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a b s t r a c t

A central object of study in the field of algorithmic randomness are notions of randomness
for sequences, i.e., infinite sequences of zeros and ones. These notions are usually defined
with respect to the uniform measure on the set of all sequences, but extend canonically
to other computable probability measures. This way each notion of randomness induces
an equivalence relation on the computable probability measures where two measures are
equivalent if they have the same set of random sequences.
Inwhat follows, we study the equivalence relations induced byMartin-Löf randomness,

computable randomness, Schnorr randomness and Kurtz randomness, together with the
relations of equivalence and consistency from probability theory. We show that all these
relations coincide when restricted to the class of computable strongly positive generalized
Bernoulli measures. For the case of arbitrary computable measures, we obtain a complete
and somewhat surprising picture of the implications between these relations that hold in
general.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and overview

A central object of study in the field of algorithmic randomness are notions of randomness for sequences, i.e., infinite
sequence of zeros and ones. Since earlywork by vonMises around1920, several notions of randomness have beendeveloped.
The most satisfactory concept is probably Martin-Löf randomness, which was introduced by Martin-Löf in 1966 [6], but
other concepts introduced later have received considerable attention too, for example, computable randomness, Schnorr
randomness, and Kurtz randomness. These concepts are usually defined with respect to the uniform measure on the set of
all sequences, and in this setting the relations between the different notions have been studied intensively. We refer the
reader to Downey and Hirschfeldt [2] for an excellent comprehensive and detailed survey on algorithmic randomness and
the various notions of randomness for sequences.
The mentioned notions of randomness extend canonically to other computable probability measures. This way every

randomness notion induces an equivalence relation on the class of computablemeasureswhere twomeasure are equivalent
if the corresponding sets of random sequences are the same. Inwhat follows, we focus on the question of which implications
hold between these equivalence relations, i.e., we ask for example whether the coincidence of Schnorr randomness for two
given measures implies that also the two corresponding notions of Kurtz randomness are the same.
First, in Section 3, we consider the restricted case of computable strongly positive generalized Bernoulli measures and

we extend a well-known result of Vovk [16] on Martin-Löf randomness and a partial result of Muchnik, Semenov, and
Uspensky [9] to all four mentioned notions of randomness. We also show that, like in the result of Vovk on Martin-Löf
randomness, for both computable randomness and Schnorr randomness, there is a dichotomy in the sense that for any two
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strongly positive generalized Bernoulli measures the respective sets of random sequences either coincide or are disjoint,
whereas for Kurtz randomness only a slightly weaker result is true.
The case of arbitrary computable measures is considered in Section 4, and there we obtain a complete picture of

the implications and nonimplications that hold between the equivalence relations induced by Martin-Löf randomness,
computable randomness, Schnorr randomness, and Kurtz randomness, aswell as the notions of equivalence and consistency
from probability theory. This picture is somewhat surprising because it does not reflect at all the implications between the
underlying notions of randomness.
Inwhat followswe deal onlywith computablemeasures because there is no completely natural extension of the standard

notions of randomness to noncomputablemeasures.More precisely,whenworkingwith noncomputablemeasures one faces
the following dilemma. If the computation model used in the definition of the randomness notion may access the measure
as an oracle, then measures that are numerically very close may have vastly different computational power. But otherwise,
when information about the measure is lacking, there may be sequences that are random in the formal sense but from an
intuitive point of view may be considered as being highly nonrandom with respect to the measure under consideration.

2. Notation and concepts

2.1. Probability measures on Cantor space

In the following, the termsword and sequence refer to finite and infinite, respectively, binary sequences, unless explicitly
stated otherwise. The set of allwords and the set of all sequences are denoted by 2∗ and by 2ω , where the latter is also referred
to as Cantor space.Wewritew = w(0) . . . w(n−1) for awordw of length n and similarly A = A(0)A(1) . . . for a sequence A.
We write w � n and A � n for the finite word consisting of the first n bits of a word w or a sequence A. The empty word is
denoted by ε, e.g., A � 0 = ε for any sequence A. The prefix relation on 2ω ∪ 2∗ is denoted byv. Furthermore, for a subsetX
of Cantor space, letX denote the relative complement ofX in 2ω .
The basic open sets, i.e., the subsets of Cantor space of the form
[u] = {X ∈ 2ω : u v X}

where u is a word form a basis for the standard topology on Cantor space, which can be characterized equivalently as the
product topology of the discrete topology on the set {0, 1}. For a set of words U , we write [U] for the open set

⋃
u∈U [u].

By the following celebrated result due to Caratheodory, a probability measure on Cantor space is already determined by
its restriction to the set of basic open sets.
Theorem 1 (Caratheodory’s Extension Theorem). Let m be a function defined on the basic open sets of Cantor space that takes
real values in the interval [0, 1] such that m([ε]) = 1 and for any word u it holds that

m([u]) = m([u0])+m([u1]).
Then there exists a unique probability measure µ on Cantor space that extends m and is defined on the σ -algebra induced by the
basic open sets.
For convenience, in what follows the term measure will refer to probability measure on Cantor space, unless explicitly

specified otherwise. By the extension theorem, we can identify a measure µ with its restriction to the basic open sets, and
accordingly we write µ(u) for µ([u]). The canonical measure on 2ω is the uniform measure λ, also known as Lebesgue
measure, defined by λ(u) = 2−|u| for all words u.
Caratheodory’s extension theorem allows us to give a simple definition of computable measure. Before, we recall the

notion of a computable real-valued function on words.
Definition 2. A function f : 2∗ → R is computable if there is a computable function ϕ : 2∗×N→ Q such that for all u and n,
|ϕ(u, n)− f (u)| ≤ 2−n.
Definition 3. A measure µ is computable if the function u 7→ µ(u) is computable.
For further use, recall from classical probability theory the two following fundamental relations between measures .

Definition 4. Let µ and ν be two probability measures on the same set.
Themeasuresµ and ν are equivalent,µ ∼ ν for short, if they have the same null sets. Themeasuresµ and ν are consistent

if there is no set which has measure 1 with respect to one of the measures and has measure 0 with respect to the other one.
Equivalence of measures is indeed an equivalence relation on the class of all measures on Cantor space, whereas consistency
is reflexive and symmetric but in general not transitive.

2.2. Algorithmic random sequences

With ameasure understood, by definition a subset of Cantor space is null if it is contained in open sets of arbitrarily small
nonzero measure. By a result of Ville [15], null sets of Cantor space can be characterized equivalently by the existence of
a betting strategy that succeeds on every sequence in the set. Both characterizations of the notion of null set can be made
effective, and depending on the chosen computation model, this way one obtains various notions of an effective null set.
Unlike for the classical notion, in the effective setting there are singleton sets of the form {A} that are not null, in which case
the sequence A is called random.
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In the remainder of this section, we review some basic notions of algorithmic random sequence. We first review some
standard notions of random sequence and their definitions in terms of betting strategies, more precisely, in terms of the
equivalent notion of martingale; then we state some standard characterizations of these notions in terms of tests, that is,
in terms of sequences of open sets that have measures tending to 0. We refer the reader to the monograph by Downey and
Hirschfeldt [2] for a more detailed account of random sequences and for proofs of the results reviewed in this section.
A betting strategy can be identified with a player who successively bets money on the next bit of an infinite binary

sequence, never betting more than the current capital. The pay-off of this gamble is fair where, of course, the meaning of
fairness depends on the underlying measure. Such betting strategies can be represented by their capital functions, which
are called martingales

Definition 5. Letµ be a measure. Aµ-martingale is a function d from the set of words to the nonnegative reals such that for
all words u it holds that

d(u)µ(u) = d(u0)µ(u0)+ d(u1)µ(u1). (1)

A martingale d is said to be normed if d(ε) = 1. A µ-martingale d succeeds on a sequence A, if it holds that

lim sup
n→∞

d(A � n) = +∞.

Definition 6. Letµ be ameasure.We say thatµ is nowhere vanishing ifµ(u) > 0 for everyword u (otherwise themeasureµ
is said to be vanishing).

For any given nowhere vanishing measure µ and with a suitable formalization of betting strategy understood, there
is a one-to-one correspondence between µ-martingales and pairs of a betting strategy and a value of the initial capital.
Furthermore, the following folklore result asserts an exact correspondence between µ-martingales and measures.

Lemma 7. For every nowhere vanishingmeasureµ, the normedµ-martingales are exactly the functions of the form ξ/µ, where ξ
is ameasure. For every computable nowhere vanishingmeasureµ, the computable normedµ-martingales are exactly the functions
of the form ξ/µ where ξ is a computable measure.

Remark 8. Observe that given two vanishing computable measures ξ and µ and with some convention for the value of
fractions with zero denominator understood, in general the quotient ξ/µ is not a computable function.
For a corresponding counterexample, assume that the value of 0/0 has been set to some not necessarily finite value, and

let c be a natural number that differs from this value by at least 1. Then let measures ξ and µ be defined as follows. For
all k ≥ 0, let zk = 0k1, let

ξ(zk) = µ(zk) =
1
2k+1

,

and let ξ and µ be uniformly distributed on extensions of zk10 and zk11 in the sense that for all words u, it holds
thatµ(zk1u0) = µ(zk1u1), and similarly for ξ . Furthermore, let ξ(zk0) = µ(zk0) = 0 in case k is not in the halting problem,
and, otherwise, in case k is enumerated first after s steps of some fixed enumeration of the halting problem, let ξ(zk0) = c/s
and µ(zk0) = 1/s, fixing ξ(zk1) and µ(zk1) accordingly. By construction, the measures ξ and µ are computable, however
the quotient ξ/µ is not. For a proof of the latter, observe that approximating the value of the quotient at place zk0with error
at most 1/3 suffices to decide whether k is in the halting problem.

The fairness condition (1) implies the following basic result by Ville [15], which we state for further use.

Theorem 9 (Ville). Let µ be a measure and let d be a µ-martingale. For all reals k > 0, we have

µ

{
A ∈ 2ω : sup

n
d(A � n) ≥ k d(ε)

}
≤
1
k
.

Definition 10. A function f : 2∗ → R is left-computable if there is a computable function ϕ : 2∗ × N→ Q such that for any
word u the values ϕ(u, n) converge nondecreasingly to f (u), i.e., it holds that

lim
n→∞

ϕ(u, n) = f (u) and ϕ(u, n) ≤ ϕ(u, n+ 1) for all n.

Definition 11. An order is a function g : N→ N that is nondecreasing and unbounded.

Definition 12. Let µ be a computable probability measure.
A sequence A is µ-Martin-Löf random if no left-computable µ-martingale succeeds on A.
A sequence A is µ-computably random if no computable µ-martingale succeeds on A.
A sequence A is µ-Schnorr random if there is no computable µ-martingale and no computable order h such that for

infinitely many n it holds that h(n) ≤ d(A � n).
A sequence A is µ-Kurtz random if there is no computable µ-martingale and no computable order h such that for all n it

holds that h(n) ≤ d(A � n).
The subsets of Cantor space of allµ-Martin-Löf random, allµ-computably random, allµ-Schnorr random, and allµ-Kurtz

random sequences are denoted by µMLR, µCR, µSR, and µKR, respectively.
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Martin-Löf randomness has been introduced by Martin-Löf [6] and is meant to capture all effective statistical tests.
Schnorr [11,12] introduced computable randomness and Schnorr randomness as weaker, but in some sense more effective
notions of randomness. Kurtz randomness was introduced by Kurtz [4] and is also known as weak randomness; the
characterization in terms of martingales used above to define the concept is due to Wang [17].

Remark 13. For anymeasureµ, the notion ofµ-Martin-Löf randomness and ofµ-computable randomness remain the same
if we require in the definition of success of a martingale d on a sequence A not just lim supn d(A � n) = +∞ but that the
martingale succeeds in the stronger sense that limn d(A � n) = +∞.
For Martin-Löf randomness, this follows from the standard proof of the first assertion in Theorem 16 where for a given

µ-Martin-Löf test one constructs a left-computable µ-martingale that succeeds in the mentioned stronger sense on all
sequences that are covered by this test. For computable randomness, by the standard technique of putting away one unit of
capital whenever a certain threshold is reached, any computableµ-martingale can be transformed into another computable
µ-martingale, which is of a special form known as savings martingale, that succeeds in the stronger sense exactly on the
sequences on which the first martingale succeeds.

The definitions of Schnorr randomness and Kurtz randomness can be equivalently reformulated as according to
Proposition 14, as can be verified by applying the savings technique discussed in Remark 13 (see Downey and Hirschfeldt [2]
for a full proof of this fact).

Proposition 14. A sequence A is µ-Schnorr random if and only if there exists no computable µ-martingale d and computable
function f : N→ N such that d(A � f (n)) ≥ n holds for infinitely many n.
A sequence A isµ-Kurtz random if and only if there exists no computableµ-martingale d and computable function f : N→ N

such that d(A � f (n)) ≥ n holds for all n.

Definition 15. A subset V of Cantor space is said to be effectively open, if there exists a computably enumerable set A of
words such thatV is equal to

⋃
u∈A [u]. A sequence {Vn}n∈N of subsets of Cantor space is said to be uniformly effectively open

if there exists a computable function (n, k) 7→ un,k from pairs of natural numbers to words such that for all n, the set Vn is
equal to

⋃
k∈N [un,k].

A µ-Martin-Löf test is a uniformly effectively open sequence {Vn}n∈N such that for all n, we have µ(Vn) ≤ 1/2n.
A sequence A passes aµ-Martin-Löf test {Vn}n∈N if A /∈

⋂
n Vn. Aµ-Martin-Löf test covers a sequence if the sequence does

not pass the test, and the test covers a subset of Cantor space if it covers every sequence in the set.

Theorem 16. A sequence is µ-Martin-Löf random if and only if the sequence passes all µ-Martin-Löf tests.
A sequence is µ-Schnorr random if and only if the sequence passes all µ-Martin-Löf tests {Vn}n∈N such that µ(Vn) = 1/2n

for all n.
A sequence is µ-Kurtz random if and only if the sequence passes all µ-Martin-Löf tests {Vn}n∈N such that Vn = [Un] for a

finite set Un where a canonical index of Un can be computed from n.

Remark 17. The concepts of Martin-Löf randomness and Schnorr randomness remain the same if one uses in their
definitions ε(n) in place of 2−n where ε : N → Q is a computable function that tends to 0 as n goes to infinity. More
precisely, the concepts remain the same if we define a Martin-Löf test to be a uniformly effectively open sequence {Vn}n∈N
whereµ(Vn) ≤ ε(n) for any such function ε(n), and likewise, one requires in the definition of Schnorr randomnessµ(Vn) =
ε(n).

Another characterization of Martin-Löf randomness can be obtained by a variant of Martin-Löf tests known as Solovay
tests [2]; in a similar fashion, Downey and Griffiths [1] gave the following useful characterization of Schnorr randomness.

Proposition 18. A sequence A isµ-Schnorr random if and only if for any uniformly effectively open sequence of sets {Vn}n∈N such
that

∑
n∈N µ(Vn) is finite and equal to a computable real number, the sequence A belongs to only finitely many sets Vn.

It is straightforward to see that a sequence A is covered by a finite µ-Martin-Löf test of the type used in Theorem 16
for characterizing Kurtz randomness if and only if it belongs to the complement of an effectively open set of measure 1.
Accordingly, one obtains the following characterization of Kurtz randomness due to Kurtz [4].

Theorem 19. A sequence is µ-Kurtz random if and only if it belongs to all effectively open setsU of µ-measure 1.

3. Generalized Bernoulli measures

Before we turn to arbitrary computable measures in Section 4, we consider in this section the restricted case of
generalized Bernoulli measures. The latter are measures on Cantor space that are obtained by choosing the bits of a
sequence A by independent tosses of biased coins such that the probability of A(i) to be 1 is pi, that is, the probabilities
for a bit to be 0 or 1 depend on the position i of the bit, and only on i.
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Definition 20. Let {pi}i∈N be a sequence of real numbers such that pi ∈ [0, 1] for all i. The generalized Bernoulli measureµ of
parameter {pi}i∈N is defined, for all words u by

µ([u]) =
∏

i<|u|, u(i)=0

(1− pi)
∏

i<|u|, u(i)=1

pi.

Furthermore, if there exists a constant ε > 0 such that for all i the real pi is contained in the closed interval [ε, 1− ε], then
the measure µ is said to be strongly positive.

Definition 21. The generalized Bernoulli measureµ of parameter {pi}i∈N is computable if and only if {pi}i∈N is a computable
sequence of real numbers in the sense that the real-valued function i 7→ pi is computable.

Remark 22. For generalized Bernoulli measure the Kolmogorov 0-1-law holds, and accordingly the concepts of equivalence
and consistency are the same.
Recall that the Kolmogorov 0-1-law holds for some measure if any set that is closed under finite variation has either

measure 0 or measure 1, where a setX is closed under finite variation if it contains for all n and all words u of length n the
set

Xu = {Y ∈ 2ω : Y = u(0) . . . u(n− 1)X(n)X(n+ 1) . . . for some X ∈ X}.

For generalized Bernoulli measures, one argues as in the proof of the Lebesgue density theorem that given any set X of
nonzero measure and any real number δ < 1, there is a basic open set such that the relative measure ofX in this basic open
sets exceeds δ. Consequently, if the setX is closed under finite variation, then the measure ofX exceeds any δ < 1, hence
must be equal to 1.
Now, by definition, for any pair of measures equivalence implies consistency. If, on the other hand, two generalized

Bernoulli measures µ and ν are not equivalent, say, there is a setX such that µ(X) > 0 and ν(X) = 0, then if we letX′
be the closure of X under finite variation, we have µ(X′) = 1 and ν(X′) = 0, where the latter follows because X′ is a
countable union of sets of the formXu, where all such sets have ν-measure 0.

Generalized Bernoulli measures are rather simple generalizations of the uniform measure, even so they have interesting
applications in the field of algorithmic randomness [7,13,14]. For example, they have been used by Shen [13] to separate
Martin-Löf randomness and Kolmogorov–Loveland stochasticity (for a definition of the latter, see for example [8]), the
coincidence of which was left as an open question by Kolmogorov.
In 1948, Kakutani [3] characterized equivalence of strongly positive generalized Bernoulli measures in terms of the

differences of corresponding elements in the parameters.

Theorem 23 (Kakutani). Let µ and ν be two strongly positive generalized Bernoulli measures of parameter {pi}i∈N and {qi}i∈N,
respectively.

(a) If
∑
i(pi − qi)

2 < +∞, then µ and ν are equivalent.
(b) If

∑
i(pi − qi)

2
= +∞, then µ and ν are inconsistent.

Vovk [16] proved an analogue of Theorem 23 in terms of Martin-Löf randomness.

Theorem 24 (Vovk). Let µ and ν be computable strongly positive generalized Bernoulli measures of parameter {pi}i∈N and
{qi}i∈N, respectively.

(a) If
∑
i(pi − qi)

2 < +∞, then µMLR = νMLR.
(b) If

∑
i(pi − qi)

2
= +∞, then µMLR ∩ νMLR = ∅.

Note that implication (b) in Theorem 24 strengthens the corresponding implication in Kakutani’s theorem because if the
sets µMLR and µMLR are disjoint, then each of the sets witnesses that the measures µ and ν are inconsistent. In fact,
implication (b) in Theorem 24, hence also the argument just given, remains valid with computably random sequences in
place of the Martin-Löf random ones, as has been demonstrated by Muchnik et al. [9].

Theorem 25 (Muchnik, Semenov, and Uspensky). Let µ and ν be two computable strongly positive generalized Bernoulli
measures, respectively of parameter {pi}i∈N and {qi}i∈N. If

∑
i(pi − qi)

2
= +∞, then µCR ∩ νCR = ∅ (and a fortiori,

µMLR ∩ νMLR = ∅).

In view of Theorems 24 and 25, it is suggesting to ask whether Theorem 24 remains true if one replacesMLR by CR, by
SR, or by KR. Theorem 31 answers this question in the affirmative for the cases of computable randomness and Schnorr
randomness, whereas for Kurtz randomness implication (a) in Theorem 24 is true but implication (b) is false in general.
Before we state and demonstrate Theorem 31 and the related Theorem 32, which are the main results of this section, we
introduce some notation and derive a technical lemma.
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Definition 26. Let d be a µ-martingale for some measure µ. For any word u, let

stake(d, u) = d(u)−min(d(u0), d(u1)) and ratio(d, u) =
stake(d, u)
d(u)

where we set ratio(d, u) = 0 in case d(u) = 0. Furthermore, let

guess(d, u) =
{
0 if d(u0) ≥ d(u1),
1 if d(u0) < d(u1).

Suppose a martingale d, which we identify with the corresponding betting strategy, has already scanned a prefix u of an
infinite sequence and nowbets on the first bit not in u. In this situation, themartingale bets in favor of guess(d, u), moreover,
the martingale bets an absolute amount of capital of stake(d, u), which is a fraction of ratio(d, u) of its current capital.

Definition 27. Let d be a µ-martingale and d′ be a ν-martingale for some measures µ and ν. Then d′ is a stake-martingale
of d, if for all words u it holds that

guess(d′, u) = guess(d, u) and stake(d′, u) = ratio(d, u),

except that stake(d′, u) = 0 whenever ratio(d, v) exceeds d′(v) for some prefix v of u. In the latter situation the stake
martingale d′ is said to be broke at u, and d′ goes broke on a sequence, if d′ is broke at some prefix of the sequence.

Observe that for given measuresµ and ν and aµ-martingale d, for any given initial capital there is a unique ν-martingale d′
that is a stake martingale with respect to d.
Next we observe that λ-martingales d and d′ where d′ is a stake martingale of d succeed on the same sequences, except

for the sequences on which d succeeds and d′ goes broke.

Proposition 28. Let d and d′ be λ-martingales where d is normed and d′ is a stake martingale of d, and let A be sequence on
which d′ is not going broke. Then for all n, we have ln d(A � n) ≤ d′(A � n), in particular, if d succeeds on A then d′ succeeds on A.

Proof. By elementary curve sketching, one infers easily that for any real number t > −1 we have

ln(1+ t) ≤ t. (2)

Setting xk equal to either ratio(d, A � k) or−ratio(d, A � k) depending on whether guess(d, A � k) agrees or disagrees with
the correct value A(k), we obtain

ln d(a � n) = ln
n∏
k=0

(1+ xk) =
n∑
k=0

ln(1+ xk) ≤
n∑
k=0

xk = d′(A � n). �

Proposition 28 and its proof essentially extend to µ-martingales for strongly positive generalized Bernoulli measures µ
different from the uniform measure and even to mixed cases of a µ-martingale d and a ν-martingale d′, provided that µ
and ν are sufficiently close. The proof of this extension uses a variant of (2) where the difference between ln(1+ t) and t is
quantified by a term cmt2 for some constant cm.

Lemma 29. For any natural number m there is a constant cm such that for all real numbers t in the half-open interval (−1,m] it
holds that

ln(1+ t) ≤ t − cmt2. (3)

Proof. If we set cm = 1/m′ for any natural numberm′ ≥ 2(m+ 1), then (3) is true for any t in the interval (−1,m], simply
because the functions

t 7→ ln(1+ t) and t 7→ t − cmt2

attain the same value for t = 0, while the former function grows faster in the interval (−1, 0) and grows more slowly in
the interval (0,m) than the latter function. �

Proposition 30. Letµ and ν be two computable strongly positive generalized Bernoullimeasures of parameter {pi}i∈N and {qi}i∈N,
respectively, such that

∑
i(pi − qi)

2 < +∞. Let d be a computable normed µ-martingale and let A be a sequence such that
lim d(A � n) = +∞. Then there exists a (not necessarily normed) computable ν-martingale d′ such that for all n it holds that

ln d(A � n) ≤ d′(A � n)+ O(1).
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Proof. The ν-martingale d′ will be equal to a stake martingale of d, i.e., we have

guess(d′, u) = guess(d, u) and stake(d′, u) = ratio(d, u).

For the moment, assume that d′ may incur debts, i.e., d′ never goes broke but bets an amount of ratio(d, u) on any word u,
where d′ then may attain negative values. We will argue later that when first multiplying the stakes of d′ with some
appropriate constant and then converting back d′ to a standard stake martingale that stops betting when it is about to
go broke, we obtain a martingale as desired.
For ease of notation, set ρn = ratio(d, A � n). For each n, there are then the three following cases.

d(A � n+ 1)/d(A � n) d′(A � n+ 1)− d′(A � n)
guess(d, A � n) 6= An 1− ρn −ρn

guess(d, A � n) = An = 0 1+ ρn
pn
1−pn

ρn
qn
1−qn

guess(d, A � n) = An = 1 1+ ρn
1−pn
pn

ρn
1−qn
qn

By setting xn equal to −ρn, or ρn
pn
1−pn
, or ρn

1−pn
pn
in the three different cases, respectively, the entries in the table above

can be rewritten as follows.
d(A � n+ 1)/d(A � n) d′(A � n+ 1)− d′(A � n)

guess(d, A � n) 6= An 1+ xn xn
guess(d, A � n) = An = 0 1+ xn xn

(
1+ qn−pn

pn(1−qn)

)
guess(d, A � n) = An = 1 1+ xn xn

(
1+ pn−qn

qn(1−pn)

)
By induction it follows for all n, that

d(A � n) =
n−1∏
k=0

(1+ xk).

By strong positivity, choose ε > 0 such that all pi and qi are contained in the interval [ε, 1− ε] and setm = dε−1e. Then by
definition all xn are in the interval [−1,m], hence by Lemma 29 there is a positive constant cm such that for all k, we have

ln d(A � n) = ln
n−1∏
k=0

(1+ xk) =
n−1∑
k=0

ln(1+ xk) ≤
n−1∑
k=0

xk −
n−1∑
k=0

cmx2k . (4)

Concerning the martingale d′, for all n and for all three cases discussed above, we have

xn −m2|xn||pn − qn| ≤ d′(A � n+ 1)− d′(A � n),

hence, by induction, it follows for all n that
n−1∑
k=0

xk −
n−1∑
k=0

m2|xk||pk − qk| ≤ d′(A � n). (5)

Next set c =
√∑

∞

i=0(pi − qi)2 and choose a constant c
′ such that for all t ≥ 0,

m2c
√
t ≤ cmt + c ′.

Then we obtain by the Cauchy–Schwarz inequality

n−1∑
k=0

m2|xk||pk − qk| ≤ m2

√√√√n−1∑
k=0

(pk − qk)2

√√√√n−1∑
k=0

x2k

= m2c

√√√√n−1∑
k=0

x2k ≤ cm
( n−1∑
k=0

x2k
)
+ c ′.

Together with (4) and (5), this yields

ln d(A � n) ≤ d′(A � n)+ c ′.

Recall that up to now, we have assumed that d′ is a normed ν-martingale of a special type that is allowed to incur debts.
Furthermore, by assumption, we have

lim
n
d(A � n) = +∞, hence lim

n
d′(A � n) = +∞,
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and thus there is a natural numberm such that−(m− 1) < d′(A � n) for all n. Consequently, if we multiply the stakes of d′
by 1/m, we obtain a new ν-martingale of special type that never goes broke on A. If we transform this ν-martingale back to
a stake martingale, i.e., one that stops betting when being about to go broke, we obtain a ν-martingale as desired. �

Theorem 31. Let µ and ν be computable strongly positive generalized Bernoulli measures of parameter {pi}i∈N and {qi}i∈N,
respectively. If

∑
i(pi − qi)

2 < +∞ holds, then µCR = νCR, µSR = νSR, and µKR = νKR.
Proof. Suppose that A /∈ µCR, i.e. by Remark 13 there exists a computable normed µ-martingale d such that limn d(A �
n) = +∞. By Proposition 30 there exists a computable ν-martingale d′ such that d′(A � n) ≥ ln d(A � n) for all n. This
implies in particular that limn d′(A � n) = +∞, i.e. A /∈ νCR. Suppose now that A /∈ µSR. Then d can be chosen such that
in addition d(A � n) ≥ g(n) for some computable order g and infinitely many n, hence d′(A � n) ≥ ln g(n) for infinitely
many n’s. Since ln g(n) is an order, this proves A /∈ νSR. A similar proof can be given for Kurtz randomness with ‘‘all n" in
place of ‘‘infinitely many n’s". We thus have proved νCR ⊆ µCR, νSR ⊆ µSR, νKR ⊆ µKR and the theorem follows by
symmetry. �

Theorem 31 can be strengthened to a full dichotomy in the style of Vovk’s theorem, and this is stated in Theorem 32. In
the latter theorem, the equivalence of the assertions (i) through (iv) in (a) and in (b) hold by the theorems of Kakutani and
of Vovk and by Remark 22, and the implications (v)→ (iv) in (a) and (i)→ (v) in (b) have been demonstrated by Muchnik,
Semenov, and Uspensky [9].

Theorem 32. Let µ and ν be computable strongly positive generalized Bernoulli measures of parameter {pi}i∈N and {qi}i∈N, re-
spectively.

(a) The following are equivalent. (b) The following are equivalent.
(i)

∑
i(pi − qi)

2 < +∞, (i)
∑
i(pi − qi)

2
= +∞,

(ii) µ and ν are consistent, (ii) µ and ν are inconsistent,
(iii) µ and ν are equivalent, (iii) µ and ν are not equivalent,
(iv) µMLR = νMLR, (iv) µMLR ∩ νMLR = ∅,
(v) µCR = νCR, (v) µCR ∩ νCR = ∅,
(vi) µSR = νSR, (vi) µSR ∩ νSR = ∅.
(vii) µKR = νKR. (vii) µSR ∩ νKR = µKR ∩ νSR = ∅.

Proof. For part (a) and for part (b), assertions (i) through (iv) are pairwise equivalent as an immediate consequence of
Kakutani’s and Vovk’s theorem and by Remark 22.
For (a), the fact that assertion (i) implies assertions (iv) through (vii) is just Theorem31, and by Theorem38, whichwill be

shown in the next section, even for arbitrary measuresµ and ν, each of the assertions (iv) through (vii) implies consistency.
For (b), the implications (vii)→ (vi), (vi)→ (v), and (v)→ (iv) are immediate by the way the involved sets are nested,

while even for arbitrary measures µ and ν, inconsistency implies (vii), as stated in Proposition 40 in the next section. �

Remark 33. There are computable strongly positive generalized Bernoulli measures µ and ν that are inconsistent but
whereµKR and νKR have a nonempty intersection. Accordingly, assertion (vii) in part (b) of Theorem 32 cannot be replaced
by µKR ∩ νKR = ∅.
For a proof, consider the generalized Bernoulli measures µ and ν where the probability for a single bit to be 1 is 1/2

and 1/3, respectively. Then µ and ν are inconsistent by Theorem 32, however, one can construct a sequence R that is Kurtz
randomwith respect to bothmeasures by a noneffective finite-extension construction that diagonalizes against all pairs of a
computable martingale d and computable order h. More precisely, all such pairs (d, h) are considered in some order and for
the pair currently considered one extends the already constructed prefix of R to a wordw such that d(w) < h(|w|). Observe
that by a slight variation of this construction the set R can be chosen to be computable in the halting problem.

As a slight digression from our investigation of effective random sequences, we derive next some results on effective null
sets. Recall that notions of effective null sets can be introduced similarly to the introduction of various notions of random
sequence in terms of martingales in Definition 12. Given a computable measureµ, for example, a set is aµ-computably null
set if there is a computableµ-martingale that succeeds on every sequence in the set, a set is aµ-Schnorr null set if there is a
computable µ-martingale d and a computable order h such that for every sequence A in the set there are infinitely many n
such that d(A � n) exceeds h(n), and a set is a µ-Kurtz null set if there is a computable µ-martingale d and a computable
order h such that for every sequence A in the set d(A � n) exceeds h(n) for all n.
Recall further that similarly to the characterizations of effective random sequences in terms of tests in Theorem 16,

notions of effective µ-null sets can be characterized by requiring that there is an appropriate µ-test (Vn)n∈N such that the
set under consideration is contained in the intersection of the sets Vn. For example, a set is a µ-Schnorr null set if and only
if there is a µ-Schnorr test (Vn)n∈N such that the set is contained in ∩n∈NVn.
For the various notions of effective randomsequence, a sequenceA is randomwith respect to a given computablemeasure

if and only if the singleton set {A} is a null set of the corresponding type. In particular, if for two given computable measures
the notions of effective null set are the same, this implies that also the corresponding notions of random sequence are the
same. In the case of computable strongly positive generalized Bernoulli measures this implication is in fact an equivalence,
as is immediate by Theorem 32 and the following theorem.
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Theorem 34. Let µ and ν be computable strongly positive generalized Bernoulli measures. Then the following assertions are
equivalent.

(a) The concepts of Martin-Löf null set with respect to µ and to ν coincide.
(b) The concepts of computable null set with respect to µ and to ν coincide.
(c) The concepts of Schnorr null set with respect to µ and to ν coincide.
(d) The concepts of Kurtz null set with respect to µ and to ν coincide.
(e) The measures µ and ν are equivalent.

Proof. First, observe that by the discussion preceding Theorem 34 each of the assertions (a) through (d) implies that the
corresponding notions of random sequence are the same, and hence by Theorem 32 implies assertion (e). So it remains to
show that assertion (e) implies the other four assertions.
In the case of assertion (d), in fact this implication holds for arbitrary computablemeasuresµ and ν becausewith respect

to any computable measure a set is Kurtz null if and only if the set is contained in a null set that is the complement of
an effectively open set. Furthermore, the implication from (e) to (a) is immediate by Kakutani’s and Vovk’s theorem, and
because due to the existence of maximumMartin-Löf null classes any two computable measures have the same Martin-Löf
null classes if and only if the two measures have the same Martin-Löf random sequences.
That assertion (e) implies assertions (b) and (c) can be demonstrated by a slight extension of the proof of Theorem 31.We

will give the somewhat more complicated proof for assertion (c) and omit the very similar considerations for assertion (b).
Given a computable normed µ-martingale d and a computable order h, we argue that there is a computable ν-

martingale d′′ and a computable order h′′ such that for all sequences A forwhich there are infinitelymany n such that d(A � n)
exceeds h(n), there are also infinitely many n where d′′(A � n) exceeds h′′(n). This then shows that every Schnorr null set
with respect to µ is a Schnorr null set with respect to ν, and by symmetry assertion (c) follows.
Recall the construction of the martingale d′ in the proof of Theorem 31, where d′ was allowed to incur debts, and the

transformation of d′ into a normed stake martingale that is not allowed to incur debts and where the stakes of d′ are
multiplied with some appropriate factor. Let d′m be equal to a normed stake martingale constructed this way while using
the factor 1/m. Furthermore, let

d′′ =
∞∑
m=1

1
2m
d′m.

Then d′′ is a normed martingale, which is computable because in order to compute d′′(u) up to an error of 1/2e, by
construction it suffices to evaluate the infinite sum in the definition of d′′ up to the index k = |u| + e. Furthermore, we
infer similarly to the proof of Theorem 31 that for any sequence A such that d(A � n) exceeds h(n) for infinitely many n, for
any sufficiently large numberm, the martingale d′m does not go broke on A and that we have for all n,

ln d(A � n) ≤ m+md′m(A � n),

hence d′′(A � n) exceeds h′′(n) = ln ln h(n) for infinitely many n. �

Remark 35. By Ville’s characterization [15] of null sets as the sets on which somemartingale succeeds, the argument in the
proof of Proposition 30 extends to a proof of implication (a) in Kakutani’s theorem in essentially the same way as with the
corresponding implications in Theorem 34. However, implication (a) in Vovk’s theorem does not follow this way because it
is open whether a stake martingale of a left-computable martingale is again left-computable.

We conclude the discussion of generalized Bernoulli measures by arguing that in the theorems of this section the
hypothesis of strong positivity is necessary, where we use a straightforward effective version of the Borel–Cantelli lemma.

Proposition 36. Let {pi}i∈N be a computable sequence taking its values in (0, 1) and converging to 0. Let µ be the generalized
Bernoulli measure of parameter {pi}i∈N.

(a) If
∑
i pi < +∞, then µMLR = µCR = {0, 1}∗0ω .

(b) If
∑
i pi = +∞, then µCR ∩ {0, 1}

∗0ω = ∅ (which implies a fortiori that µMLR ∩ {0, 1}∗0ω = ∅).

Proof. (a) Suppose
∑
i pi < +∞. Let A be any sequence in {0, 1}

∗0ω . If we choose m such that for all n > m, An = 0 and
set u = A � m, we have

µ(A) = µ(u)
∞∏

i=m+1

(1− pi),

where the first factor µ(u) is nonzero because the pi differ from 0 and 1, and the second factor is nonzero, too, since∑
i pi < +∞. This means that every singleton in {0, 1}

∗0ω has positivemeasure, hence is necessarilyµ-Martin-Löf random,
i.e., it holds that {0, 1}∗0ω ⊆ µMLR. The inclusionµMLR ⊆ µCR being immediate, it remains to show thatµCR ⊆ {0, 1}∗0ω .
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Let B be an infinite sequence which is not in {0, 1}∗0ω . Let d be the (computable) µ-martingale which at the i-th move bets
the fraction pi of its capital on the value of B(i) to be 1. One has for all n

d(B � n) =
∏

i<n, B(i)=0

(1− pi)
∏

i<n, B(i)=1

(2− pi).

Again, the first product converges to somepositive number since
∑
i pi < +∞, whereas the second product tends to infinity,

since B(i) = 1 for infinitely many i’s. This means that B /∈ µCR.
Conversely, suppose that

∑
i pi = +∞. Let A be an element of {0, 1}

∗0ω . Let m be such that for all i > m: Ai = 0. Let d
be the (computable) µ-martingale which at the i-th move bets nothing if i ≤ m and bets all its capital on the value of Ai to
be 0 if i > m. We get:

d(A � n) =
∏
m<i<n

(
1+

pi
1− pi

)
≥

∏
m<i<n

(
1+ pi

)
,

which tends to infinity because of
∑
i pi = +∞. This proves A /∈ µCR. �

Corollary 37. There are computable generalized Bernoulli measures µ and ν of parameter {pi}i∈N and {qi}i∈N, respectively, such
that ∑

i

(pi − qi)2 < +∞, but µMLR 6= νMLR and µCR 6= νCR,

where indeed µCR ∩ νCR = ∅, and hence also µMLR ∩ νMLR = ∅.

Proof. The corollary is immediate by applying Proposition 36 to the measures with parameters given by pi = 1
i+1 and qi =

1
(i+1)2

. �

4. Computable measures

We now move on to the general case of arbitrary computable measures. The Theorem 38 provides a complete picture
of how the equivalence relations induced on the class of computable measures by the concepts of Martin-Löf randomness,
computable randomness, Schnorr randomness and Kurtz randomness compare to each other. The implication structure
between these relations as stated in Theorem 38 is surprising in so far as it does not reflect the implications that hold
between the underlying notions of randomness.
In connection with Theorem 38, note that the fact thatµCR = νCR impliesµMLR = νMLR is due to Muchnik, Semenov,

andUspensky [9]. The other assertions of Theorem38 are immediate from the results proven in the remainder of this section.

Theorem 38. For all computable probability measures µ and ν , the following implications hold. Except for the transitive closure
of the implications shown, no other implication is true in general.

µCR = νCR
↓

µMLR = νMLR µSR = νSR
↘ ↙

µ, ν equivalent
↓

µKR = νKR
↓

µ, ν consistent

Proposition 39. Let µ and ν be two computable measures.

(a) If µMLR = νMLR, then µ and ν are equivalent.
(b) If µSR = νSR, then µ and ν are equivalent.

Proof. Weprove the assertions (a) and (b) simultaneously. Suppose thatµ and ν are not equivalent, where by symmetrywe
may assume that there exists a setX such thatµ(X) = 0 and ν(X) > 0. Let q be a rational number such that ν(X) > q > 0.
By definition of measure, µ(X) is equal to the infimum of µ(W) over all open setsW that containX. Hence, for all k ∈ N,
there exists an open setW such that µ(W) < 2−k and whereW containsX, hence q < ν(W). The basic open sets [u] form
a basis for the topology on Cantor space, thus the open setW can be written as the union of open sets [wi] over a finite or
infinite prefix-free set of words {w1, w2, . . .}. Since measures are monotonic and continuous, there exists a constant N > 0
such that for U = {w1, . . . , wN}we have

µ (U) <
1
2k

and q ≤ ν (U) .
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Hence, for any k, there is a finite prefix-free set of words Uk such that we have µ(Uk) ≤ 2−k and q ≤ ν(Uk), and hence for
all n, if we let

Vn =
⋃
k>n

[Uk], we have µ(Vn) ≤
∑
k>n

µ([Uk]) ≤
∑
k>n

2−k ≤ 2−n.

Next observe that the sets Uk can be chosen such that from k one can compute a canonical index for Uk, e.g., by running
through all finite sets of words until one is found that satisfies the required properties. This way, the sequence {Vn}n∈N is
uniformly effectively open and the mapping n 7→ µ(Vn) is computable. Indeed, for all k,µ(Uk) is bounded by 2−k, hence, to
computeµ(

⋃
k>n[Uk]) up to precision 2

−s it suffices to compute theµ-measure of the effectively given finite set
⋃
n<k≤s[Uk].

By the preceding discussion, the sequence {Vn}n∈N is a µ-Schnorr test, hence the set G =
⋂
n Vn contains no µ-

Schnorr random sequence. On the other hand, we have ν(G) > 0 because the sequence {Vn}n∈N is nested and for all n,
we have ν(Vn) ≥ q becauseVn contains [Un+1]. In summary, G contains some ν-Martin-Löf random sequence and a fortiori
some ν-Schnorr random sequence but contains no µ-Schnorr sequence and a fortiori no µ-Martin-Löf random sequence,
hence it follows that µMLR 6= νMLR and µSR 6= νSR. �

Proposition 40. Let µ and ν be two computable measures. If µ and ν are inconsistent, then we have

µSR ∩ νKR = µKR ∩ νSR = µSR ∩ νSR = ∅.

Proof. For any set that has µ-measure 1 and ν-measure 0, the complement of the set has µ-measure 0 and ν-measure 1,
hence we can choose a setX of the latter type for any computable measures µ and ν that are inconsistent. By an argument
similar to the one used in the proof of Proposition 39, we infer that for every k there is a finite set of words Uk such that

µ (Uk) <
1
2k

and 1− 1/k ≤ ν (Uk)

where a canonical index for Uk can be computed from k. By setting Vn as before equal to the union of the open
sets [Un+1], [Un+2], . . . , we obtain a µ-Schnorr test {Vn}n∈N, where every component Vn is an open set of ν-measure 1
and thus contains all ν-Kurtz random sequences. Consequently, the set

⋂
n Vn does not contain any µ-Schnorr random

sequence, but contains all the ν-Kurtz random sequences, henceµSR∩νKR = ∅. The remaining assertions of the proposition
are immediate by symmetry and by the inclusion SR ⊆ KR. �

FromProposition 40, the following corollary is immediate because for any computablemeasureµ, theµ-Schnorr random
sequences form a nonempty subset of µKR.

Corollary 41. Let µ and ν be two computable measures. If µKR = νKR, then µ and ν are consistent.

Proposition 42. Let µ and ν be two computable measures. If µ and ν are equivalent, then µKR = νKR.

Proof. The proof is straightforward. Suppose there is a sequence A that is, say, ν-Kurtz random and not µ-Kurtz random.
This means that there exists an effectively open setU of µ-measure 1 such that A /∈ U. Since A is ν-Kurtz random,U has
necessarily ν-measure less than 1. Hence,Uwitnesses that µ and ν are not equivalent. �

We have proven all the implications of Theorem 38. We now turn to the more delicate task of showing that all other
implications between the equivalence relations we study do not hold.When constructing corresponding counter-examples,
the sets introduced in the following definition will play a crucial role.

Definition 43. Let µ and ν be computable nowhere vanishing measures, and k ∈ R+. We define:

Lkµ/ν =
{
X ∈ 2ω : sup

n

µ(X � n)
ν(X � n)

≥ k
}
and L∞µ/ν =

⋂
k∈N

Lkµ/ν .

Proposition 44. Let µ and ν be nowhere vanishing computable measures. Then for every k ∈ R+, it holds that

µ(Lkν/µ) ≤ 1/k and µ(L∞ν/µ) = 0.

Moreover, we haveL∞ν/µ ∩ µCR = ∅, and thus a fortioriL
∞

ν/µ ∩ µMLR = ∅.

Proof. Observe that ν/µ is a µ-martingale according to Lemma 7, and that this martingale is computable and succeeds
exactly on the sequences in L∞ν/µ. The assertions on L∞ν/µ are then immediate. The inequality µ(L

k
ν/µ) ≤ 1/k holds by

Theorem 9. �

The equivalence relations we study are indeed closely related to the sets of the formL∞µ/ν .

Proposition 45. For every pair µ and ν of computable nowhere vanishing measures the following equivalences hold:

(a) µ and ν are equivalent if and only if µ(L∞µ/ν) = ν(L
∞

ν/µ) = 0,
(b) µMLR = νMLR if and only ifL∞µ/ν ∩ µMLR = L∞ν/µ ∩ νMLR = ∅,
(c) µCR = νCR if and only ifL∞µ/ν ∩ µCR = L∞ν/µ ∩ νCR = ∅.
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Proof. For all three equivalences the ‘‘only if" direction is immediate from Proposition 44. Let us now prove the ‘‘if"
directions. By symmetry for assertion (a) it suffices to demonstrate that every set that is ν-null is also µ-null, and similarly
for the two other assertions it suffices to demonstrate µMLR ⊆ νMLR and µCR ⊆ νCR, respectively.
Note that from the definition of Lkµ/ν it is immediate that for every open setU and all nowhere vanishing measures µ

and ν it holds that

µ(U ∩Lkµ/ν) ≤ k ν(U). (6)

(a) Suppose µ(L∞µ/ν) = ν(L
∞

ν/µ) = 0, and letX be a set such that ν(X) = 0. For given k ∈ N, letU be an open set that
containsX such that ν(U) ≤ 1/k2. Then we have

µ(X) ≤ µ(U)

≤ µ(U ∩Lkµ/ν)+ µ(U ∩Lkµ/ν)

≤ µ(Lkµ/ν)+ k ν(U)

≤ µ(Lkµ/ν)+ 1/k.

This is true for all k, and by assumptionµ(L∞µ/ν) = 0, where the latter is equivalent toµ(L
k
µ/ν) tending to 0 when k goes

to infinity, hence µ(X) = 0.
(b) Suppose L∞µ/ν ∩ µMLR = L∞ν/µ ∩ νMLR = ∅. Let A /∈ νMLR. In case A is a member of L∞µ/ν , by assumption

A /∈ µMLR holds and we are done. Otherwise, there is a nonzero natural number k such that A /∈ Lkµ/ν . Now fix a ν-
Martin-Löf test {Un}n∈N where A ∈

⋂
nUn and a computable function (n, i) 7→ un,i such that for all n, the set Un is the

disjoint union of the basic open sets [un,1], [un,2], . . . . For all n, let

Vn =
⋃
{[un,i] : i ∈ N and µ(un,i) < k ν(un,i)}.

Then {Vn}n∈N is a uniformly effectively sequence of open sets which, by definition, satisfiesµ(Vn) < k ν(Un) for all n, hence
{Vn}n∈N is a µ-Martin-Löf test by Remark 17. But A /∈ Lkµ/ν , hence for all n, µ(A � n) < k ν(A � n) hence A ∈ Vn for all n and
consequently A ∈

⋂
n Vn and A /∈ µMLR.

(c) Suppose L∞µ/ν ∩ µCR = L∞ν/µ ∩ νCR = ∅. Let A /∈ νCR, i.e., there is a ν-martingale that succeeds on A and thus, by
Lemma 7, there exists a computable measure ξ such that

lim sup
n→∞

ξ(A � n)
ν(A � n)

= +∞. (7)

In case A is a member ofL∞µ/ν , by assumption A /∈ µCR holds and we are done. Otherwise, the quotients µ(A � n)/ν(A � n)
are bounded from above and (7) remains valid with ν replaced by µ, which by Lemma 7 implies A /∈ µCR. �

In what follows, our main tool for the construction of counter-examples will be Proposition 45 and its variant
Proposition 47. The latter is used in constructions of a measure µ where we only define the values of µ(u) for words u
whose length is a power of 3. First notice that if a function u 7→ m(u) is computable when restricted to the words whose
length is a power of 3, and if the condition

m(u) =
∑

{w: |w|=3|u|}

m(w)

is satisfied for all such words, then m canonically extends to a computable measure µ by setting µ(u) = m(u0) + m(u1)
inductively in decreasing order of length for all words u such that 3s < |u| < 3s+1. Similarly, if a function u 7→ d(u) is
computable when restricted to the words whose length is a power of 3, and if the condition

22|u|d(u) =
∑

{w : uvw and |w|=3|u|}

d(w)

is satisfied for all such words, then d canonically extends to a computable λ-martingale.
That said, we need to make sure that things still work if we restrict our attention to words whose length is a power of

3. But this is quite naturally the case, as the cylinders [w] generated by such words form a basis for the topology of 2ω . For
example, ifU is an effectively open set, one can transform any enumeration ofU into an enumeration that uses only such
cylinders: instead of enumerating a cylinder [u] where 3s < |u| ≤ 3s+1, just enumerate all cylinders [w] such that u v w
and |w| = 3s+1. Based on this observation, we introduce the following definition.

Definition 46. Let µ and ν be nowhere vanishing computable measures. For every k ∈ R+, we set

L̂kµ/ν =
{
A ∈ 2ω : sup

n

µ(A � 3n)
ν(A � 3n)

≥ k
}
and L̂∞µ/ν =

⋂
k∈N

L̂kµ/ν .

Then we get the desired variant of Proposition 45.
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Proposition 47. For every pair µ and ν of nowhere vanishing computable measures the following equivalences hold,

(a) µ and ν are equivalent if and only if µ(L̂∞µ/ν) = ν(L̂
∞

ν/µ) = 0,
(b) µMLR = νMLR if and only if L̂∞µ/ν ∩ µMLR = L̂∞ν/µ ∩ νMLR = ∅,
(c) µCR = νCR if and only if L̂∞µ/ν ∩ µCR = L̂∞ν/µ ∩ νCR = ∅.

Similarly, one obtains the following characterizations of Schnorr randomness and Kurtz randomness, which can be
verified by using savings martingales as discussed in Remark 13.

Proposition 48. Let µ be a computable measure. A sequence A is µ-Schnorr random if and only if there exists no computable
µ-martingale d and computable order g such that d(A � 3n) ≥ g(n) for infinitely many n.
A sequence A is µ-Kurtz random if and only if there exists no computable µ-martingale d and computable order g such that
d(A � 3n) ≥ g(n) for all n.

As further steps towards the construction of counter-examples, we show the following proposition and state a remark.

Proposition 49. Let A ∈ λSR, and suppose that A is∆02 (i.e. computable in the halting problem). There exists a nowhere vanishing
computable measure µ such that A /∈ µSR and

L̂∞µ/λ = ∅ and L̂∞λ/µ = {A}.

Proof. We will in fact construct a computable λ-martingale d such that d(A � 3n) tends to 0 as n tends to infinity, in such
a way that d(A � 3n) ≤ 1/n for infinitely many n and if B 6= A, d(B � 3n) will be eventually constant. Then, setting
µ(u) = λ(u)d(u) for all words u, µ will be as wanted. By the above discussion, we will only define d(u) for those words u
whose length is a power of 3, which we do inductively.
SinceA is∆02, it is the pointwise limit of a sequence ofwords {ws}s∈N.We canmoreover assume that lims→+∞ |ws| = +∞,

that |ws| ≤ 3s for all s, and thatws is a prefix of A for infinitely many s.
Let Ek = {u1k|u| : u ∈ 2∗}. Notice that every λ-Schnorr random sequence has only finitely many prefixes in E2 and has no

prefix in Ek for all k that are sufficiently large. For the sake of simplicity, we assume that A has no prefix in the set E = E2,
which is indeed true for some finite variant of A, and leave the virtually identical argument for larger values of k to the reader.
The martingale d is defined inductively as follows, where it is immediate from the construction that d is computable.

Initially, we let d(ε) = d(0) = d(1) = 1. Then, supposing that d(u) has already been defined for all u of length 3s, define d
on words of length 3s+1 as follows. Let u be word of length 3s. For each extension u′ of u that has length 3s+1, define d(u′) as
follows:

• if u is not an extension ofws, set d(u′) = d(u),
• if u is an extension ofws and u′ is not in E, i.e., u′ 6= u12|u|, set d(u′) = d(u)

s+1 .

Finally, set d(u12|u|) in such a way that the average of the values d(u′) over all words u′ that extend u and have length 3s+1
is equal to d(u).
We turn to the verification.

Claim 1. The function n 7→ d(B � 3n) is eventually constant for all B 6= A.

Proof. The words ws converge pointwise to the sequence A, hence for any sequence B 6= A there exists s0 such that for
all s > s0, the wordws is not a prefix of B, and thus, by construction of d, for all s > s0, d(B � 3s) = d(B � 3s0).

Claim 2. The function n 7→ d(A � 3n) t tends to 0 and d(A � 3n) ≤ 1/n for infinitely many n.

Proof. The claim is a direct consequence of the definition of d. Since A has no prefix in E, by construction of d, one has for
all s either d(A � 3s+1) = d(A � 3s) or d(A � 3s+1) = d(A � 3s)/(s+ 1). Hence s 7→ d(A � 3s) is non-increasing and is smaller
than 1/s for all s such thatws is a prefix of A, which happens infinitely often.
Let us now considerµ = λ d. By the above discussion, L̂∞µ/λ = ∅, L̂

∞

λ/µ = {A}. Moreover, if we consider theµ-martingale
d′ = λ

µ
we see that for infinitely many s, d′(A � 3s) ≥ s. Hence, by Proposition 48, A /∈ µSR. �

Remark 50. There are∆02 sequences in λCR \ λMLR and in λSR \ λCR.
For a proof it suffices to observe that the standard constructions of sequences in the two sets under consideration can

be performed effectively if the halting problem is given as an oracle. Alternatively, one can use the stronger result by Nies,
Stephan, and Terwijn [10] that a Turing degree is high if and only if it contains a sequence in λCR \ λMLR if and only if it
contains a sequence in λSR \ λCR.

Proposition 51. (a) There exists a computable measure µ that is equivalent to λ and nonetheless satisfies λMLR 6= µMLR,
λCR 6= µCR, λSR 6= µSR.
(b) There exists a computable measure µ such that λMLR = µMLR and λCR 6= µCR.
(c) There exists a computable measure µ such that λCR = µCR and λSR 6= µSR.
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Proof. (a) Let A be a∆02 member of λMLR (such as Chaitin’s constantΩ). Letµ be, by Proposition 49, a (nowhere vanishing)
computable measure such that L̂∞µ/λ = ∅, L̂

∞

λ/µ = {A} and A /∈ µSR. Since λ({A}) = 0, by Proposition 47, the measures λ
and µ are equivalent. Moreover, since A ∈ λMLR ⊂ λCR ⊂ λSR, and A /∈ µSR, it follows that λMLR 6= µMLR, λCR 6= µCR,
λSR 6= µSR.
(b) By Remark 50, let B be a∆02 sequence such that B ∈ λCR \ λMLR. By Proposition 49, there exists a (nowhere vanishing)
computable measure µ such that L̂∞µ/λ = ∅, L̂

∞

λ/µ = {B} and B /∈ µSR. By Proposition 47, we have λMLR = µMLR (since
B /∈ λMLR) and λCR 6= µCR (since B ∈ λCR \ µCR).
(c) By Remark 50, let C be a ∆02 sequence such that C ∈ λSR \ λCR. By Proposition 49, there exists a (nowhere vanishing)
computable measure µ such that L̂∞µ/λ = ∅, L̂

∞

λ/µ = {C} and C /∈ µSR. By Proposition 47, we have λCR = µCR (since
C /∈ λCR) and λSR 6= µSR (since C ∈ λSR \ µSR). �

The following lemma will be used in the proof of Proposition 53.

Lemma 52. Let µ and ν be two nowhere vanishing computable measures and A ∈ 2ω . If A ∈ νSR \ µSR, then there exists a
computable order g such that ν(A�3

n)
µ(A�3n) ≥ g(n) holds infinitely often.

Proof. Let A ∈ νSR \ µSR. By Lemma 7 and Proposition 48, there exists a computable measure ξ and a computable order h
such that ξ(A�3

n)
µ(A�3n) ≥ h(n) for infinitely many n. Then g = b

√
hc is a computable order and since A ∈ νSR, for almost all n it

holds that ξ(A�3
n)

ν(A�3n) ≤ g(n). Hence, for infinitely many n

ν(A � 3n)
µ(A � 3n)

≥
ξ(A � 3n)
µ(A � 3n)

ν(A � n)
ξ(A � 3n)

≥
h(n)
g(n)
≥ g(n). �

Proposition 53. There exists a computable measure µ such that λSR = µSR, λCR 6= µCR and λMLR 6= µMLR.

Proof. Let Ω be Chaitin’s constant, which is in λMLR. We will construct, in a very similar way as for Proposition 49, a
computable λ-martingale d and a corresponding computable measure µ = λd such that

L̂∞µ/λ = ∅ and L̂∞λ/µ = {Ω},

where now we wantΩ to be µ-Schnorr random. Again we will construct d such that we have limn d(Ω � 3n) = 0, whereas
for any sequence B 6= Ω , the values d(B � 3n) will be eventually equal to a nonzero constant. In addition, we will ensure
that d(Ω � 3n) decreases so slowly that the values λ(Ω�3n)

µ(Ω�3n) tend to infinity more slowly than any computable order, hence
Ω will be µ-Schnorr random by Lemma 52.
Since Ω is a left-computable sequence, let {ws}s∈N be a sequence of words such that Ω is the pointwise limit of this

sequence, lims→+∞ |ws| = +∞, |ws| ≤ 3s for all s, ws is a prefix of Ω for infinitely many s, and if ws is a prefix of Ω ,
ws v wt for all t > s. Up to replacing the sequence Ω by one of its finite variants, we can assume that Ω has no prefix in
the set E2 as defined in the proof of Proposition 49.
Let F : N→ N be such that F(0) = 0, and for all s > 0, ifws v Ω , then F(s+ 1) = |ws| and, otherwise, F(s+ 1) = F(s).

By definition of thews, for all s, the initial segment ofws which coincides withΩ has at least length F(s).

Claim. F tends to infinity slower than any computable order.

Proof. Let g be a computable order, and suppose that g(n) ≤ F(n) for infinitely many n. Up to taking g even more slow-
growing, we can assume that g(0) = 0 and g(n + 1) ≤ g(n) + 1 for all n. In other words, we can suppose that the range
of g is N. Then, for all i ∈ N, let ni be the largest integer such that g(ni) = i. Since g(n) ≤ F(n) for infinitely many n, it
follows that i = g(ni) ≤ F(ni) for infinitely many i. Sincewn � F(n) = Ω � F(n) for all n, it follows that for infinitely many i,
Ω ∈ [wni � i]. And since∑

i

λ
(
[wni � i]

)
=

∑
i

2−i = 2,

we can apply Proposition 18, from which we get thatΩ is not Schnorr random, a contradiction.
We now construct inductively a λ-martingale d such that for all s it holds that d(Ω � 3s) = F(s)−1, whereas for any

sequence B 6= Ω , the values d(B � n) are eventually constant. Initially, we let d(ε) = d(0) = d(1) = 1. Supposing that d(u)
has already been defined for a word u of length 3s, define d(u′) for every extension u′ of u of length 3s+1 as follows:

• if u is not an extension ofws, set d(u′) = d(u)
• if u is an extension ofws and u′ is not in E2 (i.e. u′ 6= u12|u|) set d(u′) = 1

|ws|
.
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Finally, set d(u12|u|) in such a way that the average of the values d(u′) over all words u′ that extend u and have length 3s+1
is equal to d(u).
Setµ = λ d. It remains to show thatµ is aswanted. First, we see that, for the same reason as in the proof of Proposition 49,

s 7→ d(B � 3s) is eventually constant for B 6= Ω . Second, we see that, sinceΩ has no prefix in E2 and by definition of F , for
all s, d(Ω � 3s+1) = F(s+ 1)−1.
To complete the proof, notice that theµ-martingale d succeeds onΩ hence we haveΩ /∈ µCR (a fortioriΩ /∈ µMLR). It

follows that λMLR 6= µMLR andµCR 6= µCR. However, we have λSR = µSR. Indeed by the previous lemma,µSR\λSR = ∅
since L̂∞µ/λ = ∅, and λSR \ µSR = ∅ since L̂∞λ/µ = {Ω} and

λ(Ω�3n)
µ(Ω�3n) = F(n), with F(n) = o(g(n)) for every computable

order g .

Proposition 54. There exists a computable measure µ such that µ and λ are consistent and λKR 6= µKR.
Proof. Let δ be the measure such that δ({0ω}) = 1, which is clearly computable, and set µ = δ/2+ λ/2. For anyX ⊆ 2ω ,
if 0ω ∈ X, then µ(X) = 1/2+ λ(X)/2, and if 0ω /∈ X, then µ(X) = λ(X)/2. In both cases, it is impossible that one of the
values λ(X) and µ(X) is equal to 1 and the other is equal to 0, hence λ and µ are consistent. On the other hand, 0ω /∈ λKR
but 0ω ∈ µKR. �

The proof of our next and last counter-example uses the notion of λ-2-ML randomness, i.e. Martin-Löf randomness
relativized to the halting problem ∅′. The following theorem due to Nies, Stephan and Terwijn [10] gives a nice
characterization of λ-2-ML randomness in terms of plain Kolmogorov complexity, which we denote by C. For an extensive
survey of Kolmogorov complexity, we refer to Li and Vitanyi [5].

Theorem 55. A sequence A is λ-2-ML random if and only if there exists a constant c such that C(A � n) ≥ n − c for infinitely
many n. Moreover, there exists a computable upper-bound C∗ of C such that this characterization of λ-2-ML randomness remains
valid with C∗ in place of C.

Proposition 56. There exists a (nowhere vanishing) computable probability measure µ such that µKR = λKR and µ is not
equivalent to λ.

Proof. We will construct a computable measure µ such that λ and µ have the same Kurtz random sequences and yet are
not equivalent. As in the proof of Proposition 53, the construction will be done by constructing a λ-martingale d and setting
µ = d λ. And here again, we will only define d on words the length of which is a power of 3, the values on the other words
being implicitly defined.

Let C∗ be a computable function that characterizes λ-2-ML randomness according to Theorem 55. Here we can assume
that C∗ has in addition the property that for some constant c1 and for all words u and v, it holds that

C∗(u12|u|v) ≤ 2|u| + |v| + c1. (8)

In order to see this, let c1 be a constant such that (8) holds for all u and v with C∗ replaced by C. For every wordw, set

C∗∗(w) = min{C∗(w), |w| − iw + c1}

where iw is the largest length i such thatw has a prefix of the form u12|u|with |u| = i. Then C∗∗ is computable and satisfies (8),
and since we have C ≤ C∗∗ ≤ C∗, Theorem 55 remains true with C∗∗ in place of C∗. In summary, we can assume that C∗
satisfies (8) because otherwise we may simply replace C∗ by C∗∗.
The set of λ-2-ML random sequences has λ-measure 1 and, by choice of C∗ according toTheorem 55, this set is equal to

the nested countable union⋃
c∈N

{A : ∃∞n C∗(A � n) ≥ n− c}.

Thus, there exists some c0 ∈ N such that the set

R = {A : ∃∞n C∗(A � n) ≥ n− c0}

has nonzero λ-measure.
For any sequence X , define the function hX by

hX (s) = #
{
t < s : ∃n ∈ (3t , 3t+1] C∗(X � n) ≥ n− c0

}
.

Then hA is eventually constant for allA /∈ R, whereas hA is an order for allA ∈ R. Furthermore, in the latter case there is no
computable order g where g ≤ hA, as can be shown by the following line of argument due to Nies, Stephan and Terwijn [10].
Suppose that there were such a computable order g . Then A belongs to the set of all sequences X such that g(s) ≤ hX (s) for
all s, which is aΠ01 class because the values of hX can be effectively approximated from above given oracle access to X . Thus,
A belongs to aΠ01 class which is a subclass ofR and hence contains only λ-2-ML random sequences. This is a contradiction
since by the Kreisel Basis Theorem, every nonemptyΠ01 class contains a∆

0
2 sequence.

The martingale d is defined inductively, where it is immediate from the construction that d is computable. Initially, set
d(ε) = d(0) = d(1) = 1. Supposing that d(u) has already be defined for all u of length 3s, define d on words of length 3s+1

as follows. Let u be a word of length 3s. For each extensionw of u that has length 3s+1 and differs from u12|u| = u1(3
s+1
−3s),
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• set d(w) = d(u)/2 in case there is n ∈ (3s, 3s+1]where C∗(w � n) ≥ n− c0,
• set d(w) = d(u), otherwise.

Finally, set d(u12|u|) in such away that the average of the values d(u′) over all words u′ that extend u and have length 3s+1
is equal to d(u � 3s).
When analyzing the behavior of d on a sequence A, we distinguish the following three cases. In connection with the

discussion of these cases, recall that A ∈ R holds if and only if there are infinitely many n such that C∗(A � n) ≥ n − c0.
First, in case A ∈ R, the sequence A is in particular λ-2-ML random and thus has only finitely many prefixes of the form
u12|u|, hence up to a fixed positive multiplicative constant we have d(A � 3s) = 2−hA(s) for all s. Second, if A /∈ R and A has
only finitely many prefixes of the form u12|u|, then d(A � 3s+1) is equal to d(A � 3s) for almost all s. Third, if A /∈ R and A has
infinitely many prefixes of the form u12|u|, then A has prefixes of the form u12|u| for arbitrarily long u. But for all sufficiently
long u and all v, we have

C∗(u12|u|v) ≤ 2|u| + |v| + c1 ≤ |u12|u|v| − c0,

hence for all sufficiently large s and for u = A � 3s, we have d(w) = d(u) for all extensions w of u of length 3s+1 that differ
from u12|u|, where then also d(u12|u|) = d(u) follows. Notice that in all the above cases n 7→ d(A � n) is bounded from above
by a constant.
Set µ = d λ. Then µ is obviously computable since d is computable. Let us prove that µ also has the other required

properties.

Claim 1. The measures µ and λ are not equivalent.

Proof. We have λ(R) > 0 by choice ofR. On the other hand, d′ = 1/d = λ/µ is a µ-martingale by Proposition 7, where
for every sequence A ∈ R and for all s, up to a positive multiplicative constant, d′(A � 3s) = 2hA(s). Since hA is an order for
all A ∈ R, this proves that d′ succeeds on all A ∈ R. Hence,R ∩ µCR = ∅ and thus µ(R) = 0.

Claim 2. It holds that µKR ⊆ λKR.

Proof. Let A /∈ λKR. Then there exists a computable λ-martingale d0 and a computable order g such that d0(A � n) ≥ g(n)
for all n. Moreover, the λ-martingale d = µ/λ is bounded from above on any sequence, hence we can fix a constant r > 0
such that d(A � n) ≤ r for all n. Now in order to see that A /∈ µKR, it suffices to observe that for theµ-martingale d1 = d0 λµ
it holds for all n that

d1(A � n) = d0(A � n)
λ(A � n)
µ(A � n)

=
d0(A � n)
d(A � n)

≥
g(n)
r
.

Claim 3. It holds that λKR ⊆ µKR.

Proof. Given any sequence A /∈ µKR, fix a computable µ-martingale d2 and a computable order f such that d2(A � n) ≥
f (n) for all n and define a computable λ-martingale d3 by

d3 = d2
µ

λ
, that is, d3 = d2d =

d2
d′
.

We distinguish two cases. In case A /∈ R, we have already seen that almost all values d(A � 3n) are equal to a
constant 1/r ′ > 0, hence d3(A � 3n) ≥ g(n)

r for almost all n and consequently A /∈ λKR according to Proposition 48. In
the second case, i.e., A ∈ R, A is in particular λ-2-ML random, hence the λ-martingale d3 is bounded on A from above, say
by a constant r ′′ > 0, and we obtain for all n

d′(A � n) = d2(A � n)
d′(A � n)
d2(A � n)

≥
f (n)
r ′′
.

Recall that d′(A � 3s) = 2hA(s) up to a positive multiplicative constant. It follows for some constant r ′′′ and for all s that

2hA(s) ≥
f (3s)
r ′′′

and hence

hA(s) ≥ log
( f (3s)
r ′′

)
,

which contradicts the fact that hA cannot be bounded from below by a computable order. Hence, the second case will not
occur, and this finishes the proof of Claim 3. �

The last counter-example we gave showed that two measures which have the same Kurtz random sequences need not
be equivalent. This has consequences for the possible effectivizations of the following classical result.
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Proposition 57. Let µ and ν be two probability measures on the Cantor space. Then the following assertions are equivalent.

(i) The measures µ and ν are equivalent.
(ii) The measures µ and ν have the same closed null sets.
(iii) The measures µ and ν have the same Gδ null sets.

It is suggesting to ask whether an effectivized version of Proposition 57 is true, where attention is restricted to computable
measures and in place of closed sets and Gδ sets one considers501 sets and5

0
2 sets, respectively. As a corollary to the results

already shown, we obtain that for the effective version the equivalence (i)↔ (iii) remains valid whereas (i)↔ (ii) is false
in general.

Proposition 58. Two computable probability measures µ and ν on the Cantor space are equivalent if and only if they have the
same502 null sets.
There are computable probability measuresµ and ν on the Cantor space that have the same501 null sets but are not equivalent.

Proof. Concerning the first assertion, it suffices to observe that in the proof of Proposition 39 we have shown that if two
computable probability measures µ and ν are not equivalent, then there exists a 502 set that is a null set with respect to
exactly one of the two measures. Concerning the second assertion, we have shown in the proof of Proposition 55 that there
are two computable probability measures that have the same Kurtz random sequences but are not equivalent. But having
the same Kurtz random sequences and having the same501 null sets is the same because if there is a5

0
1 set that is null, say,

for µ, but has positive measure for ν, then this set cannot contain any Kurtz random sequence with respect to µ but has a
nonempty intersection with the class of Kurtz random sequences with respect to ν, which has ν measure 1. �
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