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By replacing a differential equation boundary-layer problem by its discrete 
lattice equivalent we are able to treat the resulting equation as a regular perturba- 
tion problem. We obtain the solution on the lattice as a regular perturbation series 
in inverse powers of the lattice spacing. To obtain the answer to the continumn 
problem we extrapolate the solution to the lattice problem to zero lattice spacing. 
This extrapolation, which is a Pad&like procedure, yields good numerical results 
for a wide range of problems. 

I. INTRODUCTION 

Recently we have been conducting research on the approximate solution 
of quantum field theories on a lattice and the problem of taking the 
continuum limit of such theories [l-5]. We have come to realize that some 
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of the methods we have been using are applicable in a wide area of linear 
and nonlinear problems having boundary-layer-like features. The purpose 
of this paper is to illustrate and examine these techniques by solving 
several standard boundary-layer examples. 

The method we use here consists of three stages. First, we convert the 
differential equation to a difference equation on a discrete lattice in the 
coordinate possessing boundary-layer structure. In many cases this discre- 
tization converts what is typically a singular perturbation problem in the 
continuum into a regular perturbation problem on the lattice. The second 
stage consists of solving the lattice equations in the form of regular 
perturbation series in powers of l/a, where a is the lattice spacing. This is 
a somewhat odd approach because we are ultimately interested in recover- 
ing the continuum limit a + 0 and in this limit every term in the perturba- 
tion series becomes infinite. This is the way in which the singular nature of 
the original continuum perturbation problem manifests itself. The third 
stage consists of a Pad&like extrapolation procedure for obtaining a finite 
continuum limit of the lattice perturbation series. 

Before proceeding further we describe in detail the extrapolation proce- 
dure we use in this paper. The essential problem we must deal with is how 
to extrapolate a perturbation series of the form 

Q(c) = ca 5 anen, a # 0, (1.1) 
n=O 

which has been derived assuming that z is small, to a finite value at l = cc. 
Let us truncate this series after the cN term. For small C, we can raise the 
expression 

n=O 

to the N/a power and write the result in the form 

N 

e 
N 

/x b,,r”, 
n=O 

where the coefficients b, are uniquely determined by a,, n = 0, 1, . . . , N. 
Now we take the limit c -+ cc and obtain l/b,. We define 

QN = (&)“‘” 
N 

(1.2) 

as the Nth approximant to the limiting value Q(cc). In many cases we find 
that the sequence of approximants QN rapidly converges to Q(co) [6]. 

The following problem illustrates this extrapolation technique. 



24 BENDER ET AL. 

AN ELEMENTARY EXAMPLE. Consider the transcendental equation 

lnx + & = 0. (1.3) 

To find the root of this equation between 0 and 1 we introduce a 
perturbation parameter E: 

1 
lnx+- 

( 
E 

-+1 =o. 
1+z l-x ) (1.4) 

Note that we recover the original equation (1.3) in the limit e + co. 
However, it is easiest to solve for X(E) as a power series in E because the 
unperturbed problem for c = 0, 

In x + 1 = 0, 

is trivially solvable. We find the following perturbation series for X(E): 

X(E) = f(1 - 0.58198~ + 1.28714~~ - 3.16768~~ 

+8.52949c4 - 24.64515~’ + 75.21698~~ 

- 239.05397~’ + 783.87521~s 

-2633.66832~~ + 9021.28163~” - . + - ). (1.5) 

The series in (1.5) is not of the form in (l.l), but it can easily be cast into 
that form by taking the logarithm of ex(e): 

- ln[ex(w)] = ~(0.58198 + 1.11779~ + 2.48430~~ - 6.26489~~ 

+ 17.40965~~ - 51.89367~~ + 162.61270~~ 

- 528.40893~’ + 1764.43470~s 

-6017.07240~~ + - - . ). (1.6) 

The next part of the extrapolation procedure consists of raising the series 
in parentheses in (1.6) to the powers - 1, -2, - 3, - 4, . * * . It is 
remarkable that while the coefficients in all of’ these series ultimately 
alternate in sign, the first N coefficients in the series raised to the - N 
power are all positive. This result ensures that the extrapolants QN are 
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always real. The extrapolants, when exponentiated, give the following 
rapidly convergent sequence for X, the root of (1.3): 

Xl = 0.271713639, 

x2 = 0.255145710, 

x3 = 0.260300667, 
x4 = 0.258935592, 
x5 = 0.259336423, 
X6 = 0.2592 19343, 

x, = 0.259254556, 

x8 = 0.259243826, 

x9 = 0.259247147, 

X10 = 0.259246 107, 

x11 = 0.259246436, 

X12 = 0.259246331, 
x13 = 0.259246365, 
x1‘, = 0.259246353. 

xi4 is accurate to 1 part in 109. 
In Sections II through V we show how to use these extrapolation 

techniques to solve the following singular perturbation problems: 

(i) Given 

d$ 
mT+pdt CJ, + ky = r,qt> (damped linear oscillator) 

withy(0 - ) = ~‘(0 - ) = 0, findy’(0 + ); 
(ii) given 

6 c2-+y-y3=o 
dx2 

(“kink” equation) 

with y(O) = 0 and v( + cc) = 1, find y’(O); 
(iii) given 

2cy"'(X) + y(x)y"(x) = 0 (Blasius equation) 
with y(O) = ~‘(0) = 0 and JJ’( + co) = 1, find y”(0); 

(iv) given 

v, = vu,, + 8(x)8(t) (Green’s function for diffusion equation) 
find ~(0, t). 
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II. DAMPED LINEAR OSCILLATOR 

We are interested in obtaining the solution to 

with y(0 - ) = ~‘(0 - ) = 0 and m > 0 small. For small m the solution 
y(t) exhibits a boundary layer at t = 0 of thickness m//3. The exact 
solution to (2.1) satisfies 

~‘(0 +) = lo/m. (2.2) 

Our objective here is to reproduce the result in (2.2) by expanding (2.1) 
on the lattice in powers of l = m/( pa), where a is the lattice spacing. On 
the lattice we replace 

r(t) -Yn’ 

r’(t) -+ (Y,+ 1 - Y,)lUY 

Y”(f) + (Y”,’ - 2Y, + Y,-l)/a29 

s(t) + a,, o/a. 

Thus, the lattice version of (2.1) is 

4Yn+l - 2Yn + Yn-1) + Yn+l - Y,, + kw,,/P = Zo~n,ol& 

When E = 0 the boundary condition on y,, is 

y. = 0. 

With this boundary condition the solution to (2.4) with l = 0 is 

y(O) = n 0 7 n = 0, 

= 1 -fi -‘zo 

( 1 P 3’ 
n > 0. 

(2.3) 

(2.4) 

(2.5) 

In the continuum limit na = t, n + co, a + 0, yi”) in (2.5) approaches the 
continuum outer solution; that is, the solution to (2.1) with m = 0: 

Now we look for a solution to (2.4) as a regular perturbation series in 
powers of e: 

y, = yp + qy!‘) + rp + - . * . (2.7) 
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Substituting (2.7) into (2.4) and matching like powers of e gives the 
following recursion relation for the perturbation coefficients yim): 

yp = &l/P m= 0, 

= -y;m- 1) m # 0, 

Y9l = ( 1 - $ 1 

(2.8) 
y$m,“’ + 2y, cm- 1) - y$T,“,; 1) - y’“-y 1) n 3 

where we have used y,, = y_ , = 0 as boundary conditions for the full 
second-order difference equation (2.4). 

The solution to (2.8) at the n = 1 lattice point is the series 

y, = ?(I - e + e* - e3 + . . . ). (2.9) 

Thus, we calculate from (2.3) that 

y’(O) = lim 2f.!-X? 
a-0 a 

= lim T!!?(, - E + c* _ c3. . . ), 
c-boo m 

Using the formula for the Nth approximants Q, in (1.2) we find that all of 
the bN in (1.2) for the series 

e(1-e++*-C3*~) 

are 1. Hence, 

QN = IO/my all N. 

Thus, the difference equation technique is exact to all orders! 

III. STATIC “KINK” SOLUTION TO NONLINEAR CLASSICAL WAVE 
EQUATION 

A static (time-independent) solution to the two-dimensional nonlinear 
wave equation, 

‘*bxx - u,,) + 24 - z2 = 0, (3-l) 

is the so-called kink solution: 

u(x) = tanh 
( 1 

- 
2. 

(3.2) 



28 BENDER ET AL. 

The kink solution satisfies the boundary conditions u(0) = 0 and u( + 00) 
= 1. Observe that for small E there is a boundary layer of thickness l at 
x = 0 in which the solution U(X) rapidly rises from 0 to 1. To the right of 
this boundary layer, u is nearly constant and equal to its outer value at 
x = co. 

OBserve from (3.2) that 

1 -- 40) - * ~ ’ 

Once u(0) and u’(0) are known, one can immediately reconstruct the full 
Taylor expansion of U(X) at the origin from the static limit of (3.1): 

E2U,x + 24 - u3 = 0. (3.4) 

We now show how to solve the singular boundary-value problem (3.4) as 
a regular perturbation problem on the lattice. Replacing 

gives the difference equation 

6(Un+l - 2u, + u,-‘) + u, - 2.4,’ = 0, (3.5) 

where 

6 = c’/a* (3.6) 

is a small parameter because on the lattice a is held fixed and e is small. 
We seek a solution odd under reflection n + - n having a regular 

expansion of the form 

u, = ulp’ + suy + s%$*) + s3u:3’ + * - * . (3.7) 

The solution u:‘) to the unperturbed equation (3.5) with 6 = 0 is 

u(O) = 1 n n 2 1, 
= 0 n = 0, (3.8 1 
=- 1 nl-1. 

This solution satisfies the same boundary conditions as the exact kink 
solution to the original differential equation (3.4). 
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Substituting (3.7) in (3.5) and comparing coefficients of like powers of 6 
gives the following recursion relation for the coefficients u:“‘: 

k-l 
’ -; x &-‘) @’ + x upu$/-P) . 1 (3.9) 

I=1 0 

This recursion relation must be solved subject to the boundary condition 

@’ = 0 k = 0, 1, 2, 3, . . . . (3.10) 

Upon solving (3.9) we observe that the boundary structure develops as 
the order of perturbation theory in powers of 6 increases. In particular, in 
kth order nik’ is nonzero for 1 I n I k and uik’ = 0 for n > k, k 2 1. 
Thus the matrix uik) is triangular for k 2 1. Here are the first few entries: 

u. = 0, 

ui = 1 -;a +p++ 64 +. . . , 

u* = 1 +*+~+L$y’+. . . , 

U -1 3- 
263 +&a4 + . . . ) 

u4 = 1 284 + . . . . (3.11) 

It is a peculiarity of our method that to any finite order in perturbation 
theory the thickness of the boundry layer, which is na, vanishes in the limit 
of zero lattice spacing a + 0. Nevertheless, we can easily determine u’(O) 
[as well as all higher derivatives of u(x)] from the lattice series (3.11). Using 
the definition 

we obtain 

u'(o)=; 1-;+;+-!$4-&5.. . 

( 

vx 
=- 

c (3.12) 

where we have used (3.6) to eliminate a. The series in (3.12) should 
reproduce the result in (3.3). 

We have obtained 50 terms in the series in (3.12) using the MACSYMA 
computer program at MIT and have used the extrapolation scheme de- 
scribed in (1.2) to obtain the extrapolants QN to the series in (3.12). 
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(Although this series alternates in sign, the extrapolants, as in the example 
discussed in Section I, are all postive.) These extrapolants are to be 
compared with the exact coefficient l/e of l/r. We find that the 
extrapolants rapidly approach l/ fi = 0.70711 . . . : 

Q, = 1.0, 

Q, = 0.84090, 

Q, = 0.78193, 

Q4 = 0.75724, 

Q, = 0.74076, 

Q, = 0.73121, 

Q7 = 0.72393, 

Q, = 0.71905, 

Q, = 0.71515, 

Q,, = 0.71231. 

The extrapolants continue decreasing until they undershoot the exact value 
0.70711... . They continue decreasing until they reach a minimum in 
24th order: 

Qz4 = 0.70198. 

The relative error between this value and the exact answer is less than 1%. 
Then the extrapolants gradually rise until they recross the value 0.7071 . . . 
at 41st order and continue rising. It appears to us that the extrapolants will 
continue to rise from here on. This suggests to us that for this problem, 
unlike the example in Section II, our approximation method is asymptotic 
in nature. Like the Stirling series for the Gamma function and other 
asymptotic series, early terms in the series comprise a good approximation 
to the answer until some optimal order is reached. Afterward, the direct 
approximants from these series diverge. We have not found a summability 
method for improving the results of our lattice calculations. 

IV. BLASIUS EQUATION 

The Blasius equation, 

2E/“(X) + y(x)y”(X) = 0, Y(0) = Y'(0) = 0, y’(+oo) = 1, 

(4.1) 

arises in the boundary-layer description of fluid flow across a flat plate. 
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The exact solution to this problem exhibits boundary-layer structure at the 
origin x = 0. The outer solution is y = x. In the boundary layer the 
derivative of y, which is the fluid velocity parallel to the plate divided by 
the fluid velocity at cc, rapidly changes from 0 to 1 as x increases over a 
narrow range. A quantity of physical interest is y”(O), which apart from 
dimensional parameters determines the stress on the plate. 

To solve (4.1) on a lattice we make the following substitutions: 

x + na, 

Y(X) + Y,, 

Y”(X) + (Yn+ I - 2~~ + Yn-Jlaz7 
(4.2) 

Y”‘(X) + (Y”, , - 3~~ + 3m-i - yn-2Va3. 

This choice of differences is consistent with the following boundary 
conditions: 

y(0) =y’(O) = o+y, =y-, = 0, 

y’( + co) = 1 +y, - na(n -3 m). (4.3) 

These choices of boundary conditions give a function yn which is symmet- 
ric when n is reflected about - +. 

It is convenient to introduce a scaled dependent variable 

f, = u,/a 

so that the boundary conditions in (4.3) become independent of a. The 
function f, satisfies the equation 

26(f,+ 1 - 3f” + Jfn-, - fn-2) 

+fn(f,+ 1 - 2f” + f,- 1) = 0, (4.4) 

where 

8 = c/a2. 

We expand f, as a series in powers of 6: 

f, = p + jp5 + fi2)82 + * * * 

(4.5) 

(4.6) 

and substitute (4.6) into (4.4). Matching powers of 6 gives for k 2 1 

5 f;k-j)[ f,‘?, - if,“) + f,“-‘,] 

j-o 

+q f;“,;” - 3f;k-l) + 3fp;‘) - fn(yq = 0. (4.7) 
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To zeroth order in 6 the solution to (4.4) is 

T' = n, n 2 0, 

jy = 0, (4.8) 

f-n-, =fn, n 2 0. 

As in the “kink” problem in Section III, the boundary-layer structure 
propagates outward away from the origin as the order is increased. In the 
kth order the boundary-layer disturbance reaches the kth lattice point. To 
the right of this lattice point the solution 2”) (n >_ k) remains undisturbed 
in the sense that 

fp =fl(ky, =jg2=. . . . (4.9) 

As in the “kink” problem, f,‘“) is not constant in a triangular matrix. The 
first few solutions forf, illustrate this triangular nature of the matrix: 

fo = 0, 

f,=1-26+262+$33-6c34-+5+.*., 

f2 = 2 - 26 +‘6(j3-464-208&5+. 3 15 . . 7 

f, = 3 - 26 +4?r3 - 2a4 -!p5 + - - - ) 

f4 = 4 - 2s +463 264 -+5 + . . . , 

f5 = 5 - 26 +4a3 -!a4 3 - 12a5 + . . * . 

To compute y”(O) we evaluate 

y1 -Qo+Y-1 fi 
.2 =a 

vx =- 
vi 

1 - 28 + 213~ + ;S3 - 664. * * 3 (4.10) 

where we have used (4.5). The exact value fory”(0) obtained numerically is 
PI 

y”(0) = + (0.33206) - - . . 
4 

(4.11) 
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We have calculated 38 terms in the series in (4.10). The extrapolants Q, 
so far are monotonically decreasing. The first five are 

Q, = 0.5/A, 

Q2 = 0.4204/X& , 

Q3 = 0.3948/G , 

Q4 = 0.3819/G, 

Q, = 0.3742/A . 

As N increases, Q, becomes very flat: 

Q25 = 0.3502/G , 

Qza = 0.3500/G , 

Q3, = 0.3485/G , 

Qj8 = 0.3484/A . 

The relative error between the exact answer in (4.11) and Qss is about 5%. 
We will not discuss here the many ways to extrapolate QN to its limiting 
value Q,. 

V. GREEN'S FUNCTION FOR DIFFUSION EQUATION 

In this section we consider the diffusion equation with a point source in 
the space and time variables 

24, = YUxx + s(x)s(t), (5.1) 

subject to the initial condition 

u(x, t) = 0 for t < 0. (5.2) 

The exact solution to (5.1)-(5.2) is the Green’s function: 

O(t) 2 24(x, t) = - 
G exp ( 1 - - 

4:lJt * (5.3) 

Observe that for small Y and fixed t, u(x, t) has a boundary layer structure 
at x = 0 of thickness L& . 
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In what follows we present a method for calculating ~(0, t). [This 
method can be easily adapted to calculate all the spatial derivatives of 
U(X, t) at x = 0.1 From (5.3) the exact value of (u(x, t) at x = 0 is 

et0 u(0, t) = - + 0.282095 s(t) 
v&ii vii’ 

(5.4) 

On the lattice we discretize in the spatial variable. Thus, (5.1) becomes 

where 

- = 4%+1 - 2% + %-1) + WP”,,,,, at (5.5) 

E = v/a2. (5.6) 

To solve (5.5) we substitute 

%W = 5 &l$k’( t) 
k-0 

(5.7) 

into (5.5). This gives the partial difference-differential equation 

au(k)/& = &l) - &Jk-‘) + uC”k~‘) n n (k 2 1) 

and 

(5% 

&do)/& = c?(t)&, o/a. n 

The solution to (5.9) is 

u(O)(t) = d(t)&, o/a. n 

To solve (5.8) we set 

uik)(t) = l?(t)t%$k)/a, 

(5.9) 

(5.10) 

(5.11) 

where WA”) is independent of t. This gives the simpler recursion relation 

(5.12) 

This equation has an exact closed-form solution in terms of binomial 
coefficients in the form of a triangular matrix. We are interested in the 
point at x = 0; the relevant result is 

,,#’ e ( - l)k(2k)! ( k!)-3. (5.13) 
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Combining (5.13) with (5.7) and (5.11) gives 

(5.14) 

Before discussing the extrapolation of truncations of this series for a + 0 
and e + cc, we observe that this series can be summed exactly in closed 
form. (The sum is formed by taking the Laplace transform in the t variable 
term by term, summing the resulting binomial expansion, and then taking 
the inverse Laplace transform.) We find that 

ug) = O(t)q Zo(2tc)e-2”. (5.15) 

This can immediately be extrapolated to its continuum value by fixing t 
and taking z + cc. Here we use the asymptotic behavior 

Z,(z) - 
1 

-e’(z+ +co) 
vz 

to obtain the exact answer in (5.5). 
However, since in general lattice series of the form in (5.14) cannot be 

summed in closed form we carry out the extrapolation procedure for 
truncations of the series in (5.14) after the eN term. The first few extrapo- 
lants Q,, divided by e(t)/ fi are 

Q, = 0.5, 

Q2 = 0.435, 

Q3 = 0.408, 

Q4 = 0.393, 

Q, = 0.384. 

After this value, the extrapolants become very flat with increasing N: 

Q,, = 0.362, 

Q,, = 0.354, 

Qzo = 0.349, 

Qz5 = 0.346, 

Qm = 0.344, 

Q35 = 0.343, 

Qa = 0.342. 
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Thus, we have obtained the answer in (5.5) up to a relative error of about 
18%. Once again there is a smooth and monotonic approach toward the 
correct answer. However, in this case it would clearly be desirable to have 
a more rapidly converging extrapolation technique. 
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