PYTHON FOR M.5c STUDENTS

V.N.Purushothaman
Department of Physics
Sree Kerala Varma College, Trichur

31-03-2013

Contents

1 Unit-1: Basics of Python language

1.1 Inputs o
1.2 Outputs e
1.3 Variables and data types oo
1.4 operators e
1.5 Strings L
1.6 Mutable and Immutable Types
1.7 Conditional Execution oo
1.8 Tteration and looping
1.9 Functions and Moduleso o Lo
1.10 File input and Output
1.11 Pickling
1.12 Problems

2 Advanced Python Programming

14

14

15

16

16

17

29

CONTENTS

2.1.2 Arraycreation 29
2.1.3 Array modification Lo 33
2.1.4 Printing arrays 34
2.1.5 Saving and restoring arrays 35
2.1.6 Indexing, Slicing and Iterating 39
2.1.7 Arrays as matriceso Lo 39
2.1.8 Arrays as polynomial coefficients 44
2.1.9 Linear Algebra 45
Plotting and visualization 49
3.1 Matplotlib 49
3.1.1 The Matplotlib Module 49
3.1.2 Plotting mathematical functions %)
Numerical Analysis 61
4.1 Numerical methods o L 61
4.1.1 Inverse of a function 61
4.1.2 Interpolation with Cubic Spline 66
4.1.3 Zeros of polynomialso 70
4.1.4 Monte Carlo Methods 7
4.1.5 Sampled Data 81
4.1.6 Discrete Fourier Transform 82
4.1.7 Fast Fourier Transform(FFT) 84

CONTENTS 5

4.1.8 Shooting methodo 85

4.1.9 Relaxation method: L. 87

5 Simulations 89
5.1 A computational approach to physics. 89
5.1.1 Simple harmonic oscillator 90

5.1.2 Central field motion L 92

5.1.3 Monte-Carlo simulations- valueof 7. 95

5.1.4 Logisticmap 97

5.1.5 Driven LCR circuit 100

5.1.6 Standing waves 104

5.1.7 Simulation of radioactivity o0 105

CONTENTS

CONTENTS i

Preface

This is a rough collection of the lecture notes I had prepared to teach the course
PHY2C08: COMPUTATIONAL PHYSICS prescribed for M.Sc physics students of
colleges affiliated to Calicut University. Due to lack of time, it is done at a terrific pace
which might have caused a few mistakes here and there. Shortage of explanations and
examples is another casualty of such hurry. T hope that it may be useful in some small
way to students and teachers. Please be kind enough to inform me when you come
across mistakes in the ideas or language used in this monograph. Purushothaman.V.N,
Department of Physics,

Sree Kerala Varma College, Trichur

email:vadakkedam @Qrediffmail. com

Mob: 9446723810

i

CONTENTS

Chapter 1

Unit-1: Basics of Python language

1.1 Inputs

A program is a set of statements used to produce an output from the input data.
Numbers (real and complex), are read from terminal using the function input(’Prompt’)
. Strings are read using the function raw input(’prompt’). For example

>>> b=input(’Give a number:)
Give a number: 10

>>>> b

10

>>> a=raw_input(’Give a text: ’)
Give a text: hopeless

>>> a

’hopeless’

1.2 Outputs

The output of a program can be a number, text or graphics. For text and numbers print
statement is employed. For graphic output functions like show(),savefig(),imshow() etc
are defined in relevant modules.

>>> x=b
>>> print x

2 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

5

>>> y=[2,5,7,9]

>>> print y

[2, 5, 7, 9]

>>> z=’beamer’

>>> print z

beamer

>>> print x,y,z

5 [2, 5, 7, 9] beamer

Formatted output is possible just as in c-language. The general form of format string
is %m.nx where m is an integer showing the total width to be used for printing, n is
an integer representing the number of decimal places to be used while printing floating
point numbers so that |m| > 1 4 n(decimal point+decimal places) and x is ¢ for single
character, f for float, e for float in scientific format, s for string, x for hexadecimal, o
for octal, d or ¢ for integer and Od for integer with zeros on the left to fill the width.

>>> print ’1)%5d 2)%5i 3)%05d ’%(23,23,23)
1) 23 2) 23 3)00023
>>> print ’1)%4c’%(°z”)

1) z

>>> print ’1)%12s, 2)%-12s’%(’zoology’,’zoology’)

1) zoology, 2)zoology

>>> print °1)%12.5f, 2)%-12.5f, 3)%12.7£°7(24.5,24.5,24.5)
1) 24.50000, 2)24.50000 , 3) 24.5000000

>>> print 1)%12.5x%, 2)%12.50°%(24.5,24.5)

1) 00018, 2) 00030

1.3 Variables and data types

A computer program to solve a problem is designed using variables belonging to the
supported data types. Python supports numeric data types like integers, floating point
numbers and complex numbers. To handle character strings, it uses the String data
type. Python also supports other compound data types likelists, tuples, dictionaries.
In the previous example, x is numeric, y is a list and z is a string.

1.4. OPERATORS 3

1.4 operators

Operators are functionality that do something and can be represented by symbols such
as -+ or by special keywords. Operators require some data to operate on and such
data are called operands. In x = 2 4 3, 2 and 3 are the operands and =" and ’+’ are
operators. The other operators are

or,and,not (Boolean OR,AND,NOT) : returns True or Fals
in(Membership): returns True or Fals,

not in(Non-membership): returns True or False,

<, <=, >, >=, I=, == (Comparisons): returns True or False
|,~,&(Bitwise OR, XOR,AND),

<<, >>(Bitwise Shifting left and right)

+,-,% (Add, Subtract, Multiply)

/,%h,*¥*(divide, reminder, Exponentiation)

+x (Positive), -x(Negative),

~(Bitwise NOT),

x[index] (Subscription)

Bitwise operator works on bits and perform bit by bit operation. Assume a = 60 and
b = 13. Now in binary format they will be as follows:

a = 0011 1100,

b = 0000 1101

Binary AND Operator copies a bit to the result if it exists in both operands.

a&b = 0000 1100

Binary OR Operator copies a bit if it exists in either operand.

alb = 0011 1101

Binary XOR Operator copies the bit if it is set in one operand but not both.

a~b = 0011 0001

Binary Ones Complement Operator is unary and has the effect of ’flipping’ bits.

“a = 1100 0011

Binary Left Shift Operator moves left operand by the number of bits specified by th
a << 2 will give 1111 0000 which is 240

Binary Right Shift Operator moves left operand by the number of bits specified by tI
a > 2 will give 0000 111iwhich is 15

Precedence Rules of operators: These rules give the sequence of executions of an
expression containing more than one operator.

4 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1. () (anything in brackets is done first. Highest precedence)

2. ** (exponentiation is done next)

3. =X, X (unary +)

4. * /. %, // (multiplication, division, remainder after division, successive division)
5. +, - (addition, subtraction)

6. relational operators: <, >, <=, >=, = ==

7. logical not

8. logical and

9. logical or (Lowest precedence)

1.5 Strings

String is a collection of same kind of elements (characters). It is a compound or
collection data type. The individual elements of a string can be accessed by indexing.

>>> g = ’hello world’

>>> s[0]

)h)

>>> s[7]

)o)

>>> s[5]

))

>>> s[-1] # will print the last character
)d)

Strings can be added and multiplied by integers.

>>> p,q,r="Eating ’,’troubles’,’ meeting ’
>>> ptqtr

’Eating troubles meeting’

>>> 2%xp+q

’Eating Eating troubles’

1.6. MUTABLE AND IMMUTABLE TYPES 5

1.6 Mutable and Immutable Types

There is one major difference between String, tuple, list,dictionary types. List and
dictionary are mutable but string and tuple are immutable. We can change the value
of an element in a list , add new elements to them and remove any existing element.
This is not possible with String and tuple types.In the case of sets one variety called
frozenset is immutable while set is mutable.

List

List is much more flexible than String. The individual elements can be of any type,
even another list. Lists are defined by enclosing the elements inside a pair of square
brackets and separated by commas.

>>> 1=[2.3,’A’,3,’khan’]

>>> type (1)

<type ’list’>

>>> 2%]1

[2.29, ’A’, 3, ’khan’, 2.29, ’A’,3, ’khan’]
>>> 1[3]=28

>>> 1

[2.299, ’A’, 3, 28]

Lists respond to the + (concatenation) and * (repetition) operators like strings.The
result is a new list.

Python Expression Results Description
len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation
[Hil| * 4 [Hil’, "Hil’, "Hil’, 'Hil'] | Repetition
3in [1, 2, 3| True Membership
for x in [1, 2, 3]: print x, | 123 Iteration

List Methods

A method is a function that is coupled to some object, be it a list, a number, a string,
or whatever. In general, a method is called like this: object.method(arguments). If a
is list object and max() is a method defined on list class to find the maximum value
in the list, then a.maz() returns maximum of list a. A method call is like a function

6 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

call, except that the object is put before the name of the method method with a dot
separating them. Lists have several methods that can be used to examine or modify
their contents.

1. append: The append method is used to append an object to the end of a list:

>>>1st = [1, 2, 3]
>>>1st.append(4)
>>>1st

>>>[1,2, 3, 4]

The same can be achieved using + operator.
>>> x=[3,5,4]

>>> x+=[2]
>>> x
[3, 5, 4, 2]

2. count: The count method counts the occurrences of an element in a list:

>>>[’t0’, ’be’, ’or’, ’not’, ’to’, ’be’].count(’to’)
>>>92

>>>x = [[1, 21, 1, 1, [2, 1, [1, 211]

>>>x.count (1)

>>>x.count ([1, 21)

>>>.

3. extend: The extend method allows you to append several values at once by
supplying a sequence of the values you want to append. In other words, your
original list has been extended by the other one:

>>>a = [1, 2, 3]
>>>b = [4, 5, 6]
>>>a.extend(b)
>>>a

[1,2, 3, 4, 5, 6]

This may seem similar to concatenation, but the important difference is that the
extend method modifies a list without creating a new one. In ordinary concate-
nation, a completely new list is returned:

a=[1, 2, 3]

b = [4, 5, 6]
a+hb

[1, 2, 3, 4, 5, 6]
a

[1,2, 3]

1.6.

7.

MUTABLE AND IMMUTABLE TYPES 7

. index: The index method is used for searching lists to find the index of the

first occurrence of a value:

>>> knights = [’We’, ’are’, ’the’, ’knights’, ’who’, ’say’, ’ni’]
>>> knights.index(’who’)

4

>>> knights.index(’herring’)

>>> ValueError: list.index(x): x not in list

When you search for the word 'who’, you find that it’s located at index 4:

>>> knights[4]
’who’

. insert: The insert method is used to insert an object into a list: » > numbers

=1, 2, 3, 5, 6, 7| »> numbers.insert(3, "four’) » > numbers » > [1, 2, 3, *four’, 5,
6, 7] As with extend, you can implement insert with slice assignments:

numbers = [1, 2, 3, 5, 6, 7]
numbers[3:3] = [’four’]
numbers

[1, 2, 3, >four’, 5, 6, 7]

. pop: The pop method removes an element (by default, the last one) from the

list and returns it:

>>> x = [1, 2, 3]
>>> x.pop()

>>> x

>>> [1, 2]

>>> x.pop(0)

>>> x

>>> [2]

The pop method is the only list method that both modifies the list and returns
a value.

>>> x = [1, 2, 3]
>>> x.append (x.pop())
>>> x

>>> [1, 2, 3]

remove: The remove method is used to remove the first occurrence of a value:

10.

11.
12.

CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

>>> x = [’to’, ’be’, ’or’, ’not’, ’to’, ’be’]
>>> x.remove(’be’)

>>> x

[’to?, ’or’, ’not’, ’to’, ’be’]

>>> x.remove(’bee’)

>>> ValueError: list.remove(x): x not in list

del: To remove a list element, you can use either the del statement if you know
exactly which element(s) you are deleting or the remove() method if not known.
The reverse method reverses the elements in the list.

»>x = [1, 2, 3] »> x.reverse() »> x »> [3, 2, 1] Note that reverse changes the

list and and saves under the same name. »> x = [1, 2, 3| » > list(reversed(x)) [3,
2, 1]

sort: The sort method is used to sort lists in place. Sorting 'in place’ means
changing the original list so its elements are in sorted order, rather than simply
returning a sorted copy of the list:

>>x = [4, 6, 2, 1, 7, 9]
>>> x.sort ()

>>> x

>>> [1, 2, 4, 6, 7, 9]
>>x = [4, 6, 2, 1, 7, 9]
>>> x.sort(reverse=True)
>>> x

>>> [9, 7, 6, 4, 2, 1]

sorted: Another way of getting a sorted copy of a list is using the sorted
function:

>>x = [4, 6, 2, 1, 7, 9]
>>> y=sorted(x)
>>> x,y

(4, 6, 2, 1, 7, 91, [1, 2, 4, 6, 7, 9]1)
This function can actually be used on any sequence, but will always return a list:

>>> sorted(’Python’)
>5> [’P’, ’h’, ’n’, ,O,, ,t,, 7y7]

len: Gives the number of elements in a list.

max: Gives the element having maximum ASCII value in a list.

1.6. MUTABLE AND IMMUTABLE TYPES 9

13. min: Gives the element having minimum ASCII value in a list.

14. cmp: This function is the basis for sorting. ¢cmp(a, b) returns -1 if a < b, 0 if a
==band 1ifa > b.

15. list: Converts a string or tuple into a list.

16. sum: Returns the sum of elements in a numeric list.
For example

>>> a=[2,5,’A’,’a’,’ab’]
>>> max(a)

)ab)

>>> a.append(’z’)

>>> a
[2,5,’A’,’a’,’ab’,’z’]
>>> max(a)

7z7

>>> min(a)

2

>>> x=[4, 7, 8, 2, 3, 12]
>>> cmp(a,x)

-1

>>> cmp(x,a)

1

>>> y=x

>>> y

4, 7, 8, 2, 3, 12]

>>> cmp(x,y)

0

>>> c=’design’

>>> 1ist(c)

[’d’, re?, g7, ’i’,)g), >n>]
>>> d=(’j’,’k’,3,5)

>>> 1ist(d)

[)J‘), 'k, 3, 5]

>>> sum(x)

36

Slicing: Elements from a list can be selected using slicing operator . If x is a list,
then z[m : n : p| represents the set of elements of x with indices [m®, (m + p)™*, (m +
2p)th.] excluding n' element.

10 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

>>> x=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[0:-1:2]

[o, 2, 4, 6, 8]

>>> x[1:-1:2]

[1, 3, 5, 7]

>>> sum(x[1:-1:2])

16

>>> x[0:5:2]

[0, 2, 4]

>>> sum(x[0:5:2])

set:

A set object is an unordered collection of immutable values. They cannot be indexed
by any subscript. The built-in function len() returns the number of items in a set.
There are currently two intrinsic set types:

(1)Sets: These represent a mutable set. They are created by the built-in set()
constructor and can be modified afterwards by several methods, such as add(), clear(),
discard().

Frozen sets: These represent an immutable set. They are created by the built-in
frozenset() constructor. As a frozenset is immutable, it can be used as an element
of another set, or as a dictionary key. Common uses of sets include membership
testing, removing duplicates from a sequence, and computing mathematical operations
such as intersection, union, difference, and symmetric difference. The main functions
are len(), union(), intersection(), difference(), symmetric_ difference(), issubset() and
issuperset(). There is also an operator equivalent for many of these functions. Let s
and t be two sets. Then

1. x in s: test element x for membership in s (True/False)

N

x not in s: test element x for non-membership in s (True/False)

©w

s.issubset(t): [s <= t]: test whether every element in s is in t

=

s.issuperset(t): [s >= t]: test whether every element in t is in s
5. s.union(t): [s | t]: new set with elements from both s and t
6. s.intersection(t): [s & t]: new set with elements common to s and t

7. s.difference(t): [s - t|: new set with elements in s but not in t

1.6. MUTABLE AND IMMUTABLE TYPES 11

8. s.symmetric_ difference(t) : [s t]: new set with elements in either s or t but not
both

9. s.copy(): new set with a copy of s
10. s.clear(): Remove all elements from the set s.

11. s.discard(x): Remove element x from set s if it is a member. If x is not a member,
nothing happens.

12. s.update():Update s with the union of itself and others.

>>> a=[1,2.0,6.1,°1"]
>>> b=set(a)
>>> b
set([1, 2.0, ’1’, 6.0999999999999996])
>>> c=set([1,3,6.1,°k’])
>>> ¢
set([1, ’k’>, 3, 6.0999999999999996])
>>> d=set(’domain’)
>>> d
Set([)a),)d),)i),)m),)o)’)n)])
>>> f=set((1,3,5,9.1))

>>> f

set([1, 3, 9.0999999999999996, 5])

>>> blc

set([1, 2.0, 3, ’k’, ’1’, 6.0999999999999996])
>>> b&c

set([1, 6.0999999999999996])
>>> b.difference(c)
set([2.0, °1°])

>>> c.difference(b)
set([’k’, 31)

>>> c.symmetric_difference(b)
set([’k’, 2.0, 3, ’1°])

>>> s=set([1,3,5,7,9])

>>> g.add(11)

>>> g

set([1, 3, 5, 7, 9, 111)
>>> s.remove(5)

>>> g

set([1, 3, 7, 9, 11])

12 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Tuples

Tuples are data structures that are very similar to lists, but they cannot be modified
(immutable). They can only be created. Tuples have important roles as keys for
dictionaries. A tuple is a sequence that is enclosed by parentheses (). The following
line of code creates a three-element tuple

>>> x = (’a’, ’b’, ’c?)

Interconversion between lists and tuples is possible using list() and tuple() functions.

>>> 1ist ((1, 2, 3, 4))
[1,2, 3, 4]
>>> tuple([1, 2, 3, 41)
(1,2, 3, 4)

Dictionaries

Dictionaries are associative arrays. It is a group of {key : value} pairs. The elements
in a dictionary are indexed by keys. Keys in a dictionary are required to be unique.
Keys can be almost any Python type, but are usually numbers or strings. Values, on
the other hand, can be any arbitrary Python object. Dictionaries are enclosed by curly
braces - { } and values can be assigned and accessed using square braces [|. They are
different from sequence type containers like lists and tuples in the method of storing
data. There is no concept of order among elements. They are unordered.Their main use
include storing time of modification of files as values and file name as keys, telephone
directory with name as value and phone number as key, address book with name as key
and address as value, the coordinate of a point(tuple) as key and its colour as value in
a graphic screen etc. Example for a dictionary is given below.

>>> dct={} #Creates an empty dictionary

>>> dct[’host’]=’Earth’

#’host’ is the key and ’earth’ is the value.
>>> dct

{’host’: ’Earth’}

>>> dct[’port’]1=80

>>> dct

{’host’: ’Earth’, ’port’: 80}

>>> dct.keys()

1.6. MUTABLE AND IMMUTABLE TYPES 13

[’host’, ’port’]

>>> dct.values()
[’Earth’, 80]

>>> print dct[’host’]

Dictionary functions and methods:

. cmp(dictl, dict2): Compares elements of both dictionaries.

. len(dict): Gives the total length of the dictionary. This would be equal to the

number of Key-value pairs in the dictionary.

. str(dict): Produces a printable string representation of a dictionary

. type(variable): Returns the type of the passed variable. If passed variable is

dictionary then it would return a dictionary type.

Python includes following dictionary methods

10.

dict.clear(): Removes all elements of dictionary dict

. dict.copy(): Returns a shallow copy of dictionary dict

. dict.fromkeys(): Create a new dictionary with keys from seq and values set to

value.

. dict.get(key, default=None): For key key, returns value or default if key not in

dictionary

. dict.has_key(key): Returns true if key in dictionary dict, false otherwise
. dict.items(): Returns a list of dict’s (key, value) tuple pairs
. dict.keys(): Returns list of dictionary dict’s keys

. dict.setdefault(key, default—None): Similar to get(), but will set dict|key|=default

if key is not already in dict

. dict.update(dict2): Adds dictionary dict2’s key-values pairs to dict

dict.values(): Returns list of dictionary dict’s values

14 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1.7 Conditional Execution

The most fundamental aspect of a programming language is the ability to control the
sequence of operations. One of this control is the ability to select one action from a set
of specified alternatives. The other one is the facility to repeat a series of actions any
number of times or till some condition becomes false. To execute some section of the
code only if certain conditions are true python uses if, elif,...,else construct.

>>> x = input (’Enter a number ’)
10
>>> if x>10:
print ’x>10’ # Note the Colon and indentation.
elif x<10:
print ’x<10’°
else:
print ’x=10’
>>>x=10

1.8 TIteration and looping

when a condition remains true, if a set of statements are to be repeated, the while
and for constructs are employed. The general syntax of a while loop may be given as
follows.

whilecondition:

set of statements to be repeated

for elements in list or tuple :

set of statements to be repeated

>>> x=10
>>> while x>0:
print x,
x=x-1
>>10 987 6 54321
>>> for i in range(10,0,-1):
print 1,
>>10 987 6 54321

1.9. FUNCTIONS AND MODULES 15

1.9 Functions and Modules

A function is a block of code that performs a specific task. Using a function in a
program is called ’calling’ the function. Python has two tools for building functions:
def and lambda. For example, we can build a function that returns the square root of
a number as follows:

(1) def squareroot(x): return math.sqrt(x)

(2) squareroot = lambda x: math.sqrt(x)

(3) g = lambda x: x*2

g(3)=6

(4) (lambda x: x*2)(3)= 6

If a function is used only once (called from only one place in your program) Lambda
functions are useful and convenient for two reasons: (1)There is no need to give the
function a name.(2) It can be defined where it is used.

The next method of defining functions is illustrated below. For finding the largest
of x,y,z

>>> def large(x,y,z):
if y>x:
X,y=y,X
if z>x:
Z,X=X,Z
return(x)
>>> large(3,4,2)
4

In Python, the definitions of functions, variables, constants may be saved in a file
and use them in a script or in an interpreter just like header files in C-language.
Such a file is called a module. The file name is the module name with the suffix .py
appended. Within a module, the name of the module is assigned to the global variable
_name__. Definitions from a module can be imported into other modules or into the
main module. Examples of some standard modules are math, os,random, pylab, numpy
etc. The main advantage of creating and using modules is that longer programs can
be split into several files so that maintenance of code is easy and can be reused in
several programs by including the file with the keyword import at the beginning of the
program.

16 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1.10 File input and Output

Files are used to store data and program for later use. This program creates a new file
named 't.txt’ (any existing file with the same name will be deleted) and writes a String
to it. The file is closed and then reopened for reading data. The relevant functions are
open, write, read and close.

>>> f=open(’t.txt’,’w’)

>>> f.write(’breaking into the file’)
>>> f.close()

>>> f=open(’t.txt’,’r’)

>>> f.read()

’breaking into the file’

1.11 Pickling

Strings can easily be written to and read from a file. Numbers take more effort,
since the read() method only returns strings, which will have to be converted into a
number explicitly. However, it is very complicated when trying to save and restore
data types like lists, dictionaries etc. Rather than constantly writing and debugging
code to save complicated data types, Python provides a standard module called pickle.
Functions dump and load are used in pickle. pickle.dump(a,f) will save object a to file
[a=pickle.load(f) retrieves data from file f.

Pickling- Examples

>>>import pickle
>>>a=10.1

>>>b=’sh’

>>>c=[5,3,2]

>>>f = open("state", ’w’)
>>>pickle.dump(a, f)
pickle.dump(b, f)
pickle.dump(c, f)
file.close()

>>>file = open("state", ’r’)
Reading and writing files

1.12. PROBLEMS 17

a = pickle.load(file)
b = pickle.load(file)
¢ = pickle.load(file)

file.close()

Any data that was previously in the variables a, b, or c is restored to them by
pickle.load.

1.12 Problems

1. To sort a set of numbers

a=[]

n=input (’Give the count of numbers n’)

for i in range(n):a.append(input(’Type the numbers’))
a.sort() #Ascending order

print a

a.reverse() # Descending order

print a

2. Simultaneous arrays: Construct two 100-element arrays such that i"* element of
one array is sin (27i/100) and the other cos (27i/100).

Program:

from math import x*

x=[sin(2*%pi*i/100) for i in range(1,101)]
y=[cos(2*pi*i/100) for i in range(1,101)]
print x,y

3. To create a triangle of equispaced stars(*)

Program:

n=input (’Howmany rows ? ’)
for i in range(n):
print
for j in range(i+1): print ’*’,

When the program is run

18

CHAPTER 1.

Howmany rows 7 7

* X X X ¥ X *
* X ¥ X * X

* X ¥ x *

X X
X X X

* X ¥ x
*

. Fibonacci series:

UNIT-1: BASICS OF PYTHON LANGUAGE

n=input (’Number below which series is required: ’)

a, b=0,1
while b < n:
print b,

a, b =D>b, atb

. To read a m X n matrix using list-methods only

m,n=input (’order of matrix m,n = ’)

a=[]

for i in range(m):

b=[]

print ’output:

for j in range(n):

b.append (input (’give elements a(i,j)’))
a.append (b)

),a

When the program is run

order of matrix m,n =

give
give
give
give
give
give

output:

elements
elements
elements
elements
elements
elements

import math

x=[0.1*i for i in range(10)]

[f1, 2, 31,

a(i,j)t
a(i,j)2
a(i,j)3
a(i,jl4
a(i,j)b
a(i,j)eé

2,3

(4, 5, 6]1]

. To generate values of a function, say, x sin x

1.12.

PROBLEMS 19

y=[i*math.sin(i) for i in x]
for i in range(10):
print ’(%0.2f,%0.5f) % (x[i],y[i]),

The (z,y) values obtained are given below

(0.00,0.00000), (0.10,0.00998), (0.20,0.03973), (0.30,0.08866),
(0.40,0.15577), (0.50,0.23971), (0.60,0.33879), (0.70,0.45095),
(0.80,0.57388), (0.90,0.70499),

. To find factorial of a number

n=input (’Give the number whose factorial is required’)
f=1

for i in range(1,n+1):f*=i

print £

Permutations

n,r=input(’Give n and r in nPr: ’)
p=1

for i in range(n,n-r,-1):p*=i
print p

. combinations The definition is

nl _nn—1)Mn-=-2)...(n—r+1) _n (n—l)c(Y

"C, = (n—r)lr! - r(r—1)(r—2)...3.2.1 r

def combination(n,r):

if r==0:return 1

else:return n*combination(n-1,r-1)/r
n,r=input(’Give n and r in nCr: ’)
print combination(n,r)

When program is run

Give n and r in nCr: 6,3
20
>>>
Give n and r in nCr: 7,4
35

20

10.

11.

CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Aliter:

def f(a):

if a==1:return(1)

else: return(a*f(a-1))
n,r=input(’Give n and r in nCr: ?)
print f(n)/(f(n-r)*£f(r))

Pascal’s triangle

Pinciple: It is the set of binomial coefficients arranged in rows. The, n* r

corresponds to the coefficients of the expansion (a + b)"

ow

def f(a):
if a==0:return(1)
else: return(axf(a-1))
n=input (’Howmany rows 7 ’)
for i in range(n):
print
for j in range(i+1): print f(i)/(£(i-j)*£(j)),

Aliter:

def combination(n,r):

if r==0:return 1

else:return n*combination(n-1,r-1)/r
m=input (’Howmany rows 7 ’)
for i in range(m+1):

print

for j in range(i+l):print combination(i,j),

when the program is run

Howmany rows 7 7

e e

1
2
3
4
5
6 15 20 15 6 1

Generate the triangular sequence 0,1,3,6,10,15,21,...n

1.12.

12.

PROBLEMS 21

Principle: Obviously the numbers are combinations

n\ n(n-—1)
2) 1x2
where n = 0,1, 2, 3...

Program:

m=input (’Give maximum number upto which the series is required: ?)
print [ix(i+1)/2 for i in range(m) if i*(i+1)/2 < ml]

When the program is run

Give maximum number upto which the series is required: 150
(o, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136]

Aliter:
The relation between adjacent elements is

al0] =0,n > 0,a[n] =aln — 1]+ (n — 1)

n,a=input(’n: ’),0
for i in range(n):
a+=1
print a

Hailstorm numbers

Principle: Pick any whole number. If it’s odd, multiply the number by 3, then
add 1. If it’s even, divide it by 2. Now, apply the same rules to the answer that
you just obtained. Do this over and over again, applying the rules to each new
answer. Hence these are the set of numbers obtained by the following rule of
iteration.

If s; is even, s;11 = $;/2, else ;41 = 3s; + 1

Program:

s=input (’Seed number for Hailstorm series: ’)
while s!=1:

if s§%2==0:8/=2

else:s=(3xs+1)

print s,

22

13.

14.

15.

16.

CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

When the program is run

Seed number for Hailstorm series: 17
52 26 13 40 20 10 516 8 4 2 1

To find largest and smallest in a set of numbers

x=[]

n=input (’Give the count of numbers’)

for i in range(n): x.append(input(’Type numbers one at a time ’))
print ’Largest of the series is’,max(x)

print ’Smallest of the series is’,min(x)

To solve quadratic equation

from cmath import *

a,b,c=input("Give coefficients in the order a,b,c seperated by comma. "
d=sqrt (b*b-4*ax*c)

print "Root 1 = ",(-b+d)/(2*a),"Root 2 = ", (-b-d)/(2xa)

When program is run

Give coefficients in the order a,b,c seperated by comma. 1,2,3
Root 1 = (-1+1.41421356237j) Root 2 = (-1-1.41421356237j)

To verify orthogonality of sine and cosine functions
Principle: If the functions are orthogonal, then

/ sin 6 cos 0dO ~ Z sin 6, cos; ~ 0

0 i=0

from math importx*
print sum([sin(pi*i/180)*cos(pi*i/180) for i in range(180)]),’is negligi

Output: -4.85722573274e-15 is negligible

To check whether a given number is prime

1.12. PROBLEMS 23

Principle: n is a prime number if it is exactly divisible only by 1 and n. To
check this, see whether it is divisible by any number between 2 and n/2 (integer
division).

n=input ("Give the number n: ")
m=1+n/2
for i in range(2,m):
if n%i!=0: continue
else:
print ’%d is not a prime. It is divisible by %d’%(n,i)
break
if i==n/2: print ’Jd is a prime’’%n

When the program is run

Give the number n: 83

83 is a prime

>>>

Give the number n: 245791

245791 is not a prime. It is divisible by 7

17. To find the count of prime numbers in a given range.

Principle: FEven numbers cannot be prime. Check in the set of odd numbers
for prime numbers.

j,k=input ("Give the range between which prime numbers are required: ")
x=range(j,k,1)
p=L]
for n in x:
m=n/2
if n>0 and n<4:p.append(n)
for i in range(2,m+1):
if n%i==0: break
if i==m: p.append(n)
print ’There are %d prime numbers in the range(’d, %d). They are’%(len(p),j,k)
print p

When the program is run

Give the range between which prime numbers are required: 49,150
There are 20 prime numbers in the range(49, 150). They are

(63, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149]

18. To check whether a given word is a palindrome.

24

19.

CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Principle: A sequence is a palindrome if it is the same when read from left or
right. For example, xyzzyx,123321 are palindromes.

Program:

x=raw_input (’Give the word’)
y=[x[-i-1] for i in range(len(x))]
if list(x)==y:print ’palindrome’
else: print ’Not a palindrome’

When the program is run

Give the word: abcl2icba
palindrome

>>>

Give the word: election
Not a palindrome

To find square root of a number

Principle: Let x be the square root of n. Then 22 —n = 0. Now z is the root
of this equation. It can be calculated using Newton-Raphson method.

Program:

n,e=input(’Give the number n and accuracy required e: ’)
x0,x=0,1
while abs(x-x0)>e:
x0=x
x=(x0+n/x0) /2.0
print ’Square root of %0.3f =%0.5f ’%(n,x0)

When the program is run

Give the number n and accuracy required e: 24,.001
Square root of 24.000 =4.89900

20. To find m* root of a number

1.12. PROBLEMS 25

Principle: Let x be the m!” root of n. Then 2™ —n = 0. Now z is the m'®

root of this equation. It can be calculated using Newton-Raphson method.

flag) 1
Tpi1 = Tk — =— |(m—1zp+ —=

fixk) m y
Program:
n,m,e=input(’Give the number n, order of root m and accuracy e required : ’)
x0,x=0.0,1.0
while abs(x-x0)>e:

x0=x

x=((m-1) *x0+n/x0%*(m-1)) /m
print ’%0.2f (th) root of %0.3f = %0.5f ’%(m,n,x0)

When the program is run

Give the number n, order of root m and accuracy e required : 65,3,.01
3.00 th root of 65.000 =4.03005
>>>

Give the number n, order of root m and accuracy e required : 65,4,.01
4.00 th root of 65.000 =2.84527
>>>

Give the number n, order of root m and accuracy e required : 2.88,1.5,.01
1.50 th root of 2.880 =2.03016
Aliter: Using bisection method.

def f(x,m,n):return x**m-n
a,b,m,n,k=input (’Intervel (a,b),order of root m, number n and no. of iterations

i=0
while i<k:
c=(a+b)/2.0
if f(a,m,n)*f(c,m,n)<0:b=c
else:a=c
i+=1

print ’The %d root of ’%f after Jd iterations is %20.15f’%(m,n,i,c)

21. To convert temperature in Fahrenheit into centigrade

26

22.

CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Principle: 32°F = 0°C, 212°F = 100°C. Therefore the conversion formulae
are

5
C=—(F-32

o)
F=20+3

Program:

t=input(’Give the temperature: ’)

c=input(’Is the given temperature is in 1.centigrade or 2.farenheit (1/2
if ¢==1: print ’%0.2f C= %0.3f F?J(t,t*9.0/5+32.0)

else: print ’%0.2f F= %0.3f C’%(t, (£-32.0)%5.0/9)

When the program is run

Give the temperature: 25

Is the given temperature is in 1.centigrade or 2.farenheit (1/2): 1
25.00 C= 77.000 F

>>>

Give the temperature: 180

Is the given temperature is in 1.centigrade or 2.farenheit (1/2): 2
180.00 F= 82.222 C

To find value of 7

Principle: The value of m can be calculated using tan45° = tan (7/4) = 1 as

follows.
- - 1 1 1 = (-1)
— =14 11:1—— = T T T e =
T s3T5 7" Z;%+1

Program:

x=[(-1)**i/(2.0*%i+1) for i in range(100000)]
pi=4xsum(x)

print ’The value of pi=J0.10f’%pi

When the program is run, the following output is obtained.

The value of pi=3.1415826536

1.12. PROBLEMS 27

Python keywords

Core Python has 30 keywords:

(1)and (2)as (3)break (4)class (5)continue (6)def (7)del (8)elif (9)else (10)ex-
cept (11)finally (12)for (13)from (14)global (15)if (16)import (17)in (18)is
(19)lambda (20)nonlocal (21)not (22)or (23)pass (24)raise (25)return (26)as-
sert (27)try (28)while (29)with (30)yield

28

CHAPTER 1.

UNIT-1: BASICS OF PYTHON LANGUAGE

Chapter 2

Advanced Python Programming

2.1 NumPy

2.1.1 Introduction

NumPy’s main class is the homogeneous multidimensional array called ndarray. This
is a table of elements (usually numbers), all of the same data type. Each element
is indexed by a tuple of positive integers. Examples of multidimensional array ob-
jects include vectors, matrices, spreadsheets etc. The term multidimensional refers to
arrays having several dimensions or axes. The number of axes is often called rank
(_not a tensor rank).

For example, the coordinates of a point in 3-D space (x,y, 2z) is an array of rank
1. This also gives the position vector of that point. The array ([1.,0.,0.],[0.,1.,2.])
0 0
01 2
dimension (rows) has a length of 2, the second dimension(column) has a length of 3.

The array ([[1.,0.],0.],[[0.,1.],2.]) is one of rank 3. It is equivalent to ((1 0) 0) (it

is one of rank 2. It is equivalent to (it is 2-dimensional). The first

0 1) 2

is 3-dimensional).

2.1.2 Array creation

There are many ways to create arrays. For example, you can create an array from a
regular Python list or tuple using the array function.

29

30 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> a = array([2,3,4])

>>> a

array([2, 3, 41)

>>> type(a) # a is an object of the ndarray class
<type ’numpy.ndarray’>

The function array() transforms sequences of sequences into two-dimensional arrays,
and it transforms sequences of sequences of sequences into three-dimensional arrays,
and so on. The type of the resulting array is deduced from the type of the elements in
the sequences.

>>> b = array([(1.5,2,3), (4,5,6) 1)
>>> b
array([[1.5, 2., 3.1,

[4., 5., 6.1

To create an array whose elements are sequences of numbers, NumPy provides a func-
tion arange(zry,xs,dx) and returns xq,z; + dz,,xo — dx. It is analogous to range
function but accepts floating point numbers also.

>>> arange(10, 30, 5)
array([10, 15, 20, 25])
>>> arange(0, 2, 0.3)
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

array and arange are not the only functions that create arrays. Usually the elements
of the array are not known from the beginning, and a placeholder array(empty array)
is needed. There are some functions to create arrays with some initial content. By
default, the type of the created array is float64. The function zeros((m,n)) creates a
2-D array of m rows and n columns with zeros as elements. Similarly the function
ones((m,n)) creates an array full of ones, the function empty((m,n)) creates an array
without filling it in and the function random((m,n)) creates an array filling it with
random numbers between 0 and 1. identity (n) creates an n-dimensional unit matrix.
Then the initial content is random and it depends on the state of the memory. In these
functions the arguments m, n specifies the size along each axis of the array.

Using arange with floating point arguments, it is generally not possible to predict
the number of elements obtained because of the floating point precision. Hence it is
better to use the function linspace(zy, x9, nx) which returns equispaced nx numbers
from z; to zs.

2.1. NUMPY 31

The general syntax of these functions are empty (shape=, dtype=int) Return an
uninitialized array of data type, dtype, and given shape.

An array of zeros can be created with a specified shape using zeros() function.
zeros(shape—, dtype—):Return an array of data type dtype and given shape filled with
zeros. An array of ones can be created with a specified shape using ones() function.
zeros(shape—, dtype=): Return an array of data type dtype and given shape filled with
zeros. an identity matrix can be created using identity() function
identity (n, dtype—int): Return a 2-d square array of shape (n,n) and data type, dtype
with ones along the main diagonal.

>>> empty((2,3))
array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[5.30498948e-313, 3.14673309e-307, 1.00000000e+000]1)

>>> empty((2,3)) # the content may change in different invocations
array([[3.14678735e-307, 6.02658058e-154, 6.55490914e-260],
[5.30498948e-313, 3.73603967e-262, 8.70018275e-31311)

>>> zeros((3,4))

array([[0., 0., 0., 0.1,

[0., 0., 0., 0.1,

[0., 0., 0., 0.1D
>>> ones((2,3,4), dtype=intl6)
array([[[1, 1, 1, 1],

[1, 1, 1, 171,

(1, 1, 1, 111,

[(t1, 1, 1, 11,

[1, 1, 1, 11,

[1, 1, 1, 1111, dtype=int16)
>>> a=identity(4,dtype=float)
>>> a
array([[1., 0., 0., 0.1,

Lo., 1., 0., 0.1,
Lo., 0., 1., 0.1,
[0., 0., 0., 1.1

>>> linspace(0, 2, 9)

array([L 0. , 0.25, 0.5, 0.75, 1. , 1.25, 1.5, 1.75, 2. 1)
>>> x = linspace(0, 2xpi, 10)

>>> x

32 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

array ([0. , 0.6981317 , 1.3962634 , 2.0943951 , 2.7925268 ,
3.4906585 , 4.1887902 , 4.88692191, 5.58505361, 6.28318531])
>>> f = sin(x)
array([0.00000000e+00, 6.42787610e-01, 9.84807753e-01,
8.66025404e-01, 3.42020143e-01, -3.42020143e-01,
-8.66025404e-01, -9.84807753e-01, -6.42787610e-01,
-2.44921271e-161)

Array attributes

The important attributes of any ndarray object are:

1. b.ndim :It gives the rank of the array.

2. b.shape:It returns a tuple of integers indicating the size of the array in each
dimension. For a matrix with m rows and n columns, shape returns (m,n).

3. b.size. Returns the total number of elements in all dimensions of the array. This
is equal to the product of the elements of shape command.

4. b.dtype Returns the data type of the elements in the array. NumPy provides the
following datatypes: bool character, int int8, intl6,int32, int64, float float8, floatl6, f

5. b.itemsize: Returns the size in bytes of each element of the array.For example,
an array of elements of type float64 has itemsize 8 (—64/8), while one of type
complex32 has itemsize 4 (—=32/8).

6. b.data: Returns the buffer containing the actual elements of the array.

Example for these methods : We define the following array:

>>> from numpy import x*

>>> a = array([(0, 1, 2),(3, 2, DI,)

>>>a.shape, a.ndim, a.size, a.itemsize, a.dtype

((2, 3), 2, 6, 4, ’dtype (’int32’))

The type of the array can also be explicitly specified at creation time:

>>> ¢ = array([[1,2], [3,4]], dtype=complex)
>>> ¢

2.1. NUMPY 33

array([[1.+0.j, 2.+0.j],
[3.40.j, 4.+0.311)

>>> c.dtype

dtype (’complex128?)

A frequent error consists in calling array with multiple numeric arguments, rather than
providing a single list of numbers as an argument.

>>> a
>>> a

array(1,2,3,4) # WRONG because numbers within () are taken as arguements.
array([1,2,3,4]) \# RIGHT because [1,2,3,4] is a single list.

2.1.3 Array modification

The shape of an array can be changed with various commands:
ravel(),transpose(),reshape(m,n,...),resize(m,n,...)
Here (m,n,....) is the size of the multidimensional array. For example

>>> from numpy importx*
>>> a=array([[0, 1, 2, 3],
L4, 5, 6, 7],
[8, 9, 10, 1111
>>> a.ravel()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)
>>> a
array([[0, 1, 2, 3],
[4, 5, 6, 71,
[8, 9, 10, 11]]1) # No permanent change to shape
>>> a.reshape(4,3)
array([[0, 1, 2],

[3, 4, 5],
(e, 7, 8l,
[9, 10, 1111)

>>> a
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 111]1) # No permanent change to shape
>>> a.resize(4,3)
>>> a
array([[0, 1, 2],
[3, 4, 51,

34 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

L6, 7, 81,
[9, 10, 1111)
>>> a
array([[0, 1, 2],
[3, 4, 5],
L6, 7, 81,
[9, 10, 1111) # Permanent change to shape

>>> a.transpose()
array([[0, 3, 6, 9],
L1, 4, 7, 101,
[2, 5, 8, 111]1) # No permanent change to shape

The reshape function returns its argument with a modified shape, whereas the resize
method modifies the array itself:

2.1.4 Printing arrays

When you print an array, NumPy displays it in a similar way to nested lists, but with
the following layout:

1. the last dimension is printed from left to right,
2. the last but one, from top to bottom,

3. and the rest, also from top to bottom, separating each slice by an empty line.

One dimensional arrays are then printed as rows, two dimensional as matrices and
three dimensional as lists of matrices.

>>> a = arange(6)

>>> print a

[01 234 5]

>>>

>>> b = arange(12) .reshape(4,3)
>>> print b

[0 1 2]
[3 4 5]
[6 7 8]
[9 10 11]]

>>>

2.1. NUMPY 35

>>> ¢ = arange(24) .reshape(2,3,4)
>>> print c
[[Lo 1 2 3]

[4 5 6 7]

[8 9 10 11]1]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]

If an array is too large to be printed, NumPy automatically skips the central part of
the array and only prints the corners:

>>> print arange(10000)

[0 1 2 ..., 9997 9998 9999]

>>>

>>> print arange(10000) .reshape(100,100)
(L O 1 2 ..., 97 98 99]
[100 101 102 ..., 197 198 199]
[200 201 202 ..., 297 298 299]
[9700 9701 9702 ..., 9797 9798 9799]
[9800 9801 9802 ..., 9897 9898 9899]
[9900 9901 9902 ..., 9997 9998 9999]]

2.1.5 Saving and restoring arrays

The simplest way to store arrays is to write it to a text file as text using the numpy
function savetzt(). The array can be retrieved using the function genfromtzt(). The
syntax of these functions are

savetzt(fname,array,fmt= ,delimiter—)

Here fname is the name of the file to be created and opened for writing, array is the
name of the array, fmt is the format specification of the data to be stored, delimiter is
the character used to distinguish elements of the array.

genfromtzt(fname,dtype=,comments=# ,delimiter= ,skiprows=). Here dtype is the

datatype of array elements and skiprows accepts a number which refers to the number
of rows to skip from 0" row.

>>> b

36 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

array([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.7,

[12., 13., 14., 15.11)
>>> savetxt (°fl.txt’,b,fmt=%8.6f° ,delimiter="§&’)
>>> savetxt (°f2.txt’,b,fmt=%8.4f° ,delimiter=> ?’)

When f1.txt and f2.txt are opened in a text editor, the contents of the file
f1.txt

0.000000 &1.000000 &2.000000 &3.000000

4.000000 &5.000000 &6.000000 &7.000000

8.000000 &9.000000 &10.000000&11.000000
12.000000&13.000000&14.000000&15.000000

£f2.txt

0.0000 1.0000 2.0000 3.0000
4.0000 5.0000 6.0000 7.0000
8.0000 9.0000 10.0000 11.0000
12.0000 13.0000 14.0000 15.0000

>>> genfromtxt (°f1.txt’,dtype="float’)

array([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.1,

[12., 13., 14., 15.11)

>>> genfromtxt (*f1.txt’,skiprows=2)
array([[8., 9., 10., 11.1,
[12., 13., 14., 15.11)

If the arrays are too large, saving them in text format consumes large volume of
memory. In that case they can be saved in binary format.

>>> from numpy import *

>>> a=genfromtxt (°f1.txt’)

>>> save(’f3.npy’,a)

When the file f3.npy is opened in a word processor, the following output is
iL%NUMPY##F#{’descr’: ’<f8’, ’fortran_order’: False, ’shape’: (4, 4), }
##############iL%?#######@#######@#######@#######@#######@#######@###### Q##

>>> b=load(’£3.npy’)
>>> b

2.1. NUMPY

array([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.7,
[12., 13., 14., 15.11)

Basic Arithmetic Operations on arrays

37

Arithmetic operators apply elementwise on arrays. A new array is created and filled

with the result.

>>> a = array([20,30,40,50])
>>> b = arange(4)
>>>b

array([0,1,2,3])

>>> ¢ = a-b

>>> ¢

array([20, 29, 38, 471)

>>> b**2

array ([0, 1, 4, 9])

>>> 10*sin(a)

array([9.12945251, -9.88031624, 7.4511316 ,
>>> a<35

array([True, True, False, Falsel], dtype=bool)
>>> i = identity(3)

>>> i

array([[1, 0, 0],
(o, 1, o],
[0, o, 111

>>> i + 1 # add element to element
array([[2, 0, 0],

fo, 2, 01,

[0, 0, 211
>>> 1 + 4 # add a scalar to every entry
array([[5, 4, 4],

[4, 5, 41,

[4, 4, 511
>>> a = array(range(1,10)) .reshape(3,3)
>>> a
array([[1, 2, 3],

[4, 5, 61,

[7, 8, 911)

-2.62374854])

38 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> 1 *x a # element to element
array([[1, 0, 0],
[0, 5, 0],
[0, 0, 911
>>> x = array([1,2,3])
>>> x
array([1, 2, 31
>>> y = array([[4], [5], [6] D)
>>> y
array ([[4],
(5],
[611)
>>> X + y
array (L[5, 6, 7],
(6, 7, 81,
[7, 8, 911)
#This is equivalent to ([[1,2,3],[1,2,3],[1,2,3]]1+
#([[4,4,4]1,[5,5,5],06,6,611)
>>> xky
array (L[4, 8, 12],
[5, 10, 151,
[6, 12, 18]1)
>>> x/y
array([[0, 0, 0],
[0, 0, 0],
(o, o, 011
>>> y/x
array([[4, 2, 1],
[6, 2, 11,
(6, 3, 211)
>>> X%y
array([[1, 2, 3],
[1, 2, 31,
[1, 2, 311)
>>> yhx
array([[0, 0, 1],
o, 1, 21,
[0, 0, 011)
>>> xkky
array([[1, 16, 81],
[1, 32, 243],
[1, 64, 72911)
>>> g=arange(1,6,1)

2.1. NUMPY 39

>>> 8

array([1, 2, 3, 4, 5])

>>> g.sum() #sum of all elements

15

>>> g.prod() # product of all elements
120

>>> g.mean() # Mean of all elements
3.0

>>> g.var() #Variance

2.0

>>> g.std() #Standard deviation
1.4142135623730951

2.1.6 Indexing, Slicing and Iterating

One dimensional arrays can be indexed, sliced and iterated over like lists and other
Python sequences.

>>> a = arange (10) **3

>>> a

array([0, 1, 8, 27, 64, 125, 216, 343, 512, 729])

>>> al2]

8

>>> a[2:5]

array([8, 27, 641)

>>> al[:6:2] = -1000 \# modify elements in a

>>> al::-1] \# reversed a

array([729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])

>>> for i in a: print i**x(1/3.),
nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0

2.1.7 Arrays as matrices

As the product operator »*’ operates elementwise (product of corresponding elements)
in NumPy arrays, the matrix product (c¢;; = >, aibg;) can be found using the dot
function. It also gives the dot product of two vectors.The function inner (z,y) computes
the inner product (z;; = >, ix.yjx) between two arrays. For 1-D arrays dot and inner
functions give the same result. Similarly a cross function is defined which returns the

40 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

cross product of two vectors. outer (z, y) computes an outer product of two vectors
(zij = x;.y;). In matrix class to create matrices mat method and matriz method
are defined.mat(data, dtype=) matriz(data, dtype=). This data can be any list, tuple,
string or array . This function interprets the input as a matrix.

>>> from numpy importx
>>> mat(range(2,7))
matrix([[2, 3, 4, 5, 61])
>>> a,b=mat([[1,2],[3,4]1]),mat(’1,2;3,4°)
>>> a
matrix([[1, 2],
[3, 411),
>>> b
matrix([[1, 2],
[3, 411)
>>> r=mat(’1,2,3,4°%)
>>> r
matrix([[1, 2, 3, 4]]) # Row matrix
>>> c=mat(’1;2;3;4’)

>>> ¢

matrix([[1],
(2],
[31,

[4]]) # column matrix

>>> k=arange(15) .reshape(3,5)

>>> k

array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]11)

>>> k=mat (k) #array k becomes 3X5 matrix k
>>> t=transpose(k) # transposed 5X3 matrix

>>>]1

matrix([[0, 5, 107,
L1, 6, 117,
L2, 7, 12],
[3, 8, 131,
[4, 9, 1411)

>>> kxt #It must be a 3X3 matrix
matrix([[30, 80, 1301,

[80, 255, 430],

[130, 430, 73011)

2.1. NUMPY 41

>>> dot(k,t)

matrix([[30, 80, 130],
[80, 255, 430],
[130, 430, 73011)

>>> £.£i111(3)

>>> ¢

array([[3, 3, 3],
[3, 3, 31,
[3, 3, 31,
[3, 3, 31,
[3, 3, 311

>>> s=range(1,6)

>>> m= mat(s)

>>> m

matrix([[1, 2, 3, 4, 5]]) #The two square brackets are there as most of the matrice:
>>> n=matrix(range(1,6))

>>> n

matrix([[1, 2, 3, 4, 5]1])

>>> x=[1,2,3]

>>> y=[3,2,1]
>>> dot(x,y) # like dot product of vectors
10

>>> cross(x,y) # like cross product of vectors
array([-4, 8, -4])

>>> inner([1,2,3],[10,100,1000])

3210 # 1.10+2.100+3.1000

>>> a=arange(9) .reshape(3,3)

>>> b=a.T # another method to find transpose.

>>> a

array([[0, 1, 2],
[3, 4, 5],
(6, 7, 811)

>>> b

array([[0, 3, 6],
(1, 4, 71,
[2, 5, 811)

>>> inner(a,b) #0rdinary inner product of vectors for 1-D arrays (without complex c«
product over the last axes.

array([[15, 18, 211,
[42, 54, 66],
[69, 90, 11111)

42 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

It is possible to perform increment and decrement operations without creating
>>> a = ones((2,3), dtype=int) #integer array
>>> b = random.random((2,3)) #float array
>>> a %= 3
>>> a
array([[3, 3, 3],
[3, 3, 311)
>>> b += a
>>> b
array([[3.69092703, 3.8324276 , 3.0114541],
[3.18679111, 3.3039349 , 3.37600289]1])

>>> a += b \# b is converted to integer type
>>> a
array([[6, 6, 6],

(6, 6, 611)

When operating with arrays of different numeric data types, the type of the resulting
array corresponds to the more general or precise one.

>>> a = ones(3, dtype=int32)

>>> b = linspace(0,pi,3)

>>> b.dtype.name

float64

>>> ¢ = atb

>>> ¢

array([1. , 2.57079633, 4.14159265])

>>> c.dtype.name

’float64’

>>> d = exp(c*1j)

>>> d

array([0.54030231+0.84147098j, -0.84147098+0.540302317,
-0.54030231-0.84147098j1)

>>> d.dtype.name

’complex128’

Many unary operations, like computing the sum of all the elements in the array, are
implemented as methods of the ndarray class.

>>> a = random.random((2,3))
>>> a

array([[0.6903007 , 0.39168346, 0.16524769],

2.1. NUMPY 43

[0.48819875, 0.77188505, 0.94792155]])
>>> a.sum()
3.4552372100521485 #sum of all elements
>>> a.min()
0.16524768654743593
>>> a.max()
0.9479215542670073

By default, these operations apply to the array as if it were a list of numbers, regardless
of its shape. However, by specifying the axis parameter you can apply an operation
along the specified axis(dimension) of an array:

>>> b = arange(12) .reshape(3,4)

>>> b
array([[0, 1, 2, 3],
[4, 5, 6, 71,
[8, 9,10, 111D
>>>
>>> b.sum(axis=0) # Give sum as a 1-D array(sum of each coli
array([12, 15, 18, 211)
>>> b.sum(axis=1) # Give sum as a 1-D array(sum of each row.
array([6, 22, 38])
>>> b.min(axis=1) # minimum of each row
array ([0, 4, 81)
>>> b.min(axis=0) # minimum of each column

array([0,1,2,3])
>>> p.max(axis=0)
matrix([[12, 13, 14, 15]11)

>>> b.cumsum(axis=1) # cumulative sum along the rows
array([[0, 1, 3, 6],

[4, 9, 15, 22],

[8, 17, 27, 3811)
>>> p=arange (16) .reshape (4,4)

>>> p

array([[0, 1, 2, 3],
L4, 5, 6, 71,
[8, 9, 10, 111,

[12, 13, 14, 1511
>>> trace(p)
30
>>> p=mat (p)

44 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> p
matrix([[0, 1, 2, 3],
[4, 5, 6, 71,
[8, 9, 10, 111,

[12, 13, 14, 1511)
>>> trace(p)
30

2.1.8 Arrays as polynomial coefficients

There are four methods defined in polynomial class to create and manipulate polyno-
mials.

1. polyld(c, r, v): creates a one-dimensional polynomial. Here ¢ represents an array
or list. If r is True, ¢ represents roots of the polynomial. If r is False (which is
the default), polynomial coefficients zeroth element corresponding to the highest
power of variable. v is the character to be used as polynomial variable.

>>> ¢=[3,1,-1,-3]
>>> p=polyid(c)
>>> print p

3 2
3x+1x-1x-3

>>> pl=polyld(c,True)
>>> print pl

4 2
1x-10x+ 9
>>> p2=polyld(c,False,’y’)
>>> print p2

3 2
3y+1ly-1y -3

2. polyval(p, x): Here p is the polynomial and z is the value at which p is to be
evaluated. The polynomial value at x is returned. For polynomials defined above

>>> polyval (p2,2)
23

>>> polyval(pl,2)
-15

2.1. NUMPY 45

>>> polyval(p,2)
23

3. poly(s): This function returns the coefficients of the polynomial with the s as the
set of roots in the form of an array.

>>> d=[0,0]
>>> poly(d)
array([1, 0, 0]) #x*x=0
>>> d=[1,-1,2]
>>> f=poly(d) #(x-1)(x+1) (x-2)
>>> f
array([1, -2, -1, 21)
>>> print polyld(f)
3 2
1x-2x-1x+2

4. roots(p): Returns the roots of polynomial p

>>> g=[1,-2,-1,2]

>>> p=polyld(g)

>>> roots(p)

array([-1., 2., 1.1)

Roots can also be found using the following command.
>>> p.r

array([-1., 2., 1.1)

2.1.9 Linear Algebra

The linear algebra module is a subclass of numpy. It is called linalg. A few functions
are defined in the NumPy.linalg sub-package. The important functions are

: _ 2
1. norm(z): Returns norm of a vector =, norm = />, 3
2. det(a): Returns determinant of a square matrix
3. inv(a): Returns inverse of a non-singular square matrix

4. pinv(a): Returns pseudoinverse of a singular square matrix. For invertible ma-
trices, this is the same as the inverse.

5. solve(a,y): Returns the solution vector x to the linear equation ax =y

46 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

6. eig(a):Return all solutions (A, z) to the equation axz = Az. The first element of
the return tuple contains all the eigenvalues. The second element of the return
tuple contains the eigenvectors (i eigenvector as i’ column).

7. eigvals(a): Returns all eigenvalues of square matrix a as an array

8. eigh(h): Return all solutions (A, z) to the equation hz = Az where h is a hermitian
matrix.

9. eigvalsh(h):Returns all eigenvalues of hermitian matrix h as an array

These are also included in the sub-package numpy.dual.

1 1 2
Let a be a square matrix [—1 0 1 |. It is created as
2 30

>>> from numpy importx*
>>> from numpy.linalg import
>>> a=array([[1,0,1],
[2,1,0],
[0,2,411)
>>> det(a)
8.0
>>> inv(a)
array([[0.5 , 0.25 , -0.125],
[-1. , 0.5 , 0.251],
[0.5 , -0.25 , 0.12511)
>>> eigvals(a)
array([0.8223493+1.07730381j, 0.8223493-1.07730381j, 4.3553014+0.3j]1)
>>> eig(a)
(array([0.8223493+1.07730381j, 0.8223493-1.077303817, 4.3553014+0.5]
#eigenvalues

array ([[-0.06908062+0.41891651j, -0.06908062-0.41891651j, 0.28156897+0.j 1],
[0.77771286+0. j , 0.77771286+0.j , 0.16783528+0.j 1,
[-0.43902814-0.14884162j, -0.43902814+0.14884162j, 0.94474877+0.5 11)

Three eigenvectors

To solve the simultaneous equations

20+ 3y + 42 =28, 3xr + 4y + 52 = 10, 4z — by + 62 = 32

2.1. NUMPY

>>> a=mat(’2,3,4;3,4,5;4,-5,6’) # The coefficient matrix
>>> a
matrix([[2, 3, 4],
[3, 4, 5],
[4, -5, 611)
>>> s=mat(’8;10;32’) # Constant vector S in matrix equation AX=S
>>> g
matrix([[8],
[10],
[3211)
>>> b=solve(a,s)
>>> b
matrix([

[1.1,
[-2.1,
[3.1

47

48

CHAPTER 2. ADVANCED PYTHON PROGRAMMING

Chapter 3

Plotting and visualization

3.1 Matplotlib

Graphs, charts, surface plots etc are visual presentations of numerical data. It is useful
to compare, contrast, detect trends, predict and comprehend huge amounts of data.
Different Python modules are used for generating two and three dimensional graphs.

3.1.1 The Matplotlib Module

The python package Matplotlib produces graphs and figures in different hardcopy for-
mats like jpeg, bmp, eps, png etc. Most of the functions of NumPy and matplotlib.pyplot
are defined in the module pylab also. It also provides many functions for matrix ma-
nipulation. The data for plotting are supplied as Python lists or Numpy arrays. This
module contains a lot of methods for plotting and annotating graphs. Some of these
methods are used frequently in scientific computing. They are listed below with exam-
ples.

1. plot()Function: The general format is

plot(x,y, color =, linestyle =, marker =, marker facecolor =, markersize =)

z,y are lists or arrays, color color of graph, linestyle specifies dashedline(’-"),solid

line(’-’), dotted line (’:") etc., markermarking data points on the graph (*.”,”*’),

markerfacecolor the color of marker and markersize is the size of marker.

2. show(): Sends graphic output to the screen.

49

50

10.

11.

12.

13.

14.

15.

CHAPTER 3. PLOTTING AND VISUALIZATION

zlabel(”): 7 is name of variable plotted along x-axis.

. ylabel(”): 7 is name of variable plotted along y-axis.

title(”): ” is name of Graph.

legend(names,loc=): The names of different curves as a list or tuple of strings,
loc is the location in the graph where the legend must appear. Upper right, lower
left etc. loc=0 fits the legend at the most convenient location.

grid(True): Shows grid lines if True

axis(z): Used to set or get the axis properties.

azis() Returns the current axes limits [xmin, xmax, ymin, ymax|.
azis(z):Sets the min and max of the x and y axes, with z = [xmin, xmax, ymin,
ymax|.
azis(’off ’): Removes the axis lines and labels.
azis(’equal’): Changes limits of x or y axis so that equal increments of x and y
have the same length so that a circle will appear circular.

. figure()

figure(num, figsize = (w, h),dpi = N, facecolor ="V, edgecolor =" k')

num is an integer variable. This function creates a new figure if figure(num,)
does not exist. If it already exists, it becomes active. figsize=(w,h) is a tuple
of width and height in inches, dpi=N creates figure with resolution N dots per
square inch, facecolor sets the backgroundcolor edgecolor sets the border color.
All arguments except the first are optional.

subplot(m, n, N): Where m is the number of rows, n number of columns and
N =1 is the first plot number and increasing N fill rows first. N, =m X n

text(r,y, string’) Writes ’string’ at (x,y) with respect to bottom-left corner as
origin and scaled as in the figure.

bar(left, height, width=0.8, bottom=0,color=None, edgecolor=None, linewidth=None,ye
zerr=None, ecolor=None, capsize=3,align="edge’, orientation="vertical’, log=False)

Make a bar plot with rectangles representing the two arrays left, height bounded
by left, left + width, bottom, bottom -+ height with optional arguments whose
default values are given.

barh()Like bar() except that the bars are horizontal.
contour()For plotting implicit functions.

contourf()For color-filled plotting of implicit functions.

3.1. MATPLOTLIB 51
16. loglog()Make a plot with log scaling on the x and y axis. It supports all the
keyword arguments of plot() function.
17. semilogz() Graph with x-axis plotted in log scale. It supports all the keyword
arguments of plot() function.
18. semilogy()Graph with y-axis plotted in log scale.
19. ogrid[minz:mazz:nzj,miny:mazy:nyj/Creates a grid of nz x-vlues in the range
(xmin,zmaz)and ny y-values in the range (ymin,ymax).eg. x,y=ogrid[1:10:1005,5:15:150j]
20. pie()pie(z, explode=None, labels=None, colors=None, autopct—=None, pctdistance=0.6,shadow=
labeldistance=1.1, hold=None) Makes a pie chart of array x. The fractional area
of each wedge is given by z/sum(z). If sum(x) <= 1, then the values of x give
the fractional area directly and the array will not be normalized.
21. polar(theta, r, args) Make a polar plot. theta and r are lists or arrays. Multiple
theta, r arguments are supported, with format strings, as in plot().
22. scatter(zr, y, s=20, ¢="b’, marker="0’, cmap=None, norm=None,vmin=None,
vmaz=None, alpha=1.0, linewidths=None,verts=None, **kwargs) Make a scatter
plot of x versus y, where x,y are converted to 1-D sequences which must be of
the same length, V.
Examples

from matplotlib.pyplot importx*
from numpy importx*
subplot(2,2,1)
plot([1,2,3,4],7%-?)
subplot(2,2,2)
plot([4,2,3,1],°~-?)
subplot(2,2,3)
plot([4,3,2,1],°~-?)
subplot(2,2,4)
plot([2,4,3,1],°~-?)
show ()

52 CHAPTER 3. PLOTTING AND VISUALIZATION

4.0 T T T T T 4.0
3.5F 1 3.5f
3.0 1 3.0f
2.5F 1 2.5f
2.0t 1 2.0f
1.5f 1 1.5f

1'8.0 05 1.0 15 20 25 3.0 1'%.0 05 1.0 15 20 25 3.0

4.0 T T T T T 4.0
3.5 1 3.5f
3.0 1 3.0f
2.5 1 2.5f
2.0t 1 20
1.5 1 1.5f

1'8.0 05 1.0 15 20 25 3.0 1'8.0 05 10 15 20 25 3.0

Polar plots: Polar coordinates locate a point on a plane with one distance and
one angle. The distance ‘r’ is measured from the origin. The angle 6 is measured
from positive direction of x-axis in the anti-clockwise sense. Plotting is done using
polar(theta, radius, format string) function. An example is given below.

Polar rhodonea A rhodonea or rose curve is a sinusoid r = sin (nf#l) where n is a
constant. If n is an integer the curve will have 2n 'petals’ and n ’petals’ if n is odd.
If n is a rational number(=p/q, p,q integers), then the curve is closed and has finite
length. If n is an irrational number, then it is closed and has infinite length.

from matplotlib.pyplot import*
from numpy importx*

n=2

th = linspace(0, 10%pi,1000)

r = sin(n*th)

polar(th,r)

show ()

3.1. MATPLOTLIB 23

Pie Charts: A pie chart is a circular chart in which a circle is divided into sectors.
Each sector visually represents an item in a data set to match the percentage or fraction
of the item in the total data set. Pie charts are useful to compare different parts of
a whole amount. They are often used to present financial information. The function
pie(list of percentages or fractions , labels=list of labels) produces a pie chart. Both
the lists must have the same length.

from matplotlib.pyplot importx*

from numpy importx*

1abs = [)A+), 7A),)B+),)B),)C+),)C),)D)]
fracs = [5,8,18, 19, 20,17,14]

pie(fracs, labels=labs)

show ()

Parametric plots: A parametric plot is a visual description of a set of parametric
equations. If x and y are both functions of a variable t, then they create a set of
parametric equations. For example, the two equations y = tsint? and x = t cost? form
a set of parametric equations in which y and x are functions of t, the graph of which
will be in this form.

from matplotlib.pyplot importx*
from numpy importx*

54 CHAPTER 3. PLOTTING AND VISUALIZATION

t=arange(0,6.3,0.001)
x=t*cos (t*t)
y=t*sin(t*t)
plot(x,y)

show ()

! |
L S O S

2-D plots in colours: Two dimensional matrix can be represented graphically by
assigning a color to each point proportional to the value of that element. The function
imshow(matriz) is employed to create such plots.

from matplotlib.pyplot import*
from numpy importx*
m=1linspace(0,1,900) .reshape(30,30)
imshow (m)

show ()

3.1. MATPLOTLIB

3.1.2 Plotting mathematical functions

sine function:

from pylab importx*

x=linspace (0,2*pi,200)
y=sin(x)

plot(x,y)

xlabel(’x’)

ylabel(’sin(x)’)

title(’Plot of sine function’)
grid(True)

show ()

95

Logarithm function: Logarithm function log(z) gives logarithm of a variable to the

base exponential e.

from pylab importx*
x=linspace(0,200,200)
y=log(x)

plot(x,y)

xlabel(’x’)

ylabel(’log(x)’)

title(’Plot of log function’)
grid(True)

show ()

Exponential function: Exponential function ezp(z) gives e” of a variable z.

from pylab importx
x=linspace(0,5,200)

y=exp (x)

plot(x,y)

xlabel(’x?)

ylabel(’exp(x)’)

title(’Plot of exponential function’)
grid(True)

show ()

26 CHAPTER 3. PLOTTING AND VISUALIZATION

Gaussian function: Gaussian function is given by y = exp(—2z?) gives e of a vari-
able x.

from pylab importx*
x=linspace(-5,5,200)

y=exp (-x**2)

plot (x,y)

xlabel(’x?)

ylabel (’gaussian(x)’)

title(’Plot of Gaussian function’)
grid(True)

show ()

Gamma function: The gamma function is defined by the integral

I'(z) = / t" e tdt
0
and satisfies the recurrence relation
I'(z+1)=2al'(2)

and reflection formula

PP —2) = sinﬂwx
P +2)I(1 —2) = sinﬂ(fm:)

'l —az) =
() (1 + z) sin (7x)

It can be used to calculate I-functions less than 1. Since sin (7x) is zero for integer

x, [-function is unbounded for negative integers but not for negative fractions. The

following approximation method,derived by Lanczos, is employed for calculating the

[-function numerically. For x > 0,

(1 +2) =k e Vor (ag+ —2 + -2 4 4+ I 4
r+1 x+2 T+n

where k = x + 5.5, € the error term and a; expansion coefficients. For |e| < 2 x 10710,
n = 6 is sufficient. The coefficients are given by

ap = 1.00002746310005, a; = 76.18009172947146

as = —86.50532032941677, asz = 24.01409824083091

as = —1.231739572450155, as = 1.208650973866179 x 1073,

ag = —5.395239384953 x 1076

InD(1+2) = (k") — k + In(v2r) +1n (ag + —2— + 24 4 In
r+1 x+2 T+n

3.1. MATPLOTLIB 57

V2T a a an,
— <a0+— 2+)

In(z) = In (k%) —] .
nl(z) = (A7) —k+In r+1 x+2 r+n

But reasonable accuracy can be achieved by just taking the first five terms and ap-
proximating elements of a to 2 decimal places.

from pylab importx*
def gamma(x0):
a=[1,76.18,-86.505,24.014,-1.232]
k=x0+5.5
s=(k-5)*log(k) -k
s1=a[0]
for i in range(1,5):
si+=a[il/(x0+1)
return exp(s+log(sqrt(2*pi)*s1/x0))
p=linspace(-5,6,1000)
z=gamma (p)
plot(p,z)
axis([-5,7,-1,150])
xlabel(’x’)
ylabel (’Gamma function’)
title(’Plot of Gamma function’)
grid(True)
show ()

Plot of Gamma function

Wf T T
120
100
80

60

Gamma function

40

20

28 CHAPTER 3. PLOTTING AND VISUALIZATION

Polynomial Evaluation: Legendre Function Legendre functions P,(z) are de-
fined through a generating function as

1 o0
_— = P,(x)t"
V1—2xt+¢2 % (z)

where |t| < 1 The zeroth term (n = 0) of the expansion is 1 = Py(z)t° Hence Py(z) =1
for all x. Expanding left side as a binomial series and equating coefficient of £ on both
sides, xt = Pj(x)t or P;(x) = z for all x. Differentiating and equating coefficients of ¢"
on both sides one gets

(2n+ 1)zP,(z) — nP,_1(z)

Pn+1('r): n+1

This is a recurrence relation which may be used for calculating Legendre polynomials
of any order.

from pylab importx*

def legendre(m,z):

pO,pl=1,z

if m==0:p=p0

if m==1:p=pl

if m>1:

for i in range(1l,m):

p=((2%i+1) xz*pl-i*p0)/(i+1)
p0,pl=pl,p

return(p)

n=input (’Give Order n of Legendre function’)
x=linspace(-1,1,200)

y=legendre(n,x)

plot(x,y)

xlabel(’x’)

ylabel (’Legendre function’)

title(’Plot of Legendre Polynomial for n=5’)
grid(True)

show ()

3.1. MATPLOTLIB 29

Legendre Polynomial for n=5 0.5 Bessel function for n=2

1.0

T T T T

Legendre function

-1.0

L ‘
-1.0 -0.5 0.0 0.5 1.0

Polynomial Evaluation: Bessel’s Function The Bessel function of order n for a
variable x is given by the series

Jn(x):i%(g)%ﬂ

1 n
The zeroth term (s = 0) of the expansion is = (%) . The ratio of the p™ and
n!

-1 2

(p — 1) term of the expansion is —— (E) . Using these results Bessel function
p(n+p) \2

of any order can be calculated for any desired accuracy.

from pylab importx*
def bessel(m,z):
z/=2.0

60 CHAPTER 3. PLOTTING AND VISUALIZATION

factorial=1
for i in range(1l,n+1):factorial*=i
term=[z**n/factoriall
for i in range(1,10):

term.append (-term[i-1]*z*z/(i*(i+n)))
return sum(term)

n=input (’Give Order n of Bessel function : ’)
x=linspace(-5.0,5.,1000)

y=[bessel(n,i) for i in x]

plot(x,y)

xlabel(’x?)

ylabel (’Bessel function’)

title(’Plot of Bessel function for n=2’)
grid(True)

show ()

Chapter 4

Numerical Analysis

4.1 Numerical methods

4.1.1 Inverse of a function

Inverse functions are often used in physics. For example, consider the length L of
the mercury column in a capillary tube as function of temperature 7. L = f(T).
When it is used as a thermometer, the length of the mercury pellet is measured and
the temperature is inferred from it using the formula 7 = f~'(L). Similarly, in a
piezoelectric crystal, the voltage V' developed is a function of stress S applied. V =
f(S). In a strain gauge, this voltage is measured to estimate the load W placed on
it. W = Af~Y(V) where A is the surface area of the crystal on which the load applies
stress. If a function represents a principle, in general, its application employs the
inverse function.

Definition 1 (Function) For every x in a set X, if an object f maps exactly one
element y in set Y then f is called a function with domain X, and co-domain or range

Y.

It is represented as
Vee X, yeY, f:x—y

y is called the image and x, the preimage. If there is more than one preimage for a
given image, then f is called an onto mapping. For example, f : x — y has the explicit
form y = 22, then image y is the same for all &2 in the domain X. If for every image,
there is a unique preimage, f is a one-to-one mapping. For example, f : © — y has

61

62 CHAPTER 4. NUMERICAL ANALYSIS

the explicit form y = 22, then image vy is the unique for every z in the domain X. In
terms of domain and co-domain sets f: X — Y.

Definition 2 (Inverse Function) If f is a function whose domain is the set X, and
range is the set Y and there exists a function g with domain'Y and range X, with the
property

Vee X, f(x) =y eYifand only ifVy €Y, g(y) =z

then g s called inverse of f.

The function f sends all elements of the the domain X to the range Y. If f is invertible,
the function g is unique. There is exactly one function g satisfies this property. Function
g is called the inverse of f, denoted formally as f~!. (# 1/f). Since f implies unique
y for each x and ¢ implies unique x for each y, the two mappings f and g must be
one-to-one. This is a necessary condition for f to have an inverse.

Test to check whether a function is one-to-one: It is called the horizontal line
test. If no line parallel to x-axis intersects the graph of the function y = f(x) at more
than one point, that function is one-to-one.

100
S 2 B e A R
60 ... [memontofunction . Lo\ S/A S i
=
=
QO P R A R N 1
200 e — — T—
: :) ,one-to-one function \
I
%0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Method of finding inverse

There are different methods of finding inverse function.

4.1. NUMERICAL METHODS 63

Algebraic method: The algorithm for finding an inverse function g for f(z) alge-
braically involves the following steps.

1. Check whether f is a one-to-one mapping.
2. Put f(x) =y
3. Swap the x and y variables

4. Solve for y. Tt gives f~1(z)
5. Verify that f~1(f(z)) =z or f(f'(z)) ==

Example 1 Find inverse of f(x) =3z + 4

1. f is a one-to-one function.

2. Put3z+4=y

3. Swap variables: 3y +4 ==z

4. solve for y: y = (x —4)/3 = f~1(x)

5. [@) =3 [(x —)/3] + 4=z
Hence inverse function is f~'(z) = (v — 4)/3
Problem 1 Find inverse of f(z) = (x+1)/x

Answer:f~(z) =1/(z — 1)

Problem 2 Find inverse of f(x) =logx

Answer: f71(z) = e”

Problem 3 Find inverse of f(z) = (x+1)/x

Answer:f~(z) =1/(z — 1)

64 CHAPTER 4. NUMERICAL ANALYSIS

Swapping method: Often the experimental data related through some function will
be in the form of ordered pairs formed from tables.
X ‘l‘l‘l‘2‘$3‘$4‘l‘5‘l‘6‘$7‘$8‘l‘9
y=F@) v |ve|ws |wva|ws | ws|wr]|ws]|wo
Then f(x) may be expressed as ordered pairs f(z) : (z;,v:)), ¢ = 1,2, 3... Here

(@) (z1,01), (02, 92), (23, Y3), (T4, Y4), (5, Ys5), (T6, Y6), (7, Y7), (8, Ys) (%9, Yo)

If Vi, j, x; # x;,and y; # y; , then the function f(z) is one-to-one. Its inverse will exist
and can be obtained by simply swapping x and y values.

fﬁl<x> : (yb 1’1), (y27 x2)7 <y37 .Tg), (y47 1’4), <y57 .T}5), (y67 x6>7 (y77 .T}7), <y87 l’8)(y9, xQ)

In tabular form, it will appear as

ey vl ys | valws | we |y |us|wo
SN @) [21 | @o | as | aa | a5 | w6 | 27 | 25 | 2o

Example 2 Find the inverse of the function

v |L[-2][-1]0]2]3|4]-3]
fl)y|2]0]3[-1]1]-2][5]1|
Swapping x and y, we get the inverse function as x and y never repeats among them-
selves.

fﬁl<x> = (27 1)7 <07 _2>7 (37 _1)7 <_170>7 (17 2>7 (_273)7 (574)7 (17 _3)

Graphical method: The basic principle is that the graph of an inverse relation is
the reflection of the graph of original relation on the identity line (slope=1),y = x.

Example 3 The function f(x) = 2z+1 has f~'(x) = (x—1)/2. Plots are given below

4.1. NUMERICAL METHODS 65

Often it is necessary to re-
strict the domain on certain functions to guarantee that the inverse relation is also a
function.

2

Example 4 For example if y = ax® is the function, then it is one-to-one only for

z > 0.

1.0

0.8 e T o

L~ (SR N —

02 /o f(z):’tz ,,,,,,,,]

i i i i
0'%.0 0.2 0.4 0.6 0.8 1.0

'Note that all graphs will not produce an inverse relation which is also a function.

66 CHAPTER 4. NUMERICAL ANALYSIS

4.1.2 Interpolation with Cubic Spline

Real world numerical data is usually difficult to analyse. Any function which would
effectively correlate the data would be difficult to obtain and highly unwieldy. To this
end, the idea of the cubic spline was developed. Using this process, a series of unique
cubic polynomials are fitted between each of the data points, with the stipulation that
the curve obtained be continuous and appear smooth. These cubic splines can then be
used to determine rates of change and cumulative change over an interval.

yO y1 yn

Theory:
Let there be (n + 1) data points (z;,¥;),7 = 0,1,2,...n. The essential idea is to fit a
piecewise function of the form

po(z) To < x <1
T() = p1(z) 1 <x < T
Po1(z) g <x <1y
where each p;(z) is a cubic polynomial of the form
p(z) = as(x — 2;)® + ag(x — ;)% + ay(x — 2;) + ag
To make the interpolation continuous, smooth and well-behaved, we impose the

following conditions

1. The piecewise function () will interpolate all data points. That is P(x;) =
pi(zi) = yi

4.1. NUMERICAL METHODS 67

2. B(z) will be continuous on the interval (zg, x,). That is p;(x;) = pi_1(z;)

3. The first derivative P’'(z) will be continuous on the interval (xo,z,). that is,
pi(wi) = pia (2:)

4. The second derivative’B” (z) will be continuous on the interval (xg,z,). That is,
i (i) = pi_y ()

The second derivative of a cubic polynomial is of degree one (a straight line). For the
first pair of points (xo, yo), (1, y1) the following form may be chosen.
Tr — T r — 2o

+a
Ty — X1 Tr1 — X

po(z) = ao
ao and a; are then given by
Po(o) = ao, py(z1) = @y

which are the values of the second derivative of po(x) at x = xo and = = x;. Integrating
py(z) with respect to x

(v —21)?

2(xg — x1)

(2 — 20)?

2(z1 — xp)

po(x) = ag +A+a +B
where A.B are constants of integration. The two constants are different because the
first term is integrated with respect to (xr — x1) while the second term is integrated

with respect to (x — o) Integrating again

(x —)3
6(xg — 1)

(x —)3

Al — AL~ o)
+ Az x1)+a16(x1—x0)

po(z) = ag + B(x — o)

To find A, B we use the two given points (z¢,yo) and (x1,y;). Substituting x = z,

(zo — $1)3 (2o — $0)3
— a2 Y L Az — A0 L By —
Po(o) 6106@0 —) + A(xg — 1) + a16(x1 — 7o) + B(xo — z9)

(2o — ffl)?’

=g~V Az —

Yo CLOG(%0 —) + A(zg — 1)

A — Yo _ ao($o—$1)

To — X1 6
Similarly using po(z1) = 11
(ZIIl — ZII1>3 (.Tl — %0)3
Y1 = po(r1) a06(x1 —) + Az — 1) + Cl16(9€1 o) + B(x1 — o)
B— U1 _ a1(36’1 - ﬂfo)

1 — X 6

68 CHAPTER 4. NUMERICAL ANALYSIS

The polynomial has the form

i) = LI [0,) o

6 (zg — 1) ro—x1 6
ay (z — x9)? Y1 a
+ 6 (2 —10) + [371 e (21 xo)] (x —)

T x2)) N Lly_lm . %@1 - m} (z — 22)

6
+ %(x_:ﬁ)) + Lby_le - %(372 —1’1)} (z — 1)

To evaluate the second derivatives a; = p/(x;), we use the condition that the first
derivative be continuous at the knots. That is, pj(z1) = p}(z1).

3ag (37 - 1’1)2 Yo Qo
/ —_— _— —_
pO(x) 6 («TO — 1’1) To — X1 6 <x0 xl)
3ay (x — xp)? 7 a
+ 6 (IL‘l - l‘o) + Tr1 — Ig 6 (xl fL‘O)
/ . Yo Qo _ ar . n o _
po(w1) = Zo—71 6 (vg — 1) + — (21 — o) + o —20 6 (z1 — o)
Rearranging and simplifying
/ . Yo o _ ar . n o _
pol(1) = vo—11 6 (wo — 1) + 7 (w1 — o) + pa—— (21 — o)
_Wi—% G, 2a0,
R + 5 (x1 —x0) + 5 (x1 — x0)
Similarly
3ay (x — x)? Y1 a
, —_— _— —
pl(x) - 6 (.Tl — 1’2) Ir1 — X2 6 (:El $2)
3ay (v — x1)? Yo a
+ =2 + — (29—
6 (SL’Q — .Tl) To — I 6 («T2 xl)
At x = x4,
3ay (1 — x2)? Y1 ay Y2 as
/ e _— — _— —
p(z1) = 6 (21— 1) + o 15 6 (x1 —x2) + r— (w2 — 71)

Which can be simplified as

2a a
tomk A —1($2 — 1) — Ez(@ — 1)

pi(z1) = Ty — 7, 6

4.1. NUMERICAL METHODS 69

Therefore continuity of first derivative requires

Y1— Y |, Qo 2a1 Yo— Y1 2aq as
+ —(11 —x0) + — (11 — 20) = — (g —11) — —=(19 —
1T — X 6(! 0> 6 (! 0) To — X1 6 (2 1> 6(2 1)

ag 2a, ay as _ Y=Y Y1~ Y
G(xl x0)+ 6 (xl :EO)+ 6 (:EQ $1)+ 6(:162 xl)_xz—fm 1 — T

The second and third terms on the left hand side may be combined

o 201 as Y2—Y1 Y1— Yo

— (1 — o) + — (22 — o) + — (22 — 1) = —

6 (! O> 6 (2 0) 6 (2 1) To — X1 1 — 2o
For the polynomials p;(x) between (x1,25) and py(x) between (x9, z3),

ay 2ay as Ys—¥Y2 Y-

— (T2 — 1) + — (23 — 1) + — (23 — x2) = —

6 (2 1) 6 (3 1) 6 (3 2) T3 — X2 To — X1

There are four unknowns ag, ai, as, as and two equations. So the values of any two of
them must be assumed to get the other two. As two of the variables repeat in every
successive equations (ai, ag here), if we compute all the n-polynomials between the
(n + 1) data points, we will get (n — 1) equations and (n + 1) variables. Usually it is
assumed that ag = a,, = 0 so that there are (n — 1) variables and (n — 1) equations
which can be exactly solved. Cubic spline with ag = a,, = 0 is called natural splinde

If the z-values are equispaced, let z;;; — x; = h, then the (n — 1) equations may be
written as

4 10 .. 000 ay Yo — 2y1 + y2
1 4 ... 00 0 ao Y1 — 2y2 + y3
141 ..000 az | _ 6 Yo — 2Yy3 + Ya
000 .. 141 9 Yn—3 — 2Yn—2 + Yn—1
O 0 0 O 1 4 Ap—1 Yn—2 — 2yn—1 + Yn

The general formula for the cubic polynomial between x; and ;.1 is given by

a; (x — 1)3 Yi a;
pi(x) = 6 (2 — 1’:1) L — T E(:cl - 56’¢+1)} (x — @it1)
aiy1 (z— %’)3 Yivr Gy, o
i 6 (ziy1 — i) " Lbﬂl — T 6 (@ina xl)} (z =)

Problem 4 -Suppose

(z) 2% + ax? — 4z + c, 0<z<?2
s(x) =
3+ 922 +br+34, 2<x<4

Find constants a,b, c such the s(x) is twice continuously differentiable on the interval
[0, 4].

70 CHAPTER 4. NUMERICAL ANALYSIS

Problem 5 Suppose

Find constants a,b such the s(x) is twice continuously differentiable on the interval
[—2,2].

Problem 6 Suppose

0 r <2
S(x):{(x—2)3 2<ux

Is s(x) a cubic spline? Justify your answer.

Problem 7 Using cubic spline interpolation technique, find y(z = 0.6) from the fol-
z| 01 | 02 | 04 | 07 | 11
y | 0.5754] 0.6796 | 0.8026 | 0.9179 | 1.0231

lowing data.

Ans: y(0.6) = 0.8846

4.1.3 Zeros of polynomials

Polynomials are used in physics to describe the trajectory of projectiles. Polynomial
integrals can be used to express energy, inertia and voltage difference. in quantum
mechanics, orthogonal polynomials appear as energy and momentum eigenfunctions.
The zero or root of these polynomials gives positions and instants of zero probability
for a physical system. They are also used for interpolation of experimental data.

Definition 3 If p(z) = Y., a;x" is a polynomial of degree n and p(b) = 0, then b is
called a zero or root of the polynomial p(z).

There is an important theorem that relates the factors and zeros (roots) of a polynomial.
There are 5 theorems about roots of Polynomials. They are n-Zero theorem, Remainder
theorem, Factor theorem, Rational Root Theorem, Irrational Root Theorem, Complex
Root Theorem, Descartes Rule.

Theorem 1 (n-Zero’s Theorem) If p(x) is of Degree n, then it has at most n zeros.

Theorem 2 (The Remainder Theorem) Ifo)b = q(x)and r, the remainder, then p(b)
:L‘ —
r

4.1. NUMERICAL METHODS 71

Proof:
() = q(z)(z = b) + 7, p(b) =7
To verify remainder theorem: If p(z) = 2® — 22 — 17z — 16. Let us divide p(z) by

(x —5). The quotient is q(x) = x® + 4z + 3 and the remainder is r = —1. Now
p(5) =53 —52—17x 5 — 16 = —1 = r. Hence verified.

If remainder r = 0 wehave the factor theorem.

Theorem 3 (Factor Theorem) If p(z) =Y 7 a;x’ is a polynomial of degree n and
(x —b) is a factor of the polynomial p(z), then b is a zero of p(x).

Proof:
p(z) = q(z)(z —b), p(b) =0

To verify factor theorem: If p(z) = 2 4+ (a — 1)2* — (a + 6)z — 6a. Factoring the
polynomial we get p(z) = (x +a)(z+2)(z — 3). Hence z = (—a, —2,+43) are the set of
roots. p(—a) = a®+ (a — 1)a® — (a + 6)a — 6a = 0. Similarly p(—2) = p(3) = 0

Theorem 4 (Bolzano’s Theorem) If p(z) is a continuous function in the interval
z € (a,b) and p(a)p(b) < 0, then there erxists at least one x = ¢ € (a,b) such that

p(c) = 0.

This is a special case of Intermediate Value Theorem. To verify Bolzano’s theorem:
If p(z) = 62 — 202% — 142 + 60. (x — 2) is a zero of this function.

p(1.5) = +14.25, p(2.5) = —6.25, p(1.5) x p(2.5) = —89.0625 < 0

The root 2 lies between 1.5 and 2.5

Theorem 5 (Rational Roots Theorem) Rational Roots of p(x) = Y1, a;x’ will
be of the form of (factors of ag divided by factors of a,.

A rational root is one which is expressible as a quotient of two integers. In the poly-
nomial p(z) = 62 — 132°> + x + 2, ap = 2, a, = a3 = 6. Hence the possible rational
roots are factorsof ag/factorsof as = factorsof 2/ factorsof6. That is

41,42
+1,+2, +3, +6

— +1,41/2,41/3,+1/6, £2, £2/3

The theorem states that if there is a rational root , it must be one of these. In fact,
the roots are (2,1/2, —1/3) which belong to this set.

72 CHAPTER 4. NUMERICAL ANALYSIS

Theorem 6 (Irrational Root Theorem) If p(x) is a polynomial with rational coef-
ficients and a + /b where a and b are rational and /b is irrational is a root, then the
conjugate a — Vb is also a root.

For example, if p(z) = 22° — 22 — 9z — 4, its roots are xg = 1/2,xL = (1 £ /17)/2.
[rrational roots occur in pairs.

Theorem 7 (Complex Root Theorem) If p(z) is a polynomial function with real
coefficients and a + ib is a root, then a — ib must also be a root of p(x).

This theorem states that if the Coefficients are real, all Complex Roots occur in Conju-
gate Pairs. For example, the roots of p(r) = 323+ 72°+11z+3 are x4 = —14iV2, 2y =
1/3

An obvious corollary is for an odd-degree polynomial there exist at least one real root.

A method of determining the maximum number of positive and negative real roots
of a polynomial is given by Descartes Rule.
For positive roots, start with the sign of the coefficient of the lowest (or highest) power
of . Count the number of sign changes n as you proceed from the lowest to the
highest power (ignoring powers which do not appear). Then n is the mazimum number
of positive roots. ~ Consider p(z) = 27 + 2% — 2% — 23 — 22 + x — 1. Since there
are three sign changes, there are a maximum of three possible real positive roots.
Actually, there is only one real positive root x = 1.1147 and three pairs of complex
roots —1.2 + 0.6¢, —0.3 = ¢,0.4 £ 0.5¢ for this polynomial.

Theorem 8 FEuvery polynomial p of degree n with complex coefficients a; and a, # 0
can be represented as

plx) = [Jaiz —b)
i=1
where b; are the roots of p .
Sum and product of roots of polynomials Any polynomial p(z) = Y7, a;a* of

degree n has n roots b;, © = 1,2,3..n. If a; are real, the sum and product of roots are
given by

n

& Ap—1 - n @0
izlb,:— - Hbi:(—l) —

4.1. NUMERICAL METHODS 73

Numerical procedure: Deflation

Consider a polynomials of degree n > 2. Any one root b; is found by any one of the
methods - bisection, Newton-Raphson, secant, Laguerre’s etc. The polynomial can
be written as a product p(z) = (x — by)qi(x) where ¢;(x) is a reduced or deflated
polynomial of degree n — 1. Also the roots of ¢; are exactly the remaining roots of p.
Any one root of ¢; is then determined as by. Deflating ¢1, ¢;(x) = (x — b2)g2(x). The
same procedure may be repeated till the degree of ¢; is 2. Then quadratic formula gives
the last two roots. This method of successive deflation has the following advantages.

1. Deflation is just polynomial division.
2. The effort of finding a root generally decreases in each step.
3. The method cannot converge twice to the same non-multiple root.

4. Successive Deflation is numerically stable, if the root of smallest absolute value
is divided out in each step.

Laguerre’s Method of finding polynomial roots: Polynomial roots can be ra-
tional, irrational, real or complex, this method will converge to all types of roots.

The basic principle of this iterative method is given below.
Let p(x) be a n'® degree polynomial.

p('x) = Qo + a1 + a2x2 T anaj‘n = Zaixi
If the n roots are b;, i = 1,2, 3, ...n.

p(x) = (. — b)) (x = by).....(x — by) = H(;,; —b)

Taking logarithm of modulus on both sides

The modulus is taken since logarithm of negative real numbers and complex numbers
are not defined. Differentiating with respect to x

dln|p(z)| 1 1 1
dz L R P S pra

74 CHAPTER 4. NUMERICAL ANALYSIS

3

Differentiating again

d*Inp(z)] 1 1 1
de2 (z—b)2 (2 —by)2"

' (@)p(x) = pa)p(x)) {p%x)r _ i o
(

p(z).p(x) - op(z) [p(x)

VM] 2 i @b = d(say)

p(x) po

Let x; — b; = e; where z; is the 4t trial root and b;, the actual root. To find e;,
we assume that all other roots b; are equidistant from z;. Let z; — b, = 5,1 =
1,2,..,n and 7 # j. Then

1 1 1 1 n-1
c=4-"F it — 4 F =+
e; j s
Similarly
1 n-1
d=—=5+—
€5 s

Eliminating s and solving for e;

6]':

ct/(n—1)(nd—)

For |e;| to be small, the modulus of denominator |c & /(n — 1)(nd — ¢2)| must be
large. If ¢ < 0, denominator is ¢ — y/(n — 1)(nd — c2). If ¢ > 0, the denominator must
be ¢+ +/(n —1)(nd — c2). To reduce e;, the process is repeated with z; — x; —e; till
reasonable accuracy is obtained.

The polynomial is then divided by (z — b;) to get a lower degree polynomial g(z).
The root of ¢(x) is found using the same method. This procedure is repeated, till all
the roots are obtained.

Example-1: To find the roots of the polynomial p(z) = 6x* + 2323 + 3722 + 28x + 6
we find that all coefficients are real and positive and rational. Hence complex and
irrational roots occur in pairs. No change of sign means no real positive root. p'(x) =
2423 + 6922 + T4z + 28 and p”(x) = 722 + 1382z + 74. Let us assume that z; = —1.0

4.1. NUMERICAL METHODS
in Legurre’s procedure

10

p(x)

— L 1
-2.0 -1.5 -1.0 -0.5 0.0

Trial value: x=-1.0000
(1) ,p(-1.0000)=-2.0000,p’ (-1.0000)=-1.0000,
p’’(-1.0000)= 8.0000,c=0.5000,d=4.2500, x=-1.5271,
(2)p(-1.5271)=0.2480,p’ (-1.5271)=-9.5650,
p’’(-1.5271)=31.1665,c=-38.5659,d=1361.6680, x=-1.5000
(3) p(-1.5000)=-0.0000 .Hence it is one root.

Hence = —1.5 is a root. (x + 1.5) = (22 + 3)/2 is a factor of given polynomial.

=323 + 72? + 8x + 2

2 +3

Trial value: x=0.0000
(1) q(0)=2.0000 ¢q’(0)=8.0000
q’’(0)=14.0000 ¢=4.0000 d=9.0000, x=-0.3405
(2)q(0.3405)=-0.0310 q’(0.3405)=4.2761

q’?(0.3405)=7.8702 ¢c=-137.7945 d=19240.9417, =x=-0.3333
(3)q(0.3333)=0.0000 Hence it is another root.

75

Hence x = —0.333 is a root. (z +0.3333) = (v +1/3) = (3z 4+ 1)/3 is a factor of given

polynomial.
q(x)

2
=\ 2 2
S x° + 2x +

q1(z)

76 CHAPTER 4. NUMERICAL ANALYSIS

This quadratic equation has roots

—2+27 412
. -

Ty = By

Hence the set of roots are (z = (1/3,3/2,1+ 14,1 — 1)

Example-2 : To find the roots of the polynomial p(z) = z* + 123 + 622 + 42 + 16 we
find that all coefficients are real and positive. Hence complex and irrational roots occur
in pairs. No change of sign means no real positive root. p/(z) = 423 + 32% + 122 + 4
and p”(x) = 122% + 62 + 12. We start with a small trial root x; = —1.0. The iterations
give following values. (1)x; = (—0.8 —1.2499j), (2)z; = (—0.9851 — 1.7613j), (3)x; =
(—1.0000 — 1.73205) = —1 — /3 Since —1 — v/3j is a root its complex conjugate
—1 4 +/3j is also a root. Hence by factor theorem

p() = q(x)[z + 1+ V3j][z + 1+ V3j] = q(z)(z + 1)> + 3 = q(z) (2% + 2z + 4)

a4 12% 4 627 + 4w + 16
- 2 +2x+4

The roots of this quadratic equation are given by z. = 0.5+ 1.93655. Hence the set of
roots are (—1 & +/35,0.5 & 1.93657)

=2t —x+4

q(z)

Problem 8 Gas tank that is 10 meters in length (end to end) consists of a right-
cylinder and is capped at either end by a hemisphere. What is the radius of the tank if
the volume is 50 cubic meters?

Answer: Volume = 2rr3/3+mr*(L —2r) + 2713 /3 simplify to the form 7r® — 15772 +
75 = 0 The three roots are r = 14.89235732, 1.32108215, —1.21343947. The first is not
possible as the total length is only 10m. Third value is unacceptable as radius cannot
be negative. So r = 1.32108215. Also 27r3/3 + wr?(L — 2r) + 27r®/3 = 50.00104m?

Example-3 : To find the roots of a cubic polynomial p(x) = 2 + x — 10, we observe
that there is one sign change so that there may be a positive root. Since coefficients
are real, complex and/or irrational roots occur in pairs. Since there are only 3 roots
one of them must be real. We start with a trial z; = 0 in Legurre’s procedure. The two
iterations give (1) z; = 1.4293 and (2) z; = 2.0068 so that p(z) = 0.0 Hence (x —2) is
a factor. Dividing with this factor

_:c3+a:—10

=2+ 2r+5
T —2

q(z)

4.1. NUMERICAL METHODS 7

Using quadratic formula

T = 1425

24420
- 2

Hence the roots are (2, —1 4 2j)

Example-4 : To find the roots of a cubic polynomial p(z) = 623 — 112* — 14z + 24,
we observe that there are 2 sign changes so that there may be 2 positive roots. As
before we start with x; = 0 in Legurre’s procedure. Successive iterations give z; =
0.9101, 1.3001, 1.3333(= 4/3) Hence z — 4/3 or (3z — 4) is a factor.

6% — 1122 — 142 + 24 B

q(z) = = 20°—2—6 = 20° —4r+32—6 = 2x(z—2)+3(v—2) = (v—2)(22+3)

3r —4
The roots are x = 2 and x = —3/2. The set of 3 roots are © = 2,4/3, —3/2.

Problem 9 Find roots of following polynomials using Legurre’s method.

No. | polynomial p(z) Answer(j = /—1)
T | 27— 102° + 3522 — 50z + 24 | 1,2.3.4

2 |2t =223+ 22 —1 1,-2,-3,4

3 |2t =32 32+ 112 —6 2,—1/3,3/2,2

4 |2t — 42 4 622 — da + 1 1,3,(2+ 1))

5 | ot +423 +622+42+5 2+5,0+7

6 | 2% — 322 + 30— 1 (2 + 35), 4

7 | 2% —622+11lx —6 2,3,4

8 | a®—4x® +5xr —2 (1+£55),3

9 | 2% — 842 420z — 16 3,3.0.5

4.1.4 Monte Carlo Methods

Monte Carlo method is an iterative computational method used to calculate multi-
dimensional integrals and investigate the behaviour of physical systems using stochastic
methods. It is used as a statistical tool in studying situations which are not amenable
to compute using deterministic algorithms. With the development of powerful com-
puters and efficient algorithms, the Monte Carlo method is found to be very useful
in finding numerical solutions to quantitative problems which are nonlinear and in-
volving uncertain parameters. In physics, Monte Carlo methods are used in nuclear
physics(nuclear model), molecular dynamics, crystal physics, statistical physics(Ising
model), X-ray Imaging, Electron Dynamics in Doped Semiconductors, Quantum chro-
modynamics etc. This method is based on the following concepts and principles.

78 CHAPTER 4. NUMERICAL ANALYSIS

Definition 4 (Random variable) A random variable is an assignment of numbers
to possible outcomes of random events.

For example, consider tossing a pair of coins. The number of heads n showing when
the coins land is a random variable. It can be assigned the number 0 to the outcome
[Tail, Tail|. That is n(T,T) = 0. Similarly n(7, H) = n(H,T) =1 and n(H, H) = 2.

Definition 5 (Expectation or Expected Value) The expected value of a random
variable is the long-term limiting average of its values in independent repeated events.

The expected value of the random variable X is denoted E[X]|. For example, while
tossing a coin, the fraction of times the coin lands with head up is half when the
number of tosses are very large. It is expressed as F[n(H)] = 0.5. This idea can be
expressed mathematically as follows. Let a random variable X takes a values z; with
probability p;. If the sum of products converges absolutely to some value Y, that is,

, then Y is the expectation of X. For a continuous random variable X, the expectation
may be defined as

E[X] = /xP(x)dx
where P(z) is the probability of random variable X having a value z.

Taking the expected value is a linear operation: if X and Y are two random
variables, E[X + Y] = E[X]| + E[Y], and for any constant a, E[aX]| = aE[X]

Theorem 9 (Law of large numbers) As the number of trials of a random process
increases, the percentage difference between the expected values and actual values (mean
measured values) of all random variables goes to zero.

The mean of values of x obtained from n independent trials is given by

|
(z) = N ; L
The law of large numbers states that

lim Efz] —(z) =0

N—oo

4.1. NUMERICAL METHODS 79

Simple integration

Basic Principle: Consider the definite integral f; f(z)dz where f(x) is differentiable
in the interval (a,b). By definition,

[= tm > s
a R

where a < x; < b. If §z; is a constant for all i, dz; = (b —a)/N.

b b—a &
| fle)de = lim ;f(:m)

lim 3 () = Jim (f(z) = E[/]

N—oco N —

where E[f] is the expectation by law of large numbers. If b —a) = L,

[e =i

For surface and volume integrals, the above relation becomes

/5 f(@)de = S(f), / f(@)de = V()

The error e in the above calculation is the difference between the expected value and the
mean value which is given by their standard deviation. For a k-dimensional integral,
it is given by
(12 = ()2

N

where 7 is k-dimensional volume and (f?) = S_N f?(z;). It is only a rough estimate
of the error.

e —= =7

Numerical procedure: In order to integrate a function over a complicated domain
D, Monte Carlo integration uses random points over some simple domain D', which
encloses D. Each random number generated is then checked to see whether it is within

80 CHAPTER 4. NUMERICAL ANALYSIS

D. Out of the n random numbers, if m are within D, then the ratio (m/n) gives the
ratio of n-dimensional volumes D/D’. For example, to calculate the area D of one
quadrant of a circle of radius r, we enclose it within a square (D’) of side r. Pairs
of random numbers (z;,y;) in the interval (0,r) are generated and checked to see if
2? + y? < r? so that it is within D. The ratio m/n of the number of random pairs to
the total number of pairs gives the ratio of their areas D/D’ . Then

D = D'(m/n)

1.0
0.8,
L.
0.6 3"
0.4} «

0.2 el

0.9" -

do

A ek is 9 e N .
2+COSQWIC is 2m/v/3 = 3.62759872847, gives the

For example, the integral fozw

following values.

No.of random points in (0,27) | Value of integral
10000 3.63293517
20000 3.63805025
30000 3.63569129
40000 3.63152102
50000 3.62770939

Integration by Importance Sampling

To reduce the variance(standard deviation) in the calculation of a definite integral
using Monte Carlo method, sampling of the data points is introduced. Sampling is
the process of selecting data from a domain of interest. By studying the sample, one
can generalize the results back to the data set from which sample chosen. Sampling
reduces volume of data to be processed, thereby reducing computing time.

4.1. NUMERICAL METHODS 81

Importance sampling: The term importance sampling refers to the process of clas-
sifying values of the input random variables in a simulation according to the impact on
the quantity being estimated. If the large impact values (important values) are empha-
sized by sampling more frequently, then the variance of the estimated quantity can be
reduced. Hence, the basic methodology in importance sampling is to choose a distri-
bution which gives more weight to the important values. In a simulation, outputs are
again weighted to correct for the use of the biased distribution. This ensures that the
new importance sampling is unbiased. Thus the fundamental problem in importance
sampling is to determine the distribution that is properly biased. Such a distribution
saves large amounts of computing time.

Integration using importance sampling Consider the integral I = [f dr where
f is a continuous function in some n-dimensional volume 7. Let f(z) = g(z)h(x) where
g(z) is a positive function satisfying the condition [g(z)dr = 1. Then the integral
becomes I = [h(x)g(x)dr. This can be interpreted as follows.

One can integrate f by sampling it with uniform probability density d7 in simple
Monte Carlo method. But the same can be done by sampling h(z) with non-uniform
probability density g(x)dr. The generalized fundamental theorem is that the integral
of any function f is estimated, using N sample points z;, ..., xx , by

f
g

[rwar =,

with an error estimate

{(f2/9%) = {f/9)?
error = j:T\/ N

To choose the probability distribution g(z), one proceeds by searching a function which
minimises the absolute value of error (variational method). This may be taken as a
constraint so that Legrange’s multiplier method can also be used for finding g(x).

4.1.5 Sampled Data

Sampled data refers to a subset of a large data system that is discrete or continuous
and which has all the characteristics of the complete data system. The size of the
sample required for this purpose is given by sampling theorem.

Theorem 10 (Nyquist-Shannon Sampling Theorem) In order for a band-limited
signal of mazimum frequency v, to be reconstructed fully, it must be sampled at a rate
> 2

82 CHAPTER 4. NUMERICAL ANALYSIS

Here band-limited signal refers to a signal with a zero power for frequencies v > v,.
A signal sampled at f = 2v,, is said to be Nyquist sampled, and f. is called the
Nyquist critical frequency. No information is lost if a signal is sampled at f., and no
additional information is gained by sampling faster than this rate. For example, to
sample a sine wave of frequency v, the minimum sampling rate is f. = 2v. That is the
time interval A between samples and period of sine wave T are related as Delta = T'/2.
Hence a convenient choice is to sample at positive and negative peak of the wave. If h(t)
contains frequencies f outside of the range (— fc¢, fc) where f, is the Nyquist frequency,
then the power content of these frequencies is moved into that range —f. < f < f. so
that power spectrum is modified. This phenomenon is called aliasing. Any frequency
component outside of the range (—fc, fc) is translated into that range as a result of
discrete sampling.

4.1.6 Discrete Fourier Transform

Consider a function h(t) of a continuous variable ¢ transformed into a function H of
another independent variable w having range (—oo, c0) by the equation

Hw) = /_)t

[e.9]

where w = 27 f. h(t) can be retrieved using the inverse transform

= / H(w)e ™dw

The integration in these transforms can be replaced with a summation over the function
values h(t) corresponding to properly sampled values of ¢. Consider N consecutive
sampled values at constant separation A. Let

tk = kA, h,k = h(tk), k= 0, 1,2, ,N —1

If the function A(t) is continuous and not periodic, then we assume that the sampled
points are such that h(t) is similar in structure at all times t. Even though all frequen-
cies in the Nyquist frequency range (— f., f.) are possible, we can get Fourier transforms
H(fx) only for N-frequencies as there are only N-input samples. Consider N values

fo= n=I[N/2,(N/2)—1,(N/2)—2,..(—=N/2) + 1,—N/2]

NA’

The extreme values of n, that is /N /2 exactly correspond to the lower and upper limits
+f.. If w, = 2nf,, then the discrete Fourier transform is given by

H(w,) = / Jelntdt ~ Zh eliontt) A = AZh linka)

e}

4.1. NUMERICAL METHODS 83

Substituting for w,A = 27 f, A = 27n/N in the exponent

N-! P
H(w,) = AtheXp (W]Z\[n)

k=0

The quantity
N-!

2mik
E hkexp< W;Vn) =H,
k=0

where H,, is called the discrete Fourier transform of the N points hy.

H(fn) = H A

The inverse discrete Fourier transform is then given by

N—! :
1 2mikn
h’k = N ngzo Hn exp (— N)

Algorithm For n data points

1: Read input list x of length n
2: w<27m/n

3: forp=0ton—1do

4: s+ 0

5: forg=0ton —1do
6: S s+ xqei“’pq

7: end for

8: Yp < S

9: end for

Program: The following function will calculate the discrete Fourier transform of list
of values x.

#input x is list, y is output list
from cmath importx*
def dft(x):
n = len(x)
omega, y = 2*pi/n, [0]*n
for p in xrange(n):
s =0
for q in xrange(n):
s +=x[ql*exp(omega*xq*p*1j)

84 CHAPTER 4. NUMERICAL ANALYSIS

ylpl = s
return y
print dft([1,3,5,3,1,-1,-3])

Output
[(9+0j), (-3.49+11.41j), (-0.11+1.681j), (2.60-0.14j),
(2.60+0.14j), (-0.11-1.68j), (-3.49-11.413)]

Thus the calculation of discrete Fourier transform of N-sampled points requires N x
N = N? computations. There is an algorithm to reduce the number of computations
N log, N called Fast Fourier Transform.

4.1.7 Fast Fourier Transform(FFT)

This algorithm was first conceived by Gauss in the 18" centuary. With the advent of
modern computers, Tukey and Cooley developed an algorithm to implement it on a
digital computer. There are other algorithms similar to this one developed recently.

The basic principle is the divide and conquer strategy just like any other large data
systems. The discrete Fourier transform of n-sampled points requires N x N = N?
computations. If the data set is divided into two equal parts, each part requires N?/4
computations for its Fourier transform. Hence total number of computations is only
N?/2 = N?/2! which shows a reduction by N?/2. If each half is still divided, the
number of computations gets reduced to 4 x (N/4)? = N?/4 = N?/2% In general if
the N = 2P-points are divided into M = 27 equal parts, the number of computations
becomes N?/2M = 2%p~4,

Procedure: There are different algorithms for FFT. One of the simplest is the Sande-
Tukey algorithm. It is given below.

Let N = 2P an integer power of 2. If the length of the data set is not a power of two,
zeros may be added as data elements up to the next power of two. If f,, are n-data
points separated by N equal intervals, then its discrete Fourier transform (DFT) is
given by

N—-1
Fe=Y_ fuW™ k=0,1,2,3.N~-1

n=0

where W = e2™/N Let us divide the entire data into two sets-odd and even indices-

4.1. NUMERICAL METHODS 85

each of length N/2 with

(N/2)—1 (N/2)—-1
Fr = Z fon W2 4 Z fon 1 WEnHDE
n=0 n=0
(N/2)-1
= Z Wan [f2n + f2n+1wk}
n=0

= £+ WrEY

where F,ie) = ZnNﬁ)_l W2k f, and Fk(o) = Zgﬁ_l W2k f, .1, superscript ’o’ and ’e’
stands for odd and even number4ed data. The crux of the solution is to consider these
odd and even sets of N/2 numbers as transforms of sequences of length N/2. This is
called Danielson-Lanczos Lemma. It is found that this Lemma can be used recursively.
Having reduced the problem of computing F}, to that of computing F,ie) and F,éo), the
same reduction of F,ge) to the problem of computing the transform of its N/4 even-
numbered input data (even k in fy) as F°° and N/4 odd-numbered data (odd k in

for) Fk(eo). Similarly division of F,ﬁ“) can also be done into F,§°e) and Fk(oo). In other
words, one can define discrete Fourier transforms of the points which are respectively
even-even, even-odd, odd-even and odd-odd on the successive subdivisions of the data.
Since N is a power of 2, it is evident that one can continue applying the Danielson-
Lanczos Lemma until we have subdivided the data all the way down to transforms of
length 1. The Fourier transform of length one is just the identity operation that copies
its one input number into its one output slot! In other words, for every pattern of
log, N there is a one-point transform that is just one of the input numbers f,, for some
n.

4.1.8 Shooting method

Shooting method is employed to solve ordinary second order differential equations with
a pair of boundary conditions . It is a two-point boundary value problem. The bound-
ary conditions at the starting point do not determine a unique solution to start with.
Starting boundary conditions is almost certain not to satisfy the boundary conditions
at the other boundary point. In general, iteration is required to correlate boundary
conditions into a single global solution of the differential equation. Differential equa-
tions are to be integrated over the interval of interest several times. Only for linear
differential equations, the number of iterations can be predicted. Consider the general
form of a second order linear differential equation for the function y(x)

y'(x) = p(@)y'(x) + q(z)y(z) + r(z)

86 CHAPTER 4. NUMERICAL ANALYSIS

with boundary condition y(a) = «, y(b) = 8. Suppose u(z) is a function which satisfies
the above equation with initial conditions u(a) = a, u/(a) =0

u’(z) = p(a)u'(z) + q(z)u(z) +r(z)
Let v(x) be a function which satisfies the equation
V(&) = pa)' (@) + g(@)o(), v(a) = 0,0/(a) = 1

Then the linear combination y = u + cv is a solution.

I
3 E@ N
8
S~— N ~~—
N
P
=
+
Q
d\
S
=
+
=
8
S~—
=
8
_/O
+
Q
e
8
=
+
3
~—~
=

To evaluate c, we use the boundary condition at x = b

B —u(b)

u(b) + cv(b) = B, c = o(0)

Hence the solution is

Procedure: Any second order linear differential equation can be split into two cou-
pled first order equations and solved by Runge-Kutta method if two initial conditions
are known. In linear shooting method, the following procedure is followed.

1. First solve

2. Then solve
V'(z) =t(x), v(a) =0

t'(z) = p(x)t(z) + q(z)v(x), t(a) =1
3. Finally, the desired solution y(x) is the linear combination

B —u(b)

4.1. NUMERICAL METHODS 87

Eigenvalue problems: Consider boundary value problem

y'(x) = p(@)y'(x) + q(z)y(z) + r(2), y(a) = @, y(b) = S

. If ¢(x) = X\ a constant and r(z) = 0, it becomes an eigenvalue problem in differential
equations.

y'(x) —p(@)y' (#) = Ay(z), y(a) = a, y(b) = B

. Here X is an eigenvalue and y(x) is an eigenfunction corresponding to A\. The method
of solution involves the computation y(b) for different A\ and find the one for which
y(b) = B. This can be done efficiently if we find the roots of the logarithmic derivative
as it will cancel all multiplicative constants from y and 7/'.

B(Frxg] s

4.1.9 Relaxation method:

It is an approach different from shooting method. The differential equations are re-
placed by finite-difference equations between a set of points in the range of integration.
The conversion of a differential operator to a difference operator is done as follows. Let
Yo, Y1, Yo be three points corresponding to the x-values xg, xo+ dx, xo+ 20x respectively

/() = dyl =% i
dr|,_, o+ 0z — xp ox

1 :y2—2y1+yo

dx oxr | oz (0x)?

~

y"(:co)z[d—y/} %yi—yéN{yz—yl_yl—yo
=0

Procedure: The method of solution involves the following steps. Let y(z) be the
unknown function

1. The differential equation is converted into a difference equation.

2. A trial solution is assumed which consists of values for the dependent variables
at each mesh point. It may not satisfy the desired finite-difference equation, nor
the required boundary conditions.

3. It is then substituted in the difference equation and a solution is obtained.

4. This solution is substituted back to the difference equation and solution is again
found.

88

CHAPTER 4. NUMERICAL ANALYSIS

5. This iterative process is continued till the solution is in close agreement with

the true solution. This is indicated by the agreement with difference equation
and boundary condition. Also further iteration will not change the solution
significantly.

Relaxation method is preferred over shooting method in the following situations.

If the boundary conditions are subtle, or involve complicated algebraic relations.
If the solution is smooth and not highly oscillatory.

If the differential equations have extraneous solutions which disappears during
iteration. They will not appear in the final solution satisfying all boundary
conditions.

If a good initial guess is possible, relaxation methods are very efficient. Often
it may be necessary to solve a problem many times, each time using a slightly
different value of some parameter like an eigenvalue. In that case, the previous
solution is usually a good initial guess when the parameter is changed.

Chapter 5

Simulations

5.1 A computational approach to physics

Simulation in physics refers to the imitation of the behaviour of physical systems with
time (temporal evolution). Time evolution of a system follow deterministic laws. These
laws are invariably differential equations. If the differential equations are non-linear
or they are sets of coupled equations, analytic solutions are either too difficult or
impossible without heavy approximations. Numerical solutions are the only alternative
in those cases. To reduce the errors in the results, often one has to use a large number
of time steps. A computer becomes an absolute necessity in such cases. By changing
variables in the simulation, the behaviour of the system under different circumstances
can be studied virtually. It thus leads to the concept of a theoretical lab.

Steps involved in Simulation

The number of steps involved depends generally on the complexity of the phenomena
to be simulated. But the following 7 steps are mandatory.

1. TIdentify the property or phenomena of interest to be studied.
Eg. Motion of masses under mutual attraction.

2. Choose the field of force which describes how the atoms or other particles within
the system interact with each other and also with the external world.
In the above case, it can be an inverse-square law force.

k
f=

89

90

CHAPTER 5. SIMULATIONS

. Create a set of variables that you may need to construct a simulation.

In the above case, initial and current positions (zo,yo), (x,¥), initial and current
velocities (vzg, vyy), (v, vy), acceleration a = f/m and time step dt

. Derive an equation relating different variables. In most of the cases of interest in

physics, it may be a differential equation.
In the above case, as acceleration is radial a, = acosf, a, = asinf = ky/r?

d*x

@ = -y = k.a/r®
d*y 3
ay =5 = ky/r

. Choose a suitable method of solution of the equation. For ordinary differential

equations any of these methods- Runge-Kutta, predictor-corrector, Monte-Carlo,
Euler etc.-may be used. In Euler method.

Uy = Ugo + apdt
Uy = Uyo + aydt
r = xo + vdt

Y =1Yo +’Uydt

. Solve the equation for different values of the variable starting from initial values

and incrementing in steps of proper size.
Calculate [z(t +n dt),y(t + n dt)] from [z{t + (n — 1)dt}, y{t + (n — 1)dt}].

. Either print the output as a table of values or plot the output as a graph.

5.1.1 Simple harmonic oscillator

Principle

A simple harmonic oscillator is described by the equation

d*x

W‘F&JQSL’:O

This can be split into 3 equations using acceleration a, velocity v and displacement x
as follows.

a=—wz, v=adt, Sz =0t

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 91

As before, the last two relations can be expressed as
v; = Vi1 +adt
Similarly the displacement is given by
T = T + v;0t

The x — ¢ graph and x — v graph (Phase curve) are drawn for the oscillator.

Program

from pylab importx
n=50
x=zeros (n,dtype=float)
t=zeros (n,dtype=float)
v=zeros (n,dtype=float)
a=zeros (n,dtype=float)
x[0],v[0],omega=0,2,1 #input(’initial displacement, velocity and angular frequency’.
dt=2.1*pi/(n*omega)
al[0]=-x[0]*omega**2
for i in range(1l,n):
al[il=-x[i-1]*omega**2
v[il=v[i-1]+a[i]l*dt
x[il=x[i-1]+v[i]*dt
tlil=t[i-1]+dt
subplot(2,2,1)
xlabel("time")
ylabel("displacement")
grid(True)
plot(t,x)
subplot(2,2,2)
xlabel("time")
ylabel("velocity")
grid(True)
plot(t,v)
subplot(2,2,3)
xlabel("displacement")
ylabel("velocity")
grid(True)
plot(x,v)
subplot(2,2,4)
xlabel("time")

92

ylabel("acceleration")
grid(True)

plot(t,a)

show ()

CHAPTER 5. SIMULATIONS

displacement

velocity

acceleration

displacement

5.1.2 Central field motion

A force field having a potential function V' (7,60, ¢) = V(r) is called a central field. As
it depends only on r it has spherical symmetry and consequently angular momentum
is conserved. Gravitational field and Coulomb field are examples of central fields. The
general form of the potential is V(r) = kr™ where k is a constant and n a real number.
Rutherford scattering is an example of motion in a repulsive central field.

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 93
B(zn, Yn)

Principle
Rutherford’s experiment is to measure the deflection of a beam of a— particles by gold
nuclii due to Coulomb repulsion. The electrostatic force is given by

Ze.2e .

F= 7
dmegr

Resolving and putting r? = 2% + 32, the components of acceleration are

2ze%x
e = T 1
“ dmmegrs (1)
2ze%y
ay = ——
dmmegr3
2z¢2 d? d?
Putting ¢ = 4;;60, Gy = d—tf and a, = d—t?; one gets
dr cx
PR e @)
d*y cy

a2 (22 + y2)3/2

The velocity and position of every a—particle at different instants of time are then
determined by solving the above differential equations numerically. From figure, if
(x1,71) are asymptotic points , AABC'is isosceles. If 6 is the angle of deflection,

Tn — o

cot (0/2
(/) YUn — Yo

94 CHAPTER 5. SIMULATIONS

Path of alpha particle 5 0Relation between b and theta

4.0t {1 45

3.5- {1 40

3.0r 1 35
N

2.5+ 1830
> 2

2.0F 18 25
o

1.5¢ 1 20

1.0t 1 15

6 -4 =2

L L L I I I I I I I I
0.0 0 2 4 6 0'%.1 0.20.30.40.50.6 0.70.80.9 1.0
S impact parameter b

Algorithm

1: Read the initial values of velocities and positions of particles in the beam, the
impact parameter and the time step dt.
2: for b=0 to 20 step 1 do

3: while ||y|| is below a fixed value y,, do
4: Calculate a, and a, using formulae 3 and 5.1.2
5: Calculate x and y using 4""-order Runge-Kutta Method.
6: plot (z,v)
7: end while
8: Calculate cot (8/2) and b/ cot (6/2)
9: plot cot (#/2) against b
10: end for
11: End
Program

from pylab importx*
c=21.82743562;

dt=0.0001

x=zeros (10001, ’float’)
y=zeros (10001, ’float’)
b=linspace(0,1,10)
cotthetaby2=zeros (10, ’float’)

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 95

for j in range(10):
x[0],y[0],t,vx,vy=-5,b[j],0,10,0
for i in range(10000) :
vx+=x[i]*cxdt/(x[i]*x[i]l+y[il*y[i])**1.5
vy+=y[il*cxdt/(x[i]*x[i]l+y[il*y[i])**1.5
x[i+1]=x[i]+vx*dt
yli+1]=y[il+vy*dt
subplot(1,2,1)
xlabel(’x’)
ylabel(’y?)
title("Path of alpha particle")
plot(x,y)
cotthetaby2[j1=(x[i]-x[0])/(y[il-y[01)
subplot(1,2,2)
xlabel (’impact parameter b’)
ylabel (’cot(theta/2)’)
title("Relation between b and theta")
grid(True)
plot (b, cotthetaby2)
show ()

5.1.3 Monte-Carlo simulations- value of 7
Principle

Points in the first quadrant of a unit circle centered at origin satisfies the following
inequalities.

1. 0<z < +1
2.0<y<+1
3.2+ 2 < 1.
.The first two conditions are satisfied by all points in a unit square in the first quadrant

as shown in figure. The ratio of area of the sector(= 7/4) to the area of the square(= 12)
is /4. Four times this ratio gives the value of .

To determine this ratio in Monte Carlo Method, pairs of pseudo-random numbers
in the range (0,1) are generated for coordinates (x,y). All these pairs fall within the

square, but only those points belong to the circle for which /22 + y? < 1. The number

96 CHAPTER 5. SIMULATIONS

of such points N are counted. The ratio of number N to the total number of points
gives the ratio of their areas.

In PYTHON there is one in-built random number generator using the multiplicative
congruential recursive method developed by D.Lehmer. The i and (i + 1)y, random
numbers are related as

zir1 = (ax; + ¢)mod m

where the multiplier a = 7° — 1 = 16,806, the increment ¢ = 0 and the modulus
m = 23 — 1 = 2,14,74,83,647 are called magic numbers. The recurrence relation
suggests that the random numbers will repeat with a period less than m. The magic
numbers for the set (a,m,c) are chosen so that period is &~ m and every number
between 0 and m — 1 occur at some point. The role of initial seed zy has only little
effect.

(0,1) (1,1)

(1,0)

Algorithm

: Read N the count of random numbers to be generated
740
:forv=1to N do
x < rand()
y < rand()
if (22 +y?) <1 then
j+—7+1
end if
end for
10: m<—4.5/i
11: Print 7
12: End

© DT

=4

5.1. A COMPUTATIONAL APPROACH TO PHYSICS

Program

from random import random
j=0
for i in range(1000000) :
if (random()**2+random()**2)<=1:j+=1
print "Value of pi = ",4.0%j/1i

5.1.4 Logistic map

Principle

97

A map is a function which relates the coordinates of a point P,,; in terms of those
of the previous point P,. A map is always discrete as it uses the previous value of
the dependent variable as the present value of independent variable. There is thus no

question of differentiability for a map.

The logistic map is developed by Robert May in 1876 as a mathematical model of
population growth whose generations do not overlap with a fixed environment. It is

given by
Tpa1 = cxp(l —)

This is called logistic map. where 0 < z < 1 and ¢ > 1. A continuous form of this map

is the logistic equation f(z) = cz(1 — z)

Characteristics of logistic equation and map:

1. The roots of logistic equation are obtained by setting f(x) = 0. They are x=0

and x—1.

df (x)
dx

=c(1 - 2x)

Extremum occurs at df(x)/dx=0 which is, at x = 1/2.

This is a maximum

because d?f(x)/dx?> = —c which is negative. This point x=1/2 is called the
critical point of the function possessing only a single maximum in a given intervel

(0 <z < 1) in this case.

98 CHAPTER 5. SIMULATIONS

3. After some iterations of the map , it often converges to some fixed value called
an ’attractor’. Any further iteration of will yield the same value. If 2 is such a
value,

2 = e (1 — o) (3)

z,=1-1/c

Condition for stability of attractor
In the map if z, < 0, then iterations will lead x,,.1to — co. If z,, = 0 then z,,,; is zero
always. For x =1/c,2,41 =1 —1/c = a}. The range 0 < x,, < 1/c is called the 'basin

of attraction’ of x¥. A value z,, approaches x if successive iterations bring it closer to

*
n -

xT

*
Lntl — Ty

< 1
Ty — T
f(@no1) — a3,
In the limit f(x,_1) — 2% — 0
df (zn)
< 1
‘ d'r” Tn=2,

le(1=2z27)|=12—¢] < 1
This is possible only if 1 < ¢ < 3.

When ¢ = 3 the attractor bifurcates to two fixed points z7 and x5 in such a way
that

wy = f(a])
wy = f(x3)
zy = flf(x3)]

a3l —a3)[1 — cx3(1 — a3)]

Each x5 is said to be a fixed point of period 2. In general, if z, is a fixed point of
period p , x, repeats after a set of p iterations of f. That is

fPx,) = f(f(f..p — times...(2x,) =z,

This bifurcation of the attractor at ¢ = 3 is called pitchfork bifurcation due to its
shape.

[f(f) <1

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 99

This requires ¢ > 1 + /6 = 3.449489743. Then each branch of fixed points bifurcates
into two separate branches. The points on these branches will be of period 4.

If ¢ is further increased, further branching occurs. Fixed points of period p give rise
to 2P branches. It is found that for ¢ = 3.5699....., an infinite number of bifurcations
occur. In logistic map, fixed points never repeat. The band of fixed points forms a
continuum. Complete chaos begins from this point. Thus bifurcation is the route to
chaos for logistic equation.

Logistic Map
1.0 :

0.8f

Population
o
o

©
IS
T

0.2

0'(1.0 1.5 2.0 2.5 3.0 3.5 4.0
Control Parameter

100 CHAPTER 5. SIMULATIONS

Program

from pylab importx*
def f(c, x): return c * x * (1 - x)
ci,cf,x0,n,g =2.9,3.655, 0.1,50,1000
ci,cf=input("range of control parameter = ")
cs=(cf-ci)/1000.0
Le,Lx = [1,[]
for ¢ in arange(ci, cf, cs):
x = x0
for i in range(g): x = f(c, x)
p=20
while p < n:
x = f(c, x)
Lc.append(c)
Lx.append (x)
p+=1
plot(Lc, Lx, ".")
xlabel ("Control Parameter")
ylabel ("Population")
show ()

5.1.5 Driven LCR circuit

Principle:

If a voltage v(t) is given to a series LCR- circuit, Kirchoff’s voltage law gives

di . q
L= 4 _
S TR+ S =V()

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 101

Since current is rate of flow of charge

d*¢ ,dq q
L—+R—+=-V()=0
w By to VY
This second order differential equation can be split into two first order coupled equa-

tions and solved simultaneously.

dg(t) . di(t) R ¢ V()
o W =W et

These coupled equations can be solved numerically using Runge-Kutta fourth order
method. The general formula for coupled differential equations is given below.

Let
dy dz

% = f($ayaz)7 % :g(xayaz)

be two coupled equations with initial conditions y(xz0) = y0, z(z0) = 20. Then the
values y(z + dx), z(x + dz) are given by a 4-step determination of slopes at x0, 20 +
0z /2, 20462 /2, z0+x successively as follows. let dx = h which is the usual convention.

ki=h f(x0,y0,z0)

ml=h g(x0,y0,z0)

k2=h f(x0+h/2,y0+k1/2,z0+m1/2)
m2=h g(x0+h/2,y0+k1/2,z0+m1/2)
k3=h f(x0+h/2,y0+k2/2,z0+m2/2)
m3=h g(x0+h/2,y0+k2/2,z0+m2/2)
k4=h f(x0+h,y0+k3,z0+m3)

m4=h g(x0+h,y0+k3,z0+m3)

y (x0+h)=y0+(k1+2 k2+2 k3+k4)/6
z(x0+h)=z0+(m1+2 m2+2 m3+m4)/6

Using the pair (y(z0+ h), z(20 + h) the values at 20 + 2h (y(x0 + 2h), z(z0 + 2h) are
found using the above formula. The process is repeated till we get the value of (y, z)
at the desired z.

Program:

#x=time, y=charge, z=current

#The following function solves the

#coupled equations y’=f(x,y,z) and z’=g(x,y,z)
from pylab importx*

102 CHAPTER 5. SIMULATIONS

def f(x,y,z):return z
def g(x,y,z):return (-0.2*z-y+sin(4x*x))#L=1H,C=1F, omega=4/s,R=0.20ohm.

#Runge-Kutta fourth order function
def rk4solution(f,g,x,y,z,h,n):
result=[[1,[1,[1]
for i in range(n):
k1=hx*f(x,y,z)
ml=h*g(x,y,z)
k2=h*f (x+h/2,y+k1/2,z+m1/2)
m2=h*g(x+h/2,y+k1/2,z+m1/2)
k3=h*f (x+h/2,y+k2/2,z+m2/2)
m3=h*g(x+h/2,y+k2/2,2+m2/2)
k4=h*f (x+h,y+k3,z+m3)
m4=h*g (x+h,y+k3,z+m3)
X,y,z=x+h,y+(k1+2*%k2+2xk3+k4) /6 ,z+ (m1+2*m2+2+m3+m4) /6
result[0] .append (x)
result[1].append(y)
result[2] .append(z)
return result

s=rk4solution(f,g,0.,0.,0.,0.05,1000)
figure(1)

subplot(1,2,1)

xlabel (’time’)
ylabel(’charge’)
title(’Charge variation’)
grid(True)

plot(s[0],s[1])
subplot(1,2,2)
xlabel(’time’)

ylabel (’Current’)
title(’Current variation’)
grid(True)

plot(s[0],s[2])

figure(2)

xlabel(’Charge’)

ylabel (’Current’)
title(’Current-Charge plot’)
grid(True)

plot(s[11,s[2D)

show ()

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 103

Current-Charge plot

P3P OSSO OSSR UUUO U SO OOSURUNS 0% rors Ui ioes S USSR

Current

-0.3

03 Charge variation Current variation

. . . . 04 VVVVVV VVVVVVVV VVVVV }

0.2
0.1

0.0b -1+ 0.0H|

charge

EEIICIIL

—0.1f-{ft--!

-0 20T H

—02b]
Ak]

PO S S S N A R

time time

The graphs show some initial distortions but later starts oscillating with the im-
pressed frequency w. It can be explained if we look at the analytic solution of the

104 CHAPTER 5. SIMULATIONS

differential equation

d> d
Ld—tf + Rd—;] + % ~ Vpsin (wt)(t) = 0
d*q dq 2 .
= + 27% + wiq — vosin (wt)(t) =0

where 2y = R/L,w? =1/LC vy =V (0)/L
q(t) = Ae " sin (W't + ¢) + Bsin (wt + 1))

where A is real and positive amplitude, ¢, 1 are additional phases ' = y/w? — ~? and

B

Vo — PP+ Ay

The first term of the solution represents damped oscillations while the second term gives
the forced oscillations. They interfere to give some distorted waveforms. Gradually the
amplitude of damped oscillation reduces to zero and the LCR-circuit starts oscillating
with impressed frequency.

5.1.6 Standing waves

Standing waves are produced when a travelling wave gets reflected and superimpose
with the original wave.

Principle

Let y; = f(x —wvt) be the forward wave and yo = f(x +vt) be the reflected wave. Then
y = y1 + yo will be the composite wave. If it is a harmonic wave of spatial frequency
k = 2m /X and angular frequency w = 27v, it can be represented as yl = Asin (kz — wt)
and yo = Asin (kx + wt). Hence superposed wave is given by

y = Asin (kz — wt) + Asin (kx + wt)

It can be seen that the superposed pattern consists of points of zero amplitude called
nodes . Energy is not transmitted through nodes. Hence the name stationary waves.

5.1. A COMPUTATIONAL APPROACH TO PHYSICS

displacement y

Program

from pylab importx*

k,omega,=2.,1.

t=x=linspace(0,10,100)
y=[sin(k*x-omega*i)+sin(k*x+tomega*i) for i in t]
xlabel(’displacement y’)

ylabel (’x’)

title(’Stationary waves for k=2,omega=1’)
plot(x,y)

show ()

5.1.7 Simulation of radioactivity

Principle

105

Radioactive decay is an inherently non-deterministic process that can be simulated
very naturally using the Monte Carlo method. The observation that the mean-life is a
characteristic of the nucleus leads to the assumption that the probability P of any one
particle decaying per unit time in a radioactive sample is a constant. Suppose that the
probability of any given atom decaying over a time interval At is given by A, where
0 < A < 1. Then the history of a single atom can be simulated by choosing a sequence

106 CHAPTER 5. SIMULATIONS

of random numbers xy,k = 1,.. uniformly distributed on (0,1). The atom survives
until the first occurance of x;, < A. This approach can be used to simulate an ensemble
of N atoms. Let AN be the number of particles that decay in some small time interval
At. Then the decay probability per particle, AN/N, is proportional to the length of
the time interval over which we observe the particle.

AN(t)
N(t)

—)AL AN(t) = —AAEN(2)

This is a finite-difference equation in which AN(¢) and At are experimental observ-
ables. Hence it cannot be integrated the way one solves a differential equation. But
numerical or algebraic solutions are possible. Because the decay process is random, an
exact value for AN(t) cannot be predicted. AN(¢) may be taken as the average num-
ber of decays when observations are made of many identical systems of N radioactive
particles.

Algorithm

1: Read N ,D,(initial number of parent and daughter atoms), maximum no of time
intervals m and decay constant \

2: T+ 0

3: while N > 0 and T' < m do

4: NU <~ N

5: for i =1to NU do

6: x < rand()

7 if 0 < x <lambda then
8: N+ N-1

9: end if

10: end for

11: T+ T+1
12: end while
13: End

Program:

from pylab importx*
N,M,Lambda,T=100,10,0.21,0
NU=[N]
while N>0 and T<M:
for i in range(N):
if random()<= Lambda:N-=1

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 107

NU+=[N]

T+=1
T=arange (T+1)
plot (T,NU)
plot(T,Y)
Y=NU[0] *exp (-Lambdax*T)
legend ([’Simulated’, ’Exponential’])
xlabel (’time’)
ylabel(’No.of undecayed atoms’)
title(’Radioactive decay’)
grid(True)

It can be seen that as N increases, the decay graph coincides with the exponential curve.

Hence the differential equation N = —\dt is only a large-number approximation of

AN
the difference equation N = —\At

Radioactive decay

100 T
— Simulated
— Exponential
B\ o o o S 1
(%)
£
© GO N T B e g
9
>
©
|93
[
e}
S : : :
2 40F R N RIS e R
5 ‘ ‘ ‘ ‘
c
p=4
20f —— — T R -
0 ;
0 2 4 6 8 10

time

Index

m*" root, 25 deflation, 73
Descartes Rule, 70
Factor theorem, 70 det. 45

Irrational Root Theorem, 70

determinant, 45
Rational Root Theorem, 70

dictionaries, 2
dictionary, 5, 12
difference, 10
difference operator, 87
differential operator, 87

algorithm, 63
aliasing, 82
angular frequency, 104

append, 6 discrete transform, 82
array, 29 i
axis(), 50 domain, 61

dump, 16
bar, 50 ‘
barh, 50 eig, 46
Bessel’s Function, 59 eigenvalue, 46
binomial coefficients, 20 eigenvector, 46
bisection method, 25 eigh, 46
boundary conditions, 85 cigvals, 46

eigvalsh, 46
centigrade, 25 elif, 14
close, 16 else, 14
cmath, 22 expectation, 78
co-domain, 61 expected value, 78
combination, 19 extend, 6
Complex Root Theorem, 70
concatenation, 6 factorial, 19
constructor, 10 Fahrenheit, 25
contour, 50 Fast Fourier Transform, 84
contourf, 50 Fibonacci series, 18
count, 6 figure(), 50
cross, 39 file, 16
cross product, 40 Fourier transforms, 82
cubic polynomial, 76 frozenset, 5
cubic spline, 66 function, 15
D.Lehmer, 96 Gamma function, 56
Danielson-Lanczos Lemma, 85 Gaussian function, 56

108

INDEX

genfromtxt, 35
grid(), 50

Hailstorm number, 21
harmonic wave, 104
hermitian matrix, 46
homogeneous, 29

if, 14

image, 61

immutable, 5, 10, 12
importance sampling, 81
imshow, 54

imshow(), 1

index, 7, 39

inner product, 39
input, 1

insert, 7

interpolate, 66
intersection, 10

inv, 45

inverse function, 61
invertible matrices, 45
irrational roots, 74

key, 12

Laguerre’s Method, 73
law of large numbers, 78
legend(), 50

Legendre Function, 57
Legurre’s procedure, 76
linalg, 45

linear algebra, 45
linear equation, 45

list, 2, 5

load, 16

logistic map, 97

loglog plot, 51

magic numbers, 96
math, 15
Matplotlib, 49
module, 15

Monte Carlo, 77, 95

multidimensional, 29

multiplicative congruential recursive method,

96
mutable, 5

n-Zero theorem, 70
ndarray, 29

Newton-Raphson method, 24, 25

node, 104
non-singular, 45
norm, 45
numeric, 2
Numpy, 49
numpy, 15

Nyquist critical frequency, 82

Nyquist sampled, 82

109

Nyquist-Shannon Sampling Theorem, 81

ogrid|], 51
one-to-one, 62
one-to-one mapping, 61
onto mapping, 61
open, 16
operand, 3
operator, 3
orthogonality, 22
0s, 15

outer, 40

outer product, 40

palindrome, 23
parametric plot, 53
Pascal’s triangle, 20
Permutation, 19
pickle, 16

Pie charts, 53

pinv, 45

plot(), 49

Polar coordinate, 52
polar plot, 51

pop, 7

preimage, 61

prime number, 23

pseudo-random numbers, 95

pseudoinverse, 45

110

pylab, 15 String, 4, 5

string, 2

swapping method, 64
symmetric difference, 10

quadratic equation, 22
quadratic formula, 77

random, 15 text(), 50

random variable, 78 the horizontal line test, 62
rational number, 52 title(), 50

ravel, 33

transpose, 33

triangular sequence, 20
read, 16 tuple, 5, 12

raw__input, 1

relaxation method, 87 tuples, 2
Remainder theorem, 70

remove, 7 unary operation, 42
reshape, 33 union, 10
reshape function, 34 unit matrix, 30
resize, 33 .

reverse. 8 variance, 80
rhodonea, 52 write, 16
Robert May, 97

rose curve, 52 xlabel(), 50
sampling, 80 ylabel(), 50

sampling theorem, 81
Sande-Tukey algorithm, 84
savefig(), 1

savetxt, 35

scatter plot, 51
semilogx, 51

semilogy, 51

shooting method, 85
show(), 1, 49

simple harmonic oscillator, 90
simulation, 81
sinusoid, 52

skiprows, 35

slice, 39

solve, 45

sort, 8

sorted, 8

spatial frequency, 104
square matrix, 46
square root, 24
standard deviation, 79
standing waves, 104

INDEX

