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a b s t r a c t

The jump operator on the ω-enumeration degrees was introduced in [I.N. Soskov, The ω-
enumeration degrees, J. Logic Computat. 17 (2007) 1193–1214]. In the present paper we
prove a jump inversion theorem which allows us to show that the enumeration degrees
are first order definable in the structureDω

′ of the ω-enumeration degrees augmented by
the jump operator. Further on we show that the groups of the automorphisms ofDω

′ and
of the enumeration degrees are isomorphic.
In the second part of the paperwe study the jumps of theω-enumeration degrees below

0ω ′. We define the ideal of the almost zero degrees and obtain a natural characterization
of the class H of the ω-enumeration degrees below 0ω ′ which are high n for some n and of
the class L of the ω-enumeration degrees below 0ω ′ which are low n for some n.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The upper semi-latticeDω of ω-enumeration degrees was introduced by the first author in [11]. It is an extension of the
semi-latticeDe of the enumeration degrees and hence of the semi-latticeDT of the Turing degrees. In [11] a jump operator
on the ω-enumeration degrees is defined and a jump inversion theorem is proved also from which it follows that the range
of the jump operator is equal to the cone of allω-enumeration degrees greater than the jump 0ω ′ of the leastω-enumeration
degree 0ω , a property true for the Turing jump but not true for the enumeration jump.
It turns out that the jump on the ω-enumeration degrees has an even stronger inversion property. Namely, for every

ω-enumeration degree a above 0ω ′ there exists a least degree among the degrees whose jump is equal to a. This property is
not true either for the enumeration jump or for the Turing jump.
Using the existence of least jump inverts we show in the first part of the paper that the set of the enumeration degrees is

first order definable in the structureDω
′ of the ω-enumeration degrees augmented by the jump operator. This definability

result allowsus to obtain further that the groups of the automorphismsofDe′ andDω
′ are isomorphic. Since the enumeration

jump is first order definable inDe, see [3], it follows that the groups of the automorphisms ofDe andDω
′ are also isomorphic.

Thus we obtain that the structuresDe′ andDω
′ are closely related butDe′ andDω

′ are not elementary equivalent.
In the second part of the paper we study the jumps of the ω-enumeration degrees below 0ω ′. Here we consider a

monotonically decreasing sequence {on}n≥1 of explicitly defined degrees, where on is the least degree with nth jump equal
to 0ω(n+1). We call a degree a almost zero (a.z.) if for all n, a is below on. We prove that the a.z. degrees form a nontrivial ideal.
The a.z. degrees are used to obtain a characterization of the classes H and L, where

H = {a : a ≤ 0ω ′ & (∃n)(a(n) = 0ω(n+1))} and

L = {a : a ≤ 0ω ′ & (∃n)(a(n) = 0ω(n))}.
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Namely, we show that a degree a ≤ 0ω ′ belongs to H if and only if a is above all a.z. degrees and a ∈ L if and only if there
are no nonzero a.z. degrees below a.
Since the ω-enumeration jump agrees with the enumeration jump and with the Turing jump the characterization of the

classes H and L remains the same also for the enumeration and for the Turing degrees.
The last result shows that the study of the ω-enumeration degrees can provide us with tools which are useful for the

study of the enumeration degrees and of the Turing degrees. A similar methodological observation about the usefulness of
the study of the enumeration degrees for obtaining results about the Turing degrees was recently made by Soskova and
Cooper [13].

2. Preliminaries

2.1. The enumeration degrees

We shall assume that an effective coding of all finite sets of natural numbers is fixed and shall identify the finite sets and
their codes. Finite sets will be denoted by the letter D possibly with subscripts.

Definition 2.1. Given sets A and B of natural numbers, let

A(B) = {x : (∃D)(〈x,D〉 ∈ A & D ⊆ B}.

LetW0, . . . ,Wa, . . . be a Gödel enumeration of the recursively enumerable (r.e.) sets of natural numbers.
The operators λB.Wa(B) are called enumeration operators. For A, B ⊆ N, A ≤e B (A is enumeration reducible to B) if there

exists an r.e. set W such that A = W (B). Let A ≡e B ⇐⇒ A ≤e B & B ≤e A. The relation ≡e is an equivalence relation
and the respective equivalence classes are called enumeration degrees. Given a set A of natural numbers, by de(A)we shall
denote the enumeration degree containing A. Let de(A) ≤e de(B) if A ≤e B. Clearly≤e is a partial ordering with least element
0e which is equal to the set of all r.e. sets. The set of all enumeration degree is denoted by De. By De we shall denote the
structure (De; 0e; ≤e). For an introduction to the enumeration degrees the reader might consult [2].
For every set A of natural numbers let A+ = A ⊕ (N \ A). Then a set B is r.e. in A if and only if B ≤e A+ and A is Turing

reducible to B if and only if A+ ≤e B+. Moreover there exist recursive functions µ and ν such that for all a ∈ N and A ⊆ N,
W Aa = Wµ(a)(A+) andWa(A+) = W Aν(a).
Denote byDT = (DT ; 0T ; ≤T ) the partial ordering of the Turing degrees. Let ι : DT → De bedefined by ι(dT (A)) = de(A+).

Then ι is an isomorphic embedding ofDT intoDe called Rogers’ embedding. The enumeration degrees which belong to the
range of ι are said to be total. Notice that an enumeration degree a is total if and only if for some A ⊆ N, A+ ∈ a.
The enumeration jump operator is defined in [1] and further studied in [6]. Here we shall use the following definition of

the enumeration jump which ism-equivalent to the original one, see [6].

Definition 2.2. Given a set A of natural numbers, set LA = {〈a, x〉 : x ∈ Wa(A)} and let the enumeration jump Je(A) of A be
the set L+A .

Given a set A of natural numbers, denote by JT (A) the Turing jump of A. Let J0e (A) = A and J
n+1
e (A) = Je(Jne (A)); J

0
T (A) = A

and Jn+1T (A) = JT (JnT (A)).
The following proposition a proof of which can be found in [1,6] demonstrates the relationship between the operators Je

and JT :

Proposition 2.3. There exist recursive functions p and q such that for all A ⊆ N and n ∈ N,

JnT (A)
+
= Wp(n)(Jne (A

+)) and Jne (A
+) = Wq(n)(JnT (A)

+).

To simplify the notation, given A ⊆ N, by A′ we shall denote the enumeration jump Je(A) of A. Let for n ∈ N, A(n) = Jne (A).
One can easily check that for every A ⊆ N, A �e A′ and if A ≤e B then A′ ≤e B′. So we may define a jump operation on

De by letting de(A)′ = de(A′). Clearly the jump of every enumeration degree is a total degree. Since there exist enumeration
degrees above 0e′ which are not total, not every enumeration degree above 0e′ is in the range of the enumeration jump
operator.
By Proposition 2.3 the jump is preserved under Roger’s embedding ι, i.e.

(∀a ∈ DT )(ι(a′) = ι(a)′).

We shall need the following jump inversion theorem proved in [10].
Given a sequenceB = {Bk}k<ω of sets of natural numbers we define the respective jump sequence P (B) = {Pk(B)}k<ω

by induction on k:

(i) P0(B) = B0;
(ii) Pk+1(B) = Pk(B)

′
⊕ Bk+1.
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Theorem 2.4. Let B = {Bk}k<ω be a sequence of sets of natural numbers. Suppose that for some X ⊆ N and for some n ∈ N,
Pn(B) ≤e X+. Then there exists F ⊆ N satisfying the following conditions:

(1) (∀k ≤ n)(Bk ≤e (F+)(k))
(2) (∀k < n)((F+)(k+1) ≡e (F+)⊕ Pk(B)

′).
(3) (F+)(n) ≡e X+.

2.2. The ω-enumeration degrees

Denote by S the set of all sequences B = {Bk}k<ω of sets of natural numbers. Consider an element B of S and let the
jump class JB defined byB be the set of the Turing degrees of all X ⊆ N such that (∀k)(Bk is r.e. in JkT (X)) uniformly in k.

Proposition 2.5. For every sequenceB = {Bk}k<ω of sets of natural numbers,

JB = {dT (X) : (∀k)(Bk ≤e (X+)(k)) uniformly in k}.

Proof. Let µ be a recursive function such that for all a ∈ N and all X ⊆ N,W Xa = Wµ(a)(X+). Consider an element dT (X) of

JB . Let g be a recursive function such that (∀k)(Bk = W
JkT (X)
g(k) = Wµ(g(k))(JkT (X)

+)). Then, by Proposition 2.3,

(∀k)(Bk = Wµ(g(k))(Wp(k)(Jke (X
+))) = Wµ(g(k))(Wp(k)((X+)(k))).

Clearly there exists a recursive function λ(a, b) such that for all a, b ∈ N, and all X ⊆ N,Wa(Wb(X)) = Wλ(a,b)(X). Set
h(k) = λ(µ(g(k)), p(k)). Then

(∀k)(Bk = Wh(k)((X+)(k))).

So we have proved that JB ⊆ {dT (X) : (∀k)(Bk ≤e (X+)(k)) uniformly in k}. The proof of the reverse inclusion is similar. �

Given two sequences A and B let A ≤ω B (A is uniformly reducible to B) if JB ⊆ JA and A ≡ω B if JB = JA. Clearly
‘‘≤ω ’’ is a reflexive and transitive relation on S and ‘‘≡ω ’’ is an equivalence relation on S.
For every sequence B let dω(B) = {A : A ≡ω B} and let Dω = {dω(B) : B ∈ S}. The elements of Dω are called the

ω-enumeration degrees.
The ω-enumeration degrees can be ordered in the usual way. Given two elements a = dω(A) and b = dω(B) of Dω , let

a ≤ω b ifA ≤ω B. ClearlyDω = (Dω,≤ω) is a partial ordering with least element 0ω = dω(∅ω), where all members of the
sequence ∅ω are equal to ∅.
Given two sequences A = {Ak} and B = {Bk} of sets of natural numbers let A ⊕ B = {Ak ⊕ Bk}. Is it easy to see that

JA⊕B = JA∩JB and hence every two elements a = dω(A) and b = dω(B) ofDω have a least upper bound a∪b = dω(A⊕B).
Given a setW of natural numbers and k ∈ N, letW [k] = {u : 〈k, u〉 ∈ W }.

Definition 2.6. For everyW ⊆ N and every sequenceB = {Bk}k<ω of sets of natural numbers, letW (B) = {W [k](Bk)}k<ω .

Definition 2.7. Let A = {Ak}k<ω and B = {Bk}k<ω be elements of S. Then A ≤e B (A is enumeration reducible to B) if
A = W (B) for some r.e. setW .

A simple application of the Smn -Theorem shows that A ≤e B if and only if there exists a recursive function h such that
(∀k)(Ak = Wh(k)(Bk)).
LetA ≡e B ifA ≤e B andB ≤e A.
The following facts follow easily from the definitions.

Proposition 2.8. LetA,B ∈ S. Then the following assertions hold:

(1) A ≤e P (A);
(2) P (P (A)) ≤e P (A).
(3) A ≤e B ⇒ P (A) ≤e P (B).

The following theorem from [12] gives an explicit characterization of the uniform reducibility.

Theorem 2.9. For every two sequencesA andB of sets of natural numbers

A ≤ω B ⇐⇒ A ≤e P (B).

Corollary 2.10. (1) For allA ∈ S,A ≡ω P (A).
(2) For allA,B ∈ S,A ≤e B ⇒ A ≤ω B .

There is a natural embedding of the enumeration degrees into the ω-enumeration degrees. Given a set A of natural
numbers denote by A ↑ ω the sequence {Ak}k<ω , where A0 = A and for all k ≥ 1, Ak = ∅.

Proposition 2.11. For every A, B ⊆ N, A ↑ ω ≤ω B ↑ ω ⇐⇒ A ≤e B.
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Proof. Suppose that A ↑ ω ≤ω B ↑ ω. Then JB↑ω ⊆ JA↑ω and hence for every X ⊆ N, B is r.e. in X implies A is r.e. in X . By
Selman’s Theorem [9], A ≤e B.
The implication A ≤e B⇒ JB↑ω ⊆ JA↑ω is obvious. �

Let D1 = {dω(A ↑ ω) : A ⊆ N} andD1 = (D1; 0ω; ≤ω� D1).
Define the mapping κ : De → D1 by κ(de(A)) = dω(A ↑ ω). Then κ is an isomorphism fromDe toD1 and hence κ is an

embedding ofDe intoDω .
Recall Rogers’ embedding ι of the Turing degrees into the enumeration degrees defined by ι(dT (X)) = de(X+) and let

λ : DT → Dω be defined by λ(x) = κ(ι(x)). Clearly λ is an isomorphic embedding ofDT intoDω .

Proposition 2.12. LetA ∈ S. Then JA = {x : x ∈ DT & dω(A) ≤ω λ(x)}.

Proof. Let x ∈ JA. Fix an element X of x. Then for all k, Ak ≤e (X+)(k) uniformly in k. Clearly P (X+ ↑ ω) ≡e {(X+)(k)}k<ω .
Then, by Theorem 2.9,A ≤ω X+ ↑ ω and hence dω(A) ≤ω λ(x).
Let dω(A) ≤ω λ(x). Consider a X ∈ x. Then, by Theorem 2.9, A ≤e P (X+ ↑ ω) and hence for all k, Ak ≤e (X+)(k)

uniformly in k. So, x ∈ JA. �

Corollary 2.13. Let a, b ∈ Dω . Then

a ≤ω b ⇐⇒ (∀x ∈ DT )(b ≤ω λ(x)⇒ a ≤ω λ(x)).

For everyA ∈ S set JeA = {x : x ∈ De & dω(A) ≤ω κ(x)}.
Clearly JA = {x : x ∈ DT & ι(x) ∈ JeA}. Hence for every two sequencesA andB we have that

A ≤ω B ⇐⇒ JeB ⊆ J
e
A.

Corollary 2.14. Let a, b ∈ Dω . Then

a ≤ω b ⇐⇒ (∀x ∈ De)(b ≤ω κ(x)⇒ a ≤ω κ(x)).

Proposition 2.15. D1 is a base of the automorphisms ofDω .

Proof. Suppose that ϕ is an automorphism ofDω and ϕ(y) = y for y ∈ D1. Consider an element a ∈ Dω . Then for all x ∈ De,

a ≤ω κ(x) ⇐⇒ ϕ(a) ≤ω ϕ(κ(x)) ⇐⇒ ϕ(a) ≤ω κ(x).

Hence a = ϕ(a). �

3. The jump operator

In this section we shall give the definition of the jump operator on the ω-enumeration degrees and study its properties.

Definition 3.1. For everyA ∈ S letA′ = {Pk+1(A)}k<ω .

Proposition 3.2. LetA = {Ak}k<ω ∈ S. Then JA′ = {a′ : a ∈ JA}.

Proof. Let a ∈ JA. Since P (A) ≡ω A by Corollary 2.10, a ∈ JP (A) and hence for some X ∈ a we have that for all k,
Pk(A) ≤e (X+)(k) uniformly in k. From here it follows that for all k, Pk+1(A) ≤e ((X+)′)(k) uniformly in k. Thus a′ ∈ JA′ .
Suppose now that b ∈ JA′ . Then for some X ∈ b and for all k, Pk+1(A) ≤e (X+)(k) uniformly in k. In particular

P1(A) ≤e X+. By Theorem 2.4 there exists F ⊆ N such that A0 ≤e F+ and (F+)′ ≡e X+. Let a = dT (F). Then a ∈ JA
and a′ = b. �

Proposition 3.3. LetA,B ∈ S. Then the following assertions are true:

(J0) A �u A′

(J1) A ≤ω B ⇒ A′ ≤ω B ′

Proof. Clearly A ≤e P (A) ≤e A′ ≤e P (A′). Hence A ≤ω A′. Assume that A′ ≤ω A. Then A′ ≤e P (A) and hence
P1(A) = P0(A)

′
⊕ A1 ≤e P0(A). By the properties of the enumeration jump the last is not possible.

The condition (J1) follows by Proposition 3.2. �

From (J1) it follows thatA ≡ω B ⇒ A′ ≡ω B ′. So we may define a jump operation on the ω-enumeration degrees by
dω(A)′ = dω(A′).
From Proposition 3.2 we get immediately the following characterization of the jump:

Proposition 3.4. Let a, b ∈ Dω . Then

a ≤ω b′ ⇐⇒ (∀x ∈ DT )(b ≤ω λ(x)⇒ a ≤ω λ(x′)).
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Proof. LetA ∈ a andB ∈ b. Then

a ≤ω b′ ⇐⇒ A ≤ω B ′ ⇐⇒ JB′ ⊆ JA ⇐⇒ {x′ : x ∈ JB} ⊆ JA. �

Nextwe show that the jumpon theω-enumeration degrees agreeswith the enumeration jump andhencewith the Turing
jump.

Proposition 3.5. Let x ∈ De. Then κ(x′) = κ(x)′.

Proof. Let x ∈ De and X ∈ x. Clearly

P (X ′ ↑ ω) ≡e {X (k+1)}k<ω ≡e {P1+k(X ↑ ω)}k<ω = (X ↑ ω)′.

Hence κ(x′) = κ(x)′. �

Using the agreement of the enumeration jumpwith the Turing jump under Rogers’ embedding we obtain the following:

Corollary 3.6. For every x ∈ DT , λ(x′) = λ(x)′.

Combining Propositions 3.5 and 3.4 we also obtain the following proposition.

Proposition 3.7. For any two ω-enumeration degrees a and b,

a ≤ω b′ ⇐⇒ (∀x ∈ De)(b ≤ω κ(x)⇒ a ≤ω κ(x′)).

Proof. Let a ≤ω b′. Consider a x ∈ De and suppose that b ≤ω κ(x). Then b′ ≤ω κ(x)′ = κ(x′). Hence a ≤ω b′ ≤ω κ(x′).
Suppose now that for all x ∈ De, b ≤ω κ(x) implies a ≤ω κ(x′). Then for all x ∈ DT , b ≤ω λ(x) implies a ≤ω λ(x′). Hence

a ≤ω b′. �

Given n ≥ 0, setA(n)
= {Pn+k(A)}k<ω . One can easily check thatA(0)

≡e P (A) and for all n ≥ 0,A(n+1)
≡e (A

(n))
′.

For every ω-enumeration degree a = dω(A), let a(n) = dω(A(n)). Then a(0) = a and for all n, a(n+1) = (a(n))′.
Next we turn to the jump inversion problem.
Let us fix a sequenceA = {Ak}k<ω of sets of natural numbers.

Definition 3.8. LetB ∈ S and n ≥ 1. Then set InA(B) = {Ck}k<ω , where (∀k < n)(Ck = Ak) and (∀k ≥ n)(Ck = Pk−n(B)).

Proposition 3.9. LetA(n)
≤ω B . Then the following assertions hold:

(1) A ≤ω InA(B).
(2) InA(B)

(n)
≡ω B .

(3) IfA ≤ω C andB ≤ω C(n) then InA(B) ≤ω C.

Proof. Assertions (1) and (2) follow directly from the definitions. To prove (3) suppose thatA ≤ω C andB ≤ω C(n). Then
for all k, Pk(B) ≤e Pn+k(C) uniformly in k. Since A ≤ω C, for all k < n, Ak ≤e Pk(C). Thus InA(B) ≤e P (C) and hence
InA(B) ≤ω C. �

Let us mention some other obvious but useful properties of the invert operation InA:

(I0) InA(A
(n)) ≡ω A.

(I1) LetA,A∗ ∈ S. If for someB,C ∈ S, InA(B) ≡ω I
n
A∗(C), then

(∀k < n)(Pk(A) ≡e Pk(A
∗)).

(I2) IfB ≡ω C then InA(B) ≡ω I
n
A(C).

(I3) If (∀k < n)(Pk(A) ≡e Pk(A
∗)) then for allB ∈ S, InA(B) ≡ω I

n
A∗(B).

Let a, b ∈ Dω and n ≥ 1. LetA ∈ a andB ∈ b. Set Ina (b) = dω(I
n
A(B)). By (I2) and (I3) I

n
a (b) is a correctly defined binary

operation on Dω .
Proposition 3.9 has several corollaries which appear to be surprising and show that the jump operator on the ω-

enumeration degrees possesses some nice properties which are true neither for the Turing nor for the enumeration jump.

Proposition 3.10. Let a, b ∈ Dω and a(n) ≤ω b. Then Ina (b) is the least element of the set {x : a ≤ω x & x(n) = b}.

Proof. Immediate from Proposition 3.9. �

Proposition 3.11. For every a ∈ Dω and n ≥ 1,

{x(n) : a ≤ω x ≤ω a′} = {y : a(n) ≤ω y ≤ω a(n+1)}.
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Proof. Clearly for every x ∈ [a, a′], x(n) ∈ [a(n), a(n+1)].
Suppose now that a(n) ≤ω y ≤ω a(n+1) and set x = Ina (y). Then a ≤ω x and x(n) = y. It remains to show that x ≤ω a′.

Indeed, we have that a(n) ≤ω y and y ≤ω a(n+1) = (a′)(n). Hence, by Proposition 3.9, x ≤ω a′. �

Given ω-enumeration degrees a ≤ω b, denote byDω[a, b] the structure ({x : a ≤ω x ≤ω b},≤ω� [a, b]).

Proposition 3.12. Let a ∈ Dω and n ≥ 1. Then

Dω[a(n), a(n+1)] ' Dω[a, Ina (a
(n+1))].

Proof. It follows easily from Proposition 3.9 that if a(n) ≤ω x, y then

x ≤ω y ⇐⇒ Ina (x) ≤ω I
n
a (y).

So to conclude the proof it is enough to show that if a ≤ω x ≤ω Ina (a
(n+1)) then x = Ina (x

(n)). Indeed, letA ∈ a andX ∈ x.
Then A ≤ω X and X ≤ω InA(A

(n+1)). From here it follows that for all k < n, Pk(A) ≤e Pk(X) ≤e Pk(A). Therefore
(∀k < n)(Pk(X) ≡e Pk(A)). By (I3),X ≡ω InX(X

(n)) ≡ω InA(X
(n)) and hence x = Ina (x

(n)). �

The last proposition shows thatDω[a, a′] contains a substructure isomorphic toDω[a(n), a(n+1)].
Denote byDω

′ the structure (Dω; 0ω; ≤ω;′ ) of the ω-enumeration degrees augmented by the jump operation.
In the remaining part of this section we shall show that D1 is first order definable inDω

′.

Definition 3.13. Given a, x ∈ Dω , let

Ia = {I1a (x) : a
′
≤ω x}.

Notice that

z ∈ Ia ⇐⇒ a ≤ω z & (∀y)(a ≤ω y & y′ = z′ ⇒ z ≤ω y).

Hence there exists a first order formulaΦ with two free variables such that

Dω
′
|= Φ(z, a) ⇐⇒ z ∈ Ia.

Proposition 3.14. Let a = dω(A) and b = dω(B). Then

Ia ⊆ Ib ⇐⇒ b ≤ω a & A0 ≡e B0.

Proof. Let Ia ⊆ Ib. By (I0) a ∈ Ia and hence a ∈ Ib. Then a = I1b(x) for some x such that b
′
≤ω x. Therefore b ≤ω a. On the

other hand, a = I1a (a
′) = I1b(x). Hence by (I1) A0 = P0(A) ≡e P0(B) = B0.

Suppose now that b ≤ω a and A0 ≡e B0. We have to show that for every x such that a′ ≤ω x, I1a (x) ∈ Ib. Indeed, note
that b′ ≤ω a′ ≤ω x and hence I1b(x) ∈ Ib. From A0 ≡e B0 by (I3) we get that I1b(x) = I

1
a (x). �

Corollary 3.15. If Ia = Ib then a = b.

Proposition 3.16. For all a ∈ Dω ,

a ∈ D1 ⇐⇒ (∀b)(Ia ⊆ Ib ⇒ Ia = Ib).

Proof. Let a = dω(A ↑ ω) ∈ D1. Suppose that b = dω(B) and Ia ⊆ Ib. Then A ≡e B0 and hence A ↑ ω ≤ω B. So a ≤ω b.
By the proposition above Ib ⊆ Ia.
Suppose now that (∀b)(Ia ⊆ Ib ⇒ Ia = Ib). Consider a sequenceA ∈ a. Set B = A0 ↑ ω and let b = dω(B). Notice

that b ∈ D1. Clearly b ≤ω a. Therefore by the proposition above Ia ⊆ Ib. Then Ia = Ib. From here we get that a = b and
hence a ∈ D1. �

Corollary 3.17. D1 is first order definable inDω
′.
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4. The automorphisms of Dω
′

The definability of D1 shows that every automorphism ofDω
′ induces an automorphism of the structureD1 and hence

of the structureDe. On the other hand, sinceD1 is a base of the automorphisms ofDω we have that if two automorphisms of
Dω
′ induce the same automorphism ofDe then they coincide. In particular every nontrivial automorphism ofDω

′ induces
a nontrivial automorphism ofDe.
Now we shall show that every automorphism ofDe can be extended to an automorphism ofDω

′. We start by recalling
some facts about the automorphisms ofDT .
Denote byDT

′ the structure of the Turing degrees augmented by the Turing jump operator and byDe
′ the structure of

the enumeration degrees augmented by the enumeration jump.
The following theorem was proved by Richter [7], see also [5]:

Theorem 4.1. Let a, b ∈ DT . Suppose thatDT ′[a,∞] ' DT
′
[b,∞]. Then a(2) ≤T b(3).

As a corollary Richter obtained the following fact about the automorphisms ofDT ′:

Theorem 4.2. Let ϕ be an automorphism ofDT ′. Then ϕ(a) = a for all a above 0(3).
Using Theorem 4.1 one can obtain similar results aboutDe′.

Theorem 4.3. Let a, b ∈ De be such thatDe′[a,∞] ' De
′
[b,∞]. Then a(3) ≤e b(4).

Proof. Let ϕ be an isomorphism fromDe
′
[a,∞] toDe

′
[b,∞].

We shall show that ϕ maps the total enumeration degrees above a′ onto the total enumeration degrees above b′. Indeed,
consider a total degree x above a′. By Theorem 2.4 there exists a y such that a ≤e y and y′ = x. Then

ϕ(x) = ϕ(y′) = ϕ(y)′.

Since every jump is a total degree ϕ(x) is total. Clearly b′ = ϕ(a′) ≤e ϕ(y′) = ϕ(x).
Suppose now that b′ ≤e y and y is total. Since ϕ−1 is an isomorphism fromDe

′
[b,∞] toDe

′
[a,∞], ϕ−1(y) is total and

a′ ≤e ϕ−1(y).
Define the mapping γ onDT [ι

−1(a′),∞] by γ (x) = ι−1(ϕ(ι(x))). Clearly γ is an isomorphism fromDT
′
[ι−1(a′),∞] to

DT
′
[ι−1(b′),∞]. By Theorem 4.1 ι−1(a′)(2) ≤T ι−1(b′)(3). Hence a(3) ≤e b(4). �

As a corollary we obtain the following property of the automorphisms ofDe′ whose proof follows along the lines of the
proof of Theorem 4.2 presented in [5].

Theorem 4.4. Let ϕ be an automorphism ofDe′. Then ϕ(x) = x for all x above 0e(4).
Proof. Consider first a total degree c greater than 0e(4). By Theorem 2.4 there exists an enumeration degree a such that
c = a ∪ 0e(4) = a(4).
Let d = ϕ(c) and b = ϕ(a). By the previous theorem b ≤e b(3) ≤e a(4).
Clearly b(4) = ϕ(a(4)) = ϕ(c) = d.
On the other hand,

b(4) = ϕ(a(4)) = ϕ(a ∪ 0e(4)) = ϕ(a) ∪ 0e(4) = b ∪ 0e(4).

Hence d = b ∪ 0e(4) ≤e a(4) = c.
Using the fact that ϕ−1 is also an automorphism ofDe′ we obtain by the same reasoning that c ≤e d. Thus c = d.
Let x be an arbitrary enumeration degree greater than 0e(4). By Rozinas [8] there exist total enumeration degrees a and b

such that x = a ∩ b. Then

ϕ(x) = ϕ(a ∩ b) = ϕ(a) ∩ ϕ(b) = a ∩ b = x. �

Now we are ready to show that every automorphism of De′ can be extended to an automorphism of Dω
′. Let us fix an

automorphism ϕ ofDe′.
Consider a sequenceA = {Ak}k<ω of sets of natural numbers. Recall that JeA = {x : x ∈ De & dω(A) ≤ω κ(x)}. We shall

show, that one can construct a sequenceB such that JeB = {ϕ(x) : x ∈ J
e
A}. Indeed, let pk = de(Pk(A)). Notice that if k ≥ 4

then pk ≥ 0(4) and hence ϕ(pk) = pk.
Define the sequence B = {Bk}k<ω as follows. Fix some elements B0, B1, B2, B3 of ϕ(p0), ϕ(p1), ϕ(p2) and ϕ(p3)

respectively and let for k ≥ 4, Bk = Pk(A).

Lemma 4.5. JeB = {ϕ(x) : x ∈ J
e
A}.

Proof. Let x ∈ JeA and let X ∈ x. ThenA ≤ω X ↑ ω and henceP (A) ≤e {X (k)}k<ω . Consider a set Y ∈ ϕ(x). By Theorem 4.4,
X (4) ≡e Y (4). Therefore for all k ≥ 4, X (k) ≡e Y (k) uniformly in k. Clearly Bk ≤e Y (k) for k ≤ 3. So, B ≤ω {Y (k)}k<ω . Thus
ϕ(x) ∈ JeB .
Suppose now that y ∈ JeB and let y = ϕ(x). Let X ∈ x and Y ∈ y. Then again X (4) ≡e Y (4). From here it follows as in he

previous case that P (A) ≤e {X (k)}k<ω and hence x ∈ JeA. �
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Let us define the mapping Φ on Dω as follows. Given an element a ∈ Dω , consider a sequence A ∈ a and construct the
sequence B as above. Let Φ(b) = dω(B). By the lemma the mapping Φ is correctly defined, it is injective and preserves
the partial ordering ‘‘≤ω ’’. So to prove that Φ is an automorphism of Dω it is enough to show that Φ is onto. Indeed, let
b = dω(B). Since ϕ−1 is an automorphism of De

′ there exists a sequence A such that JeA = {ϕ
−1(x) : x ∈ JeB}. Let

a = dω(A) andΦ(a) = dω(B∗), where JeB∗ = {ϕ(x) : x ∈ J
e
A}. Then J

e
B = J

e
A and henceΦ(a) = b.

The following lemma follows directly from the definition ofΦ:

Lemma 4.6. For every a ∈ Dω ,

{y : y ∈ De &Φ(a) ≤ω κ(y)} = {ϕ(x) : x ∈ De & a ≤ω κ(x)}.

Corollary 4.7. For every a ∈ De,Φ(κ(a)) = κ(ϕ(a)).

Proof. Let a ∈ De. Clearly for every y ∈ De,

Φ(κ(a)) ≤ω κ(y) ⇐⇒ κ(a) ≤ω κ(ϕ−1(y)) ⇐⇒

a ≤e ϕ−1(y) ⇐⇒ ϕ(a) ≤e y ⇐⇒ κ(ϕ(a)) ≤ω κ(y).

ThusΦ(κ(a)) = κ(ϕ(a)). �

Corollary 4.8. For every a ∈ De,Φ−1(κ(a)) = κ(ϕ−1(a)).

Proof. Let a ∈ De. Then κ(a) ∈ D1 and hence by the definability of D1, Φ−1(κ(a)) ∈ D1. Then ϕ(κ−1(Φ−1(κ(a))) =
κ−1(Φ(Φ−1(κ(a)))) = a.
Hence κ−1(Φ−1(κ(a))) = ϕ−1(a). From the last equality it follows immediately thatΦ−1(κ(a)) = κ(ϕ−1(a)). �

It remains to show thatΦ preserves the jump operator.

Lemma 4.9. For every a ∈ Dω ,Φ(a′) = Φ(a)′.

Proof. Let us fix an element a of Dω . First we shall show that Φ(a′) ≤ω Φ(a)′. For this purpose, we are going to use
Proposition 3.7. We need to show that for all x ∈ De,

Φ(a) ≤ω κ(x)⇒ Φ(a′) ≤ω κ(x′).

Notice that ϕ−1 is an automorphism ofDe′. Let x ∈ De. Then

Φ(a) ≤ω κ(x)⇒ a ≤ω Φ−1(κ(x))⇒ a ≤ω κ(ϕ−1(x))⇒

a′ ≤ω κ(ϕ−1(x))′ ⇒ a′ ≤ω κ(ϕ−1(x′))⇒ Φ(a′) ≤ω κ(x′).

To prove the reverse inequality we shall show that for all x ∈ DT ,

Φ(a′) ≤ω λ(x)⇒ Φ(a)′ ≤ω λ(x).

Let x ∈ DT andΦ(a′) ≤ω λ(x). We have that 0ω ′ ≤ω a′ and hence

Φ(0ω ′) = κ(ϕ(0e′)) = κ(0e′) ≤ω Φ(a′) ≤ω λ(x).

So κ(0e′) ≤ω λ(x). Since λ(x) = κ(ι(x)) and 0e′ = ι(0T ′), we get from here that 0T ′ ≤T x. By Friedberg’s jump inversion
theorem there exists a y ∈ DT such that y′ = x. Then

Φ−1(λ(x)) = κ(ϕ−1(ι(y′))) = κ(ϕ−1(ι(y))′).

Clearly b = ϕ−1(ι(y))′ is a total enumeration degree and a′ ≤ω κ(b). By Theorem 2.4 there exists a total enumeration
degree z such that z′ = b and a ≤ω κ(z). So

Φ(a)′ ≤ω Φ(κ(z))′ = κ(ϕ(z))′ = κ(ϕ(z′)) = κ(ϕ(b)) = λ(x). �

Combining all properties ofΦ proven so far we obtain the following:

Theorem 4.10. For every isomorphism ϕ ofDe′ there exists a unique automorphismΦ ofDω
′ such that:

(∀x ∈ De)(Φ(κ(x)) = κ(ϕ(x))). (1)

Proof. We need to show only thatΦ is unique. Indeed let us suppose thatΦ1 andΦ2 are automorphisms ofDω
′ satisfying

(1). Then for all y ∈ D1,Φ1(y) = Φ2(y). Since D1 is a base of the automorphisms ofDω ,Φ1 = Φ2. �

Corollary 4.11. The groups of the automorphisms ofDe′ and of the automorphisms ofDω
′ are isomorphic.
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Proof. Given an automorphism ϕ of De′, let Λ(ϕ) be the automorphism Φ of Dω
′ satisfying (1). Clearly Λ is well defined

and injective.
Suppose thatΦ is an automorphism ofDω

′. By the definability of D1,Φ(y) ∈ D1 for every y ∈ D1. Define ϕ onDe by

ϕ(x) = κ−1(Φ(κ(x))).

On can easily see that ϕ is an automorphism ofDe′ and that ϕ andΦ satisfy (1). SoΛ is one to one.
It remains to show that for any two automorphisms ϕ1 and ϕ2 ofDe′,

Λ(ϕ1 ◦ ϕ2) = Λ(ϕ1) ◦Λ(ϕ2).

Set Φ = Λ(ϕ1 ◦ ϕ2), Φ1 = Λ(ϕ1) and Φ2 = Λ(ϕ2). It is enough to show that for all x ∈ De, Φ(κ(x)) = Φ2(Φ1(κ(x)).
Indeed, let x ∈ De. Then

Φ(κ(x)) = κ(ϕ2(ϕ1(x))) = Φ2(κ(ϕ1(x))) = Φ2(Φ1(κ(x))). �

In [3] Kalimullin proved that the enumeration jump operator is first order definable in De. Hence the groups of the
automorphisms ofDe andDe

′ coincide. So we may reformulate the last corollary as follows:

Theorem 4.12. The groups of the automorphisms ofDe and ofDω
′ are isomorphic.

The established connection between the automorphisms of Dω
′ and De

′ has the following corollary which shows that
every automorphism ofDω

′ is the identity on the cone above 0ω(4).

Theorem 4.13. LetΦ be an automorphism ofDω
′. ThenΦ(a) = a for all a greater than 0ω(4).

Proof. Let ϕ be an automorphism ofDe′ such that for all x ∈ De,Φ(κ(x)) = κ(ϕ(x)). Let 0ω(4) ≤ω a. Clearly 0ω(4) ≤ω Φ(a).
Then for all x ∈ De,

a ≤ω κ(x) ⇐⇒ Φ(a) ≤ω Φ(κ(x)) ⇐⇒ Φ(a) ≤ω κ(ϕ(x)) ⇐⇒ Φ(a) ≤ω κ(x). �

5. Jumps of the ω-enumeration degrees below 0ω
′

The results obtained so far show that the structures De
′ and Dω

′ are closely related but not elementary equivalent. As
we shall see in this section the structure Dω

′ contains new explicitly defined elements which can be used to characterize
the low and the high degrees not only inDω but also inDe andDT .

Definition 5.1. Let n ≥ 1. An ω-enumeration degree a ≤ 0ω ′ is high n if a(n) = 0ω(n+1). The degree a is low n if a(n) = 0ω(n).

Denote by Hn the set of all high n degrees and by Ln set of all low n degrees. Clearly a Turing degree x is high (low) n if
and only if λ(x) ∈ Hn(Ln) and an enumeration degree y is high (low) n if and only if κ(x) ∈ Hn(Ln).
Set

H =
⋃
n≥1

Hn; L =
⋃
n≥1

Ln and I = {a ≤ω 0ω ′ : a 6∈ (H ∪ L)}.

Clearly the classes H, L and I are invariant under the automorphisms ofDω
′ and hence one can expect that they admit a

natural characterization.
Given an n ≥ 1 set on = In0ω (0ω

(n+1)). In other words on is the least among the degrees a such that a(n) = 0ω(n+1). Clearly
if a ≤ω 0ω ′, then a ∈ Hn ⇐⇒ on ≤ω a.
It follows from the definition of the invert operation that for every n ≥ 1, on = dω({Onk}k<ω), where O

n
k = ∅ if k < n and

Onk = ∅
(k+1) if n ≤ k.

Set o0 = 0ω ′. Clearly (∀n)(on+1 <ω on).

Definition 5.2. An ω-enumeration degree a is almost zero (a.z.) if (∀n)(a ≤ω on).

Clearly 0ω is a.z. Actually there exist infinitely many a.z. degrees. To prove this we need the following explicit
characterization of the a.z. degrees:

Proposition 5.3. A degree x is a.z. if x ≤ω 0ω ′ and there exists a sequence {Xk}k<ω ∈ x such that (∀k)(Xk ≤e ∅(k)).

Proof. Suppose that x is a.z. Clearly x ≤ω 0ω ′. Let {Xk}k<ω ∈ x. Fix a k. Since x ≤ω ok+1, Xk ≤e Pk({Ok+1n }n<ω) and hence
Xk ≤e ∅(k).
Now let {Xk}k<ω be a sequence of sets of natural numbers which is uniformly reducible to ∅ω ′ and such that (∀n)(Xk ≤e

∅
(k)). We shall show that for all n ≥ 1, {Xk} ≤ω {Onk}k<ω . Indeed, fix an n ≥ 1 and set O

n
= {Onk}k<ω . Clearly for all k ≥ n,

Xk ≤e Pk(∅ω
′) ≡e Pk(O

n) uniformly in k. If k < n then Pk(O
n) ≡e ∅

(k) and hence Xk ≤e Pk(O
n). Thus {Xk} ≤ω On. �

Using Proposition 5.3 and the definition of the invert operation we obtain immediately the following property of the a.z.
degrees:



298 H. Ganchev, I.N. Soskov / Annals of Pure and Applied Logic 160 (2009) 289–301

Proposition 5.4. Let d be a.z. then (∀n)(In0ω (d
(n)) = d).

Corollary 5.5. Let d 6= 0ω be a.z. Then d ∈ I .

Proof. Since (∀n)(d ≤ω on), d 6∈ H . Assume that d ∈ L and let d(n) = 0ω(n). Then d = In0ω (0ω
(n)) = 0ω , which is a

contradiction. �

Proposition 5.6. There exist nonzero a.z. degrees.

Proof. We shall construct a sequenceD = {Dk}k<ω of finite sets so thatD 6≤ω ∅ω andD ≤ω ∅ω
′.

Let g0, . . . , gk, . . . be an effective enumeration of all primitive recursive functions and W0, . . . ,Wk . . . be a Gödel
enumeration of the r.e. sets.
Set

Dk =
{
∅, if 0 ∈ Wgk(k)(∅

(k));
{0}, if 0 6∈ Wgk(k)(∅

(k)).

LetD = {Dk}k<ω . From the definition of the sets Dk it follows that there does not exist a primitive recursive function g such
that (∀k)(Dk = Wg(k)(∅(k))). Thus D 6≤e P (∅ω) and hence D 6≤ω ∅ω . On the other hand, using the oracle ∅(k+1) one can
decide uniformly in kwhether 0 ∈ Wgk(k)(∅

(k)). ThereforeD ≤e P (∅ω
′) and henceD ≤ω ∅ω

′. �

Corollary 5.7. There exist infinitely many a.z. degrees.

Proof. Let d 6= 0ω be a.z. By the density of the ω-enumeration degrees below 0ω ′, see [11], there exists an x such that
0ω <ω x <ω d. Clearly x is also a.z. �

In the rest of the paper we are going to prove the following two theorems which characterize the classes H and L by
means of the almost zero degrees:

Theorem 5.8. Let a ≤ω 0ω ′. Then a ∈ H ⇐⇒ (∀ a.z. d)(d ≤ω a).

Theorem 5.9. Let a ≤ω 0ω ′. Then a ∈ L ⇐⇒ (∀ a.z. d)(d ≤ω a⇒ d = 0ω).

Before starting with the proofs let us mention the following corollary of Theorem 5.8:

Corollary 5.10. The ideal of all a.z. degrees does not have a minimal upper bound below 0ω ′.

Proof. Let a ≤ω 0ω ′ be an upper bound of all a.z. degrees. By Theorem 5.8 a ∈ H and hence a ∈ Hn for some n ≥ 1. Then
on ≤ a and hence on+1 <ω a. Clearly on+1 is an upper bound of all a.z. degrees. �

The proofs of Theorems 5.8 and 5.9 use the notion of good approximation of a sequence of sets of natural numbers. This
notion is introduced in [11] and is based on the notion of good approximation of a set of natural numbers from [4].

Definition 5.11. LetB = {Bk}k<ω be a sequence of sets of natural numbers. A sequence {Bsk} of finite sets recursive in k and
s is a good approximation ofB if the following three conditions are satisfied:

(i) (∀s)(∀k)[Bsk ⊆ Bk ⇒ (∀r ≤ k)(Bsr ⊆ Br)].
(ii) (∀n)(∀k)(∃s)(∀r ≤ k)(Br � n ⊆ Bsr ⊆ Br).
(iii) (∀n)(∀k)(∃s)(∀t ≥ s)[Btk ⊆ Bk ⇒ (∀r ≤ k)(Br � n ⊆ Btr)].

If {Bsk} is a good approximation of the sequenceB = {Bk}k<ω , then by Gk we shall denote the set of all k-good stages, i.e.
the set of all s such that Bsk ⊆ Bk. Clearly Gr ⊇ Gk for all r ≤ k.

Definition 5.12. Let A = {Ak}k<ω and B = {Bk}k<ω be sequences of sets of natural numbers and let {Bsk} be a good
approximation of B. A sequence {Ask} of finite sets recursive in s and k is a correct (with respect to {B

s
k}) approximation of

A if the following two conditions hold:

(C1) (∀k, s)(Bsk ⊆ Bk ⇒ (∀r ≤ k)(Asr ⊆ Ar)).
(C2) For all natural numbers k, n there exists a v such that if s ≥ v and Bsk ⊆ Bk, then (∀r ≤ k)(Ar � n ⊆ Asr).

Given an r.e. setWa and s ∈ N, set

Wa,s = {x : x ≤ s & {a}(x) halts in less than s steps}.

The following lemma is an analogue of Lemma 2.2 from [4] and can be proved by similar arguments.

Lemma 5.13. Let {Bsk} be a good approximation of the sequence B . Let Wa be an r.e. set. Then {Wa,s[k](Bsk)} is a correct
approximation of Wa(B).

The proof of the following proposition can be found in [11].

Proposition 5.14. LetA ≤ω ∅ω ′. Then there exists a sequence P of sets of natural numbers such that P (A) ≡e P and P has a
good approximation.



H. Ganchev, I.N. Soskov / Annals of Pure and Applied Logic 160 (2009) 289–301 299

Theorem 5.15. Let a ∈ I . Then there exists an a.z. degree d such that d 6≤ω a.

Proof. Let a ∈ I andA ∈ a. Clearly P (A) ≤e P (∅ω
′). Fix a sequence P = {Pk}k<ω such that P ≡e P (∅ω

′) and there exists
a good approximation {P sk} of P . Clearly P (A) ≤e P and hence there exists a correct (with respect to {P sk}) approximation
{P sk(A)} of P (A).
We have that for all k, Pk 6≤e Pk(A). Indeed, assume that for some k, Pk ≡e Pk(A). Since P ≡e P (∅ω

′) and
P (∅ω

′) ≡e {∅
(k+1)
}k<ω , we get that ∅(k+1) ≡e Pk(A). Then for all r ≥ k, ∅(k+1+r) ≤e Pk+r(A) uniformly in r which

shows thatA(k)
≡e ∅ω

(k+1). Hence a ∈ H , which is a contradiction. We proceed by the following lemma.

Lemma 5.16. Let V be an r.e. set satisfying the following requirements for all k < ω:

(Fk) V [k](Pk) is a finite set.
(Nk) Wk(Pk(A)) 6= V [k](Pk).

Then d = dω(V (P )) is a.z. and d 6≤ω a.

Proof. Clearly the sequence V (P ) = {V [k](Pk)} is uniformly reducible to ∅ω ′ and (∀k)(V [k](Pk) ≤e ∅(k)). Thus by
Proposition 5.3, d is a.z. Assume that d ≤ω a. Then V (P ) ≤e P (A) and hence there exists a primitive recursive function
g such that for all k, V [k](Pk) = Wg(k)(Pk(A)). By the recursion theorem there exists a k such thatWk = Wg(k) and hence
V [k](Pk) = Wk(Pk(A)). This is a contradiction. �

So to conclude the proof of the theorem it is enough to construct an r.e. set V satisfying the requirements (Fk) and (Nk)
for all k.
The construction of V will be performed in stages. At every stage s we shall construct effectively a finite set Vs so that

Vs ⊆ Vs+1 and set V =
⋃
Vs.

Let V0 = ∅ and suppose that Vs is constructed.

Definition 5.17. Given two sets X and Y of natural numbers let

ls(X, Y ) = max{n ≤ s : (∀x ≤ n)(x ∈ X ⇐⇒ x ∈ Y )}.

For every k ≤ swe act for the requirement (Nk) as follows. Let

lsk = l
s(Wk,s(P sk(A)), Vs(P

s
k)).

For every x ≤ lsk if x ∈ P
s
k then we enumerate 〈〈k, x〉, P

s
k〉 in V [k], i.e. we put 〈k, 〈〈k, x〉, P

s
k〉〉 in Vs+1.

End of the construction.

Lemma 5.18. All requirements (Nk) are satisfied.

Proof. Fix k. Assume thatWk(Pk(A)) = V [k](Pk). Recall that a stage s is k-good if P sk ⊆ Pk.
We shall show that (∀x)(〈k, x〉 ∈ V [k](Pk) ⇐⇒ x ∈ Pk). Indeed, let 〈k, x〉 ∈ V [k](Pk). Then there exists an axiom

〈〈k, x〉,D〉 ∈ V [k] such that D ⊆ Pk. From the construction of V it follows that this axiom is enumerated by the requirement
(Nk) an hence for some s, D = P sk and x ∈ P

s
k . Since P

s
k = D ⊆ Pk, x ∈ Pk.

Suppose now that x ∈ Pk. SinceWk(Pk(A)) = V [k](Pk) there exists a k-good stage s such that x ≤ lsk and x ∈ P
s
k . Then,

by the construction of V , 〈k, x〉 ∈ Vs+1[k](P sk) and hence 〈k, x〉 ∈ V [k](Pk).
Thus (∀x)(x ∈ Pk ⇐⇒ 〈k, x〉 ∈ V [k](Pk) ⇐⇒ 〈k, x〉 ∈ Wk(Pk(A))). Hence Pk ≤e Pk(A), which is a contradiction. �

Lemma 5.19. All requirements (Fk) are satisfied.

Proof. Fix a k. By the construction of V for all y,

y ∈ V [k](Pk) ⇐⇒ (∃x, s)(y = 〈k, x〉 & 〈y, P sk〉 ∈ V [k] & P
s
k ⊆ Pk).

Notice that an axiom of the form 〈〈k, x〉, P sk〉 can be enumerated in V [k] only by the requirement (Nk).
By the previous lemmaWk(Pk(A)) 6= V [k](Pk). Fix an n such that

Wk(Pk(A))(n) 6= V [k](Pk)(n).

By the definition of the good approximations there exists a stage v such that for all k-good stages s ≥ v, lsk < n. Hence if at
a k-good stage s, 〈〈k, x〉, P sk〉 is enumerated in V [k], then x ≤ s < v or x < n. Thus V [k](Pk) is finite. �

The proof of the theorem is completed. �

Proof of Theorem 5.8. Let a ≤ω 0ω ′. Assume that a ∈ H . Then a ∈ Hn for some n ≥ 1 and hence on ≤ω a. Therefore for all
a.z. d, d ≤ω on ≤ω a.
Assume now that a is above all a.z. degrees. By the previous theorem, a 6∈ I . Let d be a nonzero a.z. degree. Then for all n,

0ω(n) <ω d(n) ≤ω a(n) and hence a 6∈ L. Thus a ∈ H . �

Theorem 5.20. Let a ∈ I . There exists a nonzero a.z. degree d ≤ω a.
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Proof. Fix a sequence A ∈ a and let {P sk} be a good approximation of a sequence P such that P ≡e P (A). Clearly
P (∅ω) ≤e P and hence there exists a correct (with respect to {P sk}) approximation {Z

s
k} of P (∅ω).

Given a sequenceB = {Bk}k<ω , letB∗ = {Bk+1}k<ω . Notice thatB ′ = P (B)∗. SetB(0∗)
= B andB((n+1)∗)

= B(n∗)∗.
Clearly if B ≤e C then for all n, B(n∗)

≤e C(n∗) and there exists a recursive function g such that (∀n)(B(n∗)
=

Wg(n)(C(n∗))). In particular, for all n,B(n∗)
≤e B(n)

= P (B)(n∗).
Clearly (∀n)(A(n)

= P (A)(n∗) ≡e P (n∗)).
Notice that if {Bsk} is a good approximation of B then {B

s
n+k} is a good approximation of B

(n∗). Hence {P sn+k} is a good
approximation of P (n∗) and {Z sn+k} is a correct (with respect to {P

s
n+k}) approximation of ∅ω

(n).
We shall construct an r.e. set V satisfying the following requirements for all i ∈ N:

(Fi) V [i](Pi) ≤e ∅(i).
(Ni) Wi(∅ω(i)) 6= V (P )(i∗).

Lemma 5.21. Suppose that V is an r.e. set satisfying for all i the requirements (Fi) and (Ni). Then d = dω(V (P )) is a nonzero a.z.
degree below a.

Proof. Clearly d ≤ω a. Since V satisfies the requirements (Fi) the degree d is a.z. It remains to show that d 6= 0ω . Assume
that d = 0ω . Then V (P ) ≤e P (∅ω) and hence there exists a recursive function g such that for all i,

V (P )(i∗) = Wg(i)(∅ω(i)).

By the recursion theorem there exists an i such thatWi = Wg(i). Then

V (P )(i∗) = Wi(∅ω(i)).

This is a contradiction. �

Weshall constructV in stages. At every stage swe shall define effectively a finite setVs so thatVs ⊆ Vs+1 and letV =
⋃
Vs.

Set V0 = ∅ and suppose that Vs is defined.

Definition 5.22. Given sequencesX = {Xk} and Y = {Yk}, let

ls(X,Y) = max{u : u ≤ s & (∀〈k, x〉 ≤ u)(Xk(x) = Yk(x))}.

For every i ≤ swe act for the requirement (Ni) as follows. Let

lsi = ls(Wi,s({Z
s
i+k}k<ω), {Vs[i+ k](P

s
i+k)}k<ω).

For every pair 〈k, x〉 ≤ lsi such that x ∈ P
s
i+k we enumerate the axiom 〈〈i, x〉, P

s
i+k〉 in V [i+ k].

End of the construction.
Notice that for every j the set V [j] consists of pairs 〈〈i, x〉, P sj 〉, where i ≤ j.

Lemma 5.23. All requirements (Ni) are satisfied.

Proof. Fix an i and suppose thatWi(∅ω(i)) = V (P )(i∗). We shall show that for all k,

〈i, x〉 ∈ V [i+ k](Pi+k) ⇐⇒ x ∈ Pi+k. (2)

Let 〈i, x〉 ∈ V [i + k](Pi+k). Then there exists an axiom 〈〈i, x〉,D〉 ∈ V [i + k] such that D ⊆ Pi+k. By the construction of V ,
D = P si+k for some s such that x ∈ P

s
i+k. Hence x ∈ Pi+k.

Assume now that x ∈ Pi+k. There exists an (i + k)-good stage s such that i ≤ s, 〈k, x〉 ≤ lsi and x ∈ P
s
i+k. Then

〈〈i, x〉, P si+k〉 ∈ Vs+1[i+ k] and hence 〈i, x〉 ∈ V [i+ k](Pi+k).
It follows from (2) that

(∀k, x)(〈i, x〉 ∈ Wi[k](Pi+k(∅ω)) ⇐⇒ x ∈ Pi+k)

and henceA(i)
≡e P (i∗)

≤e ∅ω
(i). The last shows that a ∈ L. This is a contradiction. �

Lemma 5.24. All requirements (Fj) are satisfied.

Proof. Let us fix a j ∈ N. We need to show that V [j](Pj) ≤e ∅(j). Clearly

V [j](Pj) =
⋃
i≤j

{〈i, x〉 : 〈i, x〉 ∈ V [j](Pj)}.

So it is enough to show that for every i ≤ j,

Xi = {x : 〈i, x〉 ∈ V [j](Pj)} ≤e Pj(∅ω).

Fix an i ≤ j and set k = j− i. We shall consider two cases:
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(a) There exists a u ∈ N such that for all j-good stages s ≥ i, lsi ≤ u. Suppose that 〈i, x〉 ∈ V [j](Pj). Then there exists a
j-good stage s ≥ i such that 〈k, x〉 ≤ lsi ≤ u. Hence Xi is finite.
(b) For every u there exists a j-good stage s ≥ i such that u < lsi .
We shall show that V [j](Pj) = Wi[k](Pj(∅ω)).
Let x ∈ Wi[k](Pj(∅ω)). By the properties of the correct approximations there exists a v such that for all j-good stages

s ≥ v, x ∈ Wi,s[k](Z sj ). Let s be a j-good stage such that max(v, 〈k, x〉) ≤ l
s
i . Then v ≤ l

s
i ≤ s. Clearly x ∈ Wi,s[k](Z

s
j ). Hence

x ∈ Vs[j](P sj ) and therefore x ∈ V [j](Pj).
Let x ∈ V [j](Pj). Fix a v such that for all j-good stages s ≥ v, x ∈ Vs[j](P sj ). Consider a j-good stage s ≥ v such that

〈k, x〉 ≤ lsi . Then x ∈ Wi,s[k](Z
s
j ) and hence x ∈ Wi[k](Pj(∅ω)).

So we obtain that

x ∈ Xi ⇐⇒ 〈i, x〉 ∈ Wi[k](Pj(∅ω)).

Hence Xi ≤e Pj(∅ω). �

The proof of the theorem is concluded. �

Proof of Theorem 5.9. Let a ≤ω 0ω ′.
Assume that the only a.z. degree below a is 0ω . By the previous theorem a 6∈ I . Since there exist nonzero a.z. degrees

a 6∈ H . Thus a ∈ L.
Suppose now that a ∈ L. Let d be an a.z. degree below a. Then for some n, d(n) ≤ω a(n) = 0ω(n). Hence d(n) = 0ω(n).

Therefore d = 0ω . �
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