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The main results of  the theory of definability in pure logic can 
be grouped, roughly, into two classes: those of local and those of 
global nature. 

As an example of the first, we can mention Scott's definability 
theorem [22]. In admittedly vague terms it states that a relation 
"determined" by the relations of a countable structure can be de- 
fined in the structure by an infinitary formula of the language L ~  
(see [9] for references on infinitary languages). The other class is 
exemplified by Svenonius' theorem [25]: assume that in every 
model (9[, P) of a complete first-order theory T(P), P is "deter- 
mined" by the relations of 9f. Then in every model (?I,P) of T(P), 
P is "uniformly"  definable by a first order formula (i.e., the defini- 
tion does not  depend on the model). 

For first order logic, we can usually obtain a global result by 
"globalizing" local results for saturated or special models. The 

* This resea.rch was undertaken while the author held a position of AttacM de Rccher- 
ches at the Universit~ de Montr6al during the academic year 1967-1968, The first 
draft of the manuscript was written during the summer of 1968, when the author was 
in residence at Queen's University (Kingston, Ontario). The author would like to thank 
Prof. P.Ribenboim, who made possible in this last arrangement. 
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compactness theorem does the job (see for instance [2], [ I0] ,  
[11], [18] ). Similarly, we can easily "localize" global results. 

For the infinitary language L~olw , on the other hand, we have a 
split: there are local results such as Scott 's theorem just ment ioned 
and some global results (i.e., the analogue of Beth's theorem in 
[17]). However, in general, we cannot obtain one from the other. 

In this paper we shall study further this "local theory of  defini- 
tion". By this term we shall mean (as a first approximation) the 
theory of Galois connection between groups of  permutat ions of a 
set X and objects constructed from X (i.e., relations, sets of  rela- 
tions, etc.) which are "de te rmined"  (in a sense to be made precise 
later) by these groups. Similar programs have been considered ear- 
lier by M.Krasner [ 12] and J.Sebastiao e Silva [24]. 

In w 1 we study groups of permutations of  a set X acting on rela- 
tions (and sets of  relations of X). By introducing a natural topol- 
ogy, a form of Baire category theorem can be proved for certain 
groups (Theorem 1.1.17 and 1.1.18). Several consequences are 

pointed out. 
In w 2 we consider the problem of introducing algebraic struc- 

tures on the objects correlated with the groups to complete our 
Galois theory. Only the case when the objects are sets of  relations 
has been considered. We make our objects into polyadic algebras 
and Galois correspondences are set up between certain polyadic 
algebras and some groups of permutations (Theorems 2.3.12 and 
2.3.14). This solves a problem raised by A.Daigneault. Some local 

results about L,+ u and L,.,1,,, are also obtained. 
The main result in w 3 is an improvement of the Chang-Makkai 

theorem [2,18] and proves a conjecture of M.Makkai. The proof  
makes use of certain results of  w 1, "specialized" to special struc- 

tures. 
A much weaker version of w 1 appeared in our dissertation [20] 

as section 2 of chapter 3 and the main result of  w in [21 ]. 
We are highly indebted to our thesis advisor Professor W.Craig. 

He has emphasized the possibility of "non-linguistic" approaches 
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to logic and the present paper is written in this spirit. We would 
also like to thank Professor M.Makkai. He suggested that Baire 
category techniques used by  us in [20] could be applied to prob- 
lems of definability. The possibility of interpreting some of our 
results in the context  of  a Galois theory was pointed out by Pro- 
fessor A.Daigneault, who referred us to the previous works of 
Krasner and Sebasti~o e Silva. We express him our thanks. Finally, 
we would also like to thank Mr. Vincent Papillon who took notes 
during a course we taught at Montreal including some of these sub- 
jects and made some valuable comments. 

Our notation and terminology are taken for the most part from 
[19] and follow the recommendations of [0]. We shall not attempt 
the (often) hopeless task of  making a list of  all the notations to be 
used. ("Do not scratch if it doesn't itch!") We just notice that 
s truc ture  will be understood in the sense of relational structure 
with finitary or infinitary relations, possibly with distinguished 

elements. 
We shall freely indulge in confusions of use and mention. 
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w 1. Definability without language 

1.1. Topological groups 

Throughou t  this section, we let A be an inf ini te  set and we let 

A! be the group of  pe rmuta t ions  o f A .  

1.1.1. Definition 
(i) For  every partial m a p p i n g f  from A into A, we let 

[ f ]  = {TrEA!: zr D__f} . 

(ii) For  every infinite cardinal g we define a class ~ u  of  subsets of  

A ! as follows: 

Q E q~u i f f  Q = [ f ]  for some partial mapping f rom A in to  i tself  

such that  dom ( f )  < g. 

1.1.2. For  every infinite cardinal g, cB u is a basis for a topo logy  

o n A ! .  

Proof." Obviously A ! = U q3u. Le t  If], [g] ~ cBu and let 7r ~ [ f l  n [g]. 

Hence rr ~ f and lr 2 g. Let  h = lr I dom ( f )  u dom (g). Since 
dom-N-(-fy< g and o g ~  (g) < g, thus  dom (h) < g. Hence zr~ [hi ~ ~ u  

and [hl  _c I l l  n [gl.  

1.1.3. Definition. The topo logy  def ined by cBu on A! is called the 

g-topology. 

1.1.4. For  every infini te  cardinal  g, A ! provided wi th  the g- topology 

is a Hausdor f f  topological  group.  

Proof." Let rr, 7r' ~ A ! be such tha t  rr =# 7r'. Hence  rr(a) q= rr'(a) for 

some a E A. Therefore  7r E [Trl (a}], 7r' ~ [zr'l {a}] and 
[zr] {a}] n [zr'l {a}] = 0. To finish our proof ,  we check tha t  A! is a 

topological  group. Le t  I:  A ! -* A ! and C: A ! x A ! -+ A ! be def ined  

by [(lr) = 7r -1 and C(Trl,zr 2) = zr 1 o ~r2, respectively.  If0r E [-1If],  
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then 7r 6 [It Irange (f)]  __c 1-1 I f ] ,  i.e., f is continuous. Similarly, if 
(1rl, ~r2) ~ C -1 [ f l ,  then 

0rl,rr2) E [lr I [dom(cr 2 of)]  x [rr 2 Idom(f)]  _c c - l [ f ]  , 

i.e., C is also continuous. 

Henceforth, we shall tacitly use the fact that a subgroup of a 
topological group is itself a topological group (with the induced 
topology). 

1.1.5. Definition. Let g be an infinite cardinal and let M __c A ! be 
the topological space with the induced g-topology. 

(i) N is g-meager in M iff N = U {N~: ~ ~ g }, for some sequence 
(N~: ~ ~ g) of  nowhere dense subsets of M. 

(ii) N is co-g-meager in M i fM \ N  is g-meager in M. 
(iii) M is a g-Baire space iff 0 is the only open g-meager subset of M. 
(iv) M is a g-Baire group i f fM is a topological group which is also a 

g-Baire space. 

The assumption that a group is g-Baire has several interesting 
consequences as the rest of  1.1 shows. 

1.1.6. Let g be an infinite cardinal and let G _c A! be a g-Baire group. 
Then either G > g or G n [idx] = {idA} , for some X _C A such that 

Proof." Assume that G ~< ~. Then {idA} is not nowhere dense in G. 
In fact, assume the contrary. Then for each lr~ G, {~r} is nowhere 
dense in G by the homogeneity of G (since every topological group 
is homogeneous).  Therefore G = U {{lr}: lr~ G} is g-meager in G, a 
contradiction. Hence G n [idx] c__ {ida} for some subset X_c A 
such that X < g. 
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1.1.7. Definition. Let G C_A! be a group, rr ~ G, g a cardinal,  ~ ~/1, 
s ~ A  and P c__ ~A. 

(i) The image of s (respectively of  P)  under 7r is defined as 
rr*s = <rr(s(r~)): 77 e ~> (respectively as r * ?  = {Tr*s: s e P } ) .  

(ii) The orbit o f s  (respectively o f  P) under G is defined as oG(s) = 
{rr*s: rr ~ G } (respectively as O a (P) = {re*P: rr E G}). 

(iii) The group o f  stability o f s  (respectively of P) relative to G is 
defined as G(s) = {rr~ G: 7r*s =s} (respectively as G(P) = 
{rr~G: rr*P =P}). 

1.1.8. Assume that g is an infinite cardinal, ~ p ,  P c ~A and s e ~A. 
Then 

(i) G(s) is bo th  open and closed in G (provided with the  g- topol-  
ogy). 

(ii) G(P) is closed in G (provided with the g- topology) .  

Proof: (i) follows from G(s) = G n [idrg(s?l. 
(ii) Let  7r ~ G(P) (G(P) denotes the topological closure o f  G(P)) 

and s e P. Since rg (s) < g and rr E [ rr I rg (s)] ~ c~,, [ rr I rg (s) ] n 
G(P) 4= O. Let a e [~'lrg(s)] n G(P). Then olrg(s)  =I t  Irg(s) and 
a*s ~P,  since e*P = P. Hence rr*s e P  and this shows that 
rr*P = P, i.e., rr ~ G(P). 

In terms of  these not ions we can introduce a topological meas- 
ure for the dependence of  a relation on a group. 

1.1.9. Definition. Let G __c A ! be  a group, g an infinite cardinal,  
~ E g  a n d P  C ~A. 

(i) P is g-determined by G (writ ten P is G - g - d e t )  i f f  G(P) = G, 
(ii) P is g-weakly-determined b y  G (written P is G - p - - w . d e t )  i f f  

G(P) is open in G (provided with the p- topology)  %. 

t Conditions (i) and (ii) axe fl~e "non-linguistic" counterparts of "definable" and "defin- 
able with parameters". See 1.1.13, 1.1.14, 2.2.1, 2.2.2 and 3.1.6. 
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(iii) P is g-free over G (written P is G-~z-free) iff G(P) is nowkere 
dense in G (provided with the g-tt~pology). 
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1.1.10. Assume that g is an infinite cardinal, G c__ A !, ~ E p and 

pc__ tA. Then P is G-g-w.det i f fP  is G n [idx]-g-det , for some 

X c_ A such that X < g. 

Proof: Assume that P is G-g-w.det. Since G(P) is open in G (1.1.9 

(ii)) and id A ~ G(P), then G n [idx] c_ G(P) for some X c A such 
that X < g. Clearly P is G n [idx]-g-det. Conversely, suppose that 
P is G n [idx] -g-det for some X c__ A of power less than g. Then 
G n [idx] c G(P) and this shows that id A is an interior point o f  
G(P). By the homogenei ty of  a topological group, every point of  
G(P) is interior, i.e., G(P) is open in G. 

Instead of "open"  and "nowhere dense" in 1.1.9 we could have 
used "not  g-meager" and "g-meager" respectively, at least from 

g-Baire groups. In fact, 

1.1.1 1. Assume that g is an infinite cardinal G c_ A ! a g-Baire 
group, ~ E g and P ~ tA. Tt~en 

(i) P is G-g-det iff G(P) is co-g-meager in G; 
(ii) P is G-g-w.det iff G(P) is not g-meager in G; 

(iii) P is G-g-free iff G(P) is g-meager in G. 

Proof: (i) Assume that G(P) is co-g-meager in G. Since G(P) is 

closed in G (1.1.8 (ii)), G ~ G(P) is open and g-meager in G. Then 
G ~ G(P) = 0, i.e., P is G-g-det. The other implication is trivial. 

(ii) Assume that P is G-g-w.det. Then G(P) is open in G (1.1.9 
(ii)) and since G(P) r O, then G(P) is not  g-meager in G. Assume, 
on the other hand, that G(P) is not g-meager in G. Hence G(P) is 
not nowhere dense in G and this implies that G(P) has an interior 
point. By 1.1.8 (ii), G(P) = G(P) and by the homogeneity of a 

topological group, G(P) is open in G. 
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(iii) Assume that G(P) is #-meager in G. Hence G(P) doesn ' t  con- 

tain any non-empty open subsets of G. Since G(P) = G(P) (by 1.1.8 

(ii)), this shows that  G(P) is nowhere dense in G. 

Besides the topological measure, we have an obvious set-theoreti- 
cal measure for the dependence of  a relation P on a group G: the 

cardinality of  Oa(P). 
Our next  theorem states that, under some conditions on g, these 

measures coincide. We first state two lemmas: 

1.1.12. Assume that  p is an infinite cardinal, G c_ A ! is a group, 
~E g , P , Q  c_ ~A. I f P i s  G-g-free, then G(P, Q)= {Tr~ G: rr*P = Q} 

is nowhere dense in G. 

Proof: For  each 7r E G, the translations f~ defined by f , ( a )  = 7r o a, 
for all a E G, are homeomorphisms of the space G. Assume 

G(P, Q) r 0 (otherwise G(P, Q) is clearly nowhere dense in G) and 

let lr E G(P, Q) and let rr E G(P, Q). Since f~_ t G(P, Q) = G(P) and 

G(P) is nowhere dense in G it is easily checked that  G(P, Q) is no- 

where dense in G. 

1.1.13. Assume that  # is an infinite cardinal, G c_C_ A! is g-Baire 

group, ~ ~/a  and P c_ ~A. I f P  is G-#-free, then ~ga(/'} > g. 

Proof: Assume that  ~ K g. Hence G = U {G(P, Q): Q E oa(P)} 
is g-meager in G, since G(P, Q) is nowhere dense, for each 

Q E 06(P) (1.1.12). This contradicts our supposition that  G is a 

#-Baire group. 

1.1.14. Theorem: Assume that g is an infinite regular cardinal such 
that g = 2"_ = I~ < 2 x k E # >, G c__ A ! a #-Baire group, ~ ~ g and 
p c ~A. Then 

(i) -P is G-#-det i f f  OG(P) = 1 ; 
(ii) P is G-g-w.det iff  OG(P) < #; 

(iii) P is G-g-free i f f  OG(P) > g. 
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Proof: (i) is obvious and (ii) follows from (iii). Assume that P is 
not G-g-free. Hence (by 1 .1 .11) ,Pis  G-g-w.det. By 1 .1 .10 ,P i s  

G n [idx] -/~-det, for some X c_ A such that )~ < g. Hence Oa(P) <_ 

1.1.1 5. Assume that p is an infinite cardinal, G c A ! a p-Baire 
group and ~ c g. If X is a set of G-g-free relations on A of rank 
and X <_/s, then there is some 7r e G such that ~r*X n X = 0. 

Proof: Since G(P, Q) is nowhere dense in G, for every P, Q ~ X 
(1.1.12), U {G(P, Q): P, Q e X} is g-meager in G (because ~ ' <  #). 
Therefore there is some rr ~ G ~ U{ G(P, Q): P, Q c X} ,  i.e., 

7r q~ G(P, Q) for every P, Q ~ X. Clearly 7r*X = {Tr*P: P ~ X} is 
disjoint from X. 

We shall now give sufficient conditions for a group G c_ A ! to be 

g-Baire. 

1.1.1 6. Definition. Let  ~ and # be infinite cardinals and let G c_ A ! 
be a group. G is 23~-g-compact iff for every family { Qi:=i ~ I } of  
elements of  ~ (the basis o f  the g-topology) such that I < #, if  the 
intersection of every subfamily of  {Qi n G: i E I }  of power less 
than h: is non-empty,  then U {Qi n G: i ~ I }  ~ 0 ?. 

1.1.17. Theorem. Assume that A = p is an infinite regular cardinal 
and G c__ A ! is a ~t~o-I~-compact group which is closed in the IR o- 
topology. Then G is ap-Baire group. 

1.1.18. Theorem. Assume that # is an infinite regular cardinal, ~+ 
the successor o f  g and G c__ A! is a fOSo-#+-compact group which is 
closed in the 8o-topology. Then G is a g-Baire group. 

I" We owe this formulation of  ~qK-p-compaetness to l.Fleischer, who simplified a previous 
(equivalent) definition. 
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We pos tpone  the proofs  of these theorems until the end of  this 

section. 

As it  will be shown in w (2.2.1 and 2.2.2) and w (3.1.6), 

1. I. 13 and 1.1.14 can be interpreted as very general local versions 
o f  the Chang-Makkai theorem [2, 1 8].  To make them more pre- 
sentable to the logical communi ty  and tie these and some other 

results of  this section to definability theorems, we "realize" some 
subgroups of  A] as groups of  automorphisms of relational struc- 

tures with domain A. 

i .2. Groups  and relat ional  s tructures  

In the rest of this section, we consider structures with domain 

A. 

1.2.1. Definition. Let # be a cardinal. A structure 91 is called/a- 
h o m o g e n e o u s  iff any isomorphism between two substructures of  
~[ of  power  less than g can be ex tended  to an automorphism of tt. 

Al though this not ion,  due to B.J6nsson [6] ,  seems to be too 
restricted, we shall see that for some purposes it imposes no real 
restrictions on a structure,  i.e. under some conditions any struc- 
ture 9I can be "homogenized"  by  adding relations, wi thout  chang- 
ing Aut(9.I), the group of  automorphisms of  the original ~ (1.2.4). 

1.2.2. Assume that tt is an infinite cardinal, 9I a relational structure 
having relations o f  rank less than/a and G = Aut(9.I ). Then G is 
closed in the ~-topology.  

Proof :  Let ~l = (A ,  Ri)iC I. Then clearly G = 13 { G(Ri): i ~ I }  and 
hence G is closed by 1.1.9 (ii). 

1.2.3. Assume that/a is an infinite cardinal and G c_ A ! a group. 
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Then Aut [ (A,  O6(s)>~ E ~A ) = G, i.e., the closure o f  G in the p- 
topology.  

Proof: Let  ~I = (A, Oa(s))s~u A . Clearly G c c_ Aut(9l)  and this im- 
plies (by 1.2.2) that  fro_ Aut(9~). Assume tha t  rr e Aut(92). Le t  

Q ~ 23 u such tha t  Ir ~ Q. By the_ definition o f  ~ u '  Q = [TrIX] for  

some subset X a_ A such tha t  X < g. Let s ~ _uA be such that  

X = range(s). Since s ~ OC(s) and rr 6 Aut(92), then 7r*s ~ OC(s). 
Therefore there is some a ~ G such that  zr*s = iv*s, i.e., 

cre [~rlX] n G. Hence Q n G 4= 0 and thos shows tha t  rr ~ G. 

1.2.4. Assume tha t  p is an infinite cardinal, 9d a relational structure 

having relations of  rank less than p and G = Aut(92). Then  ~u  = 

(91~, OC(s))sESA is p-homogeneous  and Aut(92e) = G. 

Proof: By 1.2.2 and 1.2.3, G = Aut(9[e) .  
Le t  f: 92u IB -* 9d~ I f*B  be an isomorphism between the two 

substructures 92 ~ [B and 92 u If*B of domain  B and f * B  respectively 

and such that  i f <  p. Let s be a sequence in uA such tha t  range(s) 
= B. Since s ~ Oa(s) n dom(s)B and f is an isomorphism, f*s  
Oa(s) N d~ Hence, there is some 7r E G such tha t  zr*s = f*s.  
Clearly zr _z f a n d  lr ~ G = Aut(92~u). 

The last three lemmas have the imnaediate corollary '  

1.2.5. Theorem.  Assume that p is an infinite cardinal and G c_ A!  
is a group. Then the fol lowing are equivalent: 

(i) G is closed in the p- topology;  
(ii) G = Aut(~[) ,  for some structure 9I having relations of  rank less 

than g; 
(iii) G = Aut(~[ ), for some p-homogeneous structure 9I having rela- 

tions of  rank  less than p; 

(iv) G = Aut ( (A,  O~ ). 

This theorem (minus the clause ment ioning homogenei ty)  was 



106 G.E.Reyes, Local definability theory 

independently obtained by B.J6nsson [8].  It should be noted,  
however, that his result has already appeared in print. 

1.2.6. Assume that ~: and g are infinite cardinals such that for 
every cardinal v </1, u~ < p and ~ is regular. Assume that G c_ A ! 
is a group. Then the following are equivalent: 

(i) <A, OC(s)> s ~SA is/s-homogeneous; 
(ii) For every family { Qi: i E I}  of elements of 2~ such that 7 </S, 

if the intersection of every subfamily of  { Qi n G: i ~ I } of 
power less than ~: is non-empty,  then fl { Qi n G: i ~ I } r 0 
(G denotes the closure of G in the ~:-topology). 

Proof: Assume (ii). Let ~t = (A, Oa(s)) s ESA and let f: 9/IB ~ ~IC 
be an isomorphism such that B = dora( f )  has power  less than/z. 

Let F c_ B be such that • <  ~. We can find a sequence s 6 ~A such 

that F = range(s). Since s ~ Oa(s) n ~B, for some ~ ~ ~: and f i s  an 

isomorphism, f * s  ~ Oa(s), i.e., there is some o ~ G such that a l F  = 

f lF .  This implies that a E I f  IF] n G. We have shown that [ f l F  n 
G r 0 for every F c__ B such that F < ~. Let fir be a subfamily of 
{ [ f l F l  n G: FC_ B a n d / 7 <  ~:} of  power less than ~, i.e., 5 r = 

{ [ f l F  i] r G: F i _c_ B , / ~ / <  tr and i ~ 1 } for some I such that 7 <  h:. 

This implies that fl fir= [f l  U { F  i' iE  [}] ~ G v a 0, since 
U [Fi: i E I ]  < ~ by the regularity of  k:. Since F 0 -- { [ f IF I :FC_  B 
and P <  ~c} has power less than/S (in virtue of the hypothesis  on 

and/s), N { [ f lF ]  n G: FC_ B a n d S <  ~:} 4: 0, i.e., there is some 
a ~ Gsuch  that o l d o m ( f ) = f .  Since U = Aut(9/) (by 1.2.3) this 

implies, in turn, that 9/is #-honaogeneous. 
Assume now that 9/= <A, Oa(s)> s ~ ~,4 is/s-homogeneous. Let 

{Qi: i ~ I} be a family statisfying the hypotheses  of  (ii). By 1.1.1 

(ii), for every i 6 I there is a partial function fi from A into A such 

that Qi = [fi] and dom(f/ )  < ~. Let B = U {dom(fz.): i ~ I} .  Clearly 
B'</S. We define a f, unction f: B -* A as follows: f ( b )  = f i (b)  if 
there is some i ~ I such that b ~ dora (fi). We first show that f i s  

well-defined. Assume that b ~ dora(f / )  n d o m e . )  for some i, j ~ I. 



w 1. Definability without language 107 

Since [fz] n [f/] n G :# 0 by hypothesis,  then there is some o ~ G 

such that 

~ 1 7 6  ( f i ) = f t  and a ldom (f/) = f / .  

This implies that  f i (b)  = o(b)  = f l(b),  i.e., f is well-defined. A similar 
argument  shows that f i s  1 - I. We now show that f: 9~IB -. 9Ylf*B 

is an isomorphism. Let  s ~ OC(t) n ~B for some ~ e x and let F = 
range(s). Hence  F c__ U { dom 0')): ] E J}  for some J ~_ I of power 
~ <  ~. By the hypothes is  on {Qi: i e  I} ,  O { [f/] n G: ] ~ J }  4: O, 

i.e., there is some o ~ G such that a ldom (fj) = fL for a l l j  E J. This 
implies that  f*s  = a*s ~ Oa(t).  BY the/~-homogenei ty of 9~, f c a n  
be ex t ended  to some a ~ Aut  (9~) = G (by 1.2.3). Clearly 
a E  f I { Q i N  G: i E I  }. 

1.2.7. Theorem.  A s s u m e  that ~ and tl are infinite cardinals such 

that f o r  every cardinal v < #, u~ < la and ~ is regular. Assume  that 
G c__ A ! is a group. Then the fo l lowing are equivalent: 

(i) G is ~ - # - c o m p a c t  and closed in the K-topology; 

(ii) G = Au t  ( (A,  06(s))sE~A ) and (A,  OC(S)>sE~A is #-homogene- 
ous; 

(iii) G = Aut  (0A), for some g-homogeneous  structure od having 
relations of  rank less than to. 

Proof:  By 1.2.5 and 1.2.6 we only need to show that (iii) implies 

(ii). 
Assume that ~1 = (A, Ri ) iE  I is a/ . t-homogeneous structure having 

relations o f  rank less than ~. Let  G = Aut  (9.I) and X = 

(A, Or(s)> s ~SA " Assume that  f :  XIB ~ X[ C is an isomorphism 
such that dora ( f )  = B has power  less than t~. We shall show that f 
is an i somorphism of 9.IIB onto ~IIC. In fact, let s ~ Ri n ~B for 

some ~ ~ ~, Since s ~ OC(s) n ~B, f * s  c OG(s), i.e., there is some 
a e G such that f * s  = a*s. But o*s c R i and this completes  the 

p roo f  of  our  claim. Since ~ is p-homogeneous,  there is some 
7r ~ G = Aut  ( ~ )  which extends f. 
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1.2.8. Theorem. Assume that p is an infinite regular cardinal and g[ 

a #-homogeneous structure o f  power g having only finitary rela- 
tions. Then Aut (9~) is a p-Baire group. 

Proof: Immediate from 1.2.7 and 1.1.17. 

1.2.9. Theorem. Assume that p is an infinite regular cardinal, p+ 
the successor o f  p and ~[ is a #-homogenous structure having only 
finitary relations. Then Aut(~l~) is a #-Baire group. 

Proof: Immediate from 1.2.7 and 1.1.18. 

Proof of Theorem 1.1.17: Let G c_ A! be a group satisfying the 
hypotheses of 1.1.17. By 1.2.7 there is some/a-homogeneous 
structure ~ with domain A having finitary relations only such that 

G = Aut (9~). 
Let (a~ : } ~ #> be a list of  all the elements of A. Assume that O 

is a non-empty open subset of  G and <N~ ~ E/.t> is a sequence of 

nowhere dense subsets of  G. 
We shall build a chain <ft' } E #) of partial functions from A 

into itself such t h a t f  = U{f~' } ~/a} ~ O '~ U{N~" } ~  p}.  
Since 0 "~ N o is a non-empty open subset of  G, there is some 

partial mapp ingf  0 from A into itself such that dom (f0) < # and 

O r  [fo] C_ O% N O. 
Let us suppose that ~ ~ p and f~ is defined in such a way that 

d-om (f~i < P, f~ - 7'~ for all r~ e ~ and [f~ ] 4= 0. Then [f~] ,v 
is a non-empty open subset of  G. Hence there is some partial map- 
ping g from A into itself such that clom (g) < p and 0 r [ g] c_ 

[f~] ,,, N~. 
Let 7r ~ [g] and let X = dom (g) to dora (f~) u [a,~" r7 < ~] to 

[Tr-l(a~): ne  }]. 
Let us define f~+ 1 = 7fiX. It is easily checked that dora (J'~+l) < #, 

ft+l -Dfn for all r~ <_ }and  [f~+l] r 0. 
If X ~ # is a limit ordinal, we define fx = U [f~ : ~ ~ X 1. Again 

dom (fx3 < #" (by the regularity of/a) and fx ~- fn for all rt ~ X. Fur- 
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thermore [fx] 4= 0, since f x is a partial isomorphism of  9~ into 
itself (the union of a chain of partial isomorphisms of 92[ into itself 
is again a partial isomorphism, since 9~ has only finitary relations) 
and 9~ is g-homogeneous.  Finally, let f = U {f~ : ~ E g }. It is easily 
checked t h a t f E  Aut (~)  a n d f E  O, since f E  If0] g- O. Further- 
more, f ~  [ f b l ]  for all ~ E g and this implies that f ~  N~, for all 
~E g. Afor t ior i ,  f ~  U{N~: ~E g}.  

Proof  of Theorem 1.1.18: Let G _c A! be a group satisfying the 
hypothesis  of 1.1.18. By 1.2.7, there is some g+-homogeneous 
structure 9 /wi th  domain A having finitary relations only such that 
G = Aut  (9/). 

Let (a G : ~ E g') be a list of all the elements of A (by allowing 
repetitions, we may assume that g' _>. g). Assume that O is a non- 
empty  open subset of G and <N~ : ~ ~ g] ) is a sequence of nowhere 
dense subsets of G. 

Exactly as before ( 1. I. 17) we build a chain (f~ : ~ ~ g ] ) of par- 
tial funct ions and we define f =  O [f~: ~ E g l .  As before, we can 
check that f is a partial isomorphism of ~[ into itself. By the g§ 
homogenei ty  of ~1~, [f]  4= 0. Let rr E [ f ] .  It is easily checked that 
~ r ~ O ~ U [ N ~ : ~ e g ] .  

1.2.10. Assume that  A'= ~0 and 9~ is a countable structure having 
only finitary relations. Then Aut (~)  is a S 0-Baire group. 

Proof: Immediate  from 1.2.5 and 1.2.8. 

It should be pointed  out that we have developed the topological 
not ions here introduced just  for the purposes at hand, without 
a t tempt ing an exhaustive study. We have disregarded, for instance, 
the fact that  the groups of permutat ions act on topological spaces 
(even metrizable in some cases) and not  just on sets, i.e., we are 
dealing with t ransformation groups. 
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w Local definabiliW and 13alois connections 

2.1. Orbital s tructures 

We shall see that the key results to establish our Galois connec- 
tion described in the introduct ion will be 1.2.3 and Scott 's  defina- 
bility theorem. However, since the latter is not  true for uncount- 
able structures *, we first study those structures for which it holds. 

2.1.1. Definition. Let ~ and g be infinite cardinals, let 91 be a 

structure of power g and let G = Aut (9I). 

(i) 9~ is orbital iff 91 has at most g relations of  rank < g and every 
orbit OG(s) (for each s ~ ~A) is definable from the relations of  

~: by a formula of Lu+ . **; 
(ii) 92 is E-orbital iff 9I is orbital having relations of  rank less than ~: 

and 92~ = (91, OC(s)) s ~ A  is g-homogeneous. 

2.1.2. Assume that ~ and g are infinite cardinals such that g = gc = 
sup { gx : X ~ ~: } and 91 is a structure of  power g having at most g 

relations of rank less than ~. Then the following are equivalent: 

(i) 91 is ~:-orbital; 
(ii) for all ~ ~ ~ and all P c_ ~A, i f P  is Aut (9.I)-g-det, then P is 

definable in 9.I by a formula of  L ~ + ~ .  

For the proof, we need the following simple 1emma: 

2.1.3. Assume that g is an infinite cardinal, 91 is a g-homogeneous 
structure of  power g having at most  g relations of  rank less than g, 

~ g and P c_ ~A. Then P is Aut (91)-g-det iff P is definable from 

the relations of 91 by a quantifier-free formula of  Lu+u. 

�9 See  f o o t n o t e  on  page 000.  
�9 * We owe this  t e r m i n o l o g y  to V.Papi l Ion,  
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Proof:  For  each s ~ ~A, let A(gJ Irange(s)) be the diagram of the 

structure 9~ Irange(s), i.e., the set of  all atomic sentences or its 

negations (in a language having individual constants for  the ele- 
ments  of  range(s)) which are true in 9j. If v E ~Var is a sequence of  
variables, let 

~s(v) = Sub A A(9~ Irange(s)) (~ )  , 

i.e., the result o f  replacing in the (infinite) conjunct ion of  all the 
sentences of  A(92 Irange(s)), every name s,~ by the variable v n 
(17 ~ ~). It is easily checked that 

(92, P) ~ Vv(Pv ~ V ~gv ) ) .  
sEP 

Fur the rmore  V ~bs(v) is a quantifier-free formula o fLu+  u. 
s E P  

Proof  of  2.1.2: Assume that  ~[ is ~:-orbital, G = Aut(~l[), ~ ~ ~ and 

p c ~A is G-/~-det. Then 9[' = (,4, 06(s))s~SA is #-homogeneous 
having ~ relations (since/a- ~ = g) and A u t ( W )  = G (1.2.4 and 1.2.5). 

By 2.1.3, P is definable in 92' from the orbits { OC(s): s ~ .KA } by a 
quantif ier-free formula ep(v) of  Lu+ u . Since ~:[ is orbital, for each 
s E ~A, Oa(s) is definable in 92 by some formula q5 s o f  Lu+ u. Let 

lo (s)) 
qb*(v) = Sub cb(v) \ rbs "sEUA . It is easily checked that (~[, P) 

Vv (Pv ~ q~*(v)). 

2.1.4. Assume that h: and # are infinite cardinals, K < / s .  ,q[ is a/~- 
homogeneous  structure of  power  ~ having at most ~ relations of  
rank less than ~. Then 9r is ~-orbital. 
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Proof: Immediate from 2.1.3. 
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2.1.5. Remark: (i) In view of 2.1.2, Scott 's  definability theorem 

can be stated as follows: 
Let 9I be a countable structure having countably many finitary 

relations. Then 9I is orbital. 
(ii) Assume that # is an infinite cardinal and 91 is a structure of  

power # having finitary relations. Then 9I is homogeneous (of  
degree p) in the sense of  [19] if the orbits OC(s) (for G = Aut(91) 
and s ~ _,A) are definable in ~ by  sets of  first-order formulas. 

Another important local theorem for L w 1~o is Scott 's  isomor- 
phism theorem [221. This theorem cannot be generalized to un- 
countable structures * and now we turn our attention to those 

structures for which it holds. 

2.1.6. Assume that p is an infinite cardinal and (gt, s) is definable, 

up to isomorphism, by a sentence of L ,+ ,  among the structures of  

power p, for all s ~ ~A. Then 91 is orbital. 

Proof: Let ~ ~ p, s ~ ~A and G = Aut(91). By hypothesis, there is a 

sentence dbs(S,~ )n c ~ which defines (91, s) (up to isomorphism) 
among the structures of  power #. It is easily checked that 

Sub Os defines Oa(s), i.e., 9I is orbital (since 91 must 
1)n n @ ~  

have at most # relations). 
We don't  know whether the converse of  2.1.6 holds, although it 

seems unlikely that it does. 
However, we have been able to establish a partial converse (for 

N0-orbital structures). We first need the following lemma: 

* A counter-example (for regular uncountable cardinals) has been constructed by M. 
Morley; D.Kueker (whom we owe this information) has employed this counter- 
example to show that Scott 's definability theorem fails (for regular uncountable 
cardinals). In our terminology, there are structures of regular uncountable powers 
which are not orbital. 
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2.1.7. Assume that ~ and p are infinite cardinals such that # = p5 
and 9I a structure of power #. For every ~ E g and every s ~ M, 

there is a formula ,~s(v) of  L.+.  such that 

(i) (92, s) ~ r 
(ii) (92, t) N Cs(t) implies (92, s) --=L,+, (92, t), i.e., (9[, s) and (92, t) 

have the same true L,+,  sentences. 

Proof: Let ~ ~ # and s a ~A. 
Let (tn : ~ ~ g) be a list of all sequences t in ~A such that (92, s) 

(~[, t) (we use our hypothesis that #~ = #). Therefore, for each r~ ~ #, 

there is some ~,7 (v) in L~,+, such that 

(9s s) N Cn (s) and (~[, t) ~ 7 Cn ( tn) .  

Let us define Cs(U) = A{r (v): 17 E #}. Then Cs(V) is a formula of 
L,+,  and it is easy to see that (i) and (ii) are satisfied. 

2.1.8. Theorem. Assume that # is an infinite regular cardinal such 
that/.t = 22 and ~ a/~-homogeneous structure of power g having at 
most # finitary relations. Then 9~ is definable (up to isomorphism) 
b~ a sentence o fLu+ u, among structures o f  power #. 

Proof: The proof, as in the case of our previous lemma, is a modi- 
fication of  the original proof of Scott [ 23 ] and so we sketch it 

only. 
Let ~ be the conjunction of the following sentences: 

(i) A 3v 0 ~b(a)(V 0) ,  
a E A  

(ii) A A Vv (r A 3w r w)), 
~E~ sE~A a~A 

(iii) A A V V ( r  V Cs(a)(v,w)), 
~E# sC~A a ~ A  
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(iv) 

(v) 

A 

8 ~ g  

8 limit 

A A 

A 

sE *A 
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Vv((os(v)-~ Sub A A(91frange(s)) (~)  , 

where Cs is obtained by 2.I .7.  (Sub A(~lrange(s))  (2 )  is defined 

in the proof  of 2.1.3). 
Clearly ~ is a sentence of  L , + , .  
We now show that  9fin qJ. The  clauses (i), (ii), (iii) and (v) follow 

the original proof  of Scott. To show (iv), let 8 ~ # be a limit ordinal 
and lets ,  t ~  6A be such that  (9~, t) ~ Csl~(tl~) for all ~ E 8. Define 
f :  range(s) ~ range(t) as follows f(s~) = t~ for ~ ~ 5. By (v) and the 
fact that  all the relations of 9I are finitary, f :  9.I Irange(s) ~_ 
911range(t) is a partial isomorphism of 91 into itself such that  
~iom ( f i  < #- Since 9I is g-homogeneous,  there is some 7r ~ Aut  (91) 
such that 7r _~ f. From (~,  s)~q~s(S) we obtain (~1~, l r*s)~ qSs(rr*s ), 

i.e., (91, t) b Cs(t). 
Assume now that  N ~ ~ and ~} = #. To show that  N _~ 9.I, we 

employ the usual Cantor type argument.  The only novelty (with 
respect to Scott 's proof)  is the appearance of limit ordinals which 
are handled by (iv). 

2.1.9. Theorem. Assume that Is is an infinite regular cardinal such 
that # = 2 u- and 92 is an t%-orbital structure o f  power g. Then 9i' is 

definable (up to isomorphism) by a sentence o f  Lu+~ among struc- 

tures o f  power #. 

Proof: By 2.1.8, 9 ~  is definable (up to isomorphism) by a sen- 
tence of L~+~ among the structures of power/a.  Since 2~ is orbital, 
for each s E ~ A  OC(s) is definable in 9/( by some formula r of 
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L~,+, It is easily checked that ~* = Sub (O6(s)~ 
�9 \ r / s e ~ X  

(up to isomorphism) among structures of power g. 

defines 9/ 

From our proof, it is clear that there is connection between or- 
bital and homogeneous structures. To make it explicit, we define 

2.1.1 0. Definition. Let ~: and g be infinite cardinals and let 91 be a 
structure power g. 9 /~  = (91, (O91: @ is a formula of L,+,  having 
a set of  free variables of cardinality less than ~:>). 

2.1.1 1. Assume that h: and g are infinite cardinals such that g = g~ 
and 9I is a structure of power g having at most g relations of rank 
less than h:. Then the following are equivalent: 

(i) ~l is K-orbital; 
(ii) 91~ is g-homogeneous. 

Proof. Assume that 91 is ~:-orbital. Let ~i e ~, s e M,  G = Aut (g[) 
and let @s be a formula in L#+, which defines OC(s), i.e., @~ = 
OG(s). Then (92, gP~)sESA is g-homogeneous by 1.2.4. A fortiori, 
91~ is g-homogeneous�9 Assume that 91~ is g-homogeneous. Let 

E h:, s �9 M and let ~s be the formula of L,+,  given by 2�9 
Assume that (9/, t ) p  r By 2.1.7 (ii), (91, s)----L,+~, (91, t). Let 
us define f :  range(s) ~ range(t) as fol lowsf(s  n) = t n for all 17 �9 ~. 
It is easy to see that 91~ I range(s) -~f 9/~ I range(t). Since 
range(s) < g and 91~ is g-homogeneous, there is some rr �9 
Aut(91~)  such that zr D f. Hence (92, s) ~,r (91, t) and ttds shows 

that q5 s defines OG(s). 

The following result tells us that if the group of automorphism 
of a structure has a "sufficient degree of compactness", all these 
notions of orbital structures coincide and Scott's definability theo- 
rem holds iff Scott 's isomorphism theorem does. 
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2.1.1 2. Assume that g is an infinite cardinal and 92 is a structure of 
power/a having at most g finitary relations. Assume, fur thermore,  

that  Aut(92) is 2~0-g-compact .  Then the following are equivalent: 

(i) 92. is orbital; 
(ii) 92 is 80"~ 

Furthermore, if g = #u the following condition is equivalent to 
(i) and (ii): 

(iii) (92, s) is definable (up to isomorphism) by an Lu+ ~ sentence 
among structures of power g, for every s E ~A and every ~ ~ p. 

Proof: Assume that 92 is orbital. By 1.2.5 and 1.2.7 (ii), 

(A, Oa(S)>sE w 4 is g-homogeneous (letting G = Aut  (9.I)). A for- 

tiori, ~[~ is g-homogeneous and this shows (ii). Under the assump- 
tion that g = g u 2.1.9 shows that  (ii) implies (iii), since (92, s) is 
easily seen to be l~0-orbital. Finally (iii) implies (i) is a consequence 
of  2.1.6. 

2.1.1 3. Assume that g is an infinite cardinal such that g = ge and 
92 = (A, Ri)iE I is a structure of  power/~ having at most g finitary 
relations. Assume, furthermore,  that Aut(92)is 2~bl0-g-compact. 
Then there exists r i, S ] ) i ~ i , / ~ j  in L~,+, such that J < g, each 
S] is a new finitary relation symbol, ~ 3(S]>]E J r +-+ 3! (S]>i~ J 
and for all ~ of power g, ~3 N 3 ($1)1~ J 4) iff ~ • 92:. 

Proof: Let G = Aut(92). By 2.1.12, 92:~ = (92, OG(S) ) s~A isg- 
homogeneous. By 2.1.8, 92:~ is defin/~ble (up to isomorphism) by a 

sentence r OC(s))i~:, s ~ A  in Lu+~, among structures of 
power #. Clearly 92 ~ 3 (Ss>sC~A ~, where 

~b = S u b r  \ Ss ] s E ~ A  

Let 23 be a structure of power g such that 23 N 3 (Ss> s ~ ~A 4~. 
Hence there is some family (S s: s e ~A> of  relations on B such that 

( ~ ,  S s ) ~ A  ~ 4). Therefore (~ ,  S s ) s ~ A  ~_ (92, OG(s ) ) s~A  and 
this clearly implies that 23 ~_ ~.  
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To finish the proof, we shall show that r i, Ss)sE~A A 
r S s ) s ~ A  -~ S s = S~ is logically valid, for every s ~ ~A. By 
(a form of) the LSwenheim-Skolem theorem for Lu+ u (see for in- 

stance [9] ,  10.3.5), it is enough to show that this sentence is valid 
in every structure of  power/a. 

Let (N, S s, S ~ ) s ~ A  ~ ~2(Ri, Ss)sE~A -A- r S~)sENA and 
= #. Hence (2~, Ss)s~wA ~f(9~;, OC(S))s~A for s o m e f a n d  

. 

This implies that (gj, Oa(s))s6~A ",_f (9i, f * S ~ ) s ~ ,  4 for some 
rr ~ G which, in turn, implies that Oa(s) = f*S~, for every s E ~A.  
From this we conclude that S s = S~ for every s ~ ~A.  

We do not know whether the hypothesis of  2.1.13 implies that 
~[ is definable by an Lu+u sentence (equivalent, whether being 
orbital can be deleted from the definition of an S0-orbital struc- 
ture). 

2.2. Local theory for L~,+u 

We have seen that Scott 's isomorphism theorem holds for S 0- 
orbital structures (2.1.9). We shall presently show that these struc- 

tures play (with respect to Lu+u ) a role similar to that of countable 

models with respect to L~obo. 

2.2.1. Theorem. Assume that/a is an infinite cardinal such that 
11 = #u and ~ is an t%-orbitalstructure of  power 11. Let ~ ~ /a, 
G = Aut (~ )  and P c__ ~A. Then the following are equivalent. 

(i) P is G-/a-w.det; 
(ii) G(P) is open in G (provided with the/a-topology); 

(iii) OG(P) <_ is; 
(iv) There is a formula ~(v,  w) of Lu+ u such that v ~ ~Var and 

w ~ .u. u Var and 
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( ~ ,  P) ~ 3 w Vv  (Pv ~ rb(v, w ) ) .  

Proof: From 1.2.4, G = A u t ( ~ f f  ). The equivalence of (i), (ii) and 
(iii) now follows f rom 1.2.8 and 1.1.14. It  is obvious tha t  (iv) im- 
plies (iii). We now show that (i) implies (iv). Assume that  P is G-/a- 
w.det. Hence P is G n [ idx]-#-det  , for some X _  A such that  
X <  g. Let s be a sequence which well-orders X. Since 91 is orbital, 
(91, s) is easily seen to be orbital. Fur thermore  P is Aut  (91, s)-#-det 
and hence definable by a formula q~(v, s) of Lu+u (2.1.2). This 
implies (iv) and our proof  is complete.  

For  the particular case • = ~0, we have the following corollary: 

2.2.2. Theorem. A s s u m e  that  9I is a countable  s tructure wi th  count-  

ably many  f ini tary relations, n ~ 6o and P ~ hA. L e t  G = Aut  (~1). 
Then the fo l lowing  are equivalent:  

(i) P is G-~0-w.det; 
(ii) .G_(P) is open in G (provided with the S0-topology);  

(iii) Oa'(lii <- t%; 
(iv) ~ < 2s0 ;  

(v) there is a formula r o , ..., On_ 1 , w o . . . . .  win_ 1 ) of L~ol~o such 
that 

(.gt:, P) ~ ~w  0 . . . .  , Wm_l VVo, ..., vn_ 1 (Pro, ..., vn_ 1 +--* cb). 

Proof: The equivalence of (i), (ii), (iii) and (v) follows from 1.2.4, 
2.2.1 and Scott 's definability theorem (2.1.5 (i)). To show that  (iv) 
implies (iii), we notice that  OG(P) is an analytic set in the space 
n~ 2 (with the product  topology)  and hence its cardinality is either 
finite, countable or 2 ~0 (see Kuratowski [16] ). 

Theorem 2.2.2 was found independent ly  by D.Kueker [ 14] 
(al though wi thout  clause (2)) and by us in our dissertation [20] .  
His proof  is much  different f rom ours. Several of Kueker 's  results 
can be set in the present context .  We just give one example.  
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2.2.3. Theorem. Assume that g is an infinite cardinal such that 
= g"- and tt is an l~o-orbital structure o f  power g. Then the fol- 

lo wing are equivalen t: 

(i) ~<- p; 
(ii) There are formulas r  (qQ: ~ ~ g) of  L.+.  such that 

% ~ 3u �9 and 

9/~YoYw o(r  V Vz o(z o=w o~qj~)) ;  

(iii) There is a formula ~ in Lu+u such that for all P c__ A there are 
formulas ( ~ :  ~ ~ p)ofL~+~ satisfying 

9i N 3 v ep and 

9 1 N V v ( ~ *  V Vw 0 (Pw o ~  ~ ) ) .  
~Eu 

Proof: From 1,2.4, G = Aut(~(~). It follows from 1.2,8 that G is a 
g-Baire group. From 1.1.6, G n [idx] = {id x }, for some Xc__ A 
such that X < p. The rest of the proof follows Kueker [ 14] (see 
also [ 15 ] ) and is omitted. 

2.2.4. Remark. It has been noted by several people (Barwise, Mak- 
kai, Weinstein, etc.) that several "local" preservation theorems 
established by Keisler [ 10, 11 ] for saturated structures and first- 
order language hold for countable structures and L~ol~ o . For the 
sake of completeness, we give two examples. 

2.2.5. Assume that ~ and N are countable structures having fini- 
tary relations only such that every existential L~ol~ sentence true 
in ~[ is also true in N. Then % is embeddable into ~ .  

2.2.6. Assume that 9I and ~ are countable structures having fini- 
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tary relations only such that every positive Lwl ~ sentence true in 
92 is true in !~t. Then !~ is an homomorphic  image of  9i. 

We shall sketch the proof  of  2.2.6. 

We write ~ :* !~ to mean that every positive L~l~o sentence 
pos 

true in g[ is true in !~. We proceed by  induction. Assume that 

(92, ao ,  ..., a n )  ~ (!~, bo ,  ..., b n ) for some n E r 
pos 

If n is even, let an+ 1 be the first element of  A (in some well-order- 
ing). Let <b'g : k ~ co> be a list o f  all the elements b~ of  B such that 

( ~ ,  ao ,  ..., an ,  an+l) ~ ( ! ~ ,  b 0 . . . . .  b n ,  b~). 
pos 

For  each k ~ co, let C~k(aO, ..., an ,  1)0) be a positive formula of 

L~obo such that 

and 
(92, a 0 , ..., a n , an+l) ~ ~bk (a0 ..... a n , an+l) 

(23, bo ,  ..., b n , b '  k )  ~ 7 49k ( b o ,  ..., b n ,  b'k) . 

Define 

4)(a 0, a n ,an+ 1)(a0 . . . .  , an ,1)0)=  A , d P k ( a O , . . . , a n , V O ) .  
.... kE~o 

Since 

31) 0 qb(a 0 ..... a n, an+l) (ao ,  ..., a n , Vo ) 

is positive and true in (92, a 0 . . . . .  an),  

( ~ , b 0 , - " , b l ) ~  31)0 , •<a 0 ..... an, a n + l ) ( b o , ' " ,  b n , 1 ) O ) "  
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Let bn+ 1 be the first element of B (in a suitable well-ordering) 

which satisfies 

r 0 . . . . .  a n, a n + l )  (b0, ..., b n , Vo ) �9 

Clearly 

(91, a0 .... , an+l) ~" (~,  bo, ..., b n + l )  �9 
pos 

If n is odd, we start with an element of B, etc. The proof of 2.2.5 
is similar, but simpler and is omitted. 
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2.3. Galois connect ions  for  orbital algebras 

The connection between groups and structures given by 1.2.5 

and 1.2.7 suggests the possibility of a Galois theory between these 

objects. However, since a structure is not determined by its group 

of automorphisms, we consider (instead of a structure) the set of 

relations "determined" by that structure. The only trouble is that 

we cannot talk about the group of automorphisms of  a set of rela- 

tions. Our remedy is to make these sets into polyadic algebras. 

2.3.1. Definition. Let ~ and # be infinite cardinals, and let X be a 

set of power #. Furthermore, let 9i be a structure of domain X. We 

define [~]~ = {R: R c_ ~X for some ~ ~ ~: and R is definable from 

the relations of  ~I by a formula of L,+,  }. 

2.3.2. Assume that • and/~ are infinite cardinals such that g = g5 = 

sup {px : X e ~: } and 91 is a K-orbital structure with domain X. Then 

[91:] 5 = {R: R C ~X for some ~ ~ h: and R is (91)-/~-det}. 

Proof: Immediate from 2.1.2. 

As a corollary we obtain 
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2.3.3. Assume that x and :z are infinite cardinals suck that # = #~ = 
sup [/a x : ~. E Ic ] ,  91 and N are h:-orbital structures with domain X. 

Then [gJ]- ~ = [~]5  iff Aut (91) = Aut  (N). 

2.3.4. Definition. Let ~: and # be infinite cardinals x <_ t~ and ~ a h:. 

(i) If R C ~X, we let/} : "X --> 2 be defined as follows: 

/~(f) = 1 i f f f l~  E R for a l l f ~  "X ; 

(ii) If R c__ "X, we let/~ be the characteristic function, i.e., 

/~(f) = 1 i f f f a  R, for a l l f ~  "X ; 

(iii) C} = {/~' R C ~X for some ~ ~ ~: } ; 
(iv) = R c . X } .  

The sets C} and C~: have natural structures of polyadic algebras 
with equality (see [4] and [6] for references on polyadic algebras). 

We call C} the full polyadic algebra and C}, the full polyadic 
algebra with elements of  support less than ~. 

(v) If  9./is any structure with domain X, we let ~ ( g [ )  = [/~: 

R {911-  }. 

The next lemma is obvious. 

2.3.5. Assume that 9I is a structure with domain X and relations of 
rank at most #. ThenC~(91)  is a (polyadic) subalgebra of C} (with 

the polyadic operations induced by  C}).  

We now define the Galois group of an algebra. 

2.3.6. Definition. (i) I fA  c__ C} is a (polyadic) algebra, we let 
gg(A), the Galois group of A, be the group of  automorphism of  C} 

which leave A pointwise fixed; 
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(ii) If G c_ Aut (CJ() is a group, we let if(G), the fixed algebra of 

G, be the algebra of  all the elements of C} which are left fixed by 

G. 

2.3.7. Assume that 91 is a structure with domain X. Then Aut(91) 
is naturally isomorphic to gg(C~ (92)), for every infinite cardinal ~:. 

Proof: Immediate consequence of Theorem 1.4 of [4]. 
In view of  2.3.7 we identify gg(C~ (g[)) with Aut(91). Under 

this identification, gg becomes a map from certain algebras into 
subgroups of  permutations of  X!. 

2.3.8. Definition. Let A c_ C} be a (polyadic) algebra. We call A 
x-orbital i f fA = c~5 (92) for some x-orbital structure 91 with domain 

X. 

2.3.9. Assume that x and g are infinite cardinals such that # = g5 
and A c__ C~ is a (polyadic) algebra. Then the following are equiva- 

lent: 

(i) A is x-orbital; 
(ii) A isC~ (92), for some g-homogeneous structure having at most 

g relations of  rank less than x; 
(iii) There is a G c__ X! which is closed in the x-topology such that 

A = c~((X,  Oa(s)>s ~ x ) "  

Proof: (i) =~ (ii): Assume that A is x-orbital. Hence A = c~5(92) for 

some x-orbital structure 92 with domain X. By 2.1.1 1, 923 is #- 
homogeneous. Clearly c ~ ( 9 2 ~ )  = cR~(92) = A and 91d~ has # rela- 

tions of  rank less than x. 
(ii) =~ (iii): Assume that A = era (9I) for some p-homogeneous 

structure having at most g relations of rank less than h:. Let G = 

Aut (9i) and 92' = (X, Oa(s)>s~x . Then G = Aut(91') and G is 
closed in the x-topology. Furthermore 92 and 91' are g-homogene- 
ous (1.2.4). This implies that 92 and 91' are h:-orbital (2.1.4). By 
2.3.3, [ 9/1 ~ = [ 92' ]5, i.e., c'~g(tt ') = c~5(92) = A. 
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(iii) ~ (i): Immediate from 2.1.4. 

We can ask whether there is an "intrinsic" characterization of  

orbital algebras. We shall answer this question only for the case 

# = ~0 (2.3.11). We need some definitions. 

2.3.10. Definition. Let g be an infinite cardinal and let X be a set 

of power g. 

(i) I fB  is a subset of  C~r we let B ~' be the smallest (polyadic) 

subalgebra of C} which is p-complete (in the boolean sense); 

(ii) I f B  is a subset of  C~, we let B~ = B ~ n C~. 

m 

2.3.11. Assume that X = ~0 and A c_ C~ is a (polyadic) algebra. 

The the following are equivalent: 

(i) A is orbital; 

(fi) A = (B~~ for some countable subset B of A. 

Proof: Assume that A is orbital. Hence A = c~w(~), for some 

orbital structure ~ = (X, Rn) n ~oa" We let B = {/~n: n e co}. It is 
easily (but teadiously) shown that  B w = {t~ : R is finitary or in- 

finitary relation on X definable in (X, Rn) n ~ by a formula of 

L~ol~o }. This clearly implies that  (B~~ = c ~ ( 9 i )  = A. Assume now 

that A = (Bto)~, for some countable subset B of A. Since A is 

locally finite, we can write B = {/~n : n ~ w }, for some sequence 

(R n : n ~ w) of finitary relations on X. By Scott 's definability theo- 

rem (in the version of 2.1.5 (i)), ~ = (X, Rn> n ~ ~ is orbital. Again 
we can check that c ~ ( ~ )  = (B~o)~ = A. We omit details. 

2.3.12. Theorem. Assume that g is an infinite cardinal such that 

g = #~ and X is a set o f  power g.  Then gg is an anti-isomorphism 

between the lattice o f  the orbital (polyadic) subalgebras o f  C~ and 

the lattice o f  the subgroup o f  X!  which are closed in the g-topol- 
ogy. 
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Proof: Assume that A is an orbital subalgebra of C~. Hence A = 
c~e(9~), for some orbital structure ~ with domain X. In view of 

our identification (2.3.7) gg (A) = Aut (9~) and this implies that 
gg(A) is closed in the g-topology (1.2.2). Let gg(A) = gg(B) for 
some orbital algebras A, B. Then A = c~u (9i) and B = c ~  (~)  for 

some orbital structures ~I and N with domain X. But Aut (9~) = 

gg(A) = gg(B) = A u t ( ~ )  and hence A = B by 2.3.3. It remains to 

be checked that gg is onto. Let G c_ X! be a group closed in the 

g-topology. By 1.2.5, G = Aut(91) for some/a-homogeneous struc- 
ture tt having at most g relations of rank less than/a. By 2.1.4, 
is orbital. Let A = c~"-(9~). Then A is orbital and gg(A) = 

A u t ( ~ )  = G. The rest of the conclusion is trivially checked. 

2.3.13. Remark. Theorem 2.3.12 extends a result of Daigneault 
[4] ,  who had obtained a Galois connection of  this type for finite 
X. It is closely related to one of the main theorems of the "Ab- 
stract Galois theory" of  M.Krasner [12, 13]. However, Krasner 

obtains a Galois connection between all the subgroups of X! and 
all the complete (in the boolean sense) polyadic subalgebras of C}, 
i.e., he considers algebras with elements of infinite support. For 

logical purposes, at least, it seems more natural to consider locally 
finite algebras only and A.Daigneault had raised the problem (in- 
dependently from us) of characterizing the algebras and the groups 

in this case. 2.3.12 solves this problem for countable X (letting 

g = ~0) and 2.3.14 in the general case (letting ~: = t~0). An indepen- 

dent solution for countable X has been found by K.R.Driessel [27]. 

2.3.1 4. Theorem. Assume that g and x are infinite cardinals such 
that for  every cardinal v < g, v~ < t~, g is regular and X is a set o f  
power #. Then gg is an anti-isomorphism between the set o f  the 
g-orbital subalgebras o f  Cj~ ordered by inclusion and the set o f  the 
q3~-l~-compact subgroups o f  X! which are closed in the ~:-topology 

(ordered by inclusion). 
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Proof: Let A G C} be a x-orbital algebra and let G = gg(A). Hence 
A = ~ ( . ~ )  for some t~-orbital structure ~. In virtue of our  identifi- 
cation, G = Aut(9~ ). By 1.2.4, G = Aut (9~) .  Then G is ~ - g - c o m -  

pact and closed in the x-topology (1.2.7). 
Assume that G ___ X! is a qS~-g-compact group which is closed in 

the x-topology. By 1.2.7, G = Aut(9~) for some g-homogeneous 
structure N having relations of rank less than x. We let A = c~S(9~). 
By 2.1.4, A is ~-orbital and gg(A) = Aut(~[) = G (by our identifica- 
tion). 

Another  of the main theorems of Krasner theory can be proved 
for S0-orbital algebras, i.e. 

2.3.1 5. Theorem. Assume that g is an infinite cardinal such ;hat 
g = #ff and X a set o f  power #. Then any isomorphism between 
~o-orbital (polyadic) subalgebras o f  C~ can be extended to an 
atttomorphism o f  C~. 

Proof: Let f :  A -+ B be a (polyadic) isomorphism between ~0- 

orbital algebras A, B. Let ~ = (X, Ri) i~  I be an ~0-orbital structure 
such tha tA  = 9~(9~)  and let ~ = IX, fRi)iE I. Since f i s  a poly- 

adic isomorphism, B = c '~(~3) and ~ -Lu+u ~ .  By 2.1.9, ~I ~-~r 
for some rr ~ X! = Aut(Cff).  Clearly n ~ f. 

2.3.16. Remark. (i) The idea of considering topological groups in 
infinite field extensions goes back to Dedekind, but  it was first 
developed by Krull (see [ 1 ] for references); 

(ii) We do not know whether 2.3.15 holds for orbital algebras, 
although it seems unlikely that it does; 

(iii) In view of 2.3.11, Scott 's definability theorem can be 
"interpreted" as establishing the connection of 2.3.12 (for g = ~0). 
Whether Scott's isomorphism theorem can be similarly "inter- 
preted" is not known. In fact, the whole subject of  "higher order" 
Galois connections is wide open (see some remarks in [24] and 
[27] ). 
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w Weak definability for models of prescribed cardinality 

3.1. Saturated and special structures 

We now specialize some of our results of w 1 to saturated and 
special structures (for references, see [3], [19] ). 

Although the following notion will play an auxiliary role only 
3.1.2 may have some independent interest. 

3.1.1. Definition. Let 92 be a relational structure of similitary 
type p. 

(i) 91 is ~a-saturated iff whenever X c_ 1 911 is of power less than/a, 
23 = (9i, x )  x ~ x  and E is a set of fornmlas with one free variable 
(in the language of type p enriched with names for thL ~'lements of 
X), if every finite subset of  2; is satisfiable in ~3, then so is 2. 

(ii) 91 is p-typical iff every reduct 92 f J of 92 such that J <  9"~ is 
/a-saturated * 

3.1.2. Assume that/a is an uncountable regular cardinal and 23 a 
structure of  power at most 2u-. having at most/a relations. Then 
there is some/a-typical structure 92 of power at most 2.u.u such that 
q~ >91. 

Proof: Since the method of proof is well-known, we just sketch the 
proof. Let ~ = (B, Si)i~ I. By hypothesis on l w e  can write 
I =  U [J~: ~ ~/a]  so that J~ < p for all ~ #. We may assume that 
Jx = U [J~: ~ E X] i fk  is a limit ordinal. 

We build a sequence (.%~ : ~ ~/a) of structures in such a way that 
the following conditions are satisfied for all ~ E/a: 

* For the particular case that ~)~[ = ~ = / ~ ,  91 is u-typical iff 92* = (@[, ~92: �9 is a formula 
of Leo,.,)) is ( ~ ( L g + , )  , M)-typieal in the sense of [20],  where M = { ~ : 2 3  C IS*, for 
some ~-----92}. This fornmlat ion of  the notion of a u-saturated structure is due to H.J. 
Keisler (see [ t9]  for references). 
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( i ) ~ t J ~ N ~ ( ~  ; 
(ii)~ 91n ~ 91~ ~ J~ for all ~7 E ~ ; 

(iii)~ 9I~ is g-saturated of power at most 2~. 

Assume that 9~ has been defined. Let 2 = A~(~ t Y~) U Ac(9~) 
where A c stands for "complete  diagram" (i.e., Ae(E) is the set of  
sentences true in (~ in a language which has names for all the ele- 
ments of the domain of,G ). It is easily checked that ~ is consistent. 
By the theorem of existence of saturated structures, we can get 
9/~+ t which satisfies (i)~+1, (ii)~+l, (iii)~+ t . At limit ordinals and at 
the end of our process, we take unions (although our structures 
have different "similarity type",  it is clear what we mean by 
unions). Let 9/= U { 9~ : ~ ~ g }. Using the fact that a reduct  of  a 
saturated structure is saturated, 91 is easily seen to be g-typical. 

We shall derive two corollaries of  this result: 

3.1.3. Assume that p is an infinite regular cardinal such that g = 2~ 
and (~, P) is a g-saturated structure of  power p. Let G = Aut(9~). 
If O ~  < #, then Oa(P) is finite. 

Proof: We may assume that g > 80, otherwise 3.1.3 is trivially 
t rue . .  

Assume that Oc(P) is infinite and consider 2; = {Sub a 

E g and a true in (9I, P)} u [P~ 4: Pn : ~ 4: 7?] u Th(~[, P) as a 
set of  sentences in a language having the type of (91, P), enriched 
with new symbols _P~ of the same rank as P. Using the assumption 
that Oa(P) is infinite, we can show that every finite subset of  2; is 
consistent, i.e., 2~ is consistent. By 3.1.2, there is a g-typical 
(91', P', P~)~, ~ Nod(N)  of power pC = p. Since (9i', P ' )  is g- 
saturated (by the definition of a g-typical structure) and (~[', P' --- 

/ I % t I (2 ,  P ~  (gr,  P ) - (91, P). Let G = Aut(9~ ). We now show 
(~  I '  I I I I 

that O ( P )  >_ p. In fact (9~ , Pc) - (9I , P ) for all ~ ~ g. Further- 
more (91', P~) is g-saturated (by the same argument as above) for 
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all ~ a #. Hence (~ ' ,  P~) -~ ( ~ ,  for all ~ E #. This implies that 
, a '  , ~ c ' ( P ' l  > " [ P~: ~ ~ # ] ~ O (P) ,  i.e., O c ' ( P  ') - #, since the P~ are different. 

This is a contradiction, since OG(P) < #. 

To formulate our next corollary, we consider a first-order lan- 
guage L of similarity type p and we let L(P_) be the language ob- 

tained from L by adding a new relation symbol P. 

3.1.4. Assume that T is a theory in the language L(P). Then the 
following are equivalent: 

(i) For every (9I, P) E Mod T, 

I{P':  ( ~ , P ' )  _~ (gJ ,P)}I< No ; 

(ii) For every infinite (9/, P ) ~  Mod T, 

I{f': p') P)}I< g; 

(iii) There is an infinite cardinal # such that for every (~ ,  P) E 
Mod T, 

I{P': (91,P') ~ ( ~ , P )  }l < # �9 

Proof: (ii) ~ (i): Assume that (9/, P) is a model of T such that 
I {P': (9I, P') ~- (~[, P) }1 > ~0. For simplicity, assume that there is 
an infinite regular cardinal # such that # = 2~ and g > max (~, ~0) 
(see remark 3.1.5 (ii)). Consider, as before, ~ = { Sub o (PIPe): 
~E # and o true in ( ~ , P )  } u {P~ --/:Pn: ~ =# '2} u Th (~I, P). 

Exactly as before we can obtain (~ ' ,  P') ~ Mod T of power # 
such that I oG'(P')I >_ #, contradicting (ii). The implication (iii) 
(i) is similar but simpler. To show the other implications we just 
notice that if T has only finite models, (i), (ii) and (iii) are trivially 
satisfied. 
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3.1.5. Remark. (i) Instead of  (i) in 3.1.4 we could have considered 

(i)': For  every structure 9j of  type  p, I[P: (9~, P) ~ Mod T] I<  

l,l 0 . Similarly, we could have considered (fi)' and (iii)' (obtained 
f rom (ii) and (iii) in a similar manner).  It is easy to see, however, 

that  these are all equivalent, i.e., (i) r (i)' *=* (ii) r (ii)' *=~ (iii) 
r (iii)'. There is a syntactical condit ion equivalent to (i) in Kueker  

[ 14] ,  which simplifies an earlier (unpublished) condit ion by W. 

Craig. 
(ii) We could have considered special structures (in the sense of  

[3] ) instead of  saturated structures in Definition 3.1.1. In this 

way,  we could have obtained the existence of  g-typical (in this 
new sense) structures of  power /a  for cardinals g o f  the form ~-8 

where 6 is a limit ordinal (see [3 ] ,  [I 9] for references). 3.1.3 can 
now be proved for special structures of  one of  these powers. This 
also allows us to eliminate the assumption of  the existence of  a 

regular cardinal/a such that g = 2~ in 3.14. 

We now use 1.1.13 to derive the local version of  the Chang- 
Makkai theorem in the version of  Makkai [ 18]. 

3.1.6. Assume that p is an infinite regular cardinal and (9[, P) is a 
p-saturated structure of  power  g. Let G = Aut(9~). Then 

(i) [ Oa(P)l = 1 iff P is definable in 9.I by a first-order formula 

from the relations of  ~. 
(ii) [ OG(p) [ <-- p iff P is definable in ~ by a first-order formula 

f rom the relations of  ~ and finitely many individuals from [~[I. 

Proof :  (i) can be found in [ 18]. 
(ii) Let  gl* = (~ ,  qsg[)r EF,  where F is the set o f  first-order for- 

mulas of the language of  the same similarity type  of  g[. Since 9~ is 
also p-saturated, ~I* is g-homogeneous.  Furthermore,  Aut  ( ~ * )  = G 

as is easily checked. By 1.2.8, G is a/~-Baire group. Assume that 
l Oa(P)I <- g. By 1.1.3, P is not  G-g-free, i.e., P is G-g-w.det. By 

1.1.1 O, P is G c~ [id x ] -g-det for some subset X c_ A such that 
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, ~<  p. Since (95, x )  x E X  is also p-saturated, we can conclude (ii) 
from (i). 

3. 1.7. Assume that x and p are infinite cardinals such  that 
cf(~:) >_ p+, p is regular and (P~: ~ e p) is a sequence o f  relations 

on A such that (95, P~) is a special structure of  power  ~:, for each 
~ p. If no P~ is definable in 9~ by a first-order formula  from the 

relations of  92 and finRely many individuals of  A, then  there is an 

automorphism 7r E Aut (92) such that zrP~ 4= Pn for all ~, r~ E p. 

Proof: Let G = Aut (95) and X = {P~' ~ E p }. Assume that some P~ 

is G-p-w.det. By 1.1.10, P~ is G n [idx]-p-det , for some Y C A 
such that Y < p. This implies that P~ is Aut ((92, y ) y  ~ y)-p-det. 

Since (95, y ) y  ~ y is also special, an argument similar to the proof  
of 3.1.6 (i) shows that P~ is definable in this s tructure,  i.e., P~ is 
definable from the relations of 9.i and finitely many individuals of  
A ,  a contradiction. Therefore each P~ is G-g-free. Le t  ~*  = 
(92, dp92)a , EF as in the proof  of 3.1.6. Hence G = A u t  (92") and 
1.2.8 implies that G is a g-Baire group. By 1.1.15, there  is some 

7r E G such that rr*X n X = 0, i.e., rrP~ r Pn for all ~, 17 E/a. 

To formulate our next result, we consider a first-order language 
L and we let L( {Pi: i E I} )  be the language obtained from L by 
adding a set of  new relation symbols {_Pi: i ~ I} ,  all having the 
same rank n. 

3.1.8. Assume that T is a complete theory in the language L({_Pi: 
i ~ I}).  Assume that for every (95, P i ) i ~ I  ~ Mod T and every 
Ir 6 Aut (9Y), 7rP i = P/ for some i, ] 6 I. Then there is some i ~ I and 

some formula O(Xl ,  ..., Xn ,  v l ,  ..., Ok) of the language L such that 

T k -  3 v l , . . . , v  k ,  V X 1 , . . . , X  n , 

( P i x i ,  ..., x n +-+ O(x 1 . . . . .  x n, Vl ,  ..., Vk ))  �9 
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Proof:  (in sketch). If  T has finite models, the conclusion of  3.18 is 

automatical ly satisfied. If T has infinite models, we take special 

structures and we use 3.1.7. 

3.2 .  C h a n g - M a k k a i  t h e o r e m  f o r  p r e s c r i b e d  cardinal i t ies  

We now state the main result of  section 3. We assume that L is 
a first order language of  similar type  p and L(P_) is the language ob- 

tained from L by adding a new n-ary relation symbol  P. 

3.2.1. Theorem. A s s u m e  tha t  T is a t h e o r y  in a f i r s t - o r d e r  language 

L ( P ) .  L e t  ~ = ft .  ~o a n d  le t  # = 25.  T h e n  t h e  f o l l o w i n g  are equiva-  

lent." 

(i) Fo r  every infinite structure 9j of  type  p and power/.t,  

I {P:  (9~,P)~ M o d  T } I  < 2 u . 

(ii) Fo r  every infinite (g[, P) @ Mod T of power  #, 

I {P': (~ ,  P ' )  _~ (gJ, P)  } I <  2 u �9 

(iii) There are formulas Oi(Xl , ..., Xn,  v 1 . . . .  , o k )  i = 1, ..., n such 
that  

T F  V 3 v  1 ....  , o k , Vx l ,  . . . , x  n , 
I <-i_<n 

(-PXl,-.., x n +-+ O i ( x  1 . . . .  , x n ,  vl , . . . ,  V k ) )  . 

Proof:  We shall build a " t ree"  o f  structures. By compactness  we 
may assume that T is complete. Fur thermore ,  if T has only finite 
models,  (i), (ii) and (iii) are trivially satisfied. Hence we may assume 
that T has only infinite models. 
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Assume that (iii) does not  hold�9 
We shall build a sequence of structures ((9i~, p(O, r  ~ ~ �9 

E p) such that the following conditions are satisfied for all ~ ~ p: 

(i)~ g[-~ <- # ; 

(ii)~ (9in, p(n)st n ,~ N (92~, P(aO) for all r~ E ~ and al la  ~ ~2 ; 

r =f(n)  for all ~? ~ ~ and all ~,/3~ ~2 ; 

�9 (0 p(O = p10,  ~2; (w)~ f ~  for all a, ~ E 

(v)~ r(O ~ Aut (9.I~), for all a, fl E ~2 �9 Ja/3 

(vi)~ Pa (0 r P~ ) ,  for all ~, ~ ~ ~2 such that ~ r ~. 

For ~ = 0, we let (9~o, Po, foo) = (~0,  Po, idAo) be any structure of 
power p such that (~o ,  Po) ~ Mod T (this structure can be ob- 
tained by the LSwenheim-Skolem theorem). 

Assume that we have defined (92~ P(~) f ( ~ ) ) ~ , ~ 2 -  Let L' = 
L ( { P a : ~ e ~ 2  } w { f ~ ' a , ~ e ~ 2 } u  { a : a s A ~ } u  { n } ) b e t h e  
language obtained from L be adding new relations symbols_Pa, fao, 
a, zr_ fora, /3 e ~2 such that each_P a is n-ary each/a  0 is binary and 

is also binary. 
Let I;g+ z be the union of the following three sets of  sentences 

of L': 

(1) Th (~(~, p(O, f(O, a) a o~[t a~A~,  a , ~ 2  ' 
(2) The set if sentences asserting that zr is an automorphism of the 

type p, which extends ida ~, 
(3) The set of sentences asserting that g Pa r -~0 for all a,/3 e ~2. 

It is clear that II~+11 <_ p. Let (N, Qa, g~r  ~ 
( ~ ,  p(0,  e(~)~ be a special structure such that c f ( ~ )  > g++ 
By 3.1.7 applied to ~: = ~,  #+ and (~3, a) a ~A t which is also spec- 
cial, there is some rr ~ Aut (N, a)a~At such that ~rQc~ r Qo for 
a,/~ ~ t2. (Clearly, no Qo~ is definable from parameters in 
(~,  a)a~ A since we are assuming that 3�9 (iii) does not hold.) 
Therefore IN, Qa, ga~, ~r, a)a~At,  o ~ , ~ :  ~ Mod 2~+ z . By the 
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Lbwenheim-Skolem theo rem we can obtain a s t ructure  

(9I ~+1, p(~+l), t-(~+l) JaB ,7r, a)aEA~,a,~E~2 E Mod E~+ 1 

such that  19ie+11 _ 19/~1 and ~ + 1  <-- g. We define 

p(~+l)  = p(~+l)  p(/~+l) = p ~ + l )  
(~'(0> ' a^<l> , 

fa(~+l) = f ( ~ + l )  f (~+ l )  = 7r o f (~+ l )  
^<o),~'<o> ~a~ , ~^<o>, ~'<o> ~a~ , 

f a  (~+1) = 7/" o -(~+1) o 71.-1 f ( ~ + l )  = 11" 
^<1>, ~-<l) Id~ , ~a-(0>,a-O> �9 

By a s traightforward computa t ion ,  we can verify that  condi t ions  
(i)~+ 1 - (vi)~+ 1 are satisfied. In fact, (i)~+ 1 is obvious. By construc- 
tion 

(~, p(o) < (~+~ p(a~)~ 
, - - a ^ < O > ,  

for all a ~ t2 and we now check that  

(9~ P(~) :g ( ~ + 1  p(~+l)) 
, , a~(1) ,  

for all ,~ ~ ~2. Let  

(91~+1 p(~+l)~ ~ ~b[a 1 am ] ' a ' ( l > "  ' " "  

for some a l ,  ..., a m E A~. Then 

( '9~+ 1 ~r- 1 p}.(~+iL r 
' a ' ( l > '  ~ al . . . .  ' a m  ] " 

~ - 1  

Since 

7rlA~ = idA~ (~[~+1'  p(~+l) ~ ~ ~b[a 1 am ] 
, a ^ ( O > ,  , . . . ,  . 
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By the construction this implies 

(9:[~, p(O) ~ q~[al, ..., am ] 

and this completes (ii)~+ 1. The rest of  the conditions can be easily 
verified. We just notice that for (ill)t+ 1 we use the fact that friar = 
idA,; in (iv)t+ 1 we use the fact that the composition of two auto- 
morphisms is an automorphism and in (vi)~ we notice that 

o(~+1) p(~+l)~ = p(~) p(~)~ 

Assume that X E # is a limit ordinal and that we have defined 
the structures up to X. We define 

9~ x = U { ~ : / j c X }  ; 

p(x) = U {PL~ : ~E X} , for all~ E x2; 

fa Cx)=U[e(~) ~ e X }  for a l la , /3EX2 

(We notice that these definitions make sense because of (ii)~ and 

(iii)~). 
The verification of (i) x - (vi) x is simpler than in the previous 

case and is omitted. We just notice that (ii)x and (v) x use Tarski's 

union theorem [26]. 

Finally, let 

~= u {g~: ~e~}; 

P ~ =  U (P(O : ~ # }  for allu c , 2  �9 
- o~1~  , , 

fa~ U~r ~E/a} for a l l~ , /3Eu2"  

and * = (0, 0, 0, ... ). 
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Then (9~, P , )  ~ Mod T. (By Tarski's union theorem and ~ =  #.) 
Furthermore if G = Aut (95), then I Oa(P, )1 = 2 ",  since for each 

~ ~2, Pa ~ Oc(P,) and Pa :~ P~ whenever a r fl, as it is easily 
verified. It follows that (ii) does not hold. The other implications 
are obvious. 

3.2.2. Remark. For the particular case ~ = t~ 0 (and hence # = S0), 
this theorem was conjectured by M.Makkai (private communica- 
tion). He had proved a special case, namely the case that Mod (T) 
is a UC A class (though allowing operation symbols in p). His (un- 
published) proof made use of a partition theorem of [ 5 ]. Recent- 
ly, D.Kueker has kindly informed us that several years ago C.C. 
Chang had proved (but not  published) the equivalence of (iii) and 
the following condition (ii)' (for the special case ~ = t~0): 

(ii)' For every infinite countable (9~, P) E Mod 7", 

[ (-P' :  (9~, P ' )  _~ (9~, P ) } [  < ~1 " 

His proofis  quite different from ours and used Vaught's two car- 
dinal theorem [ 1 9]. After seeing our abstract [ 2 1 ], Chang pointed 
out that we can obtain 3.2.1 (for the particular case x = ~0 again) 
by combining his result with Theorem 2.2.2. His method,  however, 
does not  seem to yield 3.2.1 in the general case. 
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