfying  N t N22 2 [13].

The probability of obtaining a specific binary number cwhenmeasuring the circuit infigure 4 in themain
text is:

å å=
¢ ¢

( ) ∣ ∣ ( )P c
N t

G
1

, 8
d d j j

2 2
, ,

2

d d

where

å p= -
¢

¢
-

=

- ⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟ ( )G bi

j

r

j

r

c

t
exp 2 . 9

b

t
d

d

d

d0

1

Wedeliberately chose the number of control qubits so that ourmeasurement c/t can resolve - ¢ ¢j r j rd d d d to an
accuracy sufficient for determining r: this implies their exists an eigenvalue forwhich our estimate has a bounded
amount of error:

-
¢

¢
- ( )

j

r

j

r

c

t t

1

2
. 10d

d

d

d

Under these conditions we inherit a lower bound on  p∣ ∣G t42 2 2 [13], see also [12] for amore detailed
argument.
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If we are going to be successful in retrieving any information about r from c/t then (a)weneed - ¢ ¢j r j rd d d d

to have denominator r and (b)weneed the numerator to be coprimewith r.
Firstly there are - -( )( )p q1 1 values of gwhich are coprimewithN permitting at least - -( )( )p q r1 1 ,

values of =r rd [13]. For each value of =r rd the number of eigenvalues corresponding to irreducible fractions
j/rwhere Î ¼ -{ }j r0, , 1 is defined through Euler’s totient function f ( )r ;which follows the relation
f d>( )r r rloglog for a constant δ [12, 13, 26].

In the next sectionwe demonstrate that for every j rd d satisfying =r rd and =( )gcd j r, 1d there is a faction

- ¢ ¢j r j rd d d d satisfying both (a) and (b); by symmetry this argument should apply equally to ¢ ¢j r
d d. Hence the

number of eigenvalues - ¢ ¢j r j rd d d d fromwhichwe can successfully determine r is:

c c c= - - = -( ) ( ) ( )N N NNum 2 , 11c
2 2

where c = f - -( )( )( )r p q

r

1 1
. And the probability our circuit succeeds (that is estimates a fractionwith

denominator r and numerator coprimewith r) is


p

c c¢ = * -( ) ( ) ( ) ( )P c P c
t

N t
NNum

4
2 . 12c

2

2 2 2

For a direct comparisonwith Shor’s result [12]we give the lower bound on the success probability:

p
f

- -( )( ) ( ) ( )
N

p q
r

r

4
1 1 . 13

2

This scales as the same order inN as standard factoring algorithms [12, 13]; in fact, asymptotically the probability
of success using themodularDQC1protocol goes like * -( )P P2 where P is the probability of success for
Parker and Plenio’s factoring routine [13]; so tofirst order inP (which tends to 0 as  ¥N )we get a doubling
in the success probability of themodularDQC1protocol over that of Parker and Plenio, which recovers the cost
of the extra register qubits used in our construction.

AppendixD. The number of fraction - ¢ ¢j r j rdd d d which have denominator r and a
coprime numerator

This section contains information required to derive equation (11).
Firstly fix the eigenvalue ¢ ¢j r

d d and assume =r rd then

- ¢ ¢ =
- ¢ ¢

( )j r j r
j k j

r
, 14d d d d

d d

wherewe have let ¢ = ¢r r kd d for some integer ¢kd (which is always possible because ¢rd divides r).
Now for afixed value of ¢ ¢j r

d d there are r possible numerators in equation (14) corresponding to the possible
values of = ¼ -j r0, , 1.Wewant to establish a one to one correspondence between values of jwhich are
coprimewith r and values of the numerator of equation (14)which are coprimewith r (for afixed ¢ ¢j r

d d).
Sincewe havefixed ¢ ¢k jd d

we know - ¢ ¢ º ¼ -j k j r r0, , 1 modd d (i.e., when = ¼ -j r0, , 1 so

does - ¢ ¢j k j rmodd d ).
Additionally for any a b Î, we have: a b+ * r is coprimewith r if and only ifα is coprimewith r (this

follows very quickly from the contrapositive).
We show the relation in one direction a b a+ * ⟶r r rcoprime with coprime with using the

contrapositive. First assumeα shares a common factor with r; that is let a l t= * and l k= *r (for integers
k t l, , ). This implies a b l t b k+ * = + *( )r and therefore a b+ * r is not coprimewith r.

It follows that for afixed ¢ ¢j r ;
d d if the conditions: (a) fraction has denominator r and (b)numerator is

coprimewith r, are satisfied by j rd d then there is a corresponding value of - ¢ ¢j r j rd d d d also satisfying (a) and
(b). This argument is symmetric and can also be applied to ¢ ¢j r

d d.

So the number of eigenvalues - ¢ ¢j r j rd d d d which cannot be used to determine r is the number of pairs
¢ ¢( )j r j r,d d d d for which is it impossible to determine r from either j rd d, or ¢ ¢j r

d d. Equation (11) is simply the total

number of eigenvalues of Ä †U Ua a minus the number that can not be used to determine r.

Appendix E. Equivalence of themodularDQC1 subroutine to a control unitary on a
completelymixed register

Wecharacterize the resulting action of themodularDQC1protocol for the general case where the two reservoirs
are initialized in arbitrary states ρ andσ.We compare this to the use of a control Ä †U U operation.We
demonstrate equivalence when the case of the factoring protocol.
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Consider two states y añ = å ñ∣ ∣i j k, ,ijk ijk and f bñ = å ñ∣ ∣i j k, ,ijk ijk which are each composed of three
qubits. The tensor product of these states is

ååy f a bñ Ä ñ = ñ∣ ∣ ∣ ( )il jm kn, , . 15
ijk lmn

ijk lmn

Wedefine the operator Swhich swaps themth qubit ofψwithmth qubit off:

ååy f a bñ Ä ñ = ñ∣ ∣ ∣ ( )S S il jm kn, , 16
ijk lmn

ijk lmn

åå a b= ñ∣ ( )li mj nk, , 17
ijk lmn

ijk lmn

f y= ñ Ä ñ∣ ∣ ( ). 18

This furnishes a SWAP operator which interchanges twom qubit registers ρ andσ

r s r s s rÄ  Ä = Ä ( )S S . 19

When the registers are initialized as two arbitrarym qubit states, ρ andσ, due to the relation
 r s r sÄ Ä Ä = Ä† †U S U S U Um m , the state of themodularDQC1 circuit after the second

SWAP infigure 5 is

t
r s r s

r s r s
=

Ä Ä
Ä Ä+

⎛
⎝⎜

⎞
⎠⎟ ( )

†

† †
U U

U U U U

1

2
. 20BB m2 1

When ρ andσ are eigenstates ofUwith eigenvalues lrei and lsei respectively then thefinal state of the
circuit is

t
r s r s

r s r s
=

Ä Ä
Ä Ä

l l

l l+

-

-

r s

s r

⎛
⎝⎜

⎞
⎠⎟ ( )

( )

( )
e

e

1

2
. 21BB m

i

i2 1

By comparison the state of a circuit implementing a controlled- Ä †U U on two registers initialized as ρ andσ is:

t
r s r s
r s r s

=
Ä Ä
Ä Ä

Ä +

⎛
⎝⎜

⎞
⎠⎟ ( )

†

† † †
†

U U

U U U U U U

1

2
. 22U U m2 1

In general the final state of these circuits are the samewhen the registers are initialized as eigenstates ofU:

t
r s r s

r s r s
=

Ä Ä
Ä Ä

l l

l lÄ +

-

-

r s

s r

⎛
⎝⎜

⎞
⎠⎟ ( )

( )

( )
†

e

e

1

2
. 23U U m

i

i2 1

Due to the linearity of quantummechanics, the two circuits are equal for any input state that is an improper
mixture of eigenstates ofU, i.e. any density operator that is diagonal in the eigenbasis ofU. This clearly includes
completemixed states, and all inputs during the operation of themodular factoring algorithm.

In themost general case, themodularDQC1 circuit as represented in equation (20) is formally equivalent to
a pair of controlled unitary transformations as outlined infigure 5.
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