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PREFACE TO THE SECOND EDITION 

This second edition differs from the first edition mainly in the addition of a 
chapter on the Interpretational Problem. Even before the printing of the frrst 
edition, there was criticism from some quarters that the account of this problem 
included in the introductory chapter is too sketchy and brief to be of much use to 
the students. The new chapter, it is hoped, will remove the shortcoming. In 
addition to a detailed description of the Copenhagen and the Ensemble Interpre­
tations, this chapter also contains a brief account of the Hidden-Variable Theories 
(which are by-products of the interpretational problem) and the associated 
developments like the Neumann's and Bell's theorems. The important role 
played by the Einstein-Podolsky-Rosen Paradox in defining and delineating the 
interpretational problem is emphasized. Since the proper time to worry over the 
interpretational aspect is after mastering the mathematical fonnalism, the chapter 
is placed at the end of the book. 

Minor additions include the topics of Density Matrix (Chapter 3) and Charge 
Conjugation (Chapter 10). The new edition thus differs from the old one only in 
some additions, but no deletions, of material. 

It is nearly two years since the revision was completed. Consequently, an 
account of certain later developments like the Greenbelger-Home-Zeilinger­
Mermin experiment [Mennin N.D. Physics Today 36 no 4, p. 38 (1985») could not 
be included in Chapter 12. It would, however, be of interest to note that the 
arguments against the EPR experiment presented in Section 12.4 could be 
extended to the case of the GHZ-Mermin thought-experiment also. For, the 
quantum mechanically incorrect assumption that a state vector chosen as the 
eigenvector of a product of observables is a common eigenvector of the individual 
(component) observables, is involved in this experiment as well. 

Several persons have been kind enough to send their critical comments on the 
book as well as suggestions for improvement. The author is thankful to all of 
them. and. in particular. to A.W. Joshi and S. Singh. The author is also thankful 
to P. Gopalakrishna Nambi for permitting to quote, in Chapter 12. from his Ph.D 
thesis and to Ravi K. Menon for the use of some material from his Ph.D work in 
this chapter. 

January 1993 V.K. THANKAPPAN 



THIS PAGE IS 
BLANK 



PREFACE TO THE FIRST EDITION 

This book is intended to serve as a text book for physics students at the M.Sc. 
and M. Phil (Pre-Ph.D.) degree levels. It is based, with the exception of Chapter 
I, on a course on quantum mechanics and quantum field theory that the author 
taught for many years, starling with 1967, at Kurukshetra University and later at 
the University of Calicut. At both the Universities the course is covered over a 
period of one year (or two semesters) at the final year M.Sc. level. Also at both 
places, a less formal course, consisting of the developments of the pre-quantum 
mechanics period (1900-1924) together with some elementary applications of 
SchrOdinger's wave equation, is offered during the first year. A fairly good 
knowledge of classical mechanics, the special theory of relativity, classical elec­
trodynamics and mathematical physics (courses on these topics are standard at 
most universities) is needed at various stages of the book. The mathematics of 
linear vector spaces and of matrices, which play somewhat an aU-pervasive role 
in this hook, are included in the book. the former as part of the text (Chapter 2) 
and the latter as an Appendix. 

Topics covered in this book. with a few exceptions. are the ones usually found 
in a book on quantum mechanics at this level such as the well known books by 
L. I. Schiff and by A. Messiah. However. the presentation is based on the view 
that quantum mechanics is a branch of theoretical physics on the same footing as 
classical mechanics or classical electrodynamics. As a result. neither accounts of 
the travails of the pioneers of quantum theory in arriving at the various milestones 
of the theory nor descriptions of the many experiments that helped them along the 
way. are included (though references to the original papers are given). Instead, 
the empha<;is is on the ba<;ic principles, the calculational techniques and the inner 
consistency and beauty of the theory. Applications to particular problems are 
taken up only to illustrate a principle or technique under discussion. Also, the 
Hilbert space fonnaIism, which provides a unified view of the different formula­
tions of nonrelativistic quantum mechanics, is adopted. In particular, SchrOdin­
ger's and Heisenberg's formulations appear merely as different represenlations, 
analogous respectively to the Hamilton-Jacobi theory and the Hamilton's 
formalism in classical mechanics. Problems are included with a vicw to supple­
menting the text. 

From it'> early days, quantum mechanics ha<; hccn bedevilled by a controversy 
among its founders regarding what has come to be known as the Interpretational 
Prohlem. Judging from the number of papers and books still appearing on this 
topic, the controversy is far from settled. While this problem does not affect either 
the mathematical framework of quantum mechanics or its practical applications, 
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a teacher of quantum mechanics cannot afford to be ignorant of it It is with a 
view to giving an awareness of this problem to the teacher of this book that 
Chapter 1 is included (students are advised to read this chapter only at the end, or 
at least after Chapter 4). The chapter is divided into two parts: The first part is a 
discussion of the two main contestants in the arena of interpretation-the Statis­
tical (or, Ensemble) and the Copenhagen. In the second part, the path-integral 
formalism (which is not considered in any detail in this book) is used to show the 
connection between the 'If-function of quantum mechanics on the one hand and 
the Lagrangian function L and the action integral S of classical mechanics on the 
other. Thjs too has a bearing on the jnterpretational probJem. For, the jnterpre­
tational problem is, at least partly, due to the proclivity of the Copenhagen school 
to identify 'If with the particle (as indicated by the notion, held by the advocates 
of this school, that observing a particle at a point leads to a "collapse" of the 
'If-function to that point!). But the relationship between S and 'If suggests that, just 
as S in classical mechanics, 'If in quantum mechanics is a function that charac­
terises the paths of the particle and that its appearance in the dynamical equation 
of motion need be no more mysterious than the appearance of S or L in the 
classical equations of motion. 

The approach adopted in this book as well as its level presumes that the course 
will be tau8ht by a theoretical physicist. The level mi8ht be a little beyond that 
currently followed in some Universities in this country, especially those with few 
theorists. However, it is well to remember in this connection that, during the last 
three decades, quantum theory has grown (in the form of quantum field theory) 
much beyond the developments of the 1920's. As such, a quantum mechanics 
course at the graduate level can hardly claim to meet the modem needs of the 
student if it does not take him or her at least to the threshold of quantum field 
theory. 

In a book of this size, it is difficult to reserve one symbol for one quantity. Care 
is taken so that the use of the same symbol for different quantities does not lead 
to any confusion. 

This book was written under the University Grants Commission's scheme of 
preparing University level books. Financial assistance under this scheme is 
gratefully acknowledged. The author is also thankful to the,National Book Trust, 
India, for subsidising the publication of the book. 

Since the book had to be written in the midst of rather heavy teaching assign­
ments and since the assistance of a Fellow could be obtained only for a short 
period of three months, the completion of the book was inordinately delayed. 
Further delay in the publication of the book was caused in the process of fulfilling 
certain formalities. 

The author is indebted to Dr. S. Ramamurthy and Dr. K.K. Gupta for a 
thorough reading of the manuscript and for making many valuable suggestions. 
He is also thankful to the members of the Physics Department, Calicut University, 
for their help and cooperation in preparing the typescript. 

MarCh 1985 V.K.T~P~ 
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CHAPTER 1 

INTRODUCTION 

Quantum theory, like other physical theories, has two aspects: the mathematical 
and the conceptual. In the former aspect, it is a consistent and elegant theory and 
has been enormously successful in explaining and predicting a large number of 
atomic and subatomic phenomena. But in the latter aspect, which "inquires into 
the objective world hidden behind the subjective world of sense perceptions" 1 , it 
has been a subject of endless discussions without agreed conclusions2

, provoking 
one to remark that quantum theory appears to be "so contrary to intuition that the 
experts themselves still do not agree what to make of it,,3. In the following sec­
tion, we give a brief account of the genesis of this conceptual problem, which has 
defied a satisfactory solution (in the sense of being acceptable to all) in spite of 
the best efforts of the men who have built one of the most magnificent edifices of 
human thought. And in Section 1.2 is presented a preview of the salient features 
of the mathematical aspect of the theory. 

1.1 THE CONCEPTUAL ASPECT 

In order to understand the root cause of the conceptual problem in quantum 
mechanics, we have to go back to the formative years of the theory. QuaIlltirtl 
theory originated at a time when it appeared that classical physics had at la'it 
succeeded in neatly categorising all physical entities into two groups: matter 
and radiation (or field). Matter was supposed to be composed of 'particles' 
obeying the laws of Newtonian (classical) mechanics. After the initial 
controversy as to whether radiation consists of 'corpuscles' or 'waves', Fresnel's 
work4 on the phenomenon of diffraction seemed finally to settle the question in 
favour of the latter. Maxwell's electromagnetic theory provided radiation with a 
theory as elegant as the Lagrangian-Hamiltonian formulation of Newtonian 

mechanics. 

1. Lande. A., Quantum Mechanics (Pitman Publishing Corporation, New York 1951). p. 7. 
2. See, for example, Lande. A., Born, M. and Biem, W., Phys. Today, 21, No.8. p. 55 (1968) 

Ballentine, L.E. et aL Phys. Today, 24, No.4, p. 36 (1971). 
3. Dewitt, B., Phys. Today. 23, No.9, p. 30 (1970). 
4. See, Born, M. and Wolf, E., Principles of Optics (Pergamon Press, Oxford 1970), IV Edition 

pp. xxiii-xxiv. 
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Particles and Waves in Classical Physics 

Now, a particle, according to classical physics, has the following characteristics: 
PI. Besides having certain invariant attributes such as rest mass, electric 

charge, etc., it occupies a finite extension of space which cannot, at the same 
time, be occupied by another particle. 

P2. It can transfer all, or part, of its momentum and (kinetic) energy 'instanta­
neously' to another particle in a collision. 

P3. It has a path, or orbit, characterised by certain constants of motion such as 
energy and angular momentum, and determined by the principle of least 
action (Hamilton's principle). 

On the other hand, a monochromatic harmonic wave motion is characterised 
by the following: 
WI. A frequency v and a wavelength A, related to each other by 

VA= (roIk) =v, (1.1) 
where, v is the phase velocity of the wave motion. 

W2. A real (that is, not complex) function 
'JI." k(r, t) = 4>(k . r - wt), referred to as the wave amplitude or wave func-

tion, that satisfies the classical wave equation, 

i)24> = v zvz", atZ '1" 
(1.2) 

From the linearity (for a given (0) of Eq. (1.2) follows a very important prop­

erty of wave motions5
; If'JII' 'JIz, '" represent probable wave motions, then a linear 

superposition of these also represents a probable wave motion. Conversely, any 
wave motion could be looked upon as a superposition of two or more other wave 
motions. Mathematically, 

(1.3) 

where the c/s are (real) constants. Eq. (1.3) embodies the principle of superpo­
sition, expressed in the preceding statements. It is the basis of the phenomenon 
of interference, believed in classical physics to be an exclusive characteristic of 
wave motions6

• 

Now, experimental and theoretical developments in the domain of micropar­
ticles during the early part of this century were such as to render the above con­
cepts of particles and waves untenable. For one thing, it was found, as in the case 
of electron diffraction (Davisson and Germer I927f, that the principle of super-

5. In the following, we will suppress the subscripts CI) and k, so that lV ... t (r, t) is written as IV (r, t). 

6. Classical wave theory also allows for the superposition of wave motions differing in frequencie·; 
(and, thus, in the case of a dispersive medium, in phase velocities). Such a superposition lear.s 
to a wave packet which, unlike monochromatic wave motions, shares the particle's propelty 
(PI) of being limited in extension (see Appendix C). 

7. The experimental discovery of electron diffraction was preceded by theoretical speculation by 
Louis de Broglie (1923) that matter-particles are associated with waves whose wavelength Ids 
related to the particle-momentum p by 'J... = hlp, where h is the universal constant introduced 
.:arlier by Max Planck (1900). 
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position plays an important role in the motion of particles also. For another, 
radiation was found to share property P2 listed above as a characteristic of par­
ticles (Photoelectric and Compton Effects)8. It was, thus, clear that the classical 
concepts of particles and waves needed modification. It is the extent and the 
nature of these modifications that became a subject of controversy_ 

The Two Interpretations 

Thcre have been two basically different schools of thought in this conncction. 
One, led by Albert Einstein and usually referred to as the Statistical (or Ensemble) 
Interpretation of quantum mechanics9

, maintains that quantum theory deals with 
statistical properties of an ensemble of identical (or, 'similarly-prepared') sys­
tems, and not with the motion of an individual system. The principle of super­
position is, therefore, not in conflict with properties PI and P2, though it is not 
consistent with P3. However, unlike PI, P3 is not really a defining property of 
particles, but is only a statement of the dynamical law governing p:uticles (in 
classical mechanics). In place of P3, quantum theory provides a law which is 
appl icablc only to a statistical ensemble and which, of course, reduces to [>3 as an 
approximation when conditions for the validity of classical mechanics are satis­
ficdlO. 

The other school, led by Niels Bohr and known as the Copenhagen Interpre­
/aiion. advocates radical departure from classical concepts and not just their 
!]F)dification. According to this school, the laws of quantum mechanics, and in 
particular the principle of superposition, refer to the motion of individual system s. 
:s.Jch a viewpoint, of course, cannot be reconciled with the classical concept of 
particles as embodied in PI. The concept of 'wave particle duality' is, therefore, 
:rliroduced according to which there arc neither particles nor waves, but only (in 
cla~sicalterminology) particle-like behaviour and wave-like behaviour, one and 
the same physical entity being capable of both. A more detailed account of this 
interpretation is given in Chapter 12; the reader is also referred to the book by 
Jammerll and the article by StappI2. 

8. It was in explaining the photoelectric effect that Albert Einstein (1905) reintroduced the concept 
of light corpuscles. originally due to Isaac Newton, in the fonn of light quanta which wcre latcr 
namcd photons by G.N. Lewis (1926). Priorto this, Max Planck (1900) had introduced the idea 
that exchange of energy between matter and radiation could take place only in units of hv, v 
being the frequency of the radiation. 

9. For a comparatively recent exposition of the Statistical Interpretation, see, L.E. Ballentine, Revs 
Mod. Phys. 42. 357 (1970). 

10. Tbankappan, V.K. and Gopalakrishna Nambi, P. Found. Phys. 10,217 (1980); Gopalakrishna 
Nambi, P. The Interpretational Problem in Quantum Mechanics (Ph. D Thesis: UniversilY of 
Cali cut, 1986), Chapter 5. 

\1. Jammer, M., The Conceptual Development of Quantum Mechanics (McGraw-Hili, New Yo k, 
\966), Chapter 7. 

12, SlapI', Il.l'., Amer. j, Phys. 40,1098 (1972). 



4 QUANTUM MECHANICS 

The Tossing of Coins 

It should be emphasized that the dispute between the two schools is not one that 
could be settled by experiments. For, experiments in the domain of microparticles 
invariably involve large number of identical systems, and when applied to large 
numbers, both the interpretations yield the same result. Besides, even if it were 
possible to make observations on a single isolated particle, the results could not 
be taken as a contradiction of the Copenhagen Interpretation13

• The example of 
the tossing of coins might serve to illustrate this. The law governing the outcome 
of tossings of identical coins is contained in the following statement: "The 
probability for a coin to fall with head up is one half". According to the Statistical 
Interpretation, this statement means that the ratio of the number of tosses resulting 
in head up to the total number would be one half if the latter is large enough, the 
ratio being nearer to the fraction half the larger the number of tosses. In any single 
toss, either the head will be up or it will be down, irrespective of whether some­
body is there to observe this fact or not However, the application of the law 
would be meaningless in this case since it is incapable of predicting the outcome 
of a single toss. This incapability might stem from an ignorance of the factors 
(parameters) that govern, and the way they influence, the motion of the coin. One 
cannot, therefore, rule out the possibility of a future theory which is capable of 
predicting the outcome of a single toss, and from which the above-mentioned 
statistical law could be deduced (see Chapter 12, Section 5). 

The Copenhagen Interpretation, on the other hand, insists that the law is 
applicable to the case of a single toss, but that it is the statement that the coin falls 
with either head-up or head-down that is meaningless. When no observer is 
present, one can only say that the coin falls with partially (in this case, half) 
head-up and partially head-down. If an observation is made, of course, it will be 
found that the coin is either fully head-up or fully head-down but the act of 
observation (that is, the interaction between the observer and the coin) is held 
responsible for changing the coin from a half head-tip state to a fully head-up state 
(or a fully head-down state). Agreement with observation is, thus, achieved, but 
at a heavy price. For, the coin now is not the classical coin which was capabk of 
falling only with head-up or with head-down but not both ways at the same time. 
Also, the role of the observer is changed from that of a spectator to an active 
participant who influences the outcome of an observation. Since the law is pre­
sumed to govern the outcome of an individual tossing, it follows that the search 
for a more fundamental theory is neither warranted nor likely to be fruitful. 

A Thought Experiment 

At this stage, one might wonder why one has to invent such a complicated scheme 
of explanation as the Copenhagen Interpretation when the Statistical Interpre-

13. According to the Statistical Interpretation. quantum mechanics does not have anything to say 
about the outcome of observations on a single particle. 
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tation is able to account for the observed facts without doing any violence to the 
classical concept of the coin. Unfortunately, phenomena in the world of micro­
particles are somewhat more complicated than the tossings of coins. The com­
plication involved is best illustrated through the following thought-experiment. 
Imagine a fixed screen W with two holes A and B (see Fig. 1.1). In front of this 

w x 

Fig. 1.1. The double slit interference experiment. 

screen is an election gun G which shoots out electrons, having the same energy, 
uniformly in all directions. Behind W is another ~crecn X on which the arrival of 
the individual electrons can be observed. We first close B and observe the elec­
trons arriving on X for a certain interval of time. We plot the number of electrons 
versus the point of arrival on X (the screen X will be assumed to be 
one-dimensional) and obtain. say, the curve fA shown in Fig. 1.2. Next we close 

Fig. 1.2. The distribution of particles in the double slit interference experiment when only slit A is 
open (f.). when only slit B is open (I.) and when both A and B are open (l •• ). I represcn;s 
the sum of IA and lB' 
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A and open B and make observation for the same interval of time, obtaining 1.I1C 
curve lB' We now repeat the experiment keeping both A and B open. We should 
expect to get the curve I which is the sum of IAandIB , but get the curve lAB instead. 
This curve is found to fit the formula 

lAB (x) =1 'VA(X) + 'VB (X) 12, (104) 

with (1.5) 

where 'VA(X) and 'VnCx) are complex functions of x. 

Apparently, our expectation that an electron going through A should not be 
knowing whether B is closed or open, is not fulfilled. Could it be that every 
electron speads out like a wave motion after leaving the gun, goes through both 
the holes and again localises itself on arriving at X? Eqs. (104) and (1.5) support 
such a possibility since these are identical (except for the complex character of 'VA 

and 'VB) with the equations relating amplitudes and intensities of a wave motion. 
In order to test this, we set up a device near A to observe all the electrons passing 
through A, before they reach X. We will assume that the electrons arriving on X 
that are not registered by the device have come through B. We find that the 
electrons coming through A are, indeed, whole electrons. But, to our surprise, we 
find that the curves corresponding to the electrons coming through A and B 
respectively are exactly similar to IA and IB , implying that the distribution of 
electrons on X is now represented not by the curve lAB' but by the curve I. This 
shows that electrons are particles conforming to the definition PI, at least when­
ever we make an observation on them. 

Let us summarise below the main results of t~e experiment: 
£1. The number of electrons arriving at a point x on the screen X through A 

depends on whether B IS closed or open. The total number of electrons 
arriving on X through A is, however, independent of B14. 

£2. Observations affect the outcome of experiments. 
The results of the electron experiment are easily accommodated in the 

Copenhagen Interpretation. The basic law governing the electrons in this case is 
contained in the statement that the probability for an electron that has arrived on 
X to have come through one of the holes, say A, is P and through the other hole is 
(1 - P); where 0 ~ P ~ 1. Since this law governs the motion of each and every 
electron, when both the holes are open and when no observations are made to see 
through which hole the electrons are passing, it should be presumed that every 
electron passes, in a wave-like fashion, through both the holes. Alternatively, one 

14. This follows from the relation [see Eq. (1.32)]. 

L IAB(x)dx" i 1 ",.(x) + "'B(X) 12 fix 

= L'II'A(X)12dx+ L'II's(X) ,2 dx 

= LIA(X)dx+ LI8 (X)'dx. 
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could take the view that, as far as the distribution lAB is concerned, the question lli~ 
to whether a particular electron has come through one or both holes, is not a 
meaningful one for physics as no experiment can answer the question without 
affecting the distribution JAB. For any experiment designed to answer the question 
reveals the electron to be a particle capable of passing through only one hole, but 
,hen the distributon is also changed from the one corresponding to classical waves 
(JAB) to one corresponding to classical particles (I), justifying the hypothesis that 
the act of observation transforms the electron from a wave-like object extended in 
space to a particle-like object localised in space. The dichotomy on the part of the 
electron is easily understood if we realize that particles and waves are mcrely 
complementary aspects of one and the same physical entity l5, anyone experiment 
being capable of revealing only one of the aspects and not both l6

• 

Thus, the Copenhagen Interpretation does not appear so far-fetched when 
viewed in the context of the peculiar phenomena obtaining in the world 
of microparticles. However, it denies objective reality to physical phenomena, 
and prohibits physics from being concerned with happenings in between obser­
"alions. The question, how is it that the act of observation at one location causes 
an electron, that is supposed to be spread over an extended space, to shrink to this 
location?, is dubbed as unphysical. The interpretation, thus, leaves one with an 
impression that quantum theory is mysterious as no other physical theory is. 
-;·h05e who fine! it difficult to be at home with this positivist philosophy underly­
i Ilg the Copenhagen Interpretation, will find the Statistical Interpretation more 
attractive. Let us see how this interpretation copes with the results of the elcctror 
~xperiment. 

According to the Statistical Interpretation, the probability law stated ..:arlier 3': 

govGrning the motion of electrons, is a statistical one and is applicable only whe n 
J large enough number of 'similarly-prepared' electrons are involved. The dIS­
tribution of electrons coming through, say holc A, on the screen X being the resull 
of a statistical law, need not be the same when the scrccn W has only hole A on it 
as when both A and B are there, just as the distribution of head-up states in the 
tossings of coins with only one side is different from the distribution of head-up 
,tales in thG tossings of coins with two sides. Let us elaborate this point: The 
1istribution of ckctrons coming through hole A on X, is a result of the momclllum 
.ransfer laking place between the electrons and the SGreen WatA. The expectation 
.hat this momentum transfer, and hence the distribution, are unaffected by the 
lddition of another hole B on W is based on the presumption that a screen with 
wo holes is merely a superposition of two independent sneens with one hole 
~ach. The experimental result shows that the presumption is not justified. The 

5. The Principle of Complementarity, which seeks to harmonize the mutually exclusive notions of 
particles and waves, was proposed by Neils Bohr (1928). A detailed account of the principle j, 
given in the reference quoted in footnote II as well as chapler 12. 

6. This limitation on the part of experiments is enshrined in the Uncertainty Principle proposed by 
Werner Heisenberg (1927), which pUIS a limit on the precision with which complcmentar:' 
variables such as position and momentum of a particle can be measured. 
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fact that the momentum transfer at the hole A when both A and B are open is 
different from the momentum transfer when only A is open, could also be under­
stood on the basis of the quantization of the momentum transfer resulting from the 
periodicity in space of the holes in the former case (W. Duane 1923)17. 

Thus, experimental result El is easily understood on the basis of the Statistical 
Interpretation. As for E2, one should distinguish between the two ways in which 
observations affect the outcome of experiments. One is that observations on 
electrons coming through hole A affect their distribution on the screen X. This 
could be understood as due to the fact that the momentum transfer involved in the 
act of observation is not negligible compared with the momentum of the electrons 
themselves. The other is that observations on electrons coming through hole A 
affect (apparently) also the distribution of electrons coming through hole B. In 
order to accommodate this fact within the framework of the Statistical Interpre­
tation, one has to assume that the statistical correlation that exists between two 
paths (of the electrons), one passing through A and the other through B, is such 
that it can be destroyed by disturbing only one of the paths. In fact, a correlation 
represented by the linear superposition of two functions 'I'A and 'liB as in Eq. (1.3), 

whose phases are proportional to the classical actions associated with the paths, 
satisfies such a conditionlO 

• For, as is known from the classical theory of waves, 
the correlation can be destroyed by introducing a random fluctuation in the phase 
of O'le of the functions. So in order to understand the experimental result, one has 
to assume that observations on the electrons always introduce such a random 
variation in the action associated with the path of the electrons18

• 

The 'Mystery' in Quantum Mechanics 

Thus, in the course of understanding E2, we are led to introducing a (complex) 
function which, in certain aspects such as the applicability of the principle of 
superposition, resembles a wave amplitude19

• This is the really new element in 
quantum mechanics; it represents an aspect of microworld phenomena quite 
foreign to classical statistical processes such as the tossings of coins. But whereas 
the Copenhagen school regards these functions as incompatible with the classical 

17. The period would be the distance d between the holes. According to Duane's hypothesis the 
momentum transfer between the screen Wand the electron, when both A and B are open, has to 
be an integral multiple of (h/d), h being the Planck's constant. This relationship is identical with 
the de Broglie relation, p = hf).. (see footnote 7) if we recognise the wavelength i.. as a periodicity 
in space. Duane's hypothesis is an extension, to the case of the linear momentum, of the earlier 
hypotheses of Max Planck (footnote 8) and of Neils Bohr (1913) on the relationship between 
the quantization of energy and periodicity 't in time [energy = integral multiple of (hl't)l and 
quantization of angular momentum and periodicity 21t in angles [angular momentum = integral 
multiple of (h/21t)I, respectively. 

18. This is nothing but the Uncertainty Principle. 
19. Erwin Schrodinger (1926) was the first to introduce these functions and to derive an equation of 

motion (the Schrodinger equation) for them. The physical interpretation of these functions as 
probability amplitudes which are related to the probability of finding the particles at a space 
point in the same way as wave amplitudes are related to wave intensities, is due to Max Born 
(1926). 
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concept of particles, and invests them with a certain amount of physical reality, 
thereby endowing quantum mechanics with an aura of mystery, the Statistical 
Interpretation makes a distinction between these functions and the physical 
entities involved. The physical entities are the electrons or other microparticles 
(conforming to definition PI), but the functions are mathematical entities 
characterising the paths of the microparticles just as the action in classical 
mechanics is a mathematical function characterising the classical paths of 
particles. The functions, thus, determine the dynamical law governing the motion 
of microparticles. This law is, admittedly, new and different from the dynamical 
law in classical mechanics. But, theI1,it is not the first time in physics that a set 
of rules (theory) found to be adequate for a time, proved to be inadequate in the 
light of new and more accurate experimental facts. Also, the fact that quantum 
mechanics does not provide an explanation to the dynamical law or laws (such as 
the principle of superposition) underlying it, does not justify alleging any special 
mystery on its part, since such mysteries are parts of every physical theory. For 
example, classical mechanics does not explain why the path of a particle is 
governed by Hamilton's principle, eletromagnetic theory does not offer an 
explanation for Coulomb's or Faraday's laws and the theory of relativity does not 
say why the velocity of light in vacuum is the same in all inertial frames. Thus, 
from the viewpoint of the Statistical Interpretation, quantum mechanics is no 
more mysterious than other physical theories are. It certainly represents an 
improvement over classical mechanics since it is able to explain Hamilton':; 
principle, but an explanation of the fundamental laws underlying quantum 
mechanics themselves need be expected only in a theory which is more funda­
mental than quantum mechanics. 

It should be clear from the foregoing discussion that the choice between the 
Copenhagen and the Statistical Interpretations could be one of individual taste 
only. Anyway, the mathematical formalism of quantum mechanics is indepen­
dent of these interpretations. 

1.2 THE MATHEMATICAL ASPECT 

One or the other branch of mathematics plays a dominant role in the formulation 
of every physical theory. Thus, classical mechanics and electromagnetic theory 
rely heavily on differential and vector calculus, while tensors playa dominant role 
in the formulation of the general theory of relativity. In the case of quantum 
mechanics, it is the mathematics of the infinite-dimensional linear vcctor spaces 
(the Hilbert space) that play this role. In this section, we will show how the basic 
laws of quantum mechanics20 make this branch of mathematics the most appro­
priate language for the formulation of quantum mechanics. 

20. In the fonn originally proposed by Feynman, R.P. [Revs. Mod. Phys. 20, 367 (1948); also, 
Feynman, R.P. and Hibbs, A.R., Quantum Mechanics and Path Integrals (McGraw-Hill, New 
York 1965)] and later modified by V.K. Thankappan and P. Gopalakrishna Namhi lO

• 'Ine basic 
laws of non-relativistic quantum mechanics were discovered during the period 1900-1924 
through the efforts of many physicists, and a consistent theory incorporating these laws were 
fonnulaled during the period 1925-1926 mainly by Erwin Schrodinger (1926) in the form of 
Wave Muhanics and by Werner Heisenberg, Max Born and Pascal Jordan (1925-1926) in the 
form of Matrix Mechanics. 
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Now, in classical mechanics the motion of a particle is governed by the 
Principle of Least Action (Hamilton's Principle). According to this principle, the 
path of a particle between two locations A and Q in space is such that the action S 
(Q, tQ : A, tA) defined by, 

(1.6) 

is a minimum, where L is the Lagrangian, p the momentum and H the Hamiltonhm 
of the particle, and tA and tQ are, respectively, the time of departure from A and the 
time of arrival at Q. Thus, the path between A and Q is determined by the varia­
tional equation, 

as = o. (1.7) 

We will call the path defined by Eq. (1.7) the classical path and will denote it by 

(lc and the action corresponding to it by Sc(Q, tQ : A, tA)' 

As we have already mentioned, experiments in the domain of microparticles 
have shown that the paths of these particles are not governed by the principle of 
least action. However, the results of these experiments are consistent with, indeed 
suggestive of, the following postulates which could be regarded as the quantum 
mechanical laws of motion applicable to microparticles: 
Q 1. Associated with every path (l of a particle21 from location A to location Q in 

space, is a complex function cP..(Q, tQ : A, tJ given by, 

CPa = aa exp [(illI)Sal, (1.8) 

where 

Sa(Q, tQ: A, tJ = J;Q L dt =Jj pdq - J;Q Hdt. 
a a 

(1.9) 

ta, here, has the same meaning as fA in Eq. (1.6) except that it could be 

different for the different paths (l. Also22
, h = h(21t. 

Q2. The probability amplitude for a particle to go from A (at some time) to Q 

at time tQ is 'l'A(Q, tQ)' where, 

VA (Q, tQ) = kaCP,.(Q, tQ : A, tJ. (1.1 0) 

Q2a. Only those paths contribute to the summation in Eq. (1.10) that differ from 
(lc by less than "h/2 in action. That is 

Ma == (Sa- Sc) < (11/2). (1.10a) 

Q3. If A, B, C, '" are locations corresponding to similarly prepared states23 of a 
particle in an experimental set up, the number of particles arriving at a point 
of a observation, Q, at time tQ from the above locations, is proportional to 

1 '¥(Q, tQ) 12, where, 

(1.11) 

21. We asswne that the spin of the particle is zero. 
22. The one-letter notation for (hf21t) was first introduced by P.A.M. Dirac (1926), in the fonn ·'h". 

For this reason, 11 is also called Dirac's constant. 
23. This phrase stands for 'elements, or members, of an ensemble'. 
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the CA 's being numbers (in general, complex) to be chosen such that 

J I \fJ 12 d 3r Q = 1, (1.l1a) 

where d 3r Q represents an element of volume containing the point Q. 

If (X is a path between A and Q, and ~ a path between Band Q, Ihen, as a con­

sequence of condition (1.1 Oa), we will have, 

I (Sa - Sp) I-MAE < (1112), (1.12a) 

where 

(Xc and ~c being the classical paths between A and Q and between Band Q, 

respectively. Also, corresponding to every path 'a' between A and Q (that con­

tributes to 'VA ), there will be a path' b' between Band Q such that 

I Sa-Sb I = ASAB' (I.12b) 

Eq. (l.12b) enables us to say that the phase difference between 'VA and 1J1u is the 

quantity (1'",SAl/tz) whereas inequality (I. lOa), from whieh inequality (1.12'1) fol­

Inws, ensures that the phase difference is such a definite quantity. Now, a definite 

phase dilTerence between 'VA and 1J18 is the condition for A and B to be coherenl 

.,(,urces (or, similarly-prepared states) from the viewpoint of Q. We will, therc­
!ore, refer to inequality (1.1Oa) as the coherency condition. 

Postulate Q3 incorporates the principle of superposition referred to in Section 

l.l (Eq. (1.3». However, unlike Ci and \Vi in (1.3), CA and 'VA in Eq. (1.11) are 

complex quantities. Therefore, it is not possible to interpret 'VA and \fJ in (1.11' 'IS 

representing wave motions in the physical space24. Also, the principle of sU£' .. 
position will connict with property PI of particles (see, p. 2), if applied to the case 
of a single particle. But there is no experimental basis for invalidating PI; on the 
contrary, experiments confinn the continued validity of PI by verifying, for 
example, that all electrons have the same spin, (rest) mass and electric charge both 
before and after being scattered by, say, a crystal. Therefore, the principle of 
superposition should be interpreted as applying to the statistical behaviour of a 
large number (ensemble) of identical systems. In fact, the terms 'probability 
amplitude' and 'number of particles' emphasize this statistical character of the 
postulates. However, the really new element in the theory is not its statistical 
character, but the law for combining probabilities. Whereas in the classical sta­
tistics, probabilities for independent events are added to obtain the probability for 
the combined event (If P A(Q) and P B(Q) are, respectively, the probabilities for the 
arrival of a panicle at Q from A and from B, then, the probability PAB(Q) for the 
arrival of a particle at Q from either A or B is given by P AE(Q) = P A(Q) + P Il(Q» 
in the new theory, this is not always so. In particular, whenever criterion (1.12a) 

-----.~---

24. III classical wave theory also, complex amplitudes are employed sometimes, purely for the sake 
of calculational convenience. Care is, then, taken in the computation of physically significant 
quamities such as Ihe imcnsity (,f the wave motinn, to s"parale out the contribution due to the 
imaginary part of the ampli!I1'Jes. [n quantum mechanics the IVA'S arC perforce complex. Ise( 

Eq. (,1.15 b)1 
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is satisfied, it is the probability amplitudes that are to be added in place of the 

probabilities [If "'A(Q) and 'I1B(Q) are the probability amplitudes for the arrival of 

a particle at Q from A and fromB, respectively, then the probability amplitude for 

the arrival of a particle at Q from either A or B is given by "'AB(Q) = "'A + "'B' so 

that P AB(Q) = 1 "'AB(Q) 12 = PA(Q) + PB(Q) + 2 Re("'~"'B) * PA +PB]. It appears 

that events which are supposed to be independent, are not really so. 
lf it appears odd that the dynamics of particles should be governed by such 

abstractly-defined entities as the probability amplitudes, one has only to observe 
that these functions are not any more odd than the classical action in terms of 
which they are defined and which plays an important role in the dynamics of 
classical particles. It also turns out that the differential equations satisfied by 
these probability amplitudes are closely related to the Hamilton-Jacobi equations 
satisfied by the action in classical mechanics, as is being demonstrated below: 

The Schrodinger Equation 

In view of (1.10a), the contribution to "'A in (1.10) from paths lying in a single 

plane may be written as, 

",/(rQ, tQ) = 2[ (sc+
m 

a(S)p(S) exp {(i/1i)S}dS 
Jsc 

-a(Sc +1lI2) exp {(il1i)(Sc +1lI2)}] -a(Sc) exp {(i/1i)SJ, 

(1.13a) 

where the last term compensates for counting the path Ct.c twice in the integral. 

Also, p (S) dS represents the number of paths in the plane having action between 

Sand S + dS. while a(S,J = au: We make the assumption that both a(S) and p(S) 

are independent of S. This means that: (i) all the paths between A and Q that 

satisfy condition (1.lOa) contribute equally to VA' (ii) the density of paths is 

uniform in the S-space. Eq. (1.13a) then reduces to, 

",/(r Q' tQ) = A 'exp{(il1i)Sc(rQ, tQ)}' (1.13b) 

A' being a (complex) constant. 

The total contribution to "'A could, in principle, be written as the sum of the 

contributions from the various planes. Under the above assumptions, the contri­
bution from each plane would be proportional to exp [(il1i)Sc], so that 

VA(r Q' tQ) = A exp {(i/1i)Sc(r Q' tQ)} , (1.13c) 

In Eqs. (1.13a-c), rQ is the position vector of the location Q. 
For a fixed location A and variable locations Q, Eq. (1.13c) yields, 

. ~A(rQ' tQ) 
11i a HvirQ, tQ)' (1.l4a) 

tQ 
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(ii/i)'\? Q'VA(rQ, tQ) == P'VA(rQ, (q)' 

where the Hamilton-Jacobi equations25, 

asc 
ar=-H(Q), 

Q 

13 

0.14b) 

(USa) 

(USb) 

have been used. Here, H and P are, respectively, the Hamiltonian and the linear 
momentum (along ac> of the particle at Q. Since the location A is arbitrary we 

have, from Eqs. (1.14a) and (1.11), 

a\}i(r Q' tQ) 
itl. a l{\}i(r Q' tQ)' (1.16) 

tQ 

Erwin SchrMinger was the first to derive this equation (see footnote no. 19), on 
the basis of de Broglie's theory of matter waves and Hamilton's analogy of his 
principle to Fermat's principle of at least time in opticS26. It is, therefore, known 
as Schrodinger's lV ave Equation, while \f' is called SchrMinger's wave function. 
The equation describes the evolution of \}i in time and is, thus, the equation of 
motion for \}i. 

The Uncertainty Principle 

Inequalities (1.1 Oa) and (1.12a) could be interpreted as implying that the random 

fluctuations &)A in the actions associated with each of the amplitudes "'A should 

be less than (fl/2) for them to be superposable as in Eq. (1.11). Conversely, if 
&)A ? (1'112), (Ll7) 

then, "'A cannot be superposed with other amplitudes (that is, there is no 'inter­

ference' between 'VA and other amplitudes). Experimentally, it is found that a 

successful attempt at observing the paths associated with 'VA invariably leads to 

the destruction of the interference between 'VA and other amplitudes. This means 

that two interfering 'paths' cannot be observed without destroying the interfer­
ence be/ween them. Werner Heisenberg (see, footnote no. 16) was the first to 
recognise this face! and to suggest a mathematical expression for it, in the form 
(see, Ref. 11, Section 7.1), 

I!..q .I!..p ?h, (1.18) 

25. Sec Landau, L.D. and Lifshitz, E.M., Mechanics (Pergamon Press, (1969», II Edilion, Sections 
43 and 47. 

26. See Ref. 11, Section 5.3. 
27. Unfortunately, there are different interpretations for Heisenberg's Uncertainty Principle [see H. 

Margenau and L. Cohen, Probabilities in Quantum Mechanics, in Quantum Theory and 
Reality, (Ed) M. Bunge (Springer-Verlag, 1967), chapter 4). just as there are different inter­
pretations of quantum mechanics itself. lbe version given here is the one that follows naturally 
from the postulates. 
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where /l.q and /l.p are the uncertainties [hence the name. 'Uncertainty Principle' 
for the expression (1.18)] in the coordinate q and the momentum p conjugate to q. 
respectively. Now. the uncertainties are defined as the root-mean-square (or. 
standard) deviations from the average values. With this definition. it is possible 
to reduce (see Ref. 10) the semi-equality (1.17) to an expression similar to (1.18). 
namely. 

(1.17a) 

where /l.qA and /l.PA are. respectively. the root-mean-square values of the 

displacements and the momenta (of the paths associated with 'VA) perpendicular 

to the classical path (the 'average' path) belonging to 'VA' The uncertainty 

principle. thus. has its root in the coherency condition. 

The Meaning of 'P 

According to postulate Q3. the number of particles coming. at time tQ' into a 

volume element dV = d3r Q containing the location Q. from the various sources A. 

B. C ..... is proportional to I 'P(rQ' tQ) 12 d3rQ. Therefore. the total number N of 

particles in the volume V is given by 

N = a II 'PI 12. 

where' a' is a proportionality constant. and 

II 'PW= Ltv-.Jv I 'P(rQ• tQ) 12 d3rQ. 

(1.19) 

(1.20) 

In practice. V need not be infinite. but should be large enough for 'P to vanish 
outside V. 

It is customary to define 'P such that a = N in Eq. (1.19). Then. we have. 

11'P112=1. (1.21) 

The interpretation of this equation is that II 'l'112 is the probability of finding a 
particle in the volume V. The fact that 'P is not zero implies that there is a particle 
in the volume V. so that the particle should be certainly found somewhere in V. 

I 'P(r Q. tQ)1 2d 3r Q then is the probability of finding the particle in the volume ele-

ment d3r Q' and I 'P(r Q. tQ)1 2 is the probability density'l1l. That is. NI 'P(r Q' tQ)1 2 is 

the number of particles in a unit volume containing the location Q. 

A similar interpretation could be given to the 'V/s : l'VA(rQ• tQ)1 2d3rQ is the I 

probability that a particle. whose source is A. is found in the volume element d3r Q 

at time tQ and II 'VA (r Q' tQ)1 2d3r Q is the probability that the particle is found some­

where in the volume V. Thus. 

28. The interpretation of I 'I'12 as a probability density is originally due to Max Born (see footnote 
19). 
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(1.22) 

and 

(1.23) 

where NA is the number of particles in the volume V, having their source at A. 
In applying the foregoing interpretation of'l'A' however, we have to be careful 

not to contradict experiments. For, experiments show that the distribution of the 
particles in V, originating from A, is affected by the presence of other sources 
satisfying condition (1.12a). In fact (see Fig. 1.2), 

NI'P(rQ, tQ)1 2d 3rQ 7oLANAI'I'A(rQ, tQ)1 2d3rQ. (1.24) 

Therefore, I 'VA(r Q' tQ)1 2d 3r Q is the probability for the particle from A to be found 

at time IQ in the volume clement d3r Q only when there is no other coherent sources 

present. 
.11. modification in the distribution of the particles from A does not, however, 

affed the total number of particles in V that have their source at A. Thus, Eqs. 
(1.22) and (l.23) are valid whether there are other sources or nol. Therefore, the 
lotal numher of particles in V can be written as, 

N == LAN,,, (1.25) 

or, Nil 'Pill::: LANA II 'l'A 112, 

so that 

But, from Eq. (1.11), we have, 

II 'Ill12 = LA LBC;Cn Iv 'I':Cr Q' tQ)'VB(r Q' tQ)d
3
r Q' 

Comparing Eqs. (1.26) and (1.27), we gee9
, 

I CA 12= (NAIN), 

Iv '1': (r Q' IQ)'I'B(r Q' tQ) d
3
r Q == 0AB' 

where OAll is the Kronecker delta function: 

~\IJ := 0, if A * B , 

:= 1, if A == B. 

From Eqs. (1.28) and (1.25), we have 

LAlcA f=l, 

29. In place 01 (1.29), we can have the condition 

c;ca J 'II: Yad3r Q + c;c, f 'II; 'II,dJr Q = 0, 

which is equivalent to requiring thaI the real part of 

hc, 'II,)' (caWa)d'rQ be zero. 

(1.26) 

(1.27) 

(1.2S) 

(1.29) 

(1.30) 

(1.31) 
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while, from Eqs. (1.27) and (1.29), we see that Eq. (1.31) is just another expres­
sion for Eq. (1.21). 

The Algebra Obeyed by 'I' 

Now, Eq. (1.27) with condition (1.29) can be expressed as, 

IILACA 'l'Ali 2 = LAII CA'I'AI12. (1.32) 

Actually, Eq. (1.29) does not fully express the conditions on the integral 

J'I':'I'Bd3rQ that are implicit in the relation (1.32). These conditions are listed 

below, where we use the abbreviation, 

('I'A' 'l'B) == f'l':(rQ , tQ)'I'B(rQ, tQ)d3rQ, 

('I'A' CB'I'B) = ca('I' .. , 'l'a)' 

('I'A' '1'8 + 'I'd = ('I'A' 'l'B) + ('I'A' 'I'd, 

II'I'AI12~O, 

(1.33) 

(1.341
) 

(1.342
); 

(1.343
) 

(1.344
) 

the equality sign in (1.344) holding only when 'l'A is a null function (that is, when 

'I'~ == 0). The restriction of II 'l'A112 to positive values is essential for its probabil­
istic interpretation. 

From Eqs. (1.29) and (1.11), we have 

cA = ('I'A' 'I') (1.35) 

so that, Eq. (1.31) becomes, 
(1.36) 

The (scalar) numbero (1.341
) is called the scalar or inner-product of'l'A and 

'1'0' This terminology anticipates the possibility of regarding the function 'l'A as a 
vector in some function space. In fact, such a possibility is strongly suggested by 
the following comparison. 

Let X be a vector in the (3-dimensional) physical space. Then, 

(1.37) 

where e. (k = 1, 2, 3) are the unit vectors along three mutually perpendicular 
directions, so that, 

(1.38) 

30. It is possible to have functions for which (1.29) is not the Kronecker delta but some other scalar 
number (see Eq. (1.35) and footnote 29). but which otherwise satisfy all the conditions (1.34'~. 
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(e
J 

• ek ) being the scalar product of ej and e •. x. is the component of X along e •. 

Obviously, 

x. == (e •. X). (1.39) 

If X is a unit vector, then 
3 

I. xi "" I..(X· ek)(el: . X) == 1 (lAO) 
k ~ I 

The similarity of Eqs. (1.1 1), (1.29), (1.35) and (1.36), respectively, to Eqs. 
(1.37), (l.38), (1.39) and (I .40) is obvious, and suggests that If' could be regarded 

as a vector with 'components' cA along the directions of the 'unit vectors' \VA' 

Since, however, CA and 'VA' unlike Xk and e., are complex quantities and since the 

number of independent 'V/s fthat is, those satisfying condition (1.29)] is not 

limited to three, 'P is a vector, not in the physical space, but in some abstract 
function space. The nature of this space could be inferred from the properties of 

the 'VA'S. In enumerating these p'roperties, we will adopt the following definitions 

and notations: 
{'VA} will denote the set of independent functions \VA that occur in the expan­

sion of'f' as in Eq. (1.11). 'I' will stand for any function whose scalar products 
with two or more members of the set 'VA' are non-zero. The 'VA'S and the If"s 

together form a family of functions denoted by ['P, 'VA]' 

The properties of the 'V/s and the 'f"s could be now summarised as follows: 

VI. The sum of two or more members of the family is a 'f' and, thus, belongs to 

the family. Obviously, 

'VA + 'VB ::= 'VB + 'VA' 
and 'VA + ('VB + \jJd == ('VA + 'VB) + 'Ve = 'VA + 'VB + 'Ve· 

V2. It is possible to have a function 'f' which is identically zero. For example. 
in the case of the two-slit interference experiment [see Eq. (1.4)], we de 

have, lAB (x) == \ 'VA (x) + 'VB(X)\2 "" I 'PI 2 == O. Such functions will be called null 

and will be denoted by O. 

V3. According to the postulates, only l'VA12 and I 'f'12 have direct physical 

meaning (being related to the number of particles). Therefore it is possible 

to associate a -'VA with every +'VA and a -'f' with every +'f' such that 

+'VA - 'VA = 0 and +'P - If' == O. Thus with every function in l'f', 'VA], we can 

associate an additive inverse. 
V4. Multiplication of'P by a scalar C yields a function 'f' = c'f' which diffen 

from If' only in that the proportionality constant relating II 'f'112 to th{ 
number of particles is different from that appearing in Eq. (l.l9). But Eq 
(1.l6) shows that this proportionality constant has no effect on the dyna 

mics of the system. Therefore. elf' belongs to ['P, 'VA)' Similar remark 

apply to C'VA' 
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The above properties of'l'A and 'I' show that, if these functions are to be 

regarded as vectors in some abstract space, then, that space should be closed under 
vector-addition and under multiplication by scalars, that there should be a nul/­
vector in the space and that every vector in the space should be associated with an 
additive inverse. These are the properties of a linear vector space (see, Section 
2.1). Furthermore, we have seen that it is possible to define a scalar product in 
the space with properties (1.341-4). Therefore, the space is unitary. 

If 'I' and 'l'A (and hence 41J are to be regarded as vectors, then, Eqs. (1.16) and 

(1.14b) show that H and p should be identified with the differential operators ill 
a at and (1I/i)V, respectively. Since Hand p are (in classical mechanics) dynamical 

variables of a mechanical system, it is reasonable to expect that other dynamical 
variables, such as angular momentum and position co-ordinates, are also repre­
sented by operators (not, necessarily, differential) that act on the space pertaining 
to the system. It is, in fact, found possible to develop an elegant and powerful 
formalism of quantum mechanics based on the above concepts of 'I' as a vector 
and the dynamical variables as operators in an infinite-dimensional, unitary, 
linear vector space (usually referred to as the Hilbert space). We will devote the 
next three chapters to such a formulation of the basic principles of quantum 
mechanics, an outline of which has been presented in this chapter. 
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CHAPTER 2 

LINEAR VECTOR SPACES 

We have seen, in the previous chapter, that the probability amplitudes \If(r, t 

could be regarded as vectors in a linear vector space. In this chapter, we wil1 
develop the mathematical formalism underlying linear vector spaces. 

2.1 VECTORS 

A linear vector space 'Vis defined by a sd S of element x, y, Z, ... called vecton 
and a field Jof numbers a, b, c, ... called scalars, with the following properties: 
(i) The space is closed under vector-addition. That is, corresponding to an~ 

two vectors x and y in the space, there is a unique third vector z which i 
also in the space, such that 

x+y::::z. (2.1 
Vector-addition is commutative: 

x+ y == y +x, (2.2 
and associative: 

x + (y + z) == (x + y) + z = x + y + z; (2.3 
for any three vectors x, y, z. 

(ii) There is a null or zero vector 0, such that, for any vector x in the space, 
x+O =x. (2.4 

The null vector defines the origin of the vector space. 
(iii) Corresponding to every x, there is an additive inverse (-x), such that, 

x + (-x) == O. (2.S 

I. A SCi S '" {sJ is a collection of objects s, (i = I. 2, ... ), which are called elenunls of the set, co~ 

necled by some common allribute. Examples are a set of real numbers, a Sel of atoms, etc. Th 
number n of clements in S is called the cardinal number of S. The set is finite or infinit 
depending on whether n is finite or infinite. St is a subset of S if every element in S, is also al 
clement of S but not vice versa. Thus, the set of positive integers is a subset of the set of integen 
An infinite set has at least one subset which has got the same cardinal number as the original se' 
For example, the set of perfect squares is a subset of the set of positive integers. The cardiw 
number is the same for both the sets since there is a perfect square corresponding to every positi\ 
integer. 
A set i~ denumerable (countable} if it has the same cardinal number as the set of positive intege 
otherwise it is nondenu!IU!rable. 
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(iv) The space is closed under multiplication by scalars. That is, for any scalar 
c, the vector y = ex is in the space if x is in the space. 
Multiplication by scalars is commutative: 

associative: 

and distributive: 

cx=xc, 

a(bx) = (ab)x == abx, 

(2.6) 

(2.7) 

(a+b)x=ax+bx; (2.8a) 
a(x+y)=ax+ay. (2.8b) 

The set of all vectors generated from a single vector in 'Vby multiplication by 
different scalars, is called a ray in 'Il. Geometrically, a rllY is represented by a line 
in the vector space. 

Examples of Linear Vector Spaces 

(1) The set of all n-tuples of numbers, (Xl> Xl •• ' \Xft), when addition of 
vectors and multiplication of a vector by a scalar are defined by 
(Xl' Xl··· xJ + (Yl> Y2 ••• Yft) = (Xl + Yh X2 + Y2 ••• X~\ + yJ. a(xh X2 ••• Xn) 
= (axlo axz ... axJ. " 
This space is referred to as the n-dimensional Euclidean space. 

(2) The real numbers, when they are considered both as vectors and as scalars. 
This is an example of a vector space consisting of a single ray, since all the 
vectors are generated from one vector (the number, 1) by multiplication by 
scalars. 

For a general linear vector space, products of vectors (multiplication of a 
vector by a vector) need not be defined. However, we will restrict to spaces in 
which an inner, or scalar, product can be defined. 
(v) A linear vector space is unitary if a scalar product is defined in it. That is, 

to every pair of vectors x, y, there correspon<;ls a unique scalar (in general, 
complex), (x, y), called the scalar product, such that, 

(x,y) = (y.x),. (2.9a) 

(x,y + z) = (x,y)+(x,z), (2.9b) 

(x,cy)=c(x,y), (2.9c) 

(x, x) ~ 0, the equality sign holding only when x = o. (2.9d) 
Here, the asterisk denotes complex conjugation. In (x, y), x is called the pre/actor 
and y the postjactor. The scalar product is linear with respecNo the post-factor: 

(x,ay+bz) = a (x, y)+b(x,z), (2.10a) 

and antilinear with respect to the prefactor. 
(ax +y, z)=a·(x,z)+b·(y, z) (2.10b) 

Because of this difference, (x, y) is sometimes called the scalar p~oduct of y by x. 
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The 3-dimensional physical space (of position vectors) is an example of a 
unitary pace, while the 4-dimensional space-time of the theory of relatively 
(Xl = X, x2 :::: y, X3 :::: Z, X 4 :;:: iet) is a linear vector space which is not unitary since 

(x, x) ~ 0, where x is a vector in a the space. 

Norm of a vector: We define the distance between two vectors x and y by 

Ilx-YII ==+«x_y),(X_y»1I1. (2.11) 

IIx-yli 

y 

(0) (b) 

Fig. 2.1. Graphical representations of (a) Eq. (2.11). (b) semi-equality (2.12c). 

Obviously, 

II x - yll :;:: II y - xii, 
Ilax-ayll ==Ialllx-yli. 

IIx-YIl $lIx-zll +llz-YII. 
IIx-xll ==0. 

The norm ofx is the distance from the null vector (origin): 

Norm (x) == Ilxll = «x-O),( X_O»112 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

:;:: (x, X)ll2 ~ 0, (2.13) 

the last result following from the property of the scalar product. The norm of a 
vector in a unitary space, thus, corresponds to the length of a vector in the physical 
space. We note that the distance between x and y is, actually, the length of the 
vector z:::::: ±(x - y). 

Since the norm of a vector is zero only when the vector itself is zero, the norm 
of any non-zero vector is positive definite1

• This property of the norm can also be 

2. A quantity is positive definite if itself and its reciprocal are both positive. A real, positiveuumbcr 
is necessarily positive definite. A purely imaginary nwnber is an example of a quantity wLich 
could be positive without being positive definite. 
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expressed in the form of an inequality for the scalar product of any two vectors 
x andy: 

I(x, y)1 s;llxll'llyll, (2.14) 

where, the equality sign holds when y = ax. This is known as the Schwarz 
inequality. Thus, if 0", is the 'angle' between any two vectors x and y, we have, 

_ (x, y) < 
I cos 0",1 -lIxll .11 yll _1. (2.15) 

Problem 2.1 : Prove the Schwarz inequality3. 

Orthonormality and Linear Independence 

A vector, for which the norm is unity. is called a unit vector. From any given 
non-zero vector, a unit vector can be formed by dividing the given vector by its 

x 
norm. Thus, U = ~ , is a unit vector. U is then said to be normalized, and the 

process of forming U from x is called normalization. 
Two vectors, x and y, are orthogonal if their scalar product is zero; that is, if 

(x, y)=O. 

The unit vectors Ult U2' ••• UN form an orthonormal set if they are mutually ortho­
gonal, i.e., if 

(ui, Uj) = air (2.16) 

The vectors belonging to the set U1, ••• , UN are linearly independent if none of 
them can be expressed as a linear combination of the others. Mathematically. this 
means that the equation, 

N 

1: c·u· = O. (2.17) 
j=! J J 

cannot be satisfied except by cj = 0 for allj. For, suppose it is possible to satisfy 

Eq. (2.17) for non-zero values of Cj. Then, dividing the equation by Cj (~O), we 

have, 
U, = 1: bu., 

j "j J J 

{where bj == -(c/c)}, which contradicts our original statement that u, cannot be 

expressed as a linear combination of the other u/s. The only way to avoid the 
difficulty is to assume that Cj = 0, for j * i. so that. CjUj = O. Since Uj is a non-null 

vector, this requires that Cj also be zero. 
The vectors belonging to an orthonormal set are necessarily linearly indepen­

dent. The converse is, however, not true. But it is always possible to orthonor­
malize a set oflinearly independent vectors. By this, we mean that. from a given 

3. A proof is given in Mer:rbacher. E. Quantum Mechanics (lohn Wiley. New York 1970). IT Edi­
tion. p. 298. 
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set of N linearly independent vectors, it is possible to fonn a set of N orthonormal 
vectors. 

We have already shown how to normalise a given vector. Therefore. it would 
be sufficient for us to show how to form a set of orthogonal vectors from a given 
set of linearly independent unit vectors. 

Let (VJN denote the linearly independent set consisting of N unit vectors. such 
that, 

(Vj'V) = 1; (vj.v)"* 0, i "* j. 

We will denote the orthogonal vectors by U j (i = 1,2, .. N). 

Let, 

Since the given vectors are linearly independent, 
v·"* 1: c·v· , ..}} 

} '" 
Therefore, 

U2=V1-(V1' vJv1 =a22.v2+~lvl' 

is orthogonal to VI and, hence, to UI. 

Similarly, 

with 

n 

un = .1: anjvp 
}~I 

a-I k 

anj = -1: L akja~(Vi' Va)' j < n; 
k~jj~l 

and 
a

M
=I, 

is orthogonal to Uj (i = 1 to n - 1). 

Eq. (2.18), for n = 1 to N, can be written as a matrix equation: 
u=Av, 

ul VI 

u2 Vz 
u= ;V= 

UN VN 

1 0 0 0 0 0 

~I 0 0 0 0 

ll:!! ll:!z 1 0 0 0 

A= 

1 

(2.18) 

(2. 19a) 

(2. 19b) 

(2.20) 

(2.21a) 

(2.21b) 
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This process of forming orthogonal vectors from a given linearly independent 
set. is known as the Schmidt or the Gram-Schmidt orthogonalization procedure. 

Fig. 2.2. 

U2 V2 

CD 
I/) 

o 
u 
>' 

I 

>N 

~~------~~------------.~=U1 
V1COS e 

Graphical representation of Ihe Schmidt orlhogonalization procedure in Ihe case of two 
linearly independent vectors VI and v2• 

As an illustrative example. let us consider a 2-dimensional space. Any two 
non-parallel vectors VI and V2 are linearly independent. since VI *' CV!. We assume 

that II vd I = "v211 = 1. Then. 

II u211 = (1 - cos1)r. 

Problem 2.2 : Show that only N orthogonal vectors can be formed from a given 
set of N linearly independent vectors. 

Bases and Dimensions 

A set v" V2 .... VN of vectors is said to span a linear vector space if each vector in 
N 

the space is a linear superposition. L ajvj• of the elements of the set. A basis for 
j:1 

a linear vector space is a set of linearly independent vectors that spans the space. 
Of course. there is an infinite number of bases in a given vector space. But the 
expansion of a vector in terms of a given basis is unique. 

Let {v j } N be a basis. and let 

X = ~XjVj' and X = Lx/vj • 
I I 

be two different expansions of X in terms of {Vj}N' Then. from X - X = O. WI; 

have. 
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(Xj - Xj ')Vj = O. 

Since the v;'s are linearly independent, this is possible only if 

Xj - x/ =0, or, Xj =x/. 

25 

A basis in the case of a linear vector space plays the role of a co-ordinate s"stem 
in the case of the physical space, so that the expansion coefficient Xj could be 
regarded as the component of X along Vi' 

If the elements of a basis are orthonormal, we have an orthonormal basis. It 
is advantageous to use an orthonormal basis since, in this case, the expansion 
coefficient Xk in the expansion, 

can be found just by taking the scalar product of X by Uk' 

(Uk' X) = LX/Uk' u) 
i 

== LXjOjk == Xk• 
i 

Then, the product of two vectors X and Y is given by, 

Also, 

as required by Eq. (2.9d). 

(X, Y) = (~IUj' ;YkUk) 

= Lxj• Yk(U j , Uk) 
j,k 

(X, X) = Llx .. 12 ~ 0, 
i 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

In the following, we will denote an orthonormal basis by the symbol [ ]N' 
The number N of elements in a basis {V;}N gives the dimension of the space. N 

may be finite or infinite. In a finite-dimensional space, every basis has the same 
number of elements. Also, any linearly independent set of N unit vectors would 
form a ba<;is. These properties are not shared by infinite-dimensional spaces: Any 
linearly independent set having infinite number of elements is not a basis in such 
a space. Infinite-dimensional spaces have also other properties peculiar to 
themselves, which will be discussed later under Hilbert spaces. 

Completeness (Closure Property) 

A set [UJN of orthonormal vectors in a linear vector space is complete if any other 
vector X in the space can be expanded in terms of the clements of the set (that is, 
if the set spans the space): 

where Xj = (u j , X). 

N 

X= LUjXj, 
j =1 

(2.26) 
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This means that the only vector that is orthogonal to all the u/s is the null 
vector. A complete orthonormal set. thus, forms a basis (valid both for finite and 
infinite-dimensional spaces). 

From Eq. (2.26), we have, 

so that 
N 

X = L Ui(Ui, X). (2.27) 
i=l 

Eq. (2.27) could be regarded as the criterion for the completeness of the set [UJN' 
Since in a space of finite dimension N, the maximum number of vectors in a 

linearly independent set is N, the maximum number of vectors in an orthonormal 
set is also N, according to problem 2.2. Moreover, every orthonormal set 
containing N vectors is complete, and there should exist at least one orthonormal 
set that is complete. 

As an illustration, let us consider the 3-dimensional physical space. A vector 
V in this space can be written as 

V= V)+ V)+ V,k, 

where, i, j, k are the unit vectors along x, y and z directions, respectively. Then, 
corresponding to Eq. (2.27), we have, 

V = i(i . V) + j(j . V) + k(k . V), 

which shows that i,j, k form a complete set. On the other hand, if our space is the 
. .xy-plane and V is a vector in this space, then, 

V = i(i . V) + j(j . V), 

so that i, j alone form a complete set of vectors in this space. 
In order to extend the concept of completeness to a linear vector space, we have 

to introduce certain concepts and definitions concerning the convergence of a 
seqUl!nce. 

x is the limit point of the sequence {xN } of (real or complex) numbers 
Xn (n = 1,2, .. . 00) if I x - xN I~ 0 as n ~ 00. The sequence is then said to coverage 

to the limit X: {xn} ~ x. The limit point of a convergent sequence is unique: if 

{xn} ~ x and {xn} ~ x', then, x - x' = O. But the limit point of a sequence need 

not be a member of the sequence. 

{I} 1 1 1 
Example: The sequence ;; == I' 2 ' "3 ' •.. converges to the limit O. But 0 is 

not a member of the sequence. 
The sequence {xN } is a Cauchy sequence if IXN -XIII I~ 0 as n,m ~ 00. 

Every sequence which converges to a limit is a Cauchy sequence. For, if 
{xN} ~X, then [Eq. (2.12c)), 

I xn - Xm I = I xn - x + x - x'" I S I xN - x I + I x - XIII I ~ 0 
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as n,m ~ 00. Conversely, every Cauchy sequence should converge to a limit: 
From 

I x. - x I $; Ix. - x". I + I x". - x I, 

we see that I x. - x I~I x". - x I as n, m ~ 00, so that I x. - x I becomes independent 

of n as n ~ 00. This is possible only if x. tends to some number x, which is not 
in the sequence, as n ~ 00; that is, Ix. - x I~ 0 as n ~ 00, which proves the 

statement. 

The sequence {~} quoted above is an example of a Cauchy sequence. 

The limit point, or limit vector, of a sequence of vectors and a Cauchy sequence 
Jf vectors are similarly defined by replacing the number x. by the vector x. and 

.he absolute value I x. - Xm I by the norm II x. - xmll in the foregoing. An example 

)f a Cauchy sequence of vectors is the sequence {'If.} of partial sums, 

\jI. "" i: a.G>., of square-integrable, orthonormal functions4 ¢k (where the at are 
k ~ 1 

numbers), such that II \jI.112;: i: I a. f< 00. The limit vector of this sequence is the 
k ~ 1 

'unction 'If == !: ak<Dk• We are now in a position to state the condition for the 

omplcteness'of a linear vector space: 
A linear vcctor space is complete if every Cauchy sequence of vectors in the 

;pace converges to a limit vector which is also in the space. 
Every finite-dimensional unitary space is necessarily complete. For, let [uJ

N 

be an orthonormal basis for an N-dimensional space; and let {x".} be a Cauchy 
N 

sequence of vectors, where, x". = !: a;'Uk' Then, 
k = 1 

N 

Ilxm -x/11 2 = !: la;-a;12~O, 
k=1 

as m,l ~ 00. That is I a;'-a: h Oas m,l ~ 00. 

Thus, {an is a Cauchy sequence of numbers and, therefore, should converge 

N 

to a limit, say a •. Therefore, x". ~ x;: !: akuh as m ~ 00. But x, being a linear 
k=1 

4. The function Ole,,) of a continuous variable x is said to be square-integrable if the Lebesque 

integral 

f I <I»(x) 1
2
dx <"". 

where a S x S b. The functions are orthononnal if 

f <I>:(x)<l>,(x)dx '" 01/. 

The nonn of $. is defined by 
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superposition of the unit vectors Ul , is a vector in the space. Thus, every Cauchy 
sequence of vectors converges to a vector which is in the space. 

Hilbert Spaces 

A Hilbert space is a unitary space that is complete. The Hilbert space is said to be 
separable if it contains a denumerable dense set of vectorss. In this case, every 
vector in the space can be approximated to a vector in this dense set. 

An orthonormal basis [Ul]N, with k discrete, obviously, consists of a denum­
erable (finite or infinite) set of vectors, since we can form the basis starting from 
a single vector and then finding all the vectors that are orthonormal to it. This 
basis is also dense in the space since every vector x in the space can be written as 

N n 

X = 1:: akuk, which is the limit of the sequence {xn} of partial sums xn = 1:: aluk, 
k=l l=l 

where N is finite or infinite and n S; N. Therefore, a Hilbert space is separable if 
it has an orthonormal basis6

• . 

We have seen that a finite-dimensional unitary space has an orthonormal basis 
and is complete. Therefore, every finite-dimensional unitary space is a separable 
Hilbert space. This space (finite-dimensional Hilbert space) is actually 
isomorphic to the n-dimensional Euclidean space; that is, there is a one-to-one 
correspondence between the vectors of an n-dimensional Hilbert space and the 
vectors of the n-dimensional Euclidean space. 

An infinite-dimensional unitary space is not necessarily complete and, there­
fore, need not be a Hilbert space. However, only Hilbert spaces are of interest to 
quantum mechanics and, therefore, to us in this book. 

An example of an infinite-dimensional Hilbert space is the space of infinite 
~ 

sequences of numbers (xl,Xl> .. . xl ... ) such that 1:: 1 Xl 12 is finite, with addition, 
l=l 

scalar multiplication and scalar product defined by : 

5. A set of vectors is said to be dense in a linear vector space if every vector in the space is a limit 
point of the set (that is. limit point of a sequence of vectors in the set). Thus. every real number 
is the limit point of a sequence of rational numbers. so that the rational numbers constitute a dense 
set in the space of real numbers. 

6. An example of a non denumerable set of vectors is provided by the infmite set of momentum 
eigenfunctions uk(r) of a free particle (where 11k is the momentum of the particle): 

uk(r) = ~ exp (ik . r) 
(21t) 

We have 

=o(k-k'). [orthonormality] 

J u:(r)uk(rjd3k = o(r-r'), [completeness] 

The nondenumerability arises from the fact that k is a continuous variable. 
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(2.28a) 

(2.28b) 

~ 

(x, Y) == LX; Y., (2.28c) 
• = 1 

where 

Y == (Yl' Y2" .. , y •... ). 

This space is called e. It is a separable Hilbert space since it has an orthonormal 

basis consisting of the vectors U 1 = (1,0,0, ... ), u 2 = (0, 1,0, 0 ... ) and so on, such 

that the only nonzero number in Uk is X. which is equal to 1. An arbitrary vector 

x in F can be written as x = L X.Uk• The sequence of vectors {x.}, where 
k =1 

. 
X. = L X;Uk' is a Cauchy sequence whose limit vector is x . 

• = 1 

Just as every finite-dimensional Hilbert space is isomorphic to a Euclidean 
space of the same dimension, every infinite-dimensional separable Hilbert space 
is isomorphic to [2. 

Another example of an infinite-dimensional, separable Hilbert space is the 
space L2(a, b) of square integrable function <»(x) of a real variable x, with vector 
addition, scalar multiplication and scalar product defined as : 

('V + <») (x) = 'V(x) + <»(x), 

(c<») (x) = c<»(x) 

('V,<») = f'V·(x)<»(x)dx. 

The range a-b could be finite or infinite. The definition can also b~~ extended to 
the case of functions of several independent variables. 

Problem 2.3: Show that the functions I, -{2 cos 2rrkx and -{2 sin 2rrkx, for 

k == 1,2,3 ... "", and 0 :0; x :0; 1, constitute an orthonormal basis for the space L 2(0, 1). 
Suppose? [¢J~ is an orthonormal basis for an infinite-dimensional, separable 

Hilbert space. That is, 
(2.29) 

Then, any vector 'V in the space can be written as a linear combination of the <lk' s : 

(2.30) 

7 _ In the case of infinite-dimensional spaces, we will use the Greek alphabets <)I, IV and X, in addition 
to bold face Latin alphabets, to represent vectors. 
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The coefficients a1 in (2.30) are unique, and are given by 

-
at = 1: a1 (<1>" <1>1) = (<1>" 'If), 

1=1 
(2.31) 

according to (2.29). Thus, (2.30) becomes, 

-
'II = 1: <1>1 ( <1>1' 'II) (2.32) 

1=1 

If the vectors <1>1 are square-integrable functions, say of a variable x, then, Eqs. 

(2.29) and (2.32) can be written as 

(<1>1,<1>,) = J <I>:(x)<I>,(x)dx = 0ll' (2.33) 

",(x) = ~ J <l>l(x)<I>:(x')",(x')dx'. (2.34) 

But ",(x) = J O(x -x')",(x')dx', (2.35) 

where o(x - x') is the Dirac delta function (see Appendix D). From (2.35) and 

(2.34) we see that 

-1: Mx)<I>:(x,) = o(x -x'). (2.36) 
1=1 

Eqs. (2.33) and (2.36) express, respectively, the orthonormality and the 
completeness of a set of vectors in the space L2.. These are of great importanc~ 
for quantum mechanics because the wave function-space of the SchrMinger for­
mulation of quantum mechanics is actually the space L 2.(-<>0, + 00). 

Linear Manifolds and Subspaces 

A linear manifold in a linear vector space is a subset of vectors which itself forms 
a linear vector space. Thus, an n-dimensional Euclidean space is a linear manifold 
in the space 12. The set of positive integers is an infinite-dimensional linear 
manifold in the space of real numbers. The set of vectors i, j constitutes a linear 
manifold in the 3-dimensional physical space. 

A subspace % of a linear vector space is a closed linear manifold. Every 
finite-dimensional linear manifold is closed (as every finite-dimensional linear 
vector space is) and is, therefore, a subspace. However, infinite-dimensional 
spaces can have infinite-dimensional linear manifolds which are not necessarily 
closed. 

A subspace of a separable Hilbert space is a separable Hilbert space. Two 
subspaces !M; and %2 of !J{are said to be orthogonal to each other if every vector 

in %1 is orthogonal to every vector in %2' The xy-plane and the z-axis are ortho­

gonal subspaces of the physical space. Every separable Hilbert space can be split 
up into a finite number of subspaces %1' ?1;"'%n which are orthogonal to each 

other such that every vector", in !J{is the sum of n vectors, one each from each of 
the subspaces : 
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" 
'" == L 4>k (2.37) 

k=1 

where (h is a vector in % . .?fis then said to be the direct sum of the %' s : and is 

written as 
• 

.?f=:Nt; EB MzEB .. , EB M. = L EB~. (2.38) 
k =1 

The vector 4>k is said to be the projection of", onto %. If the set of vectors XI' X2 ..• 

forms an orthonormal basis for %, then, 

4>k == L (Xj , ",»)}. (2.39) 
) 

As an illustrative example, let us consider the space L \0, 1) of problem 2.3. The 

vectors Aj, == fi sin 2Ttkx (k = 1, 2, ... ,) form an orthonormal basis for a subspace 

:At, [of L2(0, 1)] in which an arbitrary vector is given by 4>. == L akAj,. The set of 
k =1 

vectors "'0 == 1, "'k == fi cos 2Ttkx (k == 1,2, ... ) is an orthonormal basis for another 

-
subspace Me which is orthogonal to 'M,. A vector in I).( is given by 4>e = L bk"'k' 

k=O 

Since the sets [Aj,L and [",J_ together form an orthonormal basis for L2(0, 1), any 

vector \}J in L\O, 1) can be written as '¥ == 4>. + 4>c' and L \0, 1) == 'M. EB 1).(. 

2.2 OPERATORS 

An operator on a linear vector space defines a (geometrical) relationship between 
two vectors. For example, if Y is obtained from X by rotating X about an axis, 
then the relationship between X and Y could be denoted by 

Y ==Ax, (2.40) 

where A is an operatorS representing the rotation. We say that the result of oper­

ating with A on the vector X, is the vector Y. 
Obviously; the operator A has meaning only with reference to a set of vectors. 

The space on which A defined, that is, the set of vectors X for which A X has 
meaning, is called the domain of A. The set of vectors Y expressible as Y =AX, 
is called the range of A. In a linear vector space if, Xl and X2 are in the domain ' 
of A, then (CIXI + c2XJ is also in the domain of A. An operator A is linear if 

A(cIXI + c2Xz) == cJ(AXJ) +c2(AXz}, (2.41a) 

and anlilinear if, 

(2.411') 

8. We usc the symbol 'II' in order to distinguish operators frum scalars and vectors. 
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We will be concerned only with these two types of operators. The discussion in 
this section, however, will be confined to linear operators. A brief description of 
antilinear operators is given in Appendix B. 

A linear operator preserves geometrical shapes (PQ'R' in Fig. 2.3). An anti­
linear operator also preserves geometrical shapes, but it reflects the object on the 
real axis [PQ"R" in Fig. 2.3]. 

d 
The differential operator dx is an example of a linear operator on the space 

L 2(--00,00) of square integrable functions of a real variable x: 

d dft df2 
dx [cJl(x)+c/ix)] =C1dx +C2dx' 

A d A 

while l.. dx ,where C stands for complex conjugation, is an antilinear operator: 

Example of a non-linear operator is the operator corresponding to squaring: 
Sq(C1X1 + czX~ -:I- Sq(c1x) + Sq(czX~. 

R 

Q 

p---4F---------REAL AXIS ., 
\ . . '-. 
\ ' . '-

'-('.1 \ ". 

-'(" " \ ....... Q" 
.c4 7 

:S\ // 
+. ,-.... \ i 
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.c4 \ / 
.,(,. \ I 
\). / 

~'.,. 
R 

Fig. 2.3 Diagram showing the difference between a linear operator 
[Eq. (2.41a)] and an antilinf'ar operator [Eq. (2.41b)]. 
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The null (zero) and the unit (or, identity) operators arc defined by the equa­
tions, 

and 

OX=o, 

lX=X, 
where X is any vector in the domain of these operators. 

(2.42) 

(2.43) 

An algebra of linear opprators can be constructed by defining the terms 
equality, sum, product, power, etc. 

Equality: A = B, jf the domains of A and B are identical, and if for every vector 
X in the domain, 

AX=BX. 

A> B, if (X,AX) > (X,BX), 
for all vectors X in the domain of A and B . 

Sum: 
C =A +B, 

if, for every vector X in the common domain of A and B. 
CX=AX+BX. 

Product: 
C=AB, 

if for every vector X in the domain of A and B, 
CX=A(BX). 

(2.44a) 

(2.44b) 

In general AB * BA. That is, operators do not, in general, commute. Operator 
algebra is, therefore, said to be non-commutative. If AB = BA, A and B are called 
commuting operators9

• 

To illustrate the noncommuting nature of operators, let us again consider the 

• • d 
space of square-integrable functions of x. LetA ==X, and B == dx' Then, 

'" df AB/(x)=x dx 

BA/(x) = ! (xf) = (:} +x(!) 

d/ 
=/+xdx 

. 9. The domain of AB is a subspace of the domain of B, whereas the domain of BA is a subspace of 
the domain of A. For. AB X is meaningful only when X is in the domain of Band (8 X) is the 
domain of A. For every vector X in the domain of B, B X may not be in the domain of A and, 
thus, may not be in the domain of A 8. When A B = BA, however, the domains of A, B and A B 
coincide. 
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=f +ABJ= (i +AB)J 
Thus, (AB -BA)f(x) =-if(x), 

or, 
d d A X---x=-l 

dx dx ' 

d d A 

dx X - X dx = 1. or, 

Power: The square of A is defined as, 

A2=AA. 
That is, A 2X = A (A X), for every vector X in the domain of A. 
Similarly, 

An =AAn-1 = AA .. ..4. 
" r.ctews 

Function: 
By combining the operations of addition and multiplication (product), a func­

tion of an operator can be formed. 
A d2 d A 

Ex: F =a-+b-+cl 
dx2 dx ' 

d 
is a function of the differential operator dx' Function of a linear operator is a 

linear operator. That is, 
F[cJI(x) + c/2(x)] = cl(Ff1) + cZ{Ff;). 

Inverse: 
If two operators A and B are related bylO 

AB=BA=i, (2.45) 

then, they are said to be reciprocal to each other and B, denoted by A-I, is called 
the inverse of A. An operator for which an inverse exists is said to be non­
singular, whereas one for which no inverse exists is singular. A necessary and 
sufficient condition for an operator A to be non-singular is that corresponding to 
each vector Y, there should be a unique vector X such that Y = AX. 

Problem 2.4: Prove the preceding statement. Hence show that, in the space of the 
square-integrable functions of the variable x, the operator i has an inverse, 0 has 
no inverse and hs inverse of itself. 

Inverse of a linear operator, is a linear operator: 
Let YI =AXI, Y2 =AX2• 

10. Note that bOlh the conditions in Eq. (2.45) are necessary for the existence of an inverse. How­
ever, in the case of finite-dimensional spaces, BA = t implies AB = 1. 
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Then, "-I "-I XI =A Y p X2 =A Y2, 

so that C1XI = cI(;i-IYI)'CZXZ;:: cZ(klyz}. 

Thus, A-I[c1Y1 +C2YJ =kl[c\(AX\)+czCAXz}J 

since A is linear. 

(2,46) 

The inverse of a product of operators is the product of the inverse in the reverse 
order: 

(ABCr!;:: C-IB-Ikl . 

This could be shown as follows: We have 

ABC(ABCrl
;:: i. 

Multiplying successively from the left by kt, B-1 and C l
, we get 

(k6Cr l =C-IB-1;\1. (2.47) 

Eigenvalues and Eigenvectors of an Operator 

The result of operating on a vector with an operator A is, in general, a different 
vector: 

AX=Y. 

But there may be some vector X with the property, 
AX=aX, 

(2,48) 

(2.49) 

where, a is a scalar. That is, the operation with A on X yields the same vector X 
multiplied by a scalar. X is, then, called an eigenvector (or eigenfunction) of A 
belonging to the eigenvalue a. Eq. (2,49) is the eigenvalue equation for A. A 
linear operator has, in general, several eigenvalues and eigenvectors, which are 
then distinguished by a subscript: 

AXk ;:: a.X •. 

The set {ak} of all the eigenvalues taken together constitute the spectrum of the 

operator. The eigenvalues may be discrete, continuous or partly discrete and 
partly continuous. An eigenvector belongs to only one eigenvalue. But several 
linearly independent eigenvectors may belong to the same eigenvalue. In this 
case, the eigenvalue is said to be degenerate, and the number of linearly inde­
pendent eigenvectors is the degree of degeneracy. The eigenvectors belonging to 
a degenerate eigenvalue of a linear operator, span a subspace whose 
'imensionality is equal to the degree of degeneracy. 
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Problem 2.5: Prove the above statement. 

d' 
For an illustration. lel us consider Ute operation - 2' The eigenvalue equa· 

dx 

tion of this operator is (we writeE insread of (l and ¢>(z) in place of X), 

(- ~', -+X)=O 
The two linearly independent eigenvectors are 

¢>,(x) = (/,~. 

and 

o.,.(x)=e-i'~ . 

where pl :: E. Both the eigenvectors belong to the same eigenvalue E. Hence E 
is 2-fold ,degenerate. If p is treated asa continuous variable,then, the eigenvalue 
spectrum is continuous. 

The eigenvalue of the square of an operator is me square of the eigenvalue of 
the operator. For, ifAX = o.X, we have. 

A'X=A(AX) = a(AX)=a'X. (2.~O) 
Operators of special importance in quanlum mechanics are considered below; 

\i) Positive Definite Operator 

A is positive definite. if Ii > 0 and k 1 > O. (er. footnote 2). The eigenva/~s of a 
positivi! definite operator, aTe all positive. 

If A>B>O.then.li-1 >k1 >o. 

For. 

That is. 

But. 

Therefore. 

Thereforc. 

Now, 

Thus, 

(i - Ok'»O. 

,f-'>O. 

.-'" >.-'. =k'A = i . 

(2.51) 

Problem 2.6: Ir A and B are positive definite operators. show that (AB) is a 

positivc definite opcralOr. 
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(ii) Continuous and Bounded Operators 

An operator A is continuous if {AX.} 4 AX, for every Cauchy sequence of 

vectors {X.} that converges to the limit X. A is bounded if there is a positive 
number 'a' such that 

IIAXII $;alIXII. 
for every vector X in the domain of A. The smallest 'a' with this property is called 

the norm of A, and is denoted by II A II. Thus, II A II is defined by, 
IIAxlllIUlX=IIAII·IIXII. (2.52) 

A is continuous if, and only if, it is bounded: 

For, !lAX. -AXil $; 11,.111 ·11 X. - XII. 40, if A is bounded, and if {Xn} 4 X. 
Thus, AX. 4 AX, for n 4 00 • If A is not bounded, there is a vector Xn corrc­
sponding to every positive integer n, such that IIAX.II > nil X.II. Defining the 

1 1 
vector Y n by Y n = nil Xnll' X., we have, II Y.II =-;;, Y. 4 0 as n 4 00

, showing 

that {Y.} is a Cauchy sequence that converges to the null vector. Therefore, A 
will be continuous, if AY. 4 ° as n 4 00; that is, if IIAY.II 4 o. But IIAY.II := 

1 , 
nIIXnll.IIAX.11 >1. 

Thus A is not continuous. 
The following properties of the norm of a bounded linear operator could easily 

be proved: 

IIA+BII $;IIAII +IIBII. 

IleAll =Ic 1'11,.111, 

IIABII ~IIAII·IIBII. 

11,.111 =0, if, and only if A =0. 

(2.53a) 

(2.53b) 

(2.53c) 

(2.53d) 

Properties (2.53a, b, d) respectively, correspond to, and derive from, the proper­
ties (2.12c, b, d) of a vector in a linear vector space, whereas property (2.53c) 
derives from the definition of the norm and is the equivalent of the Schwarz 
inequality (2.14) satisfied by vectors. These properties show that the norm of a 
bounded operator has the characteristics of length. They also imply that the sums, 
products and scalar multiples of bounded operators arc bounded. 

Every operator defined on a finite-dimensional space, is bounded. This prop­
erty is not shared by operators defined on infinite-dimensional spaces. Since, in 
quantum mechanics, we have to deal with infinite-dimensional spaces, we have to 
consider unbounded operators. An example of an unbounded opcrator is the 
opcrator i on the space L 2(--<x>, 00) of square integrable functions Q(x) of the real 
variable x. For, 
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IIfOlI'= L-lio(XlfdX. 

which need not be a finite number times 11011 "I:: I ¢(X) I' dx. 

(iii) Hermitian Operators 

Two bounded linear operators A and B are said to be adjoint of each oUler if. for 

arbilrary vectors X and Y in the domain of A and B (assumed to be the same). 

(AX. Y) = (X. BY). (2.54) 

Ii is. then. denoted by A'. A is self-adjoint 0,- Hermilian if 

A =A t. 

and anti-Hcnnitian if 

Thus. Hermitian operators arc defined by. 

(2.55a) 

(2.SSb) 

(2.56) 

Unlike bounded operators. an unbounded operator (like i. considered in a pre­
v',ous example) can be Hermitian only with respect to a rcslricted number of 
vectors (see, Ref. I. Section 91. 

Hermitian operators have the following important properties : 

(1/l 1. The eigenvalues are real: 
Let I! be the Hennilian operator and let X be an eigenvector belonging to the 

eigenvalue A. : 

By definition. we have, 

That is [see Eqs. (2.9a. el]. 

Since 

(A.' - A.) (X. Xl = o. 

(X. X) >' O.A.' = A.. 
(1/2). Eigenvectors belonging /0 differenl eigenvalues are orthogonal: 

Let X, and X, be eigenvectors of fI belonging. respectively. to the eigenvalues 

A.: and "': 

'Then, 

That is, 

fix, = A.X,: 'ix, = "'Xl. 

(X,'!! X,) - (fl X,. X,) = O. 

(A.: - A.,J (X,. X,l = O. sir-cc A; = A., 
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By hypothesis, (AI -- A.;) :t 0, so that, 

(X2' Xl) == O. 

(H3). The set of all eigenvectors of a bounded Hermitian operator forms a com­
plete set. Since the eigenvectors are orthogonal, and since we can normalize 
them, this means that the eigenvectors form a basis for the space. 

Problem 2.7: Show that the adjoint of a product of operators, is the product of the 
adjoints in the reverse order. Hence show that the product of two Hermitian 
operators, is Hermitian only if the operators commute (i.e., AB = BA). 

Problem 2.8: If H is Hermitian, show that (X, HX) is real, for any vector X in the 
domain of il. 

Problem 2.9: Show that, for the space L 2(-=,00) of square-integrable functions of 

d d 
x, the operator i dx is Hermitian whereas dx is not. 

Problem 2.10: Show that the operator, B ;;;; iA is anti-Hermitian when A is Her­
mitian. 

(iv) Unitary Operators 

A linear operator (; is unitary if it preserves the Hermitian character of an operator 
under a similarity transformation. Now, a similarity transformation of an opera­
tor A by a non-singular operator S, is defined as, 

A ~ A' = S,H-l. (2.57) 

Thus, the condition for (; to be unitary is that, 

where, 

But (see Prob. 2.7), 

«(;A(;-I)t = (;,1U-1• 

«(;A(;-l)t = «(;-1)tAUt, so that, 

(U-1)tA ut = V A V-I. 

Multiplying from the left by (;t and from the right by V, we get, 

111at is, 

since 

(;t(V l)tAVt(; == (;t(;,1. 

A «ft(;) = (Vt(;)A, 

V'(V-I)t == (V-1V)t = L 

(2.58) 

(2.59) 



40 QUANTUM MECHANICS 

Now, only the identity operator has the property that 
A1=lA. 

for arbitrary operator A. Hence, 

(2.60) 

In the case of infinite-dimensional spaces, Eq. (2.60), by itself, docs not imply the 
condition that (; should have an inverse. This condition can be incorporated by 
multiplying both sides of the equation by (;-'. Then, the condition for the unitarity 
of (; becomes, 

or, 

(2.61a) 

(2.61b) 

Pnder the operation of (;, a vector X is transformed into the vector X' = OX. 
Thus, if two vectors X and Y arc transformed by the same unitary operator 0, 
lhen, 

(X', Y') = «(;X, UY) = (X, (;tU¥) 

=(X, V). (2.62) 

Thus, the transformation by a unitary operator (that is, a unitary transformation) 
preserves the scalar product of vectors. In particular, it leaves the norm of a vector 
unchanged. Now, a transformation that leaves both the lengths of vectors and the 
angles betwecn vectors unchanged, is a rotation, Thus, a unitary transformation in 
a linear vector space, is analogous to a rotation in the physical space. 

Since II (;XII = II XII for every vector X, 0 is bounded (II [/11 = 1). 

Corresponding to every unitary operator O. we can define a Hermitian operator 
fI and vice verse, by 

(; = exp (i E H) (2.63) 

where E is a parameter. Obviously (see Eq. (2.55a) and Problem 2.10). 

(;t = exp [(i E II)Jt = exp HE H) = 0-'. 
This means that every Hennitian operator is the generator of a unitary transfor­
mation. 

The following properties of a unitary operator could be easily proved: 
(UI). The eigenvalues are unimodular. That is, if Ox = aX, then I a I 1. 

(U2). Eigenvectors belonging to different eigenvalues are orthogonal. 
(U3). Product of two or more unitary operators arc unitary. 

Problem 2.11: Prove the above properties of the unitary operator. 

(v) Projection Operators 

Consider an operator f defined by, 

P=1. (2.64) 

The eigenvalues ()f i are, then, +1 and -1 [see, Eq. (2.50)J. Let the corresponding 

eigenvectors be X+ and X_, respectively: 
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ix± == ±X±. (2.65) 

f2 is, obviously, Hennitian, so that i is a Hennitian operator. Hence X. and X_ are 

orthogonal to each other (Property H2 of Hennitian operators): 

(X+. XJ == O. (2.66) 

The operator i is called an involution. 

Now, Jet us define the operators n. and n_ by 

Then, 

•• 1 •• A 

/ (n±X) == 2: (/ ± 1)X == ±(n±X), 

where X is an arbitrary vector. This shows that, [see Eq. (2.65)], 

n±X = Xi' 

Also, we have, 

or, 

so that, 

it. + it_ == 1. 
From Eqs. (2.6ge) and (2.68), we get, 

X == X+ + X_. 

whereas, Eq. (2.69d) shows that, 

(2.67) 

(2.68) 

(2.69a: 

(2.69b) 

(2.69c) 

(2.69d) 

(2.69c) 

(2.70) 

(2.71) 

Thus, every vector X is a linear sum of ~ and K. If the set of vectors, {X}, spans 

a linear vector space, then, the sets {X.} and {XJ span two distinct subspaccs 

orthogonal to each other. We say that the original space is reduced by 
the Hermitian involution i into two subspaces orthogonal to each other, such that 
X is a unique linear combination of two vectors, one from each subspace. The 

vectors X. and X_ are the projections of X onto the subspaces, and it. and it_ are 

the respective projection operators. 
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Eqs. (2.69a) and (2.69c) together could be taken as the definition of a projec­
tion operatorll , whereas Eq. (2.69d) expresses the orthogonality of it, and i (that 

is, the fact that they project onto subspaces orthogonal to each other). The unit 
operator j and the null operator b could be regarded as projection operators that 
project onto the whole space and onto the subspace containing only the null vcc­
tor, respectively. A projection operator is, obviously, bounded since 
II mvll S; II \jill for every projection operator it, so that II itll ~ I, except for b for 
which 11011 =0. 

Illustrative Example: 
Consider a vector V in xy-plane. V can be written as (see Fig. 2.4), 

V ~ V, + V" 

where, V, = V.i = (i, V), 

V, = V,.i = j(j, V); i and j being onit vectors. 

Writing V = V), etc., we havel2
, 

V.l = it, V) = i)(i, V), 

V,) ~ it,V)=j)(j, V). 

y 

v 

Vy 

~--------~----------~---------x Vx 
Fig. 2.4. The resolution of a vector into its projections onto orthogonal subspaces x and y. 

Thus, the projection operators it, and it, are given by, 

it, " i) (i, 

11. An operator obeying Eq. (2.69a) : A 2 "" A, is called idempotent. 

12. A! "lOre elegant notation for vectors, due to Dirac, will be discussed in the next section. 
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it, :; j) (j. 

If V and W are two vectors in the xy-plane, we have, 
(V,itxW)=(V, i)(i, W)=(itxv, W), 

since (itxv,W) = (W,itxV)" = (W, i)'(i, V)" 

= (i, W) (V, i). 

Thus, itx is Hermitian. 

Also, 

-2 ')(' ') (' ') (" (' ') 1 ltx = J J, I J = I J, SInce J, J = , 

itxit, = i) (i, j) (i = 0, since (i,j) = o. 
[itx + it~ V) = V), 

so that, itx + it) = i. 

43 

itx and it" thus, have properties identical to those of it+ and 1L. The involution 

operator, in this case, is seen to be, 
I = i)(i - j) (j. 

The foregoing considerations could be extended to the case where there are 
more than two projection operators. Let [uJN be an orthonormal basis: 

(uj , uj ) = Ojj; tu) (Uj = 1. 
J 

Then, we can define itj by, 

(2.72) 

itj is the projection operator that projects onto the one-dimensional subspace 

defined by U j • An arbitrary vector X in the space can be written as, (see Eq. (2.26» 
N 

X) = .t u) (uj , X), 
J~l 

so that, itjX) = L itju) (uj, X) = u) (Uj, X). 
J 

Hence, 

itj :; u) (ui' 

from which it is easily shown that 

itjitj = Ojjitj' 

Substituting Eq. (2.74) in Eq. (2.73), we get, 

so that, 

N A 

X) = t ltjX), 
j~l 

N A • 

t ltj = l. 
j~l 

(2.73) 

(2.74) 

(2.75) 

(2.76) 
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Eq. (2.76) is the analogue orEq. (2.6ge), and is called the resolution of the identity 
in terms of the projection operators. It is actually an expression of the complele· 
ness of the set of projection operators. 

Suppose now that the Uk are eigenvectors of a bounded Hcnnitian operator". 

AUk = IXk"k' 

Then, AX) = ~Au;l(uj'X) 
J 

, N , 

Thus, A =~ (X/'i' (2.77) 
)=1 

This equation represents the spectral decomposition of the operator A, If X and 
Yare arbitrary vectors, we have, 

(Y, X) = ~(Y.itjX), (2.783) 
} 

(y,AXJ = ~a/y,itiX), (2.78b) 
J 

Eq. (2.77) is applicable when the eigenvalues of A are discrete. When the 
eigenvalues are continuous, it is possible to define a family of projection operator 

it~ where Ct. is real and continuous, with the following properties (see, Ref. I, 
Sections 13 and 14). 
(i) If a"; 13, then it. ,,; iij" or it.iij, = it. = iij,ita 
(ii) For a ,,; Ct. ,,; b and for E> 0, it ... IJI .... it.1JI as E .... 0, for any veclOr IJI. 
(iii) italJl .... 0 as a --> a, and itulJl --> IJI as a --> b. That is it. = () for Ct. <; a. and 

ita = i fora;: b. and it. i for a" b. 

Corresponding to Eqs. (2.76), (2.77), (2.78a) and (2.78b), we have, 

i b 

d1ra. 1, whcrcdit~=it:((-ita_f-' (2.79a) 

(ID,IjI) f d(C/, itulJl), 

(<I>, A '1') f [(a)d(¢, it.IjI). 

dit. is called a differential projection operator. 

13. Remember that \he. eigenvector:,; (If a bounded Hermitian operator {otm a. complete SCl. 

(2.79b) 

(2.79c) 

(2.79d) 
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In Eq. (2.79b), /(0..) is a function of a, which depends on the nature of the 

operator A: 
If A is Hermitian: /(0..) = a; a = b =--00 (2.80a) 

If A is Unitary :/(0..) = eia
; a = 0; b = 2x. (2.80b) 

(Recall that the eigenvalues of a Unitary operator are unimodular). 
The spectral decomposition (2.79b) is valid even in the case of Hermitian and 

Unitary operators which have no eigenvalues, as in the case of operators on 
infinite-dimensional spaces14

• In this case, a would be merely a parameter. (In 
the case of operators with eigenvalues, a is related to the eigenvalues). 

Problem 2.12: Show that, if ira::; ir~, then 

Problem 2.13: If ir" itz, .. . irN are projection operators, show that the sum of these 

operators are also projection operators if, and only if, 
N , 
1: (X, x.X) S; (X, X), 
.~1 

for any vector X in the Hilbert space. 

d 
Problem 2.14: Consider the operator p == -itz dx in space L 2(--00,00). The eigen-

1 
vectors of p are u.(x) = _ ~ ejJ,,,, where k is continuous; -00::; k ::; "". The eigen­

",2n 

values are given by pu.(x) = 1iku.(x). Show that the differential projection 

operators dirk are given by 

Commuting Operators 

We have mentioned that operators do not, in general, commute. However, there 
are operators which do commute. Such operators are of importance in quantum 
mechanics because the basis vectors in the Hilbert space of a physical system (As I 

we will see in the next chapter, these basis vectors represent the quantum 'states' 
of the system) are determined by these. In this connection, the following theorem 
concerning two Hermitian operators, is basic: 

14. Whereas every Hermitian or Unilary operator on a finite-dimensional space should have at least 
one eigenvalue, such operators on an infinite-dimensional space mayor may not have eigenva­
lues. 
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Theorem: If two bounded Hermitian operators commute, then they possess a 
complete ortlwnormal set of comnwn eigenvectors, and vice versa. 

Now, it was stated earlier that the eigenvectors of a bounded Hennitian oper­
ator form a complete set. Therefore, we need show only that, if A and B are 
Hennitian operators such that Afj = BA then they have common eigenvectors. 
Conversely, if A and fj have common eigenvectors, then AB = B A. 
Let AX = aX. (2.81) 

We have to show that fjX= ~X. (2.82) 

Multiplying Eq. (2.81) from thc left by fj, we get, 

fj (A X) =A(fjX) = a(BX), 

sinceBA =Afj. 

Thus, BX is an eigenvector of A belonging to eigenvalue a. 
Ifa is non-degenerate, then, fj X should be linearly dependent on X, so that, 

a(fjX)+bX=O, with a ",O;b ",0. 

Or, BX=-(b/a)X=~X. 

If a is g-fold degenerole, then, there are g linearly indepcndent vectors 

X, (k = I, 2, ... g) such that 

Ax, = aX,. 

We will assume that these arc orthononnal: 

(X" X) = Ow 
We further assume, for the sake of simplicity, that g = 2. Let us define, 

X = CIXl + C2X2 

where c i and c, are scalars. Since A is linear [sec, Eq. (2.41a)]. 

Ax = cl(Axl) + c,(AX,) = aX. 

(2.83) 

(2.84) 

That is, X is an eigenvector of A belonging to eigenvaluc a. What we have to 

prove now is reduced to showing that thcre arc nonzero scalars CI and c, such that 

X defined by Eq. (2.84), satisfies Eq. (2.82): 
fjx ",B(cIX I +c,X,) = 13(cI XI +c,X,). (2.85) 

Taking the scalar product ofEq. (2.85) successively with XI and X" and using Eq. 

(2.83), we get, 

(BII -(3)c l + Bl,c, = 0, 

B'lel + (B22 - Il)c, = 0. 

where, we have used the abbreviation, 

Bj, '" (Xj,BX,). 

(2.86) 

(2.87) 

(2.86) is a set of homogeneous equations in C1 and c2. The condition for the 

existence of a nonLrivial solution (c l , C2 ot:- 0) is that the determinant of the coeffi­

cient matrix be zero, (sec Section A.6). That is, 
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I 
(Bl1 -~) BI21 == 0. 
B21 (B22-~) 

(2.88a) 

or B2 - (B II + Bnl~ + (BIIB22 -I B1212) = 0, (2.88b) 

since B21 == (X2,BX I) = (BXI,Xi = (xl'Bxi =B:2· 

The two roots of Eq. (2.88b) are, 

BII+B22 1 2 2 112 
131== 2 +2:{(BII+Bnl-4(BIIB22-IBI21)} , (2.89a) 

and (2. 89b) 

The two roots are equal, if and only if, 

(BII +B22)2_4(BIIB22-1812 12) =0. 

That is, if (B 11 - Bnl2 + 4 1 B 12 12 = 0. (2.90) 

Since both the terms here are real and positive (problem 2.8), Eq. (2.90) will be 
satisfied only when each of the terms is zero. Thus, 131 = 132 only if 

(2.91) 

In this case, 

PI = P2 = P = BII = B22. (2.92) 

From Eqs. (2.91) and (2.92), we get (with the definition (2.87», 
EX I = I3X I ; BX2 = I3X2. (2.93) 

Thus, Xl and X2 are degenerate eigenvectors of B also. Eqs. (2.86) are satisfied 

for arbitrary values of cl and c2 since the coefficients (811 -13), (B22 - P), B12 

and B21 are all zero, so that any linear combination of Xl and X2 are simultaneous 

(common) eigenvectors of A and B. 
If 131 '" 132' then, one or both of the following conditions are satisfied: 

(i) BII '" B22, (U)BI2 '" O. 

If only (i) is satisfied, we get from Eqs. (2.89), 

131 = B II ; 132 = B 22. (2.94) 

Corresponding to these values of 13, we get two sets of values for c l and C2. 
Denoting the valucs of C I and C2 corresponding to 13k by dk

) and dk), we havel5
, 

C;l) = 1, cil) = 0; 

C (2) = 0 C(2) = 1 
1 '2 ' 

15. We assume X is normalized, so thal, I d') 12 + I c~') 1'= 1. 
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so tha~ 

X(1)= x,. 

Thus, EX, = J3,x,; EX, = J3,x2. 

(2.95a) 

(2.95b) 

(2.96) 

That is, X, and X, arc eigenvectors of E belonging to different eigenvalues. When 

BIl oF 0, we will similarly get, 

X,~ = c'''X + c (2)X 
J : 2 2' 

with di~ ~ 0 and ci~}"1: 0, such !.hat, 

EX'" = J3.X'·', k = 1,2. (2.97) 

We can summarise the different possibilities: 
(I) A has nodegenerate eigenvalues. In this case, every eigenvector of A is also 

an eigenvector of E . 
(2) A has degenerate eigenvalues. The following possibilities are there: 

(a) Every eigenvector of A is also an eigenvector of B 
(i) The degenerate eigenvectors" of A are degenerate eigenvectors 

of E also. 
(ii) The degenerate eigenvcctors of A belong to different eigenva­

lues of B. In this case, we say that the degeneracy is lifted (or, 
removed) by the Henn itian operator B. 

(b) Every degenerate eigenvcctor of A is not an eigenvector of E. But 
there are linear combinations of the degenerate eigenvectors, as many 
in number as the degree of degeneracy, which are degenerate eigen­
vectors of A but are non-degenerate eigenvectors of E. The degen­
eracy is lifted by E in this case. 

The foregoing conclusions, which were based on the results for g = 2, could be 
generalized 10 the case where g > 2. We note thai Eq. (2.88a) is the secular 
equation of the matrix. 

(B" B ~, - \Bll (2.98) 

Therefore, in the general case, we will have a g x g matrix in place of this 2 x 2 
one. If all the g roots of the corresponding secular equation are different, the 
degeneracy with regard to the eigenvalue of Ii is completely removed by 8, and 
the common eigenvectors of A and E arc tbe eigenvectors of the matrix B. These 

t6. We mean, by this,lhe linearly independent eigenvectors which belong to Ii degenerAte eigen­
value. 
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eigenvectors are uniquely specified by the eigenvalues of A and B. Thus, X(k) 
which is the eigenvector belonging to eigenvalue a. of A and the eigenvalue ~k of 

B, could be written as 

X(k) = 'I' 
- a,~l' 

If some or all of the eigenvalues of the matrix B are equal, then the degeneracy is 

removed partly or not at all, respectively, by B. In any case, there is a set of 
common orthonormal, eigenvectors for A and B . 

As to the second part of the theorem, let {Uk} be a set of common eigenvectors 

[or A and B : 
Au. = a..u.; Bu. = ~.u •. 

Then, A(B u.) = A (P.u.) = P.(A u.) = ~.a.tUk' since A is linear. 

Similarly, B(A Uk) = Ba.kUk = a..P,u. =ABu •. 
An arbitrary vector X in the space can be written as, 

X= :Extul , 
k 

so that, 
ABX=BAX, 

and this, according to Eq. (2.44a), implies that AB = BA. 

Illustrative Exam pIe: 

t? d 2 

Consider the operator H;::- -2 -2' on space L 2(-oo,oo). This is Hermitian 
mdx 

ih (d) since it is the square of the Hermitian operator - & dx (see, Problem 2.9). 

The eigenvectors of H are (with p ~ 0) 
1 1 

'1'1 = _ T"- exp [-(i/h)px] and 'I'ix) = _ T"- exp [(i/1i)px, 
~2rr ~2rr 

2 
p 

both of which belong to the same eigenvalue E = 2m : 

A (p2 t" A (p2 t" 
H'I'I(X) = 2m r/x ); H'I'zex) = 2m ),1'iX ). 

d A 

The operator p;:: -ih dx is Hermitian and commutes with H since any scalar I 

operator commutes with itself and, hence, with its square. Vector operators, 
however, need not have this property (see Section 5.1). Now, 

P'I'/x) = -ih! (~ cxp [ -~px J) = -P'l'I(X) 
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'V, =0 'V-p: 'V2 =0 'Vp' 

Thus, 'V, and 'V, are non-degenerate eigenvectors of p. The degeneracy with 

regard to the eigenvalues of Ii, is lifted by p. 

Note: As we will see in the next chapter [Eqs. (3.18') and (3.92
)] Ii and p 

respectively correspond to the energy and the momentum of a free particle. 'VI 

and 'V, represent particles with opposite momenta but with the same energy. 

Complete Set of Commuting Operators 

Consider a bounded Hermitian operator A. Its eigenvectors form a complete, 

orthonormal set and, thus, constitute a basis in the linear vector space on which A 
is defined. If A has degenerate eigenvalues, the eigenvectors arc not uniquely 
specified by the eigenvalues of A. That is, the basis is not unique [see, Eq. 2.84: 

Instead of XI and X" we could choose Xii) = ell)XI + cjl)X, and X(2) = el2) XI + c12) 

X" with 1c!1) 1'+ 1 cl') I' = 1 and c!1)"cl2)+cjl)"cj2)=O. A possible choice is 

c[i)::::: cf' =:::: cos 9; cf) = -c?)::::: sin e. All the four vectors XI' Xv X(l), X(2), belong 

to the same eigenvalue a of AJ. We should, then, seek another Hermitian operator 
B that commutes with A. If the common eigenvectors of A and B are now 
uniquely specified by the eigenvalues of A and B, we say that A and B form a 
complele sel of operators. If this is not the case, then, we should find a third 
operator t which commutes with A and B. and so on, until we have a set 
A, B , (;, ... , L of mutually commuting operators such that they have one, and only 
one, common basis. In this case, a common eigenvector is uniquely specified by 
the eigenvalues a,b, ... 1 of the operators: 

'V == 'Va,h,c, .. I' 

where 

A l.j!a,b,c, . .1 = alVa,h,c ... /. 

L,¥",b,c, .. 1'::::: l,¥",b,c, ... I. 

A, B, ... L are, then, said to form a complete set of commuting operators. 

Any operator Q which commutes with each of the operators A, B, ... , L, will 

have necessarily the common basis of A, B, ... , L as its basis and its eigenvalues 
q would be functions of a. b, ... 1: 

q =q(a,b, ... /). 

In other words, Q will be a function of the operators A,B, .. L 
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In our illustrative example, p by itself constitutes a complete set of operator for 

the one-dimensional system with no external field, whereas Ii by itself is not a 
complete set; in fact, Ii is a function of p. 

2.3 BRA AND KET NOTATION FOR VECTORS 

The fact that the scalar product (X, Y) is linear in Y whereas it is anti-linear in X, 

suggests that it is advantageous to think of the two vectors as belonging to two 
different spaces linear in themselves, but related to each other antilinearly. This 
way, we can make the scalar product 'symmetrical' in X and Y. 

Thus, we have a space of the prefactors and a space of the postfactors. A vector 

in the prefactor space is denoted by a bra, < I, whereas a vector in the postfactor 
space is denoted by a ket, 1 >. Thus, X and Y in (X, Y) are written, respectively, 
as < X 1 and 1 Y >, and the scalar product of Y by X as17 < x 1 Y >. That is, 

(X, Y) =" < X I Y> = < Y I X >' . (2.99) 

The prefactor space is, thus, a bra-space and the postfactor space a kel-space. 
Since the conjugate of a product of complex functions (to which the vectors in the 
Hilbert space bear analogy) is the product of the conjugates, Eq. (2.99) implies 
that 

IX >'=<X I (2.100) 

This shows that the two spaces are not independent of each other; they arc said to 
be dual to each other. Not only is there a vector in one space corresponding to 
every vector in the other space, but also each relationship among vectors in one 
space has its 'image' in the other space. Some of these relationships in the ket­
space and their image in the bra space are listed below: 

Ket Space 

IX> 
c IX> 

12> IX>+IY> 
IY>=AIX> 

Bra Space 

<XI 
<X Ic' 

<YI+<XI <ZI 
<XIA= <YI 

Note that, in the bra space, operators act from 'right to left'. A scalar c in the ket 
space becomes its complex conjugate in the bra space, whereas an operator A in 
the ket space is transformed into the operator A in the bra space. Since we have 
not defined what If is, its relationship to A is to be found out (that is, we have to 
determine whether If is the Hermitian conjugate (adjoint) of A, the transposel8 of 
A, or some other way related to A). For this, consider the scalar product, < Z I Y >, 
where I Y = A I X > . 

17. < I > is, actually, a short form of < II>. Thus, a scalar product is nothing hut the product of a 

hra vector and a kct vector in that order. 

18. {j is the transpose of A if for arbitrary X and Y in the common domain of A and B. (X, A Y) = 
(Y,n X). 
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From 

But 

Thus, 

< Z 1 y > = < Y 1 Z >', we have, 

<zl{A IX>}=[{<XIA) IZ>( 

< Z 1 {A 1 X>} ,,(Z,Ax) = (Atz,X) = (X, Atz)' 

=[<X 1 {At IZ>}l'. 

(2.101) 

(2.102) 

But from the definition (2.54) of the Hennitian conjugate, we know that At 
operating on the post-factor in a scalar product is equivalent toA operating on the 

pre-factor. Therefore, 

1I=A. 

Also, from Eqs. (2.101) and (2.102), we have, 

<ZIAIX> = <XIAtIZ>', 

so that the condition for Ii to be Hennitian is 

<ZIAIX> = <XIAIZ>. 

(2.103) 

(2.104) 

(2.105) 

Many of the relationships among vectors assume an elegant appearance when 

expressed in the new notation. Thus, we have, 

Onhononnality (Eq. (2.16)) : < ui 1 uj > = 8ij 

Completeness (Eq. (2.27)) : L 1 uj > < uj 1= 1. 

Projection operator (Eq. (2.74)): 1rj = 1 uj > < uj I. 

2.4 REPRESENTATION THEORY 

(2.161
) 

(2.2i) 

(2.741
) 

Consider an orthononnal basis [I uj >IN in an N-dimensional space. Any vector in 

the space can be expanded in terms of the vectors 1 Uj >. Thus, if 1 X > and 1 Y > 

are arbitrary vectors, we have, 

If 1 Z '" is a vector such that 

N 

IX>= Lxlu.>, 
j = 1) J 

N 

IY>= Lylu>, 
j = 1 J ) 

(2.I06a) 

(2.106b) 
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I Z > = a I X > +b I Y >, (2.106c) 

then, 

(2.107) 

N 

where, IZ>= Lz·lu.>. 
j~ I J J 

N 
Also, <X I Y >= LX~Yj. 

j ~ I J 
(2.108) 

Eqs. (2.107) and (2.108) suggest that, in place of the abstract vectors 

I X >, I Y >, ... , we can deal with their ordered expansion coefficients (or, com­

ponents), [xJ == [xl' X2' .• • ,xNJ, [yJ == [YI' Y2' .•• , yNJ, etc. These ordered expansion 

coefficients will be called the representatives of the vectors. Corresponding to 

every relationship betwecn vectors, there is a relationship between representa­

tives. Thus, the relationship (2.106c) translates as, 

[z] = a [x] +b[y], (2.109a) 

(2.109b1 

Unlike the vectors, the representatives depend upon the ba~is chosen; changing 
the basis will change the representatives also. However, with respect to a givt:n 

basis, the representative [xl corresponding to the vector I X > is unique. We say 
thaI the vector I X > is represented by [xl in the representation defined by the basis 

U uj >] N" The basis vectors themselves are represented by [ull. [u~, ... , [UN). 

where, [UI ] == ll, 0, 0, ... 0], 

[U2] == [0, 1,0, ... 0], 

[UN] == [0,0, ...... I]. 

Eqs. (2.109a, b) and (2. 108) show that the representative [xl of the ket vector 

I X > could be written in the form of a column matrix x: 

IX> -'t [xl -'tx == (2.111a) 

whereas, the representative of the bra vector < X I is represented by the row malri x 

x+ [see Eqs. (A.33) and (A.6)]: 
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(2.1111>\ 

The vector-addition (2.106c) is, then, represented by the matrix addition: 

z=ax+!Jy, 

and the scalar product (2.108) by the matrix product, xty. 

The unit ve<:tors 1 ui > arc represented by, 

1 0 (0\ 
a 1 i 0 I 
a 0 

(2.112) 

o 
The orthononnality condition (2.16') and the completeness condition (2.27') 
be<:omc, 

an.! 

tlu) > <u 1--> tuut~1 
) J j J J 

The operator equation, 

A IX> = I Y >, 

i, rCl'rcsc"tw by !he matrix <!quati"". 

Ax=y. 

(2.1133' 

(2. II 3b) 

(2.114a) 

(2.114b) 

Since both x and y are (N x 1) matrices, A has to be an (N x N) matrix. Thus, an 

operator in an N-dimensional space, is represented by a square matrix of order N. 
The properties of the linear operators, thus, follow from the properties of the 
square matrices. In particular, the operator algebra is identical with the matrix 

algebra '"- square matrices. The eigenvalue problem for an operator is reduced to 
the problem of diagonalizing a square matrix. 

The above·deseribed scheme of representing vectors and operators by 
matrices. is referred to a~ Matrix representation. 

It follows that a Hennitian operator would be represented by a Hennitian 
matrix and a Unitary operator by a Unitary matrix: 

Foe. according to the definition (2.103) of a Hermitian operator, we have 

<XIAIY>'= <Y!AIX>, 

I"~ in matrix rel.' "'ntation rcads, 

(X'A Y)' = Y'AX. 

Y:A'X ~ y-tAX, or.At=A. 

Similarly. if~' is Unitary, we have. 
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i.c. 

or 

Also, an operator on an infinite-dimensional linear vector space, would be 

represented by an infinite-dimensional matrix. 

Matrix Elements of A 

Consider the equation (2.114a) 

IY> =AIX>. 

Expanding I Y > and I X > in terms of the unit vectors I uj >, we get, 
N _ N 

L Yi I ui > = A L xk I U. > 
i~l • ~l 

since A is linear. 

Taking the scalar product of the equation with I uj >, we have, using Eq. 

(2.113a), 

But, according to Eq. (2.1 14b), we have (see Eq. (A.7», 

Yj =AJkxlc • 

Comparing Eqs. (2.115) and (2.116), we see that 

Aj • == < uj I A I Uk > . 

(2.115) 

(2.116) 

(2.117a) 

That is, the jk-th matrix clement of the matrix A that represents the operator A in 

the representation defined by the basis l\ uj >] N' is the scalar product of the vector 

A I Uk > by the vector I uj > . 

If A is one of the complete set of commuting operators that define the basis (sec 

thc last part of Section 2.2), then, 

A I Uk > = (Xl I Uk >, 

so that, (2. 117b) 

Thus. A is diagonal. That is, an operator is represented by a diagonal matrix 

in a representation defined by its own eigenvectors. This resull is consistent 

with the fact that the eigcnvalues of a diagonal matrix are its diagonal clement') 

(Eq. (A. 49». 
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Change of Basis 

Since the malIices (that is, their malIix elements) representing vectors and oper­
alors depcnd on the representation, or basis, we arc faced with the problem of 
finding the relationship between malIices which represent the same set of vecLOrs 
and operators in different representations. We address ourselves to a solution of 
this problem in the following: 

Let fI Ui >IN and [I U,' >IN be two orthonormal bases in a Hilbert space. Since 

both the sets are complete, the vecLOrs of one set can be expanded in terms of the 
vectors in the other set: 

N 

lu/> = :E luk >Skj.j=1,2, ...• N. 
1<=1 

(2.118) 

The expansion coefficients S'j could be regarded as the malIix elements of an 

(N x N) malIix S which represents the IIansformation from the representation 
[I Ui >1 to the representation 1I U,' >1. From Eq. (2.118), we have (taking the scalar 

product of the equation by I ui », 

Sij = <u; I u/ > 

That is, Sij is the 'component' of I u;' > along I Ui >. 

From the orthonormality of the set 1I u/ >1, we have, 
N 

0jk = < u/ I u/ > = .1: < u/ I Uj > < Ui I u/ > 
1=1 

N 

=E Si;Sij = (S'S)'j' 
,"'1 

(2.119) 

(2.120a) 

where, we have used the closure property ofthe basis [J Ui >IN (sec Eq. (2.2i). and 

Eqs. (A.) and (A.33a)). Similarly, from the completeness property of the sct 
1I U,' >J. we have, 

N 

~\k= <u·lult.>= L <u-Iu/> <u/luk > 
) i = 1 J 

(2. 120b) 

whcre, the orthononnality of the set [J ui >J has been used. From Eqs. (2.120a, b) 

we have, 

S'S =1 =SS', (2.120) 

Given an orthonormal basis, the first part ofEq. (2.120) represents the orthonor­
mality while the second part the completeness, of the transformed basis. Change 
of (orthonormal) basis in a linear vecLOr space is, thus represented by a Unitary 
matIix. 

Eq. (2.118) can be written as a nlalTix equation if we define a ImllJ"ix U by 

U;= (u,U2".UN), (2.121) 
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where, u. is the column matrix representing the basis vector. I u. > (see Eq. 

(2.112». Thus U is an (N xN) matrix19
• The orthonormality of the basis (Eq. 

(2.113a» requires that 

UtU", 

ut 
1 

ut 
2 

U' N 

(U1U2 ... uN ) = 

uiu1 u;uz uiuN 

uIU1 uIuz uIuN =1, 

uZu1 uZUz uZuN 

whereas, completeness (Eq. (2.113b» requires that 

uut=(~uut)=1 I I ' 
;=1 

where 1 is the (N x N) unit matrix. 

(2.122a) 

(2.122b) 

Thus, U is Unitary. That is, an orthonormal basis can be represented by a 
Unitary matrix. Conversely, the columns and rows of a Unitary matrix represent 
orthonormal vectors. 

In terms of the matrices U and S, Eq. (2.118) reduces to 
U'=US. (2. 118a) 

Since both U and S are unitary we have also, 

U = U'S\ (2.118b) 

and 

(2.119a) 

Eq. (2.118b) is the inverse of Eq. (2.118), whereas Eq. (2.119a) is the matrix 
equivalent of Eq. (2.119). 

The expansion of an arbitrary vector I X > in terms of the basis vectors is, 
N N 

I X > = L Xj I uj > = L x' I u' >, 
i=l j=l" 

(2.123a) 

which shows that the product Ux is invariant: 
Ux=U'x', (2.123b) 

where x and x' are the column matrices representing I X > in the representation U 
and U', respectively. 

Hence 

or, 
x =Sx'. 

The linear transformation 

I Y> =;\ IX >, 

is represented by the matrix equation, 

11). U could also be regarded as a row-matrix whose elerolents are column matrices. 

(2.124a) 

(2. 124b) 
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y=Ax, (2.125a) 

in the representation U and by the equation, 

y'=A'x', (2.125b) 

in the representation U'. Substituting for y and x in (2.125a) from Eq. (2.124b), 

we get, 

Sy'=ASx' 

or, 

y' = (StAS)x'. 

Comparing Eqs. (2.125b) and (2.125c), we have, 

A' =StAS. 

(2.125c) 

(2.126) 

Eqs. (2.124a) and (2.126) represent, respectively, the transformation law for 

vectors and operators under change of basis"'. We see that the change of basis 

corresponds to a Unitary transformation. 

From Eqs. (2.119a) and (2.126), we sec that, 

U'A'U't= UAUt, (2.127) 

"hich shows that the product (U A ut) is invariant under change of basis. 

Eqs. (2.1 18a) and (2. 124a) could be interpreted to mean the following; A 'ro­

'""tion' of the basis vectors (the co-ordinate system) is equivalent to an inverse 

rotation of the physical vectors (see Section 5.6). 

Problem 2.15 : An operator A is represented by the matrix A. = (~ ~) in a 

representation in which the basis vectors are u\ and Uz" Obtain the matrix Av that 

represents ;\ in the representation in which the basis vectors arc VI = 

1 1 
-5 (u, + u,) and v, = -5 (u, - u,). 

20. The change of hasis could also be described in tenns of the Unitary matrix; T = st, In Lenns of 

T. we have, 

x'=Tx, (2.124b) 

A =TAT' (2.12'':' 
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2.4A Co-ordinate and Momentum Representations 

Often, we have to represent the vectors as functions of either the co-ordinates or 

the momenta. For example, the vectors in the function space L 2(a. b) are such 

functions (see Section 2.1). We will here discuss the relationship between this 

function-space notation and the bra-ket notation. 

We will denote by < r I u > the co-ordinate representation of the ket I u > . 

Similarly. < p I U > is the momentum representation of I u >. Thus, 

uj(r) = < r I uj >. 

Also, 

U;(p) = < uj I p> . 

The scalar product < Uj I uj > is given by 

< Uj I uj > == (uj • u) == f u;(r)u/r)d3r 

= f < Uj I r > < r I uj > d 3
r 

:r('t1Ce, fir> < r I d3r = 1. 

Similarly, flp> < p I d3p = 1. 

From Eqs. (2.129a) and (2.131a), we have. 

(2.128a) 

(2.129a) 

(2.12gb) 

(2.129b) 

(2.130) 

(2.131a) 

(2.131b) 

u/p)== <Pluj>=f <plr> <rluj >d 3r= fu/r)<P1r>d3r.(2.132) 

and from (2.l28a) and (2.l3Ib), 

u/r) = fu/p)<rIP>d3p= fu/p)<P1r>·d3p. (2.133) 

Substituting p. (x-component of p) for p and x for r in (2.132), we have, 

Uj(P.) = f:Uj(X)<P.,x>dx. (2.1313) 

Similarly, from (2.133), we get, 

u}X) = f: uj(P.) < P. I x>· dpx ' (2. 133a) 

Now, it will be suggested in Section 3.1 that dynamical variables are repre­

sented in quantum mechanics. by Hermitian operators (Postulate I). It is further 

shown there that the operators corresponding to the dynamical variables x and r. 
arc given by [Eqs. (3.18) and (3.18 i )1, 



and 

'I1ms, 

i =x; fix. -it:!: (Co-ordinate representation), 

d 
i ~ if! -; p' ~ p : (MomentWII representation) 

dPx. x. x. 

• ( ) _ '"Ii du,(p,) 
xu) Px. -1 d t p, 

duj(x) 
P• u(x) ~ -iii-­

x. ) dx t 

P ,u/p,) ~ P.u/p,). 

From Eqs. (2.132a) and (2.134a), we have, 

(2.1343) 

(2.134b) 

(2.1353) 

(2.135b) 

iuj(p,} = r-{iUj(X)} <p,lx>dx= t-xU;cx)<p.IX>dX, (2.1363) 

while, from Eqs. (2.112a) and (2.134b), we get, 

du/p.l 1-iu}p,l" ifl-
d 

- = if! u/x) 
p, ~ 

~4S. (2. 136a, b) require that 

d 
d <p.lx> =-(ilh)x<p,lx>, 
P. 

or. < p.1 x > ~ C, exp [-(ilfl)p,x], 

where C, is independent of p .. 
Similarly, from Eqs. (2.133a), (2.135b) and (2.135a), we get, 

d. , 
dx < p.1 x> = (ilf!)p. < p.1 x > , 

so that < p.1 x >' ~ C; cxp [(iI1i)p,xJ. 

or, 

< p.1 x > = C, exp [-(il1i)P,xJ. 

where, C, is independent of x. 

Eqs. (2.138a, b) require that 

C, ~C,=c, 

where, C is a constant (independent of both x and pJ. Thus, 

< P. I x >= C exp [-(iIIi)p,xJ 

~"bslitulji1g (2.138) in (2.132a) and (2. 133a), we get, 

(2.136b) 

(2.137a) 

(2.138a) 

(2.137b) 

(2.138b) 

(2.138) 
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u/p) = c J: U/xj exp [(-il1I)p.xldx 

Uj(X) = C· f: U/Px) exp [(Uh)p;<]dpx 

61 

(2. 132b) 

(2.133b) 

The constant C can be determined from the (nonnalization) condition, 

f~-I uj(X) 12 dx ::: 1 

=1 C 12 f: dp, f~- dp'zu;(p'Juj(PJ f: exp [(illi)(px - p'x)x]dx 

Since 

J~- exp li/1z(p. - p'Jx)dx :::: 2rrllO(p. - P'.), 

(see Eq. (D.6a» 

and 

f: 1 U/P.) 12 dp. = 1. 

Thus. assuming C to be real, we get. 

C ==C·=_l_ 
-.J2rr1i . 

(2.139) 

Eqs. (2.1373. b) suggest that, for the general case where Vp and V" respectively, 

d d 
wI;.\: lll\: pli.l~\: of d aJllI d.x ' we sllould lIave, 

Px 

and 

(2.140a) 

(2.140b) 

Thus, u;Cp) and uj(r) are Fourier tr'.msforms of each other (see Eqs. (C.18a, b». 

Expression (2.117a) for the matrix elements of the operator A becomes: 

.\. - ..... uJ I A Ill. > f f < II) I" > < r I A I r' > < r' I u. > d3rd
3
r' 

:::: f J u;(r)A(r, r')uj;(r')d3rd3r', (2.141) 

where, use has been' made of Eqs. (2.128a, b) and (2.131a). 

Here, A (r, r'):; < r I Air' > is the co-ordinate representation of A, and is gen­
craJIy of the form, 
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A(r, r') ~ A(r)8(r - r'). (2.141a) 

Thus, 

Aj' = f u;(r)A(r)u,(r)d'r. (2.1\7c) 

Comparison of Eqs. (2.132) and (A.SSe) shows thatlhe former is merely Eq. 
(2.118) for the case where the tf'dnsformation is represented by a continuous 
malIix. The other equations of this Section could also be similarly interpreted in 
terms of continuous matrices. 
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CHAPTER 3 

THE BASIC PRINCIPLES 

3.1 THE FUNDAMENTAL POSTULATES 

Certain hypotheses, or postulates, serve as the foundation on which a physical 
theory is builL up. The theory considers these postulates as fundamental. In other 
words, an explanation of the postulates is beyond the scope of the theory; the 
theory is rather concerned with the consequences of the postulates. In fact, the 
theory is nothing but the mathematical framework which connects the postulates 
to their observable consequences. Of course, one often regards the postulates as 
parl of the theory iL~elf, in which case the consequences are referred to as 
predictions of the theory. Agrecment between these predictions and the exper­
imental observations provides a verification of the theory, and, thus, an indirect 
justification of the postulates. This section is devoted to an enumeration and 
discussion of such experimentally justified postulates which embody the basic 
principles on which the mathematical edifice of quantum mechanics is built up. 

In Section 1.2, we presented a set of postulates which, we emphasized, could 
be regarded as the quantum mechanical laws of motion, analogous to Newton's 
laws of motion in classical mechanics. A formalism of quantum mechanics 
which logically follow from those postulates, is the path-integra/formalism (PIF) 
developed by Feynman1

• We had also indicated in Section 1.2, that the probability 
amplitudes \jI(r, /) and the dynamical variables, such as the Hamiltonian II and 
the momentum p, could be regarded, respectively as vectors and operators in a 
Hilbert Space. The formalism of quantum mechanics which incorporates this 
viewpoint could be called the lIilher/-space formalism (HSF). Whereas the PIF 
has got certain advantages over the HSF, especially when concerned with the 
extension of quantum mechanics to qualllum field theory, for many of the prac­
tical applications of non-relativistic quantum mechanics, the HSF proves to be 
simpler and elegant enough. Also, the two earliest versions of quantum 
mechanics, namely, Schrodinger's wave mechanics and Heisenberg'S matrix 
mechanics, emerge as special cases of the HSF. In this chapter, we present the 
postulates in a form (and language) that is appropriate to the Hilbert-space for­
malism of quantum mechanics. 

1. See, the hook hy R.I'. Feynman and A.R. Hibbs (Footnote 9, Chapter 1). 
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Postulate I: Corresponding to every observable physical quantity, there exists a 
J/ermilian operator. The only measurable values of a physical observable are the 

various eigenvalues of the corresponding operator. 

In classical mechanics, physical observables arc represented by dynamical 
variahles, such as energy, ::mgular momentum, etc., which are functions of certain 
basic variables such as co-ordinates and momenta. Therefore, the postulate is 
equivalent to stating that every dynamical variable is represented by a Ilermitian 
operator. 

The Hcnnitian character of the operator ensures that the eigenvalues arc real 
(Section 2.2), which properly is necessary if the eigenvalues are to be identified 
with measured quantities. We further assume Lhat the Hennitian operator repre­
senting an observable is bounded so that it. has got a complete set of eigenvectors. 

Since the eigenvalues of a Hennitian operator are not, in general, at least 
wholly, continuous, Postulate I conk1ins the important feature of discreteness (that 
is, the fact that a dynamical variable such as angular momentum, can have only 
certain allowed values) associated with every microscopic system. 

Now, operators have meaning only with reference to a set of vcctors on which 
:l ey operate. This fact leads us to the second postulate. 

Postulate II: To every physical system. there corresponds an abstract 11iLbelt 
.'pace. A state of lhe system is represented by a vector in this space upon which 
(he operators corresponding to the observables act. Also, any vector in the space 
rcprescms a possihie slale of lhe syslem. 

Since nn arbitrary vector in the space can be expressed as a linear superposition 
of a complete set of orthononnal vectors, this postulate implies the principle of 
superposition (Eq. (1.3). 

In classical mechanics, the dynamical state of a physical system is specified in 
terms of the values of a set of dynamical variables. Thus, giving the values of all 
the co-ordinates and momenta of the particles composing a system, at any instant, 
specifics the statc of the system at that instant. This implies not only that the value 
of any other dynamical variable, slich as energy, relevant to the system can be 
computed from the given values of the co-ordinates and momenta, but also that 
the state of the system at any other time can be deduced with the help of the 
equations of motion. The definition of the state of a system in quantum mechanics 
appears radically different from the above definition of the dynamical state in 
classical mechanics. However, the difference is only apparent. As we have 
already staled, any state vector can be expanded in terms of a complete set of basis 
vectors. Tlese basis vectors are the common eigenvectors of a complete set of 
con~muting Hennitian operators which, according to Postulate J, rerresent the 
dynamical variables of the system. In oOler words, we require the (possible) 
------------~ 

2. J\very I lenllitian operator docs not. however, represcnt an observablc. 
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values of the dynamical variables of the system in order to specify the basis vec­

tors in terms of which any slate vector is defined. Thus, even though we can't 

speak of definite values for the dynamical variables in a given slate, the concept 

of dynamical variables is required to specify a slate. For example, the basis slates 

for a spin-~ particle are the spin-up and the spin-down slates, represented respec-

tively by X and X. A general slate vector would be, then, 

(3.1) 

Thus, even though we cannot say whether the system has spin up or down in the 
statc X, we havc to make use of thc concept of thc dynamical variablc spin, and its 

possiblc values in order to define :(. 
Now, thc eigenvalues are oblained by operating on the slate vector with the 

Hermitian opeFator (Eq.(2.49». This, according to Postulate I, corresponds to the 
act of measurement. Thus, if we make a measurement of a certain physical 

observable reprcsented by the operator A, the system would be left in a state 
which is an eigenvector of A. Then, if we make a measurement of another 

observable represented, say, by B, this act of measurement will carry the system 

over to a stale which is an eigenstate of B. The two measurements will refer to 
the same state of the system only if the state is represented by a common eigen· 
vector 01';\ and fj. And this would be so (see commuting operators, Section 2.~~) 
\Il.ly if ;\ and B commute. Thus, dynamical variables which could ~)e 
s: multancously assigned definite values in a given state, are represcnted by c(,m­
HlUting Hermitian operators. Such variables are called compatible variables. In 
contrast, variables which cannot be assigned specific values in a given stale 
(represented by non-commuting operators), are called complementary variables. 
Energy and momentum are compatible variables for a free particle, whereas the 

x-eo-ordinate and the x-component of the momentum are examples of comple­
mentary variables. 

For a given system, there is a limit to the number of compatible variables. This 

limit is represented by the complete set of commuting }Iennitian operators on the 
Hilhert space of the system. The simultaneous measurement of the set of com­

patible variahles corresponds to the simultaneous determination of the eigenva­
lues of this complete set of operators. A maximal mea"urement of this sort 
provides the maximum amount of information that can be had on a quantum 
mechanical system. In fact, unique (or, complete) specification of a state of the 

syslem requires such a maximal measurement. 

1. In view of Postulate I. the question ari~es whether the state xis a physical state or not. That is. 

whether the particle can eust in the stale Xor not. Since xis not an eigenvector of the 1 !cnnitian 
operator corresponding to spin, we will not find the particle in the state X if we make a mea­

SUfement of spin but will find either in the state X, or in the state X_. Thus, it would appear that 

only the hasis "ales arc realizahle; that is, the particlc is always in one or U1C other of the hasis 
slalcs and neVer in hetween. X should, then, refer to the outcome of a large number of meaSUil" 
Incllls on identical systems. That is, X represents the state of an ensemble as far as the ",in is 
C( I1cCllIcd (sec Postulate 1Il). 
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There may be more than one complete set of commuting observables for a 
system. For example (see Section 5.5A), in the case of a two=particle system, the 
angular momenta of the individual particles and their components along a rcfer· 
ence axis (together with the Hamiltonian) fonn one complete sct, while the indio 
vidual angular momenta, the total angular momentum and its component along 
the reference axis, form another complete set. The common eigenvectors of any 
of these sets, could be used for specifying the states of the system. Of course, the 
description in terms of the different sets are equivalent, since these different sets 
merely define different representations related by Unitary transformations (sec, 
Change of Basis, Section 2.4). 

Expectation Values and Probabilities 

If we make a measurement of a physical observable, the outeome would be one of 
the eigenvalues of the corresponding operator. If the system is in a state repre· 
sented by an eigenvector of the operator, then the eigenvalue obtained will be the 
eigenvalue belonging to this eigenvector. But suppose the system is not in a state 
corresponding to an eigenvector of the operator. What would be the result of the 
measurement then" The answer is provided by Postulate III. 

Postulate III. The outcome of the measurement of an observable of a quantum 
mechanical system in a particular slate is given by the expectation value of the 
corresponding operator in that slale. 

The expccwtion value < Ii >x of an operator A in the state X, is defined as, 

d> ~ (X,AX)~<XIAIX> 
x (X, X) < X I X > 

If I X > is an eigenvector of A, say, 1 X > " 1 u. >, where 

Ii I u. > ~ a. I u. >, 

then, 

(3.2a) 

(3.2b) 

which is in agreement with OUf earlier statement. If I X > is not an eigenvector of 

A, then, 1 X > can be expanded in terms of the eigenvectors {I u, >} of A, which 

form a compiete, orthonormal sci (see property (83) of Hermitian operators, 
Section 2.2): 

so that, 

IX> ~I:lu,> <",IX>, , 

I:a. 1< u, I X >12 , 
I:1<u,IX>12 , 

(3.3) 

(3.4) 
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where 

(3.5) 

Now, according to Postulate J, the outcome of an) single measurement is an 
eigenvalue of the operator. Equation (3.4) should, ~refore, be interpreted as 
giving the outcome of a large number of measuremen~ under identical condi­
tions, or, equivalently, the outcome of a measurement o~ a large number of 

identical (similarly-prepared) systems. That is, < A >x is the w~ighted average of 

a number of measurements. Each measurement will yield OoIe or the other 

eigenvalue of A .1< Uk 1 X >12 is the frequency with which the eigenvuue a.t occurs 

in the measurement. The ratio of this frequency to the tetaI number c.i measure­

ments, L 1< Uk 1 X >12, is the weight W k (Eq.(3.S» of the eigenvalue ~ in tI:Je mea-
k 

surement. W k could be interpreted as the probability that a single measureuent 

yields the value a.k • The result, LWk = 1, reinforces this interpretation, since LI1I, 
t k 

is the probability that a single measurement yields one or the other cigenvalue of 
Ii. 

If the state vector I X > is normalized, we have, 

< X 1 X > "" L 1< Uk 1 X >12= 1, 
k 

(3.6) 

so that, 

(3.5a) 

II. this case, I X > itself could be regarded as a probability amplitude. Unless 

othv-wise specificd, we will assume hereafter that 1 X> is normalized. 

Nov, the probability that a measurement yields the value (Ik, is the probability 

t"1t the system is found in the state 1 Uk > . Therefore, 1< Uk 1 X >f is the probability 

tha·'.he system is in the state 1 Uk >. Hence, < Uk 1 X > could be regarded as the 

probui/ity amrlitude4 for the system to be found in 1 Uk >. Of course, this con­

cept of l<:: probability amplitude is based on the premise that 1 X > as expressed 
by Eq. C1) has meaning as the state vector of a physical system. The 
justificatior'for the premise comes from experiments on interference and 
diffraction P~nomena (see Section 1.1). Taking the co-ordinate representation 
(see Section 2.A.) of Eq (3.3), we get, 

< r 1 X > = L < Uk I X > < r 1 Uk >, 
k 

4 Thi~ tcrm is derived. . h th· . fl· h ... b th . .;r. wave OptiCS, were e mtenslty 0 Ig t at a pomtls gIVen y e square 
of the amplItude of . ·?Jave at that point. The probability is defined as the absolute square 
because of tbe pOSSlbilllj 11 < uA I X> may be complex. 
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or. 

wnere 

X(r) = L,.u,(r), , 

X,t:::; <U.!X>. 
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0.3a) 

(3.7) 

Eq. (3.3a) is, obviou.,ly, er~uivalentto Eq. (1.3) and Eq. (1.11). 

Docs the physical system, of which I X > is the stalC vector, represent a single 

panicle') The answc, is that it is possible. In that case, I X > would be the eigen· 

vector of some opwaLO' Ii that does not commute will1 A, so that I x> would be 

a stalC in whir'" H has a definite value but A has no definite value. As an 

illuSlration,Cf)nsider the linear harmonic oscillator. Let I X > be an eigenvector of 
Lhe operato.,. corresponding to tbe Hamiltonian of the system. That is, I X > is a 

slale in "Jhkh the oscillator has a definite enc-rgy. Ii could. then, correspond to 

the p<">ition eo·ordinate of the oscillator. If Xo is the amplitude of oscillation, a.1Y 

one measurement of A will give a value which would lie anywhere between -.x" 

::.nd + XO' The average of a large numbe.r of repeated measurements would be zero, 

corresponding to the equilibrium position of the oscillator. The same a"erage 

value for the position co-ordinate would, however. be obtained if the meaSUre­

ment b made on an t~nscmble of identical oscillators all of which arc in the same 

energy state IX >. Thus, as far as measurement of A isconcemed, IX > could as 

"ell represcnt an ensemble of oscillators as a single oscillator. In the former ca,c. 

1< u, 1 X >1' is to be interpreted as proportional to the number of oscillurors in th: 

ensemble whose posilion co·ordinates are equal to that corresponding to I u, > al • 

the lime of measurement'. In the lalter case, I< u,l X ::>1' should be interprete(J. as 

proportional to the number of measurements which results in a value fr Jr lhe 

posilion co-ordinate that is appropriate to I u. >. In eilher case, the meast'ucmen' , 
of A is of a statistical nature. The outcome of any single me-a'lurement ('..-annat be 

predict"'!. 

In the case of microscopic systems, the interpretation of I X > as repre' ;cnting 

the state of an ensemble is to be preferred, since mea~urement3 arc actu; Ally done 
on ensembles rather than on single systems. For example. it is not r ,ractical to 
isolate. say one hydrogen atom, and make repealed measurements or '1 ,I. 

In thiS context, il might be relevant to make a distinction bel" the tal ;vccn s· e 
I u. > ami the state I X >. We will refer to the former as a pure stale and to the 

I:lllcr "s 

;hc PO~ttit)O co-ordm3tcs of more than one oscillator could be cqu&l ' 
frum :i)e eqUllibnum pol'ltior.S (which are different for different 0$' .. x,cau:e these aremea~uTcJ 

..lllatOf'SJ of the oscillators_ 
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a mixed slale. When concerned with measurements, we will assume that a pure 

stale corresponds to an individual system and a mixed state to an ensemble6
• 

We, thus, see that Posltulate III leads to a statistical interpretation of quantum 

mechanics. Alternatively, we could say that this postulate expresses the statistical 

nature of quantum mechanics. The predictions of quantum mechanics are also, 

therefore, of a statistical nature. For example, even if we are given complete data 

(in the quantum-mechanical sense) on a radioactive nucleus, we will not be able 

to predlict, on the basis of quantum mechanics, when exactly it will disintegrate; 

what we can predict is the number of nuclei that will disintegrate in a given time, 
in a salmple (or, ensemble) consisting of a large number of such nuclei. True to 

the staJistical nature of the prediction, the predicted number would be nearer to the 

actua\. number, the larger the number of nuclei involved. The analogy of the 

number of deaths in a community of people might help to elucidate the point. It 

is in.lpossibk to predict when exactly a particular individual in the community will 

die" but we wlill be able to predict, on the basis of previous data, fairly accurately 

the number of deaths that will take place, say, during the coming month. The 
accuracy of the prediction could be increased by replacing the month by an year. 
Alternatively fOl- the same period, the accuracy of the prediction would be more 

in ~he case of a city with a population of a few million people than in the case of 

a village with a few thousand people. 
Lest this analogy lead to the mistaken notion that quantum mechanics is merely 

a statistical theory like, say, classical thermodynamics, let it be emphasized that 

fhe concept of the probability amplitudes that obey the principle of superposition 
(Eqs. (3.7) and (3.3a)), is a novel clement in the theory. This results in a law of 

combination of probabilities for different but (experimentally) indistinguishable 

alternatives, that is quite foreign to classical statistics? (see Eq. (1.4)). 

6. Note that the designation as pure and mixed states is with reference to a given obselVable, in this 
case A. A mixed state of one obselVable could be a pure state of another obselVable. In our 
example of the oscillator, I X > is a mixed state of A, but a pure state of fi. This difference in the 
role of I X > when referred to different obselVables, does not lead to any inconsistency, since we 
are concerned with the measurement of only A, whereas H is brought in only to specify I X>. If 
we were to talk of the measurement of both A and H, then I X > would have to be the same type 
of state with respect to both A and fI (see, Section 3.2). 

7. In the classical theory, there are two ways in which probabilities for different events are 
combined. If PA and p" are, respectively, the probabilities for events A and B, then the probability 

PAS for the combined event is given by either (i) PAS = PA + p., or (n) P., = PAP •. In (i), PAS is 

the probability for either A or B to happen. Thus if PAis the probability for a coin in a toss to fall 

with head-up, and p. to fall with tail-up, then p. +p. is the probability to fall with either head or 

tail up. Thus P A and p. in this case represents probabilities for mUlULllly exclusive events. In (ll) 
P A and p. represents probabilities for independent events. Thus P A could be the probability for 

the coin to fall with head-up in one toss, and p. the probability to fall with head-up in another 
toss. PAS is, then, the probability that the coin falls with head-up in both the tossings. The 

important point is that, both in (i) and (n), it is the probabilities that are to be adc'eu or mUltiplied 
and there is no such thing as a probability amplitude. 
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Quantum Mechanical Operators 

We will now consider the question of obtaining the Hennitian operctor that 
represents a given physical observable. We know that, in classical mechanics, a 
physical observable corresponds to a dynamical variable which could be COn­
structed from pairs of basic, canonically conjugate variables such as gencmlized 

co-ordinates and momenta. For example, the dynamical variable corresponding 
to the total energy of a system is the Hamiltonian II which is a function of the 
generalized co-ordinates and the generalized momenta. The method to obllin the 

quantum mechanical operator from the classical dynamical variable, is the slbject 
of Postulate IV: 

Postulate IV: The quantum mechanical operator corresponding to a :iynar>ical 

variable is obtained by replacing the classical canonical variables in the latter by 

the corresponding quantum mechanical operators. 

For example, the Hamiltonian of a linear harmonic oscillaWf is given, in 

classical mechanics (in cartesian co-ordinates), by 

p' 1 
H =1I(x,P)=2m +ZKX', (3.8) 

where m is the mass of the oscillator and K is a constant. Here, x (the position 
co-ordinate) and p (the linear momentum) are the basic canonic variables. 

According to the above postulate, the quantum mechanical operator correspond­
ing to II is given by 

" -, 1 
II =H(x p') =.!!...+-Kx' • 2m 2 ' (3.9) 

where x and p are Hennitian operators corresponding, respectively, to x and p. 

While making the replacement of the canonical variables by quantum 
mechanical operators, care should be taken to preserve the proper order of the 
variables, since the operators need not commute. Care should also be taken to 

see that the resulting operator is Hennitian. For illustration, let us consider the 
(orbital) angular momentum; L = r x p. We have, 

L. = yp, - zP" cyclic, (3.10) 

so that, , 
L, = YP,YP, + zP,zP, - YP,zP, - zp,yp, (3.l1a) 

=y'p,'+z'p:-2yp,zp, (3.llb) 

Classically, both expressions (3.lla) and (3.llb) are correct. However, replacing 
the canonical variables in (3.l1b) by the corresponding operators will lead to a 

wrong expression for L;. In fact, L; so obtained would be non-Hermitian. This 
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difficulty could be avoided by making the simplifications only after the replace­

ment of the variables by operators. Only those operators that commute should be 

permuted. Thus, the correct expression for L; is obtained by replacing the 

variables by corresponding operators in Eq. (3.l1a). 

As another example, consider a dynamical variable C which is the product of 

two other dynamical variables A and B. That is, C = AB. Then, the Hermitian 

operator corresponding to C is no1.4B, since if AB :t BA, then AB would not be 

Hermitian. We should construct a combination of A and B that is Hermitian. 
A I AA AA 

Such a combination is given by C ==z(AB +BA). 

Postulate IV is of no use in the case of observables like spin, isospin, etc., 

which have no classical analogue. In such cases, other considerations, such as the 

algebra they obey, might help to define the operator (see Section 5.1). 
The question now remaining to be answered is how to specify the quantum 

mechanical operators corresponding to the basic canonical variables. Answer to 
this question is provided by our final postulate. 

Postulate V: Any pair of canonically conjugate operators will satisfy the 

following Heisenberg commutation rules: 

[4AkJ = 0 = [Pi,PkJ 

[I];. P J = i1il Ojj; = i1iSik 

(3.12a) 

(3.12b) 

Here, 4 i is the operator corresponding to the generalized co-ordinate qi while P; 
is the operator corresponding to the generalized momentum Pi that is canonically 

conjugate8 to q;. 
Thus, if the qi are cartesian co-ordinates, then the Pi are the components of 

linear momentum. If qiare angles, Pi are components of angular momentum, and 

so on. 

8. The fact that q; and Pi are canonically conjugate to each other is expressed in classical mechanics, 

in any of the following equivalent ways: 
(i) They satisfy Hamiltonian's canonical equations, 

dqi aH dpi aH 
di= api; di=- aq: 

where /J (q, p, I) is the Hamiltonian of the mechanical system. 
(ii) They satisfy the Poisson brackets, 

{qi,pJ = 0 .. ; 

{q"qJ = 0 = {Pi,pJ· 
(iii) 1hcy satisfy the relationship, 

Pi = aas, where S is the action (see Eq. (l.14b». 
qi 
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Postulate V may be called the axiom of quantization. For, any operator that has 
a classical analogue, can be expressed as a function of the qi and the Pi' and the 
quantal properti~s of such an operator would follow from the relations (3.12a, b). 

For example, the substitution of the operators y,p"f,p" etc. in place of 

the variables y,P"z,p, ... in Eg. (3.10) leads to the following relations for the 

component of L : 
(3.13) 

where, use has been made of Eqs. (3. I 2a, b). It is shown, in the theory of angular 
momentum (see Section 5.2), that Eq. (3.13) complet.cly determines the eigenva­
lues and eigenvectors and, hence, the quantal properties of angular momentum. 

Of course, the designation of Postulate V as an axiom of quantization, is 
meaningful only if the commutation relations (3.12) are invariant under Unitary 
transformations (that is, under change ofba.is-see Eq. (2.124)). This is, indeed, 
the case, as is easily proved. 

The following commutation relations, which are obtained from the basic 
commutation relations (3.12b) by induction, might be of help in many applica­
'.ions: 

r - -"] haC -") q,p =1 ap p , 

[ -""J .~ a (-") p,q = -I" aq q 

[ - AC- -)1 ~aA q, q,p =I"ai 
_ aA 

ip,ACq,p)J =-ih-a;j' 

where, A is a function of q and p. 
These relations suggest the identities, 

and 

_ .~ a 
p =-I"aq' 

a 
q =ihap-

Problem 3.1: Prove the relations (3.14a-d). 

Explicit Representation of Operators 

C3.14a) 

C3.141') 

(3.110) 

C3.14d) 

C3.15a) 

(3.15b) 

The question of how to represent the operators explicitly, is still left. So far 
we have defined the canonical operators only by the algebra which they 
should satisfy. The explicit form of the operators will depend upon the type of 
Hilbert space chosen and the representation selected. In the SehrOdinger method 
the Hilbert space is a continuous one, that is, a functjon~spacc. We can slii! 
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choose either the co-ordinate or the momentum representation. In the former, the 

state vectors are functions of the position co-ordinates and the generalized co­

ordinates are, therefore, multiplicative operators: 

(3.16') 

The relation (3.12b), [4 j, P kl = i"IiSu:, then requires that the conjugate momenta be 

differential operators: 

(3.17') 

where, the gradient is with respect to the position co-ordinates. Thus, in the 

cartesian system, the canonical operators are, 

, , . .., a 
x=x;Px=-z"ax; 

, , . .., a 
y=y;p,=-z"ay; 

, , . .., a 
z = z; p, = -z" az . (3.18) 

This gives, for the Hamiltonian of linear harmonic oscillator (Eq. (3.9», the 

explicit expression, 

, 'li2 d 2 1 2 
H=---+-Kx 

2mdx 2 2 ' 
(3.9') 

and for the components of the orbital angular momentum (Eq. (3.10», 

, ''Ii( a a) r Lx = -z y az - z ay , cyc IC (3.10') 

If we choose the momentum representation, then the state vectors are functions 
of the momenta. The momenta are then represented by multiplicative operators: 

pj==pi, (3.172
) 

and the co-ordinates by differential operators. 

4j == i'li (gradp)j, 

where the gradient is with respect to the momenta. 

Again, in the cartesian system, the canonical operators are: 

, "'Ii a p =p 'X=Z -' 
x x, apz' 

, "'Ii a 
pz=Pz;z=z a' p, 

Hence, corresponding to Eqs. (3.9) and (3.10), we have, 

(3.18') 
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and 

Problem 3.2: Show 
relations (3.13). 

, d' " pz; 1 2 
H=---tzK-, 

2m 2 dp; 
(3.9') 

_ (0 0) . 
L. = it! a-p, -a-P, ' cyclic 

P, P, 
(3.10') 

that Eq. (3.10') is consistcnt with the communication 

In the Heisenberg method, the Hilbert space is discrete (but infinite­
dimensional). The operators arc represented by (infinite-dimensional) discrete 
malTices. For example, in the case of the linear harmonic oscillator, 

and 

That is, 

and, 

where 

o ..[1 0 0 

..[1 0 fi 0 

i =~ 0 fi 0 -f3 
'12 0 0 -f3 0 14 

o 0 0 14 0 

0 ..[1 0 0 
-..[1 0 -JO 

I 
-fi -f3 P. = -Iii afi 0 0 

0 0 -{3 0 

() () () -14 

o 
-E 

0 

-J4 
() 

a.~. 
= fi'ln-I, lfm=n-I, 

:::: 0, otherwise, 

(pJ~ = -it!( a~ )-Yn, if m = n + 1 

= iii( a~ ){;!'=l, if m = n - 1 

;:::; 0, otherwise, 

, ii 1i 
a=--=---ImK mw' 

w = ~ being the frequency of the oscillator. 

Substituting Eqs. (3.19) and (3.20) in Eq. (3.9), we get, 

(3.16", 

(3.17') 

0 

-E 

(3.19) 

(3.20) 

(3.21) 
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112 0 0 0 

0 3/2 0 0 

fI = lim 
0 0 5/2 0 0 
0 0 0 7/2 0 
0 0 0 0 9/2 0 

or ll"", = E.o""" (3.22a) 

where E.=(n+~}w, n=O,1,2,... (3.22b) 

Problem 3.3: Show that expressions (3.163
) and (3.173

) are consistent with the 

commutati0':l relation, [i, p J = iii!. 

Problem 3.4: Show that the linear vector space, on which the operators q i and Pi 
in Eq. (3.12b) are defined, is infinite-dimensional. 

3.2 THE UNCERTAINTY PRINCIPLE 

We shall now discuss the result of trying to measure experimentally the values of 
two incompatible (or, complementary) variables for a physical system which is in 
a quantum state represented by the vector 'If. Such variables, as we have seen (see 
Postulate II), correspond to noncommuting Hermitian operators, say A and fj. 
That is, 

[,4,B] =iC, 

where C is Hermitian and non-null. 

We will assume that I 'If> is normalized; that is, 

<'I'I'If> =1. 

(3.23) 

(3.24) 

First we will discuss the type of stale vector for which it is meaningful to talk of 
the values of incompatible variables. 

Case 1: 'V is an eigenvector of one of the operators, say A. 
According to Postulates I and III, then, a measurement of A will yield the value 

a which is the eigenvalue of A belonging to the eigenvector 'V. The attempt to 
measure B will carry the system over to an eigenvector of B, which is not an 
eigenvector of A sinceAB 7= BA. Therefore, the measured value of B would refer 
to a state which is different from the one represented by 'If. In other words, it is 
not possible to specify values for both of two incompatible variables when the 
system is in a state corresponding to an eigenvector of one of the two operators 
that represent the variables9

• 

9. It might be argued, on the basis of Postulate III, that the measurement of B should result in the 

expectation value < B >",. But this would require that we interpret IjI as a mixed state (sec foot­

note 6) representing an ensemble. On the other hand, in the case of A, we have to interpret IjI as 
a pure state representing an individual system or, alternatively, an ensemble in which all the 
individual members are in the same quantum state. lbe inconsistency is avoided by assuming 
that only one of the two variables A and B can be meas~red in the state 1jI. 
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Case 2: \if is not an eigenvector of either A or B, That is 'If is a mixed stale. 

According to Postulale III, then, the me<lsurement of A gives the expectatlOr. 

value < f{ >'11 while the measurement of B yields the number < B >'¥" Thus, it is 

possible to specify values for both A and B in the state \jI without having to 
interpret I \jI:> differently in the two cases. In the remainder of this Seclion, we 
will assume that ~I is of this typc. We will also drop the subscript \jI from the 
expectation values, as we are dealing witlt only one statc-vector. 

The General Uncertainty Relationship 

Now. an expectation value is an average over several measuremenlli. The indi­
vidual measuremenlr.; will deviate from the average value, some on the lower side 
and some otlters on the upper side. The average of these deviations would, of 
course, be zero. But the average of the squares of the deviations (called 'mean­
square-deviation') would be non-zero. The SlJuare root of the mean-square­
cieviation, referred Lo as the rODI-mean-square (or standard) deviation, could be 
t.tkcn as a measure of the . spread • in the measured vaJues. 111Cse spreads M and 
tJJ in the measured values of A and B arc called the uncertainties in the mea­
,urement of A and B. Thus, the uncertainties M and M3 associated with the 
measurements of A and B in a given state are given bylO 

fu1 ~ {«A -<A »'>}'" 

~ [<\jII(,\ -<,\ »'1 'I' >},n 

~ {< '1'(,.1 - <A » I (A - <A »\jI>}w, since A is Hermitian; 

Similarly, 

with 

M3 ~II\jI211, 

\jI,=(B -<B »'1' 

(3.25a) 

(3.26a) 

(},25h) 

(3.26b) 

The fact that \jI is a vector in the Hilbert space, resulls in a certain correlation 

betwccn L\A and M3. It is this correlation tltat is referred to variously as the 
uncertainty rdationship, the uncertainty principle or the principle of inderer­
minac/:. \Vhereas there is divergence of opinion among physicists as to the 
meaning of the relationship (sec, footnote 27, Chapter I), there is agreement on 
the rei;ltionship itself. A derivation of the relationship follows: 

According to Schwarz inequality (Eq. (2.14)), we have, since I \If, > and I \jI, > 
arc vectors in the Hilben space, 

i o. ;-..rote that M would have been zero if '" were an eigenvector of A. 
\\. B<I!lcntine, L. E. (Ref. 9, Chapler 1) suggests the name statislical dispersion prin,ciple. 
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since 

That is 

II 'VIII ·11 'V211 ~ 1< 'VI I 'V2 >1 

~ I 1m < 'VI I 'V2 >1 

77 

(3.27a) 

(3.27b) 

-<'V 1(8 - <8 » I (A -<A »'V >}I 
1 1 .... 

~ 2: I i < 'V I (AB - B A) 10/ >1 

1 , 
~2:I<C>I. (3.28) 

Putting A = ii j and B = Pk in Eq. (3.23), we have, from Eq. (3.12b), 

C = "JiDjk , 

so that Eq. (3.28) reads, 

(3.29) 

Thus, if qj are the components of the position vector rand Pk the component') of 
the linear momentum p of a particle, then, we have 

L1x . D.P. ~ "Ji/2, cyclic. (3.29a) 

Inequality (3.29a) is known as Heisenberg's Uncertainty relationship. (3.29) is a 
generalization of (3.29a) to the case of all pairs of canonically conjugate variables 
while (3.28) is a generalisation to any pair of dynamical variables that correspond 
to non-commuting opcrators12

• Thus, if Pk = Lz• the z-component of angular 

momentum, then qk = <», the azimuthal angle, so that inequality (3.29) requires that 

1'1 
~tf.·M >-

'i' z -2. (3.29b) 

Similarly, puuing, A =L, and B ==L y , in Eq. (3.23), we have from Eq. (3.13), 

C = t.i,. I fence, from (3.28), we get, 

12. 'lhe generalized uncertainty relationship (3.28) was first derived by H.P. Robertson [Phys.Xell .. 
J4, lti'l (1929) J 
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(3.28a) 

Note that the inequality (3.28) is independent of <A> and <8 >, so that the 

uncertainty relationship holds evcn for states in which the expectation values of 

A and B are zero. An energy eigenstate of a linear harmonic oscillator (Hamil­
tonian given by Eq. (3.9)) is an example: 

Let 1jI represent an eigenvector of fl belonging to the eigenvalue E. Also, let 

A and B be, respectively, the operators corresponding to position and momentum. 
That is, 

A=x;B=p. 
From, Eqs. (3.25a) and (3.25b), we have, 

rue ~ {<x'>} la; I'1p ~ {<p'>} la 

Since both x' and p' are positive for the oscillator, we have, 

rue >0; I'1p >0, 

so that, 

rue .l'1p >0. 

In fact, according to (3.29a), we should have, 
rue .l'1p <:N2. 

(3.30) 

(3.31) 

(3.29a,) 

An interesting consequence of (3.31) is that the lowest energy, referred to as the 
'zero-point energy' of the oscillator is different from zero. An estimate of this 
zero-point cnergy could be made using the expressions (3.9), (3.30) and (3.29a '). 
We have, 

I ,K , 
~-(l'1p) +-(rue) 

2m 2 

I ,1;'K I 
<:2m(l'1p) +-8 --,. 

. (l'1p) 

The minimum value of E is given by the minimum of the expression, 

_1_ 1'1 '+ tJ'K _1_ 
2m (p) 8' (l'1p)" 

[ 
(l'1p)' tJ'K ] 

Emin~EO~ ~+ 8(l'1po)" . 
= 

(I'1Po)' "/i'K 
~--+--

2m 8(l'1po)" 

(3.32) 

(3.33a) 
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where, 

2 1 r.:z::- (m} (t:.Po) ='{'tn-Km = 2" we' (3.34) 

We being the classical frequency of the oscillator, given by, 

(3.35) 

Thus, (3.33b) 

Another example is provided by a state-vector 'I' which i'; a normalized 

eigenvector of i z , where A and B are to be identified, respectively, with i~ and 

iy- Since i~ and iy do not commute with it (see Eq. (3.13», 'I' is an eigenvector 

of neither C nor i y , so that 

<ix>",=o= <iy>",' 
Hence, from Eq. (3.25a), we have, 

(M )2 = < i 2 > . (M )2 = < £2 > 
x x 'if' y Y 'II 

< ( >",= m1i, we get, from (3.28a), 

1 2 
M~ . My ~ "2 m1i . 

(3.36) 

(3.28b) 

Relationships (3.36) and (3.28b) could be used to deduce the value of < £2 >"" as 

is done in the following problem, where, 

i}=l'2+i 2 +i2 (3.37) 
IX y z· 

Problem 3.5: If 'I' is the normalized eigenvector of ( coresponding to the 

maximum value of < i, >, and if this maximum value is equal I ) 11i, show, using 

(3.28a), that < f} >",= 1(1 + 1)1i2• 

The Minimum Uncertainty Product 

Relationship (3.28), with the equal sign, is referred to as the minimum uncertainty 
product. Whether the equality sign in (3.28) is applicable or not depends on the 
nature of the state vector '1'. In other words, only if the state vector satisfies certain 
conditions, the minimum uncertainty product is realizable. We will now discuss 
these conditions on the state vector '1'. 

Now, the equality in (3.28) requires equality in both (3.27a) and (3.27b). In the 
case of (3.27a), this requires that'l'l and '1'2 be proportional to each other (see 

(2.14», whereas in the case of (3.27b), the condition is that the real part of 
~ '1'1 I '1'2> be zero. Thus, we should have, 

11. Angular 1 Idncntum is measured in unils oUI, in quantum mechanics. 
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(3.88a) 

and 

(3.38b) 

In order to illustrate how conditions (3.38a. b) restrict the form of 1jI, let us take 

the case of the linear harmonic oscillator. 

Taking A ~ x; 8 ~ P. Eq. (3.38a) reduces to (sec Eqs. (3.26a, b)), 

(x-<1 »IjI=c(p-<p »IjI. 

or. 

since 

Eq. (3.38b) becomes, 

iljl = C P'V. 

<x> =0= <P>. 

<'V I (ip + pi)'V> =0. 

That is (using xp - fiX = ilil), 

<'Vlxp I'V> =UIi/2). 

From Eqs. (3.39) and (3.40), we get, 

~2 2 lAc 
<'Vlx 1'V~(L\.x) =2' 

But (L\.x)' is real and positive, so that c is negative imaginary; 

c =~ia. where, a > 0; 

and. 

(L\.x)' = (aIi/2). 

Substituting (3.42) in (3.39), we have, 

i'V = -ia P'V· 

(3.39) 

(3.40) 

(3.41a) 

(3.42) 

(3.41b) 

(3.39a) 

Taking the co-ordinarc representation of this equation, we get (Eq. (3.18»), 

x'V(x) = -ia(-ili! }(X). 
or 

d'V \jI = -(xlali)dx. 

so that 

'V(x) =N exp [-x'I2alil (3.43a) 

=N exp[4~)']. 
using (3Alb). where. N is normalizing constant to be determined from the rela­
tion, 
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< '" I '" > == L~ I ",(X d dx = 1. 

Eqs. (3.4la) and (3.42) yield, since 

L +00 _b2r2 -.[it 
e dx=­

~ b' 

[ 
1 ]114 

N- --
- 21t(Llx)2 ' 

"'(X) = [21t(Llx)y1l4 exp[-~]. 
4(Llx) 

If we had used the momentum representationl4, we would have got, 

¢(p) = [21t(t.p )y1l4 exp [_~], 
4(t.p) 

with (t.p)2 = (tz/2a). 

Thus, '" is Gaussian. A plot of ",(x) against X is given in Fig. 3.1. 

The Time-Energy Uncertainty Relationship 

81 

(3.44) 

(3.45) 

(3.43b) 

(3.43e) 

(3.41c) 

Does there exist a time-energy uncertainty relationship analogous to the 
position-momentum uncertainty relationship (3.29a)? In other words, is it pos­
sible to substitute t for qj and E for Pj in (3.29)? An affirmative answer to the 
question would imply the following premises: 
(i) Time and energy (t and H) are complementary (or, conjugate) variables. 
(ii) A Hermitian operator corresponding to t can be defined. 
Unfortunately, justifying either of the premises proves to be difficult. The reason 
is that time has a dual role in mechanics: as a parameter and as a dynamical 
variable. And it is in its role as a parameter that it makes its appearance most of 
the time, especially in classical mechanics. Even when t plays the role of a 
dynamical variable, as in Eq. (1.14a), it appears to be conjugate, if at all, to-H 
rather than to II (see criterion (iii) listed in footnote 8 of t~is chapter). Assuming, 
then, that t and -H are conjugate variables, the operator t corresponding to time 
in an energy representation should be given by (cf. Eqs. (3.1Sb) and (3.181», 

. a a 
t = -i1i aH = -i1i ClE . (3.46) 

14. Note that the co-ordinate and momentum representations of I", > are given, respectively, by 

",(x)= <x I "'> and 

~(P)= <pi",> =(2~rf",(x)exp(-~pxr 
[see Eq·s. (2.1 28a), (2.l29a) and (2.l40a)] 
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However, it turns out that; given by Eq. (3.46) is not Hennitian." It appears, 

therefore, that a time-energy U1,certainty relationship, at least in non-relativistic 

quantum theory, has no place, within the frame work of (3.29)16. Nevertheless, 3 

relationship of the form, 

(3.47) 

is cited in many books on quantum mechanics as a time-energy uncertainty rela­

tionship. The tenuous status of the semi equality (3.47) as a time-energy uncer­

tainty relationship is, however, reflected not only in the fact that it is interpreted 

differently from (3.29), but also in the fact that (3.47) iL,elf is given more than one 
• • 17 
interpretatIon. 

RelMionship (3.47) could, however, be ligitimised as a time-energy uncer­

tainty relationship by identifying the position-momentum uncertainty relation­

ship, not with (3.29a), but with a relationship analogous to (3.47) based on equally 

vague premises such as that of a wave packet (see, J.L. Powell and B. Cra,cmann, 

footnote lW'. But, in this book we will identify the uncertainty relationship with 

(3.28), so that (3.47) would not be regarded as an uncertainty relationship. i9 

It should be added here that, whereas (3.47) is of dubious validity as a time­

energy uncertainty relationship, the relationship (3.47) itself has a legitimate 

place in quantum mechanics. Thus, in the case of radioactive decay, we have the 

relation. 

(3.473) 

where, t is the mean life and r the width of the level. Similarly, in the case 01 

transitions (between levels) induced by an external, constant perturbing field. we 

have (see Eq. (8. l69b)) 

(3.47b) 

where, T is the duration of the field and till is the separation between the levels. 

15. See, Allock, G.R., Ann. Phys., 53, 253 (1969). 
16. The: same conc1u~ion is arrived at, by a different procedure. in Ref. 10 of Chapler 1. 
17. See. for example. Landau, L.D. and lifshitz, E.M., Quanlwn Mechanics (pergamon Press, 

Oxford 1965), IT Edition, Section 44 ; Powell, J.L. and Crascmann, B. Quanlum Mechanics (B.1. 
Publications, Delhi 1971), II EditIon, Section 3.4; Messiah, A.. Quantum Mechanics (North­
HoUand Publishing Co .. Amsterdaw ·161), Vol. 1. ChaptcrTV. 

18. In this connection, see footnote 27, \.. {'ler 1. 
t9. Since, however, the last word on this subject has not been said Uudging from the profusion of 

papers still appearing on the topic), the reader is referred to the current literature in addition to 
the following papers: Rayski, J, and Rayski, J.M., Jr., On the meaning of the time-energy 
uncertainty relation; Recame, E., A time operator and the time-energy uncertainty relation 
[both in The Uncertainty Principle and the Foundations oj Quantum Mechanics (John Wiley, 
London 1977)]; Bauer, M. and Mellow, P.A.,Ann. Phys., 111,38 (1978); Sorkin, R. Found Phys., 
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3.3 DENSITY MATRIX 

In connection with Postulate III. we have referred to a state represented by a basis 

vector I u, > as apure slale and a state represented by a coherent mixlure I X> of 

such states as a mixed slale. Conventionally, however, a state represented by I X > 
iLself is called a pure state. A mixed state is then an incoherenl mixlure of such 

pure states. In other words, any state described by a state vecWr (wave funclion) 

as per Postulate II is a pure stale while a state which cannot bc described so is a 

mixed state. The question then arises how one will represent or characterise a 

mixed state. This is where the concept of densily malrix or stalislieal operator 

comes in20. As the name implies, the density matrix is an operator, and not a 
vector. 

Mixed States 

Let us dcnote the purc states (assumed to be normalized) by I X,i, >, where, in 

terms of the bao;;is states, we have, 

IX"'> ~ (i'l ~ Ck Uk>' (3.4S; 
-" '= 1 

The expccraction value of an operator A in the state I X{i) > is then given by 

(3.49) 

with Aj' given by Eq. (2.117a). By definition a mixed statc is an incoherent 

N 

mixture of the I X'', >, (i = 1,2, .. . N) with statistical weights Wi such that L Wi = 1. 
i ~1 

This means that the average value of A in the mixed state, denoted by <A >, is 

given by the expression 
N , 

<A >= r Wi < A >j . 
i_I 

Substituting for < Ii >, from Eq. (3.49), Eq. (3.50') reduces to 

<A>= Tr (pA), 

where 

or 

P=LwiIX,i,> <X"'I. , 

(3.50') 

(3.50') 

(3.51 ) 

(3.52) 

2e. von Neumann, J. [Gallinger Nacw, 1,246 (1927) 1 was the first lo introduce this in physics. 
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The matrix p defined by Eq. (3.51) is the density matrix. The corresponding 

operator, Eq. (3.52), is called the density or statistical operator. As seen from the 
definition, the density matrix depends only on the pure states involved in the 
mixed state and their statistical weights in the letter. p, thus, truly characterises 
the mixed state. 

Properties of the Density Matrix 

The properties of the density matrix follow from its defining equations (3.502
), 

(3.51) and (3.52). Thus, putting A = i in (3.502), we have, 

Tr (p) = < T > = 1. (3.53) 

This follows from Eq. (3.51) as well, since i: I eli) I~ 1 and i Wi = 1. This 
k=1 i=1 

equation also shows that 

(3.54) 

or that p is Hermitian. 

Pure States: 

A pure state could be looked upon as a mixed state characterised by the statistical 

weight Wj = 0ij' Then from (3.52) we see that 

fl= p (3.55) 

The matrix elements of p in this case are given, according to (3.51). by 

P - C(i)C(i)* 
kj- k j • (3.56) 

Problem 3.6: Show that Eq. (3.55) is a necessary as well as a sufficient condition 
for a pure state. 

Eq. (3.55) shows that p is a projection operator with eigenvalues 1 and O. The 

expectation value of an operator A. in this case also, is given [according to Eqs. 
(3.49) and (3.56)] by 

<A> = Tr(pA) (3.5<Y) 

which is similar to Eq. (3.5~). Thus, a pure state can be represented by a density 
matrix as well as by a state vector. The density matrix has the additional capa­
bility of representing a mixed state which cannot be represented by a state vector. 

Two-level System 

As an illustrative example, let us consider a 2-level system described by the 

(orthonormal) basis vectors I U1 > and I ~ >. Ther. the state vectors 
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1 
I X(I) > = '1'2[1 UI > + I u, >J. (3.48a) 

1 
IX(') >= '1'2[1 ul >-1 u,>l. (3.48b) 

refer to pure states of the system. According to Eq. (3.56). the density matrices 
corresponding to these states are 

(l)=[~ ~J p 1 1 

2 2 

(3.57a) 

and 

'"{llj (3.57b) 

which satisfy Eq. (3.55). The density matrix 

po(; ;] (3.58) 

1 
then represents a mixed stale (with WI = W, = 2:)' The average values of an 

• (0 
observable A represented by the matrix A = \1 ~). in these three states. as per 

formula (3.50 2,'). are: 

<A >=0. 
If p(l) and p(2) represent polarized states. then p represents an unpolarized state. 

REFERENCE 

1. Reman, P., Advanced Quantum Theory (Addison-Wesley, Massachusetts 1962) Sectioos 1.1 to 
l.4a. 



CHAPTER 4 

QUANTUM DYNAMICS 

4.1 THE EQUATIONS OF MOTION 

The problems of dynamics are, firstly, to determine the variables or parameters, 

that specify the state of a physical system and, secondly, to describe the evolution 

of the system in time. In classical mechanics, the dynamical state of a physical 

system is defined by the values of a set of dynamical variables such as the position 

co-ordinates and the velocities. The equation~ ')/ motion, which describe the 

evolution of the physical system in time (temporal development of the system) 

are, therefore, differential equations in these variables. The assumption that the 

state of a system at any time t is completely determined, through the equations of 

motion, by the state of the system at an initial time to, is referred to as the 

dynamical postulate. This postulate implies that the equations of motion are first 

order in timel. 

1. In classical mechanics, the equations are second order in time for the co-ordinates. This is 
because the velocities, which are to be treated as independent variables, themselves are first 
derivatives, with respect to time, of the co-ordinates. The equations of motion are: 

d~ 
Newtonian: m-=F' 

til 2 ' 

Lagrange's: ~~ -~(;~J=o; 
Hamilton's: 

dpi iJlI dqi iJH dA iJA 
di=-iJq/ -;tj= iJPi and di=-at+{A.H}; 

Hamilton-Jacobi: 
iJS 
jji+H =0. 

where, qi and Pi are the generalised co-ordinates and momenta, and L, Hand S are, respectively, 

the Lagrangian, the Hamiltonian and the Action associated with the system. A is a general 
dynamical variable which is a function of q" Pi and t. lA, II) is the Poisson bracket defined by 

(
iJA iJlI iJlI iJA ) {A,H} = L - ---- . 

, iJq,iJPi iJqiiJPi 
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In quantum mechanics, the state of a physical system is represented by a vector 
defined in an abstract Hilben space (Postulate II, Chapter 3). Therefore, the 
equation of motion for a quantum mechanical system could be a differential 
equation for the state-vector. However, the observable quantities are not the 
state-vectors, but the expectalion values of a set of Hermitian operators corre-
8ponding to the dynamical variables. The equations of motion in quantum 
mechanics should be, therefore, concerned with the evolution in time of these 
expectation values. Now, the expectation value of an operator A in the state 
represented by the (normalized) state-vector 1jI, is given by (see Eq. (3.4)), 

<A> " <A >. = <IjIIA 11jI> 

The variation with time of < A > can, therefore, be viewed as arising in one of the 

following ways: 

(a) The state vector IjI changes with time, but A remains unchanged. 

(b) A changes with time, IjI remaining constant. 

(e) Both A and IjI change with time. 
Correspondingly, we have the SchrOdinger, the Heisenberg and the Interaction, 
picture of time development'. Of course, the variation with time of < A > calcu­
lated in any of these pictures should agree with the observed rate of variation of 
<A >. 

4,lA The Schrodinger Picture 

In this case, IjI is a function of I while A is not: 1jI" 1jI(I). The equation of motion 
is, then, an equation for 1jI. The dynamical postulate is that 1jI(t) at any time I is 

completely determined by 1jI(/o) at a given initial time 10. In view of the fact that IjI 

is a vector in a linear vector space, the relationship between 1jI(/,) and 1jI(I) should 

be described by a linear operator 0(1,/0), The linearity of 0 ensures that the 

principle of superposition is preserved during the dynamical development of the 

system. That is, ifljl(/o) is a certain linear combination of, say, vectors 'M/,), then 

1jI(t) is the same linear combination of 'MI). The dynamical postulate could be, 

thus, rcstBwd as follows: 
Corresponding to every quantum mechanical system, lhere exists a family of 

linear operators 0(1, to), defined on the i'!finite-dimensional Hilberl space of lhe 

system, which describes the evolution of the state-vector from time to to time t: 

1jI(/) = 0 (t, 1,)1jI(/.,) (4.1) 

2. These different.pictures of time-development could be likened to the different ways of describing 
the rotation of a body relative to a co-ordinate frame. The rotation could be viewed as a rotation 
of the co-ordinate frame with Ihe body fixed, a rotation of Ihe body with the co-ordinate frame 
fixed or a combination of Ihe two. The final relative orientation of body and co-ordinate frame 
should ~ the same in all the three descriptions. 
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o is called the evolution (or time-development) operator. From the property 

(2.41a) of a linear operator, it follows that. if 

",(tJ = Lai~i(tJ, 
i 

then, 

(4.2) 

which proves our earlier statement regarding preservation of the principle of 
superposition. 

The dynamical problem is now reduced to the problem of determining O(t, to), 

and we will now address ourselves to this latter problem. 

Now, the probability interpretation requires that", be normalized to unity at 

each instant of time (see Postulate III, Chapter 3). Hence, 

(",(t), ",(t» = (",(tJ, ",(tJ) = 1 (4.3) 

i.e., 

or, by Eq. (2.54), (",(to), Ot(t, to)O(t, to)",(to» = (",(to), ",(to», 

so that, 

(4.4a) 

Since 0 is defined on an infinite-dimensional Hilbert space, we cannot conclude 

from Eq. (4.4a) that 0 is unitary (see, Unitary operators, Section 2.1). To draw 
such a conclusion, we should have also the relationship, 

O(t,tJOt(t,tJ = i. (4.4b) 

In fact, 0 satisfies Eq. (4.4b) also, as shown below: 

Putting t = to in Eq. (4.1), we get, 

o (to' to> = i. 
Substituting t for to and tl for t in (4.1), we have, 

",(tl) = U(ti' t)",(t) 

= U(ti' t)U(t. to>",(to> 

But, 

so that, 

o (tl' t)0 (t. tJ = 0 (t1' tJ 
Putting tl = to in (4.7) and using (4.5), we have, 

U(to' t)U(t. to> = 1, 

(4.5) 

(4.6) 

(4.7) 
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or 
(4.8) 

Multiplying Eq. (4.8) from the left by U(I, (0)UT(I, (0) and using Eqs. (4.4a) and 

(4.8), we get Eq. (4.4b). Hence, U is unilary so that 

Ut(I, tJ = U-'(I, IJ 

Also, from Eqs. (4.4b), (4.8), and (4.4), we see that 

U-'(I,IJ = U (to, t) 

Writing Eq. (4.7) as 

U(t, tl) U(tl' IJ = U(t, (0), 

and putting, II = I - 01, where, 01 is infinitesimal, we have, 

U(I ,10) = U(I,I- OI)U(1 - 01. (0), 

(4.4) 

(4.9) 

(4.10) 

Now, U(I, I - 01) is an infinitesimal unitary operator and could, therefore, be 

written as (see Eq. (2.63», 

U(I,I-01)=i-(i11o.)&H(I), (4.11) 

where, fi (I) is a Hermitian operator, and the constant 10. is introduced for conve­

nience of interpretation (see Eq. (4.15b) below). H(I) is called the generalor of 
the infinitesimal unitary transformation, 0/(1- &) -+ 0/(1). 

Substituting (4.11) in (4.10), we get, 
U(I, I,)=U(I-OI, 1,)-(i/1l)&.H(t)U(t-&, (0), 

or, 

U(t, lo)-U(I-OI, 10) " 

01 -(i/1l)H(t)U(I- &, I'). 

Taking the limit & -+ 0 of this equation, we get, 

aU (I ,10) " 

al -(i/lI)H(I)U(I,I,), 

or, 

. aU(t,lo) , , 
111 al H(t)U(t,I,) 

Integrating Eq. (4.12) W.r.t. I, between limits 10 and I, we get, 

f dU(I', 10) = -(i/tl) f H(I') U(I', IJ dt' 
~ ~ 

Le., 

a(t, (0) = i -ms: H(t') U(I', I,) dl' 

Where lise has been made ofEq. (4.5). 

(4.12) 

(4.13) 
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Equation (4.12) is the differential, and Eq (4.13) the integral, equation for O. 
These equations enable us to obtain O(t, to) for any value of t, from a knowledge 

of the operator Ii(t). 
Applying the operator equation (4.12) to the state-vector ",(to), we.get, 

aO (t , to)"'( to) A A 

i1t at =H(t)U(t,ta')",(ta'). 

i.e., 

(4.14) 

This is the equation of motion for the state-vector, and is known as the time­
dependent Schrodinger equation (see Eq. (1.16) and the remarks following it). 

We, thus, see that the evolution in time of the state-vector", could be viewed 
as the continuous unfolding of a unitary transformation. In analogy with the 
classical case, where the generator of the infinitesimal canonical transformation 
corresponding to the temporal development of a mechanical system is the 
Hamiltonian function, the generator Ii(t) of the unitary transformation, is called 
the Hamiltonian of the system. Just as in the classical case, Ii corresponds to the 
total energy of the system. If the system has got a classical analogue, then, li (t) 
can be obtained from the classical Hamiltonian of the system in accordance with 
Postulates IV and V of Chapter 3. If there is no classical analogue, such as in the 
case of systems with spin, isospin, etc., then, one must rely on intuition or some 
other circumstantial factors such as symmetry in order to infer the correct form of , 
Ii (t). 

Now, Eq. (4.14) can be written as, 

a (ti ) A at i In", +H(t)=O, (4. 14a) 

from which we see that the equation is the analogue of the Hamilton-Jacobi 
equation in classical mechanics (see, footnote 1 of this Chapter), with the action 
S given by 

or, 

1i 
S =-; In "', 

I 

'" = exp [(i/1i)S]. [d. Eq. (1.l3c)] 

(4.1Sa) 

(4.1Sb) 

We see that the factor (1/1t) in Eq. (4.11) is required to make", dimensionless, 

whereas the factor i in that equation, needed to make 0 unitary, makes", a com­
plex function. 

In the co-ordinate representation, Eq. (4.14) would read [see Eqs. (2.128a), 
(2.141a), (3.18)] 

. CJ\jI(r, t) A 

11i-a-t - = H(r, V, t)",(r, t) (4.14b) 
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Problem 4.1: If 

~' 1122 

/I(r,V,I)=-2~ V +V(r,t), 

show that Eq. (4.14b) satisfies the equation of continuity, 

ap d' . 0 at+ IVJ= , 

QUANTUM MECHANICS 

where the probability density p and the probability current density j are given by 

p = lvI', j = (1;I2lUl [V°(VV) - (VV')1jij· 

Problem 4.2: Obtain the conditions on (a) H and (b) V for the conservation of 

the norm of V. 

Often, H does not depend explicitly on time. In that case, we have, from Eq. 
(4.12), 

or, 

so that, 

f 'dO(t', to) . • f' , 
'0 {;(I', tol -(,lfI)H '0 dt, 

--{ilA)h(1 - t~ 
v(r,t)=e . v(r,tol 

Choosing to = 0, and writing v(r,O) " <I>(r), 

we have, 

(4.16) 

(4.17a) 

(4.17b) 

Now, <I> can be expanded in terms of the complete set of eigenvectors of the 

Hermitian operator fl. Let the eigenvectors be eMr): 

Then, 

H<I>,(r) = EA>,(r) 

<I>(r) = l:c,<I>,(r) , 
Substituting (4.19) in (4.l7b), we get, 

v(r, I) = l:c,v,(r, t), , 
where, 

-{im.)E,.1 
v,(r, I) = <l>,(r)e ' 

= <I>,(r)X(t). 

Obviously, 

flv,(r, I) = E,V,(r, I), 

so that, V, is also an eigenvector of H belonging to the eigenvalue E,. 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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Equation (4.18) is referred to as the time-independent Schrodinger equation. 

Each <l>i represents a stationary state of the system with energy Ei , which evolves 
"" d" -(illl)E.I m time accor mg to e . : 

U(t, O)<I>i(r) = e -(illl)BI<I>i(r) 

-(illl)E.I 
= e . <l>i(r). (4.23) 

The name, 'stationary state' arises from the following: 

(i) A system which is initially in the state <l>i continues to be in this state since 

the evolution operator does not mix different <l>i'S (see Eq. (4.2». 

(ii) The expectation values of operators, and, in particular, the energy, in the 
stale does not change with time (shown below). 

Now, 

d. d • 
dt (A) = dt ('I'(t) 1 A 1 'I'(t) 

= (~ IAI'I')+('I'IAI ~) 
But, from Eq. (4.14), 

a; = -(ii"li)iI'I', 

so that, 
d • ., • • 
dt (A) = «-il1i)H'I' 1 A 1 '1') + ('I'I A 1 (-il1i)H'I') 

= (il1i) ('I'I (H A - AH) 1 '1') 

1 • • 
= ( i1i [A, H]), 

where [A, flJ is the commutator, or commutator bracket, of A and H. 
If the system is in one of the stationary states, say 

-(illl)E. I, 
'I' = 'l'i == (Mr)e . then, 

<'I'il(AH-HA)I'I'i> = <<lljl(AH-HA)I<llj> 

= (Ei - Ei") < <1>;1 A I <l>i > = 0, 

(4.24) 

(4.14,) 

(4.25) 

(4.26) 

where, use has been made of Eq. (4.18) and of the fact that eigenvalues of a 
d(A) 

Hermitian operator are real (so that, Ei• = E;). Thus, dt = 0 for the stationary 

d(A) •• • 
state. dt = 0 also when [A, H] = O. This case will be further discussed in 

Chapter 6. 
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In the presence of an external field, A may depend explicitly on time. In that 

case, the term (0/1 ~~ I 0/) should be added to the R.H.S. of Eq. (4.24). Then, in 

place of (4.25), we have, 

d(A) aA ." dt ~ (ar )+«1I1h) [A,H]). (4.25a) 

Comparing Eq. (4.25a) with the equation of motion for the dynamical variables A 
in classical mechanics (see footnote of this chapter), we see that the expectation 
values of operators obey the same equation of motion in quantum mechanics as 
the dynamical variables in classical mechanicS', provided we identify the com­
mutator bracket divided by (itt) with the 'quantum mechanical Poisson bracket'. 
The statement in italics, is known as Ehrenfest's theorem. 

The identification of the commutator bracket divided by it., with the Poisson 

bracket is, in fact, suggested also by the identity of the algebra the two brackets 
obey, exhibited in Table 4.1. In this table, we also give certain examples illus­
lrating the similarity of the two brackets. It is reasonable to conclude from this 
that Poisson bracket is the classical limit of the expectation value of the 
commutator bracket divided by ilt. 

I . . 
< .~rA,Bl > --, -4{A, B}. (4.27) 

l" clUSJca.l 

Problem 4.3: Establish the following relationships in the case of the linear 
harmonic oscillator: 

d <p> 
(a) -<i >~--

dt m 

d <p > dV 
(b) -d-t-~ <-dx> 

4.1B The Heisenberg Picture 

In order to distinguish the state-vectors and operators in this picture from tbose of 
the ScheMinger picture, we will use the subscript 'H'. Thus o/H and A", respec­

tively, denote a statevector and an operator in the Heisenberg picture. 
1jI" is time-independent, but AH depends on time. We note that if we define 

1jI,,(t) by 

(4.28a) 

where, 'V(t) is the state vector in the SeheMinger picture, then, 'VH is independent 

of time. For, from Eq. (4.1), we have, 

3. iJli a . 
:-':otcthat (ai)=a,<A >. 
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Table 4.1 Comparison of Commutator and Poisson Brackets 

Commutator Bracket 
!.) 

[A,B) =-[B,A) 
[A,c) =6, 

[(A +B),C) = [A,C] + [B,C] 

[AB,C) = [A,C]B +A[B,C] 

~[qi'P) =Oij 

I 
rli[L"L) =L, 

c --a scalar number. 

q" pj-generalized co-ordinates and momenta. 

L" L" L,-components of angular momentum. 

Poisson bracket 
!.) 

{A ,B} = --{B ,A} 

{A,c}=O 
{(A +B),C} = {A,C} +{B,C} 

{AB,C} ={A,C}B +A{B,C} 

{qi'Pl} = S'l 

{L"L,} =L, 

95 

(4.28b) 

Since OU, to) is unitary, Eq. (4.28a) represents a unitary transformation (a change 

'Jf basis) in the vector space. Therefore, AH is related to the corresponding oper­

ator A in the SchrOdinger picture by (see Eq. (2.126», 

Thus, 

But, from Eq. (4.12), 

and 

so that, 

AH(t) = O-\t, to>AO(t, to> 

dAH aut"" "t" aO 
-=-AU+UA-. 

dt at at 

aO .. at = -(iltz)/J U, 

aut = -(utz)Otfl at . 

dA H = (utz) {Otfi A 0 - OtAfl 0} 
dt 

= (iltz) {utflOOtAO - OtAOOtl,O} 

= (iltz) (fl HA H - A Hfl H) 

1 " " 
= itz [AJI>H Hl. 

(4.29) 

(4.30) 

(4.31a) 

(4.31b) 

(4.32a) 
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If A depends explicitly on time, then, 

dAIi aAIi 1 ' , 
dz =Tt+ iii [AII,lIIl]' (4.32b) 

Equations (4.32a, b) are called the Heisenberg's equations of motion for the 

operator All' They are identical in form to the Hamilton's equation of motion for 

a dynamical variable in classical mechanics (see footnote 1), the only difference 

being that the place of the Poisson bracket in the latter is taken by the commutator 
bracket upon it! ;n the former. 

For the basic canonical operators qj and Pj' we have, from Eq. (4.32a), 

dqi 1 , ' 
di= iii [qj,Hl 

1 (. afI) afI 
= iii .Ii apj = ap/ by Eq. (3.14c); 

dpj 1 , ' 
dt = iii [p j,ll] 

1 ( . afI) afI 
="C""t; -111-a, = --a' , by Eq. (3.14d). 

• q) qj 

(4.33a) 

(4.33b) 

Again, these equations are identical with the corresponding canonical equations 
of Hamilton in classical mechanics. 

The equation of motion for the expectation value < All> is given by 

dAIi 
= ('I'll I dz I 'I'll) 

1 ' , 
= (iii [AII,HIID, (4.34a) 

if A II has no explicit dependence on time, and 

d(A II ) aA Ii 1" 
---;tt = (Tt)+ (iii [All'!! liD, (4.34b) 

if All depends explicitly on time. 

Thus, as expected, the equations of motion for the expectation values in the 
Heisenberg picture and the SchrMinger picture are the same. 

The basic equation of motion in the SchrMinger picture is Eq. (4.14), whereas 
in the Heisenberg picture, it is Eq. (4.32b). We, thus, sec that the Heisenberg 
picture emphasises Hamilton's formalism of classical mechanics while the 
Schrtidinger picture emphasiscs the Hamilton-Jacobi theory. In the former case, 
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the emphasis is on the physical observables, whereas in the latter case, it is on the 
function 0/. The methods of solution of the mechanical problem in the two pic­
tures will also reflect this difference in the emphasis, as we will illustrate in Sec­
tion 4.2. 

4.1C The Interaction Picture 

In this picture, the advantages of the Heisenberg and the SchrMinger pictures are 
sought to be combined. Such an approach is useful when the Hamiltonian can be 
split up into two parts, one part independent of time and the other part dependent 
on time. Such could be the case, for example, when the system is in an external 
field. The time-independent part would represent the Hamiltonian of the system 
in the absence of the external field and the time-dependent part that arising from 
the presence of the external field (Section 8.4 will discuss such cases). 

Let H(t) == H(O) + H(l)(t), (4.35) 

/i(O) being independent of time. 

According to Eq. (4.16), the time-development operator in the absence of 
H(1)(t) is given by 

(4.36) 

The state-vector "'I(t) and operator Alt) in the interaction picture are defined by 

"'/( t) == (;~ 1 U , to)o/(t), 

== exp [(il1i)H(O)(t - to>] ",U), (4.37) 

and 

AI(t) == (;~l(t, to).1 (; o(t, to> (4.38) 

== exp [(il1i)H(O)(t - to>] A exp [-(il1i)H(O)(t - to>] 

where, o/(t) and A are the state vector and the operator, respectively, in the 

SchrOdinger picture, so that 

and 

i1i ~ == H(t)",(t) 

== [H(O) + H(l)(t)]o/(t), 

d.1 aA 
d[==di' 

From Eqs. (4.37) and (4.39a), we get, 

i1i Owl == li(l)",.(t) at I., 

where, H(l) == 0-1(1 t \H(l)O (I I \ 
I 0' oJ 0' oJ' 

(4.39a) 

(4.39b) 

(4.40) 

(4.40a) 
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while. from Eqs. (4.3H) and (4.3%), we have, 

cL1,_aAI ~, '(Oh 

dl - al +;1I[A"II, J, 

wilh 

"(0) _ "-I "(0) " 
lI, ~ Vo (1,10)11 Vo(l,lo) 

(4.41 ) 

(4.41a) 

We sec that the state-vector in the interaction picture is determined by a 

SchrMinger equation with the Hamiltonian IljI'. while the oper3tors obey the 

Heisenberg's equation with the Hamiltonian 11(0). 

Problem 4.4: Show that the evolution operator U,(I, 10) defined by the equation, 

aV,(I, 10) '<t) , 
iii al . II, (I)V,(I, 10), 

satisfies lhe relationship, 

where, 

U(I, (0)'1'(10) ~ 'I'(t). 

Ilence show that '1',(1) ~ OJI, 10)'I'JI.). 

The equation of motion for the expectation value, 

<'I',IA, I '1',>=<,1,>. 

is easily shown, using (4.41) and (4.40), to be 

d _ d,1, 1" 
dl (At>~(at)+(i1l[A" II,]) 

where, 

4.2 ILLUSTRATIVE APPLICATIONS 

4.2A The Linear Harmonic Oscillator 

(4.42) 

(4.42a) 

We will illus1satc the difference between the SchrOdinger and the Heisenberg 

pictures by applying the two methods to the solution of the problem of the linear 

harmonic oscillator for which the Hamiltonian is given by (sec Eq. (3.9», 

" 1 II~L+~Kx'2 
2m 2 . 
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Srhriidingcr Pirture 

In the Schr(jdinger picture, p and i are independent of time. In the co-ordinate 

representation (Eq. (3.18», 

so that 

, . d 
p 0= -rtz dx and i 0= X, 

, 1'/ d 2 1 2 
/I =---+-Kx 

2m dx 2 2 

The time-dependent Schrodinger equation (Eq. (4.l4» is 

. d'V(X, t) ( 1'? d
2 

1 21 
rtz----a;-= -2mdx 2 +Z Kx j'V(x,I). 

(4.43) 

(4.44) 

Since // is independent of time, 'V(x, I) can be written, choosing 10 = 0, as (sec 

Eqs. (4.17b) and (4.18», 

with 

That is 

'V(X, t) = exp [-(Utz)lltlu(x), 

(iun(x) = Enun(x) 

---+-Kx2 u (x) = E u (x) ( 
1i2 d

2 
1 ) 

2m dx 2 2 n n n 

(4.45) 

(4.46) 

(4.46a) 

which is the time-independent SchrOdinger equation for the linear-harmonic 
oscillator. From Eqs. (4.45) and (4.46), we get, 

'Vn(x, t) = exp [-(il1i)Entlun(x) 

= x;.(t)un(x). (4.45:1) 

Thus, what is involved in the reduction of Eq. (4.44) to the form (4.46a) is the 
technique of separation of variables. 

Now, Eq. (4.46) is an eigenvalue equation for the Hamiltonian. Therefore, the 

values of En' permitted by the equation, arc the energies that the harmonic 

oscillator can have. The state of the oscillator with energy En is represented by 

the state-vector ('wave function') un(x). The problem of determining the En and 

the Un is reduced to solving the differential equation (4.46a). 

Now, Eq. (4.46a) resembles Eq. (E.9); in fact, the former could be made to l(x)k 
identical with the latter with the substitution, 

(
mKJli4 _ r;;;w 2En 

s=a.x;a= 1f =\Jt(;(1+2n)=1iw' (4.47a) 

where, (4.47h) 

is the classical frequency of the oscillator. 



J(X) 

Then, equation (4.46a) reduces to 

d 2
<iJ 

--i+(l + 2n - ~2)¢" ~ O. 
d~ 
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(4.48) 

where, 

(4.49) 

From Eq. (E. 8), 

I r2 
¢,(~) ~ . r::: In exp (-., 12)l/,(~), 

f'/It 2"n!] 
(4.50a) 

or, 

...ra (122} u,(x)~.r::: In exp -2:(tx ,(m), 
hrr2'n!] 

(4.50b) 

which are the eigenfunctions. The corresponding energy eigenvalues are, from 

Eq. (4.47a), 

E,~(n+~}w, n ::::0, 1, 2, ... (4.51) 

We sec that Eq. (4.51) differs from the corresponding classical formula' in two 

important aspects: 

(i) The energy levels are discrete and equispaced. Discreteness is a property of 

bound systems, butthc cquispacedncss is a characteristic of the oscillator. 

(ii) The lowest (referred to as 'ground-Slate') energy is not zero, but is equal 10 

~h(j). This zero-point energy could be attributed to the uncertainly rela­

tionship [see Section 3.2, Eq. (3.33b)]. The energy levels arc shown in Fig. 

4.1. 

From Eq. (E.7) and (4.50a), we have, 

¢,(-~) ~ (-l)"<I>.c~). (4.52) 

Thus, <iJ"(~) is an even or an odd function of ~ according as n is even or odd. The 

operation which transforms x to -x, is referred to as the Parity operation (see 

Section 6.2D), and the behaviour of a function under the parity operation deter­

mines the parity of the funclion. A functionf{x) has even parity iff(-x) ~ f(x) and 

odd parity if fe-x) ~ -f(x), whcreas it has no definite parity if fe-x) '" ±f(x). 

Invariance of the Hamiltonian under the parity operation (which represents space 

4. 'Inc dassical formula corresponding to (4.51) is E =]v, where v is the linearfrcqucncy and J is 

the action variable (sec II. Goldstein, Classical Mechanics (Addison-Wesley, Massachuseus, 
1961), p. 294). Thus, Eq. (4.51) implies quanli7.ation of the action according to the fcnnula. 

J 0= (n +~). 
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v(x) 

------------------~~------------------+x 

Fig. 4.1. The potential and the energy levels of the linear harmonic oscillator. 

inversion, or the changing of a co-ordinate system from a right-handed one to a 
left-handed one) requires that wave functions of physical systems be of definite 
parity. Eq. (4.52) shows that this requirement is met by the wave functions of the 

linear harmonic oscillator. It also shows that the parity of the wave function Ill. is 

even or odd according as the oscillator quantum number n is even or odd. 

Now, according to Eq. (4.52), <I>.(--QO) = 1Il.(+oo) for n even and 

c».(-=) = -<1>.(+00) for n odd. Thus, 1Il.(~) approaches the ~-axis from the same 

direction for even n, and from the opposite directions for odd n. Hence the 

number of zeroes of <l>.(~), excluding the ones at ~ = too, is even or odd according 

as n is even or odd. In fact, the number of zeroes (these are referred to as nodes 

of <1>. ) is exactly equal to n (see Fig. E.!). 

We note the following important differences with respect to a classical oscil­
lator: 
(i) The amplitude of oscillation of the classical oscillator in the mode n is 

given, according to Eq. (4.48), by 

~. =..Jl + 2n, (4.53) 

so that the probability of finding the particle outside this range is zero. This 
amplitude is also shown in Fig. E.! (the shaded region). We see that the 

wave function <l>. (the probability is proportional to / <1>. /2) does not go to 

zero at ~., even though it goes to zero rapidly outside this range. This is a 

general feature of quantum mechanical wave functions: the wave function 
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goes to zero at a classical boundary only if the potential at the houndary is 

infinite.5 In other words, a perfectly 'opaque' boundary is represented, in 

quantum mechanics, by an infinite potential. 

(ii) The probability distribution, P,(i;):1 O. I', exhibits maxima and minima 

within the classical interval-{,. S /; S I;,. (shown in Fig. 4.2. for n ; 2). This 

is in contrast with the smoothly varying classical probability distrihution 

[>;'(/;), which is given by', 

-3 

, 

l\(\ , 
I , 

I 

, , 

4 

-t o 

, 
I I 
l I 
, I 
, , , 

, \ ' 
/ \ , 

/ \ I 

, \ 

2~ 
2 

(4.54) 

3 

Fig. 4.2. The classical (broken curve) and the quantum mechanical (solid curve) position probability 

distributions corresponding to oscillator quanLum number n = 2. 

5. NDIC that Q~ will go to zero at ~, if 0: {that is, K; see Eq. (4.47a) is set equal 10 infinitY:':1 that 

point. 

6. The classical probability p:;j)«(,)d~ for !he panicle to he between C and ~ +d~ could be defined as 

the ratio (dt'.), where di' ill" the time the oscillator spends between C and C +d~ during the period 
't. :\ow, since the .1mpJilUde of mciD.1tion j.~ given by Eq. (4.53), we have, 

S(t)=/;" sin we, 
and dl',....".,...--. 

~ = ~ 0.)5 (J.l( = fJ:r"';~-[/ 
d1 

Thus. 

Bu. 't == 21t1ro, so that, 
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From Eqs. (4.45a) and (4.51) we have, 
-i(i) t 

'JI.(x,t)=u.(x)e ., (4.55) 

where, w. =(n +~Jw. (4.51') 

The expectation value of any operator could be calculated using the wave function 

'JI.(x, I). An arbitrary wave function 'I'(x, t) would be a linear superposition of the 

'I'(x, t) = Le. 'JI.(x, t). (4.56) . 
Problem 4.5 : Show that, in the state <1>., the uncertainty product Ax .l':J.p is given 

by, 

Problem 4.6: Show that, in the case of the 3-dimensional, isotropic harmonic 
oscillator, the energy levels are given by 

EN=r+~}W' 
with N = 0, I, 2, ... 

Heisenberg Picture 

The operators arc functions of t, so that (we drop the label!! attached to Heisen­
berg operators), 

= 2~ L6 2
(1) + m2w2x2

(1)] 

The equations of motion for x and p, according to Eqs. (4.33a, b), are: 

dx _ ali _ p 

and 

dt - ap - m' 

dp all 2, 
d{=- ax =-mCOx. 

(4.57) 

(4.58a) 

(4.58b) 

dp 
Differentiating (4.58a) W.r.t. t once again, and substituting for dt from Eq. 
(4.58b), we get, 

d 2x 2, • 
-2 +wx =0. (4.58) 
dt 

which is of the same form as the classical equation of motion for the harmonic 
osci!hllor. 
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The solution of Eq. (4.58) is 

(4.59) 

and 
p(O) Po 
mW = moo' 

so that, 

x(t) ~ Xo cos WI + (po/mOl) sin WI, (4.59a) 

d" 
"( ) x" wi . P t =mdi= Pacos Wi-m 0 SIll rot (4.59b) 

Substituting in (4.57) from (4.59a, b), we get, 

~ 1 ~2 2 2A2 
II ~ 2m (po+m W xo), (4.57a) 

which is independent of time. 
To obtain the energy levels of the oscillator, we have to calculate the matrix of 

Ii and diagonalizc it. Ifwe use the u"(x) given by Eq. (4.50b), which arc also state 

vcctors in the Heisenberg picture (sec Eq. (4.28b», 11 would be diagonal. For, 

(4.60a) 

Now, Po and io arc the Heisenberg operators at time 1= 0, and arc hence identical 

witllthe corresponding operators in the SeheMinger picture (Eq. (4.29». Thus, 

" . d 
xo=x; Po=-Ifl

dx
. (4.61) 

Then, 

2 . f-' d
2 

(Po) . = (-IfI)2 u".(x)-2u"(x)dx 
1111 ___ dx 

~ _fl2(1.2 r <I>:·(~W·"(~)d~, 
where ~ is given by Eq. (4.47a). From Eq. (E.9), we have, 

0"" ~ [~2_(1 +2n)J¢" 

so that, 

(4.62) 
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where, the orthononnality of the '1>. (Eq. (E. 10» has been used. 

Now, 

Hence, 

2~ (p~)'" = (n +~}Olo •• ,-~mOl2(x~)., •. 
From Eqs, (4.60a) and (4.63), we get, 

H.,. = (n +~}ol 0 •• ,. 

Thus, the eigenvalues of fI are given by 

H •• :.E. =(n +~}ol' n =0,1,2 ... 

lOS 

(4.63) 

(4.60b) 

(4.64) 

which are the same as those given by Eq. (4.51) in the SchrMinger picture. 
Using Eq. (E.lla), we get, 

Also, 

1 [_ /n+l - In: ] 
(xo) .'. = a -\J 2-2- 0.,.0+ 1 + 0\J "2 0., .• -1 

= ~ 2! i.Jno..", + 1 +-{,I+10 •.• '_I] 

(Po)'" = (-i1i ! 1.. :. -i1i J~ u.,(x) ! u.(x)dx 

J
~ d 

= -i1ia _ '1>.'(~) d~ '1>.(~)d~, 

From Eqs. (E.8) and (E.6a), we have 

d 
d~ '1>.(~) = -~'1>. + -.J2r; '1>.-1' 

Hence, 

=i1i-L ~ - - /n+l 0 ] ~o\J "2 0.,.' + 1 '.J 2 .,.'-1 

(4.65) 

(4.66) 

= i~ m~\W;0''''+I--Vn+l8 •.• '_J (4.67) 

From Eqs. (4.59a, b), (4.65) and (4.67), we get, 

{xU)} .'. = ~ 21i r..Jn exp (-iOlt)o •• '+1 mOl ' 

+~ exp (iOlt)o •• ,-a (4.68) 
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and 

where, 
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{p(I)l.,. = i.y m~w[~ exp (i!JJt)O •• '_1 

-,In exp (-iwt)O.,.'<ll 

,I di 1 =m <n dt n >, 

In >= I u. >, 

(4,69) 

Thus, the expectation values of i and p are zero: 

<n liln>=O=<n Ip In>, (4,70) 

From Eqs (4.65), (4,67) and (4,60b), we get the matricesx", Po and H representing 

i o, Po and (i respectively: 

(Xo) =.y 2;W [~ ~ ! 1 
o 0 {:l 0 

o 
o 
o 

-./4 

o 

(1I) = flw 

Alternate Method 

-{l 

-

2 

0 

0 

0 

o 
-,fi 

o 

0 

3 
2 

0 

0 

o 
--,fi 

o 
{:l 

0 0 

0 0 

5 
0 

2 

0 
7 
2 

o 
o 

-{:l 

o 

.... , 

.... J 

.... 

o 
o 
o 

--./4 

(4,71) 

(4,72) 

(4,73) 

A method due to Dirac avoids the dependence on the solutions of the differential 
equations of the SchrMinger picture for the evaluation of the matrix elements of 
operators in the Heisenberg picture. This method consists in finding suitable 
operators with which onc can generate all the eigenvectors of the Hamiltonian 
from any given eigenvector. These eigenvectors will, then, define a representa· 
lion, The Hamiltonian would, obviously, bc diagonal in this representation 
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Thus, the eigenvalue problem is automatically solved if we find the above 
operators. The method anticipates the technique offield. or second. quantization 
and is known also as the method of second quantization (see, Section 11.2). 

The operators we seek are given by 

, 1 ( , ." (4 74 ) a=.~mCllXo+lp()J' . a 
'I2mJiw 

From Eqs. (4.74a, b), we get, 

From the conditions, 

, - /it, ,t 
Xo =" 2,;;W(a + a ), 

, _ .~ mJiw( ,t ') Po-l -2- a -a. 

[Xo,pJ = iJii; [xo,xJ = 0= [Po,pJ, 

we have [d,d1 = i, 

[d,d] =O=[d+,d1. 

Substituting from Eqs. (4.75a, b) and (4.76) in eq. (4.57a), we get, 

, (' I} If = N +2: w, 

(4.74b) 

(4.75a) 

(4.75b) 

(4.10) 

(4.77) 

where, N = dtd. (4.78) 

Thus, the problem of finding the eigenvalues and eigenvectors of fl is reduced 
to the problem of determining the eigenvalues and eigenvectors of N. Also, for 
the linear harmonic oscillator, the Hamiltonian, together with the parity operator, 
constitutes a complete set of operators. Therefore, N also will constitute such a 
complete set, so that determining the eigenvalues and eigenvectors of N solves the 
harmonic oscillator problem completely. 

Now, from Eqs. (4.76) and (4.78), we have, 
[N,d] =-d, (4.79a) 

(4.79b) 

It is also easily shown that N is Hermitian. 

Let 9. represent a normalized eigenvector of N belonging to the eigenvalue n. 

N¢. = n¢ •. (4.80) 

Then, from (4.79a), we have, 

N(dd>.) = (n -1) (d¢.). (4.81) 

which shows that (d<i>.) is an eigenvector of N belonging to the eigenvalue (n - 1). 

Similarly, (d' <1>.) is an eigenvector of N belonging to the eigenvalue (n - r). Now. 
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n '" (tI>.,ntl>.) = (¢.,NtI>.) = (tI>.,d'dQ.) 

= (6<1>.,d<l>.) = IlaQ.II';" 0, 
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(4.82) 

since the norm of a vector, in this case of (d<l>'), cannot be negative. Therefore, 

the series, 

'" ." "", "", '1'", a'fll ' a '1'", ...• a '1',,'" (4.83a) 

should terminate as, otherwise, it would lead to a vector $ = (aYtl>. for which the 

eigenvalue (n - s) is negative. Let the last term ofthe series (4.83a) be denoted by 

<1>0. Then, 

a<l>o=O. 

Thus, the series (4.83a) correspond to the eigenvalues 

n,(n -I),(n - 2), ... ,0. 

Similarly, from Eq. (4.79b), we get, 

N(d'<I>.) = (n + 1) (d'$.), 

and 

showing tnat the series, 

.,,,, (")'", (")' '" a Y", a '+'11"'" a ,+,,,, ... 

represents the eigenvalues 

(n + I),(n + 2), ... ,(n +r), ... ,_. 

(4.84) 

(4.83b) 

Thus, the eigenvalue spectrum of N is given by the non-negative integers: 

n =0.1.2 ..... +00. (4.85) 

Any eigenvector of N can be reached from a given eigenvector <I> by repeated 

application of either a or a'. Let us denote by the ket In> the normalized 

eigenvector of N belonging to eigenvalue n. That is 

where 

Then, 

where 

In) = <1>., 

(n' I n) = 0 ..... 

In) = C.(d')· 10) = ~(d'). I 0), 
'\In! 

a 10)=0. 

(4.86a) 

(4.87) 

(4.86b) 

(4.82a) 
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1 
Problem 4.7: Show that en =.!. in Eq. (4.86b). 

'In! 

109 

The set {I n)} of vectors, for n varying from 0 to -too, constitutes a complete, 

orthonormal set and, thus, defines a representation (called, the occupation number 

representation). The operator IV is diagonal in this representation. 

Also, 

so that, 

Similarly, 

and 

(n'IIVln)=no 1. n.n 

1 n-J J-
= n J.~(at) 10) = 'In In -1), 

'In! 

(n'la In)=..Jn0n',n_J· 

(n' I at I n)={;;+lon',n+! 

=(n la In'). 

(4.88) 

(4.89a) 

(4.90a) 

(4.89b) 

(4.90b) 

Thus, the matrices (a), (at) and (N) representing the operators a,at and IV, 

respectively, are gjv~n bi, 
0 {l 0 0 0 

0 0 ..J2 0 0 
(a) = 0 0 0 {3 0 (4.91) 

0 0 0 0 {ti 

0 0 0 0 0 

"1 
{l 0 0 0 0 .... 

(at) = 
0 {i 0 0 0 

(4.92) 
0 0 {3 0 0 

"J 0 0 0 ..j4 0 ...... 

7. Notc that the first row corresponds to n' = 0 and thc first colwnn to n = O. 
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0 0 0 0 0 
0 1 0 0 0 
0 0 2 0 0 

(4.93) (N) ~ 
0 0 0 3 0 

0 0 0 0 4 

From Eqs. (4.75a, b) and (4.77), we sec that the matrices (4.91-93) are consistent 

with the matrices (4.71-73) representing 10, Po and II. 

Problem 4.8: Show that [H,d] ~-(lIoo)d and [H,a t] ~ (lIoo)a t . 

Problem 4.9: Show that the expectation value of the kinetic energy t in the state 
In> satisfies the Virial relationship, 

, , 1 
(T), ~(V), ~2E,. 

Creation and Annihilation Operators 

From Eqs. (4.77) and (4.88), we have, for the eigenvalue E,of!1 in the state In), 
the expression, 

where 

Thus, 

E,~(n+~)E~n E +Eo, 

E ~ 1100. 

(E,-Eo)~n E, n~0,1,2,,,. 

(4.94) 

(4.95) 

(4.94a) 

This equation permits the following interpretation: The oscillator in the state I n) 

is an assembly of n non-interacting particles, each of energy E. The different 
states of the oscillator merely correspond to different numbers of the particles. 
From Eqs. (4.89a, b), we sec that the operator a lowers the particle number by 1, 
whereas aT raises tile particle number by 1. In other words, d t creates a particle 
while d destroys, or annihilates, onc. at and d are, therefore, called creation and 
annihilation operators, respectively. The relations, a I 0) ~ 0, and at I 0) ~II), are 
consistent with this interpretation since a particle cannot be destroyed when no 
particle is prescnt as in I 0), but a particle can be created even when no particle is 
initially prescnt. The interpretation of N == dtd, as the number operator is, then, 
suggested by Eq. (4.80). 

It is in view of the foregoing interpretation that the representation defined by 
the basis vectors In), (n = 0, I, 2,,,. + ~), is named the occupation-number 
representation (n is the number of particles occupying the state In). It should, 
however, be remembered that the particle number 'n' is actually the quantum 
number characterising the state of excitation of the oscillator and it is only as a 
matter of convenience that it is called a particle-number. 
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4.2B The Hydrogen Atom 

As another ill ustration of the application of the SchrMinger equation, we will take 
up the 3-dimensional problem of the hydrogen atom. 

The hydrogen atom is a two-particle system, consisting as it does of a posi­
tively charged nucleus (the proton) and a negatively charged electron, moving 
under the influence of their mutual attraction. This means that 'If in Eq. (4. 14b) is 
a function of r I and r 2, where r I is the position vector of the electron and r 2 that of 

the proton: 
(4.95) 

Similarly, 

(4.96) 

(4.97) 

Now, in this case, V is derived from the Coulomb force, so that 

• Ze 2
• 

V(rp r 2,t)= I I V(jr l -r2 \), r 1-r2 

(4.98) 

where, the atomic number Z = 1 for the hydrogen atom. Writing (r) - r~ = r, we 

have, 

•• Ze 2 

V;;; V(r)=--, 
r 

(4.98a) 

r being the separation between the particles. r is called the relative co-ordinate. 
Introducing also the centre-oj-mass co-ordinate R, defined by 

where, 

M =m)+mz, 

is the total mass of the system, we have, 

where, 

~ V2 + ~ V2 = ~ V2R + ~ V2r 
ml

l mz 2 M 11 

mlmz 
11=---, 

ml+ m2 

is called the reduced mass of the system. 

(4.99) 

(4.100) 

(4.101) 

(4.102) 
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Eq. (4.101) is easily derived by writing, 

V ~~~~l+aR~ 
) - ar) ar) ar ar) aR 

a m) a m) 
=-+--=-V +V 
arMaRM' , 

a m, 
and V'=aG=-V'+ M V,. 

Substituting from Eqs. (4.98a) and (4.101) in Eq. (4.97), we have, 

d<l>(r, R, t) [11' II' J ill--a/~--= -2M V!-2J.l V;+V(r) <I>(r,R,/), 

where, 
<I>(r, R, t) = 'V(r1> r y I). 

(4.103a) 

(4.103b) 

(4.97a) 

(4.104) 

Since the operator in the square bracket in (4.97a) is independent of lime, we can 
write, according to Eq. (4.17b), 

<I>(r, R, /) = <I>(r, R) exp [-(illl)£/J. (4.104a) 

where (sec Eq. (4.18», 

[ II' 1;' l 
- 2M V; - 2J.l V'r + V(r)J<I>(r, R) = £<I>(r, R). (4.97b) 

Also, since each of the operators on L.H.S. of (4.97b) depends either on r or on 
R, but not on both r and R, a further separation of variables is possible in the form, 

<I>(r, R) = u(r)U(R). (4.104b) 

Substituting this in Eq. (4.97b) and dividing throughout by <I>(r, R) we get, 

{ 1I'I,}[II'I, ] ---V U + ---V u+V(r)-£ =0 
2M U R 2J.lu' 

(4.105) 

Since the expression in the curly bracket is purely a function of R and that in the 
square bracket a function of r only, each of the brackets should be equal to the 
same constant with opposite signs. Denoting this constant by E', we have, 

-!t V;U(R) =E'U(R), (4.97c) 

and II' 
- 2J.l V;u(r) + V(r)u(r) = Eu(r), (4.97d) 

where, E = E - E', or E = E + E'. (4.106) 

Equation (4.97c) represents the uniform motion of the centre of mass, E' being 
the kinetic energy associated with such a motion. Equation (4.97d), which 
represents the relative mOlion and. hence. depends on the internal structure of the 
atom, is the more interesting one. This equation has the appearance of the 
Schriidinger equation for a single particle of mass J.l moving in a field represented 
by the potential VCr). We have, here, the well-known reduction of a two-body 
central force problem to a one-body problem. 
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The Relative Motion 
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Solution of the equation (4.97d) representing the motion of the electronS relative 
to the nucleus, would give us the energy levels and the wave functions of the 
atom. The method of solution to be described below, is applicable whenever the 
potential is spherically symmetric (that is, when V is a function of the radial co­
ordinate r rather than of the vector r). 

In order to take full advantage of the spherical symmetry for the solution of the 
equation, we use spherical co-ordinates (r, e, <\» instead of cartesian co-ordinates 
(x, y, z). The relationship between the two systems of co-ordinates is given by (see 
Fig. 5.1), 

x = r sin e cos <\>, 

y = r sin e sin <\>, 

z = r cos e. (4.107) 

Then (see Eq. (5.41», 

=~jJr2.i)_ U (4.108) 
r2ar ~ ar 1h2' 

where, L is the operator corresponding to the orbital angular momentum r x p (sec 
Eq.5.43t. With the substitution ofEq. (4.108), Eq. (4.97d) takes the form, 

[a ( 2 a) 2W
2 

] '2 2 ar r ar +jj2{E-V(r)} u(r,e,<\»-(L/1t)u(r,e,<\»=o (4.109) 

Since the terms in the square bracket arc independent of the angular co-ordinates 
while L2 is independent of the radial co-ordinate, the solution would be of the 
form, 

u(r,e,lj» =R(r)Y(9,1j». (4.110) 

Substituting in Eq. (4.109) and following the same procedure as in the case of 
(4.97b), we get the equations, 

8. Since the mass of the proton is about 2000 times that of the electron. the reduced mass ~ is only 

slightly smaller than the mass of the electron. Therefore, the motion in this case is nearly that of 
an electron around a fixed nucleus. 

9. Eq. (4.108) corresponds to the resolution of the total linear momentum p ". -ihVr of a particle in 

its orbital motion, into the radial component 

. r 0 ....)( 0 1) P =-dl--r =-lr«rlr -+-
'r 2or or r 

and the perpendicular component Pt = (Llr): 

P=P,+P. 
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(4.111) 

and 

[ 
d' 2 d 211 A.] -+--+-(E-V(r»-- R=O. 
dr' r dr 1;' r' 

(4.112) 

whcre, A. is the separation constant. 

From Eq. (4.111). we see that Y(9, <1» is the eigenvector of £' and A:iI' the cor­

responding eigenvalue. That is (see Eqs (S.44). (S.46) and (S.S6b». 
1..=1(1+1). (4.11la) 

YC9.<I»" Y'mC9.<I» (4. 111 b) 

with m =-1.-1 + 1 ..... +1. 

1=0.1.2 .... +~. 

(4.111c) 

C4.l1ld) 

Y'm(9.4» is called the spherical harmonic of order I. Its properties are discussed 

in Seelion (S.4). 

The Radial Equation 

S'Jbstiluting from (4.llla) and (4.983) in (4.112). we have. 

d'R +2dR +{211(E+ ze~J_I(I+1)}R =0 
dr 2 r dr 1'1.2 r ,2 

Or (multiplying throughout by rl, 

. [r!f+2~+{2~e'+¥r _1(1 + 1)}]R =0 

Putting. 

We gct. 

where. 

dr' dr Ii' 1;' r 

, 811 E 
E=-E·C'J. =--'p=a.r , h?' , 

[p
!f+ 2~+{ 2~e' _f>_ /(1 + 1)}]y(p) = 0 
dp' dp fJJI' 4 P 

yep) ~ R(r). 

(4.112a) 

(4.113) 

(4.112b) 

Equation (4.112bl is lhe differential equation for the Associated Laguerre 
Function, provided" (see Eq. (E.21», 

and 

2~e' ,k-I 
ah' = n --2-' (4.114a) 

k'-J 
1(1 + 1) =-4-' (4.114b) 

10. If the condilions (4.114a, b) are not satisfied. Eq. (4.1 12b) has no solutions that are acceptable as 
wavefunctions of a physical system (that is, solutions that are finite, continuous and square 
inLegrable in the range 0 ~ P :5 0><». 
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where n' and k are both positive integers, and n' ~ k. 
Equation (4.114b) can be written as 

(k -1 )(k -1) 1(1+1)= -2-+ 1 -2-' 

so that, 
k-l 
--1>0 2 - - , 

or k = (21 + 1), an odd integer. 

S· k ' k -1 , mce ~ n , -2- = I < n , so that 

, k -1 , 
n =n --2-=(n -I) 

is a positive integer: n = I, 2, 3, ... 
From Eqs. (4.116), (4.114a) and (4.113), we have, 

n2=~.( z:7~. 
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(4.115a) 

(4.115b) 

(4.116) 

Thus, the energy eigenvalue Eo, corresponding to the quantum number n, is given 

by 

(4.117) 

ti2 

where, ao=-z. (4.118) 
~ 

ao has the dimension of length and is equal to the radius of the first orbit for. 

hydrogen (Z = 1) in the Bohr atom model. It is called the Bohr radius of the atom. 
The solution of Eq. (4.112b) is (see Eq. (E.20», 

yep) = Ln'.k(P) = e-pl2p(k-I)I2L:,(p) 

= -pl2pl L 11 t I(p) e n+l' (4.119) 

where use has been made of Eqs. ( 4.115a, b) and (4.116). L;'(p) is the Associated 

Laguerre Polynomial of degree (n' - k), given by Eq. (E,19): 

0-1-1 [en + I)'] 2p' L 11+I( ) = L (_1)s+11+1 . . 
0+1 P FO (n-I-1-s)!(2/+1+s)!s! 

(4,119a) 

The radial wavefunction corresponding to the quantum numbers n l"nd I (or n' and 
k), is given by 

R./r) = N NLo'k(P) = N N4... + 1),(11 + I)(P), 

where, N N is a normalizing factor, such that 

(~R~(r)r2dr =INN 12~ (~P21 L.'k(P) 12 dp= 1. Jo a. Jo . 

(4. 120a) 

(4.121) 
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From Eq. (E.24a), we have, 

l- p21 L,jp) 12 dp 

= 

(n'!)3(2n'-k+I) 

(n'-k)! 

2n\(n -I-1)\}3 

(n -I-I)! 

Also, from Eqs. (4.113), (4.118) and (4.117), we get, 

_ w.- (22) 
fJ.=fJ., ='\1 ~= nllo 

From Eqs. (4.121), (4.121a) and (4.12Ib), we have 

.1(22)3 (n-I-I)! ]In 
N,,=l. nao 2n{(n+I)!}3 ' 

and R (r) = _ [( 22)'. (n -I-I)! ]lnefnplL Yd(p); 
" nllo 2n{(n+I)!}3 HI 

(4.I21a) 

(4.l2Ib) 

(4.122) 

(4. 1 20b) 

where the negative sign is chosen so as to make RIO positive. The total wave­

function, Eq. (4.110), is given by 

u,lm(r, e, <1» = R,,(r )ylm(e, <1», (4. 11 Oa) 

with Y,m(8,<I» given by Eq. (5.56b). The quantum numbers n, I, m are, respec­

tively, called the total.quantum number, the orbital quantum number and the 
magnetic quantum number. 

These quantum numbers determine the energy, the angular momentum and the 
angular momentum along the axis of quantization, respectively. It is seen from 
Eq. (4.119a) that, for a given n, the maximum value of! is (n -1). Also, from the 
theory of angular momentum (see Eq. (5.49b)), we have that m varies from -I to 
+1 for given I. Thus, the range of values of the three quantum numbers is as 
summarised below: 

n = 1,2.3 ..... +00. 

1=0,I,2, ... ,(n-I), 

m=-I,-I+I, ... ,+I. (4.123) 

It is customary to denote the I-value by an alphabet. The (spectroscopic) 
notation for different I-values arc given below: 

1=012345 

Notalion: s pdf g h (4.124) 

Using this notation and With the help of Table E.3, we list below some oflhe radial 
wavefunctions given by Eq. (4.120b): 

R = 2(.!.)3n'I' 
Is a e , 

Rz. = (~ r [2- (rla)le~n., 



QUANTUM DYNAMICS 

where 

1 (1)312 R2p = f3 2a (rla)e-
rfla

, 

2(1)312 R3S=27 3a [27-.l8(rla)+2(rla)1e-rf3a
, 

R d = ~~(-31 )312. (rla)2e -rf3a, 

3 27\'10 a 

a = (aol Z). 
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(4.125) 

(4.126) 

The radial probability distribution is, however, proportional to I rR,,lr) f. In Fig. 

4.3, we have plotted (rla)R,,lr) for some values of n and I. 

We note from Eq. (4.120b), that R,.(r) has a node at r = 0 except for I:::: 0 (due 

to the factor pi) and at r = infinity (due to the factor e-pI2). Also, there are 
(n -I - 1) :::: nr nodes between r = 0 and r = oo(L; being a polynomial of degree 

n - k). For this reason, nr is called the radial quantum number. 

Now, from Eqs. (4.1lOa) and (S.60c), we have, 
PUnlm(r, a, <1» = Unlm(r, 1t - a, 1t + <1» 

= (-liu. lm(r, a, <1», (4.127) 

where, P is the parity operator. Thus, the parity of the state is determined entirely 
by the orbital angular momentum. Since the energy depends only on the quantum 
number n (Eq. 4.117», the degree of degeneracy of the level En is 

n-1 

L(2/+1)=n2. (4.128) 
1=0 

Of these, the (2/+ I)-fold degeneracy (the m-degeneracy) associated with a given 
I, is a common feature of all central fields, arising from the inability of such fields 
to distinguish between different orientations in space. The I-degeneracy is, 
however, characteristic of the Coulomb field. In Fig. 4.4, we have plotted the 
energy levels along with the potential. The I-degeneracy gets removed in some 
hydrogen-like (alkali) atoms because of the screening of the coulomb field. The 
m-degeneracy can be removed by applying a non-central field such as a magnetic 
field in which each level (of a given I) splits up into (2/+ 1) level (Zeeman Effect). 

From Eqs. (4.1lOa), (4.120a), (4.122), (5.57), (E.25a) and definition (4.126), 
1 

we get, for the expectation value of - , in the state un/m(r, a, $), the expression, 
r 
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Fig. 4.3 The radial wave functions, (rla)R",(r), for the hydrogen atom. 

I JI (-) "-lu.'m(r,e,tj»12 r2drdQ 
r 111m r 

(4. I 29a) 

Similarly, using Eq. (E.25d), we get, 

I 
«rla».'m =2:[3n 2

-/(I + I)]; (4. I 29b) 

and using (E.24), 

(4. I 29c) 
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and 

( / .) _ (n)' (n -I-I)! 1(<+2)(21+1) 
(r a) .Im - 2: . 2n[(n +/)!]3 HI.HI 

= (~)'(n -1-I)!'i1{ (s + I)! }2(n +1 +s + I-r)! 
2 2n(n +/)! r=O (s + I-r)!r! (n -/-I-r)! 

In the fonnula (4.I29d), s ~-1, 
En 
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(4. 1 29d) 

o 
n=oo ~::::::::::::::::::::::~::::;;~::::======--~X n=4 I-
n=3 (16) 

(9) 

n=2 

vCr) 

n=1 ~--~ 

Fig. 4.4. Energy level diagram for the hydrogen atom shown in relation to the potential. The 
numbers in parenthesis on the right indicate the degeneracy of the level [Eqs. (4.117) and 
(4.128»). 

Problem 4.10: Show from Eqs. (4.I29a) and (4.117), that (t}=-~(V), where t 

and V, respectively, represent the kinetic and the potential energies of the atom. 
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CHApn~R 5 

THEORY OF ANGULAR MOMENTUM 

Angular momentum plays a much morc important role in quantum mechanics 

than in classical mechanics. This is, probably, due to the relatively greater 

importance of periodic motions in the former. Periodic motion can be envisaged 

as motion in a closed orbit which naturally involves angular momentum. The 

existence of the intrinsic angular momentum (spin) could be another reason. A 

third, and probably most important, rcason is that angular momentum is quantized 

(unlike linear momentum). 

5.1 THE DEFINITION 

In classical mechanics, angular momentum of a particle about a point 0 (see Fig. 

5.1) is defined as 

(5.1) 

where r is the position vector and p is the linear momentum of the particle. The 

corresponding quantum mechanical operator can be obtained from Eq. (5.1) by 

the application of Postulates IV and V: we replace the dynamical variables rand 

p by the corresponding operators. Then. 

i.=('Jp,-ip,). 

i, = (iP. -xp,). (5.2a) 

L. ~ (ipy - 9ft,), 

(5.2b) 

where a .. ~pc:::~1..Xi index is [0 b~ summc.."! over. 

Here, 

E 'J): = -+- 1, if ijk is an even permutation of Lhe i1umb{~:'s :. 2,3. 

= 1, if ifk is all odd permutation of I, 2, 3. 
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z 

P(x,y,z) 
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x 

I 
I 

\ I 
\ I 
\ I 
t 

Fig. 5.1 

= 0, if any two indices are equal. 

Also, [i i' p) = i1iDij , 

[xi,x) = [Pi'P) = O. 
From Eqs. (5.2b) and (5.3), with the help of the identity, 

[ab, cd] == arb, eld + [a, e]bd + era, d]b +ac[b,d], 

we get, 

rLi' L) = i1i E ijk Lk • 

The square of L is defined by , 

i}=£2+£2+£2 x y z· 

Then, [i},Lkl =0, (k = 1,2,3) 

[i},i.] =0. or 
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(5.3) 

(5.4) 

(5.5) 

(5.6a) 

(5.6b) 

Thus, the components of the angular momentum operator do not commute 
among themselves though they commute with the square of the angular momen­
tum operator. As will be shown, the commutation relations, Eq. (5.4), determine 
the quantal properties of the angular momentum. That is, the eigenvalues and the 

. eigenvecLOs of the angular momentum operator are completely determined by Eq. 
(5.4) and the general properties of the Hilbert space. Therefore, the commutation 
relations themselves are taken for the definition of the angular momentum oper­
ator in quantum mechanics. 
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Thus, a vector operator J is an angular momentum operator ifits components 
are observables (hence, hermitian) and obey the commutation relations, 

[J..J~ =ihl" cyclic (5.7a) 

Since j xj = [J,.J,li+ [J,.J.Jj+ [j..J~k, 
the commutation relations can also be written as, 

jxj = i».i. (5.7b) 

This definition enables one to treat entities which have no classical analogue, . 
such as the spin and the iso-spin of elementary particles, on the same footing as 
angular momentum. The angular momentum represented by Eq. (5.2a) is calIed 
the orbital angular momentum. 

Problem 5.1: Show that an operator which commutes with J. and J" commutes 

with J, also. 

Angular Momentum of a System of Particles 

We postulate that the angular momentum operators referring to different panicles 
commute: 

(5.8) 

where the subscripts label the particles. Then, the operator corresponding to the 
total angular momentum of a system of N (non-interacting) particles, is given by, 

It is easily verified that 

where 

• N. 

J= I:J,. 
j",l 

[} • .J~ =ihl" 
• N. 

J,,= Lli'" etc., 
j;1 

(5.9) 

so that j is, indeed. an angular momentwn operator. Thus the vector-sum of a 
commuting set of angular momentum operators is an angular momentum opera­
tor. 

5.2 EIGENV ALVES AND EIGENVECTORS 

Since the components of the angular momentum operator do not commute among 
themselves, we cannot find a common basis for all the three components. How­
ever, since j2 commutes with 1 we can have a common basis for j2 and one of the 

components, say J" of j, 
Let {I f1.jm)} represent such a common basis. IJere, f1. represents the eigenva­

lues of operators (such as the Hamiltonian) which, together with j2 and J. form a 

complete set of commuting observables for the system. j labels the eigenvalues 
of j2 and m those of J,. The vectors I f1.jm) are orthonormal : 
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(S.lO) 

For the sake of simplicity in writing, we will write I jm > in place of I ajm}. 
By definition!, 

j21 jm) = A/i21 jm}, 

l z I jm}:::;;: m1i lim}. 

(S.lla) 

(S.llb) 

j2, being the sum of squares of Hennitian operators, is positive definite. There­
fore, 

Also, 

(jm I j2\ j m > == <j2) = <1;> + <1!> + <1;> ~ <1;>, 
so that, from (S.12), 

(S.12) 

(S.13) 

It is convenient, at this stage, to introduce the non-Hennitian operators 1+ and 

1_, defined by, 

(5.14) 

In terms of 1+ and j_. 

(S.lSa) 

(S.15b) 

The following commutation relations for the setl +,1 -,1. and J2 are easily derived 

using the basic commutation relations (S.7a): 

Also, 

[1 • .1±1 ± 1i1±, (S.16a) 

[1±.1J = ± W., 

[j2,1 ±] = [j2,1.l = O. 

'2 1 ., •• '2 
J = "2 (lJ_ +ljJ+l •• 

1}+ = j2-1.(1. +1i), 

1) _ = j2-1z(}. -tl). 

(5. 16b) 

(5.16c) 

(5.17a) 

(S.17b) 

(S.17c) 

1. We could write I...;h instead of mtl in Eq. (S.llb), but we have written mh in anticipation of the 

result. 
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Since}, and j commute with J2,} ± I jm > arc eigenvectors of J2 corresponding 

to the same eigenvalue as lim > . 

,1'(}. Ijm» ~ A);2(1 ± Ijm». (5.183) 

!lut, from Eqs. (5.16a) and (5.llb), we have, 

J,(.i, lim» ~ (l,1, ±tJ±) I jm) 

~ (m ± 1)1l(J± lim». (5.18b) 

Thus, .i. lim) is an eigenvector of J, belonging to the eigenvalue (m + I) 1i 

whereas j I jm) is an eigenvector of J, belonging to the eigenvalue (m - I )1i: 

if I jm)~1ie'±m Ijm ± I), (5.19) 

where c'+rn is a scalar. 

Since J, raises the m-value of an eigenveclor of .12 by I and i. lowers the 

eigenvalue by 1, J, and j _ are, respectively, called the raising and the lowering 

oiJcrators of angular momentum. 

By repeated application of Eq. (5.19), we find, 

<l;( lim)= Ijrn ±p), (5.193) 

.vhcrc p is a positive integer or zero. This shows that we call reach any veci.Of 

I jm') by repeated application of i, on lim) if m' - m ~ a positive integer, and by 

repemed application of i. on lim) if m' - m ~ a negative integer. However, the 

series, 

J, lim),i; lim), ... ,1; lim), ... and 

] Iim),J' lim), ... .1' lim), ... , 

should terminate as, otherwise, we would have vectors lim') which violate the 

inequality (5.13), since Aj is not changed by the application of J ± on I jm). Now, 

the series can terminate only if there is a value of m, say m), for which J, I jm,) = 0, 

the null vector, and another value m, for which J.I jm,) = O. Since lim,) and I jmJ 

are obJained from 11m) by repeated application of J, and J. respectively, we have, 

~ ~ m<:::: a positive integer or zero. 

Now the vector} + I jm,) ~ 0, when iLs norm is zero. That is, when, 

or 

since.i~ ::::.i_. 

(.1, Ii m,». (j, Ii m,» ~ 0, 

(fm, I.U, I jm) ~ 0, 

(5.20) 

(5.21) 
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Using the expression (5.17b) for i) + and from Eqs. (5.10), (5.11a, b) and (5.21), 

we get, 

Similarly, 

Aj = m"(m,, + 1). 

i_lim<>=O, 

if \=mim< 1) 

Combining Eqs. (S.22a) and (S.22b), we have, 

m"(m,, + 1) = m«m< -1), 

or, 

Thus, either 

or, 

(S.22a) 

(S.22b) 

(S.23a) 

(S.23b) 

Condition (S.23a) is ruled out by Eq. (S.20). Hence, only (S.23b) is acceptable. 

Now, Ai' being the eigenvalue of j2, depends only on j (by our definition of 

I im), so that, accOfding to Eqs. (S.22a, b), Tn,. and m< should be functions of} only. 

The choice, 

m,,=}, 

meets with these conditions. Then, 

m< = -m,. = - j. 

So that, from Eq. (S.20), 

Tn,. - m" = 2j = a positive integer or zero. 

Thus, 

. 1 3 
J =0'2,1'2' ... ,+ "". 

The eigenvalue A.j , according to Eq. (S.22a), is given by 

Aj =}U + 1). 

m can have any value between} and - } such that 

j - m == a positive integer or zero. That is, 

(S.24) 

(S.2S) 

(5.26) 

m=-j,-j+1, ... ,+j (5.27) 

Since the value of j, the maximum value of the projection of the angular 
momentum vector on the z-axis, fixes the length of the angular momentum vector 
uniquely, the latter is usually specified by its j value. Thus the statement: "the 
angular momentum of the particle is 3(2", means that the angular momentum 

vector is of le.ogth -{f11t.. This length can, however, never be observed directly. 

For a given value of j, there are (2i + 1) linearly independent vectors lim>, 
corresponding to the (2j + 1) different values of m given by Eq. (5.27), which are 

common eigenvectors of )2 and i z• If one of these vectors is given, the others can 
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be generated (rom it by the repeated application of J. and j~. Let lim> represent 

the given vector. where -j < m <j. Then, from Eqs. (S.19), (S.17b), (S.lla, b) 
and (5.26), we get, 

so that, 

Similarly, 

Ili.lim >11 ~1i,lc:"'1 ~VJ(1)-m(m+l)1i 

~"(j-mJ(j+m+ 1)11 

c;., ~e"..J(j -m)(j +m + 1) 

c:... ~ei'..J(j +m)(j -m + 1). 

(5.2Sa) 

(S.2Sb) 

Here, 0 and 'Yarc real scalars, independent of j and m. From Eqs. (5.19) and 

(5.28a, b), we have 

i.lim >~e"W-m)(j+m+\l}I"'1tUm+\ > (5.29a) 

and ] Um > ~ e"W +m)(j -m + Il} ''''It Ijm -I >. (5.2%) 

Multiplying E4. (5.29a) with j _ and using Eq. (5.29b), 

j 1. 1 Jm ~ e""Y'W -m)(j +rn + 1»)jj'lJm >. 

But, using the expressIOn (S.17b) fori) .. we get, 

j) . IJm > ~ W - m) (j + m + I)} 11 Urn > . 

Hence, 

or, 'Y~ -0. (5.30) 

Thus, the choice of I> fixes the phase of all the vectors relative to I jm >. The 

phase of I jm > itself is, however, arbitrary. Following the usual practice, we put 
o~O. Then, 

J. lim >~ {(j -m)(j +m + \)}I"'1t Um + 1 >, 

] lim >~ {(j +m)(j -m + I)}L~h lim -I >, 

Problem 5.2: Deduce the following relationships: 

( ) 1+ 1 f (j+m)! }"'O ";-~I'+' 
a J-m>=1i'-~l(2j)!(j-m)!) ,I J-J>. 

(b) 1 { (j+m)! }'~' 
Ii:!:;j>= (1;Y--.(2j)!(j-m)!} (J,Y--U±m>. 

5.3 MATRIX REPRgSENTATION 

(5.3\a) 

(5.3Ib) 

The vectors IJrn >, for m = -j to j, constitute a basis for a (2j + I) - dimensional 

subspace of the HIlbert space of the system. The components of j as well as j' 
hfe represented by Hermitian matrices in this space. where the rows and columns 
'!TC labelled by the (2j + 1) valu,s of m. Thus, 
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J':,,. == <jm' I j2 ijm >= jU + 1)1120,.",. 

(J,) ,.',m == < jm' I }, ijm > = m'li0m'm. 

From Eqs. (5.31 a, b), we have, 

(lJ. = '-ir:-U'---m--:-) -:-":U-+-m-+ 1) 'li0m' '" +1' 
'"~ , 

(JJ . =..JU+m)U-m+l)'liOm'm_1' 
mm ' 
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(5.32a) 

(5.32b) 

(S.32c) 

(S.32d) 

The matrices representing) x and}, could be obtained from Eqs. (5.15 a, b) and 

(5.32 c, d): 

(S.32e) 

(5.321) 

As expected, J2 and J, are diagonal in this representation. 

Problem 5.3: If J. and J, are real matrices show that J, is a purely imaginary 

matrix. 

Problem 5.4: Show that Tr(JfJ,) = 0, (Jl=x,y,z). 

Problem 5.5: Obtain the angular momentum matrices corresponding to j = 1. 

Pauli Spin Matrices 
1 

Whcnj = 2' we have, from Eqs. (5.32 b-d), 

(J) -(J) -0 
z -112,112 - z 112,-112 - , 

(J) - (J) -0 
± 112,112 - ± -112,-112 - , 

(J) - (J) -0 
+ -112,112 - - 112,·112 - , 

(J) = (/) = 'Ii + 112,-112 • - -112,112 • 

Hence, the matrices Jz,l+ and J_ are given by 

J,=~(~ ~J 
J+ = h(~ ~).( = h(~ ~). 



128 QUANTUM MECHANICS 

Then, from Eqs. (5.32 e, I), 
~(O 

J, ;2:l1 

The Pauli spin matrices' a., ay , a, are defined by 

Thus, 

11 
J, ;2:0" ().l;x,y,z). 

II (0 -i) (I 
of OJ = li 0; oz::= lo 

(5.33a) 

(5.34) 

We will see, in the next section, that the angular momentum arising from the 
I 

orbital motion of a particle corresponds to integral values of j. Therefore,j; 2: 
corresponds to the intrinsic angular momentum, or spin, of a particle.' Denoting 

the spin vcctor by s, and the vcctor whose components are a., ay, a, by a, we can 

write Eq. (5.33.) as, 

(5.33b) 

The following properties of the Pauli spin matrices are easily verified (For ease 
of writing, we replace x, y, z by l, 2, 3, respectively). 

raj, a~ = 2iEijkOk• 

{OJ'o) = 2oij' 

Tr(a,); 0, 

det(a,);-1. 

Here {a, b) "ab + ba, is the anticommutator of a and b. 

Problem 5.6: If A and 0 are vector operators such that 

[a, Al ; [a,Ol ; 0, show that, 

(a· A)(a· 0); (A· O)+ia' (Ax 0) 

(5.358) 

(S.3Sb) 

(5.35c) 

(5.35d) 

(5.35e)' 

(5.351) 

Problem 5.7: Write down the Pauli spin matrices in a representation in which oJ 

is diagonal. 

2. Pauli, Wolfgang [Z. f. Physik, 43, 601 (1927)] was the first to introduce them. 
3 The hypothesis of an intrinsic angular momenlUm for the electron was put forward by G.B. 

Uh1cnbcck and S. Goudsmit IDie Naturwissenschaftell13, 953 (1925)]. It is now recognised that 
spin,like electric charge. is one of the intrinsic attributes of aU elementary particles. The spin 
could be half integral or integral, including zero. 
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Problem 5.8: Show that if A is a matrix such that 
{A,a) =0, ~=x,y,z, 

then, A is null. 

The Spin-Eigenvector 

\ (J.) represents the spin-up state and \ ~ > the spin-down. state: 

cr, 1 (J.) = + 1 (J.), 

cr, I ~} = -I ~}, 
In matrix notation the eigenvectors are 

(J. = (~) and ~ = ~:) 
where a,(J. = a; a,~ = -13. 

Using expression (5.34) for a" we get 
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(5.36a) 

(5.36b) 

(5.37a) 

(S.37b) 

(5.36c) 

(J. and 13 represent, what are called, pure states. In an ensemble of spin ~ particles, 

it is unlikely that all the particles are spin-up or all spin-down. It is more likely 
that some of the particles are spin-up and the others are spin-down. The spin­
wavefunction, or spinor, X corresponding to an ensemble is, therefore. a linear 
superposition of a and 13: 

(5.38) 

where (5.39) 

5.4 ORBITAL ANGULAR MOMENTUM 

The results in the previous two sections have been deduced from the general 
definition, (5. 7b), of angular momentum and the general properties of vectors and 

4. a, here, is not to be confused with the (l in Eq. (5.10). 
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operators in the Hilbert space. We will now discuss the properties of the angular 

momentum represented by Eq. (S.2a), which, as its classical counterpart, Eq. 

(5.1), indicates, arises from the orbital motion of particles. 

In the co-ordinate representation, we have [see Eq. (3.18')], ji '" -iiiV, so that 

from Eq (5.2a), we have', 

L =-iii(Y~-Z~)' , az ay 

(5.40) 

Angular momentum, as we will sce in Section 5.6, is intimately related to rota­

tions of a physical system in space. It would, therefore, be advantageous to use 

spherical co-ordinates ("e,<j» in place of cartesian co-ordinates (x,y,z) in Eq. 

(5.40). Using the relationships (4.107) and 

we have, 

so that, 

ar x ae_xeote ()<j> __ sine 
r' dx r2 'ax r sin e' 

iJ, y iJ8=yeot8 
ay , ay 2 ' , 

iJ<I> cos e 
ay -, sin e' 

a,zae 1 aq, 
az = -;' az = --; sin e, az = 0, 

a x[a 1 a sin<j> a] 
ax = -;' a, + -; cot e, ae - x sin e a<j> , 

a _ z [a sinS a ] 
az --; a, --z-ae 

(5.41) 

(5.42a) 

5. Wi' h the diftc:rUl1ial operator Conn for p, the commutation rules [i,p J = i1d, etc., are automati­
cally il1l;~lic~ without making a distinction between x and x. Therefore, in this section, we will 
write A, y. Z In ;,i:.,.e ofi,y,i. 
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A {a a] L,= i-cos $ ae + cot e sin $ a$ , (S.42b) 

(S.4le ) 

and 

{
I a ( . a) 1 a2

] 
= -11 sin oaO sm e ao + sin ~a$2 . (5.43) 

Problem 5.9: Establish the following commutation relations for the components 

of the angular and linear momenta: 

[Li,p) = i1l E ijk Pk' 

Hence show that 

We will denote the eigenvectors of U and L. by 11m >, so that, 

f} 11m> = 1(1 + 1)1l11m >, 

t:. 11m> = m"li 11m>. 

CS.44) 

(5.45) 

Now f} and L, are purely functions of 0 and $. Therefore, in the co-ordinate 

representation, the eigenvectors 11m> also should be a function of e and q, oniy: 

< r 11m> = Y1m(O,q,) 

From Eqs. (S,42c), (5.45) and (5,46), we have, 

-il1 ;<jl Y /mCO, <jl) = m"liY /m(0, <jl). 

Integrating with respect to $, we get, 

Y /m(0, <jl) = f/m(O)etm~, 

where Itm is independent of <jl. 

(5.46) 

(5.47) 

Now, the wavefunction Y /m should be a single-valued function of e and <jl, so 

that, 

(5,48) 

Eqs. (5,47) and (5,48) yield, 

or, m = ± n, where n is a positive integer or zero. 
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Hence, I " largest value of m 

;;; a positive integer or zero. 

That is, 

1=0, 1,2, ... ,+~ (5.49a) 

m =-/,-/ + I, ... ,+1. (5.49b) 

Thus, in the case of orbital angular momentum only the integer values are allowed 
in Eq. (5.25). 

In order to determine f .. (6) in Eq. (5.47), we have to solve the equation, 

[}y .. (6,~) -1(1 + 1}li2Y .. (6,tIl) = O. 

With the help of Eqs. (5.44) and (5.47), and with the substitution, ~ = cos e, this 
equation could be reduced to, 

[(1_~2) :;2-~:C, +(1 + 1)- I :~2}]W"@ =0, (5.50) 

The two independent solutions of Eq. (5.50) are [see Eq. (E.35)], 

(1)(c,) - r(c,) - (I _ c,2) 12 d
m 
P

,
@ w.. - I - m dc,m' (5.5Ia) 

and (5.5Ib) 

where P,(C,) and Q,(c,) are solutions of the Legendre's differential equation, 

[ 
d2 d l 

(1-c,2) dc,2 - ~ dc, + 1(1 + I)r(~) = 0, (5.52) 

and are known as Legendre polynomials of the first and the second kind, respec­

tively, of degree I. p,m@ and Q,m(C,) are, respectively, the Associated Legendre 

functions of the first and the second kind. Q;"@ is not acceptable as a 

wavefunction, since it is not finite at all points in the interval-I :S C, :S 1. Thus, the 
solution that is related to f .. (9) is given by Eq. (5.5Ia). Using the Rodrigue's 

formula [Eq. (E.26b)], 

, I d' ,2 I 

P'("')=2
'
I!dC,'('" -I), 

for the Legendre polynomial, the solution can be written as, 

r(c,) = (1-C,2rn (_1 d'+m (,2- 1)') 
I 21/! d~l+ ... .., 

The properties of p,m are listed in Section (E.3). 

The eigenvector < r 11m> is, thus, given by, 

< r 11m>" Y .. (6,tIl) =c .. p,"'( cos e)e im
., 

(5.53) 

(5.54) 

(5.55c) 
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where. Clm is a normalising constant. to be determined from the condition. 

< 1m 11m> == J Y;"CO.q,)y lm(O,q,)dO = 1, 
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(5.66) 

where dQ = sin OdOd<!> = -d(cos O)dq,. is an element of solid angle. Now. from 

Eq. (S.SSa). 

2 41t (l+m)! 
= I Clm I '21 + 1 . (l-m)!' using Eq. (4.40). 

Thus, _[21 + 1. U-m)I]1I2 
Iclml- 4n: (l+m)! • 

or C = eio{21 + 1. u-m)l}ll2 
1m 41t (l +m)! 

(5.57) 

The factor eiO represents the arbitrary phase factor we mentioned in Section (5.2). 

We choose, 

Then, 

e iO = (-1)"'. 

Y C9 .t-.)=C_l)m[21+!. (l-m)!]ll2pmccoso)elm+ 
1m ,,+, 41t (l +m)! I 

= _II+m_I_{(2/+1)!(l-m)I}1J2 sinlmlO 
( ) ill 4n: (l +m)! 

X(d( c:s O)fm 

sin
21

0.e
im

+. 

Ylm(9, <!» is called the spherical6 harmonic of order I. 

(5.58) 

(5.55b) 

We list below some of the important properties of the spherical harmonics; 

which follow from Eqs. (5.55b) and (E.37), (E.38) and (E.40). 

YI:(O,<!» = (-l)"'YI_m(O,<!». (5.59a) 

(5.59b) 

6. 'The Laplace operator '12, in spherical co-ordinates, is given by 

'12_~~(,Z~)_~ 
- rzar ar ttZ,Z 

Thus, r'Y .. (e, 4» are the solutions of the Laplace equation '1Z<lI = O. The Y boo'S are, therefore, the 

solutions of the Laplace equation on the unit sphere (r = 1). Hence the name spherical hannonics. 
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Orthonormality: 

J Y':m.(e. ~)Y ".(e.<I»dU = o".omm· 
Parity: If P represents the parity operator. 

pY".(e. <1» = (-I)'Y".(e.<I». 

QUANTUM MECHANICS 

(5.60) 

(5.61) 

Thus. the parity of Y". is (-1/; which is even for even values of I and odd for odd 

values of I. This result is easily derived as follows: 
The parity operation is the reflection of the co-ordinate axes at the origin. 

Therefore under this operation (see Fig. 5.2) 
z 

• I 
I 
I 
I 
I 

y.'--------------~~~ 

/ , , , 
xl< 

/ 
/ 

/ 
/ 

/ 

Zl 

\ 

I 
\ 
\ 

\ , 
II 
~ 

p 

Xl 

Fig. 5.2. The effect of parity operation on the angular co~ordina{es (8, cp). 

e-tlt-e. <I>->lt+<I> 

Thus. P Y",,(e.<I» = Y ,,,,(It - e.lt + <1». 

Now, 

P;"(cos (It - e)) = p,m(--COS e) 

= (_I)hmp,m(cos 9). from Eq. (E.38) 

Hence. from Eq. (5.55b). 
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Addition theorem 7 
: 

where, the angles involved are shown in Fig. 5.3. 

z 

Ar------;-----~---+y 
I 

" I 
"I I 

, I I 

'... I \ I" I 

" I "" I 
\ I "I 

" '-..I 
x 

Fig. 5.3. Angles involved in the spherical harmonic addition theorem [Eq. (5.62)1. 

From the figure, we have, 

Using, XI = 'I sin 81 cos <Ill' etc. [see Eq. (4.107)], we get, 

CDS 8 = cos 81 cos 82 + sin 81 sin 82 cos (<l>1 - <l>;>. 

The spherical harmonics for the lowest few values of /, are listed below: 

1 
YooC9,q,):::: .1":2 

,;,41t 

7. A derivation of the theorem is given in Section 5.6 [(Eq. (5.152»). 
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(5.62) 

(5.62a) 
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Y (9 "') -- (T , 9 ±i, 
l±l .,+, =+'J 81t sm e , 

Y",(9.4» = ~(3COS'9-1). 

Y (8 ) -- (15, 9 8 ±i. 
2±1 .$ =+'J81tsm cos e . 

YI±I(e, $) = C±I(sin e), e"I., 

where c" is independent of e and <1>, 

(5,63) 

Since the dependence of Y /m(e, <1» on <I> is contained in the factor e±im., the 

absolute value I Y /m(e, <1» I is independent of <1>, In Fig, 5.4, we have plotted 

I Y .. (e, <1» I as a function of e, for the lowest three values of I, where I Y",,(e, <1» I is 
proportional to the radial distance from the centre. Note that there is only one 

value of I Y,m(e, <1» I for a given value of e, 
9:0 9=0 9=0 

, , , 
\ , \' 

, 
/ , 

, , , 
\ , I I 

~--+------l 9:1T'f?r., --,;~~--;e, =TT k:-, -E*~t-, ·-t9=TT/2 , 

9=1T 
l=O,m=O 

9=0 

9=lT 
l= 1,m=±1 

\ . 
\ /' , 

9=0 

9=1T 
l=2,m=±1 

, , 
/ 

9=lT 
L=2,m=0 

9=0 

9=1T 
l=2,m=±2 

Fig. 5.4. Polar diagram showing I Y",,(e,41) I as a function of e. 

I 
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Now, the probability density for the particle to be found at a is given by 

P/m(9) = i2>t 1 Y /mCO, <1» 12 d<1> = 21t 1 Y /mca, <1>d . C5.64) 

Let us consider the two extreme cases, m = 0 and m = ± I. 

m=±l 

In this case, the angular momentum vector is· • parallel ' to the z-axis so that the 
particle-orbIt should be in the xy-plane CO = Tr12). We see, from Fig. 5.5, that this 
classical expectation is not fulfilled except for very large values of I. For low 
values of I, there is appreciable probability for the particle-orbit to be at an angle 
to the xy-plane.8 

, 
I 

I 
I 
I 

\ 
\ , 

\ , 
" 

e=o 6=0 6=0 
, , 

, I 
\ I 

I 

I 1T I 
·····16=- I .... 

I 2 ~ 
I \ 

I , 
\ 

8=n 
l =1,m=0 

6=0 

L=1 .. m=±1 

, , 

, , 

, , , , 

.-- . - .... 

, 
, I 

............ ;8=~ ~ ........... . 
\ 

\ 1T 
············16='2 

I 

6=n 
~ =2,m=0 

6=0 

I 

, 
I 

I 

L=2,m=±2 

, , I 
I 

I ,-, 
" 

8=n 
L = IO,m=O 

~=10,m=110 

Fig. 5.5. Polar diagram of P .. (9) given by Eq. (5.64). 

m=O 

The angular momentum vector should be in the xy-plane, so that the plane of the 
particle orbit should make an angle zero with the z-axis. Again, this expectation 
is realized only in the limit of very large angular momenta.9 

8. Note that the plane of the orbit undergoes a continuous change corresponding to the precessional 
motion of the angular momentum vector about the z-axis (see Section 5.8). 

9. For further discussion and diagrams. see, Pauling, L. and Wilson, E. B.li1troduction to Quantum 
Mechanics (McGraw-Hill). International Student Edition (Kogakusha Co., Tokyo), Secti0ll21d. 
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5.5 ADDITION OF ANGULAR MOMENTA 

5.5A Clebsch-Gordon Coeflicients 

Angular momenta, being vectors, could be added vectoriaJly. Thus, for a system 

consisting of two subsystems with angular momenta JI and J", we can define a 

resullant (or total) angular momentum J by (see Fig. 5.6), 

J =JI +J,=J,+JI 

J1 

J 

Fig. 5.6 Vectorial addition of two angular momenta. 

(5.65) 

Corresponding to the three angular momentum vCOCOrs JI,J, and J, we have the 

six Hennitian operators ji, j lz. j~.j 21' j2 and j z' All these six operators, however, 

do not commute among themselves (J hand J", do not commute with )'). But we 

can form two sets consisting of four operators each, which, together with the 

Hamiltonian, form complete sets of commuting observables for the system. 

Th!,se are: 

and 

The basis vectors defined by set (i) will be. denotediO by 

I ili2mlm,) " I ilm) I i,m,), 

or, briefly, by I mlm,), while those defined by set (ii) will be denoted by I iJ,jm), 

or lim). Thus, 

10. The quanlum number a.. specifying the eigenvalues of the Hamiltooian. is suppressed. Thus, 

I Jdtnlm2 == I ajdyn1m1 > . 
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}; I iJll'm) == ij(i + 1 )1i2
1 M'}.jm), 

}21 iliJm) == iU + 1)1'1
2

1 iJJm), 

}z I iliJm) == m1i I MJm), 

13'1 

(5.66a) 

(S.66b) 

(S.67a) 

(5.67b) 

(S.67c). 

The representation defined by the vxtors 1 mlm~ is called the uncoupled repre­

sentation whereas the vxtors I jm) define the coupled representation. Since there 

are (2)1 + 1) different values of ml, for a given value of ~ and (2j2 + 1) values of 

m2 for each value of ml> the dimensionality of the representation is 

(2il + 1) (2i2 + 1). 

Now, since {I jm)} and {I mlm~} are merely different bases in the same Hilbert 

space, they should be related by a Unitary transformation. Thus (sec Eq. 
(2.124b», 

(5.68) 

where U;,~2 is the i)th element of the unitary matrix U j1h that tmnsforms the basi~ 

{I ml m2 >} to the ba<;is {I jm)}. 

Using the closure property of the basis {I mlm)}, we can write [see Eq. (2.271)J 

I jm) = L I M2mlm~ (M2mlm21 im). (5.69) 

Comparing Eqs. (5.68) and (5.69), we see that, 

U j1j2 (j' , I') m
1
m

2
:jm =0 d2ml~ Jm . (5.70) 

The R.H.S. of Eq. (5.70) should actually read: (aM2mlm21 ajm) (see footnote 10). 

However, since {I ajm)} and {I ajJ2ml~ >} differ only with regard to their 

'orientations' relative to the angular momentum vxtors, the transforming matrix 
Ultlz should be independent of a. Thus, the matrix element (5.70) depends only 
on the six angular momentum quantum numbers. Various symbols and names are I 

used in the literature for this matrix element. We will adopt the symbol. . 

C~:!zm and the names, Clebsch-Gordon, or C-coefficient. 

Thus, 

(5.71) 

Eq. (5.68) bxomes: 

(5.68a) 

This equation could be regarded as the defining equation for the C-coefficiellls. I 
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The Selection Rules 

For given values of j]. jz., ml and mz, C~:~ is non-zero only for certain allowed 

values of j and m. The rules specifying these allowed values are referred to as 

selection rules. These arc: 

(SR 1). m =m, +m,: 

(SR 2). I j, - i,lo; i 0; (f, + j,), where, i varies by integer steps. 

(SR 1) follows from the relationj, =J" + I",. 

For, 

= E (m, + m,}tJ c~j~ IjJ,m,m, > . 
"',"'2 I·-~r-

i.e., 

Since the vectors I jJtnlrnz > are linearly-independent. this implies that, 

either, 

or 

(SR 2) may be derived as follows: 

(5.72) 

Maximum value of m = m"..,. '" (m, + m,)_' = (j, + j,). Thus, maximum value of 

] ,,]~. =~. = (f, + ],). The next lower value of m =], + j,-l. There are two 

states with this value of m, namely, I m,m,} '" iJJ,-I) and Ij, - 1],). One of these 

belongs to 1 = (f, + IJ and the other to i = j, + i, - 1. Similarly, there are three 

states with m = i, + j, - 2, the correspondingj-values being (f, + j,), (f, + j, - I) and 

(f, + 1, - 2). in general, there are (p + 1) states with m = j, + j, - p, the j-values 

being U, + i,), U, + i, - 1), ... , U, + i, - p). The maximum value of p is given by 

U;- p~.) =(m,} .... =-j" if;; <;;, 

and by 

That is, 

Puax = 2j <" where J~ is the lesser i;" 
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Thus, 

or, jrnin = I A - j21, 

and j = I A - j21, I jl - j21 +1, ... , Ul + j~. 
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(5.73a) 

(5.73b) 

This method of obtaining the allowed values of j is illustrated in Table 5.1 for the 

case j! = 3/2,j2 = 5/2. 

Table 5.1 
i-values corresponding 10 il = 3/2. i2' 5/2. (Pm_ = 2i, = 3) 

m ml ml i 

i l =3/2 i2= 5/2 m=4 

jl = 312 j2-1 =312} j, + j2 ",4; 

j,-I = li2 h=5/2 i, + i2-1 '" 3. 

jl =3/2 },-2= In) i,+jl=4; 

i,-1 = 112 i2-1 = 312 i l + i2-1 = 3; 

i l -2=-112 i2=5/2 j,+j2- 2",2. 

i l =3/2 j,_3=_lnj i, + i2=4; 

i, -1 = 112 h-2 =1I2 jl+j2- 1=3; 

i,-2=-li2 i2-1 = 312 i l+j2- 2=2; 

j,-3=-3/2 j2 =5/2 i, + i2- 3 = 1. 
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The matrix UJ1J2 is shown below: 

i --"jt + j2 j, + j, j, + j, - I j, + j, 
m --t jl + jl j, + j,- 1 j.+j,-l -j, -j, 

m, m, 
.j. .j. 

j, j, Cll 0 0 0 

j, -1 j, 0 CZl Cn 0 0 

j, j, - 1 0 Cn C" 0 0 

j,-2 j, 0 0 0 C .. C.., C", 0 

j, -1 j, - 1 0 0 0 C,. C" C,. 0 

j, j,-2 0 0 0 C .. Cos C" 0 

0 
0 10 

c 
0 > 

?i 
-j, -j, 0 0 0 0 0 0 Cii 

C :;;: 
:;;: 
'" () 
:t 
> 
2i 
Q 



;j 
Example: i! = 3{2, i2 = 1{2. 

m 
0 
~ 
>< 
0 
"T'l 

i-..?2 2 
;I> 

2 1 2 1 2 z 
a 

m-..?2 1 0 0 -1 -1 -2 c 
r 
;I> 
~ 

:: 
m! ~ 

0 :: 
.l- .l- ~ 3{2 1{2 (Cll ) 0 0 0 0 0 0 0 c :: 

1{2 1{2 0 Cn C23 0 0 0 0 0 
3{2 -1{2 0 C32 C33 0 0 0 0 0 

-1{2 1{2 0 0 0 C44 C4S 0 0 0 
1{2 -1{2 0 0 0 CS4 Css 0 0 0 

-3{2 1{2 0 0 0 0 0 C66 C6I 0 
-1{2 -1{2 0 0 0 0 0 C76 Cn 0 

-3{2 -1{2 0 0 0 0 0 0 0 (CBS) 

-~ 
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Problem 5.10: Verify that the number of independent vecwrs I jm) for given j, 

and j, is (2j, + 1)(2j, + 1). 

Choice of Phase 

In Eq. (S.68,,) for a given I j,m,) and 112m,), the phase of I im) could be chosen 

arbitrarily. Correspondingly, there is a certain amount of arbitrariness in the 
phase of the C-cocfficicnt. The adoption of some convention in fixing the phase 
is, therefore, necessary to avoid confusion. The following is the procedure con­
vcntionallyadopted : 

For i = i, + i, and m = i, + i~ Eq. (S.68a) reduces to 

Ii, + i,jj + i,) = C;,~~':;: I i,j,) I i,j,) (5.74) 

From the ortllOooIlnalily of the wavcfunctions involved here, we have. 

0, + JJ, + )2 U1 + j), + )2> ~ \ C;II;:II:;22\2 = l. 

Therefore C)lhh + h = e ,,) where 8 is real. 
, jlhh-'-)l ' 

Now. we choosc the phase of I i, + j,j, + i, > in Eq. (5.74) such that 0 = O. That is, 

(5.75) 

This choice fixes the phases of all the eigenvectors with j ;;;:. i, + f2, according to 

Eq. (S.3Ib), and therefore it fixes also thc phases of all the C-cocfficients 

belonging to 1 = i, + i2' 

Problem S.ll: Verify the above statement for the case i = i, + i, and 

m=j]+j2-1. 

Now, Eqs. (5.313, b) do nOl enable us to fix the relative phases of eigenvectors 
belonging to difTcrcl1tFvalucs. This is because the opcratofsJ+ and j do not have 

non-zero matrix elements between such eigenvectors. The remedy, therefore, lies 
in finding an operator which docs have non-vanishing matrix clements betwccn 
vectors belonging to diITerenti-values. One slIch operator is.l, (or .1,). The fol­

lowing commuLation relations could be deduced from the commutation relations 
(5.7a) and (5.8): 

[ij,,] = 6 

lij,,] =±liJ" 
[i,.i,,] =+tJ" 

Ii ,,1,,] = 0 

[i ,,j, J = ±2tJ '" 

(5.76a) 

(S.76b) 

(5.76c) 

(5.76d) 

(5.76c) 

Comparing these with the commutation relations (5.16 a-c), we sec that these arc 
cquivalclltlO the equation [see Eq. (5.6b)], 
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lxll=i-lill. 
The following relationships follow from Eqs. (S.76) and (S.6S): 

l xli =-ll xl +2iM\. 

" , , 1 '2 '2 '2 
J·J I =JI·J=2(J +JI-J;)· 

l.J, (J . JI )] == O. 
'2 ' . A , A A 

[.I ,.Ill =-I1i(.J xJI-JI xJ) 

=-2i-li(.Jx.J l -iM I ) 

[.J2, [.f2JI]] == j4jl _ 2.l2lY + llj4 

= 21i2(j2jl +.JY) _41i2jcl· jl)' 
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(S.76) 

(S.77a) 

(S.77b) 

(S.77e) 

(S.77d) 

(S.77e) 

(S.77f) 

From Eqs. (5.76a, b) and (5.77f), the following selection rules for the matrix 

elements of .J I follow: 

(j'm' I liz I jm) = 0, unless m' = m; U' - j) = O,±1. 

(j'm' I ll± Iim)=O, unless m' =m ± 1; U' - j) = O,±1. 

Problem 5.12: Deduce the selection rules (5.78a, b). 
From Eqs. (S.66b) and (5.68a), we have, 

(j ' I JA I' ) = -Ii L ei\h! eM';' m Iz Jm m l "'\"':z'" "'I~' 
m 1,m2 

Also, 

(5.78a) 

(S.78b) 

(5.79) 

(5.80) 

In Eqs. (5.79) and (5,80), j' == j or j' = j ± 1. Thus, knowledge of the matrix cle­

menL,> on the L.H.S. LOgeLher wiLh a knowledge of the phases of e~:::"" would 

enable us to fix the phases of e~~~~~,. The following convention is adopted for 

the phases of the matrix clements: 

(i) (j ± I,m I liz I jm) == real and positive. (5.81 a) 

This implies, since (j ± 1, m I (lIz + 1 2"> lim) == 0, that 

(j ± 1, m l.i 2z I jm) = real and negative. 

(it) U ± I,m + ll.i 1 + lim) = real and positive. (S.81b) 

These convemiom; result in the reality of all Clebsch-Gordon coefficients. 
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Racah" gives the following explicit expression for the C-coefficient: 

i,i,j _ [(2j + 1) U, + j, - j)IU + j, - j,)IU + j, _ j,)l]"' 
Cm,"'t" - om,,"'t" U, + j,+ j + 1)1 

< {U + m )IU - m )IU, + m,)IU, - m,)IU, + m,)IU, - m,)!} lI2 

><7(-1) x!U, + j,- j -x)IU,-m, -x)!U,+m,-x)!U - j,+m, + x)! 

1 
Xu - j,-m,+x)l 

(5.82) 

Here x takes all integer values consistent with the factorial notation (Factorial of 

a negative number is infinite). 

Problem 5.13: Denote the coupled state of two spin ~ particles by I SM). Show 

that the eigenvalues of the operator (a, . a,) are - 3 and + 1 in the single r(S = 0) 

and the triplet (S = I) states. respectively. Hence. construct the projection oper­
ators it, and it, for the single t and the triplet states. 

Properties of the C·Coefficients: 

Symmetry: 

(5.83a) 

(5.83b) 

= (_I)i, om, [ 2j + 1 ]"' C;,ii, 
212+ 1 ml-m-nI;z 

(5.83c) 

Other symmetry relations could be obtained by the application of one or more of 
the above relations." These symmetry relations follow from the expression (5.82) 
for the C -coefficient. 

Orthogonality: 

(5.84a) I 

(S.84b) 

11. Racah. G. Physical Re'Juw, 62, 438 (1942). 
12. An importanl one is: 
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(5.84c) 

(5.84d) 

In Eqs. (5.84a, b), m = ml +~ is fixed whereas in (5.84c) ml = m -~ and in 

(5.84d), ~ = m - ml are fixed. Relations (S.84a, b) follow from the unitarity of 

the matrix Uitiz [see Eqs. (S.71) and (2.120a, b)]. (S.84c) and (S.84d) could be 

obtained by writing, 

and then, using the orthogonality relationships 

< U'lml Ulml> = Sj1r/ 

< U'-m-I j .... \ = 5 .. , • 
7:"]' 1!''21 J7I z 

and the symmetry relationships (5.83c. d). 

Recursion Relations: 

(5.85a) 

(5.85b) 

{(j - m)U + m)} II2Aj_l.Nd)C~~::';'1 

= {ml-mAjjUd~}C~:~ - {(j -m + l)U +m + I)} 112 

(S.8Sc) 
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where 

A . _[U' + j,- j, + I)U' + j,- j,+ l)U, + j,+ j + l)U, + j2-j + 1)]1<2 
/,U,],.J - 4j'(2j + 1)(2/ + l) 

(5.86) 

Relation (5.85a) is oblained by operating on I jm > with i, and equating the resull 

to (i" +i 2,) Jjm >, while (5.85b) is oblained by an identical procedure, 

employing the operator i _ ~ i ,_ +i ,_. (5.85c) is based on the matrix elements of 

the operator .i
" 

The explicit formula (5.82) for C-eoeffieient is, in fact, derived 

from these rccursion relations (see, reference quoted in footnote II). 

Problem 5.14: Using the symmetry relations, show that: 

(a) 

(b) c:ty 
,::: 0, unless j is odd. 

221 

Problem 5.15: Evaluate the Clcbseh-Gordon coefficients involved in the angular 
momentum coupling of two spin-half particles. 

Other Related Coeflicients : 

{ 
(21, + 1 )(21, + I)} w,,,,, 

D ~ C 
IN (21+1) 000' 

(5.87) 

VU,j.j,:m,m,m,) ~(_l/'-""Ci'i~_., 
2j, + 1 rn, 

(5.88) 

(5.89) 

3j-symbol: (5.90) 

= X Udj,:m,m,m,). (5.91) 

The V-coefficient is due to Raeah, the S-eoeffieient due to Fana, the X-coefficient 
due to Schwinger and the 3j-symbol due to Wigner. The 3j-symbol and the 
C-cocfficients arc the ones most widely used. 

S.5B Racah CoelTicients 

When the system is composed of three subsystems with angular momenta J
"

J2 

and .fl' the LOtal angular momentum J is given by 

(5.92) 
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The quantum mechanical problem of angular momentum addition now consists in 

obtaining the wavefunction I JM} of the system in the coupled representation. in 

terms ofthe (2jl + 1) (2j2 + 1) (2j3 + 1) basis vectors. I jlM3mllnzm3) == I jlml) I j21nz} I 

j2m3}' of the uncoupled representation. where • 

and 

. j; I !jm) = jjU; +.1)1i21 j;m)li = 1,2,3. 

Jjz Il;m) = m/lll;m) J 

j 2 IJM)=J(J + 1)1!2 IJM), 

i, I JM) = M1! I JM). 

(5.93) 

(5.94a) 

(5.94b) 

However, in this case, the expression of I JM) in terms of the I jJzi3mllnz~), is not 

unique; for, there are three different ways in which we can couple the individual 

angular momenta to obtain the resultant: 

(a) Add J 1 and .J2 to obtain J 12 and then, add J 12 and J3 to obtain J. In this case13, 

I JM) == I j IJil12),j3;.JM) 

where [see Eq. (5.72»), 

MI2=ml+~; 

M =MI2+~= ml +Inz+~ (fixed) 

(5.951
) 

(5.96) 

(b) Add J2 and.l3 to obtain J23 and, then, add JI and J23 . Correspondingly, we 

have, 

== 

with M23 -= m2 +m3 and M = ml +m2+~ (fixed). 

(c) Add J 1 and J 3 to obtain J 13, then, add J2 to .113- We have, then, 

11M) == I iJP13),j2:JM) 

These different ways of coupling the angular momenta are shown schemati­

cally in Fig. 5.7. 

13" As usual, we omit the quantum numbers other than those related to the angular momentum, frOlf, 
the specification of the state. 
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Now, the right hand sides of Eq. (5.95"') represent different sets of basis vec­
tors in terms of which the eigenfunctions of the total angular momentum can be 

expressed. They should, therefore, be related by unitary transformations. Thus 

[sec Eq. (2.l24b)], 

~ ~3 
_ JZ 

iS~~;;: 
J 

(0) 

~. 
J 

(e) 

J 
( b) 

JZ 

Fig. S.7 Different ways of coupling three angular momenta, 

x U,JP,J.j,:JM) 

~ Lsi J Wi,) / j,j,(J,J.j,:JM}. 
'12 12':b 

Applying the operators i. and j _ to both sides of Eq. (5.97'). we get. 

it /j,.j,J,(J1:J):JM >~ r.s;,.J U,j,J,)1, /M,(J,J.j,:JM >. 
III I D 

since S;,,.!nU,j,),J is only a number. From this. it follows that 

From Eqs. (5.97') and (5.98). it follows that 

(jd,(J,J.j,:JM Ij,.j,J,(J",):JM) 

is independent of M. We will denote this matrix element either by 

UU,jzlj,:J,/1:J) 

or by 

(5.97') 
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Thus, 
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(S.99a) 

(S.99b) 

Here, W( ) is called the Racah Coefficient l4
, while U( ) is known as the nor­

malized Racah Coefficient. 

Eq. (s.9i) now reads, 

/jl'iJP'13):JM >= 'LUU/iJ3:JI-/'13) I MPd,i3:JM >. 
'\2 

We will see below [Eq. (S.102)] that the Racah coefficients are real. Therefore, 

the unitarity of the matrix SJ Udd3) is expressed by the relations, 

'L S: , UJd3)S: J UliJ3) = 'LUUl'i-/i3:JI-/'13) 
123 12' 23 12' 21 113 

and 

UUli-/ i 3:JI-zl' '13) = oJ".I-", (5.100b) 

Using Eq. (S.100a), we can invert the relationship (S.972
) to obtain, 

I MP12),i3:JM > = 'LUUdJ i3:JI-/'13) I il'iJiJ'13):JM > . 
J", 

Now, multiplying both sides ofEq. (S.9S1
) by c~j~l:' x C~~M and summing over 

1"7"12 I"" 

J12 and J, we get, using Eq. (S.84b), 

(5.101) 

Substituting from Eq. (S.101) in Eq. (5.952
), we have, 

I · ., (J ) JM .... Ci,i-l", Ci/".I Ciliz'12 CJlzi~ I" (J \ . JM h,]zh '13: >= "'" M '" M M X '" _ . .., M M hh IV' 13: > . m}mt"3 '"2"':J 23 1 2l 1"7'''12 12'"3 

J I 2. 

where, the summation over J has been omitted because of the occurrence of J on 

the left hand side. Comparing Eq. (S.91') with Eq. (5.972
), we see that. 

14. Recah, G. [Footnote III was the first to introduce these. 
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(5.102) 

From the reality of the C-coefficients, it follows that the Racah coefficients (Ire 

real. It also shows that U(abcd: ej) vanishes unless the triangular conditions 
tl(abe), tl(edc), tl(bdf), tl(ajc), are satisfied, where 

_ [(I + m - n)!(l- m + n)!(-I + m + n)!]Ia 
tl(lmn)- (l+m+n+1)! ' (5.103) 

Racah (Footnote 11) has given the following explicit expression for the 
W-coefficient: 

W (abcd :ef) ~ tl( abe )tl( edc )tl( bdf)tl( afe) 

xL(-I)' (a+b+c+d+l-K)! 
, K!(a+b -e -K)i(c +d -e -K)!(a+c - j -K)! 

X~~--~~~--~~I--~~--~~~~ 
(b +d - j -K)!(K+e + j -a -d)!(K+e + j -b -c)! 

Here, K takes all values consistent with the factorial notation: That is, 

K",;"im,m ~ larger of (0 + d - e - f) and (b + c - e - f); 

K",..inmm ~ smallest of (a + b - e), (c + d - e),(a + c - f) 

and (b +d - f). 

(5.104) 

A procedure similar to the one that led to Eq. (5.102) may be used, along with the 
properties of the C-coefficients, to derive the following relationships: 

(5.105.) 

(5.105b) 

Definition (5.S7) may be used to derive from (5.1053), the relationship, 
• • ~+~-L 

W,."D, .,.W (/ji,i,i,:kL) ~ (-1) DII,D '1'" 
k. 1 J 2 r Ir fir 

(5.106) 

Properties of tbe Racab Coefficients 

Symmetry: The symmetry properties follow from the explicit expression 
(5.104) for the R.cah coefficient. 

(i) (- I)" 'fW(abcd:ef) is invariant under all transformations which maintain 

the same triangles (see Fig. 5.7). 
Thus, 

(-1)' 'fW(abcd:ef) = (-lr"'W(aejd:bc) 

= (-I)~ -dW(ebcj:ad). (5.107.) 
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(ii) W (abed: ef) is invariant under an even pennutation of the arguments. 

W(abcd:ef) = W(badc:ef) 

= W(dcba:ef) 

= W(acbd:fe) (S.107b) 

A few others could be obtained by repeated application of these. 

(iii) A third class of symmetry relations could be better expressed in tenns of 
the 6j-symbols, defined by. 

{jJJ3} = (_.l)h+jz+ll+lzWU '1l"/) 
III Ih 21·13 3 • 
I 23 

(S.108) 

The symmetry relations (S.107a, b) correspond to the invariance of the 6j­

symbols under (a) interchange of any two columns, (b) inversion of any two col­
umns. 

In order to express the third type of symmetry concisely, we define, 

1 
A = jl +/1; cx.= jl-/I;A±a='2(A ±cx.) 

1 
C = j3 + 13; Y= j3- i3; C±a='2(C ±cx.), etc. 

(S.109) 

Then, {~1~~3} = {~~+~~ry,}, is invariant under the columnwise pennutations 
1 2 3 --<X'-'~~ -'r 

(S.107c) 

Orthogonality and Sum Rules 

The orthogonality relations follow from the llnitarity of the matrix S:(jl~.jJ), and are 
12' 2J 

given by Eqs. (S.100a, b). The sum rules could be derived with the help of the 

orthogonality relations: 

where, 

r,(-lfU(abcd:ef)U(adcb:gf) = (-l)'U(abdc:eg), 
f 

s=e+g-a-b-c-d. 

(S.I1Oa) 

r, 2U(abcd:ef)U(abed:gf) = O. ± (_1)<+' ~b ~dU(alJdc:eg). (S.11Ob) 
f ' 

where the upper sign is for oddfand the lower sign for evenf. 
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1:(21..+ 1) W(a'Abe:ae') W(cAde':c'e) W(a¥c:ac') 
• 

~ W(abcd:ef) W(a'bc'd:e'f). 

;<-1)' (2e + I) W(abab:ef) ~ °/ . .,(-1)' -, ((la + 1)(2b ~ 1)1 v, 

Recursion Relations 

(S.l1Oc) 

(5. I I CkI; 

These also could be expressed more conveniently in terms of the 6j-symbols. 

(_1)"';'-"-;'lh;'h i I r· . j f j, I, I,} 
liN l'2 I,+.x I,+y 

h 
1 

/ +­, 2 

J j. -(2/,+1) 
6 l'l. t-x 

. 1 I wnere X::::f-" V = -r __ _ 
. -2" -2. 

j, l fi, 
i I 

I,+yj l'2 
j, 

I 
/ +-
2 2 

I, I I,} {j, I, I 

1,-'2 1,+ y ~ 1,-'2 

I, 

Problem 5.16: Deduce the following: 

w(abcd:Of); (-1)''< -f {(2b + 1)(2c + III la1) .. 1) ... 

s.se The 9j·Symbols 

(5.111) 

The Clebscb-Gordon coefficients or the 3j-symbols give us the relationship 
between two selS of basis vectors corresponding to the coupled and the uncoupled 
rcprcsenlations of a system consisting of two individual angular momenla. The 
three /s refer to the two individual angular momenla and their resullant. The 
Racah coemcient or the 6J-symbols. on the other hand. describe the relationship 
between two selS of basis vectorS both of which correspond to coupled repre­
sentations of a systent consisting of three individual angular mornenla. The six j's 
are the three indiVIdual /5. their resullaDt and the two inlermediult angular 
momenta. For. the addition of three angular momenla is accomplished by adding 
two of them to obtain an intermediate angular momentum and then adding the 
third to this intermediate one to oblain the final resullant value. Since the different 
rcpresenlalions (bases) correspond to different intermediate angular momenla and 
sinee the 6j-symbols relate to two different represenlations. they (the 6j-symbols) 
would involve two intermediate angular momenta. 
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Extending the above arguments, we see that the addition of n aHgular momenta 

is accomplished through the introduction of (n - 2) intennediate angular momenta. 

This implies that the transfonnation coefficients (the elements of the transfonning 

matrix) relating any two different coupling schemes would involve a total of 

{en + 1) + 2(n - 2)} = 3(n -1),j's. These coefficients are, therefore, called 

3(n -1) j-symbols. Thus, for n = 4, we have the 9j-symbols, for n=5, the 12j­
symbols, and so on. In view of the importance of the 9j-symbols in certain 

branches of physics governed by quantum mechanics, we will discuss them here; 

but no higher j-symbols will be discussed. 

In analogy with Eq. (S.99a), the 9j-symbol,or X-coefficient, is defined by, 

< MP,;), jJP34): JM I itNJ13), iJP24): JM > 

where 

[}1 == (2j + 1). 

Eq. (5.112) implies 

I iJP13),jJil24):JM > = 

1: x'Ulj,j,i4> I" (J \ . . (J ) JM 'z' :l z' x hh Iv,hJ4 34: >, 
J I2"34 1 34 1 34 

and, because of the unitarily of the ma.trix X' UJJJ4)' 

I j,NJ12),jJil34):JM > 

'<' XlvI/N4) I" (J ) . . (J ) 1M = .:. 'I:l z' hh 13 ,h14 24: > 
'1124 I 24 1 3' 

But, using Eqs. (5.972
) and (5.973

), we have, 

I j,iil13),jJil24):JM > 

== :EUUJ/J24:J13')...) \j"I/24(')...):JM > 
A 

- :E UU' . If :J ')...)(_l)i,+i.- l 1A 
- JlJ" 24 13 

;"'3. 

(5.112) 

(5.113) 

(5.115) 
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xWU,1,/l":J12A)WUJ,fJ,.:J,,A) 

XWU,J1I/,.j,:1,A) I MP,-}.1,j,(I,,):JM >. 

where, Eqs. (5.99a. b) and (5.107b) have been used. 
From Eqs. (5.114"2). we get. 

(5.114') 

{ 

1, 12 J121 
), j, J,,( = ~(2A+ I)WU,YJ,.:J12A)WU,j/J".:J"A) x WU,J,.J,.j,:j,A) 

III I]A J J ' 

In terms of the 6j-symbols [Eq. (5.108)], we have. 

t
1, 1, J,,1 { . 
1, ), 1,,[ = f(-1)"(2A+ I) ;: 
1" J", 1 J 

Similarly, it can be shown that, 

i, I,,} Ii2 
1 A 1.;, 

r J, )2 I n} .. . . 

1 J j, 1 = {[J 1[1 1 [J 1 [1 1)'"2X ~ C""/" cJN" 
3 >4 1Z1 J4l 1).1 W , ""1"'z"l12 "'t""M)4 

1 
All", I 

113 J24 

(5.116a) 

(S.11 6b) 

(5.117) 

Now, the wavefunction I 1,j,(i12).j,j.(I,,):JM > could be schematically repre­

sented as, 

JM 
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Equation (5.1141
) would be then written as, 

JM 

(5.118) 

JM 

In particular, the relationship between the wavefunctions in the "LS-coupling 
scheme" , and the' 'jj-coupling scheme" for a system consisting of two particles 
(say, nucleons) with individual orbital and spin angular momenta given respec­

tively, by II,sl and Ih, can be expressed as, 

JM 
(5.119) 

JM 
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Wriling the 9 j-symbol as {: : ;}, 

g h k 

We can summarise the important properties as follows. These properties can be 
derived from the properties of angular momenta, the orthogonality and com­
pieteness of the basis vectors and similar general properties. 

Selection Rules 

The coefficient vanishes unless each row and column add up to an integral num­
ber and also satisfies the triangular conditions t.(abe),t.(acg), ele. It follows 
from this that if any two rows (columns) are identical, then the coefficient 
vanishes unless the sum of the third row (co1umn) is even. 

Symmetry 
(i) The cocfficicnt is invariant under the interchange of rows and columns 

(lfansposition). 
(ii) An odd permulation of the rows or columns multiples the coefficienl by 

(-1)' where E is the sum of all the 9j's. 
Orthogonality and Sum Rules: 

,~lellf1lg1Ihl {: 
IJ 

~}r 
b 

{} = O".OM· d d 
g h k g' h' 

,~Ie] Ullg] [hi t b 

{H~ b e'} 
d d f' = 0".0", 
h h k 

(5.120b) 

I: (-1)1h ,k .f-flgl [h] {~ b e}r e ~} ={: 
b e} 

d / d b c / 
"k h k e' r k e' r k, g 

(5.121a) 

r b e} 
;(2e + 1) C d / W(abk/:e'J...) = W(bh/c:d'J...)W(khac:g'J...). 

g h k 

(5.121b) 

b C; 1 (-1)" (_1)2b (-1)'" 
b c =-4[1+-'--+~2b +~2c j}' 

Lll+1 +1 + 
e f 

(5.12Ie) 

In connection with the LS- and)/-cDupling schemes, the following relationship 
would be useful. 
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(S.122) 

When one of the arguments (j's) of the 9j-symbol is zero, the latter reduces to a 

Racah coefficient. For example, 

b e} 
d f = 0,;\. {(2e + 1)(2g + l)rII2W(ebcg:ad). 
h 0 

Problem 5.17: 

(a) Deduce Eq. (S.l21c) from Eq. (5.117) 

(b) Derive Eq. (S.l23) using Eq. (5.l16a). 

5.6 ANGULAR MOMENTUM AND ROTATIONS 

(S.123) 

A rotation is specified by an axis, usually denoted by a unit vector n, about which, 

and an angle <1> through which, the rotation is made. The positive sense of rotation 

is defined by the right-handed-screw-ruleI5
• Thus, (n,<1» represents a positive 

rotation about the axis n through an angle <1>, whereas (n, --$) is a negative rotation 

about n through the angle <1>. 

Now, a rotation could be of the following two types: 

(i) Rotation of the physical system, with the co-ordinate system fixed in 

space. 

(ii) Rotation of the co-ordinate system with the physical system fixed in 

space. 

Unless otherwise specified, in this section, we mean by 'rotation', a rotation of 

the physical system. Of course, since only the relative orientations of the physical 

system and the co-ordinate system are of relevance to the description of physical 

systems, a rotation (n, Q) of the physical system is equivalent to the rotation 

(n, -Q) of the co-ordinate system. 

Now, rotations are linear transformations in the physical space. Therefore, it 

is possihle to define a linear operator R n( <1» corresponding to a rotation (n, <1» of the 

physical system. The rotation (n, --$) is, then, represented by the operator, 

15. A right-handed screw advances in the direction of n when twisted in the sense of the positive 

rotation. 
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(5.124) 

In order to illustrate the effect of a rotation on the wavefunction of the syslem 
let us consider specifically a rotation about the z-axis through an angle <1>. We will 

denote the corresponding rotation operator by R ,(<1». Lei 'V(r) " 'V(x, y, z), repre­

sent Ihe value of the wavefunction at the (space) point P (Fig 5.8) before Ihe 
rolatiun; and 'V'(r) the value at the same point aftcr the rolation. Then, by 
definition, we have, 

R ,(<I>)['V(r)] = \II'(r). (5.125') 

y ~ 

y 

IJL-------.x 

x 
(0) (b) 

z 
Fig. 5.8, Rotation of (a) the physical system (b) the co-ordinate system. 

But the value of the wavefunction at the point P cannot depend on the position of 
P in space (that is, on its co-ordinates with respect to the co-ordinate system fixed 
in space), but should depend only on the point's relative position in the physical 
system (that is, on the co-ordinates of P referred to a co-ordinate frame fixed to 
the physical system). Therefore, the value of\jl'(r) is equal 10 the value of \II atlhe 

point r" where r, was the position of P before the rolation. That is, 

(5.126) 

where K,(<I» represenls a rotation of the co-ordinate system through an angle ¢ 

about the z-axis. 
Thus, 

R,(¢) {\jI(r)} = \jI'(r) = 'V(r,) = 'VfR;'(<j» {r}] 

From Fig. (5.8b), we have, 
x, =xcos<l>+ysin<!>, 

y, =-xsin!»+yeos<!>, 

(5.1252
) 

(5.1263) 



THEORY OF ANGULAR MOMENTUM 161 

Infinitesimal Rotations 

Replacing finite rotation I\> by an infinitesimal rotation &!> in (5.126a), we have, 

Xl = X cos &!> + y sin &!> '" X + Y &!>, 

Yj 0= -x sin &!> + Y cos &!> '" -x&!> + Y, 

(1.l26b) 

Substituting in Eq. (5.1252
) from (5.126b), we get, 

R ,(O¢){\jf(x, Y, z)} = \jf(x + yO¢, y - x&!>, z) 

'" \jf(x, y, z) + &!>~ a: - x aay }. 

= (1-~&!>(}(X'y, z), (5.12i) 

where Taylor series expansion, and the definition (5.40) for the orbital angular 

momentum operator, have been used. 

Alternatively, writing \jf(r)=\jf(r,8,<!», where (r,8,¢) are the spherical co­

ordinates, we have, from Eq. (5.1252
), 

R ,(O¢){ 'V(r, 9, Q)} = 'V(rl' 91' <1>\) = 'V(r, 9, <1> - &l» 

= (l-&l> ;1\> }(r,8,1\», (5.12i) 

which reduces to Eq. (5.127\ when definition (5A2c) is used. 

Thus, R,(O¢)=(l-~&!>.LJ 
Similarly, an infinitesimal rotation 08 about an axis n, is represented by the 

operator, 

In the derivation ofEq. (5.1282
), we have assumed that the wavefunction of the 

system is a function of the space co-ordinates only. If the system has also intrinsic 

angular momentum S in addition to L, then, the total wavefunction would be a 

product of 'V(r) and ~, where ~ is the spin part of-the wavefunction. We now 

postulate that ~ transforms under the infinitesimal rotation (n,08) according to 

the formula (c.f. Eq. (5.12i», 

I? n(08){XJ = [1-~ 08Cn· S)]x.. (5.127
2

) 
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Then, the total wavefunction 1jI(r).-\; would transform according to, 

R ,(09) {'V(r).-\;} = {i -~oe(n. (Hi -~oe(n s)}'V(r)x, 

[
, i ' 1 

~ l-jjOO(n. J)J'V(r).-\;; (5.1273
) 

where j = (+ S, is the operator corresponding to the total angular momentum. 

Thus, for a system with a total angular momentum j the infinitesimal rollltioll 

operator is given by 

(5.1283
) 

In fact, this equation could be regarded a!; a definition of the angular momentum 

operator.i, since itlcads to the basic commullltion relations (5.7a) for the com­

ponents of J This could be established as follows: 

Since j in Eq. (5.1283
) is Hermitian, Ii ,(08) is Unitary [sec Eq. (2.63)J so that 

an infinitesimal rotation represents a unitary transformation. A vector operator V, 
therefore, tmnsforms under the infinitesimal rotation (D,08) according to'6 

V -> V' = Ii ,(09)VIi;(08) 

A i ~ A 

= V -jj 06[(0' J), V), (5.129) 

Sillce Ii :(00) = Ii ;'(88) = Ii ,(-08). (5.130) 

Thus, the change in V is given by 

8V '" V' - V = -(ilJi)8S[(D' h V]. (5.131) 

The citange in the component of V along the unit vector u is, therefore, given by, 

OV" '" U· oV =- ilJi)08[(D j), (u' V)]. 

But u·oV=ou·V. 

(5.132') 

(5.132') 

ou being the change (as viewed from the space frame) in the unit vector u (fixed 

with respect to the physical system) resulting from the rotation (u, oS) of the 

physical system. That is [see Fig. (5.9)], 

OU = 08(n xu). (5.133) 

1 f.. NOle.ilial, in le.ffi\:; of lhe operator i?n rcpre~cnling rotations of the reference frame {of. Eq. 

(2.126)1. 



TIlI;ORY OF A~GULAR MOME"'TUM 

n 

l(nxu)\ 

Fig. 5.9. Effect of rotation &9 about n on a unit vector u. 

lienee, 

oY.=oO(nxu)·Y 

From Eqs. (5.1321
) and (5.132\ we get, 

[en . .l), (u· V)] = itz(n x u)· V. 
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(5.1343) 

Substituting i for n, j for u and .J for V in this equation, we get Eq. (5.7a). 

It should be emphasised that only the operator corresponding to the total 

angular momentum of the system would satisfy Eq. (5.134a) for all the vector 

operators. For example, in the case of a system of N particles, the angular 

momenta of the individual particles as weB as the sum of the angular momenta of 

a few of the particles, satiSfy the relationship (5.7a) but not the relationship 

(5.134a). The operator corresponding to the total angular momentum of a system 

is, thus, the generalOr of infinitesimal rotations of the system. 

A scalar, by definition, is invariant under rotations. Therefore, a scalar oper­

ator ,~' transforms under the infinitesimal rotation Cn, (0) according to 

S ~ S' = R n(oe),~R:(OO) = S, 

or, RnS=SRn· 

That is, [en . .J), ,~] = o. (5. 134b) 

Thus, a scalar operator commutes with the components of J 

Problem 5.18: If 3. and fl arc two vcctoroperators, show, using Eq. (5.134a), that 

I (n . .l), (A- f~)] = O. 
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Finite Rotations: I<-:uler Angll-s 

A finile rota lion (n,8) could be regarded as a succession of a largc number of 

infinitesimal rotations, so (hat, 

- 1- e, ]N R"(9)~ Ll l-(iI1;)-(n·J) 
N~ N 

~ L (-1(' {(i/1l)9(n . j)}' 
pe=O p. 

~ exp [-(iI1;)9{(n J))]. (5.135) 

Thus, a rowtion through an angle a alxlUt the z-axis is represented by the operator 

Ii,( ex) ~ cxp [( -iili)a.!,J. A general rotation, ins lead of being specified by the unil 

veclor n (which requires two angles for its specification) and an angle. could be 
specified by three angles, usually known as the Euler angles, defined17 as follows 

(sec Fig. 5.10): 

/ 
/ 

Fig.5.JO The Euler angles. 

0) A rotation lhrough ex about the z,-axis, in which 

17. SUlllC authors adopt a definition in which the second rotation is aboullhe xl~axis instead of the 
'iI-;\. x is. '!1,c definition adopted here is \hal of Ref. 2 listed at the end of the chapter. 
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(ii) A rotation Lhrough p about the new y- (that is, YI-) axis. 

XI ---) x2; YI ---) Y2 = YI: ZI ---) z2. 

(iii) A rotation through yabout the Z2 -axis. 

x2 ---) x'; Y2 ---) y'; Z2 ---) Z' = Z2' 

Thus, 

R n(9) '" R (apy) = R, (y)R v (P)R ,(a). 
2 'I 
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Now, R YI (P) is the transform of R ,cP) under the previous rotation. That is [see 

Eq. (5.129)], 

Similarly, 

R z/Y> = R y'<P)R zl(y)R;:(P) 

= R YI(P)R z(a)R ,(y)R~I(a)R;:(p) 

= R,(a)R /P)Rz()JR;I(p)R~I(a) 

Substituting in (5.1361
) from (5. 137a, b), we gd8

, 

R (apy) = R z( a)R ,(P)R /y) 

= exp [-(i/h)a.J,] exp [-(i/h)PJ) exp Hi/1i)y) z]. 

Problem 5.19: Show that 

(5. 137a) 

(5. 137b) 

exp [-(i/ti)PJ) = exp [(i/h) (7rl2)Jx] exp [-(i/h)pJ,] exp Hi/h) (7rl2)J). 

The Rotation Matrix 

In the representation spanned by the eigenvectors I jm > of the angular momentum 

operator, the operator R would be represented by a square (unitary) matrix. We 

will now deduce the elements of this matrix. 

Since R(apy) contains only the angular momentum components l
J 

and 

}" R (apy) I jm > can differ from I jm > only in the m-vaIue and not in the value of 

j [see Eqs. (S.32b-e)]. That is, 

R(apy) I jm > == L I jm' > <jm' I R(apy) I jm >. (5.138 1
) 

m' 

18. Note that, sined), "J,1 •. exp [-(il'h)aJJ exp [-(il'h)J3lJ" exp [-(Uh)(aJ.+J3l,)] 
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But, from Sq, (5,13(}), we have, 

<jm'lf«a[l,)ljm >=<jm'l exp[-(ilJi)aJ,1 expl-(iiJi)[ii) 

exp 1-(i/Ji)y},) I jm > 

= cxp 1+(i!I')"}J~',m" exp 1-(iih)lll) exp [-(ii1l)yi,J\jIjm) 

" exp (-im'''.)d~'m(fl) exp (-imy), 

where 

d:"'m(~) = < jm' I exp [-(iI1i)1ll ,I I jm > . 

(5.139) 

(5.140) 

Now, if we denole the matrix represenling R(o:~y) ill the (2) + l)-dimensional 

representation spanned by the basis veClors {lim >} by 1Ji, then, Eq. (5.138') 

could be wrinen as I sec Eq. (2.118)], 
'1 

fl(o:llY)ljm >= L 1)jm'm(o:~Y)ljm'>, 
m' , 

(5.138') 

or, 

(5.13S') 

From Eqs. (5.138' ,2) and (5.139), we have, 

11m'm(a(ly) = cxp (-im'a)d~'m«(l) exp (-imy). (5.141) 

'11 is called the rotation matrix. 

\Vigncr has derived the following expression for d~'m(P): 

III )'11 )'11 ')11/ ')'I"? d1 .(13=1:(-I)' v+m·v-m·v+m ·v- m . 
mm ), K'(; - m' - K)I(; + m - K)!(K+ m' - m)! 

x( eos(0/2))" 'm m' 2' (_ sin(~/2))'"' - m d, (5.142) 

where, K takes positive integer values (including zero) consistent with the raclO~ 

rial notation. Also, ror tn' 2: m, we have the following morc concisc expression: 

1 ={j-m)!(;+m')!l"'.(COS[)i2)21,m-m·(-Sin[)l2t 'm 
dm'm(fl) (; + m)!(; - m')!J (m' - m)! 

x2F,(m' - j,-m - j,m' -m + 1, -tan2W2), 

where 2F1( ) is a hyper geometric [unction. 

Properties 01' the Rot~ti(m Matrix 

(5.142a) 

In the following, we will omit the argumenL, (u[)y) wherever their explicil 

appearance is not essenlial : 
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(i) Unitarity 

The unilarily of '1i is expressed by 

and 

(ii) Symmetry 

'fA)' ,'Ii ,,= 0 ' " mm mm mm. 

'L'li, V'" = 0 , " mm m m mm. 

d~'m(+~) = (-lr' md~'m(-~)' 

=d~,(-~) 

= (-lr'-mdJm'_m(+~) 

= (-ly+mdJm'm(rr-~) 

= (-1)2jd~'m(~+ 2rr) 

]f,7 

(5,1433) 

(5,143b) 

(5,1443) 

(5.144b) 

(5.144c) 

(5.144J) 

(5.144c) 

These relationships follow from Eq. (5.142). From thcsc and Eq. (5.141), we get 

D~~m(a~y) = Vmm.(-y,-~,-a) (5.145a) 

(5.14Sb) 

(S.14Sc) 

(S.145d) 

Equations (S.145c,d) show that, in the case of a system with half-integral spin, a 

rotntion through an angle 2rr about an axis changes the sign of the wavefunction 

of the system. Such a change, however, does not lead to any unphysical situation 

since only the absolute square of the wave function has a direct physical meaning 

and since all physical observables (that is, their matrix clements) are bilinear in 

the wavefunction [Eq. (2.117a)]. Thereforc, property (5.145c) does not prevent 

the existence of half-integral spins. 

Problem 5.20: Verify relationships (5.145 a-d). 

Problem 5.21: Obtain the clements of the rotation matrix v(a~y). 
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(iii) Sum Rules 

In Lhe case of a system consisting of two particles with angular momenta j, and j" 

we have [Eqs. (5.68a) (5.84b)], 

I . I . ~Ci,J,i I' lIm!> h~>:=~ "',"'2'" }m>. , (5.146) 

If the system is now rolated through angles (apy), we have from Eq. (5.138'), 

Writing, 

I . I . ~ei,i,r I ., , 
h~, > },p., > ~": .,,,,.' } ~ > , 

(5.147) 

in Eq. (5.147) and then equating coefficient of I j~ > on either side, we get, 

Using properties (5.84a, b) of the C-coefficient, we get, 

'Ii ~ L ei,i') Ci,i,! 'Ii' 'Ii' 
Il"' >l-l).l.z)l "'1"'1" )1.\"', ~ 

)LInt] 

where 

Eqs. (5.149a, b) arc known as the Clebsch-Gordon series. 

(iv) Relationship to Spherical Harmonics 

(5.148) 

(5. 149a) 

(5.149b) 

SubstilUting for 1j!im(r) in Eq. (5.138') by the spherical harmonics Y",,(e, $) which 

are eigenfunctions of the orbital angular momentum [Eq. 5.46)], we have, 

R (ap"t)Y'm(O, $) ~ Y",,[k,(o, $)] s Y",,(O', $') 

(5.150) 

Here, (e, <[» are the sphcrieal co-ordinates of a point in the physical system after 
rolation and (e', (I>') the spherical co-ordinates of the same point before rotation 
[sec Fig. (5.8a, b)]. Also, m'l! could be regarded as the component of the angular 
momentum along the space-fixed z-axis and mti the component along the z-axis 
of a frame fixed in the physical system ('body-fixed' frame). 

Let P, and P, be two points on a unit sphere, with spherical co-ordinates (0,.<[>,) 

and (e" ¢,). respectively. after the rotation and (8',. <[>',) and (e' 2> <[>',) before the 

rolation. Then, from Eq. (5.150). we have. 
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C5.150a) 

and C5.150b) 

+1 

Thus, L YI:C8'1'<l>'I)YlmC8'z,<l>'~ 
m:=--l 

+1 

== L Y:",C81' <l>j)Y1m,C8Z' ¢~, 
m'=-[ 

(5.151) 

by Eq. (5.143b). That is, 
+1 

K == L YI~(81' <l>j)Y /mC8z' ¢~, 
m=~1 

is invariant under rotations. This fact can be utilized to evaluate K. For, choosing 

the co-ordinate axes such that P j is on the z-axis (81 = 0) and P 2 in the zx-plane 

C$2 == 0), we have, 

K == LY:"CO, <l>j)Y /m(82, 0) 
m 

by Eq. (5.63), and since, 

[see Eq. C5.55b)]. 

Also, 8 is the angle between the radial vectors to the points PI and Pz (sec Fig. 

5.1 Ia). Thus, 

z 

z 

(a) 

Fi~. HI 'lhe spherical triangles corresponding to: (a) Eq. (5.152), (b) Eq. (5. 153b). 
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11.152) 

[o'lU;(li"" (5.152) holds for any spherical triangle (Fig. 5.11'1) with sidcs 01,0,,0 

and dillcdral angle 1 0, - 0,: opposite to 8. 

If v.c pul y~ ° in Eq.(5.150h), then f3 and « would be, respectively, Ihe 1~)lar 
and lhl' azimuthal angles of oz' in the xyz-framc (Fig. 5.12). Leloz and oz? cut the 
uuit sphcr.: at the point Z :'U1J l\ respectively. Also Chl)Ose the ox' and oy' axes 

such that P,lies in the z'x'-plane (that is, 6',~ 0). Then, Eq. (S.150b) reduces to, 

YI (0',. Ol ~ Lv .. ,(<<POlYI .. (0
" 

6,). (5,1533) 
11m" m III 

But P/',z form a spherical triangle with sides p,O, and 8', and dihedral angle 

1 (),-- <1.1 (Fig. 5 .11 b). Therefore, Eq. (5.152) can be applied, with m ~ m", 01 ~ p, 
o :::: t)' 1 and 91 ;:;: (t: 

wilac Eq. (5.59a) has heen used. 

/ 
/ 

\ 

'-

. -.-._._ . ...- . 

...., 
y . 
/ 

/' 
./ 

/ 
I 

/ 

Fig. S.12. The angles involved in Eq. (5.153a). 

(S.153b) 
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Also, from Eqs. (5.145a) and (5.154a), we get, 

Vom(Opy) = V":'(-y,-p,0) 

using Eqs. (S.29a, b). 

From Eqs. (5.154a) and (5.149b), we get, 

where Dill is given by Eq. (5.S7). 
12 

(v) Normalization 

Writing, 8 =' (a[3y), and J d8 =' f"" da f' sin[3d[3 i2n dy, 

f 'lim'm(8)d8 = i 2n e ;m'uda i LJt e ;mYdy f' d~'m(f3) sin pdp. 

'" Om'oOom,o(2rri r d~(P) sin PdP, 

Now d{x/(3) = 'Tj(X)(0[30) = ~ 2:: 1 Ylo([30) 

= PI(cos (3), by Eqs. (5.154b) and (S.63), 

so that, using Eq. (E. 31), we get, 

J r.d,.'m(8 )d8 = 8rr2ojoOmOOm'O 
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(S.lS4c) 

(S.155) 

(5.156) 

(5,157) 

Using Eqs. (5.1S7) and (5.149b) and the properties of the C-coefficients, we 

derive, 
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(5. I 58a) 

and 

fDj; (0)'Li', (0)'Li', (0)d0( 81t' )Cj,j,,, ,Cjh, 
~ mt"l "'lm\ 213 + 1 mlml"':J, m1mt"-J 

(5,158b) 

Problem 5.22: Using the relationship (5.154a) betwccn the spherical har­

monics and the rotation matrix, and Eqs. (5.157-158), establish the following 

relationships: 

(a) f Y""CS.Q)dll = {!1to,.o_ 

(b) f Y':m,(S.¢)Y,,,,,,C6,Q)dQ = 0",,0..,.., 

(c) 

where dll "sin e de d¢ 

(vi) Role as Angular Momentum Eigenfunction 

The relationship of the 'D-functions to the spherical harmonics suggests the pos­

sibility of interpreting the former as the eigenvectors of the angular momentum 

operator. We recall that Y",(l3a) is the common eigenvector of f} and the 

component of L that is conjugate to the angular variable a [Eqs. (5.44) to (5.46) 

and (5.42c)I. namely L,. Therefore, from Eq. (5.154a), we have, 

L,'Li":'(apO) = 1(/ + l)h'V":'(apO), 

L, V":'(ap0) mMJ':(a.[30). 

And [rOIll Eqs. (5.1 54e) and (5.145b), we gel, 

L'D:':',(O[l)') 1(1 + l)n''Li'';'',(OPy), 

L,.o;:Wi3y) = m'1;V";"{Oi3'1), 

(5.159') 

(5.160') 

(5.159') 

(5.161') 

where L, is the component of L that is conjugate to the angular variable yand 

hence is along the z'-axis. 

Equations (5.159'-161') suggesllhe generalisation: 

.l'v":(a~y) = jU + I)h'V":(apy), 

j, V":(apy) = mnV":(a.[3)'), 

j "V":(a~y) ~ k1iV":( a.[3y), 

(5.159') 

(5.160') 

(5.101') 
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Thus, V'':'(a~y) is the common eigenvector of :F and the components of j along 

the z and z'-axes. A physical interpretation of this eigenvector is the following: 
The x'y'z'-frame could be one fixed to a physical system. Then the Euler angles 
give the orientation of the body (the physical system) relative to the space-fixed 
frame xyz. If the Euler angles are time-varying, the physical system is a rotating 
bOd/9

• m1i and k1i are, respectively, the projections of the angular momentum on 

the space-fixed z-axis and the body-fixed z-axis, and 'li':'(apy) is the wavefunction 

of the rotating system20. If <PjmkCE» represents the normalized wavefunction, then, 

we have from Eq. (5.158a), 

(
2j + 1 )112 _. 

<l>jmk(<l» = 81e Vm.t(E». (5.162) 

The commutation of}z and i, implied by Eqs. (5.1602
) and Eqs. (5.161 2

) fol­

lows from the fact that the components of j along the body-fixed (also referred to 
as 'intrinsic') frame cannot depend on the orientation of the space-fixed frame. 

We note here the dual role of the 'D-functions - as an operator and as a vector. 
This dual role is, in fact, a feature of certain types of operators called 'spherical 
~ensors' which would be discussed in the next section. 

5.7 SPHERICAL TENSORS 

The (2k + 1) operators, f~) for q = -- k, - k + I, ... + k, are said to form the com­

ponents of a spherical tensor of rank k if they tmnsform under rotations like the 
spherical harmonic Ykq of order k. That is, [see Eq. (5.150)]. 

Here f, is the position vector of a physical point in the rotated co-ordinate system 
(the 'body-fixed frame', of Section 5.5 (vi» while f is the position vector of the 
same point in the original (space-fixed) frame. Now, a tensor is an entity which 
is defined primarily by its transformation properties under rotations. The adjec­
tive 'spherical' empha<;izes the difference between a tensor of the type under 
consideration and a general (cartesian ) tensor. This difference relates to a 
property called reducibility. This property is best understood through the exam­

ple of a cartesian tensor of rank 2. Let Tij represent the components of such a 

tensor in the 3-dimensional physical space. The total number of components is 32 

= 9. Each of these component'> tmnsforms under rotations according to the for­
mula. 

19. This would imply that the body has a non-spherical shape, as the different orientations of a 
spherical body are indistinguishable. 

20. For a more detailed treatment of this aspect, see Bohr, A. and Mottelson, B.R. Nuclear Struc­
ture, Vol. I (W.A. Benjamin, New York 1969). Section IA-6. Note that the V-function used 
by these authors is the complex conjugate of the one used in this book. 
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(5.164) 

where the a" arc the elements of an orthogonal matrix representing the rotation. 

Out of the nine components, we can form three groups of linear combinations of 
the components: 

1 
S ="3 7T", (5. 165a) 

1 
V, =2(Tij - Tj,), i,j,k cyclic; 

1 
=2Eij.Tij' (S.165b) 

1 
Aij = 2 (Tij + Tji - 2S 0i)' (5. 165c) 

such that, 

(5.166) 

Here E ij' is the antisymmetric tensor introduced in Eq. (S.2b). 

The peculiarity of the above three groups is that each of them transforms, under 
rotations, independently of the other two. In fact, S, being proportional to the 
trace of T, is invariant under rotations [see Eq. (A. 51)], and, hence, is a scalar, or 
tensor of rank O. VI' V, and V, are the three independent components of an anti­
symmetric, second rank tensor, and so transforms like a vector (tensor of rank 1). 
A is a traceless, symmetric tensor of rank 2, and has, therefore, five independent 
components which transform among themselves under rotations. Thus, from the 
viewpoint of their behaviour under rotations, each of the three groups has a status 
that is independent of the othertwo. That is, each ofthem is a tensor. They differ 
from the cartesian tensor T in that their components cannot be organised into 
smaller subgroups such that each of the subgroups transforms under rotations 
independently of the other subgroups. They arc, therefore, called irreducible 
lensors. On the other hand, a tensor like T, whose components or linear combi­
nations of the components, can he divided into two or more groups which trans­
form under rotations among themselves. is a reducible tensor. 

The spherical tensors are nothing but the irreducible tensors that result from the 
grouping of the components of a general (cartesian) tensor as explained above. Of 
course, the components given by Eqs. (5.165b, c) are not the spherical compo­
nents that transform like the components of the spherical harmonics. We can 
deduce the spherical components of V and of the symmetric tensor A with the help 
of the expressions for r,m and r 2m given in Eq. (5.63). We have [see also Eq. 

(4.107)1, 

_-[3. __ m-.!.( +.)1 
,ylO - -" 4it Z, rY1±1 - -" '41tl+ Vz X _ly J' 
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which show that the spherical components of the vector V are given by, 

T(1) =V -v - v o - 0- 3 - z' 

1 1 
T~:) == V±l =+ --J2(Vt±iVz} ==+ --J2(V~ +iVJ ). 

Similarly, from 

2y _ rs-l ~2 2 • } 
r l± 2 = -\J l6icl'''J Z(x - y ± 2uy) , 

we get, 

T~i) = +-V6 (An ± iAn), 

(2) _ - f"3:, 2' 
T±2 - '''J Z(All - An ± tAtz}· 

17 

(5.167) 

(5.168) 

It turns out that the irreducible tensors that are derived by the reduction of a 
general tensor, have invariably odd numbers of components. This means that the 
spherical tensors are of integral rank (as also implied by their definition in terms 
of the spherical harmonics). However, the transformation law (5.163) permits 
spherical tensors of half-integral rank also, as the 1)-matrix can be of half-integral 
order. Such tensors21 are called spinors, and represent wavefunctions of particles 
with half-integral spin. Irreducible tensor operators representing interactions 
between physical systems are invariably of integral order. 

The importance of spherical tensors in the theory of angular momentum stems 

from the fact that the spherical tensor t~) . like the spheric,'; harmonic Y kq' is 

associated with an angular momentum k with z-component q (That is, I k I = 
"k(k + 1)1i; k, = q1i). Thus, if I 00 > represents a state with zero angular momen-

tum U = 0; rn == 0), then, t~k) I 00 > should be a state with angular momentum k and 

z component q: 

t~) I O(l> oc I kq >, (1.169) 

Similarly, t~k) I jm > would yield a state I j'm' > with m' = m +q and Ij -k I 
:5: j' :5: (j + k). This fact is better expressed by the equation, 

<j'm' I t~) Ijrn >=fU,j',k)C~k:~" 

21. For a more detailed discussion on these tensors, see de-Shalit, A. and Talmi, I. Nuclear SI,,!!I 
Theory (Academic Press, New York 1963), Section 11. 
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where, 10 is independent of the projection quantum numbers [see, Eq. (5.170') 

belowJ. 

Commutation Relations with the Components of j 

Since the f~) are operators, Eq. (5.1631
) can also be written as [see Eq. (5.129)J, 

R(e)f~')R-1(e) = 1:: V:.,(e)f;~), (5.163') , 
where 

Substituling for R(e) in Eq. (5.163') the infinitesimal rotation operator given by 

Eq. (5.1283
) and using the relation, 

v'",(n,08) = < kq' I R .(08) I kq > 

1 ' 
= o,q'-~iie <kq' I (n· J) I kq >, (5.171) 

we get, 

[Cn' h f(') = L < kq' I (n· j) I kq > i;\), , " 
(5.172) 

or, 

(5.172a) 

[1 il'j = liq fl') (S.I72b) 
l' qq' 

Eqs, (5.l72a, b) are equivalent to the Eq. (5,163'), and could, therefore, be 
regarded as an alternative definition of the spherical tensors.22 

Problem 5.23: Obtain the commutation relations (5.16a, b) from Eqs. (5.1 72a, b). 

Product of Spherical Tensors 

Scalar product: 

(5.173) 

Tensor product: 

(5.174) 

From the C-coefficient, it is clear that the rank of lhe tensor product can vary from 
I r - s I to (r + s ).In lhe case of four commuling spherical tensors fl'i,GI'),li(') and 
MS, we have, 

(f l'),(;(') (lil'i,MI') = (-1)' "1:(-1), ([p" X HI'rrCI') X MI'1'). (5,175) , 

22. This definition is due to Racah (Reference cited in fOol note 11). 
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If i(r} and (j(s) are spherical tensors operating on different spaces, then we can 

define a double tensor by 

(5.176) 

This is the inverse ofEq. (5.174). 

Matrix Elements: The Wigner-Eckart Theorem 

Eq. (5.1701
) is referred to as the Wigner-Eckart theorem. A more convenient (and 

conventional) notation is, 

'1Ii(k)II' , IT'(k) I , _Cjlkj2 <12 11> <Jm. Jm> -----
2" "2 q 1 1 - "'lq"'2 ...[ii;+T ' 

where, the double-barred matrix element is known as the reduced matrix element, 
The theorem basically divides the matrix element into two factors-one (the 
C-coefficient) depending on the geometry (that is, the relative orientation of the 
physical and the co-ordinate systems) and the other (the reduced matrix element) 
on the intrinsic properties of the tensor t(k}. A proof of the theorem is given 
below: 

= f {R(E»\jfjt'll(rf {Rt~}R-l} {R\jfjlml(r~d3r 

= l: J'Il ,(r)t(~)"" ,(r)d3rV'i, (9) x '11, (9)'IF (9), 
"'1''''2q' It'll q It'''l t'Il q q '"1"'1 

by Eqs. (5,1383
) and (5.1632

), 

= l: < i2m'21 f(~) 111m'l > ,:ri;, (9) x -V:'i9)dl (9). (5.177) 
'"1''''2'q' q "'2"'2 "'1"'1 

Integrating both sides over the Euler angles (9) and making use of Eqs. (5.156) 

and (5.158b), we get, 
, I T'(k) I ' S.J "<' " I T'(k) I' , <h~ II lJmJ >x n = ,Lt,,<JJ!n2 1/' lim!> 

"'1"'2Q 

That is, 

, 11',(k) 1 ' C jh2 1 {"<' 1 <Jm 1m >= Lt --
22 q J 1 "lq"'2-~2' 1 ""~' +1 'ILh+ 1 "'1"'2q 'I~hT 1 
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The quantity in the curly bracket is, obviously, independent of the projectiOl 
quantum numbers and could, therefore, be written as 

" 1 Ciii' ., IT""I' , .... ~. m" '<11", . lIm,> 
m.l''''tI''l2j2+ 1 ]f"';! q 

. I IT""I I . =<J, ),>. (5.178 

Substitution of (5.178) in (5.170') leads to Eq. (5.170'). 

In the case of a scalar operator, S "f':', we have from Eq. (5. I 70') and th( 

, 1 , 
<j'm'l~ ijm >=,J' <jllSllj>ojj.o_. 

2} + I 

The unit operator 1 is a scalar. Hence from Eq. (5.179), we have, 

< til 11 /j > = ,J2j + 18jj •. 

Problem 5.24: Deduce the following relationships: 

(a) </IIlllj >=Ii,JiU+l)(2j+l)Oij' 

(b) < I'll C(L'I·I I >=(-I)'DI'IL> 

where, ct) = (:: 1 T' Y LM' and DI'IL 

is the angular momentum coupling coefficient defined by (5.87). 

(5.179) 

(5.180) 

Given below are some of the most cOIflmonly used formulae involving the 
reduced matrix elements of spherical tensors. The derivation of these relation, 
ships are straightforward, though tedious". 

Consider a two-particle system with a wavefunction I jJ,jm > in the notation 

of Eq. (5.68a). Let f'" and 0'" be irreducible tensor operators defined on the 
Hilbert space of particle J and particle 2, respectively. Then, 

<i/i;i/ I ('f"'lliJJ > = {(2i + 1)(2/ + l)} vZWU/i,kj:j'j,) 

"IIT""II' < x<h h>o .. ,. )., 
< i/j;j/II O"'IIjJ,j > = {(2j + 1)(2/ + I)} v'WU,j'j,k:jz'j) 

x < j,'11 O"'IIj, > o. ". 
hJ! 

-< • l_l)i,+j,-iWU"'" "'k) "IIT"'II' "IIU""II' -o""".vii'\ lhhh·j <h h>x<h h>· 

(5.181a) 

(5.181b) 

(5.182a) 

23. The derivation of some of these can be found in Section 24 of Ref. 2 listed at the end of this 
chapter. 
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<i/i;l'll [f(r) X O(Sj(I)lliJJ > 

= {(2i + 1) (21' + 1) (2t + I)} 112 <i/II f(r)1 IJ} > 

{
i/ i~' i:} 

X < i 2'11 O(S)II i2 > Jr'} h J. 

S t 

(5.182b) 

If V is an arbitrary vector operator (that is, a spherical tensor ofrank 1), then, 

< "m' I VI 'm >= o.<jm' 1 j(J. V) Um > 
J j J! jU + 1)1'12 

= o_.<jm' I j Um ><jII(J' V)IU > 
J! jU + 1)1'12 

(5.183) 

This equation is known as the projection theorem for first rank tensor?'. In the 

case of a component V q of V the equation reduces to [in view ofEq. (5.170~ and 

Problem (5.24a)], 

., , A. < jm' I j q Um >< jll (j . V)111 > 
<Jm IV Ijm>=o--. (5.183a) 

q J! jU + 1)1'12 

Trace of a Spherical Tensor 

This is defined as, 

Tr(f(k» = 1: < jm I f(k) lim> 
q, q 

1m 

'1If(k)II' = r,Cjkj <J J> 
jm mqm -,J2j + 1 

= OqoOko~-,J2j + 1 < jll T(o)lIj >, (5.184) 
1 

where use has been made of the relation C~"!m = 1, and Eqs. (5.83c) and (5.84a), 

Thus, the trace of a spherical tensor of non-zero rank, is zero. 
Problem 5.25: Deduce the above fact from the commutation relations (5.172 a, 
b). 

5.8 CONSEQUENCES OF QUANTIZATION 

The most important consequence of the quantization of angular momentum, i~ 
that the operators representing the components do not commute. The uncertainty 
principle, then, makes it impossible to measure accurately more than one com­
ponent of angular momentum in any particular quantum state. According to 

24. See Ref. 2, Section 20. 
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E~. (3.28) [see, also Eq. (3.28a)], the uncertainties M. and M, in the values of J. 

and J, in the state I jm > are given by the relation, 

I .' 
M.· M, ? :2 II! <jm I J, I jm> 

(5.185) 

It follows as a corollary of this result that the angular momentum vector cannot be 
exactly parallel to thc axis of quantization (the z-axis). For, if it could, the 
uncertainties in J. and J, would be zero (since J. and J, themselves would be 

cxactly zero). In fact, it is possible to show (see Problem 3.5) that the relation. 
(5.185) demands that an angular momentum whose maximum projection on the 
z-axis is iii, should be of length ..ji(j + 1)1i. Also, <1. >=<1, >=0, so that J 
precesses around the z-axis. Consequently, the orbit of the particle would not Jie 
in a single plane. 

Another consequence of quantization is that the measured values of the angular 
momentum along a reference axis has to be an integral multiple of (1iI2). This is 
a consequence of the particular commutation relations (5.73) satisfied by the 
component' of the angular momentum operator. It means that, when there is a 
preferred direction, such as a magnetic field in the case of a charged particle, Ule 
orientation of the angular momentum vector is quantized with respect to this 
direction; only certain discrete orientations being aJlowed. 

That a general angular momentum can have half-inte!;er values V = 0,112, 1, 
3(2, ... ), while the orbital angular momentum has only integer values (I = 0, 1,2, 
... ), may be taken to imply the existence of a half-integral intrinsic angular 
momentum (Spin). Historically, the hypothesis of spin (see footnote 3) preceded 
the theory of angular momentum. 
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CHAPTER 6 

INV ARIANCE PRINCIPLES AND 
CONSERVATION LAWS 

In the course of the dynamical development of a physical system, though many of 
the observables change their values, there might be one or more physical 
obscrvables which do not change with time. Such observables arc called con­
stants of motion, and the principle embodying their constancy in time arc referred 
to as conservation laws. Thus, in the case of a free particle, the linear momentum 
is a constant of motion, whereas for a system moving under the mfluence of a 
spherically symmetric field, the linear momentum varies with time but both the 
,mgular momentum and the energy are constants of motion. It will be shown 
below that the constancy of a physical observable implies, or rather stems from, 
the invariance of the Hamiltonian of the physical system under a certain symmetry 
operation. Among the various symmetries, the geometrical symmetries asso­
ciated with space and time are of special importance. These are the symmetr~es 
arising from the homogeneity of space and time (which results in the invariance 
of the Hamiltonian under translations in space and time), the isotropy of space! 

(leading to the rotational invariance) and the invariance of the Hamiltonian under 
inversions of space and time. Then there are the dynamical symmetries which are 
associated with particular features of the interaction involved. For example, the 
(21 + I)-fold degeneracy of the energy associated with a particular angular 
momentum l, is a feature of motion in a central field, and arises from the cylin­
drical symmetry of a central field2

• Similarly, the I-degeneracy discussed in 
connection with the energy levels of the hydrogen atom (See Eqs. (4.117), (4.116) 
and (4.128» is a consequence of a special symmetry of the Coulomb interaction3

. 

In this chapter, we will confine ourselves to a discussion of the space-time sym­
metries and the associated conservation laws. We will first establish the rela­
tionship between a conservation law and a symmetry operation, and then discuss 

each of the symmetry operations in more detail. 

I. Time being one-dimensional, we cannot talk of rOtations in time. 
2. 'lhe axis of the cylinder is perpendicular to the angular momentum vector. In a scattering pro­

cess, for example, it is the incident direction. 
3. For a more detailed discussion of this point in particular and of the dynamical symmetries in 

g:·:·eral. see 1..1. Schiff. Quantum Mechanics (McGraw-Hill. 1968), III Edition, Section 30. 
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6.1 SYMMETRY AND CONSERV AnON LAWS 

d(A) . 
From Eq. (4.25). we have, Tt= 0, If, 

[A,H) =0. (6.1) 

That is, an observable is a constant of motion if the corresponding operator 
commutes with the Hamiltonian. Now, corresponding to the Hermitian operator 

A, we can define a unitary operator 0. [See Eq. (2.63)]: 

(6.2) 

where, E is a real parameter, which is a scalar or a vector according as A is a scalar 

or a vector operator. (E A) would be the scalar formed by taking the product of 
E and A. Eq. (6.1) implies the relationship (provided E Ii = Ii E), 

(6.3a) 

or 

(6.3b) 

But, Eq. (6.3b) represents a unitary transformation. Hence we have the result that, 
if the observable corresponding to the operator A is conserved during the motion 
of the system, then the Hamiltonian of the system is invariant under the unitary 
transformation generated by A. Such transformations (those that leave the 
Hamiltonian invariant) are called symmetry transformations. Thus, a conserva­
tion law invariably implies the existence of a symmetry transformation for the 
system. The converse is, however, not necessarily true, as we will presently see. 

A symmetry transformation, in addition to leaving the Eamiltonian invariant, 
is characterised by the following properties: 
(STl) It preserves the Hermitian character of an operator. This ensures that 

observables remain obscrvables under the transformation. 
(STl) It conserves probabilities. This means that the absolute value of the scalar 

product of a pair of vectors remains invariant under the transformation 
(Remember that probability is proportional to the square of the absolute 
value of the scalar product). 

Both these properties imply that a symmetry transformation could be either uni­
tary or antiunitary [See Eqs. (2.60)' and (B. 11 )]. The later possibility arises when 
A in Eq. (6.1) is both antilinear and unitary (that is, satisfies Eq. (B.I) as well as 
the condition At = A-I). Since an antilinear operator cannot represent a physical 
observable (as it does not preserve the principle of superposition), symmetry 
transformations corresponding to antiunitary transformations. do not lead to any 
conservation laws. Nevertheless, such transformations are of importance because 
of the seiection rules they provide, which enable us to tell why transitions between 
certain states are allowed while those between certain others are forbidden. 

4. The derivation leading to Eq. (2.60) is valid even when 0 is antilinear. 
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Among the space-time symmetries, it turns out that the time reversal operation is 
associated with an antiunitary operator. The other four symmetries correspond to 
unitary transformations. 

Symmetry and Degeneracy 

From Eq. (6.3a), we see that, if I Uk > is an eigenvector of Ii belonging to the 

eigenvalue Ek , then, 

(6.4) 

so that, (; A I Uk) is also an eigenvector of Ii belonging to the same eigenvalue. If 

UA I Uk) is linearly independent of : Uk)' then the energy eigenvalue Ek is degener­

ate (see, Commuting Operators, Section 2.2). Thus, degeneracy of the energy 
eigenvalues is another consequence of the invariance of the Hamiltonian under a 
symmetry transformation. Conversely, degeneracy of the energy eigenvalues 
implies the existence of an operator (not necessarily an observable) that com­
mutes with the Hamiltonian and thereby points to the existence of a symmetry 
transformation for the system. 

6.2 THE SPACE-TIME SYMMETRIES 

As we have already stated, the space-time symmetries refer to the symmetries 
associated with geometrical operations like displacement, rotation and inversion 
(reflection at the origin) in space and time. For example, the assumption that 
space is homogeneous, requires that the Hamiltonian of (as well as the probabil­
ities associated with) a physical system be invariant under displacement, or 
translation, in space. We will see that such a translational invariance implies the 
conservation of the linear momentum of the system. Similarly, the invariance 
under rotations has its origin in the isotropy of space (the fact that space has the 
same properties in all directions). The importance of these geometrical symme­
tries associated with space and time for physics would be clear if we think of the 
situation if these symmetries were absent: 

Imagine an experiment, say for measuring the cross-section for the scattering 
of neutrons by protons, being performed at two laboratories, one at Madras and 
the other at Delhi. The expectation that the measurements at the two laboratories 
will yield the same result, within experimental errors, if performed under identical 
laboratory conditions, is based on the presumption that the differences in the 
location and the orientation (arising from the curvature of the Earth) of the two 
laboratories have no effect on the outcome of the experiment (that is, on the 
physics of the problem). Similarly, the fact that the repetition of the experiment 
will lead to the same result, depends on the independence of the outcome on the 
time at which the experiment is performed; that is, on the homogeneity of time. 
Thus, the reproducibility (and through it, the verifiability) of an experimental 
result at different locations and time, which is basic to the philosophy of all 
experimental sciences and which permits the formulation of laws with a universal 
validity, sterns from the homogcneity of space and time and the isotropy of space. 
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Of course, even in the absence of, these properties of spac. and time, it might be 
possible to arrive at laws of a general nature; but this would require a knowledge 
of the precise manner in which a displacement in space or time or a rotation in 
space affects the observations. In fact, we do have to cope up with local jnho­
mogeneity and anisotropy, as in the neighbourhood of the earth. But these we arc 
able to attribute to external (that is, not related to space and time) causes, such as 
the gravitational rield in the case of the earth, and maintain that space is really 
homogeneous and isotropic everywhere'. It is clear that the formulation of laws 
of physics based on observations would have been a far more difficult task than it 
h; HOW, if space and lime were devoid of the geometrical symmetries under dis­
cussion. 

We should here make a distinction between the continuous symmetries that arc 
associated with displacement in space and time 8.11d rotation in space, and the 
discrete symmetries6 that are associated with inversion of space and timc. 
Whereas the former have universal validity (that is, they hold good for all known 
intcractions'), the case of the latter is not so clear. For example, it is known that 
sp~ce-invcrsion invariancc is not valid in the case of weak interactions_ Time­

reversal invariance also seems to be violated in certain reactions such as the decay 
of neutral kaons.8 

We will now discuss the nature and properties of the operators, as well as the 
cnnscrvation Jaws, that arc associated with each of the space-time symmetries. 

6.2A Displacement in Space: Conservation of Linear Momentum 

A displacement in space caD be described either as a displacement of the co­
ordinate system with the physical system fixed (the passive point of view) or as a 
displacement of the physical system with the co-ordinate system fixed (the active 
point of view). Obviously, a displacement of the physical system through the 

'lector p, is equivalent to a displacement of the co-ordinate system through -po 

5, '" Alternatively. we should count the earth (the cause of the local inhomogeneity and anisotropy) 
als~s part of the physical system. Then for such a cornbined system (which would Conn a closed 
s)'ste~pace and time would be homogeneous and space isotropic. 

t¥ Thes~ .were introduced in quantum mechanics by E.P. Wigncr during the early 1930's, IEP. 
'Wigmir, Gottinge.r NachT. 31, 546 (1932); see Also, E.P. Wigncr, Group Theory and. tIS Appli­
cation. in the QuanlUm M e.chanics of Atomic Spectra (Academic Press, New York 1959) Chapter 
Z6.] 

7. The presentlyA,,mown interactions (forces) in nature are divided into four classes, These, in the 
order of decrea~ing strength. are: Strong (1), electromagnetic (_10-2), weak (_1O,n) and gravita­
tional (_10-39). Of these, the strong and the weak in~ractions are of eJltremely short range 
(_10-13 

) and •. therefore, are dominant in the case of nuclear and subnuclear particles. Roth the 
elcctr~)magnetic ~r1d the gravitational interactions are of long range, but the occurrence of lWO 
types of elect,ric charges (pusirive and negative) and the eleclrical neutrality of macroscopic 
bodies, dimin'ish the domaill of dominance of elecuomagneLic interaction to that of aU)f11!i and 
molecules 

~. The ~uggestion thllt space-inversion invariance may not hold good in Ihe case of me weak inleT­
a(:U0n,was first put forward by T.D. Lee and C.N. Yang [Physical Review, 104,254 (l956)], and 
experimentally verified by C.S. Wu el. Ai (Physical Review, lOS, 1413 (1957)]. 
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Therefore, one is frcc to choose either of the viewpoints. We will adopt the active 
point of view in the case of the continuous symmetries, and the passive point of 
view in the case of the discrete symmetries. 

Now, a continuous transformation should evolve from the identity transfor­
mation and should, therefore, be unitary. Let a. represent the Hermitian operator 
that is the generator of the infinitesimal displacement op (see Fig. 6.1) of the 
physical system. The unitary operator eorresponding to this displacement, 
according to Eq. (6.2), is given by 

o ,.cop) '" i -i(op· a.). (6.5 1
) 

The change in the wave function at the space point r, resulting from this trans­
formation is giv~n (in the co-ordinate representation) by [(of. Eq. (5.1272

)], 

o a.(op)'V(r) = 'I"(r) = 'V(r - op), (6.61
) 

z 

O~ __________________ ~.Y 

x 
Fig.6.1 Displacement op in space of a physical system 

which means that the wavefunction at the point P after the displacement is the 
same as the wavefunction at p' (where P was) before the displacement. Alter­
natively, one could say that if the original (undisplaced wavefunction has a max­
imum at r, the displaced wavefunction has a maximum at r + op. Using Eq. (6.51

) 

and the Taylor series expansion of'V(r- op) around r, Eq. (6.61
) can be written <is 

ll-i(op· a)]'V(r) '" [1- (op· V)]'V(r) 

'" [i -~(Op. p)l'V(r), 

'vhere, f> "" -ittV, is the momentum operator. 
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Thus. (6.7) 

so that, the unitary operator corresponding to the infinitesimal displacement op is 
given by 

(6.5') 

A finite displacement p could be thou~ht of as a succession of infinitesimal 

displacemenL<. We obtain, then [analogously to Eq. (5.135)], 

o /p) = exp [-(il1i)p· pl. (6.5') 

Problem 6.1: A symmetry transformation could also be defined in terms of its 

effect on the operators corresponding to the position. the linear momentum and 

the spin of the system. Thus O.(lip) is defined by [see Eq. (5.129)]'. 

r' '" 0 .(lip)rO~(lip) = r - (lip)!. (6.8a) 

p' = 0 .(lip)pO~(op) = fl. 

s' = 0 .(Op )sO~(lip) = S. 

Show that this definition also leads to the res\llt (6.7). 

(6.8b) 

(6.8c) 

Thus, the generator of translations in space is the linear momentum operator. 
Invariance of the Hamiltonian under such translations requires [see, Eqs. (6.3a) 

and (6.1)], that the operator 0 P' and hence the operator P. commute with II. But 

the relation [p,fl] = 0 implies that the total linear momentum of the system is 

conserved. In other words, conservation of the linear roomentum of a physical 
system is a consequence of the translational invariance of the Hamiltonian of the 
system. 

Now, the relation, [p.ll] = 0, will hold good only if fi is independentofr. That 

is, if iI does not contain a potential energy term II which is a function of r. In 

other words, the system should be free from external forces (or, closed). The 

degeneracy referred to in the previous Section. corresponds to the fact that the 

energy eigenvalues depend only on the magnitude of p and not on its direction. 

The translational invariance of the Hamiltonian could also be expressed by 

saying that the transformed wavefunction 1jI'(r. t) '" Up(p )1jf(r, I). satisfies the same 

Schriidingerequation as 1jf(r,l). For, applying 0 pep) to the SchrMinger equation. 

9. Note that the matrix elements of r' wilh respect (0 the displaced states are the same as the matrix 

elements of r with respccllo the original states: 

< o/,(r) I ~' I o/,(r) > = < 1jf,(r) I O'.!'O .11jf,(r) > 

== < 'II1(r) I f" I 'fir) >. 
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we have, 

since 

a " " 
itt at 'V'(r, t) = U pH'V(r, t) 

= 110 p 'V(r, t) 

= Ihv'(r, t), 

O/i =HOp ' 

6.2B Displacement in Time: Conservation of Energy 

(6.9) 

Displacement in time is also a continuous transformation and is, therefore, uni­
tary. The operator corresponding to the infinitesimal displacement &t in time of 
the physical system is given, according to Eq. (4.11), bylo 

o H(&t) = i + (iltt)&tH , (6.101
) 

and for a finite displacement 't, when H is independent of time [see Eq. (4.16)], by 

o HCt) = exp [iltt)'tHJ, (6.102
) 

I j being the Hamiltonian of the system. 

The effect of the displacement 't on the wavefunction 'V(t) of the system, is 
given by lof. Eq. (6.61

)], 

(6.11) 

This means that events corresponding to time t in 'V, correspond to time (t + 't) 

in'V'. 
The in variance of the Hamiltonian under translations in time requires that 

01/('t)11 = Ii Ol/('t), which also results in the same SchrOdinger equation for'l"(t) 

as for 'VCt) [see Eq. (6.9)]. Now, fI commutes with 0 H if the latter is given by 

expression (6.102
); that is, if H is independent of t. And the time-independence 

of H means that the total energy of the physical system is conserved. But when 
II depends on t (that is, when the energy is not conserved), 0 H('t) is not given by 

Eq. (6.102
), but by a more complicated expression [see Eq. (4.13)] which does not 

commute with II. As a result, the Hamiltonian would not be invariant under 
translation in timell

. We, thus, see that the total energy of the system is conserved 
if the system is invariant under translations in time, and vice versa. 

10. In place of the negative sign in Eq. (4.11), we have the positive sign in (6.10'), because a 
displacement &t in time of the physical system corresponds to a displacement --St for the time 
co-ordinate [c.f. Eq. (6.6'»). 

II. This fact also follows from the fact that 0/'(1) "" 0 H(&t)1jI(1) does not satisfy the SchrOdinger 

equation when Ii in Eq. (6.10') is a function of time (see Problem 6.2). 
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Problem 6.2: Show that 1jf'(I) ~ 0 H(&r)1jf(t), will not satisfy the SchrMingcr 

equation when /i is a function of time, 

6.2C Rotations in Space: Conservation of Angular Momentum 

We have already discussed, in Section 5.6, the relationship of rotations to the 
lOgular momentum of the physical system. The unitary operator corresponding 
o a rotation of the physical system through an angle e about the axis n, is given 
,y Eq. (5.135): 

o ,(n, 9) '" R.(e) ~ cxp 1-(il7'i)e(nj)] (6.12) 

vhere, .I is the operator corresponding to the lolal angular momentum of the 
ystcm. Hence the invarianec of the Hamiltonian under rotations in space 
0/1 ,0 J/ 0 ,), requires that the total angular momentum be a constant of motion 

that is, 1';,1/] ~ 0). In other words, conservation of angular momentum is a 
onsequence of the rotational in variance of the system. 

roblem 6.3: Show that the energy eigenfunctions of a spinless system Witil a 

lhcrically symmetric potential, are given by 1jf,(r) = RE(r)Y",,(O,$), where, Y", is 

Ie spherical harmonic of order I and Re is a function only of the radial co~ 

'dinatc. 

6.20 Space Inversion: Parity 

'ace inversion is the operation in which the axes of the reference frame arc 
kctcd at the origin, as in Fig. 5.2. The effect of the operation is to change a 
,ht~handcd co~ordjnate system into a lcft~handed oneil, and vice versa. Since 
~se two types of co~ordlnate systems arc mirror images of each oth<::(, a phy:..ic..li 
stem which is invariant under space inversion is said to possess reflection 

'mmctry, or to lack chirality (that is, handedness). This mean~ that phenomcnJ 
iSociatect':.vith the systcm will look the same irrespcctive of the handedness of 
le co-ordinate system in which they are observed. In other words, there is parity 
,ctwccn the system and itl) mirror image. Space inversion is, for this reason, also 
ailed Parity Operation. The corresponding transformation is, obviously. dis­
~rete. 

Now, an clement of the physical system which has the position vector r in the 
original co~ordinalc syslem, has the position vector r' = -r in the inverted co·· 

dr 
ordinate system (sec Fig, 5.2). The velocity dr' and hence the momentum p, also 

12. A fight-handed co-ordinate system is one in which. if we twist a right handed screw from X to y. 
it will advance in the direction of the z-axis. A left-handed co-ordinate system is similarly 
ddi)lcU bj a kf\-hJ.ndeu strew. 
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change sign under the operation. But the angular momentum r x p will not change 

sign. Thus, the parity operator 01' could be defined by the relations13 [see Eqs. 

(6.8a-c»). 
A' _ UAt'UA 

_ ,0. r = pr 1'--1, 

p' '" O;pOp =-p, 

(6.13a) 

(6.13b) 

(6.13c) 

We see that the transformation preserves the basic Heisenberg commutation 

relations (3.12a, b) and is, therefore, unitary (rather than antiunitary). Also, 

multiplying Eqs. (6.13a-c) on the right by O~ and on the left by 01" we see that 

At • A 
Up = exp (,o)U 1" 

which, in view of the relation, OtO p = i, implies, 

0; = exp (-io) 1. 

(6. 14a) 

(6. 14b) 

Now, at least in the case of systems with integer spin [see Eq. (5.145c)J, 0: = i, 

so that, 

0=0. 

Thus, 0 p is both unitary and Hermitian. Therefore we can set, 

Op"'P' 

(6.15) 

(6.16) 

Then, from Eqs. (6.14b) and (6.15), we see that the eigenvalues of P are ±1 

(Remember that the eigenvalues have to be real since P is Hermitian). Thus, if 

'V(r) is an eigenvector of P, then [by Eqs. (6.61
) and (6.13a)], 

pt'V(r) '" P'V(r) = v(-r) = ±'V(r). (6.17) 

A state for which the upper sign in Eq. (6.17) holds good, is said to have even, or 

positive, parity whereas one for which the lower sign is applicable is of odd, or 

negative, parity. Of course, a physical state need to have a definite parity (that is, 

need be an eigenvector of P) only if the Hamiltonian (interaction) is invariant 

under the parity operation. So far only the weak interaction (footnote 7) is known 

to violate parity conservation. This means that phenomena mediated by weak 

interaction, such as beta decay, can be distinguished from their mirror images14
• 

An operator also could be characterised as odd or even depending on whether 

or not it changes sign under the parity operation. The operator A is odd, if, 

13. Relation (6.13c) is based on the assumption that the spin transfonns in the same way as the OIbital 
angular momentum under space inversion [ef. Eqs. (5.128') and (5.1273

)]. 

14. For a more detailed discussion of the experimental aspects of parity violation, see A. Bohr and B. 
R. Motlelson, Nuclear Slruclure. Vol. I (Benjamin. New Yolk 1969), Section 1-2. 
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(6.18a) 

or, 

(6.18b) 

and even if, 

(6. 19a) 

or, 

(6.19b) 

Thus, A is even or odd according as it commutes or anticommutes with p. 
Obviously, then, only the eigenstate of an even operator can have definite parity. 
For example, Eq. (6.13b) shows that iI is an odd operator. Therefore, a state with 

definite linear momentum has no definite parity. On the other hand, the angular 

momentum operator is even [Eq. (6.13c)], so that a state with a definite angular 

momentum has a definite parity. In fact, we have shown in Section 5.4 [Eq. 
(5.61)] that a state with orbital angular momentum quantum number I, has the 

parity It/ = (-1/. Eq. (6.l3c) shows that the spin part of the wavefunction (-X;) also 

has a definite parity, usually referred to as the imrinsic parily of the particle (spin 

being the intrinsic angular momentum). However, the intrinsic parity is not given 
by a simple formula involving the spin quantum number s, but has to be deter­

mined relative to a particle whose intrinsic parity is already fixed either by con­

vention or by some other means. For example, the intrinsic parity of the nucleons 

(spin ~ is conventionally fixed as positive. Then, the parity of the pions can be 

determined relative to that of the nucleons, for example", from the reaction, 

It' + d --> P + p, 

where d is the deuteron (consisting of a proton and a neutron), p represents the 
proton and It' a positively charged pion. The parity of the pion turns out to be 
negative. 

Problem 6.4: The parity itA of an operator A is defined by pAp' = It,A; and the 

parity of a state vector I 'l' > by P I 'l' > = 1[" I 'l' >. Show that the selection rule, 

1t,1t,1[" = + 1, applies to the matrix element < ~ I A I 'l' > of A. Hence deduce that 

a nucleon cannot have an electric dipole moment. 

(Nole: Electric dipole moment operator, D = cr, e being the electric charge of the 

nucleon). 

15. See, for example, Omnes, R., Introduction to Particle Physics (Wiley·1nterscience, London 
1971; translated by G. Ba1ton)Chaptl.':r6, Section 4; A.D. Martin and T.D. Speannan, EieJ?'I£nlary 
Particle Theory (North-Holland. Amsterdam 1970), Chapter 5, Section 2.1. 
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6.2E Time Reversal Invariance 

In time reversal operation t ~ -t. Under such an operation, the velocity changes 

sign, whereas the position co-ordinate is not affected. Thus, denoting the time 
reversal operator by 1; we have, 

l' = 1rtlt = r, 

Ii = 1j)tlt = -p, 

~= 1Stlt =-8, 

(6.20a) 

(6.20b) 

(6.2Oc) 

This transformation leads to the commutation relations (B.14) and is, hence, 

antiunitary. It follows that, unlike parity, time reversal invariance does not give 
rise to an associated observable16

• Therefore, in the equation, 

(6.21) 

which is derived analogously to Eq. (6.14b), 'Yneed not be zero. 

The time-reversed state 'V",.(r, t) corresponding to the state 'V(r, t) is not 

'VCr, -t) [cf. Eq. (6.17)]. This could be seen as follows: Let H be the (real) 
Hamiltonian of a physical system that is invariant under time reversal. That is, 

1:llrtt=H, or, [1;fl] =0. (6.22) 

The SchrOdinger equation for the original state 'V(r, t) is, 

i1i d'V~~, t) = H'V(r, t). (6.23a) 

Replacing t by -t in this equation, we have, 

_ . .."d'l'(r,-t)_H" (_) 
In at - 'l'r, t. (6.23b) 

On the other hand, operating on Eq. (6.23a) with 1: and making use of the relations 

(6.22) and (B.2), we get, 

a . " . 
i1i at {'1\j1(r, t)} = H {'1\jf(r, t)}. (6.23c) 

Comparison of Eqs. (6.23b) and (6.23c) shows that -T'VCr, t):#: 'V(r,-t). However, 

taking the complex conjugate of (6.23b), we get, 

a. " . 
iii dt 'V (r, -t) = H'V (r, -t), (6.23d) 

which, in view of Eq. (6.23c) suggests, 

-T'V(r, t) == 'V ... v Cr, t) = 'V"Cr, -t). C6.24a) 

This result could be obtained also from the following considerations: 

16. It is in anticipation of this result that we have denoted the time reversal operator by 1: rather than 

by OT 
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1; being an antiunilaTY operator, could be written as the product of a unilaTy 

operator (; and the complex conjugation operator K, [See Eq. (B.20a)]: 

1"= (;K,. (6.25) 

In the co-ordinate representation, r is real and ft is pure imaginary [Eqs. (3.18')]. 

Therefore, in the case of a spin/ess system, Eqs. (6.20a, b) suggest the choice, 

(; = i; <T=K,. (6.25') 

Thus,'r is the complex conjugation operator. This fact, of course, depends on the 

representation. In the momentum representation, Pis real and r is imaginary [Eqs. 
(3.18')]; so that Eqs. (6.20a, b) require (; to be an operator that changes Ii to 
-po (;pU" = -p, and 

(6.24b) 

1" for Particles with Spin 

Now, it is clear from the foregoing that the explicit form for 1" will depend on the 
representation chosen. We, therefore. choose the co-ordinate representation for r 
and p [Eqs. (3.18')] and the standard representation for the angular momentum 

[Eq. (5.32a-d)]. Then, r, s, and S, are real whereas p and S, are imaginary. If 1"is 

writtcn as in (6.25), then from Eqs. (6.20a-c), we have, 

(6.26a) 

U" U', • U" U't • (626b) Sx =-s)(; St =-s:. . 

(; lcaves f, Ii and S, invariant, but changes the signs of S, and s,. (; should, 

therefore, represent a rotation of the co-ordinate system through an angle It about 
the y-axis in the spin space. That is17 [see Eq. (5.135)], 

A (il#l}n$ 

U=e '. 

Thus, in the case of a system with total angular momentum 1 
'r= exp [(i/Ii)nJ ~k" 

(6.27) 

(6.25') 

so that, if I jm :> represents a basis vector in the angular momentum representa­
tion, then, 

1"\jm > = HI"" \j - m >. (6.28) 
The result could be derived as follows: 

1"\jm > = exp l(ili!)nJ,l . K, \jm ;> 

= exp [(i/Ii)nJ ~ \jrn >, by Eq. (B.17). 

(6.28a) 

1" The exponent in Eq. (6.27) has positive sign because 0 represents a rotation of the co-ordinate 

syslem rather than of the physical system. 
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where, Eqs. (5.1362
), (5.1382

) and (5.141) have been used. But, from Eq. (5.142), 
we have, 

(6.29) 

Substitution of (6.29) in (6.28a) leads to (6.28). 

Applying l' once again to Eq. (6.28), we get, 

1 21jm >=(_1)2i l jm >. (6.30) 

Thus, If has eigenvalue + 1 for integer j and - 1 for half-integer j. If the Hamil­

tonian II is time-reversal invariant, then 11 jm > would be an eigenvector18 of fi 
belonging to the same eigenvalue as I jm >. The case If I jm > =1 jm >, then, 
permits the solution, 11 jm > = c I jm >, where c is a scalar. In this case, 11 jm > 

is the same state as I jm > so that there is no degeneracy. But, when If I jm > = 

-I jm >,11 jm > *- c I jm >. In fact, 11 jm > would be orthogonal to I jm >. For, 

<jm I {-Tl1m >} =<jm I {TTljm >} 

=- <jm I {T 11m >} 

= - < jm I {111m >}; by Eq. (B.6b). 

This shows that < jm I {11 jm >} is zero. Thus, every state I jm > would be 

degenerate with its time-reversed state. In other words, every energy eigenvalue 
would be two-fold degenerate. This is referred to as Kramer's degeneracy. 

An example of a state for which T= t, is the state 11m> of a system with 

orbital angular momentum I. For, according to Eq. (6.30), 

T 11m >= (_1)11 11m> = 1m >, (6.30a) 

since I is integer. A state of an atom with an odd number of electrons (hence, 
half-odd)), provides an example of Kramer's degeneracy. The degeneracy would 
be present even in the presence of an electric field (as the potential VCr) = -E· r, 
commutes with 1), but would be lifted by a velocity-dependent field such as the 
magnetic field. 

When the angular momentum is entirely due to orbital motion U = I), we can 

take the co-ordinate representation19 of Eq. (6.28). We get, 

< r I {111m >} = (_1)1 + m < r II - m > . 

But, using Eq. (B.6b), we have, 

< r I {111m >} = {< r l'h 11m >*= < r 11m >*, 

since, 

11 r > = K c I r > =1 r >, (6.31 ) 

18. The basis vector I jm > is actually labelled by an additional quantum number a. corresponding to 

the eigenvalues of fl. Thus, 

Ijm > '" I ujm > . 
19. Note that the intrinsic spin has no co·ordinate representation. 
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in the co-ordinate representation. Thus. 

<r 11m >'=(-1)"· <r II-m >. (6.28') 

The left hand side of Eq. (6.28') is the co-ordinate representation of illm > . 
We sec, therefore, that, in the co-ordinate representation, time reversal is r.quiv­

alent to complex conjugation except for systems with intrinsic spin. Also, com­

paring Eq. (6.28') with Eqs. (5.46) and (5.59a), we see that the choice of phase 

implied by Eq. (6.28) is given by 

<r 11m> = 1'",,(6, $) = i'r ",,(6,$), (6.32) 

for the eigenvectors of the orbital angular momentum"'. With this choice, com­

plex conjugation becomes identical with rotation through 1t about the y-axis, while 
either of the operations bocpmes equivalent to the lime reversal operation'll. 

It might seem strange that a linear operator corresponding to a rotation could 

be equivalent to 1: which is an antilinear operator. But, as is evident from Eqs. 
(R. 1,2), linear and antilinear operations are different only with regard to 'com­

plcx' entities. The relation 

K,llm>=llm>, 

which is implicit in Eq. (6.28'), suggests that the YIm«(J,$)'sofEq. (632) constitute 

a 'rcal' basis for the orbital angular momentum. 

Problem 6.5: Show from Eqs. (6.27) and (6.25) that, in the case of a spin ~ par­

ticle, i = iOyK c' where 0, is the Pauli spin operator. 

Transformation Properties of Spherical Tensors 

The spherical tensors have usually simple transformation properties under time 

reversal. In analogy with that of the spherical harmonic, the transform 'P,') of a 

spherical tensor i~k) of rank k under time reversal. can be expressed as 

T~);o iT<;)1' =±(-I)'T?,l. (6.33) 

The spherical tensor is said to be even if the upper sign in (6.33) holds good, and 
odd if the lower sign holds good. For example, the spherical components of r arc 
given by [see Eq. (5.167)], 

(6.34) 

20. As we have explained in relation to Eqs. (5.29a, b) and (5.57), we an: free to choose the phase of 
one of the eigenveclOrs belonging to a givenj- or I-value. 

21. In the present case, the time reversal operation is just complex conjugation. It is Ihe particular 
choice of phase, Eq. (632), Lt,at makes this operation also equal to a rotation through 1t about the 
y-axis. 
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so that, using Eq. (6.20a), we get, 
1" f(I)1t = +{-l)q f(I) 

q -q. (6.33a) 

Thus, f~I) is even, or r is an even operator. Similarly, p is an odd operator. It 

follows that the electric dipole moment operator 6 = er (where, e is the electric 
charge) is even under time reversal. Now, it can be shown, using Eq. (6.33), that 

<illt(k)11j >=±(-l/ <illt(k)lli >", (6.35) 

where, the double-bar denotes reduced matrix element between states of definite 
angular momenta [Eq. (5.1702

)]. Also, the sign in Eq. (6.35) follows that in Eq. 
(6.33). Eq. (6.35) shows that a stationary state with a definite angular momentum 
cannot have an electric dipole moment, unless time-reversal invariance is vio­
lated. Earlier [Problem 6.4], we have seen that parity conservation forbids the 
existence of an electric dipole moment for the nucleon. Therefore, the 
observation of a static electric dipole moment for the nucleon would imply the 
violation of both parity conservation and time-reversal symmetry. 

Problem 6.6: Deduce Eq. (6.35). 



CHAPTER 7 

THEORY OF SCATTERING 

7.1 PRELIMINARIES 

Experiments on scallcring provide one of the most important means of gathering 
information in the realm of atomic and subatomic particles. Thus, it was 
Rutherford's experiments on the scattering of alpha-particles that provided the 
experimental basis for the nuclear aU)m model that eventually led to the Bohr 
atom model and to quantum mechanics. Many of the features of the nuclear force 
such as it, range, strength and spin-dependence, have heen deduced [rom data 
gathered [rom nudeon-nucleon scatlering. Scattering of electrons from nuclei as 
well as nucleons ha, helped in determining the charge distribution in the latter. In 
fact, the importance of the role of the scattering experiment as a peep-hole into the 
world of nuclear and sub-nuclear particles. cannot be ovcremphasi7.ed. 

In this chapter, we propose to present some aspects' of the quantum theory of 
scattering. After describing the scattering experiment aod the quantities measured 
in the experiment, we will consider two different methods of the theory, one 
suiJable for low energy scattering and the other valid for high energy scattering. 

The Scattering Experiment 

In a typical scattering experiment, a beam of homogeneous. monocrgic particles 
(that is, an ensem"'e of panicles) falls on a largec (which could be in the form of 
a thin foil) consisling of a large number of scattering centres. The particles are 
scattered by the larget in all directions· and the scattered panicles arc received and 
analysed by a deCeclOY placed at a large (compared with the linear dimensions of 
the target) disJance from the target. Let (sec Fig. 7.1) the origin of the co-ordinate 
system be chosen at the target, and the z·axis along the direction of the incident 
beam. Also let, 

1. Sufficient as it is to be the subject matter of a whole book ISee. for example. Goldbers:cr, M L­
and Wal~ot1. KM. CuUL\'imt Tluary (jIJM Wtley. New York 1(64); Newton, KG .. Sc.attering 
1"lu!ory ojWaVt's olki Particles (McGraw·HiLI, New York 19(6)]. 

2. Some uf the particles, of course, proceed along the incident direction. unaffected by the largeL 
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p .. .. 

INCIDENT BEAM 
Fig. 7.1 The scattering experiment. 

dO sin 8d8d$ = the solid angle sub tended by the detector at the target, 

o (8,11» = the angular position of the detector, 

dN the number of particles received by the detector per unit time, 

Jo the incident flux, 

the number of particles crossing a unit area perpendicular to the 
direction of the beam, per unit time, 

n the number of scattering centres in the target. 

Then, dN will be proportional to n, I Jo I and dO, if the following conditions are 
satisfied: 

(i) The intensity (that is, the density or the number of particles per unit 
volume) of the incident beam is low enough for the mutual interaction 
among the particles to be neglected. 

(ii) The momentum p of the particles is large enough (so that the de BrOglie 
wavelength hlp is small enough) for the scattering centres to act indepen­
dently of each other in scattering the particles.3 Satisfying these conditions 
is not an entirely 'painless' affair. For, condition (i) conflicts with the 
requirement for 'good statistics' which favours a large intensity (the larger 
the number of 'counts' at the detector during a given time, the better the 
statistics). Similarly, if p becomes too large, then phenomena more com­
plicated than simple scattering, such as particle production, will begin to 
appear. Thus, there are optimum values for 10 and p for a given set up. 

When the conditions are satisfied, we have, 

dN = o(O)n . I Jo I dO. 

It is easy to see that the proportionality factor 0(0) has the dimension of an area. 

Let J,(O) represent the scattered flux of particles in the direction O. lhen, 

dN:::: I J,I ,2dQ, (7.f) 

where,' is the distance of the detector from the target. From (7.1 1
) and (7.1 2

), we 
gel, 

3. The actual condition is that the distance between the scattering centres in the target be large 
compared with the de Broglie wave length of the incident particles. 
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r'I.I,1 
a(O) ~ n I Jor 

QUANTUM MECHANICS 

(7.2) 

which proves our earlier statement. Eq. (7.1 ') shows that a(O) is numerically 
equal to the cross-sectional area of the incident beam that is traversed by as many 
particles as arc scattered per scattering centre, into a unit solid angle in the 
direction 0 . 0(0) is, for this reason, called the differential scallering cross sec­
tion. The integral of o(Q) over the solid angles, is the total scattering cross sec­
tion which, according to the above interpretation, is the cross-sectional area of the 
incident beam that is traversed by as many particles as are scattered in all 
directions by each scattering centre. Thus', 

o,~ = f o(Q)dQ. (7.3) 

The differential and the total scattering cross sections could be regarded as the 
experimental quantities of the scattering problem. The aim of the scattering 
theory is, then, to make use of these to deduce information on the force, or the 
interaction, responsible for the scattering. The theory achieves this aim by 
establishing a relationship between the cross-section and the wavefunction of the 
system. For, the wavefunction is obtained by solving the SchrOdinger equation 
which involves the interaction. Thus, whereas in a bound state problem the 
emphasis is on the energy eigenvalues, in the scattering problem the interest 
centres on the wavefunctions. Also, in the bound state problem one is dealing 
with the negative part of the energy spectrum, while in the scattering problem it 
is the positive part of the spectrum that comes into play. 

Before deriving a relationship between the cross-soction and the wave func­
tion, let us specify the type of scattering problems to which we will confine our 
discussion. Scattering is said to be elastic if there is only momentum transfer, but 
no energy transfer, taking place between the incident particles and the target.' In 
this case, the particles undergo only a change in their direction of motion but 
suffer no change in the magnitude of their momentum. On the other hand, if there 
is exchange of energy between the incident particles and the target, the scattering 
is inelastic. We will consider only the first type of scattering. 

Also, as is implied by the choice of the origin at the target, we are assuming 
that the target :, fixed. Elastic scattering by such a target can be described as 
scattering by a potential V (r). 

4. The differential ,,,,,ering cro,,-,ection i, sometimes denoted by the symbol (:~). The 

advantage Clf this notation is that the symbol {or the total scauering crou-section does not require 
a subscript; for, 

"~$ I(:~}Q~ 5 d"~,, 
We will hereafter adopt this notation. 

S. This definition applies to potential scattering (that is, scattering by a polential), In other lypes of 
scattering such as scatlering of nucleons by nuclei, the scattering is elastic even if transfer of 
(kinetic) energy takes place without producing any internal excitation. 



THEORY OF SCA TIERING 199 

Now, in an actual experiment, the scattering centres suffer recoil. The co­
ordinate system, in which this recoil is explicitly taken into account, is known as 
the Laboratory System6 (Fig. 7.2). However, when the interaction depends only 

on the relative co-ordinate r:::: r l - r2> the SchrOdinger equation corresponding to 

r . n .. ,nc 
VI V v2=O .. ·· . .. -- --- --- ----.:-- - ----

m, M m2··. 
'. 

BEFORE SCATTERING AFTER SCATTERING 

f1g.7.2 Two-particle scattering in L'le Laboratory System of coordinates. The Centre-of-Mass 
velocity V = (m,IM)v" where M = m, +~, v'2 is the recoil velocity. 

the scattering of one particle by another, could be separated into two parts: one 
corresponding to a uniform motion of the centre-of-mass of the system and the 
other corresponding to the relative motion of the particles [see, Section 4.2Bl. 

ml~ 
The relative motion appears as the motion of a single particle of mass 11 = --­

ml +mz 

(where ml and m2 are, the masses of the colliding particles, and the 11 is referred to 

as the reduced mass) with a velocity v = VI - V2> under the influence of a potential 

VCr). Scattering affects only the relative motion which is independent of the 
velocity of the centre-of-mass. We see, thus, that the theory of the scattering of a 
particle by a potential is also the theory of the two-particle scattenng problem. 

Relationship of the Scattering Cross-section to the Wave function: 
The Scattering Amplitude 

It follows from the foregoing, that the (time-independent) SchrOdinger equation 
of the scattering problem is given by 

6. The Laboratory system is also often defined as the co-ordinate system in which the target is ini­
tially at rest, whereas, the co-ordinate system in which the centre-of-mass is at rest. is called the 
Centre-aI-Mass System. For a detailed discussion of the relationship between the two systems, 
see, for example. A. Messiah, Quantum Mechanics (North-Holland. Amsterdam 1961), Chapter 
10, Section 7. 



200 QUANTUM MECHANICS 

[- ~: M V(r)}v(r) = EIIl(r), (7.4) 

where, Ll" \72
, the Laplacian, and 

f.'k" 
E "E,= 2j!' (7.5) 

11k = p, being the momentum of the incident particles. We will assume that the 

I 
potential VCr) is o[finite range and that it goes to zero fasterthan - as r --> =. n,is 

r 

excludes the pure Coulomb force, but includes the screened Coulomb force such 
as that is experienced by electrons being scatlered by atoms. 

We seck a solution to Eq. (7.4) subject to the following conditions: 
(i) Initially (long before the scattering), it represents a homogeneous beam of 

panicles of momentum p = lik, proceeding in the positive z·direction. That 
is7 

'l'ini'" ,,1jI',{r) - exp (ik· r) = exp Okz). (7.6) 
,~. 

(ii) Finally (long after scattering), it represents particles issuing in all directions 
from the scattering cenlTe. Such a flux of particles is represented by a 
spherical wave (in contrast to the expression (7.6) which corresponds to a 
plane wave') whose intensity falls off inversely as the square of the distance 
from the centre. Thus, 

'" e 
1jI,.oI "1(.(r) - !,(Q)-. 

r--7"" , 

Herc./,(Q) is independent of r, and is known as the scattering amplitude. 

(7.7) 

Thus, the general solution of Eq. (7.4) corresponding to the scattering problem 
can be written as, 

'" ... e 
1jI.(r) - e' + f,(n)~. 

,~.. r 
(7.8) 

The first term on the R.H.S. in (7.8) represents the transmitted particles (particles 
that are unaffected by the potential) and the second term particles that are scat­
tered. 

7. We omit the normalit..ation factor {21ti12 because, in the scattering problems, we are interested in 

the relative probability (out of N particles incident in the z~direction. how many are scauered in 
the direction U 7) rather than in !.he absolute one. UnnonnaJit.ed wavcfunctions are, therefore, 
more convenient to work with. 

8. A plane wave really corresponds to a unifonn distribution of particles all over space, since the 
probability density I e'l. r 12 is independent of r. lbe plane wave provides an approximate repre­
sentation of the incident beam for the scattering problem when the transverse extension of the 
be.am is large compared with the range of the potential, or linear dimensions of the scauerer. The 
latter i.~ of the order of 10-« em for atoms and 10-11. em for nuclei. 
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Density of particles in the incident beam = Pine = I ",,"k(r) f= 1. 

Velocity of the particles Iik 
-Vi-~. 

Incident flux tlk 
= I Jo I == p" v" == - • 

IIIC I J.l 

'"". I hen) 12 
Density of scattered particles in the direction n = Pleat == .. r2 

Velocity of the scattered particles 

Scattered flux in the direction n 

Thus, from Eq. (7.2), we get9
, 

Iik 
=v,==v j =-. 

J.l 
=1 J/O) I 

do 2 
dn;: o(n) == Ih(n) I . 
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(7.9) 

The method of solution would, thus, consist in finding a solution to Eq. (7.4) 
valid for large values of r and writing the solution in the form of a transmitted 
plane wave and an outgoing spherical wave. The amplitude of the spherical wave 

do 
is then/k(n)· dn is obtained from Eqs. (7.9) and (7.3). 

7.2 METHOD OF PARTIAL WAVES 

This is a methodwhich can be applied when the potential is central [V(r);: VCr)] 

and is of finite range tv (r) '" 0, r > r J. We will see later thatthe method is really 

useful only when the energy of the incident particles is rather low. The method 
exploits the fact that the angular momentum of a particle is conserved in a central 
field. Therefore, if we categorise the particles according to their angular"momenta 
(classically, this amounts to categorising the particles according to their impact 
parameterslO

, since all the particles have got the same linear momentum), then the 
scattering of the particles of each angular momentum could be considered inde­
pendently of the particles of other angular momenta. Now, we have represented 
the incident beam of particles by a plane wave [Eq. (7.6)]. A plane wave is 
characterised by a definite linear momentum Iik, but no definite angular momen­
tum. In fact, a plane wave, being, in principle, of infinite extension, corresponds 
to impact parameters varying from zero to infinity. Correspondingly, the angular 

'J. The potential V(r) corresponds to a single scattering centre (n = I). 
10. The impact parameter is the distance of the initial trajectory of the particle from the z-axis (which 

passes through the centre of the potential). 



202 QUANTUM MECHANICS 

momenta contained in a plane wave also vary from zero to infinity. It is possible, 
therefore, to analyse a plane wave into an infinite number of components each of 
which corresponds to 3 definite angular momentum. Each of such components is 
called a partial wave, and the process of decomposing a plane wave into the par­
tial waves is referred to as partial wave analysis. 

Expansion of a Plane Wave in Terms of Partial Waves 

We will now address ourselves to the problem of decomposing a plane wave into 
its partial waves. Now, the plane wave e'k' is a solution of the free-particle 
SCheMinger Equation, 

(7.10') 

or. 

(-A-k')1jI(r)=O. (7.11) 

We will denote the normalized solutions of Eq. (7.11) by v,(r). These are given 

by 

v,(rl = (21tr3lle'k, (7.12) 

The orthonormal set {vJ _. for k .. k, and k, varying from ~ to _. forms a basis 

for the infinite-dimensional Hilbert space of the particles. This basis defines the 
(linear) momentum representation for the system. 

On the other hand. writing Eq (7.10') as 
N1jI(r) = E1jI(r), (7.102

) 

with 

we have, 

[11,1'.'1 =0. 

[H,i,] =0, 

(7.13) 

(7.143) 

(7. 14b) 

where, U and i, arc the angular momentum operators given by Eqs. (5.43) and 
(S.42c). Egs. (7.14a, b) imply that the eigenvectors of N are also the eigenvectors 
of U and L,. But the eigenvectors of U and L, are the spherical harmonics 

Y'm(8.<1» given by Eq. (S.SSb): 

i. 2Y!m(e, <1» = 1(1 + 1)1i'Y ... (e,<I1), 

L,Y",,(e, <11) = mhY",,(8,<I1), 

where. the allowed values of I and m are given by Eqs. (5.49a, b). Thus, 

1jI(r) '" 1jI ... (r ,e, <1» = R •. ,(r)Y ",,(e, <1». 

(7.15a) 

(7.1Sb) 

(7.161
) 
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where, Rk,l(r) is a function of the radial co-ordinate only [(r, e, <1» are the spherical 

co-ordinates of the particle, related to the cartesian co-ordinates through Eq. 
(4.107)]. Substituting from Eqs. (7.13), (7.16) and (7.15a) in Eq. (7.1<Y), we get 
a differential equation for Rk,l(r): 

[~ + ~~ + {e -/ (l + 1.)}]'R' (r) =.0, (7.17) 
dr 2 r dr r2 k,l , 

2~ 
where, e=-2' Eq. (7.17) is identical 'with Eq>(E .. 64). Therefore, the two 

Ii 

independent solutions are the spherical Bessel fU!lctil'ln Mkr) and the spherical 

Neumann function nlkr). However, we see from Eq. (E.69b), that nlkr) is not 

finite at r = O. Since the wavefunction has to be finite everywhere, we have, 

Rk,lr) = Mkr). (7.18) 

Substituting this in Eq. (7.161
) we get, 

"'klm(r, e, <1» = j/kr)Y /mce, <1» (7.162
) 

The infinite set {"'kim} ~ of orthogonal [See Eqs. (5.60) and (E. 74) 1 vectors for / = 

0, 1,2, ... +00, m := -/,-/ + 1, ... ,+ / and k varying from 0 to =, constitute a basis 
for the infinite-dimensional Hilbert space of the free particles. Each "'kim is called 

a spherical or partial wave as it is characterised by a definite angular momentum. 
We have now two different bases, (7.12) and (7.162

). The vectors in one 
should be expressible as a linear combination of the vectors in the other. That is, 

~ +1 

e ikr = L L a/m(r)j/kr)Y/mC8,<I» 
I~O m~-I 

The determination of the coefficients aim in (7.191
) is facilitated by choosing the 

z-axis along k. Then, k· r = kr cose = kz, so that the L.H.S. of Eq. (7.19\) 
becomes independent of the azimuthal angle <1>. The R.H.S also should be, then, 
independent of <», which requires that m = 0 [seeEq. (5.63)]. In view of the rela­
tion 

_[2i+l 
YIOCS, 1») =.'V "'4;tPI(cose), 

where PI(X) is the Legendre polynomial of order I, Eq. (7.19\) reduces to 
~ 

e ipx 
= L clj/p)Plx), 

I~O • 

with (7.20) 

djl 
Differentiating Eq. (7.192

) with respect to p and then substituting for d p from Eq. 

(E.71b), we have, 
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But, 

. '>":;: 1 . P (. :;: 1 + 1 . P ( ) zxe ::::: ...-CI -
21 

Ih-l I X)- ,,",C1-
U 

Ih-+l ,X. 
j",l + 1",0 + 
. 

ixe'" ~; L CIJr<P,(X) 
1",0 

(7.2Ia) 

. I • 1+1 
~i LC,j'-21 IP,-,(X)+; LC,J,-U IP,./X), (7.21b) 

i~l + 1=0 + 

where, expression (E.29a) for xP,(x) has been used. Equality of expressions 

(7.2la) and (7.2Ib) requires that coefficient of P,(X) in either expression be equal 

(since the p,'s for different values of 1 arc linearly independent). That is, 

I . 1+1. .{ 1+1 . 1 .} 
2l + 1 c1h_1 - 2l + 1 Cd/+l = l 21 + 3CI-+ri/+l + 21-1 c1_dl __ 1 (7.22) 

Again, since the i,'s are linearly independent functions of p, coefficients of like 

orders of j, on either side of (7.22) should be equal. From the coefficient of ii_I' 

we have, the recurrence relation, 

This leads to the result: 

C, ~ ;'(21 + l)co' 

Co can be determined by putting p ~ 0 in Eq. (7.19') and using the values, 

i,(O) ~ 0/0' and P o(x) ~ 1. 

We get, 

Co::::: I. so that, 

C, ~ ;'(21 + I). 

Substituting in (7.192
), we have the result, 

exp (ikr cos 6) '" exp (;kz) ~ £ (21 + 1); 'JI(kr)P,(cos 6). 
1=0 

(7.23a) 

(7.23b) 

(7.23c) 

(7.24) 

This is known as Bauer's Formula. Using the spherical harmonic addition theo­
rem [Eq. (5.152)1. Eq. (7.24) can also be written as 

. " 
exp(;k·r)~4ltL L ;lj,(kr)Y';"(9" 'i>,)Y",(9",t), (7.25) 

1"'0 ".=-/ 

where, (9c di,) define the direction of k and (9,,<1),) that of r. Substituting the 

asymptotic value, (E.70a), for j,(kr) in Eq. (7.24), we have, 

. I :;: ~ .1. ( lit In 
exp (Ikr cos e),:.kr ,:-.(21 + 1)1 SIO kr -2" [,(COS e). (7.26a) 

1 
Using the relation. sin x;:: 2i (e ' .... - e-U"), this can be written as 
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exp (ikr cos 9) - -~ I (21 + 1) 1(-1/ ,1 exp (-ikr) + exp (ikr)] .PtC cos 9) 
,-> ~ 2Lkr I ~O 
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(7.26b) 

The term containing the factor (e-ikr)lr represents an incoming spherical wave ll
, 

while the term with the factor (eikr)lr represents an outgoing spherical wave (that 
is, particles that are approaching the scattering centre and those that are receding 
from the scattering centre, respectively). 

Scattering by a Central Potential VCr) 

In this case (of. Eq. (7.13)), 
, 1'12 

H =--~+V(r) 
211 ' 

(7.27) 

so that EC1s. (7.14a, b) still hold good. The wavefunction is, therefore, of the same 
form as (7.161

). But now, the equation satisfied by Rk,l(r) is, 

I d2 2 d {2 /(l + I)}] -+--+ k -U(r)--- R (r)=O, 
Ldr 2 rdr r2 <,I 

(7.28) 

where, (7.29) 

We assume that VCr) ~ 0 as r ~ 00. Then, for large values of r, Eq. (7.2R) 
reduces to the free-particle equation (7.17). Therefore, the solutions of (7.28) 
should asymptotically (that is, for a large values of r) approach the gen2ral solu­
tion of (7.17). Now, the general solution of Eq. (7.17) is a superposition of the 
spherical Bessel and the Neumann functions.J2 Thus, 

Rk I(r) - AIMkr)+B,n,(kr) 
, r ----::, fXJ 

Ir 
( 1) (I )1 --lA sin kr --ITt -B cos kr --ITt Ii kr' 2 ,. 2 ~ 

(7.30) 

where, Eqs. (E. iOa, b) have been used. Also, C1 and 81 arc related to AI and Bl by 

(7.:m 

The Schr6dinger equation of the scattering problem can also be written as 

II. For incoming waves, k and rare antiparallcl so that k· r = Ia- cos 1t = -la-, whereas for outgoing 

ones, k and r are parallel. 
12. The reawn for excluding the spherical Neumann function in the solution of Eq. (7.17) is not valiu 

here, since the solution (7.30) is restricted to regions outside :he range of the potential and, thus, 
excludes the origin (r '" 0 ). 
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(7.32) 

with fI given by Eq. (7.27). The relations corresponding to (7.24) and (7.26a, b) 
are, then, given by 

'V,(r) ~ ~ (2/ + l)i'R, ,(r)P,(cos e) 
1-=0 • 

':_k~ ,~0(2l + l)i'C, sin (kr -~I1t+o,},(COS e) 

1 -
- 2ikr ,:0(21 + 1) C, exp (-io,)[(-l)'·1 exp (-ikr) + 

(7.33a) 

exp (;20,) exp (ikr)jP,(cos e). (7.33b) 

Now, the incoming part of the wavefunction in (7.33b) should be the same as in 
(7.26b), so that, we have, 

C, ~ exp (i 0,), (7.34) 

and 

'V,(r), :_2i~r ,~o(21 + l)[(-i)'<l exp (-ikr) 

+exp (2io,) exp (ikr)]P,(cos e). (7.33c) 

For given I, the first term in (7.33c) represents an incoming spherical wave and 
the second term an outgoing spherical wave, both of the same intensity. The 
phase of the outgoing wave is, however, shifted relative to the phase of the cor­
responding wave in Eq. (7.26b) [that is, relative to the free-particle case) by the 
amount 0,. 0, is, therefore, called the phase-shift." 

We, thus, see that the effect of the scattering pOlential is to shift the phase of 
each outgoing partial wave. 

The Scattering Amplitude 

Now, the asymptotic wavefunction 'Vir) for r --->~, should be of the form (7.8). 

Substituting for e ih in that equation from (7.26b), we have, 

'V,(r) - 2
1
k ~ (21 + 1) [(_l)'<1e-ib +e"1P1(cos 8) 

r-4oo l r,,--O 

eiir 

+f,(Q)-. (7.35) 
r 

Comparing Eqs. (7.33c) and (7.35), we get, 

13. That the phase shift is 0, rather than 20/. is seen from Eqs. a.30), (l.18) and (E.10a). 
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where, n/)(e) = 21 k+ L . (ex
p (~IS/) 1) p/(cos e). 

= {(2L + l)/k} exp (is,) sin S,P,(cos e). 
Thus, the scattering amplitude is independent of the azimuthal angle. 

Using Eq. (7.9), we have, 
do 
dQ I/k(Q) 12 

(lie) i i (21 + 1)(21' + l)x 
/ ~OI'=O 

2(J7 

(7.36) 

(7.36a) 

(7.37) 

while, from Eqs. (7.3) and (7.37), we get, for the total cross-section, the expres­
sion, 

where, Eq. (E.3l) has been used. dlJ in Eq. (7.381
) is the contribution to the total 

scaLlering cross-section from the lth partial wave. We note that 

ef') ~ (41t1e)(21 + 1). 

From Eqs. (7.36), (7.36a) and (7.381
), we have, 

0= (41t1k) 1m {Me = O)}, 

(7.39) 

where, 1m {fk(e = OJ} is the imaginary part of the forward scattering amplitude. 

Now, the total cross-section represents the loss of intensity suffered by the inci­
dent beam (in the direction e = 0) resulting from the fact that some particles have 
been deflected away from the incident direction. Eq. (7.382

), then, states that this 
loss of intensity is represented by the imaginary part of the scattering amplitude 
in the forward direction. In analogy with a similar case in optics, where the 
imaginary part of the complex index of refraction is related to the absorption 
cross-section for light in the medium, Eq. (7.382

) is called the Optical Theorem 
(also, sometimes, referred to as the Bohr-Peierls-Placzekjormula). 

Dependence of 0, on V 

The phase shift will, obviously, depend on the potential (It is zero when VCr) = 0). 
This dependence can be derived from the radial equations (7.17) and (7.28): 

Put R1./(r) = {vl,ir)}/r, in Eq. (7.17), and R1.t(r) {ukir)}/r in Eq. (7.28). 

Then, the radial equations reduce to: 
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[ 
d' 2 [(1+1)] 
dr,+k -~ v",(r)~O, (7.40) 

and 

[
d

2 
{ [(1+1)1] -2+k'- U(r)+--,-I u • .lr)~O. 

dr r ) 
(7.41) 

Multiply Eq. (7.41) from the left by v"lr) and then integrate ovcr r from 0 to~. 

Similarly. multiply Eq. (7.40) by u,,,(r) and integrate from 0 to~. SublraCi the 

latter result [rom the Conner. We get, 

1- d2U., 1- d'v" L-
Vk ,--; d.r - Uu--; dr:= Vk /U(r)ukldr. 

o .' dr 0' dr 0' . 

Integrating the L.H.S. by parts, we have, 

Now, 

[ 
du., dV.,]- L-

v,,--' -ut1 --' ::= vkIU(:x)uk/dr. 
'dr 'droo' ' 

v • ./r) ~ rJ,(kr), :Ylk) sin (kr -~I1t). 

u./r) ~ rR,.,(r),:_ (C,tk) sin (kr -~I1t+ oJ 

(7,42) 

(7.430) 

(7 A3h) 

where, Eqs. (7.18) and (7.30) have been used, and C, is given by Eq. (7.34). 

Also, since, R",(r) should be finite at r ~ 0, 

v..,(O) ~ u,}O) ~ O. 

Substituting from Eqs. (7.43 a, b) and (7.44) in Eq. (7.42), we get, 

--(C,tk) sin 0, ~ r- rJ,(kr)U(r)u, ,(r)dr, )0 ' 
or 

sin 0, ~ -k r- rj,(kr)U(r){u,,(r )/C,} dr. Jo ' 

(7.44) 

(7,45') 

Suppose now, that U(r) is infinitesimal. In this case, {u.,,(r)/C,} will differ little 

from the corresponding free-particle value. That is, {u",(r)IC,} ~ rj,(kr), and 

(since 0, would be small), 

sin 0, ~ 1\ ~-k 1-U(r) {J,(kr)j2r 'dr. (7.45') 

Since r'j,'(kr) is always positive, the R.H.S. has the sign opposile to lhal of UCr). 

;"i-,::o;;, 01 is positive for a negative potcnti<ll (Ntmctiv.z: force) and SI is negative for 
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a positive potential (repulsive force). Since a finite potential can be built up Py 
successively adding infinitesimal potentials, the above statement regarding the 

relative signs of 01 and V (r) holds good for the case of finite potentials also. This 

result could have been anticipated, for, the particles would be accelerated and 
would, thus, gain phase in an attractive field whereas they would be slowed down 
(lose phase) in a repulsive field. 

Dependence of 01 on the Angular Momentum and the Energy 

Eq. (7.41) can be written as 

[ 
d2 2 211 l 
dr2+k - 1i2 Verr(r)JUk,l(r)=O, (7.46) 

where 

l(l + 1)1i2 

Verr(r) = V(r)+ 2' (7.47) 
2W 

could be regarded as the 'effective potential'. Eq. (7.46), thus, represents a par-
1h2 

ticle of energy E = 211' moving under the influence of a potential l4 Verr(r). Fig. 

l(l + 1)jj2 
7.3 shows the variation of Verr(r) and 2 for a typical potential VCr). r 1 

211' 

represents the classical turning point (the closest approach), and is given by 
1i2k2 I (l + 1 )1i2 

E=T=Verr(rl)=V(rl)+ 2' (7.48) 
11 2WI 

For a given value of E, rl can be made as large as desired by choosing a 

sufficiently large value of t. For r < r l , e - (2J.l11i2)V.rr(r) in Eq. (7.46) would be 

negative, so that the wavefunction uk,l(r) would be exponential. Since further, 

Uk,I(O) = 0, uk,l(r) in the region r < r l is as shown in Fig. 7.3. Therefore, the 

product uk,l(r)V(r) will be small for all values of r < r l , provided the range ro of 

the potential is small compared with r l . Under this condition, VCr) would be 

negligible for r > r l, so that, since uk,lr) is oscillatory in this region, the product 

t(l + 1)1i2 

14. The tenn 2 in Eq. (7.47) represents the centrifugal force experienced by a particle in 
211' 

dVc 
its orbital motion. For. if Fc represents the centrifugal force. we have. Fc = - -;j; = -~(Jlr. 

where. w is the angular velocity of the particle. Hence. Veer) =~~w2r2 =~Jro2 = (I}12J). where 

J = 1l"2, is the moment of inertia of the particle. and L = Jro. the anguiar momentum. 
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Fig. 7.3 Diagram showing the conditions for the product V(r)ul,/(r) in Eq. (7.451
) to be small 

througholll the range r :::. 0 to r =_. 

u"l' )V(,) would be small for all values of, > ',. Thus, we see that the product 

u"l') V(,) would be negligible everywhere provided " ~ '0. And under this con­

dition, we have, from Eq. (7.45'), the result 0, = 0, 

Now, the condition " ~ '0' is equivalent to the condition, 

or 

i.e. 

or 

That is, 

/(I+l)1i' V( ) 
2 »- '1' 

2W, 

v ( )_/(I+l)1i' 
"rr '1 ~ 2 ' . W, 

'/i'k' /(1 + 1)1i' 
E = - = ,-,,-~c..., 

2~ 2W~' 

(7.49) 
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Thus, whenever condition (7.49) is satisfied, we have, °1 '" O. Classically, this 

result corresponds to the fact that particles with impact parameters larger than the 
range of the potential are not scattered. 

Now, condition (7.49) would be satisfied by any non-zero value of I if k (and 
hence the energy) is small enough. Thus, 

LtE -->0°1 = 0, 1 ;t O. (7.50) 

Also, when the energy is small, the phase shifts would be small and would, 
therefore, be given by Eq. (7.452

). Substituting expression (E.69a) for jl(kr) in 

(7.452
), we get, 

(7.51) 

1 
where 0,1=(2/+1)!!· 

l=O 

L= I 

l=2 

Ca) (b) 

Fig. 7.4 The space occupied by different panial waves, (a) For E...(J, (b) for larger E. 

Thus, the phase shift varies as £1+112 for small values of E. When the energy is 

practically zero, only the s-wave (l = 0) phase shift is non-zero. As the energy is 
increased, higher and higher partial waves come under the influence of the scat­
tering potential. This phenomenon is illustrated in Fig. 7.4 where the space 
occupied by a given partial wave is shown to shrink as the energy is increased. 

Zero-Energy Scattering: The Scattering Length 

The method of partial waves is useful in practice only if the series (7.36) and 
(7.381

) converge rapidly so that all but a few of the terms in the series can be 
neglected. From the discussion leading to Eqs. (7.49) and (7.50), it follows that 
the necessary condition is that the energy be small and the potential be of short­
range. That is, the method of partial waves is suited only for low energy scatter­
ing. 

If the energy is so low that only particles with 1 = 0 are scattered, then the 

theory is especially simple. In this case, only 30 (the os-wave phase shift') would 

'different from zero. Then, from Eq. (7.36) awl (7.36a), we have, 
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1.0) 1 il\, . < 
[.(e) = • (e) = k e sm "0' (7.52j 

which is independent of the scattering angle. The limiting value of the energy for 
which Eq. (7.52) holds good, is called 'zero-energy'. Thus, the angular distribu­
tion of the scattered particles at zero energy, is independent of the scattering 
angle. In other words, scattering is isotropic

l
'. 

The negative of the scattering amplitude in the zero-energy limit is called the 
scattering lengthl6 and is denoted by 'a'. Thus, 

1 il\, . • 
a = LtE ~o[-[,(e)l = -ke sm "0- (7.53) 

In terms of 'a' the zero-energy total scattering cross-section is given by (see Eq. 
(7.381», 

cr = 41t 1 [.(e) 1'= 4na'. 

Geometrical Interpretation of Scattering Length 

The radial equation (7 AI) for I = 0, reduces to 

[:', +k'- u(r)]u,.o(r) = O. 

In the zero-energy limit and for r »r '" this becomes, 

d
2
ut ,o = d2u.o =: 0 

dr2 - dr2 • 

Thus, the asymptotic value of "o(r) is given by, 

vo(r)s;{uo(r)} =hr+c, 
r>,o 

where, band c are constants. 
But, 

u, 0 = rR, orr) - re'" + [,(e)e'" 
• ":"0 

~ (r-a)=vo(r), 
'~o 

(7.54) 

(7.55) 

(7.55a) 

(7.56) 

(7.57a) 

where use has been made of expressions (7.33a), (7.8) and (7.53). In Eq. (7.57a), 
a normalization constant is arbitrary, so that. we may write. 

vo(r)=al,r-a) (7.57b) 

Further, choosing the normalization. 1 (1.1 = 1, we have, 

vo(r)=±(r-a), r»ro' (7.57c) 

15. Isotropy is characteristic of the s-state. Since the angular momentum is zero, there is nOlhing to 
fix a direction in space that is common 10 both the incident and the scattered particles. 

16. This definition ensures that the scaucring length is positive for bound states. It also enables us 1.0 

interpret 'a' as the radius of a hard (,imper.::lrable') sphere which would cause the same amount 
of scattering as the bound system. 
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(0) (b) 

Fig. 7.S Geometrical determination of the scattering length for a potential of range r .. 

Now, Eq. (7.56) is the equation of a straight line with slope 'b' and intercept on 
the Uo-axis equal to 'c'. Comparing Eqs. (7.56) and (7.57c), we see that 'a' is the 

intercept of the straight line Uo(r) on the Uo-axis when the slope of the straight line 

is negative as in Fig. (7.5a), and is the negative of this intercept when the slope is 
positive as in Fig. (7 .5b). In either case, 'a' is equal to the intercept of the straight 
line on the r-axis17 as is seen by putting Uo(r) = 0 in Eq. (7.57c). 

When the potential has a sharp boundary so that VCr) = 0, for r > ro, the 
lpplication of the above geometrical method for obtaining 'a' is especially 
simple. The continuity of the wavefunction requires that the interior 
wavefunction Uo(r) match the exterior wavefunction vo(r) at r = roo That is, 

Uo(ro) = vo(ro), and Uo'(ro) = vo'(ro). Thus, vo(r) would be the tangent to Uo(r) at r = ro 

(as shown in Fig. 7.5). A few interesting cases are shown in Fig. 7.6. Fig.7.6(c) 
corresponds to the case of an impenetrable sphere of radius roo Since the wave­

function should be zero inside such a sphere, the continuity of the wavefunction 
at r = r 0 requires that it be zero at the surface of the sphere also. The result for this 

case suggests (see Footnote 16) the possibility of interpreting the scattering length 
as the radius of a hard sphere which is equivalent to the actual physical system as 
far as scattering at low energies is concemed18

• From Eq. (7.54), we have the 

interesting result, 0 = 41tr;. That is, the total scattering cross-section is four times 

17. It should be noted that the straight line (r - a) has really no intercept on the r-axis when l4o(r) is 
as shown in Fig. 7.5(b), since r has no negative values. However, purely as a geometrical pro­
cedure, we can extend the r-axis to the negative side. Then, Eq. (7.57c) shows that 'a' is equal, 
both in magnitude and sign, to the intercept of the asymptotic straight line on this extended r-axis. 

18. Since the cross-section is proportional to the square of the radius, a negative value for the radius 
cannot be ruled out. As seen in Fig. 7.6(d), a negative value corresponds to the case in which the 
potential is neither repulsive enough to have a hard core nor attractive enough to form a bound 
system (with a real radius). 
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the geometrical cross-section! Actually, it is not this result that is unphysical (as, 
at first, we would be tempted to exclaim), but the assumption leading to it That 
assumption consists in identifying the surface of the sphere with an i'!fillile 
potcntial barrier. Infinite potcntial barriers are unphysical as there are no systems 
that are perfectly rigid. What the result implies is that, if the wavefunction is zero 
within a sphere of radius ro, then the radius of the actual (physical) sphere is at 
least 2r 0 (see the discussion on barrier penetration under WKB Approximation, 
Section 8.1). 

Whereas a negative scattering length [Fig. 7.6(d)] implies that the potential is 
not capable of binding, a positive scattering length need not signify a bound state 
Fig. 7.6[(b) and (c)]. However, for bound states, the scattering length is neces­
sarily positive as the wavefunction should falloff exponentially outside the range 
of the potential. Thus, in the case of scattering of neutrons by protons, the 
scattering length is -23.7 x 10-13 em when the spins of the two particles are anti­
parallel (singlet state) whereas it is +5.4 x 10-13 cm when their spins are parallel 
(triplet state). It is established by other independent experiments that the bound 
state of the neutron-proton system (the deuteron) is indeed a triplet state. The 
large negative value of the scattering length in the singlet state, however, shows 
that the neutron-proton interaction in the singlet state misses binding only mar­
ginally (00 '; !tI2). 

Also, since a new bound state appears whenever 0, crosses an odd multiple of 

!tI2, the number n of bound states is related to the phase shift 00 by the inequality, 

(n -Drc < Oc < G +~f' 
(f) represents the Ramwuer-Townsend Effect, the very low minimum 

observed in the cross-section for the scattering of electrons by rare-gas atoms at 
about 0.7 e V bombarding energy. 

Problem 7.1: Derive the relationship, 00 ~ -ka + nrc, n ~ 0, 1, 2, .... 

Scattering by a Square-Well Potential: Effective Range 

The preceding discussion shows that zero-energy scattering can be characterised 
by just one paramete~the scattering length. The differential scattering cross­
section is independent of both the energy and the scattering angle. The latter 
feature is a consequence of the fact that only s-waves (particles with angular 
momentum I = 0, which are insensitive to the shape of the potential) arc scattered. 
The energy-independence follows from Eq. (7.51) which shows that 

1 sin 00 I' 2 (dO) -k- =1.r.(e)I.~o= dQ 
k~O k~O 

!sce Eqs. (7.52) and (7.9)] is independent of the energy. 
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Flg. 7.6 Variation of the scattering length and the phase shift with the potential. 
Vo = ±(r - a). u,,- sin (kr + s.,). 

As the energy is increased, more and more of the partial waves will begin to 
get scattered making the scattering dependent on both the energy and the 
scattering angle. If the energy is only slightly higher than what is termed zero­
energy, the scattering would still be confined to the s-waves (and, hence, angle­
indepcndent), but the energy-dependence would make its appearance [Formula 
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(7.51), which is based on the approximatiun (E.69a), would no longer be valid]. 
This energy-dependence of the scattering cross-section at low energies can be 
described in terms of a parameter called effective range. We will illustrate this in 
the case of scattering by a short-range, attractive, square-well potential. 

V(rl 

ro 
O~--------r--------+r 

-Vo~-----' 

Fig. 7.1 The square~well potential. 

Let (see Fig. 7.7) 
VCr) = -Vo, for r < ro 

=0, forr>ro. (7.58) 

Also, let u(r) and vCr) represent u •. ,(r) of Eq. (7.55) for r < ro and r > ro> respec­
tively. Then, we have, 

(7.59a) 

and 

(7.S9b) 

where 

i' = k' + (2W1l2)Vo. (7.60) 

The boundary conditions to be satisfied by u(r) and v(r) are: 
du dv 

u(O) =0; u(rol=v(rol; drl,~,,= drl,~,o (7.61) 

Hence the solutions are: 
u(r)=A sinK/", r <r" (7.62) 
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and 

vCr) = B sin(kr + 0), r > roo 

But [see Eqs. (7.43b) and (7.34)J, 

ei8 

v(r) = TSin(kr + 0), 

217 

where 0 == 00. In place of this normalization. we adopt the normalizationl9
, 

v(O) == 1. (7.632
) 

Then 

1 
B == sino' 

and, from the second of the boundary conditions (7.61), 

sin(k r 0 + cS) 
A == sin o sin Kro' 

(7.64a) 

(7.64b) 

The normalization (7.632
) makes both vCr) and u(r) dimensionless, so that, in 

place of (7.57c), we have now the relation, 

() _ sin(kr+O)1 ={Sink(r-a)} 
vr .s;, l--+O '(k) 

.--+0 smu sm - a l--+O 

r 
=1-­

a' 

where the relation 0 == -ka + n7t (Problem 7.1) is used. 

(7.65) 

The last two of the boundary conditions require that the logarithmic derivative 
be continuous at r == roo That is, 

1 du 1 dv 
U dr I r =ro = V dr I r =ro' 

(7.61a) 

Then, from (7.62) and (7.631
), we get, 

]( cot Kr 0 == k cot (kr 0 + 0)0 (7.66) 

Problem 7.2: Using Eq. (7.66), show that 

{ 
tan Kro) a=r 1---, 

Kro 

where K2= (21111i2)Vo. 

Our objective is to find the dependence of the cross-section on the energy. 
Therefore, let us consider Eqs. (7.59a, b) for two different values of k, say kl and 

k2• We have, the four equations. 

19. Since v(r) corresponds to the actual wavefunction only outside the range of the potential, the 
value v(O) = 1, does not .cfect the value of the actual wavefunction at r '" O. 
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[ 
d', ,l 
dr' + k, + (2Wli )Vot,(r) = o. 

[~', + k; + (21JlIl')VO]u,(r) = o. 

[~', +kt]v,(r) = o. 

(::,+k;},(r)=o. 

(7.67a) 

(7.67b) 

(7.68a) 

(7.68b) 

Multiplying Eq. (7.67a) from the left by U, and Eq. (7.67b) by u,. subuacting the 

latter result from the former and integrating over r. we get. 

( 
du, du,)I- = (ki - k~) r- u,u,dr. 

u,--u - )0 
dr ldr 0 

or. 

(7.69) 

where W(u,.u,) is the Wronskian of u,and u,. 
Similarly, from Eqs. (7.68a. b). we have. 

W(v"v,)I;=(ki-kt) J,-v,v,dr. (7.70) 

From Eqs. (769) and (7.70), we get. 

[W(u,.u,)-W(v,. v,)r=(ki-k~) r-(U,U,-v,v,)dr (7.71) 
o )0 

Now, 

Also. 
W(u,. u,)I_ = W(v" v,)I_since. for large values of r. the interior and the exterior 

solutions should coincide with each other. Thus. Eq. (7.71) reduces to 

W(v" v,)1 0 = (k; -k;) J,-(V,V,- u,uJdr' 

But. from Eqs. (7.63"') and (7.64a) • we have. 

so that. 

dv'l =k,coto,. 
v,(r){fr 

, :=0 

W(v,. v,)1 0 = k, cot 0, -k, cot 0,. 

Substituting (7.74) in (7.72'). we get. 

k, cot o,-k, cot 0, = (k; -k~) f(V,V,-u,uJdr. 

(7.72') 

(7.73) 

(7.74) 

(7.n') 
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Consider two energies which differ only by an infinitesimal amount. Then, 

k; -k: = t.(e), 

and 

k2 cot O2 - kJ cot 01 = t.(k cot 0). 

Substituting these in Eq. (7.722
) and then taking the limit t.(k2) ~ 0, we get, 

219 

t.(k cot 0) d l~ 
Lt 2 =-2(k coto)= (V2_U2)dr. (7.75) 

~2->0 t:.(k) dk 0 

Integrating over k2 between limits 0 to k2
, we get, 

k cot 0 = (k cot O)k=O+ ik2 dk2 i~(V2 - u2)dr. 

Now, d I (k cot O)k =0 = -d vCr) 
r k =0 

d ( r) 1 = dr 1-a = -a' (from Eq. (7.65» (7.77) 

Also, (y2 - U 2) is dimensionless, so that f;o (v2 - U 2)dr has the dimension of 

length. Moreover, this length is approximately independent of k for small values 
of k2

, and is of the order of the range of the potential [since, for, < '0' the beha­

viour of the wavefunction is mainly determined by the potential when 

e< (2f.lljj2)V0, whereas for r > '0' (y2_ u 2
) is practically zero]. Thus, 

k cot 0 '" -;+{i~(y2-U\=od,}e 

1 1 2 2 '" -a+2:rcnk ' (7.76) 

where reff = 2 i~(V2-u2)k=odr, (7.78) 

is called the effective rangeW of the potential. We have, from Eq. (7.762
), 

• 21;: 1 k2 

~n u= = , 
1 +coeo k2+(~, k2_!..)2 

2 cIT a 

and 
41t . 2 41t 

(J == 2 sm 0 == ( )2 . 
k k 2+ ~, t2-!.. 

2 cO' Q 

(7.79) 

20. With our normalization (7.64a, b), (v2 
- u\ =0 is always positive, so that r df is a positive quantity. 
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This formula gives the energy-dependence of the total (s-wave) cross-section at 
low energies. It shows that low-energy scattering by a short range attractive 
potential can be described in terms of two parameters - the scattering length and 
the effective range. The absolute value of 'a' can be determined from experi­
ments at zero energy [Formula (7.54), which also agrees with (7.79) when k = 0]. 
The sign of 'a' and the value of T.ff can be determined from the measured 

cross-sections at higher energies and formula (7.79). 

Problem 7.3: Determine the values of v"g for a SQuare-well potential such that 

the cross-section at zero energy is zero. 

Problem 7.4: If y, represents the logarithmic derivative of the radial wavefunc­

tion at the boundary T = TO : 

show that the phase shift is given by 

kj,'(kr ,) - Yd,(kr rJ 
tan 0, kn,'(kro)-y,n,(krol" 

Deduce from this the relationship 00 = -kro for low-energy scattering by a hard 

sphere of radius r o. 

Resonance Scattering 

The conclusion that only s-waves are scattered near zero energy, is based on the 
assumption that the phase shift and the cross-section vary slowly and smoothly 
with energy. However, large variations in the cross sections over a small interval 
of energy do some times occur (depending on the potential). Such large variations 
in the cross-section are attributed to the fact that a certain partial wave is in res­
onance with the potential near zero energy. The phenomenon is, therefore, called 
resonance scattering. Naturally, it is the partial wave which is in resonance rather 
than the s-wave, that dominates scattering near the resonance energy. 

An understanding of the phenomenon of resonance could be gained from the 
following considerations: In terms of the logarithmic derivative 

R.., [dU •. , J 1 
y,(k) = [d TrIR./r)] '_', = J;"lu •. k) '0', To' 

the phase shift 0, is given by (see Problem 7.4), 

< _ kj',(p,) -y,j,(Po) 
tanul - , • 

kn ,(PrJ-y,n,(po) 
(7.80) 

where Po = kro; and TO = the range of the potential. 
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i sin 01 a + b c + d a c 
Writing,i tan 01 =--1:-' and using the relationship, --b = --d' when -b = -d' 

cosul a - c-

we obtain from (7.80) the equation, 

exp (2i 01) = exp {2i (~I + ~I)}' (7.81) 

where 

(7.82a) 

(7.82b) 

with 
(7.83a) 

(7.83b) 

and 

(7.83c) 

Here, the argument of the spherical Bessel and Neumann functions is Po. 
Eq. (E.73) has been used in obtaining (7.83c). 

Also, 

Eq. (7.82a) which is equivalent to the relation, 

Mkro) 
tan~1 =--(k )' n! ro 

shows that Sf is real. Similarly, I'll' SI and, hence, 

~I = tan 
1 
{sAPI-I'lI)}' 

are also real. 
Eq. (7.81) shows that the phase shift 01 can be written as the sum of two terms: 

01 = ~I + ~I' (7.86) 

Of the two, ~I is a slowly varying function of energy. In fact, substituting from 

Eqs. (E.69a, b) in (7.841
), we have, 

(kroiJ +
l 

tan~ - (7.842
) 

fkro-->o (21 + 1){(2/-1)!!}2' 

Thus, at low energies, SI goes to zero as EI
+l!2 [e,f. Eq. (7.51)]. Also, we see from 

Eq. (7.82b) that ~/ ~ 0 as PI ~ 00. Therefore, /;1 is the total phase shift whenever 

PI is infinite. Now, an infinite PI corresponds to a hard sphere [see Fig. 7.6(c)]. 

For this reason, SI is called the hard-sphere phase shift. 
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As is seen from Eq. (7.85\) the other term, ~" depends very sensitively on the 

energy because of tne factor (~, - 1\.,) in the denominator'''. Obviously, a sudden 

increase in the value of tan ~ occurs for ~, ~ 1\.,. If the energy is small enough, ~, 

would be negligible compared with ~ at this energy, so that 0, ~ ~,. Also, the 

phase shifts corresponding to the partial waves other than the one for which p, ~ fj" 
can be neglected. Then, 

...i') 41t . '. a~u' =-(2/+I)sm u, 
k' 

~ 41t(21 + I) sin'~ 41t(2/ + 1).[ tan'~ ] 
k' , k' I + tan'~, 

(7.87') 

Let El'\, be the energy at which ~, = 1\.,. For E in the neighbourhood of Ei'), we 

may write, 
£=4) 

P,(E) ~ P,(Eri'» + (E -.: Eri'» (a:,) 
~ 1\., - b,(E - Eri/), (7.88) 

where, b, > 0 (see Footnote 21)". Substituting in (7.85') from (7.88), we get, 

(7.85') 

where 

I', = 2(s,tb,). (7.89) 

Substituting for tan ~, from (7.85') in (7.87\), we have, 

(I) 41t(21 + 1)[ r; ] 
a (E) ~ k' 4(E _ EJ'»' + r: . (7.87') 

In Fig. 7.8, we show the variation of a,(E) with E for reasonably small values 

ofr,. The cross-section has a sharp maximum centred around E = Ell). From Eq. 

(7.87'), we have, 

21. By a. procedure idenlicallo the one leading to Eq. (7.69), we can show that 

-(2~11f12)(EI-EJ (, wI, (r)u~ (r)rp 
r.t r.t )0 " I 
}>/(£j)-",(£2)= ('v ('ol 

ul,.l u!,.J 

showi.ng that ~I is a decreasing function of E. The energy dependence of ~l is evident from Eq. 

q.83b). 
22. Since for the low energy, the wavefunction in the region r < TO is detennined by the potential 

rather than the energy [Eqs. (7.59a) and (7.60)1. the assumption that ~I is linear in E is a good 

approximation. 
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Fig. 7.8 Variation of the partial cross-section with energy near resonance [Eq. (7.872»). 

The meaning of 1, should be clear from Eq. (7.872
) and Fig. 7.8. It is the width 

of the resonance peak. That is, (1,12) is the value of I E - E~') I for which ci-') falls 

to half its peak value. Eq. (7.872
) is known as the (single-level) Breit-Wigner 

formula. 
Now, in the case of s-wave scattering, we have seen (Fig. 7.6) that the exis­

tence of a bound state is implied whenever 00 crosses an odd multiple of rr12. We 

see from Eqs. (7.85 1
) that at resonance (~, "" ~,)' ~, equals an odd multiple of rr12 

(so that 0/ > (2n + 1)rr12, with n = 0, 1,2, ... ). Thus, scattering resonance for the 

lth partial wave at the energy Eri') is related to the existence of a bound state of 

angular momentum I near this energy. There is, however, a slight difference 
between the resonance energy Eg) and the energy E~'J of a true bound state. 

Whereas Ef) is negative Eg) is positive (albeit small). Thus, the resonance state is 

not a true bound state. For this reason, it is called a virtual, or a metastable, state. 
Its existence could be understood on the basis of the effective potential, composed 
of the actual potential plus the "centrifugal potential" l(l + l)jj2/2Jlr2 (the curve 
V.IT in Fig. 7.3). For a particle with near-zero energy that coincides with an energy 

level of V.cr, the latter acts as a potential barrier that slows down its escape from 
the potential well. The particle is so to say, "captured" by the potential and later 
re-emitted as a scattered particle. For a given energy E of the particle and for a 
given potential VCr), it is the {-value that decides whether V.rrconstitutes such a 
potential barrier or not (see Fig. 7.9)23. Usually, the potential VCr) has a true 

23. The quantum mechanical penetration of a potential barrier is discussed in Section 8.1. 
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bound state of angular momentum / just below zero energy when V,a has a (vir­

tual) bound state of the same angular momentum just above zero energy. 

/Veff(ll) 

/\, E 

/~ 
O~------------~--~7------------.r 

Veff(Lz) 

Fig. 7.9 Variation of the effective potential [Eq. (1.47)} with angular momentum. 

The preceding discussion provides us with the following picture of the scat­
tering phenomenon in the low-energy region: When the energy is far from a res­
onance energy, the particles do not penetrate into the interior region of the 
potential. It is as if the particles nave met a hard sphere of radius 'a' (= the 
scattering length). Very few of the particles in the incident beam arc scattered, 
and the scattering is 
'instantaneous'. In the neignbourhood of a resonance energy, particles (with the 
appropriate angular momentum) begin to penetrate deep into the interior of tne 
scattering region. They are trapped by the potential, but eventually are re-emitted 
as scattered particles. The delay between the time the particles enter the potential 
and the time they are re-emitted, is of the order of Ni,. 

Problem 7.5: Derive the relationships (7.8\), (7.82 a, b) and (7.83 b, c). 

7.3 THE BORN APPROXIMATION 

The usefulness of the method of partial waves, discussed in the previous section, 
is limited to the case of low-energy scattering by short-range central potentials. 
We will now discuss an approximation method which is suitable for large energies 
and where the potential is not necessarily central. 

Substituting from Eq. (7.5), equation (7.4) of the scattering problem becomes, 

(-1'.. - k')ljI(r) = -U(r)ljI(r), (7.90) 

where, VCr) = (2IJ/1i")V(r). This differential equation can be converted to an 

integral equation with the help of Green' sjunctions. The technique is a common 
one applicable to any inhomogeneous differential equation of the form: 
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(n - rocJv(r) = --41tp(r), (7.91) 

where 0 is a Hennitian differential operator and per) is the inhomogeneity (also 
referred to as source density). The solution of Eq. (7.91) will consist of a par­

ticular integral w"'o(r), plus a complementary junction u"'o(r). The latter is a 

solution of the homogeneous equation, 

(O-rocJ u"'o(r) =0. 

That is, 

(7.92a) 

Thus, u"'o(r) is an eigenvector of the operator 0 belonging to the eigenvalue Wo. 

Now, 0 has, in general, several eigenvalues and eigenvectors. Let us denote 

an arbitrary eigenvector by u ... (r) and the set of all eigenvectors by {uw(r)}. Since 

o is Hermitian, the set of eigenvectors is a complete orthononnal one. That iS24 

[see FooU\ote 6, Chapter 2]. 

f u;,(r)uw(r)d3
p:: 0(00 - 00'), (7.93a) 

f uw(r)u~(r')doo = O(r - r'). (7.93b) 

Also, by definition, 
(7.92b) 

The particular integral W moe r) can be expressed in tenns of the Green's function 

for the operator (0 - (001). The latter is defined by 

(n - rocJGw.,(r, r') = 41tO(r - r'). (7.94) 

Thus, the Green's function G«>o(r, r') is a solution of the homogeneous differential 

equation (7.92a), except at the point r = r/. This fact suggests the form: 

G«>o(r, r') :=$ u",(r)/",(r,)doo. (7.951
) 

Substituting this expression in (7.94), we have, 

:1tf(OO- oocJu .. (r)/",(r,)dro = O(r - r'). (7.94a) 

Comparing Eqs. (7.94a) and (7 .93b), we get, 

J. (r') = 4J u~(r')}, 
w I~l 00 - roo 

and 

f
uw(r)~(r') 

G<n..(r, r') = 41t doo. 
" 01- Wo 

24. We assume, for Ihe sake of simplicity, Ihat Ihe eigenvalues are continuous. 
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or, 

Multiplying Eq. (7.94) with per') and integrating over r', we get"', 

(n - rool J G",,(r, r')p(r')d'r' = 41t J p(r')1i(r- r')d'r' = 4ltp(r), 

-4ltp(r) J ' , 
w",,(r) n-CiJo - G",,(r,r')p(r')d r. 

The general solution ofEq. (7.91) is, thus, given by, 

v",,(r) = u",,(r) +w",,(r) 

(7.96) 

(7.97) 

() 4 5 5uir)u~(r') (')drod" 
=u~r-It pr r. 

~ ro- CiJo 

The integrand in Eq. (7.96) could be interpreted as the contribution to the 
particular integral tbat has its source in the volume element d'r', so that w",,(r) is 

the superposition of the contributions from all such volume elements where the 
source density is non-zero, 

Applying the above procedure to Eq. (7.90), we get, 

ljIir) = uk(r) -~f Gir, r')U(r')ljIk(r')d'r'. (7.98) 

with, 

and27 

1 . 
uk(r)=--,;; exp(lk·r), 

(21t) 

G (r r') = 4lt5u:(r)u;(r') d'k' 
, ' (k')'-k' 

=-1-5 exp [ik'· (r-r')] d'k' 
2'" (k,)' - k' ' 

(7.99) 

(7.100) 

The integrand in Eq. (7.lO0) is a scalar so that the integral is independent of the 
co-ordinate system in which it is evaluated. Choosing, then, a co-ordinate system 
in which the z-axis is along the vector p=r-r', (see Fig. 7.10), we have, 
d'k' = k"dk' sin 9 d9 dcj> and, 

f-1C(e"-e-i,,) 
G,(r, r') = (21tipr' _ 12-01 dK, 

where l( = k'p; a = kp. 

(7.100a) 

The integral in (7.1 OOa) can be evaluated with the help ofthe theorem of residue? 
which states: "If F(z) is a function of the complex variable z such that it is 

25. Q operates only on the co-ordinate r. so that it can be taken outside the inregral sign. 

26. Note mat the Green's function is characterised only by the magnitude of k (that is, by~) rather 
than by the vector k. 

27. See, Arfken, G. Mathematical rMthods for physicists (Academic Press, New York. 1970) II 
edition. Section 7.2. 
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z 

p 

.k------+---------------.y 

\ I 

\r 

x 

Fig. 7.10 

analytic throughout a (closed) contour C and its interior, except at a number of 
poles28 inside the contour, then, 

~c F(z)dz = 21tiLR, (7.101) 

where, rR denotes the sum of the residues of F(z) at those of its poles that are 

situated within the contour". The arrow on the circle on the integral sign denotes 
the positive sense of integration. The residue at the (simple) pole z = a is given 
by 

R(at a) = Lt {(z -a)F(z)}. (7.102) 

According to Jordan's lemmaZ7
, the integral in Eq. (7.100a) can be written as 
I(CI) = 11 (a) +12(CI), (7.103) 

with 

(7.104a) 

28. The point z = a is a non-essential singularity of F(z) if F(a) is infmite but 

{(z -ajF(z)}, •• '" F .. (a), is finite, where m is a positive integer. That is. a non-essential sin­

gularity at • a' is removable by mUltiplying the function by the mth power of (z - a). If the sin­
gularity is not thus removable with any finite value of m, then the singularity is essential. A pole 
is a non-essential singularity and the smallest value of m for which F .. (a) is finite. is the order 

of the pole. When m = I, we have a simple pole. 
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and 

I,(a)=.,f, ( ~e-i~}z =_.i: F,(z)dz, 
JC2 Z -0 )C2 

(7.I04b) 

IMAGINARY AXIS IMAGINARY AXIS 

C!..I_t--_ 

K Real Axis 

(oj (bj 
Fig.7.11 The contours CpC1,C'I and e'2• The real axis is common for both 

lower and the upper contours. 

where C, consists of the real axis and an infinite semi-circle in the upper half­

plane while C2 consists of the real axis and an infinite semi-circle in the lower 

half-plane [Fig. 7.11(a)]. However, since the poles z =±a are on the contour (so 
thatF(z) is not analytic throughout the contour), a straightforward application of 
the residue theorem is not possible. In fact, the integrals I,(a) and 12(a) are 

improper for this reason. Just as a nonanalytic function has no unique derivative 
(for, the derivative depends on the direction from which we approach the point of 
interest as, for example, in the ease of the derivative of the function F(x) at x = 0 
in Fig. C.l), the value of an improper integral depends on the limiting process 
used to evaluate the integral. In the present case, the possible limiting processes 
are: 

(i) Deform the contour to C't and C'2 as shown in Fig. 7.11(h)." Then, 

1,(0)= Lt J: F,(z)dz, 
, -)oil Je l 

and 

This leads tolD 

I(a) = 2m cos a, (7.103') 

29. Actually, there are three other ways of defonning the contour. Thus, we can go under the real 
axis at the pole x:o --0" and over the real axis at ,,= +0, or go either over or under !.he real axis 
at both places. AU these lead to the same result, Eq, (7.103 1

). 

30. See. Example 7.2.3 in the reference quoted in footnote 27. 
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and 

G ( ') 
::: cos (k 1 r - r' I) 

k r, r I' 1 r-r 

(ii) Replace a by 0+ iTJ, where TJ > 0 but is small. Then, 
1(0) = Lt 1(0' + iTJ). 

'1-->0 
IMAGINARY AXIS 

C~ 

~ ___ --=O+-_tr __ +_i'l--K"'ReOI Axis 

(0 ) ( b) 
Fig. 7.12 Contours for the integrals leading to Eqs. (7.1032

) and (7.1033
). 
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This procedure shifts the pole away from the real axis and thus away from the 
contour [Fig. 7.12(a»). After integration, the poles are brought back. Application 
of the residue theorem gives, 

and 

so that, 

~ 
zei. 

I a+i = . . dz I( TJ) c
3
(z -a-zTJ)(z +a+zTJ) 

::: 21ri{_z_e_
i
._} 

z +a+iTJ z=o+i'1 

eik Ir-r'l 
Gk(r,r') =-1 --, I' r-r 

(iii) Replace a by a-iTJ [Fig. 7.12(b)]. This leads to 

1(0')::: Lt I(O'-iTJ)::: 21rie-iO
, 

'1-->0 
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and 
e-Iljr -r'j 

G,(r,r'), 'I' (7.100') r-r 

Eqs. (7.100"2,') represent, respectively, a standing spherical wave, an outgoing 
spherical wave and an incoming spherical wave. From the physics point of view, 
choosing the limiting process is, thus, equivalent to choosing the boundary 
conditions. In the present case, the boundary conditions require an outgoing 
spherical wave in (7.98) [see Eq. (7.8)]. Therefore. the limiting process to be used 
is the one described in (ii) above, and the Green's function is given by Eq. 
(7.100'). 

Now,forr»r', 

~ r{l- 2 (r'lr)c05 e} Ia 

",;"r-r'cose, 

where e is the angle between rand r'. 
Then. 

so that, 
", e 'k" G,(r,r,) - -e-' ". 

r:tor' r 
(7.104) 

Substituting this value of Gir,r,) in (7.98) and neglecting the normalization fac­

tor in u.(r). we have, 

." 
'I',(r) - exp (i k.r) - 4

1 ~ 5 exp (-ik'.r')U(r')'I',(r')d'r'. 
r ---+.. 1t r 

(7.105) 

Comparing Eq. (7.105) with Eq. (7.8), we have, 

f.(e, <1» = - 4~J exp (-ik'· r')U(r')'I',(r')d'r' (7.106) 

Integral Equation for Scattering 

Since '1', occurs on both sides, Eq. (7.105) does not really represent a solution of 

the differential equation (7.90); it is actually the integral equation for scattering. 
That is. the Green's function has helped us only to convert the differential equa­
tion to an integral equation. But now the advantage is that we can solve the 
equation by an approximation method applicable to an integral equation (but not 
applicable to a differential equation). namely, the method of iteration. This is a 
successive approximation method in which the nth approximation to 'I'.(r) on the 
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left hand side ofEq. (7.98) is obtained by substituting the (n -l)th approximation 

to '\vk(r') on the right hand side of that equation. Thus, writing the equation in 

terms of Green's functions, we have,31 

¥k')(r) '" exp (ik· r)- 4~J Gk(r,rl)U(rl)¥:-I)(rl)d\, (7.lOi) 

where ¥;) is 'l'k to the nth approximation. 

Writing, 

¥k"-l)(rl) = exp (ik· r l)-4~f Gk(rl'rz}V(rz}¥k·- 2)(rz}d3r2, 

¥:-2\rz}= exp(ik·rz}- 411tf Gk(r2,r3)V(r3)¥k·-3\r3)d3r3' 

and so on, we get, 

¥k"\r) = ~ cI>(;(r), 
p ~O 

with 

where ro"" r. 

(7.108) 

In order to understand the meaning of cI>{;, let us look more closely at <I>~. We 

have, 

<I>;(r) = (- 4
1
1t J f f Gk(r, rl)V(rl)Gk(rl' r z}V(r z). exp (ik· r z}d

3
r1d

3
r 2 

= (~~J f d 3rPtCr,rl )U(r l ) f d3rzGk(rl'rz}V(rz} exp (ik· rz). (7.108a) 

This has the following obvious interpretation: A plane wave exp (ik· rz) is 

incident at the volume element d3r 2• It gets scattered there by the potential U(r~. 

The scattered wave is then propagated from d3r 2 to the volume element d3r l, this 

propagation being represented by the Green's function32 Gk(rlr~. At d3r l, the 

wave is scattered again by the potential V(rl). Finally, the wave is propagated 

from d3rl to the point of observation r by Gk(r,rl). The whole process is sche­

matically shown in Fig. (7.13). Thus, <I>~(r) represents the contribution to 'JI';)(r) 

from all such doubly-scattered waves, and cI>{;(r) is the contribution from waves 

(particles) that have been scattered p times by the potential. The maximum 
number of scattering suffered by a particle contained in 'JIk')(r) is, thus, n, and 

31. Eg. (7.1071
) is known as the nth iterated form of Eg. (7.98). 

32. The Green's function is, for this reason, called the propagator. 
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<I>:(r);;; ¥.~(r) = exp Uk· r). 

represents particles that have suffered no scattering at all (that is. the incident 
wave). 

r 

I<lg.7.13 Schematic representation of the doubly scattered panicles reaching the point of 
observation r. 

The series (7.107') in the limit n --> ~ is known as the Neumann series. It 
represents a solution to the scattering problem [Eq. (7.90) or Eq. (7.98)] if the 
series is a converging one. Roughly speaking. such a condition would be satisfied 
if the wave gets weaker and weaker at successive scatterings. That is. if the 
number of particles getting scatlered progressively diminishes at each successive 
scatlering. We see from Eq. (7.108) that a necessary condition forthis is that the 
potential be weak." . 

The approximation, 
(7.105a) 

is known as the nth Born Approximation. 
The scattering amplitude in the nth Born Approximation is given, according to 

Eq. (7.106), by 

1.")(9.$) =-4~f exp (-ik'· r')U(r')¥."-l)(r')d'r'. (7.106a) 

If the potential is weak enough (so that the convergence of the Neumann series is 
rapid enough). the first Born Approximation (which is also called simply the Born 
Approximation) provides a good enough approximation to 1j!k(r): 

1j!.(r) ~ v:)(r) = exp (ik· r) - 4~ f Gir. r')U(r') exp Uk· r')d'r' 

1 e
il

' f - exp (ik.r)--4 - exp (iK· r')U(r')d'r'. (7.105b) 
,. --7"" 1t r 

33. A more exact criterion will be derived later in the case of the fmt Born Approximation JEq. 
(7.112b)]. 
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and 

Ik(e,<I» '" ~1)(e,<I» =-4~f exp (iK· r')U(r')dV, (7.106b) 

where 1iK == 1i(k - k'), is the momentum transferred from the particle to the 

potential. Referring to Fig. (7.14), we have, 

since 

K == I K 1= (e+k,2-2kk'cose)112 

= {2k 2(1 _ cos e)} 112 

= 2k sin(e/2), 

I kl=lk'l 

L-----~----------------________ ~ ____ ~~z 
k 

Fig 7.14 

(7.109) 

Eq. (7.106b) shows that the scattering amplitude is just proportional to the 
Fourier transform of the potential in the 'momentum-transfer space.,34 

When the potential is central U(r) == U(r), we can further simplify the expres­
sion (7.106b) by taking advantage of the fact that the integrand is a scalar. Thus, 
choosing a co-ordinate system in which the z-axis is along K, we get, 

1 (-
Ik(f'), <1» == [,.(f') = -'K)o rU(r) sinK rdr, (7.110) 

which is the (first) Born Approximation scattering amplitude in the case of a 
central potential. We note the following important features: 

(i) The amplitude is independent of the azimuthal angle <1>. This is a conse­
quence of the cylindrical symmetry of the potential and is in agreement 
with the result (7.35) obtained in the method of partial waves. 

(ii) It depends only on the momentum transfer (which is proportional to 
k sin ce/2» and not on the momentum of the incident particle or on the 
scattering angle individually. 

34. It is also proportional to the matrix element of the potential between the plane wave states exp 
Uk· r') (the initial state) and exp (ik'· r') (the final state). 
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When the pOlential is weak, the method of partial waves also can be shown to 
yield expression (7.110) for the scattering amplitude. In this case, the phase shift 
0, is given by Eq. (7.45'). Then from Eqs. (7.36) and (7.36a), we have, 

I -
I.(e) ~ k ,~o(21 + 1)(1 + io, + ... )o,P,(cose) 

~ 1: (21 + I)P,(cos 9)· (o,tk) 
1",0 

I r-
~-K J

o 
rU(r)sinKrdr, (7.1 lOa) 

where the addition theorem (E.75) for spherical Bessel functions has been used. 
Now, the addition theorem is valid only if a large number of terms contribute to 

the summation in (E.75). This requires that 0, be nonzero for a large number of 

partial waves, which in turn requires that the energy of the incident particles Ix' 
large. Thus, derivation (7 .1 lOa) is valid only when the pOlential is weak (so that 
0, is small) and the energy is large (so that 0, is not zero). As we have seen, these 

are not conditions under which the method of partial waves can be usefully 
applied. 

Criterion for the Validity of the Born Approximation 

The criterion is that I <1>: I <t I <1>: I ~ 1. Now, in the case of a cenlIal potential, we 

have, from Eqs. (7.100') and (7.10Sb), 

~I() IjeXP(iklr-r'Il U(') ('k ')d" 
\V r =-- r cxp l . r r. 

k 41< Ir-r'l 

It is reasonable to assume that <1>: has its maximum value at r = 0 (the cenlIe of 

the potential). Now, 

<1>~(O) ~ _2-(2~)jeXp (:kr') VCr') exp Uk· r')d'r'. 
41< h r 

~ -(:~)r exp (ikr,)sinkr'V(r')dr' 

Let us assume that the potcntial is of finite range, say ro, and of strength Vo. Then, 

(7.111) 

Case 1: kro<t 1 (low energy) 

In this case, expanding e2ifuu 
in tcnns of 2kro' we get. 
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1 <1>;(0)1 "" ~V ~~. 
1i 

Thus, the Born approximation would be applicable if 

or, 

~Ver~ 
7~1, 

2 1i2 

VerO ~-, 
~ 

But, if the potential is strong enough to cause binding, then35 

2 (12)1i2 
Vero~ 8" ~' 

so that, Born approximation will not be valid at low energies. 

Case 2: kro» 1 

In this case, 

so that, 

or, 

where, 

is the velocity of the particle. 

Vero 1iv «1, 

1ik 
V=-

~' 
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(7.112a) 

(7.113) 

(7.112b) 

Thus, the kinetic energy should be large compared with the potential energy. 
This result is consistent with the remarks regarding the validity of derivation 
(7.1 lOa). Even though the above result is derived for the special case of a short­
range central potential, it is of more general validi ty36. 

Scattering of Electrons by Atoms 

As an application of the Born Approximation formula (7.110), let us consider the 
scattering of electrons by atoms. In this case, the potential is the screened 
coulomb potential, 

35. See, Ref. 1, Section 15. 
36. For a more detailed discussion on this point, see Wu, T. W. and Ohmura, T. Quanlwn Theory of 

Scallering (prentice Hall, New Jersey 1962), Sections C.3 and C.4. 



236 QUANTUM MECHANICS 

Vir) ~ (2e 2Ir)e-"". (7.114) 

where. Z is the atomic number". Substituting from (7.114) in (7.110). we get 
Iremembering. U(r) = (2~1i2)V(r)J. 

/,(8) = - (2~ii2)2e2 ( 2 '! ). (7. 115a) 
K ro+ 1 

For a pure coulor..b force. '0 = 00. so that Eq. (7.115a) reduces to 

/,(8) = - (2IJZe 2Iii2K\ (7.115b) 

and the differential scattering cross-section is given by 

do _ 8 2 _ ( 2e
2 )2 I 

dQ -I/'( ) 1 - 2~v2 sin'(812)' 
(7.116) 

v being the velocity of the particle. It so happens that formula (7.116). obtained 
here as an approximation, is in agreement with both the classical Rutherford for­
mula and the exact quantum mechanical formula for Coulomb scattering". 

Problem 7.6: Use the Optical Theorem [Eq. (7.39)] to show that the Born 
Approximation cannot be expected to give the correct differential scattering 
cross-section in the forward (8 = 0) direction. 

Problem 7,7: Using the Born Approximation formula (7.110) show that scat­
tering by a square-well potential of depth Vo and range '0 has the following char­

acteristics: 
(a) Scattering is peaked in the forward direction. 
(b) At large energies, the total scattering cross·section is inversely propor­

tional to the energy. 
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CHAPTER 8 

APPROXIMATION METHODS 

An exact solution of the SchrOdinger equation is an impractical proposition except 
for the simplest of potentials. In most cases of practical interest, one has to settle 
for an approximate solution. Thus, several methods of approximation have come 
to be devised for tackling various types of problems in quantum mechanics. 
These methods could be broadly divided into two categories: those for time­
independent problems and those for time-dependent problems. The former refer 
to the methods applicable to the time-independent SchrOdinger equation (4.18) 
and the latter to those applicable to the time-dependent SchrMinger equation 
(4.14). In this chapter, we propose to consider some of these approximation 
methods. 

A. METHODS FOR TIME-INDEPENDENT PROBLEMS 

In this category, we will discuss the WKB Approximation, the Variational 
Method and the Time-independent Perturbation Theory. 

8.1 THE WKB APPROXIMATION 

The Principle of the Method 

This approximation method, named after Wentzel, Kramers and Brillouin who 
fIrst introduced the method in quantum mechanics l

, is also known by the alter­
native names, semi-classical approximation and phase-integral method. The 
method is suited only to problems in one dimension or to problems that can be 
decomposed into one or more one-dimensional ones. The principle underlying 
the method is elucidated in th~ following: 

Consider the classical equation, 
p2 

H:;: 2J.l + V(r}, (g.l) 

1. Wentzel, G., Z. Physik, 38, 518 (1926); 
K~men, H.A., Z. Physik, 39, 828 (\926); 
Brillouin, L, Compl. Rend., 183, 24 (1926). 



238 QUANTUM MECHANICS 

where, II is the Hamiltonian, p the momentum and Ii the mass of a particle. The 
potential VCr) represents the external field which influences the motion of the 
particle. Eq. (8.1) can be converted into the equation of motion of the particle by 
substituting for II and p from Eqs. (1.14a, b). We get, 

oS ('liS)' 
- 01 =2il+ V(r), (8.2) 

where, S is the action associated with the classical path of the particle [see 
Eq. (1.6)]. Eq. (8.2) is the (time-dependent) Hamilton-Jacobi equation of 
classical mechanics'. The corresponding equation of motion in quantum 
mechanics, is the time-dependent Schr5dinger equation (4.14) with the 
Hamiltonian given by Eq. (8.1) where p and V are replaced by operators p and V 
in accordance with Postulate IV of Chapter 3. In the co-ordinate representation, 
we have, Ii:; -ill'll [see Eq. (3.18')J and 1jI(t) --> (r 11jI(1» = 1jI(r, I), so that 
Eq. (4.14) reads, 

ill d1j1~;.t) =[_ ~; '11'+ \'(r»)1jI(r,ll. (8.3) 

The connection between Eqs. (8.2) and (8.3) would become clear if we substitute 
for 'V(r,l) in the latter from Eq. (4.15b), namely, 

we get, 
1jI(r,t)= exp {(i/II)S(r,t)} (8.4) 

(
--iJsL.<=[(17S. 17S) _ilt V'S + V(r)l'l' 
al r 2ji 2ji 'J ' (8.3a) 

where, the identity, div (AcJ» = A· 'lit» + <I> div A, is used in evaluating V'lv. Thus 
the equation satisfied by S is given by, 

_ as = (17S), + V(r)- ill v'S. 
dt 2ji 2ji 

(8.5) 

Comparing Eqs. (8.5) and (8.2), we see that quantum mechanics should reduce to 
classical mechanics in the Iimit1i --> 0 [This is evident also from Eq. (1.10a)J. In 
orner words, the finite value of II is responsible for the difference between clas­
sical and quantum mechanics. Now II, being a universal constant, cannot be equal 
to zero. What is possible., and is in effect equivalent to 11 --> D, is that the term 
containing 11 in (8.5) can be negligible compared wirh rhe term containing ('liS)'. 
This suggests that when the condition, 

I (17S) 1'»111 V'S I. (8.6a) 

or, 

I p'l>1t 1(17· p) I, (S.6b) 

2. See, footnote]. Chapter 4. 
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is satisfied, an approximation method based on a power series expansion of S in 11 
is possible. Thus, writint, 

11 (11)2 S =: So+iSI + i S2+ ... , (8.7) 

the classical approximation consists in neglecting all powers of 11 higher than zero. 

In the semi-classical or WKB approximation, the terms up to the first power of A 
is retained. Thus, the WKB approximation is just a step ahead of the classical 
approximation. 

The WKB Wavefuntion 

As we stated earlier, practical applications of the WKB approximation is limited 
to time-independent (that is, stationary) problems in one dimension. We, there­
fore, confine our attention to such problems. 

In the case of stationary problems, we have, from Eq. (4.21), 
'V(r, t) = q,(r) exp {-(i!1i)Et}, (8.8) 

with [see Eq. (8.4)] 

q,(r):::: exp [(i/1i)W(r)}, (8.9) 

where, 

S(r,t) = W(r)-Et, (8.10) 

E being the energy of the system. 
Thus, for the one-dimensional case, Eqs. (8.2), (8.5) and (8.7) reduce, respec­

tively, to the equations, 

and 

W(x) = Wo(x) + (~]WI(X) + (~)2 Wz(x) + ... , (8.71
) 

\' ) l 

while, the SchrOdinger equation (8.3) reduces [with the help ofEq. (8.8)] to, 

d2<l> 211 
-+-[E-V(x)]q,=O (8.3 1

) 

dx 2 1i2 
' 

with 

3. Note that the dimensions of the S. are such that tI'-IS. is dimensionless. S is expanded in powers 

of (M) rather than oUt, because of the occurrence of the factor (iltl) in '1/ [(Eq. (8.4»). 
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(8.9') 

From Eq. (8.2'), we have,' 

2~[E-V(x)1 = (':0J =p'(x), say. (8.11) 

Then, Eq, (8.3') becomes, 

(8.3') 

We are intereste.d in the solution of this equation within the WKB approximation. 
This is obtained by substituting for W in Eq. (8.9') the approximate value, 
W ~ Wo+(1iIi)W, from the series expression (8.7'), The values of Wo and W, 

appropriate to the system being considered, are determined by substituting (8.7') 
in Eq. (8.5') which is equivalent to the SchrMinger equation (8,3'), The substi­
tution, 

dW(x) 
u(x) =---;tX' (8.12) 

will prove convenient. Substituting from Eqs. (8.11) and (8.12), Eq, (8.5') 
reduces 10 

'Ildu 2 , 
tdx=P-u. 

Also, differentiating Eq. (8.7') with respect to x, we get, 

u(x) = ",,(x) + (~f'(X) +(~ )'u,(X) + ... , 
where, 

In terms of u, $(x) is given by, 

dW, 
u,ex) =dX" 

[ i f<dW J <I>(x) = exp Ii dx' dx' 

= exp[~r u dx} 

Substituting (8.7') in Eq. (8.5'), we have, 

(~)dUO +(~)'dU'+ idx idx'" 

(8.5') 

(8.7') 

(8.13) 

(8.9') 

(8.14) 

4. Note that p(x) def-ined by Eq. (S.ll) is in agreement with the usual definition of the momentum 
of a particle. 
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Equating coefficients of like powers of (Ni) on either side of Eq. (8.14), we get, 

uo=±P, (8.15a) 

u1 =_~(:o)=_ 2~ (:). (8.15b) 

Corresponding to the two values of 140, we have two values of u: 

1'1 1 (dP) (1'1) d u+=P-T2p dx =P- T dx(ln{p), (8.16a) 

1'1 1 (dP) (1'1) d u_ = -P -j 2p dx = -P - T dx (In{p). (8.16b) 

Substituting in Eq. (8.92
), we get, 

<1>+(X) = Jp exp(~fx Pdx') (8.17a) 

1 ( i fX ) <1>_(x) = {p exp -tz pdx' (8.17b) 

These represent the two independent solutions of the second order differential 
equation (8.32

). The general solution, which is the WKB wave/unction, is given 
by a linear combination of <1>+ and <1>_: 

<1>WKB(X) = ;; exp[~fx P(X')dx'] + ~exp[ -~r P(X')dxJ (8.18) 

The lower limit for the integral in (8.17) and (8.18) would be a classical turning 
point, as will be seen shortly. 

Criterion for the Validity of the Approximation 

The approximation leading to (8.18) is valid when condition (8.6b) is satisfied. In 
the present case, this condition reads, 

or 

2 ...idPI Ip I», dx ' 

A I (dp/dx) I 1 
I pi «, (8.19) 

where, A::: (Np), is the de-Broglie wavelength of the particle. Thus, the condition 
for the applicability of the WKB approximation is that the fmctional change of 
momentum over a de-Broglie wavelength of the particle be smail. This criterion 
could be compared with the criterion for the validity of ray (geometrical) optics: 
the variation of the index of refraction should not be appreciable over the distance 
of a wavelength. 
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Connection Formulae 

Condition (8.19) is, obviously, not satisfied at a classical turning point, where 

pix) = 0, but (:: ) '" O. The usefulness of the WKB method happens to be in the 

case of those problems that involve such turning points. That is, these are prob­
lems where we have two regions where the WKB approximation is valid but 
which are separated by a classical turning point (as in Fig. 8.1). The method can 
be applied to the solution of such problems only if we find a way to extend the 
WKB solution from one region to the other through the turning point. Such a 
procedure in effect, amounts to obtaining a connection between the WKB wave­
functions in the two regions which (the wavefunctions) can be written down 
independently of each other using forumla (8.18). The procedure consists in 
solving the SchrOdinger equation (8.3') exactly near the turning point and 
extrapolating the solution for regions far away from the turning point. The 
extrapolated (or, asymptotic) solutions will resemble the WKB solutions. Since 
the relationship between the extrapolated solutions in the two regions are known, 
we get the relationship between the two WKB solutions assuming this to be the 
same as that between the extrapolated solutions. 

V(x) 

------~r_------------E 
I 1I 

------~O+-------------~X~,-----------------------.X 

Fig. 8.1. Classical (I) and non-classical (IT) regions separated by II classical lurning point (XI). 

Now, a turning point separates a classical region, where E > V (x), from a 
non-classical region where E < V(x). The equations relating the WKB solutions 
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in the two regions, therefore, give the connection between the WKB wavefunc­
tions in the classical and the non-classical regions. These equations are, for this 
reason, given the name connection formulae. A derivation of the formulae 
follows: 

Consider a particle of energy E encountering a potential Vex) as shown in Fig. 

8.1. Classically, the particle would be turned back at x =XI (hence the name, 

turning point) where the kinetic energy (E - Vex»~ becomes zero. But, in quantum 

mechanics, since the force - (dV Idx) is finite at x = XI' Vex) represents a 'trans­

luscent' wall rather than an 'opaque' one (An opaque wall is represented by a 

potential which rises to infinity at x = XI)' This means that, at XI' some particles 

will leak into region II (the non classical region), eventhough the majority might 
be turned back. This phenomenon is known as the penetration of a potential 
barrier, or, tunnelling.5 In terms of an individual particle, we can say that there is 
a certain probability that it is found in region II if it was originally in region I. 
This probability can be estimated with the help of the WKB approximation. 

In region I, E > Vex), so p(x) is real. The WKB wavefuction is, therefore, 
oscillatory. We have, from Eq. (8.18), 

A ;{iill) r pix' B -{iill) r pdx' 
I 't I 't 

<I>(x) = {pe + {pe 

= ~Si{ -(1/11) f pdx' + 7rl4] 

+ -Jpco1-(1I11) i
l

x 

pdx' + 7rl4]. (8.2Da) 

where, 

(8.2Ia) I. 

(8.21b) 

The reason for writing <1>( in the peculiar form (8.20a) would be clear later. 

In region II, E < Vex) and so p(x) is imaginary: 

p(x) = i I p(x) I . (8.22) 

Substituting in Eq. (8.18), we have, for the WKB wavefunction in region II, the 
expression, 

(8.20b) 

Thus, the WKB wavefunction of the particle is oscillatory in the classical region 
and is exponential in the non-classical region. 

5. This name is inspired by the analogy of the crossing of a mountain by constructing a tunnel 
through it rather than by climhing over it. 
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Now, <1>, and <l>u are approximations to the same wavefunction. But we can 

identify them as such only if we know the relationship of the coefficients A, and 

BI (or A and B) in (8.20a) to the coefficients A, and B, in (8.20b). The connection 

formulae provide the required relationship. As we have already stated, the con­
nection formulae are obtained by solving Eq. (8.3') exactly near the turning point 
and then finding the asymptotic forms of the solution far away on either side of 
the turning point. 

We assume that V(x) is linear in the neighbourhood o[the turning point. That 

is. 

where, 

Then, 

V(X) .:, V(X,)+(X-xl{:t., 

~E +C(x -Xl)' 

Substituting for p' [rom (8.25), Eq. (8.32
) reduces to, 

d'w 
d~'-~'I'~O, 

where, 

and 

'1'(1;) ~ <I>(x). 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

Regions I and II and the turning point correspond, respectively, to I; < 0, I; > 0 and 
I; ~ O. 

The solutions of Eq. (8.26) are known as the Airy Functions', and are given by, 

1 L-Ai(I;)~- cos (s'/3+sl;)ds, 
It • 

(8.28) 

and 

Bi@=~ r-{ exp(-s~-s'/3)+ sin (s3/3+s~)} ds. 
It). 

(8.29) 

> 

6. Jeffreys, H .• nd B.S., Methods of Mathematical Physics (Cambridge University Press. Cam­
bridge 1956), m Edition. Section 17J17. 
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We are interested only in the asymptotic forms of Ai and Ri. These are given by, 

Ai@ - (_1t2~tl4 sin[(213) (-{)3i2+ 1tI4], (S.2S1) 
~«o 

1 -2 -114 3i2I 
- -2 (1\; ~) exp [-(213)~ J. 
~»o 

Now, for ~ < 0 (that is, for x < XI), 

(213)(-{)312= 1>1;..J -~' d(-{') 

=- 1~..J-~'d~' 

= -1 (" p(x')dx', 
td"l 

where, Eqs. (8.27) and (8.25) are used in the last two lines. 

Also, 

= (2I1C-nrl16 [2I1C(xl - x)] 114 

= (2I1ClIrl16..Jp(x). 

Similarly, for ~ > 0 (x > XI)' we have, 

(213)~312 == i J." 1 p(x') 1 dx', 
"I 

and 

(~r == (2I1ClIrl16..J 1 p(x) I. 
Substituting from Eqs. (8.30a-31b) in Eqs. (8.281-292

), we get, 

. ooc a. .{ 1 J. "I 1t] Az@ = <1>1 (x) - J:.S1 +- p(x')dx' +- , 
~«o "«"I"'JP Ii " 4 

(8.30a) 

(8.31a) 

(8.30b) 

(S.31b) 

(s.3i) 
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Bi(~) ~ <I>~'(x) -~COS[~f"p(X')dx'+~]' 
~.:<O % <<:SI Vp 1i " 4 

(8.331
) 

Bi(~) ~ <I>~P(x) - .~ exp (~f I pi dx'), 
~;:.>O X»Slvlp/ "'1 

(8.332
) 

Here, 

(8.34) 

Since ~~xp and tl>~ arc approximations to the same wave-function, the former is 

the continuation into the non-classical region of the laller in the classical region. 
Thus, the connection between the approximate forms of the wavcfunctions in the 
classical and the non-classical regions are given by the formulae: 

Classical region Non-classical region 
(oscillatory) (exponential) 

up 'nSin[~r Pdx'+~] Hil P l-lnex~~.C I p W}, (8.35a) 

'2 [If" n] .,2 {If' ,l flp . cos Ii , pdx' +4 Hili p r cxp Ii " I p I dx J' (8.35b) 

We nOIe that a wavefunction that is represented by the sine function in the clas­
;;ical region becomes a decreasing exponential in the non-classical region 
whereas an increasing exponential in the non-classical region corresponds to the 
cosine function in the classical region. Note also that the constant multiplying the 
increasing exponential is the same as that multiplying the cosine function whereas 
the constant multiplying Ibe decreasing exponential is half that associated with 11.0 
sine function. 

The wavefunction of the physical system would be a general solution of Fq. 
(8.26) and, thus, a linear combination of <1>, and <1>,. Thus, 

<I>~'(x) - . ~[Sin{! f" p(x')dx' +,,} + cos{!f" p(x')dx' +~}], 
X<<.¥I'JP 1i Jr 4 11 " 4 

(8.36a) 

~"P) (al2) 1 f' (') I dx' '" (x - .y ~ . exp (-:;: I p X 
'>:»"'\ ,P1 n x, 

+.~ exp (~r I p(x') I dX'). 
'1lpl "" 

(8.36b) 

Comparing Eqs. (8.36a, b) with (8.20a, b), we see that <I>~ is the WKB wave­

function <1>[ in the classical region and <1>0., is the WKB wavefunetion <l>n in the 

non-classical region. We further see that 
A, ~ (al2) ~ Ai2, 
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( 2~11l (dVJ J li6 

B2 =a=B =f7 dx FX 
(8.37 ) 

Thus, Eqs. (8.35a, b) give the connection between the WKB wavefunctions in the 
classical (oscillatory) and the non-classical (exponential) regions. These are, 
therefore, the connection formulae of the WKB approximation. 

Since the approximations (8.321-8.332
) are valid only forregions far away from 

the turning points, the above method cannot be applied when there are two turning 
points close to each other as in Fig. 8.2. In fact, substituting from (8.25) in (8.19), 
wegct, 

I x - Xl I » (A12n) (8.38) 

as the condition for the validity of the WKB approximation at x. Thus, for the 
applicability of the WKB method, it is necessary thaI the separation between 
turning points be at least several dc-Broglie w'lvelengths. 

------~o~==~b~-------E 

Fig. S.2. The two classical turning points (a and b in the figure) are too ncar to each other for the 
applicability of the WKB approximation. 

APPLICA TIONS 

A. Hound State 

The WKB method can be usefully applied for the determination of the energy 
levels of a one-dimen~ional bound system. The potential for such a system is 
represented by the curve Vex) in Fig. 8.3. There arc three regions separated by the 
two turning points XI and x2, as shown in the figure? Region II is the classical 

region where the wave function is oscillatory, whereas regions I and III arc the 
non-classical (exponential) ones. Since the system is bound, the wavcfunction 
should go to zero as X --) ±oo. This means that, in regions I and III, the WKI3 
wavcfunctions are decreasing exponentials. 
Thus, by eq. (8.18), 

A { 1 JX I 
} <I>I(X) '" _ ~ exp -- I p(x') I dx' , 

x<a l 'I I p I 1'1 x 
(8.39) 

--_._--------
7. The regions I, II and Ill, where the WKB approximation is valid arc actually defined by 

x Sal' bl S x S b, and x;:: a" respectively [sec, inequality (8.38)]. 
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v(x) 

II III 
-------E 

Fig. 8.3. Polemiai well. 'me shaded portions dL"TIole regions where the WKB approximation is 
not valid. 

A, { 1 f' I ' ,} <l>",(x) ~,,----; cxp -Ii p(X ) I dx . 
x>l'z\ljpj '"2 

(8.4U) 

According to the connection formulae (8.35a, b) the wavefunction in region 11 is 
given by 

But 

so that, 

~ ~Sin{~rp(X')dx'+7tl4}. 

1: p dx' ~ f' p dx' - f' p dx', 

SinUs.: p dx' +7tl4} ~Sin{( U> dx' +7tl2) 

-[~r p dx' +7tl4l 
Substituting (8.42) in (8.41 a) and equating the result to (8.4lb), we get, 

A1Sin{(U> dx'+7tl2)-[U\ ~'+K14]} 

(8.41 a) 

(8.41b) 

(8.42) 
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=A3Sin{~IX,p dx'+7tl4}. 

Comparing this with the identity, 

sin (n'1t- e) = (-1(-1 sin e, n' = 1,2,3, ... (8.43) 

we should have,s 

{~ IX, p(x)dx + 7tl2::: (n + 1)1t,} _ 
1 n -0,1,2, ... 

A/AI = (-1)", 

(8.44) 

Now, 

f X, IX, f~ f 2 P dx::: p dx - P dx::: p dx, 
Xl Xl X2 

(8.45) 

where frepresents integration over a complete period (or to-and-fro motion) of 

the particle. Substituting from (8.45) in (8.44), we get, 

1 p dx::: (n +~}, (n :::0, 1,2, ... ) (8.46) 

When the potential is known as a function of x, the integral in Eq. (8.46) can be 
performed, yielding E in terms of n and the parameters of the potential. n, thus 
designates the different energy levels of the system. 

Eq. (8.46) corresponds to the Bohr-Sommerfeld quantization rule of the Old 

Quantum Theory (of the pre-quantum mechanics period). The term ~h, which is 

absent in the Bohr-Sommerfeld formula, brings formula (8.46) in better agree­
ment with the exact result. In fact, in the case of the linear harmonic oscillator, 
Eq. (8.46) is in agreement with the exact result [see Eq. (4.51) and Problem 8.11. 

The approximate wavefunction of the system is given by Eq. (8.41a). The 
constant Al can be determined from the requirement of normalization. According 

to Eq. (8.44), the phase ofthe sine function in (8.4la) varies from 7tl4 to (n + 3/4)1t 
as x varies from XI to x2• Thus, n is the number of zeroes (that is, nodes) of 

<I>.(x) == <l>u(x) between XI and x2• But the WKB approximation is valid only at 

distances that are several de Broglie wavelengths (a wavelength being twice the 
distance betwccn nodes) removed from the turning points [ Eq. (8.38)]. This 
means that Eq. (8.41a) is a good approximation to the wavefunction of the system 
only for large values of the quantum number n. In that case, the sine function 
oscillates rapidly in the interval XI < X < X2 so that the square of the sine function 

1 
can be approximated to its average value i 

x. We have (n + l)n rather than nn on the R.H.S. of Eq. (8.44), because f~ p dx ~ o. 
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Then, 

where, '. ~ (2woo.) 

~ 41 A, 1'1," 2~X) ~ 41 A, I' (_.1411) 

~ 12A, I' (JTJ2I1W.), (8.47) 

2J.lJl dx I, is the period (the time required for the panicle [0 

Xl \ P / 

move from x, to x, and x, to x,l of the nth mode, 00. being the angular frequency. 

Substituting (8.47) in (8.41a), we have, for the normalized wavefunction, Ihe 
expression, 

(2J.loo)1I2 { 1 J' } <I>.(x) ~ ttp' sin t. " p(x')dx' +JTJ4 (8.48) 

Problem 8.1: Show, from Eq. (8.44), that tho energy levels of a linear harmonic 

os<.:il\alOf [V(X):::;: ~),H.o2xll. for large values of the quantum number fl, arc given by 

E, 
( 1\ 
: n + '?)tliw. 
I. -

Eq. 14.51) shows that the WKB result (8.49) is, ill the case of the linear har­
lnonic oscillator, exact, valid for all values of n. 

B. Penetration of a Potentiaillarrier 

Another situation where the WKB approximation can be used with advantage. is 
in the calculation of the tmnsmission coefficient of a potential barrier of the type 
shown in Fig. 8.4. 

Panicles of energy E less than the height of the potential barrier, are incident 
from Ihe !eft of the barrier. At the classical turning point x, (defincd by Vex,) ~ E), 

some of the particles will pass on to the classically-forbidden region defined by 
\"(x» E. Of these, some will be reflected back at the other turning point' x, 
(where vex,) ~ C), but the others will escape to the classical region to the right of 

the potential barrier. Thus. there is a possibility that a certain fraction (which 
would, naturally, depend on the paramete.rs such as height (measured from E), 
widlh and shape of the barrier) of the total number of incident particles would be 
lransmilled by the potential. The ratio of the flux of transmitted particles to that 
of the incident particles, is called the transmission coefficient of the potential 
harrier. The WKB approximation enables us to obtain an expression for the 
transmission cocrficicnt in terms of the above mentioned paramet.ers of the 
r~llcrllial barrier. 

(. Xl I' the poill! 11.1 which parLides im:idcnl on the banier from the right would be lUnlcJ back. 

dccur';mg to the bv...~ of classical mechanics. 
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V(x) 

~ 

------~----------~~~~------~~~~--------+x o 

Fig. 8.4. Potential barrier. 

We denotc by I, II and III the regions of validity of the WKB approximation. 
These are defined, respectively, by (see Fig. 8.4), x 5; aI' bI 5; x 5; a2 and x ? b2• 

The WKB wavefunction in region I is given, according to Eq. (8.18), by 

<1>1(X)=-* expl~( PCX')dX'] + ~ exp[-~lx PCX,)dX} (8.50) 

Here, the first term on the R.H.S. represents the incident particles and the second 
term particles reflected at the turning point XI' This could be easily seen by 

shifting the origin to XI and taking the special case where p is constant. 

In region III, there is only tmnsmitted wave, so that 

<1>111= ~ exp [Cil1i) J: P(X')dXJ (8.51 ) 

From Eqs. (8.50) and (8.51), wc have, for the transmission coefficient T, the 
expressior" 

1 {p <1>m 12 1 A3 12 

1 {P(<l>I)inc f == 1 Al 12 . 
C8.5i) 

Here, the symbols J, p and v stand, respectively, for the flux, density and velocity 
of the particles, while 'I' represents the (exact) wave function. Also, the fact that 
the momenta of the incident and the tran::!'1itted particles are the same, ha<; been 
made use of. 
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Thus, if A, is determined in terms of A" T can be obrained. The relationship 

between A, and A, ean, indeed, be found using the connection formulae (8.35a, b), 

as indicated below: 
Rewriting Eq. (8.51) as, 

eplJ~x) = ,1p{coHf p(x)dx' +~] +i Si{ ~f p(x')dx' +~ ]}, 

where, 

A =A,e·
i
,.,. = C,fi}" 

we get. for the WKB wave function in region II, 

epn(x) = ~;PI{(exp[(l!h) riP IdX']) 

+(12)( exp [-(I!Ii) riP I dx'Jl 
Writing, 

and defining 

0= eXP[(I!h) f' I pi dr'] 
this becomes, 

eplJ(X)=~{0exp[-(I!Ii) f Ip IdX'] 
'II pl" 

+(i/20) exp [(I!Ii) f I pi dxl 

Applying the connection formulae again, we get, 

ep, = -1P{20Si{~f' P dx' +1tI4J + (il20) Co1tC P dx' +1tI4] 

= ~{(0+ 4~ )exp[O/Ii) f p dx'J-{e- 4~)exp(-H: p dr} 
v.·here, relationship (8.53) has been used. 

Comparing Eqs. (8.50) and (8.56), we get, 

(8.53) 

(8.543) 

(8.55) 

(8.54b) 

(8.56) 
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Thus 

Al =(8+ 4~}3' 
Bl =-{8- 4~}3' 

253 

(8.57a) 

(8.57b) 

T = 1 A/AI 12 = (8 + 4~ r == (1/8)2 = exp { ""t 1
1

X, 1 p(X) 1 dx}. (8.52
2
) 

8 defined by Eq. (8.55) isa measure of both the height, 1 p(x) 1 = {2Jl(V(x) - E)} 112, 

and the width (x2 - Xl) of the barrier. Since the WKB approximation is valid only 

when (X2 - Xl) is several times the wave length A = 1iI1 p 1,8» 1. Hence the 

approximation (8 +~)2 == 82, in Eq. (8.522). 

We see from Eq. (8.522), that increasing either the width or the height of the 
barrier, decreases the probability for the penetration of the barrier. This is as it 
should be. For, Xl < X < x2 represents a region where the beam of panicles lose 

intensity continually, this loss being greater, the greater the height of the barrier. 
As a result, the chance for a particle to reach the barrier boundary X2 decreases with 

increasing distance of X2 from Xl as well as with increasing height of the barrier. 

Problem 8.2: Calculate the transmission coefficient of the potential barrier give:1 
by 

Vex) = Vo(l- x 2/a 2
), for I x 1:-:; a 

= 0 ,for I x I > a 

Potential with a Vertical Wall 

In the ease of a potential with a vertical wall, as shown in Fig. 8.5, the linear 
approximation (8.23) would not hold good at the turning point Xl' As a result, the 

connection formulae (8.35) are not applicable, without necessary modification, at 
this turning point. The necessary modification can be found out by solving the 
SchrOdinger equation exactly in the region I. The WKB approximations arc 
assumed to hold good for regions II and III. 

As an example, consider the potential shown in Fig. 8.5(a). It is given by, 

Vex) = ex, x> 0, (8.58) 

= +<>0, at X = 0. 

Since V = +<>0 represents a perfectly opaque wall, the wave function vanishes in 

region I, including on the wall. The continuity of the wave function at X := XI 

requires, then, that <llll(Xl) also be zero. Since the WKB wavefunction in region 

III is given by Eq. (8.322) with Xl replaced by Xz, we see from (8.321) th:1t i.he WKB 

wavefullction in region II should be given by 
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~V(x) 

~ 
II III 

------- -----E 

II III 
------ ----E 

--o~--~x--~x~------x 
I 2 

(II ) (b) 

Fig. 8.5. Potential with vertical walls. The linear approximation. Eq. (8.23), is not valid at the 
turning pcint x\' 

<1>n(x) ~ ~sinHr p dx-}, (8.59) 

with p(x) = {2~(E - ex)} l~. 

This modifies the connection formula (8.35a) at the turning point x, to: 

JpSin{-U: PdX} H ..j IIp I exp (-U: I pI dx) (8.35a') 

This could be regarded as the connection formula whenever the wavefunction at 
the other turning point vanishes. 

As another example, let us consider the potential shown in Fig. 8.5(b), which 
is given bylO, 

=-VO.O:::;;X::;X1• 

The SchrOdinger equation in region r is given by 

where, 

d'<l> , 
-+k <1>=0 dx' , 

k'= 2~(Vo+E)/I? 
Eq. (8.61) has the exact solution, 

(8.60) 

(8.61) 

(8.62) 

10. (8.60), roughly, corresponds to the potential barrier faced by all Alpha particle inside the nucleus 
in an Alpha particle decay. 
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Al Bl 
= {j) exp[i{k(x-x1)+o}] + {j) exp[-i{k(x-x1)+o}], (8.63) 

where Band 0 are constants, and 

Al = -(i!2)B~p(xI); BI = (i/2)B~p(xI)' (8.64) 

The WKB wavefunctions in regions II and III are given by Eqs. (S.54b) and (8.51), 
respectively. From the continuity of the wavefunction and its logarithmic 

derivative (:: }<I> at x = XI' we get (since 8» 1), 

B sino= A {8+~} ~ 8A 
~ 1 p(xI) 1 28 ~ 1 p(xI ) I, 

(8.65a) 

. _ -I p(xJ 1(8-il28) _ -I p(xI ) 1 
kcoto- 1'1 8+i/28 - 1'1 ' (8.65b) 

with 1 p (XI) 1 = (2~VxI - E) } 112, (8.66) 

where Vx is shown in Fig. 8.5 (b). 
1 

From Eqs. (8.53) and (8.65a), we have, 

_1+i _(1+i)B{IP(XI )I}II2 SinO 
A3 - -Vi A - -Vi . 8 ' (8.67) 

and from Eqs. (8.521
), (8.64), (8.67) and (8.65b), we get, 

T = 1 ~: 12 = (4 sin
2 0)8-2 

(8.68) 

1 p(x1) 1 

where the relationship -(-) = - 1, as well as Eq. (8.62), have also been used. 
P Xl 

Comparing Eq. (8.68) with (8.522
), we see that, in most cases of interest, the 

transmission coefficient is increased for a potential with a discontinuity at XI as 
compared with that for a potential which is linear at xl. Formula (8.68) yields a 
value of T = 4 when E = V'l in place of the exact value of T ~ 1. 
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Problem 8.3: Detennine, in the WKB approximation, the energy Icvels of a 
particle moving in a uniform gravitational field when the motion is limitcd from 
below by a perfectly reflecting plane. 

8.2 THE V ARIA TlONAL METHOD 

S.2A Bound States (Ritz Method) 

Often, the basic dynamical equations of physics can be derived from a variational 
principle. Thus, the Lagrange's equation of motion in classical mechanics follow 
from Hamilton'S principlcofleastaction" [Eq. (1.7)], whereas the eikonal equation 
in geometrical optics" derives from Fermat's principle ofleast time. We will see 
in chapter II (Section 11.2), that the classical field equations are derivable from 
a variational principle. It is, therefore, not surprising that the basic equation of 
quantum mechanics (the Schrtidinger equation) also is equivalent to a variational 
equation. 

Now, for a variational principle, we require a function which would be 'sta­
tionary' w ill' respect to variations of ilS parameters." In the case of the Lagrange's 
equations, this function is the action S defined by Eq. (1.6). For the case of the 
SchrOdinger equation, the function turns out to be the expectation value £('1') 
defined by [Sec Eq. (3.2a)], 

(8.69) 

where II is the Hamiltonian of the system and", is the variational wave function 
(the trial function). It is easily shown (Problem 8.4) that the variation in £("') 
linear in 8", is indeed zero for an appropriate choice of '1'. Eq. (8.69) is referred 
to as the Ritz (or, Rayleigh-Ritz) variationalformula, while the variational method 
based on it is known as the Ritz method. 

Now, the stationary values of £('1') are given by the variational equation, 

11. See, for example, Landau, L.D. and lifshitz, E.M., Mechanics (Pergamon Press, 1969), Section 
2. 

12. Born, M. and Wolf, E. Principles ojOptjcs, II Edition (pergamon Press, 1964), Appendix I. 11. 

13. If F is the function and u is one of the parameters, then Ihe variation of in F corresponding to 

the infmitcsimal variauon oa -= (u- aJ in a (keeping the other parame~ers constant) can be 

wrinen as 

~ (aF) oa+(a'F) (aa)\ 
aU. "" du1 J... 2! (aF) .. '" all. ... 0((, 

Thus, F is SlaLionary at a "" Ct.o if 

that is, if F({Iv) is either a maximum or a minimum. 
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M(",) = O. (8.70) 

It is to be shown, therefore, that Eq. (8.70) is equivalent to the time-independent 
Schrodinger equation. For this, let us write Eq. (8.69) in the form, 

('" I ",)E = ('" I ft I ",). 
Taking the variation of this equation corresponding to the variation <50/ in 0/, we 

have, 

(0/ I ",)0£ + Ho", I "') + (0/ 1o",)} E = (0'" I li I "') + ('" I it I 0",), 

or, ('" I ",)0£ = (0'" I (Ii - E) I",) + (<5", I (Ii - E) I","). (S.71) 

Hence, when oE = 0, we have, 

Re {(o", I (Ii - E) I",)} = 0, (S.72a) 

where, Re { } represents the real part. Similarly, replacing <5", by <5\j1' = i <5"" we 
get, 

-i [(0'" I (H- E) I",) - (<5", I (11- E) I",») = 0, 

Of, 

Im [(<5", I (H - E) I "')] = O. 
From Eqs. (8.72a, b), we havel4

, 

(<5", I (H - E) I", == O. 

This relationship can be satisfied for arbitrary <5", only if 

(II-E) 1'1')= 0, 

or 

II", == E"" 
which is the Schrbdinger equation for stationary states [Eq. (4.18)]. 

Thus, the solutions of Eq. (8.70) are solutions of Eq. (8.73). 

(8.72b) 

(S.72) 

(8.73) 

Problem 8.4: A trial function for a variational calculation is of the form 

'V = <Jla + E <PI' where IE 1« 1 and <1>0 and <PI are normalized. Obtain the conditions 

on 4>0 and <1>1 for E('V) defined by Eq. (8.69) to be stationary to first order in E • 

Now, the solutions ofEq. (8.70) correspond to either maxima or minima of the 
function E('V) (see Footnote 13). In fact, the solution corresponds to a minimum: 

Let {4>.} represent the complete orthonormal set of eigenfunctions of il. Then 

'V can be expanded in terms of {G>.}. 

I 'V) = Lej 1<1», (8.74) 
J 

(8.75) 

14. Eg. (8.72) will follow from Eg. (8.71) if we regard the variation 1 Oljl) and (Oljll in the latter as 

linearly independcnt of each other. Such a viewpoint would be justified since the relationship 
bctween a ket vector and a bra vector is an antilinear one (see Section 2.3). 
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where E
J 

is the eigenvalue of II belonging lO ¢j and Eo is the ground state energy 

(Lt~C smailest E). 

E(ljI) is, obviously, independent of the normalization of 'I' and, therefore, we 

can use a normalized trial function. The method would consist in evaluating E('I') 

with a trial function and then varying 'I' until E('I') is a minimum. Let '1'0 be the 'I' 

which corresponds lO this minimum. Then, according lO (8.75), E('I'o) ? Eo. Thus, 

the procedure yields an upper limit lO the ground state energy of the system and 
an approximate ground state wavefunction ljIo. The success (the accuracy) of the 

method depends on the correct choice (at least in form) of the trial function. Thus, 
the method is truly an approximation method since the trial function, whose choice 
is usually based on circumstantial factors, is rarely likely to be an exact wave­
function of the system. 

In practice, the trial function is defined in terms of a number of unknown 
parameters <Y., p, ... : 

so lhat, 

Then 

and 

ljI '" 'I'(r; C/., p, ... ), 

E(ljI)"'(ljIIH IljI)= J'I"(r;C/.,p ... )/)ljI(r;C/.,p, ... )d'r 

=](u,p, ... ), say. (8.76) 

(8.77a) 

(S.T/b) 

where, ao, ~o, ... arc values of u, p, ... for which the integral (8.76) is a minimum. 

That is, 

(8.78) 

In general, the accuracy of the calculations can be increased by increasing the 
number of parameters, evenLhough reasonably good results can be obtained with 
only one parameter if the trial function is chosen judiciously. 

We will now apply the method to a few cases by way of illustration: 

Linear Harmonic Oscillator 

The exact sol ution of the problem was discussed in Section 4.2A. The Hamiltonian 
is given (in the co-ordinate representation) by, 

, ~'( d') 1 , 
/I =- 2~ dr' +ZKX, (8.79) 

",,,I the eigenfunctions by Eq. (4.50b). 
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Let us try two different functions as trial functions. In choosing these we kccp 
in mind that the wavefunction should vanish for x ~ too. Moreover, the probability 
density should be symmetric about x = O. These conditions are satisfied by 

and 

Normalization requires, 

We have, 

and 

so that, 

where, 

1 2 

'Vo(x; ex) =Ae-i<U , 

A 2= (a/1t/I2; 

B2 = 2(~3/1tr. 

CXa = ().too )/Ji; 

Po = ().tw)IJi; 

£1 = Jl(~O) = (3/2)1ioo; 

oo=--JKI).t. 

(8.S0a) 

(8.80b) 

(8.Rla) 

(S.81b) 

We see, from Eq. (4.51), that Eo and El are, respectively, the energies of the 

ground state and the first excited state of the oscillator. This result is a consequence 
of the fact that the trial functions 'Va and 'VI are exactly of the same form as the 

actual eigenfunctions of li corresponding to the eigenvalues Eo and E1• The result 

emphasizes the fact that a variational calculation does not necessarily lead to the 
ground state. It is important, therefore, to exercise care in choosing the trial 
function. For example, if we had made use of the fact that the ground state 
wavefunction of the oscillator should have no nodes, we would not have chosen 
'VI (which has a node at x = 0) as the trial function in this case. But even wi th this 

knowledge, we could choose, 

'Va/(x; ex) = c(+Z). 
ex +x 

(S.SOc) 
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.IS the trial function. We would get", 

and 

C 2 = (2a'/rc); 

Jo'(a) = 2- (Jl2w2a2 + 'h2/2a'), 
2Jl 

a.; = (fil2) (ii/Jlw), 

(8.81e) 

Thus, the accuracy is very much reduced when the form oflhc trial function differs 
from the actual wave function. 

Helium Atom 

As another example, let us calculate the ground state energy of the Helium alOm. 
This example will help to compare the variational method with another approxi· 
mation method-the stationary perturbation theory~-discusscd in the next section. 

The He atom consists of two electrons outside a nucleus consisting of tWI,) 

protons (and one or more neutrons). Hence, the Hamiltonian is given (in the co· 
ordinate rcprcscntmion) by, 

(8.82) 

where, 

(8.82a) 

and 

(8.82b) 

c, being the position vector of the ith electron (measured from the centre of the 

nucleus) and 2 is the atomic number (2 = 2). If, differs from the Hamiltonian of 

the hydrogen atom [Sec Eq. (4.97d)] only in the value of the reduced mass Jl and 

15. Using lhe following fonnulae: 

J+-~~ «(22n=32));;( :-I} {a > O;n =2.3 ... \. 
-(a+x) n .. a 
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the atomic number Z. Hence, if we neglect the mutual repulsion of the electrons 
(V 12)' then the wavefunctions of the He atom would be merely products of 

hydrogen-like wavefunctions of the two electrons. In particular, the ground state 
wavefunction is given by 

'1'( r l' r:J = <I>o(r l)<I>O(r:J, 

where, from Eqs. (4.1IOa), (4.125) and (5.63), we have, 

<I>o(r) =: ulOO(r,e,<!» = RlO(r)yoo(e,<!» 

where, 

a = (ariZ), 

and 

Thus, 

(8.83) 

(8.84) 

(8.85) 

(8.83a) 

'I' given by Eq. (8.83a) can be treated as a trial function for the Hamiltonian fl 
given by Eq. (8.82), with Z (or, a) as the variational parameter. The basis for 
treating Z as the variational parameter is the following: The presence of one 
~lectron in the atom partly shields the other electron from the nucleus (by getting 
in between the electron and the nucleus), thus reducing the effective value of Z. 

Since 'Vis normalized, we have from Eq. (8.76), 

E(If) =: J(Z) = (If IIII If) 
= (<I>o(r1) 1/111 <I>o(r1» + (<I>o(rJ Ifl21 <I>o(rJ) 

+ ('I' I V 12 I '1'). 

Now, from Eq. (4.117) and Problem 4.10, we have, for the case ofa hydrogen-like 
atom, 

(8.87a) 

(8.87b) 

where, f and V are the operators corresponding to the kinetic and the potential 
energies, respectively. One of the Z in the factor Z2 in (8.87b) comes from the 
facLOrZin the V [seeEq. (8.82a)] while theotherZisduetotheZinthe wavefunction 
(8.84). Now, in the variational method, only the wavefunction is varied, and not 
the Hamiltonian. Therefore, in (8.82a), we have to use the exact value Z = 2, so 
that, in place of (8.87b), we have, 
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" 'JZe' 
«po(r)' VCr,) '<Po(r) ~ --a;:' (8.87bi 

(<Po(r,) 'tfi '<Po(r,) ~ (e'llao) (2' - 42), (i ~ 1,2). (S.88) 

The las[ tefm in (8.86') can be evaluated by writing, 

1 11--=, , -L(r,lr,)'P,(cos9), r,>r" 
rl2 r1-Tz rl/~O 

(8.89a) 

1 -
~- L(r/r,l'P,(cos9), r,>r" (S.89b) 

'2 1=0 

and using the relationship, (5.152) and Prob. (5.22), where, 9 is the angle between 

T, and fz, we get. 

(.J e'I'V) ~e2(41t)2(l11Ul3)' (-{ ('(lIr,) exp [-(21a)(r, +r,)]r:dr, 
0/1 '12 Jo Jo 

f- \r'dr 
+ ,,(lIr,) exp [-(21a)(r, +r,)}r:dr1' , 

~~(2:,'J 
Substituting from (8.88) and (8.90) in (8.86'), we have, 

I(Z) ~ (e'lao) [Z' - (27/8)Z]. 

Then, 

and 

27 
Zo ~ 16' 

Eo ~ I(Zo) ~ -2.S5(e'laoJ· 

(8.90) 

(8.86') 

(8.91) 

(S.92) 

The result of the first order perturbation theory [Eq. (8.124b)] is obtained by 
substituting 2 ~ 2 in (8.86'). Thus, 

Eo (Perturbation) ~ -2.75(e'/ao) (8.93) 

The experimental value is, Eo (experiment) ~ -2.904(e'lao). We see that, with the 

same amount of labour, the variational method yields a much better approximation 
to the ground state energy of the He atom than the perturbation theory. 

Excited States 

The variational method can be used to get an uppcrlimit to one of the higherenergy 
levels of the system if the trial function is chosen so as to be orthogonal to the 
wavcfunctions of all the lower levels. Suppose {4>,} represent the normalized 

eigenvectors of II. Then the function, 
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11:::1 

I \jI' > = I 'I' > - L I <Pi > < <Pi I 'I' >, (8.94) 
i=1 

is easily shown to be orthogonal to the (n - I) eigenvectors, <Pi (i = 1,2, ... , n - I), 

of II. If the labelling is done such that Ei +1> Ei, then according to Eq. (8.75), we 

have (assuming I 'If") to be normalized), 

E (\jI') == (\jI' I ft I \jI') ~ E •. (8.95) 

'If" is, thus, a trial function for a variational calculation of the nth energy level. An 

example is provided by the trial function '1'1 in Eq. (S.80b), which can be verified 

to be orthogonal to the (ground state) trial function '1'0 in (S.SOa). Therefore, '1'1 
should give an upper limit to the energy of the first excited state of the oscillator. 
In fact, it leads to the exact energy [Eq. (8.8Ib)]. 

Since the error in the determination of the wavefunctions of the lower states 
would be carried over to that of the higher states, the above method is not practical 
but for the lowest two or three states. There is another method which is free from 
this defect: Suppose n is an operator (corresponding to an observable) that com­
mutes with (j and one whose eigenvectors are known. Then a trial function that 
is constructed entirely from eigenfunctions that belong to a particular eigenvalue 
of n, would be orthogonal to all eigenfunctions that belong to the other eigenvalues 
of{2. A variational calculation with such a trial function would give an upper limit 
to the lowest energy corresponding to the particular eigenvalue of n. For example. 
if II has rotational symmetry. n could be the angular momentum operator L. whose 
eigenvectors arc the spherical harmonics Y /m(S, <») [SeeEq. (5.46)]. Theil, a trial 

function of the type, 

'I'(r; a., p, ... ) = fer; a., P . ... )Y/m(S,<»), (8.96) 

will give an upper limit to the lowest energy level with angular momentum l. 

Problem 8.S: Use the trial function 'l'2p(r; (X) =A(rla) exp [-a.(rla)] Ylm(S,<»). to 

obtain a value for the energy of the 2p level in the hydrogen atom. Compare the 
result with the exact value (4.1 17). 

8.2ll Schwinger's Method for Phase Shifts 

As an illustration of the application of the variational method to the problem of 
scattering, lct us consider Schwinger's methodl6 for the determination of the 
scattering phase shifL 

According to Eq. (7.45 1
), the phase shift c/ corresponding to the lth partial wave 

(when the potential is central) is given by 

sinc/ = -(kIC/) (~j/(kr)uk /(r)U(r)rdr. Jo . 
(8.97) 

16. Sec, Wu, T. Y. and Ohmura, T., Quantum Theory o/Scattering (prentice-Hall, New Jersey 1962), 
Section D. 2. 
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where, C, is given by Eq. (7.34) and u.,,(') = ,R,,,!r), is normalized according to 

Eq. (7.30) [That is, {u.,,(r)IC,} - (llk) sin (kr -ITti2+ 0,)]. The Born approxi-
,~-

mation replaces u.,,(,)IG, in Eq. (8.97) by ,j,(kr) [see, Eqs. (7.45') and (7.110a)]. 

We can obtain a better result by using the variational method. Expression (8,97) 
is not, however, suited for the application of this method because of the following 
defects: 

(i) It is not stationary since a first order variation in u.}r) produces a first 

order variation in 0,. This defect can be remedied by making sin 0, quadratic 

in u..,(r) just as £(\jI) in (8.69) is quadratic in \jI. 

(ii) It depends on the normalization factor C, which itself depends on 0, [Eq. 

(7.34)). This problem is solved by making Eq. (8.97) homogeneous in 
u..,(r) . 

The objective of making Eq (8.97) both quadratic and homogeneous in u.,,(r) 

can be achieved with the help of the integral equation for the radial wave function 
R.,,(r). This integral equation can be obtained from Eq. (7.98) by substituting for 

exp (ik.r), \jIk(r) and G.(r, r') respectively, from Eqs. (7.24), (7.33a) and (7.100') 

along with Eq. (E.76). However, the following would be a shorter procedure: 
From Eqs. (7.30) and (7.31), we have, 

R,,(r) - C,[cosoj,(kr)-sino,n,(kr)]. 
, r ---'I "" 

Substituting for sin 0, here from Eq. (8.97), we get, 

R.),) - C,coso,j,(k,)+kn,(kr) r- j,(k,,)· U(,jR.)rjr"d,'. 
r~_ Jo 

But, according to Eq. (7.98), we should have (Problem 8.6), 

R.),) = c,cos o,j,(k,) - J,-G.,,(r, ,')U(r')R.)r'),"d,', 

whcre, the spherical Green'sfunction G.,,(" ,') is defined by 

-
G,(r, r') = L o,G,,(" r')F,(cos 0), 

1=0 ' 

o being the angle between r and r'. 

Comparison of Eq. (8.99a) with (8.98') yields, 

G",(r,r') ~ -kn,(k')j,(kri, , > r'. 

But, we see from Eq. (7.100') that G.,/(",i = G •. ,(r', ,), so that, 

G •. k, 'i, <, = G.,,(r', r )"" = -kn,(krij,Ck,). 
Thus, 

R.,,(r) ~ c, cos o,j,(kr) + kn,(k,) J,' j,(k,')U(,i . R."C'i"'d,' 

+kj,(k,) J,-n,(k,')U(,')R.,,(,'),"d,': 

(8.98') 

(8.99a) 

(8.100) 

(8.101a) 

(8.101b) 

(8.99b) 
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and 

Nkr) = CIC~S oJ Rk,/(r) + i~ Gk,l(r ,r')V(r')Rk,l(r')r,2drJ 
Eq. (8.99a) or (8.99b) is the integral equation for Rk,l(r). 

Multiplying both sides of Eq. (8.97) with 

(~j/(kr)V(r)Rk l(r)r2dr, Jo ' 

and then substituting for j/(kr) on the L.H.S. from (8.102), we get, 

(8.102) 

x 'l~ Gk,/(r,r')V(r')Rk/r')r,2dr ] 

== - ~Ji~ j/(kr)V(r)Rk,/(r)r
2
drT. 

or, 

{i~ RJ,k)V(r)r 2dr + l~ V(r)Rk/r)r
2
dr 

x i ~ Gk,l(r, r')V(r')Rk,l(r')r'2dr'} 

-[l~ u;,/r)V(r)dr -k l~ uk,/(r)V(r) 

~nl(kr) f jl(kr')uk,tCr')V(r')r'dr' 

+j/(kr) l~ n/(kr')Ukir')V(r')r'dr,}'dr] 

[1 ~Nkr)Uk,tCr)V(r)rdr T 

(8.103a) 

Eq. (8.1 03a) is seen to be both quadratic and homogeneous in Rk,I' It can be shown 

(Problem 8.7) that k cot 0/ is, indeed, stationary with respect to variations of Uk,l' 

In fact, Eq. (8. 103 a) could be written in the form, 

< Uk I I A I Uk / > 
k cot 0/ = ' A ' , 

< uk,l I P I u k ,/ > 
(8.104) 

where, 

Ii == ;\k/r, r') = -V(r)o(r - r') - V(r )r0.,,(r ,f')r'V(r'), 



and 

P = P.,,(r, r') = V(r)r j,(kr)Mkr')r'V(r'), (8,104b) 

Eq, (8.104) is seen to be just an extension of the Ritz variational expression (8.69). 
On the basis of (8.104), it has been shown" that (8.103a) leads to an upper bound 
for k cot 0, when the potential is attractive (V(r) ,,; 0) and to a lower bound when 

the potential is repulsive, 
As an application of formula (8.103), let us consider zero-energy scattering by 

a potential of the form, 

VCr) = -Vo, r < ro 

~o, r>,o. 

Only 00 would be nonvanishing, We get from Eqs, (8,103b), and (E, 68a, b), 

k cot 00 = +V{l\~(r )dr - ~o l\o(r) {cos kr . f Ur,(r') sinkr'dr' 

f" }dr]r{-VoJ," Uo(r)Sinkrdr}' 
+sinkr , Uo(r') cos kr 'dr , k, 

= {r u~(r)dr - Vo r uo(r) {f1(r'),'dr' 

I', , }dr]n[Vo{('OUo(r)rdr}'l. 
+r uo(r )dr )0 J , 

As a trial function, we choose Uo(r) = r (cf. Eq, (7.57a», 

Then, we get, 

keot 00 = ( ..2, -- ..<>..). 
\ Vo'o 5ro 

The corresponding result in the Born approximation is given by, 

sinoo=-k i"jg(kr)(-Uolr1dr 

= k(U,,~r3), 

or 

k cot 00 = (kl sin 00) = (3!U,,~); 

whereas a more exact result is given by the formula [sec Eq. (7,76' )J, 

kcotoo=-(Jla), 

17 Kal<J, T Progress afTheoretical Physics, 6. 295 (1951). 

(8,105) 

(8.106) 
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where, the scattering length 'a' is given by (Problem 7.2), 

This gives, 

kCOlOO==[--;-S6 - ... J. 
UoTo ro 

(8.107) 

Thus, the variational approach in this case proves to be better than the Born 
approximation. Also, the variational value is on the upper side of the actual value 
(8.107). It is easily shown, by reversing the sign of Uo in (8.105) and (8.107), that 

the variational value would be lower than the actual value for a repulsive potential. 
However, it is a drawback of the variational method that it does not provide a 
means of estimating the error when we really do not know the exact value. 

Problem 8.6: Obtain Eq. (8.99a) starting from Eq. (7.98). 

Problem 8.7: Show that k COlOI given by Eq. (8.103a) is stationary under the 

variation, Mk.J(r) == ORk.l(r)o(r - r1). 

8.3 STATIONARY PERTURBATION THEORY 

This approximation method is useful for finding the changes in the discrete energies 
and the associated wavefunctions of a system resulting from a small disturbance, 
or perturbation, provided the energies and the wavefunctions of the undisturbed 
system are known. In this method, usuall y referred 10 as the Ray/eig h-Schrodinger 
perturbation theory, the changes in the energies and the wavefunctions are 
expressed as an infinite power series in the perturbation parameter (defined below). 
The approximation, then, consists in neglecting terms in the infinite series after 
the first few terms. Approximating the series to the first n terms in the series, gives 
the nth order approximation. 

Eventhough, we have talked about 'disturbance or perturbation', variation of 
the Hamiltonian with time is not implied. Either the disturbance was introduced 
long time ago so that the system has settled down, or the system under consideration 
differs very little from a system whose energies and wavefunctions are known. 

Let lj 0 and H represent, respectively, the Hamiltonians of the unperturbed and 

the perturbed systems. Then, 

H=Ho+MI, 
where, I DJl I is small compared with I Hoi. We will write, 

MI =')..V, 

(8.108) 

(8.109) 
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and call A the penurbalion parameter (which can vary continuously in the range 
o to I) and Ii the perturbing potential. The solutions of the eigenvalue equation", 

/1 .. ,(0) ~ £,Ol"JO) 
0"1'" " "V" • 

are known, whereas the solutions of the equation, 

//141, ~ £, \jI" 

are to be found. 
Let 

and 

_ ,,"0) A 

'V" - 'f" + Ll,¥". 

(8.110) 

(8.111) 

(8.112a) 

(S.112b) 

/:;\jI, and 1:;£, are small since I Mi I is small. Substituting in (8.111) from (8.108) 

,mct (8.112a, b), we get 

II ()\jI~O) + (M1),¥, + f! 0(/:;'41') ~ £;O)\jI~O) + £;0)(/:;'41.) + (1:;£,)\jI.. (8.113) 

In view of Eq. (8.110), the terms f! 01Jl',°) and £;O)IJI',0) in (8.1 13) cancel each other. 

Then, taking the scalar product of the latter equation with IJI',0), we get, 

But, 

Therefore, 

<0/.,0) I Mi 1'41.> + <'4":' 1110 I /:;'41.) 

~£;O)(o/.,0) I /:;'41.)+ 1:;£,(0/.,0) I 'V.). 

1:;£ ~ ('4":) l!:;il 1'41,) 
, MO) I '41,) 

A MO) I Ii I 'V,) 
(IJI',0) I 'V,) . 

The method consists in writing, 

Also, we assume that 

so that, 

A _ , ",lI) , ~.'(2) _ ;:, '",(') 
u\j1" - 1'1.0/" + I\, '1'" + ... - "" 1'1. '1'" • 

1'--1 

(8.114) 

(8.1I5a) 

(8.116a) 

(8.117) 

The assumption (8.116a) merely represents a particular choice [or the normal­
ization of 'V,. For, 'V, can be expanded in terms of the complete, orthonormal set 

[IJI',O)} " {u,}, of eigenvectors of /10: 

18. We assume that the spectrum of 110 is discrete. 
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'1'. = LCkUk == U. + L CkUk + (C. -l)u •. 
k k •• 

Thus, 

6'1'. = (c. - 1 )u. + L CkUk' 
k •• 

and 

('11.0) 16'1'.> == (u. 16'1'.> = (c. -1). 

Eq. (8.116a) requires that c. == 1, so that, 

('I'. 1 '1'.> = LIck f == 1 + LIck 12> 1. 
k kFH 

From Eqs. (8.115a) and (8.116a), we have, 

<'11.0) 1 '11.,» == 0, s ~ l. 

Substituting from Eqs. (8.115a) and (8.117) in (8.114), we get 

till = 1: ')..:E(s) . . ' 
s=1 

where, 

E(') = <",(0) I VI ",(,-1) > s > 1 
n 'fA '1'11 ,-. 
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(S.116b) 

(S.115b) 

(8.118) 

Thus, a know ledge of the wave function to a particular order enables us to calculate 
the energy to the next higher order. And the wavefunction to a particular order is 
determined from Eq. (8.111) which, according to Eqs. (8.108), (8.109), (8.112a, 
b) and (8.115a, b) becomes, 

(N 0+ AV) ('1".0) + 1..'11.1) + ... ) 

= (E~O) + A.E~I) + ... ) . ('11.0) + 1..'11.1) + ... ). (S.119) 

Since the series (8.115a, b) are a<;sumed to be continuous, analytic functions of A. 
for 0 S A S 1, coefficients of like powers of A on either side of Eq. (8.119) should 
be equal. Hence we have, 

1..0 • (N - E(O»",(O) == 0 
• 0 n 't'n ' 

Al : (No - E~O»'II.l) == (£2) - V)'II.°), 

1..2 : (ll - £(0»,,'(2) = £(2)",(0) + (£(1) _ V),,'(l) 
o n 'V" n 'tin It '+'n ' 

(8.120~ 

(8.1201
) 

(8.1202
) 

At this stage, we have to make a distinction between degenerate and non-degenerate 
case 
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S.3A. Nondegenerate Case 

Taking the scalar product of (8.120") with '11°)"1:- v.0), we get, 

(E~O) -E~O»{~O) I ~:» == (~O) I {(E~I) - V) I ~:-I»+E~2) I ~:-2» 

+ ... +E!,-I) l'll.I»}, (8.121a) 

or, 

. ((E2) - V) 1 ~: -I» + E~2) 1 ~'- 2» + ... + £!S -I) 1 'll.1»} 

But ~ 1 '110» ('110) I"" ~ 1 Uk) (Uk 1 = 1, 
k k 

so that, 

(8.121b) 

(8.122) 

Substituting from (8.122) and (8.1 16b) on the L.H.S. of (8.121b), we have, 
1 ",(0) > <",(0) 1 

\
",(s»= ~ 'I'k '1'1: {(£(J)_V') 1 ",(s-I» 
'1'. £.., (0) (0) • '1'. + '" 

k¢. Ek -E. 

(8.123) 

This is a recurrence relation for 'If;). Together with Eq. (8.118), it enables us 

t d t · . I ",(1) ",(2) tart' f ",(0) Th tt' 1 . o e ermme successive y '1'. ,'I'. , ... , S mg rom '1'. . us, pu mg s = m 

(8.123), we get (since ('Vi0) 1 '11.0» == 0), 

I) _ 1 'Vi0) > < '110) \ V I '11.0) > 
'II. - k:' £(0) _ £(0) 

• • 
_ { V.. } ",(0) 
- ~ £(0)_£(0) '1'. , 
l~" If 1 

(8. 124a) 

where, V .. is the knth matrix clement of V in the representation spanned by the 

basis vectors {Uk)' Similarly, from Eq. (8.118), we have 

£!I) = < 0/.0) 1 V 10/.°) > = V.... (8.124b) 

The wavefunctions and the energies up to the/irst order in the perturbation, are, 
then, given by 

1_",(0) 1.",(1) _ ",(0) A. ~ V.. ",(0) 
'If. - '1'. +'1'. - '1'. + (£(0) £(0» 'I'k , 

.1:_" ", - It: 
(8.125a) 

and 

(8.12Sb) 



APPROXIMATION METHODS 271 

Similarly, putting s = 2 in Eqs. (S.123) and (S.118) and substituting for '11.1) and 

E~l) from (8. 124a, b), we get, 

2) _ I 'Vi0) > < 'Vi0) I (E~I) - V) 1'11.1) > 
'II. -.1: F(O)_E(O) 

~ "F- 11 "-'i II 

(8. 126a) 

(S.126b) 

Eqs. (8.1 26a, b) represent the second-order contribution (when multiplied by A?) 
to the wavefunction and the cnergy.19 

ILL~i)TRATIVE EXAMPLES 

Anharmonic Oscillator 

CO!lsider a linear harmonic oscillator subjected to a small force represented by the 
potential Vex) == Cx 4

, Then [(sec section 4.2A)] 

if 0== (p 2121l) + (l/2)K:e 

MI = Vex) =:: Ci4. (That is, A = 1) 

\il.,0) == u.(x) and E~O) are given, respectively by Eqs. (4.50b) and (4.51). From Eq. 

(S.124b), we have, 

= C1: < u. I i 2
1 urn > < urn \ i 2

\ u. > . 
rn 

From Eqs. (4.47a), (4.50a, b) and (E.12b), we get, 

_2 1 f-' 2 (Urn I X I Un> == 2 ¢m(~)~ Q.(~)d~ 
ex ~ 

+ ..J(n + l)(n + 2) om .•• ~' 

with ex2= (Ktficu): cu= ..JKIIl. Hence, 

E~l):::: C1: I (urn \ i 2
\ uJ \2= 3C

2
{(n +~)\~}t,.zcu2; 

m 3K 2 4 

;9. Customarily. A is set equal (olin the final expressions for 1jI. and E •. 

(8.127) 
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and, up to the first order in the perturbation, the energy of the oscillator is given 
by 

E! == G +~}w+ ~2{(n +~J +~} (hW)2, n == 0, 1,2, ... +cxo. 

The wave function to the same order is given by 

. {<Uk I.e I Un)} 'V'. =: U. + C 1: (0) (0) U 1 
kF. E. -E1 

=: U. + C{ 4~W (U. -41 £41 U.)U. -4 + 2~W (u._zl £4 1 U.)U._ 2 

- 2~(j) (un+zl £4 1 U.)U •• 2 - 4~(j) (un+41 £41 U.)UH4} 

Chwr 1 _ In! 2n-l_ In! 
=U.(X)+K2124-\f ~U'-4+-Y-\f "0-=2)"!U,- z 

_ 2n+3~(n+2)!u _~~(n+4)!u 1, 
22 n! .+2 24 n! n+4J 

where, u.(x) is given by Eq. (4.S0b). 

Linear Harmonic Oscillator 

(S.l28a) 

(S.l28b) 

As another example, let us consider a linear harmonic oscillator under the influence 

of a perturbing field represented by Vex) =:~bx2. The harmonic nature of the 

oscillator would, obviously, be preserved by such a field. From formulae (8.124 
a, b) and (8.l26a, b) and using Eq. (8.127), we get, 

E~I) = (bI2K) (n + ~ }(j), 

E~2) = _(b 2/SK2) G +4 }w, 
'!I.I) = (bISK) {\jn(n -l)u. -2 - ...Jen + l)(n + 2) un+J, 

'j/:) = (b 2/16K2) {--./(n + l)(n + 2) u. + 2 - --./n(n -1) u. -J, 
so that, up to the second order in perturbation, the energy and the wavefunction of 
the nth oscillator level, are given by 

II ( 1) [ b b
2 

] E = n + - lIW 1 + - --
• 2 2K SK 2 ' 

(S.129ai 

o/~ =: u.(x) + s~ (1- :K) {--./n(n -1)u._ 2 -...J(n + l)(n +2)u.+:J. (S.129h) 



APPROXIMATION METHODS 273 

In this case, however, the problem is capable of an exact solution as the Hamiltonian 
is given by 

,2 1 
fI =L+-K 'x 2 

21l 2 ' 

with K' = K + b. Then, from Eqs. (4.51), and (4.47b), we have, 

E. = (n +~}ffi' = (n +~}~ K :b 

= (n + ~ }ro{ 1 + ~ - 8~2 + 116 ;: - .. .}. C8.130a) 

and from Eq. (4.50a, b), we get, 

'V. (x ) = -.JCZ <1>.(S') 

(8.131) 

.vherc 

a.' = (f.l(K +b»)1I4. 
1'12 • 

~' = a.'x; 

~ = ax. 

Expanding <1>.( ) in Taylor series around S, we have, 

<1>.(~+ 4~~-;2;:S) 
'" <1>.@ + 4~ s<1>.'(S) + 3~;2 {S2<1>."(S) - 31;<1>.'@}, (8.132) 

where, the prime on <1>. denotes differentiation with respect to 1;. Substituting 

(8.132) in (8.131) and using Eqs. (E. I Ia-d) we get, 

'V.(x) '" u.(x) + 8~ (1-~ }--In(n -1)u._ 2(x)---JCn + l)(n +2)uH z{x)} + ... , 

(8. BOb) 

where, 

u.(x) = ..JU4l.(ax) == ~O). 

Comparison of (8.129a, b) with (8.130a, b) verifies that thl; perturbation series 
gives correctly the series expansion of the energy and the wavefunction in powers 
of the ratio (bIK). 
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Problem 8.8: A one-dimensional harmonic oscillator is subjecte.d to a constant 
force F. Calculate the shift in the energy levels and the wave functions up to the 
second order in F. 

Problem 8.9: The Hamiltonian of a hydrogen-like atom in an electric field E can 
be written as 

where 

d=-er, 
is the electric dipole moment operator for the atom. Show that, up to second order 
in the perturbation, the energy of the atom is given by the expression, 

whercdoand d1 are,respectively, the permanent (independent of E) and the iruiuced 

(proportional to E) dipole moments. 

8.3B. Degenerate Case 

When flo has degenerate eigenvalues, the above method requires modification 

as Eq. (8.124a) and hence also the equations of higher order, breaks down 
when E~O) = mol, unless (Uk I V I u.) = O. This is because the factor (Uk I V I 
u,,)/(E~O) - mO» becomes too large for the validity of the perturbation approximation. 
We can circumvent this difficulty by replacing the zero-order eigenfunctions, Uk' 

belonging to the degenerate eigenvalues by linear combinations, <1>k' of these 
functions such that <<1>k I V 1<1>.> = 0 for E1°) = E~O). This procedure is equivalent to 
diagonalizing V in the subspace spanned by the degenerate eigenfunctions of flo. 

The eigenvalues of V thus obtained would be the first order corrections E~l) to the 
energy E~O), and the eigenfunctions of V would be the <1>. 's. We will illustrate the 
procedure by assuming that flo has an eigenvalue which is g-fold degenerate. 

Let 
E~O) = E;O) == ••• == E~O) = E(O), (8.133) 

represent the degenerate eigenvalues and let the g linearly independent eigen­
vectors belonging to these eigenvalues be I Uk)' (k = 1, ... g). Then, 

but, 



APPROXIVlATION METHODS 

Define, 

Obviously, 

1 <l>k) ~ i~ISik 1 u), k =: 1,2, .. . g} 
-I Uk}' k > g. 

, .(0) 
Ii 0 1 G>k>:::: Ek 1 <I>k)' 

We have to determine the coefficients Sit in (8.134) such that 
, (I) 

(<l>k I V 1 <I>.) = o."E. ' for n, k ~ g, 

::75 

(8.131) 

(8.135) 

(8.136) 

where, we have assumed that the <I>k' s are normalized just as the Uk'S are. The 

following procedure would accomplish the objective: 

Replace 'If.0) in (8.1201
) by <I>.: We get, using (8.134), 

(11
0

- E!O»'lI.I):= (E!I) - V)<l>. 

(I) , a 
= (E. - V)L Sj. 1 u), n ~ g. 

}~I 

(8. 137a) 

:= (E!I) - V) 1 u.), n > g. (8.137b) 

Taking the scalar product of Eq. (8.137a) with uk(k ~ g), we get, since Et) = E~O), 

L {Vk - Ok" E~11Sj. = 0, (k = 1,2, ... g; n ~ g), 
j ~ I } } 

or, 

(V6 -E(1)I)S.=0, (n=1,2, ... ,g), 

where va and S. are the matrices, 

[vn V12 

V''] 
SI. .. 
S2n 

V
g 

== ~21 V22 .. V2s . S = , . 
VgI Va2 .. Vu 

Sg. 
with 

(8.138) 

(8.139) 

Vkj=<UkIVIUj>' (8.140) 

Also,! isag x g unit matrix. Eq. (8.138) is the eigenvalue equation [sceEq. (A.63)] 
of the matrix VB. The eigenvalues are the g roots of the secular equation (cf. Eq. 

(A. 58» 1 va - E(I)/ 1= 0. These eigenvalues, E~I) (for n = 1 to g), give the first order 

corrections to the energy E~O), while the eigenvectors of vg (that is, the <I>. 's given 

by Eq. (8.134) for n ~ g) are the zero-order wave functions for n ~ g. The problem 
is, thus, reduced to that of diagonalizing the matrix vg. 

The matrix V <I> representing V in the representation {<l>k} N is shown below 

against the matrix V. representing V in the representation {uJ
N

, where N is the 

number of distinct (linearly independent) eigenvectors of li 0: 
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u1 

U 1 VII 

Uz VZ1 

o 

o 
V', + II 

~ U, 

V 12 VI, 

Vn V1,r 

(
V' 

-V -- .- V(N-,)" 

o 

o 

V'HZ 

-V - , 
( 

E 
- "'- Vf(N-,)" 

o 
o 

U,+I 

VI,+I 

V1,r+1 

V,,(N-,») 

V(N-,) ) 

In (8.141b). 

/I 

== L S,.V ..• for i >k. 
j=l J IJ 

It follows that 

(1)_' } E. - < <1>. I V 1<1>. >, 
\)_ {<<I>lIVI<I>.>} n=1.2 .... N. 

'If.. - L P E(O) E(O) <I>l 
k~1t II - t 

Thus. up to first order in the perturbation. we have. 
E: =E(O)+E;I). n ~g.} 

==E!O)+ V ... , n >g, 

UN 

VIN 
V2N 

(8.141a) 

V'IN 

V'2N 

(8.141b) 

(8.142) 

(8.143) 

(8.144a) 
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(S.I44b) 

where, we have substituted for <Pk from Eq. (8.134) in the expression (8.143) for 

V;)· 
Ifall the eigenvaluesE~l) (n = 1,2, ... , g) of V' are different, then the degeneracy 

is completely removed by the perturbation in the fIrSt order, and the single level 
E(O) is split up into g different levels (Fig. 8.6). If some of the eigenvalues are 
equal, then the degeneracy is removed only pardy in the first order. The degeneracy 
may gel removed completely in a higher order; but, sometimes, the degeneracy 
might be there in all orders of the perturbation. 

, , 
,1' ,..' 

, ,..'" ". ~~--------
(10) /:-:.",' 

.;;;;E _______ ..... I'~::.- _- --------
- ~.::- - - - ----------~-." -

~, -' ...... _- - - - ------,"" 
'~'--_____________ Ii 

" [1 
1 Fig. 8.6 Lifting of degeneracy in the first order. 

A sufficient condition for the persistence of the degeneracy in the first order 
is that two or more ofthe zero-order degenerate wavefunctions satisfy the relations, 

< uj I V I uj > = < uj I V I uj >, (S.I45a) 

<uj I V I Uk >=<Uj I V I Uk >=0, k ~g; (S.145b) 

For, (8. 145b) implies, Uj '" <P j and Uj '" <l>j so that, from Eqs. (8.143, 144 or, 145a), 

we have, E: = EJ. The conditions (8.145a, b) are, however, not necessary except 

for g = 2. Thus, a sufficient condition for the complete removal of the degeneracy 
in the first order is that the perturbation connect all the zero-order wave functions 
in the first order. In gencral, degencracy is removed in the nth order if the 
perturbation connects all the zero-order wavefunctions in the nth order. That is, 
if 

where, 

Vj~') '" L < i I V I k > < k I V II >< II V 1m> .... V I j > ~ 0, 
k.l.m 

(n factors) 
Ii >=Iuj >. 
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APPLICATIONS 

Linear Stark Effect in the Hydrogen Atom 

Stark Effect is the splitting of atomic levels due to an applied electric field. In the 
case of the hydrogen atom, the Hamiltonian would be given by 

II =lIo+e I Eli. 
where E is the electric field, assumed to be in the z-direction, and 11o is given by 

Eqs. (4.97d) and (4.98a). Thus, the perturbation, 

V=e IEli. 
The zero-order wavefunctions are given by Eq. (4.1IOa): 

'Vi0) ;: Uk = u~l,.(r, 9, C»). 

The ground state [SeeEqs. (4.117) and (4.123)] is,ulOO which is non-degenerate. 

The first excited state corresponds to n = 2(1 = 0,1) and is 4-fold degenerate, the 

degenerate eigenvectors being !two, ~10> ~1-1 and ~ll. Since V has odd parity, its 

matrix elements between states of the same parity (that is, same I-value) vanish. 
Thus, 

(8.146a) 

so that 

<Uzl-11 V I U Z1 ... >=<Uzl! I V I ~l ... >= O. (8. 146b) 

Also, from z = r cos9 = ~rYlO(9'<1»' and the relation (5.60), we have, 

< UZ1 _I I V I Uzoo > = < UZlI I V I Uzoo > = o. (8.146c) 

We see that ~l-l and ~ll> thus, satisfy conditions (8.145a, b) so that they will 

continue to be degenerate eigenvectors in the first order also. Hence, we have, 
according to (8.134), 

<1>4 = Uzll· 

Only the levels Uzoo and UzIO split, and the splitting is obtained by diagonalizing the 

matrix, 
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where, 

VIZ == < u.oo I V I Uuo > 

= e \ E I < u.oo I £ I Uuo > 

== e I Elf f f ~ r cose Uur/2dr d(cose)d<\l 

-3e IE\ao, 

since 

1 (1) -r12ao Uuo== ..J41t 2ao (rlaJe cose, 

where, 

is the Bohr radius. 

VZ1 = V;z 

Hence, the secular equation is 

yielding the roots, 
I 

_£(1) 

-3elElao 

E?) == - 3e I E I ag; 

Ejl) = 3e I E lag. 
Substituting these in the matrix equation (8.138), we determine, 

1 
Su ==SZI == f2 

so that, 
1 

<1>1 = {i(U1OO + ~1g), 

1 
<1>2 == {i(u.oo - ~Ig)· 

Substituting in Eqs. (8.144a, b) from Eqs. (3.146-148), we have, 

(8.147) 

(8.148) 
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EI = E(O) - 3e I E I a 
1 0' 

and 

'lI. = <1> •• (n = 1, .. .4). 

We see that the splitting is proportional to the strength of the applied electric field 
(hence the name linear Stark Effect). A diagrammatic representation of the effect 
is given in Fig. 8.7. 

------ E(o) + 3eoo~ 
E(O) _(_2--'s,:....2.;..p_) __ -+""-:. .... ____ E(o) -... 

--.... ------ E(oL 3eao~ 

(0 ) 

(<Pz) 
(u21-I,u211) 

«(/>1) 

(0) (15) 
E I5 -........;---- ------d~) 

ENERGY 
(UIOO) 

WAVE FUNCTICJ\I 
(b) 

Fig. 8.7. Linear Stark Effect in hydrogen. 

Zeeman Effect in Hydrogen 

(al Levels in the absence of the field, 
(b) levels in the presence of the field. 

The splitting of atomic levels, when the atom is placed in a uniform magnetic field. 
is known as Zeeman Effect. The effect of a magnetic field is to change the 

e 
momentum from p to (p - - A), where A is the vector potential related to the field 

c 

B by B = curl A, or, since the field is uniform (oB/ax = 0, etc.) and div. B = 0, by20 

A = ~(B x r). In the case of a weak field, the Hamiltonian of the hydrogen atom 

(neglecting spin) is, therefore, given by 
li=Ho+V, 

with 

V =-(e/21lC)(p' A+A· p) 

. =-(e/llC) (A . 1», since p. A =A· p-i1i(V, A) 

, = -(e /2j..lC) (B x r) . P ::= -(J!i1i) (B . i), 

20. The iJentity. 

Vx(A xB); A(V· B)-B(V. A)+(B· V)A-(A· V)B, 
is used. 

(8.149) 
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where, 
i= fXP, 

is the orbital angular momentum, 11 is the mass of the electron and 

etl 
118 == 2JlC' 

is the Bohr magneton. 

281 

By choosing B along the z-axis, we could make the perturbation diagonal with 
respect to the eigenvectors of H o' That is, 

< u.'l'm' I V I u"m == -(1l8It1)B < u.'l'm' I Iz I u.1m > 

Thus, 

and 

E~1)==-1l8Bm. (8.150) 

Fig. 8.8 shows the splitting of the Is, 2s, and 2p levels. Just as in the case of the 
Stark Effect, the degeneracy of the (2s, 2p) level is only partially lifted. But we 
see from Figs. 8.7 and 8.8 that the levels degenerate in the Stark Effect are split in 
the Zeeman Effect, and vice versa. 

E(o)+ BlflBI 

E(O) 
(0) 

E 

E(O) 
1s 

.... .,.. 
(2s,2p) .,.. .... 

E----, , .... 

(15) ------

E(OL BI)lBI 

(0 ) 

(U211) 

(u200,U210) 

(U2H) 

------ E~~) (uIOO) 

ENERGY WAVE FUNCTION 

{ b) 
Fig. 8.8. Zeeman effect in hydrogen atom (neglecting spin of the electron). 

Problem 8.10: When spin of the electron is taken into account, in place of Eq. 
(8.149), we have, 

V == - (!l81t1)B . (I + s) 

Show that, in this case, a level of given total angular momentum quantum number 
j is split into (2) + 1) levels according to the formula (cf. Eq. (8.150)), 

E (I) B 
jm == -gjlls m, 

where the Lande' factor gj is given by (here, I nljm > == <l>n1p.) 

gj=<niJIlj.(1+2S)1I nIJ>IUU+l';fi1. 
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Spin-Orbit Coupling in the Hydrogen Atom 

When spin of the electron is taken into account, the degeneracy associated with a 
level of given orbital angular momentum I increases to (2.1' + 1) (21 + 1) = 2(21 + 1). 
This degeneracy is partly lifted by the interaction, or coupling, between the spin 
and the orbital motions of the electron. The spin-orbit interaction can be repre­
sented by a potential of the form, V = <x,(i.s) with (X. a constant for the atom, and 

can be treated as a perturbation since I V I < I flo I . The zero-order wavefunctions 

are now products of a space part (un1m ) and a spin part (x ..... ). We will denote these 
I • 

by I n/sm1m, >. That is, 

I Uk> == ~O) == I n/sm1m. > = U.1mX.m • 
I • 

(8.151) 

The operator (1.5) does not commute with It and S, (see Section (5.5A». V is, thus. 
non-diagonal in the representation (the uncoupled representation) defined by the 
basis vectors (8.151). It is, therefore, necessary to construct the matrix of V in the 
subspace of the degenerate eigenfunctions and diagonalize it to obtain the <1>1 'so 

However, we can avoid this calculation by noting that (1.5):::: ~ (jZ - j2 - 52). is 

diagonal in the coupled representation defined by the basis vectors (Eqs. (5.66a) 
and (5.67b)), 

(8.152) 

where 

j=I+5, 
and is the operator corresponding to the total angular momentum of the atom. We 
have. since s::: 1/2, 

where 

, ex liZ 
< <1>q' I V I <1>q > = 2 UU + 1) -I(l + 1) - s(s + 1)] ()qq' , (8.153) 

= - e ~ 1 )ex liZ, j = I - ~ 

q == (nlsjm). 

. 1 
1=/+­. 2' 

(8.153a) 

(8.153b) 

Thus, the 2(21 + 1) degenerate levels belonging to a particular I-value will split into 

two levels (except when 1= 0), one of j = l-~ and degeneracy ~l-D+ 1 = 2/, 

and the ot.her of j = I +~ and degeneracy equal to 2(1 + 1). Fig. 8.9 shows the 

spin-orbit splitting of the level (2s. 2p) in the Hydrogen atom, where 
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E(O)+.L I.. ,,2 2 
"" ,.-______ 2______ P:Y2 (4) 

"" ...-

E
(O) (2s,2p) ,/ E(O) 2 
-------«- - - - --------- SI/2 (2) 

(8) \ 
\ 

\ 
\ 

\ 
\ 

\ E(0)_.(1;2 

\ '-------- 2pI/2 (2) 

Fig. 8.9 Spin-orbit splitting of the (2s, 2p) level in the hydrogen atom. The nwnbers in the brackets 
denote the degeneracy of the levels. 

the notation ]S + 1LJ is used for labelling the levels (S = the spin, L = the orbital 

angular momentum (see Eq. (4.124) for the alphabetic notation for the [-value), 
and J = the total angular momentum). 

Problem 8.11: Determine the C-coefficients in (8.152) for the case of the 2p-level 
by diagonalizing the matrix of V in the uncoupled representation. 

B. MEJ1IODS FOR TIME-DEPENDENT PROBLEMS 

When the Hamiltonian is independent of time, the system remains in the state in 
which it finds iL<;elf at the beginning. In other words, there is no transition between 
different stationary states of the system. That is not the case when the Hamiltonian 

is time-dependent. If the system is in a state I u) at the initial time to, then it need 

not be found in this state at a later time t. The problem is then to determine the 
state vector (representing the state of the system) at time t, or, equivalently, to 
evaluate the probability for the system to be found in the state I u) at time t when 

it is known to have been in the state I u) at time to. An exact Golution of the problem 

is rarely practical. Hence the necessity for resorting to approximation methods. 
Now, time-dependence of the Hamiltonian can arise in one of the following 

two ways: 
(1) fI = 110+ V (t), where 110 IS independent of time, and 

I Vet) 1« Iflol. 
(2) fI is constant in time except for a time T during which fI changes from flo 

to f1 1• 

The approximation method which deals with the first case is known as the 
time-dependent perturbation theory. This is discussed in section 8.4. The other 
case is discussed in Section 8.5. 
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8.4. TIME·DEPENDENT PERTURBATION THEORY 

Just as in the case of stationary perturbations (Eq. (S.10S», the Hamiltonian of the 

system can be separated into a majorpartH oand a minor part V. The only difference 

is that now V would be time-dependent, Thus, 

H(t) = H 0 + Vet). (8.154) 

Vet) will represent an external field (that is, one imposed from outside the system 

whose Hamiltonian is H 0)' For example, it could be an applied electromagnetic 

field, or it could be the interaction of a particle passing by the system, as in a 
scattering problem. 

Instead of proceeding along the lines of Section S.321 
, we adopt here a procedure 

which makes use of the evolution operator U (t, to) introduced in Section 4.1 (Eq. 

(4.1». The problem of determining the state vector of the system at any time t, 
then, reduces to evaluating U(t, to) for all values of t. 

Now, according to Problem 4.4, 

O(t, to) = Oo(t,tJUit,tJ, (8.155') 

where, U oU, to) = exp (-(iltL)H o(t - tJ], (8.156) 

and 0 /(t, to) is defined by the equatinn, 

. aO/(t,to) A A 

ItL at = V/t)U/t, tJ, (8.157) 

with (see Eq. (4.40a», 

V /(t) = U~'(t, tJ V (t)U 0(1, to). (8.158) 

Eq. (8.157) is equivalent to the integral equation, 

U /(t, to) = i - (i/li) f V/(tI)UI(tl' to)dtj' (8.159') 
'0 

Eq. (8.1591
) enables us to express U / as a power series in the perturbation V I using 

the method of iteration (See Section 7.4, Eqs. (7.1071
.
2». The first iterated form 

of VI is obtained by substituting for VI(tj, to) in (8.1591
) the expression, 

0l(tj, tJ = 1- (i/1i) f' v/(tz}V/(t2, tJdt2 , 

'0 

which is obtained by substituting II for t in that equation. Thus 

, A f I A f I f'l A A A U/(t, to) = 1 + (ilir
1 

V/(tl)dt1 + (i1ir
2 

dtl dt2· V /(tI)VitZ}UI(t2' to). 
'0 '0 '0 

(8.1592
) 

The second iterated form results when UI(l2' to) in this equation is replaced by the 

expression obtained by replacing t by t2 in Eq. (8.159/). Repetition of this procedure 

leads to the result, 

21. Por such a procedure see Schiff. L.I.. Quantum Mechanics, ill Edition, Section 35. 
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with, 

(8. 160a) 

A (0) A 

and V I (t, to) = 1. (8.l60b) 

From Eqs. (8.1551
) and (8.l593

), we have, 
• ~ AtO) 

V(t,to)= LV (t,to>, 
11=0 

h UA (0)( ) _ VA ( )VA 

(0)( \ were, t, to - 0 t, 10 It, tOl 

(8.161) 

Here, properties (4.9) and (4.7) of the evolution operator and definition (8.158) of 
VI have been used. Eq. (8.1552

) is, thus, an expansion in powers of the perturbation 

Vet). Correspondingly, the wave function of the system at time t is given by the 
series, 

where, 

and, 

'I'(t) =d/(t, 10)'1'0 = L qJ<°)(t), 
II =0 

'1'0 == '1'(10) 

'1'(0)(1) = O(o)(t,tO>'I'o' 

(8.162) 

(8.163) 

Hcre, '1'(0)(0 = 0 o(t, to)'I'o, is the zero-ordcr wave-function and '1'(0)(1), (n :<>: 1) 

thc nth order correction to the wavefunction. From Eqs. (8.l61) and (8.163), we 
see that '1'(')(1) involvcs n change of states, in its evolution from to to t. This is 

illustrated in Fig. 8.10 where the Feynman graphs22 corresponding to the 
inlegrands of 'I'(n)(t) for n = 0, 1 and 2 are shown. Suppose '1'0 is an eigenvector 

of Ii o. Thcn, in the case of tp(2), the system evolves as '1'0 between to and t1; at tl it 

makes, under the influence of V (11) a transition to a new eigenstate of Ii o. The 

system remains in this new state until t2 when it again makes a transition to another 

n. A description of Feynman Graphs, or Fcynman Diagrams, is given in Section 11.5. 
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ljI(O) tV(I) 
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tV(2) 

-------------r------~--------------r_---------t 

o ------L-------------~L-----------------~-----------to 
Fig. 8.10. Feynman graphs of the zero, first and second order contributions to ljI(t). The evolution 

operators appropriate to each segment of the graphs are also shown. 

eigenstate of flounder the influence of V (t:J. The evolution of the system between 

(0 and (1' (1 and (", and (2 and t are, thus, described by the evolution operators 

appropriate to fI 0 while the change of states at t} and t2 are determined by the 

perturbation V. When I V (t) I is small enough to be treated as a perturbation, the 
amplitude of the state would decrease rapidly with each change of state. In the 
case of an ensemble, this means that the number of systems (members of the 
cnsemble23

) that would undergo a change of state would be only a small fraction 
of the total number present at that time. Thus, \fI(O) represents systems that have 
evolved without making any change of state, 'P(I) systems that have changed Slate 
once, \fI(2) those that have changed states twice, and so on. It follows that the series 
(8.162) would be a fast-converging one. The approximation to order n consists in 
neglecting contributions to \fI(t) from systems that have undergone change of state 
more than n times between to and t. That is, in setting, 

'P(t)= i~)(/)= iO(P)(t"o)'Po' (8.16i) 
p ~o p ~o 

In the following, we will confine the discussion to those cases where the first 
order approximation is good enough. Also, we will assume that the system is 
initially in an eigenstate of fI o' Then, the problem is to determine the probability 

for the system to be in an eigenstate of fI 0 at time /, that is different from the initial 

state. 
Let Ek and 'l'1 represent, respectively, the eigenvalues (assumed to be discrete: 

and (the normalized) eigenvectors of flo: 

fI O'l'k = Ek'l'k' k = 0,1,2, .. " 
with (see Eq. (4.21 )), 

'l'.(r,l) = u1(r) exp [- (itli)E1(t - 10>]. 

(8.164 

(S.l64a 

Also, let the system be in the slate 'l'i at time to' Then, in the fIrst-order approxi 

mation the probability for the system to be found in the state 'l'f at time t, is givc 
hy 

23. lhcsc are, for example, the individual atoms in an ensemble of atoms. 
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where, from Eq. (8.1621
), 

('I'll 'P(t» '" ('I'I I O(O)(t,trJ 1'1')+('1'/1 O(l)(t,trJ 1'1') (8.166) 

Now, 

(8.166a) 

(by Eqs. (8.161), (8.160b), (8.156) and (6.164a», 

and 

where, 

and 

Vli(t l ) = <uI I vCt I ) I u), 

Wli = (EI - E)/tz, 

(8.166b) 

(8.167a) 

(8.167b) 

is the Bohr frequency corresponding to the transition 'l'i ~ '1'/. Substituting from 

Eqs. (8.166) and (8.166a, b) in (8.1651
), we get, 

Wi -->/= ~21 f Vli(l') exp (iWIJ')dtf (i ::f:. f). (8.165
2

) 

This is the basic equation of the first-order time-dependent perturbation theory. 
We will consider certain illustrative applications of this formula in three different 
types of lime-dependence. 

Problem 8.12: Show that Eq. (8.160a) can also be written as 

OJ")(t, to) =~P f dtl f dt2•••• f dtn VI(tl)·VI(t~···VI(tn)' 
(t~n. ~ ~ ~ 

where P is defined by, 

" , {A (11)13 (t~, if t1 > t2, 
P {A (t ) B (t '} =, , 

1 ]) B(t~A(t), if t2 > tl • 

Note: P is known as the Dyson chronological operator (See Section 11.5). 

8AA. Constant Perturbation 

This is the case when V has no explicit dependence on time. Then, from Eq. 

(8.1652
), we have (setting to = 0), 

Wi -'I =: {I VIi 12 It?} .) fa I [ exp (i wftt,)l dt' r 
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4/ Vfi /2 . 2 (rofi ) ==--·sm -/. 
1i2ro;; 2 

(8.168) 

In Fig. 8.11(a) is plotted the variation of Wi -.1 for a given (non-zero) value of ro/i 

as a function of t, while in Fig. 8.11(b) we show the variation ofw; ___ Jt) with ro/;. 
Wi~f 

WI_' 

2 2 
\Vfi I t 

1i 2 

--=-==4""rr::::/;::"t L:_:::::2=1TT~/-t .L--OL-~~~L.=:4:::ioTT-=/::::tI:::::."'W fi 

(b) 
Fig.8.11 Variation of w; .... t [Eq. (8.168)] with; (a) t, (b) Olt;. The sec\)ndary maxima in (b) 

are equal to 4 V]thOl}.. 
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We see that the probability oscillates in time (except for Wfi = 0) between zero and 

a maximum of 4 1 Vfi 12 /(Ef - EY with a period 'tcharacteristic of the energy change 

Ef - Ei (that is, 't = 2rrJwfJ Since 1 Vfi 1 is small, even this maximum value would 

be negligible except when Wfi is small compared with I Vfi I. In fact, we see from 

Fig. 8.11 (b) that the probability Wi ->f is appreciable only for a range of values of 

wfi that lies within a band of width, 

llWfi "" 2rrJl, (8.169a) 

around the value Wfi = O. That is, transitions take place mostly to those states that 

have their energy within !lE ~h/t of the energy of the initial state. The condition 
for the perturbation to induce a transition is, thus, 

!lE . t < h, or t < 't, (8.169b) 

where!lE is the change in the energy of the system, t the duration of perturbation 

and 't the characteristic time associated with the energy change !lE. 
Result (8.169b) is some times interpreted, on the basis of a time-energy 

uncertainty relationship, as signifying that a constant perturbation rarely causes 
transitions between states having measurably different energies. The existence 
of a time-energy uncertainty relationship is not, however, beyond dispute (See 
Section 3.2). 

Transition to a Continuum 

Since the transition probability is appreciable only for states having energies nearly 
equal to the energy of the initial state, the above procedure is best suited when the 
energy levels (to which transitions take place) are part of a continuum. We could 
still think of the levels to be discrete but infinitesimally close together. It is then 
possible to define a transition probability per unit time. 

Let P(Ef) be the density of states (the number of energy levels per unit energy 

interval) in the neighbourhood of (and including) the level 1 uf >. Then, p(Ef)dEf 

is the number of states having energies between Ef and Ef + dEf' The product, 

Wi --> JP(Ef)dEf == dW, is the probability for transition to this group of levels; and the 

total transition probability for transition to the continuum states is given by, 

W = f dW = f Wi -->tP(Ef)dEf 

r +00 2 sin2
( wf /2) ( 

= 4 J~ 1 Vii 1 pee) tlw}; dWfi , 

where Eq. (8.168) has been used. Now, both P(Ef) and Vfi are slowly varying 

functions of the energy. And since the contribution to the integral in (8.1701
) comes 

(according to Fig. 8.11(b» from a narrow band of energy, the factor I Vfi 12 p(Ef } 

could be taken outside the integral sign. Then, 
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2 J- -2 . 2 (1 ) W -= 41 Vfi 1 p(Ef)(t/2M _ x Sill X dx, x =2ffifJ ' 

= (~1t )reEf) 1 Vfi 12 I. 

The transition probability per unit time is, then, 

dW 21t 2 
dt == 1; 1 Vfi 1 p(Ef}' 

Thus, the rate of transition is independent of time. This result is known as the 
Golden Rule of time-dependent perturbation theory. The proportionality of W to 
t could have been inferred from Fig. 8.11 (b). Since the height of the main peak is 
proportional to t2 and width inversely proportional to t, the area under the curve 
is proportional to t. 

Eventhough expression (8.171 1
) is derived as the sum of the transition proba­

bilities per unit time to all the levels in the continuum, by virtue of the assumptions 
involved in going from (8.1701) to (8.170~, it could be interpreted as the transition 
probability per unit time for the transition 1 u) ~ 1 uf ). The dependence of (8.1711) 

on I uf> comes through the matrix element 1 Vfi I • Now, the condition for the validity 

of expression (8.1702
) is that the contribution to the integral in (8.1701) come from 

a very narrow band of energy including the energy Ei (so that the range - 00 to +00 

is, in effect, the range (Ei - E) to (Ei + E), where, E is infinitesimal). We see, from 

Fig. 8.11 (b), that this requires t to be large and that, in that case, the energy is 
practically conserved in the transition. The condition for the validity ofEq. (8.171 1) 
can be, thus, incorporated into the equation by multiplying it by the factor o(Ei - Ef ). 

Eq. (8.1711) then reads: 

dW 21t 2 2 dt = (WJi -4 f == t; I Vfi I p(Ef)O(Ei - Ef )· (8.171 ) 

Here, the subscript c emphasizes the fact that the states 1 U,) and 1 uf> are parts of a 

continuum, unlike the states involved in Eq. (8.168). 

Scattering Cross Section in the Born Approximation 

As an example of the application of formula (8.171 2
), we will calculate the scat­

tering cross-section in the (first) Born Approximation (Eq. (7.106b». Now, under 
condi tions of val idi ty of the Born approximation, the kinetic energy of the particles 
(being scattered) are very much larger than the scattering potential. The particles 
are free long before, and long after, the scattering, and come under the influence 
of the potential for a certain duration in between. From the viewpoint of the 
particles, therefore, the potential could be treated as a time dependent, but constant, 
perturbation. The unperturbed Hamiltonian, in this case, is the free-particle 
Hamiltonian: 
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The eigenvectors of flo are the 'plane waves' e ik 
r , where p = lik, whereas the 

eigenvalues are given by E (k) = 1i2k2/2)l. Since k can vary continuously between 
o and 00, the spectrum of flo forms a continuum. 

Also, in elastic scattering, the energy of the particle is the same both before and 
after scattering so that energy is conserved in the transition from the initial to the 
final state. This is, therefore, a suitable case for the application of formula (8.171 2

). 

We can make the eigenvalues discrete by enclosing the particle in a cubic box 
of volume L 3 and imposing periodic boundary conditions24. Then, the normalized 
eigenvectors of llo, representing the initial and final states are given by, 

so that, 

- where, 

Vri = J u;(r)V(r)ui(r)d
3r 

= ~3J V(r)e
iKr

d
3
r, 

is the momentum transfer. 
The density of states peEr} could be found as follows: 

Let the time-dependent SchrOdinger equation corresponding to flo be 

iii al.jf~~, I) = fl ol.jf(r, t) = (_1i2/2)l}V~. 

(S.172a) 

(S.l72b) 

(S.173) 

Then (see Eq. (4.21», l.jf(r, t) == u(r) exp [-(i/Ii)E1J. The normalization ofl.jf should 
be independent of time. That is, 

o=~Jl.jf·l.jfd3r= ~(l.jf.al.jf + dl.jf°l.jft3r 
dt ) dt at j 

(S.174) 

where, 

(S.17S) 

24. Such a procedure leads to a restriction in the allowed values of k. But the spacing between 
adjacent values of k could be made as small as desired by increasing L [see Eq. (8.177) below). 
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and jn is the component of j along the outward normal to the closed surface A 

enclosing the volume over which the integral is taken (d~ denotes an element of 
this surface). The last line in (8.174) follows from the second on partial integration 
while the last step results from the application of the divergence theorem~. 

Now, Eq. (8.174) will be satisfied if either 'I' vanishes everywhere on the 

bounding surface or 'I' is periodic (in a certain way) on this surface. In the present 
case, u(r) defined by Eq. (8.172) docs not vanish anywhere. So condition (8.174) 
should be met by periodic boundary conditions. In the case of the cubic volume, 
these boundary conditions arc that u (r) and the normal component of its derivatives 
should be the same at opposite faces of the cube. Choosing the edges of the cube 
along the co-ordinate axes, we have, 

exp (ik.x) = exp [ik.(x + L)], 

or, 

k~ = 21tn~, with n~ = 0, ±l, ±2, .... 

Similarly, 

kyL = 21tn" 

k,L = 21tn" 

and 

2 2 2 112 
kL == 2rtn = 2rt(nx + n, + nz ) , 

where, n, and nz also are positive or negative integers, including zero. 

(S.l76a) 

(S.176b) 

(S.l76c) 

(8.177) 

We have to find the number of states between E(k) and E(k + dk), where the 
allowed values of k are given by Eq. (8.177). This is equal to the number of points 
in the n-space between nand (n +dn) with co-ordinates (nx' n"n,) integer. Now, 

in the n-space there is one such point per unit volume. Therefore, the number of 
k-values between k and (k + dk) in the k-space is 

41tn 2dn = 4n(Ll2n)3k 2dk. 

This number refers to particles scattered in all directions; that is, over a solid 
angie4rt. Therefore, the number of states with k-values in the interval kfand kf + dkf 
within the solid anglc26 dO is given by 

(Ll21t)3k]dk;tQ :0 p(Ef)dEf == p(Ef) . (t?kjJ.l)dkf ; 

so that 

(S.17S) 

25. In view of the interpretation of W'W as the probability density, j is interpreted as the probability 

current density. Eq. (8.174), then, represents the conservation of probability or, equivalently, 
the conservation of number of particles. 

26. Unless we restrict the states to a small solid angle, they will not all be described by the sam£ 

wavefunction which, in this case, is characterised by the momentum vcctor k f . 
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Substituting from (8.173) and (8.178) in (8.171 2
), we get, 

(WJ == 2n:~f3Ifv(r)eXp(iK.r)d3rI2dQ. 
'-->f (2rrhL) 

This is equal to the number dN of particles scattered into dO. per unit time when 

there is only one incident particle in L3. Thus, incident flux Jo is given by 

Jo = p.v =~. (tiki). 
" L3 !l 

The differential scattering cross-section 0(0.) is, then, given by (see Eq. (7.l1», 

since I ki I == I kf I = k, 

dN (1lL 3
)(WJi-->f 

0(0.) == l.Jo 1 dO. == M dQ 

1
1 2!lJ' 31

2 

== 4n: ii2 exp (lK· r)V(r)d r , (8.179) 

which is in agreement with the Born approximation scattering amplitude (7.l06b). 

Problem 8.13: U 1 and U2 are degenerate eigenvectors of the Hamiltonian If 0 of a 

system. The introduction ofa constant perturbation splits the two levels a distance 
E in energy apart. If the system is initially in the state U 1, obtain the condition for 

the system to be found in the state U 1 even after the perturbation has been on for a 

timeT. 

S.4B. Harmonic Perturbation 

A field which varies harmonically in time can be represented by 

V (t) = Y(r)e iWl + yt(r)e ~iWl, (8.180) 

where V is independent of t (the second term in (8.180) is needed to make V 
Hermitian). Substituting in (8.1652

) (with to = 0), we get, in place of (8.168), 

_ 4IVfiI2{ .. [(CJHWfJ/21t}2 4IVifI2{Sin[(W-Wf,)/21t}2 
W, 'f- 2 SID + 2 + '" 1'1 W + Wfi 1'1 W - Wfi 

(8.181) 

Arguments similar to those in the case ofEq. (8.168) show that Wi ..... fis appreciable 

only when wfi "" ±w. That is, when 1 Wfi 1 == 1 (Ej - EJ 111'1 = w. But 1 (Ef - E,) 1 Iii 

is the Bohr frequency corresponding to the energy change tJ.E = ±(Ef - EJ. Thus, 

only those transitions are allowed for which the Bohr frequency is equal to the 
frequency of the perturbing field. Wfi == CO corresponds to absorption of energy 
from the field (transition from a state of lower energy to one of higher energy). In 
this case, the first term of the R.H.S. of (8.181) is negligible, so that, we have, 
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w(a) '" ~ __ 2_ (00' W-WrJ (
41 12)Sin2~t 

i->f 1/2 0012' I' 
(8.181a) 

The case, Wfi =: -00, on the other hand, corresponds to emissionZ/ of an amount of 

energy equal to 1/00 by the system (transition from a state of higher energy to a 
lower one). The corresponding transition probability is given by, 

(.) (41 Vf..l2) sin2~t , 
W i .. f '" ~ ,~,(o)=W+Wf) (8.181b) 

A plot of Wi -> f against Wfi is given in Fig. 8.12. The similarity of the peaks in Fig. 
8.12 to the peak in Fig. 8.11 (b) is obvious. Using arguments similar to those leading 
to Eq. (8.l712) we get, for the transition probability per unit time for transition 
from an initial state I Ui > to a final state I uf > having energy approximately equal 

to Ei +1iw, the expression, 

r=2TT/t 

o vrf' 
Flg.8.12. Variation of w, -~f [Eqs. (S.ISla) and (S.18\ b») with w," 

(8.182) 

This formula is applicable when the initial state is part of a discrete spectrum and 
the final state is part of a continuum. Ionization of an atom in which an electron 
occupying the ground state of the atom absorbs a quantum of radiation from a 
perturbing electromagnetic field and jumps to the positive energy (continuum) part 
of the spectrum, is an example (Problem 8.14). 

Problem 8.14: A hydrogen atom in it'> ground state, is subjected to an oscillating 
electric field, E == 2Eo sin wt, where 00 is greater than the ionization frequency 

[== ~4/21i2, (see Eq. 4.117») of the atom. Obtain the differential ionization prob­
ability (that is, the probability per unit time per unit solid angle that the electron 
of the atom is ejected in the direction .Q ~ (9,$», assuming that the final state of 
the electron can be represented by a plane wave. 

27. In order to distinguish this process, whose driving force is an applied external field, from the 
process of spontaneous emission arising from fluctations in the internal fields of the system,the 
fonner is usually referred to as induced, or stimulated, emission. 
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When the transition is between discrete levels, however, the rate of transition 
is not constant in time, but is oscillatory (Fig. 8.1 1 (a)), if the perturbing field is 
strictly monochromatic. The latter condition is rarely fulfilled in practice. More 
often than not, the field would consist of a range of frequencies. In such cases, it 
is possible to define a transition probability per unit time that is independent of 
time, as illustrated in the following example of atomic radiation. 

Radiative Transitions in Atoms 

Consider an atom (atomic number 2) placed in an external electromagnetic field. 
If the Hamiltonian of the atom in the absence of the field is 

, z 1 ,2 ' 
110= L -2 Pj+U, 

j=l m 

then, the Hamiltonian in the presence of the field would be given by28, 

, Z{l( e )2 }' H = L - p--A(r.,t) +e<l>(r.,t) +U. 
j~l 2m } c} } 

(8.183a) 

(8.183b) 

Here, Pj represents the momentum of the jth electron, e and m the charge and the 

mass of an electron and A(r) and ¢(r), respectively, the vcctor and the scalar 

potentials corresponding to the field at the position of the jth electron. Also, c is 
the velocity of light in vacuum. In terms of the potentials, the electric field E and 
the magnetic induction B are given by 

1 dA 
E=--:;----V'$;B=V'xA. (8.184) 

C at 

When the source of the field (charges and currents) arc away from the atom, we 
can choose, 

¢ = 0; div A = O. 

In this case, the vcctor potential satisfies the wave equation, 

1 a2A 
V'2A ---=0. 

c l at l 

The plane-wave solution of Eq. (8.186) is given by, 

A(r, t) = Ao exp {i(k· r - wt)} + A~ exp {-i(k· r - wt)}, 

(8.185) 

(8.186) 

(8.187) 

where Ao is a constant vcctor perpendicular to the propagation vector k (the result, 

k· Ao = 0 is required to satisfy the Lorentz condition (8.185», and 

w=C Ikl. (8.188) 

Now from Eqs. (8.183a, b) and (8.185), we have (assuming I A I to be small), 
, " Z e 

V(t) == If -/I 0 = - L -(A(rj> t). p), (8.189) 
j=lmc 

where, the result (see Eq. (3.14d», 
p. A=A· p-i1iV· A, 

28. See, Jackson, J.D., Classical Electrodynamics (Jolm Wiley, New York (1963)) Section 12.5. 
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has been used. Substit:Jting for A from Eq. (8.187), Eq. (8.189) reduces to the 
form (8.180) with 

vCr) = - f ~(A~' P,') exp (-ik· r). 
j=lmc ' 

(8.190) 

Thus, the perturbation is proportional to the amplitude of the field. Therefore, the 
transition probability, which is proportional to the square of the matrix element of 
the perturbation, would be proportional to the intensity of the field. Now, the 
intensity is given by the Poynting vector: 

s= :1tEXB. (8.191
1
) 

But, from eqs. (8.184) and (8.187), we have, 

and 

so that, 

1M • 
E = --~ = i(W/c) [Ao exp [i(k· r- <Ot)] - Ao exp [-i(k· r - rot)] ] 

C ut 

t7 kxE. 
B= v xA=-k-' smce(W/c)=k, 

c C 2 S =-E x(k xE) =-. (kJk)E 
4ltk 41t 

2 

= (kJk) . 4: [21 Ao 12 -A~ cxp {2i(k· r - rot)} 

-A~2exp {-2i(k· r-rot)}] (8.191 2) 

The average magnitude of S over a period is, thus, given by 

I(W):I (2~ro)f"'OlSdtl=(ro2/21tC)IAoI2. (8.192) 

This is the intensity associated with the plane wave (8.187). Substituting from 
Eqs. (8.190) and (8.192) in (8.181a), we get, 

81tC I(w) sin~~(w-w/Jt} 
W eal -_I nf 12_. (8193) 

; --> I -..,,2 :m; I 2 ( )2' . 
" ro w - ro/ ; 

where, if = - (e/mc)I:(a· Pj) exp (-ik· r); , 
(8.194) 

When the transition is between discrete levels, ro/; would be a fixed quantity. Then, 

wi'%/considered as a function of ro will bea curve similar to the one in Fig. 8.11(b), 

with a sharp peak at ro = rofi. The total transition probability is obtained by inte­

grating expression (8.193) over the range Llro of frequencies: 

Weal = ( weal /Iro ,----,)/ J,aw I~r . 

Just as in the case of Eq. (8.1701
), the limits of integration could be extended to 

-00 and +00 without appreciably affecting the value of the integral. Also, the factor 
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l(w)/w2
, being a slowly varying function ofw compared with the other factor 

involving w, can be replaced by its value at ro = rofj . Thus, 

Weal = 81tC 1M. 12 I (WfJ . r- sin\w'/2)t dro' 
I - f 1'12 If wi

i 
J _ ( W')2 ' 

4rrc 2 
=22I~fl/(Wf)t. (8.194) 

1'1 ()}fi 

Therefore, the transition probability per unit time for a transition upward, in energy 
(absorption) between two discrete levels of the atom is given by, 

dwi"lf _ (a) _ (4~C) 2 1 
~=(Wd )j->f- 1i2Wfj I~fl/(wf). (8.195) 

Similarly, the transition rate for a downward transition (induced emission) is, 

(w~'\ ->f = (:~~J 19dji f I (wif). (8.196
1
) 

Eqs. (8.1951
) and (8.1961

) give the rate of transitions induced by a radiation field 
consisting of an incoherent29 mixture of harmonic waves of different frequencies, 
propagated in the direction k and polarizecfO in the direction a. 

These equations show that 
(W(a» = (w('» . (8.197) 

d j -'>f d f-,>j 

That is, the probability that the field induces the transition I u) ~I uf> is the same 

as the probability that the field induces the inverse transition I uf> ~I u). This is 

known as the principle of detailed balance. In spite of this, the intensity of the 
stimulated emission between two atomic levels is, normally, much less than that 
of the reverse process. This is because of the greater initial number of atoms in 
the lower state (under normal circumstances). The stimulated emission can be, 
however, made to predominate over the absorption process by achieving an 
inversion of the normal population of the two levels, as in the case of masers and 
lasers. 

Dipole Transitions 

In Eqs. (8.1951
) and (8.1961

) the matrix elements of ifare the only quantities that 
depend on the nature of the atom. For the atomic case, the wavelength of the 
radiation, A~ 1 0-5 em, while r is of the order of atomic dimensions (1041 cm). Thus, 
k . r-lO-3 (k = 2rr1A) and, therefore, the series, 

1 
exp (-ik· r) = 1-ik· r+"2(-ik. r)2+ ... , (8.198) 

29. The incoherence means that there is no particular phase-correJation between the different har­
monic components. 

30. By convention, the direction of the polarization of an electromagnetic field is defined as the 
direction of the electric vector. 
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converage very rapidly. As a result, it is a good approximation to replace the factor 
exp (-ik· r) in Eq. (8.194) by unity. Then, we have, 

A e Z( A) 
!Jv{",,-- ~ a·p, 

mc j=1 J 
(8.199) 

and 

e Z 
~,=-- ~a·(p)/ 

mCj=1 J I 

where Pj is the matrix corresponding to Pj. 
Now, 

(dr) A 

(p)j,= m dt jf = (mli1i)[i\HL, 

m A A 

= i1i {(U j 1 rH 1 uf ) - (u j 1 H r 1 uf )} 

= (mli) [CEf - E)lIiJ (u; 1 r I u) 

= -im w/iCr);f" 

Substituting in (8.2001
) from (8.201), we get, 

(8.201) 

'M,,== j(w/c) (a· Di), 

where, 

Z 

D == ~ er., (8.202) 
j= 1 J 

is the electric dipole moment operator. The approximation (8.199) is, for this 
reason, known as the dipole approximation. 

The transition probability per unit time for electric dipole transitions in the 
atom is, thus, obtained by substituting (8.2002

) in Eqs. (8.1951
) and (8.1961

): 

(a) _ 41t2 2 2 
(Wd )j-->[-1i2c,[(w[)I(a.Dj[)I, (8.195) 

When the electromagnetic field is unpolarized, then 1 a . Dj[ 12 in (8.1952
) should 

be replaced by its average value over the different possible relative orientations of 
a and D jf• If e represents the angle between a ana D jf, the average of I a . D;[ f is 

given by, 

2 1 J 2 la·D.I =- la·D I dD. 1f1 average 41t If 
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(8.203) 

Here, dO == sin 8d8dtl>. is an element of solid angle. Thus. for transitions induced 
by an unpolarised field. we have, 

(a) 4~ A 2 
(Wd ) f=-2 I(OJfJ 1< Ui I D I Uf > I. 

1--> 31i c 

(e) 4~ A 2 
(W d ). f = -2 I (OJif) I < uf I D I uj > I . 

H 31i c 

Selection Rules 

From the properties of the dipole operator b (Eq. (8.202». we could deduce certain 

rules that arc to be satisfied if the matrix element < uf I b I Ui >, and hence the 

transition probability (wd)j -->r are not to be zero. These ruIcs are summarised 

below: 
(i) The state I uf > should differ from I uj > in the state of only one electron. 

That is, transitions in which more than one electron changes state are 
forbidden (Such transitions can occur only in the higher order approxi­
mations of the perturbation theory). 

(ii) If J j • M j and Jf• Mfare the angular momentum quantum numbers associated 

with I Uj > and I u
J 
> respectively, then, 

A! == Jf - J j = O. ± 1; 

but no J j == 0 to Jf = 0 transition. 

(iii) The slates I uj > and I uf > should have opposite parties. 

Problem 8.15: Deduce the above selection rules. 

In the foregoing treatment of the atomic radiation, we have treated the atom 
quantum mechanically and the electromagnetic field classically. For this reason. 
the theory falls under the category of semi-classical theories. However, a satis­
factory account of radiation can be obtained only within the framework of a theory 
in which the electromagnetic field also is subjected to the rules of quantization. 
Such a quantum theory of radiation yields a result31 which is in agreement with 
formula (8.1951

) in the case of absorption, but which differs from the formula 
(8.1961

) for emission by an additional term which does not vanish in the absence 
of the field. The additional term is interpreted as representing the probability for 
spontaneous emission (see footnote 27) by the atom. 

31. Sec, for example, Schiff. L.r.. op. cit. Eqs. (57.26) and (57.28). 
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Problem 8.16: In Problem 8.14, let ro be less than the ionizing frequency of the 
atom. In this case, calculate the probability per unit time for the atom to make a 
transition to an upper level. What is the polarity of the transition? 

8.4C. Coulomb Excitation 

As an example of a time-dependent perturbation that is neither constant nor har­
monic in time, we consider the process of coulomb excitation of nuclei in which 
a beam of charged particles, such as protons, collides with a nucleus, exciting the 
latter from an initial state I Uj > to a final state I uf >. Here also, we will adopt a 

semi-classical approach, treating states of the target (the nucleus) quantum 
mechanically and the orbit of the projectile (the charged particle) classically32. 

Let Ze = charge of the nucleus, 
R = radius of the nucleus, 

Jj , Mj = the angular momentum quantum numbers characterising the state I uj >, 

Jf , Mf = the angular momentum quantum numbers characterising the state I uf >, 

Ej , Ef = the energies of the state I Uj > and I uf > . 

E = ~MV2, the energy of the projectile (assumed to be a proton) in the C.M. 

system. 
nj , Df = the initial (incident) and the final (scattered) directions of the proton in 

the C.M. system. 
S = the scattering angle (the angle between the directions Dj and Df ). 

The Hamiltonian of the system can be written as 

fJ = Ii N + fI p + fI pN, (8.2041
) 

where, liN and If P' respectively, refer to the nucleus and the proton while If pN 

represents the interaction between the two: 
fJ N I Uj > = E; I Uj > ; 

(8.205) 

When the energy of the proton is small enough, the proton will not penetrate the 
nucleus. In this case the proton-nucleus interaction will be purely electrostatic 
(Coulomb) and is given by 

where, rp(t) is the position of the proton W.T.t. the centre of the nucleus and rj that 

of the jth proton in the nucleus. For large values of rp (that is, rp ~ R), we have, 

32. The treatment here largely follows the one given in Messiah, A., Quantum Mechanics, Chapler 
XVII, Section 3. 
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The Hamiltonian of the system is, then, H =: H N + fl'p, where H N involves the 

co-ordinates of only the nucleus while H'p contains the co-ordinates of only the 

projectile. The motion, thus, separates out into the individual motions of the 
nucleus and the proton, the latter in the coulomb field provided by the former. 
The problem reduces to that of elastic scattering (no transfer of energy and, hence, 
no internal excitation of the nucleus) by a potential (Section 7.1). The differential 
scattering cross-section is given by the Rutherford formula (Eq. (7.116»: 

do (ze2)2 1 a2 --l- (8.207) 
dO. - 2MV2 sin\eI2) 4 sin4(el2)' 

where a = (Ze l l2E). The length fo =: 2a, is the distance of closest approach33 of 

the proton to the centre of the nucleus, and the condition (£ = 1i1kl l2M), 
kfo"» 1, (8.208) 

is required for the validity of Eq. (8.207) [See the discussion on the criterion for 
the validity of the Born Approximation, Section 7.4]. 

As the proton approaches the nucleus, H pN will depart more and more from 

U(rp)' As long as rp > R, the difference between ii pN and U(rp) can bercprcsenled 

by, 

and /1 can be written as 

with 

where, 

H=flo+V(t), 

I V (t) I ¢: I Hoi, 

H 0 = II N + II p + U (r pl. 

(8.2092
) 

(8.210) 

(8.211) 

Thus, vet) can be treated as a time-dependent perturbation (note that vet) is nei­

ther constant nor harmonic in time) that can cause transitions between the 
cigenstates of flo in accordance with Eq. (8.1652

). 

Now, the eigenvectors of li 0 would be products of the eiger::;cctors of Ii N and 

the eigenvectors of fl'p = H p + rI(r.) It is here that we resort to the semi-classical 

approach. Instead of using the eigcnstates of (j'p. and treating Vet) as a pertur­

bation that causes transitions between such eigenstates (along with transitions 
between the cigenstales of HN ), we use the classical orbit of the prolon in the 

Coulomb field represented by U(rp) and regard V(t) as a perturbation that 

33, 'the point of closest approach is a classical turning point defined hy E = U,(~r) = 

Ze 2 l(l + J)h2 
--+ ---2- [See Eq. (7,47»). The minimum value of r for which this condition is satisfied 

r 2Mr 
is obtained when the angular momentum I (and. hence. the impact parameter) is zero, 
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causes transitions only between the eigenstates of the nucleus. Such an approach 
neglects the energy loss that the proton necessarily suffers in the process of 
exciting the nucleus from a lower to a higher energy state34

, and would, therefore, 
be justified only if, 

(8.212) 

This is in addition to the condition (8.208) which is required for treating the 
proton-orbit classically.35 

According to Eq. (8.1652
), the probability per unit time for the nucleus to make 

a transition from the state I uj > :; I INj > to the state I ut > == I I fit> under the 

influence of Vet), is given by 

Wj~f::::~lf: <Ilffl V(t) I IjMj > eXP [(il1i)MtJ dt I

2

, 

(8.2131
) 

where, the initial and the final times are taken, respectively, as long before scat­
tering and long after scattering. The differential scattering cross-section for the 
inelastic process is the product of Wj ~ f and the cross-section (S.207) for the elastic 

process: 

This gives the probability per unit time that the proton is scattered from the initial 
direction OJ to the final direction Of and that, at the same time, the nucleus has 

made a transition from I Uj > to I uf > . 

1 1 ~ 2 -112 
Now, =-(l-acosEl.+x) , 

Irp-rjl rp J 

whcre x=- r/rp and Elj is the angle between rp and r j • Then, from Eq. (E.2S) and 

the sphcrical harmonic addition theorem (5.152), weget, 
1 ~ +1 

I _ I:::: L L (--l)mrJ Ylm(6p <?)r;I-1 YI _m(6p'<?p)' (8.215a) 
rp r j • I~Om~-1 

Also, (8.21Sb) , 

Thus, 

~ +1 

= L L (-lrQ~) T.~:,:, 
j .olm~-1 

34. This process of nucleus excitation is termed Coulomb excitalion in order to distinguish it from 
other processes in which the .hon-range. and more powerful. nuclear force comes into play. 

35. Formula (8.207), which was derived in chapter 7 in the Born approximation, is also the classical 
Rutherford formula [See, for example, Goldstein, H., Classical Mechanics (Addison-Wesley, 
Massachussetts, 1959), Eq. (3.6S)1. 
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where, (S.216a) 

(/) (41t) -I-I T", == 2/+1 erp Y",,(8p,G>p)' (S.216b) 

The d~) are the components of the electric multipole moment operator d(l) of 

order 1 for the nucleus. d(l) represents the part of V(t) that acts on the co-ordinates 
of the nucleus. That is, 

<J#fl Vet) IJNi >= 1:: <J#fl Q~ I JiMi >(-l)'"T~, 
I,'" 

so that, Eq. (8.213 1
) becomes, 

- +1 

wi--->f== lEE (--ltS~ <Jfff I Q~) I JiMj >12 
'~I",~·-I 

where, 1 r-
S~~ =~J_ T~(t) exp {i(M/1i)t}dt. (S.217) 

S(2 can be evaluated from a knowledge of the classical path of the proton. Since 

2(1) is a spherical tensor of rank I (see Section 5.6, Eq. (5.1701» and of parity 

(= 1)', for given states I JiMi > and I JlJf>' we have, 

I Jf-Ji I s: I S:Jf+Ji; m ==Mf-Mi, (S.21 Sa) 

(8.21Sb) 

These are the selection rules that have to be satisfied for a nonvanishing Wi --->f' 

The parity selection rule (8.218b) restricts the summation in (8.2132
) either to 

even values· of I or to odd values of I. Moreover, we see from Eqs. (8.216a, b) and 
(8.2132

), that a transition of order (I + 2) is less probable by a factor of the order 

of (R Ir 0)2 than a transition of order I. Since (R Ir 0) is small, we need retain only the 

lowest value of I, say 10 = I Jf-Ji lor I Jf-Ji I +1, consistent with (8.218b). Thus, 

" (10) 2 (10) 2 
Wi--->f= !<Jfffl Q .. IJNi > 1 ·1 S-m 1 ,(m ==Mf-M) 

== _1_(cliltlr )21 < J II Q(lo>III > 12 • 1 S(lo> 12 (8.2133) 
21 + 1 MimMf f I -m ' 

f 

where, the Wigner·Eckart theorem (Eq. (5.17(t» has been used. 
In (8.1233

), the nucleus is polarized bOlh in its initial state and final state (since 
it has a definite angular momentum projection along the z-axis). But when the 
target nucleus is unpolarized initially, and the polarization of the final state is not 
observed, we should average over the (21i + 1) orientations of the initial state and 

sum over the (21f + 1) orientations of the final state. Thus, 

. 1 +Ii;,lf • 

Wi --->f (unpolanzed ) == (21, + 1) Mi:·-J
i 

M/:_J,Wi --+f (polanzed) 

3 Ii. Unlike Q~'. T~) is regarded as a classical quantity (that is, not as an operator). 
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since 

(/~ 2 2If + 1 = ;; I S", I 
21

0+ l' (by Eq. (S.84d)). 

Substituting from (8.2134
) into (8.2]4\ we get, 

21\ ,(/~ 1 12 
do, ,!:=a I<Jji Q I Jj > .{sin-4(e/2).LIS(I~ll 
dn 4(21; + 1)(210 + 1) \ m '" J 

[Note that LIS(~11 == ~ IS~~11. 
m r.t 

This formula gives the differential cross-section for the Coulomb excitation of 
nuclei. In the case of nuclei, the lowest multipole of interest is of order 2(10:= 2). 

Also. the matrix element < J}. I Q(Z)lIJj > is appreciable only when the nuclear 

states arise from the collective motion of the nucleus, rather than from the pro­
motion of one or two nucleons to a higher shell model orbit. The phenomenon of 
coulomb excitation is, thus, a valuable tool in determining the spin. parity and 
mean life of collective states in nuclei. 

8.S SUDDEN AND ADIABATIC APPROXIMATIONS 

These approximations deal with the modification of the state of a system when the 

Hamiltonian of the system is changed from 110 at I = to to fit all == II' This modi-

fication will depend critically on the time T == (II - to) during which the change of 

the Hamiltonian takes place. The limiting cases of very small T (sudden change) 
and of very large T (adiabatic change) are comparatively simple. The approxi­
mation methods dealing with these cases respectively are known as the sudden 
approximation and the adiabatic approximation. A description of these 
approximations, along with a discussion of the criteria for their validity, is the 
subject matter of this section. 

8.SA. Sudden Approximation 

It is convcniCnllO define, 
1-/0 s=-­
T' 

and parametrise If in terms of s. Then, 

(8.219) 
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if Q = lies = 0) = il(o); ii 1 == 11(1). 
Also, let U (I, to) == U r(s), 

Eg. (4.13), then, takes the form, 

Ur(s) == i -(illi)T f If(s')Ur(s')ds', 

or, 

Thus, 
(8.22]) 

so that 
(8.222) 

That is, the system does not change state even though the Hamiltonian has 

changed. The sudden approximation consists in setting U r(1) = i when T is small 

but not zero. A measure of the error involved in this approximation is given by 
the probability w of finding the system in states other than the initial state 

I U; > = '1'(10), 

Let I 'VI> represent the state of the system all == (1' In general, I 'Vt> would be 

a linear superposition of the eigenstates {I Uk >} of fl Q. The part of I 'l't> that is 

orthogonal to the initial state I u, > is given by 

1'1', > = I '1'/ > -I u; > < u; I 'Vf> == Qj I 'l't >, (8.223) 

where, 

Q j == 1 - I Uj > < U; I = i-it;, (8.224) 

is the projection operator that projects onto the subspace orthogonal to I Uj >. 
Then, 

But 

so that, 

Now, by an iterative procedure identical to the one leading to Eqs. (8.1593
) and 

(8.160a), we convert (8.2201
) to the form, 

A ~ A (n) 
U r(1} = L U r (1), 

0=0 

with 

(8.226) 
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where, 

I>SI>52 >···>S._I· 

Substituting in (8.2252
) from (8.2202

) and (8.226), we get, 

w = < uj I Qj I uj >+ (i/"Ii)T{< ui I CH Qj-Q}f)Uj ~ 

+ (T2/"li2
) [< uj elf Q}ll uj > 

+ ... , 

where, 

11 1 ('1 
71 = li(s)ds = T J, li(t)dt, 

o '0 

is the average of li over the interval T. 

We have, 

Therefore, 

w "" (T2/li2) < uj 171 Q;7i I uj > = (M/lilT2, 

where [c.f. Eq. (3.25a)1, 
- 2 ----:Jr2 --,r- 2 

(M) =<ujlll luj>-<ujIH IUj> . (8.227) 

tiE could be regarded as a measure of the average change in the energy of the 

system during the time T. Since T is small, we have, retained only the lowest 
power of T with a nonvanishing coefficiene7

• 

Thus, the condition for the validity of the sudden approximation, w 4: 1, 
becomes, 

(8.228) 

This result may be compared with relationship (8. 169b) obtained in the case of the 
constant perturbation. The two results could be regarded as the two sides of the 
same coin if we interpret ("Ii/&) as the characteristic time 't (the minimum time) 
associated with an energy change M that is accompanied by a change of state 
(Recall that change of energy can take place without change of state, as also 
change of state without energy change). Then, inequality (8.228) states that, if 
the energy of a system changes by the amount M in a time T which is very much 
less than the characteristic time associated with such a change of energy, then the 

37. Note that I Ui > should no1 be an eigenvector of 7f for tJ! not to vanish. 
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system docs not change state. The other side would be thal NT is the character­

istic (maximum) energy-change associated with a change of state that takes place 
during a time T, so that if &f ;pNT, there would be no change of state (no 
transition). 

Sudden Reversal of a Magnetic Field 

As an example of the application of the sudden approximation, let us consider 
what happens to an atom in a magnetic field when the direction of the field is 
suddenly reversed38

• The following assumptions will be made: 
(i) Atom is one for which the LS-coupling39 is valid, so that a state of the 

atom, in the angular momentum representation, can be denoted by 
I LSMLM" >, where Land S represent the orbital angular momentum and 

spin while ML and Ms represent their components along the z-axis. 
(ii) The magnetic field B is strong enough to decouple Land S. 

(iii) B is along the z-axis and varies linearly with time according to the for­
mula, 

(8.229) 

The Hamiltonian of the atom is, then, given by (see Problem 8.10), 

JI(S):II(O)+aei.-S)-2
e (£ +2S )8(s). !1C Z , 

(8.230) 

That is, 

(8.230a) 

(8.230b) 

Here, 11(0) is the Hamiltonian in the LS-coupling scheme and aeL.· S) represents 

the spin-orhit coupling. Since the average value of B is zero, we have, 

7i II(O)+a(L.·S), (8.231) 

and 

38. This example. as well as the one In the case of the adiabatic approximation in Section B.SH. is 
taken from A. Messiah. op. cit. Chapter XVU. 

39. In LS-coupling, the orbital angular momenta I, and spins S. of the individual electrons are added 
z z 

separately to obtain the lotal orbital angular momentum L = 1: I, and the total spin S = 1: s,. In 
I,d ,:1 

the ii-coupling. on the other hand, I, and S, are added to ohtain a total angular momentum 

j, I, + s, for each electron and, then, the j, are added to yield a total angular momentum 
l 

J 1: j" for the atoln. 
, 1 
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so that 
- 2..,....2 -,.- 2 

(.1E) =<LSMLMS Ilf I LSMLMS >-<LSMLMS Ilf I LSMLMS > 

(8.23i) 
Now, 

(1.. S) =~«(.t +i_sJ+L,s,. 

where i± and '~j are the angular momentum raising and lowering operators [Eq. 

(5.14)]. It fol!ows that 

(.1Ef = a2
[ < {~«(s_ +LS+)}2 > - <~«(S_ +i_sJ >~. 

1 =4 uZn4[2{L(L + l)-MJ {S(S + 1)-M,1- 2MLMsJ, 

where, Eqs. (5.31a, b) have been used. 
The maximum value of the quantity in the square bracket in Eq. (8.2322

) is 
2L(L + 1 )S(S + 1) (corresponding to ML == Ms = 0). Hence &f is of the order of 
a:Ji2, and the condition (8.228) for the validity of the sudden approximation 
becomes: 

(8.233) 

Now, a:Ji2 is of the order of the spin-orbit splitting [see Eqs. (8.153a, b)J. so that 

1/0.1'1 is the characteristic time associated with the spin-orbit splitting. Thus, the 
condition for the atom not to change state during the reversal of the magnetic field 
is that this reversal should take place in a time which is small compared with the 
time characteristic of the spin-orbit splitting. This result could be understood as 
follows: It is the spin-orbit term in (8.230) that causes transition between states, 
as the other terms in the equation are diagonal in the representation defined by the 
basis vectors I LSMLMs >. But the spin-orbit term can cause transitions only 

when it dominates over the magnetic term in (8.230). Therefore. if the reversal of 
the magnetic field, where the magnetic energy dominates over the spin-orbit 
energy both before and after the reversal, is accomplished within a short period 
compared with the time required for the spin-orbit interaction to effect a trans­
ition, no transition will take place. 

8.5B Adiabatic Approximation 

The Adiabatic Theorem: This states that. if the system is initially in an 
eigenstate of If 0'" /f(to), it would have passed, in the limit T -) <>0, into the 

eigenstate of /i I;' liCtl ), that derives from the eigenstate of If 0 by continuity40, 

The adiabatic approximation consists in assuming the validity of the adiabatic 
Theorem when T is large but nol infinite. 

40. For a proof of the theorem. see Messiah. A. op. cit. 
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The error involved in this approximation can be estimated by calculating the 

probability of finding the system at time tl in a state different from the one indi­

cated by the adiabatic theorem. Now, the implication of the adiabatic theorem is 
that the change of state, entailed by the time-dependence of the Hamiltonian, is a 
continuous process (that is, does not involve discrete jumps). Therefore, it would 
be meaningful to talk of stationary eigenfunctions of the instantaneous Hamilto-
nian: 

(8.234) 

where, the u. are assumed to be orthononnal, discrete and non-degenerate. 

Continuity, then, means that if the system is in the eigenstate u",(to) with energy 

E",(to) at time to, it should be in the eigenstate u",(t) with energy E",(I) at time t > to. 

If H were independent of time u",(t) would be the same as u",(to) (that is, the state 

would be truly stationary), whereas here u",(t) could be quite different from u",(to) 

eventhough the former is evolved from the latter (see the example given at the end 
of this Section). In a discontinuous change, on the other hand, the system would 

be found in an eigenstate uk(t) of H(t), that does not evolve from u",(to)' Thus, the 

condition for the validity of the adiabatic approximation is that the probability for 

finding the system in the state uk(t) be small if the systtm was initially in the state 

u",(to)' A derivation of this probability is given below: 

The fact that the system is likely to be found in states other than that prescribed 
by the adiabatic approximation, can be expressed by saying that the state vector 
'P(t) of the system at time t > to is a superposition of the stationary eigenstates of 

H(t). That is, 

'P(t) = ;a.(t)u.(t) exp [-(i/1i) L' E.(t')dt'] (8.235) 

where (see Postulate III, Chapter 3) 1 a.(t) 12 is the probability that the system is in 

the eigenstate u.(t) at time t. (Note that, if fl were independent of time, both a. 

and E. in (8.235) would have been independent of time). Now, 'P(l) is the solu-

tion of the time-dependent SchrOdinger equation, 
a'P • 

i1iat = H(t)'P(t). (8.236) 

Substituting for 'P in (8.236) from (8.235) and making use of Eq. (8.234) we 
get, 

(8.237) 

where. the dot denotes differentiation with respect to time. We now take the 
scalar product of this equation with uk(t). In view of the orthononnality of the 

u; s, we have, 
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The product, 

. I dUn) (Uk I Un) == (Uk at 
occurring here may be evaluated as follows: We have, 

d A dUk A A aUn I afl I at {(Uk 1/1 I Un)} = < at III I Un) + (Uk I H I at ) + (Uk at Un)' 

Using Eq. (8.234) and the relationship, 
d 

0= at (Uk I u) = (Uk I u.) + (Uk I u.), (8.239) 

we get, 

Thus, 

-1 I ali I (Uk I Un) = 1iw
k
• (Uk Tr u.),k:t: n. (8.240) 

From (8.239), we have, 

< un 114. > = - < u. I u. >= - < u. I Un >' . 

Therefore, < u. I U. > is either zero or pure imaginary. It is possible to make it 

zero by a suitable choice of the phase41 of u •. Hence (8.2381
) becomes, 

dak(t) a.(t) I afll (. J' ,,) 2 -d-= E -1'1 ()<uk(t) T u.(t))· exp l wlo(t )dt. (8.238) 
t •• k COlo I al '0 

In order to integrate this expression, we replace a.(t), coin(t) and < Uk I afltat I Un > 
on the right hand side, by their values at t = 10, Such a procedure would be justi­

fied in view of the slow variation of these quantities with time. Further, we 
assume that the system is in the state u". at t = to. That is, 

a.UJ = om,.' (8.241) 

Then, 

dak I aHI dt = (l/licokm)(uk at urn) exp {icokmU - IJ}, (k :t: m). 

Integrating from t = to to I = I, we get, 

I 
ali I ( (/-I,,) 

ak(/) = (1/licokm ) (Uk at um) )0 exp (iWkml')dl' 

(8.242) 

41. Sec, Schiff, L.L., op.oiL, Section 35. 
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so that 

(8.243) 

This gives the probability for the state Uk' which does not evolve continuously 

from Um , to be occupied at time t. The condition for the validity of the adiabatic 

approximation is that this probability be negligible. That is, wet) c: 1, or, 

I I ali I I . 2 (Uk at um ) c: 1i( wkm ) • (8.244) 

Since this condition should hold for all times t, where to:S; t :s; tl , we can use, in 

(8.244), the values of Uk' U", and wkm at the time t. 

Adiabatic Reversal of a Magnetic Field 

As an illustrative example of the application of the adiabatic approximation, we 
consider the effect of the slow (adiabatic) reversal of a magnetic field on the 
energy levels of an atom. We make the same assumptions regarding the nature of 
the atom and the time dependence and direction of the magnetic feld as in the case 
of the sudden approximation. Moreover, we assume that the atom is initially in 

the 2P state (that is. L = I ,S = ~). 
According to Eqs. (8.229) and (8.230), we have, 

where, 

and 

R (t) =: 11(0) + a.(L . S) - cxlip(t)(L. + 2S ,), 

( 
e1i )B(I) 2 pet) = 21J.C cxli2 = (JlB/cxIi )B (t), 

{
2(t -to) } 

B(t)=Bo -T--1 . 

(8.245) 

(8.245a) 

(8.245b) 

The eigenvectors of i/(O) are I LSMLMs >, whereas the eigenvectors of 11(0) + 
a.(L· S) are I LSJM} >, where I L -S I:S;]:S; (L +S). and M} =ML +Ms (that is, 

j = L + S). Thus, the 2P Level, which is 6-fold degenerate in the absence of the 

spin-orbit coupling, splits up into two levels, one of degeneracy 2 ~ = n and the 

other of degeneracy 4 (J = 3/2) due to the spin-orbit coupling (see Fig. 8.13). But 
(L, + 2S ,) does not commute with j2. As a result, when the magnetic field is strong 

enough to make the effect of the (L· S) term negligible, the eigenvectors of H(t) 
would be approximately those of i/(O), namely I LSMLMs > . However, the 

degeneracy would be completely lifted (Fig. 8.13) as the eigenvalues of H(t) 
depend on the values of ML and Ms (see Eq. (8.247) below). Thus, if we vary the 

magnetic field slowly from a large negative value to a large positive value, both 
the initial state and the final state would be characterised by definite values of ML 

and Ms (and, hence, also by a definite value of MJ = ML + Ms). But the transition 
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Fig, 8.13. The splitting of the 2p level (ML = 1,0, - 1; Ms = + i, -j) due \0 (a) spin-orbit coupling, 

(b) magnetic field. 

from the initial to the final state has to pass through a stage where the spin-orbit 
term dominates over the magnetic term. During this stage, the state of the system 
is characterised by a definite value of MJ but no definite individual values of Ms 

and ML • This means that lhe system can make a transition from a stale with one 

SCl of values for ML and Ms loa stale with another set of values for ML and Ms such 

that the sum of ML and Ms is preserved. Thus, if I MLMS > == I LSMLMs > is the 

initial state, I M'LM'S > == I LSM'LM's > could be the state at the end ofthe reversal 

of the magnetic field, whereM'L +M's =ML +Ms. The transition from IMLMS > 

to I M'LM's > is not, however, a sudden jump but a continuous one described by 

the equation, 
IM,>= L CM"M" IM"LM"s>,(M"L+M"s=MJ), (8.246) 

M"LM"s L s 

where the coefficients CM" M" are continuous functions of time such that 
L S 

and cM" M" (It) = OM' MH OM' M"s-
L S L L S 

The continuity of the state, here, is characterised by a constant value42 for the 
eigenvalue of j z throughout the period to to I). The energies of the levels are also 

continuous functions of the parameter pet) [defined by Eq. (8.245a)]. The varia­
tion of the energies with p is shown in Fig. 8.14. This could be obtained using the 
relationship, 

42. Of course, a constant value of MJ is only a necessary, and not a sufficient, condition for the 

continuity of the evolution. 
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+H( Ms +~)(~-MS)(l-ML)(2+ML)} In 

X 0ML + I.M/)Ms-I.M·s +~H-MS) (~+MS) 
(8.247) 

where, we have put < MLMS I {[(OJ I MLMS > = O. Let us illustrate with two specific 
cases. 

Case 1. M, == 3/2: There is only one state with MJ == 3/2, namely I MLMS) == 11 ~). 

The adiabatic approximation, then, requires that the system remain in the state 

11 ~) throughout the reversal of the magnetic field if it is initially in that state. The 

energy of the state will, however, vary with time according to the formula [see Eq. 
(8.247)], 

From Eq. (8.245), we have, 

Also, here, 

so that, 

()II ." dp 
at = -aJi(Lz + 2S z) dt . 

I all I .. 1 { d P} 
(Uk at U",) = (MLMS I (Lz + 2S.) lIZ)' -aJi dt 

1 
=0, forML *I;Ms*Z' 

(8.248) 

(8.249) 

1 • I (. I I 
Case 2.M) = 2: There are two states with M) =2' namely, ~02)and 11-2), If the 

system is in one of these states at t = to, then the wavefunction of the system at 

to < t < t\ would be given, according to Eq. (8.246), by 

Thus, the condition (8.244) is very well satisfied. 
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(8.250) 

where, 

1 
C(PJI2 1 C(PJ 12 - 1 
o! + I-! - . 

1 1 

The amplitudes CJ:lM as well as the energies of the two states could be obtained 
L S 

by diagonalizing the Hamiltonian matrix corresponding to MJ = ~. Using Eq. 

(8.247), we get, 

(8.251 1
) 

The eigenvalues and eigenvectors of this matrix could be determined by the 
method described in Section A 7. But, it turns out that the following procedure is 
simpler: 

Any 2 x 2 matrix could be written as a linear sum of the Pauli spin matrices 

ax' aJ' a, given by (5.34), and the unit matrix / = (~ ~). Thus, 

Hence, 

[ ~ ~ ~ hJ + h.cr. + h,cr, + h.cr, 

1 
bO=-4(1 +2p), 

1 1 
b. = {i; b

J 
= 0; b, =4(1- 2p), and 

H( M, =-0 = a.1l[ -~(1 + 2p)/ + (b· a)J, 
where b is the vector whose components are b., b

J 
and b, and whose magnitude is 

b = (b: + b:+ b,2r:= ~"J'8 + (1- 2p)2). (8.252) 

The eigenvalues of (b· a) are ±b. This follows from the fact that the component 

of a along any direction has the values ±1. 
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Problem 8.17: Verify that the eigenvalues of (b· 0) are ±b, from the secular 
equation of (b . 0). 

The eigenvalues of fl are thus: 

E+(t) =EI(t) = a.n2
E+, (8.253a) 

where. 

E_(t) = Ez<t) = a. tl2 
E _ , 

1 
E±=-4(1+2p)±b. 

The corresponding eigenvectors are: 

) _ 1) (+) 1 ) (+) 1 ) 
1+ =121=c~ 10

2 +c
l
_!11- 2 , 

2 2 

with 

(±) _ -.J2(p + E J 
c ,-

1-;: [1 + 2(1' + E±)~112 

At time t = to. pis large and negative [see Eqs. (8.245a, b»); 

I' = -Po = -{JlB1a.1',z)Bo« 1. 

Then, from Eqs. (S.252), (S.2S3) and (S.2S4a, b) we have, 
1 

b .. 4(1 + 2po>; 

c(+)'" 1 c(+) =O'I+)=IO~) 
oj , I-j' 2 ' 

1 
c(-) =0 c(-) "'1;1-)=11--). 
03~ 'I-j 2 

b '" 21'0 

1 
E +"" -4; E_'" -Po' 

c(+) ",_1_",o c(+) '" 1'1+)=11-~) 
o! - ~2 'I-!' 2 1 ~Lpo 1 

(8.253b) 

(8.253) 

(8.250a) 

(8.250b) 

(8.254a) 

(8.2S4b) 
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Thus, as the magnetic field is varied from -Bo to +Bo. the state of the system varies 

continuously from 1 O~> to 11-~> or from 11-~> to 1 0 ~>. This variation (along 

with the variation in the energies) is shown in Fig. 8.14 where the MJ = ~ levels are 

labelled 1 + > and 1- >. 

(1.1.) 
E /A 1'12 

(-1_ 1-) 
2 2 

3 

(Oi) 
2 2 (O-~) 

-2 -1 
p 

Hi) I . 

1-> 
(1-~) 

(1_1) H ~) 
2 

(0-1 ) -2 (01 ) 
2 2 

1 
1 -~ ( 1-) (-1-2 ) 2 

(ML Ms) 
-4 

(M L Ms) 

Fig. 8.14. The energies and the wave functions of the 2P levels as a function of the intensity of the 

magnetic field. The levels labelled 1 + > and 1- > are the two sta·~s with MJ = f. The 

nwnbers in parentheses are the quantum nwnbers (MLMS) of the states in the two limits. 

The condition for the validity of this adiabatic description (that is, for the 
system not to make a transition from 1 + > to 1- > or vice versa during the reversal 
of the field) is [according to (8.244)). 

<-I ~~ 1 +) (: 1iro:_ = (E+ - Efl1i = 4a.'1i
3
b

2
• 
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or, 

afl 
where at is given by Eq. (8.249). We have, 

I 
all I ( dP) , (- at +)=- ttdi a<-I(L z +2S.)I+) 

= -a tt2dp . c(+)c(-) 

dt o~ or 

317 

where, expressions (8.250 .. , b) for 1 + > and 1- > have been used. Since 

c(+)c(-) <; J we get 
o~ o~' , 

and condition (8.255 1
) reduces to: 

att
2

1 ~ I 
2...32«l. 

4an b 

Now, the L.H.S. of (8.2552
) is maximum when b 2 = ~ [8 + (1 - 2p)4 is minimum. 

That is. when P = b2 = i· Also. from Eqs. (8.245a. b) we have. I ~~ I = 

2/l8Bo la ttlT. The condition for the validity of the adiabatic approximation. then, 

becomes. 

or. 

Now, 1" is the time during which the magnetic energy changes from -a tt2 to +a tt2 

(since during T, the magnetic energy changes from -/loBo to +/l8B~. It is during 

this time that the spin-orbit energy (which is of the order of a tt2
) dominates over 

the magnetic energy, and it is also during this period that the system changes 

continuously from the state Il-i > to 1 Oi > or vice versa. On the other hand, 

(lla tt) is the characteristic time associated with the spin-orbit splitting. That is. 
(lla tt) is the time characterising a discontinuous (or discrete) transition 
1 + > H 1- > taking place under the influence of the spin-orbit interaction. The 
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reversal of the magnetic field should take place very slowly compared with this 
time for the transition to be adiabatic. This condition may be contrasted with the 
condition (8.233) in the case of the sudden approximation. 

Problem 8.18: Consider a linear harmonic oscillator whose equilibrium position 
Xo depends linearly on the time. If the oscillator is initially in its ground state. 

obtain the conditions for the applicability of (a) the sudden approximation. (b) the 
adiabatic approximation. 



CHAPTER 9 

IDENTICAL PARTICLES 

9.1 THE IDENTITY OF PARTICLES 

In Chapter 6, we have discussed certain symmetries which arise from the prop­
erties of space and time. In this Chapter, we are concerned with a different type 
of symmetry which is encountered in the quantum mechanical behaviour of a 
system of identical particles. Now, the epithet identical, as applied to a group of 
particles, needs some clarification. We say all electrons are identical because one 
electron cannot be distinguished from another electron by means of any of its 
inherent physical attributes such as mass, electric charge, spin, etc. The fact that 
one electron might be in a spin-up state while the other is in a spin-down state, or 
that the electrons might be having different momenta, is not a hindrance to their 
being considered identical. This is because different values of the spin­
component or linear momentum merely designate different dynamical states of an 
electron. Thus, what is required for two particles to be identical is that each of 
them should be described by the same complete, commuting set of observables, 
besides being identical in the physical attributes that are not described as eigen­
values of these observables. In the example of the electrons, the operators P, and 

§ I representing respectively the components of the linear momentum and the spin, 

constitute a complete commuting set of observables. 
The above criterion for the identity of particles has the following intercsting 

consequence. Particles that are different from the viewpoint of their physical 
attributes such as mass and electric charge, could be considered identical if we 
could ascribe the differences to the different eigenvalues of one or more observ­
abies that commute with the Hamiltonian of the system. The case of the proton 
and the neutron is an example. The proton is positively charged while the neutron 
has no charge. Their masses are also different though the difference is small. 
They could be described as two different states of the same particle the nucleon, 
by introducing an observable called the isospin (analogous to the spin). For the 

nucleon, the isospin t = ~ so that the proton and the neutron correspond to the two 

possible values of l" namely l, = ±i The description of the proton and the neutron 

as different states of the same particle is, however, not valid when electromagnetic 
interaction is involved since the Hamiltonian in that case does not commute with 
the isospin. 
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An important aspect of the symmetry associated with a system of identical 
particles is that it is intimately related to the spin of the particles. As a result, 
we will not be able to ignore the spin as we have done so far in most of our dis­
cussions. 

The Indistinguishability Principle 

In classical mechanics, identical particles can, in principle, be distinguished from 
one another either by observing their individua! paths or by means such as label­
ling them. This is so because observation or labelling does not affect the classical 
dynamics (and hence the classical paths) of the particles. In the case of a system 
of identical micro-particles, on the other hand, observation of the individual par­
ticles is not possible without seriously affecting the dynamics of the system. For 
example, in the scattering of protons by protons, the proton which comes to the 
detector could be either the projectile or the target proton, but it would be 
impossible to tell them apart. Similarly, in a Helium atom a state in which one of 
the electrons is in the quantum state t?a and the other electron is in the state t?p 
would be indistinguishable from a state in which the electrons are interchanged. 
This inability to tell apart the particles from one another in a system of identical 
particles is embodied in the principle of indistinguishability of identical particles. 
Quantum mechanics of a system of identical particles should be so formulated as 
to be consistent with this principle. For example, in the scattering problem 
mentioned above, experiment does not distinguish between the projectile and the 
target. Therefore, in the quantum mechanical calculation of the scattering cross 
section also, no distinction should be permitted between the projectile and the 
target. 

It is to be emphasized that the significance of the principle of 
indistinguishability is far deeper in quantum mechanics than it is in classical 
mechanics. The peculiar laws underlying quantum mechanics, in particular the 
principle of superposition, are responsible for this. For instance, the 
indistinguishability between the projectile and the target protons in the scattering 
of protons implies only the following in classical mechanics: The observed cross 
section would be the sum of the cross sections corresponding to the cases (a) and 
(b) in Fig. 9.1. But in the case of quantum mechanics, it is the scattering ampli­
tudcs corresponding to the two cascs that are to be added (or subtracted, depend­
ing on the spin of the particles) to obtain the scattering amplitude corresponding 
to the observed cross section. Since the scattering cross section is the absolute 
square of the scattering amplitude, there is no simple relationship betwecn the 
quantum mechanical cross section and the cross sections corresponding sepa­
rately to cases (a) and (b) in Fig. 9.1. 
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In order to illustrate how the principle of indistinguishability influences the 
~uantum mechanics of a system of identical particles, let us consider the simple 
::ase of a two-particle system. We use the following notations: The numbers 
inside the parenthesis fol1owing the symbol representing an operator or a wave­
function, label the particles whereas the position inside the parenthesis denotes 
the quantum mechanical slates of the particles. Thus, if II (1,2) stands for the 
Hamiltonian of the system with particle number 1 in the slate a. and particle 
number 2 in Slate ~, then II (2, 1) represents the Hamiltonian when particle number 
2 is in state a. and particle number 1 is in state ~. 

Now, the principle of indistinguishability requires that the physical observ­
abIes of the system, and in particular the Hamiltonian, be invariant under the 
interchange of the two particles. That is, 

11(1,2)=1/(2,1). (9.1) 

The Schrodinger equation of the system is, 

''Ii a\jf(l, 2) 11(1 2) (1 2) 
I at ' \jf , , (9.2) 

where particle number 1 is in the state IX and particle number 2 is in the state 13. If 
we interchange the particles, the corresponding SchrOdinger equation becomes [in 
view of (9.1)1, 

''Ii d\jl(1~ 11(1 2) (2 1) 
I at ' \jI , , (9.3) 

Eqs. (9.2) and (9.3) show that if '1'(1,2) is a possible state of the two-particle 

system with a certain energy, then '1'(2,1) is also a possible state with the same 
energy. From the viewpoinl of classical mechanics, this is a trivial result. But the 
principle of superposition makes it a result of profound significance in quantum 
mechanics, According to this principle, if \jf(1, 2) and \jf(2, 1) arc possible 
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solutions of the SchrOdinger equation corresponding to a particular energy, then 
any linear superposition of'V(l, 2) and 'V(2, 1) is also a possible solution belonging 
to the same energy eigenvalue. In particular, the linear combinationsl

, 

1 
'Vs(l,2) = '1/ ['V(I, 2) +'V(2, 1)], 

2(1 + oajl) 
(9.4a) 

and 

(9.4b) 

are solutions of the SChrOdinger equation for the system. These linear combina­
tions differ from 'V(1, 2) and 'V(2, 1) in that they have definite symmetry properties 
under the interchange of the particles. 
For, 

(9.5) 

We say that 'Vs is symmetric while 'VA is antisymmetric. The importance of'l's and 

'l'A arises from the fact that these are the only wave functions that are consistent 

with the principle of indistinguishability of identical particles. This follows from 
the mathematical structure of quantum mechanics, as shown below: 

Let P 12 represent the operator that exchanges particles 1 and 2. That is. 

P 12'V(1, 2) = 'V(2, 1). (9.6) 

Obviously, 

'2 • 
P 12 = 1. (9.7) 

Thus, P 12 is an involution (sec Projection Operators, Section 2.2) and is hence 

both Ifermitian and Unitary like the parity operator (Section 6.2D). Like the 

parity operator too, P 12 represents a discrete transformation. The invariance of the 

Hamiltonian under this transformation (that is required by the principle of 
indistinguishability) is expressed by the condition [see Eq. (6.3a»), 

[P 12' H] = O. (9.S1
) 

This means that only those eigenvectors of fl are permissible that are also 

simultaneously eigenvectors of the exchange operator P 12' But according to Eq. 

(9.7), the eigenvalues of P 12 arc + 1 and -1. Denoting the corresponding eigen­

vectors by '1',(1,2) and '1'.(1,2), we have 

P 12'1'+(1,2) 0= '1'+(2, 1) = +'1'+(1,2), (9.9a) 

P 12'1'.(1,2) == '1'.(2, 1) = -'I'D, 2), 

Comparing these with (9.5), we see that 

1. The factors 11,)2 and 11-,/2(1 + oarJ in Eqs. (9.4a, b) are nonnalizing factors. 

(9.9b) 
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'1'+ = 'l's(I, 2) = {l/..J2(I + oqp)} (i + P lz}'I'(1, 2), 

'1'_ = '1'/1, 2) = (I/f2) (1-P lz}'I'(I, 2). 
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(9.10a) 

(9.lOb) 

Thus, the physical state of a system of two identical particles is represented by 

either'l's or'l'A' Moreover, Eq. (9.81
) implies that the symmetry is a constant of 

motion (ef. Eq. (6.1)J. Therefore, if the system is, say, in a symmetric state at 
some time, then it will continue to be in the symmetric state for all time. 

The foregoing considerations are easily extended to the case of a system of n 

identical particles. In this case, we have ~) = (nI2) (n -1) two-particle exchange 

operators P ij all of which should commute with the Hamiltonian of the system: 

(P ij' HJ = 0., (i = I,2, ... n -1; j = 2,3, ... ,n). (9.82
) 

However, the exchange operators do not commute among themselves: 

PuPjk :t-Pji ij• (9.10) 

As a result, it is not possible to find a complete set of functions that are simulta­
neous eigenvectors of all the exchange operators and fl (except for the case n = 2 
where there is only one exchange operator). But the principle of 
indistinguishability expressed by Eq. (9.82

) requires the existence of at least one 
wavefunction that is a simultaneous eigenvector of all the exchange operators and 
fl. Let <I> denote such a function. Then, 

fl<I> = E<I>, (9.11a) 

Pij<I> = f...ij<I>, (i = 1,2, ... ,n -1; j = 2,3, ... ,n). 

where 

Now, 

PuPil =Pji ij =Piijk' 

for any three different values of i,j,k. 
Eqs. (9.12) and (9.11b) give, 

f...jjf...jk = \-kf...jj = f...ikf...jk , 

or, 

(9. 11 b) 

(9.12) 

f...ij = f...ik = f...jk · (9.13) 

That is, the common eigenvector <I> belongs to the same eigenvalue of all the 

exchange operators. Iff...ij == + 1, we say that <I> is totally symmetric (it is symmetric 

under the interchange of any pair of particles) and denote it by <I>s whereas if 

f...ij = -1, <I> is totally antisymmetric and is denoted by <I> A: 

(9.14) 
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Thus, we have the important result: The wave function of a system of identical 
particles is either totally symmetric or totally antisymmetric. 

Problem 9.1: Verify relationship (9.12) for n = 3. 

9.2 SPINS AND STATISTICS 

We have seen that the symmetry character of a system of identical particles is a 
constant of motion. It is also found that a given type of particle is associated with 
only one type of symmetry. Thus a system of electrons is always described by an 
antisymmetric wavefunction while a system of pions is invariably described by a 
symmetric wavefunction. That is, the symmetry character of the wavefunction is 
an intrinsic property of the particles. 

Now, the statistical properties of a system of a large number of particles 
depend on the available degrees of freedom for each value of the total energy of 
the system. For a system of distinguishable particles, every permutation of the 
particles gives rise to a different state. Such a system obeys classical or Boltz­
mann statistics. The statistics obeyed by a system of identical particles with 
symmetric wave functions is known as Bose-Einstein statistics while identical 
particles with anti-symmetric wavefunctions obey Fermi-Dirac statistics. Since 
the symm~try character of the wavefunction is an intrinsic property of the par­
ticles, it follows that the statistics associated with a particle is also of an intrinsic 
nature. This fact justifies the classification of particles on the basis ofthe statistics 
obeyed by them. Thus, particles obeying Bose-Einstein statistics are called 
bosons while those obeying Fermi-Dirac statistics are referred to asfermions. 

It is further found, and shown plausible in quantum field theory/ that the stu 
tistics is intimately connected with the spin of the particles. Bosons have integral 
(including zero) spin whereas particles with half-integral spin are fermions. This 
correlation between spin and statistics applies not only to elementary particles but 
to composite particles (such as atoms and nuclei) as well. This is understandable 
since a composite particle composed of fermions will have integral or half­
integral spin according as the number of fermions is even or odd. In the former 
case, an interchange between two such particles is equivalent to an even number 
of interchanges of fermions so that the wavefunction should be symmetric. 
Similarly, in the latter case the wavefunction should be antisymmetric. 

The Pauli Exclusion Principle 

We have seen that the wavefunction of a system of spin-half particles is anti­
symmetric. Consider a system of two spin-half particles. If <I><; and <I>a.z denote 

the two quantum states available to the particles, then, 0/(1,2) = <I><;(1)<I>a.z(2), so 

that the wavefunction of the system is given by [see Eq. (9.lOb»), 

2. Pauli, W., Phys. Rev .• 58, 716 (1940). Also, see Section 11.4B 
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1 <l>a,(1) 

= .J2! <l> "2(1) 
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(9.15) 

Obviously, o/A(1, 2) vanishes when <l>a, = <l>"2. That is, it is not possible/or the two 

particles to occupy the same state. This is known as the Pauli exclusion principle. 
Eq. (9.15) is easily generalized to the case of n particles. In this case, the 

wavefunction will be a linear superposition of the n! functions that correspond to 
the n! permutations of the particles: 

_ 1 n(P)A 
o/i1,2, ... ,n)- .GL(-I) P<l><L(I)<l>a..(2) ... <l>,,(n) 

vn! P -.~. • 

<l> a, (2) 

<l> "2(2) 

<l> ". (2) 

<l>a,(n) 

<l>"2(n) 

<l>" (n) . 
(9.16) 

Here P represents one of the n! permutations and n(P) = the number of two par­
ticle exchange operators contained in P. The determinant in (9.16) is known as 
the Slater determinant. Since the determinant vanishes when any two rows are 
identical (Section A3), the exclusion principle follows. 

For a system ofbosons, on the other hand, the wavefunction is given by, 
1 A 

o/s(l, 2, ... ,n) = ~;P<l>a,(1)<l>"2(2) ... <l>".(n); (9.17) 

where 8 is a factor which depends on the number of particles occupying the same 

state. (9.17) does not vanish when any two ex; are equal. Thus, there is no 

exclusion principle for bosons. 

9.3 ILLUSTRATIVE EXAMPLES 

The following examples are chosen so as to illustrate the important role played by 
the symmetry of the wavefunction in the dynamics of both bound and unbound 
systems of identical particles. 

The Helium Atom 

From the viewpoint of atomic properties, the He atom is a system of two electrons. 
Since electrons are fermions, the total wavefunction of the system must be anti­
symmetric. However, the total wavefunction is the product of a space or orbital 
part and a spin part. Therefore, the space part alone could be symmetric or 
antisymmetric depending on whether the spin part is antisymmetric or symmetric. 

Since electron has spin ~, the spin of a two-electron system could be either 1 or 0 
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[see Eq. (S.73b»). There are three states with spin 1 corresponding to the three 
values (1, 0 and - 1) of the z-component of the spin. The spin-l states are, hence, 
called the triplet states. We denote these by3 3Xl , 3Xo and 3X-l' Similarly, lAO 

represents the singlet state corresponding to spin O. From Eqs. (S.68a) and 
(S.83b), it follows that the triplet states are symmetric while the singlet state is 
antisymmetric. Thus, out of the eight combinations possible with the four spin 
functions and the two (the symmetric and the antisymmetric) space functions, 
only four are permitted by the principle of indistinguishability of identical par­
ticles. These are: 

\TIl 3 3 3 
T S lo, 'VAXI' 'VAlo, 'VAX-I' 

where [cf. Eqs. (9.10a, b»), 

\}Is(l, 2) = [1/2(1 + o~] 112(1 + P 1:J<I>,,(l)<I>P), 

\{lAO, 2) = [1/~ (i - P 1:J<I>aO)<I>~(2). 
Now, the Hamiltonian of the He atom can be written as 

H =Ho+Hl' 
where 

(9.18) 

(9.19a) 

(9.19b) 

(9.20) 

(9.20a) 

(9.20b) 

Here, r I and r 2 are the radial distances of the electrons from the centre of the atom 

and r12 is the separation between the electrons. HI represents the mutual repulsion 

of the electrons and is small in comparison with H o. The contribution of HI to the 

energy of the system can, therefore, be calculated using first order perturbation 
theory (Section (8.3a» where the zero-order wavefunctions (the eigenvectors of 
lIo) are given by (9.18). Since HI does not contain the spin variables, the three 

triplet states would be degenerate. And the separation between the singlet and the 
triplet states arises entirely due to the different symmetry of the orbital part. 

According to Eq. (8. 124b) the contribution to the energy due to H h in the fIrst 

order, is equal to the expectation value of HI. Thus, for the singlet state, 

with 

E;I) = < \}I Ilo I HI I \}I Ilo > 

= < \}Is I HI I \}Is > 

= {l/(l +0ajl)} (JajI+K~, 

JajI = (CPa(I)CPP) I HI I CPa(1)CPP». 

3. The notation is (2.1'+ I)Xs. where S is the spin and S, its projection along the z-axis. 

(9.21) 

(9.21a) 
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Kof> == (<1> ,i1)<1>p(2) I (II I <1>p(l)<1> a(2), (9.21b) 

where expression (9.19a) for 'Ps and property (9.81
) of P 12 are used. 

Similarly, for the triplet states, 
0)_ • _ 

£, -('¥A IHII'PA)-(Jof>-K~. (9.22) 

f of> and Kof> are positive since fI I is positive definite. Therefore, 

E,(I) <£;1). 

That is, the singlet state is always higher in energy than the triplet state. 

For the ground state of He atom, a == P == IS (that is, n = 1, 1= 0), so that 'PA O. 

Hence the only allowed state is 'PsI'M. Then, [see Eq. (8.90»), 

(1) (1) 5e 2 

£ =£ =f =--=33.9geV· 
s (ls)2 4 ao ' 

where ao is given by Eg. (8.85). Also, e2/ao = 27.19 eV. From Egs. (8.87a. b), we 

have, 

so that, 

£ =£(0) +£(1) =-74.77 eV. 
(ls)2 (ld (1s)2 

Similarly, we obtain the energies of some of the excited states, using the values, 

f 1s,2s = 11.42 eV; 

K ls ,2s = 1.20 eV; 

f ls ,2p == 13.22 eV; 

K 1s ,2p == 0.94 eV. 

The energies so obtained arc compared with the experimental values in Table 9.1. 
The spectroscopic notation (2S + I)L] is used to specify a state, where S represents 

the spin and f the total angular momentum while L stands for the symbol that 
denotes the value of the orbital angular momentum according to the following 
scheme: 

Symbol forL ~S PDF .. . 

Value of L ~ 0 1 23 .. . (9.23) 

Thus. the symmetry character of the wavefunction. arising from the identity of 
the electrons, provides an understanding of the qualitative features (such as the 
nature of the ground state and the difference in energy between the triplet and the 
singlet states belonging to a given configuration) of the low lying levels of the He 
atom. 
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Table 9.1. Low.lying levels of the He atom. 

Energy (eV) 

Configuration State 
(ex, 13) 

(ls)2 

(1s.1$) 

(1s,2p) 

" 

ISo 

3S, 

ISO 

3p 
0.1,2 

Ipi 

Calculated Experimental (eV) 

-74.77 -78.98 

-57.77 -59.17 ] 0.80 (2.39) 
-55.38 -58.37 
-55.71 -58.Q2 ] 0.25 (1.85) 
-53.86 -57.77 

*The numbers in the parenthesis represent the calculated values. 

Problem 9.2: The Deuteron is a system of two nucleons, where the nucleon is a 
spin-half and isospin-half particle. In the ground state of the deuteron, both the 
nucleons occupy the Is (l = 0) orbital state. Obtain the possible combinations of 
the total spin and the total isospin for the ground state. 

Scattering of Identical Particles 

In the scattering of identical particles, there are two situations indistinguishable 
from each other as shown in Fig. 9.1. The incident particle and the target have 
equal and opposite velocities in the Centre-of-Mass system. In (a) the particle 
observed at the detector is the incident particle (particle number 1) while in (b) it 
is the recoiled target (particle number 2). The indistinguishability of the two sit­
uations is taken into account by using properly symmetrised wavefunctions for 
the calculation of the scattering cross-section. 

Now, for process (a), the asymptotic scattered wavefunction is [see Eq. (7.7)], 
iU 

'!I:\k,k',r) - .r..(k,k')~. (9.24) 
r 

Process (b) differs from process (a) in that particles 1 and 2 get interchanged at 
the time of scattering. Thus, 

'!I;)(k, k', r) = P 12'!1:)(k, k', r). (9.25) 

But interchanging the two particles is equivalent to reversing the relative co­
ordinate r:= (r) - rJ and since. by definition, k' has the same direction as r, it is 

equivalent to reversing the direction of k'. Thus, 

P )2'11..s)(k, k', r) := ¥:)(k, - k'. r). (9.26) 

A properly symmetrised wavefunction is a symmetric or an antisymmetric 
combination of 'If.,S) and ¥:); 
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'l'(S)(k k' r) = ".(·)(k k' r) + ".(·)(k k' r) s " 'Va" 'Vb'" 

'l'(S)(k k' r) = ".(·)(k k' r) - ".(s)(k k' r) 
A " 'fa" 'fib"· 

Substituting from Eqs. (9.25), (9.26) and (9.24) and dropping the labels a, we 
have, 

'l'~) - fs(k, k') (eikT/r), (9.272
) 

'l'~} - ~(k,k')(ejkT/r), (9.282
) 

where, fs(k, k') = f(k, k') + f(k, - k'), (9.29) 

fA (k, k') = f(k, k') - f(k, - k'). (9.30) 

The differential cross-section for the scattering of identical particles are then 
given by [Eq. (7.9)], 

crs(k, k') = I fs(k, k') f 

=: If(k, k') 12 + If(k,- k') 12 +2 Re {((k, k')f(k,- k')} , (9.31 1
) 

and crA(k,k')=:I~(k,k')12 

= I f(k, k') 12 + I f(k, - k') 12 -2 Re (((k, k')· f(k, - k')]. (9.3i) 

These arc to be compared with the corresponding classical expression, 
crcl(k, k') = cr(k, k') + cr(k, - k') 

= I f(k, k') 12 + I f(k, - k'd . (9.331
) 

In (9.31 1
) and (9.321

), Re { } represents the real part of the quantity within the 
bracket. We see that an important feature that distinguishes the quantum 
mechanical cross sections from the classical one, is the interference between the 
scattering processes (a) and (b). 

In terms of the angles e and I» that specify the direction of scattering with 
respcctto the incident direction, 

f(k, k') = h(e, 1»), 

and f(k, - k') =h(n - e, n+ 1»). (9.34) 

Further, in the case of central forces, the scattering amplitude is independent of 
the angIe 1». Then, 

and we have, 

osee) =: 1 h(e) + h(n - e) 1
2
, 

crA (e) = 1 h(e) - h(n - e) 12, 

cri9) =: I h(9) 12 + I h(n - e) 12, 

(9.31 2
) 

(9.322
) 

(9.332
) 



, 
330 QUANTUM MECHANICS 

Case of Spin ~ Particles 

The spin part of the wavefunction could be a triplet or a singlet state depending 
on whether the spins of the two particles are parallel or anti-parallel. The singlet 
state should be associated with the symmetric space function so that the corre­
sponding cross-section is given by 

10'1n = O's(8). C9.35a) 

Similarly, the triplet state is associated with the antisymmetric space function. 
Therefore, . 

C9.35b) 

The observed cross-section would be the weighted average of these two cases. 
That is, 

1 3 
0'1Ii8) = 40's(8) +40'A (8) 

= 1 f.(8) 12 + 1 f.Crc - 8) 12 - Re (f;(8)fk Crc - 8)}. 

For 8 = rrJ2, this gives, 

Case of Spin Zero Particles 

In this case the total wave function is symmetric so that, 

0'0(8) = O's(8), 

and 

Also, from Eq. (9.332
), 

O'JrrJ2) = 21 f k(rrJ2) 12. 

Thus, we have the result, 

0'0(rrJ2):O'JrrJ2):0'IIirrJ2) = 4:2: 1. 

(9.3i) 

(9.38) 

This result can be utilized to determine experimentally the spin of a particle like 
the proton. In this case, the classical cross section is given by the Rutherford 
formula (7.116). The fact that the observed cross section at 8 = rrJ2 is approxi­
mately half that of the value given by the Rutherford formula, indicates that the 

proton is a spin ~ particle. 

Problem 9.3: Show that the total cross sections for zero-energy scattering of 
identical particles of spin-zero and spin one-half are given, respectively, by 

0'0 = 16rca 2 and O'in = 4rca 2
, 

where' a' is the scattering length. 
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CHAPTER 10 

RELATIVISTIC WAVE EQUATIONS 

10.1 INTRODUCTION 

The SchrOdinger equation l
, which forms the basis of the mechanics we have 

considered so far, does not satisfy the requirements of the special theory of rela­
tivity, namely, invariance under Lorentz transformations2

• This limitation 
restricts the applicability of the theory to systems with velocities small compared 
with the velocity of light. The ftrst equation aimed at remedying this defect was 
obtained by SchrOdinger himsele. But he discarded it because of, among other 
things, its failure to yield the correct spectrum of the hydrogen atom. The same 
equation was later proposed and discussed independently by Klein. Fock and 
Gordon4. It is commonly referred to as the Klein-Gordon equation. 

The Klein-Gordon equation is derived on the basis of the following arguments: 
The 4-dimensional (Minkowski space) formalism of relativistic mechanics sug­
gests the generalisation. 

PI' == -i1i a~' (11 1,2,3,4), (10.1) 

of Eq. (3.181
), where PI" is a component of the Jour-momentum p. The space 

components (that is, the first three components) of p are the components of the 
momentum vector p while, 

P4 = (i/c)£, (10.2) 

I. The reference here is to Eq. (4.14) with the Hamiltonian Ii derived, in accordance with Postulate 
IV. from the classical expression H == p2/2m + VCr). 

2. For a concise trealnlent of the special theory of relativity and the Lorentz transformations, see 
H. Goldstein, Classical Mechanics (Addison-Wesley, Massachusetts 1959), Chapter 6. 

3. Schrodinger, E. Ann. Physik, 81, 109 (1926). 
4. Klein, O. Z. Physik, 37,895 (1926); Fock, V. Z. Physik. 38, 242 (1926) and 39, 226 (1926); 

Gordon, W. Z. Physik,40, 117 (1926) and 40,121 (1926). 
5. In this Chapter as well as the next, we use bold face to denote 3-vectors while 4-vectors will be 

represented by the same lener in italics. Also, the components of a 4-vector will be distin­
guished by means of Greek subscripts whereas Latin subscripts will denote the components of 
a 3 -vector. Latin subscripts are also used when we want to refer specifically to the space 
components of a 4-vector. 
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where E is the energy of the particle and c is the velocity of light in vacuum. This 
fact is expressed by writing p = {p, (ilc )E}. Similarly, the space-time coordinate 
4-vector x = (r, ict) = (x, ict). Thus Eq. (10.1) leads to the identification, 

, a 
E == i1'l- (10.1 a) at' 

in addition to (3.181
) which may be written as 

.p == (Ni)V. (lO.1b) 

(lO.la) could have been inferred from Eqs. (1.16) as suggested at the end of 
chapter 1, but the present derivation shows that the identifications (lO.1a, b) are 
Lorentz covariant thus establishing their validity in a relativistic theory. 

We should caution here that the generalisation (10.1) and its offshoot (lO.Ia) 
should be regarded as of a formal nature valid for use in a wave equation but of 
no deeper significance. For example, a similar generalisation ofEq. (3.182

) and 
the implied existence of a time operator are not intended (See, Section 3.2. 
Time-energy uncertainty relationship). It is to emphasize this formal aspect of 
Eq. (lO.la) that we have used the symbol E rather than fI. The latter will denote 
the Hamiltonian of the system in terms of the co-ordinates, momenta, etc. 

In terms of E and p, the quantum mechanical wave equation is given by (cf. 

Eq. (4.14b», 
E",(r, t) == fI",(r, t). (10.3) 

The SchrOdinger equation for a free particle results from substituting for li the 
expression based on the non-relativistic formula (here, m is the mass of the par­
ticle), 

The result is the equation, 

itzat ",(r, t) = -(tz2/2m) V~(r, t), (10.5) 

where 

a 
at == at' 

An obvious way to make Eq. (10.3) relativistic would be 10 use, in place of 
(10.41), the relativistic expression for H, namely, 

1f=>/p2c 2+ m 2c4. (10.42) 

However, this expression introduces the difficulty of defining the square root of a 
linear operator. In order to avoid this difficulty, Ii is squared before introducing 
into the wave equation. This requires E also to be squared so that the wave 
equation becomes [in place of (10.3)], 

E~(r, t) = l/~(r, t) 

or, 

(0- 1C)<!>(x) = o. 
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Here, 
K= (me/Ii), 

whileD is the d'Alembertian given by 

with 

0=00 = V2_(l/c2)02 
I' I' ,. 

o 
°l'=ox' 

I' 
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(l0.7) 

(l0.8) 

Also, the Einstein summation convention is used (that is, a repeated (Greek) index 
is summed over from 1 to 4 ). 

Eq. (10.62
) is the Klein-Gordon equation. The symmetrical way in which 

space and time coordinates occur in this equation (it is second order in both, 
unlike Eq. (10.5) which is first order in time and second order in space) makes it 
manifestly Lorentz convariant. However, the act of squaring fl has introduced 
two important new elements into the theory. One is that the wave equation no 
longer conforms to the dynamical postulate of chapter 4, which requires the 
equation to be first order in time. The other is the possibility of negative energy 
(through the negative square root of fl2). These new elements give rise to diffi­
culties in the interpretation of the Klein-Gordon equation as a quantum mechan­
ical wave equation, at least within the conceptual framework of the SchrMinger 
equation. For example, the probabilistic (ensemble) interpretation of quantum 
mechanics is based on the circumstance that the SchrOdinger equa- tion permits 
the definition of a positive-definite probability density p and a probability current 
density j satisfying the equation of continuity (see Problem 4.1), 

drp + div j = 0, 

or, in covariant form, 

where, 

j = (j, iep). (10.l0) 

The equation of continuity ensures that the total number of particles (in the 
ensemble) is conserved (Problem 4.2). 

The Klein-Gordon equation yields the 4-current density, 

i,,(x) = (N2mi)[!l>·(x)0I'!l>(x)-!l>(X)d,,$'(X)]. (l0.11) 

The corresponding probability density is, 

p(r, t) = (i1il2mc 2)(!l>'a,!l> - (arf)<\». (10.11a) 

Since the value of ar<\> can be prescribed independently of G> [a consequence of the 

second order character of Eq. (10.62
)] a negative value for p cannot be ruled out. 

Problem 10.1: Verify Eq. (l0.11). 

Because of the above problem of the negative probability density, the Klcin­
Gordon equation failed to win recognition as a correct relativistic generalisation 
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of the SchrOdinger equation. Meanwhile, Dirac6 succeeded in obtaining a flrst 
I order relativistic wave equation (remember that the troubles of the Klein-Gordon 

equation were attributed to the squaring of Ii and E) which not only yielded a 
positive-definite probability density but from which also emerged properties like 
the spin and the magnetic moment of the electron and the flne structure of the 
hydrogen atom. The negative energies, however, persisted, but even these were 
transformed by Dirac into one of the greatest triumphs of the theory by a re­
interpretation1 (the hole theory) which introduced for the first time in physics the 
concepts of antiparticles, pair creation and annihilation and the vacuum (of 
elementary particles). 

But along with its successes, the Dirac theory also brought on the realisation 
that the conceptual frame-work of the nonrelativistic quantum mechanics is too 
restrictive for the development of a self-consistent relativistic quantum theory. 
For example, at relativistic velocities the kinetic energy of a particle may become 
comparable or even surpass its rest energy. According to the principle of the 
mass-energy equivalence (E = me2

) of the theory of relativity, creation of new 
particles is a distinct possibility at these energies. Obviously then, conservation 
of particle number cannot be a fundamental feature of relativistic quantum 
mechanics. On the other hand, the electric charge is a strictly conserved quantity. 
The equation of continuity of a relativistic wave equation should, therefore, refer 
to the conservation of the electric charge rather than to the conservation of 
particle-number. We note that if we multiply Eq. (1O.11a) by e (a unit of charge) 
and interpret (ep) as the charge density, the problem of its negative value disap­
pears, as a charge density can be negative as well as positive. 

The foregoing considerations led to a revival of the Klein-Gordon equation by 
Pauli and Weisskopf who interpreted it as the (classical) field equation of spin­
zero particles, the functions ",(r, t) acting as eoordinates'l of the field. Similarly, 
the Dirac equation is the field equation of the spin-half particles. The 
quantization of these fields leads to the correct relativistic quantum theory of the 
associated particles. This does not, however, mean that the quantum field theory 
of particles is devoid of problems. In fact, many problems, mainly of a mathe­
matical nature, are encountered in this theory. Nevertheless, its successes have 
been impressive enough to instill confidence in the correctness of its basic 
approach. 

It is a basic feature of the relativistic quantum theory that particles with dif-

ferent spins are described by different wave equations. Thus, spin ~ particles 

6. Dirac, P.A.M. Proc. Roy. Soc. (London) A 117,610 (1928). 
7. Dirac, PAM. Proc.l?oy. Soc. (London) A 126,360 (1930). 
8. Pauli, W. and Weisskopf, V.lle/v. Phys. Acta, 7,709 (1934), 
9. Note, in this connedion, that the equations of motion of classical mechanics are second order in 

time for the coordinates. The equations of motion of the electromagnetic field are also second 
order in time. A field differs from a mechanical system mainly in having an infinite nwnber of 
degrees of freedom. Since \jI at each space-time point represents an independent degree of 
freedom, the total number of degrees of freedom represented by \jI viewed as a coordinate is 
infinite. 
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are described by fIrst order wave equations (the Dirac and the Weyl equations) 
whereas spin-zero and spin-one particles are described by second order wave 
equations (the Klein-Gordon equations and the wave equations of the electro­
magnetic fIeld). This appears to be a consequence of the intimate relationship 
between spins and statistics (Section 9.2): It is found that a given (relativistic) 
wave equation can be consistently quantized using only one type of statistics 
(either the Bose-Einstein or the Fermi-Dirac), which type being decided by the 
equation. This is in contrast with the nonrelativistic SchrOdinger equation which, 
viewed as a field equation, can be quantized using either of the statistics. 

Eventhough a true relativistic quantum theory is, thus, a quantum fIeld theory, 
it is sufficient for many purposes, especially for the fermions at low velocities, to 
follow the historical path of a quantum mechanical approach. This chapter is 
devoted to a discussion of the relativistic quantum mechanics while we will 
present an elementary introduction to the quantum fIeld theory in the next chapter. 

10.2 THE FIRST ORDER WAVE EQUATIONS 

From Eqs. (10.1) and (10.3), it follows that a first order wave equation requires a 
Hamiltonian that is linear in the momentum vector. In the case of zero-mass 
particles, the classical Hamiltonian. 

H =c I P I. (10.12) 

suggests a quantum mechanical Hamiltonian of the form, 

a =c(a· p), 
where a is a vector operator, independent of the space and time co-ordinates, such 
that 

(10.14a) 

Condition (l0.14a) can be translated into conditions on the components of a by 
squaring (1O.14a). We have, 

00.15) 

which requires, 
(10.16) 

However, in this process we have admitted the negative square root in (1O.l4a): 

(a· p) = -I P I, (1O.14b) 

since (10.16) requires only the condition (10.15). Corresponding to (lO.14b) the 
Hamiltonian is, 

Now, relationships (10.l6) are the same as the ones [Eq. (5.35b)] satisfied by 
the components of the Pauli spin vector cr. Therefore, we can identify a in this 
case, with cr. In view of (10.l31

-
2
), the wave equation (10.3) then reads: 

Ihjl=±C(cr,p)\jf, (cr'p)=±lpl (1O.l7) 
or, in co-ordinate representation, 
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itzo,<I> = -iJic(o· V)<I>, (0· j» = + 1 p I, (1O.17a) 

and 

itzo,'V = iJic(o· V)'V, CO· j» = -I p I. (l0.l7b) 

These wave equations are known as the Weyl equationslO ofthe neutrino. We will 
discuss them in Section 1O.2B. 

In the case ofpartieles with non-zero mass, H is given by Eq. (10.42
) which can 

be put into a form resembling (10.12) by defining 

so that, 

Then, 

and ll 

with 

and, 

o 

po==mc, P = (Po' p), 

1;1=~~~l;' 
H=cl;l, 

_ 3 • 

If =c(ap) = c L f1;Jlw 
I'~O 

(~;) = p2 -i-m 2c2 

{al" a..,} = 2bl'v: 
o •• 

(10.l8) 

(10.19) 

(10.20) 

(10.21 1
) 

(10.22) 

(10.23) 

where, a. = (<:xo' ex). (10.24) 

Following convention, we put ~ = ixo. Then (10.23) becomes equivalent to Eq. 

(10.16) plus the following: 
{~, ak} = 0, (k = 1,2,3;) (1O.23a) 

f.\2 • 
I-' = l. (1O.23b) 

In terms of ~ and a, the Hamiltonian is, 

II = c(a· p) + ~mc2. 
The corresponding wave equation is 

iJid,'V = -iJic(a· V)\jf + ~mc~. 
This is known as the Dirac equation6

, while (10.212
) gives the Dirac Hamiltonian. 

The above procedure of getting a Hamiltonian linear in the momentum vector 
by introducing certain operators 'from out of the blue' as it were, might look 
artificial. However, the procedure leads to useful results only because the oper­
ators so introduced are related to some property of the particles. In the case 

10. Weyl,ll. Z. Physik, 56, 330 (1929). 

II. Unlike in the case of mass-zero particles, the choice fl = - c(~;) here, does not lead to any new 

results different from the one contained in the choice (10.21 \ 
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of the zero-mass particles, the operator involved is the Pauli spin vector. The 

implication is that the associated particles have spin i. We will see that the 

operators a. and ~ in the Dirac Hamiltonian are also related to the spin of the 
particles and to the existence of the antiparticles (negative energy states). 

The Dirac equation was, historically, the ftrst successful relativistic wave 
equation. The lessons learned from its success have been of great help in the 
understanding and the interpretation of other relativistic wave equations. It is 
only proper then to start the detailed discussion of the relativistic wave equations 
with that of the Dirac equation. 

lO.2A. The Dirac Equation 

Since the operators a. and ~ are independent of the space and time co-ordinates 
and since they satisfy the anticommutation relationships (10.16) and (1O.23a), it 
is clear that they cannot be represented either by algebraic numbers or by differ­
ential operators. Representation by matrices is the only alternative. We will, 
hereafter, regard them as matrices and drop the operator symbol when so 
considered. These matrices are referred to as the Dirac matrices. 

In place of a. and ~, the set {YJ defined below is also commonly used. 

y" == -i ~a.", (k == 1,2,3); Y4 == ~. (10.26) 

From (10.16) and (10.23), we get: 

{Yil-' yJ == 20ll-v' (10.27) 

In terms of YI"' the Dirac equation (10.251
) takes the form, 

(YiJIl- + K)'V(X) == 0, 

where, K=mcf11. 

Eq. (10.252
) is the covariant form of the Dirac equation. 

The properties of the Dirac equation are determined by the properties of the 
Dirac matrices. Let us, therefore, consider these properties. 

Properties of the Dirac Matrices 

DM 1. Since the Dirac Hamiltonian should be hermitian, it follows from (10.21 2
) 

and 00.26) that a./c and ~, as well as YI" are hermitian. 

DM 2. The eigenvalues of the matrices are ±1. 

DM 3. From YIl-Yv == -Yv Y!'-, we have, Y!'- == -Yv Y!'-y" so that 

Tr(y~,) == -1'r(yvyI'Y.) == -Tr(l,y.,) == -Tr(yl')' 

where, we have made use of property (A.24a) of the trace of a matrix. It follows 
that 

(10.28) 
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The matrices Uk and ~ also share this property. 

DM 4. Combining properties DM2 and DM3, we see that the order of the YI' 

should be even, namely, 2,4,6, ... 

DM 5. Up to equivalence, the Y,,'s (and hence also Uk and P) have only one irre­

ducible representation12 and that is 0/ order 4. The first part follows from a 
theorem of Frobenius in group theory, according to which the number n of 
inequivalent irreducible representations of a finite semi-simple algebra which 
possesses a unit clement, is equal to the number of elements in the algebra that 
commute with all other elements in the algebra. The Dirac algebra consists of the 

16 (independent) clements that can be formed out of the four Y,,'s. These are: 

1(= ~), Y", -iY"Yv(J!::/:- v), iYI"I~Y,,(J!::/:- v::/:- cr) and Y1Y2Y3Y4 == Y5' The only element that 

commutes with all other clements here is the unit element I. 
The second part of property DM 5 follows from another result of group theory, 

nam'Jly, 

N = d; + ... + d;, (10.29) 

where N is the total number of elements in the algebra and dr is the dimensionality 
of the rth irreducible representation. 

DM 6. Since the matrices do not commute among themselves, only one of the 
matrices could be diagonal in any particular representation. 

As an explicit case, we choose a representation in which Y4 = ~, is diagonal: 

~=Y4=[i ~ ~l 
o 0 0 

(l0.30a) 

Uk = (0 cr. 
Ok) o ,(k = 1,2,3) (1O.30b) 

where cr. are the Pauli spin matrices (5.34). From Eqs. (10.26) and (IO.30a, b), 

we have, 

Y. = (i~k -~crkJ (k = 1,2,3). (lO.3Oc) 

Since the Dirac matrices arc of order 4, the Dirac equation will make sense 
only if the Dirac wavefunction is a column matrix with four rows. That is, \jf(x) 

should have four componenL<; in the space of the Y,,'s. 

12. A representation is irreducible if there exists no matrix that can transform, through a similarity 
transformation (see Section AS), all the representative matrices to block-diagonal form. Two 
representations arc equivalent if they are related to each other by a similarity transformation. 
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'Vix) 
'V(X) = 'V ix ) 

[

'VI(X)1 

'V4(X) j 
(10.31) 

Substituting from Eqs. (10.30a, c) and (10.31) in the Dirac equation (10.252
), the 

latter reduces to a set of four coupled equations: 

-(d4 + K)'V1 + id3'V3 + (idl + d;''V4 = 0, 

-(d4 + K)'V2 + (id l - d;''V3 - id3'1'4 = 0, 

id3'1'1 + (ial + d;''1'2 - (d4 - K)'I'3 = 0, 

(idl - d;''I'1 - id3'1'2 - (d4 - K)'V4 = 0. 

(10.32) 

Problem 10.2: Deduce (10.30c) as one of the possible choice that follow from 
(10.27) and (10.30a). What is the other choice? 

Problem 10.3: If A. and B are operators whose components commute with those 
of a, deduce 

Ca· A.) (a· B) = (A. . 3) + iCfJ .(A. x B) 
where aD is defined by (10.39). 

The Free Dirac Particles 

A four-component wavefunction signifies four degrees of freedom. In order to 
ascertain what these are, let us consider the case of the free particle whose 
Hamiltonian is given by Eq. (lO.2e). 

For a free particle, we expect the angular momentum to be a constant of 
motion. This means that the components i k (k = 1, 2, 3) given by Eq. (5.2a) , 

should commute with {[. Now, 

[fJ,ia =[e;akfik+~me2,x:J53-X3fi~ 

::= -iJiC(C1-jj3 - ~fi;' = -iJie(a x p)1' 

where the relationships, [i';,fi) = i'hDjj are used. 

Hence, [If, LJ = ifie(p x a);t o. 

(10.33a) 

(l0.33b) 
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Thus, the angular momentum associated with the orbital motion of the particle is 
not a constant of motion 13 for the Dirac particle. But, the operator corresponding 
to the total angular momentum of a system is the generator of infinitesimal rota­
tions of the system [see the remarks following Eq. (5.134a)]. Therefore, invari­
ance of the system under rotations (which is a must from the viewpoint of the 
theory of relativity) requires that the angular momentum operator should 
commute with the Hamiltonian. The only possible conclusion IS that the total 
angular momentum of the particle is not represented by L but by an operator j 
given by 

j=L+8, 
where S should satisfy the following conditions: 

(10.34) 

(1) The components of S should satisfy the basic commutation rules (cf. (5.4», 

[5 i' 5) =: it! E iii 5 if (1O.35a) 
that are obeyed by the components of an angular momentum operator. 

(2) Components of S should commute with the components of L so that the usual 

rules of angular momentum addition can be used to obtain j from Land S. 
(3) j should commute with fl. This requires, 

[II,S] =-iJic(p x a). (1O.35b) 
(4) S should not depend on the state of motion (that is, on p). In other words, S 

should depend only on a (since that is the only other vector operator in the 
theory). 

It is possible to derive from conditions (3) and (4) above the foHov'ing 
expression for the components of S. 

S i = -(dil4) E iik ajak =: -(i1il4) E ijk r/fk' (i =: 1,2,3). (10.36) 

The Elik in (10.35a) and (10.36) is defined in Eq. (5.2b). Defining the Dirac spin 

vector OD by 

S = (1iI2)OD, (10.37) 

we have, 
• D· •• 
0i = -(zI2) E iik (J.pi' (10.38a) 

aD = -(i/2)(a.x a.). (lO.38b) 

In matrix representation, we get [using (1O.30b) and (l0.38b)], 

aD =:(~ ~) (10.39) 

where a is the matrix (vector) whose components are the Pauli spin matrices. 
From (10.36), we have, 

S~=-~(~&.l= ~2 ~~= (t?14)i. 

I :1. We will see that, in the nonrelativistic limit, a reduces to the velocity operator (hence parallel 

to p) so that in that limit (jI x a) = 6 and L becomes a constant of motion. 
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Thus, the eigenvalues of 53 (as also of 51 and 5~ are ±(1iI2). We also verify that 

conditions (10.35a) are satisfied. Therefore, S could be interpreted as an angular 
momentum of the particles. Since, however, S does not arise from the orbital 
motion, it is called the intrinsic angular momentum, or spin, of the particles. 14 We 

conclude that the Dirac particles have spin ~. 

Problem 10.4: Deduce (10.36) from Eq. (l0.35b). 

Problem 10.5: Verify the following properties of the components of &D. 

"D'D. "D.. cr, crJ == t E'Jk crk (I =1=]) 

"D'D ~ .. {crj , crj } == 20jj (t,] == 1,2,3). 

Now, a spin ~ particle has only two degrees of freedom, narncJy, spin-up and 

spin-down (S3 = +1'1/2 and S3 = -1i./2). We have to account for the additional two 

degrees of freedom of the Dirac particles. In view of (10.22) which does not 
I exclude the possibility 

;; f; r-:-----..,,-­
up =_~p2+m2cJ., 

we surmise that the additional degrees of freedom might be related to the exis­
tence of negative energy states. That indeed is the case is confirmed by the fol­
lowing analysis. 

A free-particle (plane-wave) solution of the Dirac equation can be written as 
'!'(x) = u(p) exp [(i/Ji)pxl = u(p) exp [(i/1i.) (p. x - E t)J, 

(10040) 

where u(p) is a 4-component spinor15
: 

u(p)~l:;) (10.41) 

l~lP) 
We choose the z-axis along the direction of motion of the particles. Then, 

,!,,(x) == '!',(x3,t) = U,(P3) exp [(i/1i)(P~3 -EI)], (r = 1,2,3,4). (1O.40a) 

Substituting from (1O.40a) in (10.32), we get 

- c P3Ul + (E + mc 2)u3 = 0, 

(1o.3i) 

14. The hypothesis of spin preceded the Dirac theory (See footnote 3, Chapter 5). 
IS. A spinor is a vcctor in the spin space. It is distinguished from an ordinary vector by its peculiar 

transfonnation propenies under rotations [see Eq. (5.1 45c) and (10.135')1. We have already 
seen that the space of the Dirac matrices is, in fact, a spin space. 
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C P3UZ + (£ + mC
2
)u4 :::: O. 

For a non-trivial solution of this set of equations, the determinant of the coeffi­
~icnt matrix should be zero (see Section A 6). That is, 

(CP3)Z _(£2 - m1c4) = 0, 

or 

E =± E p3' (10.42) 

with 

Ep=+~p2c2+m2c4. (l0.42a) 

We might be tempted to throwaway the negative energy16 on the ground that it is 
unphysical. That we cannot do this will be clear from a consideration of the 
waver unctions: 

Case 1: E = E p> O. 

Substituting E p for £ in (10.321), we get two independent solutions for the spinor 

u. These are, 

(10.43a) 

where, 

1 ( 2)112 a=-J21+:: ' 
(10.44) 

Case 2: E = - E p< O. 

In this case, we have, 

(1O.43b) 

16. The distinction between me negative value in (10.42) and me negative value in (4.117) in me 
case of me hydrogen atom, should be noted. In me former case, it is me total energy (including 
me rest energy) of me particle that is negative whereas, in me laUer case, me negative energy 
(which excludes rest energy) merely indicates mat me potential energy dominates over me 
kinetic energy_ 
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Using (10.39), we verify, 

d;, U(2) = -U(2). (10.4Sa) 

(lO.4Sb) 

Thus, u(J) and U(2) are, respectively, the spin-up and the spin-down stales with 

positive energy while U(3) and U(4) are similar states with negative energy. 
Also, 

r a' 
0 ab 

-~bl I. u(r)u(r)T = 0 a2 0 

r = 1 lb; 0 b2 o ' 
-ab 0 b2 

(1O.46a) 

and 

4 
L U(r)U(r)t = (a 2 + b2)/ = I, (1O.46b) 

r=--l 

where, I is the unit matrix of order 4. 
Comparing Eqs. (1O.46a, b) with the condition (2.122b) for the completeness 

of a sel of vectors, we see that the positive energy states alone do not constitute a 
closed Hilbert space whereas the positive and negative energy state~ together 
form such a closed space. As a result, even if we have initially a positive energy 
particle, it can make a transition to a negative energy state in the presence of an 
external field. It is clear, therefore, that the negative energy states are integral 
parts of the theory. This aspect also explains the four components of 0/ as arising 
from the two spin states each corresponding to the two energy states. 

In the non-relativistic limit, E p"" me 2
, so that, from (10.44), a '" 1, b "" O. We 

then see from (10.43a) and (1O.46a) that u(l) and U(2) could be regarded as essen­
tially 2-component wavefunctions spanning a closed Hilbert space. Thercforc, in 
this limit, a positive-energy particle will remain as a positive-energy particle even 
in the presence of interactions, and the problem of negative energies will nol arise. 

Problem 10.6: Verify Eqs. (1O.43a, b), 

The Equation of Continuity 

Now that the Dirac equation is also found to be not free from the negative ener­
gies, lie have to make sure that the equation, though first order in time, is nol 
bedevilled (like the Klein-Gordon equation) with negative probability densities. 

Taking the Hermitian conjugate of Eq. (l0.2S2
), we have, 

(al' o/)t'l;, + K\jIt = O. 
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Multiplying this equation from the right by Y4, we get, since 

a; = ak' a; = -a4, 

a I'VtI' - K\jI = 0, 

where, \if = 'l'tY4' 
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(10.47) 

(10.48) 

is known as the Dirac adjoint 0/'1', while (10.47) is the adjoint Dirac equation. 
Using the representation (1O.30a) and (10.31), we have, 

~. 
'I' = '1'1'1'2 - '1'3 - '1'4· (1O.48a) 
~ 

Left-multiplying (10.252
) by 'if, right-multiplying (10.47) by 'I' and adding the 

two, we get, 

(10.49) 

Now, 'VYI''V= 'V ''Y4'Y1''V' has the dimension of a probability density. Therefore, 

c'VYI''V has the dimension of a probability current density. But c'VYI''V is antiher- , 

mitian. The 4-vector, 

(10.50) 

is then seen to have the right form to be a probability current density. Multiplying 
Eq. (10.49) by ic, we get the equation of continuity (10.92

) with the probability 
current jl' given by Eq. (10.50). The probability density p is defined by 

j4=icp, orp=-(i1c)j4='Vt'V. (10.51) 

Thus, the probability density associated with the Dirac equation is positive defi- .. 
nite and so there is no difficulty in interpreting the Dirac wavefunction 'Vasa 
probability amplitude. 

Non-relativistic Limit 

Next, we should verify that the Dirac equation has a sensible nonrelativistic limit. 
We have already seen from Eqs. (1O.43a), (10.44) and (1O.46a), that, in the case 
of frcc particles, a 2-component description (corresponding to the two spin states 

of a spin ~ particle) appears to be sufficient in the non-relativistic limit. We have 

to show that such a description is adequate even when the particle is not frcc. For 
this, we consider a Dirac particle in an external electromagnetic field described by 
the vcctor potential A and the scalar potential el> [see Eq. (8.184)]. If e denotes the 
electric charge of the Dirac particle, the effect of the field on the particle would 
be to change iL<; momentum from p to P = P - (e/c) A and the energy from E to E 
- eel>. Correspondingly, the Dirac equation (10.251

) becomes (where, 
E'I':= i1io,'I'), 

(10.52) 
Writing, 
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(10.53) 

where, 

(10.54) 

and substituting for it and ~ from (1O.30a, b), Eq. (10.52) splits up into the fol­
lowing two equations: 

(E - eel»<» = cCa· P)X + mc2cp, 

(E -eel»x = c(a· P>t1>-mc2X. 

Writing, E = E' + mc 2
, we get from (lO.S2b), 

{ 
c(a· P) } 

X= E'-e<I>+2mc 2 <», 

Similarly, putting E = E' - mc 2 in Eq. (1O.52a) we get, 

{ 
cCa· P) } 

<»= E'-eel>-2mc2 X· 

(lO.S2a) 

(1O.52b) 

(10. 55a) 

(lO.SSb) 

In the non-relativistic case, I E' - eel> 1« 2mc 2 and I P 1« mc. so that the following 

approximations could be made [Remember that (E' -eel» is the kinetic energy 
and P '" mv, is kinetic momentum] : 

(a· P) x'" --<»« <» (positive energy) (10.56a) 
2mc 

and 

(a'P) . 
<» '" --' --X« X (negative energy). 

2mc 
(l0.56b) 

Thus, in the case of positive energy states, cp represents the large components 

while X denotes the small components. 
Substituting from (lO.56a) in (1O.52a), we have, 

[

A' 2 J 
(E - mc 2)r.v '" (0;:) + eel> </>. (1O.5i) 

Now, 

(a· p)2 = (a· P) (a· P) = p2 + ia.(p x P), (by problem 5.6) 

( 
e V . A 

= P-zA) -(e1ilc)(o· B), (10.58) 

Since 

=-(e/c)[Axp+pxAJ = (-e/c)(-i1iB) (10.59) 
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where, B == \7 x A, is the magnetic field (sec Eq. (8.184)). 

Hc~e, the commutation rules (3.l4d) arc used. 
In the non-relativistic case, 

(E - mc 2)(j> = i1ia,$. 

Thus, (lo.5i) reduces to : 

i1ia (j> == {(P -(e/c)A)2 -~(a. B) +e<l>}$. 
, . 2m 2mc 
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(10.60) 

This is the Pauli equation 17 for the electron. The second term on the R.H.S. is the 
potential energy associated with a magnetic dipole of moment, 

M = (~) cr. (10.61) 
2mc 

Since the eigenvalues of a along any direction are ±1, we have, 

M (observed) = (M.> = ± JlB, 

where JlB = (e1112mc), is known as the Bohr magneton. 

(1O.61a) 

Also, since e is negative for the electron, M is antiparaIlel to the spin. These 
results are in agreement with the observed magnetic moment of the electron. 
Thus, Eq. (10.572

) not only establishes a meaningful non-relativistic limit for the 
Dirac equation, but also shows that the Dirac particles (at least the positive energy 
ones) arc electrons. 

Problem 10.7: Show that in the case ofa weak magnetic field, Eq. (10.572
) can 

also be writtcn a<; 

i1ia,$:= [L __ e_(L+ 2S)· B]G>, 
.2m 2mc 

where, L is the orbital angular momentum operator. 

According to (10.56) and (10.53), $(x) and X{x) could be regarded as the 

non-relativistic limits of 'V(x) for the pOSitive and the negative energy states, 
respectively. Here, ¢ and X are 2-component wavefunctions whereas 'V is a 4-
component one. We can make use ofthese functions to define the non-relativistic 
equivalent (or limit) an, of a Dirac operator a· ani is the non-relativistic equiv-

alent or ~) if ('Vb! a I 'Va) approaches ($b I anr I G» for positive energy and 

()t. I an, I.A;,) for negative energy, in the non-relativistic limit. 

Define, (10.62) 

Thcil, 

(10.63) 

17. Pauli, W. lIandbuch der Physik, 2nd ed. Vol. 24, p. I (Sp:inger, Berlin 1933). Note that <jl is 
normalized only up to zero·order in the velocity [see Eq. (10.84)]. 
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Thus, ir~ and ir_ are projection operators that projects on to the subspace corre­

sponding to the eigenvalues + 1 and -1, respectively, of~. That is, 
A A 

1t,'If:::: 'If+; 1t_'lf= 'If-. (10.64) 

where, 

or, 

Obviously, 

since 

it+ + it_ == L 
Using representation (1O.30a) and definition (10.54). we see, 

'1ft (6) 'If-=(~' 
In the limit of small velocities, we have. 

'I' - '1', (E > 0); 'I' - '1'_ (E - 0). 
'Y-)oO v----)o 

Problem 10.8: Using (l0.S6a, b) show that, in the nonrelativistic limit, 
'1'_ = [(li· v)/2c]'1'+ (positive energy), 

and 

'If+ = -[«i· v)!2c] 'If- (negative energy). 

(10.65) 

(10.66) 

(10.67) 

(10.68) 

It is convenient to divide the operators of the Dirac theory into two classes 
depending on whether they commute or anticommute with~. The former type are 
caJled even operators while the latter are called odd operators. 

~n. = n.~; ~Oa = -Qo~' (10.69) 

Also, 

(10.70) 

An arbitrary operator n can be written as sum of an even part and an odd part: 

n==Q.+Qo, (10.71) 

where, 

(1O.71a) 

We' J:yd. therefore, consider the non-relativistic equivalents of even and odd 
ope; :d'. r . only. 
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('Vb 1 n. 1 'Va) = ('Vb 1 (it+ + itJn.(it+ + itJ i'Va) 

= ('Vb + 1 n.1 'Va)+('Vb-1 n.1 'V.j, 
where Eqs. (10.70), (10.63) and (10.64) have been used. 

Similarly, 

34'J 

(10.12) 

(10.73) 

Thus, an even operator connects components of like size while an odd operator 
connects the large components with the small components. 

Now, (10.69) requires n. and no to be of the following form: 

[
n<+) 0 J ( 0 n<+)J ' • ' 0 

12 = '12 = 
• 0 n~-)' 0 n~-) 0 

(10.74) 

where, f.2.<±) are 2 x 2 matrices. Then, using (10.67), we get 
, - '<+) ('Vb + 1 n. I 'Va) - (<1>b 1 n. 1 <1>'>, (lO.75a) 

, _ 'H 
('Vb - 1 n. 1 'Va J - (~ 1 n. I Xa), (l0.75b) 

SO that, from (10.72), we have, 

('Vb I {2. I'V.> '" (<1>b 1 n:+) 1<1>'>, (E > 0), (1O.76a) 
v«c 

and 

('Vb 1 n. 1 'V.) "" (Xb 1 n~-) 1 Xa), (E < 0), (l0.76b) 
v«c 

Using the results of problem 10.8, we can write (10.73) as, 

(10.77) 

where, as usual, the upper sign corresponds to positive energy and the lower sign 
to negative energy. Again from (10.74), (10.67) and (l0.30b) we get, 

('Vb + 1 [no(&' v)/2cJ 1 'Va J = (<Pb I [n6+)(0-' v)/2cJ<P'> (1O.77a) 

so that 

('Vb I no I 'Va> '" (1/2c )(<Pb 1 {n~+)(cr· v) + (0-. v)n~+11 <1>a)' 
v«c 

for E > 0, 

and 

v«c 

forE <0. 

Thus, from (10.75) and (10.78), we have, 

(n) = n<+)' 
I!",. I!' 

(1O.77b) 

(10.78a) 

(1O.78b) 

(10.79) 

(10.80) 
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L.!t us consider a few illustrative examples. As even operators, we choose ~ and 

&0. From (10.30a), (10.39) and (10.79), we have, 

a. is an example of an odd operator. From (l0.30b) and (10.80), we get, 

(a.)., = ±(1!2c) [0(0' v) + (0' v)O] 

=±(v/c). 

(10.791
) 

(10.792
) 

That is, at non-relativistic velocities, ca. reduces to the velocity operator. We see 

then from (10.33b) that, in this case, the orbital angular momentum becomes a 
constant of motion. This is not due to the disappearance of the spin (the spin is 
very much there, as indicated by (10.792

) as well as by (1O.572». but due to the 
disappearance of the spin-orbit coupling which, unlike the spin, is truly of rela­
tivistic origin (see the next sub-section). 

Spin. Orbit Coupling 

In order to exhibit the presence of the spin-orbit interaction and to establish its 
relativistic origin, we consider an approximation which is a step higher than that 
which led to the Pauli equation (10.572

). From (10.55a) and (1O.56a), we see that 
the latter is valid up to zero-orderl8 in (V2

/C
2
). Therefore, we want the present 

approximation to be valid up to first order in (V2/C\ From (1O.55a) we see that 
the required approximation. for the positive energy case, is: 

",(1- E' -V)(&.P)q, 
X 2mc 2 2mc ' 

where V(r) = e~{r). 

Substituting (10.81) in (10.52a), we get (since E = E' + me:), 

E'q,=Hq" 
with 

A (o· P)[ E' -V] A A A 

H=-- 1--- (o·P)+V{r) 
2m 2mc2 

(10.81) 

( E' -V) p2 A e1t A 11 A ill 
= 1--- -+V(r)--(o·B)+--{o·{VVxp)}---(VV·p), 

2mc 2 2m 2mc 4m 2c 2 4m 2c 2 

I~. E' -eel> = me' [(1-v'/e,)",n -I] = me' [~(v'/e')+ (3/S)(V'/C 2
)' + ... J 

lllUS, 

2 ,,0 1 2' , 2 22 
(E' -eel»lme = o· (v Ie ) +2:' (v Ie ) + (3/8)(v ie ) + ... 
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t·~) first-order in (Vl/C 1). Here. Eq. (10.58) as well as the relationship, 

(0' P)F(r)(o· P) = F(r) (0 . p)2_ in· (0' VF)(O, p). 
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which follows from an application of Eq. (3.l4d). have been used. Now. in the 

case of the Pauli equation. the normalization of q, is given by 

1 == j \jl'ljfd3r::= j(q,+q,+X+X)d3r 

... f{l + (0' P)2}fIjld3r • 
4m 2c2 

That is, cp is normalized to the same approximation as the equation. 

In the present case. we have, 

j
'ljf+'ljfd3r"" ((1 + (0' P)2l...+1jld3r Jl 4m 1c1 ! 

(by (1O.56a» 

to first-order in (V1/C 1). Therefore. q, is not a normalized eigenvector. l:)ut the 

normalized (to order v2/c 2
) function", is given by 

where. 

'Ijf= 1+-P- I/l""CI/l. 
( 

'2 )112 

4m 1c2 

(

A p2) e= 1+-
2
-

2
, 

8m c 

In terms of'ljf. Eq. (10.821
) can be written as 

E'C-l'1jf = He-I",. 

or (multiplying both sides bye), 

where, 

(10.84) 

(1O.84a) 

from (10.831
), we see that e need be considered different from unity only in the 

ca:;e of VCr). And in the case of VCr), we have. 
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(
, p2) , (' p2), 1 2 A A 2, 1+-2- 2 Vet) 1--

2
- 2 ,,"V(r)+-.2 )pV(r)-V(r)PJ 

8m c 8m c 8m c 

Thus, up to first order in (v2/c 2), 

( .)2 . A --A . A4 
A , P c eli, p 1'1, A A 

1I =---+e<P--(a·B)---+--[a·(VVxp)] 
2m 2mc 8m3c 1 4m 2c 2 

The first three terms in ti' are the same as the ones appearing in the non­
relativistic equation (10.572

). The remaining terms are relativistic corrections of 
order (y2/C 2) [Remember that l-iliVV I = I pV I], The term in p4 results from 
w;-iting. 

(
E'-VI p2 1.(p2)2 1 (f>2)2 
2mc 2 ). 2m "" 2mc 2 2m '" 2mc 2 2m ' 

and is the lowest-order rclati vis tic correction to the kinetic energy operator as seen 
by expanding the energy operator -Yf>2c2 + m2c4 in powers of (f>2/m 2c 2). The fifth 
term in (10.832

) represents the spin-orbit coupling. In the case of a spherically 
symmetric potential (V(r) = VCr»~, we have . . . av 

VV = (flr)a,-' 

and then, 

(10.85) 

where L = r x p. The last two terms in II' seem to be related to the existence of 
negative energy states (in fact, to the phenomenon of Zitterbewegung--the rapid 
fluctuations in the coordinate of the electron over a distance of the order of the 
Compton wave length (1iImc). These fluctuations arise due to the mixing of pos­
itive and negative energy slatesI9

). The last term is usually referred to as the 
Darwin term. 20 

The Foldy-Wouthuysen Transformation 

We have seen that, in the non-relativistic limit, a separation between the positive 
and the negative energy states can be achieved in the form of 2-component 
equations. We should expect such a separation possible, in the case of free Duae 

19. Sec Ref. I, Sections 3.3 and 4.3. 
20. DJrwin, e.G. [Proc. Roy. Soc. A 118,634 (1928») was the first to obtain it. 
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particles, even in the relativistic case. For, in the absence of interactions, a par­
ticle in a positive energy state will remain in the positive energy state. But a 

1 
spin-"2 particle with positive energy has only two degrees of freedom. There is a 

certain redundancy in the description of such particles in terms of 4-component 
wavefunctions. Therefore, an equivalent description in terms of 2-component 
wavefunctions must exist. 

Let us assume, then, that there exists a unitary transformation 0 such that the 
transformed Hamiltonian H'=OflOt , where fl=c(a.·p)+~mc2, satisfies the 
eigenvalue equation, 

(10.86) 

with IE l=e~p2+m2c2. Here, 'l"± are essentially 2-component wavefunctions. 

In fact, they could be taken to be of the same form as the 'l'± in (10.67). We see, 
then, from (10.65) that Eq. (10.86) is satisfied if 

o Ii Ot = H' = ~ E p • (1O.8i) 

That is, the transformation should eliminate the odd operator a. [which causes 

mixing between 'l'+ and \jf_ (see (Eq. (10.52))] from fl. The problem of finding 
such a transformation is analogous to that of finding a transformation that elimi­
nates ax from a two-component spin Hamiltonian of the form, 

ll=b,ax +b,a,. (10.88 1
) 

The transformation in the case of (10.881
) is a rotation (of the co-ordinate system) 

about the y-axis in spin space through an angle Oy given by tan OJ = b,!b, (See Fig. 
10.1 (a)). The unitary operator corresponding to this rotation is, according to Eq. 
(5.135), 

0/0,) = exp WI2)cryOy} = exp {( ~},axOy}. (10.89) 

Referring to Fig. 10.1 (a), we see that llis transformed into 

OJrO; =;f[ = b'za,;::; ,)b,2+ b;a,. (10.882
) 

In the case of the Dirac Hamiltonian, we have a,~, cp and me 2 respectively in 

place of ax, az , bx and bz • The unitary operator corresponding to (10.89) is, 
therefore, given by 

with 

(10.90) 

(10.90a) 

where, e is a function of (I P I fmc.) We show below that the transf0rmation 

(10.90) indeed transforms fi to the form (10.87) with a proper choice of e. 
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,""--"'----...,...- -_-1...1 - ..... 13 
- -----. 

(b) 

Fig. 10.1. Graphical representation of the Foldy-Wouthuysen transformation [In (b). 
8' = (\ P Ilmc)S]. 

eiS -:= cxp {(l/2mc)~(&.· p)9} 

=j+~(&.·P)e+ 1 {~(&..p)}2e2+ ... 
2mc 2! (2mc)2 

-:=[1_~IPI2e2+~,pre4_ ] 
2! (2mc)2 4! (2mC)4 ... 

+~(&..f»[IPle_~OPle)3+ J 
I p I 2mc 3! (2mc)3 ... 

_ (IPlel ~(&.,p) . ('Pie) 
- cos 2mc ) + I p I Sin 2mc ' (10.91 ) 
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since 

'\lso, 

Thus, 

and 

Hence, 

(eX· p) {~(eX' p)} = - (~(eX' p)} (eX· p), 

~{~(eX' p)} = - {~(eX' p)}~. 
liS =-Sfl, 

fl e-iS = eiS It. 

= (~~ f){e I P I co{1 ~~8 )-me2Sin(1 ~~e)} 

{ (I . 18) (I . I e)} +~ me
2
cos ~e +c I p I sin ~e . 

We want the term containing eX to vanish. The necessary condition is 

tan (IP1e)=w, or,9=m.c tan-1 Ipl. 
me me Ip I me 

Then, 

(I P I e) 2 . (I f> I e) . cos l--;;:;c- == me I E p ; Sill --;;:;c- == e I p /1 E p • 

so that 

it' = ~.yp2C2+ m2c4 == ~ E p • 

[Note that p' == eiSpe-iS == pl. 

(IO.92a) 

(IO.92b) 

(IO.92c) 

(10.93) 

(1O.93a) 

The transformation (10.90) was first proposed by Foldy and Wouthuysen?' 
Hence the name Foldy-Wouthuysen (F-W) transformation. The transformCti 
wave function is given by 

",'::: U", == eiS"" 

so that the wavefunction corresponding to the positive energy state is 

1. r.. 
\jI'+=2(l +~)\jI', 

Similarly, negative energy states are represented by 

1. r.. 
\jI' - = 2 (1 - JJ )\jI'. 

21. Foldy L.L. and Wouthuysen S.A., Phys. Rev., 78,29 (1950). 

(10.94) 

(IO.95a) 

(10.95) 
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\jf' is referred to as the wavefunction in the Foldy-Wouthuysen representation. A 

constant of motion will be represented by an even operator in the F-W represen­
tation. Therefore, from (10.67) and (10.74), we have, 

(\jf'b + I 0' I \jf'a J = (<1>'b I i)1(+) I <1>'), 

and 

(\jf'b_1 {l' I \jf'aJ = (Xb I (11(-) I X). 

Thus, the F-W transformation achieves a separation between the positive and the 
negative energy solutions of the Dirac equDtion. The positive energy solutions are 
described entircIy in terms of2-component wavefunctions. From Eqs. (1O.95a, b) 

we see that the projection operators it'+ and it'_ that project out from an arbitrary 

state the positive energy and the negative energy parts, respectively, are given by 
Icf. Eq. (10.62)]. 

(1O.96a) 

where it, are the projection operators in an arbitrary representation. Using Eqs. 

(lO.92b), (10.872
) and (10.93a), we get, 

• _ -is', + i$ 
1t±-e 1t_e 

'$1. fl .• 
=e' 2(1±)J)e+" 

=~+~F.!e2iS 
2-2)J 

1. . 
=2(1 ±III Ep). (1O.96b) 

In the presence of an external field, transitions between positive and negative 
energy staLes are inevitable. Therefore, a perfect separation between the positive 
and the negative energies is not feasible. However, it is possible to find a F-W 
transformation22 whieh leads to a separation of the positive and negative energies 
to some desired order in (V2/C 2). That is, the transformed Hamiltonian is given as 
a power series in (v2/e 1) with the odd operators eliminated from terms of up to the 
chosen order in (y2/c2). This procedure is, obviously, useful only when the 
external field is weak and (y2/C 2) is sufficiently small. 

Because of the occurrence of the momentum operator (which is a differential 
operator in configuration space) in S, the F-W transformation (10.94) is a non­
local one. That is, it depends on the values of\jf at different points separated by a 
distance. Writing 

(10.91a) 

.~ e J~"I 1, Section 4.3. 
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whdl follows from (10.91) and (1O.93a), and assuming E p:l> mc2
, which is the 

case at ultra high velocities, we get, 

'V'(x) '" [1- i1ic(~/ E p)(a. V)]'V(x). (1O.94a) 

Thus, the contributions to 'V' come from a region of linear dimension of the order 

of 
&-1 i1ic~a 1 / E p S; (1iImc), 

since 

E p = mc 2(1- y2/cylr2"? mc 2
• 

This result suggests that the position co-ordinates of a Dirac particle also might be 
defined only to within a Compton wave length. Indeed difficulties are encoun­
tered when we try to interpret r as the operator representing the position co­
ordinates. For example, the equation, 

dr 1 ' • 1 

dt = i1i [UI] = ca, (10.97 ) 

should normally imply [see, Eq. (4.32a) which should hold good here since the 
Dirac equation is of the form (4.14)] that cais the velocity operator for the Dirac 
particle. That it is not really so (except in the nonrc1ativistic limit) is evident frol.} 
th~ noncommuting nature of its components and from the fact that its eigenvalues 
arc ±c. In fact, since a mixes the positive and negative energy states, eigenvectors 
of ca (and, hence, also the eigenvalues) do not correspond to the physical states 
of a free Dirac particle. We can hope to get a sensible expression for the velocity 
of the particle only in a representation in which the positive and the negative 
energies arc separated. Using (10.91a) and the relations, {(a· p), a} = 2p and 
Ca· p)2= p2, we obtain [or the transform of (ca) in the F-W representation, the 
expression, 

ca'=eiS(ca)e-iS=ca+c2p~_ c
3p

(a, p)2' 
E pEp (E p +mc ) 

The expectation value of this operator [or a positive energy state is: 

( 'I • , 1 ') 2./ 'V. ca 'V+ =cp E p' (10.98) 

which is the usual relativistic expression for the velocity of a particle. An operator 
that plays the role of the position co-ordinates of the particle also can be obtained 
in this case23. In the presence of external fields, however, the separation between 
positive and negative energies can be only approximate and a consistent quantum 
mechanical interpretation of the position and velocity operators for a Dirac par­
ticle becomes difficult. 

Problem 10.9: Verify Eqs. (1O.91a) and (lO.96b). 

Problem 10.10: Show that the transformation 0' that eliminates the even oper­
alOr 0 from II is given by 

2:\. A nl')f(~ detailed discussion of this topic can be found in Ref. 3. 
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0'::.0 e i$' =_l_[E + c I p l-mc2~ (Ct· P)]. 
2Ep p Ipl 

Also, show that this transformation separates the states belonging to different 
eigenvalues of the hclicity operator 

Ii = (aD. 1»/ I pl. 

The Hydrogen Atom 

As a final and conclusive test of the correctness of the Dirac equation as the 

relativistic wave equation of spin i particles, we examine its predictions regarding 

the spectrum of the hydrogen atom 2A
• The Hamiltonian for this case is, 

fI =c(Ct·f»+~mc2+V(r), (10.991
) 

with VCr) = -Ze2/r [see Eq. (4.98a); for hydrogen atom, Z = 1]. We are interested 

in the stationary states of li, which are solutions of the eigenvalue equation, 

fr'll = E'll. (10.1001
) 

As in the nOll-relativistic case, the angular momentum would be a constant of 
motion in a central field. Therefore, the equation (10.1001

) could be reduced to a 
radial equation by separating the radial and the angular-cum-spin parts of the 
wavefunction. The energy eigenvalues are then determined entirely by the radial 
equation. In the non-relativistic case, the separation is facilitated by the obser­
vation that the orbital angular momentum is a constant of motion or, in the pres­
ence of a spinorbit interaction, that j2, U, S2, (S . L.) and i. are constants of 

motion. As a result, the wavefunct;on could be written as the product of a 

common eigenvector of j2, U, S2 and, since (S . L) = ~ (j2 - U - S2), of (S . L) and 

i" and a function which depends only on the radial co-ordinates: 

<I>(r) = R,(r )x;.l,s}. (10.101) 

The fact that i~l.s} is an eigenvector of (S· L) ensures that <J>(r) is consistent with 

the relationship j = L + S. 
In the relativistic case, the orbital angular momentum is not a constant of 

motion. j2, S2,j, and (2+ 2(S· L) = j2_ S2commute with II so that we could write 

the wavefunction as the product of a radial function and a common eigenfunction 
of .1 2

, S2 and j " This procedure is, however, unsatisfactory because it docs not 

incorporate the relationship j = (+ S. We should, therefore, find an operator §c 
which will play, in the relativistic case, the role of (S· L) in the non-relativistic 
case. ic must, obviously, satisfy the following'conditions: 

(i) It should commute with fl. 
(ii) It should commute with j2, S2.J. and U. 

24. The treatment given here largely follows that of Ref. 2. 
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Using these conditions, it is possible to obtain an expression for i::(Probkm 
10.11). The result is, 

(10.102) 

Then, 

(10.103) 

. ~ {( 1\,.12· f ~ h C Thus, the eigenvalues of :I\. are j +2)'~ . The eigenvalues 0 :I\. are, t ere. ore, 

cquallo ktr., where, 

k =:tV +D = ±1, ±2, ... , ±oo; (10.104) 

since, according to (S.49a) and (S.73b), j is a half-odd integer. We have two 
values of k for every value of j. This corresponds to the two values of (OD . L). 
We have25 

Thus, 

1':JJ A 1{A2 A2 1~2J (-(0 . L»=- J -L --0 ) 
11 112 4 

3 
= jU + 1)-/(1 + 1)-4 

=-~ +~). forl = j +~ 

=~-~), forl=j-~ 

k =-~ +~). for 1= j +i, (l0.104a) 

k=~+i). forl=j-~. (l0.104b) 

We should now express fl in terms of X. and operators that involve only radial 
variables. To this end, we define the Hennitian operators, 

p ",(-i1lV') =-ill(~+.!)=.!(i .. pA_i1l)' 
r r or r r (10.105a) 

25. Identifying a given k-value with a definite I-value [Eqs. (l0.104a, b)] is strictly valid only ir. the 
non-relativistic limit as, in the relativistic case,l is not a good quantum number whereas J.. is. 
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We have, 

or, 

. 1. . • 
a,.=-(a·r),or(a·r)=ra,.. (lO.lOSb) 

r 

a;= 1; {~,aJ =0; [~, ~ =0. 

(a· r)(a· p) = (r· p) + i(cr(D). L) = f p, + i~i: 

• • {a,~* 
(a·p)=a,p,+--. 

r 

(by problem 10.3) 

(10.106) 

Substituting from (10.106) in (10.991
): 

• • ic&,~* ~ 2 • 
H=cap +--+ mc +V(r). 

" r 

We choose a representation in which if,J z and * arc diagonal (Since)2 and S2 

commute with fI, 'kand J z' they are also diagonal) and denote the eigenvectors by 

'I' •. k.m(X): 

fI'I' =E 'I' lI,k,m lI,k n,k,m' 

A = ktL ~.,k,m 'I'.,k,m' 

Jz'l' •. k.m = mtL'I'.,k,m' (10.107) 

(Just as in the non-relativistic case the energy depends on I, in the present case E 
should depend on k). The eigenvalue equation (10.1001

) becomes, 

[ca,p, + itLckr-la,~ + ~mc2 + VCr) - E.)'I'.,k,,,. = O. (10.1002
) 

'I' cannot still be written as the product of a radial part and an angular-cum-spin 
part because of the occurrence in (10.1002

) of ~ and ~ which do not commute 
with If. In order to eliminate these operators, we left-multiply (1O.l002

) by~, add 
the result to (l 0.1 002

) and then divide by two, getting, 

(e p, itL~k }a,'I' .. k.m) + (me 2 + VCr) - E •. k)'I'+.,k,m = 0 

where, l' (':, 
'I'in,k,m ="2 (1 ± P)'I'n,k,m' 

Similarly, 

(c p, + itL~k )'I'+ •. k,m - [mc 2+E •. k - VCr)] (a,'I'_.,k,,,,) = O. (10.109
1

) 

Eqs. (10.1081
) and (10.109') constitute a set of coupled equations for 'I'+.,k,m and 

rx.-'I'.,k.m' Since the coefficients do not contain either spin or angle-dependelll 

operators, '1'+ and a,'I'- could be written as products of a radial function and a 

spinor. The latter has to be the same for both '1'+ and &''1'_ as it is determined Ly 
k.only: 
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'V (X ) ::= <>.,k(r )~k,m' 
+II,k,m 

(10.~ lOa) 

&, 'V(x) ::= ~,k(r )<;k,m (10.1 lOb) 
-",k,m 

Substituting these in (10.1081
) and (10.1091

) and defining. 

me2 +E. k me2 -E. k 

III = Pic " 112 ::= Pic', 

II = +,/t:'l1tJ.2 = (ilh)p. k' (10.111) 

r == (Ze 2/1l c)::= -r VCr)lPi c, 

F(r) G(r) , . 
p == llr, --;- == <>.,k' -r- == I.\,k 

we get, 

( d k) (1l2 r) -+- G(p)- --- F(p) ==0, 
dp p II P 

(d k) (lll r) --- F(p)- -+- G(p) =0. 
dp P II P 

These equations can be solved by the method of series integration. The wave 
functions Q and x should be finite at the origin r == 0 but should vanish at infinity. 
Thus, 

G(p == 0) == 0 == F(p == 0), 

G(p=oo)==O==F(p=oo), 

which suggests the expansions, 

F(p) == f(p)e"; G(p) == g (p)e ", 

where, 

f(p) == pVo+ flP+ f2p2+ ... + f.,p',) 

g(p) == pV(go+ glP+ g2p2+ ... + g.,p"), 

with 

and 

(10.112) 

(10.113) 

(10.114) 

(10.114a) 

n' == 0, 1,2, ... ,(any positive integer) (l0.114h) 

The series (10.114) are finite as otherwise the boundary conditions at p = '''' can­

nl)l be satisfied. Also, the boundary conditions at p == 0 require 
f(O) = g(O) = 0, 

so th.:l, v>O. (10.115<1) 



302 QUANTUM MECHANICS 

Substituting from (10.113) and (1O.108~ into (10.1092
), we get, 

(~-1 +~)g _(ll2 -!:)f= 0, 
dp p II p 

(~-l-~)f _(lll +!:)g == 0. 
dp P II P 

Substituting for/and g from (10.114) and equating the coefficients of the various 
powers of p to zero, we have: 

pV-l:(v+k)go+rfo=O, (10.1161
) 

-rgo+ (v -k)fo == 0. 

Since fa * 0 and go '# 0, this requires 

v=~k2-r2<lkl. 

Eliminating gs-1 andf,_1 from these equations, we get, 

g, (v+s -k)ll2-rll 
-= , 
f. rll2 +(v+s +k) 

go v-k r 
fa =Y=-v+k' 

Putting s == n' + 1 in (10.117\ we have, 

g., == - (llzlll)f." 
while from (10.1181

), we get, 

{
(v+n'-k)ll2- rll } 

g.,= rll2+(v+n'+k)ll f." 
From (10.1172

) and (10.1182
), we derive, using (10.111), 

2ll(v + n') == r(lll -.1z) == (21/tlc )E.',k' 

Squaring lnis expression leads to: 

E.,,,=mc 2 [1+ r
2 

2]-IJ2,(n'=0,1,2, ... ) 
(v+n') 

(l0.115b) 

(lO.119) 

(10.120) 

where the positive character of E.'.k evident from (10.119). is taken into account. 

Formula (10.120) gives the energy levels of the hydrogen atom. Its predictions 
(aftcr taking into account the hyperfine splitting of each level into a doublet due 
tc the interaction of the proton spin with the electron magnetic moment) are in 
agr~cment with the observed spectrum of hydrogen. except for minor discrepan­
cies discovered much later (1947) and known as Lamb shift. 
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The fine structure of the levels can be exhibited by expanding (10.120) in 
jJowers of r2, remembering26 

(v + n,)2= C\/k2- r 2+n,)2 

~ n2[ l-{::(l + n'~: 1)+ ::. n~~: I ... n 
where, n=n'+lkl. (lO.l21) 

(lO.l20a) 

n is called the total quantum number and n' the radial quantum number. The 
range of values of (n, n') and k are given by Eq. (10.121) when the allowed values 
of k and n' [Eqs. (10.104) and (10.1 14b)] are taken into account. We have, 

n = 1,2,3, ... ,+00, 

n' = 0, 1,2, ... , (n - 1), 

k =±(n -n'), when n':;t: 0 (10.122) 

= (n - n ,), when n' = O. 

The last line in (10.122) is deduced as follows: When n' = 0, we have two different 

expressions for the ratio (golfo). From (10.1172), we have, (golfo) = -(6./6.) < O. 

But from (10.1162
), (golfo) = (v-k)lr. Since O<v<lk I and r>O,(v-k)1r is 

negative when k is positive and positive when k is negative. Consistency of the 
two expressions for the ratio thus requires that k be positive. 

Eq. (10.120a) shows that the level corresponding to a given n, splits up into n 
levels corresponding to the n different values of I k I. These levels constitute the 
fine structure of the levellabellcd by n. This name derives from the fact that the 
energy separation of the levels corresponding to different I k I but the same n is 
small compared with the energy separation of levels belonging to different n. In 
fact, the ratio of the former to the latter is seen from (1O.120a) to be of the order 
of r 2

", (1/137)2 for the hydrogen atom. We also see that the energy levels are 
two-fold degenerate with respect to the k-value since En,--/( = En,l (This degeneracy 

is removed in the 'Lamp shift'). The fine structure belonging to n = 3 is displayed 
in Table 10.1, where the levels are classified by the quantum numbers n',k and 

j = I k I-~. It is also customary to label the states by the non-relativistic quantum 

number I (related to k by Eqs. (10.104 a, b» and the spectroscopic notation based 
on that. These labels are also given in the Table where, for example 3P312 d~notes 

the state with n = 3,} = 3/2 and 1= 1 (k = 2). In Fig. 10.2, a (schematic) comp.:rrison 

26. f is known as the fine struclure constanl. For hydrogen atom 

f; (e'/"hc) = 11137. 
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of the observed and the predicted (according to formula (1O.120a» levels of 
hydrogen for n ::::: 3 is presented. 

Table 10.1. Fine structure of energy levels of hydrogen atom for n = 3 

Relativistic labels Non-relativistic labels 

1\ k j Spectroscopic label 

0 3 5{2 2 3Dsn. ] spin-orbit splitting 

-2 3{2 2 3D:vz } degenerate 

2 3{2 3 PJ12 ] 
2 -1 1!2 3PI12 } 1{2 0 3 SII2 

Problem 10.11: Assuming * to be of the form *=.4(o-D. L)+B, derive the 
result (lO.102). 

Problem 10.12: Calculate the energies of the hydrogen levels up to n = 3, using 
formula (lO.120a). Plot these on an energy level diagram similar to that of Fig. 
10.2. [me 2

::::: 51OkeV; 1= 11137]. 

I ,orentz Covariance of the Dirac Equation 

Now that sufficient evidence is at our disJX)sal to suggest that the Dirac equation 
is the relativistic quantum mechanical wave equation of the electron, we should 
turn our attention to establishing its covariance under Lorenw transformations. 
The form (10.252

) has the appearance of a covariant equation. Nevertheless it is 
necessary 1O establish the Lorentz covariance explicitly; for (as will be clear from 
what follows) covariance cannot be taken for granted mere~y on the basis of the 
appearance of the equation. 

Now, Lorentz covariance of an equation means that it sh0uld have the same 
form in all inertial frames. Thus, if 

(y~a~ + lC)'I'(X)::::: 0, (10.252
) 

is the Dirac equation in the inertial frame S, then ~ should be of the form, 

(Yi\.' + lC)'I"(xj::::: 0, (10.123) 
\ 

in the inertial frame S', where a/,x' and 'I"(x,) are, respectively, the Lorentz 

transforms of a~,x and \jI(x). A Lorentz transformation is an orthogonal trans­

formation in the Minkowski space and could, therefore, be represented by the 
co-ordinate transformation, 

(10.124) 
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Fig. 10.2. Energy levels of !he hydrogen atom belonging to 11 = 3, 
(a) Dirac theory, (b) observed. 

x'=ax. 
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The orthogonality of the transformation is denoted by the condition that 'a' be 
an orthogonal matrix. That is [see Eq. (A. 39)], 

a =a-\ 

CL 
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(10.125a) 

Also, 

deta =±1. (1O.125b) 

The transformations with det a = +1 are called proper Lorentz transformations 
while those with det a = -1 are called improper Lorentz transformations. The 
former include rotations in three dimensions in addition to co-ordinate transfor­
mation corresponding to uniform relative motion along a spatial direction, 
whereas the latter refers to the discrete transformations of space inversion and 

. time reversal (see sections 6.2D and 6.2E). 
From 00.124), we have, 

o ' 
dll = -:"Ix" dv' = ay..,.d,'. 

dXIl 

Substituting from (10.126) in (10.252
), we get, 

(i o~' -I- 1() \jI(x) = 0, 

where, 

The result, 

(10.126) 

(10.129) 

is easily verified. Thus, the 1'1L's obey the same algebra (Eq. (10.27) as the y..,.'s. 

But we have seen that the algebra (10.27) has only one irreducible representation. 

Therefore 1'v should be related to Yv through a similarity transformation: 

Yv:; aYI'.'i
1l 

= Cl(a)yj-(a), 

L being a nonsingular matrix. Eq. (10.1271
) then becomes, 

(Yv dv'+ K)L \jI(x) = 0. 

Comparing Eq. (10.1272
) with (10.123), we see that 

\jI'(x') :: \jI'(ax) = L(a )\jI(x), (10.130) 

where L is defined by Eq. (10.l282
). What we have to show to establish the 

Lorentz covariance of the Dirac equation is the existence of a matrix L satisfying 
Eq. (10.1282

) corresponding to every Lorentz transformation defined by the ort­
hogonal matrix 'a'. Eq. (10.130) then gives the law of transformation of the Dirac 
wavefunction. 

Case 1. Proper Lorentz Transformations 

A proper Lorentz transformation is a continuous transformation and, as such, can 
be built up from a succession of infinitesimal transformations. It is, therefore, 
sufficient to establish the existence of an L satisfying Eq. (10.1282

) in the case of 
an infinitesimal proper Lorentz transformation. 
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Now, an infinitesimal Lorentz transformation is defined by, 

afJ.V = OfLV + E fJ.V' I E fJ.vl4: l. 

Then, from (10.125a), we have, 

E~y =- EyfJ.' 

E~=O. 
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(10.131) 

(10.131a) 

The transformation is, thus, described in terms of six parameters. Substituting 
from (10.131) in (10.128\ we get, 

'Yv + E v!' '11' = C 1
( E) 'YJ,( E) (10.128

3
) 

This equation is satisfied to first order in Eyl' by the choice, 

1 
L = 1+4 E IJ.V 'Y1J.'Yy. (10.132) 

This gives, 

(10.133) 

Since L depends only on the Dirac matrices (aside from the parameters defining 
the Lorentz transformation), it follows that we can always find an L corresponding 
to a given infinitesimal proper Lorentz transformation, and, hence, corresponding 
to any proper Lorentz transformation. 

As an example, let us consider an infinitesimal rotation of the reference frame 
through angle &:> about the z-axis. In this case, we have (cf. Fig. 5.8), 

x; = Xl + &»x2, 

X4 =x4 

so that the matrix E is given by 

EOr+ 
&» 0 

~J 0 0 
0 0 

l 0 0 0 

Thus, 

where, 

(10.134) 



368 QUANTUM MECHA1'<lCS 

and e3 is a unit vector in the z-direction. 

From Eqs. (10.36), (10.38a) and (10.134), we see that 

Then, 

D crl2 = cr3 • 

L(e3, &\» == I + (il2)S 11> cr~ 

In general, for an infinitesimal rotation about an axis n, we have, 

L(n, &\» = 1+ (i/2) 011> (n· crD), 

from which we see that the matrix corresponding to a finite rotation 11> is [see Eq. 
(5.135)], 

L(n,4» == exp [(i12) 4> (n . cr D
)]. 

This equation represents the peculiar transformation law applicable to a spinor: a 
rotation through 41t is required to return 'V(x) to its original value. 

The matrix L corresponding to spatial rotations is unitary [as seen from 
(10.135»). However, in general L is not unitary (as for example, in the case of a 
uniform relative motion and in the case of time reversal). 

Problem 10.13: Obtain the matrix L corresponding to uniform relative motion 
with velocity v along the z-axis. 

Case 2: Improper Lorentz Transformations 

These include space invers:on and time reversal. 

Space Inversion 

This is defined by 

so that, 

ail = -Oil; a 4k == a k == 0; a 44 == 1. 
4 

Substituting from (10.1 36b) in (10.1282
), we get, 

L'Yk + 'YtL == 0, (k = 1,2,3,), 

L 'Y4 - 14 L == O. 

Thus, L commutes with 14 and anticommutes with 11' It follows that 

(10.136a) 

(1O.136b) 

L ( space inversion) == (ei~)'Y4' (10.137) 

L is a representation of the parity operator P. From Eq. (10.130), we have, 

/> 'V(x) = ei~ Y4'V(X). (10.130a) 
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In the nonrelativistic limit, )-4 == ~ ---t ±i [Eq. (10.791)], so that the positive and the 

negative energy states become eigenstates of P (/; could be chosen to be zero in 
this case) with opposite eigenvalues (that is, intrinsic parities). 

The invariance of the Dirac theory under the parity operation follows from the 
invariance of the Dirac Hamiltonian (10.21 2

) [both &. and p change sign by Eqs. 
(10.1284

) and (6.13b)]. 

Time Reversal 

We do not wish to give a detailed treatment of this transformation here as it has 
already been discussed in Section 6.2E. It is the transformation in which all 
directions of motion are reversed (or, X4 ---t -x4) and, as we have seen in Section 

6.2E, it is antilinear. Because of this antilinearity, Eq. (10.1282
) needs a slight 

modification. For, in obtaining Eq. (10.1272
) from (10.1271) we have used the 

rclation, Ldv'\jf = d/L \jf. But when L represents an antilinear transformation, 

Ld4'\jf=-d4'L\jf. Then, 00.127') leads to (10.1272) only if 

and 

Since 

akl'YI' = L -I Yk L, (k = 1,2,3) 

a ~[~ ~ ! j J 
We see that L should commute with all four Y.,.. An explicit expression for L can 

be obtained by a generalisation of the nonrelativistic case: 
According to Problem 6.6, the non-relativistic time-reversal operator tTfor the 

case of a spin ~ particle is given by, 

where, K c is the operator corresponding to complex conjugation and crz repcsents 

the 2-component of the Pauli spin vector. We expect to get the relativistic time­
reversal operator simply by replacing cr2 by the 2-component of the Dirac spin 

vector. Thus, 
A • D' "-

L (time reversal) =='T=io2 Kc =y3yIKc' 

where expression (10.38a) for of is used. 

Bilinear Covariants 

By a procedure similar to the one leading to Eq. (10.1272
), we find that the adjoint 

Dirac equation is transformed, under a Lorentz transformation, into 
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Comparing this with, 

av' 'ii'(x') Yv - K \ji'(X,) = 0, (10.140) 

which is the adjoint Dirac equation in the frame S', we see that the Lorentz 

transform of 'ii(x) is given by 

(10.141) 

Physical observables in the Dirac theory are bilinear in 'V and 0/ [for example, 

j", given by (10.50)]. In fact, they are of the form ('if r~ 0/) where r" is one of the 

sixteen linearly independent 4 x 4 matrices that can be constructed out of the four 
Dirac matrices. The combination ('if r~ 0/) is called a bilinear covariant because 
it transforms covariantIy (that is, as the component of a 4-tensor). The sixteen 
matrices are (as already listed under properties of the Dirac matrices): 

r S = I; r~ =: iy",; r:;y = a",y = -iy",yy; 

r: = iysY!'-; r' = iys, 

where, 15 == 11121314 = (~I ~J). 
15 satisfies, 15Y!'- = -Y!'-Y5; is = I. 

The following properties of the r are easily verified: 

(1) Cf")2=±J. 

(2) Except for rS,f"rm=-rmr",(n;em),sothat 

TrC[") = 0, Tr(rS) = 4. 

(3) rmr' = ern, (n ;e S, m;e /) 

where 
c =±l,±i. 

(10.142) 

(10.143) 

(1O.143a) 

From the above properties, it follows that the r' are linearly independent. 

For, let ~a"r" == O. Then, multiplying by rm and then taking the trace, we 
• 

have, 

(4) An arbitrary 4 x4 matrix U in the space of these 16 matrices is given by 

n = Loo,r", 

with 

• 

1 r' oo. =4Tr(n ). 

The bilinear forms (\jf r''V) can be classified as follows on the basis of their 

transformation properties under proper and improper Lorentz transformations. 
The following relationships are helpful in deriving these. 
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L -IYI'L := al'vYv' for proper L.T. 

= -'II' (Il = 1.2. 3) and + 'II' (Il = 4). for space inversion 

L -1'15 L = 'Is. for proper L.T. 

= -'Is' for space inversion. 

We find: 

s = 0/ rS"IjI_ a scalar (invariant under both proper and improper L.T.) 

VI' = io/ '11''1' -a vector (VI" = al'Yv, for proper L.T. 

V/ := -\/k and \/4' = V4 under space inversion) 

l~v = -i \if "til "tv "IjI- second rank, antisymmetric tensor 

(T'I'v = a",o ~P' T GP' for proper L.T., 

T;k = Tik ; T'44 = T 44; T; := -Ti• under space inversion) 

A", = i \if "ts"t","IjI- pseudo or axial vector; A~ = ailvAv (pr. L.T.); 

A~ = A~; A~ = -A4 (Impr. L.T.) 
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P = i \if 'Is "IjI- pseudo scalar (invariant under pro L.T. but changes sign under 

space inversion). 

The Hole Theory 

By now, we have before us an impressive array of successes of the Dirac theory 
- the spin and the magnetic moments of the electron, the fine structure of the 
hydrogen atom, a positive definite probability density, invariance under both 
proper and improper Lorentz transformations, and so on. There is only one aspect 
of the theory that dampens our sense of triumph; the negative energy states. So 
far we have avoided facing the problem. But clearly a solution to the problem of 
the negative energy states has to be found if the Dirac theory is to survive. For, 
we have seen that the negative energy solutions cannot be lightly brushed aside 
since the positive energy solutions alone do not form a closed Hilbert space. As 
a result, a positive energy electron would be unstable against transition to negative 
energy states as soon as an interaction is switched on. In fact, the time it takes for 
such a transition can be shown to be extremely small. 

Of course, the negative energy states would not have been a problem if nega­
tive energy electrons were actually found in nature. Such electrons would be 
accelerated opposite to the direction of an applied force. No such particles were 
observed. 

It is against the above background that Dirac proposed7
, two years after the 

publication of his original theory, an interpretation known as a hole theory. The 



372 QUANTUM MECHANICS 

objective was to explain why the negative energy electrons are not observed 
(though they exist). For this, Dirac relied on Pauli's Exclusion Principle (Section 

9.2) according to which each quantum state of a spin ~ particle can be occupied by 

only one such particle. He then proposed the following hypotheses which form 
the basis of the hole theory: 
(HI) In the normal state, called the vacuum, all the negative energy states are 

occupied (in accordance with the exclusion principle) while all the positive 
energy states are empty. 

(H2) Only devi"tions from the normal vacuum, and not the vacuum itself, can 
be observed. 

Suppose we add a positive energy electron to the vacuum. This electron cannot 
make a transition to a negative energy state as all the negative energy states are 
already occupied. The stability of the positive energy electron is thus ensured. 

Though the vacuum is unobservable, it is not inert; it can interact, by virtue of 
its electric charge, with an external electromagnetit; field. Imagine, then, a 
gamma ray of energy hv > 2mc 2 interacting with the vacuum. One of the negative 
energy electrons in the vacuum can absorb the y-ray and jump to a positive energy 
state, leaving a vacancy (a hole) behind [See Fig. lO.3(a)]; the minimum energy 
s~parating a positive energy state from a negative energy state is 
me2

- (-me 2) == 2mc 2
• How does the hole appear to an observer? If Qo and Mo are 

the charge and mass, respectively, of the vacuum without the hol~, and Q and M 
the same with the hole, then, 

E 

+mc2 

o 

_mc 2 

Q = Qo - e > Qo, since e < O. 

M =Mo-(-m)=Mo+m > Mo. 

POSITIVE ENERGY 
STATES 

of. 

NEGATIVE ENERGY 
STATES (Occupied) 

(0) ( b) 
Fig. 10.3. Pair creation and annihilation in the Hole Theory. 
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Thus, the changes in the charge and mass of the vacuum are: 
L\Q = Q - Qo = -e, 

Mf =M -Mo=+m. 

That is, relative to the vacuum, the hole has the same mass as a positive energy 
electron but has a charge that is equal in magnitude but opposite in sign to that of 
the electron. In other words, the hole appears as a positively charged electron, 
which we will denote by the symbol e+ (A normal electron is denoted by e-). In 
addition. we have the electron which is promoted to the positive energy state. 
The whole process, thus, consists in the disappearance of a quantum of electro­
magnetic radiation and the appearance of a pair of oppositely charged electrons 
[Fig. 1O.3(a)]. This phenomenon is called pair creation. 

However, the newly created hole in the vacuum will not last long as an electron 
from the positive energy state will soon fall into it, giving up the excess energy 
(~2mc2) in the form of a quantum of electromagnetic radiation. In the proces::,. 
both the electron and the hole disappear [Fig. 1O.3(b)]. This phenomenon is thllS 
the reverse of pair creation and is known as pair annihilation. 

The hole theory has been beautifully vindicated by the later discovery27 of the 
positively charged electron (named the positron) and the phenomena of pair cre· 
ation and annihilation. The theory has been further supported by experiment;~. 
verification, during the early 1950s, of another of its predictions, namely vaCUUlrl 

polarization. A positive energy electron repels the negative energy electrons (of 
the vacuum) in its neighbourhood. As a result, in the neighbourhood of tbe 
positive energy electron there in as excess of positive charge (Jess of negative 
charge) relative to the normal vacuum; that is, the vacuum is po\ari7ed. Tile 
physical charge e (the charge seen by an observer at a distance .> Nmc) of the 
electron includes this polarization charge in addition to its bare charge eo. But an 

observer, or a charge (as in the case of the protem in a hydrogen atom in the 
S-state), close enough (r sNmc) to the electron sees a charge e', where 
I e I < I e' s I eo I. This effect leads to a lowering in energy of the S-states relative 

to the I ::t. 0 states in the hydrogen atom [Eq. (1O.120a)]. For the ground state, the 
shirt amounts to about 10-2 eV. The shift appears as a correction to the Lamb shift 
which is much larger in magnitude and is in the opposite direction. The observed 
shift for the hydrogen levels is in agreement with the theoretical value for the 
Lamb shift28 corrected for the effect of vacuum polarization. 

The positron is not just another positively charged particle; for, it annihilatcs 
an electron on contact. itself getting annihilated by the electron in the process. It 
is the first (to come to light) of a new kind of particles called antiparticles (posi­
tron being the anticlcctron). It is belicvcd29 that all particles. including bosons and 
electrically neutral ones like the neutron and the neutrino. have their 
ant!particlcs30

• 

27. Anderson, CD. Phys. Rev. 41. 405 (1932), 
28. Lamb shift arises from the self-energy of the electron (that is, energy dl1e to thr interaction of 

dn electron with its own field). 'Ihe calculations are Ol''le within the framc' .. h)rk of quantum field 
theory (specifically, quantum clectro-dynamics). 

29. 'The he! icf was reinforced by the discovclY of the antiproton in 1956. 
3(). Some neutral particlcs arc their own antiparticlcs. Examples: neutral pion, photon. 
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Thus, the hele theory not only solves the problem of the negative energy 
electrons, but also makes several important predictions which are eventually 
verified. Nevertheless, we cannot overlook certain profound implications of the 
theory as far as the relativistic wave equations in general and the Dirac equation 
in particular are concerned. First of all, it constitutes a renouncement of the 
original motivation that led to the rejection of the Klein-Gordon equation and the 
development of the Dirac equation. For, with the hole theory the Dirac equation 
no longer describes a system with a conserved number of particles (relative to the 
vacuum); in fact, it describes particles with different signs of the electric charge. 
It follows that it should be possible to rehabilitate the second order Klein-Gordon 
equation also with a suitable reinterpretation of the wavefunction. Secondly, the 
hole theory introduces an element of inconsistency in the Dirac theory. For, there 
is no way of incorporating into the Dirac equation, viewed as a quantum 
mechanical wave equation, phenomena such as pair creation and annihilation. 
These phenomena could be an integral part of only such a theory that does not 
have particle-number conservation (and, therefore, a positive-definite position 
probability density) as one of its basic features. Such a theory, namely the 
quantum field theory, was developed in later years. It would not be out of place 
to regard the hole theory as the harbinger of the quantum field theory. 

10.2B. The Weyl Equations 

As already stated, the wave equations (lO.17a, b), derived for zero-mass particles, 
are known as the Weyl equations. The theory ba<;ed on these wave equations is 
usually referred to as the two-component theory of the neutrino3l

• This name 

distinguishes it from another possible theory of the zero-mass spin ~ particles, 

namely a 4-component theory based on the Dirac equation with m = O. The basic 
difference between the two theories is that, whereas the Dirac theory is invariant 
under the parity operation (as we have already seen) the two-component theory is 
not. This foHows from the expression (j = c(o· p) for the Hamiltonian of the 
two-component theory and Eqs. (6.13b, c), For this reason, the Weyl equations, 
rather than the Dirac equation, were recognised as the correct equations of the 
neutrino only after the discovery in 1956 of the nonconservation of parity in weak 
interactions (where neutrinos are often involved). The revival of the Weyl theory 
is due to Landau, Lee and Yang and Salam32. 

By a procedure similar to the one followed in the case of the Dirac equation, it 

can be established that the particles described by Eqs. (IO.17a, b) have spin ~ and 

that the operator corresponding to spin is s = (N2)cr. Thus, the eigenvalues of the 
operator, 

31. Neutrino is the name given by Fenni to the massless, chargeless, spin ~particles whose existence 

"'as postulated in 1931 by Pauli in order to account for the 'missing' enC!rgy and angular 
momentum in beta decay. Neutrinos were detected experimentally in 1956. 

32. Landau, L.D. Nuclear Physics, 3,127 (1957); 
Lee, T.D. and Yang, C.N. Phys. Rev. lOS, 1671 (1957); 
Sal.un, A. Nu.ovo Cimenlo, 5, 299 (1957). 
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(10.144) 

are proportional to the component of the spin along the direction of motion of the ' 
particle. Denoting the eigenvalue of h by h, we have, h = ±l. h is referred to as 
the helicity operator while h is the helicity of the particle. A particle with helicity 
+ 1 (spin parallel to p) is called right-handed whereas one with h = -1 is called 
left-handed. These names arise from the resemblance of a graphical representa­
tion of the relationship between spin and momentum of the particle to a screw of 
the appropriate handedness (Fig. lOA). Eqs. (10. 17a) and (1O.17b) thus represent 

spin ~ zero-mass particles of helicity +1 and -1 respectively.33 

E =C)pl E= -ciPI E = clpl 

p 

(0) (b) 
Fig. 10.4. Graphical representation of: 

(a) a positive-energy (left-handed) neutrino. 
(b) a negative-energy (right-handed) neutrino. 
(c) an antincutrino. 

I 

P 

(c) 

Now, Eqs. (1O.17a, b) were obtained on the assumption that the energy is 
always positive. On this basis, we will have two types of neutrinos: a right­
handed one described by Eq. (1O.17a) and a lefthanded one described by Eq. 
(1O.17b), both of positive energy. However, the logic of the Dirac theory of the 
electron with its hole theory interpretation rt:',quircs the existence of an antiparticle 
for every particle. In other words, negative energies should be allowed for the 
neutrinos. But if negative energy is permitted, both the positive and the negative 
square roots ofEq. (10.15) are taken care of by either of Eqs. (10.13). If we adopt 
(10.131

) as the Hamiltonian of the neutrino, then the positive energy neutrino 
would be right-handed and the negative energy neutrino (and, hence, the anti­
neutrino34

) left-handed, whereas with (10.132
) as the Hamiltonian we would have 

33. Note that helicity is a relativistically invariant quantity only for a zero-mass particle. Since a 
particle with nonzero mass moves with a velocity < c. it is possible to find two Lorentz frames 
in which the helicity has opposite signs. 

34. An antinueutrino of momentum p'. energy E = c i p' I and helicity + I is the absence of a nega­
tive energy neutrino (in the negative energy sea) of energy E = -c 1 P I. momentum p = -p' and 
helicity + J (see Fig. lOA). 
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a len-handed neutrino and a right-handed antineutrino. The experimental situa­
tion (when coupled with certain conservation laws) is that there are three (poss;o!y 
more) types of neutrinos. the electronic. the muonic and the tauonic. but in all 
cases the neutrino is left-handed and the antineutrino right-handed. It follows that 
Eq. (lO.l7b). without the restriction to negative helicity. is the correct equation of 
the neutrinos. The two components of 'If correspond to the two energy states of 
the neutrino. but for a given sign of the energy there is only one spin state. The 
noninvariance of the two-component theory under space inversion is related to 
this absence of the other spin state. For, under space inversion a left-handed 
neutrino is transformed into a right handed neutrino. but no such neutrinos exist 
in nature. However, the theory is invariant under the combined operation of space 
inversion P and charge conjugation t (which is the replacement of particles by 
antiparticles) since right-handed antineutrinos exist. 

Connection with Dirac Equation 

It is seen from the foregoing that the states of the neutrino are the states of a 

zero-mass spin ~ particle with definite helicity. Therefore, it should be possible to 

·)btain the neutrino states from the Dirae 4-component theory corresponding to 
m ::= 0 by projecting out states of the appropriate helicity. From Eqs. (10.43) and 
(10.44), we see that the four linearly independent spinors which are the solutions 
of the Dirac equation with m = 0, are given by (where, the momentum is taken to 
be along the x3-axis and where the normalising factor is neglected), 

dl) U(2) U(3) U(4) 

l!J UJ m m (1O.l45) 

E=c Ipl clp\ -c I p I -c I p I 
h=+1 -1 + 1 -1 (From Eq. (10.45» 

15= -1 + 1 + 1 -1 

Below the spinors, we have listed the corresponding energy, helicity and the 
eigenvalue of the matrix 15 [defined by (10.143)]. We see that U(2) and U(3) which 

satisfy the relationship, 
1~u(r) =+u(r), (lO.146a) 

have the properties required of the neutrino states, namely negative helicity when 
E > 0 and positive helicity when E < O. The relationship between h and the 
,'!'cnvulues of Y5 given in (10.145) is a general one. This follows from the Dirac 

H:I'niltonian for zero-mass particles, namely [see Eqs. (10.21 2
). (10.26) and 

(1(\ 143)]. 

JI D = c(a., p) = -cYicP . p) = -c I p I 15~. (10.147) 
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Therefore, if 'V(x) is an arbitrary solution of the zero-mass Dirac equation 
Yill' 'V(x) == 0, then the function, 

1 
'Vv(x) = 2Y +Y5)'V(X), (1O.146b) 

will correspond to the neutrino states. In the representation (10.30) and (10.143), 
'Vv is a 4-component wavefunction even though there are only two states satisfying 

(l0.146b). 'Vv can be reduced to an essentially two-component wave function by 

choosing a representati~n in W(~Ch 0), (0 i
l 

Y5 = Y4 = lo -/' Y4 = -Y5 = V OJ' 

, (0 Y =Y= . zo 
(10.148) 

where Y is the vector whose components are Y1' Y2 and Y3. That the representation 
(1O.l48) indeed corresponds to the Weyl theory can be seen from the following: 

Fqs. (10.17a, b) could be combined into the single equation, 
i1i o,'f' =i1w'f', (10.149) 

with 

and 

0) A. (A) . p=l C Ys y. P 
-a 

Comparing H w with (10.147) which can be written as, 

H D = icyiy· p), 

(10.150) 

(1 O.l 47') 

we see that, Y5 in the Weyl theory plays the role ofY4 in the Dirac theory. That is, 

(Y5)weyl == ys' = (Y4)Dirac 

Then, from 

we get, 

10.3 THE SECOND ORDER WAVE EQUATIONS 

An off-shoot of the hole theory interpretation of the Dirac equation is the sug­
gestion that the second order Klein-Gordon Equation (10.62

) also might be 
brought under relativistic quantum mechanics by a proper reinterpretation of the 
wavefunction. In this section, we will briefly discuss the nature of this reintcr-
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pretation and some of the conclusions following therefrom35
• We will also obllin 

the second-order wave equation corresponding to zero-mass particles. 

A. The Klein-Gordon Equation 

The major reason for rejecting the Klein-Gordon equation as a quantum 
mechanical wave equation was the possibility of negative value for p defined by 
Eq. (1O.11a). We overcome this difficulty by multiplying the right sides of Eqs. 
(10.11) and (10.11a) by e (where -e = charge of the electron), and interpreting j 
and p as the electric current density and the charge density, respectively. 

j = (e1il2mi)(<I>'V<I> - <I>V<I>\ (10.l51) 

p = (ie1il2mc 2)(<I> 'a,<I> - <I>a,<I>"). 

Eq. (10.62
) admits plane wave solutions of the type 

<I>(r,t) ==A cxp [(i/1i) (p. r-Et)], 

with E ==± E p' 

where 

E p= "./p2e 2 + m2e4
• 

Substituting (10.153) in (10.152), we get, 

or 

p == eE 1 <I> 12, 

me 2 

p+ ==e(Epfmc 2
) 1 <I>+ 12; 

p_ == -e(E p fmc 2
) 1 <I>_ f . 

(10.152) 

(10.153) 

(1.154) 

00.155) 

(lO.155a) 

We interpret this result to mean that the state <1>+ with E =+E p corresponds to 

particles with charge +e while <I> _ with E == - E p represents particles with charge 

-e. Also, from (10.152), we see that p = 0 when <I> is real. Therefore, the Klein­
Gordon equation with a real wavefunction represents neutral particles. Moreover, 
since ( -~) is a Lorentz-invariant, Eq. (10.62

) would be covariant under Lorentz 
transformations if <I>(x) is either a scalar or a pseudo scalar. Now, a scalar or a 
pseudo scalar wavefunction represents a spin-zero particle. Thus, (10.62

) is the 
wave equation of spin-zero particles, both charged and neutral. Pions and kaons 
which are spin-zero mesons36 with charges +e, 0 and -e, could be identified with 

35. A more detailed discussion of the Klein-Gordon equation from the viewpoint of relativistic 
quantum mechanics can be found in Ref. 3, Sections 54-59. Also, see Ref. 4, Chapter 3, for a 
different approach to the problem. The particles described by the K-G equation are strong­
interacting mesons. Their interaction with other particles involves creation and annihilation of 
particles and as such, is best treated within the framework of a quantum field theory. The 
discussion here is confined to the free-particle case. 

36. Mesons are bosons with a mass intermediate between the electron and the nucleon. Pions (de­
noted by Tt' and rf ) have a mass of about 300 electron masses while kaons (K±, KO and "K') are 
more than three times heavier than the pions. 
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the Klein-Gordon particles. It is found that both pions and kaons have negative 
intrinsic parities so that <lJ(x) in (10.62

) is a pseudo scalar. 

According to the above interpretation, charge +e corresponds to the particle 
and charge -e to the antiparticle. Unlike in the case of the Dirac theory, the 
antiparticle need not be viewed as a hole in a negative energy sea but could be 
regarded as a positive energy particle with charge-e [see Eqs. (10.1521

), (10.162) 
and (1O.165b) below]. An important consequence of this is that production (or 
destruction) of the pions need not be in particle-antiparticle pairs. 

The foregoing treatment is somewhat oversimplified. For, solutions corre­
sponding to either positive energy or negative energy alone do not form a Hilbert 
space (with the normal definition of the scalar product) except in the 
nonrelativistic limit. Therefore, a general solution of the Klein-Gordon equation 
would be a linear combination of <lJ+ and <1>_. Alternatively, we can write the 

wavefunction as 

(10.156) 

where, 'VI ~ 0, in the non-relativistic limit, for negative energy while 'V2 ~ 0 for 

positive energy. We have37
, 

'VI =!(<lJ+~O,<lJ) =!(1 +~)<lJ, 
2 me z 2 me z (1O.157a) 

1 ( iii ) 1 ( E) 'V =- <1>--0 <lJ =- 1-- <1> 
Z 2 mez , 2 mez ' (l0.157b) 

Then, 

(10.158) 

= ~l me 2
('Vt - 'Vz} - ::z(eZ

V'3 - m:~4}'V1 + 'Vz} J by Eq. 00.6
2
). 

That is, 

Similarly, 

'-l;") _.!!:.. '\72( i _ 2,,, 
I flO,'VZ - 2m v 'VI + 'V2/ me '1'2 

Introducing the matrices, 

37, Note that. by virtue of the second order character of the Klein-Gordon equation, <1> and il,<1> arc 

lincdfly independent. 
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11 =(~ ~J 12=(~ -~J 13=(~ -~). (10.160) 

Eq. (10.1591
) can be written as, 

ifld,\'{' = H KG\'{" 

with 

, '.' p2 2' 
H KG = (13 +l1-J

2m 
+mc '(3' (10.161) 

(10.1592
) is the Hamiltonian form of the Klein-Gordon equation. Multiplying this 

equation by (ina, + II KG) its equivalence to (1 O.6~ is easily established. 

The matrices (10.160) are seen to be identical with the Pauli spin matrices 
(5.34) and, therefore, obey the same algebra as the latter. However, the space in 
which these matrices arc defined is the charge or isospin space (and not the 
angular momentum space of the at's). Therefore, the two discrete degrees of 

freedom38 implied by the components of \'{' are the two charge states of a Klein­
Gordon particle with a complex wavefunction. 

In terms of\'{', we have from (10.152), (10.158), (10.156), and (10.160), 

p = e('V;'V1 - 'V;'V-J = e'¥t.t3'¥' (1O.l521
) 

The :quation of continuity (10.92
) ensures that the total charge J pd3r is a constant. 

hI the case of a single particle, the total charge should be ±e. Correspondingly, 
we:- have, 

(10.162) 

Eq. (10.162) amounts to a modification of the standard definition [Eq. (2.33)] of 
the scalar product: the scalar product of two vectors \'{' and <1> is (\'{',13<1», so that 

the norm of \'{' is given by 

11\'{'11 2 =(\'{',1:3'¥)· (1O.163a) 

Similarly, the expectation value of an operator A is given by 

(A) = C\'{', i)'¥). (10.1 63b) 

Whereas the standard definition leads to positive normalization of vectors and real 
expectation values for Hennitian operators, the modified definition permits neg­
alive normalization for vectors and imaginary expectation values for Hennitian 
operators. In fact, the expectation value of a Hennitian operator would be real or 
ir'lagina,y depending on whether the operator commutes or anticomm ut.s with 1:3, 

It is, he, wever, possible (as well as desirable) to modify the definition of the 
'I,' mitian operator also so that its expectation value as defined by (lO.l63b) is 
"~ways real. Thus, A is Hennitian if 

----,--------
c, '~, Whenever a system has degrees of freedom other than those c<'llnected with spatial co-ordin~tes. 

;1 s ,lavcf unction can be written as a column matrix with two or more elements. Conver>dy, a 
\\ ~ve,'uncti"n in the form of a column matrix implies the existence of degrees of freedor.l COl1-

meted with d.screte variables. 
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That is, if 

(10.164) 

We note that the Hamiltonian (10.161) is Hermitian according to this new defi­
nition, but not Hermitian according to the standard definition (For an operator that 
commutes with~, the new and the old definitions are the same). 

The above results indicate that certain concepts of nonrelativistic quantum 
mechanics have to be modified before they can make sense in relativistic quantum 
mechanics. For example, one of the basic concepts of non-relativistic quantum 
mechanics is that the results of possible measurements on a system are the 
eigenvalues of certain Hermitian operators (postulate 1, Chapter 3). In particular, 
the eigenvalues of the Hamiltonian represent the measurable energies of the sys­
tem. Diagonalising the matrix, 

2 

HKG = ('t3 + i't.J im + mc
2
't3 

[( 
p2 ) p2 J -+mcZ 

-
2m 2m 

- _pZ (p2 ) 
2m - 2m +mc

2 

we see that the eigvenvalues of the Hamiltonian H KG are 

E). = A E W A = + or -. (1O.155a) 

But the negative eigenvalue E_ cannot represent a measurable energy of the 

Klein-Gordon particle. On the other hand, according to Eq. (1O.163b) the ml::l­
surable energies arc given by 

E == ('i\, 13H KG\{'J = E).('I\,13\{'J = AE). == Ep> O. (10.1 65b) 

Here, the equation H KG\{'), = E).\{'" and the fact (see Problem 1O.l4 below) that 

(\{')., 13 \{' J == A, have been used. The modified scalar product is responsible for thc 

sensible wmlt (lO.165b). Thc positive definiteness of < Ii KG> also follows quitc 

generally from the expression, 

f 'Pti/l KG 'Pd
3
r = f{ ("'; + "';J i~ ("'I + "'z) + mc

2
("';"'1 + "';"'2)} d3

r. (10.165c) 

It is interesting to note that whereas in the Klein-Gordon theory the energy is 
positive definite and the norm (of vectors) is not positive definite, the reverse 
conditions obtain in the Dirac theory. 

There is a certain similarity between (10.161) and the Dirac Hamiltoni~lO 
(10.21 2

) with T3 taking the place of~. It follows that it should be possible to find 
a representation. analogous to the Foldy-Wouthuysen representation of the Dirac 
thcory, in which the positive and the negative charge states arc separated. In this 
ncw r~presentaLion, known as the Feshbach-Villars representation39

, the HJmil­
t,lllian would be given by [ef. Eq. (1O.8i)], 

39. j'c,hbach, II. and Villars, F. Revs. Mod. Phys. 30, 24 (1958). 
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, "'I' 
H'KG==UHKGU- ='t3Ep' (1O.1f.6) 

By a procedure similar to that adopted in the case of the Dirac equation, it ca'l be 
shown that 

, (1+il)+(E p +me2) 
U= l/2 

2(me 2 
Ep) 

(10.167) 

o satisfies the relationship, a '=' t30+:3 = 0-1
, and is hence unitary according 10 the 

modified definition of a unitary operator. 

Problem 10.14: Assuming '¥ to be of the form, 

'¥= Jv(~:}XP[(illi)(p.r-Et)], 
show that the normalizations +1 and -1 in (10.162) correspond to E =; + c p and 

E = - E p respectively (Here, V is the volume in which the system is Sl:pptl ,,:<1 : () 

be enclosed). 

Problem 10.15: Deduce (10.167). 

B. Wave Equation of the Photon 

Just as 10 the case of the Dirac equation, setting the mass m == 0 in the Klci '1-

Gordon equation (10.62
) does not lead to the wave equation of the zero-Ir.:lSS 

bosons. Certain further constraints have to be imposed. In fact, the zero-:nass 
equation is given by 

A/x) = 0, (11::: 1,2,3,4), (10.1118) 

with the constraint, 
(10.169) 

where AIL are the components of a 4-vector. Eq. (10.168) is, however, not a 

quantum mechanical wave equation but is (when combined with (10,169» the 
classical wave equation of the free electromagnetic field. That is, Eqs. (10.168) 
and (10.169) are equivalent to Maxwell's equations in free space. This equiva­
lence is seen as follows: 

Maxwell's equations, in terms of the electric field E and the magnetic induc­
tion B arc given by 

div B =0, 

curl E + (lie )d,B ::: 0, 

curl B - (lie )d,E::: (47t1e )j, 

div E =4rrp. 

(lO.170a) 

(lO.170b) 

(1O.17Oc) 

(J 0.17Od) 

') he vector potential A and the scalar potential V are defined, ir, '-,iew of Eqs 
,W.170a, b), by 
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B = curl A, E = - grad V - (1/e )d,A. (10.171) 

Substituting (10.171) in (1O.17Oc, d) and making use of the identity, curlcarl == 

grad div _V2, we get, 

(10.172) 

where, A4 = i V; j4 = ic p. (10.173) 

Eq. (10.168) results from imposing the subsidiary condition (10.169) and by set­
ting jl' == 0 (free space). 

In terms of the AI" the components of the fields (10.171) are given by 

Fjj = Ejjl B1 ; F14 =-iE1 , (10.174) 

where, (10.175) 

and is known as the electromagnetic field strength tensor. 
Eq. (10.169), referred to as the Lorentz condition, amounts to a particular 

choice of the four-potential. And such a choice is permitted by the fact that only 
.he fjelds, and not the potentials, are observables so that any two potentials related 
by the transformation, 

AI' -tA'1' = AI' +dI'A, (10.176) 

(where A is a scalar function) which leaves the fields (10.175) invariant, are 
,JhysicaUy equivalent. Eq. (10.176) defines a gauge transformation while a 
potential satisfying Eq. (10.169) is a Lorentz gauge. Different Lorentz gauges can 
be obtained by choosing different A's that satisfy A = O. 

The constraint (10.169) as well as the imaginary nature of A4 (since V is real) 

introduce certain problems for the quantum theory of the electromagnetic field. In 
order to avoid these difficulties the radiation (or Coulomb) gauge defined by 

div A = 0, A4 = 0, (1O.169a) 

has been used. But in this gauge, Eq. (10.168) becomes, 
A = 0, (10.16&a) 

which is not Lorentz covariant as A is a 3-vector. The problems associated with 
the Lorentz gauge have, however, been successfully solved by Gupta40 and 
Bleuler41

• So we will base our discussion of the electromagnetic field on Eqs. 
(10.168) and (10.169). 

Eventhough (10.168) is a classical field equation, its similarity to the qlJantum 
mechanical Klein-Gordon equation (10.62

) suggests that it could be viewed as the 
wave equation (with Af'(x) as the wavefunctions) of certain zero-mass particles 

(thc photons) that we can associate with the electromagnetic field. Conversely 
(and more fruitfully), the Klein-Gordon equation, and therefore any quantum 
mechanical wave equation, could be regarded as a classical field equation. The 

40. Gupta, '>.N. Pru,,', rhys, Soc, A63. 681 (1950). 
41. Blculcr, K. He/v, Ph);, ,A,ta, 23, 567 (1950). 
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~cdmique of field quantization Jcvelopcd for quantizing the electromagnetic lielr} 
could then be applied to these quantum mechanical wave equations. We will see 
in the next Chapter that such a procedure gets rid of many of the difficulties and 
inconsistencies that are encountered in treating the relativistic wave equations as 
the quantized equations of motion of point particles. 

A quantum mechanical treatment of Eq. 00.168) is not particularly useful. 
Therefore, we will postpone to the next chapter a discussion of the equation from 
the view point of quantum theory. 

Besides the wave equations discussed in this Chapter, there are also uther rel­
ativistic wave equations both of the first and the second orders42

• These corre­
spond to massive (that is, non-zero mass) particles of spin 2: 1. A discussion of 
these is beyond the scope of this book. 

10.4 CHARGE CONJUGATION 

Charge conjugation is a symmetry operation in which particles are transformed 
into antiparticles and vice-versa. Obviously, then, the electric charge changes 
sign under charge conjugation. But also other properties like magnetic moment 
and helicity (in the case of neutrinos) also will change sign under this transfor­
mation. Therefore, electrical neutriality alone will not ensure that a particle is its 
own antiparticle. If a particle is its own antiparticle it is called truly neutral. 
Neutrinos are examples of particles which are not truly neutral though electrically 
neutral whereas neutral pions and photons arc examples of truly neutral particles. 
The wave function of a truly neutral particle must be an eigenstate of the Charge 
Conjugation operator C. That is, if\jf is the wave function of such a particle, th,:n 

\jfc '= C\jf '= c\jf :::: ± \jf. (lO.ln) 

The last part of this equation follows from the fact that a two-fold application of 
C should be equivalent to the identity operation, so that c 2 = 1. c is known as the 
charge parity of the particle. Thus neutral particles with c = + 1 have positive 
charge parity whereas those with c = -1 have negative charge parity. 

The charge parity of a particle can be determined by observing its interaction 
with other particles of known charge parity. For example, i.he charge parity of 
photons is known to be negative. The observation that a neutral pion decays into 
two photons, then, suggests that the charge parity of the pion is positive43

• 

In this section, we will determine the charge conjugation operator C corre­

sponding to each of the particles (wave equations) discussed in this chapter. 

The Dirac Equation 

We will start with the covariant form, Eq. (10.25\ of the Dirac equation. In terms 

uf !he momentum p)! = -itzd}!, the equation (in coordinate representation) reads, 

42. Sec, Lurie, D. Particles and Fields (!ntersciencc. 1968) Chapter 1. 
43 Charge ParitY,like (space-inversion) panty, is a multiplicative quantum number. 
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(Y~I' - imc) \jI(X) = o. (10.178) 

Since the electric charge is explicitly involved in charge conjugation, we have to 
consider the equation in the presence of an electromagnetic field. Th~ latter can 
be represented by the 4-potential AI' (see Section 1O.3B). The effect of the field 

on the Dirac particle is then to change its momentum from Pl'to [PI' - (ele )AJ. 

Thus, the Dirac particle in an electromagnetic field is represented by the equation, 

[YI'{PI'-(ele)AJ -- imc]\jI(x) =0. (10.179) 

The charge conjugation state \jIc must, then, satisfy the equation, 

[YI'{pl'+(ele)AI'}- imc]\jIc(x) =0. 

We have to find the operator that transforms \jI to \jIc: 

Taking the complex conjugate of Eq. (10.179), we have, 

fy:{p;-(elc)A;} + imcJ'l'*cx) =0. 

But 

p;=-p", (k=1,2,3); P;=P4' 

A; = p", (k = 1,2,3); A; = -A4' 

Substituting from (10.182) and (10.183) in (10.181 1
) and defining, 

\jI" =cl1 \jI c' 

we get, 

[y' . {jH- (elc )A} - y:{p 4 + (elc )A4} - imc JB\jIc = 0, 

where y is defined by Eq. (1O.l48). 

Multiplying Eq. (10.181 2
) from the left by B 1, we have44

, 

[y" . if> + (ele )A} - Y; {P4 + (elc)A4} - ime l\j1c = 0, 

where 
",,,,, ... -1 "' • ... 
"(I' =8 "(1'8. 

Eq. (10.185) will agree with Eq. (10.180) if 
"-I"'''' '" '" '" --1""''' '" 

B "(,, B = "(,,, and B "(4 B = -"(4. 

But if we use the representation (1O.30a, e) for the YI"s, then, 

Y> -YI" (Il = 1,3); Y> YI" (Il = 2,4), 

so that Eq. (1O.18i) implies, 

/Jyl' = -yi, (Il = 1,3,4); BY2 = Y~· 

(10.180) 

(10.181 1
) 

(10.182) 

(10.183) 

(10.185) 

(1O.1S6) 

(lo.ISi) 

That is, B is an operator that eommutes with Y2 but anticommutes with the other 

YI"s. It is obvious that B should be proportional to Y2> and there is no loss of 

generality in identifying B with Y2 Then from (10.1841
), we have, 

(1O.1R :', 

44. Note that B, being Independent of the splice-time co-ordinates, should commute wilh jI and". 
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where Kc is !,he complex conjugation operator. Thus, the charge conjugation 

operator C is given by 
(10.188) 

C, like the time-reversal operator 'T(Eq. 10.1382
), is an antiunitary operator. 

From Eqs. (10.1872
) and (lO.188), we have, 

'-1"' {:Y~, (Jl = 1,2,5), 
C y,C= 

)J. -Yfl' (Jl == 3,4), 

where Ys is defined by Eq. (10.143). 

(10.18i) 

If 'V represents electrons, 'Vc will represent positrons. If we write 'V = ~). then, 

from (10.1842
) and (1O.30c), we have, 

V, ~ [-:::") 

In the non-relativistic case, we have [see Eqs. (10.67) and (1O.68)J, 

ljf --) ¢; 'Vc --) i<J2'V' = 'T<j>, 

(10.189) 

(10.189a) 

WhCl:O 'I is the time-reversal operator [Eq. (lO.138(1»]. That is, the positron could 

he viewed as an electron going backward in time4S (see Fig. 11.3). Such a view­
pei'lt will be valid even in the relativistic case where the positive and negati"e 
en'~rgy states are separated fFoldy-Wouthuysen representation: see Eqs. (10.95a, 
bi I. 

Klein-Gordon Equation 

The electric charge of the Klein-Gordon particle is positive or negative according 

as the integral J ljftr:,ljfd3r is positive or negative [Eq. (10.162)]. Writing 

~ ('V1O\ 'I' = (1/V)2 '1'20) exp [Ci/1i)(p , r - Et)], (10.190) 

the condition is 

'V;0'l'1O - 'V~'I'20 = ±1. (10.1911) 

t ,,.;[e V is the volume in which the system is enclosed. But, according to Eq. 
(10.155a), the sign of the electric charge depends on the sign of the energy. 
Ti..:rcfore, whieh of the two conditions in Eq. (10.191 1

) is realized should depend 
on whether the E in Eq. (10.190) is positive or negative. In fact, we will show 
below that the +1 (positive charge) in Eq. (10.191 1

) corresponds toE >Oand the 
-1 (negative charge) to E < O. 

From Eqs. (10.156) and (10.190), we have, 

4::', 'Ihe concept of the positron as an electron going backward in time was introduced by Fcynman 
(F"Anole 16, Chapter 11), 
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1 

"'1 = (11V)\v1O exp [(i/1i) (p. r - E1)], 

1 

"'2 = (l1V)\v20 exp [(i/M (p . r - E1 )]. (lO.19L) 

Substituting from (10.192) in (10.1591), we get, 

(E - me 2)"'10 = (p212 m ) ("'10 + "'20)' (1O.193a) 

(E + me
2
)"'20 = _(p2/2 m ) (\!flO + "'20)' (lO.193b) 

or 

"'10 me 2 + E 

"'20 me 2 
- E . 

(10.194) 

Case 1: E =Ep>O. 

\
"'10\ me2+Ep 
- = 2 > 1, 
"'20 I me - Ep I 

(1O.194a) 

which means that in Eq. (10.191 1
) the upper sign has to be chosen. Then from Eq. 

(1 0.194a) we obtain, 

Case 2: E = -Ep < O. 

In this case 

(1O.195a) 

(10.193b) 

1"'101 Ime 2
- Ep l 

-I -I = 2 < 1, (1O.194b) 
"'20 me + Ep 

so that we have to choose the lower sign in eq. (10.1911). Then, in place of 
(10.195a, b) we get, 

"'10 = M ; "'20 = Qo' (10.196) 

Thus, we see from Eqs. (10.190), (10.1911), (1O.195a, b) and (10.196), that if 
[cf. Eq. (10.156)] 

'" = ~) (10.190a) 

represents a positive charge state of the Klein-Gordon particle, then 

"'c == (~:J (1O.190h) 

represents the negative charge state of the particle, where, 
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Ij> = (l/V)2Ij>O exp [(i/1i) (p. r) - E p t)], (1O.l97a) 

x = (l/V)2 Xo exp [(i/1i)(p . r) - E p t)], (l0.l97b) 

and 

with 

~O = (~). (10.198) 

Hence the charge conjugation operator C, defined by ~c = C~, is given by 

c=iic' (1O.l99) 

[Note that K c will change p to -p (see Eq. (B.19a))). 

It is seen from (1O.190a, b) that 
(10.200) 

so that ~ and ~c are orthogonal to each other (in the 't-space) according to the 
modified definition (1O.163a) of the scalar product. But. f'Or a neutral Klein­
Gurdon particle, we have, 

(10.201) 

"I'hat is, the neutral particle is represented by a null vector in the 't-space. Henc~ 
.he state of a neutral Klein-Gordon particle is invariant under charge conjugatj0n, 
.vhich implies that a neutral pion is its own antiparticle (truly neutral). 

Problem 10.15: If <1>+. <1>_ and <1>0 are the wave functions of the Klein-Gordon 

particle [Eq. (10.155)1 with charge +e, -e and 0 respectively, show that <1>_ '" <1>: 

and ¢o= ¢~. 

The Zero-Mass Particles 

Eqs (lO.17Oc, d) and (10.171) show thalA~ changes sign under charge conjuga­

t!un (which changes the sign of the electric charge and current): 
C A ==-A 

~ ~ 
(10.202) 

Thus, A~ represents truly neutral particles (photons) with negative charge parity. 

Using the Dirac representation (10.146h) for the neutrino wave function, we 
T.: lhat the operation of charge conjugation alone [represented by (10.188») docs 
Ill)i ;l.,~\d to a state of the antineutrino. However, a combined operation of space 
im.'rsioll [Parity operation, represented by (1O.l37) J and charge conjugation will 

Llllsform tk state of a neutrino into a state of the antincutrino: 
(10.203) 
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CHAPTER 11 

ELEMENTS OF FIELD 
QUANTIZATION 

11.1 INTRODUCTION 

We have remarked in the last chapter that the relativistic wave equations could 
be viewed as classical field equations and that the quantization of these field 
equations might lead to a correct relativistic quantum theory of the underlying 
particles. In this Chapter. we propose to discuss some of the concepts and meth­
mi,; underlying the quantization of fields. The treatment would be somewhat 
sketchy. In fact. our attempt in this regard could be likened to that of a traveller 
who having traversed a continent. crossing several rivers and mountains in the 
rnKcss, has finally come to the shore of a vast and deep ocean. Being ill­
CLluipped as well as too tired to continue the travel into the sea, he contents himself 
with having a view of the ocean from the shore. It is hoped that an account of this 
'view from the shore' will inspire the more adventurous among the readers to 
undertake an exploration into this vast ocean that is quantum field theory. 

11.2 LAGRANGIAN FIELD THEORY 

What we are going to describe in this chapter comes under Lagrangian (or 
Canonical) field theory as distinguished from axiomatic field theoryl. As the 
name implies, the Lagrangian field theory is based on the Lagrangian­
Hamiltonian canonical formulation of classical mechanics. The main steps in this 
formulation are the following2. 

CMl. Choose a set of generalized coordinates {q,} for the system. 

Cl'v!2. Set up a Lagrangian function3
, 

L ==L(q,q,l). (1l.1) 

L For an account of the axiomatic field theory, see Roman, P. Introduction to Quanlwn Field 
Theory (JONl Wiley, :--;cw York 1969), Part lI. 

2. Sec, for c)(arnplc, l.anJau anJ Lifshitz, Mechanics (pergamon Press 1969), Chapters 1 anJ VII. 
3, For a free system, L would be independent of I. 
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dqi 
where q, = at' are the generalized velocities and t denotes the time. Also, q 

stands for the set {qJ. 

CM3. The action integral S21 betwccn times (1 and tz is defined by 

1
'2 

S21 = L(q, q, t)dt. 
'\ 

(11.2) 

The condition that the change 0821 == 0 corresponding to a variation Sqi in qi sub­

ject to the constraint Sq,(t1) = 8qi(t;) == 0, then leads to the Euler-Lagrange equa­

tions, 

CM4. Define a Hamiltonian function/{ by 

II == ll(q, p, t) == L,Piqi - L, 

'Nhere P, is the momentum conjugate to the co-ordinate qi' and is given by 

dL 
Pi==aqi' 

Tnen from Eq. (11.3), it follows that 

(11.3) 

(11.4) 

( 11.5) 

. aL 
Pi = aqi . (11.6) 

Substitute for L in (11.2) from (11.4). Again setting 0821 = 0 corresponding to 

independent variations Sqi and 8Pi in qi respectively, one obtains Hamiltun's 

canonical equations, 

(11.7) 

From this, the equation of motion for a general dynamical variable F == F(q, p, t) 

is easily deduced: 

(11.8) 

where, (11.9) 

and is known as the Poisson bracket of F and II. 

Canonical Quantization 

In the foregoing, the number of generalized co-ordinates is equal to the number of 
indep~ndent degrees of freedom of the system. For a mechanical system of par­
ticles, this number is finite. The quantization of such a system is done by the 
following procedure (described already in Section 3.1): 
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CQ J. Replace all dynamical variables by corresponding Hennitian operators in 
accordance with Postulate IV of Section 3.1. 

CQ2. Replace the Poisson bracket in (11.8) by the commutator bracket 
IF, III '= F 1/ - II F upon i1i. 

CQ3. Prescribe algebraic relations for the basic canonical operators qi and Pi' 
For a mechanical system, the algebraic relations for the co-ordinates and 

momenta arc the Heisenberg commutation rules, (3.12a, b) that follow4 directly 
from prescription CQ2. However, these relations could be different for a field. 

Coordinates of the Field 

Now, the basic difference between a mechanical system and a field is that the 
latter has infinite number of degrees of freedom. A field is specified by its 
amplitudes at all points of space. Moreover, the amplitudes at different space 
points are independent of each other. Thus, the amplitudes 'V(r, t) play the same 

role in the case of a field as the generalized co-ordinates qJt) in the case of a 

mechanical system. Obviously then, since there are infinite number of space 
points, the number of degrees of freedom represented by ",(r, t) is infinite. 

The Classical Field Equations 

Except for some modifications entailed by the fact that the coordinates of the fidd 
are themselves functions of the space coordinates, the procedure outlined above 
f~r the case of mechanical systems can be adopted both for obtaining the classical 
field equations and for their quantization. The dependence of", on r which is a 
continuous variable, necessitates two types of modifications. One is the necessity 
to introduce a Lagrangian density L. The Lagrangian L of the field would be an 
integral of L over space. The other is that the Lagrangian density would have to 
be a function not only of 'V, \jF and t but also of grad ",. Thus, 

L-== L('V, grad "', \jF,t), (11.10) 

(11.11) 

and (11.12) 

Here V denotes the normalization volume. The change 0521 con'esponding to an 

infinitesimal variation 00/ in 0/, with oo/(r, 'I) = oo/Cr, t~ = 0, is given by 

4. From (II. 9), the Poisson brackets for q, and Pi are deduced to be, 

[q"P)PB = a,j' [qi,q)PB = [pi,P)PB = O. 
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. dL dL ~ 
Now, ° L(\jf , grad \\I, \jf, t) = -=I o\jf +~( d-)' ,,)( grad \jf) 

. o\jf a . gra . \jI 

dL aL dL a 
= a\j! O\jl + a( grad \jI)' grad (o\jl) + (hjr at (o\jl). 

Substituting (11.14) in (11.131
) and making use of the results, 
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2L . 
+a%\jl 

(11.14) 

ia( g~~ \jI)' grad (o\jl)d
3
r = x';,. J J{J a( g!~ \jI)x~ (O\jl)' dx}dYdZ 

= x';" {J J( de g!~ \jI)x . O\jl) dydz - i a: a( g!~ \jI)" O\jld
3r} 

= - i div d( g;~ \jf) (o\jl)d
3
r, (11.15) 

(where the surface integral vanishes because \jI either vanishes at infinity or 
s:.l!;sfies periodic boundary conditions), and 

'2 i'2 a (dL) '2 oL d oL - - -. o\jldt 
( -. - (O\jl) dt =-. O\jll 'I at d\jl 

J" O\jl at O\jl 
'I 

(ILlo) 

we get, 

According to Hamilton's principle oflcast (or, stationary) action, this 05'21 shot>!d 

be zero and that requires, since o\jl is arbitrary, the vanishing of the integrand in 
the square bracket. Thus, 

~~ - div de g;~ \jI) - :t (~ ) = O. (11.1 i) 
(I 1.1 i) is the classicalfield equation in terms of the Lagrangian density. It is the 
analogue, in the case of a field, ofthe Euler-Lagrange equations (11.3) in classical 
mechanics. IL~ similarity to Eq. (11.3) will be even more apparent when expressed 
in terms of the Lagrangian of the field. Conversion of (11.1 i) in terms of L is 
achieved with the help offunctional derivatives: 

Whereas (for a free field) L is a function of \jI and its derivatives, L is afunc­
tional of \jf and \jJ. The distinction is that while the value of a function at a point r 
d~pends on the value of its arguments (which themselves may be functions) at that 
point, the value of a functional depends on the values of its arguments over a 
IV!10!c rc!;i()n UI Idlig.:. Thus, the value of Lin (11.11) depends on the values of 
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the (unctions 'V(r, t) and 'V(r, t) over the volume V. We may say that the depen­
dence of L on 'V is parametric whereas the dependence of L on 'V isJunctioflal, 
and we distinguish the functional dependence by square brackets, thus writing, 

L =L['V(r, t), \jJ(r, t»). (ll.1la) 

A functional could be regarded as the continuum limit of a function of discrete 
variables. In the discrete case, L would b,:: a function of the discrete variables 

{'Vi(t)} and {\jJ/t)}: 

L = L('V(t), \jJ(t», (1 1.1 Ib) 

(see Eq. (11.1))5. The variation oL in L corresponding to independent variations 

0'V. and o\jJj is given by, 

(11.18a) 

(lU8b) 

(1U8e) 

where, 

(11.19:1) 

(l1.19b) 

In (Il.ISb), oVj 's are interpreted as the volumes of the cells into which the volume 

V is divided and 'Vi as the value of'V(r, t) at the ith cell. The variation of 'V and 

\jJ at each cell can be done independently so that. a variation can be defined by 
either 

fJL (iL 
a\V and a\jf defined by Eqs. (11.19a, b) are the functional derivatives of L with 

aL 
respect to 'V and \jF respectively. We see that a\V is essentially the partial derivative 

of L with respect to the value of 'V at the point r. 
Now, from Eqs. 01.131

), (11.14) and (11.15), yield, 

11(00L . OL) OL'J 3 oL = o'V - dlV o(grad 'V) 0'1' + 0\j1 0'V d r. (11.20) 

CompJring Eqs. (lU8e) and (11.20), we get, 

5. It is :n view of (11.11 b) that grad \jI is not included as an independent argument in (11.11.1). 
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aL dL . dL 
------- dlv -::------
o\jf(r, t) - d\jf(r t) d( grad \jf(r, t» , 

(ILL la) 

oL aL 
o~(r, t) =a~(r, t)' 

(11.21b) 

Substituting these in (11.1 i), the classical field equation takes the form, 

oL _~(o~)=o 
o\jf at o\jf . 

For rclativistic fields, it is more convenient to usc the covariant form of Eq. 
(ILl i), namely, 

(lui) 

where the summation convention of last chapter is used, and \jf.1' == al' \jf. Also, the 

Lagrangian density could be a function of several independent fields as, for 
example, in the case of particles with spin. In that case, each field can be varied 
separately in applying the Hamilton's principle, obtaining an Euler-Lagrange 
equation [or each field: 

aL aL 
a\jf" - al' a¥.'1' = 0, (a. = 1,2, ... ,N). 

Hamiltonian Formulation 

In analogy with Eqs. (11.5) and (11.4), the momentum Pi conjugate to the 

canonical coordinate \jfi is defined by 

aL 
P.(t) =:l'"""; 

, a\jfi 

and the Hamiltonian of the field by 

H(t) = I.P;~;-L. 
; 

(11.2i) 

Going over to the continuum limit, where \jfi is interpreted as the value of \jf(r, t) 

in the ith cell, Eqs. (ll.2i) and (11.23 1
) become, in view of Eqs. (11.19b) and 

(11.2Ib), 

and 

lI(t) = i{1t(r, t)\jf(r, t)-L(r, t)}d 3r 

=: Iv j{(r, t)d 3
r, 

where, 
j{(r, t) = nCr, t)\jf(r, t) - L (r, t), 

is l~C /lanzi/IOnian density. Also, 

(11.24) 
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(I1.25) 

is referred to as the conjugate/ield. From Eqs. (11.172
) and (11.25), it follows that 

. aL 
nCr, t) = ;:r~(r, t) . (11.26) 

/I is casily seen Lo be a functional ofn and ",. For, from (11.232
), (lU8c), (11.25) 

and (11.26), we have, 

of[ = L{(on)~+X(O~)}d3r- JJ~O"'+~()~}d3r 

Therefore, 

ar:d oll = L(:; 8", + ~; On) d3r, 

'.vith 

aH _ a9f _ div a9f 
if", - a", a(grad "') , 

all i:JJ{ . i:JJ{ 
dn = ax - dlV a(grad x) . 

Comparing (11.271) and (11.272
), we get, 
all. ifH 

",(r, t)=;;:-( ); -x(r, t)=<r; ( ). 
uX r, t u'" r, t 

If F is an arbitrary functional of", and x, then, 

. aF l(ap. OF.) 3 F =-+ -",+-n d r at v O\v ax 
i:JF =ac+ [F,H]P8' 

where the Poisson bracket is given by 

((iJF ffH ifF irH t3 
[F,H]PB = )v O\v On - irx O\v r r. 

According to Eq. (lU8c), 

But, 

~ i O\jf(r, t) ~ , 3 , 
o'l'(r, t) = 3'; (' ) u'l'(r , t)d r, 

va'l' r , t 

o'l'(r, t) = Iv oCr - r')0'l'(r', t)dV. 

(11.2i) 

(11.231 

(11.28a) 

(11.28b) 

(11.29) 

(11.30) 

(11.31) 
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so that, 

o\ll(r, t) = oCr _ r'). 
a\ll(r', t) 

dqi 
This relation corresponds to a = Oij of the discrete case. Similarly, 

qj 

Cfn(r, t) oCr _ rj. 
on(r', t) 

Using (11.32a, b), the following relations are easily obtained: 
all . 

[\II(r, t), H]PB::: dn(r, t) ::: 'If, 

all . 
['It(r, t),H]PB =-~( ) = 'It, un r, t 

[\II(r, t), rrCr', t)]PB ::: oCr - r') 

[\II(r, t), \II(r', t)]PB ::: 0::: [nCr, t), rr(r', t)]PB' 
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(l1.32a) 

(11.32b) 

(11.33a) 

(11.33b) 

(11.34a) 

(l1.34b) 

Extension of the above formalism to the case of several truly independent (that 
is, not connected by any constraints) fields is straight forward. In Eqs. (11.25), 
(11.26) and (11.33a, b) \II and rr are replaced by \If" and its conjugate field 11"" 

respectively, while Eqs. (11.24). (11.31) and (11.34a, b) become (in covariant 
notation), 

:H(x) = L rra(x )\IIa(x) - L, 
a 

f( "ifF 011 (fF"if1l ) 
[F, In PB = :; a\lf" irrra - irrra ir\lf" ' 

[\IIa(r, t),rr~(r', t)JpB =o~o(r-rj, 

[\IIa(r, t), \II~(r', t)]PB = 0 = [rra(r, t), rr~(r', t)]. 

Quantization of the Field 

(11.24a) 

(11.31a) 

(11.34a') 

(l1.34b') 

The transition from a classical field to a quantum field is accomplished by steps 
identical to those described in the transition from the canonical formulation of 
classical mechanics to quantum mechanics. The field variables \II and rr are 
regarded as field operators. The quantal properties of 0/ and it (and, through them, 
those of the physical observables of the field) are specified by prescribing alge­
braic relations for 0/ and it. Unlike in the case of quantum mechanics, these 
rclation~ need not be the ones that follow from replacing the Poisson bracket in 
(J 1.34a, b) by the commutator bracket divided by itz. However, the equations of 
Illotion, which should be considered as operator equations, are obtained by mch a 
rcpl:.icement of the Poisson brackets by the corresponding commutator brackets. 
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Instead of specifying algebraic relations for", and it directly, one could expand 

'" in terms of some complete orthonormal set of functions {Uk}: 

",(r, t) = Lclk(t)uk(r), (11.35) 
• 

and then specify algebraic relations for the coefficient operators al. By definition, 

Uk satisfies the relationships [cf. Eqs. (2.33) and (2.36)], 

(1I.36a) 

LU,Cr)u;Cr') = oCr - r'). (11.36b) 
• 

The set {Uk} could be the plane wave solutions of the corresponding classical field 

equation. Eq. (I 1.35) could be regarded as a Fourier decomposition of the field 
(see Eqs. (C.l)and (C.1a» into its normal modes. We will illustrate the procedure 
in the applications to follow: 

11.3 NON-RELATIVISTIC FIELDS 

The canonical formulation ensures that the quantized field is (is not) Lorentz 
covariant if the corresponding classical field is (is not). As our first example we 
choose a non-relativistic field, namely the Schrodinger field the classical field 
equation of which is 

a\jf tz2 
itz-+-VV- Vo/=O. at 2m 

(11.37) 

From the viewpoint of quantum mechanics, Eq. (11.37) is the quantized 
equation of motion of an ensemble of particles of mass m moving in an external 
field represented by the potential V. But here we look upon it a<; a classical field 
equation. It can be then quantized according to the procedure described in the 
previous Section. Since it is the second time the equation is being quantized, field 
quantization of this equation (as also of the relativistic quantum mechanical wave 
equations) is referred to as second quantization. We will see that the second 
quantization of (11.37) leads to the appearance of the field as an assembly of 
non-interacting indistinguishable particles (analogous to the normal modes of 
oscillation of a system of coupled oscillators in classical mechanics). 

We start by finding out a Lagrangian density which, when substituted in 
(11.171

), yields Eq. (l1.37). We find, 

, • . tz2
• • 

Ls = ltz\jf \jf - 2m grad \jf . grad \jf - V\jf \jf. (11.38) 

The conjugate field nCr, t) is given by [Eq. (11.25)], 

aLs , • 
nCr, t) = a\jF = ltz\jf (r, t), (11.39) 

and the Hamiltonian density J{and Hamiltonian II by, 
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. 1i2 • • 
:J{ = mv - Ls = 2m grad 'I' . grad 'I' + V'I' 'I' 

(( 1i
2

• • ) d3 
H = Jv 2m grad 'I' . grad 'I' + V'I' 'I' r. 

Quantization 

We expand ~(r, /) in terms of a complete orthonormal set {uk(r)}: 

~(r, /) = Lak(t)uk(r), 
k 

Also, 

~t(r, /) = -(i/1i)n(r, t) = La!(t)U;(r). 
k 
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(11.40) 

(11.42a) 

(11.42b) 

We choose the {uk(r)} to be the energy eigenfunctions of the Hamiltonian of a 

single particle in the field: 

with 

(11.43) 

(Note that V is assumed to be independent of t). 
Quantization is done by postulating suitable algebraic relations for the operators 
at (!) and a~(t). 

System of Bosons 

We try the following commutation relations for the Fourier coefficients in 
(11.42a, b): 

(11.44) 

where all the operators refer to the same time. (11.44) is seen to be identical with 
(4.76) of Section 4.2A, except that here we have an infinite number of operators 
ak in place of the single a in (4.76). From the result of that Section, we can draw 

the following conclusions. 

The eigenvalue spectrum of the Hermitian operators Nk := ata t are the non­

negative integers, 
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n. = 0,1,2, ... ,+00. 

A general slate vector of the field is given by 

I nJ,n2, ••• n., ... ) C(d;)"1 (d;)"2 ... (dD"' ... 1 0). 

where, 

c= 1 
(n l ! nz! ••. nk! ... )112' 

and I 0) is the vacuum slate defined by 

N.IO)=O, forallk. 

Also, 

a. I nl'nZ' ••• ,n., ... )=..r,;: I nl'n1, ... ,(n. -1), ... ), 

dr I nl' nz,···, n., ... )::::...r,;:+T I nl , nz,···, (n. + 1), ... ), 

From 01.41), (11.42a, b) and (11.43) we get 

/j ;;:; LdIa l f (21i2 
grad u:· grad ul + VU:UI) d3r 

',1 v m 

(11.45) 

(11.46) 

(11 . .17) 

(11A8) 

(11.49a) 

(11.49b) 

where the orthonormality of the Uk'S, [Eq. (11.36a)J, has been used. The total 

energy (the eigenvalues of II) of the field in a slate I nl , n2,> .. . n., ... ) is thus, 

E=Ln.E., (11.50) 
1 

As in Section 4.2A, Eqs. (1l.45), (11.49a, b) and (11.50) enable us to interpret 

dZ, a. and N 1 respectively as the creation, annihilation and particle-number 

operators for particles in the Slate u. with energy E k' The vectors (11.46) define 

an occupation-number representation for the system. Since a given particle-slate 
Uk can be occupied by any number of particles, the field represents an assembly of 

bosons. 

s! 
Problem 11.1: Show that(d.)' (dn' 10):::: -( --)' (air r 

10> 011 , Hencededuce 
s r. 

Eq. (11.47). 

System of Fermions 

We have seen that the quantization postulates (11.44) lead to a system of bosons. 
For a system of fermions, the occupation number n. should be restricted to 0 and 

1. It has been shown by Jordan and Wigner6 that this condition could be met by 

6. Jordan P. and Wigner, E.P. Z. Physik, 47, 631 (1928). 
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replacing the commutation relations (11.44) by the following anticommutation 
relations: 

(11.5Ja) 

{akA} = 0= {a;, ail (11.51b) 

Here also, all the operators refer to the same time. (11.51b) requires, 
" 0' 't't akak == = aka., (l1.S2) 

so that 

or, 

N.(!Vk -1) = 0, (11.53) 

from which it follows that the eigenvalue spectrum of Nk is given by, 

n. = 0,1. (11.54) 

The following results also follow from (11.51a, b) and (11.54): 

I nl' n2, ••• , nk, ... ) = (aD"1 (a;)"2 ... (aD"k . . I 0), (11.55) 

(11.56b) 

(11.56c) 

where, 
k-J 

S. == L n,. (11.57) 
,=1 

Eqs. (11.56a, b) show that an empty state cannot be further emptied and a filled 
stale cannot be further filled. We also see that the annihilation, creation and 
number operators can be represented by the matrices, 

(a.) = (~ ~} (aD == (~ ~J (N.) = (~ ~) (11.58) 

The Hamiltonian H and the total energy E of the field are given in this case by 

Eqs. 01.412) and (11.50) with n. restricted to 0 or 1. Also, in the case of bosons 

as well as fermions, we can define an operator N representing the total number of 
particles by 

N == LN •. 
• 

From, [N,H] == L[N.,N,] E/==O, 
1,/ 

it :'ollows that the total number of particles in the field is conserved. 

(11.59) 

(11.60) 
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For the case ofbosons we have, from (l1.42a, b), (11.44) and (l1.36b), 

[\jF(r, t), iter', t)] = iliS(r - rj, (1l.44a) 

[\jF(r, t), \jF(r', t)] = 0 = [iter, t), iter', t)] 

whereas for fermions the corresponding relations are 

{\jF(r, t), iter', t)} = iii S(r-rj, 

{\jF(r, t), \jF(r', t)} = 0 = {iter, t), iter', t)}. (11.51) 

While (11.44a) resembles the Heisenberg commutation relations (3.12) of quan­
tum mechanics and, thus, could be regarded as the quantum theoretical extension 
of the classical relations (11.34a, b), Eq. (11.51) has no classical analogue. The 
implication of this difference could be the following: For a field to be strong 
enough to be measurable it is necessary to have a large number of particles in the 
same state so that their contributions to the field are coherent. Therefore, fields 
that are measurable and have, hence, a classical counterpart should be describable 
in terms of an assembly of bosons. An example is the electromagnetic field the 
quanta associated with which have spin 1. It follows that the 'V-field associated 
with fermions are not measurable though quantities like current density and 
energy, which are bilinear expressions in \jF, are measurable. 

In terms of \jF, the particle-number operator IV (Eq. (11.58», is given by 

IV = rata. = ~ J u.(r)\jFt(r, t)u:(rj\jF(r', t)d3rdV 
k • V 

= Iv o(r-r')\jFt(r, t)\jF(r',t)dVd3r 

= i \jFt(r, t)\jF(r, t)d 3r, 

which is essentially identical to Eq. (1.19). The expression, 

a.(t) = Iv u:(r)\jF(r, t)d 3r, 

which follows from (l1.42a) and (11.36a), has been used here. 

Commutators and Anticommutators at Unequal Times 

(11.58a) 

(11.61) 

The Heisenberg equation of motion for the field operator \jF is given, according to 
Eq. (11.33a), by 

(11.62a) 

which is equivalent to 

. da. 1 A 1 A 

a.=-d =~[d.,H]=.",~[a.,NI] EI 
t l" 1"1 

(11.62b) 
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since 

Thus, 

akCt) = akCO) exp Hil1i) Ek t] 

and 

dl(t) = die) exp [Ci/1i) E ic tJ. 
From these and Eqs. (1l.44) and (1l.51a, b), we have: 

[dk(t),d;C!,)]± = ok! exp [CUti) E. (t' -t)] 

[dk(t), d It')] ~ = 0 = [aW), diC!,)] t' 

where 
[d,bL={a,b} ; [d,bL=[d,b]. 

Problem 11.2: Verify Eqs. (11.56a-c). 

11.4 RELATIVISTIC FIELDS 
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C11.63) 

(I 1.64 a) 

(ll.64b) 

(11.65) 

(11.66) 

We have seen that a non-relativistic field can be quantized using either Bose­
Einstein statistics (commutation relations for the field operators) or Fermi-Dirac 
statistics (anticommutation relations). We will see that a given relativistic field 
can be consistently quantized by using only one of the statistics. This is because 
of the intimate relationship between a relativistic wave equation and the spin of 
the particles on the one hand and spins and statistics on the other hand. As 
examples of relativistic fields we will consider the Klein-Gordon field (which is 
a scalar field), the Dirac (spinor) field and the electromagnetic (vector) field. 

Natural System of Units 

It is customary, in relativistic quantum field theory, to use the so-called natural 
system of units (n.s.u.). In this system both 1i and c are dimensionless and of 
magnitude unity. 

1i=c=l. (11.67) 

From the relations E = 1iw and p = 1ik, we see that energy and momentum have 
then the dimensions of frequency (rl) and wave number (L -I), respectively. But 
also, E has the dimension of me 2 and p that of me so that, in natural units, both E 
and p should have the dimension of mass (M). Thus, L, T and Ml have the same 
dimension in the n.s.u. This could have been deduced also from the fact that 
normally 1i and c have the dimensions, 

[1i] =ML'brl; [e] =Lrl. (I 1.68) 
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From the dimensionless fine structure constant [Eq. (10.111)] eZ/tze '" 1/n7, it 

follOWS that in n.s.u. the electric charge is dimensionless and that the unit of 
charge e has the magnitude '" .ylIl37,. In general, a quantity A which has the 
dimension [AJ = MaL(lyY in the C.G.S. system, has the dimension, 

[AJ =Lf>+y-a=Tf>+y-a==Ma-f>-y (11.69) 
n',·u· , 

in the natural system. Thus, all quantities can be expressed in terms of just one 
dimensional quantity which is usually taken to be length (though sometimes time 
is chosen for certain quantities like energy). 

A quantitative relationship between the natural system of units (with length as 
the dimensional quantity) and the C.G.S. system of units could be established as 
follows: (11.69) can be obtained by multiplying [A] by [tz]~[e]e and then setting 
the exponents of T and M in the result equal to zero. That is, 

[A]nlu == [A] [tz]O[e)" 

Setting a+ 0 == 0 == y- 0- E, we get, 

o==-a; <=.=a+y, 

and 

Examples: 

(i) Energy: [E]=ML~-2(a=l,p=2,y=-2). 

o=E==-I, 

and 

E(
' -I) EOn ergs) 

. . 'In em = ---'--~ 
tic 

or, E(in eV) = E(in em-I) x 197 x 10-7, 

Thus, 1 ferm(1 == 197 MeV 

[tz = 1.054 x 10-27 erg. sec == 6.582 x 10-16 eV secJ 

(ii) Electric charge: [e] == MII2L 3~rl, 

O=E=-~. 

[e]n • u =Lo (dimensionless) 

, I' (in e.s.u.) 1 
e (m natura Units) = e . r;:-: '" _ r,;:;;:;' 

"fie ,,137 

[e (e.s,u,) = 4.8 x 1O-1~ 
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1l.4A. The Klein-Gordon Field 

Thefield equation is (10.62
) which, in natural units, takes the form, 

(0!10!1-m2)<I>(x) = O. 

We assume that <I> is complex. Then, the Lagrangian density is given by 
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(11.70) 

4C<X) =-0!1<1> 0!1<1>' _m1<l><I>'. (11.711) 

Here, <I> and <1>' should be treated as independent fields. Alternatively, <I> and <1>' 

could be written as 

(11.72a) 

(l1.72b) 

where <l>l(X) and <l>2(X) are real fields satisfying Eq. (11.70). In terms of <1>1 and 

<1>:. 

Then, 

2 A • 

:J{c = L 1t,(x)<I>,(x) - 4c(x), 
r;;::l 

and7 

HKG = ,Ij-J a4<1>'04<l>,d3x+~J(0!1<l>,a!1<l>, +m2<l>;)d3x} 

A plane wave solution of Eq. (11.70) is given by 

with 

and 

1 

1 1 
Uk (x) = . /,7 . ,.-;;:-:- exp (i kx). 

"V ,,2u\ 

kx = k!1 x!1 = k . x - wt. 

k 2 k k 2 2 2 ;: '" ,,= k - wk = -m • 

(11.73) 

(11.74) 

(11.75) 

(l1.76a) 

(11.76b) 

The factor. ~is introduced in (11.74) for interpretational convenience [see Eq. 
V 20\ 

(11.88) below). 

7. lhe coordinate vector is hereafter denoted by x in place of r. Similarly. d3x will dcnote the 

volume clement in the coordinatc space. 
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The field operators <i>, are expanded in terms of uk(x): 

Ii. () 1 ~ 1 {A (k) ikx At(k) -ik~ 
'V, X = rv~ ..J2~ a, e +a, e J. (11.77) 

The second term in (11.77), which is the hermitian conjugate of the first term, is 
needed because the classical field <I>, is real (so the quantized field is hermitian) 

unlike the", in (11.35). 
As quantization postulate, we adopt the commutation relations, 

[d ,(k), d;(k')] = O,.O(k - k'), 

[d,(k), d ,(k')] = ° = [dt(k), d;(k')]. (11.78) 

Then, according to the results of Section (11.3), the field will represent a system 
of bosons. However, there will be two types of particles. In order to see in what 
respect these particles differ from each other, it is convenient to work in terms of 
<i> and <1>+ rather than in terms of <1>1 and <1>2. From (II. 72a) and (11. 77), we have, 

where 

<l>(x) = . ~L . ~[d(k)eib: + lJt(k)e-ikj 
\f V k ,,2ook 

= L[d(k)uk(x) + bt(k)u;(x)]. 
k 

d(k) = ~[d1(k) - id 2(k)], 

b(k) = ~[a1(k) + idik)]. 

d, b and their hermitian conjugates satisfy the commutation rules, 

[d(k), d+(k')] = [b(k), lJ+(k,)] = ~(k - k') 

All other combinations vanish. 
Define the 4-vcctor Sex) by 

. (04w - 040 - ) S(x)==-ie ..,......-<I>--.-<I>t 
I' o<I>,Jl o<l>t.ll 

== ie {(o,,<l>t)<1> - (o,,<1»<1>lJ. 
Then, from (11.70), 

d"S.,(X) == iem2[<1>t(x). <1>(x)] 

(11.79) 

(11.80a) 

(l1.80b) 

(11.81) 

(11.82) 

== 0, by Eq. (ll.90a) below. (11.83) 

S (x) can be, thus, interpreted as a 4-current density and Sii as the electric charge 
density. The operator Q corresponding to the total charge of the field is given by 

Q ==T f Six) d3
x 

== e f {(04<l>t)<1> - (04<1»<l>1J d3x 
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==~2 I: [(d(k,),dt(k)} - {b(k),bt(k,)}) 
k,k' 

where N +(k) == at(k) d(k), 

N Jk) == bt(k) b(k). 
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(l1.84a) 

(11.84b) 

(11.85) 

In going from (11.84a) to (11.84b), we have used the commutation relations 
(11.81). Incidentally, we note that Q would be null if we use anticommutation 
relations (Fermi-Dirac statistics). 

The total charge of the field is thus, 
Q =eI:[n+(k)-nJk»), (11.86) 

k 

where, n±(k) == 0, 1,2, ... ,+00. (11.87) 

Thus, the operators a(k), at(k) and N +(k) can be interpreted respectively as the 

annihilation, creation and number operators for a particle of electric charge +e and 
momentum k, while b(k), bt(k) and IV _(k) are similar operators for a particle of 

charge - e. This interpretation can be confirmed by evaluating the field Hamil­
tonian fI. From (11.73), (11.80) and (11.81). we find, 

with 

A 1 2 A+ 

H KG =2 ; Ct\:! {a,(k),a~(k)} 

== ~ ;Ci)k[ {a(k). at(k)} + {b(k), bt(k)}] 

== L [N +(k) + N Jk») Ci)k + fI o' 
k 

The field energy is given by 

EKG =E+ +E_. 

E±== ;{nt(k)+MCl\. 

(11.88) 

(Il.88a) 

(11.89) 

(11.89a) 

Again we note that the field energy would have been zero had we used anticom­
mutation relations for the creation and annihilation operators. This shows that the 
Klein-Gordon field can be consistently quantized only by using Bose-Einstein 
statistics. 

8. Note the similarity of (I I. 89a) to the corresponding harmonic oscillator expression. 

E.o= .~£n+~} 
which follows from Eq. (4.94). The field appears as a collection of independent oscillators. 



408 QUANTUM MECHANiCS 

We see from the foregoing analysis that the Klein-Gordon field with a complex 
¢ represents spinless (since <I> is a scalar) charged particles of charge +e and -e. 
The particle with charge -e is regarded as the antiparticle of the one with charge 
+e. The theory is seen to be symmetric under the interchange of these particles. 

We also see from (11.82) that for a hermitian <I> (obtained by setting <l>z in 
(11.72) and az in (11.80) equal to zero), the current and charge densities vanish. 

But the field Hamiltonian is given by 

A { A I} H =; N(k)+2 (j~, 

with N(k) = at(k) a(k). 

Therefore, a hermitian (or real) scalar field represents neutral spinless particles. 
In general, thus, the Klein-Gordon equation is the field equation of a spinless 
particle which exists in three charge states--positive, negative and neutral. 
Experimentally, the mnesons fit this prediction. 

We notice that the field Hamiltonian is positive definite, and the negative 
energy problem of relativistic quantum mechanics has disappeared. 

Problem 11.3: Verify Eqs. (11.84) and (11.88). 

Invariant Delta Functions 

From (11.79) and (11.81), we have, 

A A 1 ~ [<l>(x), <l>t(x)) = 2V k -{[a (k), at(k')) 
k.k' ~~, 

X exp [i(kx -k'x)) + [bt(k),b(k,)) exp [-i(kx -k'x'))} 

= i~(x -x'). (11.90) 

Here, 
1 1. 

fl(x)=-V L-smkx. 
k~ 

flex) is known as the invariant delta function, signifying its invariance under 
Lorentz transformations. The Lorentz invariance of ~(x) follows from the fact 
that <I> and <l>t are Lorentz scalars9

• 

The R.H.S. of Eq. 01.91 1
) can be converted into an integral by the following 

procedure: 
Imagine the volume V to be a cube of sides of length L. Then periodic 

boundary conditions will restrict the components of k to the values [see Eq. 
(8.176»), 

(11.92) 

9. For an explicit proof of the Lorentz covariance and for a more detailed 9ccounl of tlw invariant 
delta function, see Ref. 1 chapter 6; Ref. 2, Section 2-3 or Ref. 3, Section 4 .. 6. 
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A volume clement in k-space is thus given by 

3 (21t)3 
d k = dk1 dk1 dk3 = -ydn, (11.93) 

where dn represents the number of allowed values of k in d3k. Let us divide the 

volume in the k-space into small cells and let (d 3k)j represent the jth cell. Then, 

if f(k) is an arbitrary function of k, 

L f(k) = L if(k)dn} jlha:U 
k (over k - space) j 

v 
= -3 Lif(k)d3k} j' by Eq. (11.93) 

(21t) j 

=~ J d3kf(k). 
(21t)3 

Since the function f(k) is arbitrary, (11.94) implies the correspondence: 

~l: -.;_1_Jd3k. 
V k (21t)3 

Applying (11.94) to (11.91'), we get, 

1 Jd
3
k L1(x) ::-- --sinh. 

(21t)3 Wk 

= L1(+)(x) + L1(-)(x), 

where l1±(x) = +_i -Jd3k exp (+ih) 
(21t)3 2~ 

Now 
~ . 

J 
d3k-2e = Jd3k exp (ik.x) J. dOl exprlwt) O(Wk - 00) 

wk _>0 00 

- i J d4
k e

ikx
6(w) [ 0(00;-00')+ 2~ O(Wk+ffi)] 

(11.94) 

(11.94a) 

- i f d4k eikx6(ffi)0(e+m2). (ffik>O). (l1.96a) 

Here, Eqs. (11.75), (11.76a, b) and (D.11) are used. Also, 6(ffi) is the Heaviside 

step function (D.7) and d4k = d3k dk4 = id3k dffi. 

Similarly, 

J 
d3k e

2
-

ikx 

= Jd3k exp (-ik.x) ( dOl exptiffit) O(ffik - ffi) 
ffik )." > 0 ffi 

Jd
3 ('k)1 d ,exp(-iffi't)~ , 

= k exp l .x ffi 2' U(ffik + 00) 
",' <:0 ffi 
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(11.96b) 

In going from the fIrst to the second step, the fact that the limits of integration 
for the components of k are from - 00 to + 00 is made use of. 

Substituting (11.96a, b) in (11.951
) and (11.91 \ we get the covariant forms of 

the delta functions: 

where 

.1±(x)= =+= ~J d4
ke

ihE>(±w)O(e+m\ 
(21t) 

.1(x) = - ~J d4
ke

i
lu: E (w)o(e + m2

), 
(21t) 

{
I for W > 0 

E (w)=E>(w)-E>(-w)= 
-1 for W < 0 

(11.97) 

From (11.91 2
) and the 3-dimensional generalization of Eq. (D.6a), we get 

: !l(x -x'),,_, = -1 3J d3k exp (-ik· (x-x'» 
vt - (21t) 

=-o(x-x') 

The field operator conjugate to <i>(x) is given by 

A a4cG' t 
1t(x) = a <i> == <I> • 

From (11.90), (11.99) and (11.98), we derive1o, 
[<i>(x,t),it(x',t)] = io(x-x'), 

[<i>(x, t), <i>(x', t)] = 0 = [it(x, t), it(x', t)]. 

Also, for t = 0, kx = k . x, so that, 

1 J 3 sink· x 
!l(x, 0) = -3 d k--= 0, 

(21t) wk 

since sin k . x is an odd function of k. Therefore, 

[<i>(x, t), <i>t(x', t)] = i.1(x - x', 0) == O. 

(11.98) 

(11.99) 

(11.100) 

(l1.90a) 

Since !lex) is Lorentz invariant, the result (11.101 1
) holds good for any space-like 

vector x. That is, 

A space-like vector connects two events that are separated essentially in space 
(that is, a Lorentz frame can be found in which the events are simultaneous but 
take place at two different locations in space). Such events cannot be connected 

10. The commutation relations (II. 100) could also be obtained using the expression, 

7i:(X)=dcPt=~l- ~(at(k)e-<"-l:i(k)e"', 
I 'IV k -\12: 

which follows from (11.79). 
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by a light signal (since I x - x' I > e(t - t') and, therefore, cannot interfere with 

each other. This is known as the principle of mieroeausality. Eqs. (11.90a) anc 
(11.101z) are merely expressions of this principle. 

Problem 11.4: Verify the commutation relations (11.100). 

Problem 11.5: From (11.914
) show that !l(x) satisfies the Klein-Gordon equation 

(11.70). 

The Positive and the Negative Frequency Parts 

Eq. (11.79) can be written as 

<1> (x ) = <1>(+)(x) + <1>(-)(x), (11.79,) 

where, 

(11.79'a) 

<1>H(X) =_1_ L_1_bt(k)e-Lb:. 
...JV k ..j2ffik 

(11.79'b) 

<1>(+) and <1>H are referred to as the positive frequency part and the negative fre­

quency part, respectively, of <i>. <1>H contains only annihilation operators while 
<1>(-) contains only creation operators. Also, in the case of a Hermitian field like 
the <i>, in (11.77), 

<i>(+) = <i>(-)t (hermitian cI». 

<i>(+) is called the positive frequency part because it contains the positive exponent: 

e +ikx = exp (i (k . x - ffikt». Similarly, <i>H contains e -Lb:. In a theory where nega­

tive energies are allowed, the positive exponent goes with positive energy and the 
negative exponent with negative energy [see Eqs. (11.104) and (11.117) below]. 

That the positive and the negative frequency parts should be associated 
respectively with the annihilation and the creation operators could be seen quite 
generally as follows: 

The equation of motion for the operator a(k)eLb: is given, according to (11.62a), 

by 

a,(a(k)e ikx
) = i [If, d(k)e~ 

Taking the matrix clement of this equation between field states cI>1 and cI>z of 

energy E1 and E2, we get, 

- i (Ok(cI>zl d(k)eLb: I cI>1> = i (E2 - E1) (cI>zl a(k)eLb: I cI>1>' 

That is, Ez = EI - ffik < E1• Thus, the operator d(k)e ikx causes transitions to a state 

of lower energy and, hence, of lesser number of particles. Similarly, <i>H causes 
transitions to a state of higher energy and larger number of particles. 
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ll.4B. THE DIRAC FIELD 

The classical field equation in this case is (10.252
) which in natural units reads, 

(rA. +m)'V(x) = O. (11.102) 

As an appropriate Lagrangian density, we can use either of the following 
expressions: 

.!v(x) = -'V(x) (r .. o .. + m)'V(x), 01.103a) 

(ll.103b) 
We will use the first of these. 

As the complete set of plane wave solutions of (11.102) we choose the func-
tions, 

1_~ )ipx} cJl,(x) = W-\j E"u,(P e 
V P ,(r= 1,2), 

_1 m -;px 
cJl,+ix) - w~v,(p)e 

(11.104) 

where 

(11.105a) 

(11.l05b) 

with 

(11.106) 

and 
px =p ·x-Et. (11.107a; 

Also, 

p2 =: P.,P .. = p2 _E2= _m2; Ep == --Jp2+ m2. (l1.107b) 

The normalization factors adopted in (11.104) and (11.105) lead to the following 
normalizations. 

U,(p) u,(p) = -v,(p)v,(p) = 0". 

u:(p) u,(p) = v~(p)vs(p) == (E/m)o". 

u,(p) v,(p) = v,(p)u.(p) == 0, 

u:(p) v,(-p) = v~(p)u,(-p) = 0, 

(11.108a) 

(11.108b) 

(lUOge) 

(lU08d" 
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'",here 

Also, 

4U 

(11.109) 

Substituting from 01.1(4) in (11.102), we find the equations satisfied by the 

spinors U, and v,: 

(y~JJ. -im)u/p) = 0, 

(Y~)J. +im)v,(p) =: O. 

(11.1103) 

(ll.llOb) 

The solutions <)ll(X) and oix) correspond to positive energy (E = +Ep) while <)l3(X) 

and Qix) correspond to negative energy (E = -Ep). These solutions arc casdy 

obtained by solving Eqs. (\0.52a, b) for the free-particles case. Writing 

<)lex) = ~(p,E)eiP" 

(11.111) 

and substituting in (1O.52a, b) with <I> = 0, A = O,C = 1, we get the coupled equa­
lions, 

(E -m)~ = (0' p)n, 

(E +m)Tl = (0' p)~. 

For E = +Ep, we write Tl = {( 0 . P )/(Ep + m)} 1; and for E =:: -Ep, 

~ = -{(o· p)/Ep + m)}Tl 

There are two independent solutions for each sign of energy. 
introducing a normalization factor, given by 

W'(P'Ep)=::A(B~~J (r =:: 1,2), 

(-B~,) w,(p, -E.,) =: A ~, ,(r = 1,2), 

where 

_{Ep+m}li2 A- --
2m 

arid (by choice) 

The u, and v, in (11.105a, b) are defined as 

u,(p) = w,(p, Ep), 

v,(p) =:: w,(-p, -E.,). 

(11 ;'7) 

These are, after 

(11.113a) 

(11.113b) 

(11.114: 

(11.115) 

(11.l16a i 

(11.1 Hh) 
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Corresponding to these and with additional normalization factors, we have, 

I_1m): ipX} Gl,(x) = ...jV-\j~ (A",)e 

1f 
' (E = Ep), (l1.117a) 

_1 m ):ipx 
x,(x) -...jV Ep (AB",)e 

I_1m ): _iF} Gl,dx) = "'[V-\j E.. (AB .. ,)e 
p , (E = - Ep' P -. - p) (l1.117b) 

x,+ix) = .Jv1f(A~,)e-ipX 
Eqs. (11.104) follow from (10.53), (11.117), (11.116) and (11.113). 

Quantization 

Expanding the field operators ",(x) and ~(x) in terms of Gl,(x), we have, 

• 1 {f,2 .. . 
'V(x) = _r,;L E L [c,(p)u,(p)e,px+d:(p)v,(p)e-'Ij. 

"V p p,=l 

(11.118a) 

(l1.118b) 

where summation is over the allowed values of p [Eq. (11.92)]. 

Before interpreting c"c;,d, and d; as annihilation and creation operators, we 

have to make sure that (11.118) leads to sensible expressions for the energy and 
the charge of the field. We have, 

• i).4 aLv ~ • 
1t(x) = 7 = -i a = i 'V (x) Y4 = i'Vt • (11.119) 

'V 'V.4 

1/;;(x) = it(x) ",(x) - £Vex) 

= ~(x) (~lYiai + m) ",(x) 

= - \jJ (x) Y4a4'" = ",t i a, "', 
where the last step follows from (11.102). Thus, 

fl D = r o/T(x)ia,o/(x)d3x 
.I 

x u;<p)u,(p') exp (-i(p - p')x) -d,(p)a;(p') 

x v;(p)V,(p') cxp (i(p - P 'Ix) - ct(p)d;(p') 

(11.120) 
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x U:(p)V,(p,) exp (-i(p + p')x) + d,(p)c.(p') 

XV;(p)U,(p') exp (i(p + p,)x)J 

Here, Eqs. (I 1.108b, d) and the relations [(Eq. (D.6a)], 

~f exp (±i(p - p')x)d3x = o(p-p'), 
(21t) 

and [Eq. (11.94a)], 

are used. 
Similarly (c.f. Eq. (11.82», 

_ {aiv" aiv"} ;.. " S/x)=-ie T'I'-a"t'l't =ie'l'(x)y,,'I'(x) 
"'," '1',,, 

Q = -i Iv S4(x)d
3
x = e Iv Vt 'l'd3x 

2 "A 

=e1:1: [c;(p)C,(p)+d,(p)d;(p)] . 
.,,,=1 

415 

(11.122) 

From (11.1211) and (11.1231) we see that, if we adopt commutation relations 
for the field operators, then the field Hamiltonian would not be positive definite 
whereas the total charge would be. On the other hand. adoption of anti­
commutation relations results in a positive definite field Hamiltonian (aside from 
a negative zero-point, or vacuum, energy) though the total charge would be no 
longer positive-definite. Since a negative total charge is not unphysical like a 
negative total energy. we conclude that only the latter alternative is acceptable. 
Thus. 

{c ,(p). c~(p')} = {d r(P). d!(p')} = o"O(p - p'). 

t n "" At An " 
{Cr.C .. } = {Cr.C,] = {d,.d,} = {dr.d,] ",,0. (11.124) 

Then, 

,. 2" .... + '" 
Q :=:e1: 1: [N;(p)-N,(p)] +QO' 

pr~1 

2 

and £ == 1: 1: [n;(p)+ n;(p)] +£0' (11.125) 
p ,.=1 

2 

Q = d 1: [n:(p) - n,'(p)] + QO' 01.126) 
p,~1 



416 QUANTUM MECIIAi,I,::S 

where N~(p) = C;(p)C,(p), 

N;(p) = d:(p)d,(p), 

(11.127<1) 

(11.1270) 

(11.128) 

(11.129) 

(11.130) 

We interpret c;(p),c,(p) and N~(p) as the creation, annihilation and number 

operators for a particle of momentum p and charge e (the electron) and d;(p),d,(p) 

,md N;(p) as identical operators for the antiparticle (positron) of charge -c. 

Again, the theory is symmetric under the intercharge of the particle and the anti­
particle. 

The zero-point energy and charge, in this case, could be interpreted in terms or 
the hole theory (Section IO.2A). 

Spins and Statistics 

In the quantization of the Klein-Gordon and the Dirac fields we have a sort of 
theoretical basis for the empirical correlation that was found to exist (Section 9.2) 
between the spin of a particle and the statistics obeyed by an ensemble of the 
particle. For, we find that in order to get a positive definite field Hamiltoni<U1, we 
have to quantize a Klein-Gordon field using Bose-Einstein statistics and a Dirac 
field using Fermi-Dirac statistics. In general, it is found that qU<U1tization of fields 
representing integral-spin particles requires Bose-Einstein statistics while those 
corresponding to half-integral spin particles require Fermi-Dirac statistics. 

Covariant Anticommutation Relations 

From Eqs. (11.105a), 01.1(6) and (10.30a, c), we have, 

'm] 

[

(Ep+m)[ -(cr.P)] 
2 _ 1 
I: u,(p)U,(p) = -2 () p2[ 

,=1 m cr·p ---
Ep+m 

1 
-2' (Y"p1J. + im), 

1m 

2 _ 1 
I: vrCp)v,(p) = -2' (Y.,p)1-im), 

'-1 1m 

(11.131a) 

(11.131h) 
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where I denotes the 2x2 unit matrix. The operators (11.131a) and (l1.l31b; 

respectively project out the positive and the negative energy parts of a plane wave 
solution of momentum p. This follows from (11.108a, c): We see, 

LU).l,<!>,(x) = <!>,' (s = 1,2), (1l.132a) , 

= 0, (s = 3,4). 

LV,V,<!>,(x)=O, (s = 1,2), 
, 

= --1>., (s '" 3,4). (11.132h) 

Thus, the completeness condition for the spinors is given by, 
2 _ _ • 

L (u1u, -v,v,) == 1. (11.133) 
,::::-1 

We will make use of these results to obtain the anticommutation relations for 
the field operators 0/ and 0/. Each of the four component~ o/a (a = 1,2,3,4) of 0/ 
will have to be treated as independent fields, where, according to (11.118a). 

l/f,,(x)== ~L(Em)ll2 ~ [c,(p)ura(p)eiPX+J;(p)v,,,(p)e-iP1 (11.118c) 
\IV p p r ~ 1 

== V:>(x) + Va>(x). 

From Eqs. (11.118), (11.124), (11.13 I) and (11.94a), we get, 
I • ~ ! - {,7'<+) ~ (-) "l {::.<-) ~ (+) ,J 
L'V"(X), 'VB(x')J - ljIa (x), 'V~ (xx + '1'" (x), 'VB (xX 

l V:)(x), 0/ t>cX')} = ~ L . ...jE
m 

p I ~ u,a(p)u'B(p')8(p - p')ei<Px-p'x') 
P.P p"-'p r ~ 1 

1 ( d 3 1 ( .) ip(x- x') 

= (21t)3 JE ~Ep P 2iEp Y~I'-+ lm «Be 

=-i(y,a -m) .~ ( d3P .(_1_)e iP(X-x,) 

IJ. IJ. «B (2It)3 JE ~Ep 2Ep 

= -is:;j(x - x'). 

Similarly, 

r,7'( ) .!... (+) 1 I f. 3 ( 1 ) . -ip(x-x') ~1jI,-(x), 'V (x,)f",- d P -.-- (Yon -lm) e 
t " ~ J (21t)3 E~Ep 2iEp 1"1'- «B 

== -iS~(x - x'). 

From the definition (11.951
) of !!;.(±), we have, 

S~(x) == (Yfldfl - m)!!;.I±\x). 

(11.118d) 

(l1.n~) 

(11., \6' i 
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Thus, 

with 

Similarly, 

l~a(x), \j; ~(xi = -iSajl(x - x,), 

Sajl(X) = S;;l(X) + Sti(X) 

= (YI'011 -m)!l(x). 

{~,,(X). ~~(X')} = {~a(X). ~~(X')} = 0. 
Using expressions 01.952

) and 01.914
) for !l(t) and !l, we find. 

S:J{ = +~fd4p(yI'OI' _m)j iPX6(±p)o(p2+m2) 
(21t) "" 

(11.137a) 

(l1.137b) 

From these it follows that S~ (as also S~ ) satisfies the Dirac equation: 

(rA, +m) Sp~(x) =~fd4peipX E (p)(p2+m2)o(p2+m2) = O. 
ap (21t) 

(11.139) 

Physi;:;al observables of the Dirac theory are bilinear in \ji and~. The 
anticommutators (11.137a, b) ensure that two such observables commute for 
spacc-like separations (Problem 11.7) and, thus, satisfy the principle of micru­
causality. 

Proble~ 11.6: Obtain expressions for fI D and Q using (11.1 03b) as the 

Lagrangian density. 

Problem 11.7: Show that (~a(x)\ir~(x), ~p(x')\iro(x')] =0, 
when (x - X')2 > O. 

H.4C. THE ELECTROMAGNETIC FIELD 

The Klein-Gordon and the Dirac fields are respectively examples of scalar and 
spinor fields. We now take up the case of a vector field-the electromagnetic 
field-which is the only field. among the ones discussed here, that was known to 
classical physicists. In fact. the technique of field quantization was devcloped 
specifically to incorporate the principles of quantum theory into this classical field 
theory. 

The classical field equation is (10.168): 

0iVv(x) =0, (v=1,2,3,4). (11.140) 
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which, we see, is the Klein-Gordon equation (11.70) for zero-mass (m == 0) par­
ticles. However, compared with (11.70) the quantization of (11.140) is made 
difficult by the following factors: 

(i) Eqs. (11.140) is equivalent to Maxwell's equations only if it is combined 
with the Lorentz condition (10.169) on the four-potential A. But the 
Lorentz condition implies that all four components of A are not indepen­
dent. On the other hand, canonical quantization procedure is valid only 
for independent fields (Remember that in obtaining the Euler-Lt\g~::mge 
equations, variation in each of the 'co-ordinates' is tn:ated as 
independent). 

(ii) Whereas A1,A2>A3 are real, A4 (== iV)ll is imaginary. This makes it diffI-

cult to treat all four AJ!.'s on the same footing. 

(iii) Invariance of the field under Gauge transformation (Eq. (10.176» 
necessitates different quantization procedures for different gauges. 

In meeting the above difficulties, we choose the Lorentz gaugel2 but ignore. at 
, first, the Lorentz condition and the imaginary character of A4• That is, we treat all 

the four A,,'s as independent and Hennitian (in the quantized theory). The diffi­

culties (i) and (ii) above are then overcome by a procedure due to Gupta and 
Bleuler13

• 

In analogy with (11.71 2
). the Lagrangian density is given by 

1 
4M(X) = -2a~v<)J!."" (11.141) 

while, in place of (11.74). the plane wave solutions of (11.140) are chosen as: 
1 1 ih 

u/x) ==. r.7. r:;:::-E/k)e ,(Jl= 1.2,3,4) 
'VV 'V2~ 

with 

or, 

(11.142) 

(11.143a) 

(l1.143b) 

Also, the factor E/k) in (11.142) denotes that u,,(x) is a ."ectorial plane wave, E)1(k) 

being the Jlcomponent of a 4-vector E(k) in the Minkowski space. 
Expanding the field operators A/x) in tenns of u)1(x). we have (d. Eq. 

(11.77», 

II. Here, V denotes the scalar potential and should not be confused with the nonnalization volume 
V occurring in equations such as (11.144). 

12. Quantization of the e.m. field using the radiation gauge [(Eq. (10,169a)J is discussed in Ref. 2, 
Section 4.2. 

13. Reference cited in footnotes 40 and 41, Chapter 10. 
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Here, E (,) (k), (r = 1,2,3,4), form a quartet of complete orthononnal vectors (for 

C<ldl value of k) in thc k-spaceI4
: 

E ~). (k) E~) (k') = 0rs 0k,k" (11.145a) 

(11.145b) 

E~) is the Il-component of E (r) (that is, the projection of E (r) onto the x.,.-axis). It 

follows that, 
4 

E.,.(k) = 1: ex,. E~) (k). 
r~l 

(11.146) 

We make usc of the arbitrariness of the vectors !'O (,) to choose F (3) (k) along k and 

E (I) (k) awl E (:I) (k) perpendicular to k. We further choose the 3-axJS along k. 
Then, 

E~) (k) = 0..., E (,) (k), (11.147) 

E(I) (k) = (el(k), 0), I = 1,2,3,1 

E (4) (k) = (000, i), J 
with (11.147a) 

I,here e1
, e2

, e3 arc mutually orthogonal unit vectors with 

3 k 
e =m' 

With this choice, Eq. (11.1441
) reduces to, 

A (x)=_I_1:_
1
_[a (k)E("')(k)e ih +a t (k)E w (k)e-i'1 

I' -{V k ..J 2Wk I' .,. 

= A~)(x) + A~)(x). 

In analogy with (11.78), we postulate the commutation relations, 

[a.,.(k), a~(k')] = 8.,.v8(k - k'), (11.148) 

La .,.(k), av(k')] = [at(k), at(k')] = U. 

Then, a~(k), d.,.(k) and d~(k)a",<k) could be interpreted as the creation, annihilation 

and the number operators, respectively. of a particle (referred to as photon) of 

momentum k, polarization vector E (.,.) and energy wk = I k I. According to defi­

nition 01.147), E(l) and e(2) represent transverse (i.e., perpendicular to the 
momentum vcctor k) polarization while E (3) corresponds to longitudinal 
polarization. A physical interpretation of E (4) is more difficult, but a photon with 
polarization along E (4) is called a scalar or time-like photon, The fact that there 
arc three polarization states in space indicates that the photons have spin 1 
(S, = -1,0, + 1). Also, current density operator (11.82) in this case is, 

14. Since the system is enclosed in the volwne V, k could be treated as discrete according to Eq. 
(11. 92). 
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A • [04.M A 04.M At) . 
5/X)=-Le oA Av-~Av =0. 

V.l' Av•1l 

(11.1 ~<)) 

So the !.'holons are electrically neutral. 

The field it/x) conjugate to A/x) is given by, 

. d4.M. 04.M . . A 

nix) ==:;---- = -I v- == zo.Al' =AIl(x), 
aA 11 aA Il•4 

(11.150) 

and the Hamiltonian density i!;,M(X) by 

~M(X) = itl' A I' - 4.M 
1 • • • A 

== 2 tnl'7t1' + (VA 1') . (VA 11)]' (11.151) 

From (11.151), (11.150), (11.1441
), (11.94a), (D.6a), (11.145a) and (11.l43b), we 

obtain the field Hamiltonian: 

II EM = Iv i~:M(X)d\ == ~ ~ {a/k), a~(k)} Wk 

= ~;[N/k)+~JWk' (11.152) 

which may be compared with (11.88). The total energy of the field is, thus, 

EEM = ~ ~ {n,,(k) +-2
1}wk, (11.153) 

k ,,~1 

where nl'(k) = 0, 1,2, ... ,+00. 

The Covariant Commutation Relations 

Using Eqs. (11.1442), (11.145a) and (11.147), it is easily shown that 

with, 
-i 1 

D(x)=-V ~-2 (exp(ikx)- exp(-ikx)),(wk=lkl) 
k wk 

1 J 3 (Sin~t) =--- d kexp(ik·x) -- , 
(2n)3 v ~ 

(1 Ll54) 

(11.155) 

where the result, Iv d 3k exp (-ik· x) == Iv d 3k exp (ik· x), has been used. We 

note that Eq. (11.1561
) is similar to Eq. (11.91 2

), the only difference being that 

whereas (f)k:= -Jk2 in the former, wk = K+ m2 in the latter. It is obvious, then, 

that 
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D(x) = Lt L\(x, m) (11.15(/) 
'" -40 

-1 f =-3 d4k exp (ikx) E (w)o(e), 
(21t) 

where L\(x, m) == L\(x), and the last line follows from (11.914
). From (11.1563

), we 
have, 

d"dP(X) =~fd4k exp (ikx) E (w) k 20(k2
) =0, 

(21t) 

by Eq. (D. 9). Thus, D(x) satisfies the field equation. 

Problem 11.8: Verify (11.152). 

(11.157) 

Problem 11.9: Show that D (x) vanishes except on the light cone (x 2 == x2 
- t 2 = 0). 

Problem 11.10: Establish the following equal-time commutation relations: 

[A..ex), itv(x')]" ~, = i 0I'Vo(x - x'), 

[A l'(x),Av(x')] I'~, = [it/x), ~(x')] ,'=, = o. 

The Gupta-B1euler Formalism 

As already stated, the foregoing quantization pro(;edl!r-: suffers from two draw­
backs. Firstly, it ignores the Lorentz condition, 

d"A ,,(x) = 0, (11.158) 

and secondly it assumes all the four field operators Ii I' to be Hermitian whereas ,14 
should be antihermitian. In the Gupta-Bleuler formalism being discussed below, 
these problems are solved by retaining the Hermitian nature of the A,,'s but 

modifying the usual definition (2.9) of the scalar product. It is further emphasized 
that correspon. nce with classical theory requires only the expectation values of 
operators, rather than the operators themselves, to obey the classical equations. 

Thus, the definition, II ct>11 2 = (ct> I ct», of the norm of ct> is replaced by 

II <1>112 = (ct> I ~ I ct>). (11.159) 

~ is called the metric operator. We will require the norm to be real. Then (see 
Eq. (2.103», 

(11.160a) 

The norm of a vector needs no longer be positive-definite. The vectors divide into 
three classes depending on the norm being positive, negative or zero. Only for the 
first of these classes the probability interpretation will go through, so that we will 
want all physically significant states to be restricted to this class. 

With the modified norm (11.159), the expectation v~lue of an operator A 
becomes, 
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(l1.161) 

(A) is real for a Hermitian operator Aif [~,A] = 0 and is imaginary if {~,A} == O. 
Therefore, ~ should be so chosen as to satisfy the conditions. 

Also, 

[~,Ai:)] =0, j==.1,2,3,} 

{Tj,Aix)} = o. 

[i{,A) = ~[~,A) + [~,A)~ = 0, 

[~2,AJ =~{~,AJ - {~,AJ~ =0. 

(1l.160b) 

(11.162) 

Thus, ~2 is a c-number (one that commutes with all operators of the field) and 

can, therefore. be chosen so that 

(11.16Oc) 

Determination ()f~ 

Eqs. (11.160a-c) arc sufficient to determine~. From (11.1442) and (11.l60b) we 
have, 

[~,a,(k)]=6, (r=1,2,3). 

{~,aik)} =0. 

(11.162<1) 

For simplicity, we assume initially that the state <I> represents photons of 
momentum k only. Then, in the occupation number representation CEq. (11.46», 

<I> = I np n2, n3, n4), n", := n",(k), 

and (Eq. (11.49», 

(11.163) 

=: H n,(k) 0.".; + I} no •• ,'. 
t li r J 

From (11.162) and (11.163), we get, 
(..., n: ... I Ii I ... n, .. .) = ( ... , n, + 1, ... I ~ I .. . n, + 1, ... ), (r =: 1,2,3) 

(11.164a) 

< ... , n41 ~ I ... , n4 > = - < ... , n4 + 1 I ~ I ... , n4 + 1 > . (11. ](Hb) 

That is, Tj (the matrix) is diagonal. 
Also, by Eq. (ll.16Oc), 

1 (nl' n2, n3, n4 I ~ 1 nl' n2, n3, n4) 12 = 1. (11.l64c) 

Eqs. (11.164a-c) show conclusively that 
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If <P corresponds to photons of several k-values, then, 

where 54 = rnik). 
k 

The Lorentz Condition 

A 5. 4 

(<1> III I <1» = (-1) ~ }:l O.,(k), .:(k), 

In the classical theory, the Lorentz condition is an expression of the observed 
l.JansvcrsaJily of the eJec/romagnetic field. As already pointed out, for the quan­
tum theory to have the con'ect classical limit, it is sufficient if the expectation 
valucs obey the classical equations. Therefore, in place of (11.158), we require, 

(o .. AI'> == (<1> I ~0I'AI' I <1» = O. (11.166) 

Now, 

«I> I l1a; 1'1 <1» == (<1>, ~al'A 1'<1» = (<1>, ~ai~)<1» + (<1>, ~oi~)<1», 
:md using (2.54) and (11.160b), 

, A A (-) _ A A (+) 
(<1>, ll0I'A" <1» - (lla~1' <1>, <1». 

(11.167a) 

(ll.167b) 

Herc ;\~) and A~) are respectively the positive and the negative frequency rarts uf. 

"'w "!.'hus, (11.166) is equivalent to the subsidiary condition, 

a "'(+)<1> = 0 I' I' . 

But. ",('l(X) =_1_r_1_a (k) E(I') (k)eikl:, 
" W k ,j2wk " 

so that, 

= ~L-{o):{a3(k)-aik}eih:, 
\j2V k 

where, the fact that kl == k2 = 0, and the relations, E (3) k3 == I k 1== C1\; E (4) k4 == - C1\, 

arc macle usc of. Thus, Eq. 01.1681
) could be written as 

[a}(k) - aik)J<1> = O. (11.1 1')82
) 

In thi:; forlll, Eq. (11.166) is seen to be a restriction on the allowed states <1> of the 

fielcl,"ather than a condition on the operators A I" We see that the restriction is on 
tl1c com bination of the longitudinal and the scalar photons, and does not affect the 
lrans\crsc photons. In fact, based on a state with only tmnsverst photons, we can 
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consLruct a series of states wilh the same set of trdnsverse photons but differcnt 
combinations of longitudinal and scalar photons in accordance wilh Eq. (11.1682

). 

It can be shown that lhe different states so constructed are related by gauge 
lransformations. For a free field, the gauge can be so chosen that only transverse 
photons arc present. The longitudinal and lhe scalar ph0lons are, however, 
requircd to represent the Coulomb interaction between charges. 

Problem 11.11: Show that the state, 

<l>r} = )" uii';) + aik)] N <l>;-S eO, 0), 
-vN! 

satisfies condition (11.1682
), where <!>fen" n4) denotes a state wilh n,longitudinal 

and n4 scalar photons. 

11.5 INTERACTING FIELDS 

In the prcceding Section, we have considered the quantum theory of free fields. 
Applications to physical problems would, however, require the consideration of 
interacting fields. Interaction between two fields, in quantum field theory, is 
viewed as a coupling between the fields by means of a coupling constant. For 
example, the interaction between eIc.ctrons and photons is described in tcr~ns of a 
coupling between the Dirac and the electromagnetic fields, the electric charge (of 
the elecLron) acting as the coupling constant [Eq. (11.193) below]. 

Unlike the case of free fields where the eigenvalue problem is exactly soluble, 
the problem of coupled fields turns out to be much more complicated and difficult 
for solution. Only approximation melhods have been devised for tackling the 
plOblem. An account either of the various difficulties encountered in the case of 
t "r: coupled fields or of the melhods devised to overcome these is beyond the 
scope of this bookls . Instead, we will restrict ourselves to a qualitative discussion 
01 certain concepts and techniques employed in the treatment of coupled fields, 
using the coupling between the Dirac field and an applied (external) electromag­
netic field for illustration. We start wilh the technique of Feynman diagrams. 

Feynman Diagrams 

Feynman diagrams are graphical representations of certain scattering processes, 
inLroduced for the first time by Feynmanl6 in connection with the interaction of 
elcCLromagnetic field wilh charges. Feynman introduced these on the ba~is of 
intuitive arguments. Dyson has given a malhematical interpretation to these dia­
grams. The Feynman diagrams have proved to be a very useful aid in the pictu­
risation and interpretation of the complex malhematics underlying scattering 
theory. 

15. Such accounts could be found in some of the references given at the end of the C;lapter. 
16. R.I'. Feynman. Phys. Rev. 76.749 and 769 (1949). 
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Consider the scattering of an electron by a potential (representing the electro­
magnetic field). The electron can be represented by a world line in space-time. 
We will denote the space axis by x and time axis (taken to be perpendicular to the 
space-axis) by t (see Fig. 11.1). A solid line parallel to the t-axis, as in Fig. 
11.1 (a), denotes an electron 17 at rest while an inclined line as in (b) represents an 
electron with a uniform velocity. In these diagrams, if we dispense with the 
explicit drawing of the space and time axes, we have the Feynman diagrams of an 
electron at rest and an electron with a uniform velocity respectively. Thus, in a 
Feynman diagram time runs vertically upwardl8 and the space coordinate 

t 
t 

---:0+---+-----. X --o-+---,~-------. )( 

(a) ( b) 
Fig. 11.1. (a) Electron at rest, (b) Electron with a unifonn velocity. 

increases from left to right. According to this scheme, Fig. 11.2(a) represents the 
scattering of an electron. The electron starts froml9 x at time t, gets scattered by 
the potential at Xl at time tl > t, and reaches x' at t' > tl' Fig. 11.2(b) represents 

another way of looking at the same process (as far as the initial and the final states 
of the electron, which only are observed, are concerned). An electron-positron 
pair is created at X2 at time t2 > t, the positron proceeds to Xl where it annihilates 

with the original electron at time tl > t2• The electron of the pair proceeds to x'. 

Now we notice one thing: if we reverse the direction of the arrow on the world 
line of the positron between Xl and X2 (Fig. 11.2 (c»), then the whole process is 

represented by a single world line, namely that of the electron which, however, 
runs backward in time between Xl and xl. Thus, positron could be described as 

an electron running backward in time. The world line itself could be looked upon 
as representing the progress of an electric charge which can go forward as well as 
backward in time, the continuity of the line ensuring the conservation (inde­
structibility) of the charge. 

17. Evenlhough we specifically refer to the electron, the electron could be replaced by any fermion 
as far as the diagram is concerned. 

18. True only for the so-called external lines defined later. In the case of inlernallines, time may 
run upward as well as downward. 

19. We use bold x to denote the space co-ordinates alone while x is used to denote both x and t 
together. 
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(x~t') 

Fig. 11.2. Scattering of an electron by a potential. 

From the foregoing we conclude that we can represent an electron (a fermion) 
graphically by a solid line pointing forward in time and a positron (antifermion) 
by one pointing backward in time. 

Let us now have a closer look at the scattering process. We will later see that 
the interaction between the electromagnetic field and the electric charges is 
described, in quantum field theory, in terms of emission and absorption of photons 
by the electric charges. A photon is represented by a wavy20 line in the Feynman 
diagram. Thus, the Feynman diagram corresponding to the scattering of an 
electron by electromagnetic field is as shown in Fig. 11.3(a). An electron 01 
momentum p absorbs a photon (labelled y) of momentum k at x and has its 
momentum altered to pi:::: p + k. Similarly, Fig. 11.3(b) represents positron 

r 
k k 

e 

( a ) ( b ) 

Fig. 11.3. (a) Electron scattering. (b) PosiuvlI scattering. 

20 JlI.er bosons are represented by dolled lines. 
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scattering. The point x in the diagram is called a vertex. The conservation laws 
(relating to momentum, energy, etc.) should be obeyed at th~ vertex. For this 
reason the arrow on the photon line may be omitted since that can be determined 
from the conservation of momentum and the direction of arrows on the fermion 
lines. The following points also may be noted: 

F D 1. A solid line ending at the vertex represents either annihilation (or absorp­
tion) of an electron or creation (emission) of a positron. Similarly, a solid 
line beginning at the vertex denotes either creation of an electron or 
annihilation of a positron. 

FD2. The number of fermion lines ending at the vertex is equal to the number of 
fermion lines b0ginning at the vertex (conservation of fermion number). 
Following a fermion line through the vertex, the arrow always points in the 
same sense. 

r::f' above rules hold good quite generally for all Feynman diagrams. As a 
furti1e r example, we give in Fig. 1l.4 the Feynman diagrams correspon(' ing to 
single-quantum pair creation [(a)] and pair annihilation [(b)]. 

Diagrams of the type shown in Figs. 11.3 and 11.4 are known as basic vertex 
parts. These do not, necessarily, correspond to actual physical processes. For 
example, the single-quantum pair creation (or annihilation) shown in Fig. 11.4 
violates the conservation of linear momentum. (This is seen by going over to the 
centre of mass frame of the electron-positron pair, where the photon momentum 
does not vanish.) 

e+ 
e 

(a ) ( b ) 

Fig. 11.4. (a) Pair creation, (b) Pair annihilation. 

Diagrams corresponding to actual physical processes can be obtained by 
:ombining two or more basic vertex parts. Figs. 11.5 and 11.6 ilIustrate such a 
)rocedufe. 
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e 

A(2) 
SS1 

e 

e 
( b ) 

Fig. 11.5. Compton scattering by electrons 

A (2) 
S B5 

(a) Two-quantum pair creation 

Fig. 11.6 

A (2) 
S 86 

(b) Two-quantum pair annihilation 

429 
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Fig. 11.5(a) represents Compton scattering by electrons. If tl < t2, the electron 

absJrbs the initial photon at XI' is propagated as a virtual electron from XI to X2 and 

emits the final photon at XL If tl > t2, the same diagram represents the creation of 

an electron-positron pair at X2 with emission of a photon, propagation of the (vir­

tual) positron to XI where it annihilates itself with the incident electron with the 

absorption of a photon. Fig. 11.5(b) represents the same phenomenon with initial 
and final photons exchanged. 

Figs. 11.6(a) and 11.6(b) represent respectively two-quantum pair-creation and 
annihilation. In 11.6(a), an electron-positron pair is created at XI(t1 < tz} with the 

absorption of YI' the electron is propagated to Xl where it absorbs Y2' If tl > t2> the 

electron-positron pair is created at X2, the positron is propagated to XI where it is 

absorbed along with YI and is remitted. A similar interpretation applies to Fig. 

11.6(b). 

Problem 11.12: Draw the Feynman diagrams corresponding to (a) pair annihi­
lation in the field of a proton and (b) the decay of a neutron into a proton, an 
electron and an antineutrino. 

Normal Products 

An operator 6 which is a product of creation and annihilation operators is a nor­
mal product if all annihilation operators stand to the right of all creation operators. 
Thus, 

Normal product of c /; == :c /;: = ±t;c r' (11.l69a) 

where the upper sign is to be chosen when c; and c r are boson operators (hence 

commuting) and the lower sign when they arc fermion operators (anticomm­
uling). In general, 

:}..B(; ... L: = (-l)NQR ... W, (11.l69b) 

where Q, i<. , ... Ware operators}.., B , ... L re-ordered so that all the annihilation 
operators stand to the right of aJl creation operators, and N is the number of 
inlerchanges of pairs or rermion operators required to accomplish the reordering. 

Obviously, 
:(A8): =±:(8A):, (1l.169c) 

the upper (lower) sign applying for bosons (fermions). 
Normal product obeys the distributive law: 

:(11B +(;6): = :AB:+:(;6: 
A very important property of a normal product is that its vacuum expectation 
value is zero. For, either the right-most member of the normal product is 
an annihilation operator in which case, : (AB ... ) : 1<1>0) = 0, so that (<1>0 I 
:(.4 B ... ): I c:I>o> = 0, or else, the normal product contains only creation operators in 
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which case :(,1B ... ): 1<1>0> is orthogonal to the vacuum state 1<1>0> . This property 

of the normal product is responsible for its usefulness. For, if we can express an 
operator 0 which is a product of creation and annihilation operators in terms of 
normal products, then the vacuum expectation value of 0 can be easily evaluated 
since it is the vacuum expectation value of what is left of 6 after removing the 
normal products. Thus, in the case of a product of two operators, we can write, 

A B = :AB:+ < <1>0 lAB 1<1>0>' (11.170) 

Dyson Chronological Product (P) 

For two operators A(x) and B(x'), the Dyson chr('nological product (DCP) is 

defined by 

, " {A (x) B(x,), ift > t} 
P{A (x)B(x )} = B(x')A(x), ift < t' 

That is, in DCP the operators occur in chronological order with the time running 
from right to left. 

Using the function E (x) defined by Eq. (1l.97), we have (with Xo '" t), 

"" 1 '",1 "' 
peA (x)B (x')} = 2 [1 + E (xo - x'o)] A (x)B (x ) +2 [1- E (xo - x' J]B(x')A(x) 

(11.1712) 

=P{B(x')A(x)}. 

Wick's Chronological Product (T) 

Wick's chronological product (WCP) takes into account the commuting or anti­
commuting nature of the operators involved. For commuting operators it is the 
same as the DCP. But, in the case of fermion operators, it differs from DCP by a 
phase factor: 

T{A(x)B(x') ... } = (-li ip{A(x)B(x,) ... }, (11.172) 

where N = the number of interchanges of pairs of fermion operators involved in 
P { }. Thus, for two fermion operators, we have, 

, " {A(X)B(X'),ift>t'} 
T{A(x)B(x)} = B'( ,)A't )'f ' - x ,x, 1 t < t 

(11.172a) 

or, using E (xo) , . 
T{A(x)B(x')} = E (xo-x'o)P{A(x)B(x')} =-T{B(x')A(x)} 

(11.172b) 

In general, 
T{A(x)B (x,)} = ±T {B(x') A (x)} , (1l.172c) 

where the upper (lower) sign applies to boson (fermion) operators. 
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Contraction 

Using Eqs. (11.172a, c), (11.170) and (11.169b), we obtain, 

T {A (x1)B (x.)} = :A (x1)B (x0: + A (x1)B (x.), (11.173) 
~ 

where, A (xl)B (x.) =(<1>0 1 T{A(Xl)B(x.)} 1 <1>0}' (11.174) 
~ 

and is known as the contraction of A and B. Obviously, A (xl)B (x0 will vanish 
~ 

unless one of the operators creates a particle which the other operator annihilates. 
Therefore, the Feynman diagram corresponding to A (xl)B (x0 will be an internal 

L..:.....:..:.J 

line [that is, one beginning at a vertex and ending at another vertex (Fig. 11.7)]. 
It is referred to as a Feynman propagator since it represents the creation of a 
(virtual) particle or antiparticle at one vertex, its propagation to the other vertex 
and its absorption there. A mathematical expression for the Fcynman propagator 
for the case of each of the three relativistic fields considered in Section 11.4 could 
be obtained as follows: 

A 1\ 
A(X 1) 8(X 2) 
11--__ ...J1 

Fig. 11.7. Feynman diagram corresponding to A (x,)B (x2). 
~ 

From (11.172) and (11.1712
) we have, in the case of a (Hermitian) Klein-Gordon 

field, 
T {<l:>(x)<1>(x')} = p {(l:>(x)<I>(x')} 

1 , , , 1 , A " ="2 [1 + E (Xo - x '0)] <I>(X )<1> (X ) +"2 [1 - E (Xo - x 0)] <I>(X ) <l> (X ). 

(11.175) 

Also, using (11.951
), 
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(<Do I ~(x) <P(x,) I <Do>:::: (<Do I <p(+)(x)<p(-)(x,) I <Do> 

=-1-f d 3k exp(ik(x-x') 
(2IT)' 2tok 

(<1>0 I <P(X')<P(X) I <1>0> = i ~(+)(x' - x) = -i~H(X - X'). 

Thus, 

where 

-+2' (I) ~O -- IA (X),Xo ' 
< 

In the casc ofthc Dirac ficld, we have from (ll.172b) and (11.171 2
), 

~(X(x) \j; p(x'):::: (<1>0 I T{~a(x) 0/ p(x'») ! <1>0> 
L-----I 

1 .!>.. , -2:0 - E (xo-xo')] (<1>0 !\Jfp(x')\Jfa(x) I <1>0>' 

And using Eqs. (11.135a, b) wc gct, 

(cPo I ~(X(x) \j; p(x') ! cPo> = (<1>0! ¥;)(x) 0/ t>cx') ! cPo> 

= -is;gCx - x'), 

(<1>0 ! \jf p(Xf)~jX) I <1>0> = (cPo ! \jf~+)(X')¥';\x) ! <1>0> 

=-iS~(x -x'), 

so that, 
,-".. 1 
'l'a(x) 'l'p(x') = --2 SF (x -x'), 
'------.J Cl P 

SFn~ = [1 + E (xo)]iS~'6(x) - [1 - E (xo)JiS~-J(x) 

433 

(11.176a) 

(11.176b) 

(11.177) 

(11.178a) 

(11.178b) 

(l1.180a) 

(11.lS0b) 

= (YjJ.ajJ. - m )~/'(X). (11.181) 

Here, the last stcp follows from Eqs. (11.1361
) and 01.178a). Also, 
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\II ~(X')o/a(X) = -o/a(X) \II ~(X'), (11.182a) 
i....:.......-- L---J 

o/a(X)o/~(X') = 'if a(x) 'if ~(x') = O. (11.182b) 
l--..-J l...-.--.J 

The propagator for the electromagnetic field may be derived analogously to 
that for the Klein-Gordon field. We get, 

A l'(x)Av(x') = (<1>0 I p Vtl'(x)Av(x')} 1<1>0> 
~ 

where, [see Eq. (11.1562
)], 

Wick's Theorem 

(11.183) 

(11.184) 

The normal product of a contraction is obviously the contraction itself (since a 
contraction does not contain creation or annihilation operators): 

:AB:=,1B. (11.1 85a) 
L..J '--' 

In general, 

:(,1BC6EF .. .1i?LM ... ): = (_l)N Ai? BM 6ft: (CE .. .1£. .. ): I I L-.J I I L-J L-J L..I 

(ll.185b) 

That is, the normal product of a product of operators some of which are contracted 
is the product of the contractions and the normal product of the uncontractcd 
operators. Expression (11.185b) is called a generalized normal product. 

The concept of the generalized normal product can be utilised to extend Eq. 
(11.173) to the case of an arbitrary number of operators. The result is, 
T{ABc6 ... wxfZ} 

= :(,1BC6 ... wxfZ): 

+ : (,1Bc6 ... wxfZ): + :(ABc6 ... ): + '" + : (,1B ... wxfZ): 
L..J L-J L..J 

+ : (ABc6 ... wxfZ): + ... + : (,1Bc6 ... wxfZ): 
L-J LJ L-I L.....I 

+ ................. . 

(11.186) 

This equation gives the WCP of a product of operators in terms of the gener­
alized normal products. It is known as the Wick's theorem21

• It could be proved 
by induction starling from Eq. (11.173). 

21. Wick, G.C. Phys. Rev. 80,268 (1950). 
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Electromagnetic Coupling 

The interaction between a Dirac field and an (external) electromagnetic field can 
be described in terms of the modification of the 4-momentum of a Dirac particle 
arising from the coupling of the two fields. This modification is given by 

PI' ~ PIJ.'= PIJ.-eAIl' or, 0IJ. ~0I'-ieA/l' (11.189) 

Making this substitution in (11.103a), we get for the Lagrangian density of the 
system the expression, 

i.J..x) = £Vex) + 4(X), 

with 4) given by Eq. (11.1 03a), and 

4(x) == ie o/(x)YI'~(x)A/l(x) = eJ/lAI" 

(11.190) 

(11.191) 

(We see that the coupling constant in this case is e). The corresponding Hamil­
tonian density is given by 

J{(x)=ir(x)~(x)-i.J..x)=.1b +~(x), (11.192) 
(.) 

where ~)(x) is given by Eq. (11.120) and 

1~(x)= - 4(X) = - ie\ji(x)Y/lA/x)~(x) (11.193a) 

= - ic( 0/ A~)x 
- ie:(o/Ao/)x: (11.l93b) 

Here, 

A == y
I1
A/l' (11.194) 

(11.193b) follows from (11.193a) by tbe application of (11.170) and of the fact 
that the vacuum expectation value of ('if A~) is zero. 
The Hamiltonian of the system is, 

II=HD+IJ/, (11.195) 

where 

The Scattering Matrix 

The basic equation to be solved in the case of a coupled system is, 

iot<l>(t) == H/(t)<l>(t), 

(11.196) 

(11.197) 

where both the state vector <l> and the interaction Hamiltonian II/are assumed 

lo be in the illleraction picture22 [see Eqs. (4.40) and (8.157) and Problem 4.4]. 

22. As explained in Section 4.1 C, the interaction picture is advantageous when the Hamiltonian can 
be split up into two paris as in (11.195). Also, the interaction picture is beHer suited, as com~ 
pared with the Schrodingcr picture, for a covariant formulation because of the time-depcndenr . 
of both the operators and the state vectors in the fonner. 
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As described in Section 8.4, <I>(t) can be expressed as an infinite (perturbation) 
scrics~ \, 

<I>(t) == U/t, to)<I>(to), 

where [sec Eqs. (8.l593
) and (8.160a) and Problem 8.12], 

(11.199) 

(11.199a) 

In a scattering problem the initial state <I>(to) corresponds to to = ~ (long before 

scattering takes places) and the final state <I>(t) to t = += (long after scattering has 
occurred). Thus, Eq. (11.1981

) becomes in this case, 

<1>( 00) == S <1>( ~), (11.1982
) 

wh'.;rc 

arId is called the scattering (or S-) matrix [U,(oo,-oo) is the matrix representation 

of [) I( 00, ---<x) == S]. In (11.1982
). <I> (---<X> ) stands for a set of initial states and <1>(00) 

for a set of final states: 

<I> z< ~ ) <I> k-oo) 

<I>(~) = ; <1>(<>0) = 

<I> I (--00) <I> j( --00 ) 

so that the ji-th matrix clement of S: 
Sji = (<1)/00) I [) k"', -OQ) I <1>;(--00», (11.201) 

gives the probability amplitude for the transition ¢i(-OO) to <l>ko ). A complete 

knowledge of S, therefore, enables us to predict the probability for transition from 
any initial state to any final state. Finding S is, thus, equivalent to solving Eq. 
(11.197). This is the basis of the S-matrix formalism. 23 

In Eqs. (11.1982
) and (11.201) the initial and the final states are identified willi 

the eigcnstates of the free Hamiltonian (II D in (11.195» and, thus, willi the 'bare' 

particles. However, in a scattering experiment the initial and final states are those 
of the physical particles which result from the interaction of the bare particles willi 
their own fields or photon clouds. The inconsistency is resolved by assuming 
an adiabatic switching on and off of the coupling constant. That is, the coupling 

23. The S-malrix fonnalism was originally developed by Wheeler [Wheeler, I. A, Phys. Rev. 52, 
1107 (1937)], bUl its further development and application to the interaction of clcmcntal)' par­
tide, arc due to lIeisenberg [Heiscnberg, W. Z. Physik, 120,513,673 (1943)). 
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constant is zero at ( = -00, increases adiabatically, reaching its full value at ( = -T, 

retains this full value during -T ::; t ::; T and thereafter decreases to the value zero 
at t = 00. The scattering takes place during the time -'t. < «'t, where 't ~ 1'. 

Now, from (11.2001
). (11.199) and (11.199a), we have, 

$ = i $(0), 
o ~O 

where, d
4
xj = d 3

x j dlj' 

Since, according to (11.193), :H;(x) is bilinear in the fermion operators, 

p {:H;(x\) ... :H;(x,)} = l' {:H;(x\) ... :H;(x.)} 

== He)"1' {:( ~ A'V)x : ... :( ~ A'V)x :} 
. 1 • 

(11.2002
) 

(11.20i) 

(11.203) 

(11.204) 

The Wick's chronological product in (11.204) can be expanded in terms of the 
generalized normal products with the help of Wic'~'s theorem [Eq. (11.186)]. 
Since the contraction of a normal product is zero, we can write. 

1'{:(~A\V)xl: ... : {(~A\Vt.:} = T'{(~A\V)Xl (~A\V)"2'" (~A\V)xJ (11.205) 

where 1" contains no equal time contractions. Substituting from (11.204) and 
(11.205) in (I 1.202\ we get, 

(11.20i) 

We will consider the scattering processes corresponding to the lowest few values 
of n: 
n=O: 

$(0) = i. (11.206) 

This represents transitions from a state to the same state (no scattering). The 
Fcynman diagram contains no vertex (Fig. 11.8). 

~(o) 

Fig. 11.8. Feynman diagram representing zero-order processes. 
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n = 1: 

~(I) = -e fd4XT'i( ~ A 1;/) l = s(l) +SO) +S(I) +5(1) 
\ lTTJ;i abc d 

where 

S~l) = - e f d4x( 0/ (+)A~-»)x ' 

,~~I) = - e f d4X(0/(-)A~+)t, 
S~) = - e f d4x( 0/ (-)A~-»)x ' 

We recall [Eq. (11.118)] that, 

\Ii (+l is linear in positron annihilation operator, 

\Ii (-) is linea.r in electron creation operator, 

'V(+) is linear in electron annihilation operator, 

'V C
) is linear in positron creation operator. 

The Feynman graphs corresponding to these are shown in Fig. 11.9. 

(11.207) 

(11.207a) 

(J 1.207b) 

(11.207c) 

(11.207d) 

Thus, S~I) can cause transition from a state <Pi to a state <l>f which differs from 

<Pi by the absence of an electron-positron pair. That is, 5~l) corresponds to pair 

annihilation (Fig. 1 1.4 (b». Similarly, Sb1
), S~l) and S~) correspond respectively to 

positron scattering (Fig. l1.3(b», electron scattering (Fig. l1.3(a» and pair cre­
ation (Fig. I1.4(a». Conservation of energy and momentum, however, prevents 
the above processes from taking place. Therefore, the lowest order term in the 
S-matrix expansion that corresponds to physical processes is of second order. 

" v<-) 

e 

Fig. 11.9 Feynman diagrams corresponding to the field operators.ljt±) and ~("). 

"( ) " -
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n'" 2: 

(11.208) 

where, 

S~) = e
2

l 

f f d4x}d4x2: {(~A~\ (~A~)J : (11.208a) 

S~)=e2f f d\d4X2:{(~At)x\(rA~)J: (l1.208b) 

S(~)=e2ffd4Xd4x :l(\liA~) (\j;A~).~: 
c 2 } 2 l L xl I 'j 

(11.20Se) 

,~~) = e2 f f d 4
x\d

4
x2: {( \jJ tM t~J)·J : (II.208d) 

,~~) = ~2~ffd4X}d4X2:{( \jJ A-o/)x (\Ii A~») : 
I~!:J 

(11.208e) 

(11.208t) 

Eq. (11.208a-f) follow by the application of the Wick's theorem to the WCP in 
(11.208) and by noting that 

ff d4Xld4X2:\( \Ii A~)x (\Ii A~)x } : 
L--~ I 

== f f d4Xld4X2:{(o/At)x/yA~)xJ: 
0= f f d\2d4X

l :{("'A9\(9A~)xJ: (11.209) 

S~2) does not contain a propagator between the vertices' Xl and X2 and thus, 

consists of two unconnected basic vertex parts. Therefore it corresponds to the 
same type of processes as those represented by S(l). 

Expanding the normal product in ,~~) in terms of the positive and the negative 

frequency parts of~, \V and A we have, 
8 

S'(2) = ~ S'(2) 
B 4J Bi' 

;::::1 

with (here, for the sake of case of interpretation, we keep together the operators 
referring to the same vertex), 
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S~~ = e1 f f d4x1d
4x2 fVH(x:JA(-)(X:J~(XI)A(+)(XI)~+)(XI)' 

S~l=el J J d\d\l fV(-)(X:JA(+)(X:J~(XI)A(-)(XI)~+)(XI)' 

s~~ == e1 f f d\ld4X2~-)(X:JA(-)(X:J~(x:JA(+)(XI) fV (+)(xl), 

S~~ '" e1 f f d4Xld4X2~-)(X:JA.<+\X:J~(X:JA(-)(Xl) fV(+\x1), 

S~2~ = e 2 f f d\ld\2 "0/(-) (x:JA (+)(X:J'!'(X:J y (xl)A (+)(XI)~-){XI)' 

S~~ = e2 f f d4xld
4xl "o/(+)(x:JA{-)(x:J~(X:J "o/(XI)A.<-)(XI)~+)(XI)' 

L...-.-J 

S~~ = e1 f f d4x)d4xl fV(-\X:JA{-)(X:J~(Xl)A.<+)(X)~-)(Xl)' 

s~i = e2 f f d4xld
4xl fV{-\X:JA(-)(X:J~(XI)A.<-)(XI)~-)(XI)' 

Now, a contraction corresponds to an internal line in a Feynman diagram while 

the uncontracted operators are represented by external lines. Thus, S~2) represents 

processes that correspond to Feynman diagrams with two external fermion lines, 
two external photon lines and one internal fermion line. Also, we see from 

(11.1791
) and (11.180a, b) that ~(xz) o/(x1) is the propagator for a virtual electron 

'----J 

from Xl to x2 if t1 < t2 and for a virtual positron from X2 to XI if t2 < fl' Refening 

then to Fig 11.9, it is easy to see that the Feynman diagrams corresponding to S}il 

and ,~~21 are as in Fig. (11.5). That is, s}il and s}ii represent Compton scatlering by 

electrons. Similarly, S~~ and s}il correspond to Compton scattering by positrons 

(Fig. 11.10), S}iJ and s}i~ respectively to two-quantum pair creation (Fig. 11.6(a» 

and annihilation (Fig. 11.6(b». S~~ and S~~ do not correspond to any physical 

processes as they would lead to violation of the conservation laws. 
A similar analysis of the other terms in (11.208) could be made. We give 

below the main conclusions: 

S~) corresponds to processes represented by Feynman diagrams consisting of 

four external fermion lines and one internal photon line. Two of these processes 
arc depicted in Fig. 11.11. (a) represents electron-electron scattering (Moller 
scattering) while (b) represents pair annihilation in the field of a positron. The 

other processes corresponding to S~) are electron-positron scattering (Bhabha 

scattering), positron-positron scattering, pair creation in the field of a positron and 
pjir creation and annihilation in the field of an electron. 
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e+ 

(0) 

AI? ) 
S'-

84 

(b) 

Fig. 11.lO. Compton scattering by positrons. 

11(2) 
Sc 

e 

441 

Fij(. 11.11. Processes represented by S~) [Eq. (l1.208c)]: (a) electron-electron scattering, (b) 

pair-annihilation in the field of a positron. 
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Processes corresponding to sg) have two external fermion lines connected by 

.10 internal fermion line and an internal photon line as shown in Fig. 11.12. Fig. 
11.12(a) represents the interaction of an electron with the photon field. This is 
referred to as the electron self-energy diagram as it represents a process by which 
a bare electron converts itself into a physical electron. (The mass of the physical 
electron is larger than that of the bare electron.) Similarly Fig. 11.l2(b) is the 
positron self-energy diagram. 

e 

e 
(0 ) 

e+ 

(b) 

Fig. 11.12. Processes corresponding to sg) [Eq. (I1.208d)): Ca) electron self-energy, (b) 

positron self-energy. 

s~) corresponds to photon self energy (Fig. 11.13). As seen from the figure, 

the photon creates a virtual electron-positron pair which later annihilate giving 
baek the photon. The vacuum will contain such virtual electron-positron pairs. 
An external electromagnetic field can affect the distribution of these virtual 
electron-positron pairs. The effect is referred to as vacuum polarization. 

Fig. 11.14 gives the Feynman diagram corresponding to S<j). Since there are 

no cxtcr~l~lllll~C:). it docs not lead to any observable phenomenon. 
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-e 

Fig. 11.13. Process represented by ~'f [Eq. (l1.208e»): Photon lelf-energy (vacuum pol.riza­

tion). 

.-

Fig. 11.14. Diagrammatic representatioo of S'f [Eq. (11.208f)J. 
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The above discussion should suffice to give some familiarity with the tech­
nique of Feynman diagrams and theirpsefulness in the treatment of problems 
involving interaction between fields. ' 
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CHAPTER 12 

THE INTERPRETATIONAL 
PROBLEM 

In Chapter 1, we had briefly referred to the problem associated with the phys­
ical interpretation of the quantum formalism. As Heisenberg put ill: "the math­
ematical equipment of the theory was complete in its most important parts by the 
middle of 1926, but the physical significance was still extremely unclear". It was 
in recognition of this fact that a major part of the Fifth Solvay Conference2 held 
at Brussels in 1927 was devoted to a debate on the problem of the interpretation 
of quantum mechanics. The debate between Albert Einstein and Niels Bohr 
started at the Conference and continued both witt:n and without the later con­
ferences. resulted in the emergence of the two opposing schools of interpretation 
- the Copenhagen and the Statistical Ensemble - sketched in Chapter 1. In this 
chapter, we propose to give a fuller account of the two schools of interpretation. 
We will also give an account of the Hidden-Variable Theories and the associated 
developments which arose as an off-shoot of the interpretational problem. 

12.1 THE EINSTEIN-PODOLSKY·ROSEN (EPR) PARADOX 

As illustrated by the double-slit interference experiment on electrons described in 
Chapter 1, the main point of dispute in the interpretation of quantum phenomena 
is concerned with the nature of the underlying physical reality: Is the electron a 
particle, a wave, both or neither? A significant aspect of the experimental result 
(interference phenomenon) is that this dilemma regarding the nature of electrons 
(or other such physical entities) intrudes itself only when we think in terms of the 
(classical) trajectories of the individual electrons involved in the process. If we 
arc content with a statistical description in terms of ensembles - the interference 
pattern as a statistical distribution of electrons - the concept of electrons as being 
particles traversing individual, but unpredictable. trajectories is alright. The 
fundamental problem of the interpretation of quantum phenomena. thus, 
could also be phrased as follows: "Do the laws of quantum mechanics provide a 

I. Heisenberg w. in Neils Bohr and the Development of Physics, (ed) W. Paul (pergamon, Oxford 
1955), p. 13. 

2. See Mehra. 1. The Solvay Conferences on Physics (D.Reidel PUblishing Co. Boston 1975), 
Chapler 6. 
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complete description of an individual system, or do they embody only the statis­
tical laws governing ensembles?" This was forcefully brought out in a paper 
entitled "Can quantum-mechanical description of physical reality be considered 
complete?" By Einstein, Podolsky and Rosen3 published in 1935. This paper is, 
in fact, a culmination of the debate between Neils Bohr and Einstein started at the 
fifth Solvay Conference. The paper begins with the definitions of Completeness 
and of Physical Reality: 
(EPR.l) A necessary condition for the completeness of a theory is that "every 

element of physical reality must have a counterpart in the theory". 
(EPR.2) A sUffident condition to identify an clement of physical reality is: "If, 

without in any way disturbing a system, we can predict with certainty 
(i.e. with probability equal to unity) the value of a physical quantity, 
then there exists an element of physical reality corresponding to this 
physical quantity". 

Then follows the description of a 'thought-experiment'. We give below a brief 
account of this EPR experiment in its Bohm ve,rsion4

• 

Consider a system consisting of two spin 1{2 particles in a singlet (S = 0) state. 
The wave function of the system is given by [cf. Eq. (9.15)] 

(1 2) = ~ [x(~,<a) x(~)(a) - x(I/(a)x(~)(a)l (12.1) 
'Vo, {i +2 -2 -2 +2 } 

where x~)(a) denotes the spin wave function of the ith particle with spin compo­

nent equal to rrdi along the direction of the unit ve-ctor a. Let the system decay into 
the component particles by angular momentum-conserving interactions. The two 
particles will fly apart in different directions and the interaction between them will 

vanish. A measurement of S!I) (the component along a of the spin S(I) of particle 

number 1) will yield the value ± (1112). Correspondingly, the second particle will 
have spin equal to + (1112) along a. Thus, we can predict with certainty the value 

of S~2) without in any way disturbing the second particle which is spatially sepa­

rated from the first particle on which measurement is being made. Therefore, 
according to (EPR.2) above, the component of S(2) along a is an element of 

physical reality that exists separately for the second particle alone. If so, S!2) must 

have the same value even before the measurement. But a can be in any arbitrary 
direction we choose. Consequently, elements of reality must exist for particle 
number 2 relating to its spin component in any arbitrary direction. In particular, 
definite values must exist for the z-and the x-components of the spin of particle I 
number 2. This is, however, not permitted by quantum mechanics as S~2) and S?) 

3. Einstein A,. Podolsky B. and Rosen N., Phys, Rev, 47.777 (1935). 
4, Bohr, D, Quanlum Theory (prentice·Hall, Englewood-Cliff. 1951) p. 614. In the original EPR 

experiment, the incompatible variables are the position and the momentum, but in the Bohm 
version they arc the components of the spin. 



THE INTERPRET A TIONAL PROBLEM 447 

are represented by non-commuting Hermitian operators. [See Eq. (l0.35a) and 
the discussion following Postulate II in Chapter 3]. Therefore, every element of 
physical reality does not have a counter part in quantum mechanics and, as per 
criterion (EPR.I) above, the answer to the question that forms the title of the 
paper, is negative. 

The foregoing conclusions of the paper has been enunciated in the form of a 
theorems: 
Theorem: Thefollowing two assertions are not compatible with each other: 
(E1). The description by means of the '¥1unction is complete. 
(E2). The real states of spatially separated non-interacting objects are 

independent. 
(E2) is usually referred to as the Einstein locality postulate.· The EPR experi­

ment, thus, establishes that quantum mechanics is incompatible with the concept 
of local realism which is a basic tenet of classical physics. In other words, we 
have to regard quantum mechanics either as an incomplete theory or as a non­
local theory with 'spooky actions ata distance'. The latter alternative arises if one 
adopts the viewpoint that a particular component of S(2) acquires a definite value 
(and becomes an element of physical reality) as a result of the measurement of the 
corresponding component of S(I), which requires passing information instanta­
neously from particle number 1 to particle number 2 Ll0Ugh the two are too far 
apart for direct interaction6

• 

Whether we adopt one or the other of the above alternatives, we cannot avoid 
the paradox of arriving at a conclusion prohibited by quantum mechanics (that 
two non-commuting observables are simultaneously elements of physical reality 
in a quantum state) starting from premises prescribed by quantum mechanics 
(namely, representing a state by a wave function) through arguments permitted by 
quantum mechanics. 

The EPR paper has become a classic in the annals of the epistemological and 
the philosophical foundations of quantum mechanics. This is not only because of 
its lucid exposition (for the first time) of the basic problem to be tackled in any 
attempt at a physical interpretation of the quantum formalism but also because of 
the later developments like the formulation of hidden-variable theories and the 
enunciation of Bell's theorem that it gave rise to. In fact, the EPR Paradox con­
tinues to be a problem for discussion even after fifty years of its publication? In 
the next two sections we will present Bohr's and Einstein's interpretations of 
quantum mechanics. In Section 12.4 we will examine the e~planation of the EPR 
paradox from the various points of view and in Section 12.5 we will give a brief 
account of the hidden-variable theories and the associated developments. 

5. Einstein A. in Albert Einstein: Philosopher Scientist, (cd) P.A. Schilpp (Harper and Row, New 
York 1959), p. 665. 

6. The non-locality involved here is essentially of the same nature as the one involved in !he cast; 
of an electron passing through slit number 1 in the double-slit interference experiment 'taking 
notice' of the closed or open state of slit number 2, though in this case there is something 
physical (the screen bearing the slits) that connects the two slits. 

7. See, for example, Selleri, F., Science Today. 21, No. 12, p. 17 (1987): QuantumParadousand 
Physical Reality, (cd.) Alwyn von def Merwe (Kluwer Academic Publishers, Dordrichl 1990), 
Chapler 5; Mermin, N.D. Physics Todav. 36 No 4 n 1R {\Q85\ 
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12.2 THE COPENHAGEN INTERPRETATION 

The Copenhagen interpretation or Copenhagen School derives its name from the 
fact that the originator and the chief interpreter of this school was Niels Bohr 
whose headquarters was in Copenhagen. Vis-a-vis Einstein's Ensemble Inter­
pretation to be described in the next section, it could, more appropriately, be 
termed the Individual System Interpretation. Eventhough a variety of viewpoints 
are attributed to this school, we will discuss only the version which can be traced 
directly to Niels BohrB. 

Two of the basic principles that underlie the Copenhagen Interpretation are 
Heisenberg's Uncertainty Principle and Bohr's Principle of Complementarity. 
Therefore we will first give a brief description of these before embarking on 
Bohr's interpretation of quantum theory. 

The Uncertainty Principle 

In Section 3.2 we have already given the mathematical derivation of the 
Uncertainty relationship. However, more than the mathematics, it was the phil­
osophical outlook that accompanied the formulation of the uncertainty 
principle that influenced the interpretation of quantum mechanics. In fact, the 
uncertainty principle was the culmination of the realization on the part of Hei­
senberg that the formalism of quantum mechanics did not admit of ordil1nry 
space-time descriptions or causal connection of physical phenomena. Heisenberg 
wrote to Pauli in 19269 (prior to the formulation of the uncertainty principle in the 
subsequent year): "It makes no sense to speak of a monochromatic wave at a 
definite instant, or the place of a particle with a definite velocity". The same 
sentiments were expressed by Dirac and Jordan, the authors of the transformation 
theory (on which Heisenberg based his derivation of the uncertainty relationship): 
"One. cannot answer any question on the quantum theory, which refers to 
numerical values for both the q and the p. One would expect, however, to be able 
to answer questions in which only the q or only the p are given numerical 
values"lO, while Jordanll concluded: "for a given value of q all values of pare 
equally probable". 

Thus the Uncertainty Principle profoundly affected the classical notions of 
position, velocity and orbit of a particle. The extent to which these were affected 
are exemplified by the following viewpoints attributed to Heisenberg himself12 

: 

8. Bohr, N. 'Discussions with Einstein on Epistemologica.l Problems in Atomic Physics', in Albert 
Einstein: Philosoph£r-Scienlist (fudor Publishing Co. 1949), reproduced in Mehra, J. Th£ 
Solvay Conferences on Physics (D.Reidel Publishing Co. 1975), p. 153; Max Jammer, Th£ 
Conceptual Development of Quantwm Mechanics (McGraw-Hill, New York 1966), Ch_ 7; 
Stapp, H.P. Amer J.Phys. 40, 1098 (1972). 

9. Max Jammer (Footnote 8) p. 325 
10. Dirac, P.A.M. Proe. Roy. Soc. (London), AI13, 621 (1926) 
[I. Jordan, P. Zeit.! Physik, 40,809 (1927) 
12. Max Jammer (Footnote 8) pp. 328-330. 
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"If one wants to clarify what is meant by 'position of an object' , for example 
an electron, one has to describe an experiment by which the 'position of an 
electron' can be measured; otherwise this term has no meaning at all ... " 
"the path comes into existence only when we observe it..." in the strong 
formulation of the causal law, 'If we know exactly the present, we can pre­
dict the future', it is not the conclusion but rather the premise which is false. 
We cannot know, as a matter of principle, the present in all its detail" . 

It is obvious that the Uncertainty Principle bestowed on measurement a role in 
quantum mechanics which it did not have in classical mechanics. Whereas in 
classical mechanics measurements merely revealed what existed before the mea­
surement was made, in quantum mechanics "observations not only disturb what 
has to be measured, they produce it" 13. 

The Principle of Complementarity 

Bohr presented his ideas on complementarity in relation to quantum theory for the 
first time in a lecture on "The Quantum Postulate and the Recent Development of 
Atomic Theory" delivered at the International Congress of Physics held at the 
Instituto Carducci in Como in September 1927. Later he published the paper in 
Nature14

• The Principle of Complementarity marks the end of Bohr's opposition 
to Einstein's concept of the light quantum and his (Bohr's) final acceptance of the 
wave-particle duality. In fact, Bohr's ideas on complementarity seem to have 
evolved as a result of his attempts at harmonizing the mutually exclusive notion'; 
of waves and particles that the dual behaviour of matter and radiation demanded. 
Bohr was convinced that this harmonization could not be achieved merely by 
modifying or reinterpreting traditional (classical) concepts. What was needed 
was a new logical outlook. This he called "complementarity". 

Bohr did not attempt an explicit definition of complementarity. Instead, he 
described the basic ideas underlying it. These could be summarised as follows: 

Quantum phenomena are governed by the quantum postulate according to 
which, to any atomic process an essential individuality, symbolized by Planck's 
quantum of action, has to be attributed. This means that, in the case of a quantum 
mechanical (atomic) system, the interaction between the object of observation and 
the agency of observation (the 'measuring instrument'), and the resulting distur­
bance of the former, cannot be neglected. As a result, it is impossible to separate 
the behaviour of the atomic system from the effect of the measuring instrument 
whose behaviour must be described classically. [Bohr refers to this situation as 
the indeterminateness of concept of observation, 'in analogy with a similar situ­
ation in William James' analysis of the notion of observation in psychologylS (see 
Ref.8, p. 349)]. By combining an atomic system with different (measuring) 

13. This remark is attributed to Jordan [See, Max Jammer, The Philosophy of Quanlum Mechanics 
(John Wiley, New York 1974), p. lSI]. 

14. Bohr, N. Nature, 121,580 (1928) 
IS. See, Max Jammer (Footnote 8) p. 349 
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devices, one may observe different aspects of the system. These different aspects 
could be considered as providing a description of the atomic system in terms of 
complementary classical pictures. Thus, in a particular experiment, wave nature 
of radiation may be revealed, whereas in another experimental situation particle 
aspect of the radiation may be observed. Though (classically) the wave and the 
particle pictures are mutually exclusive, these are indispensable for a complete 
(or, exhaustive) description of radiation and should, therefore, be considered as 
complementary to each other. 

The uncertainty principle ensures that complementarity does never lead to any 
contradiction in spite of the logically contradictory nature of the notions involved. 
For, the uncertainty principle shows that the sharp exhibition of one of such 
complementary aspects necessitates an experimental set up which is totally 
different from that required for the exhibition of the other aspect. As a result, 
there cannot arise any physical situation which reveals simultaneously and 
sharply both complementary aspects of a phenomenon. Thus, in the double-slit 
indeference experiment (Chapter 1), auempts to reveal the particle nature of the 
electrons by determining through which slit the electron has passed, result in the 
destruction of the interference pattern and, thereby, in the concealment of the 
wave nature. 

Another mode of describing complementarity is to say that the very nature 
of quantum theory requires us "to regard the space-time co-ordination and the 
claim of causality, the union of which characterises the classical theories, as 
complementary but exclusive features of the description, symbolizing the ideali­
sation of observation and definition respectively .. t6. This may be elaborated as 
follows: 

The definition of the state of a physical system presupposes that the system is 
closed; that is, it is free from any external disturbances. The evolution of such a 
system in time constitutes its causal behaviour and is governed by the dynamical 
equation of motion. A space-time description of the system, on the other hand, 
presupposes observation. But observation requires interaction with an external 
agency of measurement, which, according to the quantum postulate, involves 
disturbance of the system being observed. In other words, a system, when 
observed, becomes an open system for which, strictly speaking, no 'state' can 
be defined and for which the laws of causality are no longer applicable. Thus 
the claim of causality excludes space-time description and vice versa. The 
simultaneous ('united') use of causal and space-time description in classical 
mechanics is made possible by the extremely small value of the quantum of action 
(_1O-Z7 erg.sec.) as compared with the actions involved in ordinary sense per­
ceptions. 

In the case of radiation, the wave picture, which gives an adequate description 
of the propagation of light, corresponds to space-time description whereas the 
particle picture (light quantum), with the associated notions of energy and 
momentum and th.;:ir conservation principles, constitutes the causal description. 

16. Max Jammer (Footnote 8) p. 351 
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It is obvious from the foregoing that, according to Bohr, complementarity 
refers to two modes or pictures of description which are'mutually exclusive but 
are indispensable for an exhaustive account of quantum phenomena: space-time 
description is complementary to causal description, wave picture is complemen­
tary to particle picture. Pauli17 gave a slightly different definition of comple­
mentarity. He calls two classical concepts complementary' 'if the application of 
one stands in relation of exclusion to that of the other" in the sense that any 
experimental set up for measuring the one interferes destructively with any 
experimental set up for measuring the other. In this sense, position co-ordinate is . 
complementary to the conjugate momentum, time is complementary to energy, 
and so on. 

Bohr's Interpretation of Quantum Mechanics. 

As we stated earlier, complementarity and the Uncertainty Principle are the two 
main planks of Bohr's interpretation of quantum mechanics. The notion of 
complementarity forms the backbone of the interpretation, while the uncertainty 
principle ensures that the notion does not lead to any contradictory physical situ­
ations. In addition, the following premises also could be regarded as basic to the 
interpretation: 

(1) However far the phenomena transcend the scope of classical physical 
explanation, the account of all evidence must be expressed in classical 
terms. 

This is so because, "by the word 'experiment' we refer to a situation where we 
can tell others what we have done and what we have learned", so that "the 
account of the experimental arrangement and of the results of the observations 
must be expressed in unambiguous language with suitable application of the ter­
minology of classical physics" 18. 

(2) It is impossible to separate sharply the behaviour of atomic objects (i.e. 
quantum mechanical systems) from their interaction with the measuring 
instruments which serve to define the conditions under which the phe­
nomena appear. 

Bohr attributes this inseparability of the object of observations from the agency 
of observation to the individuality or indivisibility, of quantum phenomena aris·· 
ing from the quantum postulate. He contends that this individuality "finds its 
proper expression in the circumstance that any attempt at subdividing the 
phenomena will demand a change in the experimental arrangement introducing 
new possibilities of interaction between objects and measuring instruments 
which, in principle, cannot be controlled. Consequently, evidence obtained under 
different experimental arrangements cannot be comprehended within a single 

17. Pauli. w. f1andbuch der Physik. 24 (Springer. Berlin 1933). 2nd ed. 5 p. 126. 
18:' Bohr, N. (Footnote 8). p. 158 
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picture, but must be regarded as complementary in the sense that only the totality 
of the phenomena exhausts the possible information about the objects,,19. It is 
further stressed that the complementary phenomena appear under mutually 
exclusive experimental arrangements, so that for the specification of the condi­
tions for any well-defined application of the quantum formalism, the whole 
experimental arrangements should be taken into account. 

(3) Quantum theory provides an exhaustive description of individual physi­
cal phenomena. 

This is to be taken in the sense that the quantum mechanical formalism is an 
adequate tool for a complementary way of description of physical phenomena. In 
fact, the quantum mechanical formalism is nothing but a "symbolic scheme per­
mitting only predictions as to results obtainable under conditions specified by 
means of classical concepts"w. The totality of results obtained under mutually 
exclusive experimental arrangements (that is, complementary situations) exhausts 
the possible information we can have on a physical system. Moreover, there is no 
single experimental situation which gives rise to results that are not in conformity 
with the predictions of the quantum formalism. 

For illustration let us consider the double slit interference experiment on 
electrons described in Section 1.1. As detailed there, the main features of this 
experiment are the following: 

(DS I) If no effort is made to observe the paths of the individual electrons, then 
the distribution of the electrons on the screen X shows an interference 
pattern appropriate to waves of wavelength equal to the de BrOglie 
wavelength of the electrons. 

(OS2) If the paths of the electrons are observed, the interference pattern is 
destroyed. 

DS 1 and DS2 correspond to mutually exclusive experimental arrangements 
and, therefore, to complementary features of the properties of electrons. DS 1 
reveals the wave nature of electrons while OS2 shows their particle-like beha­
viour. Alternatively, OS 1 corresponds to space-lime description and DS2 to 
causal description. "The circumstance that we arc presented with a choice of 
either tracing the path of a particle or observing interference effects allows us to 
escape from the paradoxical necessity of concluding that the behaviour of an 
electron should depend on the presence of a slit through which it could be proved 
not to pass. We have here to do with a typical example of how the complementary 
phenomena appear under mutually exclusive experimental arrangements, and are 
just faced with the impossibility, in the analysis of quantum effects. of drawing 
any sharp separation between an independent behaviour of atomic objects and 

19. Bohr,~. (Footnote 8), p. 159 
20. Bohr, ~. (Footnote 8), p.159. 
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their interaction with the measuring instruments which serve to define the condi­
tions under which the phenomena occur" 21 • And it is the uncertainty principle 
which ensures that we cannot trace the paths of electrons without at the same time 
leading to the destruction of the interference pattern, as the following analysis 
shows: Figure 12.1 shows an experimental arrangement for the double-slit 
diffraction phenomenon, with a device to ascertain the slit through which each 

w x 
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t ~~~:_ .. ...... . --t -l~~~ ------ ------------.. -----.---------- .. -
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Fig. 12.1 Double-Slit experiment with a device to observe the electrons just after they pass the slits. 

electron passes before it reaches the screen X. The detection procedure would 
involve a transfer of momentum M\ to the electrons in the plane of the slits. If 

the diffraction pattern is not to be destroyed in the process, M'" should be sub­

stantiaIIy smaller than the momentum required to throw an electron from a max­
imum of the diffraction pattern to a neighbouring minimum. If P, is the 

momentum of the electron, then, referring to Fig. 12.1 we should have, 
1lP" < pya. (12.2) 

But, from wave theory (wave optics) we have, 
S == 1J(2a) (12.3) 

where A is the de-Broglie wave length of the electron and 'a' is the distance 
between the slits, and where D » a » A, D being the distanCt! between W and 
X. At the same time, in order to be able to tell through which slit the electron has 
passed, its position in the x-direction should be determined to an accuracy 11 x 
which is better than half the distance between the slits. That is, 

llx < a12. (12.4) 

From Eqs. (12.2 - 4) we see that the condition for us to be able to determine 
through which slit each electron passes, without destroying the interference pat­
tern, is that, 

21. Bohr. N. (Footnote 8), p. 163 - 164. 



454 QUANTUM MECHANICS 

(12.5) 

But this condition violates the uncertainty relationship (3.29a) and is, therefore, 
not realisable, implying that any successful attempt at determining the slit through 
which each electron passes before arriving at the screen, X, would lead to the 
destruction of the interference pattern. 

Fig. 1.1 could be regarded as an experimental arrangement for measuring the 
x-component of the momentum of the electrons (since the distribution of intensity 
in the interference pattern determines, to a good approximation, the angular dis­
tribution of the electrons leaving the slits), while Fig. 12.1 is an arrangement for 
measuring their x-position. Thus, according to Pauli's definition of 
complementarity, Fig. l.1 (the arrangement) interferes destructively with Fig. 
12.1 and vice versa. 

We will postpone to Section 12.4 a discussion of Bohr's explanation of the 
EPR paradox. 

12.3 THE ENSEMBLE INTERPRET A TION 

The Ensemble Interpretation was proposed by Albert Einstein22 as an alternative 
to the Copenhagen Interpretation which he considered quite unsatisfactory. In 
faL:t, Einstein looked upon the Copenhagen Interpretation as nothing but a 'tran­
quilizing philosophy' as the following passage from a letter he wrote to 
SchrOdinger in 1928 reveals: 

"The Heisenberg-Bohr tranquilising philosophy is so delicately contrived 
that, for the time being, it provide.> a gentle pillow for the true believer 
from which he cannot very easily be aroused" 23. 

On a more specific level, Einstein's objection to the Copenhagen interpretation 
is on its insistence that quantum theory provides a complete description of an 
individual physical system. Thus, in his "Reply to Criticisms" in the volume of 
essays24 presented on his seventieth birt.hday, he writes (p. 671): 

"One arrives at very implausible theoretical conceptions, if one attempts 
to maintain the thesis that the statistical quantum theory is in principle 
capable of producing a complete description of an individual physical 
system. On the other hand, those difficulties of theoretical interpretation 
disappear, if one views the quantum mechanical description as the 
description of ensemble of systems". 

22. The account of Einstein's interpretation of quantum mechanics given here is based on the fol· 
lowing references: (i) Einstein, A. and Inned, The Evolution of Physics (Simon and Schuster, 
New York 1938, 4tb Printing, 1961), pp. 280·294; (ii) Ballentine, L.E. Rev. Mod. Phys. 42, 358 
(1970) and (iii) Ballentine, L.E; Amer. J. Phys. 40, 1763 (1972). 

23. Letter to Schrodinger, dated May 31, 1928 ill Leiters on Wave Mechanics, (ed) K.PTZibram, 
translated by M.J. Klein (Philosophical Ubrary, New York 1967), p. 31. 

24. Albert Einstein: Philosopher - Scientist, (ed) P.A.SchiIPIJ (Library of the Living Philosophers, 
Evanston, Illinois 1949; reprinted by Harper and Row, New York 1959). 
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In order to illustrate and establish this contention, Einstein proposed and cited 
a number of thought-experiments over a period of years starting from the FifLI-J 
Solvay Conference in 1927. At this conference held in Brussels from 24 to 29 
October he considered the situation pictured in Fig. 12.2. S is a diaphragm with 
a small opening 0 at the centre; P represents an electron-sensitive screen in the 
form of a hemisphere. A beam of electrons falls on S. Some of the electrons will 
pass through O. Because of the smallness of 0 the electrons will be diffracted at 
0, according to quantum mechanics. The wave function of the diffracted elec­
trons will be represented by a spherical wave which will have non-vanishing value 
on the whole of P. In particular, the wave-function will have nonzero values both 
at A and B on P. 

/ 
B 

Fig. 12.2 Einstein's thought-experiment on electron diffraction by a single slit. 

Now, if an electron is observed at A, we immediately know that it is not at B. 
Einstein then distinguished two different points of view: 

II. The wave function does not correspond to a single electron, but to a cloud 
of electrons extended in space. The theory does not give any information 
about the individual processes, but only about the ensemble of an infinity 
of elementary processes. 

12. The theory has the pretention to be a complete theory of individual pro­
cesses. 
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According to 11, I", 12 expresses (in a statistical sense) the probability for an 

electron of the cloud to exist at a particular place. In other words. ! '" f will give 
the distribution of the electrons of the cloud over P. Conversely, in order to 
determine 'V, one has to observe the distribution of the electrons over the whole of 
P and not just at one location A. 

According to 12, on the other hand, I 'V 12 expresses the probability that at a 

certain instant one and the same electron be found at the different places on P. As 
a result, observing the electron at A results in the vanishing of the 'V everywhere 
else on P (reduction of the wave function). Since 'V has fmite value at B until the 
electron is observed at A, the instantaneous vanishing of 'V at B requires a peculiar 
action-at-a distance between A and B, contrary to the principles of relativity. So 
Einstein concluded: "In my opinion, one can only remove this objection in this 
manner, that one does not describe only the process by the SchrMinger wave, but 
at the same time one localizes the particle during the propagation". Since the 
description by means of the 'V-function does not contain such a localization, the 
description of an individual system in terms of the 'V-function is incomplete. 

SchrOdinger's Cat 

Another example which illustrates the difficulties inherent in the Copenhagen 
viewpoint that the wave function provides a complete description of an individual 
system, is the following argument advanced by SchrOdinger in a review article2S

: 

Imagine a chamber which houses a cal together with a machine, a boule of 
cyanide and a radioactive substance. The machine has a triggering mechanism 
which, when activated by the decay of an atom of the radioactive substance, will 
trip a hammer which will break the bottle of cyanide. The quantity of the radio­
active substance in the chamber is such that there is equal probability for one atom 
to decay in an hour and for none to decay during that time. If one describes this 
entire system according to quantum theory, then at the end of one hour the wave 
function of the system would be a linear combination of equal parts of functions 
corresponding to a live cat and a dead cat. 

If one adopts the viewpoint that the wave function furnishes a complete 
description of an individual system, one has to conclude that, at the end of the 
hour, the cat is neither dead nor alive, just as in the example of the electron dif­
fraction the electron has no definite position but is (potentially) present allover P. 
But if one looks to see whether the cat is actually dead or alive and finds that it is 
really dead, one has to assume that it is the act of looking that killed the cat 
(reduction of the wave function)! 

According to the Ensemble Interpretation, on the other hand, the description in 
terms of the wave function refers to an ensemble of a large number of 
"SchrMinger's cats". That the wave function is a linear combination of equal 

25. SchrOdinger. E. Naturewiss. 28, 807 (1935). 
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Fig. 12.3 The Schrodinger's Cat experiment. 

parts of functions corresponding to live and dead cats means that, in about half of 
the cases the cats will be dead (signifying that the atom has decayed) and in the 
other half cases the cats will be alive (the atom has not decayed). 

Superposition of States 

The Ensemble Interpretation of quantum mechanics was expounded by Einstein 
for the first time in an article entitled "Physics and Reality',26. In this article he 
presented the following argument in support of his view that the", function does 
not describe an individual system: 

A system is initially in its state of lowest energy £1' The corresponding wave 

function is "'1' The system is now subjected to a small time-dependent perturba­

tion for a finite interval of time. As a result, the wave function of the system takes 
the form 

(12.6) 

where the different "':s represent the stationary states of the system and the 

coefficients c,satisfy the condition, 

L 1 Cr 12 = 1 (12.7) , 

"Does", describe a real state of the system? If the answer is yes, then we can 
hardly do otherwise than to ascribe to this state a definite energy E, and, in par­
ticular, an energy which exceeds E 1 by a small amount (in any case I· 

E 1 < E < E 0.". But the experiments of Franck and Hertz27 on electron 

impact show that an individual system can have only one of the discrete energies 
E I> E 2>" •• , E, ..•• Einstein is, thus led to the conclusion: "It seems to be clear, 

26. Einstein, AJ. Franklin Institute, 221, 349 (1936). 
27. Franck, 1. and Hcnz. G. Physikillische Zeilzchrift. 17,409 (1916); 20, 132 (1919). 
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therefore, Born's statistical interpretation of quantum theory is the only possible 
one. The 'I'-function does not in any way describe a state which could be that of 
a single system; it refers rather to many systems, to an ensemble of systems' in 
the sense of statistical mechanics. If, except for certain special cases, the 
'I'-function furnishes only statistical data concerning measurable magnitudes, the 
reason lies not only in the fact that the operation of measuring introduces 
unknown elements, which can be grasped only statistically, but because of the 
fact, the 'I'-function does not, in any sense, describe the state of one single sys­
tem". 

The absolute square of c, in Eq. (12.6) gives the probability for the system to 
be in the state '1', with energy E ,. In other words, 1 C, 12 is proportional to the 

number of individual systems in the ensemble which have energy E r' 

This ensemble interpretation is also described in detail in the book by Einstein 
and Infeld [Footnote 22(i)]. We give below a few quotations from this book, 
which give a clear picture of the nature of Einstein's Interpretation of quantum 
Inechanics: 

"The laws of quantum physics are of a statistical character. This means: 
they concern not one single system but an aggregation of identical sys­
tems; they cannot be verified by measurement of one individual, but only 
by a series of repeated measurements" (p. 284). 

After referring to phenomena like radioactivity where the laws of quantum 
physics work well, the authors say: 

"The theory works splendidly because all these phenomena involve large 
aggregations and not single individuals" (p. 285). 

They contrast the statistical nature of quantum theory with the statistical nature 
of certain classical theories like that of population statistics and the kinetic theory 
of gases in which no predictions can be made for individual cases but the average 
behaviour in a large number of cases can be predicted fairly accurately. They 
point out that the similarity between quantum theory and those classical theories 
lies chiefly in their statisti-:al character, but the differences are equally important. 
In the case of population, 

"Our statistical view is gained by the knowledge of individual eases. 
Similarly, in the kinetic theory of matter, we have statistieallaws gov­
erning the aggregation, gained on the basis of the individual laws. 
"But in quantum physics the state of affairs is entirely different. Here the 
statistical laws are given immediately. The individual laws are dis­
carded" (p. 286). 

We have already considered, in Section 1.1, the explanation of the double-slit 
interference experiment on the basis of the Ensemble Interpretation. We will 
discuss the explanation of the EPR paradox in the next section. 
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12.4 EXPLANATIONS OF THE EPR PARADOX 

Both Bohr and Einstein have offered explanations of the EPR paradox, based on 
their respective interpretations of the quantum fonnalism. 

Bohr's Explanation 

Bohr's explanation28 is essentially that S~l) and S?) (and, hence, also S~2) and SI2
) 

deduced from S!l) and S?) respectively) are not simultaneously elements of 
physical reality but are complementary attributes of the particle. For, measure­
ments of S;I) and S~I) require different experimental set ups (different orientations 
of the Stem-Gerlach magnet) and, according to the principle of Complementarity 
(Section 12.2), the result of an observation cannot be divorced from the exper-
imental set up which yielded the result; it is the result and the experimental set up 
jointly that define a quantum process. Bohr also contends that the definition of 
physical reality as given in (EPR.2) in Section 12.1 is defective in the phrase 
'without in any way disturbing a system'. Bohr suggests its replacement with the 
phrase 'without in any way inj1uencing a system' since measurement on particle 
number 1, though does not disturb particle number 2, has nevertheless "an 
influence on the very conditions that define the possible types of predictions 
regarding the future behaviour,29 of particle number 2. As a result of these con­
siderations, no more than one component of S(2) can be regarded as an element of 
physical reality in any particular experiment.30 

Einstein's Explanation 

According to Einstein's interpretation of quantum mechanics, '1'0 given by Eq. 

(12.1) represents an ensemble of two-particle systems in the singlet state rather 
than a single such system. Therefore the EPR experiment, referring as it does to 
an individual pair, is irrelevant as far as '1'0 (as well as quantum mechanics) is 

concerned. '1'0 can be used to answer only questions of a statistical nature 

concerning the ensemble. However, such answers require a series of repeated 
measurements rather than a single measurement on an individual system. For 

example, the absolute square of the coefficient of xm(a) t~rl(a) in Eq. (12.1) 

denotes the number of pairs in the ensemble with spin-component parallel to a for 
particle number 1 and antiparallel toa for particle number 2. Eq.(l2.1) shows that 
this proportion is the same ali the proportion of the number of pairs in the 
ensemble with spin-component antiparallel to a for particle number 1 and parallel 

28. Bohr, N. Phys. Rev. 48, 696 (1935) 
29. Bohr, N. (Footnote 8) 
30. In the language of the Hilbert space, Bohr's explanation refers to the fact that the angular 

momentum can have different representations, but that in anyone representation only OfUi of the 
components can be diagonal. 
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to a for particle number 2. But in order to verify this fact, one will have to make 
repeated observations on the pairs constituting the ensemble. Thus one could set 
up two Stern-Gerlach magnets on opposite sides of the ensemble so as to measure 
the spin-components (along a specified direction b) of the two particles of a pair 
which has decayed. We will label the particle which comes to the left-side 
detector (DL) as 1 and the one which goes to the right-side detector (DR) as 2. 
When the observation is repeated for a large number of pairs we would get a 
certain number for which DL has recorded spin-up while DR has recorded 
spin-down and about an equal number for which DL has recorded spin-down and 
DR spin-up. "This correlation betweeq, the spins of the particles will be the same 
no matter which component is measured,,31. 

It is, however, essential for the validity of this ensemble interpretation that 
every recording of spin-up (spin-down) at DL should not be accompanied by a 
recording of spin-down (spin-up) at DR. For, if it were so, the spin-correlation 
specified by '1'0 would have been applicable to each and every pair on which 

observation is made and, therefore, also to an isolated pair. But Einstein is 
emphatic that "quantum physics deals only with aggregations and its laws are for 
crowds and not for individuals,,32. Therefore, there should be cases where both 
DL and DR record spin-up states and both record spin-down states. We cannot 
predict the proportion of these states on the basis of '1'0 alone. In order to obtain 

these proportions, one will have to find out the eigenvectors of the operator 
(01. b) (02 • b) in the representation spanned by the basis vectors X~;(a) X;;;(li), 

where m1 = ±~. ~ = ±~ and where a:t; b. There would be four linearly indepen­

dent eigenvectors, two each belonging to the degenerate eigenvalues +1 (corre­
sponding to spin up-spin up and spin down-spin down results) and - 1 
(representing spin down-spin up and spin up-spin down results). The wave 
functions are found33 to be consistent with the conclusion arrived at by Mermin7 

in a gedanken experiment supposed to represent the experimental findings of 
Alain Aspect and his group at ·the University of Paris, namely that each of the four I 

cases occurs an equal number of times and constitutes one-fourth of the total. 

An Alternative Explanation 

It is possible to have a third explanation34 based purely on the mathematical 
structure (the Hilbert space formulation) of quantum mechanics described in 
chapter 3. According to the Postulates I and II stated there, it follows that the 
results of the measurement of a physical observable is represented by the eigen­
value equation of the corresponding Hermitian operator. It also implies that if we 
try to mea<;ure the value of a physical observable in a state which is not an 

31. Ballentine, L.E. (Foolnote 22(ii), p. 364) 
32. Einstein, A. and Infeld, 4. (Foot nOie 22(i), p. 286). 
33. Menon, R.K. and Thankappan, V.K. (to be published) 

34. Thanhppan, V.K. and Menon. R.K.,Proceedings of the 5th Asia Pacific Physics Conference 
Kuala Lumpur, August 1992 (in press). ' 
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eigenstate (eigenvector) of the Hennitian operator to start with, then the mea­
surement process (that is, the interaction between the measuring instrument and 
the physical system) will carry the system over to an eigenstate of the operator. 
Then the measured value of the observable will refer to the state of the system at 
the end of the measurement process, which need not be the state the system was 
in at the beginning, or before, the measurement. 

The above feature of quantum mechanics necessitates the following modifi­
cations in the EPR argument: 

If % (1,2) of Eq. (12.1) represents the state of the pair of particles before the 

measurement was made (that is, at the time of decay), then the measurement 
process will change the state of the pair to <1> (1,2), where, 

<1>(1,2) = X~)(b) x~(a). (12.8) 

Here, m =: ±~ and b is the unit vector along which the spin of particle number 1 is 

measured; that is, b specifies the axis of the Stem-Gerlach apparatus. The rea­
soning behind this change is as follows: 

%(1,2) is an eigenvector of Sa = S~l) +S~2), the operator corresponding to the 

spin of the pair along a, but is not an eigenvector of either Sb1
) (or even S~l» or S~2), 

the operators representing the components of the spins of the individual particles. 
However, quantum mechanics stipulates that, at the end of a measurement process 
designed to measure the component of the spin of particle number 1 along b, the 
sLale of the system must be an eigenvector of ,~kl). 

In the theory of angular momcnLUm coupling, 'Vo is a vector in the coupled 

representation whereas 11> is a vector in the uncoupled representation (see Section 
S.SA). In the uncoupled state, the spin components of the two particles are not 
correlated; for a given value of SkI), S~2) could be either +(1iI2) or -(1iI2), that is, the 

sum of SkI) and S~2) necd not be zero or any other fixed value. Therefore, the EPR 

assumption that the value of S!2) can be deduced from the measured value of sill 
has no basis in quantum mechanics. Of course, this is not due to any violation of 
the conservation law relating to angular momentum, but is due to the fact that the 
role of the measuring instrument cannot be ignored in balancing the angular 
momentum. A closer look at the Illeasurement process will elucidate this point 
further: 

At the time of decay of the pair, let the spins of the two particles be quantized 
along the unit vector a such that S~l) == +1iI2 and S~2) = -1iI2 (Fig. 12.4). This means 

that the spin vector of particle number 1 would be precessing around a such that 
the projection of S(l) along a is equal to (1iI2). The spin of particle number 1 is now 
measured with a Stem-Gerlach apparatus whose axis is along b. This measure­
ment process will force a reorientation of the spin vector of particle number 1 such 
that it now precesses with a fixed value of its projection along b instead of along 
a. This change comes about as a result of the (local) interaction (involving 
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exchange of angular momentum) between particle number 1 and the Stem­
Gerlach apparatus and not as a result of any' spooky actions at a distance' between 
the two particles. We may now distinguish between two cases: 

(I) 
Sb 

(0 ) 

Sll) 

(I) 

So 

(C' 

a 

a 

i 

S(2) 

(2) 
Sa 

Fig. 12.4 The EPR experiment. The diagram shows the spins of the two particles at the time 
of decay but before separation (a); after separation but before measurement (b); and 
after measurement(c). 

Case 1: I (a· b) I < 1 

For this case quantum mechanics predicts that S~I) = ±(1iI2). But quantum 

mechanics also predicts the same two possible values of S~I) even when 

S~I) = -(tzI2) instead of +(1iI2). Therefore, it is not possible to deduce the value of 
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s~1) (and from it the value of S~2) using the relation S~l) + S~2) = 0) from the mea­

sured value of S~l). The basic cause of this disability is the quantization of angular 

momentum which (i) restricts the observable values of the spin along any 
direction whatsoever to just the same two values ±(1i/2) and (ii) makes it impos­
sible to predict beforehand which of the two values will result in any particular 
measurement as the change in the orientation of the spin (say from precessing 
around a to precessing around b) does not take place continuously but takes place 
in discrete jumps. In the corresponding classical case, the change in the angular 
momentum resulting from the interaction between the particle and the Stern­
Gerlach magnet would be both continuous and predictable. 

Case 2 : I (a· b) I = 1 

This is the case when the choice of the axis of the Stern-Gerlach apparatus 
happens to be the same as the quantization axis of the pair at the time of decay. 
According to quantum mechanics, the measurement process will cause no change 

in the orientation of the spin of particle number 1, so that S~l) = S~l) = - S~2). 

Thus S~2) can be deduced. In reality, however, even in this case, it will not be 

possible to deduce the value of S~2) because there is no way of ascertaining that, in 

fact b is the same as a 35
• But even if we assume, for arguments sake that b is the 

same as a, we can deduce only one component of S(2), namely S!2) by measurement 

done on particle number 1. Any other choice of b would mean that I (a· b) I < 1 
which is the same as case 1. 

In short, we can at most deduce only one component of S(2) from measurement 

done on S(I). Therefore, there is no circumstance which leads to a violation ofEq. 
(1O.35a) and there is no paradox. 

12.5 THE HIDDEN VARIABLE THEORIES 

A bye-product of the interpretational dispute on quantum mechanics between 
Bohr and Einstein was the development of a class of theories known as the Hidden 
Variable Theories (HVT). The viewpoint adopted by Einstein with regard to the 
interpretational problem and the Ensemble Interpretation advocated by him 
(Section 12.3), consider quantum mechanics as defective or unsatisfactory in 
certain respects. The unsatisfactory feature was illuminated clearly in the EPR 
paradox (Section 12.l) and is contained in the Einstein's theorem formulated in 
connection with it. As explained there, we have to regard quantum mechanics 
either as an incomplete theory or as a non-local theory. One could try to remedy 

35, Rcmemher that in the EPR experiment, there is only one pair. If there are many pairs as in an 
ensemble, we could aswmc that for some ufthe pairs the axis of quantization would be the same 
as b. 



464 QUANTUM MECHANICS 

the defect by inventing a theory in which the microstate of a particle is charac­
terised by one or more parameters ('hidden variables') A. in addition to the 
v-function. In such a theory, 'I' would describe a macrostate obtained by 
averaging over the microstates (that is, over A.). 

The development of hidden variable theories has been inhibited for nearly two 
decades by a theorem due to von Neumann36 (which purportedly proved the 
impossibility of such theories unless the predictions of quantum theory are fac­
tually wrong), until Bohm showed37 that a true HVT can be developed in spite of 
the theorem and BeU38 established the irrelevance of the theorem for realistic 
hidden-variable theories. 

The hidden variable theories could be broadly classified as theories of the first , 
kind and as theories of the second kind39

• Theories of the fust kind consider 
incompleteness as the basic defect of quantum theory. Such theories would yield 
quantum theory as a statistical equilibrium limit of (or, as an average over) the 
microstates, and are therefore compatible with quantum theory. Experimental 
verification of the predicted deviations of these theories from quantum theory is, 
however, made difficult or impossible by the extremely short time (=10.14 sec.) 
within which the microstates reach statistical equilibrium37

• 

Theories of the second kind, on the other hand, are designed to eliminate the 
non-local feature of quantum mechanics (these are, therefore, called local HVT). 
These theories are rivals to quantum mechanics rather than forming its micro­
scopic basis. As shown by Bell38

, the question whether such a local hidden vari­
able theory or quantum theory represents the laws of Nature is one that could be 

:settled by experiments-the former will satisfy Bell's inequalities [(12.28) below] 
whereas the latter will violate them. 

It may be emphasized here that, though the hidden variable theories are logical 
corollaries of Einstein's attitude towards quantum theory as reflected in the 
analysis of the EPR experiment, Einstein himself was not enthusiastic about these 
theories. In fact, when Bohm's pape~9 on HVT appeared, Einstein wrote to 
Bom40

: "Have you noticed that Bohm believes (as de Broglie did, by the way, 25 
years ago) that he is able to interpret quantum theory in deterministic terms? That 
way seems too cheap to me". It is obvious that Einstein accepted the statistical 
quantum theorya<; correct in its domain of applicability and did not consider lack 
of determinism as its major defect. In his view, incompleteness (the fact that the 

36. von Neumann, I. Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932); 
translation: The Mathematical Foundation o/Quantum Mechanics (princeton University Press, 
1955). 

37. Bohm, D.PhysRev. 85,166 and 180 (1952). 
38. Bell, I.S. Physics, 1, 195 (1964). 
39. This classification of hidden variable theories is due to Belinfante, F.J. [see his book: A Survey 

0/ llidden·Variables Theories (pergamon Press. Oxford 1973)]; Belinfante also describes 
another class of HVT, namely, the zeroth kind: these are the ones which are prohibited by von 
Neumann's theorem. 

40. The Bom·EinsteinLellers (Walter and Company, New York, 1971), Letter No. 99 dated 12May 
1952. 
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'I'-function does not describe an individual system) was the defect to be removed 
by a theory more general than quantum theory. However, he did not believe that 
this more general theory has quantum theory as its starting point. 

In this book, we do not propose to go into the details of specific hidden variable 
theories41

• Instead we will give a brief account of some of the theorems, argu­
ments and conclusions which have been crucial for the development, under­
standing and establishment of hidden-variable theories. 

von Neumann's Theorm 

This theorem states42
: " ..... the present system of quantum mechanics would have 

to be objectively false, in order that another description of the elementary pro­
cesses than the statistical one be possible". 

This is a conclusion which has effectively deterred the development of 
hidden-variable theories for nearly two decades. It would, therefore, be of interest 
to present the proof if only to point olit the loopholes in it later. 

The proof of the theorem consists of two parts. In part one, it is established 
that there exists an unique Hermitian statistical operator p such that for any arbi­
trary Hermitian operator A, 

(12.9) 

where < ... > represents the expectation value. In the second part, it is shown that, 
in the case of a dispersioniess ensemble, p is either a null or a unit operator. 

The proof of part one is based on the following assumptions: 

(AI) The correspondence between Hermitian operators and physical observ­
abies is one to onc. In other words, every Hermitian operator corresponds 
to a physical observable. 

(A2) If two observables are represented by operators A 1 and 11 2' then the sum 

of the two observables is represented by the operator A I + A 2' 

(A3) If Al and ,12 are arbitrary observables and al and a2 are arbitrary real 

numbers, then, 

(12.10) 

for all possible ensembles (states), irrespective of whether Al and ..12 are 

commuting or not. 
(A4) If the observable A is nonnegative (that is, positive semidefinite), then, 

{Ii) ~ o. 

Let A be an arbitrary Hermitian operator. It can be written as 

41. Such details can be found in the book by Belinfanle (Footnote 39). 
42. Ref. 36 (English translation) p. 325. 
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m,O 

= L O(O)A .. + L {V(om) Re[Amn] + W(nm) 1m [A"",]}, 
,. m,II 

(m<n) 

(12.11) 

where, A"",=A':"=(n IA 1m), (12.12) 

and 0(0) = I n)(n I, (12.13a) 

V(om) = I n)(m I + I m)(n I (12.13b) 

W(M1) = -i(1 n)(m I - Im)(nl). (l2.13c) 

In (12.11). Re [ ] and 1m [ ] represent respectively the real and the imaginary 
parts. 

(12.13 a-c) are Hennitian operators and, according to assumption (Al), are 
observables. Applying (A2) and (A3), then we have, 

. or, 

(A) = LA .. (0(0» 
o 

= L {Re [A"",l (v(om»+ 1m [A,..,,] (W("",»}, 
mn 

(m<o) 

(A) = L P;",.Amn = Tr (pA), 
m,o 

where p is defined by 

PM = (u(n», 

p"", = ~ {(V(nm» + i(W(nm»} , 
L, 

(m < II), 

(m < n). 

(12.14) 

(12.15) 

(12.16a) 

(12.16b) 

(l2.16c) 

From (12.16b) and (12.16c) we see (since expectation values of observables are 
real) that 

Pmn = (Pom)"' . (12.17) 

Thus, P is Hennitian. This completes the first part of the proof of von Neumann's 
theorem. It can also be shown that ($1 p 11\»;::: 0, for a11l\>, so that p is non-negative 
definite, according to (A4). 

The second part of the proof makes use of an additional assumption: 
(AS) If an observable is represented by the operator A, then a function J of that 

observable is represented by J(A). 
In particular, therefore, the square of the observable represented by A, is repre­
sented by A 2. Then, in the case of a dispersion less ensemble, 
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(12.18a) 

or, (12.l8b) 

for all observables A, since the expectation value is equal to an eigenvalue in the 

case of such an ensemble. 
Substituting from (12.15) in (12.18b), we have, 

Tr (pIP) :=: [Tr (pA)]2. (12.19) 

Choosing A to be the projection operator P, where, 

P =: 141> < <Ill with (<\>1 dl) = I, we get, 

since f>2:= f> [see Eq. (2.69a»), 

That is, 

or, 

since 

Tr (pP) [Tr (pP) -1] := O. 

Tr (pP) == 0 or! 

(<Ill p I <\1) =: 0 or 1, 

f> 1m) = Om .• 141) 

But I <\1) is arbitrary. Therefore, (12.21) can be satisfied only if 

p =: 0, or p = 1. 

(12.20) 

(12.21) 

(12.22) 

That is, for dispersion-free ensembles, the statistical operator is either null or 
unity. 

Now, p =: b implies that (A) =: 0 for all A, which is an unacceptable result. The 
case p =: i gives (A) == Tr (A), which cannot be true except for the one dimensional 
vector space (where A is an 1 x 1 matrix). Thus the assumption of a dispersion­
fr~ ensemble leads to unacceptable conclusions. von Neumann, therefore, 
argues that, provided his assumptions are accepted, there are no dispersion-free 
ensembles and hence there cannot be any hidden variables. For, a hidden vari­
ables state, by definition, is dispersion-free as every observable has an unique 
value in such a state. Thus the conclusion: "It is therefore not, as is often 
assumed, a question of reinterpretation of quantum mechanics,-the present sys­
tem of quantum mechanics ........ ,,42 appears well-founded. 

Bell's Rebuttal of von Neumann's Proof 

The credit for pinpointing the defect in von Neuman's proof of his theorem goes 
to Bel 143 

, though the irrelevance of the theorem for the hidden variable question in 
quantum theory was indicated also by Bohm's hidden-variables theory introduced 
in 195237 

43. Bell, J.S. Revs. Mod. Phys. 38, 447 (1966). 
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As we have emphasized, an impol.ant part of von Neumann's proof is the 
result that any ensemble can be characterised by an unique statistical operator, 
whether the ensemble corresponds to a quantum mechanical state described by the 
'V-function or to a hidden-variables state described by 'V and A.. However, the fact 
is that characterisation by means of a statistical operator is not valid for a 
hidden-variables state44

• Therefore, at least one of the assumptions (AI) to (A4) 
made by von Neumann must be false for the case of a hidden-variables state. Bell 
pointed out that it is actually assumption (A3) that is at fault This assumption 
states that the average of lle sum of two observables is equal to the sum of the 
averages of the two observables separately. Though this is valid for all quantum 
mechanical states, it is a nontrivial property as far as hidden-variable.> states are 
concerned. For, in a hidden-variables state, expectation values are eigenvalues 
of the corresponding operators, and it is well known that eigenvalues of non­
commuting operators do not have the additivity property (12.10) postulated by 
(A3). The physical basis of this would be clear from a consideration of the case 
where the observables are the spin components of a spin 1(2 particle. Putting 
AI =: cr., A2 = cry and QI = a2 = 1, Eq. (12.10) reduce to 

(a. + a,> =: (a.> + (a
J
). (12.23) 

For a dispersion-free (hidden-variables) state, (12.23) states that the eigenvalue of 
(cr.+a,) is the sum of the eigenvalues of ax and ay. But the eigenvalues of 

(ax + ay) are ±{i whereas the eigenvalues o(a. and a
J 

are ±1, so that Eq. (12.23) 

is not satisfied. The reason is that the measurements of a., a
J 

and (cr. + aJ ) require 

three different orientations of the Stern-Gerlach magnets. 
Thus, von Neumann's mistake was in assuming that what is true for quantum 

theory is also true for a hidden-variables theory. To put it differently, von Neu­
mann's impossibility proof is applicable to only a particular class of hidden­
variables theories (what Belinfante calls "the zeroth kind") and not to realistic 
hidden-variables theories (of the first and of the second kinds). 

Gleason's Work 

Glcason's45 was able to establish the existence of an unique, self-adjoint, non­
negative statistical operator satisfying Eq. (12.9) usinG von Neumann's assump­
tion (A3) for only commuting operators for separable real or complex Hilbert 
spaces of dimension greater or equal to 3. Thus, objections raised in connection 
with von Neumann's proof are not valid here. Therefore, for Hilbert spaces of 
dimension greater or equal to 3, the second part of von Neumann's proof and 
the conclusion regarding the impossibility of hidden-variables theories remain 
valid. 

However, in proving his result Gleason makes use of the ass_umption that 
the result of a measurement of an observable A is independent of what other 

44. A proof is given in ,he bouK by Belinfante, F. J. (Footnote 39), section 2.2. 
45. Gleason, A.M. J. Math. Mech. 6, 885 (1957) 



THE INTERPRET A TIONAL PROBLEM 469 

compatible observables are simultaneously measured. As Bell has shown43
, once 

this assumption is removed and a measurement result is allowed to depend on the 
whole experimental arrangement, it is possible to introduce hidden-variables. 

The work of Kochen and Specker46 on the impossibility of hidden-variables 
theories is based on an assumption similar to that of Gleason. Therefore Bell's 
argument in connection with Gleason's work is applicable in the case of Kochen 
and Specker also. In the case of an angular momentum J, for examp!e, it means 

that hidden variables in general do not assign unique value to I; for each given 

direction n, but, instead, for a given triad of (mutually perpendicular) directions I, 

m, n, they tell which one among J/, f;' and f; is having a particular value, where 

J
" 

1m and 1ft represent the components of J. 

Bell's Inequalities and Bell's Theorem 

Be1l38 has analysed the EPR thought-experiment from the viewpoint of hidden 
variables with a view to ascertaining whether hidden-variable theories of the 
second kind (which satisfy Einstein's locality postulate) could really be consistent 
with all the predictions of quantum theory. The result is a set of inequalities which 
bear his name and which establish the Bell's theorem which states: No local 
hidden-variables theory can reproduce all the results of quantum theory. These 
inequalities also permit one to resolve through experiments the question whether 
quantum theory or a local hidden-variables theory represents the laws of nature. 
We give below an outline of the derivation of the inequalities: 

Consider the two spin ~ particle in a singlet state, moving away in different 

directions. A Stem-Gerlach magnet measures the component of crl in the direc­
tion of a unit vector a while another Stem-Gerlach magnet measures the compo­
nent of cr2 along the unit vector b. (crl . a) and (cr2 "b) can have the values ±1 only. 
But the statistical correlation between the two measurements is given, according 
to quantum theory, by 

«crl . a) (a2 • b) == -(Cal . a) (al ' b» == - (a· b), (12.24) 

where the relationships, 

and (a·a)(cr·b) == (a·b)+ia·(axb), 

are used. 
Let us suppose that the results of individual measurements, which quantum 

theory is unable to predict, are determined by a set of parameters (hidden 
variables) A. Then the result A of measurement of (al • a) will depend on a and A 

while the result B of measurement of (<12 ' b) will depend on b and A. Since the 

46. Kochen. S. and Specker, E.P. J. Math. MItCh. 17.59 (\967). 
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result of a measurement has to be an eigenvalue of the corresponding operator and 
since the eigenvalue~ of any component of a are ±1, we have, 

A (a,A) = ±1;B (b,A) = ±lo (12.25) 

Einstein's locality postulate requires that A be independent of the choice b and B 
be independent of the choice a. If peA) represents the probability distribution of 
the hidden variables, then the average of the product (01 • a) (a2 · b) in the 

hidden-variables theory is given by 

«01 • a) (a2· b) >h. = P (a· b) (12.26) 

with 

P(a,b) = J A (a,A)B(b,A)p(A)dA. (12.26a) 

If we assume that the measurement results depend also on some external hidden 
variables (that is, the measuring instruments also have hidden variables) over 
which averaging has to be done, and if we denote this averaging by a bar, then in 
place of (12.25) and (12.26a) we would have,47. 

I A(a, A) I ~ 1 ; I B(b, A) I ~ 1 (12.25a) 

Pea, b) = J A(a, A) B(b, A) P (A) dA. (12.26b) 

The question is whether the absolute difference between the hidden-variables 
result (12.26b) and the quantum mechanical result (12.25) could be made arbi­
trarily small. That is, if we put 

I pea, b) + (a' b) I ~ e (12.27) 

can e be made to vanish? Bell obtains the inequality48, 

I Pea', b') - Pea, b) I + I Pea', b') + Pea, b') I ::; 2, (12.28) 

and thence shows that 

(12.29) 

Hence the Bell's theorem. 

The Experimental Verdict 

The Bell's inequality (12.28) and other similar inequalities48 for photon polar­
ization correlation measurements, enable one to verify or refute the claims of the 
local hidden variable theories as against the predictions of quantum theory (the 
latter will violate the inequalities). A number of experiments have been per­
formed in this connection. Most of them seem to agree with the predictions of 
quantum theory. In this connection, an interesting thought-experiment, which is 

47. Bell,l.S. 'Introduction to the hidden-variable question' in Foundations a/Quantum Mechanics 
(proceedings of the International School of Physics "Enrico Fermi", Course 49, June 29 - July 
11,1979, Vienna), published by Academic Press, New York. 

48. See Roy, S.M. Phys. News. 11, No. I, p. 4 (1980), for other related inequalities. 
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supposed to reflect the experimental fmdings of Aspect and coworkers49 at the 
University of Paris, has been presented by Mermin 7. The results are equivalent 
to the following proposition in relation to the EPR experiment: 

Data gathered on S(I) and data gathered independently on S(2
l, are corre­

lated. This correlation is purely statistical and arises from the fact that S(I) 
and S(2) have a common (coherent) originso. 

According to Mermin, this result rules out a deterministic theory like local 
hidden variable theory since the correlations found are as predicted by quantum 
theory. However, many believe that the question whether quantum theory or 
something beyond it is the ultimate physical theory, is far from settled. 

49. Aspect, A, Grangier, P and Roger, G. Phys. Rev. LeU. 47, 460 (1981); 49, 91 (1982); Aspect, A, 
Dalibard,1. and Roger, G. Phys. Rev. utt. 49,1804 (1982). 

50. It should, however, be remembered that the subject matter of the EPR experiment is not the 
correlations arising from indepenoontIMasurelM1lIs done on S(I) and S(2). The question posed 
by the EPR experiment is whether or not quantum mechanics permits the deduction of a com­
ponent of S(2) from a ~asure~1lI done on S(I) onJy (without making a measurement on S(2) 
itself). As we have seen in Section 12.4, the answer to the question is negative. 



APPENDIX A 

MATRICES 

At DEFINITION 

A matrix is a two-dimensional array of numbers, in general rectangular, con­
forming to the following definitions: 

[

All 

A == A21 

AmI Am2 

. . Aln] 

. . Aln 

Amn 

(A.l) 

The horizontal arrays are called rows and the vertical arrays columns. A matrix 
having m rows and n columns, as in (A,I), is called an (m x n) matrix, or a matrix 
of order (m xn). A matrix having equal number of rows and columns (m = n), is 
called a square matrix. n is then the dimension or order of the matrix. The 
numbers Ajj are called the elements of the matrix; the first subscript denoting the 

row and the second the column in which the element appears. 
The elements Ajj of a square matrix constitute the principal diagonal of the 

matrix, while the elements themselves are called the diagonal elements. The 
elements Ajj for i ;f. j are, then, the off-diagonal elements. A matrix for which all 

the non-vanishing elements are diagonal, is called a diagonal matrix. Thus, if D 
is a diagonal matrix, then, 

D jj = Opj. (A.2) 

A diagonal matrix whose diagonal elements are all unity, is a unit matrix and is 
denoted by I. 

Thus, 

I 
o 1 0 0 .. ~ 

[
1000"] 
~ 0 1 0 : or, I,) = u')' 

(A.3) 

The unit matrix could be of any order. 
A null- or zero-matrix is one whose elements are all zero: 

°ij=O. (AA) 

A matrix which is part of a larger matrix, is called a submatrix. 
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Example: The matrices 

P == G :J Q == (!} R == (6 2) 

and S = (7), are submatrices of order, 2. (2 xl). (1 x 2) and 1. respectively. of the 

3rd order matrix 

[
1 9 3J 

A== 2 8 4 
627 

A2 MATRIX ALGEBRA 

An algebra of matrices can be developed by defining equality. sum, product, etc. 
of matrices: 

Equality: Two matrices A and B are equal if their corresponding clements are 
equal. 

Thus, 

A=: B, if Ajj == Bjj, for all i.j. 

Sum: 

Product: If C =: AB, then, C jj == Ltjk Bki . 
k 

(A.5) 

(A.6) 

(A.7) 

Thus, if A is (m x n). B should be (n x l) while C would be (m x f). Therefore, 
existence of AB does not imply existence of BA, so that, in general, AB :f- BA. For 
this reason, AB is called the product of B by A. Matrix algebra is, thus. non­
commutative. Matrix multiplication is, however, 

distributive: A(B +C) =AB +AC, (A.7a) 

and associative: A(RC) = (AB)C =ABC. (A.7b) 

IL follows from (A.7) and (A.2). that diagonal matrices commute among 
themselves. Also, a matrix A that commutes with all diagonal matrices is neces­
sarily diagonal. 

Let (AD)ij == (DA)jj' 

i.e., 

i.e., 

Hence Aji == 0 if Dj:f- D j ; that is, if i :f- j, 

or Aji == 0ij Ai' 

Multiplication of a matrix by a complex number c, is defined by 

(Ac\ == (CA)ii == cAij • 

(A.8) 

(A.9) 
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Thus, the matrix C = cl, is a diagonal matrix whose diagonal elements are all 

equal to the number c. Such a matrix is called a constant matrix: 

Cjj = OJ/' (A. 10) 

A constant matrix commutes with all square matrices 

(CA)jj= f CjiAkj=cAjj; 

(AC)jj = f AjiCkj = cAjj. 

Conversely, a matrix that commutes with all square matrices. is a constant matrix. 
Let A be the matrix that commutes with all square matrices. In particular, A 

will then commute with all diagonal matrices, so that, according to Eq. (A.8),A is 
diagonal. 

Ajj = OjjAj 

Let B be an arbitrary square matrix. Then, 

AB-BA =0 

Le., 

Since Bjj:t- O,Aj =Aj for all i and). 

This means that all the diagonal elements of A are equal to the same constant. 

A jj = OJ/' 
Since the unit and the null matrices are also constant matrices, it follows that 

they commute with all square matrices. 
Al =IA =A, (A.ll) 

AO=OA=O. (A.12) 

Direct, or Tensor, Productl of two matrices A and B is defined as follows: 

If C =A ®B, 

then, the elements of C are given by 

Cji:jl = AjjBkl , (A. 13) 

Thus, if A is (ml X n1) and B is (~x n~, then C is an (ml~ x nl~ matrix. As an 

example, let A and B be (2 x 2) matrices. Then C will be the following (4 x 4) 
matrix: 

1. The names, Kronecher product and outer product, are also used. It is also possible to define a 
direci sum of two matrices by 

(
A Ol} 

AE9B~ O
2 

B 

where, if A is (m xn) and B, (p xq), then, the null matrix 0 1 is (m xq) and O2 is (p XII). 
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__ (AU
B 

AJJ) 
A21B A22B 

(A. 13 a) 

Thus, the tensor product of A and B is a matrix of the type A whose elements are 
matrices of type B. 

Power: The square of a matrix A is defined by 

A2=AA 

Similarly, A' = AA' -I = A ... A 

n factors 

Also, 

Obviously, only square matrices have powers. 

(A.14a) 

(A.14b) 

(A.14c) 

Function: Function of a matrix can be defined by combining the operations of 
addition, multiplication and power. Thus, 

I(A) == aA2+bA +cl, (A.I5) 

is a function of the matrix A, whereas the equation I(A) = 0, is called a matrix 

equation. 

Inverse: B is said to be inverse of the matrix A, if 
BA =AB =1. (A.16) 

B is, then, written as kl. If A is (m x n), then A-I has to be (n x m). But (AA -I) 

and (A -IA) should both be square matrices of the same order, according to Eq. 
(A.16). Therefore, m = n, so that, only square matrices have inverses. Every 
square matrix, however, need not have an inverse. If it has, it is said to be a 
non-singular matrix, whereas if it does not have, it is a singular matrix. 

The inverse of a product of matrices is the product of the inverse of matrices in 
the reverse order: . 

(A.17) 

Transpose: The matrix obtained by interchanging the rows and columns of the 
matrix A, is called the transpose of A, and is denoted by A. 
Thus, 

Ajj = Ajj . (A.I8) 

The transpose of a product of matrices is the product of the tmnspose of the 
matrices in the reverse order: 

(A.19) 

Complex Conjugate: The complex conjugate A" of the matrix A is defined by, 

(A \ = (Ai (A.20) 

Also, (ABC)" =A "B·C·. (A.21) 
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Adjoint (Hermitian Conjugate): The adjoint At of the matrix A is given by 

At = (A)" = (A") , 

or, t " (A )jj = (A) . 

From (A.l9) and (A.21), we have, 

(ABC)t = Ct8tA t. 

A3 IMPORT ANT SCALAR NUMBERS ASSOCIATED 
WITH A SQUARE MATRIX 

(A.22) 

(A.23) 

Trace: This is the sum of the diagonal elements and is denoted by Tr(A). Thus, 
Tr(A) = ~Ajj. (A.24) 

j 

Using Eqs. (A.7) and (A.24), we have, 
Tr(AB) = Tr(8A). (A.24a) 

Also, from Eq. (A.13a), we get, 
Tr(A®B)= Tr(A)·Tr(B). (A.24b) 

Determinant: This is defined for a square matrix A by, 

detA == IA 1= 

where, i1i2 •• .iN' is one of the N! permutations of the numbers 1,2, ... , N. The + sign 

is to be chosen when the permutation is even (or, cyclic) and the - sign when the 
permutation is odd. 

Example: 

(A.26) 

Then, 

(A.27) 
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Determinant of a product of matrices is equal to the product of the determinants: 
I ABC I = I A I . I B I . I C I . (A.28) 

Obviously, det (AB) = det (BA). (A.29) 

The order of det A, is the order of the matrix A. 

Minor: The minor Mij of the element Ajj of the matrix A, is the determinant of the 

matrix obtained by removing the ith row and the jth column (that is, the row and 
the column in which the elementAjj occurs): 

All AI2 

A i _
ll A i - 12 

M = 
Ai+i2 

I) 
Ai+ll 

ANI AN2 

In the example (A.26), we have, 

I
AZI 

M12 = A 
31 

A
,j

_ , Alj +1 

A i - 1j - 1 A i _1j+1 

A i + lj _1 A i + lj +1 

AN' )-1 A Nj +1 

Cofactor: Cofactor aij of the element Aij is defined as, 

aij=(-li+
j M ij · 

AlN 

.. Ai-IN 

Ai+lN 

ANN 

aij could be considered as the ijth element of an (N x N) matrix a. 
Thus, in the above example, 

au = -Mil = All A31 - All A33• 

(A.30) 

(A.31) 

The determinant of a matrix can be expressed in terms of the cofactors of its ele-
ments: 

N N 
det A =L Ajj ajj = ,L Ajj ajj • 

) =1 1 =1 
(A.32) 

This formula is known as the Laplace development. 
For the matrix A given by (A.26), we get, 

del A = A1I all + An a l2 + An a l3 

= All (Au A33 - An An) - Al2 (All A33 - An A 31 ) + Au (All An - Au A 31 ), 

which is the same as (A.27). 
The following properties of the determinant of a matrix follows from the def 

inition (A.32): 

(i) del A = del A; det At = (det A)", 

(ii) det Ao, = det Aoc == - del A, 
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where, Aor is the matrix obtained fromA by an odd permutation of its rows, while 

All< is obtained from A by an odd permutation of its columns. It follows, from this, 

that if any two rows or any two columns of A are identical, then det A = O. 
(iii) If B is a matrix which is obtained from A by multiplying all the elements 

of anyone row or anyone column of A by the number c, then, det B = c det A. 
(iv) If each element in any row or any column of A is written as a sum of two 

numbers, then det A can be written as the sum of two determinants: 
Thus, if 

[

All A~~ 
A - A A(!) 

- 2! 22 

A A (!) 
3! 32 

+ A~~ A!3] 
+ A (2) A 

22 23 

+ A (2) A 
32 33 

then, det A = det A (I) + det A (2), where 

[

All A~~) Al3] 
A (k) = A21 A~) A23 

A3! A~~) A33 

From properties (ii), (iii) and (iv), it follows that if we add any multiple of a row 
(column) of A to any other row (column), then the determinant of the resulting 
matrix is the same as det A. 

The inverse also can be expressed in terms of the cofactors and the determinant 
of the matrix: 
Eq. (A.32) can be written as 

N 

IA I ,L Ai/iji == Dii' 
J;I 

(A.33) 

where, Ii is the transpose of the matrix a whose elements are the cofactors of A. 
Thus, 

D ::: A Ii ::: I A II ::: I I A I, (A.34) 

is a constant matrix whose diagonal elements are all equal to I A I. If A has an 
inverse, then, 

I ::: AA-I
, 

so that Eq. (A.34) becomes, 

A a = A (A -I I A I), 

or, A
-I a 

=IAI' 
(A.35) 

Hence, the condition for the existence of an inverse is that the determinant of the 
matrix be not equal to ... cro. This condition is both necessary and sufficient. 

Rank: The rank peA) of the matrix A is defined as the order of the largest non­
singular (sub) matrix contained within A. Thus, if A is non-singular. 
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peA) == n, (A.36a) 

where n is the order of the matrix. 
If A is singular, 

peA) < n. (A.36b) 

Example 1: 

I A I *- O. Therefore, p(A) == 3. 

Example 2: 

A - [~ ~ ~] 
-3 -6 -9 

I A I == O. Also, all submatrices of order 2 are singular. Hence p(A) == 1. 

Example 3: 

_ (1 -1 
A - 2 1 

p(A) == 2, since I ~ -III "# O. 

The rank of a product of two matrices is less than or equal to the rank of either. 
p(AB) ~ peA), (A.36c) 

where peA) $; pCB). 

A4 SPECIAL MATRICES 

Hermitian: A is Hermitian or self-adjoint if 

At == A, or, A; == Ajj 

and antiflermitian, if 

At == -A' or A~. == -A"J' , ,. ). 

Unitary: U is called a Unitary matrix, if 
ut == U-\ 

or, 

Orthogonal: If 

A == A-I, or AA == AA == I, 

A j~ s~id to be orthogonal. 

(A.37a) 

(A.37b) 

(A.38a) 

(A.38b) 

(A.39) 



480 QUANTUM MECHANICS 

Symmetric: When 

(AAOa) 

A is symmetric, and if 

A == -A, or,A jj = -Ajj, (AAOb) 

A is antisymmetric. 
Real: A matrix is said to be real, if 

A· = A, or Aj; = Ajj' (AAla) 

and imaginary if 

A· == -A; Le., A; = -Aij" (AAlb) 

Normal: A matrix N that commutes with its adjoint NT, is said to be a Normal 

matrix: 

NNt == NW. (A.42) 

Obviously, Hermitian, Unitary and real-symmetric matrices are Normal. 

Column and Row Matrices: A matrix X with only one column is called a 
column-matrix or a lcet-vector. Similarly, a matrix Y with only one row, is a 
row-matrix, or a bra-vector.2 The name 'vector' in the case of a column (or row) 
matrix has its origin in the fact that the elements of such a matrix could be 
regarded as the components of a vector. For example, letx. y. z be the components 
of the position vector r: 

r = xi + yj + zk. 

This vector could be represented by the column matrix, 

,. (n 
The scalar product of two vectors r 1 and r z is defined as 

r l • f2 == X1X2 + YIY2 + ZIZ2' 

which is the product (see Eq. (A.7» of the row-matrix 

and the column matrix, 

',= [~} 
2. These are also sometimes referred to as colwnn-vector and row-vector. respectively. 
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Thus, both the column- and the row-matrices represent vectors. The names ket 
and bra-vectors, are due to P.A.M. Dirac (See Section 2.3). 

The above concept of vectors could be generalized to the case of a complex 
space with more than three dimensions. Vectors in such spaces would be repre­
sented by column or row matrices with complex elements. 

Whereas the product of a column-matrix by a row-matrix is a scalar, the 
product of a row-matrix by a column matrix is a square matrix: 

Let xt=x;X; ... x; 

and y= 

Then, (A.43) 

But. (A.44) 

AS MATRIX TRANSFORMATIONS 

A similarity transformation of a square matrix A by a nonsingular matrix S, is 
defined by 

(A.45) 

If S is a unitary matrix. the transformation is called unitary. If A is a nondiagonal 
matrix but A' is diagonal, then, A is said to be diagonalized by the transformation, 
or by the matrix S. If two matrices A and B commute, then, they can be diago­
nalized by the same matrix S: 

AB = BA, (given). 

LetA' = S-lAS, be diagonal. We have to show thatB' = S-lBS,isalsodiagonal. 

We have, S-I(AB - BA)S == S-10S == O. (A.46) 

Le., 

or, 

Le., 

Hence, 

A'B'-B'A'==O. (A,47) 

(A.48) 

(A.49) 

Conversely, if A and Bare diagonalized by the same matrix S, then, AB = BA: 
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We are given, A'B' -B'A'=O. 

That is (see Eq. (A.46», 

S-I(AB - BA)S = O. 

Multiplying from the left by S and from the right by S-I, we get, 

AB - BA = SOS-I = O. (A.50) 

Obviously (see Eqs. (A.24a) and (A.29», the trace and the determinant of a matrix 
are invariant under a similarity transformation: 

Tr (A') = Tr (S-IAS) = Tr (S-ISA) = Tr (A) (A.51) 

det A' = det (S-IAS) = det (S-I S) . det A = det A. (A. 52) 

The rank of a matrix is another quantity which is invariant under similarity 
transformation. Also, a matrix equation is unaffected if every matrix in the 
equation is subjected to the same similarity transformation. 

A unitary transformation (but not a similarity transformation by a non-unitary 
matrix) preserves the Hermitian, or Unitary, character of a matrix, since 

A't = (U-1AU)t = UtA (U-1) = V-IAU =A', when At =A, 

and 

A6 SOLUTION OF LINEAR ALGEBRAIC EQUATIONS 

A set of linear algebraic equation in n variables, Xj,x:u ... ,x., is given by 

Allxl + AlzX2 + .. + AI.x. = Yj 

or, using matrices, 

AX=Y 
where, A is the coefficient matrix, given by, 

A=[: .... J 
and X and Yare column matrices (vectors): 

X = [J y =~:J 

(A. 53) 

(A.53a) 

(A.53b) 
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The problem is to determine X when A and Y are given3
• 

Multiplying both sides of (A.53) with A -I, we get, 

-I d Y 
X = A Y = IA I' 

where, we have substituted for A -I from Eq. (A.35). 

That is, 

1 ~ (_) 
x· == (Xh = - La" Yj 

J J I A I j =1 JI 

483 

(A.54) 

(A.55) 

where, [see Eq. (A.33»), At is the matrix obtained from A by replacing its jth 

column with Y. 
As an example of the application of formula (A.55), let us consider the set of 

equations, 

Here, 

-2 3J o -3; 
1 1 

IA I = 19, 

2 -2 3 

:. XI = 19 3 0 -3 
6 1 1 

1 1 2 3 38 IA; I 
x2 = 19 2 3 - 3 = 19 = 2 = TAT; 

1 6 1 

3. The equation (A.53) will have solutions only if 
rank (A) = rank (A, n, 

where (A, Y) is the extended or augml!nted matrix, obtained by attaching Y to A as the (n + l)th 
column. 
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1 
1 -2 2 

19 IA;I 
X3 = 19 2 ° 3 = - = 1 = m' 1 1 6 

19 

When, 
AX=O, (A.56) 

we have, 1 A; 1= 0, for allj; so that, according to (A.55), a non-trivial solution (one 

for which X -,J.; 0) for (A.56) exists only when 
IA 1=0. 

A 7 EIGENVALUES AND EIGENVECTORS 

(A. 57) 

Consider a square matrix A. The matrix K = (A - al), where a is a scalar number 
[defined by Eq. (A.58) below] and I is the unit matrix of the same order as A, is 
called the characteristic matrix of A. The determinant of K is the characteristic 
function (or, characteristic polynomial) and 

detK == IA - all = 0, (A. 58) 

is called the characteristic, or secular equation of A. If the order of A is n, then, 
the secular equation is of degree n in a.. The n roots of the equation are called the 
eigenvalues of A. 

Now, if A is a diagonal matrix, Ajj := Ojy4j, and the secular equation is, 
n 

I A - al I = n (Aj - a) = O. 
i=::l 

(A.59) 

Hence, the roots are 
<Xj =Aj,i = 1,2, ... ,n. (A.60) 

Thus, the eigenvalues of a diagonal matrix are the diagonal elements of the 
matrix. 

Suppose X is a column matrix of order n x 1. 

Then, AX = Y, (A.61) 

where, Y is also of order n x 1. Y is then called the transform of the vector X by 
the matrix A. There might be vectors X for which Y = ax. That is, 

AX = aX, (A.62) 

or (A - al)X ... KX = O. (A.63) 

Eq (A63) represents a set of n linear, homogeneous, algebraic equations. For a 
non-trivial solution, the condition is that [see Eqs. (A.S6) and (A.57)] 

det K == I A - al I = O. 

But, this is the secular equation of A. Eq. (AS8», so that the values of <X for which 
Eq. (A62) is satisfied, are the eigenvalues of A. Eq. (A.62) is, for this reason, 
called the eigenvalue equation of A. Denoting by <4 the different values of ex, we 

have, 
(A.62a) 
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X. is the eigenvector4 of A belonging to the eigenvalue Ot. 

The eigenvalues are invariant under a similarity transformation. For, let 

A' = S-IAS. 

Then, the secular equation for A' is, 

That is, 

Le., 

lA' - a'I I = 0 

IS-lAS - cill = IS-lAS - S-Ia:lS I == 0 

I S-I(A - a'I)S I == O. 

Using Eq. (A.28), we get, 

I S-I I . I A - ell I . I s I = O. 

Since S is non-singular, I S-I I and I S I are not zero, so that 

IA - a'I I = O. 

(A,64) 

(A.65) 

This equation is the secular equation (A.58) for A. Therefore. the roots (1": are the 

same as the eigenvalues C4 of A. 

Since the eigenvalues of a diagonal matrix are its diagonal elements, and since 
the eigenvalues are invariant under similarity transformations, one way of finding 
the eigenvalues would be by diagonalising the matrix through a similarity trans­
formation. Another method, of course, would be by solving the characteristic 
equation. 

Now, each of the vectors X. in Eq. (A.62a) is a column matrix: 

Define the square matrices S and A ' by, 

(A,66) 

4. If X is an eigenvector of A, then eX, where e is a scalar nwnber, is also an eigenvector. However, 

X and eX are not counted as separate vectors. To avoid the arbitrariness in the selection of the 
eigenvectors, the eigenvectors are normalized; thaT. is, X is so chosen that 

X'X = 1. 
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~ 0 0 ...... 0 

o ~ 0 ...... 0 

A' = (A.67) 

o 0 0 .. .. a. 
Eq. (A.62a) could be written as, 

(AX, AX2 ... AX.) = (XI~ X2~ ... X.c£,.), 

or, AS = SA'. (A.68) 

Multiplying from the left by S-I, we get, 

A' = S-IAS. (A.69) 

Thus, the matrix S that diagonalizes A, has the eigenvectors of A as its columns. 
The problem of finding the eigenvalues and eigenvectors of A is reduced to the 
problem of finding the matrix S that diagonalizes A. 

Now, the secular equation (A.S8) can be written as, 
".-1 0 a +C1U + ... +c. = . 

Define, s. = Tr (A "), n a positive integer. 

Then, it has been shown that the coefficients in (A.70) are given by 
1 r 

cr = -- ~ cr - l Sl' 
r k ~I 

where Co = 1. 

Thus, 

From the theory of algebraic equations, we have, 
• 

~+~+ ... +a. = ~ ak = -c1 = SI = Tr(A) 
1 = 1 

(A.70) 

(A.71) 

(A.72) 

(A.73a) 

(A.73b) 

Eq. (A.73b) follows from the invariance of the determinant as well as the eigen­
values under similarity transformations [Eqs. (A.S2), (A.64) and (A.6S)] and the 
fact that the determinant of a diagonal matrix is the product of its diagonal 
elements which are also its eigenvalues [Eq. (A.60)]. 

The invariance of the trace and the determinant of a square matrix under sim­
ilarity transformation, thus, follows from the invariance of the eigenvalues. 

Multiplying Eq. (A.70) by an eigenvector Xl of A, and using the fact that, 

(A.74) 

we get, 

(A.7S) 
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That is, a square matrix satisfies its own characteristic equation in the matrix 
form. This is known as the Cayley-Hamilton Theorem~. The theorem is useful in 
finding the inverse of a matrix. For, multiplying both sides of Eq. (A.7S) by A-I, 

we get, 

-I 1 .-1 .-2 A = --[A + cIA + ... +c._1lJ, 
C • 

where, the coefficients c, are given by Eq. (A.72). 

Example: Consider the matrix 

The secular equation is 

-i I 
-(J.. 

i.e., (i-I:::: 0. 

Hence, the eigenvalues are 

:::: 0, 

a l :::: 1 and Uz :::: - 1. 

Substituting these values in the eigenvalue equation 
AXk :::: a;<k' 

and, normalizing Xk , that is, by putting 

xtxk := 1, 

we determine 

Thus, the matrix S that diagonalizes A is given by 

S == [~ ~]. l -I 

'-if -{i 
In order to show that S-IAS is iw.bxlthe matrix 

A' = (~ ~1). 
we should first find S-I. According to Eq. (A.76), 

S-1 -_ 1 (S I) -- +c1 ' 
c2 

(A.76) 

(A.77) 

(A.78) 

5. For a derivalion of the theorem without using the eigenvector, see Joshi, A.W. Malrices a'ld 
Tensors in Physics (Wiley Eastern, New Delhi 1975), Section 10. 
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where (see Eqs. (A.71, 72», 

Thus, 

and 

c1 == - Tr(S) == .1-(i -1); 

1 1 
c2 == - Z(C1S1 +s~ == -Z[clTr(S)+Tr(S2)] 

1 = - Z [-{Tr(S)} 2 + Tr(S2)] 

{Tr(S)}2 == {.1-(l- Or == ~(1-1-2i) == -i 

S2 == ~ (l+i I-i) 
2 l+i i-I 

C2 == -~(i +i) == -i. 
2 

- .[ 1.] [~~J S I == -I s+ {i(/-I)1 == ~ ~ == st. 

1i{i 
Thus, S is unitary, as it should be since A is Hermitian. 

The following properties relating to the eigenvalues and eigenvectors of Her­
mitian and Unitary matrices, are easily proved: 

(i) The eigenvalues of a Hermitian matrix are real, whereas the eigenva­
lues of a Unitary matrix are complex numbers of absolute value unity. 

(ii) The eigenvectors belonging to different eigenvalues are orthogonal. 
(iii) There are n linearly independent6 (and, hence, orthonormal) eigenvec­

tors, where n is the order of the matrix 7• 

AS DIAGONALIZABILITY OF A MATRIX 

From Eq. (A.69), we see that the condition for the diagonalizability of a square 
matrix A, is that the matrix S whose columns are the normalized eigenvectors of 
A, be non-singular. And this would be so when A has n (where n is the order of 
A) linearly independent eigenvectors. Now, even though every square-matrix of 

6. See Eq. (2.17), for the definition of 'linear independence'. 
7. See ref~rence given in footnote 5. for proof. 
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order n has exactly n eigenvalues8 as implied by the secular equation (A.58) 
(which is of degree n in a), it need not have n linearly independent eigenvectors. 
For example, consider the matrix A given bY' 

A = (H ~:} (~79) 
The secular equation is 

I A - <Xl I = (1 - a)(a. - 2l = 0, 

so that, the eigenvalues are, 

~ = 1; ~ = ~ = 2. 

Substituting these eigenvalues in the eigenvalue equation (A.62a), we get the 
eigenvectors. It turns out that there are only two linearly independent eigenvec­
torslO

• These are, corresponding to a.l • 

corresponding to CXz and <X.:J, 

Note that Xl and X2 are not orthogonal to each other, but are linearly independent. 

We can find a third vector X3 which is linearly independent of Xl and X2• For 

example, 

8. These eigenvalues need not be all different. If «-t is an eigenvalue which occurs k times, then k 

is called the multiplicity of the eigenvalue «-t. 
9. This example is taken from the book by Joshi, A.W. (see footnote 5). 
10. This is not due to the degeneracy of the roots, but is a consequence of the nature of the matrix. 

For example, the diagonal matrix 

[
' 0 o} B = 0 2 0 
002 

has also the roots a., := 1, ~ = a... = 2. But there are two linearly independent eigenvectors 

corresponding to the root 2, namely, 

X2 = [!]andX3 = [H 
whereas, corresponding to a., = I, we have 
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But X3 is not an eigenvector of A belonging to eigenvalue 2. Also, the matrix 

S == (Xl X2 X3) does not diagonalize A. In fact, 

which is a triangular matriy. 
Here, we have used, 

S-IAS 0:= (~ ~ ~ 1]; 
o 0 2 

S-l = [ ~ 
-2 

-1 

1 

o 
which can be obtained using Eq. (A.76). 

Thus, every square matrix is not diagonalizable. However, as stated earlier, 
every finite-order Hermitian or Unitary matrix has as many orthonormal eigen­
vectors as the order of the matrix. It follows that every Hermitian or Unitary 
matrix is diagonalizable. That is, corresponding to every Hermitian (unitary) 
matrix, there is a unitary matrix that diagonalizes it. 

A9 BILINEAR, QUADRATIC AND HERMITIAN FORMS 

If X and Yare column matrices of order (n x 1), and A is a square matrix of order 
n, then, the number, 

(A.80) 

is called a bilinear form in the 2n variables xj(i = 1,2, ... , n) and Yi(1,2, ... , n). 

Similarly, the number, 
n 

X+AX = L A.x~ x, 
i,j;; 1 'J I J 

(A.81) 

is called a quadratic form. 
If in Eq. (A.S1), the matrix A is Hermitian, then, the expression (A.81) is called 

a Hermitian form. A Hermitian form is always real. For, it is clear that a Her­
mitian form is Hennitian: 

(xtAX)t = XtAtX 0:= XtAX. 

But, since the Hermitian form is a number, 

(XtAX)t ;;: (XtAX)". 

Frcm (A.S2) and (A.S3), it follows that XtAX is real. 

(A.82) 

(A.83) 
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AIO INFINITE MATRICES 

The discussion, thus far, has been concerned wiLhfinite matrices; that is, matrices 
with finite number of rows and columns. A finite matrix is invariably discrete; 
that is, its elements are labelled by discrete indices i, j where i and j are positive 
integers. We will now extend the discussion to the case of infinite matrices. 
These are matrices of infinite order, hence having infinite number of rows or 
columns or both. If the number of rows and columns are denumerablyll infinite, 
then the matrix is discrete, and its rows and columns are labelled by integers, 
1 ::; i ,j ::; 00. If the rows and columns are labelled by continuous variables x and y, 
with a ::; x::; band c ::; y ::; d, then, the number of rows and columns are tlonde­
numerably infinite, and the matrix is said to be continuous. We can also have a 
mixed matrix whose row is labelled by discrete numbers and columns by a 
continuous variable; or vice versa. 

We will denote the elements of a discrete matrix by A ij , of a continuous matrix 

by AX)' or A (x, y) and of a mixed matrix by Au: or A.i • Also, we will use 

A!'v :;: A (11, v) to denote the elements of a general infinite matrix ()1 and v could 

be discrete, continuous or partly discrete and partly continuous). 
Many of the definitions and operations relating to finite matrices are also valid 

for infinite matrices. We list below some of the important differences: 
1. Two matrices are equal only if their rows and their columns are labelled hy 

the same scheme. That is, if one is discrete, the other is also discrete; if one 
is continuous, say with row labelled by x and column by y, where a :5; x <: h 

and c ::; y ::; d, then the other matrix is also continuous with elements A." 

where x and y vary in the interval a - band c - d, respectively. 
2. Sum is defined only for those matrices which have their rows labelled by 

the same scheme and their columns labelled by the same scheme: 
If C '" A +B (A.84) 

then, either 

or, 

where, 

C(x,y) = A(x,y)+B(x,y); 

(A. 84a) 

(A.84b) 

3. The product AB exists provided the columns of A and the rows of B are 
labelled by the same scheme and provided, further, that the sum or the 
integral involved converges. That is, if 

C =: AB, (A8S) 

then, C!'v = L A!,o Bov' (A.8Sa) 
o 

where, the summation should be replaced by integration whenever cr is 
continuous. The product exists provided the R.H.S. of (A.85a) is finite for 
all values of !l and v in their allowed range. 

\\. Sec footnote I, Chapter 2, for a definition of this tenn. 
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Thus, if A and B are discrete, Eq. (A.85a) reads, 

Cij= L AikB"j' l$;i,j$;oo, (A.85b: 
i=1 

while if A and B are continuous, we have, 

C(x,y) = f A(x,q)B(q,y)dq. (A.85c~ 
4. A matrix is square if its rows and columns are labelled by the same system 

of indices (scheme). Thus, the matrix with elements Aij, where 1 $; i,j -:;; 00, 

is square, whereas the continuous matrix with elements A", is square only if 

x and y vary in the same interval. 
5. For a diagonal matrix, the elements are given by, 

DfJ.v = DfJ. o()l, v), 

where, 0(11, v) = 0fJ.V ' 

if 11 and v are discrete, and 

0(11, v) = 0(11 - v), 

(A.86) 

if 11 and v are continuous, 0(11 - v) being the Dirac delta function (see 
Appendix D). Thus, if D 1 and D 2 are two continuous diagonal matrices, we 
have, 

(DID\v = f D~D~o(1l - 0) 0(0- v) do 

= D~D;O(1l - v) == (D 2D\v. 

Hence, infinite diagonal matrices also commute among themselves. 
From Eq. (A.86), it follows that the elements of the continuous unit 

matrix are, 

lfJ.v = 0(11 - v), (A.87) 
so that, the diagonal elements are not equal to unity, although the off diag­
onal elements are zero. 

6. Determinant of an infinite matrix is not defined. This has the following 
consequence: 
For finite matrices, the relation 

AB = I, (A.88a) 
implies that B is the inverter of A, so that, 

BA = I. (A.88b) 
For, taking the determinant of (A.BBa), we have, 

detA· detB == 1, 
so that, det A -:t. 0, which requires that A has an inverse A -I such that 
AA-1 =1. 

Since infinite matrices have no determinants, this argument cannot be used to 
establish the existence of A -\ from Eq. (A.88a). Thus, both (A.8Sa) and (A.88b) 
have to be satisfied in order that B be the inverse of A. 
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It also follows that. unlike in the case of finite matrices, A need not be a square 
matrix to have an inverse. When A is not square, the rows and columns of the 
unit matrix in (A.88a) would be labelled differently from those of the unit matrix 
in (A.88b). 

The preceding remarks apply to unitary matrices also. Both the conditions, 

UUt = 11 and utu = Iv (A.89) 

are required to ensure that U is unitary, where 11 and 12 are unit matrices. Again, 

unitary matrices need not be square. 
However, only square matrices can be Hermitian. For the equality 

H = Ht, 

requires that the rows of:l are labelled by the same scheme as the rows of Ht. But 
the rows of Ht are the complex conjugates of the columns of H, so that the rows 
of II are labelled by the same scheme as the columns of H. 



APPENDIX B 

ANTILINEAR OPERATORS 

A is an antilinear operator if, for any vectors I X > and I Y > in the domain of A , 
and any scalers C1 and Cz, 

A[c1IX}+c21 y}J =c;CA IX})+c;CA I Y}). (8.l) 

Obviously, then, 

(8.2) 

If A and Bare antilinear operators, the product CAB) is a linear operator. For, 

(AB)[c l I X) +c2 1 r) J = A [c;CB I X» + c;(B I y})J 

= cleAR IX»+c2(AB I Y}) (8.3) 

which shows (see Eq. (2Ala» that AB is linear. In general, a product of p linear 
and q antilinear operators, is linear or antilinear according as q is even or odd. 

Many of the operations and properties discussed in connection with linear 
operators (Section 2.2) are valid in the case of antilinear operators also. In 
particular, the inverse kl of A is defined by 

Akl = i k iA. (BA) 

Since i is linear, it follows from (B.3) thatkl is antilinear. As in the case of linear 

operators, the necessary and sufficient condition that the anti linear operator A has 
an inverse, is that A <1> be unique for each vector <1>. 

In the following, we will confine ourselves to a discussion of the important 
differences of antilinear operators from linear operators. 

Eq. (B.2) represents one of these important differences. That is, whereas a 
scalar commutes with every linear operator, only a real scalar commutes with an 
antilinear operator. Thus, as far as antilinear operators are concerned, complex 
numbers could be regarded as operators. The other important difference concerns 
the scalar product involving the operator. In the case of a linear operator, we have 
the relation (see Eqs. (2.9a) and (2.54», 

(Y,AX)" = (AX, Y) = (X, Aty). (B.5) 

But, for antilinear A, the corresponding relationship is 

(Y,AX)' = (AY, X) = (ATX, Y) = (X,ATY)· (B.6a) 

or, in bra-ket notation; 



ANTILINEAR OPERA TORS 495 

r(YI{A IX)}f={(YIA} IX) = 

= {(X I A"t) I Y) = [(X I {At I Y)}]' (B.6b) 

We see that A operating on one vector in a scalar product is equivalent to At 
operating on the other vector (cf. Eq. (2.104». Eq. (B.6a) also defines the Her­
mitian conjugate A t of A. From this definition, we have, for three antilinear 
operators A ,B , C, the result, 

(ABCY, X) = «ABC)tX, Y), (B.7a) 

since (ABC) is an antilinear operator. But, since (AB)and (BC) are linear oper­
ators, we get using (B.5) and (B.6a), 

(ABCY,X) = (CY,(AB)tX) 

and 

(ABCY,X) = (Atx,BCY) 

= «BC)tAtX, Y). 

Equality of all the three expressions (B.7a-c) requires that 

(ABC)t = ctBtAt, 
which relationship is the same as for linear operators (Problem 2.7). 

(B.7b) 

(B.7c) 

(B.8) 

Note that, as a result of (B.6b), it is important to explicitly specify in a scalar 
product, whether an antilinear operator is operating on the ket vcctor to the right 
or on the bra vector to the left. Thus, (X I AB I Y) is not specific enough, but one 
can write, 

Antiunitary Operators 

(X I (AB) I Y)= {(X lAB} I Y) 

= [{(X IA}{B I Y)}]' 

=(X I {AB I y)}. 

An antilinear operator K is said to be antiunitary if, 

Kt=K-1 

That is, if 

(B.9) 

(B.10) 

The product of an even number of antiunitary operators is unitary whereas the 
product of an odd number of antiunitary operators is anti-unitary. 

A similarity transformation by an antiunitary operator also preserves the Her­
mitian character of a linear operator. This follows from Eqs. (2.57) and (B.8) 
which hold good both for linear and antilinear operators. However, from Eqs. 
(B.6a) and (B.10), we have. 



496 QUANTUM MECHANICS 

(X, Y) ~ (X,Y) = (X,KY) = (Y,KtX) 

= (Y,KtKX) = (Y,X) = (X, Y)" (B.11) 

when K is antiunitary. Thus, only the absolute value of the scalar product is 
preserved under an anti unitary transformation: 

, (X, Y) I = I (X, Y)" I = I (X, y) I (B.11a) 

In particular, the norm of a vector is invariant under antiunitary transformations. 
Thus, the absolute value of the scalar product of vectors is preserved both by 

unitary (Eq. (2.62) and antiunitary transformations. Conversely, a transforma­
tion which preserves the absolute value of the scalar product is either unitary or 
antiunitar/ . 

The properties of an antiunitary transformation represented by the antiunitary 
operator K, could be summarised as follows: 

(i) A ket-vector I X) is transformed into' 

I X) = K I X) (B.12a) 
This follows from the definition (B.]) of antilinear operators. 

(ii) A bra-vector (X I is transformed into 

(X I = (X I Kt (B.l2b) 

This can be proved using Eqs. (B.6a) and (B.ll). From (B. II), we have, 

(X I Y) = (X I {K I Y)} = (X I Y)' 
But by Eq. (B.6a), we have, 

(X I {K I Y)} = [{(X I K} I Y>( 

Therefore, (X I K = (X I, 
which requires Eq. (B.12b/. 

(iii) A linear operator B transforms into 

B =KBKt. 
This could be deduced, as follows: 
Let I y)=B IX). 
Applying the antiunitary transformation K, we get, 

K I y)=KB IX) 

= (KBKt)K IX). 

That is, 

(B.l3a) 

I. For a proof, see A. Messiah, Quantum Mechanics (North Holland, Amsterdam 1961), Chapter 
XV, Section 2. 

2. Note that a similar procedure using Eq. (B.5) yields, in the case of a unitary operator 0, the 
result, 

in agreement with Eq. (2.105). 
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Hence the result. 
(iv) A complex number c transforms into 

c=KcKt=:;;c·, (B.l3b) 
where Eqs. (B.2) and (B.lO) have been used. 

The proof is identical with that of Eq. (B.13a), with c replacing B. The result 
(B.13b) confirms our earlier statement, in connection with Eq. (B.2), that complex 
numbers behave like linear operators under anti-linear operations. We see that 
Eq. (B.ll) is actually only a special case of (B.13b), since the scalar product is a 
complex number. Similarly, it follows that the matrix representing B would be 
transformed into its complex conjugate under an antiunitary transformation. That 
is, 

For, 

(Uj I B I Uk) ~ \uj IB I u.) 

=:;; {(Uj I Kt) (K BKt) {K I Uk)} 

= {(Uj IKt} {KBKtt I Uk)} 

== [{(Uj I KtK}] {Biti I uk)}f 

={uj 18 I uJ, 

(B.13c) 

where use has been made of Eqs. (B.l2a, b), (B.l3a), (B.9), (B.6a) and (B.lO). 
It follows from (B.l3a, b) that operator equations involving complex coeffi­

cients will be transformed, under anti unitary transformations, into the same 
equations with the coefficients replaced by their complex conjugates. Thus, the 
commutation relations, 

are transformed into 

(B.14) 

Examples of Antiunitary Operators 

The complex conjugation operator teo which transforms a c-number to its com­

plex conjugate, is, obviously, an antiunitary operator since, by definition, it 
satisfies the equations (B.1), (B.l3b,c) and (B.11). K c also satisfies the 

relationship. 

3. The term, "c-numbers" refers to ordinary numbers (real or complex) which obey a commuta­
tive algebra. 'Ibis term was introduced by P,A.M. Dirac [Proceedings of the Royal Society of 
London(A) 110, 561 (1926)] 10 distinguish such numbers from the operators of quantum 
mechanics (the "q-numbers") which obey a non-commutative algebra, 
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(B.15) 

so that, from K;Kc = 1 (which follows from (B.11», we get 

Kt =K (B.16) c c' 

The effect of Kc on a vector or on an operator, depends on the representation. 

Thus, in the representation defined by the basis {I Uk)}' 

K c I Uk) = I Uk)' (B.1?) 

If I X) is an arbitrary vector, then, 

IX) = L I Uk) (Uk IX) 
k 

and 

K c I X) = L I Uk) (Uk I X)*. (B,I8a) 
k 

That is, K c I X) is a vector whose components are the complex conjugates of the 

components of I X). On the other hand, in a representation in which I X) itself is 
a basis vector, we have4

, 

Kc IX)= IX). (B,I8b) 

Similarly, suppose r and p are, respectively, the operators corresponding to the 
position vector and the momentum of a particle. Then, in the co-ordinate repre­
sentation, r is real whereas p is pure imaginary [Eq. (3.18)], so that, we have, 

"t } KiKc=+r, 
" co-ordinate representation. 

KcPK;=-p. 
(B.19a) 

But, in the momentum representation, p is real and r is pure imaginary [Eq. 
(3.181

)], so that, 

KcrKr =-r,} 
, , 'j , momentum representation. 

KcpKc=p· 
(B.19b) 

In either representation, 

K J' Kt =-J' 
c c ' 

(B.19c) 

where j is the angular momentum operator. 

An arbitrary antilinear operator A could be written as the product of K c and a 
linear operator. For, 

(B,20a) 

where A I = (A K J, is a linear operator (being the product of two antilinear opera­

tors). Also, 

4. Eqs. (H.17) and (RI8b) follow from the fact that a basis vector is represented by a real (column) 
matrix lEq. (2.112») in a representation defined by a basis of which it is a member. 
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(B.20b) 

with, (B.21) 

Another example of an antilinear operator, is the time-reversal operator 1; 
defined by, 

1fT= f; rJpT =-p. (B.22) 

The transformation represented by 1; obviously, satisfies Eq. (B.14) and is, hence, 

antiunitary. A fuller discussion on T will be found in Section 6.2E. 



APPENDIX C 

FOURIER SERIES AND FOURIER 
TRANSFORMS 

C.I FOURIER SERIES 

If 'V(x) is a function which is single-valued, finite, has finite number of disconti-

L L 
nuities and finite number of maxima and minimal in the interval- 2 $; x ::;; 2' then 

according to Fourier's Theorem, it can be expanded in a Fourier series: -'V(x) == ~ a,.e iniX
, (C.l) 

lILa . where, a. == L 'V(x)e ~1n.l:X dx, (C.2) 
~LI2 

and k == 21t 
L 

(C.3) 

1 
Eq. (C.2) follows from the orthonormality of the functions ..JL ei"~x. Writing, 

I
E,12 1 ILI2 

(<1>.,<1> .. )= <1>:(x)<1> .. (x)dx==-L exp [i(m-n)kx]dx ==Om •• 
~Lr2 -Lr2 

(C.4) 

In terms of the <1>., Eqs. (C.l) and (C.2) reads (cf. Eqs. (2.30) and (2.31)): -'V(x) == ~ a'.<1>.(x) (C.la) 

1. These conditions are called Dirichlet conditions, and a function which satisfies these conditions 
may be called piece-wise regular. Whereas the Dirichlet conditions are sufficient to make Eq. 
(C.l) valid, they are not all necessary. 
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with a'. = {La. = (<1l., 'V). (C.2a) 

Thus, the Fourier series expansion could be regarded as the expansion of Ihe 
'vector' 'V(x) in an infinite-dimensional Hilbert space, in terms of the basis vec­

tors <1l. [see Eqs. (2.30) and (2.33)]. 

L is called the period. Fourier's theorem can be, however, applied even in the 
case of a function F(x) which is not periodic, but which is known only within the 
interval -Ll2 ::;; x ::;; Ll2 and which satisfies the above Dirichlet conditions within 
this interval. In this case, 'V(x) given by (C.l) should be understood as a periodic 
function which coincides with F(x) in the interval- Ll2::; x S Ll2 (see Fig. C.l), 
but could differ from F (x) outside this interval. 

,"\ \ ..... '1II'(x) ,'~\ 
I '\ '\ 'T I \ 

I \ " \ " \,' \ / , 
" \ I \ / \ 

I ,I \' \ 
I ,I "~I \ 

--~--~----~I~--~----~--~~----~----~----~-.X 3L12 -3L/2 

Fig. C.l. A function F(x) [solid curve] and its Fourier series representation lII(x) [dotted curve]. 

Eq. (C.I) is the complex Fourier series. The real Fourier series can be obtained 
by writing e"'kx = cos (nkx)+i sin (nkx). We get, 

be ~ 
'V(x) ='2+ .:1 (b. cos nkx+c. sin nkx), (C.S) 

with 2lU2 

b. = a. +a_. = -L 'V(x) cos nkx dx, 
-LIZ 

(C.6a) 

2lU2 

c.=i(a.-a_')=-L 'V(x) sin nkxdx. 
-U2 

(C.6b) 

Changing the variable x to t = kx ~ (~) x in Eq. (C.S), we get an alternate 

expression for the real Fourier series: 
be ~ 

J(t) =2+ .:1 [b. cos nt +c. sin nt], (C.S') 

2. The inrcrval-1t to +1t in Eqs. (C.6a') and (C.6b') could be shifted to 0 to 21t. Correspondillgl) 
in Eq. (C.2), the interval would be from 0 to L. 
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1 l ..... b.=- f(t) cos ntdt, 
1t -"It 

1 1 ..... c =- f(t) sin nt dt, 
• 1t -"It 

where, f(t) = 'V(x). 

Parseval's Formula 

Consider the function, 
+N 

x,. (x )::::: ~ dn exp (inkx) 
II =-N 

The choice of the coefficients dn such that the quantity, 

EN= (Lf2 1'V(x)-x,.(x)fdx, 
LI2 

is minimum, makes x,. an approximation-in-the-mean to'V(x). 

Now, 

J
Lf2 (Lf2 ~ 

Lf2 I 'V(x) - x,. (x) 12 dx = LI2 I 'V(x) 12 dx + L. ~N {I d. 12 -a:d. - (a.} 

(C.6a') 

(C6b,) 

(C?) 

(C8) 

(C.9) . 

Thus, EN is minimum when dn ::::: an' In other words, the Fourier coefficients make 

every partial sum in (C.l) an approximation in-the-mean to'V(x). 

From (C.9), we have, with the choice d. ::::: a., 

J
+LI2 +N 

-U2 1 'V(x) f dx - L n ~N 1 an 12::::: EN (C.lO) 

Taking the limit, N ~ 00 in (C.I 0), we get, since Lt .:\N = 'V, so that Lt EN::::: 0, 
N~oo N~-

(C.ll) 

This is known as P arseval' s formula. This formula is an expression of the con­
vergence property of the partial sums x,. and hence of the Fourier series. Alter-

natively (see Section 2.1, completeness), it expresses the completeness of the 
linear vector space spanned by the basis vectors Gl •• (C. I 1) being the norm of the 

'/cctor'V (cf. Eq. 2.25». 
The Fourier series enables us to represent a function with discontinuities 

(Lence a function which is not analytic) by a function which is analytic. A; an 
eX'lmple, consider the function (cf. (C.5'), 

h 
f(x) =2' forO<x <1t, 
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h 
-- for -7t<x <0 2' , 

which represents a square wave (Fig. C.2). 

f( x) 

-IT 0 
-----T--------~~----------~-------X 

IT 

Fig. C.2. The square wave of Eq. (C.12). 

Using (C.6a') and (C.6b'), we get, 

so that, 

2h 
b.=O,c. =-, 

7tn 

f(x) = 2h i sinnx, n odd 
7t .=1 n 

2h - sin(21 + l)x 
=- :E 

7t 1=0 21 + 1 
In Fig. (C.3), we show the partial sums, 

_ 2h Ni:.l sin(21 + 1 )x 
~(x ) - 7t I = 0 2/ + 1 ' 

503 

(C.12) 

(C.l3) 

(C.14) 

for N = 20,40,60,80 and 100, near the discontinuity atx = O. We see that whereas 

~ progressively approaches f(x) as N increases, it consistently overshoots f(x) in 

the vicinity of the discontinuity at x = O. This is known as Gibb's phenomenon3
• 

3. See, Arfken, G. Malhematical Methods/or Physicists (Academic Press, New York 1970},1l 
Edition, section 14.5. 



504 QUANTUM MECHANICS 
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Fig. C3. Gibb's phenomenon. 

C.2 FOURIER TRANSFORMS 

When the function 'V(x) is not periodic (that is, when the period L = (0). the 

Fourier series representation (C.1) of 'V(x) has to be suitably modified as the 
expressions ec.2) and ec.3) become meaningless when L = 00. The required 
modification could be done as follows: 

Substituting from ec.2) in eC.l), we have. 
+- 1 (LrZ 

'V(x) = n~~L LLf2 'V(x') exp [ink(x -x')]dx' 

where, we have changed the variable of integration to x' from x in ec.2). 
using relationship (C.3) for k. we get, 

'V(x) = ~ ~ (Lf2 'V(x') exp [21tl
L

'n (x - XI)ldX' 
n~_LLL12 J 

1 
Letting L ~ 00 and writing L = As', Eq. (C.15) reduces to 

+00 (+LI2 

'V(X) = .:~ As' Jw 'V(x ' )exp(i2itnAs'(x-x'))dx' 

Now, 

Again, 

(C.15) 

(C.15a) 

(C.16) 
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so that, 

.~_ Lls' exp(i21tnLls(x-x'))Ar -40 S: exp(i2ru(x-x'))ds 

(C.17) 

Substituting (C.l7) in (C.15a), we get, 

'V(x) = S:{f: 'V(x')exp(-i2rux')dx'} exp(i2rux)ds (C.18) 

1 f-= _ r:L t»(k) exp (+ikx)dk, 
-v21t -

(C.18a) 

where 

1 J-t»(k) = _ r:L 'V(x) exp (-ikx)dx, 
-v21t -

(C.18b) 

with 

k=2ru. (C.3,) 

Eq. (C.I8) is the Fourier Integral representation4 of 'V(x). In addition to the 

Dirichlet conditions, the existence of the integral J..: 'V(x) dx is also required for 

the validity of this expression. 
t»(k) given by Eq. (C.18b) is called the Fourier Transjormof'V(x) and could be 

symbolically written as, 
t»(k) = 1{'V(x)} (C.18b,) 

'V(x) could be, then, regarded as the Inverse Fourier transform of t»(k): 

'V(x) = r1{t»(k)} (C.l8a,) 

Comparing (C.18a) with (C.l), we see that t»(k) is the amplitude of the harmonic 
component of 'wave number' k in the resolution of 'V(x) into harmonic waves. 

The real and imaginary parts of Eq. (C.18b): 

t»c(k) = ~i~ 'V.(x) cos kxdx (C.18c) 

t».(k) = ~i~ 'Vo(x) sin kxdx, (C.l8d) 

are, respectively, known as the Fourier cosine and the Fourier sine transforms. 
Here, 

'V.(x) = 'V(x) + 'V(-x) (C.19a) 

1 1 
4. If k is replaced by ak, then the constant ~ should be replaced by ..fiiW. . __ 
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and 

'l'o(x) = 'I'(x) - 'I'(-x) 

As an example. consider the pulse. 

'I'(x)=A. x < I a I 

=0. x > I a I 
From (C.18b). we get. 

1 1+0 <!>(k) = _ r.:;::A exp (-ikx)dx 
-v27t -d 

A -ika +ika 'k) = _ r.:;::(e - e )1(-£ 
-v27t 

~ ( sinka) = -Aa --. 
7t ka 

4' (x) 

...-----+-----. A 

------~a--------~o--------~a------~x 

(a) 

Fig. C.4.(a) The function Ij/(x). 

(C.l9b) 

(C.20) 

(C.2l) 

which could be obtained also from (C.l8c). noting that 'I'(x) is an even function 
of x. Both 'I'(x) and <i>(k) are plotted in Fig. (CA). We note that <!>(k) is appreciable 
only within an interval of k given by 

M, '" ~ (C.22a) 
a 

whereas 'I'(x) is non-zero within an interval of x given by 

~=2a 

Thus, the product, 

(C.23) 
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<j>(k) 

(b) 

Fig. C.4.(b) The Fourier transfonn of 'V(x). 

This is a relationship generally valid for a function and its Fourier transform. 
Thus, if'V(x) is a Gaussian function: 

'Vex)=C~JI2 exp(-ieX2/a2») (C.24a) 

then, <l>(k) is also a Gaussian function, 

so that, 

and 

1 
/lx-a A -­, i a 

/lx. Ak-l. 

(C.24b) 

(C.23a) 

The importance of this relationship in quantum mechanics, arises from the pos­
sibility of identifying it with the uncertainty relationship of Heisenberg (see, 
relationship (3.29a». The expression, 

'V(x, t) = _ ~ ( <l>(k) exp [i(h - wt)]dk (C.25a) 
"\I21t Jl>Io: 
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or, its 3-dimensional cOWlterpart, 

'V(r, t) = ( ~J {. <»(k) exp [i(k· r - wt)] d
3
k (C.25b) 

where 00 is the angular frequency, represents a travelling wave packet in config­

uration space, whereas the Fourier transform 

<»(k) = _ ~ ( 'V(x, t) exp [-i(kx - wt)]dx (C.26a) 
"'I21t J[u 

or, 

(C.26b) 

represents the same wave packet in the wave number space. From the point of 
view of particles, if 'V(r, t) is the wave function of a system of particles in con­
figuration space, then, <»(k) is the corresponding wave function in momentum 
space (taking into account the de Broglie relationship p = 11k). Relationship 
(C.23a), then, is equivalent to 

~ . tJ.Px -11, cyclic (C.23b) 

~ being the 'spread' in the x-positions of the particles and tJ.Px the spread in the 
x-components of the momenta of the particles. 

The wave packet (C.25a) can also be expressed as 

'V(x, t) == _ ~ ( X(w) exp (i(kx - wl))dw, (C.27a) 
"'I21t J.,.0l 

with 

1 f . X(w) == _ r;;L 'V(x, t) exp (-l(kx - Wt))dl, 
"'I21t tu 

such that 
tJ.w· tJ.1 - ], 

or, using the Planck-Einstein relationship E = 1100, 

M . tJ.1 -11. 

(C.27b) 

(C.28a) 

(C.28b) 

The meaning of (C.28a) is that if the wave packet is a super-position of harmonic 
waves with a spread in the angular frequencies equal to tJ.w, then the time tJ.t taken 
by the wave packet to pass a fixed point, say Xo is of the order of (lItJ.w). The 

interpretation of (C.28b) as a time-energy uncertainty relationship analogous to 
(C.23b) is, however, beset with difficulties (see section 3.2: The lime energy 
uncertainty relationship). 
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DIRAC DELTA FUNCTION 

The Dirac delta function, O(x), was introduced by P.A.M. Dirac in order to treat 
eigenvectors belonging to the continuous eigenvalues of linear operators (for 

example, the momentum eigenfunction uk(r):::: C eik.,) on the same footing as 

those belcl'!~ing to the discrete eigenvalues. In the case of the discrete spectrum, 
the orthonormality of the eigenvectors {uk(x)}, is expressed by the relation (we are 

restricting ourselves to one dimension, for the sake of simplicity), 

L~ u;(x)ulx)dx:::: Ok,l, (D.I) 

vlhen.:: Ok,l is the Kronecker delta function, defined as 

Ok,l = 1, for k :::: t, (D.2) 

=0, for k '* I. 
When the spectrum is continuous (k is a continuous variable), the normalizat;ul' 
of the eigenvectors are expressed by Eq. (D.I) with the Kronecker delta function 
replaced by the Dirac delta function: 

J: u;(x)ulx)dx :::: o(k -I), (D.3) 

where, in analogy with (D.2), o(k -I) is defined as 

8(k -I):::: 0, for k ~ t. (DAa) 

However, being a continuous function of (k -I), 8(k -I) cannot be defined as 
being equal to unity for k :::: t. The behaviour of o(k -I) for k :::: t could be inferr::-d 
from the following consideration. In the case of a discrete spectrum an arbitrary 
wave function 'V(x) is given, in terms of the Uk'S, by 

'V(x):::: Lh,Uk(X). (DS'\ 
k 

Using Eq. (D.1), we obtain, 

r- u;(x)'V(x)dx:::: r.J;" r- u;(x)u.(x)dx 
J-or) k )-00 

(1 

The relationship corresponding to (D.5a), when the spectrum is continuous, i~ 
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'V(x) = f: f(k)uj;(x)dk, (D.Sb) 

where, f(k), is a continuous function of k. Multiplying both sides of (D.5b) by 

u;(x) and integrating over x, we have, using Eq. (DJ), 

f: u;(x)'V(x)dx = f: f(k)o(k -/)dk. (D.Sc) 

In order to agree with (DJa), we should have, 

f: f(k )O(k -/)dk = f(/)· (DAb) 

This equation, in addition to implying Eq. (DAa), defines o(k -I) for k = 1 as well. 
Therefore, Eq. (DAb) could be taken as the definition of the Dirac delta function. 
Substitutingf(k):= c (a constant), in (DAb), we get, 

J:'--O(k-l)dk::::1. (DAc) 

Thus, o(x) could be thought of as a function which is zero everywhere except in 

the neighbourhood of x = 0 where it is so large that the area enclosed by the curve 
o(x) and the x-axis is unity. We see that, viewed as a function of x, the behaviour 
of o(x) is rather 'peculiar'. It is, however, possible to provide a proper mathe­
matical basis to the Dirac delta function within the framework of distributivn 
theory where it turns out that o(x) is not a function, but is a functional!. The 
definition (DAb) is sufficient as far as the use of o(x) in quantum mechanics is 
concerned. Therefore, we will regard o(x) as any function of x that satisfies Eq. 
(DAb) or, equivalently, Eqs. (DAa) and (DAc). 

Representation of o(x) 

Any function of x that satisfies either Eq. (DAb) or Eqs. (DAa) and (DAc), pro­
vides a representation of o(x). Thus, comparing the Fourier integral formula 
(Eq. (C.18», 

with (cf. Eq. (DAb», 

we have, 

1 1-1- .. 'V(x) = - 'V(x')e-ik(X -x)dx'dk, 2n __ 

'V(x) = J: 'V(x')o(x' -x)dx', 

o(x'-x) =2- Lt (Le-ik(x'-X)dk 
2n l.->~J-L 

sinL(x'-x) 
=Lt 

L->~ n(x'-x) 

(D.6a) 

1. See. Messiah, A. Quantum Mechanics, (North-Holland, Amsterdam 1961). Vol. I. AppendiX A. 



DIRAC DELTA FUNCTION 

T!lat is, 

sin Lx 
o(x) = Lt L->~--. 

1U 

Some of the other useful representations are: 
1 1-cos Lx 

o(x) =:- LtL 
1t -->~ Lx 2 

1 E 
=- Lt E->O-2--2 

1t X + E 

E>ex+11)-E>ex) 
= Lt TJ ->0 11 

In (D.6e), E>(x) is the fleavyside step [unction, defined by, 

E>(x) = {1, for x> 0 
0, for x < o. 

Properties of o(x) 
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(D.6b) 

(D.6c) 

(D.6d) 

(D.6e) 

(D.?) 

The following properties of o(x) could be established using the defining equations 
(D.4a), (DAb) or (D.4c): 

Sex) == o(-x) (D.8) 

xo(x) =0. (D.9) 

1 
o(ax) = G/O(X) (D.lO) 

1 
o(x 2 _a 2

) = 2a [o(x -a)+o(x +a)] (D.11) 

fex)o(x - a) == f(a)o(x - a) (0.12) 

f o(x - y)o(Y - a )dy = o(x - a) (D.13) 

d d 
dx {o(x)} =-dx {o(-x)}. (D.14) 

d 
x dx o(x) = -Sex) (D.15) 

These equalities merely imply that both sides yield the same result when multi­
plied by a function f(x) and integrated over x. 
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SPECIAL FUNCTIONS 

In this Appendix, we will present the definition and properties of the polynomial 
solutions of certain second order, linear, homogeneous, differential equations of 
the type, 

y" + P(x)y' + Q(x)y == 0, (E.l) 

where the prime denotes differentiation with respect to x, and, P and Q are func­
tions of x. According to Fuch's theorem, if Xo is either an ordinary point, or a 

non-essential singularity! of the equation (E.l), then the equation has a solution 
in the form of an infinite series around xo: 

y == i a .. (x _Xa>k+\ (E.2) 
.. ~o 

where k is a constant. a .. and k can be determined by substituting (E.2) in Eq. (E.l) 

and then equating the coefficients of every power of x to zero. For details, the 
reader is referred to the book by G. Arfken2

• We give below only a summary of 
the properties. 

E.l HERMITE POLYNOMIALS 

These are solutions of the equation, 
y" - 2xy' + 21lY = 0, 

(where n is a positive integer) and are given by 
(s) ,Ill .-2r 

y.(x) == H.(x) = ,:0(-1) (n _ 2r)!rl (2x) 

(E.3) 

I. Xc is an ordinary point of the equation (E. 1) if P(XoJ and Q(XoJ are finite, whereas it is a singu­

larity if P(Xc) and Q(Xc) are infinite. Xc is a non-essential singularity if (x-XoJP(XoJ and 

(x -- Xc)'Q (Xc) are finite. Thus, for the equation 

"a,ex 0 
Y - l-x'Y + l-x'Y = , 

the point x = 0 is an o,'dinary point, while x = I is a nonessential singularity. 

2. Arlken, G. Ma/hema/ical Me/hods/or Physicis/s, IT Edition (Academic Press, New York, 1970) 
ChapTers, 8, II, 12 and 13. 
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2 d' ( i\ 
= (-lte' dx' e-X

) 

) . 

In Eq. (E.4\ the contour of integration is a circle with the centre a<; the origin and 
n n-l 

z is a complex number. In (E.41), (s) = "2 ' for n even and (s) == -2-' for n odd. 

Generating Function 

Recurrence Relations 

H'. = 2nll._ 1• 

Symmetry 

H.(-x) = (-l)"I1.(x). 

The firsl few Hermile polynomials are given in Table E.1. 

Table E. 1. Hermite Polynomials 

n 

o 

2 
3 
4 
5 

Hermite Orthonormal Functions 

H.(x) 

1 
2x 
4Xl_2 

8x3 -12x 
16x4 -48x2 + 12 
32x' -16Ox3 + 120x 

The Hermite orthononnal function, <!>.(x), is given by 

(E.5) 

(E.6a) 

(E.6b) 

(E.7) 
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1 -if2 
9.(x) == _ c Jf2e H.(x). 

[,,1t2'n!] 

<ll. satisfies the differential equation, 

4>". + (1 + 2n - x2)<P. = 0, 

and the orthononnal relationship, 

L~ <l>:(x)<l>",(x)dx == (<l>., <l>",) = 0.,,,.' 

(E.9) 

(E.10) 

This relationship could be proved using (E.8) and (E.5). From (E.6a-c) and the 
definition (E.8) we have the recurrence relations. 

~ rn: _ /n+T 
x<l>.(x) = -'V 2$·-1 +'J T-2-<l>·+p (E.11a) 

1 
x 2<l>.(x) == '2 [--In(n -1) <l>' -2 + (2n + 1)<». + --J(n + l)(n + 2) <l>n+ 2 J. 

<»/.(x) == ~._I_~ n; 1 <l>.+p 

<»".(x) = [x 2 
- (1 + 2n)]<». 

(E.llb 

(E.lle. 

1 
== '2--Jn(n + 1) <».-2- (2n + 1)<». + ...J(n + l)(n + 2)Q., ~. 

(E.11d) 

From Eqs. (E.10) and (E.II a-d), it follows that, 
1 

(<1>"" x <1>.) =721..[,;0"".-1 + {;;+To""n +1]' (E.12a) 

(<»""x
2
<1>.) == ~ r--Jn(n -1) 0"". -2 + (2n + 1)0"". + ~ + l)(n + 2) 0"".+2]' 

(E.12b) 

(<1>"" <»/.) == -1fi-{,; Om .• -I - rn+1 0"". + 1]' (E.12c) 

(<»m' <»".) == ~ [...In(n - 1) 0".,._2 - (2n + l)om,. + ...J(n + 1) (n + 2) Om,. +2J 

(E.12d) 

In Fig. E.l, we have plotted <l>.(x) against x, for n = 0 to 5. The <1>.(x) are, 

actually, the normalized wave-functions of the linear harmonic oscillator (See, 
Section 4.2A). 
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)( 

o 
'9-1--~-.li:.Uif~-------1 

t 

-6 -4 -2 

)( 

N 
'G. 

f 

o 
-"X 

2 4 6 

-6 -4 -2 0 2 4 6 

)( 

-6 -4 -2 

--+ x 

o 
-+x 

2 4 6 
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! n == 11 
)( 

t 

-6 -4 -2 o 2 4 6 
--x 

!n=31 ...... 
x 
....... 

/'0 
"S-

f 

-6 -4 -2 0 2 4 6 
---+ x 

x 

to 
~ r-~~~~~~~=-~~ 

t 

-6 - 4 -2 o 2 4 6 
--.. x 

Fig. E.1. The Hcnnite orthononnal functions [Eq. (E.8)). 
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E.2 LAGUERRE POLYNOMIALS 

The Laguerre polynomial L.Cx) of degree n, is given bl 

• ' ,)2 
L.(x) = L (-1)' ;n. -x' 

,=0 (r!) (n -r)1 

_ ( 1 ). r. n 2 • _ J n 2( n - 1)2 n - 2 ] -. - x --x +---x 
L I! 2! .. , 

x d' ( • -T) =e - x e 
dx' 

=~ dz 
, f e-xz /(1-z) 

2rci (1 - Z )2' + 1 

In Ell. (L 133
), lhe contour of integration includes the origin, but excludes the 

point 7 = 1. 

Generating Function 

g(x,Z) == (1-2)1 {e->z/(I-z1 = ~ L.(x)(z·/n!) (E.14) 
",=0 

I~ecurrcnce Relations 

One recursion relation is given by the differential equation satisfied by L.(x): 

L" I-xL' n L 0 +-- +- =. • x • x • 
The other can be derived from (E.14): 

(1 + 2n - x )L. - n 2L. -1 - L. + 1 = o. 

(E.lia) 

(E.15b) 

The Laguerre polynomials for the lowest few values of n are given in Table 
E.2. 

n 

o 
1 
2 
3 
4 
5 

Table E.2 Laguerre Polynomials 

-x+ 1 

x2 -4x +2 
-x 3+9x2 -18x+6 

L.(x) 

X4 -16x3 + 72x2 - 96x + 24 
_xs + 25x4 

- 20Ox3 +60Ox2 -60Ox + 120 
L.(O) '" n! 

(;~ '1T\I' ~h : lnil i{m:; "[ L,Jx) diHer f:olTl the one adopted here by a factor of lin!. 
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, 

Associated Laguerre Polynomials 

The Associated Laguerre polynomial L!(x) of degree (n - k), is defined by4 

1 dl 

Ln(x) = (/xl {L.(x)}, n ~k, (E.16) 

and is a solution of the equation, . 
" I+k-x ,n-k 0 

y + y +--y= 
x x ' 

(E.17) 

where nand k are both positive integers. The generating function for L! is given 
by 

(-zt(l-Z)-(1+1)e-;aI(I-.)= i: L:(x)zn, (E.18) 
n=l n! 

from which the series expression for L!(x) follows: 

1 .-1 r+1 (n!)2 r 

Ln(x) = 1: (-1) (-k- )'(k )' ,x. (E.19) 
r~O n r. + r . r . 

From definitions (E. 16) and (E. 19), we have, 
L~(x) = L.(x), (E.l9a) 

and L:(x) = (-lrn!. (E.19b) 

Some of the associated Laguerre polynomials are listed in Table E.3. 

Table E.3 Associated Laguerre Polynomials 

n k L!(x) 

o 
I 

2 

3 

4 

5 

0 
0 
1 
0 
1 
2 
0 
1 
2 
3 
3 
4 
4 
5 

dk 

-x+l 
-1 
x2-4x+2 
2x-4 
2 
_Xl +9x2 -18x +6 
_3x2 + 18x -18 
-6x+ 18 
-6 
24x-96 
24 
-12Ox+600 
-120 

4. The definition, L:(x)=-k {L .. l(x)}, is also used. In this case, L! is a polynomial of degree n. 
dx 
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Ule i\<.;sociat.cd Laguerre Function 

'his IS defined by 

L.,k(X) 0=: e -(xl2)X(k l)I2L:(X), 

;iilil i-,;ilisries the differential equation, 

." 2' if k - 1 x e - I} 0 xL h'+ L .+ n-------- L. k == • 
"'. 2 4 4x ' 

(E.20) 

(E.21 ) 

Using the generating function (E.lS) for L!(x) and the definition (E.20) , it is 

fDs,ihle II) show: 

wlH.'{(. 

l~,~(k) 0:;: r"xp L.,k(X)L"".{x)dx, p ~ O. 

For [! ?: 1, using the binomial expansion, 

11--z1 1 =Pi\--I)' (p--I)! z' 
,-0 (p -I-r)!r! ' 

Lq. (E.2.t) elm be wrinen as, 

P lp-J 00 {t'p-T)f}2(k+p-I+I)f 
-.= L L L (_1)'+s' •. . X zP' t/zHk+1 

,OFO/-O (p--l-r)!(p-l-s)!r!s!l! 1 2 

;~ p 1:! J -; __ ,!~~(p_=-.2r __ 12 . (p - 1 _~.!.:!~n )1_; p ~ 1. 
,00 llP -i-r)!r'] ll1-K -or)! 

'I! .. :t ;:\rr(·~.s:uns for some of the (;::~ arl~ given below: 

! - --. k + ~). for m n 

(E.23) 

(E.24) 

(E.25a) 

(E.25b) 
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'3) (Il!)' 2 
I' (k)=------16n(n--k+l)-t k --3k+2J,m ~-"n, 

N,m (n--k)! 
m.25d) 

~n!y:' :-12(1l - k) (2n _. k) 
:= --. ---.----.. ---------- 0 

(n--/;):L rl m,o-1 

+ 2(n + 1)1 (211- k -+ 2) 0m, •• 1 

(n-k)(n-k--1) 2 2. -ji, m70l!. 
-~-------.-- S --(n+l) (n+2)'o . n(n --1) m,o-2 m,nf2 

(F.:!'),:) 

E.] LEGENmm POL YNOMIALS 

The Legendre polynomial Plt) of degree I (l := 0, 1,2, ... + (x,), is defiilcd, for 

-l:s:x:S:l,by 

" s. k (2l-2k)! IlJ 
[',V:) ,- L l-·1)--------~-- x 

k~O 2"k!(I-k)!(/ -- 2k)! 
(E.26a) 

In (E.26a), 
l 

s == -, for even I, 
2 

and 
/- 1 

s ':': -~i~) for odd I. 

Also, in (E.26c), the contour of imegration cnclescs 

is called the Schlaejli 
P/x) is a poIY!lomi,,! ;;'.);'ll;<;li zlf U:c 

where l = 0, 1,2, '" -I c·, 

-- 1 ::; x::; 1. 

Generating Function 

f; ,i.l" (!--"l.x;t·,! ~: r.,: F' Ix I ~ I. 
j' -~ ~ \ 
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Recurrence Relations 

(21 + l)xPl(x) = (/ + 1)Pl+l(X) + IP/-l(x), (E.29a) 

P'l+l(X) + P'l-l(X) = 2.xP'l(X) + Pl(X), (E.29b) 

P'l+l(X)-P'l-l(X) = (21 + l)Plx), (E.29c) 

(1-x2)P'l(x) = IP/-l(x) -[flex) (E.29d) 

= (l + l)xPl(x)-(l + 1)Pl +l (X) (E.2ge) 

Symmetry 

Pl(-X) = (-l)lPl(x) (E.30) 

Orthogonality 

(+1 2 
J

1 
Pl(x)P/(x)dx = 2J + 1 0/1" (E.31 ) 

Expansion of Other Functions in Terms of Pl(x) 

Since the Pl(X) for I = 0 to 00 form a complete, orthogonal set of functions, it is 

possible to expand any function/(x) that is continuous and analytic in the interval 
- 1 ~ x ~ 1, in terms of the Legendre polynomials: 

~ 

/(x) = I: alPl(x), (E.32) 
l~O 

where, in view ofEq. (E.31), 
21+1 (+1 

al =-2-)1 /(x)Pl(x)dx. (E.33) 

The first few Legendre polynomials are listed in Table EA. 

Associated Legendre Functions 

The Associated Legendre function Plm(x) is defined by 

(E.34) 

(where3 -I ~ m ~ I and, -1 ~ x ~ 1) and satisfies the differential equation, 

dmP
l 

3. Negative value of m is permitted in --, in view of the Rodrigues fonnula (Eq. (E.26b» for 
dx m 

P,(x). 
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o 
1 
2 

3 

4 

5 

Table E.4. Legendre Polynomials 

1 
x 

1 1 
2:(3x -1) 

1 3 
2(5x -3x) 

1 4 1 
g(35x -30x +3) 

1 
g(63x~ -70x 3 + 15x) 

(_1)'12[! 
PieD) = --2-' for I even 

(I!!) 

= D, for I odd. 

521 

(1 - x
2
)(P;")" - 2x(P;"), + {I(l + 1) - 1 ::2 k;" = O. (E.35) 

Generating Function 

Properties 

--m() (l)m(l-m)!pm() 
PI x:::: - (/ +m)! I x 

PI'"(-x):::: (-l)l+,"p;,,(x) 

P:(x):::: (2/-1)!!(1- X2/n.. 

P~(X) == PI(x), 

P;"(±l) == 0, for m > 0, 

(+1 m m' 2 (I +m)! 
)-1 PI (x)?/" (x)dx=2/+1' (l_m)!O/l.omm" 

(21 + l)xPI'" == (l + I-m)P'('.1 +(1 +m)P:"'-l' 

(I 2)1n.p," 1 (",+1 ",+1] 
-x 1=2/+1 P1+1 -Pl-l ' 

(E.36) 

(E.37) 

(E.38) 

(E.39a) 

(E.39b) 

(E.39c) 

(EAO) 

(EA1 a) 

(EAl b) 
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=~-- [(I +m)(1 +m -l)p,"-I- (I-m + 1)(/- III + 2)p",--II, (E.41c) 
2/+1 /-1 l<l 

Additioll Theorem foJ' Legendre Polynomials 

. cos {m(<i>l - OJ}, (E.42) 

where, the relatIonships between the various angles involved arc indicated in Fig. 
S.3. 

Some of the Associated Legendre fum:tions arc listed in Tabl, F.5. 

2 

3 

Table E.5. Associaled Lcgcndl'c FUlictions 

m 

2 

2 

3 

(l_x 2)"'1 

3x(l __ X 2)l!2 

3(1 - x2
) 

(3/2)(5x 2 
- 1)(1- X

2
)lfl 

l5x(l-x2
) 

15(l-x2)3I1. 

EA BESSEL FUNCTIONS 

A E3essdfunction of the first kind of (integral or non-integral) ordn v, is defined, 

ror anyfillile value a/x, by 

~ (-1 )' (x )" 2s 
.I,(x) = L -:!--:-~_ -"1 ' 

_<-0 ,1.[(.I+v +-1) ~) 

1 (X)J 2,-v "":?;ti2 cxp (z --x 142)2 

=~ r 11 cos(vEl- x sin O)dO, (v integer) nJo 
III ([.43a) , rcA) is the Gammafunction given by, 

qA)'~ r~'C'/J.ldt. 
Jo 

W'lcn A is a posili YC intcger, 

qt.) = (A - 1)! 

TL,.~ contour of integration in (E.43b) is shown in Fig. E.2. 

(E.43a) 

(E.43b) 

(E.43c) 

(E.44b; 
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-00 --------

Fig. E.2. Contour of integration for the Bessel function lEq. (E.1Jb)). 

For v == n, where n is a positive integer, 

i.(x) = (-l)"J,,(x). 

in this case, }.(x) is also called the Bessel's coefficient. When v is \lol cHI 

}v(x) and Jjx) are linearly independent. .I,(x) is a solution of the Bessel's 'iI[((f 

lion: 

Generating Function 

~ 

g(x,l) "" exp [(xI2) (t --1/1)1 = L .I.(X)I", (n, inll'gcr). 

Recurrence Relations 

11:::--.0..> 

f. I(X) + f. + I(X) == (2nIx).In(x ) . 

.I. leX) -.I., /x) = 2f'n(x) 

Values for Large and Small Values of x 

fv(x) - - {Teos (X-rr/4-ViJ2). x-~~-\J ~ 

(FABe) 



J ,(x) is, thus, oscillatory with a decreasing amplitude for large values of x. 

Orthogonality 

La Jv(!Xvm ~ Yv(!Xv. ~} dx = <\,,,,(a2/2) [Jy+ I (!Xv",)] 2, 

where, Uv ... and Uv. are roots of the equation, 

Jv(a.) = o. 

(E.50) 

(E.51) 

That is, UV ... is the mth zero of Jv(a.), where v > -1. Eq. (E.50) gives the orthogo­

nality of Jv (for fixed v) over the interval 0 ~ x ~ a. If we further assume that the 

set {Jv(Uv ... xla)}, for m = 1,2,3, ... (but fixed v), forms a complete set, then any 

arbitrary (but well-behaved, in the sense of Section C.l) function f(x) can be 
expanded in terms of the Bessel functions: 

f(x) = i CvmJv(Uvm ~), 0 ~ x ~ a; v > -1. (E.52) 
m~1 a 

where, in view of (E.50), 

cvm = a2[Jv+ ~(Uvm)]2la f(x)Jv( Uvm ~} dx. (E.53) 

Eq. (E.52) is known as the Bessel-Fourier Series. 

Wronskian 

(E.54a) 

Also (E.54b) 

Neumann Functions 

When v is not an integer, Jv(x) and J_v(x) represent the two independent solutions 

of the Bessel's equation. However, when v is an integer, J_v is proportional to Jv 

[(Eq. (E.45)]. In this case, the second solution ofEq. (E,46) could be chosen to 
be 

cos vrr./v(x)-J_vCx) 
Nv(x) = . , (v integer) 

sm V1t 

cos prr./p(x) -J_p(x) 
= Lt . (F..55) 

p-->v sm p 1t 

'his is called the Neumann function of order v (also referred to as the Bessel 
ric/ion of the second kind). 
Nix) is infinite at x = O. In fact, 
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(E.56a) 

(v-i)! (2)Y 
Ny(x) - - -- - ,v > O. 

z->o 1[ X 
(E.56~) ancl 

Also, N.(x) - - r2 sin (x - ro'4 - vro'2). x~oo'llU (E.56c) 

Thus, for large values of x, Ny(x) oscillates with a decreasing amplitude, just like 

i.(x) [Eq. (E.49a)]. 

Hankel Functions (Bessel Functions of the Third Kind) 

Hankel functions are particular linear combinations of the Bessel and the Neu­
mann functions. Thus, the Hankel functions of the first and the second kind of 
order V are defined by 

1I~I)(X) = i.(x) + iNy(x), 

H~2)(X) == iy(x) - iNJx). 

Since i.(x) and NvCx) are real, liP) and 1l~2) are complex. 

Integral Representation 

1 fO H~2)(X) =-;- e(Z!2)(t-lIt)rY - 1dt, 
1[/ ~exp(i1t) 

where the concours of integration arc shown in Fig. E.3. 

ooeiTT ---------~ 

(E.S7a) 

(E.S7b) 

(E.58a) 

(E.58b) 

----------------------------------~ME~--------.X 
OQ e-ITI ---------~ 

Fig. E.3. Contour of integration for the Hankel functions IEq. (E.S8a, b)]. 
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Symmetry 

(E.59a) 

(E.59h) 

Modified Bessel Functions 

These are solutions of the equation, 

x2y"(x) + xy'(x) + (x 2 + y2)y(X) ::::: O. 

The substitution, x = -iz, reduces this equation to the Bessel equation (E.46) in the 

independent variable z. Hence the solutions of (E.461
) are Iv(ix) and Nv(ix). The 

solutions are customarily defined as 

IJx) = i-VIv(ix) 

(E.60a) 

(E.60b) 

and 

I vex) -l,,(x) 
= (rr/2) '. . 

sm YTC 
(E.61) 

[vcx) and Kv(x) are, respectively, the Modified Bessel Functions of the First and 

the Second Kind. The latter is also called the Basset Function. 

Unlike the Bessel and the Neum,mn Functions, the functions [vcx) and Kv(x) are 

not oscillatory, but are exponential for large values of x: 

Also, 

1 , 
lo(x) - _~e, 

, --, ~ .....,21tX 

lo(x) - 1, 
x --)0 

Ko(x) - -- In (x/2). 
x --? 0 

(E.62a) 

(E.62b) 

(E.63a) 

(E.63b) 
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Spherical Bessel Functions 

In the equation, 

d
2
R +~dR +{e_ I(l+l)}R :=0, 

dr 2 r dr r2 

where I 0:= 0, 1,2, ... + 00, if we make the substitution, 

P 0:= kr; yep) = WR(r), 

we gel 

p2y" + py' +{p2 _(1 +~J}y::= 0, 

J 

527 

(E.64) 

(E.65) 

which is Eg. (E.46) with v := I + 2: Hence, the two independent solutions of Eq. 

1 
(E.64) are proportional to (l/W)J/+lriP) and JP J I - 1r2(P)· These are usually 

defined as 

'( )-- /rrJ ()-(2 i~{ (-lY(S+I)!} 2s 
if P - -"J2P' fllr2 P - \ P $=0 s!(2s +21 + 1)! P , (E.66a) 

(E.66b) 

(E.66a) and (E.66b) are, respectively called the spherical Bessel and the spherical 
Neumann Functions. In analogy with Eqs. (E.S7a, b), the spherical Hankel 
Functions of the first and the second kind are defined by, 

h,(l)(p) = j,(p) + in,(p) = -ih,(+)(p), (E.67a) 

h?(p) := jl(p) - i Il/(p) = +i ht\p)· 

From Eqs. (E.66a, b), we have, 

Also, 

sin P 
Mp)o:=-, 

p 

cos P 
no(p) = --p-, 

t e±ip 
ho(p) =-. 

p 

(E.67b) 

(E.68a) 

(E.68b) 

(E.68c) 

(E.69a) 



nl(p) - -(2I-l)!!p-I-1. 
p->O 

. () 1. ~ 11t) 1r P - - sm P - - , 
p-->_P 2 

nl(p) _ -~cos (p _I1t), 
p->_ P 2 

hl(±)(p) _ ~e±i(P-Iltf2) 
p->-P 

Recurrence Relations (1 2: 1) 

21 + 1 
h-l(P)+ kl(P) =-p-J;(P), 

Ih-l(P) - (l + l)kl(p) = (21 + l)fl(p), 

:P [pl-lJ;(p)] = pl+lh-l(P), 

d 
dp [p-IJ;(p)] = -P-IJ;+l(P), 

where h(P) stands for jl' n/7 hPj, hi2) or hl(±). 

Rayleigh and Other Formulae 

Orthogonality 

Mp) = (-lipl(p~p J (Si~ P)' 

n( )=(-li+ 1 I(~)I(COS p), 
I P P pdp P 

hi±)(p) = (-lipl(:p J (e; J 
jrCp)n 'I(P) - j'1(P )nl(p) = \. 

P 

f'-Mx )Mx)dx = Oll'( 21 : 1 ). 

This can be deduced from Eq. (E.50). 
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(E.69b) 

(E.70a) 

(E.70b) 

(E.70c) 

(E.71a) 

(E.71b) 

(E.71c) 

(E.71d) 

(E.72a) 

(E.72b) 

(E.72c) 

(E.73) 

(E.74) 
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Addition Theorem 

where 

~ sin Kr 
l:(21+1)UI(kr)}2p, (cos 8)=-K ' 

1=0 r 

K = 2k sin (8/2). 

exp (ik / r - r' I) . ~ . ') (1) 

/r-r'/ =zk,:Pl+l)h(kr h, (kr)P/(cos 0), 

e being the angle between r and r'. 

529 

(E.7S) 

(E.76) 
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length, 211, 213, 330 
matrix, 435 
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Schrodinger, 
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co-ordinates, 113 
hankel functions, 517 
harmonics, 112, 133, 168 
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