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Preface

This book is designed for a one-semester, post-calculus linear algebra course,
primarily intended for mathematics, physics, and computer science majors.
While basic calculus is a prerequisite for such a course, very little of it is
used in the book. Certainly, multivariable calculus is not required. Vectors
are treated fully in Chapter 1, but for classes familiar with them, this chap-
ter may be skipped or just reviewed briefly. Complex numbers, series, and
exponentials are presented briefly in an appendix, but they are needed only
in Section 7.4, which may not be covered in some courses.

The selection of topics conforms to a large extent to the recommendations
of the Linear Algebra Curriculum Study Group.1 The main differences are
that the book begins with a chapter on Euclidean vector geometry, mostly
in three dimensions; determinants are treated more fully and are placed just
before eigenvalues, which is where they are needed; the LU factorization is
relegated to Chapter 8 on numerical methods; and the facts about linear
transformations are collected in one chapter and are treated in more detail.

This book is considerably shorter than the 400 to 800 pages of most
introductory linear algebra books, which are more suitable for two- or three-
semester courses.

While many applications are presented, they are mostly taken from
physics, and several new ones have been added in the second edition. How-
ever, these examples give only a glimpse of how the subject is used in other
fields, and further details are left to texts in those fields. There is, though,
a section on computer graphics and a chapter on numerical methods. Also,
most sections contain MATLAB� exercises. On the other hand, we hope that
the student’s interest will be aroused not only by the possible applications,
but also by the geometrical background and the beautiful structure of linear
algebra. Nevertheless, for readers especially interested in applications, a list
of the ones discussed follows this preface.

The more difficult exercises and theorems are marked by an asterisk. Some
exercises are used to develop new topics, whose inclusion in the main text
would have disrupted the flow of ideas. The symbols � and � are used to
indicate the end of proofs and examples, respectively.
1 David Carlson, Charles R. Johnson, David C. Lay, A. Duane Porter. The Lin-

ear Algebra Curriculum Study Group Recommendations for the First Course in
Linear Algebra. College Mathematics Journal, 24:1 (1993) 41–46.

vii



viii Preface

In this second edition, in response to the concerns of some users of the
first edition, many of the earlier proofs and explanations have been expanded
and a few new ones added. Also, exercises involving laborious computations
have been replaced by simpler ones, and some new ones have been added.

Foreword to Instructors

• The brevity mentioned above makes the book easier to use. Important
points are not drowned in a sea of detail, and instructors and students do
not have to search for what to keep and what to omit. In a minimal course,
however, the following sections may be omitted entirely: Section 4.3 on
computer graphics, Section 5.1 on orthogonal projections and least squares,
Section 6.2 on cofactor expansions of determinants, Cramer’s rule, etc.,
Section 6.3 on the cross product, Sections 7.3 and 7.4 on principal axes and
complex matrices, and Chapter 8 on numerical methods. Theorem 3.4.8
(The Exchange Theorem) may also be omitted, since an alternative direct
proof of the dimension theorem is provided in the new edition.

• The geometric content is heavily emphasized. In fact, as mentioned above,
the book begins with a chapter on Euclidean vector geometry, mostly in
three dimensions. Most other similar textbooks start with the solution of
linear systems. We believe that this early introduction of the geometri-
cal background helps students to visualize the concepts of linear algebra
and provides easy concrete examples. Additionally, many students in this
course, e.g., computer science majors, are not required to take multivari-
able calculus, and do not see this important material anywhere else.

• In the first chapter, the equations of planes are given in both parametric
and nonparametric form, in contrast to most calculus books, which present
only the nonparametric form. Many examples and exercises illustrate the
transition from one form to the other. However, we avoid using the cross
product at this stage, because it is only available in R3. We use the method
of solving simultaneous equations to obtain a normal vector to a plane, and
this topic is revisited as an example to Gaussian elimination. On the other
hand, Section 6.3 is devoted to the cross product as an illustration of the
use of determinants, and it is only at that point that it is used to obtain a
normal vector to a plane.

• The “back and forth” process between parametric and nonparametric equa-
tions for lines and planes lays the groundwork for the same transition be-
tween describing a subspace of Rn as a set of linear combinations or as
the solution set of a homogeneous system of linear equations, that is, as
the column space of a matrix or the null space of another matrix. Another
generalization of this issue is finding orthogonal complements of subspaces
of Rn given in either form.

• Many books use the notation ‖p‖ for the length of a vector p in Rn, but
we prefer |p| , because in R1 length is the absolute value, and there is no
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reason to change notation for higher dimensions, just as there was none in
using + for addition of both scalars and of vectors. The notation ‖p‖ is
left for other norms.

• Important concepts are presented as definitions and theorems. Students
are advised to memorize them. It is not enough just to understand the
material; the main concepts must be remembered well to be able to build
on them.

• Except for the Spectral Theorem in the complex case and theorems from
other fields of mathematics, all theorems are proved. It is thus left to the
instructor to adjust the level of the course from the computational to the
fairly theoretical by omitting as many or as few proofs as desired.

• Great care has been taken to motivate every new concept, even those that
many books do not, such as dot product, matrix operations, linear inde-
pendence (not just in two or three dimensions), determinants, eigenvalues,
and eigenvectors.

• The letter symbols are selected to reflect the connections between related
quantities, a principle often ignored in other linear algebra books. Vectors
and their components, matrices and their column and row vectors and
entries are denoted by the same letters with different fonts, like v, vi and
A, ai, aj , aij . The main exception is the unit matrix, which is, bowing to
tradition, denoted by I, its columns by ei, and its entries by δij .

• Only standard notation is used, so that students who study further, will
have no difficulty in reading applied or more advanced texts. Nonstandard
notation, such as the use of a list in parentheses for column vectors and in
brackets for row vectors, or −→a i or Ai for a row vector of a matrix, found in
some other introductory linear algebra books, is avoided. We use ai for the
column vectors of a matrix A and ai for its row vectors. This is standard
notation in more advanced books. (See, e.g., Introduction to Linear and
Nonlinear Programming by David G. Luenberger, Addison-Wesley, 1973.)
We also use xA = (xA1, xA2, . . . , xAn)T for the coordinate vector of a vector
x relative to an ordered basis or basis matrix A. (Compare this, e.g., with
the notation [x]B = (c1, c2, . . . cn)T of Linear Algebra and Its Applications
by David Lay, Addison-Wesley, 1993, where the brackets on the left are
superfluous, the coordinates of x are denoted by the unrelated letter c,
and the basis B is not indicated on the right, not to mention that we need
an ordered basis or basis matrix here.) Our notation makes the notoriously
messy topic of change of basis much simpler.

• Similarity of matrices is introduced in the context of changing bases.
• Most introductory linear algebra books introduce determinants by unmo-

tivated formulas. This book introduces them by three simple properties,
expanding on the approach in Strang.2

2 Gilbert Strang, Linear Algebra and its Applications, 3rd ed. Harcourt Brace, San
Diego, 1988.
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• MATLAB exercises at the end of most sections reinforce and expand the
linear algebra material. They also provide some introduction to MATLAB,
but should be used in conjunction with a MATLAB manual.

• The appendix on implication and equivalence introduces the student in an
informal way to certain crucial elements of proofs, and is highly recom-
mended reading for most.

• All displayed equations are numbered, and in the new edition, mnemonic
headings are appended to all definitions, theorems, figures, and examples.
These numbers and headings should make references to these items easier
and make their connections more transparent.

Foreword to Students

Linear algebra is probably your first mathematics course in which the theory
is just as important as the computations. To study from this book you have
to carefully read the text with paper and pencil in hand.

The book starts out gently, with analytic geometry, but soon the algebra
takes over and the subject becomes more abstract, which may cause some
difficulty for some of you.

Studying this kind of mathematics involves three interwoven steps:

1. You must understand the material.
2. You must learn the concepts thoroughly so that you remember them and

can apply them knowledgeably.
3. You must practice it, doing exercises.

Each of these steps is necessary and supports the others.
In many other subjects, understanding is not a problem, and so many

students believe that once they pass that hurdle, they have done enough.
Not true: If you understand something in class, that does not mean you will
know it the next day. You must study after every class and make sure that
you are able to explain the material in your own words so that you do not
forget it. If you don’t, then you have to start over again on your own, with
the class attendance wasted. You will need to study several hours after every
class. This is especially important, because most concepts are built upon each
other. For instance, vectors, introduced in Section 1.1, are used throughout
the book; matrices introduced in Section 2.2 are used throughout the rest of
the book, and so on.

On the other hand, you cannot do mathematics by rote memorization
without understanding, because the subject is generally too complicated for
that. Also, doing that would defeat the whole purpose of studying mathe-
matics, which is the comprehension of its logic and the ability to use it in
applications—not just in those that were presented, but in other similar (or
even somewhat different) applications.
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Working out solutions to the exercises reinforces both the learning and
the understanding of the material and is often also useful in its own right,
because many exercises involve important applications of the theory.

In studying linear algebra, you have to thoroughly understand and re-
member the definitions first, since everything else is built on them. If you
don’t remember a definition, you cannot possibly understand the theory that
depends on it and the exercises that make use of it.

Next in importance come the theorems, lemmas (minor or auxiliary theo-
rems), and corollaries. These are usually preceded by introductory examples
and followed by further examples that illuminate various aspects and appli-
cations of the theorems. You must study these examples together with the
theorems and their proofs. It is permissible to read everything just superfi-
cially at first, to get a basic understanding, but after that, you must study
it again in detail. When studying a theorem, isolate the conditions or hy-
potheses which make it tick. Try to see where these conditions are used in
the proof, and what would happen if a condition were changed or omitted.
After pinpointing the conditions, do the same for the conclusions, and last,
try to follow the steps of the proof. This is where the paper and pencil come
in: Write these steps down. Close the book and write down the conditions,
the conclusions, or the whole statement that you are studying. Try to fill in
steps that are just briefly indicated in the proofs. If the proof has a reference
to some earlier material, be sure to look it up and explain to yourself how
it is used. The same advice applies to the follow-up examples as well: make
sure you see where the conditions of the theorem are used and why they are
necessary, and follow the computations on paper.

There is an appendix on implication and equivalence, which introduces in
an informal way certain crucial elements of proofs. It is highly recommended
reading for all those who have not seen this material before.

Finally, after you have gone through the steps listed above, you will be
ready to tackle exercises. The odd-numbered ones have solutions available
in a Students’ Solution Manual on the book’s webpage. Do those exercises
first; they are usually similar to examples in the text. Don’t look at the so-
lution before making a really serious attempt to solve a problem on your
own. If a problem looks too difficult at first, then look at a similar example
in the text or go back and review the definition or theorem that the prob-
lem is intended to illustrate. A problem that you have solved stays much
better in your mind than one that you have merely read, and its structure
becomes much clearer. But, of course, once you have solved a problem, there
is no harm in looking up the solution. You may even learn a different way
of solving it, or find an error in your solution (or perhaps in the solution
manual).

If you follow the advice above, you will probably find linear algebra to
be a very interesting and enjoyable subject, but if you don’t, then it may
become an unpleasant chore.
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1. AnalyticGeometryofEuclideanSpaces

1.1 Vectors

We begin by describing some geometrical concepts. This approach may seem
strange in a book on algebra, but the influence of geometry is fundamental to
our subject, since the underlying geometrical ideas provide motivation, ex-
amples, and applications for the algebraic constructions. In fact, the adjective
“linear” in this book’s title means “pertaining to lines” (which in mathemat-
ics usually mean straight lines), and indicates the geometric origins of linear
algebra.

In physics, several important notions such as displacement, velocity, and
force possess not just a magnitude but a direction as well. These are typical
of a large class of quantities called vectors, which can be depicted by arrows
showing the desired directions and representing the vectors’ magnitudes by
their lengths. In geometry, we can use them to locate points and also, as we
shall see later, to write equations of lines and planes. Let us look at a few
such examples before stating formal definitions.

space, consider a fixed point O and other points P, Q, R, and draw
correspondingly labeled arrows p, q, r from O to the other points (see
Figure 1.1). These arrows are called the position vectors or radius vectors

P

Q

R

O

q

r
p

Fig. 1.1. Position vectors

. , , 
78- - -8DOI 10.1007/9 © 

1G Schay A Concise Introduction to Linear Algebra
0 8176 325 Springer Science+Business Media, LLC 2012-2_1, 

Example 1.1.1.(Position Vectors). Either in the plane or in three-dimensional

The original version of this chapter was revised. An erratum can be found at  
https://doi.org/10.1007/978-0-8176-8325-2_9

https://doi.org/10.1007/978-0-8176-8325-2_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-0-8176-8325-2_1&domain=pdf


2 1. Analytic Geometry of Euclidean Spaces

of P , Q, R relative to the point O, which is usually regarded as the origin of
a coordinate system. Such vectors are also sometimes called bound vectors,
for they are bound to the origin, in contrast to free vectors to be introduced
shortly. The position vector of the point O is a special vector 0, called the
zero or null vector, whose length is 0, and whose direction is undefined. �

Whereas in print, vectors are generally denoted by lowercase boldface letters
such as p, q, r, or by symbols like

−−→
OP,

−−→
OQ, in handwriting, boldface would

be difficult and so p, q or −→p , −→q , etc. are used instead.
Since position vectors and points are in one-to-one correspondence, you

may wonder why we need position vectors at all. The answer is that various
arithmetic operations that would make no sense with points can be performed
with vectors, and will lend themselves to all kinds of useful constructions.
Such operations are also essential for the vectors of physics.

forces acting simultaneously on a point mass at O, then the single force
represented by r, to be defined as p + q, would have the same effect. �

O

Q R

P

q
r

p

Fig. 1.2. r = p + q

simultaneous displacements, then r represents their combined effect. This
happens, for example, if a person on a boat at O walks to Q while the
point O of the boat moves, together with the boat, to P (and the point Q of
the boat to R). Then, as seen from the shore, the person ends up at R. �

The last two examples illustrate how addition of such vectors is defined.
Given any pair p and q as in Figure 1.2, the corresponding points O, P, Q de-
termine a parallelogram OPRQ, and the sum p + q is defined as the diagonal
vector r =

−−→
OR. This is called the parallelogram law of vector addition.

A second operation we consider is multiplication of vectors by scalars.
(In this context real numbers are usually called scalars, since they can be

Example 1.1.2. (Adding Forces). If, in Figure 1.2, p and q represent two

Example1.1.3.(AddingDisplacements). If, in Figure 1.2, p and q represent
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pictured on a scale, unlike vectors.) Let c be any scalar and p any vector,
as in the previous examples. The vector cp is defined as the vector whose
length is |c| times the length of p and whose direction is the same as that of
p if c > 0, and opposite if c < 0. If c = 0, then cp is the zero vector. Two
examples of this type of multiplication are shown in Figure 1.3.

O

p

2p

(-1)p

Fig. 1.3. Scalar multiples of a vector

The discussion has been somewhat informal so far, because we have not
really specified very precisely the sets of vectors under consideration. It is
best to remedy this omission by introducing a coordinate system into the
picture.

If we consider the position vector p of a point P in a plane (see Figure 1.4)
and introduce a Cartesian coordinate system, then we can represent the vec-
tor p, as well as the point P , by the ordered pair (p1, p2) of coordinates, and
write p = (p1, p2). For this representation to be of any use, we recast the
parallelogram law and the multiplication of vectors by scalars in terms of the
coordinates, as follows.

O

P
y

x

p

p2

p1

Fig. 1.4. The coordinates of a point P are the components of its position vector p

For any two vectors p = (p1, p2) and q = (q1, q2), Figure 1.5 illustrates
that if r = p + q is the diagonal of the parallelogram spanned by p and q,
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p1 q1

p2

p1 q1

q2

p1+q1 x

y

p r

q

p2+q2
R

O

Q

P

Fig. 1.5. The parallelogram law in terms of coordinates

then p + q = (p1 + q1, p2 + q2) must hold; that is, we must simply add the
corresponding coordinates. Similarly, we must have cp = (cp1, cp2) for every
scalar c.

In light of the above discussion we now make this formal definition.

Definition 1.1.1. (Two-Dimensional Euclidean Vector Space). The
set of all ordered pairs of real numbers, together with the two algebraic opera-
tions defined below, is called the two-dimensional Euclidean vector space R2.

The elements of R2 are called two-dimensional vectors (or coordinate vec-
tors) and we define the operations of vector addition and multiplication of a
vector by a scalar by

(p1, p2) + (q1, q2) = (p1 + q1, p2 + q2), (1.1)

and

c(p1, p2) = (cp1, cp2) (1.2)

for every (p1, p2), (q1, q2) and any scalar c.
The scalars p1 and p2 are called the components of the vector p = (p1, p2).

Furthermore, two vectors are said to be equal if and only if their corresponding
components are equal.

and Q = (3, 1) be given. Then the corresponding coordinate vectors are p =
(1, 5) and q = (3, 1), and the position vector of the point R that makes OQRP
into a parallelogram is r = p + q = (1 + 3, 5 + 1) = (4, 6). The midpoint M
of the parallelogram has the position vector 1

2r = (2, 3). �

The following simple properties follow from Definition 1.1.1 and the al-
gebraic properties of real numbers. They will be used in the definition of a
general vector space in Chapter 3.

Example 1.1.4. (A Parallelogram). In Figure 1.6, let the points P = (1, 5)
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O

P

R

Q

y

x

M

Fig. 1.6. The midpoint of a parallelogram in terms of the position vectors of the
vertices

Theorem 1.1.1. (Basic Properties of Vectors in R2). For all vectors
p,q, r in R2 and all scalars a, b we have:
1. p + q = q + p (commutativity of addition),
2. (p + q) + r = p + (q + r) (associativity of addition),
3. There is a vector 0 such that p + 0 = p for all vectors p (existence of zero
vector),
4. For each vector p there is a vector −p such that p + (−p) = 0 (existence
of additive inverse),
5. 1p = p (rule of multiplication by 1),
6. a(bp) = (ab)p (associativity of multiplication by scalars)1,
7. (a + b)p = ap + bp (first distributive law),
8. a(p + q) = ap + aq (second distributive law).

Proof. 1. p + q = (p1 + q1, p2 + q2) = (q1 + p1, q2 + p2) = q + p.
2. (p + q) + r = ( +q1, p2 +q2)+(r1, r2) = (p1 +q1 +r1, p2 +q2 +r2) =

(p1, p2) + (q1 + r1, q2 + r2) = p + (q + r).
3. Defining 0 = (0, 0) we have p + 0 = (p1 + 0, p2 + 0) = (p1, p2) = p.
4. Defining −p = (−p1, −p2) we have p + (−p) = (p1 + (−p1) , p2 +

(−p2)) = (0, 0) = 0.
We leave the rest to the reader. �

Let us remark that Properties 2, 6, 7, and 8 can be extended to several
vectors and scalars much as for numbers, and we shall use such extensions
without further ado.

Subtraction of vectors can be defined just as for numbers.
1 “Associativity” is nonstandard here; there is no commonly used name for this

property.

p1
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Definition 1.1.2. (Subtraction in R2). For every p = (p1, p2), q =
(q1, q2) ∈ R2, we define

p − q = p + (−q). (1.3)

The definitions lead at once to the following alternative expressions for
the negatives of vectors and for their subtraction in terms of components.

Theorem 1.1.2. (Negative and Subtraction in R2 in Terms of Com-
ponents). For every p = (p1, p2), q = (q1, q2) ∈ R2,

−p = (−1) (p1, p2) (1.4)

and

p − q = (p1 − q1, p2 − q2). (1.5)

We have the following list of further properties of vectors.

Theorem 1.1.3. (Properties of Vectors in R2 Involving 0 and Sub-
traction). For all vectors p,q,x in R2 and all scalars c and d we have
1. 0p = 0,
2. c0 = 0,
3. p + x = q if and only if x = q − p,
4. If cp = 0 then either c = 0 or p = 0 or both,
5. (−c)p = c(−p) = −(cp),
6. c(p − q) = cp − cq,
7. (c − d)p = cp − dp.

Proof. We prove only Property 3. There are two statements here: the “if”
and the “only if” part. Writing p = (p1, p2), q = (q1, q2), and x = (x1, x2),
if x = q − p, then we have

x = (x1, x2) = (q1 − p1, q2 − p2) (1.6)

and so

p + x = (p1 + (q1 − p1), p2 + (q2 − p2)) = (q1, q2) = q (1.7)

must hold.
Conversely, the “only if” part of Property 3 is equivalent to saying that if

p + x = q, then x = q − p. (See Appendix 1.) So, to prove this part, assume
p + x = q. Then we can write this equation in components as

(p1 + x1, p2 + x2) = (q1, q2) (1.8)

Example 1.1.5. (A Subtraction in R2). Let p = (1,−3) and q = (−4, 5).
Then −p = (−1)(1, −3) = (−1, 3), −q = (−1)(−4, 5) = (4, −5), and p − q =
(1, −3) + (4, −5) = (5, −8). �
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and, because the equality of two vectors means that the corresponding com-
ponents must be equal, we have

p1 + x1 = q1 (1.9)

and

p2 + x2 = q2. (1.10)

Solving these equations for x1 and x2 and combining them into a vector,
we get

x = (x1, x2) = (q1 − p1, q2 − p2) = q − p. (1.11)

�

p''

p'

p2

p2

p1
x

y

p1

Fig. 1.7. Representative arrows of a vector in R
2

There is an additional, important way of associating arrows with ordered
pairs of coordinates. If we draw an arrow p′ anywhere in a coordinate system
(see Figure 1.7), not necessarily at the origin, then we can still project it
perpendicularly onto the axes and consider the signed lengths p1, p2 of the
projections to be the components of a vector in R2. Of course, any other
arrow, such as p′′, obtained from p′ by a parallel shift, will produce the same
p1, p2 values. Thus for a given vector (p1, p2) ∈ R2 there corresponds a class p
of infinitely many arrows parallel to each other and equal in length,2 all having
the same signed scalar projections p1 and p2. The arrows like p′ and p′′ are
2 Equivalence class is a standard term used for sets whose members constitute

all objects equivalent to each other under a certain type of relation called an
equivalence relation.
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equivalent representatives of the class p. Such classes of equivalent arrows are
called free vectors, since the arrows can be shifted freely. We usually identify
the free vector p with the vector (p1, p2) ∈ R2, that is, we write p = (p1, p2).
This should not lead to confusion, just as referring to a point as (x, y) instead
of a point P with coordinates (x, y) does not.

A free vector can be represented by any one of its arrows; that is, the
whole class p is known if any member of p is known. Unfortunately, many
people confuse the class p with the individual arrows, and call p′ and p′′

equal vectors, rather than just equivalent representative arrows of the vector
(p1, p2) ∈ R2 or of the free vector p.

Why do we use free vectors at all? There are at least three reasons. First,
they arise rather naturally as representations of coordinate vectors, as we
have just seen. Second, in physical applications some vector quantities are
not bound to any fixed point. (For example, the velocity vector of a non-
rotating object can reasonably be drawn at any point of the object.) Third,
the pictures of many constructions become simpler and less cluttered if we
use well-positioned representative arrows, rather that just vectors at O. Many
examples of this usage will follow, but here we just look at a variation of the
addition of vectors in terms of free vectors. In Figure 1.8, let the arrows
marked p and q represent the free vectors p and q (we shall abbreviate
this statement from now on as customary to “let p and q be two vectors as
shown”). Then, obviously, their sum is represented by the arrow p + q. This
is sometimes called the triangle law of vector addition. If the arrows represent
displacements, then it is the natural description of their sum, that is, of one
displacement followed by another.

p

q

p+q

Fig. 1.8. The triangle law of vector addition

Now let us turn to the addition of several, say four, vectors p, q, r, s as
given in Figure 1.9. By repeated application of the triangle law we get the
sum as shown. (Because of the associativity of vector addition, just as with
numbers, we do not need parentheses in the sum.) Contrast the simplicity of
this construction with the mess we would get if all vectors were drawn at O.

Since we have (p + q) − p = q, we can relabel Figure 1.8 to illustrate the
subtraction of vectors, by writing r for p + q and r − p for q as in Figure 1.10.
The triangle law applied to Figure 1.10 shows that p + (r − p) = r, as it
should be, and that

−→
PR = r − p. This construction is especially useful for
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p

q r

s

p+q+r+s

Fig. 1.9. Addition of several vectors by the triangle law

p

r - p

r

O

P

R

Fig. 1.10. Subtraction of vectors

obtaining the coordinate vectors of arrows joining given points as in the
following example.

(1, 2) and R = (3, 6) in the plane, find the coordinate vector of
−→
PR.

We can write the position vectors of the given points as p = (1, 2) and
r = (3, 6), and so

−→
PR = r − p = (3 − 1, 6 − 2) = (2, 4). �

points A = (4, 3), B = (−1, 4), and C = (0,−2) in the plane (see Figure 1.11),
find the coordinates of the point D that makes ABDC a parallelogram, and
those of the midpoint M of the parallelogram.

The position vectors of the given points are a = (4, 3), b = (−1, 4), and
c = (0,−2). Then, finding first

−−→
AB = b − a = (−5, 1) and

−→
AC = c − a =

(−4,−5), we can use them to find
−−→
AD = (b − a) + (c − a) = (−9,−4). Now

d = a+
−−→
AD = (−5,−1), and this ordered pair also gives the coordinates of D.

The position vector m of the midpoint M can be obtained as m = a+ 1
2
−−→
AD =

(4, 3) + 1
2 (−9,−4) = (− 1

2 , 1). �

We now define the three-dimensional Euclidean vector space R3 of coor-
dinate vectors.

Example 1.1.6. (AVector with GivenEndpoints). Given two points P =

Example1.1.7. (FindingVariousPoints of aParallelogram). Given three
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A

B

C

D

M

b

a

d

b - a

c - a
c

x

y

Fig. 1.11. Computing the coordinates of vertex D and midpoint M of a parallel-
ogram, given three vertices A, B, C

Definition 1.1.3. (Three-Dimensional Euclidean Vector Space). The
vector space R3 is the set of all ordered triples (p1, p2, p3) of real numbers
with the operations defined componentwise just as in R2: For all (p1, p2, p3),
(q1, q2, q3) and every scalar c,

(p1, p2, p3) + (q1, q2, q3) = (p1 + q1, p2 + q2, p3 + q3), (1.12)

and

c(p1, p2, p3) = (cp1, cp2, cp3). (1.13)

Again, R3 is called the three-dimensional Euclidean vector space and its
elements are called three-dimensional vectors (or coordinate vectors). The
scalars p1, p2, p3 are called the components of the vector p = (p1, p2, p3) and
two vectors are said to be equal if and only if their corresponding components
are equal.

Just as in two dimensions, if we introduce a Cartesian coordinate system
with the origin at O, then every p ∈ R3 can be regarded as the position
vector of the corresponding point P. (See Figure 1.12). Thus we identify the
arrow p with the coordinate vector (p1, p2, p3).

In three-dimensional space we can again represent coordinate vectors also
by arrows drawn anywhere, not just at the origin, and we define free vectors
much as in the plane.

About Figure 1.12, let us remark that the x-axis is meant to be interpreted
as pointing out of the paper towards the reader. (This sense is not obvious:
if you stare at the picture hard, you may see it as pointing into the paper.)
In three dimensions, two kinds of coordinate systems are possible: the kind
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O

P

x

y

z

p1

p2

p3

p

Fig. 1.12. Coordinates in R
3

pictured here and its mirror image. The one shown is called a right-handed
coordinate system, since the x, y, z axes point like the thumb, index, and
middle finger of the right hand, respectively. (See Figure 1.13.) By convention,
left-handed coordinate systems are rarely used.

x

y

z

O

Fig. 1.13. The right hand gives the orientation of the right-handed coordinate
system

Although there is no way of picturing it when n > 3, the n-dimensional
vector space Rn is defined algebraically as follows.

Definition 1.1.4. (n-Dimensional Euclidean Vector Space). For ev-
ery positive integer n, Rn is the vector space of ordered n-tuples (x1, x2, . . . ,
xn) of real numbers, with the basic operations defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn) (1.14)
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and

c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn) (1.15)

for all vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) and every scalar c.
Again, Rn is called the n-dimensional Euclidean vector space, and its el-

ements are called n-dimensional vectors (or coordinate vectors). The scalars
x1, x2, . . . , xn are called the components of the vector x = (x1, x2, . . . , xn),
and two vectors are said to be equal if and only if their corresponding com-
ponents are equal.

Such coordinate vectors with n > 3 arise in many applications. For in-
stance, in physics the configuration space of n point-like particles is defined
as the 3n-dimensional vector space R3n whose vectors are made up of the
particles’ coordinates, and the phase space as the 6n-dimensional vector
space R6n whose vectors’ components are the coordinates and the momen-
tum components of the particles. Similarly, in theoretical economics the prices
and quantities of n commodities are frequently represented by n-dimensional
vectors.

We can define negatives and subtraction of vectors as before.

Definition 1.1.5. (Negative and Subtraction in Rn). For all p,q ∈ Rn

we define

−p = (−1)p (1.16)

and

p − q = p + (−q). (1.17)

Additionally, we adopt the following notational conventions:

pc = cp and
p
c

=
1
c
p (1.18)

for all vectors and scalars (except for c = 0 in the latter, of course).
If n = 1, then R1 denotes the one-dimensional vector space formed by

the set R of real numbers itself, with ordinary addition and multiplication
serving as the vector operations. Although R has more structure than that
of a vector space, it is still customary to write R not just for the field of real
numbers but for the vector space R1 as well.

The theorems we stated for vectors in the plane also remain valid for
vectors in Rn, for every positive integer n, with the obvious change to n
components where needed. Also, in Rn, just as in R2, Properties 2, 6, 7,
and 8 of Theorem 1.1.1 can be extended to several vectors and scalars.

Before closing this section, let us consider a three-dimensional example.

Example 1.1.8. (Midpoint of a Line Segment in R3). Given the points P =
(1, 2, 3) and Q = (−1, 6, 5), find the midpoint M of the line segment PQ.
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Just as in two dimensions, we can write
−−→
PQ = q − p = (−2, 4, 2) and the

position vector m of the point M as

m = p +
1
2
−−→
PQ = (1, 2, 3) +

1
2
(−2, 4, 2) = (0, 4, 4). (1.19)

�
Notice that in the example above we could also have written

m = p+
1
2
(q − p) = p+

1
2
q−1

2
p =

1
2
(p + q), (1.20)

which gives a general formula for the midpoint of a line segment.
In later chapters we shall discuss many further examples of vector spaces.

Most of them do not resemble sets of directed line segments at all, but their
vector space structure allows us to study their common properties together.
The set of all polynomials in one variable, the set of all polynomials of degree
less than some arbitrary number, the set of all functions continuous on a
given interval, the set of all solutions of certain differential equations, etc. are
all vector spaces, just to mention a few.

Exercises

Exercise 1.1.1. Referring to Figure 1.2, find expressions in terms of p and
q of the free vectors

−→
PR,

−−→
PQ,

−−→
QP and of the vectors

−−→
QC,

−−→
PC, and

−−→
OC,

where C denotes the center of the parallelogram.

Exercise 1.1.2. If in Figure 1.5 p = (1, 3) and q = (4, 2), then what are
r, p − q, and q − p in terms of components?

Exercise 1.1.3. Let p = (2, 3,−1) and q = (1, 2, 2) be two vectors in R3.
Find p + q, and draw all three vectors from the origin in the xyz coordinate
system to illustrate the parallelogram law in three dimensions.

Exercise 1.1.4. In R3 the unit cube is defined as the cube with vertices
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1). Find the
position vectors (in coordinate form) of the midpoints of the edges, the cen-
ters of the faces, and the center of the whole cube.

Exercise 1.1.5. Draw a diagram to illustrate the second distributive law of
vectors (Property 8 of Theorem 1.1.1) with a = 2 and p,q any vectors in R2.

Exercise 1.1.7. Given n point masses mi, i = 1, 2, . . . , n, at the points
with position vectors ri in either two or three dimensions, their center of
mass is defined as the point with position vector r = 1

M

∑n
i=1 miri, where

Exercise 1.1.6. Prove the last four parts of Theorem 1.1.3.*
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M =
∑n

i=1 mi is the total mass. (If the masses are equal, their center of
mass is called their centroid.) If three mass points are given with m1 = 2,
m2 = 3, m3 = 5, r1 = (2, −1, 4), r2 = (1, 5, −6), and r3 = (−2, −5, 4), then
find r.

Exercise 1.1.8. Show that the definition of the center of mass, given in
Exercise 1.1.7, does not depend on the choice of the point O. That is, if
the origin of a new coordinate system is denoted O′ and the position vectors
relative to it r′

i, then r′ = 1
M

∑n
i=1 mir′

i gives the position vector of the center

of mass in the new system. (Hint : r′
i =

−−→
O′O + ri.)

Exercise 1.1.9. Let a,b, c be the position vectors of the vertices of a tri-
angle. The point given by p = 1

3 (a + b + c) is the triangle’s centroid. Show
that it lies one third of the way from the midpoint of any side to the opposite
vertex on the line joining these points. (Such a line is called a median of the
triangle.) Draw an illustration.

Exercise 1.1.10. Let a,b, c,d be the position vectors of the vertices of a
tetrahedron. The point given by p = 1

4 (a + b + c + d) is the tetrahedron’s
centroid. Show that it lies one fourth of the way from the centroid of the
vertices of any face to the opposite vertex on the line joining these points.
(Such a line is called a median of the tetrahedron.) Draw an illustration.
Notice that the centroid divides each median in the ratio 1 to 3 in contrast to
the ratio 1 to 2 for triangles. Now one vertex balances three vertices instead
of two.

Exercise 1.1.11. Show that for any tetrahedron the halfway point M on
the line joining the midpoints of opposite edges is the tetrahedron’s centroid
(defined in Exercise 1.1.10). Thus all three such lines meet in the centroid.

MATLAB Exercises

In MATLAB, vectors mean coordinate vectors of any dimension and are
denoted by names of up to 19 characters. Extra characters beyond 19 are ig-
nored. There are several ways of entering them. In the following very simple
exercises we explore these ways and various arithmetic operations with vec-
tors. (In the exercises we use boldface characters for vectors and keywords;
in entering MATLAB expressions you have to ignore the boldface.)

Exercise 1.1.12. Enter u = [1 − 3 6 0]. (Be sure to leave spaces between
the numbers.) Enter v = [1, −2, 2, 5]. Describe and explain the results of the
commands:

a. u + v,
b. 2u,
c. 2 ∗ u,
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d. s = u/2,
e. u/v,
f. u./v,
g. u(2),
h. t = u/u(2),
i. format rat; s,
j. t,
k. format short; s,
1. s = 3 : 8,
m. t = 1 : 0.2 : 2.8,
n. length(t).

Exercise 1.1.13. Let r1 = (23,−31, 0), r2 = (35, 14,−72), r3 = (52, −25,
44), and r4 = (12, 52, 24) be the position vectors of the vertices of a tetrahe-
dron. Use MATLAB to compute the coordinates of its centroid. (See Exer-
cise 1.1.7.)

Exercise 1.1.14. Redo the computations of Exercise 1.1.7 with MATLAB.

1.2 Length and Dot Product of Vectors in Rn

The vectors of two and three dimensions have an additional property not
covered by the definitions of Section 1.1, namely length, which we want to
discuss now.

If we depict a vector (x, y) ∈ R2 by an arrow p anywhere in the xy system,
then the Theorem of Pythagoras tells us that the length of p, denoted by |p|,
is given by |p| =

√
x2 + y2, and so we define |(x, y)| =

√
x2 + y2.

In R3 we can deduce a similar formula as follows. For p = (x, y, z), as
shown in Figure 1.14, two applications of the Theorem of Pythagoras give
d2 = x2 + y2 and |p|2 = d2 + z2, and so |p|2 = x2 + y2 + z2. Thus we define
|(x, y, z)|2 = x2 + y2 + z2.

These formulas suggest the following generalization for every positive in-
teger n.

Definition 1.2.1. (Length). For all vectors in Rn, we define the length of
(x1, x2, . . . , xn) by

|(x1, x2, . . . , xn)| =
√

x2
1 + x2

2 + · · · + x2
n. (1.21)

This length has some basic properties, summarized below.

Theorem 1.2.1. (Properties of Length). For all vectors p,q in Rn and
all scalars c we have
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x

y

z

x

y

z

d

p
P(x,y,z)

P1(x,y,0)

Fig. 1.14. The length of a vector in R
3

1. |p| ≥ 0, with equality holding only for p = 0.
2. |cp| = |c||p|, and
3. |p + q| ≤ |p| + |q|. (triangle inequality).

The proofs of the first two parts are straightforward and are therefore
omitted, and a proof of the third part (whose name is explained by Figure 1.8)
is left to Exercise 1.2.13.

The three properties above hold for many functions of vectors, not just
for their length, and every function satisfying them is called a norm on Rn.

The length |p| can be used to associate with every nonzero vector p ∈ Rn

a vector of length 1, called a unit vector, pointing in the same direction,
namely up = p

|p| . That |up| = 1 can be seen from Part 2 of Theorem 1.2.1 by
substituting c = 1

|p| in it.

Definition 1.2.2. (Distance). The distance between two points P, Q with
position vectors p,q ∈ Rn is defined as the length of

−−→
QP = p − q, that is, as

|p − q|.
If we want to define multiplication of vectors in Rn, the most natural

idea is to multiply them componentwise. However, another procedure makes
a more useful definition, as suggested by the following applications.

Suppose we have n commodities with unit prices (p1, p2, . . . , pn) and we
want to buy the quantities (q1, q2, . . . , qn) of each. The total amount we have
to pay is then given by p1q1 + p2q2 + · · · + pnqn. In probability theory, the
same expression gives the expected value of a random variable, with the qi

denoting the possible values and the pi their probabilities. In physics, the
x-coordinate of the center of mass of point-masses pi having x-coordinates qi

is given by the same formula divided by the total mass. Later we shall see
that the formula in physics that gives the work done by a force moving an
object also reduces to the same kind of expression, and in geometry too we
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shall put it to good use in several ways. Consequently, the following definition
has been adopted.

Definition 1.2.3. (Scalar Product or Dot Product). For all vectors p =
(p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) in Rn, their scalar or dot product is

p · q = p1q1 + p2q2 + · · · + pnqn. (1.22)

p · q = 1 · 1 + 2 · 4 + 3 · (−3) = 0. (1.23)

�

In addition to illustrating the computation of such products, this exam-
ple shows that the scalar product of two vectors can well be zero even if
the factors are not. This will turn out to be a very important and useful
property.

As we can see, the scalar product results in a scalar, which explains its
first name, as opposed to other products to be defined later. As for the second
name, we generally denote this product by a dot.

The scalar product has some simple properties.

Theorem 1.2.2. (Properties of the Dot Product). For all vectors p,q
and r in Rn for any n and for every scalar c we have
1. p · q = q · p,
2. p · (q + r) = p · q + p · r,
3. c(p · q) = (cp) · q = p · (cq), and
4. p · p = |p|2.

This theorem can be proved simply by writing the expressions in terms
of components and using the definitions; the proof is left to the reader.

Let us mention that every product that produces a scalar and satisfies
the first three properties of Theorem 1.2.2 is called an inner product.3 Given
an inner product, the fourth property in Theorem 1.22 can then be used to
define a corresponding norm.

Let us return to the case of zero products and prove the following fact.

Theorem 1.2.3. (Orthogonality in R2 and R3). Let p and q denote
arbitrary nonzero vectors in R2 or R3. Then p and q are orthogonal4 to each
other if and only if p · q = 0.
3 Hermann Grassmann (1809–1877), who invented the dot product (together with

most of vector algebra), gave this name to it to distinguish it from his exterior
product, which we shall not discuss, and from the outer product, to be defined
in Section 2.2. He was led to these names by geometrical considerations.

4 “Orthogonal” is synonymous with “perpendicular” but is, for some reason, pre-
ferred in linear algebra.

Example 1.2.1. (A Dot Product). Let p = (1,2,3) and q = (1,4,−3). Then



18 1. Analytic Geometry of Euclidean Spaces

O

P

Q

p

q

p - q

Fig. 1.15. A right triangle in terms of vectors

Proof. Assume first p ⊥ q. Then by the Theorem of Pythagoras

|p − q|2 = |p|2 + |q|2 (1.24)

(see Figure 1.15). Using Part 4 of Theorem 1.2.2 we can rewrite this expres-
sion as

(p − q) · (p − q) = p · p + q · q (1.25)

and as

p · p − 2p · q + q · q = p · p + q · q, (1.26)

from which p · q = 0 follows at once.
Conversely, if p · q = 0, then Equation 1.26 holds, which implies Equa-

tion 1.24. But the converse of the Pythagorean Theorem says that Equa-
tion 1.24 implies that the OPQ triangle is a right triangle with p ⊥ q,
provided p 	= 0 and q 	= 0. �

By convention, it is generally agreed to call the zero vector orthogonal to
every vector. Then we can conclude p ⊥ q if and only if p · q = 0, whether
p or q is 0 or not.

Definition 1.2.4. (Orthogonality in Rn). In Rn, for every n > 3, we
define two vectors p and q to be orthogonal to each other if p · q = 0.

With this definition, the proof of the theorem above can be reinterpreted
for Rn, for any n > 0, and shows that the Theorem of Pythagoras and its
converse hold there as well.

Theorem 1.2.4. (Theorem of Pythagoras in Rn). Let p and q denote
arbitrary nonzero vectors in Rn with n > 0. Then p and q are orthogonal to
each other if and only if

|p − q|2 = |p|2 + |q|2. (1.27)
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Next, we want to define angles in Rn for n > 3. Consider two arbitrary
nonzero vectors p and q in Rn, drawn from the point O, and decompose p as

p = p1 + p2 (1.28)

into two components, parallel and orthogonal to q, respectively. We can ob-
tain this decomposition by writing

p1 = cuq, (1.29)

where uq= q/|q| is the unit vector in the direction of q, and determining c
so that p2 = p − p1 = p − cuq is orthogonal to p1 or equivalently to uq.
To this end, we set

p2 · uq = p · uq − cuq · uq = p · uq − c = 0, (1.30)

from which we see that

(1.31)

Now, once p is decomposed into a sum of two orthogonal vectors as in Equa-
tion 1.28, then the Theorem of Pythagoras shows that

|p|2 = |p1|2 + |p2|2 . (1.32)

Hence,

|p1|2 ≤ |p|2 , (1.33)

and from here, by Part 1 of Theorem 1.2.1,

|p1| ≤ |p| . (1.34)

The discussion above was valid in Rn, for any n ≥ 2. However, in the
special case of R2, we can visualize these vectors as follows. If c > 0, then in
the POP1 triangle the cosine of the angle θ between p and p1 or, equivalently
between the given nonzero vectors p and q, is given by the ratio |p1| / |p| =
c/ |p| . (See Figure 1.16.) However, if c < 0, then the angle θ between p
and q is the supplement of the angle at O in the POP1 triangle, and so
cos θ = − |p1| / |p| , which is again c/ |p| . (See Figure 1.17.) If c = 0, then
θ = π/2 and p1 = 0.

In Rn, for any n ≥ 2, Equation 1.29 shows that |p1| = |c| , and so, using
Equation 1.31 and inequality 1.34, we have∣∣∣∣ c

|p|
∣∣∣∣ = |p · q|

|p| |q| ≤ 1, (1.35)

for any nonzero vectors p and q. Thus, there exists a unique angle θ ∈ [0, π]
whose cosine is c/ |p| , and so, analogously to the case in R2, we make the
following definition.

c = p · =
p · q
|q| .uq
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O

P

p2

p1 P1 q

p

Fig. 1.16. Projection of a vector p onto a vector q when c > 0

P

P1 Op1

p p2

q

Fig. 1.17. Projection of a vector p onto a vector q when c < 0

Definition 1.2.5. (Angle in Rn). In Rn, for n > 2, we define the angle
between two nonzero vectors p and q as

θ = arccos
p · q
|p| |q| , (1.36)

and if p = 0 or q = 0 or both, then we set θ = π/2.

Note that we can have θ = π/2 for nonzero p and q, if p · q = 0, in which
case p and q are orthogonal to each other.

In R2, the following theorem is proved by the discussion above, and in
Rn, it is just a reformulation of Definition 1.2.5.

Theorem 1.2.5. (The Dot Product in Terms of Lengths and Angle).
Let p and q be any vectors in Rn for any n ≥ 2. Then

p · q = |p||q| cos θ, (1.37)

where θ ∈ [0, π] is the angle between p and q.
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The discussion leading to Theorem 1.2.5 has an important by-product,
which is worth stating separately, in part as a definition and in part as a
corollary.

Definition 1.2.6. (Orthogonal Projection). Let p and q 	= 0 be any vec-
tors in Rn for any n ≥ 2. Then the vector p1 is called the orthogonal projec-
tion of p onto the line of q, and is also denoted by projq (p) .

Corollary 1.2.1. (Computing the Orthogonal Projection). In Rn for
any n ≥ 2, the orthogonal projection of p onto q 	= 0 is given by

projq (p) = |p| cos θ
q
|q| =

p · q
|q|2 q (1.38)

and its length is given by

|projq (p) | = |p|| cos θ| =
|p · q|

|q| . (1.39)

One of the uses of Theorem 1.2.5 is that of computing the angle between
two vectors given in coordinate form.

Example 1.2.2. (AnAngle in R3). Let p = (1,2,3) and q = (1,−2,2). Then

cos θ =
p · q
|p||q| =

1 · 1 + 2 · (−2) + 3 · 2√
12 + 22 + 32 · √

12 + (−2)2 + 22
≈ 0.2673

and θ ≈ 74.5 ◦. �

Example 1.2.3. (AProjectionin R3). Let us consider the same vectors p, q
as in the previous example, and decompose p into the sum of two vectors p1
and p2, parallel and orthogonal to q respectively, as in the proof of Theo-
rem 1.2.5. Then, from Corollary 1.2.1,

projq (p) =
p · q
|q|2 q =

1 · 1 + 2 · (−2) + 3 · 2
12 + (−2)2 + 22 (1, −2, 2) =

1
3
(1, −2, 2) (1.40)

and

p2 = p − projq (p) = (1, 2, 3) − 1
3
(1, −2, 2) =

1
3
(2, 8, 7). (1.41)

We can easily check that p2 is orthogonal to q by computing their dot
product:

p2 · q =
1
3
(2, 8, 7) · (1, −2, 2) =

1
3
(2 − 16 + 14) = 0. (1.42)

�



22 1. Analytic Geometry of Euclidean Spaces

The following important result follows immediately from inequality 1.35
and Theorem 1.2.5.

Theorem 1.2.6. (Cauchy’s Inequality).5 For all vectors p,q in Rn, for
any n ≥ 2,

|p · q| ≤ |p||q|, (1.43)

with equality holding if and only if p is parallel to q.

Proof. If p and q are nonzero vectors in Rn, then inequality 1.43 is just a
rearrangement of Inequality 1.35, and if p = 0 or q = 0 or both, then the
result is trivially true with 0 = 0. (The vector 0 is considered to be also
parallel and not just orthogonal to any vector.) Thus all that remains to show
is that equality holds for nonzero vectors if and only if p is parallel to q. Now
if p and q are nonzero and |p · q| = |p||q|, then, by Theorem 1.2.5, |cos θ| = 1,
and so θ = 0 or θ = π, and in both cases p is parallel to q. Conversely, if p
and q are nonzero and p is parallel to q, then p = aq, for some scalar a, and
so |p · q| = |a| |q · q| = |a| |q|2 and |p||q| = |aq||q| = |a| |q|2, that is, the two
sides in Cauchy’s inequality are equal. �

(For an alternate proof, see Exercise 1.2.12.)

O Q

P

p

q

p - q

Fig. 1.18. An arbitrary triangle to illustrate the relationship between the law of
cosines and the dot product

Also, given the properties of the dot product expressed in Theorem 1.2.2,
in R2 Theorem 1.2.5 is equivalent to the law of cosines: In Figure 1.18 we
have (p − q) · (p − q) = p · p + q · q − 2p · q. By using Theorem 1.2.5 this
equation can be rewritten as |p − q|2 = |p|2 + |q|2 − 2|p||q| cos θ, and this is
exactly the law of cosines for the triangle OPQ in R2.
5 Named after Augustin Louis Cauchy (1789–1857), and also named sometimes

after V. I. Bunyakovsky (1804–1889) and H. A. Schwarz (l843–1921), who gen-
eralized it to integrals.
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F2
F1

r
F

Fig. 1.19. Decomposition of a force F into the sum of two forces: F1 along a given
r and F2 orthogonal to r

we mentioned that in physics it has another very important use in defining
work. Theorem 1.2.5 enables us to describe this application in more detail.
Indeed, if F is a constant force acting on some object, and if r is the object’s
displacement caused by F, then the corresponding work W is given by |r|
times the magnitude |F| cos θ of the orthogonal projection of F onto the line
of motion, that is, W = F · r. Note that F does not have to point in the same
direction as r. For example, if F denotes the force of gravity moving something
down an incline as shown in Figure 1.19, then F can be decomposed into the
sum of two forces: F1 along r and F2 orthogonal to r. The force F2 does not
cause any motion; it just presses the object to the slope. The force F1, on the
other hand, is the sole cause of the motion and the work W is proportional
to its magnitude |F| cos θ. �

At this point we should mention certain unit vectors that are often used
to make formulas simpler. These are the coordinate unit vectors or standard
vectors

i = (1, 0), j = (0, 1) in R2, (1.44)

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) in R3, (1.45)

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1) in Rn.
(1.46)

Every vector in these spaces can be decomposed into components along
these unit vectors:

(x, y) = xi + yj (1.47)

(x, y, z) = xi + yj + zk (1.48)

(x1, x2, . . . , xn) = x1e1 + x2e2 + · · · + xnen. (1.49)

Example 1.2.4. (Work as a Dot Product). In first discussing the dot product
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Writing r = (x, y, z), we can easily see that in R3

r · i = x, r · j = y, r · k = z (1.50)

hold, but just the first two of these equations hold in R2; and for x =
(x1, x2, . . . , xn) in Rn we have

x · ei = xi for i = 1, 2, . . . , n. (1.51)

Note that in Rn, for any n, the standard vectors are orthogonal to each
other, that is,

ei · ej = 0 for all i 	= j. (1.52)

Combining this orthogonality with the fact that they are unit vectors, that
is, that

ei · ei = 1 for i = 1, 2, . . . , n, (1.53)

they are said to be orthonormal.

Exercises

Exercise 1.2.1. Let p = (5, 5) and q = (1, −7).
a. Determine p + q and p − q.
b. Represent p,q,p + q, and p − q by arrows in a parallelogram.
c. Compute |p|, |q|, |p + q|, and |p − q|.
d. Is |p + q|2= |p|2+|q|2?
Exercise 1.2.2. Let p = (2, −2, 1) and q = (2, 3, 2). Show that |p + q|2 =
|p|2+|q|2 and |p − q|2 = |p|2+|q|2. Interpret geometrically.

Exercise 1.2.3. Let P, Q, and R be the vertices of a triangle in R2 or R3.
Use vectors to show that the line segment joining the midpoints of any two
sides of the triangle is parallel to and one half the length of the third side.
(Note: two vectors are parallel if and only if one is a scalar multiple of the
other.)

Exercise 1.2.4. Find the angle between the vectors p = (−2, 4) and q =
(3, −5).

Exercise 1.2.5. Find the angle between the vectors p = (1, −2, 4) and q =
(3, 5, 2).

Exercise 1.2.6. Find six different nonobtuse angles between various non-
parallel diagonals of the unit cube (defined in Exercise 1.1.4) and between its
edges and diagonals.
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Exercise 1.2.7. The line segments joining the centers of the faces of the
unit cube form a regular octahedron. Find the angles between its various
edges, and try to draw it.

Exercise 1.2.8. Consider a triangle in the xy plane with vertices A =
(1, 3), B = (2, 4), and C = (4,−1). Find
a. the orthogonal projection of p =

−−→
AB onto the line of q =

−−→
BC,

b. the distance of A from that line, and
c. the area of the triangle.

Exercise 1.2.9. Decompose the vector p = (2,−3, 1) into components par-
allel and perpendicular to the vector q = (12, 3, 4).

Exercise 1.2.10. Prove the parallelogram law for the length:

|p + q|2 + |p − q|2 = 2|p|2 + 2|q|2 (1.54)

for all vectors in Rn. Interpret geometrically!

Exercise 1.2.11. Using dot products, prove the Theorem of Thales: If we
take a point P on a circle and form a triangle by joining it to the opposite
ends of an arbitrary diameter, then the angle at P is a right angle. (See
Figure 1.20.)

P

O

p

-r r

Fig. 1.20. The Theorem of Thales

Cauchy’s inequality (Theorem 1.2.6) in Rn for any n ≥ 2:
By Part 1 of Theorem 1.2.1, (p − λq) · (p − λq) ≥ 0 for every scalar λ.

Expand the left-hand side to obtain a quadratic function of λ. The graph of
this function is a parabola above the λ-axis. Find the λ-value of the lowest
point in terms of p and q, substitute it into the inequality, and simplify.

Exercise 1.2.12. Fill in the details of the following, alternative proof of*
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Exercise 1.2.13.
a. Using the result of Theorem 1.2.6 prove the triangle inequality (Part 3 of
Theorem 1.2.1).
b. Prove that equality occurs in the triangle inequality if and only if the
vectors are parallel and point in the same direction.

Exercise 1.2.14.
a. Prove the inequality ||p| − |q|| ≤ |p − q| for all vectors in Rn.
b. When do we have equality in Part (a)? Explain!

Exercise 1.2.15. Let p be any nonzero vector in R2 and up the unit vector
in its direction. Show
a. that the vector p can be written as p = |p|(cos φ, sin φ), where φ is the
angle from the positive x-axis to p, and
b. that up = (cos φ, sinφ).

Exercise 1.2.16. Let p be any nonzero vector in R3 and up the unit vector
in its direction. Show that
a. the components up · i, up · j, up · k of up equal the cosines of the angles
α1, α2, α3 between p and the positive coordinate axes (these are called the
direction cosines of p),
b. cos2 α1 + cos2 α2 + cos2 α3 = 1 (What familiar formula in R2 does this
correspond to?),
c. p = |p|(cos α1, cos α2, cos α3).

Exercise 1.2.17. Find the direction cosines (see Exercise 1.2.16) of p =
(3,−4, 12), and the angles α1, α2, α3.

Exercise 1.2.18. Prove the formula cos(α − β) = cos α cos β + sin α sin β
by considering the scalar product of two unit vectors ea = (cos α, sin α) and
eb = (cos β, sinβ).

Exercise 1.2.19. Show that in R2 an inner product may be defined by
p · q = 2p1q1 + p2q2, that is, show that this product also satisfies the first
three properties of Theorem 1.2.2. What is the geometrical meaning of this
product?

Exercise 1.2.20. Consider an oblique coordinate system in the plane with
axes labeled ξ and η as shown in Figure 1.21. Given a vector p, let p1 and
p2 denote the orthogonal scalar components of p, that is, the signed lengths
of the orthogonal projections of p onto the axes, and let p1 and p2 denote
the parallel scalar components of p. (Note that in p1 and p2 the 1 and 2 are
superscripts, not exponents!)
a. Show that if p · q = |p||q| cos θ as usual, then p · q = p1q

1 + p2q
2 =

p1q1 + p2q2, and
b. express p · q in the form

∑
ij gijp

iqj , that is, find appropriate cons-
tants gij .

*

*

*

*
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p2

p2

O p1 p1

p

Fig. 1.21. Oblique coordinate system with parallel components pi and orthogonal
components pi of a vector p

(In differential geometry and in the theory of relativity such coordinates
are very important. The quantities p1 and p2 are called the contravariant
components and p1 and p2 the covariant components of p, because of their
behavior under coordinate transformations. In Cartesian coordinate systems
they coincide.)

MATLAB Exercises

In MATLAB the functions norm(u) and dot(u,v) return the length and
dot product of vectors, respectively. The command rand(1, n) generates an
n-vector with random components uniformly distributed between 0 and 1.

Exercise 1.2.21.
a. For n = 2, 3, 4, 10, 20, find the cosine of and the angle θ(n) between u =
[1, 1, . . . , 1] and v = [1, 0, 0, . . . , 0]. (To enter u and v use, for each n, u =
ones(1, n), v = zeros(1, n), v(1) = 1. The MATLAB function acos(x) gives
the inverse cosine in radians.)
b. Make a conjecture for the value of limn→∞ θ(n) and prove it.

Exercise 1.2.22.
a. For n = 10, 50, 100, 500, find the angle θ(n) between u = rand(1, n) − 1/2
and v = rand(1, n) − 1/2. Use the up-arrow key to repeat this computation
several times.
b. What do you observe? Can you give a heuristic explanation?

Exercise 1.2.23. Use MATLAB to decompose the vector u = [1, 1, 1, 1, 1]
into the sum of a vector parallel to v = [1, 2, 3, 4, 5] and one orthogonal
to it.
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1.3 Lines and Planes

We now have the necessary machinery for developing equations for lines and
planes in Rn and for computing corresponding intersections, distances, and
angles.

We start with lines. Let p0 = (x0, y0, z0) and v = (v1, v2, v3) 	= 0 be
arbitrary vectors of R3. We consider p0 as the position vector starting at O
of a point P0 in three-dimensional space, but place the representative arrow
of v conveniently at P0. Let L denote the line drawn through the point P0
along v. (See Figure 1.22.) Then obviously the position vector p = (x, y, z)
of any point P on L can be written as p0 +tv for some appropriate number t.
Conversely, for every number t, p0 + tv is the position vector of a point P
on L. Thus

p = p0 + tv (1.55)

is the desired equation of the line L, which is the set of points P whose
position vectors satisfy 1.55, that is,

L = {P : p = p0 + tv with t ∈ R} . (1.56)

L P0

P
v

tv

p0 p0 + tv

O

Fig. 1.22. Parametric vector representation of a line

The variable t is called a parameter and Equation 1.55 a parametric vector
equation of the line L. It describes the line L with a scale superimposed on
it. This scale has t = 0 at P0 and t = 1 at the point with position vector
p0 + v. Clearly, the same line has many parametric representations, since
there are many ways of putting a scale on it. For example, replacing t by
2t in Equation 1.55, we get a different parametric equation of the same line,
in which only the scale has been changed to one with intervals of doubled
lengths. The point P0 can also be changed to any other point of the line;
this change would just move the zero point of the scale, and would result
in a different equation, but one that still describes the same line. (See, for
instance, Example 1.3.1.)
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Also, we may think of t as denoting time and then Equation 1.55 describes
not only the line L but also the motion of a point along L, which is at the
position P at time t and at P0 at time 0. In this interpretation the vector v
stands for the velocity of the moving point, but in general it is called a
direction vector of L.

Since equality of vectors means equality of components, Equation 1.55 is
equivalent to the three parametric scalar equations

x = x0 + tv1, (1.57)
y = y0 + tv2,

z = z0 + tv3.

The situation is entirely analogous in Rn. In fact, Equation 1.55 remains
unchanged, but with the vectors reinterpreted as lying in Rn.

If none of the components of v is zero, then we can solve each of Equa-
tions 1.57 for t and we obtain nonparametric equations (also called, somewhat
inaptly, symmetric equations) for L:

x − x0

v1
=

y − y0

v2
=

z − z0

v3
. (1.58)

Notice that a line in three dimensions is given by two nonparametric
equations (choose any two of the three equations implicit in 1.58), rather
than by just one equation as in two dimensions. As will be seen shortly, the
explanation for this difference is that each of the two equations describes a
plane and the line is then represented as the intersection of these planes.

line L that passes through the points A(2, −3, 5) and B(6, 1, −8).
We may take either one of the given points as P0, and the vector

−−→
AB as v.

We put p0 = (2, −3, 5) and v = (6 − 2, 1 + 3, −8 − 5) = (4, 4, −13), and so
we obtain the parametric equation

p = (2, −3, 5) + t(4, 4, −13), (1.59)

or

(x, y, z) = (2 + 4t, −3 + 4t, 5 − 13t) (1.60)

for the line L. The corresponding scalar equations are

x = 2 + 4t, y = −3 + 4t, z = 5 − 13t, (1.61)

and eliminating t leads to the nonparametric equations

x − 2
4

=
y + 3

4
=

z − 5
−13

. (1.62)

Example 1.3.1. (ALineThroughTwoPoints). Let us find equations for the



30 1. Analytic Geometry of Euclidean Spaces

If we take B as P0, that is, put p0 = (6, 1, −8), then we get a different
parameterization of L:

p = (6, 1, −8) + t(4, 4, −13), (1.63)

or in scalar form

x = 6 + 4t, y = 1 + 4t, z = −8 − 13t. (1.64)

Hence the new nonparametric equations become

x − 6
4

=
y − 1

4
=

z + 8
−13

. (1.65)

Equations 1.62 and 1.65 look very different, except for the denomina-
tors. We can check that they represent the same line by showing that the
coordinates of A and B satisfy both. Indeed,

2 − 2
4

=
−3 + 3

4
=

5 − 5
−13

= 0,
6 − 2

4
=

1 + 3
4

=
−8 − 5
−13

= −1 (1.66)

and

2 − 6
4

=
−3 − 1

4
=

5 + 8
−13

= −1,
6 − 6

4
=

1 − 1
4

=
−8 + 8
−13

= 0. (1.67)

Since two distinct points determine a unique line, and Equations 1.62 and 1.65
both represent a line, they must represent the same line. �

If a component of v is zero, then the corresponding equation is already in
nonparametric form, and the line is parallel to one or two of the coordinate
planes as in the following example.

Example 1.3.2. (A Line Through a Point with a Given Direction). Let us
equations for the line L that passes through the point A(2,−3,5) parallel to

the z-axis.
In this case only the z coordinate varies, and the parametric vector equa-

tion can immediately be written as

p = (2, −3, 5) + t(0, 0, 1). (1.68)

In components:

x = 2, y = −3, z = 5 + t, (1.69)

and the nonparametric equations are just the first two of these equations. �

Example 1.3.3. (Intersection of Two Lines). Let us find the intersection
the two lines L1 and L2 given by

find

of
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p = (4, 3, 9) + s(2,−3, 7), and p = (3, 2, 0) + t(−1, 4, 2), (1.70)

if there is one. (Notice that we used two different parameters s and t, since
using only one would have meant looking not just for the point of intersection
but, in the time interpretation of parameters, also for two moving points to
be there at the same time, or in the static interpretation, also for two scales
to match. See Exercise 1.3.9.)

The obvious way to attack this problem is to equate the corresponding
scalar components of the two expressions for p and solve the resulting equa-
tions for s and t. Thus we can write the vector equation

(4, 3, 9) + s(2,−3, 7) = (3, 2, 0) + t(−1, 4, 2) (1.71)

in terms of components as

4 + 2s = 3 − t, 3 − 3s = 2 + 4t, 9 + 7s = 2t. (1.72)

We can easily solve these equations to obtain s = −1 and t = 1. (Notice
that in general we cannot expect to have solutions for two unknowns in three
equations, which corresponds to the geometric fact that in three dimensions
most lines avoid each other. More about this subject in Chapter 2.) Substi-
tuting these parameter values into either of Equations 1.70, we obtain the
position vector of the point of intersection as

p = (2, 6, 2). (1.73)

Example 1.3.4. (Distance Between a Point and a Line). Find the distance
A(9, 13,−1) from the line L given by

p = (−1,−2, 4) + t(3, 1,−5). (1.74)

The point A and the line L determine a plane. In this plane, we drop
a perpendicular from A to L, and the desired distance is the length of this
line segment. We can find this length as follows. First, pick any point Q on
L, say Q = (−1,−2, 4). Second, decompose r =

−→
QA into two components

r1 and r2, respectively parallel and orthogonal to v = (3, 1,−5). (See Corol-
lary 1.2.1.) Then r = (10, 15,−5) and r1 = r·v

v·vv = 70
35 (3, 1,−5) = (6, 2,−10).

Consequently, r2 = r − r1 = (4, 13, 5) and the required distance is obtained
as |r2| =

√
210. �

Let us now consider planes.
To obtain parametric equations we may proceed very much as for lines

but with two vectors in place of v and two parameters s and t instead of one.
Thus, let p0 ∈ R3 be regarded as the position vector of a fixed point P0 of
the plane S we want to describe, P a variable point with position vector p,
and u and v two nonparallel, nonzero vectors of R3 with their representative
arrows drawn in S, as shown in Figure 1.23.

�

of the point
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p = p0 + su + tvp0

P0

O

p - p0
v tv

u
su

P

S

Fig. 1.23. Parametric vector representation of a plane

Then p can be expressed as

p = p0 + su + tv, (1.75)

where s and t are appropriate real numbers. Conversely, any pair s, t ∈ R
determines a point of S via Equation 1.75. So this is a parametric vector
equation of S. In other words, S is the set of points P whose position vectors
satisfy 1.75, that is,

S = {P : p = p0 + su + tv with t ∈ R} . (1.76)

In components, the vector equation 1.75 becomes the set of three scalar
equations:

x = x0 + su1 + tv1, y = y0 + su2 + tv2, z = z0 + su3 + tv3. (1.77)

vector equation for the plane S containing the two intersecting lines of Ex-
ample 1.3.3.

We may take any point of either line to be P0 and the same vectors for
u and v as in Example 1.3.3. If we take P0 = (4, 3, 9), say, then S will be
described by the equation

p = (4, 3, 9) + s(2, −3, 7) + t(−1, 4, 2). (1.78)

Let us write this equation out in components as in Equation 1.77 and elimi-
nate s and t:

x = 4 + 2s − t, y = 3 − 3s + 4t, z = 9 + 7s + 2t. (1.79)

Example 1.3.5. (APlaneThroughTwoLines).Let us write a parametric
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Bring the constant terms to the left, multiply the first of these equations
in turn by 4 and 2, and add the results to the second and third equations
respectively, to get

4(x − 4) + (y − 3) = 5s and 2(x − 4) + (z − 9) = 11s. (1.80)

Now multiply the first of these equations by 11 and the second one by (−5),
and add the results. Then we obtain the following nonparametric equation
for S:

34(x − 4) + 11(y − 3) − 5(z − 9) = 0. (1.81)

�

In general, if we eliminate s and t from Equations 1.77 as in the example
above, then we end up with an equation of the form

a(x − x0) + b(y − y0) + c(z − z0) = 0, (1.82)

where a, b, c are appropriate numbers arising from the elimination process.6

It is reasonable to ask what their geometric meaning may be. Now x − x0,
y−y0, z−z0 are the components of the vector p−p0 and if we consider a, b, c
to be the components of a vector n, then Equation 1.82 may be written in
vector form as

n · (p − p0) = 0. (1.83)

This equation shows that the vector n is orthogonal to the variable vector
p − p0 lying in S (see Figure 1.24), and so it must be orthogonal to the

n
p - p0P0

p0 p

O

P

S

Fig. 1.24. Nonparametric representation of a plane

6 In Chapter 6 (page 250) we discuss a shortcut method for such eliminations in
three dimensions, which involves what is called the cross product of vectors.
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plane S, that is, to every vector in S. Such a vector is called a normal vector
of S, and one usually says it is normal to S rather than orthogonal to S.

Equation 1.83 may be rewritten as

n · p = n · p0, (1.84)

and if we set d = n · p0 and write Equation 1.84 in components, then we get

ax + by + cz = d (1.85)

as the simplest type of equation for a plane.
It is also natural to ask what the geometric meaning of d is. From its

definition we see that d = |n||p0| cos θ (see Figure 1.25), and this expression
is |n| times the projection of p0 onto the line of n. The vector p0 joins the
origin to S. So the projection of p0 onto the line of n, which is perpendicular
to S, gives the distance of O from S if θ is acute, and the negative of this
distance if θ is obtuse. Thus d equals |n| times the distance of O from S if n
points from O towards S and the negative of this distance if n points from
S towards O.

n P0

p0

O

d/|n|

S

Fig. 1.25. The distance of a plane from the origin

Although planes can be visualized only in three dimensions, the vector
equations just deduced remain valid in Rn for n > 3 as well, with the obvious
reinterpretation of the vectors. There is a difference, however, in the meaning
of the parametric and the nonparametric equations, which did not occur
in R3, namely that the parametric Equation 1.75 describes two-dimensional
sets in Rn, which may justifiably still be called planes, but the nonparametric
Equation 1.82 or 1.84 describes (n−1)-dimensional sets that are usually called
hyperplanes.

Example 1.3.6.(Distance of aPoint fromaPlane). Given aplaneS with
equation 4x − 4y + 7z = 1 and a point A(5, 2, −3), find the distance D of A
from S.
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To solve this problem, we first pick an arbitrary point P of S. We can
pick a point by choosing arbitrary values for x and y, say x = 2 and y = 0,
and then solving the equation 4x − 4y + 7z = 1 for z, to get z = −1. Thus,
P (2, 0,−1) is a point in S. Next, project the vector

−→
AP = (−3,−2, 2) onto n.

(See Figure 1.25 with A in place of O and P in place of P0.) From the equation
of S we can read off n = (4, −4, 7). Thus

D =
|−→
AP · n|

|n| =
| − 12 + 8 + 14|√

16 + 16 + 49
=

10
9

. (1.86)

�

x = 1 + 4s, y = s, z = −2 + 3s (1.87)

and

x = 2 + 2t, y = −1 + t, z = 0. (1.88)

We can solve this problem by first finding a vector n that is orthogonal
to the direction vectors u = (4, 1, 3) and v = (2, 1, 0) of the given lines and,
second, by projecting the vector

−−→
PQ joining an arbitrary point P of L1 to an

arbitrary point Q of L2 onto n. To find an appropriate n we may consider a
plane S that contains the vectors u and v through any point P0 and find a
normal vector of S as in Example 1.3.5. Whether L1 and L2 intersect or not,
it is most convenient to choose P0 = O and the parametric equation

p = su + tv, (1.89)

that is,

x = 4s + 2t, y = s + t, z = 3s (1.90)

for the plane S. Eliminating the parameters yields

3x − 6y − 2z = 0, (1.91)

and so we obtain n = (3,−6,−2). We may choose P = (1, 0,−2) and Q =
(2,−1, 0) and then

−−→
PQ = (1,−1, 2). Hence

D =
|−−→PQ · n|

|n| =
|3 + 6 − 4|√
9 + 36 + 4

=
5
7
. (1.92)

In general, the solution above works only in three dimensions, because,
for n > 3, the vector n is not unique. The following alternative solution,
however, works for any n ≥ 3. Write the equations of the two lines as

p = p0 + su (1.93)

Example 1.3.7. (DistanceBetweenTwoLines). Find the perpendicular
D between the lines L1 and L2 given by the equationsdistance
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and

q = q0 + tv. (1.94)

Then an arbitrary transversal between the two lines is given by the vector

p − q = p0 − q0 + su−tv. (1.95)

The normal transversal, that is, the line segment joining the two lines or-
thogonally, is then characterized by the two scalar equations

(p − q) · u = (p0 − q0 + su−tv) · u = 0, (1.96)

and

(p − q) · v = (p0 − q0 + su−tv) · v = 0. (1.97)

These are two equations for the two unknowns s and t, which are easy to solve,
and the distance between the lines is then |p − q| with the solutions for s and
t substituted in it. Thus, for the given lines, p0 = (1, 0, −2), q0 = (2, −1, 0),
u = (4, 1, 3), and v = (2, 1, 0), and Equations 1.96 and 1.97 become

((−1, 1, −2) + s(4, 1, 3)−t(2, 1, 0)) · (4, 1, 3) = 0, (1.98)
((−1, 1, −2) + s(4, 1, 3)−t(2, 1, 0)) · (2, 1, 0) = 0, (1.99)

or in simplified form,

26s − 9t − 9 = 0, (1.100)
9s − 5t − 1 = 0. (1.101)

The solution is s = 36
49 and t = 55

49 . Hence

D = |p − q| =
∣∣∣∣(−1, 1, −2) +

36
49

(4, 1, 3)−55
49

(2, 1, 0)
∣∣∣∣

=
1
49

|(−15, 30, 10)| =
1
49

√
(−15)2 + 302 + 102 =

5
7
, (1.102)

as before. �

Exercises

In the first eight exercises find equations for the indicated lines both in para-
metric and nonparametric forms.

Exercise 1.3.1. Through P0(1, −2, 4) and along v = (2, 3, −5).

Exercise 1.3.2. Through P0(1, −2, 4) and parallel to the y-axis.
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Exercise 1.3.3. Through P0(7, −2, 5) and P1(5, 6, −3).

Exercise 1.3.4. Through P0(1, −2, 4) and P1(1, 6, −3).

Exercise 1.3.5. Through P0(1, −2, 4) and P1(1, −2, −3).

Exercise 1.3.6. Through P0(5, 4, −8) and normal to the plane given by 3x−
4y + 3z = 7.

Exercise 1.3.7. Through P0(5, 4, −8) and parallel both to the plane given
by 3x − 4y + 3z = 7 and to the xy-plane. Hint : The direction vector of the
line sought must be orthogonal to the normal vectors of the two planes.

Exercise 1.3.8. Through P0(1, −2, 4) and parallel to the planes given 3x −
4y + 3z = 7 and −x + 3y + 4z = 8.

Exercise 1.3.9.
a. Plot the lines p = (4, 3) + t(2, −3) and p = (3, 2) + t(−1, 4) in R2, indicat-
ing the points with t = 0, ±1 on each.
b. Explain why there is no common t value for the point of intersection.
c. Change the parameterization of each line (that is, write new equations
for them, employing a new parameter) so that the new common parameter,
say s, is 0 for both lines at the point of intersection.

Exercise 1.3.10. Show that in Rn, for any n, p = ta+ (1−t)b is a paramet-
ric vector equation of the line through the two points with position vectors
a,b. (The numbers t and 1 − t are called barycentric coordinates of P , since
for 0 ≤ t ≤ 1 this formula gives the center of mass of two point masses of
size t and 1 − t at A and B respectively (cf. Exercise 1.1.7).) What is the
geometric meaning of t and 1 − t? Hint: Write p = b + t (a − b) .

Exercise 1.3.11. Show that in Rn , for any n, p = ra + sb + tc , with
0 ≤ r, s, t and r + s + t = 1, represents the points P of a triangle with
noncollinear vertices given by the position vectors a,b, c. (The numbers r, s, t
are again called barycentric coordinates of P , for a reason similar to the one
in the previous exercise.) Hint : Generalize the solution of Exercise 1.1.9.

In the next eight exercises find equations for the indicated planes both in
parametric and nonparametric forms.

Exercise 1.3.12. Through P0(1, −2, 4) and containing the line given by p =
(3, −2, 1) + t(2, 1, −3).

Exercise 1.3.13. Through O and containing the line given by p = (3, −2, 1)+
t(2, 1, −3).

Exercise 1.3.14. Through O and orthogonal to the line given by p =
(3, −2, 1) + t(2, 1, −3).

*
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Exercise 1.3.15. Through P0(5, 4, −8) and orthogonal to the line given by
p = (3, −2, 1) + t(2, 1, −3).

Exercise 1.3.16. Through P0(1, −2, 4) and parallel to the plane given by
3x − 4y + 3z = 7.

Exercise 1.3.17. Through P0(5, 4, −8) and parallel to the plane given by
7x + y + 2z = 8.

Exercise 1.3.18. Through the points O, P1(1, 6, −3), and P2(7, −2, 5).

Exercise 1.3.19. Through the points P0(5, 4, −8), P1(1, 6, −3), and
P2(7, −2, 5).

In the next six exercises find the points of intersection.

Exercise 1.3.20. Of the two lines p = (5, 1, 1) + s(−2, 1, 6) and p =
(3, −2, 1) + t(2, 1, −3).

Exercise 1.3.21. Of the two lines p = (−5, 4, −1) + s(2, 1, −7) and p =
(9, −9, −2) + t(2, −4, 5).

Exercise 1.3.22. Of the line p = (5, 1, 1) + s(−2, 1, 6) and the plane 7x +
y + 2z = 8.

Exercise 1.3.23. Of the line p = (3, −2, 6) + s(−3, 5, 7) and the plane 3x +
2y − 2z = 3.

Exercise 1.3.24. Of the line p = (3, −2, 6) + s(−3, 5, 7) and the plane p =
(4, −2, 1) + s(−2, 1, 3) + t(1, 3, 2).

Exercise 1.3.25. Of the line p = (3, 2, −4) + s(7, −5, 4) and the plane p =
(0, −2, 1) + s(−3, 0, 3) + t(2, −3, 4).

In the next six exercises find the distances.

Exercise 1.3.26. Between the point P0(1, −2, 4) and the plane 3x + 2y −
2z = 3.

Exercise 1.3.27. Between the point P0(3, 4, 0) and the plane y − 2z = 5.

Exercise 1.3.28. Between the lines p = (3, −2, 6) + s(−3, 5, 7) and p =
(5, 1, 1) + t(−2, 1, 6).

Exercise 1.3.29. Between the lines p = (2, 1, 5) + s(−4, 0, 3) and p =
(0, −2, 3) + t(5, 0, −2).

Exercise 1.3.30. Between the point P0(3, 4, 0) and the line L : p =
(3, −2, 6) + s(−3, 5, 7). (Hint : Pick an arbitrary point Q on L and decom-
pose the vector

−−→
QP 0 into components parallel and perpendicular to L.)
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Exercise 1.3.31. Between the point P0(1, −2, 4) and the line p = (3, 2,
−4) + s(7, −5, 4). (See the hint in the previous exercise.)

Exercise 1.3.32. What is the geometric meaning of Equation 1.83 in R2?
Make a drawing and explain.

Exercise 1.3.33. Let the equation of a plane S be given in R3 in the form
n · p = d, with |n| = 1. Let us define a function by f(q) = n · q − d, where q
is the position vector of any point Q in R3, whether in S or not. Show that
the value of f(q) equals the signed distance of Q from S, which is positive if
n points from S towards Q, and negative if n points from Q towards S.

Exercise 1.3.34. Redo Exercise 1.3.26 by using the result of Exercise 1.3.33.

Exercise 1.3.35. Redo Exercise 1.3.27 by using the result of Exercise 1.3.33.

Exercise 1.3.36. Let P denote a variable point on a line L given by p =
p0 + tv, and Q denote any fixed point in space not on L. Show that

−−→
QP is

orthogonal to v if and only if the distance between P and Q is minimized as
a function of t.

Exercise 1.3.37. Find an equation for the normal transverse L of the lines
given in Exercise 1.3.29. (This term means the line connecting the given ones
orthogonally.) Hint : First, find the direction vector v of L, then a plane S
containing v and one of the given lines, and last, the point of intersection of
S and the other line.

MATLAB Exercises

In the next six exercises find the distances using MATLAB:

Exercise 1.3.38. Between the point P0(1, −2, 4) and the plane 3x + 2y −
2z = 3.

Exercise 1.3.39. Between the point P0(1, −2, 4, 5) and the hyperplane 3x+
2y − 2z + w = 3 in R4.

Exercise 1.3.40. Between the point P0(3, 4, 0) and the line p = (3, −2, 6)+
s(−3, 5, 7).

Exercise 1.3.41. Between the point P0(3, 4, 0, 3, 4, 0) and the line p =
(3, −2, 6, 3, −2, 6) + s(−3, 5, 7, −3, 5, 7) in R6.

Exercise 1.3.42. Between the lines p = (3, −2, 6, 4)+s(−3, 5, 7, 1) and p =
(5, 1, 1, 2) + t(−2, 1, 6, 2) in R4.

Exercise 1.3.43. Between the lines p = (2, 1, 5, 2, 1, 5)+ s(−4, 1, 3, −4, 1, 3)
and p = (0, −2, 3, 0, −2, 3) + t(5, 0, −2, 5, 0, −2) in R6.
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2.1 Gaussian Elimination

Equations of the form
∑

aixi = b, for unknowns xi with arbitrary given
numbers ai and b, are called linear, and every set of simultaneous linear
equations is called a linear system. They are generalizations of the equations
of lines and planes which we have studied in Section 1.3. In this section, we
begin to discuss how to solve them, that is, how to find numerical values
for the xi that satisfy all the equations of a given system. We also examine
whether a given system has any solutions and, if so, then how we can describe
the set of all solutions.

Linear systems arise in many applications. Examples in which they occur,
in addition to lines and planes, are least-squares fitting of lines, planes, or
curves to observed data, methods for obtaining approximate solutions of var-
ious differential equations, Kirchhoff’s equations relating currents and poten-
tials in electrical circuits, and various economic models. In many applications,
the number of equations and unknowns can be quite large, sometimes in the
hundreds or thousands. Thus it is very important to understand the struc-
ture of such systems and to apply systematic and efficient methods for their
solution. Even more important is that, as we shall see, studying such systems
leads to several new concepts and theories that are at the heart of linear
algebra.

We begin with a simple example.
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Example 2.1.1. (A System of Three Equations in Three Unknowns
nique Solution). Let us solve the following system:

2x + 3y − z = 8 (2.1)
4x − 2y + z = 5
x + 5y − 2z = 9.

(Geometrically this problem amounts to finding the point of intersection of
three planes.)

We want to proceed as follows: multiply both sides of the first equation
by 2 and subtract the result from the second equation to eliminate the 4x,

The original version of this chapter was revised. An erratum can be found at  
https://doi.org/10.1007/978-0-8176-8325-2_9

with a U
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and subtract 1/2 times the first equation from the third equation to eliminate
the x. The system is then changed into the new, equivalent1 system:

2x + 3y − z = 8 (2.2)
−8y + 3z = −11
7
2
y − 3

2
z = 5.

As our next step we want to get rid of the 7y/2 term in the last equation.
We can achieve this elimination by multiplying the middle equation by −7/16
and subtracting the result from the last equation. Then we get

2x + 3y − z = 8 (2.3)
−8y + 3z = −11

−3
16

z =
3
16

.

At this point we can easily find the solution by starting with the last
equation and working our way back up. First, we find z = −1, and second,
substituting this value into the middle equation we get −8y−3 = −11, which
yields y = 1. Last, we enter the values of y and z into the top equation and
obtain 2x + 3 + 1 = 8, hence x = 2.

Substituting these values for x, y, z into Equations 2.1 indeed confirms
that they are solutions. �

The method of solving a linear system used in the example above is called
Gaussian elimination,2 and it is the foremost method of solving such systems.
However, before discussing it more generally, let us mention that the way the
computations were presented was the way a computer would be programmed
to do them. For people, slight variations are preferable. We would rather avoid
fractions, and if we want to eliminate, say, x from an equation beginning with
bx by using an equation beginning with ax, with a and b nonzero integers,
then we could multiply the first equation by a and the other by b to get abx
in both. Also, we would sometimes add and sometimes subtract, depending
on the signs of the terms involved, where computers always subtract. Last,
we might rearrange the equations in a different order, if we see that doing
so would result in simpler arithmetic.3 For example, right at the start of the
example above, we could have put the last equation on top because it begins
1 Equivalence of systems will be discussed in detail on page 46.
2 Named after Carl Friedrich Gauss (1777–1855). It is ironic that in spite of his

many great achievements he is best remembered for this simple but widely used
method and for the so-called Gaussian distribution in probability and statistics,
which was mistakenly attributed to him but had been discovered by Abraham
de Moivre in the 1730s.

3 Computer programs have to reorder the equations sometimes but for different
reasons, namely to avoid division by zero and to minimize roundoff errors.
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with x rather than 2x, and used that equation the way we have used the one
beginning with 2x.

The essence of the method is to subtract multiples of the first equation
from the others so that the leftmost term in the first equation eliminates
all the corresponding terms below it. Then we continue by similarly using
the leftmost term in the new second equation to eliminate the corresponding
term (or terms if there are more equations) below that, and so on, down
to the last equation. Next, we work our way up by solving the last equa-
tion first, then substituting its solution into the previous equation, solving
that, and so on. The two phases of the method are called forward elimi-
nation and back substitution. As will be seen shortly, a few complications
can and do frequently arise, which make the theory that follows even more
interesting and necessary. First, however, we introduce a crucial notational
simplification.

Notice that in the forward elimination computations of Example 2.1.1
the variables x, y, z were not really used; they were needed only in the back
substitution steps used to determine the solution. All the forward elimination
computations were done on the coefficients only. In computer programs there
is not even a way (and no need either) to enter the variables. In writing, the
coefficients are usually arranged in a rectangular array enclosed in parentheses
or brackets, called a matrix (plural: matrices) and designated by a capital
letter, as in

A =

⎡
⎣2 3 − 1

4 − 2 1
1 5 −2

⎤
⎦ . (2.4)

This matrix contains the coefficients on the left side of system 2.1 in the
same arrangement, and is therefore referred to as the coefficient matrix or
just the matrix of that system. We may include the numbers on the right
sides of the equations as well:

B =

⎡
⎣2 3 − 1 8

4 − 2 1 5
1 5 −2 9

⎤
⎦ . (2.5)

This is called the augmented matrix of the system. It is often written with a
vertical line before its last column as

B =

⎡
⎣2 3 − 1

4 − 2 1
1 5 −2

∣∣∣∣∣∣
8
5
9

⎤
⎦ . (2.6)

Example 2.1.2. (Solving the 3×3 System of Example 2.1.1, Using Aug-
Matrix Notation). We write the computations of Example 2.1.1 asmented

×
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⎣2 3 −1

4 − 2 1
1 5 − 2

∣∣∣∣∣∣
8
5
9

⎤
⎦→

⎡
⎣2 3 −1

0 −8 3
0 7/2 − 3/2

∣∣∣∣∣∣
8

−11
5

⎤
⎦

→
⎡
⎣2 3 −1

0 − 8 3
0 0 − 3/16

∣∣∣∣∣∣
8

−11
3/16

⎤
⎦ . (2.7)

The arrows between the matrices above do not designate equality, they just
indicate the flow of the computation. For two matrices to be equal, all the
corresponding entries must be equal, and here they are clearly not equal.

Next, we change from the last augmented matrix to the corresponding
system

2x + 3y − z = 8 (2.8)
−8y + 3z = −11

−3
16

z =
3
16

,

which we solve as in Example 2.1.1. �

The matrix A in Equation 2.4 is a 3 × 3 (read: “three by three”) matrix,
and in Equation 2.5, B is a 3 × 4 matrix. Similarly, if a matrix has m rows
and n columns, we call it an m×n matrix. In describing matrices, we always
say rows first, then columns.

The general form of an m × n matrix is

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ , (2.9)

where the a11, a12, . . . , amn (read “a sub one-one, a sub one-two,” etc.) are
arbitrary real numbers. They are called the entries of the matrix A, with aij

denoting the entry at the intersection of the ith row and jth column. Thus
in the double subscript ij the order is important. Also, the matrix A is often
denoted by [aij ] or (aij).

Two matrices are said to be equal if they have the same shape, that is,
the same numbers of rows and columns, and their corresponding entries are
equal.

A matrix consisting of a single row is called a row vector, and that of
a single column, a column vector , and, if we want to emphasize the size n,
a row n-vector or a column n-vector.

By definition, a system of m linear equations for n unknowns x1, x2, . . . , xn

has the general form
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a11x1 + a12x2 + · · · + a1nxn = b1 (2.10)
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

with the coefficient matrix A given in Equation 2.9 having arbitrary entries
and the bi denoting arbitrary numbers as well.4 We shall frequently find it
useful to collect the xi and the bi values into two column vectors and write
such systems as⎡

⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ (2.11)

or abbreviated as

Ax = b. (2.12)

The expression Ax will be discussed in detail in Section 2.3 and generalized
in Section 2.4. For now, we shall just use Ax = b as a compact reference to
the system.

The augmented matrix of this general system is written as

[A|b] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ . (2.13)

The reason for using column vectors x and b will be explained at the end
of Section 2.3, although for b at least, the choice is rather natural since then
the right sides of Equations 2.10 and 2.11 match.

Henceforth all vectors will be column vectors unless explicitly designated
otherwise, and also Rn, for every n, will be regarded as a space of column
vectors.

In general, if we want to solve a system given as Ax = b, we reduce the
corresponding augmented matrix [A|b] to a simpler form [U |c] (details will
follow), which we change back to a system of equations, Ux = c. We then
solve the latter by back substitution, that is, from the bottom up.
4 Writing any quantity with a general subscript, like the i here in bi, is general

mathematical shorthand for the list of all such quantities, for all possible values
of the subscript i, as in this case for the list b1, b2, . . . , bm. Also, it is customary
to say “the bi” instead of “the bi’s” to avoid any possible confusion.
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Let us review the steps of Example 2.1.2. We copied the first row, then we
took 4/2 times the entries of the first row in order to change the 2 into a 4,
and subtracted those multiples from the corresponding entries of the second
row. (We express this operation more briefly by saying that we subtracted
4/2 times the first row from the second row.) Then we took 1/2 times the
entries of the first row to change the 2 into a 1 and subtracted them from
the third row. In all this computation the entry 2 of the first row played a
pivotal role and is therefore called the pivot for these operations. In general,
a pivot is an entry whose multiples are used to obtain zeros below it, and the
first nonzero entry remaining in the last nonzero row after the reduction is

in this calculation the pivots are the numbers 2, −8, −3/16.
The operations we used are called elementary row operations.

Definition 2.1.1. (Elementary Row Operations). We call the following
three types of operations on the augmented matrix of a system elementary
row operations:
1. Multiplying a row by a nonzero number.
2. Exchanging two rows.
3. Changing a row by subtracting a nonzero multiple of another row from it.

Definition 2.1.2. (Equivalence of Systems and of Matrices). Two
systems of equations are called equivalent if their solution sets are the same.
Furthermore, the augmented matrices of equivalent systems are called equiv-
alent to each other as well.

All elimination steps in this section, like the ones above, have been de-
signed to produce equivalent, but simpler, systems.

Theorem 2.1.1. (Row Equivalence). Each elementary row operation
changes the augmented matrix of every system of linear equations into the
augmented matrix of an equivalent system.

Proof. Consider any two rows of the augmented matrix of the m × n sys-
tem 2.10, say the ith and the jth row:

ai1x1 + ai2x2 + · · · + ainxn = bi (2.14)

and

aj1x1 + aj2x2 + · · · + ajnxn = bj . (2.15)

1. If we form a new augmented matrix by multiplying the ith row of the
augmented matrix 2.13 by any c 	= 0, then the ith row of the corresponding
new system is

cai1x1 + cai2x2 + · · · + cainxn = cbi, (2.16)

also called a pivot. (The precise definition will be given on page 53.) Thus,
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which is clearly equivalent to Equation 2.14. Furthermore, since all the other
equations of the system 2.10 remain unchanged, every solution x of the old
system is also a solution of the new system and vice versa.
2. If we form a new augmented matrix by exchanging the ith row of the
augmented matrix 2.13 by its jth row, then the corresponding system of
equations remains the same, except that equations 2.14 and 2.15 are switched.
Clearly, changing the order of equations does not change the solutions.
3. If we change the jth row of the augmented matrix 2.13 by subtracting c
times the ith row from it, for any c 	= 0, then the jth row of the corresponding
new system becomes

(aj1 − cai1) x1 + (aj2 − cai2) x2 + · · · + (ajn − cain) xn = bj − cbi. (2.17)

The other equations of the system, including the ith one, remain unchanged.
Clearly, every vector x that solves the old system, also solves Equation 2.17,
and so it solves the whole new system as well. Conversely, if a vector x solves
the new system, then it solves Equation 2.14, and hence also Equation 2.16,
as well as Equation 2.17. Adding the latter two together, we find that it solves
Equation 2.15, that is, it solves the old system. �

Hence any two matrices obtainable from each other by a finite number
of successive elementary row operations are equivalent, and to indicate that
they are related by such row operations, they are said to be row equivalent.
Column operations would also be possible, but they are rarely used, and we
shall not discuss them at all.

We have used only the third type of elementary row operation so far. The
first kind is not necessary for Gaussian elimination but will be used later
in further reductions. The second kind must be used if we encounter a zero
where we need a pivot, as in the following example.

x1 + 2x2 = 2 (2.18)
3x1 + 6x2 − x3 = 8
x1 + 2x2 + x3 = 0

2x1 + 5x2 − 2x3 = 9.

We do the computations in matrix form. We indicate the row operations
in the rows between the matrices by arrows, which may be read as “becomes”
or “is replaced by.” For example, r2 ← r2 − 3r1 means that row 2 is replaced
by the old row 2 minus 3 times row 1. (The rows may be considered to be
vectors, and so we designate them by boldface letters.)

Example 2.1.3. (A 4×3 System with a Unique Solution and Requiring
Exchange). Let us solve the following system of m = 4 equations

unknowns:
a Row

×

in n = 3
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⎢⎢⎣

1 2 0
3 6 − 1
1 2 1
2 5 −2

∣∣∣∣∣∣∣∣
2
8
0
9

⎤
⎥⎥⎦

r1 ← r1
r2 ← r2 − 3r1
r3 ← r3 − r1
r4 ← r4 − 2r1

⎡
⎢⎢⎣

1 2 0
0 0 − 1
0 0 1
0 1 −2

∣∣∣∣∣∣∣∣
2
2

−2
5

⎤
⎥⎥⎦

r1 ← r1
r2 ← r4
r3 ← r3
r4 ← r2

⎡
⎢⎢⎣

1 2 0
0 1 − 2
0 0 1
0 0 −1

∣∣∣∣∣∣∣∣
2
5

−2
2

⎤
⎥⎥⎦

r1 ← r1
r2 ← r2
r3 ← r3
r4 ← r4 + r3

⎡
⎢⎢⎣

1 2 0
0 1 − 2
0 0 1
0 0 0

∣∣∣∣∣∣∣∣
2
5

−2
0

⎤
⎥⎥⎦ .

(2.19)

The back substitution phase should start with the third row of the last
matrix, since the fourth row just expresses the trivial equation 0 = 0. The
third row gives x3 = −2, the second row corresponds to x2 − 2x3 = 5 and so
x2 = 1, and the first row yields x1 + 2x2 = 2, from which x1 = 0. �

As the example above shows, the number m of equations and the num-
ber n of unknowns need not be the same. In this case the four equations
described four planes in three-dimensional space, having a single point of
intersection given by the unique solution we have found. Of course, in gen-
eral, four planes need not have a point of intersection in common or may
have an entire line or plane as their intersection (in the latter case the four
equations would each describe the same plane). Systems with solutions are
called consistent. On the other hand, if there is no intersection, then the
system has no solution, and it is said to be inconsistent. Inconsistency of
the system can happen with just two or three planes as well, for instance
if two of them are parallel, and also in two dimensions with parallel lines.
So before attacking the general theory, we discuss examples of inconsistent
systems and systems with infinitely many solutions. Systems with more equa-
tions than unknowns are called overdetermined, and are usually (though not
always, see Example 2.1.3) inconsistent. Systems with fewer equations than
unknowns are called underdetermined, and they usually (though not always)
have infinitely many solutions. For example, two planes in R3 would usually
intersect in a line, but exceptionally they could be parallel and have no inter-
section. On the other hand, a system with the same number of equations as
unknowns is called determined and usually (though not always) has a unique
solution. For instance, three planes in R3 would usually intersect in a point,
but by exception they could be parallel and have no intersection or intersect
in a line or a plane.

[A|b] =

⎡
⎣1 2 0

3 6 − 1
1 2 1

∣∣∣∣∣∣
2
8
4

⎤
⎦ . (2.20)

Example 2.1.4. (A 3×3 Inconsistent System). Consider the system given
the matrixby

×
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Subtracting 3r1 from r2, and r1 from r3, we get

[A′|b′] =

⎡
⎣1 2 0

0 0 − 1
0 0 1

∣∣∣∣∣∣
2
2
2

⎤
⎦ . (2.21)

The last two rows of [A′|b′] represent the contradictory equations −x3 = 2
and x3 = 2. These two equations describe parallel planes. Thus [A|b] had to
represent an inconsistent system.

The row operations above have produced two equations of new planes,
which have turned out to be parallel to each other. The planes corresponding
to the rows of the original [A|b] are, however, not parallel. Instead, only the
three lines of intersection of pairs of them are (see Exercise 2.1.16), like the
three parallel edges of a prism; that is why there is no point of intersection
common to all three planes.

We may carry the matrix reduction one step further and obtain, by adding
the second row to the third one,

[A′′|b′′] =

⎡
⎣1 2 0

0 0 − 1
0 0 0

∣∣∣∣∣∣
2
2
4

⎤
⎦ . (2.22)

This matrix provides the single self-contradictory equation 0 = 4 from its
last row. There is no geometrical interpretation for such an equation, but
algebraically it is the best way of establishing the inconsistency. Thus, this is
the typical pattern we shall obtain in the general case whenever there is no
solution. �

Next we modify the matrix of the last example so that all three planes
intersect in a single line.

[A|b] =

⎡
⎣1 2 0

3 6 − 1
1 2 1

∣∣∣∣∣∣
2
8
0

⎤
⎦ . (2.23)

We can reduce this matrix to

[A′|b′] =

⎡
⎣1 2 0

0 0 − 1
0 0 0

∣∣∣∣∣∣
2
2
0

⎤
⎦ . (2.24)

The corresponding system is

x1 +2x2 = 2
−x3 = 2

0 = 0,
(2.25)

Example 2.1.5. (A 3 × 3 System with a Line for Its Solution Set). Let×
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which represents just two planes, since the last equation has become the
trivial identity 0 = 0. Algebraically, the second row gives x3 = −2, and the
first row relates x1 to x2. We can choose an arbitrary value for either x1 or x2
and solve the first equation of the system 2.25 for the other. In some other
examples, however, we have no choice, as between x1 and x2 here. However,
since the pivot cannot be zero, we can always solve the pivot’s row for the
variable corresponding to the pivot, and that is what we always do. Thus, we
set x2 equal to a parameter t and solve the first equation for x1, to obtain
x1 = 2 − 2t. We can write the solutions in vector form as (remember: the
convention is to use column vectors)⎡

⎣x1
x2
x3

⎤
⎦ =

⎡
⎣ 2

0
−2

⎤
⎦+ t

⎡
⎣−2

1
0

⎤
⎦ . (2.26)

This is a parametric vector equation of the line of intersection L of the three
planes defined by the rows of [A|b]. The coordinates of each of L’s points
make up one of the infinitely many solutions of the system. �

2x1 + 3x2 − 2x3 + 4x4 = 4 (2.27)
−6x1 − 8x2 + 6x3 − 2x4 = 1
4x1 + 4x2 − 4x3 − x4 = −7.

These equations represent three hyperplanes in four dimensions.5 We can
proceed as before:⎡

⎣ 2 3 − 2 4
−6 − 8 6 − 2

4 4 −4 −1

∣∣∣∣∣∣
4
1

−7

⎤
⎦ r1 ← r1

r2 ← r2 + 3r1
r3 ← r3 − 2r1

⎡
⎣2 3 − 2 4

0 1 0 10
0 − 2 0 − 9

∣∣∣∣∣∣
4

13
−15

⎤
⎦

r1 ← r1
r2 ← r2
r3 ← r3 + 2r2

⎡
⎣2 3 − 2 4

0 1 0 10
0 0 0 11

∣∣∣∣∣∣
4

13
11

.

⎤
⎦ . (2.28)

The variables that have pivots as coefficients, x1, x2, x4 in this case, are
called basic variables. They can be obtained in terms of the other, so-called
free variables that correspond to the pivot-free columns. The free variables
are usually replaced by parameters, but this is just a formality to show that
they can be chosen freely.

Thus, we set x3 = t, and find the solutions again as the points of a line,
now given by
5 A hyperplane in R

4 is a copy of R
3, just as a plane in R

3 is a copy of R
2.

Example 2.1.6. (A 3×4 System with a Line for its Solution Set). Let
the systemus solve

×
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⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−9/2
3
0
1

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ . (2.29)

�

2x1 + 3x2 − 2x3 + 4x4 = 2 (2.30)
−6x1 − 9x2 + 7x3 − 8x4 = −3

4x1 + 6x2 − x3 + 20x4 = 13.

We solve this system as follows:⎡
⎣ 2 3 − 2 4

−6 − 9 7 − 8
4 6 −1 20

∣∣∣∣∣∣
2

−3
13

⎤
⎦ r1 ← r1

r2 ← r2 + 3r1
r3 ← r3 − 2r1

⎡
⎣2 3 − 2 4

0 0 1 4
0 0 3 12

∣∣∣∣∣∣
2
3
9

⎤
⎦

r1 ← r1
r2 ← r2
r3 ← r3 − 3r2

⎡
⎣2 3 − 2 4

0 0 1 4
0 0 0 0

∣∣∣∣∣∣
2
3
0

⎤
⎦ . (2.31)

Since the pivots are in columns 1 and 3, the basic variables are x1 and x3
and the free variables x2 and x4. Thus we use two parameters and set x2 = s
and x4 = t. Then the second row of the last matrix leads to x3 = 3−4t and the
first row to 2x1+3s−2(3−4t)+4t = 2, that is, to 2x1 = 8−3s−12t. Putting
all these results together, we obtain the two-parameter set of solutions⎡

⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
0
3
0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

−3/2
1
0
0

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

−6
0

−4
1

⎤
⎥⎥⎦ , (2.32)

which is also a parametric vector equation of a plane in R4. �

Exercises

In the first four exercises, find all solutions of the systems by Gaussian elim-
ination.

Exercise 2.1.1. 2x1+ 2x2− 3x3 = 0
x1+ 5x2+ 2x3 = 1

−4x1+ 6x3 = 2

Exercise 2.1.2. 2x1+ 2x2− 3x3 = 0
x1+ 5x2+ 2x3 = 0

−4x1+ 6x3 = 0

Example 2.1.7. (A 3×4 System with a Plane for Its Solution Set).
the systemConsider

×
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Exercise 2.1.3. 2x1+ 2x2− 3x3 = 0
x1+ 5x2+ 2x3 = 1

Exercise 2.1.4. 2x1+ 2x2− 3x3 = 0

In the next nine exercises use Gaussian elimination to find all solutions
of the systems given by their augmented matrices.

Exercise 2.1.5.

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

∣∣∣∣∣∣
0
0
0

⎤
⎦

Exercise 2.1.6.

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

∣∣∣∣∣∣
1
0

−2

⎤
⎦

Exercise 2.1.7.

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

∣∣∣∣∣∣
1
0
0

⎤
⎦

Exercise 2.1.8.

⎡
⎣ 3 −6 −1 1

−1 2 2 3
6 − 8 − 3 − 2

∣∣∣∣∣∣
12
1
9

⎤
⎦

Exercise 2.1.9.

⎡
⎣1 4 9 2

2 2 6 − 3
2 7 16 3

∣∣∣∣∣∣
0
0
0

⎤
⎦

Exercise 2.1.10.

⎡
⎢⎢⎣

2 4 1
0 1 3
3 3 − 1
1 2 3

∣∣∣∣∣∣∣∣
7
7
9

11

⎤
⎥⎥⎦

Exercise 2.1.11.

⎡
⎣ 3 −6 −1 1 5

−1 2 2 3 3
4 − 8 − 3 − 2 1

∣∣∣∣∣∣
0
0
0

⎤
⎦

Exercise 2.1.12.

⎡
⎣ 3 −6 −1 1

−1 2 2 3
4 − 8 − 3 − 2

∣∣∣∣∣∣
7
1
6

⎤
⎦

Exercise 2.1.13.

⎡
⎣ 3 −6 −1 1

−1 2 2 3
6 − 8 − 3 − 2

∣∣∣∣∣∣
5
3
1

⎤
⎦
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Exercise 2.1.14. What is wrong with the following way of “solving” Exer-
cise 2.1.13?⎡

⎣ 3 −6 −1 1
−1 2 2 3

6 − 8 − 3 − 2

∣∣∣∣∣∣
5
3
1

⎤
⎦ r1 ↔ r2

⎡
⎣−1 2 2 3

3 −6 −1 1
6 − 8 − 3 − 2

∣∣∣∣∣∣
3
5
1

⎤
⎦

r1 ← r1
r2 ← 2r2 − r3
r3 ← r3 − 2r2

⎡
⎣−1 2 2 3

0 − 4 1 4
0 4 − 1 − 4

∣∣∣∣∣∣
3
9

−9

⎤
⎦

r1 ← r1
r2 ← r2
r3 ← r3 + r2

⎡
⎣−1 2 2 3

0 − 4 1 4
0 0 0 0

∣∣∣∣∣∣
3
9
0

⎤
⎦ ,

x3 = s, x4 = t, −4x2 + s+4t = 9, x2 = − 9
4 + 1

4s+ t, −x1 +2x2 +2s+3t = 3,
x1 = −3 + 2

(− 9
4 + 1

4s + t
)

+ 2s + 3t = 5
2s + 5t − 15

2 , and so

x =

⎡
⎢⎢⎣

−15/2
−9/4

0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

5/2
1/4
1
0

⎤
⎥⎥⎦ s +

⎡
⎢⎢⎣

5
1
0
1

⎤
⎥⎥⎦ t.

Exercise 2.1.15. Show that each pair of the three planes defined by the rows
of the matrix in Example 2.1.5 on page 49 has the same line of intersection.

Exercise 2.1.16. Show that the three planes defined by the rows of the
matrix in Equation 2.20 on page 48 have parallel lines of intersection.

2.2 The Theory of Gaussian Elimination

We are now at a point where we can summarize the lessons from our examples.
Given m equations for n unknowns, we consider their augmented matrix,

[A|b] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ , (2.33)

and reduce it using elementary row operations according to the following
algorithm:

1. Search the first column from the top down for the first nonzero entry. If all
the entries in the first column are zero, then search the second column from
the top down, then the third column for the first nonzero entry. Repeat
with succeeding columns if necessary, until a nonzero entry is found. The
entry thus found is called the current pivot. Stop, if no pivot can be found.

2. Put the row containing the current pivot on top (unless it is already there).
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3. Subtract appropriate multiples of the first row from each of the lower
rows to obtain all zeros below the current pivot in its column (unless
there are all zeros there or no lower rows are left).

4. Repeat the previous steps on the submatrix6 consisting of all those ele-
ments of the last matrix that lie lower than and to the right of the last
pivot. Stop if no such submatrix is left.

These steps constitute the forward elimination phase of Gaussian elim-
ination (the second phase will be discussed following Definition 2.2.2), and
they lead to a matrix of the form described below.

Definition 2.2.1. (Echelon Matrix). A matrix is said to be in echelon
form7 or an echelon matrix if it has a staircase-like pattern characterized by
the following properties:
a. The all-zero rows (if any) are at the bottom.
b. The leftmost nonzero entry of each nonzero row, called a leading entry, is
in a column to the right of the leading entry of every row above it.

These properties imply that in an echelon matrix U all the entries of
a column below a leading entry are zero. If U arises from the reduction of a
matrix A by the forward elimination algorithm above, then the pivots of A
become the leading entries of U . Also, if we were to apply the algorithm to
an echelon matrix, then it would not be changed and we would find that its
leading entries are its pivots.

Note that while a given matrix is row equivalent to many different ech-
elon matrices (just multiply any nonzero row of an echelon matrix by 2, for
example), the algorithm above leads to a single well-defined echelon matrix
in each case. Furthermore, it will be proved in Section 3.3 that the number
and locations, although not the values, of the pivots are unique for all echelon
matrices obtainable from the same A. Consequently, the results of Theorem
2.2.1 below, even though they depend on the pivots, are valid unambiguously.

Here is a possible m × (n + 1) echelon matrix obtainable from the matrix
[A|b] above:

[U |c] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 ∗ ∗ ∗ · · · ∗ ∗
0 p2 ∗ ∗ · · · ∗ ∗
0 0 0 p3 ∗ ∗
...
0 0 0 0 · · · pr ∗
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
...
0 0 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1
c2
c3
...
cr

cr+1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.34)

6 A submatrix of a given matrix A is a matrix obtained by deleting any number
of rows and/or columns of A.

7 “Echelon” in French means “rung of a ladder,” and in English it is used for some
ladder-like military formations and rankings.
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The first n columns constitute the echelon matrix U obtained from A,
and the last column is the corresponding reduction of b. The pi denote the
pivots of A, while the entries denoted by ∗ and by ci denote numbers that
may or may not be zero. The number r is very important, since it determines
the character of the solutions, and has a special name.

Definition 2.2.2. (Rank). The number r of nonzero rows of an echelon
matrix U obtained by the forward elimination phase of the Gaussian elimi-
nation algorithm from a matrix A is called the rank of A and will be denoted
by rank (A).8,9

We can now describe the back substitution phase of Gaussian elimination,
in which we change the augmented matrix [U |c] back to a system of equations
Ux = c :

5. If r < m and cr+1 	= 0 hold, then the row containing cr+1 corresponds to
the self-contradictory equation 0 = cr+1, and so the system has no solu-
tions or, in other words, it is inconsistent. (This case occurs in Example
2.1.4, where m = 3, r = 2 and cr+1 = c3 = 4.)

6. If r = m or cr+1 = 0, then the system is consistent and, for every i such
that the ith column contains no pivot, the variable xi is a free variable
and we set it equal to a parameter si. (In Example 2.1.6, for instance,
r = m = 3 and x3 is free. In Example 2.1.7 we have m = 3, r = 2
and cr+1 = c3 = 0 and the free variables are x2 and x4.) We need to
distinguish two subcases here:
a. If r = n, then there are no free variables and the system has a unique
solution. (In Example 2.1.2, for instance, r = m = n = 3.)
b. If r < n, then the system has infinitely many solutions. (In Exam-
ples 2.1.6 and 2.1.7, for instance, r = 3 and n = 4.)

7. In any of the cases of Part 6, we solve for the basic variables xi corre-
sponding to the pivots pi, starting in the rth row and working our way
up row by row.

The Gaussian elimination algorithm proves the following theorem:

Theorem 2.2.1. (Summary of Gaussian Elimination). Consider the
m × n system with A an m × n matrix and b an n-vector:

Ax = b. (2.35)

Suppose the matrix [A|b] is reduced by the algorithm above to the echelon
matrix [U |c] with rank (U) = r.

8 Of course, r is also the rank of U , since the algorithm applied to U would leave
U unchanged.

9 Some books call this quantity the row rank of A until they define the column
rank and show that the two are equal.
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If r = m, that is, if U has no zero rows, then the system 2.35 is consistent.
If r < m, then the system is consistent if and only if cr+1 = 0.

For a consistent system,
a. there is a unique solution if and only if there are no free variables, that is,
if r = n;
b. if r < n, then there is an (n − r)-parameter infinite set of solutions of the
form

x = x0 +
n−r∑
i=1

sivi. (2.36)

We may state the uniqueness condition r = n in another way by saying
that the pivots are the diagonal entries u11, u22, . . . , unn of U , that is, that
U has the form

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 ∗ ∗ · · · ∗
0 p2 ∗ · · · ∗
0 0 p3 ∗
...

...
...

...
0 0 0 · · · pr

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.37)

A matrix of this form is called an upper triangular matrix and the pi its
diagonal entries. (The pivots are never 0, but in general, an upper triangular
matrix is allowed to have 0 diagonal entries as well.)

Note that for every m × n matrix we have 0 ≤ r ≤ min(m, n), because r
equals the number of pivots and there can be only one pivot in each row and
in each column. We have r = 0 only for zero matrices. At the other extreme,
if, for a matrix A, r = min(m, n) holds, then A is said to have full rank. If
r < min(m, n) holds, then A is said to be rank deficient.

Exercises

Exercise 2.2.1. List all possible forms of 2×2 echelon matrices in a manner
similar to Equation 2.37, with pi for the pivots and ∗ for the entries that may
or may not be zero.

Exercise 2.2.2. List all possible forms of 3×3 echelon matrices in a manner
similar to Equation 2.37, with pi for the pivots and ∗ for the entries that may
or may not be zero. (Hint : There are eight distinct forms.)
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In the next four exercises find conditions on a general vector b that would
make the equation Ax = b consistent for the given matrix A. (Hint : Reduce
the augmented matrix using undetermined components bi of b, until the A
in it is changed to echelon form, and set cr+1 = cr+2 = · · · = 0.)

Exercise 2.2.3. A =

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

⎤
⎦ .

Exercise 2.2.4. A =

⎡
⎣ 1 −2

2 − 4
−6 12

⎤
⎦ .

Exercise 2.2.5. A =
[

1 2 − 6
−2 − 4 12

]
.

Exercise 2.2.6. A =

⎡
⎢⎢⎣

1 0 −1
−2 3 − 1

3 − 3 0
2 0 −2

⎤
⎥⎥⎦ .

Exercise 2.2.7. Prove that the system Ax = b is consistent if and only if
A and [A|b] have the same rank.

2.3 Homogeneous and Inhomogeneous Systems,
Gauss–Jordan Elimination

In the sequel, we need to consider the expression Ax as a new kind of
product.10

Definition 2.3.1. (Matrix-Vector Product). For every m × n matrix A
and every column n-vector x, we define Ax as the column m-vector given by

Ax =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn

...
am1x1 + am2x2 + · · · + amnxn

⎤
⎥⎥⎥⎦ .

(2.38)

10 The product Ax is always written just by juxtaposing the two letters; we never
use any multiplication sign in it.
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Notice that, on the right, the components of the column vector x show up
across every row of Ax; they are “flipped.” Actually, the rows on the right are
the dot products of the row vectors of A with the vector x. It is customary
to write ai (with a superscript i) for the ith row of A, and aix (without a
dot) for the ith dot product on the right. Thus Equation 2.38 can also be
written as

Ax =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦x =

⎡
⎢⎢⎢⎣

a1x
a2x

...
amx

⎤
⎥⎥⎥⎦ . (2.39)

We also need the following simple properties of Ax.

Theorem 2.3.1. (Properties of the Matrix-Vector Product). If A is
an m × n matrix, x and y column n-vectors, and c a scalar, then

A(x + y) = Ax + Ay and A(cx) = c(Ax). (2.40)

Proof. Using Equation 2.39 and the properties of vectors and dot products,
we have

A(x + y) =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ (x + y) =

⎡
⎢⎢⎢⎣

a1(x + y)
a2(x + y)

...
am(x + y)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1x + a1y
a2x + a2y

...
amx + amy

⎤
⎥⎥⎥⎦ (2.41)

=

⎡
⎢⎢⎢⎣

a1x
a2x

...
amx

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

a1y
a2y

...
amy

⎤
⎥⎥⎥⎦ = Ax + Ay. (2.42)

Similarly,

A(cx) =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ (cx) =

⎡
⎢⎢⎢⎣

a1(cx)
a2(cx)

...
am(cx)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c(a1x)
c(a2x)

...
c(amx)

⎤
⎥⎥⎥⎦ = c

⎡
⎢⎢⎢⎣

a1x
a2x

...
amx

⎤
⎥⎥⎥⎦ = c(Ax).

(2.43)

�
If the solutions of Ax = b are given by Equation 2.36, the latter is called

the general solution of the system, as opposed to a particular solution, which
is obtained by substituting particular values for the parameters into Equa-
tion 2.36.

It is customary and very useful to distinguish two types of linear systems
depending on the choice of b.
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Definition 2.3.2. (Homogeneous Versus Inhomogeneous Systems).
A system of linear equations Ax = b is called homogeneous if b = 0, and
inhomogeneous if b 	= 0.

We may restate part of Theorem 2.2.1 for homogeneous systems as follows.

Theorem 2.3.2. (Solutions of Homogeneous Systems). For any m×n
matrix A, the homogeneous system

Ax = 0 (2.44)

is always consistent: it always has the trivial solution x = 0. If r = n, then it
has only this solution; and if m < n or, more generally, if r < n holds, then
it has nontrivial solutions as well.

There is an important relationship between the solutions of corresponding
homogeneous and inhomogeneous systems, the analog of which is indispens-
able for solving many differential equations.

Theorem 2.3.3. (General and Particular Solutions). For any m × n
matrix A and any column m-vector b, if x = xb is any particular solution of
the inhomogeneous equation

Ax = b, (2.45)

with b 	= 0, then

x = xb + v (2.46)

is its general solution if and only if

v =
n−r∑
i=1

sivi (2.47)

is the general solution of the corresponding homogeneous equation

Av = 0. (2.48)

Proof. Assume first that 2.47 is the general solution of Equation 2.48. (Cer-
tainly, the Gaussian elimination algorithm would give it in this form.) Then
applying A to both sides of Equation 2.46, we get

Ax = A(xb + v) = Axb + Av = b + 0 = b. (2.49)

Thus, every solution of the homogeneous Equation 2.48 leads to a solution
of the form 2.46 of the inhomogeneous equation 2.45.
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Conversely, assume that 2.46 is a solution of the inhomogeneous equa-
tion 2.45. Then

Av = A(x − xb) = Ax − Axb = b − b = 0. (2.50)

This equation shows that the v given by Equation 2.47 is indeed a solution
of Equation 2.48, or, in other words, that a solution of the form 2.46 of
the inhomogeneous equation 2.45 leads to a solution of the form 2.47 of the
homogeneous equation 2.48. �

This theorem establishes a one-to-one pairing of the solutions of the
two equations 2.45 and 2.48. Geometrically this means that the solutions
of Av = 0 are the position vectors of the points of the hyperplane through
the origin given by Equation 2.47, and the solutions of Ax = b are those of a
parallel hyperplane obtained from the first one by shifting it by the vector xb.
(See Figure 2.1.) Note that we could have shifted by the coordinate vector
of any other point of the second hyperplane, that is, by any other particular
solution x′

b of Equation 2.45 (see Figure 2.2), and we would have obtained
the same new hyperplane.

Ax = b

Av = 0xb

v

x

Fig. 2.1. The solution vector x of the inhomogeneous equation equals the sum of
a particular solution and a solution of the corresponding homogeneous equation:
x = xb + v

Sometimes the forward elimination procedure is carried further so as to
obtain leading entries in the echelon matrix that equal 1, and to obtain 0
entries in the basic columns not just below but also above the pivots. This
method is called Gauss–Jordan elimination and the final matrix a reduced
echelon matrix or a row–reduced echelon matrix. We give one example of this
method.
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Fig. 2.2. The same solution vector x of the inhomogeneous equation also equals
the sum of another particular solution and another solution of the corresponding
homogeneous equation: x = x′

b + v′

⎡
⎣2 3 − 2 4

0 0 1 4
0 0 0 0

∣∣∣∣∣∣
2
3
0

⎤
⎦ r1 ← r1/2

r2 ← r2
r3 ← r3

⎡
⎣1 3/2 − 1 2

0 0 1 4
0 0 0 0

∣∣∣∣∣∣
1
3
0

⎤
⎦

r1 ← r1 + r2
r2 ← r2
r3 ← r3

⎡
⎣1 3/2 0 6

0 0 1 4
0 0 0 0

∣∣∣∣∣∣
4
3
0

⎤
⎦ . (2.51)

From here on we proceed exactly as in the Gaussian elimination algorithm:
we assign parameters s and t to the free variables x2 and x4, and solve for
the basic variables x1 and x3. The latter step is now trivial, since all the work
has already been done. The equations corresponding to the final matrix are

x1 +
3
2
s + 6t = 4 (2.52)

x3 + 4t = 3.

Thus we find the same general solution as before:

x1 = 4 − 3
2
s − 6t (2.53)

x2 = s

x3 = 3 − 4t

x4 = t

Example 2.3.1. (Solving Example 2.1.7 by Gauss–ordan Elimina-
us continue the reduction of Example 2.1.7, starting with the echelon

obtained in the forward elimination phase:
tion . Let)
matrix
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or in vector form as⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
0
3
0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

−3/2
1
0
0

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

−6
0

−4
1

⎤
⎥⎥⎦ . (2.54)

Notice how the numbers in the first and third rows of this solution correspond
to the entries of the last matrix in 2.51, which is in reduced echelon form. �

As can be seen from this example, the reduced echelon form combines
the results of both the forward elimination and back substitution phases of
Gaussian elimination, and the general solution can simply be read from it. In
general, if [R|c] is the reduced echelon matrix corresponding to the system
Ax = b, then we assign parameters sj to the free variables xj ; and if rik is a
pivot of R, that is, a leading entry 1 in the ith row and kth column, then xk

is a basic variable, and the ith row of the reduced system Rx = c is

xk +
∑
j>k

rijsj = ci. (2.55)

Thus the general solution is given by

xj = sj if xj is free, and
xk = ci −∑j>k rijsj if xk is basic and is in the ith row. (2.56)

Gauss–Jordan elimination is rarely used for the solution of systems, be-
cause a variant of Gaussian elimination, which we shall study in Section 8.1,
is usually more efficient. However, Gauss–Jordan elimination is the pre-
ferred method for inverting matrices, as we shall see in Section 2.3. Also,
it is sometimes helpful that the reduced echelon form of a matrix is unique
(see Theorem 3.4.2), and that the solution of every system is immediately
visible in it.

We conclude this section with an application.

shown in Figure 2.3. Here the Rk are positive numbers denoting resistances
(unit: ohm (Ω)), the ik are currents (unit: ampere (A)), and V1 and V2 are
the voltages (unit: volt (V)) of two batteries represented by the circles. These
quantities are related by three laws of physics:

1. Kirchhof’s first law. The sum of the currents entering a node equals
the sum of the currents leaving it.

2. Kirchhof’s second law. The sum of the voltage drops or potential
differences around every loop equals zero.

3. Ohm’s law. The voltage drop across a resistor R equals Ri, where i is
the current flowing through the resistor.

Example 2.3.2. (An Electrical Network). Consider the electrical network
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R2

R3

R4

R1 R6

V1 V2

i5

i4

i3

i1

i2

i6+

-

+

-

R5

Fig. 2.3. An electrical network with resistors and two voltage sources

By convention, outside a battery the current that it generates flows from
the positive terminal to the negative one.11 However, in a multiloop circuit
the directions of the currents are not so obvious. In the circuit above, for
instance, the current i6 is generated by both batteries, and although V2 would
make it flow from right to left, it is possible that the contribution of V1
would make it flow as the arrow shows. In fact, the arrows for the direction
of the currents can be chosen arbitrarily, and if the equations result in a
negative value for an ik, then the current flows in the direction opposite the
arrow.

For the circuit of Figure 2.3, Kirchhof’s laws give the following six equa-
tions for the six unknown currents:12

i1 − i2 − i5 = 0
− i4 + i5 − i6 = 0

i3 + i4 + i6 = 0
R1i1 + R2i2 = V1

R2i2 + R3i3 − R4i4 − R5i5 = 0
R4i4 − R6i6 = V2

(2.57)

Assume that R1 = 4 Ω, R2 = 24 Ω, R3 = 1 Ω, R4 = 3 Ω, R5 = 2 Ω,
R6 = 8 Ω, V1 = 80 V, and V2 = 62 V. Then the augmented matrix of the
system becomes⎡

⎢⎢⎢⎢⎢⎢⎣

1 − 1 0 0 − 1 0
0 0 0 − 1 1 − 1
0 0 1 1 0 1
4 24 0 0 0 0
0 24 1 −3 −2 0
0 0 0 3 0 −8

∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0

80
0

62

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.58)

11 This convention was established before the discovery of electrons, which actually
make up the flow by carrying a negative charge around the loop in the opposite
direction.

12 Actually, Kirchhof’s laws give more equations than these six. In Example 3.5.7
we shall examine how to select a sufficient set.
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and Gaussian elimination gives the solution i1 = 8 A, i2 = 2 A, i3 = −6 A,
i4 = 10 A, i5 = 6 A, i6 = −4 A .

In order to give a transparent illustration of Kirchhof’s laws, we show this
solution in Figure 2.4, with the arrows pointing in the correct directions for
the currents.

62V

6 A8 A

2 A

4 A+

-

+

-6 A

 24 ohm 10 A 

4 ohm 2 ohm 8 ohm

3 ohm

1 ohm

80V

Fig. 2.4. The same circuit as in Figure 2.3, solved

The system above was obtained by what is called the branch method.
Another possibility is to use the loop method, which we are now going to
illustrate for the same circuit.

R2

R3

R4

R1 R6

V1 V2

iBiA iC+

-

+

-

R5

Fig. 2.5. The same circuit with loops shown

We consider only three unknown currents: iA, iB , iC , one for each of
the three small loops (see Figure 2.5), with arbitrarily assigned directions.
Then, for the resistors shared by two loops, we must use the appropriate
superposition of the currents of those loops. Thus the loop equations are

R1iA + R2 (iA − iB) = V1
R2 (iB − iA) + R3iB + R4 (iB − iC) + R5iB = 0

R4 (iC − iB) + R6iC = −V2

(2.59)

or, equivalently,

(R1 + R2) iA − R2iB = V1
−R2iA + (R2 + R3 + R4 + R5) iB − R4iC = 0

−R4iB + (R4 + R6) iC = −V2

(2.60)
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For the given numerical values, the augmented matrix of this system becomes⎡
⎣ 28 − 24 0

−24 30 −3
0 −3 11

∣∣∣∣∣∣
80
0

−62

⎤
⎦ , (2.61)

whose solution is iA = 8 A, iB = 6 A, and iC = −4 A . From these loop
currents we can easily recover the earlier branch currents as i1 = iA = 8 A,
i2 = iA − iB = 2 A, i3 = −iB = −6 A, i4 = iB − iC = 10 A, i5 = iB = 6 A,
i6 = iC = −4 A . �

Exercises

Exercise 2.3.1. List all possible forms of 2 × 2 reduced echelon matrices.

Exercise 2.3.2. List all possible forms of 3 × 3 reduced echelon matrices.

Exercise 2.3.3. Solve Exercise 2.1.5 by Gauss–Jordan elimination.

Exercise 2.3.4. Solve Exercise 2.1.8 by Gauss–Jordan elimination.

Exercise 2.3.5. Solve Exercise 2.1.11 by Gauss–Jordan elimination.

Exercise 2.3.6. Solve Exercise 2.1.12 by Gauss–Jordan elimination.

In each of the next two exercises find two particular solutions xb and x′
b

of the given system and the general solution v of the corresponding homoge-
neous system. Write the general solution of the given system as xb + v and
also as x′

b + v, and show that the two forms are equivalent; that is, that the
set of vectors of the form xb + v is identical with the set of vectors of the
form x′

b + v.

Exercise 2.3.7. 2x1+ 3x2− 1x3 = 4
3x1+ 5x2+ 2x3 = 1

Exercise 2.3.8. 2x1+ 2x2− 3x3− 2x4 = 4
6x1+ 6x2+ 3x3+ 6x4 = 0

MATLAB Exercises

In MATLAB, linear systems are entered in matrix form. We can enter a
matrix by writing its entries between brackets, row by row from left to right,
top to bottom, and separating row entries by spaces or commas, and rows by
semicolons. For example the command A = [2, 3; 1, −2] would produce the
matrix

A =
[

2 3
1 −2

]
.
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(The size of a matrix is automatic; no size declaration is needed or possible,
unlike in most other computer languages.) The entry aij of the matrix A is
denoted by A(i, j) in MATLAB, the ith row by A(i, :) and the jth column
by A(:, j).

The vector b must be entered as a column vector. This can be achieved
either by separating its entries by semicolons or by writing a prime after the
closing bracket, as in b = [1, 2]′. This would result in the column vector

b =
[

1
2

]
.

The augmented matrix can be formed by the command [A b]. Sometimes
we may wish to name it as, say, A−b = [A b] or simply as C = [A b]. The
command rref(C) returns the reduced echelon form of C.

The command x =A\b always returns a solution of the system Ax = b.
This is the unique solution if there is only one; it is a certain particular
solution with as many zeros as possible for components of x with the low-
est subscripts, and is the least-squares “solution” (to be discussed in Sec-
tion 5.1) if the system is inconsistent. This command is the most efficient
method of finding a solution and is the one you should use whenever possi-
ble. On the other hand, to find the general solution of an underdetermined
system this method does not work, and you should use rref([A b]) to ob-
tain the reduced echelon matrix, and proceed as in Example 2.3.1 or Equa-
tions 2.56.

Exercise 2.3.9.
a. Write MATLAB commands to implement elementary row operations on a
3 × 6 matrix A.
b. Use these commands to reduce the matrix

A =

⎡
⎣ 3 − 6 − 1 1 5 2

−1 2 2 3 3 6
4 −8 −3 − 2 1 0

⎤
⎦

to reduced echelon form and compare your result to rref(A).
c. Write MATLAB commands to compute a matrix B with the same rows as
the matrix A, but the first two rows switched.
d. Compare rref(B) with rref(A). Explain your result.

Exercise 2.3.10. Use MATLAB to find the general solution of Ax = 0 for

A =

⎡
⎢⎢⎣

−1 − 2 − 1 − 1 1
−1 −2 0 3 − 1

1 2 1 1 1
0 0 2 8 2

⎤
⎥⎥⎦ .
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Exercise 2.3.11. Let A be the same matrix as in the previous exercise
and let

b =

⎡
⎢⎢⎣

9
1

−5
−4

⎤
⎥⎥⎦ .

a. Find the general solution of Ax = b using rref([A b]).
b. Verify that x =A\b is indeed a particular solution by computing Ax
from it.
c. Find the parameter values in the general solution obtained in Part (a),
that give the particular solution of Part (b).
d. To verify the result of Theorem 2.3.3 for this case, show that the general
solution of Part (a) equals x =A\b plus the general solution of the homoge-
neous equation found in the previous exercise.

Exercise 2.3.12. Let A and b be the same as in the last exercise. The com-
mand x = pinv(A) ∗ b gives another particular solution of Ax = b. (This
solution will be explained in Section 5.1.) Verify Theorem 2.3.3 for this par-
ticular solution, as in Part (d) of the previous exercise.

Exercise 2.3.13. Let A be the same matrix as in Exercise 2.3.10 and let

b =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦. Compute x =A\b and substitute this into Ax. Explain how your

result is possible. (Hint : Look at rref([A b]).)

2.4 The Algebra of Matrices

Just as for vectors, we can define algebraic operations for matrices, and these
operations will vastly extend their utility.

In order to motivate the forthcoming definitions, it is helpful to interpret
matrices as functions or mappings. Thus if A is an m×n matrix, the matrix-
vector product Au may be regarded as describing a mapping TA : Rn → Rm

of every u ∈ Rn to Au ∈ Rm, that is, as TA (u) = Au. This is also reflected in
the terminology: We frequently read Au as A being applied to u instead of A
times u. If m = n, we may consider TA as a transformation of the vectors of
Rn to corresponding vectors in the same space.

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
(2.62)

Example 2.4.1. (Rotation Matrix). The matrix
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x2

x1

v

u

O
φ

Fig. 2.6. Rotation of u ∈ R
2 by the angle θ

represents the rotation Tθ of R2 around O by the angle θ, as can be seen in
the following way. (See Figure 2.6.) Let

u =
[ |u| cos φ

|u| sin φ

]
(2.63)

be any nonzero vector in R2 (see Exercise 1.2.15 on page 26). Then, by
Definition 2.3.1,

Tθ (u) = Rθu =
[

cos θ − sin θ
sin θ cos θ

] [ |u| cos φ
|u| sin φ

]
= |u|

[
cos θ cos φ − sin θ sin φ
sin θ cos φ + cos θ sin φ

]
,

(2.64)

and so

Tθ (u) = Rθu = |u|
[

cos (φ + θ)
sin (φ + θ)

]
. (2.65)

This is indeed a vector of the same length as u and it encloses the angle φ+θ
with the x1-axis. �

Such transformations will be discussed in detail in Chapter 4. Here we
just present the concept briefly, in order to lay the groundwork for the defi-
nitions of matrix operations. These definitions are analogous to the familiar
definitions for functions of real variables, where, given functions f and g, their
sum f + g is defined as the function such that (f + g)(x) = f(x) + g(x) for
every x, and, for any real number c, the product cf is defined as the function
such that (cf)(x) = cf(x) for every x.

Definition 2.4.1. (Sum and Scalar Multiple of Mappings). Let TA

and TB be two mappings of Rn to Rm, for any positive integers m and n.

θ
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We define their sum TA + TB as the mapping that maps every x ∈ Rn to
TA (x) + TB (x) ∈ Rm or, in other words, as the mapping given by

(TA + TB) (x) = TA (x) + TB (x) for all x ∈ Rn. (2.66)

Furthermore, for any scalar c, the mapping cTA is defined as the mapping
that maps every x to c (TA(x)) ∈ Rm, that is, the mapping for which

(cTA) (x) = c (TA(x)) for all x ∈ Rn. (2.67)

Now, let TA and TB be two mappings that correspond to two matrices A
and B respectively, that is, such that TA (x) = Ax and TB (x) = Bx for all

Definition 2.4.2. (Sum and Scalar Multiple of Matrices). Let A and
B be two m×n matrices, for any positive integers m and n. We define their
sum A+B as the matrix that corresponds to TA +TB , or, in other words, as
the matrix for which we have

(A + B)x = Ax + Bx for all x ∈ Rn. (2.68)

Similarly, for any scalar c, the matrix cA is defined as the matrix that cor-
responds to cTA, that is, as the matrix for which

(cA)x = c(Ax) for all x ∈ Rn. (2.69)

The mappings TA + TB and cTA both clearly exist, but the existence of
corresponding matrices A + B and cA requires proof. Their existence will be
proved by Theorem 2.4.1 below, where they will be computed explicitly.

Definition 2.4.2 can be paraphrased as requiring that the order of the
operations be reversible: On the right-hand side of Equation 2.68 we first
apply A and B separately to x and then add, and on the left we first add
A to B and then apply the sum to x. Similarly, on the right-hand side of
Equation 2.69 we first apply A to x and then multiply by c, while on the left
this is reversed: A is first multiplied by c and then cA is applied to x. We
may also regard Equation 2.68 as a new distributive rule and Equation 2.69
as a new associative rule. Note that Equation 2.69 enables us to drop the
parentheses, that is, to write cAx for c(Ax).

A =
[

3 5
4 2

]
and B =

[
2 3
4 7

]
. (2.70)

Then, applying Definition 2.3.1, for any x we have

Ax =
[

3 5
4 2

] [
x1
x2

]
=
[

3x1 + 5x2
4x1 + 2x2

]
, (2.71)

Example 2.4.2. (A Matrix Sum). Let

appropriate x. Then we can use Definition 2.4.1 to define A + B and cA.
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and

Bx =
[

2 3
4 7

] [
x1
x2

]
=
[

2x1 + 3x2
4x1 + 7x2

]
. (2.72)

Hence

Ax+Bx =
[

3x1 + 5x2
4x1 + 2x2

]
+
[

2x1 + 3x2
4x1 + 7x2

]
=
[

5x1 + 8x2
8x1 + 9x2

]
=
[

5 8
8 9

] [
x1
x2

]
.

(2.73)

Thus, by Equation 2.68,

(A + B)x =
[

5 8
8 9

] [
x1
x2

]
(2.74)

and so,

A + B =
[

5 8
8 9

]
. (2.75)

Here we see that A + B is obtained from A and B by adding corresponding
entries. That this addition rule is true in general, and not just for these
particular matrices, will be part of Theorem 2.4.1. �

A =
[

3 4
4 2

]
. (2.76)

Then, applying Definition 2.3.1, for every x we have

Ax =
[

3 4
4 2

] [
x1
x2

]
=
[

3x1 + 4x2
4x1 + 2x2

]
, (2.77)

and so,

c (Ax) = 2
[

3x1 + 4x2
4x1 + 2x2

]
=
[

6x1 + 8x2
8x1 + 4x2

]
=
[

6 8
8 4

] [
x1
x2

]
. (2.78)

Thus, by Equation 2.69,

(2A)x =
[

6 8
8 4

] [
x1
x2

]
(2.79)

and so,

2A =
[

6 8
8 4

]
. (2.80)

Here we see that 2A is obtained by multiplying every entry of A by 2. The
next theorem generalizes this multiplication rule to arbitrary c and A. �

Example 2.4.3. (A Scalar Multiple of a Matrix). Let c = 2 and
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Theorem 2.4.1. (The Sumand ScalarMultiple of Matrices inTerms
of Entries). For any two matrices A = [aik] and B = [bik] of the same
shape, we have

(A + B)ik = aik + bik for all i, k, (2.81)

and for any scalar c, we have

(cA)ik = caik for all i, k. (2.82)

Proof. To write Equations 2.68 and 2.69 in terms of components, let us first
recall from Definition 2.3.1 that, for all appropriate x, the product Ax is a
column m-vector whose ith component is given, for each i, by

(Ax)i = ai1x1 + ai2x2 + · · · + ainxn, (2.83)

which can be abbreviated as

(Ax)i =
n∑

j=1

aijxj . (2.84)

Applying the same principle to B and A + B, we also have, for all i,

(Bx)i =
∑

j

bijxj (2.85)

and

[(A + B)x]i =
∑

j

(A + B)ijxj . (2.86)

From Equation 2.68, the definition of vector addition, and the last three
equations,

[(A + B)x]i = (Ax + Bx)i = (Ax)i + (Bx)i

=
∑

j

aijxj +
∑

j

bijxj =
∑

j

(aij + bij)xj . (2.87)

Comparing the two evaluations of [(A+B)x]i in Equations 2.86 and 2.87, we
obtain∑

j

(A + B)ijxj =
∑

j

(aij + bij)xj . (2.88)

Equation 2.88 must hold for every choice of x. Choosing xk = 1 for any
fixed k, and xj = 0 for all j 	= k, yields the first statement of the theorem:

(A + B)ik = aik + bik for all i, k. (2.89)

Equation 2.82 can be obtained similarly, and its proof is left as
Exercise 2.4.2. �
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This theorem can be paraphrased as: Every entry of a sum of matrices
equals the sum of the corresponding entries of the summands; and we multi-
ply a matrix A by a scalar c, by multiplying every entry by c. Notice again,
as for vectors, the reversal of operations: “every entry of a sum = sum of cor-
responding entries” and “every entry of cA = c × corresponding entry of A.”

Let us emphasize that only matrices of the same shape can be added to
each other, and that the sum has the same shape, in which case we call them
conformable for addition. However, for matrices of differing shapes there is
no reasonable way of defining a sum.

We can also define multiplication of matrices in certain cases and this
will prove to be an enormously fruitful operation. For real-valued functions f
and g, their composite f ◦ g was defined by (f ◦ g) (x) = f(g(x)) for all x,
and we first define the composite of two mappings similarly, to represent the
performance of two mappings in succession.

Definition 2.4.3. (Composition of Mappings). Let TB be a mapping of
Rn to Rp and TA be a mapping of Rp to Rm, for any positive integers m, p,
and n. We define the composite TA ◦ TB as the mapping that maps every
x ∈ Rn to TA (TB (x)) ∈ Rm or, in other words, as the mapping given by

(TA ◦ TB) (x) = TA (TB (x)) for all x ∈ Rn. (2.90)

Next, we define the product of two matrices as the matrix that corresponds
to the composite mapping.

Definition 2.4.4. (Matrix Multiplication). Let A be an m×p matrix and
B a p×n matrix, for any positive integers m, p, and n. Let TA and TB be
the corresponding mappings. That is, let TB map every x ∈ Rn to a vector
TB (x) = Bx of Rp and TA map every y ∈ Rp to TA (y) = Ay of Rm. We
define the product AB as the m×n matrix that corresponds to the composite
mapping TA ◦ TB , that is, by the formula

(AB)x = (TA ◦ TB) (x) = A(Bx) for all x ∈ Rn. (2.91)

These mappings and Definition 2.4.4 are illustrated symbolically in Fig-
ure 2.7.

That such a matrix always exists will be proved by Theorem 2.4.2, where
it will be computed explicitly.

Let us emphasize that only for matrices A and B such that the number
of columns of A (the p in the definition) equals the number of rows of B
can the product AB be formed, in which case we call them conformable for
multiplication. Also, we never use any sign for this multiplication, we just
write the factors next to each other.

Furthermore, Equation 2.91 can also be viewed as a new associative law
or as a reversal of the order of the two multiplications (but not of the factors).
Hence, we can drop the parentheses, that is, we can write ABx for A(Bx).
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Rp

Rm

Rn

x  Bx

(AB)x = A(Bx)

TAB TA

TB

 

Fig. 2.7. The product of two matrices corresponding to two mappings in succession

A =

⎡
⎣3 5

1 2
2 4

⎤
⎦ and B =

[
2 1
0 3

]
. (2.92)

Then, applying Equation 2.85, for every x we have

Bx =
[

2 1
0 3

] [
x1
x2

]
=
[

2x1 + x2
3x2

]
, (2.93)

and similarly

A(Bx) =

⎡
⎣3 5

1 2
2 4

⎤
⎦[2x1 + x2

3x2

]
=

⎡
⎣ 6x1 + 18x2

2x1 + 7x2
4x1 + 14x2

⎤
⎦ =

⎡
⎣6 18

2 7
4 14

⎤
⎦[x1

x2

]
. (2.94)

Thus

AB =

⎡
⎣6 18

2 7
4 14

⎤
⎦ . (2.95)

�
From the definition we can easily deduce the following rule that gives the

entries of AB and shows that the vector x can be dispensed with in their
computation.

Example 2.4.4. (A Matrix Multiplication). Let
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Theorem 2.4.2. (Matrix Multiplication in Terms of Entries). Let A
be an m × p matrix and B a p × n matrix. Then the product AB is an m × n
matrix whose entries are given by the formula

(AB)ik =
p∑

j=1

aijbjk for i = 1, . . . , m and k = 1, . . . , n. (2.96)

Proof. The components of Bx can be written as

(Bx)j =
n∑

k=1

bjkxk for j = 1, . . . , p. (2.97)

Also,

(Ay)i =
p∑

j=1

aijyj for i = 1, . . . , m. (2.98)

Substituting from Equation 2.97 into 2.98, we get

(A(Bx))i =
p∑

j=1

aij

(
n∑

k=1

bjkxk

)
=

n∑
k=1

⎛
⎝ p∑

j=1

aijbjk

⎞
⎠xk. (2.99)

On the other hand, we have

((AB)x)i =
n∑

k=1

(AB)ikxk. (2.100)

In view of Definition 2.4.4 the left-hand sides of Equations 2.99 and 2.100
must be equal, and since the vector x can be chosen arbitrarily, the coefficients
of xk on the right-hand sides of Equations 2.99 and 2.100 must be equal. This
proves the theorem. �

The special case of Theorem 2.4.2, in which m = n = 1, which is also
a special case of the definition of Ax (Definition 2.3.1), is worth stating
separately:

Corollary 2.4.1. (Matrix Products with Row and Column Vectors).
If A is a 1 × p matrix, that is, a row p-vector

a = (a1, a2, . . . , ap) (2.101)

and B a p × 1 matrix, that is, a column p-vector

b =

⎡
⎢⎢⎢⎣

b1
b2
...
bp

⎤
⎥⎥⎥⎦ , (2.102)
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then their matrix product ab is a scalar and is equal to their dot product as
vectors, namely

ab =
p∑

j=1

ajbj . (2.103)

Also, if B = (b1,b2, . . . ,bn) is a p × n matrix, where the bi stand for the
column p-vectors of B, then

aB = (ab1,ab2, . . . ,abn), (2.104)

which is a row n-vector.

It is very important to observe that matrix multiplication is not com-
mutative. This will be seen by direct computations, but it also follows from
the definition as two mappings in succession, since mappings are generally
not commutative. The latter is true even in the case of transformations in
the same space. Consider, for instance, the effect of a north-south stretch
followed by a 90-degree rotation on a car facing north, and of the same op-
erations performed in the reverse order. In the first case we end up with a
longer car facing west, and in the second case with a wider car facing west.

In case of the two vectors in Corollary 2.4.1, the product ba is very
different from ab. The latter is a scalar, as given by Equation 2.103. However,
if the column vector comes first, then a and b do not even have to have the
same number of entries. Changing b in Corollary 2.4.1 to a column m-vector
and a to a row n-vector we get, by Theorem 2.4.2 with p = 1,

ba =

⎡
⎢⎢⎢⎣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ (a1, a2, . . . , an) =

⎡
⎢⎢⎢⎣

b1a1 b1a2 · · · b1an

b2a1 b2a2 · · · b2an

...
...

...
...

bma1 bman · · · bman

⎤
⎥⎥⎥⎦ . (2.105)

If m 	= n, then ab does not exist. On the other hand, the ba above is called
the outer product of the two vectors, in contrast to the much more important
inner product given by Equation 2.103, presumably because the outer product
is in the space of m×n matrices, which contains the spaces Rm and Rn of the
factors, and those spaces, in turn, contain the space R1 of the inner product.

Even if the product AB is defined, often the product BA is not. For
example, if A is 2 × 3, say, and B is 3 × 1, then AB is, by Definition 2.4.4, a
2× 1 matrix, but BA is not defined since the inside numbers 1 and 2 in 3× 1
and 2 × 3 do not match, as required by Definition 2.4.4.

The interpretation of the product in Corollary 2.4.1 as a dot product
suggests that the formula of Theorem 2.4.2 can also be interpreted similarly.

Corollary 2.4.2. (Product of Two Matrices in Terms of Their Row
and Column Vectors). Let A be an m × p matrix and B a p × n matrix
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and let us denote the ith row of A by ai and the kth column of B by bk, that
is, let13

ai = (ai1, ai2, . . . , aip) (2.106)

and

bk =

⎡
⎢⎢⎢⎣

b1k

b2k

...
bpk

⎤
⎥⎥⎥⎦ . (2.107)

Then we have

(AB)ik = aibk for i = 1, . . . , m and k = 1, . . . , n. (2.108)

This result may be paraphrased as saying that the entry in the ith row and
kth column of AB equals the dot product of the ith row of A with the kth
column of B. Consequently, we may write out the entire product matrix as

AB =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ (b1,b2, . . . ,bn) =

⎡
⎢⎢⎢⎣

a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
...

amb1 amb2 · · · ambn

⎤
⎥⎥⎥⎦ . (2.109)

The last formula is analogous to the outer product in Equation 2.105, but
the entries on the right are inner products of vectors rather than ordinary
products of numbers. This corollary is very helpful in the evaluation of matrix
products, as will be seen below.

Let us also comment on the use of superscripts and subscripts. The nota-
tion we follow for row and column vectors is standard in multilinear algebra
(treated in more advanced courses) and will serve us well later, but we have
stayed with the more elementary standard usage of just subscripts for matrix
elements. Thus our notation is a mixture of two conventions. To be consis-
tent, we should have used ai

j instead of aij to denote an entry of A, since
then ai

j could have been properly interpreted as the jth component of the ith
row ai, and also as the ith component of the jth column aj . However, since
here we need no such sophistication, we have adopted the simpler convention.

A =
[

2 4
3 7

]
and B =

[
3 − 1
5 6

]
. (2.110)

13 The i here is a superscript to distinguish a row of a matrix from a column, which
is denoted by a subscript, and must not be mistaken for an exponent.

Example 2.4.5. (A Matrix Product in Terms of Row and Column
LetVectors).
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Then

AB =

⎡
⎢⎢⎢⎣

(2 4)
[

3
5

]
(2 4)

[−1
6

]

(3 7)
[

3
5

]
(3 7)

[−1
6

]
⎤
⎥⎥⎥⎦ (2.111)

and so

AB =
[

2 · 3 + 4 · 5 2 · (−1) + 4 · 6
3 · 3 + 7 · 5 3 · (−1) + 7 · 6

]
=
[

26 22
44 39

]
. (2.112)

For further reference, note that we can factor out the column vectors
[

3
5

]

and
[−1

6

]
in the columns of AB as given in Equation 2.111, and write AB as

AB =
[[

2 4
3 7

] [
3
5

] [
2 4
3 7

] [−1
6

]]
=
[

A

[
3
5

]
A

[−1
6

]]
. (2.113)

Thus, in the product AB the matrix A can be distributed over the columns
of B. Similarly, we can factor out the row vectors (2 4) and (3 7) from the
rows of AB as given in Equation 2.111 and write AB also as

AB =
[

(2 4)B
(3 7)B

]
, (2.114)

that is, with the matrix B distributed over the rows of A. �

A =
[

2 − 2 4
1 3 5

]
and B =

⎡
⎣2 − 1

4 −2
6 3

⎤
⎦ . (2.115)

Then

AB =
[

2 · 2 − 2 · 4 + 4 · 6 2 · (−1) − 2 · (−2) + 4 · 3
1 · 2 + 3 · 4 + 5 · 6 1 · (−1) + 3 · (−2) + 5 · 3

]
=
[

20 14
44 8

]
. (2.116)

�

R30 =
[

cos 30 ◦ − sin 30 ◦

sin 30 ◦ cos 30 ◦

]
=

1
2

[√
3 − 1

1
√

3

]
(2.117)

and

R60 =
[

cos 60 ◦ − sin 60 ◦

sin 60 ◦ cos 60 ◦

]
=

1
2

[
1 − √

3√
3 1

]
(2.118)

Example 2.4.6. (A Matrix Product in Terms of Entries). Let

Example 2.4.7. (TheProduct of TwoRotationMatrices). The matrices
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represent rotations by 30◦ and 60◦ respectively, according to Example 2.4.1.
Their product

R30R60 =
[

0 − 1
1 0

]
=
[

cos 90 ◦ − sin 90 ◦

sin 90 ◦ cos 90 ◦

]
= R90 (2.119)

represents the rotation by 90◦, as it should. �

An interesting use of matrices and matrix operations is provided by the
following example, typical of a large number of similar applications involving
incidence or connection matrices.

M =

⎡
⎢⎢⎢⎢⎣

0 1 0 1 0
1 0 0 0 0
0 0 0 0 1
1 0 0 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦ . (2.120)

Here the entry mij is 1 if there is a nonstop connection from city i to city j,
and 0 if there is not, with the cities labeled 1, 2, . . . , 5 instead of A, B, . . . , E.
Then the entries of the matrix

M2 = MM =

⎡
⎢⎢⎢⎢⎣

2 0 0 0 1
0 1 0 1 0
0 0 1 1 0
0 1 1 2 0
1 0 0 0 2

⎤
⎥⎥⎥⎥⎦ (2.121)

show the one-stop connections. Why? Because, if we consider the entry

(M2)ik =
5∑

j=1

mijmjk (2.122)

of M2, then the jth term equals 1 in this sum if and only if mij = 1 and
mjk = 1, that is, if we have a nonstop flight from i to j and another from j
to k. If there are two such j values, then the sum will be equal to 2, showing
that there are two choices for one-stop flights from i to k. Thus, for instance,
(M2)11 = 2 shows that there are two one-stop routes from A to A: Indeed,
from A one can fly to B or D and back. The entries of the matrix14

14 In matrix expressions with several operations, the precedence rules are analo-
gous to those for numbers: first powers, then products, and last addition and
subtraction, unless otherwise indicated by parentheses.

Example 2.4.8. (A Connection Matrix for an Airline). Suppose that

matrix
an A, B, C, D, E as described byairline has nonstop flights between cities
the
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M + M2 =

⎡
⎢⎢⎢⎢⎣

2 1 0 1 1
1 1 0 1 0
0 0 1 1 1
1 1 1 2 1
1 0 1 1 2

⎤
⎥⎥⎥⎥⎦ (2.123)

show the number of ways of reaching one city from another with one-leg
or two-leg flights. In particular, the zero entries show, for instance, that B
and E are not so connected. Evaluating (M3)25 = (M3)52, we would similarly
find that even those two cities can be reached from each other with three-leg
flights.

What are the vectors on which these matrices act, that is, what meaning
can we give to an equation like y = Mx? The answer is that if the components
of x are restricted to just 0 and 1, then x may be regarded as representing
a set of cities and y the set that can be reached nonstop from x. Thus, for
instance,

x =

⎡
⎢⎢⎢⎢⎣

1
1
0
0
0

⎤
⎥⎥⎥⎥⎦ (2.124)

represents the set {A, B}, and then

y = Mx =

⎡
⎢⎢⎢⎢⎣

1
1
0
1
0

⎤
⎥⎥⎥⎥⎦ (2.125)

represents the set {A, B, D} that can be reached nonstop from {A, B}.
(Again, if a number greater than 1 were to show up in y, that would indicate
that the corresponding city can be reached in more than one way.) �

We present one more example, which is a simplified version of a large class
of similar applications of matrices.

Example 2.4.9. (A Matrix Description of Population Changes). We

on the one hand, there is a net increase of 10% in the under fifty popula-
and on the other hand, 20% of the under fifty population becomes fifty or

older, while 40% of the initial over fifty population dies. If x1 and x2 denote
the numbers of people in the two groups at a given time, then their numbers
a decade later will be given by the product

want to describe how in a certain town two population groups, those younger
than 50 and those 50 or older, change over time. We assume that over every
decade,
tion,
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Ax =
[

1.1 0
0.2 0.6

] [
x1
x2

]
. (2.126)

Similarly, two decades later the two population groups will be given by

A (Ax) = A2x =
[

1.21 0
0.34 0.36

] [
x1
x2

]
, (2.127)

and so on. (In Example 7.2.1 we will examine how the two populations change
in the long run.) �

As we have seen, a matrix can be regarded as a row vector of its columns
and also as a column vector of its rows. Making full use of this choice, we
can rewrite the product of matrices two more ways, corresponding to the
particular cases shown in Equations 2.113 and 2.114. We obtain these new
formulas by factoring out the bj coefficients in the columns of the matrix on
the right of Equation 2.109 and the ai coefficients in the rows:

AB =

⎡
⎢⎢⎢⎣

a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
...

amb1 amb2 · · · ambn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦b1,

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ b2, · · · ,

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ bn

⎤
⎥⎥⎥⎦

= (Ab1 Ab2 · · · Abn) (2.128)

and

AB =

⎡
⎢⎢⎢⎣

a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
...

amb1 amb2 · · · ambn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1(b1 b2 · · · bn)
a2(b1 b2 · · · bn)

...
am(b1 b2 · · · bn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1B
a2B

...
amB

⎤
⎥⎥⎥⎦ .

(2.129)

We summarize these results as follows.

Corollary 2.4.3. (Product of Two Matrices in Terms of the Row or
Column Vectors of One of Them). Let A and B be as in Corollary 2.4.2.
With the same notation for the rows and columns used there, we have

AB = A(b1 b2 · · · bn) = (Ab1 Ab2 · · · Abn) (2.130)
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and

AB =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦B =

⎡
⎢⎢⎢⎣

a1B
a2B

...
amB

⎤
⎥⎥⎥⎦ . (2.131)

Although the matrix product is not commutative, it still has the other
important properties expected of a product, namely associativity and dis-
tributivity.

Theorem 2.4.3. (Associativity and Distributivity of Matrix Multi-
plication). Let A, B, and C be arbitrary matrices for which the expressions
below all make sense. Then we have the associative law

A(BC) = (AB)C (2.132)

and the distributive law

A(B + C) = AB + AC. (2.133)

Proof. Let A, B, and C be m × p, p × q, and q × n matrices respectively.
Then we may evaluate the left side of Equation 2.132 using Equations 2.130
and Definition 2.4.4 as follows:

A(BC) = A(B(c1 c2 · · · cn)) = A(Bc1 Bc2 · · · Bcn)
= (A(Bc1) · · · A(Bcn)) = ((AB)c1 · · · (AB)cn)
= (AB)(c1 c2 · · · cn) = (AB)C. (2.134)

We leave the proof of the distributive law to the reader as Exercise 2.4.18. �

Note that Equation 2.132 enables us to write ABC, without parentheses,
for A(BC) or (AB)C.

Once we have defined addition and multiplication of matrices, it is natural
to ask what matrices take the place of the special numbers 0 and 1 in the
algebra of numbers. Zero is easy: we take every matrix with all entries equal
to zero to be a zero matrix. Denoting it by O, regardless of its shape, we
have, for every A of the same shape,

A + O = A, (2.135)

and whenever the product is defined,

AO = O and OA = O. (2.136)

Note that the zero matrices on either side of each of Equations 2.136 may
be of different size, although they are usually denoted by the same letter O.
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While a little less straightforward, it is still easy to see how to find analogs
of 1. For every n, the n×n matrix

I =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

⎤
⎥⎥⎥⎦ (2.137)

with 1’s along its “main diagonal” and zeros everywhere else, has the prop-
erties

AI = A and IA = A, (2.138)

whenever the products are defined. This fact can be verified by direct compu-
tation in every one of the product’s forms, with A in the general form (aij).
We may do it as follows: We write I = (δij), where

δij =
{

1 if i = j
0 if i 	= j

(2.139)

is called Kronecker’s delta function and is the standard notation for the en-
tries of the matrix I. With this notation, for A and I sized m × n and n × n
respectively, Theorem 2.4.2 gives

(AI)ik =
n∑

j=1

aijδjk = aik for i = 1, . . . , m and k = 1, . . . , n, (2.140)

since, by the definition of δjk, in the sum all terms are zero except the one
with j = k and that one gives aik. This result is, of course, equivalent to
AI = A. We leave the proof of the other equation of 2.138 to the reader.

For every n the matrix I is called the unit matrix or the identity matrix
of order n. We usually dispense with any indication of its order unless it is
important and would be unclear from the context. In such cases we write it
as In. Notice that the columns of I are the standard vectors ei (regarded as
column vectors, of course), that is,

I = (e1 e2 . . . en). (2.141)

In Section 2.5 we shall see how the inverse of a matrix can be defined in
some cases.

In closing this section, we just want to present briefly the promised expla-
nation of the reason for using column vectors for x in the equation Ax = b.
In a nutshell, we used column vectors because otherwise the whole formalism
of this section would have broken down. The product Ax was used in Defini-
tion 2.4.4 of the general matrix product AB, which led to the formula of The-
orem 2.4.2 for the components (AB)ik. If we want to multiply AB by a third
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matrix C, we have no problem repeating the previous procedure, that is, form
the products (AB)ikckl and sum over k. However, had we used a row vector x
in the beginning, that would have led to the formula (AB)ik =

∑n
j=1 aijbkj

and then multiplying this result by ckl or clk, and summing over k, we would
have had to use the first subscript of b for summation in this second product,
unlike in the first one. Thus the associative law could not be maintained and
the nice formulas of Corollary 2.4.3 would also cease to hold. Basically, once
we decided to use rows of A to multiply x in the product Ax, then we had
to make x a column vector in order to end up with a reasonable formalism.

Exercises

Exercise 2.4.1. Let

A =
[

2 3
1 − 2

]
and B =

[
3 − 4
2 2

]
.

Find the matrices a. C = 2A + 3B, and b. D = 4A − 3B.

Exercise 2.4.2. Prove Equation 2.82 of Theorem 2.4.1.

In the next six exercises find the products of the given matrices in both
orders, that is, both AB and BA, if possible.

Exercise 2.4.3.

A =
[
1 − 2 3

]
and B =

⎡
⎣3

2
1

⎤
⎦ .

Exercise 2.4.4.

A =
[

2 3 5
1 − 2 3

]
and B =

⎡
⎣3 − 4

2 2
1 −3

⎤
⎦ .

Exercise 2.4.5.

A =

⎡
⎣2 3 5

1 − 2 3
3 −4 2

⎤
⎦ and B =

⎡
⎣3 − 4

2 2
1 −3

⎤
⎦ .

Exercise 2.4.6.

A =
[
1 − 2 3 − 4

]
and B =

⎡
⎣3

2
1

⎤
⎦ .
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Exercise 2.4.7.

A =
[
1 − 2 3 − 4

]
and B =

⎡
⎢⎢⎣

3 − 4
2 2
1 −3

−2 5

⎤
⎥⎥⎦ .

Exercise 2.4.8.

A =
[

2 3 5
1 − 2 3

]
and B =

⎡
⎢⎢⎣

3 − 4
2 2
1 −3

−2 5

⎤
⎥⎥⎦ .

Exercise 2.4.9. Verify the associative law for the product of the matrices

A = [1 − 2], B =
[

3 − 4
2 2

]
, and C =

[
1 − 3
3 0

]
.

Exercise 2.4.10. With the notation of Example 2.4.1, prove that for every
two rotation matrices Rα and Rβ we have RαRβ = Rα+β .

Exercise 2.4.11. Find two nonzero 2 × 2 matrices A and B such that
AB = O.

Exercise 2.4.12. Show that the cancellation law does not hold for matrix
products: Find nonzero 2 × 2 matrices A, B, C such that AB = AC but
B 	= C.

that the product AB can also be written in the following alternative forms:
a. AB = a1b1+a2b2+ · · · + apbp,
b. AB = (

∑p
i=1 aibi1,

∑p
i=1 aibi2, . . . ,

∑p
i=1 aibin) or (AB)j =

∑p
i=1 aibij ,

c. AB =

⎡
⎢⎢⎢⎣
∑p

j=1 a1jbj∑p
j=1 a2jbj

...∑p
j=1 amjbj

⎤
⎥⎥⎥⎦ or (AB)i =

∑p
j=1 aijbj .

Exercise 2.4.14. Let A be any n×n matrix. Its powers, for all nonnegative
integer exponents k, are defined by induction as A0 = I and Ak = AAk−1.
Show that the rules AkAl = Ak+l and (Ak)l = Akl hold, just as for real
numbers.

Exercise 2.4.15. Find a nonzero 2 × 2 matrix A such that A2 = O.

Exercise 2.4.16. Find a 3 × 3 matrix A such that A2 	= O but A3 = O.

Exercise 2.4.17. Find the number of three-leg flights connecting B and D
in Example 2.4.8 by evaluating (M3)24 = (M3)42.

Exercise 2.4.13. Let A be an m × p matrix and B a p × n matrix. Show*
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Exercise 2.4.18. Prove Equation 2.133 of Theorem 2.4.3.

The next five exercises deal with block multiplication.

Exercise 2.4.19. Show that

[
1 − 2
3 4

∣∣∣∣ 1 0
0 1

]⎡⎢⎢⎣
0 0
0 0
3 2
1 −1

⎤
⎥⎥⎦

=
[

1 − 2
3 4

] [
0 0
0 0

]
+
[

1 0
0 1

] [
3 2
1 −1

]
=
[

3 2
1 −1

]
.

Exercise 2.4.20. Show that if two conformable matrices of any size are
partitioned, as in the previous exercise, so that the products make sense,
then

[A B]
[

C
D

]
= [AC + BD].

Exercise 2.4.21. Show that if two conformable matrices of any size are
partitioned into four submatrices each, so that the products and sums make
sense, then[

A B
C D

] [
E F
G H

]
=
[

AE + BG AF + BH
CE + DG CF + DH

]
.

Exercise 2.4.22. Compute the product by block multiplication, using the
result of the previous exercise:⎡

⎢⎢⎣
1 − 2
3 4

−1 0
0 − 1

∣∣∣∣∣∣∣∣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 − 2
2 0
0 0
0 0

∣∣∣∣∣∣∣∣
1 0

−3 1
2 3
7 4

⎤
⎥⎥⎦ .

Exercise 2.4.23. Partition the first matrix of the previous exercise as⎡
⎢⎢⎣

1 − 2
3 4

−1 0

∣
∣
∣
∣
∣
∣
∣
∣

0 − 1
∣
∣
∣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ .

Find the appropriate corresponding partition of the second matrix, and eval-
uate the product by using these blocks.

MATLAB Exercises

In MATLAB, the product of matrices is denoted by ∗, and a power like Ak by
Aˆk; both the same as for numbers. The unit matrix of order n is denoted by
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eye(n), and the m×n zero matrix by zeros(m, n). The command rand(m, n)
returns an m × n matrix with random entries uniformly distributed between
0 and 1. The command round(A) rounds each entry of A to the nearest
integer.

Exercise 2.4.24. As in Example 2.4.1, let v denote the vector obtained from
the vector u by a rotation through an angle θ.

a. Compute v for u =
[

2
5

]
and each of θ = 15 ◦, 30 ◦, 45 ◦, 60 ◦, 75 ◦, and 90 ◦ .

(MATLAB will compute the trig functions if you use radians.)
b. Use MATLAB to verify that R75 ◦ = R25 ◦ ∗ R50 ◦ .

Exercise 2.4.25. Let

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
1 0 0 0 1 1
0 0 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

be the connection matrix of an airline network as in Example 2.4.8.
a. Which cities can be reached from A with exactly two stops?
b. Which cities can be reached from A with two stops or less?
c. What is the number of stops needed to reach all cities from all others?

Exercise 2.4.26. Let a = 10 ∗ rand(1, 4) − 5 and b = 10 ∗ rand(1, 4) − 5.
a. Compute C = a ∗ b′ and rank(C) for ten instances of such a and b. (Use
the up-arrow key.)
b. Make a conjecture about rank(C) in general.
c. Prove your conjecture.

Exercise 2.4.27. Let A = 10 ∗ rand(2, 4) − 5 and B = 10 ∗ rand(4, 2) − 5.
a. Compute C = A∗B, D = B ∗A, rank(C), and rank(D) for ten instances
of such A and B.
b. Make a conjecture about rank(C) and rank(D) in general.

Exercise 2.4.28. In MATLAB you can enter blocks in a matrix in the same
way as you enter scalars. Use this method to solve a. Exercise 2.4.19, and b.
Exercise 2.4.22.

2.5 The Inverse and the Transpose of a Matrix

While for vectors it is impossible to define division, for matrices it is possible
in some very important cases.
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We may try to follow the same procedure as for numbers. The fraction
b/a has been defined as the solution of the equation ax = b, or as b times
1/a, where 1/a is the solution of ax = 1. For matrices we mimic the latter
formula: To find the inverse of a matrix A, we look for the solution of the
matrix equation

AX = I, (2.142)

where I is the n×n unit matrix and X an unknown matrix. In terms of map-
pings, because I represents the identity mapping or no change, this equation
means that if a mapping is given by the matrix A, we are looking for the
matrix X of the (right) inverse mapping, that is, of the mapping that is un-
done if followed by the mapping A. (As it turns out, and as should be evident
from the geometrical meaning, the order of the factors does not matter if A
represents a mapping from Rn to itself.)

By the definition of the product, if I is n × n, then A must be n × p
and X of size p × n for some p. Then Equation 2.142 corresponds to n2

scalar equations for np unknowns. Thus, if p < n holds, then we have fewer
unknowns than equations and generally no solutions apart from exceptional
cases. On the other hand, if p > n holds, then we have more unknowns than
equations, and so generally infinitely many solutions. Since we are interested
in finding unique solutions, we restrict our attention to those cases in which
p = n holds, or in other words to n×n or square matrices A. (Cases of p 	= n
are left to Exercises 2.5.8–2.5.11.) For a square matrix, n is called the order
of A. For such A, Equation 2.142 may be written as

A(x1 x2 . . . xn) = (e1 e2 . . . en) (2.143)

and by Equation 2.130 we can decompose this equation into n separate
systems

Ax1= e1, Ax2= e2, . . . , Axn= en (2.144)

for the n unknown n-vectors x1, x2, . . . , xn.
Before proceeding further with the general theory, let us consider an

example.

A =
[

1 2
3 4

]
(2.145)

and so let us solve[
1 2
3 4

] [
x11 x12
x21 x22

]
=
[

1 0
0 1

]
(2.146)

Example 2.5.1. (Finding the Inverse of a 2 × 2 Matrix by Solving
tems). LetSysTwo

×
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or equivalently the separate systems[
1 2
3 4

] [
x11
x21

]
=
[

1
0

]
and

[
1 2
3 4

] [
x12
x22

]
=
[

0
1

]
. (2.147)

Subtracting 3 times the first row from the second in both systems, we get[
1 2
0 − 2

] [
x11
x21

]
=
[

1
−3

]
and

[
1 2
0 − 2

] [
x12
x22

]
=
[

0
1

]
. (2.148)

Adding the second row to the first and dividing the second row by –2, again
in both systems, we obtain[

1 0
0 1

] [
x11
x21

]
=
[ −2

3/2

]
and

[
1 0
0 1

] [
x12
x22

]
=
[

1
−1/2

]
. (2.149)

Hence

x11 = −2, x21 = 3/2, x12 = 1, x22 = −1/2 (2.150)

or in matrix form

X =
[ −2 1

3/2 − 1/2

]
. (2.151)

It is easy to check that this X is a solution of AX = I, and in fact of XA = I,
too. Furthermore, since the two systems given by Equations 2.147 have the
same matrix A on their left sides, the row reduction steps were exactly the
same for both, and can therefore be combined into the reduction of a single
augmented matrix with the two columns of I on the right, that is, of [A|I]
as follows:[

1 2
3 4

∣∣∣∣ 1 0
0 1

]
→
[

1 2
0 − 2

∣∣∣∣ 1 0
−3 1

]
→[

1 0
0 − 2

∣∣∣∣ −2 1
−3 1

]
→
[

1 0
0 1

∣∣∣∣ −2 1
3/2 − 1/2

]
. (2.152)

�

We can generalize the results of this example in part as a definition and
in part as a theorem.

Definition 2.5.1. (The Inverse of a Matrix). A matrix A is called in-
vertible if it is a square matrix and there exists a unique square matrix X of
the same size such that AX = I and XA = I hold. Such an X, if one exists,
is called the inverse of A and is denoted by A−1.

Theorem 2.5.1. (Inverting a Matrix by Row Reduction). A square
matrix is invertible if and only if the augmented matrix [A|I] can be reduced
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by elementary row operations to the form [I|C], and in that case C is the
inverse A−1 of A.

Proof. The augmented matrix corresponding to the equation AX = I is [A|I].
If the reduction of [A|I] produces the form [I|C], then the matrix equation
corresponding to the latter augmented matrix is IX = C or, equivalently,
X = C. By Theorem 2.1.1, IX = C has the same solution set as AX = I,
and so C is the unique solution of AX = I.

By reversing the elementary row operations, we can undo the above re-
duction; that is, we can change [I|C] back to [A|I]. But then the same steps
would change [C|I] into [I|A], which corresponds to solving the matrix equa-
tion CY = I for an unknown matrix Y uniquely as IY = A, or Y = A.
Hence, CA = I. Thus, if C solves AX = I, then it also solves XA = I, and
it is the only solution of both equations. Thus A is invertible, with C as its
inverse A−1.

On the other hand, if [A|I] cannot be reduced to the form [I|X], then
the system AX = I has no solution for the following reason: In this case the
reduction of A must produce a zero row at the bottom of every corresponding
echelon matrix U , because if U had no zero row, then it could be further
reduced to I. The last row of every reduction of [A|I] that reduces A to an
echelon matrix U with a zero bottom row must be a sum of nonzero multiples
of some rows (or maybe just a single row). Suppose this sum contains c times
the ith row (with c 	= 0). Then the submatrix [A|ei] (see footnote 6 on
page 54) will be reduced to [U |cen]: Since the zero entries of the ei column
cannot affect the single 1 of it, c times this 1 ends up at the bottom. The
matrix [U |cen], however, represents an inconsistent system, because the last
row of U is zero, but the last component of cen is not. �

A =
[

2 3
1 − 2

]
(2.153)

if it exists.
We form the augmented matrix [A|I] and reduce it as follows:[

2 3
1 − 2

∣∣∣∣ 1 0
0 1

]
r1 ← r2
r2 ← r1

[
1 − 2
2 3

∣∣∣∣ 0 1
1 0

]
r1 ← r1
r2 ← r2 − 2r1

[
1 − 2
0 7

∣∣∣∣ 0 1
1 − 2

]
r1 ← r1
r2 ← r2/7

[
1 − 2
0 1

∣∣∣∣ 0 1
1/7 − 2/7

]
r1 ← r1 + 2r2
r2 ← r2

[
1 0
0 1

∣∣∣∣ 2/7 3/7
1/7 − 2/7

]
. (2.154)

Example 2.5.2. (Finding the Inverse of a 2 × 2 Matrix by Row
Let us find the inverse of the matrixReduction).

×
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Thus we can read off the inverse of A as

A−1 =
1
7

[
2 3
1 − 2

]
. (2.155)

It is easy to check that we do indeed have AA−1 = A−1A = I. �

A =
[

1 2
2 4

]
. (2.156)

We form the augmented matrix [A|I] and reduce it as follows:[
1 2
2 4

∣∣∣∣ 1 0
0 1

]
r1 ← r1
r2 ← r2 − 2r1

[
1 2
0 0

∣∣∣∣ 1 0
−2 1

]
. (2.157)

The corresponding system is[
1 2
0 0

] [
x11 x12
x21 x22

]
=
[

1 0
−2 1

]
, (2.158)

and so the second row of [A|I] corresponds to the self-contradictory equations

0x11 + 0x21 = −2 (2.159)
0x12 + 0x22 = 1. (2.160)

Thus A has no inverse. �

Just as for numbers b/a = a−1b is the solution of ax = b, for matrix
equations we have a similar consequence of Definition 2.5.1.

Theorem 2.5.2. (Using the Inverse to Solve Matrix Equations). If
A is an invertible n × n matrix and B an arbitrary n × p matrix, then the
equation

AX = B (2.161)

has the unique solution

X = A−1B. (2.162)

Proof. That X = A−1B is a solution can be seen easily by substituting it
into Equation 2.161:

A(A−1B) = (AA−1)B = IB = B, (2.163)

and that it is the only solution can be seen in this way. Assume that Y is
another solution, so that

AY = B (2.164)

Example 2.5.3. (Showing Noninvertibility of a 2 × 2 Matrix by Row
tion). Here is an example of a noninvertible square matrix. Let us
compute the inverse of

Reduc
×

try to
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holds. Multiplying both sides of this equation by A−1 we get

A−1(AY ) = A−1B (2.165)

and this equation reduces to

(A−1A)Y = Y = A−1B, (2.166)

which shows that Y = X. �

If p = 1 holds, Equation 2.161 becomes our old friend

Ax = b, (2.167)

where x and b are n-vectors. Thus Theorem 2.5.2 provides a new way of
solving this equation. Unfortunately, this technique has little practical sig-
nificance, since computing the inverse of A is generally more difficult than
solving Equation 2.167 by Gaussian elimination. In some theoretical consid-
erations, however, it is useful to know that the solution of Equation 2.167
can be written as

x = A−1b, (2.168)

and if we have several equations like 2.167 with the same left sides, then they
can be combined into an equation of the form 2.161 with p > 1 and profitably
solved by computing the inverse of A and using Theorem 2.5.2.

[
1 2
3 4

]
X =

[
2 3 − 5
4 − 1 3

]
. (2.169)

From Example 2.5.1 we know that[
1 2
3 4

]−1

=
[ −2 1

3/2 − 1/2

]
. (2.170)

Hence, by Theorem 2.5.2, we obtain

X =
[ −2 1

3/2 − 1/2

] [
2 3 − 5
4 − 1 3

]
=
[

0 − 7 13
1 5 − 9

]
. (2.171)

�

As we have just seen, if A is invertible, then Equation 2.168 provides the
solution of Equation 2.167 for every n-vector b. It is then natural to ask
whether the converse is true, that is, whether the existence of a solution of
Equation 2.167 for every b implies the invertibility of A. (We know that a

Example 2.5.4. (Solving an Equation for an Unknown 2 × 3 Matrix).×
Let us solve
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single b is not enough: Equation 2.167 may be solvable for some right-hand
sides and not for others; see, e.g., Examples 2.1.4 and 2.1.5.) The answer
is yes.

Theorem 2.5.3. (Existence of Solutions Criterion for the Invert-
ibility of a Matrix). An n×n matrix A is invertible if and only if Ax = b
has a solution for every n-vector b.

Proof. The “only if” part of this statement has already been proved; we just
included it for the sake of completeness. To prove the “if” part, let us assume
that Ax = b has a solution for every n-vector b. Then it has a solution for
each standard vector ei in the role of b; that is, each of the equations

Ax1= e1, Ax2 = e2, . . . , Axn = en (2.172)

has a solution by assumption. These equations can, however, be combined
into the single equation

A (x1,x2, . . . ,xn) = (e1, e2, . . . , en) , (2.173)

which can be written as

AX = I (2.174)

whose augmented matrix is [A|I]. From the proof of Theorem 2.5.1 we know
that the solution of this equation, if one exists, must be X = A−1, and
since we have stipulated the existence of a solution, the invertibility of A
follows. �

The condition of solvability of Ax = b for every possible right side can
be replaced by the requirement of uniqueness of the solution for a single b.

Theorem 2.5.4. (Unique-Solution Criterion for the Invertibility of
a Matrix). An n × n matrix A is invertible if and only if Ax = b has a
unique solution for some n-vector b.

Proof. If A is invertible, then, by Theorem 2.5.2, x = A−1b gives the unique
solution of Ax = b for every b. Conversely, if, for some b, Ax = b has a
unique solution, then Theorem 2.2.1 (page 55) shows that the rank of A
equals n and consequently that AX = I also has a unique solution. Of course,
this solution must be A−1. �

The vector b in Theorem 2.5.4 may be taken to be the zero vector. This
case is sufficiently important for special mention.

Corollary 2.5.1. (Trivial-Solution Criterion for the Invertibility of
a Matrix). A square matrix A is invertible if and only if Ax = 0 has only
the trivial solution.
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Definition 2.5.2. (Singular and Nonsingular Matrices). An n × n
matrix A for which the associated system Ax = b has a unique solution for
every n-vector b is called nonsingular; otherwise, it is called singular.

Let us collect some equivalent characterizations of nonsingular square
matrices that follow from our considerations up to now.

Theorem 2.5.5. (Various Criteria for a Matrix to be Nonsingular).
An n × n matrix A is nonsingular if and only if it has any (and thus all) of
the following properties:
1. A is invertible.
2. The rank of A is n.
3. A is row equivalent to I.
4. Ax = b has a solution for every b.
5. Ax = b has a unique solution for some b.
6. The homogeneous equation Ax = 0 has only the trivial solution.

For numbers, the product and the inverse are connected by the formula
(ab)−1 = a−1b−1 = b−1a−1. For matrices, we have an analogous result, but
with the significant difference that the product is noncommutative and the
order of the factors on the right must be reversed.

Theorem 2.5.6. (Inverse of the Product of Two Matrices). If A
and B are invertible matrices of the same size, then so too is AB, and

(AB)−1 = B−1A−1. (2.175)

Proof. The proof is very simple: Repeated application of the associative law
and the definition of I give

(AB)(B−1A−1) = ((AB)B−1)A−1 = (A(BB−1))A−1 = (AI) A−1

= AA−1 = I (2.176)

and similarly in the reverse order

(B−1A−1)(AB) = I. (2.177)

�

Another theorem for numbers, namely that
(
a−1
)−1 = a, also has an

analog for matrices.

Theorem 2.5.7. (Inverse of the Inverse of a Matrix). If A is an in-
vertible matrix, then so too is A−1 and

(A−1)−1 = A. (2.178)
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The proof is left as Exercise 2.5.19.
There exists another simple operation for matrices, one that has no analog

for numbers. Although we will not need it until later, we present it here since
it rounds out our discussion of the algebra of matrices.

Definition 2.5.3. (Transpose of a Matrix). For every m×n matrix A,
we define its transpose AT as the n × m matrix obtained from A by making
the jth column of A into the jth row of AT for each j; that is, by defining
the jth row of AT as (a1j , a2j , . . . , amj) . Equivalently,

(AT )ji = aij (2.179)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

From this definition it easily follows that the ith row of A becomes the
ith column of AT as well. Also, the transpose of a column n-vector is a row
n-vector and vice versa. This fact is often used for avoiding the inconvenient
appearance of tall column vectors by writing them as transposed rows:

(x1, x2, . . . , xn)T =

⎡
⎢⎢⎢⎣

x1
x2

...
xn

⎤
⎥⎥⎥⎦ . (2.180)

�

A =
[

2 3 − 5
4 − 1 3

]
. (2.181)

Then

AT =

⎡
⎣ 2 4

3 − 1
−5 3

⎤
⎦ . (2.182)

�

The transpose has some useful properties.

Theorem 2.5.8. (Transpose of the Product of Two Matrices and of
the Inverse of a Matrix). If A and B are matrices such that their product
is defined, then

(AB)T = BT AT , (2.183)

Example 2.5.5. (Transpose of a Row Vector)

Example 2.5.6. (Transpose of a 2 × 3 Matrix). Let×
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and if A is invertible, then so too is AT and

(AT )−1 = (A−1)T . (2.184)

Proof. AB is defined when A is m × p and B is p × n, for arbitrary m, p,
and n. Then BT is n × p and AT is p × m, and so BT AT is also defined and
is n × m, the same size as (AB)T . To prove Equation 2.183, we need only
show that corresponding elements of those two products are equal. Indeed,
for every i = 1, . . . , n and j = 1, . . . , m,

((AB)T )ij = (AB)ji =
p∑

k=1

ajkbki =
p∑

k=1

(BT )ik(AT )kj = (BT AT )ij . (2.185)

Hence (AB)T = BT AT .
Next, we prove the second statement of the theorem. If A is invertible,

then there is a matrix A−1 such that AA−1 = A−1A = I. Applying Equa-
tion 2.183, with B = A−1, we obtain

(A−1)T AT = (AA−1)T = IT = I, (2.186)

and also

AT (A−1)T = (A−1A)T = IT = I. (2.187)

Hence AT is invertible and (AT )−1 = (A−1)T . �

Exercises

In the first six exercises find the inverse matrix if possible.

Exercise 2.5.1. A =
[

2 3
4 − 1

]
.

Exercise 2.5.2. A =
[

5 2
3 4

]
.

Exercise 2.5.3. A =

⎡
⎣2 3 5

4 − 1 1
3 2 − 2

⎤
⎦ .

Exercise 2.5.4. A =

⎡
⎣0 −6 2

3 − 1 0
4 3 − 2

⎤
⎦ .

Exercise 2.5.5. A =

⎡
⎣2 3 5

4 − 1 3
3 2 5

⎤
⎦ .
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Exercise 2.5.6. A =

⎡
⎢⎢⎣

1 − 1 0 0
0 1 − 1 0
0 1 1 0
1 0 −1 1

⎤
⎥⎥⎦ .

Exercise 2.5.7. Find two invertible 2 × 2 matrices A and B such that A 	=
−B and A + B is not invertible.

Exercise 2.5.8. a. Given the 2 × 3 matrix

A =
[

2 0 4
4 − 1 1

]
,

find all 3 × 2 matrices X by Gauss–Jordan elimination such that AX = I
holds. (Such a matrix is called a right inverse of A.)
b. Can you find a 3 × 2 matrix Y such that Y A = I holds?

Exercise 2.5.9. a. Given the 3 × 2 matrix

A =

⎡
⎣2 − 1

4 −1
2 2

⎤
⎦ ,

find all 2 × 3 matrices X by Gauss–Jordan elimination such that XA = I
holds. (Such a matrix is called a left inverse of A.)
b. Can you find a 2 × 3 matrix Y such that AY = I holds?

.
the last two exercises, for the existence of a right inverse and for the existence
of a left inverse of a 2 × 3 and of a 3 × 2 matrix.
b. Same as above for an m × n matrix.
c. When would the right inverse and the left inverse be unique?

a left inverse Y , then Y = X must hold. (Hint : Modify the second part of
the proof of Theorem 2.5.2.)

Exercise 2.5.12. The matrix

E =

⎡
⎣1 0 0

c 1 0
0 0 1

⎤
⎦

is obtained from the unit matrix I by the elementary row operation of adding
c times its first row to its second row. Show that for every 3 × 3 matrix A
the same elementary row operation performed on A results in the product
matrix EA. Also, find E−1 and describe the elementary row operation it
corresponds to. (A matrix that produces the same effect by multiplication as
an elementary row operation, like this E and the matrices P in the next two
exercises, is called an elementary matrix.)

Exercise 2.5.10. a. Try to formulate a general rule, based on the results of

Exercise 2.5.11. Show that if a square matrix has a right inverse X and

*

*
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Exercise 2.5.13. Find a matrix P such that, for every 3 × 3 matrix A, PA
equals the matrix obtained from A by multiplying its first row by a nonzero
scalar c. (Hint: Try A = I first.) Find P−1.

Exercise 2.5.14. Find a matrix P such that, for every 3 × 3 matrix A, PA
equals the matrix obtained from A by exchanging its first and third rows.
(Hint: Try A = I first.) Find P−1.

Exercise 2.5.15. If A is any invertible matrix and c any nonzero scalar,
what is the inverse of cA? Prove your answer.

Exercise 2.5.16. For every invertible matrix A and every positive integer n
we define A−n = (A−1)n. Show that in this case we also have A−n = (An)−1

and A−mA−n = A−m−n if m is a positive integer as well.

Exercise 2.5.17. A square matrix with a single 1 in each row and in each
column and zeros everywhere else is called a permutation matrix.
a. List all six 3 × 3 permutation matrices P and their inverses.
b. Show that, for every such P and for every 3 × n matrix A, PA equals the
matrix obtained from A by the permutation of its rows that is the same as
the permutation of the rows of I that results in P .
c. What is BP if B is n × 3?

Exercise 2.5.18. State six conditions corresponding to those of Theorem
2.5.5 for a matrix to be singular.

Exercise 2.5.19. Prove Theorem 2.5.7. (Hint : Imitate the proof of Theo-
rem 2.5.2 for the equation A−1X = I.)

Exercise 2.5.20. Prove that if A, B, C are invertible matrices of the same
size, then so is ABC, and (ABC)−1 = C−1B−1A−1.

MATLAB Exercises

In MATLAB, the transpose of A is denoted by A′. The reduction of [A|I]
can be achieved by the command rref([A eye(n)]) or rref([A eye(size(A))]).
A−1 can also be obtained by writing inv(A). These commands or the com-
mand rank(A) can be used to determine whether A is singular or not.

Exercise 2.5.21. Let A = round(10 ∗ rand(4)), B = triu(A), and C =
tril(A).
a. Find the inverses of B and C in format rat by using rref if they exist,
and verify that they are inverses indeed.
b. Repeat Part (a) five times. (Use the up-arrow key.)
c. Do you see any pattern? Make a conjecture and prove it.
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Exercise 2.5.22. Let A = round(10 ∗ rand(3, 5)).
a. Find a solution for AX = I by using rref, or show that no solution exists.
b. If you have found a solution, verify that it satisfies AX = I.
c. If there is a solution, compute A\eye(3) and check whether it is a solution.
d. If there is a solution of AX = I, try to find a solution for Y A = I by using
rref.
(Hint : Rewrite this equation as AT Y T = I first.) Draw a conclusion.
e. Repeat all of the above three times.
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3.1 General Vector Spaces

At the end of Section 1.1 we mentioned that various sets of functions have the
same kind of structure as the Euclidean vector spaces we had studied, and are
also called vector spaces. (By structure we mean the algebraic operations on
these sets.) The precise definition will follow below. In subsequent sections,
we are going to develop several concepts, such as subspaces, linear indepen-
dence, and so on, that are common to all these cases. Thus it is advantageous
to consider such spaces in general, before taking them up individually. Nev-
ertheless, our focus will remain Rn, but we also need to study its subspaces,
which are vector spaces in their own right.

In this section, we define general vector spaces, study some of the impli-
cations of the definition, and list several examples and counterexamples, but
we leave the most important examples, the subspaces of Rn, to Section 3.2.

Definition 3.1.1. (Vector Space). A set V is called a (real) vector space
and its elements are called vectors if V is not empty and to each p,q ∈ V
and each real number c a unique sum p+q ∈ V and a unique product cp ∈ V
are associated, satisfying the eight rules below 1

1. p + q = q + p (commutativity of addition),
2. (p + q) + r = p + (q + r) (associativity of addition),
3. There is a vector 0 ∈ V such that p+0 = p for every p (existence of zero
vector),
4. For every vector p there is an associated vector −p ∈ V such that p +
(−p) = 0 (existence of additive inverse),
5. 1p = p (rule of multiplication by 1),
6. a(bp) = (ab)p (associativity of multiplication by scalars),
7. (a + b)p = ap + bp (first distributive law),
8. a(p + q) = ap + aq (second distributive law).

Example 3.1.1. ( nas a Vector Space). For every n, the Euclidean space Rn

is a vector space by this new definition as well, since it was taken as the
paradigm of all vector spaces: That Rn satisfies the eight axioms, was proved
in Theorem 1.1.1. �
1 Such rules in definitions are usually called axioms.

for all , , , and real a and b:p,q,r

for = 2.
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Example 3.1.2. (The Set of m×n Matrices as a Vector Space).The set Mm,n

of all m × n matrices, with the usual rules of addition and multiplication of
matrices by scalars, has the structure of a vector space, which is basically the
same as that of Rmn, except for the insignificant detail of the components
being arranged in a rectangular array, rather than in a column. �

In the examples below we exhibit various vector spaces of real-valued
functions in which, for every f, g, the sum f + g and the product cf are
defined in the usual way by

(f + g)(x) = f(x) + g(x) (3.1)

and

(cf)(x) = cf(x) (3.2)

for all x for which the right-hand sides are defined. Thus the domain of f + g
is the intersection of the domains of f and g, and the domain of cf is the
same as that of f .

Example 3.1.3. (Sets of Real Functions as Vector Spaces). Let D be any
F(D) of all real-valued functions on D with the

above operations is easily shown to be a vector space. �

Definition 3.1.1 implicitly states that in every vector space the sum of
two vectors and every scalar multiple of a vector must also be vectors in
the same space. These are conditions that must also be checked to determine
whether a given set is a vector space or not. While in the foregoing examples
these conditions were obviously true, in many others they may not be, or the
operations can lead out of the set we started with. For example, the sum of
two numbers between 0 and 1 may well be more than 1. Thus the interval
(0, 1) with the usual operations is not a vector space. We have an explicit
name for these implicitly included properties.

Definition 3.1.2. (Closure Under Addition and Under Multiplica-
tion by Scalars). A set S is said to be closed under addition if for every
pair of elements p,q ∈ S the sum p + q is defined and belongs to S. The set
S is said to be closed under multiplication by scalars if for every scalar c and
p ∈ S the product cp is defined and belongs to S.

Remark 3.1.1. Equations 3.1 and 3.2 define operations on functions that sat-
isfy the eight axioms of Definition 3.1.1 because the corresponding operations
on the right-hand sides are the usual operations on R, which satisfy the ax-
ioms for all values of x. Thus, to show that a given set S of functions is a
vector space, all we need to show is that S is closed under these operations,
and the axioms follow automatically. In particular, the closure of S under
multiplication by all scalars implies 0 ∈ S and −p ∈ S if p ∈ S, since c = 0
implies cp = 0, and c = −1 implies cp = −p.

×

set of real numbers. The set
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Example 3.1.4. (Sets of Polynomials as Vector Spaces). Let Pn={P |P (x)=
p0 +p1x+ · · ·+pnxn; p0, p1, . . . , pn ∈ R} be the set of single-variable polyno-
mials of degree n or less and the zero polynomial,2 0 = 0 + 0x + · · ·+ 0xn for
all x, together with the rules of addition of functions and their multiplication
by scalars given by Equations 3.1 and 3.2, which in this case mean

(p0 + p1x + · · · + pnxn) + (q0 + q1x + · · · + qnxn)
= (p0 + q0) + (p1 + q1)x + · · · + (pn + qn)xn (3.3)

and

c(p0 + p1x + · · · + pnxn) = cp0 + cp1x + · · · + cpnxn (3.4)

for all x. �

With these rules the set Pn becomes a vector space: Clearly Pn is closed
under addition and multiplication by scalars, and by the preceding remark,
the polynomials of Pn satisfy the axioms of Definition 3.1.1 and can be re-
garded as vectors.

Note that Pm ⊂ Pn if m < n, because then the set of polynomials
of degree n or less includes the set of polynomials of degree m or less.
This is in contrast to Euclidean spaces, where Rm � Rn if m < n, since
m-tuples are not also n-tuples. (However, if m < n, then Rm is in one-to-one
correspondence with a subset of Rn, which is also an m-dimensional vec-
tor space. For example, R2 is in one-to-one correspondence with the subset
{(x1, x2, 0) : x1, x2 ∈ R} of R3.)

Example 3.1.5. (Sets of Continuous Functions as Vector Spaces).
C[a, b] of all continuous functions on the interval [a, b] is also a vector

for the following reasons. It is closed under addition and under multipli-
by scalars, because the sum of two functions continuous on an interval is

there as well. �

Example 3.1.6. (Sets of Discontinuous Functions Are Not Vector
Consider the set D[a, b] of discontinuous functions on the interval

not a vector space because it is not closed under addition: The

f is a jump of size 1 at some point p ∈ [a, b], then
the only discontinuity of g = −f is a jump of size −1 at p, and D[a, b] is not
closed under addition since f + g = f + (−f) = 0 for all x ∈ [a, b], and the
zero function is continuous. Axiom 3 is also violated, because there is no zero
vector in this set; the only candidate is outside D[a, b]. �
2 By convention, the zero polynomial has no degree, because otherwise the additive

rule for degrees in the multiplication of polynomials could not be maintained.
Some authors, however, define the degree of the zero polynomial to be −∞.

set
space,
cation
also continuous there, and every scalar multiple of such a function is continuous

The

Spaces).
[a, ]. set isb This
sum of two discontinuous functions need not be discontinuous. For example, if
the only discontinuity of
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Example 3.1.7. (The Set of Ordered Pairs with an Unusual AdditionRule
ot a Vector Space). The set of all ordered pairs of real numbers with addition

and multiplication by scalars defined by (p1, p2)+ (q1, q2) = (p1 + p2, q1 + q2)
and c(p1, p2) = (cp1, cp2) is not a vector space, because Axiom 1 fails to
hold. For example, let (p1, p2) = (1, 2) and (q1, q2) = (1, 3). Then, by the
given addition rule, we have (1, 2) + (1, 3) = (1 + 2, 1 + 3) = (3, 4), but
(1, 3) + (1, 2) = (1 + 3, 1 + 2) = (4, 3); thus this kind of addition is not
commutative. �

Notice that, as in the preceding two examples, to disprove a general rule,
all we need is one counterexample. On the other hand, to prove a general rule
is more difficult: We must prove it for all cases. We usually do this by alge-
braically proving an arbitrary typical case using letter symbols, since proving
a rule for any appropriate case proves it for all such cases. We illustrate this
kind of proof in the next example, and many others will follow.

Example 3.1.8.(SolutionSetofaDi ff
The set D of all differentiable functions f on R for which f ′(x)+f(x) = 0 for
all x and addition and multiplication by scalars are defined by Equations 3.1
and 3.2 is a vector space. Indeed, D is closed under addition and multiplica-
tion by scalars, since if f and g are any functions in D, then f ′ + f = 0 and
g′ + g = 0, whence (f + g)′ + (f + g) = 0 and (cf)′ + (cf) = 0, and so f + g
and cf are both in D. The eight axioms follow automatically by Remark 3.1.1
above. �

Subtraction of vectors can be defined just as before.

Definition 3.1.3. (Subtraction of Vectors). For all vectors p and q in
a vector space V , we define

p − q = p + (−q). (3.5)

We have a list of further properties of vectors just as in Rn.

Theorem 3.1.1. (Properties of 0 and Negatives). For all vectors p, q,
x in a vector space V and for all scalars c and d, we have
1. 0p = 0,
2. c0 = 0,
3. p + x = q if and only if x = q − p,
4. If cp = 0 then either c = 0 or p = 0 or both,
5. −p = (−1)p,
6. (−c)p = c(−p) = −(cp),
7. c(p − q) = cp − cq,
8. (c − d)p = cp − dp.

Proof. First we prove Property 1. By Axiom 5 we have p = 1p. By the
definition of the number 0, Axiom 7, and Axiom 5 again, this equation can

Is N

fferentialEquationasaVectorSpace).
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be changed to p = (1 + 0)p = 1p + 0p = p + 0p. Change the order of the
terms on the right using Axiom 1 and add −p to both sides: Then we get
p+(−p) = (0p+p)+(−p) = 0p+[p+(−p)], where in the last step we used
Axiom 2. Applying Axiom 4 on both sides, we obtain 0 = 0p + 0. Axiom 3
reduces this result to 0 = 0p, as was to be proved.

To prove Property 2, observe that c0 = c(0p) by Property 1 and, by
Axiom 6, the ordinary multiplication of numbers, and Property 1 again, c(0p)
becomes (c0)p = 0p = 0.

The proof of Property 3 runs as follows. Suppose first that x = q − p.
Then p+x = p+(q−p) = (q−p)+p = [q+(−p)]+ p = q+[(−p)+p] =
q + [p + (−p)] = q + 0 = q.

To prove the converse, assume that p + x = q. Then subtracting p from
both sides gives (p + x) − p = q − p, and the left-hand side reduces to
(x + p) − p = x + [p + (−p)] = x + 0 = x.

Property 4 may be proved by showing that c �= 0 and p �= 0 cannot hold
simultaneously if cp = 0. Thus, suppose that cp = 0 and c �= 0 hold. Then
p = 1

c (cp) = 1
c0 = 0, and so p �= 0 cannot be true in this case.

To prove Property 5, consider p + (−1)p = 1p + (−1)p = [1 + (−1)]p =
0p = 0. Subtracting p on both sides, we get (−1)p = −p as in the proof of
Property 3. �

The proofs of the remaining statements are straightforward, and are left
as exercises.

Exercises

In the first ten exercises determine whether the given set describes a vector
space or not. For each function space the operations are defined by Equa-
tions 3.1 and 3.2. Explain your answers!

Exercise 3.1.1. The set of all polynomials of degree two and the zero poly-
nomial.

Exercise 3.1.2. The set of all solutions (x, y) of the equation 2x + 3y = 0,
with addition and multiplication by scalars defined as in R2.

Exercise 3.1.3. The set of all solutions (x, y) of the equation 2x + 3y = 1,
with addition and multiplication by scalars defined as in R2.

Exercise 3.1.4. The set of all twice differentiable functions f for which
f ′′(x) + 2f(x) = 0 holds.

Exercise 3.1.5. The set of all twice differentiable functions f for which
f ′′(x) + 2f(x) = 1 holds.

Exercise 3.1.6. The set P of all polynomials in a single variable x.
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Exercise 3.1.7. The set of all ordered pairs of real numbers with addition
and multiplication by scalars defined by (p1, p2)+ (q1, q2) = (p1 + q2, p2 + q1)
and c(p1, p2) = (cp1, cp2).

Exercise 3.1.8. The set of all ordered pairs of real numbers with addition
and multiplication by scalars defined by (p1, p2) + (q1, q2) = (p1 + q2, 0) and
c(p1, p2) = (cp1, cp2).

Exercise 3.1.9. The set of all ordered pairs of real numbers with addition
and multiplication by scalars defined by (p1, p2) + (q1, q2) = (p1 + q1, 0) and
c(p1, p2) = (cp1, cp2).

Exercise 3.1.10. The set of all ordered pairs of real numbers with addition
and multiplication by scalars defined by (p1, p2)+ (q1, q2) = (p1 + q1, p2 + q2)
and c(p1, p2) = (|c|p1, |c|p2).

Exercise 3.1.11. Prove the last three parts of Theorem 3.1.1.

Exercise 3.1.12. Prove that in every vector space if p + x = p holds for
all p, then x = 0 must hold.

Exercise 3.1.13. Prove that in every vector space we have the following
cancellation rule: If, for some p,q, r the equation p + q = p + r holds, then
q = r must hold.

Exercise 3.1.14. Show that we could define vector spaces by just seven
axioms instead of eight if we replace Axioms 3 and 4 by the single axiom:
3’. There is a vector 0 such that 0p = 0 holds for all vectors p.
In other words, prove that if we define the zero vector by Axiom 3’ instead
of Axiom 3, then this axiom in conjunction with the other axioms implies
both the additive property of the zero vector expressed in Axiom 3 and the
existence of additive inverses expressed in Axiom 4, with (−1)p in the role
of −p.

MATLAB Exercises

Exercise 3.1.15. Let V denote the set of all ordered quintuples of 0’s and
1’s, with addition defined by the MATLAB command p|q and multiplication
by scalars by c&p.
a. Generate such vectors by the command round(rand(1, 5)) and use MAT-
LAB to check whether each of the eight vector space axioms is satisfied for
those vectors and selected scalars.
b. If you think this set is a vector space, prove it. If not, explain why.
c. Do you get a vector space if the scalars are also restricted to 0’s and
1’s and their addition and multiplication are also defined by c|d and c&d,
respectively?

*

*

*

*
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Exercise 3.1.16. Let V denote the set of all ordered quintuples of real num-
bers and define addition of vectors by the MATLAB command max(p,q) and
multiplication by scalars by componentwise multiplication as in R5.
a. Generate such vectors by the command round(10 ∗ rand(1, 5) − 5) and
use MATLAB to check whether each of the vector space axioms is satisfied
for those vectors and selected scalars.
b. If you think this is a vector space, prove it. If not, explain why.

3.2 Subspaces

In the solution of linear systems and in the parametric description of planes
and hyperplanes, we have encountered expressions like su + tv or more gen-
erally of the type

n∑
i=1

siui, (3.6)

with n being any positive integer. Such expressions are called linear combi-
nations of the vectors involved. In many applications, we need to consider
the set of all linear combinations of the given vectors as the coefficients vary.
Such sets describe lines, planes, etc., through the origin. We shall explore
various questions concerning the vectors ui, which “generate” them, such as
how many ui we need and how some can be added, omitted, or changed.
Because of this, it is useful to begin by characterizing these sets in a general
way without involving the ui vectors.

Definition 3.2.1. (Subspace). A subset U of a vector space X is called a
subspace of X if it is a vector space with addition of vectors and multiplication
by scalars being the same as in X.

Example3.2.1. (AVectorSpaceSubsetThatIsNotaSubspace).Consider
the interval U = [0, 10) with addition and multiplication by any real c defined
modulo 10.3 This set with these operations is a vector space (we omit the
proof), and although U is a subset of R1, it is not a subspace of it, because
the operations are not the same. �

Remark 3.2.1. In the rest of the book we shall not consider operations like
those in Example 3.2.1; we shall only use the usual arithmetic of R.

3 Modulo 10 operations on U mean that the results of ordinary addition and
multiplication are reduced by subtracting or adding an appropriate multiple
of 10, so that the final result ends up in U. For example: 5 + 7 = 2(mod10),
(−3) · 4 = 8(mod10).
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In the previous section we defined a vector space as a nonempty set U
such that for every pair p,q of vectors in U and every scalar c the sum p + q
and the product cp belong to U ; that is, U is closed under these operations,
and eight algebraic rules hold. Now, in the case of a subset U of a vector
space, the algebraic rules holding in X remain valid for the vectors of U since
the operations are the same in U as in X. Thus, to test whether a subset U
of a vector space X with the same operations as in X is a subspace, it is
enough to test whether it is nonempty and closed under addition and under
multiplication by scalars. In particular, the nonemptiness and the closure of U
under multiplication by scalars imply 0 ∈ U and −p ∈ U if p ∈ U, since c = 0
and p ∈ U imply cp = 0, and c = −1 and p ∈ U imply cp = −p.

Let us look at some examples.

Example 3.2.2.(A Subspace of R3). Consider in the space R3 the set U of vec-
tors4 whose third coordinate is 0, that is, let U = {u ∈ R3|u = (u1, u2, 0)T }.
It is easy to see that this set is nonempty, and is a subspace of R3, since
if u,v ∈ U and c is any scalar, then u + v = (u1, u2, 0)T + (v1, v2, 0)T =
(u1 + v1, u2 + v2, 0)T , and so the third component of u + v being zero, u + v
also belongs to U and, similarly, cu does too. �

Example3.2.3. (ASubset of R3That Is Not a Subspace). Consider in the
space R3 the set U of vectors whose third coordinate is 1, that is, let U =
{u ∈ R3|u = (u1, u2, 1)T }. To see that this set is not a subspace of R3 all
we have to do is to exhibit two vectors in U whose sum is not in U , or one
vector u in U and a scalar c whose product cu is not in U . In this example
any two vectors of U will add up to a vector with 2 for its third component,
and so this sum vector will be outside of U . Alternatively, c times any vector
u of U will result in a vector having c as its third component, and then cu is
outside of U if c �= 1. �

In general, to prove that a subset U of a vector space with the same
operations is a subspace we have to prove the closure properties for all u,v ∈
U and all scalars c (making sure also that U is not empty), while to prove
that U is not a subspace all we need is a single counterexample to either of
the closure requirements.

Note that in every vector space X, the set {0} consisting of the zero vector
alone is a subspace of X and so too is the whole space X. These are called
the trivial subspaces of X, while all the others are its nontrivial or proper
subspaces.

Example 3.2.4. (TheSubset of R3GeneratedbyTwoGivenVectors). Let
U of R3 that contains the vectors (1, 1, 1)T and

(1, 2, 3)T .

4 Remember the convention that all vectors are to be column vectors, but they
may be written as row vectors transposed.

us find the smallest subspace
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Since U must be closed under multiplication by scalars, it must contain
all multiples of (1, 1, 1)T and (1, 2, 3)T , and since it must also be closed under
addition of its vectors, it must contain the sums of these multiples. In other
words, U must contain all linear combinations s(1, 1, 1)T + t(1, 2, 3)T . This
fact, however, is all we need: U = {u ∈ R3|u = s(1, 1, 1)T + t(1, 2, 3)T ;
s, t ∈ R} is a subspace of R3, as we are going to show below. Furthermore,
it is the smallest one that contains the vectors (1, 1, 1)T and (1, 2, 3)T , since
as we have just said, every subspace that contains these two vectors must
contain all the linear combinations of which this U consists.

U is a subspace, because, first, it is clearly nonempty. Then, second, let
u = s1(1, 1, 1)T + t1(1, 2, 3)T , v = s2(1, 1, 1)T + t2(1, 2, 3)T , and c be any
scalar. Then both the sum u + v = (s1 + s2)(1, 1, 1)T + (t1 + t2)(1, 2, 3)T

and the product cu = cs1(1, 1, 1)T + ct1(1, 2, 3)T are linear combinations
of (1, 1, 1)T and (1, 2, 3)T , and consequently U is closed under addition and
under multiplication by scalars.

We say that (1, 1, 1)T and (1, 2, 3)T generate or span U or that U is their
span (see Definition 3.2.2 below). Geometrically U is the plane through the
origin containing the given vectors. �

of R3). Consider the set U in R3 of all solutions of the equation x−2y+z = 0.
If we solve this equation, we obtain the parametric form of U as the set
of vectors (x, y, z)T = s(2, 1, 0)T + t(−1, 0, 1)T . We can show this to be a
subspace either by reasoning as in the previous example, or directly from the
defining equation, without even solving it, as follows. Let u = (x1, y1, z1)T

and v = (x2, y2, z2)T be two solutions of x−2y+z = 0, that is, let x1 −2y1 +
z1 = 0 and x2 − 2y2 + z2 = 0 hold and let c be an arbitrary scalar. Then

(x1+x2)−2(y1+y2)+(z1+z2) = (x1−2y1+z1)+(x2−2y2+z2) = 0+0 = 0,

(3.7)

and so u + v is also a solution and, similarly, cu is as well. Thus U is closed
under both operations, clearly nonempty, and therefore a subspace. �

The constructions illustrated in the last two examples can be generalized,
and constitute the two most important ways in which subspaces occur in
applications. We state these as theorems.

Theorem 3.2.1. (The Set of all Finite Linear Combinations of
Vectors of a Subset of a Vector Space Is a Subspace). Let X
be a vector space and S a nonempty subset of X. Then the set U =
{u =

∑n
i=1 siai|n any positive integer; s1, s2, . . . , sn ∈ R; a1,a2, . . . ,an ∈ S}

of all finite linear combinations of vectors of S is a subspace of X.

Proof. Let u =
∑n

i=1 siai and v =
∑m

j=1 tjbj be arbitrary vectors in U and
c any scalar. Then u + v =

∑n
i=1 siai +

∑m
j=1 tjbj and cu =

∑n
i=1 csiai

are evidently also finite linear combinations of vectors of S and, as such,

Example 3 2 5 (The Solution Set of a Homogeneous Equation as a Subspace
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members of U . Thus U is closed under both operations, clearly nonempty,
and is therefore a subspace of X. �
Theorem 3.2.2. (The Solution Set of a Homogeneous Equation Is
a Subspace of Rn). Let A be any m × n matrix. The set U of all solutions
of the homogeneous equation Ax = 0 is a subspace of Rn.

Proof. Let u and v be arbitrary vectors in U and c any scalar. Then Au = 0
and Av = 0 hold, and so A(u + v) = Au + Av = 0 + 0 = 0 and A(cu) =
cAu = c0 = 0 as well. Thus U is closed under both operations, is nonempty
since it always contains 0 even if nothing else, and is therefore a subspace
of Rn. �

The subspaces occurring in these theorems have special names.

Definition 3.2.2. (Span of a Subset). Given a vector space X and a
nonempty subset S of X, the subspace of all linear combinations of all finite
sets of vectors from S is called the span of S, or the subspace spanned or
generated by S, and will be denoted by Span (S). The span of the empty subset
of X is defined to be the subspace {0} consisting of just the zero vector.

Definition 3.2.3. (Null Space of a Matrix). For every m × n matrix
A, the set of all solutions of the homogeneous equation Ax = 0 is called the
solution space of the equation or the null space5 of A, and will be denoted by
Null(A).

subspaces of R3. If we consider all vectors as position vectors (see Exam-
ple 1.1.1), then they are: the set {0}, every set that consists of the position
vectors of the points of a line or a plane through the origin, and R3 itself. For,
clearly, every single nonzero vector spans such a line and any two nonparal-
lel nonzero vectors span such a plane, while any three noncoplanar vectors
span R3.

The last statement can be proved as follows. Suppose to the contrary
that a1,a2,a3 are arbitrary noncoplanar vectors in R3 and there exists a
vector b ∈ R3 that is not in Span{a1,a2,a3}. Writing A = (a1,a2,a3) and∑3

i=1 xiai = Ax, we can say, equivalently, that Ax = b has no solution for
some b. Then, by Parts 4 and 6 of Theorem 2.5.5, Ax = 0 has a nontrivial
solution, which shows that a1,a2,a3 are coplanar, in contradiction to our
assumption. Thus, any three noncoplanar vectors in R3 must span R3. �

Exercises

In the next eight exercises determine whether the given set is a subspace of
the indicated vector space or not, and prove your statement.
5 Note that the null space can also be viewed as the set of all vectors orthogonal

to the rows of A. See Definition 3.5.3 and Corollary 3.5.2.

Example 3.2.6. (The Subspaces of R3). We can now easily describe all the
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Exercise 3.2.1. U = {x|x1 = x2 = x3} in R3.

Exercise 3.2.2. U = {x|x1 = x2
2} in R3.

Exercise 3.2.3. U = {x : |x1| = |x2| = |x3|} in R3.

Exercise 3.2.4. U = {x|x1 + x2 + x3 = 0} in R4.

Exercise 3.2.5. U = {x|x1 = x2 or x3 = 0} in R3.

Exercise 3.2.6. U = {x|x1 = x2 and x3 = 0} in R3.

Exercise 3.2.7. U = {x|x1 ≥ 0} in R3.

Exercise 3.2.8. U = {x : |x| = |x1| + |x2|} in R3.

Exercise 3.2.9. Let U and V be subspaces of a vector space X. The set of
all vectors belonging to both U and V is called the intersection of U and V
and is denoted by U ∩ V . Prove that U ∩ V is a subspace of X.

Exercise 3.2.10. Let U and V be subspaces of a vector space X. Show by
an example that U ∪ V is not necessarily a subspace of X. When is it a
subspace? Prove your answer.

Exercise 3.2.11. Let U be a subspace of a vector space X. Is its comple-
ment U = {x ∈ X|x /∈ U} a subspace?

Exercise 3.2.12. Let a be an arbitrarily given vector in Rn. Show that the
set of all vectors orthogonal to a is a subspace of Rn.

3.3 Span and Independence of Vectors

A frequently occurring problem is that of decomposing a given vector b ∈ Rm

into a linear combination of some other given vectors ai ∈ Rm, if possible.
This problem amounts to solving the linear vector equation b =

∑n
i=1 siai

for the unknown coefficients si. If we consider the given vectors ai as columns
of a matrix A as in Section 2.3, b as a column m-vector, and the si as entries
of a column n-vector s, then the above equation takes on the familiar form
As = b, since then

n∑
i=1

siai = (a1,a2, . . . ,an)

⎡
⎢⎢⎢⎣

s1
s2
...

sn

⎤
⎥⎥⎥⎦ = As = b. (3.8)

Let us look at some examples.
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Example 3.3.1. (Decomposing a Vector of R4 into a Linear Combination of
Three Given Vectors). Write b = (7, 7, 9, 11)T as a linear combination of
a1 = (2, 0, 3, 1)T , a2 = (4, 1, 3, 2)T , and a3 = (1, 3, −1, 3)T , if possible.

The system to be solved can be written as⎡
⎢⎢⎣

2 4 1
0 1 3
3 3 − 1
1 2 3

⎤
⎥⎥⎦
⎡
⎣ s1

s2
s3

⎤
⎦ =

⎡
⎢⎢⎣

7
7
9

11

⎤
⎥⎥⎦ . (3.9)

Gaussian elimination gives s1 = 6, s2 = −2, and s3 = 3, and it is easy to
check that b = 6a1 − 2a2 + 3a3 is indeed true. �

Example 3.3.2. (Decomposing a Vector of R3 into a Linear Combination of
Three Given Vectors). Write b = (2, 8, 0)T as a linear combination of a1 =
(1, 3, 1)T , a2 = (2, 6, 2)T , and a3 = (0, −1, 1)T , if possible.

The system to be solved can be written as⎡
⎣1 2 0

3 6 − 1
1 2 1

⎤
⎦
⎡
⎣ s1

s2
s3

⎤
⎦ =

⎡
⎣2

8
0

⎤
⎦ . (3.10)

Gaussian elimination gives s1 = 2 − 2t, s2 = t, and s3 = −2 and it is
easy to check that b = (2 − 2t)a1 + ta2 − 2a3 is true for every value of the
parameter t. �

As the last example shows, sometimes the decomposition of a vector into
linear combinations, if it exists, is not unique. The uniqueness depends solely
on the ai vectors: Given the ai, the decomposition is either unique for every
vector b for which one exists, or it is not unique for any of them. This fol-
lows from the fact that every solution of Equation 3.8 is unique if in the
row reduction there are only basic variables and nonunique if there are also
free variables, and this does not depend on b. (For a direct proof see Exer-
cise 3.3.2.) The test for uniqueness of such decompositions is usually phrased
in terms of the following definition in which the zero vector is taken for b.

Definition 3.3.1. (Linear Independence). Let n be any positive integer
and a1,a2, . . . ,an be arbitrary vectors in a vector space X. We call these
vectors linearly independent of each other, or the set {a1,a2, . . . ,an} linearly
independent, if the equation

n∑
i=1

siai = 0 (3.11)

implies that the coefficients si are all zero. The linear combination with zero
coefficients is called the trivial combination. If the above equation has non-
trivial solutions as well, then the ai vectors are said to be linearly dependent
on each other and the set {a1,a2, . . . ,an} linearly dependent.
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Let us reemphasize that independence of the vectors a1,a2, . . . ,an is
equivalent to the uniqueness of the decomposition (Equation 3.8) of any b
for which such a decomposition is possible. This is why the notion of inde-
pendence is so important.

In the next two examples we reformulate the definition in case we have
only two or three vectors to test for dependence and show what this means
geometrically in R2 and R3.

Before proving the assertion, let us illustrate how it is possible that only
one of two vectors is a scalar multiple of the other. In R2, let a1 = 0 and
a2 = (1, 2)T

. Then a1 = 0a2, but there is no c for which a2 = ca1. Now
a1 and a2 are, indeed, dependent, because 1a1 + 0a2 is a nontrivial linear
combination of the two vectors that equals 0, as required by Definition 3.3.1
for dependence.

Now, for the proof in general: First assume that a1 and a2 are arbitrary
dependent vectors. Then, according to Definition 3.3.1 there exist two scalars
s1 and s2, not both zero, such that

s1a1 + s2a2 = 0. (3.12)

Say s1 	= 0. Then we can solve Equation 3.12 for a1, to obtain

a1 = −s2

s1
a2, (3.13)

which exhibits a1 as a multiple of a2. On the other hand, if s1 = 0, then we
must have s2 	= 0, and so, by Equation 3.12, a2 = 0. Thus, a2 is a scalar
multiple of a1, namely,

a2 = 0a1. (3.14)

Conversely, if one of the two vectors is a scalar multiple of the other, say

a2 = ca1, (3.15)

then we can rewrite this equation as

ca1 + (−1)a2 = 0,

which shows that Equation 3.12 is solved by s1 = c and s2 = −1, and
so at least one of these solutions is not zero. This fact is the condition in
Definition 3.3.1 for the two vectors a1 and a2 to be dependent. The same
conclusion follows by just exchanging the subscripts in the argument, if a1 is
a multiple of a2.

What does this result mean geometrically in R2 and R3? It means that
two vectors are dependent if and only if they are parallel, or if we consider

Example 3.3.3. (Dependence of Two Vectors). Two vectors in a vector
are dependent if and only if one is a scalar multiple of the other.space
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bound vectors, collinear. (This statement includes the zero vector, which is
considered to be both parallel and orthogonal to every vector.) �

Example 3.3.4. (Dependence of Three Vectors). In every vector space,
vectors are dependent if and only if one is a linear combination of the other

two. We leave the proof of this statement as Exercise 3.3.1. Here we want to
discuss only the geometric meaning in R3.

Let a1,a2,a3 be arbitrary nonzero linearly dependent bound vectors in R3.
Then, by Definition 3.3.1, there exist scalars s1, s2, s3, not all zero, such that
s1a1 + s2a2 + s3a3 = 0. Say, without loss of generality, that s3 �= 0. Then we
can solve the above equation for a3 and so obtain a3 as a linear combination of
a1 and a2. If they are considered to be bound vectors, then, by the geometrical
interpretation of multiplication of vectors by scalars and by the parallelogram
law for vector addition, we see that a3 is in the plane of a1 and a2. This result
can also be stated symmetrically as saying that a1,a2,a3 as bound vectors
are coplanar6 if they are linearly dependent. The converse can also be seen
easily, and both statements can be extended to include the zero vector. Thus
the linear dependence of three bound vectors in R3 means that they are
coplanar. �

Notice that if X = Rm, then, letting the ai vectors be the columns of a
matrix A, we can rewrite Equation 3.11 as

As = 0 (3.16)

and so the vectors a1,a2, . . . ,an of Rm are independent if and only if this
equation has only the trivial solution.

Example 3.3.5. (Testing the Independence of Three Vectors). Test the
vectors of the matrix

A =

⎡
⎣2 3 5

1 − 2 3
3 −4 2

⎤
⎦ (3.17)

for independence.
We need to solve the equation As = 0. Row reduction of [A|0] proceeds

as follows:⎡
⎣2 3 5

1 − 2 3
3 −4 2

∣∣∣∣∣∣
0
0
0

⎤
⎦ →

⎡
⎣1 − 2 3

2 3 5
3 −4 2

∣∣∣∣∣∣
0
0
0

⎤
⎦ →

⎡
⎣1 − 2 3

0 7 − 1
0 2 −7

∣∣∣∣∣∣
0
0
0

⎤
⎦ →

⎡
⎣1 − 2 3

0 7 −1
0 0 −47/7

∣∣∣∣∣∣
0
0
0

⎤
⎦ . (3.18)

6 Three or more bound vectors are said to be coplanar if they all lie in a plane,
including the case when some of them are collinear.

three

column
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Back substitution gives (−47/7)s3 = 0 and so s3 = 0, then 7s2 +(−1) ·0 = 0,
and consequently s2 = 0, and finally s1 = 0. Thus, As = 0 has only the
trivial solution, and so the columns of A are independent. �

Example 3.3.6. (Showing the Independence ofThreeVectors byUnique-
of Solutions). By the argument just before Definition 3.3.1, the vectors a1,

a2,a3 of Example 3.3.1 are independent if the equation As = b has a unique
solution for some b. Since the solution is unique for the b of Example 3.3.1,
the solution must be unique for every other b for which it exists, including
b = 0. Thus Equation 3.11 has only the trivial solution. We could, of course,
have verified this directly by substituting the given vectors into Equation 3.16
and solving it. �

Example 3.3.7. (Showing the Dependence of Three Vectors by Nonunique
of Solutions).The vectors a1,a2,a3 of Example 3.3.2 are linearly depen-

As = b is not unique for the b of Example 3.3.2,
then it is not unique for b = 0 either, and so Equation 3.11 has nontrivial
solutions. (Find some!) �

Notice how the back substitution in Example 3.3.5 results in zeros for
the unknown si values. The same procedure could prove all the following
statements.

Theorem 3.3.1. (Independence of theColumns of VariousMatrices)

1. The columns of every upper triangular matrix with nonzero diagonal en-
tries are independent.

2. The basic columns of every echelon matrix (that is, the columns contain-
ing the pivots) are independent, and its nonzero rows are too.

3. If A is a square matrix, then its columns are independent if and only if
A is invertible; and the same holds for the rows as well.

Proof. If U is an upper triangular matrix with nonzero diagonal entries, then
we can solve Us = 0 by back substitution from the bottom up, and get the
unique solution s = 0, which means that the columns of U are independent.
Alternatively, we can prove this fact by noting that an upper triangular U
is also an echelon matrix without free columns, and so the obvious solution
s = 0 of the equation Us = 0 must be unique. Similarly, the basic columns of
every echelon matrix form an echelon matrix E without free columns, which
again implies that the columns of E are independent.

For the rows of U, we have to solve from the top down. Letting ui, for
i = 1, . . . , r, denote the rows of U, we test their independence by solving

r∑
i=1

siui = 0. (3.19)

ness

-
ness
dent, since if the solution of
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If U looks like the U in Equation 2.34, then the first component of Equa-
tion 3.19 is s1p1 = 0, whence s1 = 0. The second component will be
s1 · ∗ + s2p2 = 0, and so s2 = 0. And so on.

Corollary 2.5.1 on page 92 shows that the columns of A are independent
if and only if A is invertible. Applying this condition to AT in place of A, we
find that the rows of a square matrix A are independent if and only if AT

is invertible, which by the second half of Theorem 2.5.8 is equivalent to the
invertibility of A. �

In the next theorem we present a characterization of linear dependence
for later use. We do this here because it also provides good practice with the
basic concepts.

Theorem 3.3.2. *(Dependence of Vectors of a List and Reducing a
Spanning Set). Any two or more nonzero vectors a1,a2, . . . ,an in a vector
space X are linearly dependent if and only if one of the vectors, say ak, for
some k ≥ 2, equals a linear combination of the previous vectors of the list.7

Also, if some ak is equal to such a linear combination, then Span(A−{ak}) =
Span(A), where A = {a1,a2, . . . ,an} and A − {ak} denotes the set of ai

vectors for all i 	= k.

Proof. Suppose

ak =
k−1∑
i=1

siai. (3.20)

Then

k−1∑
i=1

siai + (−1)ak +
n∑

i=k+1

0ai = 0 (3.21)

provides a nontrivial decomposition of 0, which proves the dependence of the
vectors a1,a2, . . . ,an.

Conversely, if the a1,a2, . . . , an are linearly dependent, then

n∑
i=1

siai = 0 (3.22)

for some coefficients si, not all zero. Let sk be the nonzero coefficient with
largest index. Then we must have k ≥ 2, since otherwise only s1 would be
nonzero and s1a1 = 0 would lead to the contradictory fact s1 = 0, because
a1 was assumed to be nonzero. Multiplying both sides of Equation 3.22 by
1/sk, we get

7 We call a finite sequence or ordered n-tuple briefly a list, in contrast to a set,
which is unordered.
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k−1∑
i=1

si

sk
ai + ak +

n∑
i=k+1

0ai = 0, (3.23)

where the last sum is empty if k = n. Thus,

ak =
k−1∑
i=1

(
− si

sk
ai

)
, (3.24)

which expresses ak as a linear combination of the preceding vectors in the
list.

To prove the last statement of the theorem, let ak be a linear combination
as in Equation 3.20. If b is any vector in Span(A), then

b =
n∑

i=1

tιai. (3.25)

Eliminating the kth term here by using Equation 3.20 gives b as a linear
combination of the vectors of A − {ak}. Conversely, if b is any linear com-
bination of the vectors of A − {ak}, then it is in Span(A) as well. Thus
Span (A − {ak}) = Span(A). �

Exercises

Exercise 3.3.1. Prove that three vectors in every vector space are depen-
dent if and only if one is a linear combination of the other two. (Hint: Imitate
the proof in Example 3.3.3.)

composition of a vector b into a linear combination of given vectors ai is not
unique, then the decomposition of every other decomposable vector c is also
not unique. (Hint : Write c = c+b−b with different decompositions for the
two b vectors.)

In the next four exercises write the vectors b as linear combinations of
the vectors ai if possible.

Exercise 3.3.3. b = (7, 32, 16, −3)T , a1 = (4, 7, 2, 1)T , a2 = (4, 0, −3, 2)T ,
a3 = (1, 6, 3, −1)T .

Exercise 3.3.4. b = (7, 16, −3)T , a1 = (4, 2, 1)T , a2 = (4, −3, 2)T , a3 =
(1, 3, −1)T .

Exercise 3.3.5. b = (7, 16, −3)T , a1 = (4, 2, 1)T , a2 = (4, −3, 2)T , a3 =
(0, 5, −1)T .

Exercise 3.3.2. Show directly that, in every vector space X , if the de-*
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Exercise 3.3.6. b = (4, 7, 0)T , a1 = (4, 2, 1)T , a2 = (4, −3, 2)T , a3 =
(0, 5, −1)T .

In the next five exercises determine whether the given vectors are inde-
pendent or not, and prove your statement.

Exercise 3.3.7. The four vectors of Exercise 3.3.4.

Exercise 3.3.8. The three vectors a1 = (4, 2, 1)T , a2 = (4, −3, 2)T , a3 =
(1, 3, −1)T from Exercise 3.3.4.

Exercise 3.3.9. The three vectors a1 = (4, 2, 1)T , a2 = (4, −3, 2)T , a3 =
(0, 5, −1)T from Exercise 3.3.5.

Exercise 3.3.10. a1 = (2, 1)T , a2 = (−3, 2)T , a3 = (1, −1)T .

Exercise 3.3.11. a1 = (1, 0, 0, 1)T , a2 = (0, 0, 1, 1)T , a3 = (1, 1, 0, 0)T , a4 =
(1, 0, 1, 1)T .

Exercise 3.3.12. Let a1 and a2 be independent vectors in a vector space X,
and v another vector of X, not in Span{a1,a2}. Prove, using Definition 3.3.1,
that the vectors v,a1,a2 are independent of each other. (Hint : Prove this
indirectly by assuming that the three vectors are dependent and showing
that that assumption leads to a contradiction.)

Exercise 3.3.13. State three different ways of characterizing the linear in-
dependence of n vectors.

Exercise 3.3.14. Prove that in every vector space a finite set of vectors that
contains the zero vector is a dependent set.

Exercise 3.3.15. Prove that every set of more than three vectors in R3 is a
dependent set. (Hint : Consider the 3 × n matrix A with the given vectors as
columns and apply Theorem 2.2.1 on page 55 to the equation As = 0.)

Exercise 3.3.16. Prove that every set of three independent vectors in R3

spans R3. (Hint : Consider the matrix A with the given vectors as columns
and apply Theorem 2.5.5 on page 93.)

Exercise 3.3.17. Prove that any three vectors in R3 that span R3 are in-
dependent. (Hint : Consider the matrix A with the given vectors as columns
and apply Theorem 2.5.5 on page 93.)

Exercise 3.3.18. Prove that a square matrix is singular if and only if its
columns are dependent. (Hint : Apply Theorem 2.5.5 on page 93.)

Exercise 3.3.19. Prove that in Rn a set of m vectors ai is independent if
and only if 0 < m ≤ n and the matrix A with the given vectors as columns
has rank m.

*
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MATLAB Exercises

Exercise 3.3.21. Solve Exercise 3.3.5 using MATLAB. (Hint : Reduce the
associated system b =

∑n
i=1 siai using rref.)

Exercise 3.3.22. Solve Exercise 3.3.6 using MATLAB.

Exercise 3.3.23. Use MATLAB to determine whether the four vectors of
Exercise 3.3.3 span R3 or not:
a. by using the fact that the given vectors span R3 if and only if for their
matrix A the equations Ax = ei have a solution for each i.
b. and alternatively by using the MATLAB command rank(A). Explain.

Exercise 3.3.24. Solve Exercise 3.3.11 using MATLAB. Explain.

Exercise 3.3.25. Use MATLAB to find a spanning set for the solution space
of Ax = 0, where

A =

⎡
⎢⎢⎣

1 − 2 1 0
3 4 0 1

−1 0 2 0
0 −1 0 0

⎤
⎥⎥⎦ .

(Hint : Find the general solution of Ax = 0 as in Example 2.3.1 on page 61.)

3.4 Bases

In any vector space or subspace, we are frequently interested in finding a min-
imal set of vectors whose linear combinations make up the space, as described
below.

Definition 3.4.1. (Basis). A finite subset B of a vector space X is called
a basis for X if
1. B spans X, and
2. B is a set of independent vectors.8, 9

8 By a slight but useful abuse of language it is customary to say that the set B is
independent and spans X rather than just that its vectors are and do so.

9 There are many interesting, so-called infinite-dimensional vector spaces that do
not possess finite spanning sets, that is, have no basis in the sense above. The
notion of a basis can, however, be generalized in various ways to cover such
spaces as well but, except for a few elementary examples, those are beyond the
scope of this book.

Exercise 3.3.20. Prove that in Rn a set of m vectors ai spans Rn if and
only if 0 < n ≤ m and the matrix A with the given vectors as columns has
rank n.

*
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Example 3.4.1. (Standard Basis). The standard vectors e1,e2, . . . ,en form
a basis, called the standard basis for Rn, since (1) every vector in Rn can
be written as a linear combination of these vectors in the usual way as a =∑n

i=1 aiei, and (2) the ei are independent since their matrix is the unit matrix
and Is = 0 implies s = 0. �

Example 3.4.2. (A Basis for R3). The columns of the matrix A of Exam-
ple 3.3.5 on page 112 form a basis for R3, since (1) the same row operations
as in Example 3.3.5 solve the equation As = b for every b, and (2) the
columns are independent as proved in Example 3.3.5. �

As in the last example and some earlier ones, we are often interested in
the subspace generated by the columns of a matrix, and we give it a name.

Definition 3.4.2. (Column Space). The subspace of Rm spanned by the
columns of an m×n matrix A is called the column space of A and is denoted
by Col(A).

Example 3.4.3. (A Basis for a Column Space). Consider the columns
matrix

A =

⎡
⎣1 3 1

2 6 2
0 − 1 1

⎤
⎦ . (3.26)

This matrix can be reduced to the echelon matrix

U =

⎡
⎣1 3 1

0 1 − 1
0 0 0

⎤
⎦ . (3.27)

By Theorem 3.3.1 of page 113, the first two columns of U are independent
and may therefore serve as a basis for Col(U). Indeed,

s1

⎡
⎣1

0
0

⎤
⎦ + s2

⎡
⎣3

1
0

⎤
⎦ =

⎡
⎣ 1

−1
0

⎤
⎦ (3.28)

is solved by s2 = −1 and s1 = 4. Hence

4

⎡
⎣1

0
0

⎤
⎦ −

⎡
⎣3

1
0

⎤
⎦ =

⎡
⎣ 1

−1
0

⎤
⎦ , (3.29)

and this equation exhibits the last column of U as a linear combination of
the first two. Consequently, in every linear combination of all three columns
of U the last one can be eliminated by substituting its expression from Equa-
tion 3.29.

of the
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We were, however, interested in the column space of A rather than that
of U, and now we can easily find a basis for that too, once we have found a
basis for Col(U). We just have to undo in Equation 3.29 the row operations
that have led from A to U . Thus, interchange the last two rows of 3.29,
multiply the new last row by −1, and add two times the first row to the
second row. This procedure results in

4

⎡
⎣1

2
0

⎤
⎦−

⎡
⎣ 3

6
−1

⎤
⎦ =

⎡
⎣1

2
1

⎤
⎦ . (3.30)

Hence the last column of A is the same linear combination of the first two
columns of A as was the case for the columns of U . The same argument with
the right-hand side of Equation 3.28 replaced by the zero vector shows that
the first two columns of A are also independent. Thus, those columns form a
basis for Col(A).

Let us remark that had we carried the reduction of A further, the coef-
ficients s1 = 4 and s2 = −1 would have appeared in the reduced echelon
matrix

R =

⎡
⎣1 0 4

0 1 − 1
0 0 0

⎤
⎦ , (3.31)

obtainable from Equation 3.27 by subtracting three times the second row of
U from its first row. In this matrix it is obvious that the last column equals
four times the first column minus the second column. �

The procedure of this example can be generalized for every matrix and
leads to the following theorem.

Theorem 3.4.1. (Finding a Basis for Col(A)). We can find a basis for
the column space of an m×n matrix A by reducing A to an echelon matrix U
and taking as basis vectors those columns of A that correspond to the basic
columns of U .

Proof. If U is obtained from A by row reduction, then the equation Us = 0
has exactly the same set of solutions as As = 0. Therefore the columns of A
are related by the same linear combinations as are the columns of U . For
instance, if we set si = 0 for all free variables in Us = 0, then, by the second
statement of Theorem 3.3.1, all the basic variables must also be zero. This
shows that the basic columns of U are independent, and then so are the
corresponding columns of A as well. We call these the basic columns of A.

Similarly, every linear combination showing the dependence of the non-
basic columns of U on the basic ones has its counterpart, with the same
coefficients, for the corresponding columns of A. Furthermore, if As = b is
any element of the column space of A and Us = c is the corresponding re-
duced form, then we can eliminate the nonbasic columns of U and write c
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as a linear combination of the basic columns of U ; then b will be a linear
combination, with the same coefficients, of the basic columns of A. Thus, the
basic columns of A are independent and span Col(A). �

A =

⎡
⎣1 2 3

2 4 5
3 6 6

⎤
⎦ and b =

⎡
⎣2

5
9

⎤
⎦ . (3.32)

Then the corresponding equation As = b can be written as

As = s1

⎡
⎣1

2
3

⎤
⎦+ s2

⎡
⎣2

4
6

⎤
⎦+ s3

⎡
⎣3

5
6

⎤
⎦ =

⎡
⎣2

5
9

⎤
⎦ , (3.33)

and can be reduced by subtracting 2r1 from r2 and 3r1 from r3 to

s1

⎡
⎣1

0
0

⎤
⎦+ s2

⎡
⎣2

0
0

⎤
⎦+ s3

⎡
⎣ 3

−1
−3

⎤
⎦ =

⎡
⎣2

1
3

⎤
⎦ , (3.34)

and further to

Us = s1

⎡
⎣1

0
0

⎤
⎦+ s2

⎡
⎣2

0
0

⎤
⎦+ s3

⎡
⎣ 3

−1
0

⎤
⎦ =

⎡
⎣2

1
0

⎤
⎦ . (3.35)

Thus, an echelon matrix corresponding to A is

U =

⎡
⎣1 2 3

0 0 −1
0 0 0

⎤
⎦ (3.36)

with basic columns u1 and u3, and the vector b is changed to c = (2, 1, 0)T
.

Hence the variable s2 is free and we set s2 = t. Then, from Equation 3.35,
s3 = −1 and s1+2t−3 = 2, and so s1 = 5−2t. Combining these components,
we can write the general solution of Us = c as

s =

⎡
⎣ 5

0
−1

⎤
⎦+ t

⎡
⎣−2

1
0

⎤
⎦ = s0 + tv1, (3.37)

where s0 = (5, 0, −1)T and v1 = (−2, 1, 0)T
. Indeed,

Us0 =

⎡
⎣1 2 3

0 0 −1
0 0 0

⎤
⎦
⎡
⎣ 5

0
−1

⎤
⎦ =

⎡
⎣2

1
0

⎤
⎦ = c (3.38)

Example 3.4.4. (Illustration of the Proof Above). Let
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and

Uv1 =

⎡
⎣1 2 3

0 0 −1
0 0 0

⎤
⎦
⎡
⎣−2

1
0

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ = 0, (3.39)

or equivalently,

Us = (5 − 2t)

⎡
⎣1

0
0

⎤
⎦+ t

⎡
⎣2

0
0

⎤
⎦+ (−1)

⎡
⎣ 3

−1
0

⎤
⎦ =

⎡
⎣2

1
0

⎤
⎦ = c. (3.40)

The vector s is also the solution of As = b and so, corresponding to the
equations above, we have

As0 =

⎡
⎣1 2 3

2 4 5
3 6 6

⎤
⎦
⎡
⎣ 5

0
−1

⎤
⎦ =

⎡
⎣2

5
9

⎤
⎦ = b (3.41)

and

Av1 =

⎡
⎣1 2 3

2 4 5
3 6 6

⎤
⎦
⎡
⎣−2

1
0

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ = 0, (3.42)

or equivalently,

As = (5 − 2t)

⎡
⎣1

2
3

⎤
⎦+ t

⎡
⎣2

4
6

⎤
⎦+ (−1)

⎡
⎣3

5
6

⎤
⎦ =

⎡
⎣2

5
9

⎤
⎦ = b. (3.43)

Notice also that s0 = (5, 0, −1)T is a particular solution of the inhomoge-
neous equation As = b and tv1 = t (−2, 1, 0)T is the general solution of the
corresponding homogeneous equation As = 0, as required by Theorem 2.3.3.

Furthermore, u1 and u3 being the basic columns of U, the corresponding
columns a1 and a3 are the basic columns of A and the set

B = {a1,a3} =

⎧⎨
⎩
⎡
⎣1

2
3

⎤
⎦ ,

⎡
⎣3

5
6

⎤
⎦
⎫⎬
⎭ (3.44)

is a basis for Col(A). �

The argument of the proof of Theorem 3.4.1 can be reversed in a sense,
to characterize echelon matrices.

Theorem 3.4.2. (Uniqueness of the Reduced Echelon Matrix). The
row-reduced echelon matrix R of every matrix A is unique, and all other



122 3. Vector Spaces and Subspaces

echelon forms of A have nonzero numbers as their pivots in the same locations
as R has its pivots.

Proof. If A is a zero matrix, then R = A. Otherwise, proceeding from left to
right, the first nonzero column of A is its first basic column. The second basic
column is the next column that is independent of the first basic column, and
we can find the other basic columns one after the other as those columns of A
that are independent of the earlier basic columns. Since every basic column
of a reduced echelon matrix R must be a standard vector, R must be the
matrix of the same shape as A that has the standard vector ek for its kth
basic column. Also, by the proof of Theorem 3.4.1, each ek must be in the
same position as the kth basic column of A, for k = 1, 2, . . . , r. Furthermore,
the nonbasic columns of R must be the same linear combinations of the ek

vectors as the corresponding nonbasic columns of A are of the basic columns
of A. Thus, this construction gives a unique reduced echelon matrix R for
any given A.

Again by the proof of Theorem 3.4.1, every other echelon form U of A
must have its basic columns in the same positions as R, and since multiplying
any nonzero row of an echelon matrix by an arbitrary nonzero number leaves
it in echelon form, the pivots of U must be in the same columns as those of R
and can be arbitrary nonzero numbers. �

The column space of a matrix has an important application in the theory
of linear systems.

Theorem 3.4.3. (A Condition for the Consistency of a Linear Sys-
tem). The equation Ax = b is consistent if and only if the vector b lies in
the column space of A.

Proof. Since the expression Ax equals the linear combination
∑n

i=1 xiai of
the columns of the matrix A, it is in the column space of A for every x; and
so it can equal a vector b if and only if b is in that column space too. �

We can deal with the rows of a matrix much as with the columns.

Definition 3.4.3. (Row Space). The subspace of Rn spanned by the trans-
posed10 rows of an m×n matrix A is called the row space of A and is usually
denoted by Row(A).

A =

⎡
⎣1 3 1

2 6 2
0 − 1 1

⎤
⎦ . (3.45)

10 This transposition of the rows is just a technicality, which makes some formulas
simpler by adhering to the convention of using only column vectors.

Example 3.4.5. (A Basis for a Row Space). Let us find a basis for the
space of the matrix A of Example 3.4.3:row
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The solution is very easy. Again, we consider the echelon matrix U cor-
responding to A:

U =

⎡
⎣1 3 1

0 1 − 1
0 0 0

⎤
⎦ . (3.46)

By Theorem 3.3.1 of page 113 the first two rows of U are independent and,
when transposed, may serve as a basis for Row(U). The rows of A, however,
are linear combinations of the rows of U , since they can be recovered from
the latter by elementary row operations, and so the first two transposed rows
of U may serve as a basis for Row(A) as well. In fact, Row(A) is the same as
Row(U). Thus the set

B =

⎧⎨
⎩
⎡
⎣1

3
1

⎤
⎦ ,

⎡
⎣ 0

1
−1

⎤
⎦
⎫⎬
⎭ (3.47)

forms a basis for Row(A). It is easy to check that these two vectors are inde-
pendent and the transposed rows of A are linear combinations of them. �

The procedure of the preceding example can again be generalized for any
matrix and leads to the following theorem.

Theorem 3.4.4. (Finding a Basis for Row(A)). We can find a basis for
the row space of an m × n matrix A by reducing A to an echelon matrix U
and taking as basis vectors the transposed nonzero rows of U .11

The row and column spaces of a matrix are related to those of its
transpose.

Theorem 3.4.5. (Row and Column Space of AT ). For every matrix A,

Row(A) = Col(AT ) (3.48)

and

Col(A) = Row(AT ). (3.49)

Proof. For any m × n matrix A, let s = (s1, . . . , sm)T be any vector in Rm,
and write ai for the ith row of A. Then every vector x ∈ Row(A) can be
written as

(3.50)

11 Note that in this case the transposed rows of U themselves form a basis of the
row space rather than the corresponding transposed rows of A, in contrast to
the case for columns. (See Exercise 3.4.5.) The reason for the asymmetry lies in
our use of row operations for the reduction to echelon form.

x =

(∑
i=1

siai

)T

=
∑
i=1

si

(
ai

)T
=

∑
i=1

si

(
AT

)
i
= AT s,

m m m
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where
(
AT
)
i

stands for the ith column of AT . Since the expression on the
right represents an arbitrary vector in the column space of AT , we find that

Row(A) = Col(AT ), (3.51)

and interchanging the roles of A and AT , that

Row(AT ) = Col(A). (3.52)

�

Applying Theorem 3.4.4 to AT in place of A and using Equation 3.52, we
obtain a new way of computing a basis for Col(A).

Corollary 3.4.1. (Using AT to Find a Basis for Col(A)). We can find a
basis for the column space of an m×n matrix A by reducing AT to an echelon
matrix U and taking as basis vectors the transposed nonzero rows of U .

We have encountered still another subspace associated with a matrix: its
null space (see Definition 3.2.3). How do we find a basis for it? The proce-
dure is straightforward. We solve Ax = 0 in the usual manner by Gaussian
elimination. The solution is always obtained as a linear combination of some
vectors of Rn, and these vectors are easily shown to be independent. They
form a basis for Null(A), which is thus a subspace of Rn. Let us look at an
example.

A =

⎡
⎣0 1 2 3

4 2 6 6
8 2 8 6

⎤
⎦ . (3.53)

This matrix can be reduced to the echelon form

U =

⎡
⎣2 1 3 3

0 1 2 3
0 0 0 0

⎤
⎦ . (3.54)

The solution of Ax = 0 can be obtained by back substitution from the
matrix U as x3 = s1, x4 = s2, x2 = −2s1 − 3s2, and x1 = −s1/2. In vector
form we may write

x = s1

⎡
⎢⎢⎣

−1/2
−2
1
0

⎤
⎥⎥⎦+ s2

⎡
⎢⎢⎣

0
−3

0
1

⎤
⎥⎥⎦ . (3.55)

Thus Null(A) is spanned by the two vectors on the right of the last equation.
Furthermore, those are also independent, because if we set x = 0, then the

Example 3.4.6. (A Basis for a Null Space). Let
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last two rows of Equation 3.55 correspond to the equations 1s1 +0s2 = 0 and
0s1 + 1s2 = 0, from which s1 = s2 = 0 follows. Thus the set

B =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−1/2
−2
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
−3

0
1

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (3.56)

is a basis for Null(A). Writing

X =

⎡
⎢⎢⎣

−1/2 0
−2 −3
1 0
0 1

⎤
⎥⎥⎦ , (3.57)

we can rephrase this result as saying that we have found a matrix X with
independent columns such that Col(X) = Null(A). �

The preceding example suggests the general way for finding a basis for
the nullspace of a matrix.

Theorem 3.4.6. (A Basis for Null (A)). For every m×n matrix A, with
rank r < n we can find a basis for Null(A) by finding the general solution
of Ax = 0 by Gaussian (or Gauss–Jordan) elimination in the form x =∑n−r

i=1 sivi. Then the n−r vectors vi form a basis for Null(A). If r = n, then
Null(A) = {0} and we say that its basis is the empty set.

Proof. In Gaussian or Gauss–Jordan elimination, if r < n, we assign param-
eters si to each of the n − r free variables and obtain the r basic variables as
linear combinations of them. Hence we can write every solution vector in the
form x =

∑n−r
i=1 sivi, which shows that the vectors vi, for i = 1, 2, . . . , n − r,

span Null(A). Now, each vi vector has the component 1 in the position cor-
responding to the number of the column to which the parameter si belongs.
(In the example above, the parameter s1 belonged to column 3 and the pa-
rameter s2 to column 4. Thus, v1 has a 1 in the third position and v2 in the
fourth position.) Also, each vi has 0 entries everywhere else in the rows of
these 1’s. Thus the equation

∑n−r
i=1 sivi = 0 has a row saying si = 0 for each

i; that is, its only solution for the si is the trivial one and so the vi vectors
are independent. �

The next theorem provides an alternative characterization of indepen-
dence of a set of vectors as a minimal spanning set.

Theorem 3.4.7. (A Condition for Independence in Terms of Span-
ning Sets). In any real vector space X, let the nonempty finite subset
A = {a1,a2, . . . ,an} of nonzero vectors span the subspace V . Then A is
independent if and only if every spanning set of V has at least n elements.
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Proof. We prove both parts indirectly.
1. Suppose A is dependent, that is, n ≥ 2 and

∑n
i=1 siai = 0 with some

si 	= 0. Say, sn 	= 0. Then an = −∑n−1
i=1

si

sn
ai, and so in any linear com-

bination of a1,a2, . . . ,an the vector an can be eliminated. Thus the set
{a1,a2, . . . ,an−1} spans V but has fewer than n elements.
2. Suppose B = {b1,b2, . . . ,bm} with m < n also spans V. Then we can
write

ai =
m∑

j=1

aijbj for all i = 1, 2, . . . , n, (3.58)

with appropriate coefficients aij . Write A for the n × m matrix (aij) .
Test the ai vectors for independence: We have

n∑
i=1

xiai =
n∑

i=1

xi

m∑
j=1

aijbj =
m∑

j=1

(
n∑

i=1

xiaij

)
bj = 0 (3.59)

if
n∑

i=1

xiaij = 0 for all j = 1, 2, . . . , m. (3.60)

The coefficient matrix AT of this system is m × n, with m < n. Hence its
rank satisfies r ≤ m, and so the number of free variables in Equation 3.60
satisfies n − r ≥ n − m > 0. Thus Equation 3.59 has nontrivial solutions,
which shows that A cannot be independent if such a B exists. �

Call a finite nonempty spanning set A of a subspace V, if one exists,
minimal if its cardinality12 is less than or equal to the cardinality of every
other spanning set of V. Then we have the following obvious corollaries.

Corollary 3.4.2. (Bases are Minimal Spanning Sets). In any vector
space X, every basis of a finitely generated nonzero subspace V is a minimal
spanning set of V and vice versa. The cardinality of every basis of such a
subspace V equals the minimum of the cardinalities of the spanning sets of V .

Corollary 3.4.3. (Bases are Maximal Independent Sets). In any vec-
tor space X, every basis of a finitely generated nonzero subspace V is a maxi-
mal independent subset of V and vice versa. The cardinality of every basis of
such a subspace V equals the maximum of the cardinalities of the independent
subsets of V .

Since every subspace U of Rm is the column space of some m×n matrix,
Theorem 3.4.1 can be interpreted as giving a procedure for the reduction of
12 The cardinality of a finite set means the number of its elements.
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a spanning set of a subspace U of Rm to a basis of U . The same construction
can also be used to solve the related problem of extending an independent set
{b1, b2, . . . , bk} in a subspace U to a basis. First, however, we want to prove a
theorem that shows that such an extension is always possible. This Exchange
Theorem will also be used to conclude that all bases in a vector space have
the same number of vectors.

Theorem 3.4.8. *(The Exchange Theorem). In any vector space X,
let A = (a1,a2, . . . ,an) be a list of nonzero vectors that span X, and
B = (b1,b2, . . . ,bk) a list of independent vectors of X. Then k ≤ n holds,
and k of the spanning vectors ai can be exchanged for the vectors of B.
That is, X is spanned by the k vectors of B together with some n − k vec-
tors of A.

Proof. Consider the vectors b1,a1,a2, . . . ,an. They span X since the ai

themselves do, and adjoining b1 to the list does not change that. Furthermore,
these vectors are linearly dependent since b1 can certainly be expressed as a
linear combination of the spanning vectors ai, say as b1 =

∑n
i=1 siai. Now,

by Exercise 3.3.14, the independence of b1,b2, . . . ,bk implies that b1 	= 0,
and so b1 −∑n

i=1 siai = 0 has a nontrivial linear combination on the left,
which shows that the vectors b1,a1,a2, . . . , an are linearly dependent. Thus,
we may apply Theorem 3.3.2 from page 114 to this list and omit one of the ai

vectors so that the remaining n vectors will still span X. Call the remaining
ai vectors a′

1,a
′
2, . . . ,a

′
n−1.

Next, consider the list b1,b2,a′
1,a

′
2, . . . ,a

′
n−1 of vectors, which are lin-

early dependent just as b1,a1,a2, . . . ,an above, and apply Theorem 3.3.2
from page 114 to this list. Accordingly, one of the vectors a′

i can be omitted
so that the remaining n vectors will still span X. (The omitted vector cannot
be b2 because b1 and b2 were assumed to be independent and the omitted
vector must depend on the previous vectors in the list.)

We can proceed similarly with the rest of the vectors of B, exchanging
an ai for a bj in each step, until we exhaust A or B. If A were exhausted
first, that is, if we had k > n, then at some point all vectors of A would
be exchanged for the first n vectors of B, and the vectors b1,b2, . . . ,bn

would span X. But then bn+1 (as any other vector) would be a linear com-
bination of b1,b2, . . . ,bn, and this fact contradicts the assumed indepen-
dence of the bj vectors. Thus A cannot be exhausted first, that is, we must
have k ≤ n, and in that case all the vectors of B can be brought into the
spanning set. �

While this theorem ensures that an independent set can be extended to
a basis, it does not give a practical method for doing so. But, in Rm, the
construction described in Theorem 3.4.1 does so, as follows. Suppose U is
given as the span of {a1,a2, . . . ,an}, and {b1,b2, . . . ,bk} is an independent
set in U with k < n. Then we construct, according to Theorem 3.4.1, a
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basis for the column space of the matrix C = (b1,b2, . . . ,bk,a1,a2, . . . ,an).
Since U = Col(C), and the row reduction proceeds from left to right, the
independent vectors bj will be in the basis of U so found. Let us see an
example.

U = Span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ , (3.61)

where we call the columns on the right a1,a2,a3, and let

b1 =

⎡
⎢⎢⎣

3
0
1
1

⎤
⎥⎥⎦ , b2 =

⎡
⎢⎢⎣

0
3
1
1

⎤
⎥⎥⎦ . (3.62)

It is easy to see that b1 = 2a1 + a2 − a3 and b2 = −a1 + a2 + 2a3, and so
both b1 and b2 are in U and are clearly independent of each other. We want
to extend the set {b1,b2} to a basis for U .

We form the matrix

C =

⎡
⎢⎢⎣

3 0 1 1 0
0 3 0 1 1
1 1 1 0 1
1 1 0 1 0

⎤
⎥⎥⎦ (3.63)

and reduce it to echelon form as follows:⎡
⎢⎢⎣

3 0 1 1 0
0 3 0 1 1
1 1 1 0 1
1 1 0 1 0

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 1 0 1 0
1 1 1 0 1
3 0 1 1 0
0 3 0 1 1

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 1 0 1 0
0 0 1 −1 1
0 − 3 1 − 2 0
0 3 0 1 1

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 1 0 1 0
0 − 3 1 − 2 0
0 0 1 −1 1
0 3 0 1 1

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 1 0 1 0
0 − 3 1 − 2 0
0 0 1 −1 1
0 0 1 −1 1

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 1 0 1 0
0 − 3 1 − 2 0
0 0 1 −1 1
0 0 0 0 0

⎤
⎥⎥⎦ . (3.64)

In the final form, the pivots are in the first three columns, and so the corre-
sponding columns of C, that is, b1,b2,a1, form a basis for U = Col(C). �

Example 3.4.7. (Extending an Independent Set to a Basis). Let
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Exercises

In the first four exercises find bases for Row(A), Col(A), Null(A).

Exercise 3.4.1. A =

⎡
⎣1 3 1

3 2 4
2 − 1 3

⎤
⎦ .

Exercise 3.4.2. A =

⎡
⎣1 2 1

1 3 3
0 2 4

⎤
⎦ .

Exercise 3.4.3. A =

⎡
⎢⎢⎣

1 3 1
3 2 4
2 − 1 3
0 1 1

⎤
⎥⎥⎦.

Exercise 3.4.4. A =

⎡
⎣1 1 1 2 − 1

2 2 2 4 −2
3 3 0 4 4

⎤
⎦ .

Exercise 3.4.5. Find a 3 × 3 matrix A whose first two rows transposed do
not form a basis for Row(A), but for which only the first two transposed rows
of any corresponding echelon matrix U do.

Exercise 3.4.6. Show that for the matrix of Exercise 3.4.1 the first two
columns of any corresponding echelon matrix U do not form a basis for
Col(A), but only the first two columns of A itself do.

Exercise 3.4.7. Determine whether each of the following vectors is in the
column space of the matrix of Exercise 3.4.1, and if it is, then write it as a
linear combination of the first two columns: a = (1, 4, 3)T , b = (−10, 1, 7)T ,
c = (9, −5, −10)T , d = (5, 9, 4)T .

Exercise 3.4.8. Show that for two matrices A and B we have AB = O if
and only if Col(B) is a subspace of Null(A).

Exercise 3.4.9. Show that for any two matrices A and B such that AB
exists and A is invertible we have Null(B) = Null(AB).

Exercise 3.4.10. Prove that in Rn any set of n independent vectors forms a
basis. (Hint : Either consider the matrix A with the given vectors as columns
and apply Theorem 2.5.5 on page 93 or use the Exchange Theorem.)

Exercise 3.4.11. Prove that in Rn no set of fewer than n vectors spans Rn.
(Hint : Use the Exchange Theorem.)

*

*
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a basis. (Hint : Either consider the matrix A with the given vectors as columns
and apply Theorem 2.5.5 on page 93 or use the result of Exercise 3.4.11.)

Exercise 3.4.13. Prove that in Rn every set of more than n vectors is
a dependent set. (Hint : Use either Gaussian elimination or the Exchange
Theorem.)

Exercise 3.4.14. Let

U = Span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ .

Check that the vectors

b1 =

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦ , b2 =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦

are in U and extend the set {b1,b2} to a basis for U .

MATLAB Exercises

Exercise 3.4.15. Let A = magic(4)
a. Use rref on A and AT to find a basis for the row space and the column
space, respectively. Extract and transpose the appropriate submatrix in each
case to obtain two matrices B and C whose columns form the bases. (Such
a matrix is called a basis matrix.)
b. The command D = orth(A) returns a basis matrix for Col(A) (usually
different from the one obtained by rref). Show that the columns of D and
of the matrix C computed in Part (a) span the same space.
c. Let U = orth(A′). Show that the columns of U and of the matrix B
computed in Part (a) span the same space.
d. The command N = null(A) returns a basis matrix for Null(A). Compute
BT N and explain your result.
e. Compute M = null(AT ∗ A) and explain your result.

Exercise 3.4.16. Repeat Exercise 3.4.15 for the matrix

A =

⎡
⎢⎢⎣

1 3 5 7
2 4 6 8
0 2 4 6
3 5 7 9

⎤
⎥⎥⎦ .

Exercise 3.4.17. Let A = round(10 ∗ rand(3, 4) − 5).
a. Compute the rank of each: A, [A, A], [A, A, A], [A; A], [A; A; A], and
[A, A; A, A].

Exercise 3.4.12. Prove that in Rn any set of n vectors that span Rn forms*
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b. Repeat the above for six instances of A.
c. Do you see any patterns? Make a conjecture and prove it.

3.5 Dimension, Orthogonal Complements

We wish to define the dimension of a vector space as the number of vectors
in a basis. To ensure the consistency of such a definition, we start with a
theorem that says that all bases of a vector space must have the same number
of vectors.

Theorem 3.5.1. (The Dimension Theorem). If a vector space X has
two bases A = {a1,a2, . . . ,am} and B = {b1,b2, . . . ,bn} with m and n
positive integers, then m = n must hold.

Proof. By the definition of a basis, the set A is an independent set and the
set B spans X. Hence, by Theorem 3.4.8 (the Exchange Theorem), we must
have m ≤ n. Reversing the roles of A and B, we find that n ≤ m too must
hold. Thus m = n follows.

Alternatively, Corollary 3.4.2 also proves this theorem, because it says
that all bases have the minimum cardinality of spanning sets.

We give yet another, direct proof.13

Since A and B span X, we can write

ai =
n∑

j=1

aijbj for all i = 1, 2, . . . , m (3.65)

and

bj =
m∑

k=1

bjkak for all j = 1, 2, . . . , n, (3.66)

with appropriate coefficients aij and bjk. Substituting from Equation 3.66
into Equation 3.65, we get

ai =
n∑

j=1

aij

m∑
k=1

bjkak =
n∑

j=1

m∑
k=1

aijbjkak for all i = 1, 2, . . . , m. (3.67)

Since A, being a basis, is an independent set, all the coefficients on the right
must be 0 except the coefficient of ai, which must be 1. Hence,
13 Avoiding the Exchange Lemma, by James Ford, Amer. Math. Monthly, Vol. 102

(Apr. 1995).
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n∑
j=1

aijbji = 1 for all i = 1, 2, . . . , m. (3.68)

Thus, summing over i gives

m∑
i=1

n∑
j=1

aijbji = m. (3.69)

Similarly,

n∑
j=1

m∑
i=1

bjiaij = n. (3.70)

Now, the two double sums are rearrangements of each other and so m = n. �

This theorem enables us to make the following definition.

Definition 3.5.1. (Dimension). If a vector space X has a basis of n vec-
tors, where n is a positive integer, then n is called the dimension of X and
we write n = dim(X). The dimension of the vector space {0} is defined to
be zero, and we say it has the empty set for a basis. If X has no finite basis
and is not {0}, then it is said to be infinite dimensional.

Example 3.5.1. (Dimension of Rn). Not unexpectedly, for any positive
n, the dimension of Rn is n. �

Example 3.5.2. (Dimension of a Subspace of R3). The subspace of R3

by U = {u ∈ R3|u = s(1, 1, 1)T + t(1, 2, 3)T } has dimension two since
two vectors (1, 1, 1)T and (1, 2, 3)T form a basis for U . �

Example 3.5.3. (Dimension of Pn). The space Pn of all polynomials in a
variable x of degree at most n, for any positive integer n, and the zero poly-
nomial has the set {1, x, x2, . . . , xn} for a basis, and so is n + 1 dimensional.
To prove the independence of these monomials, let

Pn(x) = p0 + p1x + · · · + pnxn = 0, (3.71)

with p0, p1, . . . , pn ∈ R. Then Pn(0) = 0 implies p0 = 0. Differentiating, we
get

P ′
n(x) = p1 + 2p2x + · · · + npnxn−1 = 0, (3.72)

and so P ′
n(0) = 0 implies p1 = 0. Similarly, setting x = 0 in the higher

derivatives proves that Equation 3.71 implies that all coefficients pi must be
zero. �

integer

given
the
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able x has the infinite set {1, x, x2, . . .} for a basis, in the sense that any
polynomial is a finite linear combination of these vectors, and their indepen-
dence (which too is defined using only finite linear combinations) follows as
in the preceding example. Thus P is an infinite-dimensional vector space. �

Theorem 3.5.2. (The Dimensions of the Subspaces Associated with
a Matrix). Let A be an m × n matrix with rank r. Then the dimension of
its column space14 and the dimension of its row space both equal r, and the
dimension of its null space equals n − r.

Proof. Recall that the rank of a matrix was defined on page 55 as the number
of nonzero rows in the corresponding echelon form U , which is the same as
the number of pivots in the latter. Since those rows transposed form a basis
for the row space, we have dim(Row(A)) = r. Also, since the column space of
A has for a basis the columns of A corresponding to those of U with pivots,
dim(Col(A)) = r holds as well. Last, Theorem 3.4.6 provides a basis with
n − r vectors for Null(A). �

Notice how remarkable this theorem is. Looking at any matrix of any size,
with rows and columns having very little to do with each other, who would
have guessed that the row and column spaces have the same dimension?

The dimension of the null space of a matrix is sometimes called its nullity,
and part of this theorem can be stated as follows.

Corollary 3.5.1. (Rank + Nullity = Number of Columns). Let A be
any m × n matrix. Then rank (A) + nullity (A) = n.

There is more to this than meets the eye. The row space and the null
space of A are both subspaces of Rn, and since their dimensions add up to n,
we may, in a sense, expect them to add up to Rn as well. This is indeed the
case.

Theorem 3.5.3. (Decomposing a Vector of Rn into the Sum of a
Vector from Null(A) and a Vector from Row(A)). Let A be any m × n
matrix and x any vector in Rn. Then x can be decomposed uniquely into a
sum of a vector x0 from Null(A) and a vector xR from Row(A), that is, x =
x0+xR, with x0 and xR uniquely determined by x. Furthermore, every vector
of Null(A) is orthogonal to every vector of Row(A), and so, in particular, x0
and xR are orthogonal to each other.

Proof. Let us start by proving the orthogonality of the vectors of Row(A) to
those of Null(A). Assume that u is in Null(A). Then we have Au = 0; and if
we write ai for the ith row of A, this equation implies aiu = 0 for each i. From
14 The dimension of the column space is sometimes called the column rank of A,

and the first statement of the theorem is phrased as “column rank = row rank.”

Example3.5.4. (Dimensionof P). The space P of all polynomials in a vari-
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this, for any linear combination of the rows, we get
∑m

i=1 siaiu = 0. This can
be written as sT Au = 0, and furthermore, by the rule for the transpose of
a product (which requires the reversal of the factors), also as uT AT s = 0.
Equation 3.50 shows that v = AT s is an arbitrary vector of Row(A), and so
we have

uT v = 0. (3.73)

The matrix product of the row vector uT and the column vector v corresponds
to the dot product of the two column vectors u and v, and so the above
equation expresses the orthogonality of any u ∈ Null(A) to any v ∈ Row(A).

Let B = {b1,b2, . . . ,br} be a basis for Row(A) and C = {c1, c2, . . . , cn−r}
a basis for Null(A), and B = (b1,b2, . . . ,br) and C = (c1, c2, . . . , cn−r) the
corresponding matrices with the given vectors as columns. Then, by Equation
3.73 applied to the basis vectors,

(ci)T bj = 0 (3.74)

holds for each i and j, which may be written in matrix form as

CT B = O. (3.75)

We want to show that the n vectors of B∪C form a basis for Rn. To this end,
let us test the columns of the joint matrix (B, C) = (b1,b2, . . .br, c1, c2, . . . ,
cn−r) for independence. Assume

Bs + Ct = 0 (3.76)

for s ∈ Rr and t ∈ Rn−r. Left-multiply this equation by (Ct)T to obtain

(Ct)T Bs + (Ct)T Ct = 0, (3.77)

which can also be written as

tT CT Bs + (Ct)T (Ct) = 0. (3.78)

By Equation 3.75 the first term is zero, and the second term equals |Ct|2.
Since 0 is the only vector whose length is zero, Equation 3.78 implies

Ct = 0. (3.79)

We have, however, assumed that the columns of C form a basis for Null(A),
and so Equation 3.79 has only the trivial solution t = 0. Substituting t = 0
into Equation 3.76 and using the independence of the columns of B, we obtain
s = 0 as well. Thus, Equation 3.76 has only the trivial solution s = 0 and
t = 0, and so the columns of (B, C) are independent. Then they also form
a basis for Rn, since any set of n independent vectors in Rn does so. (See
Exercise 3.4.10.)
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Now, let us write any x ∈ Rn in terms of the basis B ∪ C as

x = Bs + Ct. (3.80)

Then

xR = Bs and x0 = Ct (3.81)

provide the claimed decomposition. Its uniqueness follows from the unique-
ness of decompositions in any basis, ensured by the independence of the basis
vectors. (See the discussion preceding Definition 3.3.1.) �

A =

⎡
⎣1 3 1

2 6 2
0 − 1 1

⎤
⎦ . (3.82)

and find the decomposition described above of the vector x = (1, 2, 3)T .
The echelon form

E =

⎡
⎣1 3 1

0 1 − 1
0 0 0

⎤
⎦ (3.83)

provides us with the basis vectors b1 = (1, 3, 1)T and b2 = (0, 1, −1)T for the
row space and with the single basis vector c1 = (−4, 1, 1)T for the null space.
(Why?) It is easy to check that c1 is orthogonal to b1 and b2, as it should
be. To decompose any x ∈ Rn into row space and null space components, we
should solve

s1b1 + s2b2 + t1c1 = x (3.84)

for the unknown coefficients s1, s2, t1. In our case this amounts to solving
the system⎡

⎣1 0 − 4
3 1 1
1 − 1 1

⎤
⎦
⎡
⎣ s1

s2
t1

⎤
⎦ =

⎡
⎣1

2
3

⎤
⎦ , (3.85)

which we can do in the usual way by Gaussian elimination:⎡
⎣1 0 − 4

3 1 1
1 − 1 1

∣∣∣∣∣∣
1
2
3

⎤
⎦→

⎡
⎣1 0 − 4

0 1 13
0 − 1 5

∣∣∣∣∣∣
1

−1
2

⎤
⎦→

⎡
⎣1 0 − 4

0 1 13
0 0 18

∣∣∣∣∣∣
1

−1
1

⎤
⎦ , (3.86)

Example 3.5.5. (A Decomposition). Let us again consider the matrix of
Example 3.4.3:
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and then back substitution gives t1 = 1/18, s2 = −31/18, and s1 = 22/18.
Thus x = (1, 2, 3)T is decomposed into the row space and null space compo-
nents

xR =
22
18

⎡
⎣1

3
1

⎤
⎦− 31

18

⎡
⎣ 0

1
− 1

⎤
⎦ =

1
18

⎡
⎣22

35
53

⎤
⎦ and x0 =

1
18

⎡
⎣−4

1
1

⎤
⎦ . (3.87)

Note that we could have obtained x0 by utilizing the orthogonality of c1
to b1 and b2, and taking the dot product of both sides of Equation 3.84 with
c1 to obtain

t1cT
1 c1 = cT

1 x. (3.88)

This equation evaluates to 18t1 = 1, and gives the same value t1 = 1/18
as in the previous computation but much more quickly. Then, once we have
found x0, we could compute xR as x − x0. However, this shortcut works
only if one of the subspaces Null(A) or Row(A) is one dimensional, as in this
example. �

Theorem 3.5.3 established two relations between Null(A) and Row(A)
that can be generalized: first, that the sums of their vectors make up all
of Rn and, second, that those vectors are orthogonal to each other. Since these
concepts occur in other contexts as well, we make corresponding definitions
for arbitrary subspaces.

Definition 3.5.2. (Sum of Subspaces). Let U and V be subspaces of a
vector space X. Then the set {u + v|u ∈ U,v ∈ V } is called the sum of U
and V , and is denoted by U + V .

It is easy to see that U + V is a subspace of X (Exercise 3.5.8).

Definition 3.5.3. (Orthogonal Subspaces and Orthogonal Comple-
ment). Let U and V be subspaces of a vector space X with an inner product
(see page 17). They are said to be orthogonal to each other if every u ∈ U is
orthogonal to every v ∈ V . Furthermore, the set of all vectors x in X that
are orthogonal to all vectors u in U is called the orthogonal complement of U ,
and is denoted by U⊥ (read “U -perp”). In other words, U⊥ = {x ∈ X|x ⊥ u
for all u ∈ U}.

Again, it is straightforward to verify that U⊥ is a subspace of X (Ex-
ercise 3.5.13). Furthermore, with this notation we can write part of Theo-
rem 3.5.3 as follows.

Corollary 3.5.2. (Relations Between Row(A) and Null(A)). Let A be
any m × n matrix. Then we have

Row(A) + Null(A) = Rn (3.89)

Row(A) = Null(A)⊥ (3.90)
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and

Null(A) = Row(A)⊥. (3.91)

Let U be a subspace of Rn. Then, by choosing a matrix A whose row
space is U , the preceding formulas yield the following result.

Corollary 3.5.3. (The Sum of Orthogonal Complements). Let U be a
subspace of Rn. Then we have

U + U⊥ = Rn. (3.92)

It may seem strange that the column space of a matrix has been slighted
in the discussion so far. This was due to the fact that we usually write linear
systems as Ax = b rather than as yT A = bT . Nevertheless, the column space
is very important, and occasionally we need yet another subspace associated
with A. This new subspace will also remove the temporary asymmetry of the
theory.

For any matrix A, the four spaces Row(A), Col(A), Null(A), and Left-
null(A) are sometimes referred to as the four fundamental subspaces of A.

As expected, we have relations between the left null space and the column
space, analogous to those between the row space and the null space. Taking
the transpose of both sides of the defining relation above, we get

AT y = 0 (3.93)

and so

Left-null(A) = Null(AT ). (3.94)

Also, as we have seen in Equation 3.52 on page 124, we have

Col(A) = Row(AT ). (3.95)

Consequently, the relations between the left null space and the column space
can be obtained from the previous results simply by applying them to AT .
The main features are as follows.

Theorem 3.5.4. (Relations Between Col(A) and Left-null(A)). Let A
be any m × n matrix. Then

dim(Left-null(A)) + dim(Col(A)) = m, (3.96)
Col(A) + Left-null(A) = Rm, (3.97)

15 This notation is our own; there is no standard one.

Definition 3.5.4. (Left Null Space). Let A be any m×n matrix. The set
of all vectors y ∈ such that yT A = 0T is called the left null space of A,
and we denote it by Left-null(A).15

Rm
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Left-null(A)⊥ = Col(A), (3.98)

Col(A)⊥ = Left-null(A), (3.99)

and any vector y ∈ Rm can be uniquely decomposed into the sum of a vec-
tor yC in Col(A) and a vector yL in Left-null(A).

The left null space arises naturally in the following type of problem.
Corresponding to nonparametric and parametric representations of lines

and planes, the two fundamental ways of representing a subspace V of Rn are:

1. as the solution space of a homogeneous system Ax = 0, that is, as Null(A)
for some m × n matrix A, and

2. as the set of all linear combinations x =
∑p

i=1 sibi = Bs of some vectors
bi ∈ Rn, that is, as Col(B) for some n × p matrix B.

The question is how to pass from one representation to the other. In
the direction 1 → 2 we have solved this problem in the previous section
(see Example 3.4.6 and Theorem 3.4.6). In the other direction, given the
matrix B, we need to find a matrix A such that Null(A) = Col(B). Taking
the orthogonal complement of each side and making use of Equations 3.90
and 3.99, we get Row(A) = Left-null(B). Thus we can find a suitable A by
finding a basis for Left-null(B) and using the transposes of these basis vectors
as the rows of A.

B =

⎡
⎢⎢⎢⎢⎣

0 2 − 1
1 0 0
0 0 −2
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦ (3.100)

and write V as the null space of a matrix A.
As stated above, to solve this problem we need to find a basis for Left-

null(B). This space is the same as Null(BT ), and so we need to find all
solutions of BT x = 0. We can do this in the usual way by reducing BT as
follows:⎡

⎣ 0 1 0 0 0
2 0 0 1 0

−1 0 − 2 0 1

⎤
⎦→

⎡
⎣1 0 2 0 − 1

0 1 0 0 0
0 0 − 4 1 2

⎤
⎦ . (3.101)

The free variables are x4 and x5, and we set them equal to parameters: x4 = s1
and x5 = s2. Solving for the other components, we get 4x3 = s1+2s2, x2 = 0,
and x1 = −2x3 + x5 = −2 s1+2s2

4 + s2 = −s1/2. Hence we can write the
solution vectors as

Example 3.5.6. (Finding a Matrix A for a Given Matrix B so that
Col(B)). Let V be the column space of the matrixNull(A) ==
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x =
1
4

⎡
⎢⎢⎢⎢⎣

−2 0
0 0
1 2
4 0
0 4

⎤
⎥⎥⎥⎥⎦
[

s1
s2

]
. (3.102)

The columns of the matrix on the right form a basis for Left-null(B), and
so its transpose is a solution to the problem, that is,

A =
[−2 0 1 4 0

0 0 2 0 4

]
. (3.103)

We leave it to the reader to check that indeed Null(A) = Col(B). �

Still another numerical relation between subspaces of a matrix calls for
deeper examination, namely that the row space and the column space both
have the same dimension. If we consider any vector xR in Row(A), then AxR

is in Col(A) because any xR is in Rn. Also, every vector in Col(A) can be
obtained as AxR, since, using the decomposition x = x0 +xR for any x ∈ Rn

from Theorem 3.5.3, we find that AxR = Ax, and Col(A) = {Ax|x ∈ Rn} .
Furthermore, xR is uniquely determined by Ax, since if AxR = Ax′

R, then
A(xR−x′

R) = 0 and so xR−x′
R is in the null space as well as in the row space,

and therefore must be the zero vector. This mapping of Row(A) to Col(A),
given by xR → AxR, can be represented, relative to any choice of bases
in Row(A) and Col(A), by an r × r nonsingular matrix. We shall compute
this matrix in Section 4.2. Also, the inverse of this mapping is discussed
in Exercise 5.1.14 for the special case of A with independent rows, without
reference to any bases.

We conclude this section with an application to electric networks.

(1) If there are n branch points (nodes) in the network, apply the point
rule (Kirchhof’s first law) at n−1 of these points. Any points may be chosen.
Application of the point rule at the nth point does not lead to an independent
relation.

(2) Imagine the network to be separated into a number of simple loops,
like the pieces of a jigsaw puzzle. Apply the loop rule (Kirchhof’s second law)
to each of these loops.

So, why are these rules valid?
16 p. 523, Sears and Zemansky, University Physics 2nd ed. 1955, Addison-Wesley,

Reading, Mass.

Example 3.5.7. (The Interdependence of the Equations Expressing
Laws). In Example 2.3.2 we stated Kirchhof’s laws for electric
did not discuss the dependence of the equations obtained for the
and loops of a circuit. This issue is seldom mentioned in physics

Sears and Zemansky state the following16 rules without proof:

Kirchhof’s
networks, but
various nodes
books, but
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We are going to examine this question on the circuit of Example 2.3.2.
However, to analyze just Kirchhof’s laws without Ohm’s law, we do not

need the resistors and the batteries, but only the nodes and edges as shown
in Figure 3.1. Such a diagram is called a directed graph, where the arrows
indicate the assigned direction of the currents.

edge3

node1 node2

node3node4

edge5

edge6edge4edge2edge1

Fig. 3.1. A directed graph

We can characterize a graph by an edge-node incidence matrix. Such a
matrix has a row for each edge and a column for each node. For an undirected
graph, the entry aij is 1 if node j is on edge i, and 0 otherwise. For a directed
graph, the entry aij is −1 if node j is the foot of the arrow of edge i, is 1 if
node j is the tip of the arrow of edge i, and is 0 if node j is not on edge i.
Thus the edge-node incidence matrix for the graph of Figure 3.1 is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 − 1
−1 0 0 1

0 0 1 −1
0 − 1 1 0

−1 1 0 0
0 − 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.104)

Now Kirchhof’s first law, for all four nodes together, can be expressed in
terms of the matrix A as saying that the vector y, whose components are the
currents, must be in Left-null (A), that is, that

yT A = 0T . (3.105)

(We write y for the current vector instead of i, because the latter is reserved
for the first standard vector in R2 or R3. Thus, we also use yk to denote
the current in edge k.) Indeed, the first component of this vector equation is
yT a1 = y1 − y2 − y5 = 0, which expresses Kirchhof’s first law for node 1; the
second component is yT a2 = −y4 + y5 − y6 = 0, which is Kirchhof’s first law
for node 2; etc.

It is easy to see that the columns of A add up to 0, because each row sums
to 0. This relation can also be expressed as A (1, 1, 1, 1)T = 0, which shows
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that (1, 1, 1, 1)T is in Null (A) . In fact,
{

(1, 1, 1, 1)T
}

is a basis for Null (A) ,

since Ax = 0 corresponds to the system

x1 −x4 = 0
−x1 +x4 = 0

x3 −x4 = 0
−x2 +x3 = 0

−x1 x2 = 0
−x2 +x3 = 0

(3.106)

whose general solution is x = s (1, 1, 1, 1)T
. Thus, Null (A) is one dimen-

sional and so, by Corollary 3.5.1, rank (A) = 3 and, by Theorem 3.5.2,
dim(Col(A)) = 3 as well. It is easy to see that actually any three columns
form a basis for Col(A). Similarly, for any circuit with n nodes, rank (A) =
n − 1 and any n − 1 columns aj form a basis for Col(A). The equation
yT A = 0T , which expresses Kirchhof’s first law for each node, can be writ-
ten in components as yT aj = 0 for j = 1, 2, . . . , n, and any one of these
equations is a linear combination of the other n − 1 of them.17 This result
proves Rule (1) of Sears and Zemansky quoted above and, for the network of
Example 2.3.2, we have obtained the first three of the Equations 2.57.

Kirchhof’s second law is also contained in the matrix A: Denoting the
vector of the potentials at the nodes by x = (x1, x2, x3, x4)

T
, the vector

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 − x4
x4 − x1
x3 − x4
x3 − x2
x2 − x1
x3 − x2

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.107)

represents the potential differences along the edges in the direction of the
arrows. Now, for any x, Ax is a member of Col(A) which, by Equation 3.98, is
the orthogonal complement of Left-null (A) . Thus, for any y ∈ Left-null (A) ,
Ax must satisfy yT Ax = 0. Furthermore, it is easy to see that the directed
loops of the graph generate some members y of Left-null (A) if we set yi = 1
if edge i is in the given loop with its arrow in the loop’s direction, yi = −1 if
edge i is in the given loop with its arrow opposite the loop’s direction, and
yi = 0 if edge i is not in the given loop. For instance, the small loop on
the left with a clockwise direction corresponds to y = (1, 1, 0, 0, 0, 0)T and,
indeed,

(1, 1, 0, 0, 0, 0) Ax = (x1 − x4) + (x4 − x1) = 0. (3.108)

17 We say that n − 1 of these equations are independent of each other because, in
general, we call a set of linear equations independent if their coefficient vectors
are independent.
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Similarly, the loop in the middle with a clockwise direction corresponds to
y = (0,−1,−1, 1, 1, 0)T and

(0,−1,−1, 1, 1, 0) Ax = − (x4 − x1)−(x3 − x4)+(x3 − x2)+(x2 − x1) = 0.

(3.109)

Finally, the small loop on the right with a clockwise direction corresponds to
y = (0, 0, 0,−1, 0, 1, )T and

(0, 0, 0,−1, 0, 1, ) Ax = − (x3 − x2) + (x3 − x2) = 0. (3.110)

Thus the three equations above represent Kirchhof’s second law for the three
simple loops. Since Left-null (A) is three dimensional, the three vectors above
form a basis for it and so the three loop equations yT Ax = 0 completely
determine the column space of A. Notice that these equations determine
only the potential differences and not the potentials themselves. Hence it is
customary to “ground” one of the nodes, that is, to set one of the xi values
equal to 0.

The last three equations illustrate Rule (2) of Sears and Zemansky quoted
above. For general circuits with n nodes and m edges, dim (Left-null (A)) =
m− r = m−n+1, and so we need to write Kirchhof’s second law yT Ax = 0
for the y vectors of m − n + 1 loops. In the case of planar graphs we have
m−n+1 simple loops as described in Rule (2) of Sears and Zemansky quoted
above,18 but for nonplanar graphs (e.g., for the edges of a cube) this is not
always the case.

To complete the analysis of any network with batteries and resistors, we
need to relate the currents and the potential differences by making use of the
voltage sources and Ohm’s law. In the case of the network of Example 2.3.2
on which the graph of Figure 3.1 was based, we can write

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 − x4
x4 − x1
x3 − x4
x3 − x2
x2 − x1
x3 − x2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

V1 − R1i1
R2i2
R3i3
R4i4
R5i5

V2 + R6i6

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.111)

Substituting from here into Equations 3.108, 3.109, and 3.110, we get the
last three of Equations 2.57. In general, the incidence matrix gives n − 1
independent node equations for the m currents and m−n+1 loop equations
for the potential differences, which can be converted to equations for the
currents by inserting the applied voltages and using Ohm’s law. Thus we
get altogether (n − 1) + (m − n + 1) = m independent equations for the m
currents. �
18 This result follows from Euler’s polyhedral formula. See, e.g., http://

en.wikipedia.org/wiki/Euler characteristic

http://en.wikipedia.org/wiki/Euler_characterstic
http://en.wikipedia.org/wiki/Euler_characterstic
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Exercises

Exercise 3.5.1. Let

A =
[

1 1 1 2 0
3 3 0 6 0

]
.

a. Find the dimensions of the four subspaces associated with A.
b. Decompose (−2, 0, 1, 4, 1)T into the sum of an x0 ∈ Null(A) and an xR ∈
Row(A).

Exercise 3.5.2. Let

A =
[
1 1 1 2 − 1

]
.

a. Find the dimensions of the four subspaces associated with A.
b. Decompose (1, 1, 1, 1, 1)T into the sum of an x0 ∈ Null(A) and an xR ∈
Row(A).

Exercise 3.5.3. Let

A =
[
3 3 0 4 4

]
.

a. Find the dimensions of the four subspaces associated with A.
b. Decompose (1, 1, 1, 1, 1)T into the sum of an x0 ∈ Null(A) and an xR ∈
Row(A).

Exercise 3.5.4. Let

A =

⎡
⎣1 0 0 2 − 1

0 2 0 0 0
0 0 0 2 2

⎤
⎦ .

a. Find the dimensions of the four subspaces associated with A.
b. Decompose (6, 2, 1, 4, 8)T into the sum of an x0 ∈ Null(A) and an xR ∈
Row(A).

Exercise 3.5.5. Let

A =
[

0 2 0 0 4
0 0 0 2 2

]
.

a. Find the dimensions of the four subspaces associated with A.
b. Decompose (1, 2, 3, 4, 5)T into the sum of an x0 ∈ Null(A) and an xR ∈
Row(A).

Exercise 3.5.6. Let

A =
[

1 1 1 2 − 1
0 2 0 0 4

]
.

a. Find the dimensions of the four subspaces associated with A.
b. Decompose (1, 3, 4, 2, 8)T into the sum of an x0 ∈ Null(A) and an xR ∈
Row(A).
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Exercise 3.5.7. Show, without referring to Theorem 3.5.3, that Row(A) ∩
Null(A) = {0} for any matrix A.

Exercise 3.5.8. Let U and V be subspaces of a vector space X. Prove that
U + V is a subspace of X.

Exercise 3.5.9. Let U and V be subspaces of a vector space X. Prove that
U ∩ V is a subspace of U + V .

Exercise 3.5.10. Show that if A and B have the same number of rows, then
Col(A) + Col(B) = Col[A B]. (This fact can be used to find a basis for the
sum of subspaces.)

Exercise 3.5.11. Show that if A and B have the same number of columns,

then Null(A) ∩ Null(B) = Null
[

A
B

]
. (This fact can be used to find a basis

for the intersection of subspaces.)

Exercise 3.5.12. Let

A =

⎡
⎣1 1 1

0 2 0
0 0 0

⎤
⎦ and B =

⎡
⎣0 1 − 1

0 0 0
0 2 0

⎤
⎦ .

a. Find a basis for each of Col(A), Col(B), and Col(A + B).
b. Find a basis for each of Col(A) + Col(B) and Col(A) ∩ Col(B).
c. Is Col (A + B) = Col(A) + Col(B)?
d. Verify the formula dim(U + V ) = dimU + dimV − dim(U ∩ V ) of Exer-
cise 3.5.23 for U = Col(A) and V = Col(B).

Exercise 3.5.13. Let U be a subspace of an inner product space X. (See
page 17.) Prove that U⊥ is a subspace of X.

Exercise 3.5.14. Show that if A and B are matrices such that AB is defined
and A is a nonsingular square matrix, then B and AB have the same rank.
(Hint : Use the result of Exercise 3.4.9.)

Exercise 3.5.15. Use the result of the previous exercise to show that row-
equivalent matrices have the same rank. (Hint : Use also the results of Exer-
cises 2.5.12, 2.5.13, and 2.5.14 of page 96, suitably generalized.)

Exercise 3.5.16. Show that if A and B are matrices such that AB is de-
fined, then Col(AB) is a subspace of Col(A), and Row(AB) is a subspace of
Row(B). What do these facts imply about the ranks and the nullities of the
matrices?

Exercise 3.5.17. Show that if A and B are matrices such that AB is defined
and the columns of B are linearly dependent, then the columns of AB are
linearly dependent as well. Is the converse true?
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Exercise 3.5.18. Let A be the matrix of Exercise 3.5.4 and let U be the
subspace of R3 spanned by the first two columns of A, and V the subspace
spanned by the last two columns. Find a basis for each of U, V, U⊥, V ⊥, U ∩
V, U + V.

Exercise 3.5.19. Let

A =

⎡
⎢⎢⎣

1 0 1 1 1
0 2 0 0 1
0 0 1 2 2
0 0 0 1 1

⎤
⎥⎥⎦

and let U be the subspace of R4 spanned by the first three columns of A, and
V the subspace spanned by the last three columns. Find a basis for each of
U, V, U⊥, V ⊥, U ∩ V, U + V.

Exercise 3.5.20. Let U and V be finite-dimensional subspaces of a vector
space X. Prove that U + V is the subspace generated by U ∪ V . (Hint :
Consider a basis for each subspace.)

Exercise 3.5.21. For any subspaces U and V of a vector space X we call
U + V a direct sum if U ∩ V = {0}, and denote it in that case by U ⊕ V .
Show that for any finite-dimensional subspaces with U ∩ V = {0} we have
dim(U ⊕ V ) = dimU + dim V . (Hint : Consider a basis for each subspace.)

Exercise 3.5.22. Show that for any finite-dimensional subspaces U and
V of a vector space X the sum U +V is direct if and only if every x ∈ U +V
can be decomposed uniquely into a sum of a vector u from U and a vector v
from V , that is, x = u + v, with u and v uniquely determined by x.

Exercise 3.5.23. Let U and V be subspaces of Rn. Show that
dim(U + V ) = dimU + dim V − dim(U ∩ V ).

Exercise 3.5.24. Generalize the definition of sum to more than two sub-
spaces as summands.

Exercise 3.5.25. Find a formula analogous to the one in Exercise 3.5.23
for the sum of three subspaces of Rn.

Exercise 3.5.26. Let U and V be subspaces of Rn. Show that if they are
orthogonal to each other, then U ∩V = {0}. Is the converse true? (Explain!)

Exercise 3.5.27. Let U and V be subspaces of Rn. Show that (U ∩V )⊥ =
U⊥ + V ⊥. (Hint : Extend a basis for U ∩ V to bases for U, V , and Rn .)

Exercise 3.5.28. Let U and V be subspaces of Rn. Show that (U ∩V )⊥ =
U⊥ ∩ V ⊥.

*

*

*

*

*

*

*

*
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Exercise 3.5.29. Let U and V be subspaces of Rn. Show that U ⊂ V
implies V ⊥ ⊂ U⊥.

Exercise 3.5.30. Let U be a subspace of Rn. Show that (U⊥)⊥ = U .

Exercise 3.5.31. Find a matrix A such that Null(A) = Col(B), where

B =

⎡
⎢⎢⎣

1 1 1
0 2 0
0 0 0
2 1 0

⎤
⎥⎥⎦ .

Exercise 3.5.32. Find a matrix A such that Null(A) = Row(B), where

B =

⎡
⎣1 1 1 2 − 1

0 2 0 0 4
0 0 0 2 2

⎤
⎦ .

Exercise 3.5.33. Prove the following alternative algorithm for obtaining
a basis for the left null space of a matrix:

Let A be any real m × n matrix of rank r. Consider the block matrix
[A I], where I is the unit matrix of order m. Reduce this block matrix by

elementary row operations to a form
[

U L
O M

]
, in which U is an r×n echelon

matrix and O the (m − r) × n zero matrix. Then the transposed rows of the
(m − r) × m matrix M form a basis for the left null space of A. (Hint : For
any b ∈ Col(A) reduce Ax = Ib by elementary row operations until A is in

an echelon form
[

U
O

]
with U having no zero rows. On the right-hand side

denote the result of this reduction of the matrix I by
[

L
M

]
and consider the

condition for consistency.)

Exercise 3.5.34. Use the algorithm of the previous exercise to solve Ex-
ercise 3.5.31.

Exercise 3.5.35. Modify the algorithm of Exercise 3.5.33 to obtain a new
algorithm for finding a basis for Null(A).

Exercise 3.5.36. Show that the result of Exercise 3.5.33 can be used to
solve Ax = b by the following new algorithm:

Let A be any real m×n matrix and b ∈ Col(A). Reduce the block matrix[
AT I

−bT 0

]
to the form

[
U L
0 xT

]
by elementary row operations without ever

exchanging the last row or multiplying it by a scalar, where U is an n × m
echelon matrix and xT a row n-vector. Then the latter is the transpose of a
particular solution x. The general solution is given by the sum of this x and
any linear combination of the transposed rows of L that correspond to the
zero rows of U .

*

*

*

*

*

*
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Exercise 3.5.37. Use the algorithm of the previous exercise to solve
Ax = b with

A =

⎡
⎣ 1 − 2 3 2

0 3 −3 0
−1 −1 0 −2

⎤
⎦ and b =

⎡
⎣−5

6
−1

⎤
⎦ .

Exercise 3.5.38. Prove the following generalization of the algorithm of
Exercise 3.5.36 to invert a matrix:

Let A be any real, nonsingular n × n matrix. Consider the block matrix[
A I

−I O

]
where I is the unit matrix of order n and O is the n×n zero matrix.

Row-reduce this block matrix, without exchanging or multiplying any of the

last n rows in the process, to a form
[

U L
O M

]
in which U is upper triangular.

Then M = A−1.

Exercise 3.5.39. Use the algorithm of the previous exercise to invert

A =
[

1 − 2
4 3

]
.

Exercise 3.5.40. Prove that in any n-dimensional vector space X any set
of n independent vectors forms a basis. (Hint : Use the Exchange Theorem.)

Exercise 3.5.41. Prove that in any n-dimensional vector space X no set
of fewer than n vectors spans X. (Hint : Use the Exchange Theorem.)

Exercise 3.5.42. Prove that in any n-dimensional vector space X any
set of n vectors that spans X forms a basis. (Hint : Use the results of Exer-
cise 3.5.41 and Theorem 3.5.1.)

Exercise 3.5.43. Prove that in any n-dimensional vector space X any set
of more than n vectors is a dependent set. (Hint : Use the Exchange Theorem.)

MATLAB Exercises

In MATLAB, the method of Exercises 3.5.33 and 3.5.35 can be used to obtain
bases for Left-null(A) and Null(A) by computing rref([A,eye(size(A, 1))])
and the same for A′ in place of A. The command N = null(A) also returns
a (usually different) basis matrix for Null(A).

Exercise 3.5.44. Let A = magic(4)
a. Use rref as explained above to find a basis for Left-null(A) and for Null(A).
Extract and transpose the appropriate submatrix in each case to obtain two
matrices B and C whose columns form the bases.

*

*

*

*

*

*

*
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b. Use N = null(A) and L = null(A′) to obtain two different bases, and
show that they span the same subspaces as B and C, respectively.
c. Use rref as in Exercise 3.4.15 to compute bases for Row(A) and Col(A).
d. Decompose x = (1, 2, 3, 4)T into a sum of an x0 ∈ Null(A) and an xR ∈
Row(A).
e. Decompose x into a sum of an xL ∈ Left-null(A) and an xC ∈ Col(A).

Exercise 3.5.45. Repeat the previous exercise for the matrix A = magic(8)
and x = (1, 2, 3, 4, 1, 2, 3, 4)T .

Exercise 3.5.46. Let A = round(10 ∗ rand(3, 4) − 5).
a. Compute the nullity of A, AT , AT A, and AAT .
b. Repeat the above for six instances of A.
c. Do you see any patterns? Make a conjecture and prove it.

3.6 Change of Basis

The notion of a basis is a generalization of that of a coordinate system. Just
as we sometimes need to change coordinate systems, so too do we sometimes
need to change bases to make certain equations simpler. For example, chang-
ing of bases will be used in the eigenvalue problems of Chapter 7, which arise
in the evolution of many physical systems.

Let X be an n-dimensional vector space and A = {a1,a2, . . . ,an} a basis
for X. Then any vector x in X can be written uniquely as x =

∑n
i=1 xAiai.

We have here an ordering of A implicit in the subscripts, and the ordered
n-tuple A = (a1,a2, . . . ,an) is sometimes called an ordered basis for X. The
transposed ordered n-tuple xA = (xA1, xA2, . . . , xAn)T is called the coordi-
nate vector of x relative to A, and is a vector of Rn. Its components xAi are
called the coordinates of x relative to A.

We begin our discussion of changing bases in the special case of X = Rn,
and consider general vector spaces afterward. Working with Rn enables us to
consider the ordered basis A = (a1,a2, . . . ,an) of Rn to be a matrix, called a
basis matrix. It is, of course, of size n × n. Similarly, let B = (b1,b2, . . . ,bn)
be another basis matrix of Rn. Then any vector x of Rn can be decomposed
uniquely as x =

∑n
i=1 xAiai and also as x =

∑n
i=1 xBibi. Using the basis

matrices, we may write the equations above as

x = AxA and x = BxB . (3.112)

For given A, B, and any x, the Equations 3.112 can be solved for xA and
xB , and therefore, by Theorem 2.5.3 on page 92, the matrices A and B must
be invertible. Thus we can solve AxA = BxB as

xA = A−1BxB . (3.113)
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The matrix

S = A−1B (3.114)

is usually referred to as the transition matrix or change of basis matrix from
the basis A to the basis B, because Equation 3.114 can be solved to give this
change as

B = AS. (3.115)

The matrix S, being the product of two invertible matrices, must also be
invertible, and we have S−1 = B−1A.

Using the definition of S we can write Equation 3.113 as

xA = SxB (3.116)

and, multiplying both sides by S−1, we can also write

xB = S−1xA. (3.117)

Note the formal difference between Equations 3.115 and 3.117: whereas the
basis matrix A transforms with S on the right, the corresponding coordinate
vector xA transforms with S−1 on the left.

Let us summarize the preceding discussion in a theorem.

Theorem 3.6.1. (Change of Basis of Rn). If A and B are n×n matrices
whose columns form two bases of Rn, then A and B are invertible and there
exists an invertible n × n matrix S such that B = AS and so S = A−1B.
Furthermore, the coordinate vectors xA and xB of any x ∈ Rn are related by
Equations 3.116 and 3.117.

Corollary 3.6.1. (Change from the Standard Basis of Rn). In the im-
portant particular case of a transition from the standard basis I to a basis B,
replacing A in Equations 3.112 and 3.115 by I, we get xA= xI= x, B =
IS = S and Equations 3.116 and 3.117 become x = BxB and xB = B−1x.
Let us emphasize that where the standard vectors transform with B, the co-
ordinate vectors transform with B−1, that is,

bi = Bei and xB = B−1x. (3.118)

Example 3.6.1. (A Change of Basis of R2). In R2 let us change from the

standard basis {i, j} to the basis {b1,b2}, where b1 =
√

2
2

[
1
1

]
and b2 =

√
2

2

[−1
1

]
.
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i

j
b2

x2

x1

xB2

xB1
x

b1

Fig. 3.2. Rotating the standard basis in R
2 by 45◦

This new basis is obtained from the old one by a 45◦ rotation. (See Fig-
ure 3.2.) Then the transition matrix is

B =
√

2
2

[
1 − 1
1 1

]
(3.119)

and

B−1 =
√

2
2

[
1 1

−1 1

]
. (3.120)

Hence for any vector x = (x1, x2)T we have

xB = B−1x =
√

2
2

[
1 1

−1 1

] [
x1
x2

]
=

√
2

2

[
x1+ x2
x2− x1

]
. (3.121)

�

a. Find the transition matrix S for the change of basis in R3 from (a1,a2,a3)
to (b1,b2,b3), where a1 = (1, 2, 0)T , a2 = (0, 1, 3)T , a3 = (0, 0, 1)T , b1 =
(1, 0, 1)T , b2 = (1, 1, 0)T , b3 = (0, 1, 1)T .
b. Use S to write x = −b1 + 2b2 + 3b3 as xA1a1 + xA2a2 + xA3a3.
Solution: The basis matrix A is given by

A =

⎡
⎣1 0 0

2 1 0
0 3 1

⎤
⎦ (3.122)

Example 3.6.2. (A Change of Basis of R3)



3.6 Change of Basis 151

and the basis matrix B by

B =

⎡
⎣1 1 0

0 1 1
1 0 1

⎤
⎦ . (3.123)

Thus

A−1 =

⎡
⎣ 1 0 0

−2 1 0
6 −3 1

⎤
⎦ , (3.124)

and so the change of basis matrix is

S = A−1B =

⎡
⎣ 1 1 0

−2 −1 1
7 3 −2

⎤
⎦ . (3.125)

Consequently,

xA = SxB =

⎡
⎣ 1 1 0

−2 −1 1
7 3 −2

⎤
⎦
⎡
⎣−1

2
3

⎤
⎦ =

⎡
⎣ 1

3
−7

⎤
⎦ (3.126)

and

x = a1 + 3a2 − 7a3. (3.127)

�

All the formulas in the previous discussion except those involving matrix
products and inverses can also be given a meaning in an arbitrary finite-
dimensional vector space X, not just in Rn, by considering A and B not
as matrices but as ordered bases of X, that is, as the n-tuples of vectors
A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bn).

In Rn, the formula B = AS, by Exercise 2.4.13 Part b, is equivalent to

bj =
n∑

i=1

aisij for j = 1, 2, . . . , n. (3.128)

This equation, however, unlike B = AS, is valid in any finite-dimensional
X, not just in Rn, and expresses each vector bj as a linear combination of the
ai vectors, and shows that sij is the ith component of the coordinate vector
bjA of bj relative to the basis A, that is, sij = (bjA)i . Thus, S is again an
n × n matrix, whose jth column is given by

sj= bjA. (3.129)
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The expressions x = AxA and x = BxB of any vector in Rn relative to
the bases A and B, in X become

x =
n∑

i=1

xAiai (3.130)

and

x =
n∑

j=1

xBjbj . (3.131)

Substituting the expression of bj from Equation 3.128 into this equation,
we get

x =
n∑

i=1

n∑
j=1

sijxBjai. (3.132)

Since the ai vectors form a basis, the coefficients in the two expres-
sions 3.130 and 3.132 of x relative to the basis A must be equal:

xAi =
n∑

j=1

sijxBj (3.133)

or equivalently

xA = SxB . (3.134)

We can also show that the matrix S must again be invertible and S−1

gives the transformation in the reverse direction. To this end, write the ak

vectors as linear combinations of the bj vectors:

ak =
n∑

j=1

bjtjk for k = 1, . . . , n. (3.135)

If we substitute the expression 3.128 of the bj vectors into this equation
and equate corresponding coefficients of the ai vectors on the two sides, then
we get19

n∑
j=1

sijtjk = δik for i, k = 1, . . . , n. (3.136)

In matrix notation this equation becomes ST = I, and so S must be
invertible and T = S−1. Multiplying both sides of Equation 3.134 by S−1,
we get
19 Recall that δik = 1 if i = k and is 0 otherwise. (See page 82.)
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xB = S−1xA. (3.137)

Also, using T = S−1, we can abbreviate Equation 3.135 as A = BS−1.
Thus we have proved the following generalization of Theorem 3.6.1 from

Rn to any finite-dimensional vector space X.

Theorem 3.6.2. (Change of Basis in any Finite-Dimensional Vec-
tor Space). If A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bn) are two ordered
bases of a vector space X, then the matrix S whose columns are given by
sj = bjA is invertible and relates the coordinate vectors xA and xB of any
x ∈ X by xA = SxB and xB = S−1xA.

Example 3.6.3.(A Change of Basis in a Subspace of R3). Consider the
dimensional subspace V of R3 spanned by the columns of

A =

⎡
⎣1 0

2 1
2 − 1

⎤
⎦ . (3.138)

Another basis for V is given by the columns of

B =

⎡
⎣1 1

0 1
4 3

⎤
⎦ . (3.139)

Find the transition matrix S from the basis A to the basis B.
In this case, since we are working in R3, we have no problem with con-

sidering A and B to be matrices. Furthermore, by Equation 3.128, we must
have AS = B with S being 2 × 2. We can solve AS = B for the unknown
matrix S by Gauss–Jordan elimination (see Exercise 3.6.8), pretty much as
we obtained the inverse of a matrix:⎡

⎣1 0
2 1
2 − 1

∣∣∣∣∣∣
1 1
0 1
4 3

⎤
⎦ →

⎡
⎣1 0

0 1
0 − 1

∣∣∣∣∣∣
1 1

−2 −1
2 1

⎤
⎦ →

⎡
⎣1 0

0 1
0 0

∣∣∣∣∣∣
1 1

−2 −1
0 0

⎤
⎦ .

(3.140)

Thus

S =
[

1 1
−2 − 1

]
. (3.141)

�

Example 3.6.4.(AChangeofBasis in P3). In quantum mechanics, the sim-
plest solutions of the differential equation of the harmonic oscillator involve
what are called the Hermite polynomials. To find more general solutions, it is

two-
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important to rewrite a given polynomial as a linear combination of Hermite
polynomials. Although this problem is handled generally by introducing an
appropriate inner product in P and exploiting the orthogonality of the Her-
mite polynomials, for the first few Hermite polynomials we can also use the
present method.

The first four Hermite polynomials are given by H0(x) = 1 , H1(x) = 2x,
H2(x) = 4x2 − 2, and H3(x) = 8x3 − 12x. We want to find a formula that
expresses an arbitrary third degree polynomial as a linear combination of
these polynomials. In the space P3 = {p = P : P (x) = p0 + p1x + p2x

2 +
p3x

3; p0, p1, p2, p3∈R}, we choose the basis A to consist of the monomials,
that is, ai = Mi, where Mi (x) = xi for i = 0, . . . , 3, and the basis B to
consist of the first four Hermite polynomials, that is, bi = Hi for i = 0, . . . , 3.
(We could show directly that these bi are independent and so form a basis
for P3, but this fact also follows, by Theorem 2.5.3 on page 92, from the
result shown below that we can find unique coordinates of any p relative
to B.) Then, according to Theorem 3.6.2, the columns of the matrix S are
given by the coordinates of the bi vectors relative to A. These columns can
be read off the definitions of the Hermite polynomials, to give (in ascending
order of degrees)

S =

⎡
⎢⎢⎣

1 0 − 2 0
0 2 0 − 12
0 0 4 0
0 0 0 8

⎤
⎥⎥⎦ . (3.142)

The coordinate vector of any p relative to A is pA = (p0, p1, p2, p3)T ,
and its coordinate vector relative to B is given by pB = S−1pA. Thus,
multiplication of pA by

S−1 =
1
8

⎡
⎢⎢⎣

8 0 4 0
0 4 0 6
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦ (3.143)

will give the coordinates of any p relative to B. For instance, for the polyno-
mial P (x) = 1 + 2x + 16x3 we have

1
8

⎡
⎢⎢⎣

8 0 4 0
0 4 0 6
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
2
0

16

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
13
0
2

⎤
⎥⎥⎦ . (3.144)

Thus

P (x) = H0(x) + 13H1(x) + 2H3(x), (3.145)
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that is,

1 + 2x + 16x3 = 1 + 13(2x) + 2(8x3 − 12x), (3.146)

which is obviously true. �

We have just seen how vectors can be described in terms of their compo-
nents relative to a basis, and how a change of basis affects those components.
We can similarly define the components of a matrix relative to a basis and
examine how they change with a change of basis. We discuss square matri-
ces only, since it is mainly for them that such changes become necessary in
applications. (For nonsquare matrices see Exercise 3.6.13.)

Let M be an n × n matrix and consider the associated mapping

y = Mx (3.147)

of Rn to itself. Let us write x and y in terms of the ordered basis A =
(a1,a2, . . . ,an) as x = AxA and y = AyA. Substituting from these equations
into y = Mx we get AyA = MAxA and, multiplying both sides by A−1,

yA = A−1MAxA. (3.148)

We call the matrix

MA = A−1MA (3.149)

the matrix representing M with respect to the basis A. This means that MA

represents the same mapping of x to y in terms of the basis A as M does in
terms of the standard basis. Similarly, if we introduce a second ordered basis
B = (b1,b2, . . . ,bn) into Rn, then

MB = B−1MB (3.150)

represents M with respect to the basis B. With this notation we have

yA = MAxA (3.151)

and

yB = MBxB . (3.152)

M = AMAA−1 = BMBB−1. (3.153)

Hence

MB = B−1AMAA−1B =
(
A−1B

)−1
MAA−1B, (3.154)

Solving Equations 3.149 and 3.150 for M, we obtain
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which can be expressed in terms of the transition matrix S = A−1B (see
Equation 3.114) as

MB = S−1MAS. (3.155)

Again, we restate our findings as a theorem.

Theorem 3.6.3. (The Matrix of a Linear Mapping Relative to a
Basis and Its Change Corresponding to a Change of Basis). If A
and B are n × n matrices whose columns form two bases of Rn and M is
an n × n matrix representing the mapping y = Mx of Rn to itself, then
MA = A−1MA is the matrix representing M with respect to the basis A and
so too is MB = B−1MB with respect to the basis B. Furthermore, MA and
MB are related by Equation 3.155, where S = A−1B.

Example3.6.5. (TheMatrixofaRe ection in R2 Relative toa Rotated
In R2 let us change from the standard basis {i, j} to the basis {b1,b2},

where b1 =
√

2
2

[
1
1

]
and b2 =

√
2

2

[−1
1

]
, as in Example 3.6.1.

Let us see how the matrix

M =
[

0 1
1 0

]
(3.156)

changes with the change from the standard basis to the rotated one described
above. This matrix transforms any vector x = (x1, x2)T to Mx = (x2, x1)T ,
and so it represents the reflection across the line x2 = x1. Then

MB = B−1MB =
1
2

[
1 1

−1 1

] [
0 1
1 0

] [
1 − 1
1 1

]
=

[
1 0
0 − 1

]
. (3.157)

Applied to any vector xB this matrix gives

yB = MBxB =
[

1 0
0 − 1

] [
xB1
xB2

]
=

[
xB1

−xB2

]
, (3.158)

which shows that MB represents the reflection across the xB1-axis, as it
should, since that axis is the line x2 = x1. �

Example 3.6.6.(TheMatrix of aRotation in R2Relative to a Changed
sis). In R2 let us change from the standard basis {i, j} to the basis {a1,a2},

where a1= i = (1, 0)T and a2 = (1, 1)T . Then the transition matrix is

A =
[

1 1
0 1

]
, (3.159)

and

A−1 =
[

1 − 1
0 1

]
. (3.160)

flfl
Basis).

Ba



3.6 Change of Basis 157

Hence for any vector x = (x1, x2)T we have

xA = A−1x =
[

1 − 1
0 1

] [
x1
x2

]
=
[

x1 − x2
x2

]
(3.161)

and

x = (x1 − x2)a1 + x2a2. (3.162)

We can check that, indeed,

(x1 − x2)
[

1
0

]
+ x2

[
1
1

]
=
[

x1 − x2
0

]
+
[

x2
x2

]
=
[

x1
x2

]
= x. (3.163)

Next, let us see how the rotation matrix

M =
[

cos θ − sinθ
sinθ cos θ

]

of Example 2.4.1 on page 67 is represented in the new basis. We find that

MA = A−1MA =
[

1 − 1
0 1

] [
cos θ − sinθ
sinθ cos θ

] [
1 1
0 1

]

=
[

cos θ − sin θ −2 sin θ
sin θ cos θ + sin θ

]
. (3.164)

�

The type of transformation shown for MA to MB in Equation 3.155 with
any invertible matrix S is of sufficient importance to merit a special name.

Definition 3.6.1. (Similar Matrices). Let X denote the set of n × n
matrices. For matrices A and B of X, we say that B is similar to A if
there exists an invertible matrix S in X such that B = S−1AS. The corre-
sponding transformation of X to itself with a given S is called a similarity
transformation.

Observe that the formula MB = B−1MB of Equation 3.150 describes a
similarity transformation, too. It transforms the representation M of a map-
ping in the standard basis to its representation MB relative to the basis B.
In this case the transition matrix S happens to be B, as we have seen in
Corollary 3.6.1.

Several important properties of similarity are stated in Exercises 3.6.17
and 3.6.18.

Exercises

Exercise 3.6.1. Let a1 = (1, 2)T and a2 = (−2, 1)T be the vectors of the
ordered basis A for R2.
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a. Find the transition matrix S for the change from the standard basis
to A and
b. use S to find the components of x = (3, 5)T in the basis A.

Exercise 3.6.2. Let a1 = (1, 1, 2)T , a2 = (0, −2, 1)T , and a3 = (1, 1, 0)T be
the vectors of the ordered basis A for R3.
a. Find the transition matrix S for the change from the standard basis to A.
b. What is the transition matrix for the change from the basis A to the
standard basis?
c. Use S to find the components of x = (3, 4, 5)T in the basis A.

Exercise 3.6.3. a. Find the transition matrix S corresponding to the change
of basis in R2 from (a1,a2) to (b1,b2), where a1 = (1, 2)T , a2 = (−2, 1)T ,
b1 = (3, 2)T , b2 = (1, 1)T .
b. Use S to write x = 3b1 − 2b2 as xA1a1 + xA2a2.
c. Use S to write x = 2a1 + 4a2 as xB1b1 + xB2b2.

Exercise 3.6.4. a. Find the transition matrix S corresponding to the change
of basis in R3 from (a1,a2,a3) to (b1,b2,b3) where a1 = (1, 2, 0)T , a2 =
(−2, 1, 0)T , a3 = (0, 0, 1)T , b1 = (3, 2, 0)T , b2 = (1, 1, 0)T , b3 = (0, 1, 1)T .
b. Use S to write x = 2a1 + 4a2 + 3a3 as xB1b1 + xB2b2 + xB3b3.

Exercise 3.6.5. In R3 let xA1=x2 − x3, xA2 = x3 − x1, xA3 = x1 + x2 give
the transformation of the coordinates of a vector x upon a change from the
standard basis {i, j,k} to a new basis {a1,a2,a3}. Find the new basis vectors
a1,a2,a3.

Exercise 3.6.6. In R2 the matrix

M =
[

1 0
0 0

]

represents the projection onto the x1-axis. Find its representation MA relative
to the basis (a1,a2) obtained from the standard basis by a rotation through
an angle θ.

Exercise 3.6.7. Let a1 = e3, a2 = e1, and a3 = e2 be the vectors of the
ordered basis A for R3.
a. Find the transition matrix S for the change from the standard basis to A,
b. use S to find the components of x = (3, 4, 5)T in the basis A, and
c. find the representation MA of the matrix

M =

⎡
⎣1 2 3

1 2 0
1 0 0

⎤
⎦

relative to the basis A.
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Exercise 3.6.8. Explain why the reduction of the augmented matrix [A|B]
in Example 3.6.3 solves AS = B.

Exercise 3.6.9. Let V be the subspace of R3 spanned by the columns of

A =

⎡
⎣1 0

2 4
3 − 1

⎤
⎦ and B =

⎡
⎣2 3

0 − 2
7 11

⎤
⎦ .

a. Find the transition matrix from the basis A to the basis B and
b. the transition matrix from B to A.

Exercise 3.6.10. Find a basis C for the space V of the previous exercise so
that c1 = a1 and c2 ⊥ a1.

Exercise 3.6.11. a. Find a formula that gives an arbitrary third degree
polynomial as a linear combination of the first four Legendre polynomials:
L0(x) = 1, L1(x) = x, L2(x) = 1

2 (3x2 − 1), and L3(x) = 1
2 (5x3 − 3x).

b. Express the polynomial P (x) = 1−2x+3x2 −4x3 as a linear combination
of these Legendre polynomials.

Exercise 3.6.12. Let L and M be n × n matrices and A a basis matrix
of Rn. Show that
a. (L + M)A = LA + MA and
b. (LM)A = LAMA.

Exercise 3.6.13. Suppose M is an m × n matrix, representing a mapping
from Rn to Rm. If we change from the standard basis In in Rn to an arbitrary
ordered basis A, and from Im in Rm to some B, then find the representation
MA,B of M relative to the new bases.

Exercise 3.6.14. Show that all matrices of the form

M(t) =
[

1 t
0 2

]

are similar to one another. (Hint : For any values t and t′ try to find an
invertible matrix S, depending on t and t′, such that SM(t) = M(t′)S holds.)

Exercise 3.6.15. Show that
[

1 1
0 1

]
is not similar to

[
1 0
0 1

]
.

Exercise 3.6.16. Is
[

1 0
0 2

]
similar to

[
2 0
0 1

]
?

Exercise 3.6.17. Show that if A and B are similar matrices, then
a. AT and BT are similar,
b. Ak and Bk are similar for any positive integer k, and
c. if additionally A is invertible, then so is B, and A−1 and B−1 are similar
as well.
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1. Reflexive, that is, A ∼ A holds for all A in X,
2. Symmetric, that is, A ∼ B implies B ∼ A for all A, B in X, and
3. Transitive, that is, A ∼ B and B ∼ C imply A ∼ C for all A, B,

C in X.)

Exercise 3.6.19. Show that if A and B are similar matrices, then rank(A) =
rank(B). (Hint : Show first that if A and B are similar, then their null spaces
have the same dimension.)

Exercise 3.6.20. The sum of the diagonal elements of a square matrix is
called its trace: For an n × n matrix Tr(A) =

∑n
i=1 aii.

a. Show that if A and B are n × n matrices, then Tr(AB) = Tr(BA).
b. Apply the result of Part a to S and BS−1 to show that if A and B are
similar so that A = SBS−1, then Tr(A) = Tr(B).

c. Is
[

1 2
4 3

]
similar to

[
1 2
3 4

]
?

MATLAB Exercises

Exercise 3.6.21. Let

A =

⎡
⎢⎢⎣

1 0 1 0
3 4 0 1
0 0 2 0
0 − 1 0 0

⎤
⎥⎥⎦

be a basis matrix for R4. Find the coordinate vector xA relative to this basis
for each of the x vectors e1, e4, (1, 1, 1, 1)T , and (1, 2, 3, 4)T .

Exercise 3.6.22. a. Find the transition matrix S from the basis A in the
previous exercise to the standard basis.
b. Use this S to compute x if xA is e1, e4, (1, 1, 1, 1)T , or (1, 2, 3, 4)T .

Exercise 3.6.23. Let

B =

⎡
⎢⎢⎣

1 0 1 4
3 4 0 3
2 4 4 6
0 − 1 0 1

⎤
⎥⎥⎦

be a basis matrix for R4.
a. Find the transition matrix S from the basis A in Exercise 3.6.21 to this
basis.
b. Find the transition matrix S′ from the basis B to the basis A.
c. Use S or S′ to compute xB if xA is e1, e4, (1, 1, 1, 1)T , or (1, 2, 3, 4)T .

Exercise 3.6.18. Show that similarity of matrices is an equivalence rela-
tion. (A relation ∼ is called an equivalence relation on a set X if it is:
*
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d. Find the representative matrix AB of the matrix A relative to the basis B.
e. Find the representative matrix BA of the matrix B relative to the basis A.

Exercise 3.6.24. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 4 − 1 0
3 4 0 3 2 1
1 2 2 3 0 3
0 0 2 2 0 0
2 4 4 6 0 6
0 − 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Use the MATLAB command rref to find a basis matrix for Col(A). The
command C = orth(A) creates another basis matrix C for Col(A). Find the
transition matrix S from the basis B to the basis C. (Hint : By Theorem 3.6.2
you need to solve BS = C.)

B



4. Linear Transformations

4.1 Representation of Linear Transformations by
Matrices

Beginning with our first discussion of matrix operations, we have seen matri-
ces being used to represent mappings or transformations.1 For instance, the
rotation matrix of Example 4.2.1 on page 67 was introduced for that purpose,
and the notion of similarity of matrices in the previous section resulted from
the fact that similar matrices represent the same transformation in different
bases. In this section we want to explore the connections between matrices
and mappings more systematically.

First, however, we define mappings on arbitrary vector spaces.

Definition 4.1.1. (Mappings from aVector Space to aVector Space).
Given two vector spaces U and V and a subset W of U, a mapping T : W → V
is an association y = T (x) of all elements x of W to elements y of V. The
set W is called the domain of T.

The next question that arises quite naturally is: What kinds of mappings
can be represented by matrices? The answer is fairly simple.

If A is an m × n matrix, then the equation y = Ax describes a mapping
of Rn to Rm. This mapping has two fundamental properties: First, if x1 and
x2 ∈ Rn are mapped to y1 and y2 ∈ Rm respectively, then x1 +x2 is mapped
to y1 + y2 and, second, cx1 is mapped to cy1, for every scalar c. Thus every
mapping representable by a matrix A via the equation y = Ax must have
these two properties. Luckily these properties are also sufficient; that is, any
mapping of Rn to Rm with these two properties is representable by a matrix
in this manner, as we shall see shortly. Such mappings have a special name.

Definition 4.1.2. (Linear Transformation). A mapping or transforma-
tion T of a vector space U to a vector space V is called linear if it preserves
vector addition and multiplication by scalars; that is, if for all x1,x2 ∈ U and
all scalars c

T (x1 + x2) = T (x1) + T (x2) (4.1)

1 The two terms are used interchangeably.
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and

T (cx1) = cT (x1). (4.2)

A mapping T satisfying the first condition is said to be additive; one satisfying
the second condition is said to be homogeneous.2, 3

We can combine these two requirements into a single form.

Lemma 4.1.1. (Combining the Conditions for Linearity). A map-
ping T of a vector space U to a vector space V is linear if and only if

T (ax1 + bx2) = aT (x1) + bT (x2) (4.3)

for all x1,x2 ∈ U and all scalars a, b.

Lemma 4.1.1 can be generalized to linear combinations of several terms,
not just of two.

Corollary 4.1.1. (Combined n-Term Condition for Linearity). Let n
be any integer ≥ 2. A mapping T of a vector space U to a vector space V is
linear if and only if it preserves all linear combinations of n terms; that is,
if and only if for all vectors x1,x2, . . . ,xn ∈ U and all scalars c1, c2, . . . , cn,

T

( n∑
i=1

cixi

)
=

n∑
i=1

ciT (xi). (4.4)

We leave the proofs of Lemma 4.1.1 and Corollary 4.1.1 to the reader as
Exercise 4.1.1.

Before continuing with the properties of linear transformations, we list
examples that arise more naturally without matrices, and some on arbitrary
vector spaces, not just on Euclidean ones.

Example 4.1.1. (Zero Mapping). For any two vector spaces U and V, the
mapping T : U → V defined by Tx = 0 for all x ∈ U is called the zero
mapping and will be denoted by T = O. �

Example 4.1.2. (Identity Mapping). For any vector space U, the mapping
T : U → U defined by Tx = x for all x ∈ U is called the identity mapping
and will be denoted by T = I or IU . �

Example 4.1.3. (Scalar Mapping). For any vector space U and any fixed
scalar c, the mapping T : U → U defined by Tx = cx for all x ∈ U is
called a scalar mapping. The linearity of T follows from the axioms of a
vector space. Clearly, O and I are scalar mappings. �
2 By convention, cT (x1) stands for c (T (x1)) .
3 Note that the above use of the word linear is more restrictive than is customary

in calculus, where a linear function is defined as one of the form Ax + b rather
than just Ax.



4.1 Representation of Linear Transformations by Matrices 165

Example 4.1.4. (AProjection to a Subspace). The mapping T : Rn → Rn

given by T (x1, x2, . . . , xn) = (0, x2, . . . , xn) is a linear mapping. �

Example 4.1.5. (Projection of Rnto the x1-Axis). T : Rn → Rn given by
T (x1, x2, . . . , xn) = (x1, 0, 0, . . . , 0) is a linear mapping. �

Example 4.1.6. (A Projection of Rn to R1). The mapping T : Rn → R1

given by T (x1, x2, . . . , xn) = x1 is a linear mapping. �

Example 4.1.7. (Di erentiation Mapping). The differentiation mapping
the space of polynomials, D : P → P given by DP (x) =P ′ (x) (derivative

of P ), is clearly linear. �

Example 4.1.8. (Integration Mapping). The integration mapping on the
space of polynomials, T :P → P given by TP (x)=

∫ x

0 P (t) dt, is also linear.�

Corollary 4.1.1 can be combined with the definition of a basis to obtain
the following observation.

Theorem 4.1.1. (A Linear Mapping Is Determined by Its Action
on a Basis). A linear mapping T of a finite-dimensional vector space U
to a vector space V is completely determined by its action on the vectors
of any basis of U . In other words, if a1,a2, . . . ,an form a basis for U and
T (a1), T (a2), . . . , T (an) are arbitrarily prescribed vectors of V , then T (x) is
uniquely determined for every x ∈ U.

Proof. By the definition of a basis, if a1,a2, . . . ,an form a basis for U , then
we can write any x ∈ U uniquely as

x =
n∑

i=1

xAiai, (4.5)

where the xAi are the coordinates of x relative to the ordered basis A =
(a1,a2, . . . ,an). Then, from this equation and Corollary 4.1.1, the linearity
of T determines T (x) uniquely as

T (x) =
n∑

i=1

xAiT (ai). (4.6)

We leave it as Exercise 4.1.2 to show that, conversely, defining T (x) by Equa-
tion 4.6 implies the linearity of T. �

Let us specialize now to mappings from Rn to Rm and to the standard
basis for Rn. Denote the transform T (ei) ∈ Rm of the standard vector ei ∈ Rn

by ti, for i = 1, 2, . . . , n, and the m×n matrix with these vectors as columns
by [T ]. Then the above equations yield

x =
n∑

i=1

xiei (4.7)

ffff
on
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and

T (x) =
n∑

i=1

xiT (ei) =
n∑

i=1

xiti = (t1, t2, . . . , tn)

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ = [T ]x. (4.8)

Let us summarize our result as a theorem.

Theorem 4.1.2. (Representing a Linear Mapping in Euclidean
Spaces by a Matrix). If T is a linear mapping from Rn to Rm and [T ]
is the m×n matrix whose columns are the vectors ti = T (ei) of Rm, for each
standard vector ei of Rn, then the mapping T corresponds to multiplication
by the matrix [T ], so that

T (x) = [T ]x (4.9)

for every x ∈ Rn. The matrix [T ] can also be obtained by factoring T (x) as
in Equation 4.8.

Let us now look at some examples of linear transformations and their
matrix representations.

T (x) =
[

x1 − x2
x1 + x3

]
(4.10)

and find the matrix [T ] that represents this transformation.
By Theorem 4.1.2 all we need to do is to find the transforms of the stan-

dard vectors e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T . Substituting
these vectors for x, one after the other, into Equation 4.10, we obtain

t1 = T (e1) =
[

1 − 0
1 + 0

]
=
[

1
1

]
, (4.11)

t2 = T (e2) =
[

0 − 1
0 + 0

]
=
[−1

0

]
, (4.12)

and

t3 = T (e3) =
[

0 + 0
0 + 1

]
=
[

0
1

]
. (4.13)

Thus

[T ] =
[

1 − 1 0
1 0 1

]
(4.14)

Example 4.1.9. (Finding the Matrix Corresponding to a Certain
mation from R3 to R2). Let T denote the transformation from

R3 to R2 given by
Transfor
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is the matrix that represents the given transformation. It is easy to see that
[T ]x is indeed the same as T (x) for every x, that is,

[T ]x =
[

1 − 1 0
1 0 1

]⎡⎣x1
x2
x3

⎤
⎦ =

[
x1 − x2
x1 + x3

]
= T (x). (4.15)

As remarked at the end of Theorem 4.1.2, we may obtain [T ] alternatively
by factoring T (x) as follows:

T (x) =
[

x1 − x2
x1 + x3

]
=
[

1x1 − 1x2 + 0x3
1x1 + 0x2 + 1x3

]
=
[

1 − 1 0
1 0 1

]⎡⎣x1
x2
x3

⎤
⎦ (4.16)

and we can read off here the same matrix for [T ] that we have found
before. �

Example 4.1.10. (Finding the Matrix Corresponding to a Re ection
in R2). Let us find the matrix that represents reflection across the line y = x
in R2.

Again we need only find the action of the transformation on the standard
vectors. This is obviously a transformation from R2 to itself, and from the
description we find that

t1 = T (e1) = e2 =
[

0
1

]
(4.17)

and

t2 = T (e2) = e1 =
[

1
0

]
. (4.18)

Thus

[T ] =
[

0 1
1 0

]
. (4.19)

�

Example 4.1.11. (Finding the Matrix Corresponding to a Re ection
R2 Followed by a Stretch). Let us find the matrix [T ] that represents

across the y-axis in R2 followed by a twofold stretch in the x direction.
The matrix [R] for the reflection can be obtained, in a way similar to that

used in the previous example, from

r1 = R(e1) = −e1 =
[−1

0

]
(4.20)

flfl

flfl
in
reflection
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and

r2 = R(e2) = e2 =
[

0
1

]
(4.21)

as

[R] =
[−1 0

0 1

]
. (4.22)

Similarly, the matrix of the stretch S is

[S] =
[

2 0
0 1

]
(4.23)

and the matrix [T ] of the composite transformation is obtained, by the defi-
nition of the matrix product, from

S(R(x)) = S([R]x) = [S]([R]x) = [S][R]x (4.24)

as

[T ] = [S][R] =
[

2 0
0 1

] [−1 0
0 1

]
=
[−2 0

0 1

]
. (4.25)

Note that the action of [S] follows that of [R] even though [S] is written
first in going from left to right. This happens because [S][R] is defined so
that ([S][R])x = [S]([R]x) holds for every vector x. �

Linear transformations can be represented by matrices in terms of any
bases, not just the standard bases, and such representations are possible in
every finite-dimensional vector space, not just in Rn and Rm.

Theorem 4.1.3. (Representing a Linear Mapping in Arbitrary
Finite-Dimensional Vector Spaces by a Matrix). Let T be a lin-
ear transformation from a finite-dimensional vector space U to a finite-
dimensional vector space V , and let A = (a1,a2, . . . ,an) be an ordered basis4

for U , and B = (b1,b2, . . . ,bm) an ordered basis for V . Write the vectors of
U and V in terms of these bases as

x =
n∑

j=1

xAjaj and y =
m∑

i=1

yBibi. (4.26)

Then there exists a unique m × n matrix TA,B that represents T relative to
these ordered bases so that y = T (x) becomes

yB = TA,BxA. (4.27)

4 For terminology and notation see Section 3.6.
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Here xA ∈ Rn and yB ∈ Rm are given by xA = (xA1, xA2, . . . , xAn)T and
yB = (yB1, yB2, . . . , yBm)T

.

Proof. We have

T (x) = T

⎛
⎝ n∑

j=1

xAjaj

⎞
⎠ =

n∑
j=1

xAjT (aj) (4.28)

and T (aj), being an element of V, can be written with appropriate coeffi-
cients as

T (aj) =
m∑

i=1

[TA,B ]ijbi. (4.29)

Then

y = T (x) =
n∑

j=1

xAj

m∑
i=1

[TA,B ]ijbi

=
m∑

i=1

⎛
⎝ n∑

j=1

[TA,B ]ijxAj

⎞
⎠bi =

m∑
i=1

[TA,BxA]i bi for all x ∈ U. (4.30)

Since, on the other hand,

y =
m∑

i=1

yBibi, (4.31)

Equation 4.27 must hold. �

Corollary 4.1.2. (Representing a Linear Mapping in Euclidean
Spaces by a Matrix Relative to Arbitrary Bases). If U = Rn and
V = Rm, then the ordered bases in Theorem 4.1.3 can be considered as ma-
trices A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bm), and we have

TA,B = B−1 [T ] A. (4.32)

Proof. In this case

ByB= y = T (x) = T (AxA) = [T ]AxA, (4.33)

and multiplying through by B−1, we get the statement. �

Example 4.1.12. (Finding the Matrix Corresponding to a Certain
mation from R3 to R2 Relative to Given Bases). Let T denote

R3 to R2 given by
Transfor
the transformation from
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T (x) =
[

x1 − x2
x1 + x3

]
(4.34)

as in Example 4.1.9, and consider the ordered bases given by the columns of

A =

⎡
⎣1 0 1

1 1 0
0 1 1

⎤
⎦ (4.35)

and

B =
[

1 1
−1 1

]
. (4.36)

Find the matrix TA,B that represents this transformation.
Taking [T ] from Example 4.1.9, computing the inverse of B, and substi-

tuting into Equation 4.32, we get

TA,B =
1
2

[
1 − 1
1 1

] [
1 − 1 0
1 0 1

]⎡⎣1 0 1
1 1 0
0 1 1

⎤
⎦ =

1
2

[−1 − 2 − 1
1 0 3

]
.

(4.37)

�

The formalism we discussed earlier of representing a transformation T
from Rn to Rm by a matrix [T ] is a particular case of the present formal-
ism, using the standard ordered bases with matrix A = In and B = Im

respectively. Thus in the present notation [T ] = TIn,Im
, and [T ] is the matrix

representing T relative to the standard ordered bases.
Sometimes the matrix TA,B can be obtained only directly from its defini-

tion by Equation 4.29, as in the following example.

Example 4.1.13. (Finding the Matrix Corresponding to Di erentiation
in Pn). Let U = {p : p = p0 + p1x + · · · + pnxn} be the space Pn of poly-

of degree n or less together with the zero polynomial and V= {q :q =
q0 + q1x + · · · + qn−1x

n−1} the space Pn−1 of polynomials of degree n − 1
or less together with the zero polynomial. Define the differentiation map D
from U to V by

D(p) = D(p0 + p1x + · · · + pnxn) = p1 + 2p2x + · · · + npnxn−1. (4.38)

It is easy to see that D is linear.
Consider the ordered bases A = (1, x, . . . , xn) and B = (1, x, . . . , xn−1).

Then, with the previous notation we have aj = xj−1 and bi = xi−1.
Furthermore,

ff

nomials
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D(aj) = (j − 1)xj−2 (4.39)

for j = 1, 2, . . . , n + 1. Thus

D(a1) = 0b1 + 0b2 + · · · + 0bn,

D(a2) = 1b1 + 0b2 + · · · + 0bn,

D(a3) = 0b1 + 2b2 + · · · + 0bn,

...
D(an+1) = 0b1 + 0b2 + · · · + nbn. (4.40)

According to Equation 4.29 the coefficients of the bi here form the transpose
of the matrix that represents D relative to these bases, which we now denote
by DA,B . Thus

DA,B =

⎡
⎢⎢⎢⎣

0 1 0 · · · 0
0 0 2 · · · 0
...

...
... · · · ...

0 0 0 · · · n

⎤
⎥⎥⎥⎦ . (4.41)

The coordinate vector pA = (p0, p1, . . . , pn)T of p = p0 +p1x+ · · ·+pnxn

is transformed according to Equation 4.27 into

qB = DA,BpA = (p1, 2p2, . . . , npn)T . (4.42)

Note that a standard basis is defined only for Rn, and for Pn and Pn−1
the bases A and B come closest to the notion of a standard basis. Also note
that we could have defined D as a mapping from Pn to itself, and in that
case DA,B would have had to be amended by an extra all-zero row. �

Exercises

Exercise 4.1.1.
a. Prove Lemma 4.1.1 and Corollary 4.1.1.
b. Prove that T (0) = 0 for every linear transformation T.

Exercise 4.1.2. Show that if T (x) is defined by Equation 4.6, then T is a
linear transformation, that is, it satisfies Equations 4.1 and 4.2.

Exercise 4.1.3. Is it true that a mapping from Rn to Rm is linear if
and only if it preserves straight lines, that is, if and only if, given any x0
and a ∈ Rn, the vectors x = x0 + ta, for every scalar t, are mapped into
vectors y = y0 + tb in Rm? If this is true, prove it, and if not, then prove an
appropriate modification.

*
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Exercise 4.1.4. Determine whether each of the following transformations is
linear or not and explain:
a. T : Rn → R such that T (x) = a · x, with a a fixed vector of Rn.
b. T : Rn → Rn such that T (x) = (A − λI)x, with A a fixed n × n matrix, I
the n × n unit matrix, and λ any number. (This kind of operation will play
an important role in Chapter 7.)
c. T : Rn → Rm such that T (x) = Ax + b, with A a fixed m × n matrix
and b a fixed nonzero vector of Rm.
d. T : Rn → R such that T (x) = |x|.
e. T : Rn → R such that T (x) = xT a, with a a fixed vector of Rn.
f. T : Rn → Rm such that T (x) = (aT x)b, with a a fixed vector of Rn and b
a fixed vector of Rm.

Exercise 4.1.5. Find the matrix [T ] that represents the transformation from
R2 to R3 given by

T (x) =

⎡
⎣ x1 − x2

2x1 + 3x2
3x1 + 2x2

⎤
⎦ .

Exercise 4.1.6. Find the matrix [T ] that represents the transformation from
R3 to R3 given by

T (x) =

⎡
⎣x1 − x2

x2 − x3
x3 − x1

⎤
⎦ .

Exercise 4.1.7. Find the matrix [T ] that represents the transformation of
Exercise 4.1.4f above. (This matrix is called the tensor product of b and a
and is usually denoted by b⊗a.) It can also be expressed as an outer product
(see Equation 2.105). How?

Exercise 4.1.8. Find the matrix [T ] and the corresponding linear transfor-
mation T from R2 to R3 that map the vector (1, 1)T to (1, 1, 1)T and (1, −1)T

to (1, −1, −1)T .

Exercise 4.1.9. Find the matrix [T ] and the corresponding linear transfor-
mation T from R3 to R2 that map the vector (1, 1, 1)T to (1, 1)T , the vector
(1, −1, −1)T to (1, −1)T and (1, 1, 0)T to (1, 0)T .

Exercise 4.1.10. Let A = (a1,a2, . . . ,an) be a basis matrix of Rn and
b1,b2, . . . , bn arbitrary vectors of Rm. Let T be the linear transformation
from Rn to Rm for which T (ai) = bi. Find the corresponding matrix [T ].
(Hint : Use (T (a1), T (a2), . . . , T (an)) = [T ]A.)
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Exercise 4.1.11. Find the matrix [T ] that represents a twofold stretch of
R2 in the y = x direction. (Hint : Rotate by 45◦, stretch, and rotate by −45 ◦.)

Exercise 4.1.12. Find the matrix [T ] that represents the reflection of R2

across the ax + by = 0 line.

Exercise 4.1.13. Use the result of the previous exercise to show that the
composition of two reflections of R2 across any two lines through the origin
equals a rotation. Describe this rotation geometrically.

Exercise 4.1.14. Show that every linear transformation transforms parallel
lines into parallel lines.

Exercise 4.1.15. Find all linear transformations T from R2 to R2 that
map perpendicular lines into perpendicular lines.

Exercise 4.1.16. Verify Equation 4.27 for the result of Example 4.1.12.

Exercise 4.1.17. Find the matrix TA,B that represents the transformation
T of Exercise 4.1.6 relative to the ordered bases given by

A = B =

⎡
⎣1 0 1

1 1 0
0 1 1

⎤
⎦ .

Exercise 4.1.18. Find on the space Pn the representative matrix of the
operation D relative to the ordered basis

A = B = (1, 1 + x, 1 + x + x2, . . . , 1 + x + · · · + xn).

(Here D is the transformation of Example 4.1.13.)

Exercise 4.1.19. Let U = {p : p = p0 + p1x + · · · + pnxn} be the space
Pn of polynomials of degree n or less together with the zero polynomial and
V = {q : q = q0 + q1x + · · · + qn+1x

n+1} the space Pn+1 of polynomials of
degree n+1 or less together with the zero polynomial. Define the integration
map T from U to V by

T (p) = T (p0 + p1x + · · · + pnxn) = p0x +
p1x

2

2
+ · · · +

pnxn+1

n + 1
.

Find the matrix TA,B that represents this transformation relative to the or-
dered bases A = (1, x, . . . , xn) and B = (1, x, . . . , xn+1).

Exercise 4.1.20. For the same spaces with the same bases as in the previous
exercise, find the representative matrix of the transformation X correspond-
ing to multiplication by x, that is, of X such that X(p0 +p1x+ · · ·+pnxn) =
p0x + p1x

2 + · · · + pnxn+1.

*

*

*
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MATLAB Exercises

Exercise 4.1.21. Let

A =

⎡
⎢⎢⎣

1 0 1 0
3 4 0 1
0 0 2 0
0 − 1 0 0

⎤
⎥⎥⎦

be a basis matrix for R4. Find the matrix [T ] of the linear transformation
that transforms the columns of this matrix into the corresponding columns of

B =

⎡
⎢⎢⎣

1 0 1 0
2 2 0 2
0 0 0 0
0 − 1 0 0

⎤
⎥⎥⎦ .

Exercise 4.1.22. Let A = magic(4).
a. Use rref on A and AT to find a basis B for A’s row space and a basis C
for its column space.
b. Find the matrix [T ] of the linear transformation from Row(A) to Col(A)
that maps the basis B to the basis C, relative to the standard basis.
c. Find the matrix TB,C of the same linear transformation relative to the
bases B and C.

Exercise 4.1.23. In MATLAB, polynomials are stored as row vectors of
their coefficients in order of descending powers. For example, the polynomial
f(x) = 3x2−2x+1 can be entered as f = [3 −2 1]. The product of polynomials
is computed by the function conv. Thus, if g(x) = 2x2 + x and g = [2
1 0], then conv(f ,g) produces [6 −1 2 1 0], corresponding to f(x)g(x) =
6x4 − x3 + 2x2 + x.
a. Show by hand that if f is the polynomial above and p ∈ P4, then the
mapping T from P4 to P6 given by p → conv(f ,p) is linear.
b. Use MATLAB and judiciously selected values of p to find the matrix [T ]
of this transformation, that is, a matrix [T ] such that [T ]p = conv(f ,p) for
every p ∈ P4.

4.2 Properties of Linear Transformations

Since linear transformations are particular types of functions, all the various
concepts relevant to functions in general, apply to linear transformations.
Also, they have some properties that are significant for linear functions only.
We first define these concepts one by one, then discuss and illustrate them,
and last, describe their relationships to corresponding concepts for the rep-
resentative matrices TA,B .
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Definition 4.2.1. (Properties of Transformations). Let T be a trans-
formation from a vector space U to a vector space V .
1. The range of T, denoted by Range(T ), is the subset {y : y = T (x), x ∈ U}
of V .
2. T is said to be a mapping onto V if Range(T ) = V .
3. T is said to be one-to-one if T (x) = T (y) implies x = y for all x,y.
4. T is said to be an isomorphism if it is linear and both one-to-one and
onto. Furthermore, two vector spaces U and V are said to be isomorphic
to each other if there exists an isomorphism from U to V .5

5. The kernel of T , denoted by Ker(T ), is the subset {x : T (x) = 0,x ∈
Domain (T )} of U .
6. T is said to be invertible if there exists a transformation S : V → U such
that S (T (x)) = x for all x ∈ U and T (S(y)) = y for all y ∈ V. In this case
S is called an inverse of T.

Before turning to examples, we present some theorems.

Theorem 4.2.1. (The Domain of a Linear Transformation is a Sub-
space). Let T be a linear transformation from a nonempty subset W of a
vector space U to a vector space V . Then W is a subspace of U.

The proof is left as Exercise 4.2.1. Thus, in light of this theorem, we
usually take U as Domain (T ) .

Theorem 4.2.2. (The Range of a Linear Transformation is a Sub-
space). Let T be a linear transformation from a vector space U to a vector
space V . Then Range(T ) is a subspace of V .

The proof is left as Exercise 4.2.6.

Theorem 4.2.3. (If T Is One-to-One, Then T (x) = T (y) Is Equiva-
lent to x = y). Let T be a transformation from a vector space U to a vector
space V . If T is one-to-one, then T (x) = T (y) is equivalent to x = y.

Proof. By the definition of any mapping, x = y implies T (x) = T (y), and
for a one-to-one mapping, by Part 3 of Definition 4.2.1, T (x) = T (y) implies
x = y. �

Theorem 4.2.4. (The Kernel of a Linear Transformation Is a Sub-
space). Let T be a linear transformation from a vector space U to a vector
space V . Then Ker (T ) is a subspace of U.

The proof is left as Exercise 4.2.7.
5 In general, an isomorphism between algebraic structures means a mapping that

is one-to-one, onto and preserves all algebraic operations. For vector spaces the
linearity of T expresses the preservation of the algebraic operations.
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T (x) =
[

x1 − x2
x1 + x3

]
, (4.43)

has range R2 and is a mapping onto R2 because, for every y = (y1, y2)T , the
general solution of T (x) = y is

x =

⎡
⎣ y2 − s

y2 − y1 − s
s

⎤
⎦ , (4.44)

where s is a parameter. So the mapping T transforms every x of this form
into the arbitrarily given y. Furthermore, since all the x vectors of Equation
4.44, for fixed y and different values of the parameter s, are mapped to the
same y, T is not one-to-one. Equation 4.44 also shows, with y = 0, that
Ker(T ) = {x : x = (−s,−s, s)T , s ∈ R}. �

Theorem 4.2.5. (A Linear Transformation Is Invertible If and
Only If It Is an Isomorphism). A linear transformation T from a vector
space U to a vector space V is invertible if and only if it is an isomorphism.
Furthermore, an invertible linear transformation has a unique inverse, de-
noted by T−1, which is also linear and an isomorphism.

Proof. Assume that T : U → V is invertible. For any x ∈ U, let y = T (x) be
the corresponding element of V. Then, by the invertibility of T, there exists
a mapping S : V → U such that S (y) = S (T (x)) = x, and T (S (y)) =
T (x) = y. Also, for any y ∈ V there exists an x ∈ U such that S (y) = x
and so T (S (y)) = T (x) = y. Thus, the invertibility of T implies that it
is onto. Furthermore, if T is invertible, then applying S to both sides of
T (x1) = T (x2), for any x1,x2 ∈ U, results in S (T (x1)) = S (T (x2)), or
equivalently, in x1 = x2. Thus, the invertibility of T implies that it is also
one-to-one. Consequently, an invertible linear T is an isomorphism.

Conversely, if T : U → V is an isomorphism, then, given any y ∈ V,
there is exactly one x ∈ U such that T (x) = y. We define S : V → U by
S (y) = x. Hence S (T (x)) = S (y) = x and T (S (y)) = T (x) = y. Thus, if
T is an isomorphism, then it is invertible. Clearly, this S is unique and also
invertible.

To prove that if T is an isomorphism, then S = T−1 is linear, we apply
Lemma 4.1.1. Letting y1,y2 ∈ V and with a, b any scalars, we have, by the
definition of S and by the linearity of T,

T (S(ay1 + by2)) = ay1 + by2 = aT (S(y1)) + bT (S(y2))
= T (aS(y1) + bS(y2)) . (4.45)

Example 4.2.1. (A Linear Transformation T : R3 → R2). The trans-
T of Example 4.1.9 of page 166 from R3 to R2, given byformation
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Hence, since T is one-to-one,

S(ay1 + by2) = aS(y1) + bS(y2). (4.46)

�

Definition 4.2.2. (Rank). For any linear transformation T, the dimension
of its range is called the rank of T, denoted rank(T ).

Definition 4.2.3. (Nullity). For any linear transformation T, the dimen-
sion of its kernel is called the nullity of T, denoted nullity(T ).

Theorem 4.2.6. (Rank + Nullity = Dimension of the Domain). Let
T be a linear transformation from a finite-dimensional vector space U to a
vector space V . Then

rank(T ) + nullity(T ) = dim (U) . (4.47)

Proof. Let dim (U) = n, and nullity(T ) = k, with 0 ≤ k ≤ n.
If 0 < k < n, then let {a1,a2, . . . ,ak} be a basis for Ker (T ) and extend it

to a basis A = {a1,a2, . . . ,ak,ak+1, . . . ,an} for U. Then {Ta1, Ta2, . . . , Tak,
Tak+1, . . . , Tan} = {0,0, . . . ,0, Tak+1, . . . , Tan} span Range(T ). We are
going to show that the vectors Tak+1, . . . , Tan are also independent: Assume
that, for some scalars ci,

n∑
i=k+1

ciTai = T

(
n∑

i=k+1

ciai

)
= 0. (4.48)

Hence
n∑

i=k+1

ciai ∈ Ker (T ) . (4.49)

Since {a1,a2, . . . ,ak} is a basis for Ker (T ) , we can express the sum above
as a linear combination of these basis vectors, that is, as

n∑
i=k+1

ciai =
k∑

i=1

biai. (4.50)

Equivalently,

k∑
i=1

biai −
n∑

i=k+1

ciai = 0. (4.51)

By the linear independence of the a1,a2, . . . ,an vectors, all the coeffi-
cients bi and ci must equal 0. Thus, the vectors Tak+1, . . . , Tan are also
independent and form a basis for Range(T ). Hence rank(T ) = n − k =
dim(U) − nullity(T ).
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If k = 0, then Ker (T ) has the empty set for a basis, and letting
A = {a1,a2, . . . ,an} be a basis for U, we can show similarly as above
that it is also a basis for Range(T ). So, in this case, nullity(T ) = 0 and
rank(T ) = n = dim (U) .

If k = n, then Ker (T ) = U, and Range (T ) = {0} , and so nullity(T ) =
n = dim (U) , while rank(T ) = 0. �

Theorem 4.2.7. (Finite-Dimensional Vector Spaces Are Isomor-
phic If and Only If They Have the Same Dimension). Two finite-
dimensional vector spaces U and V are isomorphic to each other if and only
if dim (U) = dim (V ) .

Proof. Let dim (U) = n and dim (V ) = m, and let T : U → V be an isomor-
phism. Then, T being one-to-one, Ker (T ) = {0} and nullity(T ) = 0. Thus,
by Theorem 4.2.6, rank(T ) = n, and since T is onto, Range (T ) = V and
m = dim (V ) = n.

Conversely, if dim (U) = dim (V ) = n, then choose a basis {a1,a2, . . . ,an}
for U and a basis {b1,b2, . . . ,bn} for V. The linear mapping T : U → V
determined by T (ai) = bi for i = 1, 2, . . . , n, is clearly an isomorphism. �

Example 4.2.2. (The Mapping T : Rn→XGiven by T (xA)= x). Con-
sider an arbitrary n-dimensional vector space X and an ordered basis A =
(a1,a2, . . . ,an) for X. The mapping T of Rn to X, given by associating with
each coordinate vector xA the corresponding x ∈ X, is an isomorphism. In-
deed, the defining equation T (xA) =

∑n
i=1 xAiai shows that T is linear, and

A, being a basis, spans X, which shows that T is onto; and the ai are linearly
independent, which shows that T is one-to-one. The corresponding mapping
T−1 in the reverse direction, that is, from X to Rn, given by T−1(x) = xA,
is the inverse of T, and is also an isomorphism. (See Exercise 4.2.10.) �

That and Rn n there
n-dimensional vector space: Rn. For instance, a five-

dimensional subspace of P10 and every five-dimensional subspace of every
other vector space are all isomorphic to R5.

Example 4.2.3. (A Linear Transformation T : R3 → R3). Consider the
T from R3 to R3 given by

T (x) =

⎡
⎣ x1 − x2

x1 + x2
2x1 − 3x2

⎤
⎦ . (4.52)

We can also write this transformation as

T (x) = x1

⎡
⎣1

1
2

⎤
⎦ + x2

⎡
⎣−1

1
−3

⎤
⎦ . (4.53)

above are isomorphic shows that for each value ofX
is essentially only one

:
transformation
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Thus the range of T is the two-dimensional subspace of such vectors in R3,
and so T is not onto. Also, our T is represented by the matrix

[T ] =

⎡
⎣1 − 1 0

1 1 0
2 −3 0

⎤
⎦ (4.54)

and we can see that Range(T ) = Col([T ]).
Furthermore, T is not one-to-one, because Ker(T ) = {x : x = (0, 0, s)T ,

s ∈ R}, and all the infinitely many vectors in Ker(T ) are mapped to the
single vector 0. �

We can see from this example, and in general from Theorem 4.1.2 of
page 166, that for a transformation from Rn to Rm the range of T is exactly
the same as the column space of the representative matrix [T ] relative to the
standard bases, and the kernel of T the same as the null space of [T ]; and so
the rank of T equals the rank of [T ]. The same sort of relationships hold for
general vector spaces and bases as well.

Theorem 4.2.8. (Col(TA,B) and Range(T ) Are Isomorphic). Let T be
a linear transformation from an n-dimensional vector space U to an m-
dimensional vector space V , A = (a1,a2, . . . ,an) an ordered basis for U ,
B = (b1,b2, . . . ,bm) an ordered basis for V , and TA,B the m × n matrix
that represents T relative to these bases. Then rank(TA,B) = rank(T ), and
Equation 4.30 on page 169 establishes an isomorphism from Col(TA,B) to
Range(T ).

Proof. The matrix TA,B is m × n, and denoting rank(TA,B) by r, we have
r ≤ min (m, n). Let C = (c1, c2, . . . , cr) be an m × r matrix whose columns
form a basis for Col(TA,B). Then, for every x ∈ U , we have a vector tC =
(tC1, tC2, . . . , tCr)T ∈ Rr such that

TA,BxA =
r∑

k=1

tCkck = CtC . (4.55)

Substituting this expression into Equation 4.30, we get

T (x) =
m∑

i=1

[TA,BxA]i bi =

(
m∑

i=1

ci1bi, . . . ,

m∑
i=1

cirbi

)⎡⎢⎣
tC1
...

tCr

⎤
⎥⎦ . (4.56)

Thus T (x) lies in the span of the r vectors
∑m

i=1 ci1bi, . . . ,
∑m

i=1 cirbi. These
vectors not only span the range of T but are also independent, because from
Equation 4.56 we can write

T (x) =
m∑

i=1

r∑
k=1

ciktCkbi =
m∑

i=1

(CtC)ibi, (4.57)
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and if T (x) = 0, then, by the independence of the bi, we must have CtC = 0,
and so, by the independence of the columns of C, also tC = 0. Thus the r
vectors

∑m
i=1 ci1bi, . . . ,

∑m
i=1 cirbi form a basis for the range of T . So the

rank of T equals the rank r of TA,B . The first half of Equation 4.56 maps
every vector TA,BxA of the column space of TA,B to a vector T (x) in the
range of T . Furthermore, by the independence of the bi, this mapping of the
column space of TA,B to the range of T is one-to-one, and then, by the result
of Exercise 4.2.9, it is also an isomorphism. �

We can define the sum and scalar multiple of transformations for general
vector spaces much as we did for Euclidean spaces.

Definition 4.2.4. (Sum and Scalar Multiple of Transformations).
Let S and T be transformations from a vector space U to a vector space V
and let c be any scalar. Then Q = S + T and R = cT are defined as the
transformations from U to V that satisfy

Q(x) = S(x) + T (x) (4.58)

and

R(x) = cT (x) (4.59)

for every x ∈ U .

Theorem 4.2.9. (Sums and Scalar Multiples of Linear Transfor-
mations Are Linear). If S and T are linear, then the transformations Q
and R defined above are linear.

Proof. For x,y ∈ U and a, b arbitrary scalars,

Q(ax + by) = S(ax + by) + T (ax + by)
= aS(x) + bS(y) + aT (x) + bT (y)
= a (S(x) + T (x)) + b (S(y) + T (y)) = aQ(x) + bQ(y).

(4.60)

Thus, by Lemma 4.1.1, Q is linear.
Similarly,

R(ax + by) = cT (ax + by) = c (aT (x) + bT (y))
= acT (x) + bcT (y) = aR(x) + bR(y), (4.61)

which shows that R is linear. �

Example 4.2.4. (Sum and Scalar Multiple of Certain Transforma
ions). Let S and T be the linear transformations from R3 to R2 given by

-
t
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S(x) =
[

x2 + x3
x3

]
(4.62)

and

T (x) =
[

x1 − x2
x1 + x3

]
. (4.63)

Then Q = S + T and R = cT are the linear transformations given by

Q(x) =
[

x1 + x3
x1 + 2x3

]
(4.64)

and

R(x) =
[

c (x1 − x2)
c (x1 + x3)

]
. (4.65)

�

With Definition 4.2.4 Theorems 4.2.8 and 4.2.9 lead to the following
theorem.

Theorem 4.2.10. (The Linear Transformations from U to V Form
a Vector Space, Which Is Isomorphic to Mm,n). Let L(U, V ) denote
the set of all linear transformations from an n-dimensional vector space U to
an m-dimensional vector space V , and let A = (a1,a2, . . . ,an) be an ordered
basis for U, B = (b1,b2, . . . ,bm) an ordered basis for V , and TA,B the m×n
matrix that represents any T ∈ L(U, V ) relative to these bases. Then
1. L(U, V ), together with addition and scalar multiple of transformations as
in Definition 4.2.4, is a vector space.
2. The mapping M from L(U, V ) to the vector space Mm,n of all m × n ma-
trices6 given by M (T ) = TA,B is linear and an isomorphism. Hence L(U, V )
is mn-dimensional.

Proof. 1. L(U, V ) is clearly nonempty: the zero mapping O is in it. Theo-
rem 4.2.9 shows that L(U, V ) is closed under addition and multiplication by
scalars. The vector space axioms for L(U, V ) follow from the corresponding
ones in V for every x in y = T (x) . In particular, the zero element is the zero
mapping O, and the element −T is the mapping (−1) T.

2. Let S, T ∈ L(U, V ) and a, b any scalars. Then, by Theorem 4.1.3, for all
x ∈ U, y = T (x) becomes in terms of coordinates yB = TA,BxA = M (T )xA.
Similarly y = (aS + bT ) (x) becomes

yB = (aS + bT )A,B xA = M (aS + bT )xA. (4.66)

6 See Example 3.1.2.
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On the other hand, y = (aS + bT ) (x) = aS (x) + bT (x) also becomes

yB = aSA,BxA + bTA,BxA

= (aSA,B + bTA,B)xA = (aM (S) + bM (T ))xA. (4.67)

Since these equations hold for all x ∈ U, and so for all xA as well, we must
have

M (aS + bT ) = aM (S) + bM (T ) , (4.68)

showing that M is linear.
Let C be any m × n matrix and define a linear mapping T by T (ak) =∑m

i=1 cikbi for k = 1, 2, . . . , n. (See Theorem 4.1.1.) Then, for any x =∑n
k=1 xAkak of U,

T (x) =
n∑

k=1

xAkT (ak) =
n∑

k=1

xAk

m∑
i=1

cikbi =
m∑

i=1

(
n∑

k=1

cikxAk

)
bi (4.69)

defines the components: yBi =
∑n

k=1 cikxAk of a coordinate vector yB = CxA

relative to the given ordered basis B of V. Thus C is the matrix TA,B that
corresponds to this linear transformation T , and so M is onto Mm,n.

M is also one-to one: Let S, T ∈ L(U, V ). Assume that M (S) = M (T ) ,
that is, SA,B = TA,B . Then, Equation 4.69, with C = SA,B = TA,B , deter-
mines T uniquely. �

Just as for functions of a single variable, we define the composition of
transformations as follows.

Definition 4.2.5. (Composition of Transformations). Let R be a trans-
formation from a vector space U to a vector space V and S a transformation
from V to a vector space W . Then the composite T = S ◦ R is defined as the
transformation from U to W that satisfies

T (x) = S(R(x)) (4.70)

for every x ∈ U.

Theorem 4.2.11. (The Composite of Linear Transformations is
Linear). Let R be a linear transformation from a vector space U to a vector
space V and S a linear transformation from V to a vector space W . Then
T = S ◦ R is linear.

Proof. Letting x1,x2 ∈ U and with a, b any scalars, we have, first by the
linearity of R, and then by the linearity of S,

T (ax1 + bx2) = S(R(ax1 + bx2)) = S (aR(x1) + bR(x2))
= aS (R(x1)) + bS (R(x2)) = aT (x1) + bT (x2). (4.71)

�
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As we have seen in Example 4.1.11 on page 167, the composition of trans-
formations induces the multiplication of the corresponding standard repre-
sentative matrices, that is, T = S ◦ R implies

[T ] = [S][R]. (4.72)

To obtain such a relation was, of course, the motivation behind the defi-
nition of matrix multiplication. We have analogous relations for the represen-
tative matrices relative to arbitrary bases, but we do not go into this subject
any further.

From the first half of Equation 4.56 we can also see, by the independence
of the bi, that TA,BxA = 0 is equivalent to T (x) = 0. Then, for every xA in
the null space of TA,B , the linear mapping of xA to x given by

x =
n∑

j=1

xAjaj (4.73)

is a mapping onto the kernel of T . Thus, by the result of Exercise 4.2.8, we
have the following theorem.

Theorem 4.2.12. (The Kernel of a Linear Transformation Is Iso-
morphic to the Null Space of Its Representative Matrix). Let T
be a linear transformation from a vector space U to a vector space V ,
A = (a1,a2, . . . ,an) an ordered basis for U , B = (b1,b2, . . . ,bm) an ordered
basis for V , and TA,B the matrix that represents T relative to these bases.
Then the mapping given by Equation 4.73 restricted to the null space of TA,B

is an isomorphism to the kernel of T . Thus dim (Null(TA,B)) = dim(Ker(T )).

The earlier Theorem 4.2.6 reflects the fact, stated in the next theorem,
that the action of the transformation T splits its domain into two parts,
analogously to the decomposition for matrices in Theorem 3.5.3 on page 133.

Theorem 4.2.13. (A Linear Transformation Splits Its Domain into
the Direct Sum of Its Kernel and a Subspace Isomorphic to Its
Range). Let T be a linear transformation of rank r from a vector space
U to a vector space V and let us denote its range and kernel by R and K
respectively. If K is a subspace of U complementary to K, that is, one that
satisfies

U = K + K (4.74)

and

K ∩ K = {0}, (4.75)

then T maps K to {0}, while it maps the r-dimensional K isomorphically
onto the subspace R of V .
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Proof. Let dim(U) = n, and let {a1,a2, . . . ,an−r} be a basis for K. Then
we can extend this set to a basis A = {a1,a2, . . . ,an} for U . Let K =
Span{an−r+1, . . . ,an}. Then every x in U can be uniquely decomposed as

x =
n−r∑
i=1

xAiai +
n∑

i=n−r+1

xAiai. (4.76)

Writing xK for the first sum and xK for the second, we have xK ∈ K and
xK ∈ K, and

T (x) = T (xK) + T (xK) = 0 + T (xK) = T (xK). (4.77)

Since by the definition of range, every y of R can be written as T (x) for
some x, Equation 4.77 shows that such a y can also be written as T (xK).
Thus T maps K onto R. Since both K and R have dimension r, the result of
Exercise 4.2.8 shows that T is an isomorphism of K onto R. �

The subspace K above is generally not unique, because the extension
of the basis {a1,a2, . . . ,an−r} is not unique, and different extensions result
in different subspaces K. (See Exercise 4.2.12.) However, if U has an inner
product, then K may be taken as the unique orthogonal complement of K.

At the end of Section 3.5 we mentioned, in effect, that for every xR in the
row space of a matrix M the mapping given by xR → MxR is an isomor-
phism from Row(M) to Col(M). As promised there, let us now show how to
represent this isomorphism by an r × r matrix.

Theorem 4.2.14. (The r × r Matrix That Represents the Action of
a Matrix M on Row(M)). Let M be an m × n matrix of rank r, and
A = (a1,a2, . . . ,ar) a basis matrix for Row(M), and B = (b1,b2, . . . ,br)
one for Col(M). Then

MA,B = (BT B)−1BT MA (4.78)

is the r×r matrix that represents, relative to the bases A and B, the mapping
of Row(M) to Col(M) given by xR → MxR.

Proof. Let M, A, and B be as stated in the theorem. Then every x in Row(M)
can be written as

x =
r∑

i=1

xAiai = AxA (4.79)

and every y in Col(M) similarly as

y =
r∑

i=1

yBibi = ByB . (4.80)
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Let TM : Row(M) → Col(M) be the isomorphism given by y = Mx or,
equivalently, by

ByB = MAxA. (4.81)

Since we know that TM is an isomorphism, there must exist a unique
solution yB of this equation, and comparing that solution with Equation 4.27
we can obtain MA,B . This solution is best found by Gaussian elimination, but
we can also write a formula for it. However, in trying to solve Equation 4.81
for yB explicitly, we encounter a problem, namely that B is an m × r matrix
and generally not square. Thus it has no inverse unless r = m. We can,
however, apply the following trick: We left-multiply Equation 4.81 by BT ,
and now BT B is r × r and will be shown to have an inverse by Lemma 5.1.3
on page 202. Thus we obtain

yB = (BT B)−1BT MAxA. (4.82)

Comparing this result with Equation 4.27, we find

MA,B = (BT B)−1BT MA (4.83)

for the matrix that represents M relative to the bases A for Row(M) and B
for Col(M). �

M =

⎡
⎣1 1 1 2

0 1 0 1
1 2 1 3

⎤
⎦ . (4.84)

The reduced echelon form of this matrix is

R =

⎡
⎣1 0 1 1

0 1 0 1
0 0 0 0

⎤
⎦ . (4.85)

Thus the vectors a1 = (1, 0, 1, 1)T and a2 = (0, 1, 0, 1)T form a basis for the
row space of M , and b1 = (1, 0, 1)T and b2 = (1, 1, 2)T a basis for its column
space. Equation 4.81 now becomes

⎡
⎣1 1

0 1
1 2

⎤
⎦[ yB1

yB2

]
=

⎡
⎣1 1 1 2

0 1 0 1
1 2 1 3

⎤
⎦
⎡
⎢⎢⎣

1 0
0 1
1 0
1 1

⎤
⎥⎥⎦
[

xA1
xA2

]
(4.86)

or ⎡
⎣1 1

0 1
1 2

⎤
⎦[ yB1

yB2

]
=

⎡
⎣4 3

1 2
5 5

⎤
⎦[xA1

xA2

]
. (4.87)

Example 4.2.5. (A Mapping of Row(M)to Col(M)). Let the given matrix be



186 4. Linear Transformations

This equation can be reduced to (instead of multiplying by
(
BT B

)−1
BT )⎡

⎣1 0
0 1
0 0

⎤
⎦[ yB1

yB2

]
=

⎡
⎣3 1

1 2
0 0

⎤
⎦[xA1

xA2

]
, (4.88)

and so

MA,B =
[

3 1
1 2

]
. (4.89)

Alternatively, we can obtain this matrix much more laboriously by sub-
stituting into Equation 4.83:

BT B =
[

1 0 1
1 1 2

]⎡⎣1 1
0 1
1 2

⎤
⎦ =

[
2 3
3 6

]
. (4.90)

Thus

(
BT B

)−1
=
[

2 −1
−1 2/3

]
(4.91)

and

MA,B = (BT B)−1BT MA

=
[

2 −1
−1 2/3

] [
1 0 1
1 1 2

]⎡⎣1 1 1 2
0 1 0 1
1 2 1 3

⎤
⎦
⎡
⎢⎢⎣

1 0
0 1
1 0
1 1

⎤
⎥⎥⎦

=
[

3 1
1 2

]
. (4.92)

To check this result, consider, for example, x = a1. Then xA = (1, 0)T

and, on the one hand, M maps x to

Mx =

⎡
⎣1 1 1 2

0 1 0 1
1 2 1 3

⎤
⎦
⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ =

⎡
⎣4

1
5

⎤
⎦ (4.93)

and, on the other hand, MA,B maps xA to

yB = MABxA =
[

3 1
1 2

] [
1
0

]
=
[

3
1

]
. (4.94)
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This coordinate vector corresponds to the y in the range of M given by

y = ByB =

⎡
⎣1 1

0 1
1 2

⎤
⎦[3

1

]
=

⎡
⎣4

1
5

⎤
⎦ , (4.95)

the same as Mx before. �

Exercises

Exercise 4.2.1. Show that if a transformation T from a nonempty subset
W of a vector space U to a vector space V satisfies Equations 4.1 and 4.2 for
all x1 and x2 ∈ W and all scalars c, then its domain W must be a subspace
of U .

Exercise 4.2.2. For each of the transformations of Exercise 4.1.4, determine
the range, the kernel, and whether it is one-to-one or onto. (These concepts
apply to nonlinear transformations as well.)

Exercise 4.2.3. Prove that any linear transformation T is one-to-one if
and only if Ker(T ) = {0}.

Exercise 4.2.4. For each of the transformations of Exercises 4.1.5 through
4.1.9, determine the range, the kernel, and whether it is one-to-one or onto.

Exercise 4.2.5. Let N = MT , where M is the matrix of Equation 4.84.
Find a basis matrix A for Row(N) and a basis matrix B for Col (N), and
find the representative matrix NA,B for the mapping N from Row(N) to
Col(N) given by y = Nx.

Exercise 4.2.6. Prove that if T is a linear transformation from a vector
space U to a vector space V , then Range(T ) is a subspace of V .

Exercise 4.2.7. Prove that if T is a linear transformation from a vector
space U to a vector space V , then Ker(T ) is a subspace of U .

Exercise 4.2.8. Prove that if T is a linear transformation from a vector
space U onto a vector space V , and dim(U) = dim(V ), then T is an isomor-
phism. (Hint : First show that if B = {b1,b2, . . . ,bn} is a basis for V and
T (ai) = bi, for i = 1, 2, . . . , n, then the ai form a basis for U.)

Exercise 4.2.9. Prove that if T is a one-to-one linear transformation from
a vector space U to a vector space V , and dim(U) = dim(V ), then T is an
isomorphism. (Hint : First show that if A = {a1,a2, . . . ,an} is a basis for U ,
then the vectors T (ai) = bi, for i = 1, 2, . . . , n, form a basis for V.)

Exercise 4.2.10. Prove that if TA,B represents an isomorphism, then it is
nonsingular. What does (TA,B)−1 represent?

*

*

*
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Exercise 4.2.11. Find on the space Pn the representative matrix of the
operation X ◦D−D ◦X relative to the ordered basis A = B = (1, x, . . . , xn).
(Here X is the transformation of multiplication by x as in Exercise 4.1.20,
and D is the differentiation map.) Determine the range and the kernel of this
mapping and whether it is one-to-one or onto.

Exercise 4.2.12. Let K be the x-axis in R3, that is, K = {x : x = xe1,
x ∈ R}. Show that the complementary subspace K of this K as defined
in Theorem 4.2.13 is not unique, by exhibiting two different complementary
subspaces that both satisfy Equations 4.74 and 4.75.

MATLAB Exercises

Exercise 4.2.13. Let

A =

⎡
⎢⎢⎣

0 1 0
4 0 1
0 2 0
1 0 0

⎤
⎥⎥⎦

be a basis matrix for a subspace U of R4. Let

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 1 0
4 2 0 1
0 0 2 0
1 3 0 4
2 2 1 0
1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

be the matrix of a linear transformation T from U into R6. Find the range
and kernel of T . (Note that T is considered only on U and not on R4.)

Exercise 4.2.14. a. Let T denote the mapping of Exercise 4.1.23 from P4
to P6 given by p → conv(f ,p), with f = [3, −2, 1]. Find the range and ker-
nel of T .
b. What are the range and kernel of the analogous mapping with f =
[3, −2, 0]?

4.3 Applications of Linear Transformations in Computer
Graphics

One of the most important tasks in computer graphics is the programming
of motion. For example, we may want to picture a robot as it moves across
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the screen, or as its arm rotates, or as its legs move, etc. Whether we want to
represent two-dimensional motion, or motion in three dimensions, the com-
putation is usually done by applying the matrices that represent the desired
transformations, namely rotations, reflections, translations, projections, or
stretching, to the position vectors of points of the picture. (Which points to
transform is a technical matter that we do not consider.) A computer can do
these computations so quickly that it can create the illusion of continuous
motion by displaying 50 or 60 slightly altered versions of a picture per second.

There is, however, a problem with one of the needed transformations:
translation, which is not linear. This can be seen in either R2 or R3 by
writing the translation of every vector p by the fixed vector t as p′= p + t.
Then for every scalar c we have (cp)′ = cp + t which, if this were a linear
transformation, should equal cp′=c(p + t) for every c and not just for certain
values.

It would be very convenient if translations could also be made into linear
transformations. This can indeed be done. To this end, in the two-dimensional
case, we regard R2 as the plane x3 = 1 in R3; that is, we associate with
every vector (x1, x2)T ∈ R2 the vector (x1, x2, 1)T ∈ R3. The components
x1, x2, 1 are called homogeneous coordinates of the point given by (x1, x2),
which in general mean every triple of the form (x1x3, x2x3, x3) with x3 	= 0.
These coordinates were originally introduced in the middle of the nineteenth
century to unify the treatment of parallel and nonparallel lines in projective
geometry, but have recently found a new application to the problem at hand.
A similar construction can be given in three dimensions as well.

Let us then consider translation in R2. We can make it into a linear
transformation in R3 by using the method described in the following theorem.

Theorem 4.3.1. (Representing Translation by a Matrix in Homo-
geneous Coordinates). Let t = (t1, t2, 0)T be a fixed vector in R3 and let
p′= p + t represent translation by t in the plane x3 = 1, that is, for vectors
of the form p = (p1, p2, 1)T . Then there is a unique linear transformation
T : R3 → R3 that coincides in the plane x3 = 1 with the given translation
or, in other words, one for which T (p) = p′= p + t, when p is of the form
above. This T has the representative matrix

T (t1, t2) =

⎡
⎣1 0 t1

0 1 t2
0 0 1

⎤
⎦ . (4.96)

Proof. Indeed, the above matrix provides a linear transformation that has
the desired property of coinciding in the plane x3 = 1 with translation by t:

T (t1, t2)p =

⎡
⎣1 0 t1

0 1 t2
0 0 1

⎤
⎦
⎡
⎣p1

p2
1

⎤
⎦ =

⎡
⎣p1 + t1

p2 + t2
1

⎤
⎦ = p + t. (4.97)

Next, we need to prove that this linear transformation is unique.
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Thus, let L : R3 → R3 be a linear transformation such that L(p) = p′ =
p + t for all p = (p1, p2, 1)T , with t being a fixed vector of the form t =
(t1, t2, 0)T . Let x = (x1, x2, x3)T ∈ R3 be any vector with x3 	= 0. Then x
can be expressed as

x = x1e1 + x2e2 + x3e3 = x3

[
x1

x3
e1 +

x2

x3
e2 + e3

]
. (4.98)

Then, using the linearity of L and the fact that the vector in brackets on the
right-hand side of Equation 4.98 is in the plane x3 = 1, we get

L(x) = x3L

[
x1

x3
e1 +

x2

x3
e2 + e3

]

= x3

[(
x1

x3
+ t1

)
e1 +

(
x2

x3
+ t2

)
e2 + e3

]
= (x1 + t1x3)e1 + (x2 + t2x3)e2 + x3e3

=

⎡
⎣1 0 t1

0 1 t2
0 0 1

⎤
⎦
⎡
⎣x1

x2
x3

⎤
⎦ = T (t1, t2)x. (4.99)

We have thus shown that L(x) = T (t1, t2)x for every x ∈ R3 with x3 	= 0. On
the other hand, if x3 = 0, then we can rewrite x by adding and subtracting
a term with x3 = 1:

x = x1e1 + x2e2 = (x1e1 + x2e2 + e3) − e3. (4.100)

Here, we can use the linearity of L and the fact that for the two terms on
the right, L coincides with translation by t, to write

L(x) = L(x1e1 + x2e2 + e3) − L(e3) = (x1e1 + x2e2 + e3 + t) − (e3 + t)

= x1e1 + x2e2 = x =

⎡
⎣1 0 t1

0 1 t2
0 0 1

⎤
⎦
⎡
⎣x1

x2
0

⎤
⎦ = T (t1, t2)x. (4.101)

�
The matrices of the other basic geometric transformations can also be rep-

resented by corresponding matrices in homogeneous coordinates as follows.
The matrix of rotation by an angle θ around the origin of R2 becomes the

matrix

R(θ) =

⎡
⎣ cos θ − sinθ 0

sinθ cos θ 0
0 0 1

⎤
⎦ (4.102)

representing rotation in R3 around the x3-axis. Similarly, the matrix

S(a, b) =

⎡
⎣a 0 0

0 b 0
0 0 1

⎤
⎦ (4.103)
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represents scaling by the factor a in the x1-direction and by the factor b in
the x2-direction.

simplified robot consisting of a rectangular body and an arm that is just
a line segment, as shown in Figure 4.1. We want to find the matrix R(θ)
that represents lifting the arm by an angle θ from its normally horizontal
position. Since the arm rotates about the point (2, 4), and the matrix R(θ)
above represents rotation about the origin, we first apply T (−2,−4) to move
the point (2, 4) to the origin, then rotate, and then use T (2, 4) to move the
“shoulder” back to (2, 4).

x2

x12 40

4

Fig. 4.1. A one-armed robot

Thus the required matrix is given by

R(θ) = T (2, 4)R(θ)T (−2,−4)

=

⎡
⎣1 0 2

0 1 4
0 0 1

⎤
⎦
⎡
⎣ cos θ − sinθ 0

sinθ cos θ 0
0 0 1

⎤
⎦
⎡
⎣ 1 0 − 2

0 1 −4
0 0 1

⎤
⎦

=

⎡
⎣ cos θ − sin θ − 2 cos θ + 4 sin θ + 2

sin θ cos θ − 4 cos θ − 2 sin θ + 4
0 0 1

⎤
⎦ . (4.104)

This matrix is to be applied to the homogeneous position vectors of the
points of the arm. Notice that it leaves the center of rotation fixed, as it
should, that is,⎡

⎣ cos θ − sin θ − 2 cos θ + 4 sin θ + 2
sin θ cos θ − 4 cos θ − 2 sin θ + 4

0 0 1

⎤
⎦
⎡
⎣2

4
1

⎤
⎦ =

⎡
⎣2

4
1

⎤
⎦ . (4.105)

Example 4.3.1. (Rotating the Arm of a Robot). Let us consider a greatly
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It changes the homogeneous coordinates of the endpoint (4, 4) into⎡
⎣ cos θ − sin θ − 2 cos θ + 4 sin θ + 2

sin θ cos θ − 4 cos θ − 2 sin θ + 4
0 0 1

⎤
⎦
⎡
⎣4

4
1

⎤
⎦ =

⎡
⎣2 cos θ + 2

2 sin θ + 4
1

⎤
⎦ . (4.106)

This result could have been obtained much more easily by elementary
means, but they would have required custom tailoring for different problems.
In contrast, the generality of the procedure shown above makes it more suit-
able for computer calculations. �

In R3 we could develop the handling of translations in a similar manner,
but we leave that for the exercises and deduce the matrix of a particular
rotation instead.

tion by an angle θ about the vector p = (1, 1, 1)T . (The pictures of rotating
objects on computer screens are obtained by applying this kind of a matrix,
with small changes in θ, to the position vectors of points of the object about
50 times a second.)

The plan we want to follow is this: First, we apply a matrix R1 that rotates
the whole space by π/4 around the z-axis. This step rotates the vector p into
the yz-plane, so that R1p is at an angle α from the z-axis, with sin α =

√
2/3

and cos α =
√

1/3. (Why?) Next, we apply a matrix R2 that rotates the whole
space by α around the x-axis. Then R2R1p will lie in the z-axis, and we can
now multiply by a matrix R3 that expresses rotation by the angle θ around
the z-axis, and which is easy to write down. Finally, we undo the first two
rotations to get the vector p back to its original position.

For the matrix R3 we have

R3 =

⎡
⎣ cos θ − sinθ 0

sinθ cos θ 0
0 0 1

⎤
⎦ , (4.107)

and setting θ = π/4 we get the matrix

R1 =
1√
2

⎡
⎣1 − 1 0

1 1 0
0 0

√
2

⎤
⎦ . (4.108)

Similarly,

R2 =
1√
3

⎡
⎣

√
3 0 0
0 1 − √

2
0

√
2 1

⎤
⎦ . (4.109)

Example 4.3.2. (ARotation in R3). In R3 let us find the matrix of the rota-
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Then

R2R1 =
1√
6

⎡
⎣

√
3 − √

3 0
1 1 −2√
2

√
2

√
2

⎤
⎦ . (4.110)

Because this is an orthogonal matrix,7 its inverse equals its transpose, and so

R−1
1 R−1

2 =
1√
6

⎡
⎣

√
3 1

√
2

−√
3 1

√
2

0 − 2
√

2

⎤
⎦ . (4.111)

Thus the matrix we sought is given by

(4.112)Rθ = R−1
1 R−1

2 R3R2R1 =

1
6

⎡
⎢⎣

4 cos θ + 2 −2 cos θ − 2 (sin θ)
√

3 + 2 −2 cos θ + 2 (sin θ)
√

3 + 2
2 (sin θ)

√
3 − 2 cos θ + 2 4 cos θ + 2 −2 cos θ − 2 (sin θ)

√
3 + 2

−2 cos θ − 2 (sin θ)
√

3 + 2 − 2 cos θ + 2 (sin θ)
√

3 + 2 4 cos θ + 2

⎤
⎥⎦ .

Note that for θ = 2π/3 this becomes the permutation matrix

R2π/3 =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ , (4.113)

which takes the standard basis vectors i into j, j into k, and k into i, as it
should.

Let us also note that we can interpret R1 and R2 as describing so-called
passive transformations, that is, changes of basis (or changes of coordinate
system), in which the space does not move, as opposed to the active rota-
tions of the whole space that we just described. Indeed, with the notation
of Theorem 3.6.3 on page 156, we may consider the ordered basis A to be
the standard basis, that is, A = I, and the new ordered basis B as the one
given by B = R−1

1 R−1
2 . Then Corollary 3.6.1 on page 149 gives S = B, and

for the vector x = p = [1, 1, 1]T , together with this definition of B, it gives
xB =

√
3[0, 0, 1]T . This vector shows that in the B basis the axis of the ro-

tation by θ is the z′-axis. Thus we may take MB = R3. Then MA = Rθ and
Equation 3.153 on page 156 yields Equation 4.112 above. �

The last subject we want to discuss in this section is that of projecting
three-dimensional images onto viewplanes. We consider only orthographic (or
orthogonal) projections, that is, projections by rays orthogonal to the view-
plane. Perspective projections are also widely used, but we do not discuss
7 Such matrices will be discussed in Section 5.2. For now, you may just accept the

given inverse, which could also, of course, be computed by the usual elimination
method.
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them. (They are nonlinear, but they can be linearized by using homogeneous
coordinates as we did for translations.) On the other hand, orthogonal projec-
tions in arbitrary dimensions and relative to general bases will be discussed
in the next chapter.

The simplest orthographic projections are those onto the coordinate
planes. These produce top, bottom, or side views. The components of such
projections can be obtained by just omitting one of the coordinates. For in-
stance, the top view of the point (x, y, z) would be the point (x, y) in the
xy-plane. This projection is given by the matrix

P (i, j) =
[

1 0 0
0 1 0

]
. (4.114)

The somewhat more difficult question is how to find the matrix that
projects onto an arbitrary plane. Let the desired viewplane V be spanned by
the orthogonal unit vectors u,v, and let n be a normal unit vector of V . We
want to decompose an arbitrary vector p = (p1, p2, p3)T as

p = ru + sv + tn, (4.115)

where r, s, t are undetermined coefficients. Taking scalar products of both
sides of Equation 4.115 in turn by u,v, and n, we get

r = p · u, s = p · v, and t = p · n. (4.116)

The projection of p onto V is the vector obtained from Equation 4.115 by
omitting the n component, and is thus

pV = (p · u)u + (p · v)v. (4.117)

The vector
[
p · u
p · v

]
of the coefficients here is the coordinate vector (see

page 148) of the projection pV relative to the vectors u and v that span
the viewplane V . We have

[
r
s

]
=
[
p · u
p · v

]
=
[

u1 u2 u3
v1 v2 v3

]⎡⎣p1
p2
p3

⎤
⎦ (4.118)

and so the projection into the rs coordinate system of u,v is given by the
matrix

PV (u,v) =
[

u1 u2 u3
v1 v2 v3

]
. (4.119)

In components, Equation 4.117 is

pV 1 = (p1u1 + p2u2 + p3u3)u1 + (p1v1 + p2v2 + p3v3)v1, (4.120)
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pV 2 = (p1u1 + p2u2 + p3u3)u2 + (p1v1 + p2v2 + p3v3)v2, (4.121)

pV 3 = (p1u1 + p2u2 + p3u3)u3 + (p1v1 + p2v2 + p3v3)v3, (4.122)

or in matrix form

pV =

⎡
⎣ u2

1 + v2
1 u1u2 + v1v2 u1u3 + v1v3

u1u2 + v1v2 u2
2 + v2

2 u2u3 + v2v3
u1u3 + v1v3 u2u3 + v2v3 u2

3 + v2
3

⎤
⎦
⎡
⎣p1

p2
p3

⎤
⎦ . (4.123)

From this equation we can read off the projection matrix onto V relative to
the standard vectors of R3 as

P (u,v) =

⎡
⎣ u2

1 + v2
1 u1u2 + v1v2 u1u3 + v1v3

u1u2 + v1v2 u2
2 + v2

2 u2u3 + v2v3
u1u3 + v1v3 u2u3 + v2v3 u2

3 + v2
3

⎤
⎦ . (4.124)
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Fig. 4.2. Front and side views of a house

First, we must choose a coordinate system in the viewplane, that is,
choose the vectors u and v. A good choice is u = 1√

2
(−1, 1, 0)T and

v = 1√
6
(−1,−1, 2)T . (Why?) Thus

PV (u,v) =

[ −1√
2

1√
2

0
−1√

6
−1√

6
2√
6

]
(4.125)

and the rs coordinates of each point are given, according to Equation 4.118,
by applying this matrix to the column vector of their xyz coordinates.

Example 4.3.3. (A Projection onto a Viewplane). Let us consider the
shown in front and side views in Figure 4.2 and find its view on the

x + y + z = 0 plane.
house
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Thus, for instance, the top right corner in the first view corresponds to
the two corners (0, 3, 4)T and (6, 3, 4)T in the xyz coordinates, and so

to the points with position vectors PV (u,v)(0, 3, 4)T =
(

3√
2
, 5√

6

)T

and

PV (u,v)(6, 3, 4)T =
(

−3√
2
, −1√

6

)T

in the rs system. Similarly, the bottom

right corner in the first view corresponds to the two corners (0, 3, 0)T and
(6, 3, 0)T in the xyz coordinates, and so to the points with position vectors

PV (u,v)(0, 3, 0)T =
(

3√
2
, −3√

6

)T

and PV (u,v)(6, 3, 0)T =
(

−3√
2
, −9√

6

)T

in the
rs system. Proceeding in a like manner for all vertices and joining those that
are connected by edges, we get Figure 4.3. �

r

s

Fig. 4.3. Oblique view of the house

Exercises

Exercise 4.3.1. Find the matrix in homogeneous coordinates that repre-
sents a 30 degree rotation about the point (1, −2).

Exercise 4.3.2. Find the matrix in homogeneous coordinates that maps the
rectangle with vertices (1, −2), (1, 2), (4, 2), (4,−2) onto the unit square.

Exercise 4.3.3. Find the inverse of the matrix in the previous exercise. De-
scribe the mapping it represents.

Exercise 4.3.4. Find the matrix that rotates an arbitrary vector p of R3

into the z-axis
a. by first rotating it about the z-axis into the yz-plane and then about the
x-axis into the z-axis, and
b. by first rotating it about the x-axis into the xz-plane and then about the
y-axis into the z-axis.
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Exercise 4.3.5. Using the result of the previous exercise, find the matrix
that represents rotation by an angle θ about an arbitrary vector p of R3.

Exercise 4.3.6. Find a 4 × 4 matrix, analogous to that of Equation 4.96,
that represents translation in the x4 = 1 plane by an arbitrary vector t =
(t1, t2, t3, 0)T .

Exercise 4.3.7. Find a 4 × 4 matrix that represents in homogeneous coor-
dinates the rotation by an angle θ about the x = y = 1, z = 0 line of R3.

Exercise 4.3.8. Find a 4 × 4 matrix that represents in homogeneous coor-
dinates the rotation by an angle θ about the p = t(1, 1, 1)T + (1, 0, 0)T line
of R3.

Exercise 4.3.9. Find the view of the house of Example 4.3.3 on the x+2y =
0 plane by choosing an appropriate basis in the latter, computing the rs
coordinates of the vertices relative to this basis and plotting them.

Exercise 4.3.10. Rederive Equation 4.124 by changing from the standard
basis to the basis (u,v,n), dropping the n-component, and returning to the
standard basis.



5. Orthogonal Projections and Bases

5.1 Orthogonal Projections and Least-Squares
Approximations

In this section we discuss the very practical problem of fitting a line, a plane,
or a curve to a set of given points when this can only be done approximately.
For example, we may expect some observed data to be the coordinates of
points on a straight line, but they turn out to be only approximately so.
Then our problem is to find a line that fits them best in some sense. The
criterion generally used is the least-squares principle, which we shall describe
shortly. First, however, we need to discuss the following problem.

Given a point P in Rm and a subspace1 V , we wish to find the point Q
in V that is closest to P . The solution has the following geometric property
(see Figure 5.1).

P

q
r

R

V

p p - r
r - q

p - q

Q

O

Fig. 5.1. Finding the point Q in a given plane V that is nearest to a given point P

Lemma 5.1.1. (Minimizing the Distance Between a Point and a
Subspace in Rm). The point of V closest to P is Q if and only if p−q ∈V ⊥.

1 We view R
m and this subspace both as sets of points and as vector spaces.

. , , 
78- - -8 , DOI 10.1007/9 © 

G Schay A Concise Introduction to Linear Algebra
0 8176 325 Springer Science+Business Media, LLC 2012-2_

199
5

The original version of this chapter was revised. An erratum can be found at  
https://doi.org/10.1007/978-0-8176-8325-2_9

https://doi.org/10.1007/978-0-8176-8325-2_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-0-8176-8325-2_5&domain=pdf


200 5. Orthogonal Projections and Bases

Proof. The statement is trivially true if P is in V : then Q = P and p − q = 0.
If P /∈ V , then let Q be a point in V such that p − q ∈ V ⊥ (such a point
does exist; why?), and let R be any point of V other than Q. Then we have
r − q ∈ V and so p − q ⊥ r − q. Thus the PQR triangle is a right triangle
and, by the Theorem of Pythagoras (which is valid in Rm, too), the side PQ
is shorter than the hypotenuse PR. In other words, the distance |p − q| is
less than the distance |p − r| for every r 	= q in V .

Conversely, if R is any point in V such that p − r is not in V ⊥, then, by
the above argument, the point Q for which p − q ∈ V ⊥ is nearer to P than
is the point R, and so such an R is not the point in V closest to P . �

In connection with this lemma we use the following terminology.

Definition 5.1.1. (Projections onto Subspaces in Rm). If a vector p
in Rm is decomposed into the sum of a vector q in a subspace V of Rm and
a vector p − q ∈ V ⊥, then we call q and p − q the (orthogonal) projections
of p onto V and V ⊥ respectively.2

The next question is: How do we find the point Q? This question is fairly
easy to answer if we consider (without any loss of generality) V to be the
column space of an m × n matrix A with independent columns, and so with
m ≥ n as well. Then we could use the theory of Section 3.4, but it is more
efficient to proceed as follows.

If q and r are vectors in the column space of the matrix A, then we may
write them as q = Ax and r = Ay for some n-vectors x and y. The condition
p−q ∈ Col(A)⊥ implies that q−p must be orthogonal to every such r, and
this orthogonality can be written as

rT (q − p) = (Ay)T (Ax − p) = 0 (5.1)

for every y. Equivalently, writing here (Ay)T = yT AT and distributing AT ,
we find that

yT (AT Ax − AT p) = 0 (5.2)

must hold for every y, and that can happen only if the vector in the paren-
theses is the zero vector. Then

AT Ax = AT p. (5.3)

In least-squares theory the corresponding scalar equations are called the
normal equations or the normal system. Equation 5.3 is easy to remember:
Just multiply the usual equation Ax = p by AT from the left on both sides.
The interpretation is, however, entirely different if p is not in Col(A). Then

2 This decomposition is unique by the last statement in Theorem 3.5.4 on page 137,
since V may always be considered to be the column space of a matrix.
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Ax = p has no solution, while Equation 5.3 always has one, as will be proved
shortly. Also, Ax and p are in Rm, but AT Ax and AT p are in Rn.

The projection of p onto the column space of A can be obtained by com-
puting q = Ax, once we have determined x from the solution of Equation 5.3.
We shall write an explicit formula for this projection, but it is more efficient
to obtain it by Gaussian elimination, as in the following example.

A =

⎡
⎣1 0

3 − 1
1 1

⎤
⎦ (5.4)

and p = (1, 2, 3)T . Then Col(A) is a plane in R3 just as the V in Figure 5.1
is. Furthermore,

AT =
[

1 3 1
0 − 1 1

]
, (5.5)

AT A =
[

11 − 2
−2 2

]
, (5.6)

and

AT p =
[

10
1

]
. (5.7)

Hence the normal equations are given by[
11 − 2
−2 2

]
x =

[
10
1

]
. (5.8)

We solve this equation by Gaussian elimination as follows:[
11 − 2
−2 2

∣∣∣∣ 10
1

]
→
[

1 8
−2 2

∣∣∣∣15
1

]
→
[

1 8
0 18

∣∣∣∣ 15
31

]
. (5.9)

Thus,

x =
1
18

[
22
31

]
(5.10)

and

q = Ax =
1
18

⎡
⎣1 0

3 − 1
1 1

⎤
⎦[ 22

31

]
=

1
18

⎡
⎣22

35
53

⎤
⎦ . (5.11)

Example 5.1.1. (Projecting onto Col(A) and Col(A)⊥). Let V be the
space of the matrixcolumns
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This vector is the orthogonal projection of p onto Col(A). The vector p − q
in Col(A)⊥, shown in Figure 5.1, is given by

p − q =

⎡
⎣1

2
3

⎤
⎦− 1

18

⎡
⎣22

35
53

⎤
⎦ =

1
18

⎡
⎣−4

1
1

⎤
⎦ . (5.12)

(Notice that q and p − q are the same as xR and x0 in Equation 3.87 on
page 136. Why?) �

We wish to show now that the normal equations always have a unique
solution, as would be expected from the geometry. This result will follow from
the following lemmas.

Lemma 5.1.2. (Rank of AT A). If A is any m × n matrix, then rank
(AT A) = rank(A).

Proof. We may prove this statement by showing that A and AT A have the
same null space, since then, by Corollary 3.5.1 on page 133, they must have
the same rank as well.

Let x be in the null space of A. Then Ax = 0 holds, and multiplying this
equation by AT from the left we obtain AT Ax = 0, which shows that such
an x is also in the null space of AT A. Conversely, if x is in the null space of
AT A, then AT Ax = 0 holds and, multiplying this equation by xT from the
left, we get

xT AT Ax = (Ax)T (Ax) = |Ax|2 = 0. (5.13)

Since 0 is the only vector of length zero, Equation 5.13 implies Ax = 0, and
so x is in the null space of A. �

Lemma 5.1.3. (AT A Is Invertible If rank(A) = n). If A is an m × n
matrix with independent columns, then AT A is invertible.

Proof. If A is an m×n matrix with independent columns, then the n columns
form a basis for Col(A), and so rank(A) = n and n ≤ m must hold. On the
other hand, AT A is an n × n matrix and, by the previous lemma, its rank is
the same as that of A, that is, n. Hence, by Parts 1 and 2 of Theorem 2.5.5
on page 93, AT A is invertible. �

By the last lemma, AT A is invertible and so we may solve Equation 5.3
by multiplying both sides of it by (AT A)−1 from the left. Thus, we may
summarize our discussion of projections in the following theorem.

Theorem 5.1.1. (A Formula for Projections). Let p be a vector in Rm,
V a subspace of Rm, and A an m × n matrix with independent columns such
that V = Col(A). Then the orthogonal projection q of p onto V can be
obtained by solving the normal system
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AT Ax = AT p (5.14)

for x and setting q = Ax. The solution can be written explicitly as

x = (AT A)−1AT p (5.15)

and

q = A(AT A)−1AT p. (5.16)

In view of the application of Theorem 5.1.1 to least-squares problems (see
the discussion following Theorem 5.1.3 below), it is customary to use the
following terminology.

Definition 5.1.2. (Least-Squares Solution). With the notation of Theo-
rem 5.1.1, the solution x of the normal system, Equation 5.14, is called the
least-squares solution of the possibly inconsistent system Ax = p.

Of course, if Ax = p is inconsistent, then it has no solution, and its
least-squares “solution” is not really a solution to it, but only to the normal
system. On the other hand, if Ax = p is consistent, then the two solutions
coincide (see Exercise 5.1.5).

The matrix P = A(AT A)−1AT in Equation 5.16 is called the projection
matrix representing the projection of Rm onto Col(A). In general, projection
matrices are defined as follows.

Definition 5.1.3. (Projection Matrix). A matrix P is called a projection
matrix if it is square and has the following two properties:
1. It is idempotent: P 2 = P and
2. It is symmetric: PT = P .

The proof that P = A(AT A)−1AT of Equation 5.16 has indeed the two
properties above, is left as Exercise 5.1.11. Before turning to examples, we
state two important properties of projection matrices.

Theorem 5.1.2. (Two Properties of Projection Matrices). If P is a
projection matrix, then
1. x ∈ Col(P ) is equivalent to Px = x.
2. Null(P ) = Col(P )⊥.

Proof. Assume that P is m × m. Then
1. x ∈ Col(P ) if and only if there is a y ∈ Rm such that x = Py. (See
Theorem 3.5.3.) Applying P on both sides and using the idempotency of P,
we get

Px = P 2y = Py = x. (5.17)

Conversely, if Px = x, then, since Px ∈ Col(P ), we get x ∈ Col(P ).
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2. Let x ∈ Col(P ) and y ∈ Null(P ). Then

xT y = (Px)T y = xT PT y = xT Py = xT 0 = 0. (5.18)

Thus x and y are orthogonal to each other. Furthermore, if dim (Col(P )) =
r, then dim (Null(P )) = m − r. Hence Col(P ) and Null(P ) are orthogonal
complements of each other. �

From Equations 5.6 and 5.7,

(AT A)−1 =
[

11 − 2
−2 2

]−1

=
1
18

[
2 2
2 11

]
(5.19)

and

(AT A)−1AT =
1
18

[
2 2
2 11

] [
1 3 1
0 − 1 1

]
=

1
18

[
2 4 4
2 − 5 13

]
. (5.20)

Thus the projection matrix is

P = A(AT A)−1AT =
1
18

⎡
⎣2 4 4

4 17 − 1
4 − 1 17

⎤
⎦ , (5.21)

from which we can now obtain the projection of the vector p as

q = Pp =
1
18

⎡
⎣2 4 4

4 17 − 1
4 − 1 17

⎤
⎦
⎡
⎣1

2
3

⎤
⎦ =

1
18

⎡
⎣22

35
53

⎤
⎦ , (5.22)

just as in Example 5.1.1. �

We now present another theorem about projection matrices.

Theorem 5.1.3. (A Projection Matrix P Projects onto Col(P )). A
projection matrix P represents the projection onto its own column space.

Proof. Let P be an m × m projection matrix and p be any vector in Rm.
We are going to show that p − Pp is orthogonal to the column space of P,
and then, Pp being in Col(P ), the vectors Pp and p − Pp provide the
decomposition of p into its projections onto Col(P ) and Null(P ) = Col(P )⊥

respectively. By Definition 5.1.1, this decomposition shows that P represents
the projection onto Col(P ).

Example 5.1.2. (Computing a Projection Matrix). Let us compute the

matrix A of Example 5.1.1 and use it to recompute the projection of the
vector p.

projection matrix that represents the projection onto the column space of the
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Since every vector of Col(P ) can be written as Px, we test the orthogonal-
ity of p − Pp to Col(P ) by computing the dot product of these two vectors,
using the assumed properties PT = P and P 2 = P :

(Px)T (p − Pp) = xT PT (p − Pp) = xT Pp − xT P 2p = 0. (5.23)

�

We are now ready to discuss least-squares problems.
Suppose we are given m points (xi, yi), i = 1, 2, . . . , m, in the xy-plane

and we want to find the equation of a straight line, in the form y = ax + b,
such that the sum of the squared vertical distances from the points to the
line is minimized. (Hence the name least-squares.) In other words, we want
to minimize the function

f(a, b) =
m∑

i=1

d2
i =

m∑
i=1

(axi + b − yi)2. (5.24)

(See Figure 5.2.) The solution line is called the least-squares line for the given
points or the line of best fit in the least-squares sense.

O x

y

di

(xi,yi)

y = ax + b

Fig. 5.2. A line and vertical distances to it from given points

We could solve this problem by differentiating f(a, b) with respect to both
a and b, setting the partial derivatives equal to zero, and solving the resulting
equations, but we prefer to reformulate this as a projection problem in Rm

as follows: Define

s =
[

a
b

]
, A =

⎡
⎢⎢⎢⎣

x1 1
x2 1
...

...
xm 1

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣

y1
y2
...

ym

⎤
⎥⎥⎥⎦ . (5.25)
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Then we have

As − y =

⎡
⎢⎢⎢⎣

ax1 + b − y1
ax2 + b − y2

...
axm + b − ym

⎤
⎥⎥⎥⎦ (5.26)

and so

f(a, b) = |As − y|2. (5.27)

Thus the problem of minimizing f(a, b), which was originally posed in the
xy-plane, can be reinterpreted as that of finding the vector s that minimizes
the distance3 in Rm from the point given by y to the column space of A. That
is, we find the least-squares solution to the generally inconsistent equation
As = y, which is consistent only if all the points (xi, yi) fall on a straight line.
By Lemma 5.1.1, this minimum is achieved by the vector s for which As is
the orthogonal projection of y onto the column space of A, and the solution
is given, according to Theorem 5.1.1, by the solution of the normal system

AT As = AT y. (5.28)

Using the definitions of A and y from Equation 5.25, for the least-squares
line we have

AT A =
[

x1 x2 · · · xm

1 1 · · · 1

]⎡⎢⎢⎢⎣
x1 1
x2 1
...

...
xm 1

⎤
⎥⎥⎥⎦ =

[∑
x2

i

∑
xi∑

xi m

]
(5.29)

and

AT y =
[

x1 x2 · · · xm

1 1 · · · 1

]⎡⎢⎢⎢⎣
y1
y2
...

ym

⎤
⎥⎥⎥⎦ =

[∑
xiyi∑
yi

]
. (5.30)

Thus Equation 5.28 becomes[∑
x2

i

∑
xi∑

xi m

] [
a
b

]
=
[∑

xiyi∑
yi

]
. (5.31)

Let us look at an example.
3 In Equation 5.27 we have the square of the distance and not the distance itself,

but this makes no difference since the two are minimized simultaneously. (Why?)
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First, we compute the expressions in the last two formulas:∑
x2

i = (−1)2 + 12 + 22 + 32 + 52 = 40, (5.32)

∑
xi = −1 + 1 + 2 + 3 + 5 = 10, (5.33)∑
yi = 0 + 1 + 1 + 2 + 3 = 7, (5.34)

and∑
xiyi = (−1) · 0 + 1 · 1 + 2 · 1 + 3 · 2 + 5 · 3 = 24. (5.35)

Hence the normal system is given by[
40 10
10 5

] [
a
b

]
=
[

24
7

]
(5.36)

and its solution is a = 1
2 and b = 2

5 . So the least-squares line is given by

y =
1
2
x +

2
5
. (5.37)

�

f(a, b, c) =
m∑

i=1

d2
i =

m∑
i=1

(axi + byi + c − zi)2 (5.38)

is minimized. This problem can again be reformulated as a projection problem
in Rm: If we define

s =

⎡
⎣a

b
c

⎤
⎦ , A =

⎡
⎢⎢⎢⎣

x1 y1 1
x2 y2 1
...

...
...

xm ym 1

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎣

z1
z2
...

zm

⎤
⎥⎥⎥⎦ , (5.39)

then we can write

f(a, b, c) = |As − z|2, (5.40)

which can be minimized by solving the 3 × 3 normal system

AT As = AT z. (5.41)

Example 5.1.3. (Finding a Least-Squares Line). Find the least-squares
for the points (−1, 0), (1, 1), (2, 1), (3, 2), and (5, 3).line

The problem of fitting a least-squares plane to m data points (xi, yi, zi)
in R is similar to the one above, except that we now have three unknowns
a, b, c instead of the previous two. We are looking for the best fitting plane
with equation z = ax + by + c such that the function

3
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Equation 5.31.
The method of least squares is applicable to curves and curved surfaces

as well, as long as we know what the form of the equation should be and if we
need to find only unknown coefficients that occur linearly. For example, if we
believe that some data points (xi, yi) fall approximately on a parabola whose
equation is of the form y = ax2 + bx + c, then we can set up the problem for
the unknown coefficients a, b, c much as in the previous cases and find the
best fitting parabola in the same way. If the coefficients do not occur linearly,
we may still be able to transform the problem to one in which they do. For
instance, if we want to fit a curve with equation y = aebx, then we can take
logarithms on each side to obtain an equation of the form ln y = ln a + bx,
and this is linear in the unknown coefficients ln a and b. Thus, we can proceed
exactly as before if we just replace a by ln a and y by ln y.

Exercises

Exercise 5.1.1. In R3 find a matrix A with independent columns whose
column space is the x-axis.

Exercise 5.1.2. In R3 find a matrix A with independent columns whose
column space is the xy-plane.

Exercise 5.1.3. In R3 find a matrix A with independent columns whose
column space is the x = y plane.

Exercise 5.1.4. In R3 find the projection of the vector (1, −1, 2)T onto the
column space of the matrix

A =

⎡
⎣1 2

1 − 1
2 1

⎤
⎦ .

Exercise 5.1.5. Show that, for a matrix A with independent columns, if p
is in Col(A), then the equations Ax = p and AT Ax = AT p both have the
same unique solution x.

Exercise 5.1.6. In R3 find a projection matrix P that represents the pro-
jection onto the x-axis.

Exercise 5.1.7. In R3 find a projection matrix P that represents the pro-
jection onto the xy-plane.

Exercise 5.1.8. In R3 find a projection matrix P that represents the pro-
jection onto the line through the origin given by x = at, y = bt, z = ct.
Compare with Corollary 1.2.1 on page 21.

We leave it as Exercise 5.1.18 to write Equation 5.41 in a form analogous to



5.1 Orthogonal Projections and Least-Squares Approximations 209

Exercise 5.1.9. In R3 find a projection matrix P that represents the projec-
tion onto the x = y plane and find the projections of the vectors (1, −1, 2)T ,
(1, 2, 3)T , (2, −1, −2)T onto the x = y plane.

Exercise 5.1.10. In R3 what is the orthogonal complement of the x = y
plane? Find a projection matrix Q that represents the projection onto it.

Exercise 5.1.11. Prove that, for every matrix A with independent columns,
the matrix A(AT A)−1AT is idempotent and symmetric.

Exercise 5.1.12. Prove that, for every projection matrix P that represents
the projection onto the column space of a matrix A, the matrix I − P is
also a projection matrix and it represents the projection onto Left-null(A) =
Col(A)⊥.

Exercise 5.1.13. What is wrong with the following “proof” of Theorem
5.1.3?
As we have seen, A(AT A)−1AT represents the projection onto Col(A). Sub-
stituting P for A into this expression and making use of Properties 1 and 2
of projection matrices in Definition 5.1.3, we get the projection matrix rep-
resenting the projection onto Col(P ) as P (PT P )−1PT = P (PP )−1P =
PP−1P = P .

Exercise 5.1.14. Let A be a matrix with independent rows.
a. Show that AAT is invertible.
b. Show that if b is any vector in Col(A), then the equation Ax = b has a
solution in Row(A) given by xR = AT (AAT )−1b. (The matrix AT (AAT )−1

is called the pseudoinverse of A, and is usually denoted by A+. It is a right
inverse of A, and coincides with the two-sided inverse A−1 if A is square.)
c. The mapping of Col(A) to Row(A) given by xR = AT (AAT )−1b is an
isomorphism.

Exercise 5.1.15. Let A be a matrix with independent rows. Find a formula
for the matrix of the projection onto Null(A).

Exercise 5.1.16. Find the least-squares line for the points (1, −2), (−3, 1),
(2, 0), (3, −2), and (−5, 3) in R2.

Exercise 5.1.17. Using Equations 5.28, 5.29, and 5.30, prove that every
least-squares line in R2 passes through the centroid of the given points (xi, yi).

Exercise 5.1.18. Find a formula analogous to Equation 5.31 for the normal
system 5.41 of the least-squares plane to m data points (xi, yi, zi) in R3.

Exercise 5.1.19. Using the formula obtained in the previous exercise, prove
that every least-squares plane passes through the centroid of the given points
(xi, yi, zi).

*
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Exercise 5.1.20. Find formulas analogous to Equations 5.29 and 5.30 for
the coefficients in the normal system for the least-squares parabola y = ax2+
bx + c to m data points (xi, yi) in R2.

MATLAB Exercises

Exercise 5.1.21. Let

A =

⎡
⎢⎢⎣

1 0 1
3 4 0
2 3 2
0 − 1 0

⎤
⎥⎥⎦ .

a. Use MATLAB to find the matrix P of the projection onto Col(A).
b. Verify that P is a projection matrix.
c. The command B = orth(A) computes a basis matrix for Col(A). Verify
that the matrix P projects onto Col(A) by showing that Pei is a linear
combination of the columns of B for each standard vector ei of R4.

Exercise 5.1.22. If the linear system As = y is overdetermined, that is,
there are more equations than unknowns, then the MATLAB command s =
A\y returns the solution of the corresponding normal system AT As = AT y.
Use this command and Equations 5.24 through 5.28 to solve the problem of
Example 5.1.3 with MATLAB. Plot the result by also computing z = s(1)∗x+
s(2) or z = polyval(s,x) and entering the command plot(x,y,′o′,x, z).

Exercise 5.1.23. Use the MATLAB routine polyfit instead of A\y to find
the vector s of the previous exercise.

Exercise 5.1.24. Use the method of Exercise 5.1.22 and Equations 5.38
through 5.41 to find the plane that best fits the points (1, 2, 3), (2, 2, 4),
(−1, 0, 3), (5, −2, 2), and (7, 0, −1). (You may also want to use MATLAB to
plot these points and the plane in a three-dimensional coordinate system.)

Exercise 5.1.25. Use polyfit to do Exercise 5.1.16.

Exercise 5.1.26. Use polyfit to find the parabola that fits best to the
points (1, 2), (2, 4), (−1, 0), (−2, 5), and (4, 14), and use MATLAB to plot
it, together with the given points.

5.2 Orthogonal Bases

In Section 3.2 we saw how to decompose vectors into linear combinations of
given vectors and how to test the latter for independence. Both of these pro-
cedures required the solution of linear systems. If, however, the given vectors
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are orthogonal to each other, then their independence becomes automatic,
and the decomposition of other vectors can be achieved much more simply
by taking dot products, as in the following example.

Example 5.2.1. (Decomposing a Vector in R2 into Orthogonal Com
onents). In R2 let us consider the basis {a1,a2} with a1 =(1, 1)Tand a2 =

(−1, 1)T . We want to write an arbitrary vector x = (x1, x2)T as

x = xA1a1 + xA2a2. (5.42)

Taking the dot product of both sides of the last equation by a1 and noting
that a1 · a2 = 0, we get

a1 · x = xA1a1 · a1, (5.43)

which reduces to

x1 + x2 = 2xA1 (5.44)

and yields

xA1 =
x1 + x2

2
. (5.45)

Similarly, taking the dot product of both sides of Equation 5.41 by a2, we get

xA2 =
x2 − x1

2
. (5.46)

�

The procedure illustrated in the example above can be stated in general
terms as follows.

Theorem 5.2.1. (Orthogonal Decompositions). Let a1,a2, . . . ,an be
mutually orthogonal nonzero vectors in a vector space X equipped with an
inner product. Then

1. Every vector x ∈ Span{a1,a2, . . . ,an} can be decomposed uniquely as

x =
n∑

i=1

xAiai (5.47)

with the coefficients given by

xAi =
ai · x
ai · ai

for i = 1, 2, . . . , n. (5.48)

2. The vectors a1,a2, . . . ,an are independent.

Proof. Since x ∈ Span{a1,a2, . . . ,an}, there exists a decomposition of x
in the form of Equation 5.47 with some coefficients xAi. Taking the dot

-
p



212 5. Orthogonal Projections and Bases

product of both sides of Equation 5.47 with ai and utilizing the assumed
orthogonality ai · aj = 0 for all i �= j, we get Equation 5.48. Also, if we
take x = 0, then Equation 5.48 shows that each xAi equals zero, and so the
vectors a1,a2, . . . , an are independent. �

Comparing Theorem 5.2.1 with Corollary 1.2.1 on page 21 we see that
each component xAιai above is the orthogonal projection of x onto ai.

Frequently the vectors a1,a2, . . . ,an are also “normalized,” so that they
are replaced with qi = ai/ |ai| for i = 1, 2, . . . , n, that is, they are replaced
with mutually orthogonal unit vectors. In this case, the qi are said to con-
stitute an orthonormal set, and Equation 5.47 takes on an especially simple
form.

Corollary 5.2.1. (Orthonormal Decompositions). If q1,q2, . . . ,qn

are mutually orthonormal nonzero vectors in an inner product space X,
then

x =
n∑

i=1

(qi · x)qi (5.49)

for any x ∈ Span{q1,q2, . . . ,qn}.

The formula giving the projection matrix that represents the projection
onto the column space of a matrix A also becomes much simpler if the
columns of A are orthonormal. We have already seen a particular case of
this simplification on page 194 in Chapter 4. In general we had the formula
P = A(AT A)−1AT (see page 203 in this chapter) for such a projection ma-
trix, and if the columns of A are orthonormal, then AT A = I holds (see
Theorem 5.2.2 below), and the formula reduces to P = AAT . If we write
A = (a1,a2, . . . ,an) in this equation, then we can write the projection of
every x onto the column space of A as

Px = AAT x = (a1,a2, . . . ,an)

⎡
⎢⎣

aT
1 x
...

aT
nx

⎤
⎥⎦ = (a1 ·x)a1+ · · ·+(an ·x)an. (5.50)

Thus, in this special case of orthonormal columns, the projection onto the
column space of the matrix A is the sum of the projections onto the individual
columns.

Notice that the right-hand sides of Equations 5.49 and 5.50 are the same,
apart from notation (the ai in the latter are also orthonormal vectors, the
same as the qi). The difference between the two equations is that, in Equa-
tion 5.49, x ∈ Span{q1,q2, . . . ,qn}, but in Equation 5.50, x may be outside
Span{a1,a2, . . . ,an}. If x is in Span{a1,a2, . . . ,an}, then Px = x. (See The-
orem 5.1.2.)
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There is still another very important simplification that results from or-
thonormality. To wit: the computation of the inverse of a square matrix with
orthonormal columns, called an orthogonal matrix,4 becomes trivial.

Theorem 5.2.2. (The Inverse of an Orthogonal Matrix Is Its Trans-
pose). If Q is an orthogonal matrix, then it is invertible and

Q−1 = QT . (5.51)

Furthermore, in this case the rows of Q are orthonormal as well as its
columns.

Proof. If Q is an n × n orthogonal matrix, then by Theorem 5.2.1 its n
columns are independent, and so its rank is n. Thus it is invertible. Also, the
assumed orthogonality can be written as QT Q = I, and multiplying both
sides by Q−1 from the right gives QT = Q−1. Now, multiplying by Q from
the left results in QQT = I, which shows the orthonormality of the rows. �

Orthogonal matrices occur in many applications because they represent
distance-preserving transformations called isometries.

Theorem 5.2.3. (A Transformation with an Orthogonal Matrix Pre-
serves Length). For every n×n orthogonal matrix Q and every n-vector x,

|Qx| = |x|. (5.52)

Proof. |Qx|2 = (Qx)T
Qx = xT QT Qx = xT Ix = xT x = |x|2. Hence

|Qx| = |x|. �

Matrices representing rotations and reflections are orthogonal.
Since orthogonality of basis vectors is such a useful property, in some

applications where we have a natural basis that is not orthogonal, we often
make a changeover to an orthogonal or orthonormal basis, as in the following
example.

Example 5.2.2. (Finding an Orthonormal Basis). Find an orthonormal
for the subspace U of R4 spanned by the vectors a1 = (2, 0, −1, 1)T ,

a2 = (1, 1, 0, 1)T , and a3 = (1, −3, −1, 3)T .
To avoid dealing with unpleasant fractions, first we just find an orthogonal

basis {b1,b2,b3}, and normalize its vectors afterward. We may take any
one of the given vectors as b1; say, we take b1 = a1. Next, we compute the
orthogonal projection p2 of a2 onto b1, and take b2 as some scalar multiple of
a2−p2, since then b2 will be in the plane of a1 and a2, and will be orthogonal
to b1. Thus

4 Orthonormal matrix would be a better name, but we have no choice.

basis
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a2 − p2 = a2 − a2 · b1

b1 · b1
b1 = (1, 1, 0, 1)T − 3

6
(2, 0, −1, 1)T . (5.53)

To avoid fractions, let b2 be 2 times this vector:

b2 = (2, 2, 0, 2)T − (2, 0, −1, 1)T = (0, 2, 1, 1)T . (5.54)

Next, take the projection p3 of a3 onto the plane of b1 and b2 and subtract
it from a3. We get

a3 − p3 = a3 − a3 · b1

b1 · b1
b1 − a3 · b2

b2 · b2
b2

= (1, −3, −1, 3)T − 6
6
(2, 0, −1, 1)T − −4

6
(0, 2, 1, 1)T (5.55)

and taking b3 as 3 times this vector, we obtain

b3 = (3, −9, −3, 9)T − (6, 0, −3, 3)T +(0, 4, 2, 2)T = (−3, −5, 2, 8)T . (5.56)

Normalizing the bi vectors we have found, we get an orthonormal basis for
U consisting of the vectors

q1 =
1√
6
(2, 0, −1, 1)T , q2 =

1√
6
(0, 2, 1, 1)T , q3 =

1√
102

(−3, −5, 2, 8)T .

(5.57)

�

The procedure illustrated in the above example is called the Gram–
Schmidt orthogonalization procedure. It is used mostly in function spaces
such as the space of polynomials mentioned in Example 3.5.4 on page 133,
in which an inner product can be defined by a suitable integral. We shall
not pursue this subject here. In general, the algorithm can be described as
follows.

Theorem 5.2.4. (Gram–Schmidt Orthogonalization Procedure). Let
U be an inner product space with basis {a1,a2, . . . ,an}. Define new vectors
b1,b2, . . . , bn successively as b1 = a1 and

bk = ak −
k−1∑
i=1

ak · bi

bi · bi
bi for k = 2, 3, . . . , n. (5.58)

Then these bi vectors form an orthogonal basis for U , and if we also normalize
them, then the unit vectors qi = bi/|bi| form an orthonormal basis for U .

Proof. We prove this theorem by mathematical induction; that is, we first
prove it for n = 2, and second, we prove that if it is true for any n ≥ 2, then
it must also be true for n + 1. These two parts together prove the theorem
for every n ≥ 2, because from n = 2, the second part shows it for n = 3, then
from that for n = 4, etc.
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1. First, let n = 2. Then b1 = a1 �= 0, since {a1,a2} is a basis, hence an
independent set, and every finite set containing 0 is a dependent set (see
Exercise 3.3.14). For n = 2, Equation 5.58 reduces to

b2 = a2 − a2 · b1

b1 · b1
b1. (5.59)

Now, b2 �= 0, since if we had b2 = 0, then Equation 5.59 would express
a2 as a multiple of b1 = a1 �= 0, contradicting the assumption that
{a1,a2} is a basis. Taking the dot product of both sides of Equation 5.59
by b1, we get

b2 · b1 = a2 · b1 − a2 · b1

b1 · b1
b1 · b1 = a2 · b1 − a2 · b1 = 0. (5.60)

Thus b1 ⊥ b2, neither is 0, and so, by Theorem 5.2.1, b1 and b2 form a
basis for U.

2. Assume that Theorem 5.2.4 holds for any given n ≥ 2. We show that
this assumption implies that it also holds for n + 1. Let U be an inner
product space with basis {a1,a2, . . . ,an+1}. Define b1 = a1 and bk as in
Equation 5.58 for all k = 2, 3, . . . , n + 1. Then, by the induction assump-
tion above, {b1,b2, . . . , bn} form an orthogonal basis for the subspace
of U spanned by {a1,a2, . . . ,an}. So bi �= 0 for i = 1, 2, . . . , n, (since the
bi vectors form a basis) and bi · bj = 0 for i, j = 1, 2, . . . , n and i �= j.
For k = n + 1, Equation 5.58 defines bn+1 as

bn+1 = an+1 −
n∑

i=1

an+1 · bi

bi · bi
bi. (5.61)

Now, bn+1 �= 0, since if it were, then Equation 5.61 would express an+1
as a linear combination of the bi vectors, hence also of the ai vectors,
for i = 1, 2, . . . , n, contradicting the assumption that {a1,a2, . . . ,an+1} is
a basis for U . Taking the dot product of both sides of Equation 5.6 by bj ,
for every j = 1, 2, . . . , n, and utilizing bi · bj = 0 for all i, j = 1, 2, . . . , n
and i �= j, we get

bn+1 ·bj = an+1 ·bj −
n∑

i=1

an+1 · bi

bi · bi
bi ·bj = an+1 ·bj − an+1 · bj

bj · bj
bj ·bj = 0.

(5.62)

Thus bn+1 too is orthogonal to all bj for j = 1, 2, . . . , n, and so
the vectors b1,b2, . . . , bn+1 are mutually orthogonal and, as shown
above, nonzero. Hence, by Theorem 5.2.1, they form a basis for U =
Span{a1,a2, . . . ,an+1}. �

If in the Gram–Schmidt procedure U is an n-dimensional subspace of Rm

with m ≥ n, then we can consider the given independent ai vectors as the

1
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columns of a basis matrix A = (a1,a2, . . . ,an) for U, and the procedure leads
to a factoring of A as follows.

Theorem 5.2.5. (QR Factorization). If A is an m × n matrix with
m ≥ n, and with independent columns, then it can be factored as A = QR,
where Q is an m × n matrix with orthonormal columns that span Col (A) ,
and R is an n × n invertible, upper triangular matrix.

Proof. Equation 5.58 can be reformulated in terms of the unit vectors qi =
bi/|bi| as

ak = bk +
k−1∑
i=1

(ak · qi)qi for k = 2, 3, . . . , n. (5.63)

We can write bk too in a form like that of the other terms: bk = (ak · qk)qk,
since bk = |bk|qk and taking the dot product of Equation 5.63 with qk and
using the orthogonality of qk to qi for i = 1, 2, . . . k − 1, result in

ak · qk = bk · qk = |bk|qk · qk = |bk| for k = 2, 3, . . . , n. (5.64)

Thus, bringing the bk = (ak · qk)qk term in Equation 5.63 into the sum and
writing the dot products in matrix form, we obtain

ak =
k∑

i=1

(ak · qi)qi =
k∑

i=1

(
qT

i ak

)
qi for k = 2, 3, . . . , n. (5.65)

(Note that this formula is the same as Equation 5.49 with x = ak; we just
had to establish that ak ∈ Span{q1,q2, . . . ,qk}.) Similarly, we also have

a1 · q1 = a1 · a1

|a1| =
|a1|2
|a1| = |a1| (5.66)

and

a1 = |a1|q1 = (a1 · q1)q1 =
(
qT

1 a1
)
q1. (5.67)

We can combine the left-hand sides of Equations 5.66 and 5.64 into the
columns of the matrix A, and the right-hand sides into a matrix product
(see Exercise 2.4.13, Part b):

A = (a1,a2, . . . ,an) = (q1,q2, . . . ,qn)

⎡
⎢⎢⎢⎢⎢⎣

qT
1 a1 qT

1 a2 qT
1 a3 · · · qT

1 an

0 qT
2 a2 qT

2 a3 · · · qT
2 an

0 0 qT
3 a3 · · · qT

3 an

· · · · · · · · · · · · · · ·
0 0 0 · · · qT

nan

⎤
⎥⎥⎥⎥⎥⎦ .

(5.68)
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The matrices on the right are called Q and R, respectively. In the proof of
the Gram–Schmidt algorithm, we saw that bk �= 0 for k = 1, 2, . . . , n. So, by
Equation 5.64, qT

k ak = ak · qk = |bk| �= 0 for k = 1, 2, . . . , n. These products
are the diagonal entries of R; and since they are nonzero, R is invertible. �

Example 5.2.3. (QR Factorization of the Matrix of Example 5.2.2). Let

A =

⎡
⎢⎢⎣

2 1 1
0 1 − 3

−1 0 −1
1 1 3

⎤
⎥⎥⎦ (5.69)

and, as computed in Example 5.2.2,

q1 =
1√
6
(2, 0, −1, 1)T , q2 =

1√
6
(0, 2, 1, 1)T , q3 =

1√
102

(−3, −5, 2, 8)T .

(5.70)

Hence qT
1 a1 =

√
6, qT

1 a2 = 1
2

√
6, qT

1 a3 =
√

6, qT
2 a2 = 1

2

√
6, qT

2 a3 = − 2
3

√
6,

qT
3 a3 = 1

3

√
102, and so the required factorization is

⎡
⎢⎢⎣

2 1 1
0 1 − 3

−1 0 −1
1 1 3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

2/
√

6 0 − 3/
√

102
0 2/

√
6 −5/

√
102

−1/
√

6 1/
√

6 2/
√

102
1/

√
6 1/

√
6 8/

√
102

⎤
⎥⎥⎦

⎡
⎣

√
6

√
6/2

√
6

0
√

6/2 − 2
√

6/3
0 0

√
102/3

⎤
⎦.

(5.71)

The QR factorization is used to simplify the computations in least-squares
problems: If we substitute A = QR into the equations of Theorem 5.1.1, then
the orthonormality of the columns of Q implies that QT Q = In, and we get

AT A = RT QT QR = RT R. (5.72)

Thus the normal system AT Ax = AT p becomes

RT Rx = RT QT p (5.73)

or, since RT is invertible,

Rx = QT p. (5.74)

This system can be solved very easily, because R is upper triangular. �

Exercises

Exercise 5.2.1. In R3 find the projection of the vector x = (2, 3, 4)T into
the plane of the vectors (2, 1, 2)T and (1, 0, −1)T .
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Exercise 5.2.2. Use Equation 5.50 to rederive Equation 4.124 of page 195
for the matrix giving the projection into the plane spanned by the orthonor-
mal unit vectors u, v in R3.

Exercise 5.2.3. In R4 find
a. the projection of the vector x = (1, 2, 3, −1)T into the subspace U of
Example 5.2.2,
b. the projection of x into U⊥,
c. a basis for U⊥, and
d. a vector q4 such that {q1,q2,q3,q4} is an orthonormal basis for R4.

Exercise 5.2.4. Are orthogonal matrices not just distance preserving but
angle preserving as well? Prove your answer.

Exercise 5.2.5. Show that if Equation 5.52 holds for a given n×n matrix Q
and every n-vector x, then Q is orthogonal.

Exercise 5.2.6. Prove that if P and Q are orthogonal matrices of the same
size, then so too is PQ.

Exercise 5.2.7. Find an orthonormal basis for R3 that includes the vectors
q1 = 1

3 (−1, 2, 2)T and q2 = 1
3 (2, −1, 2)T .

Exercise 5.2.8. 1. Find an orthonormal basis for the subspace U of R4

spanned by the vectors a1 = (0, 0, −1, 1)T , a2 = (1, 0, 0, 1)T , and a3 =
(1, 0, −1, 0)T .

2. Extend the orthonormal basis above to an orthonormal basis for R4.
3. Find the QR factorization of the matrix A = (a1,a2,a3) .

Exercise 5.2.9. Show that if q1,q2, . . . , qn denote the columns of an
orthogonal matrix, then

∑n
i=1 qiqT

i = I.

MATLAB Exercises

In MATLAB, the command C = orth(A) returns an orthonormal basis ma-
trix for Col(A) and so, by Equation 5.50, P = CCT is the matrix of the
projection onto Col(A). Similarly, the command N = null(A) returns an
orthonormal basis matrix for Null(A) and so Q = NNT is the matrix of
the projection onto Null(A). Use these commands and matrices to solve the
following exercises.

Exercise 5.2.10. In R3 let a plane S be given by the equation 2x1 + 3x2 −
x3 = 0.
a. Find the matrix of the projection onto S and the matrix of the projection
onto the normal vector of S.
b. Check that the sum of the projection matrices found in Part a is I.
c. Use the projection matrices found in Part a to decompose the vector x =
(2, 3, 4)T into a component in S and one orthogonal to S.
d. Find the distance of the point A = (2, 3, 4) from S.
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Exercise 5.2.11. In R3 let a line L be given by the parametric equation
p = (1, 3, 5)T t.
a. Find the matrix of the projection onto L and the matrix of the projection
onto the orthogonal complement of L.
b. Check that the sum of the projection matrices found in Part a is I.
c. Use the projection matrices found in Part a to decompose the vector x =
(2, 3, 4)T into a component in L and one orthogonal to L.
d. Find the distance of the point A = (2, 3, 4) from L.

Exercise 5.2.12. In R3 let a plane S be given by the parametric equation
p = (1, 2, 0)T s + (1, 3, 5)T t.
a. Find the matrix of the projection onto S and the matrix of the projection
onto the normal vector of S.
b. Check that the sum of the projection matrices found in Part a is I.
c. Use the projection matrices found in Part a to decompose the vector x =
(2, 3, 4)T into a component in S and one orthogonal to S.
d. Find the distance of the point A = (2, 3, 4) from S.

Exercise 5.2.13. In R3 let a line L be given by the equations 2x1 + 3x2 −
x3 = 0 and −x1 + 2x2 + 5x3 = 0.
a. Find the matrix of the projection onto L and the matrix of the projection
onto the orthogonal complement of L.
b. Check that the sum of the projection matrices found in Part a is I.
c. Use the projection matrices found in Part a to decompose the vector x =
(2, 3, 4)T into a component in L and one orthogonal to L.
d. Find the distance of the point A = (2, 3, 4) from L.



6. Determinants

6.1 Determinants: Definition and Basic Properties

Determinants are certain complicated functions of square matrices (or, equiv-
alently, of their column vectors or of their entries). Their usefulness follows
mainly from two of their properties: first, they can be used to compute areas
and volumes and second, a zero determinant characterizes singular matri-
ces. Computing areas and volumes brings determinants into the formulas for
changing variables in multiple integrals, and their vanishing for singular ma-
trices is at the heart of Chapter 7 for evaluating what are called eigenvalues
of matrices, which occur in many geometrical and physical applications.

Rather than giving an explicit formula right away, we define determinants
by three very simple properties, from which we derive others. Only then
do we turn to their evaluation. The defining properties will be obtained by
examining how areas of parallelograms and volumes of parallelepipeds depend
on their edge vectors.

First, the area of a parallelogram is the absolute value of a linear function
of each of two edge vectors if the other edge vector is fixed. More precisely,
if we denote the area of the parallelogram spanned by the vectors a and b
in R2 by A(a,b), then we have A(a, λb) = |λ|A(a,b) for every real λ, and
A(a,b) + A(a, c) = A(a,b+ c) for all vectors a,b, c such that b and c point
to the same side of a. These equations follow at a glance from Figures 6.1
and 6.2. (The latter is a genuinely two-dimensional figure, try not to see it
as a wedge in three dimensions.) In Figure 6.2 all three parallelograms have

A

b

b

a a

A

Fig. 6.1. Dependence of the area of a parallelogram on a scalar multiple of an edge
vector
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the same base length |a|, and the heights of the shaded ones add up to the
height of the unshaded one.

c

b

b + c

a

Fig. 6.2. Dependence of the area of a parallelogram on a sum of counterclockwise-
oriented edge vectors b, c

If, however, b and c point to opposite sides of a, then we have A(a,b +
c) = A(a,b) − A(a, c), with subtraction instead of addition, as can be seen
from Figure 6.3. Nevertheless, we can turn the right side of this equation
into a sum for a signed area function D(a,b) = ±A(a,b), if we choose the
plus sign when a followed by b indicates a counterclockwise traversal of the
parallelogram spanned by a and b, and choose the minus sign otherwise.
Furthermore, the function D is homogeneous; that is, D(a, λb) = λD(a,b)
for every real λ, without the absolute value that was present in the formula for
A(a, λb). We do not go into this subject any further here, but we shall return
to the relationship between areas and determinants at the end of Section 6.2.
Relations similar to those above for areas hold for volumes of parallelepipeds
in R3 as well.

cb
b + c

a

Fig. 6.3. Dependence of the area of a parallelogram on a sum of edge vectors b, c,
with b following a counterclockwise and c following a clockwise
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Definition 6.1.1. (Determinants). For any positive integer n, 1 the de-
terminant of order n is a function that assigns to every n × n matrix

A = (a1,a2, . . . ,an) (6.1)

a number, denoted by

det(A) = det(a1 a2 · · · an) or |A| = |a1 a2 · · · an|, (6.2)

such that

1. It is a multilinear function of the columns; that is,

|a1 · · · ai−1 sai + ta′
i ai+1 · · · an|

= s|a1 · · · ai−1 ai ai+1 · · · an| + t|a1 · · · ai−1 a′
i ai+1 · · · an|

(6.3)

holds for all real s, t and every positive integer i ≤ n.
2. It is zero if any two columns are equal, that is,

| · · ·ai · · ·aj · · · | = 0 if ai = aj (6.4)

|e1 e2 · · · en| = 1, (6.5)

or, equivalently, det (I) = 1, where I is the n × n identity matrix.

We are going to show shortly that these properties do indeed define a
unique function for every n, by giving formulas for it in Theorems 6.1.2, 6.1.3,
and 6.1.4. But before computing any determinant, we need one more property,
which follows from those above.

Theorem 6.1.1. (Exchanging Columns Changes the Sign of a De-
terminant). If the matrix A′ is obtained from A by interchanging any two
columns, and their determinants exist, then |A′| = −|A|.
Proof. Suppose we have

|A| = | · · ·ai · · ·aj · · · | (6.6)

and

|A′| = | · · ·aj · · ·ai · · · |. (6.7)

1 For n = 1, see Exercise 6.1.5.

holds for any i, j, with �= j, and
3. The “volume” of the unit hypercube is 1; that is,

i
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Consider the determinant in which the ith and jth columns are both equal
to ai + aj . By Axiom 2 of Definition 6.1.1, its value is 0 and, by Axiom 1, it
can be reduced as follows:

0 = | · · ·ai + aj · · ·ai + aj · · · |
= | · · ·ai · · ·ai + aj · · · | + | · · ·aj · · ·ai + aj · · · |
= | · · ·ai · · ·ai · · · | + | · · ·ai · · ·aj · · · |

+ | · · ·aj · · ·ai · · · | + | · · ·aj · · ·aj · · · |. (6.8)

On the right side the first and last terms are zero by Axiom 2, and so the
sum of the middle terms is also zero, that is,

|A| + |A′| = 0. (6.9)

This equation is equivalent to the statement of the theorem. �

We now have enough information to evaluate determinants in the case
n = 2.

Theorem 6.1.2. (2 × 2 Determinant). The determinant of order two is
given by the formula

|A| =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12. (6.10)

Proof. If |A| exists, then by the linearity assumption we have

|A| = |a1 a2| = |a11e1 + a21e2, a12e1 + a22e2|
= a11|e1, a12e1 + a22e2| + a21|e2, a12e1 + a22e2|
= a11(a12|e1 e1| + a22|e1 e2|) + a21(a12|e2 e1| + a22|e2 e2|), (6.11)

where, according to Axioms 2 and 3 and Theorem 6.1.1, the determinants of
the standard vectors equal 0, 1, −1, and 0 respectively. Thus Equation 6.11
reduces to the formula |A| = a11a22 − a21a12.

It is straightforward to check that this expression indeed satisfies the
axioms and thereby prove the existence of the determinant of order two:

By Equation 6.10 and simple algebra,

1.

|a1 sa2 + ta′
2| =

∣∣∣∣a11 sa12 + ta′
12

a21 sa22 + ta′
22

∣∣∣∣
= a11 (sa22 + ta′

22) − a21 (sa12 + ta′
12)

= s (a11a22 − a21a12) + t (a11a
′
22 − a21a

′
12)

= s|a1 a2| + t|a1 a′
2|. (6.12)

A linear combination in the first column can be handled similarly.
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2.

|a1 a1| =
∣∣∣∣a11 a11
a21 a21

∣∣∣∣ = a11a21 − a21a11 = 0. (6.13)

3.

|e1 e2| =
∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 · 1 − 0 · 0 = 1. (6.14)

�

∣∣∣∣ 2 3
4 5

∣∣∣∣ = 2 · 5 − 4 · 3 = −2. (6.15)

�

Let us now find a formula for determinants of order three.

Theorem 6.1.3. (3 × 3 Determinant). For any 3 × 3 matrix A, we have

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a12a23

− a11a32a23 − a21a12a33 − a31a22a13. (6.16)

Proof. The proof of this theorem is much like that of the 2 × 2 case. If |A|
exists, then by the linearity property of determinants we have

|A| = |a1 a2 a3| =

∣∣∣∣∣∣
3∑

i=1

ai1ei,

3∑
j=1

aj2ej ,

3∑
k=1

ak3ek

∣∣∣∣∣∣=
3∑

i,j,k=1

ai1aj2ak3|ei ej ek|.

(6.17)

Now each determinant on the right is zero whenever two of the standard
vectors are equal, is +1 when |ei ej ek| is |e1 e2 e3| or can be obtained
from the latter by two column exchanges, and is −1 when |ei ej ek| can be
obtained from |e1 e2 e3| by just one exchange, since every column exchange
changes only the sign of a determinant. (For example, in the second term of
Equation 6.16 i = 2, j = 3, k = 1 and, if we exchange e1 and e2 in |e1 e2
e3| = 1, we get |e2 e1 e3| = −1 and, if next we exchange e1 and e3, we obtain
|e2 e3 e1| = 1 for the desired values of i, j, k.) �

We could again verify the existence of |A| by checking that the formula
of the theorem satisfies the axioms, but we relegate this task to the general
n × n case below.

Example 6.1.1. (Evaluating a 2 × 2 Determinant)×
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∣∣∣∣∣∣
1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣ = 1 · 5 · 9 + 2 · 6 · 7 + 3 · 4 · 8 − 1 · 6 · 8

−2 · 4 · 9 − 3 · 5 · 7 = 45 + 84 + 96 − 48 − 72 − 105 = 0. (6.18)

That the value turned out to be zero is a result of the three column vectors
being linearly dependent, as will be seen shortly. Soon we shall also discuss
better methods for evaluating determinants. �

In the general case we proceed much as in those above. We use linearity
to write any nth order determinant as a linear combination of determinants
of standard vectors analogously to Equation 6.17, and reduce the nonzero
ones among the latter to ±1 by exchanges of adjacent ei vectors.

For any determinant of the n standard vectors of Rn, every exchange of
adjacent ei vectors, called a transposition, changes the sign. Consequently,
if in any such determinant the number of transpositions we use to bring the
standard vectors into their natural order is odd, then the determinant is −1,
and if the number of transpositions used is even, then it is +1. The natural
order can be obtained from a given arrangement through various different
sequences of transpositions; nevertheless, as will be seen below, it does not
matter which of these sequences we choose.

Let us consider the set of all possible arrangements of the integers
1, 2, . . . , n in a row. Any such arrangement is called a permutation of the
natural arrangement, or natural permutation, (1, 2, . . . , n).

Lemma 6.1.1. (Number of Permutations). The number of permuta-
tions of n elements is n!.

Proof. For n = 1 the only permutation is (1) and so its number is 1! = 1. For
n = 2 we have the two permutations (1, 2) and (2, 1). These can be thought
of as arising from the previous (1) by placing the digit 2 on either side of
the 1 and so their number is 2 · 1! = 2 · 1 = 2!. For n = 3 we can obtain all
permutations by placing the digit 3 in all the possible places in the previous
permutations of two digits, that is, to the left of the first digit, between the
two digits, or after them. Thus their number is 3 · 2! = 3 · 2 · 1 = 3!. This
process can be continued to arbitrary n, using mathematical induction. �

We define an inversion in a permutation as an ordered pair of dig-
its such that the larger number precedes the smaller one in the permuta-
tion. Thus, for example, the permutation (3, 2, 4, 5, 1) has the five inversions
(3, 2), (3, 1), (2, 1), (4, 1), (5, 1).

A permutation is called even if it has an even number of inversions and
odd otherwise. In particular, the natural permutation is even because it has
zero inversions.

Example 6.1.2. (Evaluating a 3 × 3 Determinant). Let us evaluate
determinant:

×
such a
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Any transposition changes the number of inversions by 1, since it affects
only the relative order of the two transposed digits, and so it changes every
even permutation into an odd one and vice versa. Hence the number of even
permutations must equal the number of odd permutations, since if we consider
all even permutations and transpose their first two digits, then we get odd
permutations, which shows that the number of even permutations is less
than or equal to the number of odd permutations. Similarly, transposing the
first two digits of all odd permutations, we find that the number of odd
permutations is less than or equal to the number of even permutations. Thus
the numbers of even and of odd permutations both equal n!/2.

Obviously, every permutation can be changed into the natural permu-
tation by a sequence of transpositions, and each transposition changes the
number of inversions by one. Therefore, every odd permutation requires an
odd number of transpositions for it to be changed into the natural permuta-
tion (which is even), and every even permutation requires an even number of
transpositions for it to be changed into the natural permutation, regardless
of the particular transpositions used.

Let P denote any permutation of the integers 1, 2, . . . , n; that is, let P =
(p1, p2, . . . , pn), where the pi are the numbers 1, 2, . . . , n permuted. Define a
function ε on the set of all such permutations by

ε(P ) =
{

1 if P is even
−1 if P is odd . (6.19)

With this notation we are led to the following theorem.

Theorem 6.1.4. (n × n Determinant). The determinant of any n × n
matrix A is given by

det(A) =
∑
P

ε(P )ap11ap22 · · · apnn, (6.20)

where the sum runs through all permutations of 1, 2, . . . , n.

Proof. The discussion above has already proved that if det(A) exists, it must
have this form. To prove its existence, we just need to show, similarly to the
2 × 2 case, that the sum in the theorem satisfies the three defining axioms.

1. By Equation 6.20 and simple algebra,

|a1 · · · ai−1 sai + ta′
i ai+1 · · · an|

=
∑
P

ε(P )ap11ap22 · · · (sapii + ta′
pii

) · · · apnn

= s
∑
P

ε(P )ap11ap22 · · · apii · · · apnn + t
∑
P

ε(P )ap11ap22 · · · a′
pii · · · apnn

= s|a1 · · · ai−1 ai ai+1 · · · an| + t|a1 · · · ai−1 a′
i ai+1 · · · an|.

(6.21)
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2. Let

det(A) = | · · ·ai · · ·aj · · · | =
∑
P

ε(P )ap11ap22 · · · apnn, (6.22)

det(A′) = | · · ·aj · · ·ai · · · | =
∑
P ′

ε(P ′)ap′
11ap′

22 · · · ap′
nn, (6.23)

and ai = aj . Then, of course,

det(A) = det(A′). (6.24)

On the other hand, ignoring ai = aj , let us change A into A′ by trans-
positions of columns. If there are k numbers between i and j, then k + 1
transpositions would move ai to the right of aj and after that k transpo-
sitions would move aj to the old place of ai, resulting in a total of 2k +1
transpositions. Thus, if P is even, then P ′ is odd and vice versa, implying
that ε(P ′) = −ε(P ) and, since the other factors remain unchanged,

det(A) = − det(A′). (6.25)

Equations 6.24 and 6.25 together imply:

det(A) = 0. (6.26)

3. If A = I, then the sum in Equation 6.20 reduces, all other terms being
0, to the single term

ε(P0)a11a22 · · · ann = 1, (6.27)

where P0 is the natural permutation, which is even, and each aii = 1. �

This formula is hopelessly inefficient for computing determinants for
large n, since the number of terms is n!, which grows very fast. Already
for n = 5 or 6 we have 5! = 120 and 6! = 720. We shall, however, use this
formula to prove some other properties that will lead to better evaluation
methods. Also, it is theoretically very important to know that the defining
axioms are satisfied by a unique expression.

The next three theorems will show how determinants can be evaluated by
elementary operations on the rows or columns.

Theorem 6.1.5. (Combining Columns in a Determinant). 1. If the
matrix A′ is obtained from A by adding any scalar c times one column to
another, then |A′| = |A|.
2. If a matrix A has a zero column, then |A| = 0.

Proof. 1. Let

|A| = | · · ·ai · · ·aj · · · | (6.28)
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and assume that A′ is obtained by adding c times the jth column of A to the
ith one. Then by Axioms 1 and 2 we have

|A′| = | · · ·ai + caj · · ·aj · · · |
= | · · ·ai · · ·aj · · · | + c| · · ·aj · · ·aj · · · | = |A| + 0 = |A|. (6.29)

2. Add any other column to the zero column. Then, by Part 1, the determi-
nant does not change and, because the resulting determinant has two equal
columns, it equals zero. �

Theorem 6.1.6. (Determinant of Transposed Matrix). For every
square matrix A, we have

det(AT ) = det(A). (6.30)

Proof. From Theorem 6.1.4 we have the formula

det(A) =
∑
P

ε(P )ap11ap22 · · · apnn, (6.31)

where the sum runs through all permutations of 1, 2, . . . , n. Now every term
in this sum contains one matrix element from each row and one from each
column and they are arranged in the order of the columns. Their product
in each term remains unchanged if we rearrange them in the order of the
rows, that is, if we rearrange the product ap11ap22 · · · apnn to a1q1a2q2 · · · anqn

.
Now Q = (q1, q2, . . . , qn) is the inverse of the permutation P ; that is, it is
the permutation that brings P = (p1, p2, . . . , pn) back to the natural order.
Thus Q can be obtained from the natural permutation with exactly as many
transpositions as P can, and so it is even when P is even and odd when P is
odd. Therefore,

det(A) =
∑
P

ε(P )ap11ap22 · · · apnn =
∑
Q

ε(Q)a1q1a2q2 · · · anqn
= det(AT ).

(6.32)

�

Corollary 6.1.1. (Rows in a Determinant). Every property of columns
of determinants is also valid for the rows.

This result will enable us to compute determinants by the more familiar
row reductions rather than by column operations. The next theorem tells us
what the last step of the reduction is in most cases.

Theorem 6.1.7. (Determinant of an Upper Triangular Matrix). If
A is an upper triangular matrix, then |A| equals the product of its diagonal
elements.
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Proof. The product of the diagonal elements is, of course, one of the terms
in the expansion of Theorem 6.1.4. Thus we want to show that in this case
all the other terms are necessarily zero.

Consider any one of the terms in the sum on the right of Equation 6.20,
say T = ε(P )ap11ap22 · · · apnn. Call the 0 entries in A below the main diagonal
the bad entries. How can we avoid having a bad entry as a factor in T? Since
the product in T contains exactly one matrix element from each row and one
from each column, from the first column it must contain a11, since all the
other entries in the first column are bad. Next, T cannot contain a12, since
it already has a factor from the first row. From the second column it must
contain a22, since it cannot contain a12 nor any of the bad entries below a22.
Similarly, from the third column it must contain a33, since it cannot contain
a13 or a23 because it already contains elements of the first and second rows
and the entries below a33 are all bad. This argument could be continued for
the remaining factors, and it shows that the product of the diagonal elements
is the only possibly nonzero term in the expansion of Theorem 6.1.4.

If one or more of the diagonal elements are zero, then in the expansion
even the term consisting of the product of the diagonal elements is zero,
and so the product of the diagonal elements and the determinant are both
zero. �

We can use the preceding properties to compute determinants by row
reductions as in the following examples.

Example 6.1.3. (Evaluating a Determinant by Row Reduction). Let
evaluate the determinant

D =

∣∣∣∣∣∣
1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣ . (6.33)

If we subtract the second row from the third row, and the first row from the
second row, then, by Part 1 of Theorem 6.1.5 applied to rows, the value of D
remains unchanged and we get

D =

∣∣∣∣∣∣
1 4 7
1 1 1
1 1 1

∣∣∣∣∣∣ . (6.34)

Hence, by Axiom 2 applied to rows, we obtain D = 0. �

Example 6.1.4. (Evaluating Another Determinant by Row Reduction).
Let us evaluate the determinant

D =

∣∣∣∣∣∣
1 1 2
2 5 4
3 6 9

∣∣∣∣∣∣ . (6.35)

us again
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By Axiom 1 applied to rows we can factor out a 3 from the third row to get

D = 3 ·
∣∣∣∣∣∣
1 1 2
2 5 4
1 2 3

∣∣∣∣∣∣ . (6.36)

By Part 1 of Theorem 6.1.5 applied to rows we can subtract twice the first
row from the second row and the first row from the third row to get

D = 3 ·
∣∣∣∣∣∣
1 1 2
0 3 0
0 1 1

∣∣∣∣∣∣ . (6.37)

Exchanging the last two rows we obtain, by Theorem 6.1.1 applied to rows,
the equation

D = −3 ·
∣∣∣∣∣∣
1 1 2
0 1 1
0 3 0

∣∣∣∣∣∣ . (6.38)

Finally, if we subtract 3 times the second row from the last row and apply
Theorem 6.1.7, then we find

D = −3 ·
∣∣∣∣∣∣
1 1 2
0 1 1
0 0 −3

∣∣∣∣∣∣ = −3 · 1 · 1 · (−3) = 9. (6.39)

�

From the properties of determinants above, a very important relation
between a matrix and its determinant can be deduced.

Theorem 6.1.8. (A Is Singular If and Only If |A| = 0). A square
matrix A is singular if and only if its determinant equals zero.

Proof. First, if the square matrix A is singular, then it can be reduced by
elementary row operations to an upper triangular matrix U with a zero last
row. If we perform the same row operations on the determinant |A|, then
in each step the determinant either remains unchanged or we can factor out
some number. We have |U | = 0 and so |A| = c|U | = 0.

If, on the other hand, the square matrix A is nonsingular, then it can
be reduced by elementary row operations to the identity matrix I. We have
|I| = 1 and, if we perform the same row operations on the determinant |A|,
then in each step the determinant either remains unchanged or we can take
out a nonzero factor. Hence |A| = c|I| = c for some nonzero scalar c. �

There exists another useful relation between matrices and their determi-
nants.
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Theorem 6.1.9. (The Determinant of a Product Equals the Product
of the Determinants). If A and B are square matrices of the same size,
then |AB| = |A||B|.
Proof. If we write C = AB and c1, c2, . . . , cn for the columns of C, then we
can express C in terms of the columns of B as

C = (Ab1 Ab2 · · · Abn) (6.40)

and each ck = Abk here can also be written as a linear combination of the
columns of A, that is, as

ck =
∑

i

bikai. (6.41)

Then we can write the determinant of the ci vectors as

|c1 c2 · · · cn| =

∣∣∣∣∣∣
∑

i

bi1ai

∑
j

bj2aj · · ·
∑

z

bznaz

∣∣∣∣∣∣
=
∑

i,j,...,z

bi1bj2 · · · bzn|ai aj · · · az|. (6.42)

The determinants on the right can be evaluated in much the same way as
those of the standard vectors in Theorem 6.1.3; that is, whenever two of
the subscripts are the same, the determinant of the ai vectors vanishes, and
otherwise it reduces to ±|A|, with the sign given by ε(P ), where P stands for
the permutation (i, j, . . . , z) of (1, 2, . . . , n). This reduction results in

|C| =
∑
P

ε(P )bi1bj2 · · · bzn|a1 a2 · · · an| = |A||B|. (6.43)

�

An immediate consequence of this theorem is the following result, whose
proof is left as Exercise 6.1.9.

Corollary 6.1.2. (The Determinant of A−1 Equals the Reciprocal of
the Determinant of A). If A is an invertible matrix, then

|A−1| =
1

|A| .

Exercises

In the first four exercises evaluate the determinants by row reduction.

Exercise 6.1.1. D =

∣∣∣∣∣∣
2 − 3 2
1 4 0
0 1 − 5

∣∣∣∣∣∣ .
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Exercise 6.1.2. D =

∣∣∣∣∣∣
0 1 2
4 0 3
3 2 1

∣∣∣∣∣∣ .

Exercise 6.1.3. D =

∣∣∣∣∣∣∣∣
−1 1 2 3

2 0 − 5 0
0 0 0 − 1
3 − 3 1 4

∣∣∣∣∣∣∣∣
.

Exercise 6.1.4. D =

∣∣∣∣∣∣∣∣
−1 −2 2 1

0 0 − 1 0
0 0 1 − 1
1 − 1 1 −1

∣∣∣∣∣∣∣∣
.

Exercise 6.1.5. Prove that in the trivial case of n = 1, Axiom 2 of
Definition 6.1.1 does not apply, and the other properties give det(A) =
det(a11) = a11.

Exercise 6.1.6. Use Definition 6.1.1 directly to prove that for every n × n
matrix A and every scalar c we have det(cA) = cn det(A).

Exercise 6.1.7. Show that the result of Theorem 6.1.7 holds for lower tri-
angular matrices as well, that is, that∣∣∣∣∣∣

a11 0 0
a21 a22 0
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33

and similar relations hold for every n.

Exercise 6.1.8. Is the analog of Theorem 6.1.7 true for matrices lower tri-
angular with respect to the secondary diagonal, that is, does∣∣∣∣∣∣

0 0 a13
0 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = −a13a22a31

hold, and similar relations for n 	= 3? Prove your result!

Exercise 6.1.9. Prove Corollary 6.1.2.

Exercise 6.1.10. Show that if A and B are similar matrices, then det(A) =
det(B).

Exercise 6.1.11. Use Theorems 6.1.8 and 6.1.9 to show that for all n × n
matrices A and B the product AB is invertible if and only if both A and B are.

Exercise 6.1.12. A matrix A is called skew-symmetric if AT = −A. Show
that for every 3× 3 skew symmetric matrix det(A) = 0. Is this true for other
values of n?
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Exercise 6.1.13. Prove that for every orthogonal matrix Q we have
det(Q) = ±1.

Exercise 6.1.14. Show that for the Vandermonde determinant of order
three,∣∣∣∣∣∣

1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ = (b − a)(c − b)(c − a). (6.44)

Exercise 6.1.16. Show, using Theorem 6.1.8 and Equation 6.44, that the
monomials 1, x, x2 are linearly independent in the vector space P of all poly-
nomials over R. (Hint : Substitute three numbers a, b, c for x into the definition
of linear independence applied to these functions.)

MATLAB Exercises

In MATLAB the determinant of a matrix A is given by det(A). Note that
it is preferable to use rank(A) rather than det(A) to determine whether A
is singular or not, because MATLAB’s computation of the latter is more
affected by roundoff errors.

Exercise 6.1.17. Let A = round(10 ∗ rand(5)) and x = round(10 ∗
rand(5, 1)).
a. Create a matrix B by entering B = A; B(:, 4) = x. What does this do?
b. Create matrices as above, in which the third column of A is replaced by
multiples of random vectors and use these to illustrate the linear dependence
of the det function on the third column.
c. Is det(A) + det(B) equal to det(A + B) in general, when A and B are the
same size? Experiment with random matrices. Explain.
d. Let A be as above and compute B = A; B(:, 4) = B(:, 4) + 3 ∗ B(:, 1).
Compare det(A) and det(B). Explain.

Exercise 6.1.18. Enter the following program and explain what it does:
x = 1 : 6
y = randperm(6)
A = vander(x)′

B = vander(y)′

P = B\A
det(P )

Exercise 6.1.19. The following program achieves the same result as the one
above but in a much more efficient way. Enter it and explain what it does:

Exercise 6.1.15. Generalize the result of the previous exercise to n > 3
and prove your formula.
*
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n = 6,
x = randperm(n),
I = eye(n),
P = I,
for i = 1 : n
P (i, :) = I(x(i), :)
end
det(P )

6.2 Further Properties of Determinants

Frequently determinants are evaluated by reduction formulas, called expan-
sions along a row or a column, in which an nth order determinant for every
n ≥ 2 is2 expressed in terms of certain determinants of order n−1. The latter
have special names.

Definition 6.2.1. (Minors and Cofactors). Given any n × n matrix A,
we define its ijth minor Mij as the determinant of the submatrix Sij ob-
tained from A by deleting the ith row and jth column. The quantity Aij =
(−1)i+jMij is called the cofactor of aij.

Before stating the general reduction theorem, let us examine the 3 × 3
case. Then

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a12a23

− a11a32a23 − a21a12a33 − a31a22a13. (6.45)

If we factor out the elements of the first column and apply the definition
of the 2 × 2 determinant, then we get

|A| = a11(a22a33−a32a23)−a21(a12a33−a32a13)+a31(a12a23−a22a13) (6.46)

and

|A | = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a21

∣∣∣∣a12 a13
a32 a33

∣∣∣∣+ a31

∣∣∣∣a12 a13
a22 a23

∣∣∣∣ . (6.47)

The determinants in this formula are the minors M11, M21, M31 respectively,
and the same determinants with the signs included (in this case it makes a
2 We shall assume throughout this section without further mention that n > 1

holds.
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difference only in the second term) are the corresponding cofactors. Equa-
tion 6.47 is the expansion of |A| along its first column. By factoring out the
elements of any other row or column we would obtain analogous expansions
with respect to those.

Theorem 6.2.1. (Evaluating Determinants by Cofactor Expansion).
The determinant of every n×n matrix A can, for any fixed i, be evaluated as

|A| = ai1Ai1 + ai2Ai2 + · · · + ainAin (6.48)

and also, for any fixed j, as

|A| = a1jA1j + a2jA2j + · · · + anjAnj . (6.49)

Proof. Let us consider the expansion along the jth column; that is, let us
start with the proof of the second formula. Write

∑
i aijei for aj in |A|,

|A| =
∣∣∣∣a1· · ·aj−1

∑
i

aijei aj+1· · ·an

∣∣∣∣ (6.50)

and by linearity rewrite this equation as

|A| =
∑

i

aij |a1· · ·aj−1 ei aj+1· · ·an|. (6.51)

We are going to show that the determinants in the sum on the right are
exactly the cofactors Aij . We write the determinant of the ith term with the
components of the column vectors as

|a1· · ·aj−1 ei aj+1· · ·an| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · 0 · · · a1n

a21 a22 · · · 0 · · · a2n

...
...

...
...

ai1 ai2 · · · 1 · · · ain

...
...

...
...

a31 a32 · · · 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.52)

By subtracting appropriate multiples of the jth column from the others, we
can change this determinant to

|a1· · ·aj−1 ei aj+1· · ·an| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · 0 · · · a1n

a21 a22 · · · 0 · · · a2n

...
...

...
...

0 0 · · · 1 · · · 0
...

...
...

...
a31 a32 · · · 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.53)
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where the 0’s and the 1 replace the original ith row and jth column. We can
move the ith row to the top with i − 1 transpositions and the jth column
to the left with j − 1 transpositions. Since each transposition multiplies the
determinant by −1, these moves result in

|a1· · ·aj−1 ei aj+1· · ·an| = (−1)i+j

∣∣∣∣ 1 0T

0 Sij

∣∣∣∣ , (6.54)

where Sij is the submatrix obtained from A by deleting the ith row and
jth column. The determinant on the right equals the minor Mij = det(Sij)
because reducing it to upper triangular form we can use the same elementary
row operations as we would on the corresponding rows of |Sij |, and we would
get the same multipliers factored out and the same products of the diagonal
elements. Thus

|a1· · ·aj−1 ei aj+1· · ·an| = (−1)i+j |Sij | = Aij . (6.55)

Substituting this expression into Equation 6.51 we obtain the Equation 6.49
of the theorem. Equation 6.48, that is, the expansion along any row, follows
from Equation 6.49 and Theorem 6.1.6. �

Before giving an example, let us remark that the signs (−1)i+j in the
definition of the cofactors alternate in a checkerboard-like pattern, as shown
in Table 6.1, and are usually taken from there rather than from the formula
(−1)i+j .

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + −
· · · · · · · · ·

Table 6.1. The signs of the minors

D =

∣∣∣∣∣∣∣∣
1 1 0 2
2 3 5 4
1 0 0 1
0 6 2 3

∣∣∣∣∣∣∣∣
(6.56)

using Theorem 6.2.1.
Since the third row and the third column have the most zeros, it is simplest

to expand along one of those. Let us choose the third row. Then we get

Example 6.2.1. (Evaluating a Determinant by Cofactor Expansion).
Evaluate the determinant
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D = 1 ·
∣∣∣∣∣∣
1 0 2
3 5 4
6 2 3

∣∣∣∣∣∣− 1 ·
∣∣∣∣∣∣
1 1 0
2 3 5
0 6 2

∣∣∣∣∣∣ . (6.57)

The 3×3 determinants here can be expanded similarly, along their first rows,
say. Thus we obtain

D = 1 ·
∣∣∣∣ 5 4
2 3

∣∣∣∣+ 2 ·
∣∣∣∣ 3 5
6 2

∣∣∣∣− 1 ·
∣∣∣∣ 3 5
6 2

∣∣∣∣+ 1 ·
∣∣∣∣ 2 5
0 2

∣∣∣∣ . (6.58)

Finally, this expression can be evaluated as

D = (5 · 3 − 2 · 4) + 2 · (3 · 2 − 6 · 5) − (3 · 2 − 6 · 5) + 2 · 2 = −13. (6.59)

�

We are now in a position to be able to state the solution of every n × n
system of linear equations in closed form using determinants.

Theorem 6.2.2. (Cramer’s Rule).3 Let A be a nonsingular n×n matrix.
The solution of Ax = b for any b ∈ Rn is given by

xi =
|a1· · ·ai−1 b ai+1· · ·an|

|A| for i = 1, 2, . . . , n. (6.60)

Proof. Write the system to be solved in the form

x1a1 + x2a2 + · · · + xnan = b. (6.61)

Using each side of this equation to replace the ith column of the determinant
of the aj vectors, we get

|a1· · ·ai−1 x1a1 + x2a2 + · · · + xnan ai+1· · ·an|
= |a1· · ·ai−1 b ai+1· · ·an|. (6.62)

On the left, subtract from the ith column x1 times the first column, x2 times
the second column, and so on. This operation results in

|a1· · ·ai−1 xiai ai+1· · ·an| = |a1· · ·ai−1 b ai+1· · ·an|, (6.63)

which can be changed to

xi|a1· · ·ai−1 ai ai+1· · ·an| = |a1· · ·ai−1 b ai+1· · ·an|. (6.64)

Dividing by |A|, which is not zero by the assumed invertibility of A, we obtain
the formula of the theorem. Since we know that Ax = b has a unique solution
for every invertible A, it must be the one with these values of the xi. (A direct
check is left as Exercise 6.2.5.) �
3 Named after Gabriel Cramer (1704–1752).
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Note that in Equation 6.60 for xi, the matrix in the numerator on the
right is obtained from A by replacing its ith column by b.

In addition to Cramer’s rule for the solution of linear systems, there also
exists an explicit formula involving determinants for the inverse of a matrix.
However, before presenting it we state an interesting intermediate result that
we shall need in the proof.

Lemma 6.2.1. (Mismatched Rows or Columns in a Cofactor Ex-
pansion Yield Zero). For every n × n matrix A, if we add the elements of
one row (column) multiplied by the cofactors of another row (column), then
we get zero, that is,

ak1Aj1 + ak2Aj2 + · · · + akAjn = 0 for k 	= j (6.65)

and

a1kA1j + a2d2j
+ · · · + ankAnj = 0 for k 	= j. (6.66)

Proof. The proof of this lemma is similar to that of Theorem 6.2.1. Consider
the determinant of the matrix A with the jth column replaced by ak for some
k 	= j. Then, because two columns are equal, we have

|a1· · ·aj−1 ak aj+1· · ·an| = 0 (6.67)

and, expanding the ak vector that is in the jth place, we can write this
equation as∣∣∣∣a1· · ·aj−1

∑
i

aikei aj+1· · ·an

∣∣∣∣ = 0, (6.68)

which is equivalent to∑
i

aik|a1· · ·aj−1 ei aj+1· · ·an| = 0. (6.69)

Equation 6.55 tells us that the determinant in the ith term here is the cofactor
Aij . Thus we have∑

i

aikAij = 0, (6.70)

which is the same as Equation 6.66. Equation 6.65 then follows by Theo-
rem 6.1.6. �

In Equation 6.65 we have a dot product of the ith row of A with the
jth row of a matrix whose elements are the cofactors. We want to make use
of this fact in the next theorem, but we generally prefer to write such dot
products as products of a row by a column of a matrix, and so we define the
second matrix as follows.



240 6. Determinants

Definition 6.2.2. (Adjoint Matrix). The transposed matrix of the cofac-
tors of A is called the adjoint matrix of A and is written as

adj(A) = (Aij)T . (6.71)

Theorem 6.2.3. (A Formula for A−1). The inverse of an invertible ma-
trix A is given by

A−1 =
adj(A)

|A| . (6.72)

Proof. If we take the matrix product of A and adj(A) in this order, then
by Equation 6.65 the off-diagonal elements all vanish, and by Theorem 6.2.1
the diagonal elements are all equal to |A|. Thus |A| can be factored out, and
we get

A adj(A) = |A|I. (6.73)

This result implies the statement of the theorem. �

A =

⎡
⎣1 1 2

2 5 4
3 6 9

⎤
⎦ . (6.74)

From Example 6.1.4 we know that |A| = 9, and the minors are A11 =
5 · 9 − 6 · 4 = 21, A12 = −(2 · 9 − 3.4) = −6, A13 = 2 · 6 − 3 · 5 = −3, A21 =
−(1 · 9 − 6.2) = 3, A22 = 1 · 9 − 3 · 2 = 3, etc. Thus,

A−1 =
1
9

⎡
⎣ 21 3 − 6

−6 3 0
−3 − 3 3

⎤
⎦ . (6.75)

�

There remains only one property of determinants to discuss: the one that
we used to motivate their definition at the beginning of the previous section,
namely their relationship to areas and volumes. The only problem that we
need to clear up is how the nonnegativity of the latter can be reconciled with
the linearity of determinants. We are going to show in a somewhat indirect
way that the area of the parallelogram spanned by the vectors a1 and a2
in R2 is given by | det(a1,a2)|.

The area properties that we use will be based in part on the introductory
discussion in Section 6.1, but instead of the linearity property we employ the
first property of Theorem 6.1.5, that is, the equation

|a1,a2| = |a1,a2 + λa1|. (6.76)

Example 6.2.2. (Evaluating the Inverse of aMatrix,Using theAdjoint).
us use Theorem 6.2.3 to find the inverse ofLet



6.2 Further Properties of Determinants 241

That a corresponding equation is valid for areas spanned by any vectors
a1 and a2 in R2 and every real λ can be seen from Figure 6.4, where the area
of the shaded parallelogram equals the area of the one spanned by a1 and a2.
Thus we define the notion of an area function as follows.

a1

a2

a1

a2 + a1

Fig. 6.4. The area of a parallelogram does not change if a2 is replaced by a2 +λa1

Definition 6.2.3. (Area Function). An area function on R2 is a func-
tion F that assigns to every pair of vectors a1 and a2 in R2 a number
F (a1,a2), such that

F (a1,a2) = F (a1,a2 + λa1) = F (a1 + λa2,a2), (6.77)

F (a1, λa2) = F (λa1,a2) = |λ|F (a1,a2), (6.78)

F (a1,a2) = F (a2,a1) (6.79)

and

F (e1, e2) = 1 (6.80)

for every real λ.

It is clear that |det | is an area function, and the next theorem shows that
it is the only one.

Theorem 6.2.4. (| det | Is the Only Area Function). The only function
on R2 with the properties above is the absolute value of the determinant.

Proof. Assume that F is an area function on R2. Then first we see that
F (a1,0) = 0, since by Equation 6.78 we have

F (a1,0) = F (a1, 00) = 0F (a1,0) = 0. (6.81)

In this case det(a1,0) = 0 holds, too, and so, for a2 = 0, F is the same as
| det |.
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If, on the other hand, a2 	= 0, then, writing a1 = a11e1 + a21e2 and
a2 = a12e1 + a22e2, and assuming a22 	= 0, we can reduce F (a1,a2) as
follows:

F (a1,a2) = F

(
a1 − a21

a22
a2,a2

)
= F

((
a11 − a21

a22
a12

)
e1,a2

)

= F

( |A|
a22

e1,a2

)
=
∣∣∣∣ |A|
a22

∣∣∣∣F (e1,a2) =
∣∣∣∣ |A|
a22

∣∣∣∣F (e1,a2 − a12e1)

=
∣∣∣∣ |A|
a22

∣∣∣∣F (e1, a22e2) = | det(A)|F (e1, e2) = | det(A)|. (6.82)

Thus F is the same as | det | in this case as well.
In the remaining case of a2 	= 0 and a22 = 0, we must have a12 	= 0, and

we may proceed similarly as above, but use a12 as we used a22 before. �

Theorem 6.2.4 does not explain the geometric significance of the sign of
the determinant. What we have is that det(a1,a2) is positive if a1 followed
by a2 indicates a counterclockwise traversal of the parallelogram spanned by
a1 and a2, and is negative otherwise. We do not prove this fact here.

In three dimensions we could define a volume function for parallelepipeds
by properties similar to those in Definition 6.2.3 and prove the theorem,
analogous to the last one, that the only volume function is the absolute value
of the third order determinant. Since all this work would be very much like
the discussion above, only more involved, we do not present it. Furthermore,
the sign of det(a1,a2,a3) is positive if a1,a2,a3 form a right-handed triple
in this order, and negative otherwise. Again, this result will not be discussed
here any further.

Exercises

In the first four exercises evaluate the determinants of the corresponding
exercises of the previous section by expansion along any row or column.

Exercise 6.2.1. D =

∣∣∣∣∣∣
2 − 3 2
1 4 0
0 1 − 5

∣∣∣∣∣∣ .

Exercise 6.2.2. D =

∣∣∣∣∣∣
0 1 2
4 0 3
3 2 1

∣∣∣∣∣∣ .

Exercise 6.2.3. D =

∣∣∣∣∣∣∣∣
−1 1 2 3

2 0 − 5 0
0 0 0 − 1
3 − 3 1 4

∣∣∣∣∣∣∣∣
.
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Exercise 6.2.4. D =

∣∣∣∣∣∣∣∣
−1 −2 2 1

0 0 − 1 0
0 0 1 − 1
1 − 1 1 −1

∣∣∣∣∣∣∣∣
.

Exercise 6.2.5. Check Cramer’s rule by direct substitution from Equa-
tion 6.60 into Equation 6.61.

In the next three exercises solve Ax = b by Cramer’s rule with the given
data, if possible.

Exercise 6.2.6.

A =
[

1 3
2 1

]
and b =

[−1
3

]
.

Exercise 6.2.7.

A =

⎡
⎣1 1 2

2 0 4
0 3 1

⎤
⎦ and b =

⎡
⎣1

2
3

⎤
⎦ .

Exercise 6.2.8.

A =

⎡
⎢⎢⎣

1 1 2 2
2 0 4 1
1 3 4 0
0 3 1 1

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

1
0
4
3

⎤
⎥⎥⎦ .

Exercise 6.2.9. Use Theorem 6.2.3 to find the inverse of the matrix A in
Exercise 6.2.6.

Exercise 6.2.10. Use Theorem 6.2.3 to find the inverse of the matrix A in
Exercise 6.2.7.

Exercise 6.2.11. Show that for every invertible n × n matrix A we have

det(adj(A)) = (det(A))n−1. (6.83)

Exercise 6.2.12. Show that for every invertible n × n matrix A the matrix
adj(A) is also invertible and satisfies

(adj(A))−1 = adj(A−1). (6.84)

Exercise 6.2.13. Show that in the plane the area of the triangle with ver-
tices (a1, a2), (b1, b2), (c1, c2) is given by the absolute value of

1
2

∣∣∣∣∣∣
a1 a2 1
b1 b2 1
c1 c2 1

∣∣∣∣∣∣ . (6.85)
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Exercise 6.2.14. Show that in the plane an equation of the line through
the points (x1, y1), (x2, y2) is given by∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0. (6.86)

Exercise 6.2.15. Show that in the plane an equation of the form y = ax2 +
bx + c for the parabola through the distinct points (x1, y1), (x2, y2), (x3, y3)
is equivalent to∣∣∣∣∣∣∣∣

y x2 x 1
y1 x2

1 x1 1
y2 x2

2 x2 1
y3 x2

3 x3 1

∣∣∣∣∣∣∣∣
= 0. (6.87)

Exercise 6.2.16. Show that in the plane an equation of the form x2 + y2 +
ax + by + c = 0 for a circle through the noncollinear points (x1, y1), (x2, y2),
(x3, y3) is equivalent to∣∣∣∣∣∣∣∣

x2+ y2 x y 1
x2

1+ y2
1 x1 y1 1

x2
2+ y2

2 x2 y2 1
x2

3+ y2
3 x3 y3 1

∣∣∣∣∣∣∣∣
= 0. (6.88)

Exercise 6.2.17. Use the result of the previous exercise to find an equation
of the circle through the points (0, 0), (2, −1), (4, 0) and find its center and
radius as well.

1
6

∣∣∣∣∣∣∣∣
a1 a2 a3 1
b1 b2 b3 1
c1 c2 c3 1
d1 d2 d3 1

∣∣∣∣∣∣∣∣
. (6.89)

Exercise 6.2.19. Show that in R3 an equation of the plane through the
points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) is given by∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣
= 0.

Exercise 6.2.20. Show that if T : R2 → R2 is a linear transformation, then
it maps the unit square to a parallelogram of area | det([T ])|.

Exercise 6.2.18. Show that the volume of a tetrahedron with vertices
(a1, a2, a3), (b1, b2, b3), (c1, c2, c3), (d1, d2, d3) is given by the absolute value of
*
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6.3 The Cross Product of Vectors in R3

Consider two arbitrary vectors u and v in R3. Project the corresponding
parallelogram onto the coordinate planes and define a vector u × v with
components equal to the areas of these projections with appropriate signs.
(See Figure 6.5 for noncollinear u and v. If they are collinear, the areas are
zero and u × v = 0.) The formal definition is given below. As we shall see
shortly, this definition makes u × v perpendicular to both u and v and its
length equal to the area of the parallelogram spanned by u and v. We could
define u × v geometrically, using this property, but it is easier to define it in
terms of the components.

u×v

u

v

x

y

z

Fig. 6.5. Projecting a parallelogram onto the coordinate planes

Definition 6.3.1. (Cross Product). We define the vector product or cross
product for all vectors u and v of R3 as the vector of R3 given by

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k. (6.90)

This equation is usually abbreviated as

u × v =

∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ . (6.91)

This construction works only in three dimensions, because in other di-
mensions the number of coordinate planes is different from the number of
coordinate axes. In four dimensions, for example, we have six coordinate
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planes. (Why?) But, since our world is three dimensional, this is a very im-
portant special case. Also, in this context it is customary to write i, j,k for
the standard vectors rather than e1, e2, e3.

Example 6.3.1. The cross product of u = (1, 2, 3)T and v = (4, 5, 6)T is
given by

u × v =

∣∣∣∣∣∣
i j k
1 2 3
4 5 6

∣∣∣∣∣∣
= (2 · 6 − 3 · 5)i − (1 · 6 − 3 · 4)j + (1 · 5 − 2 · 4)k = −3i + 6j − 3k,

(6.92)

where the determinant is evaluated by using the formal cofactor expansion
along the first row. �

Example 6.3.2. (Evaluating a Cross Product). The cross products of the

i = (1, 0, 0)T and j = (0, 1, 0)T , we have

i × j =

∣∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣∣ = k. (6.93)

Similarly,

i × j = −j × i = k, j × k = −k × j = i, k × i = −i × k = j, (6.94)

and

i × i = j × j = k × k = 0. (6.95)

�

In the following theorem we list the most useful properties of the cross
product.

Theorem 6.3.1. (Properties of the Cross Product). For all vectors
u, v, of R3 and every scalar c we have

1. (cu) × v = u × (cv) = c(u × v),
2. v × u = −u × v,
3. u × u = 0,
4. u · (u × v) = 0 and v · (u × v) = 0,
5. u, v, and u × v, in this order, form a right-handed triple,
6. u × (v + w) = u × v + u × w,
7. (u + v) × w = u × w + v × w,
8. |u × v|2 = |u|2|v|2 − (u · v)2,

w

standard vectors can easily be computed from the definition. For instance, since
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9. |u × v| = |u||v| sin θ, where θ ∈ [0, π] denotes the angle between u and v,
and the right-hand side gives the area of the parallelogram spanned by
u and v,

10. u × v = 0 if and only if u and v are linearly dependent,
11. u · (v × w) = v · (w × u) = w · (u × v) = det(u,v,w),
12. (u × v) × w = (u · w)v − (v · w)u,
13. u × (v × w) = (u · w)v − (u · v)w.

Proof. Statements 1, 2, and 3 follow by straightforward substitution from
Definition 6.3.1. Notice that Statement 2 says that the cross product is not
commutative but, as we say, anticommutative. Furthermore, Statement 3 cou-
pled with Statement 1 for v = u says that the cross product of collinear
vectors is zero, as mentioned earlier.

The first part of Statement 4 can be proved as follows: From Equation
6.90 we have

u · (u × v) = (u2v3 − u3v2)u · i − (u1v3 − u3v1)u · j + (u1v2 − u2v1)u · k
= (u2v3 − u3v2)u1 − (u1v3 − u3v1)u2 + (u1v2 − u2v1)u3

=

∣∣∣∣∣∣
u1 u2 u3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = 0. (6.96)

The second part of Statement 4 can be established similarly. Geometri-
cally these two equations mean that the cross product is orthogonal to its
factors. This is a very important property of the cross product, which makes
it useful in many applications.

Statement 5 is true for the standard vectors, as can be seen from the
formulas of Example 6.3.2. For other vectors it could be proved by rotating
and stretching or shrinking them into the standard vectors, because these
operations do not change the “handedness” of a triple. We omit the details.

Statements 6 and 7 follow again by straightforward substitution from
Definition 6.3.1.

Statement 8 can be proved as follows:

|u × v|2 =
∑
i<j

(uivj − ujvi)2

=
1
2

∑
i 	=j

(uivj − ujvi)2 =
1
2

3∑
i,j=1

(uivj − ujvi)2

=
1
2

3∑
i,j=1

[(uivj)2 − 2uivjujvi + (ujvi)2]

=
1
2

∑
u2

i

∑
v2

j −
∑

uivi

∑
ujvj +

1
2

∑
u2

j

∑
v2

i

= |u|2|v|2 − (u · v)2. (6.97)
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Statement 9 follows from Statement 8, because

|u|2|v|2 − (u · v)2 = |u|2|v|2 − (|u||v| cos θ)2 = (|u||v| sin θ)2 (6.98)

and, both |u × v| and |u||v| sin θ being nonnegative, we can take square roots
in Equations 6.97 and 6.98. The expression |u||v| sin θ gives the area of the
parallelogram spanned by u and v since, as Figure 6.6 shows, |u| is the
parallelogram’s base length and |v| sin θ its height.

|v|sin
v

u
Fig. 6.6. Finding the area of a triangle

The “if” part of Statement 10 follows from the fact that two vectors are
linearly dependent if and only if they are collinear (the zero vector is collinear
with every vector by definition), and for collinear vectors we already know
that the cross product is zero. The “only if” part follows from Statement 9,
since if u and v are not collinear, then none of the factors in |u||v| sin θ is
zero, and so |u × v| 	= 0.

The proof of Statement 11 is similar to Equation 6.96 above. We leave
this for Exercise 6.3.4.

Statements 12 and 13 could be proved simply by writing out each expres-
sion in terms of the components ui, vi, wi, but we gain a little more insight
if we proceed as follows. First, if u and v are linearly dependent, then both
sides of Statement 12 are 0. Otherwise, u × v being orthogonal to u and v,
all vectors orthogonal to u × v must lie in the plane of u and v, that is, must
be linear combinations of u and v. Now, (u×v)×w is orthogonal to u × v,
and so it must satisfy

(u × v) × w = au + bv (6.99)

for some scalars a and b. Taking the dot product of both sides with w, and
considering that the left side is orthogonal to it, we obtain

a(u · w) + b(v · w) = 0. (6.100)

The solutions of this equation for the unknown a and b can be written in the
form

a = c(v · w) and b = −c(u · w) (6.101)
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with still another scalar c to be determined. Substituting these values into
Equation 6.99, we get

(u × v) × w = c(v · w)u − c(u · w)v. (6.102)

Since both sides are homogeneous linear expressions of the ui, vi, wi compo-
nents and this is an identity, which must hold for every choice of the vectors u,
v, w, the scalar c must be independent of this choice. Thus we can evaluate
it conveniently by setting u = w = i and v = j in Equation 6.102. This
substitution leads to c = −1, which proves Statement 12. Statement 13 could
be proved similarly.

Incidentally, Statements 12 and 13 show that the cross product is not
associative. �

Let us now look at some applications of the cross product.

If we denote the position vector of a general point of S by p = (x, y, z)T

and the position vector of A by a, then the desired equation can be written
in general as

n · (p − a) = 0, (6.104)

and for this particular plane as

2(x − 1) − 4(y − 0) + 1(z − 2) = 0. (6.105)

�

In general, the parametric vector equation of a plane S was written on
page 32 (Equation 1.75) as

p = p0 + su + tv, (6.106)

where u and v denote two noncollinear vectors lying in S, p and p0 the posi-
tion vectors of a variable and a fixed point of S, and s and t two parameters.
Taking the dot product of both sides with the vector n = u × v, which is

Example 6.3.3. (Using the Cross Product for Finding an Equation of a
Plane). Find a nonparametric equation of the plane S through the three
points A = (1, 0, 2), B = (3, 1, 2), C = (2, 1, 4).

We can find a normal vector of S by taking the cross product of any two
independent vectors lying in it, say,

−−→
AB = (2, 1, 0)T and

−→
AC = (1, 1, 2)T .

Thus we may take

n =

∣∣∣∣∣∣
i j k
2 1 0
1 1 2

∣∣∣∣∣∣ = 2i − 4j + k. (6.103)
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orthogonal to u and v, we obtain the general nonparametric equation of a
plane as

n · p = n · p0. (6.107)

This is the simple way of eliminating s and t that we alluded to in footnote 6
in Chapter 1, on page 33.

Example 6.3.4.(Using the Cross Product for Finding a Vector Normal
a Triangle). Find a vector n normal to the triangle T with vertices A =

(0, −2, 2), B = (0, 2, 3), C = (2, 0, 2), and whose length equals the area of T .
We can find a normal vector of T by taking the cross product of any two of

its edge vectors, say,
−−→
AB = (0, 4, 1)T and

−→
AC = (2, 2, 0)T . Thus we may take

n =

∣∣∣∣∣∣
i j k
0 4 1
2 2 0

∣∣∣∣∣∣ = −2i + 2j − 8k. (6.108)

The area of T is given, according to Statement 9, by 1
2 |n|. Thus the normal

vector whose length equals the area of T is 1
2n, and

Area(T ) =
√

12 + 12 + 42 =
√

18. (6.109)

�

A vector normal to a plane figure S and having length equal to the area
of S, like the vector 1

2n above, is sometimes called an area vector of S.
The cross product has many applications in physics. We discuss just two

of them briefly.

Example 6.3.5. (Coriolis Force). Any object rotating relative to the universe
experiences some forces due to its inertia, that is, its tendency to move uni-
formly in a straight line. A well-known example is the centrifugal force push-
ing us outward in a turning car. If the object is moving relative to a rotating
frame of reference, then there is an additional such force acting on it, called
the Coriolis force, which is shown in physics to be given by a cross product:

F = 2mv × (6.110)

where m denotes the mass of the object, v its velocity vector relative to
the rotating frame, and the angular velocity vector of the frame’s rotation
relative to the universe. In the case of the Earth, is a vector parallel to
the Earth’s axis pointing from the South Pole to the North Pole and having
length 2π/(24 h). �

Note that the right-hand rule of Statement 5 of Theorem 6.3.1 reflects
an essential property of this force, in contrast to the geometrical examples
above, where it played no role.

ω

ω
ω

to
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The Coriolis force has powerful effects in meteorology. For example, the
hot climate near the equator makes the air rise, which then cools off and
descends at moderate latitudes. In Figure 6.7 the vector v represents the ve-
locity of this descending air somewhere in the middle of the northern hemi-
sphere, and the vector F is the Coriolis force, which, according to the right-
hand rule, points to the east. This is the reason for the prevailing westerly
winds there.

v

F

Fig. 6.7. The Coriolis force creates westerly winds in the northern hemisphere of
the Earth

Similarly, a hurricane starts around a region where the barometric pres-
sure is very low, and consequently the outside air starts moving towards it.
This movement creates a Coriolis force, which is perpendicular to this ra-
dial flow and starts the circulation of the hurricane. There are other forces
involved as well, and with the changed wind direction the direction of the
Coriolis force changes too, but it is still the major cause of the hurricane.
The right-hand rule shows that in the northern hemisphere the circulation
must be counterclockwise (we leave the explanation of this direction for Ex-
ercise 6.3.10).

F = qv × B. (6.111)

The effect of this force can be seen, for example, in cloud chamber pho-
tographs of the tracks of elementary particles. In a transverse magnetic field
this force changes the particles’ straight line paths to circles. This is also the
force that drives electric motors by acting on the electrons comprising the
current in the motor’s coils. �

Example 6.3.6. (Lorentz Force). Another instance of a cross product occurs
in the formula for the Lorentz force. This is the force exerted by a magnetic
field B on a particle with an electric charge q and moving with velocity v
relative to the field. It is given by
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Exercises

Exercise 6.3.1. Find the cross product of the vectors u = (1, −1, 0)T and
v = (1, 2, 0)T , and verify by elementary geometry that |u × v| equals the
area of the parallelogram spanned by u and v.

Exercise 6.3.2. Use the cross product to find an equation of the plane S
through the three points A = (1, −1, 2), B = (0, −1, 3), C = (3, 0, 2).

Exercise 6.3.3. Verify Statements 11, 12, and 13 of Theorem 6.3.1 for the
vectors u = (1, −1, 0)T , v = (1, 2, 0)T , and w = (1, 0, 3)T .

Exercise 6.3.4. Prove Statement 11 of Theorem 6.3.1.

Exercise 6.3.5. The expression u·(v × w) of Statement 11 of Theorem 6.3.1
is called the triple product of these vectors. Show geometrically that its ab-
solute value equals the volume of the parallelepiped spanned by the vectors
u, v, and w.

Exercise 6.3.6. Let n1, n2, n3, n4 denote the outward pointing area vec-
tors of a tetrahedron. Prove that their sum equals 0. (Hint : Let a1, . . . ,a6
denote the edge vectors, write each area vector as a cross product of these,
and apply the appropriate properties from Theorem 6.3.1 to the sum.)

Exercise 6.3.7. Prove that for all vectors a, b, c, d of R3 we have

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c). (6.112)

Exercise 6.3.8. Prove that for all vectors a, b, c, d of R3 we have

(a × b) × (c × d) = [ det (a, c,d)]b − [ det (b, c,d)]a (6.113)

and

(a × b) × (c × d) = [ det (a,b,d)]c − [ det (a,b, c)]d. (6.114)

Exercise 6.3.9. Let a be any fixed nonzero vector of R3. Define the trans-
formation T : R3 → R3 by T (x) = a × x.

a. Show that T is linear.
b. Find the matrix [T ] that represents T relative to the standard basis.
c. Find the null space of the matrix [T ], and describe it geometrically.
d. What is the rank of [T ]?

Exercise 6.3.10. Explain, using Equation 6.110, why in the northern hemi-
sphere the circulation of hurricanes must be counterclockwise. What is it in
the southern hemisphere and why?

*

*

*



7. Eigenvalues and Eigenvectors

7.1 Eigenvalues and Eigenvectors, Basic Properties

In this chapter we study another major branch of linear algebra, very different
from what we have seen so far. The problems in this area arise in many ap-
plications in physics, economics, statistics, and other fields. The main reason
for this phenomenon can be explained roughly as follows.

Frequently the states of a physical system can be described by an
n-dimensional vector x and the latter’s change in time by an n×n matrix A,
so that the state of the system at some later time will be given by the vector
y = Ax. Often such changes are described by differential equations, that is,
the vector x is an unknown differentiable vector function of time satisfying
an equation of the form x′ = Ax. Such differential equations also lead to the
same basic situation that we want to explain for the simpler case of y = Ax.

Consider the two-dimensional case, for which we can express y = Ax as
the pair of scalar equations

y1 = a11x1 + a12x2 (7.1)

and

y2 = a21x1 + a22x2. (7.2)

As these equations show, generally the matrix A mixes up the components
of x and, over many such time steps (especially in higher-dimensional cases),
this mixing can be quite involved. The question we ask, therefore, is whether
it is possible to find a new basis {s1, s2} for R2 in which such mixing does
not occur, that is, in which the components are decoupled and develop sep-
arately as

yS1 = λ1xS1 (7.3)

and

yS2 = λ2xS2, (7.4)

where λ1 and λ2 are appropriate scalars depending on the matrix A. The
answer is frequently yes, and it leads to greatly simplified computations when
many such steps follow each other. Let us illustrate this decoupling with an
example.
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A =
[

1/2 3/2
3/2 1/2

]
(7.5)

and its action on an arbitrary vector x. Let s1 = 1√
2
(1, 1)T and s2 =

1√
2
(−1, 1)T . Then

As1 =
1√
2

[
1/2 3/2
3/2 1/2

] [
1
1

]
=

1√
2

[
2
2

]
= 2s1 (7.6)

and

As2 =
1√
2

[
1/2 3/2
3/2 1/2

] [−1
1

]
=

1√
2

[
1

−1

]
= −s2. (7.7)

So if we write x and y = Ax in terms of the basis {s1, s2} as

x = xS1s1 + xS2s2 and y = yS1s1 + yS2s2, (7.8)

then we get

y = Ax = xS1As1 + xS2As2 = 2xS1s1 − xS2s2, (7.9)

and from this

yS1 = 2xS1 (7.10)

and

yS2 = −xS2. (7.11)

Thus the action of A on the S-components of x is simple multiplication (see
Figure 7.1), while in the standard basis it would involve linear combinations.
Similarly, the S-components of A2x would be 22xS1 and (−1)2xS1, and so on
for higher powers; much simpler expressions than those used in the standard
basis. �

In general, how can we find a basis such as the one in the example above?
We must find nontrivial {s1, s2} and corresponding λ1 and λ2 such that

As1 = λ1s1 and As2 = λ2s2. (7.12)

Indeed, in that case, substituting

x = xS1s1 + xS2s2 and y = yS1s1 + yS2s2 (7.13)

Example 7.1.1. (A Decoupling of Coordinates in the Action of a
Matrix). Consider the matrix
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s2 s1
j

i

y = Ax
x

xS2

xS1

yS1

yS2

Fig. 7.1. The action of the matrix A in a new basis is multiplication by a scalar
for each component

into the equation y = Ax, we get

yS1s1 + yS2s2 = A(xS1s1 + xS2s2)
= xS1As1 + xS2As2 = xS1λ1s1 + xS2λ2s2, (7.14)

from which it follows that

yS1 = λ1xS1 (7.15)

and

yS2 = λ2xS2. (7.16)

We shall see more detailed examples later. For now, we just want to base
our fundamental definition on Equations 7.12, which lie at the heart of this
whole theory.

Definition 7.1.1. (Eigenvalues and Eigenvectors). For any n × n ma-
trix A, a scalar λ is called an eigenvalue of A if there is a nonzero vector s
such that

As = λs. (7.17)

Such a vector s is called an eigenvector of A corresponding, or belonging, to
λ. Furthermore, for every eigenvalue λ the zero vector is always a solution
of Equation 7.17, and is called the trivial eigenvector of A belonging to λ.

The word eigen is German for “own” and was adopted into English, al-
though some authors use proper value and proper vector or characteristic
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value and characteristic vector instead. The Greek letter lambda is tradi-
tional in this context.

Geometrically, Equation 7.17 expresses the fact that an eigenvector of
a matrix A is a nonzero vector whose direction is preserved by A, and the
corresponding eigenvalue is the multiplier by which the matrix scales this
eigenvector.

Definition 7.1.1 can be generalized to apply to linear transformations T :
V → V from any nontrivial vector space to itself, which is important in
infinite-dimensional cases. The matrix definition is a special case of this more
general one.

So how do we solve Equation 7.17? The usual procedure is the following:
We rewrite it as

(A−λI) s = 0, (7.18)

since in this form we have an equation closely resembling the familiar As = 0,
except that the matrix A is replaced by the matrix A−λI . Recall that
a homogeneous equation has nontrivial solutions if and only if its matrix
is singular. By Theorem 6.1.8, for Equation7.18, this condition is equivalent to

det (A−λI) = 0. (7.19)

This is an equation for the unknown λ and is called the characteristic equa-
tion of the matrix A. The left side of the equation is called the characteristic
polynomial of A. Equation 7.19 does not contain the unknown vector s and
is therefore used to find the eigenvalues.1 For an n × n matrix it is an al-
gebraic equation of degree n. Once a value of λ is known, we substitute it
into Equation 7.18, and solve the latter for s by Gaussian elimination. The
solution set of Equation 7.18 for a given λ is Null (A−λI) , and is called the
eigenspace of A belonging to λ.

Example 7.1.2. (A 2 × 2 Matrix with Two Eigenvalues and Two
Dimensional Eigenspaces). Find the eigenvalues and eigenvectors of

A =
[

1 2
2 1

]
. (7.20)

The corresponding characteristic equation is

|A − λI| = det
([

1 2
2 1

]
− λ

[
1 0
0 1

])
=

∣∣∣∣ 1 − λ 2
2 1 − λ

∣∣∣∣ = 0. (7.21)

Expanding the determinant, we get

(1 − λ)2 − 22 = 0, (7.22)
1 While of paramount theoretical importance, for large values of n this method is

hopelessly inefficient. There exist fast, approximate methods for finding eigen-
values; we shall discuss some of them in Chapter 8.

One-
×



7.1 Eigenvalues and Eigenvectors, Basic Properties 257

(1 − λ − 2)(1 − λ + 2) = 0, (7.23)

or

(λ + 1)(λ − 3) = 0. (7.24)

Thus the eigenvalues are λ1 = −1 and λ2 = 3.
To find the eigenvectors we substitute these eigenvalues, one at a time,

into Equation 7.18, and solve for the unknown vector s. Let us start with
λ1 = −1. Then Equation 7.18 becomes[

1 − (−1) 2
2 1 − (−1)

]
s =
[

2 2
2 2

]
s = 0. (7.25)

The solutions of this equation are of the form s = s(1, −1)T . Thus the
eigenvectors belonging to the eigenvalue λ1 = −1 form a one-dimensional
subspace with basis vector s1 = (1, −1)T .

Substituting λ2 = 3 into Equation 7.18 we obtain[
1 − 3 2

2 1 − 3

]
s =
[−2 2

2 −2

]
s = 0. (7.26)

The solutions of this equation are all the multiples of s2 = (1, 1)T . �
In the example above we had two one-dimensional eigenspaces, but in

others they can be of higher dimensions as in the following example.

A =

⎡
⎣3 0 1

0 3 0
0 0 1

⎤
⎦ . (7.27)

The corresponding characteristic equation is

|A − λI| =

∣∣∣∣∣∣
3 − λ 0 1

0 3 − λ 0
0 0 1 − λ

∣∣∣∣∣∣ = 0. (7.28)

Expanding the determinant, we get

(λ − 1)(λ − 3)2 = 0. (7.29)

The solutions are λ1 = 1 and λ2 = 3. Since λ − 3 occurs squared in Equa-
tion 7.29, we call λ2 = 3 a double eigenvalue and we say that its (algebraic)
multiplicity is 2.

Example 7.1.3. (A 3×3 Matrix with Two Eigenvalues and a One-
Dimensional and a Two-Dimensional Eigenspace). Find the eigen-
values and eigenvectors of
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Substituting λ1 = 1 into Equation 7.18, we obtain⎡
⎣3 − 1 0 1

0 3 − 1 0
0 0 1 − 1

⎤
⎦ s =

⎡
⎣2 0 1

0 2 0
0 0 0

⎤
⎦ s = 0. (7.30)

The solutions of this equation are all the multiples of s1 = (−1, 0, 2)T .
Substituting λ2 = 3 into Equation 7.18, we obtain⎡
⎣3 − 3 0 1

0 3 − 3 0
0 0 1 − 3

⎤
⎦ s =

⎡
⎣0 0 1

0 0 0
0 0 −2

⎤
⎦ s = 0. (7.31)

The solutions of this equation are all the linear combinations of s2 = (1, 0, 0)T

and s3 = (0, 1, 0)T , which thus form a two-dimensional eigenspace. �
As we have seen, for an n × n matrix the characteristic equation is of

degree n, and as such, according to a theorem known as the Fundamental
Theorem of Algebra, it always has n roots, provided we count multiplicities
and allow complex numbers. Hence, in principle at least, the characteristic
equation can be reformulated as

(λ − λ1)k1(λ − λ2)k2 · · · (λ − λr)kr = 0, (7.32)

where r is the number of distinct roots, ki is the algebraic multiplicity of the
root λi, and

k1 + k2 + · · · + kr = n. (7.33)

The case of complex solutions is very important in many applications—for
instance, rotation matrices have complex eigenvalues—and we shall discuss
this case in Section 7.3. Also, the solution of higher degree equations is gen-
erally very difficult, and for n > 4 it cannot even be done in a finite number
of algebraic steps except in some special cases. We want to avoid such dif-
ficulties and shall only consider examples in which the factorization of the
characteristic polynomial is easy.

The foregoing examples seem to suggest that not only do we always have
n eigenvalues, but that the sum of the dimensions of the eigenspaces is n.
Unfortunately, this is not true in general, as the next example shows.

A =
[

4 1
−1 2

]
. (7.34)

Example7.1.4. (A Defective 2×2 Matrix with an Algebraically Double
Find the eigenvaluesEigenvalue and a One-Dimensional Eigenspace).

and eigenvectors of

×
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The corresponding characteristic equation is

|A − λI| = det
([

4 1
−1 2

]
− λ

[
1 0
0 1

])
=
∣∣∣∣ 4 − λ 1

−1 2 − λ

∣∣∣∣ = 0. (7.35)

Expanding the determinant, we get

(4 − λ)(2 − λ) + 1 = 0, (7.36)

λ2 − 6λ + 9 = 0, (7.37)

and so

(λ − 3)2 = 0. (7.38)

The only solution of this equation is λ1 = 3, which is thus a double eigenvalue.
Substituting λ1 = 3 into Equation 7.18, we obtain[

4 − 3 1
−1 2 − 3

]
s =

[
1 1

−1 −1

]
s = 0.

The solutions of this equation are all the multiples of s1 = (1, −1)T , and
so the sole eigenspace is one dimensional, although n = 2. We say that the
matrix A is defective, and that the geometric multiplicity of λ1 is 1 while its
algebraic multiplicity is 2. �

In general there is no way to predict whether a matrix is defective or not.
We have to compute the eigenvalues and eigenvectors and see. However, there
are some important special cases in which we can be assured of a “full set”
of eigenvectors. We now discuss two of these.

Theorem 7.1.1. (If A Has n Distinct Eigenvalues, Then Each One
Has a One-Dimensional Eigenspace). If the n × n matrix A has n
eigenvalues of algebraic multiplicity 1 each, then there is a one-dimensional
eigenspace for each eigenvalue. If si is any nonzero eigenvector in the ith
eigenspace, for i = 1, 2, . . . , n, then the vectors s1, s2, . . . , sn are linearly in-
dependent and form a basis for Rn.

Proof. If λi is any eigenvalue of A, then by Definition 7.1.1 the equation

(A − λiI)si = 0 (7.39)

has a nontrivial solution si. Thus there is associated with each eigenvalue an
eigenspace of dimension at least 1.

To see that the si vectors are independent, let c1, c2, . . . , cn be scalars
such that

c1s1 + c2s2 + · · · + cnsn = 0. (7.40)
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Multiply both sides of this equation by A −λiI. Then, by Equation 7.39, the
ith term will be annihilated. If we then also multiply by A − λjI, then the
jth term will also go away, because

(A − λjI)(A − λiI)sj = A2 − λjA − λiA − λjλiI

= (A − λiI)(A − λjI)sj = (A − λiI)0 = 0. (7.41)

Continuing in this fashion, we can annihilate all terms of Equation 7.40 but
one. Say, we keep the kth term. Then we are left with

n∏
i=1,i 	=k

(A − λiI)cksk = 0. (7.42)

Using the fact that sk 	= 0 is an eigenvector of A corresponding to the eigen-
value λk, we have

(A−λiI)cksk = ck (Ask − λisk) = ck (λksk − λisk) = ck(λk −λi)sk. (7.43)

Successive application of this result to each factor in Equation 7.42 transforms
it into

ck

n∏
i=1,i 	=k

(λk − λi)sk = 0. (7.44)

The assumption that each eigenvalue has multiplicity one implies that λk −
λi 	= 0 for any i 	= k, and so ck = 0 must hold for every k. This proves the
independence of the sk vectors.

The only statement left to prove is that each eigenspace is one dimen-
sional. This follows from the fact that the n vectors sk, being independent,
form a basis for Rn. Consequently, if any eigenspace were of dimension greater
than one, then it would contain a second basis vector, which would also be
independent of the other eigenvectors, resulting in either n + 1 independent
vectors in Rn, or in overlapping eigenspaces. Both results are impossible,
because, by Exercise 3.4.13, in Rn, every set of more than n vectors is a de-
pendent set, and, by Exercise 7.1.19, no nonzero eigenvector can belong to
two different eigenvalues. �

If the matrix A is symmetric, we can say even more.

Theorem 7.1.2. (The Eigenspaces of a Symmetric Matrix Are Or-
thogonal to Each Other). Any two eigenvectors of a symmetric matrix
that correspond to different eigenvalues are orthogonal to each other.

Proof. Let s1 and s2 be two eigenvectors of the symmetric matrix A that
correspond to the eigenvalues λ1 and λ2 respectively, with λ1 	= λ2. Then
using the fact that sT

2 As1 is a scalar and that AT = A, we have
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sT
2 As1 = (sT

2 As1)T = sT
1 AT s2 = sT

1 As2 (7.45)

and hence

λ1sT
2 s1 = λ2sT

1 s2. (7.46)

Since sT
2 s1 = sT

1 s2 (each being just a different expression of the dot product),
and since λ1 	= λ2, Equation 7.46 implies that sT

2 s1 = 0, that is, that the
vectors s1 and s2 are orthogonal to each other. �

In Section 7.3 we are going to prove that for every n×n symmetric matrix
there actually exists an orthonormal set of eigenvectors spanning Rn.

Exercises

In the first eight exercises find all eigenvalues and associated eigenvectors for
the given matrices.

Exercise 7.1.1. A =
[

2 3
3 2

]
.

Exercise 7.1.2. A =
[

2 0
0 2

]
.

Exercise 7.1.3. A =
[

0 0
0 0

]
.

Exercise 7.1.4. A =
[

0 0
1 0

]
.

Exercise 7.1.5. A =

⎡
⎣2 0 1

0 2 0
1 0 2

⎤
⎦ .

Exercise 7.1.6. A =

⎡
⎣2 0 1

0 2 0
0 0 2

⎤
⎦ .

Exercise 7.1.7. A =

⎡
⎣ 1 0 − 1

−2 3 −1
−6 6 0

⎤
⎦ .

Exercise 7.1.8. A =

⎡
⎢⎢⎣

1 0 0 1
0 1 1 1
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦.
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Exercise 7.1.9. Can you find a relationship between the eigenvalues and
eigenvectors of a square matrix A and those of the matrix cA, where c is any
scalar?

Exercise 7.1.10. Can you find a relationship between the eigenvalues and
eigenvectors of a square matrix A and those of the matrix A + cI, where c is
any scalar?

Exercise 7.1.11. Prove that a square matrix is singular if and only if one
of its eigenvalues is zero.

Exercise 7.1.12. Prove that if s is an eigenvector of a matrix A, then it
is also an eigenvector of the matrix A2. How are the associated eigenvalues
related?

Exercise 7.1.13. Prove that if s is an eigenvector of a nonsingular matrix A,
then it is also an eigenvector of the matrix A−1. How are the associated
eigenvalues related?

Exercise 7.1.14. Show that every square matrix A and its transpose AT

have the same eigenvalues.

Exercise 7.1.15. Let u be any unit vector in Rn. Show that the matrix
A = uuT represents the projection onto the line of u and find its eigenvalues
and eigenspaces.

Exercise 7.1.16. Find the eigenvalues and eigenspaces of any projection
matrix P .

Exercise 7.1.17. A row vector sT is called a left eigenvector of a matrix A
belonging to the eigenvalue λ if the equation sT A = λsT holds. Show that sT

is a left eigenvector of a matrix A belonging to the eigenvalue λ if and only
if s is an eigenvector of AT belonging to the eigenvalue λ.

Exercise 7.1.18. Show that if u and v are eigenvectors belonging to differ-
ent eigenvalues of a matrix A and its transpose AT respectively, then they
are orthogonal to each other.

Exercise 7.1.19. Prove that no nonzero eigenvector can belong to two dif-
ferent eigenvalues.

MATLAB Exercises

The MATLAB command c = poly(A) returns the coefficients in descending
order of the characteristic polynomial of the matrix A, and the command
d = roots(c) returns the roots of this polynomial, that is, the eigenvalues of
the matrix A. In the following exercises use these and the command A\b to
solve the appropriate linear systems to find the eigenvalues and eigenvectors
of each matrix A. Also, compare these results to the solutions obtained by
using the MATLAB routine eig(A).

*
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Exercise 7.1.20. Let A be the matrix of Exercise 7.1.5.

Exercise 7.1.21. Let A be the matrix of Exercise 7.1.8.

Exercise 7.1.22. A = hilb(3).

Exercise 7.1.23. A = hilb(4).

Exercise 7.1.24. A = ones(3).

Exercise 7.1.25. A = ones(4).

Exercise 7.1.26. What conjectures can you make about the eigenvalues and
eigenvectors of matrices consisting of ones, on the basis of the last two exer-
cises? Can you prove these conjectures? (Notice that every such matrix is n
times a projection matrix.)

Exercise 7.1.27. A = hadamard(4).

Exercise 7.1.28. A = hadamard(8).

Exercise 7.1.29. Orthogonal matrices with all entries equal to ±1 are called
Hadamard matrices. What conjectures can you make about their eigenvalues
and eigenvectors on the basis of the last two exercises? Can you prove any of
them?

7.2 Diagonalization of Matrices

If an n × n matrix A has n linearly independent eigenvectors s1, s2, . . . , sn,
then we may use them as a basis for Rn. Writing S for the matrix with these
vectors as columns in the order indicated, that is, S = (s1 s2 . . . sn), we find

AS = (As1 As2 . . . Asn) = (λ1s1 λ2s2 . . . λnsn) = SΛ, (7.47)

where

Λ =

⎡
⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn

⎤
⎥⎥⎦ (7.48)

is the diagonal matrix whose diagonal entries are the eigenvalues correspond-
ing to the columns of S in the same order. Since the columns of S form a
basis for Rn, the matrix S must be invertible and, multiplying Equation 7.47
by S−1, we obtain

S−1AS = Λ. (7.49)
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Now the left side of this equation is, by Theorem 3.6.3 on page 156, the
matrix AS that represents A in the basis S. In the terminology of Section 3.6,
the matrices A and Λ are similar and Equation 7.49 specifies the similarity
transformation connecting them.

We call the above process the diagonalization of A, and S a diagonalizing
matrix for A. As is obvious from the foregoing discussion, the diagonalizing
matrix S for a given diagonalizable A is not unique: the eigenvectors may
be permuted, multiplied by arbitrary nonzero scalars, and linearly combined
within higher dimensional eigenspaces if there are any. However, this is all
the latitude we are permitted: the columns of every diagonalizing S must
be independent because we need S−1 and they must be eigenvectors of A.
Consequently, A is diagonalizable if and only if it has a full set of n linearly
independent eigenvectors. Note that this requirement places no restriction on
the multiplicities of the eigenvalues but, by Theorem 7.1.1, every matrix with
distinct eigenvalues is diagonalizable.

Equation 7.49 has the useful consequence that Ak and Λk, for every pos-
itive integer k, are related by the same similarity transformation as were A
and Λ:

Λk = S−1ASS−1AS · · · S−1AS = S−1AIAI · · · AS = S−1AkS. (7.50)

The powers of Λ are very easy to compute:

Λk =

⎡
⎢⎢⎣

λk
1 0 · · · 0

0 λk
2 · · · 0

· · ·
0 0 · · · λk

n

⎤
⎥⎥⎦ , (7.51)

and then Ak can be recovered as

Ak = SΛkS−1. (7.52)

Let us summarize the preceding discussion in a theorem.

Theorem 7.2.1. (Diagonalization). If an n × n matrix A has n linearly
independent eigenvectors, then, writing S for the matrix with these vectors
as columns, we find that A is similar with transition matrix S to a diagonal
matrix Λ, whose diagonal entries are the eigenvalues of A corresponding to
the columns of S. The same similarity transforms Ak to Λk for every positive
integer k.

As mentioned in the introduction of Section 7.1, the simplification result-
ing from the change to a basis of eigenvectors is the main reason for their
usefulness. In matrix form this simplification means that instead of multiply-
ing by the general matrix Ak, which is usually very difficult to compute, in
the new basis we multiply by the very simple matrix Λk. Let us now look at
a concrete example.
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originally settled by 100 people, all under fifty years old. We want to inves-
tigate how the age distribution changes over a long time between two age
groups: under fifty, and fifty or older. We must, of course, make some quan-
titative assumptions about the changes from one time period to the next. So
let us say that over any decade, on the one hand, there is a net increase of
10% in the under fifty population, and on the other hand, 20% of the under
fifty population becomes fifty or older, while 40% of the initial over fifty pop-
ulation dies. Denoting the number of people under fifty in the nth decade by
x1(n) and the number of those fifty or over by x2(n), for n = 0, 1, 2, . . . , we
can write the following equations:

x1(0) = 100, (7.53)

x2(0) = 0, (7.54)

x1(n + 1) = 1.1x1(n), (7.55)

x2(n + 1) = 0.2x1(n) + 0.6x2(n). (7.56)

In matrix form these equations become

x(0) =
[

100
0

]
(7.57)

and

x(n + 1) = Ax(n), (7.58)

where

A =
[

1.1 0
0.2 0.6

]
. (7.59)

Substituting n = 0, 1, 2, . . . into Equation 7.58, we find

x(1) = Ax(0), x(2) = Ax(1) = A2x(0), . . . (7.60)

and so

x(n) = Anx(0) (7.61)

for every positive integer n.
We want to diagonalize A to compute An here.
The characteristic equation for this A is

|A − λI| =
∣∣∣∣ 1.1 − λ 0

0.2 0.6 − λ

∣∣∣∣ = (1.1 − λ)(0.6 − λ) = 0. (7.62)

Example 7.2.1.(Population Growth). Let us assume that a certain town was
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The solutions are λ1 = 1.1 and λ2 = 0.6. The corresponding eigenvectors can
be found by substituting these values into (A − λI)s = 0:

(A − λ1I)s1 =
[

1.1 − 1.1 0
0.2 0.6 − 1.1

]
s1 =

[
0 0

0.2 −0.5

]
s1 = 0. (7.63)

A solution of this equation is s1 = (5, 2)T . For the other eigenvector we have
the equation

(A − λ2I)s2 =
[

1.1 − 0.6 0
0.2 0.6 − 0.6

]
s2 =

[
0.5 0
0.2 0

]
s2 = 0. (7.64)

A solution of this equation is s2 = (0, 1)T .
Thus

S =
[

5 0
2 1

]
, (7.65)

Λ =
[

1.1 0
0 0.6

]
, (7.66)

and

S−1 =
1
5

[
1 0

−2 5

]
. (7.67)

According to Corollary 3.6.1 on page 149, the coordinate vectors of each
x(n) for n = 0, 1, . . ., relative to the basis S, are given by

xS(0) = S−1x(0) =
1
5

[
1 0

−2 5

] [
100
0

]
=
[

20
−40

]
(7.68)

and

xS(n) = S−1x(n) = S−1Anx(0) = S−1AnSxS(0)

= ΛnxS(0) =
[

1.1n 0
0 0.6n

] [
20

−40

]
=
[

20 · 1.1n

−40 · 0.6n

]
. (7.69)

Hence the solution in the standard basis is given by

x(n) = SxS(n) =
[

5 0
2 1

] [
20 · 1.1n

−40 · 0.6n

]
=
[

100 · 1.1n

40 · (1.1n − 0.6n)

]
. (7.70)

For large values of n the term 0.6n can be neglected, and we get

x(n) ≈ 1.1n ·
[

100
40

]
. (7.71)

Thus, in the long run both the under fifty and the over fifty populations will
increase 10% per decade, and there will be 40 people over fifty for every 100
under fifty. �
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A system of equations like the one in the example above is called a system
of first order linear difference equations. Equation 7.58 shows their general
vector form. The word “difference” indicates that the equation involves an
unknown function that occurs at different values of an integer-valued vari-
able n, and “first order” refers to the fact that only n and n + 1 occur and
no additional n + 2 and such. Such equations can always be solved by the
method shown, provided the matrix A is diagonalizable.

Systems of first order linear differential equations, as defined below, with
constant, diagonalizable matrices can also be solved in a similar manner.

Suppose we are to find a vector-valued function u of a scalar variable t
such that

du
dt

= Au. (7.72)

Here u(t) is in Rn for every real t, and A is a constant, diagonalizable
n × n matrix. The derivative is defined componentwise, that is, u′(t) =
(u′

1(t), . . . , u
′
n(t)). Equation 7.72 is equivalent to the following system of first

order linear differential equations:

dui

dt
=

n∑
i=1

aijuj for i = 1, 2, . . . , n. (7.73)

Let us consider a change of basis such that u = Sv for some constant,
invertible n × n matrix S and v(t) ∈ Rn for every real t. Then

dSv
dt

= ASv (7.74)

and

dv
dt

= S−1ASv. (7.75)

If S diagonalizes A, so that S−1AS = Λ is a diagonal matrix, then Equa-
tion 7.75 becomes

dv
dt

= Λv, (7.76)

which can be written in components as

dvi

dt
= λivi for i = 1, 2, . . . , n. (7.77)

In contrast to Equations 7.73, each equation here contains only one of the
unknown functions, and can therefore easily be solved as follows.

For each i and all t such that vi(t) 	= 0 we rewrite Equations 7.77 as

1
vi

dvi

dt
= λi, (7.78)
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or, equivalently, as

d ln |vi|
dt

= λi. (7.79)

Hence,

ln |vi| = λit + ci, (7.80)

where each ci is an arbitrary constant. Thus the general solution of Equa-
tion 7.78 is

vi = Cie
λit, (7.81)

where Ci = ±eci . Allowing Ci = 0 too, we thus have the general solution of
Equations 7.77 as well. From Equation 7.81 we obtain the general solution
of the original Equation 7.72 by calculating u = Sv.

Ri +
1
C

q + L
di

dt
= E (7.82)

where R, L, C are positive numbers denoting the resistance, the inductance,
and the capacitance of the indicated elements, E (t) is the applied electro-
motive force or voltage, q(t) is the charge on the capacitor at time t, and
i(t) = q′(t) is the current at time t.

E

R

C

L

Fig. 7.2. An electric circuit

Equation 7.82 is an inhomogeneous differential equation, which means
that it contains a term not involving the unknown functions i and q. The gen-
eral solution of an inhomogeneous linear differential equation or system can
be obtained, just as for ordinary equations (see Theorem 2.3.3 on page 59),
by adding any particular solution of it to the general solution of the corre-
sponding homogeneous equation or system. Thus, it is preferable to consider

Example 7.2.2.(An Electric Circuit with Resistor, Condenser, and Coil).
physics it is shown that the electric circuit of Figure 7.2 is governed by the

equation
In
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the latter first, by setting E = 0. This condition has a physical meaning as
well: For instance, E(t) can be a pulse, which is nonzero for some time, but
becomes zero afterward, while the circuit is closed. During the latter period
the homogeneous equation rules, but because of the initial pulse it may very
well have nonzero solutions.

We have two unknown functions i and q and two equations: One is Equa-
tion 7.82 and the other the equation i(t) = q′(t). We can write the homo-
geneous system in the form corresponding to the general case of Equations
7.73 as

di

dt
= −R

L
i − 1

LC
q (7.83)

and

dq

dt
= i. (7.84)

Thus, in this case, the matrix A is of the form

A =
[−R/L − 1/LC

1 0

]
. (7.85)

The characteristic equation is(
−R

L
− λ

)
(−λ) +

1
LC

= 0 (7.86)

or equivalently

λ2 +
R

L
λ +

1
LC

= 0. (7.87)

The discriminant of the last equation is

D =
R2

L2 − 4
LC

, (7.88)

and if D 	= 0, then Equation 7.87 has the two solutions

λ1 =
1
2

(
−R

L
−

√
D

)
(7.89)

and

λ2 =
1
2

(
−R

L
+

√
D

)
. (7.90)

The next step would be to compute the corresponding eigenvectors, but
it is easier to avoid it by proceeding as follows.
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First, observe that in the general formulation each uk is a linear combina-
tion of the vk, which are given by Equation 7.81. In the present case u1 = i
and u2 = q, and so the general solution must be of the form

i(t) = c11e
λ1t + c12e

λ2t (7.91)

and

q(t) = c21e
λ1t + c22e

λ2t (7.92)

with unknown coefficients cjk. Substituting these expressions of i(t) and q(t)
into Equations 7.83 and 7.84, we get two equations for the unknown cjk,
and we can prescribe two initial conditions, that is, values for i(0) and q(0),
to have the necessary four equations for the four unknowns. For example, if
there is no current at t = 0 but there is a charge Q on the capacitor, then
the initial conditions are

i(0) = 0 (7.93)

and

q(0) = Q, (7.94)

and the coefficients turn out to be (Exercise 7.2.10)

c11 = −c12 =
Q

LC
√

D
(7.95)

and

c21 = Q − c22 =
Qλ2√

D
. (7.96)

Notice that, if D > 0 holds, then both λ1 and λ2 are negative, and so
both i(t) and q(t) decay to zero as t → ∞. However, since |λ1| > |λ2| holds,
for large t the eλ1t terms will be negligible next to the eλ2t terms, and so the
approach to zero will be like the latter.

The case D = 0 has to be treated differently, because then the matrix A
is defective. We suggest a possible approach in Exercise 7.2.12d.

The remaining case of D < 0 will be treated in Section 7.4. This case
is very important, since it occurs in many circuits and leads to oscillating
solutions that are entirely different from the foregoing ones.

The discussion of the inhomogeneous case is left to other courses. �

Exercises

Exercise 7.2.1. Prove that a diagonalizable matrix A is invertible if and
only if all of its eigenvalues are different from zero, and in that case Equa-
tions 7.51 and 7.52 are valid for all negative integers k as well.
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Exercise 7.2.2. Define Ax for every real x and every diagonalizable A with
positive eigenvalues.

Exercise 7.2.3. Show that if A is symmetric and diagonalizable with non-
negative eigenvalues, then

√
A exists and is also symmetric.

Exercise 7.2.4. Find A100 and A1/2 for the matrix

A =
[

3 2
2 3

]
.

Exercise 7.2.5. Find A100 for the matrix A of Exercise 7.1.5:

A =

⎡
⎣2 0 1

0 2 0
1 0 2

⎤
⎦ .

Exercise 7.2.6. Find A4 for the matrix

A =

⎡
⎢⎢⎣

1 0 0 1
0 1 1 1
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦

of Exercise 7.1.8, using the eigenvalues and eigenvectors of A.

Exercise 7.2.7. Prove that similar matrices have the same characteristic
polynomial, that is, if A and B are similar, then det(A − λI) = det(B − λI)
for every λ.

Exercise 7.2.8. Let A and B be similar matrices with B = TAT−1. Prove
that s is an eigenvector of A belonging to the eigenvalue λ if and only if T s
is an eigenvector of B belonging to the same eigenvalue λ.

Exercise 7.2.9. Prove the converse of Theorem 7.3.2: If A is orthogonally
similar to a diagonal matrix Λ, that is, S−1AS = Λ for some orthogonal
matrix S, then A must be symmetric.

Exercise 7.2.10. Prove Equations 7.95 and 7.96.

Exercise 7.2.11. In biology the following type of simplified models for
predator-prey populations are sometimes considered: Assume that in a cer-
tain area the number of animals of a certain predator species is x1(k) in
year k, and the number of its prey is x2(k). Furthermore, the number of
predators in the next year decreases in proportion to x1(k) and increases in
proportion to the available food x2(k), while the number of prey animals de-
creases in proportion to the number of predators and increases in proportion
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to their own numbers. Thus, if we ignore other factors, we may for instance
assume

x1(k + 1) = 0.8x1(k) + 0.4x2(k) (7.97)

and

x2(k + 1) = −0.8x1(k) + 2.0x2(k). (7.98)

Solve these equations for all k, assuming also that initially there were 1000
animals of each kind. What happens as k → ∞?

du
dt

= Au. (7.99)

Define, for every square matrix A and every real t,

eAt = I + At +
(At)2

2!
+

(At)3

3!
+ · · · , (7.100)

assuming convergence and term-by-term differentiability.
a. Show that

u(t) = eAtu0 (7.101)

is the solution of Equation 7.99 satisfying the initial condition

u(0) = u0. (7.102)

b. Show that if A is diagonalizable so that A = SΛS−1, then

eAt = SeΛtS−1, (7.103)

where

eΛt =

⎡
⎢⎢⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
· · · · · · · · · · · ·
0 0 · · · eλnt

⎤
⎥⎥⎦ (7.104)

and Equation 7.101 becomes

u(t) = SeΛtS−1u0 =
n∑

k=1

ckeλkt, (7.105)

where the ck are appropriate constant vectors.

Exercise 7.2.12. In this exercise we outline an alternative approach to
the solution of differential equations like
*
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c. Use the above formalism to solve Equations 7.83 and 7.84 with R = 5,
L = 1, C = 1/4, and u0 = (0, 10)T . Plot the graphs of the solution for
i and q.
d. Use Equations 7.100 and 7.101 to solve Equations 7.83 and 7.84 with
R = 2, L = 1, C = 1, and u0 = (0, 10)T Plot the graphs of the solution
for i and q.

MATLAB Exercises

Exercise 7.2.13. Consider the problem of Example 7.2.1 again.
a. Enter the matrix A from Equation 7.59 and use MATLAB to verify that
Equation 7.61 leads to Equation 7.70.
b. Experiment with different death rates for the over fifty population, in place
of the given 40%, to see what rates would lead to eventual extinction and
what rate would lead to a steady population in the long run.
c. For what death rate would one of the eigenvalues equal 1? Compare this
A to those examined in Part b and explain.

Exercise 7.2.14. In Exercise 7.2.11 the coefficient r = −0.8 represents the
predation rate, that is, the number of prey caught per predator per month.
Experiment with different values of r to find one for which there is a stable
limiting population. What is the split between the two kinds of animals in
the limit for this r as k → ∞?

Exercise 7.2.15. If A is an m × r matrix and has rank r, then AAT is an
m × m symmetric matrix of rank r. (Why?)
a. Use the fact above to generate random symmetric matrices of ranks 1, 2,
and 3 for m = 4, 5, 6.
b. Use eig to find the eigenvalues of each matrix generated in Part a and
note the multiplicity of the eigenvalue 0.
c. Make a conjecture about the dependence of the multiplicity of the eigen-
value 0 on m and r, and prove it.

7.3 Principal Axes

We return now to theoretical considerations and discuss the diagonalization
of symmetric matrices mentioned at the end of Section 7.1. We consider this
topic because it is important in many applications and fairly easy to prove,
while the general case lies beyond our scope.

First, however, we state a theorem whose proof is relegated to Section 7.4
because it requires complex numbers.
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Theorem 7.3.1. (Real Eigenvalues). The eigenvalues of a symmetric
matrix are real.

The next theorem contains the main result of this section and is variously
called the Principal Axis Theorem and the Spectral Theorem for Symmetric
Matrices. These names come from applications of the theorem to the de-
termination of the principal axes of ellipsoids and the color spectra of light
sources. For the same reason the set of eigenvalues of every matrix is called
its spectrum.

Theorem 7.3.2. (Principal Axis Theorem). For every symmetric ma-
trix A there exists an orthogonal matrix S such that S−1AS = Λ is a diagonal
matrix. The columns of S are eigenvectors of A, and the diagonal entries of Λ
are the corresponding eigenvalues.

Proof. Every n×n matrix A has at least one eigenvalue because its character-
istic equation must have at least one solution according to the Fundamental
Theorem of Algebra. Call such an eigenvalue λ1. By Theorem 7.3.1, λ1 is
real and so there must exist a corresponding real unit eigenvector s1. The
Gram–Schmidt algorithm guarantees that we can construct an n × n orthog-
onal matrix S1 whose first column is s1. For such an S1, S−1

1 = ST
1 , and so

the first column of S−1
1 AS1 is given by

S−1
1 As1 = λ1S

−1
1 s1 = λ1S

T
1 s1 = λ1e1. (7.106)

Furthermore, S−1
1 AS1 is also symmetric since

(S−1
1 AS1)T = (ST

1 AS1)T = ST
1 AT

(
ST

1
)T

= S−1
1 AS1. (7.107)

Thus S−1
1 AS1 has the form

S−1
1 AS1 =

⎡
⎢⎢⎢⎣

λ1
∣
∣
∣

0
...
0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 · · · 0

A1

⎤
⎥⎥⎥⎦ , (7.108)

where A1 is an (n − 1) × (n − 1) symmetric matrix.
Now we can repeat the above argument with A1 in place of A: Then A1

has an eigenvalue λ2 and a corresponding unit eigenvector s2 ∈ Rn−1, and
there exists an (n − 1) × (n − 1) orthogonal matrix S′

2 with s2 as its first
column. If we set

S2 =

⎡
⎢⎢⎢⎣

1
∣
∣
∣

0
...
0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 · · · 0

S′
2

⎤
⎥⎥⎥⎦ , (7.109)
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then this matrix is easily seen to be orthogonal as well, and we obtain

S−1
2 S−1

1 AS1S2 =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0
0 λ2

∣
∣
∣
∣
∣
∣

0 0
...

...
0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 · · · 0
0 · · · 0

A2

⎤
⎥⎥⎥⎥⎥⎦ , (7.110)

where the size of A2 is (n − 2) × (n − 2).
Continuing in the same fashion, we can reduce A to a diagonal matrix Λ

by applying n similarity transformations like these. Writing

S = S1S2 · · ·Sn (7.111)

we thus have

S−1AS =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 0 · · · λn

⎤
⎥⎥⎥⎥⎥⎦ = Λ. (7.112)

The matrix S is orthogonal because it is the product of orthogonal ma-
trices. Furthermore, from Equation 7.47 we can see that if there exists a
nonsingular S that transforms A to a diagonal matrix Λ as above, then,
conversely to Theorem 7.2.1, the columns of S must be eigenvectors of A
corresponding to the diagonal entries of Λ as eigenvalues. �

Before giving an example of the use of this theorem, we need some termi-
nology.

Definition 7.3.1. (Form). Let n > 1. A function from Rn to R is called a
form. A form Q given by the formula Q(x) = xT Ax, where A is an arbitrary,
symmetric n × n matrix, is called a quadratic form.

Note that the use of a symmetric matrix A in the definition of a quadratic
form involves no loss of generality. Assume that A is not necessarily symmet-
ric. Then, since xT Ax is a scalar, it equals its own transpose, and so, on the
one hand,

Q(x) = xT Ax, (7.113)

and on the other hand,

Q(x) = (xT Ax)T = xT AT (xT )T = xT AT x. (7.114)



276 7. Eigenvalues and Eigenvectors

Adding Equations 7.113 and 7.114, we get

2Q(x) = xT Ax + xT AT x, (7.115)

and so

Q(x) =
1
2
xT (A + AT )x. (7.116)

Thus Q(x) = xT Ax can be expressed in terms of the symmetric matrix
1
2 (A + AT ) in place of the possibly nonsymmetric A, and therefore it is no
restriction on Q to assume that A is symmetric to begin with.

If we make a change of basis with the orthogonal matrix S made up of
eigenvectors of A, whose existence is guaranteed by Theorem 7.3.2, and write
x = Sy (to make the notation simpler, we write y for the coordinate vector
xS of x relative to the basis S), then we get

xT Ax = yT ST ASy = yT Λy. (7.117)

In component form this equation becomes

n∑
i=1

n∑
j=1

aijxixj =
n∑

i=1

λiy
2
i , (7.118)

and so we have transformed the general quadratic form to a sum of squares
weighted with the eigenvalues. The orthonormal standard vectors ei are
eigenvectors of the matrix Λ, since Λei = λiei. They correspond to the
orthonormal eigenvectors si of the matrix A, because if y = ei, then
x = Sy = Sei = si.

We know that in R2 the equation
∑2

i=1 λiy
2
i = 1 describes a conic section,

for all values of the λi, and that the transformation by an orthogonal matrix
is a rotation or a reflection. Therefore the equation

a11x
2
1 + 2a12x1x2 + a22x

2
2 =

2∑
i=1

2∑
j=1

aijxixj = 1 (7.119)

represents a conic section in a rotated position. The type of this conic section
is determined by the eigenvalues. For instance, if 0 < λ1 < λ2, then we have
an ellipse. Setting λ1 = 1/a2 and λ2 = 1/b2, its equation is transformed into
the standard form

y2
1

a2 +
y2
2

b2 = 1. (7.120)

The major and minor axes point in the directions of the vectors y1 = (1, 0)T

and y2 = (0, 1)T , and have half-lengths a = 1/
√

λ1 and b = 1/
√

λ2,
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respectively. (Just set successively y2 = 0 and y1 = 0 in Equation 7.120.) The
vectors y1 and y2 correspond to the vectors x1 = Sy1 = (s1, s2)(1, 0)T = s1
and x2 = Sy2 = s2 in the original basis. This result shows that the principal
axes point in the directions of the eigenvectors, with the major axis corre-
sponding to the smaller eigenvalue. Other conic sections and quadric surfaces
in higher dimensions can be analyzed similarly. We consider some of them in
the exercises.

8x2
1 − 12x1x2 + 17x2

2 = 20. (7.121)

This equation can be written in the standard form

xT Ax = 1

with

A =
1
20

[
8 − 6

−6 17

]
. (7.122)

The eigenvalues and corresponding unit eigenvectors of this matrix are
λ1 = 1/4, λ2 = 1, s1 = 1√

5
(2, 1)T , s2 = 1√

5
(−1, 2)T . Hence, according

to the previous discussion, Equation 7.121 represents the ellipse of Fig-
ure 7.3, which is centered at the origin, whose major axis has half-length
1/

√
λ1 = 2 and points in the direction of the eigenvector s1, and whose

minor axis has half-length 1/
√

λ2 = 1 and points in the direction of the
eigenvector s2. �

x2

x1

s2 s1

Fig. 7.3. An ellipse in nonstandard position

Example 7.3.1. (An Ellipse). Discuss the conic section given by
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Exercises

Exercise 7.3.1. Find the direction and length of each principal axis of the
ellipse given by the equation below, and sketch its graph.

13x2
1 − 8x1x2 + 7x2

2 = 30.

Exercise 7.3.2. Find the direction and length of each principal axis of the
hyperbola given by the equation below, and sketch its graph.

7x2
1 + 48x1x2 − 7x2

2 = 25.

Exercise 7.3.3. Find the direction and length of each principal axis of the
hyperbola given by the equation below, and sketch its graph.

2x2
1 + 4x1x2 − x2

2 = 12.

Exercise 7.3.4. Find the principal axes of the ellipsoid given by the equa-
tion below, change its equation to standard form so that the left side becomes
a sum of squares weighted with the eigenvalues as in Equation 7.118, and de-
scribe its position and shape.

3x2
1 + 3x2

2 + 3x2
3 − 2x1x2 − 2x1x3 − 2x2x3 = 4.

Exercise 7.3.5. a. Show that if A is a symmetric matrix, then ∇(xT Ax) =
2(Ax)T . (We have the transpose on the right because ∇f , for every f , is usu-
ally considered to be a row vector.)
b. Use the method of Lagrange multipliers to show that the extreme val-
ues of xT Ax subject to the constraint xT x = 1 are eigenvalues of A. (This
property of A can be developed into a practical method for computing
eigenvalues.)

Exercise 7.3.6. Find the principal axes of the quadric surface given by the
equation below, change its equation to standard form so that the left side
becomes a sum of squares weighted with the eigenvalues as in Equation 7.118,
and describe its position and shape.

2xy + 2xz + 2yz = 1.

Exercise 7.3.7. Prove the following theorem called Schur’s lemma: For
every real square matrix A with only real eigenvalues there exists an orthog-
onal matrix S such that S−1AS = T is upper triangular. (Hint: Modify the
proof of Theorem 7.3.2 to account for the possible lack of symmetry.)

MATLAB Exercises

Exercise 7.3.8. The ellipse of Example 7.3.1, together with the correspond-
ing one in standard position, can be plotted in MATLAB by using polar
coordinates.

*

*
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a. Enter the following program and explain the steps.

t = 0 : .1 : 2 ∗ pi;
c = cos(t) ; s = sin(t);
ra = 1./sqrt(.4 ∗ c.ˆ2 − .6 ∗ c. ∗ s + .85 ∗ s.ˆ2);
rb =1./sqrt(c.ˆ2/4+s.ˆ2);
polar(t, ra)
hold
polar(t, rb)

b. An alternative program to plot the original ellipse directly from the ma-
trix A is the following. Enter it and explain the steps.

A = [8, −6; −6, 17]/20; t = 0 : .2 : 2 ∗ pi;
x = [ cos (t); sin (t)];
q = diag(x′ ∗ A ∗ x)′;
r = 1./sqrt(q);
polar(t, r)

Exercise 7.3.9. Use MATLAB as in the previous exercise to solve Exercise
7.3.2.

Exercise 7.3.10. Use MATLAB to plot the conic section xT Ax = 1 with

A =
[

4 1
−1 2

]
.

As we have seen in Example 7.1.4 on page 258, this is a defective matrix.
How can you square this fact with your result?

7.4 Complex Matrices

As we have seen in the preceding sections, complex eigenvalues may well
occur even for matrices with real entries, and in some applications, e.g., in
quantum physics, we must deal with complex-valued matrix components too.
Consequently, we devote this section to such matters. We assume that the
reader is familiar with complex numbers and exponential functions, but in
an appendix at the end of the book we briefly review them.

Definition 7.4.1. (Complex Vector Space). The complex vector space Cn

is defined, for every positive integer n, as the set of ordered n-tuples z =
(z1, z2, . . . , zn)T of complex numbers, written as columns, and with addition
of vectors and multiplication of vectors by scalars defined so that for all such
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vectors x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T and all complex scalars c
we have

(x1, x2, . . . , xn)T +(y1, y2, . . . , yn)T = (x1+y1, x2+y2, . . . , xn+yn)T (7.123)

and

c(z1, z2, . . . , zn)T = (cz1, cz2, . . . , czn)T . (7.124)

x =
[

2 + 3i
1 − 4i

]
and y =

[
2 − 5i
4 + 6i

]
(7.125)

be vectors of C2, and c = 5 − 6i a scalar. Then

x + y =
[

4 − 2i
5 + 2i

]
and cx =

[
28 + 3i

−19 − 26i

]
. (7.126)

�

The length of such a vector cannot be defined in terms of the sum of the
squares of the components, because such squares are generally complex, and
we want a length to be real. This situation is, however, easy to remedy: We
square the absolute values of the components.

Definition 7.4.2. (Length). The length or norm of a vector z = (z1, z2, . . . ,
zn)T ∈ Cn is defined as

|z| =
√

|z1|2 + |z2|2 + · · · + |zn|2. (7.127)

We can put this formula in a much simpler form, analogous to |x|2 = xT x
in the real case, by expressing each absolute value on the right in terms
involving complex conjugates, as follows:

|z|2 = z1z1 + z2z2 + · · · + znzn. (7.128)

Writing zT = (z1, z2, . . . , zn) and defining matrix multiplication exactly as
in the real case, we may write this equation as

|z|2 = zT z. (7.129)

We could have written |z|2 = zT z as well, but this form is never used. In
fact, there is a special name and notation for zT .

Definition 7.4.3. (Hermitian Conjugate). For every z ∈ Cn the row
vector zT is called the Hermitian conjugate2 of z and is denoted by zH . Sim-
ilarly, for every matrix A with complex entries we define its Hermitian con-
jugate as AH = A

T
(read: “A-Hermitian”), where A = (aij).

2 After Charles Hermite (1822–1901).

Example 7.4.1. (Operations on Certain Vectors). Let
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Equation 7.129 suggests the following generalization of the dot product.

Definition 7.4.4. (Inner Product). For all x,y ∈ Cn the scalar xHy is
called their inner product.

Note that this definition is not commutative:

xHy = x1y1 + x2y2 + · · · + xnyn, (7.130)

while

yHx = y1x1 + y2x2 + · · · + ynxn. (7.131)

Thus,

yHx = xHy, (7.132)

and xHy = yHx if and only if xHy is real.

xH = (2 − 3i, 1 + 4i) and yH = (2 + 5i, 4 − 6i), (7.133)

|x|2 = xHx = (2 − 3i, 1 + 4i)
[

2 + 3i
1 − 4i

]
= (2 − 3i)(2 + 3i) + (1 + 4i)(1 − 4i) =

(
22 + 32)+

(
12 + 42) = 30,

(7.134)

and

|y|2 = yHy = (2 + 5i, 4 − 6i)
[

2 − 5i
4 + 6i

]
= (2 + 5i)(2 − 5i) + (4 − 6i)(4 + 6i) =

(
22 + 52)+

(
42 + 62) = 81.

(7.135)

Similarly, the inner products can be computed as

xHy = (2 − 3i, 1 + 4i)
[

2 − 5i
4 + 6i

]
= (2 − 3i)(2 − 5i) + (1 + 4i)(4 + 6i)

= (−11 − 16i) + (−20 + 22i) = −31 + 6i, (7.136)

and

yHx = (2 + 5i, 4 − 6i)
[

2 + 3i
1 − 4i

]
= (2 + 5i)(2 + 3i) + (4 − 6i)(1 − 4i)

= (−11 + 16i) + (−20 − 22i) = −31 − 6i. (7.137)

�

Example 7.4.2. (Some InnerProducts). For the vectors of Example 7.4.1
we have
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Two vectors of Cn are still called orthogonal if their inner product is zero,
although the geometric meaning is lost.

For the Hermitian conjugate of a matrix product the expansion involves
the reversal of the factors, just as for transposes.

Theorem 7.4.1. (The Hermitian Conjugate of Matrix Products).
For all matrices A and B for which AB is defined, we have

(AB)H = BHAH . (7.138)

The Hermitian conjugate is used in place of the transpose to generalize
the notions of symmetric and orthogonal matrices.

Definition 7.4.5. (Hermitian Matrix and Unitary Matrix). A matrix
A is called Hermitian if

AH = A, (7.139)

and U is called unitary if

UHU = I. (7.140)

A =
[

1 3 + i
3 − i 4

]
(7.141)

is Hermitian, since

AH =
[

1 3 − i
3 + i 4

]
=
[

1 3 + i
3 − i 4

]
= A. (7.142)

Note that the diagonal entries are real, as they must be in every Hermitian
matrix. �

U =
1√
2

[
1 1
i − i

]
(7.143)

is unitary, since

UH =
1√
2

[
1 − i
1 i

]
(7.144)

and

UHU =
1
2

[
1 − i
1 i

] [
1 1
i − i

]
=
[

1 0
0 1

]
= I. (7.145)

�

Example 7.4.3. (A Certain Hermitian Matrix). The matrix

Example 7.4.4. (A Certain Unitary Matrix). The matrix
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The usefulness of Hermitian matrices rests on their following property:

Theorem 7.4.2. (Eigenvalues of a Hermitian Matrix). A Hermitian
matrix has only real eigenvalues.

Proof. Suppose A is Hermitian and λ is an eigenvalue of A corresponding to
a nonzero eigenvector s. Then

As = λs (7.146)

and

sHAs = λsHs. (7.147)

Here sHs is real because it equals |s|2. The left side is real as well, because for
scalars, complex conjugation and Hermitian conjugation are the same, and
consequently

sHAs = (sHAs)H = sHAH
(
sH
)H

= sHAs. (7.148)

Thus λ must be real. �

|A − λI| =
∣∣∣∣ 1 − λ 3 + i
3 − i 4 − λ

∣∣∣∣ = (1 − λ)(4 − λ) − 10 = 0, (7.149)

which gives the eigenvalues λ1 = 6 and λ2 = −1. �

Since for a real matrix, Hermitian conjugation is the same as transposi-
tion, we have now proved Theorem 7.3.1, which we restate here as a corollary.

Corollary 7.4.1. (Eigenvalues of a Real Symmetric Matrix). The
eigenvalues of a real symmetric matrix are real.

For the eigenvalues of a unitary matrix we have an analogous theorem.

Theorem 7.4.3. (Eigenvalues of a Unitary Matrix). The eigenvalues
of a unitary matrix have absolute value 1.

Proof. Let U be a unitary matrix, λ one of its eigenvalues, and s a nontrivial
eigenvector belonging to λ. Then taking the Hermitian conjugate of both
sides of

Us = λs, (7.150)

we get

sHUH = λsH , (7.151)

Example 7.4.5. (Eigenvalues of a Certain Hermitian Matrix). For the
matrix of Example 7.4.3 we have the characteristic equation
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and multiplying corresponding sides:

sHUHUs = λλsHs. (7.152)

Since U is unitary, we have UHU = I, and so the left side above reduces
to sHs, which can then be canceled, leaving λλ = 1. This equation can be
written as |λ|2 = 1 and, since |λ| ≥ 0, we must have |λ| = 1. �

Just as for real symmetric matrices, we have the following analogous the-
orems for Hermitian matrices.

Theorem 7.4.4. (The Eigenspaces of a Hermitian Matrix Are Or-
thogonal to Each Other). Any two eigenvectors of a Hermitian matrix
that belong to different eigenvalues are orthogonal to each other.

We leave the proof as Exercise 7.4.13.

Theorem 7.4.5. (The Spectral Theorem). For every Hermitian matrix
A there exists a unitary matrix U such that UHAU = Λ is a real diagonal
matrix. The columns of U are eigenvectors of A, and the diagonal entries of
Λ are the corresponding eigenvalues.

The proof is similar to the one in the real case and is omitted. We just
illustrate the procedure with some examples.

A =
[

1 3 + i
3 − i 4

]
. (7.153)

The corresponding eigenvectors can be obtained by solving (A − λI)s = 0
with the values above for λ. For λ1 = 6 this equation becomes[ −5 3 + i

3 − i −2

] [
s11
s21

]
=
[

0
0

]
. (7.154)

The two rows are dependent, as they should be, because the first one equals
−(3 + i)/2 times the second one. One solution is obviously s = (3 + i, 5)T .
Hence sH = (3−i, 5), and so sHs = (3−i)(3+i)+52 = 35. Thus a normalized
solution is given by

s1 =
1√
35

[
3 + i

5

]
. (7.155)

For λ2 = −1 the equation (A − λI)s = 0 becomes[
2 3 + i

3 − i 5

] [
s12
s22

]
=
[

0
0

]
, (7.156)

Example 7.4.6. (Diagonalization of a Hermitian Matrix). In Example 7.4.5
we have found the eigenvalues λ1 = 6 and λ2 = −1 for the Hermitian matrix
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and a normalized solution of this equation is

s2 =
1√
35

[ −5
3 − i

]
. (7.157)

We combine the two eigenvectors above into the matrix

S =
1√
35

[
3 + i −5

5 3 − i

]
. (7.158)

This S is unitary, since

SH =
1√
35

[
3 − i +5
−5 3 + i

]
(7.159)

and SHS = I, as can be checked easily. Here we have denoted the unitary
matrix U of Theorem 7.4.5 by S, in keeping with our earlier notation of s for
eigenvectors. We leave it to the reader to check that SHAS = Λ holds; that
is, that

SHAS =
1
35

[
3 − i +5
−5 3 + i

] [
1 3 + i

3 − i 4

] [
3 + i −5

5 3 − i

]
=
[

6 0
0 − 1

]
,

(7.160)

as required by Theorem 7.4.5. �

continuation of the electric circuit problem of Example 7.2.2 of page 268 for
the case of negative D, which we had to omit previously. This case does occur
in many real-life electric circuits and needs to be solved just as much as the
earlier cases did.

The whole formalism as presented in Section 7.2 remains valid; we just
have to carry it somewhat further to obtain the solutions in real rather than
complex form. We can do so whenever the initial conditions are real, although
the matrix is not Hermitian and the eigenvalues are complex.

Before proceeding, let us mention an unfortunate notational collision be-
tween the traditional uses of the letter i for

√−1 by mathematicians and for
electric currents (from intensity) by physicists and engineers. The latter avoid
this difficulty generally by using j for

√−1. We shall stay with i =
√−1, and

in this section use only i(t) for currents, not i as in Section 7.2.
Thus, let D < 0. Then the eigenvalues from Equations 7.89 and 7.90 may

be written as

λ1 =
1
2

(
−R

L
− i
√

|D|
)

(7.161)

Example 7.4.7. (AnElectric Circuit with Complex Eigenvalues). This is a
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and

λ2 =
1
2

(
−R

L
+ i
√

|D|
)

. (7.162)

Since these are complex conjugates of each other, we can drop the subscripts
and write λ = λ2 and λ = λ1. Also, we write

λ = −a + iω, (7.163)

where

=
R

2L
and ω =

√|D|
2

(7.164)

are nonnegative real numbers. With this notation the general solutions 7.91
and 7.92 become

i(t) = e−at(c11e
−iωt + c12e

iωt) (7.165)

and

q(t) = e−at(c21e
−iωt + c22e

iωt). (7.166)

In view of Euler’s formula (see Equation A.28) these equations represent
damped oscillations; that is, oscillations with angular frequency ω and expo-
nentially decaying amplitudes.

With the initial conditions 7.93 and 7.94 that represent an initial charge
Q and no initial current, we obtain from Equations 7.95 and 7.96

c11 = −c12 =
Q

LCi
√|D| (7.167)

and

c21 = Q − c22 =
Qλ2

i
√|D| . (7.168)

Substituting these values into the general solution above, we get the corre-
sponding particular solution as

i(t) =
Q

LC
√|D|e

−at e
−iωt − eiωt

i
=

−2Q

LC
√|D|e

−at sin ωt (7.169)

and

q(t) = e−at

(
Q cos ωt +

QR

L
√|D| sin ωt

)
. (7.170)

a
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Notice that the imaginary parts of these functions have vanished, as they
ought to. �

Exercises

In the first four exercises find and simplify, for the given vectors, (a) their
Hermitian conjugates, (b) their lengths, (c) their inner products in both
orders.

Exercise 7.4.1.

x =
[

2
2i

]
and y =

[
5i

4 + i

]
.

Exercise 7.4.2.

x =
[

2 + 4i
1 − 2i

]
and y =

[
1 − 5i
4 + 2i

]
.

Exercise 7.4.3.

x =
[

2eiπ/4

2i

]
and y =

[
eiπ/4

e−iπ/4

]
.

Exercise 7.4.4.

x =

⎡
⎣ 2

2i
1 + i

⎤
⎦ and y =

⎡
⎣ 5i

4 + i
4 − i

⎤
⎦ .

Exercise 7.4.5. Let u1 = 1√
2

[
1
i

]
.

a. Find another vector u2 ∈ C2 so that u1, u2 form an orthonormal basis
for C2.
b. Find the coordinates of an arbitrary vector x with respect to this basis,
that is, the coefficients xU1, xU2 in the decomposition x = xU1u1 + xU2u2.

c. Find the coordinates of the vector x =
[

2 + 4i
1 − 2i

]
with respect to the basis

above.

Exercise 7.4.6. Find the eigenvalues and eigenvectors of the rotation matrix

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
.

Exercise 7.4.7. Show that for every matrix A we have AHH = A.

Exercise 7.4.8. Show that for every matrix A the product AHA is
Hermitian.
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Exercise 7.4.9. Show that a square matrix A is Hermitian if and only if
xHAx is real for every vector x (of the right size, of course).

Exercise 7.4.10. Show that if U is unitary, then |Ux| = |x| for every x (of
the right size).

Exercise 7.4.11. Show that if the matrix A is Hermitian, then U = eitA

is unitary for every real t. (This is important in physics, since U provides
the solutions to Schrödinger’s differential equation du

dt = iAu. Cf. Exercise
7.2.12.)

Exercise 7.4.12. Verify that Equations 7.169 and 7.170 give the particular
solutions of Example 7.4.7 for the initial conditions q(0) = Q and i(0) = 0.

Exercise 7.4.13. Prove Theorem 7.4.4.

Exercise 7.4.14. Prove that the determinant of every Hermitian matrix
is real.

Exercise 7.4.15. Find the eigenvalues and eigenvectors of the matrix

A =
[

1 1
−1 1

]
.

Exercise 7.4.16. Find the eigenvalues and eigenvectors of the matrix

A =

⎡
⎣1 1 1

0 1 1
0 − 1 1

⎤
⎦ .

MATLAB Exercises

In MATLAB, we can create orthogonal matrices as follows: For every real
matrix A, the command [Q, R] = qr(A) returns an orthogonal matrix Q and
an upper triangular matrix R such that A = QR. (Here we use this command
only to obtain Q and discard the matrices A and R.) In the next exercise
we want to show that every 3 × 3 orthogonal matrix represents a rotation or
the product of a rotation and a reflection, and find the axis and angle of the
rotation. (Cf. also Example 4.3.2 on page 192.)

Exercise 7.4.17. a. Enter the matrix

A =

⎡
⎣1 1 0

2 1 0
3 0 1

⎤
⎦

and find the corresponding orthogonal matrix Q. Let [X, D] = eig(Q). This
command returns the eigenvectors of Q in X and the eigenvalues in D. Notice
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that one of the eigenvalues is 1 and check that the other two have absolute
value 1. Let t = angle(D(2, 2)) and show that the matrix Q represents a ro-
tation by the angle t around the first eigenvector, as follows. Let sl = X(:, 1).
Then the command [S, T ] = qr(sl) creates an orthogonal matrix S whose
first column is s1. Thus the columns of S are mutually orthogonal unit vec-
tors, and so S represents a rotation or −1 times a rotation of the standard
basis to the columns of S. The command R = S′ ∗ Q ∗ S transforms the
matrix Q to the basis S. Show that the matrix R represents a rotation by
angle t around the first vector of the new basis. (Compare R with the matrix
in Exercise 7.4.6.)
b. Prove that in general, if Q is an orthogonal matrix with eigenvalues
±1, eiθ, e−iθ, then Q can be written as Q = ±S ∗ R ∗ S′, where S is an
orthogonal matrix whose first column is the first eigenvector of Q, and

R =

⎡
⎣1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦ .
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8.1 LU Factorization

In this section we consider a variant of Gaussian elimination in which the
coefficient matrix A is written as a product of a lower triangular matrix L
and an upper triangular or echelon matrix U . The main advantage of this
method over the straightforward algorithm is that it is considerably more
economical when we need to solve several systems of the form Ax = b with
the same A but different right-hand sides b. An additional, though less prac-
tical, advantage is that we gain some insight into the structure of Gaussian
elimination in terms of matrix products.

Definition 8.1.1. (Lower Triangular Matrix). A square matrix is called
lower triangular if all the entries above its main diagonal are zero.

The idea behind the new procedure is very simple: As we have seen in
Chapter 2, forward elimination changes Ax = b into an equivalent system

Ux = c, (8.1)

where U is an echelon matrix. If we can write A as a product LU , then
Ax = b becomes LUx = b, and multiplying Ux = c by L on both sides, we
get LUx = Lc. Hence we must have

Lc = b. (8.2)

Since L turns out to be lower triangular, it is very easy to solve this equation
for c by “forward substitution,” once L is known. Thus if we know L and U ,
then the solution of the system Ax = b is reduced to finding the solutions
of the two extremely simple systems Lc = b and Ux = c, which express the
forward elimination and the back substitution phases of Gaussian elimination,
respectively.

To see how to find L and how to apply this new approach, let us consider
some examples.

. , , 
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Example 8.1.1. (LUFactorization of aCertain 2×2System). Let us find L
and U for

The original version of this chapter was revised. An erratum can be found at  
https://doi.org/10.1007/978-0-8176-8325-2_9

https://doi.org/10.1007/978-0-8176-8325-2_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-0-8176-8325-2_8&domain=pdf


292 8. Numerical Methods

A =
[

1 3
2 4

]
(8.3)

and use those to solve Ax = b with b = (5, 6)T .
Here the first step of Gaussian elimination is that of subtracting twice the

first row of A from the second row. This move is equivalent to multiplying A
by the elementary matrix1

E =
[

1 0
−2 1

]
. (8.4)

Indeed, if we write A = (a1,a2)T , then

U = EA =
[

1a1 + 0a2

−2a1 + 1a2

]
=
[

1 3
0 −2

]
, (8.5)

and so the first row of this matrix is the same as the first row of A, and the
second row is (−2) times the first row of A plus the second row of A; just
what we needed.

We can now proceed in two ways to obtain the vector c of the reduced
system Ux = c. First, we can simply compute it the old way as

c = Eb =
[

1 0
−2 1

] [
5
6

]
=
[

5
−4

]
. (8.6)

Second, we can compute c in a new way by finding the matrix L for which
A = LU holds, and solving Equation 8.2. In this simple example the two
methods are equally easy, but for larger systems with various right sides the
second one is preferable. So let us see how the new method works in this case.

From the equation U = EA we obtain A = E−1U , since E is invertible.
Thus

L = E−1 =
[

1 0
2 1

]
. (8.7)

Notice that for this L we have

LU = L (EA) =
[

1 0
2 1

] [
a1

−2a1 + a2

]
=
[

a1

2a1 +
(−2a1 + a2

) ] = A;

(8.8)

that is, L has the desired effect of adding back the 2a1 subtracted by E in
the second row of A. Thus an LU decomposition of A is[

1 3
2 4

]
=
[

1 0
2 1

] [
1 3
0 −2

]
. (8.9)

1 An elementary matrix is a matrix that corresponds to an elementary row oper-
ation. See Exercise 2.5.12.
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Hence the equation Lc = b is now[
1 0
2 1

] [
c1
c2

]
=
[

5
6

]
. (8.10)

We solve this system from the top down by forward substitution as c1 = 5
and 2 · 5 + c2 = 6, c2 = −4. Thus we get the same c, of course, as before.

There is nothing new in the rest of the computation: We solve Ux = c by
back substitution; that is, from[

1 3
0 −2

] [
x1
x2

]
=
[

5
−4

]
(8.11)

we compute −2x2 = −4, x2 = 2 and x1 + 3 · 2 = 5, x1 = −1. �

A =

⎡
⎣1 2 0

3 6 − 1
1 2 1

⎤
⎦ and b =

⎡
⎣2

8
0

⎤
⎦ (8.12)

as in Example 2.1.5 on page 49.
Multiplying A by

E21 =

⎡
⎣ 1 0 0

−3 1 0
0 0 1

⎤
⎦ , (8.13)

we annihilate the a21 = 3 entry and obtain2

E21A =

⎡
⎣1 2 0

0 0 − 1
1 2 1

⎤
⎦ . (8.14)

Next we multiply by

E31 =

⎡
⎣ 1 0 0

0 1 0
−1 0 1

⎤
⎦ (8.15)

to make the a31 = 1 entry 0, and produce

E31E21A =

⎡
⎣1 2 0

0 0 − 1
0 0 1

⎤
⎦ . (8.16)

2 We denote this matrix by E21 to indicate the location of its sole nonzero off-
diagonal entry.

Example 8.1.2. (LU Factorization of a Certain 3 × 3 System). Let
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Finally, multiplication by

E32 =

⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦ (8.17)

gives the echelon matrix

U = E32E31E21A =

⎡
⎣1 2 0

0 0 − 1
0 0 0

⎤
⎦ . (8.18)

Now each of the matrices E21, E31, and E32 is invertible, with the inverse
obtained simply by changing the sign of the nonzero off-diagonal entry. Thus
their product is also invertible, and from the first part of Equation 8.18 we
obtain A = LU with

L = E−1
21 E−1

31 E−1
32 =

⎡
⎣1 0 0

3 1 0
0 0 1

⎤
⎦
⎡
⎣1 0 0

0 1 0
1 0 1

⎤
⎦
⎡
⎣1 0 0

0 1 0
0 − 1 1

⎤
⎦

=

⎡
⎣1 0 0

3 1 0
1 − 1 1

⎤
⎦ . (8.19)

Notice that very luckily this product too is lower diagonal. Also, the entries lij
below the diagonal are exactly the multipliers of the rows occurring in forward
elimination; that is, it is lijaj that we would subtract from ai in forward
elimination. This is always the case, and so we never need to compute L
separately, we can just assemble it from the coefficients that occur in forward
elimination. (This is generally not the case for the product of the E matrices
as in Equation 8.18, but fortunately we do not need that product anyway.
See also Exercise 8.1.1.)

Now let us use the matrix L we have found to obtain c: The equation
Lc = b becomes⎡

⎣1 0 0
3 1 0
1 − 1 1

⎤
⎦
⎡
⎣ c1

c2
c3

⎤
⎦ =

⎡
⎣2

8
0

⎤
⎦ . (8.20)

Hence c1 = 2, 3 · 2 + c2 = 8, c2 = 2, 1 · 2 − 1 · 2 + c3 = 0, and c3 = 0.
Thus the equation Ux = c becomes⎡
⎣1 2 0

0 0 − 1
0 0 0

⎤
⎦
⎡
⎣x1

x2
x3

⎤
⎦ =

⎡
⎣2

2
0

⎤
⎦ . (8.21)
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This is the same as Equation 2.25 of page 49 and has the solution⎡
⎣x1

x2
x3

⎤
⎦ =

⎡
⎣ 2

0
−2

⎤
⎦+ t

⎡
⎣−2

1
0

⎤
⎦ (8.22)

given there. �

We can now summarize the main points of the foregoing discussion in the
following theorem.

Theorem 8.1.1. (LU Factorization). If in the forward phase of the Gaus-
sian elimination algorithm for an m×n matrix A no row exchanges are used,
then A can be written as a product LU , where L is an m×m lower triangular
matrix with 1’s along its main diagonal, and U is the m × n echelon matrix
obtained by the algorithm.

Furthermore, each entry lij of L below the main diagonal is the coefficient
of the row vector aj in the product lijaj that is subtracted from the row
vector ai in forward elimination.

Also, once L and U are known, the system Ax = b, for any b, can be
replaced by the two simpler systems Lc = b and Ux = c.

Proof. We prove only the case of A being 3×n and each Eij and the matrix L
being 3 × 3. (Eij and L are always square, even when A is not.) For other
dimensions the argument would be similar.

The elementary matrix representing the first step of the elimination algo-
rithm is

E21 =

⎡
⎣ 1 0 0

−l21 1 0
0 0 1

⎤
⎦ , (8.23)

because

E21A =

⎡
⎣ 1 0 0

−l21 1 0
0 0 1

⎤
⎦
⎡
⎣a1

a2

a3

⎤
⎦ =

⎡
⎣ a1

a2 − l21a1

a3

⎤
⎦ . (8.24)

Thus, on the one hand, the l21 in the matrix E21 is the coefficient of a1 in the
product that is subtracted from a2 in forward elimination and, similarly, the
lij in the matrix Eij is the coefficient of aj in the product that is subtracted
from ai.

On the other hand, to construct L and to show that each lij is also the
appropriate entry of L, we can proceed as follows: From Equation 8.23 we get

E−1
21 =

⎡
⎣ 1 0 0

l21 1 0
0 0 1

⎤
⎦ (8.25)
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and similarly we have

E−1
31 =

⎡
⎣ 1 0 0

0 1 0
l31 0 1

⎤
⎦ (8.26)

and

E−1
32 =

⎡
⎣1 0 0

0 1 0
0 l32 1

⎤
⎦ . (8.27)

Since U is defined as the echelon matrix obtained by the forward elimina-
tion algorithm embodied in the Eij matrices, we must have U = E32E31E21A.
Hence we obtain A = E−1

21 E−1
31 E−1

32 U and, since L is defined as a lower tri-
angular matrix for which A = LU , we find that L = E−1

21 E−1
31 E−1

32 is such a
matrix. Thus we compute LU as follows: First we write

E−1
32 U =

⎡
⎣1 0 0

0 1 0
0 l32 1

⎤
⎦
⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣ u1

u2

l32u2+u3

⎤
⎦ . (8.28)

Next

E−1
31 E−1

32 U =

⎡
⎣ 1 0 0

0 1 0
l31 0 1

⎤
⎦
⎡
⎣ u1

u2

l32u2+u3

⎤
⎦ =

⎡
⎣ u1

u2

l31u1 + l32u2+u3

⎤
⎦ (8.29)

and finally

LU = E−1
21 E−1

31 E−1
32 U =

⎡
⎣ 1 0 0

l21 1 0
0 0 1

⎤
⎦
⎡
⎣ u1

u2

l31u1 + l32u2+u3

⎤
⎦

=

⎡
⎣ u1

l21u1 + u2

l31u1 + l32u2+u3

⎤
⎦ =

⎡
⎣ 1 0 0

l21 1 0
l31 l32 1

⎤
⎦
⎡
⎣u1

u2

u3

⎤
⎦ . (8.30)

Thus indeed

L =

⎡
⎣ 1 0 0

l21 1 0
l31 l32 1

⎤
⎦ . (8.31)

The preceding calculation shows why the lij coefficients from the forward
elimination process appear intact in L: In the course of the multiplications
above, we first added l32u2 to u3, then l31u1 to the sum, without disturbing
anything else. Then we added l21u1 to u2, again without disturbing any-
thing else.
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This step finishes the proof of the first two statements of Theorem 8.1.1.
The last statement has been proved in the second paragraph of this section
on page 291. �

So far in this section we have used only one kind of elementary row opera-
tion on matrices: subtracting a multiple of one row from another. We are now
going to discuss briefly how the other two kinds are sometimes incorporated
into the LU factorization.

The elementary row operation of multiplying a row by some nonzero
number (without subtraction from another row) is only necessary in Gauss–
Jordan elimination to obtain l’s as pivots. Corresponding to this observation,
we write the matrix U of the LU factorization as U = DU ′, where D is a
diagonal matrix with the pivots of U as its diagonal elements, and U ′ is an
echelon matrix with l’s as pivots. Since the effect of multiplication of U ′ by
D is multiplication of each row of U ′ by the corresponding diagonal element
of D, the rows of U ′ are obtained from those of U by factoring out the pivots.
The entries of U ′ are the coefficients that appear in Gauss–Jordan elimination
when the entries of A above the pivots are annihilated, as the lij coefficients
show up in the proof above.

It is customary to omit the prime from U ′ and to speak of the LDU
factorization of A.

A =
[

1 3
2 4

]
=
[

1 0
2 1

] [
1 3
0 −2

]
. (8.32)

Now we can factor out the −2 from the U , to get

A =
[

1 3
2 4

]
=
[

1 0
2 1

] [
1 0
0 −2

] [
1 3
0 1

]
= LDU. (8.33)

�

We summarize the LDU factorization as follows.

Corollary 8.1.1. (LDU Factorization). If in the forward phase of the
Gaussian elimination algorithm for an m × n matrix A no row exchanges
are used, then A can be written as a product LDU , where L is an m × m
lower triangular matrix with 1’s along its main diagonal, D is an m × m
diagonal matrix, and U an m × n echelon matrix with 1’s as pivots. The D
and U matrices here can be obtained by appropriately factoring the U of the
LU factorization of A.

The third elementary row operation, the exchange of rows, is necessary if
we encounter a zero when looking for a pivot. In this case we can imagine all

Example8.1.3. (LDU Factorization of the Aof Example 8.1.1). From
Example 8.1.1 we have
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the necessary row exchanges to be done first. If P is the permutation matrix
that represents these row exchanges (see Exercise 2.5.17), then we can apply
the LU or LDU factorization to PA, instead of to A, since for PA no more
row exchanges are needed.

To conclude this section, we present a brief quantitative discussion of
the efficiency of LU factorization versus that of straightforward Gaussian
elimination for an n × n matrix A.

When n is large, even computers may need considerable time to perform
the necessary calculations, and so it is of great practical importance to know
the length of time needed for any algorithm. Present-day computers take
about the same time for every multiplication, division, and multiplication-
addition combination. We call these long operations as opposed to the short
operations of addition, subtraction, and comparison. For all practical pur-
poses the length of time needed for our algorithms is proportional to the
number of long operations, and so we want to count these.

In the forward phase of Gaussian elimination, assuming no row exchanges
are needed, to get a 0 in place of a21, we compute l21 = a21/a11 and subtract
l21a1j from each element a2j of the second row, for j = 2, 3, . . . , n. (The 0
we do not need to compute.) This procedure uses n long operations on the
left side of Ax = b.

Next, we do the same for each of the other rows below the first row. Thus
to get all the n − 1 zeros in the first column requires n(n − 1) = n2 − n long
operations in the worst case, that is, if all the entries in the first column are
nonzero.

Now we do the same for the (n− 1)× (n− 1) submatrix below and to the
right of a11. For this computation we need (n−1)2 − (n−1) long operations.

Continuing in this manner, we find that the total number of long opera-
tions needed for forward elimination on the left side of Ax = b is

n∑
k=1

(k2 − k) =
n(n + 1)(2n + 1)

6
− n(n + 1)

2
=

n3 − n

3
≈ n3

3
. (8.34)

Since the same calculations produce L and U as well, this is also the number
of long operations needed for the LU factorization of A.

To reduce the right-hand side of Ax = b along with A, we do n − 1
multiplications lk1b1 and subtractions from bk when we produce the zeros
in the first column of A. We then do n−2 such operations, when we produce
the zeros in the second column, and so on. Thus altogether the right-hand
side requires

n−1∑
k=1

k =
n(n − 1)

2
≈ n2

2
(8.35)

long operations. If n is large, this number is negligible next to n3/3, and so we
usually consider n3/3 as the approximate number of long operations needed
for the whole of Gaussian elimination.
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The number of long operations is the same, n2/2, whether we reduce the
right-hand side of Ax = b along with A or we solve Lc = b only afterward.
Clearly, the number of long operations needed to solve Ux = c is also n2/2,
and so, once L and U are known, we can obtain x for a new b in just n2 long
operations instead of n3/3.

Exercises

Exercise 8.1.1. Compute the product of the E matrices in Equation 8.18
and compare it to L.

Exercise 8.1.2. Compute the LDU factorization of A =
[

1 2
2 4

]
.

Exercise 8.1.3. Show that for a symmetric matrix A the matrix U in the
LDU factorization satisfies U = LT .

Exercise 8.1.4. Compute the time needed for a computer to solve an n×n
system by Gaussian elimination for n = 1000 if it can do 105 long operations
per second.

Exercise 8.1.5. Compute the number of long operations needed for the LU
factorization of an m × n matrix A.

Exercise 8.1.6. Compute the number of long operations needed to solve
Lc = b and Ux = c, once L and U are known and A is m × n.

Exercise 8.1.7. Show that the number of long operations in solving an n×n
system Ax = b by Gauss–Jordan elimination is approximately n3/3 when n
is large, provided A is first changed to echelon form and then to reduced
echelon form from the bottom up.

Exercise 8.1.8. Show that the number of long operations in inverting an
n × n matrix A by the Gauss–Jordan elimination algorithm of Section 2.3 is
approximately n3 when n is large.

Exercise 8.1.9. Show that the number of long operations in computing the
determinant of an n × n matrix A by reducing it to upper triangular form
and multiplying the diagonal entries is approximately n3/3 when n is large.

MATLAB Exercises

In MATLAB the LU factorization is provided by the command [L, U ] =
lu(A). However, the matrix L in this command usually is only a product of a
permutation matrix and a lower triangular matrix because of row exchanges.
The latter are introduced to minimize roundoff errors, as will be explained in
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the next section. Thus, if a genuine lower triangular matrix is required, then
it is better to use the command [L, U, P ] = lu(A). This command produces a
lower triangular matrix L, an upper triangular matrix U , and a permutation
matrix P such that LU = PA.

Exercise 8.1.10. For five instances of A = round(10 ∗ rand(4, 5)) find an
LU factorization of A, using [L, U, P ] = lu(A), and change it, using the diag
command, to the corresponding LDU factorization. Check that LDU = PA
holds.

8.2 Scaled Partial Pivoting

As we have seen, in Gaussian elimination we need a row exchange whenever a
candidate for a pivot is zero. In machines, because of roundoff errors, we need
an exchange also when such an entry is near zero, not just when it is exactly
zero. The objective of this section is to present the standard procedure for
dealing with this problem, but first we give an example of the kind of trouble
we may encounter when an entry is near zero.

every number to two significant decimal digits, that is, to a number of the
form ±0.a1a2 × 10n, where a1 and a2 are single digits with a1 	= 0, and n is
an arbitrary integer. (Although actual machines compute with much greater
accuracy and round to a fixed number of binary rather than decimal digits,
this setting illustrates the phenomenon quite well and avoids technical com-
plications.) Let us see how our machine would solve the system Ax = b, with

[A|b] =
[

0.001 1
1 1

∣∣∣∣ 1
2

]
. (8.36)

The first step of Gaussian elimination would produce[
0.001 1
0 −999

∣∣∣∣ 1
−998

]
(8.37)

and our machine would round both 999 and 998 to 1000, resulting in[
0.001 1
0 −1000

∣∣∣∣ 1
−1000

]
. (8.38)

The machine would solve this system by back substitution and obtain
x2 = 1 and x1 = 0. But this solution is wrong. The correct solution, from the

Example 8.2.1.(ARoundingError in Solving a 2 × 2SystemCanResult
in a Wrong Solution). Let us imagine that we have a machine that rounds
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matrix in 8.37, is

x2 =
998
999

= 0.9989 . . . and x1 =
1

0.999
= 1.001 . . . . (8.39)

Thus, while the machine’s answer for x2 is close enough, for x1 it is way off.
So what has happened? It is this: In the first step of the back substitution

the machine rounded x2 = 0.9989 . . . to 1. This step, in itself, is certainly all
right, but in the next step we had to divide x2 by 0.001 in solving for x1.
Here the small roundoff error, hidden in taking x2 as 1, became magnified a
thousandfold. Thus, somehow, we must avoid dividing a rounded number by
a very small quantity, or multiplying it by a large quantity. In the present
example we can achieve this goal by switching the two rows: If we reduce the
matrix

[A|b]′ =
[

1 1
0.001 1

∣∣∣∣ 2
1

]
, (8.40)

we get[
1 1
0 0.999

∣∣∣∣ 20.998

]
. (8.41)

This matrix is rounded by the machine to[
1 1
0 1

∣∣∣∣ 2
1

]
, (8.42)

which leads to the correct approximate solution x2 = 1 and x1 = 1. This
time the pivot in the first row was large and did not magnify the roundoff
error in x2 when we solved for x1.

Now one may think that all we need is a large pivot in the first row, and
that can be achieved more simply by multiplying the first row of the matrix
in Equation 8.36 by 1000. That would result in[

1 1000
1 1

∣∣∣∣ 1000
2

]
, (8.43)

which would then be reduced to[
1 1000
0 −999

∣∣∣∣ 1000
−998

]
, (8.44)

The machine would round this result to[
1 1000
0 −1000

∣∣∣∣ 1000
−1000

]
, (8.45)

from which we get x2 = 1 and x1+1000x2 = 1000. Thus, in solving this for x1,
the small roundoff error in x2 = 1 is again magnified by a factor of 1000 and
results in the same wrong answer of x1 = 0 as before. This shows that in
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general it is the small value of a11/a12 that magnifies the roundoff error, not
just the small value of a11 alone. Since in the second row the corresponding
ratio a21/a22 is big, we can avoid the problem, as we have seen, by putting
that row on top. �

Considerations like those in the foregoing example have led to the fol-
lowing strategy to minimize the magnification of roundoff errors in Gaussian
elimination.

Proposition 8.2.1. (Scaled Partial Pivoting). For every m×n matrix A,

1. Compute a scale factor for each row as the largest absolute value of the
entries of that row. In other words, compute

si = max
1≤j≤n

|aij | (8.46)

for each i.
2. Compute the ratio of the absolute value of the first entry in each row to

its scale factor, that is, compute

ri = |ai1|/si (8.47)

for each i. (Ignore rows with si = 0.)
3. Find a row for which ri is maximal and put it on top. Use the first entry

of this row as the pivot to produce zeros below it as usual. (If all ri are 0,
then go to the next column, etc.) Note that in actual machine programs
we do not really move the rows, just keep track of which one is to be used
as the pivot row.

4. Repeat the above steps on the submatrix obtained by deleting the first row
and the first column, until we run out of rows or columns.

The above procedure is called scaled partial pivoting. The word “scaled”
refers to the scaling used in Step 2 above, “pivoting” refers to the whole
pivot-selection procedure by reordering the rows, and the adjective “partial”
indicates that we do not consider a reordering of the columns as well. (The
latter has been tried, but did not result in significant improvements.)

[A|b] =

⎡
⎢⎢⎣

15 13 − 22 1
−7 − 11 53 32
12 7 4 8
0 12 −7 1

∣∣∣∣∣∣∣∣
2

12
44
11

⎤
⎥⎥⎦ . (8.48)

Then the scale factors are s1 = 22, s2 = 53, s3 = 12, and s4 = 12. The corre-
sponding ratios in the first column are r1 = 15/22, r2 = 7/53, r3 = 12/12 = 1,

Example8.2.2. (ScaledPartial Pivoting for a 4×4System). To see how this
procedure works, consider the system given by
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and r4 = 0. Since r3 is the biggest of these, we put the third row on top, and
then proceed with the reduction of the first column as usual:

[A|b]′ =

⎡
⎢⎢⎣

12 7 4 8
15 13 − 22 1
−7 − 11 53 32

0 12 −7 1

∣∣∣∣∣∣∣∣
44
2

12
11

⎤
⎥⎥⎦ . (8.49)

Subtracting appropriate multiples of the first row from the others, we first
reduce this matrix to⎡

⎢⎢⎣
12 7 4 8
0 17/4 −27 −9
0 − 83/12 166/3 110/3
0 12 −7 1

∣∣∣∣∣∣∣∣
44

−53
113/3

11

⎤
⎥⎥⎦ . (8.50)

Next, we should rescale the last three rows. But in practice this is usually
not done because people have observed that it is not worth the effort. In this
example, as the reader could easily check, rescaling would lead to the same
result, namely that the fourth row should be the next pivot row. Thus we
put the fourth row in second place, and proceed as follows:

→

⎡
⎢⎢⎣

12 7 4 8
0 12 −7 1
0 0 −1177/48 −449/48
0 0 7387/144 5363/144

∣∣∣∣∣∣∣∣
44
11

−2731/48
6337/144

⎤
⎥⎥⎦ . (8.51)

Now 7387/144 > 1177/48, and so we swap the last two rows to get

→

⎡
⎢⎢⎣

12 7 4 8
0 12 −7 1
0 0 7387/144 5363/144
0 0 −1177/48 −449/48

∣∣∣∣∣∣∣∣
44
11

6337/144
−2731/48

⎤
⎥⎥⎦ (8.52)

and

→

⎡
⎢⎢⎣

12 7 4 8
0 12 −7 1
0 0 7387/144 5363/144
0 0 0 62406/7387

∣∣∣∣∣∣∣∣
44
11

6337/144
−264901/7387

⎤
⎥⎥⎦ . (8.53)

From here we proceed with regular back substitution to obtain x4 = −264901/
62406, x3 = 245855/62406, x2 = 12372/3467, and x1 = 193565/62406. �

It should be obvious that no algorithm can completely prevent the mag-
nification of roundoff errors in the solution of linear systems. However,
J. M. Wilkinson proved in the 1960s that Gaussian elimination with partial
pivoting is as good as we can get; that is, in this procedure the magnification
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depends only on the matrix A, and can be characterized by what is called
the condition number of A. If A is a symmetric nonsingular matrix, then the
condition number is given by the simple formula c = |λn/λ1|, where λn is the
eigenvalue of largest absolute value and λ1 of the smallest. For other types
of matrices the condition number is more difficult to compute; we do not go
into this. In general, c is the factor by which a relative error |Δb|/|b| in the
right-hand side of Ax = b is magnified to produce the corresponding relative
error |Δx|/|x| in the solution x.

Exercises

Exercise 8.2.1. Show how the machine of Example 8.2.1 would solve the
system Ax = b with

[A|b] =
[

0.002 1
6 − 1

∣∣∣∣ 4
2

]
, (8.54)

compare the result to the correct solution, and explain the discrepancy.

Exercise 8.2.2. Show how the machine of Example 8.2.1 would solve the
system Ax = b with

[A|b] =
[

2 1000
6 − 1

∣∣∣∣ 4000
2

]
, (8.55)

compare the result to the correct solution, and explain the discrepancy.

Exercise 8.2.3. Solve the system of Exercise 8.2.1 by the method of partial
pivoting. Show all intermediate results, including the scale factors si and the
ratios ri. Compare the result to the correct solution, and explain why it is a
good approximation.

Exercise 8.2.4. Solve the system⎡
⎣2 4 − 2

1 3 4
5 2 −1

⎤
⎦
⎡
⎣x1

x2
x3

⎤
⎦ =

⎡
⎣ 6

−1
2

⎤
⎦ (8.56)

by the method of partial pivoting. Show all intermediate results, including
the scale factors si and the ratios ri.

Exercise 8.2.5. Solve the system⎡
⎣1 2 5

4 − 7 11
5 8 9

⎤
⎦
⎡
⎣x1

x2
x3

⎤
⎦ =

⎡
⎣1

0
1

⎤
⎦ (8.57)

by the method of partial pivoting. Show all intermediate results, including
the scale factors si and the ratios ri.
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Exercise 8.2.6. a. Show that the condition number c of a symmetric matrix
satisfies c ≥ 1.
b. Find all symmetric 2 × 2 matrices with c = 1.
c. Find the condition number of the matrix A of Equation 8.36.
d. Find the condition number of the matrix A of Equation 8.40.
e. What conclusions can you draw from the answers to Parts a–d?

MATLAB Exercises

Exercise 8.2.7. Enter

A =
[

1 999999 999999
1 1 2

]
(8.58)

and

B =
[

1 1 2
1 999999 999999

]
.

Run the commands rrefmovie(A) and rrefmovie(B). Which one gives the
better solution to the system represented by these as augmented matri-
ces? Why?

Exercise 8.2.8. Enter the augmented matrix of Equation 8.49 as A in MAT-
LAB and run the command rrefmovie(A).
a. Compare the observed sequence of operations to achieve Gauss–Jordan
reduction to the one suggested in Exercise 8.1.7 on page 299. Which one is
more efficient? How many long operations are needed in this method? (You
can actually count all operations by using the MATLAB command flops.
See help flops.)
b. Are the rows used in the same order as in Example 8.2.2? What is the
difference? Which method is preferable, in general?

Exercise 8.2.9. Enter the MATLAB commands A = hilb(12), c =
ones(12, 1) and b = A ∗ c. The matrix A is the Hilbert matrix of order
12, defined by aij = (i + j − 1)−1 for i, j = 1, . . . , 12. It is extremely ill-
conditioned; that is, it has a very high condition number. You can check this
by entering cond(A). The equation Ax = b should obviously have the solu-
tion x = c. See what the MATLAB commands x = A\b and x = rref [A b]
produce.

8.3 The Computation of Eigenvalues and Eigenvectors

In Chapter 7 the eigenvalues of a matrix A were always computed from the
characteristic equation of A. Though indispensable for the theory, this is a
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very inefficient procedure for almost all but the very smallest matrices. There
are several reasons for this. First, the expansion of an n×n determinant has n!
terms, which is already enormous for moderately large values of n. Second, the
characteristic equation is an algebraic equation of degree n, and nth degree
equations can be solved only by approximate methods anyway if n is 5 or
more, so it might be better to use approximate methods designed directly
for computing eigenvalues. Third, the solutions of high degree equations are
usually very dependent on roundoff errors in the coefficients.

There exist several numerical procedures for the computation of eigen-
values and eigenvectors. We shall consider only the power method and some
of its variants. In this method we reverse the procedure of using diagonal-
ization to compute powers of a matrix, and use the powers to obtain the
eigenvalues. For n ≤ 100 or so, this technique is quite feasible with modern
computers, which can compute such powers directly with great speed. To
begin our discussion, let us take another look at Example 7.1.1.

A =
[

1/2 3/2
3/2 1/2

]
(8.59)

has unit eigenvectors s1 = 1√
2
(1, 1)T and s2 = 1√

2
(−1, 1)T with corresponding

eigenvalues λ1 = 2 and λ2 = −1.
So, if we write x in terms of the basis {s1,s2} as

x = xS1s1 + xS2s2, (8.60)

then we get

Anx = xS1A
ns1 + xS2A

ns2 = 2nxS1s1 + (−1)nxS2s2. (8.61)

Thus, for large values of n, the first term dominates (we say λ1 = 2 is a
dominant eigenvalue), and Anx will point approximately in the direction of
s1 and will have length 2nxS1. This can also be seen from Figure 8.1, by
observing that the direction of the vectors x, Ax, A2x, . . . approaches that
of s1, and their length nearly doubles with each step.

If the eigenvalue λ1 were not known, we could use Equation 8.61 in various
ways to give us an approximation for it. For instance, if we consider the ratio
of the first components of the vectors An+1x and Anx, then we find that

lim
n→∞

(An+1x)1
(Anx)1

= lim
n→∞

2n+1xS1/
√

2 + (−1)n+2xS2/
√

2
2nxS1/

√
2 + (−1)n+1xS2/

√
2

= lim
n→∞

2xS1 + (−1/2)nxS2

xS1 − (−1/2)nxS2
= 2 if xS1 	= 0. (8.62)

Thus the above ratio provides an approximation to λ1 = 2 when n is
large. �

Example 8.3.1. (ThePowersofaCertainMatrix in theDiagonalizingBasis).
The matrix
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s2 s1

j

i

Ax
x

xS2

xS1

A2x

Fig. 8.1. The action of the matrix A and its powers in the diagonalizing basis

In the preceding example we could have used the second components or
the lengths of the same vectors. However, because the eigenvectors are not
known, the preferred procedure is to scale the vectors so that, for each value
of n, we divide through by a selected component relative to the standard
basis. It is this method that we summarize in the next theorem.

Theorem 8.3.1. (Direct Power Method for Obtaining the Dominant
Eigenvalue and Its Eigenvector by Iteration). Let A be a diagonaliz-
able matrix with a dominant eigenvalue λ1, that is, an eigenvalue such that
|λ1| > |λj | for j 	= 1. Assume also that λ1 has multiplicity 1, and that s1 is
a corresponding eigenvector with a nonzero kth component, for some fixed k.
Choose an arbitrary vector x0 with a nonzero kth component, and set suc-
cessively x′

i = xi/(xi)k and xi+1 = Ax′
i for i = 0, 1, 2, . . ., assuming also that

(xi)k 	= 0 for every i. This makes (x′
i)k = 1 in each step, and (xi)k will ap-

proach the dominant eigenvalue λ1, while the vectors x′
i and xi will approach

multiples of s1, unless the decomposition of the initial vector x0 relative to a
basis of eigenvectors had no component in the direction of s1.

Proof. Let A be n×n and s1, s2, . . . , sn a complete set of eigenvectors. Then
every x0 can be written as

x0 = x0S1s1 + x0S2s2 + · · · + x0Sn
sn, (8.63)
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and

x′
0 =

1
x0k

(x0S1s1 + x0S2s2 + · · · + x0Sn
sn), (8.64)

where x0k stands for the kth component of x0 relative to the standard basis.
Then

x1 = Ax′
0 =

1
x0k

(λ1x0S1s1 + λ2x0S2s2 + · · · + λnx0Sn
sn) , (8.65)

and similarly

xi+1 = Ax′
i =

1
x0kx1k · · ·xik

(
λi

1x0S1s1 + λi
2x0S2s2 + · · · + λix0Sn

sn

)
=

λi
1

x0μ1k · · ·xik

(
x0S1s1 +

λi
2

λi
1
x0S2s2 + · · · +

λi
n

λi
1
x0Sn

sn

)

≈ λi
1x0S1

x0kx1k · · ·xik
s1 (8.66)

for large i, because of the dominance of λ1. (We can see from this result that
the speed of convergence is determined by the magnitude of |λ2/λ1|, if λ2 is
the second largest eigenvalue in absolute value.)

Denoting the first component of s1 by s11, we get

xi+1,1 ≈ λi
1x0S1s11

x0kx1k · · ·xik
(8.67)

and

x′
i+1 =

xi+1

xi+1,1
≈ s1

s11
. (8.68)

Hence

xi+2 = Ax′
i+1 ≈ λ1s1

s11
(8.69)

and

xi+2,1 ≈ λ1. (8.70)

�

As we have mentioned, the method seems to fail if by bad luck the de-
composition of the initial vector x0 relative to a basis of eigenvectors has no
component in the direction of s1. Although this failure is certainly true in
theory, in practice after a few steps, roundoff errors will usually introduce a
sufficiently large component in the required direction, which will eventually
swamp the other components.

We illustrate the method by an example, in which we used MATLAB for
the computations.
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A =
[

4 2
3 − 1

]
and x0 = x′

0 =
[

1
1

]
. (8.71)

Then

x1 = Ax′
0 =

[
6.0000
2.0000

]
and x′

1 =
[

1
0.3333

]
,

x2 = Ax′
1 =

[
4.6667
2.6667

]
and x′

2 =
[

1
0.5714

]
,

x3 = Ax′
2 =

[
5.1429
2.4286

]
and x′

3 =
[

1
0.4722

]
,

x4 = Ax′
3 =

[
4.9444
2.5278

]
and x′

4 =
[

1
0.5112

]
,

x5 = Ax′
4 =

[
5.0224
2.4888

]
and x′

5 =
[

1
0.4955

]
. (8.72)

Thus we see that (xi)1 → 5 approximately, as i → ∞ and so λ1 ≈ 5. Similarly,
s1 ≈ (1, 0.5)T . �

The direct power method has the obvious drawback that it computes only
dominant eigenvalues and corresponding eigenvectors. This problem can be
alleviated by observing that, for each eigenvalue λ of A, the matrix B = A−cI
has an eigenvalue λ − c with the same eigenvectors as those of A belonging
to λ. (Clearly, if As = λs, then (A − cI)s = (λ − c)s and vice versa.) Thus
we can undo the dominance of any eigenvalue λ1 by changing over to the
matrix B = A−λ1I. It is, however, possible that the matrix B will not have a
dominant eigenvalue, just as A itself did not have to have one. (This situation
occurs if there are several eigenvalues with the same maximal absolute value.)
Also, we may not be able to make every eigenvalue dominant by this method
(see Exercise 8.3.2), and so we cannot compute such an eigenvalue this way.

We can, however, modify the power method to yield the eigenvalue near-
est to 0, if it is unique. This inverse power method consists of defining the
recursion by

Axi+1 = x′
i =

xi

(xi)k
(8.73)

with A on the left rather than on the right. Indeed, for nonsingular A, Equa-
tion 8.73 is equivalent to

xi+1 = A−1x′
i, (8.74)

Example 8.3.2. (Obtaining the Dominant Eigenvalue and Its Eigenvector
2 × 2 Matrix by the Direct Power Method). Let k = 1 andfor a Certain
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and we know that the eigenvalues of A−1 are the reciprocals of the eigenval-
ues of A with the same eigenvectors. (See Exercise 7.1.13.) Thus, if μ1 is a
dominant eigenvalue of A−1, then we can compute it with the direct power
method of Theorem 8.3.1. Then A will have a unique eigenvalue nearest to 0,
given by λ1 = 1/μ1. In practice we use Equation 8.73, rather than 8.74, since
A−1 is difficult to compute and it is more efficient to solve Equation 8.73 for
each i, using LU factorization.

Coupled with shifting by an appropriate c, the inverse power method
enables us to compute every eigenvalue of a diagonalizable matrix; because
if c is nearest to a given eigenvalue λ of A, but c 	= λ, then B = A − cI will
be nonsingular (see Exercise 8.3.3) and λ − c will be the unique eigenvalue
of B nearest to 0. The only problem is how to find good values for c. There
are some prescriptions for this choice, but, except for one, rather special
suggestion in Example 8.3.4 below, they are left to more advanced texts. So
too is the most popular iterative method, called the QR algorithm. (See,
e.g., Gilbert Strang, Linear Algebra and Its Applications, Brooks Cole; 4th
edition, 2005).

A =
[

4 2
3 − 1

]
and x0 = x′

0 =
[

1
1

]
, (8.75)

and use Equation 8.73 to find the smaller eigenvalue λ2 of A and a corre-
sponding eigenvector s2. Then

Ax1 = x′
0, x1 =

[
0.3000

−0.1000

]
and x′

1 =
[

1
−0.3333

]
,

Ax2 = x′
1, x2 =

[
0.0333
0.4333

]
and x′

2 =
[

1.0000
13.0000

]
,

Ax3 = x′
2, x3 =

[
2.7000

−4.9000

]
and x′

3 =
[

1
−1.8148

]
,

Ax4 = x′
3, x4 =

[−0.2630
1.0259

]
and x′

4 =
[

1
−3.9014

]
,

Ax5 = x′
4, x5 =

[−0.6803
1.8606

]
and x′

5 =
[

1
−2.7350

]
,

Ax6 = x′
5, x6 =

[−0.4470
1.3940

]
and x′

6 =
[

1
−3.1186

]
,

Ax7 = x′
6, x7 =

[−0.5237
1.5474

]
and x′

7 =
[

1
−2.9547

]
. (8.76)

Example8.3.3.(Obtaining theNondominantEigenvalue and ItsEigenvector
for the 2 × 2Matrix ofExample 8.3.2 by the InversePowerMethod).As in
Example 8.3.2, let k = 1 and
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Thus we see that (xi)1 → −0.5 approximately, as i → ∞ and so μ1 ≈
−.5 is the dominant eigenvalue of A−1 and λ1 ≈ −2 is the corresponding
eigenvalue of A. Clearly, s2 ≈ (1, −3)T . �

A =

⎡
⎣1 2 3

2 1 2
3 2 1

⎤
⎦ . (8.77)

First we use the direct method to obtain the largest eigenvalue, as in
Example 8.3.2 above. Letting

x0 = x′
0 =

⎡
⎣1

1
1

⎤
⎦ , (8.78)

we find

x1 = Ax′
0 =

⎡
⎣6

5
6

⎤
⎦ and x′

1 =

⎡
⎣ 1

0.8333
1

⎤
⎦ ,

x2 = Ax′
1 =

⎡
⎣5.6667

4.8333
5.6667

⎤
⎦ and x′

2 =

⎡
⎣ 1

0.8529
1

⎤
⎦ ,

x3 = Ax′
2 =

⎡
⎣5.7059

4.8529
5.7059

⎤
⎦ and x′

3 =

⎡
⎣ 1

0.8505
1

⎤
⎦ ,

x4 = Ax′
3 =

⎡
⎣5.7010

4.8505
5.7010

⎤
⎦ and x′

4 =

⎡
⎣ 1

0.8508
1

⎤
⎦ ,

x5 = Ax′
4 =

⎡
⎣5.7016

4.8508
5.7016

⎤
⎦ and x′

5 =

⎡
⎣ 1

0.8508
1

⎤
⎦ . (8.79)

Thus λ1 ≈ 5.7016 and s1 ≈ (1, 0.8508, 1)T .
Next, we compute the eigenvalue of smallest absolute value by the inverse

power method. Using the same x0 as above, we get

Ax1 = x′
0, x1 =

⎡
⎣0.2500

0
0.2500

⎤
⎦ and x′

1 =

⎡
⎣1

0
1

⎤
⎦ ,

Example 8.3.4. (Obtaining the Eigenvalues and Eigenvectors for a
× 3 Matrix by the Power Method). Letcertain 3
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Ax2 = x′
1, x2 =

⎡
⎣−0.2500

1
−0.2500

⎤
⎦ and x′

2 =

⎡
⎣−1

4
−1

⎤
⎦ ,

Ax3 = x′
2, x3 =

⎡
⎣2.2500

−5
2.2500

⎤
⎦ and x′

3 =

⎡
⎣ 1

−2.2222
1

⎤
⎦ ,

Ax4 = xf
3 , x4 =

⎡
⎣−1.3611

3.2222
−1.3611

⎤
⎦ and x′

4 =

⎡
⎣ 1

−2.3673
1

⎤
⎦ ,

Ax5 = x′
4, x5 =

⎡
⎣−1.4337

3.3673
−1.4337

⎤
⎦ and x′

5 =

⎡
⎣ 1

−2.3488
1

⎤
⎦ ,

Ax6 = x′
5, x6 =

⎡
⎣−1.4244

3.3488
−1.4244

⎤
⎦ and x′

6 =

⎡
⎣ 1

−2.3510
1

⎤
⎦ ,

Ax7 = x′
6, x7 =

⎡
⎣−1.4255

3.3510
−1.4255

⎤
⎦ and x′

7 =

⎡
⎣ 1

−2.3508
1

⎤
⎦ . (8.80)

Thus λ3 ≈ −1/1.4255 ≈ −0.7015 and s3 ≈ (1, −2.3508, 1)T .

Experimentation with different initial vectors would show that the above
eigenvalues are simple. (See Exercise 8.3.1.) Thus we still have to find a third
eigenvalue whose absolute value must fall between 0.7016 and 5.7016. Since
A is symmetric, we know that its eigenvalues are real, and so we can look for
one near 3 or −3. Using c = 3 for shifting would yield λ1 again, and so we
use c = −3. Another argument that suggests a negative λ2 is the following:
We know that the eigenvectors of a symmetric matrix belonging to different
eigenvectors are orthogonal to each other, and the vector x0 = (1, 0.5, −1.5)T

is easily seen to be approximately orthogonal to the s1 and s3 found above.
(We could, of course, find a vector exactly orthogonal to s1 and s3, which
would be an appropriate s2, but we want to illustrate the shifted power
method.) Now Ax0 ≈ −x0, and so λ2 should be negative. Thus we apply the
inverse power method to the matrix

B = A + 3I =

⎡
⎣4 2 3

2 4 2
3 2 4

⎤
⎦ . (8.81)

Setting

x0 = x′
0 =

⎡
⎣ 1.0

0.5
−1.5

⎤
⎦ , (8.82)
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we get

Bx1 = x′
0, x1 =

⎡
⎣ 1.1500

0.2250
−1.3500

⎤
⎦ and x′

1 =

⎡
⎣ 1

0.1957
−1.1739

⎤
⎦ ,

Bx2 = x1, x2 =

⎡
⎣ 1.0500

0.0859
−1.1239

⎤
⎦ and x′

2 =

⎡
⎣ 1

0.0818
−1.0704

⎤
⎦ ,

Bx3 = x′
2, x3 =

⎡
⎣ 1.0200

0.0357
−1.0504

⎤
⎦ and x′

3 =

⎡
⎣ 1

0.0350
−1.0298

⎤
⎦ ,

Bx4 = x′
3, x4 =

⎡
⎣ 1.0084

0.0152
−1.0214

⎤
⎦ and x′

4 =

⎡
⎣ 1

0.0151
−1.0129

⎤
⎦ ,

Bx5 = x′
4, x5 =

⎡
⎣ 1.0036

0.0066
−1.0092

⎤
⎦ and x′

5 =

⎡
⎣ 1

0.0065
−1.0056

⎤
⎦ ,

Bx6 = x′
5, x6 =

⎡
⎣ 1.0016

0.0028
−1.0400

⎤
⎦ and x′

6 =

⎡
⎣ 1

0.0028
−1.0240

⎤
⎦ . (8.83)

Hence we find λ2(B) ≈ 1, and so λ2(A) ≈ −2 and s2 ≈ (1, 0, −1)T . �

Exercises

Exercise 8.3.1.
a. Apply the method of Theorem 8.3.1 to the matrix

A =

⎡
⎣3 0 1

0 3 0
0 0 1

⎤
⎦

of Example 7.1.3 of page 257. Use k = 1, first with the initial vector x0 =
(1, 1, 1)T and second, with the initial vector x0 = (1, −1, 1)T .
b. How would you modify Theorem 8.3.1 in the case in which there is a
dominant eigenvalue of multiplicity 2 or more?

Exercise 8.3.2. Show that if the eigenvalues of A are 1, 2, and 3, then there
is no c, whether real or complex, that would make 2−c a dominant eigenvalue
of B = A − cI.

Exercise 8.3.3. Show that if c is not an eigenvalue of a square matrix A,
then B = A − cI is nonsingular.
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MATLAB Exercises

Exercise 8.3.4. Let A = hilb(3) and compute Aˆ8./Aˆ7. Explain what
you get.

Exercise 8.3.5. Use the methods of this section to compute the eigenvalues
and eigenvectors of
a. A = hilb(3),
b. A = ones(3),
c. A = ones(4),
d. A = hadamard(4).
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A. Appendices

A.1 Implication and Equivalence

In this section we shall discuss in a very informal manner two basic relations
of logic and the ways in which they are used in mathematics. These relations
apply to statements that are either true or false, such as “2+2 = 4,” “the sun
is shining,” “x + 1 = 4.” Here the first statement is always true, the second
one is occasionally true, and “x + 1 = 4” is true if x is 3 and is false for
all other values of x. However, in mathematics, as in common speech, the
statements we make are generally considered to be true, in contrast to some
discussions in formal logic where they may be either true or false. So the
equation above is usually considered to mean that x is 3.

Statements can be connected by various logical operations to form new
statements. The connectives “and,” “or,” “not,” “if... then” indicate the sim-
plest of these. The first three are fairly straightforward and well known,
but the last one is frequently misused and misunderstood. Also, since it is
used in the theorems and proofs throughout the book, we now examine it in
detail.

Let p and q denote arbitrary statements. We call the compound statement
“if p then q” an implication. Note that when we make such a statement, we
mean the implication to be true, but that does not say anything about the
truth of p and q themselves. For instance, “if it rains, I will take my umbrella”
does not say anything about rain or shine on any particular day, nor whether
I will take my umbrella tomorrow.

It is sometimes helpful to illustrate implications by an Euler diagram1 as
shown in Figure A.1.

This diagram is meant to be interpreted as saying that for the points
of the set P the statement p is true, and for those of Q the statement q is
true. Clearly, for this configuration, if a point is in P , then it is also in Q.
The diagram also shows that for the points outside the set P the statement
“not p” is true, and for the points outside the set Q the statement “not q”
is true.
1 Euler first used these diagrams around 1770, more than a century before Venn’s

more familiar diagrams were published.
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P

Q

Fig. A.1. Euler diagram for implication

There are various equivalent ways of expressing an implication. Here is a
list:

1. If p then q,
2. q if p,
3. p ⇒ q,
4. p implies q,
5. p only if q (look at the diagram),
6. q is a necessary condition for p,
7. p is a sufficient condition for q,
8. q follows from p.

An important fact is that implication is transitive; that is, if p implies q,
and q implies r, then p implies r.

While this list merely showed different possible language constructions
for the same relation, we can also make a logical change to produce a new
relation that will be true exactly when the above implication is true. We
obtain this new relation by interchanging p and q with (not q) and (not p),
respectively. Thus p ⇒ q becomes (not q) ⇒ (not p). The latter statement
is called the contrapositive of the former and is logically equivalent to it, as
can perhaps best be seen by looking at the Euler diagram. Of course, the
contrapositive can also be expressed in all the various equivalent ways that
we had for the original implication.

If
∑∞

n=1 an converges, then limn→∞ an exists and equals 0.

The contrapositive of this statement is the equivalent statement:

If it is not true that limn→∞ an exists and equals 0, then
∑∞

n=1 an

diverges. �

Note that, because of the logical equivalence of contrapositives, it is suffi-
cient to prove only one of these statements to establish the truth of the other

Example A.1.1. In calculus we have encountered the simple theorem:
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one as well. The first statement is easy to prove, while the second one would
be hard to prove directly, but is the one we need in most applications.

Implication is not symmetric. That is, p ⇒ q is not equivalent to q ⇒ p;
they say different things. The latter is called the converse of the former and
vice versa. Depending on what p and q stand for, it can happen that one of
the two implications is true and the other is not, that both are true, or that
both are false. For instance, the statement “If an animal is a dog, then it is a
canine” is true, but its converse “If an animal is a canine, then it is a dog” is
false, because it could be a fox. Note that the converse too can be expressed
in all the equivalent ways that were possible for the original implication.

Example A.1.2. The statement of Example A.1.1 above also illustrates the
case in which the original implication is true but its converse is not. The
original statement is:

If
∑∞

n=1 an converges, then limn→∞ an exists and equals 0.

The converse is:

If limn→∞ an exists and equals 0, then
∑∞

n=1 an converges.

As we know, this statement is false, since the harmonic series
∑∞

n=1
1
n

provides a counterexample. �

Example A.1.3. The Theorem of Pythagoras illustrates the case of both a
statement and its converse being true. Letting a, b, c stand for the lengths
of the sides and the hypotenuse, respectively, of a triangle, “If the triangle is
a right triangle, then a2 + b2 = c2” and its converse “If a2 + b2 = c2, then
the triangle is a right triangle” are both true. �

The case of both a statement and its converse being true occurs so of-
ten that it has a new name and new language associated with it: The new
relation between p and q is called equivalence, and it can be expressed by
combining any of the forms in the list of expressions for implication for the
two statements p ⇒ q and q ⇒ p and for their contrapositives. The most
common ways are2

1. p is equivalent to q,
2. p ⇔ q,
3. p if and only if q,
4. p iff q,
5. (p ⇒ q) and (q ⇒ p),
6. p is a necessary and sufficient condition for q.
7. (p ⇒ q) and ((not p) ⇒ (not q)).

2 The numbers in this list have only a vague connection to the numbers in the
preceding list.
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Observe that “p if and only if q” is an abbreviation for “(p if q) and (p only
if q),” which is equivalent to “(p if q) and (q if p).” This statement can be
written symbolically as “(q ⇒ p) and (p ⇒ q),” which means the same as
Statement 5 above, since the “and” operation is commutative. Thus, when
we want to prove an equivalence, we must prove two implications. We usually
do this in either the form 5 or in the form 7, which is obtained from 5 by
replacing the second part by its contrapositive.

A.2 Complex Numbers

In this appendix we give a brief review of complex numbers and exponential
functions.

In 1545 an Italian mathematician called Gerolamo Cardano published a
general formula for the solution of cubic equations, building on earlier work
of special cases by others. Cardano’s formula has the interesting property
that, even when the equation has three real roots, it gives those roots only
if the square roots of negative numbers are used in the computations. This
discovery started the exploration of such numbers, which were named imag-
inary numbers, as opposed to the familiar real numbers, and of sums of the
two kinds, named complex numbers. These unfortunate names have stuck,
although we now regard imaginary numbers as no more imaginary than reals
or even than natural numbers. The theory of complex numbers was fully de-
veloped only in the beginning of the nineteenth century and that of complex
matrices at the end of it.

Definition A.2.1. The set C of complex numbers is a two-dimensional vec-
tor space3 with multiplication also defined as follows: Two basis vectors of C
are denoted by 1 and i, and each element of C is usually written as z = a+bi,
where a and b are real numbers and a is an abbreviation for a ·1. The vector 1
is identified with the real number 1, and its real multiples with the real num-
bers. The complex numbers of the form bi, for any real b, are called imaginary
numbers. The product of two complex numbers is defined to be commutative,
associative, and distributive, and for the basis vectors as 12 = 1, 1 · i = i and
i2 = −1.

This definition has several simple consequences.
First, the original problem of the square roots of negative numbers is now

solved: We define
√

c, for any complex number c, as any complex number
z whose square is c, that is, z =

√
c if c = z2. Then

√−1 = ±i, since
(±i)2 = (±1)2 · i2 = 1 · (−1) = −1. The square root of any other negative

3 To be more precise, it is a two-dimensional vector space over the reals, meaning
that it is two dimensional with real numbers as the scalars in the definition of a
vector space.
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number can now be computed as follows: If a is any positive number, then√−a = ±i
√

a, since then (±i
√

a)2 = (±i)2 (
√

a)2 = (−1)a = −a. We shall
see shortly that every complex number except zero has exactly two square
roots, and exactly n nth roots. (Every root of 0 is 0.) Note that, when dealing
with complex numbers, the symbol

√
c is used ambiguously for either of the

two roots, unlike in the case of real positive c, where it stands for the positive
root. A similar convention holds for nth roots. The correct meaning should
always be clear from the context.

The set C is closed under multiplication:

(a + bi) (c + di) = (ac − bd) + (ad + bc) i. (A.1)

Division of complex numbers is also possible within C, with the not un-
expected exception of division by zero. For any complex numbers a, b, with
b 	= 0, we say a/b = z if a = bz. To find z let us write a = a1+a2i, b = b1+b2i,
and z = x + yi, where a1, a2, b1, b2, x, y are real. Then a = bz becomes

a1 + a2i = (b1 + b2i) (x + yi) = b1x − b2y + (b1y + b2x)i. (A.2)

This complex equation is equivalent to the two real equations

b1x − b2y = a1 (A.3)

and

b2x + b1y = a2. (A.4)

Their solution is

x =
a1b1 + a2b2

b2
1 + b2

2
and y =

a2b1 − a1b2

b2
1 + b2

2
. (A.5)

These fractions always exist, since b 	= 0 implies b2
1 + b2

2 	= 0.
Now that we know that a/b = z is well defined, we can obtain it more

simply by multiplying both numerator and denominator of

a

b
=

a1 + a2i

b1 + b2i
(A.6)

by b = b1 − b2i as in the following example.

1 + 2i

3 + 4i
=

(1 + 2i)(3 − 4i)
(3 + 4i)(3 − 4i)

=
1 · 3 + 2 · 4 + (2 · 3 − 1 · 4)i

32 + 42 =
11
25

+
2
25

i. (A.7)

�

The multiplier we used in the denominator occurs in many other situations
as well, and so it has a name: For any complex number z = x + yi we call
the complex number z = x − yi the complex conjugate of z.

Example A.2.1.
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The main properties of the complex conjugate are:

zz = x2 + y2, (A.8)

z + z = 2x, (A.9)

z − z = 2yi, (A.10)

z = z, (A.11)

z1 + z2 = z1 + z2, (A.12)

and

z1z2 = z1z2. (A.13)

Since C is a two-dimensional vector space, it can be represented by the
points or vectors of a plane. Length, addition, subtraction, and multiplication
by reals have the same geometrical meaning as in R2. We have, however, new
constructions for products, quotients, powers, and roots of complex numbers,
as will now be described.

For the complex number z = x + yi we write x = Rz and y = Iz for the
real and imaginary parts of z, respectively. The absolute value or modulus of
z is defined as

|z| =
√

x2 + y2, (A.14)

and any one of the angles from the positive real axis to the vector z is called
the argument of z and is denoted by arg z or arc z. Thus, in polar coordinates,
any z 	= 0 is represented by

z = r(cos φ + i sin φ), (A.15)

where

r = |z| and φ = arg z. (A.16)

The polar form of z leads easily to the geometric meaning of the prod-
uct. Let

z1 = r1(cos φ1 + i sin φ1), (A.17)

and

z2 = r2(cos φ2 + i sin φ2). (A.18)

Then

z1z2 = r1r2[(cos φ1 cos φ2 − sin φ1 sin φ2) + i(sin φ1 cos φ2 + cos φ1 sin φ2)]
(A.19)
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and so

z1z2 = r1r2[cos(φ1 + φ2) + i sin(φ1 + φ2)]. (A.20)

Thus, in the multiplication of complex numbers, the absolute values are mul-
tiplied and the arguments are added.

The following properties of the absolute value can easily be deduced:

|z|2 = zz, (A.21)

|z1z2| = r1r2 = |z1||z2|, (A.22)

and

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1| + |z2|. (A.23)

For a sequence of complex numbers zn we say that

zn → z as n → ∞ if |zn − z| → 0 as n → ∞, (A.24)

that is, if the real-valued sequence |zn − z| converges to zero.
As for reals, a series

∑∞
n=0 zn is said to be convergent if the sequence of its

partial sums sk =
∑k

n=0 zn converges, and absolutely convergent if
∑∞

n=0 |zn|
is convergent. It is easy to prove that absolute convergence of a series implies
its convergence, just as for reals. (See Exercises A.2.4 and A.2.5.)

The series
∑∞

n=0
zn

n! is absolutely convergent for every value of z, since we
know that the real series

∑∞
n=0

|z|n
n is convergent for every value of |z|. The

sum of the former series is ez when z is real, and so we use it to define ez for
complex z:

ez =
∞∑

n=0

zn

n!
(A.25)

for every z ∈ C. This definition preserves the multiplication property ez1ez2 =
ez1+z2 for complex exponents too:4

ez1ez2 =
(

1 + z1 +
z2
1

2!
+

z3
1

3!
+ · · ·

)(
1 + z2 +

z2
2

2!
+

z3
2

3!
+ · · ·

)

= 1 + (z1 + z2) +
1
2!
(
z2
1 + 2z1z2 + z2

2
)

+
1
3!
(
z3
1 + 3z2

1z2 + 3z1z
2
2 + z3

2
)

+ · · ·

= 1 + (z1 + z2) +
1
2!

(z1 + z2)2 +
1
3!

(z1 + z2)3 + · · · = ez1+z2 .

(A.26)
4 In this derivation we make use of the fact (without proof) that absolutely con-

vergent series can be multiplied term by term and the terms may be rearranged
arbitrarily.
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If we use the definition above of the exponential function with z = iφ,
where φ is real, then we get Euler’s formula:

eiφ = 1 + iφ +
1
2!

(iφ)2 +
1
3!

(iφ)3 + · · · = 1 + iφ − φ2

2!
− i

φ3

3!
+

φ4

4!
+ · · ·

=
(

1 − φ2

2!
+

φ4

4!
+ · · ·

)
+ i

(
φ − φ3

3!
+

φ5

5!
+ · · ·

)
; (A.27)

that is,

eiφ = cos φ + i sin φ. (A.28)

From this equation we get

cos φ =
eiφ + e−iφ

2
and sinφ =

eiφ − e−iφ

2i
(A.29)

and the polar form of any z as

z = reiφ. (A.30)

The polar form of z can be written similarly as

z = re−iφ. (A.31)

From Equations A.26 and A.30 we obtain the following important rule for
the multiplication of complex numbers: If z1 = r1e

iφ1 and z2 = r2e
iφ2 , then

(A.32)

Using Euler’s formula (Equation A.28) for the exponential here, we can re-
produce Equation A.20. Thus the above derivation of Equation A.32 provides
a new proof of the trigonometric formulas for the sine and cosine of the sum
of two angles, based on the Taylor series. Alternatively, Equation A.32 could
be obtained from Equation A.20 and Euler’s formula.

Repeated application of Equation A.32 to the same z = reiφ leads to the
power rule

zn = rneinφ (A.33)

for any positive integer n. In Exercise A.2.6 this will be extended to roots
as well.

Exercises

Exercise A.2.1. Prove Equation A.22.

Exercise A.2.2. Prove inequality A.23.

z1z2 = r1r2e
i( 1+ 2).φ φ
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Exercise A.2.3. Let P (z) =
∑n

k=0 akzk be a polynomial with real coeffi-
cients an. Show that if z0 is a zero of P , that is, if P (z0) = 0, then so too
is z0. In other words, complex roots of algebraic equations with real coeffi-
cients always come in complex conjugate pairs.

Exercise A.2.4. Prove that a complex series
∑∞

n=0 zn, with zn = xn + iyn,
converges if and only if the series of the real and imaginary parts

∑∞
n=0 xn

and
∑∞

n=0 yn both converge.

Exercise A.2.5. Prove that absolute convergence of a complex series∑∞
n=0 zn implies its convergence. (Hint : Use the result of the previous ex-

ercise, the facts that |zn| ≥ |xn| and |zn| ≥ |yn|, the comparison test, and the
corresponding theorem for the real series

∑∞
n=0 xn and

∑∞
n=0 yn.)

Exercise A.2.6. Invert Equation A.33 to obtain a formula for nth roots:
If z = wn, then we call w an nth root of z and write w = z1/n. Letting
z = rei(φ+2kπ) here, for any integer k, and w = ReiΦ, show that any nth root
of z must satisfy

z1/n = r1/nei(φ+2kπ)/n, (A.34)

and different values of k result in exactly n distinct nth roots for any z 	= 0.

Exercise A.2.7. Use Formula A.34 to find and plot
a. all square roots of i,
b. all square roots of 1 + i,
c. all cube roots of 1,
d. all cube roots of −1,
e. all fourth roots of i.



Further Reading

The following book is similar in spirit to this one.
Malcolm Adams and Theodore Shifrin, Linear Algebra: A Geometric Ap-

proach, 2nd ed. W. H. Freeman, 2010.

The following three books are introductions to linear algebra but contain
many more applications.
David C. Lay: Linear Algebra and Its Applications, 4th ed. Addison-Wesley,

1993.
Steven J. Leon: Linear Algebra with Applications, 8th ed. Prentice-Hall, 2009.
Gilbert Strang: Linear Algebra and its Applications, 3rd ed. Harcourt Brace,

1988.

The next four books are more advanced.
Lorenzo Sadun: Applied Linear Algebra: The Decoupling Principle, 2nd ed.

Prentice-Hall, 2008. This book deals with Fourier series, differential equa-
tions, and infinite vector spaces.

Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence: Linear Al-
gebra, 3rd ed. Prentice-Hall, 2001.

Sterling K. Berberian and T.J.I. Bromwich: Introduction to Hilbert Space,
2nd ed. Chelsea, 1999.

David G. Luenberger: Introduction to Linear and Nonlinear Programming,
2nd ed. Addison-Wesley 2003.

The next three references discuss computer algebra tools for linear algebra.
Elias Y. Deeba and Ananda D. Gunawardena: Interactive Linear Algebra

With Maple V. Springer-Verlag, 1998.
John R. Wicks:LinearAlgebra: An Interactive LaboratoryApproachWith Math-

ematica, Addison-Wesley, 1996.
http://www.umassd.edu/specialPrograms/atlast/ (MATLAB).
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Absolute value
– of complex number, 320
Adjoint matrix, 240
Algebraic multiplicity, 257
Angle in n dimensions, 20
Anticommutative, 247
Area vector, 250
Argument
– of complex number, 320
Augmented matrix, 43
Axioms, 99

Back substitution, 43, 55
Barycentric coordinates, 37
Basic columns, 119
Basic variables, 50
Basis, 117
Basis matrix, 130, 148
Best fit, 205
Block multiplication, 85
Bound vector, 2

Cauchy’s inequality, 22
Center of mass, 13
Centroid, 14
Change of basis matrix, 149
Characteristic equation, 256
Characteristic polynomial, 256
Closed, 100, 106
Coefficient matrix, 43, 44
Column rank, 133
Column space, 118
Column vector, 44
Complementary subspace, 183
Complex conjugate, 319
Complex numbers, 318
Complex vector space, 279
Composition of mappings, 72
Condition number, 304
Conformable, 72
Connection matrix, 78

Consistent system, 48, 55
Contrapositive, 316
Contravariant components, 27
Converse, 317
Coordinate unit vectors, 23
Coordinate vector, 4, 148
Coordinates, 148
Coriolis force, 250
Covariant components, 27
Cross product, 245

Defective matrix, 259
Determinants, 221
Determined system, 48
Diagonal entries, 56
Diagonal matrix, 263
Diagonalization, 264
Difference equations, 265
Differential equations, 267
Differentiation map, 170
Dimension, 132
Dimension theorem, 131
Direct sum, 145
Directed graph, 140
Direction cosines, 26
Direction vector, 29
Distance, 16
Dominant eigenvalue, 306
Dot product, 17

Echelon matrix, 54
Edge-node incidence matrix, 140
Eigenspace, 256
Eigenvalue, 255
Eigenvector, 255
Electrical network, 62
Elementary matrix, 96, 292
Elementary row operations, 46
Equivalence, 317
Equivalence class, 7
Equivalent matrices, 46

327. , , 
78- - -8 , DOI 10.1007/9 © 

G Schay A Concise Introduction to Linear Algebra
0 8176 325 Springer Science+Business Media, LLC 2012-2



328 Index

Equivalent systems, 46
Euler’s formula, 322
Euler’s polyhedral formula, 142
Exchange Theorem, 127

Form, 275
Forward elimination, 43, 54
Forward substitution, 291, 293
Free variables, 50
Free vector, 8
Full rank, 56
Fundamental subspaces, 137

Gauss–Jordan elimination, 60
Gaussian elimination, 41, 42, 54
General solution, 58
Generating a subspace, 108
Geometric multiplicity, 259
Gram–Schmidt orthogonalization

procedure, 214

Hadamard matrix, 263
Hermite polynomials, 153
Hermitian conjugate, 280
Hermitian matrix, 282
Homogeneous coordinates, 189
Homogeneous system, 59
Hyperplane, 34

Idempotent matrix, 203
Identity matrix, 82
Imaginary numbers, 318
Implication, 315
Incidence matrix, 78, 140
Inconsistent system, 48, 55
Independence, 110
– as minimal spanning set, 125
Independence of equations, 141
Inhomogeneous system, 59
Inner product, 17, 75, 281
Integration map, 173
Inverse mapping, 176
Inverse power method, 309
Inversion, 226
Invertible mapping, 175
Invertible matrix, 88
Isometry, 213
Isomorphism, 175, 187

Kernel, 175
Kirchhof’s laws, 62, 139

Law of cosines, 22
Leading entry, 54

Least-squares line, 205
Least-squares solution, 203
Left eigenvector, 262
Left inverse, 96
Left null space, 137
Legendre polynomials, 159
Length, 15
Linear combination, 105
Linear equation, 41
Linear independence, 110
Linear system, 41
Linear transformation, 163
Lorentz force, 251
Lower triangular matrix, 291
LU factorization, 291

Mapping, 67, 163
– composition of mappings, 72
– scalar multiple of, 68
– sum of mappings, 68
Matrix, 43
– adjoint of, 240
– augmented, 43
– block multiplication, 85
– diagonal, 263
– elementary, 96
– Hermitian, 282
– idempotent, 203
– inverse of, 88
– invertible, 88
– lower triangular, 291
– nonsingular, 93
– of full rank, 56
– order of, 87
– orthogonal, 213
– permutation, 97
– product, 72
– projection, 203
– rank deficient, 56
– rank of, 55, 93
– representing a linear mapping, 168
– scalar multiple of, 69
– singular, 93
– skew-symmetric, 233
– square, 87
– sum of matrices, 69
– symmetric, 203
– transpose of, 94
– unitary, 282
– upper triangular, 56
Matrix multiplication, 72
Minimal spanning set, 126
Modulus, 320
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Multilinear function, 223
Multiplicity, 257

n-dimensional Euclidean vector space,
11

Natural permutation, 226
Nonparametric equations for a line, 29
Nonsingular matrix, 93
Nontrivial solution, 59
Norm, 16
Normal equations, 200
Normal vector, 34
Normalization, 212
Null space, 108, 124
Nullity, 133

Oblique coordinates, 26
Ohm’s law, 62
One-to-one mapping, 175
Onto mapping, 175
Order of matrix, 87
Ordered basis, 148
Orthogonal complement, 136
Orthogonal decomposition, 211
Orthogonal diagonalization, 274
Orthogonal matrix, 213
Orthogonal projection, 21
Orthogonal subspaces, 136
Orthogonal vectors, 17
Orthographic projection, 193
Orthonormal, 24
Orthonormal decomposition, 212
Orthonormal set of vectors, 212
Outer product, 75
Overdetermined, 48

Parallelogram law, 2
Parametric equations of a line, 28
Parametric equations of a plane, 32
Partial pivoting, 302
Particular solution, 58
Permutation, 226
Permutation matrix, 97
Pivot, 46, 53
Position vector, 1
Power method for eigenvalues, 306
Principal Axis Theorem, 274
Projection, 21, 200, 212
Projection matrix, 195, 203
Proper subspaces, 106
Pseudoinverse, 209

QR factorization, 216
Quadratic form, 275

Radius vector, 1
Range, 175
Rank, 55, 177
Rank deficient, 56
Reduced echelon matrix, 60, 121
Reduction formulas, 235
Right inverse, 96
Right-handed coordinate system, 11
Rotation matrix, 67
Row rank, 133
Row space, 122
Row vector, 44
Row-equivalent matrices, 47

Scalar multiple of a mapping, 68
Scalar multiple of a matrix, 69
Scalar product, 17
Scalars, 2, 280
Scaled partial pivoting, 302
Schrödinger’s equation, 288
Schur’s lemma, 278
Similar matrices, 157
Similarity transformation, 157
Singular matrix, 93
Skew-symmetric matrix, 233
Span, 108
Spectral Theorem, 284
Spectral Theorem for Symmetric

Matrices, 274
Square matrix
– order of, 87
Standard basis, 118
Standard vectors, 23
Submatrix, 54
Subspace, 105
Sum of mappings, 68
Sum of matrices, 69
Sum of subspaces, 136
Symmetric matrix, 203, 273

Tensor product, 172
Tetrahedron, 14
Three-dimensional Euclidean vector

space, 9
Trace, 160
Transformation, 163
Transition matrix, 149
Transpose of a matrix, 94
Transpose of a product, 94
Transpose of the inverse, 94
Transposition, 226
Transversal, 36
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Triangle inequality, 16
Triangle law, 8
Triple product, 252
Trivial solution, 59
Trivial subspaces, 106
Two-dimensional Euclidean vector

space, 4

Underdetermined, 48
Unit matrix, 82
Unit vector, 16
Unitary matrix, 282

Upper triangular matrix, 56

Vandermonde determinant, 234
Vector product, 245
Vector properties, 5
Vector space, 99
– of linear transformations, 181
Viewplane, 193

Work, 23

Zero matrix, 81


	Contents
	Preface
	Foreword to Instructors
	Foreword to Students
	Acknowledgments
	List of Applications

	1. Analytic Geometry of Euclidean Spaces
	1.1 Vectors
	Exercises
	MATLAB Exercises

	1.2 Length and Dot Product of Vectors in Rn
	Exercises
	MATLAB Exercises

	1.3 Lines and Planes
	Exercises
	MATLAB Exercises


	2. Systems of Linear Equations, Matrices
	2.1 Gaussian Elimination
	Exercises

	2.2 The Theory of Gaussian Elimination
	Exercises

	2.3 Homogeneous and Inhomogeneous Systems, Gauss–Jordan Elimination
	Exercises
	MATLAB Exercises

	2.4 The Algebra of Matrices
	Exercises
	MATLAB Exercises

	2.5 The Inverse and the Transpose of a Matrix
	Exercises
	MATLAB Exercises


	3. Vector Spaces and Subspaces
	3.1 General Vector Spaces
	Exercises
	MATLAB Exercises

	3.2 Subspaces
	Exercises

	3.3 Span and Independence of Vectors
	Exercises
	MATLAB Exercises

	3.4 Bases
	Exercises
	MATLAB Exercises

	3.5 Dimension, Orthogonal Complements
	Exercises
	MATLAB Exercises

	3.6 Change of Basis
	Exercises
	MATLAB Exercises


	4. Linear Transformations
	4.1 Representation of Linear Transformations by Matrices
	Exercises
	MATLAB Exercises

	4.2 Properties of Linear Transformations
	Exercises
	MATLAB Exercises

	4.3 Applications of Linear Transformations in Computer Graphics
	Exercises


	5. Orthogonal Projections and Bases
	5.1 Orthogonal Projections and Least-Squares Approximations
	Exercises
	MATLAB Exercises

	5.2 Orthogonal Bases
	Exercises
	MATLAB Exercises


	6. Determinants
	6.1 Determinants: Definition and Basic Properties
	Exercises
	MATLAB Exercises

	6.2 Further Properties of Determinants
	Exercises

	6.3 The Cross Product of Vectors in R3
	Exercises


	7. Eigenvalues and Eigenvectors
	7.1 Eigenvalues and Eigenvectors, Basic Properties
	Exercises
	MATLAB Exercises

	7.2 Diagonalization of Matrices
	Exercises
	MATLAB Exercises

	7.3 Principal Axes
	Exercises
	MATLAB Exercises

	7.4 Complex Matrices
	Exercises
	MATLAB Exercises


	8. Numerical Methods
	8.1 LU Factorization
	Exercises
	MATLAB Exercises

	8.2 Scaled Partial Pivoting
	Exercises
	MATLAB Exercises

	8.3 The Computation of Eigenvalues and Eigenvectors
	Exercises
	MATLAB Exercises


	Erratum to: A Concise Introduction to Linear Algebra
	A. Appendices
	A.1 Implication and Equivalence
	A.2 Complex Numbers
	Exercises

	Further Reading
	Index



