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The main results of the theory of definability in pure logic can
be grouped, roughly, into two classes: those of local and those of
global nature.

As an example of the first, we can mention Scott’s definability
theorem [22]. In admittedly vague terms it states that a relation
“determined’ by the relations of a countable structure can be de-
fined in the structure by an infinitary formula of the language L o
(see [9] for references on infinitary languages). The other class is
exemplified by Svenonius’ theorem [25]: assume that in every
model (%, P) of a complete first-order theory T{P), P is “deter-
mined” by the relations of 9. Then in every model (%, P) of T(P),
P is “uniformly” definable by a first order formula (i.e., the defini-
tion does not depend on the model).

For first order logic, we can usually obtain a global resuit by
‘“*globalizing” local results for saturated or special models. The

* This research was undertaken while the author held a position of Attaché de Recher-
ches at the Université de Montréal during the scademic year 1967—1968, The first
draft of the manuscript was written during the summer of 1968, when the author was
in residence at Queen’s University (Kingston, Ontario). The author would like to thank
Prof. P.Ribenboim, who made possible in this last arrangement.
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compactness theorem does the job (see for instance [2], [10],
(111, [18]). Similarly, we can easily “localize’’ global results.

For the infinitary language L , Jw» O the other hand, we have a
split: there are local results such as Scott’s theorem just mentioned
and some global results (i.e., the analogue of Beth’s theorem in
[17]1). However, in general, we cannot obtain one from the other.

In this paper we shall study further this ““local theory of defini-
tion”. By this term we shall mean (as a first approximation) the
theory of Galois connection between groups of permutations of a
set X and objects constructed from X (i.e., relations, sets of rela-
tions, etc.) which are “determined” (in a sense to be made precise
later) by these groups. Similar programs have been considered ear-
lier by M.Krasner [12] and J.Sebastido e Silva [24].

In §1 we study groups of permutations of a set X acting on rela-
tions (and sets of relations of X'), By introducing a natural topol-
ogy, a form of Baire category theorem can be proved for certain
groups (Theorem 1.1.17 and 1.1.18). Several consequences are
pointed out.

In §2 we consider the problem of introducing algebraic struc-
tures on the objects correlated with the groups to complete our
Galois theory. Only the case when the objects are sets of relations
has been considered. We make our objects into polyadic algebras
and Galois correspondences are set up between certain polyadic
algebras and some groups of permutations (Theorems 2.3.12 and
2.3,14). This solves a problem raised by A.Daigneault. Some local
results about L, and L, , are also obtained.

The main result in §3 is an improvement of the Chang-Makkai
theorem [2,18] and proves a conjecture of M.Makkai. The proof
makes use of certain results of § 1, “specialized” to special struc-
tures.

A much weaker version of § I appeared in our dissertation [20]
as section 2 of chapter 3 and the main result of §3 in [21].

We are highly indebted to our thesis advisor Professor W.Craig.
He has emphasized the possibility of ‘“non-linguistic’ approaches
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to logic and the present paper is written in this spirit. We would
also like to thank Professor M.Makkai. He suggested that Baire
category techniques used by us in [20] could be applied to prob-
lems of definability. The possibility of interpreting some of our
results in the context of a Galois theory was pointed out by Pro-
fessor A.Daigneault, who referred us to the previous works of
Krasner and Sebastiao e Silva. We express him our thanks. Finally,
we would also like to thank Mr. Vincent Papillon who took notes
during a course we taught at Montreal including some of these sub-
jects and made some valuable comments.

Our notation and terminology are taken for the most part from
[19] and follow the recommendations of [0]. We shall not attempt
the (often) hopeless task of making a list of all the notations to be
used. (““Do not scratch if it doesn’t itch!’’) We just notice that
structure will be understood in the sense of relational structure
with finitary or infinitary relations, possibly with distinguished
elements.

We shall freely indulge in confusions of use and mention.
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§ 1. Definability without language
1.1. Topological groups

Throughout this section, we let A be an infinite set and we let
A! be the group of permutations of 4.

1.1.1. Definition
(i) For every partial mapping f from A into 4, we let

[fl={r€dl:nDf}.

(ii) For every infinite cardinal u we define a class 9B, of subsets of
Al as follows:

Q€ B, iff 0 =[f] for some partial mapping from A into itself

1.1.2. For every infinite cardinal u, B, is a basis for a topology
on A!.

Proof: Obviously A! =UB,. Let [f], [g] € B, and let r [F]1 N [g].
Hence 72 f and 7D g. Let A = w|dom (f)U dom (g). Since

dom () < pand dom (g) < p, thus dom (k) < u. Hence 7€ [h] € B,
and [A] € [f]1 N [g].

1.1.3. Definition. The topology defined by ‘B, on 4! is called the
u-topology.

1.1.4. For every infinite cardinal u, A! provided with the u-topology
is a Hausdorff topological group.

Proof: Let m,m € A! be such that 7 # 7'. Hence n(a) # 7'(a) for
some a € A. Therefore 7 € (7| {a}], 7' € [#"|{a}] and

[7]{a}] N [7'|{a}] = 0. To finish our proof, we check that A!isa
topological group. Let I: 4! > A! and C: A! x A! > A! be defined
by I(r) =71 and C(m;, ;) = m; © m,, respectively. If 7 € I71Ur1,
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then 7 € [w|range(f)] C I"1[f], ie., f is continuous. Similarly, if
(my,m,) € C7L[f], then

(m1,m5) € [my|dom(my 0 f)] x [y |dom ()] € C7Lf],
i.e., Cis also continuous.

Henceforth, we shall tacitly use the fact that a subgroup of a
topological group is itself a topological group (with the induced

topology).

1.1.5. Definition. Let u be an infinite cardinal and let M C A! be
the topological space with the induced p-topology.

(1) N is u-meager in M iff N = U{NE: £ € u}, for some sequence
(Ng: £ € w) of nowhere dense subsets of M.
(ii) N is co-u-meager in M if M\ N is y-meager in M.
(iii) M is a p-Baire space iff Q is the only open u-meager subset of M.
(iv) M is a p-Baire group iff M is a topological group which is also a
u-Baire space.

The assumption that a group is u-Baire has several interesting
consequences as the rest of 1.1 shows.

1.1.6. Let u be an infinite cardinal and let G C A! be a u-Baire group.
Then either G> por G N [idy] = {id }, for some X C A such that
X< .

Proof: Assume that G < u. Then {id} is not nowhere dense in G.
In fact, assume the contrary. Then for each 7€ G, {7} is nowhere
dense in G by the homogeneity of G (since every topological group
is homogeneous). Therefore G = U {{r}: 1€ G} is p-meager in G, a
contradiction. Hence G N [idy] C {id4} for some subset X C 4
such that X < M.
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1.1.7. Definition. Let G C A! be a group, m €G, u a cardinal, £ € y,
s€fdand PC ¥4

(i) The image of s (respectively of P) under 7 is defined as
s =(m(s(n)): n €§) (respectively as m*P = {7*s: s€EP}).
(ii) The orbit of s (respectively of P) under G is defined as 06 (s) =
{n*s: m € G} (respectively as 0% (P) = {x*P: 7 €G}).
(iii) The group of stability of s (respectively of P) relative to G is
defined as G(s) = {r€G: n*s =5} (respectively as G(P) =
{reG:n*P=P}).

1.1.8. Assume that u is an infinite cardinal, §€u, PC ¥4 and s €84,
Then

(i) G(s) is both open and closed in G (provided with the p-topol-

ogy).
(i1) G(P) is closed in G (provided with the u-topology).

Proof: (i) foll_og_vs f_rin Gs)=Gn [idrg(s)].

(ii) Let m € G(P) (G(P) denotes the topological closure of G(P))
and s € P. Since 1g(s) < p and 7 € [7lrg(s)] € B, [7Irg(s)] N
G(P)+ 0. Let 0 € [mirg(s)] N G(P). Then a{rg(s)=m|rg(s) and
o*s &P, since 0*P = P, Hence 7*s € P and this shows that
T¥P=P le., m€GP).

In terms of these notions we can introduce a topological meas-
ure for the dependence of a relation on a group.

1.1.9. Definition. Let G C A! be a group, u an infinite cardinal,
fepand PC 4.

(i) P is uy-determined by G (written P is G —u—det) iff G(P) = G.
(i1) P is y-weakly-determined by G (written P is G —u—w.det) iff
G(P) is open in G (provided with the u-topology) *.

t Conditions (i) and (if) are the “non-linguistic” counterparts of ‘‘definable’ and “‘defin-
able with parameters”. See 1.1.13, 1.1.14, 2.2.1, 2.2.2 and 3.1.6.
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(ii1) P is u-free over G (written P is G-u-free) iff G(P) is nowhere
dense in G (provided with the p-topology).

1.1.10. Assume that u is an infinite cardinal, G C A!, £ € u and
PC %4 . Then P is G-p-w.det iff P is G N [idy]-p-det, for some
X C A such that X < .

Proof: Assume that P is G-u-w.det. Since G(P) is open in G (1.1.9
(i)) and idy € G(P), then G N [idy] € G(P) for some X C 4 such
that X < u. Clearly Pis G N [idy]-u-det. Conversely, suppose that
Pis G N [idy]-u-det for some X © 4 of power less than u. Then
G N [idy] € G(P) and this shows that id, is an interior point of
G(P). By the homogeneity of a topological group, every point of
G(P) is interior, i.e., G(P) is open in G.

Instead of “open” and ‘“‘nowhere dense” in 1.1.9 we could have
used “not u-meager” and “‘u-meager’ respectively, at least from
u-Baire groups. In fact,

1.1.11. Assume that w is an infinite cardinal G € A! a u-Baire
group, £ € g and PC £4. Then

(1) P is G-p-det iff G(P) is co-u-meager in G;
(ii) P is G-p-w.det iff G(P) is not p-meager in G;
(iii) P is G-p-free iff G(P) is p-meager in G.

Proof: (i) Assume that G(P) is co-u-meager in . Since G(P) is
closed in G (1.1.8 (ii)), G ~ G(P) is open and u-meager in G. Then
G ~ G(P) =0, i.e., P is G-u-det. The other implication is trivial.

(ii) Assume that P is G-u-w.det. Then G(P) is open in G (1.1.9
(ii)) and since G(P) # 0, then G(P) is not y-meager in G. Assume,
on the other hand, that G(P) is not u-meager in G. Hence G(P) is
not nowhere dense in G and this implies that G(P) has an interior
point. By 1.1.8 (ii), G(P) = G(P) and by the homogeneity of a
topological group, G(P) is open in G.
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(iii) Assume that G(P) is u-meager in G. Hence G(P) doesn’t con-
tain any non-empty open subsets of G. Since G(P) = G(P) (by 1.1.8
(ii)), this shows that G(P) is nowhere dense in G.

Besides the fopological measure, we have an obvious set-theoreti-
cal measure for the dependence of a relation P on a group G: the
cardinality of OG(P).

Our next theorem states that, under some conditions on u, these
measures coincide, We first state two lemmas:

1.1.12. Assume that u is an infinite cardinal, G € A! is a group,
(€ u, P,QC 4. If Pis G-p-free, then G(P, Q)= {me G: m*P=Q}
is nowhere dense in G.

Proof: For each w € G, the translations f, defined by f,(¢) =7 o 0,
for all ¢ € G, are homeomorphisms of the space . Assume

G(P, Q) # 0 (otherwise G(P, Q) is clearly nowhere dense in &) and
let 7€ G(P, Q) and let w € G(P, Q). Since f,_; G(P, @) = G(P) and
G(P) is nowhere dense in G it is easily checked that G(P, Q) is no-
where dense in G.

1.1.13. Assume that u is an infinite cardinal, G € A! is u-Baire
group, £ € pand P € £A. If P is G-u-free, then OG(P) > .

Proof: Assume that OG(P) < . Hence G = U {G(P, Q): Q € OG(P)}
is g-meager in G, since G(P, Q) is nowhere dense, for each

Q € OG(P) (1.1.12). This contradicts our supposition that G is a
u-Baire group.

1.1.14. Theorem: Assume that u is an infinite regular cardinal such
thatu=22 =X <2 N€u>, G C A! au-Baire group, £ € uand
P C tA. Then

(i) P is G-u-det iff OG(P) = 1;

(i) P is G-u-w.det iff OG(PY < u;
(iii) P is G-u-free iff OG(P) > .
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Proof: (i) is obvious and (ii) follows from (iii). Assume that P is
not G-u-free. Hence (by 1.1.11), Pis G-u-w.det. By 1.1.10, P is

G N [idy]-p-det, for some X C A such that X< k. Hence 5'5=(B <
pX < pp=p,

1.1.15. Assume that u is an infinite cardinal, G C A! a u-Baire
group and £ € u. If X is a set of G-p-free relations on 4 of rank &
and X < u, then there is some 7 € G such that 7*X N X = 0.

Proof: Since G(P, Q) is nowhere dense in G, for every P,0 € X
(1.1.12), U{G(P, Q): P, Q € X} is u-meager in G (because X < u).
Therefore there issomenr e G~ U{G(P,Q): P,Q € X}, ie.,

¢ G(P, Q) for every P, Q € X, Clearly n*X = {#*P: P€ X} is
disjoint from X.

We shall now give sufficient conditions for a group G C A! to be
u-Baire.

1.1.16. Definition. Let k and u be infinite cardinals and let G € 4!
be a group. G is B,-u-compact iff for every family {Q;: i€} of
elements of B, (the basis of the k-topology) such that 1<, if the
intersection of every subfamily of {Q; N G: i€ I} of power less
than k is non-empty, then U{Q, N G: i€} # 0.

1.1.17. Theorem. Assume that A = u is an infinite regular cardinal
and G C A is a Byy-p-compact group which is closed in the ¥;-
topology. Then G is a u-Baire group.

1.1.18. Theorem. Assume that i is an infinite regular cardinal, u*
the successor of pand G C Alisa %xo-;f -compact group which is
closed in the Ry-topology. Then G is a u-Baire group.

t We owe this formulation of %K-p-compactness to I.Fleischer, who simplified a previous
(equivalent) definition,
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We postpone the proofs of these theorems until the end of this
section.

As it will be shown in §2 (2.2.1 and 2.2.2) and §3 (3.1.6),
1.1.13 and 1.1.14 can be interpreted as very general local versions
of the Chang-Makkai theorem [2, 18]. To make them more pre-
sentable to the logical community and tie these and some other
results of this section to definability theorems, we “‘realize’’ some
subgroups of 4! as groups of automorphisms of relational struc-
tures with domain 4.

1.2. Groups and relational structures

In the rest of this section, we consider structures with domain
A.

1.2.1. Definition. Let u be a cardinal, A structure U is called u-
homogeneous iff any isomorphism between two substructures of
A of power less than u can be extended to an automorphism of tt.

Although this notion, due to B.Jonsson [6], seems to be too
restricted, we shall see that for some purposes it imposes no real
restrictions on a structure, i.e. under some conditions any struc-
ture A can be “homogenized” by adding relations, without chang-
ing Aut(2), the group of automorphisms of the original %A (1.2.4).

1.2.2. Assume that u is an infinite cardinal, ¥ a relational structure
having relations of rank less than u and G = Aut(% ). Then G is
closed in the p-topology.

Proof: Let % =<4, R);c;. Then clearly ¢ = N{G(R,): i€ I} and
hence G is closed by 1.1.9 (ii).

1.2.3. Assume that u is an infinite cardinal and G € A! a group.
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Then Aut[{4, OG(S»SE A } =G, i.e., the closure of G in the u-
topology.

Proof: Let A = (A4, OG(s))SEM Clearly G € Aut(%) and this im-
plies (by 1.2.2) that G C Aut(%). Assume that 7 € Aut(9). Let
Q€ B, such thatm € Q. By the definition of ‘13“, Q= [wlX] for
some subset X C A such that X < u. Let s € 84 be such that

X = range(s). Since s € 0F(s) and 7 € Aut(N), then 7*s € 06(s).
Therefore there is some ¢ € G such that 7%s = g*s, i.e.,

o€ [7lX] N G. Hence Q N G # 0 and thos shows that 1€ G.

1.2.4. Assume that u is an infinite cardinal, ¥ a relational structure
having relations of rank less than p and G = Aut(9[). Then A# =
o, OG(S))SEEA is yg-homogeneous and Aut(U&)=G

Proof: By 1.2.2 and 1.2.3, G = Aut(9(#).

Let f: ALIB - A LI f*B be an isomorphism between the two
substructures A # B and A £1f*B of domain B and f*B respectively
and such that B < u. Let s be a sequence in #4 such that range(s)
= B. Since s € 0G(s) N 9°m) B and £ is an isomorphism, f*s €
0G(s) n dom(s) £#B Hence, there is some 7 € G such that w¥s = f*s.
Clearly 7 2 fand 7 € G = Aut(%U#).

The last three lemmas have the immediate corollary:

1.2.5. Theorem. Assume that p is an infinite cardinal and G < A!
is a group. Then the following are equivalent:

(i) G is closed in the u-topology;
(ii) G = Aut(9), for some structure 9 having relations of rank less
than u;
(iii) G = Aut(), for some p-homogeneous structure 2 having rela-
tions of rank less than u;
(iv) G = Aut({4, 0% P, cpy )-

This theorem (minus the clause mentioning homogeneity) was
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independently obtained by B.Jonsson [8]. It should be noted,
however, that his result has already appeared in print.

1.2.6. Assume that ¥ and u are infinite cardinals such that for
every cardinal v < u, v¥ < u and k is regular. Assume that G C A!
is a group. Then the following are equivalent:

(i) (A4, O6(s), x4 is u-homogeneous;

(ii) For every family {Q,: i € I} of elements of 8, such that 1< U,
if the intersection of every subfamily of {Q; N G:i€ [} of
power less than k is non-empty, then N{Q; N G: i€} # 0
(G denotes the closure of G in the k-topology).

Proof: Assume (ii). Let % =(4, OG(S»sE.",‘A and let /2 AIB > AIC
be an isomorphism such that B = dom(f) has power less than p.
Let F € B be such that F < k. We can find a sequence s € £4 such
that F = range(s). Since s € 0%(s) N &B, for some ¢ € x and fis an
isomorphism, f*s € O%(s), i.e., there is some ¢ € G such that olF =
fIF. This implies that 0 € [ fIF] N G. We have shown that [ fIF N
G # 0 for every F C B such that F < k. Let F be a subfamily of
{lfIFING: FE€ B and F< k } of power less than k, i.e., F =
{[fIF;]1NG:F;CB, 1?, < Kk and i € I} for some / such that I< k.
This implics that N F = [fIU{F;: i€ [}] N G+ 0, since

U[F,: i€1] < k by the regularity of k. Since Fy = {[fIF]: FCB
and F< k} has power less than u (m virtue of the hypothesis on k
and W), N{[fIFING: FCB and F < k} # 0, i.e., there is some
o € G such that o !ldom(f) = f. Since G = Aut(%) (by 1.2.3) this
implies, in turn, that 9 is u-homogeneous.

Assume now that %A = (4, OG(S))seﬁA is u-homogeneous. Let
{Q,: i € I} be a family statisfying the hypotheses of (ii). By 1.1 .1
(ii), for every i € I there is a partial function f; from A4 into A4 such
that Q; = [f;] and dom(f;) < k. Let B=U{dom(f)): i €}. Clearly
B < . We define a function f: B = A as follows: f(b) = f;(b) if
there is some i € [ such that b € dom(f;). We first show that fis
well-defined. Assume that b € dom(f;) N dom (f/) for somei,j€ I.
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Since [f;]1 N [f;] N G # O by hypothesis, then there is some 0 € G
such that

oldom(f;)=f; and oldom () =f]- .

This implies that f;(b) = 0(b) = f;(b), i.e., f is well-defined. A similar
argument shows that fis 1 —1, We now show that f: %IB - YUIf*B
is an isomorphism. Let s € O¢(¢) N £B for some £ € k and let F =
range(s). Hence F € U{dom (f;): j € /} for some J € [ of power

J < . By the hypothesis on {Q;: i€ 1}, N{[f1 N G:jeJ}#0,
i.e., there is some ¢ € G such that oldom = fj for allj € J. This
implies that f*s = o*s € OG(¢). By the p-homogeneity of %, f can
be extended to some o € Aut (%) = G (by 1.2.3). Clearly

ce N{Q;nG:iel}.

1.2.7. Theorem. Assume that k and | are infinite cardinals stich
that for every cardinal v < u, vk < u and K is regular. Assume that
G C Alis a group. Then the following are equivalent:

(i) G is B, -u-compact and closed in the x-topology;
(ii) G = Aut ({4, OG(S))SE.'_‘A) and (A4, OG(S))SE.’_‘A is u-homogene-
ous;
(ili) G = Aut (), for some p-homogeneous structure ¥ having
relations of rank less than k.

Proof: By 1.2.5 and 1.2.6 we only need to show that (iii) implies
(ii).

Assume that % = (A, R;);e;is a yp-homogeneous structure having
relations of rank less than k. Let G = Aut () and X =
(4, 0%(s), e 4 - Assume that f: XIB - XIC is an isomorphism
such that dom (f) = B has power less than k. We shall show that f
is an isomorphism of A8 onto AIC. In fact, let s € R; N £B for
some & € K, Since 5s € 0G(s) N €8, f*s € 0G(s), i.e., there is some
0 € G such that f*s = ¢*s. But 0*s € R; and this completes the
proof of our claim. Since U is u-homogeneous, there is some
7€ ¢ = Aut (U) which extends f.
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1.2.8. Theorem. Assume that u is an infinite regular cardinal and U
a p-homogeneous structure of power 4 having only finitary rela-
tions. Then Aut (N ) is a p-Baire group.

Proof: Immediate from 1.2.7 and 1.1.17.

1.2.9. Theorem. Assume that . is an infinite regular cardinal, u*
the successor of uand U is a p-homogenous structure having only
finitary relations. Then Aut(N) is a y-Baire group.

Proof: Immediate from 1.2.7 and 1.1.18.

Proof of Theorem 1.1.17: Let G € A! be a group satisfying the
hypotheses of 1.1.17. By 1.2.7 there is some p-homogeneous
structure 9 with domain 4 having finitary relations only such that
G = Aut (%).

Let (as: £ € w be a list of all the elements of A. Assume that O
is a non-empty open subset of G and (N, : £ € u) is a sequence of
nowhere dense subsets of G.

We shall build a chain {f,: & € u) of partial functions from 4
into itself such that f=U{f,: £€n} € O~ U{N,: £€ u}.

Since O v N is a non-empty open subset of G, there is some
partial mapping f; from A4 into itself such that dom (fy) < pt and
0#[foel €O N_O
_ Let us suppose that £ € wand f, is defined in such a way that
dom (f;) < U, fy 2 f, foralln € £and [f;] # 0. Then (fel NE
is a non-empty open subset of G. Hence there is some partial map-
ping g from A into itself such that dom (g)<pand 0+ [g] C
[fg] ~ N

Let 7 € [g] and let X = dom (g) U dom (f,) U [a,: n < £l U
[m1(e,)in€ £]. -

Let us define f,, = wlX. It is easily checked that dom (fy,1) < H,
fee1 2 1, foralln < gand [f,]1#0.

If X € wis a limit ordinal, we define f, = U (fe: §€N]. Again
dom (f,) <-m(by the regularity of p) and f, 2 f,, foralln € . Fur-
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thermore [ f,] # 0, since f, is a partial isomorphism of ¥ into
itself (the union of a chain of partial isomorphisms of % into itself
Is again a partial isomorphism, since ¥ has only finitary relations)
and U is u-homogeneous. Finally, let f=U{f,: £ € u}. It is easily
checked that f€ Aut (%) and f€ O, since f€ [fy] € O. Further-
more, f € [ fy1] for all £ € pand this implies that f ¢ N, for all

£ € u. Afortiori, f¢ U{N,: £€ pu}.

Proof of Theorem 1.1.18: Let G € A! be a group satisfying the
hypothesis of 1.1.18. By 1.2.7, there is some u*-homogeneous
structure 9 with domain 4 having finitary relations only such that
G = Aut (%).

Let(a,: £€ 1"y be a list of all the elements of A (by allowing
repetitions, we may assume that ' 2 ). Assume that O is a non-
empty open subset of G and (N,: £ € u]) is a sequence of nowhere
dense subsets of G.

Exactly as before (1.1.17) we build a chain (f: £€ ul)of par-
tial functions and we define f=U [f,: £ € n]. As before, we can
check that f is a partial isomorphism of ¥ into itself. By the u*-
homogeneity of o, [f] # 0. Let w € [f]. It is easily checked that
T€0~ U [N E€u].

1.2.10. Assume that 4 = R, and U is a countable structure having
only finitary relations. Then Aut (%) is a ¥ 5-Baire group.

Proof: Immediate from 1.2.5 and 1.2.8.

It should be pointed out that we have developed the topological
notions here introduced just for the purposes at hand, without
attempting an exhaustive study. We have disregarded, for instance,
the fact that the groups of permutations act on topological spaces
(even metrizable in some cases) and not just on sets, i.e., we are
dealing with transformation groups.
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§2. Local definability and Galois connections

2.1. Orbital structures

We shall see that the key results to establish our Galois connec-
tion described in the introduction will be 1.2.3 and Scott’s defina-
bility theorem. However, since the latter is not true for uncount-
able structures *, we first study those structures for which it holds.

2.1.1. Definition. Let k and u be infinite cardinals, let % be a
structure of power u and let G = Aut ().

() A is orbital iff % has at most u relations of rank < p and every
orbit 0%(s) (for each s € £ A4) is definable from the relations of
%A by a formula of LM“ ook

(ii) U is k-orbital iff A is orbital having relations of rank less than «
and A% = (U, 0%(s)),cx, is w-homogeneous.

2.1.2. Assume that k¥ and u are infinite cardinals such that u = u¢ =
sup{u*: A€ k} and ¥ is a structure of power u having at most u
relations of rank less than x. Then the following are equivalent:

(i) U is k-orbital;
(i) forall § € k and all P C €4, if P is Aut (N)-u-det, then P is
definable in % by a formula of L, ,.

For the proof, we need the following simple lemma:

2.1.3. Assume that u is an infinite cardinal, ¥ is a u-homogeneous
structure of power u having at most u relations of rank less than pu,
¢ uand P C tA. Then P is Aut(%)-u-det iff P is definable from
the relations of % by a quantifier-free formulaof L, .

= See footnote on page 000.
** We owe this terminology to V.Papillon.
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Proof: For each s € £4, let A(¥ Irange(s)) be the diagram of the
structure ¥ lrange(s), i.e., the set of all atomic sentences or its

negations (in a language having individual constants for the ele-
ments of range(s)) which are true in %. If v € £ Var is a sequence of

variables, let
¥, (u) = Sub A A(Y Irange(s)) (j) ,
i.e., the result of replacing in the (infinite) conjunction of all the

sentences of A( Irange(s)), every name S by the variable Uy,
(n € §&). It is easily checked that

(U, P)E Vo V yv).
sEP

Furthermore V (v) is a quantifier-free formula of Lu+ N
sEP

Proof of 2.1.2: Assume that 9 is k-orbital, G = Aut(9), £ € x and
PC 4 is G-py-det. Then U’ = (4, 0%(s)),c x4 is #-homogeneous
having u relations (since u¥ = i) and Aut(¥') = G (1.2.4 and 1.2.5).
By 2.1.3, P is definable in %' from the orbits { OG(s): s€ ¥4} by a
quantifier-free formula ®(v) of Lty Since U is orbital, for each
s € EA, O6(s) is definable in Y by some formula &, of Ly, Let

0%(s) .
®*(v) = Sub d(v) ( ) It is easily checked that (%[, P)

s sE€EH4

Vv (Pv < $*(v)).

2.1.4. Assume that k and u are infinite cardinals, k £ u. M is a p-
homogeneous structure of power u having at most u relations of
rank less than k. Then ¥ is k-orbital.
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Proof: Immediate from 2.1.3.

2.1.5. Remark: (i) In view of 2.1.2, Scott’s definability theorem
can be stated as follows:

Let 9 be a countable structure having countably many finitary
relations. Then ¥ is orbital.

(ii) Assume that u is an infinite cardinal and 9 is a structure of
power u having finitary relations. Then % is homogeneous (of
degree u) in the sense of [19] if the orbits O%(s) (for G = Aut(A)
and s € #A) are definable in U by sets of first-order formulas.

Another important local theorem for L, is Scott’s isomor-
phism theorem [22]. This theorem cannot be generalized to un-
countable structures * and now we turn our attention to those
structures for which it holds.

2.1.6. Assume that u is an infinite cardinal and (%, §) is definable,
up to isomorphism, by a sentence of L,,, among the structures of
power u, for all s € 4. Then U is orbital.

Proof: Let £ € u, s € £4 and G = Aut(¥). By hypothesis, there is a
sentence $(s, ), e, which defines (2, s) (up to isomorphism)
among the structures of power u. It is easily checked that

0y
Sub @, (vn) defines 0C(s), i.e., % is orbital (since A must
n’ n€¢
have at most u relations).
We don’t know whether the converse of 2.1.6 holds, although it
seems unlikely that it does.
However, we have been able to establish a partial converse (for

R-orbital structures). We first need the following lemma:

* A counter-example (for regular uncountable cardinals) has been constructed by M.
Morley; D.Kueker (whom we owe this information) has employed this counter-
example to show that Scott's definability theorem fails (for regular uncountable
cardinals). In our terminology, there are structures of regular uncountable powers
which are not orbital.
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2.1.7. Assume that x and u are infinite cardinals such that g = ¥
and % a structure of power u. For every £ € k and every s € {4,
there is a formula ®(v) of L, such that

() (A, 8) E ¢;(8);
(i) (U, 1) E ¢, (¢) implies (¥, s) = L., (%, 1), i.e., (N, s) and (U, t)

have the same true L+, sentences.

Proof: Let £ € pu and s € ¥4.

Let (¢, :n€ u be alist of all sequences ¢ in €4 such that (YU, s)
(%, 1) (we use our hypothesis that u# = u). Therefore, for each n € p,
there is some ¢, (v) in L+, such that

W) E¢,(s) and (A, 09,8,

Let us define ¢,(v) = A{¢n (v): n € u}. Then ¢,(v) is a formula of
L+, and it is easy to see that (i) and (ii) are satisfied.

2.1.8. Theorem. Assume that u is an infinite regular cardinal such
that u = 2¥ and ¥ a u-homogeneous structure of power u having at
most u finitary relations. Then ¥ is definable (up to isomorphism)

by a sentence of L+, among structures of power .

Proof: The proof, as in the case of our previous lemma, is a modi-
fication of the original proof of Scott [23] and so we sketch it

only.
Let { be the conjunction of the following sentences:

(i A 3y, ¢(a)(vo) ’
a€A

G) A A Yo@-—> A 3woy,yl,w),
tEu sEL4 a€A4

(iii) A AN Yu(p,0)>Vw V ¢y, w)),
t€u s€t4 a€A
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@ A A V([ A (¢slg(vls)]+¢s(u)),
tES
den s€%4
5 limit

v) A A Yy (d)s(v)—»Sub/\A(QIFrange(S))(S) ;
t€p sEE v

where ¢, is obtained by 2.1.7. (Sub A(¥lrange(s)) (S) is defined
in the proof of 2.1.3).

Clearly  is a sentence of L 4.

We now show that U= ¢. The clauses (i), (ii), (iii) and (v) follow
the original proof of Scott. To show (iv), let § € u be a limit ordinal
and let s, ¢ € 4 be such that (U, 1) = ¢, (21§) for all £ € 6. Define
f: range(s) = range(¢) as follows f(sE) =t for £ € 6. By (v) and the
fact that all the relations of 9 are finitary, f: % lrange(s) ™
Alrange(t) is a partial isomorphism of U into itself such that
a'o-rrT(T). < u. Since ¥ is u-homogeneous, there is some 7 € Aut ()
such that m 2 f. From (¥, 5)k= ¢,(s) we obtain (%, 7¥s)k= ¢,(7*s),
ie., (U, 1) ¢ (r).

Assume now that B = ¢ and B = u. To show that B~ 9, we
employ the usual Cantor type argument. The only novelty (with
respect to Scott’s proof) is the appearance of limit ordinals which

are handled by (iv).

2.1.9. Theorem. Assume that u is an infinite regular cardinal such
that u= 2% and U is an Yy-orbital structure of power j. Then U is
definable (up to isomorphism) by a sentence of L, , among struc-
tures of power .

Proof: By 2.1.8, %¥ is definable (up to isomorphism) by a sen-
tence of L., among the structures of power u. Since ¥ is orbital,
for each s € ¥4 0Y(s) is definable in A by some formula ¢ (v) of
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. ) . ‘06 (s)
L4, Itis easily checked that y* = Sub ( ;
8

(up to isomorphism) among structures of power u.

) defines %
sEYA

From our proof, it is clear that there is connection between or-
bital and homogeneous structures. To make it explicit, we define

2.1.10. Definition. Let k and u be infinite cardinals and let % be a
structure power u. 98 = (9L, (fb%{: ® is a formula of LM# having
a set of free variables of cardinality less than «)).

2.1.11. Assume that k and u are infinite cardinals such that u = u¥
and U is a structure of power u having at most u relations of rank
less than k. Then the following are equivalent:

(i) U is k-orbital;
(ii) A% is u-homogeneous.

Proof. Assume that % is k-orbital. Let § € k, s € 4, G = Aut (%)
and let ®, be a formula in L whlch defines 00(s), i.e., <I>QI =
06(s). Then o, (I> dsexq 18 u—homogeneous by 1.2.4. A fortiori,
Ak is u- homogeneous Assume that 9% is y-homogeneous. Let
E€ K, 5 € ¢4 and let ®; be the formula of L,,, given by 2.1.7.
Assume that (¥, 1) = &.(8). By 2.1.7 (i), (¥, s) = . &1, ). Let
us define f: range(s) - range(s) as follows f(s,) = 1,, foralln € £.
It is easy to see that A 9% |range(s) ~v Qld" | range(t) Smce
range(s) < p and A is u- homogeneous there is some 7 €
Aut(% %) such that m 2 f. Hence (¥, 5) %, (¥, ¢) and this shows
that ®, defines 0%(s).

The following result tells us that if the group of automorphism
of a structure has a “sufficient degree of compactness”, all these
notions of orbital structures coincide and Scott’s definability theo-
rem holds iff Scott’s isomorphism theorem does.
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2.1.12. Assume that u is an infinite cardinal and ¥ is a structure of
power u having at most u finitary relations. Assume, furthermore,
that Aut(%) is Br,-p-compact. Then the following are equivalent:

(1) U is orbital;
(ii) ¥ is By -orbital.

Furthermore, if u = u# the following condition is equivalent to
(i) and (ii):

(iii) (¥, s} is definable (up to isomorphism) by an L, , sentence
among structures of power u, for every s € ¥4 and every £ € u.

Proof: Assume that ¥ is orbital. By 1.2.5 and 1.2.7 (i),
(A, OG(s) 9y is y-homogeneous (letting G = Aut(¥)). A for-
5

tiori, A% is u-homogeneous and this shows (ii). Under the assump-
tion that u = u¥ 2.1.9 shows that (ii) implies (iii), since (%, s) is
easily seen to be Ny-orbital. Finally (iii) implies (i) is a consequence
of 2.1.6.

2.1.13. Assume that u is an infinite cardinal such that u = u¥ and
A = (A4, R;);c is a structure of power u having at most u finitary
relations. Assume, furthermore, that Aut(%) is %xo—u—compact.
Then there exists ¢(R;, Sj),-ej, jesin Ly, such that J < u, each
S; is a new finitary relation symbol, = (S} s ¢ <> ANSyes o
and for all % of power 1, BE= 3 (S,)jej ¢ iff BN A,

Proof: Let G = Aut(). By 2.1.12, %< = (A, 06(s)), g w4 iS4
homogeneous. By 2.1.8, A is definable (up to isomorphism) by a
sentence & (R;, OG(S))iGI, scwy in L, among structures of
power u. Clearly % k= 3(S)) = o4 ¢, Where
¢ = Sub ¢, (og(s ))
s /sEY4

Let B be a structure of power u such that B IS cwy ¢.
Hence there is some family (S;: s € £A) of relations on B such that
(B, 8);cwy E ¢. Therefore (B, S;);ewaq ~ (¥, 06(s));ew,y and
this clearly implies that 8 ~ 9.
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To finish the proof, we shall show that ¢(R;, S);cwy A
d(R;, S)sewy = Sg =8, is logically valid, for every s € ®A. By
(a form of) the Lowenheim-Skolem theorem for L., (see for in-
stance [9], 10.3.5), it is enough to show that this sentence is valid
in every structure of power .

Let (B, 5, S)sewa b= 6R;, Shiewy N (R, Sg)sewy and
B = . Hence (B, S,),c w4 e (U, 09(5))s ¢ w 4 for some f and
(B, S)ycewa 2 f*SDycwq .

This implies that (%, 0%(s)),;cwy e (U, f*Sg) e wy for some
7 € G which, in turn, implies that OCG(s) = f*S;, for every s € £ A.
From this we conclude that S; =S, for every s € @ A.

We do not know whether the hypothesis of 2.1.13 implies that
% is definable by an L, , sentence (equivalent, whether being
orbital can be deleted from the definition of an Ry-orbital struc-
ture).

2.2. Local theory for L‘ml

We have seen that Scott’s isomorphism theorem holds for 8-
orbital structures (2.1.9). We shall presently show that these struc-
tures play (with respect to L “ﬂ‘) a role similar to that of countable
models with respectto L ,, .

2.2.1. Theorem. Assume that u is an infinite cardinal such that
=t and A is an Rg-orbital structure of power . Let & € y,
G = Aut (%) and P C £A. Then the following are equivalent:

(i) Pis G-p-w.det;
(ii) Cigf)_is open in G (provided with the u-topology);
(iil) O¢(P) < u;
(iv) There is a formula ®(v, w) of L“+“ such that v € £€Var and
wE ¥Var and
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(A, P) = Iw Vv (Pv <> (v, w)) .

Proof: From 1.2.4, G = Aut(¥« ). The equivalence of (i), (ii) and
(iii) now follows from 1.2.8 and 1.1.14. It is obvious that (iv) im-
plies (iii). We now show that (i) implies (iv). Assume that P is G-u-
w.det. Hence P is G N [idy ]-u-det, for some X € A such that

X < u. Let s be a sequence which well-orders X. Since ¥ is orbital,
(U, s) is easily seen to be orbital. Furthermore P is Aut (2, s)-u-det
and hence definable by a formula $(v, s) of L (2.1.2). This
implies (iv) and our proof is complete.

pty

For the particular case u = 8, we have the following corollary:

2.2.2. Theorem. Assume that 9 is a countable structure with count-
ably many finitary relations, n € wand P S "A. Let G = Aut (Y).
Then the following are equivalent:

(i) P is G-Rg-w.det;
(ii) C_;‘glis open in G (provided with the ¥,-topology);
(iii) OS(P) < Rg;
(iv) OB(P) < 280;
(v) there is a formula ®(vg, ..., Up_j, Wos +es Wyy1) Of L4 such
that

(U, P)E 3wy, .y Wiy YU, Uy (Pug, ey Uy <> P).

Proof: The equivalence of (i), (ii), (iii) and (v) follows from 1.2.4,
2.2.1 and Scott’s definability theorem (2.1.5 (i)). To show that (iv)
implies (iii), we notice that OG(P) is an analytic set in the space

"w 2 (with the product topology) and hence its cardinality is either
finite, countable or 280 (see Kuratowski [16]).

Theorem 2.2.2 was found independently by D.Kueker [14]
(although without clause (2)) and by us in our dissertation [20].
His proof is much different from ours. Several of Kueker’s results
can be set in the present context. We just give one example.
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2.2.3. Theorem. Assume that p is an infinite cardinal such that
i =k and tt is an Ry-orbital structure of power u. Then the fol-
lowing are equivalent:

(i) < s

(i) There are formulas ®, (,: § € w of L, such that

AEJud and

Ak YuVwy (> V Vzi(zg =wg <> §));
tE€p

(iii) There is a formula ® in L ptu such that for all P C A there are
formulas (y,: §€ w of L, , satisfying

AEIvd and

AL Vo (@~+ V Vwy (Pwy <> ¥,)) .
EEyp
Proof: From 1.2.4, G = Aut(%¥). It follows from 1.2.8 that G isa
p-Baire group. From 1.1.6, G N [idy] = {id, }, for some X C A4
such that X < u. The rest of the proof follows Kueker [14] (see
also [15]) and is omitted.

2.2.4. RemarK. It has been noted by several people (Barwise, Mak-
kai, Weinstein, etc.) that several ‘‘local’” preservation theorems
established by Keisler {10, 11] for saturated structures and first-
order language hold for countable structures and L, . For the
sake of completeness, we give two examples.

2.2.5. Assume that % and B are countable structures having fini-
tary relations only such that every existential L., sentence true

in % is also true in B. Then U is embeddable into B.

2.2.6. Assume that % and 8 are countable structures having fini-
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tary relations only such that every positive L, ., sentence true in
A is true in B. Then B is an homomorphic image of A,

We shall sketch the proof of 2.2.6.

We write { = B to mean that every positive L, sentence
pos

true in ¥ is true in B. We proceed by induction. Assume that

(A, aq,....a,) = (B,bgy,...,b,) forsomene w.
pos

If n is even, let a,41 be the first element of 4 (in some well-order-
ing). Let (by: k € w) be a list of all the elements by, of B such that

(A, ag,s s Ay @yy) = (B, by, . by, By) .

pos

For each k € w, let ¢, (ay, ..., a,, vy) be a positive formula of
L, such that

(Q{, a(): sy an ’ an+1) '= ¢k(a0s revy an ) an+1)

and

(B, by, .oy by b}c) E ¢, (bg, ...s by, b}c) .
Define

By oy tgs) 005 058 00)= A 93, sy, v0).
Since

3")0 ¢(a0, v @y At 17 (aO s s Ay UO)

is positive and true in (%, ag, ..., a,),

(%: bOs sey bl)t= 3v() » ¢(ao, ""an’”n+l)(b0’ rees bn) UO) .
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Let b,,; be the first element of B (in a suitable well-ordering)
which satisfies

¢(a0, S an+1) (bO 3 e bn s UO) .
Clearly

(%[, ao, caay dn+1) = (SB, bO, ceey bn+1) .

pos

If »n is odd, we start with an element of B, etc. The proof of 2.2.5
is similar, but simpler and is omitted.

2.3. Galois connections for orbital algebras

The connection between groups and structures given by 1.2.5
and 1.2.7 suggests the possibility of a Galois theory between these
objects. However, since a structure is not determined by its group
of automorphisms, we consider (instead of a structure) the set of
relations “determined” by that structure. The only trouble is that
we cannot talk about the group of automorphisms of a set of rela-
tions, Our remedy is to make these sets into polyadic algebras.

2.3.1. Definition. Let k and u be infinite cardinals, and let X be a
set of power p. Furthermore, let % be a structure of domain X. We
define [%]£ = {R: R C £X for some § € k and R is definable from
the relations of A by a formula of L, }.

2.3.2. Assume that k and p are infinite cardinals such that u = u% =
sup {ur: A€ k} and U is a k-orbital structure with domain X. Then
(A1« ={R: R C tX for some & € k and R is (% )-u-det}.

Proof. Immediate from 2.1.2.
As a coroilary we obtain
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2.3.3. Assume that k¥ and u are infinife cardinals such that u = p¢ =
sup [ur: A€ k], ¥ and B are x-orbital structures with domain X.
Then [N1* = [B14 iff Aut(U) = Aut(B).

2.3.4. Definition. Let x and u be infinite cardinals ¥ < u and £ € k.

DIfRCEX, welet R: #X - 2 be defined as follows:
R(f)=1iffflEER forallf€ *X ;
(i) If R C #X, we let R be the characteristic function, i.e.,
R(f)=1iff fER, forall f€ *X ;
(iii) C% ={R: R C £X for some £ € K };

(iv) Ck ={R: R C #X}.

The sets C§, and C§ have natural structures of polyadic algebras
with equality (see [4] and [6] for references on polyadic algebras).
We call C4 the full polyadic algebra and %, the full polyadic
algebra with elements of support less than K.

(v) If o is any structure with domain X, we let RE(A) = [R:
R e {)¢}.

The next lemma is obvious,

2.3.5. Assume that % is a structure with domain X and relations of
rank at most u. Then R4 () is a (polyadic) subalgebra of C}'} (with
the polyadic operations induced by C%).

We now define the Galois group of an algebra.
2.3.6. Definition. (i) If A € C% is a (polyadic) algebra, we let

g8(A4), the Galois group of A, be the group of automorphism of C%
which leave A pointwise fixed;
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(ii) If G € Aut(C%) is a group, we let {f(G), the fixed algebra of
G, be the algebra of all the elements of C§ which are left fixed by
G.

2.3.7. Assume that 9 is a structure with domain X. Then Aut (%)
is naturally isomorphic to gg(‘R¥()), for every infinite cardinal k.

Proof: Immediate consequence of Theorem 1.4 of [4].

In view of 2.3.7 we identify gg(R¥()) with Aut(2). Under
this identification, gg becomes a map from certain algebras into
subgroups of permutations of X!.

2.3.8. Definition. Let A C C% be a (polyadic) algebra. We call 4
k-orbital iff A =R (W) for some x-orbital structure ¥ with domain
X.

2.3.9. Assume that k and u are infinite cardinals such that y = u¥
and A € C§ is a (polyadic) algebra. Then the following are equiva-
lent:

(i) A is k-orbital;
(ii) A isRE(Y), for some u-homogeneous structure having at most
u relations of rank less than «;
(iii) There is a G € X! which is closed in the k-topology such that
A =RECX, O%(), cpy)-

Proof: (i) = (ii): Assume that A is k-orbital. Hence A = Q2% (%) for
some k-orbital structure % with domain X. By 2.1.11, %%¥ is u-
homogeneous. Clearly Re(A k) = RE(U) = A and AY¥ has u rela-
tions of rank less than k.

(ii) = (iii): Assume that A =R (¥) for some p-homogeneous
structure having at most u relations of rank less than k. Let ¢ =
Aut(%) and A’ = (X, OG(S))sEL‘X' Then G = Aut(%') and G is
closed in the k-topology. Furthermore ¥ and %' are y-homogene-
ous (1.2.4). This implies that % and %' are k-orbital (2.1.4). By
2.3.3, [UATE = (U], ie., REL) =REA) = A.
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(iii) = (i): Immediate from 2.1.4.

We can ask whether there is an “‘intrinsic” characterization of
orbital algebras. We shall answer this question only for the case
K= 8y (2.3.11). We need some definitions.

2.3.10. Definition. Let ¢ be an infinite cardinal and let X be a set
of power u.

(i) If B is a subset of Cj‘“,, we let B* be the smallest (polyadic)
subalgebra of C§ which is u-complete (in the boolean sense);
(ii) If B is a subset of C§, we let BE = B N Cg.

2.3.11. Assume that X = Rg and A € (¥ is a (polyadic) algebra.
The the following are equivalent:

(i) A4 is orbital;
(i) A = (B«)¥ for some countable subset B of 4.

Proof: Assume that A4 is orbital. Hence A = ®R¥(Y), for some
orbital structure A =(X, R ), . Welet B = {Rn: nE w}. Itis
easily (but teadiously) shown that B« = {R: R is finitary or in-
finitary relation on X definable in (X, R ), ¢, by a formula of
Ljw }. This clearly implies that (Bw)® =R@(9) = 4. Assume now
that A = (Bw)w, for some countable subset B of 4. Since 4 is
locally finite, we can write B = {Rn: n € w}, for some sequence
(R, : n € w) of finitary relations on X. By Scott’s definability theo-
rem (in the version of 2.1.5 (i)), A = (X, R}, e, is orbital. Again
we can check that Rw () = (Bw)w = 4. We omit details.

2.3.12. Theorem. Assume that u is an infinite cardinal such that
u=ut and X is a set of power . Then gg is an anti-isomorphism
between the lattice of the orbital (polyadic) subalgebras of C§ and
the lattice of the subgroup of X! which are closed in the u-topol-

ogy.
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Proof: Assume that A is an orbital subalgebra of Cﬁ‘(. Hence A =
RE(A), for some orbital structure ¥ with domain X. In view of
our identification (2.3.7) gg(A4) = Aut(%) and this implies that
gg(A) is closed in the p-topology (1.2.2). Let gg(4) = gg(B) for
some orbital algebras A, B. Then A =R () and B =RE(B) for
some orbital structures 9 and B with domain X. But Aut(%) =
gg(4) =gg(B) = Aut(B) and hence A = B by 2.3.3. It remains to
be checked that ggis onto. Let G & X! be a group closed in the
u-topology. By 1.2.5, G = Aut (%) for some p-homogeneous struc-
ture tt having at most u relations of rank less than u. By 2.1.4, %
is orbital, Let 4 =RE(U). Then A4 is orbital and gg(4) =

Aut(%) = G. The rest of the conclusion is trivially checked.

2.3.13. Remark. Theorem 2.3.12 extends a result of Daigneault
[4], who had obtained a Galois connection of this type for finite
X. It is closely related to one of the main theorems of the “Ab-
stract Galois theory” of M.Krasner [12, 13]. However, Krasner
obtains a Galois connection between all the subgroups of X! and
all the complete (in the boolean sense) polyadic subalgebras of C¥,
i.e., he considers algebras with elements of infinite support. For
logical purposes, at least, it seems more natural to consider locally
finite algebras only and A.Daigneault had raised the problem (in-
dependently from us) of characterizing the algebras and the groups
in this case. 2.3.12 solves this problem for countable X (letting

p = Rg) and 2.3.14 in the general case (letting k = 8y). An indepen-
dent solution for countable X has been found by K.R.Driessel [27].

2.3.14. Theorem. Assume that u and k are infinite cardinals such
that for every cardinal v < k, vk < u, K is regular and X is a set of
power u. Then gg is an anti-isomorphism between the set of the
Kk-orbital subalgebras of C§ ordered by inclusion and the set of the
B, -M-compact subgroups of X! which are closed in the k-topology
(ordered by inclusion).
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Proof: LetA C (% bea x-orbital algebrg and let G = gg(A4). Hence
A =Re(N) for some k-orbital structure Y. In virtue of our identifi-
cation, G = Aut(%). By 1.2.4, G = Aut(%¥). Then G is B, -u-com-
pact and closed in the k-topology (1.2.7).

Assume that G C X! is a 9B, -p-compact group which is closed in
the k-topology. By 1.2.7, G = Aut (%) for some p-homogeneous
structure U having relations of rank less than k. We let A =RE(Y).
By 2.1.4, A is x-orbital and gg(4) = Aut(%) = G (by our identifica-
tion).

Another of the main theorems of Krasner theory can be proved
for By-orbital algebras, i.e.

2.3.15. Theorem. Assume that u is an infinite cardinal such that
u=uk and X a set of power u. Then any isomorphism betfween
Rg-orbital (polyadic) subalgebras of C§ can be extended to an
automorphism of C§.

Proof: Let f: A ~ B be a (polyadic) isomorphism between -
orbital algebras 4, B. Let % = (X, R;);e be an ¥,-orbital structure
such that A =R Z(¥A) and let B = (X, fR); ;. Since f is a poly-
adic isomorphism, B =RZ(B) and A =Ly+, B-By 219, %N @
for some 7 € X! = Aut(C¢). Clearly = 2 f.

2.3.16. Remark. (i) The idea of considering topological groups in
infinite field extensions goes back to Dedekind, but it was first
developed by Krull (see [1] for references);

(ii) We do not know whether 2.3.15 holds for orbital algebras,
although it seems unlikely that it does;

(iii) In view of 2.3.11, Scott’s definability theorem can be
“interpreted” as establishing the connection of 2.3.12 (for u = Ry).
Whether Scott’s isomorphism theorem can be similarly “‘inter-
preted” is not known. In fact, the whole subject of “higher order”
Galois connections is wide open (see some remarks in [24] and
[27]).
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§3. Weak definability for models of prescribed cardinality

3.1. Saturated and special structures

We now specialize some of our results of §1 to saturated and
special structures (for references, see [3], [19]).

Although the following notion will play an auxiliary role only
3.1.2 may have some independent interest.

3.1.1. Definition. Let % be a relational structure of similitary
type p.

(1) A is p-saturated iff whenever X C || is of power less than u,
B=(UA,x), ey and X is a set of formulas with one free variable
(in the language of type p enriched with names for the ~lements of
X)), if every finite subset of X is satisfiable in B, then so is Z.

(ii) o is u-typical iff every reduct % t J of ¥ such that T<Tis
u-saturated *.

3.1.2. Assume that u is an uncountable regular cardinal and B a
structure of power at most 24 having at most u relations. Then
there is some p-typical structure 9 of power at most 2¢ such that
B =AU

Proof: Since the method of proof is well-known, we just sketch the
proof. Let 8 =(B, S;);e;. By hypothesis on T we can write
I=U [/ £ € u] so that .75 < u for all £ € . We may assume that
U [JE: £ A] if A is a limit ordinal.
We build a sequence (%, : £ € u) of structures in such a way that
the following conditions are satisfied for all £ € u:

* For the particular case that 3 = = u¥, Wis p-typical ift A* = (N, o%. & is a formula
of L, )) is (@ s> M)-typical in the sense of [20], where M = {B:B S, for
some L, N =Y 1 . This f‘ormulauon of the notion of a u-saturated stnutun. is due to H.J.
Keisler (sce [19] for references).
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(i)E BtI, <Y
(i, ¥, < U, T, forallne &,
(iii)'E %I‘E is p-saturated of power at most 2£.

Assume that %, has been defined. Let £ = A%(B t J,) U AC(QIE)
where A° stands for “complete diagram® (i.e., A%(§) is the set of
sentences true in @ in a language which has names for all the ele-
ments of the domain of & ). It is easily checked that ¥ is consistent.
By the theorem of existence of saturated structures, we can get
Uy, which satisfies (i), 1, (i)gey, (i) . At limit ordinals and at
the end of our process, we take unions (although our structures
have different “‘similarity type”, it is clear what we mean by
unions). Let % = U {¥,: £ € u}. Using the fact that a reduct of a
saturated structure is saturated, ¥ is easily seen to be u-typical.

We shall derive two corollaries of this result:

3.1.3. Assume that u is an infinite regular cardinal such that u = 2#
and (U, P) is a u-saturated structure of power u. Let G = Aut(%).
If OC(P) < u, then OG(P) is finite.

Proof: We may assume that u > &, otherwise 3.1.3 is trivially
frue. .

Assume that OG(P) is infinite and consider T = {Sub ¢ ( Pﬁ) :
~k

(€puandotruein(¥,P)} U [PE aéPn: £#n]UTh(A,P)asa
sef. of sentences in a language having the type of (U, P), enriched
with new symbols P, of the same rank as P. Using the assumption
that OC(P) is infinite, we can show that every finite subset of ¥ is
consistent, i.e., 2 is consistent. By 3.1.2, there is a u-typical

(A", P', P)), e, € Mod(Z) of power u& = u. Since (A, P') is u-
saturated (by the definition of a u-typical structure) and (¥’, P' =
(A, P) then (A", P') > (¥, P). Let G' = Aut(¥A'). We now show
that 0% (P') 2 p. In fact (A", P) = (A', P') for all £ € p. Further-
more (', PE) is u-saturated (by the same argument as above) for
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all £ € . Hence (Y', Py) ~ (Y, P)), for all £ € u. This implies that
[Pitepu]l & 0G'(P'), i.e., OG(P) > u, since the P, are different.
This is a contradiction, since OG(P) < 4.

To formulate our next corollary, we consider a first-order lan-
guage L of similarity type p and we let L(P) be the language ob-
tained from L by adding a new relation symbol P.

3.1.4. Assume that T is a theory in the language L(P). Then the
following are equivalent:

(i) For every (%, P) € Mod T,
H{P": (U, P) N> (U, PYH< R ;
(ii) For every infinite (¥, P) € Mod T,
{P': (A, P~ (A, P)}I< ;

(iii) There is an infinite cardinal  such that for every (%, P) €
Mod T,

[{P": (U, P )M (U, P} <.

Proof: (ii) = (i): Assume that (%, P) is a model of T such that
[{P": (¥, P") N (A, P)}| 2 K. For simplicity, assume that there is
an infinite regular cardinal p such that u= 2# and u > max (7, 8;)
(see remark 3.1.5 (ii)). Consider, as before, Z = {Sub o (P/P,):
tcuand o truein (N, P)} U {P#P £+ n} U Th(¥, P).

Exactly as before we can obtain (%', P') € Mod T of power p
such that | 0G'(P")| = p, contradicting (ii). The implication (iii) =
(i) is similar but simpler. To show the other implications we just
notice that if T has only finite models, (i), (ii) and (iii) are trivially
satisfied.
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3.1.5. Remark. (i) Instead of (i) in 3.1.4 we could have considered

(i)': For every structure % of type p, [[P: (A, P)EMod T] <
8. Similarly, we could have considered (i)’ and (iii)’ (obtained
from (ii) and (iii) in a similar manner). It is easy to see, however,
that these are all equivalent, i.e., (i) += (1)’ <= (ii) == (i)’ <= (iii)
<= (iii)'. There is a syntactical condition equivalent to (i) in Kueker
[14}, which simplifies an earlier (unpublished) condition by W.
Craig.

(ii) We could have considered special structures (in the sense of
{3]) instead of saturated structures in Definition 3.1.1. In this
way, we could have obtained the existence of p-typical (in this
new sense) structures of power u for cardinals ¢ of the form &8
where 6 is a limit ordinal (see [3], [19] for references). 3.1.3 can
now be proved for special structures of one of these powers. This
also allows us to eliminate the assumption of the existence of a
regular cardinal u such that u = 2¢ in 3.14.

We now use 1.1.13 to derive the local version of the Chang-
Makkai theorem in the version of Makkai [18].

3.1.6. Assume that u is an infinite regular cardinal and (%, P) is a
p-saturated structure of power u. Let G = Aut(%). Then

(i) | OG(P)|=1 iff P is definable in A by a first-order formula
from the relations of 9.

(i) |06(P)| < u iff P is definable in U by a first-order formula
from the relations of % and finitely many individuals from |2 {.

Proof: (i) can be found in [18].

(ii) Let A* = (U, CI)QI)@ e, where F'is the set of first-order for-
mulas of the language of the same similarity type of . Since ¥ is
also u-saturated, 9* is u-homogeneous. Furthermore, Aut (4*)=G
as is easily checked. By 1.2.8, G is a u-Baire group. Assume that
|OG(P)| < u. By 1.1.3, Pis not G-u-free, i.e., Pis G-u-w.det. By
1.1.10, Pis G N [idy]-u-det for some subset X & A such that
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X< u. Since (%, x), e y is also u-saturated, we can conclude (ii)
from (i).

3.1.7. Assume that k and u are infinite cardinals such that

cf (k) 2 u*, w is regular and (P, : £ € u) is a sequence of relations

on A such that (¥, PE) is a special structure of power «, for each

(€ p.1f no P, is definable in % by a first-order formula from the
relations of U and finitely many individuals of A4, then there is an
automorphism 7 € Aut (%) such that TPy # Pﬂ forall &, n €.

Proof: Let G = Aut(9) and X = {P : £ € pu}. Assume that some P,
is G-u-w.det. By 1.1.10, P isGN [1dX]—;.L-det forsome Y € A
such that ¥ < . This 1mp11es that P, is Aut ((%, Yye y)-u-det.
Since (%, y) e y Is also special, an argument similar to the proof
of 3.1.6 (i) shows that PE is definable in this structure, i.e., PE is
definable from the relations of % and finitely many individuals of
A, a contradiction. Therefore each P, is G-u-free. Let %* =

", ¢ I)q, e r as in the proof of 3.1 6 Hence G = Aut (Y*) and
1.2.8 implies that G is a u-Baire group. By 1.1.15, there is some
7€ G such that 7*X N X =0, i.e,, nP, # P forall ¢, n€ u

To formulate our next result, we consider a first-order language
L and we let L({P;: i € 1}) be the language obtained from L by
adding a set of new relation symbols { £;: i € I'}, all having the
same rank n.

3.1.8. Assume that T is a complete theory in the language L({2;:
i€ 1}). Assume that for every (¥, P,);c; € Mod T and every

T € Aut (%), mP; =P1- for some i, j € I, Then there is some { € [ and
some formula 8(xy, ..., x,,, vy, ..., V) of the language L such that

TH3v, .0, Vx,.,x

n’

(Prxiy oy Xy <> 0(xy, oy X, U, o, Ug)) o
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Proof: (in sketch). If T has finite models, the conclusion of 3.18 is
automatically satisfied. If T has infinite models, we take special
structures and we use 3.1.7.

3.2. Chang-Makkai theorem for prescribed cardinalities

We now state the main result of section 3. We assume that L is
a first order language of similar type p and L(2) is the language ob-
tained from L by adding a new n-ary relation symbol P.

3.2.1. Theorem. Assume that T is a theory in a first-order language

L(P). Let k = p-Xq and let p = 2%. Then the following are equiva-
lent:

(i) For every infinite structure % of type p and power u,
| {P: (A, P)EMod T}| < 2#.
(ii) For every infinite (¥, P) € Mod T of power u,

F{P": (U, P')~ (A, P)}| < 2H .

(iii) There are formulas 8;(xy, ..., Xy, V1, ) [=1,...,nsuch
that
T dv,,..,u, ,Vx., ..., x_,
1<i<, ! k ! "
(Exl, s X 01.(x1 e X Vg ey vk)) .

Proof: We shall build a “tree” of structures. By compactness we
may assume that T'is complete. Furthermore, if 7 has only finite
models, (i), (ii) and (iii) are trivially satisfied. Hence we may assume
that T has only infinite models.
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Assume that (iii) does not hold.
We shall build a sequence of structures ((U £ Péf) . fo%) e pet2’
£ € p) such that the following conditions are satisfied for all £ € u:

W L Sus

(i) (¥, Pg};) <(YU,, PP foralln € §and alla € £2;

(i) fi5 14, = 3?1)7 sp> foralln € g and alle, f& £ .

(IV)E fé%) P&E) = Pél;‘)’ for all a, 6 e 52 ,
(Vg o(c%) € Aut(?l,c.), foralla, B $2;
(VI)E .P((!E) = P‘gs), fOr all a, ﬁ [ 52 such that @ # 5 )

For £ =0, we let (%, Py, foo) = (Uy, Py, id4,) be any structure of
power u such that (%, Py) € Mod T (this structure can be ob-
tained by the Loéwenheim-Skolem theorem).

Assume that we have defined (%, P, o(z? )o qcty- LetL' =
L({Py:a€¥2} U {fys:a,€52} U {@:ac A, } U {n}) be the
language obtained from L be adding new relations symbols P, Jag:
a, 7 fora, B € £2 such that each P, is n-ary each fop is binary and
7 is also binary.

Let Z,,; be the union of the following three sets of sentences
of L':

(1) Th(A, PE, [0, D,c 4, apets s

(2) The set if sentences asserting that 7 is an automorphism of the
type p, which extends idy P

(3) The set of sentences asserting that 7., # fﬁ for all e, p€ £2.

It is clear that |Z,, 1 < u. Let (%, Qq, 8upda gty & _
(¥, ng), 0&? )o, g€ k2 b€ a special structure such that cf (B) > u**.
By 3.1.7 applied tok = B, u" and (B, a), €4, Which is also spec-
cial, there is some 7 € Aut (%, a), 4, such that 1Qy # Q, for
a, B € €2, (Clearly, no @, is definable from parameters in
(B, a), €Ay since we are assuming that 3.2.1 (iii) does not hold.)

Therefore (B, Q,, Bap> > a)aEAE, apEf2 € Mod Z, ;. By the



134 G.E.Reyes, Local definability theory

Lbdwenheim-Skolem theorem we can obtain a structure

1
(QI P(E"‘l) f(E'*' ) , T, a)aEAE,a,ﬁEEZ e MOd E€+1

g1

such that |y, 1 2| %,| and ii"'l < u. We define

G+ = pEHD | pEHD = ples))
PR =pED | PN = pY

+1) @) (1) @D
ooy, a0y =Tai > Tatoy, a0y =T Sap
(t+1) G+1) o =1 p(E+D)

Faripaqy =T Jap " 0T foakgany T

By a straightforward computation, we can verify that conditions
(Deey - (vi)y, are satisfied. In fact, (i)g+1 is obvious. By construc-
tion

¥y PP < Uy, PEG)
for all « € £2 and we now check that
1
(A, PP < (U, PEDD
foralle € £2. Let
(Upey, PED F oy, a, ]

for some ay, ..., a,, € A,. Then

(QIE+1, nl ng?ll))) = ¢[7T-1 Qs ees a1 am] .

Since

WIAE—_-ldAE ) (915+1’Pa£+((1))))t=¢[(11:---:am] .
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By the construction this implies

(%, PP E ¢lay, s ay,]

m

and this completes (ii)sﬂ. The rest of the conditions can be easily
verified. We just notice that for (iii)sﬂ we use the fact that 7r|AE =
idg £ in (iV);+1 we use the fact that the composition of two auto-
morphisms is an automorphism and in (vi)s we notice that

+1) p(E+1)y = ) p(
(QIE-f-l ] P((IE*(O)’ PﬁE(O)) —a,ﬂezz (Q'IEch(xE ’PBE))(X,{?EEZ .

Assume that X € u is a limit ordinal and that we have defined
the structures up to A. We define

‘)IA=U{%IE: tEeN};
PN = U {ngg: Een},foralla €2
I8y = ULSE, 5y E€EN)  foralle, pe2.
(We notice that these definitions make sense because of (ii), and
(iii),).
The verification of (i), — (vi), is simpler than in the previous
case and is omitted. We just notice that (ii), and (v), use Tarski’s

union theorem [26].
Finally, let

U=U{U:Ekepu};
Pa=U{PéEI)E:EEu} ,foralla € #2;

fag = u{fo(‘?muz teu),foralla, €42 ;

and *=¢0,0,0,...).
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Then (9%, P,) € Mod T. (By Tarski’s union theorem and %= u.)
Furthermore if G = Aut(%), then |O%(P, )| =2*, since for each
a €KL, P, € OGP,)and Py + P, whenever a # §, as it is easily
verified. It follows that (ii) does not hold. The other implications
are obvious.

3.2.2. Remark. For the particular case k = Ny (and hence u = Ry),
this theorem was conjectured by M.Makkai (private communica-
tion). He had proved a special case, namely the case that Mod (T°)
isa UC, class (though allowing operation symbols in p). His (un-
published) proof made use of a partition theorem of [5]. Recent-
ly, D.Kueker has kindly informed us that several years ago C.C.
Chang had proved (but not published) the equivalence of (iii) and
the following condition (ii)’ (for the special case k = No):

(i) For every infinite countable (%, P) € Mod T,

[{P": (U, P> (U, PR, .

His proofis quite different from ours and used Vaught’s two car-
dinal theorem [19]. After seeing our abstract [21], Chang pointed
out that we can obtain 3.2.1 (for the particular case k = N, again)
by combining his result with Theorem 2.2.2. His method, however,
does not seem to yield 3.2.1 in the general case.
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