D 14108

(Pages : 2)

 ne	 	

THIRD SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, NOVEMBER 2016

(UG-CCSS)

Mathematics

MM 3B 03—CALCULUS

Time : Three Hours

Maximum : 30 Weightage

- I. Answer all twelve questions. Each question carries ¼ weightage :
 - 1 Evaluate $\lim_{t\to 1}\frac{t^2+t-2}{t^2-1}.$

2 Define the continuity of a function f at a right end point x = b of its domain.

- 3 At what points are the function $y = \frac{1}{x-2} 3x$ is continuous.
- 4 State Rolle's theorem.
- 5 What are the critical points of f given $f'(x) = (x-1)^2(x+2)$.
- 6 Find the intervals in which the function f is increasing given f'(x) = (x-1)(x+2)(x-3).
- 7 Evaluate $\lim_{x\to-\infty}\frac{2x^2-3}{7x+4}.$

8 Write the sum without sigma notation and then evaluate the sum $\sum_{k=1}^{3} (-1)^{k+1} \sin \frac{\pi}{k}$.

- 9 Evaluate $\int_{0}^{\pi/3} 2 \sec^2 x \, dx$.
- 10 Suppose that $\int_{1}^{2} f(x) dx = 5$. Find $\int_{1}^{2} -f(x) dx$.
- 11 Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0.
- 12 Evaluate $\int_{0}^{1} (x^2 + \sqrt{x}) dx$.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Turn over

- II. Short Answer Type Questions. Answer all nine questions :
 - 13 A spring has a natural length of 1 m. A force of 24 N stretches the spring to a length of 1.8 m. How far will a 45 N force stretch the spring.
 - 14 Find the volume of the solid generated by revolving the region bounded by $y = x^2$, y = 0, x = 2.
 - 15 Evaluate $\int_{-\pi/4}^{0} \tan x \sec^2 x \, dx$.
 - 16 Evaluate $\frac{d}{dt} \int_{0}^{t^{4}} \sqrt{u} \, du$.
 - 17 Find the average value of $f(x) = -3x^2 1$ on [0, 1].
 - 18 Evaluate $\sum_{k=1}^{6} (3-k^2)$.
 - 19 Find the linearization of $f(x) = x^3 x$ at x = 1.
 - 20 Find the function f(x) whose derivative is sin x and whose graph passes through the point (0, 2).
 - 21 Find the absolute maximum and minimum value of $g(t) = 8t t^4$ on [-2, 1].

 $(9 \times 1 = 9 \text{ weightage})$

III. Short essay or paragraph questions. Answer any five questions :

- 22 The line segment x = 1 y, $0 \le y \le 1$ is revolved about the y-axis to generate a cone. Find its lateral surface area.
- 23 Find the length of the curve $x = \sin y$, $0 \le y \le \pi$.
- 24 Find the aera of the region between the x-axis and the graph of $f(x) = x^3 x^2 2x, -1 \le x \le 2$.
- 25 Find the smallest perimeter possible for a rectangle whose area is 16 square inches.
- 26 Using the Sandwich theorem find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$.
- 27 Find the local maxima and local minima of $g(x) = -x^3 + 12x + 5, -3 \le x \le 3$.
- 28 Find the asymptotes of the curve $y = \frac{x+3}{x+2}$.

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Essay Questions. Answer any two questions :
 - 29 The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.
 - 30 Find the area of the region between the curve $y = 4 x^2$, $0 \le x \le 3$ and the x-axis.
 - 31 Prove that $\lim_{x \to 2} f(x) = 4$ if: $f(x) = \begin{cases} x^2, & x \neq 2 \\ 1, & x = 2. \end{cases}$

 $(2 \times 4 = 8 \text{ weightage})$

D 72363

(**Pages : 3**)

Name.....

10 Find the second related (1)

and the shakes and he to the

in had been set without the set was the

Reg. No.....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

(U.G.-CCSS)

Core Course-Mathematics

MM 3B 03-CALCULUS

Time : Three Hours

12 - M = 3 white tage

Maximum : 30 Weightage

- I. Answer all questions :---
 - 1 Let F(t) = 2(t-1) + 3. Evaluate F at the input value x + 2.
 - 2 If $f(x) = \sqrt{x}$ and g(x) = x + 1 find $(f \circ g) x$.
 - 3 Find the domain and range of $f(x) = 1 + x^2$.

4 Evaluate $\lim_{x \to -2} \frac{2x-4}{x^3+2x^2}$.

5 At what points are the function $y = \frac{1}{x-2} - 3x$ is continuous.

6 State Rolle's theorem.

7 What are the critical points of f given

$$f'(x) = (x-1)(x+2)(x-3).$$

- 8 Evaluate $\lim_{x \to \infty} \frac{5x^2 + 8x 3}{3x^2 + 2}$.
- 9 Find dy if $y = \frac{2x}{1+x^2}$.

10 Find the intervals in which the function f is increasing. Given f'(x) = x(x-1).

Turn over

- 11 The length of the longest sub interval of a partition is called its -----
- 12 Evaluate $\int_{0}^{\frac{\pi}{3}} 2 \sec^2 x \, dx$.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

- II. Answer all nine questions.
 - 13 Find the volume of the solid generated by revolving the region bounded by the lines y = 0, x = 2 and the curve $y = x^3$.

A Let R (1) = 2(r - 1) + 3 [Stratege at the approximation of the second seco

States and - retained &

14 Find
$$\frac{dy}{dx}$$
 if $y = \int_{1}^{x^2} \cos t \, dt$.

- 15 Find the average value of $f(x) = -3x^2 1$ on [0, 1].
- 16 Evaluate $\sum_{k=1}^{6} (3-k^2)$.
- 17 Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0.
- 18 Find the absolute maximum and minimum values of $f(x) = -x 4, -4 \le x \le 1$.
- 19 Find the function f(x) whose derivative is sin x and whose graph passes through the point (0, 2).
- 20 Find the work done by a force of $F(x) = \frac{1}{r^2} N$ along the x-axis from x = 1 m. to x = 10 m.

21 Evaluate $\int^{\frac{\pi}{4}} \tan x \sec^2 x \, dx$.

 $(9 \times 1 = 9 \text{ weightage})$

Core Courses-Mathematics

III. Answer any five questions :-

- 22 Find the lateral surface area of the cone generated by revolving the line segment $y = \frac{x}{2}$, $0 \le x \le 4$, about the y-axis.
- 23 Find the length of the curve $y = \tan x$, $\frac{-\pi}{3} \le x \le 0$.
- 24 Find the asymptotes of the curve $y = \frac{x+3}{x+2}$.
- 25 Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.
- 26 Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.
- 27 Find the intervals on which the function $g(t) = -t^2 3t + 3$ is increasing and decreasing.
- 28 About how accurately should we measure the radius r of a sphere to calculate the surface area $S = 4\pi r^2$ within 1 % of its true value.

 $(5 \times 2 = 10 \text{ weightage})$

IV. Answer any two questions :---

29 Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{3/2} - 1, \quad 0 \le x \le 1.$

- 30 Show that the centre of mass of a straight, thin strip or rod of constant density has halfway between its two ends.
- 31 State and prove the fundamental theorem of calculus.

 $(2 \times 4 = 8 \text{ weightage})$

D 92581

(Pages: 3)

THIRD SEMESTER B.Sc. DEGREE (SUPPLEMENTARY MPROVEMENT) EXAMINATION NOVEMBER 2015 (UG-CCSS)

Core Course—Mathematics

MM 3B 03-CALCULUS

Time : Three Hours

Maximum : 30 Weightage

an alanda

and the addition makes and the

Answer all questions.

1. If $f(x) = \sqrt{x}$ find (fof) x.

it bands a varial wit wit balanced of

2. Find the domain and range of $f(x) = \sqrt{4 - x^2}$.

3. Evaluate $\lim_{x \to -2} \frac{x^2 - 7x + 10}{x - 2}$.

4. At what points are the function $y = \frac{x^4 + 20}{5x(x-2)}$ is continuous.

5. State the Mean Value Theorem.

6. If f is smooth in [a, b] then the length of the curve y = f(x) from a to b is L = _____

7. What are the critical points of f given $f'(x) = (x-1)^2 (x+2)$.

8. Find the intervals in which the functions f is increasing given $f'(x) = (x-1)^2 (x+2)$.

9. Evaluate $\lim_{x \to -\infty} \frac{11x+2}{2x^3-1}$.

10. Write the sum without sigma notation and then evaluate the sum $\sum_{h=1}^{\infty} \cos k \pi$.

Turn over

11. If
$$\int_{0}^{2} f(x) dx = 3$$
 find $\int_{0}^{2} \sqrt{3} f(x) dx$

12. Evaluate
$$\int_{0}^{4} \left(3x - \frac{x^{3}}{4}\right) dx.$$

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Answer all nine questions.

2

13. Find the volume of the solid generated by revolving the region bounded by the line y = 0 and the curve $y = x - x^2$.

14. Suppose that f is continuous and that $\int_{0}^{3} f(x) dx = 3$ and $\int_{0}^{4} f(x) dx = 7$. Find $\int_{4}^{3} f(x) dx$.

15. Evaluate $\sum_{k=1}^{7} (-2k)$.

16. Show that if f is continuous on $[a, b], a \neq b$ and if $\int f(x) dx = 0$ then f(x) = 0 at least once in

e a chaile an a chuir a

[a, b].

17. Find the average value of $f(x) = x^2 - 1$ on $[0, \sqrt{3}]$.

18. Find the linearization of $f(x) = \sqrt{x}$ at x = 4.

19. Evaluate
$$\frac{d}{dt} \int_{0}^{t^{4}} \sqrt{u} \, du$$
.

20. Evaluate
$$\int_{0}^{2\pi} \frac{\cos z}{\sqrt{4+3\sin z}} dz$$

21. Find the absolute maximum and minimum values of $f(x) = \frac{-1}{x}, -2 \le x \le -1$.

 $(9 \times 1 = 9 \text{ weightage})$

Answer any five questions.

22. Find the length of the curve $y = \tan x$, $\frac{-\pi}{3} \le x \le 0$.

- 23. Find the lateral surface area generated by revolving xy=1, $1 \le y \le 2$ about the y-axis.
- 24. Find the intervals on which the function $f(x) = 3x^2 4x^3$ is increasing and decreasing.

25. Using the sandwich theorem find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$.

26. Express the solution of the following initial value problem as an integral

:

Differential Equation : $\frac{dy}{dx} = \tan x$

Initial condition

27. Find the area of the region enclosed by the curve $y = 2x - x^2$ and the line y = -3.

y(1) = 5

28. Find the volume of the solid generated by revolving the region between the y - axis and the curve

 $x = \frac{2}{y}, 1 \le y \le 4$ about the y - axis.

 $(5 \times 2 = 10 \text{ weightage})$

Answer any two questions.

29. Find the area of the region between the x-axis and the graph of $f(x) = x^3 - x^2 - 2x, -1 \le x \le 2$.

30. Find the length of the curve $y = \left(\frac{x}{2}\right)^{2/3}$ from x = 0 to x = 2.

31. Show that the centre of mass of a straight, thin strip or rod of constant density has halfway between its two ends.

 $(2 \times 4 = 8 \text{ weightage})$