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PREFACE TO THE SECOND EDITION

This second edition differs from the first edition mainly in the addition of a
chapter on the Interpretational Problem. Even before the printing of the first
edition, there was criticism from some quarters that the account of this problem
included in the introductory chapter is too sketchy and brief to be of much use to
the students. The new chapter, it is hoped, wiil remove the shortcoming. In
addition to a detailed description of the Copenhagen and the Ensemble Interpre-
tations, this chapter also contains a brief account of the Hidden-Variable Theories
(which are by-products of the interpretational problem) and the associated
developments like the Neumann’s and Bell’s theorems. The important role
played by the Einstein-Podolsky-Rosen Paradox in defining and delineating the
interpretational problem is emphasized. Since the proper time to worry over the
interpretational aspect is after mastering the mathematical formalism, the chapter
is placed at the end of the book.

Minor additions include the topics of Density Matrix (Chapter 3) and Charge
Conjugation (Chapter 10). The new edition thus differs from the old one only in
some additions, but no deletions, of material,

It is nearly two years since the revision was completed. Consequently, an
account of certain later developments like the Greenbetger-Horne-Zeilinger-
Mermin experiment [Mermin N.D. Physics Today 36 no 4, p. 38 (1985)] could not
be included in Chapter 12. It would, however, be of interest to note that the
arguments against the EPR experiment presented in Section 12.4 could be -
extended to the case of the GHZ-Mermin thought-experiment also. For, the
quantum mechanically incorrect assumption that a state vector chosen as the
eigenvector of a product of observables is a common eigenvector of the individual
(component) observables, is involved in this experiment as well,

Several persons have been kind enough to send their critical comments on the
book as well as suggestions for improvement. The author is thankful to all of
them, and, in particular, to A.W. Joshi and S. Singh. The author is also thankful
to P, Gopalakrishna Nambi for permitting to quote, in Chapter 12, from his Ph.D
thesis and to Ravi K. Menon for the use of some material from his Ph.D work in
this chapter.

January 1993 V.K. THANKAPPAN
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PREFACE TO THE FIRST EDITION

This book is intended to serve as a text book for physics students at the M.Sc.
and M, Phil (Pre-Ph.D.) degree levels. It is based, with the exception of Chapter
1. on a course on quantum mechanics and quantum field theory that the author
taught for many years, starting with 1967, at Kurukshetra University and later at
the University of Calicut. At both the Universities the course is covered over a
period of one year (or two semesters) at the final year M.Sc. level. Also at both
places, a less formal course, consisting of the developments of the pre-quantum
mechanics period (1900-1924) together with some elementary applications of
Schrodinger’s wave equation, is offered during the first year. A fairly good
knowledge of classical mechanics, the special theory of relativity, classical elec-
trodynamics and mathematical physics (courses on these topics are standard at
most universities) is necded at various stages of the book. The mathematics of
linear vector spaces and of matrices, which play somewhat an all-pervasive role
in this book, are included in the book, the former as part of the text (Chapter 2)
and the latter as an Appendix.

Topics covered in this book, with a few exceptions, are the ones usually found
in a book on quantum mechanics at this level such as the well known books by
L. 1. Schiff and by A. Messiah. However, the presentation is based on the view
that quantum mechanics is a branch of theoretical physics on the same footing as
classical mechanics or classical electrodynamics. As a result, neither accounts of
the travails of the pioneers of quantum theory in arriving at the various milestones
of the theory nor descriptions of the many experiments that helped them along the
way, are included (though references to the original papers are given). Instead,
the emphasis is on the basic principles, the calculational techniques and the inner
consistency and beauty of the theory. Applications to particular problems are
taken up only to illustrate a principle or technique under discussion. Also, the
Hilbert space formalism, which provides a unified view of the different formula-
tions of nonrelativistic quantum mechanics, is adopted. In particular, Schrodin-
ger’s and Heisenberg's formulations appear merely as different representations,
analogous respectively to the Hamilton-Jacobi theory and the Hamilton's
formalism in classical mechanics. Problems are included with a vicw to supple-
menting the text.

From its early days, quantum mechanics has been bedevilled by a controversy
among its founders regarding what has come to be known as the Interpretational
Problem. Judging from the number of papers and books still appearing on this
topic. the controversy is far from settled. While this problem does not affect either
the mathematical framework of quantum mechanics or its practical applications,



viii PREFACE

a teacher of quantum mechanics cannot afford to be ignorant of it. It is with a
view to giving an awareness of this problem to the teacher of this book that
Chapter 1 is included (students are advised to read this chapter only at the end, or
at least after Chapter 4). The chapter is divided into two parts: The first part is a
discussion of the two main contestants in the arena of interpretation—the Sraris-
tical (or, Ensemble) and the Copenhagen. In the second part, the path-integral
formalism (which is not considered in any detail in this book) is used to show the
‘connection between the y-function of quantum mechanics on the one hand and
the Lagrangian function L and the action integral S of classical mechanics on the
other. This too has a bearing on the interpretational problem. For, the interpre-
tational problem is, at least partly, due to the proclivity of the Copenhagen school
to identify y with the particle (as indicated by the notion, held by the advocates
of this school, that observing a particle at a point leads to a ‘‘collapse’” of the
y-function to that point!). But the relationship between S and y suggests that, just
as § in classical mechanics, y in quantum mechanics is a function that charac-
terises the paths of the particle and that its appearance in the dynamical equation
of motion need be no more mysterious than the appearance of S or L in the
classical equations of motion.

The approach adopted in this book as well as its level presumes that the course
will be taught by a theoretical physicist. The level might be a little beyond that
currently followed in some Universities in this country, especially those with few -
theorists. However, it is well to remember in this connection that, during the last
three decades, quantum theory has grown (in the form of quantum field theory)
much beyond the developments of the 1920’s. As such, a quantum mechanics
course at the graduate level can hardly claim to meet the modemn needs of the
student if it does not take him or her at least to the threshold of quantum field
theory.

In a book of this size, it is difficult to reserve one symbol for one quantity. Care
is taken so that the use of the same symbol for different quantities does not lead
to any confusion.

This book was written under the University Grants Commission’s scheme of
preparing University level books. Financial assistance under this scheme is
gratefully acknowledged. The author is also thankful to the-National Book Trust,
India, for subsidising the publication of the book.

Since the book had to be written in the midst of rather heavy teaching assign-
ments and since the assistance of a Fellow could be obtained only for a short
period of three months, the completion of the book was inordinately delayed.
Further delay in the publication of the book was caused in the process of fulfilling
certain formalities.

The author is indebted to Dr. S. Ramamurthy and Dr, K.X. Gupta for a
thorough reading of the manuscript and for making many valuable suggestions.
He is also thankful to the members of the Physics Department, Calicut Umversnty,
for their help and cooperation in preparing the typescript.

March 1985 V.K. THANKAPPAN
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CHAPTER 1

INTRODUCTION

Quantum theory, like other physical theories, has two aspects: the mathematical
and the conceptual. In the former aspect, it is a consistent and elegant theory and
has been enormously successful in explaining and predicting a large number of
atomic and subatomic phenomena. But in the latter aspect, which *‘inquires into
the objective world hidden behind the subjective world of sense perceptions’', it
has been a subject of endless discussions without agreed conclusions’, provoking
one to remark that quantum theory appears to be *‘so contrary to intuition that the
experts themselves still do not agree what to make of it"”*, In the following sec-
tion, we give a brief account of the genesis of this conceptual problem, which has
defied a satisfactory solution (in the sense of being acceptable to all) in spite of
the best efforts of the men who have built one of the most magnificent edifices of
human thought. And in Section 1.2 is presented a preview of the salient features
of the mathematical aspect of the theory.

1.1 THE CONCEPTUAL ASPECT

In order to understand the root cause of the conceptual problem in quantum
mechanics, we have to go back to the formative years of the theory. Quantum
theory originated at a time when it appeared that classical physics had at last
succeeded in neatly categorising all physical entities into two groups: matter
and radiation (or field). Matter was supposed to be composed of ‘particles’
obeying the laws of Newtonian (classical) mechanics. After the initial
controversy as to whether radiation consists of ‘corpuscles’ or ‘waves’, Fresnel’s
work’ on the phenomenon of diffraction seemed finally to settle the question in
favour of the latter. Maxwell’s electromagnetic theory provided radiation with a
theory as elegant as the Lagrangian-Hamiltonian formulation of Newtonian
mechanics.

1. Landé, A., Quantum Mechanics (Pitman Publishing Corporation, New York 1951), p. 7.

See, for example, Landé, A., Bom, M. and Biem, W., Phys. Today, 21, No. 8, p. 55 (1968)

Ballentine, L.E. et al. Phys. Today, 24, No. 4, p. 36 (1971).

3. Dewitt, B, Phys. Today, 23, No. 9, p. 30 (1970).

4. See, Bom, M. and Wolf, E., Principles of Optics (Pergamon Press, Oxford 1970), 1V Edition
Pp- AXili~XXiV.

.TJ



% QUANTUM MECHAN'CS
Particles and Waves in Classical Physics

Now, a particle, according to classical physics, has the following characteristics:

P1. Besides having certain invariant attributes such as rest mass, electric
charge, etc., it occupies a finite extension of space which cannot, at the same
time, be occupied by another particle.

P2. Tt can transfer all, or part, of its momentum and (kinetic) energy ‘instanta-
neously’ to another particle in a collision.

P3. It has a path, or orbit, characterised by certain constants of motion such as
energy and angular momentum, and determined by the principle of least
action (Hamilton’s principle).

On the other hand, a monochromatic harmonic wave motion is characterised
by the following:

W1. A frequency v and a wavelength A, related to each other by

VA= (wk)=v, (L.
where, v is the phase velocity of the wave motion.

W2. Areal (that is, not complex) function
W, (T, 1) =0(k - r—wt), referred to as the wave amplitude or wave func-
tion, that satisfies the classical wave equation,

%

or?

From the linearity (for a given w) of Eq. (1.2) follows a very important prop-
‘erty of wave motions’: If y,, \y,, ... represent probable wave motions, then a linear

=vV%. (1.2)

superposition of these also represents a probable wave motion. Conversely, any
wave motion could be looked upon as a superposition of two or more other wave
motions. Mathematically,

Y(r, 1) =Zcy(r, 1), (1.3)
where the ¢,’s are (real) constants. Eq. (1.3) embodies the principle of superpo-

sition, expressed in the preceding statements. It is the basis of the phenomenon
of mterference believed in classical physics to be an exclusive charactcrlsuc of
wave motions®,

Now, experimental and theoretical developments in the domain of micropar-
ticles during the early part of this century were such as to render the above con-
cepts of particles and waves untenable. For one thing, it was found, as in the case
of electron diffraction (Davisson and Germer 1927)’, that the principle of super-

ke

In the following, we will suppress the subscripts w and k, so that y,, , (r, #) is written as y (r, £).

6.  Classical wave theory also allows for the superposition of wave motions differing in frequencies
(and, thus, in the case of a dispersive medium, in phase velocities). Such a superposition leacis
1o a wave packet which, unlike monochromatic wave motions, shares the particle’s prope:ty
(P1) of being limited in extension (see Appendix C).

7.  The experimental discovery of electron diffraction was preceded by theoretical speculation by

Louis de Broglie (1923) that matter-particles are associated with waves whose wavelength A is

related to the particle-momentum p by A = h/p, where h is the universal constant introduced

carlier by Max Planck (1900).
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position plays an important role in the motion of particies also. For another,
radiation was found to share property P2 listed above as a characteristic of par-
ticles (Photoelectric and Compton Effects)®. It was, thus, clear that the classical
concepts of particles and waves needed modification. It is the cxient and the
naturc of these modifications that became a subject of controversy.

The Two Interpretations

There have been two basically different schools of thought in this connection.
One, led by Albert Einstein and usually referred to as the Statistical (or Ensemble)
Interpretation of quantum mechanics’, maintains that quantum theory deals with
statistical properties of an ensemble of identical (or, ‘similarly-prepared’) sys-
tems, and not with the motion of an individual system. The principle of super-
position is, therefore, not in conflict with properties P1 and P2, though it is not
consistent with P3. However, unlike P1, P3 is not really a defining property of
particles, but is only a statement of the dynamical law governing particles (in
classical mechanics). In place of P3, quantum theory provides a law which is
applicable only to a statistical cnsemble and which, of course, reduces to 3 as an
approximation when conditions for the validity of classical mechanics are satis-
ficd"™.

The other school, led by Niels Bohr and known as the Copenhagen Interpre-
taiion, advocates radical departure from classical concepts and not just their
maodification. According to this school, the laws of quantum mechanics, and in
particular the principle of superposition, refer to the motion of individual systems.
Such a viewpoint, of course, cannot be reconciled with the classical concept of
particles as cmbodicd in P1. The concept of ‘wave particle duality’ is, therefore,
iniroduced according to which there are neither particles nor waves, but only (in
classical terminology) particle-likc bchaviour and wave-like behaviour, one and
the same physical entity being capable of both. A more detailed account of this
interpretation is given in Chapter 12; the reader is also referred to the book by
Jammer' and the article by Stapp'.

8. It was in explaining the photoelectric effect that Albert Einstein (1905) reintroduced the concept
of light corpuscles, originally due to Isaac Newton, in the form of Light quanta which were later
named photons by G.N. Lewis (1926). Prorto this, Max Planck (1900} had introduced the idea
that exchange of cnergy between matter and radiation could take place only in units of hv, v
being the frequency of the radiation. .

9. Fora comparatively recent exposition of the Statistical Interpretation, see, L.E. Ballentine, Revs
Mod. Phys. 42,357 (1970).

10. Thankappan, V.K. and Gopalaknishna Nambi, P. Found. Phys. 10, 217 (1980); Gopalakrishna
Nambit, P. The Interpretational Problem in Quantum Mechanics (Ph. D Thesis : University of
Calicut, 1986), Chapter 5.

11. Jammer, M., The Conceptual Development of Quantum Mechanics (McGraw-1lill, New Yo k,
1966), Chapter 7.

12. Swapp, H.P., Awmer.J. Phys. 40, 1098 (1972).
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The Tossing of Coins

It should be emphasized that the dispute between the two schools is not one that
could be settled by experiments. For, experiments in the domain of microparticles
invariably involve large number of identical systems, and when applied to large
numbers, both the interpretations yield the same result. Besides, even if it were
possible to make observations on a single isolated particle, the results could not
be taken as a contradiction of the Copenhagen Interpretation’. The example of
the tossing of coins might serve to illustrate this. The law governing the outcome
of tossings of identical coins is contained in the following statement: ‘‘The
probability for a coin to fall with head up is one half’’. According to the Statistical
Interpretation, this statement means that the ratio of the number of tosses resulting
in head up to the total number would be one half if the latter is large enough, the
ratio being nearer to the fraction half the larger the number of tosses. In any single
toss, either the head will be up or it will be down, irrespective of whether some-
body is there to observe this fact or not. However, the application of the law
would be meaningless in this case since it is incapable of predicting the outcome
of a single toss. This incapability might stem from an ignorance of the factors
(parameters) that govern, and the way they influence, the motion of the coin. One
cannot, therefore, rule out the possibility of a future theory which is capable of
predicting the outcome of a single toss, and from which the above-mentioned
statistical law could be deduced (see Chapter 12, Section 5). ’
The Copenhagen Interpretation, on the other hand, insists that the law is
applicable to the case of a single toss, but that it is the statement that the coin falls
with either head-up or head-down that is meaningless. When no observer is
present, one can only say that the coin falls with partially (in this case, half)
- head-up and partially head-down. If an observation is made, of course, it will be
found that the coin is either fully head-up or fully head-down but the act of
observation (that is, the interaction between the observer and the coin) is held
responsible for changing the coin from a half head-up state to a fully head-up state
(or a fully head-down state). Agreement with observation is, thus, achieved, but
ata heavy price. For, the coin now is not the classical coin which was capable of
falling only with head-up or with head-down but not both ways at the same time.
Also, the role of the observer is changed from that of a spectator to an active
participant who influences the outcome of an observation. Since the law is pre-
sumed to govern the outcome of an individual tossing, it follows that the search
for a more fundamental theory is neither warranted nor likely to be fruitful.

A Thought Experiment

At this stage, one might wonder why one has to invent such a complicated scheme
of explanation as the Copenhagen Interpretation when the Statistical Interpre-

13.  According to the Statistical Interpretation, quantum mechanics does not have anything to say
about the outcome of observations on a single particle.
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tation is able to account for the observed facts without doing any violence to the
classical concept of the coin. Unfortunately, phenomena in the world of micro-
particles are somewhat more complicated than the tossings of coins. The com-
plication involved is best illustrated through the following thought-experiment.
Imagine a fixed screen W with two holes A and B (see Fig. 1.1). In front of this

w X

Fig. 1.1. The double slit interference experiment.

screen is an election gun G which shoots out electrons, having the same energy,
uniformly in all directions. Behind W is another screen X on which the arrival of
the individual electrons can be observed. We first close B and observe the elec-
trons arriving on X for a certain interval of time. We plot the number of electrons
versus the point of arrival on X (the screen X will be assumed to be
one-dimensional) and obtain, say, the curve I, shown in Fig. 1.2, Next we close

4

Xg 0 X
Fig. 1.2. The distnbution of particles in the double slit interference experiment when only slit A is

open (I,), when only slit B is open (/;) and when both A and B are open (/,5). [ represenis
the sum of 7, and /.
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A and open B and make observation for the same interval of time, obtaining the
curve /5. We now repeat the experiment keeping both A and B open. We should
expect to get the curve / which is the sum of I, and /5, but get the curve /5 instead.
This curve is found to fit the formula

Lig(x) = W, (0) + W(x) I, (1.4)
with [Ya(x) P =12 | yp(x) P= 1, 1.5)

where y,(x) and y,(x) are complex functions of x.

Apparently, our expectation that an electron going through A should not be
knowing whether B is closed or open, is not fulfilled. Could it be that every
electron speads out like a wave motion after leaving the gun, goes through both
the holes and again localises itself on arriving at X? Egs. (1.4) and (1.5) support
such a possibility since these are identical (except for the complex character of y,
and ) with the equations relating amplitudes and intensities of a wave motion.
In order to test this, we set up a device near A to observe all the electrons passing
through A, before they reach X. We will assume that the electrons arriving on X
that are not registered by the device have come through B. We find that the
electrons coming through A are, indeed, whole electrons. But, to our surprise, we
find that the curves corresponding to the electrons coming through A and B
respectively are exactly similar to I, and 5, implying that the distribution of
electrons on X is now represented not by the curve [, but by the curve /. This
shows that electrons are particles conforming to the definition P1, at least when-
cver we make an observation on them,

Let us summarise below the main results of the experiment :

E1. The number of electrons arriving at a point x on the screen X through A
depends on whether B 1s closed or open. The total number of electrons
arriving on X through A is, however, independent of B*.

E2. Observations affect the outcome of experiments.

The results of the electron experiment are easily accommodated in the
Copenhagen Interpretation. The basic law governing the electrons in this case is
contained in the statement that the probability for an electron that has arrived on
X to have come through one of the holes, say A, is P and through the other hole is
(1 - P); where 0< P <1. Since this law governs the motion of each and every
clectron, when both the holes are open and when no observations are made to see
through which hole the electrons are passing, it should be presumed that every
electron passes, in a wave-like fashion, through both the holes. Alternatively, one

14.  This follows from the relation [see Eq. (1.32)],
[t = [ (v@+ v s

=LIWA(x)Izdx+L|%(x)l’dx

=L1,(x)dx+L1;(x);dx.
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could take the view that, as far as the distribution 7,15 concerned, the question as
to whether a particular clectron has come through onc or both holes, is not a
meaningful one for physics as no experiment can answer the question without
affecting the distribution /,,. For any cxperiment designed to answer the question
reveals the electron to be a particle capable of passing through only one hole, but
ihen the distributon is also changed from the one corresponding to classical waves
(1,5) to one corresponding to classical particles (7), justifying the hypothesis that
the act of observation transforms the electron from a wavc-like object extended in
space to a particle-like object localised in space. The dichotomy on the part of the
clectron is easily understood if we realize that particles and waves are mercly
complementary aspects of one and the same physical entity®, any one experiment
being capable of revealing only one of the aspects and not both'®.

Thus, the Copenhagen Interpretation does not appear so far-feiched when
viewed in the context of the peculiar phenomena obtaining in the world
of microparticles. However, it denics objective reality to physical phenomena,
and prohibits physics from being concerned with happenings in between obser-
vations. The question, how is it that the act of observation at one location causes
an elcetron, that is supposed to be spread over an extended space, to shrink to this
location?, is dubbed as unphysical. The interpretation, thus, leaves one with an
impression that quantum thcory is mysterious as no other physical theory is.
Those who find 1t difficult to be at home with this positivist philosophy underly-
ing the Copenhagen Interpretation, will find the Statistical Interpretation morc
attractive. Let us sce how this interpretation copes with the results of the electror
sxperiment,

According to the Statistical Interpretation, the probability law stated carlier as
governing the motion of electrons, is a statistical one and is applicable only when
a large enough number of ‘similarly-prepared’ electrons are involved. The d:s-
tribution of electrons coming through, say hole A, on the screen X being the result
of a statistical law, need not be the same when the screen W has only hole A on it
as when both A and B are there, just as the distribution of head-up states in the
tossings of coins with only one side is different from the distribution of head-up
states in the tossings of coins with two sides. Let us elaborate this point: The
listribution of electrons coming through hole A on X, is a result of the momentum
ransfer taking place between the electrons and the screen W at A. The expectation
hat this momentum transfer, and hence the distribution, are unaffecied by the
ddition of another hole B on W is based on the presumption that a screen with
wo holes is merely a superposition of two independent screens with onc hole
:ach, The experimental result shows that the presumption is not justified. The

5. The Principle of Complementarity, which seeks to harmonize the mutally exclusive notions of
particles and waves, was proposed by Neils Bohr (1928). A detailed account of the principle is
given in the reference quoted in footnote 11 as well as chapter 12.

This limitation on the part of experiments is enshrined in the Uncertainty Principle proposed by
Wemer Heisenberg (1927), which puts a limit on the precision with which complementary
variables such as position and momentum of a particle can be measured.

o
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fact that the momentum transfer at the hole A when both A and B are open is
different from the momentum transfer when only A is open, could also be under-
stood on the basis of the quantization of the momentum transfer resulting from the
periodicity in space of the holes in the former case (W. Duane 1923)".

Thus, experimental result E1 is easily understood on the basis of the Statistical
Interpretation. As for E2, one should distinguish between the two ways in which
observations affect the outcome of experiments. One is that observations on
electrons coming through hole A affect their distribution on the screen X. This
could be understood as due to the fact that the momentum transfer involved in the
act of observation is not negligible compared with the momentum of the electrons
themselves. The other is that observations on electrons coming through hole A
affect (apparently) also the distribution of electrons coming through hole B. In
order to accommodate this fact within the framework of the Statistical Interpre-
tation, one has to assume that the statistical correlation that exists between two
paths (of the electrons), one passing through A and the other through B, is such
that it can be destroyed by disturbing only one of the paths. In fact, a correlation
represented by the linear superposition of two functions y, and v, as in Eq. (1.3),

whose phases are proportional to the classical actions associated with the paths,
satisfies such a condition' . For, as is known from the classical theory of waves,
the correlation can be destroyed by introducing a random fluctuation in the phase
of one of the functions. So in order to understand the experimental result, one has
to assume that observations on the electrons always introduce such a random
variation in the action associated with the path of the electrons'®,

The ‘Mystery’ in Quantum Mechanics

Thus, in the course of understanding E2, we are led to introducing a (complex)
function which, in certain aspects such as the applicability of the principle of
superposition, resembles a wave amplitude. This is the really new element in
quantum mechanics; it represents an aspect of microworld phenomena quite
foreign to classical statistical processes such as the tossings of coins. But whereas
the Copenhagen school regards these functions as incompatible with the classical

17.  The period would be the distance d between the holes. According to Duane’s hypothesis the
momentum transfer between the screen W and the electron, when both A and B are open, has to
be an integral multiple of (h/d), h being the Planck’s constant. This relationship is identical with
the de Broglie relation, p = h/A (see footnote 7) if we recognise the wavelength A as a periodicity
in space. Duane’s hypothesis is an extension, to the case of the linear momentum, of the earlier
hypotheses of Max Planck (footnote 8) and of Neils Bohr (1913) on the relationship between
the quantization of energy and periodicity t in time {energy = integral multiple of (h/t)] and
quantization of angular momentum and periodicity 27 in angles [angular momentum = integral
multiple of (h/2x)], respectively.

18.  This is nothing but the Uncertainty Principle.

19.  Erwin Schrodinger (1926) was the first to introduce these functions and to derive an equation of
motion (the Schridinger equation) for them.. The physical interpretation of these functions as
probability amplitudes which are related to the probability of finding the particles at a space
point in the same way as wave amplitudes are related to wave intensities, is due to Max Bom
(1926).
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concept of particles, and invests them with a certain amount of physical reality,
thereby endowing quantum mechanics with an aura of mystery, the Statistical
Interpretation makes a distinction between these functions and the physical
entitics involved. The physical entities are the electrons or other microparticles
{conforming to definition P1), but the functions are mathematical cntities
characterising the paths of the microparticles just as the action in classical
mechanics is a mathematical function characterising the classical paths of
particles. The functions, thus, determine the dynamical law governing the motion
of microparticles. This law is, admittedly, new and different from the dynamical
law in classical mechanics. But, then, it is not the first time in physics that a set
of rules (thcory) found to be adequate for a time, proved to be inadequate in the
light of new and more accurate experimental facts. Also, the fact that quantum
mechanics does not provide an explanation to the dynamical law or laws (such as
the principle of superposition) underlying it, does not justify allcging any special
mystery on its part, since such mysteries are parts of every physical theory. For
example, classical mechanics does not explain why the path of a particle is
governed by Hamilion’s principle, eletromagnetic theory does not offer an
explanation for Coulomb’s or Faraday’s laws and the theory of relativity does not
say why the velocity of light in vacuum is the same in all inertial framcs. Thus,
from the viewpoint of the Statistical Interpretation, quantum mechanics is no
more mysterious than other physical theories are. It certainly represents an
improvement over classical mechanics since it is able to explain Hamilton’s
principle, but an explanation of the fundamental laws underlying quanturn
mechanics themselves need be expected only in a theory which is more funda-
mental than quantum mechanics.

It should be clear from the foregoing discussion that the choice between the
Copenhagen and the Statistical Interpretations could be one of individual taste
only. Anyway, the mathematical formalism of quantum mechanics is indepen-
dent of these interpretations.

1.2 THE MATHEMATICAL ASPECT

One or the other branch of mathematics plays a dominant role in the formulation
of every physical theory. Thus, classical mechanics and electromagnetic theory
rely heavily on differential and vector calculus, while tensors play a dominant role
in the formulation of the general theory of relativity. In the case of quantum
mechanics, it is the mathematics of the infinite-dimensional linear vector spaces
(the Hilbert space) that play this role. In this section, we will show how the basic
laws of quantum mechanics® make this branch of mathematics the most appro-
priate language for the formulation of quantum mechanics,

20.  In the form originally proposed by Feynman, R.P. [Revs. Mod. Phys. 20, 367 (1948), also,
Feynman, R.P. and Hibbs, AR., Quantum Mechanics and Path Integrals (McGraw-Hill, New
York 1965)] and later modified by V.K. Thankappan and P. Gopalakrishna Nambi'. The basic
laws of non-relativistic quantum mechanics were discovered during the period 1900-1924
through the efforts of many physicists, and a consistent theory incorporating these laws were
formulated during the period 1925-1926 mainly by Erwin Schrédinger (1926) in the form of
Wave Mechanics and by Wemer Heisenberg, Max Born and Pascal Jordan (1925-1926) in the
form of Matrix Mechanics.
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Now, in classical mechanics the motion of a particle is governed by ihe
Principle of Least Action (Hamilton’s Principle). According to this principle, the
path of a particle between two locations A and Q in space is such that the actior §
(0.1, : A, 1,) defined by,

S(Q.tg: A1) =12 Ldi =[¢ pdg - [} Hat, (1.6)

is a minimum, where L is the Lagrangian, p the momentum and H the Hamiltonian
of the particle, and ¢, and ¢, are, respectively, the time of departure from A and the
time of arrival at Q. Thus, the path between A and Q is determined by the varia-
tional equation,

&85 =0. 1.7)
We will call the path defined by Eq. (1.7) the classical path and will denote it by
o, and the action corresponding to itby S.(Q, ¢, : A, 1,).

As we have already mentioned, experiments in the domain of microparticles
have shown that the paths of these particles are not governed by the principle of
least action. However, the results of these experiments are consistent with, indeed
suggestive of, the following postulates which could be regarded as the quantum
mechanical laws of motion applicable to microparticles:

Q1. Associated with every path o of a particle” from location A to location Q in
space, is a complex function ¢,(Q, 1, : A, 1) given by,

b, =ag exp [(i/)S,], (1.8)
where

SLQ. tp:A, 1) =[2L dr=[¢p dg-[2Hdr. (1.9

t,, here, has the same meaning as #, in Eq. (1.6) except that it could be
different for the different paths o.. Also®, h = h/2r.
Q2. The probability amplitude for a particle to go from A (at some time) to @
at time ¢, is y,,(Q, ), where,
(0, 10) =200, 15 1 A, 1. (1.10)
Q2a. Only those paths contribute to the summation in Eq. (1.10) that differ from
o, by less than #/2 in action. That is
AS, = (S,—S,) < (#2). (1.10a)
03. IfA,B,C, .. are locations corresponding to similarly prepared states™ of a

particle in an experimental set up, the number of particles arriving at a point
of a observation, Q, at time #, from the above locations, is proportional to

|'W(Q, 1,) I, where,
' W(Q, 1) =Z,c,¥A(Q, 1p), (1.11)

21.  We assume that the spin of the particle is zero.

22. The one-letter notation for (4/2x) was first introduced by P.A.M. Dirac (1926), in the form **4”’.
For this reason, # is also called Dirac’s ‘constant.

23.  This phrase stands for ‘elements, or members, of an ensemble’.
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the ¢,’s being numbers (in gencral, complex) to be chosen such that
[1¥ Pd*e,=1, (1.11a)
where d3rQ represents an element of volume containing the point .

If o is a path between A and Q, and B a path between B and , then, as a con-
scquence of condition (1.10a), we will have,
[ (So—Sp) | ~AS,p < (W2), (1.12a)
where ASyy= 18a. =S 1.

o, and B, being the classical paths between A and @ and between B and Q,

respectively. Also, corresponding 1o every path ‘a’ between A and Q (that con-
tributes to y, ), there will be a path *b’ between B and Q such that

[Sa—8, 1 =AS,,. (1.12b)
Eq. (1.12b) enables us to say that the phase difference between w, and , 1s the
quantity (AS,,/?) whercas inequality (1.10a), from which incquality (1.122) fol-
lows, ensures that the phase difference is such a definite quantity. Now, a definite
phase diffcrence between y, and Wy, is the condition for A and B to be coherent
scurces (or, similarly-preparcd states) from the vicwpoint of . We will, there-
tore, reler to inequality (1.10a) as the coherency condition.

Postulate (3 incorporates the principle of superposition referred to in Section
1.1 (Eq. (1.3)). However, unlike ¢; and wy; in (1.3), ¢, and y,, in Eq. (1.11) are

complex quantities. Therefore, it is not possible to interpret y, and W in (1,11} as

representing wave motions in the physical space®. Also, the principle of sup. -
position will conflict with property P1 of particles (sce, p. 2), if applied to the case
of a single particle. But there is no experimental basis for invalidating P1; on the
contrary, experiments confirm the continued validity of P1 by verifying, for
example, that all electrons have the same spin, (rest) mass and ¢lectric charge both
before and after being scattered by, say, a crystal. Therefore, the principle of
superposition should be interpreted as applying to the statistical behaviour of a
large number (enscmble) of identical systems. In fact, the terms ‘probability
amplitude’ and ‘number of particles’ emphasize this statistical character of the
postulates. However, the really new element in the theory is not its statistical
character, but the law for combining probabilitics. Whercas in the classical sta-
tistics, probabilitics for independent cvents are added to obtain the probability for
the combined event (I P,(Q) and P 5(Q) are, respectively, the probabilities for the
arrival of a particle at Q from A and from B, then, the probability P,;(Q) for the
arrival of a particle at Q from cither A or B is given by P,(Q) = PA(Q) + Py(Q))
in the new theory, this is not always so. In particular, whencver criterion (1.12a)

24, In classical wave theory also, complex amplitudes are employed sometimes, purely for the sake
of calculational convenience. Care is, then, taken in the computation of physically significant
quantities such as the intensity of the wave motion, to scparate out the contribution due to the
unaginary part of the amplitudes. In quantum mechanics the y,’s are perforce complex. [sec
Eq. (4.15 b)]
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is satisfied, it is the probability amplitudes that are to be added in place of the
probabilities [If y,(Q) and y,4(Q) are the probability amplitudes for the arrival of

a particle at Q from A and from B, respectively, then the probability amplitude for
the arrival of a particle at Q from either A or B is given by y,,(Q) =¥, + s, SO

that Pup(Q) = |Yus(Q) = Po(Q)+Ps(Q) + 2Re(WyY) # P + P5). It appears

that events which are supposed to be independent, are not really so.

If it appears odd that the dynamics of particles should be governed by such
abstractly-defined entities as the probability amplitudes, one has only to observe
thai these functions are not any more odd than the classical action in terms of
which they are defined and which plays an important role in the dynamics of
classical particles. It also turns out that the differential equations satisfied by
these probability amplitudes are closely related to the Hamilton-Jacobi equations
satisfied by the action in classical mechanics, as is being demonstrated below:

The Schridinger Equation

In view of (1.10a), the contribution to y, in (1.10) from paths lying in a single
plane may be written as,

Sc+fl/2
Yt 1) = Z[J; a($)p(S) exp {(i1)S}dS

—a(S, +#/2) exp {(i/h) (S, +#/2)}] —a(S,) exp {(i/H)S.},

(1.13a)
where the last term compensates for counting the path o, twice in the integral.
Also, p (S) dS represents the number of paths in the plane having action between
Sand § +dS, while a(S,) = a,. We make the assumption that both a(S) and p(S)
are independent of S. This means that : (i) all the paths between A and Q that
satisfy condition (1.10a) contribute equally to , , (ii) the density of paths is
uniform in the S-space. Eq. (1.13a) then reduces to,

Ya'(rg, 1g) = A'exp{(i/B)S (rg, 1)}, (1.13b)
A’ being a (complex) constant.
The total contribution to y, could, in principle, be written as the sum of the

contributions from the various planes. Under the above assumptions, the contri-
bution from each plane would be proportional to exp [(i/#4)S_], so that

Wa(rg, to) = A exp {(i/B)S (rg, 1)}, (1.13¢)
In Egs. (1.13a-c), r, is the position vector of the location Q.
For a fixed location A and variable locations Q, Eq. (1.13¢) yields,
i a‘l’A(rQ’ to)

5 =Hy,(ry, 1), (1.14a)
Q
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(ﬁ/i)VQWA(rQ’ IQ) = pWA(rQ’ [q)r (1'14b)
where the Hamilton-Jacobi equatjons”,
%._ H (1.15a)
a(Q - (Q)’ . a
V,S. = p(@), (1.15b)

have been used. Here, H and p are, respectively, the Hamiltonian and the linear
momentum (along o) of the particle at . Since the location A is arbitrary we
have, from Eqgs. (1.14a) and (1.11),
o¥(r,, ¢
2 to)
ot

Erwin Schridinger was the first to derive this equation (see footnote no. 19), on
the basis of de Broglie’s theory of matter waves and Hamillon’s analogy of his
principle to Fermat’s principle of at least time in optics™. It is, therefore, known
as Schrodinger's Wave Equation, while ¥ is called Schrédinger’s wave function.
The equation describes the evolution of ¥ in time and is, thus, the equation of
motion for ‘Y.

= H¥(r,, 1,). (1.16)

The Uncertainty Principle

Inequalitics (1.10a) and (1.12a) could be interpreted as implying that the random
Sfluctuations AS, in the actions associated with each of the amplitudes y, should

be less than (#/2) for them to be superposable as in Eq. (1.11). Conversely, if
AS, 2 (7/2), (1.17)
then, y, cannot be superposed with other amplitudes (that is, there is no ‘inter-
ference’ between v, and other amplitudes). Experimentally, it is found that a
successful attempt at observing the paths associated with y, invariably leads to
the destruction of the interference between y, and other amplitudes. This means

that two interfering ‘paths’ cannot be observed without destroying the interfer-
ence between them. Werner Heisenberg (see, footnote no. 16) was the first to
recognise this fact” and to suggest a mathematical expression for it, in the form
(see, Ref. 11, Section 7.1),

Ag-Ap = h, (1.18)

25.  See Landau, L.D. and Lifshitz, E.M., Mechanics (Pergamon Press, (1969)), I Edition, Sections
43 and 47.

26, SeeRef. 11, Section 5.3.

27.  Unforwnately, there are different interpretations for Heisenberg’s Uncertainty Principle [see H.
Margenau and L. Cohen, Probabilities in Quantum Mechanics, in Quantum Theory and
Reality, (Ed) M. Bunge (Springer-Verlag, 1967), chapter 4], just as there are different inter-
preiations of quantum mechanics itself. The version given here is the one that follows naturally
from the postulates.
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where Ag and Ap are the uncertainties [hence the name, ‘Uncertainty Principle’
for the expression (1.18)] in the coordinate g and the momentum p conjugate to q,
respectively. Now, the uncertainties are defined as the root-mean-square (or,
standard) deviations from the average values. With this definition, it is possible
to reduce (see Ref. 10) the semi-equality (1.17) to an expression similar to (1.18),
namely,

Ag, Apy 212, (1.17a)
where Aq, and Ap, are, respectively, the root-mean-square values of the
displacements and the momenta (of the paths associated with y,) perpendicular
to the classical path (the ‘average’ path) belonging to y,. The uncertainty
principle, thus, has its root in the coherency condition.

The Meaning of ¥

According to postulate 93, the number of particles coming, at time {,, into a
volume element dV = d’rQ containing the location Q, from the various sources A,

B, C, ..., is proportional to | ¥(rg, t,) I d’ry. Therefore, the total number N of

particles in the volume V is given by
N =all¥Il?, (1.19)
where ‘a’ is a proportionality constant, and

NPHZ =Lty 1 W, 1) Pd’rg. (1.20) -

In practice, V need not be infinite, but should be large enough for ¥ to vanish
outside V.
It is customary to define ¥ such that a = N in Eq. (1.19). Then, we have,
¥2=1. (1.21)

The interpretation of this equation is that ||¥]{? is the probability of finding a
particle in the volume V. The fact that ¥ is not zero implies that there is a particle
in the volume V, so that the particle should be certainly found somewhere in V.

|\P(ry, )| %d’r g then is the probability of finding the particle in the volume ele-

ment d’r,, and |W(ry, 1p)|? is the probability density®. That is, N|W(rg, tp)* is
the number of particles in a unit volume containing the location Q.

A similar interpretation could be given to the ,’s : | y,(ry, £)I°d’r, is the
probability that a particle, whose source is 4, is found in the volume element d’r,
at time t;, and If Ya(rg, )l 2d3rQ is the probability that the particle is found some-
where in the volume V. Thus,

28.  The interpretation of | V| as a probability density is originally due to Max Bom (see footnote
19).
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WAl =Ly [ 1t ) ' = 1, (1.22)
and
N, =N, 1w, 1% (1.23)
where N, is the number of particles in the volume V, having their source at A.
In applying the foregoing interpretation of y,, however, we have to be careful
not to contradict experiments. For, experiments show that the distribution of the

particles in V, originating from A4, is affected by the presence of other sources
satisfying condition (1.12a). In fact (see Fig. 1.2),

NIW(rg, 1)1 °d’ry # N I (rg, 1)1 7d’r,. (1.24)
Thercfore, | y,(ry, 15)1%d’r, is the probability for the particle from A to be found

attime ¢, in the volume element d3rQ only when there is no other coherent souices

present.

A modification in the distribution of the particles from A does not, however,
affect the total number of particles in V that have their source at A. Thus, Eqgs.
(1.22) and (1.23) are valid whether there are other sources or not, Therefore, the
total number of particles in V can be written as,

N=Z,N,, (1.25)

or, NI = SN, )
so that W2 =2, (NN 1 (1.26)

But, from Eq. (1.11), we have,
I ! \PI | i ZA ZBC,:C[} J‘le:(rg7 ,Q)WB(rQ’ (Q)der. (1.27)
Comparing Eqs. (1.26) and (1.27), we get®,

lc, P=(N,IN), (1.28)
L WA (F g, LT, 1) drg =8, (1.29)

where 3, is the Kronccker dela function :
O, =0, ifA =B,
=1, ifA=B. (1.30)
From Eqgs. (1.28) and (1.25), we have
Lol =1, (1.3

29.  In place of (1.29), we can have the condition
excalvi Yad g+ €y, IW;WAdJrQ =0,
which is equivalent to requiring that the real parn of
fleawa) (cpwa)d’r, be 710 .
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while, from Eqgs. (1.27) and (1.29), we see that Eq. (1.31) is just another expres-
sion for Eq. (1.21).

The Algebra Obeyed by y

Now, Eq. (1.27) with condition (1.29) can be expressed as,

IPRAATRED AT ATAT (132)
Actually, Eq. (1.29) does not fully express the conditions on the integral
J w;\vsd3rg that are implicit in the relation (1.32). These conditions are listed
below, where we use the abbreviation,

(Voo W) = fw;(r  1Wp(Fg. 19)d’ry, (1.33)

(War Wa) = (Wps Wa)', (1.34Y)

(Ya» CWa) = Co(Was Wp), (1.34),
(War Wa +We) = (W, W) + (W W) (1.34%)
Hwal1*20, (1.34%

the equality sign in (1.34%) holding only when v, is a null function (that is, when
W, =0). The restriction of |} y,||? to positive values is essential for its probabil-
istic interpretation.
From Eqgs. (1.29) and (1.11), we have
¢, = (y,, V) (1.35)
so that, Eq. (1.31) becomes,
ZA(\P!‘VA)(\VA’\P):l (1.36)
The (scalar) number® (1.34") is called the scalar or inner-product of y, and
. This terminology anticipates the possibility of regarding the function v, as a

vector in some function space. In fact, such a possibility is strongly suggested by
the following comparison.
Let X be a vector in the (3-dimensional) physical space. Then,

3
X= I xe, (1.37)
k=1

where €, (k = 1, 2, 3) are the unit vectors along three mutually perpendicular
directions, so that,

(e.€)=(e;-¢)= O (1.38)

30. Ttis possible to have functions for which (1.29) is not the Kronecker delta but some other scalar
number (see Eq. (1.35) and footnote 29), but which otherwise satisfy all the conditions (1.34'%).
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(e, €,) being the scalar product of €; and e,. X, is the component of X along e,.
Obviously,
x, ={e, - X). (1.39)

If X is a unit vector, then
3
Lxl=X (X e)(e, X)=1 (1.40)
k=1

The similarity of Egs. (1.11), (1.28), (1.35) and (1.36), respectively, to Egs.
(1.37), (1.38), (1.39) and (1.40) is obvious, and suggests that ¥ could be regarded
as a vector with ‘components’ ¢, along the directions of the ‘unit vectors’ ,.

Since, however, ¢, and vy, unlike x, and e,, are complex quantities and since the
number of indepcndent y,’s [that is, those satisfying condition (1.29)] is not
limited to three, ‘¥ is a vector, not in the physical space, but in some abstract
function space. The nature of this space could be inferred from the properties of
the y,’s. In enumerating these propertics, we will adopt the following definitions
and notations:

{w,} will denote the set of independent functions y, that occur in the expan-
sion of ¥ as in Eq. (1.11). ‘¥ will stand for any function whose scalar products
with two or more members of the set y,, are non-zero. The y,’s and the ¥’s
together form a family of functions denoted by ['P, y,].

The propertics of the y,’s and the ¥’s could be now summariscd as follows:

V1. The sum of two or morc members of the family is a ¥ and, thus, belongs to

the family. Obviously,
Vit W=Vt VW,
and W, + (W +We) = (Wy + Yp) + Yo = Yy + Y + Yo

V2, Itis possible to have a function W which is identically zero. For example,
in the case of the two-slit interference experiment [see Eq. (1.4)], we dc
have, Lip(x) = Py, (x) + y,a(x) > = 1'¥) 2 = 0. Such functions will be called nuli
and will be denoted by 0.

V3. According to the postulates, only |y,|* and |¥|? have direct physical
meaning (being related to the number of particles). Therefore it is possible
to associate a -y, with every +y, and a —¥ with every +¥ such that
+Y, =, = 0and +¥ - = 0. Thus with every function in [%¥, y, ], we can
associale an additive inverse.

V4. Multiplication of ¥ by a scalar ¢ yields a function ¥ = ¢¥ which differs
from ¥ only in that the proportionality constant relating ||W]}? to the
number of particles is different from that appearing in Eq. (1.19). But Eq
(1.16) shows that this proportionality constant has no effect on the dyna
mics of the system. Therefore, ¢'¥ belongs to [W,y,]. Similar remark

apply to cy,.
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The above properties of y, and W show that, if these functions are to be

regarded as vectors in some abstract space, then, that space should be closed under
vector-addition and under multiplication by scalars, that there should be a null-
vector in the space and that every vector in the space should be associated with an
additive inverse. These are the properties of a linear vector space (see, Section
2.1). Furthermore, we have seen that it is possible to define a scalar product in
the space with properties (1.34'). Therefore, the space is unitary.

H ¥ and y, (and hence ¢,) are to be regarded as vectors, then, Egs. (1.16) and

(1.14b) show that H and p should be identified with the differential operators i#
9
3 and (#/i)V, respectively. Since H and p are (in classical mechanics) dynamical

variables of a mechanical system, it is reasonable to expect that other dynamical
variables, such as angular momentum and position co-ordinates, are also repre-
sented by operators (not, necessarily, differential) that act on the space pertaining
to the system. It is, in fact, found possible to develop an elegant and powerful
formalism of quantum mechanics based on the above concepts of ¥ as a vector
and the dynamical variables as operators in an infinite-dimensional, unitary,
linear vector space (usually referred to as the Hilbert space). We will devote the
next three chapters to such a formulation of the basic principles of quantum
mechanics, an outline of which has been presented in this chapter.
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CHAPTER 2

LINEAR VECTOR SPACES

We have seen, in the previous chapter, that the probability amplitudes y(r, ¢
could be regarded as vectors in a linear vector space. In this chapter, we will
develop the mathematical formalism underlying linear vector spaces.

2.1 VECTORS

A linear vector space Vis defined by a set' § of element X, y, z, ... called vector:

and a field #of numbers a, b, ¢, ... called scalars, with the following propertics:

(i)  The space is closed under vector-addition. That is, corresponding to an
two vectors x and y in the space, there is a unique third vector z which i
also in the space, such that

X+y=1z (21
Vector-addition is commutative;
X+y=y+X, (2.2
and associative:
X+(y+z)=(x+y)+2=X+y+1; 23

for any three vectors x, y, z.
(i)  Therc is a null or zero vector 0, such that, for any vector x in the space,
x+0=x. 2.4
The null vector defines the origin of the vector space.
(iii) Corresponding to every X, there is an additive inverse (—x), such that,
X+(=x)=0. (.5

1. Asct S ={s} is acollection of objects s, (f = 1, 2, ...), which are called elements of the sct, cor

nected by some common attribute. Examples are a set of real numbers, a set of atoms, etc. Th
number n of elements in § is called the cardinal number of §. The set is finite or infinit
depending on whether n is finitc or infinite. S, is a subset of S if every element in §, is also ai
clement of § but not vice versa. Thus, the set of positive integers is a subset of the set of integers
An infinite set has at least one subset which has got the same cardinal number as the original se
For example, the set of perfect squares is a subset of the set of positive integers. The cardin:
number is the same for both the sets since there is a perfect square corresponding to every positny
integer.

A setis denumerable {countable) if it has the same cardinal number as the set of positive intege
otherwise it is nondenumerable,
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(iv) The space is closed under multiplication by scalars. That is, for any scalar
¢, the vector y = ¢x is in the space if x is in the space.
Multiplication by scalars is commutative:

cX =Xc, (2.6)
associative:
a(bx) = (ab)x = abx, ()
and distributive:
{(@a+b)x=ax+bx; . (2.8a)
a(x+y)=ax+ay. (2.8b)

The set of all vectors generated from a single vector in ¥ by multiplication by
different scalars, is called a ray in %, Geometrically, a ray is represented by a line
in the vector space.

Examples of Linear Vector Spaces

(1) The set of all n-tuples of numbers, (x;, x, ...\x,), when addition of
vectors and multiplication of a vector by a scalar are defined by
(0 Xz e X) + Oy Y2 e Yu) = (6 + Y1 o + Yz o X+ V), ANy, Xz oo X,)
= (axh ax, .. ax,,)

This space is referred to as the n-dimensional Euclidean space.

(2) The real numbers, when they are considered both as vectors and as scalars.
This is an example of a vector space consisting of a single ray, since all the
vectors are generated from one vector (the number, 1) by multiplication by
scalars.

For a general linear vector space, products of vectors (multiplication of a
vector by a vector) need not be defined. However, we will restrict to spaces in
which an inner, or scalar, product can be defined.

(v)  Alinear vector space is unitary if a scalar product is defined in it. Thatis,
to every pair of vectors x, y, there corresponds a unique scalar (in general,
complex), (x, y), called the scalar product, such that,

®y =%, (2.92)

xy+z)=xy)+(x,2), (2.9Yb)

x,cy)=c(x,y), (2.9¢)

{(x,x) 2 0, the equality sign holding only whenx=0. (2.949)

Here, the asterisk denotes complex conjugation. In (x, y), x is calied the prefactor
and y the post-factor. The scalar product is linear with respect:to the post-factor:

(x,ay+bz)=a(x, y)+b(x,2), » (2.10a)
and antilinear with respect to the prefactor.
(@x +y, 9)=a'(x2)+b'(y, 2) (2.100)

Because of this difference, (x, y) is sometimes called the scalar product of y by x.
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The 3-dimensional physical space (of position vectors) is an example of a
unitary pace, while the 4-dimensional space-time of the theory of relatively
(x;=x,x,=y, Xy = z, x, = ict) is a linear vector space which is not unitary since

(x, x) Z 0, where x is a vector in a the space.

Norm of a vector; We define the distance between two vectors x and y by

|1x= g1l = Hx-y), (x=-y)"™ (2.11)
[tx=yll
X [x=yll
y " y
(@) {b)
Fig. 2.1, Graphical representations of (a) Eq. (2.11), (b) semi-equality (2.12c).
Obviously,
Hx-yll =Hy~-xll, (2.12a)
llax—ayll = lal l1x=yIl. (2.120)
Hx—=yl <lIx-z{l +{1z-yll, (2.12¢)
lx—x|} =0. (2.124)

The norm of x is the distance from the null vector (origin):
Norm (x) =}I x| = ((x~0),(x-0))"

=(x, x)"*20, (2.13)

the last result following from the property of the scalar product. The norm of a

vector in a unitary space, thus, corresponds to the length of a vector in the physical

space. We notc that the distance between x and y is, actually, the length of the
vector z =+(x ~y).

Since the norm of a vector is zcro only when the vector itself is zero, the norm

of any non-zero vector is positive definite*. This property of the norm can also be

2. A quantity is positive definite if itself and its reciprocal are both positive. A real, positive numbcer
is necessarily positive definite. A purely imaginary number is an example of a quantity which
could be positive without being positive definite.
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expressed in the form of an inequality for the scalar product of any two vectors
x and y:

(G, Y <[IxIT-11yll, (2.14)
where, the equality sign holds when y = ax. This is known as the Schwarz
inequality. Thus, if 6, is the ‘angle’ between any two vectors x and y, we have,

x, ¥)
. Hxti -1 v
Problem 2.1 : Prove the Schwarz inequality®.

| cos 6, = <1, (2.15)

Orthonormality and Linear Independence

A vector, for which the norm is unity, is called a unit vector. From any given
non-zero vector, a unit vector can be formed by dividing the given vector by its

X
norm. Thus, u="—", is a unit vector. u is then said to be normalized, and the

Hxii ’
process of forming u from x is called normalization.
Two vectors, x and y, are orthogonal if their scalar product is zero; that is, if

x, y)=0.
The unit vectors u,, u,, ... Uy form an orthonormal set if they are mutually ortho-
gonal, i.e., if
(u,u) =3, (2.16)
The vectors belonging to the set u,, ..., Uy are linearly independent if none of
them can be expressed as a linear combination of the others. Mathematically, this
means that the equation,
cu. =0, 2.17)

17

M=

j=1

cannot be satisfied except by ¢; =0 for all j. For, suppose it is possible to satisfy
Eq. (2.17) for non-zero values of ¢;. Then, dividing the equation by c; (#0), we

have,
u=ZXbu,
jwi

{where b;=—(c//c;)}, which contradicts our original statement that u; cannot be
expressed as a linear combination of the other u/’s. The only way to avoid the
- difficulty is to assume that ¢; = 0, for j # i, so that, c;u; = 0. Since u;is a non-null
vector, this requires that c; also be zero.

The vectors belonging to an orthonormal set are necessarily linearly indepen-
dent. The converse is, however, not true. But it is always possible to orthonor-
malize a set of linearly independent vectors. By this, we mean that, from a given

3. A proofis given in Merzbacher. E. Quantum Mechanics (John Wiley, New York 1970), II Edi-
tion, p. 298.
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set of N linearly independent vectors, it is possible to form a set of N orthonormal

vectors.

We have already shown how to normalise a given vector. Therefore, it would
be sufficient for us to show how to form a set of orthogonal vectors from a given

set of linearly independent unit vectors.

Let {v,}y denote the linearly independent set consisting of N unit vectors, such

that,
Vav) =1y, v)=0,i#j.
We will denote the orthogonal vectors by u; (i = 1,2,...N).
Let, u=v,=a,v,
Since the given vectors are linearly independent,

Vv, # Zc)v
Jj=i

Therefore,
u,=v,— (v, YV, = ayv,+ayv,
is orthogonal to v, and, hence, to u,.

Similarly,
u, =,§ a,\v;

with

n-1k

a,=—%X Ea,ua,u(v‘, v,), j<n;

k=ji=

and
a, =1,

isorthogonaltou; (i=1ton-1).

Eq. (2.18), for n=1to N, can be written as a matrix equation:

u=Ayv,

0 .
0
0

(1 0 0 0 . o\
ay 1 0 0 ... 0
a, a, 1 0 . 0

T O

(2.18)

(2.192)

(2.19b)

(2.20)

(2.21a)

(2.21b)
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This process of forming orthogonal vectors from a given linearly independent
set, is known as the Schmidt or the Gram-Schmidt orthogonalization procedure.
Uz V2

V2 -Vicos ©

—Vy = Uy

V,c0s ©
1
Fig.2.2. Graphical representation of the Schmidt orthogonalization procedure in the case of two
linearly independent vectors v, and v,

As an illustrative example, let us consider a 2-dimensional space. Any two
non-parallel vectors v, and v, are linearly independent, since v, # cv, We assume

that{{v,|| ={]v,}| = 1. Then,

W=V,
u,=v,— (v, V2V,
=v,—v, cos 0.

Ilugdl = (1 —cos®)"”.

Problem 2.2 : Show that only N orthogonal vectors can be formed from a given
set of N linearly independent vectors.

Bases and Dimensions

A set vy, v,,...vy Of vectors is said to span a linear vector space if each vector in

N
the space is a linear superposition, X a;v,, of the elements of the set. A basis for
i=1

a linear vector space is a set of linearly independent vectors that spans the space.
Of course, there is an infinite number of bases in a given vector space. But the
expansion of a vector in terms of a given basis is unique.
Let {v;}y be a basis, and let
X=2Z2xv, and X= Z_',x,.’v,.,
be two different expansions of X in terms of {v;}y. Then, from X - X =0, we
have,
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(x;—x)v, =0
Since the v;’s are linearly independent, this is possible only if
x—x'=0, or,x;=x,.
A basis in the case of a linear vector space plays the role of a co-ordinate svstem
in the case of the physical space, so that the expansion coefficient x; could be
regarded as the component of X along v,.
If the elements of a basis are orthonormal, we have an orthonormal basis. It

is advantageous to usc an orthonormal basis since, in this case, the cxpansion
coefficient x;in the expansion,

X=Ixu, (2.22)

can be found just by taking the scalar product of X by u,.
(u,, X)=Zx(u,,u)

= Zx8,; =X, (2.23)

Then, the product of two vectors X and Y is given by,

(X, Y) = (qu {«ykuh)

= Ix; y,(u;,u,) (2.24)
ik
= in‘yi‘
Also, X, X)=Zix|*20, (2.25)

as required by Eq. (2.94).

In the following, we will denote an orthonormal basis by the symbol [ .

The number N of elements in a basis {v;}y gives the dimension of the space. N
may be finite or infinite. In a finite-dimensional space, every basis has the same
number of elements. Also, any linearly independent set of N unit vectors would
form a basis. These properties are not shared by infinite-dimensional spaces: Any
linearly independent set having infinite number of elements is not a basis in such
a space. Infinite-dimensional spaces have also other propertics peculiar to
themselves, which will be discussed later under Hilbert spaces.

Completeness (Closure Property)

A set [u,] of orthonormal vectors in a linear vector space is complete if any othcr
vector X in the space can be expanded in terms of the clements of the set (that is,
if the set spans the space):
N
X=Zugx, (2.26)
i=1

where x; = (u;, X).
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This means that the only vector that is orthogonal to all the u;’s is the null
vector. A complete orthonormal set, thus, forms a basis (valid both for finite and
infinite-dimensional spaces).

From Eq. (2.26), we have,

X = (um X),

so that
N
X= Zuu, X). 2.27)
i=1

Eq. (2.27) could be regarded as the criterion for the completeness of the set [u;]y.

Since in a space of finite dimension N, the maximum number of vectors in a
linearly independent set is N, the maximum number of vectors in an orthonormal
set is also N, according to problem 2.2. Moreover, every orthonormal set
containing N vectors is complete, and there should exist at least one orthonormal
set that is complete.

As an illustration, let us consider the 3-dimensional physical space. A vector
V in this space can be written as

V=Vi+Vj+Vk,
where, i, j, k are the unit vectors along x, y and z directions, respectively. Then,
corresponding to Eq. (2.27), we have,
V=i(i- V)+j{j-V)+kk-V),
which shows that i, j, k form a complete set. On the other hand, if our space is the
‘xy-plane and V is a vector in this space, then,
V=ii-V)+jG- V),

so that i, j alone form a complete set of vectors in this space.

In order to extend the concept of completeness to a linear vector space, we have
to introduce certain concepts and definitions concerning the convergence of a
sequence.

x is the limit point of the sequence (x,} of (real or complex) numbers
x, (n=1,2,...0)if |x—x, |> 0asn — . The sequence is then said tc coverage

to the limit x:{x,} — x. The limit point of a convergent sequence is unique: if
{x,} = x and {x,} — x’, then, x —x’=0. But the limit point of a sequence need
not be a member of the sequence.

... converges to the limit 0. But 0 is

1 11 1
Example: The sequence {;} =123

not a member of the sequence.

The sequence {x,} is a Cauchy sequence if | x, — x,, | > 0 as n,m — oo,

Every sequence which converges to a limit is a Cauchy sequence. For, if
{x,} — x, then [Eq. (2.12¢)],

Ix,-x,| = |x,—x+x-x,] < |x,-x|+1x-x,1-0
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as n,m — -. Conversely, every Cauchy sequence should converge to a limit:
From

lx,~x| < Jx,—x,|+|x,—x|,
we see that| x, —x | -] x,,—x | as n,m — oo, so that| x, — x | becomes independent
of n as n — . This is possible only if x, tends to some number x, which is not
in the sequence, as n — oo} that is, |x,—x |-> 0 as n — e, which proves the

statement.
1

The scquence {;} quoted above is an example of a Cauchy sequence.

The limit point, or limit vector, of a sequence of vectors and a Cauchy sequence
o vectors are similarly defined by replacing the number x, by the vector x, and

‘he absolute value | x, — x,, | by the norm || x, —x,,[| in the foregoing. Anexample
»f a Cauchy scquence of vectors is the sequence {y,} of partial sums,

n
v, = Z a0, of square-integrable, orthonormal functions* ¢, (where the a, are
k=1
numbers), such that | [y, {|>= I |a, |*< . The limit vector of this sequence is the
k=1

unction y= X ¢,0,. We are now in a position to state the condition for the
Y O p

t()mp]ctcnc:sskr;t1 alincar vector space:

A linear vector space is complete if every Cauchy sequence of vectors in the
space converges Lo a limit vector which is also in the space.

Every finite-dimensional unitary space is necessarily complete. For, let [u,],,

be an orthonormal basis for an N-dimensional space; and let {x,} be a Cauchy

N
sequence of vectors, where, x,, = X a/u,. Then,
kel

N
2 12
[x,, —xl =kElla,:"—a,,|—)0,

asm,l =0, Thatis|a—a} |- 0asm,] — co.

Thus, {¢]"} is a Cauchy sequence of numbers and, therefore, should converge

N
1o a limit, say a,. Therefore, x,, » x= X au,, asm —» . But x, being a linear
k=1

4. The function ¢,(x) of a continuous variable x is said to be square-integrable if the Lebesque
integral

b
[0 i <o,

where a < x € b. The functions are orthonommal if

14
f Q,(x)«b,(x)dx = Sﬂ .
The norm of ¢, is defined by

b
|1¢.nzzf | 6,(x) P d.
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superposition of the unit vectors u,, is a vector in the space. Thus, every Cauchy
sequence of vectors converges to a vector which is in the space.

Hilbert Spaces

A Hilbert space is a unitary space that is complete. The Hilbert space is said to be
separable if it contains a denumerable dense set of vectors®. In this case, every
vector in the space can be approximated to a vector in this dense set.

An orthonormal basis [u,]y, with k discrete, obviously, consists of a denum-
erable (finite or infinite) set of vectors, since we can form the basis starting from
a single vector and then finding all the vectors that are orthonormal to it. This
basis is also dense in the space since every vector x in the space can be written as

N n
X= Z Y which is the limit of the sequence {x,} of partial sums x, = Z B

where N is finite or infinite and n < N Therefore, a Hilbert space is separable if
it has an orthonormal basis®.

We have seen that a finite-dimensional unitary space has an orthonormal basis
and is complete. Therefore, every finite-dimensional unitary space is a separable
Hilbert space. This space (finite-dimensional Hilbert space) is actually
isomorphic to the n-dimensional Euclidean space; that is, there is a one-to-one
correspondence between the vectors of an n-dimensional Hilbert space and the
vectors of the n-dimensional Euclidean space.

An infinite-dimensional unitary space is not necessarily complete and, there-
fore, need not be a Hilbert space. However, only Hilbert spaces are of interest to
quantum mechanics and, therefore, to us in this book.

An example of an infinite-dimensional Hilbert space is the space of infinite

sequences of numbers (x;,X,, ...X,...) such that T |x, [*is finite, with addition,
k=1

scalar multiplication and scalar product defined by :

5. A set of vectors is said to be dense in a linear vector space if every vector in the space is a limit
point of the set (that is, limit point of a sequence of vectors in the set). Thus, every real number
is the limit point of a sequence of rational numbers, so that the rational numbers constitute a dense
set in the space of real numbers.

6. An example of a nondenumerable set of vectors is provided by the infinite set of momentum
eigenfunctions u,(r) of a free particle (where #k is the momentum of the particle):

u,(r)= on ),,, exp (ik-r)

We have (w,u)= f u (O, (r)d’r
=8k —k?), forthonormality]
fu;(r)uk(rqd’k =50—17), [completeness]

The nondenumerability arises from the fact that k is a continuous variable.
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XHY =0+ YL X+ Yo X+ V), {2.28a)
ax=(ax,ax,...,ax,...) (2.28b)
x 9= k{llx[yk, (2.28¢)

where X=(X, X ..., X...) and

Y=V Yo oo Yoo )
This space is called /2. It is a separable Hilbert space since it has an orthonormal
basis consisting of the vectors u, =(1,0,0,...),u,=(0,1,0,0...) and so on, such

that the only nonzero number in u, is x, which is equal to 1. An arbitrary vector

x in # can be written as x= X xu,. The sequence of vectors {x,}, where
k=1

n
X, = £ x;u,, is a Cauchy scquence whose limit vector is x.
k=1

Just as every finite-dimensional Hilbert space is isomorphic to a Euclidean
space of the same dimension, every infinitc-dimensional separable Hilbert space
is isomorphic to /2.

Another cxample of an infinite-dimensional, separable Hilbert space is the
space L¥(a, b) of square integrable function ¢(x) of a real variable x, with vector
addition, scalar multiplication and scalar product defined as :

(W +9) (x) = y(x) +d(x),
(cd) (x) =co(x)

b
w0 = | Wi,
The range a-b could be finite or infinite. The definition can also be extended to
the case of functions of several independent variables.
Problem 2.3: Show that the functions 1, V2 cos 2mkx and N2 sin 2nkx, for
k=1,2,3...00,and 0 < x < 1, constitute an orthonormal basis for the space LX0, 1).
Suppose’ [6,]_ is an orthonormal basis for an infinite-dimensional, separable

Hilbert space. That is,

(0, 0,) = 8y,. (2.29)
Then, any vector  in the space can be written as a linear combination of the 6,’s :
W= k}-:la*(b" (2.30)

7. Inthe case of infinile-dimensional spaces, we will use the Greek alphabets ¢, y and y, in addition
to bold face Latin alphabets, to represent vectors.
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The coefficients g, in (2.30) are unique, and are given by

a = k:fla"(q)” o) = (0, V), (2.31)
according to (2.29). Thus, (2.30) becomes,
v=Z00,V) @32

If the vectors ¢, are square-integrable functions, say of a variable x, then, Egs.
(2.29) and (2.32) can be written as '

(60 = [ 600 @x =3, 2.39)
¥0) = 2 [0 weax' (.34
But yx)= f&(x —xW(xdx’, (2.35)

where 8(x —x") is the Dirac delta function (see Appendix D). From (2.35) and
(2.34) we see that

E 0,000+ = 8x %), (2.36)

Egs. (2.33) and (2.36) express, respectively, the orthonormality and the
completeness of a set of vectors in the space L2 These are of great importancc
for quantum mechanics because the wave function-space of the Schrédinger for-
mulation of quantum mechanics is actually the space L¥—os, + o).

Linear Manifolds and Subspaces

A linear manifold in a linear vector space is a subset of vectors which itself forms
alinear vector space. Thus, an n-dimensional Euclidean space is a linear manifold
in the space 2. The set of positive integers is an infinite-dimensional linear
manifold in the space of real numbers. The set of vectors i, j constitutes a linear
manifold in the 3-dimensional physical space.

A subspace M of a linear vector space is a closed linear manifold. Every
finite-dimensional linear manifold is closed (as every finite-dimensional linear
vector space is) and is, therefore, a subspace. However, infinite-dimensional
spaces can have infinite-dimensional linear manifolds which are not necessarily
closed.

A subspace of a separable Hilbert space is a separable Hilbert space. Two
subspaces M, and M, of H are said to be orthogonal to each other if every vector

in 24 is orthogonal to every vector in #,. The xy-plane and the z-axis are ortho-
gonal subspaces of the physical space. Every separable Hilbert space can be split
up into a finite number of subspaces M, M,...4, which are orthogonal to each

other such that every vector y in #is the sum of n vectors, one each from each of
the subspaces :
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y= Elm (2.37)

where ¢, is a vector in M. #fis then said to be the direct sum of the #4,’s : and is
written as

H=2@MD... DM = T O, (2.38)
k=1

The vector ¢, is said to'be the projection of y onto . If the set of vectors X, ;...
forms an orthonormal basis for 44, then,

¢ = Z(¥;, WX, (2.39)
J

As an illustrative example, let us consider the space LX0, 1) of problem 2.3. The
Vvectors X, = V2 sin 2mkx (k= 1,2, ....) form an orthonormal basis for a subspace

A, [of L0, 1)] in which an arbitrary vector is given by ¢, = > a,X,. The setof
k=1

veclors Yo = 1,y = \2 cos 2mkx (k =1,2,...)is an orthonormal basis for another
subspace #, which is orthogonal to M,. A vector in M, is given by ¢, = i b.y,.
k=0

Since the sets [x]_ and [y,] _ together form an orthonormal basis for L¥%0, 1), any
veclor ¥ in L%(0, 1) can be written as ¥ = ¢, + ¢, and L*(0, 1) = M, & M,

2.2 OPERATORS

An operator on a linear vector space defines a (geometrical) relationship between
two vectors. For example, if Y is obtained from X by rotating X about an axis,
then the relationship between X and Y could be denoted by

Y =A4X, (2.40)
where A is an operator® representing the rotation, We say that the result of oper-
ating with A on the vector X, is the vector Y.

Obviously; the operator A has meaning only with reference to a set of vectors.
The space on which A defined, that is, the set of vectors X for which AX has
meaning, is called the domain of A. The set of vectors Y expressible as Y = AX,
is called the range of A. In a linear vector space if, X, and X, are in the domain
of A, then (¢, X, +¢,X,) is also in the domain of A. An operator A is lincar if

Ac X, +¢,X,) = c(AX)) +c(AX), (2.412)
and antilinear if,

A, X+, X)) =, (AX) +cy(AX,). (2.415)

8. Wec use the symbol ‘A" in order to distinguish operators from scalars and veclors.
Yy g pe
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We will be concerned only with these two types of operators. The discussion in
this section, however, will be confined to linear operators. A brief description of
antilinear operators is given in Appendix B.

A linear operator preserves geometrical shapes (PQ’R’ in Fig. 2.3). An anti-
linear operator also preserves geometrical shapes, but it reflects the object on the
real axis [PQ”R” in Fig. 2.3].

d
The differential operator dx is an example of a linear operator on the space

L*(~eo, ) of square integrable functions of a real variable x:

d 4, &
'd—; [c,fl(x) + CJZ(X)] = Cl*&; + c"(—ix—’
. d 2 aqe
while € o’ where C stands for complex conjugation, is an antilinear operator:

Example of a non-linear operator is the operator corresponding to squaring :
Sqlex, +cx) # Sqleyx,) + Sglexy).

REAL AXIS

Fig. 2.3 Diagram showing the difference between a linear operator
{Eq. (2.41a)] and an antilinear operator {Eq. (2.41b)].
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The null (zcro) and the unit (or, identity) operators are defined by the equa-
tions,

0X =0, (2.42)
and X=X, (2.43)
where X is any vector in the domain of these operators.

An algebra of linear operators can be constructed by defining the terms
cquality, sum, product, power, etc.

Equality: A =B, if the domains of A and B are identical, and if for every vector
X in the domain,

AX=BX. (2.44a)
A>B, if (X,AX)>(X,BX), (2.44b)

for all vectors X in the domain of A and B.
Sum:

C=A+B,
if, for cvery vector X in the common domain of A and B.

CX=AX+BX.
Product:
¢ =AB,

if for every vector X in the domain of A and B,

CX=AEX).
In general AB # BA. That is, operators do not, in general, commute. Operator
algebra is, therefore, said to be non-commutative. 1If AB =BA, A and B are called

commuting operators’.
To illustrate the noncommuting nature of operators, let us again consider the

space of square-integrable functions of x. Let A =x, and B = ;- Then,

ABfoy=2 %

dx
o a d dx d
BAf(x) =a;(xf) = [Ex—)fwc(af)
=f+x%

9. The domain of A8 is a subspace of the domain of B, whereas the domain of B4 is a subspace of
the domain of A. For, ABX is meaningful only when X is in the domain of B and (£X) is the
domain of A. For every vector X in the domain of £, X may not be in the domain of A and,
thus, may not be in the domain of A8. When AB = BA, however, the domains of A, B and AB
coincide.
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Thus, (AB - BA)f(x) =1/ (X)

L4,
»Or, dx dx = ’

LI
on &t
Power: The square of A is defined as,

A?=AA.
That is, A*X = A(AX), for every vector X in the domain of A.
Similarly,
A"=AA""'= AA.. A
n factors

Function:

By combining the operations of addition and multiplication (product), a func-
tion of an operator can be formed.

L d?
Ex: FEaEZ+be_+Cl

d
is a function of the differential operator o Function of a linear operator is a

linear operator. That is,

Flef(x)+ ch(x)] c(ER)+cfES).

Inverse:
If two operators A and B are related by™°
AB =BA =1, (2.45)
then, they are said 1o be reciprocal to each other and B, denoted by A™, is called
the inverse of A. An operator for which an inverse exists is said to be non-
singular, whereas one for which no inverse exists is singular. A necessary and

sufficient condition for an operator A to be non- singular is that correspondmg to
each vector Y, there should be a unique vector X such that Y =AX.

Problem 2.4: Prove the preceding statement. Hence show that, in the space of the
square-integrable functions of the variable x, the operator £ has an inverse, 0 has
no inverse and 1'is inverse of itself.

Inverse of a linear operator, is a linear operator:
Let Y, =AX,Y,=AX,

10. Note that both the conditions in Eq. (2.45) are necessary for the existence of an inverse. How-
ever, in the case of finite-dimensional spaces, B4 = { implies A§ = 1.
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Then, X, =AY, X,=4"Y,,
so that e X, =c,(A7Y), 0, X, =c,(A"Y)).
Thus, A Y, +6,Y) =A e (AX) +c(AX)]

=A7Alc, X, + X)),
since A is linear.
=¢, X, +¢,X,

=c,(A7Y) +c,(A7Y). (2.46)

The inverse of a product of operators is the product of the inverse in the reverse
order:

(ABCY'=C7'B'A7.

This could be shown as follows: We have

Multiplying successively from the leftby A”, B~ and €', we get
ABCY'=C'B'A . (2.47)

Eigenvalues and Eigenvectors of an Operator

The result of opcrating on a vector with an operator A is, in general, a differcnt
vector:

AX=Y. (2.48)
But there may be some vector X with the property,
AX =X, (2.49)

where, o is a scalar. That is, the operation with A on X yields the same vector X
multiplied by a scalar. X is, then, called an eigenvector (or eigenfunction) of A
belonging to the eigenvalue o Eq. (2.49) is the eigenvalue equation for A. A
linear operator has, in general, several eigenvalues and eigenvectors, which are
then distinguished by a subscript:

AX, =0, X,.
The sct {o,} of all the eigenvalues taken together constitute the spectrum of the

operator, The eigenvalues may be discrete, continuous or partly discrete and
partly continuous. An eigenvector belongs to only one eigenvalue. But several
linearly indcpendent eigenvectors may belong to the same eigenvalue. In this
case, the eigenvalue is said to be degenerate, and the number of linearly inde-
pendent eigenvectors is the degree of degeneracy. The eigenvectors belonging to
a degenerate eigenvalue of a lincar operator, span a subspace whose
‘imensionality is equal o the degree of degeneracy.
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Problem 2.5: Prove the above statement.
dz
For an illustration, let us consider the operation — E . The eigenvalue equa-

tion of this operator is (we write E instead of o and ¢(x) in place of X),

(—fx—z - }@(x) ={

The two linearly independent eigenvectors are
q’p(x )= es’,px.

and

o_,(x) =",
where p* = E. Both the eigenvectors belong to the same eigenvalue E. Hence E
is 2-fold degenerate. If p is treated as a continuous variable, then, the eigenvalue
spectrum is continuous,
The eigenvalue of the square of an operator is the square of the eigenvalue of
the operator. For, if AX = oX, we have,

AX =A(AX)=o(AX)=o’X. (2.50)
Operators of special importance in quantum mechanics are considered below:

{i) Positive Definite Operator

A is positive definite, if A >0and A™ > 0. (ef. footnote 2). The eigenvalues of a
positive definite operator, are all positive.

If A>B>0, then,B'>A7>0. (2.51)
For, ATAAT S ATBAT

That is, Ai-BA™M>0.

But, BA' <AA =1.

Therefore, (i ~-BA™> 0.

Therefore, A7>0.

Now, B'A>B'B=A"A=1

Thus, B'>A">0.

Problem 2.6: If A and B are positive definite operators, show that (AB) is a
positive definite operator.
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(ii) Continuous and Bounded Operators

An operator A is continuous if {AX,} - AX, for every Cauchy sequence of
vectors {X,] that converges to the limit X. A is bounded if therc is a positive
number ‘a’ such that
HAXI| <allXIl,
for every vector X in the domain of A. The smallest ‘@’ with this property is called
the norm of A, and is denoted by I1Al|. Thus, }|A]] is defined by,
NAXI| e =HAIL-1IXII (2.52)

A is continuous if, and only if, it is bounded:

For, ||AX, —AX|| <||A]l - 11X, - X|| =0, if A is bounded, and if {X,} — X.
Thus, AX,‘ — AX, for n - . If A is not bound§d, there 1s a vector X, corre-
sponding to every positive integer n, such that ||AX,|| > |{X,||. Decfining the

1
vector Y, by Y, = X,, we have, 11Y,1] = Y, — 0 as n — oo, showing

a1 X 01
that {Y,} is a Cauchy sequence that converges to the null vector. Therefore, A
will be continuous, ifAY,, —>0asn —> oo thatis, if {|AY, || = 0. But|]AY,|| =
1
JAX, I > 1.

Thus A is not continuous.

The following properties of the norm of a bounded linear operator could easily
be proved:

A +BI| <|1All +11B], (2.53a)
NeAll =lc 1A, (2.53b)
HABIL <Al - 11BII, (2.53¢c)

A]} =0, if, and only if A = 0. (2.53d)

Properties (2.53a, b, d) respectively, correspond to, and derive from, the proper-
ties (2.12c¢, b, d) of a vector in a linear vector space, whercas property (2.53c)
derives from the definition of the norm and is the equivalent of the Schwarz
inequality (2.14) satisfied by vectors. These properties show that the norm of a
bounded operator has the characteristics of length. They also imply that the sums,
products and scalar multiples of bounded operators are bounded.

Every operator defined on a finitc-dimensional space, is bounded. This prop-
erty 1s not shared by operators defined on infinite-dimensional spaces. Since, in
quantum mechanics, we have to deal with infinite-dimcnsional spaces, we have to
consider unbounded operators.  An example of an unbounded operator is the
operator £ on the space L*(—eo, %) of square integrable functions &(x) of the rcal
variable x. For,
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zoit*= [ 126 Pax,

which need not be a finite number times |10} = [T 6(x) P dx.

(i1} Hermitian Operators

Two bounded lincar operators A and £ are said to be adjoint of each other if, for
arbitrary vectors X and ¥ in the domain of A and B {assumed 10 be the same),

(AX, Y)=(X, BY). (2.54)
8 is, then, denoted by A*. A is self-adjoint vz Hermitian if
A=At (2.55a)
and anti-Hermitian if
A=-At, (2.55b)

Thus, Hermitian operators are defined by,

AX, V)=(X, AY), (2.56)
Unlike bounded operators, an unbounded operator (like £, considered in a pre-
vious example) can be Hermitian only with respect to a restricted number of
vectors (see, Ref. 1, Section 9).
Hermitian operators have the following important properties :

{({11). The eigenvalues are real:
Let /7 be the Hermitian operator and let X be an eigenvector belonging to the
eigenvalue A :
HX=2X

By definition, we have,

(11X, X)=(X, AX).
That is [see Egs. (2.9a, ¢}

A -(X, X)=0.

Since (X, X\)#0,A" =2
(112). Eigenvectors belonging to different eigenvalues are orthogonal ;
Let X, and X, be eigenvectors of A belonging, respectively, to the eigenvalues
A, and Ay
AX, =AX; X, =0 X,
Then, (X, HX)~(HX, X)) =0.

That is, (A - )X, X)) =0, sirre A= 2,
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By hypothesis, (A, - A) #0, so that,

(X, X)=0.
(H3). The set of all eigenvectors of a bounded Hermitian operator forms a com-

plete set. Since the eigenvectors are orthogonal, and since we can normalize
them, this means that the eigenvectors form a basis for the space.

Problem 2.7: Show that the adjoint of a product of operators, is the product of the
adjoints in the reverse order. Hence show that the product of two Hermitian
operators, is Hermitian only if the operators commute (i.e., AB = BA).

Problem 2.8: If A is Hermitian, show that (X, HX) is real, for any vector X in the
domain of H.

Problem 2.9: Show that, for the space L*~oo, ) of square-integrable functions of
d

d
x, the operator i -~ is Hermitian whereas —~ is not.
dx dx

Problem 2.10: Show that the operator, B = iA is anti-Hermitian when A is Her-
mitian,
(iv) Unitary Operators

A linear operator U is unitary if it preserves the Hermitian character of an operator
under a similarity transformation. Now, a similarity transformation of an opera-
tor A by a non-singular operator §, is defined as,

A—-A=8AS7. (2.57)
Thus, the condition for U to be unitary is that,
(AU =0A0. (2.58)
where, At=A4,

But (see Prob. 2.7),
(DAU™M =0 1)'AT, so that,
(O YA =UAD™
Multiplying from the left by U? and from the right by U, we get,

Py

Ui YA

Q_:
[
il

g)
[
s

That is, A0D)Y=(UTDHA, (2.59)

since ooy =w@'o) =1.
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Now, only the identity operator has the property that

Ai=1A.
for arbitrary operator A, Hence,

Ut =1. (2.60)
In the case of infinite-dimensional spaces, Eq. (2.60), by itself, docs not imply the
condition (hat &/ should have an inverse, This condition can be incorporated by
multiplying both sides of the equation by . Then, the condition for the unitarity
of {7 becomes,

Ut=0" (2.61a)

or, vUut=0"0=1. {2.61b)
Under the operation of [, a vector X is transformed into the vector X' =UX.
Thus, if two vectors X and Y are transformed by the same unitary operator U,
then,

(X, Y)=({UX,0Y)=(X,U'UY)

=(X, Y). (2.62)
Thus, the transformation by a unitary operator (that is, a unitary ransformation)
preserves the scalar product of vectors. In particular, it leaves the norm of a vector
unchanged. Now, a transformation that leaves both the lengths of vectors and the
angles between vectors unchanged, is a rotation, Thus, 2 unitary transformation in
a lincar vector space, is analogous to a rotation in the physical space.
Since §} X1} =1{X|| for every vecior X, U is bounded ({1} = 1).
Corresponding to every unitary operator I, we can define a Hermitian operator
A and vice verse, by
U=explicH) (2.63)
where ¢ is a parameter. Obviously (see Eq. (2.35a) and Problem 2.10}).
Ur=explie A= exp(—ie My=U".
This means that every Hermitian operator is the generator of a vnitary transfor-
mation.
The following properties of a unitary operator could be easily proved:
(U1).  The cigenvalues are unimodular. Thatis, if UX =oX, then|a| = 1.
(L72). Etgenveetors belonging to different eigenvalues are orthogonal.
(L/3).  Product of two or more unitary operators arc unitary.

Problem 2.11: Prove the above properties of the unitary operator.
(v} Projection Operators
Congider an operator f defined by,
=1, (2.64)

The cigenvalues of i are, then, +1 and —1 [see, Eq. (2.50)]. Let the corresponding
eigenvectors be X, and X, respectively:
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IX,=X,. (2.65)

f2is, obviously, Hermitian, so that / is a Hermitian operator. Hence X, and X_are
orthogonal to each other (Property H2 of Hermitian operators}:
X, X)=0. (2.60)
The operator I is called an involution.
Now, let us define the operators &, and _by

‘t:%(i +1). (2.67)
Then,
16X =5+ DX =X,
where X is an arbitrary vector. This shows that, [see Eq. (2.65)],
nX=X,. (2.68)
Also, we have,
=T, (2.692}
or,
(T, ~ =0,
so that,
O<m, <1. (2.69b)
=T, (2.69¢)
nn =0=nm, (2.69d)
T+R_=1. (2.69¢)
From Egs. (2.69¢) and (2.68), we get,
X=X, +X, (2.70)
whereas, Eq. (2.69d) shows that,
.X.=0. (2.71)

Thus, every vector X is a linear sum of X, and X_. If the set of vectors, {X}, spans
a linear vector space, then, the sets {X,} and {X_} span two distinct subspaces

orthogonal to each other., We say that the original space is reduced by
the Hermitian involution / into two subspaces orthogonal to each other, such that
X is a unique linear combination of two vectors, one from cach subspace. The
vectors X, and X_ are the projections of X onto the subspaces, and m, and 7_ are

the respective projection operators.
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Eqgs. (2.69a) and (2.69¢) together could be taken as the definition of a projec-
tion operator'!, whercas Eq. (2.69d) expresses the orthogonality of 7, and 1_ (that
is, the fact that they project onte subspaces orthogonal to cach other). The unit
operator 1 and the null operator 0 could be regarded as projection operators that
project onto the whole space and onto the subspace containing only the null vec-
tor, respectively, A projection operator is, obviously, bounded since
{imyl] <||yl| for every projection operator 7, so that || 7t]| = 1, except for 0 for
which |10]] =0.

IMustrative Example :
Consider a vector V in xy-planc. V can be written as (see Fig, 2.4),
V=V +V,

where, V. =Vi={(i V),

V, =V j=i0, V), iand j being unit vectoss.
Writing V = V), elc., we have'?,
V) = V)=iG, V),

V) = V)=jG, V).

X

Vy

Fig. 2.4. The resolution of a vector into its projections onto orthogonal subspaces x and y.

Thus, the projection operators T, and 7, are given by,

i,

~

TtI

H

11. An operator obeying Eq. (2.6%a) : A2 = A, is called idempotent.
12, Aaore elegant notation for vectors, due to Dirac, will be disgussed in the next section.



LINEAR VECTOR SPACES 43

r, =§)G.
1f V and W are two vectors in the xy-plane, we have,
(V, A W) =(V, i)(i, W)=(nV, W),

since (mV,W)=(W,1.V) =(W, i) (i, V)’
= (i, W)(V, i).
Thus, 7, is Hermitian.
o =i){, i)(i= i), since (i,i)=1.

nx, =i)(, j)(i=0, since (i,j)=0.
Also, ‘ [r,+7)V)=V),
50 that, ﬁ:x-#—ft, =1.
&, and fcy, thus, have properties identical to those of ‘rh and ©_. The involution
operator, in this case, is seen to be,
I=j)(i-)g.

The foregoing considerations could be extended 10 the case where there are

more than two projection operators. Let [u,], be an orthonormal basis :

(u,u)=3; )Z_uj) (u;=1.

Then, we can define f:l. by,

mw=8u

i

i=1,2,...N. (2.72)
7, is the projection operator that projects onto the one-dimensional subspace
defined by u;. An arbitrary vector X in the space can be written as, (see Eq. (2.26))

N
X)= Z u)(u;X), (2.73)
j=1
so that, TX)= chguj) (v;, X) =) (u;, X).
H
Hence,
T =u)(u, (2.74)
from which it is easily shown that
ft,.ftj = 8,.1.1‘:,.. (2.75)

Substituting Eq. (2.74) in Eq. (2.73), we get,
N -
X)= Z nX),
j=1

j=

N .
so that, z T, =1. (2.76)
j=1 :
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Eq. (2.76) is the analogue of Eq. (2.69¢), and is called the resolution of the identity
in terms of the projection operators. It is actually an expression of the complete-
ness of the set of projection operators.

Suppose now that the u, are eigenvectors of a bounded Hermitian operator',

Au, =0,
Then, AX)= ZAu) (v, X)
?
= ?ajnj)().
= fad -~
Thus, A=ZTam,. (2.77)
i=1

This equation represents the spectral decomposition of the operator A, 1f X and
Y are arbitrary vectors, we have,

(Y, X)= E(Y,xX), (2.782)
?

(Y,AX) = Za(Y,xX). (2.78b)
J

Eq. (2.77) is applicable when the eigenvalues of A are discrete. When the
eigenvalues are continuous, it is possible to define a family of projection operator
7, where o is real and continuous, with the following properties (sce, Ref. 1,
Sections 13 and 14}.‘ ) .

(iy IHfo<B, thenm, @, or A =m, =7,

(il Fora<oa<pandfore>0,7m,, ¥ — Ty as € — 0, for any vector .

() n¥ —0as a—a,and nW—yasa—b. Thatis n,=0 for ®<ga, and
r,=1forg>b.andm,=1forazb.

Corresponding t0 Eqs. (2.76}, (2.77), (2.78a) and (2.78b), we have,

fb dmn, =1, where dm =m ~m__, (2.79a)
“a b ~
A= f Sendr, (2.790)
_—
(O, y) = J a0, mY), {2.79¢)
~ b -
(¢ Ay) = f f(e)d (9, ). (2.79d)

dr, is called a differential projection operator.

13. Remcmber that the cigenveciors of a boonded Hermitian operator form & complete set
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In Eq. (2.79b), f(ov) is a function of o, which depends on the nature of the
operator A:
If A is Hermitian : f(o) =05 @ =b = —oo (2.80a)

If A is Unitary :f(0)=e'*a=0; b=2m. (2.80b)

(Recall that the eigenvalues of a Unitary operator are unimodular).

The spectral decomposition (2.79b) is valid even in the case of Hermitian and
Unitary operators which have no eigenvalues, as in the case of operators on
infinite-dimensional spaces'. In this case, a would be merely a parameter. (In
the case of operators with eigenvalues, a is related to the eigenvalues).

Problem 2.12: Show that, if ;ta < ftb, then

iy = = Rt
Problem 2.13: If &, 7,, ...T, are projection operators, show that the sum of these
operators are also projection operators if, and only if,

N -
I (X, mX) <(X, X),
k=1

for any vector X in the Hilbert space.

d
Problem 2.14: Consider the operator p = —i# a in space L*(—eo,). The eigen-

I
veclors of p are u,(x) = “_\[2— e™, where k is continuous; —e < k < . The eigen-
T

values are given by pu,(x)="%ku,{x). Show that the differential projection
operators dm, arc given by
dm, = u)dk(u,.

Commuting Operators

We have mentioned that operators do not, in general, commute. However, there
are operators which do commute. Such operators are of importance in quantum
mechanics because the basis vectors in the Hilbert space of a physical system (As
we will sce in the next chapter, these basis vectors represent the quantum ‘states’
of the system) are determined by these. In this connection, the following theorem
concerning two Hermitian operators, is basic:

14. Whereas every Hermitian or Unitary operator on a finite-dimensional space should have at least
one eigenvalue, such operators on an infinite-dimensional space may or may not have cigenva-
lues.
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Theorem: If two bounded Hermitian operators commule, then they possess a
complete orthonormal set of common eigenvectors, and vice versa.

Now, it was stated earlier that the cigenvectors of a bounded Hermilian oper-
ator form a complete sct.  Therefore, we need show only that, if A and B are
Hermitian operators such that AR = BA then they have common eigenvectors.
Conversely, if A and B have common cigenvectors, then A8 =BA,

Let AX=0oX. (2.81)
We have to show that BX=BX. (2.82)
Multiplying Eq. (2.81) from the left by B, we get,

BAX)=ABX)=ofBX),
since BA =AB.
Thus, B X is an cigenvector of A belonging to eigenvaluc o

If oL is non-degenerate, then, BX should be lincarly dependent on X, so that,
a(BX)+bX =0, witha =0, b #0.

Or, BX =-(bia)X =PBX.
If o is g-fold degencrate, then, there are g lincarly independent vectors
X (k=1,2, ... g)such that

AX, = oX,.
We will assume that these are orthonormal;
(X, X)) =5, (2.83)
We further assume, {or the sake of simplicity, that g = 2. Let us define,
X=c¢X +cX, (2.84)

where ¢, and ¢, are scalars. Since A is lincar [see, Eq. (2.41a)].
AX = (AX)+c,(AX,) = uX.

That is, X is an cigenvector of A belonging to cigenvalue o. What we have to
prove now is reduced to showing that there are nonzero scalars ¢, and ¢, such that
X defined by Eq. (2.84), satisfies Eq. (2.82):

BX =B(c X +c,X) = B(c,X, +,X,). (2.85)
Taking the scalar product of Eq. (2.85) successively with X, and X,, and using Eq.
(2.83), we get,

(B, —Bley+ B0, =0,

By c +(B,—Bic,=0. (2.86)
where, we have uscd the abbreviation,
8, =(X,BX,). (2.87)

(2.86) is a set ol homogencous equations in ¢; and ¢;. The condition for the
existence of a nontrivial solution {c,, ¢, # 0} is that the determinant of the coeffi-
cient matrix be zero, (see Scction A.6), That is,
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(B n- B) sz
=0. (2.88a)
le (Bzz - B)
or B>~ (B, +B,)B+B,B,,~ 1B, =0, (2.88b)
since B, =(X,BX)=(BX,X,) =(X,BX,) =B,
The two roots of Eq. (2.88b) are,
B,,+B 1
B, = —“—2—2 {(B,, +B,)*—4(B,,B,,— | B,, P}, (2.892)
BZZ 1 2. 172
and [32= 51y, +B,,)* 4B, By~ B, P} . (2.89b)

2
The two roots are equal, if and only if,
(B, +By) —4(B,,B,,—~ B, ") =0.

That is, if (B,,—By)+4|B,*=0. (2.90)
Since both the terms here are real and positive (Problem 2.8), Eq. (2.90) will be
satisfied only when each of the terms is zero. Thus, B, =B, only if

B, =B, and B,=B, =0. (2.91)
In this case,
B,=B,=B=8B,=By (2.92)
From Egs. (2.91) and (2.92), we gct (with the definition (2.87)),
BX,=BX;; BX,=BX, (2.93)

Thus, X, and X, are degenerate eigenvectors of B also. Egs. (2.86) are satisficd
for arbitrary values of ¢, and ¢, since the coefficients (B, — ), (B, —P), By,
and B,, are all zero, so that any linear combination of X, and X, are simultaneous

(common) cigenvectors of A and B.
If B, # B,. then, one or both of the following conditions are satisfied:

(i) By, # By, (if)B,, %0,
If only (i) is satisfied, we get from Egs. (2.89),
B,=By; B,=By (2.94)
Corrcsponding to these values of 3, we get two sets of values for ¢, and ¢,
Denoting the values of ¢, and c, corresponding to B, by cf® and ¢, we have,

c®=1, =0
y

(2) =0, C(Z)_l

15. We assume X is normalized, so that, | ¢® P+ P P=1.
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so that,
XY =X, + X, = X, (2.952)
XP=X, (2.95b)
Thus, BX, =B X;BX,=BX, (2.96)

That is, X, and X, arc eigenvectors of 8 belonging to different eigenvalues. When
B, # 0, we will similarly get,

B_ g o
X=X +c’X,

XF=cPX, +cPX,
with ¢ # 0 and ¢ # 0, such that,

BX® =B X" k=12 297
We can summarise the different possibilities:
{1) A has nodegcnerate eigenvalues. In this case, cvery eigenvector of A isalso

an eigenvector of B,

(2) A has degenerate eigenvalues. The following possibilities are there:

(a) Every eigenvector of A is also an eigenvector of B

iy  The degenerate eigenvectors' of A are degenerate eigenvectors
of B also.

(i) The degenerate cigenvectors of A belong to different eigenva-
lues of 8. In this case, we say that the degeneracy is liffed (or,
removed) by the Hermitian operator 8.

(b)  Every degenerate eigenvector of A is not an eigenvector of 8. Bur
there are lincar combinations of the degenerate cigenveciors, as many
in number as the degree of degeneracy, which are degenerate eigen-
vectors of A but are non-degenerate eigenvectors of B. The degen-
eracy is lifted by B in this case.

The foregoing conclusions, which were based on the results for g = 2, could be
generalized 1o the case where g > 2. We note that Eq. (2.88a) is the secular
equation of the matrix,

(BH 8%2)

%\Bn B,
Therefore, in the general case, we will have a g x g matrix in place of this 2x2
one. If all the g roots of the comresponding secular equation are different, the
degeneracy with regard Lo the cigenvalue of A is completely removed by B, and
the common eigenvectors of A and B are the eigenvectors of the matrix B. These

B

{2.98)

16 We mean, by this, the lineatly independent eigenvectors which belong 1o a degenerate eigen-
value,
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eigenvectors are uniquely specified by the eigenvalues of A and . Thus, X®
which is the eigenvector belonging to eigenvalue oof A and the eigenvalue B, of

B, could be written as
) _
X%= Yo,

If some or all of the cigenvalues of the matrix B are equal, then the degencracy is
removed partly or not at all, respectively, by B In any case, there is a set of
common orthonormal, cigenvectors for A and B.

As to the second part of the theorem, let {u,} be a set of common cigenvectors
for A and B :

Aw, = ou,; Bu, = B,u,.

Then, A(Buy) = A(B,u,) = B(Au,) = B,oyu,, since A is linear.
Similarly, B(Au,) = Boyu, = o,Bu, = ABu,.
An arbitrary vector X in the space can be written as,

X=Zxu,
k
so that,
ABX = éAx
and this, according to Eq. (2.44a), implies that AB = BA.
Nlustrative Example:
n d*
Consider the operator H =~ o .2+ On space L%(—os,0). This is Hermitian
m dx

ih (d
since it is the square of the Hermitian operator — \[-7-2;(3) (see, Problem 2.9).

The eigenvectors of H are (with p > 0)

1 1
=—= exp [—(i/A)px] and y,(x) =—= exp [({/A)px,
Vi = 5 exp (i/m)px] and yy(x) = p [i/h)p.
2
both of which belong to the same eigenvaluc E = pYE

p?
H\Vx(x) [ }W:(X) H\Vz(x) [ }Vz(x)

d .
The operator p =—i# . is Hermitian and commutes with // since any scalar |

operator commutes with itself and, hence, with its square. Vector operators,
however, nced not have this property (see Section 5.1). Now,

R Ldfl 1 i
Py x) = _ma(\fT_n exp [—%pr =—pWy,(x)
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Py{x) = py,(x), so that,

VISV W SY,.
Thus, v, and y, are non-degencrate eigenvectors of f. The degeneracy with
regard to the eigenvalues of /7, is lifted by p.

Note: As we will sce in the next chapter [Eqs. (3.18") and (3.9%] /7 and
respectively correspond to the energy and the momentum of a free particle.

and , represcnt particles with opposite momenta but with the same cnergy.
Complete Set of Commuting Operators

Consider a bounded Hermitian operator A, Tis eigenvectors form a complete,
orthonormal set and, thus, constitute a basis in the linear vector space on which A
is defined. If A has degenerate eigenvalues, the eigenveclors are not uniquely
specified by the eigenvalucs of A. That is, the basis is not unique [see, Eq. 2.84;
Instcad of X, and X,, we could choose X = ¢{"X, + ¢{"X, and X? = ¢ X, + ¢
X, with |[¢®PP+[cPF =1 and c™cP+cMef?=0. A possible choice is
cP=cP= cos 8 cl?=—P= sin 6. All the four vectors X,, X,, X, X, belong
to the samc cigenvalue oof Al. We should, then, scck another Hermitian operator
B that commutes with A. 1f the common eigenvectors of A and B are now
uniquely specified by the cigenvalues of A and B, we say that A and £ form a
complete set of operators. If this is not the case, then, we should find a third
operator C which commutes with A and B, and so on, until we have a sct
A,B,C, ..., of mutually commuling operators such that they have one, and only
one, common basis. In this case, a common eigenvector is uniquely specified by
the eigenvalues a, b, .. .1 of thc operators:

WEN o

where

Ay, o =AY, .

L‘Va,b, Cud lwa,b.c,.”f.
A,B,...L are, then, said to form a complete set of commuting operators.

Any operator ¢ which commutes with each of the operators A B, .., L, wil

have neccssarily the common basis of A, B, ..., L as its basis and s eigenvalucs
g would be functions of @, b, .. .0

q=ql{a,b,..1D).
In other words,  will be a function of the operators AB,. . .L.
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Inour illustrative example, g by itself constitutes a complete set of operator for

the onc-dimensional system with no external ficld, whereas by itsclf is not a
complete set; in fact, H is a function of p.

2.3 BRA AND KET NOTATION FOR VECTORS

The fact that the scalar product (X, Y) is linear in Y whercas it is anti-linear in X,
suggests that it is advantageous to think of the two vectors as belonging to two
different spaces linear in themsclves, but related to each other antilincarly. This
way, we can make the scalar product ‘symmetrical’ in X and Y.

Thus, we have a space of the prefactors and a space of the postfactors. A vector
in the prefactor space is denoted by a bra, < |, whereas a vector in the postfactor
space is denoted by a ket,| >. Thus, X and Y in (X, Y) are written, respectively,
as <X |and | Y >, and the scalar productof Y by X as”” <x | ¥ >. Thatis,

X, )= <X|¥V> = <Y|X>". (2.99)
The prefactor space is, thus, a bra-space and the postfactor space a ket-space.
Since the conjugate of a product of complex functions (to which the vectors in the

Hilbert space bear analogy) is the product of the conjugaies, Eq. (2.99) implies
that

X >'=<X| (2.100)
This shows that the two spaces are not independent of each other; they are said to
be dual to each other. Not only is there a vector in one space corresponding to
every vector in the other space, but also each relationship among vectors in one
space has its ‘image’ in the other space. Some of these relationships in the ket-
space and their image in the bra space are listed below :

Ket Space Bra Space
X > <X|
clX> <X|c
| Z> = |X>+|Y> <Y|+<X| = <Z|
[Y> =A1X > <X|A= <Y|

Note that, in the bra space, operators act from ‘right to left’. A scalar c in the ket
space becomes its complex conjugale in the bra space, whereas an operator A in
the ket space is transformed into the operator A in the bra space. Since we have
not defined what X}is, its relationship to A is to be found out (that is, we have 1o
determine whether A is the Hermitian conjugate (adjoint) of A, the transpose'® of
A, or some other way rclated to fi). For this, consider the scalar product,<Z | Y >,
where [Y=A | X>.

17. < | >1s, actually, a short form of < ||>. Thus, a scalar product is nothing but the product of a
bra vector and a ket vector in that order.

18. £ is the wranspose of A if for arbitrary X and Y in the common domain of A and 8, (X‘A Y)=
(Y, B X).
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From <Z|¥>= <¥|Z>,wehave,
<ZAIX > =H<XTA}1Z5] (2.101)
But <Z|{A\X >} =(Z,AX)=(A'Z,X)=(X, A'Z)

=X | {AT1Z 5.
Thus,

H<X[A}1Z3) =1<X|{A51Z>0 (2.102)

But from the definition (2.54) of the Hermitian conjugate, we know thay AT

operating on the post-factor in a scalar product is equivalent to A operating on the
pre-factor. Therefore,

A=A (2.103)
Also, from Eqs. (2.101) and (2.102), we have,

<Z|A|X> = <X|A"Z>, (2.104)

so that the condition for A to be Hermitian is
<Z{AIX> = <X|A|Z>. (2.105)
Many of the relationships among vectors assume an elegant appearance when
expressed in the new notation. Thus, we have,

Orthonormality (Eq. (2.16))  : < |u;> =8, (2.16Y
Completeness (Eq. (2.27)) P Elu> <ul= 1. | (2.27Y
Projection operator (Eq. (2.74)): T, = |u;> <u;]. (2.74"

2.4 REPRESENTATION THEORY

Consider an orthonormal basis [ u, >}, in an N-dimensional space. Any vector in

the space can be expanded in terms of the vectors | u; > . Thus, if |X >and | Y >

arc arbitrary vectors, we have,

N
| X >= AEIxJ. |u; >, (2.106a)
j=

N
[Y>=Zylu> {2.106b)
i=1

If | Z - is a vector such that
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|Z>=a|X>+b Y >, (2.106c)
then,
z;=ax; + by, (2.107)
N
where, 1Z>=Zzu>.
j=1
N *
Also, <X])Y>= _Elxl. ¥ (2.108)
i=

Egs. (2.107) and (2.108) suggest that, in place of the abstract vectors
|X >, |Y >, ..., we can deal with their ordered expansion coefficients (or, com-
ponents), [x] =[x, x5 ....x], [¥] = [y, ¥5 .... ¥, etc. These ordered expansion
coefficients will be called the representatives of the vectors. Corresponding to
every relationship between vectors, there is a relationship between representa-
tives. Thus, the rclationship (2.106¢) translates as,

[zl =alx)+bly], (2.109a)

OF 12,2y .0 2y) = [a@x, + by, ax, + by, ..., axy + by, (2.109b)

Unlike the vectors, the representatives depend upon the basis chosen; changing
the basis will change the representatives also. However, with respect to a given
basis, the representative [x] corresponding to the vector | X > is unique. We say
that the vector | X >is represented by [x] in the representation defined by the basis
ffu; >],. The basis vectors themselves are represented by [u,), {1, ..., [uy].

where, [4]1=11,0,0,..0],
(k,])=1[0,1,0,..0],

[y} = 10,0, ...... 11.
Eqgs. (2.109a, b) and (2. 108) show that the representative [x] of the ket vector

| X > could be written in the form of a column matrix x:
xl

Xa

1 X> 5} »x= \ (2.111a)

Ay

whereas, the representative of the bra vector < X |is represented by the row matrix
x* [see Egs. (A.33) and (A.6)]:
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<X 1o xT = ()X, (2111
The vector-addition {2.106¢) is, then, represented by the matrix addition:
z=ax +by,
and the scalar product (2.108) by the matrix product, x7y.

The unit vec1ors | u; > arc represented by,

1 0
A
0 1 .(gg
0 0 101
i, > == hap=|. .. 6y= (2.112)
0 0 !

The orthonormality condition (2.16') and the completencss condition (2.271)
become,

<u;|u;> —uiu =9, (2.113w
and
?[uj> <u |- Zuu’ =1 {2.113b)
J
The operator equation,
AlX> = Y > (2.114a)
is represented by the matrix equation,
Ax =y, {2.114b)

Since both x and y are (¥ x 1) matrices, A has to be an (¥ x N) maurix. Thus, an
operator in an N-dimensional space, is represented by a square mairix of order N,
The properties of the linear operators, thus, follow from the propertics of the
square matrices.  In particular, the operator algebra is identical with the matrix
algebra en square matrices. The cigenvalue problem for an operator is reduced o
th. problem of diagonalizing a square matrix,

The above-described scheme of representing vectors and operators by
matrices, is referred 1o as Mairix representation.

It follows that a Hermitian operator would be represented by a Hermitian
matrix and a Unitary operator by & Unitary mairix :

For, according to the definition (2.103) of a Hermitian operator, we have

<XJA|Y>= <Y|A|X >
L, 0 MAalrx rep. ntation reads,
(X'AY) = Y'AX.
YIATX = YAX, o1, A’ =A.

Similarly, if . is Unitary, we have,
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<X|\UU|Y> = <X|00'Y> = <X|Y>

ic. XtUtUY =XUUY = XY

or Uu=uur=l.

Also, an operator on an infinite-dimensional linear vector space, would be
represented by an infinite-dimensional matrix.

Matrix Elements of A

Consider the cquation (2.114a)
[¥> =A|X>.

Expanding | Y > and [ X > in terms of the unit vectors | &, >, we get,

N N
Zylu>=AZx|u>
i=] k=1

N ~
= ZxA|u, >,
k=1

since A is linear.
Taking the scalar product of the equation with |u; >, we have, using Eq.
(2.113a),
yj=§<uj|f§|u,‘>xk. (2.115)

But, according to Eq. (2.114b), we have (see Eq. (A.7)),
Y= Apx,. (2.116)
Comparing Eqs. (2.115) and (2.116), we sce that
Ay= <ulAly>. 2.117a)
That is, the jk—th matrix clement of the matrix A that represents the operator A in
the representation defined by the basis [| u; >, is the scalar product of the vector
A | u, > by the vector | u; > .
If A is one of the complete set of commuting operators that define the basis (see
the last part of Section 2.2), then,
Aly> =o |y >,
so that, Ay = 8,0 (2.117b)

Thus, A is diagonal. That is, an operator is rcpresented by a diagonal matrix
in a representation defined by its own eigenvectors. This result is consistent
with the fact that the eigenvalues of a diagonal matrix are its diagonal elements
(Eq. (A. 49)).
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Change of Basis

Since the matrices (that is, their matrix ¢lements) representing vectors and oper-
ators depend on the representation, or basis, we are faced with the problem of
finding the rclationship between matrices which represent the same set of vectors
and operators in different representations. We address ourselves (o a solution of
this problem in the following :

Let [l >], and (| & >], be two orthonormal bases in a Hilbert space. Since
both the sets are complete, the vectors of one set can be expanded in terms of the
vectors in the other set ;

N
4> = 14>8,,j=1,2,...N. (2.118)

The expansion coefficients S;; could be regarded as the matrix elements of an
(N xN) matrix § which represents the transformation from the representation
[l 4; >] to the representation [| " >]. From Eq. (2.118), we have (taking the scalar

product of the equation by | u, >),
Sl.j = <ul uj" > (2.119)
Thatis, S; is the ‘component” of | u;" > along | &, >.

From the orthonormality of the set [) &," =], we have,

N
- L4 ’ — ’ r
8= <ulu >—£§1<u‘t lu,> <wlu’>

-3

= £8,5,= (5" (2.120a)
i=1

where, we have used the closure property of the basis [f u; 3], (sec Eq. (2.27%.and

Eqs. (A and (A.33a)). Similarly, from the completencss property of the set
[| " >], we have,

N
8, = <ujfuk>=‘}:‘<uj|u,.’> <u|u >
iz

N
= _;{Sﬁs; =(S5 (2.120b)

where, the orthonormatity of the set [[ u; >} has been used. From Egs. (2.120a, b)
we have,

§1§=1=5§§%, {2.120)
Given an orthonormal basis, the first part of Eq. (2,120} represcnts the orthonor-
mality while the second part the completeness, of the transformed basis. Change
of (orthonormal) basis in a linear vector space is, thus represented by a Unitary
matrix.

Eq. (2.118) can be writien as a matrix egquaton if we define a matix U by
U = (uu,.. .14,), (2.121)
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where, i, is the column matrix representing the basis vector. |, > (sce Eq.

(2.112)). Thus U is an (N xN) matrix”. The orthonormality of the basis (Eq.
(2.113a)) requires that

.
U
+ t +
u Wu, wu, ... WUy
T i +
Uuu U, U e WU
U'U=| |y =| 20 7272 W=, (2.122a)
t + t
NS THR TAS T TAS T
t
Uy

whercas, completencess (Eq. (2.113b)) requires that
N
vt =(>: Wﬁ]:l, (2.122b)
i=1

where I is the (N x N) unit matrix.

Thus, U is Unitary. That is, an orthonormal basis can be represented by a
Unitary matrix. Conversely, the columns and rows of a Unitary matrix represent
orthonormal vectors.

In terms of the matrices U and S, Eq. (2.118) reduces to

U'=US. (2.118a)
Since both U and § are unitary we have also,

U=U’s", (2.118b)
and

S=U". (2.1192)

Eq. (2.118b) is the inverse of Eq. (2.118), whereas Eq. (2.119a) is the matrix
equivalent of Eq. (2.119).

The expansion of an arbitrary vector | X > in terms of the basis vectors is,
N N
[X> =Zxlu>=Zx |u'>, (2.123a)
=1 i=1
which shows that the product Ux is invariant:
Ux=Ux, (2.123b)
where x and x” are the column matrices representing | X > in the representation U
and U’, respectively.

Hence
x'=UNUx =8"x, (2.124a)
or,
x=38x". (2.124b)
The linear transformation
[Y> =A|X >,

is represented by the matrix equation,

19, U could also be regarded as a row-matnix whose elerients are column matrices.
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y=Ax, (2.1252)
in the representation I/ and by the equation,

Yy =AY, (2.125b)

in the representation . Substituting for y and x in (2.125a) from Eq. (2.124b),
we get,
Sy =ASx’

o1,

Y =(STAS)x". (2.125¢)

Comparing Eqgs. (2.125b} and (2.125c), we have,
A" =§%AS, (2.126)
Eqs. (2.124a) and (2.126) represent, respectively, the transformation law for
veclors and operators under change of basis®. We see that the change of basis

corresponds to a Unitary transformation.
From Eqgs. (2.119a) and (2.126), we scc that,

VAU = UAUT, (2.127)

which shows that the product (I/A U) is invariant under change of basis,

Eqgs. (2.118a) and (2.124a) could be interpreted to mean the following; A ‘ro-
tation’ of the basis vectors (the co-ordinate system) is equivalent (o an inverse
rotation of the physical vectors (see Section 5.6).

.. . 0 1).
Problem 2.15 : An operator A is represented by the matrix A, :(1 0) ina

represcntation in which the basis vectlors are u; and u,. Obtain the matrix A, that
represents A in the representation in which the basis vectors are v, =

1 1
_\E (u,+uy and v, = 7:2- {u, —uy).

20. The change of basis could also be described in terms of the Unitary matrix ; T = 5%, In tcrms of
T, we have,

x"=Tx, (2.124b)

A =TAT' (21207

tic elements of Tare given by T, = §, = <w/§ u;>,



LINEAR VECTOR SPACES 59

2.4A Co-ordinate and Momentum Representations

Often, we have to represent the vectors as functions of either the co-ordinates or
thc momenta. For example, the vectors in the function space L¥a, b) are such
functions (sce Scction 2.1). We will here discuss the relationship between this
function-space notation and the bra-ket notation.

We will denote by <ru > the co-ordinate representation of the ket |u >.
Similarly, < p | 4 > is the momentum representation of | u > . Thus,

ur)= <riju>, (2.128a)
u(P= <pluy>, (2.129a)
Also, u(r)= <u;|r>, (2.128b)
u(p)= <ulp>. (2.129b)

The scalar product < u; | u; > is given by

<ulu;>=(u,u) = fu,.'(r)uj(r)d3r

=J<ui|r> <rlu>d’r (2.130)
Tence, f;r> <r|d’r=1. (2.131a)
Similarly, j|p> <pld’p=1. (2.131b)

From Eqs. (2.129a) and (2.131a), we have,
u(p) = Epluj>:f<p|r> <rluj>d3r=fuj(r)<p|r>d3r, (2.132)
and from (2.128a) and (2.131b),
ur)y= fuj(p) <r|p>dp= Juj(p) <plr>"d’p. (2.133)
Substituting p, (x-component of p) for p and x for r in (2.132), we have,
uj(p,)zj‘muj(x)<p, | x >dx. (2.132a)
Similarly, from (2.133), we get,
u,(x) = J‘muj(px) <p.lx>"dp,. (2.133a)

Now, it will be suggested in Section 3.1 that dynamical variables are repre-
senied in quantum mechanics, by Hermitian operators (Postulate I). 1t is further
shown there that the operators corresponding to the dynamical variables x and p,
arc given by [Eqs. (3.18) and (3.18Y)],
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R | .
X=x; p =—ih——:(Co-ordinale representauon),

dx
I .
and i=ih o Pa=p (Momentwm representation)
Thus, fulx)=xuflx), {2.1534)
A . qu{p,)
Lufp)=ih p. (2.134b)
du(x
Bux)=-ih di ) {2.135a)
ﬁxuj(px):pxuj(px)' (2'1351))

From Eys. {2.132a) and (2.134a), we have,
fulpy= j w{fu‘,(x)} <p lx>dx= f ‘xuj(x) <p lx>dx, {2.136a)

whilc, from Eqgs. (2.]32&) and (2.134b), we get,

( )}
fu (p,)_; heALl ﬁj u(x) lmm<p, I x >}a‘x (2.136b)
248, {2.136a, b) require that
a%m<p,1x> =—{ilhx <p, x>, (2.137a)
or, <p. x> =C exp[-H{iff)px], (2.138a)

where C, is independent of p,.
Similarly, from Eqgs. (2.133a), (2.135b) and (2.135a), we gel,

% <p lx>" =@mp, <p x>, (2.1370)
so that <p lx>= C; exp {{ifmpl,
or,
<p x>=C,exp[-tif)pal, (2.138h)

where, C, is indcpendent of x.
Egs. {2.138a, b} require that
C,=C,=C,

-~

where, C is a constant (independent of both x and p,). Thus,
<p, | x >=C exp [-{i/R)pX) (2.138)

“absuiludng (2.138) in (2.132a) and (2,133a), we get,
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up)=C | exp [-impxldx (21320)

u@=C" [ up) exp GMpAdpx (2.1330)
The constant C can be determined from the (normalization) condition,

| Tl pax=1

A [Tap | T ar o) [ exp m o, p'pax

=2mh|C I,
Since
7 explimip, - p'w1dx = 2m3(p, - ),
(see Eq. (D.6a))
and
[Tt ip,=1.

Thus, assuming C 10 be real, we get,

C=C'o—to (2.139)

v2mh.

Eqs. (2.137a, b) suggest that, for the general case where V,, and V,, respectively,

d
take the place of dp and et Ve should have,
. .
u (p) = {2rh) mfuj_(r) exp [(=imp - d’r (2.140a)
and
u(r) = (2Wn)*”fu,.(p) exp [(ifB)p - rld’p (2.140b)

Thus, u,(p) and u,r) are Fourier transforms of each other (see Eqgs. (C.18a, b)).
Expression (2.117a) for the matrix elements of the operator A becomes:

Ay = \txllfiluk>»fj<u,lr> <rlAr> <r' |y >dvdr

= jfu;(r)/i(r, u,(rdrd’r’, (2.141)
where, use has been made of Egs. (2.128a, b) and (2.131a).

Here, A(r, )= <r|A|r > is the co-ordinate representation of A, and is gen-
erally of the form,
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Alr, e = A(D)8(r - ). (2.141a)
Thus,

Ay= fu}(r)fi (P, (. (2.117¢0)

Comparison of Egs. (2.132) and {A.85¢) shows that the former is merely Eq.
(2.118) for the case where the wansformation is represented by a continuous
matrix. The other equations of this Section could also be similarly interpreted in
terms of continuous matrices.
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CHAPTER 3

THE BASIC PRINCIPLES

3.1 THE FUNDAMENTAL POSTULATES

Certain hypothescs, or postulates, serve as the foundation on which a physical
theory is built up. The theory considers these postulates as fundamental. In other
words, an explanation of the postulates is beyond the scope of the theory; the
theory is rather concerned with the consequences of the postulates. In fact, the
theory 1s nothing but the mathematical framework which connects the postulates
to their observable consequences. Of course, one often regards the postulates as
part of the thcory itself, in which case the consequences are refermed to as
predictions of the theory. Agreement between these predictions and the exper-
imental observations provides a verification of the theory, and, thus, an indircct
justification of the postulates. This scction is devoted to an enumeration and
discussion of such experimentally justified postulates which embody the basic
principles on which the mathematical edifice of quantum mechanics is built up.

In Section 1.2, we presented a set of postulates which, we emphasized, could
be regarded as the quantum mcchanical laws of motion, analogous to Newton’s
laws of motion in classical mechanics. A formalism of quantum mecchanics
which logically follow from those postulates, is the path-integral formalism (PIF)
developed by Feynman'. We had also indicated in Section 1.2, that the probability
amplitudes y(r, ¢) and the dynamical variables, such as the Hamiltonian # and
the momentum p, could be regarded, respectively as vectors and operators in a
Hilbert Space.  The formalism of quantum mechanics which incorporates this
viewpoint could be called the /ilbert-space formalism (HSF). Whereas the PIF
has got certain advantages over the HSF, especially when concerned with the
extension of quantum mechanics to quantum ficld theory, for many of the prac-
tical applications of non-relativistic quantum mechanics, thc HSF proves 1o be
simpler and clegant c¢cnough, Also, the two earliest versions of quantum
mechanics, namely, Schrodinger’s wave mechanics and Heisenberg’s matrix
mechanics, emerge as special cases of the HSF. In this chapier, we present the
postulates in a form (and language) that is appropriate to the Hilbert-space for-
malism of quantum mechanics.

1. See, the book by R.P. Feynman and A R. Hibbs (Foomote 9, Chapter 1).
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Postulate I: Corresponding to every observable physical quantity, there exists a
Hermitiun operator. The only measurable values of a physical observable are the
various cigenvalues of the corresponding operaior,

In classical mechanics, physical observables are represented by dynamical
variahles, such as energy, angular momentum, etc., which are functions of certain
basic variables such as co-ordinates and momenta, Therefore, the postulate is
cquivalent to stating that every dynamical variable is represented by a lermitian
operator’.

The Hermitian character of the operator ensures that the cigenvalues are real
{(Scction 2.2}, which property is necessary if the eigenvalues are to be identificd
with measured guantitics. We further assume that the Hermitian operator repre-
senting an observabie is bounded so that it has got a complete set of cigenvectors.

Since the cigenvalues of a Hermitian operator are not, in general, at least
wholly, continuous, Postulate T contains the important feature of discreteness (Lthat
is, the fact that a dynamical variable such as angular momentum, can have only
certain allowed values) associated with every microscopic system.

Now, operators have mcaning only with reference to a sct of vectors on which
ttey operate. This fact Ieads us to the sccond postulate.

Pastulate II: To every physical system, there corresponds an abstract Hilbert
space. A staie of the system is represented by a vector in this space upon which
the aperators corresponding to the observables act. Also, any vector in the space
represents a possible state of the system.

Since an arbitrary vector in the space can be expressed as a linear superposition
of a complete sct of orthonormal vectors, this postulale implies the principle of
superposition (Eq. (1.3)).

In classical mechanics, the dynamical state of a physical system is specified in
terms of the values of a set of dynamical variables. Thus, giving the valucs of all
the co-ordinates and momenta of the particles composing a system, at any instant,
specifics the slate of the system at that instant. This implics not only that the value
ol any other dynamical variable, such as encrgy, relevant to the system can be
computed from the given values of the co-ordinates and momenta, but also that
the state of the system at any other time can be deduced with the help of the
cquations of motion. The deflinition of the state of a system in quantum mechanics
appears radically different from the above definition of the dynamical state in
classical mechanics. However, the difference is only apparent.  As we have
already stated, any state vector can be expanded in terms of a complele sct of basis
vectors. These basis vectors are the common eigenvectors of a complete sct of
commuting Hermitian operators which, according to Postulate I, represent the
dynamical variables of the system. In other words, we require the {possible)

2. Lvery Hemitian operator does not, however, represent an obscrvable.
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values of the dynamical variables of the system in order to specify the basis vec-
tors in terms of which any state vector is defined. Thus, even though we can’t
speak of definite valucs for the dynamical variables in a given state, the concept
of dynamical variables is required to specify a state. For example, the basis statcs

fora spin-% particle are the spin-up and the spin-down states, represented respec-

tively by X and x. A general state vector would be, then,
X=c X, +c X. 3.1

Thus, even though we cannot say whether the system has spin up or down in the
state X, we have to make use of the concept of the dynamical variable spin, and its
possible valucs in order to define X.

Now, the cigenvalues are obtained by operating on the state vector with the
Hermitian operator (Eq.(2.49)). This, according to Postulate I, corresponds to the
act of mcasurement. Thus, if we make a measurement of a certain physical
observable represented by the operator A, the system would be left in a state
which is an eigenvector of A. Then, if we makec a measurement of another
obscrvable represented, say, by B, this act of measurement will carry the system
over (o a statc which is an cigenstate of B. The two measurements will refer to
the same state of the system only if the state is represented by a common eigen-
veetor of A and B. And this would be so (see¢ commuting operators, Section 2.7)
vily if A and B commute. Thus, dynamical variables which could e
simultancously assigned definite values in a given state, are represented by com-
ruting Hermitian operators, Such variables are called compatible variables. In
contrast, variables which cannot be assigned specific values in a given staic
(represented by non-commuting operators), are called complementary variables.
Encrgy and momentum are compatible variables for a free particle, whereas the
x-co-ordinate and the x-component of the momentum are examples of comple-
mentary variables.

For a given system, there is a limit to the number of compatible variables. This
limit is represented by the complete set of commuting Hermitian opcrators on the
Hilbert space of the system. The simultaneous measurement of the set of com-
patible variablcs corresponds to the simultancous determination of the eigenva-
lues of this complete set of operators. A maximal measurcment of this sort
provides the maximum amount of information that can be had on a quantum
mechanical system. In fact, unique (or, complete) specification of a state of the
system requires such a maximal measurement,

3. Inview of Postulate 1, the question arises whether the state X is a physical state or not. That s,
whether the particle can exist in the staie X or not. Since Xis not an eigenvector of the Hermitian
operator corresponding 1o spin, we will not find the particle in the state X if we make a mea-
surement of spin but will find cither in the state X, or in the state X_. Thus, it would appear that

only the basis siates are realizable; that is, the particle is always in one or the other of the basis
states and never in between. X should, then, refer 1o the outcome of a large number of measure
ments on identical systems. That is, X represents the statc of an ensemble as far as the <pin is
cencermned (see Postulate 1),
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There may be more than one complete sct of commuting observables for a
system. For example (see Section 5.5A), in the case of a two=particic system, the
angular momenta of the individual particles and their componenis along a refer-
ence axis (logether with the Hamilionian) form one complete sct, while the indi-
vidual angular momenta, the total angular momentum and its component along
the reference axis, form another complete set. The common eigenvectors of any
of these sets, could be used for specifying the states of the system, Of course, the
description in terms of the different sets are equivalent, since these different sets
mercly define different representations related by Unitary transformations (sec,
Change of Basis, Scction 2.4),

Expectation Values and Probabilities

If we make a measurement ol a physical observable, the ouicome would be one of
the eigenvalues of the corresponding operator. I the system is in a state repre-
sented by an eigenvector of the operator, then the eigenvalye obtained will be the
gigenvalue belonging to this eigenvector. Bul suppose the system is notin a state
corresponding Lo an eigenvector of the operator. What would be the result of the
measurement then? The answaer is provided by Postulae THL

Postulate II1. The outcome of the measurement of an observable of a quantum
mechanical systent in a particular state is given by the expectation value of the

carresponding operalor in thal siate.

The expectation value < A >y of an operator A in the state X, is defined as,

- (X,AX) <X|A|x>
A = = i F
A = XX T X (XS (3.22)
If | X > is an eigenvector ofﬁ,say, [X > = |u, > where
A lu, >=0q fu, >,
then,
<A > =0, (3.2b)

which is in agrecement with our earlier statcment. If | X > isnot an eigenvector of
A, then, | X > can be expanded in terms of the eigenvectors {] i >} of A, which

form a complele, orthonormal set {see property (H3) of Hermitian operators,
Section 2.2):

[X> =Z 1> <y | X >, (3.3
k

so that,
Zoy k< iy | X >
k

P )
DR T Tt A 34
k
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where
l<u, | X282

TElku X o (3.3

Wi

Now, according to Postulate I, the outcome of any single measurement is an
eigenvalue of the operator. Equation (3.4) should, therefore, be interpreted as
giving the outcome of a large number of measurements under identical condi-
tions, or, equivalently, the outcome of a measurement oa a large number of
identical (similarly-prepared) systems. Thatis, <A >y is the wei ghted average of
a number of measurements. Each measurement will yield ose or the other
eigenvalue of A. |< u, | X >I* is the frequency with which the eigenvalye 0, occurs
in the measurement. The ratio of this frequency to the tetal number of measure-
ments, % l<u, | X >, is the weight w, (Eq.(3.5)) of the eigenvalue q in hie mea-

surement. w, could be interpreted as the probability that a single measuretnent
yields the value o,. The result, Zw, = 1, reinforces this interpretation, since Zw,
k k

is the probability that a single measurement yields one or the other cigenvalue of
A.

If the state vector | X > is normalized, we have,
<X|X>=Llku|X>=1, (3.6)
k

so that,

w, =l<u, | X >, (3.52)

Ii. this case, | X > itself could be regarded as a probability amplitude. Unless
otherwise specified, we will assume hereafter that | X > is normalized.

Now, the probability that a measurement yields the value oy, is the probability

Uat the sysiem is found in the state | u, > . Therefore, j< u, | X >[? is the probability
thaupe system is in the state |4, >. Hence, <u, | X > could be regarded as the
pr Ob“ility amplitude® for the system to be found in |, >. Of course, this con-

cept of 1o probability amplitude is based on the premise that | X > as expressed
PY Eq (;3) has meaning as the state vector of a physical system. The
justificationfor the premise comes from experiments on interference and
diffracuo'n P=nomena (see Section 1.1). Taking the co-ordinate representation
(sce Section ZAA) of Eq (3.3), we get,

<r|X> =X < |X> <rly>,
k

4. Thisterm is derived .

; N wave optics, where the intensity of light at a point is given by the square
of the amplitude of

_bu‘wave at that point. The probability is defined as the absolute square
because of the possibilily A <1, | X >may be complex.
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Or.
X(ry= Ixuyr), (3.3a)
]

wnere
= <y X >. (3.7

Eq. (3.32) is, obviously, equivalent to Eq. (1.3) and Eq. (1.11).

Daocs the physical system, of which | X > is the state vector, represent a single
particle? The answer is that it is possible. In that case, | X > would be the cigen-
vector of some operator £ that does not commute with A, so that | X > would be
a state in which H has a definite value but A has no definite value. As an
illustration, consider the lincar harmonic oscillator. Let [ X >be an eigenvector of
the operatoy corresponding 10 the Hamiltonian of the system. Thatis, | X > isa
state in vshich the oscillator has a definite energy. A could, then, comrespond to
the pusition co-ordinate of the oscillator. If x, is the amplitude of oscillation, aay

one. measurement of A will give a value which would lie anywhere between —x,
~nd +x,. The average of a large number of repeated measurements would be zero,

corresponding to the equilibrium position of the oscillator. The same average
value for the posilion co-ordinate would, however, be obtained if the measure-
mcent is made on an ensemble of identical oscillators all of which are in the same
energy state | X > . Thus, as far as measurement of A is concerned, 1 X > could as
well represent an ensemble of oscillators as a single oscillator. In the former casc.

| &, | X >|*is to be interpreted as proportional 1o the number of oscillators in th:
cnsemble whose position co-ordinates are equal to that corresponding 1o | u, > af |
the time of measurcment’. Tn the latter case, |< &, | X >I* should be interpreted, a¢

proportional 10 the number of measurements which results in a value foyr (he
position co-ordinate that is appropriate 1o | &, >. In either case, the measvremen: .
of A is of a statistical nature. The outcome of any single measurement < apnog be
predicted.

In the case of microscopic systems, the interpretation of [ X > ag repres icnting
the state of an ensemble is to be preferred, since measureMments are acur Ay done
on cnsembles rather than on single systems. For example, it is not ¢ tactical 10
isolaic, say one hydrogen atom, and make repeatcd measurements or

In this contexi, it might be relevant to make a distinction bety
| 4, > and the state | X >. We will refer 10 the former as a pure

st
~een Lhe state

state and 1o the
latter as

5. i pusition co-ordinates of more than one oscillaor could be equal

. accause th sarod
from the equilibnum posttions {which are different for different o8 Gse these ars measure

sitlators) of the osciliators.
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a mixed state. When concerned with measurements, we will assume that a pure
state corresponds to an individual system and a mixed state to an ensemble’.

We, thus, see that Postulate III leads to a statistical interpretation of quantum
mcchanics. Alternatively, we could say that this postulate expresses the statistical
nature of quantum mechanics. The predictions of quantum mechanics are also,
therefore, of a statistical nature. For example, even if we are given complete data
(in the quantum-mechanical sense) on a radioactive nucleus, we will not be able
to prediict, on the basis of quantum mechanics, when exactly it will disintegrate;
what we can predict is the number of nuclei that will disintegrate in a given time,
in a sample (or, ensemble) consisting of a large number of such nuclei. True to
the statistical nature of the prediction, the predicted number would be nearer to the
actual. number, the larger the number of nuclei involved. The analogy of the
rumber of cleaths in a community of people might help to elucidate the point. It
is imipossible to predict when exactly a particular individual in the community will
die;, but we willl be able to predict, on the basis of previous data, fairly accurately
the number of deaths that will take place, say, during the coming month. The
accuracy of the prediction could be increased by replacing the month by an year.
Alternatively for the same period, the accuracy of the prediction would be more
in the case of a city with a population of a few million people than in the case of
a village with a few thousand people.

Lest this analogy lead to the mistaken notion that quantum mechanics is merely
a statistical theory like, say, classical thermodynamics, let it be emphasized that
the concept of the probability amplitudes that obey the principle of superposition
(Eqgs. (3.7) and (3.3a)}, is a novcl clement in the theory. This results in a law of
combination of probabilities for different but (experimentally) indistinguishable
alternatives, that is quite foreign to classical statistics’ (see Eq. (1.4)).

6. Note that the designation as pure and mixed states is with reference 10 a given observable, in this
case A. A mixed state of one observable could be a pure state of another observable. In our
example of the oscillator, | X > is a mixed state of A , but a pure state of /. This difference in the
role of | X > when referred to different observables, does not lead to any inconsistency, since we
are concemed with the measurement of only A, whereas H is brought in only to specify | X > . If
we were to lalk of the measurement of both A and H, then | X > would have to be the same type
of state with respect to both A and H (see, Section 3.2).

7. 1In the classical theory, there are two ways in which probabilities for different events are
combined. If P, and P, are, respectively, the probabilities for events A and B, then the probability

P,, for the combined event is given by either (i) Pyp =Py + Py, o1 (1) Py = PyPy. In (i), Py i
the probability for either A or B to happen. Thus if P, is the probability for a coin in a toss to fall
with head-up, and P, to fall with tail-up, then P, + P, is the probability to fall with either head or
tail up. Thus P, and P in this case represents probabilities for mutually exclusive events. In (ii)
P, and P, represents probabilities for independent events. Thus P, could be the probability for
the coin to fall with head-up in one toss, and P the probability to fall with head-up in another
toss. P, is, then, the probability that the coin falls with head-up in both the tossings. The

important point Is that, both in (i) and (ii), it is the probabilities that are 1o be added or multiplied
and there is no such thing as a probability amplitude.
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Quantum Mechanical Operators

We will now consider the question of obtaining the Hermitian operitor that
represents a given physical observable. We know that, in classical mechanics, a
physical observable corresponds to a dynamical variable which could be con-
structed from pairs of basic, canonically conjugate variables such as gencialized
co-ordinates and momenta. For example, the dynamical variable correspending
to the total energy of a system is the Hamiltonian £/ which is a function of the
generalized co-ordinates and the generalized momenta. The method to obtan the
quantum mechanical operator from the classical dynamical variable, is the stbject
of Postulate IV:

Postulate IV: The quantum mechanical operator corresponding to a dynamical
variable is obtained by replacing the classical canonical variables in the latte: by
the corresponding quantum mechanical operators. '

For example, the Hamiltonian of a linear harmonic oscillater is given, in
classical mechanics (in cartesian co-ordinates), by

PZ 1.,
H Ell(x,p)=§n—+§Kx 8 (3.8)

where m is the mass of the oscillator and X is a constant. Here, x (the position
co-ordinate) and p (the linear momentum) are the basic canonic variables,
According to the above postulate, the quantum mechanical operator correspond-
ing 1o H is given by ‘

n " 1
A=A p)=t—+2K5, (3.9)

where £ and p are Hermitian operators corresponding, respectively, to x and p.

While making the replacement of the canonical variables by quantum
mechanical operators, care should be taken to preserve the proper order of the
variables, since the operators need not commute. Care should also be taken to
see that the resulting operator is Hermitian, For illustration, let us consider the
(orbital) angular momentum; L =rx p. We have,

L =yp,-2p,, cyclic, (3.10)

s0 that,
L}= yp,yp, +2p,2p, - Yp, 2P, — 2P, P (3.11a)
=ypi+2’pl-2ypp, (3.11b)

Classically, both expressions (3.11a) and (3.11b) are correct, However, replacing
the canonical variables in (3.11b) by the corresponding operators will lead to a

wrong cxpression for £2 In fact, L2 50 obtained would be non-Hermitian. This
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difficulty could be avoided by making the simplifications only after the replace-
ment of the variables by operators. Only those operators that commute should be

permuted. Thus, the correct expression for L? is obtained by replacing the

variables by corresponding operators in Eq. (3.11a).

As another example, consider a dynamical variable C which is the product of
two other dynamical variables A and B. That is, C = AB. Then, the Hermitian
operator corresponding to C is not AB, since if AB # BA, then AB would not be
Hermitian. We should construct a combination of A and B that is Hermitian.

Such a combination is given by € = %(AB +BA).

Postulate IV is of no use in the case of observables like spin, isospin, etc.,
which have no classical analogue. In such cases, other considerations, such as the
algebra they obey, might help to define the operator (see Section 5.1).

The question now remaining to be answered is how to specify the quantum
mechanical operators corresponding to the basic canonical variables. Answer to
this question is provided by our final postulate.

Postulate V: Any pair of canonically conjugate operators will satisfy the
following Heisenberg commutation rules :

~

(G40 =0=1[p,Pd (3.12a)

(G, p) = iH1d, = ihd, (3.12b)

Here, 4, is the operator corresponding to the generalized co-ordinate ¢; while g,
is the operator corresponding to the generalized momentum p; that is canonically

conjugate’ to g;.

Thus, if the g;are carlesian co-ordinates, then the p; are the components of
linear momentum. If ¢;are angles, p;are components of angular momentum, and
so on.

8. The fact that g; and p; are canonically conjugate to each other is expressed in classical mechanics,
in any of the following equivalent ways:
(i)  They satisfy Hamiltonian’s canonical equations,
dg; OH dpi_ oH

dt op, dt __a_q,.'

where H (g, p, 1) is the Hamiltonian of the mechanical system.
(ii)  They satisfy the Poisson brackets,

{90} =8,

{g.at =0={p.p,}-
(iti)  They satisfy the relationship,

as
Pi=30 where S is the action (see Eq. (1.14b)).
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Postulate V may be called the axiom of quantization. For, any operator that has
a classical analogue, can be expressed as a function of the ¢; and the p;, and the
quantal properties of such an operator would follow from the relations (3.12a, b).
For example, the substitution of the operators ¥,7,.7,p,, ¢ic. in place of

the variables y, p,.z,p,... in Eq. (3.10) leads 1o the following relations for the

component of L :
[L,,L] =ikl cyclic, (3.13)

where, use has been made of Egs. (3.12a, b). [tis shown, in the theory of angular
momentum (see Section 5.2), that Eq. (3.13) completely determines the eigenva-
lues and eigenveclors and, hence, the quantal properties of angular momentum.

Of course, the designation of Postulate V as an axiom of quantization, is
meaningful only if the commutation rclations (3.12) are invariant under Unitary
transformations (that is, under change of basis-see Eq. (2.124)). This is, indeed,
the case, as is easily proved.

The following commutation relations, which are obtained from the basic
commutation relations (3.12b} by induction, might be of help in many applica-
Hions:

(4.p"] = iﬁa%(ﬁ"), (3.14a)
[p,4" =—ih J 4" (3.14r
pvq =—1 aqn q - )
) oA
14.4(¢,p) = iha—ﬁ-, (3.1%)
. 9A
5, AlG, ) =—~ih= 3.14d
|5, AlG, P =—ih 5 ( )
where, A is a fanction of § and §.
These relations suggest the identitics,
J
§ = —if= 31
P r}iaqu ( Sa)
and
j= 'ﬁi (3.15b)
4=t TR .

Problem 3.1: Prove the relations (3.14a-d).
Explicit Representation of Operators

The question of how to represent the operators explicitly, is still lelt. So far
we have defined the canonical operators only by the algebra which they
should satisfy. The explicit form of the operators will depend upon the type of
Hilbert space chosen and the representation selected. In the Schrédinger method
the Hilbert space is a continuous one, that is, a function-space. We can still
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choose either the co-ordinate or the momentum representation. In the former, the
state vectors are functions of the position co-ordinates and the generalized co-
ordinates are, therefore, multiplicative operators :

di=q (3.16"

The relation (3.12b), [§;, p,] = i#1d,, then requires that the conjugate momenta be
diffcrential operators:

p,=—it(grad), (3.17)

where, the gradient is with respect to the position co-ordinates. Thus, in the
cartesian system, the canonical operators are,

szx;ﬁxz—i‘h%;

A

y=y:p, "'ay’

i=z;p =—ihi. (3.18)
e oz

This gives, for the Hamiltonian of linear harmonic oscillator (Eq. (3.9)), the
explicit expression,

. a1, 1
__ 2 3.9
H d.x2+ 2K x*, 3.9)
and for the components of the orbital angular momentum (Eq. (3.10)),
. d 0 1
_ _,9 i 3.10
L, m(y 5,2 3 ], cyclic ( )

If we choose the momentum representation, then the state vectors are functions
of the momenta. The momenta are then represented by multiplicative operators:

§.=pi, NGRS
and the co-ordinates by differential operators.
d;=ih(grad)), (3.16)

where the gradient is with respect to the momenta.
Again, in the cartesian system, the canonical operators are:

. . d
D, p,,x-z‘hapz,
. . d
py py’y—lﬁap”

ﬁz=p1;2‘=iﬁaa . (3.18)

Hence, corresponding to Egs. (3.9) and (3.10), we have,
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2 2
A opEo
H:_p__.__-h?']( d y (3.9
m 2 dp]
« 9 9
=if 5P -3 i A7
and L, m[ 3, P, o, py} cyclic (3.109

Problem 3.2: Show that Eq. (3.10% is consistent with the communication
relations (3.13).

In the Heiscnberg method, the Hilbert space is discrete (but infinite-
dimensional). The operators arc represented by (infinite-dimensional) discrete
malrices. For example, in the case of the lincar harmonic oscillator,

0 V1 0 o
. N o 2 0o . .
=— 0 42 3o (3.16%
0 3 0 V& 0
0 0 5,

By

5

W

and

=

(3.17%

o
= o

That is,

v]
x’"":(\f_i}f;' fm=n+1,

=%\/n—-1, ifm=n-1, (3.19)

=0, otherwise,

1
o

and, P, = *fﬁ[—ﬁ]\/; ifm=n+1

= iﬁ[ﬁ)\jn -1, ifm=n-1 (3.20)

=0, otherwise,
wherc

o= 3.2

K
0= ‘\’ o being the frequency of the oscillator.
Substituting Eqs. (3.19) and (3.20) in Eq. (3.9), we get,
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V2 0 0 0
0 32 0 0 .

. 0 0 52 0 0 . . ,

H=tol o o o 2 0 . .} (399
0 0 0 0 92 0

or H =E2J§

L=E8., (3.22a)
where E = (n +%}fvw, n=0,1,2,... (3.22b)

Problem 3.3: Show that expressions (3.16%) and (3.17%) are consistent with the
commutation relation, [£, 5] = i#l.

Problem 3.4: Show that the linear vector space, on which the operators §; and g;
in Eq. (3.12b) are defined, is infinite-dimensional.

3.2 THE UNCERTAINTY PRINCIPLE

We shall now discuss the result of trying to measure experimentally the values of
two incompatible (or, complementary) variables for a physical system which is in
a quantum state represented by the vector y. Such variables, as we have seen (see
Postulate 1I), correspond to noncommuting Hermitian operators, say A and B.
That is,
[4,B8)=iC, (3.23)
where C is Hermitian and non-null.
We will assume that | y > is normalized ; that is,
<yly> =1, (3.24)
First we will discuss the type of state vector for which it is meaningful to talk of
the values of incompatible variables.
Case 1: y is an eigenvector of one of the opcrators, say A.
According to Postulates I and I1I, then, a measurement of A will yicld the value
a which is the eigenvaluc of A belonging to the cigenvector y. The attempt to
measure B will carry the system over to an eigenvector of B, which is not an
eigenvector of A since AB # BA. Therefore, the measured value of B would refer
10 a statc which is different from the one represented by y. In other words, it is
not possible to specify values for both of two incompatible variables when the

System is in a state corresponding to an eigenvector of one of the two operators
that represent the variables’.

9. It might be argued, on the basis of Postulate I, that the measurement of B should result in the
expectation value < B >, . But this would require that we interpret y as a mixed state (sec foot-
note 6) representing an ensemble. On the other hand, in the case of A, we have to interpret y as
a pure slate representing an individual system or, altemnatively, an ensemble in which all the
individual members arc in the same quantum state. The inconsistency is avoided by assuming
that only one of the two variables A and B can be measured in the state .
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Case 2: y is not an cigenvector of either A or 8, That is y is a mixed state.
According to Postulate 111, then, the measurement of A gives the expectation
value < A >, while the mcasurement of B yiclds the number < 8 >,. Thus, it is

possible to specify values for both A and B in the state y without having o
interprct |y - differentdy in the two cases. In the remainder of this Scciion, we
will assume that y is of this type. We will also drop the subscript w from the
expectation values, as we are dealing with only one state-vector,

The General Uncertainty Relationship

Now, an expectation value is an average over several measurements. The indi-
vidual measurements will deviate from the average value, some on the lower side
and some others on the upper side. The average of these deviations would, of
course, be zero. But the average of the squares of the deviations {called 'mean-
squarc-deviation’y would be non-zero, The syuare root of the mean-square-
deviation, referred 10 as the root-mean-square (or standard) deviation, could be
taken as a measure of the ‘spread” in the measured values. These spreads A4 and
AB in the measured values of A and B are called the wncertainties in the mea-
surement of A and B. Thus, the uncertaintics AA and AB associated with the
measurements of A and B in a given state are given by

AA = <A~ <A P

—feyltA—<A >y

= {< WA - <A ») | (A —<A >)y >l since A is Hermitian;

=[lynll, (3.254)

where ¥/, = (A-<A >y, (3.26a)
Similarly, AB =tlwll, {3.25h)
with y,=(B ~<B >y (3.26b)

The fact that y is a vector in the Hilbert space, resulis in a certain corrclation
between A4 and AB. Tt is this correlation that is referred to variously as the
uncertdinty relationship, the uncertainty principle or the principle of indeter-
minacy'. Whereas (here is divergence of opinion among physicists as to the
meaning of the relationship (sce, foomote 27, Chapter 1), there Is agreement on
the relationship itself. A derivation of the relationship follows:

According 1o Schwarz inequality (Eg. (2.14)), we have, since |y, > and v, >
are vectors in the Hilbert space,

i) Note that AA would have been zero if y were an cigenveator of A,
11 Ballentine, L. E. (Ref. 9, Chapter 1) supgests the name statistical dispersion principle.
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Tl - Tl 2 <oy, Ty, > (3.27a)

v

| Im <y, |y, >| (3.27h)

1
I:,;(<wlI\vz>—<\vzlw1 >) |,

since , <y > = <yl >,
That is

AA-AB 21 %{<\y(/§—</§ >) (B -<B>y>

2
—<y|B-<B>)|(A-<A >y}
1.1 Aa oaa
2§|lf<‘-lf|( B-BA)|y>]
1.1 P
>_]—
> 2| ; <[A,B] >
1 A
>21<C 5. (3.28)
Putting A = ¢, and B = p, in Eq. (3.23), we have, from Eq. (3.12b),
¢ =hd,,
so that Eq. (3.28) reads,
Hh
Ag,-Ap, 2 (E]sﬁ (3.29)

Thus, if g; are the components of the position vector r and p, the components of
the lincar momentum p of a particle, then, we have

Ax - Ap_2#/2, cyclic. (3.29a)

Incquality (3.29a) is known as Heisenberg's Uncertainty relationship. (3.29)isa
generalization of (3.29a) to the case of all pairs of canonically conjugate variables
while (3.28) is a generalisation to any pair of dynamical variables that correspond
to non-commuting operators’>. Thus, if p, = L,, the z-component of angular
momentum, then g, = ¢, the azimuthal angle, so that inequality (3.29) requires that

Ad-AL zg (3.29b)

Similarly, putting, A =L_ and B =Ey, in Eq. (3.23), we have from Eq. (3.13),
¢ =#L,. Henee, from (3.28), we get,

12. 'The generalized uncentainty relationship (3.28) was first derived by H.P. Robertson [Phys. Kev..
34,163 (1929)
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E

AL AL 27 |< L > (3.28a)

2

Note that the inequality (3.28) is independent of <A > and <8 >, so that the
uncertainty relationship holds even for states in which the expectation values of
A and B are zero. An energy eigensiate of a linear harmonic oscillator (Hamil-
tonian given by Eq. (3.9)) is an example :

Let  represent an eigenvector of  belonging to the eigenvalue E. Also, let
A and B Ve, respectively, the operators corresponding to position and momentum.
That is,

A P

A=%;B =p.
From, Eqs. (3.25a) and (3.25b}, we have,
Ax={<£25}'% Ap = {< p?>} " (3.30)
Since both x* and p? are positive for the oscillator, we have,
Ax>0; Ap >0,
so that,
Ax-Ap > 0. (3.31)
In fact, according to (3.29a), we should have,
Ax - Ap 2 W2, (3.29a")

An interesting consequence of (3.31) is that the lowest energy, referred to as the
‘zero-point energy’ of the oscillator is different from zero. An estimate of this
zero-point cnergy could be made using the expressions (3.9), (3.30) and (3.29a ).
We have,

N 1 1
<fl> =—<p’>+-K <i®>

E = 7
<y|H|y> o 3

e K
=5 (Bp Y+ (4%)

2, fFK
8. (apy
The minimum value of E is given by the minimum of the expression,
#K 1
8 @py

Ap)  #K
That s, £ -5, 82X, ,
rin 2m " 8Apy ).,

z %(Ap) (3.32)

——( pY+

_@p) wK
2m 8(Apy”

(3.33a)
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where,

1

(8py’ =3 rKm = [’—;—)ﬁw (3.34)
o, being the classical frequency of the oscillator, given by,
172
O, = (5] (3.35)
m
1 .

Thus, E,= :—21‘100c (3.33b)

Another example is provided by a state-vector y which is a normalized
cigenvector of £, where A and B are to be identified, respectively, with L, and
ﬁ,. Since L, and I:y do not commute with f,, (see Eq. (3.13)), y is an cigenvector
of neither I:, nor ﬁy, so that

<L ,>=0= <L >,.

Hence, from Eq. (3.25a), we have,

(ALY = <L?>,; (ALY = <L}>, (3.36)
If <L, >~ mh, we get, from (3.28a),
1 2
AL -AL, Zimﬁ . (3.28b)

Relationships (3.36) and (3.28b) could be used to deduce the value of < L2>,, as
is done in the following problem, where,

L=r2+ 02+ L2 (3.37)
Problem 3.5: If y is the normalized eigenvector of £, cor-esponding to the
maximum value of < 1:, >, and if this maximum value is equal 1> I%, show, using

(3.28a), that < L2 >= (I + 1)#2.

The Minimum Uncertainty Product

Relationship (3.28), with the equal sign, is referred to as the minimum uncertainty
product. Whether the equality sign in (3.28) is applicable or not depends on the
nature of the state vector y. In other words, only if the state vector satisfies certain
conditions, the minimum uncertainty product is realizable. We will now discuss
these conditions on the state vector .

Now, the equality in (3.28) requires equality in both (3.27a) and (3.27b). Inthe
casc of (3.27a), this requires that y, and v, be proportional to each other (see

(2.14)), whercas in the case of (3.27b), the condition is that the rcal part of
<y |y, > be zero. Thus, we should have,

13, Angularricmentum is measured in units of #, in quantum mechanics.
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Y, =V, {3.88a)
and
<y, >+<y |y, > =0, {3.38b)
In order to illustrate how conditions (3.38a, b} restrict the form of , let us take
the case of the lincar harmonic oscillator.
Taking A = £ B = 5, Eq. (3.38a) reduces to (see Egs. (3.26a, b)),
(I-<I>y=cp-<p>,

or,

iy =cpv, (339
since <i» =0= <p>.
Eq. (3.38b) becomes,
<yl (&p+pR> =0.
That is (using £ — g = ial),
<y |Epg |y> =(i#2). (3.40)
From Egs. (3.39) and (3.40), wc get,

<wl£2|w>s(Ax)2=l—ﬁz£_ (3.41a)
But (Ax)? is real and positive, so that ¢ is negative imaginary :
¢ =—ig, where, a > (, (3.42)
and,
(Ax)* = (a#/2). (3.41b)
Substituting (3.42) in (3.39), we have,
iy =—apy. (3.39a)

Taking the co-ordinatc representation of this equation, we get (Eq. (3.18)),

xy(x)=—ia [—iﬁ%)v(x),

or
av =—(x/at)dx,
v
so that
y(x) =N exp [-x¥2a#] (3.43a)

2
=N exp[ X J,
4{4Ax)
usiiyg (3.41b), where, N is normalizing constant to be determined from the rela-
tion,



THE BASIC PRINCTPLES 81

<yly> Ef:w(xnzdx:l. (3.44)

Eqs. (3.41a) and (3.42) yield, since

J e"’z"zdx = ﬁ

oo b’
[ 1 :Im
N = , 345
2n(Ax)? (3:45)
(@) = [2n(Ax)] ™ ex [— i } (3.43b)
L4 p 4( Ax)2 ’ *
If we had used the momentum representation'*, we would have got,
2
- P
o(p) = 2m(Ap)1“ exp [— ] (3.43¢)
4Ap)
with (Ap)* = (#2a). (3.41¢)

Thus, y is Gaussian. A plot of y(x) against x is given in Fig. 3.1.
The Time-Energy Uncertainty Relationship

Does there exist a time-energy uncertainty relationship analogous to the
position-momentum uncertainty relationship (3.29a)? In other words, is it pos-
sible to substitute 1 for ¢; and E for p; in (3.29)? An affirmative answer 10 the
question would imply the following premises:
(i) Time and energy (¢ and H) are complementary (or, conjugate) variables.
(i) A Hermitian operator corresponding to ¢ can be defined.
Unfortunately, justifying either of the premises proves to be difficult. The reason
is that time has a dual role in mechanics: as a parameter and as a dynamical
variable. And it is in 11s role as a parameter that it makes its appearance most of
the time, especially in classical mechanics. Even when ¢ plays the role of a
dynamical variable, as in Eq. (1.14a), it appears to be conjugate, if at all, to —H
rather than to H (see criterion (iii) listed in footnote 8 of this chapter). Assuming,
then, that ¢ and —H are conjugate variables, the operator 1 corresponding to time
in an cnergy representation should be given by (cf. Egs. (3.15b) and (3.18")),

d

-
t =—1ﬁﬁ——z‘hﬁ. (3.46)

14. Note that the co-ordinate and momentam representations of | y > are given, respectively, by
Yix)= <x|y> and

1 172 .
op)= <ply> = (ﬁ) fW(X) exp (—%px}ir

[see Eqgs. (2.128a), (2.129a) and (2.140a)]
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However, it turns out that given by Eq. (3.46) is not Hermitian." It appears,
therefore, that a time-encrgy uucertainty rclationship, at least in non-relativistic
quantum thcory, has no place, within the frame work of (3.29)'°. Nevertheless, a
relationship of the form,

Al - AE >, (3.47)

is cited in many books on quantum mechanics as a time-energy uncertainty rela-
tionship. The tenuous status of the semiequality (3.47) as a lime-energy uncer-
tainty relationship is, however, reflected not enly in the fact that it is interpreted
differently from (3.29), but also in the fact that (3.47) itsclf is given morc than one
interpretation.”

Relationship (3.47) could, however, be ligitimised as a time-cnergy uncer-
tainty retationship by identifying the position-momentum uncertainty relation-
stiip, not with (3.29a), but with a relationship analogous to (3.47) based on equally
vague premises such as that of a wave packet (see, J.L, Powell and B, Crasemann,
footnote 15)"*. But, in this book we will identify the uncertainty relationship with
(3.28), so that (3.47) would not be regarded as an uncertainty relationship.'®

1t should be added here that, whereas (3.47) is of dubious validity as a time-
energy uncertainty relationship, the relationship (3.47) itself has a legitimate
place in quantum mechanics. Thus, in the case of radioactive decay, we have the
relation,

T =h, (3.47a)

where, T is the mean life and I" the width of the level. Similarly, in the case of

transitions (between levels) induced by an external, constant perturbing field, we
have (see Eq. (8. 169b)})

T-AE =% (3.47b)

where, T is the duration of the ficld and AE is the separation between the levels.

15. See, Allock, G.R., Ann. Phys., 53, 253 (1969).

16. The same conclusion is armived at, by a different procedure, in Ref. 10 of Chapier 1.

17. See, for example, Landaw, L.D). and Lifshitz, EM., Quantum Mechanics (Pergamon Press,
Oxford 1963), II Edition, Section 44 ; Powell, J.L. and Crasemann, B. Quanfum Mechanics (B.L
Publications, Delhi 1971), T Edition, Section 3.4; Messiah, A., Quantum Mechanics (North-
Holland Publishing Co., Amsterdarr “261), Vol. 1, Chapter IV.

18. In this connection, see footnote 27.«. pler 1.

19. Since, however, the last word on this subject has not been said (judging from the profusion of
papers still appearing on the topic), the reader is referred 1o the current literature in addition to
the following papers : Rayski, J, and Rayski, 1.M.,, Ir, On the meaning of the time-cnergy
uncertainty relation; Recamé, E., A time operator and the time-energy uncertainty relation
fboth in The Uncertainty Principle and the Foundations of Quantum Mechanics (John Wiley,
Londen 1977)]; Baver, M. and Mellow, P.A., Ann. Phys., 111,38 (1978); Strkin, R. Found Phys.,
9,123 (1979); de 1a Pena, Luis, Amer, J. Phys. 48, 775 (1980); Srinivas, M.D. and Vijayalak shmi,
R. Pramana, 16, 173 (1981).
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Fig. 3.1. Harmonic oscillator state-vector corresponding to the minimum uncertainty product.
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3.3 DENSITY MATRIX

In connection with Postulate IT1, we have referred to a state represented by a basis
vector |y, > as a pire state and a state represented by a coherent mixture | X > of
such states as a mixed state. Conventionally, however, a state represented by | X >
itself is called a pure state. A mixed state is then an incoherent mixture of such
pure states. In other words, any statc described by a state vector (wave function)
as per Postulate 11 is a pure state while a state which cannot be described so is a
mixed state. The question then arises how one will represent or characterise a
mixed state. This is where the concept of density malrix or statistical operator
comes in”. As the name implics, the density matrix is an operator, and not a
veetor,

Mixed States

Let us denote the pure states {assumed to be normalized) by | X >, where, in
terms of the basis states, we have,

[XW> = Zcl iy >. (3.45;
k=1

The expectaction value of an operator A in the state | X® > is then given by

<A> =xc"cPa,, (3.49)

ik

with A, given by Eq. (2.117a). By decfinition a mixed state is an incohercnt

N
mixturc of the | XW >, {i =1,2,...N) with statistical weights w;such that Zw, =1,
i=1

This means that the average value of 4 in the mixed state, denoted by <A > is
given by the expression

—_r N "
<A >= Tw<A>. (3.50%

i1
Substituting for < A >, from Eq. (3.49), Eq. (3.50") reduces to
<A >= Tr(pA), (3.50%)
where
Py= <U|plu;> = ijc,fi)c}i). =Zw <y, 1X9>x9 0>, (3.51)
or
p=Zw, |XV> <Xx¥|. (3.52)

20. von Neumann, J. [Gottinger Nachr, 1,246 (1927) | was the first 1o introduce this in physics.
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The matrix p defined by Eq. (3.51) is the density matrix. The corresponding
operator, Eq. (3.52), is called the density or statistical operator. As seen from the
definition, the density matrix depends only on the pure states involved in the
mixed state and their statistical weights in the letter. p, thus, truly characterises
the mixed state.

Properties of the Density Matrix

The properties of the density matrix follow from its defining equations (3.50%),
(3.51) and (3.52). Thus, putting 4 = 1 in (3.50%), we have,

Tr(p)= <1> =1. (3.53)

n . N
This follows from Eq. (3.51) as well, since X |cf’P=1and Zw,=1. This
k=1 i=1

equation also shows that
Py = p;‘k’ (3.59)

or that p is Hermitian.
Pure States:

A pure state could be looked upon as a mixed state characterised by the statistical
weight w; = §;. Then from (3.52) we see that

p*=p - B59)
The matrix elements of p in this case are given, according to (3.51), by
Py = c,fi)c}i)‘. (3.56)

Problem 3.6: Show that Eq. (3.55) is a necessary as well as a sufficient condition
for a pure state.

Eq. (3.55) shows that ﬁ is a projection operator with eigenvalues 1 and 0. The
expectation value of an operator A, in this case also, is given [according to Eqgs.
(3.49) and (3.56)] by

<A> = Tr(pA) (3.50%)
which is similar to Eq. (3.50%). Thus, a pure state can be represented by a density

matrix as well as by a state vector. The density matrix has the additional capa-
bility of representing a mixed state which cannot be represented by a state vector.

Two-level System

As an illustrative example, let us consider a 2-level system described by the
(orthonormal) basis vectors | 4, > and | u, >. Ther the state vectors
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| XY > =\/i5[| i, >+, >, (3.48a)
1x‘2’>=\jl§[| u,>— >, (3.48h)

refer to pure states of the system, According to Eq. (3.56), the density matrices
corresponding to these states are

11
2 2
0 = 3.57
p 11 (3.57a)
2 2
and
11
2 2
@ _ 3.57b
p 11 ( )
2 2
which satisfy Eq. (3.55). The density matrix
i
3 0.
p= (3.58)
o 1
2 .

1 -
then represents a mixed state (with w) =w,= 2 ). The average values of an

1) .
J, in these three states, as per

observable A represented by the matrix A = ((1) 0

formula (3.50 **), are:

<A >=0.

If p™ and p™ represent polarized states, then p represents an unpolarized state.

REFERENCE

1. Roman, P., Advanced Quantum Theory (Addison-Wesley, Massachusetts 1962) Sections 1.1 to
1.4a.



CHAPTER 4

QUANTUM DYNAMICS

4.1 THE EQUATIONS OF MOTION

The problems of dynamics are, firstly, to determine the variables or parameters,
that specify the state of a physical system and, secondly, to describe the evolution
of the system in time. In classical mechanics, the dynamical state of a physical
system is defined by the values of a set of dynamical variables such as the position
co-ordinates and the velocities. The equations »f motion, which describe the
evolution of the physical system in time (temporal development of the system)
are, therefore, differential equations in these variables. The assumption that the
state of a system at any time ¢ is completely determined, through the equations of
motion, by the state of the system at an initial time ¢,, is referred to as the
dynamical postulate. This postulate implies that the equations of motion are first
order in time'.

1. In classical mechanics, the equations are second order in time for the co-ordinates. This is
because the velocities, which are to be treated as independent variables, themselves are first
derivatives, with respect to time, of the co-ordinates. The equations of motion are:

Newtonian: m-‘ﬁ-: =F,
dt
- oL dfdL !
Lagrange's: aq, (B 2. ) 0;

Hamilton’s: ﬁ=—ﬂ ﬂ_é{"_ di‘ﬂ-?iJr{A H}:

at dq;,’ dt ap,- dt
Hamilton-Jacobi : %9—+H 0,

where, ¢; and p; are the generalised co-ordinates and momenta, and L, H and § are, respectively,
the Lagrangian, the Hamiltonian and the Action associated with the system. A is a general
dynamical variable which is a function of g, p; and 1. {A, H} is the Poisson bracket defined by
9A3H 9H A )

4.4y = E(aq. pi 0q,9p;
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In quantum mechanics, the state of a physical system is represented by a vector
defincd in  an abstract Hilbert space (Postulate 11, Chapter 3). Therefore, the
equation of motion for a quantum mechanical system could be a differential
equation for the state-vector. However, the observable quantities are nol the
state-vectors, but the expectation values of a set of Hermitian operators corre-
sponding to the dynamical variables, The equations of motion in quantum
mechanics should be, therefore, concerned with the evolution in time of these
expectation values. Now, the expectation valuc of an operator A in the state
represented by the (n();n‘ializc'd) state-vector \, i$ given by (see Eq. (3.4)},

<A> = <Ad>, = <yl|A|y>
The variation with time of < A > can, therefore, be viewed as arising in one of the
following ways:
(a) The state vector y charigcs with time, but A remains unchanged.
(by A changes with time, y remaining constant.
¢y Both A and y change with time.
Correspondingly, we have the Schrodinger, the Heisenberg and the Interaction,
picture of time development®. Of course, the variation with time of < A > calcu-

lated in any of these pictures should agree with the observed rate of variation of
<A>.

4.1A The Scﬁrﬁdinger Picture

Tn this case, ¥ is a function of 7 while A is not : y = y(r). The equation of motion
is, then, an equation for y. The dynamical postulate is that y{r) at any time ¢ is
completely determined by y(z,) at a given initial time ¢, In view of the fact that w
is a vector in a linear vector space, the relationship between yi(#g) and y(¢) should
be described by a linear operator U(t,4,). The linearity of U ensures that the
principle of superposition is preserved during the dynamical development of the
system. That is, it y(l,) is a certain linear combination of, say, vectors ¢,(¢,), then
y(t) is the same linear combination of ¢,(z). The dynamical postulate could be,
thus, restated as follows:

Corresponding to every quantum mechanical system, there exists a family of
linear operators U(1, ), defined on the infinite-dimensional Hilbert space of the

system, which describes the evolution of the state-vector from time &, to time

()= Uttty (4.1)

2. These different pictures of time-development could be likened to the different ways of describing
the rotation of a body relative to a co-ordinate frame. The rotation could be viewed as a rotation
of the co-crdinale frame with the body fixed, a rotation of the body with the co-ordinate frame
fixed or a combination of the two. The final relative orientation of body and co-ordinate frame
should be the same in all the three descriptions.
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U is called the evolution (or time-development) operator. From the property
(2.41a) of a linear operator, it follows that, if

Wty = ‘zai‘bi(to)! :
then,
W) = Za0 (5, 1)0()

= za,"b.‘(t)’ 4.2

which proves our earlier statement regarding preservation of the principle of
superposition.

The dynamical problem is now reduced to the problem of determining 0(t,1,),
and we will now address ourselves to this latter problem.

Now, the probability interpretation requires that y be normalized to unity at
each instant of time (see Postulate III, Chapter 3). Hence,

(W), (1) = (Wt w(t)) =1 4.3)
i.c., O (1, )Wt Ut 1W (1) = (Y1), W(ty),
or, by Eq. (2.54), (W(t), U'(t, 1)Ut toW(to)) = (W(to), W(ko),
so that, '
Ui, 1)U, 1) =1. (4.4a)

Since U is defined on an infinite-dimensional Hilbert space, we cannot conclude
from Eq. (4.4a) that U is unitary (see, Unitary operators, Section 2.1). To draw
such a conclusion, we should have also the relationship,

Ut,1)U%t, 1) =1. (4.4b)

In fact, U satisfies Eq. (4.4b) also, as shown below :
Putting t = ¢, in Eq. (4.1), we get,
Uty ) = 1. (4.5)
Substituting ¢ for ¢, and ¢, for ¢ in (4.1), we have,
w() =0, 0)w(t)

= U, )0, 1)¥() (4.6)
But,
W(tl) = [7([1’ tO)W(to)’ (4-11)
so that,
U, 00, 1) = U, 1) (4.7

Putting #, = ¢, in (4.7) and using (4.5), we have,
Utt, D0, t) =1,
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or

U, 1)U, =1. (4.8)
Multiplying Eq. (4.8) from the left by U(t, 1)U7(, ;) and using Egs. (4.4a) and
(4.8), we get Eq. (4.4b). Hence, U is unitary so that

U, 1)=07(, 1) (4.4)
Also, from Eqs. (4.4b), (4.8), and (4.4), we see that
U7, 1) = Ut ) (4.9)

Writing Eq. {(4.7) as
U, 1) UG, 1y =01, 1),
and putting, 1, = ¢ — &, where, 8 is infinitesimal, we have,
Ut 1) = Ult,t =800 (¢ - 8t..1,), (4.10)
Now, U(t,1 -8 is an infinitesimal unitary operator and could, therefore, be
wrilten as (see Eq. (2.63)),

O(t,t - 80 =1~ @mdeH @), (4.11)
where, £1(¢) is a Hermitian operator, and the constant # is introduced for conve-
nience of interpretation (see Eq. (4.15b) below). H(t) is called the generator of
the infinitesimal unitary transformation, y(z — &) — y(z).

Substituting (4.11) in (4,10), we get,
Utt, t)=U(t -8, ty—(imdt - HOU (1 — 8¢, 1),

or,
UG, t)—-a(—8t, ¢ N
GL) ;f Y GO0 -8, 1)
Taking the limit 8 — 0 of this equation, we get,
Wi . .
3 =—{{HH (U (t,1,),
t
or,
ULty . .
it = O, 1) (4.12)

Integrating Eq. (4.12) w.r.t. ¢, between limits {, and ¢, we get,

f’ (e, 1) = —(im)f'ﬁ(:') a0, 1) de’
‘o L

d(t, 1) =1- (%M‘:ﬁ(:') (AT I (4.13)

Where usc has been made of Eq. (4.5).
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Equation (4.12) is the differential, and Eq (4.13) the integral, equation for U.
These equations enable us to obtain U(t, t,) for any value of ¢, from a knowledge
of the operator H (¢).

Applying the operator equation (4.12) to the state-vector y(z,), we get,

o Mgsl\v_(@ = HOU(t, 1)y(ty).

ie.,

= H(t)y(t). (4.14)

This is the equation of motion for the state-vector, and is known as the time-
dependent Schridinger equation (see Eq. (1.16) and the remarks following it).

We, thus, see that the evolution in time of the state-vector y could be viewed
as the continuous unfolding of a unitary transformation. In analogy with the
classical case, where the generator of the infinitesimal canonical transformation
corresponding to the temporal development of a mechanical system is the
Hamiltonian function, the generator A (¢) of the unitary transformation, is called
the Hamiltonian of the system. Just as in the classical case, A corresponds to the
total energy of the system. If the system has got a classical analogue, then, H()
can be obtained from the classical Hamiltonian of the system in accordance with
Postulates IV and V of Chapter 3. If there is no classical analogue, such as in the
case of systems with spin, isospin, etc., then, one must rely on intuition or some
other circumstantial factors such as symmetry in order to infer the correct form of
H(1). ’

Now, Eq. (4.14) can be written as,

ok A
g(: In W)"FH(():O, (4.14a)

from which we sec that the equation is the analogue of the Hamilton-Jacobi
equation in classical mechanics (see, footnote 1 of this Chapter), with the action
S given by

L, oy(t)
ih —Bt

S =—? Invy, (4.15a)
or,

v = exp [(i/h)S]. [ cf. Eq. (1.13¢)] (4.15b)
We see that the factor (1/#) in Eq. (4.11) is required to make y dimensionless,
whereas the factor i in that equation, needed to make U unitary, makes y a com-
plex function.
In the co-ordinate representation, Eq. (4.14) would read [see Eqgs. (2.128a),
(2.141a), (3.18)]

mﬂg”=ﬁmVﬁWno (4.14b)



62 QUANTUM MECHANICS

Problem 4.1: If
P #
(V.0 =—E—MV’+ vir.1),

show that Eq. (4.14b) satisfies the equation of continuity,

o ..
§+d1v3—0,

where the probability density p and the probability current density j are given by
p=1w P, =2 [y (V) - (Vy ).

Problem 4.2: Obtain the conditions on (a) A and (b) y for the conservation of
the norm of .

Often, A does not depend explicitly on time. In that case, we have, from Eq.
4.12),
d U, t) L
e = | i/ﬁHf dr’,
W U 1) (W) o

(i) B (1 - ty),

or, U, t)y=e (4.16)

so that,

wir, 1) = e—(.‘m)ﬂ(: ~tg)

Choosing ¢, = 0, and writing y(r, 0) = d(r),

(r, ¢ (4.17a)

we have,

W(r, 1) = “™P(r). (4.17b)
Now, @ can be expanded in terms of the complete set of eigenvectors of the
Hermitian operator F. Let the eigenvectors be ¢,(r):

Ao(r)=Ed(r) (4.18)
Then, D(r) = L {r) {4.19)
Substituting (4.19) in (4.17b), we get,
Wi, 6) = Zey(r, 1), (4.20)
where,
v =g,me
= &0 (4.21)
Obviously,
Hy,(r,0)=Ey(r,0), 4.22)

s0 that, ; is also an cigenvector of /7 belonging to the eigenvalue E,.
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Equation (4.18) is referred to as the time-independent Schrédinger equation.
Each ¢, represents a stationary state of the system with energy E;, which evolves
in time according to e ML

U, 00,(r) = ™9,(r)

(AM)EI

= " o,(r). (4.23)
The name, ‘stationary state’ arises from the following :
(i) A system which is initially in the state ¢; continues to be in this state since

the evolution operator does not mix different ¢,’s (see Eq. (4.2)).

(i) The expectation values of operators, and, in particular, the energy, in the
state does not change with time (shown below).

Now,

—(A)=—(\V(I)IA lw(e)

_ OV A4
=5 1Alw+ Al 5 4.24)
But, from Eq. (4.14),
o _ —Gima 4.14
al - W: ( . ')
so that,
LR =(imiy 1A 1+ w1 A | iy
=(im){y | (HA ~-AD) | y)
< m1n> (4.25)

where [A, H] is the commutator, or commutator bracket, of A and A.
If the system is in one of the stationary states, say

Y=\, = ¢i(r)e—(ifﬂ)€,- "
<y, |(AH-HA)|y,> = <0, |(AA~HA)|9,>

then,

=(E,~E)}<0,1A10,> =0, (4.26)
where, use has been made of Eq. (4.18) and of the fact that eigenvalues of a

Py

Hermitian operator are real (so that, E; = E;). Thus, e 0 for the stationary
d(A)
state. 7S = 0 also when [A,H] =0. This case will be further discussed in

Chapter 6.
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In the presence of an external field, A may depend explicitly on time, In that

case, the term {y

aA
% } y) should be added 10 the R H.S. of Eq. (4.24). Then, in

place of (4.25), we have,

d(A) _ dA

]
Comparing Eq. (4.25a) with the equation of motion for the dynamical variables A
in classical mechanics (see footnote of this chapter), we see that the expectation
values of operators obey the same equation of motion in quantum mechanics as
the dynamical variables in classical mechanics’, provided we identify the com-
mutator bracket divided by (i#) with the ‘quantum mechanical Poisson bracket’.
The statement in italics, is known as Ehrenfest’s theorem.,

The identification of the commutator bracket divided by i#, with the Poisson
bracket is, in fact, suggested also by the identity of the algebra the two brackets
obey, exhibited in Table 4.1. In this table, we also give certain examples illus-
trating the similarity of the two brackets. It is reasonable to conclude from this
that Poisson bracket is the classical limit of the expectation value of the
commutator bracket divided by i#.

YH((Vim A, H)). (4.25a)

<%{A,:§] > —{A, B}. (4.27)

classical

Problem 4.3: Establish the following relationships in the case of the linear
harmonic oscillator :

d . <p>
(a) E<x>— -

d<p>_ av
)] . < dx>

4,1B The Heisenberg Picture

In order to distinguish the state-vectors and operators in this picture from thosc of
the Schradinger picture, we will use the subscript ‘4”. Thus i, and A,,, respee-
tively, denote a statevector and an operator in the Heisenberg picture,
W, is time-independent, but A, depends on time. We note that if we define
y,{f) by
V(1) = U, tow(e), (4.28a)

where, y(t} is the state vector in the Schridinger picture, then, yi,, is independent
of time. For, from Eq. (4.1), we have,

. oA J .
Note thay (—ax—)=§;<A>.
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V() = U7 )W) = U7 1)U (1, 1wty = Wity (4.28b)

Table 4.1 Comparison of Commutator and Poisson Brackets

Commutator Bracket Poisson bracket
[.] (.}
[A,B] =-18,4) {A.B} =—{B,A}

[A.c] =0, {A,c} =0
[A+B).Cl=(A,C1+[8,C] {A+B),C}={A,C}+{B,C}
[AB,Cl1=1A,C18 +A[B,C] {AB,C}={A,C}B +A{B,C}

1., . { i ,} =8.,
;;[q.-,p,-l =8, @b

{L,L}=L,
ﬂ L.L)=L,

¢--a scalar number.
4,, p;—generalized co-ordinates and momenta.

L,, L,, L,—components of angular momentum.
Since U(t,1,) is unitary, Eq. (4.28a) represents a unitary transformation (a change
of basis) in the vector space. Therefore, A, is related to the corresponding opei-
ator A in the Schrodinger picture by (see Eq. (2.126)),

A =07, 19AU, 1)

=U™(t, t)AU(, 1. (4.29)
Thus,
dAH Ut + 30

TR ——AU+0U 5 (4.30)

But, from Eq. (4.12),
aa—lt] =m0, (4.31a)

T A ”

and aal: =—(imU'H, (4.31b)

so that,

”

dAy R,
—(—ﬂ——(z/ﬁ){U*I AU -UTAHU}

AAAAA

=(im){UtAOUAD - UtAUUH U}
= (i) (H A, ~AH,)

1 ~ .
=E[A”:[1H]- (432&)
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If A depends explicitly on time, then,
d/i 0y,
NES

Equations (4.32a, b) are called the Heisenberg's equations of motion for the
operator A,,. They are identical in form to the Hamiltion’s equation of motion for

t [AH,H,,.] (4.32b)

a dynamical variable in classical mechanics (sce footnote 1), the only differcnce
being that the place of the Poisson bracket in the latter is taken by the commutator
bracket upon i% in the former.

For the basic canonical operators §; and j;, we have, from Eq. (4.32a),

44, _1 — 4, M
dar mt

= %(mgg] = %f%- by Eq. (3.14¢) ; (4.332)
P i

:i‘lﬁ(“""g%] :‘ng; by Eq. (3.14d). (4.33b)

Again, these equations are identical with the corresponding canonical equations
of Hamilton in classical mechanics.
The equation of motion for the expectation value < A, > is given by

d .. d .
E(AH)EE['(\IIHIAH(!)IWH)
dA
=W | = L)

1 . -
= <H A Hyb) (4.342)

if A, has no explicit dependence on time, and

d(‘:{h‘) aAH
= (A ), (4340)

if A, depends explicitly on time.

Thus, as expected, the equations of motion for the expectation values in the
Heisenberg picture and the Schridinger picture are the same.

The basic equation of motion in the Schrisdinger picture is Eq. (4.14), whereas
in the Heisenberg picture, it is Eq. (4.32b). We, thus, see that the Heisenberg
picture emphasises Hamilton’s formalism of classical mechanics while the
Schridinger picture emphasiscs the Hamilton-Jacobi theory. In the former case,
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the emphasis is on the physical observables, whereas in the latter case, it is on the
function y. The methods of solution of the mechanical problem in the two pic-
tures will also reflect this difference in the emphasts, as we will illustrate in Sec-
tion 4.2.

4.1C The Interaction Picture

In this picture, the advantages of the Heisenberg and the Schrédinger pictures are
sought to be combined. Such an approach is useful when the Hamiltonian can be
split up into two parts, one part independent of time and the other part dependent
on time. Such could be the case, for example, when the system is in an external
ficld. The time-independent part would represent the Hamiltonian of the system
in the absence of the external field and the time-dependent part that arising from
the presence of the external field (Section 8.4 will discuss such cases).

Let At =H9+ V), (4.35)

H® being independent of time.
According to Eq. (4.16), the time-development operator in the absence of
H™(t) is given by

Ut 1) = exp [ (imA (@ - 1) (4.36)
The state-vector ,(t) and operator A ,(¢) in the interaction picture are defined by
vi(0) = U3, 1w(),
= exp [((MH(t — 1)), (4.37)
and
A =0 t,10AU (1, 8) (4.38)
= exp [(iMHO(t — 1)) A exp [-(EmA( - 1)

where, y(r) and A are the state vector and the operator, respectively, in the
Schrédinger picture, so that

iﬁaa—‘:’ =H(Ow()
=[O+ V) y(o), (4.39)
and
dA 0A
= (4.39b)
From Egs. (4.37) and (4.39a), we get,
iﬁ% = APy, (0), (4.40)

where, AP =UNe, t)AV0 (1, 1), (4.40a)
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while. [rom Eqgs. (4.38) and (4.39b), we have,
d}‘r Al 1

- —IA, 1Y 4.41
i ot +i1’1[A”“’)]' @4

with
0O = 0, B0 1,6
=17 (4.412)
We sce that the statc-vector in the interaction picture is determined by a

Schrédinger cquation with the Hamiltonian £, while the operators obey the

Heisenberg’s equation with the Hamiltonian £,

Problem 4.4: Show thal the evolution operator U (¢, £,) defined by the equation,

ol/le, 1)
n ot

i =100 A1, 1),

satisfics the relationship,
Uty 1= U1, 190, 1),
where,
Ute, 1Wlto) = w(o).

Hence show that () = 0, (t, Iw(t,)-

The equation of motion for the expectation value,

<y, 1A, |y, >=<A, >,

ig casily shown, using (4.41) and (4.40), 1o be

4 iy LNV 4.42
¢ ;>k(3;>+<i—f;[ﬁp i {4.42)

where,

=094 qd (4.42a)

4.2 ILLUSTRATIVE APPLICATIONS
4.2A The Linear Harmonic Oscillator

we will thustrale the difference between the Schridinger and the Heisenberg
pictures by applying the two methods to the solution of the problem of the lincar

harmonic oscillator for which the Hamilionian is given by {see Eq. (3.9)),
Ly

v P01 o
H==——+%KZ"
2m 2Kx
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Schrodinger Picture

In the Schrédinger picture, § and £ arc indecpendent of time. In the co-ordinate
representation (Eq. (3.18)),

D s—iha and X =x,
so that
P L L BN
I=——"—4+ K 44
1 Zmdx2+2 X (4.43)
The time-dependent Schrédinger cquation (Eq. (4.14)) is
_, oy(x, 1) wd o1,
ih— 5 = —ﬂai_*_i[(x lll(x,f). (4.44)

Since £ is indcpendent of time, y(x, ) can be written, choosing £, =0, as (scc
Egs. (4.17b) and (4.18)),

y(x,t) = exp [~/ Qu(x), (4.45)
with Mu(x)=E,u,(x) (4.46)
Thatis
wd o1,
[_ZH—EZ+EKX )un(x) = Enun(X) (446&)

which is the time-independent Schrédinger equation for the lincar-harmonic
oscillator. From Egs. (4.45) and (4.46), we get,

v, (x, 1) = exp {(—(i/BE fu,(x)

= X,(Du,(x). (4.452)
Thus, what is involved in the reduction of Eq. (4.44) to the form (4.46a) is the
technique of separation of variables.

Now, Eq. (4.46) is an ¢igenvalue equation for the Hamiltonian. Thercefore, the
values of E,, permitted by the equation, are the cnergies that the harmonic
oscillator can have. The state of the oscillator with ecnergy £, is represented by
the state-vector (‘wave function’) u,(x). The problem of determining the £, and
the u, is reduced to solving the differential equation (4.46a).

Now, Eq. (4.46a) rcsembles Eq. (E.9); in fact, the former could be made to look
idenuical with the latter with the substitution,

IHK 14 mo 2E"
C=(X.’C;(X,:('_h_zj = _ﬁ_;(l+2n):ﬁ(l)’ (447&)
K
where, 0= -, (4.470)
m

is the classical frequency of the oscillator.
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Then, equation (4.46a) reduccs 10
2

, -, =0. 4.4
dC2+(H2n 96, =0 {4.48)
where,
(L) o= 14, (x). (4.49)
From Eq. (E. 8),
_ 1 _#2
0.(8) = e exp (L2, (0), (4.50a)

or,

u(xy= Vo (—%o&z]n,(ax), (4.50b)

o
Wz P

which are the eigenfunctions. The corresponding energy eigenvalucs are, from
Eq. (4.473),

1
Enz[n *5}“‘" n=0,1,2, .. (4.51)

We sec that Eq. (4.51) differs from the corresponding classical formula® in two

importan| aspccts:

{iy  Thecnergy levels are discrete and equispaced. Discreteness is a property of
bound systems, but the ¢quispacedness is a characteristic of the oscillator.

(i) The lowest (refemred o as ‘ground-state’) energy is not zero, but is equal 10

%ﬁm. This zero-point energy could be attributed to the uncertainty rela-

tionship [sce Section 3.2, Eq. (3.33b)]. The cncrgy levels arc shown in Fig.
4.1,
From Eq. (E.7) and (4.50a), we have,

0,(-8) = (=1, (5. (4.52)

Thus, $,(0) is an even or an odd function of { according as » is even or odd. The

operation which transforms x to —x, is referred to as the Parity operation (sce
Section 6.2D), and the behaviour of a function under the parily operation deter-
mincs the parity of the function. A function f{x) has even parity if f(—x) = f(x) and |
odd parity il f{-x)=—f(x), whereas it has no definite parity if f(—x) = 2f(x).
Invariance of the Hamiltonian under the parity operation (which represents space

4. 'The classical formula corresponding to (4.51) is E = fv, where v is the linear frequency and J is
the action variable (sec I1. Goldstein, Classical Mechanics (Addison-Wesley, Massachusetts,
1961), p. 294). Thus, Eq. (4.51) implics quantization of the aclion according 1o the fermula,

J :(n +%]h.



QUANTUM DYNAMICS 101

En/hw

\ los2 /

7/2

v(x)

5/2

3/2

1/2

o) - X

Fig. 4.1. The potential and the energy levels of the linear harmonic oscillator.

inversion, or the changing of a co-ordinate system from a right-handed one to a
left-handed one) requires that wave functions of physical systems be of definite
parity. Eq. (4.52) shows that this requircment is met by the wave functions of the
linear harmonic oscillator. It also shows that the parity of the wave function ¢, is
even or odd according as the oscillator quantum number n is even or odd.

Now, according to Eq. (4.52), 0,(—)=¢,(+e) for n even and
§,(~) = ~0,(+oo) for n odd. Thus, ¢,(L) approaches the {-axis from the same
direction for even n, and from the opposite directions for odd n. Hence the
number of zeroes of 6,({), excluding the ones at { = oo, is even or odd according
as n is even or odd. In fact, the number of zeroes (these are referred 10 as nodes
of ¢, ) is exactly equal to n (see Fig. E.1).

We note the following important differences with respect to a classical oscil-
lator:

(i)  The amplitude of oscillation of the classical oscillator in the mode n is
given, according to Eq. (4.48), by

g, =V1+2n, (4.53)

so that the probability of finding the particle outside this range is zero, This
amplitude is also shown in Fig. E.1 (the shaded region). We see that the

wave function ¢, (the probability is proportional to | ¢, [) does not go to
zero at {,, even though it goes to zero rapidly outside this range. Thisis a

gencral feature of quantum mechanical wave functions: the wave function
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gocs 10 zero at a classical boundary only if the potenual at the boundary is
infinite.” In other words, a perfectly ‘opaque’ boundary is represented, in

quantum mechanics, by an infinite potential.

(ii) The probability distribution, £,(Z)=|o, I, exhibits maxima and minima
within the classical imterval {_ <L <[, (shown inFig. 4.2, forn=2). This
is in contrast with the smoothly varying classical probability distribution

PA(0), which is given by®,

1
PO = —e——=. (4.54)
™1+2n -0

3
i
1
]
3
)
1

)

L

\5\
H
i
i
E

25' s : +5

2

Fig. 4.2, The classical {(broken curve) and the quantum mechanical (solid curve) position probability

distributions corresponding 10 oscillator quantum number n = 2.

5. Nowcthat o, will oo zevo a1 (, if o (hat is, X, see Eq. (4.97a)) is set equal 1o infinty 21 that
pant,
6. The classical probability PP for the panticle to be betwoon { and I+ df could be defined as

the ratio {dt'e), where &’ is the time the escillator spends between § and £ + 47 during the period
T Now, since the amphitude of oscillation is given by Eq. (4.53), we have,

Lin=2, sin ox,
o %=o>§qcnsm:am\,’ra-—(§
Thuys, @' 2 1 24l
T gy
But 1T = 2w, so that,

iy Y
PROME== 103



QUANTUM DYNAMICS 103

From Eqs. (4.45a) and (4.51) we have,
v, 0,0 =u, (e, (4.55)

1
where, @, = (n +E)u). (4.51)

The expectation value of any operator could be calculated using the wave function
W, (x,¢). An arbitrary wave function \¥(x, t) would be a linear superposition of the

\Vn:
Y(x,)= Zc,v,(x,1). (4.56)

Problem 4.5 : Show that, in the state ¢, the uncertainty product Ax - Ap is given

by,
Ax-Ap = +l
p=\nts .

Problem 4.6: Show that, in the case of the 3-dimensional, isotropic harmonic
oscillator, the cnergy levels are given by

3
EN = (N +§J710),
withN=0,1,2, ...
Heisenberg Picture

The operators arc functions of ¢, so that (we drop the label /1 attached to Heisen-
berg operators),

! 2
i =200 ks
_L 22 2,.2,2
=5 [P@)+m i (1) (4.57)
The cquations of motion for £ and g, according to Egs. (4.33a, b), are:
df ol _p 458,
dt— 0p m’ (4.582)
dp  oH )
and —_——m— = v
an a % mx. (4.58b)
. - . ap
Differentiating (4.58a) w.r.t. ¢ once again, and substituting for i from Eq.
(4.58b), we get,
d% .
—+w%t=0. 4.58
dr’ (4.38)

which is of the same form as the classical equation of motion for the harmonic
oscillator.
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The solution of Eq. (4.58) is

= fie‘“” +é,e !
=d, cos o +d, sin ot (4.59)

4, =x2(0) =%, say,

2 0 td
o pelet| Lo
G wdr |,

so that,

(1) = £, cos ot +(f, imw) sin ¢, (4.59a)

. dx .

p(t):mgl—:pocos of —m®L, sin O (4.59b)
Substitating in {(4.57) from (4.59a, b), we gct,

- 1 . )
= %(pg+ m'wiy), (4.57a)

which is independent of time,
To obtain the energy levels of the oscillator, we have to calculate the matrix of
#1 and diagonalizc it. If we usc the u,(x) given by Eq. (4.50b), which are also state

vectors in the Heisenberg picture (sec Eq. (4.28b)), /1 would be diagonal. For,
PR S
o= = . 4,604
‘hrnn 2m (Po),,r,,*zmw (—xo)"rn ( 6 )

Now, g, and £, are the Heisenberg operators at time ¢ =0, and are hence identical
with the corresponding operators in the Schridinger picture (Eq. (4.29)). Thus,

iy=x;  Po=—ihi—-. (4.61)

Then,
) = . d
(P2, =it ) s

- A7 £¢;-(C)¢",(C)d§,

where { is given by Eq. (4.47a). From Eq. (E.9), we have,
0", =[0*-(1+2n)0, (4.62)

so that,

1 ﬁzﬂz 3, 2
5;([’02)“ = E“m“‘[(zn +1)3,,. - o (xo),,,,,],
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where, the orthonormality of the ¢, (Eq. (E.10)) has been used.

Now,
_ﬁlﬁ—ﬁ E—lhm-@j—lmwz
2m 2 Vm‘z T dm 20

Hence,

x o, (1 L
- (Po),, = (n + 2)?-(1)6”, S mw x0),,-
From Egs. (4.60a) and (4.63), we get,

1
H., = [n +§)hm 3,

Thus, the eigenvalues of H are given by

HMEEnz[n +%)ﬁ0), n=0, 1,2

105

(4.63)

(4.60b)

(4.64)

which are the same as those given by Eq. (4.51) in the Schrédinger picture.

Using Eq. (E.11a), we get,

1 , n+1 , n
(xo)u'n = a[ _2_ 81!'.» +1 + _2- an'm - l]

, 1 T
- M[\/an,n%l-" n+18».ﬂ'~1]

Also, Py, = (—iﬁ%)u,u =—ih _[:u,,.(x)%un(x)dx

* d
= -ita 6,0 0.0,
From Egs. (E.8) and (E.6a), we have

d
d—g¢n(c>=—C¢n+x/§ 0p_1-

Hence, (py),, = ihoX(xy)  —ikaN2n8,,. |

. ’ 1
=lﬁ{ %an,n'+l_ %——su,n'~lj)

=i me[‘\/’TBn.n'+l—- vn+1 8"'"'_1]'

From Egs. (4.59a, b), (4.65) and (4.67), we get,

.= \/ ﬁ[\/ﬁ exp (—iw)d, .,

+Vn+1 exp (io)d, .l

(4.65)

(4.66)

4.67)

(4.68)
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and (PO o =i\ 2N T exp ()8,

—Nn exp (s, .,

dax
dt

=m<n’ n >, {4.69)

where, [n>= |u,>.
Thus, the expectation values of £ and p are zero:

<n|f|ln>=0=<n|pf|n>. (4.70)
From Eqs (4.65}, (4.67) and (4.60b), we get the matrices x,, p, and A representing

%o Poand H respectively:

0 NT 0 0 0 1
N V1. 0 V2 0 o0 ... @7
> 2me |0 V2 0 N3 0 ... ‘
0 0 3 0 4 .
0 -v1 0 0 0
—(v1 0 -2 0o o
. mhm _
(Pﬂ)zi T 0 \/5 0 —-\[5 0 4.72)
6 0 3 6 -4
1
5 00 0
3
0 3 00
t=to| 5 0 (4.73)
2
7
000 3
Alternate Method

A method due to Dirac avoids the dependence on the solutions of the differential
equations of the Schrisdinger picture for the evaluation of the matrix elements of
operators in the Heisenberg picture. This inethod consists in finding suitable
operators with which one can generate all the eigenvectors of the Hamiltonian
from any given cigenvector, These eigenvectors will, then, define a representa-
tion. The Hamiltonian would, obviously, be diagonal in this representation
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Thus, the eigenvalue problem is automatically solved if we find the above
operators. The method anticipates the technique of field, or second, quantization
and is known also as the method of second quantization (see, Section 11.2).

The operators we seek are given by

d= (mak,+ip,), (4.742)

2mhw
4" = —==(mwi,~ip,). (4.74b)

2mh

From Eqs. (4.74a, b), we get,
7
£,= zmu)(d +4n, (4.75a)
%

5,= i -’%—“3«2* —4). (4.75b)

From the conditions,

we have [4,4%=1

[4,d] =0=[4",d". (4.58)
Substituting from Eqgs. (4.75a, b) and (4.76) in eq. (4.57a), we get,

A= (K/ +%)1-w, @.77

where, N =d"a. (4.78)
Thus, the problem of finding the eigenvalues and eigenvectors of / is reduced
to the problem of determining the eigenvalues and eigenvectors of N. Also, for
the linear harmonic oscillator, the Hamiltonian, together with the parity operator,
constitutes a complete set of operators. Therefore, N also will constitute such a
complete sct, so that determining the cigenvalues and eigenvectors of N solves the
harmonic oscillator problem completely.
Now, from Eqs. (4.76) and (4.78), we have,
[N,d] =-d, (4.79a)

[N,d" =+4", (4.79b)

It is also casily shown that N is Hermitian.
Let ¢, represent a normalized cigenvector of N belonging to the eigenvalue n.
No, =no,. (4.80)
Then, from (4.79a), wc have,
N(do,) =(n—1)(d9,), : (4.81)
which shows that (d¢,) is an eigenvector of N belonging to the eigenvalue (n — 1).

Similarly, (4"9,) is an eigenvector of N belonging to the eigenvalue (n—r). Now,
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n=(6,,n0,)=(,.N0,)=(9,4'd0,)

=(ds,,49,)=1146,11>20, (4.82)

since the norm of a vector, in this case of {d@¢,), cannot be negative. Therefore,
the series,
b,, do,, @%0,, ..., 4'6,... (4.83a)

should terminate as, otherwise, it would lead to a vector ¢ = (4)°¢, for which the

cigenvalue (n - 5) is negative. Let the last term of the series (4.83a) be denoted by
¢, Then,

d¢,=0. (4.84)
Thus, the series (4.83a) correspond to the eigenvalues
n,{n-1),{n-2),...,0
Similarly, from Eq. (4.79b), we get,
N(@',) = (n+1)(d"p,),

and

N, = +r)@Ye,
showing that the series,
4°0,,(@"0,,....(@0,,... (4.83b)
represents the eigenvalues
(n+1),(n+2),....(n+7r),..., oo,
Thus, the cigenvaluc spectrum of N is given by the non-negative integers:
n=01,2,..., 40, (4.85)

Any eigenvector of N can be reached from a given eigenvector ¢ by repeated
application of either 4 or 4*. Let us denote by the ket |n > the normalized
eigenvector of N belonging to eigenvalue n. That is

jn)=0,, (4.86a)
where -
(' |ny=38, (4.87)
Then,
o R P
fn)y=C(d") IO)—\[E(W) 103, (4.86b)

where a|0)=0, (4.82a)
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1
Problem 4.7: Show that C, =.\/——' in Eq. (4.86b).
n

The set {| n)} of vectors, for n varying from O to -0, constitutes a complete,

orthonormal set and, thus, defines a representation (called, the occupation number
representation). The operator N is diagonal in this representation.

(n'INIny=nd ., (4.88)
Al 11 ny=——d(@"" |0
50, dln —\[’ia 4 )
l n-1
= pn— (AT — _
n m(a Y 10y =Vnin-1), (4.89a)
so that,
(n'1d|ny=\nd,, . (4.90a)
Similarly,
dtlny=Nn+1jn+1), (4.89b)
and
(n'Id*In)=\]n+l5n,,"“ (4.90b)
={nl|d|n".

Thus, the matrices (a), (at) and (N) representing the operators d,d" and N,

respectively, are given by’,

01 0 0 0
0 0 V2 0 0
@=0 0 0 V3 0 (4.91)
0 0 0 0 <4
0 0 0 0 0
N1 0 0 0 0
0 V2 0 0 0 ..
ty= , 4.92
@=ly 0o % o0 o .. (4.92)
0 0 0 V4 o

7. Note that the first row corresponds 10 n” = 0 and the first column to n = 0.
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(N) = (4.93)

o R o Y s ) s i win ]
oo O = O
o 0 oD
S W o oo
o o0 o O

From Eqs. (4.75a, b) and (4.77), we sce that the matrices (4.91-93) are consistent
with the matrices (4.71-73) representing £, f§, and H.

A

Problem 4.8: Show that [, 4] = —(hw)d and [H,d'] = (Aw)d*.

Problem 4.9: Show that the expectation value of the kinetic energy T in the state
| #» > satisfics the Virial relationship,

N n 1
(), =(V), = EE"'
Creation and Annihilation Operators

From Eqs. (4.77) and (4.88), we have, for the eigenvalue E, of A in the state | n),
the expression,

E = (n +%) €=n e +E, (4.94)

where e="hw. (4.95)
Thus,

(E,-E)=ne, n=0,1,2, .. (4.94a)

This equation permits the following interpretation: The oscillator in the state | n)
is an asscmbly of n non-interacting particles, each of energy €. The different
states of the oscillator merely correspond to different numbers of the particles.
From Eqgs. {4.894, b), we sce that the operator d lowers the particle number by 1,
whereas 47 raises the particle number by 1. In other words, d' creates a particle
while g destroys, or annihilates, one, d* and d are, therefore, called creation and
annihilation operators, respectively. The relations, ¢ |0y =0, and 4% | 0y=| 1), are
consistent with this interpretation since a particie cannot be destroyed when no
particle is present as in | 0), but a particle can be created even when no particle is
initially present. The interpretation of N = d1d, as the number operator is, then,
suggested by Eq. (4.80).

It is in view of the foregoing interpretation that the representation defined by
the basis vectors {n), (n=0,1,2, .. +), 1s named the occupation-number
representation (n is the number of particles occupying the state | n). 1t should,
however, be remembered that the particle number ‘n’ is actually the quantum
number characicrising the state of excitation of the oscillator and it is only as a
matier of convenience that it is called a particle-number.
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4.2B The Hydrogen Atom

As another illustration of the application of the Schrédinger equation, we will take
up the 3-dimensional problem of the hydrogen atom.

The hydrogen atom is a two-particle system, consisting as it does of a posi-
tively charged nucleus (the proton) and a negatively charged electron, moving
under the influence of their mutual atiraction. This means that y in Eq. (4.14b) is
a function of r, and r,, where r, is the position vector of the electron and r, that of

the proton :

Y=y(r,r,t). (4.95)
Similarly,
H=H(r,r,V,V,1)
2 2
- —2—’;’—1 vf—"ﬁvy Vir,r, 1), (4.96)
* * &
where Vies—4—+—
Toxt oyt e
The Schrodinger equation for the hydrogen atom is thus,
L0 # # .
mgw(rl, rpt)= [—vaf—ﬁ Vi+V(r,r, z)]w. 4.97)
Now, in this case, V is derived from the Coulomb force, so that
. o Ze? .
Vir,r,t)=- =V(r,-r,), (4.98)
jri -1,

where, the atomic number Z = 1 for the hydrogen atom. Writing (r, —r,) =r, we

have,
2
V=V(r)= —ZT", (4.983)

r being the separation between the particles. r is called the relative co-ordinate.
Introducing also the centre-of-mass co-ordinate R, defined by

MR =mr +myr,, (4.99)
where,
M=m+m, (4.100)
is the total mass of the system, we have,
1
Ly lvio LyRisve (@.101)
m m, M u
where,
mm,
= g 4.102
a m,+m, ( )

is called the reduced mass of the system.
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Eq. (4.101) is casily derived by writing,
d ord aR d

V.=
1= 0r, or, ar or,dR
6 m] Jd m
MBR ——VR+Vr {4.103a)
d v ;L_V Ty 4.103b
an or, "'MF . )
Substituting from Egs. (4.98a) and (4. 101)in Eq. (4.97), we have,
4O R 0 [ # o, 2 }
4,
it 5 Ve qu +V(r)| P, R, 1), (4.973)
where,
O, R, 1) =y(r,r,0). (4.104)

Since the operator in the square bracket in (4.97a) is independent of time, we can
write, according to Eq. (4.17b}, L

&O(r, R, 1) = O(r, R) exp [—(i/A)er], (4.1042)
where (sce Eq. (4.18)),
w oy B ] -
[—EV 2L1V r+V(r)|¢(r, R)=¢eod(r, R). (4.97b)

Also, since cach of the operators on L.H.S. of (4.97b) depends either on r or on
R, but not on both r and R, a further separation of variables is possible in the form,

o(r, Ry =u(r)U(R). (4.104b)
Substituting this in Eq. (4.97b) and dividing throughout by ¢(r, R} we get,
ol v 4
———V -V Vv 4.105
{ MU R W u+Vir)-e ¢ )

Singe the expression in the curly bracket is purely a function of R and that in the
squarc bracket a function of r only, each of the brackets should be equal to the
same constant with opposite signs. Denoting this constant by E”, we have,

_¥ V2 RU(R)=E U(R), (4.97¢)
ﬁ2
and wz—quu(r) +V(rju(r) = Eu(r), (4.97d)
where, E=¢e-E' ore=E+E’, (4.106)

Equation (4.97c) represents the uniform motion of the centre of mass, E” being
the kinetic energy associated with such a motion. Equation (4.97d), which
represents the relative motion and, hence, depends on the internal structure of the
atom, is the more interesting one. This equation has the appearance of the
Schrédinger equation for a single particle of mass 1L moving in a field represented
by the potential V(r). We have, here, the well-known reduction of a two-body
central force problem to a one-body problem.
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The Relative Motion

Solution of the equation (4.97d) representing the motion of the electron® relative
to the nucleus, would give us the encrgy levels and the wave functions of the
atom. The method of solution to be described below, is applicable whenever the
potential is spherically symmetric (that is, when V is a function of the radial co-
ordinate r rather than of the vector r).

In order to take full advantage of the spherical symmetry for the solution of the
equation, we use spherical co-ordinates (r, 0, ¢) instead of cartesian co-ordinates
(x,y,2). The relationship between the two systems of co-ordinates is given by (see
Fig. 5.1),

x =rsin 0 cos O,

y=rsin8sin¢,
z=rcos0. (4.107)
Then (see Eq. (541)),
R S o
Vie—+—+—
Toox? 9y? 0z

_19(,3 1{Li neld +;_ai}
T 2o Br 2|sn0oel > o0 sin’0 00>

13(,0) L2
Zar( ar] ~ (4.108)

where, L is the operator corresponding to the orbital angular momentum r x p (se¢
Eq. 5.43)°. With the substitution of Eq. (4.108), Eq. (4.97d) takes the form,

[587[’26%) 2“’ M oE- V(r)}}u(red)) C¥u(r,0,0)=0  (4.109)

Since the terms in the square bracket arc independent of the angular co-ordinates
while L? is independent of the radial co-ordinate, the solution would be of the
form,

u(r,8,0)=R(r)Y(8,¢). (4.110)
Substituting in Eq. (4.109) and following the same procedure as in the case of
(4.97b), we get the equations,

8. Since the mass of the proton is about 2000 times that of the electron, the reduced mass p is only
slightly smaller than the mass of the electron. Therefore, the motion in this case is nearly that of
an electron around a fixed nucleus.

9. Eq. (4.108) corresponds to the resolution of the total linear momentum g = —iAV, of a particie in

its orbital motion, into the radial componem

Jd 1
P, = m a—r- m(r/r)( r)

and the perpendicular component p, = (L/r):
P=P,+P:
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LY (8,4) = *AY(0,0), (4.111)
ant
& 2d W _i} _
{d—r+-'d7+F(E—V(r)) ]’2 R -~0, (4112)

where, A is the separation constant.

From Eq. (4.111), we see that Y (8, ¢} is the eigenvector of L?*and A#* the cor-
responding eigenvalue. ‘That is (see Egs (5.44), (5.46) and (5.56b)).

A=I{1+1), (4.111a)

Y(8,0)=Y,,(8,0) (4.111b)

with m==1-1+1,...,+, {4.111¢)
1=0,1,2,...+0o. (4.111d)

Y,.(8,0) is called the spherical harmonic of order 1. 1ts properties are discussed
in Section (5.4).
The Radial Equation

Substituting from (4.111a) and (4.98a} in (4.112), we have,
2
.
;

T ordr

T
Or (muluvlymg throughout by r),
& WZe’ WiEr :(1+1)H
= R = 4.11
Tart dr w o w T 0 @112
Putting,
E=-e;a2_8”f,p— 4.113)
We get,
> pze® p 1(1+1)H
— 2 - =0 4.112b
[p 2dp{m2 e 10 (4.1120)
where,
y(p) o< R(r).

Equaton (4.112b) is the differental equation for the Associated Laguerre
Function, provided'® (see Eq. (E.21)),

uZe? |, k-1
ﬁz =n'-, (4.114a)
' k*-1
and 1) =, (4.114b)

10. Tfthe conditions (4.114a, b) are not sauisfied, Eq. {4.112b) has no solutions that are acceptable as
wavefunctions of a physical sysiem {that is, solutions that are finite, continuous and square
inlegrable in the range 0 < p < oo).
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where n” and k are both positive integers, and n’ > .
Equation (4.114b) can be written as

k-1 k-1
W+ = ( 2 +1)(T]’
v -1
so that, . =120, (4.115a)

or k = (21 +1), an odd integer. (4.115b)

Since k <n’, %—l:l<n', so that

-1
n=n'—f—i——-=(n’—l) (4.116)

is a positive integer: n=1,2, 3, ...
From Egs. (4.116), (4.114a) and (4.113), we have,

pot[zeT1
2\ a e’

Thus, the energy eigenvalue E,, corresponding to the quantum number n, is given
by

2 2,2
Enz_eﬂz_”zifz:_i;z 4.117)
n
.h?.
where, Ay=". (4.118)
Le

a, has the dimension of length and is equal to the radius of the first orbit for

hydrogen (Z = 1) in the Bohr atom model. It is called the Bohr radius of the atom.
The solution of Eq. (4.112b) is {(see Eq. (E.20)),

y(p) = L, ,(p) = e Pp* 2Lk p)

e 'L2 (), (4.119)

n+1
where use has been made of Eqgs. (4.115a, b) and (4.116). L¥(p) is the Associated
Laguerre Polynomial of degree (n”—k), given by Eq. (E.19):

[(n + D%’
(n=1=1-5)2+1+5)s!"
The radial wavefunction corresponding to the quantum numbers n and / (or n’ and
k), is given by

(4.119a)

n+l

n-1-1
Lﬂ+l(p): ?0 (_1):+21+1

Ry (r)=NyL,(p)= an‘:(.HI) (21+1)(P) (4.120a)
where, N, is a normalizing factor, such that

o0 1 oo
L R(r)r’dr =N, IZEL p*l L, (p) Pdp=1. (4.121)
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From Eq. (E.24a), we have,

- (1 (20 =k +1)
[0t ety ap =

(n" — k)
13
- 2——("’33";’1);‘;’ (4.121a)

Also, from Eqs. {(4.113), (4.118) and (4.117}, we gct,

ox=o =—\/ —8E, =[£] (4.121b)
" afe?’) \ndy

From Eqgs. (4.121), (4.121a) and (4.121b), we have

172
Ni{[&](__f_u_] , @122)
nag) ni(n + 013
_ 27 ¥ (n—1-1)! . 2 0p U+lp s,
and R,d(r)ﬁ—[(;aj '“_zn{(nﬂ)!r} e L2 N p); (4.120b)

wherc the negative sign is chosen so as to make R, positive. The total wave-
function, Eq. (4.110), is given by

U, (r,8,0) =R (r)Y, (0,0). (4.110a)
with ¥,.(8, ¢) given by Eq. (5.56b). The quantum numbers n, [, m are, respec-
tively, called the total .quantum number, the orbital guantum number and the
magnetic quantum number,

These quantum numbers determine the energy, the angular momentum and the
angular momentum along the axis of quantization, respectively. It is seen from
Eq. (4.119a) that, for a given a, the maximum value of { is (n — 1). Also, from the
theory of angular momentum (see Eq. (5.49b)), we have that m varies from —/ to
+ for given {. Thus, the range of values of the three quantum numbers is as
summarised below:

n=123,..., oo,

1=0,1,2,...,(n— 1),

m=~l,-1+1,...,+. (4.123)
It is customary 1o denote the [-value by an alphabet. The (spectroscopic)
nolation for different {-values are given below:
I=0123 45

Notation: spdfgh (4.124)
Using this notation and with the help of Table E.3, we list below some of the radial
wavefunctions given by Eq. (4.120b):



QUANTUM DYNAMICS 117

1 32
(EEJ (ria)e™™, (4.125)

¥
ul"'

R, =21 3f2[27— 18(r/a)+2(r/a)e™™
% =57\ 32 d8(r/a rla)le ",

R ——S-im la)[6-(rla)e™™
» = 5778\3a (rla)[6—(rla))e™™,

4 1y
R,=———|=—1| -(ria)e™™,
¥ 27\/10(3(1) (ria)

where a=(a,! 7). (4.126)
The radial probability distribution is, however, proportional to | rR,(r) [*. InFig.
4.3, we have plotted (r/a)R ,(r) for some values of n and /.

We note from Eq. (4.120b), that R (r) has a node at r = 0 except for [ = 0 (due
to the factor p') and at r = infinity (due to the factor e™®?). Also, there are
(n ~1—1)=n, nodes between r = 0 and r = (L} being a polynomial of degree
n—k). For this reason, », is called the radial quantum number.

Now, from Egs. (4.110a) and (5.60c), we have,

Pu, (r,0,0)=u,,(r,n—0,+0)
= (-1i,,,(r.6,0), (4.127)
where, P is the parity operator. Thus, the parity of the state is determined entirely
by the orbital angular momentum. Since the energy depends only on the quantum
number n (Eq. 4.117)), the degree of degeneracy of the level E, is

n-1
ZQ@I+1)=n (4.128)
t=0

Of these, the (2/+1)-fold degeneracy (the m-degeneracy) associated with a given
[, 1s a common feature of all central fields, arising from the inability of such fields
to distinguish between different orientations in space. The [-degeneracy is,
however, characteristic of the Coulomb field. In Fig. 4.4, we have plotted the
encrgy levels along with the potential. The I-degeneracy gets removed in some
hydrogen-like (alkali) atoms because of the screening of the coulomb field. The
m-degeneracy can be removed by applying a non-central ficld such as a magnetic
field in which each level (of a given [) splits up into (2/+1) level (Zeeman Effect).

From Egs. (4.110a), (4.120a), (4.122), (5.57), (E.25a) and definition (4.126),

1
we get, for the expectation value of P in the state u,,,,(r, 8, 9), the expression,



118 QUANTUM MECHANICS

Fig. 4.3 The radial wave functions, {r/a)R (r), for the hydrogen atom.

(l) = f% fa,,.(7,0,0) P ridrdQ

r rim
= rrR,i(r)dr f Y,.(6,6) F dQ

2
,IN"JI @y
- 0(.2 n+dn+l

(L
“n%a /S
Similarly, using Eq. (E.25d), we get,
{(rla)),,. :% (32— 101 +1);

and using (E.24),

2
(ria®y, = % [5n®=31( + 1)+ 1];

»>{r/a)

(4.1292)

(4.129b)

(4.129¢)
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and

: PR )
(1@ im = [%) —2%@?;3]—3 (n+l?)n(ill N

_ 5'(n—1—1)z=+1{ (s +1)! }2(n+l+s+l—r)!
_(2) 2n(n +1)! Eo +1=-nNrtj m-1-1-r) (4'1_2%)

In the formula (4.1294), s 2 -1.

En
A
n=oo 0 — X
e —"116)
= / (9)
n=2 4)

v(r)

n=1{ | (1)

Energy level diagram for the hydrogen atom shown in relation to the potential. The

Fig. 44.
numbers in parenthesis on the right indicate the degeneracy of the level [Egs. (4.117) and

(4.128)].

Problem 4.10: Show from Egs. (4.129a) and (4.117), that (') =—3(V), where T

and V, respectively, represent the kinetic and the poiential energies of the atom.

I.
2.
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CHAPTER 5

THEORY OF ANGULAR MOMENTUM

Angular momentum plays a much more important role in quanium mechanics
than in classical mechanics. This is, probably, due to the relatively greater
importance of periodic motions in the former. Periodic motion can be envisaged
as motion in a closed orbit which naturally involves angular momentum, The
existence of the intrinsic angular momentum (spin} could be another reason, A
third, and probably most important, reason is that angular momentum is quantized
(unlike lingar momentum}).

5.1 THE DEFINITION

In classical mechanics, angular momentum of a particle about a point O (see Fig,
5.1} 1s defined as

L=rxp, 5.1)
where r is the position vector and p is the linear momentum of the particle. The
corresponding quantum mechanical operator can be obtained from Eq. (5.1) by
the application of Postulates TV and V: we replace the dynamical variables r and
p by the corresponding operators. Then,

L,=@p,~%p,), (5.2a)

OF, Writing X = X, ¥ =X, €1C.
Li=e i (5.20)
wiere g sepeaied index 1810 be sumimed over,
Here,
e . =+1, il /& 18 an even permutation of the numbess 1, 2, 3.

1k

=--1, if ijx i an odd permutation of 1, 2, 3,
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Fig. 5.1

=0, if any two indices are equal.
Also, [£,p] =ind,,
[x,x) = (5,5} =0.
From Eqgs. (5.2b) and (5.3), with the help of the identity,
[ab,cd) = alb,cld +1a,clbd +cla,d]b +ac[b,d],
weC gct,
[[:,-,[:f] =ih € i LA'k'
The square of L is defined by ,
=02+ 02+ L2

x y z
Then, [L%L)=0, (k=1,2,3)
or (LA L) =0.

121

(5.3)

(5.4)

(5.5)
(5.6a)

(5.6b)

Thus, the components of the angular momentum operator do not commute
among themselves though they commute with the square of the angular momen-
tum opcrator. As will be shown, the commutation relations, Eq. (5.4), determine
the quantal properties of the angular momentum. That is, the eigenvalues and the
" eigenvectos of the angular momentum operator are completely determined by Eq.
(5.4) and the general properties of the Hilbert space. Therefore, the commutation
rciations themselves are taken for the definition of the angular momentum oper-

ator in quantum mechanics.
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Thus, a vector operator J is an angular momentum operaitor if its components
are observables (hence, hermitian) and obey the commutation relations,

. ) =ihf,, cyclic (5.72)
Since Ixi=1, 1)+ 10,805+ d )k
the commutation rclations can also be written as,
IxJ=inj. (5.7b)

This definition enables one to treat entities which have no classical analogue, .
such as the spin and the iso-spin of elementary particles, on the same footing as
angular momentum. The angular momentum represented by Eq. (5.2a) is called
the orbital angular momentum,

Problem 5.1: Show that an operator which commutes with J, and J,, commutes

with J_ also.

Angular Momentum of a System of Particles

We postulate that the angular momentum operators referring to different particles
commute;

(3.31=0, i=j, (5.8)
where the subscripts label the particles. Then, the operator corresponding to the
total angular momentum of a system of N (non-int¢racting) particles, is given by,

N
= ‘_E (5.9

>

It is easily verified that

N A
where J.=%J,

so that j is, indeed, an angular momentum operator. Thus the vector-sum of a

commuting set of angular momentum operators is an angular momentum opera-
tor.

5.2 EIGENVALUES AND EIGENVECTORS

Since the components of the angular momenturn operator do not commute among
themselves, we cannot find a common basis for all the three components. How-
ever, since J® commutes with J, we can have a commen basis for J? and one of the
components, say J,, of J.

Let {i otjm)} represent such a common basis. Here, & represents the eigenva-
lues of operators (such as the Hamiltonian) which, together with PandJ, forma
complete set of commuting observables for the system. j labels the eigenvalues
of J*and m those of J,. The vectors | ctjm) are orthonormal :
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(@j'm" | ojm) = 8., d,;8,p- (5.10)
For the sake of simplicity in writing, we will write | jm > in place of | ojm).
By definition’,
32| jmy= A2} jm), (5.11a)
J 1 jmy=m#|jm). (5.11b)

J2, being the sum of squares of Hermitian operators, is positive definite. There-
fore,

(m | 3| jm)
X]. a————»ﬁ-z———zo. (5.12)
Also,
Gm 1 P jmy =P =D+ TH+ T 2 (D,
so that, from (5.12),
A, 2m?20. (5.13)

It is convenient, at this stage, to introduce the non-Hermitian operators J, and
J_, defined by,

Jo=dsid, (5.14)
In terms of J Land
PO P
Jx=’2'( +F), (5.15a)
P R
J’ZE(J__ ) (5.15b)

The following commutation relations for the setJ,,J ,J, and J? are easily derived
using the basic commutation relations (5.7a):

/) = x4/, (5.16a)
U.,J] = £ 24f, (5.16b)
[2Jj] =i%J) =0 (5.16¢c)
Also,
P=30d vl (5.17)
JJ =-JJ, +n), (5.17b)
Fi =¥-id,-n. (5.17¢)

1. Wecould write A7 instead of m# in Eq. (5.11b), but we have written m# in anticipation of the
result.
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SinceJ, andJ commute with J2, 7, | jm >are cigenvectors of J? corresponding
Lo the same eigenvalue as | fm > .
YN jmp)=rg ) jm)). (5.18a)
Bul, from Eqgs. (5.16a) and (5.11b), we have,
JA 1 jm) = J £1] )1 jm)
=(m = D/, | jm)). (5.18b)
Thus, J. | jm) is an cigenvector of J, belonging to the eigenvalue (m + 1) %
whereas J | jm) is an cigenvector of J, belonging to the eigenvalue (m — 1)
Tl my=he’,, Ljm £ 1), (5.19)
where ¢, is a scalar.
Since J, raises the m-value of an eigenvector of J* by 1 and J_ lowers the

cigenvalue by 1, J. and J. are, respectively, called the raésing and the lowering

uoerators of angular momentum,
By repeated application of Eq. (5.19), we find,

(FY | jmdes | jm + p), (5.192)

where p is a positive infeger or zero, This shows that we can reach any vecior
| jm"y by repeated application of J, on | jm) if m”—m = a positive intcger, and by
repeated application of J_on|jm)if m"—m = a negative integer. However, the
serics,

F 1 jmdyJ2 | jm), ... 0% | jm), ... and

I jm) 2 jmy, I L jm), ey
should terminate as, othcrwise, we would have vectors | jm”) which violate the
incquality (5.13), since A; 18 not changed by the application of F,on [ jm). Now,
the series can terminate only if there is a value of m, say m,, for which J.| Jm)y=0,
the null vector, and another value m, for whichJ_| jm.)=0. Since | jm,yand | jmo)
are obtained from | jm) by repeated application of /. and J_respectively, we have,

m_—m_ = apositive integer or zero, (5.20)
Now the vector J + | jm,}= 0, when its norm is zero. That is, when,

o im» @, 1im»=0,

or Gm, 10T, | jm)=0, (5.21)

—
.t
1
bt

sinee J
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Using the expression (5.17b) for J J, and from Egs. (5.10), (5.11a, b) and (5.21),
we get,

A =m(m, +1). (5.22a)
Similarly, J_1jm >=0,
if A =mm ~1) (5.22b)

Combining Egs. (5.22a) and (5.22b), we have,
’n>(m>+ l) = m<(m<_ 1)1

or, (m,+m)(m,—m +1)=0.
Thus, cither m,=m,—1, (5.23a)
or, m =-m_. (5.23b)

Condition (5.23a) is ruled out by Eq. (5.20). Hence, only (5.23b) is acceptable.

Now, A, being the cigenvalue of J% depends only on j (by our definition of
| jm), so that, according to Eqs. (5.22a, b), m, and m_ should be functions of j only.
The choice,

m,=j, (5.24)
meets with these conditions. Then,
m =-m =—J,
So that, from Eq. (5.20),
m_—m =2j = apositive integer or zero.

Thus,

)19

[SARVS]

et oo (5.25)

[ S e

j=0,

The eigenvalue A, according 1o Eq. (5.22a), is given by
A= +1). (5.26)
m can have any value between j and — j such that
J—m = apositive integer or zero. That is,

m==j,—j+1,...,4j (5.27)

Since the value of j, the maximum value of the projection of the angular
momentum vector on the z-axis, fixes the length of the angular momentum vector
uniquely, the latter is usually specified by its j value. Thus the statement: ‘‘the
angular momentum of the particle is 3/2°’, means that the angular momentum

. ' 35 . .
vector is of length ‘\f 531 This length can, however, never be observed directly.
For a given value of j, there are (2/ + 1) linearly independent vectors | jm >,

corresponding to the (2j + 1) different values of m given by Eq. (5.27), which are
common eigenvectors of J>and J,. If one of these vectors is given, the others can
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he generated from it by the repeated application of J.andJ . Let|jm >represent

the given vector, where —f <m < j. Then, from Eqs. (5.19), (5.17b), (5.114, b)
and (5.26), we get,

G—m}{j+m+ A

=y
so that, ¢l = eENG-—m)G+m+1) (5.28a)
Similarly, ¢ =eNGrm)G-m+1). (5.28b)

Here, & and vy arc real scalars, independent of j and m. From Egs. (5.19) and
(5.28a, b), we have
' J lim>=e®™{-m)G+m+ )R jm+1> (5.292)

and Fljme=e"{+my-m+ )} ) jm—1>. (5.29b)
Multiplying Eq. {5.29a) with J_and using Eq. {5.29b),

JJ 1 jm = NG -m)G+m+ 0} jm >
Rut, using the expression (5.17b) for J 7, we get,

Fims>={(-m)(j+m+1}h|jm>.

Hence, e ® =1,
or, y=-8. (5.30)
Thus, the choice of & fixes the phase of all the vectors relative to | jm >. The

phase of | jm > itself is, however, arbitrary. Following the usual practice, we put
8=0. Then,

Fm>=4G-m)G+m+ 1" jm +1 >, (5.31a)
Fljm>={(j+my(j—m+ 1} 20| jm —1>, (5.31b)
Problem 5.2; Deduce the following relationships:
_ L[ gemp }W e
{a) ljtm >”w-“{lM{2j)!U—m)!} Uy Tijxi>.

_ { (G +m)!
T @y LNy -m)

12
(b litj> } Gy ™ jtm>.

S3MATRIX REPRESENTATION

The vectors | jm >, for m =—j to j, constitute 8 basis for a (2j + 1) — dimensional
subspace of the Hilbert space of the system, The components of J as well as J?
are represented by Hermitian matrices in this space, where the rows and columns
are fabelled by the (24 + 1) valucs of m. Thus,
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P =<jm | Pl jm >=j(j + A5, (5.32a)
) =<jm’|J,|jm>=mhd,, (5.32b)
From Egs. (5.31 a, b), we have,
V), =NG-m(j+m+Dhs ..., (5.32¢)
), =NG+m)(-m+ 1)1, (5.32d)

The matrices representing J Land J , could be obtained from Eqs. (5.15 a, b) and
(5.32¢,d):

J= % .+, (5.32¢)

J, =%(]_—J+). (5.320)

As expected, J* and J, are diagonal in this representation.

Problem 5.3: If J, and J, are real matrices show that J, is a purely imaginary
matrix.

Problem 5.4: Show that T'r(J,)=0, (u=x, y,z).
Problem 5.5: Obtain the angular momentum matrices corresponding to j = 1.
Pauli Spin Matrices

1
When j = 5 we have, from Eqs. (5.32 b-d),

I

3
Udigin = = Uip 0= 2

(Jz)fln,m = (Jl)m,fmzo’

(Jt)m,m = (Ji)fm.fmz 0,

)

enan = (J')l/2,41/2:

(J+)1/2,71/z = (J*)-m,m =H.

Hence, the matrices J,,J, and J_are given by

0,
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Then, from Eqgs. (5.32 ¢, f),

#(0 1 #0 i
J’“i(l 0]' J"i(i 0]‘

The Pauli spin matrices” o,, G,, G, are defined by

#
Juzﬁow (L=x,y,2). {5.332)
Th =% Mo o<t © (5.34)
us: oYy o) T Tl - '

We will see, in the next section, that the angular momentum arising from the
1

orbital motion of a particle corresponds to integral values of j. Therefore, j = 5

corresponds to the intrinsic angular momentum, or spin, of a particle.” Denoting
the spin vector by s, and the vector whose components are ©,, G, G, by 0, we can
write Eq, (5.33a) as,

#

$=30. (5.33b)

The following properties of the Pauli spin matrices are easily verified (For ease
of writing, we replace x, y, z by 1, 2, 3, respectively).

[o, 0] =2ig,0, (5.352)
{c,0} =25, (5.35b)
0,0, =8, +i€,0; {(5.35¢)
G,0,0,=1, {5.35d)
Tr(c,) =0, (5.35¢)
det (c,) =-1. (5.351)

Here {a, b} = ab + ba, is the anticommutator of a and b.

Problem 5.6: If A and B arc vector operators such that
(G, Al = [0, B] =0, show that,

(G6-A) G By=(A-B)+ic - (AxB)

Problem 5.7: Write down the Pauli spin matrices in a representation in which o,
is diagonal.

2. Panli, Wolfgang [Z. f. Physik, 43, 601 (1927)] was the first to introduce them.

3. The hyputhesis of an imnnsic angular momentum for ihe electron was put forward by G.E.
Uhlenbeck and S, Goudsmit [Die Naturwissenschaften 13,953 (1925)]. It is now recognised that
spin, like electric charge, is one of the intrinsic attributes of all elementary particles. The spin
could be half integral or integral, including zero. '
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Problem 5.8: Show that if A is a matrix such that
{A,0} =0, p=x,y,2,
then, A is null.

The Spin-Eigenvector

The eigenvectors corresponding to spin are given by*

1, (.11
| o) =l§§), (j =ym —+2), (5.36a)
d )—l—~— = m = (5.36b)
an 1B j=pm=—3| .
| o) represents the spin-up state and | B > the spin-down state:
o, loy=+]| ), (5.372)
S, 1B)=-1B) (5.37b)

In matrix notation the eigenvectors are

e

where c,a=o;0,p=-f.

Using expression (5.34) for ,, we get

o= @; B= ® (5.36¢)

o and B represent, what are called, pure states. In an ensemble of spin % particles,

it is unlikely that all the particles are spin-up or all spin-down. It is more likely
that some of the particles are spin-up and the others are spin-down. The spin-
wavefunction, or spinor, X corresponding to an ensemble is, therefore, a linear
superposition of o and f3:

C
X=c0+cp= ( ‘] (5.38)
€y
=X+X,
where I P2+ c, P=1 (5.39)

54 ORBITAL ANGULAR MOMENTUM

The results in the previous two sections have been deduced from the general
definition, (5.7b), of angular momentum and the general properties of vectors and

4. o here, is not 1o be confused with the ain Eq. (5.10).
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operators in the Hilbert space. We will now discuss the properties of the angular

momentum represented by Eq. (5.2a), which, as its classical counterpart, Eq.

{5.1), indicates, arises from the orbital motion of particles.

In the co-ordinate representation, we have [see Eq. (3.18' )] P =—ihV, so that

from Eq (5.2a), we have’,

Lyitfx oy 2
TSy T )

(5.40)

Angular momentum, as we will see in Section 5.6, is intimately related to rota-

nons of a physical system in space. It would, therefore, be advantageous 10 use

spherical co-ordinates (r,9,4) in place of cartesian co-ordinates {x,y,z) in Eq.

(5.40). Using the relationships-(4.107) and

or _x 90 _xcot® db s5in O
P ox s ox  rsin®

ir y 08 ycot 9 _ cos®

dy r’dy ¢ '3y rsin®

or _z 99 1 do _
G g0

we have,
9 _x [i 1o, 2800 a}
ax rlarTr O G x sin Bdd
_23__1[3 1 0 cos¢o a}
3y rlar s ’ae T sn6d0)
a_ E[i Lﬂﬂi]
oz or  z 08

so that,

L= n{ sin ¢%+ cot § cos coé%},

5. With the differential operator form for f, the commutation rules [£, 5]

(5.41)

{5.42a)

=ihi, etc., are automati-

cally implicd without making a distinction between £ and x. Therefore, in this section, we wifl

write x, ¥. 2 in place of £, §, 2.
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L= iﬁ[— cos d’“aae + cot 0 sin ¢—aa¢], (5.425)
. d

=—jHh-— 2
L, z‘had), (5.42%)

and

'2_ 2 2 2
L*=L +L /+L;,

1 9 0 1 &
= —{ sin = [+——=——=|. 5.43
h{ sin eae[sm 689)+sin 268(1)1} 649
Problem 5.9: Establish the following commutation relations for the components
of the angular and linear momenta:

[ii,ﬁj] =it € ik ﬁk‘
Hence show that L, i)ZJ =0

We will denote the eigenvectors of L2and L, by [ /m >, so that,
L2 im >=1(+ 1% | Im >, (5.44)
Lllm>=mh|lm>. (5.45)

Now L2 and L, are purcly functions of 6 and ¢. Therefore, in the co-ordinate
representation, the eigenvectors | {m > also should be a function of 6 and ¢ oniy:
<rflm>=Y,(6,0) (5.46)

From Egs. (5.42c¢), (5.45) and (5.46), we have,

—ma% Y, (6,4) = mhY, (0,0).

Integrating with respect to 6, we get,
Y,.(0,0) =1, (0)e™, (5.47)
where f,,, is independent of ¢.
Now, the wavefunction Y,, should be a single-valued function of 6 and ¢, so

that,

Y,.(0,0+2m)=Y,.(6,0). (5.48)
Eqs. (5.47) and (5.48) yield,
i2nem —_ 1

€

?

or, m =%n, where n is a positive integer or zero.
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Hence, ! = largest value of m
= a positive integer or zero.
That 1s,
[=0,1,2,..,+e {5.49a)

m=—l,~{+1,,.,+H. (5.49b)

Thus, in the case of crbital angular momentum only the integer values are ailowed
in Eg. (5.25).

in order to determine f,,(6) in Eq. (5.47), we have to solve the equation,
£77,00,8)—1(1 + )IY, (6,4) = 0.

With the help of Eqs. (5.44) and (5.47), and with the substitution, £ = cos 8, this
eguation could be reduced to,

d 2
[(1 -g )déz 2& & {1(1 +1)- T Hwa..(ﬁ) =0, (5.50
The two independent solutions of Eq. (5.50) are [sec Eq. (E.35)],

wi§) = P1(§) = (1-&m fzd’:;'i&), (5.51a)
d"Q,
and Wil8) = Or(€) = (1 - §)m/2 d%_@, (5.51b)

where P,(€) and Q,(£) are solutions of the Legendre’s differential equation,

[(1 g)d? d§+1(z+1)]w,(&) 0, (5.52)

and are known as Legendre polynomials of the first and the second kind, respec-
tively, of degree I. P(E) and O(E) are, respectively, the Associated Legendre

functions of the first and the second kind. Q&) is not acceptable as a

wavefunction, since it is not finite at all points in the interval —1 £ € < 1. Thus, the
solution that is related to f,.(8) is given by Eq. (5.51a). Using the Rodrigue’s
formula [Eq. (E.26b}],

P 1 d -1 5.53
!(&) zglrdEJ;(& ): ( s )
for the Legendre polynomial, the solution can be written as,
m _ g2 m/2 L d”m 2 i
PrR=(1-89 [2‘!!(]@“"‘@ 1)] (5.54)

The properties of P;" are listed in Section (E.3).
The eigenvector <r | Im > is, thus, given by,
<r|im>=Y,(8,¢)=c, P cos B)e™, (5.55c)
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where, ¢,, is a normalising constant, to be determined from the condition,
<Im|lm>= fY;,(e, 0)Y,,(6,0)dQ =1, (5.66)

where dQ = sin 0d0dd = -d(cos 0)dd, is an element of solid angle. Now, from
Eq. (5.55a),

+1
JY,;(e, 0)Y,.(0,0dQ=]c,, I’ L {P(cos 6)} d (cos 0)

m
xf e %™
[+]
4n (I+m)!
20+1 (l-m)Y

2+1 (I —m)!]m
an (+m)]

using Eq. (4.40).

2
=|Cp

Thus, fcpn =[

or ¢, =e

Im

5{21+1_(l—m)!} (5.57)

an  (I+m)!

The factor ™ represents the arbitrary phase factor we mentioned in Section (5.2).

We choose,
el = (1" (5.58)
L m 21+1_(1—m)1}"" ,, o
Then, Y,.(0,¢)=(-1) |:_47t —_—(l+m)! P(cos B)e
L ,+ML{(21+1)!(l—m)!}m o i
=0T a0
2 lmsin”e im o (5.55b)
d( cos 6) € )

Y,.(8,0) is called the spherical® harmonic of order I.

We list below some of the important propertics of the spherical harmonics;
which follow from Egs. (5.55b) and (E.37), (E.38) and (E.40).

Y,.(6,0)=(-1)"Y, ,.(8,0). (5.59a)

=(-1)"Y,,(-6,-9). (5.59b)

6. The Laplace operator V2, in spherical co-ordinates, is given by
szl_a_ ,Z_a_ _ji
ar\” ar Tt
Thus, r'¥,.(8, ) are the solutions of the Laplace equation V’¢ = 0. The Y,.’s are, therefore, the
solutions of the Laplace equation on the unit sphere (r = 1), Hence the name spherical harmonics.
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Orthonormality:

J¥:,48,0)7,,(6,0)dQ = 8,3, (5.60)
Parity: If P represents the parity operator,
PY,,(8,0)= (-1)Y,,(6,0). (5.61)

Thus, the parity of Y, is (~1)'; which is even for even values of ! and odd for odd

values of /. This result is easily derived as follows:
The parity operation is the reflection of the co-ordinate axes at the origin.
Therefore under this operation (see Fig. 5.2)

F\

L
z!

Fig, 5.2. The effect of parity operation on the angular co-crdinates (9, §).
0-n-0, ¢orn+d
Thus, PY, (6,0)=Y,(n~-0,m+0).

NOW, e:m(ﬂup):elmﬂ:elm@_(__])melmo,

Pl(cos (m-0)) = P"{(—cos 6)
=(-1)""P(cos 0), from Eq. (E.38)
Hence, from Eq. (3.35b),
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Y, (n—0,m+¢)=(-1)'Y, (6,0).

Addition theorem’ :

4r
204+1.

>: Y1(0,,0,)7,,(6,0) = P,(cos 0), (5.62)

where, the angles involved are shown in Fig. 5.3.

z

f

r (84,

r2(02,%p)

—>Yy

Y AU S

X
Fig. 5.3. Angles involved in the spherical harmonic addition theorem [Egq. (5.62)].

From the figurce, we have,

I NG+ Y)Yt

cos6 = =
nr, nr,

Using, x, = r, sin 6, cos 0,, etc. [sce Eq. (4.107)], we get,
cos 8= cos 6, cos 6,+sin 6, sin 6, cos (6, — ¢,). (5.62a)

The spherical harmonics for the lowest few values of 1, are listed below:
Yoo(0,9) = f

Y,,(0,0)= ‘\’ cos 0,

7. A derivation of the theorem is given in Section 5.6 [(Eq. (5.152)].
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¥, (8.6) =7 } % sin B,
5 2
Y,(0,0) = Tgﬁ@ cos 8-1),
- 15 : *id
Y, (0,0)="F ﬁsmecosee ,

Y,.:6,0)= %sinzﬁei’“,
2+ 1
Y (8,4)= e P(cos9),
Y,.(8,0)=c, (sin6)'e™, (5.63)

where ¢, is independent of © and ¢.

Since the dependence of ¥,,(6,6) on ¢ is contained in the factor e*™, the
absolute value |Y,.(0,¢)] is independent of ¢. In Fig. 54, we have plotted
| ¥..(6, %) | as a function of 8, for the lowest three values of {, where | ¥,.(0,9) | is

proportional to the radial distance from the centre. Noie that there is only one
value of | ¥,,(0, &) | for a given value of 6.

a=1
=2, m=%1 L=2,m=%2

Fig. 5.4. Polar diagram showing | Y,(8,4) | as a function of 6,
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Now, the probability density for the particle to be found at 6 is given by
2n
£,.(0) = L 1Y,,(6,0) " do=2nY,,(6,0) " (5.64)

Let us consider the two extreme cases, m =0and m =t /.
m=2=l

In this case, the angular momentum vector is-‘parallel’ to the z-axis so that the
particle-orbit should be in the xy-plane (6 = w/2). We see, from Fig. 5.5, thai this
classical expectation is not fulfilled except for very large values of I. For low
values of /, there is appreciable probability for the particle-orbit to be at an angle
to the xy-plane.®

6=0

N 4 \\ ’1 \\ ’/
=T e=T1 6=TT
L=1,m=t1 L=2,m=%2 L=i0,m=%10
Fig. 5.5. Polar diagram of %, (8) given by Eq. (5.64).
m=90

The angular momentum vector should be in the xy-plane, so that the plane of the
particle orbit should make an angle zero with the z-axis. Again, this expectation
is realized only in the limit of very large angular momenta.’

8. Note that the plane of the orbit undergoes a continuous change corresponding to the precessional
motion of the angular momentum vector about the z-axis (see Section 5.8).

9.  Por funher discussion and diagrams, see, Pauling, L. and Wilson, E. B. Introduction to Quantum
Mechanics (McGraw-Hill). International Student Edition (Kogakusha Co., Tokyo), Section 21d.
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5.5 ADDITION OF ANGULAR MOMENTA
5.5A Clebsch-Gordon Coefficients

Angular momenta, being veciors, could be added vectoriatly. Thus, for a sysiem
consisting of two subsystems with angular momenta J, and J., we can define a

resultant {or total) angular momentum J by (see Fig. 5.6),
J=1+1=J+] (5.65)

Jiy

o

Ji

Fig. 5.6 Vectorial addition of twe angular momenta.
Corresponding to the three angular momentum veotors J,, J, and J, we have the
six Hermitian operators J2 7, 32 J,,, 3 and J,. All these six operators, however,

do not commute among themselves (J,, and J % do not commute with :lz). But we

can form two sets consisting of four operators each, which, together with the
Hamiltonian, form complete sets of commuting ohservables for the system,
These are:

IAURN (& S
and @ PRy

The basis vectors defined by set (i) will be denoted™ by
Limmy) =1 jmy} | fmy),
or, briclly, by | m;m,), while those defined by set (i) will be denoted by | j,j,jm?},
or | jm). Thus,

10. The quanium number «, specifying the eigenvalues of the Hamiltonian, is suppressed. Thus,
| jrjarmy =1 of jpmymy >
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I jjgmmyy = j G+ DR | jjymymy). (5.66a)
T Vihmymy) = mte | jyjomymy), (5.66b)
P jidpjm) = jGi+ DR | jujpim), (5.672)
P ijajmy =G+ DB | jyjyjm), (5.67b)
3, Ujijjm)  =mn\ jpjpjm). (5.67¢).

The representation defined by the vectors | mym,) is called the uncoupled repre-
sentation whereas the vectors | jm) define the coupled representation. Since there
are (2, + 1) different values of m,, for a given value of m, and (2, + 1) values of
m, for each value of m;, the dimensionality of the representation is
2L+ D2+ 1),

Now, since {| jm)} and {| m;m,)} are merely different bases in the same Hilbert

space, they should be related by a Unitary transformation. Thus (sce Eg.
(2.124b)),

Ljm)= £ UM | mmy), (5.68)

z
m,moijm
mymy 1™

where U,-{j-jz is the ijth element of the unitary matrix U’ that transforms the basis
{l mym, >} to the basis {| jm)}.
Using the closure property of the basis {| m,m,)}, we can write [see Eq. (2.27")]
| jm)y= X | jmmy (i jmm, | jm). (5.69)
mmy

Comparing Egs. (5.68) and (5.69), we see that,
U;’nlfrznz:jm = (umm, | jm). (5.70)
The R.H.S. of Eq. (5.70) should actually read: {aj, jm,m, | ajm) (sce footnote 10).
However, since {| ojm)} and {j o, jymm, >} differ only with regard to their

‘orientations’ relative to the angular momentum vectors, the transforming matrix
U should be independent of o.. Thus, the matrix element (5.70) depends only
on the six angular momentum guantum numbers. Various symbols and names are

used in the literature for this matrix element. We will adopt the symbol.
C,’,,‘ljf,,' ,» and the names, Clebsch-Gordon, or C-coefficient.

Thus,
TS R
lemzm = Umlmz:jm (5.71)
Eq. (5.68) becomes:
| jm)= mi Cz N jm) | jmy. (5.682)

This equation could be regarded as the defining equation for the C-coelficients,
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The Selection Rules

-’:-’21

For given values of jy, jm and my, €0 . is non-zero only for certain allowed

values of j and m. The rules specifying these allowed values are referred o as
selection rules. These are:
(SR1). m=m +m,; {5.72)

(SR 2). 1j,—4IS] <), +J,), where, j varies by integer steps.

(SR 1) follows from the relation, J, =J, +JF, .

For,
.f |jm>= J ?fhﬂjm)
- I Co Tt d ) sy >
B i(mﬁmz)ﬂc"" | ifmymy >
”y
ie., I (m my = mICan | jyjmmy >=0.

Since the vectors | f, fm m; > are lincarly-independent, this implies that,

: My _
either, Comn =0 m £ (m + 1),
or J"’” o * 0, m=(m +m,).

(SR 2) may be derived as follows:

Maximum value of m =my,, = (m; + my)__, = (j; + j,). Thus, maximum value of
J B Jran = Moaa = Ui + 7). The next lower value of m = j; + j,— 1. There are two
states with this value of m, namely, | mym,y =1 j j,~ 1y and | j, — 153}, One of these
belongs to j = (j, + j;) and the other to = j,+ j,— 1. Stmilarly, there are three
states with m = j, + f, - 2, the corresponding j-values being (j, + ), (j, + /- 1) and
(jy + fa—2). In general, there are (p + 1) states with m = j, + j,— p, the j-values
being (/ + jo, Gy + fo= 1), .o, (1 + o= p)- The maximum value of p is given by

Uy Poe) = 1) =~ i J < fis

and by Gy P =(m) =~ i < gy
That is,

Prax = 2;, where [_is the lesser j.
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Thus, Juin = 1 H 2™ Prax

=U1=/ ifji> )y

=0 ) i o> )
or, Jun == b (5.732)

and j'_‘ljx_jz |7lj1_j2|+17""(jl+j?)‘ (5.73b)
This method of obtaining the allowed values of j is illustrated in Table 5.1 for the
case j, =3/2,/,=5/2.

Table 5.1
J-values corresponding to ji =312, j3, 5/2. (Pou=2j;=3)

m m my J
Jiti=4 Ji =3 5L=52 m=4
j1+j1“1=3 j1=3/2 j2-1=3/2 j‘+j2=4;

Sh—-1=172 J2 =52 h¥hp—1=3
h+ip=2=2 =32 J=2=172 hti=4
h-1=12 Jo—1=32 Si¥ih—-1=3;
Ji=2=-172 Jp =52 Jiti—2=2
Si+h-3=1 Ji1=32 J;—3=-112 hth=4
L—1=12 h—2=12 hti—1=3;
hi—2=-12 J,=1=372 h+h-2=2

i=3=-312 =52 Ji+i-3=1




The matrix {72 is shown below:

j1_2
i1
i

_ji

_jz

i—fi+]s Ah+h h+i—1 h+i
m—> i+ fp h+h—1 h+h—1 —h—J

Cy 0 0 . Q

0 Cp Cn 0 0

0 Cy Cas 0 . 0

0 0 0 Cu Cius Cuw 0

0 0 0 Css Css Css 4]

0 0 Ce Ces Ces 0

0

0

. . . . . . 0
0 0 0 0 0 0 C.

FAd

SOINVHIIIN WNINVAD



Example: j, =312, j,= 1/2.

j—2
m—2
m, m,
l d
32 1/2 (Ci)
12 12 0
3R -1 0
-1 12 0
12 -1 0
-3R 1/2 0
-172 -12 0
-3n -12 0

WNINTFWOW dVINONY 40 AJOTHL

344
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Problem 5.10: Verify that the number of independent vectors | jm) for given j,
and j, 18 (27, + D (2, + 1),

Choice of Phase

In Eq. (5.68a) for a given | jimyy and | jymy, the phase of | jm) could be chosen
arbitrarily. Correspondingly, therc is a certain amount of arbitrariness in the
phase of the C-coeflicient. The adoption of some convention in fixing the phase
is, theiefore, necessary 10 avoid confusion. The following 13 the procedure con-
ventionally adopted :
For j = j,+ j, and m = J, + j,, Eq. (5.68a) reduces to

Ui+ i+ 3= Gt 2 Ui | i) (5.74)

From the orthonormality of the wavelunctions involved here, we have,
Pd 4 2
Ur+dajo iV + b+ iy =| €L A

vflf:ﬁ*h

Therefore, C'21, 7= e'® where 8 is real.
Hah t iz

Now, we choosc the phase of | f + /.7, + /, > in Eq. (5.74) such that = 0. That is,

cna, (5.75)
This choice [lixes the phascs of all the cigenvectors with j = j, + j;, according to
Eq. {3.31b), and thercfore it fixecs also the phases of all the C-coefficients
belonging to j = j, + j,.

Problem 5.11: Verify the above statement for the case j=j,+/, and
m=j+j,—1.

Now, Eqgs. (5.31a, b) do not enable us to fix the relative phases of cigenvectors
belonging to different f-vatues. This is because the operators J, andJ do not have
non-zero matrix elements between such eigenvectors. The remedy, therefore, lies
in finding an operator which docs have non-vanishing matrix clemenis between
vectors belonging to different j-values. Onc such operator is 1, (or J,). The fol-

lowing commulation relations ¢could be deduced from the commutation relations
(5.7a) and (5.8):

f,f.1=0 (5.76a)
|7, J,) =44, (5.76b)
.,J,]=T4f,, (5.76¢)
. J,.0=0 (5.76d)
Vo g =222 . (5.76¢)

Comparing these with the commutation relations (5.16 a-c), we see that these arc
cquivalent to the cquation [see Eq. (5.6b)],
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Ixd, =i, (5.76)
The following relationships follow from Egs. (5.76) and (5.65):

Ixd, =3, <)+ 28], (5.77a)

A o PO BN ” .
J J,:JI-J:E(J%JT—JZ). (5.77b)
3,d-3n =0 (5.77¢)
(23] =-indxJ, -3, <) (5.77d)
=-2in(i xJ, - itJ,) (5.77¢)

3% 0530 =59, - 214,12+ 3.5

= 287325, + 3,5 - 4n*3 3 - 3). (5.771)
From Egs. (5.76a, b) and (5.77f), the following sclection rules for the matrix
elements of I, follow:

G'm’1J,, 1 jm)=0, unless m’ = m; (j'— j) = 0,%1. (5.78a)

G'm’ | J | jm)=0, unless m"=m+1; (j'~ j) = 0,1 (5.78b)
Problem 5.12: Deduce the selection rules (5.78a, b).

From Egs. (5.66b) and (5.68a), we have,

Gm1d, \jmy=h T mCY% CH¥ (5.79)

my,my

Also,

. 2 . T . SNV
GmE1J,, I]m>=ﬁmzmz\j(./1+m1) Gitm + l)xcml‘mzmcml‘tlmzmil
M

(5.80)
In Egs. (5.79) and (5.80), j* = or j*=j +1. Thus, knowledge of the matrix ele-

ments on the L.H.S. together with a knowlcdge of the phases of C,J..',j:f. would

enablc us to fix the phases of C,’,,"f,’:z,,, The following convention is adopted for
the phases of the matrix elements:
6] Jxl,m |j1, | jm)= real and positive. (5.81a)

This implies, since (j £ 1,m | (jll +J,) | jm)=0, that
(t1,m|J, | jm)= real and ncgative.

(ii) (J+1,m+11J,,|jm)= rcal and positive. (5.81b)

These conventions result in the reality of all Clebsch-Gordon coelficicnts.
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Racah" gives the following explicit expression for the C-coefficient:
g [(21'+1)(jl+fz-f)5(j+1'1—jz)!(iﬂz—f;)«’]m

mymm = Sty + mym (h+jt+j+1)

1 +m) =m)iU; + m)iG —m) o+ m)ta— m)B
K+ o= — 00— m =0 o+ my— W) — Jp +my + )
L
U—h—my+x)
Here x takes all integer values consistent with the factorial notation (Factorial of
a negative number is infinite).

xE(-1)*

(5.82)

Problem 5.13: Denote the coupled state of two spin 52 particles by | SM}. Show

that the eigenvalues of ihe operator {0, - G,) are — 3 and +1 in the single (S =0)

and the triplet (S = 1) siates, respectively. Hence, construct the projection oper-
ators T, and T, for the single ¢ and the triplet states.

Properties of the C-Coefficients:

Symmetry:
J']J';d St i 1'1]31
=1 (5.83a)
= (e (5.83b)
o] 2541 |
=(-1y" {szzn} C e, (5.83¢)

Other symmetry relations could be obtained by the application of one or more of
the above relations.'? These symmetry relations follow from the expression (5.82)
for the C-coefficient.

Orthogonality:
hid SR
;‘ﬁ,fmlmcm',w 8B (5.84a)
}:C"”’ WY s 0§ (5.84b)

mmam "'1"':"' ™M™ mym,

11. Racah, G. Physical Review, 62, 438 (1942).

12. An important one is:
+ 2+1 h
i fytmy| <) Jih
Coin = 1) (21 + 1) Com-m,
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2j+1
) J]};I =
EC'"IWCWM (2j1+1)5fu'1

] 2j+1
vy 111 Y -
zcmlm—m mymym [2 i+ 1 )sj'zj,

In Egs. (5.84a, b), m =m,+m, is fixed whereas in (5.84c) m, =

147

(5.84c)

(5.84d)

m—m, and in

(5.84d), m,;=m —m, are fixed. Relations (5.84a, b) follow from the unitarity of
the matrix U’ [see Egs. (5.71) and (2.120a, b)]. (5.84c) and (5.84d) could be

obtained by writing,
Ljm)= ZC 0 | fp=m) | jm),
mym
Ljgmy= £ Cot . 1 jy=my)| jm),
I'Il”l
and then, using the orthogonality relationships
<@'ym ) jym) =13 i
<('ymlim) =8,

and the symmetry relationships (5.83c, d).

Recursion Relations:

(G —m)( +m + 1)12C

e
=[G, +m) Gy —my + 1C7
U m) (= my+ DIVCYY

[G+m)G-m+12C

= (U, ~m) Gy +m+ ICHY
X[y = 1) Gyt my+ DN °Cr

G -m)G+m} A, (G,j)Ch

={m,—mA, olj,)}c"”’ {G-m+1)(+m+ 1)}

mympn

PPN Y YRR
XAj + l,j(.ll.,?)cv:lmzm

(5.85a)

(5.85b)

(5.85c)
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where

A = [ Uit DU A=t DGt A DG+ 1)}“
42+ 1+ 1)

(5.86)
Relation (5.85a) is obtained by operating on | jm > with J.and cquating the result
o (f,+J 5. [jm >, while (5.85b) is obtained by an identical procedure,
cmploying the operator J_=J,_+J,_. (5.85¢) is based on the matrix elements of
the operator .i‘. The explicit formula (5.82) for C-coefficient is, in fact, derived
from these recursion relations (see, reference quoted in footnote 11).

Problem 5.14: Using the symmetry relations, show that:
(a) é}:{,’ =), unless {, +{,+{ is cven,
{b) ;‘,’f =0, unless j is odd.

22

Problem 5.15: Evaluate the Clebsch-Gordon coefficients involved in the angular
momenatum coupling of two spin-half particles.

Other Related Coefficients :

(24 + D24+ D" iy
’1’2f:{ : (21 +[; } Coog - (5.87)
r _ 3T i

V{ijosmmgn) = i =1 g (5.88)
= Sjl-”’l’ Jymap Jymy (5.89)

B jlbj] 1 VR RPN
3j-symbol: = D R Sy 5.90
™y (mlmzmj] N2+ 1 1) g = my (5.90)
= X (1 Jof5mymyms). {5.91)

The V-coefficient is due to Racah, the S-coefficient due 1o Fano, the X-coefficient
due to Schwinger and the 3j-symbol due to Wigner. The 3j-symbol and the
C-cocfficients arc the oncs most widely used.

5.5B Racah Coefficients

When the system is composed of three subsystems with angular momenta J,, J,
and J, the tolal angular momentum J is given by
J=J,+L+1s (5.92)
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The quantum mechanical problem of angular momentum addition now consists in
obtaining the wavefunction { JM) of the system in the coupled representation, in
terms of the (2, + 1) (2j,+ 1) (25 + 1) basis vectors, | jyjojsmmymy ) =| jimy) | jomy) |

Jams), of the uncoupled representation, where,
Pl imy=jG,+ 1% j’,mi_)y =1,2,3. (5.93)

jiz L jim) = m | jm;) J

and Yimy=g + 082 M), (5.94a)
I, 1IMY=M#n|IM). (5.94b)
However, in this case, the expression of | JM ) in terms of the | j, j,jsm,m,m,), is not
unique; for, there are three different ways in which we can couple the individual

angular momenta to obtain the resultant:
(a) Add J, and J, 10 obtain J,, and then, add J, and J; to obtain J. In thiscase™,

VM) =1 ji iy 1), Jsd M)

g Iy c L
B Ez’"scrlnllj;izl’f’ 12CA111221’3"‘,3M | Juafamympms), (5.95)
mlm
where [see Eq. (5.72)],
M, =m +m,;
M =M ,+my=m, +m,+ m, (fixed) (5.96)

(b) Add J, and J, to obtain J,; and, then, add J, and J,,. Correspondingly, we
have,
[IM) = ), jols(5) M)

. . '
z C:;iﬁlucrﬁl»iu | iuafsmimyms) (5.95)

™y, Mg,y
with M3 = my+ m; and M = m, + my, + m, (fixed).
(c) Add J, and ], to obtain J,,, then, add J, to J,;. We have, then,
fJM)=| j1j3(113)1j2:JA1)
i i3 . 3
= T OB C | jjyjammamy) (5.95)

)My

These diffcrent ways of coupling the angular momenta are shown schemati-
cally in Fig. 5.7.

13, As usual, we omit the quantum numbers other than those related to the angular momentum, frors
the specification of the state.
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Now, the right hand sides of Eq. (5.95") represent different sets of basis vec-
tors in terms of which the eigenfunctions of the total angular momentum can be
expressed. They should, therefore, be related by unitary transformations. Thus
[see Eq. (2.124b)1,

()
Fig. 5.7 Different ways of coupling three angular momenta,

Vi ah ) IM ) = ;‘301};(31,); M | b ) TM )
i1

X fufold i) JondM )

= I8 1, iiaid) Ll ), 5 TM). (5.979

Applying the operators J, and J _ to both sides of Eq. (5.97"), we get,

Tl jofyd gy IM >= }1:3,1 UM L) jsIM >,
12

since 7 5, (1ja/y) is only a number. From this, it follows that

Ly il IM 21 > = ,ESJJI i i), M 21> (5.98)
From Egs. (5.97") and (5.98), it follows that
Gl i 5 9M |y Jo ST )M
is independent of M. We will denote this matrix ¢lement either by
UG jsd i )
or by {205+ D) @I+ DY Wl 1T ).
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Thus,
<Jl D S5 M | iy Jojsld ) IM > = SJ{uJZ’UIijS)

={(U,+ D)+ DY Wi juid ) (5.99a)
=UGijyd Jsd i) (5.990)
Here, W( ) is called the Racah Coefficient', while U( ) is known as the nor-

malized Racah Coefficient.
Eq. (5.97') now reads,

| Jis Jof(U ) I M > = JZU U a1l m) Vg o), JsdM > (5.97%
12

We will see below [Eq. (5.102)] that the Racah coefficients are real. Therefore,
the unitarity of the matrix $7(j,j,/,) is expressed by the relations,

JZ SJJIZ, Jn(ilj’ZjB) SJJH,JB(jljzja) = J): Ul Jd i3t )
B B

UG jsd ) = 8, . (5.1002)
and
PRRVS AR SARD LU VY2 SR
12 12

UGl jy T d ) =8,y (5.100b)
Using Eq. (5.100a), we can invert the relationship (5.97%) to obtain,
|0 2 5 IM > = ZUGujl fsilioT) Ly iU )M > (5.97%
p<}
Now, multiplying both sides of Eq. (5.95") by C.Z% _x Cy#?,,, and summing over

Jpand J, we get, using Eq. (5.84b),

|y Jofsmmomy >= lecj;f;’;;,ncb;g’,’w | jujyfT o rjsIM > (5.101)
127

Substituting from Eq. (5.101) in Eq. (5.95%, we have,

C i AV A hide el .
| Jis Jofs g IM >= lem Cr et Comptgt  Commtt, Cotromgpt | J1J2 1)1 J3:IM > .

1,

(5.97%

where, the summation over J has been omitted because of the occurrence of J on
the left hand side. Comparing Eq. (5.97*) with Eq. (5.97%), we see that,

14. 'Recah, G. [Footnote 11] was the first io introduce these.
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hida A ~idn i
Conimt Cotgeit oty (5.102)

UlJel isidiod ) =

z
iRy
From the reality of the C-coefficients, it follows that the Racah coefficients are
real. It also shows that U{abcd: ef) vanishes unless the triangular conditions
Alabe), Aledc), Albdf), Alafc), are satisfied, where
[u tm -l —m+ )l +m+n)!]m

Allin) = (+m+n+1)!

(5.103)

Racah (Footnote 11) has given the following explicit expression for the
W-coelficient :
Wabcd:ef) = Alabe )Alede )Abdf)Alafc)
(a+b+c+d+1-x)!
a+b—e-—)Mc+d-e—W)la+c~f—x!

x Z(-1)"
v 1
(b+d-f-x)Mx+e+f—a-dlxk+te+f—-b-c)!

Here, « takes all values consistent with the factorial notation : That is,
¥ = 0Tger of (@ +d—e - fHand{(b+c—e 1)

(5.104)

K = SAllestof (@ +b —e),(c +d—e){a+c—f)

and (b +d - f).
A procedure similar to the one that led to Eq. (5.102) may be used, along with the
properties of the C-coefficients, to derive the following relationships:

A g Aol Iy
_,zU(jljz]h"llzjn)cm‘j"':;!lzc'”wi“ = C"‘z’"sinc”"l‘"zs” (5.105a)
12

S Ty ; ¥ i,
Ul i ) = wcj;f;’;;ﬂcf;’,’;:,nc,’;l:;; o (5.105b)
my
Definition (5.87) may be used 1o derive from (5.105a), the refationship,
I LhL
2D, 1Dy W ULLIHL) = (-0 Dy D - (5.106)

Properties of the Racah Coefficients

Symmetry: The symmetry properties foilow from the explicih expression
{5.104) for the Racah coefficient.

(i) (1) /W (abcd:ef) ts invariant under all transformations which maintain

the same triangles (see Fig. 5.7).
Thus,

(—1)* "W(abcd:ef) = (1Y “W(aefd:bc)
= (-1 "W (ebcf:ad). (5.107a)
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(ii) W (abcd : ef) is invariant under an even permutation of the arguments.
W(abcd:ef) = W(badc :ef)
=W(dcba:ef)
=W(acbhd:fe) (5.107b)

A few others could be obtained by repeated application of these.
(iii) A third class of symmeiry relations could be better expressed in terms of
the 6/-symbols, defined by,

{11157‘1]3} = ("-l)j1 h HZWijzlzll:jsla)- (5.108)
1423

The symmetry relations (5.107a, b) correspond to the invariance of the 6j-
symbols under (a) interchange of any two columns, (b) inversion of any two col-
umns.

In order to express the third type of symmetry concisely, we define,

. . 1
A=ji+l; azjl—ll;Am=-2-(A to)
1
B=j,+1;B=j-1; Bta='2'(B o) (5.109)

1
C=jh+lyy=j5-1y Cm=5(c +00), etc.

Ju|  JABCwy .. . .
Then, { } E{ ", is invariant under the columnwise permutations
L, A B C.,
of the alphabets A, B, C. Thus,
A C B C B . C
{ By ={ iy ={ o . (5.107¢c)
A_BC B_AC B_C A
Orthogonality and Sum Rules
The orthogonality relations follow from the unitarity of the matrix S,’g‘fi’), and are

given by Egs. (5.100a, b). The sum rules could be derived with the help of the
orthogonality relations :

§(-1)fU(abcd:ef)U(adcb :8f) = (~1)'U(abdc:eg), (5.110a)

where,
s=e+g—a-b-c—d.

); 2U (abed:ef)U (abed:gf) = 8, +(<1)"** " ~“Ul(abdc:eg),  (5.110b)

where the upper sign is for odd f and the lower sign for even f.
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‘{.(21+ 1y Wia'dbe:ae Y Wickde e} W{a"Afc:ac”™)
= W(abcd:ef) W(a'bc'd:e’f). {5.110)
I-1)(2e + 1) Wiabab:ef) = §, -1V " (23 + 13 (26 + 1} *
(5.110d;
Recursion Relations

These also could be expressed more conveniently in terms of the §f-symbols.

Y ! !
(—1)“’--:‘.-:,-1,{511213}{’2 o

RN %E L+x L+y
j A I Ja l[}" kL L Js i 4
=21 H 1 i
211211 h+3 z3+yj |3 4-3 b+yj {3 h-3 L+x

J A 12 Js ] hoh 4 } s A
+ 1}

-2 _ 1 I 1 1 1
“‘u I1+§ Lﬁyi 3 11+5 13+-yf \3 II+~?: I +x

. 1
where, x =, ¥
3¢

1
_"..2— (5_111)

Problem 5.16: Deduce the following:
wilabcd:0f) = (-1 {{(2b+ 1)(2c + 1)} 78,3,

5.5C The 9j-Symbols

The Clebsch-Gordon coefficients or the 3j-symbols give us the relationship
beiween two seis of basis vectors corresponding 1o the coupled and the uncoupled
representations of a system consisting of two individual angular momenta. The
three J's refer to the two individual angular momenta and their resultant. The
Racah coefficient or the §j-symbols, on the other hand, describe the relationship
between 1wo sets of basis vectors both of which correspond to coupled repre-
sentations of a system consisting of three individual angular momenta. The six j's
are thc three individual j's, their resultant and the two intermediate  angular
momenta. For, the additon of three angular momenta s accomplished by adding
two of them to obtain an intermediate angular momentum and then adding the
third to this intermediate one to obtain the final resultant value. Since the different
representations (bases) correspond to different intermediate angular momenta and
since the 6j-symbols relate to two different representations, they (the 6/-symbols)
would involve two intermediate angular momenta,
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Extending the above arguments, we see that the addition of n angular momenta
is accomplished through the introduction of (n - 2) intermediate angular momenta.
This implies that the transformation coefficients (the elements of the transforming
matrix) relating any two different coupling schemes would involve a total of
{(n+1)+2(n-2)} =3(n-1),j’s. These coefficients are, therefore, called
3(n —1) j-symbols. Thus, for n = 4, we have the 9j-symbols, for n=S, the 12j-
symbols, and so on. In view of the importance of the 9j-symbols in certain
branches of physics governed by quantum mechanics, we will discuss them here;
but no higher j-symbols will be discussed.

In analogy with Eq. (5.99a), the 9j-symbol, or X-coefficient, is defined by,

<hidas JafalIsa): IM | i)y Jofeldo): IM >

TG h h Iy
— a3, . .
=X, ety = 1) Usd Uil U} Jls ;4 Jaafs (5.112)
J
1B Ju
where
1 =j+1). (5.113)
Eq. (5.112) implies
‘jxjs(Jls)vjzi/:(ju)ijM >=
JG\ajsie) . ..
’15’;4)(!'2}?“3]‘”“ X | juidd12s Jad 3 IM >, (5.114Y

and, because of the unitarity of the matrix X’ (jfojsfa),

|j1j2(112):j1j4(J34)ZJM >
T R
=rX T Vs ish Bl IM > (5.115)
1

i ud12l3
u

But, using Egs. (5.97%) and (5.97%), we have,
Vs y3)s Fofl T ) IM >

= LU 1M L JsT WM >

+igIa

= LUl Il 130 (’sz
My,
XU (JafuhJoi s o) | i daud ol AYTM >

= T ()G T

Aadyy
oA - A=jy=J34 P
KUy MgTsed o) (1) T U Gjid Tt 2N

X | 12 JJalT3) M >
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= L {UJ U U U0y "E2A+ 1)

XW (jyjpl Ty T AW (f ol Ty T 15 R) (5.114%

W ol aufsigM i 0 Sy M >,
where, Eqgs. (5.99a, b) and (5.107b ) have been used.
From Egs. (5.1147%), we get,
hoh zzl
oo JuJ = %(Z?L'F DWWy jod Ly MW (ol T T A X WDl s fiA)
Ja Jy J

(5.116a)
In terms of the 6/-symbols [Eq. (5.108)], we have,
i I o o
J 7
s 13}22(—1)’*(%“){}‘ ” “}{’; " j}
x L 7 ALl a7
Js S T
T Ju J}
* L (5.116b)
X{l o
Similarly, it can be shown that,
(i & Ju R
11‘; o ={UIUIUIILI X T O Coon (5.117)
Iy Do

Tirfadd Jida Fin Tiese
CM]JMJAM C’"1"‘1M|3 C”'z"’nt”u MMM

Now, the wavefunction | j,j,(J12), Jafalss)FM > could be schematically repre-
senied as,
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Equation (5.114") would be then written as,

i Jiz Jog i4

JM
Tl
- J J
Tadss 123419

(5.118)

In particular, the relationship between the wavefunctions in the *‘LS-coupling
scheme’’, and the *‘jj-coupling scheme’’ for a system consisting of two particles
(say, nucleons) with individual orbital and spin angular momenta given respec-
tively, by !, s, and ,5,, can be expressed as,

JM
_ 3 xS

P 7Y 2
) v2

(5.119)
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a b e
Writing the 9 j-symbolas ¢ 4 fT,
g h ok

We can summarise the important properties as follows. Thesc properties can be
derived from the propertes of angular momenta, the orthogonatity and com-
pleieness of the basis vectors and similar general properties,

Selection Rules

The cocfficient vanishes unless each row and column add up to an integral num-
ber and also satisfies the tiangular conditions A{abe), Alacg), ee. It {ollows
from this that if any two rows (columns) are identical, then the coefficient
vamishies unless the sum of the third row {column} is even.

Symmetry
(t)  The coefficient is invariant under the interchange of rows and columns
{transposition).

(i)  An odd permutation of the rows or columns multiples the coetficient by
(=1} where € is the sum of all the 9;’s.
Orthogonality and Sum Rules:

a b ella b e
LletAlgllhlse 4 frye d f1=8,38,, (5.1209)
! ¢ b klg K ok
a b ella b e
Zle](NIgllalye d frie d fr=3,8, (5.120b)
#h ¢ k Kig h Kk
a b ella ¢ g a & e
T2 el ke d fiid b hp={d ¢ f (5.121a)
8.k g h k er fl k el fr k,u
a b e
Z2e +139¢  d  frW(abkf:eh) = W(bhfc d W (khac g A). (5.121h)
’ ¢ h ok
a b ¢
1 YR G T e O
= — -1 5. .,
dEI{dllelmZ i f 4{]+2a+1+2b+1+2(:+1} (5.121¢)

Inconnection with the LS- and jj-coupling schemes, the following relationship
would be nsefi.
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§ ) . L s 5 0
| LT LD+ U+ D =L+ 1) - ji(i +1) I L L
1 2 - 1 2
o 26+ D2s +DLEL + DL+ | ]
i, L {s(s+1)(2s + DL ) )} i L

(5.122)

When one of the arguments (f°s) of the 9j-symbol is zero, the latter reduces to a

Racah coefficient. For example,

fa b e

{(: d f1=8:,{(2+1)(2¢ + 1)} "W(ebcg:ad). (5.123)
g h O

Problem 5.17:
(a) Deduce Eq. (5.121¢) from Eq. (5.117)
(b) Derive Eq. (5.123) using Eq. (5.116a).

5.6 ANGULAR MOMENTUM AND ROTATIONS

Arotation is specified by an axis, usually denoted by a unit vector n, about which,
and an angle ¢ through which, the rotation is made. The positive sense of rotation
is defined by the right-handed-screw-rule'. Thus, (n,$) represents a positive
rotation about the axis n through an angle ¢, whereas (n, —¢) is a negative rotation
about n through the angle ¢.

Now, a rotation could be of the following two types:

(i) Rotation of the physical system, with the co-ordinate system fixed in
space.

{ii) Rotation of the co-ordinate system with the physical system fixed in
space.

Unless otherwise specified, in this section, we mean by ‘rotation’, a rotation of
the physical system. Of course, since only the relative origniations of the physical
system and the co-ordinate system are of relevance to the description of physical
systcms, a rotation (n,d) of the physical system is equivalent to the rotation
(n,-9) of the co-ordinate system.

Now, rotations are lincar transformations in the physical space. Therefore, it
is possible to define a lincar operator R (6) corresponding to a rotation (n, ¢) of the

physical system. The rotation (n, —9) is, then, represented by the operator,

15. A right-handed screw advances in the direction of n when twisted in the sense of the positive

rotation.
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R (-0)=R.}®). (5.124)

In order 1o illustraie the cffect of a rotation on the wavefunction of the sysicm

let us consider specifically a rotation about the z-axis through an angle 4. We will

denote the corresponding rotation operator by £_(9). Let w(r) = y(x, y, z), repre-

sent the value of the wavefunction at the (space) point P (Fig 5.8) before the

rotation; and y'(r) the value at the same point after the rotation. Then, by
definition, we have,

ROy = w'(r). (5.125%
y b
t 1
P(x,Y,
..':I{X‘Uy‘l 321)}
o
0 —p X 0
{a) {b)

Fig. 5.8. Rotation of {a) the physical sysiem (b} the co-ordinate sysiem.

But the value of the wavefunction at the point P cannot depend on the position of
P in space (that is, on its co-ordinates with respect to the co-ordinalc system fixed
in space), but should depend only on the point’s relative position in the physical
system (that is, on the co-ordinates of P referred to a co-ordinate frame fixed to
the physical system}. Therefore, the value of y'(r) is equal to the value of w at the
pointr, where ry was the position of P before the rotation. That is,

r=R,C0) i} =R\0) 1} =K (0) {r}, (5.126)
where K,(¢) represents a rotation of the co-ordinate system through an angle ¢

aboul the z-axis.
Thus,

R () {y(r)} = y'(n) = y(r) = yIR () {r}] (5.125%
From Fig. (5.8b), we have,
X, =xcosd+ysing,

¥y, =—xsind+ycosd,

z,=z. (5.1261)
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Infinitesimal Rotations

Replacing finite rotation ¢ by an infinitesimal rotation 8¢ in (5.126a), we have,
X, =xcosd0+y sindp = x + y&d,
y; =-xsindd+ycosdd =-x30+y,
z,=2. (1.126b)
Substituting in Eq. (5.125% from (5.126b), we get,
R,(80) {w(x,y,2)} = y(x +y8,y —x80,2)

d 0
z\u(xvyrz)_"sq)(y—a;_xé;)w

= [1 —%wizjw(x, ¥,2), (5.127Y

where Taylor scrics expansion, and the definition (5.40) for the orbital angular
momentum operator, have been used.

Alternatively, writing y(r) = y(r, 6,9), where (r,0,¢) arc the spherical co-
ordinates, we have, from Eq. (5.125%),

R (80) {w(r,0,0)} =wy(r,,0,,0,) = y(r,0,0— 50)

N 0
= (1 —&b%)v(r,e, o), (5.127"
which reduces to Eq. (5.127"), when definition (5.42c¢) is used.
Thus, R (80) = (i —%&p : L) (5.128)

Similarly, an infinitesimal rotation 86 about an axis n, is represented by the
opcerator,

R (30) =1 —%ae(n L. (5.128?)

In the derivation of Eq. (5.128%), we have assumed that the wavefunction of the
system is a function of the space co-ordinates only. If the system has also intrinsic
angular momentum § in addition to L, then, the total wavefunction would be a
product of y(r) and X, where X, is the spin part of-the wavefunction. We now
postulate that X, ransforms undcr the infinitesimal rotation (n, 86) according to
the formula (c.f. Eq. (5.127Y),

R (30){x} = [i —;i 30(n - S)])g ) (5.1279
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Then, the wial wavelunclion yir)x, would transform according to,

R (86) {w(r)x} = {i —%Sem : 12)} Jli —%Bﬁ(n : é}}wtr})f.

~ [i —% 86(n - j)}w(r)/\’,; (5.127%

where J =L +8§, is the operator corresponding 1o the total angular momentum,
Thus, for a system with a total angular momentum J the infinitesimal rotation
operator is given by

R (doy=1- %(n -Hoe. (5.128%

In fact, this cquation could be regarded as a delinition of the angular momentum
operator J. since it leads 1o the basic commutation relations (5.74) for the com-
ponents of J. This could be established as follows:

Since J in Eq. (5.128% is Hermitian, £ (86) is Unitary [see Eq. (2.63)] so that
an infinitesimal rotation represents a uniiary transformation. A vector operator V,
therefore, transforms under the infinitesimal rotation (n, 8) according to*®

V- V' =R _(30)VR (50)

i‘?a%ae[(n‘j),\}], {5.129)

since Ri(80)=R'(80) =R (~80). (5.130)
Thus, the change in 'V is given by

BV =V -V =—(if)dbl(n - B, V1. (5131

The change in the component of V along the unit vector u is, therefore, given by,

8V, =u-3V=—i/mde[(n-J),u- V). (5.132%

But u-8V=38u-V. (5.132%

du being the change (as viewed from the space frame) in the unit vector u {fixed
with respect 10 the physical system) resulting from the rotation {u, 39) of the
physical system,  That is [see Fig. (5.93],

Su = 86(n xu), (5.133)

16.  Note thay, in teyms of the operator K, representing rotations of the reference frame fof. Eq.
(21283,
V=R B0)VE (B0).
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1Y
60

[(nxu)|

0 —

Fig. 5.9. Effect of rotation 88 about n on a unit vector u.

Hence,

8V, =80(nxu)-V (5.132%)

From Egs. (5.132") and (5.132%), we get,
(-1, (u- V)] =ikmxu)- V. (5.134a)

Substituting i for n, j for u and J for V in this equation, we get Eq. (5.7a).

It should be emphasised that only the operator corresponding to the total
angular momentum of the system would satisfy Eq. (5.134a) for all the vector
operators, For example, in the case of a system of N particles, the angular
momenta of the individual particles as well as the sum of the angular momenta of
a fecw of the particles, satisfy the relationship (5.7a) but not the relationship
(5.134a). The operator corresponding to the total angular momentum of a system
is, thus, the generator of infinitesimal rolations of the system.

A scalar, by definition, is invariant under rotations. Therefore, a scalar oper-
ator $ transforms under the infinitesimal rotation (n, 86) according to

§—8 =R (30)SK1(86) =S,

or, ﬁng = Slén'
That is, [(n-J),8 =0. (5.134b)
Thus, a scalar operator commutes with the components of J.

Problem 5.18: If A and B are two vector operators, show, using Eq. (5.134a), that
[(n-§),(A-B) =0.
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Finite Rotations : Euler Angles

A finite rotation (n, 0} could be regarded as a succession of a large number of
infinitesimal rotations, so that,

R (6)= N&lji - (i/ﬁ)%(n -j)]

va _] ) n
=X ("‘T)i {Gmem - NY*
p=Q p .

= exp [=(/m0{n I (5.135)
Thus, a rotatien threugh an angle ¢ about the z-axis is represented by the operator
R (o) = exp [(=i/A)eed |. A general rotation, instead of being specificd by the unit
vector n (which requires two angles for its specification) and an angle, could be
specified by three angles, usually known as the Fuler angles, defined” as (ollows
{(sec Fig. 5.10)

Fig. 5.10 The Euler angles.

(i} A rotation through ¢ about the z,-axis, in which

XXy 2Y LI =L

17, Soime authors adopt a definition in which the sccond rotation is about the x;-axis insiead of 1he
yiaxis. The definition adopted here is that of Ref, 2 lsted at the esd of the chapier,
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(ii) A rotation through B about the new y- (that is, y;-) axis.
XX Y, DY, =Y 2, D2,
(iii) A rotation through 7y about the z,—axis.
X,xy,o Yy, =2,
Thus,
R(0)=R(aBy) =R, (MR, BIR, (0. (5.136")
Now, R ,l({i) is the transform of R ,(B) under the previous rotation. Thatis [see
Eq. (5.129)],
5 5 5 5-1
R, B)=R (R (PR, (). (5.137a)
Similarly,

R, =R, BR,0R,)B)
=R, BIR ()R, (DR ()R }!(B)

=R (R (BR, (R B)R, (o)

(5.137b)
Substituting in (5.136") from (5.137a, b), we get'®,
R(oBy) = R, ()R (B (Y)
= exp [~(i/)od,] exp [-GMPI,] exp [N ). (5.136Y

Problem 5.19: Show that
exp [-(i/m)PY,) = exp [(i4) (W2)J,) exp [(i/A)BI] exp (—(irh) (wD)] ).

The Rotation Matrix

In the representation spanned by the eigenvectors | jm > of the angular momentum
operator, the operator B would be represented by a square (unitary ) matrix. We
will now deduce the elements of this matrix.

Since R(opy) contains only the angular momentum components J , and
J .. R(0BY) | jm > can differ from | jm > only in the m-value and not in the valuc of
J [see Egs. (5.32b-e)]. Thatis,

Repy) | jm>=Z | jm’>< jm’ | R(OBY) | jm >. (5.138")

18. Note that, since /7, =7 J,, exp [-im)aS ] exp [-imPBI) # exp [-@m)(af, + RS,
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But, {rom Eq. (5,136, we have,
< Jm AR Py | jm >= < jm’} exp [l ) exp i-GimpJ )

exp (i 1} jm >
= exp [+t AW, exp - zlﬁ)[ifyj exp l—(im_}ﬁ/fz]wjm)
= oxp (~im 0)d’., (B) exp (~im), (5.139)
where
B =< jm” | exp [HERIRT ] [ jm > (5.140)

Now, if we denole the matrix representing £ (oY) in the (27 + 1)-dimensional
representation spanned by the basis vectors {| jm >} by 27, then, Eq. (5.138")
could be wrillen as {see Eq. (2.118)],

R{opy)  jm > = ﬁ DY) L >, (51389
m o
Or,

ROOBYVW ) = W[ 11 = 22 (YT

(5.138%

From Eqs. (5.138'% and (5.139), we have,
9 o) = exp (~im oyd. (B) exp (~imy). (5.141)

77 is called the rotation mairix.
Wigner has derived the following expression for d?,, (3):
- E( Iy WG+ m)j —m) G +mOY — mY7?
i K—m e m -+ m — m)

x(eos(Bap® " X s (5.142)

where, ¥ takes positive tnteger values {including zero) consistent with the facio-
rial notation. Also, for m” 2 m, we have the following more concise expression :
{ JmG A mY Y (cos By (—sin B2y
GHmiG-mil (m'—m)!

d. (B)=

m'm

X2F (m’ = j,—m —f,m’ —m+ 1, —tan’{/2), (5.142a)

where /() is a hyper geometric function,
Properties of the Rotation Matrix

In the following, we will omit the arguments (ofly) wherever their explicit
APPearance is noy essential |
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(i) Unitarity

The unitarity of 7/ is expressed by

0 D =8, (5.143q)
and

0, D =8, (5.143b)

(i) Symmetry
& (+) = ()" "dl, (P, (5.144a)
=d! _(-B) (5.144b)
= 4B) (5.144c)
=(=1y""d ., (m-P) (5.1444)
=(-1)%d, (B+2n) (5.144c¢)
Thesc relationships follow from Eq. (5.142). From these and Eq. (5.141), we get
D}, (0fY) = D, (Y, ~B, - ) (5.145a)
== "D . (ofy), (5.145b)
o (o, B+4m,y) = (-1, (0, B+2m,Y) (5.145¢)
=7 . (ofy). (5.1454)

Equations (5.145¢,d) show that, in the case of a system with half-integral spin, a
rotation through an angle 25t about an axis changes the sign of the wavetunction
of the system. Such a change, however, does not lead to any unphysical situation
since only the absolute square of the wavefunction has a direct physical meaning
and since all physical obscrvables (that is, their matrix elements) are bilinear in
the wavefunction [Eq. (2.117a)]. Thercfore, property (5.145¢) docs not prevent
the existence of half-intcgral spins.

Problem 5.20: Verily rclationships (5.145 a-d).

Problem 5.21: Obtain the clements of the rotation matrix 2/ (ofy).
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(iii) Sum Rules

Inthe case of a system consisting of two particles with angular momenta j, and j,,
we have [Eqs. (5.68a) (5.84b)],

Fiimy > jymy > = EC"‘J | jm>. (5.146)

If the system is now rotated through angles (ofdy), we have from Eq. (5.138%,
z T2 > = ?Cifﬁﬂ L | JL> (5.147)
Writing,
Lty > i3 >= ZCL >
in Eq. (5.147) and then equating coefficient of | ju >on either side, we get,

o zc"’f’ i) {5.148)

”""2’” fidd [ Lor i W‘z

Using propertics (5.84a, b) of the C-coefficient, we get,

hiy i) 1 2
D}m Pl)i]cu PZPC”‘l’“z’“Zmel ﬂ:% (5 1493)
1 hid ~hld
gix,mld:fﬂ = ECM mr,,,Cu By }lﬂwﬂ’ (5-149b}
where . Py = = = L

Egs. (5.149a, b) arc known as the Clebsch-Gordon series.

{iv) Relationship to Spherical Harmonies

Substituting for y,.(r) in Eq. (5.138) by the spherical harmonics ¥,,(6, &) which
are eigenfunctions of the orbital angular momentum [Eq. 5.46)], we have,

R(oPyyY, 0,0)=Y, [R70,0)] =Y,.(6,0)

= ;zf 7 . (OBYY,.(6,8). (5.150)

Here, (8, ¢) are the spherical co-ordinates of a point in the physical system after
rotation and (6%,¢") the spherical co-ordinates of the same point before rotation
[sec Fig. (5.8a, b)]. Also, m™ could be regarded as the component of the angular
momentum along the space-fixed z-axis and m# the component along the z-axis
of a frame fixed in the physical system {*body-fixed” frame).

Lel £, and P, be iwo poinis on a unit sphere, with spherical co-ordinates (8, &,)

and {8,,0,), respectively, after the rotation and (6°),0") and (87, ¢’} before the
rotation. Then, {rom Eq. (5.150), we have,
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Y,.(0°,¢") = T, (oBYY,.(6,,0), (5.150a)
and Y,,(6',07) = T2, (oaBV)Y, (6, 0). (5.150b)
+1
Thus, LY, (6,0)Y,,(6,0)

m=_]

= I 20, 9,0, Y0 40,,0)Y,,.(6,0)

+
= I Yl0,,0))7,,40,0)), (5.151)
by Eq. (5.143b). Thatis,
+
K= I ¥,(6,0)7,.(0,0,).

is invariant under rotations. This fact can be utilized to evaluate K. For, choosing
the co-ordinate axes such that P, is on the z-axis (6, =0) and P, in the zx-plane

(6,=0), we have,
K =XY,,(0,0),,(6,0)

/ 2+1 20+1
= T Y,u(e, 0) = [T)PI(COS e),

Y,(0,6)=35,, 2’4—;1 [see Eq. (5.55b).

by Eg. (5.63), and since,

Also, 9 is the angle between the radial vectors to the points P, and P, (see Fig.
5.11a). Thus,

N(D

/

7]

(a) (b) 2

Fig. 5.11 "The spherical triangles corresponding to : (a) Eq. (5.152), (b) Eq. (5.153b).
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{4 Y2 . , <
Picos®) = LT Y1006, 0,). (1.152)
1 ! H 1

';\:"31 +1 );i,.. .

Bquation (3.152) holds for any spherical triangle (Fig. 5.118) with sides 6,,8,,08

and dihedral anglc [ 9, - 6,1 opposite o 8.

Howe put ¥=0in Cqg.(5.150b}, then § and o would be, respectively, the polar
and the azimuthal angles of oz in the xyz-frame (Fig, 5.12). Leteoz and oz”cut the
umd sphere at the point 2 and P, tespectively, Also choose the ox” und oy axes
such that 2, ties in the 2°x’-plane {that is, ¢, = 0), Then, Eq. {5.150b) reduces 1w,

¥,(0%,0)0 = 2. (oPO)F, (6, 0,). (5.1532)

But 2,7,z form a spherical triangle with sides 3,8, and 07, and dihedral angie
[ ;-0 | (Fig. 5.11b). Therefore, Eq. {5.152) can be applied, withm =m”, 6, = 8,
O=0,amd o =

5 S N :
Y020 = 5 T YABYd00). (5.1530)

Comparing Egs. (5.1534, b), we have,

.
91, (0B0) = / ii—fi Y. (Bot). (5.154a)

4n . .
:'\/ gLy ¥, (P, (5.1540)

where Eqg. (5.59a) has been used.

Fig, 8.12. The angles involved in £g. (5.153a).
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Also, from Eqs. (5.145a) and (5.154a), we get,
{‘DIom(OB’Y) = dp:o(_Yr —_B? 0)

= _4L Ylm(_B7 —Y)

20+1

A1)

4n
=N zeq B
using Egs. (5.29a, b).

From Egs. (5.154a) and (5.149b), we get,

1
ign (000, (0,0)= £ =Dy o 11 (0,0).

where D, ,, is given by Eq. (5.87).

(v) Normalization

on n 2n
Writing, © = (oY), and fdQEL dotfo SdeﬁL ay,
) = . L
f zym.m(@)d(a:f e ""“docf e ‘”*dvf d,y,n(B) sin Ba.
0 0 0
=3 .05, 0(2n)2j djo(B) sin Bdp,
0 ! O

n
since j e ""do=28_(2m).
0

Now d(IX)(B) 7 (0B0) = \’ i Y’O(B)

= P (cos B), by Egs. (5.154b) and (5.63),
so that, using Eq. (E. 31), we get,

[ 7],0(©)40 =8%8,18,,08,1

171

(5.154c¢)

(5.155)

(5.156)

(5.157)

Using Eqgs. (5.157) and (5.149b) and the properties of the C-coefficicnts, we

derive,
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j Djl (@)dz (S)de ( 81:2‘1)54&!26%"‘:5" Lty (5.1583)
and

fo" @1, @1, (@)d@[z H]c"‘*” Chh (5.158b)

mymym, M

Problem $.22: Using the relationship (5.154a) between the spherical har-
monics and the rotation matrix, and Egs. (5.157-158), establish the following
relationships;

(@) J‘Ybﬂ(&tb)d£2=\i4n8 5

1o me

®) f}’f}m,{e,mnﬁw,@dﬁ 5,5

iy oy
’ Y ¥ il
(e Figmy 22 ’1""1 \j__ ”2‘3 "'l"‘"z"'s
where dCl=sin 8d0 do

(vi) Role as Angular Momentum Eigenfunction

The retationship of the D-functions 1o the spherical harmonics snggests the pos-
sibility of interpreting the former as the cigenvectors of the angular momentum
operator. We recall that Y, (B is the common eigenvector of L? and the
component of L that is conjugate to the angular variable o [Eqs. (5.44) 10 (5.46)
and (5.42¢)], namely £,. Thercfore, from Eq. (5.154a), we have,

L, 70 (apO) = (1 + AT (oPO), (5.159")

L2 (eB0)y = mat] (oB0). (5.1604
And frown Egs. (5.154¢) and (5.145b), we get,

L2025 (0py) = 1 + DH T, Oy, (5.159%)

L D, 40p%) = m R, OB, 5.161h

where £_- is the component of L that is conjugate 1o the angular variable ¥ and
hence is along the z-axis,
Equations (5.159'-161") suggest the generalisation:

P (ofy) = j( + DD (aPy), (5.159%)
F, 0 (oY) = mhT (P, (5.160%

J B eBy) = kR D o). (5.161%
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Thus, .(aBy) is the common eigenvector of J and the components of J along
the z and z"-axes. A physical interpretation of this eigenvector is the following:
The x"y’z’-frame could be one fixed to a physical system. Then the Euler angles
give the orientation of the body (the physical system) relative to the space-fixed
frame xyz. If the Euler angles are time-varying, the physical system is a rotating
body". m# and k# are, respectively, the projections of the angular momentum on

the space-fixed z-axis and the body-fixed z-axis, and D}, (aBy) is the wavefunction
of the rotating system®. If @,,,() represents the normalized wavefunction, then,
we have from Eq. (5.158a),

2j+1

D, (P) = (_Sn_z

The commutation of J, and J implicd by Egs. (5.160° and Egs. (5.161?) fol-
lows from the fact that the components of J along the body-fixed (also referred to
as ‘intrinsic’) frame cannot depend on the orientation of the space-fixed frame.

We notc here the dual role of the 2-functions - as an operator and as a vector.
This dual role is, in fact, a feature of certain types of operators called ‘spherical
tensors’ which would be discussed in the next section.

J 7(©). (5.162)

5.7 SPHERICAL TENSORS

The (2k + 1) operators, T® for g =k, — k + 1, ... + k, are said to form the com-

ponents of a spherical tensor of rank k if they transform under rotations like the
spherical harmonic Y, of order k. That is, [sce Eq. (5.150)].

j0) F®ey=3 .7, F) 163!
0 oy Lo ) z, 7L (o TE ). (5.163")

Here r, is the position vector of a physical point in the rotated co-ordinate system
(the ‘body-fixed frame’, of Section 5.5 (vi)) while r is the position vector of the
same point in the original (space-fixed) frame. Now, a tensor is an entity which
is defined primarily by its transformation properties under rotations. The adjec-
tive ‘spherical’ emphasizes the difference between a tensor of the type under
consideration and a gencral (cartesian ) tensor. This difference relates to a
property called reducibility. This property is best understood through the exam-
ple of a cartesian tensor of rank 2. Let 7; represent the components of such a

tensor in the 3-dimensional physical space. The total number of components is 3
=9. Each of these components transforms under rotations according to the for-
mula.

19.  This would imply that the body has a non-spherical shape, as the different orientations of a
spherical body are indistinguishable.

20.  For a more detailed treatment of this aspect, see Bohr, A. and Mottelson, B.R. Nuclear Struc-
ture, Vol. 1 (W.A. Benjamin, New York 1969). Section 1A-6. Note that the D-function used
by these authors is the complex conjugate of the one used in this book.
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T (YT = Zaya;T,, (5.164)

where the g, are the elements of an orthogonal matrix representing the rotation,

Out of the nine components, we can form three groups of linear combinations of
the components:
i

§ =317, (5.165a)

v, :% (T,;~T,),  §.).kcyclic;

1
=-i El}'ﬁ Tff’ (5-165b)
1
A, =3 (T;+T;~ 253)), (5.165¢)
such thai,
T,=A;+€, V,+58,. {5.166)

Here €, is the antisymmetric tensor introduced in Eq. (5.2b).

The peculiarity of the above three groups is that each of them transforms, under
rotations, independenily of the other two. In fact, §, being propertional to the
trace of 7, is invariant under rotations [see Eq. (A. 51)), and, hence, is a scalar, or
tensor of rank 0.V, V, and V, are the three independent components of an anti-
symmetric, second rank tensor, and so transforms like a vector (tensor of rank 1),
A is a traceless, symmetric tensor of rank 2, and has, therefore, five independent
components which transform among themselves under rotations. Thus, from the
viewpoint of their behaviour under rotations, ¢ach of the three groups has a status
that is independent of the other two, That s, each of them is a tensor. They differ
from the cartesian tensor 7' in that their components cannol be organised into
smaller subgroups such that each of the subgroups transforms under rotations
independently of the other subgroups. They are, therefore, called irreducible
tensors. On the other hand, a tensor like T, whose components or linear combi-
nations of the components, can be divided into two or more groups which trans-
form under rotations among themselves, is a reducible tensor.

The spherical tensors are nothing but the irreducible tensors that result from the
grouping of the components of a general (cartesian) tensor as explained above. Of
course, the components given by Egs. (5.165b, ¢) are not ihe sphencal compo-
nenis that transform like the components of the spherical harmonics. We can
deduce the spherical components of V and of the symmetric tensor A with the help
of the expressions for Yy, and Y, given in Eq. (5.63). We have {see also Eq.

{4.107],
3 3{.1 ,
rY ="\ , prCile (E { IT—J+'-’ E(Xilﬁ},
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which show that the spherical components of the vector V are given by,

IO =V,=V,V,

TO =V, =F—=(V,2iV) =F—=(V.+iV,). (5.167)

NI"‘
[\»)

2.

-

Similarly, from

5 .
=\ TP £y,
5 3 2 2 :
rYy.,= \’ 16“{‘\’§(x -y iZny)},

T<()2) =24,-A,, -4y,

~<
~
[ &
I

we get,

TP =F6 (A3 1iAy), (5.168)

( 3 .
T9 = FAn—Apt2A,).

It turns out that the irreducible tensors that are derived by the reduction of a
general tensor, have invariably odd numbers of components. This means that the
spherical tensors are of integral rank (as also implied by their definition in terms
of the spherical harmonics). However, the transformation law (5.163) permits
spherical tensors of half-integral rank also, as the 2-matrix can be of half-integral
order. Such tensors® are called spinors, and represent wavefunctions of particles
with half-integral spin. Irreducible tensor operators representing interactions
between physical systems are invariably of integral order.

The importance of spherical tensors in the theory of angular momentum stems
from the fact that the spherical tensor 7% , like the sphericz! harmonic Y, is

associated with an angular momentum k with z-component g (That is, | k| =
Vk(k +1)#; k, = gh). Thus, if | 00 > represents a state with zero angular momen-
m (j = 0; m = 0), then, 7% | 00 > should be a statc with angular momentum k and
z component ¢:

T®100> < | kg >, (1.169)

Similarly, 7® | jm > would yicld a state | j'm’> with m’=m+q and | j—k |
< j"<(j +k). This fact is better expressed by the equation,
<jm \T® | jm >=f(j, ", k)C (5.170")

mgm’*

21. For a more detailed discussion on these tensors, see de-Shalit, A. and Talmi, I. Nuclear Shell
Theory (Academic Press, New York 1963), Section 11.
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where, f() is independent of the projection grantum numbers [sce, Eq. (5.1709H
below].

Commutation Relations with the Components of J

Since the fg” are operators, Eq. (5.163') can also be wriiten as [see Eq. (5.129)],
ROTYR(©)= L2, @FY, (5.163%)
q

where 0 =(0, B,V
Substituting for R(®) in Eq. (5.163%) the infinitesimal rotation operator given by
Eq. (5.128”) and using the relation,

¥, (9, 88) = < kg’ | R (36) | kg >

1 i
=8W,—%89<kq [n-J) | kq >, (5.171)
we get,
(-, =% <kg'((n- D) kg > TY, (5.172)
=
or,
U, T =k Tk g+ VYT, (5.172a)
[, T8 =hq T, (5.172b)

Egs. (5.172a, b) are equivalent to the Eq. (5.163%, and could, therefore, be
regarded as an alternative definition of the spherical tensors.”

Problem 5.23: Obtain the commutation relations (5.16a, b) from Eqs. (5.172a, b).

Product of Spherical Tensors

Scalar product:
(70,0 = G(—l)”fﬁ”[}{_ﬂé‘: : (5.173)
Tensor product:
[FOx 09 = 5T ¢ (5.174)
q

From the C-coefficient, it is clear that the rank of the lensor product can vary from
|r -5 |to(r + ). In the case of four commuting spherical tensors £, G, H*) and

A

M’ we have,
FEDGO M) = (-1) U EE1) (FO X AP ICT <MY, (5.175)

22.  This definition is due to Racah (Reference cited in foot note 11},
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I 7 and U are spherical tensors operating on different spaces, then we can
define a double tensor by

fl(:)US:) =¥(C™ ['f(') x 0(’)]
'

WV(p+v)

L3
+v”*

(5.176)

This is the inverse of Eq. (5.174).
Matrix Elements: The Wigner-Eckart Theorem

Eq. (5.170") is referred to as the Wigner-Eckart theorem. A more convenient (and
conventional) notation is,

Ly i <A >
<y | T jomy >=C 00 = 2jz¥fh (51709
where, the double-barred matrix element is known as the reduced matrix element.
The theorem basically divides the matrix element into two factors—one (the
C-coefficient) depending on the gcometry (that is, the relative orientation of the
physical and the co-ordinate systems) and the other (the reduced matrix element)
on the intrinsic properties of the tensor T®. A proof of the theorem is given

below:

< j2m2 i f'(:) ljlml >= J.\V;iuz(r)f?)\v}lml(r)d3r
— [ 1RO (r}” (k10 R, PN

=% w;in;(r)f‘g‘.)wjlm.l(r)dSrD’:. z,"z(e)x17;,‘,(@)11;.""1(@),

m‘myq
by Egs. (5.138%) and (5.163%),

ho@). (5.177)

mymy

= I <jm,|T®] jlm’1>'.ZJ::h (©)x T, (©)D

m'my'q
Integrating both sides over the Euler angles (@) and making use of Egs. (5.156)
and (5.158b), we get,
<jym, | T;"’ | jym, >x 81> = I <jm,) 9 jym’, >
m'mq

B it ki
2j,+ 1 ™Mim m'q'my

X

That is,

. O _ ~hki 1 1
< | T jmy>=C

z
™2, + 1 {m,’m’q’\/2j2+ 1

xCHR < jm’ | T9 | jm’, 5}, (5.170%)

”"17""'2
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The quantity in the curly bracket s, obviously, independent of the projection
quantumn nambers and could, therefore, be written as

1 ik ) Ay
CER < im | T® jm!, >
mymg’ 25+ 1 miamy S22 | s 1M
=< i WT®N > (5.178

Substitution of (5.178) in (5.170%) leads to Eq. (5.170%).
In the case of a scalar opcrator, § = 7%, we have from Eq. (5.170%) and the

. o
relation CZY,. = 8,8,

mam’

<j'm'\§|jm>= <jiiSitj > 8,8, {5.179)

1
N2j+1
"The unit operator 1 is a scalar. Hence from Eq. (5.179), we have,

<JNINj >=V2j+18,. (5.180)

Problem 5,24: Deduce the following relationships:

@ <IN >=mjl+ D2+ D3,

() <INCNI>=(-1)Dyy,

2L +1
is the angular momentum coupling coefficient defined by (5.87).
Given below are some of the most commonly used formutae involving the
reduced matrix clements of spherical tensors. The derivation of these relation-
ships are straightforward, though redious®,

Consider a two-particle system with a wavefunction | j j,jm > in the notation
of Eq. (5.68a). Let 7™ and U® be irreducible tensor operators defined on the
Hiilbert space of particle 1 and particle 2, respectively. Then,

< WFON o > = {5+ D@+ DY WG ik )

4n 172
where, cy =( ) Y, and Dy,

x < NT¥ 3> 8, (5.181a)
<J R RNTN Gy » = {25+ DR+ DY WG, ik gy

x< U0 > 8, (5.181b)
< jiim \( TR0 jjim >

= 8, B0 WG ) < GNTEN G > %< WO® > . (5.182a)

23,  The derivation of some of these can be found in Section 24 of Ref. 2 listed a1 the end of this
chapter,
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P Alr AR .
<RI XU fijof >

= {(2j + D) + 1) (2 + D2 <, 1Ty >

WonT
x<p MO N> 0 § Jt- (5.182b)
r S t

If V is an arbitrary vector operator (that is, a spherical tensor of rank 1), then,
<jm’13d- V)| jm >

<j'm’ |V |jm >=8.

jG+ Dt
s JG+1)n

This equation is known as the projection theorem for first rank tensors®. In the
case of a component V . of V the equation reduces to [in view of Eq. (5.170%) and
Problem (5.242)],

<jm’|J L jm ><jll3-V)j >

<jm\V, | jm>=8§., 5.183a
JFmiiv 1j i JGIOR ( )
Trace of a Spherical Tensor
This is defined as,
Tr(f®) =X <jm {T® | jm >
jm
_gom SIMENN) >
m \/Z_ﬁ
=8,,8,ZN2j + 1 <jlIT|j >, (5.184)
J

where use has been made of the relation C/%/ =1, and Egs. (5.83c) and (5.84a).

Thus, the trace of a spherical tensor of non-zero rank, is zero.
Problem 5.25: Deduce the above fact from the commutation relations (5.172 a,
b).

5.8 CONSEQUENCES OF QUANTIZATION

The most important consequence of the quantization of angular momentum, is
that the operators representing the components do not commute. The uncertainty
principle, then, makes it impossible to measure accurately more than one com-
ponent of angular momentum in any particular quantum state. According to

24.  See Ref. 2, Section 20.
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Eq. (3.28) [see, also Eq. (3.28a)], the uncertainties A/, and AJ, in the values of J,
and J, in the state | jm > are given by the relation,

A4
[

A, A, [a<jm | J, 1 jm> |

2= |m|# {(5.185)

1
2
1t follows as a covollary of this result that the angular momentum vecior cannot be
exactly parallel to the axis of quantization (the z-axis). For, if it could, the

uncertainties in J, and J, would be zero (since J, and J, themsclves would be

exactly zero). In fact, it is possible to show (see Problem 3.5) that the relation.
{5.185) demands that an angular momentam whose maximum projection on the
z-axis is j#, should be of length Vj(j + Dk Also, <J, >=<J, >=0, so that J

precesses around the z-axis. Consequently, the orbit of the particle would not lie
in a single plane.

Another consequence of quantization is that the measured values of the angular
momentum along a reference axis has to be an integral multiple of (#/2). This is
a consequence of the paricelar commutation relations (5.7a) satisfied by the
components of the angular momentum operator. It means that, when there is a
preferied direction, such as a magnetic field in the case of a charged particle, the
orientation of the angular momentum vector is quantized with respect to this
direction; only certain discrete orientations being allowed.

That a general angular momentum can have half-integer values {j =0, 112, 1,
312, ..). while the orbital angular momentum has only integer values (=0, 1, 2,
...), may be taken to imply the existence of a half-integral inirinsic angular
momentumn (Spin). Historically, the hypothesis of spin (see foomote 3} preceded
the theory of angular momentum.
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CHAPTER 6

INVARIANCE PRINCIPLES AND
CONSERVATION LAWS

In the course of the dynamical development of a physical system, though many of
the observables change their values, there might be one or more physical
observables which do not change with time. Such observables arc called con-
stants of motion, and the principle embodying their constancy in time arc referred
to as conservation laws. Thus, in the case of a free particle, the linear momentum
is a constant of motion, whereas for a sysiem moving under the influence of a
spherically symmetric field, the linear momentum varies with time but both the
angular momentum and the energy are constants of motion. It will be shown:
below that the constancy of a physical observable implies, or rather stems from,
the invariance of the Hamiltonian of the physical system under a certain symmetry
operation. Among the various symmetries, the geometrical symmelries asso-
ciated with space and time are of special importance. These are the symmeltries
arising from the homogeneity of space and time (which results in the invariar.ce
of the Hamiltonian under translations in space and time), the isotropy of space’
(leading 10 the rotational invariance) and the invariance of the Hamiltonian under
inversions of space and time. Then there are the dynamical symmetries which are
associated with particular features of the interaction involved. For example, the
(21 + 1)-fold degeneracy of the energy associated with a particular angular
momentum /, is a feature of motion in a central field, and arises from the cylin-
drical symmetry of a central field®>. Similariy, the /-degeneracy discussed in
connection with the energy levels of the hydrogen atom (See Egs. (4.117), (4.116)
and (4.128)) is a consequence of a special symmetry of the Coulomb interaction”.
In this chapter, we will confine ourselves to a discussion of the space-time sym-
metries and the associated conservation laws. We will first establish the rela-
tionship between a conservation law and a symmetry operation, and then discuss
cach of the symmetry operations in more detail.

Time being one-dimensional, we cannot talk of rotations in lime.

"The axis of the cylinder is perpendicular to the angular momentum vector. In a scattering pro-
cess, for example, it is the incident direction.

3. For a more detailed discussion of this point in particular and of the dynamical symmetries in
gereral, see LI Schiff, Quantum Mechanics (McGraw -Hill, 1968), III Edition, Section 30.

o —



182 QUANTUM MECHANICS

6.1 SYMMETRY AND CONSERVATION LAWS

From Eq. (4.25), we have, _‘f;(;tﬁ =0, if,

[A, A1 =0. (6.1)

That is, an observable is a constant of motion if the corresponding operator

commutes with the Hamiltonian. Now, corresponding to the Hermitian operator
A, we can define a unitary operator U, [See Eq. (2.63)1:

U (e)=e"%, 6.2)

where, € is a real parameter, which is a scalar or a vector according as A is a scalar
or a vector operator. (€ A) would be the scalar formed by taking the product of
e and A. Eq. (6.1) implies the relationship (provided € H =H €),

U,a=Aa0,. (6.3a)
or

UA0{=H. {6.3b)

But, Eq. (6.3b) represents a unitary transformation. Hence we have the result that,

if the observable corresponding (o the operator A is conserved during the motion

of the system, then the Hamiltonian of the system is invarian{ under the unitary
transformation generated by A. Such transformations (those that leave the

Hamiltonian invariant) are called symmetry transforinations. ‘Thus, a conserva-

ton Jaw invariably implies the existence of a symmetry transformation for the

sysiem, The converse is, however, not necessarily true, as we will presently see.
A symmetry transformation, in addition to leaving the Hamiltonian invariant,
is characterised by the following properties:

(S§T1) It preserves the Hermitian character of an operator. This ensures that
observables remain observables under the transformation.

(5T2) Itconserves probabilities. This means that the absoluts value of the scalar
product of a pair of vectars remains invariant under the transformation
{(Remember that probability is proportional to the square of the absolute
value of the scalar product).

Both these properties imply that a symmetry transformation could be either uni-

Lary or antiunitary [See Eqs. (2.60)* and (B.11)]. The later possibility arises when

Ain Eq. (6.1} is both antilinear and unitary (that is, satisfies Eq. (B.1) as well as

the condition A* =A~’). Since an antilinear operator cannot represent a physical

observable (as it does not preserve the principle of superposition), symmetry
transformations corresponding to antiunitary transformations, do not lead to any
conservation laws. Nevertheless, such transformations are of importance because
of the selection rules they provide, which enabie us to tell why transitions between
- cerlain siates are allowed while those between certain others are forbidden.

4. The derivation leading 1o Eq. (2.60) is valid even when [ is antilinear.
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Among the space-lime symmetries, it turns out that the time reversal operation is
associated with an antiunitary operator. The other four symmetries correspond to
unitary transformations.

Symmetry and Degeneracy

From Eq. (6.3a), we see that, if | u, > is an eigenvector of H belonging to the
cigenvalue E,, then,

H{U, \u)} =E{U, 1w}, (6.4)
so that, U, | u,) is also an eigenvector of A belonging to the same eigenvalue. If
U, | ) is linearly independent of | i), then the energy eigenvalue E, is degener-

ate (see, Commuting Operators, Section 2.2). Thus, degeneracy of the energy
eigenvalues is another consequence of the invariance of the Hamiltonian under a
symmetry transformation. Conversely, degeneracy of the energy eigenvalues
implies the existence of an operator (not necessarily an observable) that com-
mutes with the Hamiltonian and thereby points to the existence of a symmetry
transformation for the system.

6.2 THE SPACE-TIME SYMMETRIES

As we have already stated, the space-time symmetries refer to the symmetries
associated with geometrical operations like displacement, rotation and inversion
(reflection at the origin) in space and time. For example, the assumption that
space is homogencous, requires that the Hamiltonian of (as well as the probabil-
ities associated with) a physical system be invariant under displaccment, or
translation, in space. We will see that such a translational invariance implies the
conservation of the lincar momentum of the system. Similarly, the invariance
under rotations has its origin in the isotropy of space (the fact that space has the
same propertics in all directions). The importance of these geometrical symme-
tries associated with space and time for physics would be clear if we think of the
situation if these symmetries were absent;

Imagine an experiment, say for measuring the cross-section for the scattering
of ncutrons by protons, being performed at two laboratories, one at Madras and
the other at Delhi. The expectation that the measurements at the two laboratories
will yield the same result, within experimental errors, if performed under identical
laboratory conditions, is based on the presumption that the differences in the
location and the orientation (arising from the curvature of the Earth) of the two
laboratories have no effect on the outcome of the experiment (that is, on the
physics of the problem). Similarly, the fact that the repetition of the experiment
will lead to the same result, depends on the independence of the outcome on the
time at which the experiment is performed; that is, on the homogeneity of time,
Thus, the reproducibility (and through it, the verifiability) of an experimental
result at different locations and time, which is basic to the philosophy of all
experimental sciences and which permits the formulation of laws with a universal
validity, stems from the homogeneity of space and time and the isotropy of space.
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Of course, even in the absence of these properties of space and time, it might be
possible to arrive at laws of a general nature; but this would require a knowledge
of the precise manner in which a displacement in space or time or a rotation in
space affects the obscrvations. In fact, we do have to cope up with local jnho-
mogeneity and anisotropy, as in the neighboarhood of the earth. But these we are
able to attribute 1o external (that is, not related to space and time) causes, such as
the gravitational field in the case of the earth, and maintain that space is really
homogencous and isotropic everywhere®, It is clear that the formulation of laws
of physics based on observations would have been a far more difficult task than it
15 now, il space and time were devoid of the geometrical symmetries under dis-
Cussion.

We should here make a distinction between the continuous symmetries that are
associated with displacement in space and time apd rotation in space, and the
discrete symmetries® that are associated with inversion of space and time.
Whereas the former have universal validity (that is, they hold good for all known
inlcractions’), the casc of the latier is not so clear, For example, it is known that
spnce-inversion invariance is not valid in the case of weak interactions. Time-
revirsal invariance also secms to be violated in certain reactions such as the decay
of acutral kaons.?

We will now discuss the naturc and properties of the operators, as well as the
conservation laws, that are associated with each of the space-time symmetrics.

6.2A Displacement in Space: Conservation of Linear Momentum

A displacement in space can be described either as a displacement of the co-
ordinate system with the physical system fixed (the passive point of view) or as a
displacement of the physical system with the co-ordinate system fixed (the active
point of view). Obviously, a displacement of the physical system through the
vECior p, is equivalent to a displacement of the co-ordinate system through —p.

5, . Altematively, we should count the eanth (the cause of the local inhomogeneity and anisotropy)
alsq as part of the physical system. Then for such a combined system (which would form a closed
systern), space and time would be homogeneous and space isotropie.

& 'These .were imroduced in quanwm mechanics by E.P. Wigner during he early 1530°s. |[EP,

- Wigner, Gottinger Nachr, 31, 546 (1932); see Alse, EP. Wigner, Group Theory and its Appli-

" cation in the Quantum Mechanics of Atomic Spectra (Academic Press, New York 1959) Chapter
. 26]

7. The presently-known interactions (forces) in nature are divided into four classes. These, in the
order of decreaping strength, are: Strong (1), electromagnetic (~107%), weak (~10"?) and gravita-
tonal (~107). Of these, the strong and the weak interactions are of extremely short range
~1017) and,Al‘:hqre.fore, are dominant in the case of nuclear and subnuclear particles. Both the
electromagnetic and the gravitalional interactions are of long range, but the occurrence of lwo
types of electric charges {pusitive and negative) and the electrical neutrality of macroscopic
bixlies, diminfish the domain.of dominance of electromagnetic interaction to that of atoms and
molecules

%, The suggesijon that space-inversion invariance may not hold good m the case of the weak inter-
action, was first put forward by T.D. Lee and C.N. Yang [Physical Review, 104, 254 (195611, and
expersmentally verified by C.8. Wu et. Al [Physical Review, 105, 1413 (1957)].
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Thercfore, onc is free to choose either of the viewpoints. We will adopt the active
point of view in the case of the continuous symmetries, and the passive point of
vicw In the case of the discrete symmetries.

Now, a continuous transformation should evolve from the identity transfor-
mation and should, therefore, be unitary. Let & represent the Hermitian operator
that is the gencrator of the infinitesimal displacement 8p (see Fig. 6.1) of the
physical system. The unitary operator corresponding to this displacement,
according to Eq. (6.2), is given by

U (8p)~1-i(8p - ). 6.5"
The change in the wavefunction at the space point r, resulting from this trans-
formation is given (in the co-ordinate representation) by [(of. Eq. (5.127%)],

U (Bp)w(r) = y'(r) = y(r - 8p), (5.6Y)
4
A
/
P 6p p
&
< 4 r
0 »Y

Fig. 6.1 Displaccment 8p in space of a physical system

which mcans that the wavefunction at the point P after the displacement is the
same as the wavefunction at P’ (where P was) before the displacement. Alter-
natively, one could say that if the original (undisplaced wavefunction has a max-
imum at r, the displaced wavefunction has a maximum at r + 8p. Using Eq. (6.5")
and the Taylor scrics expansion of y(r — 8p) around r, Eq. (6.6") can be written as

[1-i(8p - a)wir) = [1 - (3p - V) w(r)

=i-1 - f))}wm, (6.6)

vhere, p =—i%V, is the momentum operator.
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Thus, o= i 6.7)
so that, the unitary operator corresponding to the infinitesimal displacement 8p is
given by

- PO

0,(8p) =1~ . (6.5
A finite displacement p could be thought of as a succession of infinitesimal
displacements. We obtain, then [analogously to Eq. (5.135)],

U,(p)= exp [~ifmp - p). (6.5

Problem 6.1: A symmetry transformation could also be defined in terms of its
effect on the operators corresponding to the position, the linear momentum and
the spin of the system. Thus &7 (8p) is defined by [see Eq. (5.129)1°,

# =0 (Sp) U1 (8p) = # - (8p)1, (6.8a)
P =U (3p)pUL(3p) = P, (6.8b)
§=U (3p)8U1(8p) =38, (6.8¢c)

Show that this definition also leads to the result (6.7).

Thus, the generator of translations in space is the lincar momentum operator,
Invariance of the Hamiltonian under such translations requires [see, Egs. (6.3a)
and (6.1}], that the operator {J »» and hence the operator p, commute with fi. But

the relation [P, F] =0 implies that the total linear momentum of the system is
conserved. In other words, conservation of the linear momenium of a physical
system is a consequence of the translational invariance of the Hamiltonian of the
System.

Now, the relation, [, 1] = 0, will hold good only if # is independent of r. That
is, if #7 does not contain a potcntial energy term V which is a function of v, In
other words, the system should be free from external forces (or, closed). The
degencracy referred to in the previous Section, corresponds to the fact that the
energy cigenvalues depend only on the magnitude of p and not on its direction.

The translational invariance of the Hamiltonian could also be expressed by
saying that the transformed wavefunction y(r, t) = U, (p)y(r, ), satisfics the same

Schradinger equation as y(r, ¢). For, applying U (P} 10 the Schridinger equation,

9. Note that the matrix elemems of P with respect to the displaced states are the same as the matrix
elements of # with respect to the original states:

<y P AN > =<y 1 00, | v >
=<y F [y >.
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iﬁ@’%z =Hwy(r, )
we have,
ihiw'(r, =0 Hy(r, 1)
ot 4
=00 (1)
=Avy(r,1), 6.9)
since UPIA =ﬁ0P.

6.2B Displacement in Time: Conservation of Energy

Displacement in time is also a continuous transformation and is, therefore, uni-
tary. The operator corresponding to the infinitesimal displacement 8t in time of
the physical system is given, according to Eq. (4.11), by"

U, 80 =1+@m&H, (6.10"
and for a finite displacement T, when H is independent of time [see Eq. (4.16)], by
U, ()= exp liimytH), (6.10%)

I1 being the Hamiltonian of the system.

The cffect of the displacement T on the wavefunction y(¢) of the system, is
given by [of. Eq. (6.61)],

Uy =y'@) =yt - 7). (6.11)

This means that events corresponding to time ¢ in W, correspond to time (¢ +1)
iny’.

The invariance of thc Hamiltonian under translations in time requires that
U, (vl = HU,,(1), which also results in the same Schrodinger equation for y'(1)
as for y(t) [see Eq. (6.9)]. Now, A commutes with U,, if the latter is given by
cxp{cssion (6.10%; that is, if A is independent of ¢. And the time-independence
of H means that the total energy of the physical system is conserved. But when
11 depends on £ (that is, when the cnergy is not conserved), U (1) is not given by
Eq. (6.10%, but bﬂy a more complicated expression [see Eq. (4.13)] which does not
commute with //. As a result, the Hamiltonian would not be invariant under

translation in time''. We, thus, see that the total energy of the system is conserved
if the system is invariant under translations in time, and vice versa.

10. In place of the negative sign in Eq. (4.11), we have the positive sign in (6.10"), because a
displacement &t in time of the physical system corresponds to a displacement —t for the time
co-ordinate [c.f. Eq. (6.6))].

11 This fact also follows from the fact that y'(f) = U, (5t)y(r) does not satisfy the Schrodinger
equation when [7 in Eq. (6.10") is a function of time (see Problem 6.2).
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Problem 6.2: Show that (1) = U ,(50w(¢), will not satisfy the Schrédinger
cquation when /7 is a function of time,

6.2C Rotations in Space: Conservation of Angular Momentum

We have alrcady discussed, in Section 5.6, the relationship of rotations to the
ingular momentum of the physical systemn. The unitary operator corresponding
0 a rotation of the physical system through an angle 8 about the axis n, is given
oy Eq. (5.135):

,(n,0) =R (0) = cxp [-(i/A)0(0.J)] (6.12)

vhere, § is the operator corresponding to the fotal angular momentum of the
ystem. Hence the invariance of the Hamiltonian under rotations in space
U1 = 11U,), requires that the total angular momentum be a constant of motion

that is, 1J, 71 :f)). In other words, conservation of angular momentum is a
onsequence of the rotational invariance of the system.

roblem 6.3: Show that the encrgy eigenfunctions of a spinless system with a
sherically symmetric potential, are given by y(r) = Rg(r)Y,.(8, ), where, ¥, is

ic spherical harmonic of order { and R, is a function only of the radial co-

‘dinate.
6.2D Space Inversion: Parity

ace inversion 1s the operation in which the axes of the reference frame are
lected at the origin, as in Fig. 5.2. The effect of the operation is to change a
ht-handed co-ordinate system into a left-handed one'?, and vice versa. Since
:s¢ two types of co-ordinate systems are mirror images of each other, a physicai
stern which is invariant under space inversion s said to posscss reflection
Wzmc.rry, or 1o lack chirality (that is, handedness). This mean§ that phenomena
ssociated with the system will look the same irrespective of the handedness of
1 co-ordinate system in which they are observed. In other words, there is parity
ciween the systern and its mirror image. Space inversion is, for this reason, also
alled Parity Operation. The comresponding transformation is, obviously, dis-
arete.
Now, an clement of the physical system which has the position vector r in the
original co-ordinate system, has the position vector r" =—r in the inverted co-

dr
ordinaie system (sec Fig. 5.2). The velocity L and hence the momentum p, also
12, A righi-handed co-ordinate sysiem is one in which, if we twis! a right handed screw from x 10 y,

it will advance I the dircction of the z-axis. A lefi-handed co-ordinate system is similarly
defined by a lefi-handed screw.
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change sign under the operation. But the angular momentum ¢ x p will not change
sign. Thus, the parity operator U, could be defined by the relations™ [see Eqgs.
(6.8a-c)].

¥ =010, =, (6.132)
p'=01p0,=-p, (6.13b)
§=080,=3, (6.13c)

We see that the transformation preserves the basic Heisenberg commutation
relations (3.12a, b) and is, therefore, unitary (rather than antiunitary). Also,

multiplying Eqs. (6.13a-c) on the right by U and on the left by U, we see that
Ut = expi®)U,, (6.14a)
which, in view of the relation, UsU, = 1, implies,
U% = exp (-i§)l. (6.14b)

Now, at least in the case of systems with integer spin [see Eq. (5.145¢c)}, U2 =1,

so that,
6=0. (6.15)
Thus, U, is both unitary and Hermitian. Therefore we can set,
U,=P. (6.16)

Then, from Egs. (6.14b) and (6.15), we sce that the eigenvalues of P are *1
(Remember that the eigenvalues have to be real since P is Hermitian). Thus, if
y(r) is an eigenvector of P, then [by Eqs. (6.6") and (6.13a)],
Pry(r) = Py(r) = y(-r) = +y(r). (6.17)

A state for which the upper sign in Eq. (6.17) holds good, is said to have even, or
positive, parity whereas one for which the lower sign is applicable is of odd, or
negative, parity. Of course, a physical state need to have a definite parity (that is,
need be an eigenvector of £) only if the Hamiltonian (interaction) is invariant
under the parity operation. So far only the weak interaction (footnote 7) is known
1o violate parity conservation. This means that phenomena mediated by weak
interaction, such as beta decay, can be distinguished from their mirror images™.

An operator also could be characterised as odd or even depending on whether
or not it changes sign under the parity operation. The operator A is odd, if,

13. Relation (6.13c) is based on the assumption that the spin transforms in the same way as the orbita)
angular momentum under space inversion [of. Egs. (5.128%) and (5.127°)].

14, For a more detailed discussion of the experimental aspects of parity violation, see A. Bohr and B.
R. Mottelson, Nuclear Structure, Vol. I (Benjamin, New York 1969), Section 1-2.
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PAPT=-4, (6.182)
or,
AP +PA={A F}1=0 (6.18b)
and even if,
ﬁAﬁTzﬁi, (6.19a)
or,
[A,P]=0. (6.19b)

Thus, A is even or odd according as it commutes or anticommutes with P,
Obviously, then, only the eigenstate of an even operator can have definite parity.
For example, Eq. (6.13b) shows that § is an odd operator. Therefare, a state with
definite lincar momentum has no definite parity. On the other hand, the angular
momentum operator is even [Eq. (6.13c)], so that a state with a definite angular
momentum has a definite parity, In fact, we have shown in Section 54 [Eq.
(5.61)] that 2 state with orbital angular momentum quantum number /, has the
parity m; = (=1). Eq. (6.13¢) shows that the spin part of the wavefunction (X)) also
has a definite parity, usually referred to as the intrinsic parity of the particle (spin
being the intrinsic angular momentum). However, the intrinsic parity is not given
by a simple formula involving the spin quantum number s, but has to be deter-
mined relative to a particle whose intrinsic parity is already fixed either by con-
vention or by some other means. For example, the intrinsic parity of the nucleons
{spin 11) is conventionally fixed as positive. Then, the parity of the pions can be

determined relative to that of the nucleons, for example'®, from the reaction,
T+d > ptp,
where o is the deuteron (consisting of a proton and a neutron}, p represents the

proton and 7" a positively charged pion. The parity of the pion turns oul to be
negative.

Problem 6.4: The parity %, of an operator A is defined by PAFT =m,A; and the
parity of a state vector |y > by P y>=7, | y>. Show that the selection rule,
m,,m, = +1, applies to the matrix element < ¢ 1A |y > of A. Hence deduce that
a nuclcon cannot have an electric dipole moment.

(Note: Electric dipole moment operator, D = e#, e being the electric charge of the
nucleon).

15. See, for example, Omnes, R., Introduction to Particle Physics (Wiley-Interscience, London
1971; translated by G. Barton) Chapier 6, Section 4; A.D. Martin and T.D. Spearman, Elementary
Particle Theory {North-Holland, Amsterdam 1970), Chapter 5, Section 2.1.
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6.2E Time Reversal Invariance
In time reversal operation ¢ — —¢.  Under such an operation, the velocity changes

sign, whereas the position co-ordinate is not affected. Thus, denoting the time
reversal operator by 7, we have,

F=dd =+, . (6.20a)
p="2%=-p, (6.20b)
3=t =-§ (6.20¢)

This transformation leads to the commutation relations (B.14) and is, hence,
antiunitary. It follows that, unlike parity, time reversal invariance does not give
rise to an associated observable’. Therefore, in the equation,

Tr=e™, (6.21)
which is derived analogously to Eq. (6.14b), vy need not be zero. '
The time-rcversed state y,(r,t) corresponding to the state y(r,¢) is not

y(r,—) [cf. Eq. (6.17)]. This could be seen as follows: Let H be the (real)
Hamiltonian of a physical system that is invariant under time reversal. That is,

THI'=H, or, [$H) =0. (6.22)
The Schrédinger equation for the original state y(r, ¢) is,

mg“%’ﬂ = Hy(r,t). (6.23a)

Replacing ¢ by —¢ in this equation, we have,

—mg“’g—l’"’») = A(r,—1). (6.23b)

On the other hand, operating on Eq. (6.23a) with 4 and making use of the relations
(6.22) and (B.2), we get,

m% {y(r, 0} = H {Ty(r, 1)} (6.23¢)

Comparison of Egs. (6.23b) and (6.23¢) shows that Ty(r,t) # y(r,—t). However,
taking the complex conjugate of (6.23b), we get,

ih%\y'(r, —1) = A (r,~1), (6.23d)
which, in view of Eq. (6.23c) suggests,

Ty, )=y (1) =y (r,~t). (6.24a)
This result could be obtained also from the following considerations:

16. lItis in anticipation of this result that we have denoted the time reversal operator by 7 rather than
by O,
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7, being an antiunitary operator, could be written as the product of a unitary
operator {J and the complex conjugation operator K, [See Eq. (B.20a)]:
T=UK.. (6.25)
In the co-ordinate representation, § is real and g is pure imaginary [Egs. (3.18")1.
Thercfore, in the case of a spinless system, Eqs. (6.20a, b) suggest the choice,
U=1,1=K,. (6.25")
Thus, ¥ is the complex conjugation operator. This fact, of course, depends on the
representation, In the momentum representation, pisreal and f is imaginary [Egs.
(3.]8})]; so that Eqs. (6.20a, b) require U to be an operator that changes p to
—p UpU* =, and
Tw(p. 1) =¥ (-p,~1), (6.24b)

F for Particles with Spin

Now, it is clear from the foregoing that the explicit form for ‘T will depend on the

rcprésemali()n chosen. We, therefore, choose the co-ordinate representation for #

and p [Egs. (3.18")} and the standard representation for the angular momentum

(Eq. (5.32a-d)]. Then, #,§, and §, are real whereas p and §, are imaginary. If 4is
wrilten as in (6.25), then from Egs. (6.20a-c), we have,

Ut =k UpUT=p; U, 0% =35, (6.26a)

US Ut =—§;U08,0=-5,. (6.26b)

U leaves t,p and §, invariant, but changes the signs of §, and §,. U should,

thercfore, represent a rotation of the co-ordinate system through an angle m about
the y-axis in the spin space. Thatis” {see Eq. (5.139)),

“ imyn §
U=¢"""", 6.27)
Thus, in the case of a system with total angular momentum J,
T=exp (i )K,, (6.25%

so that, if | jm > represents a basis vector in the angular momentum representa-
tion, then,

Fljm>==Y"|j-m>. 6.28)
The result could be derived as follows: o
Tl jm >= explGimnd ) - K, | jm >
= exp {(i/A)n ] | jm >, by Eq. (B.17).

=Xd, (M) jm’ >, (6.28a)

17", The exponent in Eq. (6.27) has positive sign because {J represents a rotation of the co-ordinate
systemn rather than of the physical system.
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where, Egs. (5.136%), (5.138% and (5.141) have been used. But, from Eq. (5.142),
we have,
Al (M) =(-1Y""8 . (6.29)
Substitution of (6.29) in (6.28a) leads to (6.28).
Applying 7 once again to Eq. (6.28), we get,
Tl jm >= (1% | jm > (6.30)

Thus, # has eigenvalue +1 for integer j and — 1 for half-integer j. If the Hamil-

tonian £ is time-reversal invariant, then 4| jm > would be an eigenvector'® of H
belonging to the same eigenvalue as | jm >. The case ¥ | jm >=| jm >, then,
permits the solution, 9} jm >=c | jm >, where ¢ is a scalar. In this case, 7| jm >
is the same statc as | jm > so that there is no degeneracy. But, when 7| jm >=
—\jm >4} jm >#c|jm>. Infact, 7] jm > would be orthogonal 10| jm > . For,

< jm | {1 jm >} = < jm | {?F] jm >}
=—<jm | {1'] jm >}

=—<jm | {T] jm >}; by Eq. (B.6b).
This shows that < jm | {7]jm >} is zero. Thus, every state | jm > would be
degenerate with its time-reversed state. In other words, every energy eigenvalue
would be two-fold degenerate. This is referred to as Kramer’s degeneracy.
An example of a state for which 7*= 1, is the state | Im > of a system with
orbital angular momentum /. For, according to Eq. (6.30),
Plim>=-D)Im>=Im >, (6.30a)
since  is integer. A state of an atom with an odd number of electrons (hence,
half-odd j), provides an example of Kramer’s degeneracy. The degen?racy wguld
be present even in the presence of an electric field (as the potential V(r)=-~KE - ¢,

commutes with 1), but would be lifted by a velocity-dependent field such as the
magnetic field.

When the angular momentum is entirely due to orbital motion (f = 1), we can
take the co-ordinate representation' of Eq. (6.28). We get,

<r|{fim>}=(=1)"<r|l-m>.
But, using Eq. (B.6b), we have,
<r|{TIim>}y={<r| T} lIm>=<r|im>,
since,

Tr>=K_|r>=r>, (6.31)

18. The basis vector | jm > is actually labelled by an additional quanium number « corresponding to
the cigenvalues of /7. Thus,
ljm>=]|ojm>.
19. Note that the intrinsic spin has no co-ordinate representation.
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in the co-ordinate representiation. Thus,
<eilm>=1"<cll-m>. (6.28"

The left hand side of Eq. (6.28") is the co-ordinate representation of 71 lm > .
We see, therefore, that, in the co-ordinate representation, time reversal is equiv-
alent to complex conjugation excepi for systems with intrinsic spin. Also, com-
paring Eq. (6.28") with Eqgs. (5.46) and (5.59a), we see that the choice of phase
implicd by Eq. (6.28) is given by

<riim>=9,(0,0)=i'Y, (6,0, (6.32)
for the eigenvectors of the orbital angular momentum®, With this choice, com-
plex conjugation becomes identical with rotation through m about the y-axis, while
either of the operations becomes equivalent to the time reversal operation™.

It might scem strange that a linear operator corresponding to a rotation could
be equivalent 10 7 which is an gntilinear operator. But, as is evident from Egs.
(B. 1, 2), lincar and antilinear operations are different only with regard to ‘com-
plex’ entities. The relation

K llm>={lm>,

which is implicit in Eq. (6.28'), suggests that the 9;,(8,6)’s of Eq. (6.32) constitute
a ‘real’ basis for the orbital angular momentum.

Problem 6.5: Show from Eqs. (6.27) and (6.25) thal, in the case of a spin % par-

ticle, 7=10,K ,, where &, is the Pauli spin operator.

Transformation Properties of Spherical Tensors

The spherical tensors have usually simple transformation properties under time

reversal. In analogy with that of the spherical harmonic, the transform Tﬁ” of a
spherical tensor 7 of rank & under time reversal, can be expressed as

FO_ gieg 70

T e 7POF = +1)7Y, (6.33)

The spherical tensor is said to be even if the upper sign in (6.33) holds good, and
odd if the lower sign holds good. For example, the spherical components of £ are
given by [see Eg. (5.167),

A s

1
f‘:):i—" £Xiy), Al =2, {6.34)
11 \[2—( ¥ Fy

20. As we have explained in relation to Egs. (5.29a, b) and {(5.57), we are free to choose the phase of
one of the eigenveciors belonging to a given j- or f-value.

21. In the present case, the ime reversal operation is just complex conjugation. It is the particular
choice of phase, Eq. (6.32), that makes this operation also equal to a rotation through rt about the
y-axis.
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so that, using Eq. (6.20a), we get,
TV = +(-1)7FC, (6.332)
Thus, 7 is even, or # is an even operator. Similarly, p is an odd operator. It

follows that the electric dipole moment operator D = e (where, e is the electric
charge) is even under time reversal. Now, it can be shown, using Eq. (6.33), that

<jUTONj > =41 < jIIT®) >, (6.35)
where, the double-bar denotes reduced matrix element between states of definite
angular momenta [Eq. (5.170%)]. Also, the sign in Eq. (6.35) follows that in Eq.
(6.33). Eq. (6.35) shows that a stationary state with a definite angular momentum
cannot have an electric dipole moment, unless time-reversal invariance is vio-
lated. Earlier [Problem 6.4], we have seen that parity conservation forbids the
existence of an electric dipole moment for the nucleon. Therefore, the
observation of a static electric dipole moment for the nucleon would imply the
violation of both parity conservation and time-reversal symmetry.

Problem 6.6: Deduce Eq. (6.35).



CHAPTER T

THEORY OF SCATTERING

7.1 PRELIMINARIES

Experiments on scatiering provide one of the most important means of gathering
mlormation in the realm of atomic and subatomic particles. Thus, it was
Rutherford’s experiments on the scattering of alpha-particles that provided the
experimental basis for the nuclear atom maodel that eveniually led to the Bohr
atom model and 1o quantum mechanics. Many of the fealures of the nuclear force
such as ils range, strength and spin-dependence, have been deduced from data
gathered from nuclcon-nucleon scattering. Scautering of electrons from nuclei as
well as nuclcons has helped in determining the charge distribution in the latter. In
fact, the importance of the role of the scattering experiment as g pecp-hole into the
world of nuclear and sub-nuclear particles, cannot be overemphasized.

In this chapier, we propose to present some aspects’ of the quantum theory of
scauering. After describing the scatlering experiment and the quantities measured
in the experiment, we will consider two differcnt methods of the theory, one
suitable for low energy scattering and the other valid for high energy scattering.

The Scattering Experiment

In a typical scattering experiment, a beam of homogencous, mongergic particles
(that is, an ensemble of particles) falls on a rargei {which could be in the form of
a thin foil) consisting of a large number of scattering centres, The particles are
scattered by the target in all directions” and the scattered particies are received and
analysed by a derector placed at a large (compared with the lincar dimensions of
the target) distance from the target. Let {sec Fig. 7.1) the origin of the co-ordinate
systemt be chosen at the target, and the z-axis along the direction of the incident
beam. Also let,

1. Swfficiem as it 15 10 be the subject maungr of a whole book [See, for example, Goldberger, M 1.
and Watson, K.M. Cutlisien Theary (lohn Wiley, New Yark 1964); Newton, R (., Scattering
Theory of Waves and Particles (MoGraw -Hill, New York 1966)).

Some of the particles, of course, proceed along the incident direction, unaffected by the targel

v
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dfl

n=(0,)

"VYV-U

4
TARGET
Fig. 7.1 The scattering experiment.
dQ = sin6d0dd = the solid angle subtended by the detector at the target,
Q = (68,0) = the angular position of the detector,
dN = the number of particles received by the detector per unit time,
Jo = the incident flux,

INCIDENT BEAM

= the number of particles crossing a unit area perpendicular to the
direction of the beam, per unit time,
n = the number of scattering centres in the target.
Then, dN will be proportional 1o #, } J, | and d€, if the following conditions are
satisfied:

(i) The intensity (that is, the density or the number of particles per unit
volume) of the incident beam is low enough for the mutual interaction
among the particles to be neglected.

(i1} The momentum p of the particles is large enough (so that the de Broglie
wavelength A/p is small enough) for the scattering centres to act indepen-
dently of each other in scattering the particles.® Satisfying these conditions
is not an entirely ‘painless’ affair. For, condition (i) conflicts with the
requirement for ‘good statistics” which favours a large intensity (the larger
the number of ‘counts’ at the detector during a given time, the better the
statistics).  Similarly, if p becomes too large, then phenomena more com-
plicated than simple scattering, such as particle production, will begin to
appear. Thus, there are optimum values for J, and p for a given set up.

When the conditions are satisfied, we have,

dN =o(Dn - | J, | dQ. 1.1h
It is easy to see that the proportionality factor o(€2) has the dimension of an area.
Let J,(€2) represent the scattered flux of particles in the direction €. Then,

aN =1]J,1r%dQ, (7.1%

where, r is the distance of the detector from the target. From (7.1') and (7.1%), we
get,

3. The actual condition is that the distance between the scattering centres in the target be large
compared with the de Broglie wave length of the incident particles.
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r¥,
nl Jal’
which proves our earlier statement. Eq. (7.1') shows that o(Q) is numerically
equal to the cross-sectional area of the incident beam that is traversed by as many
particles as are scattered per scatlering centre, into a unit solid angle in the
direction €2 - o(2) is, for this reason, called the differential scattering cross sec-
tion. The integral of o(C2) over the solid angles, is the total scattering cross sec-
tion which, according to the above interpretation, is the cross-sectional area of the
incident beam that is traversed by as many particles as are scaitered in all
directions by each scattering centre. Thus®,

S, = [ot0dg. (1.3

The differential and the total scattering cross sections could be regarded as the
experimental quantities of the scattering problem. The aim of the scattering
theory is, then, to make use of these to deduce information on the force, or the
interaction, responsible for the scatfering. The theory achieves this aim by
establishing a relationship between the cross-section and the wavefunction of the
systemt. For, the wavefunction is obtained by solving the Schridinger equation
which involves the interaction. Thus, whereas in a bound state problem the
emphasis is on the energy eigenvalues, in the scattering problem the interest
centres on the wavefunctions. Also, in the bound state problem one is dealing
with the negative part of the energy spectrum, while in the scattering problem it
is the positive part of the spectrum that comes into play.

Before deriving a relationship between the cross-section and the wave func-
tion, let us specify the type of scatiering problems 1o which we will confine our
discussion. Scattering is said 10 be elasuic if there is only momentum transfer, but
no energy transfer, taking place between the incident particles and the target.’ In
this case, the parlicics undergo only a change in their direction of motion but
suffer no change in the maguoitude of their momentum. On the other hand, if there
is exchange of energy between the incident particles and the target, the scattering
is inelastic. We will constder only the first type of scattering.

Also, as is implied by the choice of the origin at the target, we are assuming
that the target s fixed. Elastic scattering by such a target can be described as
scattering by a potential V{r).

oY) = (7.2)

do
4,  The differential scattering cross-section is sometimes denoted by the symbol (E) The

advantage of this notation is that the symbol for the total s¢atiering cross-section does not require

a subscript; for,
dg
o, = f{d—-ﬂ)dﬂ = J-do =0.

We will hereafter adopt this notation.

5. This definition applies 10 porential scattering (ihal is, scatiering by a potential). In other types of
scattering such as scattering of nucleons by nuclei, the scattering is elastic even if transfer of
(kinetic) energy takes place without producing any intemal excitation.
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Now, in an actual experiment, the scattering centres suffer recoil. The co-
ordinate system, in which this recoil is explicitly taken into account, is known as
the Laboratory System® (Fig. 7.2). However, when the interaction depends only
on the relative co-ordinate r =r, —r,, the Schrédinger equation corresponding to

A

r
———— — - e —— -~ o — e @ —— - - —— A
m M mo".

BEFORE SCATTERING AFTER SCATTERING

m2
v2
Fig.7.2 Two-particle scattering in the Laboratory System of coordinates. The Centre-of-Mass

velocity V = (m/M)v,, where M = m, + m,, V', is the recoil velocity.

the scattering of one particie by another, could be separated into two parts: one
corresponding to a uniform motion of the centre-of-mass of the system and the
other corresponding to the relative motion of the particles [see, Section 4.2B].
m
1"

The relative motion appears as the motion of a single particle of mass L = o
1tm

(where m, and m, are, the masses of the colliding particles, and the j is referred to

as the reduced mass) with a velocity v = v, — v,, under the influence of a potential

V(r). Scattering affccts only the relative motion which is independent of the
velocity of the centre-of-mass. We see, thus, that the theory of the scattering of a
particle by a potential is also the theory of the two-particle scattering problem.

Relationship of the Scattering Cross-section to the Wave function:
The Scattering Amplitude

It follows from the foregoing, that the (time-independent) Schrédinger equation
of the scattering problem is given by

6. The Laboratory system is also often defined as the co-ordinate system in which the target is ini-
tially at rest, whereas, the co-ordinate system in which the centre-of-mass is at rest, is called the
Centre-of-Mass System. For a detailed discussion of the relationship between the two systems,
see, for example. A. Messiah, Quantum Mechanics (Nonth-Holland, Amsierdam 1961), Chapter
10, Section 7.
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2 .
[—;‘——um V(r)}w(r)' =Ewy(r), {1.4)
where, A= V2 the Laplacian, and
ﬁ2k2
E = Eﬁ = —E-, (7-5)

#k = p, being the momentum of the incident particles. We will assume that the
1
potential V(r) is of finite range and that it goes to zero faster than Sasr e This

excludes the pure Coulomb force, but includes the screened Coulomb force such
as that is experienced by elecirons being scattercd by atoms.

We seck a solution to Eq. (7.4) subject to the following conditfions:
(i)  Initially (long before the scattering), it represents a homogeneous beam of
particles of momentum p = #Kk, procceding in the positive z-direction. That

is’

Yisia =Wi(F) ~ exp (iK1 = exp (ikz). (7.6)

{(iiy Finally (long after scattering), it represents particles issuing in all directions
from the scattering centre. Such a flux of particles is represented by a
spherical wave (in contrast to the expression (7.6) which corresponds to a
plane wave®) whose intensity falls off inversely as the square of the distance
from the centre, Thus,

eikr

Yo = W0 ~ D). )

Here, £,(Q0) is independent of r, and is known as the scattering amplitude.

Thus, the general solution of Eq. (7.4) corresponding to the scattering problem
can be written as,
ikr

W)~ e A (.8)

The first term on the R.H.S, in (7.8) represents the transmitted particles (particles
that are unaffected by the potential) and the second term particles that are scat-
tered.

7. We omit the normalization factor (2n)"? because, in the scattering problems, we are interested in
the relative probability (out of N particles incident in the z-direction, how many are scatiered in
the direction £ 7) rather than in the absolute one. Unnormalized wavefunctions are, therefore,
more convenicnt 1o work with.

8. A plane wave really corresponds to a uniform distribution of particles all over space, since the
probability density | ¢™ " |* is independent of r. The plane wave provides an approximate repre-
sentation of the incident beam for the scatiering problem when the transverse extension of the
beam is large compared with the range of the potential, or linear dimensions of the scatierer. The
laner is of the order of 107* ¢m for atoms and 107 cm For nuclei.
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Density of particles in the incident beam =P = WD) =1
Velocity of the particles hk
= Vi =
Incident flux #ik
= Jol=pVi=—""
n
. L - A1
Density of scattered particles in the direction Q = Pyea = 2
Velocity of the scattered particles hk
= V: = V‘ =—
Scattered flux in the direction Q = 1) |
- paca(vs

hk )
=@ Ir*
Thus, from Eq. (7.2), we get’,
do

=0 Q=14@F. (7.9)

The method of solution would, thus, consist in finding a solution to Eq. (7.4)
valid for large values of r and writing the solution in the form of a transmitted
plane wave and an outgoing spherical wave. The amplitude of the spherical wave

do

is then £,(€2) - i is obtained from Egs. (7.9) and (7.3).

7.2 METHOD OF PARTIAL WAVES

This is a method:which can be applied when the potential is central [V (r) = V(r)]
and is of finite range [V(r) = 0,r > rg. We will see later that the method is really

useful only when the cnergy of the incident particles is rather low. The method
exploits the fact that the angular momentum of a particle is conserved in a central
field. Therefore, if we categorise the particles according to their angularmomenta
(classically, this amounts to categorising the particles according to their impact
parameters™, since all the particles have got the same linear momentum), then the
scattering of the particles of each angular momentum could be considered inde-
pendently of the particies of other angular momenta. Now, we have represented
the incident beam of particles by a plane wave [Eq. (7.6)]. A plane wave is
characterised by a definite linear momentum 7k, but no definite angular momen-
tum. In fact, a plane wave, being, in principle, of infinite extension, corresponds
10 impact parameters varying from zero to infinity. Correspondingly, the angular

9. The potential V(r) corresponds to a single scattering centre (n = 1),
10. The impact parameter is the distance of the initial trajectory of the particle from the z-axis {which
passes through the centre of the potential).
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momenta contained in a plane wave also vary from zero to infinity, Itis possible,
therefore, to analyse a plane wave into an infinite number of components each of
which corresponds to a definite angular momentum. Each of such components is
called a partiaf wave, and the process of decomposing a plane wave into the par-
tial waves is referred 1o as partial wave analysis.

Expansion of a Plane Wave in Terms of Partial Waves

We will now address ourselves (o the problem of decomposing a plane wave into
its partial waves. Now, the plane wave ¢™ " is a solution of the free-particle
Schrédinger Equation,

_ﬁl B h‘lk'l .

'2—’;5\]]— wm v {7.107
Of,

(A —ky(r) = 0. (7.11)

We will denote the normalized solutions of Eq. (7.11) by v, {r). These are given
by

v () = 2y ™" (1.12)
The orthonormal set {v,} _, for k., k, and k, varying from —ee [0 +eo, forms a basis

{or the infinite-dimensional Hilbert space of the particles. This basis defines the
(linear) momentum representation for the system,
On the other hand, writing Eq (7.10') as

Hyir)=Ew(n), (7.10%
with
. #A #[13 ﬁ]_ﬁ]
e 7
we have,
I, L% =0, (7.14a)
(#,L]=0, (7.14b)

where, L2 and £ arc the angular momentum operators given by Egs. (5.43) and
(S.4A2c). Eq;;. {7.14a, b) imply that the eigenvectors of  are also the eigenvectors
of L? and L,. But the eigenvectors of L? and £, are the spherical harmonics

¥,.(8,0) given by Eqg. (5.55b):
L2Y,,(0,4) =l + 1’Y,,(0,0), (7.152)
L,Y,,(6,0) = mhY,,(6,0), (7.15b)
where, the allowed values of I and m are given by Egs. (5.4%9a, b). Thus,
W) =¥, (r, 8,0 =R, (r)Y,.(68,%), (7.16")
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where, R, ,(r) is a function of the radial co-ordinate only [(r, 8, ¢) are the spherical

co-ordinates of the particle, related to the cartesian co-ordinates through Eq.
(4.107)]. Substituting from Egs. (7.13), (7.16) and (7.15a) in Eq. (7.10%), we get
a differential equation for R, (r):

@ 2d |, 1(1+1,)},, ,
{:;E+;E+{k 2 Rk,l(r)—‘o’ (7.17)

2UE
where, k= 2 Eq. (7.17) is identical with Eq.-(E.64). Therefore, the two

independent solutions are the spherical Bessel functien ji(kr) and the spherical
Neumann function n,(kr). However, we see from Eq. (E.69b), that n,(kr) is not
finite at r = 0. Since the wavefunction has to be finite everywhere, we have,

R, (r)= jikr). (7.18)
Substituting this in Eq. (7.16") we get,
Yiim(7+6,0) = ji(kr)Y,,(6,6) (7.16%)

The infinite set {y,,,} _ of orthogonal {See Egs. (5.60) and (E.74)] vectors forl =

0,1,2, .. 4o, m=—1,~1+1,...,4+] and k varying from 0 to c, constitute a basis
for the infinite-dimensional Hilbert space of the free particles. Each y,,, is called
a spherical or partial wave as it is characterised by a definite angular momentum.

We have now two different bases, (7.12) and (7.16%). The vectors in one
should be expressible as a linear combination of the vectors in the other. That is,

. o +1
e = T T a,(0)kn)Y,,(6,0) (7.19Y
1=0 m=-~1

The determination of the coefficients a,, in (7.19") is facilitated by choosing the
z-axis along k. Then, k-r = kr cos@=kz, so that the L.H.S. of Eq. (7.19")
becomes independent of the azimuthal angle $. The R.H.S also should be, then,

independent of ¢, which requires that m = 0 [see Eq. (5.63)]. In view of the rela-
tion

21 +1
Y,,(6,0) = —47?1’ (cos ),
where P(x) is the Legendre polynomial of order /, Eq. (7.19") reduces to
e = 1>~:0 PP (%), (7.199
’ 20+1
with C= —Lam; p=kr;x=cos9. (7.20)
4R
dj

Differentiating Eq. (7.19%) with respect to p and then substituting for d_p from Eq.
(E.71b), we have,
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i = [+1
Ip.(_ \_ .
ixe )2c,2[+lj, Pylx) Eoc’_ﬂ+lj’”P’(x)' (7.21a)
But, e =i ¥ €, jxPy(x)
=0
CiTejtep, (O +i Tt ip (1) 7.21b)
_15116’112[4-1 -1 %) lr:ccfjfﬂ-i—l re1tth (7.

where, expression (E.29a) for xP{x) has been used. Equality of expressions
(7.21a) and (7.21b) requires that coefficient of P(x) in either expression be equal
(since the P,’s for different values of | are linearly independent). That is,

i . I+1 1+1 . l
mcrfl-l_mcahn {21+361+1.’I+1 27— CI Wi 1} (1.22)

Again, since the j;'s are linearly independent functions of p, coefficients of like
orders of j, on either side of (7.22) should be equal. From the coefficient of j; _,,
we have, the recurrence relation,

¢ = i%j—;—;c, e (1.23a)
This leads to the result:
¢ =1+, (7.23b)

¢, can be determined by putting p = 0 in Eq. (7.19%) and using the values,
Jk0) =8, and Py(x)=1.

We get,
Cp= 1, so that,
¢ =i +1). (1.23¢)
Substituting in (7.19%), we have the result,
exp (ikr cos B) = exp (ikz) = I?_Eu(zz + DI (kr)P {cos 8). (7.24)

This is known as Bauer's Formula. Using the spherical harmonic addition theo-
rem [Eq. (5.152)1, Eq. (7.24) can also be written as

exp k- r)=4n% T Fjkr)Y0,0Y,.(6.,0,), (1.25)
I=0m=- .

where, (8,.0,) define the direction of k aud (8,,¢,) that of v. Substituting the
asvmpltotic vaiue, (E.70a), for j{kr) in Eq. (7.24), we have,

exp (ikr cos 9) ~ —1— Z (21 +1)i' sin [kr -LJP,(cos o). (7.26a)

1 _
Using the relation, sinx = 5; {e” — ¢™), this can be writien as
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1 oo
exp (ikr cos 0) ~ T 2+ D)= exp (~ikr)+ exp (ikr)].P,( cos 6)
Fw 1=0

(7.26b)

The term containing the factor (¢ )/r represents an incoming spherical wave",
while the term with the factor (¢*)/r represents an outgoing spherical wave (that
is, particles that are approaching the scattering centre and those that are receding
from the scattering centre, respectively).

~ikr

Scattering by a Central Potential V()

In this case (of. Eq. (7.13)),
2

. h
==38+V0), (1.27)

so that Egs. (7.14a, b) still hold good. The wavefunction is, therefore, of the same
form as (7.16"). But now, the cquation satisfied by R, (r) is,

d* 2d [, _1(1+1)H ~
[272+;a7+{k Utr) 2 Rk,l(r)_oy (7.28)
where, Ur)= (2},U‘h2)V(r), (7.29)

We assume ihat V(r) - 0 as r — . Then, for large valucs of r, Eq. (7.28)
reduces to the free-particle equation (7.17). Therefore, the solutions of (7.28)
should asymptotically (that is, for a large values of r) approach the general solu-
tion of (7.17). Now, the general solution of Eq. (7.17) is a superposition of the
spherical Bessel and the Neumann functions.”> Thus,

R,‘,,(r)’ - A jkr)+Bn,(kr)

-1—rA' k ll B k l/ﬁ!
krt,sm r-sin , COS | kr ZnJ

sin (kr - % In+ 8,;!
~C, B — (7.30)
where, Egs. (E.70a, b) have been used. Also, C, and §, arc related to A, and B, by
1an §, =—(B/A): A, =C,cos &; —-B,=C,sin §,. (7.3D)

The Schrédinger equation of the scattering problem can also be written as

11. Forincoming waves, k and r are antiparalicl so thatk - r = kr cos &t =—kr, whereas for outgoing
ones, K and r are parallel.

12. The reason for excluding the spherical Neumann function in the solution of Eq. (7.17) is not valiu
here, since the solution (7.30) is restricted 1o regions outsidc the range of the potential and, thus,
excludes the origin (r =0 ).
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252

. Wk
o= w0, (7.32)

with # given by Eq. (7.27). The relations corresponding to (7.24) and (7.26a, b)
are, then, given by

() = gi Q2+ 1)i'R, {r)P{cos 8) (7.33)
=0
~ ;}F,E (2 +1)i'C, sin (kr ——ln+8]F,(cos 9)

_'__1_ - 2 1! - ;
2ikr:§u(2£+1)c" exp (~i8)[(-1) " exp (—ikr)+

exp (i28,) exp (Ekr )| P(cos 8). (7.33b)

Now, the incoming part of the wavefunction in (7.33b) should be the same as in
(7.26b), so that, we have,

C,= exp(id), ) (7.34)
and '

e ~ (21 + DD exp (—ikr)

+exp (2i8,) exp (ikr)] P (cos 6). (7.33c)

For given {, the first term in (7.33¢) represents an incoming spherical wave and
the second term an outgoing spherical wave, both of the same intensity. The
phase of the outgoing wave is, however, shifted relative to the phase of the cor-
responding wave in Eq. (7.26b) [that is, relative to the freg-particie case} by the
amount §,. §, is, therefore, called the phase-shift.”

We, thus, see that the effect of the scatiering polential is to shift the phase of
each outgoing partial wave.

The Scattering Amplitude

Now, the asymptotic wavefunction y,(r) for r — oq, should be of the form (7.8).
Substituting for ¢™ in that equation from (7.26b), we have,
1 :
W(r) ~ >: (21 +1)[(1) e + &™) P (cos 0)

|kr

+fk(£2)—— (7.35}
Comparing Eqs. (7.33¢) and (7.35), we get,

13. That the phase shift is 8, rather than 28, is scen from Egs. (7.30), (7.18} and (E.70a).
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fQ =1,6)= Z£76), (7.36)

where, 0=

2 +1 .[exp (2i8) -1

p 5 ) P/(cos 6).

= {(21 + 1)/k} exp (i) sin §,P(cos 0). (7.36a)

Thus, the scattering amplitude is independent of the azimuthal angle.
Using Eq. (7.9), we have,

dc _ 2
oL
(DT E U+ 1) +1)x
1=0'=0
exp [i(3, - 8)) sin §, sin §,P,(cos O)P,(cos 0), (7.37)

while, from Eqgs. (7.3) and (7.37), we get, for the total cross-scction, the expres-
sion,

_(do . 4r . 2
o= deQ-. kzl)::o(ZI +1) sin °§,
- 36", (7.38")
1=0

where, Eq. (E.31) has been used. 6® in Eq. (7.38") is the contribution to the total
scattering cross-section from the ith partial wave. We note that

¥ < (4mk® (21 +1). (7.39)
From Egs. (7.36), (7.36a) and (7.38"), we have,
o = (4k) Im {£,(6 = 0)}, (7.38%)

where, Im {f,(6 = 0)} is the imaginary part of the forward scattering amplitude.

Now, the total cross-section represents the loss of intensity suffered by the inci-
dent beam (in the direction 6 = 0) resulting from the fact that some particles have
been deflected away from the incident direction. Eq. (7.38%), then, states that this
loss of intensity is represented by the imaginary part of the scattering amplitude
in the forward direction, In analogy with a similar case in optics, where the
imaginary part of the complex index of refraction is related to the absorption
cross-section for light in the medium, Eq. (7.38%) is called the Optical Theorem
(also, sometimes, referred to as the Bohr-Peierls-Placzek formula).

Dependence of §, on V

The phase shift will, obviously, depend on the potential (It is zero when V(r) =0).
This dependence can be derived from the radial equations (7.17) and (7.28):

Put R, ,(r) = {v, (r)}/r, in Eq. (7.17), and R, [(r) = {u, ,(r)}/r in Eq. (7.28).
Then, the radial equations reduce to:
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d HE+1)
{Eﬁ“z— e ]"t-f(’ =0, (7.40)
and
: 0+1
l:;d;a'l'kl_{l](f)-!- (:; )}jiub,(f):o. (7.41)

Multiply Eq. (7.41) from the left by v, ,(r) and then integrate over  from 0 to eo.
Similarly, multiply Eq. (7.40) by i, ,(r) and integrate from 0 10 o. Subtraci the
latter result from the former. We get,
jmv ijilﬁdr—qu iz—Vﬂafr =jwv Ulru, dr
y ki dr? ; k1 a’rz A k! g 140 -

Integrating the L.H.S. by parts, we have,

du, dv,, | =
[V&,r_d;k'—] — U, %]n = J; Vh_gU(I)Hll,dF. (7.42)
Now,
1
v Ar) = rj,(kr)r - {(Vk) sin {kr _i”‘]’ (7.432)

w, fr)=rR, (r) ~ (Ck)sin [kr —%tm 6,],

{7.43h)
where, Egs. (7.18) and (7.30) have been used, and C, is given by Eg. (7.34).
Also, since, R, (r) should be finitc atr = 0,
v, {0 =4, (H=0. {7.44)
Substituting from Egs. (7.43 a, b) and (7.44) in Eq. (7.42), we get,
—(C/k)ysin §, = j vk YU Y (r)dr,
Q
or
sin &, =—k j”rj}(kr)U(r) {u, (rYC}dr. (7.45Y
0
Suppose now, that U{r) is infinitesimal. In this case, {», ,(r¥C} will differ litle
from the corresponding free-particle value. That is, {w, (r}/C;} = rj{kr), and

(since §, would be smallj,
sin 8, = 8, = —k J“U(r) Lk} riar ., (7.45%
]

Since r%j(kr} is always positive, the R.H.S. has the sign opposite to that of U(r).

Thig, §, 15 positive for a negative potential {attractive force) and §, is negative for
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a positive potential (repulsive force). Since a finite potential can be built up by
successively adding infinitesimal potentials, the above statement regarding the
relative signs of 3, and V(r) holds good for the case of finite potentials also. This
result could have been anticipated, for, the particles would be accelerated and
would, thus, gain phase in an attractive field whereas they would be slowed down
(lose phase) in a repulsive field.

Dependence of 3, on the Angular Momentum and the Energy

Eq. (7.41) can be written as

d? 2u

[P+ /cz—ﬁvefr (r)}u,(,,(r) =0, (7.46)

where

I+ 1)n?
V. .(n=Vir)y+———, 7.47
ax(r)=V(r) 2 (7.47)
could be regarded as the ‘effective potential’. Eq. (7.46), thus, represents a par-
2,2
"k

ticle of energy £ = 2—u moving under the influence of a potential* V4 (r). Fig.

o I( + D
7.3 shows the variation of V_;(r) and 7 for a typical potential V(r). r,
wr

represents the classical turning point (the closest approach), and is given by

212 2
Wk 14+ 14 (71.48)

E :E =V, (r)=V(r)+ 2“’12

For a given value of E, r; can be made as large as desired by choosing a
sufficiently large value of I. For r < r,,k*— QWH)V_(r) in Eq. (7.46) would be
negative, so that the wavefunction u, ,(r) would be exponential. Since further ,
1, (0) =0, u, (r) in the region r <r, is as shown in Fig. 7.3. Therefore, the
product i, ,(r)V(r) will be small for all values of r < r,, provided the range r, of
the potential is small compared with ;. Under this condition, V(r) would be
negligible for r > r,, so that, since i, ,(r) is oscillatory in this region, the product

10+ 1)K
14. The term 5 in Eq. (7.47) represents the centrifugal force experienced by a particle in
2ur
ch
its orbital motion. For, if F, represents the centrifugal force, we have, F, =~ —t-i-;'— = —polr,

where, o is the angular velocity of the particle. Hence, V,(r) =§p.m2rz =§ o’ = (L4225, where

g=pr?, is the moment of inertia of the particle, and L = %w, the anguiar momentum.
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Fig. 7.3 Diagram showing the conditions for the product V(7 )i ,{r) in Eq. {7.45") 1o be small

throughom the range r = Qo r =,

1, ((r YV (r) would be small for all values of r > r,. Thus, we see that the product
b, ((r)V (r) would be negligible everywherc provided r, » r, And under this con-
dition, we have, from Eq. (7.45"), the resuit §, = 0,

Now, the condition r, » r, is equivalent to the condition,

or

or

That is,

I+ DA
—— 3 V(r,),

I+ )R
2}
_HRE I+ R
2w

V:ﬂ‘ (r1) =

E

I+ D) =P=Eriskry

Ikr, (7.49)
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Thus, whenever condition (7.49) is satisfied, we have, 8, = 0. Classically, this

result corresponds to the fact that particles with impact parameters larger than the
range of the potential are not scattered.

Now, condition (7.49) would be satisfied by any non-zero value of [ if k (and
hence the encrgy) is small enough. Thus,

Lt, ,6,=0,1#0. (7.50)

Also, when the energy is small, the phase shifts would be small and would,
therefore, be given by Eq. (7.45%. Substituting expression (E.69a) for jj(kr) in
(7.45%), we get,

2“« 1+372 oo
sin 8,=—a,2(?) E“mj V(ryr®*ar, (1.51)
0
=§,, for I #0,
h a—;
where CTREWIE
=2 7 .
—- = {=2
L= t=l
. l\ LA [1
=1 }/ —
= - 4=1 {5=2
V=2 _ \

(a) (b)
Fig. 7.4 The space occupied by different partial waves, (a) For E~0, (b) for larger E.

Thus, the phase shift varies as E'*'? for small values of E. When the energy is
practically zero, only the s-wave (/ = 0) phase shift is non-zero. As the energy is
increased, higher and higher partial waves come under the influence of the scat-
tering potential. This phenomenon is illustrated in Fig. 7.4 where the space
occupied by a given partial wave is shown to shrink as the energy is increased.

Zero-Energy Scattering: The Scattering Length

The method of partial waves is useful in practice only if the series (7.36) and
(7.38") converge rapidly so that all but a few of the terms in the series can be
neglected. From the discussion leading to Eqs. (7.49) and (7.50), it follows that
the necessary condition is that the energy be small and the potential be of short-
range. That is, the method of partial waves is suited only for low energy scatter-
ing.

If the energy is so low that only particles with I =0 are scattered, then the
theory is especially simple. In this case, only §, (the ‘s-wave phase shift’) would

- different from zero. Then, from Eq. (7.36) and (7.36a), we have,
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10 =7%p) = }1— ¢ sin 8 (7.52;

which is independent of the scattering angle. The limiting value of the energy for
which Eq. (7.52) holds good, is called ‘zero-energy’. Thus, the angular distribu-
tion of the scatiered particles at zero energy, is independent of the scatiering
angle. In other words, scattering is isotropic®.

The negative of the scattering amplitude in the zero-energy limit is called the
scatiering length™® and is denoted by ‘a’, Thus,

a=Lty [~fO)] = —%e”‘“ sin 8, (1.53)

In terms of ‘a’ the zero-energy total scatiering cross-section is given by (see Eq.
(7.38Y),

o =41 |£,(0) = 4na’. (7.54)

Geometrical Interpretation of Scattering Length

The radial equation (7.41) for [ = 0, reduces to

d?.
[;; ki U(r)}ut_o(r) =0. (7.55)
In the zero-energy limit and for r » r, this becomes,
du, o doug
D= = (), 7.55a
drt  ar® ( )
Thus, the asymptotic value of u,(r) 1s given by,
Volr) ={ug(r)} , =br+c, (7.56)

where, b and ¢ are constanis.
But,

Uy o= FRy o(r) ~ re™ "+ f(0)e™
?)ro

= , (r- a) = vo(r), (7.57a)

k-

where use has been made of expressions (7.33a), (7.8) and (7.53). In Eq. (7.57a),
anormalization constant is arbitrary, so that, we may write,

v(r)=cfr—a) (7.57b)
Farther, choosing the normalization, | .| = 1, we have,
VrY=*(r—a) r»r, (7.57c)

15. Isotropy is characteristic of the s-siate. Since the angular momentum is zero, there is nothing to
fix a direction in space that is common to both the incident and the scattered particles,

16. This definition ensures that the scaviening length is positive for bound states. It also enables us to
interpret ‘a* as the radius of a hard (*impenctrable’} sphere which would cause the same amount
of scattering as the bound system.
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Fig. 7.5 Geometrical determination of the scattering length for a potential of range 7,

Now, Eq. (7.56) is the equation of a straight line with slope ‘b’ and intercept on
the ug-axis equal to ‘c’. Comparing Egs. (7.56) and (7.57c), we sce that ‘a’ is the
intercept of the straight line u,{r) on the u,-axis when the slope of the straight line
is negative as in Fig. (7.5a), and is the negative of this intercept when the slope is
positive as in Fig. (7.5b). In either case, ‘a’ is equal to the intercept of the straight
linc on the r-axis'’ as is seen by putting u,(r) = 0in Eq. (7.57¢).

When the potential has a sharp boundary so that V(r) =0, for r >r, the
ipplication of the above geometrical method for obtaining ‘a’ is especially
simple. The continuity of the wavefunction requires that the interior
wavefunction uy(r) match the exterior wavefunction vy(r) at r =r, That is,

Uo(ro) = volro), and uy'(rg) = vo'(r,). Thus, ve(r) would be the tangent to u(r)atr =r,
(as shown in Fig. 7.5). A few interesting cases are shown in Fig. 7.6. Fig. 7.6(c)
corresponds to the case of an impenetrable sphere of radius r, Since the wave-
function should be zero inside such a sphere, the continuity of the wavefunction
at r =ryrequires that it be zero at the surface of the sphere also. The result for this

case suggests (see Footnote 16) the possibility of interpreting the scattering length
as the radius of a hard sphere which is equivalent to the actual physical system as
far as scattering at low energies is concerned'®. From Eq. (7.54), we have the

interesting result, o = 4nr. That is, the total scattering cross-section is four times

17. Tt should be noted that the straight line (r — a) has really no intercept on the r-axis when w(r) is
as shown in Fig. 7.5(b), since r has no negative values. However, purely as a geometrical pro-
cedure, we can extend the r-axis to the negative side. Then, Eq. (7.57c) shows that ‘a’ is equal,
both in magnitude and sign, to the intercept of the asymptotic straight line on this extended r-axis.

18. Sincc the cross-section is proportional to the square of the radius, a negative value for the radius
cannot be ruled out. As seen in Fig. 7.6(d), a negative value corresponds to the case in which the
potential is neither repulsive enough to have a hard core nor attractive enough to form a bound
system (with a real radius).
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the geometrical cross-section! Actually, it is not this result that is unphysical (as,
al first, we would be templed 1o exclaim), but the assumption leading to ii. That
assumption consists in identifying the sarface of the sphere with an infinite
potential barrier. Infinite poicniial barriers are unphysical as there are no systems
that are perfectly rigid. What the result implies is that, if the wavefunction is zero
within a sphere of radius r,, then the radius of the actual (physical) sphere is at
least 2r, (sce the discussion on barrier penetration under WKB Approximation,
Section 8.1).

Whercas a negative scattering length (Fig. 7.6(d)] implies that the potential is
not capable of binding, a positive scattering length need not signify a bound state
Fig. 7.6{(b) and (c)]. However, for bound states, the scattering length is neces-
sarily positive as the wavefunction should fall off exponentially outside the range
of the potential. Thus, in the case of scattering of neutrons by protons, the
scattering length is ~23.7 % 107" cm when the spins of the two particles are anti-
parallel (singlet state) whereas il is +5.4 x 107" cm when their spins are parallel
(triplet state). It is established by other independent experiments that the bound
statc of the neawron-proton sysiem (the deutcron) is indeed a triplet state. The
large negative value of the scattering length in the singlet state, however, shows
that the neutron-proton interaction in the singlet state misses binding only mar-
ginally (8, < w2}

Also, since a new bound state appears whenever 8; crosses an odd multiple of
/2, the number » of bound states is related 1o the phase shift 8, by the inequality,

o el

(f) -represcnts the Ramsauer-Townsend Effect, the very low minimum
observed in the cross-section for the scattering of electrons by rare-gas atoms at
about 0.7 ¢V bombarding energy.

Problem 7.1: Derive the relationship, 8,=—ka +rm, n =0,1,2, ...

Scattering by a Square-Weil Potential: Effective Range

The preceding discussion shows that zero-energy scattering can be characterised
by just one parameter—the scattering length. The differential scattering cross-
section is independent of both the energy and the scattering angle. The latter
feature is a consequence of the faci that only s-waves (particles with angular
momentum { = 0, which are insensitive to the shape of the potential) arc scattered,
The energy-independence follows from Eq. (7.51) which shows that

iyt =[49
Bd!ﬂ(e)‘&%o_ (dQ)l —0

[see Egs. (7.52) and (7.9)] is independent of the energy.

sin §, [*

k

k-
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Fig. 7.6 Variation of the scatiering length and the phase shift with the potential.
Vo =1(r —a), ug~sin (kr +3p).

As the energy is increased, more and more of the partial waves will begin to
get scattered making the scattering dependent on both the energy and the
scatiering angle. If the energy is only slightly higher than what is termed zero-
energy, the scattering would still be confined to the s-waves (and, hence, angle-
independent), but the energy-dependence would make its appearance [Formula
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{7.51), which is based or the approximation (E.69a), would no longer be valid).
This energy-dependence of the scattering cross-section at low energies can be
described in terms of a parameter called effective range. We will illustrate this in
the case of scattering by a short-range, attractive, square-well potential.

vir)
4

Fig. 7.7 The squarc-well potential.

Let (see Fig. 7.7}
Vir)y=-V,, forr <r,
=0, forr>r, (7.58)

Also, let w(r) and v(r) represent u, (7} of Eq. (7.55) for r <r,and r > r,, respec-
tively. Then, we have,

2
& e (=0, r<r, (7.5%a)
dr?
and
d2
———ﬁ-k”}v(r) =0, r>r, (7.59b)
dr
where
©© =k + QAR (7.60)
The boundary conditions to be satisfied by u(r) and v(r) are:
du dv
(M) =0; u(ry=viry; d—rl’z'szI“'O' (7.61)

Hence the solutions are:
u(ry=Asinkr, r<r, (7.62)
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and
V(r)=B sin(kr +8), r >r,. (7.63Y
But {see Egs. (7.43b) and (7.34)],

i8

v(r)= %—sin(kr +6),

where 8 =8, In place of this normalization, we adopt the normalization®,

v(0)=1. (1.63%
Then
B L (7.64a)
" sin§ 0%
and, from the second of the boundary conditions (7.61),
sin(kry+ 6)
= (7.64b)
sindsinkry

The normalization (7.63%) makes both v(r) and u(r) dimensionless, so that, in
place of (7.57c), we have now the relation,

_ sin(kr +8) _ {sink(r—a)}
V(r)k—m sind ¥ | sin(-ka) J,_,
r
=1--, (7.65)

where the relation 8 = —ka + nt (Problem 7.1) is used.
The last two of the boundary conditions require that the logarithmic derivative
be continuous at r =r, That is,

1du _lav

;217!'”0_;}17"%' (7.61a)
Then, from (7.62) and (7.63"), we get,
X cot kry =k cot (kr,+§). (7.66)

Problem 7.2: Using Eq. (7.66), show that
tanK ro)

=rj1-
4 Kr,

where K% = WAV,

Our objective is to find the dependence of the cross-section on the energy.
Therefore, let us consider Eqs. (7.59a, b) for two different values of &, say k, and

k,. We have, the four equations.

19. Since v(r) corresponds 1o the actual wavefunction only outside the range of the potential, the
value v(0) = 1, does not affect the value of the actual wavefunction at r =0.
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2
[de +k+ (2u/‘hz)V°]u1(r) =0, (7.67a)
2 .
[:d_;i+k§'+(2w1i2)vo}uz(r) =0. (7.67b)
Ll '
[? + kf’]vl(r) =0, (7.682)
&
it k2 vyr)=0. (7.68b)

Multiplying Eq. (7.67a) from the left by u, and Eq. (7.67b) by 1, subwracting the
latter result from the former and integrating over r, we get,

duy "= -kD [ updr,
— Y — o
“or T ar

¢

or,

W Gy )1 = (k2 kD) L" wudr, (7.69)

where Wiw,, u,) is the Wronskian of u, and u;.
Similarly, from Eqs, (7.68a, b), we have,

Wv,vls = (kg_kf)f“vzv,dr, (7.70)
i 0
From Eqs. (7 69) and (7.70), we get,
W (bt 1) = W (v, VI = (k§~k,2)£ (it — V,V)dr (1.71)
Now,
Wty 1)l o = 0, since ,(0) = 1(0) = 0.
Also,

W (1, 1,)] .. = W(v,, v))| . since, for large values of r, the interior and the exterior
solutions should coincide with each other. Thas, Eq. (7.71) reduces to

WV, v, = (ki -k} J; (Vv ~ w)dr. : (7.72Y
But, from Egs. (7.63'?) and (7.64a) , we have,
' dv,| =keotd, (7.73)
VI(r)E;- =90
50 that,
WV, VM= k cot B~k cot §,. {1.74)

Substituting (7.74) in (7.72"), we get,
kycot §,—k, cot 8, = (kI - k2) J(v,vz—ulugm. (1.72%
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Consider two energies which differ only by aa infinitesimal amount. Then,
ky -k = AKY),

and

k, cot 8,—k, cot d, = A(k cot §).

Substituting these in Eq. (7.72%) and then taking the limit A(k®) — 0, we get,
Ak cot 8) _4d
a0 AR ak?

Integrating over k> between limits 0 (0 k%, we get,

(k cot 8) = fw(vz—uz)w. (1.75)
0

$? -
k cot 8= (k cot 8),,:0+J. dsz v ~udydr. (116"
0 0
Now, _i
(k cot d), _,= e v(r) e
d r 1
= —&;(1 —2) =—, (from Eq. (7.65)) (1.77)

Also, (v*—u? is dimensionless, so that I(;o (v*—uddr has the dimension of

length. Moreover, this length is approximately independent of k for smail values
of £ and is of the order of the range of the potential [since, for r < r,, the beha-

viour of the wavefunction is mainly determined by the potential when
k2« (QuAaHV,, whereas for r > ro, (v:— u?) is practically zero]. Thus,

k cot &= —% +{f W(vz— u?), =odr}k2
0

LN S 2
= a+2r°“k g (7.76%
where Fog = ZI vV —ud),_dr, (7.78)
0
is called the effective range® of the potential. We have, from Eq. (7.76?),
.2 1 k?
5= - )
T eos k2+G,.mk2_l)2
and
4 4
O=gsintd=— . (7.79)
k k2+(5rmk2—;)

20. With our normalization (7.64a, b), (v*—u?), _, is always positive, so that F.q IS & positive quantity.
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This formula gives the energy-dependence of the total (s-wave) cross-section at
low energies. It shows that low-energy scattering by a short range attractive
potential can be described in terms of two parameters — the scattering length and
the effective range. The absolute value of ‘a’ can be determined from experi-
ments at zero energy [Formula (7.54), which also agrees with (7.79) when k = 0].
The sign of ‘a’ and the value of r . can be determined from the measured

cross-sections at higher energies and formula (7.79).

Problem 7.3: Determine the values of Vyr§ for a square-well poiential such that
the cross-section at zero energy is zero.

Problem 7.4: If v, represents the logarithmic derivative of the radial wavefunc-

tion at the boundary r =ry;
1 {dR,
vl ("a?}’*'},_,;

stow that the phase shift is given by
kg er) — v lkr
tan8, = J:’( o) = Yikkro) -
kny'(k ) —Yiny{kro)
Deduce from this the relationship 8, =—kr; for low-¢nergy scattering by a hard
sphere of radius r,.

Resonance Scattering

The conclusion that only s-waves are scattered near zero energy, is based on the
assumption that the phase shift and the cross-section vary slowly and smoothly
with energy. However, large variations in the cross sections aver a small interval
of energy do some times occur (depending on the potential). Such large variations
in the cross-section are attributed to the fact that a certain partial wave isin res-
onance with the potential near zero energy. The phenomenon is, therefore, called
resonance scattering. Naturally, itis the partial wave which is in resonance rather
than the s-wave, that dominates scatiering near the resonance energy.

An understanding of the phenomenon of reésonance could be gained from the
following considerations: In terms of the logarithmic derivative

Ry diy ) 1
Yik)=[d :;f’ka,t(r)]r =" {—dr_fukll(r) , ":0.

o
the phase shift &, is given by (see Problem 7.4),
_ kj’r(po) _Vrjz(p(})
kn'{po) — Vil po)’
where p, = kry; and r, = the range of the potential.

tan , (7.80)
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i sind, a+b c+d

a C
Writing, i tan §, = cos3,’ and using the relationship, 2 b c-a when Pt
we obtain from (7.80) the equation,
exp (2i8,) = exp {2i(§,+ ()}, (7.81)
where
. JAPo) — in(py)
exp (24 T T 7.82a
P gl) JlPo) +in(po) ( )
. B—4+is,
exp (2() = B—A~,’ (7.82b)
with
Bi(k) = rov(k), (7.83a)
PoUi 1+ mn’y)
A =— 7.83b
(P Zen? ( )
and
1
s(p=—""75- (7.83¢)
P po(h2 + "12)

Here, the argument of the spherical Bessel and Neumann functions is p,. Also,

Eq. (E.73) has been used in obtaining (7.83c).
Eq. (7.82a) which is equivalent to the relation,

ng, = ;’l’%’% (7.84")
shows that §; is real. Similarly, A, 5, and, hence,
¢ =tan{s/(B, - A}, (7.85Y
are also real.
Eq. (7.81) shows that the phase shift 8, can be written as the sum of two terms:
5,=E+¢,. (7.86)

Of the two, &, is a slowly varying function of energy. In fact, substituting from
Eqs. (E.69a, b) in (7.84'), we have,
(kr(, A+1

tan, ~ - 5
-0 20+ {21 -1
Thus, at low energies, &, goes to zero as E/* V2 [¢.f. Eq. (7.51)]. Also, we sce from
Eq. (7.82b) that {; — 0 as 3, — =, Therefore, &, is the total phase shift whenever
B, is infinite. Now, an infinite §, corresponds to a hard sphere [see Fig. 7.6(c)].

For this reason, &, is called the hard-sphere phase shift.

A

(7.84%)
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As is seen from Eq. (7.85%) the other term, §,, depends very sensitively on the
energy because of the factor ([, —A)) in the denominator™. Obviously, a sudden
increase in the value of tan §, occurs for B, = A,. If the energy is small enough, &,
would be negligible compared with ; at this energy, so that §,={,. Also, the
phase shifts corresponding to the partial waves other than the one for which 3, = A,
can be neglected. Then,

dn .
o=g” =—’-c;(21 +1)sin®3,

(7.87)

LAY o 4R FY), tan’{,
k2 d k2 1+tan2cl
Let £{°, be the energy at which B, = A,. For E in the neighbourhood of EJ’, we
may write,

PBY
BAEY = BES) + (B - E) [7?‘]

= A, - b(E - ED), (7.88)
where, 4, > 0 (see Footnote 21)2, Substituting in (7.85") from (7.88), we get,
tanf, = __h (7.859
2AEP - E),
where
T, = 2s/b,). (7.89)

Substituting for tan £, from (7.85%) in (7.87"), we have,

An(2f +1) 7 }
K 4E-EM+TE]

In Fig. 7.8, we show the variation of 6,(E) with E for reasonably small values

(71.87)

Q‘(U(E) =

of I,. The cross-section has a sharp maximum centred around £ = E{”. From Eq.
(7.87H, we have,

21. By a procedure identical to the one leading to Eq. (7.69), we can show that

Nep "
(2w YE, EZ)J(; uq"(r)u,i!(r Yrodr

BAE)-BLE)Y = i, Iz o, Iz '
showing that §, is a decreasing function of £, The energy dependence of A, is evident {rom Eq.
(7.83b).

22. Since for the low energy, the wavefupnction in the segion r <7, is determined by the potential
rather than the energy [Egs. (7.59a) and (7.60)], the assumption that B, is linear in E is a good
approximation.
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Fig. 7.8 Variation of the partial cross-section with energy near resonance [Eq. (7.879).

4n(2l +1
o) =D

=4n(2 + 1) (HY2uED). (7.87%

0

The meaning of I', should be clear from Eq. (7.87°) and Fig. 7.8. Itis the width
of the resonance peak. That is, (I'/2) is the value of | E — E{? | for which o falls
(0 half its peak value. Eq. (7.87%) is known as the (single-level) Breit-Wigner
formula.

Now, in the case of s-wave scattering, we have seen (Fig. 7.6) that the exis-
tence of a bound state is implied whenever &, crosses an odd multiple of ©/2. We
see from Eqs. (7.85") that at resonance (B, = A)), §, equals an odd multiple of w2

(so that §, > (2n + 1)w/2, with n =0,1,2,...). Thus, scattering resonance for the

Ith partial wave at the energy E is related to the existence of a bound state of
angular momentum / near this energy. There is, however, a slight difference
between the resonance energy ES’ and the energy E{ of a true bound state.

Whereas E{" is negative E{" is positive (albeit small). Thus, the resonance state is

not a true bound state. For this reason, it is called a virtual, or a metastable, state.
Its existence could be understood on the basis of the effective potential, composed
of the actual potential plus the ‘‘centrifugal potential’® I(/ + 1)4%2yur? (the curve
V. inFig. 7.3). For a particle with near-zero energy that coincides with an energy

level of V4 the latter acts as a potential barrier that slows down its escape from

the potential well. The particle is so to say, ‘‘captured’’ by the potential and later
re-emitted as a scattered particle. For a given energy E of the particle and for a
given potential V(r), it is the [-value that decides whether V4 constitutes such a

potential barrier or not (see Fig. 7.9). Usually, the potential V(r) has a true

23. The quantum mechanical penetration of a potential barrier is discussed in Section 8.1.
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bound state of angular momenturn { just below zero energy when V. has a (vir-
iual) bound state of the same angular momentum just above Zero energy.

4

Lo <14

0 t —»T
i
\Veff( 2)

Fig. 7.9 Varauon of the effective potential [Eq. (7.47)] with angutar momenturm.

The preceding discussion provides us with the following pictare of the scat-
tering phenomenon in the low-energy region; When the energy is far from a res-
onance energy, the particles do not penetrate into the interior region of the
potential. It is as if the particles have met a hard sphere of radius ‘@’ (= the
scattering length). Very few of the particles in the incident beam are scattered,
and the scattering is
‘instantaneous’. In the neighbourhood of a resonance energy, particles (with the
appropriate angular momentum) begin 1o peneirate deep into the interior of the
scattering region. They are trapped by the potential, but eventually are re-emitted
as scattered particles. The delay between the time the particles enter the potential
and the time they are re-emitted, is of the order of #/T,.

Problem 7.5: Derive the relationships (7.81), (7.82 a, b) and (7.83 b, c).
7.3 THE BORN APPROXIMATION

The usefulness of the method of partial waves, discussed in the previous section,
is limited to the case of low-encrgy scaitering by short-range central potentials.
We will now discuss an approximation method which is suitable for large encrgies
and where the potential is not necessarily central,

Substituting from Eq. (7.5), equation (7.4) of the scattering problem becomes,

(A= KAy(r) = U r)yin), (7.90)
where, U(r)z(Zujﬁz)V(r). This differential equation can be converted 1o an

integral equation with the help of Green's functions. The technique is a common
one applicable to any inhomogeneous differential equation of the form:
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£ — wv(r) = ~4np(r), (7.91)
where Q is a Hermitian differential operator and p(r) is the inhomogeneity (also
referred to as source density). The solution of Eq. (7.91) will consist of a par-
ticular integral w,(r), plus a complementary function u,(r). The latter is a
solution of the homogeneous equation,

-y umo(r) =0.
That is,

Qumo(r) = m(,u%(r). (7.92a)
Thus, u,(r) is an eigenvector of the operator Q belonging 1o the eigenvalue

Now, C has, in general, several eigenvalues and eigenvectors. Let us denote
an arbitrary eigenvector by u(r) and the set of all eigenvectors by {u(r)}. Since

Q is Hermitian, the set of eigenvectors is a complete orthonormal one. That is®
{see Footnote 6, Chapter 2J.

ju;,(r)um(r)fr = 8w - o), (7.93a)
fum(r)u;(rﬁd ®=3F -1, (7.93b)

Also, by definition,
Qu,(r) = ou(r). (7.92b)

The particular integral w,,(r) can be expressed in terms of the Green’s function
for the operator (Q ~ w,1). The latter is defined by

(Q-w)G, (r, ) =4nd(r-r"). (7.94)

Thus, the Green’s function Gy r’) is a solution of the homogeneous differential

equation (7.92a), except at the point r =r’. This fact suggests the form:

G (™) = Ju () d . (7.95"
Substituting this expression in (7.94), we have,
1
o j(m — WU N)f (r)d® =8 ~1"). (7.94a)

Comparing Egs. (7.94a) and (7.93b), we get,

ey =an wl)
Wy

Gofr,r) =4z f ‘“mu“’(rt) do. (7.95%

and

24.  We assume, for the sake of simplicity, that the eigenvalues are continsous.



226 QUANTUM MECHANICS
Multiplying Eq. (7.94) with p(r") and integrating over r', we get®,
Q- '( Gy T p(r)d’r = 4njp(r’)6(r —1d = 4np(r),

or,
np(r)
o F) = J. G (T Yp(r)dr. {71.96)
The general solution of Eq. (7.9 I) is, thus, given by,
v%(r) = umo(r) + w%(r) (7.97)

u, (N (r) ,
= %(r) —4n j f—-ﬁo— pir’yd od’r’.

The tntegrand in Eq. (7.96) could be interpreted as the contribution to the
particular integral that has its source in the volume element 4°r', so that w%(r) is

the superposition of the contributions from all such volume elements where the
source density is non-zero,
Applying the above procedure to Eq. (7.90), we get,

Y (1) = a0 ~ [ G, U T (7.98)
with,
uk(r)—(2 l)m exp{ik-r), {(7.99)
and?
u/@e(r)
G,(r,r)=4n f T d*k
xp K- (r—r7] ,
an']‘ ¢ pmz (k2 &K, (1.100)

The integrand in Eq. (7.100) is a scalar so that the integral is independent of the
co-ordinate system in which it is evaluated. Choosing, then, a co-ordinate system
in which the z-axis is along the vector p=r—r’, (see Fig. 7.10), we have,
d*K = k"dk’sin® dO dé and ,

K™ ~e™) dx,

— oy
Gk(",l")-(zmp) I

(7.100a)

where x=k'p; 6=kp.
The integral in (7.100a) can be evaluated with the help of the theorem of residues™
which states: ““If F(z) is a function of the complex variable z such that i1 is

25. €2 operates only on the co-ordinate T, so that it can be 1aken omside the integral sign.
26.  Note thal the Green’s function is characierised only by the magnitede of k (that is, by k*) rather

than by the vector k.
27, See, Arken, G. Mathematical methods for physrcrsl.r {Academic Press, New York, 1970} II
edition, Section 7.2.
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analytic throughout a (closed) contour C and its interior, except at a number of
poles® inside the contour, then,

56 F(z)dz =2niXR, (7.101)

where, ZR denotes the sum of the residues of F(z) at those of its poles that are
situated within the contour’”. The arrow on the circle on the integral sign denotes
the positive sense of integration. The residue at the (simple) pole z = a is given
by

R(at a)= Lt {(z-a)F(z)}. (7.102)

z—a

According to Jordan's lemma” , the integral in Eq. (7.100a) can be written as
1(0) =1(0) +1(0), (7.103)

1(6) = SBC (z—fi—gz)”z sggc Fy(z)dz, (7.1042)

28. The point z = a is a non-essential  singularity of F(z) if F(a) is infinite but
{(z —a)"F(2)}, ., = F,(a), is finite, where m is a positive integer. That is, a non-essential sin-
gularity at ‘a’ is removable by multiplying the function by the mth power of (z —a). If the sin-
gularity is not thus removable with any finite value of m, then the singularity is essential. A pole
is a non-essential singularity and the smallest value of m for which F, (a) is finite, is the order

with

of the pole. When m = 1, we have a simple pole.
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1) = -ggc [fé;}d E-SEC F2)dz, (7.104b)

and

IMAGINARY AXIS IMAGINARY AXIS
Cy '
Gy
K . +o K
japasy R Reol Axis il Diaaye . Reot Axis
f
Cp Cz
(a) (b}

Fig. 7.11 The contours C,,C,,C’, and C*,. The real axis is common for both
lower and the upper contours,

where C, consists of the real axis and an infinite semi-circle in the upper half-

plane while C, consisis of the real axis and an infinite semi-circle in the lower
half-plane (Fig. 7.11(a)]. However, since the poles z =0 are gn the contour (5o
that F{z) is not analytic throughout the contour), a straight forward application of
the residue theorem is not possible. In fact, the integrals /,(c} and /(3) are
improper for this reason, Just as a nonanalytic function has no unique derivative
(for, the derivative depends on the direction from which we approach the point of
interest as, for example, in the case of the derivative of the function F(x)atx =0
in Fig. C.1), the value of an improper integral depends on the limiting process
used to evaluate the integral. In the present case, the possible limiting processes
are;
(i) Deform the contour to C”’, and C”, as shown in Fig. 7.1 1(b).* Then,
I(o)= Lt 9§C_ Fi(2)dz,
1

7=
and
1f0)= Lt i}z Fyz)dz.
This leads to™
1{0) = 27ti cos o, (7.103")

29.  Actually, there are three other ways of deforming the contour. Thus, we can go under the real
axis at the pole x = —¢ and over the real axis at k =+, or go either over or under the real axis
at both places. Al these lead to the same result, Eq, (7.103".

30.  See, Example 7.2.3 in the reference quoted in footnote 27.
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and
_cos(klr—r’l) 1
Gk(rl l")- I r_rrl (7.100 )
(ii) Replace 6 by o +in, where n >0 but is small. Then,
I(c)= Lt I(c+in).
0

IMAGINARY AXIS " , IMAGINARY AXIS
C3 C3
o +i ~T 4
° 1K) Real Axis 1o K
1
(a) (b)

Fig. 7.12 Contours for the integrals leading to Eqs. (7.103%) and (7.103%).

This procedure shifts the pole away from the real axis and thus away from the
contour {Fig. 7.12(a)]. After integration, the poles are brought back. Application
of the residue theorem gives,

) _ Zeix
l(e+in) —9§c,(z —o-in)(z+o+in) dz
= 2m'{.__ze_k____}
Z+0+i7’l z=0+in
=1a-ei(a+ir])’
and
L(c+im) =+(2m'){——zem } =mie'®*’m
? z-0-in 2=-0-in '
so that,
1(c) = 2mie™, (7.103%
ik|r-r| )
G,(r,1) —m. (7.100%

(iii) Replace ¢ by 6— i [Fig. 7.12(b)]. This leads to
I(c)= Lt I(c—in)=2mie”", (7.103%)
n—0
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and
—ik|r-r|

G(r,r)=— (7.100%

[r—r’|’

Egs. (7.100"*"} represent, respectively, a standing spherical wave, an outgoing
spherical wave and an incoming spherical wave. From the physics point of view,
choosing the limiting process is, thus, equivalent to choosing the boundary
conditions, In the present case, the boundary conditions require an oulgoing
spherical wave in (7.98) (see Eq. (7.8)]. Therefore, the limiting process to be vsed
is the one described in (ii) above, and the Green's function is given by Eq.
(7.100%.

Now, forr »r’,

Ir—r | =(r2+r?—2rr’'cos6)"”
=r{1-2(r'fr)cos 0} 2

~r—r'cos@,

where 0 is the angle between r and 1,

Then,
1 1
lr-r'| r’
so that,
ikr
€ _ik.r
G(r,r) ~ el . (7.104)
rer'

Substituting this value of G,(r,r") in (7.98) and neglecting the normalization fac-
tor in g,(r), we have,

ikr
y,(ry ~ exp(ikr) _:IIEE_;-_ exp (—iK .U, (. (7.105)
Comparing Eq. (7.105) with Eq. (7.8), we have,
1
10.0)= =7 [ exo ik - UG (7.106)

Integral Equation for Scattering

Since i, occurs on both sides, Eq. (7.105) does not really represent a solution of

the differential equation (7.90); it is actually the integral equation for scaticring,.
That is, the Green’s function has helped us only to convert the differential equa-
lion to an integral equation. But now the advantage is that we can solve the
equation by an approximation method applicable to an integral equation (but not
applicable to a differential equation), namely, the method of iteration. This is a
successive approximation method in which the ath approximation to y,(r) on the
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left hand side of Eq. (7.98) is obtained by substituting the (» — 1)th approximation
to y,(r") on the right hand side of that equation. Thus, writing the equation in
terms of Green’s functions, we have,*

W (r) = exp (ik 1) "217: ka(r, r)UEe r)d’r,  (7.107)

where y{ is y, to the nth approximation.
Writing,

*~D(r)= exp (ik-r,) —%t fck(rl, U)W 2(r)d’r,

-2 ) 1 n-3 3
W (r) = exp (ik- rz)—ZT—CJG,,(rZ, r)U(r ) I (r)d’r,,

and so on, we get,

WO(r) = £ OF(r), (7.107%)
p=0
with
-1
P(r)= (ZEJ" ka(ro, r)U(r)G,(r,r)U(r,)
o Gyr, T )U(r,) exp (ik-r)d’r,...d’r,, (7.108)
where ry=r.

In order to understand the meaning of @2, let us look more closely at ®Z. We
have,

2
dYr) = (—41“) J.JG,‘(r, r)U(r)G,(r,, r)U(ry). exp (ik - r)d’r,d’r,

- (2—\:)2fd3r16,‘(r, )UK jd%zq(r,, LU exp(ik-r).  (7.108a)
This has the following obvious interpretation; A plane wave exp (ik-r)) is
incident at the volume element d’r,. It gets scattered there by the potential U(r,).
The scattered wave is then propagated from d°r, to the volume element d°r,, this
propagation being represented by the Green’s function® G,(r;r;). At d°r,, the
wave is scattered again by the potential U(r,). Finally, the wave is propagated
from d’r, to the point of observation r by G,(r,r,). The whole process is sche-
matically shown in Fig. (7.13). Thus, ®¥(r) represents the contribution to y{™(r)
from all such doubly-scattered waves, and ®f(r) is the contribution from waves

(particles) that have been scattered p times by the potential. The maximum
number of scattering suffered by a particle contained in y{")(r) is, thus, n, and

31.  Eq.(7.107") is known as the nth iterated form of Eq. (7.98). .
32.  The Green's function is, for this reason, called the propagator.
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@) =y(r) = exp ik -),
represents particles that have suffered no scattering at all (that is, the incident
wave),

Fig. 7.13 Schemalic representation of the doubly scattered particles reaching the point of
observation r.

The series (7.107%) in the limit n — e is known as the Neumann series. It
represents a solution to the scattering problem {Eq. (7.90) or Eq. (7.98)] if the
serics is a converging cne. Roughly speaking, such a condition would be satisfied
if the wave gets weaker and weaker at successive scatterings. That is, if the
number of particles getting scatiered progressively diminishes at cach successive
scattering. We see from Eq. (7.108) that 2 necessary condition for this is that the
potential be weak.®

The approximation,

v, () =y, (7.105a)
is known as the nth Born Approximation.
The scattering amplitude in the nth Born Approximation is given, according to
Eq. (7.106), by

£0,0)= —;—nj exp (~ik - eV (rYy" Drd’r, (7.106a)

If the potential is weak enough (so that the convergence of the Neumann series is
rapid enough), the first Born Approximation (which is also called simply the Born
Approximation ) provides a good cnough approximation 10 y,(r);

1
WD =0 = exp k-1~ [ G, U exp (k- 19’

1 ikr
~ exp(ik-r)—EeTj exp (K - YUY, (7.105b)

o

33. A more exact criterion will be derived later in the case of the first Bom Approximation [Eq.
(7.112b)L
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and
1
70,0 = 000,0) =5 [ exp (K-, (1.106b)

where #K =#(k—K’), is the momentum transferred from the particle to the
potential. Referring to Fig. (7.14), we have,

K =|K|=(>*+k?- 2%k cos )"

= {2%*(1-cos@)}

= 2k sin(6/2), (7.109)
since
[ki=1k"|

Fig 7.14

Eq. (7.106b) shows that the scattering amplitude is just proportional to the
Fourier transform of the potential in the ‘momentum-transfer space.’™

When the potential is central U(r) = U(r), we can further simplify the expres-
sion (7.106b) by taking advantage of the fact that the integrand is a scalar. Thus,
choosing a co-ordinate system in which the z-axis is along K, we get,

£(8,0) = £.(8) = ——115 f " U sinKrdr, (7.110)

which is the (first) Born Approximation scattering amplitude in the case of a
central potential, We note the following important features:

(i) The amplitude is independent of the azimuthal angle ¢. This is a conse-
quence of the cylindrical symmetry of the potential and is in agreement
with the result (7.35) obtained in the method of partial waves.

(ii) It depends only on the momentum transfer (which is proportional to
k sin (6/2)) and not on the momentum of the incident particle or on the
scattering angle individually.

34. ltis also proportional to the matrix element of the potential between the plane wave slates exp
(ik - ') (the initial state) and exp ((K’- r) (the final state).
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When the potential is weak, the method of partial waves also can be shown to
yield expression (7.110) for the scattering amplitude. In this case, the phase shift
§, is given by Eq. (7.45%. Then from Egs. (7.36) and (7.36a), we have,

A= %éo(zz +1)(1+i8,+...)8,P,(cosB)
- 15';0(21 + )P (cos 0) - (8/k)
== X (2 + 1)P{cos6) J‘ ke WUy
1=0 ]

I oo
= ——J rU(r)sinKrdr, (7.110a)
K Jo

where the addition theorem (E.75) for spherical Bessel functions has been used.
Now, the addition theorem is valid only if a large number of terms contribute to
the summation in (E.75). This requires that 8 be nonzero for a large number of

partial waves, which in turn requires that the energy of the incident particles be
large. Thus, derivation (7.110a) is valid only when the potential is weak (so that
&, is small ) and the energy is large (so that §; is not zero). As we have seen, these

are not conditions under which the method of partial waves can be uscfully
applied.

Criterion for the Validity of the Born Approximation

The criterion is that | @, |« { @21 = 1. Now, in the case of a central potential, we .
have, from Egs. (7.10()2) and (7.105b),

D) =—— exp ik {r-r'{)
M) = i ALl L

. 3.
ror] U exp (ik-rdr.

It is reasonable to assume that P} has its maximum value at r = 0 (the centre of
the potential). Now,

(O) 4n(i§)femr(‘kﬂ) V({r) exp (ik - r)d’r".

2 =a
=~ -zﬁ J‘ exp (ikr"Yysinkr’'V{rdr’
Rk o
Let us assume that the potenLial is of finile range, say r,, and of strength V. Then,

| DLO) = | exp (2ikry)— 2ikry—1]. (7.111)

Zﬁzk”

Case 1: kry< 1 (Jow energy)

. . Ukry
In this case, expanding e °in terms of 2kr,, we get,
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N
| D (0)] = 7
Thus, the Bom approximation would be applicable if
WVore
<l
or,
ﬁZ
Vi« w (7.112a)
But, if the potential is strong enough to cause binding, then®
o\
Vyolzl = | 7.113
() -
so that, Born approximation will not be valid at low energies.
Case 2: kro» 1
In this case,
le™ "= 2ikry—1|=2kr,
so that,
WVoro
D0 | =~ <1
| (0] Fen
or,
Voo
T «1, (7.112b)
where,
#k
v=—,
u

is the velocity of the particle.

Thus, the kinetic energy should be large compared with the potential energy.
This result is consistent with the remarks regarding the validity of derivation
(7.110a). Even though the above result is derived for the special case of a short-
range central potential, it is of more general validity®.

Scattering of Electrons by Atoms

As an application of the Born Approximation formula (7.110), let us consider the
scattering of clectrons by atoms. In this case, the potential is the screened
coulomb potential,

35.  See,Ref. 1, Section 15.

36. For amore detailed discussion on this point, sce Wu, T.W. and Ohmura, T. Quantum Theory of
Scattering (Prentice Hall, New Jersey 1962), Sections C.3 and C.4.
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Vir)=(Ze¥re "™, (1.114)
where, Z is the atomic number”’, Substituting from (7.114) in (7.110), we get
fremembering, U(r) = QuHaHV(r)l,

2 z rg
F(8)=—(2Wh)Ze [K2r§+1} (7.1152)
For a pure coulomb force, 7=+, so that Eq, {7.115a) reduces 10
18 =—(2uZe K™, (7.115b)
and the differential scatiering cross-section is given by
dc . [z} 1
6= O = ( 2pv2] R, (7.116)

v being the velocity of the particle. It so happens that formula (7.116), obtained
here as an approximation, is in agreement with both the classical Rutherford for-
mula and the exact quantum mechanical formuta for Coulomb scattering®.

Problem 7.6: Use the Optical Theorem [Eq. (7.39)] to show that the Bom
Approximation cannot be expected to give the correct differential scatiering
cross-section in the forward (6 = Q) direction.

Problem 7.7: Using the Born Approximation formula (7.110) show that scat-
tering by a square-well polential of depth V, and range r, has the following char-
acteristics:
{a) Scattering is peaked in the forward direction,
(b} At large encrgies, the total scattering cross-section is inversely propor-
tional to the energy.
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CHAPTER 8

APPROXIMATION METHODS

Anexact solution of the Schrodinger equation is an impractical proposition except
for the simplest of potentials. In most cases of practical interest, one has to settle
for an approximate solution. Thus, several methods of approximation have come
to be devised for tackling various types of problems in quantum mechanics.
These methods could be broadly divided into two categories: those for time-
independent problems and those for time-dependent problems. The former refer
to the methods applicable to the time-independent Schrddinger equation (4.18)
and the latter to those applicable to the time-dependent Schrédinger equation
(4.14). In this chapter, we propose to consider some of these approximation
methods.

A. METHODS FOR TIME-INDEPENDENT PROBLEMS

In this category, we will discuss the WKB Approximation, the Variational
Method and the Time-independent Perturbation Theory.

8.1 THE WKB APPROXIMATION
The Principle of the Method

This approximation method, named afier Wentzel, Kramers and Brillouin who
first introduced the method in quantum mechanics!, is also known by the alter-
native names, semi-classical approximation and phase-integral method. The
method 1s suited only to problems in one dimension or to problems that can be
decomposed into one or more one-dimensional ones. The principle underlying
the method is elucidated in the following:

Consider the classical equation,

p2
H= —2~E+ V(r), 8.1

1. We}'llzcl, G., Z. Physik, 38, 518 (1926);
Kramers, H.A., Z. Physik, 39, 828 (1926);
Brillouin, L., Compt. Rend.. 183, 24 (1926).
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where, # is the Hamiltonian, p the momentum and [ the mass of a particle. The
potential V(r) represents the external field which influences the motion of the
particle. Eq. (8.1) can be converled into the equation of motion of the particle by
substituting for /7 and p from Eqs. (1.14a, b). We get,

—5 =t Va), (8.2)

where, § is the action associated with the classical path of the particle [see
Eg.(1.6)]. Eq. (8.2) is the (time-dependent) Hamilton-Jacobi equation of
classical mechanics’.  The corresponding equation of motion in guantum
mechanics, is the time-dependent Schrodinger equation (4.14) with the
Hamittonian given by Eq. (8.1) where p and V are replaced by operators p and V
in accordance with Postulate IV of Chapter 3. In the co-ordinate representation,
we have, p=-i#V [see Eq. (3.18")] and (1) = (r| () =w(r,¢), so that
Eq. (4.14) reads,

3\41;:- D [—--2?% Vi V(r):lql(l',t ). 3.3)

The connection between Egs. (8.2) and (8.3) would become clear if we substitute
for y(r, 1) in the latter from Eq. (4.15b), namely,

wir, 1) = exp {(iM)S(r, 1)} 8.4
we get,

-o§ (VS-VS) i, ]

( pn )v [ o 2!4 VS + V{r)\v, {8.3a)

where, the identity, div (A¢) = A - Vo+ ¢ div A, is used in evaluating Vy. Thus
the equation satisfied by § is given by,
35 _(vsy
TR
Comparing Eqgs. (8.5) and (8.2), we see that quantum mechanics should reduce 1o
classical mechanics in the limit # — 0 [This is evident also from Eq. (1.10a)]. In
other words, the finite value of % is responsible for the difference between clas-
sical and quantum mechanics. Now #, being a universal constant, cannot be equal
to zero. What is possible, and is in effect equivalent to # — 0, is that the term
containing # in (8.5) can be negligible compared with the term containing (VS)”.
This suggests that when the condition,

HVS)F»h|VS Y, (8.63)

+V(r) —%V”S. (8.5)

or,

Ip2I»a1(V )l (8.6b)

2. See, foctnote 1, Chapter 4.
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is satisfied, an approximation method based on a power series expansion of § in #
is possible. Thus, writing’,
. (&)

S=SO+ITS1+(?) Sz+..., (87)
the classical approximation consists in neglecting all powers of % higher than zero.
In the semi-classical or WKB approximation, the terms up to the first power of #
is retained. Thus, the WKB approximation is just a step ahead of the classical
approximation.

The WKB Wavefuntion

As we stated earlier, practical applications of the WKB approximation is limited
to time-independent (that is, stationary) problems in one dimension. We, there-
fore, confine our atiention to such problems.

In the case of stationary problems, we have, from Eq. (4.21),

y(r, 1) = O(r) exp {—(i/A)EL}, (8.8)
with [see Eq. (8.4)]
O(r) = exp [EAW(r)], (8.9)
where,
S(r,)=W(r)-Et, (8.10)

E being the energy of the system.
Thus, for the one-dimensional case, Egs. (8.2), (8.5) and (8.7) reduce, respec-
tively, to the equations,

aw 2
(—3) -2uU[E-V(x)] =0, (8.2)
dx
( aw 'V L AW .
\d_x) —2u{E - V(x)] —zﬁ—;;;—(), (8.5)
and
( # %Y .
Wix)=W,x)+ \?/WI(x)+ n Wox)+..., 8.7
while, the Schrédinger equation (8.3) reduces [with the help of Eq. (8.8)] to,
a*e 2
2;5+;;[E—V(x)]¢=o, (8.3Y
with

3. Notethat the dimensions of the S, are such that #* '8, is dimensionless. §is expanded in powers
of (Wi) rather than of &, because of the occurrence of the factor (i) in y [(Eq. (8.4)}).
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®(x) = exp [%W(x):). ®.9Y
From Eq. (8.2"), we have.!

2
E - V(x)] = (Cj:] pix), say. (8.11)

Then, Eq. (8.3") becomes,

dzrb 2

-a;i-+§i'(p 0. (832)
We are interesied in the solution of this equation within the WKB approximation.
This is obtained by substituting for W in Eq. (8.9") the approximate value,
W =W, +®i)W, from the series expression (8.7'). The values of W, and W,
appropriate to the system being considered, are determined by substituting (8.7")
in Eq. (8.5") which is equivalent to the Schrodinger equation (8.3%). The substi-
tution,
dW(x)

dx k)

will prove convenient. Substituting from Egs. (8.11) and (8.12), Eq. (8.5")
reduces {0

ufx)= (8.12)

Adu 2 2
TP ul, (8.5
Also, differentiating Eq. (8.7") with respect to x, we get,
# #Y
ulxy = uix)+ (?}ul(x) +( J W{X) +. (8.7%
where,
- (8.13)
ux(x) - dx N
In terms of u, $(x) is given by,
o
Dlx) = —
(x) exp[ j i 5 dx
= exp[ j :I (8.9%

Substituting (8.7 in Eq. (8.5%), we have,

‘h)duo ¥ du,
D fiat
=(p —uhH - f _ ﬁ ’ 2
(P~ ) =2 7 it ; [? + 2] + ... (8.14)

4. Notetha pix) defined by Eq. (8.11)is in agreemem with the usual definition of the momeniumn
of a particle.
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Equating cocfficients of like powers of (#/i) on either side of Eq. (8.14), we get,

Uy=1p, (8.15a)
__ b dug dp
)3 e
Corresponding to the two values of u, we have two values of u:
_p hlfdp) o (m)d
“=PT5 (dx} (i)dx(znx/;?), (8.16a)
-y tlfde) ()4
w==p-i5 (dxj* (i]dx(zmlE). (8.16b)
Substituting in Eq. (8.9%), we get,
i
@, (x) =— ( f dx) (8.17a)
\,— 4
@ (x) =— ex ( pdx) (8.17b)
worl

These represent the two independent solutions of the second order differential
equation (8.3%). The general solution, which is the WKB wave function, is given
by a linear combination of @, and d_:

- exp| L[ pcar | L expl L [ ]

QX)) = \[; exp{hf pix )dx]#—\/; exp{ 7 p(xHdx’|. (8.18)
The lower limit for the integral in (8.17) and (8.18) would be a classical tumning
point, as will be seen shortly.

Criterion for the Validity of the Approximation

The approximation leading to (8.18) is valid when condition (8.6b) is satisfied. In
the present case, this condition reads,

dp
i p I»fnldx

or

Al (dpldx) |

ipl
where, A = (#/p), is the de-Broglie wavelength of the particle. Thus, the condition
for the applicability of the WKB approximation is that the fractional change of
momentum over a de-Brglie wavelength of the particle be small. This criterion
could be compared with the criterion for the validity of ray (geometrical) optics:

the variation of the index of refraction should not be appreciable over the distance
of a wavelength.

<1, (8.19)
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Connection Formulae

Condition (8.19) is, obviously, not satisfied at a classical turring point, where

d
plx)=0,but ("&%) # 0. The usefulness of the WKB method happens to be in the
case of those problems that involve sach turning points. That is, these are prob-
lems where we have two regions where the WKR approximation is valid but
which are separated by a ¢lassical turmning point (as in Fig, 8.1). The method can
be applied to the solution of such problems only if we find a way to extend the
WKB solution from one region o the other through the turning point. Such a
procedure in effect, amounts 1o obtaining a connection between the WKB wave-
functions in the two regions which (the wavefunctions) can be written down
independently of each other using formula (8.18). The procedure consists in
solving the Schrodinger equation (8.3%) exactly near the turning point and
extrapolating the solution for regions far away from the wrning point. The
extrapolated (or, asymptotic) solutions will resembie the WKB solutions. Since
the relationship between the extrapolated solutions in the two regions are known,
we get the relationship between the two WKB solutions assuming this 1o be the
same as that between the extrapolated solutions.

{l

V(x)

Y e

Fig. 8.1. Classical {I) and non-classical (IT) regions separated by g classical uming peint (x,).

Now, a turning point separates a classical region, where E > V(x), from a
non-classical region where £ < V(x). The equations relating the WKB solutions
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in the two regions, therefore, give the connection between the WKB wavefunc-
tions in the classical and the non-classical regions. These equations are, for this
reason, given the name connection formulae. A derivation of the formulae
follows:

Consider a particle of energy E encountering a potential V(x) as shown in Fig.
8.1. Classically, the particle would be turned back at x = x, (hence the name,

turning point) where the kinetic energy (E — V(x)) becomes zero. But, in quantum
mechanics, since the force —(dV/dx) is finite at x = x;, V(x) represents a ‘trans-
luscent’ wall rather than an ‘opaque’ one (An opaque wall is represented by a
potential which rises to infinity at x =x;). This means that, at x,, some particles
will leak into region II (the non classical region), eventhough the majority might
be turned back. This phenomenon is known as the penetration of a potential
barrier, or, tunnelling® In terms of an individual particle, we can say that there is
a certain probability that it is found in region II if it was originally in region L.
This probability can be estimated with the help of the WKB approximation.

In region I, E > V(x), so p(x) is real. The WKB wavefuction is, therefore,
oscillatory. We have, from Eq. (8.18),

A 4(|‘M)J;1pdt' _li 4iM)fx‘de’

P (x)=——==e +-—=e
/) Vp
A o
= ——— Sl"[—(l/ﬁ) J pdx’+ 11/4}
Vp g
B o
+\/—__C(){—(1/fl)f pdx +Tl'/4], (8.20a)
p o
where,
A=(A—iB)e™, (8.21a) |
B =—A,+iB)e™™. (8.21b)

The reason for writing @, in the peculiar form (8.20a) would be clear later.
Inregion I1, E < V(x) and so p(x) is imaginary:
px)=iipx)|. (8.22)
Substituting in Eq. (8.18), we have, for the WKB wavefunction in region II, the
expression,
A —(W)L ple’ g (mf“ Ip la

2 8.20b
NTI ST (8:200)

Thus, the WKB wavefunction of the particle is oscillatory in the classical region
and is exponential in the non-classical region.

POx)=

5. This name is inspired by the analogy of the crossing of a mountain by constructing a tunnel
through it rather than by climbing over it.



244 QUANTUM MECHANICS

Now, ®, and < are approximations to the same wavefunction. But we can
identify them as such only if we know the relationship of the coefficients A, and
B, (or A and B} in (8.20a) to the coefficients 4, and B, in (8.20b). The connection
formulac provide the required relationship. As we have already staied, the con-
nection formulae are obtained by solving Eq. (8.3% exactly near the turning point
and then finding the asymptotic forms of the solution far away on either side of
the wrning point.

We assume that V(x) is linear in the neighbourhood of the tuning point. That
is,

dav
Vix) = Vix)+(x—x) (Ex_la,

1"‘4’1

=E+C(x~x,), {8.23)
where,
C= (%) >0 (8.24)
Then,
Pl=2E-V) = WC(x—x). (8.25)
Substituting for p® from (8.25), Eq. (8.3 reduces to,
dyy :
—= _ty=0 8.26
e Ey=0, (8.26)
where,
&= (e (x ~x), (8.27)
and
(&) = P(x).

Regions 1 and I1 and the turning point correspond, respectively, to & <0, § > Gand
£=0.

The solutions of Eq. (8.26) are known as the Airy F unctions®, and are given f)y,

Ai(®) =%f:cos (s34 5E) ds, (8.28)

and

Bi(i)z-:;Lm{ exp(—sE—5"13)+ sin (5%3+5E)} ds. {8.29)

>

6.  Jeffreys, H. and B.S., Methods of Mathematical Physics (Cambridge University Press, Cam-
bridge 1956), I Edition, Section 17.07.
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We are interested only in the asymptotic forms of A/ and Bi. These are given by,

Ai(i)ﬁ;o(—nzé)_m sin[(2/3) (=€) + 4],

= 3™ e 3.

-1/

B"@E;o(“"zé) cos{(2/3) () + w4,

E;o(nze;)"“ exp [(Y3)EN.
Now, for § <0 (that is, for x <x,),
+£
@3 o™= [ VFace)

4
—fo V=tae
- f “ue ™ x, - x)

-1 r= ,
= f 1 p(x)dx’,
where, Eqs. (8.27) and (8.25) are used in the last two lines.

Also,
(_g)lm - (2“,C)1/12ﬁ—“6(x1 ‘_x)lM

= (2uCmy ™ [2uC (x, —x)N ™

= (2uCH) " Np(x).

Similarly, for € > 0 (x > x,), we have,
1= ,
@352 =2 [T pan1ax,
!

and

&" = @ucry " Vp) 1.
Substituting from Egs. (8.30a-31b) in Eqgs. (8.28'-29%), we get,

: o .1 1rn n
2 orin - [ ]
l(&) E<<0 ! (X)x «<x\p Slr{-*-ﬁ x p(x')dx +4

AL = W) ~ \/%exp( ﬁf lpldx)

(8.28")

(8.28%)
(8.29

(8.29%

(8.30a)

(8.31a)

(8.30b)

(8.31b)
(8.32)

(8.32%
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, onc o |1 , T 2l

B:(é)ﬁ D, (x),;,, \f;cos[%fx p(x")dx +4], (8.33Y)
o i

Bz() = CD“"() ex [f lpldx’}, (8.33%)
; il P *’L

Here,
=[2pC )", (8.34)
Since ®;* and ®}* arc approximations to the same wave-function, the former is

the continuation into the non-classical region of the latter in the classical region.
Thus, the connection between the approximate forms of the wavefunctions in the
classical and the non-classical regions are given by the formulae:

Classical region Non-classical region
(oscillatory) (exponential)
. |1 T L PRY) 10
= 4= - = ‘ 35
op sm[ﬁi pdx -|»4:|H2|p| exp{ﬁi Ipldx}, (8.35a)
Bp " cm[—f pdx’+ leﬁlpl“zexxn{ J IPIdX} (8.35b)

We noie that a wavefunction that is represented by the sine function in the clas-
sical region becomes a decreasing exponential in the non-classical region
whereas an increasing exponential in the non-classical region corresponds to the
cosine function in the classical region. Note also that the constant multiplying the
increasing exponential is the same as that multiplying the cosine function whereas
the constant multiplying the decreasing exponential is half that associaled with it
sine function.

The wavefunction of the physical sysiem would be a gencral solution of Eq.
(8.26) and, thus, a linear combination of &, and &,. Thus,

4 et T 1™ , T
® ( x;tlT[Sln{%J: p(x )dx +Z}+COS{%£ P(X')dx +Z}:l!

{8.36a)

2}
@) %; exp (——f | ) e’

o 1(*
——— =1 1p&EDI dx’]. 8.36b
+~i|p1“p(f*£| ? (8.360)

Comparing Eqgs. (8.36a, b) with (8.20a, b), we see that @™ is the WKB wave-
function @, in the classical region and F is the WKB wavefunctlion &, in the

non-classical region, We further see that
A= (W2) = A2,
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(2un(av e ,
BZZ(X:B :i";{ ZX— - (87)7)

Thus, Eqgs. (8.35a, b) give the connection between the WKB wavefunctions in the
classical (oscillatory) and the non-classical (exponential) regions. These are,
therefore, the connection formulae of the WKB approximation.

Since the approximations (8.32'-8.33% are valid only for regions far away from
the turning points, the above method cannot be applicd when there arc two turning
points close to cach other as in Fig. 8.2. In fact, substituting from (8.25) in (8.19),
we get,

[
=
ca

1x—x, |»(W2m) (8.38)

as the condition for the validity of the WKB approximation at x. Thus, for the
applicability of the WKB method, it is necessary that the separation between
turning points be at least several de-Broglic wavelengths.

CRR— E

Fig. 8.2. Thewwo classical iuming points (a and b in the figure) are too near to each other for the
applicability of the WKB approximation.

APPLICATIONS
A. Bound State

The WKB method can be uscfully applied for the determination of the cnergy
levels of a one-dimensional bound system. The potential for such a system is
represented by the curve V{x) in Fig. 8.3. There arc three regions scparated by the
two turning points x; and x,, as shown in the figure’. Rcgion I1 is the classical
region where the wavefunction is oscillatory, whereas regions T and 11T are the
non-classical (exponential) ones. Since the system is bound, the wavefunction
should go to zcro as x — tee. This means that, in regions I and 111, the WKDB
wavcfunctions are decreasing cxponentials.,

Thus, by cq. (8.18),

A

) = e H [T1p001 dx'}, (3.39)

7. The regions I, T and 110, where the WKB approximation is valid are acwally defined by
x €a,b, £ x < byand x 2 a,, respectively [sce, incquality (8.38))].
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v(x)

N

R

R

AR

Fig. 8.3. Potential well. The shaded portions denote regions where the WKB approximation is
not valid,

‘ P e
(Dm(x)x:: _\/__I;:l €xp {‘%L Lp(x’) ldx’} (8.40)

According to the connection formulac (8.35a, b) the wavefunction in region 11 is
given by

24, 17+ \
d),,(x):——-sin{- plx"dx +n/4} (B.41a)
W A,
24, I pa
S:TSIH %J‘ p(x’)dx’+f[j4 . (8.41b)
P x .
x *2 5
But f pdx':f paix‘—J pdx’,
Il XI x
so that,
NN , jrr
sm{ﬁf pdx +Tc/4}:5m{gf p dx’+7t/2)
Xy x
1% . (8.42)
- %j p dx’+7/4

Substituting {8.42) in {8.413) and cqnating the resuli to (8.41Db), we get,

] 173 , 11" ,
Alsm{[;‘L pdx +1U2Jﬁ{£'£ pdx +x/4}}
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1=
=A,sin ﬁf p dx’' + /4.
Comparing this with the identity,
sin(n'm-0)=(-1)""'sin®,n"=1,2,3, ... (8.43)

we should have ?

1f‘2
— Xdx+m/2=(n+mx,
fJx, Pe) (et D) n=01,2,... (8.44)

AJA = (1),
Now,

*2 X *
2f pdx:J. pdx-f pdx:f{jpdx, (8.45)
R Bl )

where é’rcprcscms integration over a complete period (or to-and-fro motion) of

the particle. Substituting from (8.45) in (8.44), we get,
1
Sgpdx:(n+5]h, (n=0,1,2,..) (8.46)

When the potential is known as a function of x, the integral in Eq. (8.46) can be
performed, yielding E in terms of n and the parameters of the potential. n, thus
designates the diffcrent energy levels of the system.

Eq. (8.46) corresponds to the Bohr-Sommerfeld quantization rule of the Old

Quantum Theory (of the pre-quantum mechanics period). The term %h, which is

abscnt in the Bohr-Sommerfeld formula, brings formula (8.46) in better agree-
ment with the exact result. In fact, in the case of the linear harmonic oscillator,
Eq. (8.46) is in agrecment with the exact result [see Eq. (4.51) and Problem 8.1].

The approximate wavefunction of the system is given by Eq. (8.41a). The
constant A, can be determined from the requirement of normalization. According

to Eq. (8.44), the phase of the sine function in (8.41a) varies from 7/4 to (n + 3/4)nt
as x varics from x, to x,. Thus, n is the number of zeroes (that is, nodes) of

®,(x) = Py(x) between x; and x,. But the WKB approximation is valid only at

distances that are several de Bréglie wavelengths (a wavelength being twice the
distance between nodes) removed from the turning points [ Eq. (8.38)]. This
means that Eq. (8.41a) is a good approximation to the wavefunction of the system
only for large values of the quantum number n. In that case, the sine function
oscillates rapidly in the interval x, < x < x, so that the square of the sine function

1

can be approximated to its average value o>

8. Wehave (1 + 1)n rather than nx on the R.H.S. of Eq. (8.44), because [ p dx 2 0.
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*on *2
= L [ (x) Fdx af [ (x) F dx.

2 dx
AR AP
=24, F (w2ua,), (8.47)

where, T, = (2o ) = 2“—[’2(%{), is the period (the time required for the particle to
AP

move from x; to x; and x, to x,} of the nth mode, w, being the angular frequency.
Substituting {(8.47) in (B414), we have, for the normalized wavefunction, the

CXPresSIon,
2 172 1 x , ,
‘I),,(X)*[ uw,] sin -J‘ px)dx’+ 4 (8.48)
np # |

Problem 8.1: Show, from Eq. (8.44), that the energy levels of a lincar hurmonic

oscibiaor [V (x)= lzumzxq, for large values of the quanium number r, are given by

1
E = {n + ;;\‘ﬁu). {8.4Y;
o2
Eq. (4.51) shows that the WKB resalt (8.49) is, in the case of the lincar har-

monic oscillator, exact, valid for all values of n.

B. Penetration of a Potential Barrier

Another situation where the WKB approximation can be used with advantage, is
in the calculation of the transmission coefficient of a potential barrier of the type
shown in Fig. 8 4.

Particles of energy E less than the height of the potential barrier, are incident
from the leftof the barrier. Al the classical turning point x, (defined by V(x,) = £),
some of the particles will pass on to the classicaliy-forbidden region defined by
V(x)>E. Of these, some will be reflected back at the other turning point’ x,
{where V(x,) = E), but the others will escape to the classical region to the right of
the powential barrier.  Thus, there is a possibility that a centain fraction (which
would, naturally, depend on the paramcters such as height {measared from E},
width and shape of the barrier) of the total number of incident particles would be
transmitted by the potential. The ratio of the flux of transmitted particles to that
of the incident particles, is called the transmission coefficient of the potential
barricr.  The WKB approximation ¢nables us to obtain an expression for the
transmission coclficient in terms of the above mentioned parameters of the
potential barricr,

b 1 15 the point al which parlicles incidemt on the barnier from the right would be lumed back,

according o the laws of classical mechanics.
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A

RN

N

AR

Fig. 8.4. Potential barrier.
We denote by 1, 1T and 111 the regions of validity of the WKB approximation.
These are defined, respectively, by (see Fig. 8.4), x <a,, b, <x<a,and x 2 b,.
The WKB wavefunction in region I is given, according to Eq. (8.18), by

‘A' 1 l f* ’ ’ Bl l x ’,
D (x) == ex [— px )dx]+—— exp [——f p(xNdx } (8.50)
=7, P ﬁJ,I NP s,
Here, the first term on the R.H.S. represents the incident particles and the second
term particles reflected at the turning point x;. This could be easily seen by

shifting the origin to x, and taking the special case where p is constant.
In region I11, there is only transmitted wave, so that

cpm={;—i exp [(i/ﬁ)jxp(x')dx'}. (8.51)
p x

From Egs. (8.50) and (8.51), we have, for the transmission coefficient T, the
CXpressior,

po el oevel _ Tvepa
[ine | 1Pine Viae | | Wone VP P

_Weewl 141
Np@), [P 1A P
Here, the symbols J, p and v stand, respectively, for the flux, density and velocity

of the particles, while y represents the (exact) wave function. Also, the fact that
the momenta of the incident and the transmitted particles are the same, has becn
made use of.

(8.52Y
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Thus, if A, is determined in terms of A,, T can be obtained. The relationship
between A, and A, can, indeed, be found using the connection formulae (8.35a, b),

as indicated below:
Rewriting Eq. (8.51) as,

fbnm=%{m{%f;p(xvdx'+ﬂ+zsi{%f;p(x'>dx'+ﬂ},

where,

e (1=
A :A3€ ""4»-_— [—{7 31 (8.53)

we get, for the WKB wave function in region 11,

b (x)= m%ﬁ{ exp |:(1/ﬁ) JH [pl dx’]]

. {8.54
+(i/2)[exp[—(1/ﬁ)fﬁipIa‘x'D} ( Y

Writing,
x ) £ ,
f ip |dx’=f Ip Idx’FJ- |P|dx
x ZI Xl
and defining
X:
o=explm) [ “ip1ax (8.55)
b
this becomes,

¢5‘(X):%ﬂ{® expl:—(llﬁ)J;”lp ldx'}

x . 54
+i26) exp [(lm)f I idx'}} (8.540)

Applying the connection formulae again, we get,

A 1 rn . 177
= 2@31'{{ . }+ 120 cos{-—j ’ 4]}
X \]E{ ﬁxpdx+n'14 (/20) ﬁxpdx+rt/

A, 1 o () (a1 i
:Tﬁ{[@)-rﬁj exp{(h’fi) L r dx]—;(@—zé] exp [_ﬁ . p dx]},

where, relationship (8.53) has been used.
Comparing Egs. (8.50) and (8.56), we get,

(3.56)
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1
A= (@+4—é}43 , (8.57a)
oL (8.57b
=%"78 570)

AJA =)0 - 0= expl 2 [ dxf. (8.52°
T=lagh=\0gg | <= e T Clpwlay. ®52)

O defined by Eq. (8.55) is a measure of both the height, | p(x) | = {2W(V(x)-E)}'?,
and the width (x,—x,) of the barrier. Since the WKB approximation is valid only
when (x,—x,) is several times the wave length A=#/{p [,@>» 1. Hence the

approximation (@ + %)2 ~ @2 in Eq. (8.52%).

We see from Eq. (8.52%), that increasing either the width or the height of the
barrier, decreases the probability for the penetration of the barrier. This is as it
should be. For, x; <x <x, represents a region where the beam of particles lose
intensity continually, this loss being greater, the greater the height of the barrier.
Asaresult, the chance for a particle to reach the barricr boundary x, decreases with

increasing distance of x, from x, as well as with increasing height of the barrier.

Thus

Problem 8.2: Calculate the transmission coefficient of the potential barricr givea
by

V(x)=V(1-x%a®, for |x|<a

=0 Jfor lx|>a
Potential with a Vertical Wall

In the case of a potential with a vertical wall, as shown in Fig. 8.5, the lincar

approximation (8.23) would not hold good at the turning point x;. As a result, the

connection formulae (8.35) are not applicable, without necessary modification, at

this turning point. The necessary modification can be found out by solving the

Schrédinger equation exactly in the region I. The WKB approximations arc

assumed to hold good for regions 11 and I1I.

As an example, consider the potential shown in Fig. 8.5(a). It is given by,

Vix)=Cx, x>0, (8.58)

=400, atx =0.
Since V = +oo represents a perfectly opaque wall, the wave function vanishes in
region I, including on the wall. The continuity of the wave function at x =x;
requires, then, that &, (x;) also be zero. Since the WKB wavefunction in region
Il is given by Eq. (8.32%) with x, replaced by x,, we see from (8.32") that ihe WKB
wavefunction in region II should be given by
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]
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(a} {b)
Fig. 8.5. Potential with vertical walls. The linear approximation, Eq. (8.23), is not valid at the
taming point x,.
D, (x) A ,{IJ"‘ dx‘} (8.59)
A) = =51 f o
u NP 7o p

with p{x) = [JUE - Cx}} "
This modifies the connection formula (8.35a) at the turning point x, to:

2 | 1r:s 5 1 1 f x . ,
£ ginl—— dx —_— — dx’|, .
\j};sm{ﬁﬁp }e—)mexp[ﬁlepl ] (8.352")
This could be regarded as the connection formula whenever the wavefunction at
the other turning point vanishes.
As another example, let us consider the potential shown in Fig. 8.5(b), whick
is given by'’,
Vix)=Bx", x Zx,

=V, 0=2x<x, (8.60)
The Schradinger equation in region I is given by
d*D
‘*d—x'i-+k2¢=0, (861)
where,
k= 20V, + EYE*. (8.62)

Eq. (8.61) has the exact solution,

10, (8.60), roughly, corresponds 10 the potential barrier faced by an Alpha particle inside the nucleus
in an Alpha particle decay.
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P (x) =B sin{k(x —x)+ &}

A B
= \f—;? exp li{k(x —x,)+8}] +—\F1i) exp [~ {k(x —x,)+8}), (8.63)

where B and 6 arc constants, and
A, =—(i12)B\p(x,)); B, = (i12)B\p(xy), (8.64)

" The WKB wavefunctionsin regions I and Il are given by Egs. (8.54b) and (8.51),
respectively. From the continuity of the wavefunction and its logarithmic

dd
derivative (;)/(D atx = x,, we get (since ®» 1),
A i 0A
Bsind=——— {®+—} e (8.65a)
VIp()| 20 VIp) |,
—lp)f©-i20) —1px)]
kcotd= % (®+i/2®)~ e (8.65b)
with | p(x) 1= {20V, ~E))"7, (8.66)
where V, is shown in Fig. 8.5 (b).
From Eqgs. (8.53) and (8.65a), we have,
1+i 1+i\B{lp(x)|}"?sind
Ay=——=A=|—=| , 8.67
and from Egs. (8.52"), (8.64), (8.67) and (8.65b), we get,
A 2
T=|2| =(4sin*8)®~
1
4 ~2
- (1 +cot? 8}6
AVo+E)|
:{W}Q , (8.68)
[p(xy) |

where the relationship = -1, as well as Eq. (8.62), have also been used.

p(x)

Comparing Eq. (8.68) with (8.52%), we sce that, in most cases of intcrest, the
transmission coefficient is increased for a potential with a discontinuity at x, as
compared with that for a potential which is linear at x, Formula (8.68) yiclds a
valuc of T'=4 when E = V., inplace of the exact value of T = 1.
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Problem 8.3: Determine, in the WKB approximation, the encrgy levels of 2
particle moving in a uniform gravitational field when the motion 1s limited from
below by a perfectly reflecting plane.

8.2 THE VARIATIONAL METHOD
8.2A Bound States (Ritz Method)

Often, the basic dynamical equations of physics ¢an be derived from a variational
principle. Thus, the Lagrange’s equation of motion in classical mechanics follow
from Hamilton’s principle of least action' [Eq. (1.7)], whereas the eikonal equation
in geometrical optics'? derives from Fermat's principle of least time. We will sce
in chapter 11 (Section 11.2), that the classical field equations are derivable from
a variational principle. It 1s, therefore, not surprising that the basic equation of
quanturm mechanics (the Schrodinger equation} also is equivalent to & variational
cquation,

Now, for a variational principle, we require a function which would be ‘sta-
tionary” with respect to variations of its parameters.”® In the case of the Lagrange’s
equations, this function is the action § defined by Eq. (1.6). For the case of the
Schradinger equation, the function turns out to be the expectation value E(y)
defined by [Sce Eq. (3.2a)],

E(W)=<EIH |y >

yiy>
where /7 is the Hamiltonian of the system and v is the variational wave function
(the trial funciion). 1t is easily shown (Preblem 8.4) that the variation in £(y)
linear in 8y is indeed zero for an appropriate choice of y. Eq. (8.69) is referred
to as the Ritz (or, Rayleigh-Ritz) variational formula, while the variational method
based on it is known as the Ritz method.

Now, the stationary values of E(y) are given by the variational equation,

, (8.69)

11.  See, forexample, Landau, L.D. and Lifshitz, .M., Mechanics (Pergamon Press, 1969), Section
2.

12, Born, M. and Wolf, E. Principles of Optics, 1 Edition (Pergamon Press, 1964), Appendix 1. LI,

13. U Fis the function and ais one of the parameters, then the variation 8F in ¥ corresponding 10
the infinitesimal variation 8= (o — o) in & (keeping the other parameters constant) can be

written as

&F = F(e) ~ F (a)

_forF &F) @’ oF

= (aul'ﬁu"#(aall' TR (au]%tfio'_
oF

[salf‘“

that is, if F (o) 15 either a maximum or a minimum.

Thus, F is stationary at o= ¢, if
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SE(y) =0. (8.70)
It is to be shown, therefore, that Eq. (8.70) is equivalent to the time-independent
Schrddinger equation. For this, let us write Eq. (8.69) in the form,

WIVE =y H ).
Taking the variation of this equation corresponding to the variation Sy in y, we
have,

(W 1 YOSE + {8y L)+ | SYNE =By | 1T 1 y)+{y | H | By,

or, (W I W)SE =By | ( —E) | y)+ @y | (H ~E) |y (8.71)
Hence, when 8E =0, we have,
Re {3y | (H ~E) | y)} =0, (8.72a)

where, Re { } represents the real part. Similarly, replacing dy by Sy’ = idy, we
get,

~i[(3wW 1 (H ~E) | y)— Sy | (H —E) | y)] =0,

or,
Im [((3y | (H~E) |y} =0. (8.72b)
From Eqgs. (8.72a, b), we have'*,
Oy | (A-E)|y=0. (8.72)
This relationship can be satisfied for arbitrary dy only if
(1 -E) | y)=0,
or
17\y=E\|1, (8.73

which is the Schrodinger equation for stationary states [Eq. (4.18)].
Thus, the solutions of Eq. (8.70) are solutions of Eq. (8.73).

Problem 8.4: A trial function for a variational calculation is of the form
y=0,+€ ¢, where le}« 1 and ¢, and ¢, arc normalized. Obtain the conditions
on ¢, and &, for E{y) defined by Eq. (8.69) to be stationary to first order in € .

Now, the solutions of Eq. (8.70) correspond to either maxima or minima of the
function E£(y) (sce Footnote 13). In fact, the solution corresponds to a minimum:
Let {¢,} represent the complete orthonormal set of eigenfunctions of /1. Then

y can be expanded in terms of {¢,}.

ly)= ZC,' | ¢j>7 (8.74)
j
g lE
E(y)=i{——2FE, 8.75
W) Tl e (8.75)
§

14.  Eq. (8.72) will follow from Eq. (8.71) if we regard the variation | 3y} and {3y | in the latter as
linearly independent of each other. Such a viewpoint would be justified since the relationship
between a ket vector and a bra vector is an antilinear one (see Section 2.3).
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where £, is the eigenvalue of 1T belonging 1o ¢; and £ is the ground state energy
{ihe smailest ).
E{yy is, obviously, independent of the normalization of y and, therefore, we

can use a normatized trial function. The method would consist in cvaluating E(y)
with a trial function and then varying y until E(y) is a minimum. Let y, be the y
which corresponds to this minimum. Then, according to (8.75), E(y,) > E,. Thus,
the procedure yiclds an upper limit to the ground slate cnergy of the system and
an approximate ground state wavefunction yf,. The success (the accuracy) of the
method depends on the correct choice (at Ieast in form) of the trial function. Thus,
the method is truly an approximation method since the trial function, whose choice
is usually based on circumstantial factors, is rarcly likely to be an exact wave-
function of the sysiem.

In practice, the trial function is defined in terms of a number of unknown
pararclers o, B, ...

Y=y o, f,...),

s0 that,
E(y) =ty 1A 1w Wm0 By o By 0d’s
=J(o, B, ...), say . {8.76)
Then
Yo = W O B ), (8.771)
and
E(w) =70, By (8.77by
whete, o, By, ... are values of o, B, ... for which the intcgral (8.76) is a minimum.
That 1s,
(2] -(Z) -0 o

In general, the accuracy of the calculations can be increased by increasing the
numbcr of parameters, eventhough reasonably good results can be obtained with
only onc parameter if the trial function is chosen judicionsly.

We will now apply the meihod to a few cases by way of illustration:

Linear Harmonic Qscillator

The exact solution of the problem was discussed in Scction 4,.2A, The Hamiltonan
i given (in the co-ordinate representation) by,

2
fi= —f(—et—}—%{(xz, (8.79)

andl the cigenfunctions by Eq. (4.50b).
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Let us try two different functions as trial functions. In choosing these we keep
inmind that the wavefunction should vanishforx — %o, Moreover, the probability
density should be symmetric about x = 0. These conditions are satisficd by

1.2

Y w=de (8.80a)
and
g2
y,(x; B) = Bxe . (8.80b)
Normalization requires,
A” = (oim)'™;

B*=2p¥m)".

We have,
— A _ _}_ 2 2.2
I = [ wilye = g ),
and
Yo 3
1= [ witwds = g B9 e,
so that,
oty = (ReY/A;
Ey=J(0t) = %ﬁm; (8.81a)
Bo = (no)/h;
E, =J,(By) = (32w, (8.81b)
where,
0=vK/J.

We see, from Eq. (4.51), that E, and E, are, respectively, the encrgies of the
ground state and the firstexcited state of the oscillator. This result isa consequence
of the fact that the trial functions y, and v, are exactly of the same form as the
actual eigenfunctions of /7 corresponding to the eigenvalues E, and E,. The result

cmphasizes the fact that a variational calculation does not necessarily lead to the
ground state. It is important, therefore, to exercise care in choosing the trial
function. For example, if we had made use of the fact that the ground state
wavefunction of the oscillator should have no nodes, we would not have chosen
y, (which has a node at x = 0) as the trial function in this case. But cven with this

knowledge, we could choose,

1
Yo 00=C (WJ (8.80c)
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as the trial function. We would get™,
C*=(2cm);

1
T = E (].120.)2[12 +‘f12]‘2a2),

= (V2/2) (),
and
E/=J (o) =2 [%m]. (8.81¢)

Thus, the accuracy is very much reduced when the form of the trial function differs
from the actual wave function.

Helinm Atom

As another example, let us calculate the ground state energy of the Helium atom.
This example will heip to compare the variational method with another approxi-
mation method—the stationary perturbation theory-—discussed in the next section,

The He atom consists of two clectrons putside a nucleus consisting of twy
proions (and one or more neutrons), Hence, the Hamiltonian is given {in the co-
ordinale representation) by,

=01 +11,+V, (8.82)
where,

f”i:-;—;vfﬁz—:i (8.82a)
ang

. e’ e’

== (8.82b)

Iry=ry| 1y

r; being the position vector of the ith clectron (measured from the centre of the

12=

nucleus) and Z is the atomic number (Z = 2). #, differs from the Hamiltonian of
the hydrogen atom {Sec Eq. (4.97d)] only in the value of the reduced mass p1 and

13, Using the following formulae:

= dr  @a-3nf @ -
f,,., @y (@ —2)?1(4""]' a2 tn =23

o 2
f X 5dx=-2~f sin Bd()*_
- (ot +xY g 2oy’

jw (o +x2) oc‘j sin’ Beos® 9d9=ﬁ.
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the atomic number Z. Hence, if we neglect the mutual repulsion of the electrons
(V,,), then the wavefunctions of the He atom would be merely products of

hydrogen-like wavefunctions of the two electrons. In particular, the ground state
wavefunction is given by

Y(r;, 1) = Q(r )P(r), (8.83)
where, from Eqgs. (4.110a), (4.125) and (5.63), we have,
D(r) = uy(r, 8,0) = Ryo(r)Y (6, 9)

= (I/na®) e, (8.84)
where,
a =(ayZ),
and
a, = (Hpe?). (8.85)
Thus,

e{l/a)(rl 475 (8833)

1
y(r,ry) = E’E
y given by Eq. (8.83a) can be treated as a trial function for the Hamiltonian A
given by Eq. (8.82), with Z (or, a) as the variational parameter. The basis for
treating Z as the variational parameter is the following: The presence of one
:lectron in the atom partly shields the other electron from the nucleus (by getting
in between the electron and the nucleus), thus reducing the effective value of Z.
Since y is normalized, we have from Eq. (8.76),

E(w)=J@Z) =y 11T | y)
=(Dy(r) | H, | Dr))+{Dy(ry) | H, | Dfry))

+HW IV, . (8.86")

Now, from Eq. (4.117) and Problem 4,10, we have, for the case of a hydrogen-like
atom,

o ZZ 2
(D, IT | (D(’):—Zé’ (8.87a)
2,2
(@, |V | Dy = —%, (8.87b)

where, T and V are the operators corresponding to the kinetic and the potential
energies, respectively. One of the Z in the factor Z? in (8.87b) comes from the
factor Zinthe V [see Eq. (8.82a)] while the other Zis due to the Zin the wavefunction
(8.84). Now, in the variational method, only the wavefunction is varied, and not
the Hamiltonian. Therefore, in (8.82a), we have to use the exact value Z = 2, s0
that, in place of (8.87b), we have,
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2Ze?

(@yr) | Vir) | Dy(r)) = o (8.87b")
and
(De) L H, | Dfr)) = (e2a) (2P - 42), (i =1,2). (8.88)
The last term in {8.86") can be cvaluated by writing,
%2 N 1 ~ =}1§0(r2/r1)’1’,(cos 0), r,> 1y (8.89a)
= _rl; éo(rllr,)’}’,(ws 8), r,>r, - (8.89)

and using the relationship, (5.152) and Prob. (5.22), where, € is the angle between
r, and r,, we get,

g?'
“4 -

) = ez(4n)z(1/na3)2Lu{J; l(llrl) exp |-(2a)(r, +r)ridr,

w 2d
+f (1/r,) exp [-(2/a) (r, + 1)} r;drz}r‘ "
4l
)
- E[éi] (8.90)
8\ a,
Substituting from (8.88) and (8.90) in (8.86"), we have,
JZ)=(e%a) (22— (2718)7]. (8.86%
Then,
27
0= 9
%=1 (8.91)
and Ey=J(Z)=~2.85(e%ay). (8.92)

The result of the first order perturbation theory [Eq. (8.124b)] is obtained by
substitating Z = 2 in (8.86%). Thus,

E, ( Perturbation ) =-2.75(e%a,) (8.93)
The cxperimental value is, £, (experiment) = ~2.904(e%ay). We sce that, with the

same amount of labour, the variaiional method yields a much better approximation
1o the ground state energy of the He atom than the perturbation theory.

Excited States

The variational method can be used to get an upper limit to one of the higher energy
levels of the system if the trial function is chosen so as to be orthogonal to the
wavcfunctions of all the lower levels. Suppose {&,} represent the nonmalized

cigenvectors of . Then the function,
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n=1
IW>=|y>-2 [D,><P, |y>, (8.94)
i=1

is casily shown to be orthogonal to the (n — 1) eigenvectors, ®; (i = 1,2,...,n = 1),
of /1. If the labelling is done such that E; , , > E,, then according to Eq. (8.75), we
have (assuming | y*} to be normalized),

ENY) =" |0 |y 2E,. (8.95)
V" is, thus, a trial function for a variational calculation of the nth energy level. An
example is provided by the trial function v, in Eq. (8.80b), which can be verified
1o be orthogonal to the (ground state) trial function v, in (8.80a). Therefore, W,
should give an upper limit to the energy of the first excited state of the oscillator.
In fact, it leads to the exact energy [Eq. (8.81b)].

Since the error in the determination of the wavefunctions of the lower states
would be carried over to that of the higher states, the above method is not practical
but for the lowest two or three states. There is another method which is free from
this defect: Suppose €2 is an operator (corresponding to an observable) that com-
multcs with /7 and one whose eigenvectors are known. Then a trial function that
is constructed entirely from cigenfunctions that belong to a particular eigenvalue
of £2, would be orthogonal to all eigenfunctions that belong to the other eigenvalues
of Q2. A variational calculation with such a trial function would g z,ive an upper limit
to the lowest energy correspondmg to the particular eigenvalue of Q. For example,
if 1 has rotational symmetry, Q2 could be the angular momentum operator L, whose
eigenvectors are the spherical harmonics Y,,(6,¢) [See Eq. (5.46)]. Then, a trial
function of the type,

W 0B, .. ) = f(rs B, ... )Y,,(6,0), (8.96)

will give an upper limit to the lowest encrgy level with angular momentum /.

Problem 8.5: Use the trial function y,,(r; o) = A(r/a) exp [-o(r/a)}Y,,(6,0), to

oblain a valuc for the energy of the 2p level in the hydrogen atom. Compare the
result with the exact value (4.117).

8.2B Schwinger’s Method for Phase Shifts

As an illustration of the application of the variational method to the problem of
scattering, let us consider Schwinger’s method' for the determination of the
scattering phase shift.

According 1o Eq. (7.45"), the phasc shift §, corresponding 1o the /th partial wave
(when the potential is central) is given by

sing, = —(k/C,)J‘wj,(kr)uk’,(r)U(r)rdr, (8.97)
0

16, See, Wu, T.Y. and Ohmura, T., Quantum Theory of Scattering (Prentice-Hall, New Jersey 1962),
Section D. 2.
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where, C; is given by Eq. (7.34) and u, ,(r) = rR, (r), is normalized according (o
Eq. (7.30) {That is, {u, (rYC} ~ (Vk)sin(kr —{w2+§,)). The Bom approxi-

mation replaces u, {rJ/C, in Eq. (8.97) by rj(kr) {see, Eqs. (7.45% and (7.110a)].
We can obtain a better result by using the variational method. Expression (8.97)
is not, however, snited for the application of this method because of the foilowing
defects:
(i) Tt is not stationary since a first order variation in u, ((r) produces a first
order variation in &,. This defect can be remedied by making sin &, quadratic
in w {r) just as E(y) in (8.69) is quadratic in .
(i) Tt depends on the normalization factor C, which itself depends on §, {Eq,
(7.34)]. This problem is solved by making Eq. (8.97) homogenecous in
u(r) .

The objective of making Eq (8.97) both quadratic and homogencous in i, (r)
can be achieved with the help of the integrat equation for the radial wave function
K, ,(r}. This integral equation can be obtajned from Eq. (7.98) by substituting for
exp (ik.r), y,(r) aud Gy(r, ©) respectively, from Eqs. (7.24), (7.33a) and (7.100%)

along with Eq. (E.76). However, the following would be a shorter procedure:
From Egs. (7.30) and (7.31), we have,

R, (r) ~ Clcos8jkr)~sin&nkr). (8.98Y
Substituting for sin &, here f'r(_);; Eq. (8.97), we get,
R ) ~ C, cosﬁ,j,(kr)+kn,(kr)fw L) - UrR, (r 0 r. (8.98%)
But, agc_()):ding to Eq. (7.98), we st:ould have (Problem 8.6),
R, (r) = C,cos8,j(kr)~ L TG PWGR A, (8.99)
where, the spherical Green's function G, (r,r’) is defined by
Gr. 1) = Ioa,Gh,(r, r)P,(cos ©), (8.100)

@ being the angle between r and r'.
Comparison of Eq. (8.99a) with (8.98% yiclds,

Gy, r’)y =~knkr)jkr ), r >r". (8.101a)
But, we see from Eq. (7.100°) that G, (7,7 =G, (", ), s0 that,
Gof(r,r), = G,“,(r', ), = —»kn,(kr')j,(kr). (8.101b)

Thus,

R, [(r)=C cosd,j{kr)+kn(kr) frj,(kr’)U(r') -Rk‘,(r’)r'zdr’
0

+kj,(kr)jﬂn,(kr')U(r’)Rkl,(r’)r’zdr’; (8.95b)
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(el

and
Jilkr)= ! [ “(r)+f Gy (r, r’)U(r')Rk (r )r'2dr} (8.102)

Eq. (8.99a) or (8.99b) is the integral equation for R, ,(r).
Multiplying both sides of Eq. (8.97) with

fmj,(kr)U(r)R,‘y,(r)err,
0

and then substituting for j,(kr) on the L.H.S. from (8.102), we get,

sin g,

c,coss,U RV dr + f U(r)R, (r)r*dr

X waU(r, r')U(r')R,‘,,(r')r'zdr']
Q

- 2
—%[L j,(kr)U(r)Rk’,(r)err} ,

or,
{J-WRZI(")U(")"ZW + J‘WU(r)RU(r)r?'dr

x fmGk,,(r, r’)U(r’)Rk,,(r’)r’zdr’}
kcotd, =~ : - (8.1032)

NN

-[fmufl,(r)U(r)dr —k fmuk,,(r)U(r)
X{n,(kr) J;r Jilkr Yy (rYU(ryr'dr’

+j,(kr) fow nlkr Y (r YU (r')r 'dr'}rdr}
= - 2 (8.103b)
NN

Eq. (8.103a) is secn to be both quadratic and homogeneous in R, ;. It can be shown

(Problem 8.7) that k cot §, is, indeed, stationary with respect 1o variations of R, ;.
In fact, Eq. (8.103a) could be written in the form,
<u (A Ty, >

kcotd =———p— I,
U<y, 1Py, >

(8.104)

where,
A= A fr, ey ==U)S(r ~r )= U(r)r G, fr.ryr’u’), (8 104a)
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and
B =P, (r,r)=Ulrrjike)ikr U (8.104b)

Eq. (8.104) is scen to be just an ¢xtension of the Ritz variational ¢xpression (8.69).
On the basis of (8.104), it has been shown'” that (8.103a) Ieads to an upper bound
for & cot & when the potential is attractive (U/(r) < 0) and to a lower bound when

the potential is repulsive.
As an application of formula (8.103), let us consider zero-cnergy scattering by
a poiential of the form,
Ulry=-U, r<r,

=0, r>r

Only 8, would be nonvanishing, We get from Eqgs. (8.103b), and (E. 682, b),

70 U J’o 7
k cot 8, = +U{J; ul(r)dr “?DJ; uD(r){coskr J; wr’)sinke‘dr’
"U o z
_ A o ldr f{—_"f {r ) sin krdr}
+smkrf ufr"ycoskr'dr k J

. { fo rou:(r)dr 0, L ruuu(r){for{(r')r'dr,
+r f ’ Uolr ')dr} dr}ﬂ [UO“;’O ol dr} j'

As a trial function, we choosc uy(r) =r (cf. Eq. (7.57a)).
Then, we get,

(3.8 0
kCO[S"_\UOP 5 (8.105)

The corresponding result in the Born approximation is given by,

sin8,=—* f JHkrY(UYFdr
9

= k(Uyy/3),
or

kcotd,= (k/sindy) = Uy d; (8.106)
whereas a more exact result is given by the formula fsec Eq. (7.769)],
kco18,=-(1/a),

17, Kawo, T. Progress of Thearetical Physics, 6,295 (1931).
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where, the scattering length ‘@’ is given by (Problem 7.2),

This gives,

6

3
kcot50=[?]o—r§-5—ro*---]. (8.107)

Thus, the variational approach in this case proves to be better than the Born
approximation. Also, the variational value is on the upper side of the actual value
(8.107). It is easily shown, by reversing the sign of U, in (8.105) and (8.107), that

the variational value would be lower than the actual value for a repulsive potential.
However, it is a drawback of the variational method that it does not provide a
means of estimating the error when we really do not know the exact value.

Problem 8.6: Obtain Eq. (8.99a) starting from Eq. (7.98).

Problem 8.7: Show that & cotd, given by Eq. (8.103a) is stationary under the
variation, 8R, ,(r) = OR, (r)d(r —r,).

8.3 STATIONARY PERTURBATION THEORY

This approximation method is useful for finding the changes in the discrete energies
and the associated wavefunctions of a system resulting from a small disturbance,
or perturbation, provided the energies and the wavefunctions of the undisturbed
system are known. In this method, usually referred 1o as the Rayleigh-Schridinger
perturbation theory, the changes in the energies and the wavefunctions are
expressed as an infinite power series in the perturbation parameter (defined below).
The approximation, then, consists in neglecting terms in the infinite series after
the first few terms. Approximating the series to the first n terms in the series, gives
the nth order approximation.

Eventhough, we have talked about ‘disturbance or perturbation’, variation of
the Hamiltonian with time is not implied. Either the disturbance was introduced
long time ago so that the system has settled down, or the system under consideration
differs very little from a system whose energies and wavefunctions are known.

Let f1,and A represent, respectively, the Hamiltonians of the unperturbed and

the perturbed systems. Then,

ﬁ=ﬁ0+AH’ (8.108)
where, | A/l | is small compared with | H,|. We will write,
AH =2V, (8.109)
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and call A the perturbation parameter (which can vary continuously in the range
0to 1) and V the perturbing potential. The solutions of the eigenvalue equation’®,

H 0 = EOyO, (8.110)

are known, whercas the solutions of the equation,
) Iy, =E_ v, (8.111)
are to be found.
Let

E,=EP+AE,, (8.112a)
and

W, = W+ Ay, (8.112b)

Ay, and AE, are small since | Af] }is small, Substituting in (8.111) from (8.108)
and (8.112a, b), we get
A+ Ay, + H Ay} = EOYD + EP(Ay ) +(AE )y, (8.113)

In view of Eq. (8.110), the terms A,y and £ in (8.113) cancel each other.
Then, 1aking the scalar product of the latier cquation with &, we get,

WO AT Ly )+ (WO T H 1 Ay,
= E ) Ay, )+ AE (W ).
But,

WP LA A, = T [y = EXw | Ay, )
Therefore,
ATy RV v

= = (8.114)
W by Wy,
The method consists in writing,
Ay, = gD D = B A, {8.1152)
=1
Also, we assume that
W Ay =0, (8.1162)
50 that,
Oty = Py =1 #1117

The assumption (8.116a) merely represents a particular choice for the normal-
ization of y,. For, ¥, can be expanded in terms of the compiete, orthonormal set

W9 = [u,}, of eigenvectors of

18, We assume that the spectrum of 71, is discrete.
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Yy, = %c,‘u,‘zu,ﬁk): cu, +(c,~Du,.
¥n

n

Thus,

Ay, =(c,—u,+ Z cu,,
kxn

and

WY 1Ay,) =(u, | ay,)=(c,~ D).
Eq. (8.116a) requires that ¢, = 1, so that,
<"’"""">:§'C"'2=”lz lc, F>1.
From Eqs. (8.115a) and (8.116a), we have,
W =0, s21. (8.116b)
Substituting from Egs. (8.11523) and (8.117) in (8.114), we get

AE,= £ NE®, (8.115b)

s=1

where,

EO=qO VW V> 521, (8.118)

Thus, a knowledge of the wave function to a particular order enables us to calculate
the encrgy to the next higher order. And the wavefunction to a particular order is
determined from Eq. (8.111) which, according to Egs. (8.108), (8.109), (8.112a,
b) and (8.115a, b) becomes,

(H o+ W) (WO + 0y +

=(EP+AED+ ) (v + P+ ). (8.119)

Since the scries (8.115a, b) are assumed to be continuous, analytic functions of A

for 0 £ A £ 1, cocfficients of like powers of A on either side of Eq. (8.119) should
be equal . Hence we have,

A (H, - EOWO =0, (8.120%
A (- EOND = (EP - VO, (8.120"
AL (H,— EOW® = EOyO 4 (D - Dy, (8.1209

....................................................................................................

A (= EOW = EOYO 4 EX Oy A EPy D L (ED VgD, (8.120%)

Atthis slage, we have to make a distinction between degenerate and non-degenerate
casc
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8.3A. Nondegenerate Case

Taking the scalar product of (8.120%) with y{® = ¢, we get,
EP~ED WP 1Y = WP HED -V W+ EP |y )

F+ECT Dy, (8.121a)

or,
| 0) < ())
= =z E“(f,

JEP -V | D ED )y D4 EETD |y Oy (8.121b)

ButX | \l’ﬁo)> <‘Vﬁo) EZlu)u = 1,
k k
so that,
I w1 =Ty (8.122)

Substituting from (8.122) and (8.116b) on the L.H.S. of (8.121b), we have,

s \V( \]f( 1 5 s —
W= = Eﬁ‘; {(Eg’—vn\y‘n Dyt
+ES D |y} (8.123)

This is a recurrence relation for \yf,’). Together with Eq. (8.118), it cnables us
to determine successively yw°, w2, ..., starting from y®. Thus, putting s =1 in
(8.123), we get (since (¥ | ¢!y = 0),

oo 5 LUV 0>

EO_EO

:ffn{ —E—«,)—V_‘—"EF} o (8.124a)
where, V,, is the knth matrix element of V in the representation spanned by the
basis vectors {u,). Similarly, from Eq. (8.118), we have

EQ =<y V |yO>=vV_. (8.124b)

The wavefunctions and the encrgies up to the first order in the perturbation, are,
then, given by

\%
0) 1) 0) kn 0)
R SR L ———————E(o) E(o))\y‘ (8.125a)

and

E!=EP+\V,,. (8.125b)
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Similarly, putting s =2 in Eqs. (8.123) and (8.118) and substituting for y and
E" from (8.124a, b), we get,

ooz > WIED -V 1>

m EQ_EO
ViuVor Vi .
— )
Eﬂ{m{’n (EOEONEO £™) (E9 E“’))} (8.126a)
. X Vi
EP =<y |V ]y > =L o e (8.126b)

S EQ-E®
Eqs. (8.126a, b) represent the second-order contribution (when multiplied by A%)
to the wavefunction and the encrgy.”
ILLUSTRATIVE EXAMPLES

Anharmonic Oscillator

Consider a linear harmonic oscillator subjected to a small force represented by the
potential V(x) = Cx*. Then [(see scction 4.2A)]
H = (5520 + (12K £
A1 =V(x)=Cx* (Thatis, A=1)
O = u,(x) and E9 are given, respectively by Egs. (4.50b) and (4.51). From Eq.
(8.124b), we have,

EP=C<u 1% u, >
:C§,<unl)€2|um><um|£2|un>.
From Eqs. (4.47a), (4.50a, b) and (E.12b), we get,
G, 1871 = 67 8%, @0

=———[\]n(n +(2n+1), ,

mn2

N+ D(r+2)8,,.], (8.127)

with o = (K/hw) : 0 =VK/u. Hence,

EO=CIl(w, | u, >|——C{ . 2+1}ﬁ2m’,
3K? 2 4

9. Customarily, & is set equal 10 1 in the final expressions for v, and £,
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and, up to the first order in the perturbation, the energy of the oscillator is given
by

1 \2
E' =(n +5)ﬁm+ ;;2{(” +;J +%} (iw):, n=0,1,2,... +oo. (8.128a)

The wavefunction to the same order is given by
<uk |-f4 l un)
WJ +C E { E(O) E(O) U

1 ~
=u +C{ —(u, & u, + (D(u,_,zlx“lu,,)uﬂ_2

27\,-1 <un+2‘x lun>unt2 4.,»1 <un+4' lun>un+4}
)+ C‘hu) n! 2n—1 n!
=u,(x ’\/ et ’\/(n_z)!u,,_z
2n+3 (n+2)' RN TN } (8.128b)
~

where, u,(x) 1s given by Eq. (4.50b).

Linear Harmonic Oscillator

Asanother cxample, let us consider a linear harmonic oscillator under the influence
of a perturbing ficld represented by V(x) =32bx2. The harmonic natur¢ of the

oscillator would, obviously, be preserved by such a field. From formulae (8.124
a, b) and (8.126a, b) and using Eq. (8.127), we get,

EV = (b/ZK)(n +12}hm

E® =—~(b"8K?) (n +%)ﬁm,

WO = (b8K)Y {Nn(n—Du,_,—Vn+1)(n+2)u,.},
v2 = (0Y16K% (N(n+ 1) (n + 2u, ,,~Vn(n - Du,_,},

so that, up to the second order in perturbation, the energy and the wavefunction of
the nth oscillator level, are given by

" 1 b bz} \
En_( 2)hw[1+2K vl (8.129a)

b ~
y=u (x)+ SK( —;E){\Jn(n—l)un_z——\/(nJrl)(n+2)uH2}. (8.129h)
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Inthis case, however, the problem is capable of an exact solution as the Hamiltonian
is given by
A2

7P L
H—2u+2Kx,

with K’=K +b. Then, from Egs. (4.51), and (4.47b), we have,

E <{nt lhar={nsd 1/&9
L= |n 3 =|n 3
15’
(n+ }hw{l+2K—§I'<—2 T(;F—}’ (8.130a)

and from Eq. (4.50a, b), we get,
() =o' 6,(8)

15 7 b 3 b,
=~ = = 131
(1+8K e (& 2530 | (8.131)

K+b 14
a,z(u( . )) :

1/4
(]

E=aox;

where

&=ox.
Expanding ¢,( ) in Taylor series around &, we have,

b 3 b*
%(&’f;k— _ﬁK—zéJ

=0, (§)+ 750, ©)+ {§2¢ “(€)~380,'G)}, (8.132)

32K 2
where, the prime on ¢, denotes differentiation with respect to &. Substituting
(8.132) in (8.131) and using Egs. (E. 11a-d) we get,

wn(x)=un(x)+%(l—%j{\]n(n—l u.;z(x)—\](n+l)(n+2 u, X} +...,

(8.130b)
where,

u,(x) = Voo, (ox) = .
Comparison of (8.129a, b) with (8.130a, b) verifies that the perturbation serics

gives correctly the series expansion of the energy and the wavefunction in powers
of the ratio (b/K).
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Problem 8.8: A one-dimensional harmonic oscillator is subjected to a constant
force F. Calculate the shift in the energy levels and the wave functions up to the
second order in F.

Problem 8.9: The Hamiltonian of a hydrogen-like atom in an electric field E can
be writlen as
A=H,~E-d,
where
d=—e I,

is the electric dipole moment operator for the atom. Show that, up to second order
in the perturbation, the energy of the atom is given by the expression,

E;I.] _ E,Eo)—(E . do)—%(E -d,),

where dyand d, are, respectively, the permanent (independentof E) and the induced
(proportional to E) dipole moments.

8.3B. Degenerate Case

When H, has degenerate eigenvalues, the above method requires modification

as Eq. (8.124a) and hence also the equations of higher order, brecaks down
when EQ =E®, unless (u, ]V |u,)=0. This is because the factor {u, |V |
u, WED — E®becomes too large for the validity of the perturbation approximation,
We can circumvent this difficulty by replacing the zero-order eigenfunctions, u,,
belonging to the degencrate eigenvalues by linear combinations, @,, of these
functions such that{®, | V | ®,) =0 for E{® = E®, This procedure is equivalent to
diagonalizing V in the subspace spanned by the degenerate eigenfunctions of H,.
The eigenvalues of V thus obtained would be the first order corrections E{" to the
energy £, and the cigenfunctions of V would be the ®,’s. We will illustrate the
procedure by assuming that A, has an eigenvalue which is g-fold degenerate.
Let

EO=EO= . ~F9=EO, (8133)

represent the degenerate eigenvalues and let the g linearly independent eigen-
vectors belonging to these eigenvalues be ju,), (k= 1, ... 2). Then,

Holu)=E®u,> k<g,
but,

(u,,lf’luj):#o, fork,j<g.
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Define,
134
(D)= £S, lu)k=1,2..¢ ®.139)
i=1
=lu)k>g.
Obviously,
H,|D)=E|D,). (8.135)
We have to determine the coeflicients S, in (8.134) such that
(D, IV ID)=8E", forn, k<g, (8.136)

where, we have assumed that the @,’s are normalized just as the u,’s are. The
following procedure would accomplish the objective:
Replace & in (8.120") by ®,: We get, using (8.134),

(1~ EOWP = (EP- V)0,
=(ED-V) _ils,.n lu)n<g. (8.137a)
f

=(EP-V)u)n>g. (8.137b)
Taking the scalar product of Eq. (8.137a) with u,(k < g), we get, since £ =E©,

8
Z V-3, "EMS,=0, (k=1,2,...g:n<g),
iz

or,
(VE-EYNS =0, (n=1,2,...,8), (8.138)
where V¥ and S, are the matrices,
Sin
|7 7N s‘
V, V, . V. ke
yeo|'n "2 g =| | (8.139)
Vi Vo o Vg S;,.
with
Vy=<u V>, (8.140)

Also,lisag x g unitmatrix. Eq. (8.138)is the eigenvalue equation [see Eq. (A.63)]
of the matrix V&, The eigenvalues are the g roots of the secular equation (cf. Eq.
(A.58))| V& —EMI |= 0. These eigenvalues, EX (for n =110 g), give the first order
corrections to the energy E%, while the eigenvectors of V# (that is, the @,’s given

by Eq. (8.134) for n < g) are the zero-order wavefunctions forn < g. The problem
is, thus, reduced to that of diagonalizing the matrix V¥,

The matrix V,, representing V in the representation {®,} y 18 shown bclow
against the matrix V, representing V in the representation {u,} y» Where N is the

number of distinct (linearly independent) eigenvectors of H;
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ul “2 u, u' +1 uN

u, Vi Vi Vl. Vlm Vin
u, Vy Va sz Vz,ﬂ Van
Uy Vxl Vxl 88 Vu+l V'N

ug+) ng } Vg+)2 £+lg V'H &+ VgHN
Uy Vi Vi VN. V 241 Viw

vt Vs.(N -8)
=Vo=| wme ye-o (8.141a)

®, o, @, D, O,

@, E®M 0 Vi Vi
o, 0 E{® Vit Vi
@, 0 0 E® Viggnt Vi

<D‘+l V’,#ll V,‘+12 V’[#l‘ V'+l|+l V.olN
Dy V’N\ V’m V’N. Vi g+l Vw

Ve (N -8)
Vo=, - (8.141b)

In (8.141b),

Py g .
Vi=<®|VI®,>= XSV, fori<k,
j=1

It follows that
EP=<d |V|®, >,

ken

I 1
= I8,V for i>k.

ij?
i=

, <¢k”;|¢n> n=1,2,..N.
Vf. = L\P E'(lo)_Ek(O) k

Thus, up to first order in the perturbation, we have,

E'=E9+EM n<g,
=EQ+V_,n>g,

(8.142)

(8.143)

(8.144a)
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(8.144b)

VS
V=0 + I _i{—-ﬁ——’—}u,‘,nSgJ
i -

z{ i
= + = u,L,n>L,
"\ EO—EP[ " 78

where, we have substituted for @, from Eq. (8.134) in the expression (8.143) for
v
Ifall the eigenvalues E® (n=1,2, ..., g) of V* are different, then the degeneracy

is completely removed by the perturbation in the first order, and the singie level
E is split up into g different levels (Fig. 8.6). If some of the eigenvalues are
equal, then the degeneracy isremoved only partly in the firstorder. The degeneracy
may get removed completely in a higher order; but, sometimes, the degeneracy
might be there in all orders of the perturbation.

1
y Eg
Y4
// -~ Ea-l
rd
rd
// P
Fayd //
{10) e
VLA
E Z -
e
~ -~
S~
\\\‘\ ___________
N
~
\\\ ‘2
N 1
N\ E1

Fig. 8.6 Lifting of degeneracy in the first order.

A sufficient condition for the persistence of the degeneracy in the first order
is thattwo or more of the zero-order degenerate wavefunctions satisfy the relations,
<uVig>=<u|Vlu>, (8.145a)

<u,.H7}u,>=<ujﬂ7)u,>=0,k$g; {8.145b)
For, (8.145b) implies, 1, = @, and u; = d; so that, from Eqgs. (8.143, 144 or, 145a),
we have, E! = E!. The conditions (8.145a, b) are, however, not necessary except

for g =2. Thus, a sufficient condition for the complete removal of the degeneracy
in the first order is that the perturbation connect all the zero-order wave functions
in the first order. In general, degeneracy is removed in the nth order if the
perturbation connects all the zero-order wavefunctions in the nth order. That is,
if
v,g."’skll\: <V k><k|V{I><I|Vim>...V]|j>#0,
2 m

{(n factors)
where, ji>=ju>.
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APPLICATIONS
Linear Stark Effect in the Hydrogen Atom

Stark Effect is the splitting of atomic levels due to an applied electric field. In the
case of the hydrogen atom, the Hamiltonian would be given by
H=Hy+elE|s.
where E is the electric field, assumed to be in the z-direction, and H, is given by
Eqs. (4.97d) and (4.98a). Thus, theA perturbation,
V=¢|E]|:Z
The zero-order wavefunctions are given by Eq. (4.110a):
W=u,=u,(,0,0).

The ground state [See Eqs. (4.117) and (4.123)] is, u,,, Which isnon-degenerate.
The first excited state corresponds to n = 2(! =0, 1) and is 4-fold degenerate, the
degenerate eigenvectors being iy, Upg Uy -, and iy,,. Since V has odd parity, its

matrix elements between states of the same parity (that is, same /-value) vanish.
Thus,

<uy, |V |uy,, >=0, (8.146a)
5o that

<y |V uy, >=<uy, |V, >=0. (8.146b)

, 4
Also, fromz =rcos@ = —:;-trY,o(e, ), and the relation (5.60), we have,

<ty 1V ltge>= <ty |V |ty >=0. (8.146¢)
We see that w,, _, and u,,,, thus, satisfy conditions (8.145a, b) so that they will

continue to be degenerate eigenvectors in the first order also. Hence, we have,
according to (8.134),

D, =S, + Syl
D, = 5,540+ Salhyio

Dy=ty _y,

D=uy,
Only the levels u,y, and u,,, split, and the splitting is obtained by diagonalizing the

matrix,
. 0 Vi
Va 0/
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where,
Vig= <l |V | Uy >
=€ |E| <yl £ 1 1ye>
=e|E| Jrffu;o r c0s0 wy,,*dr d(cos0)dd
==-3e |E|a,
since
) o™
Mo = 4m\ 2a, Qg ’
1 1 12a,
=—| = l(rlaye cos 9,
where,
a,= (WIpe’),
is the Bohr radius.
Va= V;z =V
Hence, the secular equation is
-EM -3¢ |Ela, 0
-3¢ |E|a, e '
yielding the roots,
EM=-3¢|E]|ay
E{"=3¢ |E|a, (8.147)
Substituting these in the matrix equation (8.138), we determine,
1
Su=8;= "\l?
1
Sp=-85= NG
so that,
1
®, = r["z—(uzoo + Uy o),
1
¢2=%(um-umo). (8.148)

Substituting in Egs. (8.144a, b) from Eqgs. (8.146-148), we have,
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E!=E®-3¢|E|a,
E}=E9+3¢|E]a,

and
V=0,(n=1,..4).

We see that the splitting is proportional to the strength of the applied electric field
(hence the name [inear Stark Effect). A diagrammatic representation of the effect
is given in Fig. 8.7.

(0)
- EY 4+ 3eang (q)?_)
(2s,2 -
E(o) 5,2p) e E(o) (u2|-|’u2||)
i - L) B WP %
(a)
0 (1s)
E(ﬁ)_____.______ ————— —_— Efg) {u00)
ENERGY WAVE FUNCTION
(b)

Fig. 8.7. Linear Stark Effect in hydrogen.
(a) Levels in the absence of the field,
(b) levels in the presence of the field.

Zeeman Effect in Hydrogen

The splitting of atomic levels, when the atom is placed in a uniform magnetic field,
is known as Zeeman Effect. The effect of a magnetic field is to change the

e
momentum from p to (p - - A), where A is the vector potential related to the field

B by B = curl A, or, since the ficld is uniform (9B/dx = 0, etc.) and div. B = 0, by”
A= %(B xr). In the casc of a weak field, the Hamiltonian of the hydrogen atom
(neglecting spin) 1s, therefore, givenby
H=H,+V,
with
V=—(e/2uc)(p-A+A-P)
s =—(e/uc)(A-P), sincep- A=A -p-ia(V-A)

T =—(e/2uc) B x ) p=—(yA)(B - ), (8.149)

20.  The identity, ‘ -

Vx((AxB)=AWV-B)~B(V-A)+B-V)A-(A.V)B,
is used.
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where, i
1=Fxp,
is the orbital angular momentum, [t is the mass of the electron and
_ eh
Hg = ’z_u'c"

is the Bohr magneton.
By choosing B along the z-axis, we could make the perturbation diagonal with
respect to the eigenvectors of H,. That is,

Uiy l ‘7 I Uy = -(,J'B/ﬁ)B Uy l fz l Uy >

nim

=~ymB3§, 0,8 .
Thus,
O, =D, =u;
and
EP=—,Bm. C (8.150)

Fig. 8.8 shows the splitting of the 1s, 2s, and 2p levels. Just as in the case of the
Stark Effect, the degeneracy of the (25, 2p) level is only partially lifted. But we
see from Figs. 8.7 and 8.8 that the levels degenerate in the Stark Effect are split in
the Zeeman Effect, and vice versa.

- % Bipgl  (upy)
E(O) (25,29) é:——— E(o)'

(u200,u210)
EL Bjyg|  (upi-1)

Egg) s} Egg) (4100)

ENERGY  WAVE FUNCTION

{b)

Fig. 8.8. Zeeman effect in hydrogen atom (neglecting spin of the electron).

Problem 8.10: When spin of the electron is taken into account, in place of Eq.
(8.149), we have,

V =—(u,/H)B - (1+3)

Show that, in this case, a level of given total angular momentum quantum number
Jis split into (2/ + 1) levels according to the formula (cf. Eq. (8.150)),

EQ =g u,Bm,
where the Lande’ factor g; is given by (here, | nljm >=®,,)
g=<nljll J-(A+29) || nlj > 1{j(j + 1.
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Spin-Orbit Coupling in the Hydrogen Atom

When spin of the electron is taken into account, the degeneracy associated with a
level of given orbital angular momentum / increases to (25 + 1) (21 +1) = 2(2[ +1).
This degeneracy is partly lifted by the interaction, or coupling, between the spin
and the orbital motions of the electron. The spin-orbit interaction canbe repre-
sented by a potential of the form, V = o(i.8) with o a constant for the atom, and
can be treated as a perturbation since | Vi|H o | . The zero-order wavefunctions

are now products of a space part (u,,,,) and a spin part (x,,, ). We will denote these

nim,

by | nlsmm, > . Thatis,

fu, >=y =|nlsmm,>=u,, x (8.151)

nlm™sm,*

The operator (1.8) does not commute with £, and §, (see Section (5.5A)). V is, thus,
non-diagonal in the representation (the uncoupled representation) definedﬂby the
basis vectors (8.151). It is, therefore, necessary to construct the matrix of V in the
subspace of the degenerate eigenfunctions and diagonalize it to obtain the ®,’s.

However, we can avoid this calculation by noting that (i.§)=%(jz_iz—§2), is

diagonal in the coupled representation defined by the basis vectors (Egs. (5.66a)
and (5.67b)),

®,=Inlsjm>= T c“' x (8.152)

mmm nlm sm?

where

j=1+8,
and is the operator corresponding to the total angular momentum of the atom. We
have, since s = 1/2,

2
<(Dq,|17I(I)q>=9%i~[j(j+l)—l(l+1)—s(s+l)]8

aq’ > (8.153)
[+ 2 . _1
= ( 5 )om =] 3 (8.153a)
JL o # '—1+l (8.153p
_—kz ] _]_ 21 . )

where

q = (nlsjm).
Thus, the 2(2{ + 1) degenerate levels belonging to a particular [-value will split into
two levels (except when /=0 ), one of j =1 -% and degeneracy 2(1 —§)+ 1=21,
and the other of j =/ +§ and degeneracy equal to 2(/ +1). Fig. 8.9 shows the

spin-orbit splitting of the level (25, 2p) in the Hydrogen atom, where
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0,1 .42
EVH 5 LN
2 2
e R Pz @
//
(0) (2s,2p) e g 2% (o
- - I/
(8) \ 2
\
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\
\
\\
v B9 en2 2
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Fig. 8.9 Spin-orbitsplitting of the (25, 2p)level in the hydrogen atom. The numbers in the brackets
denote the degeneracy of the levels.

the notation * 'L, is used for labelling the levels (S = the spin, L = the orbital

angular momentum (see Eq. (4.124) for the alphabetic notation for the {-value),
and J = the total angular momentum).

Problem 8.11; Determine the C-coefficients in (8.152) for the case of the 2p-level
by diagonalizing the matrix of V in the uncoupled representation.

B. METHODS FOR TIME-DEPENDENT PROBLEMS

When the Hamiltonian is independent of time, the system remains in the state in
which it finds itself at the beginning. In other words, there is no transition between
different stationary states of the system. That is not the case when the Hamiltonian
is time-dependent. If the system is in a state | ;) at the initial time £, then it need
not be found in this state at a later time ¢. The problem is then to determine the
state vector (representing the state of the system) at time ¢, or, equivalently, to
evaluate the probability for the system to be found in the state | u;) at time ¢ when

itisknown to have been in the state | u;) attime ¢, Anexact solution of the problem
is rarcly practical. Hence the necessity for resorting to approximation methods.

Now, time-dependence of the Hamiltonian can arise in one of the following
two ways:

(1) H =1,+V(t), where H, is independent of time, and

) V@) [« |H,l. ) )
(2) H isconstant in time except for a time T during which H changes from H,,
toH,.
The approximation mcthod which deals with the first case is known as the

time-dependent perturbation theory. This is discussed in section 8.4. The other
case is discussed in Section 8.5.
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8.4. TIME-DEPENDENT PERTURBATION THEORY

Just asin the case of stationary pérturbations (Eq. (8.108)), the Hamiltonian of the
system can be separated into amajor part 4 ,and a minor part V. The only difference
is that now V would be time-dependent, Thus,

A =H,+ V(). (8.154)
V() will represent an external ficld (that is, one imposed from outside the system
whose Hamiltonian is ). For example, it could be an applied electromagnetic

field, or it could be the interaction of a particle passing by the system, as in a
scattering problem.

Instead of proceeding along the lines of Section 8.3%, we adopt here a procedure
which makes use of the evolution operator U(t, t,) introduced in Section 4.1 (Eq.

(4.1)). The problem of determining the state vector of the system at any time ¢,
then, reduces to evaluating U(z, £,) for all values of ¢.

Now, according to Problem 4.4,
U(t,t) = U1, 19U (¢, 1), (8.155")

where, Ut 1) = exp [GmH t — 1), (8.156)
and U (1, t,) is defined by the equation,
oU (t, ¢
‘ﬁ 1( 0)

s = V(00 (1), (8.157)
with (see Eq. (4.40a)),
V) = U, 19V (00 1, 8). (8.158)
Eq. (8.157) is equivalent to the integral equation,
Uftty=1- (i/ﬁ)f V(t)U (1, 1)dt,. (8.159"
‘o

Eq. (8.159") enables us to express U, as a power series in the perturbation V, using
the method of iteration (See Section 7.4, Egs. (7.107"%)). The first iterated form

of U, is obtained by substituting for U (t,, ;) in (8.159") the expression,
A ~ ‘l ~ A
Ut t=1 —(i/ﬁ)f VAU (t, td1,,
o

which is obtained by substituting ¢, for ¢ in that equation. Thus

~ -~ ! - 4 " - -~ A
Ut,t)=1+ (m)‘lf V. (1)d + (iﬁ)'zf dtlf dt,- V,(t)V (1)U (8,0 1)
‘o ‘o ‘o
i (8.159%)
The second iterated form results when U, (1,, t,) in this equation is replaced by the

expression obtained by replacing t by £, in Eq. (8.159"). Repetition of this procedure
leads to the result,

21.  For such a procedure see Schiff, 1.1, Quantum Mechanics, 11 Edition, Section 35.
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Ut,t)= 0,1, (8.159°)
n=0

with,

. t gt te-1 . . .
Uf")(t,t0)=(iﬁ)‘“f dt, f dt,... f dt,-V,@a)V,()..V,@),
o fo o

(8.160a)
where, ;> 6,>...>1,_,>1,
and 0%, t)=1. (8.160b)
From Egs. (8.155") and (8.159%), we have,
Oty = = U™, 1p, (8.155)
n=0
where, U™t 1) =U(t, 1)U, 1)
i In—l ~ ~ N
= ()" f di,... f dt,Uyt, ).V (1)...V,(t,)
‘o b
t ln-l N .
= (i#)™" f dr... f dt,U(t,1)V(t,)
Ot V(). U, IV ()0t 10)- (8.161)

Here, properties (4.9) and (4.7) of the evolution operator and definition (8.158) of
V, have been used. Eq. (8.155%) is, thus, an expansion in powers of the perturbation

V(t). Correspondingly, the wave function of the system at fime ¢ is given by the
series,

W) = U, 1)¥,= T W), (8.162)
n=0
where, Y, ="P(1)
and, Y1) = U, 1), (8.163)

Here, WYO() = U1, 1,)¥,, is the zero-order wave-function and W™(t),(n > 1)
the nth order correction to the wavefunction. From Egs. (8.161) and (8.163), we
see that W™)(¢) involves n change of states, in its evolution from ¢, to . This is
illustrated in Fig. 8.10 where the Feynman graphs™ corresponding to the
integrands of W*(¢) for n = 0, 1 and 2 are shown. Suppose ‘¥, is an eigenvector

of I,. Then, in the case of ¥, the system evolves as ¥, between £, and 1,; at ¢, it
makes, under the influence of V(z,) a transition to a new eigenstate of H,. The
system remains in this new state until £, when it again makes a transition to another

22 A description of Feynman Graphs, or Feynman Diagrams, is given in Section 11.5.
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Fig. 8.10. Feynman graphs of the zero, first and second order contributions to y(¢). The evolution
operators appropriate to each segment of the graphs are also shown.

eigenstate of A, under the influence of V(t,). The evolution of the system between
t, and 1,1, and ¢,, and ¢, and ¢ are, thus, described by the evolution operators
appropriate to H, while the change of states at ¢, and t, are determined by the

perturbation V. When | V() | is small enough to be treated as a perturbation, the
amplitude of the state would decrease rapidly with each change of state. In the
case of an ensemble, this means that the number of systems (members of the
ensemble®) that would undergo a change of state would be only a small fraction
of the total number present at that time. Thus, ¥ represents systems that have
evolved without making any change of state, ¥V systems that have changed state
once, \P@ those that have changed states twice, and so on. It follows that the series
(8.162) would be a fast-converging one. The approximation to order » consists in
neglecting contributions to 'W(t) from systems that have undergone change of state
more than n times between £, and 1. That is, in scuting,

V()= ¥ = £ 0¥, 1), (8.162)
p=0 p=0

In the following, we will confine the discussion to those cascs where the firse
order approximation is good enough. Also, we will assume that the system is
initially in an eigenstate of H,. Then, the problem is to determine the probability
for the sysiem (o be in an eigenstate of A s attime ¢, that is diffcrent from the initial
state.

Let £, and y, represent, respectively, the cigenvalues (assumed to be discrete)
and (the normalized) eigenvectors of H

AN, =Ev, k=0,1,2,..., (8.164
with (see Eq. (4.21)),
Y, (r. ) = u(r) exp [ (ME(t - 1,)]. (8.164a

Also, let the system be in the state w; at time £, Then, in the first-order approxi

mation the probability for the system to be found in the state y, at time ¢, is give
by

23, These are, for example, the individual atoms in an ensemble of atoms. .
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w, L= Iyl () >, (8.165Y
where, from Eq. (8.162"),

(w10 = (9, 1 09, 1) 1w +y, 1 09, 1) 1w (8.166)
Now,

W1 U0 1y = exp [HEH) (E,— EN (1 —1p)] (u, | ;)
=3, (8.166a)
( by Egs. (8.161), (8.160b), (8.156) and (6.164a)),

and
W1 076,19 1= [ a1 040,070 (0,19 w0
= l—% _[ Vit exp it~ ldy, (8.166b)
where, ° )
Vi) = | V() L), (8.167a)
and ;= (E,— E)/h, (8.167b)

is the Bohr frequency corresponding to the transition y; — . Substituting from
Egs. (8.166) and (8.166a, b) in (8.165"), we get,

t
f V(") exp (it e’
‘o

2

NET)N (8.165%

1
Wi—»f_?_

This is the basic equation of the first-order time-dependent perturbation theory.
We will consider certain illustrative applications of this formula in three different
types of time-dependence.

Problem 8.12: Show that Eq. (8.160a) can also be written as

1 .~ ! v A -
. Pj d:lf dtz....J- LV 1)V (8)...V (L),
(if)'n! ‘o ‘o fo

where P is defined by,

() -
Ut =

s e AWB(y, ift, >,
Pidw) B} = {é AW,), if,> 1,

Note: £ is known as the Dyson chronological operator (See Section 11.5).
8.4A. Constant Perturbation

This is the case when V has no explicit dependence on time. Then, from Eq.
(8.165%, we have (setting t,=0),

2

W=V, P , fo'[ exp (i, dr’
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2|V, P
Hel
41V (o,
=—f:2—m/7i—'sm —2—t X (8.168)
In Fig. 8.11(a) is plotted the variation of w; , , for a given (non-zero) value of @
as a function of ¢, while in Fig. 8.11(b) we show the variation of w; , {¢) with .

(1 -cosw,t)
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Fig. 8.11 Variation of w; _,; [Eq. (8.168)] with; (a) ¢, (b) oy The secondary maximain (b)

are equal 10 4V o},
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We see that the probability oscillates in time (except for w; = 0) between zero and
amaximumof 4 | V,; P /(E,~ E;)* with a period Tcharacteristic of the encrgy change
E.—E, (that is, T= 2m/);). Since | V| is small, even this maximum value would
be negligible except when @y is small compared with | V,; | . In fact, we see from
Fig. 8.11 (b) that the probability w; , , is appreciable only for a range of values of
o that lies.within a band of width,

Awy; = 2w, (8.169a)

around the value wj; = 0. That is, transitions take place mostly to those states that

have their energy within AE~h/t of the energy of the initial state. The condition
for the perturbation to induce a transition is, thus,

AE -t <h, ort <, (8.16%b)
where AE is the change in the energy of the system, ¢ the duration of perturbation
and 7 the characteristic time associated with the energy change AE.

Result (8.169b) is some times interpreted, on the basis of a time-energy
uncertainty relationship, as signifying that a constant perturbation rarely causes
transitions between states having measurably different energies. The existence
of a time-energy uncertainty relationship is not, however, beyond dispute (See
Section 3.2).

Transition to a Continuum

Since the transition probability is appreciable only for states having energies ncarly
equal to the energy of the initial state, the above procedure is best suited when the
energy levels (1o which transitions take place) are part of a continuum. We could
still think of the levels to be discrete but infinitesimally close together. It is then
possible to define a transition probability per unit time.

Let p(E)) be the density of states (the number of energy levels per unit energy
interval) in the neighbourhood of (and including) the level | u,>. Then, p(E)dE;
is the number of states having energies between E, and E;+dE,. The product,
w;, P(EPdE,; = dW,is the probability for transition to this group of levels; and the
total transition probability for transition to the continuum states is given by,

W= faw = ij PENE,

sin*(,,/2)t

IRATE da, (8.170)
- T hoh

where Eq. (8.168) has been used. Now, both p(E)) and V;; are slowly varying
functions of the energy. And since the contribution to the integralin (8.170") comes
(according to Fig. 8.11(b)) from a narrow band of cnergy, the factor |V, [* pE)
could be taken outside the integral sign. Then,
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W =41V, P p(E) (2) | xsintx d, (x =1m,,.xj,

2
_[Z= 2 8.170°
——ﬁ*P(E,)IV,.»Il- (8.170°)
The transition probability per unit time is, then,
dw 2=n
=% [V, Pp(E). (8.171")

Thus, the rate of transition is independent of time. This result is known as the
Golden Rule of time-dependent perturbation theory. The proportionality of W to
¢ could have been inferred from Fig. 8.11(b). Since the height of the main peak is
proportional to ¢* and width inversely proportional to ¢, the area under the curve
is proportional to ¢.

Eventhough expression (8.171%) is derived as the sum of the transition proba-
bilities per unit time to all the levels in the continuum, by virtue of the assumptions
involved in going from (8.170") to (8.170%), it could be interpreted as the transition
probability per unit time for the transition | ;) — | u). The dependence of (8.17 1
on | ug)comes through the matrix element | V; | . Now, the condition for the validity
of expression (8.170%) is that the contribution to the integral in (8.170") come from
a very narrow band of energy including the energy E; (so that the range — oo to +oo
is, in effect, the range (E, — €) to (E, + €), where, € is infinitesimal). We see, from
Fig. 8.11(b), that this requircs ¢ to be large and that, in that case, the energy is
practically conserved inthe transition. The condition for the validity of Eq. (8.171")
canbe, thus, incorporated into the equation by multiplying itby the factor (E; ~ E ).
Eq. (8.171") then reads:

aw 2n
@ =T
Here, the subscript ¢ emphasizes the fact that the states | ;) and | ) are parts of a

[V, P p(ENSE, ~ E)). (8.171%

continuum, unlike the states involved in Eq. (8.168).
Scattering Cross Section in the Born Approximation

As an cxample of the application of formula (8.171%), we will calculate the scat-
tering cross-section in the (first) Born Approximation (Eq. (7.106b)). Now, under
conditions of validity of the Bom approximation, the kinetic energy of the particles
(being scattered) are very much larger than the scattering potential. The particles
arc free long before, and long after, the scattering, and come under the influence
of the potential for a certain duration in between. From the viewpoint of the
particles, therefore, the potential could be treated as a time dependent, but constant,
perturbation. The unperturbcd Hamiltonian, in this case, is the free-particle
Hamiltonian:
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ik-r

The eigenvectors of H, are the ‘plane waves’ e™** , where p =7k, whereas the

eigenvalues are given by E(k) =#%?%2y1. Since k can vary continuously between
0 and <, the spectrum of H, forms a continuum.

Also, in elastic scattering, the energy of the particle is the same both before and
after scattering so that energy is conserved in the transition from the initial to the
final state. This is, therefore, a suitable case for the application of formula (8.171%).

We can make the eigenvalues discrete by enclosing the particle in a cubic box
of volume L* and imposing periodic boundary conditions®. Then, the normalized
cigenvectors of F,, representing the initial and final states are given by,

umy=<r|u>= L% " (8.172a)

w(e)=<rlu>=L%"", (8.172b)
so that,

V= ju,‘(r)V(r)u,.(r)d’r
1 "

L f V(rje'™ d’r, 8.173)

- where,
#K = #(k, — k),

is the momentum transfer.
The density of states p(£)) could be found as follows:

Let the time-dependent Schrodinger equation corresponding to H, be

i ———a“’g’ D = Ay, 1) = (R0 V.

Then (see Eq. (4.21)), w(r, 1) = u(r) exp [-(i/h)E1). The normalization of y should
be indcpendent of time. That is,

-__a— * 3., ‘aw a\'f‘ 3
O‘azf‘*""d’—f(‘*’ o )‘”
% . .
- [t -7y

= ~J(V )dr =~ 95 j.d, 8.174)
A

where,

. ey
.I—zm[W(VW) (Vyul, (8.175)

24, Such a procedure leads to a restriction in the allowed values of k. But the spacing between
adjacent values of k could be made as small as desired by increasing L [see Eq. (8.177) below].



292 QUANTUM MECHANICS

and j, is the component of j along the outward normal to the closed surface A

enclosing the volume over which the integral is taken (d’r denotes an element of
this surface). The last line in (8.174) follows from the second on partial integration
while the last step results from the application of the divergence theorem®.

Now, Eq. (8.174) will be satisfied if either y vanishes everywhere on the
bounding surface or v is periodic (in a certain way ) on this surface. In the present
case, u(r) defined by Eq. (8.172) does not vanish anywhere. So condition (8.174)
should be met by periodic boundary conditions. In the case of the cubic volume,
these boundary conditions are that 4(r) and the normal component of its derivatives
should be the same at opposite faces of the cube. Choosing the edges of the cube
along the co-ordinate axes, we have,

exp (ikx) = exp [ik,(x +L)],

or,
kL =2nn withn, =0,%1,%2, ... (8.176a)
Similarly,
kL =2mn, (8.176b)
kL =2nn,, (8.176¢)
and
KL = 2mn = 2m(n2+n2+n))”, (8.177)

where, n, and n, also are positive or negative integers, including zcro.

We have to find the number of statcs between E (k) and E (k + dk), where the
allowed values of k are given by Eq. (8.177). This is equal to the number of points
in the n-space between n and (n +dn) with co-ordinates (n,, n,, n,) integer. Now,

in the n-space therc is one such point per unit volume. Therefore, the number of
k-values between k and (k + dk) in the k-space is

dnn’dn = An(L/2m)k dk. r
This number refers to particles scattered in all directions; that is, over a solid
angle 4m. Therefore, the number of states with k-values in the interval £, and £, + dk;

within the solid angle® d is given by
(L2 k}dkdQ = p(E)dE, = p(E ) - (WkJu)dk, ;
so that

L 3
p(E) = ,%(g) kdQ. (8.178)

25.  Inview of the interpretation of y"y as the probability density, j is interpreted as the probability
current density. Eq. (8.174), then, represents the conservation of probability or, equivalently,
the conservation of number of particles.

26.  Unless we restrict the states to a small solid angle, they will not all be described by the same
wavefunction which, in this case, is characterised by the momentum vector k.
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Substituting from (8.173) and (8 178) in (8.171%), we get

(W) jV(r) exp (iK - r)d’ r

s (2maL)y
This is equal to the number dV of particles scattered into d€2 per unit time when
there is only one incident particle in L*. Thus, incident flux J, is given by

1 (7K
Jo:piv.:i";' )

The differential scattering cross-section 6(2) is, then, given by (see Eq. (7.1)),
since | k; [=1k,|=k,

1%
o(Q) = aN (“L )( s

[ Jo1dQ wk ) dQ
U— 2
4 s exp (iK-n)V(r)d’r (8.179)

which is in agreement with the Born approximation scattering amplitude (7.106b).

Problem 8.13: u, and u, are degenerate eigenvectors of the Hamiltonian A cf a

system. The introduction of a constant perturbation splits the two levels a distance
€ in energy apart. If the system is initially in the state u,, obtain the condition for

the system to be found in the state u, even after the perturbation has been on for a
time T.

8.4B. Harmonic Perturbation

A field which varies harmonically in time can be represented by
V(1) =v(r)e™ +vi(r)e ™, (8.180)
where V is indcpendent of ¢ (the second term in (8.180) is needed to make V
Hermitian). Substituting in (8.165% (with ¢, = 0), we get, in place of (8.168),
41V, P Uo+o)2A)? 41v, B[ sin (0-o,)20t)?
w; o, IS 2 S + 2 +
# 0+, i 0~ 0y

(8.181)
Argumcnts similar to those in the case of Eq. (8.168) show thatw; _, . is appreciable
only when @y, = +. Thatis, when |wp |=|(E;-L)|/#=w. But|(E,—E)|/A
is the Bohr frequency corresponding to the energy change AE =+(E,~E,). Thus,
only those transitions are allowed for which the Bohr frequency is equal to the
frequency of the perturbing ficld. ®, = @ corresponds to absorption of energy

from the ficld (transition from a state of lower energy to one of higher energy). In
this case, the first term of the R.H.S. of (8.181) is negligible, so that, we have,
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. 2&)'
o _[4lv, P)sin’ge
w,‘lﬁ(—-;%—] (@ =0-a. (8.181a)

The case, ), = -, on the other hand, corresponds to emission” of an amount of

energy equal to 7 by the system (transition from a state of higher energy to a
lower one). The corresponding transition probability is given by,

. e
. 41y, 2} sin"p ,
W 1,=( ! —Z)—’:_ (0" =0+, (8.181b)

.hZ
Aplotof w; , ;against o, is given in Fig. 8.12. The similarity of the peaks in Fig.

8.12tothe peak in Fig. 8.11(b) is obvious. Using arguments similar to those leading
to Eq. (8.171%) we get, for the transition probability per unit time for transition
from an initial state | #; > to a final state | 4, > having energy approximately equal

to £, + fiw, the expression,

Wi-rf
-
V12 £2 IVigl21t2
T XA
W 0 W Wi

Fig. 8.12. Variation of w, ,, [Egs. (8.181a) and (8.181b)] with w,..

(w)@ = %-? (v, P p(ENS(E, - E; — h). (8.182)

¢liaf

This formula is applicable when the initial state is part of a discrete spectrum and
the final statc is part of a continuum. lonization of an atom in which an electron
occupying the ground state of the atom absorbs a quantum of radiation from a
perturbing clectromagnetic field and jumps to the positive energy (continuumy) part
of the spectrum, is an example (Problem 8.14),

Problem 8.14: A hydrogen atom in its ground state, is subjected to an oscillating
electric field, E =2E,sinw, where o is greater than the ionization frequency
[= ue’/2#%, (sce Eq. 4.117)] of the atom. Obtain the differential ionization prob-
ability (that is, the probability per unit time per unit solid angle that the electron
of the atom is ejected in the direction Q = (8, ¢)), assuming that the final state of
the clectron can be represented by a plane wave,

27.  In order to distinguish this process, whose driving force is an applied extemal field, from the
process of spontanecus emission arising from fluctations in the internal fields of the sysiem, the
former is usually referred to as induced, or stimulated, emission.
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When the transition is between discrete levels, however, the rate of transition
is not constant in time, but is oscillatory (Fig. 8.11(a)), if the perturbing field is
strictly monochromatic. The latter condition is rarely fulfilled in practice. More
often than not, the field would consist of a range of frequencies. In such cases, it
is possible to define a transition probability per unit time that is independent of
time, as illustrated in the following example of atomic radiation.

Radiative Transitions in Atoms

Consider an atom (atomic number Z) placed in an external electromagnetic ficld.
If the Hamiltonian of the atom in the abscence of the field is

21, .
=X —f .183a)
i, j‘fl o pi+U, (8.183a)
then, the Hamiltonian in the presence of the field would be given by®,
~ Z 1 e 2 } ~
H=X{—|p ——A(r, oy +U. 8.183b
j;l{ 2m ( / C A(rj’ l)) +e¢(rj’ I) ( )

Here, p; represents the momentum of the jth electron, e and m the charge and the

mass of an electron and A(r;) and ¢(r;), respectively, the vector and the scalar

potentials corresponding to the field at the position of the jth electron. Also, ¢ is
the velocity of light in vacuum. In terms of the potentials, the electric field E and
the magnetic induction B are given by

E=-——-~V&;B=VxA. (8.184)

When the source of the ficld (charges and currents) are away from the atom, we
can choose,

6=0;divA=0, (8.185)
In this case, the vector potential satisfies the wave equation,
10°A
VA-——=0. 8.186
ctor? ( )

The plane-wave solution of Eq. (8.186) is given by,

A(r,t)=A,exp {i(k-r—wt)} + A:, exp {—i(k-r—omt)}, (8.187)
where A is a constant vector perpendicular to the propagation vector k (the result,
k- A, =0 is required to satisfy the Lorentz condition (8.185)), and

w=c|k]|. (8.188)
Now from Eqs. (8.183a, b) and (8.185), we have (assuming | A | to be small),
V)=f ~l1g=—% (AT, B). (8.189)

where, the result (see Eq. (3.14d)),
P-A=A-P-—ihV- A,

28.  See, Jackson, .., Classical Electrodynamics (John Wiley, New York (1963)) Section 12.5.
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has been used. Substituting for A from Eq. (8.187), Eq. (8.189) reduces to the
form (8.180) with

- Z e .. .
v(r)= ~j)=:1;C—(Ao “P;) exp (-ik- r). (8.190)

Thus, the perturbation is proportional to the amplitude of the field. Therefore, the
transition probability, which is proportional to the square of the matrix element of
the perturbation, would be proportional to the intensity of the field. Now, the
intensity 1s given by the Poynting vector:

c 1
=— . 191
S 4n_'ExB (8.191
But, from eqs. (8.184) and (8.187), we have,
104
E:————z(m/c)[A exp [i(k-r— )] — Agexp [-i(k - — )] ]
and B:VxA:E;%IE, since (w/c) =k,

so that,

o 2
4TtkEx(kXE)— -(k/k)E

o )
= (kk) - E[2 [A, P ~Ajexp {2i(k-r—ot)}

—-A exp {-2i(k-r—w)}] (8.191%)
The average magnitude of § over a period is, thus, given by
1 Ww 2 2
H)=| —— = 2 A5 192
©=| Gy J, - Se| = (@ne) gl (8.192)

This is the intensity associated with the plane wave (8.187). Substituting from
Eqgs. (8.190) and (8.192) in (8.181a), we get,

. 21
@ _ 8me L 1() Sm”la(m—mff)’}
S rE M (8.193)
h (0] (w—-wy)
where, M= (e/me)E(a- p) exp (—ik-r);
J
A=A, a (8.194)

When the transition is between discrete levels, 0, would be a fixed quantity. Then,
w®, ;considered as a function of @ will be a curve similar to the one in Fig. 8.11(b),

with a sharp peak at ® = ;. The total transition probability is obtained by inte-
grating expression (8.193) over the range Aw of frequencies:

W.-(‘jf: j S dao.

Just as in the case of Eq. (8.170"), the limits of integration could be extended 1o
—eo and +oo without appreciably affecting the value of the integral. Also, the factor
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I(0)/0’, being a slowly varying function of @ compared with the other factor
involving w, can be replaced by its value at ® = w,;. Thus,

I{®,) (+=sinX(w/2
Wi, =22 g, 2 ”-j LS CIEL
L (@)
_4n'c
Ve 7 | 9, I(@p). (8.194)

Thercfore, the transition probabllity per unit time for a transition upward, in energy
(absorption) between two discrete levels of the atom is given by,

dt f_ ( (a)) Y [ﬁz ;J ! I I(wﬁ)- (8.1951)
Similarly, the transition rate for a downward transition (induced emission) is,
4r’c
(e) 1
W), = {hzm?f | 1P 1 (). (8.196"

Egs. (8.195") and (8.196") give the rate of transitions induced by a radiation field
consisting of an incoherent® mixture of harmonic waves of different frequencies,
propagated in the direction k and polarized™ in the direction a.
These equations show that
=wih

(a)

(W) . (8.197)
That is, the probability that the field induces the transition | u;) —| u,) is the same
as the probability that the field induces the inverse transition | 4} —{ u;). This is
known as the principle of detailed balance. In spite of this, the intensity of the
stimulated emission between two atomic levels is, normally, much less than that
of the reverse process. This is because of the greater initial number of atoms in
the lower state (under normal circumstances). The stimulated emission can be,
however, made to predominate over the absorption process by achieving an

inversion of the normal population of the two levels, as in the case of masers and
lasers.

isf

Dipole Transitions

In Egs. (8.195") and (8.196") the matrix elements of 4 are the only quantities that
depend on the nature of the atom. For the atomic case, the wavelength of the
radiation, A~107*cm, while r is of the order of atomic dimensions (10® cm ). Thus,
k- r~107 (k = 2/A) and, therefore, the series,

exp(—ik-r):1-zk.r+%(—ik-r)2+..., (8.198)

29.  The incoherence means that there is no particular phase-correlation between the different har-
monic components.

30. By convention, the direction of the polarization of an electromagnetic field is defined as the
direction of the electric vector.
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converage very rapidly. Asaresult, itis a good approximation to replace the factor
exp (—ik - r)) in Eq. (8.194) by unity. Then, we have,

T A 8.199
~—;C—j=1(a-p,-), (8.199)
and
3,=—2Ta-(b) (8.200%)
v e o Py :
where p; is the matrix corresponding to p;.
Now,
dr
Py, = m( j = (m/in)[F, H],f
:i—ﬁ{<ui I tH | uf)_<ui |Hl‘ | u_[)}
= (m/i) [(E,~ EY#] G, | £ {u)
——im @(r),. (8.201)
Substituting in (8.200") from (8.201), we get,
M, =i(w,/c)(a-D,), (8.200°)
where,
D= ¥ ef), (8.202)

j=1
is the electric dipole moment operator. The approximation (8.199) is, for this
reason, known as the dipole approximation.
The transition probability per unit time for electric dipole transitions in the
atom is, thus, obtained by substituting (8.200% in Egs. (8.195") and (8.196'):

Wi, = ,12 ()@ D)L, (8.195%
4r?
i), =5 1@ 1@ DY P (8.196%

When the electromagnetic field is unpolarized, then | a- D, I? in (8.195%) should

be replaced by its average value over the different possible relative orientations of
aand D;,. If O represents the angle between a and D, , the average of [a- D, [* is
given by,

1
I"'Diﬂfvmgezzgfla'niflzdﬂ
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1 N +1 2 2n
=—|D, f cos“9d(cos O J d
2Dy F | cos’ed(cos®) | - do

1
=3 ID, 1. (8.203)

Here, dQ =sin 04040, is an element of solid angle. Thus, for transitions induced
by an unpolarised field, we have,

. 4 .
0w o= g @ | < D 11> £ (8.195%
o =T Dju>p 8.196°
(W iof 32 (@I <u | Dju;>)". (8. )

Selection Rules

From the properties of the dipole operator D (Eq. (8.202)), we could deduce certain
rules that arc to be satisfied if the matrix element < u,lﬁ | u; >, and hence the

transition probability (w,), |  dre not to be zero. These rules are summarised

below:

(1) The state | 4, > should differ from |y, > in the state of only one electron.
That is, transitions in which more than one electron changes state are
forbidden (Such transitions can occur only in the higher order approxi-
mations of the perturbation theory).

(i) 1fJ;, M; and J, M, are the angular momentum quantum numbers associated

with | u; > and | u; > respectively, then,
Al =J,-J, =011

but no J; =010 J,=0 transition.
(iii) The states | u; > and | 4, > should have opposite partics.

Problem 8.15: Deduce the above selection rules.

In the foregoing treatment of the atomic radiation, we have trcated the atom
quantum mechanically and the clectromagnetic ficld classically. For this rcason,
the theory falls under the category of semi-classical theorics. However, a satis-
factory account of radiation can be obtained only within the framework of a theory
in which the electromagnetic field also is subjected to the rules of quantization.
Such a quantum theory of radiation yields a result’” which is in agreement with
formula (8.195") in the case of absorption, but which differs from the formula
(8.196") for emission by an additional term which does not vanish in the absence
of the ficld. The additional term is interpreted as representing the probability for
spontaneous emission (see footnote 27) by the atom.

31.  Sece, for example, Schiff, L.L., op. cit. Egs. (57.26) and (57.28).
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Problem 8.16: In Problem 8.14, let © be less than the ionizing frequency of the

atom. In this case, calculate the probability per unit time for the atom to make a
transition to an upper level. What is the polarity of the transition?

8.4C. Coulomb Excitation

As an example of a time-dependent perturbation that is neither constant nor har-
monic in time, we consider the process of coulomb excitation of nuclei in which
a beam of charged particles, such as protons, collides with a nucleus, exciting the
latter from an initial state | ;> to a final state | u,>. Here also, we will adopt a
semi-classical approach, treating states of the target (the nucleus) quantum
mechanically and the orbit of the projectile (the charged particle) classically®.

Let Ze = charge of the nucleus,

R = radius of the nucleus,
J;, M; = the angular momentum quantum numbers characterising the state | u; >,
J;, M, = the angular momentum quantum numbers characterising the state | u, >,

E;, E;= the energies of the state | u; > and | u, > .
E= %M v?, the energy of the projectile (assumed to be a proton) in the C.M.
system,
Q;, Q.= the initial (incident) and the final (scattercd) directions of the proton in

the C.M., system.
8 = the scattering angle (the angle bctween the directions €; and Q).

The Hamiltonian of the system can be written as
A=Hy,+H,+HN, (8.204")
where, H, and 1, respectively, refer to the nucleus and the proton while #

represents the interaction between the two:
Hylu,>=E|u>;

Hylu>=E u>. (8.205)
When the energy of the proton is small enough, the proton will not penetrate the
nucleus. In this case the proton-nucleus interaction will be purely electrostatic
(Coulomb) and is given by
. z 1
Hy=e’L ———,
P 0|

where, r,(¢) is the position of the proton w.r.t. the centre of the nucleus and r; that

(8.206")

of the jth proton in the nucleus. For large values of r, (thatis, 7, » R), we have,

32, Thetreatment here largely follows the one given in Messiah, A., Quantum Mechanics, Chapter
XVTI, Section 3.
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a

. 1 Zét
H,=U(r)=é =
m U= 0

The Hamiltonian of the system is, then, / =Hy+H’,, where H, involves the

M~

(8.2069)

co-ordinates of only the nucleus while & *, contains the co-ordinates of only the
projectile. The motion, thus, separates out into the individual motions of the
nucleus and the proton, the latter in the coulomb field provided by the former.
The problem reduces to that of elastic scattering (no transfer of energy and, hence,
no internal excitation of the nucleus) by a potential (Section 7.1). The differential
scattering cross-section is given by the Rutherford formula (Eq. (7.116)):

d Ze? 2 2
do e L 4 (8.207)
aQ LZMV sin‘(6/2) 4sin*(6/2)
where a = (Ze*2E). The length ry=2a, is the distance of closest approach® of

the proton to the centre of the nucleus, and the condition (E = #%%2M),
kry» 1, (8.208)
is required for the validity of Eq. (8.207) [See the discussion on the criterion for
the validity of the Born Approximation, Section 7.4].
As the proton approaches the nucleus, H o~ Will depart more and more from

U (r,)- Aslong as r, >R, the difference between H o~ and U {r,) canbe sepresenteq
by,

Vi)=e’ £ { —~—l——-—l}, (8.209%
iallr@)-r;| r,
and £/ can be written as
H=H,+V(), (8.209%
with IV 1« Hyl (8.210)
where, Hy=H,+H,+U(r). (8.211)

Thus, V(t) can be treated as a time-dependent perturbation (note that V(1) is nei-
ther constant nor harmonic in time) that can cause transitions bctween the
eigenstates of A, in accordance with Eq. (8.165%).

Now, the eigenvectors of £1, would be products of the eigenvectors of I, and
the cigenvectors of /1°, = F1,+ T (r,) Itis here that we resort to the semi-classical
approach. Instead of using the eigenstates of Fi’,, and treating V(t) as a pertur-

bation that causes transitions between such eigenstates (along with transitions
between the eigenstates of Hy), we use the classical orbit of the proton in the

Coulomb ficld represented by l7(rp) and regard V(t) as a perturbation that

33, The point of closest approach is a classical tuming point defined by E=U {r)=

Zer 1+ 1)m?

—"’ - A1r? [See Eq. (7.47)). The minimum value of r for which this condition is satisfied
r

is obtained when the angular momentum ! (and, hence, the impact parameter) is z¢ro.
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causes transitions only between the eigenstates of the nucleus. Such an approach
neglects the energy loss that the proton necessarily suffers in the process of
exciling the nucleus from a lower to a higher energy state™, and would, therefore,
be justified only if,

AE =(E,~E)<E. (8.212)

This is in addition to the condition (8.208) which is required for treating the
proton-orbit classically.*

According to Eq. (8.165%), the probability per unit time for the nucleus to make
a transition from the state |u; > =|JM, > to the state |, >=|JM,> under the
influence of V(¢), is given by
2

[T <am 0@ 15> exp amagqa |,

1
W;af‘%}

(8.213)

where, the initial and the final times are taken, respectively, as long before scat-
tering and long after scattering. The differential scattering cross-section for the
inelastic process is the product of w; _, .and the cross-section (8.207) for the elastic

process:

40 a® (8.214")
= L7 . .
dQ  \4sin’er2)) 7

‘This gives the probability per unit time that the proton is scattered from the initial
direction €, to the final direction €2, and that, at the same time, the nucleus has
made a transition from | u; > to | u;>.

1 1

lrp_rjl e

~ 1
Now, (1-2xcos®;+x%)

where x =r/r, and ©; is the angle between r, and r;. Then, from Eq. (E.28) and
the spherical harmonic addition theorem (5.152), we get,

= +
=I I DY, o) Y, (6,,0,).  (8.215a)

Il'p—l‘j! 1=0m=—]
>\
Also, —]—=—1—(~’ Py(cos8). (8.215b)
) e rpkrp ’
- L Z 1 1
ThuS, v([):e E —_—— e —
=il @O-r;1 r,
oo 4
=X X (-)Q9TS, (8.209%)

Je=lm=-

34, This process of nucleus excitation is termed Coulomb excitation in order to distinguish it from
other processes in which the short-range, and more powerful, nuclear force comes into play.

35.  Formula (8.207), which was derived in chapter 7 in the Bom approximation, is also the classical
Rutherford formula [See, for example, Goldstein, H., Classical Mechanics (Addison-Wesley,
Massachussetts, 1959), Eq. (3.68)1.
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. z
where, 0¥ =e E Y,.(6,,0,), (8.216a)
and*®
7O [ 3o my o (8.216b)
m =\ 2771/ T 0y): :

The Q% are the components of the electric multipole moment operator Q® of

order ! for the nucleus. O represents the part of V(¢) that acts on the co-ordinates
of the nucleus. That is,

<IM AV IIM, >= L <IM Q01 IM,>)"TS,
Im
so that, Eq. (8.213) becomes,

Hf_| Ty O"SY <I M, 0 |IM, > (8.2139
=lm=-
where, sz:%-f TO(t) exp {i(AE M)} dt. (8.217)

S can be evaluated from a knowledge of the classical path of the proton. Since

)% is a spherical tensor of rank I (see Section 5.6, Eq. (5.170")) and of parity
(= 1Y, for given states | J;M, > and | JM, >, we have,

=S |SIST+dsm=M—-M, (8.218a)

nm = (-1). (8.2180)

These are the selection rules that have to be satisfied for a nonvanishing w; , ..

The parity selection rule (8.218b) restricts the summation in (8.213% either to
even values of [ or to odd values of I. Moreover, we see from Eqs. (8.216a, b) and
(8.213%), that a transition of order (I +2) is less probable by a factor of the order

of (R/r,)* than a transition of order {. Since (R/r,) is small, we need retain only the
lowest value of [, say l,=|J,—J; | or | J,—J; | +1, consistent with (8.218b). Thus,

[(
W= T M QRN IM > 18D P m =M~ M)

1 VAN 1
= ﬁﬁ—l(c‘;‘ﬁ’f) 1<J L@l > P 152, (8.213)
where, the Wigner-Eckart theorem (Eq. (5.170%) has been used.

In (8.123%), the nucleus is polarized both in its initial state and final state (since
it has a definite angular momentum projection along the z-axis). But when the
target nucleus is unpolarized initially, and the polarization of the final state is not
observed, we should average over the (2J,+ 1) orientations of the initial state and

sum over the (2J,+ 1) orientations of the final state. Thus,
+J,

i

1
w; ,,(unpolarized ) = (_mu ZJ M/§—JIWI s (polarized )

36, Unlike 0@, T is regarded as a classical quantity (that is, not as an operator).
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V7 15 p(ci, )2
(ZJ +])(2.] +l) MM, MM,

4 () 2
[<JAQ NI > Uy 2 4
_JAle AT 2
(2.]‘»+])(210+1)Z”'{S""i’ ®.213)
2
since z 5% P[cf;f"';,) =z|s@pes (c,;";’{,)
M‘M/ ", m -
=3 i (by Eg. (5.84d)).

2[ +1
Substituting from (8.2]3“) into (8.214%), we get,

do, ., a®\<JNO“NISP | 9
S T Asin{6r2).218,° 5. 8.214?
dQ - AU D) (2t 1) ‘[ @218, 1] (8.214%
[ Nofe that 2159 A =215 1.

This formula gives the differential cross-section for the Coulomb excitation of
nuclei. In the case of nuclei, the lowest multipole of interest is of order 2(/, = 2).

Also, the matrix element <J,HQ”<2’H],» > is appreciable only when the nuclear

states arisc from the collective motion of the nucleus, rather than from the pro-
motion of one or two nuclcons to a higher shell model orbit. The phenomenon of
coulomb excitation is, thus, a valuabie tool in determining the spin, parity and
mean lifc of collective states in nuclei.

8.5 SUDDEN AND ADIABATIC APPROXIMATIONS

Thesc approximations deal with the modification of the state of a systcm when the
Hamiltonian of the system is changed from /7 at ¢ =, t0 H, att = t,. This modi-
fication will depend critically on the time T = (1, — ;) during which the change of
the Hamilionian takes place. The limiting cases of very small T (sudden change)
and of very large T (adiabatic change) are comparatively simple. The approxi-
mation methods dealing with these cascs respectively are known as the sudden
approximation and thc adiabaiic approximation. A description of these

approximations, along with a discussion of the criteria for their validity, is the
subject matter of this section.

8.5A. Sudden Approximation

It is convenient to define,
t—1,
T ¥

5= (8.219)

and parametrise / in terms of s. Then,
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Hy=H(s =0)=H(0); H, = Q).
Also, et U(1, 1) = U(s).
Eq. (4.13), then, takes the form,

U s)=1-@mr fﬁ(s’)l?r(svds',

or,

1

U Wy=1~-(@m)r f A(s)U(s)ds. (8.220")
0
Thus,

Lim .U (1) =1, (8.221)

so that i i
() = Ut )Wty = U (w(te) = () (8.222)

That is, the sysiem does not change state eventhough the Hamiltonian has
changed. The sudden approximation consists in setting U,(1) = 1 when T is small

but not zero. A mecasure of the error involved in this approximation is given by
the probability w of finding the system in states other than the initial state

L > = y(ty).
Let |y, > represent the state of the system at ¢ =¢,. In general, | y, > would be
a lincar superposition of the eigenstates {| u, >} of H,. The part of | y, > that is
orthogonal to the initial state j u; > is given by
ly, >=1y, > lu><u (v, >=0,1v,>, (8.223)
where,
O, =1-|u><u|=1-n, (8.224)

is the projection operator that projects onto the subspace orthogonal to | u; >.
Then,

w=<y,]0;y,>, (8.225")
But
Py, >=y(t) =00 |y, >, (8.222%
so that,
w=<u [ UHDO,0(1) [y >. (8.225%

Now, by an iterative procedure identical to the one leading to Egs. (8.159°) and
(8.160a), we convert (8.220") to the form,

U,0)= T 08, (8.220%
n=0
with
. 1 51 Sp1 . . .
00y = (-itky'T" f ds, f dsz...f ds, - A(s ) (s)...(s,),
0 Y] 0

(8.226)
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where,
1>85,>5,>...>5,_,.
Substituting in (8.225% from (8.220%) and (8.226), we get,
w=<u |0, lu>+mTi<u (A 0,~0,H)u

+(TY [<u, |\HO H |u,>
—{<u,.|QA,.f0 dslfoldszfl(sl)ﬁ(s,)lup

1 5 . - ”
vl [ ds, [ ds G0 4 >N
0 0

+..

1]

wherce,

- 1 ~ ll -
H =J H(s)ds =lf HA(ndt,
0 T I

is the average of A over the interval T.

We have, ) )
O lu>=0=<u|Q,.
Therefore,
wa (T <u \HQ,H |u>=(AEm)T?, (8.225)
where [c.f. Eq. (3.253)],
(AEY=<u |l \u>—<u |0 |u>*. (8.227)

AE could be regarded as a measure of the average change in the energy of the
system during the time 7. Since T is small, we have, retained only the lowest
power of T with a nonvanishing coefficient” .
Thus, the condition for the validity of the sudden approximation, w< 1,
becomes,
T« WAE. (8.228)
This result may be compared with relationship (8.169b) obtained in the case of the
constant perturbation. The two results could be regarded as the two sides of the
same coin if we interpret (WAE) as the characteristic time T (the minimum time)
associated with an energy change AE that is accompanied by a change of state
(Recall that change of energy can take place without change of state, as also
change of state without energy change). Then, inequality (8.228) states that, if
the encrgy of a system changes by the amount AE in a time T which is very much
less than the characteristic time associated with such a change of energy, then the

37.  Note that | 4 > should not be an eigenvector of A for AE not to vanish.
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system docs not change state. The other side would be that #/T is the character-
istic (maximum) encrgy-change associated with a change of state that takes place
during a time T, so that if AE »#/T, there would be no change of statc (no
transition).

Sudden Reversal of a Magnetic Field

As an cxample of the application of the sudden approximation, let us consider
what happens to an atom in a magnectic field when the direction of the ficld is
suddenly reversed®. The following assumptions will be made:

(i) Atom is one for which the LS-coupling® is valid, so that a state of the
atom, in the angular momentum rcpresentation, can be denoted by
| LSM M, >, where L and S represent the orbital angular momentum and
spin while M, and M represent their components along the z-axis.

(i1) The magnetic ficid B is strong enough to decouple L and S.

(iii) B is along the z-axis and varics linearly with time according to the for-

mula,
t—1
B(s)=By2s — 1),(~ = "} (8.229)
The Hamiltonian of the atom is, then, given by (see Problem 8.10),
)= 1+ L. § -5—;—;(5, +25)B(s). (8.230)
That is,
N Am . . eBy . 5
Hy=H"+o(L-8§)y+—(L,+25), (8.230a)
2ue
. .. €8y . .
H.=1 +(1(L-S)-—-2~E(L,+Z§,)‘ (8.230b)

Herc, 19 is the Hamiltonian in the LS-coupling scheme and aL-S) represents
the spin-orbit coupling. Since the average value of B is zero, we have,

T =A%+ oL-8), (8.231)

and

() = (119 + (L - §2+ A - §) + oL - 179,

38.  This example, as wcll as the one in the case of the adiabatic approximation in Section 8.58, is
taken from A, Messiah, op. cit. Chapter XVIIL.

39.  In LS-coupling, the orbital angular momenta i, and spins s, of the individual clectrons arc added
z z

scparately to obtain the 1otal orbital angular momentum L= £, and the total spin S = L s,. In
=1 1=l

the yj-coupling, on the other hand, 1, and s, are added to obtain a total angular momentum

J =1 +s, for each electron and, then, the j; arc added to yield a total angular momentum

2
J= I j, forthe atom.
TR}
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so that
(AEY' =< LSM,M, [T |LSM M >— < LSM,M |H | LSM M, >*

=oM< -8§>-<(L-8§)>%. (8.232%)
Now,

PO 1 .~ 4 PN A
(L-8§) =5(L+S_+L_S+)+L,$,,
where L, and S, are the angular momentum raising and lowering operators [Eq.
(5.14)]. It fol'ows that

(AEY = o [< {%(L”jfi_s‘g}l > <%(13+:§,+L‘,§+) >2}.

= % o 2L+ 1)~ M {SES + 1) - M3 - 2M M, (8.232%
where, Egs. (5.31a, b) have been used.

The maximum value of the quantity in the square bracket in Eq. (8.232%) is
2L(L +1)S(S +1) (corresponding to M, = M; =0). Hence AE is of the order of
o#?, and the condition (8.228) for the validity of the sudden approximation
becomes:

1
T« e (8.233)

Now, ai? is of the order of the spin-orbit splitting [see Egs. (8.153a, b)), so that
Ve is the characteristic time associated with the spin-orbit splitting. Thus, the
condition for the atom not to change state during the reversal of the magnetic field
is that this reversal should take place in a time which is small compared with the
time characteristic of the spin-orbit splitting. This result could be understood as
follows; It is the spin-orbit term in (8.230) that causes transition between states,
as the other terms in the equation are diagonal in the representation defined by the
basis vectors |LSM,M; >. But the spin-orbit term can cause transitions only

when it dominates over the magnetic term in (8.230). Therefore, if the reversal of
the magnetic field, where the magnetic energy dominates over the spin-orbit
energy both before and afier the reversal, is accomplished within a short period
compared with the time required for the spin-orbit interaction to effect a trans-
ition, no transition will take place.

8.5SB Adiabatic Approximation

The Adiabatic Theorem: This states that, if the system is initially in an
cigenstate of [7ozi?(t0), it would have passed, in the limit T —> e, into the
eigenstate of /1, = F(z,), that derives from the eigenstate of /1, by continuity®.

The adiabatic approximation consists in assuming the validity of the adiabatic
theorem when T is large but not infinite,

40.  Tora proof of the theorem, see Messiah, A. op. cit.
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The error involved in this approximation can be estimated by calculating the
probability of finding the system at time ¢, in a state different from the one indi-

cated by the adiabatic theorem. Now, the implication of the adiabatic theorem is
that the change of state, entailed by the time-dependence of the Hamiltonian, is a
continuous process (that is, does not involve discrete jumps). Therefore, it would
be meaningful to talk of stationary eigenfunctions of the instantaneous Hamilio-
nian:
Au(t)=E,(tu,@), (8.234)

where, the 1, are assumed to be orthonormal, discrete and non-degenerate.

Continuity, then, means that if the system is in the eigenstate u,,(¢,) with energy
E,(t,) at time ¢, it should be in the eigenstate u,(t) with energy E,(t) at time ¢ >,
If A were independent of time u,,(¢) would be the same as u,,(f,) (that is, the state
would be truly stationary), whereas here ,,(t) could be quite different from u,,(t,)
eventhough the former is evolved from the latter (see the example given at the end
of this Scction). In a discontinuous change, on the other hand, the system would
be found in an eigenstate w,(t) of H(¢), that does not evolve from u,,(t,). Thus, the
condition for the validity of the adiabatic approximation is that the probability for
finding the system in the state u,(¢) be small if the system was initially in the state
u,(1,). A derivation of this probability is given below:

The fact that the system is likely to be found in states other than that prescribed
by the adiabalic approximation, can be expressed by saying that the state vector
¥(¢) of the system at time ¢ > ¢, is a superposition of the stationary eigenstates of

H(t). Thatis,
W(t) = Za,(Hull) exp l:*(i/ﬁ) J"E,,(t')dt'] (8.235)
n o

where (see Postulate ITI, Chapter 3) | a,(¢) [* is the probability that the system is in
the eigenstate u,(¢) at time ¢. (Note that, if # were independent of time , both a,

and E, in (8.235) would have been independent of time). Now, ‘W(¢) is the solu-
tion of the time-dependent Schrodinger equation,

m%\tf =H(O)¥(1). (8.236)

Substituting for ¥ in (8.236) from (8.235) and making use of Eq. (8.234) we
get,
(a,u,+au,)exp [—(i/ﬁ)J. E (t)dt '] =0, (8.237)
" )

where, the dot denotes differentiation with respect to time. We now take the
scalar product of this equation with i, (). In view of the orthonormality of the

u,’s, we have,
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a, ==Za,(t) (1) | L, (1)) exp (i f w».(odr'). (8.238)
n ‘o
The product,
ou,
u lia,) = (u) 5 =)
occurring here may be evaluated as follows We have,
8H
2 (1 1)y = <3-|H|u>+<u,|H| S 5
Using Eq. (8.234) and the relationship,
0
0=é7<“k |,y =G, bu )+ | i), (8.239)
we get,
oE, _ ofl
(u, Iun)-a—[= (E,—E)(u | i,)+ = [
Thus,
1
(i )— (u,‘ glr u )k #n. (8.240)
From (8.239), we have,

<u la,>=—<u,|u >=—<u |iu,> .
Thercfore, <u, | it, > is either zero or pure imaginary. It is possible to make it
zero by a suitable choice of the phase® of u,. Hence (8.238") becomes,
oH
W =

dak([) _ an(t) = uﬂ(,)) . exp (t Jl (l),m([’)dt,). (82382)

dt ko)
In order to integrate this expression, we replace a, (1), W, (t) and < u, | oA 3t | u, >
on the right hand side, by their values at 1 = ;. Such a procedure would be justi-

fied in view of the slow variation of these quantities with time. Further, we
assume that the system is in the state u,, at 1 =4, Thatis,

a0y =8, . (8.241)

Then,

-

= (1h,,) () - a” wyexp Liw, (t—t)}, (k #m).  (8.238%

Integrating from ¢ = ¢, to ¢ = ¢, we get,

a,(t) = (1/hw,, ) {u,

oH ¢ o,
i um)J; exp (iw,, t")dt

-(z/ﬁmm) (uk 8 u )1 - exp {iw, (t ~ 1)}, (8.242)

41.  Sce, Schiff, L.L., op.oit., Section 35.
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so that
oH

| ak([) le W&(’) = (u,‘ '&‘ u,..)

2
1

—— -sin® { = - £m.
pERcy sin {2(1),“0 to)}, k+m

(8.243)
This gives the probability for the state u,, which does not evolve continuously
from u,,, to be occupicd at time ¢. The condition for the validity of the adiabatic
approximation is that this probability be negligible. Thatis, w(t)« 1, or,

< H®,,)% (8.244)

I
o [
Since this condition should hold for all times ¢, where £, <t <t,, we can use, in
(8.244), the values of u,, u,, and w,,, at the time ¢.

(uy

Adiabatic Reversal of a Magnetic Field

As an illustrative example of the application of the adiabatic approximation, we
consider the effect of the slow (adiabatic) reversal of a magnetic field on the
cnergy levels of an atom. We make the same assumptions regarding the nature of
the atom and the time dependence and direction of the magnetic feld as in the case
of the sudden approximation. Morcover, we assume that the atom is initially in

the 2P state (thatis.L=1,§ =3).
According to Eqs. (8.229) and (8.230), we have,

A=A+ oL 8)—oip(t) (L, +25)), (8.245)

eh \B(0) .
where, p(t)= (—2—";;)'(;; = (uB/GﬁZ)B ), (8.245a)
and B(t)= Bo{ 2(’; W _ 1}. (8.245b)

The cigenvectors of H are | LSM, M, >, whereas the eigenvectors of H +
ol - S) are [LSIM, >, where [L-S |<J <(L+S) and M, =M, +M; (that is,
J=1L+8). Thus, the 2P Level, which is 6-fold degenerate in the absence of the
spin-orbit coupling, splits up into two levels, one of degeneracy 2 (J = %) and the
other of degeneracy 4 (J = 3/2) due to the spin-orbit coupling (see Fig. 8.13). But
(L, +25,)docs not commute with J2. As a result, when the magnetic field is strong
cnough to make the effect of the (l: . S) term negligible, the eigenvectors of A (3]
would be approximately those of H®, namely |LSM,M;>. However, the
degencracy would be completely lifted (Fig. 8.13) as the eigenvalues of H()
depend on the values of M, and M (see Eq. (8.247) below). Thus, if we vary the
magnetic ficld slowly from a large negative value to a large positive value, both
the initial state and the final state would be characterised by definite values of M,
and M (and, hence, also by a definite value of M, = M, + M;). But the transition
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/ 1
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T
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a® A®+w(L.S) A
() ®)
Fig. 8.13. The splitting of the 2plevel (M, =1,0,— 1; M=+ %, —%) due 1o (a) spin-orbit coupling,

(b) magnetic field.

from the initial to the final state has to pass through a stage where the spin-orbit
term dominates over the magnetic term. During this stage, the state of the system
is characterised by a definite value of M, but no definite individual values of M,

and M,. This means that the system can make a transition from a state with one
sctof values for M, and M; to a state with another set of values for M, and M; such
that the sum of M, and M is preserved. Thus, if [M, M, >=|LSM M, > is the
initial state, | M" M’; >=| LSM’,M’; > could be the state at the end of the reversal
of the magnetic field, where M’ + M’ =M, + M;. The transition from | M M, >
to | M’ M’ > is not, however, a sudden jump but a continuous one described by
the equation,

IM;>= T Cyrpor, M7 M s>, (M7 + M7= M), (8.246)

Lt s

where the coefficients cy- -, are continuous functions of time such that
Cot 7 {1o) = By yg- Oy

and oo (01 = Bygr B M s

The continuity of the state, here, is characterised by a constant value® for the
eigenvalue of J, throughout the period ¢, 10 ,. The energies of the levels are also
continuous functions of the parameter p(¢) [defined by Eq. (8.245a)]. The varia-

tion of the energies with p is shown in Fig. 8.14, This could be obtained using the
relationship,

42.  Of course, a constant value of M, is only a necessary, and not a sufficient, condition for the
continuity of the evolution.
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1
<M ML) | M, M >

= {M, M — (M, +2M)p(1)}S,, 4, 8

L MMy

+l{(M +l}(§—M)(1—M Y2+ M, )}m
2 § 2 2 § L L

11 3
XSML”'M'LSMJ’LM'; +§{§—MS) (§+Ms)

| X(L+M) Q=M 8y 1 Bugormryr  (8.247)
where, we have put < M, M, | H® | M, M, > = 0. Let us illustrate with two specific
cases.
Case 1. M, = 3/2: There is only one state with M, = 3/2, namely | M, M;) = | 112).

The adiabatic approximation, then, requires that the system remain in the state
|1 %) throughout the reversal of the magnetic field if it is initially in that state. The

energy of the state will, however, vary with time according to the formula [see Eq.
(8.247)),

1 1 . 1
E(1§)=(1§|H(’)|15) (8.248)
(1, (:}om2
From Eq. (8.245), we have,

oH . _a.dp
—at-—'—(Xfl(Lz-l'ZSl)E. (8.249)
Also, here, Iy =1 130 ) =1 MM) #]13),
so that,
o | A | dp}
i = ) = (MM | (L, +25) | 15)-{— 7

=0, forMLael;Ms;t%.

1

Case 2. M, = -: There are two states with M, =12, namely, (0%) and |1 —%). If the

2
system is in one of these states at ¢ = t,, then the wavefunction of the system at

ty <t <t, would be given, according to Eq. (8.246), by
Thus, the condition (8.244) is very well satisfied.
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I, _ elgl ®) l _
t5>p_C0§)’02)+Cl—‘l 2),p—1,2, (8.250)
where,
2 2
| =1

The amplitudes Cﬁ(fL)Ms as well as the energies of the two states could be obtained

by diagonalizing the Hamiltonian matrix corresponding to M, =%. Using Eq.

(8.247), we get,

N =

-p
_l — v 1
H(M, = 2) = o - ] (8.251%)

2 2

The cigenvalues and eigenvectors of this matrix could be determined by the
mcthod described in Section A7. But, it turns out that the following procedure is
simpler:

Any 2 x2 matrix could be written as a linear sum of the Pauli spin matrices

. . . 10
G,,0,,0, given by (5.34), and the unit matrix J =(0 1). Thus,
1
T ) =bd +b,0,+bo, +b,0,
2 2
b,+b, b,—ib,
\b,+ib, b,—b,
‘ 1
Hence, b,= ~ (1+2p),
b ——I——'b =0; b —1(1—2 ), and
x—‘\/i’y—’z_4 p’an

H(M, =%) =oh’ [—%(1 +2p) +(b- 0)}, (8.251%)

where b is the vector whose components are b,, b, and b, and whose magnitude is
1
b= +b2+b}" = Z\/8 +(1-2p)}). (8.252)

The cigenvalucs of (b - ) are +b. This follows from the fact that the component
of ¢ along any dircction has the values £1.
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Problem 8.17: Verify that the eigenvalues of (b- ©) are +b, from the secular

equation of (b- ©).
The eigenvalues of H are thus:
EW)=E@W)=ake,,

EMN=EM)=are_,
where, €= —%(1 +2p)tb.
The corresponding eigenvectors are:

L waly, e, ]
l+>=l2>x-c(%102>+cl_%ll >

1 1 1
N=12) = O 10= ©) .
| )—l2)2 CO% |02)+cl_%ll 2):

1
% N+2Ap+e)”

o __Vp+ed

i [+2p+e)d™

At time t = t,, p is large and negative [see Egs. (8.245a, b)];
P =—po=—(1z/0. A)By < 1.

Then, from Eqs. (8.252), (8.253) and (8.254a, b) we have,

1-

b=%(l+2po);

1
e+=+po»1,e?=—5;
=1, ¢, 0| +)={01)
o% Ty 27

1
I A IR T DR B R
COS%~0,Cl~% lvl ) Il 2)'

Attimet=1t,p=po» 1.

c
% V2p,

(8.253a)
(8.253b)

(8.253)

(8.250a)

(8.250b)

(8.254a)

(8.254b)
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1
O 1ol O [N (O
e =Tic=01-)=103)

Thus, as the magnetic field is varied from —B, 10 +B,, the state of the system varies
continuously from | O%) to]1 —%) or from ] 1 —%) to 0 %). This variation (along
with the variation in the energies) is shown in Fig. 8.14 where the M, = % levels are

labelled |+ >and |- >.

i £ /AK?

‘

-1
-5

(M Ms) (M_ Ms)
L _al
Fig. 8.14. The energies and the wave functions of the 2P levels as a function of the intensity of the
magnetic field. The levels labelled [+ > and [— > are the two sta’~s with M, ,=% The

numbers in parentheses are the quantum numbers (M, M;) of the states in the two limits.

The condition for the validity of this adiabatic description (that is, for the
system not to make a transition from | + > to | — > or vice versa during the reversal
of the field) is [according to (8.244)].

l oH
o

AW = (E, - E)th=404b?,
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or,
|5 :
W €1, (8.255 )
of
where = % is given by Eq. (8.249). We have,

’ )——( dp]a<—|(L +28)1+)

2d
—_aq#*%P. ¢,

where, expressions (8.250z, b) for |+> and |—> have been used. Since

eV <1, we get,
03 97

ol | ) dp}
S Bt < i
’ ot H| <o dt |
and condition (8.255") reduces to:
dp
ik «1 (8.255)
40H’b? '

Now, the L.H.S. of (8.255%) is maximum when b%=—[8 + (1 —2p)7 is minimum.
1 P

dp

dt

That is, when p=5>=3. Also, from Egs. (8.245a, b) we have,

2u,B, /o 571", The condition for the validity of the adiabatic approximation, then,
becomes,

2o
20008°T
or,
o L PR (8.255%)
T 2u,B, o )

Now, T” is the time during which the magnetic energy changes from ~o. %10 +at A
(since during T, the magnelic energy changes from —p,B, to +1,B,). It is during

this time that the spin-orbit energy (which is of the order of o #%) dominates over
thc magnetic encrgy, and it is also during this period that the system changes

continuously from the state | 1 —% > to IO% > or vice versa. On the other hand,
(/o h) 1s the characteristic time associated with the spin-orbit splitting. That is,

(/ou#) is the time characterising a discontinuous (or discrete) transition
| + > ¢ |~ > taking place under the influence of the spin-orbit interaction. The
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reversal of the magnetic field should take place very slowly compared with this
time for the transition to be adiabatic. This condition may be contrasted with the
condition (8.233) in the case of the sudden approximation.

Problem 8.18: Consider a linear harmonic oscillator whose equilibrium position
x, depends linearly on the time. If the oscillator is initially in its ground state,

obtain the conditions for the applicability of (a) the sudden approximation, (b) the
adiabatic approximation.



CHAPTER 9
IDENTICAL PARTICLES

9.1 THE IDENTITY OF PARTICLES

In Chapter 6, we have discussed certain symmetries which arise from the prop-
erties of space and time. In this Chapter, we are concerned with a different type
of symmetry which is encountered in the quantum mechanical behaviour of a
system of identical particles. Now, the epithct identical, as applied to a group of
particles, needs some clarification. We say all electrons are identical because onc
electron cannot be distinguished from another electron by means of any of its
inherent physical attributes such as mass, electric charge, spin, etc. The fact that
one electron might be in a spin-up state while the other is in a spin-down state, or
that the clectrons might be having different momenta, is not a hindrance 1o their
being considered identical. This is because different values of the spin-
component or linear momentum merely designate different dynamical states of an
electron. Thus, what is required for two particles to be identical is that cach of
them should be described by the same complete, commuting set of observables,
besides being identical in the physical attributes that are not described as cigen-
values of these observables. In the example of the electrons, the operators f, and

§, representing respectively the components of the linear momentum and the spin,

constitute a complete commuting set of observables.

The above criterion for the identity of particles has the following intcresting
consequence. Particles that are different from the viewpoint of their physical
attributes such as mass and electric charge, could be considered identical if we
could ascribe the differences to the different cigenvalues of one or more obscrv-
ables that commute with the Hamiltonian of the system. The case of the proton
and the ncutron is an cxample. The proton is positively charged while the ncutron
has no charge. Their masses are also different though the difference is small.
They could be described as two different states of the same particle the nucleon,
by introducing an observable called the isospin (analogous to the spin). For the

nucleon, the isospin ¢ =% so that the proton and the neutron correspond to the two
. 1 .

possible values of t,, namely ¢, = +> The description of the proton and the ncutron

as differcnt states of the same particle is, however, not valid when electromagnetic

interaction is involved since the Hamiltonian in that case does not commute with

the isospin.
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An important aspect of the symmetry associated with a system of identical
particles is that it is intimately related to the spin of the particles. As a result,
we will not be able to ignore the spin as we have done so far in most of our dis-
cussions.

The Indistinguishability Principle

In classical mechanics, identical particles can, in principle, be distinguished from
one another either by observing their individua! paths or by means such as label-
ling them. This is so because observation or labelling does not affect the classical
dynamics (and hence the classical paths) of the particles. In the case of a system
of identical micro-particles, on the other hand, observation of the individual par-
ticles is not possible without seriously affecting the dynamics of the system. For
example, in the scattering of protons by protons, the proton which comes to the
detector could be either the projectile or the target proton, but it would be
impossible to tell them apart. Similarly, in a Helium atom a state in which one of
the clectrons is in the quantum state ¢, and the other electron is in the state ¢,
would be indistinguishable from a state in which the electrons are interchanged.
This inability to tel’ apart the particles from one another in a system of identical
particles is embodied in the principle of indistinguishability of identical particles.
Quantum mechanics of a system of identical particles should be so formulated as
10 be consistent with this principle. For example, in the scattering problem
mentioned above, experiment does not distinguish between the projectile and the
target. Therefore, in the quantum mechanical calculation of the scattering cross
section also, no distinction should be permitted between the projectile and the
target.

It is 10 be emphasized that the significance of the principle of
indistinguishability is {ar dceper in quantum mechanics than it is in classical
mechanics. The peculiar laws underlying quantum mechanics, in particular the
principle of superposition, are responsible for this. For instance, the
indistinguishabilily between the projectile and the target protons in the scattering
of protons implies only the following in classical mechanics: The observed cross
scction would be the sum of the cross sections corresponding to the cases (a) and
(b) in Fig. 9.1. But in the case of quantum mechanics, it is the scattering ampli-
tudes corresponding to the two cascs that are to be added (or subtracted, depend-
ing on the spin of the particles) to obtain the scattering amplitude corresponding
1o the observed cross section, Since the scattering cross section is the absolute
squarc of the scattering amplitude, there is no simple relationship between the
quantum mechanical cross section and the cross sections corresponding scpa-
rately Lo cases (a) and (b) in Fig. 9.1,
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Fig. 9.1. Scattering of identical particles in the Centre-of-Mass system.

Symmetry of Wavefunctions

In order to illustrate how the principle of indistinguishability influences the
quantum mechanics of a system of identical particles, let us consider the simple
case of a two-particle system. We use the following notations: The numbers
inside the parenthesis following the symbol representing an operator or a wave-
function, label the particles whereas the position inside the parenthesis denotes
the quantum mcchanical states of the particles. Thus, if A(1,2) stands for the
Hamiltonian of the system with particle number 1 in the state o and particle
number 2 in state B, then £ (2, 1) represents the Hamiltonian when particle number
2 is in state o and particle number 1 is in state .

Now, the principle of indistinguishability requires that the physical observ-
ables of the system, and in particular the Hamiltonian, be invariant under the
interchange of the two particles. That is,

H(1,2)=H(2, 1. ©.1)

The Schrédinger equation of the system is,
iha—‘%}l: A(1,2)y(1,2), 9.2)
where particle number 1 is in the state o and particle number 2 is in the state . If

we interchange the particles, the corresponding Schrédinger equation becomes [in
vicw of (9.1)],

maig;z) =H1,2y(2,1), 9.3
Egs. (9.2) and (9.3) show that if y(1,2) is a possible statc of the two-particle
system with a certain energy, then y(2, 1) is also a possible state with the same
cncrgy. From the viewpoint of classical mechanics, this is a trivial result. Butthe
principic of supcrposition makes it a result of profound significance in quantum
mechanics.  According to this principle, if y(1,2) and y(2,1) arc possible
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solutions of the Schrédinger equation corresponding to a particular energy, then
any lincar superposition of (1, 2) and ¥(2, 1) is also a possible solution belonging
1o the same energy eigenvalue. In particular, the linear combinations’,

1
P T — 2 2,1 9.4
vs(1,2) 2(1+%)[\P(1, )+ (2, 1), (9.4a)
and
1
1,2) =—[y(1,2)-y(2,1 9.4b
WA( H ) \[2"[“’( ? ) W( ? )]7 ( )

are solutions of the Schrédinger equation for the system. These linear combina-
tions differ from y(1,2) and y(2, 1) in that they have definite symmetry properties
under the interchange of the particles.
For,

W2, 1) = y,(1,2); W, (2, 1) =—y,(1,2). (9.5
We say that v is symmetric while s, is antisymmetric. The importance of y and
y, arises from the fact that these are the only wave functions that are consistent
with the principle of indistinguishability of identical particles. This follows from
the mathematical structure of quantum mechanics, as shown below:

Let P, represent the operator that exchanges particles 1 and 2. That is,

Pw(1,2)=y(2,1). 9.6)
Obviously,
P =1 9.7)

Thus, P, is an involution (see Projection Operators, Section 2.2) and is hence

both /lermitian and Unitary like the parity operator (Section 6.2D). Like the
parity operator t0o, £ 12 represents a discrete transformation, The invariance of the

Hamilionian under this transformation (that is required by the principle of
indistinguishability) is expressed by the condition [see Eq. (6.3a)],

P, H] =0, 9.8)

This means that only those cigenvectors of A are permissible that are also

simultancously eigenvectors of the exchange operator P ,. But according to Eq.

(9.7), the eigenvalues of P, are +1 and —1. Denoting the corresponding eigen-
vecetors by w.(1,2) and y_(1,2), we have

Pov.(1,2) = V.2, 1) =+y.,(1,2), (9.92)

Pov(1,2) =y (2, 1)=-y.(1,2), (9.9b)
Comparing these with (9.5), we see that

1. The factors 1/V2 and 1~2(1 + 8.4) in Eqgs. (9.4a, b) are normalizing factors.
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v, =V(1,2) = {IN2(1+ 8,9} (1 + P )w(1,2), (9.102)
v_=v,(1,2) = AN (1 - P w1, 2). (9.10b)

Thus, the physical state of a system of two identical particles is represented by
either i, or y,. Moreover, Eq. (9.8") implies that the symmetry is a constant of
motion {cf. Eq. (6.1)]. Therefore, if the system is, say, in a symmetric state at
some time, then it will continue to be in the symmetric state for all time.

The foregoing considerations are easily extended to the case of a system of n
n

identical particles. In this case, we have (2j = (n/2)(n — 1) two-particle exchange

operators 13,.}. all of which should commute with the Hamiltonian of the system:

P,M=0,G=12.n~-1j=23,.,n). 9.8)
However, the exchange operators do not commute among themselves:
BByrbLP, 9.10)

As a result, it is not possible to find a complete set of functions that are simulta-
neous eigenvectors of all the exchange operators and A (except for the case n = 2
where there is only one exchange operator). But the principle of
indistinguishability expressed by Eq. (9.8%) requires the existence of at least one
wavefunction that is a simultaneous eigenvector of all the exchange operators and
A. Let ® denote such a function. Then,

HO=E®, (9.11a)
Po=A® (i=12..,n-1j=23,..,n) (9.11b)
where
A=+l
Now,
PP,=P,P.<P.P, (9.12)

for any three different values of i, j, k.
Eqgs. (9.12) and (9.11b) give,
7‘:}'}"& = )”jk >H T 7‘.’1)*,17

or,

A= = A 9.13)

That is, the common eigenvector @ belongs to the same eigenvalue of all the

exchange operators. If A;; =+1, we say that @ is totally symmetric (it is symmeltric

under the interchange of any pair of particles) and denote it by @, whercas if
A ==1,@ is totally antisymmetric and is denoted by ®,:

P b =+d; P D, =D, (9.14)
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Thus, we have the important result: The wavefunction of a system of identical
particles is either totally symmetric or totally antisymmetric.

Problem 9.1: Verify relationship (9.12) for n = 3.
9.2 SPINS AND STATISTICS

We have seen that the symmetry character of a system of identical particles is a
constant of motion. Itis also found that a given type of particle is associated with
only one type of symmetry. Thus a system of electrons is always described by an
antisymmetric wavefunction while a system of pions is invariably described by a
symmetric wavefunction. That is, the symmetry character of the wavefunction is
an intrinsic property of the particles.

Now, the statistical properties of a system of a large number of particles
depend on the available degrees of freedom for each value of the total energy of
the system. For a system of distinguishable particles, every permutation of the
particles gives rise to a different state. Such a system obeys classical or Boltz-
mann statistics. The statistics obeyed by a system of identical particles with
symmetric wave functions is known as Bose-Einstein statistics while identical
particles with anti-symmetric wavefunctions obey Fermi-Dirac statistics. Since
the symmetry character of the wavefunction is an intrinsic property of the par-
ticles, it follows that the statistics associated with a particle is also of an intrinsic
nature. This fact justifies the classification of particles on the basis of the statistics
obeyed by them. Thus, particles obeying Bose-Einstein statistics are called
bosons while those obeying Fermi-Dirac statistics are referred to as fermions.

It is further found, and shown plausible in quantum field theory,” that the sta
tistics is intimately connected with the spin of the particles. Bosons have integral
(including zero) spin whercas particles with half-integral spin are fermions. This
correlation between spin and statistics applies not only to elementary particles but
to composite particles (such as atoms and nuclei) as well. This is understandable
since a composite particle composed of fermions will have integral or half-
integral spin according as the number of fermions is even or odd. In the former
case, an interchange between two such particles is equivalent to an even number
of interchanges of fermions so that the wavefunction should be symmetric.
Similarty, in the latter case the wavefunction should be antisymmetric.

The Pauli Exclusion Principle

We have seen that the wavefunction of a system of spin-half particles is anti-
symmetric. Consider a system of two spin-half particles. If b, and @, denote

the two quantum states available to the particles, then, y(1,2) = ¢u1(1)d>az(2), 50
that the wavefunction of the system is given by [see Eq. (9.10b)],

2. Pauli, W., Phys. Rev., 58, 716 (1940). Also, see Section 11.4B
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12 5 )
1,2 = (0 P00, 00,0

e, @,
NEXOREE Xe)
Obviously, y,(1, 2) vanishes when @, = ®,,. Thatis, it is not possible for the two

particles to occupy the same state. This is known as the Pauli exclusion principle.

Eq. (9.15) is easily generalized to the case of n particles. In this case, the
wavefunction will be a linear superposition of the n! functions that correspond to
the n! permutations of the particles:

W, (L2, m) = %E(—l)""”ﬁd)%(l)d)%a). D, (n)

. 9.15)

O,(1) D2 .. D)
=\7;:' D (1) DD ... Dy(n) 9.16)
o) 0@ .. &M

Here P represents one of the »! permutations and n(P) = the number of two par-
iicle exchange operators contained in . The determinant in (9.16) is known as
the Slater determinant. Since the determinant vanishes when any two rows are
identical (Section A3), the exclusion principle follows.
For a system of bosons, on the other hand, the wavefunction is given by,
v(1,2,...,n)= —1——):15(1)“1(1)4)%(2)...(13%(71); 9.17)
P

\n!d
where 3§ is a factor which depends on the number of particles occupying the same
state. (9.17) does not vanish when any two o are equal. Thus, there is no
exclusion principle for bosons.

9.3 ILLUSTRATIVE EXAMPLES

The following examples are chosen so as to illustrate the important role played by
the symmetry of the wavefunction in the dynamics of both bound and unbound
systems of identical particles.

The Helium Atom

From the viewpoint of atomic properties, the He atom is a system of two electrons.
Since electrons are fermions, the total wavefunction of the system must be anti-
symmetric. However, the total wavefunction is the product of a space or orbital
part and a spin part. Therefore, the space part alone could be symmetric or
antisymmetric depending on whether the spin part is antisymmetric or symmetric.

Since electron has spin % the spin of a two-electron system could be either 1 or 0
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[see Eq. (5.73b)]. There are three states with spin 1 corresponding to the three
values (1, 0 and - 1) of the z-component of the spin. The spin-1 states are, hence,
called the triplet states. We denote these by® ), *x, and % ;. Similarly, ',

represents the singlet state corresponding to spin 0. From Egs. (5.68a) and
(5.83b), it follows that the triplet states are symmetric while the singlet state is
antisymmetric. Thus, out of the eight combinations possible with the four spin
functions and the two (the symmetric and the antisymmetric) space functions,
only four are permitted by the principle of indistinguishability of identical par-
ticles. These are:

sXo Vato VaXo VaXoos (9.18)
where [cf. Egs. (9.10a, b)],
Ys(1,2) = [172(1+ 8,91 2 (1 + P )@ (1)Dy(2), (9.19a)
¥,(1,2) = [1N2] (1 - P @ (1)D42). (9.19b)
Now, the Hamiltonian of the He atom can be written as
A=H,+H, (9.20)
where
I =17f(v2+v§)—2e1(1+1J (9-20a)
AR TR rorf ’
H, = L . (9.20b)
2

Here, r; and r, are the radial distances of the electrons from the centre of the atom
and r,, is the separation between the electrons. H , represents the mutual repulsion
of the electrons and is small in comparison with #, The contribution of A, to the

energy of the system can, therefore, be calculated using first order perturbation
theory (Section (8.3a)) where the zero-order wavefunctions (the eigenvectors of
11,) are given by (9.18). Since H, does not contain the spin variables, the three

triplet states would be degenerate. And the separation between the singlet and the
triplet states arises entirely due to the different symmetry of the orbital part.
According to Eq. (8.124b) the contribution to the energy due to H, in the first

order, is equal to the expectation value of /1, Thus, for the singlet state,
EQ =<y, |0, 1Y% >

=<¥ |H,|¥>
= {1/(1+8,9} (J g+ Ko (9.21)
with .
T = (P (1)Dy(2) | H, | D (1)D(2)), (9.21a)

3. The notation is ®* Yy, where § is the spin and §, its projection along the z-axis.
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K= (@ (D042) | H, | Df1)D,(2)), (9.21b)
where expression (9.19a) for W, and property (9.8") of P, are used.
Similarly, for the triplet states,

EV=(¥, | H | V) =U4-Kp). (9.22)
J,s and K, are positive since #, is positive definite. Therefore,
EV < E(l)
[ s "

That is, the singlet state is always higher in energy than the triplet state.
For the ground state of He atom, ot= B = 15 (thatis,n =1,/ =0),sothat ¥, =0.

Hence the only allowed state is W 'y,. Then, [see Eq. (8.90)],

W_pm_y 2 _ .
EVSEP =) o=7r=3399eV;

where a, is given by Eq. (8.85). Also, e¥a,=27.19 eV. From Egs. (8.87a, b), we
have,
E©®,=—4(e¥ay)=-108.76 eV,

as?

so that,
E ,=EY9,+EY, =-7477eV.
{1s) {1sy (1s)
Similarly, we obtain the energies of some of the excited states, using the values,
J,,=1142eV;

Kl:,?.s =1.20eV,;

J,. .. =13.22eV;

1s,2p

Ky, ., =094cV.

The energies so obtained are compared with the experimental values in Table 9.1.
The spectroscopic notation ® *PL, is used to specify a state, where S represents

the spin and J the total angular momentum while L stands for the symbol that
denotes the valuye of the orbital angular momentum according to the following
scheme:

SymbolforL-SPDF...

Valueof L - 0123... (9.23)

Thus, the symmetry character of the wavefunction, arising from the identity of
the clectrons, provides an understanding of the qualitative features (such as the
nature of the ground state and the difference in energy between the triplet and the
singlet states belonging to a given configuration) of the low lying levels of the He
atom,
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Table 9.1. Low-lying levels of the He atom.

A
Energy (eV)
— Ef”- E'(l)
Configuration State
(o B) Calculated Experimental {eV)
(1sy? 1S ~74.11 —78.98 —
(1s, 25) ’s, —51.717 —59.17 0.80(2.39
” 'S, —55.38 —58.37
(1s, 2p) o1z —55.71 —58.02 0.25 (1.85)
” P, —53.86 —517.71

*The numbers in the parenthesis represent the calculated values.

Problem 9.2: The Deuteron is a system of two nucleons, where the nucleon isa
spin-half and isospin-half particle. In the ground state of the deuteron, both the
nucleons occupy the 1s (I = 0) orbital state, Obtain the possible combinations of
the total spin and the total isospin for the ground state.

Scattering of Identical Particles

In the scattering of identical particles, there are two situations indistinguishable
from each other as shown in Fig. 9.1. The incident particle and the target have
equal and opposite velocities in the Centre-of-Mass system. In (a) the particle
observed at the detector is the incident particle (particle number 1) while in (b) it
is the recoiled target (particle number 2). The indistinguishability of the two sit-
uations is taken into account by using properly symmetrised wavefunctions for
the calculation of the scattering cross-section.

Now, for process (a), the asymptotic scattered wavefunction is {see Eq. (7.7)],

kr

WOk K, 1) ~ £ (K, k')f;—. (9.24)

Process (b) differs from process (a) in that particles 1 and 2 get interchanged at
the time of scattering. Thus,
WK K, 1) = P oy (kK 1), (9.25)

But interchanging the two particles is equivalent to reversing the relative co-
ordinate r = (r, —r,) and since, by definition, k” has the same direction as r, it is
equivalent to reversing the direction of k’. Thus,

P Lv(k K1) =y (k- K, T). (9.26)
A properly symmetrised wavefunction is a symmetric or an antisymmetric
combination of y& and y{:
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YO, 1) = WK, K, 1) + 9k, K ), .27

K1) = YO K1) - Y0 K, ). 928"

Substituting from Egs. (9.25), (9.26) and (9.24) and dropping the labels a, we
have,

W) ~ £k, K'Y (e™r), (9.27%

¥ ~ £, (kK (e*1r), (9.28%)

where, £k, k) = f(k, k) + f(k,— k), 9.29)
LK) = f(k, k) - fk,~ K. (9.30)

The differential cross-section for the scattering of identical particles are then
given by [Eq. (7.9)],

o (k, k) =1 fi(k, k)

=1f(,K) P+ /(k,— k) P +2 Re {f (k. K)f(k,— k)}, 9.319
and o,(k, k) = [ £,(k,K)

=1 f(k,K) P+ f(k,— k) [ -2 Re [ (k, k) - [k, ~ K')]. (9.32))
These are to be compared with the corresponding classical expression,
ok, k) = o(k, k) + o(k,— k")

=S K) P +1 /K, ~K) P (9.33"
In (9.31") and (9.32"), Re { ] represents the real part of the quantity within the
brackct. We see that an important feature that distinguishes the quantum
mechanical cross sections from the classical one, is the inferference between the
scattering processes (a) and (b).

In terms of the angles © and ¢ that specify the direction of scattering with
respect o the incident direction,

Sk, k) =£,(6,0),
and f(k,~Kk') = fi(m~ 0, +0). (9.34)

Further, in the case of central forces, the scattering amplitude is independent of
the angle ¢. Then,

Sk, K) = f(8); f(k,~K)) = fi(n - 6),

and we have,
05(0) =1 /(6) + £, (m—6) I, (9.31%

0,(6) =1 £(0)-f,(m-0) I, (9.32)

0 (0)=|£(0) P+ f(m—0) |, (9.33)
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Case of Spin % Particles

The spin part of the wavefunction could be a triplet or a singlet state depending
on whether the spins of the two particles are parallel or anti-parallcl. The singlet
state should be associated with the symmetric space function so that the corre-
sponding cross-scction is given by

'6,,=0,(0). (9.35a)

Similarly, the triplet state is associated with the antisymmetric space function.
Thercfore, '

’6,,=0,(6). (9.35b)

The observed cross-section would be the weighted average of these two casces.
That is,

1 3
O.(0)= Zos(e) +ZGA(9)

=1£O) P+ f(n—0) - Re {£,(0)f(n—6)}. (9.36")
For 6 = w/2, this gives,
0, (W2) =|f(w2) [ (9.36%)

Case of Spin Zero Particles

In this case the total wavefunction is symmetric so that,

0,(8) = 5,(6), (9.37")
and
O,(2) = Oy(m2) =4 | f(/2) . (9.37%
Also, from Eq. (9.33%),
0, (m2)=2| f(u2) [ (9.33)

Thus, we have the result,
Cy(T/2):6,(1V2):0, (1/2) = 4:2:1. (9.38)

This result can be utilized to determine experimentally the spin of a particle like
the proton. In this case, the classical cross section is given by the Rutherford
formula (7.116). The fact that the observed cross section at 8 = 12 is approxi-
mately half that of the value given by the Rutherford formula, indicates that the

proton is a spin % particle.

Problem 9.3: Show that the total cross sections for zero-energy scattering of
identical particles of spin-zero and spin one-half are given, respectively, by

6, = 16ma’and 6,, = 4na’,
where ‘a’ is the scattering length.
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CHAPTER 10

RELATIVISTIC WAVE EQUATIONS

10.1 INTRODUCTION

The Schrédinger equation’, which forms the basis of the mechanics we have
considered so far, does not satisfy the requirements of the special theory of rela-
tivity, namely, invariance under Lorentz transformations®>. This limitation
restricts the applicability of the theory to systems with velocities small compared
with the velocity of light. The first equation aimed at remedying this defect was
obtaincd by Schrodinger himself’. But he discarded it because of, among other
things, its failure to yield the correct spectrum of the hydrogen atom. The same
equation was later proposed and discussed independently by Klein, Fock and
Gordon®. It is commonly referred to as the Klein-Gordon equation.

The Klein-Gordon equation is derived on the basis of the following arguments:
The 4-dimensional (Minkowski space) formalism of relativistic mechanics sug-
gests the gencralisation,

N
pu= —ih o n=1,23,4), (10.1)

of Eq. (3.18"), where p, is a component of the four-momentum p. The space

components (that is, the first three components) of p are the components of the
momentum vector p while,

py=(ilc)E, (10.2)

1. Thereference here is to Eq. (4.14) with the Hamiltonian A derived, in accordance with Postulate
1V. from the classical expression H = p¥2m + V(r).

2. For a concise treatment of the special theory of relativity and the Loremtz transformations, see
H. Goldstein, Classical Mechanics (Addison-Wesley, Massachusetts 1959), Chapter 6.

3. Schrédinger, E. Ann. Physik, 81, 109 (1926).

4. Klein, O. Z. Physik, 37, 895 (1926): Fock, V. Z. Physik. 38, 242 (1926) and 39, 226 (1926);
Gordon, W. Z. Physik, 40, 117 (1926) and 40, 121 (1926).

S.  Inthis Chapter as well as the next, we use bold face to denote 3-vectors while 4-vectors will be
represented by the same leuter in italics. Also, the components of a 4-vector will be distin-
guished by means of Greek subscripts whereas Latin subscripis will denote the components of
a 3-vector. Latin subscripts are also used when we want to refer specifically to the space
components of a 4-vector. g
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where E is the energy of the particle and ¢ is the velocity of light in vacuum. This
fact is expressed by writing p = {p, (i/c)E}. Similarly, the space-time coordinate
4-vector x = (r, ict )= (x, ict ). Thus Eq. (10.1) leads to the identification,

- a

Ezma?, (10.1a)
in addition to (3.18") which may be written as
P=Wi)v. (10.1b)

(10.1a) could have been inferred from Egs. (1.16) as suggested at the end of
chapter 1, but the present derivation shows that the identifications (10.1a, b) are
Lorentz covariant thus establishing their validity in a relativistic theory.

We should caution here that the generalisation (10.1) and its offshoot (10.1a)
should be regarded as of a formal nature valid for use in a wave equation but of
no deeper significance. For example, a similar generalisation of Eq. (3.18%) and
the implicd existence of a time operator are not intended (See, Section 3.2.
Time-energy uncertainty relationship). It is to emphasize this formal aspect of
Eq. (10.1a) that we have used the symbol £ rather than /. The latter will denote
the Hamiltonian of the system in terms of the co-ordinates, momenta, etc.

In terms of £ and p, the quantum mechanical wave equation is given by (cf.
Eq. (4.14h)),

Evy(r,t)=Hy(r,1). (10.3)
The Schrédinger equation for a free particle results from substituting for H the
expression based on the non-relativistic formula (here, m is the mass of the par-
ticle),

H =p2m. (10.4
The result is the equation,
i#, y(r, t) = —(#12m) Vy(r, 1), (10.5)
where
d
9,=5.

An obvious way to make Eq. (10.3) relativistic would be 10 use, in place of
(10.4Y), the relativistic expression for H, namely,
i =\Npkt+m%?. (10.4%
However, this expression introduces the difficulty of defining the square root of a
linear operator. In order Lo avoid this difficulty, # is squared before introducing
into the wave cquation. This requires E also to be squared so that the wave
equation becomes [in place of (10.3)],

Exy(r, o) = 1Ay(r, 1)

=X PP+ mcAHy(r, 1), (10.6Y)
or

@-Aox) =0. (10.69
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Here,
K = (mc/h), (10.7)
whilelis the d'Alembertian given by
Q=9,0,=V'-(ic)d., (10.8)
with
0
a” =5

m
Also, the Einstein summation convention is used (that is, a repeated (Greek) index
is summed over from 1to 4 ).

Eq. (10.6%) is the Klein-Gordon equation. The symmetrical way in which
space and time coordinates occur in this equation (it is second order in both,
unlike Eq. (10.5) which is first order in time and second order in space) makes it
manifestly Lorentz convariant. However, the act of squaring A has introduced
two important new elements into the theory. One is that the wave equation no
longer conforms to the dynamical postulate of chapter 4, which requires the
equation 10 be first order in time. The other is the possibility of negative energy
(through the negative square root of A%). These new elements give rise to diffi-
culties in the interpretation of the Klein-Gordon equation as a quantum mechan-
ical wave equation, at least within the conceptual framework of the Schrddinger
equation. For example, the probabilistic (ensemble) interpretation of quantum
mechanics is based on the circumstance that the Schrédinger equa- tion permits
the definition of a positive-definite probability density p and a probability current
density j satisfying the equation of continuity (se¢ Problem 4.1),

d,p+ divj=0, (10.9")
or, in covariant form,
9,j,x)=0, (1099
where,
J =3 icp). (10.10)

The cquation of continuity ensures that the total number of particles (in the
ensemble) is conserved (Problem 4.2).
The Klein-Gordon equation yields the 4-current density,

J0) = BW2mi) [§7(2)9,0(x) - 6(x)3,0 (X)) (10.11)
The corresponding probability density is,
p(r, 1) = ((W2mc?) (69,0~ (B,9)0). (10.112)

Since the value of 9,0 can be prescribed independently of ¢ [a consequence of the
second order character of Eq. (10.6%)] a negative value for p cannot be ruled out.
Problem 10.1; Verify Eq. (10.11).

Becausc of the above problem of the negative probability density, the Klein-
Gordon cquation failed to win recognition as a correct relativistic gencralisation
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of the Schrédinger equation. Meanwhile, Dirac® succeeded in obtaining a first
order relativistic wave equation (remember that the troubles of the Klein-Gordon
cquation were attributed to the squaring of /1 and £) which not only yielded a
positive-definite probability density but from which also emerged properties like
the spin and the magnetic moment of the electron and the fine structure of the
hydrogen atom. The negative energies, however, persisted, but even these were
transformed by Dirac into one of the greatest triumphs of the theory by a re-
interpretation’ (the hole theory) which introduced for the first time in physics the
concepts of antiparticles, pair creation and annihilation and the vacuum (of
elementary particles).

But along with its successes, the Dirac theory also brought on the realisation
that the conceptual frame-work of the nonrelativistic quantum mechanics is 100
restrictive for the development of a self-consistent relativistic quantum theory.
For example, at relativistic velocities the kinetic energy of a particle may become
comparable or even surpass its rest energy. According to the principle of the
mass-energy equivalence (E =mc?) of the theory of relativity, creation of new
particles is a distinct possibility at these energies. Obviously then, conservation
of particle number cannot be a fundamental feature of relativistic quantum
mechanics. On the other hand, the electric charge is a strictly conserved quantity.
The equation of continuity of a relativistic wave equation should, therefore, refer
to the conservation of the electric charge rather than to the conservation of
particle-number. We note that if we multiply Eq. (10.11a) by e (a unit of charge)
and interpret (ep) as the charge density, the problem of its negative value disap-
pears, as a charge density can be negative as well as positive.

The foregoing considerations led to a revival of the Klein-Gordon equation by
Pauli and Weisskopf® who interpreted it as the (classical) field equation of spin-
zero particles, the functions (r, t) acting as coordinates® of the field. Similarly,
the Dirac equation is the field equation of the spin-half particles. The
quantization of these fields leads to the correct relativistic quantum theory of the
associated particles. This does not, however, mean that the quantum field theory
of particles is devoid of problems. In fact, many problems, mainly of a mathe-
matical nature, are encountered in this theory. Nevertheless, its successes have
been impressive enough to instill confidence in the correctness of its basic
approach.

It is a basic featurc of the relativistic quantum theory that particles with dif-

ferent spins are described by different wave equations. Thus, spin % particles

Dirac, P.AM. Proc. Roy. Soc. (London) A 117, 610 (1928).

Dirac, P.AM. Proc. Roy. Soc. (London) A 126, 360 (1930).

Pauli, W. and Weisskopf, V. Helv. Phys. Acta, 7,709 (1934),

Note, in this conncction, that the equations of motion of classical mechanics are second order in
time for the coordinates. The equations of motion of the electromagnetic field are also second
order in time. A ficld differs from a mechanical system mainly in having an infinite number of
degrees of freedom. Since y at each space-time point represents an independent degree of
freedom, the total number of degrees of freedom represented by W viewed as a coordinate is
infinite.

© e
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are described by first order wave equations (the Dirac and the Weyl equations)
whereas spin-zero and spin-one particles are described by second order wave
equations (the Klein-Gordon equations and the wave equations of the electro-
magnetic field). This appears to be a consequence of the intimate relationship
between spins and statistics (Section 9.2): It is found that a given (relativistic)
wave equation can be consistently quantized using only one type of statistics
(either the Bose-Einstein or the Fermi-Dirac), which type being decided by the
equation. This is in contrast with the nonrelativistic Schrédinger equation which,
viewed as a field equation, can be quantized using either of the statistics.
Eventhough a true relativistic quantum theory is, thus, a quantum field theory,
it is sufficient for many purposes, especially for the fermions at low velocities, to
follow the historical path of a quantum mechanical approach. This chapter is
devoted to a discussion of the relativistic quantum mechanics while we will
present an elementary introduction to the quantum field theory in the next chapter.

10.2 THE FIRST ORDER WAVE EQUATIONS
From Eqgs. (10.1) and (10.3), it follows that a first order wave equation requires a

Hamiltonian that is linear in the momentum vector. In the case of zero-mass
particles, the classical Hamiltonian,

H=c|pl (10.12)
suggests a quantum mechanical Hamiltonian of the form,
H=c(a-p), (10.13")

where o is a vector operator, independent of the space and time co-ordinates, such

that
N 3. 3
(@ p)=Zoup, ="\ Lpn (10.14a)
k=1 k=1

Condition (10.14a) can be translated into conditions on the components of & by
squaring (10.14a). We have,

" 3
(@ p’=Zp (10.15)
k =1
which requires,
0,0+ 0,0, = {0, 00} = 28, (1,j =1,2,3). (10.16)
However, in this process we have admitted the negative square root in (10.14a):
(- p)=-Ip} (10.14b)

since (10.16) requires only the condition (10.15). Corresponding to (10.14b) the
Hamiltonian is,
H =~c(a-p). (10.13%
Now, relationships (10.16) are the same as the ones {Eq. (5.35b)] satisfied by
the components of the Pauli spin vector 6. Therefore, we can identify @ in this
case, with 6. In view of (10.13"%), the wave equation (10.3) then reads:
Ey=*c(c-py, (c-p)==%|p] (10.17)
or, in co-ordinate representation,
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iha,fD:—i‘hc(& Vo, (6-f))=+ [Pl (10.17a)
and

ity =itic(G-V)y, (G-p)=-|pl. (10.17b)

Thesc wave equations are known as the Weyl equations' of the neutrino. We will
discuss them in Section 10.2B.

In the case of particles with non-zero mass, H is given by Eq. (10.4%) which can
be put into a form resembling (10.12) by defining

Po=me,  p=(pyD) (10.18)
so that,
3
; = Eop:. (10.19)
Then, H=cpl, (10.20)
and"!
A =clop) = céo&mw (10.21%)
with (0p) = PP+ mc? (10.22)
and, {0, 00} =25,,; (10.23)
where, &: (Ot ). (10.24)

Following convention, we put § = &. Then (10.23) becomes equivalent to Eq.
(10.16) plus the following:

B,0,. =0,(k=1,2,3;) (10.23a)
f2=1. (10.23b)
In terms of B and 0., the Hamiltonian is,
11 =c(0- p)+Pmc’ (10.21%
The corresponding wave equation is
O,y = —ihc (o VY + Bmciy. (10.25")

This isknown as the Dirac equation®, while (10.21%) gives the Dirac Hamiltonian.
The above procedure of getting a Hamiltonian linear in the momentum vector
by introducing certain operators ‘from out of the blue’ as it were, might look
artificial. However, the procedure leads to useful results only because the oper-
ators so introduced are related to some property of the particles. In the case

10.  Weyl, 1. Z. Physik, 56, 330 (1929).

11.  Unlike in the case of mass-zero particles, the choice /1 =—c(&;) here, does not lead to any new

results different from the one contained in the choice (10.21%).
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of the zero-mass particies, the operator involved is the Pauli spin vector. The
implication is that the associated particles have spin % We will see that the

operators o. and § in the Dirac Hamiltonian are also related to the spin of the
particles and to the existence of the antiparticles (negative energy states).

The Dirac equation was, historically, the first successful relativistic wave
equation. The lessons leamned from its success have been of great help in the
understanding and the interpretation of other relativistic wave equations. It is
only proper then to start the detailed discussion of the relativistic wave equations
with that of the Dirac equation.

10.2A. The Dirac Equation

Since the operators o and 3 are independent of the space and time co-ordinates
and since they satisfy the anticommutation relationships (10.16) and (10.23a), it
is clear that they cannot be represented either by algebraic numbers or by differ-
cntial operators. Representation by matrices is the only alternative. We will,
hereafter, regard them as matrices and drop the operator symbol when so
considered. These matrices are referred to as the Dirac matrices.

In place of ocand B, the set {y,} defined below is also commonly used.

Y, =-ifoy, (k=1,2,3);7,=D. (10.26)
From (10.16) and (10.23), we get:
{r. v} =25, (10.27)
In terms of 7, the Dirac equation (10.25") takes the form,
(0, +y(x) =0, (10.25%
where, K =mclh.

Eq. (10.25%) is the covariant form of the Dirac equation.
The properties of the Dirac equation are determined by the properties of the
Dirac matrices. Let us, therefore, consider these properties.

Properties of the Dirac Matrices

DM 1. Since the Dirac Hamiltonian should be hermitian, it follows from (10.21%)
and (10.26) that o, and [, as well as v, are hermitian.

DM 2. The eigenvalues of the matrices are £1.

DM 3. From v, = -V,Y,.. we have, ¥, = %Y., so that

Tr(y) =—1r(Lyy) ==Trey) ==Tr(y,).

where, we have made use of property (A.24a) of the trace of a matrix. It follows
that

Tr(y) =0. (10.28)
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The matrices oy, and B also share this property.

DM 4. Combining properties DM2 and DM3, we see that the order of the vy,
should be even, namely, 2,4, 6,...

DM 5. Up to equivalence, the y,’s (and hence also o, and B) have only one irre-
ducible representation'? and that is of order 4. The first part follows from a
thcorem of Frobenius in group theory, according to which the number n of
inequivalent irreducible representations of a finite semi-simple algebra which
possesses a unit clement, is equal to the number of elements in the algebra that
commute with all other elements in the algebra. The Dirac algebra consists of the
16 (independent) elements that can be formed out of the four y,’s. These are:

1ER), Yo YW E V), iYW Y(1 # V #0) and Y Y%, =¥ The only element that
cominutes with all other clements here is the unit element /.
The sccond part of property DM 5 follows from another result of group theory,
namely,
N=d+...+d, (10.29)
where N is the total number of elcments in the algebra and d, is the dimensionality
of the rth irreducible representation.

DM 6. Since the matrices do not commute among themselves, only onc of the
matrices could be diagonal in any particular representation.
As an explicit case, we choose a representation in which v, = B, is diagonal:

10 0 0
01 0 o) (1 o
B=%=1y 0 -1 o ‘(0 —1)' (10.302)
00 0 -1
0 o k=1,2,3 10.30b
ak‘“ Gk 0 7( . ) ) ( - )

where o, arc the Pauli spin matrices (5.34). From Eqs. (10.26) and (10.30a, b),
we have,

0 1% k=123 (10.30c)
’Yk - lO’k O 7( — 1y 4 ) N

Since the Dirac matrices arc of order 4, the Dirac equation will make scnse
only if the Dirac wavefunction is a column matrix with four rows. That is, y(x)

should have four components in the space of the y,’s.

12. A representation is irreducible if there exists no matrix that can transform, through a similarity
transformation (see Scction A5), all the representative matrices to block-diagonal form. Two
representations arc equivalent if they are related 10 each other by a similarity wransformation.



340 QUANTUM MECHANICS

yi(x)
Yy(x)
Yy(x)
Wy (x)
Substituting from Egs. (10.30a, ¢) and (10.31) in the Dirac equation (10.25%, the

latter reduces to a set of four coupled equations:
(0, + X)W, +i0y, + (10, + )y, =0,

Y(x) = (10.31)

(0, + KW, + ({0, — )Y — idyy, =0,
[0,y + (i, + )y, — (9, — K)y, =0, (10.32)
({0, = 9w, —idyy, — (0, — K)y, = 0.

Problem 10.2: Dcduce (10.30c) as one of the possible choice that follow from
(10.27) and (10.30a). What is the other choice?

Problem 10.3: If A and B are operators whose components commute with those
of @, deduce

(&A@ By=(A B)+id”.(AxB)
where 6 is defincd by (10.39).

The Free Dirac Particles

A four-component wavefunction signifies four degrees of freedom. In order to
ascertain what these are, let us consider the case of the free particle whose
Hamiltonian is given by Eq. (10.21%).

For a free particle, we expect the angular momentum to be a constant of
motion. This mcans that the components L, (k = 1, 2, 3) given by Eq. (5.2a)

should commute with . Now,

[ﬁ,[,l] Z[C§&kﬁk+ Bmcz, f?ﬁs—xASﬁl]
= c%&,{[ﬁ,,, SN ARSI SN AN
= C{a&*{[p‘[,a XAQ]ﬁJ—— [ﬁk’ x":Jﬁ}}

= e (OLf, — 0P ) = —itic (0 X P),, (10.33a)
where the relationships, [£,, ] = i#8; are used.

Hence, (1,1] = ific(px o) 0. (10.33b)
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Thus, the angular momentum associated with the orbital motion of the particle is
not a constant of motion™ for the Dirac particle. But, the operator corresponding
to the total angular momentum of a system is the generator of infinitesimal rota-
tions of the system [see the remarks following Eq. (5.134a)]. Therefore, invari-
ance of the system under rotations (which is a must from the viewpoint of the
theory of relativity) requires that the angular momentum operator should
commute with the Hamiltonian, The only possible conclusion 1s that the total
angular momentum of the particle is not represented by L but by an operator J
given by
J=1L+§ (10.34)
where S should satisfy the following conditions:
(1) The components of S should satisfy the basic commutation rules (cf. (5.4)),
[$.8)=ine, S, (10.35a)
that are obeyed by the components of an angular momentum operator.
(2) Components of § should commute with the components of L so that the usual
rules of angular momentum addition can be used to obtain J from LandS$.
(3) J should commute with H. This requires,
1,8 =it (px o). (10.35b)
(4) § should not depend on the state of motion (that is, on p). In other words, $
should depend only on & (since that is the only other vector operator in the
theory). :
It is possible to derive from conditions (3) and (4) abeve the folloving
expression for the components of S.
$,=~(it/4) €, o =—(iW4) €, Y (0 =1,2,3). (10.36)
The €, in (10.35a) and (10.36) is defined in Eq. (5.2b). Defining the Dirac spin
vector o® by

S = (w2)c”, (10.37)
we have,
6! =—(i12) & ; 0,0, (10.38a)
6P =—(i12) (ax ). (10.38b)
In matrix represcntation, we get fusing (10.30b) and (10.38b)],
p [O 0
= i 10.36
-6 Y o

where o is the matrix (vector) whose components are the Pauli spin matrices.
From (10.36), we have,

62 L 2 712"2‘2 2003
§= -7 (o) =7 6302 = (W)l

13, We will sce that, in the nonrelativistic limit, & reduces to the velocity operator (hence parallcl
10 P) so that in that limit (p x &) = 0 and L becomes a constant of motion.
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Thus, the eigenvalues of §, (as also of §, and §,) are +(#/2). We also verify that

conditions (10.35a) are satisfied. Therefore, § could be interpreted as an angular
momentum of the particles. Since, however, § does not arise from the orbital
motion, it is called the intrinsic angular momentum, or spin, of the particles.” We

conclude that the Dirac particles have spin %

Problem 10.4: Deduce (10.36) from Eq. (10.35b).

Problem 10.5: Verify the following properties of the components of G°.
cASinSJP =i S 6,? i#])
{67,671 =28, (,j =1,2,3).
Now, a spin % particle has only two degrees of freedom, namcly, spin-up and

spin-down (S, =+#/2 and S; =—#/2). We have to account for the additional two
degrecs of frcedom of the Dirac particles. In view of {10.22) which does not

exclude the possibility
ap =—Np*+mic?,
we surmise that the additional degrees of freedom might be related to the exis-

tence of negative energy states. That indeed is the case is confirmed by the fol-
lowing analysis.

A free-particle (planc-wave) solution of the Dirac equation can be written as
Y(x) = u(p) exp [(i/A)px] = u(p) exp [(i/h) (p-x—-E1)),

(10.40)
where u(p) is a 4-component spinor':
u(p)
u(p)
u(p) = 1041
®) i{p) ( )
u(p)

We choose the z-axis along the direction of motion of the particles. Then,
V() =, (53, 1) = u,(py) exp [(i/B) (pyes —E1)), (r = 1,2,3,4).  (10.40a)
Substituting from (10.40a) in (10.32), we get
—cpyt, +(E +mcHu, =0,

(E ~mc?u, — cpyuy =0, (10.32Y

14, The hypothesis of spin preceded the Dirac theory (See footnote 3, Chapter 5).

15. A spinor is a vector in the spin space. It is distinguished from an ordinary vector by its peculiar
transformation properties under rotations [see Eq. (5.145¢) and (10.135%)). We have already
seen that the space of the Dirac matrices is, in fact, a spin space.
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2
(E —mc u,+cpu, =0,

¢ gty +(E +mchu, =0.
For a non-trivial solution of this set of equations, the determinant of the coeffi-
cient matrix should be zcro (see Section A 6). That is,
(cp)’ —(E*-m’c*) =0,
or
E=te,, (10.42)

e =+Npcr+m’c*, (10.424) :
We might be tempted to throw away the negative energy'® on the ground that it is

unphysical. That we cannot do this will be clear from a consideration of the
wavefunctions:

with

Casel: L=¢>0.

Substituting € , for E in (10.32"), we get two independent solutions for the spinor
«. These are,

a 0 \
W= 2; u@— ‘(; i (10.43a)
0 -b
where,
1 me? 2
a=—=|1+—1,
2 €,
1 N\z
b:—i[l—%‘z—) . (10.44)
P
Case 2: £E=-¢ <0,
In this casc, we have,
—b (0
W) O yeoibl (10.43b)
a 0
0 Lz

16.  The distinction between the negative value in (10.42) and the negative value in (4.117) in the
case of the hydrogen atom, should be noted. In the former case, it is the total energy (including
the rest encrgy) of the particle that is negative whereas, in the latter case, the negative energy
(which excludes rest encrgy) merely indicates that the potential energy dominates over the
kinctic encrgy.
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Using (10.39), we verify,

ofu“) =

o u®=-u®, (10.45a)

Pu = 4u®,

oou®=-u", (10.45b)

Thus, 4 and u® are, respectively, the spin-up and the spin-down states with

positive cnergy while ™ and ™ are similar states with negative encrgy.
Also,

a 0 ab 0

2 2 0o -
¥ uu O = 0 a \ ab i (10.46a)
r=1 b& 0 b 0
Lo -ab 0 b’
and
4
T WU = @2+ b3 =1, (10.46b)
r=1

where, [ is the unit matrix of order 4.

Comparing Eqgs. (10.46a, b) with the condition (2.122b) for the compleieness
of a set of vectors, we see that the positive energy states alone do not constitute a
closcd Hilbert space whereas the positive and ncgative energy states together
form such a closed space. As a result, even if we have initially a positive encrgy
particie, it can make a transition (o a negative energy state in the presence of an
external field. It is clear, therefore, that the negative energy states arc integral
parts of the theory, This aspect also explains the four components of y as arising
from the two spin states cach corresponding to the two encrgy states.

In the non-relativistic limit, € = mc?, so that, from (10.44), a = 1,b = 0. Wc
then see from (10.43a) and (10.46a) that «™® and 4™ could be regarded as essen-
tially 2-component wavefunctions spanning a closed Hilbert space. Therefore, in
this limit, a positive-encrgy particle will remain as a positive-energy particle cven
in the presence of interactions, and the problem of negative cnergies will not arise.

Problem 10.6: Verify Egs. (10.43a, b),
The Equation of Continuity

Now that the Dirac equation is also found to be not free from the ncgative encr-

gies, we have to make sure that the cquation, though first order in time, is not

bedevilled (like the Klein-Gordon equation) with negative probability densities.
Taking the Hermitian conjugate of Eq. (10.25%), we have,

(@11, + xy" =0.
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Multiplying this equation from the right by 7,, we get, since
a; = ak’ a; = “64»

3,9~y =0, (10.47)

where, =y, (10.48)

is known as the Dirac adjoint of y, while (10.47) is the adjoint Dirac equation.
Using the representation (10.30a) and (10.31), we have,

-_— . * - id
Y=Y\V,~ Y~ Y, (10.48a)
_ \____/
Left-multiplying (10.25% by v, right-multiplying (10.47) by y and adding the
two, we gcet,
0, (y7,¥) = 0. (10.49)
Now, WYpWZ\V'YAYpW’ has the dimension of a probability density. Therefore,
¢ WY,y has the dimension of a probability current density. But c\yy,V is antiher-
mitian. The 4-vector, '
J.=icyyy, (10.50)
is then seen to have the right form o be a probability current density. Multiplying

Eq. (10.49) by ic, we get the equation of continnity (10.9%) with the probability
current j, given by Eq. (10.50). The probability density p is defined by

Jo=icp, or p==(ilc)j, = y'y. (10.51)

Thus, the probability densily associated with the Dirac equation is positive defi- '

nite and so there is no difficulty in interpreting the Dirac wavefunction y as a
probability amplitude.

Non-relativistic Limit

Next, we should verify that the Dirac equation has a sensible nonrelativistic limit.
We have alrcady seen from Egs. (10.43a), (10.44) and (10.46a), that, in the case
of free particles, a 2-component description (corresponding to the two spin statcs

of a spin % particle) appears to be sufficient in the non-relativistic limit. We have

to show that such a description is adequate even when the particle is not free. For
this, we consider a Dirac particle in an external electromagnetic field described by
the vector potential A and the scalar potential @ [see Eq. (8.184)]. If e denotes the
electric charge of the Dirac particle, the effect of the field on the particle would
be 1o change its momentum from p to P = p — (¢/c) A and the energy from E 10 E
—ed. Correspondingly, the Dirac equation (10.25") becomes (where,
Ey = iho,y),

(E —eD)y=c(0- P)y+Bmciy. (10.52)
Writing,

.
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y= @ (10.53)

=Yy = W’) 10.54
¢ [wj’x [Wa,’ (1059

and substituting for & and B from (10.30a, b), Eq. (10.52) splits up into the fol-
lowing (wo equations:

where,

(E —e®)d = (G- Py +mc, (10.52a)
(E —eD)y=c(0-P)p—me™y. (10.52b)
Writing, E = E’+mc?, we get from (10.52b),
c(G-P) }
=y 10.55
X {E'—e¢+2mc2 & (10.552)
Similarly, putting £ = E’ - mc? in Eq. (10.52a) we get,
c(6-P) }
=N 10.55
¢ {E'—ecb-—lmcz X ( o)

In the non-relativistic case, | E'—e® |« 2mc?and | P | « mc, so that the following
approximations could be made [Remember that (E’—e®) is the kinetic energy
and P = myv, is kinetic momentum] :

G-P

- -/ siti 10.
pa Ime 0« 0 (positive energy) (10.56a)
and
(G-P) _
= —= . 10.5
(0] Te ¥« (negative energy) ( 6b)

Thus, in the case of positive cnergy states, ¢ represents the large components
while ¥, denotes the small components.
Substituting from (10.56a) in (10.52a), we have,

Le
(£ —mc))o = [ ©-F) + ecp}b. (10.57"
2m
Now, '
(6-PY=(6-P)(G-P)=P*+ic.(PxP), (by problem 5.6)
= (ﬁ—SA} ~(etlc) (G- B), (10.58)
Since

(P x P) =(f)—§A)x(f)—§-A)

=—(elc)[Axp+PpxA]l =(—elc)(—ihB) (10.59)
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where, B =V x A, is the magnetic field (see Eq. (8.184)).
Hcre, the commutation rules (3.14d) are used.
In the non-relativistic case,

(E —mc?0 = i%0,9. (10.60)
Thus, (10.57") reduces to :
(p—(ele)A)  en

‘8:{
00 =", 2me

This is the Pauli equation” for the electron. The second term on the R.H.S. is the
potential encrgy associated with a magnetic dipole of moment,

M:(ﬂ) o. (10.61)

(6-B) +e<1>}¢. (10.57%

2mc
Since the cigenvalucs of ¢ along any direction are +1, we have,
M (observed) = (M )=+, (10.61a)
where Hg = (e#/2mc), is known as the Bohr magneton.

Also, since e is negative for the electron, M is antiparallel to the spin. These
results are in agreement with the observed magnetic moment of the electron.
Thus, Eq. (10.57%) not only establishes a meaningful non-relativistic limit for the
Dirac equation, but also shows that the Dirac particles (at least the positive energy
ones) arc electrons.

Problem 10.7: Show that in the case of a weak magnetic field, Eq. (10.57% can
also be written as

B mte
i1 =| T—~——(L+25) - B|o,
0 b e L+25)-B ¢
where, L is the orbital angular momentum operator.

According to (10.56) and (10.53), ¢(x) and Xx) could be regarded as the
non-relativistic limits of y(x) for the positive and the negative energy siates,
respectively. Here, ¢ and X are 2-component wavefunctions whereas W is a 4-
componentone. We can make use of these functions to define the non-relativistic
equivalent (or limit) ©,, of a Dirac operator € - Q,, is the non-relativistic equiv-
alent of Q if (w,1Q|vy,) approaches {0,]<, |6,) for positive energy and

(X, 1, | X.) for negative energy, in the non-relativistic limit.

Define, T, =%(i £B). (10.62)

Then,
n=mn,; na =0. (10.63)

17, Pauli, W. Handbuch der Physik, 2nd ed. Vol. 24, p. 1 (Springer, Berlin 1933). Note that ¢ is
normalized only up 10 zero-order in the velocity [see Eq. (10.84)).
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Thus, 7, and &_ are projection operators that projects on to the subspace corre-
sponding to the eigenvalues +1 and -1, respectively, of . That is,

TY=Y Y=y, (10.64)
where,

By.=ty,,
or,

pr, =m,. (10.65)
Gbviously,

Y=Yy,
since
n+m =1, (10.66)

Using representation (10.30a) and definition (10.54), we see,

Y, = @; v = @ (10.67)

In the limit of small velocities, we have,
v ~0W+ (E>0)y :0‘4’_ (E - 0). (10.68)

Problem 10.8: Using (10.56a, b) show that, in the nonrelativistic limit,
y_=[(ot- v)/2c]y, (positive energy),
and R
v, =~{(a- v)2c]y_(negative cnergy).
1t is convenient to divide the operators of the Dirac theory into two classes

depending on whether they commute or anticommute with 3. The former type are
called even operators while the latter are called odd operators.

BG, = B By =-Q . (10.69)
Also,
Qr.=nQ, Qn =710, (10.70)
An arbitrary operator Q2 can be written as sum of an even part and an odd part:
Q=Q,+Q,, (10.71)
where,
A 1 4 A A 1 . N
Q, =35+ BOP): Q= Q- OP). (10.712)

We noed. therefore, consider the non-relativistic equivalents of even and odd
operniers only.
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W, 1, 1) =4w, | (1 +7OQ,,+7) | y,) o |
=0, 1@, 1w, )+, 1 Ty, ), (10.72)

where Egs. (10.70), (10.63) and (10.64) have been used.
Similarly, ;
W, | Qo P =AW, 1 2 1W, D+ W, €21y, ) (10.73)

Thus, an even operator connects components of like size while an odd operator
connects the large components with the small components.
Now, (10.69) requires €2, and €, to be of the following form:

Q(+) 0 ) 0 Q(’r)
O = o=l | (10.74)
0 oo o
where, Q® are 2 x 2 matrices. Then, using (10.67), we get
Wy 12, 1y, 0 =40, 19016,), (10.752)
W, 19, 1w, y=( 197 x,), (10.75b)
so that, from (10.72), we have, )
(v, 1€, IW) (¢b 1€4719,), (E >0), (10.76a)
and
Wl 1y, = 19018, (B <0), (10.76b)

Using the results of problem 10.8, we can write (10.73) as,

(@) (a ¥)
0,60

v, ) : (10.77)

t

W 11, = *Ml{

where, as usual, the upper sign corresponds 1o positive energy and the lower sign
to ncgative energy. Again from (10.74), (10.67) and (10.30b) we get,

Wy Qe 9)/2c] Ly, ) =0, 1 1O (G- 9)/2c]4,) (10.77a)
W, Q0 9)2c] [y, ) =(% | QG- ¥)2c] X,) (10.77b)
so that

W, 1% 1, = (1720)(0, | {6 9+ DS 1 o,)

for E >0, (10.78a)
and
W 11, > = —(1126) 06 HOPG 1)+ AT} | %),
for E <0. (10.78b)
Thus, from (10.75) and (10.78), we have
«Q, ) = = Q0 (10.79)

Q) =+(1/2c)[Q5(c- )+ (6- Q. (10.80)
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It us consider a few illustrative examples. As even operators, we choose B and
6. From (10.30a), (10.39) and (10.79), we have,

B, ==, (10.79")

@), =o. (10.79)
a.is an example of an odd operator. From (10.30b) and (10.80), we get,
(0),, =+(1/2c)[6(6 - 9) + (G- 9)3]

=H(v/c). (10.80")
That is, at non-relativistic velocities, ¢ & reduces to the velocity operator. We see
then from (10.33b) that, in this case, the orbital angular momentum becomes a
constant of motion. This is not due to the disappearance of the spin (the spin is
very much there, as indicated by (10.79%) as well as by (10.57%), but due to the
disappearance of the spin-orbit coupling which, unlike the spin, is truly of rela-
tivistic origin (see the next sub-section).

Spin-Orbit Coupling

In order to exhibit the presence of the spin-orbit interaction and to establish its
relativistic origin, we consider an approximation which is a step higher than that
which led to the Pauli equation (10.57%). From (10.55a) and (10.56a), we see that
the latter is valid up to zero-order'® in (v¥c?). Therefore, we want the present
approximation to be valid up to first order in (v¥/c?. From (10.55a) we see that
the required approximation, for the positive energy case, is:

E V P

where V(r) = ed(r).
Substituting (10.81) in (10.52a), we get (since E = E’+mc?),

E'o=H¢, (10.82Y
with
A_(c‘s-l")[ _E'—V] P
=51 oz |6 D)V
PZ
=(1— 2m62)2 V(r)—~——(c B)+ {0 (VVXb)}- (VV )
(10.83"

18,
E'—ed=mc? [(1 _Vl/cz)““z - 1] =mc? I:-;—(vz/cz)+ (3/8) (v2/c2)1+ ]

Thus,
(E'—e®)me?=0. Ve ') + WD+ (8 +.
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to first-order in (v¥/c?). Here, Eq. (10.58) as well as the relationship,
©-BYF(r)(6-P)=F(r)(6- B -in-(5-VE) (S p),

which follows from an application of Eq. (3.14d), have been used. Now, in the
case of the Pauli equation, the normalization of ¢ is given by

1= [wyd'r= [@o+r0d'

~f{ (f D }4’ ¢d’r, (by (10.56a))

~ j 0'9d’,  (to zero-order in (V¥c?).

That is, ¢ is normalized to the same approximation as the equation.
In the present case, we have,

o Py
f\VWd r= J-[l +%Eclz}f¢d3r
=f[ 4 % 2\¢> ‘o',

to first-order in (v¥c?). Therefore, ¢ is not a normalized eigenvector, hut the

normalized (to order v/c?) function v is given by

y= (1+4 5 2) 0=Cé, (10.84)

where,

A p2
¢= (1 S 2). (10.84a)
In terms of y, Eq. (10.82") can be written as
E'Cy=HAC"y,
or (multiplying both sides by €),
E'w=H"y, (10.829

2 2
Ar=CAc =1+-L A1~
( 8mc? 8m?c?

From (10.83"), we see that C need be considered different from enity only in the

where,

caze of V(r). And in the case of V(r), we have,
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N S PO p2 5

'~V(r)+ [ffvzv 2¢‘h(VV Pl

Thus, up to first order in (v¥c? ),

e 2
) b,
r_ C _ \v)
H - +ed (0 B) m3c2 e 2[(5 ( pr)]
n ‘hz 245 2
—2m2c2(vv Py - zczv V. (10.839

The first three terms in /1 are the same as the ones appearing in the non-
relativistic equation (10.57%). The remaining terms are relativistic corrections of
order (v¥c? [Remember that | —i#VV |=|pV | 1. The term in p* results from

writing.
E-Vy P 1 (PY 1 (pY
2met ) 2m 2nc*\2m )  2mc\2m)’

and is the lowest-order relativistic correction to the kinetic energy operator as secn
by expanding the energy operator Vp%c2+m%*® in powers of (p¥m*c?). The fifth
term in (10.83%) represents the spin-orbit coupling. In the case of a spherically

symmetric potential (V(f) = V(r)), we have

A

V= (f'/r)%r‘i,

and then, _
- A1V . .
1[ spin-arbit =4_—_2_2 r ar (G ) )’

(10.85)

where L=#xp. The last two terms in A’ seem to be related to the existence of
negative encrgy states (in fact, to the phenomenon of Zitterbewegung—the rapid
{lucwiauons in the coordinate of the electron over a distance of the order of the
Compton wave length (#/mc). These {luctuations arise due to the mixing of pos-
itive and negative energy states'®). The last term is usually referred to as the
Darwin term®

The Foldy-Wouthuysen Transformation

We have seen that, in the non-relativistic limit, a separation between the positive
and the negative energy states can be achieved in the form of 2-component
equations. We should expect such a separation possible, in the case of free Dirac

19, SecRef. 1, Sections 3.3 and 4.3. -
20. Darwin, C.G. [Proc. Roy. Soc. A 118, 634 (1928)] was the first to obtain it.
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particles, even in the relativistic case. For, in the absence of interactions, a par-
ticie in a positive energy state will remain in the positive energy state. But a

1
spin-i particle with positive energy has only two degrees of freedom. There is a

certain redundancy in the description of such particles in terms of 4-component
wavefunctions. Therefore, an equivalent description in terms of 2-component
wavcfunctions must exist.

Let us assume, then, that there exists a unitary transformation U such that the
transformed Hamiltonian A’ = UAU*, where H =c(0- p)+ Bmc?, satisfies the
eigenvalue equation,

Ay, =+|E|y,=te, v, (10.86)

with | E | =cVp?+m%?. Here, v, are essentially 2-component wavefunctions.

In fact, they could be taken to be of the same form as the y, in (10.67). We see,
then, from (10.65) that Eq. (10.86) is satisfied if

UHUt=H'=fe,. (10.87"
That is, the transformation should eliminate the odd operator o [which causes

mixing between v, and y_ (see (Eq. (10.52))] from A. The problem of finding
such a transformation is analogous 1o that of finding a transformation that elimi-
nates 6, from a two-component spin Hamiltonian of the form,

H=bG,+b,0,. (10.88")
The transtormation in the case of (10.88‘) is a rotation (of the co-ordinate system)
about the y-axis in spin space through an angle 8, given by tan 8, = b,/b, (See Fig.
10.1(a)). The unitary operator corresponding to this rotation is, according to Eq.
(5.135),

U,(0,)=exp {(i/2)0,0,} = exp {(%J&,&,e,}. (10.89)

Referring to Fig. 10.1(a), we see that #is transformed into
U 910 = 5 =b" 5, =\[b2 + b2G,. (10.88Y)
In the casc of the Dirac Hamiltonian, we have &, B, cp and mc? respectively-in

place of G,,6,,b, and b,. The unitary operator corresponding to (10.89) is,
thercfore, given by

0=e", (10.90)
N —I R
ith =— B p 10.90:
witl S Tme B p)O, ( )

where, © is a function of (Jp|/mc.) We show below that the transformation
(10.90) indced transforms A 10 the form (10.87) with a proper choice of ©.
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Fig. 10.1. Graphical representation of the Foldy-Wouthuysen transformation [In (b),
' =(Ip|/mc)el.

e’ = exp {(112me)B(a- p)O}

< aloe Py 1 {Bapi?
:]+B e 9+'2—! (2m(;)2 @2+...

_[i_g_lp|zez+1|p|‘@“_ }
2 2me)? M Qme)*

+B<&-m[|me__1_ame>3+ J
Ipl L2mc 3! Qmc)

_[1p1e) B@-p) . (1p1© ]
—cos( Y )4— Y Sm(ch " (10.97)
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since (B py2=~Paipi=—~p.
k
Also, (o p){Bee- p} =~ (Plax- p3} (- p), (10.92a)
BiB@- p) =— {Bla- p)1B. (10.92b)
Thus, HS=-$H, (10.92¢)
and ﬁe"is = e‘sl?.
Hence, ' =efe™ =e* N
={cos 1p1© +B(a'p)sin 1p1© }{c(&-ﬁ)+Bmcz}
me Ipl mc
:(a-p){c {Pfcos [P1©) o 1P1O }
Ipl mc mc
p plO
+B{mczcos(l P ®)+c b sin(‘ Pl )} (10.87)
mc mc
We want the term containing ¢ to vanish, The necessary condition is
an [1R1O)_1R1 g _me o 1P (10.93)
me mc ipl mc
Then,
91O 2 _(1pl® .
cos k oy ):mc /€, ;sin pops J=c Ipl/e,. (10932
so that

A’ =pNp*ct+mct=Pe,.
[Note that p’ =e*pe™ = p).
The transformation (10.90) was first proposed by Foldy and Wouthuysen.”

Hence the name Foldy-Wouthuysen (F-W) transformation. The transformed
wave function is given by

v =0y=e"y, (10.94)
so that the wavelunction corresponding to the positive energy state is

wﬁ=—1i(i +BV, (10.952)
Similarly, ncgative energy states are represented by

w’_=%(i -By". (10.955)

21.  Foldy L.L. and Wouthuysen S.A., Phys. Rev., 18, 29 (1950).
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v’ is referred to as the wavefunction in the Foldy-Wouthuysen representation. A
constant of motion will be represented by an even operator in the F-W represen-
tation. Thercfore, from (10.67) and (10.74), we have,

Wy 1T, )=, 19167,

and

W, 11y, )= (X, 1QO1X,).
Thus, the F-W transformation achicves a separation between the positive and the
necgative energy solutions of the Dirac equation. The positive encrgy solutions are
described entirely in terms of 2-component wavefunctions. From Egs. (10.95a, b)
we see that the projection operators ', and 7'_ that project out from an arbitrary

state the positive encrgy and the negative energy parts, respectively, are given by
[cf. Eq. (10.62)],

aa i n 1 .
eSte = w.=5( +f), (10.962)

where T, arc the projection operators in an arbitrary representation. Using Egs.

(10.92b), (10.87%) and (10.93a), we get,

cht=e"i$7ﬁt'ie"$

ol . .
:e—.S_(liB)eHS
2
1 14 e
S e
5 E3Pe

1. 4
=5(xdlie). (10.96b)

In the presence of an external ficld, transitions between positive and negative
cnergy states are inevitable. Therefore, a perfect separation between the positive
and the ncgative encrgics is not fcasible. However, it is possible to find a F-W
transformation” which Icads to a separation of the positive and negative encrgics
10 some desired order in (v¥c?). That is, the transformed Hamiltonian is given as
a power series in (v¥/c?) with the odd operators eliminated from terms of up to the
chosen order in (v¥c?). This procedure is, obviously, useful only when the
external ficld is weak and (v¥c?) is sufficiently small.

Becausc of the occurrence of the momentum opcerator (which is a differential
operator in configuration space) in §, the F-W transformation (10.94) is a non-
local one. That is, it depends on the values of y at different points separated by a
distance. Writing

. 2e 2r D)+ me?
e“:l[ P J [wcﬁ(“ ?‘”‘C } (10.91a)

2
2\ e, +mc b

Soe Rec 1, Section 4.3,
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which follows from (10.91) and (10.93a), and assuming ep»mcz, which is the

casc at ultra high velocitics, we get,
vx) = (1=~ itc (Bl e )@ Vyk). (10.94a)
Thus, the contributions to y” come from a region of lincar dimension of the order
of
Ax~lincfo]/ e, < (Wmc),
since
e, =mc’(l Vi) " 2 mc?

This result suggests that the position co-ordinates of a Dirac particle also might be
defined only to within a Compton wave length. Indeed difficulties are encoun-
tered when we try to interpret # as the opcrator representing the position co-
ordinates. For example, the equation,

di 1

dr it
should normally imply {sce, Eq. (4.32a) which should hold good here since the
Dirac equation is of the form (4.14)] that cais the velocity operator for the Dirac
particle. That it is not really so (except in the nonrelativistic limit) is evident froia
the noncommuting nature of its components and from the fact that its eigenvalucs
arc +¢. In fact, since & mixes the positive and negative encrgy states, eigenveclors
of cat (and, hence, also the eigenvalues) do not correspond to the physical states
of a free Dirac particle. We can hope to get a sensible expression for the velocity
of the particle only in a representation in which the positive and the ncgative
encrgics are scparated. Using (10.91a) and the relations, {(a- p), o} =2p and
(& P)* = p?, we obtain for the transform of (c() in the F-W rcpresentation, the
expression,

[#,H} =ca, (10.97)

BB __cp@-p)

2
€y €,{e,+mc)

col =eSce™ =ch+ (10.97%

The expectation value of this operator for a positive encrgy state is:

(y, lea’ lyy=cPl e, (10.98)
which is the usual relativistic expression for the velocity of a particle. An operator
that plays the role of the position co-ordinates of the particle also can be obtained
in this casc®. In the presence of external ficlds, however, the separation between
positive and negative energies can be only approximate and a consisient quantum
mechanical interpretation of the position and velocity operators for a Dirac par-
ticle becomes difficult.

Problem 10.9: Verify Eqs. (10.91a) and (10.96b).

Problem 10.10: Show that the transformation U’ that eliminates the even oper-
ator B from /7 is given by

23, A more detailed discussion of this wopic can be found in Ref. 3.
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1 [ . NCE f»]
€ _+C -mcp————|.

el ? ad B ipl

Also, show that this transformation separates the states belonging to different

cigenvalues of the helicity operator
h=@"pylpl.

A ‘~S'
U=¢” =
2

The Hydrogen Atom

As a final and conclusive test of the correctness of the Dirac equation as the

relativistic wave equation of spin ; particles, we examing its predictions regarding

the spectrum of the hydrogen atom?. The Hamiltonian for this case is,

H=c(o-p)+Bme+V(r), (10.99")
with V(r)=—~Ze¥r [sce Eq. (4.98a); for hydrogen atom, Z = 1]. We are interested

in the stationary states of /7, which are solutions of the eigenvalue equation,
fy=Ey. (10.100%
As in the non-relativistic case, the angular momentum would be a constant of
motion in a central ficld. Therefore, the equation (10.100") could be reduced to a
radial equation by separating the radial and the angular-cum-spin parts of the
wavefunction. The energy eigenvalucs are then determined entirely by the radial
cquation. In the non-relativistic case, the separation is facilitated by the obser-
vation that the orbital angular momentum is a constant of motion or, in the pres-
ence of a spinorbit interaction, that J2,028% (8- 1) and J, are constants of
motion. As a result, the wavefunction could be written as the product of a

common eigenvector of J2 £2,8? and, since (S-L) = %(jz— L£2-8%,0f(§-L) and
J,, and a function which depends only on the radial co-ordinates:

&(r) = R(r)7". (10.101)
The fact that %% is an cigenvector of (8 - ) ensures that &d(r) is consistent with
the relationship J = L + 8.

In the relativistic case, the orbital angular momentum is not a constant of
motion. 2,82 J, and L2+ 2(§ - L) = j— §* commute with /1 so that we could write
the wavelunction as the product of a radial function and a common cigenfunction
of J38*and J,. This procedure is, however, unsatisfactory because it does not

incorporate the relationship J =L+ 8. We should, therefore, find an operator &
which will play, in the relativistic case, the role of (8- L) in the non-relativistic
case. K must, obviously, satisfy the following conditions:

(i) TItshould commute with A.

(i)  Itshould commute with j2,8%J, and L2

24, 'The ueatment given here largely follows that of Ref. 2.
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Using thesc conditions, it is possible to obtain an expression for & (Probicm
10.11). The result is,

%=pl(c” - L)+7. (10.102)
Then,

=L +#c" L)+#

2
={L+ (h/2)6”}2+%
., M
=J2+Z. (10.103)

Thus, the eigenvalucs of & are {(j +§}h}2. The cigenvalues of % are, therefore,

cqual to k#, where,
k=a{j+1)=41,40, ooy (10.104)

since, according to (5.49a) and (5.73b), j is a half-odd integer. We haye two
valucs of k for every vatue of j. This corresponds to the two values of (6° - L).
We have®

1 . X 1] . 1Aap2
G@ - Do)
. 3
:j(}+1)—l(l+])—z

.3 o1
——(j+2j, forl_]+2

o1 1
—-(j—z), forl=j 3

Thus,
] 2 i t T 1 i r (10'10 la)
k—-‘ '+—‘ frl-" (10104b)
j 2 ’ ° J 2. ’

We should now express / in terms of % and operators that involve only radial
variables. To this end, we define the Hermitian operators,
0

P _ e 1y 1. ,
p,=(=inV), = lh(arJrr)—r(r p—i#), (10.105a)

25.  Identifying a given k-value with a definite [-value [Egs. (10.104a, b)] is strictly valid only ir. the
non-relativistic limit as, in the relativistic case, { is not a good quantum number whereas & is.
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Q, =}(&- i), or (G- 1) =ra,. (10.105b)
We have,
o2 =1; {B, &} =0s [, K1 =0.
(@B (& p)=(F- P +i@-L)=7p, +if%
(by problem 10.3)
or, . )
(o p)= &,ﬁ,+ia’BK. (10.106)
Substituting from (10.106) in (10.991)5 )
H=ctp, +ica’Bx+[3mc2+ V(). (10.99)

;
We choose a representation in which #,J, and X are diagonal (Since Jand 8
commutc with /1, Kand J, they are also diagonal) and denote the eigenvectors by
Yok, m(X):
H‘l’n,k,m = En,kWn,k,m’

j‘Q‘Pn,k,m = kﬁ\yn,lz,m7

SV pm =AY, . (10.107)

(Just as in the non-relativistic case the energy depends on /, in the present case E
should depend on k). The eigenvalue equation (10.100") becomes,

lca,p, +itckr™oB+Bmc?+V(r)~E, )W, ;m=0. (10.100%
y cannot still be written as the product of a radial part and an angular-cum-spin
part because of the occurrence in (10.100%) of &, and f which do not commute
with /. In order Lo eliminate these operators, we left-multiply (10.100%) by f3, add
the result to (10.100%) and then divide by two, getting,

k) - .
(c b, 57”5)(01,\4;",,”) FmE+V() =y Wonim=0  (10.108)

where, Winiom = %(i By, e

Similarly, 310, % (10.100%) + Bd, x (10.100%)] gives,

ik o
(c b +l—f—j\pﬂm — M+ E, =V (@Y., ) =0, (10.109)

Egs. (10.108") and (10.109") constitute a sct of coupled equations for ., ; ,, and
oLV, .. Since the cocfficicnts do not contain either spin or angle-dependent
operators, Y, and o, y_ could be written as products of a radial function and u

spinor. The latter has to be the same for both , and &, y_as it is determined 1y
Konly:
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w(x) =0, (& (10.110a)
o) =X, ()., (10.110b)
-n,k,m
Substituting these in (10.108") and (10.109') and defining,
mc*+E, mmcz—EM
17 #e [y T #e s
A=A, = (iR)p, 4 (10.111)

= (Zetc)=-rV(riec,

F Giry ..
p=ar, 200, S0,
we get, |
d r 2
B _Tlpy=0, 10.108
(dp p) (P)- [ p) ()= (0108
d k AT 2
S osoors

These equations can be solved by the method of series integration. The wave

functions ¢ and X should be finite at the origin r = 0 but should vanish at infinity.
Thus,

Gip=0)=0=F(p=0), (10.112)

Gp=e)=0=F(p=w),
which suggests the expansions,

F(p)=f(p)e®; G(p)=g(p)e*, (10.113)
where,
JP)=p" o+ fip+ 107+ ...+ £,07)
g(P) =P (gt &P+ e+ +2.P7), (10.114)
with
5#0,8,%0, (10.1142)
and ’
rn’=0,1,2,...,(any positive integer) (10.114b)

The series (10.114) are finite as otherwise the boundary conditions at p = ce can-
not be satisficd. Also, the boundary conditions at p = 0 require

, fO)=g0)=0,
so that, v>0. (10,1152)
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Substituting from (10.113) and (10.108?) into (10.109%), we get,

d k Az F _ 3
(d_p_”ﬁ)g ‘(K‘E)FO’ (1015
d_, k) (&, T) _ :
(d_p_l_p)f (A+p)g > (01

Substituting for fand g from (10.114) and equating the coefficients of the various
powers of p 10 zero, we have:

p i (v+k)g,+Tf,=0, (10.116Y
~Tg,+(V—k)f;=0.
Since fy# 0 and g, # 0, this requires
v=Vki-T?<|k]. (10.115b)

v+s—1 Az (10.1171)
p :(v+s+k)gs—g,_1+1"f,——gj§_1=0,
A
(V +5 —k)f:r —f:v~1—rgs__zg:‘l = 0
Eliminating g, _, and f,_, from these equations, we- get,
v+s5—k)A,~TA
g _(v+s-h)d,-T4 (10.118%
i TA+(v+s+k)
From (10.116%),
8 V-—k r 2
—_—— = 10.11
i T v+k ( &)
Putting s =n’+1in (10.117"), we have,
g, =~ (A, /A, (10.117%
while from (10.118"), we get,
(V+n'—k) AZ—FA} ,
= . 10.11
&n {FA2+(v+n'+k)A " (10.118)
From (10.117% and (10.118%, we derive, using (10.111),
20(v+n")=T(A —A) = (I /hC)E,. . (10.119)
Squaring wnis expression leads to:
2 -172
E. =mc*1+ ] ,(n'=0,1,2,... 10.120
n'k mc { (V+I'l’)2 (n ) ( )

where the positive character of E, , evident from (10.119), is taken into account.

Formula (10.120) gives the energy levels of the hydrogen atom. Its predictions
(after taking into account the hyperfine splitting of each level into a doublet due
tc the interaction of the proton spin with the electron magnetic moment) are in
agrecment with the observed spectrum of hydrogen, except for minor discrepan-
cies discovered much later (1947) and known as Lamnb shift.
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The fine structure of the levels can be exhibited by expanding (10.120) in
powers of I'%, remembering®

W+nY= Wk —T4n?)

r n' k) T* n'lk|
znzli1~‘{;1—?’(1+ k2 j+F 4[(4 eeef e

where, n=n"+lk]. (10.121)
The result is, up to second order in I'%,
rr Ir*(an 3}
=mc?|l-————| — - |l 10.120
Eai=me [1 P 2n‘(|kl 4] (10120

n is called the total quantum number and »n’ the radial quantum number. The
range of values of (n, n”) and k are given by Eq. (10.121) when the allowed values
of k and n’ [Egs. (10.104) and (10.114b)] are taken into account. We have,

n=1,2,3,...,+0c,

n'=0,1,2,...,(n-1),
k=%(n-n"), whenn’#0 (10.122)

=(n—n"), whenn'=0.
The last ling in (10.122) is deduced as follows; When n” = 0, we have two different
expressions for the ratio (g,/fy). From (10.117%), we have, (g,/fy) =—(A/A) < 0.
But from (10.116%), (g,/f;) = (v—k)¥T. Since O<v<|k|and I'>0,(v—k)T is
negative when £ is positive and positive when £ is negative. Consistency of the
two expressions for the ratio thus requires that & be positive.

Eq. (10.120a) shows that the level corresponding to a given n, splits up into n
levels corresponding to the n different values of | k | . These levels constitute the
fine structure of the level labelled by n. This name derives from the fact that the
encrgy separation of the levels corresponding to different | & | but the same »n is
small compared with the energy separation of levels belonging to different n. In
fact, the ratio of the former to the latter is seen from (10.120a) to be of the order
of I = (1/137)* for the hydrogen atom. We also see that the energy levels are
two-fold degenerate with respect to the k-value since E, = E, , (This degeneracy
isremoved in the ‘Lamp shift’). The fine structure belonging to 2 = 3 is displayed.
in Table 10.1, where the levels are classified by the quantum numbers »”, k and

Jj=1k} —%. It is also customary to label the states by the non-relativistic quantum
number [ (related to k by Eqs. (10.104 a, b)) and the spectroscopic notation based
on that. These labels are also given in the Table where, for example 3P, denotes
the state withn=3,j=3/2and /=1 (k=2). InFig. 10.2, a (schematic) comparison

15, Tis known as the fine structure constant. For hydrogen atom
= (e¥he) = 1/137.
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of the observed and the predicted (according to formula (10.120a)) levels of
hydrogen for n =3 is presented.

Table 10.1. Fine structure of energy ievels of hydrogen atom forn =3

Relativistic labels Non-relativistic labels
n’ k J ! Spectroscopic label
0 3 5 2 3D, ] spin-orbit splitting
] -2 n 2 3Dy, } degenerate
2 R 1 3P, ]
2 -1 1n” 1 3P,
1 172 0 38, }

Problem 10.11: Assuming % to be of the form k=A(c” - L)+ B, derive the
result (10.102).

Problem 10.12; Calculate the energies of the hydrogen levels up to n =3, using
formula (10.120a). Plot these on an energy level diagram similar to that of Fig.
10.2. [mc*=510keV; T = 1/137].

1.orentz Covariance of the Dirac Equation

Now that sufficient evidence is at our disposal to suggest that the Dirac equation
is the relativistic quantum mechanical wave equation of the electron, we should
turn our attention to establishing its covariance under Loreni: transformations.
The form (10.25%) has the appearance of a covariant equation. Nevertheless it is
necessary to establish the Lorentz covariance explicitly; for (as will be clear from
what follows) covariance cannot be taken for granted merely on the basis of the
appearance of the equation.

Now, Lorentz covariance of an equation means that it should have the same
form in all inertial frames. Thus, if

(v,0,+¥w(x) =0, (10259
is the Dirac equation in the inertial frame S, then it should be of the form,
(v,9,/+ Ky =0, (10.123)
{

in the inertial frame S’, where 0,",x” and y’(x”) are, respectively, the Lorentz
transforms of d,,x and y(x). A Lorentz transformation is an orthogonal trans-

formation in the Minkowski space and could, therefore, be represented by the
co-ordinate transformation,

x,ox/ =a.x, (10.124)
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Fig. 10.2. Energy leveis of the hydrogen atom belonging to n =3,
(a) Dirac theory, (b) observed.

or,

x'=ax.
The orthogonality of the transformation is denoted by the condition that ‘a’ be
an orthogonal matrix. That is [see Eq. (A. 39)],

= -1
d=a,

Cr,



366 QUANTUM MECHANICS
a3, = 0,4, =0y, (10.125a)
Also,

deta =+1. (10.125b)

The transformations with det a = +1 are called proper Lorentz transformations
while those with deta =-1 are called improper Lorentz transformations. The
former include rotations in three dimensions in addition to co-ordinate transfor-
mation corresponding to uniform relative motion along a spatial direction,
whereas the latter refers to the discrete transformations of space inversion and

_time reversal (see sections 6.2D and 6.2E).

From (10.124), we have,

ox,’
=g = ‘. 16.126
a].l axp av avy.av ( )
Substituting from (10.126) in (10.25%), we get,
(v, oW +¥) y(x)=0, (10.127Y
where,
Y, = a0, (10.128Y
The result,
%) =23, (10.129)

is easily verificd. Thus, the i’s obey the same algebra (Eq. (10.27)) as the y,’s.
But we have scen that the algebra (10.27) has only one irreducible representation,
Thercfore ¥, should be related to 7, through a similarity transformation:

Y, =a,y,=L" @)y L(a), (10.128%)
L being a nonsingular matrix. Eq. (10.127") then becomes,
(Y, 0y + WL y(x) =0. (10.127%
Comparing Eq. (10.127% with (10.123), we see that
V'(x) =y (ax) = L(a)yx), (10.130)

where L is defined by Eq. (10.128%). What we have to show to establish the
Lorentz covariance of the Dirac equation is the existence of a matrix L satisfying
Eq. (10.128? corresponding to every Lorentz transformation defined by the ort-
hogonal matrix ‘a’. Eq. (10.130) then gives the law of transformation of the Dirac
wavefunction,

Case 1. Proper Lorentz Transformations

A proper Lorentz transformation is a continuous transformation and, as such, can
be built up from a succession of infinitesimal transformations. It is, therefore,
sufficient to establish the existence of an L satisfying Eq. (10.128) in the case of
an infinitesimal proper Lorentz transformation.
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Now, an infinitesimal Lorentz transformation is defined by,
a,=98,+e,,le l«1 (10.131)
Then, from (10.125a), we have,

iy

€ ="€yp (10.131a)

uv
ewmﬁ

The transformation is, thus, described in terms of six parameters. Substituting
from (10.131) in (10.128%), we get,

Yo+ en Y, =L (E) VLle) (10.128%)
This equation is satisfied to first order in €, by the choice,

1
L=1+;€w VYo (10.132)

This gives,

L'=1 -}1 € YW (10.133)

Since L depends only on the Dirac matrices (aside from the parameters defining
the Lorentz transformation), it follows that we can always find an L corresponding
1o a given infinitesimal proper Lorentz transformation, and, hence, corresponding
to any proper Lorentz transformation.

As an example, let us consider an infinitesimal rotation of the reference frame
through angle 3¢ about the z-axis. In this case, we have (cf. Fig. 5.8},

x, = X, + 00x,,
X, = X, — 60x,,
X, =X

’

X4 =X, B

so that the matrix € is given by

!
&
coco
cc oo
co oo

Thus,

i
L(e,, d0)=1 +Z S

=1+(i/12)5 6 o)y,
where,

G,,=1%,Y,=— O, (10.134)
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and e, is a unit vector in the z-direction.
From Egs. (10.36), (10.38a) and (10.134), we see that

6,=0>.
Then,
L(e,80)=1+(ir2)8 6 67 (10.135")
In general, for an infinitesimal rotation about an axis n, we have,
L(n,30)=1+(i/2) 8% (n-o"), (10.135%

from which we see that the matrix corresponding to a finite rotation ¢ is [see Eq.
(5.133)1,
L(n,¢) = exp [(/2) ¢ (n- ). (10.135%

This equation represents the peculiar transformation law applicable to a spinor: a
rotation through 47 is required to return y(x) to its original value.

The matrix L corresponding to spatial rotations is unitary (as seen from
(10.135)]. However, in general L is not unitary (as for example, in the case of a
uniform relative motion and in the case of time reversal).

Problem 10.13: Obtain the matrix L corresponding to uniform relative motion
with velocity v along the z-axis.

Case 2: Improper Lorentz Transformations
These include space inversion and time reversal.

Space Inversion

This is defined by
X o x)=-x;x =x/ (k=12,3), (10.136a)
so that,
@y =~8;;ay=a, =0;a,=1. (10.136b)
Substituting from (10.136b) in (10.128%), we get,
Ly +yL =0, (k=1,23,), (10.128%
Ly,~v,L=0.

Thus, L commutes with vy, and anticommutes with y,. It follows that
L ( space inversion) = (e)y,. (10.137)
Lisa represemation- of the parity operator . From Eq. (10.130), we have,
P y(x) = e yy(x). (10.130a)
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In the nonrelativistic limit, ¥, = B — +1 [Eq. (10.79")], so that the positive and the
negative energy states become eigenstates of £ (€ could be chosen to be zcro in
this case) with opposite eigenvalues (that is, intrinsic parities).

The invariance of the Dirac theory under the parity operation follows from the

invariance of the Dirac Hamiltonian (10.21%) [both & and p change sign by Egs.
(10.128% and (6.13b)).

Time Reversal

We do not wish to give a detailed treatment of this transformation here as it has
already been discussed in Section 6.2E. It is the transformation in which all
directions of motion are reversed (or, x, — —x,) and, as we have seen in Section

6.2E, it is antilincar. Because of this antilinearity, Eq. (10.128) needs a slight
modification. For, in obtaining Eq. (10.127%) from (10.127') we have used the
relation, Ld,"y =d,’Ly. But when L represents an antilinear transformation,
Lo,'y =-9,’Ly. Then, (10.127") leads to (10.127%) only if

aku’Yp = L“l ‘Yk Lw (k = ly 21 3)

and a,Y,=—-L"Y,L. (10.128°)
Since
100 O
o1 0 o
“loo1 o0
000 -1

We see that L should commute with all four y,. An explicit expression for L can

be obtained by a generalisation of the nonrelativistic case:
According to Problem 6.6, the non-relativistic time-reversal operator dfor the '

case of a spin % particle is given by,

i=ic,K,, (10.138Y
where, K, is the operator correspondin g to complex conjugation and G, reprzsents
the 2-component of the Pauli spin vector. We expect to get the relativistic time-

reversal operator simply by replacing G, by the 2-component of the Dirac spin
vector. Thus,

L (time reversal) =4=io. K, =yyK,, (10.138%

where expression (10.38a) for 62 is used.

Bilinear Covariants

By a procedure similar to the one leading to Eq. (10.127%), we find that the adjoint
Dirac equation is transformed, under a Lorentz transformation, into
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OV L'y, -xy(x) L' =0 (10.139)
Comparing this with,

3,/ V(x)Y, -k Yy (x)=0, (10.140)
which is the adjoint Dirac equation in the frame §’, we see that the Lorentz
transform of y(x) is given by

Y =yl)L™. (10.141)
Physical observables in the Dirac theory are bilinear in y and y [for example,
J. given by (10.50)]. In fact, they are of the form (y ") where ™" is one of the

sixteen linearly independent 4 x 4 matrices that can be constructed out of the four
Dirac matrices. The combination (y I"* ) is called a bilinear covariant because
it transforms covariantly (that is, as the component of a 4-tensor). The sixteen
matrices are (as already fisted under properties of the Dirac matrices):

=L T} =iy T, =0, =—iYY;

LY =iyy: T =iy, (10.142)
0 -i
where, ¥ = VY = (_ 1 0 ) (10.143)
¥s satisfies, V¥, = ~Y,¥5 e =1. (10.143a)

The following properties of the I'" are easily verified:
(1 T=x1.
(2) Exceptfor T* I'"I'™=-I'""I"", (n # m), so that
Tr(T=0,Tr(T%) =4,
B) TI'=cI (n2S,m=1) ‘
where
c=%1,%i.
From the above properties, it follows that the I'* are linearly independent.
For, let Zg,I'" = 0. Then, multiplying by I'"™" and then taking the trace, we

have,
a, Tr{(T™] =+4a,=0.

(4)  An arbitrary 4 x4 matrix € in the space of these 16 matrices is given by
Q=ZwI",

with W, = %Tr(ﬂl"").

The bilincar forms (y I'"y) can be classified as follows on the basis of their

transformation properties under proper and improper Lorentz transformations.
The following rclationships are helpful in deriving these.
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-1 -
L™yL =a,)\,, for proper L.T.
=Y, (W=1,2,3) and +7, (L =4), for space inversion
L™y, L =7, for proper L.T.

=-Y,, for space inversion.
We find:

S =y I'y — a scalar (invariant under both proper and improper L.T.)
V, =iy Y,y —a vector (V,” =a,V,, for proper L.T.
V,” =-V, and V,/ =V, under space inversion)
T, =i vy Y.Y. ¥ — second rank, antisymmetric tensor

T'w= Gy Oy T for proper L.T.,

Ty =Ty; T"s = Ty T, = —T,, under space inversion)
A, =i Y YsY,y — pseudo or axial vector; A, = a, A, (pr. L.T.);
A, =A,; A,=—A, (Impr. L.T.)

P =iy Y,y — pseudo scalar (invariant under pr. L.T. but changes sign under
space inversion),

The Hole Theory

By now, we have before us an impressive array of successes of the Dirac theory
— the spin and the magnetic moments of the electron, the fine structure of the
hydrogen atom, a positive definite probability density, invariance under both
proper and improper Lorentz transformations, and so on, There is only one aspect
of the theory that dampens our sense of triumph; the negative energy states. So
far we have avoided facing the problem. But clearly a solution to the problem of
the negative energy states has to be found if the Dirac theory is to survive. For,
we have seen that the negative encrgy solutions cannot be lightly brushed aside
since the positive energy solutions alone do not form a closed Hilbert space. As
aresult, a positive energy electron would be unstable against transition to negative
energy statcs as soon as an interaction is switched on. In fact, the time it takes for
such a transition can be shown to be extremely small.

Of course, the negative energy states would not have been a problem if nega-
tive encrgy clectrons were actually found in nature, Such clectrons would be
accelerated opposite to the dircction of an applied force. No such particles were
observed.

It is against the above background that Dirac proposed’, two years after the
publication of his original theory, an interpretation known as a hole theory. The
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objective was to explain why the negative energy electrons are not observed
(though they exist). For this, Dirac relied on Pauli’s Exclusion Principle (Section

9.2) according to which each quantum state of a spin % particie can be occupied by

only one such particle. He then proposed the following hypotheses which form

the basis of the hole theory:

(H1) In the normal state, called the vacuum, all the negative energy states are
occupied (in accordance with the exclusion principle) while all the positive
energy states are empty.

(H2) Only devigtions from the normal vacuum, and not the vacuum itself, can
be observed.

Suppose we add a positive energy electron to the vacuum. This electron cannot
make a transition 1o a negative energy state as all the negative energy states are
already occupicd. The stability of the positive energy electron is thus ensured.

Though the vacuum is unobservable, it is not inert; it can interact, by virtue of
its electric charge, with an external electromagnetic field. Imagine, then, a
gamma ray of energy hv > 2mc? interacting with the vacuum. One of the negative
energy electrons in the vacuum can absorb the y-ray and jump to a positive energy
state, leaving a vacancy (a hole) behind [See Fig. 10.3(a)]; the minimum energy
scparating a positive energy state from a negative energy state is
mc*—{(—mc?) =2mc* How does the hole appear to an observer? If 0, and M, are
the charge and mass, respectively, of the vacuum without the hole, and @ and M
the same with the hole, then,

Q=0,-¢ >0, sincee <0.

M=M—(-m)=My+m>M,

E
[
POSITIVE ENERGY
STATES e e
+medt ? ?
v
of T
Hole
2
-mc
r fa + €
NEGATIVE ENERGY
STATES (Occupied)

() (b) ‘

Fig. 10.3. Pair creation and annihilation in the Hole Theory.
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Thus, the changes in the charge and mass of the vacuum are;

AQ=0-0y=-,
AM =M -M,=+m.

That is, relative to the vacuum, the hole has the same mass as a positive energy
electron but has a charge that is equal in magnitude but opposite in sign to that of
the electron. In other words, the hole appears as a positively charged electron,
which we will denote by the symbol ¢” (A normal electron is denoted by 7). In
addition, we have the elcctron which is promoted to the positive energy state.
The whole process, thus, consists in the disappearance of a quantum of electro-
magnetic radiation and the appearance of a pair of oppositely charged electrons
[Fig. 10.3(a)). This phcnomenon is called pair creation.

However, the newly created hole in the vacuum will not last long as an electron
from the positive energy state will soon fall into it, giving up the excess energy
(= 2mc?) in the form of a quantum of electromagnetic radiation. In the process,
both the electron and the hole disappear [Fig. 10.3(b)]. This phenomenon is thus
the reverse of pair creation and is known as pair annihilation.

The hole theory has been beautifully vindicated by the later discovery? of the
positively charged electron (named the positron) and the phenomena of pair cre-
ation and annihilation. The theory has been further supported by experiment::
verification, during the early 1950s, of another of its predictions, namely vacuuin
polarization. A positive energy electron repels the negative energy electrons (¢f
the vacuum) in its neighbourhood. As a result, in the neighbourhood of the
positive energy electron there in as excess of positive charge (less of negative
charge) relative to the normal vacuum; that is, the vacuum is polarized. Tiic
physical charge e (the charge secen by an observer at a distance > #/mc) of the
electron includes this polarization charge in addition to its bare charge ¢, Butan

observer, or a charge (as in the case of the proton in a hydrogen atom in the
S-state), close enough (r £#/mc) to the electron sees a charge e’, where
le|<le’<}le,]. This effect leads to a lowering in energy of the §-states relative

to the / # 0 states in the hydrogen atom [Eq. (10.120a)]. For the ground state, the
shift amounts to about 10" 2eV. The shift appears as a correction 1o the Lamb shift
which is much larger in magnitude and is in the opposite direction. The observed
shift for the hydrogen levels is in agreement with the theoretical value for the
Lamb shift® corrected for the cffect of vacuum polarization.

The positron is not just another positively charged particle; for, it annihilates
an electron on contact, itself getting annihilated by the electron in the process. It
is the first (to come to light) of a new kind of particles called antiparticles (posi-
tron being the anticlectron), Itis belicved® that all particles, including bosons and
electrically neutral ones like the neutron and the ncutrino, have their
antiparticles™.

27.  Anderson, C.D. Phys. Rev. 41, 405 (1932),

28.  Lamb shift anises from the self-energy of the electron (that is, energy due to the interaction of
anelectron with its own field). The calculations are aene within the framework of quantum field
theory (specifically, quantum clectro-dynamics).

29, The helicf was reinforced by the discovery of the antiproton in 1956.

30, Some neutral particles are their own antiparticles. Examples: neutral pion, photon.



374 QUANTUM MECHANICS

Thus, the hele theory not only solves the problem of the negative energy
clectrons, but also makes several important predictions which are eventually
verified. Nevertheless, we cannot overlook certain profound implications of the
theory as far as the relativistic wave equations in general and the Dirac equation
in particular are concerned. First of all, it constitutes a renouncement of the
original motivation that led to the rejection of the Klein-Gordon equation and the
development of the Dirac equation. For, with the hole theory the Dirac equation
no longer describes a system with a conserved number of particles (relative to the
vacuum); in fact, it describes particles with different signs of the electric charge.
It follows that it should be possible to rehabilitate the second order Klein-Gordon
equation also with a suitable reinterpretation of the wavefunction. Secondly, the
hole theory introduces an element of inconsistency in the Dirac theory. For, there
is no way of incorporating into the Dirac equation, viewed as a quantum
mechanical wave equation, phenomena such as pair creation and annihilation,
These phenomena could be an integral part of only such a theory that does not
have particle-number conservation (and, therefore, a positive-dcfinite position
probability density) as one of its basic features. Such a theory, namely the
quantum field theory, was developed in later years. It would not be out of place
to regard the hole theory as the harbinger of the quantum field theory.

10.2B. The Weyl Equations

As already stated, the wave equations (10.17a, b), derived for zero-mass particles,
are known as the Weyl equations. The theory based on these wave equations is
usually referred to as the two-component theory of the neutrino®. This name

distinguishes it from another possible theory of the zero-mass spin % particles,

namely a 4-component thcory based on the Dirac equation with m = 0. The basic
difference between the two theories is that, whereas the Dirac theory is invariant
under the parity operation (as we have already seen) the two-component theory is
not. This follows from the expression /I =c¢(c - p) for the Hamiltonian of the
two-component theory and Egs. (6.13b, ¢). For this rcason, the Weyl equations,
rather than the Dirac equation, were recognised as the correct equations of the
neutrino only after the discovery in 1956 of the nonconservation of parity in weak
interactions (where neutrinos are often involved). The revival of the Weyl theory
is due to Landau, Lee and Yang and Salam™.

By a procedure similar to the one followed in the case of the Dirac equation, it

can be established that the particles described by Egs. (10.17a, b) have spin % and

that the operator corresponding to spin is § = (#/2)G. Thus, the eigenvalues of the
operator,

31. Neutrinois the name given by Fermi to the massless, chargeless, s; in 1 particles whose existence
given by 8 pinp

was postulated in 1931 by Pauli in order 10 account for the ‘missing’ enzrgy and angular
momentum in beta decay. Neutrinos were detected experimentally in 1956.
32.  landau, L.D. Nuclear Physics, 3, 127 (1957,
Lee, T.D. and Yang, C.N. Phys. Rev. 105, 1671 (1957);
Salam, A. Nuovo Cimento, 5, 299 (1957).
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©-p_-

h B S, (10.144)
are proportional to the component of the spin along the direction of motion of the '
particle. Denoting the eigenvalue of & by h, we have, h =1, £ is referred to as
the helicity operator while h is the helicity of the particle. A particle with helicity
+1 (spin parallel to p) is called right-handed whereas one with 2 =-1 is called
left-handed. These names arise from the resemblance of a graphical representa-
tion of the relationship between spin and momentum of the particle to a screw of
the appropriate handedness (Fig. 10.4). Eqgs. (10.17a) and (10.17b) thus represent

spin ; zero-mass particles of helicity +1 and ~1 respectively.”

n

E=C]p[ E:—-C|P| E= c|p|
A 4
Lroap
pl
(a) (b) (c)

Fig. 10.4. Graphical representation of:
(a) a positive-energy (left-handed) neutrino.
(b) a negative-energy (right-handed) neutrino,
(c) an antineutrino.

Now, Eqgs. (10.17a, b) were obtained on the assumption that the energy is
always positive. On this basis, we will have two types of neutrinos: a right-
handed one described by Eq. (10.17a) and a lefthanded one described by Egq.
(10.17b), both of positive energy. However, the logic of the Dirac theory of the
clectron with its hole theory interpretation requires the existence of an antiparticle
for every particle. In other words, negative energies should be allowed for the
neutrinos. But if negative energy is permitted, both the positive and the negative
square roots of Eq. (10.15) are taken care of by either of Egs. (10.13). If we adopt
(10.13") as the Hamiltonian of the ncutrino, then the positive energy ncutrino
would be right-handed and the negative energy neutrino (and, hence, the anti-
neutrino®) left-handed, whereas with (10.13%) as the Hamiltonian we would have

33.  Note that helicity is a relativistically invariant quantity only for a zero-mass particle. Since a
particle with nonzero mass moves with a velocity < ¢, it is possible to find two Lorentz frames
in which the helicity has opposite signs.

34, An antinveutrino of momentum p’, energy E = ¢ | p’| and helicity +1 is the absence of a nega-
tive energy neutrino (in the negative energy sea) of energy E = —¢ | p |, momentum p =—p’ and
helicity + 1 (see Fig. 10.4).
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a left-handed neutrino and a right-handed antineutrino. The experimental situa-
tion (when coupled with certain conservation laws) is that there are three (possioly
more) types of neutrinos, the electronic, the muonic and the tauonic, but in all
cases the neutrino is left-handed and the antineutrino right-handed. It follows that
Eq. (10.17b), without the restriction to negative helicity, is the correct equation of
the neutrinos. The two components of y correspond to the two energy states of
the neutrino, but for a given sign of the energy there is only one spin state. The
noninvariance of the two-component theory under space inversion is related to
this absence of the other spin state. For, under space inversion a left-handed
neutrino is transformed into a right handed neutrino, but no such neutrinos exist
in nature. However, the theory is invariant under the combined operation of space
inversion P and charge conjugation C (which is the replacement of particles by
antiparticles) since right-handed antineutrinos exist.

Connection with Dirac Equation

It is seen from the foregoing that the states of the neutrino are the states of a
7CI0-Mass spin % particle with definite helicity. Therefore, it should be possible to

obtain the neutrino states from the Dirac 4-component theory corresponding to
n =0 by projecting out states of the appropriate helicity. From Eqs. (10.43) and
(10.44), we sce that the four linearly independent spinors which are the solutions
of the Dirac equation with m = 0, are given by (where, the momentum is taken 10

be along the x,-axis and where the normalising factor is neglected),
(2) 3) )

u u u u
1 0 -1 0
0 1 0 1
] 0 ] 0 (10.145)
0 -1 0 1
E=c|p| clpi -clpl -clpl
h=+1 -1 +1 -1  (From Eq. (10.45))
Ys=—1 +1 +1 -1

Below the spinors, we have listed the corresponding energy, helicity and the
eigenvalue of the matrix s [defined by (10.143)]. We see that £® and u® which

satisfy the relationship,

Y = +u, (10.146a)

have the properties required of the neutrino states, namely negative helicity when
£ >0 and positive helicity when E <0. The relationship between £ and the
2ivenvalues of ¥; given in (10.145) is a general one. This follows from the Dirac
H:miltonian for zero-mass particles, namely [sce Egs. (10.21%), (10.26) and
(10 143)).

Iy =c(p)=-c¥&”  p)=— | p| Y0} (10.147)
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Therefore, if y(x) is an arbitrary solution of the zero-mass Dirac equation
Y,0,¥(x) = 0, then the function,

1
W, (x) = 3 I +Y)y(x), (10.146b)

will correspond to the neutrino states. In the representation (10.30) and (10.143),
vy, is a 4-component wavefunction eventhough there are only two states satisfying
(10.146b). w, can be reduced to an essentially two-component wavefunction by
choosing a representation in which

, I 0 , 01
7527420 _1’74:—75=1 0/

0 -i6
'=y= 10.148
rere(®, 8 ossn
where v is the vector whose components are v;,y, and v;. That the representation

(10.148) indeed corresponds to the Weyl theory can be seen from the following:
Egs. (10.17a, b) could be combined into the single equation,

iho¥=H,Y, (10.149)

wiih
v<(y)
v

and

N g 0}, . .

Hy=c|, Pp=icy(y-p  (10.150)

-0

Comparing A, with (10.147) which can be written as,

Ay =icy(y D), (10.147)
we see that, Y, in the Weyl theory plays the role of ¥, in the Dirac theory. That is,
ey =Y = M.

Then, from
Yl 1721731741 - ,Ysl’
we get,
R 78 70 2 A N A Y A 78
10.3 THE SECOND ORDER WAVE EQUATIONS

An off-shoot of the hole theory interpretation of the Dirac equation is the sug-
gestion that the second order Klein-Gordon Equation (10.6%) also might be
brought under relativistic quantum mechanics by a proper reinterpretation of the
wavefunction. In this section, we will briefly discuss the nature of this reinter-
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pretation and some of the conclusions following therefrom*. We will also obtain
the second-order wave equation corresponding to zero-mass particles.

A. The Klein-Gordon Equation

The major reason for rejecting the Klein-Gordon equation as a quantum
mechanical wave equation was the possibility of negative value for p defined by
Eq. (10.11a). We overcome this difficulty by multiplying the right sides of Egs.
(10.11) and (10.11a) by e (where —e = charge of the electron), and interpreting j
and p as the electric current density and the charge density, respectively.

j = (et2mi) (®'VD - dVD), (10.151)
p=(iet/2mc?) (@9, - d3, D). (10.152)
Eq. (10.6%) admits plane wave solutions of the type
O(r,1)=A exp [(i/h) (p-r~Et)], (10.153)
with E=te,

where
€ = \pct+m’c*. (1.154)

Substituting (10.153) in (10.152), we get,

p= EEZI<D F, (10.155)
mc
or p,=ele,/imc’)| @, I';
p.=—e(e,/mc?)|D_. (10.155a)

We interpret this result to mean that the state @, with E =+ €, corresponds 1o
particles with charge +e while &@_with E = — €, represents particles with charge

—e. Also, from (10.152), we see that p =0 when @ isreal. Therefore, the Klein-
Gordon cquation with a real wavefunction represents neutral particles. Moreover,
since ( — ) is a Lorentz-invariant, Eq. (10.6%) would be covariant under Lorentz
transformations if ®(x) is either a scalar or a pseudo scalar. Now, a scalar or a
pseudo scalar wavefunction represents a spin-zero particle. Thus, (10.6%) is the
wave cquation of spin-zero particles, both charged and neutral. Pions and kaons
which are spin-zero mesons® with charges +¢,0 and —e, could be identified with

35. A more detailed discussion of the Klein-Gordon equation from the viewpoint of relativistic
quantum mechanics can be found in Ref. 3, Sections 54-59. Also, see Ref. 4, Chapter 3, fora
different approach to the problem. The particles described by the K-G equation are strong-
interacting mesons. Their interaction with other particles involves creation and annihilation of
particles and as such, is best treated within the framework of a quantum field theory. The
discussion here is confined to the free-parnticle case.

36. Mesons are bosons with a mass intermediate between the electron and the nucleon. Pions (de-
noted by xtt and ® ) have a mass of about 300 electron masses while kaons (K*, K% and K are
more than three times heavier than the pions.
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the Klein-Gordon particles. It is found that both pions and kaons have negative
intrinsic paritics so that ®(x) in (10.6%) is a pseudo scalar.

According to the above interpretation, charge +e corresponds to the particle
and charge —e to the antiparticle. Unlike in the case of the Dirac theory, the
antiparticle need not be viewed as a hole in a negative energy sea but could be
rcgarded as a positive energy particle with charge —e [see Egs. (10.152"), (10.162)
and (10.165b) below]. An important consequence of this is that production (or
destruction) of the pions need not be in particle-antiparticle pairs.

The foregoing treatment is somewhat oversimplified. For, solutions corre-
sponding to either positive energy or negative energy alone do not form a Hilbert
space (with the normal definition of the scalar product) except in the
nonrelativistic limit. Therefore, a general solution of the Klein-Gordon equation
would be a linear combination of @, and ®_, Alternatively, we can write the

W= (\V‘), (10.156)
Y,

where , y; — 0, in the non-relativistic limit, for negative energy while y, — 0 for

wavcefunction as

positive cnergy. We have”,

1 it 1 E
== |®+——0 D |==|1+—
v, 2( +m628, J 2(]+mcz]d), (10.157a)
1 ih 1 E
= |®d-—9,D|=2]1-— .
v, 2( mcza,d)) 2(1 mcz)(b, (10.157b)
Then,
W, + W, = B me’(y, — y,) = i#0,0. (10.158)

From (10.1572) and (10.158), we get,
2
By, = l[ih&,d) —ﬁ—afd)}

2 mc?
ﬁ?, 2.4
:l[mcz(w,%)———z c2V3—TTC (\Uﬁ-lu)jl, by Eq. (10.6°).
2 mc #
That is,
. # o,
110y, === VY, + ;) + me’y,
Similarly, (10.159Y)

. #
i10,9, = 5 Vi + W) —mcV,

Introducing the matrices,

37.  Note that, by virtue of the second order character of the Klein-Gordon equation, ¢ and ¢, arc
lincarly independent.
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01 0 —i 1 0
rl—(l 0} Tzv*(i 0), 1,—(0 _J, (10.160)

Eq. (10.159") can be written as,

¥ =H, ¥, (10.159%
with
. NN ~
HKG=(‘C3+i’t,)Em—+mCZT3. (10.161)

(10.159?) is the Hamiltonian form of the Klein-Gordon equation. Multiplying this
equation by (i#9, + H ¢) its equivalence to (10.6) is easily established.

The matrices (10.160) are seen to be identical with the Pauli spin matrices
(5.34) and, therefore, obey the same algebra as the latter. However, the space in
which these matrices are defined is the charge or isospin space (and not the
angular momentum space of the ¢,’s). Therefore, the two discrete degrees of

freedom® implicd by the components of ¥ are the two charge states of a Klein-
Gordon particle with a complex wavefunction.
In terms of ¥, we have from (10.152), (10.158), (10.156), and (10.160),

p=e(yy, — Yy, = e ¥t (10.152Y
The equation of continuity (10.9%) ensures that the total charge J pd®r is a constant.

I the case of a single particle, the total charge should be te. Correspondingly,
we¢ have,

f Wt W = (F,3.0) = £1. (10.162)

Eq. (10.162) amounts to a modification of the standard definition [Eq. (2.33)] of
the scalar product: the scalar product of two vectors ¥ and @ is (‘P,%ﬂ)), so that
the norm of ¥ is given by

W) |? = (P, 7,9). (10.163a)
Similarly, the expectation valuc of an operator A is given by
(A= (¥, T,AY). (10.163b)

Whereas the standard definition leads to positive normalization of vectors and real
cxpectation values for Hermitian operators, the modified definition permits neg-
ative normalization for vectors and imaginary expectation values for Hermitian
operators. In fact, the expectation value of a Hermitian cperator would be real or
imaginary depending on whether the operator commutes or anticommutés with T,.

It is, however, possible (as well as desirable) to modify the definition of the
1> ‘mitian operator also so that its expectation valuc as defined by (10.163b) is
«‘ways rcal. Thus, A is Hermitian if

=8 Whenever asystem has degrees of freedom other than those connected with spatial co-ordin ates,
its vvavefunction can be written as a column matrix with two or more elements. Converscly, a
waveiunction in the form of a column matrix implies the existence of degrees of freedora con-
nected with discrete vanables.
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(¥, TAY) = (TAY,¥) = (¥, A',P) = (¥,1AY),
That is, if ,
A =1 A=A, (10.164)
We note that the Hamiltonian (10.161) is Hermitian according to this new defi-
nition, but not Hermitian according to the standard definition (For an operator that
commutcs with T,, the new and the old definitions are the same).

The above results indicate that certain concepts of nonrelativistic quantum
mechanics have to be modified before they can make sense in relativistic quantum
mechanics. For example, one of the basic concepts of non-relativistic quantum
mecharnics is that the results of possible measurements on a system are the
eigenvalues of certain Hermitian operators (Postulate 1, Chapter 3). In particular,
the eigenvalues of the Hamiltonian represent the measurable energies of the sys-
tem. Diagonalising the matrix,

2
Heg = (13+irz)-z-'%wnczfc3

LR R
—(2m+mc) m

2
%,p; - (%:l— + mc2)
we see that the ¢igvenvalucs of the Hamiltonian H ¢ are
Ey,=hey A=+or-. (10.1585a)

But the negative cigenvalue E_ cannot represent a measurable energy of the
Klein-Gordon particle. On the other hand, according to Eq. (10.163b) the mca-
surable energics are given by i

E = (¥, LH Y) = E(Y, YD =AE, =€ >0. (10.165b)
Here, the equation H ,,¥, = E,¥, and the fact (see Problem 10.14 below) that
(¥,,7,¥2) = A, have been used. The modified scalar product is responsible for the
sensible resnlt (10.165b). The positive definiteness of < /1, > also follows quite
generally from the expression,

2
j‘l’f‘rjll,m‘i’d% = J.{(W; +y0) »2%(\;/1 +y) +mciyly, + w;%)}d3r. (10.165¢)

it is interesting to note that whereas in the Klein-Gordon theory the encrgy is
positive definite and the norm (of vectors) is not positive definite, the reverse
conditions obtain in the Dirac theory.

There is a certain similarity between (10.161) and the Dirac Hamiitenian
(10.21%) with 1, taking the place of B. It follows that it should be possible to find
a representation, analogous to the Foldy-Wouthuysen representation of the Dirac
theory, in which the positive and the negative charge states arc separated. In this
new rcprescntation, known as the Feshbach-Villars representation®, the Hamil-
tonian would be given by [cf. Eq. (10.87Y)],

39.  Feshbach, H. and Villars, F. Revs. Mod. Phys. 30, 24 (1958).
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n, "a A A
Hyo=UH U =Ty€,. (10.1€6)

By a procedure similar to that adopted in the case of the Dirac equation, it can be

shown that

(1+1)+(e, +mc?

Amc’ e ',)U2

U= (10.167)
U satisfics the relationship, @ = T,U*., = U™, and is hence unitary according to the
modified definition of a unitary operator.

Problem 10.14; Assuming ‘¥ to be of the form,

\p:v—%[@ exp M) (- — 1),

show that the normalizations +1 and -1 in (10.162) correspond 10 E =+ &, and
I =— e respectively (Here, V is the volume in which the system is supposed o
be enclosed).

Problem 10.15: Deduce (10.167).
B. Wave Equation of the Photon

Just as n the case of the Dirac equation, sctting the mass m =0 in the Klcin-
Gordon equation (10.6%) does not lcad to the wave equation of the zero-mass
bosons. Certain further constraints have 1o be imposed. In fact, the zero-mass
cquation is given by
A,A(x) =0, (u=1,2,3,4), (10.158)
with the constraint,
JdAx)=0, (10.169)

where A, are the components of a 4-vector. Eq. (10.168) is, however, not a

quantum mechanical wave equation but is (when combined with (10.169)) the
classical wave equation of the free electromagnetic field. That is, Egs. (10.168)
and (10.169) are equivalent to Maxwell’s equations in free space. This equiva-
lence is seen as follows:

Maxwell’s equations, in terms of the electric field E and the magnetic induc-
tion B arc given by

div B =0, (10.170a)
curl E+(1/¢)9,B =0, (10.170b)
curl B—(1/c)9,E = (4nc)j, (10.170¢)

div E = 4mp. (10.170d)

“he vector potential A and the scalar potential V are defined, i view ol Egs.
J0.170a, b), by



RELATIVISTIC WAVE EQUATIONS 383

B= curl A, E=—grad V —(1/c)d,A. (10.171)

Substituting (10.171) in (10.170c, d) and making use of the identity, curlcarl =
grad div -V?, we get,

4r
-Au—a“(aﬂv) =—? I (10.172)

where, A, =iV, j,=icp. (10.173)
Eq. (10.168) results from imposing the subsidiary condition (10.169) and by set-
ting j, = 0 (free space).
In terms of the A, the components of the fields (10.171) are given by
F,=e,, B, F,,=—iE, (10.174)

where, F,=0A,-0A, (10.175)
and ts known as the electromagnetic field strength tensor.

Eq. (10.169), referred to as the Lorentz condition, amounts to a particular
choice of the four-potential. And such a choice is permitted by the fact that only
ihe fields, and not the potentials, are observables so that any two potentials related
by the transformation,

A, DA =A+dA, (10.176)

(where A is a scalar function) which leaves the ficlds (10.175) invariant, are
physically equivalent. Eq. (10.176) defines a gauge transformation while a
potential satisfying Eq. (10.169) isa Lorentz gauge. Different Lorentz gauges can
be obtained by choosing different A’s that satisfly A=0.

The constraint (10.169) as well as the imaginary nature of A, (since V is real)
introduce certain problems for the quantum thcory of the electromagnetic ficld. In
order to avoid these difficulties the radiation (or Coulomb) gauge dcfined by

divA=0,4,=0, (10.169a)
has been used. But in this gauge, Eq. (10.168) becomes,
A=0, (10.168a)

which is not Lorentz covariant as A is a 3-vector. The problems associated with
the Lorentz gauge have, however, been successfully solved by Gupta® and
Bleuler”. So we will base our discussion of the clectromagnetic ficld on Eqs.
(10.168) and (10.169).

Eventhough (10.168) is a classical ficld equation, its similarity to the quantum
mechanical Klein-Gordon equation (10.6%) suggests that it could be viewed as the
wave cquation (with A, (x) as the wavefunctions) of certain zero-mass particles
(the photons) that we can associate with the electromagnetic ficld. Conversely

(and more fruitfully), the Klein-Gordon equation, and thercfore any quantum
mechanical wave cquation, could be regarded as a classical ficld equation. The

40, Gupta, S.N. Proc. Phys. Soc. A63, 681 (1950).
41, Bleuler, K. Helv. Phyy. Acta, 23, 567 (1950).
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wechnique of field quantization developed for quantizing the electromagnetic ficld
could then be applicd to these quantum mechanical wave equations. We will sce
in the next Chapter that such a procedure gets rid of many of the difficultics and
inconsistencics that are encountered in treating the relativistic wave equations as
the quantized equations of motion of point particles.

A quantum mechanical treatment of Eq. (10.168) is not particularly uscful.
Thercfore, we will postponce to the next chapier a discussion of the equation from
the view point of quantum theory.

Besides the wave equations discussed in this Chapter, there are also other rcl-
alivistic wave equations both of the first and the second orders”. These corre-
spond to massive {that is, non-zero mass) particles of spin > 1. A discussion of
these is beyond the scope of this book.

10.4 CHARGE CONJUGATION

Charge conjugation is a symmetry operation in which particles are transformed
into antiparticles and vice-versa. Obviously, then, the electric charge changes
sign under charge conjugation. But also other properties like magnetic moment
and helicity (in the case of neutrinos) also will change sign under this transfor-
mation, Therefore, electrical neutriality alone will not ensure that a particle is its
own antiparticle. If a particle is its own antiparticle it is called truly neutral.
Neutrinos are examples of particles which are not truly neutral though electrically
neutral whereas neutral pions and photons are examples of truly neutral particles.
The wave function of a truly neutral particle must be an eigenstate of the Charge
Conjugation operator ¢. Thatis, if y is the wave function of such a particle, then

v, = Cy=cy = . (10.177)
The last part of this equation follows from the fact that a two-fold application of
C should be equivalent to the identity operation, so that ¢2=1. ¢ is known as the
charge parity of the particle. Thus neutral particles with ¢ =+1 have positive
charge parity whereas those with ¢ =—1 have negative charge parity.

The charge parity of a particle can be determined by observing its interaction
with other particles of known charge parity. For example, inc charge parity of
photons is known to be negative. The obscrvation that a neutral pton decays into
two photons, then, suggests that the charge parity of the pion is positive®.

In this section, we will determine the charge conjugation operator € corre-
sponding to cach of the particles (wave cquations) discussed in this chapter.

The Dirac Equation

We will start with the covariant form, Eq. (10.25%), of the Dirac cquation. In terms
of the momentum p, = —i#d,, the equation (in coordinate representation) reads,

42, See, Lurie, D. Particles and Fields (Interscience, 1968) Chapter 1.
43 Charge Parity, like (space-inversion) parity, is a multiplicative quantum number,
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(Y,p, — imc) yix) =0. (10.178)
Since the electric charge is explicitly involved in charge conjugation, we have to
consider the equation in the presence of an electromagnetic field. The latter can
be represented by the 4-potential A, (see Section 10.3B). The effect of the ficld

on the Dirac particle is then to change its momentum from p, to [p,—(e/c)A).
Thus, the Dirac particle in an electromagnetic ficld is represented by the equation,

[y {p,—(e/c)A} — imcly(x) =0. (10.179)
The charge conjugation state y, must, then, satisfy the equation,
Y {p,+(e/c)A} - imc]y,(x) = 0. (10.180)

We have to find the operator that transforms y oy
Taking the complex conjugate of Eq. (10.179), we have,

{p, - (e/c)A} + ime ]y (x) = 0. (10.181%)
But
P =P (k=1,23); p/=p, (10.182)
Al=p. (k=123 Al =-A, (10.183)
Substituting from (10.182) and (10.183) in {10.181") and defining,
v =By, (10184
we get,
[Y - {p+(e/c)AY = {p,+(e/c)A} — imc 1By, =0, (10.181%)

where yis defined by Eq. (10.148).
Multiplying Eq. (10.181%) from the left by B}, we have®,

(Y7 {p +(e/c)A} — Y, { P+ (e/c)A} — ime ]y, =0, (10.185)
where
Y,L - [}—1%3“ (10.186)
Eq. (10.185) will agree with Eq. (10.180) if
B B =Y, md 7Y, B =, (10.187)

But if we use the representation (10.30a, ¢) for the ?u’s, then,

V= m=13 ¥.=%,@=2,9),
so that Eq. (10.187") implics,

BY,=-%,B,(0=1,3,4); BY,=15. (10.187%
That is, B is an operator that commutes with ¥, but anticommutes with the other
?“’s. It is obvious that B should be proportional to ¥,, and there is no loss of
generality in identifying B with ¥, Then from (10.184%), we have,

Vo= =KW (10183

44.  Note that A, being independent of the space-time co-ordinates, should commute with p and .
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where K, is the complex conjugation operator. Thus, the charge conjugation
operator C is given by

C =K. (10.188)
€, like the time-reversal operator 7(Eq. 10.138?), is an antiunitary operator.
From Egs. (10.187?) and (10.188), we have,
ey {yﬂ, ®=1,2,5),

= 10.187°
1, (1=3,4), (10-187)

n

where ¥, is defined by Eq. (10.143).
If y represents electrons, y, will represent positrons. If we write y = @), then,

from (10.184%) and (10.30c), we have,

-ioy
Y, = ( 71] (10.189)
160
In the non-relativistic case, we have [sce Egs. (10.67) and (10.68)],
Y o oy, oy =T, (10.189)

wheiz 7 is the time-reversal operator (Eq. (10.138™)]. That s, the positron could
he viewed as an electron going backward in time* (see Fig. 11.3). Such a view-
poeint will be valid even in the relativistic case where the positive and negative
cnergy states are scparated [Foldy-Wouthuysen representation : sec Eqs. (10.95a,
byl

Klein-Gordon Equation

The clectric charge of the Klein-Gordon particle is positive or negative according
as the integral [yt ydr is positive or negative [Eq. (10.162)]. Writing

A ,
v =(1V) chp [ih)(p-r— Eu), (10.190)
Wi
the condition is
WioWio— WaolWa = 1. (10.191")

ricre V'is the volume in which the system is enclosed. But, according to Eq.
(10.155a), the sign of the electric charge depends on the sign of the energy.
Therefore, which of the two conditions in Eq. (10.191") is realized should depend
on whether the £ in Eq. (10.190) is positive or negative. In fact, we will show
below that the +1 (positive charge) in Eq, (10.191") corresponds to E > 0 and the
-1 (negative charge) to £ < 0.

From Eqgs. (10.156) and (10.190), we have,

45, The concept of the positron as an electron going backward in time was introduced by Feynman
(Fouotnote 16, Chapter 11).
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Wi = (110 exp [G/R) (p-r —EL )],

v, = (1/V)yr, exp [i/A) (p - r—Et ). (10.192)
Substituting from (10.192) in (10.159"), we get,
(E ~mcHhye= (p72m) (W, + V), (10.193a)
(E +mci W, =—(p72 m ) (y,0+ Vo), (10.193b)
or
2 v
Yo _ metL (10.194)
\Ilzo mc°—E
Case 1: E=¢,>0.
2t+g
Vol 0 25 o, (10.194a)
“Vzﬂ |mC _epl

which means that in Eq. (10.191") the upper sign has to be chosen. Then from Eq.
(10.194a) we obtain,

mc2+£p 5 (10.1952
Yy = —F7—== T @y Say, -1¥0a)
1 2"\/mc2$P ’
| mc*—¢,| i
Yoy = — e = (10.193b)
2\mc’,
Case 2: [ =-¢,<0.
In this casc
| Imc*-g,]
Wl — <1, (10.194b)
[ Wl mcl+g,

so that we have o choose the lower sign in eq. (10.191"). Then, in place of
(10.195a, b) we get,

Vio=Xo 3 Wan =0 (10.196)
Thus, we see from Egs. (10.190), (10.191%), (10.195a, b) and (10.196), that if

{cf. Eq. (10.156)]
y = @ (10.190a)

represents a positive charge state of the Klein-Gordon particle, then

X ‘
v, =%, (10.190b)
[Q)

represents the negative charge state of the particle, where,



388 QUANTUM MECHANICS

1
0 = (V) dyexp i) (p-1) - €,1), (10.197)
1
x = (WY xexplim)(p-r) - €,1)], (10.197b)
and
O~ UAXo = WiTsWo=+1, (10.191%
with
0
Y, = (Xj (10.198)
Hence the charge conjugation operator C, defined by w, = Cyy, is given by
C=1K.. (10.199)

[Note that K, will change p to —p {see Eq. (B.19a)}].
It is seen from (10.190a, b) that

(V. T,¥) =0, (10.200)
so that y and v, are orthogonal to each other (in the t-space) according to the

modificd definition (10.163a) of the scalar product. But, for a neutral Klein-
Gordon particle, we have,

2= (y,,y) =0. (10.201)
That is, the neutral particle is represcnted by a null vector in the T-space. Hence

:he state of a neutral Klein-Gordon particle is invariant under charge conjugation,
which implies that a ncutral pion is its own antiparticle (truly ncutral).

Problem 10.15: If ¢, ®_ and P, are the wave functions of the Klein-Gordon
particle [Eq. (10.155)] with charge +e,—e and 0 respectively, show that ¢_= @
and @, = @y,

The Zero-Mass Particles

Egs (10.170c, d) and (10.171) show that A, changcs sign under charge conjuga-
tion (which changes the sign of the clectric charge and current):
CA=-A, (10.202)
Thus, A, represents truly neutral particles (photons) with negative charge parity.
Using the Dirac representation (10.146b) for the neutrino wave function, we
sce that the operation of charge conjugation alone [represented by (10.188)] doces
nui scad to a state of the antineutrino. However, a combined opcration of space
invrsion [Parity operation, represented by (10.137)] and charge conjugation will
ansform the state of a ncutrino into a state of the antincutrino:
CPy, = V.. (10.203)
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CHAPTER 11

ELEMENTS OF FIELD
QUANTIZATION

11.1 INTRODUCTION

We have remarked in the last chapter that the relativistic wave equations could
be viewed as classical field equations and that the quantization of thesc field
equations might lcad to a correct relativistic quantum theory of the underlying
particies. In this Chapter, we propose to discuss some of the concepts and meth-
od; underlying the quantization of ficlds. The treatment would be somewhat
sketchy. In fact, our attempt in this regard could be likened to that of a traveller
who having traversed a continent, crossing several rivers and mouniains in the
process, has finally come to the shore of a vast and deep ocean. Being ill-
equipped as well as too tired to continue the travel into the sea, he contents himself
with having a view of the ocean from the shore. Itis hoped that an account of this
‘view from the shore’ will inspire the more adventurous among the readers 1o
undertake an exploration into this vast occan that is quantum field theory.

11.2 LAGRANGIAN FIELD THEORY

What we are going to describe in this chapter comes under Lagrangian (or
Canonical) field theory as distinguished from axiomatic field theory’. As the
name implies, the Lagrangian ficld theory is based on the Lagrangian-
Hamiltonian canonical formulation of classical mechanics. The main steps in this
formulation are the following?,

CM1. Choosc a set of generalized coordinates {g,} for the system.

CM?2. Setup a Lagrangian function’,
L=L(g,q,0), Ly

1 {‘or an account of the axiomatic field theory, see Roman, P. Introduction to Quantum Field
Theory (John Wiley, New York 1969), Pan 1I.
Sce, for example, Landau and Lifshitz, Mechanics (Pergamon Press 1969), Chapters [ and VII
For a free system, L would be independent of 1.

IS
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aq.

!
where ¢, = o &e the generalized velocitics and ¢ denotes the time. Also, g

stands for the sct {g,}.

CM3. The action integral S, between times ¢, and ¢, is defined by

H
S, =J L(g,q,t)dt. (11.2)
h

The condition that the change 85, = 0 corresponding to a variation 8¢; in g; sub-
ject to the constraint 8¢,(t,) = dg,(t,) = 0, then leads to the Euler-Lagrange equa-

tions,
d({doL) oL
—| 7 |-x—=0. 11.
dt [aq,.j 0g; (11.3)
CM4. Define a Hamiltonian function H by
H=H(q,p,)=%pq,-L, (11.4)
where p, is the momentum conjugate to the co-ordinate g;, and is given by
oL
= 11.5
P 5 (1.5
Vnen from Eq. (11.3), it follows that
JL
) = (11.6)
b 9q;

Substitute for L in (11.2) from (11.4). Again setting 85, = 0 corresponding to
independent variations 8q; and dp; in g; respectively, one obtains Hamilton’s

canonical equations,
oH oll
1= Di=—5—. 117
4=5,0 =75, (11.7)
From this, the equation of motion for a gencral dynamical variable F = F(q, p,1)
is easily deduced:

dF oF
a3 e (18
oF dH oH oF
where, (F,H] = Zl(%’é}‘:*a—qla}:), (11.9)

and is known as the Poisson bracket of F and H,
Canonical Quantization

in the foregoing, the number of gencralized co-ordinates is equal to the number of
independent degrees of freedom of the system. For a mechanical system of par-
ticles, this number is finite. The quantization of such a system is done by the
following procedure (described already in Scction 3.1):
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C1. Replace all dynamical variables by corresponding Hermitian operators in
accordance with Postulate IV of Section 3.1.

CQ?2. Replace the Poisson bracket in (11.8) by the commutator bracket
(F,i1) = FH - HF upon i.

CQ3. Prescribe algebraic relations for the basic canonical operators ¢; and g,.

For a mechanical system, the algebraic relations for the co-ordinates and
momenta arc the Heisenberg commutation rules, (3.12a, b) that follow* directly
from prescription CQ2. However, these relations could be different for a field.

Coordinates of the Field

Now, the basic difference between a mechanical system and a ficld is that the
latter has infinite number of degrees of freedom. A field is specified by its
amplitudes at all points of space. Moreover, the amplitudes at different space
points are independent of each other. Thus, the amplitudes y(r, ) play the same
role in the case of a field as the gencralized co-ordinates g,(¢) in the case of 4

mechanical system. Obviously then, since there are infinite number of space
points, the number of degrees of {recdom represented by w(r, ¢) is infinite.

The Classical Field Equations

Except for some modifications entailed by the fact that the coordinates of the ficld
are themsclves functions of the space coordinates, the procedure oudined above
for the case of mechanical systems can be adopted both for obtaining the classical
ficld equations and for their quantization. The dependence of y on r which is a
continuous variable, necessitates two types of modifications. One is the necessity
1o introduce a Lagrangian density £. The Lagrangian L of the ficld would be an
integral of £ over space. The other is that the Lagrangian density would have to
be a function not only of y, y and ¢ but also of grad . Thus,

L= Ly, grad y, ,1), (11.10)
L=f Ldr, (11.11)
v
hH ) \ .
and 521=f Ldt:f d:f Ly, grad y, , £)d°r. (11.12)

Here V denotes the normalization volume. The change &S, corresponding to an
infinitcsimal variation 8y in y, with dy(r, 1) = dy(r, ) =0, is given by

lz ll
38, = dtj Scd’r =f 3L dr. (11.13Y
4 v Iy

4. From (11.9), the Poisson brackets for g, and p; are deduced to be,
19.p),, =8,19.9),, = PP}, =0
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oL cL
Now, 3Ly, grad W, V, 1) = \y 3 arac (ara s \If) X grad y) gv&y
(11.14)
aL aL L9
= é;l} 5\|I+‘a( grad ) - grad (8\]!) +w—a—‘(8\}l)

Substituting (11.14) in (11.13") and making use of the results,

L s { PN } |
La( grad )’ grad (By)d r—x,);—',lf J f d( grad ), dx (By)- dx(dydz

aL 0 aL 3
= ZU J [a< grad ), 6"’} e [ 5 3 grad v, V4 '}

f div 5 (5W)d3 (11.15)

(where the surface integral vamshes because v either vanishes at infinity or
satisfics periodic boundary conditions), and

i d (oL
f: at (a\y) By dt

1

? 3L 0 dL
5 5, B dr= Tyﬁw

2 9 aL .
=— . 3 a\v (11.10)

we gel,

) L .
8y = f d’f ‘{aw V X arad y) aza\y]?’"’ (11.13)

According to Hamilton’s principle of Icast (or, stationary) action, this 85, should
be zero and that requires, since dy is arbitrary, the vanishing of the integrand in

the square bracket. Thus,
oL d(dL .

v Y Agrady) & (aw) > (A
(11.17") is the classical field equation in terms of the Lagrangian density. Itis the
analoguc, in the case of a field, of the Euler-Lagrange equations (11.3) in classical
mechanics. Its similarity to Eq. (11.3) will be even more apparent when expressed
in terms of the Lagrangian of the field. Conversion of (11.17") in terms of L is
achicved with the help of functional derivatives:

Whereas (for a free field) £ is a function of y and its derivatives, L is a func-
tional of y and . The distinction is that while the value of a function at a point r
depends on the value of its arguments (which themselves may be functions) at that
point, the value of a functional depends on the values of its arguments over a
wholc region o1 1angs. Thus, the value of L in (11.11) depends on the values of
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the functions y(r, ) and y(r, ) over the volume V. We may say that the depen-
dence of L on v is parametric whereas the dependence of L on v is functional,
and we distinguish the functional dependence by square brackets, thus writing,

L =L[y(r, £),y(r, t). (11.11a)
A functional could be regarded as the continuum limit of a function of discrete
variables. In the discrete case, L would be a function of the discrete variables

{y,()} and {y;(1)}:

L = L), §(0), (11.11b)
(see Eq. (11.1))°. The variation 8L in L corresponding to independent variations -
dy; and 3y, is given by,

oL oL ..
8L = z(a—&y, aw.a"’) (11.18a)
In the continuum limit, this equation is written as
1 dL 1 dL
oL = ?Lt&,‘_)o(—aviéiﬁw 8V a\lf. 8\)]]8 (11.18b)
aL . dL )
Sy +5=8 11.18¢
- [[Sov+ Zai (11189
where,
dL 1 oL &L
B, D o osY, yn oy (1175
oL 1 oL SL (11.19b)

= L ————r—— =,

B, 0 LOR, ag) oY
In (11.18b), 8V,’s are interpreted as the volumes of the cells into which the volume
V is divided and w; as the value of w(r, ¢) at the ith cell. The variation of y and

v at each cell can be done independently so that, a variation can be defined by
either
Sy = aijsw.'r or 8y = Sija\i!i

L aL )
= and = defined by Eqgs. (11.19a, b) are the functional derivatives of L with
dy T dy

. ] aL
respect to y and y respectively. We see that g\; isessentially the partial derivative

of L with respect to the value of y at the point r.
Now, from Egs. (11.13%), (11.14) and (11.15), yield,

C(fec .. aL 9L . ] 4
o jﬂa\v m 5@5’5—@)5‘“@5‘4’}4 r. (11.20)

Cotnparing Egs. (11.18c) and (11.20), we get,

5. Itisinview of (11.11b) that grad y is not included as an independent argument in (11.11a),
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L oL . oL '
By, 1) oy(rn) dv o( grad y(r, 1))’ (11.212)
- o (11.21b)

Fy(r, 1) oy, 1)
Substituting these in (11.17%), the classical field equation takes the form,
dL dfaL 2
L _9[% 1 . 11.17
By o (w) 0 A7)
For relativistic ficlds, it is more convenient to use the covariant form of Eq.
(11.17"), namely,
oL oL _
oy oy,
where the summation convention of last chapter is used, and v, = d,y. Also, the
Lagrangian density could be a function of several independent fields as, for
example, in the case of particles with spin. In that case, each field can be varied
scparately in applying the Hamilton’s principle, obtaining an Euler-Lagrange
cquation for each field:

9L 39 0 o=12..N) (11.17%)

W oy

0, (11.17%)

Hamiltonian Formulation

In analogy with Eqs. (11.5) and (11.4), the momentum P; conjugatc to the
canonical coordinate v; is defined by

oL
. =, 1 1 221
O~ (11.22)
and the Hamiltonian of the field by
H(t)=ZPy,-L. (11.23)

Going over to the continuum limit, where v, is interpreted as the value of y(r, 1)

in the ith ccll, Egs. (11.22") and (11.23") become, in view of Egs. (11.19b) and
(11.21b),

_ oL _ 2
P(t)= e 0 3V, =n(r, )8V, (11.22)
and
H(t) = f {r(r, O(r, 1)— Lr, D}d’r
v
= f H(r, 1)d’r, (11.23%)
where,
H(r, t)=n(r, )y(r, t)—L(F, 1), (11.24)

is the Hamilionian density. Also,
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oL L

== =— 11.25)
n(r’ t) aw(r’ t) a“’y ( 5/
isteferred o as the conjugate field. From Egs. (11.17%) and (11.25), it follows that
. 8L
11.2
n(r, ¢ 7w(r N (11.26)

!l is casily scen to be a functional of 7wand y. For, from (11.23%), (11.18c¢), (11.25)
and (11.26), we have,

o = [ 10y +mdpde- [ {%8‘“%&"}

= [ tGoy-iGyidr. (11.27)
v
Therefore,
H=H[y,nl, (11.23%)
and 8H = f[ Sy + %;i ) (11.27%
with
dH oH aH
— = diy —/—— 2
v "oy div Nerad )’ (11.28a)
dH oH oOH
e iy —, 11.2
dn On div d(grad ) (11.285)
Comparing (11.27%) and (11.27%), we get,
aH aH
wr, 6= lr, 1) t) - 6= Jy(r, 1)’ (11.29)
If F is an arbitrary functional of y and m, then,
- a_F aF . OF .) ,
F = a5t V(W\H - n)d
oF
=_a_+(p Hipp, (11.30)
where the Poisson bracket is given by
OF 8H @8F dH
[F,Hlp = .{(ﬁy?ﬁ: T (1131
According to Eq. (11.18¢),
_ a‘q/(l’, t) ’ 3.
SW(rv t) - Va—w(rr’ I)S\V(r ’ t)d r,

But,

Sy(r, 1) = LS(r -y, Hd’r'.
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so that,
Fy(r, 1)
Ay, 1)
oq;

This relation corresponds to 7 3. = §;; of the discrete case. Similarly,
9

=8(r—r). (11.32a)

g:((: 'I)) =3(r-1). (11.32b)
Using (11.32a, b), the following relations are easily obtained:
(W(r, 1), H) pp = % =V, (11.330)
In(x, 1), Hlpp 2“% =7, (11.33b)
D(r, 0,7, D]y =8(r-1) (11.34a)
[y, O, ¥, Olps =0=[r(r, 1), 70", t)]p5- (11.34b)

Extension of the above formalism to the case of several truly independent (that
is, not connected by any constraints) fields is straight forward. In Egs. (11.25),
(11.26) and (11.33a, b) ¥ and & are replaced by y* and its conjugate field =*
respectively, while Egs. (11.24), (11.31) and (11.34a, b) become (in covariant
notation),

H(x) = TV ) - £, (11.24a)
dF dH JF dH
(F,H]pp= E (%%—%%J, (11.31a)
WA, 0,7, )]y = 8g8(r =), (11.34a")
o, D9, ], =0= [7%r, 0,7, 1) (11.34b")

Quantization of the Field

The transition from a classical ficld to a quantum field is accomplished by steps
identical to those described in the transition from the canonical formulation of
classical mechanics to quantum mechanics. The field variables y and & are
regarded as field operators. The quantal properties of y and 7t (and, through them,
those of the physical obscrvables of the field) are specified by prescribing alge-
braic relations for  and 7. Unlike in the case of quantum mechanics, these
rclations need not be the ones that follow from replacing the Poisson bracket in
(11.344, b) by the commutator bracket divided by i%. However, the equations of
motion, which should be considered as operator equations, are obtained by such a
replacement of the Poisson brackets by the corresponding commutator brackets.
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Instead of specifying algebraic relations for  and 7t directly, one could expand
v in terms of some complete orthonormal set of functions {u,} :

y(r, 1) = Zd,()u(r), (11.35)
k

and then specify algebraic relations for the coefficient operators 4,. By definition,
u, satisfies the relationships [cf. Eqgs. (2.33) and (2.36)],

fu; (Mu(r)d’r=3,, (11.36a)

Tu, (N, (1) = §(r - ). (11.36b)

The set {u,} could be the plane wave solutions of the corresponding classical ficld

equation. Eq. (11.35) could be regarded as a Fourier decomposition of the field
(see Egs. (C.1)and (C.1a)) into its normal modes. We will illustrate the proccdure
in the applications to follow:

11.3 NON-RELATIVISTIC FIELDS

The canonical formulation ensurcs that the quantized field is (is not) Lorentz
covariant if the corresponding classical ficld is (is not). As our first cxample we
choose a non-relativistic field, namely the Schrédinger field the classical ficld
equation of which is
ey
az
From the vicwpoint of quantum mcchanics, Eq. (11.37) is the quantized
equation of motion of an ensemblc of particles of mass m moving in an external
field represented by the potential V. But here we look upon it as a classical field
cquation. It can be then quantized according to the procedure described in the
previous Section. Since it is the second time the equation is being quantized, ficld
quantization of this equation (as also of the relativistic quantum mechanical wave
equations) is referred to as second quantization. We will see that the second
quantization of (11.37) leads to the appcarance of the field as an assembly of
non-interacting indistinguishable particles (analogous to the normal modes of
oscillation of a system of coupled oscillators in classical mechanics).
We start by finding out a Lagrangian density which, when substituted in
(11.17"), yields Eq. (11.37). We find,

2
+~EV’W Vy=0. (11.37)

2
Ly=ihy \y——ﬁ-— grad y'. grad y - Vy'y. (11.38)
The conjugate field n(r, ¢) is given by (Eq. (11.25)],
95 iy 11.39
T[(r, t)_W“l \V(r9 t)! ( - )

and the Hamiltonian density #/and Hamiltonian H by,
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2

- ﬁ » »
ﬂznw—L,=—2—m— grady . grad y+Vy v

if i
- . —_ . 11.
o grad - grad y 7 Vry (11.40)

2
H= L[% grad y - grad y+ V\y'\p] d’r. (11.41Y

Quantization

We expand W(r, ¢) in terms of a complete orthonormal set {u,(r)}:
Y, 1) = Z4,(Oulr), (11.42a)
k

Also,
Vir, 1) =—@/H)n(r, £) = §d;(t)u;(r). (11.42b)

We choose the {u,(r)} to be the energy eigenfunctions of the Hamiltonian of a
single particle in the field:

. o,
H,=-5-V'+V(D),
with
A u(r) = e, u(r). (11.43)

(Note that V is assumed to be independent of ¢).
Quantization is done by postulating suitable algebraic relations for the operators
4, (1) and 4,(1).

System of Bosons

We try the following commutation relations for the Fourier coefficients in
(11.42a,b):

[dk’d;] = 81;,1'

[4,.4) =0=1[d},a1, (11.44)
where all the operators refer to the same time. (11.44) is seen to be identical with
(4.76) of Section 4.2A, cxcept that here we have an infinite number of operators
d, in place of the single 4 in (4.76). From the result of that Section, we can draw
the following conclusions.

The cigenvalue spectrum of the Hermitian operators N, = d}d, are the non-
ncgaltive integers,
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n,=0,1,2,...,40. (11.45)
A gencral state vector of the field is given by
| gy ey Y= C@ED (@) .. d]) ..

where,

| 0). (11.46)

C= ! (11.47)

- 172
{ninomtl)

and | 0} is the vacuum state defined by
N, 10y=0, forall k. (11.48)
Also,
Gyl Ry tty oy By Y= N | Ry gy e (= 1), .00, (11.49a)

difn,n, .. ny..0=\m+1ln,n,. .. (n+1),...) (11.49b)
From (11.41), (11.42a, b) and (11.43) we get

~ At m flz ™ *
H= Ea{a,L(ﬁ grad i, - grad u,+Vu,‘u,J d’r
=N, e, (11.41%
k

where the orthonormality of the «,’s , [Eq. (11.36a)], has been used. The total
energy (the eigenvalues of H) of the ficld in a state | ny, n,, ...n,, ...) is thus,
E=%n e, (11.50)
k

As in Section 4.2A, Egs. (11.45), (11.493, b) and (11.50) enable us to interpret
d},d, and N, respectively as the creation, annihilation and particle-number
operators for particles in the state u, with energy €, . The vectors (11.46) define

an occupation-number representation for the system. Since a given particle-state
u, can be occupicd by any number of particles, the field represents an assembly of
bosons.

!

(s~r)!

Problem 11.1: Show that (4,) ()" | 0) =
Eq. (11.47).

@1y ""10>§,,. Hence deduce

System of Fermions

We have scen that the quantization postulates (11.44) lead to a system of bosons.
For a system of fermions, the occupation number #, should be restricted to 0 and

1. It has been shown by Jordan and Wigner® that this condition could be met by

6. Jordan P. and Wigner, E.P. Z. Physik, 47, 631 (1928).
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replacing the commutation relations (11.44) by the following anticommutatiorn
relations:

{d,,d1t ={d},d,} =4, (11.51a)
{d,,a}=0={d},a" (11.51b)
Here also, all the operators refer to the same time. (11.51b) requires,
a,é,=0=aaj, (11.52)
so that
N?=dl4,ald, =al(1-4d}4,)6,=N,,
or,
NN, -1)=0, (11.53)
from which it follows that the eigenvalue spectrum of N, is given by,
n=0,1. (11.54)
The following results also follow from (11.51a, b) and (11.54):
[ My gy oy = (@D (@) . (E0) .| O), (11.55)
. s,
dylnpng..on, . =0 nln,ny,. . (n—1),..), (11.56a)
Al gy ooty Y= (1) (1 =n) | ny o (r + 1),
(11.56b)
Nobnyfgy ooty Y= 1y | Ay Ry v By ), (11.56c)
where,
k-1
S,= Zn, (11.57)
r=1

Egs. (11.56a, b) show that an empty state cannot be further emptied and a filled
state cannot be further filled. We also see that the annihilation, creation and
number operators can be represented by the matrices,

0 1 0 00 \
(a*)=(0 0); (a[)=(1 8), (N,,)=(O 1) (11.58)

The Hamiltonian A and the total energy E of the field are given in this case by
Eqs. (11.41% and (11.50) with n, restricted to 0 or 1. Also, in the case of bosons

as well as fermions, we can define an operator N representing the total number of
particles by

N=ZN,. (11.59)
k
From, N,H]=ZN,N]e,=0, (11.60)
k!

it ollows that the total number of particles in the field is conserved.
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For the case of bosons we have, from (11.42a, b), (11.44) and (11.36b),
(r, 0),7(r, 1)) = iad(r —r’), (11.44a)

D, 0, 9, 0] = 0= [a(r, ), 7, 1)
whereas for fermions the corresponding relations are
{y(r, 0, o', 0} = ik d(r-r),

e, 0, ¥, 0} =0 = {afr, 0, o', D}, (11.51)
While (11.44a) resembles the Heisenberg commutation relations (3.12) of quan-
tum mechanics and, thus, could be regarded as the quantum theoretical extension
of the classical relations (11.34a, b), Eq. (11.51) has no classical analogue. The
implication of this difference could be the following: For a field to be strong
enough to be measurable it is necessary to have a large number of particles in the
same state so that their contributions to the ficld are coherent. Therefore, fields
that are measurable and have, hence, a classical counterpart should be describable
in terms of an assembly of bosons. An example is the electromagnetic field the
quanta associated with which have spin 1. It follows that the y-field associated
with fermions are not measurable though quantities like current density and
energy, which are bilinear expressions in y, are measurable.

In terms of , the particle-number operator N (Eq. (11.58)), is given by

N = %ila, = zf w (O, Du, )W, Hd’rd’r’
k k v

= f 3(r — )i (r, OW(r’, d’r'd’r
v

= f v, ny(r, nd’r, (11.58a)
v
which is essentially identical to Eq. (1.19). The expression,
ﬁk(t)=f u, (r(r, 1)d’r, (11.61)
v

which follows from (11.42a) and (11.36a), has been used here.

Commutators and Anticommutators at Unequal Times

The Heisenberg equation of motion for the field operator  is given, according to
Eq. (11.33a), by

oy . 1 . .

FrRRALRL = v, 1), 1}, (11.62a)
which is equivalent to

dd, 1

=— ¢, d, (11.62b)
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since
[d,,N,) =8, d,. (11.63)
Thus,
d,(t) = 4,(0) exp [~(i/h) €, 1] (11.64a)
and
al(ty=al expl(im) e, 1. (11.64b)
From these and Egs. (11.44) and (11.51a, b), we have:
[d,(0), 410, = 8, exp [i/k) e, (t' 1)) (11.65)
[dy(1), 4,0 = 0= EHONHG
where

(4.6),=1{4,b} ;(4,b]_=1(4,b]. (11.66)
Problem 11.2: Verify Egs. (11.56a-¢).
11.4 RELATIVISTIC FIELDS

We have scen that a non-relativistic field can be quantized using either Bose-
Einstein statistics (commutation relations for the field operators) or Fermi-Dirac
statistics (anticommutation relations). We will see that a given relativistic field
can be consistently quantized by using only one of the statistics. This is because
of the intimate relationship between a relativistic wave equation and the spin of
the particles on the one hand and spins and statistics on the other hand. As
examples of relativistic ficlds we will consider the Klein-Gordon field (which is
a scalar field), the Dirac (spinor) ficld and the clectromagnetic (vector) field.

Natural System of Units

It is customary, in relativistic quantum ficld theory, to usc the so-called natural
system of units (n.s.u.). In this system both # and ¢ are dimensionless and of
magnitude unity.

h=c=1. (11.67)
From the relations £ =#w and p =#k, we sec that energy and momentum have
then the dimensions of frequency (T') and wave number (L ™), respectively. But
also, E has the dimension of mc? and p that of mc so that, in natural units, both E
and p should have the dimension of mass (M), Thus, L, T and M have the same
dimension in the n.s.u. This could have been deduced also from the fact that
normally # and ¢ have the dimensions,

B =ML [¢] =LT. (11.68)
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From the dimensionless fine structure constant [Eq. (10.111)] e%hc = 1137, it
foliows that in n.s.u. the electric charge is dimensionless and that the unit of
charge e has the magnitude =+v1/137,. In general, a quantity A which has the
dimension [A) = M®L*T"in the C.G.S. system, has the dimension,

[Al,,  =LPr o= htros by (11.69)
in the natural system. Thus, all quantities can be expressed in terms of just one
dimensional quantity which is usually taken to be length (though sometimes time
is chosen for certain quantities like energy).

A quantitative relationship between the natural system of units (with length as
the dimensional quantity) and the C.G.S. system of units could be established as
follows : (11.69) can be obtained by multiplying [A] by [#]*[c]® and then setting
the exponents of T and M in the result equal to zero. That is,

(A1, . =[A1#%c)°

=Ma+6Ty—6—sLB+26+e (11691)
Setting o+ 8=0=y~-8— €, we gel,
d=-0; e=0o+Y,

and (Al , ., =L»7e
Examples:

(i) Energy: [E]=MLT X a=1,p=2,y=-2).

d=e=-1,
and [E)y,..=L7,
\ 4. E(inergs)
. N l = —
-~ E(incm™) o
or, E(ineV)=E(incm™)x197x 107,
Thus, 1 fermi™ =197 MeV

[A=1.054 %107 erg. sec =6.582x107¢eV sec)

(ii) Electric charge: [e] = M"L>T,

1
8—&'——5.

fe], , . =L’ (dimensionless)

. . in e.s.u. 1
e (in natural units) =e _(___J =

Ve V137

fe (e.s.u) =4.8x 107
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11.4A. The Klein-Gordon Field

The ficld equation is (10.6%) which, in natural units, takes the form,

(0,0,—m*)d(x)=0. (11.70)
We assume that ¢ is complex. Then, the Lagrangian density is given by
Lyg(x) == 03, 3,0~ m*dD", (11.71%

Here, @ and @ should be treated as independent fields. Alternatively, & and ®”
could be written as

@(x) =\[i§[¢l(x) ~iD,(x)], (11.72a)
d(x) = \/ii[cbl(x) +id(x)], (11.72b)

where @,(x) and &,(x) are real ficlds satisfying Eq. (11.70). In tcrms of @, and
@.,

2 {1
Lgx)= X {——(aucb,ap, +mzc1>f)l (11.71%)
r=1 2 J
Then,
d .
T, (x) :aid’)‘fz i9,®,=d,
2 -~ =
Heo = L )P, (%)~ L),
and’
2 0 1
Hyp= E,JF ja;b,a,(b,d:’x 3 f(ap,aucb, + m2¢f)d3x} (11.73)
A plane wave solution of Eq. (11.70) is given by
11
u, (x)=—=——==exp (ikx), 11,74
with kx=k“x“=k-x—u)t, (11.75)
k= kk, =K -, =-m’, (11.76a)
and o =K +m? (11.76b)

1
The factor \/2—— is introduced in (11.74) for interpretational convenience [sce Eq.
Oy

(11.88) below].

7. The coordinate vecior is hereafter denoted by X in place of r. Similarly, d°x will denote the
volume element in the coordinate space.
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The field operators &, are expanded in terms of u,(x):

d,(x)= {4, (K)e™ +df(k)e ™). (11.77)

ey
The second term in (11.77), which is the hermitian conjugate of the first term, is
needed because the classical field &, is real (so the quantized field is hermitian)
unlike the y in (11.35).

As quantization postulate, we adopt the commutation relations,

[d,(k),di(k) =8, dk-k),

[4,(k), ()] = 0= [4](K), 41K (11.78)
Then, according to the results of Section (11.3), the field will represent a system
of bosons. However, there will be two types of particles. In order to see in what
respect these particles differ from each other, it is convenient to work in terms of
<& and @ rather than in terms of &)1 and (i)z. From (11.72a) and (11.77), we have,

d(x)= \[_ \/_—[a K)e™ +bt(k)e ™
= T[a(K)u (x) + bR, (x)], (11.79)
k
where ak)= —\/1—5[& (k) —id, k), (11.80a)
b(k)= \/lf[dl(k) +id(k)l. (11.80b)
d,b and their hermitian conjugates satisfy the commutation rules,
[d(k),a"(K")] = [6(k), 5"(K")] = S(k—k") (11.81)

All other combinations vanish.
Define the 4-vector §(x) by

olys . Olps
= b-— t
S (X)) = le(a(p TR
= ie {(0,"d - 0,H)d1. (11.82)
Then, from (11.70),
3,3,(x) = iem[D'(x), D(x)]
=0, by Eq. (11.90a) below. (11.83)

S (x) can be, thus, interpreted as a 4-current density and S/ as the electric charge
density. The operator O corresponding to the total charge of the field is given by

0 =%f S,(x) d’

=e f {(0,8H® - (0,0)P" d’x
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= %kﬁ,[{d(kl a'(k)} - {b(k), 61K} (11.84a)
=e)£[1\7+(k)—1\7‘(k)], (11.84b)
where N.(K) = d'(k) d(k), (11.85)

N_(k) = b'(k) b(k).

In going from (11.84a) to (11.84b), we have used the commutation relations
(11.81). Incidentally, we note that ¢ would be null if we use anticommutation
relations (Fermi-Dirac statistics).

The total charge of the field is thus,

Q= e§[n‘(k) -n(k), (11.86)

where, n(k)=0,1,2,...,+co, (11.87)

Thus, the operators d(k), a*(k) and N,(k) can be interpreted respectively as the
annihilation, creation and number operators for a particle of electric charge +e and
momentum k, while 6(k), b*(k) and N (k) are similar operators for a particle of

charge —e. This interpretation can be confirmed by evaluating the field Hamil-
tonian H. From (11.73), (11.80) and (11.81), we find,

A 1 2 A
Aro=5Z0, T (4,0, 4709}

1 .
=3 Z0[{a(k), a'()} +{b(k), 61k}
= XN (K)+N Ko, +H, (11.88)
k
with H,=Zaol. (11.88a)
k
The field encrgy is given by
E=E, +E, (11.89)
with® 1
E =X "1(“)““5 . {11.89%)
k

Again we note that the field encrgy would have been zero had we used anticom-
mutation relations for the creation and annihilation operators. This shows that the
Klein-Gordon field can be consistently quantized only by using Bose-Einstein
statistics.

8. Note the similarity of (11.89a) to the corresponding harmonic oscillator expression,
o 1
Eh S Eo(n +§

which follows from Eq. (4.94). The field ap;;;ars as a collection of independent oscillators.
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We see from the foregoing analysis that the Klein-Gordon field with a complex
& represents spinless (since & is a scalar) charged particles of charge +e and —e.
The particle with charge —e is regarded as the antiparticle of the one with charge
+e. The theory is seen to be symmetric under the interchange of these particles.

We also see from (11.82) that for a hermitian & (obtained by setting &, in
(11.72) and 4, in (11.80) equal to zero), the current and charge densities vanish.

But the ficld Hamiltonian is given by
H= Z{N(k)+ }0)k,

with NK) = d1(k) d(K).
Therefore, a hermitian (or real) scalar field represents neutral spinless particles.
In general, thus, the Klein-Gordon equation is the field equation of a spinless
particle which exists in three charge states—positive, negative and neutral.
Experimentally, the mmesons fit this prediction.

We notice that the field Hamiltonian is positive definite, and the negative
energy problem of relativistic quantum mechanics has disappeared.

Problem 11.3: Verify Eqgs. (11.84) and (11.88).
Invariant Delta Functions
From (11.79) and (11 81), we have,

{ [d(k), a"(K")]

[D(x), S (x) === vz

xexp [i(kx —k x’)] +[61(K), b)) exp [~i(kx —k'x" )}
=iA(x ~x"). (11.90)

1
Here, A(x):vz&sinkx. (11.91
k

A(x) is known as the invariant delta function, signifying its invariance under
Lorentz transformations. The Lorentz invariance of A(x) follows from the fact
that & and &' are Lorentz scalars’.

The R.H.S. of Eq. (11.91") can be converted into an integral by the following
procedure:

Imagine the volume V to be a cube of sides of length L. Then periodic
boundary conditions will restrict the components of k to the values (sce Eq.
(8.176)],

2
kizzTEn,.,(£=l,2,3; n=0,£1,£2,..). (11.92)

9. For an explicit proof of the Lorentz covariance and for a more detailed 2ccount of the invariant
delta function, see Ref. 1 chapter 6; Ref. 2, Section 2-3 or Ref. 3, Section 4.6.
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A volume element in k-space is thus given by
(2n)’
Vv

where dn represents the number of allowed values of k in @°k. Let us divide the

d’k = dk, dk, dk,=———dn, (11.93)

volume in the k-space into small cells and let (d3k)j represent the jth cell. Then,
if f(k) is an arbitrary function of k,
T fK) = Z{K)dn} ey

k (over k — space) J

Z{f(k)d3k} by Eq. (11.93)

(2 m)* j
&’k f(k 11.94
~a | 1w, (11.94)
Since the function f(k) is arbitrary, (11.94) implies the correspondence:
1 1
=z —jd3k. 11.94
Vk - (2ny® ¢ 2)
Applying (11.94) to (11.91Y), we get,
Alx) = ! fdzk sinkx. (11.91%
(2ry* '
= A"(x) + APx), (11.91%
. _ 1 exp (+ikx)
where A(x) =+(2n)3fd3k 20,
=-A9(-x). (11.95Y
Now
f d3k£—fd3k ikx) [ do TP 5 o)
20, = exp (ik. e 20 o, —

- f d*k e™0(w) [S(mi - ) +51u—) S(w, + 0))]

= — f d'k e™O(w)3(k*+m?), (w, > 0). (11.96a)
Here, Egs. (11.75), (11.76a, b) and (D.11) are used. Also, 8(w) is the Heaviside
step function (D.7) and 4% = d*k dk, = id’k do.
Similarly,

—ikx .
kE—= [ dkexp (i exptHon) o —
f d kka —Jd k exp ( zk.x)fwdco o 3(w, — w)

- f 4’k exp (ik.x) f doy SEEOD 5 o)
W <0 20
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=i f d*k e™O-w)d(k*+m?), (w, > 0). (11.96b)

In going from the first to the second step, the fact that the limits of integration
for the components of k are from — oo to + o0 is made use of.

Substituting (11.96a, b) in (11.95") and (11.91%), we get the covariant forms of
the delta functions:

+ _ 1 4 kx 2 2 2
= 11.9
Ax)= T (2n)3f d*ke™O(0)S(k>+m?), (11.95%
Ax)= — ! fd“ke"“e(m)S(szrmz), (11.91%
2ny*
where € (©) = O(®) - O(-w) = { _1lf;’;r°:)><°0 (11.97)

From (11.91% and the 3-dimensional generalization of Eq. (D.6a), we get
d -1 5 .
— - P p— —ik- -
2 Alx—x"),_, (2n)’J‘ d’k exp (k- (x—x)

= —5(x—¥) (11.98)
The field operator conjugate to ®(x) is given by
. Oy .
=—-=0" 11.99
n(x) 7% (11.99)

From (11.90), (11.99) and (11.98), we derive',
[D(x, 1), 1(x’, 1)) = id(x—x),

[©(x, 1), D, 1)] =0 = [r(x, 1), W, 1)]. (11.100)
Also, fort =0, kx =k - x, so that,

A, 0) = — 3fa!’ksmk"‘zo, (11.101%)

(2r) 0y

since sin k - x is an odd function of k. Therefore,
[dx, 1), &', 1)} =iA(x-x',0)=0. (11.90a)

Since A(x) is Lorentz invariant, the result (11.101") holds good for any space-like
vector x. That is,

Ax)=0, ifx*=x*-1*>0. (11.101%
A space-like vector connects two events that are separated essentially in space
(that is, a Lorentz frame can be found in which the events are simultancous but
take place at two different locations in space). Such events cannot be connected

10.  The commutation relations (11.100) could also be obtained using the expression,

7o) = 3,&*=\[i‘7 2 2 el - 6006,

which follows from (11.79).
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by a light signal (since | x—x"|>c(t —t")) and, therefore, cannot interfere with
each other. This is known as the principle of microcausality. Eqgs. (11.90a) anc
(11.101 are merely expressions of this principle.

Problem 11.4: Verify the commutation relations (11.100).

Problem 11.5: From (11.91*) show that A(x) satisfies the Klein-Gordon equation
(11.70).

The Positive and the Negative Frequency Parts

Eq. (11.79) can be written as
O(x) = D(x) + B x), (11.79)

where,

dIx)=— !

7ivm

dk)e™, (11.79a)

(I)( )(x)

bi(k)e™. (11.79'b)

wivs

& and &) are referred to as the positive frequency part and the negative fre-
quency part, respectively, of & - ™ contains only annihilation operators while
&Y contains only creation operators. Also, in the case of a Hermitian field like
the &, in (11.77),
&M = d (hermitian ).

& is called the positive frequency part because it contains the positive exponent;
e™ = exp (i(k-x— ). Similarly, ® contains e™®. In a theory where nega-
live energies are allowed, the positive exponent goes with positive energy and the
negative exponent with negative energy [see Egs. (11.104) and (11.117) below].

That the positive and the negative frequency parts should be associated

respectively with the annihilation and the creation operators could be seen quite
generally as follows:

The equation of motion for the operator 4 (k)e™ is given, according to (11.62a),
by
o,(a(k)e™) =i[H,a(k)e™]
Taking the matrix element of this equation between field states @, and @, of
energy E, and E,, we get,

— i@, | d(K)e™ | ©,) =i(E,~ E,)(®, | 4(K)e™ | @,).
That is, E, = E, — ©, < E,. Thus, the operator d(k)e™ causes transitions to a state

of lower energy and, hence, of lesser number of particles. Similarly, & causes
transitions to a state of higher energy and larger number of particles.
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11.4B. THE DIRAC FIELD

The classical field equation in this case is (10.25% which in natural units reads,

(v, 0, +m)y(x)=0. (11.102)
As an appropriate Lagrangian density, we can use either of the following
cXpressions:

Lp(x) = —W(x) (4,9, + m)W(), (11.103a)

1— _
Lp(x) = =5 (W) (.0, + m)Wlx) +y(x) (1,9, + m)y(x).

(11.103b)
We will use the first of these.
As the complete set of plane wave solutions of (11.102) we choose the func-
tions,

1 m .
§,(x)=~—="\[ —u(p)e*
W N E, L(r=1,2), (11.104)
1 .
o)== ﬁpv,(p)e
where
u(p):(E’mjm( (oi) (11.105a)
’ 2m \{Ep+m}§’
172 (G-p)}
v,(p)=[Ep+m] {E’“" > (11.105b)
2m
&r
with
1 0
§1=(0); éf(J, (11.106)
and
px=p -x-FEt, (11.107a}
Also,
p*=pp,=p'~E*=-m% E,=\p*+m>. (11.107b)

The normalization factors adopted in (11.104) and (11.105) lead to the following
normalizations.

u,(p)up) = -V, (PV,(p) =3, (11.108a)
u(p) u(p) = vi(p)V.(p) = (E/m)3,, (11.108b)
u,(p) v,(p) = V(P (p) =0, (11.108¢)

ul(p) v,(=p) = vi(p)u,(-p) =0, (11.108d"
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where u,(p) = ul(p)¥,
Also,

f OL(X)6 (X)d*x = B, (11.109)
14
Substituting from (11.104) in (11.102), we find the equations satisficd by the
spinors i, and v,:

(ypp“—im)u,(p) =0, (11.110a)

(Vp,+im)v (p)=0. (11.110b)
The solutions ¢,(x) and 6,(x) correspond to positive energy (E = +E,) while ¢,(x)
and ¢,(x) correspond to negative energy (E =-E,). These solutions arc casily
obtained by solving Egs. (10.52a, b) for the free-particles case. Writing
O(x) =&(p,E)e™,

Xx)=n(p,E)e™, (11.111)
and substituting in (10.52a, by with @ =0,A =0,¢ = 1, we get the coupled cqua-
Lions,

(E-m)g=(c-pm,

(E+mn = (o p)k. (117:2)
For E =+E,, we write n = {(G - p/(E,+m)}§ and for E =-E,,

&=—{(o-pJE,+m)}n

There are two independent solutions for each sign of energy. These are, after
iniroducing a normalization factor, given by

&
W,(p,Ep)=A[B§’ . (r=1,2), (11.113a)
~BE,
w,(p,~E)=A £ ) (r=1,2), (11.113b)
where
A :{Ep+m}”2
2m
(c-p)
= 114
B E+m (11.114;
and (by choice)

§,=®, §2=®. (11.115)

The u, and v, in (11.105a, b) ar¢ defined as
u(p)=w,(p,E), (11.116a;

v,(p)=w,(-p.-E), (11.116")
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Corresponding to these and with additional normalization factors, we have,

0,(x) =T17\/Tg-:(A§,)eWw
%) =\/LV\/EZ, ABE o™

Ora) Z:j%\/;ﬁ; (At
X o) = ;;—V»\/ij (AE)e "

Egs. (11.104) follow from (10.53), (11.117), (11.116) and (11.113).

t (E=E,), (11.117a)

t (E=-E,p--p) (11.117b)

Quantization

Expanding the field operators y(x) and T?l(x) in terms of ¢,(x), we have,

e Lga L _— ;
= —_ P . 11.11
W(x) \/VE Epfllc,(p)u,(p)e +dl(p)v,(p)e™™] ( 8a)
V) =— }:\/ ™3 () (pe " +d.(p)V, (pe ™). (11.118b)
\/V P Eprzl r r r 4

where summation is over the allowed values of p [Eq. (11.92)].
Before interpreting ¢,,¢},d, and d; as annihilation and creation operators, we

have to make sure that (11.118) leads to sensible expressions for the energy and
the charge of the fiecld. We have,

R ai;,, BLD = A
O aL)

,(x) = ) W (x) - Lp(x)
=$(x) ( i ly,a,. + m) y(x)

==Y (X)W = ¥y, (11.120)
where the last step follows from (11,102). Thus,

i, = f WT(x)id,W(x)d’x

(s MEy
== 1 dxX X -===[¢l(p)¢,(p"
V. p.p "J‘VE l‘p'

x ul(pu,(p") exp (—i(p — pHx)—d (p)al(p’)

xVI(p)v,(p") exp (i(p — p/1x) — E1(p)dI(p)
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xul(p)V,(p) exp (~i(p + px) +d,(p)E, (1)
xvi(p)u,(p") exp (i(p + p x)]
- X 2 BP0 (). (11.121)
Here, Eqgs. (11.108b, d) and the relations {(Eq. (D.6a)l,

f exp (Hi(p - p"yx)d’x = 8(p—p"),

@2ny’
and [Eq. (11.94a)],
1
2ny

1
v 28p-p)= fd’p'fi(p -p);
P
are used.
Similarly (c.f. Eq. (11.82)),
) Jobp . 8fp.) s ,
5'*(x):_le{_a—\ﬂw_a_\j;7“ﬁ} =ie y(x)7, yx) (11.122}
’ W

Q=-i j Sx)d’x=e f vhyd’x
v 14

2 A Y
=eZ X (1), +d, PPN (1323

From (11.121") and (11.123") we see that, if we adopt commutation relations
for the field operators, then the field Hamiltonian would not be positive definite
whereas the total charge would be. On the other hand, adoption of anti-
commutation relations resuits in a positive definite field Hamiltonian (aside from
a negative zero-point, or vacuum, energy) though the total charge would be no
longer positive-definite. Since a negative total charge is not unphysical like a
negative total energy, we conclude that only the latter alternative is acceptable.
Thus,

{6,(p),¢1(pN} = {d,(p). d1(p =8,8(p-p),

{é,,¢}=1{¢, ¢ =1{d,.d} ={d!,d"} =0. (11.124)
Then,
A 2 A Gy ~
Hy=Z ZEIN(p)+N(p)+H, (11.121%
pr=1
A 2 A ~t A p
Q=eZ X [N.(p)~N(p)]+Uo (11.123)
pr=
2
and E=Z X [n/(p)+n'(p)] +E, (11.125)
pr=1

Q=S 2 In () -nD) + 0y (11.126)
pr=



416 QUANTUM MECHARNI{S

where N(p) = ¢1(p)é, ), (11.1274)
N;(p) =di(p)d, (p), (11.1270)

Eo=—2§EP<0 (11.128)

Qo=2e§1<0 (11.129)

nf=0,1. (11.130)

We interpret ¢}(p),¢,(p) and N;(p) as the creation, annihilation and number
operators for a particle of momentum p and charge e (the electron) and (ij(p), d,(p)

and N:(p) as identical operators for the antiparticle (positron) of charge —e.

Again, the theory is symmetric under the intercharge of the particle and the anti-
particle.

The zero-point energy and charge, in this case, could be interpreted in terms of
the hole theory (Section 10.2A).

Spins and Statistics

[r the quantization of the Klein-Gordon and the Dirac fields we have a sort of
theoretical basis for the empirical correlation that was found to exist (Section 9.2)
between the spin of a particle and the statistics obeyed by an ensemble of the
particle. For, we find that in order to get a positive definite field Hamiltonian, we
have to quantize a Klein-Gordon field using Bose-Einstein statistics and a Dirac
field using Fermi-Dirac statistics. In general, it is found that quantization of ficlds
representing integral-spin particles requires Bose-Einstein statistics while those
corresponding to half-integral spin particles require Fermi-Dirac statistics.

Covariant Anticommutation Relations

From Egs. (11.105a), (11.106) and (10.30a, ¢), we have,
(E,+m)  —(o-p)

2
2upu,(p) = 5= p’l
, e r r 2 . _
' "l @ E,+m
= —1—( +i (11.131a)
= im Y“Py m), . a
mny
2 _ 1 _
EVOV,0P) = 5, im), (11.131b)
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where / denotes the 2x2 unit matrix. The operators (11.131a) and (11.131b,

respectively project out the positive and the negative energy parts of a plane wave

solution of momentum p. This follows from (11.108a, ¢): We sce,
Tuubd(x)=0, (s=1,2), (11.132a)

=0,(s =3,4).
Zv,v,0,(0) =0, (s =1,2),

=—0,, (s =3,4). (11.132b)
Thus, the completeness condition for the spinors is given by,
2 — ~
T (uu,—vyv,)=1. (11.133)
r=1

We will make use of these results to obtain the anticommutation relations for
the ficld operators y and y. Each of the four components ¥, (a = 1,2,3,4) of y
will have to be treated as independent fields, where, according to (11.118a).

. 1 m )72 . T ip
“"‘””TV%(E,) r{«l[c,(p)u,a(p)e +d{(p)v,o(p)e™] (11.118¢)
=500 + ). (11.1184)

From Eqgs. (11. 118) (11.124), (11. 131) and (11.94a), we get
(b y Wa(x') =@, v Hiw, v o) sy

(0w, ¥ ) =

Z LoD, o(p)B(P — P 7

e

1 J 3 1 . ip(x—x"
=—— dp—p +im) ¥
@y Je-g,” P2E, W™

1.
d3 = ip(x—x")
o’ 2r ) E-E, P [ZEp)e

=—iSix —x"). (11.134)

=-i(yd,—m)

Similarly,

" ! 1 1 ' ~ip{x-x
000, vy oy = (2n)3L:E 4p (EE;]W“” pmim) e e

’ 1 ~ip(x—-x
=—i(y,d,~ m)mﬁ(2 )3L i dﬁ{_ﬁ} ip(x - x')

=-S5 (x x’). , (11.135;
From the definition (11.95") of A®, we have,
Sa(®) = (4,3, ~m)A7(x). (136,
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Thus,
{\i!a(x), _\ﬁﬁ(x’)} = iS4 (x - x), (11.137a)
with So) = S500) +Sx)
= (1,0, —m)A(X). (11.138Y)
Similarly,
(W00 W} = {y,00), yg(x )} = 0. (11.137b)
Using expressions (11.95% and (11.91%) for A® and A, we find,
bs - 1 ipx
S8 = +(2ﬂ)3 f d*p(y,0,—m) o OFp)d(p2+md) (11.136°)
1 . )
sqﬂ=—(2n)3fd‘p(ypap—m) wl € (p)8(p*+m?). _ (11.138%

From these it follows that S, (as also S,‘,f,’ ) satisfies the Dirac equation:

(43, +m) S0) = — [ d'pe™ & (p) ™+ mIB(p* + ) =0.

1
(2n)?
(11.139)

Physical observables of the Dirac theory are bilinear in W and . The
anticommutators (11.137a, b) ensure that two such observables commute for
space-like separations (Problem 11.7) and, thus, satisfy the principle of micro-
causality.

Problem 11.6: Obtain expressions for A, and @ using (11.103b) as the
Lagrangian density.

Problem 11.7: Show that [$a(x)@3(x), ¢p(x')ﬁlo(x’)] =0,

when (x —x")?> 0.
11.4C. THE ELECTROMAGNETIC FIELD

The Klein-Gordon and the Dirac fields are respectively examples of scalar and
spinor ficlds. We now take up the case of a vector field—the electromagnetic
field—which is the only ficld, among the ones discussed here, that was known to
classical physicists. In fact, the technique of field quantization was developed
specifically to incorporate the principles of quantum theory into this classical ficld
theory.
The classical field equation is (10.168):
0,0A,(x)=0, (v=1,2,3,4). (11.140)

Uy
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which, we see, is the Klein-Gordon equation (11.70) for zero-mass (m = 0) par-

ticles. However, compared with (11.70) the quantization of (11.140) is made
difficult by the following factors:

(1) Egs. (11.140) is equivalent to Maxwell’s equations only if it is combined
with the Lorentz condition (10.169) on the four-potential A. But the
Lorentz condition implies that all four components of A are not indepen-
dent. On the other hand, canonical quantization procedure is valid only
for independent fields (Remember that in obtaining the Euler-Lagrange
equations, variation in each of the ‘co-ordinates’ is trcated as
independent).

(ii) Whereas A,, A,, A, are real, A, (=iV)" is imaginary. This makes it diffi-
cult to treat all four A,’s on the same footing.

(iii) Invariance of the ficld under Gauge transformation (Eq. (10.176))
necessitates different quantization procedures for different gauges.

In meeting the above difficulties, we choose the Lorentz gauge'? but ignore, at
first, the Lorentz condition and the imaginary character of A,. That is, we treat all
the four A,’s as independent and Hermitian (in the quantized theory). The diffi-

cultics (i) and (ii) above are then overcome by a procedure due to Gupta and
Bleuler™,
In analogy with (11.71?), the Lagrangian density is given by

L) =-33ADA, (11.141)

while, in place of (11.74), the plane wave solutions of (11.140) are chosen as:

u,(x) = g,(Ke™, (L=1,2,3,4) (11.142)

W
with K=k -w=0, ~ (11.143a)
or, o, =1k|>0. (11.143b)

Also, the factor €,(k) in (11.142) denotes that u (x) is a vectorial plane wave, € (k)

being the picomponent of a 4-vector £(k) in the Minkowski space.
Expanding the field operators /i,,(x) in terms of u,(x), we have (c.f. Eq.
(11.77)),

A (x)—-— —-)4: [4,(k) €? (k) e™ +d!(k) € (K)e ™. (11.144Y

.\/—_“

11.  Here, V denotes the scalar potential and should not be confused with the normalization volume
V occurring in equations such as (11.144).

12, Quantization of the e.m. field using the radiation gauge [(Eq. (10,169a)} is discussed in Ref. 2,
Section 4.2.

13.  Reference cited in footnotes 40 and 41, Chapter 10.
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Here, € (k),(r = 1,2,3,4), form a quartet of complete orthonormal vectors (for
cach value of k) in the k-space™:
e kel K)=3,8,,. (11.145a)

4
'>::1 eV kel =3, (11.145b)
€ is the p-component of e (that is, the projection of €™ onto the x,-axis). It
follows that,
4
gk)=Za, el (k). (11.146)
r=1

We make usc of the arbitrariness of the vectors € to chonse «® (k) along k and

eV (k) and € (k) perpendicular to k. We further choose the 3-axis along k.
Then,

eV (k)=38, e k), (11.147)
with e® (k) = (€'(k),0, [ =1,2,3, } (11.147a)
e (k) = (000,1), '

where €', e?, ¢® are mutually orthogonal unit vectors with
k
e=—.
Ik
With this choice, Eq. (11 1441) reduces to,

A x)= [d,(k) ¥ (K)e™ +a1(k) €™ (K)e ™]
TR
= AP +AD(x). (11.144%)
In analogy with (11.78), we postulate the commutation relations,
[d,(k), d1(K")] = §,,8(k -k, (11.148)

ld, (k). d, (k)] = [d1(k),a¥Kk")] =

Then, d1(k), d (k) and d}(k)d (k) could be interpreted as the creation, annihilation
and the number operators, respectively, of a particle (referred to as photon) of
momentum k, polarization vector €™ and energy ©, =|k|. According to defi-
nition (11.147), €® and € represent transverse (i.c., perpendicular to the
momentum vector k) polarization while €® corresponds to longitudinal
polarization. A physical interpretation of € is more difficult, but a photon with
polarization along € is called a scalar or time-like photon, The fact that there
are three polarization states in space indicates that the photons have spin 1
(S, =-1,0,+1). Also, current density operator (11.82) in this case is,

14.  Since the system is enclosed in the volume V, k could be treated as discrete according to Eq.
(11.92).
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) (0L o Olpy o)
«gy(x)——le(-am.‘xv-a/ﬁ'“f&v =0. (11.149)

So the i:hotons are electrically neutral.
The field m,(x) conjugate to A (x) is given by,

. Oy Olpy . o
ﬂ“(X)ZaA—T;‘:—ng;:la‘A“:AM(X), (11.150)
and the Hamiltonian density #,,(x) by
Vj{EM(x):&pAu—ZEM
1 .- ” -
=57, +(VA) - (VA (11.151)

From (11.151), (11.150), (11.144%), (11.94a), (D.6a), (11.145a) and (11.143b), we
obtain the field Hamilionian:

. . 1
Hpy = f )’ x = T2 {4 (K), d1(K)} 0,
Lk “51dy n

A 1
= ZZ[N“(kH—:Imk, (11.152)
ku 2
which may be compared with (11.88). The total encrgy of the ficld is, thus,
4 1
Eypy=2Z {n,‘(k)+—2-}mk, (11.153)
Ku=1
where n(k)=0,1,2,... 4=, (11154

The Covariant Commutation Relations
Using Eqs. (11.144%), (11.1452) and (11.147), it is easily shown that

A 00, A" =i8,,D(x -x"), (11.155)
with,

D(x) =7 B3 exp (k) = exp (k). @, = k1)

i {
=—(2:T)3fvd3k exp(ik-x)[Slr;)O:k ) (11.156Y)

where the result, [, @’k exp (=ik-x) =], @’k exp (ik - x), has been used. We
note that Eq. (11.156') is similar to Eq. (11.91%), the only difference being that
whereas ®, = Vk? in the former, o, = Vk®+m? in the latter. It is obvious, then,
that
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D(x)= Lt A(x,m) (11.156%
m—o0

¢ 11.156°
(2 )’fd k exp (ikx) € (W)S(kD), (11.156%)

where A(x, m) = A(x), and the last line follows from (11.91*). From (11.156%), we
have,

(k3 =0, (11.157)

by Eq. (D. 9). Thus, D(x) satisfies the ficld equation.
Problem 11.8: Verify (11.152).
Problem 11.9: Show that D (x) vanishcs except on the light cone (x* = x*— 2= ().

Problem 11.10: Establish the following equal-time commutation relations:
[A,0), 7,0, _, = 18,8~ x),

A0, A6, _, =m0, m (&), _, =0

The Gupta-Bleuler Formalism

As already stated, the foregoing quantization procedure suffers from two draw-
backs. Firsty, it ignores the Lorentz condition,
9,A,(x)=0, (11.158)

and secondly it assumes all the four field operators A , to be Hermitian whereas A,

should be antihermitian. In the Gupta-Bleuler formalism being discussed below,
these problems are solved by retaining the Hermitian nature of the A . S but
modifying the usual definition (2.9) of the scalar product. It is further emphasized
that correspon:. nce with classical theory requires only the expectation values of
operators, rather than the operators themsclves, to obey the classical equations.
Thus, the definition, || ®}|?= (P | @), of the norm of & is replaced by
NP> =(@in|®). (11.159)

M is called the metric operator. We will require the norm to be real. Then (see
Eq. (2.103)),
nt=n. (11.160a)

The norm of a vector needs no longer be positive-definite. The vectors divide into
three classes depending on the norm being positive, negative or zero. Only for the
first of these classes the probability interpretation will go through, so that we will
want all physically significant states to be restricted to this class.

With the modified norm (11.159), the expectation value of an opcrator A
becomes,
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A)=(@|nA | D). (11.161)
(A is real for a Hermitian operator Aif [0, A} =0 and is imaginary if {n,A} =0.
Therefore, 1) should be so chosen as to satisfy the conditions,
M.A,(x)] =0, j=1,2,3,} (11.160b)
{N,Ax)} =0.
Also,
(2.4 =Rl A + 6, A7 =0,
%A =0{n.A} - {nA 0 =0. (11.162)

Thus, 11 is a ¢c-number (one that commutes with all operators of the field) and
can, therefore, be chosen so that

m =1 (11.160¢)

n

T:lz
Determination of 0

Egs. (11.160a-c) are sufficient to determine 7. From (11.144% and (11.160b) we
have,
M,d,&)1 =0, (r=1,2,3). (11.162a)

{ﬁ,d4(k)} = G
For simplicily, we assume initially that the state & represents photons of
momentum k only. Then, in the occupation number representation (Eq. (11.46)),
O =\n,n,n,n), n, = n,(Kk),
and (Eq. (1149)),
(/om0 nSVG,(K) |\ np,ng, nyny)

={n,n,n,n | dNk) | n/ 0/, ny',n0) (11.163)

={n K3, .11 TT5, .
From (11.162) and (11.163), we gct,
oan’ VAL d=(nn + 1, 0n ] + 1,0, (r=1,2,3)
(11.164a)

<o) ong>=—<.,n+1 (0|, n+1>, (11.164b)
That is, n (the maurix) is diagonal.
Also, by Eq. (11.160c),
Vg my, gy g IR gy, n Y = 1. (11.164¢)

Eqgs. (11.164a-c) show conclusively that



R QUANTUM MECHANICS

4
~ n
(n)/sng nsn I Iy ny ng,ndy = (1) n) Sn,n'.'
ye

(11.165Y
il ¢ corresponds to photons of several k-values, then,
R 4
(@1 ®)= (_1)““rk1 18, (4,0, (11.165%

where S5, = Zn,(K).
k

The Lorentz Condition

In the classical theory, the Lorentz condition is an expression of the observed
transversality of the electromagnetic field. As already pointed ou, for the quan-
tum theory to have the correct classical limit, it is sufficient if the expectation
valucs obey the classical equations. Therefore, in place of (11.158), we require,

@A)=(@|MA,|D)=0. (11.166)
Now,
@M A, | @)= (P,19,4 )= (P,79,AVD) +(P,79,A D), (11.167a)
and using (2.54) and (11.160b),
(@,10,ADD) = (Ma AVD, D). (11.167p)

- Here 4§ and AS are respectively the positive and the negative frequency parts of
A,. 7hus, (11.166) is equivalent to the subsidiary condition,

A - oy

3 A0 =0, (111657

1

1
—X
\/V k \/2mk

But. A{x) =

4,00 €® (kye™,

$o that,

BRI
\ka 20,

el _ A (D) ihx
A (x) = d,eMke

i . . i
:——-E\/(D ky—d, k}e™,
\/2_‘,71( k{ag( ) (14( 1

where, the fact that k, = k, =0, and the relations, e P k;= |k | =g €Dk, =—w,,
arc made use of. Thus, Eq. (11.168") could be written as

[G,(k) ~ d (k)& =0. (11.158%)
In this form, Eq. (11.166) is seen to be a restriction on the allowed states ® of the
ficld -ather than a condition on the operators A,. We see that the restriction is on

the combination of the longitudinal and the scalar photons, and does not affect the
transverse photons. In fact, based on a state with only transverse photons, we can
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construct a series of states with the same sct of transverse photons but differcnt
combinations of longitudinal and scalar photons in accordance with Eq. (11.168%).
It can be shown that the different states so constructed are related by gauge
transformations. For a free ficld, the gauge can be so chosen that only transverse
photons are present. The longitudinal and the scalar photons are, however,
required to represent the Coulomb interaction between charges.

Problem 11.11: Show that the state,

Lo
cpg“:_m__'ws(k)+a4(k)]”<bt‘(0, 0),

satisfics condition (11.168%), where & (n,, n,) denotes a state with n, longitudinal

and n, scalar photons.

11.5 INTERACTING FIELDS

In the preceding Section, we have considered the quantum theory of free fields.
Applications o physical problems would, however, require the considcration of
interacting fields. Interaction between two fields, in quantum ficld theory, is
viewed as a coupling between the fields by means of a coupling constant. For
example, the interaction between electrons and photons is described in termns of a
coupling betwecen the Dirac and the electromagnetic fields, the electric charge (of
the clectron) acting as the coupling constant [Eq. (11.193) below].

Unlike the case of {ree fields where the eigenvalue probiem is exactly soluble,
the problem of coupled fields turns out to be much more complicated and difficult
for solution.  Only approximation methods have been devised for tackling the
problem. An account either of the various difficulties encountered in the case of
t~ coupled fields or of the methods devised to overcome these is beyond the
scope of this book". Instead, we will restrict ourselves 1o a qualitative discussion
of certain concepts and techniques employed in the treatment of coupled ficlds,
using the coupling between the Dirac ficld and an applied (cxternal) electromag-
netic field for illustration. We start with the technique of Feynman diagrams.

Feynman Diagrams

Feynman diagrams are graphical representations of certain scattering processes,
introduced for the first time by Feynman'® in connection with the interaction of
elcctromagnetic field with charges. Feynman introduced these on the basis of
intuitive arguments. Dyson has given a mathematical interpretation to these dia-
grams. The Feynman diagrams have proved to be a very useful aid in the pictu-
risation and interpretation of the complex mathematics underlying scattering
theory.

15, Such accounts could be found in some of the references given at the end of the coapter.
16.  R.P. Feynman, Phys. Rev. 76, 749 and 769 (1949).
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Consider the scattering of an electron by a potential (representing the ¢lectro-
magnetic field). The electron can be represented by a world line in space-time.
We will denote the space axis by x and time axis (taken to be perpendicular to the
space-axis) by ¢ (see Fig. 11.1). A solid line parallel to the r-axis, as in Fig.
11.1(a), denotes an electron'’ at rest while an inclined line as in (b) represents an
electron with a uniform velocity. In these diagrams, if we dispense with the
explicit drawing of the space and time axes, we have the Feynman diagrams of an
electron at rest and an electron with a uniform velocity respectively. Thus, in a
Feynman diagram time runs vertically upward® and the space coordinate
4

i
A

0 > X 0 / "X

{a) (b}

Fig. 11.1. (a) Electron at rest, (b) Electron with a uniform velocity.

increases from left to right. According to this scheme, Fig. 11.2(a) represents the
scattering of an electron. The electron starts from™ x at time ¢, gets scattered by
the potential at x, at time £, > ¢, and reaches x” at ¢’ > ¢,. Fig. 11.2(b) represents
another way of looking at the same process (as far as the initial and the final states
of the electron, which only are observed, are concerned). An electron-positren
pair is crcated at x, at time ¢, > ¢, the positron proceeds to x, where it annihilates
with the original electron at time ¢, >t,. The electron of the pair proceeds to x”.
Now we notice one thing: if we reverse the direction of the arrow on the world
line of the positron between x, and x, (Fig. 11.2 (¢)), then the whole process is
represented by a single world line, namely that of the electron which, however,
runs backward in time between x, and x, Thus, positron could be described as
an electron running backward in time. The world line itself could be looked upon
as representing the progress of an eleciric charge which can go forward as well as

backward in time, the continuity of the line ensuring the conservation (inde-
structibility) of the charge.

17. Eventhough we specifically refer to the electron, the electron could be replaced by any fermion
as far as the diagram is concerned.

18.  True only for the so-called external lines defincd later. In the case of internal lines, time may
run upward as well as downward.

19.  We use bold x to denote the space co-ordinates alone while x is used to denote both x and ¢
together.
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(o) {b)

Fig. 11.2. Scattering of an eiectron by a potential.

From the foregoing we conclude that we can represent an electron (a fermion)
graphically by a solid line pointing forward in time and a positron (antifermion)
by one pointing backward in time,

Let us now have a closer look at the scattering process. We will later see that
the interaction between the electromagnetic ficld and the electric charges is
described, in quantum field theory, in terms of emission and absorption of photons
by the electric charges. A photon is represented by a wavy® line in the Feynman
diagram. Thus, the Feynman diagram corresponding to the scattering of an
electron by electromagnetic field is as shown in Fig. 11.3(a). An clectron of
momentum p absorbs a photon (labelled y) of momentum k at x and has its
momentum altercd to p’=p+k. Similarly, Fig. 11.3(b) represents positron

(a) (b)

Fig. 11.3. (a) Electron scattering, (b) Positton scattering.

20 Ou.er bosons are represented by dotted lines.
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scattering. The point x in the diagram is called a vertex. The conservation laws
(relating to momentum, energy, etc.) should be obeyed at the vertex. For this
reason the arrow on the photon line may be omitted since that can be determined
from the conservation of momentum and the direction of arrows on the fermion
lines. The following points also may be noted:

FD1. A solid line ending at the vertex represents either annihilation (or absorp-
tion) of an electron or creation (emission) of a positron. Similarly, a solid
line beginning at the vertex denotes either creation of an electron or
annihilation of a positron.

FD2. The number of fermion lines ending at the vertex is equal to the number of
fermion lines baginning at the vertex (conservation of fermion number).
Following a fermion line through the vertex, the arrow always points in the
same sense,

Toe above rules hold good quite generally for all Feynman diagrams. As a
further example, we give in Fig. 11.4 the Feynman diagrams corresponcing 10
single-quantum pair creation [(a)] and pair annihilation [(b)].

Diagrams of the type shown in Figs. 11.3 and 114 are known as basic vertex
parts. These do not, necessarily, correspond to actual physical processes. For
example, the single-quantum pair creation (or annihilation) shown in Fig. 11.4
violates the conservation of linear momentum. (This is seen by going over to the
centre of mass {rame of the electron-positron pair, where the photon momentum
does not vanish,)

et

(a ) (b)
Fig. 11.4. (a) Pair creation, (b) Pair annihilation.
Diagrams corresponding to actual physical processes can be obtained by

ombining two or more basic vertex parts. Figs. 11.5 and 11.6 illustrate such a
srocedure.
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A(2)
A(2)
SB‘l SBZ
e e
T
X
X2 2 T,
A A
T,
X, Xy f
SAY !
e e
(a) (b)
Fig. 11.5. Complon scattering by clectrons
A(2)
Soo S 86

(a) Two-quantum pair creation (b) Two-quantum pair annihilation
Fig. 11.6
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Fig. 11.5(a) represents Compton scattering by electrons. If 4, < 1,, the electron
absorbs the initial photon at x;, is propagated as a virtual electron from x, to x, and
emits the final photon at x, If ¢, > ¢,, the same diagram represents the creation of
an electron-positron pair at x, with emission of a photon, propagation of the (vir-
tual) positron to x, where it annihilates itself with the incident electron with the

absorption of a photon. Fig. 11.5(b) represents the same phenomenon with initial
and final photons exchanged.

Figs. 11.6(a) and 11.6(b) represent respectively two-quantum pair-creation and
annihilation. In 11.6(a), an electron-positron pair is created at x,(¢; < t,) with the

absorption of v,, the electron is propagated to x, where it absorbs v,. If ¢, > ¢,, the
clectron-positron pair is created at x,, the positron is propagated to x; where it is

absorbed along with v, and is remitted. A similar interpretation applics to Fig.
11.6(b).

Problem 11.12: Draw the Feynman diagrams corresponding to (a) pair annihi-
lation in the field of a proton and (b) the decay of a neutron into a proton, an
clectron and an antincutring.

Normal Products

An operator O which is a product of creation and annihilation operators is a nor-
mal product if all annihilation operators stand to the right of all creation operators.
Thus,

Normal product of ¢ ¢f=:¢,¢1=%¢1¢ (11.169a)

where the upper sign is 10 be chosen when ¢} and £, are boson operators (hence
commuting) and the lower sign when they are fermion operators (anticomm-
uting). In general,

ABC..L:==1)"0R.. W, (11.169b)
where O,R,...W arc operators A, 8, ... re-ordered so that all the annihilation
opcrators stand to the right of all creation operators, and N is the number of

interchanges of pairs of fermion operators required to accomplish the reordering.
Obviously,

(AB): =+:(BA):, (11.169¢)
the upper (lower) sign applying for bosons (fermions).
Normal product obeys the distributive law:
(AB+CD):=:AB:+:CD:
A very important property of a normal product is that its vacuum expectation
value is zero.  For, either the right-most member of the normal product is
an annihilation opcrator in which case, :(AB...):|d)= 0, so that (&)

(AB..): 1@y =0, or else, the normal product contains only creation operators in
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which case :(AB...): | &, > is orthogonal to the vacuum state | @, > . This property
of the normal product is responsible for its usefulness. For, if we can express an
operator ( which is a product of creation and annihilation operators in terms of
normal products, then the vacuum expectation value of 0 can be easily evaluated
since it is the vacuum expectation value of what is left of 0 after removing the
normal products. Thus, in the case of a product of two operators, we can write,
AB=AB:+<®)|AB | Dy>. (11.170)

Dyson Chronological Product (P)

For two operators A(x) and B(x"), the Dyson chrenological product (DCP) is
defined by
coa e JA@ B, ift> 1]
PIAREW) :{é(xsfi(x), if ¢ <t'}
That is, in DCP the operators occur in chronological order with the time running
from right to left.
Using the function e (x) defined by Eq. (11.97), we have (with x,=1),

(11.a71h

o © s 1 o
P(AX)B(x")} :%[1 +e (=2 NAMBE) +5[1- € (5 —xIBEIAX)

(11.171%
=P{B(xNA(x)}.

Wick’s Chronological Product (T)

Wick’s chronological product (WCP) takes into account the commuting or anti-
commuting nature of the operators involved. For commuting opcrators it is the
same as the DCP. But, in the case of fermion operators, it differs from DCP by a
phase factor:

T{AWBE)...} =(1Y'PIAXBX).. }, (11.172)
where N = the number of interchanges of pairs of fermion operators involved in
P{}. Thus, for two fermion operators, we have,

TIAXB(X)} = {_’;((’)‘c ),? /f’;?) ‘iff't ><t:'} (11.172a)
or, usifxg € (xy),
TLAB (X} =€ (xy—x"IP{AMNB ()} =-T{B(x)A(x)}
(11.172b)
In general,
T{AX)B(x)} =2T{B(xYA(X)}, (11.172¢)

where the upper (lower) sign applies to boson (fermion) operators.
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Contraction

Using Egs. (11.172a, ¢), (11.170) and (11.169b), we obtain,

T{A()B (x)} = :A(x)B(x,): +fioc_11)é(x9, (11.173)
where, {iﬁ)ﬁ () = (D, | T{A(x)B (%)} | D). (11.174)

and is known as the contraction of A and B. Obviously, A(x,)B (x,) will vanish
unless one of the operators creates a particle which the other operator annihilates.
Therefore, the Feynman diagram corresponding to A (x,)B (x,) will be an internal

line (that is, one beginning at a vertex and ending at another vertex (Fig. 11.7)].
It is referred 10 as a Feynman propagator since it represents the creation of a
(virtual) particle or antiparticle at one vertex, its propagation to the other vertex
and its absorplion there. A mathematical expression for the Feynman propagator
for the case of each of the three relativistic ficlds considered in Scction 11.4 could
be obtained as follows:

A A
A(x;)  B(Xp)
1

¢ ¢

Xy X
Iig. 11.7. Feynman diagram corresponding toé\(i)“é(xz).
From (11.172) and (11.171%) we have, in the case of a (Hermitian) Klein-Gordon
ficld,
T{D)D()} = P{D(x)D(x)}
1 ’ * I3 » l I4 3 oy
=3 [1+ e (x,—x" N D(x)D(x )+§ [1-€ (x,— x| P(x")D(x).

(11.175)
Also, using (11.95"),
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(@, | Bx) D) [ D) = (D, | DVx)D(x") | D)

J.a'k exp (ik(x —x"))
20,

27:)
=iAx —x%),
(D, ] D)D) | By = iA (X" —x) =~ A7(x ~x7).

Thus,

S)P(x') = (P | T{XDR} | D)

1
= 2 Aplx —x"),

where

Axy=[1+e (xo)]iA(")(x) ~[1-€ (Xo)]iA(_)(x)

' >
=+2i A(x), %,20.

In the casc of the Dirac ficld, we have from (11.172b) and (11.1713),

V) Yo = g T W) 1 @)

1 .
=510+ e =2 {P W () W x) [ Py

1 S R
—5 11— & (=1 (P 1V X NWe) | D).
And using Egs. (11.133a, b) we get,
(D, | P, W x| By = (D, 1 9E00) Wy () | Dy
=-iSQx ~x"),

=)

(D4 1 40 No) | D) = (D 1y (KWL (0 | B

=S —x"),
so that,

N A ~ 1 ,
Yol) W) = =2 (x —x7),
Sp,=ll+e SN — 11— € (xpliSEax)

= (Y,0,~ m)A(x).

Here, the last step follows from Egs. (11.136") and (11.178a). Also,

433

(11.176a)

(11.176b)

(11.177)

(11.178a)

(11.178b)

(11.179Y

(11.180a)

(11.180b)

(11.179%

(11.181)
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%(ﬂ\if.,(x) = ~\1fa(x)$[,(x’), (11.182a)
VoYX ") =$a(x)%(x3 =0. (11.182b)

The propagator for the electromagnetic field may be derived analogously to
that for the Klein-Gordon ficld. We get,

A OA () = (@, | PLA (A, ()} | D)

1
=D =2}, (11.183)

where, [see Eq. (1 1.1562)],
Dy(x)=Lt_ _ A:(x,m). (11.184)

Wick’s Theorem

The normal product of a contraction is obviously the contraction itself (since a
contraction does not contain creation or annihilation operators):
‘AB:=AB. (11.185a)
J -
In general,

AAAAAA ¢ BN DF :(CE..JE...):
| -

L

(11.185b)

That is, the normal product of a product of operators some of which are contracted
is the product of the contractions and the normal product of the uncontracted
operators. Expression (11.185b) is called a generalized normal product.

The concept of the generalized normal product can be utilised to extend Eq.
(11.173) to the case of an arbitrary number of operators. The result is,

+:(ABCD..WXYZ): + :(ABCD...): + ... + : (AB..WXYZ):
+ :(ABCD.. WXYZ): +... + : (ABCD .. WXY2)
—a LJ g
e P
+ LWXYZ): (11.186)

This equation gives the WCP of a product of operators in terms of the gener-
alized normal products. It is known as the Wick's theorem™. It could be proved
by induction starting from Eq. (11.173).

21, Wick, G.C. Phys. Rev. 80, 268 (1950).
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Electromagnetic Coupling

The interaction between a Dirac field and an (external) electromagnetic field can
be described in terms of the modification of the 4-momentum of a Dirac particle
arising from the coupling of the two ficlds. This modification is given by

p“—»pu’zﬁu~e/fp, or, 8“—>8P—ie/iu. (11.189)
Making this substitution in (11.103a), we get for the Lagrangian dcnsity of the

system the expression,

Lx) = Ly(x) + 4 (x), (11.190)
with Z,, given by Eq. (11.103a), and
L) =ie YR WA () =ef A, (11.191)

(We sce that the coupling constant in this case is e). The corresponding Hamil-
tonian density is given by

3(x) =) Wx) - L) = 5, + H(w), (11.192)
where 94,(x) is given by Eq. (11.120) and
g =~ b= - ie Yooy, A,000) (11.1932)
= - ie(yAY),
= —ie:(WAY),: (11.193b)
Here,
A=yA, (11.194)

(11.193b) follows from (11.193a) by the apphcauon of (11.170) and of the fact
that the vacuum expectation value of (y Ay) is zcro.
The Hamiltonian of the system is,

=Hy+1, (11.195)

where
a4y = Jd3x:fg(x). (11.196)

The Scattering Matrix
The basic equation to be solved in the case of a coupled system is,
i0,d(1) = H ()D(e), (11.197)

where both the state vector @ and the interaction Hamiltonian /7, are assumed
to be in the interaction picture® (sec Egs. (4.40) and (8.157) and Problem 4.4].

22.  Ascxplained in Section 4.1C, the interaction picture is advantageous when the Hamiltonian can
be split up into two parts as in (11.195). Also, the interaction picture is better suited, as com-
pared with the Schridinger picture, for a covariant formulation because of the ime-dependen- .
of both the operators and the state vectors in the former.
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As described in Scction 8.4, ®(r) can be expressed as an infinite {perturbation)
SCrICS:

O(t) = U (t,1,)D(), (11.198Y
where [sce Egs. (8.159°) and (8.160a) and Problem 8.12),

Ot ) =1+ = 09,1, (11.199)
n=1

R ' ' a1 N .
Uﬁ“’(t,t0)=(—i)"j dz,f d, ... f di {1 (0)... 00}
‘o ‘o fo

(_’)ﬂf dt f d, .. f AL P () .. (L)) (11.199a)

In a scattering problem the initial state ®(¢,) corresponds to ¢, =—o (long before

scattering takes places) and the final state (¢) to t =+ (long after scattering has
occurred). Thus, Eq. (11.198") becomes in this case,

D(o0) = SP(—e0), (11.198%)
where § = U,(+e0, ), (11.200")
and is called 1he scattering (or §—) matrix [U,(ee, ~0) is the matrix rcprescntation
of U (o0, —o0) = §]. In (11.198%). d(—) stands for a set of initial states and P(w)
for a sct of fmal states:

D, (—) D)

Do) P ()

De)=| [ Pleo)=y ),

D, (—) D (~)

so that the ji-th matrix clement of §:
Sj,‘ = (q)j(‘x’) J U1(°°7 —o0) | (D,(_°°)>7 (11.201)

gives the probability amplitude for the transition ®,(—) to @(). A complete

knowlcdge of S, therefore, enables us to predict the probability for transition from
any initial state to any final state. Finding § is, thus, equivalent to solving Eq.
(11.197). This is the basis of the S-matrix formalism.?

In Egs. (11.198% and (11.201) the initial and the final states are identified with
the cigenstates of the free Hamiltonian (77, in (11.195)) and, thus, with the ‘barc’

particles. However, in a scattering experiment the initial and final states arc thosc
of the physical particles which result from the interaction of the bare particles with
their own ficlds or photon clouds. The inconsistency is resolved by assuming
an adiabatic switching on and off of the coupling constant. That is, the coupling

23, 'The S-matrix formalism was originally developed by Wheeler [Wheeler, J.A. Phys. Rev. 52,
1107 {(1937)), but its further development and application to the interaction of clementary par-
ticles are due to Heisenberg [Heisenberg, W. Z. Physik, 120, 513, 673 (1943)].
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constant is zero at = —eo, increases adiabatically, reaching its full value at t =T,

retains this full value during -7 <t <T and thereaficr decreases to the value zero

at ¢ = oo, The scattering takes place during the time —T <1 <7, where T« T".
Now, from (11.200"), (11.199) and (11.199a), we have,

§=3 85" (11.200%)

n=0
where  §™ :(—;5!)— Lﬁdt, f:dtnp{ﬁ,(tl) W HY (11.202")
.= %Jd“xl Jd"an {H(x) ... ()} (11.203)

where, d“xj = dsxjdtj. ‘
Since, according 1o (11.193), 44(x) is bilinear in the fermion operators,

PLH(x,) - Hx)} = T{H(x) ... H(x,)}

= (~ie)'T (YA, ... (WAD), ) (11.204)

The Wick’s chronological product in (11.204) can be expanded in terms of the

generalized normal products with the help of Wic*%’s theorem [Eq. (11.186)].
Since the contraction of a normal product is zero, we can write,
SN {2 na 1 S aal  Aeaa Aaa

Ti(yAY),: .. {(VAY), ) =TY(VAY), (VAY), ... (wA\v),} (11.205)

where T’ contains no equal time contractions. Substituting from (11.204) and

(11.205) in (11.202%), we get,

. __1 n_n P P
s =CE [t [ater{(¥AD, (WADL) 1202

We will consider the scattering processes corresponding to the lowest few values
of n: '
n=0:
§O=1. O (11.206)
This represents transitions from a state to the same state (no scattering). The
Feynman diagram contains no vertex (Fig. 11.8).

§to)

v

Fig. 11.8. Feynman diagram representing zero-order processes.
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n=1:
§V=—¢ f Ty AY)) =80+ 8P +80+§P (11.207)
where
§P = -~ fdx v A (11.207a)
§O = - fd“ (WA, (11.207b)
SO = ¢ J‘d" v A (11.207¢)
SO = e fd‘x(@ Ay, . (11.2074)

We recall [Eq. (11.118)] that,

L) . . Lo
V' is linear in positron annihilation operator,
S, . .
Wy s lincar in electron creation operator,
W™ is linear in electron annihilation operator,

¥ is linear in positron creation operator.
The Feynman graphs corresponding to these are shown in Fig. 11.9.
Thus, $ can cause transition from a state @, 10 a state ®, which differs from
@, by the absence of an electron-positron pair. That is, $¢ corresponds 1o pair
annihilation (Fig. 11.4(b)). Similarly, ${°, $" and §¢ correspond respectively to

positron scattering (Fig. 11.3(b)), electron scattering (Fig. 11.3(a)) and pair cre-
ation (Fig. 11.4(a)). Conservation of energy and momentum, however, prevents
the above processes from taking place. Thercfore, the lowest order term in the
S-matrix expamion that corresponds 1o physical processes is of sccond order.

v RG] g =)

ey

Fig. 11.9 Feynman diagrams corresponding to the field operators ¢ and \V ,
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n=2:
o2 (e (ae iV AY), (VA )
2 xl xZ (W w)xl(w ‘p)xz)
_ - G(2)
=X 57, ‘ (11.208)
i=A
where,

2 A A -
§f)=%ffd“xld4x2:{(wA )., (WA, (11.208)
§2)=62jfd“xld‘xz:{(WW)X‘WA\?)X}: (11.208b)

| A |

l 2 A A Pra Ty ~
§§3’=%ffd4x1d“x2 (WAD), (YA, : (11.208¢)
§5> = pszdmd“xz : {( ?A " )‘1 ( ;A\]f)x} : (11.2084d)

2 [ 2= A A DA A
3925 [ [atnan {(VAD, (VAR (1.2080)
§P= ffd“x d'x, (W AY), (YA, : (11.2080)

241 . »}

Eq. (11.208a-() follow by the application of the Wick’s theorem to the WCP in
(11.208) and by noting that

| [atvats,: (Cuai, (vap, |
f f d*xd*, W\if) (A, } :

- f f d'xd's, (WA, (VAY), |- (11.209)
—d
S% docs not contain a propagator between the vertices x, and x, and thus,

consists of two unconnected basic vertex parts. Therefore it corresponds (o the
same type of processes as those represented by S,

Expanding the normal product in $@ in terms of the positive and the negative
frequency parts of , y and A we have, !
§P= ): 55,2’

with (here, for the sake of case of interpremuon, we keep together the operators
referning 1o the same vertex),



440 QUANTUM MECHANICS

S = e’ffd“xld‘xzu‘:"’(xy)A""(x,)wj DAY ),
§ §3=er f d“xld“xz?f(_)(XJA‘*’(xJQ(xJ VEA)VI),

$3=e* [ [ 5t A% YA w) ¥ ),
$8 = ¢ f fd“xld“xz‘ "’(x,)A<+>(x?)M(xZ)A‘“>(xl)?*’(xl),
§4=¢? f j d'xd'x, _Aq?(_)(x,)AM(xz)M DAY (x,),
sg=e] d'ndr ¥ A )Y WA ),
$@ = ¢? fjd“xld“xz:\;}(_)(x?)ﬂ“’(x?)\'@ (AP Ax)),

A 2.9 ~ s - 2 A R
$81=* [ [ a*nd'n ¥ A i) YA ()i ).
Now, a contraction corresponds to an internal line in a Feynman diagram while
the uncontracted operators are represented by external lines. Thus, SO represents

processes that correspond to Feynman diagrams with two external fermion lines,
two external photon lings and one internal fermion line. Also, we sce from

(11.179") and (11.180a, b) that y(x,) $(x1) 1s the propagator for a virtual electron
from x, to x, if ¢, < ¢, and for am positron from x, to x, if ¢, <t,. Referring
then to Fig 11.9, it is easy to see that the Feynman diagrams corresponding to @
and S are as in Fig. (11.5). Thatis, $ and S@ represent Compton scatiering by
clectrons, Similarly, $& and $§ correspond to Compton scattering by positrons
(Fig. 11.10), $2 and S respectively to two-quantum pair creation (Fig. 11.6(a))

and annihilation (Fig. 11.6(b)). §@ and $2 do not correspond to any physical

processes as they would lcad to violation of the conservation laws.
A similar analysis of the other terms in (11.208) could be made. We give
below the main conclusions:

S @ corresponds o processes represented by Feynman diagrams consisting of

four external fermion lines and one internal photon line, Two of thesc processes
are depicted in Fig. 11.11. (a) represents electron-clectron scattering (Moller
scaltering) while (b) represents pair annihilation in the field of a positron. The
other processes corresponding to §@ are electron-positron scattering (Bhabha

scatlering), positron-positron scattering, pair creation in the field of a positron and
pair creation and annihilation in the field of an electron.
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Fig. 11.10. Compton scattering by positrons.

(a)

Fig, 11.11. Processes represented by $@ [Eq. (11.208¢)): (a) electron-electron scattering, (b)
pair-annihilation in the field of a positron.
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Processes corresponding to $@ have two external fermion lines connected by

an internal fermion line and an internal photon line as shown in Fig. 11.12. Fig.
11.12(a) represents the interaction of an electron with the photon field. This is
rcierred to as the electron self-energy diagram as it represents a process by which
a bare electron converts itself into a physical electron. (The mass of the physical
electron is larger than that of the bare elecron.) Similarly Fig. 11.12(b) is the
positron self-energy diagram.

A
(2)
So
e~ et
A Y
X, X2
T Y )
f
X| Xl
\ L ]
e et
(a) (b)

Fig. 11.12. Processes corresponding to 8@ [Eq. (11.208d)]: (a) electron self-energy, (b)

positron self-energy.

S? corresponds (o photon self energy (Fig. 11.13). As seen from the figure,

the photon creates a virtual electron-positron pair which later annihilate giving
back the photon. The vacuum will contain such virtual electron-positron pairs.
An external electromagnetic field can affect the distribution of these virtual
clectron-positron pairs, The effect is referred to as vacuum polarization.

Fig. 11.14 gives the Feynman diagram corresponding to §&. Since there are

no exterial hines. it does not Iead to any observable phenomenon.
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gE(z)
T
_ +
e e
T

Fig. 11.13. Process represented by 59 [Eq. (11.208¢)l: Photon self-energy (vacuum polariza-
1ion).

Xy

Fig. 11.14. Diagrammatic representation of §& [Eq. (11.208f)].



444 QUANTUM MECHANICS

The above discussion should suffice to give some familiarity with the tech-
nique of Feynman diagrams and their .usefulness in the treatment of problems
involving interaction between fields.
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CHAPTER 12

THE INTERPRETATIONAL
PROBLEM

In Chapter 1, we had briefly referred to the problem associated with the phys-
ical interpretation of the quantum formalism. As Heisenberg put it': *‘the math-
ematical equipment of the theory was complete in its most important parts by the
middle of 1926, but the physical significance was still extremely unclear’”. It was
in recognition of this fact that a major part of the Fifth Solvay Conference? held
at Brussels in 1927 was devoted to a debate on the problem of the interpretation
of quantum mechanics. The debate between Albert Einstein and Niels Bohr
started at the Conference and continued both witiin and without the later con-
ferences, resulted in the emergence of the two opposing schools of interpretation
- the Copenhagen and the Statistical Ensemble - sketched in Chapter 1. In this
chapter, we propose to give a fuller account of the two schools of interpretation,
We will also give an account of the Hidden- Variable Theories and the associated
developments which arose as an off-shoot of the interpretational problem.

12.1 THE EINSTEIN-PODOLSKY-ROSEN (EPR) PARADOX

As illustrated by the double-slit interference experiment on electrons described in
Chapter 1, the main point of dispute in the interpretation of quantum phenomena
is concerned with the nature of the underlying physical reality: Is the electron a
particle, a wave, both or neither? A significant aspect of the experimental result
(interference phenomenon) is that this dilemma regarding the nature of electrons
(or other such physical entities) intrudes itself only when we think in terms of the
(classical) trajectorics of the individual e¢lectrons involved in the process. If we
are content with a statistical description in terms of ensembles - the interference
pattern as a statistical distribution of electrons - the concept of electrons as being
particles traversing individual, but unpredictable, trajectories is alright. The
fundamental problem of the interpretation of quantum phenomena, thus,
could also be phrascd as follows: “‘Do the laws of quantum mechanics provide a

1. Heisenberg W. in Neils Bohr and the Development of Physics, (ed} W. Paul (Pergamon, Oxford
1955), p. 13.

2. See Mehra, J. The Solvay Conferences on Physics (D.Reidel Publishing Co, Boston 1975),
Chaprer 6.
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complete description of an individual system, or do they embody only the statis-
tical laws governing ensembles?’’ This was forcefully brought out in a paper
entitled ‘‘Can quantum-mechanical description of physical reality be considered
complete?’” By Einstein, Podolsky and Rosen® published in 1935. This paper is,
in fact, a culmination of the debate between Neils Bohr and Einstein started at the
fifth Solvay Conference. The paper begins with the definitions of Completeness
and of Physical Reality:
(EPR.1) A necessary condition for the completeness of a theory is that *‘every
element of physical reality must have a counterpart in the theory™’.
(EPR.2) A sufficient condition to identify an element of physical reality is: *‘If,
without in any way disturbing a system, we can predict with certainty
(i.e. with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this
physical quantity”’.

Then follows the description of a ‘thought-experiment’. We give below a brief
account of this EPR experiment in its Bohm version®,

Consider a system consisting of two spin 1/2 particles in a singlet (S = 0) state.
The wave function of the system is given by [cf. Eq. (9.15)]

w(1,2) = \/% [xf‘%’(a) xz)(a) - xf‘%’(a)xj;’(a)], (12.1)

where x(a) denotes the spin wave function of the ith particle with spin compo-

nent cqual to # along the direction of the unit vecior a. Let the system decay into
the componcnt particles by angular momentum-conserving interactions. The two
particles will fly apart in different directions and the interaction between them will

vanish. A measurement of S (the component along a of the spin S® of particle

number 1) will yield the value * (#/2). Correspondingly, the second particle will
have spin equal to ¥ (#/2) along a. Thus, we can predict with certainty the value

of S without in any way disturbing the second particle which is spatially sepa-
rated from the first particle on which measurement is being made. Therefore,
according to (EPR.2) above, the component of S® along a is an element of
physical reality that exists separately for the second particle alone. If so, S must
have the same value even before the measurement. But a can be in any arbitrary
direction we choose. Consequently, elements of reality must exist for particle

number 2 relating to its spin component in any arbitrary direction. In particular,
definite values must exist for the z-and the x-components of the spin of particle

number 2. This is, however, not permitted by quantum mechanics as S and S

3. Einstein A., Podolsky B. and Rosen N., Phys. Rev. 47, 777 (1935).

4. Bohr, D. Quantum Theory (Prentice-Hall, Englewood-Cliff, 1951) p. 614. In the original EPR
experiment, the incompatible variables are the position and the momentum, but in the Bohm
version they arc the components of the spin.
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are representied by non-commuting Hermitian operators. [See Eq. (10.35a) and
the discussion following Postulate II in Chapter 3]. Therefore, every element of
physical reality does not have a counter part in quantum mechanics and, as per
criterion (EPR.1) above, the answer to the question that forms the title of the
paper, is negative.

The foregoing conclusions of the paper has been enunciated in the form of a
theorem’ :
Theorem: The following two assertions are not compatible with each other:

(E1). The description by means of the y-function is complete.
(E2). The real states of spatially separated non-interacting objects are
independent.

(E2) is usunally referred to as the Einstein locality postulate. - The EPR experi-
ment, thus, establishes that quantum mechanics is incompatible with the concept
of local realism which is a basic tenet of classical physics. In other words, we
have to regard quantum mechanics either as an incomplete theory or as a non-
local theory with ‘spooky actions ata distance’. The latter alternative arises if one
adopts the viewpoint that a particular component of $® acquires a definite value
(and becomes an clement of physical reality) as a result of the measurement of the
corresponding component of §%, which requires passing information instanta-
neously from particle number 1 to particle number 2 though the two are too far
apart for direct interaction®,

Whether we adopt one or the other of the above alternatives, we cannot avoid
the paradox of arriving at a conclusion prohibited by quantum mechanics (that
two non-commuting observables are simultancously elements of physical reality
in a quantum state) starting from premises prescribed by quantum mechanics
(namely, representing a state by a wave function) through arguments permitted by
quantum mechanics.

The EPR paper has become a classic in the annals of the epistemological and
the philosophical foundations of quantum mechanics. This is not only because of
its lucid exposition (for the first time) of the basic problem to be tackled in any
attempt at a physical interpretation of the quantum formalism but also because of
the later developments like the formulation of hidden-variable theories and the
enunciation of Bell’s theorem that it gave rise to. In fact, the EPR Paradox con-
tinues to be a problem for discussion even after fifty years of its publication’. In
the next two sections we will present Bohr’s and Einstein’s interpretations of
quantum mechanics. In Section 12.4 we will examine the explanation of the EPR
paradox from the various points of view and in Section 12.5 we will give a brief
account of the hidden-variable theories and the associated developments.

S.  Einstein A. in Albert Einstein: Philosopher Scientist, (ed) P.A. Schilpp (Harper and Row, New
York 1959), p. 665.

6. The non-locality involved here is essentially of the same nature as the one involved in the case
of an eleciron passing through skit number 1 in the double-slit interference experiment ‘iaking
notice’ of the closed or open state of slit number 2, though in this case there is something
physical (the screen bearing the slits) that connects the two slits.

7. See, for example, Sellen, F., Science Today, 21, No. 12, p. 17 (1987); Quantum Paradoxes and
Physical Reality, (ed.) Alwyn von der Merwe (Kluwer Academic Publishers, Dordricht 1990),
Chapter 5; Mermin, N.D. Physics Todav. 36 No 4 n 3R (1985
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12.2 THE COPENHAGEN INTERPRETATION

The Copenhagen interpretation or Copenhagen School derives its name from the
fact that the originator and the chief interpreter of this school was Niels Bohr
whose headquarters was in Copenhagen. Vis-a-vis Einstein’s Ensemble Inter-
pretation to be described in the next section, it could, more appropriately, be
termed the /ndividual System Interpretation. Eventhough a variety of viewpoints
are attributed to this school, we will discuss only the version which can be traced
directly to Niels Bohr®,

Two of the basic principles that underlie the Copenhagen Interpretation are
Heisenberg's Uncertainty Principle and Bohr’s Principle of Complementarity.
Therefore we will first give a brief description of these before embarking on
Bohr’s interpretation of quantum theory.

The Uncertainty Principle

In Section 3.2 we have already given the mathematical derivation of the
Uncertainty relationship. However, more than the mathematics, it was the phil-
osophical outlook that accompanied the formulation of the uncertainty
principle that influenced the interpretation of quantum mechanics. In fact, the
uncertainty principfe was the culmination of the realization on the part of Hei-
senberg that the formalism of quantum mechanics did not admit of ordinary
space-time descriptions or causal connection of physical phenomena. Heisenberg
wrote to Pauli in 1926° (prior to the formulation of the uncertainty principle in the
subsequent year): ‘It makes no sense to speak of a monochromatic wave at a
definite instant, or the place of a particle with a definite velocity’’. The same
sentiments were expressed by Dirac and Jordan, the authors of the transformation
theory (on which Heisenberg based his derivation of the uncertainty relationship):
*‘One’ cannot answer any question on the quantum theory, which refers to
numerical values for both the ¢ and the p. One would expect, however, to be able
to answer questions in which only the ¢ or only the p are given numerical
values””'°, while Jordan" concluded: *‘for a given value of g all values of p are
equally probable’’.

Thus the Uncertainty Principle profoundly affected the classical notions of
position, velocity and orbit of a particle. The extent to which these were affected
are exemplified by the following viewpoints attributed to Heisenberg himself'? :

8. Bohr, N. ‘Discussions with Einstein on Epistemological Problems in Atomic Physics’, in Albert
Einstein : Philosopher-Scientist (Tudor Publishing Co. 1949), reproduced in Mehra, J. The
Solvay Conferences on Physics (D.Reidel Publishing Co. 1975), p. 153; Max Jammer, The
Conceptual Development of Quantum Mechanics (McGraw-Hill, New York 1966), Ch. 7,
Stapp, H.P. Amer.J.Phys. 40, 1098 (1972).

9. Max Jammer (Footwnote 8) p. 325

10.  Dirac, P.A.M. Proe. Roy. Soc. (London), A113, 621 (1926)

I1.  Jordan, P. Zeit. f. Physik, 40, 809 (1927)

12. Max Jammer (Footnote 8) pp. 328-330.
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*‘If one wants to clarify what is meant by ‘position of an object’, for example
an electron, one has to describe an experiment by which the ‘position of an
electron’ can be measured; otherwise this term has no meaning at all ...”"
“‘the path comes into existence only when we observe it...”” in the strong
formulation of the causal law, ‘If we know exactly the present, we can pre-
dict the future’, it is not the conclusion but rather the premise which is false.
We cannot know, as a matter of principle, the present in all its detail”’.

It is obvious that the Uncertainty Principle bestowed on measurement a role in
quantum mechanics which it did not have in classical mechanics. Whereas in
classical mechanics measurements merely revealed what existed before the mea-
surement was made, in quantum mechanics ‘‘observations not only disturb what
has to be measured, they produce it”’"%.

The Principle of Complementarity

Bohr presented his ideas on complementarity in relation to quantum theory for the
first time in a lecture on *‘The Quantum Postulate and the Recent Development of
Atomic Theory'’ delivered at the International Congress of Physics held at the
Instituto Carducci in Como in September 1927. Later he published the paper in
Nature* . The Principle of Complementarity marks the end of Bohr’s opposition
to Einstein’s concept of the light quantum and his (Bohr’s) final acceptance of the
wave-particle duality. In fact, Bohr’s ideas on complementarity seem to have
evelved as a result of his attempts at harmonizing the mutually exclusive notions
of waves and particles that the dual behaviour of matter and radiation demanded.
Bohr was convinced that this harmonization could not be achieved merely by
modifying or reinterpreting traditional (classical) concepts. What was needed
was a new logical outlook. This he called *‘complementarity’’.

Bohr did not attempt an explicit definition of complementarity. Instead, he
described the basic ideas underlying it. These could be summarised as follows:

Quantum phenomena are governed by the quantum postulate according to
which, to any atomic process an essential individuality, symbolized by Planck’s
quantum of action, has to be attributed. This means that, in the case of a quantum
mechanical (atomic) system, the interaction between the object of observation and
the agency of observation (the ‘measuring instrument’), and the resulting distur-
bance of the former, cannot be neglected. As a result, it is impossible to separate
the behaviour of the atomic system from the effect of the measuring instrument
whose behaviour must be described classically. [Bohr refers to this situation as
the indeterminateness of concept of observation, ‘in analogy with a similar situ-
ation in William James’ analysis of the notion of observation in psychology*® (see
Ref.8, p. 349)). By combining an atomic system with different (measuring)

13.  This remark is attributed to Jordan [See, Max Jammer, The Philosophy of Quantum Mechanics
(John Wiley, New York 1974), p. 151].

14. Bohr, N. Mature, 121, 580 (1928)

15.  See, Max Jammer (Footnote 8) p. 349
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devices, one may obscrve different aspects of the system. These different aspects
could be considered as providing a description of the atomic system in terms of
complementary classical pictures. Thus, in a particular experiment, wave nature
of radiation may be revealed, whereas in another experimental situation particle
aspect of the radiation may be observed. Though (classically) the wave and the
particle pictures are mutually exclusive, these are indispensable for a complete
(or, exhaustive) description of radiation and should, therefore, be considered as
complementary to each other.

The uncertainty principle ensures that complementarity does never lead to any
contradiction in spite of the logically contradictory nature of the notions involved.
For, the uncertainty principle shows that the sharp exhibition of one of such
complementary aspects nccessitates an experimental set up which is totally
different from that required. for the exhibition of the other aspect. As a result,
there cannot arise any physical situation which reveals simultaneously and
sharply both complementary aspects of a phenomenon. Thus, in the double-slit
indeference experiment (Chapter 1), attempts to reveal the particle nature of the
electrons by determining through which slit the electron has passed, result in the
destruction of the interference pattern and, thereby, in the concealment of the
wave nature.

Another mode of describing complementarity is to say that the very nature
of quantum theory requires us ‘‘to regard the space-time co-ordination and the
claim of causality, the union of which characterises the classical theories, as
complementary but exclusive features of the description, symbolizing the ideali-
sation of observation and definition respectively’’'. This may be elaborated as
follows:

The definition of the state of a physical system presupposes that the system is
closed; that is, it is frec from any external disturbances. The evolution of such a
system in time constitutes its causal behaviour and is governed by the dynamical
equation of motion, A space-time description of the system, on the other hand,
presupposes observation. But observation requires interaction with an external
agency of measurement, which, according to the quantum postulate, involves
disturbance of the system being observed. In other words, a system, when
observed, becomes an open system for which, strictly speaking, no ‘state’ can
be defined and for which the laws of causality are no longer applicable. Thus
the claim of causality excludes space-time description and vice versa. The
simultaneous (‘united’) use of causal and space-time description in classical
mechanics is made possible by the extremely small value of the quantum of action
(~10"7 erg.sec.) as compared with the actions involved in ordinary sensc per-
ceptions.

In the case of radiation, the wave picture, which gives an adequate description
of the propagation of light, corresponds to space-time description whereas the
particle picture (light quantum), with the associated notions of energy and
momentum and their conservation principles, constitutes the causal description.

16.  Max Jammer (Footnote 8) p. 351
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It is obvious from the foregoing that, according to Bohr, complementarity
refers 10 two modes or pictures of description which are mutually exclusive but
are indispensable for an exhaustive account of quantum phenomena: space-time
description is complementary to causal description, wave picture is complemen-
tary to particle picture. Pauli'’ gave a slightly different definition of comple-
mentarity. He calls two classical concepts complementary *‘if the application of
one stands in relation of exclusion to that of the other’ in the sense that any
cxperimental set up for measuring the one interferes destructively with any
experimental set up for measuring the other. In this sense, position co-ordinate is
complementary to the conjugate momentum, time is complementary to energy,
and so on.

Bohr’s Interpretation of Quantum Mechanics.

As we stated earlier, complementarity and the Uncertainty Principle are the two
main planks of Bohr’s interpretation of quantum mechanics. The notion of
complementarity forms the backbone of the interpretation, while the uncertainty
principle ensures that the notion does not lead to any contradictory physical situ-
ations. In addition, the following premises also could be regarded as basic to the
interpretation:

(1)  However far the phenomena transcend the scope of classical physical
explanation, the account of all evidence must be expressed in classical
terms.

This is so because, ‘‘by the word ‘experiment’ we refer to a situation where we
can tcll others what we have done and what we have leamed™, so that “‘the
account of the experimental arrangement and of the results of the observations
must be expressed in unambiguous language with suitable application of the ter-
minology of classical physics’*®.

(2)  Itis impossible to separate sharply the behaviour of atomic objects (i.e.
quantum mechanical systems) from their interaction with the measuring
instruments which serve to define the conditions under which the phe-
nomena appear.

Bohr attributes this inseparability of the object of observations from the agency
of observation to the individuality or indivisibility, of quantum phenomena aris-
ing from the quantum postulate. He contends that this individuality ‘‘finds its
proper expression in the circumstance that any attempt at subdividing the
phenomena will demand a change in the experimental arrangement introducing
new possibilities of interaction between objects and measuring instruments
which, in principle, cannot be controlled. Consequently, evidence obtained under
different experimental arrangements cannot be comprehended within a single

17. Pauli, W. Handbuch der Physik, 24 (Springer, Berlin 1933), 2nd ed. 5 p. 126.
18.” Bohr, N. (Footnote 8), p. 158
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picture, but must be regarded as complementary in the sense that only the totality
of the phenomena exhausts the possible information about the objects”". It is
further stressed that the complementary . phenomena appear under mutually
exclusive experimental arrangements, so that for the specification of the condi-
tions for any well-defined application of the quantum formalism, the whole
experimental arrangements should be taken into account.

3 Quantum theory provides an exhaustive description of individual physi-
cal phenomena.

This is to be taken in the sense that the quantum mechanical formalism is an
adequate tool for a complementary way of description of physical phenomena. In
fact, the quantum mechanical formalism is nothing but a ‘‘symbolic scheme per-
mitting only predictions as to results obtainable under conditions specified by
means of classical concepts’’®. The totality of results obtained under mutually
exclusive experimental arrangements (that is, complementary situations) exhausts
the possible information we can have on a physical system. Moreover, there is no
single experimental situation which gives rise to results that are not in conformity
with the predictions of the quantum formalism,

For illustration let us consider the double slit interference experiment on
electrons described in Section 1.1.  As detailed there, the main features of this
experiment are the following:

(DS1) If no effort is made to observe the paths of the individual electrons, then
the distribution of the electrons on the screen X shows an interference
patiern appropriatc to waves of wavelength equal to the de Bréglie
wavelength of the electrons.

(DS2) If the paths of the electrons are observed, the interference pattern is
destroyed.

DS1 and DS2 correspond to mutually exclusive experimental arrangements
and, therefore, to complementary features of the properties of electrons. DS1
reveals the wave nature of electrons while DS2 shows their particle-like beha-
viour. Alternatively, DS1 corresponds to space-time description and DS2 to
causal description. “‘The circumstance that we arc presented with a choice of
either tracing the path of a particle or observing interference effects allows us to
escape from the paradoxical necessity of concluding that the behaviour of an
electron should depend on the presence of a slit through which it could be proved
not Lo pass. We have here to do with a typical example of how the complementary
phenomena appear under mutually exclusive experimental arrangements, and are
just faced with the impossibility, in the analysis of quantum effects, of drawing
any sharp separation between an independent behaviour of atomic objects and

19.  Bohr, N. (Footnote 8), p. 159
20.  Bohr, N. (Footnote §), p.159.
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their interaction with the measuring instruments which serve to define the condi-
tions under which the phenomena occur’®. And it is the uncertainty principle
which ensures that we cannot trace the paths of electrons without at the same time
leading to the destruction of the interference pattern, as the following analysis
shows: Figure 12.1 shows an experimental arrangement for the double-slit
diffraction phenomenon, with a device to ascertain the slit through which each

Fig. 12.1 Double-Slit experiment with a device to observe the electrons just after they pass the slits.

electron passes before it reaches the screen X. The detection procedure would
involve a transfer of momentum AP, to the electrons in the plane of the slits. If
the diffraction pattern is not to be destroyed in the process, AP, should be sub-
stantially smaller than the momentum required to throw an electron from a max-
imum of the diffraction pattern to a neighbouring minimum. If P, is the
momentum of the electron, then, referring to Fig. 12.1 we should have,

AP, < P8. (12.2)
But, from wave theory (wave optics) we have,
0 = M(2a) (12.3)

where A is the de-Briglic wave length of the electron and ‘a’ is the distance
between the slits, and where D >> a >> A, D being the distance between W and
X. Atthe same time, in order to be able to tell through which slit the electron has
passed, its position in the x-direction should be determined to an accuracy A x
which is better than half the distance between the slits, That is,

Ax < al2. (12.4)

From Egs. (12.2 - 4) we sce that the condition for us to be able to determine
through which slit each electron passes, without destroying the interference pat-
tern, 1s that,

21, Bohr, N. (Footnote 8), p. 163 - 164.
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AxAP, « /A, (12.5)

But this condition violates the uncertainty relationship (3.29a) and is, therefore,
not realisable, implying that any successful attempt at determining the slit through
which each electron passes before arriving at the screen, X, would lead to the
destruction of the interference pattern.

Fig. 1.1 could be regarded as an experimental arrangement for measuring the
x-component of the momentum of the electrons (since the distribution of intensity
in the interference pattern determines, to a good approximation, the angular dis-
tribution of the electrons leaving the slits), while Fig. 12.1 is an arrangement for
measuring their x-position.  Thus, according to Pauli’s definition of
complementarity, Fig. 1.1 (the arrangement) interferes destructively with Fig.
12.1 and vice versa.

We will postpone to Section 12.4 a discussion of Bohr’s explanation of the
EPR paradox.

12,3 THE ENSEMBLE INTERPRETATION

The Ensemble Interpretation was proposed by Albert Einstein® as an alternative
to the Copenhagen Interpretation which he considered quite unsatisfactory. In
fact, Einstein looked upon the Copenhagen Interpretation as nothing but a ‘tran-
quilizing philosophy’ as the following passage from a letter he wrote to
Schrédinger in 1928 reveals:

““The Heisenberg-Bohr tranquilising philosophy is so delicately contrived
that, for the time being, it provides a gentle pillow for the true believer
from which he cannot very easily be aroused” >,

On a more specific level, Einstein’s objection to the Copenhagen interpretation
is on its insistence that quantum theory provides a complete description of an
individual physical system. Thus, in his “‘Reply to Criticisms’” in the volume of
essays® presented on his seventicth birthday, he writes (p. 671):

“‘Onc arrives at very implausible theoretical conceptions, if one attempts
to maintain the thesis that the statistical quantum theory is in principle
capable of producing a complete description of an individual physical
system. On the other hand, those difficulties of theoretical interpretation
disappear, if one views the quantum mechanical description as the
description of cnsemble of systems’”. »

22. The account of Einstein’s interpretation of quantum mechanics given here is based on the fol-
lowing references: (i) Einstein, A. and Infled, The Evolution of Physics (Simon and Schuster,
New York 1938, 4th Printing, 1961), pp. 280-294; (ii) Ballentine, L.E. Rev. Mod. Phys. 42,358
(1970) and (iii) Ballentine, L.E; Amer. J. Phys. 40, 1763 (1972).

23.  Letter to Schrodinger, dated May 31, 1928 i Letters on Wave Mechanics, (ed) K.Przibram,
translated by M.1. Klein (Philosophical Library, New York 1967), p. 31.

24, Albert Einstein : Philosopher - Scientist, (ed) P.A . Schilpp (Library of the Living Philosophers,
Evanston, Ilinois 1949; reprinted by Harper and Row, New York 1959).
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In order to illustrate and establish this contention, Einstein proposed and cited
a number of thought-experiments over a period of years starting from the Fifth
Solvay Conference in 1927. At this conference held in Brussels from 24 to 29
October he considered the situation pictured in Fig. 12.2. S is a diaphragm with
a small opening O at the centre; P represents an electron-sensitive screen in the
form of a hemisphere. A beam of electrons falls on S. Some of the electrons will
pass through O. Because of the smaliness of O the electrons will be diffracted at
O, according to quantumn mechanics. The wave function of the diffracted elec-
trons will be represented by a spherical wave which will have non-vanishing value
on the whole of P. In particular, the wave-function will have nonzero values both
at Aand BonP.

B

/
=<

/
e

/P

g—

Fig. 12.2 Einstein’s thought-experiment on electron diffraction by a single slit.

Now, if an elcctron is observed at A, we immediately know that it is not at B.
Einstein then distinguished two different points of view:

I1.  The wave function does not correspond to a single electron, but to a cloud
of electrons extended in space. The theory does not give any information
about the individual processes, but only about the ensemble of an infinity
of elementary processes.

12, The theory has the pretention to be a complete theory of individual pro-
cesses.
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According to I1, | y [* expresses (in a statistical sense) the probability for an
electron of the cloud to exist at a particular place. In other words, !y [* will give
the distribution of the electrons of the cloud over P. Conversely, in order to
determine W, one has to observe the distribution of the electrons over the whole of
P and not just at one location A.

According to 12, on the other hand, |y [* expresses the probability that at a
cerlain instant one and the same electron be found at the different placesonP. As
a result, observing the electron at A results in the vanishing of the y everywhere
else on P (reduction of the wave function). Since y has finite value at B until the
electron is observed at A, the instantaneous vanishing of y at B requires a peculiar
action-at-a distance between A and B, contrary to the principles of relativity. So
Einstein concluded: *‘In my opinion, one can only remove this objection in this
manner, that one does not describe only the process by the Schrédinger wave, but
at the same time one localizes the particle during the propagation’’. Since the
description by means of the y-function does not contain such a localization, the
description of an individual system in terms of the y-function is incomplete.

Schrodinger’s Cat

Another example which illustrates the difficulties inherent in the Copenhagen
viewpoint that the wave function provides a complete description of an individual
system, is the following argument advanced by Schrodinger in a review article®:
Imagine a chamber which houses a cat logether with a machine, a bottie of
cyanide and a radioactive substance. The machine has a triggering mechanism
which, when activated by the decay of an atom of the radioactive substance, will
trip a hammer which will break the bottle of cyanide. The quantity of the radio-
active substance in the chamber is such that there is equal probability for one atom
to decay in an hour and for none to decay during that time. If one describes this
entire system according to quantum theory, then at the end of one hour the wave
function of the system would be a linear combination of equal parts of functions
corresponding 1o a live cat and a dead cat.

If one adopts the viewpoint that the wave function furnishes a complete
description of an individual system, one has to conclude that, at the end of the
hour, the cat is neither dead nor alive, just as in the example of the electron dif-
fraction the electron has no definite position but is (potentially) present all over P.
But if one looks to see whether the cat is actually dead or alive and finds that it is
really dead, one has to assume that it is the act of looking that killed the cat
(reduction of the wave function)!

According to the Ensemble Interpretation, on the other hand, the description in
terms of the wave function refers to an ensemble of a large number of
*‘Schrodinger’s cats’. That the wave function is a linear combination of equal

25.  Schrodinger, E. Naturewiss, 28, 807 (1935).
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Fig. 12.3 The Schrodinger’s Cat experiment.

parts of functions corresponding to live and dead cats means that, in about half of
the cases the cats will be dead (signifying that the atom has decayed) and in the
other half cases the cats will be alive (the atom has not decayed).

Superposition of States

The Ensemble Interpretation of quantum mechanics was expounded by Einstein
for the first time in an article entitled “‘Physics and Reality’’®. In this article he
presented the following argument in support of his view that the y function does
not describe an individual system:

A system is initially in its state of lowest energy €,. The corresponding wave
function is y,. The system is now subjected to a small time-dependent perturba-

tion for a finite interval of time. As a result, the wave function of the system takes
the form

v =Zoy, (12.6)

where the different y,’s represent the stationary states of the system and the
coefficients ¢, satisfy the condition,

Zle, P =1 (12.7)
*‘Daoes  describe a real state of the system? If the answer is yes, then we can

hardly do otherwise than to ascribe to this state a definite energy e, and, in par-
ticular, an energy which exceeds e, by a small amount (in any case

€, < € < €,).. But the experiments of Franck and Hertz” on electron

impact show that an individual system can have only one of the discrete energics .

€1 €3.... €, .... Binstein is, thus led to the conclusion: ‘It seems to be clear,

26.  Einstein, AJ. Franklin Institute, 221, 349 (1936).
27.  Franck, J. and Hentz, G. Physikalische Zeitzchrift, 17, 409 (1916); 20, 132 (1919).
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therefore, Bom’s statistical interpretation of quantum theory is the only possible
one. The y-function does not in any way describe a state which could be that of
a single system; it refers rather to many systems, to an ensemble of systems’ in
the sense of statistical mechanics. 1If, except for certain special cases, the
y-function furnishes only statistical data concerning measurable magnitudes, the
reason lics not only in the fact that the operation of measuring introduces
unknown elements, which can be grasped only statistically, but because of the
fact, the y-function does not, in any sense, describe the state of one single sys-

12

tem

The absolute square of ¢, in Eq. (12.6) gives the probability for the system to
be in the state \, with encrgy e,. In other words, | ¢, [* is proportional to the

number of individual systems in the ensemble which have energy €,.

This ensemble interpretation is also described in detail in the book by Einstein
and Infeld [Footnote 22(i)]. We give below a few quotations from this book,
which give a clear picture of the nature of Einstein’s Interpretation of quantum
inechanics:

**The laws of quantum physics are of a statistical character. This means:
they concern not one single system but an aggregation of identical sys-
tems; they cannot be verified by measurement of one individual, but only
by a series of repeated measurements’” (p. 284).

Afier referring to phenomena like radioactivity where the laws of quantum
physics work well, the authors say:

*“The theory works splendidly because all these phenomena involve large
aggregauons and not single individuals® (p. 285).

They contrast the statistical nature of quantum theory with the statistical nature
of certain classical theories like that of population statistics and the kinetic theory
of gases in which no predictions can be made for individual cases but the average
behaviour in a large number of cases can be predicted fairly accurately. They
point out that the similarity between quantum theory and those classical theories
lies chiefly in their statistical character, but the differences are equally important.
In the case of population,

*“Our statistical view is gained by the knowledge of individual cases.
Similarly, in the kinetic theory of matter, we have statistical laws gov-
erning the aggregation, gained on the basis of the individual laws,

‘‘But in quantum physics the state of affairs is entirely different. Here the
statistical laws are given immediately. The individual laws are dis-
carded’” (p. 286).

We have already considered, in Section 1.1, the explanation of the double-slit
interference experiment on the basis of the Ensemble Interpretation. We will
discuss the explanation of the EPR paradox in the next section.
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12.4 EXPLANATIONS OF THE EPR PARADOX

Both Bohr and Einstein have offered explanations of the EPR paradox, based on
their respective interpretations of the quantum formalism.,

Bohr’s Explanation

Bohr’s explanation® is essentially that S and S (and, hence, also §@ and S@

deduced from S and S respectively) are not simultaneously elements of
physical reality but are complementary attributes of the particle. For, measure-
ments of S and SV require different experimental set ups (different orientations

of the Stern-Gerlach magnet) and, according to the principle of Complementarity
(Section 12.2), the result of an observation cannot be divorced from the exper-

imental set up which yielded the result; it is the result and the experimental set up
jointly that define a quantum process. Bohr also contends that the definition of
physical reality as given in (EPR.2) in Section 12.1 is defective in the phrase
‘without in any way disturbing a system’. Bohr suggests its replacement with the
phrase ‘without in any way influencing a system’ since measurement on particle
number 1, though does not disturb particle number 2, has nevertheless ‘“‘an
influence on the very conditions that dcfine the possible types of predictions
regarding the future behaviour *% of particle number 2. As a result of these con-
siderations, no morc than one component of § can be regarded as an element of
physical reality in any particular experiment.*

Einstein’s Explanation

According to Einstein’s interpretation of quantum mechanics, y, given by Eq.
(12.1) represents an ensemble of two-particle systems in the singlet state rather
than a single such system. Therefore the EPR experiment, referring as it does to
an individual pair, is irrelcvant as far as y, (as well as quantum mechanics) is

concerned. W, can be used to answer only questions of a statistical nature

concerning the ensemble. However, such answers require a series of repeated
measurements rather than a single measurement on an individual system. For
example, the absolute square of the coefficient of x{)(a) x%2,(a) in Eq. (12.1)
denotes the number of pairs in the ensemble with spin-component parallel to a for
particle number 1 and antiparallel to a for particle number 2. Eq.(12.1) shows that
this proportion is the same as the proportion of the number of pairs in the
ensemble with spin-component antiparallel to a for particle number 1 and parallel

28.  Bohr, N. Phys. Rev. 48, 696 (1935)

29.  Bohr, N. (Footnote 8)

30. In the language of the Hilbent space, Bohr’s explanation refers to the fact that the angular
momentum can have different representations, but that in any one representation only one of the
components can be diagonal.
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to a for particle number 2. But in order to verify this fact, one will have to make
repeated observations on the pairs constituting the ensemble. Thus one could set
up two Stern-Gerlach magnets on opposite sides of the ensemble so as to measure
the spin-components (along a specified direction b) of the two particles of a pair
which has decayed. We will label the particle which comes to the left-side
detector (DL) as 1 and the one which goes to the right-side detector (DR) as 2.
When the observation is repeated for a large number of pairs we would get a
certain number for which DL has recorded spin-up while DR has recorded
spin-down and about an equal number for which DL has recorded spin-down and
DR spin-up. ‘“This correlation between the spins of the particles will be the same
no matter which component is measured’’™.

It is, however, essential for the validity of this ensemble interpretation that
every recording of spin-up (spin-down) at DL should rot be accompanied by a
recording of spin-down (spin-up) at DR. For, if it were so, the spin-correlation
specified by y, would have been applicable to each and every pair on which

observation is made and, therefore, also to an isolated pair. But Einstein is
emphatic that ‘‘quantum physics deals only with aggregations and its laws are for
crowds and not for individuals’**. Therefore, there should be cases where both
DI. and DR record spin-up states and both record spin-down states. We cannol
predict the proportion of these states on the basis of y, alone. In order to obtain

these proportions, one will have to find out the eigenvectors of the operator
(G, -b) (G, b) in the representation spanned by the basis vectors X,‘,,‘l’(a) X,‘,:,;’(a),

where m, = ilz, m,= i-.% and where a#b. There would be four linearly indepen-

dent eigenvectors, two cach belonging to the degenerate eigenvalues +1 (corre-
sponding to spin up-spin up and spin down-spin down results) and — 1
(representing spin down-spin up and spin up-spin down results). The wave
functions are found™ to be consistent with the conclusion arrived at by Mermin’
in a gedanken experiment supposed to represent the experimental findings of
Alain Aspect and his group at the University of Paris, namely that each of the four
cases occurs an equal number of times and constitutes one-fourth of the total.

An Alternative Explanation

It is possible to have a third explanation® based purely on the mathematical
structure (the Hilbert space formulation) of quantum mechanics described in
chapter 3. According to the Postulates I and II stated there, it follows that the
results of the measurement of a physical observable is represented by the eigen-
valuc equation of the corresponding Hermitian operator. It also implies that if we
try to measure the value of a physical observable in a state which is not an

31.  Ballentine, L.E. (Footnote 22(ii), p. 364)
32.  Einstein, A. and Infeld, 4. (Foot note 22(i), p. 286).
33, Menon, R.K. and Thankappan, V.K. (to be published)

34.  Thankappan, V.K. and Menon, R.K.,Proceedings of the 5th Asia Pacific Physics Conference,
Kuala Lumpur, August 1992 (in press).



THE INTERPRETATICNAL PROBLEM 461

eigenstate (eigenvector) of the Hermitian operator to start with, then the mea-
surcment process (that is, the interaction between the measuring instrument and
the physical system) will carry the system over to an eigenstate of the operator.
Then the measured value of the observable will refer to the state of the system at
the end of the measurement process, which need not be the state the system was
in at the beginning, or before, the measurement,

The above feature of quantum mechanics necessitates the following modifi-
cations in the EPR argument:

If y, (1, 2) of Eq. (12.1) represents the state of the pair of particles before the
measurement was made (that is, at the time of decay), then the measurement
process will change the state of the pair to ¢ (1, 2), where,

8(1,2) = x0(b) x2(a). (12.8)
Here, m = +- and b is the unit vector along which the spin of particle number 1 is
2 Y

measured; that is, b specifies the axis of the Stern-Gerlach apparatus. The rea-
soning behind this change is as follows:

V(1,2) is an eigenvector of §, =S+ S, the operator corresponding to the
spin of the pair along a, but is not an eigenvector of either S{ (or even $&) or $@,

the operators representing the components of the spins of the individual particles.
However, quantum mechanics stipulates that, at the end of a measurement process
designed to measure the component of the spin of particle number 1 along b, the
state of the system must be an eigenvector of $,

In the theory of angular momentum coupling, , is a vector in the coupled

represcntation whereas & is a vector in the uncoupled representation (see Section
5.5A). In the uncoupled state, the spin components of the two particles are not

correlated; for a given value of SV, S could be either +(#/2) or —(#/2), that is, the
sum of S{ and S necd not be zero or any other fixed value. Therefore, the EPR

assumption that the value of S can be deduced from the measured value of S

has no basis in quantum mechanics. Of course, this is not due to any violation of
the conservation law relating to angular momentum, but is due to the fact that the
role of the measuring instrument cannot be ignored in balancing the angular
momentum. A closer look at 1he measurement process will elucidate this point
further:

At the time of decay of the pair, let the spins of the two particles be quantized
along the unit vector a such that S = +#/2 and § = —#/2 (Fig. 12.4). This mcans

that the spin vector of particle number 1 would be precessing around a such that
the projection of $ along a is equal to (#/2). The spin of particle number 1 is now
measured with a Stern-Gerlach apparatus whose axis is along b. This measure-
ment process will force a reorientation of the spin vector of particle number 1 such
that it now precesses with a fixed value of its projection along b instead of along
a. This change comes about as a result of the (local) interaction (involving
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exchange of angular momentum) between particle number 1 and the Stern-
Gerlach apparatus and not as a result of any ‘spooky actions at a distance’ between
the two particles. We may now distinguish between two cases:

(1)
Sa

5

@ I

(2)

Fig. 12.4 The EPR experiment. The diagram shows the spins of the two particles at the time
of decay but before separation (a) ; after separation but before measurement (b) ; and
afier measurement(c).

Casel: | (a-b) | <1

For this case quantum mechanics predicts that S’ =+(#2). But quantum
mechanics also predicts the same two possible values of SV even when

S8 =—#/2) instead of +#/2). Therefore, it is not possible to deduce the value of
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SM (and from it the value of S using the relation S& + §@ = 0) from the mea-

sured value of S{°. The basic cause of this disability is the quantization of angular

momentum which (i) restricts the observable values of the spin along any
direction whatsoever to just the same two values £(#/2) and (ii) makes it impos-
sible to predict beforehand which of the two values will result in any particular
measurcment as the change in the orientation of the spin (say from precessing
around a to precessing around b) does not take place continuously but takes place
in discrete jumps. In the corresponding classical case, the change in the angular
momentum resulting from the intcraction between the particle and the Stemn-
Gerlach magnet would be both continuous and predictable .

Case2 :| (a-b)y | =1

This is the case when the choice of the axis of the Stern-Gerlach apparatus
happens to be the same as the quantization axis of the pair at the time of decay.
According to quantum mechanics, the measurement process will cause no change

in the orientation of the spin of particle number 1, so that SV = §& = — §®.
Thus $? can be deduced. In reality, however, even in this case, it will not be

possible to deduce the value of $ because there is no way of ascertaining that, in
fact b is the same as a*. But even if we assume, for arguments sake that b is the
same as a, we can deduce only one component of S, namely S by measurement

done on particle number 1. Any other choice of b would mean that j(a-b)| <1
which is the same as case 1.

In short, we can at most deduce only one component of % from measurement
donc on S™. Therefore, there is no circumstance which leads to a violation of Eq.
(10.35a) and there is no paradox.

12.5 THE HIDDEN VARIABLE THEORIES

A bye-product of the interpretational dispute on quantum mechanics between
Bohr and Einstein was the development of a class of theories known as the Hidden
Variable Theories (HVT). The viewpoint adopted by Einstein with regard to the
interpretational problem and the Ensemble Interpretation advocated by him
(Section 12.3), consider quantum mechanics as defective or unsatisfactory in
certain respects.  The unsatisfactory feature was illuminated clearly in the EPR
paradox (Scction 12.1) and is contained in the Einstein’s theorem formulated in
conncction with it. As explained there, we have to regard quantum mechanics
either as an incomplete thcory or as a non-local thecory. One could try to remedy

35.  Remember that in the EPR experiment, there is only one pair. If there are many pairs as in an
ensemble, we could assume that for some of the pairs the axis of quantization would be the same
as b.
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the defect by inventing a theory in which the microstate of a particle is charac-
terised by one or more parameters (‘hidden variables’) A in addition to the
y-function. In such a theory, y would describe a macrostate obtained by
averaging over the microstates (that is, over ).

The development of hidden variable theories has been inhibited for nearly two
decades by a theorem due to von Neumann® (which purportedly proved the
impossibility of such theories unless the predictions of quantum theory are fac-
tually wrong), until Bohm showed® that a true HVT can be developed in spite of
the theorem and Bell*® established the imrelevance of the theorem for realistic
hidden-variable theories.

The hidden variable theories could be broadly classified as theories of the first
kind and as theories of the second kind®. Theories of the first kind consider
incompleteness as the basic defect of quantum theory. Such theories would yield
quantum theory as a statistical equilibrium limit of (or, as an average over) the
microstates, and are therefore compatible with quantum theory. Experimental
verification of the predicted deviations of these theories from quantum theory is,
however, made difficult or impossible by the extremely short time (=10 sec.)
within which the microstates reach statistical equilibrium®’.

Theories of the second kind, on the other hand, are designed to eliminate the
non-local feature of quantum mechanics (these are, therefore, called local HVT).

“ These theories are rivals to quantum mechanics rather than forming its micro-
scopic basis. As shown by Bell*, the question whether such a local hidden vari-
able theory or quantum theory represents the laws of Nature is one that could be

.settled by experiments—the former will satisfy Bell’s inequalities [(12.28) below]
whereas the latter will violate them.

It may be emphasized here that, though the hidden variable theories are logical
corollaries of Einstein’s attitude towards quantum theory as reflected in the
analysis of the EPR experiment, Einstein himself was not enthusiastic about these
theories. In fact, when Bohm’s paper”’ on HVT appeared, Einstein wrote to
Bom®: *‘Have you noticed that Bohm belicves (as de Broglie did, by the way, 25
years ago) that he is able to interpret quantum theory in deterministic terms? That
way seems too cheap to me’’. It is obvious that Einstein accepted the statistical
quantum theory as correct in its domain of applicability and did not consider lack
of determinism as its major defect. In his view, incompleteness (the fact that the

36. von Neumann, J. Marhematische Grundlagen der Quantenmechanik (Springer, Berlin 1932);
translation: The Mathematical Foundation of Quantum Mechanics (Princeton University Press,
1955).

37. Bohm, D.Phys.Rev. 85, 166 and 180 (1952).

38.  Bell, J.S. Physics, 1, 195 (1964).

39.  This classification of hidden variable theories is due to Belinfante, F.J. {see his book: A Survey
of Hidden-Variables Theories (Pergamon Press, Oxford 1973)]; Belinfante also describes
another class of HVT, namely, the zeroth kind: these are the ones which are prohibited by von
Neumann'’s theorem.

40.  The Born-Einstein Letters (Walter and Company, New York, 1971), Letter No. 99 dated 12 May
1952.



HE INTERPRETATIONAL PROBLEM 465

y-function does not describe an individual system) was the defect to be removed
by a theory more general than quantum theory. However, he did not believe that
this more general theory has quantum theory as its starting point.

In this book, we do not propose to go into the details of specific hidden variable
theories”. Instead we will give a brief account of some of the theorems, argu-
ments and conclusions which have been crucial for the development, under-
standing and establishment of hidden-variable theories.

von Neumann’s Theorm

This theorem states* : **.....the present system of quantum mechanics would have
to be objectively faise, in order that another description of the elementary pro-
cesses than the statistical one be possible’’.

This is a conclusion which has effectively deterred the development of
hidden-variable theories for nearly two decades. It would, therefore, be of interest
to present the proof if only to point out the loopholes in it later.

The proof of the theorem consists of two parts. In part one, it is established
that there exists an unique Hermitian statistical operator f) such that for any arbi-
trary Hermitian operator A,

(A) = Tr (pA) (12.9)
where <...> represents the expectation value. In the second part, it is shown that,
in the case of a dispersionless ensemble, p is either a null or a unit operaior.

The proof of part one is based on the following assumptions:

(Al) The correspondence between Hermitian operators and physical observ-
ables is one to one. In other words, every Hermitian operator corresponds
to a physical observable,

(A2) If two observables are represented by operators A, and A, then the sum
of the two observables is represented by the operator A, + A ,.

(A3) If A, and A, are arbitrary observables and g, and a, are arbitrary rcal
numbers, then,

(@A, + aA) = a{d) + afA)), (12.10)
for all possible ensembles (states), irrespective of whether A, aud A, are
commuting or not.

{A4) If the observable A is nonncgative (that is, positive semidefinite), then,
Ay 2 0.

Let A be an arbitrary Hermitian operator. It can be written as

41.  Such details can be found in the book by Belinfante (Footnote 39).
42, Ref. 36 (English translation) p. 325.
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A=Z |n)A, {m|
=2UMA_+ I {V"™ Re[A ]+W"™ ImiA,_l},

" (msn)
(12.11)
where, A, =A. =(n|Am), (12.12)
and U™ =|n)n|, (12.13a)
VP = n)m | + |m)n| (12.13b)
W =—i(in)m | — |mMn]). (12.13c)

In(12.11). Re { ] and Im [ ] represent respectively the real and the imaginary
parts.

(12.13 a-c) are Hermitian operators and, according to assumption (Al), are
observables. Applying (A2) and (A3), then we have,

(A) = ZA,,<0")

= I {RelA, }1{V"+ Im[A,] (W}, (12.14)
(mm:n)
. or,
Ay = Z p, A, = Tr(pA), (12.15)
where p is defined by
P = (U™, (12.16a)
P = VI, (<) (12.16)
oo :%{w‘"”’)m HUARNR (m <n). (12.16¢)

From (12.16b) and (12.16¢) we see (since expectation values of observables are
rcal) that

Prw = (Pu)s  Or  PT=p. " (1217)
Thus, p is Hermitian. This completes the first part of the proof of von Neumann’s
theorem. It can also be shown that (¢ | p | 6) 2 0, for all ¢, so that p is non-negative
definite, according to (A4).

The second part of the proof makes use of an additional assumption:
(AS5) If an observable is represented by the operator A, then a function f of that
observable is represented by f(A).

In particular, therefore, the square of the observable represenied by A, is repre-
sented by A% Then, in the case of a dispersionless ensemble,
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(A =AY =0, (12.182)

or, (A% = (AY, (12.18b)
for all observables A, since the expectation value is equal to an eigenvalue in the
case of such an ensemble.

Substituting from (12.15) in (12.18b), we have,

Tr (pA?) = [Tr (pA)> (12.19)
Choosing A to be the projcction operator P, where,
P=|6><0| with{0|6) = 1, we get,
since P?= P [see Eq. (2.69a)],

Te (pP) (Tr (pP) - 11 =0. (12.20)

That is,

Tr (f)f’) =0ori
or,

®1p1o)y = 0orl, (12.21)
since Bim) = B,y | 0)
But | ¢ is arbitrary. Therefore, (12.21) can be satisfied only if

p=00rp =1 (12.22)

That is, for dispersion-free ensembles, the statistical operator is either null or
unity.

Now, p = 0 implies that {(A) = 0 for all A, which is an unacceptable result. The
case p =1 gives (A) =Tr (A), which cannot be true except for the one dimensional
vector space (where A is an 1 x 1 matrix). Thus the assumption of a dispersion-
frec ensemble leads to unacceptable conclusions. von Neumann, therefore,
argues that, provided his assumptions are accepted, there are no dispersion-free
ensembies and hence therc cannot be any hidden variables. For, a hidden vari-
ables state, by definition, is dispersion-free as every observable has an unique
value in such a state. Thus the conclusion: ‘It is therefore not, as is often
assumed, a question of reinterpretation of quantum mechanics,—the present sys-
tem of quantum mechanics ........ »*42 appears well-founded.

Bell’s Rebuttal of von Neumann’s Proof

The credit for pinpointing the defect in von Neuman’s proof of his theorem goes
to Bell®, though the irrclevance of the theorem for the hidden variable question in
quantum theory was indicated also by Bohm’s hidden-variables theory introduced
in 1952”7

43.  Bell, 1.S. Revs. Mod. Phys. 38, 447 (1966).
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As we have emphasized, an imporiant part of von Neumann’s proof is the
result that any ensemble can be characterised by an unique statistical operator,
whether the ensemble corresponds to a quantum mechanical state described by the
y-function or to a hidden-variables state described by y and A. However, the fact
is that characterisation by means of a statistical operator is not valid for a
hidden-variables state*. Therefore, at least one of the assumptions (A1) to (A4)
made by von Neumann must be false for the case of a hidden-variables state. Bell
pointed out that it is actually assumption (A3) that is at fault. This assumption
states that the average of the sum of two observables is equal to the sum of the
averages of the two observables separately. Though this is valid for all quantum
mechanical states, it is a nontrivial property as far as hidden-variables states are
concerned. For, in a hidden-variables state, expectation values are eigenvalues
of the corresponding operators, and it is well known that eigenvalues of non-
commuting operators do not have the additivity property (12.10) postulated by
(A3). The physical basis of this would be clear from a consideration of the case
where the observables are the spin components of a spin 1/2 particle. Putting
A =0, A,=0,and a,=a,=1, Eq. (12.10) reduce to

(6,+6,) = (6,)+(5)). (12.23)

For a dispersion-free (hidden-variables) state, (12.23) states that the eigenvalue of
(6,+0,) is the sum of the eigenvalues of G, and G,. But the eigenvalues of
(G, +G,) are +\/2 whereas *he eigenvalues of G, and 6, are %1, so that Eq. (12.23)
is not satisfied. The reason is that the measurements of 6,, G, and (G, + G,) require
three different orientations of the Stern-Gerlach magnets.

Thus, von Neumann'’s mistake was in assuming that what is true for quantum
theory is also true for a hidden-variables theory. To put it differently, von Neu-
mann’s impossibility proof is applicable to only a particular class of hidden-
variables theories (what Belinfante calls *‘the zeroth kind’”) and not to realistic
hidden-variables theories (of the first and of the second kinds).

Gleason’s Work

Gleason’s*” was able to establish the existence of an unique, self-adjoint, non-
negative statistical operator satisfying Eq. (12.9) using von Neumann’s assump-
tion (A3} for only commuting operators for separable real or complex Hilbert
spaces of dimension greater or equal to 3. Thus, objections raised in connection
with von Neumann’s proof are not valid here. Therefore, for Hilbert spaces of
dimension greater or equal to 3, the second part of von Neumann’s proof and
the conclusion regarding the impossibility of hidden-variables theories remain
valid. :

However, in proving his resuft Gleason makes use of the assumption that
the result of a measurement of an observable A is independent of what other

44. A proof is given in the bouk by Belinfante, F. J. (Footnote 39), section 2.2.
45.  Gleason, AM.J. Math. Mech. 6, 885 (1957)
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compatible observables are simultaneously measured. As Bell has shown®, once
this assumption is removed and a measurement result is allowed to depend on the
whole experimental arrangement, it is possible to introduce hidden-variables.
The work of Kochen and Specker*® on the impossibility of hidden-variables
theories is based on an assumption similar to that of Gleason. Therefore Bell’s
argument in connection with Gleason's work is applicable in the case of Kochen
and Specker also. In the case of an angular momentum J, for example, it means

that hidden variables in general do not assign unique value to J? for each given
direction n, but, instead, for a given triad of (mutually perpendicular) directions 1,
m, n, they tell which one among JZ, JZ and J? is having a particular value, where

J, J,. and J, represent the components of J.

Bell’s Inequalifies and Bell’s Theorem

Bell® has analysed the EPR thought-experiment from the viewpoint of hidden
variables with a view to ascertaining whether hidden-variable theories of the
second kind (which satisfy Einstein’s locality postulate) could really be consistent
with all the predictions of quantum theory. The resalt is a set of inequalities which
bear his name and which establish the Bell's theorem which states: No local
hidden-variables theory can reproduce all the results of quantum theory. These
inequalities also permit one to resolve through experiments the question whether
quantum theory or a local hidden-variables theory represents the laws of nature.
We give below an outline of the derivation of the inequalities:

Consider the two spin i particle in a singlet state, moving away in different

directions. A Stern-Gerlach magnet measures the component of o, in the direc-
tion of a unit vector a while another Stern-Gerlach magnet measures the compo-
nent of o, along the unit vector b. (o, - a) and (o, - b) can have the values 1 only.

But the statistical correlation between the two measurements is given, according
to quantum theory, by

{(0,-a) (0, b)=—(0,-8) (0, b))=—(a-b), (12.24)
where the relationships,
g,+0,=0

and {c-a)(c-b) = (a-b)+ic-(axDb),
are used.

Let us suppose that the results of individual measurements, which quantum
theory is unable to predict, are determined by a set of parameters (hidden
variables) A. Then the result A of measurement of (G, - a) will depend on a and A

while the result B of measurement of (o, b) will depend on b and A. Since the

46. Kochen, S. and Specker, E.P. J. Math. Mech, 17, 59 (1967).
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result of a measurement has to be an eigenvalue of the corresponding operator and
since the eigenvalues of any component of ¢ are +1, we have,

A@A) = 11;B (b, = 1. (12.25)
Einstein’s locality postulate requires that A be independent of the choice b and B
be independent of the choice a. If p(A) represents the probability distribution of
the hidden variables, then the average of the product (o,-a)(c,-b) in the
hidden-variables theory is given by

(0,-3) (0, b)), =P (a-b) (12.26)

with
P (a,b) = fA {a,\) B (b,A) p(A)d A (12.26a)

If we assume that the measurement results depend also on some external hidden
variables (that is, the measuring instruments also have hidden variables) over
which averaging has 10 be done, and if we denote this averaging by a bar, then in
place of (12.25) and (12.26a) we would have,”.

|A@@, N |<1; | BB,V (12.252)

P(a,b) = f A(a,A) B(b,A) p (\) dA. (12.26b)

The question is whether the absolute difference between the hidden-variables
result (12.26b) and the quantum mechanical result (12.25) could be made arbi-
trarily small. That is, if we put

| P(a,b) + (a-b)| < € 12.27)
can e be made to vanish? Bell obtains the inequality®,
|P(a,b") — P(a,b)| + |P@,b) + P(a,b)]| <2, (12.28)
and thence shows that
4e>2-1, (12.29)

Hence the Bell’s theorem.
The Experimental Verdict

The Bell’s inequality (12.28) and other similar inequalities* for photon polar-
ization correlation measurements, enable one to verify or refute the claims of the
local hidden variable theories as against the predictions of quantum theory (the
latter will violate the inequalities). A number of experiments have been per-
formed in this connection. Most of them seem to agree with the predictions of
quantum theory. In this connection, an interesting thought-experiment, which is

47. Bell,J.S. ‘Introduction to the hidden-variable question’ in Foundations of Quantum Mechanics
(Proceedings of the Intemational School of Physics *‘Enrico Fermi’’, Course 49, June 29 - July
11, 1979, Vienna), published by Academic Press, New York.

48.  See Roy, S.M. Phys. News. 11, No. 1, p. 4 (1980), for other related inequalitics.
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supposed to reflect the experimental findings of Aspect and coworkers® at the
University of Paris, has been presented by Mermin’. The results are equivalent
to the following proposition in relation to the EPR experiment:
Daia gathered on S® and data gathered independently on S®, are corre-
lated. This correlation is purely statistical and arises from the fact that S
and S® have a common (coherent) origin®.

According to Mermin, this result rules out a deterministic theory like local
hidden variable theory since the correlations found are as predicted by quantum
theory. However, many believe that the question whether quantum theory or
something beyond it is the ultimate physical theory, is far from settled.

49.  Aspect, A, Grangier, P and Roger, G. Phys. Rev. Lett. 47, 460 (1981); 49, 91 (1982); Aspect, A,
Dalibard, J. and Roger, G. Phys. Rev. Lett. 49, 1804 (1982).

50. It should, however, be remembered that the subject matter of the EPR experiment is not the
correlations arising from independent measurements done on 8V and $@. The question posed
by the EPR experiment is whether or not quantum mechanics permits the deduction of a com-
ponent of S? from a measurement done on S only (without making a measurement on $@
itself). As we have seen in Section 12.4, the answer to the question is negative.



APPENDIX A

MATRICES

Al DEFINITION

A matrix is a two-dimensional array of numbers, in general rectangular, con-
forming to the following definitions:

All A12 * * * Aln
Ay A, oo LA

A= .21 2 7 (A1)
A, A, o . LA,

The horizontal arrays are called rows and the vertical arrays columns. A matrix
having m rows and n columns, as in (A.1), is called an (m x n) matrix, or a matrix
of order (m x n). A matrix having equal number of rows and columns (m = n), is
called a square matrix. n is then the dimension or order of the matrix. The
numbers A;; are called the elements of the matrix; the first subscript denoting the
row and the second the column in which the element appears.

The elements A; of a square matrix constitute the principal diagonal of the

matrix, while the elements themselves are called the diagonal elements. The
elements A;; for i # j are, then, the off-diagonal elements. A matrix for which all

the non-vanishing elements are diagonal, is called a diagonal matrix. Thus, if D
is a diagonal matrix, then,

D;= Ss;D." (A2)
A diagonal matrix whose diagonal elements are all unity, is a unit matrix and is
denoted by I.
Thus,
10 00
0100 .
[ = 00 1 0 ' or, I; =98, (A.3)

The unit matrix could be of any order.
A null- or zero-matrix is one whose elements are all zero:
0,=0. (A4)
A matrix which is part of a larger matrix, is called a submatrix.
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Example: The matrices

. _1 9- — 3- —
- oo

and S = (7), are submatrices of order, 2, (2 x 1), (1 x 2) and 1, respectively, of the
3rd order matrix

>

il
(= SR
N 00 O
~ W

A2 MATRIX ALGEBRA

An algebra of matrices can be developed by defining equality, sum, product, etc.
of matrices:

Equality: Two matrices A and B are equal if their corresponding clements are

equal.
Thus,
A=B,ifA;=B; foralli,j. (A.5)
Sum: C=A+B=B+A,ifC,=A,+B,,. (A.6)
Product: If C =AB, then, C;=2A, B, (A7)
k

Thus, if A is (m xn), B should be (n x1) while C would be (m x!). Thercfore,
existence of AB does not imply existence of BA, so that, in general, AB # BA. For
this reason, AB is called the product of B by A. Matrix algebra is, thus, non-
commutative. Matrix multiplication is, however,

distributive: A(B+C)=AB +AC, (A.7a)

and associative: A(BC)=(AB)C =ABC. (A.7b)
It follows from (A.7) and (A.2), that diagonal matrices commute among

themselves. Also, a matrix A that commutes with all diagonal matrices is neces-
sarily diagonal.

Let (AD); = (DA),,
i.c., A;D;=DA,, since Dy =3§,D,.
ic., (D;,-DpA;=0. (A.8)
Hence A;=0if D, # D thatis, if i # J,
or A;=8; A

Multiplication of a matrix by a complex number ¢, is defined by
(Ac); = (cA), = cA,,. (A.9)
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Thus, the mawrix C =cl, is a diagonal matrix whose diagonal elements are all
equal to the number ¢. Such a matrix is called a constant matrix:
C,;=9;c. (A.10)
A constant matrix commutes with all square matrices
(CA);= zC, A= cAy
k

(AC); = L A,Cy=CA,;.
k

Conversely, a matrix that commutes with all square matrices, is a constant matrix.

Let A be the matrix that commutes with all square matrices. In particular, A
will then commute with all diagonal matrices, so that, according to Eq. (A.8),A is
diagonal.

Aij = 8:‘in
Let B be an arbitrary square matrix. Then,
AB—-BA =0
i.e., (A, —A)B; =0.

Since B; #0,A; = A, for all i and j.
This means that all the diagonal elements of A are equal to the same constant.
A;=0.c.
U] i

Since the unit and the null matrices are also constant matrices, it follows that
they commute with all square matrices.

Al =IA=A, (A.11)
AO=0A=0. (A.12)
Direct, or Tensor, Product® of two matrices A and B is defined as follows:
If C=A®B,

then, the elements of C are given by
Cit =AiBus (A.13)
Thus, if A is (m, X n;) and B is (m, X n,), then C is an (m,m, X n,n,) matrix. As an

example, let A and B be (2x2) matrices. Then C will be the following (4 x4)
matrix:

AllBll AllBIZ AlZBII AIZBIZ
AIIBZI AllBlZ AXZBZI A12B?.2
AZIBII A2lBl2 AZ’ZBII ADBI?.
AZIBZI AZIBZZ A?2821 AnBzz

A®B=C-=

1. The names, Kronecher product and outer product, are also used. It is also possible to define a

direct sum of two matrices by
aop-|? O
"0, B

where, if A is (m xn) and B, (p x ¢), then, the null matrix O, is (m x ) and O, is (p x n).
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A B A
= " 125 (A.133)
A,B AyB
Thus, the tensor product of A and B is a matrix of the type A whose clements are
matrices of type B.

Power: The square of a matrix 4 is defined by

AT=AA (A.14a)

Similarly, A"=AA"'= A..A (A.14b)
n factors

Also, A’=1. (A.14¢)

Obviously, only square matrices have powers.

Function: Function of a matrix can be defined by combining the operations of
addition, multiplication and power. Thus,

f(A)=aA*+bA +cl, (A.15)
is a function of the matrix A, whercas the equation f(A) =0, is called a matrix
equation.

Inverse: B is said to be inverse of the matrix A, if
BA=AB =1, (A.16)

B is, then, written as A™. If A is (m xn), then A™ has to be (n xm). But (AA™)
and (A™'A) should both be square matrices of the same order, according to Eq.
(A.16). Therefore, m = n, so that, only square matrices have inverses. Every
squarc matrix, however, nced not have an inverse. If it has, it is said to be a
non-singular matrix, whereas if it does not have, it is a singular matrix.

The inversce of a product of matrices is the product of the inverse of matrices in
the reverse order:

(ABCY'=C'B'A", (A1)
Transpose: The matrix obtained by interchanging the rows and columns of the

matrix A, is called the transpose of A, and is denoted by A.
Thus,

AU:Aji. (A.18)
The transpose of a product of matrices is the product of the transpose of the
matrices in the reverse order:

(ABC)=CBA. (A.19)
Complex Conjugate: The complex conjugate A” of the matrix A is defined by,
(A ‘),',‘ = (A.'_,')‘ (A.20)

Also, (ABC) =A"B"C". (A.21)
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Adjoint (Hermitian Conjugate): The adjoint At of the matrix A is given by
AT=(A)' =(A"),

or, AN, =4, (A.22)
From (A.19) and (A.21), we have,
(ABC)t = C'B*A". (A.23)

A3 IMPORTANT SCALAR NUMBERS ASSOCIATED

WITH A SQUARE MATRIX
Trace: This is the sum of the diagonal elements and is denoted by Tr(A). Thus,
Tr(A) = ZA,. (A.24)
Using Eqgs. (A.7) and (A.24), we have,
Tr(AB) = Tr(BA). (A.24a)
Also, from Eq. (A.13a), we get, ‘
Tr(A ® B) = Tr(A) - Tr(B). (A.24b)

Determinant: This is defined for a square matrix A by,

Ay, . Ay
AyAy, .. Ay
detA =|A |=
ANIAN?. ANN
= I+ A Ay A (A.25)

where, ii,...iy, is one of the N! pecrmutations of the numbers 1, 2,..., N. The + sign

is to be chosen when the permutation is even (or, cyclic) and the — sign when the
permutation is odd.

Example:
All A12 AIS
Let A =|Ay Ay Ay (A.26)
A31 A32 ASS
Then, detA =A (A A, —Audy)

- AIZ(AZIABB - A23A31)

+AR(AyAn —Apdy). (A.27)
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Determinant of a product of matrices is equal to the product of the determinants:
|ABC |=|A[-|B]|-|C]. (A.28)

Obviously, det (AB) = det (BA). (A.29)
The order of det A, is the order of the matrix A.

Minor: The minor M; of the element A;; of the matrix A, is the determinant of the

matrix obtained by removing the ith row and the jth column (that is, the row and
the column in which the element A;; occurs):

All A12 Alj—l A1j+1 AIN
_ . A, Ay o A
M,.. - =11 12 1j-1 1j+1 N (A30)
! Ai+ll Ai+|’2 et Ai+1j—l Ai+1j+l e Ai+1N
Ay, Ay e ANj_ y Ay - Ann
In the example (A.26), we have,
AZI A?J
M,= = A, A;—AL A
12 A31 A33 21 €733 23 4731

Cofactor: Cofactor g; of the element A; is defined as,
a;= (1" M. (A.31)
a; could be considered as the ijth element of an (N X N} matrix a.
Thus, in the above example,
Gy =My = Ay Ay — Ay Ay
The determinant of a matrix can be expressed in terms of the cofactors of its ele-
ments:

N N
detA=Z A;a,= L A;q (A32)
j=1 i=1

[t/

This formula is known as the Laplace development.
For the matrix A given by (A.26), we get,
detA =A) a,+A,a,+A, 8,

AZI AB
ABI A33

All A22
A3l A32

A22 ABI _
A32 A33 l ?

=Ay, 13

=A; (ApAp—AnAy) —Ap (Ay Ay —Ap Ay) +A3 (A Ay —Ap Ay),
which is the same as (A.27).

The following properties of the determinant of a matrix follows from the def
inition (A.32):

(i) detA =dectA:;det AT=(detA),
(ii) det A,, = det A, =—det A,
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where, A,, is the matrix obtained from A by an odd permutation of its rows, while
A, is obtained from A by an odd permutation of its columns. It follows, from this,

that if any two rows or any two columns of A are identical, thendet A = 0.
(iif) If B is a matrix which is obtained from A by multiplying all the elements
of any one row or any one column of A by the number ¢, then, det B = ¢ det A.
(iv) If each element in any row or any column of A is written as a sum of two
numbers, then det A can be written as the sum of two determinants:
Thus, if
My AD AT 4,
A =14, AD + AD 4,
Ay AR+ AR Ay

then, detdA = det AV + det A®, where

Ay AR A
A® = Ay A,(_;) Ay
ASI A;;) A33
From properties (ii), (iii) and (iv), it follows that if we add any multiple of a row
(column) of A to any other row (column), then the determinant of the resulting
matrix is the same as det A.
The inverse also can be expressed in terms of the cofactors and the determinant

of the matrix:
Eq. (A.32) can be written as

13

N
(Al = £ A4, =D, (A.33)
=1

. U
i=
where, 4 is the transpose of the matrix @ whose elements are the cofactors of A.
Thus,
D =Ad= |A|l =1}A), (A.34)
is a constant matrix whosc diagonal elements are all equal to |A |. If A has an
nverse, then,

I = AA™,
so that Eq. (A.34) becomes,
Ad = AAT|A)),
a
or, Al = —. A.35
[A] (A3

Hence, the condition for the existence of an inverse is that the determinant of the
matrix be not equal to zero. This condition is both necessary and sufficient.

Rank: The rank p(A) of the matrix A is defined as the order of the largest non-
singular (sub) matrix contained within A. Thus, if A is non-singular,
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p(A)=n, (A.36a)
where n is the order of the matrix.
If A is singular,
p(AY<n. (A.36b)
Example 1;
1 3 4
A =12 4 5|
3 1 2
}A | #0. Thercfore, p(A)=3.
Example 2:
1 2 3
A= 2 4 6
-3 -6 -9

}A |=0. Also, all submatrices of order 2 are singular. Hence p(A)=1.

Example 3:
1 -1 0O
A= (2 1 -1)
p(A) = 2, since 2 ) 1 # 0.
The rank of a product of two matrices is less than or equal to the rank of either.
p(AB) < p(A), ' (A.36¢)

where p(A) < p(B).
A4 SPECIAL MATRICES

Hermitian: A is Hermitian or self-adjoint if

AT = A, or, A} = A, (A.372)

and antiHermitian, if
At = —AjorA; = —A; (A.37b)
Unitary: U is called a Unitary matrix, if :
Ut =u, (A.382)
or, Uty = UUT = 1, (A.385)

Orthogonal: If

A=A" or AA = AA =1, (A.39)

A is said to be orthogonal.
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Symmetric: When

A=A, orA; =4, (A.402)
A is symmetric, and if
A= -A,onA; = —A, (A.40b)
A 1S antisymmetric.
Real: A matrix is said to be real, if
A" = A, or Aj = A, (Adla)
and imaginary if
| A" = —A; e, A = A, (A.41b)

Normal: A matrix N that commutes with its adjoint N7, is said to be a Normal
Matrix:

NNt = NIN, (A.42)
Obviously, Hermitian, Unitary and real-symmetric matrices are Normal.

Column and Row Matrices: A matrix X with only one column is called a
column-matrix or a ket-vector. Similarly, a matrix ¥ with only one row, is a
row-matrix, or a bra-vector.* The name ‘vector’ in the case of a column (or row)
matrix has its origin in the fact that the elements of such a matrix could be
regarded as the components of a vector. For example, let x, y, z be the components
of the position vector r:

r=xi+yj+:zk
This vector could be represented by the column matrix,
x
r=\y}
z
The scalar product of two vectors r, and r, is defined as
FoTy = XX, + Y1y, + 2,2,
which is the product (see Eq. (A.7)) of the row-matrix

i=r=(xny)=xYz

and the column matrix,

2. These are also sometimes referred 1o as column-vector and row-vector, respectively.
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Thus, both the column- and the row-matrices represent vectors. The names ket
and bra-vectors, are due to P.A.M. Dirac (See Section 2.3).

The above concept of vectors could be generalized to the case of a complex
space with more than three dimensions. Vectors in such spaces would be repre-
sented by column or rowmatrices with complex elements.

Whereas the product of a column-matrix by a row-matrix is a scalar, the
product of a row-matrix by a column matrix is a square matrix:

Let Xt=x%...%y
N
Y2
and Y =
Yn
N L
Then, XY = L xy,. (A.43)
i=1
Y VK e Yike
But, YXU=yx vt ... Yty (A.44)
YK YK - YnEn

AS MATRIX TRANSFORMATIONS

A similarity transformation of a square matrix A by a nonsingular matrix §, is
defined by

A A = STAS. (A.45)
If § is a unitary matrix, the transformation is called unitary. If A is a nondiagonal
matrix but A" is diagonal, then, A is said to be diagonalized by the transformation,
or by the matrix §. If two matrices A and B commute, then, they can be diago-
nalized by the same matrix §:

AB = BA, (given).

LetA’ = S'AS, be diagonal. We have to show that B’ = S™BS, is also diagonal.

We have, S AB -BA)S = 70§ = 0. (A.46)
ie. ST'ASS'BS -5'BSS'AS = 0,
or, A’B’-B’A’=0. (A47)
ie., (A", —A")B’,=0. (A.48)
Hence, B’;=3§,B", (A49)

Conversely, if A and B are diagonalized by the same matrix S, then, AB = BA;
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We are given, A'B’~B’A’=0.
That is (see Eq. (A.46)),
SAB -BA)S =0.
Multiplying from the left by S and from the right by S, we get,
AB—-BA = SOS'=0. (A.50)

Obviously (see Egs. (A.24a) and (A.29)), the trace and the determinant of a matrix
are invariant under a similarity transformation:

Tr(A")=Tr (§AS)="Tr (S7'SA) = Tr (A) (A.51)

det A’ =det (ST'AS) =det (S7'S) - det A =det A. (A.52)
The rank of a matrix is another quantity which is invariant under similarity
transformation. Also, a matrix equation is unaffected if every matrix in the
equation is subjected to the same similarity transformation.
A unitary transformation (but not a similarity transformation by a non-unitary
matrix) preserves the Hermitian, or Unitary, character of a matrix, since

AT =(UTAUY =UTA(U ™) =U"AU = A’, when AT = A4,

and AT=UATU=UTATU =4 when AT=A"",
A6 SOLUTION OF LINEAR ALGEBRAIC EQUATIONS

A set of linear algebraic equation in n variables, x,,x,, ..., x,, is given by
Axi+AG+ L HALX, =Y,

1n"*n

Ay +Ap+ . +ALX =y,

A FA X+ LA X, =Y .
or, using matrices,

AX =Y (A53)
where, A is the coefficient matrix, given by,
Ay e A,
A=]|" ! (A.53a)
A;l e A
and X and Y are column matrices (vectors):
X N
x =" y=|" (A.53b)
x, g
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The problem is to determine X when A and Y are given®,
Multiplying both sides of (A.53) with A", we get,

X=A"Y = —, A.54
A (A.54)
where, we have substituted for A™ from Eq. (A.35).
That is,
1 2/
x=X), = m .Ex (a)j.. Yi
1 2 | A}
= Fyaq =2 A.55
A1 % T T4 (A3

where, [see Eq. (A.33)], A/ is the matrix obtained from A by replacing its jth

column with Y.
As an example of the application of formula (A.55), let us consider the set of
equations,

X —2,+3x, = 2
C2-3x,=3
x +x,+x, = 6.
Here,
1 -2 3
A=[2 0 =3} ]A] =19,
1 1 1
X 21
X = xz;Y= 3
X 6
1272 3 gy 14,1
x‘_ﬁ3 0 —3——1—9=3=|A|,
6 1 1
x—lii 33—38—2—|A’2|'
2719 I T VY
1917 6 1 A |

3. The equation (A.53) will have solutions only if
rank (A) = rank (A,Y),
where (A,Y) is the extended or augmented matrix, obtained by attaching ¥ to A as the (n + I)th
column.
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|} 722 g 143
x3=-1—92 03=1—9'=1=m.
1 1 6
When,
AX =0, (A.56)

we have, | A/ |= 0, for all j; so that, according to (A.55), a non-trivial solution (one
for which X & 0) for (A.56) exists only when
|A|=0. (A.57)

A7 EIGENVALUES AND EIGENVECTORS

Consider a square matrix A. The matrix X = (A ~ o), where ais a scalar number
[defined by Eq. (A.58) below] and / is the unit matrix of the same order as 4, is
called the characteristic matrix of A. The determinant of K is the characteristic
function (or, characteristic polynomial) and

detK = |A —al] =0, (A.58)
is called the characteristic, or secular equation of A. If the order of A is n, then,
the secular equation is of degree n in o. The n roots of the equation are called the
eigenvalues of A.

Now, if A is a diagonal matrix, A; = §;A,, and the secular equation s,
A -—of] =TT (A - =0. (A.59)
i=1

Hence, the roots are

o = A,i = 1,2,...,n. (A.60)
Thus, the eigenvalues of a diagonal matrix are the diagonal elements of the
matrix.

Suppose X is a column matrix of order n x 1.
Then, AX =7, (A.61)
where, Y is also of order n x 1. Y is then called the transform of the vector X by
the matrix A, There might be vectors X for which ¥ = oX. That is,
AX = oX, (A.62)

or A —o)X =KX = 0. (A.63)
Eq (A.63) represents a set of a linear, homogeneous, algebraic equations. For a
non-trivial solution, the condition is that [see Egs. (A.56) and (A.57)}
detK = A -o0l}] =0.

But, this is the secular equation of A. Eq. (A.58)), so that the values of « for which
Eq. (A.62) is satisfied, are the eigenvalues of A. Eq. (A.62) is, for this reason,
called the eigenvalue equation of A. Denoting by o the different values of o, we
have,

AX, = 0o X,, k = 1,2,...,n, (A.62a)
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X, is the eigenvector* of A belonging to the eigenvalue o.
The eigenvalues are invariant under a similarity transformation. For, let

A’ = §TAS.
Then, the secular equation for A” is,
A’ - o] =0 (A.64)
That is,
|STAS ~oI| = |STAS — STwIS| =0
ie., 1S4 - o'DS | = 0.

Using Eq. (A.28), we get,
IS - A=) - |S] =0
Since § is non-singular, | S | and | S | are not zero, so that
A —aT| =0. (A.65)
This equation is the secular equation (A.58) for A. Therefore, the roots o,” are the
same as the eigenvalues o, of A.

Since the eigenvalues of a diagonal matrix are its diagonal elements, and since
the eigenvalucs are invariant under similarity transformations, one way of finding
the eigenvalues would be by diagonalising the matrix through a similarity trans-
formation. Another method, of course, would be by solving the characteristic
equation.

Now, each of the vectors X, in Eq. (A.622a) is a column matrix:

Xyk
X
X, =
KXo
Define the square matrices S and A’ by,
X1 X2 X1n
Xy Xp .o Xy,
S = (XX, X) = . (A.66)
xnl ‘xn2 xnn
4.  IfXisaneigenvector of A, then cX, where ¢ is a scalar number, is also an eigenvector. However,

X and cX are not counted as separate vectors. To avoid the arbitrariness in the selection of the
eigenvectors, the eigenvectors are normalized; that is, X is so chosen that

XX =1
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o, 0 O... 0
0 o O... 0

Al=14 . (A.67)
0 0 0...«o

Eq. (A.62a) could be written as,
(AX, AX, ... AX)) = X0, X0, ... X, 00,),

or, ‘ AS = SA’. (A.68)
Multiplying from the left by S, we get,
A’ = STAS. (A.69)

Thus, the matrix § that diagonalizes A, has the eigenvectors of A as its columns.
The problem of finding the eigenvalues and cigenvectors of A4 is reduced to the
problem of finding the matrix § that diagonalizes A.

Now, the sccular equation (A.58) can be written as,

o +o, o .+, = 0. (A.70)
Define, s, = Tr(A"), n apositive integer. (A71)
Then, it has been shown that the coefficients in (A.70) are given by
l r
c, = —= X C_; S (A72)
r k=1
where ¢, = 1.
Thus, €, = —855C = —%(cls1 + 5, etc.
From the theory of algebraic equations, we have,
oL+o,+...+0, = ;: o, = —¢, =5 = Tr(A) (A.73a)
k=1
00,0, = (~1)"c, = detA. (A.73b)

Eq. (A.73b) follows from the invariance of the determinant as well as the eigen-
values under similarity wransformations [Egs. (A.52), (A.64) and (A.65)] and the
fact that the determinant of a diagonal matrix is the product of its diagonal
clements which are also its eigenvalues [Eq. (A.60)].
The invariance of the wrace and the determinant of a square matrix under sim-
ilarity transformation, thus, follows from the invariance of the eigenvalues.
Multiplying Eq. (A.70) by an eigenvector X, of A, and using the tact that,

A'X, = (o) X,, (A.74)
we get,

A"+c A" 4+ ] = 0. (A.75)
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That is, a square matrix satisfies its own characteristic equation in the matrix
form. This is known as the Cayley-Hamilton Theorem®. The theorem is useful in
finding the inverse of a matrix. For, multiplying both sides of Eq. (A.75) by A™,
we get,

Al = —%[A""+c1A"‘2+...+c,_,1], (A.76)

where, the coefTicients ¢, are given by Eq. (A.72).
Example: Consider the matrix

A = (0 _’). (AT7)
i 0
The secular equation is
1A —of | =|’fx —‘l =0,
14 -~
ie., of-1=0.

Hence, the eigenvalues are
o =landoy, = ~1.

Substituting these values in the ¢igenvalue equation

AX, = ouX,,
and, normalizing X,, that is, by putting
XX, =1,
we determine
A L
i |
X, = ;X =

1 1
S = \{5 \_[lz (A.78)

V2 V2

In order to show that S 'AS is indeed the matrix

, (10
=l %)

we should first find §7'. According to Eq. (A.76),

§T= ——S+eh),

1
Cy

s. For a derivation of the theorem without using the eigenvector, see Joshi, A.W. Matrices aad
Tensors in Physics (Wiley Eastern, New Delhi 1975), Section 10.
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where (see Egs. (A.71, 72)),
=Tr(S) =

G

1 : .
@(I ;

it

¢, = — %(Cm‘f 5) = —%[clTr(S)+Tr(S2)]

fl

- %[—{Tr(S)}%Tr(S’)]

2
{rr©) = {;j%(l - i)} = %(1-1-2:‘) = -
2 11+ 1-i
5= 2(1+i i~—1)
e TI’(SZ) =i
Thus,
€ = "%(“’i) = —1.
and

1
&
1 i

P S ] ~
st = {S+\E(1 | = 1
eV
Thus, § is unitary, as it should be since A is Hermitian,
The following properties relating to the eigenvalues and eigenvectors of Her-
mitian and Unitary matrices, are easily proved:
i) The eigenvalues of a Hermitian matrix are real, whereas the eigenva-
lues of a Unitary matrix are complex numbers of absolute value unity.
(ii)  The eigenvectors belonging to different eigenvalues are orthogonal.
(iii)  There are n linearly independent® (and, hence, orthonormal) eigenvec-
tors, where n is the order of the matrix’.

A8 DIAGONALIZABILITY OF A MATRIX

From Eq. (A.69), we see that the condition for the diagonalizability of a square
matrix 4, is that the matrix § whose columns are the normalized eigenvectors of
A, be non-singular. And this would be so when A has n (where n is the order of
A) linearly independent eigenvectors. Now, even though every square-matrix of

6. See Eq. (2.17), for the definition of ‘linear independence’.
7. Sce reference given in footnote S, for proof.
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order n has exactly n eigenvalues® as implied by the secular equation (A.58)
(which is of degree n in o), it need not have # linearly independent eigenvectors.
For example, consider the matrix A given by’

31 -
A=)2 2 -1} (A19)
22 0

The secular equation is
1A - o]
so that, the eigenvalues are,
o =1 0= 0 =2
Substituting these eigenvalues in the eigenvalue cquation (A.62a), we get the
eigenvectors. It turns out that there are only two linearly independent eigenvec-
tors'®. These are, corresponding to o.

(1 - o-2°=0,

X, = |0},

corresponding to o, and 0,
1
X, =11}
2
Note that X, and X, are not orthogonal to each other, but are linearly independent.

We can find a third vector X, which is linearly independent of X, and X,. For
example,

8. These eigenvalues need not be all different. If o is an eigenvalue which occurs k times, then k
is called the multiplicity of the eigenvalue .

9. This example is taken from the book by Joshi, A.W. (see footnote 5).
10.  This is not due to the degeneracy of the roots, but is a consequence of the nature of the matrix.
For example, the diagonal matrix

has also the roots o, = 1,0, = o; = 2. But there are two linearly independent eigenvectors
corresponding to the root 2, namely,
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But X5 is not an eigenvector of A belonging to eigenvalue 2. Also, the matrix
S = (X, X, X;) does not diagonalize A. In fact,

1 0 0
STAS =0 2 -1},
0 0 2
which is a triangular matrix.
Here, we have used,
1 -1 0
S'=10 1 0
-2 0 1

which can be obtained using Eq. (A.76).

Thus, every square matrix is not diagonalizable. However, as stated earlier,
every finite-order Hermitian or Unitary matrix has as many orthonormal eigen-
vectors as the order of the matrix. It follows that every Hermitian or Unitary
matrix is diagonalizable. That is, corresponding to every Hermitian (unitary)
matrix, there is a unitary matrix that diagonalizes it.

A9 BILINEAR, QUADRATIC AND HERMITIAN FORMS

If X and Y are column matrices of order (n x 1), and A is a square matrix of order
n, then, the number,
X'AY = Aijx,.' Y (A.80)
i,j=1
is called a bilinear form in the 2n variables x,(i = 1,2,...,n) and y,(1,2,...,n).
Similarly, the number,
X'AX = T Axx, (A.81)
ij=1
is called a quadratic form.
Ifin Eq. (A.81), the matrix A is Hermitian, then, the expression (A.81) is called

a Hermitian form. A Hermitian form is always real. For, it is clear that a Her-
mitian form is Hermitian:

(XTAX) = XTATX = XTAX. (A.82)
But, since the Hermitian form is a number,
(X'Ax) = (XTAX). (A.83)

Frem (A.82) and (A.83), it follows that XTAX is real.
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A10 INFINITE MATRICES

The discussion, thus far, has been concerned with finite matrices; that is, matrices
with finite number of rows and columns. A finite matrix is invariably discrete;
that is, its elements are labelled by discrete indices i, j where i and j are positive
integers. We will now extend the discussion to the case of infinite matrices.
These arc matrices of infinite order, hence having infinite number of rows or
columns or both. If the number of rows and columns are denurnerably“ infinite,
then the matrix is discrete, and its rows and columns are labelled by integers,
1<i,j <ee, If the rows and columns are labelled by continuous variables x and y,
with a <x <b and ¢ €y <d, then, the number of rows and columns are nonde-
numerably infinite, and the matrix is said to be continkous. We can also have a
mixed matrix whose row is labelled by discrete numbers and columns by a
continuous variable; or vice versa.

‘We will denote the elements of a discrete matrix by A,;, of a continuous matrix

iy
by A, or A(x,y) and of a mixed mawrix by A, or A,. Also, we will use
A, = A(lL,V) to denote the elements of a general infinite matrix (i and v could

be discrete, continuous or partly discrete and partly continuous).

Many of the definitions and operations relating to finite matrices are also valid
for infinite matricecs. We list below some of the important differences:

1. Two matrices are equal only if their rows and their columns arc labelled by
the same scheme. That is, if one is discrete, the other is also discrete; if one
is continuous, say with row labelled by x and column by y, wherea <x <h
and ¢ <y <d, then the other matrix is also continuous with elements A, ,
where x and y vary in the intervala — b and ¢ — d, respectively.

2. Sum is defined only for those matrices which have their rows labelled by
the same scheme and their columns labelled by the same scheme:

if C =A+B (A.84)
then, either Cj=A;+B,;,1=i,j<eo, (A.842)
or, Clx,y) = Ax,y)+B(x,y); {A.84b)
where, as<x<b;c<y<d.

3. The product AB exists provided the colurmnns of A and the rows of B are
labelled by the same scheme and provided, further, that the sum or the
integral involved converges. That is, if

C = AB, (A.85)

then, C,=ZA B, (A.852)

o
where, the summation should be replaced by integration whenever o is

continuous. The product exists provided the R.H.S. of {A.85a) is finite for
all values of |t and v in their allowed range.

11.  Sce footnote 1, Chapter 2, for a definition of this term.
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Thus, if A and B are discrete, Eq. (A.85a) reads,
Cy= E AyB,, 1S1,j S, (A.85b,
while if A and B are continuous, we have,
coy = [ Awg)B@. M. (A8sc

A matrix is square if its rows and columns are labelled by the same system
of indices (scheme). Thus, the matrix with elements A, where 1 <, j < oo,
is square, whereas the continuous matrix with elements A, is square only if
x and y vary in the same interval.

For a diagonal matrix, the elements are given by,

D, =D, o, v), (A.86)

Where, 8(“! V) = auv’
if p and v are discrete, and
8(u, v) = 8 — V),
if u and v are continuous, &1L — v) being the Dirac delta function (see

Appendix D). Thus, if D' and D? are two continuous diagonal matrices, we
have,

(D'D?),, fD;Djsm - 0)§(c- v)do

D,DI3( - v) = (D’DY),,.
Hence, infinite diagonal matrices also commute among themselves.

From Eq. (A.86), it follows that the elements of the continuous unit
matrix are,

= 8 - ), (A.87)

so that, the diagonal elemems are not equal to unity, although the off diag-
onal elements are zero.,
Determinant of an infinite matrix is not defined. This has the following
consequence:
For finite matrices, the relation

AB =1, (A.88a)
implies that B is the inverter of A, so that,
BA =1I. (A.88h)

For, taking the determinant of (A.88a), we have,

‘ detA- detB =1,
so that, det A # 0, which requires that A has an inverse A™ such that
AA =],

Since infinite matrices hdvc no determinants, this argument cannot be used to

establish the existence of A™ from Eq. (A.88a). Thus, both (A.88a) and (A.88b)
have to be satisfied in order that B be the inverse of A,
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It also follows that, unlike in the case of finite matrices, A need not be a square
matrix to have an inverse. When A is not square, the rows and columns of the
unit matrix in (A.88a) would be labelled differently from those of the unit matrix
in (A.88b).

The preceding remarks apply to unitary matrices also. Both the conditions,

UUt =1 and U'U = I, (A.89)

are required to ensure that U is unitary, where I, and I, are unit matrices. Again,
unitary matrices need not be square, ;
However, only square matrices can be Hermitian. For the equality
H = H,
requires that the rows of /7 are labelled by the same scheme as the rows of H. But

the rows of H' are the complex conjugates of the columns of H, so that the rows
of H are labelled by the same scheme as the columns of H.
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ANTILINEAR OPERATORS

A is an antilincar operator if, for any vectors | X > and | Y > in the domain of A,
and any scalers ¢, and ¢,,

Ale (X)+ ¢, [ VT =c/(AIX)+c,(A [ V). (B.1)
Obviously, then,
cA=Ac". (B.2)
If A and B arc antilinear operators, the product (AB) is a linear operator. For,
(AB)[c, | X)+¢,| V)] = Ale;(B | X)) +c;(B | YY)

= ¢,(AB | X)) +c(AB | YY) (B.3)

which shows (see Eq. (2.41a)) that AB is linear. In general, a product of p linear
and ¢ antilincar operators, is lincar or antilinear according as g is even or odd.

Many of the operations and properties discussed in connection with lincar
operators (Scction 2.2) are valid in the case of antilincar operators also. In
particular, the inverse A™ of A is defined by

AAT=1=A"4. (B.4)
Since 1 is lincar, it follows from (B.3) that A~ is antilinear. As in the case of linear
operators, the necessary and sufficient condition that the antilinear operator A has
an inverse, is that A® be uniquc for cach vector &.

In the following, we will confine ourselves to a discussion of the important
differences of antilincar operators from linear operalors.

Eq. (B.2) represents one of these important differences. That is, whereas a
scalar commutes with every linear operator, only a real scalar commutes with an
antilinear operator. Thus, as far as antilinear opcrators are concerned, complex
numbers could be regarded as operators. The other important difference concerns

the scalar product involving the opcrator. In the case of a linear operator, we have
the rclation (see Eqs. (2.9a) and (2.54)),

(Y, AX) = (AX,Y)=(X,A1Y). (B.5)
But, for antilinear A, the corresponding relationship is
(Y, AX) =(AY,X) = (A™X,Y) = (X, A1Y)" (B.62)

or, in bra-kel notation;
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KY A1 = (Y |A}[X) =

={X 1A} 1 )=[x | {AT ) H (B.6b)
We see that A operating on one vector in a scalar product is equivalent to At
operating on the other vector (cf. Eq. (2.104)). Eq. (B.6a) also defines the Her-
mitian conjugatg At of A, From this definition, we have, for three antilinear
operators A, B, C, the result,

(ABCY,X) = (ABCY'X, Y), (B.72)
since (A6 C) is an antilinear operator. But, since (A48) and (B C) are linear oper-
ators, we get using (B.5) and (B.6a),

(ABCY,X) = (CY,(AB)X)

= (CYABYX,Y), (B.7b)
and
(ABCY,X) = (ATX,BCY)
= (BCYATX,Y). (B.7¢c)
Equality of all the thrce expressions (B.7a-c) requires that
(ABC) =CTB1AT, : (B.8)

which relationship is the same as for linear operators (Problem 2.7).

Note that, as a result of (B.6b), it is important to explicitly specify in a scalar
product, whether an antilinear operator is operating on the ket vector to the right
or on the bra vector to the left. Thus, (X |AB | Y)is not specific enough, but one
can write,

(X 1(AB)|Y)={(X |AB} | ¥)

=[{[X 1A} {B YN
=X |{AB|Y). (B.9)

Antiunitary Operators

An antilinear operator K is said 1o be antiunitary if,
Kt=K"

That is, if KKt =KK =1 (B.10)
The product of an even number of antiunitary operators is unitary whereas the
product of an odd number of antiunitary operators is anti-unitary.

A similarity transformation by an antiunitary operator also prescrves the Her-
mitian character of a linear operator. This follows from Egs. (2.57) and (B.8)
which hold good both for linear and antilinear operators. However, from Egs.
(B.6a) and (B.10), we have,
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X, Y) - X, V)= XKY)=(Y,KX)

=¥, KKX)=(Y,X)=(X.Y),, (B.11)
when K is antiunitary. Thus, only the absolute value of the scalar product is
preserved under an antiunitary transformation:

(XY = XY = IXD] (B.112)
In particular, the norm of a vector is invariant under antiunitary transformations.
Thus, the absolute value of the scalar product of vectors is preserved both by
unitary (Eq. (2.62)) and antiunitary transformations. Conversely, a transforma-
tion which preserves the absolute value of the scalar product is either unitary or
antiunitary'.
The properties of an antiunitary transformation represented by the antiunitary
operator K, could be summarised as follows:
(i) A ket-vector | X) is transformed into’
I X)=K |X) (B.12a)
This follows from the definition (B.1) of antilinear operators.
(ii) A bra-vector (X | is transformed into

& = X |kt (B.12b)
This can be proved using Eqgs. (B.6a) and (B.11). From (B.11), we have,

X=X |{KIY}=x1Y)
But by Eq. (B.6a), we have,

R I =[{X R} YY"

Thercfore, X |K =(X|,
which requires Eq. (B.12b)%
(iii) A linear operator B transforms into

B =KBK", (B.13a)
This could be deduced, as follows:
Let [V)=B1X).
Applying the antiunitary transformation K, we get,
R\Y)=KB |X)

(KBEHK | X).

That is,

1Y) =8 |X).

1. For aproof, see A. Messiah, Quantum Mechanics (North Holland, Amsterdam 1961), Chapter
XV, Section 2.

2. Note that a similar procedure using Eq. (B.5) yields, in the case of a unitary operator U, the
result,

_ , X =10,
in agreement with Eq. (2.105).
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Hence the result.
(iv) A complex number ¢ transforms into

c=KcK'=c", (B.13b)
where Eqgs. (B.2) and (B.10) have been used.

The proof is identical with that of Eq. (B.13a), with ¢ replacing B. The result
(B.13b) confirms our earlicr statement, in connection with Eq. (B.2), that complex
numbers bchave like linear operators under anti-linear operations. We see that
Eq. (B.11) is actually only a special case of (B.13b), since the scalar Qroduct isa
complex number. Similarly, it follows that the matrix representing B would be
transformed into its complex conjugate under an antiunitary transformation. That
is,

B,=u;|B |u)—> B, (B.13¢)
For,

<“jlé luk>"‘)<ﬁj I_E‘Ek>

={(u; | R (KBEN{K | u)}
= {Gu; |KH{KBRK |w)}
= [{¢u | KRN {BKK Vu )}

= 1B 1w,
where use has been made of Egs. (B.12a, b), (B.13a), (B.9), (B.6a) and (B.10).
It follows from (B.13a, b) that operator equations involving complex coeffi-
cients will be transformed, under antiunitary transformations, into the same

equations with the coefficients replaced by their complex conjugates. Thus, the
commutation relations,

(4,81 =inl and [/, F]=itd,
are transformed into

G5 =i, and [J, T ]=-it], (B.14)
Examples of Antiunitary Operators

The complex conjugation operator K ., which transforms a ¢c-number® to its com-
plex conjugate, is, obviously, an antiunitary operator since, by definition, it
satisfies the equations (B.1), (B.13b,c) and (B.11). K, also satisfies the
relationship.

3. Theterm, ‘‘¢-numbers”’ refers to ordinary numbers (real or complex) which obey a commuta-
tive algebra. This term was introduced by P.A.M. Dirac [Proceedings of the Royal Society of
London(A) 110, 561 (1926)] 10 distinguish such numbers from the operators of quantum
mechanics (the **g-numbers’”) which obey a non-commutative algebra.



498 QUANTUM MECHANICS

Ki=1, (B.15)
so that, from KK _ = 1 (which follows from (B.11)), we get
Kt=K,. (B.16)

The effect of K, on a vector or on an operator, depends on the representation.
Thus, in the representation defined by the basis {] 1)},
R, lu)=1u,). (B.17)
If | X)is an arbitrary vector, then,
1X) = X L) (s 1 X)

and
K, |1X)= Z | 4) XY (B.18a)

That is, K, | X) is a vector whose components are the complex conjugates of the

components of | X). On the other hand, in a representation in which | X) itself is
a basis vector, we have’,

K, |X)=|X). (B.18b)

Similarly, suppose t and p are, respectively, the operators corresponding to the

position vector and the momentum of a particle. Then, in the co-ordinate repre-

sentation, f is real whereas p is pure imaginary [Eq. (3.18)], so that, we have,
K iK1 =+, _ _
s s . [ co-ordinate representation. (B.19a)

K pKi=-p.

But, in the momentum representation, p is rcal and f is pure imaginary [Eq.
(3.18], so that,

’} momentum representation. (B.19b)

In either representation,
K JKt=-], (B.19¢)
where J is the angular momentum operator.
An arbitrary antilinear operator A could be written as the product of K, and a
linear operator. For,
A=(AR)R =AK,, (B.20)
where A, = (AK ), is a linear operator (being the product of two antilinear opera-
tors). Also,

4. Egs. (B.17) and (B.18b) follow from the fact that a basis vector is represented by a real (column)
matrix [Eq. (2.112)} in a representation defined by a basis of which it is a member.
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A=K (KA)=RB, (B.20b)

with, B,=R A=K (AR )K1=4,. (B.21)
Another example of an antilinear operator, is the time-reversal operator 4,
defined by,
Ted =i, Tpit=-p. (B.22)
The transformation represented by 7, obviously, satisfies Eq. (B.14) and is, hence,
antiunitary. A fuller discussion on 7 will be found in Section 6.2E.



APPENDIX C

FOURIER SERIES AND FOURIER
TRANSFORMS

C.1 FOURIER SERIES

If w(x) is a function which is single-valued, finite, has finite number of disconti-
L

nuities and finite number of maxima and minima' in the interval — 2 Sx < > then
according to Fourier’s Theorem, it can be expanded in a Fourier series:
Y= I a.e™, (C.1)
1 L2 ink
where, a,=— y(x)e "™ dx, (C2)
L ~L2
2r
and k= T (C3)

L
Eq. (C.2) follows from the orthonormality of the functions TZ e™*. Writing,

IO
0, (x)= ﬁ e™ we have,

Ln

L, 1
9,,0,)= sz 0,(x)0,,(x)dx =+ L, %P i(m—-n)kxldx =35, , (C4)
In terms of the 9., Egs. (C.1) and (C.2) reads (cf. Egs. (2.30) and (2.31)):

+oo
yx)= X a’,0,x) (C.1a)
R =0
1. These conditions are called Dirichlet conditions, and a function which satisfies these conditions

may be called piece-wise regular. Whereas the Dirichlet conditions are sufficient to make Eq.
(C.1) valid, they are not all necessary.
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with a’,=VLa,=(0, V). (C.2a)

Thus, the Fourier series expansion could be regarded as the expansion of ihe
‘vector’ y(x) in an infinite-dimensional Hilbert space, in terms of the basis vec-
tors 0, [see Eqs. (2.30) and (2.33)].

L is called the period. Fouricr’s theorem can be, however, applied even in the
case of a function F(x) which is not periodic, but which is known only within the
interval —L/2 € x < L/2 and which satisfies thc above Dirichlet conditions within
this interval. In this case, y(x) given by (C.1) should be understood as a periodic
function which coincides with F(x) in the interval —L/2 <x < L/2 (see Fig. C.1),
but could differ from F(x) outside this interval.

Fig. C.1. A function F(x) [solid curve] and its Fourier series representation y(x) [dotied curve].

Eq. (C.1) is the complex Fourier serics. The real Fourier series can be obtained
by writing "™ = cos (nkx) +i sin (nkx). We get,

b, =
\y(x)=5°+ X (b, cos nkx +c, sin nkx), (C.5)
n=1
2 L2
with b =a,+a,=+ y(x) cos nkx dx, (C.6a)
LJan
2 L
¢, =ila,—a,)=-+ Y(x) sin nkx dx. (C.6b)
LJin

{2®
Changing the variable x to t =kx = (f) x in Eq. (C.5), we get an alternate
expression for the real Fouricr series:
b, =
f(:):7°+ T (b, cos ni+c, sin nil, (C.5)
n=1

with?

2. Theinterval - to +min Egs. (C.6a") and (C.6b") could be shifted to 0 to 2x. Correspondingly
in Eq. (C.2), the interval would be from Oto L.
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1 +n
b, = f f(t) cos nt dt, (C.6a)
1 (= .
C =7 J. J(t) sin nr at, (C.6b%
where, f@)=wyx).
Parseval’s Formula
Consider the function,
+N
X,(xy= X d, exp (inkx) (C7D
n=-N

The choice of the coefficients d, such that the quantity,

LR 5
€~=f [w(x) — X, (x) [ dx, (C.8)
-Lr2

is minimum, makes X, an approximation-in-the-mean to Y(x).
Now,

Ln Ln +N . .
f | w(x)— X, (x) P dx =f |yx) Pdx+L £ {Id,V-a,d —d.a}
-Ln -L2 n=-N

Ln +N +N
=f lyox) Pdx~L £ |a,’+L £ |d,~a,|. o
L2 n=-N n=-N

Thus, € is minimum when d, = a,. In other words, the Fourier coefficients make
every partial sum in (C.1) an approximation in-the-mean to y(x).
From (C.9), we have, with the choice d, =a,,
+Lr2 +N s
f [yx)Padx~L £ la,I=ey (C.10)
L2 n=-N

Taking the limit, N — o= in (C.10), we gct, since Lt X, =y, sothat Lt €,=0,
N 9 N S o0a

l Ln N +o0 ”
[ Civorac- T Jar (€11

This is known as Parseval’s formula. This formula is an expression of the con-
vergence property of the partial sums X, and hence of the Fourier series. Alter-
natively (see Section 2.1, completeness), it expresses the completeness of the
lincar vector space spanned by the basis vectors ¢, (C.11) being the norm of the
vector y (cf. Eq. 2.25)).

The Fourier scrics enables us to represent a fuaction with discontinuities

(tence a function which is not analytic) by a function which is analytic. A;an
example, consider the function (cf. (C.5%),

f(x):—g, forO<x <m,
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=—%, for —m<x <O, (€C12)

which represents a square wave (Fig. C.2).
£(x)
4

o
dr--——"
y
x

SR T

Fig. C.2. The square wave of Eq. (C.12).

Using (C.6a") and (C.6b"), we get,

2h
b,=0,c,=—,
Tin
o that,
2h = sinnx
f(x)——n— ’E‘ Pt odd
2k = sin+1)x
== I 5 (C.13)
In Fig. (C.3), we show the partial sums,
_ 2hN-Usin(2] + 1)x
Klx) = b IEO 2+1 7 €14

for N = 20,40, 60,80 and 100, near the discontinuity atx = 0. We see that whereas
X, progressively approaches f(x) as N increases, it consistently overshoots f(x) in
the vicinity of the discontinuity at x = 0. This is known as Gibb's phenomenon’.

3. See, Arfken, G. Mathematical Methods for Physicists (Academic Press, New York 1970), Il
Edition, section 14.5.
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Fig. C3. Gibb's phenomenon.

C.2 FOURIER TRANSFORMS

When the function y(x) is not periodic (that is, when the period L =), the
Fourier series representation (C.1) of w(x) has to be suitably modified as the
expressions (C.2) and (C.3) become mecaningless when L =e. The required
modification could be done as follows:

Substituting {rom (C.2) in (C.1), we have,

+ea ] L
yix)= Z —f Y(x") exp [ink(x —x"dx’
n=wlJLn

where, we have changed the variable of intcgration to x” from x in (C.2). Again,
using relationship (C.3) for &, we get,

teo ] Ln 2mi
vy = T —f w(x') exp[f’—’i(x —x')]dx’ (C.15)
n:—wL L2 L
1
Letting L — o and writing 7= As, Eq. (C.15) reduces to

+ou +L2
yx)= X Asj y(x") exp (i2nnAs (x —x"))dx’ (C.152)
R=-o0 -Ln
Now,

if f(nAs)AsAs — OJ(Nf(s)ds, (C.16)
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so that,
ni As - exp (i2TnAs(x —x)As — ofm exp (i 2ms (x — x"))ds
(Ca17)
Substituting (C.17) in (C.15a), we get,
y(x)= jm{j::w(x') exp (—i2nmsx"dx"} exp (i2msx)ds (C.18)

= —\/.—;_nf: O(k) exp (+ikx)dk, (C.18a)
where
1 (= .
ok) = \/—27;‘]; y(x) exp (—ikx)dx, (C.18b)
with
k=2ns. (C.3)

Eq. (C.18) is the Fourier Integral representation* of y(x). In addition to the
Dirichlet conditions, the existence of the integral [~ w(x) dx is also required for

the validity of this expression.
&(k) given by Eq. (C.18b) is called the Fourier Transform of yw(x) and could be
symbolically written as,

0(k) = Fyx)} (C.18b")
y(x) could be, then, regarded as the Inverse Fourier transform of ¢(k):
y(x) = 7 {o(k)} (C.182)

Comparing (C.18a) with (C.1), we see that (k) is the amplitude of the harmonic
component of ‘wave number’ k in the resolution of y(x) into harmonic waves.
The real and imaginary parts of Eq. (C.18b):

1 oo
¢c(k)=\/2—njo y,(x) cos kxdx (C.18¢)
| (k) = L (" Wo(x) sin kxdx, (C.18d)
d) 27!? 0

are, respectively, known as the Fourier cosine and the Fourier sine transforms,
Here,

Y (x) = y(x) + y(-x) (C.19a)

1
4. If kis replaced by ok, then the constant ﬁ should be replaced by
T

-
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and

Yolx) = y(x) - y(-x) (C.19b)
As an example, consider the pulse,

yix)=A,x < |a|

=0,x > |al (C.20)
From (C.18b), we get,

o(k) = \/—li_;A f exp (~ikx)dx

= A e eyt

V2
f 2 sinka
Y (x)
A
A
v 0 g » X
(a)

Fig. C.4.(a) The function y(x).

which could be obtained also from (C.18c¢), noting that y(x) is an even function
of x. Both y(x) and d(k) are plotted in Fig. (C.4). We note that &(k) is appreciable
only within an interval of k given by

Ak ~ .;E (C.22a)

whereas y(x) is non-zero within an interval of x given by
Ax=2a

Thus, the product,

Ax - Ak =2n (C.23)
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(k)
A

/N AN
SV L VA

(b)

Fig. C.4.(b) The Fourier transform of y(x).

This is a relationship generally valid for a function and its Fourier transform.
Thus, if y(x) is a Gaussian function:

1 172
W(x)= (ZT?J exp (—-12- (x%a ’)) (C.24a)
then, ¢(k) is also a Gaussian function,
a 12 1
o(k) = (:/_E) exp (—5 azkz), (C.24b)
so that,
Ax ~a, A, ~ 1
a
and
Ax - Ak~1. (C.23a)

The importance of this relationship in quantum mechanics, arises from the pos-
sibility of identifying it with the uncertainty relationship of Heisenberg (sce,
relationship (3.29a)). The expression, \

1 . ~
Y(x,t)= \[——2:]& &(k) exp [i(kx — o)) dk (C.252)
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or, its 3-dimensional counterpart,

1 3
y(r, 0 = (\/TEJ Lk o(k) exp [i(k - r— o)) d’k (C.25b)

where o is the angular frequency, represents a travelling wave packet in config-
uration space, whereas the Fourier transform

o) = \/—12__nfa yix,t) exp [i(kx — w)]dx (C.26a)

or,

3
o(k) = [\j—;‘—n) L"’“’” exp [-i(k-r—wt)ld’r (C.26b)

represents the same wave packet in the wave number space. From the point of
view of particles, if y(r, ¢) is the wave function of a system of particles in con-
figuration space, then, ¢(k) is the corresponding wave function in momentum
space (taking into account the de Broglie relationship p=#k). Relationship
(C.23a), then, is equivalent to

Ax - Ap, ~#h, cyclic (C.23b)

Ax being the ‘spread’ in the x-positions of the particles and Ap, the spread in the
x-components of the momenta of the particles.
The wave packet (C.25a) can also be expressed as

1 j .
X, t)=——= ) exp (i(kx — wt))dw, C.27a
yi(x,1) \EEMX()XP(( N ( )
with
1 J‘ .
W) =—F7= x,1) exp (—i(kx — wt))dt, C.27b
X(w) NN W(x, 1) exp (—i( )i ( )
such that
Aw-Ar~1, (C.28a)
or, using the Planck-Einstein relationship E = #,
AE - At ~ . (C.28b)

The meaning of (C.28a) is that if the wave packel is a super-position of harmonic
waves with a spread in the angular frequencies equal to Aw, then the time Af taken
by the wave packet to pass a fixed point, say x, is of the order of (1/Aw). The
interpretation of (C.28b) as a time-energy uncertainty relationship analogous to
(C.23b) is, however, beset with difficulties (sce section 3.2: The time energy
uncertainty relationship).
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DIRAC DELTA FUNCTION

The Dirac delta function, 8(x), was introduced by P.A.M. Dirac in order to treat
eigenvectors belonging to the continuous eigenvalues of lincar operators (for
example, the momentum eigenfunction u,(r)=C e™") on the same footing as
thosc belcnging to the discrete eigenvalues. In the case of the discrete spectrum,
the orthonormality of the eigenvectors {u,(x)}, is expressed by the relation (we are
restricting ourselves to one dimension, for the sake of simplicity),

f U (O (x)dx =8, , (D.1)
vhere §, , is the Kronecker delia function, defined as
8, =1, for k=1, (D.2)
=0, for k#I. |

When the spectrum is continuous (k is a continuous variable), the normalizativi
of the eigenvectors are expressed by Eq. (D.1) with the Kronecker delta function
replaced by the Dirac delta function:

f u, (0 )u(x)dx = 8(k 1), (D.3)

where, in analogy with (D.2), 8(k —1) is defined as
Sk~D=0, fork #l. (D.4a)
However, being a continuous function of (k —1),8(k —1) cannot be defined as
being equal to unity for k = . The behaviour of 8(k —!) for k = [ could be inferred

from the following consideration. In the case of a discrete spectrum an arbitrary
wave function y(x) is given, in terms of the i,’s, by

yix) = {.’._ﬁuk(x). (D.5"
Using Eq. (D.1), we obtain,

[ Twewea =2, [ womonar

- k

= :‘:fksu =/ Q

The relationship corresponding to (D.5a), when the spectrum is continuous, i
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Yx) = f:f (k) (x)dk, (D.5b)

where, f(k), is a continuous function of k. Multiplying both sides of (D.5b) by
u;(x) and integrating over x, we have, using Eq. (D.3),

f Mu,'(x)w(x)dx = f - flk)S(k - )dk. (D.5¢)
In order to agree with (D.3a), we should have,
f“‘ FURYSK — Dk = f(1). (D.4b)

This equation, in addition to implying Eq. (D.4a), defines 8(k —!) for k = as well.
Therefore, Eq. (D.4b) could be taken as the definition of the Dirac delta function.
Substituting f(k) = ¢ (a constant), in (D.4b), we get,

IMS(k ~Ddk =1. (D.4c)

Thus, 8(x) could be thought of as a function which is zero everywhere except in
the neighbourhood of x = 0 where it is so large that the area enclosed by the curve
&(x) and the x-axis is unity. We see that, viewed as a function of x, the behaviour
of d(x) is rather ‘peculiar’. It is, however, possible to provide a proper mathe-
matical basis to the Dirac delta function within the framework of distribution
theory where it turns out that 8(x) is not a function, but is a functional'. The
definition (D.4b) is sufficient as far as the use of §(x) in quantum mechanics is
concerned. Therefore, we will regard 8(x) as any function of x that satisfies Eq.
(D.4b) or, equivalently, Egs. (D.4a) and (D.4c).

Representation of d(x)

Any function of x that satisfies either Eq. (D.4b) or Egs. (D.4a) and (D.4c), pro-
vides a representation of 8(x). Thus, comparing the Fouricr integral formula
(Eq. (C.18)),

__1_ M e —ik(x'-x) 4 ¢
y(x) = 21t£,. ‘L‘ y(xNe dx'dk,
with (cf. Eq. (D.4b)),
yix) =f W)’ —x)dx’,
we have,
’ 1 L ~ik(x" - x)
3x -x)=§; Lt,_,,_J;Le dk (D.62)

sinL{x"—x)

=L, (x’ —x)

1. See, Messiah, A, Quantum Mechanics, (North-Holland, Amsterdam 1961), Vol. 1. Appendix A.
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That 1s,
sinLx .
d(x)= Lt L "“‘_Ex——' (D.6b)
Some of the other useful representations are:
1 1-cos Lx
B(x) :-7—t Lt, —“’T (D.6¢)
1 €
=-L —_— D.6d
Tt t e—)0x2+ € 2 ( )
O +1n)-Ox
= Lt M—(——%—(—) (D.6c)
In (D.6¢), O©(x) is the Heavyside step function, defined by,
1, forx >0
Blx) = 0, forx <0. (D7)

Properties of d(x)

The following properties of &(x) could be established using the defining equations
(D.4a), (D.4b) or (D.4c):

8(x) = 8(-x) (D.8)
x8(x)=0. (D.9)
1
dlax) = mﬁ(x) (D.10)
d(x*—ah :i—[a(x —a)+d(x +a)) (DD
J(x)(x —a)=f(a)d(x —a) (D.12)
J‘ S8(x —y)o(y —a)dy =8(x —a) (D.13)
d d

Ex-{ﬁ(x)} =% {8(=x)}. (D.14)
—d—s =-& (D.15)

x (x) =—8(x) (D.

These cqualitics merely imply that both srdcs yield the same rcsult when malti-
plied by a function f(x) and integrated over x.



APPENDIX E

SPECIAL FUNCTIONS

In this Appendix, we will present the definition and propertics of the polynomial
solutions of certain second order, linear, homogeneous, differential equations of
the type,
y7+Px)y +Q)y =0, (E.D)
where the prime denotes differentiation with respect to x, and, P and Q are func-
tions of x. According to Fuch’s theorem, if x, is either an ordinary point, or a
non-essential singularity' of the equation (E.1), then the equation has a solution
in the form of an infinite series around x;:
_ < k+A 5
y=Z agx~x) ", (E.2)
A=0
where k is a constant. a, and k can be determined by substituting (E.2) in Eq. (E.1)
and then equating the coefficients of every power of x to zero. For details, the

reader is referred to the book by G. Arfken®. We give below only a summary of
the properties.

E.1 HERMITE POLYNOMIALS

These arc solutions of the equation,
¥’ =2y’ +2ny =0, (E.3)

(where n is a positive integer) and are given by

n!

()
B =H 0= 2 o

) * (E4))

1. x,is an ordinary point of the equation (E.1) if P(xy) and ((x,) are finite, whereas it is a singu-
larity if P(x;) and Q(x,) are infinite. z(, is a non-essential singularity if (x —x)P(x) and
(x — x,)*Q (x,) are finite. Thus, for the equation

’”

Y-

o
+——y =0,
1 T
the point x = 0 is an ordinary point, while x = 1 is a nonessential singularity.
2. Arfken, G. Mathematical Methods for Physicists, 11 Edition (Academic Press, New York, 1970)
Chapters, 8,11, 12 and 13.
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= (1yre” :x, ) (E4Y
n! -1 2 2 3
=—27u7 z exp (x“—(z —x))dz. (E4)

In Eq. (E.4%), the contour of integration is a circle with the centre as the origin and

n n-1
zis a complex number. In (E4"), (s)= 5 for n even and (s) = 2 for n odd.

Generating Function

exp [XZ, (z —x)z] = %o H (x) (i—;) (E.5)

Recurrence Relations
H’, =2nll,_,. (E.5a)

1
xH ==H,  +nH, .. (E.6b)

n+

1 1 ,
X, = H, o+ {n +§)Hn +n(n—-VH, , (E.6c)

Symmetry

H (—x)=(-1)"II(x). (E.7)
The first few Hermite polynomials are given in Table E.1.

Table E. 1. Hermite Polynomials

n H (x)

0 1

1 2x

2 ax*-2

3 8’ —12x

4 16x*—48x%+12

5 32x° - 160x% + 120x

Hermite Orthonormal Functions

The Hermite orthonormal function, ¢,(x), is given by
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1 i .
0,(x) =————¢*"H,(x). (E.$)
Wr2'ny)"
9, satisfies the differential equation,
o +(1+2n-x%0,=0, (E.9)
and the orthonormal relationship,
[T 60w = (04,0, =5, E10)

This relationship could be proved using (E.8) and (E.5). From (E.6a-c) and the
definition (E.8) we have the recurrence relations,

x¢n(x)=\/ %(b,,-ﬁ "—}143“,, (E.11a)

x2¢n(x)=%[\/n(n “Do, ,+2n+ 1o, + N+ 1) (n+2)0, ,,],

(E.11b:

, +1
0,0 = 50u1=\ 5 (Ellc.

07 (x)=[x*-(1+2n)]0,
=%Vn(n +1)0,_,—~Qn+ 1), +Nn+1(n +2)¢,.4.

(E.11d)
From Egs. (E.10) and (E.11 a-d), it follows that,

(@ X0,) =\%le5 8pn VR +18,, ], (E.12a)

(0,.x,) :%[\/n(n 18, +@n+ 18, +Nn+ 1) (n+2)3,,,,].

(E.12b)

(¢m’ q)'n) = V %[\jzsm,n-l -\Nn+ 1 8m,n+l]’ (E'lzc)

Ow0") =3 NG = 18,,,_,= Q@+ 18, NG ¥ D@+ D3,

(E.124d)
In Fig. E.1, we have plotted ¢,{x) against x, for n =010 5. The ¢,(x) are,

actually, the normalized wave-functions of the lincar harmonic oscillator (See,
Section 4.2A).
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Fig. E.1. The Hermite orthonormal functions [Eq. (E.8)],
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E.2 LAGUERRE POLYNOMIALS

The Laguerre polynomial L,(x) of degree n, is given by’

L,(x>=§0<—1>'(r—!)%;x'
= (—1)”[ x"—%;x"'j+n2(n2!_—l)‘2x"'2...:! (E.13")
=¢* Z" (x"e™) (F.13%)
:%f{#m (£.13)

In Eq. (£.13%), the contour of integration includes the origin, but excludes the
point z =1,

Generating Function
g, 2)=(1—2) {0 = £ L (x)(@"n)) (E.14)
n=0

Recurrence Relations
One recursion relation is given by the differential equation satisfied by L,(x):

Ry YLy ) (E.152)
X X

n

The other can be derived from (E.14):
(1+2n-x)L,-n’L, ,-L,, =0. (E.15b)
The Laguerre polynomials for the lowest few values of n are given in Table
E.2.

Table E.2 Laguerre Polynomials

n L,(x)
0 1

1 -x+1

2 X —4x+2

3 2 +9x~18x +6

i x - 162+ 72> - 96x + 24

~x” +25x* - 200x? + 600x* — 600x + 120
L,(0)=n!

Some definitions <f L_{x) differ from the one adopted here by a factor of 1/a!.
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Associated Lague;'re Polynomials
The Associated Laguerre polynomial LX(x) of degree (n — k), is defined by*
dk
L(x)=—5 L0, n 2k, (E.16)
and is a solution of the equation, .
,,+1+k—x , n—k

+ = E.17
xyxyO, (E.17)

where n and k are both positive integers. The generating function for L} is given
by

() (1= 2y Vg == = EL:(x)-’z;;, (E.18)
n=k H

from which the series expression for LX(x) follows:

by SE (n)® ,
Lx=Zz 1 k- tk+riri: (E.19)
From definitions (E.16) and (E.19), we have,
Lix)=L,(x), (E.192)
and Lix)=(=1)yn!. (E.19b)

Some of the associated Laguerre polynomials are listed in Table E.3.

Table E3 Associated Laguerre Polynomials

n k L,(x)
0 0 1
1 0 -x+1
1 -1
2 0 X —4x+2
1 2% -4
2 2
3 0 -x*+9x* - 18x +6
1 -3x*+18x—18
2 ~6x +18
3 -6
4 3 24x -96
4 24
5 4 -120x + 600
5 -120
d!c

4. The definition, LX(x) =;"k {L,.(x)}, is also used. In this case, L is a polynomial of degrec n.
x
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{he Associated Laguerve Function

his is defined by

£, ()= e " 2Lk, (E.20)
aodd satistics the differential equation,
1 2
_ k-1 x k —1}
L 2L i ——— =1L, , =0. E.21
X n,k n,k in’ 2 4 4X nk ( )

Using the generating function (E.18) for LX(x) and the definition (E.20), it is

possible to show:

SR
am=kR.M ! m
= (k+p-~-1+D
= [(1-z)A=-z)P . JT——l(zlzgh*', (E.22Y
where -
19) (k) = J P L, (X)L, (X)X, p 20, (E.23)
0
t'or p 2 1, using the binomial C’(pansion
(p -

(-2 =Ty

Eq. (E.22") can be writien as,

(p-1-rirt’

E _152_ (p)(k)

o kn'm,

Ip-i o ‘5 — 1112 ~ T4+
_:pz pz Z(_l)r-q-: {(P ‘)} (k+P ]+[) xzrvlolz.wk*l

rpEe0I-0 (p-1-rip-1=-s)ristt™ ! 2
2
(E.229
Prom tius, we doduce,
i nlip -1 1” (p~1—r+n)
g ndp DU AT p oy ‘) ip>1. (E.24)
al{pt=r)rth (a—k-r)
s bnt oxpressions for some of the 1“” are given below:
T (ix"J _
SURTRES -5, (E.25a)
\ t - f\,)
, {n!)
RS s Bn—k+1y, forrm=n (E.25b)
nd o Uy (
t \}'E "ﬁ. p ok PR
e REICES b "t 2

Mmoot B s
M =
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t 3
~£f%; [6n(n —k+ 1)+ k" =3%+2.m=n, (B.254)
k)

k)=

P [ 2n k) 2n—k
_ (1)’ )?(n kY (2n k)f’,,,,,.»l

{n-—-)iL f

+2n+ 1Y (2 -k +2) 8

mn+l

i

a2 2 e L MER. (F.25¢)
e NS R D T3 L S

£.3 LEGENDRE POLYNOMIALS

The Legendre polynomial P(x) of degree | (1 =0,1,2,... +e9), I§ dehined, for
1<x <1, by

. L 2 - 2k) ]
Pinys 1 (21— 24) o (E.262)
i=

o Ui~ k) - 2k)Y

T -1 )', (E.26b;

—dz. (E.26¢)

{
In (E.264a), $ ~§ for even {,

{-1
and § = R for odd {.

Also, in (E.26¢), the contour of integration encloses the poni z = »
is called the Schlaefli integrad.

Pi(x)is a polynorais! soluton of the Legendre’s dilfoenial soue

where [=0,1,2,.. . 4=
inite and analydc in the mnerval

P,(x) 1s the only solutios of (E.27) thai is

~1<x <.
Generating Function

i

o
P oy N I .
£4%,4 )= (V758 + ¢ H = ,!7',»4\',;‘;» . ‘,3., z <1 i
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Recurrence Relations

Q@+ 1)xPx) = + V)P, (x)+1P,_,(x), (E.29a)
P’ (x)+P’,_(x)=2xP"(x)+P(x), (E.29b)
P a0 =P (x)= (2L +1)P(x), (E.29¢)

(1-x3P"(x) = 1P, (x)—1P(x) (E.29d)

=(+1)xPx)-(I+1)P,, (x) (E.2%)
Symmetry
P(—x)=(-1)'P/(x) (E30)

Orthogonality

+1 , 2
L PP/ (x)dx =5~—= 8. (E3D)

1

Expansion of Other Functions in Terms of P,(x)

Since the P(x) for I =0 to = form a complete, orthogonal set of functions, it is

possible to expand any function f(x) that is continuous and analytic in the interval
~1<x <1, in terms of the Legendre polynomials:

f)= éo a,P(x), (E32)
where, in view of Eq. (E.31),
2, 1 +1
o= [ s (E.33)

The first few Legendre polynomials are listed in Table E.4.

Associated Legendre Functions

The Associated Legendre function P*(x) is defined by

Prx)y=(-x3" '”—d—mP,(x), (E.34)
dx

(where? I <m <[ and, -1 <x < 1) and satisfies the differential equation,

m
d"p,

3. Negative value of m is permitted in

Px).

o in view of the Rodrigucs formula (Eq. (E.26b)) for
dx
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Table E.4. Legendre Polynomials

{ Px)
0 1
1 X
2
%(3;;’— 1)
3
%(5x3—3x)
4

%(35# -30x%+3)

1
5(63x’ —70x” + 15x)

~nn

P0)= W'

for ! even

=0, for/ odd.

(1—xz)(P"')”—Zx(P"‘)’+{1(l+1)—— m’ }P"‘—O
H 1 l—x I TV

2

Generating Function

2m—-DUA—xY"H" =
g(x,t)-=-( Z—Z)xtitz;'}'mt =,§mt Pl (x).
Properties
wld=m)!
ORI S e LA

PP(=x)=(-1)"""P(x)
Plx) =@ - -xy"
PJx)=Px),

Pl(*1)=0, form >0,

2 (I+m)
A+ (=i Orom

@+ 1DxPl = +1-m)P] + (Il +m)P}" ..

[ preprow -

(-xy P"'—-ﬂ:—l[P,”l;l—P,"f;l],

521

(E.35)

(E.36)

(E.37)

(E.38)

(E.3%a)
(E.39b)

(E.39)

(EA40)

(E41a)

(E41b)
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1
<:Erum(l+nﬂ(l+n1—l)P ' -m+ D) =m+2P" . (Edl)

Addition Theorem for Legendre Polynomials
(1* n)!
)!
~cos {m(0, - ¢, (E42)
where, the relationships between the various angles involved are indicated in Fig.

5.3.
Some of the Associated Legendre functions are listed in Tabic B.5,

Pcos ©) =1L, (cos 6,)P (cos 97)+2 Z pl(cos 0)P"(cos 9,)

Table E.5. Associated Legendre Functions

/ m Pr(x)
1 1 (1-xH"
2 1 3x(l-xH"?
2 3(1-x%)
3 | (32) (52~ (1 -x)H"
2 15x(t —x%)
3 15(1 - x5

2.4 BESSEL FUNCTIONS

A Bessel function of the first kind of (integral or non-integral) order v, is defined,
{or any finite value of x, by

~ - ———~( ]), XYHZV . ’
1x) = Eo s'l“(\ﬁJrv + 1)( ’ (E432)
:E}c;[gjf exp (z —x%dz)z ™ \dz, (E.43b)

] T
:;;J cos(vl —x sin 0)d0, (v integer ) (E.43c¢)
0
In (E.43a), I'(A) 1s the Ganuna function given by,
I'(A) ~f gy (E.44u;

When A 1s a positive integer,
T(A) = (- 1)! (E.441,
Tre contour of integration in (E.43b) 1s shown in Fig. E.2,
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—co M/'@"’"' ™ ‘
A 1 RELL AN
o) /
~ R

Fig. E.2. Contour of integration for the Bessel function [Eq. (E.435)).

For v =n, where n is a positive inleger,
J () = (1), (x). (F.45)

In this case, J,(x) is also called the Bessel’s coefficient. When v is not an smiteger

J,(x) and J_,(x) are lincarly independent. J,(x) is a solution of the Bessel’s cque-

tion:
Xy xy (- vhy = 0. (4.40)
Generating Function
gle,)=exp(x/2)(t -1l = I J ()", (n, integer). {247,
Recurrence Relations
T @)+ () = 2alx)d (). (1:.480)
T )=J  (x)=21 (%) {F.48b)
d n . 10 A8
d_)glxnjn(x)] =x"J, (x) (11, 48¢?
d - [ N Y
— X () =~x "I, (X (1434

dx
Values for Large and Small Values of x

2
J(x) ~ «/w‘ s (x — 4 - Vi), SaD)
V(X)x ~ cos (x viv2) ( )

v

—~ \x S
502 T(v+1)

J(x) (F.49b)
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J (x) is, thus, oscillatory with a decreasing amplitude for large values of x.

Orthogonality

fa °J{%§)J{% ﬁ-)x dx =8, (@)U, (o) (E.50)

where, o, and o, are roots of the equation,

J (o) =0. (E.51)
That is, o, is the mth zero of J (o), where v >—1. Eq. (E.50) gives the orthogo-
nality of J, (for fixed v) over the interval 0 < x < a. If we further assume that the
set {J(a,x/a)}, form=1,2,3,... (but fixed v), forms a complete set, then any

arbitrary (but well-behaved, in the sense of Section C.1) function f(x) can be
expanded in terms of the Bessel functions:

fx)= chv(am 2) 0<x<a;v>-1. (E.52)
m=1
where, in view of (E.50),
2 J‘“ x
Cpy = X = | dx. E.53
™ G, (e T ”“("”“aj‘ ®9
Eq. (E.52) is known as the Bessel-Fourier Series.
Wronskian
I ___2sin VI (E.542)
v" -y V]—v - X .
26
Also I+ J, = i;‘:x—vf (E.54b)

Neumann Functions

When v is not an integer, J, (x) and J_ (x) represent the two independent solutions
of the Bessel’s equation, However, when v is an integer, J_, is proportional to J,

[(Eq. (E.45)]. In this case, the second solution of Eq. (E.46) could be chosen to
be

cos vitJ (x)—J_ (x)

N,(x)= pemapyn , (v integer)
cos pmJ, -J
S il .”(x) (%) (E.55)
poVv sSmpmn

“his is called the Neumann function of order v (also referred to as the Bessel
nction of the second kind).
N ,(x) is infinite at x = 0. In fact,
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2
Nyx) ~ = logx, (E.56a)

x0T

EENTON
and N) ~ ~(—V—’—)'(‘—2),v>o. (E.560)
x -0 T X
[ 2

Also, N(x) ~ p— sin (x — W4 —viv/2). (E.56¢)

Thus, for large values of x, N,(x) oscillates with a decreasing amplitude, just like
J(x) [Eq. (E.49a)].

Hankel Functions (Bessel Functions of the Third Kind)

Hankel functions are particular lincar combinations of the Besscl and the Neu-
mann functions. Thus, the Hankel functions of the first and the second kind of
order v are defined by

HO(x) = J (x)+iN(x), (E.57a)

HP(x) =T (x)—iN (x). (E.57b)

since J,(x) and N,(x) are real, H” and H®® are complex.

Integral Representation

1 saexp (i 1)
HSI)(X) — _n_lf e(xfl)(1~1/1)l-v—1dt, (E.SSB)
[4]
1 0y
H®x) = - )e("'z)("l")t at, (E.58b)
ooexp (i

where the contours of integration are shown in Fig, E.3.

&
—-—

Fig. E.3. Contour of integration for the Hankel functions [Eq. (E.58a, b)].
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Symmetry

1) =™ H(x). (E.592)

HPx) = e 1) (E.59b)

Modified Bessel Functions

These are solutions of the equation,
By (x) +xy () + (P + vy (x) = 0. (E46")
The substitution, x = —iz, reduccs this cquation to the Bessel equation (E.46) in the
independent variable z. Hence the solutions of (E.46") are J (ix) and N {ix). The
solutions arc customarily defined as
1,0x) = i) (ix)

= ef'AMJV(x ei"’z) (E60d)
oo 1 X vt 25
- Eom(gj , (E.60b)
and
T v+l . . N
KV(X) =§l [Jv(Lx)+le(Lx)l
I -1
=(12) _KU_@C_)_ (E.61)
sin vrr

1(x) and K (x) arc, respectively, the Modified Bessel Functions of the First and
the Second Kind. The latter is also called the Basset Function.
Unlike the Bessel and the Neumann Functions, the functions 7,(x) and K (x) arc

not oscillatory, but are exponential for large valucs of x:

1
1(x) - \/ﬁx.e", (E.62a)

Kow) ~ \/—%e*‘. (E.62b)

Ifx) ~ 1, (E.63a)
x-20

Also,

Kifx) ~ = In(x/2). (E.63b)
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Spherical Bessel Functions

In the cquation,

d’R 2dR { ) 1(1+1)}
T ké———-= = B
dr2+’ e + 2 R =0, (E.64)
where [ =0,1,2,... + o, if we make the substitution,
p=kr;y(p)= \/pR(r), (E.65)

we gel
2,7 , 2 12
Py +py+p—l+§ y=0,

1
which is Eq. (E.46) withv=1+ 5 Hence, the two independent solutions of Eq.

1 :
(E.64) are proportional to (1A/pM,, ,,(p) and A J1 1a(p). These are usually

defined as

oA _, 1“’{_(~1)’(s+1)! } 2
Jip) 2pj"”(p) (2p) ,Eo s12s +20+1)! P (E.662)

T . T
n,,<p)=\/2—pzv,+m(p)=(—1)’ ! 551_,-”(;))

1 E{(zz —zs)'.} s

2 ptt ol s =)

(E.66a) and (E.66b) are, respectively called the spherical Bessel and the spherical
Neumann Functions. In analogy with Eqs. (E.57a, b), the spherical Hankel
Functions of the first and the second kind are defined by,

(E.66b)

() = j(p) +in(p) = —ih{(p), (E.672)
h3(p) = ji(p) —in(p) = +ih(p). (E.67b)
From Egs, (E.66a, b), we have,
Jop) = S“; P (E.682)
np) = ———00; p, (E.68b)
. eiip
hi(p) = > (E.68¢)
Also,
pl

j,(p)p: RETFENIE (E.692)
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np) ~ = -1)p" N
p—o0
. 1. In
j’(p),,:..'ﬁsm ( —7}
1 In
nz(P)p:“—BCOS (P"j)’
h(*)(p) —‘(P n2)

Recurrence Relations (I =2 1)

f@+ oy =22

1)

lf}—l(p) -+ l)f;u(p) =2+ l)f'z(p),

_‘f__ -1 o0+l
dp[p SN =p"1i_p),

d g
d—p[p HON =—p"f..(P),

where £,(p) stands for j,, n,, A%, A or h®.

Rayleigh and Other Formulae

O (~1)’p’[ )(
S
hl(t) = "‘1 ( )(e )
(P =(1)p i)\ 5

Jpn'(p)— j (p)n(p) = B‘i

)

)

Orthogonality

[T iz =3, (2, - J
This can be deduced from Eq. (E.50).
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(E.69b)

(E.70a)

(E.70b)

(E.70c)

(E.712)
(E71b)

(E.71¢)

(E.71d)

(E.72a)

(E.72b)

(E.72¢)

(E.73)

(E.74)
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Addition Theorem

sin Kr
Kr ’

Eo(zz +1) {,(kr)}?P,(cos 6) =
1=

where
K =2k sin (6/2).

= flf_‘*l ,r._| "D 2 i £ (214 1) WO IP o5 9),
- 1=0

9 being the angle between r and r',

529

(E.75)

(E.76)
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Active point of view, 184
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theorem, 308
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of a matrix, 476
of an operator, 38
Airy functions, 244
Allowed states, 424
Angular momentum,
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quantum number, 300
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Annihilation operator, 110, 400
Anticommutator, 128
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Antisymmetric,
maix, 480
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Associated Laguerre,

INDEX

functions, 114, 518
polynomials, 115, 517

Associated Legendre functions, 132 520

Augmented matrix, 483
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Basis, 24
orthonormal 25, 57
Basset function, 526
Bauer’s formula, 204
Bell's inequalities, 469, 470
theorem, 469
Bessel’s coefficient, 523
Bessel Fourier series, 524
Bessel functions, 522
of the first kind, 522
of the second kind, 524
of the third kind, 525
spherical, 527
Bessel's
coefficient, 523
equation, 523
Bilinear,
covariants, 369, 370
form, 370
Bohr,
frequency, 287, 293
magneton, 347
radius, 115
Bohr-Peierls-Placzek formula, 207

Bohr-Sommerfeld quantization rule, 249

Boltzmann statistics, 324

Bom Approximation, 224, 232, 267, 290

Bose-Einsioin statistics, 324
Bosons, 324, 399
Bounded operator, 37, 46
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Bound states, 214, 247, 256
Bra,

space, 51

vector, 51, 481
Breit-Wigner formula, 223

Canonical,

operators, 71

quantization, 391

variables, 70
Cardinal number, 19
Cauchy sequence,

of numbers, 26, 27

of vectors, 26, 27
Cayleigh-Hamilton theorem, 487
Centre-of -mass coordinates, 111
Centrifugal force, 209
Change of basis, 56
Characteristic,

equation, 484

function, 484

matrix, 484

time, 317
Charge,

conjugation, 384

operator, 384, 386, 388

density, 335, 378

parity, 384

space, 380

states, 385, 387
Chirality, 188
Classical,

field equation, 392

mechanics, 9, 10, 390

path, 10

region, 242, 246

statistics, 324

turning point, 209, 242, 302

wave equation, 2, 382
Clebsch-Gordon,

coefficients, 138, 139

series, 168
c-number, 497
Coefficient matrix, 482
Cofactor, 477
Column matrix, 480
Commutator bracket, 93, 95
Commuting operators, 45
Compatible variables, 65
Complementary variables, 65
Completeness (of a linear vector space), 25
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Complementary
modes of description, 451
phenomena, 452
Complete set,
of Hermitian operators, 45
of projection operators, 44
of vector, 25
Compton,
effect, 3
wave length, 352, 357
Conjugate field, 396
Connection formulae, 242, 246
Conservation laws, 181
Constant matrix, 474
Constants of motion, 181, 182
Continuous,
matrix, 491
operator, 37
symmetries, 184
Continuum states, 289
Contraction, 432
Copenhagen interpretation, 3, 4, 6, 445,
448
Corpuscles, 1
Coulomb,
excitation, 300
gauge, 383
potential, 235
scattering, 236
Coupled representation, 139
Coupling constants, 425
Covanant,
anticommutation relations, 416
commutation relations, 421
delta function, 410
Dirac equation, 338
Creation operator, 110, 400
Cross-section,
differential, 198
total, 198
Current density, 92, 334, 345, 406

d’ Alembertian, 334

de Broglie wave length, 2, 197, 241

Degeneracy, 35, 117, 277, 283
degree of, 35,117
Kramer’s, 193

Dense set, 28

Density matrix, 84

Density of states, 289

Determinant of a matrix, 476
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Deuteron, 190, 328
infferential,

onization probability, 294

operator, 18

projection operator, 44

scattering cross-section, 198
Dipole,

approximation, 298

moment, 190, 195, 274

operator, 298

transitions, 297, 298
Dirac,

adjoint, 345

8-function, 30, 509

equation, 337, 338

tield, 412

Hamiltonian, 337

matrices, 338

spin vector, 341
Direct sum, 31,474
Dirchlet conditions, 500
Discrete symmetries, 184
Displacement,

in space, 184

in time, 187
Divergence theorem, 292
Dual space, 51
Dynamical,

postulate, 87, 88

symmetries, 182

variables, 64, 391
Dyson chronological,

operator, 287

product, 431

Effective range, 214, 219
Ehrenfest’s theorem, 94
Eigenvalue,

equation, 35, 484

of a Hermitian operator, 38

of a matrix, 484

of a positive-definite operator, 36

of a unitary operator, 40

spectrum, 35, 399
Eigenvector,

of angular momentum, 122

of a Hermitian operator, 38

of a matrix, 484

of a unitary operator, 40
Eikonal e aition, 256
Electric,

dipole moment, 298

multipole moment operator. 300
Electromagnetic,

coupling, 435

field strength tensor, 383
Electron self-energy diagram, 442
Emission, 294

induced, 294

spontaneous, 294, 299

stimulated, 294
Ensembile, 3, 10, 65

interpretation, 3, 445, 454
EPR paradox, 445, 459

experiment, 446

explanations of, 459
Equation,

of continuity, 92, 344

of motion, 87
Euclidean splace, 20, 28
Euler angles, 164
Euler-Lagrange equations, 391
Evolution operator, 89, 284
Exchange operator, 322
Exclusion principle, 324
Expectation values, 66, 56
Extended matrix, 483

Fermat’s principle of least time, 256
Fermi-Dirac statistics, 324
Fermions, 324, 400
Feshbach-Villars representaion, 381
Feynman,

diagrams, 285, 425

postulates, 10

propagator, 432
Field quantization, 107, 390
Fine structure, 363

constant, 363
Foldy-Wouthuysen,

representation, 356

transformation, 352
Four-current density, 334
Fourier,

integral, 505

series, 500

transforms, 61, 504
Fourier’s thecrem, 500
Fuch’s theorem, 512
Functional, 510

derivatives, 393
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Gamma function, 522 matrix, 479
Gauge transformation, 383 operator, 38
Gaussian, 81 Hidden variables, 464
Generalized, theories, 463, 465, 469
coordinates, 95, 390 first kind, 464
normal product, 434 second kind, 464
velocities, 391 zeroth kind, 468
Generating function, Hilbert space, 9, 18, 28, 3
for associated Laguerre polynomials, formalism, 63
517 Hole theory, 335, 371

for associated Legendre functions, 521 Hydrogen atom, 111, 278, 358
for Bessel functions, 523

for Hermite polynomials, 513 Idempotent operator, 42

for Laguerre polynomials, 516 Identical particles, 319

for Legendre polynomials, 519 Imaginary matrix, 480
Generator, Impact parameter, 201

of rotation, 163 Incoherence, 297

of translation, 186 Induced emission, 294, 297

of unitary transformation, 40 Infinitesimal rotations, 161
Geometrical symmetries, 181 Inner product, 16
Gibb’s phenomenon, 504 Instantaneous Hamiltonian, 309
Gleason’s work, 468 Integral equation for scattering, 230
Golden rule {of time-dependent perturba- Interaction picture, 97, 435

tion theory). 290 Interference, 2, 329
Green’s functions, 224, 230 Internal line, 432
Gupta-Bleuler formalism, 422 Interpretation,

Copenhagen, 3, 445, 448

Hamiltonian, 70, 91 Ensemble, 3, 445, 454

density, 395 Individual system, 448

function, 391 Invariart delta function, 408

of linear harmonic oscillator, 70, 98 Intrinsic,

of a particle, 10, 13 angular momentum, 128, 180, 190, 342
Hamilton-Jacobi equation, 13, 87,91 parity, 190, 369

238 Inverse,
Hamilton’s principle, 2, 9, 10 of a matrix, 475
Hankel functions, 525 of an operator, 34
Hard-sphere phase shift, 221 Involution, 41, 322
Heavyside step function, 409, 511 Ionization frequency, 294
Heisenberg, Irreducible,

commutation rules, 71 representation, 339

equation of motion, 96 tensors, 174

picture of time development, 94, 103 Iso-spin, 319

uncertainty relationship, 77 space, 380
Helicity, 375

operator, 375 Jj-coupling, 307
Helium atom, 260, 325 Jordan’s lemma, 227
Hermite,

orthonormal functions, 5, 3, 515 Ket,

polynomials, 512 space, 51
Hermitiar, vector, 51, 480

form, 490 Klein-Gordon equation, 332, 334
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Hamiltonian form, 380 hermitian, 479
Klein-Gordon field, 405 imaginary, 480
Kramer's degeneracy, 193 infinite, 491
Kronecker, normal, 480

§-function, 15 null, 473

product, 474 orthogonal, 479

real, 480
Laboratory system, 199 symmetric, 480
Lagrangeon density, 392 unit, 473

of Dirac field, 412 unitary, 479

of electromagnetic field, 419 Matrix equation, 475

of Klein-Gordon field, 405 Matrix representation,

of Schrodinger field, 398 of angular momentum, 126
Lagrangeon, of operators, 54

field theory, 390 of vectors, 54

function, 390 Maximal measurement, 65
Laguerre polynomials, 516 Maxwell’s equations, 382
Lamb shift, 363, 373 Mean life, 82
Landé factor, 281 Metastable state, 223
Laplace development, 477 Method of iteration, 230
Legendre polynomials, 132, 519 Metric operator, 422
Limit, Minimum uncertainty product, 79

point, 26 Minkowski space, 64

vector, 27 Minor (of a matrix), 477
Linear, Mixed state, 69, 84

Harmonic oscillator, 98, 250, 272

manifold, 30 Natural system of units, 403

operator, 31 Negative,

vector space, 18, 19 energy, 334, 343
Linearly independent vectors, 22 frequncy part, 411

Locality postulate, 447 Newtonian mechanics, 1

Local realism, 447 Neumann,

Logarithmic derivative, 220 functions, 524
Lorentz, series, 232

condition, 295, 383, 424 Neutrino, 374

covariance, 364 electronic, 376

gauge, 383 left-handed, 375
Lorentz transformation, 364 muonic, 376

improper, 366, 368 right-handed, 375

infinitesimal 367 tavonic, 376

proper, 366 Nodes, 101, 249
LS-coupling, 307 Non-singular,

matrix, 475
Macrostate, 464 operator, 34, 39
Microstate, 464 Norm,
Magnetic, of an operator, 37

moment, 347 of a vector, 21

quantum number, 116 Normal
Mass -energy equivalence, 335 matrix, 480
Matrix, products, 430

antisymmetric, 480 Nucleon 319, 328
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Null,
function, 17
matrix, 472
operator, 33
veactor, 19
Number operator, 110, 401

Occupation-number representation, 109,
400
Operator,
annthilation, 110, 400
antihinear, 31, 494
bounded, 37
Charge conjugation, 384, 386, 388
complex conjugation, 192, 497
continuous, 37
creation, 110, 400
even, 190, 348
evolution, 89
hermitian, 38
linear, 31
number, 110, 400
odd, 189, 348
positive-definite, 36
projection, 40
rotation, 160, 164, 188
scalar, 163
statistical, 84, 465
unitary, 39
vector, 163
Optical theorem, 207
Orbital,
angular momentum, 70, 122, 129
quantum number, 116
Orthogonal,
matrix, 479
spaces, 30
vector, 22
Orthogonality,
of Clebsch-Gordon coefficients, 146
of 9j-symbols, 158
of Racah coefficients, 153
Orthonormal,
basis, 25, 56
functons, 29
vectors, 22
Oscillator quantum number, 101
Outer product, 474

Pair,
annthilation, 335, 373
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creation, 335, 373
Parity,

of an operator, 190

of spherical harmonics, 134

of a state vector, 190
Paradox, 45, 447
Parity operation, 117
Parseval’s formula, 502
Partial wave, 202, 204

analysis, 202
Passtve point of view, 184
Path-integral formalism, 63
Pauli,

equation, 347

exclusion principle, 324

spin matrices, 127
Penetration of a potential barrier, 243,

250
Perturbation,

constant, 287

harmonic, 293
Perturbation parameter, 268
Perturbing potential, 268
Phase-integral method, 237
Phase,

shift, 206

velocity, 2
Photoelectric effect, 3
Photon, 3, 382, 383

scalar, 420

time-like, 420

self-energy, 443
Physical,

charge, 373

electron, 442

observable, 64

reality, 46
Pions, 190
Planck’s constant, 2, 8
Plane wave, 200

vectorial, 419
Poisson bracket, 1, 7, 4, 95, 391
Polarization,

longitudinal, 420

transverse, 420

vector, 420
Positive-definite,

number, 21

operator, 36
Probability density, 92, 334, 344
Positive frequency part, 411
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Positron, 373
Fost-factor, 20
Potential barrier, 223
Poynting vector, 296
Prefactor, 20
Principle,
of complementarity, 7, 448, 449
of detailed balance, 297
of indeterminacy, 76
of indistinguishability, 320
of least action, 2, 10, 393
of microcausality, 411
ol superposition, 2-3, 8, 11, 64
Probability,
amplitude, 10-12, 67
current density, 2, 292, 345
density, 14, 92, 292, 345
Projection, 31
operator, 40, 322
Propagator, 231
Ps2udo,
scalar, 371
vector, 371
Pure state, 68, 84, 129

g-numbers, 497
Quadratic form, 480
(Quantum number,
angular momentum, 300
magnetic, 116
orbital, 116
radial, 117, 363
total, 116, 363
Quantum theory of radiation, 299

Racah coefficients, 148
Radial
equation, 114
quantum number, 117, 363
wave functions, 115, 116
Radiation gauge, 383
Radiative transitions, 295
Radioactive decay, 82
Ramsauer-Townsend effect, 214
Random fluctuations, 13
Rank of a matrix, 478
Rayleigh-Ritz variational formula, 256
Rayleigh-Schrodinger perturbation theory
267
Recursion relations,
for Clebsch-Gordon coefficients, 147
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for Racah coefficients, 154
Reduced,

mass, 111, 199, 260

matrix element, 177
Reducible tensor, 174
Reduction of the wave function, 456
Reflection symmetry, 188
Relative,

coordinate, 111

motion, 113
Relativistic wave equations, 332
Representation,

coordinate, 59, 60, 498

coupled, 139, 461

Feshbach-Villars, 391

Foldy-Wouthuysen, 336

matrix, 54

uncoupled, 139, 461

momentum, 39, 60, 498

occupation-number, 109, 400
Resolution of the identity, 44
Resonance scattering, 220
Ritz method, 256
Rodrigue’s formula, 132
Rotation,

finite, 164

infinitesimal, 161

matrix, 165

operator, 160, 164, 188
Row matrix, 480
Rutherford formula, 236, 301

Scalar,
operator, 163
potential, 295, 382
Scalar product,
of functions, 16
of spherical tensors, 176
of vectors, 16, 20
Scattering amplitude, 199, 200
in terms of phase shifts, 207
in the Born approximation, 232, 233
Scattering cross-section, 290
differential, 198
total, 198
Scattering,
length, 211, 213, 330
matrix, 435
Schlaefli integral, 519
Schmidt orthogonalisation procedure, 24
Schrodinger,
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field, 398
picture of time development, 88
wave equation, 13,91
wave function, 13
Schrodinger’s cat, 456
experiment, 457
Schwarz inequality, 22
Schwinger’s method, 263
Second quantization, 107, 398
Secular equation, 315, 484
Selection rules, 182
of Clebsch-Gordon coefficients, 140
for Coulomb excitation, 303
for electric dipole transitions, 299
for 9)-symbole, 158
Self-adjoint,
matrix, 479
operator, 38
Self-energy, 373, 442
Semiclassical,
approximation, 237
theories, 299
Similarity transformation, 39, 481
Similarly-prepared states, 10, 11
Singlet state, 142, 326
Singular,
matrix 475
operator, 34
Singularity, 227, 512
Slater determinant, 325
Solvay conference, 445, 448
Source density, 225
Spectral decomposition, 44
Spherical,
Bessel functions, 203, 527
co-ordinates, 113
hankel functions, 517
harmonics, 112, 133, 168
Neumann functions, 203, 527
tensors, 173
waves, 200, 203
Spherical harmonic addition theorem, 135,
170, 302
Spin, 128, 342
Spinor, 129, 175, 342
Soin-orbit,
coupling, 282, 311, 350
interaction, 282
splitting, 283
Spontaneous emission, 299
Sqaare-integrable functions, 27, 29

QUANTUM MECHANICS

Square matrix, 472
Standard deviation, 76
Stark effect, 278, 280
Stationary,
perturbation theory, 260, 267
state, 95
Statistical
interprotation, 3, 445
operator, 84, 465
Statistics,
Bose-Einstein, 324
classical (Boltzmann), 324
Fermi-Dirac, 324
Subspaces, 30
Sudden approximation, 304
Sum rules, 168
for 9j-symbols, 158
for Racah coefficients, 153
Superposition of states, 457
Symmetry,
and conservation laws, 182
operation, 181
transformation, 182
of wave functions, 321

Tensor product,

of matrices, 474

of spherical tensors, 176
Theorem, 447

Bell’s, 469

of residues, 226

von Neuman's, 465
Time-dependent,

perturbation theory, 284

Schrodinger equation, 91
Time-development operator, 89
Time-energy uncertainty relationship. 81
Time-independent Schrédinger equation,

93
Time reversal, 191, 369

operator, 489
Trace,

of a matrix, 476

of a spherical tensor, 179
Transformation,

antiunitary, 182, 191

Foldy-Wouthuysen, 352

matrix, 481

unitary, 40, 58 185, 481
Transmission coefficient, 250
Transpose,
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of a matrix, 475
of an operator, 51

Trial function, 256

Triangular matrix, 490

Triplet state, 142, 326

Tunnelling, 243

Two-component theory of the neutrino,
374

Uncertainty principle, 7, 13, 76
Uncoupled representation, 139, 282, 461
Unit,

matrix, 472

operator, 33

vector, 22
Unitary,

matrix, 479

operator, 39

space, 18, 20

transformation, 40, 58, 185, 481

Vacuum, 335
polarization, 373, 442
state, 400
Variational,
method, 256
parameters, 256, 258
Vector addition of angular momenta, 138
Vector,
operator, 122, 162
potential, 295, 382

Velocity operator, 350, 357
Virial relationship, 110
Virtual state, 223
Wave equation,

ciassical, 2, 382

relativistic, 332

Schrodinger, 8, 13, 91
Wave function,

Schrodinger, 13

WKB, 239
Wave packet, 3, 508
Wave-particle duslity, 3
Weighted average, 67
Weyl equations, 337, 374
Wick’s Chronological product, 431
Wick’s theorem, 434, 439
Width, 82, 289

of resonance, 223
Wigner-Eckart theorem, 177, 303
Wentzel -Kramers-Brillouin,

approximation, 237

wave function, 239, 241
World line, 426
Wronskian, 218
Zeeman effect, 117, 280
Zero-mass,

bosons, 382

Dirac equation, 377

particles, 374, 376, 383
Zero-point energy, 100
Zitterbewegung, 352
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