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1. Introduction

The upper semi-lattice £, of w-enumeration degrees was introduced by the first author in [11]. It is an extension of the
semi-lattice D, of the enumeration degrees and hence of the semi-lattice Dy of the Turing degrees. In [11] a jump operator
on the w-enumeration degrees is defined and a jump inversion theorem is proved also from which it follows that the range
of the jump operator is equal to the cone of all w-enumeration degrees greater than the jump 0, of the least w-enumeration
degree 0, a property true for the Turing jump but not true for the enumeration jump.

It turns out that the jump on the w-enumeration degrees has an even stronger inversion property. Namely, for every
w-enumeration degree a above 0, there exists a least degree among the degrees whose jump is equal to a. This property is
not true either for the enumeration jump or for the Turing jump.

Using the existence of least jump inverts we show in the first part of the paper that the set of the enumeration degrees is
first order definable in the structure D, of the w-enumeration degrees augmented by the jump operator. This definability
result allows us to obtain further that the groups of the automorphisms of ©,” and D,,” are isomorphic. Since the enumeration
jump s first order definable in D,, see [3], it follows that the groups of the automorphisms of D, and D, are also isomorphic.

Thus we obtain that the structures D,” and £D,,” are closely related but D,” and 9, are not elementary equivalent.

In the second part of the paper we study the jumps of the w-enumeration degrees below 0,’. Here we consider a
monotonically decreasing sequence {o,},>1 of explicitly defined degrees, where o, is the least degree with nth jump equal
to 0,V We call a degree a almost zero (a.z.) if for all n, a is below 0,,. We prove that the a.z. degrees form a nontrivial ideal.
The a.z. degrees are used to obtain a characterization of the classes H and L, where

H={a:a<0, &@n@" =0,"")} and
L={a:a<0,/&@AnE@"™ =0,"))}.
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Namely, we show that a degree a < 0, belongs to H if and only if a is above all a.z. degrees and a € L if and only if there
are no nonzero a.z. degrees below a.

Since the w-enumeration jump agrees with the enumeration jump and with the Turing jump the characterization of the
classes H and L remains the same also for the enumeration and for the Turing degrees.

The last result shows that the study of the w-enumeration degrees can provide us with tools which are useful for the
study of the enumeration degrees and of the Turing degrees. A similar methodological observation about the usefulness of
the study of the enumeration degrees for obtaining results about the Turing degrees was recently made by Soskova and
Cooper [13].

2. Preliminaries
2.1. The enumeration degrees

We shall assume that an effective coding of all finite sets of natural numbers is fixed and shall identify the finite sets and
their codes. Finite sets will be denoted by the letter D possibly with subscripts.

Definition 2.1. Given sets A and B of natural numbers, let

A(B) = {x: (3D)({x, D) € A&D C B}.

Let Wy, ..., Wg, ... be a Godel enumeration of the recursively enumerable (r.e.) sets of natural numbers.

The operators AB.W,(B) are called enumeration operators. For A, B C N, A <, B (A is enumeration reducible to B) if there
exists an r.e. set W such that A = W(B).LetA =, B <= A <. B& B <, A. The relation =, is an equivalence relation
and the respective equivalence classes are called enumeration degrees. Given a set A of natural numbers, by d. (A) we shall
denote the enumeration degree containing A. Let d.(A) <. d.(B) if A <. B.Clearly <, is a partial ordering with least element
0. which is equal to the set of all r.e. sets. The set of all enumeration degree is denoted by D.. By D, we shall denote the
structure (D,; 0.; <.). For an introduction to the enumeration degrees the reader might consult [2].

For every set A of natural numbers let AT = A @® (N \ A). Then a set Bis r.e. in A if and only if B <, A™ and A is Turing
reducible to B if and only if AT <, BT. Moreover there exist recursive functions p and v such that foralla € NandA C N,
Wy = W, (AT) and W,(AT) = W/,

Denote by D7 = (Dr; Or; <r) the partial ordering of the Turing degrees. Let: : Dy — D, be defined by ¢(dr (A)) = d.(A™).
Then ¢ is an isomorphic embedding of D7 into D, called Rogers’ embedding. The enumeration degrees which belong to the
range of ¢ are said to be total. Notice that an enumeration degree a is total if and only if for some A C N, A" € a.

The enumeration jump operator is defined in [1] and further studied in [6]. Here we shall use the following definition of
the enumeration jump which is m-equivalent to the original one, see [6].

Definition 2.2. Given a set A of natural numbers, set Ly = {(a, x) : x € W,(A)} and let the enumeration jump J.(A) of A be
the set L;.

Given a set A of natural numbers, denote by Jr (A) the Turing jump of A. Let J2(A) = A and J*™1(A) = J.(J*(A)); JF(A) = A
and J7*' (A) = Jr (I} (A)).

The following proposition a proof of which can be found in [1,6] demonstrates the relationship between the operators J,
and Jr:

Proposition 2.3. There exist recursive functions p and q such that forall A C Nandn € N,

JTA)T = Wy (7 (AT)) and Jg (A7) = Wy (7 (A) ).

To simplify the notation, given A C N, by A’ we shall denote the enumeration jump J.(A) of A. Let for n € N, A® =JJ(A).

One can easily check that for every A C N, A <, A’ and if A <, Bthen A’ <, B'. So we may define a jump operation on
D, by letting d.(A)’ = d.(A). Clearly the jump of every enumeration degree is a total degree. Since there exist enumeration
degrees above 0," which are not total, not every enumeration degree above 0. is in the range of the enumeration jump
operator.

By Proposition 2.3 the jump is preserved under Roger’s embedding ¢, i.e.

(Va e Dp)(t@) = 1@)").

We shall need the following jump inversion theorem proved in [10].
Given a sequence B = {By}k<. Of sets of natural numbers we define the respective jump sequence P (B) = {P(B)}k<w
by induction on k:

(i) Po(8B) = Bo;
(i) Prg1(B) = Pu(B) @ By
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Theorem 2.4. Let B = {By}x~., be a sequence of sets of natural numbers. Suppose that for some X C N and for somen € N,
P (B) <. XT. Then there exists F C N satisfying the following conditions:

(1) (¥k < m)(By <¢ (FH)®)
(2) (Vk < m)((FH D =, (F") ® Pu(B)).
(3) (FH™ =, X*.

2.2. The w-enumeration degrees
Denote by 4§ the set of all sequences 8 = {By}k<. Of sets of natural numbers. Consider an element 8B of 4 and let the
jump class J g defined by B be the set of the Turing degrees of all X C N such that (Vk) (B is r.e. in ]}‘ (X)) uniformly in k.

Proposition 2.5. For every sequence 8 = {By}k~. 0f sets of natural numbers,

Iz = {dr(X) : (Yk)(Bi <. (XT)®) uniformly in k}.

Proof. Let i be a recursive function such that foralla € Nand all X C N, Wé‘ = Wy @ X™). Consider an element dr (X) of

k
Jg. Let g be a recursive function such that (Vk) (B, = W;T(,g() = Wy (]}< (X)™)). Then, by Proposition 2.3,

(VK Bk = Wiu(g ) (Wpaoy Ué‘(x+))) = Wﬂ(g(k))(Wp(k)((x+)(k))).

Clearly there exists a recursive function A(a, b) such that foralla,b € N,and all X € N, W,(Wp(X)) = W, (4.5 (X). Set
h(k) = A(u(g(k)), p(k)). Then

(VK) (B = Wigo (X)©)).
So we have proved that Jz € {dr(X) : (Vk)(Bx <. (XT)®) uniformly in k}. The proof of the reverse inclusion is similar. O

Given two sequences + and B let A <, B (4 is uniformly reducible to 8) if Jg C J4 and A =, B if Jg = J4. Clearly
“<,” is areflexive and transitive relation on 4 and “=,,” is an equivalence relation on 4.

For every sequence B let d,(8B) = {4 : A =, B} andletD, = {d,(B) : B € 4}. The elements of D, are called the
w-enumeration degrees.

The w-enumeration degrees can be ordered in the usual way. Given two elements a = d, () and b = d,(8) of D, let
a<,bif A <, 8. C(Clearly D, = (D, <,,) is a partial ordering with least element 0,, = d,,(¥,,), where all members of the
sequence @, are equal to .

Given two sequences 4 = {Ax} and B = {By} of sets of natural numbers let A & B8 = {Ax @ B}. Is it easy to see that
Ja@s = J4+NJg and hence every two elementsa = d, () and b = d,, (8) of D,, have a least upper bound aUb = d,,(A® B).

Given a set W of natural numbers and k € N, let W[k] = {u : (k,u) € W}.

Definition 2.6. For every W C N and every sequence 8 = {By}., of sets of natural numbers, let W (8) = {W[k](Bk) }k<w-

Definition 2.7. Let A = {A¢}r<w and 8 = {By}x-, be elements of §. Then A <. B (4 is enumeration reducible to B) if
A = W(B) for somer.e.set W.

A simple application of the S]'-Theorem shows that A <. 8 if and only if there exists a recursive function h such that
(VK) (A = Whky (Br))-

Let A =, Bif A <, Band B <, A.

The following facts follow easily from the definitions.

Proposition 2.8. Let A, B € 4. Then the following assertions hold:

(1) A =< P(A);
(2) P(P(A)) <e P(A).
(3) A =e B = P(A) <e P(B).

The following theorem from [12] gives an explicit characterization of the uniform reducibility.
Theorem 2.9. For every two sequences A4 and B of sets of natural numbers
A<, B = A=<, P(B).
Corollary 2.10. (1) Forall A € 8§, A =, P (A).
(2) Forall A, B € 8, A <, B => A <, B.

There is a natural embedding of the enumeration degrees into the w-enumeration degrees. Given a set A of natural
numbers denote by A 1 w the sequence {A;}r,, where Ag = Aand forallk > 1,A, = 0.

Proposition 2.11. Forevery A, BC N At w <,B1tw < A<.B.



292 H. Ganchev, L.N. Soskov / Annals of Pure and Applied Logic 160 (2009) 289-301

Proof. Suppose that A * w <, B 1 w. Then Jg;, € Jato and hence for every X C N, Bisr.e. in X implies A is r.e. in X. By
Selman’s Theorem [9],A <, B.
The implication A <, B = Jpto C Jato iS Obvious. O

LetD; = {dy(A 1t w) : A € N} and D1 = (Dy; 0,; <! D1).

Define the mapping k : D, — D; by k(de(A)) = d,,(A 1 w). Then « is an isomorphism from D, to £, and hence « is an
embedding of D, into D,,.

Recall Rogers’ embedding ¢ of the Turing degrees into the enumeration degrees defined by ¢(dr (X)) = d.(X™) and let
XA : Dr — D, be defined by A (Xx) = « (¢(x)). Clearly A is an isomorphic embedding of Dy into D,,.

Proposition 2.12. Let A € 8. Then ], = {x : X € Dr & d,,(A) <, A(X)}.

Proof. Let x € J,. Fix an element X of x. Then for all k, A, <. (X*)® uniformly in k. Clearly # (X 1 @) =, {X")®}ico.
Then, by Theorem 2.9, A <, X 1 w and hence d,,(A) <, A(X).

Let d,,(4A) <, A(X). Consider a X € x. Then, by Theorem 2.9, A <, £(X* 4 w) and hence for all k, A, <. (XT)®
uniformly in k. So,x € J4. O

Corollary 2.13. Leta,b € D,,. Then
a<,b & (VxeDp)(b =<, LX) = a <, A(X)).
Forevery 4 € §set]% = {X: X € D, &d,,(A) <, K(X)}.
Clearly J, = {x : X € Dr & 1(x) € J}. Hence for every two sequences + and 8 we have that

A<, B = J5 CJ5.

Corollary 2.14. Leta, b € D,,. Then
a<,b < (VxeD,)b <, kX) = a=<,«k(X)).

Proposition 2.15. D is a base of the automorphisms of D,,.
Proof. Suppose that ¢ is an automorphism of D, and ¢(y) = y fory € D;. Consider an element a € D,,. Then for allx € D,,
A=<, k(X)) = 9@ <, 9k(X) = ¢@) =, kX).
Hencea = ¢(a). O

3. The jump operator

In this section we shall give the definition of the jump operator on the w-enumeration degrees and study its properties.
Definition 3.1. For every 4 € § let A’ = {Py11(A) ko
Proposition 3.2. Let A = {Aclk<w € 8. Then ] = {@' :a € J4}.

Proof. Let a € J,. Since $(A) =, + by Corollary 2.10, a € J»(4) and hence for some X € a we have that for all k,
Pre(A) <o (XH)® uniformly in k. From here it follows that for all k, .1 (4) <. ((X1))® uniformly in k. Thusa’ € J .

Suppose now that b € J,. Then for some X € b and for all k, Piy1(A) <. XT)® uniformly in k. In particular
P1(A) <. X*.By Theorem 2.4 there exists F € N such that Ay <. F* and (F*) =, XT.Leta = dr(F). Thena € J,
anda’=b. O

Proposition 3.3. Let A, B € §. Then the following assertions are true:

(J0) A <y A
D A<, B=> A=<, B

Proof. Clearly A <, P(A) <, A <, P(A'). Hence A <, ’. Assume that A" <, 4.Then A" <, £(4) and hence
P1(A) = Po(A) D A1 <. Po(+). By the properties of the enumeration jump the last is not possible.
The condition (J1) follows by Proposition 3.2. O

From (J1) it follows that A =, 8 = A’ =, 8’. So we may define a jump operation on the w-enumeration degrees by
dw(A)/ = dw(A,)-
From Proposition 3.2 we get immediately the following characterization of the jump:

Proposition 3.4. Leta, b € D,,. Then
a<,b < (¥xeDp)(b<,rx)=a=<,rX)).
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Proof. Let A € aand B8 € b. Then
A<,b = A=<, 8 & Jp Sl &= X:x€Jg}Cs. O
. Next we show that the jump on the w-enumeration degrees agrees with the enumeration jump and hence with the Turing
jump.
Proposition 3.5. Let X € D,. Then k (X') = k(X)'.
Proof. Letx € D, and X € x. Clearly
PX 1 o) = X Vhco = (P 1 O ke = X 1 ).
Hence k (X') = xk(X)’. O
Using the agreement of the enumeration jump with the Turing jump under Rogers’ embedding we obtain the following:
Corollary 3.6. For every x € D, A(X') = A(X)".
Combining Propositions 3.5 and 3.4 we also obtain the following proposition.
Proposition 3.7. For any two w-enumeration degrees a and b,
a<,b < (¥xeD,)(b <, kX)) = a<,«X)).
Proof. Leta <, b'. Consider a x € D, and suppose thatb <, x(X). Thenb’ <, k(X)’ = k(X). Hencea <, b’ <, x(X').

Suppose now that for all x € D, b <, «(x) impliesa <, «(x'). Then forallx € Dr,b <, A(X) impliesa <, A(X'). Hence
a<,b. O

Givenn > 0, set A™ = [P, 4(A)}<,- One can easily check that 4© =, () and for all n > 0, ATD =, (A™)",
For every w-enumeration degree a = d,, (), leta®™ = d,(A™). Thena® = aand for all n,a™"? = @™y,

Next we turn to the jump inversion problem.

Let us fix a sequence A = {Ax}k<. Of sets of natural numbers.

Definition 3.8. Let B € 8 and n > 1. Then set I, (8) = {Cy}k<w, Where (Vk < n)(C, = Ay) and (Vk > n)(Ck = P—n(B)).
Proposition 3.9. Let A™ <, B. Then the following assertions hold:

(1) A =<, I3(B).
) n®"=, 8.
(3) IfA <, Cand B <, C™ thenI"(B) <, C.

Proof. Assertions (1) and (2) follow directly from the definitions. To prove (3) suppose that 4 <, € and 8 <, €™. Then
for all k, P (B) <¢ Pnik(C) uniformly in k. Since A <, C,forallk < n, Ay <. $(€). Thus I} (8B) <. £(€) and hence
N8 <,c. 0O

Let us mention some other obvious but useful properties of the invert operation I’} :

(10) I (AM™) =, A.
(I1) Let A, A* € 8. If for some B, C € 4,1} (B) =, I'«(C), then

(Vk < m)(Pr(A) = Pr(A)).

(12) If 8 =, C thenI".(8) =, I"(C).
(I3) If (Vk < n)(Pi(A) =, Pi(A%)) then forall B € 8, I"(B) =, I".(B).

Leta,b € D,andn > 1.Let A € aand B € b. Set I} (b) = d,,(I% (8)). By (12) and (I3) I] (b) is a correctly defined binary
operation on D,,.

Proposition 3.9 has several corollaries which appear to be surprising and show that the jump operator on the w-
enumeration degrees possesses some nice properties which are true neither for the Turing nor for the enumeration jump.

Proposition 3.10. Leta,b € D, and a™ <, b. Then I7(b) is the least element of the set {x : a <,, x&x™ = b}.
Proof. Immediate from Proposition 3.9. O
Proposition 3.11. Foreverya € D, andn > 1,

x":a<,x<,at={y:a" <,y <, a" VL
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Proof. Clearly for everyx < [a, a'], x™ e [a®™,a® D],
Suppose now thata™ <, y <, a™"V and set x = I’(y). Thena <, x and X'V = y. It remains to show thatx <, a'.
Indeed, we have thata™ <, yandy <, a®*? = (a’)™. Hence, by Proposition 3.9,x <, a’. O

Given w-enumeration degrees a <, b, denote by D,[a, b] the structure ({Xx : a <, X <, b}, <, [a, b]).

Proposition 3.12. Leta € D, and n > 1. Then

D,y[a™,a™ V] ~ 9, [a, [}@")].

Proof. It follows easily from Proposition 3.9 that ifa®™ <, x, y then
X<,y & [(x) <, [}{y).

So to conclude the proof it is enough to show thatifa <, x <, I7@"*D) then x = I*(x™). Indeed, let A € aand X € x.
Then A <, X and X <, I"(A™"D). From here it follows that for all k < n, Pe(A) <¢ Pu(X) <. Pi(). Therefore
(Vk < n)(Pr(X) = Pr(4)). By (13), X =, IL(X™) =, " (™) and hence x = [(x™). O

The last proposition shows that D, [a, a’] contains a substructure isomorphic to D,,[a®™, a®™tD].

Denote by D, the structure (D,; 0,,; <,;") of the w-enumeration degrees augmented by the jump operation.

In the remaining part of this section we shall show that D is first order definable in D,,’.

Definition 3.13. Givena, x € D, let

Ja={J(x) :a <, x}.

Notice that
zel, < a<,2&(VWy@<,y&y =7 =z<,y).
Hence there exists a first order formula @ with two free variables such that

D, =EP(@z,a) & z¢€l,.

Proposition 3.14. Leta = d,(+4) and b = d,,(B). Then

JaCJp < b <,a&Ay = By.

Proof. Let 4, C Jdp.By(I0)a € 4, and hencea € {p. Thena = I,} (x) for some x such that b’ <, x. Therefore b <,, a. On the
other hand, a = I (') = I (x). Hence by (I1) Ay = Po(A) =, Po(B) = By.
Suppose now that b <, a and Ay =, By. We have to show that for every x such thata’ <, x, Ia] (X) € Jp. Indeed, note

thatb’ <, a’ <, xand hence [} (X) € p. From Ay =, By by (I3) we get that [} (x) = I} (x). O
Corollary 3.15. If 4, = dp thena =Db.

Proposition 3.16. Foralla € D,

aeD; < (Vb)(Ja S Ip = Ja = Ip).

Proof. Leta = d,(A 1 w) € Dy. Suppose thatb = d,,(8) and 4, C J{p. Then A =, By and hence A + w <, B.Soa <, b.
By the proposition above i, C {,.

Suppose now that (Vb)({, C J, = 4, = Jp). Consider a sequence 4 € a.Set B8 = Ay ? w and letb = d, (8B). Notice
that b € D;. Clearly b <, a. Therefore by the proposition above 4, C Jy. Then 4, = {p. From here we get thata = b and
hencea e D;. O

Corollary 3.17. D is first order definable in D,,’.
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4. The automorphisms of D’

The definability of D; shows that every automorphism of £,,” induces an automorphism of the structure £; and hence
of the structure D.. On the other hand, since D, is a base of the automorphisms of D,, we have that if two automorphisms of
D, induce the same automorphism of D, then they coincide. In particular every nontrivial automorphism of D,,” induces
a nontrivial automorphism of D,.

Now we shall show that every automorphism of D, can be extended to an automorphism of D,,’. We start by recalling
some facts about the automorphisms of Dr.

Denote by D7’ the structure of the Turing degrees augmented by the Turing jump operator and by D, the structure of
the enumeration degrees augmented by the enumeration jump.

The following theorem was proved by Richter [7], see also [5]:

Theorem 4.1. Let a, b € Dr. Suppose that Dr'[a, 0o] =~ Dy’[b, co]. Then a® <; b,
As a corollary Richter obtained the following fact about the automorphisms of D;':

Theorem 4.2. Let ¢ be an automorphism of Dr’. Then ¢(a) = a for all a above 0.
Using Theorem 4.1 one can obtain similar results about D’

Theorem 4.3. Let a, b € D, be such that D.'[a, 0c0] =~ D,'[b, co]. Then a® <, b®.

Proof. Let ¢ be an isomorphism from D,'[a, co] to D,’[b, co].
We shall show that ¢ maps the total enumeration degrees above a’ onto the total enumeration degrees above b’. Indeed,
consider a total degree x above a’. By Theorem 2.4 there exists ay such that a <, yandy’ = x. Then

p(x) = p(¥) = ¢(y)".

Since every jump is a total degree ¢(x) is total. Clearly b’ = ¢ (@) <. ¢(y) = ¢(x).

Suppose now that b’ <, y and y is total. Since ¢! is an isomorphism from D,'[b, 0] to D,'[a, o0], ¢~ (y) is total and
a <. 97 y).

Define the mapping y on Dr[t1~1(@’), 00] by y (x) = (=1 (¢(t(x))). Clearly y is an isomorphism from O;/[1~'(@’), co] to
Dr'[171(b), oo]. By Theorem 4.1~ 1(@)® <; ~1(b')®. Hence a® <, b®. O

As a corollary we obtain the following property of the automorphisms of D, whose proof follows along the lines of the
proof of Theorem 4.2 presented in [5].

Theorem 4.4. Let ¢ be an automorphism of D,’. Then ¢(X) = X for all x above 0, @,

Proof. Consider first a total degree ¢ greater than 0,Y. By Theorem 2.4 there exists an enumeration degree a such that
c=auo0,® =a®¥.

Letd = ¢(c) and b = ¢(a). By the previous theorem b <, b® <, a®.

Clearly b® = g(a¥) = ¢(c) = d.

On the other hand,

b =p@?) =9p@uo.?) =gp@uo.*=buU0,?.

Henced =bU0,? <, a® =c.

Using the fact that ¢! is also an automorphism of D, we obtain by the same reasoning that ¢ <, d. Thus ¢ = d.

Let X be an arbitrary enumeration degree greater than 0,Y. By Rozinas [8] there exist total enumeration degreesaand b
such that x = aN'b. Then

pxX)=¢p@nNb)=¢p@Neb)=anb=x. O

Now we are ready to show that every automorphism of D,’ can be extended to an automorphism of D,,. Let us fix an
automorphism ¢ of D,'.

Consider a sequence 4 = {Ay}k<. Of sets of natural numbers. Recall that J§ = {x : X € D, & d,,(4) <, «(X)}. We shall
show, that one can construct a sequence 8 such that J§ = {¢(X) : x € J%}. Indeed, let p, = d.(Pi(+)). Notice that if k > 4
then pi > 0“ and hence ¢(py) = P

Define the sequence 8 = {Bi}k<,» as follows. Fix some elements By, B1, B2, B3 of ¢(po), ¢(P1), ¢(P2) and ¢(ps)
respectively and let for k > 4, By = P (A).

Lemma 4.5. |5 = {¢p(X) : x € J%}.

Proof. Letx € J¢ andletX € x. Then A <, X 1 w and hence £ (4) <. {X%}_,.Consider asetY e ¢(X). By Theorem 4.4,
X@ =, Y®_ Therefore for all k > 4, X =, Y® uniformly in k. Clearly B, <. Y® for k < 3.So, 8 <, {Y®}¢<. Thus
px) €J5.

Suppose now thaty € J5 and lety = ¢(x). LetX € xand Y € y. Then again X® =, Y®_ From here it follows as in he
previous case that (#4) <, {X®};_, and hencex € J%. O
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Let us define the mapping @ on D,, as follows. Given an element a € D, consider a sequence 4 € a and construct the
sequence B as above. Let @ (b) = d,(8B). By the lemma the mapping @ is correctly defined, it is injective and preserves
the partial ordering “<,,”. So to prove that @ is an automorphism of 9, it is enough to show that @ is onto. Indeed, let
b = d,(8B). Since ¢! is an automorphism of D,’ there exists a sequence 4 such that IS = {p7'x) : x € Jg). Let
a=d,(4)and ®@) = d,(8*), where J5. = {p(X) : x € J5}. Then J§ = J¢ and hence ®(a) = b.

The following lemma follows directly from the definition of @:

Lemma 4.6. Foreverya € D,

y:yeD&P(@) <, k(¥)} = {pX) : x € De &a <, k(X)}.

Corollary 4.7. For every a € D,, @(k(a)) = k(¢(a)).
Proof. Leta € D,. Clearly for every y € D,
D(k(a) <, k(Y) = k@) <, (¢~ (¥) <=
A<, 97y = 9@ <y = «(9Q@) <, kY.
Thus @ (x (a)) = k(¢(@)). O
Corollary 4.8. Foreverya € D,, ® ! (k(a)) = k(¢ '(a)).

Proof. Let a € D,. Then «(a) € D; and hence by the definability of D;, ®~'(x(a)) € D;. Then p(k ' (@~ (k(a))) =
k(@@ (k@) =a.
Hence x~' (@~ 1(x(@))) = ¢~ '(a). From the last equality it follows immediately that @~ (k (@)) = (¢~ !(@)). O

It remains to show that @ preserves the jump operator.
Lemma 4.9. Foreverya € D,, (@) = ®#(a)’.

Proof. Let us fix an element a of D,,. First we shall show that #(@’) <, @®(a)’. For this purpose, we are going to use
Proposition 3.7. We need to show that for all x € D,,

(@) <, k(X) = @) <, K(X).

Notice that ¢! is an automorphism of D,’. Let x € D,. Then
@) <, k(X = a<, (kX)) = a<, k@)=
A<, k@7 X) = a <, k(9T X)) = 2@) <, k(X).

To prove the reverse inequality we shall show that for all x € Dr,
P@) < A(X) = 2@) <, AX).

Letx € Dy and (@) <, A(x). We have that 0, <, a’ and hence

2(0,) = k(p(0;)) = k(0.) <, P@) <, A(X).

S0 k(0,") <, A(X).Since A(X) = «(1(x)) and 0,/ = ((0;'), we get from here that 0;/ <r X. By Friedberg’s jump inversion
theorem there exists ay € Dr such thaty’ = x. Then

7' (AX) = k(@ 1Y) = k(@' LY.

Clearly b = ¢~ 1(:(y))’ is a total enumeration degree and a’ <,, « (b). By Theorem 2.4 there exists a total enumeration
degree z such thatz = band a <, «(z). So

2@ =, (k@) = k(@) = k(@) =k(pD) =r(x). O

Combining all properties of @ proven so far we obtain the following:
Theorem 4.10. For every isomorphism ¢ of D, there exists a unique automorphism ® of D,,’ such that:
(VX € Do) (P (k (X)) = k(p(X))). (1)

Proof. We need to show only that @ is unique. Indeed let us suppose that @; and &, are automorphisms of D, satisfying
(1). Then for ally € Dy, @1(y) = @, (y). Since Dy is a base of the automorphisms of D, &1 = @,. O

Corollary 4.11. The groups of the automorphisms of D,’ and of the automorphisms of D,,” are isomorphic.
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Proof. Given an automorphism ¢ of D.’, let A(¢) be the automorphism @ of D, satisfying (1). Clearly A is well defined
and injective.
Suppose that @ is an automorphism of D,,’. By the definability of D;, @ (y) € D, for every y € D;. Define ¢ on £, by

Px) = k(P (k (X))

On can easily see that ¢ is an automorphism of D,’ and that ¢ and @ satisfy (1). So A is one to one.
It remains to show that for any two automorphisms ¢; and ¢, of D/,

A1 0 @2) = A(p1) o A(@2).

Set ® = A(py 0 ¢7), D1 = A(py) and @, = A(p,). It is enough to show that for all X € D, @ (k (X)) = D2(D1(k(X)).
Indeed, let X € D,. Then

D (k (X)) = k(p2(91(X))) = P2k (91(X))) = P2(P1(x(X))). O

In [3] Kalimullin proved that the enumeration jump operator is first order definable in £,. Hence the groups of the
automorphisms of D, and D,’ coincide. So we may reformulate the last corollary as follows:

Theorem 4.12. The groups of the automorphisms of D, and of D,,’ are isomorphic.

The established connection between the automorphisms of D, and D,’ has the following corollary which shows that
every automorphism of D, is the identity on the cone above 0, .

Theorem 4.13. Let @ be an automorphism of D,,’. Then @ (a) = a for all a greater than 0,.

Proof. Let ¢ be an automorphism of D, such that for allx € D, @ (k (X)) = k (p(x)).Let 0, <, a.Clearly 0, <, ®(a).
Then for all x € D,,

A<, k(X) = P@) <, P(k(X) = P() =, k(9(X) = P@) =, k(Xx). D

5. Jumps of the w-enumeration degrees below 0,

The results obtained so far show that the structures £,’ and D, are closely related but not elementary equivalent. As
we shall see in this section the structure D, contains new explicitly defined elements which can be used to characterize
the low and the high degrees not only in £,, but also in D, and Dr.

Definition 5.1. Let n > 1. An w-enumeration degree a < 0, is high nifa® = 0,V The degree ais low nifa® = 0,™.

Denote by H, the set of all high n degrees and by L, set of all low n degrees. Clearly a Turing degree X is high (low) n if
and only if A(x) € H,,(L,) and an enumeration degreey is high (low) n if and only if « (x) € H,(Ly).
Set

H=|JH: L=|JLandI ={a<,0,/:a¢ (HUL).

n>1 n>1

Clearly the classes H, L and I are invariant under the automorphisms of £, and hence one can expect that they admit a
natural characterization.

Givenann > 1seto, = Iy (0,™*V). In other words o, is the least among the degrees a such thata®™ = 0,"*". Clearly
ifa<,0,, thena e H, < o0, <, a.

It follows from the definition of the invert operation that for every n > 1, 0, = d,,({O} }k<«), where O} = #Jif k < nand
op = P if n < k.

Set 09 = 0,,". Clearly (Yn)(0p11 <o Op).
Definition 5.2. An w-enumeration degree a is almost zero (a.z.) if (Yn)(a <, op).

Clearly 0, is a.z. Actually there exist infinitely many a.z. degrees. To prove this we need the following explicit
characterization of the a.z. degrees:

Proposition 5.3. A degree X is a.z. if X <,, 0,,” and there exists a sequence {X;}x<e, € X such that (Vk) (X <. #%).

Proof. Suppose that X is a.z. Clearly X <,, 0,,". Let {Xi}x<» € X.Fix a k. Since X <, 0p;1, Xk < e7’1<({0§+]}n<w) and hence
Xk =e @(k)-

Now let {Xi}r<. be a sequence of sets of natural numbers which is uniformly reducible to @,,” and such that (Vn) (X; <.
P®). We shall show that for all n > 1, {X;} <, {O}}k<w- Indeed, fix ann > 1 and set 9" = {O}}i<,. Clearly forall k > n,
Xi <e Px(D,,)) =¢ P(O™) uniformly in k. If k < n then £,(O™) =, #® and hence X <. £(O"). Thus {Xi} <, O". O

Using Proposition 5.3 and the definition of the invert operation we obtain immediately the following property of the a.z.
degrees:
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Proposition 5.4. Let d be a.z. then (¥n) (g, d™)y = d).
Corollary 5.5. Letd # 0, be a.z. Thend € I.

Proof. Since (Yn)(d <, 0,),d & H.Assume thatd € L and letd™ = 0,™.Thend = Igw(Ow(”)) = 0,, which is a
contradiction. O

Proposition 5.6. There exist nonzero a.z. degrees.

Proof. We shall construct a sequence O = {Dy},, of finite sets so that D £, ¥, and D <, @,

Let go, ..., 8k, ... be an effective enumeration of all primitive recursive functions and Wy, ..., W ... be a Godel
enumeration of the r.e. sets.
Set

{@, if0 e ng(k)(@(k));
Die = i )
{0}, if0 & Wy, (PY).

Let D = {Dy}r~w. From the definition of the sets D, it follows that there does not exist a primitive recursive function g such
that (Vk)(Dy = Wgqy (W*)). Thus D £, #(4,,) and hence D £, #,. On the other hand, using the oracle #**1 one can
decide uniformly in k whether 0 € Wy, (#%). Therefore D <, #(4,,) and hence D <, ¥,/. O

Corollary 5.7. There exist infinitely many a.z. degrees.

Proof. Let d # 0, be a.z. By the density of the w-enumeration degrees below 0,’, see [11], there exists an x such that
0, <uw X <, d.Clearlyxisalsoa.z. O

In the rest of the paper we are going to prove the following two theorems which characterize the classes H and L by
means of the almost zero degrees:

Theorem 5.8. [eta <, 0,/.Thenae H < (Va.z.d){d <, a).
Theorem 5.9. Leta <, 0, . Thenacl < (Vaz.d)d<,a=d=0,).

Before starting with the proofs let us mention the following corollary of Theorem 5.8:
Corollary 5.10. The ideal of all a.z. degrees does not have a minimal upper bound below 0,,'.

Proof. Leta <, 0, be an upper bound of all a.z. degrees. By Theorem 5.8 a € H and hence a € H, for some n > 1. Then
o, < aand hence 0,1 <,, a. Clearly 0,41 is an upper bound of all a.z. degrees. O

The proofs of Theorems 5.8 and 5.9 use the notion of good approximation of a sequence of sets of natural numbers. This
notion is introduced in [11] and is based on the notion of good approximation of a set of natural numbers from [4].

Definition 5.11. Let B = {By}«~,, be a sequence of sets of natural numbers. A sequence {B;} of finite sets recursive in k and
s is a good approximation of B if the following three conditions are satisfied:

(i) (Y$)(VK)[B;, < By = (Vr < k)(B; < B/)].
(i) (vn)(Vk)(3s)(Vr < k)(B; [ n < B} € By).
(iii) (Yn)(Vk)(3s)(Vt > s)[B, € B = (Vr < k)(B; [ n € BY)].

If {B;} is a good approximation of the sequence 8 = {Bi}k<., then by G, we shall denote the set of all k-good stages, i.e.
the set of all s such that B; C By. Clearly G, 2 G forallr < k.

k =

Definition 5.12. Let A = {Ai}k<w and B = {Bi}k<, be sequences of sets of natural numbers and let {B}} be a good
approximation of 8. A sequence {A;} of finite sets recursive in s and k is a correct (with respect to {B;}) approximation of
A if the following two conditions hold:

(C1) (Vk,s)(B), € B = (Vr < k)(A] C A)).
(C2) For all natural numbers k, n there exists a v such that if s > v and B}, C By, then (Vr < k)(A; [ n C A}).

Givenanr.e.set Wy and s € N, set
Wy s = {x : x < s &{a}(x) halts in less than s steps}.
The following lemma is an analogue of Lemma 2.2 from [4] and can be proved by similar arguments.

Lemma 5.13. Let {B;} be a good approximation of the sequence B. Let W, be an r.e. set. Then {W, ([k](B})} is a correct
approximation of Wy(8).

The proof of the following proposition can be found in [11].

Proposition 5.14. Let A <, @,,’. Then there exists a sequence P of sets of natural numbers such that £ (A) =, P and » has a
good approximation.
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Theorem 5.15. Let a € I. Then there exists an a.z. degree d such thatd £, a.

Proof. Leta € ] and 4 € a. Clearly P (4) <. #(¥,,). Fix a sequence # = {P}x., such that P =, £(¥,’) and there exists
a good approximation {P;} of . Clearly £ (4A) <. & and hence there exists a correct (with respect to {P;}}) approximation
{P(A)} of P (A).

We have that for all k, P, £. #i(A). Indeed, assume that for some k, P, =, P (4). Since # =, P(@,) and
P, = {#*tV}i0, we get that %D =, P (A). Then for all r > k, &1+ <, P, () uniformly in r which
shows that 4® =, ¢, %*D. Hence a € H, which is a contradiction. We proceed by the following lemma.

Lemma 5.16. Let V be an r.e. set satisfying the following requirements for all k < w:

(Fx) VI[K](Py) is a finite set.
(Nk) Wi(Pr(A)) # VIKI(Pr).

Thend = d,(V(P))isaz andd £, a.
Proof. Clearly the sequence V() = ({V[k](P)} is uniformly reducible to @, and (Vk)(V[k]I(Py) <. 9%®). Thus by

Proposition 5.3, d is a.z. Assume thatd <, a. Then V() <. #(+) and hence there exists a primitive?ecursive function
g such that for all k, V[k](Py) = Wg)(Pk(A)). By the recursion theorem there exists a k such that Wy, = Wy and hence

VIk](Py) = Wi (P(A)). This is a contradiction. O

So to conclude the proof of the theorem it is enough to construct an r.e. set V satisfying the requirements (F;) and (Nj)
for all k.

The construction of V will be performed in stages. At every stage s we shall construct effectively a finite set V; so that
Vi C VerpandsetV = V..

Let Vo = ¥ and suppose that V; is constructed.

Definition 5.17. Given two sets X and Y of natural numbers let

FX,Y)=max{n<s: (Vx<n(xeX < xecY)}.

For every k < s we act for the requirement (Ny) as follows. Let
b = F(Wis(Pe(A)), Vs(Pp)).

For every x < I} if x € P; then we enumerate ((k, x), P;) in V[k], i.e. we put (k, ((k, x), P})) in Vyi1.
End of the construction.

Lemma 5.18. All requirements (N) are satisfied.

Proof. Fix k. Assume that W, (£(+4)) = V[k](Py). Recall that a stage s is k-good if P, < Py.

We shall show that (Vx)((k,x) € V[k](Py) <= x € Py).Indeed, let (k,x) € V[k](P). Then there exists an axiom
((k, x), D) € V[k] such that D C P,. From the construction of V it follows that this axiom is enumerated by the requirement
(Nk) an hence for some s, D = P; and x € P;. Since P, = D C Py, x € Py.

Suppose now that x € Py. Since W (#(+4)) = V[k](Py) there exists a k-good stage s such that x < I; and x € P;. Then,
by the construction of V, (k, x) € Vs1[k](P}) and hence (k, x) € V[k](Py).

Thus (Vx)(x € Py <= (k,x) € V[k](Py) < (k,x) € Wi (Px(A))). Hence P, <, P, (4A), which is a contradiction. O
Lemma 5.19. All requirements (Fy) are satisfied.

Proof. Fix a k. By the construction of V for all y,
y e VIkI(P) < (3, 5)(y = (k,x) & (y, P;) € V[k] & P; C Py).

Notice that an axiom of the form ((k, x), P;) can be enumerated in V[k] only by the requirement (Ny).
By the previous lemma W (£, (4)) # V[k](Py). Fix an n such that

Wi(Pi(A)) () # VIKI(Pe) ().

By the definition of the good approximations there exists a stage v such that for all k-good stages s > v, [} < n. Hence if at
a k-good stage s, ((k, x), P;) is enumerated in V[k], then x <s < v orx < n. Thus V[k](Py) is finite. O

The proof of the theorem is completed. O

Proof of Theorem 5.8. Leta <, 0,,. Assume thata € H. Then a € H, for some n > 1 and hence 0, <,, a. Therefore for all
az.dd<,o0, <,a

Assume now that a is above all a.z. degrees. By the previous theorem, a ¢ I. Let d be a nonzero a.z. degree. Then for all n,
0," <, d™ <, a™ and hencea ¢ L. Thusa € H. O

Theorem 5.20. Let a € I. There exists a nonzero a.z. degreed <, a.
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Proof. Fix a sequence A € a and let {P;} be a good approximation of a sequence # such that # =, £(4). Clearly
P(P») <e P and hence there exists a correct (with respect to {P}}) approximation {Z;} of 2 (9,,).

Given a sequence B = {By}i<, let B* = {By41}k<o. Notice that B’ = P (B)*. Set 8 = B and BtV = "™,

Clearly if 8 <. C then for all n, 3™ <, €™ and there exists a recursive function g such that (Vn)(8™ =
W (™)), In particular, for all n, 8™ <, 8™ = £ (8)™.

Clearly (Vn)(A™ = P (A)™) =, p),

Notice that if {B}} is a good approximation of B then {B;,,} is a good approximation of B8 Hence {P;

approximation of ™ and {Z; .} is a correct (with respect to {P;  ,}) approximation of Bo,™.

We shall construct an r.e. set V satisfying the following requirements for alli € N:

(F) VIil(?) <. 09,
(N) Wi@, D) # V().

L} 1S a good

Lemma 5.21. Suppose that V is an r.e. set satisfying for all i the requirements (F;) and (N;). Thend = d,,(V($)) is a nonzero a.z.
degree below a.

Proof. Clearly d <, a. Since V satisfies the requirements (F;) the degree d is a.z. It remains to show thatd # 0,. Assume
thatd = 0,,. Then V(£) <. #(#,) and hence there exists a recursive function g such that for all i,

V(P) ™ = Wy (0, D).

By the recursion theorem there exists an i such that W; = Wg;. Then
V()™ =wi@,7).

This is a contradiction. O

We shall construct V in stages. At every stage s we shall define effectively a finite set V; so that V; € V,,;andletV = [ V..
Set Vo = ¥ and suppose that V; is defined.

Definition 5.22. Given sequences X = {X;} and ¥ = {Yi}, let
F(X6, Y) = max{u : u < s& (Y{k, x) < u)(X(x) = Yi(x))}.

For every i < s we act for the requirement (N;) as follows. Let

B = LWas(Z, e Vali + KIPE ) o)

For every pair (k, x) < [ such that x € P}, we enumerate the axiom ((i, x), P{,;) in V[i + k].
End of the construction.
Notice that for every j the set V[j] consists of pairs {{i, x), Pjs), wherei <j.

Lemma 5.23. All requirements (N;) are satisfied.
Proof. Fix an i and suppose that W; (%, ) = V(£)®. We shall show that for all k,
(i, x) € V[i+ k](Pirk) < X € Pisk. (2)

Let (i, x) € V[i 4+ k](#;1r)- Then there exists an axiom ((i, x), D) € V[i + k] such that D € #;,. By the construction of V,
D = P}, for some s such that x € P} ,. Hence x € Piy.

Assume now that x € ;. There exists an (i + k)-good stage s such thati < s, (k,x) < Fandx € P;,.
({i, x), Pi,;) € Vsyqli + k] and hence (i, x) € V[i + k](Pir).

It follows from (2) that

Vk, x)((i, x) € Wi[k](Pik (D)) < X € Piyy)

Then

and hence A =, 2™ <, ¢, P The last shows that a € L. This is a contradiction. O
Lemma 5.24. All requirements (F;) are satisfied.
Proof. Let us fix aj € N. We need to show that V[j](#) <. #9. Clearly
Vi) = U{<i’ x) (i, x) € V[jI(FN}.
i<j
So it is enough to show that for everyi < j,
Xi={x:(i,x) € V[jI(PN} Ze P W0).

Fixani < jand set k = j — i. We shall consider two cases:
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(a) There exists a u € N such that for all j-good stages s > i, ' < u. Suppose that (i, x) € V[j]1($). Then there exists a
i )

j-good stage s > isuch that (k, x) < I < u. Hence X; is finite.

(b) For every u there exists a j-good stage s > i such thatu < [.

We shall show that V[j1($) = W;[k]($;(¥.)).

Let x € W;[k](#;(4.)). By the properties of the correct approximations there exists a v such that for all j-good stages
s > v,x € Wi [k](Z7). Let s be a j-good stage such that max(v, (k, x)) < E.Thenv < E < s. Clearly x € W; ;[k](Z’). Hence

j i i j

X e Vs[i](Pj‘) and therefore x € V[j](%).

Let x € V[jI(#). Fix a v such that for all j-good stages s > v, x € Vi[j] (Pjs). Consider a j-good stage s > v such that
(k,x) <[.Thenx € W,-,s[k](st) and hence x € W;[k](£;(9)).

So we obtain that

xeXi < (i,x) € Wi[kl(£;(¥,))-
Hence X; <, #(#,). O
The proof of the theorem is concluded. O

Proof of Theorem 5.9. Leta <, 0,’.

Assume that the only a.z. degree below a is 0,,. By the previous theorem a ¢ I. Since there exist nonzero a.z. degrees
a¢H. Thusa € L.

Suppose now that a € L. Let d be an a.z. degree below a. Then for some n, d® <, a® = 0,™. Hence d® = 0,™.
Therefored =0,,. O
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