
PYTHON FOR M.S STUDENTS

V.N.Purushothaman

Department of Physis

Sree Kerala Varma College, Trihur

31-03-2013

2

Contents

1 Unit-1: Basis of Python language 1

1.1 Inputs . 1

1.2 Outputs . 1

1.3 Variables and data types . 2

1.4 operators . 3

1.5 Strings . 4

1.6 Mutable and Immutable Types . 5

1.7 Conditional Exeution . 14

1.8 Iteration and looping . 14

1.9 Funtions and Modules . 15

1.10 File input and Output . 16

1.11 Pikling . 16

1.12 Problems . 17

2 Advaned Python Programming 29

2.1 NumPy . 29

2.1.1 Introdution . 29

3

4 CONTENTS

2.1.2 Array reation . 29

2.1.3 Array modi�ation . 33

2.1.4 Printing arrays . 34

2.1.5 Saving and restoring arrays . 35

2.1.6 Indexing, Sliing and Iterating 39

2.1.7 Arrays as matries . 39

2.1.8 Arrays as polynomial oe�ients 44

2.1.9 Linear Algebra . 45

3 Plotting and visualization 49

3.1 Matplotlib . 49

3.1.1 The Matplotlib Module . 49

3.1.2 Plotting mathematial funtions 55

4 Numerial Analysis 61

4.1 Numerial methods . 61

4.1.1 Inverse of a funtion . 61

4.1.2 Interpolation with Cubi Spline 66

4.1.3 Zeros of polynomials . 70

4.1.4 Monte Carlo Methods . 77

4.1.5 Sampled Data . 81

4.1.6 Disrete Fourier Transform . 82

4.1.7 Fast Fourier Transform(FFT) 84

CONTENTS 5

4.1.8 Shooting method . 85

4.1.9 Relaxation method: . 87

5 Simulations 89

5.1 A omputational approah to physis 89

5.1.1 Simple harmoni osillator . 90

5.1.2 Central �eld motion . 92

5.1.3 Monte-Carlo simulations- value of π 95

5.1.4 Logisti map . 97

5.1.5 Driven LCR iruit . 100

5.1.6 Standing waves . 104

5.1.7 Simulation of radioativity . 105

6 CONTENTS

CONTENTS i

Prefae

This is a rough olletion of the leture notes I had prepared to teah the ourse

PHY2C08: COMPUTATIONAL PHYSICS presribed for M.S physis students of

olleges a�liated to Caliut University. Due to lak of time, it is done at a terri� pae

whih might have aused a few mistakes here and there. Shortage of explanations and

examples is another asualty of suh hurry. I hope that it may be useful in some small

way to students and teahers. Please be kind enough to inform me when you ome

aross mistakes in the ideas or language used in this monograph. Purushothaman.V.N,

Department of Physis,

Sree Kerala Varma College, Trihur

email:vadakkedam�redi�mail.om

Mob: 9446723810

ii CONTENTS

Chapter 1

Unit-1: Basis of Python language

1.1 Inputs

A program is a set of statements used to produe an output from the input data.

Numbers (real and omplex), are read from terminal using the funtion input('Prompt')

. Strings are read using the funtion raw_input('prompt'). For example

>>> b=input('Give a number: ')

Give a number: 10

>>>> b

10

>>> a=raw_input('Give a text: ')

Give a text: hopeless

>>> a

'hopeless'

1.2 Outputs

The output of a program an be a number, text or graphis. For text and numbers print

statement is employed. For graphi output funtions like show(),save�g(),imshow() et

are de�ned in relevant modules.

>>> x=5

>>> print x

1

2 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

5

>>> y=[2,5,7,9℄

>>> print y

[2, 5, 7, 9℄

>>> z='beamer'

>>> print z

beamer

>>> print x,y,z

5 [2, 5, 7, 9℄ beamer

Formatted output is possible just as in -language. The general form of format string

is %m.nx where m is an integer showing the total width to be used for printing, n is

an integer representing the number of deimal plaes to be used while printing �oating

point numbers so that |m| ≥ 1+ n(deimal point+deimal plaes) and x is c for single
harater, f for �oat, e for �oat in sienti� format, s for string, x for hexadeimal, o
for otal, d or i for integer and 0d for integer with zeros on the left to �ll the width.

>>> print '1)%5d 2)%5i 3)%05d '%(23,23,23)

1) 23 2) 23 3)00023

>>> print '1)%4'%('z')

1) z

>>> print '1)%12s, 2)%-12s'%('zoology','zoology')

1) zoology, 2)zoology

>>> print '1)%12.5f, 2)%-12.5f, 3)%12.7f'%(24.5,24.5,24.5)

1) 24.50000, 2)24.50000 , 3) 24.5000000

>>> print '1)%12.5x, 2)%12.5o'%(24.5,24.5)

1) 00018, 2) 00030

1.3 Variables and data types

A omputer program to solve a problem is designed using variables belonging to the

supported data types. Python supports numeri data types like integers, �oating point

numbers and omplex numbers. To handle harater strings, it uses the String data

type. Python also supports other ompound data types likelists, tuples, ditionaries.

In the previous example, x is numeri, y is a list and z is a string.

1.4. OPERATORS 3

1.4 operators

Operators are funtionality that do something and an be represented by symbols suh

as + or by speial keywords. Operators require some data to operate on and suh

data are alled operands. In x = 2 + 3, 2 and 3 are the operands and '=' and '+' are

operators. The other operators are

or,and,not(Boolean OR,AND,NOT) : returns True or Fals

in(Membership): returns True or Fals,

not in(Non-membership): returns True or False,

<, <=, >, >=, !=, == (Comparisons): returns True or False

|,^,&(Bitwise OR, XOR,AND),

<<, >>(Bitwise Shifting left and right)

+,-,* (Add, Subtrat, Multiply)

/,%,**(divide, reminder, Exponentiation)

+x (Positive), -x(Negative),

~(Bitwise NOT),

x[index℄(Subsription)

Bitwise operator works on bits and perform bit by bit operation. Assume a = 60 and

b = 13. Now in binary format they will be as follows:

a = 0011 1100,

b = 0000 1101

Binary AND Operator opies a bit to the result if it exists in both operands.

a&b = 0000 1100

Binary OR Operator opies a bit if it exists in either operand.

a|b = 0011 1101

Binary XOR Operator opies the bit if it is set in one operand but not both.

a^b = 0011 0001

Binary Ones Complement Operator is unary and has the effet of 'flipping' bits.

~a = 1100 0011

Binary Left Shift Operator moves left operand by the number of bits speified by the right operand towardsleft.

a << 2 will give 1111 0000 whih is 240

Binary Right Shift Operator moves left operand by the number of bits speified by the right operand towards right.

a >> 2 will give 0000 1111whih is 15

Preedene Rules of operators: These rules give the sequene of exeutions of an

expression ontaining more than one operator.

4 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1. () (anything in brakets is done �rst. Highest preedene)

2. ** (exponentiation is done next)

3. -x, +x (unary ±)

4. *, /, %, // (multipliation, division, remainder after division, suessive division)

5. +, - (addition, subtration)

6. relational operators: <, >, <=, >=, !=, ==

7. logial not

8. logial and

9. logial or (Lowest preedene)

1.5 Strings

String is a olletion of same kind of elements (haraters). It is a ompound or

olletion data type. The individual elements of a string an be aessed by indexing.

>>> s = 'hello world'

>>> s[0℄

'h'

>>> s[7℄

'o'

>>> s[5℄

' '

>>> s[-1℄ # will print the last harater

'd'

Strings an be added and multiplied by integers.

>>> p,q,r='Eating ','troubles',' meeting '

>>> p+q+r

'Eating troubles meeting'

>>> 2*p+q

'Eating Eating troubles'

1.6. MUTABLE AND IMMUTABLE TYPES 5

1.6 Mutable and Immutable Types

There is one major di�erene between String, tuple, list,ditionary types. List and

ditionary are mutable but string and tuple are immutable. We an hange the value

of an element in a list , add new elements to them and remove any existing element.

This is not possible with String and tuple types.In the ase of sets one variety alled

frozenset is immutable while set is mutable.

List

List is muh more �exible than String. The individual elements an be of any type,

even another list. Lists are de�ned by enlosing the elements inside a pair of square

brakets and separated by ommas.

>>> l=[2.3,'A',3,'khan'℄

>>> type(l)

<type 'list'>

>>> 2*l

[2.29, 'A', 3, 'khan', 2.29, 'A',3, 'khan'℄

>>> l[3℄=28

>>> l

[2.299, 'A', 3, 28℄

Lists respond to the + (onatenation) and * (repetition) operators like strings.The

result is a new list.

Python Expression Results Desription

len([1, 2, 3℄) 3 Length

[1, 2, 3℄ + [4, 5, 6℄ [1, 2, 3, 4, 5, 6℄ Conatenation

['Hi!'℄ * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'℄ Repetition

3 in [1, 2, 3℄ True Membership

for x in [1, 2, 3℄: print x, 1 2 3 Iteration

List Methods

A method is a funtion that is oupled to some objet, be it a list, a number, a string,

or whatever. In general, a method is alled like this: objet.method(arguments). If a

is list objet and max() is a method de�ned on list lass to �nd the maximum value

in the list, then a.max() returns maximum of list a. A method all is like a funtion

6 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

all, exept that the objet is put before the name of the method method with a dot

separating them. Lists have several methods that an be used to examine or modify

their ontents.

1. append: The append method is used to append an objet to the end of a list:

>>>lst = [1, 2, 3℄

>>>lst.append(4)

>>>lst

>>>[1,2, 3, 4℄

The same an be ahieved using + operator.

>>> x=[3,5,4℄

>>> x+=[2℄

>>> x

[3, 5, 4, 2℄

2. ount: The ount method ounts the ourrenes of an element in a list:

>>>['to', 'be', 'or', 'not', 'to', 'be'℄.ount('to')

>>>2

>>>x = [[1, 2℄, 1, 1, [2, 1, [1, 2℄℄℄

>>>x.ount(1)

>>>x.ount([1, 2℄)

>>>2.

3. extend: The extend method allows you to append several values at one by

supplying a sequene of the values you want to append. In other words, your

original list has been extended by the other one:

>>>a = [1, 2, 3℄

>>>b = [4, 5, 6℄

>>>a.extend(b)

>>>a

[1,2, 3, 4, 5, 6℄

This may seem similar to onatenation, but the important di�erene is that the

extend method modi�es a list without reating a new one. In ordinary onate-

nation, a ompletely new list is returned:

a = [1, 2, 3℄

b = [4, 5, 6℄

a + b

[1, 2, 3, 4, 5, 6℄

a

[1,2, 3℄

1.6. MUTABLE AND IMMUTABLE TYPES 7

4. index: The index method is used for searhing lists to �nd the index of the

�rst ourrene of a value:

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni'℄

>>> knights.index('who')

4

>>> knights.index('herring')

>>> ValueError: list.index(x): x not in list

When you searh for the word 'who', you �nd that it's loated at index 4:

>>> knights[4℄

'who'

5. insert: The insert method is used to insert an objet into a list: �> numbers

= [1, 2, 3, 5, 6, 7℄ �> numbers.insert(3, 'four') �> numbers �> [1, 2, 3, 'four', 5,

6, 7℄ As with extend, you an implement insert with slie assignments:

numbers = [1, 2, 3, 5, 6, 7℄

numbers[3:3℄ = ['four'℄

numbers

[1, 2, 3, 'four', 5, 6, 7℄

6. pop: The pop method removes an element (by default, the last one) from the

list and returns it:

>>> x = [1, 2, 3℄

>>> x.pop()

>>> x

>>> [1, 2℄

>>> x.pop(0)

>>> x

>>> [2℄

The pop method is the only list method that both modi�es the list and returns

a value.

>>> x = [1, 2, 3℄

>>> x.append(x.pop())

>>> x

>>> [1, 2, 3℄

7. remove: The remove method is used to remove the �rst ourrene of a value:

8 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

>>> x = ['to', 'be', 'or', 'not', 'to', 'be'℄

>>> x.remove('be')

>>> x

['to', 'or', 'not', 'to', 'be'℄

>>> x.remove('bee')

>>> ValueError: list.remove(x): x not in list

8. del: To remove a list element, you an use either the del statement if you know

exatly whih element(s) you are deleting or the remove() method if not known.

The reverse method reverses the elements in the list.

�> x = [1, 2, 3℄ �> x.reverse() �> x �> [3, 2, 1℄ Note that reverse hanges the

list and and saves under the same name. �> x = [1, 2, 3℄ �> list(reversed(x)) [3,

2, 1℄

9. sort: The sort method is used to sort lists in plae. Sorting 'in plae' means

hanging the original list so its elements are in sorted order, rather than simply

returning a sorted opy of the list:

>>> x = [4, 6, 2, 1, 7, 9℄

>>> x.sort()

>>> x

>>> [1, 2, 4, 6, 7, 9℄

>>> x = [4, 6, 2, 1, 7, 9℄

>>> x.sort(reverse=True)

>>> x

>>> [9, 7, 6, 4, 2, 1℄

10. sorted: Another way of getting a sorted opy of a list is using the sorted

funtion:

>>> x = [4, 6, 2, 1, 7, 9℄

>>> y=sorted(x)

>>> x,y

([4, 6, 2, 1, 7, 9℄, [1, 2, 4, 6, 7, 9℄)

This funtion an atually be used on any sequene, but will always return a list:

>>> sorted('Python')

>>> ['P', 'h', 'n', 'o', 't', 'y'℄

11. len: Gives the number of elements in a list.

12. max: Gives the element having maximum ASCII value in a list.

1.6. MUTABLE AND IMMUTABLE TYPES 9

13. min: Gives the element having minimum ASCII value in a list.

14. mp: This funtion is the basis for sorting. mp(a, b) returns -1 if a < b, 0 if a

== b and 1 if a > b.

15. list: Converts a string or tuple into a list.

16. sum: Returns the sum of elements in a numeri list.

For example

>>> a=[2,5,'A','a','ab'℄

>>> max(a)

'ab'

>>> a.append('z')

>>> a

[2,5,'A','a','ab','z'℄

>>> max(a)

'z'

>>> min(a)

2

>>> x=[4, 7, 8, 2, 3, 12℄

>>> mp(a,x)

-1

>>> mp(x,a)

1

>>> y=x

>>> y

[4, 7, 8, 2, 3, 12℄

>>> mp(x,y)

0

>>> ='design'

>>> list()

['d', 'e', 's', 'i', 'g', 'n'℄

>>> d=('j','k',3,5)

>>> list(d)

['j', 'k', 3, 5℄

>>> sum(x)

36

Sliing: Elements from a list an be seleted using sliing operator ':'. If x is a list,

then x[m : n : p] represents the set of elements of x with indies [mth, (m+ p)th, (m+
2p)th, ..] exluding nth

element.

10 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

>>> x=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9℄

>>> x[0:-1:2℄

[0, 2, 4, 6, 8℄

>>> x[1:-1:2℄

[1, 3, 5, 7℄

>>> sum(x[1:-1:2℄)

16

>>> x[0:5:2℄

[0, 2, 4℄

>>> sum(x[0:5:2℄)

6

set:

A set objet is an unordered olletion of immutable values. They annot be indexed

by any subsript. The built-in funtion len() returns the number of items in a set.

There are urrently two intrinsi set types:

(1)Sets: These represent a mutable set. They are reated by the built-in set()

onstrutor and an be modi�ed afterwards by several methods, suh as add(), lear(),

disard().

Frozen sets: These represent an immutable set. They are reated by the built-in

frozenset() onstrutor. As a frozenset is immutable, it an be used as an element

of another set, or as a ditionary key. Common uses of sets inlude membership

testing, removing dupliates from a sequene, and omputing mathematial operations

suh as intersetion, union, di�erene, and symmetri di�erene. The main funtions

are len(), union(), intersetion(), di�erene(), symmetri_di�erene(), issubset() and

issuperset(). There is also an operator equivalent for many of these funtions. Let s

and t be two sets. Then

1. x in s: test element x for membership in s (True/False)

2. x not in s: test element x for non-membership in s (True/False)

3. s.issubset(t): [s <= t℄: test whether every element in s is in t

4. s.issuperset(t): [s >= t℄: test whether every element in t is in s

5. s.union(t): [s | t℄: new set with elements from both s and t

6. s.intersetion(t): [s & t℄: new set with elements ommon to s and t

7. s.di�erene(t): [s - t℄: new set with elements in s but not in t

1.6. MUTABLE AND IMMUTABLE TYPES 11

8. s.symmetri_di�erene(t) : [s

�

t℄: new set with elements in either s or t but not

both

9. s.opy(): new set with a opy of s

10. s.lear(): Remove all elements from the set s.

11. s.disard(x): Remove element x from set s if it is a member. If x is not a member,

nothing happens.

12. s.update():Update s with the union of itself and others.

>>> a=[1,2.0,6.1,'l'℄

>>> b=set(a)

>>> b

set([1, 2.0, 'l', 6.0999999999999996℄)

>>> =set([1,3,6.1,'k'℄)

>>>

set([1, 'k', 3, 6.0999999999999996℄)

>>> d=set('domain')

>>> d

set(['a', 'd', 'i', 'm', 'o', 'n'℄)

>>> f=set((1,3,5,9.1))

>>> f

set([1, 3, 9.0999999999999996, 5℄)

>>> b|

set([1, 2.0, 3, 'k', 'l', 6.0999999999999996℄)

>>> b&

set([1, 6.0999999999999996℄)

>>> b.differene()

set([2.0, 'l'℄)

>>> .differene(b)

set(['k', 3℄)

>>> .symmetri_differene(b)

set(['k', 2.0, 3, 'l'℄)

>>> s=set([1,3,5,7,9℄)

>>> s.add(11)

>>> s

set([1, 3, 5, 7, 9, 11℄)

>>> s.remove(5)

>>> s

set([1, 3, 7, 9, 11℄)

12 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Tuples

Tuples are data strutures that are very similar to lists, but they annot be modi�ed

(immutable). They an only be reated. Tuples have important roles as keys for

ditionaries. A tuple is a sequene that is enlosed by parentheses (). The following

line of ode reates a three-element tuple

>>> x = ('a', 'b', '')

Interonversion between lists and tuples is possible using list() and tuple() funtions.

>>> list((1, 2, 3, 4))

[1,2, 3, 4℄

>>> tuple([1, 2, 3, 4℄)

(1,2, 3, 4)

Ditionaries

Ditionaries are assoiative arrays. It is a group of {key : value} pairs. The elements

in a ditionary are indexed by keys. Keys in a ditionary are required to be unique.

Keys an be almost any Python type, but are usually numbers or strings. Values, on

the other hand, an be any arbitrary Python objet. Ditionaries are enlosed by urly

braes - { } and values an be assigned and aessed using square braes [℄. They are

di�erent from sequene type ontainers like lists and tuples in the method of storing

data. There is no onept of order among elements. They are unordered.Their main use

inlude storing time of modi�ation of �les as values and �le name as keys, telephone

diretory with name as value and phone number as key, address book with name as key

and address as value, the oordinate of a point(tuple) as key and its olour as value in

a graphi sreen et. Example for a ditionary is given below.

>>> dt={} #Creates an empty ditionary

>>> dt['host'℄='Earth'

#'host' is the key and 'earth' is the value.

>>> dt

{'host': 'Earth'}

>>> dt['port'℄=80

>>> dt

{'host': 'Earth', 'port': 80}

>>> dt.keys()

1.6. MUTABLE AND IMMUTABLE TYPES 13

['host', 'port'℄

>>> dt.values()

['Earth', 80℄

>>> print dt['host'℄

Ditionary funtions and methods:

1. mp(dit1, dit2): Compares elements of both ditionaries.

2. len(dit): Gives the total length of the ditionary. This would be equal to the

number of Key-value pairs in the ditionary.

3. str(dit): Produes a printable string representation of a ditionary

4. type(variable): Returns the type of the passed variable. If passed variable is

ditionary then it would return a ditionary type.

Python inludes following ditionary methods

1. dit.lear(): Removes all elements of ditionary dit

2. dit.opy(): Returns a shallow opy of ditionary dit

3. dit.fromkeys(): Create a new ditionary with keys from seq and values set to

value.

4. dit.get(key, default=None): For key key, returns value or default if key not in

ditionary

5. dit.has_key(key): Returns true if key in ditionary dit, false otherwise

6. dit.items(): Returns a list of dit's (key, value) tuple pairs

7. dit.keys(): Returns list of ditionary dit's keys

8. dit.setdefault(key, default=None): Similar to get(), but will set dit[key℄=default

if key is not already in dit

9. dit.update(dit2): Adds ditionary dit2's key-values pairs to dit

10. dit.values(): Returns list of ditionary dit's values

14 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1.7 Conditional Exeution

The most fundamental aspet of a programming language is the ability to ontrol the

sequene of operations. One of this ontrol is the ability to selet one ation from a set

of spei�ed alternatives. The other one is the faility to repeat a series of ations any

number of times or till some ondition beomes false. To exeute some setion of the

ode only if ertain onditions are true python uses if, elif,...,else onstrut.

>>> x = input('Enter a number ')

10

>>> if x>10:

print 'x>10' # Note the Colon and indentation.

elif x<10:

print 'x<10'

else:

print 'x=10'

>>>x=10

1.8 Iteration and looping

when a ondition remains true, if a set of statements are to be repeated, the while

and for onstruts are employed. The general syntax of a while loop may be given as

follows.

whileondition:

set of statements to be repeated

for elements in list or tuple :

set of statements to be repeated

>>> x=10

>>> while x>0:

print x,

x=x-1

>>>10 9 8 7 6 5 4 3 2 1

>>> for i in range(10,0,-1):

print i,

>>>10 9 8 7 6 5 4 3 2 1

1.9. FUNCTIONS AND MODULES 15

1.9 Funtions and Modules

A funtion is a blok of ode that performs a spei� task. Using a funtion in a

program is alled 'alling' the funtion. Python has two tools for building funtions:

def and lambda. For example, we an build a funtion that returns the square root of

a number as follows:

(1) def squareroot(x): return math.sqrt(x)

(2) squareroot = lambda x: math.sqrt(x)

(3) g = lambda x: x*2

g(3)=6

(4) (lambda x: x*2)(3)= 6

If a funtion is used only one (alled from only one plae in your program) Lambda

funtions are useful and onvenient for two reasons: (1)There is no need to give the

funtion a name.(2) It an be de�ned where it is used.

The next method of de�ning funtions is illustrated below. For �nding the largest

of x,y,z

>>> def large(x,y,z):

if y>x:

x,y=y,x

if z>x:

z,x=x,z

return(x)

>>> large(3,4,2)

4

In Python, the de�nitions of funtions, variables, onstants may be saved in a �le

and use them in a sript or in an interpreter just like header �les in C-language.

Suh a �le is alled a module. The �le name is the module name with the su�x .py

appended. Within a module, the name of the module is assigned to the global variable

name. De�nitions from a module an be imported into other modules or into the

main module. Examples of some standard modules are math, os,random, pylab, numpy

et. The main advantage of reating and using modules is that longer programs an

be split into several �les so that maintenane of ode is easy and an be reused in

several programs by inluding the �le with the keyword import at the beginning of the

program.

16 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1.10 File input and Output

Files are used to store data and program for later use. This program reates a new �le

named 't.txt' (any existing �le with the same name will be deleted) and writes a String

to it. The �le is losed and then reopened for reading data. The relevant funtions are

open, write, read and lose.

>>> f=open('t.txt','w')

>>> f.write('breaking into the file')

>>> f.lose()

>>> f=open('t.txt','r')

>>> f.read()

'breaking into the file'

1.11 Pikling

Strings an easily be written to and read from a �le. Numbers take more e�ort,

sine the read() method only returns strings, whih will have to be onverted into a

number expliitly. However, it is very ompliated when trying to save and restore

data types like lists, ditionaries et. Rather than onstantly writing and debugging

ode to save ompliated data types, Python provides a standard module alled pikle.

Funtions dump and load are used in pikle. pikle.dump(a,f) will save objet a to �le

f. a=pikle.load(f) retrieves data from �le f.

Pikling- Examples

>>>import pikle

>>>a=10.1

>>>b='sh'

>>>=[5,3,2℄

>>>f = open("state", 'w')

>>>pikle.dump(a, f)

pikle.dump(b, f)

pikle.dump(, f)

file.lose()

>>>file = open("state", 'r')

Reading and writing files

1.12. PROBLEMS 17

a = pikle.load(file)

b = pikle.load(file)

 = pikle.load(file)

file.lose()

Any data that was previously in the variables a, b, or is restored to them by

pikle.load.

1.12 Problems

1. To sort a set of numbers

a=[℄

n=input('Give the ount of numbers n')

for i in range(n):a.append(input('Type the numbers'))

a.sort() #Asending order

print a

a.reverse() # Desending order

print a

2. Simultaneous arrays: Construt two 100-element arrays suh that ith element of

one array is sin (2πi/100) and the other cos (2πi/100).

Program:

from math import *

x=[sin(2*pi*i/100) for i in range(1,101)℄

y=[os(2*pi*i/100) for i in range(1,101)℄

print x,y

3. To reate a triangle of equispaed stars(*)

Program:

n=input('Howmany rows ? ')

for i in range(n):

print

for j in range(i+1): print '*',

When the program is run

18 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Howmany rows ? 7

*

* *

* * *

* * * *

* * * * *

* * * * * *

* * * * * * *

4. Fibonai series:

n=input('Number below whih series is required: ')

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

5. To read a m× n matrix using list-methods only

m,n=input('order of matrix m,n = ')

a=[℄

for i in range(m):

b=[℄

for j in range(n):

b.append(input('give elements a(i,j)'))

a.append(b)

print 'output: ',a

When the program is run

order of matrix m,n = 2,3

give elements a(i,j)1

give elements a(i,j)2

give elements a(i,j)3

give elements a(i,j)4

give elements a(i,j)5

give elements a(i,j)6

output: [[1, 2, 3℄, [4, 5, 6℄℄

6. To generate values of a funtion, say, x sin x

import math

x=[0.1*i for i in range(10)℄

1.12. PROBLEMS 19

y=[i*math.sin(i) for i in x℄

for i in range(10):

print '(%0.2f,%0.5f)'%(x[i℄,y[i℄),

The (x, y) values obtained are given below

(0.00,0.00000), (0.10,0.00998), (0.20,0.03973), (0.30,0.08866),

(0.40,0.15577), (0.50,0.23971), (0.60,0.33879), (0.70,0.45095),

(0.80,0.57388), (0.90,0.70499),

7. To �nd fatorial of a number

n=input('Give the number whose fatorial is required')

f=1

for i in range(1,n+1):f*=i

print f

8. Permutations

n,r=input('Give n and r in nPr: ')

p=1

for i in range(n,n-r,-1):p*=i

print p

9. ombinations The de�nition is

nCr =
n!

(n− r)!r! =
n(n− 1)(n− 2)....(n− r + 1)

r(r − 1)(r − 2)....3.2.1
=
n

r
(n−1)C(r−1)

def ombination(n,r):

if r==0:return 1

else:return n*ombination(n-1,r-1)/r

n,r=input('Give n and r in nCr: ')

print ombination(n,r)

When program is run

Give n and r in nCr: 6,3

20

>>>

Give n and r in nCr: 7,4

35

20 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Aliter:

def f(a):

if a==1:return(1)

else: return(a*f(a-1))

n,r=input('Give n and r in nCr: ')

print f(n)/(f(n-r)*f(r))

10. Pasal's triangle

Piniple: It is the set of binomial oe�ients arranged in rows. The, nth
row

orresponds to the oe�ients of the expansion (a+ b)n

def f(a):

if a==0:return(1)

else: return(a*f(a-1))

n=input('Howmany rows ? ')

for i in range(n):

print

for j in range(i+1): print f(i)/(f(i-j)*f(j)),

Aliter:

def ombination(n,r):

if r==0:return 1

else:return n*ombination(n-1,r-1)/r

m=input('Howmany rows ? ')

for i in range(m+1):

print

for j in range(i+1):print ombination(i,j),

when the program is run

Howmany rows ? 7

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

11. Generate the triangular sequene 0,1,3,6,10,15,21,...n

1.12. PROBLEMS 21

Priniple: Obviously the numbers are ombinations

(

n

2

)

=
n(n− 1)

1× 2

where n = 0, 1, 2, 3...

Program:

m=input('Give maximum number upto whih the series is required: ')

print [i*(i+1)/2 for i in range(m) if i*(i+1)/2 < m℄

When the program is run

Give maximum number upto whih the series is required: 150

[0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136℄

Aliter :

The relation between adjaent elements is

a[0] = 0, n > 0, a[n] = a[n− 1] + (n− 1)

n,a=input('n: '),0

for i in range(n):

a+=i

print a

12. Hailstorm numbers

Priniple: Pik any whole number. If it's odd, multiply the number by 3, then

add 1. If it's even, divide it by 2. Now, apply the same rules to the answer that

you just obtained. Do this over and over again, applying the rules to eah new

answer. Hene these are the set of numbers obtained by the following rule of

iteration.

If si is even, si+1 = si/2, else si+1 = 3si + 1

Program:

s=input('Seed number for Hailstorm series: ')

while s!=1:

if s%2==0:s/=2

else:s=(3*s+1)

print s,

22 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

When the program is run

Seed number for Hailstorm series: 17

52 26 13 40 20 10 5 16 8 4 2 1

13. To �nd largest and smallest in a set of numbers

x=[℄

n=input('Give the ount of numbers')

for i in range(n): x.append(input('Type numbers one at a time '))

print 'Largest of the series is',max(x)

print 'Smallest of the series is',min(x)

14. To solve quadrati equation

from math import *

a,b,=input("Give oeffiients in the order a,b, seperated by omma. ")

d=sqrt(b*b-4*a*)

print "Root 1 = ",(-b+d)/(2*a),"Root 2 = ",(-b-d)/(2*a)

When program is run

Give oeffiients in the order a,b, seperated by omma. 1,2,3

Root 1 = (-1+1.41421356237j) Root 2 = (-1-1.41421356237j)

15. To verify orthogonality of sine and osine funtions

Priniple: If the funtions are orthogonal, then

∫ π

0

sin θ cos θdθ ≈
π

∑

i=0

sin θi cos θi ≈ 0

from math import*

print sum([sin(pi*i/180)*os(pi*i/180) for i in range(180)℄),'is negligible'

Output: -4.85722573274e-15 is negligible

16. To hek whether a given number is prime

1.12. PROBLEMS 23

Priniple: n is a prime number if it is exatly divisible only by 1 and n. To

hek this, see whether it is divisible by any number between 2 and n/2 (integer

division).

n=input("Give the number n: ")

m=1+n/2

for i in range(2,m):

if n%i!=0: ontinue

else:

print '%d is not a prime. It is divisible by %d'%(n,i)

break

if i==n/2: print '%d is a prime'%n

When the program is run

Give the number n: 83

83 is a prime

>>>

Give the number n: 245791

245791 is not a prime. It is divisible by 7

17. To �nd the ount of prime numbers in a given range.

Priniple: Even numbers annot be prime. Chek in the set of odd numbers

for prime numbers.

j,k=input("Give the range between whih prime numbers are required: ")

x=range(j,k,1)

p=[℄

for n in x:

m=n/2

if n>0 and n<4:p.append(n)

for i in range(2,m+1):

if n%i==0: break

if i==m: p.append(n)

print 'There are %d prime numbers in the range(%d, %d). They are'%(len(p),j,k)

print p

When the program is run

Give the range between whih prime numbers are required: 49,150

There are 20 prime numbers in the range(49, 150). They are

[53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149℄

18. To hek whether a given word is a palindrome.

24 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Priniple: A sequene is a palindrome if it is the same when read from left or

right. For example, xyzzyx,123321 are palindromes.

Program:

x=raw_input('Give the word')

y=[x[-i-1℄ for i in range(len(x))℄

if list(x)==y:print 'palindrome'

else: print 'Not a palindrome'

When the program is run

Give the word: ab121ba

palindrome

>>>

Give the word: eletion

Not a palindrome

19. To �nd square root of a number

Priniple: Let x be the square root of n. Then x2 − n = 0. Now x is the root

of this equation. It an be alulated using Newton-Raphson method.

f(x) = x2 − n, f ′(x) = 2x

xk+1 = xk −
f(xk)

f ′(xk)
=

1

2

(

xk +
n

xk

)

Program:

n,e=input('Give the number n and auray required e: ')

x0,x=0,1

while abs(x-x0)>e:

x0=x

x=(x0+n/x0)/2.0

print 'Square root of %0.3f =%0.5f '%(n,x0)

When the program is run

Give the number n and auray required e: 24,.001

Square root of 24.000 =4.89900

20. To �nd mth
root of a number

1.12. PROBLEMS 25

Priniple: Let x be the mth
root of n. Then xm − n = 0. Now x is the mth

root of this equation. It an be alulated using Newton-Raphson method.

f(x) = xm − n, f ′(x) = mxm−1

xk+1 = xk −
f(xk)

f ′(xk)
=

1

m

[

(m− 1)xk +
n

xm−1
k

]

Program:

n,m,e=input('Give the number n, order of root m and auray e required : ')

x0,x=0.0,1.0

while abs(x-x0)>e:

x0=x

x=((m-1)*x0+n/x0**(m-1))/m

print '%0.2f (th) root of %0.3f = %0.5f '%(m,n,x0)

When the program is run

Give the number n, order of root m and auray e required : 65,3,.01

3.00 th root of 65.000 =4.03005

>>>

Give the number n, order of root m and auray e required : 65,4,.01

4.00 th root of 65.000 =2.84527

>>>

Give the number n, order of root m and auray e required : 2.88,1.5,.01

1.50 th root of 2.880 =2.03016

Aliter : Using bisetion method.

def f(x,m,n):return x**m-n

a,b,m,n,k=input('Intervel (a,b),order of root m, number n and no. of iterations k')

i=0

while i<k:

=(a+b)/2.0

if f(a,m,n)*f(,m,n)<0:b=

else:a=

i+=1

print 'The %d root of %f after %d iterations is %20.15f'%(m,n,i,)

21. To onvert temperature in Fahrenheit into entigrade

26 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Priniple: 32oF = 00C, 212oF = 100oC. Therefore the onversion formulae

are

C =
5

9
(F − 32)

F =
9

5
C + 32

Program:

t=input('Give the temperature: ')

=input('Is the given temperature is in 1.entigrade or 2.farenheit (1/2): ')

if ==1: print '%0.2f C= %0.3f F'%(t,t*9.0/5+32.0)

else: print '%0.2f F= %0.3f C'%(t,(t-32.0)*5.0/9)

When the program is run

Give the temperature: 25

Is the given temperature is in 1.entigrade or 2.farenheit (1/2): 1

25.00 C= 77.000 F

>>>

Give the temperature: 180

Is the given temperature is in 1.entigrade or 2.farenheit (1/2): 2

180.00 F= 82.222 C

22. To �nd value of π

Priniple: The value of π an be alulated using tan 45o = tan (π/4) = 1 as

follows.

π

4
= tan−1 1 = 1− 1

3
+

1

5
− 1

7
+ =

∞
∑

i=0

(−1)i
2i+ 1

Program:

x=[(-1)**i/(2.0*i+1) for i in range(100000)℄

pi=4*sum(x)

print 'The value of pi=%0.10f'%pi

When the program is run, the following output is obtained.

The value of pi=3.1415826536

1.12. PROBLEMS 27

Python keywords

Core Python has 30 keywords:

(1)and (2)as (3)break (4)lass (5)ontinue (6)def (7)del (8)elif (9)else (10)ex-

ept (11)�nally (12)for (13)from (14)global (15)if (16)import (17)in (18)is

(19)lambda (20)nonloal (21)not (22)or (23)pass (24)raise (25)return (26)as-

sert (27)try (28)while (29)with (30)yield

28 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Chapter 2

Advaned Python Programming

2.1 NumPy

2.1.1 Introdution

NumPy's main lass is the homogeneous multidimensional array alled ndarray. This

is a table of elements (usually numbers), all of the same data type. Eah element

is indexed by a tuple of positive integers. Examples of multidimensional array ob-

jets inlude vetors, matries, spreadsheets et. The term multidimensional refers to

arrays having several dimensions or axes. The number of axes is often alled rank

(not a tensor rank).

For example, the oordinates of a point in 3-D spae (x, y, z) is an array of rank

1. This also gives the position vetor of that point. The array ([1., 0., 0.], [0., 1., 2.])

is one of rank 2. It is equivalent to

(

1 0 0
0 1 2

)

(it is 2-dimensional). The �rst

dimension (rows) has a length of 2, the seond dimension(olumn) has a length of 3.

The array ([[1., 0.], 0.], [[0., 1.], 2.]) is one of rank 3. It is equivalent to

(

(1 0) 0
(0 1) 2

)

(it

is 3-dimensional).

2.1.2 Array reation

There are many ways to reate arrays. For example, you an reate an array from a

regular Python list or tuple using the array funtion.

29

30 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> a = array([2,3,4℄)

>>> a

array([2, 3, 4℄)

>>> type(a) # a is an objet of the ndarray lass

<type 'numpy.ndarray'>

The funtion array() transforms sequenes of sequenes into two-dimensional arrays,

and it transforms sequenes of sequenes of sequenes into three-dimensional arrays,

and so on. The type of the resulting array is dedued from the type of the elements in

the sequenes.

>>> b = array([(1.5,2,3), (4,5,6) ℄)

>>> b

array([[1.5, 2. , 3. ℄,

[4. , 5. , 6. ℄℄)

To reate an array whose elements are sequenes of numbers, NumPy provides a fun-

tion arange(x1, x2, dx) and returns x1, x1 + dx,, x2 − dx. It is analogous to range

funtion but aepts �oating point numbers also.

>>> arange(10, 30, 5)

array([10, 15, 20, 25℄)

>>> arange(0, 2, 0.3)

array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8℄)

array and arange are not the only funtions that reate arrays. Usually the elements

of the array are not known from the beginning, and a plaeholder array(empty array)

is needed. There are some funtions to reate arrays with some initial ontent. By

default, the type of the reated array is �oat64. The funtion zeros((m,n)) reates a

2-D array of m rows and n olumns with zeros as elements. Similarly the funtion

ones((m,n)) reates an array full of ones, the funtion empty((m,n)) reates an array

without �lling it in and the funtion random((m,n)) reates an array �lling it with

random numbers between 0 and 1. identity (n) reates an n-dimensional unit matrix.

Then the initial ontent is random and it depends on the state of the memory. In these

funtions the arguments m,n spei�es the size along eah axis of the array.

Using arange with �oating point arguments, it is generally not possible to predit

the number of elements obtained beause of the �oating point preision. Hene it is

better to use the funtion linspace(x1, x2, nx) whih returns equispaed nx numbers

from x1 to x2.

2.1. NUMPY 31

The general syntax of these funtions are empty (shape=, dtype=int) Return an

uninitialized array of data type, dtype, and given shape.

An array of zeros an be reated with a spei�ed shape using zeros() funtion.

zeros(shape=, dtype=):Return an array of data type dtype and given shape �lled with

zeros. An array of ones an be reated with a spei�ed shape using ones() funtion.

zeros(shape=, dtype=): Return an array of data type dtype and given shape �lled with

zeros. an identity matrix an be reated using identity() funtion

identity (n, dtype=int): Return a 2-d square array of shape (n,n) and data type, dtype

with ones along the main diagonal.

>>> empty((2,3))

array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260℄,

[5.30498948e-313, 3.14673309e-307, 1.00000000e+000℄℄)

>>> empty((2,3)) # the ontent may hange in different invoations

array([[3.14678735e-307, 6.02658058e-154, 6.55490914e-260℄,

[5.30498948e-313, 3.73603967e-262, 8.70018275e-313℄℄)

>>> zeros((3,4))

array([[0., 0., 0., 0.℄,

[0., 0., 0., 0.℄,

[0., 0., 0., 0.℄℄)

>>> ones((2,3,4), dtype=int16)

array([[[1, 1, 1, 1℄,

[1, 1, 1, 1℄,

[1, 1, 1, 1℄℄,

[[1, 1, 1, 1℄,

[1, 1, 1, 1℄,

[1, 1, 1, 1℄℄℄, dtype=int16)

>>> a=identity(4,dtype=float)

>>> a

array([[1., 0., 0., 0.℄,

[0., 1., 0., 0.℄,

[0., 0., 1., 0.℄,

[0., 0., 0., 1.℄℄)

>>> linspae(0, 2, 9)

array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ℄)

>>> x = linspae(0, 2*pi, 10)

>>> x

32 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

array([0. , 0.6981317 , 1.3962634 , 2.0943951 , 2.7925268 ,

3.4906585 , 4.1887902 , 4.88692191, 5.58505361, 6.28318531℄)

>>> f = sin(x)

array([0.00000000e+00, 6.42787610e-01, 9.84807753e-01,

8.66025404e-01, 3.42020143e-01, -3.42020143e-01,

-8.66025404e-01, -9.84807753e-01, -6.42787610e-01,

-2.44921271e-16℄)

Array attributes

The important attributes of any ndarray objet are:

1. b.ndim :It gives the rank of the array.

2. b.shape:It returns a tuple of integers indiating the size of the array in eah

dimension. For a matrix with m rows and n olumns, shape returns (m,n).

3. b.size. Returns the total number of elements in all dimensions of the array. This

is equal to the produt of the elements of shape ommand.

4. b.dtype Returns the data type of the elements in the array. NumPy provides the

following datatypes: bool,character, int,int8, int16, int32, int64, f loat,float8, f loat16, f l

5. b.itemsize: Returns the size in bytes of eah element of the array.For example,

an array of elements of type �oat64 has itemsize 8 (=64/8), while one of type

omplex32 has itemsize 4 (=32/8).

6. b.data: Returns the bu�er ontaining the atual elements of the array.

Example for these methods : We de�ne the following array:

>>> from numpy import *

>>> a = array([(0, 1, 2),(3, 2, 1)℄,)

>>>a.shape, a.ndim, a.size, a.itemsize, a.dtype

((2, 3), 2, 6, 4, 'dtype('int32'))

The type of the array an also be expliitly spei�ed at reation time:

>>> = array([[1,2℄, [3,4℄ ℄, dtype=omplex)

>>>

2.1. NUMPY 33

array([[1.+0.j, 2.+0.j℄,

[3.+0.j, 4.+0.j℄℄)

>>> .dtype

dtype('omplex128')

A frequent error onsists in alling array with multiple numeri arguments, rather than

providing a single list of numbers as an argument.

>>> a = array(1,2,3,4) # WRONG beause numbers within () are taken as arguements.

>>> a = array([1,2,3,4℄) \# RIGHT beause [1,2,3,4℄ is a single list.

2.1.3 Array modi�ation

The shape of an array an be hanged with various ommands:

ravel(),transpose(),reshape(m,n,...),resize(m,n,...)

Here (m,n,) is the size of the multidimensional array. For example

>>> from numpy import*

>>> a=array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄)

>>> a.ravel()

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11℄)

>>> a

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄) # No permanent hange to shape

>>> a.reshape(4,3)

array([[0, 1, 2℄,

[3, 4, 5℄,

[6, 7, 8℄,

[9, 10, 11℄℄)

>>> a

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄) # No permanent hange to shape

>>> a.resize(4,3)

>>> a

array([[0, 1, 2℄,

[3, 4, 5℄,

34 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

[6, 7, 8℄,

[9, 10, 11℄℄)

>>> a

array([[0, 1, 2℄,

[3, 4, 5℄,

[6, 7, 8℄,

[9, 10, 11℄℄) # Permanent hange to shape

>>> a.transpose()

array([[0, 3, 6, 9℄,

[1, 4, 7, 10℄,

[2, 5, 8, 11℄℄) # No permanent hange to shape

The reshape funtion returns its argument with a modi�ed shape, whereas the resize

method modi�es the array itself:

2.1.4 Printing arrays

When you print an array, NumPy displays it in a similar way to nested lists, but with

the following layout:

1. the last dimension is printed from left to right,

2. the last but one, from top to bottom,

3. and the rest, also from top to bottom, separating eah slie by an empty line.

One dimensional arrays are then printed as rows, two dimensional as matries and

three dimensional as lists of matries.

>>> a = arange(6)

>>> print a

[0 1 2 3 4 5℄

>>>

>>> b = arange(12).reshape(4,3)

>>> print b

[[0 1 2℄

[3 4 5℄

[6 7 8℄

[9 10 11℄℄

>>>

2.1. NUMPY 35

>>> = arange(24).reshape(2,3,4)

>>> print

[[[0 1 2 3℄

[4 5 6 7℄

[8 9 10 11℄℄

[[12 13 14 15℄

[16 17 18 19℄

[20 21 22 23℄℄℄

If an array is too large to be printed, NumPy automatially skips the entral part of

the array and only prints the orners:

>>> print arange(10000)

[0 1 2 ..., 9997 9998 9999℄

>>>

>>> print arange(10000).reshape(100,100)

[[0 1 2 ..., 97 98 99℄

[100 101 102 ..., 197 198 199℄

[200 201 202 ..., 297 298 299℄

...,

[9700 9701 9702 ..., 9797 9798 9799℄

[9800 9801 9802 ..., 9897 9898 9899℄

[9900 9901 9902 ..., 9997 9998 9999℄℄

2.1.5 Saving and restoring arrays

The simplest way to store arrays is to write it to a text �le as text using the numpy

funtion savetxt(). The array an be retrieved using the funtion genfromtxt(). The

syntax of these funtions are

savetxt(fname,array,fmt= ,delimiter=)

Here fname is the name of the �le to be reated and opened for writing, array is the

name of the array, fmt is the format spei�ation of the data to be stored, delimiter is

the harater used to distinguish elements of the array.

genfromtxt(fname,dtype=,omments=# ,delimiter= ,skiprows=). Here dtype is the

datatype of array elements and skiprows aepts a number whih refers to the number

of rows to skip from 0th row.

>>> b

36 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

array([[0., 1., 2., 3.℄,

[4., 5., 6., 7.℄,

[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

>>> savetxt('f1.txt',b,fmt='%8.6f',delimiter='&')

>>> savetxt('f2.txt',b,fmt='%8.4f',delimiter=' ')

When f1.txt and f2.txt are opened in a text editor, the ontents of the file will be as follows

f1.txt

0.000000 &1.000000 &2.000000 &3.000000

4.000000 &5.000000 &6.000000 &7.000000

8.000000 &9.000000 &10.000000&11.000000

12.000000&13.000000&14.000000&15.000000

f2.txt

0.0000 1.0000 2.0000 3.0000

4.0000 5.0000 6.0000 7.0000

8.0000 9.0000 10.0000 11.0000

12.0000 13.0000 14.0000 15.0000

>>> genfromtxt('f1.txt',dtype='float')

array([[0., 1., 2., 3.℄,

[4., 5., 6., 7.℄,

[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

>>> genfromtxt('f1.txt',skiprows=2)

array([[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

If the arrays are too large, saving them in text format onsumes large volume of

memory. In that ase they an be saved in binary format.

>>> from numpy import *

>>> a=genfromtxt('f1.txt')

>>> save('f3.npy',a)

When the file f3.npy is opened in a word proessor, the following output is obtained.\\

ï¾

1
2
NUMPY##F#{'desr': '<f8', 'fortran_order': False, 'shape': (4, 4), }

##############ï¾

1
2
?#######�#######�#######�#######�#######�#######�###### �######"�######$�######&�######(�######*�######,�######.�

>>> b=load('f3.npy')

>>> b

2.1. NUMPY 37

array([[0., 1., 2., 3.℄,

[4., 5., 6., 7.℄,

[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

Basi Arithmeti Operations on arrays

Arithmeti operators apply elementwise on arrays. A new array is reated and �lled

with the result.

>>> a = array([20,30,40,50℄)

>>> b = arange(4)

>>>b

array([0,1,2,3℄)

>>> = a-b

>>>

array([20, 29, 38, 47℄)

>>> b**2

array([0, 1, 4, 9℄)

>>> 10*sin(a)

array([9.12945251, -9.88031624, 7.4511316 , -2.62374854℄)

>>> a<35

array([True, True, False, False℄, dtype=bool)

>>> i = identity(3)

>>> i

array([[1, 0, 0℄,

[0, 1, 0℄,

[0, 0, 1℄℄)

>>> i + i # add element to element

array([[2, 0, 0℄,

[0, 2, 0℄,

[0, 0, 2℄℄)

>>> i + 4 # add a salar to every entry

array([[5, 4, 4℄,

[4, 5, 4℄,

[4, 4, 5℄℄)

>>> a = array(range(1,10)).reshape(3,3)

>>> a

array([[1, 2, 3℄,

[4, 5, 6℄,

[7, 8, 9℄℄)

38 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> i * a # element to element

array([[1, 0, 0℄,

[0, 5, 0℄,

[0, 0, 9℄℄)

>>> x = array([1,2,3℄)

>>> x

array([1, 2, 3℄)

>>> y = array([[4℄, [5℄, [6℄ ℄)

>>> y

array([[4℄,

[5℄,

[6℄℄)

>>> x + y

array([[5, 6, 7℄,

[6, 7, 8℄,

[7, 8, 9℄℄)

#This is equivalent to ([[1,2,3℄,[1,2,3℄,[1,2,3℄℄+

#([[4,4,4℄,[5,5,5℄,[6,6,6℄℄)

>>> x*y

array([[4, 8, 12℄,

[5, 10, 15℄,

[6, 12, 18℄℄)

>>> x/y

array([[0, 0, 0℄,

[0, 0, 0℄,

[0, 0, 0℄℄)

>>> y/x

array([[4, 2, 1℄,

[5, 2, 1℄,

[6, 3, 2℄℄)

>>> x%y

array([[1, 2, 3℄,

[1, 2, 3℄,

[1, 2, 3℄℄)

>>> y%x

array([[0, 0, 1℄,

[0, 1, 2℄,

[0, 0, 0℄℄)

>>> x**y

array([[1, 16, 81℄,

[1, 32, 243℄,

[1, 64, 729℄℄)

>>> s=arange(1,6,1)

2.1. NUMPY 39

>>> s

array([1, 2, 3, 4, 5℄)

>>> s.sum() #sum of all elements

15

>>> s.prod() # produt of all elements

120

>>> s.mean() # Mean of all elements

3.0

>>> s.var() #Variane

2.0

>>> s.std() #Standard deviation

1.4142135623730951

2.1.6 Indexing, Sliing and Iterating

One dimensional arrays an be indexed, slied and iterated over like lists and other

Python sequenes.

>>> a = arange(10)**3

>>> a

array([0, 1, 8, 27, 64, 125, 216, 343, 512, 729℄)

>>> a[2℄

8

>>> a[2:5℄

array([8, 27, 64℄)

>>> a[:6:2℄ = -1000 \# modify elements in a

>>> a[::-1℄ \# reversed a

array([729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000℄)

>>> for i in a: print i**(1/3.),

nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0

2.1.7 Arrays as matries

As the produt operator '*' operates elementwise (produt of orresponding elements)

in NumPy arrays, the matrix produt (cij =
∑

k aikbkj) an be found using the dot

funtion. It also gives the dot produt of two vetors.The funtion inner (x,y) omputes

the inner produt (zij =
∑

k xik.yjk) between two arrays. For 1-D arrays dot and inner

funtions give the same result. Similarly a ross funtion is de�ned whih returns the

40 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

ross produt of two vetors. outer (x, y) omputes an outer produt of two vetors

(zij = xi.yj). In matrix lass to reate matries mat method and matrix method

are de�ned.mat(data, dtype=),matrix(data, dtype=). This data an be any list, tuple,

string or array . This funtion interprets the input as a matrix.

>>> from numpy import*

>>> mat(range(2,7))

matrix([[2, 3, 4, 5, 6℄℄)

>>> a,b=mat([[1,2℄,[3,4℄℄),mat('1,2;3,4')

>>> a

matrix([[1, 2℄,

[3, 4℄℄),

>>> b

matrix([[1, 2℄,

[3, 4℄℄)

>>> r=mat('1,2,3,4')

>>> r

matrix([[1, 2, 3, 4℄℄) # Row matrix

>>> =mat('1;2;3;4')

>>>

matrix([[1℄,

[2℄,

[3℄,

[4℄℄) # olumn matrix

>>> k=arange(15).reshape(3,5)

>>> k

array([[0, 1, 2, 3, 4℄,

[5, 6, 7, 8, 9℄,

[10, 11, 12, 13, 14℄℄)

>>> k=mat(k) #array k beomes 3X5 matrix k

>>> t=transpose(k) # transposed 5X3 matrix

>>>l

matrix([[0, 5, 10℄,

[1, 6, 11℄,

[2, 7, 12℄,

[3, 8, 13℄,

[4, 9, 14℄℄))

>>> k*t #It must be a 3X3 matrix

matrix([[30, 80, 130℄,

[80, 255, 430℄,

[130, 430, 730℄℄)

2.1. NUMPY 41

>>> dot(k,t)

matrix([[30, 80, 130℄,

[80, 255, 430℄,

[130, 430, 730℄℄)

>>> t.fill(3)

>>> t

array([[3, 3, 3℄,

[3, 3, 3℄,

[3, 3, 3℄,

[3, 3, 3℄,

[3, 3, 3℄℄)

>>> s=range(1,6)

>>> m= mat(s)

>>> m

matrix([[1, 2, 3, 4, 5℄℄) #The two square brakets are there as most of the matries are 2-D

>>> n=matrix(range(1,6))

>>> n

matrix([[1, 2, 3, 4, 5℄℄)

>>> x=[1,2,3℄

>>> y=[3,2,1℄

>>> dot(x,y) # like dot produt of vetors

10

>>> ross(x,y) # like ross produt of vetors

array([-4, 8, -4℄)

>>> inner([1,2,3℄,[10,100,1000℄)

3210 # 1.10+2.100+3.1000

>>> a=arange(9).reshape(3,3)

>>> b=a.T # another method to find transpose.

>>> a

array([[0, 1, 2℄,

[3, 4, 5℄,

[6, 7, 8℄℄)

>>> b

array([[0, 3, 6℄,

[1, 4, 7℄,

[2, 5, 8℄℄)

>>> inner(a,b) #Ordinary inner produt of vetors for 1-D arrays (without omplex onjugation), in higher dimensions a sum

produt over the last axes.

array([[15, 18, 21℄,

[42, 54, 66℄,

[69, 90, 111℄℄)

42 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

It is possible to perform inrement and derement operations without reating new arrays.

>>> a = ones((2,3), dtype=int) #integer array

>>> b = random.random((2,3)) #float array

>>> a *= 3

>>> a

array([[3, 3, 3℄,

[3, 3, 3℄℄)

>>> b += a

>>> b

array([[3.69092703, 3.8324276 , 3.0114541 ℄,

[3.18679111, 3.3039349 , 3.37600289℄℄)

>>> a += b \# b is onverted to integer type

>>> a

array([[6, 6, 6℄,

[6, 6, 6℄℄)

When operating with arrays of di�erent numeri data types, the type of the resulting

array orresponds to the more general or preise one.

>>> a = ones(3, dtype=int32)

>>> b = linspae(0,pi,3)

>>> b.dtype.name

float64

>>> = a+b

>>>

array([1. , 2.57079633, 4.14159265℄)

>>> .dtype.name

'float64'

>>> d = exp(*1j)

>>> d

array([0.54030231+0.84147098j, -0.84147098+0.54030231j,

-0.54030231-0.84147098j℄)

>>> d.dtype.name

'omplex128'

Many unary operations, like omputing the sum of all the elements in the array, are

implemented as methods of the ndarray lass.

>>> a = random.random((2,3))

>>> a

array([[0.6903007 , 0.39168346, 0.16524769℄,

2.1. NUMPY 43

[0.48819875, 0.77188505, 0.94792155℄℄)

>>> a.sum()

3.4552372100521485 #sum of all elements

>>> a.min()

0.16524768654743593

>>> a.max()

0.9479215542670073

By default, these operations apply to the array as if it were a list of numbers, regardless

of its shape. However, by speifying the axis parameter you an apply an operation

along the spei�ed axis(dimension) of an array:

>>> b = arange(12).reshape(3,4)

>>> b

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄)

>>>

>>> b.sum(axis=0) # Give sum as a 1-D array(sum of eah olumn)

array([12, 15, 18, 21℄)

>>> b.sum(axis=1) # Give sum as a 1-D array(sum of eah row)

array([6, 22, 38℄)

>>> b.min(axis=1) # minimum of eah row

array([0, 4, 8℄)

>>> b.min(axis=0) # minimum of eah olumn

array([0,1,2,3℄)

>>> p.max(axis=0)

matrix([[12, 13, 14, 15℄℄)

>>> b.umsum(axis=1) # umulative sum along the rows

array([[0, 1, 3, 6℄,

[4, 9, 15, 22℄,

[8, 17, 27, 38℄℄)

>>> p=arange(16).reshape(4,4)

>>> p

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄,

[12, 13, 14, 15℄℄)

>>> trae(p)

30

>>> p=mat(p)

44 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> p

matrix([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄,

[12, 13, 14, 15℄℄)

>>> trae(p)

30

2.1.8 Arrays as polynomial oe�ients

There are four methods de�ned in polynomial lass to reate and manipulate polyno-

mials.

1. poly1d(, r, v): reates a one-dimensional polynomial. Here c represents an array
or list. If r is True, c represents roots of the polynomial. If r is False (whih is

the default), polynomial oe�ients zeroth element orresponding to the highest

power of variable. v is the harater to be used as polynomial variable.

>>> =[3,1,-1,-3℄

>>> p=poly1d()

>>> print p

3 2

3 x + 1 x - 1 x - 3

>>> p1=poly1d(,True)

>>> print p1

4 2

1 x - 10 x + 9

>>> p2=poly1d(,False,'y')

>>> print p2

3 2

3 y + 1 y - 1 y - 3

2. polyval(p, x): Here p is the polynomial and x is the value at whih p is to be

evaluated. The polynomial value at x is returned. For polynomials de�ned above

>>> polyval(p2,2)

23

>>> polyval(p1,2)

-15

2.1. NUMPY 45

>>> polyval(p,2)

23

3. poly(s): This funtion returns the oe�ients of the polynomial with the s as the
set of roots in the form of an array.

>>> d=[0,0℄

>>> poly(d)

array([1, 0, 0℄) #x*x=0

>>> d=[1,-1,2℄

>>> f=poly(d) #(x-1)(x+1)(x-2)

>>> f

array([1, -2, -1, 2℄)

>>> print poly1d(f)

3 2

1 x - 2 x - 1 x + 2

4. roots(p): Returns the roots of polynomial p

>>> g=[1,-2,-1,2℄

>>> p=poly1d(g)

>>> roots(p)

array([-1., 2., 1.℄)

Roots an also be found using the following ommand.

>>> p.r

array([-1., 2., 1.℄)

2.1.9 Linear Algebra

The linear algebra module is a sublass of numpy. It is alled linalg. A few funtions

are de�ned in the NumPy.linalg sub-pakage. The important funtions are

1. norm(x): Returns norm of a vetor x, norm =
√

∑

i x
2
i

2. det(a): Returns determinant of a square matrix

3. inv(a): Returns inverse of a non-singular square matrix

4. pinv(a): Returns pseudoinverse of a singular square matrix. For invertible ma-

tries, this is the same as the inverse.

5. solve(a,y): Returns the solution vetor x to the linear equation ax = y

46 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

6. eig(a):Return all solutions (λ, x) to the equation ax = λx. The �rst element of

the return tuple ontains all the eigenvalues. The seond element of the return

tuple ontains the eigenvetors (ith eigenvetor as ith olumn).

7. eigvals(a): Returns all eigenvalues of square matrix a as an array

8. eigh(h): Return all solutions (λ, x) to the equation hx = λx where h is a hermitian

matrix.

9. eigvalsh(h):Returns all eigenvalues of hermitian matrix h as an array

These are also inluded in the sub-pakage numpy.dual.

Let a be a square matrix

1 1 2
−1 0 1
2 3 0

. It is reated as

>>> from numpy import*

>>> from numpy.linalg import*

>>> a=array([[1,0,1℄,

[2,1,0℄,

[0,2,4℄℄)

>>> det(a)

8.0

>>> inv(a)

array([[0.5 , 0.25 , -0.125℄,

[-1. , 0.5 , 0.25 ℄,

[0.5 , -0.25 , 0.125℄℄)

>>> eigvals(a)

array([0.8223493+1.07730381j, 0.8223493-1.07730381j, 4.3553014+0.j℄)

>>> eig(a)

(array([0.8223493+1.07730381j, 0.8223493-1.07730381j, 4.3553014+0.j ℄),

#eigenvalues

array([[-0.06908062+0.41891651j, -0.06908062-0.41891651j, 0.28156897+0.j ℄,

[0.77771286+0.j , 0.77771286+0.j , 0.16783528+0.j ℄,

[-0.43902814-0.14884162j, -0.43902814+0.14884162j, 0.94474877+0.j ℄℄))

Three eigenvetors

To solve the simultaneous equations

2x+ 3y + 4z = 8, 3x+ 4y + 5z = 10, 4x− 5y + 6z = 32

2.1. NUMPY 47

>>> a=mat('2,3,4;3,4,5;4,-5,6') # The oeffiient matrix

>>> a

matrix([[2, 3, 4℄,

[3, 4, 5℄,

[4, -5, 6℄℄)

>>> s=mat('8;10;32') # Constant vetor S in matrix equation AX=S

>>> s

matrix([[8℄,

[10℄,

[32℄℄)

>>> b=solve(a,s)

>>> b

matrix([[1.℄,

[-2.℄,

[3.℄℄)

48 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

Chapter 3

Plotting and visualization

3.1 Matplotlib

Graphs, harts, surfae plots et are visual presentations of numerial data. It is useful

to ompare, ontrast, detet trends, predit and omprehend huge amounts of data.

Di�erent Python modules are used for generating two and three dimensional graphs.

3.1.1 The Matplotlib Module

The python pakage Matplotlib produes graphs and �gures in di�erent hardopy for-

mats like jpeg, bmp, eps, png et. Most of the funtions of NumPy andmatplotlib.pyplot

are de�ned in the module pylab also. It also provides many funtions for matrix ma-

nipulation. The data for plotting are supplied as Python lists or Numpy arrays. This

module ontains a lot of methods for plotting and annotating graphs. Some of these

methods are used frequently in sienti� omputing. They are listed below with exam-

ples.

1. plot()Funtion: The general format is

plot(x, y, color =, linestyle =, marker =, markerfacecolor =, markersize =)

x,y are lists or arrays, olor olor of graph, linestyle spei�es dashedline('�'),solid

line('-'), dotted line (':') et., markermarking data points on the graph ('.','*'),

markerfaeolor the olor of marker and markersize is the size of marker.

2. show(): Sends graphi output to the sreen.

49

50 CHAPTER 3. PLOTTING AND VISUALIZATION

3. xlabel(�): � is name of variable plotted along x-axis.

4. ylabel(�): � is name of variable plotted along y-axis.

5. title(�): � is name of Graph.

6. legend(names,lo=): The names of di�erent urves as a list or tuple of strings,

lo is the loation in the graph where the legend must appear. Upper right, lower

left et. lo=0 �ts the legend at the most onvenient loation.

7. grid(True): Shows grid lines if True

8. axis(z): Used to set or get the axis properties.

axis() Returns the urrent axes limits [xmin, xmax, ymin, ymax℄.

axis(z):Sets the min and max of the x and y axes, with z = [xmin, xmax, ymin,

ymax℄.

axis('o�'): Removes the axis lines and labels.

axis('equal'): Changes limits of x or y axis so that equal inrements of x and y

have the same length so that a irle will appear irular.

9. �gure()

figure(num, figsize = (w, h), dpi = N, facecolor =′ b′, edgecolor =′ k′)

num is an integer variable. This funtion reates a new �gure if �gure(num)

does not exist. If it already exists, it beomes ative. �gsize=(w,h) is a tuple

of width and height in inhes, dpi=N reates �gure with resolution N dots per

square inh, faeolor sets the bakgroundolor edgeolor sets the border olor.

All arguments exept the �rst are optional.

10. subplot(m, n, N): Where m is the number of rows, n number of olumns and

N = 1 is the �rst plot number and inreasing N �ll rows �rst. Nmax = m× n

11. text(x,y,'string') Writes 'string' at (x, y) with respet to bottom-left orner as

origin and saled as in the �gure.

12. bar(left, height, width=0.8, bottom=0,olor=None, edgeolor=None, linewidth=None,yerr=None,

xerr=None, eolor=None, apsize=3,align='edge', orientation='vertial', log=False)

Make a bar plot with retangles representing the two arrays left, height bounded

by left, left + width, bottom, bottom + height with optional arguments whose

default values are given.

13. barh()Like bar() exept that the bars are horizontal.

14. ontour()For plotting impliit funtions.

15. ontourf()For olor-�lled plotting of impliit funtions.

3.1. MATPLOTLIB 51

16. loglog()Make a plot with log saling on the x and y axis. It supports all the

keyword arguments of plot() funtion.

17. semilogx() Graph with x-axis plotted in log sale. It supports all the keyword

arguments of plot() funtion.

18. semilogy()Graph with y-axis plotted in log sale.

19. ogrid[minx:maxx:nxj,miny:maxy:nyj℄Creates a grid of nx x-vlues in the range

(xmin,xmax)and ny y-values in the range (ymin,ymax).eg. x,y=ogrid[1:10:100j,5:15:150j℄

20. pie()pie(x, explode=None, labels=None, olors=None, autopt=None, ptdistane=0.6,shadow=False,

labeldistane=1.1, hold=None) Makes a pie hart of array x. The frational area

of eah wedge is given by x/sum(x). If sum(x) <= 1, then the values of x give

the frational area diretly and the array will not be normalized.

21. polar(theta, r, args) Make a polar plot. theta and r are lists or arrays. Multiple

theta, r arguments are supported, with format strings, as in plot().

22. satter(x, y, s=20, ='b', marker='o', map=None, norm=None,vmin=None,

vmax=None, alpha=1.0, linewidths=None,verts=None, **kwargs)Make a satter

plot of x versus y, where x, y are onverted to 1-D sequenes whih must be of

the same length,N .

Examples

from matplotlib.pyplot import*

from numpy import*

subplot(2,2,1)

plot([1,2,3,4℄,'*-')

subplot(2,2,2)

plot([4,2,3,1℄,'^-')

subplot(2,2,3)

plot([4,3,2,1℄,'^-')

subplot(2,2,4)

plot([2,4,3,1℄,'^-')

show()

52 CHAPTER 3. PLOTTING AND VISUALIZATION

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

Polar plots: Polar oordinates loate a point on a plane with one distane and

one angle. The distane `r' is measured from the origin. The angle θ is measured

from positive diretion of x-axis in the anti-lokwise sense. Plotting is done using

polar(theta, radius, format string) funtion. An example is given below.

Polar rhodonea A rhodonea or rose urve is a sinusoid r = sin (nθ) where n is a

onstant. If n is an integer the urve will have 2n 'petals' and n 'petals' if n is odd.

If n is a rational number(=p/q, p,q integers), then the urve is losed and has �nite

length. If n is an irrational number, then it is losed and has in�nite length.

from matplotlib.pyplot import*

from numpy import*

n=2

th = linspae(0, 10*pi,1000)

r = sin(n*th)

polar(th,r)

show()

3.1. MATPLOTLIB 53

0�

45�

90�

135�

180�

225�

270�

315�

0.2
0.4

0.6
0.8

1.0

Pie Charts: A pie hart is a irular hart in whih a irle is divided into setors.

Eah setor visually represents an item in a data set to math the perentage or fration

of the item in the total data set. Pie harts are useful to ompare di�erent parts of

a whole amount. They are often used to present �nanial information. The funtion

pie(list of perentages or frations , labels=list of labels) produes a pie hart. Both

the lists must have the same length.

from matplotlib.pyplot import*

from numpy import*

labs = ['A+', 'A', 'B+', 'B', 'C+', 'C','D'℄

fras = [5,8,18, 19, 20,17,14℄

pie(fras, labels=labs)

show()

A+

A

B+

B

C+

C

D

Parametri plots: A parametri plot is a visual desription of a set of parametri

equations. If x and y are both funtions of a variable t, then they reate a set of

parametri equations. For example, the two equations y = t sin t2 and x = t cos t2 form
a set of parametri equations in whih y and x are funtions of t, the graph of whih

will be in this form.

from matplotlib.pyplot import*

from numpy import*

54 CHAPTER 3. PLOTTING AND VISUALIZATION

t=arange(0,6.3,0.001)

x=t*os(t*t)

y=t*sin(t*t)

plot(x,y)

show()

�6 �4 �2 0 2 4 6 8�8

�6

�4

�2

0

2

4

6

8

2-D plots in olours: Two dimensional matrix an be represented graphially by

assigning a olor to eah point proportional to the value of that element. The funtion

imshow(matrix) is employed to reate suh plots.

from matplotlib.pyplot import*

from numpy import*

m=linspae(0,1,900).reshape(30,30)

imshow(m)

show()

0 5 10 15 20 25

0

5

10

15

20

25

3.1. MATPLOTLIB 55

3.1.2 Plotting mathematial funtions

sine funtion:

from pylab import*

x=linspae(0,2*pi,200)

y=sin(x)

plot(x,y)

xlabel('x')

ylabel('sin(x)')

title('Plot of sine funtion')

grid(True)

show()

Logarithm funtion: Logarithm funtion log(x) gives logarithm of a variable to the

base exponential e.

from pylab import*

x=linspae(0,200,200)

y=log(x)

plot(x,y)

xlabel('x')

ylabel('log(x)')

title('Plot of log funtion')

grid(True)

show()

Exponential funtion: Exponential funtion exp(x) gives ex of a variable x.

from pylab import*

x=linspae(0,5,200)

y=exp(x)

plot(x,y)

xlabel('x')

ylabel('exp(x)')

title('Plot of exponential funtion')

grid(True)

show()

56 CHAPTER 3. PLOTTING AND VISUALIZATION

Gaussian funtion: Gaussian funtion is given by y = exp(−x2) gives ex of a vari-

able x.

from pylab import*

x=linspae(-5,5,200)

y=exp(-x**2)

plot(x,y)

xlabel('x')

ylabel('gaussian(x)')

title('Plot of Gaussian funtion')

grid(True)

show()

Gamma funtion: The gamma funtion is de�ned by the integral

Γ(x) =

∫

∞

0

tx−1e−tdt

and satis�es the reurrene relation

Γ(x+ 1) = xΓ(x)

and re�etion formula

Γ(x)Γ(1− x) = π

sin πx

Γ(1 + x)Γ(1 − x) = πx

sin (πx)

Γ(1− x) = πx

Γ(1 + x) sin (πx)

It an be used to alulate Γ-funtions less than 1. Sine sin (πx) is zero for integer

x, Γ-funtion is unbounded for negative integers but not for negative frations. The

following approximation method,derived by Lanzos, is employed for alulating the

Γ-funtion numerially. For x > 0,

Γ(1 + x) = kk−5e−k
√
2π

(

a0 +
a1

x+ 1
+

a2
x+ 2

+ +
an

x+ n
+ ǫ

)

where k = x+ 5.5, ǫ the error term and ai expansion oe�ients. For |ǫ| < 2× 10−10
,

n = 6 is su�ient. The oe�ients are given by

a0 = 1.00002746310005, a1 = 76.18009172947146
a2 = −86.50532032941677, a3 = 24.01409824083091
a4 = −1.231739572450155, a5 = 1.208650973866179× 10−3,
a6 = −5.395239384953× 10−6

ln Γ(1 + x) = ln(kk−5)− k + ln(
√
2π) + ln

(

a0 +
a1

x+ 1
+

a2
x+ 2

+ +
an

x+ n

)

3.1. MATPLOTLIB 57

ln Γ(x) = ln (kk−5)− k + ln

[√
2π

x

(

a0 +
a1

x+ 1
+

a2
x+ 2

+ +
an

x+ n

)

]

But reasonable auray an be ahieved by just taking the �rst �ve terms and ap-

proximating elements of a to 2 deimal plaes.

from pylab import*

def gamma(x0):

a=[1,76.18,-86.505,24.014,-1.232℄

k=x0+5.5

s=(k-5)*log(k)-k

s1=a[0℄

for i in range(1,5):

s1+=a[i℄/(x0+i)

return exp(s+log(sqrt(2*pi)*s1/x0))

p=linspae(-5,6,1000)

z=gamma(p)

plot(p,z)

axis([-5,7,-1,150℄)

xlabel('x')

ylabel('Gamma funtion')

title('Plot of Gamma funtion')

grid(True)

show()

−4 −2 0 2 4 6
x

0

20

40

60

80

100

120

140

Ga
m

m
a

fu
nc

tio
n

Plot of Gamma function

58 CHAPTER 3. PLOTTING AND VISUALIZATION

Polynomial Evaluation: Legendre Funtion Legendre funtions Pn(x) are de-

�ned through a generating funtion as

1√
1− 2xt+ t2

=
∞
∑

n=0

Pn(x)t
n

where |t| ≤ 1 The zeroth term (n = 0) of the expansion is 1 = P0(x)t
0
Hene P0(x) = 1

for all x. Expanding left side as a binomial series and equating oe�ient of t on both

sides, xt = P1(x)t or P1(x) = x for all x. Di�erentiating and equating oe�ients of tn

on both sides one gets

Pn+1(x) =
(2n+ 1)xPn(x)− nPn−1(x)

n+ 1

This is a reurrene relation whih may be used for alulating Legendre polynomials

of any order.

from pylab import*

def legendre(m,z):

p0,p1=1,z

if m==0:p=p0

if m==1:p=p1

if m>1:

for i in range(1,m):

p=((2*i+1)*z*p1-i*p0)/(i+1)

p0,p1=p1,p

return(p)

n=input('Give Order n of Legendre funtion')

x=linspae(-1,1,200)

y=legendre(n,x)

plot(x,y)

xlabel('x')

ylabel('Legendre funtion')

title('Plot of Legendre Polynomial for n=5')

grid(True)

show()

3.1. MATPLOTLIB 59

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

Le
ge

nd
re

 fu
nc

tio
n

Legendre Polynomial for n=5

−6 −4 −2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

Be
ss

el
 fu

nc
tio

n

Bessel function for n=2

Polynomial Evaluation: Bessel's Funtion The Bessel funtion of order n for a

variable x is given by the series

Jn(x) =
∞
∑

s=0

(−1)s
s!(n+ s)!

(x

2

)2s+n

The zeroth term (s = 0) of the expansion is

1

n!

(x

2

)n

. The ratio of the pth and

(p − 1)th term of the expansion is

−1
p(n + p)

(x

2

)2

. Using these results Bessel funtion

of any order an be alulated for any desired auray.

from pylab import*

def bessel(m,z):

z/=2.0

60 CHAPTER 3. PLOTTING AND VISUALIZATION

fatorial=1

for i in range(1,n+1):fatorial*=i

term=[z**n/fatorial℄

for i in range(1,10):

term.append(-term[i-1℄*z*z/(i*(i+n)))

return sum(term)

n=input('Give Order n of Bessel funtion : ')

x=linspae(-5.0,5.,1000)

y=[bessel(n,i) for i in x℄

plot(x,y)

xlabel('x')

ylabel('Bessel funtion')

title('Plot of Bessel funtion for n=2')

grid(True)

show()

Chapter 4

Numerial Analysis

4.1 Numerial methods

4.1.1 Inverse of a funtion

Inverse funtions are often used in physis. For example, onsider the length L of

the merury olumn in a apillary tube as funtion of temperature T . L = f(T).
When it is used as a thermometer, the length of the merury pellet is measured and

the temperature is inferred from it using the formula T = f−1(L). Similarly, in a

piezoeletri rystal, the voltage V developed is a funtion of stress S applied. V =
f(S). In a strain gauge, this voltage is measured to estimate the load W plaed on

it. W = Af−1(V) where A is the surfae area of the rystal on whih the load applies

stress. If a funtion represents a priniple, in general, its appliation employs the

inverse funtion.

De�nition 1 (Funtion) For every x in a set X, if an objet f maps exatly one

element y in set Y then f is alled a funtion with domain X, and o-domain or range

Y .

It is represented as

∀x ∈ X, y ∈ Y, f : x→ y

y is alled the image and x, the preimage. If there is more than one preimage for a

given image, then f is alled an onto mapping. For example, f : x→ y has the expliit
form y = x2, then image y is the same for all ±x in the domain X . If for every image,

there is a unique preimage, f is a one-to-one mapping. For example, f : x → y has

61

62 CHAPTER 4. NUMERICAL ANALYSIS

the expliit form y = x3, then image y is the unique for every x in the domain X . In

terms of domain and o-domain sets f : X → Y .

De�nition 2 (Inverse Funtion) If f is a funtion whose domain is the set X, and

range is the set Y and there exists a funtion g with domain Y and range X, with the

property

∀x ∈ X, f(x) = y ∈ Y if and only if ∀y ∈ Y, g(y) = x

then g is alled inverse of f .

The funtion f sends all elements of the the domainX to the range Y . If f is invertible,

the funtion g is unique. There is exatly one funtion g satis�es this property. Funtion
g is alled the inverse of f , denoted formally as f−1

. (6= 1/f). Sine f implies unique

y for eah x and g implies unique x for eah y, the two mappings f and g must be

one-to-one. This is a neessary ondition for f to have an inverse.

Test to hek whether a funtion is one-to-one: It is alled the horizontal line

test. If no line parallel to x-axis intersets the graph of the funtion y = f(x) at more

than one point, that funtion is one-to-one.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

20

40

60

80

100

f(x
)

one-to-one function

onto function

Method of �nding inverse

There are di�erent methods of �nding inverse funtion.

4.1. NUMERICAL METHODS 63

Algebrai method: The algorithm for �nding an inverse funtion g for f(x) alge-
braially involves the following steps.

1. Chek whether f is a one-to-one mapping.

2. Put f(x) = y

3. Swap the x and y variables

4. Solve for y. It gives f−1(x)

5. Verify that f−1(f(x)) = x or f(f−1(x)) = x

Example 1 Find inverse of f(x) = 3x+ 4

1. f is a one-to-one funtion.

2. Put 3x+ 4 = y

3. Swap variables: 3y + 4 = x

4. solve for y: y = (x− 4)/3 = f−1(x)

5. f(f−1(x)) = 3 ∗ [(x− 4)/3] + 4 = x

Hene inverse funtion is f−1(x) = (x− 4)/3

Problem 1 Find inverse of f(x) = (x+ 1)/x

Answer:f−1(x) = 1/(x− 1)

Problem 2 Find inverse of f(x) = log x

Answer:f−1(x) = ex

Problem 3 Find inverse of f(x) = (x+ 1)/x

Answer:f−1(x) = 1/(x− 1)

64 CHAPTER 4. NUMERICAL ANALYSIS

Swapping method: Often the experimental data related through some funtion will

be in the form of ordered pairs formed from tables.

x x1 x2 x3 x4 x5 x6 x7 x8 x9
y = f(x) y1 y2 y3 y4 y5 y6 y7 y8 y9
Then f(x) may be expressed as ordered pairs f(x) : (xi, yi)), i = 1, 2, 3... Here

f(x) : (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8)(x9, y9)

If ∀i, j, xi 6= xj , and yi 6= yj , then the funtion f(x) is one-to-one. Its inverse will exist
and an be obtained by simply swapping x and y values.

f−1(x) : (y1, x1), (y2, x2), (y3, x3), (y4, x4), (y5, x5), (y6, x6), (y7, x7), (y8, x8)(y9, x9)

In tabular form, it will appear as

x y1 y2 y3 y4 y5 y6 y7 y8 y9
f−1(x) x1 x2 x3 x4 x5 x6 x7 x8 x9

Example 2 Find the inverse of the funtion

x 1 -2 -1 0 2 3 4 -3

f(x) 2 0 3 -1 1 -2 5 1

Swapping x and y, we get the inverse funtion as x and y never repeats among them-

selves.

f−1(x) = (2, 1), (0,−2), (3,−1), (−1, 0), (1, 2), (−2, 3), (5, 4), (1,−3)

Graphial method: The basi priniple is that the graph of an inverse relation is

the re�etion of the graph of original relation on the identity line (slope=1),y = x.

Example 3 The funtion f(x) = 2x+1 has f−1(x) = (x−1)/2. Plots are given below

4.1. NUMERICAL METHODS 65

−3 −2 −1 0 1 2 3 4 5
x

−3

−2

−1

0

1

2

3

4

5

y

f(x) =2x+1

f(x) =x

g(x) =f−1 (x) =(x−1)/2

Often it is neessary to re-

strit the domain on ertain funtions to guarantee that the inverse relation is also a

funtion.

Example 4 For example if y = ax2 is the funtion, then it is one-to-one only for

x > 0.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

f(x) =x2

f(x) =x

g(x) =f−1 (x) =
√
x

1

1

Note that all graphs will not produe an inverse relation whih is also a funtion.

66 CHAPTER 4. NUMERICAL ANALYSIS

4.1.2 Interpolation with Cubi Spline

Real world numerial data is usually di�ult to analyse. Any funtion whih would

e�etively orrelate the data would be di�ult to obtain and highly unwieldy. To this

end, the idea of the ubi spline was developed. Using this proess, a series of unique

ubi polynomials are �tted between eah of the data points, with the stipulation that

the urve obtained be ontinuous and appear smooth. These ubi splines an then be

used to determine rates of hange and umulative hange over an interval.

Theory:

x0 x1 x2 xn

y0 y1 yn

y

x

Let there be (n + 1) data points (xi, yi), i = 0, 1, 2, ...n. The essential idea is to �t a

pieewise funtion of the form

P(x) =

p0(x) x0 ≤ x < x1

p1(x) x1 ≤ x < x2

... ...

pn−1(x) xn−1 ≤ x < xn

where eah pi(x) is a ubi polynomial of the form

p(x) = a3(x− xi)3 + a2(x− xi)2 + a1(x− xi) + a0

. To make the interpolation ontinuous, smooth and well-behaved, we impose the

following onditions

1. The pieewise funtion P(x) will interpolate all data points. That is P(xi) =
pi(xi) = yi

4.1. NUMERICAL METHODS 67

2. P(x) will be ontinuous on the interval (x0, xn). That is pi(xi) = pi−1(xi)

3. The �rst derivative P′(x) will be ontinuous on the interval (x0, xn). that is,

p′i(xi) = p′i−1(xi)

4. The seond derivativeP”(x) will be ontinuous on the interval (x0, xn). That is,
p′′i (xi) = p′′i−1(xi)

The seond derivative of a ubi polynomial is of degree one (a straight line). For the

�rst pair of points (x0, y0), (x1, y1) the following form may be hosen.

p′′0(x) = a0
x− x1
x0 − x1

+ a1
x− x0
x1 − x0

a0 and a1 are then given by

p′′0(x0) = a0, p
′′

0(x1) = a1

whih are the values of the seond derivative of p0(x) at x = x0 and x = x1. Integrating
p′′0(x) with respet to x

p′0(x) = a0
(x− x1)2
2(x0 − x1)

+ A+ a1
(x− x0)2
2(x1 − x0)

+B

where A.B are onstants of integration. The two onstants are di�erent beause the

�rst term is integrated with respet to (x − x1) while the seond term is integrated

with respet to (x− x0) Integrating again

p0(x) = a0
(x− x1)3
6(x0 − x1)

+ A(x− x1) + a1
(x− x0)3
6(x1 − x0)

+B(x− x0)

To �nd A,B we use the two given points (x0, y0) and (x1, y1). Substituting x = x0

p0(x0) = a0
(x0 − x1)3
6(x0 − x1)

+ A(x0 − x1) + a1
(x0 − x0)3
6(x1 − x0)

+B(x0 − x0)

y0 = a0
(x0 − x1)3
6(x0 − x1)

+ A(x0 − x1)

A =
y0

x0 − x1
− a0(x0 − x1)

6

Similarly using p0(x1) = y1

y1 = p0(x1) = a0
(x1 − x1)3
6(x1 − x1)

+ A(x1 − x1) + a1
(x1 − x0)3
6(x1 − x0)

+B(x1 − x0)

B =
y1

x1 − x0
− a1(x1 − x0)

6

68 CHAPTER 4. NUMERICAL ANALYSIS

The polynomial has the form

p0(x) =
a0
6

(x− x1)3
(x0 − x1)

+

[

y0
x0 − x1

− a0
6
(x0 − x1)

]

(x− x1)

+
a1
6

(x− x0)3
(x1 − x0)

+

[

y1
x1 − x0

− a1
6
(x1 − x0)

]

(x− x0)

Similarly the polynomial between (x1, y1) and (x2, y2) will have the form

p1(x) =
a1
6

(x− x2)3
(x1 − x2)

+

[

y1
x1 − x2

− a1
6
(x1 − x2)

]

(x− x2)

+
a2
6

(x− x1)3
(x2 − x1)

+

[

y2
x2 − x1

− a2
6
(x2 − x1)

]

(x− x1)

To evaluate the seond derivatives ai = p′′i (xi), we use the ondition that the �rst

derivative be ontinuous at the knots. That is, p′0(x1) = p′1(x1).

p′0(x) =
3a0
6

(x− x1)2
(x0 − x1)

+
y0

x0 − x1
− a0

6
(x0 − x1)

+
3a1
6

(x− x0)2
(x1 − x0)

+
y1

x1 − x0
− a1

6
(x1 − x0)

p′0(x1) =
y0

x0 − x1
− a0

6
(x0 − x1) +

a1
2
(x1 − x0) +

y1
x1 − x0

− a1
6
(x1 − x0)

Rearranging and simplifying

p′0(x1) =
y0

x0 − x1
− a0

6
(x0 − x1) +

a1
2
(x1 − x0) +

y1
x1 − x0

− a1
6
(x1 − x0)

=
y1 − y0
x1 − x0

+
a0
6
(x1 − x0) +

2a1
6

(x1 − x0)

Similarly

p′1(x) =
3a1
6

(x− x2)2
(x1 − x2)

+
y1

x1 − x2
− a1

6
(x1 − x2)

+
3a2
6

(x− x1)2
(x2 − x1)

+
y2

x2 − x1
− a2

6
(x2 − x1)

At x = x1,

p′1(x1) =
3a1
6

(x1 − x2)2
(x1 − x2)

+
y1

x1 − x2
− a1

6
(x1 − x2) +

y2
x2 − x1

− a2
6
(x2 − x1)

Whih an be simpli�ed as

p′1(x1) =
y2 − y1
x2 − x1

− 2a1
6

(x2 − x1)−
a2
6
(x2 − x1)

4.1. NUMERICAL METHODS 69

Therefore ontinuity of �rst derivative requires

y1 − y0
x1 − x0

+
a0
6
(x1 − x0) +

2a1
6

(x1 − x0) =
y2 − y1
x2 − x1

− 2a1
6

(x2 − x1)−
a2
6
(x2 − x1)

a0
6
(x1 − x0) +

2a1
6

(x1 − x0) +
2a1
6

(x2 − x1) +
a2
6
(x2 − x1) =

y2 − y1
x2 − x1

− y1 − y0
x1 − x0

The seond and third terms on the left hand side may be ombined

a0
6
(x1 − x0) +

2a1
6

(x2 − x0) +
a2
6
(x2 − x1) =

y2 − y1
x2 − x1

− y1 − y0
x1 − x0

For the polynomials p1(x) between (x1, x2) and p2(x) between (x2, x3),

a1
6
(x2 − x1) +

2a2
6

(x3 − x1) +
a3
6
(x3 − x2) =

y3 − y2
x3 − x2

− y2 − y1
x2 − x1

There are four unknowns a0, a1, a2, a3 and two equations. So the values of any two of

them must be assumed to get the other two. As two of the variables repeat in every

suessive equations (a1, a2 here), if we ompute all the n-polynomials between the

(n + 1) data points, we will get (n− 1) equations and (n + 1) variables. Usually it is

assumed that a0 = an = 0 so that there are (n − 1) variables and (n − 1) equations
whih an be exatly solved. Cubi spline with a0 = an = 0 is alled natural splin4e

If the x-values are equispaed, let xi+1 − xi = h, then the (n− 1) equations may be

written as

4 1 0 ... 0 0 0
1 4 1 ... 0 0 0
1 4 1 ... 0 0 0
..
0 0 0 ... 1 4 1
0 0 0 ... 0 1 4

a1
a2
a3
..

an−2

an−1

=
6

h2

y0 − 2y1 + y2
y1 − 2y2 + y3
y2 − 2y3 + y4

....
yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

The general formula for the ubi polynomial between xi and xi+1 is given by

pi(x) =
ai
6

(x− xi+1)
3

(xi − xi+1)
+

[

yi
xi − xi+1

− ai
6
(xi − xi+1)

]

(x− xi+1)

+
ai+1

6

(x− xi)3
(xi+1 − xi)

+

[

yi+1

xi+1 − xi
− ai+1

6
(xi+1 − xi)

]

(x− xi)

Problem 4 -Suppose

s(x) =

{

x3 + ax2 − 4x+ c, 0 ≤ x ≤ 2

−x3 + 9x2 + bx+ 34, 2 ≤ x ≤ 4

Find onstants a, b, c suh the s(x) is twie ontinuously di�erentiable on the interval

[0, 4].

70 CHAPTER 4. NUMERICAL ANALYSIS

Problem 5 Suppose

s(x) =

{

ax3 + x −2 ≤ x ≤ 0

x3 + bx, 0 ≤ x ≤ 2

Find onstants a, b suh the s(x) is twie ontinuously di�erentiable on the interval

[−2, 2].

Problem 6 Suppose

s(x) =

{

0 x ≤ 2

(x− 2)3 2 < x

Is s(x) a ubi spline? Justify your answer.

Problem 7 Using ubi spline interpolation tehnique, �nd y(x = 0.6) from the fol-

lowing data.

x 0.1 0.2 0.4 0.7 1.1

y 0.5754 0.6796 0.8026 0.9179 1.0231

Ans: y(0.6) = 0.8846

4.1.3 Zeros of polynomials

Polynomials are used in physis to desribe the trajetory of projetiles. Polynomial

integrals an be used to express energy, inertia and voltage di�erene. in quantum

mehanis, orthogonal polynomials appear as energy and momentum eigenfuntions.

The zero or root of these polynomials gives positions and instants of zero probability

for a physial system. They are also used for interpolation of experimental data.

De�nition 3 If p(x) =
∑n

i=0 aix
i
is a polynomial of degree n and p(b) = 0, then b is

alled a zero or root of the polynomial p(x).

There is an important theorem that relates the fators and zeros (roots) of a polynomial.

There are 5 theorems about roots of Polynomials. They are n-Zero theorem, Remainder

theorem, Fator theorem, Rational Root Theorem, Irrational Root Theorem, Complex

Root Theorem, Desartes Rule.

Theorem 1 (n-Zero's Theorem) If p(x) is of Degree n, then it has at most n zeros.

Theorem 2 (The Remainder Theorem) If

p(x)

x− b = q(x)and r, the remainder, then p(b)

r

4.1. NUMERICAL METHODS 71

Proof:

p(x) = q(x)(x− b) + r, p(b) = r

To verify remainder theorem: If p(x) = x3 − x2 − 17x − 16. Let us divide p(x) by

(x − 5). The quotient is q(x) = x2 + 4x + 3 and the remainder is r = −1. Now

p(5) = 53 − 52 − 17× 5− 16 = −1 = r. Hene veri�ed.

If remainder r = 0 wehave the fator theorem.

Theorem 3 (Fator Theorem) If p(x) =
∑n

i=0 aix
i
is a polynomial of degree n and

(x− b) is a fator of the polynomial p(x), then b is a zero of p(x).

Proof:

p(x) = q(x)(x− b), p(b) = 0

To verify fator theorem: If p(x) = x3 + (a − 1)x2 − (a + 6)x − 6a. Fatoring the

polynomial we get p(x) = (x+ a)(x+2)(x− 3). Hene x = (−a,−2,+3) are the set of
roots. p(−a) = a3 + (a− 1)a2 − (a+ 6)a− 6a = 0. Similarly p(−2) = p(3) = 0

Theorem 4 (Bolzano's Theorem) If p(x) is a ontinuous funtion in the interval

x ∈ (a, b) and p(a)p(b) < 0, then there exists at least one x = c ∈ (a, b) suh that

p(c) = 0.

This is a speial ase of Intermediate Value Theorem. To verify Bolzano's theorem:

If p(x) = 6x3 − 20x2 − 14x+ 60. (x− 2) is a zero of this funtion.

p(1.5) = +14.25, p(2.5) = −6.25, p(1.5)× p(2.5) = −89.0625 < 0

The root 2 lies between 1.5 and 2.5

Theorem 5 (Rational Roots Theorem) Rational Roots of p(x) =
∑n

i=0 aix
i
will

be of the form of (fators of a0 divided by fators of an.

A rational root is one whih is expressible as a quotient of two integers. In the poly-

nomial p(x) = 6x3 − 13x2 + x + 2, a0 = 2, an = a3 = 6. Hene the possible rational

roots are factors of a0/factors of a3 = factors of 2/factors of 6. That is

±1,±2
±1,±2,±3,±6 = ±1,±1/2,±1/3,±1/6,±2,±2/3

The theorem states that if there is a rational root , it must be one of these. In fat,

the roots are (2, 1/2,−1/3) whih belong to this set.

72 CHAPTER 4. NUMERICAL ANALYSIS

Theorem 6 (Irrational Root Theorem) If p(x) is a polynomial with rational oef-

�ients and a +
√
b where a and b are rational and

√
b is irrational is a root, then the

onjugate a−
√
b is also a root.

For example, if p(x) = 2x3 − x2 − 9x − 4, its roots are x0 = 1/2, x± = (1 ±
√
17)/2.

Irrational roots our in pairs.

Theorem 7 (Complex Root Theorem) If p(x) is a polynomial funtion with real

oe�ients and a+ ib is a root, then a− ib must also be a root of p(x).

This theorem states that if the Coe�ients are real, all Complex Roots our in Conju-

gate Pairs. For example, the roots of p(x) = 3x3+7x2+11x+3 are x± = −1±i
√
2, x0 =

1/3
An obvious orollary is for an odd-degree polynomial there exist at least one real root.

A method of determining the maximum number of positive and negative real roots

of a polynomial is given by Desartes Rule.

For positive roots, start with the sign of the oe�ient of the lowest (or highest) power

of x. Count the number of sign hanges n as you proeed from the lowest to the

highest power (ignoring powers whih do not appear). Then n is the maximum number

of positive roots. Consider p(x) = x7 + x6 − x4 − x3 − x2 + x − 1. Sine there

are three sign hanges, there are a maximum of three possible real positive roots.

Atually, there is only one real positive root x = 1.1147 and three pairs of omplex

roots −1.2± 0.6i,−0.3± i, 0.4± 0.5i for this polynomial.

Theorem 8 Every polynomial p of degree n with omplex oe�ients ai and an 6= 0
an be represented as

p(x) =

n
∏

i=1

ai(x− bi)

where bi are the roots of p .

Sum and produt of roots of polynomials Any polynomial p(x) =
∑n

i=0 aix
i
of

degree n has n roots bi, i = 1, 2, 3..n. If ai are real, the sum and produt of roots are

given by

n
∑

i=1

bi = −
an−1

an
,

n
∏

i=1

bi = (−1)n a0
an

4.1. NUMERICAL METHODS 73

Numerial proedure: De�ation

Consider a polynomials of degree n > 2. Any one root b1 is found by any one of the

methods - bisetion, Newton-Raphson, seant, Laguerre's et. The polynomial an

be written as a produt p(x) = (x − b1)q1(x) where q1(x) is a redued or de�ated

polynomial of degree n− 1. Also the roots of q1 are exatly the remaining roots of p.
Any one root of q1 is then determined as b2. De�ating q1, q1(x) = (x − b2)q2(x). The
same proedure may be repeated till the degree of qi is 2. Then quadrati formula gives

the last two roots. This method of suessive de�ation has the following advantages.

1. De�ation is just polynomial division.

2. The e�ort of �nding a root generally dereases in eah step.

3. The method annot onverge twie to the same non-multiple root.

4. Suessive De�ation is numerially stable, if the root of smallest absolute value

is divided out in eah step.

Laguerre's Method of �nding polynomial roots: Polynomial roots an be ra-

tional, irrational, real or omplex, this method will onverge to all types of roots.

The basi priniple of this iterative method is given below.

Let p(x) be a nth
degree polynomial.

p(x) = a0 + a1x+ a2x
2 + ... + anx

n =
n

∑

i=0

aix
i

If the n roots are bi, i = 1, 2, 3, ...n.

p(x) = (x− b1)(x− b2).....(x− bn) =
n
∏

i=1

(x− bi)

Taking logarithm of modulus on both sides

ln |p(x)| = ln |(x− b1)|+ ln |(x− b2)|.....+ ln |(x− bn)| =
n

∑

i=1

ln |(x− bi)|

The modulus is taken sine logarithm of negative real numbers and omplex numbers

are not de�ned. Di�erentiating with respet to x

d ln |p(x)|
dx

= +
1

(x− b1)
+

1

(x− b2)
..... +

1

(x− bn)

74 CHAPTER 4. NUMERICAL ANALYSIS

p′(x)

p(x)
=

n
∑

i=1

1

(x− bi)
= c(say)

Di�erentiating again

d2 ln |p(x)|
dx2

= − 1

(x− b1)2
− 1

(x− b2)2
.....− 1

(x− bn)2

p′′(x)p(x)− p′(x)p′(x)
p(x).p(x)

=
p′′(x)

p(x)
−

[

p′(x)

p(x)

]2

= −
n

∑

i=1

1

(x− bi)2

[

p′(x)

p(x)

]2

− p′′(x)

p(x)
=

n
∑

i=1

1

(x− bi)2
= d(say)

Let xj − bj = ej where xj is the jth trial root and bj , the atual root. To �nd ej ,
we assume that all other roots bi are equidistant from xj . Let xj − bi = s, i =
1, 2, .., n and i 6= j. Then

c = +
1

s
+

1

s
.....+

1

ej
+ +

1

s
=

1

ej
+
n− 1

s

Similarly

d =
1

e2j
+
n− 1

s2

Eliminating s and solving for ej

ej =
n

c±
√

(n− 1)(n d− c2)

For |ej | to be small, the modulus of denominator |c ±
√

(n− 1)(n d− c2)| must be

large. If c < 0, denominator is c−
√

(n− 1)(n d− c2). If c > 0, the denominator must

be c+
√

(n− 1)(n d− c2). To redue ej , the proess is repeated with xj → xj − ej till
reasonable auray is obtained.

The polynomial is then divided by (x − bj) to get a lower degree polynomial q(x).
The root of q(x) is found using the same method. This proedure is repeated, till all

the roots are obtained.

Example-1 : To �nd the roots of the polynomial p(x) = 6x4+23x3+37x2+28x+6
we �nd that all oe�ients are real and positive and rational. Hene omplex and

irrational roots our in pairs. No hange of sign means no real positive root. p′(x) =
24x3 + 69x2 + 74x+ 28 and p′′(x) = 72x2 + 138x+ 74. Let us assume that xj = −1.0

4.1. NUMERICAL METHODS 75

in Legurre's proedure

−2.0 −1.5 −1.0 −0.5 0.0
x

−4

−2

0

2

4

6

8

10

p(
x)

b1 b2

Trial value: x=-1.0000

(1),p(-1.0000)=-2.0000,p'(-1.0000)=-1.0000,

p''(-1.0000)= 8.0000,=0.5000,d=4.2500, x=-1.5271,

(2)p(-1.5271)=0.2480,p'(-1.5271)=-9.5650,

p''(-1.5271)=31.1665,=-38.5659,d=1361.6680, x=-1.5000

(3) p(-1.5000)=-0.0000 .Hene it is one root.

Hene x = −1.5 is a root. (x+ 1.5) = (2x+ 3)/2 is a fator of given polynomial.

q(x) =
p(x)

2x+ 3
= 3x3 + 7x2 + 8x+ 2

Trial value: x=0.0000

(1) q(0)=2.0000 q'(0)=8.0000

q''(0)=14.0000 =4.0000 d=9.0000, x=-0.3405

(2)q(0.3405)=-0.0310 q'(0.3405)=4.2761

q''(0.3405)=7.8702 =-137.7945 d=19240.9417, x=-0.3333

(3)q(0.3333)=0.0000 Hene it is another root.

Hene x = −0.333 is a root. (x+ 0.3333) = (x+ 1/3) = (3x+ 1)/3 is a fator of given
polynomial.

q1(x) =
q(x)

3x+ 1
= x2 + 2x+ 2

76 CHAPTER 4. NUMERICAL ANALYSIS

This quadrati equation has roots

x± =
−2 ±

√
22 − 4.1.2

2
= −1± i

Hene the set of roots are (x = (1/3, 3/2, 1 + i, 1− i)

Example-2 : To �nd the roots of the polynomial p(x) = x4+1x3+6x2+4x+16 we
�nd that all oe�ients are real and positive. Hene omplex and irrational roots our

in pairs. No hange of sign means no real positive root. p′(x) = 4x3 + 3x2 + 12x + 4
and p′′(x) = 12x2+6x+12. We start with a small trial root xj = −1.0. The iterations
give following values. (1)xj = (−0.8− 1.2499j), (2)xj = (−0.9851− 1.7613j), (3)xj =

(−1.0000 − 1.7320j) = −1 −
√
3j Sine −1 −

√
3j is a root its omplex onjugate

−1 +
√
3j is also a root. Hene by fator theorem

p(x) = q(x)[x+ 1 +
√
3j][x+ 1 +

√
3j] = q(x)(x+ 1)2 + 3 = q(x)(x2 + 2x+ 4)

q(x) =
x4 + 1x3 + 6x2 + 4x+ 16

x2 + 2x+ 4
= x2 − x+ 4

The roots of this quadrati equation are given by x± = 0.5± 1.9365j. Hene the set of
roots are (−1 ±

√
3j, 0.5± 1.9365j)

Problem 8 Gas tank that is 10 meters in length (end to end) onsists of a right-

ylinder and is apped at either end by a hemisphere. What is the radius of the tank if

the volume is 50 ubi meters?

Answer: V olume = 2πr3/3+πr2(L−2r)+2πr3/3 simplify to the form πr3−15πr2+
75 = 0 The three roots are r = 14.89235732, 1.32108215,−1.21343947. The �rst is not
possible as the total length is only 10m. Third value is unaeptable as radius annot

be negative. So r = 1.32108215. Also 2πr3/3 + πr2(L− 2r) + 2πr3/3 = 50.00104m3

Example-3 : To �nd the roots of a ubi polynomial p(x) = x3 + x− 10, we observe
that there is one sign hange so that there may be a positive root. Sine oe�ients

are real, omplex and/or irrational roots our in pairs. Sine there are only 3 roots

one of them must be real. We start with a trial xj = 0 in Legurre's proedure. The two
iterations give (1) xj = 1.4293 and (2) xj = 2.0068 so that p(x) = 0.0 Hene (x− 2) is
a fator. Dividing with this fator

q(x) =
x3 + x− 10

x− 2
= x2 + 2x+ 5

4.1. NUMERICAL METHODS 77

Using quadrati formula

x± =
−2±

√
4− 20

2
= −1 ± 2j

Hene the roots are (2,−1± 2j)

Example-4 : To �nd the roots of a ubi polynomial p(x) = 6x3 − 11x2 − 14x+ 24,
we observe that there are 2 sign hanges so that there may be 2 positive roots. As

before we start with xj = 0 in Legurre's proedure. Suessive iterations give xj =
0.9101, 1.3001, 1.3333(= 4/3) Hene x− 4/3 or (3x− 4) is a fator.

q(x) =
6x3 − 11x2 − 14x+ 24

3x− 4
= 2x2−x−6 = 2x2−4x+3x−6 = 2x(x−2)+3(x−2) = (x−2)(2x+3)

The roots are x = 2 and x = −3/2. The set of 3 roots are x = 2, 4/3,−3/2.

Problem 9 Find roots of following polynomials using Legurre's method.

No. polynomial p(x) Answer(j =
√
−1)

1 x4 − 10x3 + 35x2 − 50x+ 24 1, 2, 3, 4
2 x4 − 2x3 + 2x− 1 1,−2,−3, 4
3 x4 − 3x3 − 3x2 + 11x− 6 2,−1/3, 3/2, 2
4 x4 − 4x3 + 6x2 − 4x+ 1 1, 3, (2± 1j)
5 x4 + 4x3 + 6x2 + 4x+ 5 2± j, 0± j
6 x3 − 3x2 + 3x− 1 (2± 3j), 4
7 x3 − 6x2 + 11x− 6 2, 3, 4
8 x3 − 4x2 + 5x− 2 (1± 5j), 3
9 x3 − 8x2 + 20x− 16 3, 3, 0.5

4.1.4 Monte Carlo Methods

Monte Carlo method is an iterative omputational method used to alulate multi-

dimensional integrals and investigate the behaviour of physial systems using stohasti

methods. It is used as a statistial tool in studying situations whih are not amenable

to ompute using deterministi algorithms. With the development of powerful om-

puters and e�ient algorithms, the Monte Carlo method is found to be very useful

in �nding numerial solutions to quantitative problems whih are nonlinear and in-

volving unertain parameters. In physis, Monte Carlo methods are used in nulear

physis(nulear model), moleular dynamis, rystal physis, statistial physis(Ising

model), X-ray Imaging, Eletron Dynamis in Doped Semiondutors, Quantum hro-

modynamis et. This method is based on the following onepts and priniples.

78 CHAPTER 4. NUMERICAL ANALYSIS

De�nition 4 (Random variable) A random variable is an assignment of numbers

to possible outomes of random events.

For example, onsider tossing a pair of oins. The number of heads n showing when

the oins land is a random variable. It an be assigned the number 0 to the outome

[Tail, Tail℄. That is n(T, T) = 0. Similarly n(T,H) = n(H, T) = 1 and n(H,H) = 2.

De�nition 5 (Expetation or Expeted Value) The expeted value of a random

variable is the long-term limiting average of its values in independent repeated events.

The expeted value of the random variable X is denoted E[X℄. For example, while

tossing a oin, the fration of times the oin lands with head up is half when the

number of tosses are very large. It is expressed as E[n(H)] = 0.5. This idea an be

expressed mathematially as follows. Let a random variable X takes a values xi with
probability pi. If the sum of produts onverges absolutely to some value Y , that is,

lim
n→∞

n
∑

i=1

pi.xi = Y

, then Y is the expetation of X . For a ontinuous random variable X , the expetation

may be de�ned as

E[X] =

∫

xP (x)dx

where P (x) is the probability of random variable X having a value x.

Taking the expeted value is a linear operation: if X and Y are two random

variables,E[X + Y] = E[X] + E[Y], and for any onstant a, E[aX] = aE[X]

Theorem 9 (Law of large numbers) As the number of trials of a random proess

inreases, the perentage di�erene between the expeted values and atual values (mean

measured values) of all random variables goes to zero.

The mean of values of x obtained from n independent trials is given by

〈x〉 = 1

N

N
∑

i=1

xi

The law of large numbers states that

lim
N→∞

E[x]− 〈x〉 = 0

4.1. NUMERICAL METHODS 79

Simple integration

Basi Priniple: Consider the de�nite integral

∫ b

a
f(x)dx where f(x) is di�erentiable

in the interval (a, b). By de�nition,

∫ b

a

f(x)dx = lim
N→∞

N
∑

i=0

f(xi)δxi

where a ≤ xi ≤ b. If δxi is a onstant for all i, δxi = (b− a)/N .

∫ b

a

f(x)dx = lim
N→∞

b− a
N

N
∑

i=0

f(xi)

if xi are hosen at random between a and b. But

1

N

N
∑

i=0

f(xi) = 〈f〉

lim
N→∞

1

N

N
∑

i=0

f(xi) = lim
N→∞

〈f(xi)〉 = E[f]

where E[f] is the expetation by law of large numbers. If b− a) = L,

∫ b

a

f(x)dx = L〈f〉

For surfae and volume integrals, the above relation beomes

∫

s

f(x)dx = S〈f〉,
∫

v

f(x)dx = V 〈f〉

The error e in the above alulation is the di�erene between the expeted value and the
mean value whih is given by their standard deviation. For a k-dimensional integral,

it is given by

e = ±τ
√

〈f 2〉 − 〈f〉2
N

where τ is k-dimensional volume and 〈f 2〉 =
∑N

i=0 f
2(xi). It is only a rough estimate

of the error.

Numerial proedure: In order to integrate a funtion over a ompliated domain

D, Monte Carlo integration uses random points over some simple domain D′
, whih

enloses D. Eah random number generated is then heked to see whether it is within

80 CHAPTER 4. NUMERICAL ANALYSIS

D. Out of the n random numbers, if m are within D, then the ratio (m/n) gives the
ratio of n-dimensional volumes D/D′

. For example, to alulate the area D of one

quadrant of a irle of radius r, we enlose it within a square (D′
) of side r. Pairs

of random numbers (xi, yi) in the interval (0, r) are generated and heked to see if

x2 + y2 ≤ r2 so that it is within D. The ratio m/n of the number of random pairs to

the total number of pairs gives the ratio of their areas D/D′
. Then

D = D′(m/n)

.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

For example, the integral

∫ 2π

0

dθ

2 + cos θ
whih is 2π/

√
3 = 3.62759872847, gives the

following values.

No.of random points in (0, 2π) Value of integral

10000 3.63293517

20000 3.63805025

30000 3.63569129

40000 3.63152102

50000 3.62770939

Integration by Importane Sampling

To redue the variane(standard deviation) in the alulation of a de�nite integral

using Monte Carlo method, sampling of the data points is introdued. Sampling is

the proess of seleting data from a domain of interest. By studying the sample, one

an generalize the results bak to the data set from whih sample hosen. Sampling

redues volume of data to be proessed, thereby reduing omputing time.

4.1. NUMERICAL METHODS 81

Importane sampling: The term importane sampling refers to the proess of las-

sifying values of the input random variables in a simulation aording to the impat on

the quantity being estimated. If the large impat values (important values) are empha-

sized by sampling more frequently, then the variane of the estimated quantity an be

redued. Hene, the basi methodology in importane sampling is to hoose a distri-

bution whih gives more weight to the important values. In a simulation, outputs are

again weighted to orret for the use of the biased distribution. This ensures that the

new importane sampling is unbiased. Thus the fundamental problem in importane

sampling is to determine the distribution that is properly biased. Suh a distribution

saves large amounts of omputing time.

Integration using importane sampling Consider the integral I =
∫

f dτ where

f is a ontinuous funtion in some n-dimensional volume τ . Let f(x) = g(x)h(x) where
g(x) is a positive funtion satisfying the ondition

∫

g(x)dτ = 1. Then the integral

beomes I =
∫

h(x)g(x) dτ . This an be interpreted as follows.

One an integrate f by sampling it with uniform probability density dτ in simple

Monte Carlo method. But the same an be done by sampling h(x) with non-uniform

probability density g(x)dτ . The generalized fundamental theorem is that the integral

of any funtion f is estimated, using N sample points xi, ..., xN , by

∫ b

a

f(x)dτ = τ〈f
g
〉

with an error estimate

error = ±τ
√

〈f 2/g2〉 − 〈f/g〉2
N

To hoose the probability distribution g(x), one proeeds by searhing a funtion whih
minimises the absolute value of error (variational method). This may be taken as a

onstraint so that Legrange's multiplier method an also be used for �nding g(x).

4.1.5 Sampled Data

Sampled data refers to a subset of a large data system that is disrete or ontinuous

and whih has all the harateristis of the omplete data system. The size of the

sample required for this purpose is given by sampling theorem.

Theorem 10 (Nyquist-Shannon Sampling Theorem) In order for a band-limited

signal of maximum frequeny νm to be reonstruted fully, it must be sampled at a rate

f ≥ 2νm.

82 CHAPTER 4. NUMERICAL ANALYSIS

Here band-limited signal refers to a signal with a zero power for frequenies ν > νm.
A signal sampled at f = 2νm is said to be Nyquist sampled, and fc is alled the

Nyquist ritial frequeny. No information is lost if a signal is sampled at fc, and no

additional information is gained by sampling faster than this rate. For example, to

sample a sine wave of frequeny ν, the minimum sampling rate is fc = 2ν. That is the
time interval ∆ between samples and period of sine wave T are related as Delta = T/2.
Hene a onvenient hoie is to sample at positive and negative peak of the wave. If h(t)
ontains frequenies f outside of the range (−fc, fc) where fc is the Nyquist frequeny,
then the power ontent of these frequenies is moved into that range −fc < f < fc so
that power spetrum is modi�ed. This phenomenon is alled aliasing . Any frequeny

omponent outside of the range (−fc, fc) is translated into that range as a result of

disrete sampling.

4.1.6 Disrete Fourier Transform

Consider a funtion h(t) of a ontinuous variable t transformed into a funtion H of

another independent variable ω having range (−∞,∞) by the equation

H(ω) =

∫

∞

−∞

h(t)eiωtdt

where ω = 2πf . h(t) an be retrieved using the inverse transform

h(t) =

∫

∞

−∞

H(ω)e−iωtdω

The integration in these transforms an be replaed with a summation over the funtion

values h(t) orresponding to properly sampled values of t. Consider N onseutive

sampled values at onstant separation ∆. Let

tk = k∆, hk ≡ h(tk), k = 0, 1, 2, ..., N − 1

If the funtion h(t) is ontinuous and not periodi, then we assume that the sampled

points are suh that h(t) is similar in struture at all times t. Even though all frequen-

ies in the Nyquist frequeny range (−fc, fc) are possible, we an get Fourier transforms

H(fk) only for N-frequenies as there are only N-input samples. Consider N values

fn =
n

N∆
, n = [N/2, (N/2)− 1, (N/2)− 2, ...(−N/2) + 1,−N/2]

The extreme values of n, that is ±N/2 exatly orrespond to the lower and upper limits

±fc. If ωn = 2πfn, then the disrete Fourier transform is given by

H(ωn) =

∫

∞

−∞

h(t)eiωntdt ≈
N−!
∑

k=0

hke
(iωntk)∆ = ∆

N−!
∑

k=0

hke
(iωnk∆)

4.1. NUMERICAL METHODS 83

Substituting for ωn∆ = 2πfn∆ = 2πn/N in the exponent

H(ωn) = ∆
N−!
∑

k=0

hk exp

(

2πikn

N

)

The quantity

N−!
∑

k=0

hk exp

(

2πikn

N

)

= Hn

where Hn is alled the disrete Fourier transform of the N points hk.

H(fn) ≈ Hn∆

The inverse disrete Fourier transform is then given by

hk =
1

N

N−!
∑

n=0

Hn exp

(

−2πikn
N

)

Algorithm For n data points

1: Read input list x of length n
2: ω ← 2π/n
3: for p = 0 to n− 1 do
4: s← 0
5: for q = 0 to n− 1 do
6: s← s+ xqe

iωpq

7: end for

8: yp ← s
9: end for

Program: The following funtion will alulate the disrete Fourier transform of list

of values x.

#input x is list, y is output list

from math import*

def dft(x):

n = len(x)

omega, y = 2*pi/n,[0℄*n

for p in xrange(n):

s = 0

for q in xrange(n):

s +=x[q℄*exp(omega*q*p*1j)

84 CHAPTER 4. NUMERICAL ANALYSIS

y[p℄ = s

return y

print dft([1,3,5,3,1,-1,-3℄)

Output

[(9+0j), (-3.49+11.41j), (-0.11+1.681j), (2.60-0.14j),

(2.60+0.14j), (-0.11-1.68j), (-3.49-11.41j)℄

Thus the alulation of disrete Fourier transform of N -sampled points requires N ×
N = N2

omputations. There is an algorithm to redue the number of omputations

N log2N alled Fast Fourier Transform.

4.1.7 Fast Fourier Transform(FFT)

This algorithm was �rst oneived by Gauss in the 18th entuary. With the advent of

modern omputers, Tukey and Cooley developed an algorithm to implement it on a

digital omputer. There are other algorithms similar to this one developed reently.

The basi priniple is the divide and onquer strategy just like any other large data

systems. The disrete Fourier transform of n-sampled points requires N × N = N2

omputations. If the data set is divided into two equal parts, eah part requires N2/4
omputations for its Fourier transform. Hene total number of omputations is only

N2/2 = N2/21 whih shows a redution by N2/2. If eah half is still divided, the

number of omputations gets redued to 4 × (N/4)2 = N2/4 = N2/22 In general if

the N = 2p-points are divided into M = 2q equal parts, the number of omputations

beomes N2/2M = 22p−q
.

Proedure: There are di�erent algorithms for FFT. One of the simplest is the Sande-

Tukey algorithm. It is given below.

Let N = 2p an integer power of 2. If the length of the data set is not a power of two,
zeros may be added as data elements up to the next power of two. If fn are n-data
points separated by N equal intervals, then its disrete Fourier transform (DFT) is

given by

Fk =

N−1
∑

n=0

fnW
nk, k = 0, 1, 2, 3..N − 1

where W = e2πi/N . Let us divide the entire data into two sets-odd and even indies-

4.1. NUMERICAL METHODS 85

eah of length N/2 with

Fk =

(N/2)−1
∑

n=0

f2nW
2nk +

(N/2)−1
∑

n=0

f2n+1W
(2n+1)k

=

(N/2)−1
∑

n=0

W 2nk
[

f2n + f2n+1W
k
]

= F
(e)
k +W kF

(o)
k

where F
(e)
k =

∑N/2−1
n=0 W 2nkf2n and F

(o)
k =

∑N/2−1
n=0 W 2nkf2n+1, supersript 'o' and 'e'

stands for odd and even number4ed data. The rux of the solution is to onsider these

odd and even sets of N/2 numbers as transforms of sequenes of length N/2. This is
alled Danielson-Lanzos Lemma. It is found that this Lemma an be used reursively.

Having redued the problem of omputing Fk to that of omputing F
(e)
k and F

(o)
k , the

same redution of F
(e)
k to the problem of omputing the transform of its N/4 even-

numbered input data (even k in f2k) as F
(ee)
k and N/4 odd-numbered data (odd k in

f2k) F
(eo)
k . Similarly division of F

(o)
k an also be done into F

(oe)
k and F

(oo)
k . In other

words, one an de�ne disrete Fourier transforms of the points whih are respetively

even-even, even-odd, odd-even and odd-odd on the suessive subdivisions of the data.

Sine N is a power of 2, it is evident that one an ontinue applying the Danielson-

Lanzos Lemma until we have subdivided the data all the way down to transforms of

length 1. The Fourier transform of length one is just the identity operation that opies

its one input number into its one output slot! In other words, for every pattern of

log2N there is a one-point transform that is just one of the input numbers fn for some

n.

4.1.8 Shooting method

Shooting method is employed to solve ordinary seond order di�erential equations with

a pair of boundary onditions . It is a two-point boundary value problem. The bound-

ary onditions at the starting point do not determine a unique solution to start with.

Starting boundary onditions is almost ertain not to satisfy the boundary onditions

at the other boundary point. In general, iteration is required to orrelate boundary

onditions into a single global solution of the di�erential equation. Di�erential equa-

tions are to be integrated over the interval of interest several times. Only for linear

di�erential equations, the number of iterations an be predited. Consider the general

form of a seond order linear di�erential equation for the funtion y(x)

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x)

86 CHAPTER 4. NUMERICAL ANALYSIS

with boundary ondition y(a) = α, y(b) = β. Suppose u(x) is a funtion whih satis�es

the above equation with initial onditions u(a) = α, u′(a) = 0

u′′(x) = p(x)u′(x) + q(x)u(x) + r(x)

Let v(x) be a funtion whih satis�es the equation

v′′(x) = p(x)v′(x) + q(x)v(x), v(a) = 0, v′(a) = 1

Then the linear ombination y = u+ cv is a solution.

y′′(x) = u′′(x) + cv′′(x)

= p(x)u′(x) + q(x)u(x) + r(x) + c[p(x)v′(x) + q(x)v(x)]

= p(x)[u′(x) + cv′(x)] + q(x)[u(x) + cv(x)] + r(x)

= p(x)y′(x) + q(x)y + r(x)

To evaluate , we use the boundary ondition at x = b

u(b) + cv(b) = β, c =
β − u(b)
v(b)

Hene the solution is

y(x) = u(x) +
β − u(b)
v(b)

v(x)

Proedure: Any seond order linear di�erential equation an be split into two ou-

pled �rst order equations and solved by Runge-Kutta method if two initial onditions

are known. In linear shooting method, the following proedure is followed.

1. First solve

u′(x) = s(x), u(a) = α

s′(x) = p(x)s(x) + q(x)u(x) + r(x), s(a) = 0

2. Then solve

v′(x) = t(x), v(a) = 0

t′(x) = p(x)t(x) + q(x)v(x), t(a) = 1

3. Finally, the desired solution y(x) is the linear ombination

y(x) = u(x) +
β − u(b)
v(b)

v(x)

4.1. NUMERICAL METHODS 87

Eigenvalue problems: Consider boundary value problem

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x), y(a) = α, y(b) = β

. If q(x) = λ a onstant and r(x) = 0, it beomes an eigenvalue problem in di�erential

equations.

y′′(x)− p(x)y′(x) = λy(x), y(a) = α, y(b) = β

. Here λ is an eigenvalue and y(x) is an eigenfuntion orresponding to λ. The method

of solution involves the omputation y(b) for di�erent λ and �nd the one for whih

y(b) = β. This an be done e�iently if we �nd the roots of the logarithmi derivative

as it will anel all multipliative onstants from y and y′.

[

y′(x, λ

y(x, λ)

]

x=β

= 0

4.1.9 Relaxation method:

It is an approah di�erent from shooting method. The di�erential equations are re-

plaed by �nite-di�erene equations between a set of points in the range of integration.

The onversion of a di�erential operator to a di�erene operator is done as follows. Let

y0, y1, y2 be three points orresponding to the x-values x0, x0+ δx, x0+2δx respetively

y′(x0) =

[

dy

dx

]

x=0

≈ y1 − y0
x0 + δx− x0

=
y1 − y0
δx

y′′(x0) =

[

dy′

dx

]

x=0

≈ y′1 − y′0
δx

≈
[

y2 − y1
δx

− y1 − y0
δx

]

1

δx
=
y2 − 2y1 + y0

(δx)2

Proedure: The method of solution involves the following steps. Let y(x) be the

unknown funtion

1. The di�erential equation is onverted into a di�erene equation.

2. A trial solution is assumed whih onsists of values for the dependent variables

at eah mesh point. It may not satisfy the desired �nite-di�erene equation, nor

the required boundary onditions.

3. It is then substituted in the di�erene equation and a solution is obtained.

4. This solution is substituted bak to the di�erene equation and solution is again

found.

88 CHAPTER 4. NUMERICAL ANALYSIS

5. This iterative proess is ontinued till the solution is in lose agreement with

the true solution. This is indiated by the agreement with di�erene equation

and boundary ondition. Also further iteration will not hange the solution

signi�antly.

Relaxation method is preferred over shooting method in the following situations.

• If the boundary onditions are subtle, or involve ompliated algebrai relations.

• If the solution is smooth and not highly osillatory.

• If the di�erential equations have extraneous solutions whih disappears during

iteration. They will not appear in the �nal solution satisfying all boundary

onditions.

• If a good initial guess is possible, relaxation methods are very e�ient. Often

it may be neessary to solve a problem many times, eah time using a slightly

di�erent value of some parameter like an eigenvalue. In that ase, the previous

solution is usually a good initial guess when the parameter is hanged.

Chapter 5

Simulations

5.1 A omputational approah to physis

Simulation in physis refers to the imitation of the behaviour of physial systems with

time (temporal evolution). Time evolution of a system follow deterministi laws. These

laws are invariably di�erential equations. If the di�erential equations are non-linear

or they are sets of oupled equations, analyti solutions are either too di�ult or

impossible without heavy approximations. Numerial solutions are the only alternative

in those ases. To redue the errors in the results, often one has to use a large number

of time steps. A omputer beomes an absolute neessity in suh ases. By hanging

variables in the simulation, the behaviour of the system under di�erent irumstanes

an be studied virtually. It thus leads to the onept of a theoretial lab.

Steps involved in Simulation

The number of steps involved depends generally on the omplexity of the phenomena

to be simulated. But the following 7 steps are mandatory.

1. Identify the property or phenomena of interest to be studied.

Eg. Motion of masses under mutual attration.

2. Choose the �eld of fore whih desribes how the atoms or other partiles within

the system interat with eah other and also with the external world.

In the above ase, it an be an inverse-square law fore.

f =
k

r2

89

90 CHAPTER 5. SIMULATIONS

3. Create a set of variables that you may need to onstrut a simulation.

In the above ase, initial and urrent positions (x0, y0), (x, y), initial and urrent

veloities (vx0, vy0), (vx, vy), aeleration a = f/m and time step dt

4. Derive an equation relating di�erent variables. In most of the ases of interest in

physis, it may be a di�erential equation.

In the above ase, as aeleration is radial ax = a cos θ, ay = a sin θ = ky/r3

ax =
d2x

dt2
= k.x/r3

ay =
d2y

dt2
= k.y/r3

5. Choose a suitable method of solution of the equation. For ordinary di�erential

equations any of these methods- Runge-Kutta, preditor-orretor, Monte-Carlo,

Euler et.-may be used. In Euler method.

vx = vx0 + axdt

vy = vy0 + aydt

x = x0 + vxdt

y = y0 + vydt

6. Solve the equation for di�erent values of the variable starting from initial values

and inrementing in steps of proper size.

Calulate [x(t + n dt), y(t+ n dt)] from [x{t + (n− 1)dt}, y{t+ (n− 1)dt}].

7. Either print the output as a table of values or plot the output as a graph.

5.1.1 Simple harmoni osillator

Priniple

A simple harmoni osillator is desribed by the equation

d2x

dt2
+ ω2x = 0

This an be split into 3 equations using aeleration a, veloity v and displaement x
as follows.

a = −ω2x, δv = a δt, δx = v δt

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 91

As before, the last two relations an be expressed as

vi = vi−1 + a δt

Similarly the displaement is given by

xi = xi−1 + viδt

The x− t graph and x− v graph (Phase urve) are drawn for the osillator.

Program

from pylab import*

n=50

x=zeros(n,dtype=float)

t=zeros(n,dtype=float)

v=zeros(n,dtype=float)

a=zeros(n,dtype=float)

x[0℄,v[0℄,omega=0,2,1 #input('initial displaement, veloity and angular frequeny')

dt=2.1*pi/(n*omega)

a[0℄=-x[0℄*omega**2

for i in range(1,n):

a[i℄=-x[i-1℄*omega**2

v[i℄=v[i-1℄+a[i℄*dt

x[i℄=x[i-1℄+v[i℄*dt

t[i℄=t[i-1℄+dt

subplot(2,2,1)

xlabel("time")

ylabel("displaement")

grid(True)

plot(t,x)

subplot(2,2,2)

xlabel("time")

ylabel("veloity")

grid(True)

plot(t,v)

subplot(2,2,3)

xlabel("displaement")

ylabel("veloity")

grid(True)

plot(x,v)

subplot(2,2,4)

xlabel("time")

92 CHAPTER 5. SIMULATIONS

ylabel("aeleration")

grid(True)

plot(t,a)

show()

0 1 2 3 4 5 6 7
time

−3

−2

−1

0

1

2

3

di
sp
la
ce
m
en

t

0 1 2 3 4 5 6 7
time

−3

−2

−1

0

1

2

3

ve
lo
ci
ty

−3 −2 −1 0 1 2 3
displacement

−3

−2

−1

0

1

2

3

ve
lo
ci
ty

0 1 2 3 4 5 6 7
time

−3

−2

−1

0

1

2

3

ac
ce
le
ra
tio

n

5.1.2 Central �eld motion

A fore �eld having a potential funtion V (r, θ, φ) = V (r) is alled a entral �eld. As

it depends only on r it has spherial symmetry and onsequently angular momentum

is onserved. Gravitational �eld and Coulomb �eld are examples of entral �elds. The

general form of the potential is V (r) = krn where k is a onstant and n a real number.

Rutherford sattering is an example of motion in a repulsive entral �eld.

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 93

.

.......
......
......
......
......
......
......
......

.......
......
...

.........
...........................

............................

........
...........

..........
...........

...........
..........

...

.

....
.....
....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.

..
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
..

..
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
..

..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..

.

.

..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.

.

.

.

.

..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

① b

θ

B(xn, yn)

A(x1, y1) C

Priniple

Rutherford's experiment is to measure the de�etion of a beam of α− partiles by gold

nulii due to Coulomb repulsion. The eletrostati fore is given by

~F =
Ze.2e

4πǫ0r2
r̂

Resolving and putting r2 = x2 + y2, the omponents of aeleration are

ax =
2ze2x

4mπǫ0r3
(1)

ay =
2ze2y

4mπǫ0r3

Putting c =
2ze2

4mπǫ0
, ax =

d2x

dt2
and ay =

d2y

dt2
one gets

d2x

dt2
=

cx

(x2 + y2)3/2
(2)

d2y

dt2
=

cy

(x2 + y2)3/2

The veloity and position of every α−partile at di�erent instants of time are then

determined by solving the above di�erential equations numerially. From �gure, if

(x1, y1) are asymptoti points , △ABC is isoseles. If θ is the angle of de�etion,

cot (θ/2) =
xn − x0
yn − y0

94 CHAPTER 5. SIMULATIONS

−6 −4 −2 0 2 4 6
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
y

Path of alpha particle

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
impact parameter b

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

co
t(t

he
ta

/2
)

Relation between b and theta

Algorithm

1: Read the initial values of veloities and positions of partiles in the beam, the

impat parameter and the time step dt.
2: for b=0 to 20 step 1 do

3: while ‖y‖ is below a �xed value yn do
4: Calulate ax and ay using formulae 3 and 5.1.2

5: Calulate x and y using 4th-order Runge-Kutta Method.

6: plot (x, y)
7: end while

8: Calulate cot (θ/2) and b/ cot (θ/2)
9: plot cot (θ/2) against b

10: end for

11: End

Program

from pylab import*

=21.82743562;

dt=0.0001

x=zeros(10001,'float')

y=zeros(10001,'float')

b=linspae(0,1,10)

otthetaby2=zeros(10,'float')

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 95

for j in range(10):

x[0℄,y[0℄,t,vx,vy=-5,b[j℄,0,10,0

for i in range(10000):

vx+=x[i℄**dt/(x[i℄*x[i℄+y[i℄*y[i℄)**1.5

vy+=y[i℄**dt/(x[i℄*x[i℄+y[i℄*y[i℄)**1.5

x[i+1℄=x[i℄+vx*dt

y[i+1℄=y[i℄+vy*dt

subplot(1,2,1)

xlabel('x')

ylabel('y')

title("Path of alpha partile")

plot(x,y)

otthetaby2[j℄=(x[i℄-x[0℄)/(y[i℄-y[0℄)

subplot(1,2,2)

xlabel('impat parameter b')

ylabel('ot(theta/2)')

title("Relation between b and theta")

grid(True)

plot(b,otthetaby2)

show()

5.1.3 Monte-Carlo simulations- value of π

Priniple

Points in the �rst quadrant of a unit irle entered at origin satis�es the following

inequalities.

1. 0 ≤ x ≤ +1

2. 0 ≤ y ≤ +1

3. x2 + y2 ≤ 1 .

.The �rst two onditions are satis�ed by all points in a unit square in the �rst quadrant

as shown in �gure. The ratio of area of the setor(= π/4) to the area of the square(= 12)
is π/4. Four times this ratio gives the value of π.

To determine this ratio in Monte Carlo Method, pairs of pseudo-random numbers

in the range (0, 1) are generated for oordinates (x, y). All these pairs fall within the

square, but only those points belong to the irle for whih

√

x2 + y2 ≤ 1. The number

96 CHAPTER 5. SIMULATIONS

of suh points N are ounted. The ratio of number N to the total number of points

gives the ratio of their areas.

In PYTHON there is one in-built random number generator using the multipliative

ongruential reursive method developed by D.Lehmer. The ith and (i + 1)th random

numbers are related as

xi+1 = (axi + c)mod m

where the multiplier a = 75 − 1 = 16, 806, the inrement c = 0 and the modulus

m = 231 − 1 = 2, 14, 74, 83, 647 are alled magi numbers. The reurrene relation

suggests that the random numbers will repeat with a period less than m. The magi

numbers for the set (a,m, c) are hosen so that period is ≈ m and every number

between 0 and m − 1 our at some point. The role of initial seed x0 has only little

e�et.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.

..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
.

.

..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..

.

...
..
...
...
..
...
..
...
...
..
...
...
..
...
.

(1,1)

(0,0)

(0,1)

(1,0)

Algorithm

1: Read N ,the ount of random numbers to be generated

2: j ← 0
3: for i = 1 to N do

4: x← rand()
5: y ← rand()
6: if (x2 + y2) ≤ 1 then
7: j ← j + 1
8: end if

9: end for

10: π ← 4.j/i
11: Print π
12: End

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 97

Program

from random import random

j=0

for i in range(1000000):

if (random()**2+random()**2)<=1:j+=1

print "Value of pi = ",4.0*j/i

5.1.4 Logisti map

Priniple

A map is a funtion whih relates the oordinates of a point Pn+1 in terms of those

of the previous point Pn. A map is always disrete as it uses the previous value of

the dependent variable as the present value of independent variable. There is thus no

question of di�erentiability for a map.

The logisti map is developed by Robert May in 1876 as a mathematial model of

population growth whose generations do not overlap with a �xed environment. It is

given by

xn+1 = cxn(1− xn)

This is alled logisti map. where 0 < x < 1 and c > 1. A ontinuous form of this map

is the logisti equation f(x) = cx(1− x)

Charateristis of logisti equation and map:

1. The roots of logisti equation are obtained by setting f(x) = 0. They are x=0

and x=1.

2.

df(x)

dx
= c(1− 2x)

Extremum ours at df(x)/dx=0 whih is, at x = 1/2. This is a maximum

beause d2f(x)/dx2 = −c whih is negative. This point x=1/2 is alled the

ritial point of the funtion possessing only a single maximum in a given intervel

(0 < x < 1) in this ase.

98 CHAPTER 5. SIMULATIONS

3. After some iterations of the map , it often onverges to some �xed value alled

an 'attrator'. Any further iteration of will yield the same value. If x∗n is suh a

value,

x∗n = cx∗n(1− x∗n) (3)

x∗n = 1− 1/c

Condition for stability of attrator

In the map if xn < 0, then iterations will lead xn+1to−∞. If xn = 0 then xn+1 is zero

always. For x = 1/c, xn+1 = 1− 1/c = x∗n. The range 0 < xn ≤ 1/c is alled the 'basin

of attration' of x∗n. A value xn approahes x∗n if suessive iterations bring it loser to

x∗n .

∣

∣

∣

∣

xn+1 − x∗n
xn − x∗n

∣

∣

∣

∣

< 1

∣

∣

∣

∣

f(xn)− x∗n
f(xn−1)− x∗n

∣

∣

∣

∣

< 1

In the limit f(xn−1)− x∗n → 0

∣

∣

∣

∣

df(xn)

dxn

∣

∣

∣

∣

xn=x∗

n

< 1

|c(1− 2x∗n)| = |2− c| < 1

This is possible only if 1 < c < 3.

When c = 3 the attrator bifurates to two �xed points x∗1 and x∗2 in suh a way

that

x∗2 = f(x∗1)

x∗1 = f(x∗2)

x∗2 = f [f(x∗2)]

= c2x∗2(1− x∗2)[1− cx∗2(1− x∗2)]

Eah x2 is said to be a �xed point of period 2. In general, if xp is a �xed point of

period p , xp repeats after a set of p iterations of f. That is

f (p)(xp) = f(f(f...p− times...(xp) = xp

This bifuration of the attrator at c = 3 is alled pithfork bifuration due to its

shape.

|f(f(xn))| ≤ 1

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 99

This requires c ≥ 1 +
√
6 = 3.449489743. Then eah branh of �xed points bifurates

into two separate branhes. The points on these branhes will be of period 4.

If c is further inreased, further branhing ours. Fixed points of period p give rise

to 2p branhes. It is found that for c = 3.5699....., an in�nite number of bifurations

our. In logisti map, �xed points never repeat. The band of �xed points forms a

ontinuum. Complete haos begins from this point. Thus bifuration is the route to

haos for logisti equation.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Control Parameter

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n

Logistic Map

100 CHAPTER 5. SIMULATIONS

Program

from pylab import*

def f(, x): return * x * (1 - x)

i,f,x0,n,g =2.9,3.655, 0.1,50,1000

i,f=input("range of ontrol parameter = ")

s=(f-i)/1000.0

L,Lx = [℄,[℄

for in arange(i, f, s):

x = x0

for i in range(g): x = f(, x)

p = 0

while p < n:

x = f(, x)

L.append()

Lx.append(x)

p += 1

plot(L, Lx, ".")

xlabel("Control Parameter")

ylabel("Population")

show()

5.1.5 Driven LCR iruit

v(t)

L

R

C

i

Priniple:

If a voltage v(t) is given to a series LCR- iruit, Kirho�'s voltage law gives

L
di

dt
+Ri+

q

C
= V (t)

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 101

Sine urrent is rate of �ow of harge

L
d2q

dt2
+R

dq

dt
+
q

C
− V (t) = 0

This seond order di�erential equation an be split into two �rst order oupled equa-

tions and solved simultaneously.

dq(t)

dt
= i(t),

di(t)

dt
= −R

L
i(t)− q

LC
+
V (t)

L

These oupled equations an be solved numerially using Runge-Kutta fourth order

method. The general formula for oupled di�erential equations is given below.

Let

dy

dx
= f(x, y, z),

dz

dx
= g(x, y, z)

be two oupled equations with initial onditions y(x0) = y0, z(x0) = z0. Then the

values y(x + δx), z(x + δx) are given by a 4-step determination of slopes at x0, x0 +
δx/2, x0+δx/2, x0+δx suessively as follows. let δx = h whih is the usual onvention.

k1=h f(x0,y0,z0)

m1=h g(x0,y0,z0)

k2=h f(x0+h/2,y0+k1/2,z0+m1/2)

m2=h g(x0+h/2,y0+k1/2,z0+m1/2)

k3=h f(x0+h/2,y0+k2/2,z0+m2/2)

m3=h g(x0+h/2,y0+k2/2,z0+m2/2)

k4=h f(x0+h,y0+k3,z0+m3)

m4=h g(x0+h,y0+k3,z0+m3)

y(x0+h)=y0+(k1+2 k2+2 k3+k4)/6

z(x0+h)=z0+(m1+2 m2+2 m3+m4)/6

Using the pair (y(x0 + h), z(x0 + h) the values at x0 + 2h (y(x0 + 2h), z(x0 + 2h) are
found using the above formula. The proess is repeated till we get the value of (y, z)
at the desired x.

Program:

#x=time, y=harge, z=urrent

#The following funtion solves the

#oupled equations y'=f(x,y,z) and z'=g(x,y,z)

from pylab import*

102 CHAPTER 5. SIMULATIONS

def f(x,y,z):return z

def g(x,y,z):return (-0.2*z-y+sin(4*x))#L=1H,C=1F, omega=4/s,R=0.2ohm.

#Runge-Kutta fourth order funtion

def rk4solution(f,g,x,y,z,h,n):

result=[[℄,[℄,[℄℄

for i in range(n):

k1=h*f(x,y,z)

m1=h*g(x,y,z)

k2=h*f(x+h/2,y+k1/2,z+m1/2)

m2=h*g(x+h/2,y+k1/2,z+m1/2)

k3=h*f(x+h/2,y+k2/2,z+m2/2)

m3=h*g(x+h/2,y+k2/2,z+m2/2)

k4=h*f(x+h,y+k3,z+m3)

m4=h*g(x+h,y+k3,z+m3)

x,y,z=x+h,y+(k1+2*k2+2*k3+k4)/6,z+(m1+2*m2+2*m3+m4)/6

result[0℄.append(x)

result[1℄.append(y)

result[2℄.append(z)

return result

s=rk4solution(f,g,0.,0.,0.,0.05,1000)

figure(1)

subplot(1,2,1)

xlabel('time')

ylabel('harge')

title('Charge variation')

grid(True)

plot(s[0℄,s[1℄)

subplot(1,2,2)

xlabel('time')

ylabel('Current')

title('Current variation')

grid(True)

plot(s[0℄,s[2℄)

figure(2)

xlabel('Charge')

ylabel('Current')

title('Current-Charge plot')

grid(True)

plot(s[1℄,s[2℄)

show()

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 103

0 10 20 30 40 50
time

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

ch
ar

ge

Charge variation

0 10 20 30 40 50
time

−0.4

−0.2

0.0

0.2

0.4

Cu
rre

nt

Current variation

The graphs show some initial distortions but later starts osillating with the im-

pressed frequeny ω. It an be explained if we look at the analyti solution of the

104 CHAPTER 5. SIMULATIONS

di�erential equation

L
d2q

dt2
+R

dq

dt
+
q

C
− V0 sin (ωt)(t) = 0

d2q

t2
+ 2γ

dq

dt
+ ω2

0q − v0 sin (ωt)(t) = 0

where 2γ = R/L, ω2
0 = 1/LC, v0 = V (0)/L

q(t) = Ae−γt sin (ω′t+ φ) +B sin (ωt+ ψ)

where A is real and positive amplitude, φ, ψ are additional phases ω′ =
√

ω2
0 − γ2 and

B =
v0

√

(ω2
0 − ω2)2 + 4γ2ω2

The �rst term of the solution represents damped osillations while the seond term gives

the fored osillations. They interfere to give some distorted waveforms. Gradually the

amplitude of damped osillation redues to zero and the LCR-iruit starts osillating

with impressed frequeny.

5.1.6 Standing waves

Standing waves are produed when a travelling wave gets re�eted and superimpose

with the original wave.

Priniple

Let y1 = f(x−vt) be the forward wave and y2 = f(x+vt) be the re�eted wave. Then

y = y1 + y2 will be the omposite wave. If it is a harmoni wave of spatial frequeny

k = 2π/λ and angular frequeny ω = 2πν, it an be represented as y1 = A sin (kx− ωt)
and y2 = A sin (kx+ ωt). Hene superposed wave is given by

y = A sin (kx− ωt) + A sin (kx+ ωt)

It an be seen that the superposed pattern onsists of points of zero amplitude alled

nodes . Energy is not transmitted through nodes. Hene the name stationary waves.

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 105

0 2 4 6 8 10
displacement y

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

Stationary waves for k=2,omega=1

Program

from pylab import*

k,omega,=2.,1.

t=x=linspae(0,10,100)

y=[sin(k*x-omega*i)+sin(k*x+omega*i) for i in t℄

xlabel('displaement y')

ylabel('x')

title('Stationary waves for k=2,omega=1')

plot(x,y)

show()

5.1.7 Simulation of radioativity

Priniple

Radioative deay is an inherently non-deterministi proess that an be simulated

very naturally using the Monte Carlo method. The observation that the mean-life is a

harateristi of the nuleus leads to the assumption that the probability P of any one

partile deaying per unit time in a radioative sample is a onstant. Suppose that the

probability of any given atom deaying over a time interval ∆t is given by λ, where
0 < λ < 1. Then the history of a single atom an be simulated by hoosing a sequene

106 CHAPTER 5. SIMULATIONS

of random numbers xk, k = 1, .. uniformly distributed on (0, 1). The atom survives

until the �rst ourane of xk < λ. This approah an be used to simulate an ensemble

of N atoms. Let ∆N be the number of partiles that deay in some small time interval

∆t. Then the deay probability per partile, ∆N/N , is proportional to the length of

the time interval over whih we observe the partile.

∆N(t)

N(t)
= −λ∆t, ∆N(t) = −λ∆tN(t)

This is a �nite-di�erene equation in whih ∆N(t) and ∆t are experimental observ-

ables. Hene it annot be integrated the way one solves a di�erential equation. But

numerial or algebrai solutions are possible. Beause the deay proess is random, an

exat value for ∆N(t) annot be predited. ∆N(t) may be taken as the average num-

ber of deays when observations are made of many idential systems of N radioative

partiles.

Algorithm

1: Read N ,D,(initial number of parent and daughter atoms), maximum no of time

intervals m and deay onstant λ
2: T ← 0
3: while N > 0 and T < m do

4: NU ← N
5: for i = 1 to NU do

6: x← rand()
7: if 0 < x ≤ lambda then
8: N ← N − 1
9: end if

10: end for

11: T ← T + 1
12: end while

13: End

Program:

from pylab import*

N,M,Lambda,T=100,10,0.21,0

NU=[N℄

while N>0 and T<M:

for i in range(N):

if random()<= Lambda:N-=1

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 107

NU+=[N℄

T+=1

T=arange(T+1)

plot(T,NU)

plot(T,Y)

Y=NU[0℄*exp(-Lambda*T)

legend(['Simulated','Exponential'℄)

xlabel('time')

ylabel('No.of undeayed atoms')

title('Radioative deay')

grid(True)

It an be seen that asN inreases, the deay graph oinides with the exponential urve.

Hene the di�erential equation

dN

N
= −λdt is only a large-number approximation of

the di�erene equation

∆N

N
= −λ∆t

0 2 4 6 8 10
time

0

20

40

60

80

100

No
.o
f u

nd
ec

ay
ed

 a
to
m
s

Radioactive decay

Simulated
Exponential

Index

mth
root, 25

Fator theorem, 70

Irrational Root Theorem, 70

Rational Root Theorem, 70

algorithm, 63

aliasing, 82

angular frequeny, 104

append, 6

array, 29

axis(), 50

bar, 50

barh, 50

Bessel's Funtion, 59

binomial oe�ients, 20

bisetion method, 25

boundary onditions, 85

entigrade, 25

lose, 16

math, 22

o-domain, 61

ombination, 19

Complex Root Theorem, 70

onatenation, 6

onstrutor, 10

ontour, 50

ontourf, 50

ount, 6

ross, 39

ross produt, 40

ubi polynomial, 76

ubi spline, 66

D.Lehmer, 96

Danielson-Lanzos Lemma, 85

de�ation, 73

Desartes Rule, 70

det, 45

determinant, 45

ditionaries, 2

ditionary, 5, 12

di�erene, 10

di�erene operator, 87

di�erential operator, 87

disrete transform, 82

domain, 61

dump, 16

eig, 46

eigenvalue, 46

eigenvetor, 46

eigh, 46

eigvals, 46

eigvalsh, 46

elif, 14

else, 14

expetation, 78

expeted value, 78

extend, 6

fatorial, 19

Fahrenheit, 25

Fast Fourier Transform, 84

Fibonai series, 18

�gure(), 50

�le, 16

Fourier transforms, 82

frozenset, 5

funtion, 15

Gamma funtion, 56

Gaussian funtion, 56

108

INDEX 109

genfromtxt, 35

grid(), 50

Hailstorm number, 21

harmoni wave, 104

hermitian matrix, 46

homogeneous, 29

if, 14

image, 61

immutable, 5, 10, 12

importane sampling, 81

imshow, 54

imshow(), 1

index, 7, 39

inner produt, 39

input, 1

insert, 7

interpolate, 66

intersetion, 10

inv, 45

inverse funtion, 61

invertible matries, 45

irrational roots, 74

key, 12

Laguerre's Method, 73

law of large numbers, 78

legend(), 50

Legendre Funtion, 57

Legurre's proedure, 76

linalg, 45

linear algebra, 45

linear equation, 45

list, 2, 5

load, 16

logisti map, 97

loglog plot, 51

magi numbers, 96

math, 15

Matplotlib, 49

module, 15

Monte Carlo, 77, 95

multidimensional, 29

multipliative ongruential reursive method,

96

mutable, 5

n-Zero theorem, 70

ndarray, 29

Newton-Raphson method, 24, 25

node, 104

non-singular, 45

norm, 45

numeri, 2

Numpy, 49

numpy, 15

Nyquist ritial frequeny, 82

Nyquist sampled, 82

Nyquist-Shannon Sampling Theorem, 81

ogrid[℄, 51

one-to-one, 62

one-to-one mapping, 61

onto mapping, 61

open, 16

operand, 3

operator, 3

orthogonality, 22

os, 15

outer, 40

outer produt, 40

palindrome, 23

parametri plot, 53

Pasal's triangle, 20

Permutation, 19

pikle, 16

Pie harts, 53

pinv, 45

plot(), 49

Polar oordinate, 52

polar plot, 51

pop, 7

preimage, 61

prime number, 23

pseudo-random numbers, 95

pseudoinverse, 45

110 INDEX

pylab, 15

quadrati equation, 22

quadrati formula, 77

random, 15

random variable, 78

rational number, 52

ravel, 33

raw_input, 1

read, 16

relaxation method, 87

Remainder theorem, 70

remove, 7

reshape, 33

reshape funtion, 34

resize, 33

reverse, 8

rhodonea, 52

Robert May, 97

rose urve, 52

sampling, 80

sampling theorem, 81

Sande-Tukey algorithm, 84

save�g(), 1

savetxt, 35

satter plot, 51

semilogx, 51

semilogy, 51

shooting method, 85

show(), 1, 49

simple harmoni osillator, 90

simulation, 81

sinusoid, 52

skiprows, 35

slie, 39

solve, 45

sort, 8

sorted, 8

spatial frequeny, 104

square matrix, 46

square root, 24

standard deviation, 79

standing waves, 104

String, 4, 5

string, 2

swapping method, 64

symmetri di�erene, 10

text(), 50

the horizontal line test, 62

title(), 50

transpose, 33

triangular sequene, 20

tuple, 5, 12

tuples, 2

unary operation, 42

union, 10

unit matrix, 30

variane, 80

write, 16

xlabel(), 50

ylabel(), 50

