
PYTHON FOR M.S
 STUDENTS

V.N.Purushothaman

Department of Physi
s

Sree Kerala Varma College, Tri
hur

31-03-2013

2

Contents

1 Unit-1: Basi
s of Python language 1

1.1 Inputs . 1

1.2 Outputs . 1

1.3 Variables and data types . 2

1.4 operators . 3

1.5 Strings . 4

1.6 Mutable and Immutable Types . 5

1.7 Conditional Exe
ution . 14

1.8 Iteration and looping . 14

1.9 Fun
tions and Modules . 15

1.10 File input and Output . 16

1.11 Pi
kling . 16

1.12 Problems . 17

2 Advan
ed Python Programming 29

2.1 NumPy . 29

2.1.1 Introdu
tion . 29

3

4 CONTENTS

2.1.2 Array
reation . 29

2.1.3 Array modi�
ation . 33

2.1.4 Printing arrays . 34

2.1.5 Saving and restoring arrays . 35

2.1.6 Indexing, Sli
ing and Iterating 39

2.1.7 Arrays as matri
es . 39

2.1.8 Arrays as polynomial
oe�
ients 44

2.1.9 Linear Algebra . 45

3 Plotting and visualization 49

3.1 Matplotlib . 49

3.1.1 The Matplotlib Module . 49

3.1.2 Plotting mathemati
al fun
tions 55

4 Numeri
al Analysis 61

4.1 Numeri
al methods . 61

4.1.1 Inverse of a fun
tion . 61

4.1.2 Interpolation with Cubi
 Spline 66

4.1.3 Zeros of polynomials . 70

4.1.4 Monte Carlo Methods . 77

4.1.5 Sampled Data . 81

4.1.6 Dis
rete Fourier Transform . 82

4.1.7 Fast Fourier Transform(FFT) 84

CONTENTS 5

4.1.8 Shooting method . 85

4.1.9 Relaxation method: . 87

5 Simulations 89

5.1 A
omputational approa
h to physi
s 89

5.1.1 Simple harmoni
 os
illator . 90

5.1.2 Central �eld motion . 92

5.1.3 Monte-Carlo simulations- value of π 95

5.1.4 Logisti
 map . 97

5.1.5 Driven LCR
ir
uit . 100

5.1.6 Standing waves . 104

5.1.7 Simulation of radioa
tivity . 105

6 CONTENTS

CONTENTS i

Prefa
e

This is a rough
olle
tion of the le
ture notes I had prepared to tea
h the
ourse

PHY2C08: COMPUTATIONAL PHYSICS pres
ribed for M.S
 physi
s students of

olleges a�liated to Cali
ut University. Due to la
k of time, it is done at a terri�
 pa
e

whi
h might have
aused a few mistakes here and there. Shortage of explanations and

examples is another
asualty of su
h hurry. I hope that it may be useful in some small

way to students and tea
hers. Please be kind enough to inform me when you
ome

a
ross mistakes in the ideas or language used in this monograph. Purushothaman.V.N,

Department of Physi
s,

Sree Kerala Varma College, Tri
hur

email:vadakkedam�redi�mail.
om

Mob: 9446723810

ii CONTENTS

Chapter 1

Unit-1: Basi
s of Python language

1.1 Inputs

A program is a set of statements used to produ
e an output from the input data.

Numbers (real and
omplex), are read from terminal using the fun
tion input('Prompt')

. Strings are read using the fun
tion raw_input('prompt'). For example

>>> b=input('Give a number: ')

Give a number: 10

>>>> b

10

>>> a=raw_input('Give a text: ')

Give a text: hopeless

>>> a

'hopeless'

1.2 Outputs

The output of a program
an be a number, text or graphi
s. For text and numbers print

statement is employed. For graphi
 output fun
tions like show(),save�g(),imshow() et

are de�ned in relevant modules.

>>> x=5

>>> print x

1

2 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

5

>>> y=[2,5,7,9℄

>>> print y

[2, 5, 7, 9℄

>>> z='beamer'

>>> print z

beamer

>>> print x,y,z

5 [2, 5, 7, 9℄ beamer

Formatted output is possible just as in
-language. The general form of format string

is %m.nx where m is an integer showing the total width to be used for printing, n is

an integer representing the number of de
imal pla
es to be used while printing �oating

point numbers so that |m| ≥ 1+ n(de
imal point+de
imal pla
es) and x is c for single

hara
ter, f for �oat, e for �oat in s
ienti�
 format, s for string, x for hexade
imal, o
for o
tal, d or i for integer and 0d for integer with zeros on the left to �ll the width.

>>> print '1)%5d 2)%5i 3)%05d '%(23,23,23)

1) 23 2) 23 3)00023

>>> print '1)%4
'%('z')

1) z

>>> print '1)%12s, 2)%-12s'%('zoology','zoology')

1) zoology, 2)zoology

>>> print '1)%12.5f, 2)%-12.5f, 3)%12.7f'%(24.5,24.5,24.5)

1) 24.50000, 2)24.50000 , 3) 24.5000000

>>> print '1)%12.5x, 2)%12.5o'%(24.5,24.5)

1) 00018, 2) 00030

1.3 Variables and data types

A
omputer program to solve a problem is designed using variables belonging to the

supported data types. Python supports numeri
 data types like integers, �oating point

numbers and
omplex numbers. To handle
hara
ter strings, it uses the String data

type. Python also supports other
ompound data types likelists, tuples, di
tionaries.

In the previous example, x is numeri
, y is a list and z is a string.

1.4. OPERATORS 3

1.4 operators

Operators are fun
tionality that do something and
an be represented by symbols su
h

as + or by spe
ial keywords. Operators require some data to operate on and su
h

data are
alled operands. In x = 2 + 3, 2 and 3 are the operands and '=' and '+' are

operators. The other operators are

or,and,not(Boolean OR,AND,NOT) : returns True or Fals

in(Membership): returns True or Fals,

not in(Non-membership): returns True or False,

<, <=, >, >=, !=, == (Comparisons): returns True or False

|,^,&(Bitwise OR, XOR,AND),

<<, >>(Bitwise Shifting left and right)

+,-,* (Add, Subtra
t, Multiply)

/,%,**(divide, reminder, Exponentiation)

+x (Positive), -x(Negative),

~(Bitwise NOT),

x[index℄(Subs
ription)

Bitwise operator works on bits and perform bit by bit operation. Assume a = 60 and

b = 13. Now in binary format they will be as follows:

a = 0011 1100,

b = 0000 1101

Binary AND Operator
opies a bit to the result if it exists in both operands.

a&b = 0000 1100

Binary OR Operator
opies a bit if it exists in either operand.

a|b = 0011 1101

Binary XOR Operator
opies the bit if it is set in one operand but not both.

a^b = 0011 0001

Binary Ones Complement Operator is unary and has the effe
t of 'flipping' bits.

~a = 1100 0011

Binary Left Shift Operator moves left operand by the number of bits spe
ified by the right operand towardsleft.

a << 2 will give 1111 0000 whi
h is 240

Binary Right Shift Operator moves left operand by the number of bits spe
ified by the right operand towards right.

a >> 2 will give 0000 1111whi
h is 15

Pre
eden
e Rules of operators: These rules give the sequen
e of exe
utions of an

expression
ontaining more than one operator.

4 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1. () (anything in bra
kets is done �rst. Highest pre
eden
e)

2. ** (exponentiation is done next)

3. -x, +x (unary ±)

4. *, /, %, // (multipli
ation, division, remainder after division, su

essive division)

5. +, - (addition, subtra
tion)

6. relational operators: <, >, <=, >=, !=, ==

7. logi
al not

8. logi
al and

9. logi
al or (Lowest pre
eden
e)

1.5 Strings

String is a
olle
tion of same kind of elements (
hara
ters). It is a
ompound or

olle
tion data type. The individual elements of a string
an be a

essed by indexing.

>>> s = 'hello world'

>>> s[0℄

'h'

>>> s[7℄

'o'

>>> s[5℄

' '

>>> s[-1℄ # will print the last
hara
ter

'd'

Strings
an be added and multiplied by integers.

>>> p,q,r='Eating ','troubles',' meeting '

>>> p+q+r

'Eating troubles meeting'

>>> 2*p+q

'Eating Eating troubles'

1.6. MUTABLE AND IMMUTABLE TYPES 5

1.6 Mutable and Immutable Types

There is one major di�eren
e between String, tuple, list,di
tionary types. List and

di
tionary are mutable but string and tuple are immutable. We
an
hange the value

of an element in a list , add new elements to them and remove any existing element.

This is not possible with String and tuple types.In the
ase of sets one variety
alled

frozenset is immutable while set is mutable.

List

List is mu
h more �exible than String. The individual elements
an be of any type,

even another list. Lists are de�ned by en
losing the elements inside a pair of square

bra
kets and separated by
ommas.

>>> l=[2.3,'A',3,'khan'℄

>>> type(l)

<type 'list'>

>>> 2*l

[2.29, 'A', 3, 'khan', 2.29, 'A',3, 'khan'℄

>>> l[3℄=28

>>> l

[2.299, 'A', 3, 28℄

Lists respond to the + (
on
atenation) and * (repetition) operators like strings.The

result is a new list.

Python Expression Results Des
ription

len([1, 2, 3℄) 3 Length

[1, 2, 3℄ + [4, 5, 6℄ [1, 2, 3, 4, 5, 6℄ Con
atenation

['Hi!'℄ * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'℄ Repetition

3 in [1, 2, 3℄ True Membership

for x in [1, 2, 3℄: print x, 1 2 3 Iteration

List Methods

A method is a fun
tion that is
oupled to some obje
t, be it a list, a number, a string,

or whatever. In general, a method is
alled like this: obje
t.method(arguments). If a

is list obje
t and max() is a method de�ned on list
lass to �nd the maximum value

in the list, then a.max() returns maximum of list a. A method
all is like a fun
tion

6 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

all, ex
ept that the obje
t is put before the name of the method method with a dot

separating them. Lists have several methods that
an be used to examine or modify

their
ontents.

1. append: The append method is used to append an obje
t to the end of a list:

>>>lst = [1, 2, 3℄

>>>lst.append(4)

>>>lst

>>>[1,2, 3, 4℄

The same
an be a
hieved using + operator.

>>> x=[3,5,4℄

>>> x+=[2℄

>>> x

[3, 5, 4, 2℄

2.
ount: The
ount method
ounts the o

urren
es of an element in a list:

>>>['to', 'be', 'or', 'not', 'to', 'be'℄.
ount('to')

>>>2

>>>x = [[1, 2℄, 1, 1, [2, 1, [1, 2℄℄℄

>>>x.
ount(1)

>>>x.
ount([1, 2℄)

>>>2.

3. extend: The extend method allows you to append several values at on
e by

supplying a sequen
e of the values you want to append. In other words, your

original list has been extended by the other one:

>>>a = [1, 2, 3℄

>>>b = [4, 5, 6℄

>>>a.extend(b)

>>>a

[1,2, 3, 4, 5, 6℄

This may seem similar to
on
atenation, but the important di�eren
e is that the

extend method modi�es a list without
reating a new one. In ordinary
on
ate-

nation, a
ompletely new list is returned:

a = [1, 2, 3℄

b = [4, 5, 6℄

a + b

[1, 2, 3, 4, 5, 6℄

a

[1,2, 3℄

1.6. MUTABLE AND IMMUTABLE TYPES 7

4. index: The index method is used for sear
hing lists to �nd the index of the

�rst o

urren
e of a value:

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni'℄

>>> knights.index('who')

4

>>> knights.index('herring')

>>> ValueError: list.index(x): x not in list

When you sear
h for the word 'who', you �nd that it's lo
ated at index 4:

>>> knights[4℄

'who'

5. insert: The insert method is used to insert an obje
t into a list: �> numbers

= [1, 2, 3, 5, 6, 7℄ �> numbers.insert(3, 'four') �> numbers �> [1, 2, 3, 'four', 5,

6, 7℄ As with extend, you
an implement insert with sli
e assignments:

numbers = [1, 2, 3, 5, 6, 7℄

numbers[3:3℄ = ['four'℄

numbers

[1, 2, 3, 'four', 5, 6, 7℄

6. pop: The pop method removes an element (by default, the last one) from the

list and returns it:

>>> x = [1, 2, 3℄

>>> x.pop()

>>> x

>>> [1, 2℄

>>> x.pop(0)

>>> x

>>> [2℄

The pop method is the only list method that both modi�es the list and returns

a value.

>>> x = [1, 2, 3℄

>>> x.append(x.pop())

>>> x

>>> [1, 2, 3℄

7. remove: The remove method is used to remove the �rst o

urren
e of a value:

8 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

>>> x = ['to', 'be', 'or', 'not', 'to', 'be'℄

>>> x.remove('be')

>>> x

['to', 'or', 'not', 'to', 'be'℄

>>> x.remove('bee')

>>> ValueError: list.remove(x): x not in list

8. del: To remove a list element, you
an use either the del statement if you know

exa
tly whi
h element(s) you are deleting or the remove() method if not known.

The reverse method reverses the elements in the list.

�> x = [1, 2, 3℄ �> x.reverse() �> x �> [3, 2, 1℄ Note that reverse
hanges the

list and and saves under the same name. �> x = [1, 2, 3℄ �> list(reversed(x)) [3,

2, 1℄

9. sort: The sort method is used to sort lists in pla
e. Sorting 'in pla
e' means

hanging the original list so its elements are in sorted order, rather than simply

returning a sorted
opy of the list:

>>> x = [4, 6, 2, 1, 7, 9℄

>>> x.sort()

>>> x

>>> [1, 2, 4, 6, 7, 9℄

>>> x = [4, 6, 2, 1, 7, 9℄

>>> x.sort(reverse=True)

>>> x

>>> [9, 7, 6, 4, 2, 1℄

10. sorted: Another way of getting a sorted
opy of a list is using the sorted

fun
tion:

>>> x = [4, 6, 2, 1, 7, 9℄

>>> y=sorted(x)

>>> x,y

([4, 6, 2, 1, 7, 9℄, [1, 2, 4, 6, 7, 9℄)

This fun
tion
an a
tually be used on any sequen
e, but will always return a list:

>>> sorted('Python')

>>> ['P', 'h', 'n', 'o', 't', 'y'℄

11. len: Gives the number of elements in a list.

12. max: Gives the element having maximum ASCII value in a list.

1.6. MUTABLE AND IMMUTABLE TYPES 9

13. min: Gives the element having minimum ASCII value in a list.

14.
mp: This fun
tion is the basis for sorting.
mp(a, b) returns -1 if a < b, 0 if a

== b and 1 if a > b.

15. list: Converts a string or tuple into a list.

16. sum: Returns the sum of elements in a numeri
 list.

For example

>>> a=[2,5,'A','a','ab'℄

>>> max(a)

'ab'

>>> a.append('z')

>>> a

[2,5,'A','a','ab','z'℄

>>> max(a)

'z'

>>> min(a)

2

>>> x=[4, 7, 8, 2, 3, 12℄

>>>
mp(a,x)

-1

>>>
mp(x,a)

1

>>> y=x

>>> y

[4, 7, 8, 2, 3, 12℄

>>>
mp(x,y)

0

>>>
='design'

>>> list(
)

['d', 'e', 's', 'i', 'g', 'n'℄

>>> d=('j','k',3,5)

>>> list(d)

['j', 'k', 3, 5℄

>>> sum(x)

36

Sli
ing: Elements from a list
an be sele
ted using sli
ing operator ':'. If x is a list,

then x[m : n : p] represents the set of elements of x with indi
es [mth, (m+ p)th, (m+
2p)th, ..] ex
luding nth

element.

10 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

>>> x=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9℄

>>> x[0:-1:2℄

[0, 2, 4, 6, 8℄

>>> x[1:-1:2℄

[1, 3, 5, 7℄

>>> sum(x[1:-1:2℄)

16

>>> x[0:5:2℄

[0, 2, 4℄

>>> sum(x[0:5:2℄)

6

set:

A set obje
t is an unordered
olle
tion of immutable values. They
annot be indexed

by any subs
ript. The built-in fun
tion len() returns the number of items in a set.

There are
urrently two intrinsi
 set types:

(1)Sets: These represent a mutable set. They are
reated by the built-in set()

onstru
tor and
an be modi�ed afterwards by several methods, su
h as add(),
lear(),

dis
ard().

Frozen sets: These represent an immutable set. They are
reated by the built-in

frozenset()
onstru
tor. As a frozenset is immutable, it
an be used as an element

of another set, or as a di
tionary key. Common uses of sets in
lude membership

testing, removing dupli
ates from a sequen
e, and
omputing mathemati
al operations

su
h as interse
tion, union, di�eren
e, and symmetri
 di�eren
e. The main fun
tions

are len(), union(), interse
tion(), di�eren
e(), symmetri
_di�eren
e(), issubset() and

issuperset(). There is also an operator equivalent for many of these fun
tions. Let s

and t be two sets. Then

1. x in s: test element x for membership in s (True/False)

2. x not in s: test element x for non-membership in s (True/False)

3. s.issubset(t): [s <= t℄: test whether every element in s is in t

4. s.issuperset(t): [s >= t℄: test whether every element in t is in s

5. s.union(t): [s | t℄: new set with elements from both s and t

6. s.interse
tion(t): [s & t℄: new set with elements
ommon to s and t

7. s.di�eren
e(t): [s - t℄: new set with elements in s but not in t

1.6. MUTABLE AND IMMUTABLE TYPES 11

8. s.symmetri
_di�eren
e(t) : [s

�

t℄: new set with elements in either s or t but not

both

9. s.
opy(): new set with a
opy of s

10. s.
lear(): Remove all elements from the set s.

11. s.dis
ard(x): Remove element x from set s if it is a member. If x is not a member,

nothing happens.

12. s.update():Update s with the union of itself and others.

>>> a=[1,2.0,6.1,'l'℄

>>> b=set(a)

>>> b

set([1, 2.0, 'l', 6.0999999999999996℄)

>>>
=set([1,3,6.1,'k'℄)

>>>

set([1, 'k', 3, 6.0999999999999996℄)

>>> d=set('domain')

>>> d

set(['a', 'd', 'i', 'm', 'o', 'n'℄)

>>> f=set((1,3,5,9.1))

>>> f

set([1, 3, 9.0999999999999996, 5℄)

>>> b|

set([1, 2.0, 3, 'k', 'l', 6.0999999999999996℄)

>>> b&

set([1, 6.0999999999999996℄)

>>> b.differen
e(
)

set([2.0, 'l'℄)

>>>
.differen
e(b)

set(['k', 3℄)

>>>
.symmetri
_differen
e(b)

set(['k', 2.0, 3, 'l'℄)

>>> s=set([1,3,5,7,9℄)

>>> s.add(11)

>>> s

set([1, 3, 5, 7, 9, 11℄)

>>> s.remove(5)

>>> s

set([1, 3, 7, 9, 11℄)

12 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Tuples

Tuples are data stru
tures that are very similar to lists, but they
annot be modi�ed

(immutable). They
an only be
reated. Tuples have important roles as keys for

di
tionaries. A tuple is a sequen
e that is en
losed by parentheses (). The following

line of
ode
reates a three-element tuple

>>> x = ('a', 'b', '
')

Inter
onversion between lists and tuples is possible using list() and tuple() fun
tions.

>>> list((1, 2, 3, 4))

[1,2, 3, 4℄

>>> tuple([1, 2, 3, 4℄)

(1,2, 3, 4)

Di
tionaries

Di
tionaries are asso
iative arrays. It is a group of {key : value} pairs. The elements

in a di
tionary are indexed by keys. Keys in a di
tionary are required to be unique.

Keys
an be almost any Python type, but are usually numbers or strings. Values, on

the other hand,
an be any arbitrary Python obje
t. Di
tionaries are en
losed by
urly

bra
es - { } and values
an be assigned and a

essed using square bra
es [℄. They are

di�erent from sequen
e type
ontainers like lists and tuples in the method of storing

data. There is no
on
ept of order among elements. They are unordered.Their main use

in
lude storing time of modi�
ation of �les as values and �le name as keys, telephone

dire
tory with name as value and phone number as key, address book with name as key

and address as value, the
oordinate of a point(tuple) as key and its
olour as value in

a graphi
 s
reen et
. Example for a di
tionary is given below.

>>> d
t={} #Creates an empty di
tionary

>>> d
t['host'℄='Earth'

#'host' is the key and 'earth' is the value.

>>> d
t

{'host': 'Earth'}

>>> d
t['port'℄=80

>>> d
t

{'host': 'Earth', 'port': 80}

>>> d
t.keys()

1.6. MUTABLE AND IMMUTABLE TYPES 13

['host', 'port'℄

>>> d
t.values()

['Earth', 80℄

>>> print d
t['host'℄

Di
tionary fun
tions and methods:

1.
mp(di
t1, di
t2): Compares elements of both di
tionaries.

2. len(di
t): Gives the total length of the di
tionary. This would be equal to the

number of Key-value pairs in the di
tionary.

3. str(di
t): Produ
es a printable string representation of a di
tionary

4. type(variable): Returns the type of the passed variable. If passed variable is

di
tionary then it would return a di
tionary type.

Python in
ludes following di
tionary methods

1. di
t.
lear(): Removes all elements of di
tionary di
t

2. di
t.
opy(): Returns a shallow
opy of di
tionary di
t

3. di
t.fromkeys(): Create a new di
tionary with keys from seq and values set to

value.

4. di
t.get(key, default=None): For key key, returns value or default if key not in

di
tionary

5. di
t.has_key(key): Returns true if key in di
tionary di
t, false otherwise

6. di
t.items(): Returns a list of di
t's (key, value) tuple pairs

7. di
t.keys(): Returns list of di
tionary di
t's keys

8. di
t.setdefault(key, default=None): Similar to get(), but will set di
t[key℄=default

if key is not already in di
t

9. di
t.update(di
t2): Adds di
tionary di
t2's key-values pairs to di
t

10. di
t.values(): Returns list of di
tionary di
t's values

14 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1.7 Conditional Exe
ution

The most fundamental aspe
t of a programming language is the ability to
ontrol the

sequen
e of operations. One of this
ontrol is the ability to sele
t one a
tion from a set

of spe
i�ed alternatives. The other one is the fa
ility to repeat a series of a
tions any

number of times or till some
ondition be
omes false. To exe
ute some se
tion of the

ode only if
ertain
onditions are true python uses if, elif,...,else
onstru
t.

>>> x = input('Enter a number ')

10

>>> if x>10:

print 'x>10' # Note the Colon and indentation.

elif x<10:

print 'x<10'

else:

print 'x=10'

>>>x=10

1.8 Iteration and looping

when a
ondition remains true, if a set of statements are to be repeated, the while

and for
onstru
ts are employed. The general syntax of a while loop may be given as

follows.

while
ondition:

set of statements to be repeated

for elements in list or tuple :

set of statements to be repeated

>>> x=10

>>> while x>0:

print x,

x=x-1

>>>10 9 8 7 6 5 4 3 2 1

>>> for i in range(10,0,-1):

print i,

>>>10 9 8 7 6 5 4 3 2 1

1.9. FUNCTIONS AND MODULES 15

1.9 Fun
tions and Modules

A fun
tion is a blo
k of
ode that performs a spe
i�
 task. Using a fun
tion in a

program is
alled '
alling' the fun
tion. Python has two tools for building fun
tions:

def and lambda. For example, we
an build a fun
tion that returns the square root of

a number as follows:

(1) def squareroot(x): return math.sqrt(x)

(2) squareroot = lambda x: math.sqrt(x)

(3) g = lambda x: x*2

g(3)=6

(4) (lambda x: x*2)(3)= 6

If a fun
tion is used only on
e (
alled from only one pla
e in your program) Lambda

fun
tions are useful and
onvenient for two reasons: (1)There is no need to give the

fun
tion a name.(2) It
an be de�ned where it is used.

The next method of de�ning fun
tions is illustrated below. For �nding the largest

of x,y,z

>>> def large(x,y,z):

if y>x:

x,y=y,x

if z>x:

z,x=x,z

return(x)

>>> large(3,4,2)

4

In Python, the de�nitions of fun
tions, variables,
onstants may be saved in a �le

and use them in a s
ript or in an interpreter just like header �les in C-language.

Su
h a �le is
alled a module. The �le name is the module name with the su�x .py

appended. Within a module, the name of the module is assigned to the global variable

name. De�nitions from a module
an be imported into other modules or into the

main module. Examples of some standard modules are math, os,random, pylab, numpy

et
. The main advantage of
reating and using modules is that longer programs
an

be split into several �les so that maintenan
e of
ode is easy and
an be reused in

several programs by in
luding the �le with the keyword import at the beginning of the

program.

16 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

1.10 File input and Output

Files are used to store data and program for later use. This program
reates a new �le

named 't.txt' (any existing �le with the same name will be deleted) and writes a String

to it. The �le is
losed and then reopened for reading data. The relevant fun
tions are

open, write, read and
lose.

>>> f=open('t.txt','w')

>>> f.write('breaking into the file')

>>> f.
lose()

>>> f=open('t.txt','r')

>>> f.read()

'breaking into the file'

1.11 Pi
kling

Strings
an easily be written to and read from a �le. Numbers take more e�ort,

sin
e the read() method only returns strings, whi
h will have to be
onverted into a

number expli
itly. However, it is very
ompli
ated when trying to save and restore

data types like lists, di
tionaries et
. Rather than
onstantly writing and debugging

ode to save
ompli
ated data types, Python provides a standard module
alled pi
kle.

Fun
tions dump and load are used in pi
kle. pi
kle.dump(a,f) will save obje
t a to �le

f. a=pi
kle.load(f) retrieves data from �le f.

Pi
kling- Examples

>>>import pi
kle

>>>a=10.1

>>>b='sh'

>>>
=[5,3,2℄

>>>f = open("state", 'w')

>>>pi
kle.dump(a, f)

pi
kle.dump(b, f)

pi
kle.dump(
, f)

file.
lose()

>>>file = open("state", 'r')

Reading and writing files

1.12. PROBLEMS 17

a = pi
kle.load(file)

b = pi
kle.load(file)

 = pi
kle.load(file)

file.
lose()

Any data that was previously in the variables a, b, or
 is restored to them by

pi
kle.load.

1.12 Problems

1. To sort a set of numbers

a=[℄

n=input('Give the
ount of numbers n')

for i in range(n):a.append(input('Type the numbers'))

a.sort() #As
ending order

print a

a.reverse() # Des
ending order

print a

2. Simultaneous arrays: Constru
t two 100-element arrays su
h that ith element of

one array is sin (2πi/100) and the other cos (2πi/100).

Program:

from math import *

x=[sin(2*pi*i/100) for i in range(1,101)℄

y=[
os(2*pi*i/100) for i in range(1,101)℄

print x,y

3. To
reate a triangle of equispa
ed stars(*)

Program:

n=input('Howmany rows ? ')

for i in range(n):

print

for j in range(i+1): print '*',

When the program is run

18 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Howmany rows ? 7

*

* *

* * *

* * * *

* * * * *

* * * * * *

* * * * * * *

4. Fibona

i series:

n=input('Number below whi
h series is required: ')

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

5. To read a m× n matrix using list-methods only

m,n=input('order of matrix m,n = ')

a=[℄

for i in range(m):

b=[℄

for j in range(n):

b.append(input('give elements a(i,j)'))

a.append(b)

print 'output: ',a

When the program is run

order of matrix m,n = 2,3

give elements a(i,j)1

give elements a(i,j)2

give elements a(i,j)3

give elements a(i,j)4

give elements a(i,j)5

give elements a(i,j)6

output: [[1, 2, 3℄, [4, 5, 6℄℄

6. To generate values of a fun
tion, say, x sin x

import math

x=[0.1*i for i in range(10)℄

1.12. PROBLEMS 19

y=[i*math.sin(i) for i in x℄

for i in range(10):

print '(%0.2f,%0.5f)'%(x[i℄,y[i℄),

The (x, y) values obtained are given below

(0.00,0.00000), (0.10,0.00998), (0.20,0.03973), (0.30,0.08866),

(0.40,0.15577), (0.50,0.23971), (0.60,0.33879), (0.70,0.45095),

(0.80,0.57388), (0.90,0.70499),

7. To �nd fa
torial of a number

n=input('Give the number whose fa
torial is required')

f=1

for i in range(1,n+1):f*=i

print f

8. Permutations

n,r=input('Give n and r in nPr: ')

p=1

for i in range(n,n-r,-1):p*=i

print p

9.
ombinations The de�nition is

nCr =
n!

(n− r)!r! =
n(n− 1)(n− 2)....(n− r + 1)

r(r − 1)(r − 2)....3.2.1
=
n

r
(n−1)C(r−1)

def
ombination(n,r):

if r==0:return 1

else:return n*
ombination(n-1,r-1)/r

n,r=input('Give n and r in nCr: ')

print
ombination(n,r)

When program is run

Give n and r in nCr: 6,3

20

>>>

Give n and r in nCr: 7,4

35

20 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Aliter:

def f(a):

if a==1:return(1)

else: return(a*f(a-1))

n,r=input('Give n and r in nCr: ')

print f(n)/(f(n-r)*f(r))

10. Pas
al's triangle

Pin
iple: It is the set of binomial
oe�
ients arranged in rows. The, nth
row

orresponds to the
oe�
ients of the expansion (a+ b)n

def f(a):

if a==0:return(1)

else: return(a*f(a-1))

n=input('Howmany rows ? ')

for i in range(n):

print

for j in range(i+1): print f(i)/(f(i-j)*f(j)),

Aliter:

def
ombination(n,r):

if r==0:return 1

else:return n*
ombination(n-1,r-1)/r

m=input('Howmany rows ? ')

for i in range(m+1):

print

for j in range(i+1):print
ombination(i,j),

when the program is run

Howmany rows ? 7

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

11. Generate the triangular sequen
e 0,1,3,6,10,15,21,...n

1.12. PROBLEMS 21

Prin
iple: Obviously the numbers are
ombinations

(

n

2

)

=
n(n− 1)

1× 2

where n = 0, 1, 2, 3...

Program:

m=input('Give maximum number upto whi
h the series is required: ')

print [i*(i+1)/2 for i in range(m) if i*(i+1)/2 < m℄

When the program is run

Give maximum number upto whi
h the series is required: 150

[0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136℄

Aliter :

The relation between adja
ent elements is

a[0] = 0, n > 0, a[n] = a[n− 1] + (n− 1)

n,a=input('n: '),0

for i in range(n):

a+=i

print a

12. Hailstorm numbers

Prin
iple: Pi
k any whole number. If it's odd, multiply the number by 3, then

add 1. If it's even, divide it by 2. Now, apply the same rules to the answer that

you just obtained. Do this over and over again, applying the rules to ea
h new

answer. Hen
e these are the set of numbers obtained by the following rule of

iteration.

If si is even, si+1 = si/2, else si+1 = 3si + 1

Program:

s=input('Seed number for Hailstorm series: ')

while s!=1:

if s%2==0:s/=2

else:s=(3*s+1)

print s,

22 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

When the program is run

Seed number for Hailstorm series: 17

52 26 13 40 20 10 5 16 8 4 2 1

13. To �nd largest and smallest in a set of numbers

x=[℄

n=input('Give the
ount of numbers')

for i in range(n): x.append(input('Type numbers one at a time '))

print 'Largest of the series is',max(x)

print 'Smallest of the series is',min(x)

14. To solve quadrati
 equation

from
math import *

a,b,
=input("Give
oeffi
ients in the order a,b,
 seperated by
omma. ")

d=sqrt(b*b-4*a*
)

print "Root 1 = ",(-b+d)/(2*a),"Root 2 = ",(-b-d)/(2*a)

When program is run

Give
oeffi
ients in the order a,b,
 seperated by
omma. 1,2,3

Root 1 = (-1+1.41421356237j) Root 2 = (-1-1.41421356237j)

15. To verify orthogonality of sine and
osine fun
tions

Prin
iple: If the fun
tions are orthogonal, then

∫ π

0

sin θ cos θdθ ≈
π

∑

i=0

sin θi cos θi ≈ 0

from math import*

print sum([sin(pi*i/180)*
os(pi*i/180) for i in range(180)℄),'is negligible'

Output: -4.85722573274e-15 is negligible

16. To
he
k whether a given number is prime

1.12. PROBLEMS 23

Prin
iple: n is a prime number if it is exa
tly divisible only by 1 and n. To

he
k this, see whether it is divisible by any number between 2 and n/2 (integer

division).

n=input("Give the number n: ")

m=1+n/2

for i in range(2,m):

if n%i!=0:
ontinue

else:

print '%d is not a prime. It is divisible by %d'%(n,i)

break

if i==n/2: print '%d is a prime'%n

When the program is run

Give the number n: 83

83 is a prime

>>>

Give the number n: 245791

245791 is not a prime. It is divisible by 7

17. To �nd the
ount of prime numbers in a given range.

Prin
iple: Even numbers
annot be prime. Che
k in the set of odd numbers

for prime numbers.

j,k=input("Give the range between whi
h prime numbers are required: ")

x=range(j,k,1)

p=[℄

for n in x:

m=n/2

if n>0 and n<4:p.append(n)

for i in range(2,m+1):

if n%i==0: break

if i==m: p.append(n)

print 'There are %d prime numbers in the range(%d, %d). They are'%(len(p),j,k)

print p

When the program is run

Give the range between whi
h prime numbers are required: 49,150

There are 20 prime numbers in the range(49, 150). They are

[53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149℄

18. To
he
k whether a given word is a palindrome.

24 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Prin
iple: A sequen
e is a palindrome if it is the same when read from left or

right. For example, xyzzyx,123321 are palindromes.

Program:

x=raw_input('Give the word')

y=[x[-i-1℄ for i in range(len(x))℄

if list(x)==y:print 'palindrome'

else: print 'Not a palindrome'

When the program is run

Give the word: ab
121
ba

palindrome

>>>

Give the word: ele
tion

Not a palindrome

19. To �nd square root of a number

Prin
iple: Let x be the square root of n. Then x2 − n = 0. Now x is the root

of this equation. It
an be
al
ulated using Newton-Raphson method.

f(x) = x2 − n, f ′(x) = 2x

xk+1 = xk −
f(xk)

f ′(xk)
=

1

2

(

xk +
n

xk

)

Program:

n,e=input('Give the number n and a

ura
y required e: ')

x0,x=0,1

while abs(x-x0)>e:

x0=x

x=(x0+n/x0)/2.0

print 'Square root of %0.3f =%0.5f '%(n,x0)

When the program is run

Give the number n and a

ura
y required e: 24,.001

Square root of 24.000 =4.89900

20. To �nd mth
root of a number

1.12. PROBLEMS 25

Prin
iple: Let x be the mth
root of n. Then xm − n = 0. Now x is the mth

root of this equation. It
an be
al
ulated using Newton-Raphson method.

f(x) = xm − n, f ′(x) = mxm−1

xk+1 = xk −
f(xk)

f ′(xk)
=

1

m

[

(m− 1)xk +
n

xm−1
k

]

Program:

n,m,e=input('Give the number n, order of root m and a

ura
y e required : ')

x0,x=0.0,1.0

while abs(x-x0)>e:

x0=x

x=((m-1)*x0+n/x0**(m-1))/m

print '%0.2f (th) root of %0.3f = %0.5f '%(m,n,x0)

When the program is run

Give the number n, order of root m and a

ura
y e required : 65,3,.01

3.00 th root of 65.000 =4.03005

>>>

Give the number n, order of root m and a

ura
y e required : 65,4,.01

4.00 th root of 65.000 =2.84527

>>>

Give the number n, order of root m and a

ura
y e required : 2.88,1.5,.01

1.50 th root of 2.880 =2.03016

Aliter : Using bise
tion method.

def f(x,m,n):return x**m-n

a,b,m,n,k=input('Intervel (a,b),order of root m, number n and no. of iterations k')

i=0

while i<k:

=(a+b)/2.0

if f(a,m,n)*f(
,m,n)<0:b=

else:a=

i+=1

print 'The %d root of %f after %d iterations is %20.15f'%(m,n,i,
)

21. To
onvert temperature in Fahrenheit into
entigrade

26 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Prin
iple: 32oF = 00C, 212oF = 100oC. Therefore the
onversion formulae

are

C =
5

9
(F − 32)

F =
9

5
C + 32

Program:

t=input('Give the temperature: ')

=input('Is the given temperature is in 1.
entigrade or 2.farenheit (1/2): ')

if
==1: print '%0.2f C= %0.3f F'%(t,t*9.0/5+32.0)

else: print '%0.2f F= %0.3f C'%(t,(t-32.0)*5.0/9)

When the program is run

Give the temperature: 25

Is the given temperature is in 1.
entigrade or 2.farenheit (1/2): 1

25.00 C= 77.000 F

>>>

Give the temperature: 180

Is the given temperature is in 1.
entigrade or 2.farenheit (1/2): 2

180.00 F= 82.222 C

22. To �nd value of π

Prin
iple: The value of π
an be
al
ulated using tan 45o = tan (π/4) = 1 as

follows.

π

4
= tan−1 1 = 1− 1

3
+

1

5
− 1

7
+ =

∞
∑

i=0

(−1)i
2i+ 1

Program:

x=[(-1)**i/(2.0*i+1) for i in range(100000)℄

pi=4*sum(x)

print 'The value of pi=%0.10f'%pi

When the program is run, the following output is obtained.

The value of pi=3.1415826536

1.12. PROBLEMS 27

Python keywords

Core Python has 30 keywords:

(1)and (2)as (3)break (4)
lass (5)
ontinue (6)def (7)del (8)elif (9)else (10)ex-

ept (11)�nally (12)for (13)from (14)global (15)if (16)import (17)in (18)is

(19)lambda (20)nonlo
al (21)not (22)or (23)pass (24)raise (25)return (26)as-

sert (27)try (28)while (29)with (30)yield

28 CHAPTER 1. UNIT-1: BASICS OF PYTHON LANGUAGE

Chapter 2

Advan
ed Python Programming

2.1 NumPy

2.1.1 Introdu
tion

NumPy's main
lass is the homogeneous multidimensional array
alled ndarray. This

is a table of elements (usually numbers), all of the same data type. Ea
h element

is indexed by a tuple of positive integers. Examples of multidimensional array ob-

je
ts in
lude ve
tors, matri
es, spreadsheets et
. The term multidimensional refers to

arrays having several dimensions or axes. The number of axes is often
alled rank

(not a tensor rank).

For example, the
oordinates of a point in 3-D spa
e (x, y, z) is an array of rank

1. This also gives the position ve
tor of that point. The array ([1., 0., 0.], [0., 1., 2.])

is one of rank 2. It is equivalent to

(

1 0 0
0 1 2

)

(it is 2-dimensional). The �rst

dimension (rows) has a length of 2, the se
ond dimension(
olumn) has a length of 3.

The array ([[1., 0.], 0.], [[0., 1.], 2.]) is one of rank 3. It is equivalent to

(

(1 0) 0
(0 1) 2

)

(it

is 3-dimensional).

2.1.2 Array
reation

There are many ways to
reate arrays. For example, you
an
reate an array from a

regular Python list or tuple using the array fun
tion.

29

30 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> a = array([2,3,4℄)

>>> a

array([2, 3, 4℄)

>>> type(a) # a is an obje
t of the ndarray
lass

<type 'numpy.ndarray'>

The fun
tion array() transforms sequen
es of sequen
es into two-dimensional arrays,

and it transforms sequen
es of sequen
es of sequen
es into three-dimensional arrays,

and so on. The type of the resulting array is dedu
ed from the type of the elements in

the sequen
es.

>>> b = array([(1.5,2,3), (4,5,6) ℄)

>>> b

array([[1.5, 2. , 3. ℄,

[4. , 5. , 6. ℄℄)

To
reate an array whose elements are sequen
es of numbers, NumPy provides a fun
-

tion arange(x1, x2, dx) and returns x1, x1 + dx,, x2 − dx. It is analogous to range

fun
tion but a

epts �oating point numbers also.

>>> arange(10, 30, 5)

array([10, 15, 20, 25℄)

>>> arange(0, 2, 0.3)

array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8℄)

array and arange are not the only fun
tions that
reate arrays. Usually the elements

of the array are not known from the beginning, and a pla
eholder array(empty array)

is needed. There are some fun
tions to
reate arrays with some initial
ontent. By

default, the type of the
reated array is �oat64. The fun
tion zeros((m,n))
reates a

2-D array of m rows and n
olumns with zeros as elements. Similarly the fun
tion

ones((m,n))
reates an array full of ones, the fun
tion empty((m,n))
reates an array

without �lling it in and the fun
tion random((m,n))
reates an array �lling it with

random numbers between 0 and 1. identity (n)
reates an n-dimensional unit matrix.

Then the initial
ontent is random and it depends on the state of the memory. In these

fun
tions the arguments m,n spe
i�es the size along ea
h axis of the array.

Using arange with �oating point arguments, it is generally not possible to predi
t

the number of elements obtained be
ause of the �oating point pre
ision. Hen
e it is

better to use the fun
tion linspace(x1, x2, nx) whi
h returns equispa
ed nx numbers

from x1 to x2.

2.1. NUMPY 31

The general syntax of these fun
tions are empty (shape=, dtype=int) Return an

uninitialized array of data type, dtype, and given shape.

An array of zeros
an be
reated with a spe
i�ed shape using zeros() fun
tion.

zeros(shape=, dtype=):Return an array of data type dtype and given shape �lled with

zeros. An array of ones
an be
reated with a spe
i�ed shape using ones() fun
tion.

zeros(shape=, dtype=): Return an array of data type dtype and given shape �lled with

zeros. an identity matrix
an be
reated using identity() fun
tion

identity (n, dtype=int): Return a 2-d square array of shape (n,n) and data type, dtype

with ones along the main diagonal.

>>> empty((2,3))

array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260℄,

[5.30498948e-313, 3.14673309e-307, 1.00000000e+000℄℄)

>>> empty((2,3)) # the
ontent may
hange in different invo
ations

array([[3.14678735e-307, 6.02658058e-154, 6.55490914e-260℄,

[5.30498948e-313, 3.73603967e-262, 8.70018275e-313℄℄)

>>> zeros((3,4))

array([[0., 0., 0., 0.℄,

[0., 0., 0., 0.℄,

[0., 0., 0., 0.℄℄)

>>> ones((2,3,4), dtype=int16)

array([[[1, 1, 1, 1℄,

[1, 1, 1, 1℄,

[1, 1, 1, 1℄℄,

[[1, 1, 1, 1℄,

[1, 1, 1, 1℄,

[1, 1, 1, 1℄℄℄, dtype=int16)

>>> a=identity(4,dtype=float)

>>> a

array([[1., 0., 0., 0.℄,

[0., 1., 0., 0.℄,

[0., 0., 1., 0.℄,

[0., 0., 0., 1.℄℄)

>>> linspa
e(0, 2, 9)

array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ℄)

>>> x = linspa
e(0, 2*pi, 10)

>>> x

32 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

array([0. , 0.6981317 , 1.3962634 , 2.0943951 , 2.7925268 ,

3.4906585 , 4.1887902 , 4.88692191, 5.58505361, 6.28318531℄)

>>> f = sin(x)

array([0.00000000e+00, 6.42787610e-01, 9.84807753e-01,

8.66025404e-01, 3.42020143e-01, -3.42020143e-01,

-8.66025404e-01, -9.84807753e-01, -6.42787610e-01,

-2.44921271e-16℄)

Array attributes

The important attributes of any ndarray obje
t are:

1. b.ndim :It gives the rank of the array.

2. b.shape:It returns a tuple of integers indi
ating the size of the array in ea
h

dimension. For a matrix with m rows and n
olumns, shape returns (m,n).

3. b.size. Returns the total number of elements in all dimensions of the array. This

is equal to the produ
t of the elements of shape
ommand.

4. b.dtype Returns the data type of the elements in the array. NumPy provides the

following datatypes: bool,character, int,int8, int16, int32, int64, f loat,float8, f loat16, f l

5. b.itemsize: Returns the size in bytes of ea
h element of the array.For example,

an array of elements of type �oat64 has itemsize 8 (=64/8), while one of type

omplex32 has itemsize 4 (=32/8).

6. b.data: Returns the bu�er
ontaining the a
tual elements of the array.

Example for these methods : We de�ne the following array:

>>> from numpy import *

>>> a = array([(0, 1, 2),(3, 2, 1)℄,)

>>>a.shape, a.ndim, a.size, a.itemsize, a.dtype

((2, 3), 2, 6, 4, 'dtype('int32'))

The type of the array
an also be expli
itly spe
i�ed at
reation time:

>>>
 = array([[1,2℄, [3,4℄ ℄, dtype=
omplex)

>>>

2.1. NUMPY 33

array([[1.+0.j, 2.+0.j℄,

[3.+0.j, 4.+0.j℄℄)

>>>
.dtype

dtype('
omplex128')

A frequent error
onsists in
alling array with multiple numeri
 arguments, rather than

providing a single list of numbers as an argument.

>>> a = array(1,2,3,4) # WRONG be
ause numbers within () are taken as arguements.

>>> a = array([1,2,3,4℄) \# RIGHT be
ause [1,2,3,4℄ is a single list.

2.1.3 Array modi�
ation

The shape of an array
an be
hanged with various
ommands:

ravel(),transpose(),reshape(m,n,...),resize(m,n,...)

Here (m,n,) is the size of the multidimensional array. For example

>>> from numpy import*

>>> a=array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄)

>>> a.ravel()

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11℄)

>>> a

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄) # No permanent
hange to shape

>>> a.reshape(4,3)

array([[0, 1, 2℄,

[3, 4, 5℄,

[6, 7, 8℄,

[9, 10, 11℄℄)

>>> a

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄) # No permanent
hange to shape

>>> a.resize(4,3)

>>> a

array([[0, 1, 2℄,

[3, 4, 5℄,

34 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

[6, 7, 8℄,

[9, 10, 11℄℄)

>>> a

array([[0, 1, 2℄,

[3, 4, 5℄,

[6, 7, 8℄,

[9, 10, 11℄℄) # Permanent
hange to shape

>>> a.transpose()

array([[0, 3, 6, 9℄,

[1, 4, 7, 10℄,

[2, 5, 8, 11℄℄) # No permanent
hange to shape

The reshape fun
tion returns its argument with a modi�ed shape, whereas the resize

method modi�es the array itself:

2.1.4 Printing arrays

When you print an array, NumPy displays it in a similar way to nested lists, but with

the following layout:

1. the last dimension is printed from left to right,

2. the last but one, from top to bottom,

3. and the rest, also from top to bottom, separating ea
h sli
e by an empty line.

One dimensional arrays are then printed as rows, two dimensional as matri
es and

three dimensional as lists of matri
es.

>>> a = arange(6)

>>> print a

[0 1 2 3 4 5℄

>>>

>>> b = arange(12).reshape(4,3)

>>> print b

[[0 1 2℄

[3 4 5℄

[6 7 8℄

[9 10 11℄℄

>>>

2.1. NUMPY 35

>>>
 = arange(24).reshape(2,3,4)

>>> print

[[[0 1 2 3℄

[4 5 6 7℄

[8 9 10 11℄℄

[[12 13 14 15℄

[16 17 18 19℄

[20 21 22 23℄℄℄

If an array is too large to be printed, NumPy automati
ally skips the
entral part of

the array and only prints the
orners:

>>> print arange(10000)

[0 1 2 ..., 9997 9998 9999℄

>>>

>>> print arange(10000).reshape(100,100)

[[0 1 2 ..., 97 98 99℄

[100 101 102 ..., 197 198 199℄

[200 201 202 ..., 297 298 299℄

...,

[9700 9701 9702 ..., 9797 9798 9799℄

[9800 9801 9802 ..., 9897 9898 9899℄

[9900 9901 9902 ..., 9997 9998 9999℄℄

2.1.5 Saving and restoring arrays

The simplest way to store arrays is to write it to a text �le as text using the numpy

fun
tion savetxt(). The array
an be retrieved using the fun
tion genfromtxt(). The

syntax of these fun
tions are

savetxt(fname,array,fmt= ,delimiter=)

Here fname is the name of the �le to be
reated and opened for writing, array is the

name of the array, fmt is the format spe
i�
ation of the data to be stored, delimiter is

the
hara
ter used to distinguish elements of the array.

genfromtxt(fname,dtype=,
omments=# ,delimiter= ,skiprows=). Here dtype is the

datatype of array elements and skiprows a

epts a number whi
h refers to the number

of rows to skip from 0th row.

>>> b

36 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

array([[0., 1., 2., 3.℄,

[4., 5., 6., 7.℄,

[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

>>> savetxt('f1.txt',b,fmt='%8.6f',delimiter='&')

>>> savetxt('f2.txt',b,fmt='%8.4f',delimiter=' ')

When f1.txt and f2.txt are opened in a text editor, the
ontents of the file will be as follows

f1.txt

0.000000 &1.000000 &2.000000 &3.000000

4.000000 &5.000000 &6.000000 &7.000000

8.000000 &9.000000 &10.000000&11.000000

12.000000&13.000000&14.000000&15.000000

f2.txt

0.0000 1.0000 2.0000 3.0000

4.0000 5.0000 6.0000 7.0000

8.0000 9.0000 10.0000 11.0000

12.0000 13.0000 14.0000 15.0000

>>> genfromtxt('f1.txt',dtype='float')

array([[0., 1., 2., 3.℄,

[4., 5., 6., 7.℄,

[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

>>> genfromtxt('f1.txt',skiprows=2)

array([[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

If the arrays are too large, saving them in text format
onsumes large volume of

memory. In that
ase they
an be saved in binary format.

>>> from numpy import *

>>> a=genfromtxt('f1.txt')

>>> save('f3.npy',a)

When the file f3.npy is opened in a word pro
essor, the following output is obtained.\\

ï¾

1
2
NUMPY##F#{'des
r': '<f8', 'fortran_order': False, 'shape': (4, 4), }

##############ï¾

1
2
?#######�#######�#######�#######�#######�#######�###### �######"�######$�######&�######(�######*�######,�######.�

>>> b=load('f3.npy')

>>> b

2.1. NUMPY 37

array([[0., 1., 2., 3.℄,

[4., 5., 6., 7.℄,

[8., 9., 10., 11.℄,

[12., 13., 14., 15.℄℄)

Basi
 Arithmeti
 Operations on arrays

Arithmeti
 operators apply elementwise on arrays. A new array is
reated and �lled

with the result.

>>> a = array([20,30,40,50℄)

>>> b = arange(4)

>>>b

array([0,1,2,3℄)

>>>
 = a-b

>>>

array([20, 29, 38, 47℄)

>>> b**2

array([0, 1, 4, 9℄)

>>> 10*sin(a)

array([9.12945251, -9.88031624, 7.4511316 , -2.62374854℄)

>>> a<35

array([True, True, False, False℄, dtype=bool)

>>> i = identity(3)

>>> i

array([[1, 0, 0℄,

[0, 1, 0℄,

[0, 0, 1℄℄)

>>> i + i # add element to element

array([[2, 0, 0℄,

[0, 2, 0℄,

[0, 0, 2℄℄)

>>> i + 4 # add a s
alar to every entry

array([[5, 4, 4℄,

[4, 5, 4℄,

[4, 4, 5℄℄)

>>> a = array(range(1,10)).reshape(3,3)

>>> a

array([[1, 2, 3℄,

[4, 5, 6℄,

[7, 8, 9℄℄)

38 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> i * a # element to element

array([[1, 0, 0℄,

[0, 5, 0℄,

[0, 0, 9℄℄)

>>> x = array([1,2,3℄)

>>> x

array([1, 2, 3℄)

>>> y = array([[4℄, [5℄, [6℄ ℄)

>>> y

array([[4℄,

[5℄,

[6℄℄)

>>> x + y

array([[5, 6, 7℄,

[6, 7, 8℄,

[7, 8, 9℄℄)

#This is equivalent to ([[1,2,3℄,[1,2,3℄,[1,2,3℄℄+

#([[4,4,4℄,[5,5,5℄,[6,6,6℄℄)

>>> x*y

array([[4, 8, 12℄,

[5, 10, 15℄,

[6, 12, 18℄℄)

>>> x/y

array([[0, 0, 0℄,

[0, 0, 0℄,

[0, 0, 0℄℄)

>>> y/x

array([[4, 2, 1℄,

[5, 2, 1℄,

[6, 3, 2℄℄)

>>> x%y

array([[1, 2, 3℄,

[1, 2, 3℄,

[1, 2, 3℄℄)

>>> y%x

array([[0, 0, 1℄,

[0, 1, 2℄,

[0, 0, 0℄℄)

>>> x**y

array([[1, 16, 81℄,

[1, 32, 243℄,

[1, 64, 729℄℄)

>>> s=arange(1,6,1)

2.1. NUMPY 39

>>> s

array([1, 2, 3, 4, 5℄)

>>> s.sum() #sum of all elements

15

>>> s.prod() # produ
t of all elements

120

>>> s.mean() # Mean of all elements

3.0

>>> s.var() #Varian
e

2.0

>>> s.std() #Standard deviation

1.4142135623730951

2.1.6 Indexing, Sli
ing and Iterating

One dimensional arrays
an be indexed, sli
ed and iterated over like lists and other

Python sequen
es.

>>> a = arange(10)**3

>>> a

array([0, 1, 8, 27, 64, 125, 216, 343, 512, 729℄)

>>> a[2℄

8

>>> a[2:5℄

array([8, 27, 64℄)

>>> a[:6:2℄ = -1000 \# modify elements in a

>>> a[::-1℄ \# reversed a

array([729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000℄)

>>> for i in a: print i**(1/3.),

nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0

2.1.7 Arrays as matri
es

As the produ
t operator '*' operates elementwise (produ
t of
orresponding elements)

in NumPy arrays, the matrix produ
t (cij =
∑

k aikbkj)
an be found using the dot

fun
tion. It also gives the dot produ
t of two ve
tors.The fun
tion inner (x,y)
omputes

the inner produ
t (zij =
∑

k xik.yjk) between two arrays. For 1-D arrays dot and inner

fun
tions give the same result. Similarly a
ross fun
tion is de�ned whi
h returns the

40 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

ross produ
t of two ve
tors. outer (x, y)
omputes an outer produ
t of two ve
tors

(zij = xi.yj). In matrix
lass to
reate matri
es mat method and matrix method

are de�ned.mat(data, dtype=),matrix(data, dtype=). This data
an be any list, tuple,

string or array . This fun
tion interprets the input as a matrix.

>>> from numpy import*

>>> mat(range(2,7))

matrix([[2, 3, 4, 5, 6℄℄)

>>> a,b=mat([[1,2℄,[3,4℄℄),mat('1,2;3,4')

>>> a

matrix([[1, 2℄,

[3, 4℄℄),

>>> b

matrix([[1, 2℄,

[3, 4℄℄)

>>> r=mat('1,2,3,4')

>>> r

matrix([[1, 2, 3, 4℄℄) # Row matrix

>>>
=mat('1;2;3;4')

>>>

matrix([[1℄,

[2℄,

[3℄,

[4℄℄) #
olumn matrix

>>> k=arange(15).reshape(3,5)

>>> k

array([[0, 1, 2, 3, 4℄,

[5, 6, 7, 8, 9℄,

[10, 11, 12, 13, 14℄℄)

>>> k=mat(k) #array k be
omes 3X5 matrix k

>>> t=transpose(k) # transposed 5X3 matrix

>>>l

matrix([[0, 5, 10℄,

[1, 6, 11℄,

[2, 7, 12℄,

[3, 8, 13℄,

[4, 9, 14℄℄))

>>> k*t #It must be a 3X3 matrix

matrix([[30, 80, 130℄,

[80, 255, 430℄,

[130, 430, 730℄℄)

2.1. NUMPY 41

>>> dot(k,t)

matrix([[30, 80, 130℄,

[80, 255, 430℄,

[130, 430, 730℄℄)

>>> t.fill(3)

>>> t

array([[3, 3, 3℄,

[3, 3, 3℄,

[3, 3, 3℄,

[3, 3, 3℄,

[3, 3, 3℄℄)

>>> s=range(1,6)

>>> m= mat(s)

>>> m

matrix([[1, 2, 3, 4, 5℄℄) #The two square bra
kets are there as most of the matri
es are 2-D

>>> n=matrix(range(1,6))

>>> n

matrix([[1, 2, 3, 4, 5℄℄)

>>> x=[1,2,3℄

>>> y=[3,2,1℄

>>> dot(x,y) # like dot produ
t of ve
tors

10

>>>
ross(x,y) # like
ross produ
t of ve
tors

array([-4, 8, -4℄)

>>> inner([1,2,3℄,[10,100,1000℄)

3210 # 1.10+2.100+3.1000

>>> a=arange(9).reshape(3,3)

>>> b=a.T # another method to find transpose.

>>> a

array([[0, 1, 2℄,

[3, 4, 5℄,

[6, 7, 8℄℄)

>>> b

array([[0, 3, 6℄,

[1, 4, 7℄,

[2, 5, 8℄℄)

>>> inner(a,b) #Ordinary inner produ
t of ve
tors for 1-D arrays (without
omplex
onjugation), in higher dimensions a sum

produ
t over the last axes.

array([[15, 18, 21℄,

[42, 54, 66℄,

[69, 90, 111℄℄)

42 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

It is possible to perform in
rement and de
rement operations without
reating new arrays.

>>> a = ones((2,3), dtype=int) #integer array

>>> b = random.random((2,3)) #float array

>>> a *= 3

>>> a

array([[3, 3, 3℄,

[3, 3, 3℄℄)

>>> b += a

>>> b

array([[3.69092703, 3.8324276 , 3.0114541 ℄,

[3.18679111, 3.3039349 , 3.37600289℄℄)

>>> a += b \# b is
onverted to integer type

>>> a

array([[6, 6, 6℄,

[6, 6, 6℄℄)

When operating with arrays of di�erent numeri
 data types, the type of the resulting

array
orresponds to the more general or pre
ise one.

>>> a = ones(3, dtype=int32)

>>> b = linspa
e(0,pi,3)

>>> b.dtype.name

float64

>>>
 = a+b

>>>

array([1. , 2.57079633, 4.14159265℄)

>>>
.dtype.name

'float64'

>>> d = exp(
*1j)

>>> d

array([0.54030231+0.84147098j, -0.84147098+0.54030231j,

-0.54030231-0.84147098j℄)

>>> d.dtype.name

'
omplex128'

Many unary operations, like
omputing the sum of all the elements in the array, are

implemented as methods of the ndarray
lass.

>>> a = random.random((2,3))

>>> a

array([[0.6903007 , 0.39168346, 0.16524769℄,

2.1. NUMPY 43

[0.48819875, 0.77188505, 0.94792155℄℄)

>>> a.sum()

3.4552372100521485 #sum of all elements

>>> a.min()

0.16524768654743593

>>> a.max()

0.9479215542670073

By default, these operations apply to the array as if it were a list of numbers, regardless

of its shape. However, by spe
ifying the axis parameter you
an apply an operation

along the spe
i�ed axis(dimension) of an array:

>>> b = arange(12).reshape(3,4)

>>> b

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄℄)

>>>

>>> b.sum(axis=0) # Give sum as a 1-D array(sum of ea
h
olumn)

array([12, 15, 18, 21℄)

>>> b.sum(axis=1) # Give sum as a 1-D array(sum of ea
h row)

array([6, 22, 38℄)

>>> b.min(axis=1) # minimum of ea
h row

array([0, 4, 8℄)

>>> b.min(axis=0) # minimum of ea
h
olumn

array([0,1,2,3℄)

>>> p.max(axis=0)

matrix([[12, 13, 14, 15℄℄)

>>> b.
umsum(axis=1) #
umulative sum along the rows

array([[0, 1, 3, 6℄,

[4, 9, 15, 22℄,

[8, 17, 27, 38℄℄)

>>> p=arange(16).reshape(4,4)

>>> p

array([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄,

[12, 13, 14, 15℄℄)

>>> tra
e(p)

30

>>> p=mat(p)

44 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

>>> p

matrix([[0, 1, 2, 3℄,

[4, 5, 6, 7℄,

[8, 9, 10, 11℄,

[12, 13, 14, 15℄℄)

>>> tra
e(p)

30

2.1.8 Arrays as polynomial
oe�
ients

There are four methods de�ned in polynomial
lass to
reate and manipulate polyno-

mials.

1. poly1d(
, r, v):
reates a one-dimensional polynomial. Here c represents an array
or list. If r is True, c represents roots of the polynomial. If r is False (whi
h is

the default), polynomial
oe�
ients zeroth element
orresponding to the highest

power of variable. v is the
hara
ter to be used as polynomial variable.

>>>
=[3,1,-1,-3℄

>>> p=poly1d(
)

>>> print p

3 2

3 x + 1 x - 1 x - 3

>>> p1=poly1d(
,True)

>>> print p1

4 2

1 x - 10 x + 9

>>> p2=poly1d(
,False,'y')

>>> print p2

3 2

3 y + 1 y - 1 y - 3

2. polyval(p, x): Here p is the polynomial and x is the value at whi
h p is to be

evaluated. The polynomial value at x is returned. For polynomials de�ned above

>>> polyval(p2,2)

23

>>> polyval(p1,2)

-15

2.1. NUMPY 45

>>> polyval(p,2)

23

3. poly(s): This fun
tion returns the
oe�
ients of the polynomial with the s as the
set of roots in the form of an array.

>>> d=[0,0℄

>>> poly(d)

array([1, 0, 0℄) #x*x=0

>>> d=[1,-1,2℄

>>> f=poly(d) #(x-1)(x+1)(x-2)

>>> f

array([1, -2, -1, 2℄)

>>> print poly1d(f)

3 2

1 x - 2 x - 1 x + 2

4. roots(p): Returns the roots of polynomial p

>>> g=[1,-2,-1,2℄

>>> p=poly1d(g)

>>> roots(p)

array([-1., 2., 1.℄)

Roots
an also be found using the following
ommand.

>>> p.r

array([-1., 2., 1.℄)

2.1.9 Linear Algebra

The linear algebra module is a sub
lass of numpy. It is
alled linalg. A few fun
tions

are de�ned in the NumPy.linalg sub-pa
kage. The important fun
tions are

1. norm(x): Returns norm of a ve
tor x, norm =
√

∑

i x
2
i

2. det(a): Returns determinant of a square matrix

3. inv(a): Returns inverse of a non-singular square matrix

4. pinv(a): Returns pseudoinverse of a singular square matrix. For invertible ma-

tri
es, this is the same as the inverse.

5. solve(a,y): Returns the solution ve
tor x to the linear equation ax = y

46 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

6. eig(a):Return all solutions (λ, x) to the equation ax = λx. The �rst element of

the return tuple
ontains all the eigenvalues. The se
ond element of the return

tuple
ontains the eigenve
tors (ith eigenve
tor as ith
olumn).

7. eigvals(a): Returns all eigenvalues of square matrix a as an array

8. eigh(h): Return all solutions (λ, x) to the equation hx = λx where h is a hermitian

matrix.

9. eigvalsh(h):Returns all eigenvalues of hermitian matrix h as an array

These are also in
luded in the sub-pa
kage numpy.dual.

Let a be a square matrix





1 1 2
−1 0 1
2 3 0





. It is
reated as

>>> from numpy import*

>>> from numpy.linalg import*

>>> a=array([[1,0,1℄,

[2,1,0℄,

[0,2,4℄℄)

>>> det(a)

8.0

>>> inv(a)

array([[0.5 , 0.25 , -0.125℄,

[-1. , 0.5 , 0.25 ℄,

[0.5 , -0.25 , 0.125℄℄)

>>> eigvals(a)

array([0.8223493+1.07730381j, 0.8223493-1.07730381j, 4.3553014+0.j℄)

>>> eig(a)

(array([0.8223493+1.07730381j, 0.8223493-1.07730381j, 4.3553014+0.j ℄),

#eigenvalues

array([[-0.06908062+0.41891651j, -0.06908062-0.41891651j, 0.28156897+0.j ℄,

[0.77771286+0.j , 0.77771286+0.j , 0.16783528+0.j ℄,

[-0.43902814-0.14884162j, -0.43902814+0.14884162j, 0.94474877+0.j ℄℄))

Three eigenve
tors

To solve the simultaneous equations

2x+ 3y + 4z = 8, 3x+ 4y + 5z = 10, 4x− 5y + 6z = 32

2.1. NUMPY 47

>>> a=mat('2,3,4;3,4,5;4,-5,6') # The
oeffi
ient matrix

>>> a

matrix([[2, 3, 4℄,

[3, 4, 5℄,

[4, -5, 6℄℄)

>>> s=mat('8;10;32') # Constant ve
tor S in matrix equation AX=S

>>> s

matrix([[8℄,

[10℄,

[32℄℄)

>>> b=solve(a,s)

>>> b

matrix([[1.℄,

[-2.℄,

[3.℄℄)

48 CHAPTER 2. ADVANCED PYTHON PROGRAMMING

Chapter 3

Plotting and visualization

3.1 Matplotlib

Graphs,
harts, surfa
e plots et
 are visual presentations of numeri
al data. It is useful

to
ompare,
ontrast, dete
t trends, predi
t and
omprehend huge amounts of data.

Di�erent Python modules are used for generating two and three dimensional graphs.

3.1.1 The Matplotlib Module

The python pa
kage Matplotlib produ
es graphs and �gures in di�erent hard
opy for-

mats like jpeg, bmp, eps, png et
. Most of the fun
tions of NumPy andmatplotlib.pyplot

are de�ned in the module pylab also. It also provides many fun
tions for matrix ma-

nipulation. The data for plotting are supplied as Python lists or Numpy arrays. This

module
ontains a lot of methods for plotting and annotating graphs. Some of these

methods are used frequently in s
ienti�

omputing. They are listed below with exam-

ples.

1. plot()Fun
tion: The general format is

plot(x, y, color =, linestyle =, marker =, markerfacecolor =, markersize =)

x,y are lists or arrays,
olor
olor of graph, linestyle spe
i�es dashedline('�'),solid

line('-'), dotted line (':') et
., markermarking data points on the graph ('.','*'),

markerfa
e
olor the
olor of marker and markersize is the size of marker.

2. show(): Sends graphi
 output to the s
reen.

49

50 CHAPTER 3. PLOTTING AND VISUALIZATION

3. xlabel(�): � is name of variable plotted along x-axis.

4. ylabel(�): � is name of variable plotted along y-axis.

5. title(�): � is name of Graph.

6. legend(names,lo
=): The names of di�erent
urves as a list or tuple of strings,

lo
 is the lo
ation in the graph where the legend must appear. Upper right, lower

left et
. lo
=0 �ts the legend at the most
onvenient lo
ation.

7. grid(True): Shows grid lines if True

8. axis(z): Used to set or get the axis properties.

axis() Returns the
urrent axes limits [xmin, xmax, ymin, ymax℄.

axis(z):Sets the min and max of the x and y axes, with z = [xmin, xmax, ymin,

ymax℄.

axis('o�'): Removes the axis lines and labels.

axis('equal'): Changes limits of x or y axis so that equal in
rements of x and y

have the same length so that a
ir
le will appear
ir
ular.

9. �gure()

figure(num, figsize = (w, h), dpi = N, facecolor =′ b′, edgecolor =′ k′)

num is an integer variable. This fun
tion
reates a new �gure if �gure(num)

does not exist. If it already exists, it be
omes a
tive. �gsize=(w,h) is a tuple

of width and height in in
hes, dpi=N
reates �gure with resolution N dots per

square in
h, fa
e
olor sets the ba
kground
olor edge
olor sets the border
olor.

All arguments ex
ept the �rst are optional.

10. subplot(m, n, N): Where m is the number of rows, n number of
olumns and

N = 1 is the �rst plot number and in
reasing N �ll rows �rst. Nmax = m× n

11. text(x,y,'string') Writes 'string' at (x, y) with respe
t to bottom-left
orner as

origin and s
aled as in the �gure.

12. bar(left, height, width=0.8, bottom=0,
olor=None, edge
olor=None, linewidth=None,yerr=None,

xerr=None, e
olor=None,
apsize=3,align='edge', orientation='verti
al', log=False)

Make a bar plot with re
tangles representing the two arrays left, height bounded

by left, left + width, bottom, bottom + height with optional arguments whose

default values are given.

13. barh()Like bar() ex
ept that the bars are horizontal.

14.
ontour()For plotting impli
it fun
tions.

15.
ontourf()For
olor-�lled plotting of impli
it fun
tions.

3.1. MATPLOTLIB 51

16. loglog()Make a plot with log s
aling on the x and y axis. It supports all the

keyword arguments of plot() fun
tion.

17. semilogx() Graph with x-axis plotted in log s
ale. It supports all the keyword

arguments of plot() fun
tion.

18. semilogy()Graph with y-axis plotted in log s
ale.

19. ogrid[minx:maxx:nxj,miny:maxy:nyj℄Creates a grid of nx x-vlues in the range

(xmin,xmax)and ny y-values in the range (ymin,ymax).eg. x,y=ogrid[1:10:100j,5:15:150j℄

20. pie()pie(x, explode=None, labels=None,
olors=None, autop
t=None, p
tdistan
e=0.6,shadow=False,

labeldistan
e=1.1, hold=None) Makes a pie
hart of array x. The fra
tional area

of ea
h wedge is given by x/sum(x). If sum(x) <= 1, then the values of x give

the fra
tional area dire
tly and the array will not be normalized.

21. polar(theta, r, args) Make a polar plot. theta and r are lists or arrays. Multiple

theta, r arguments are supported, with format strings, as in plot().

22. s
atter(x, y, s=20,
='b', marker='o',
map=None, norm=None,vmin=None,

vmax=None, alpha=1.0, linewidths=None,verts=None, **kwargs)Make a s
atter

plot of x versus y, where x, y are
onverted to 1-D sequen
es whi
h must be of

the same length,N .

Examples

from matplotlib.pyplot import*

from numpy import*

subplot(2,2,1)

plot([1,2,3,4℄,'*-')

subplot(2,2,2)

plot([4,2,3,1℄,'^-')

subplot(2,2,3)

plot([4,3,2,1℄,'^-')

subplot(2,2,4)

plot([2,4,3,1℄,'^-')

show()

52 CHAPTER 3. PLOTTING AND VISUALIZATION

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0

3.5

4.0

Polar plots: Polar
oordinates lo
ate a point on a plane with one distan
e and

one angle. The distan
e `r' is measured from the origin. The angle θ is measured

from positive dire
tion of x-axis in the anti-
lo
kwise sense. Plotting is done using

polar(theta, radius, format string) fun
tion. An example is given below.

Polar rhodonea A rhodonea or rose
urve is a sinusoid r = sin (nθ) where n is a

onstant. If n is an integer the
urve will have 2n 'petals' and n 'petals' if n is odd.

If n is a rational number(=p/q, p,q integers), then the
urve is
losed and has �nite

length. If n is an irrational number, then it is
losed and has in�nite length.

from matplotlib.pyplot import*

from numpy import*

n=2

th = linspa
e(0, 10*pi,1000)

r = sin(n*th)

polar(th,r)

show()

3.1. MATPLOTLIB 53

0�

45�

90�

135�

180�

225�

270�

315�

0.2
0.4

0.6
0.8

1.0

Pie Charts: A pie
hart is a
ir
ular
hart in whi
h a
ir
le is divided into se
tors.

Ea
h se
tor visually represents an item in a data set to mat
h the per
entage or fra
tion

of the item in the total data set. Pie
harts are useful to
ompare di�erent parts of

a whole amount. They are often used to present �nan
ial information. The fun
tion

pie(list of per
entages or fra
tions , labels=list of labels) produ
es a pie
hart. Both

the lists must have the same length.

from matplotlib.pyplot import*

from numpy import*

labs = ['A+', 'A', 'B+', 'B', 'C+', 'C','D'℄

fra
s = [5,8,18, 19, 20,17,14℄

pie(fra
s, labels=labs)

show()

A+

A

B+

B

C+

C

D

Parametri
 plots: A parametri
 plot is a visual des
ription of a set of parametri

equations. If x and y are both fun
tions of a variable t, then they
reate a set of

parametri
 equations. For example, the two equations y = t sin t2 and x = t cos t2 form
a set of parametri
 equations in whi
h y and x are fun
tions of t, the graph of whi
h

will be in this form.

from matplotlib.pyplot import*

from numpy import*

54 CHAPTER 3. PLOTTING AND VISUALIZATION

t=arange(0,6.3,0.001)

x=t*
os(t*t)

y=t*sin(t*t)

plot(x,y)

show()

�6 �4 �2 0 2 4 6 8�8

�6

�4

�2

0

2

4

6

8

2-D plots in
olours: Two dimensional matrix
an be represented graphi
ally by

assigning a
olor to ea
h point proportional to the value of that element. The fun
tion

imshow(matrix) is employed to
reate su
h plots.

from matplotlib.pyplot import*

from numpy import*

m=linspa
e(0,1,900).reshape(30,30)

imshow(m)

show()

0 5 10 15 20 25

0

5

10

15

20

25

3.1. MATPLOTLIB 55

3.1.2 Plotting mathemati
al fun
tions

sine fun
tion:

from pylab import*

x=linspa
e(0,2*pi,200)

y=sin(x)

plot(x,y)

xlabel('x')

ylabel('sin(x)')

title('Plot of sine fun
tion')

grid(True)

show()

Logarithm fun
tion: Logarithm fun
tion log(x) gives logarithm of a variable to the

base exponential e.

from pylab import*

x=linspa
e(0,200,200)

y=log(x)

plot(x,y)

xlabel('x')

ylabel('log(x)')

title('Plot of log fun
tion')

grid(True)

show()

Exponential fun
tion: Exponential fun
tion exp(x) gives ex of a variable x.

from pylab import*

x=linspa
e(0,5,200)

y=exp(x)

plot(x,y)

xlabel('x')

ylabel('exp(x)')

title('Plot of exponential fun
tion')

grid(True)

show()

56 CHAPTER 3. PLOTTING AND VISUALIZATION

Gaussian fun
tion: Gaussian fun
tion is given by y = exp(−x2) gives ex of a vari-

able x.

from pylab import*

x=linspa
e(-5,5,200)

y=exp(-x**2)

plot(x,y)

xlabel('x')

ylabel('gaussian(x)')

title('Plot of Gaussian fun
tion')

grid(True)

show()

Gamma fun
tion: The gamma fun
tion is de�ned by the integral

Γ(x) =

∫

∞

0

tx−1e−tdt

and satis�es the re
urren
e relation

Γ(x+ 1) = xΓ(x)

and re�e
tion formula

Γ(x)Γ(1− x) = π

sin πx

Γ(1 + x)Γ(1 − x) = πx

sin (πx)

Γ(1− x) = πx

Γ(1 + x) sin (πx)

It
an be used to
al
ulate Γ-fun
tions less than 1. Sin
e sin (πx) is zero for integer

x, Γ-fun
tion is unbounded for negative integers but not for negative fra
tions. The

following approximation method,derived by Lan
zos, is employed for
al
ulating the

Γ-fun
tion numeri
ally. For x > 0,

Γ(1 + x) = kk−5e−k
√
2π

(

a0 +
a1

x+ 1
+

a2
x+ 2

+ +
an

x+ n
+ ǫ

)

where k = x+ 5.5, ǫ the error term and ai expansion
oe�
ients. For |ǫ| < 2× 10−10
,

n = 6 is su�
ient. The
oe�
ients are given by

a0 = 1.00002746310005, a1 = 76.18009172947146
a2 = −86.50532032941677, a3 = 24.01409824083091
a4 = −1.231739572450155, a5 = 1.208650973866179× 10−3,
a6 = −5.395239384953× 10−6

ln Γ(1 + x) = ln(kk−5)− k + ln(
√
2π) + ln

(

a0 +
a1

x+ 1
+

a2
x+ 2

+ +
an

x+ n

)

3.1. MATPLOTLIB 57

ln Γ(x) = ln (kk−5)− k + ln

[√
2π

x

(

a0 +
a1

x+ 1
+

a2
x+ 2

+ +
an

x+ n

)

]

But reasonable a

ura
y
an be a
hieved by just taking the �rst �ve terms and ap-

proximating elements of a to 2 de
imal pla
es.

from pylab import*

def gamma(x0):

a=[1,76.18,-86.505,24.014,-1.232℄

k=x0+5.5

s=(k-5)*log(k)-k

s1=a[0℄

for i in range(1,5):

s1+=a[i℄/(x0+i)

return exp(s+log(sqrt(2*pi)*s1/x0))

p=linspa
e(-5,6,1000)

z=gamma(p)

plot(p,z)

axis([-5,7,-1,150℄)

xlabel('x')

ylabel('Gamma fun
tion')

title('Plot of Gamma fun
tion')

grid(True)

show()

−4 −2 0 2 4 6
x

0

20

40

60

80

100

120

140

Ga
m

m
a

fu
nc

tio
n

Plot of Gamma function

58 CHAPTER 3. PLOTTING AND VISUALIZATION

Polynomial Evaluation: Legendre Fun
tion Legendre fun
tions Pn(x) are de-

�ned through a generating fun
tion as

1√
1− 2xt+ t2

=
∞
∑

n=0

Pn(x)t
n

where |t| ≤ 1 The zeroth term (n = 0) of the expansion is 1 = P0(x)t
0
Hen
e P0(x) = 1

for all x. Expanding left side as a binomial series and equating
oe�
ient of t on both

sides, xt = P1(x)t or P1(x) = x for all x. Di�erentiating and equating
oe�
ients of tn

on both sides one gets

Pn+1(x) =
(2n+ 1)xPn(x)− nPn−1(x)

n+ 1

This is a re
urren
e relation whi
h may be used for
al
ulating Legendre polynomials

of any order.

from pylab import*

def legendre(m,z):

p0,p1=1,z

if m==0:p=p0

if m==1:p=p1

if m>1:

for i in range(1,m):

p=((2*i+1)*z*p1-i*p0)/(i+1)

p0,p1=p1,p

return(p)

n=input('Give Order n of Legendre fun
tion')

x=linspa
e(-1,1,200)

y=legendre(n,x)

plot(x,y)

xlabel('x')

ylabel('Legendre fun
tion')

title('Plot of Legendre Polynomial for n=5')

grid(True)

show()

3.1. MATPLOTLIB 59

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

Le
ge

nd
re

 fu
nc

tio
n

Legendre Polynomial for n=5

−6 −4 −2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

Be
ss

el
 fu

nc
tio

n

Bessel function for n=2

Polynomial Evaluation: Bessel's Fun
tion The Bessel fun
tion of order n for a

variable x is given by the series

Jn(x) =
∞
∑

s=0

(−1)s
s!(n+ s)!

(x

2

)2s+n

The zeroth term (s = 0) of the expansion is

1

n!

(x

2

)n

. The ratio of the pth and

(p − 1)th term of the expansion is

−1
p(n + p)

(x

2

)2

. Using these results Bessel fun
tion

of any order
an be
al
ulated for any desired a

ura
y.

from pylab import*

def bessel(m,z):

z/=2.0

60 CHAPTER 3. PLOTTING AND VISUALIZATION

fa
torial=1

for i in range(1,n+1):fa
torial*=i

term=[z**n/fa
torial℄

for i in range(1,10):

term.append(-term[i-1℄*z*z/(i*(i+n)))

return sum(term)

n=input('Give Order n of Bessel fun
tion : ')

x=linspa
e(-5.0,5.,1000)

y=[bessel(n,i) for i in x℄

plot(x,y)

xlabel('x')

ylabel('Bessel fun
tion')

title('Plot of Bessel fun
tion for n=2')

grid(True)

show()

Chapter 4

Numeri
al Analysis

4.1 Numeri
al methods

4.1.1 Inverse of a fun
tion

Inverse fun
tions are often used in physi
s. For example,
onsider the length L of

the mer
ury
olumn in a
apillary tube as fun
tion of temperature T . L = f(T).
When it is used as a thermometer, the length of the mer
ury pellet is measured and

the temperature is inferred from it using the formula T = f−1(L). Similarly, in a

piezoele
tri

rystal, the voltage V developed is a fun
tion of stress S applied. V =
f(S). In a strain gauge, this voltage is measured to estimate the load W pla
ed on

it. W = Af−1(V) where A is the surfa
e area of the
rystal on whi
h the load applies

stress. If a fun
tion represents a prin
iple, in general, its appli
ation employs the

inverse fun
tion.

De�nition 1 (Fun
tion) For every x in a set X, if an obje
t f maps exa
tly one

element y in set Y then f is
alled a fun
tion with domain X, and
o-domain or range

Y .

It is represented as

∀x ∈ X, y ∈ Y, f : x→ y

y is
alled the image and x, the preimage. If there is more than one preimage for a

given image, then f is
alled an onto mapping. For example, f : x→ y has the expli
it
form y = x2, then image y is the same for all ±x in the domain X . If for every image,

there is a unique preimage, f is a one-to-one mapping. For example, f : x → y has

61

62 CHAPTER 4. NUMERICAL ANALYSIS

the expli
it form y = x3, then image y is the unique for every x in the domain X . In

terms of domain and
o-domain sets f : X → Y .

De�nition 2 (Inverse Fun
tion) If f is a fun
tion whose domain is the set X, and

range is the set Y and there exists a fun
tion g with domain Y and range X, with the

property

∀x ∈ X, f(x) = y ∈ Y if and only if ∀y ∈ Y, g(y) = x

then g is
alled inverse of f .

The fun
tion f sends all elements of the the domainX to the range Y . If f is invertible,

the fun
tion g is unique. There is exa
tly one fun
tion g satis�es this property. Fun
tion
g is
alled the inverse of f , denoted formally as f−1

. (6= 1/f). Sin
e f implies unique

y for ea
h x and g implies unique x for ea
h y, the two mappings f and g must be

one-to-one. This is a ne
essary
ondition for f to have an inverse.

Test to
he
k whether a fun
tion is one-to-one: It is
alled the horizontal line

test. If no line parallel to x-axis interse
ts the graph of the fun
tion y = f(x) at more

than one point, that fun
tion is one-to-one.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

20

40

60

80

100

f(x
)

one-to-one function

onto function

Method of �nding inverse

There are di�erent methods of �nding inverse fun
tion.

4.1. NUMERICAL METHODS 63

Algebrai
 method: The algorithm for �nding an inverse fun
tion g for f(x) alge-
brai
ally involves the following steps.

1. Che
k whether f is a one-to-one mapping.

2. Put f(x) = y

3. Swap the x and y variables

4. Solve for y. It gives f−1(x)

5. Verify that f−1(f(x)) = x or f(f−1(x)) = x

Example 1 Find inverse of f(x) = 3x+ 4

1. f is a one-to-one fun
tion.

2. Put 3x+ 4 = y

3. Swap variables: 3y + 4 = x

4. solve for y: y = (x− 4)/3 = f−1(x)

5. f(f−1(x)) = 3 ∗ [(x− 4)/3] + 4 = x

Hen
e inverse fun
tion is f−1(x) = (x− 4)/3

Problem 1 Find inverse of f(x) = (x+ 1)/x

Answer:f−1(x) = 1/(x− 1)

Problem 2 Find inverse of f(x) = log x

Answer:f−1(x) = ex

Problem 3 Find inverse of f(x) = (x+ 1)/x

Answer:f−1(x) = 1/(x− 1)

64 CHAPTER 4. NUMERICAL ANALYSIS

Swapping method: Often the experimental data related through some fun
tion will

be in the form of ordered pairs formed from tables.

x x1 x2 x3 x4 x5 x6 x7 x8 x9
y = f(x) y1 y2 y3 y4 y5 y6 y7 y8 y9
Then f(x) may be expressed as ordered pairs f(x) : (xi, yi)), i = 1, 2, 3... Here

f(x) : (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8)(x9, y9)

If ∀i, j, xi 6= xj , and yi 6= yj , then the fun
tion f(x) is one-to-one. Its inverse will exist
and
an be obtained by simply swapping x and y values.

f−1(x) : (y1, x1), (y2, x2), (y3, x3), (y4, x4), (y5, x5), (y6, x6), (y7, x7), (y8, x8)(y9, x9)

In tabular form, it will appear as

x y1 y2 y3 y4 y5 y6 y7 y8 y9
f−1(x) x1 x2 x3 x4 x5 x6 x7 x8 x9

Example 2 Find the inverse of the fun
tion

x 1 -2 -1 0 2 3 4 -3

f(x) 2 0 3 -1 1 -2 5 1

Swapping x and y, we get the inverse fun
tion as x and y never repeats among them-

selves.

f−1(x) = (2, 1), (0,−2), (3,−1), (−1, 0), (1, 2), (−2, 3), (5, 4), (1,−3)

Graphi
al method: The basi
 prin
iple is that the graph of an inverse relation is

the re�e
tion of the graph of original relation on the identity line (slope=1),y = x.

Example 3 The fun
tion f(x) = 2x+1 has f−1(x) = (x−1)/2. Plots are given below

4.1. NUMERICAL METHODS 65

−3 −2 −1 0 1 2 3 4 5
x

−3

−2

−1

0

1

2

3

4

5

y

f(x) =2x+1

f(x) =x

g(x) =f−1 (x) =(x−1)/2

Often it is ne
essary to re-

stri
t the domain on
ertain fun
tions to guarantee that the inverse relation is also a

fun
tion.

Example 4 For example if y = ax2 is the fun
tion, then it is one-to-one only for

x > 0.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

f(x) =x2

f(x) =x

g(x) =f−1 (x) =
√
x

1

1

Note that all graphs will not produ
e an inverse relation whi
h is also a fun
tion.

66 CHAPTER 4. NUMERICAL ANALYSIS

4.1.2 Interpolation with Cubi
 Spline

Real world numeri
al data is usually di�
ult to analyse. Any fun
tion whi
h would

e�e
tively
orrelate the data would be di�
ult to obtain and highly unwieldy. To this

end, the idea of the
ubi
 spline was developed. Using this pro
ess, a series of unique

ubi
 polynomials are �tted between ea
h of the data points, with the stipulation that

the
urve obtained be
ontinuous and appear smooth. These
ubi
 splines
an then be

used to determine rates of
hange and
umulative
hange over an interval.

Theory:

x0 x1 x2 xn

y0 y1 yn

y

x

Let there be (n + 1) data points (xi, yi), i = 0, 1, 2, ...n. The essential idea is to �t a

pie
ewise fun
tion of the form

P(x) =



















p0(x) x0 ≤ x < x1

p1(x) x1 ≤ x < x2

... ...

pn−1(x) xn−1 ≤ x < xn

where ea
h pi(x) is a
ubi
 polynomial of the form

p(x) = a3(x− xi)3 + a2(x− xi)2 + a1(x− xi) + a0

. To make the interpolation
ontinuous, smooth and well-behaved, we impose the

following
onditions

1. The pie
ewise fun
tion P(x) will interpolate all data points. That is P(xi) =
pi(xi) = yi

4.1. NUMERICAL METHODS 67

2. P(x) will be
ontinuous on the interval (x0, xn). That is pi(xi) = pi−1(xi)

3. The �rst derivative P′(x) will be
ontinuous on the interval (x0, xn). that is,

p′i(xi) = p′i−1(xi)

4. The se
ond derivativeP”(x) will be
ontinuous on the interval (x0, xn). That is,
p′′i (xi) = p′′i−1(xi)

The se
ond derivative of a
ubi
 polynomial is of degree one (a straight line). For the

�rst pair of points (x0, y0), (x1, y1) the following form may be
hosen.

p′′0(x) = a0
x− x1
x0 − x1

+ a1
x− x0
x1 − x0

a0 and a1 are then given by

p′′0(x0) = a0, p
′′

0(x1) = a1

whi
h are the values of the se
ond derivative of p0(x) at x = x0 and x = x1. Integrating
p′′0(x) with respe
t to x

p′0(x) = a0
(x− x1)2
2(x0 − x1)

+ A+ a1
(x− x0)2
2(x1 − x0)

+B

where A.B are
onstants of integration. The two
onstants are di�erent be
ause the

�rst term is integrated with respe
t to (x − x1) while the se
ond term is integrated

with respe
t to (x− x0) Integrating again

p0(x) = a0
(x− x1)3
6(x0 − x1)

+ A(x− x1) + a1
(x− x0)3
6(x1 − x0)

+B(x− x0)

To �nd A,B we use the two given points (x0, y0) and (x1, y1). Substituting x = x0

p0(x0) = a0
(x0 − x1)3
6(x0 − x1)

+ A(x0 − x1) + a1
(x0 − x0)3
6(x1 − x0)

+B(x0 − x0)

y0 = a0
(x0 − x1)3
6(x0 − x1)

+ A(x0 − x1)

A =
y0

x0 − x1
− a0(x0 − x1)

6

Similarly using p0(x1) = y1

y1 = p0(x1) = a0
(x1 − x1)3
6(x1 − x1)

+ A(x1 − x1) + a1
(x1 − x0)3
6(x1 − x0)

+B(x1 − x0)

B =
y1

x1 − x0
− a1(x1 − x0)

6

68 CHAPTER 4. NUMERICAL ANALYSIS

The polynomial has the form

p0(x) =
a0
6

(x− x1)3
(x0 − x1)

+

[

y0
x0 − x1

− a0
6
(x0 − x1)

]

(x− x1)

+
a1
6

(x− x0)3
(x1 − x0)

+

[

y1
x1 − x0

− a1
6
(x1 − x0)

]

(x− x0)

Similarly the polynomial between (x1, y1) and (x2, y2) will have the form

p1(x) =
a1
6

(x− x2)3
(x1 − x2)

+

[

y1
x1 − x2

− a1
6
(x1 − x2)

]

(x− x2)

+
a2
6

(x− x1)3
(x2 − x1)

+

[

y2
x2 − x1

− a2
6
(x2 − x1)

]

(x− x1)

To evaluate the se
ond derivatives ai = p′′i (xi), we use the
ondition that the �rst

derivative be
ontinuous at the knots. That is, p′0(x1) = p′1(x1).

p′0(x) =
3a0
6

(x− x1)2
(x0 − x1)

+
y0

x0 − x1
− a0

6
(x0 − x1)

+
3a1
6

(x− x0)2
(x1 − x0)

+
y1

x1 − x0
− a1

6
(x1 − x0)

p′0(x1) =
y0

x0 − x1
− a0

6
(x0 − x1) +

a1
2
(x1 − x0) +

y1
x1 − x0

− a1
6
(x1 − x0)

Rearranging and simplifying

p′0(x1) =
y0

x0 − x1
− a0

6
(x0 − x1) +

a1
2
(x1 − x0) +

y1
x1 − x0

− a1
6
(x1 − x0)

=
y1 − y0
x1 − x0

+
a0
6
(x1 − x0) +

2a1
6

(x1 − x0)

Similarly

p′1(x) =
3a1
6

(x− x2)2
(x1 − x2)

+
y1

x1 − x2
− a1

6
(x1 − x2)

+
3a2
6

(x− x1)2
(x2 − x1)

+
y2

x2 − x1
− a2

6
(x2 − x1)

At x = x1,

p′1(x1) =
3a1
6

(x1 − x2)2
(x1 − x2)

+
y1

x1 − x2
− a1

6
(x1 − x2) +

y2
x2 − x1

− a2
6
(x2 − x1)

Whi
h
an be simpli�ed as

p′1(x1) =
y2 − y1
x2 − x1

− 2a1
6

(x2 − x1)−
a2
6
(x2 − x1)

4.1. NUMERICAL METHODS 69

Therefore
ontinuity of �rst derivative requires

y1 − y0
x1 − x0

+
a0
6
(x1 − x0) +

2a1
6

(x1 − x0) =
y2 − y1
x2 − x1

− 2a1
6

(x2 − x1)−
a2
6
(x2 − x1)

a0
6
(x1 − x0) +

2a1
6

(x1 − x0) +
2a1
6

(x2 − x1) +
a2
6
(x2 − x1) =

y2 − y1
x2 − x1

− y1 − y0
x1 − x0

The se
ond and third terms on the left hand side may be
ombined

a0
6
(x1 − x0) +

2a1
6

(x2 − x0) +
a2
6
(x2 − x1) =

y2 − y1
x2 − x1

− y1 − y0
x1 − x0

For the polynomials p1(x) between (x1, x2) and p2(x) between (x2, x3),

a1
6
(x2 − x1) +

2a2
6

(x3 − x1) +
a3
6
(x3 − x2) =

y3 − y2
x3 − x2

− y2 − y1
x2 − x1

There are four unknowns a0, a1, a2, a3 and two equations. So the values of any two of

them must be assumed to get the other two. As two of the variables repeat in every

su

essive equations (a1, a2 here), if we
ompute all the n-polynomials between the

(n + 1) data points, we will get (n− 1) equations and (n + 1) variables. Usually it is

assumed that a0 = an = 0 so that there are (n − 1) variables and (n − 1) equations
whi
h
an be exa
tly solved. Cubi
 spline with a0 = an = 0 is
alled natural splin4e

If the x-values are equispa
ed, let xi+1 − xi = h, then the (n− 1) equations may be

written as

















4 1 0 ... 0 0 0
1 4 1 ... 0 0 0
1 4 1 ... 0 0 0
..
0 0 0 ... 1 4 1
0 0 0 ... 0 1 4

































a1
a2
a3
..

an−2

an−1

















=
6

h2

















y0 − 2y1 + y2
y1 − 2y2 + y3
y2 − 2y3 + y4

....
yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

















The general formula for the
ubi
 polynomial between xi and xi+1 is given by

pi(x) =
ai
6

(x− xi+1)
3

(xi − xi+1)
+

[

yi
xi − xi+1

− ai
6
(xi − xi+1)

]

(x− xi+1)

+
ai+1

6

(x− xi)3
(xi+1 − xi)

+

[

yi+1

xi+1 − xi
− ai+1

6
(xi+1 − xi)

]

(x− xi)

Problem 4 -Suppose

s(x) =

{

x3 + ax2 − 4x+ c, 0 ≤ x ≤ 2

−x3 + 9x2 + bx+ 34, 2 ≤ x ≤ 4

Find
onstants a, b, c su
h the s(x) is twi
e
ontinuously di�erentiable on the interval

[0, 4].

70 CHAPTER 4. NUMERICAL ANALYSIS

Problem 5 Suppose

s(x) =

{

ax3 + x −2 ≤ x ≤ 0

x3 + bx, 0 ≤ x ≤ 2

Find
onstants a, b su
h the s(x) is twi
e
ontinuously di�erentiable on the interval

[−2, 2].

Problem 6 Suppose

s(x) =

{

0 x ≤ 2

(x− 2)3 2 < x

Is s(x) a
ubi
 spline? Justify your answer.

Problem 7 Using
ubi
 spline interpolation te
hnique, �nd y(x = 0.6) from the fol-

lowing data.

x 0.1 0.2 0.4 0.7 1.1

y 0.5754 0.6796 0.8026 0.9179 1.0231

Ans: y(0.6) = 0.8846

4.1.3 Zeros of polynomials

Polynomials are used in physi
s to des
ribe the traje
tory of proje
tiles. Polynomial

integrals
an be used to express energy, inertia and voltage di�eren
e. in quantum

me
hani
s, orthogonal polynomials appear as energy and momentum eigenfun
tions.

The zero or root of these polynomials gives positions and instants of zero probability

for a physi
al system. They are also used for interpolation of experimental data.

De�nition 3 If p(x) =
∑n

i=0 aix
i
is a polynomial of degree n and p(b) = 0, then b is

alled a zero or root of the polynomial p(x).

There is an important theorem that relates the fa
tors and zeros (roots) of a polynomial.

There are 5 theorems about roots of Polynomials. They are n-Zero theorem, Remainder

theorem, Fa
tor theorem, Rational Root Theorem, Irrational Root Theorem, Complex

Root Theorem, Des
artes Rule.

Theorem 1 (n-Zero's Theorem) If p(x) is of Degree n, then it has at most n zeros.

Theorem 2 (The Remainder Theorem) If

p(x)

x− b = q(x)and r, the remainder, then p(b)

r

4.1. NUMERICAL METHODS 71

Proof:

p(x) = q(x)(x− b) + r, p(b) = r

To verify remainder theorem: If p(x) = x3 − x2 − 17x − 16. Let us divide p(x) by

(x − 5). The quotient is q(x) = x2 + 4x + 3 and the remainder is r = −1. Now

p(5) = 53 − 52 − 17× 5− 16 = −1 = r. Hen
e veri�ed.

If remainder r = 0 wehave the fa
tor theorem.

Theorem 3 (Fa
tor Theorem) If p(x) =
∑n

i=0 aix
i
is a polynomial of degree n and

(x− b) is a fa
tor of the polynomial p(x), then b is a zero of p(x).

Proof:

p(x) = q(x)(x− b), p(b) = 0

To verify fa
tor theorem: If p(x) = x3 + (a − 1)x2 − (a + 6)x − 6a. Fa
toring the

polynomial we get p(x) = (x+ a)(x+2)(x− 3). Hen
e x = (−a,−2,+3) are the set of
roots. p(−a) = a3 + (a− 1)a2 − (a+ 6)a− 6a = 0. Similarly p(−2) = p(3) = 0

Theorem 4 (Bolzano's Theorem) If p(x) is a
ontinuous fun
tion in the interval

x ∈ (a, b) and p(a)p(b) < 0, then there exists at least one x = c ∈ (a, b) su
h that

p(c) = 0.

This is a spe
ial
ase of Intermediate Value Theorem. To verify Bolzano's theorem:

If p(x) = 6x3 − 20x2 − 14x+ 60. (x− 2) is a zero of this fun
tion.

p(1.5) = +14.25, p(2.5) = −6.25, p(1.5)× p(2.5) = −89.0625 < 0

The root 2 lies between 1.5 and 2.5

Theorem 5 (Rational Roots Theorem) Rational Roots of p(x) =
∑n

i=0 aix
i
will

be of the form of (fa
tors of a0 divided by fa
tors of an.

A rational root is one whi
h is expressible as a quotient of two integers. In the poly-

nomial p(x) = 6x3 − 13x2 + x + 2, a0 = 2, an = a3 = 6. Hen
e the possible rational

roots are factors of a0/factors of a3 = factors of 2/factors of 6. That is

±1,±2
±1,±2,±3,±6 = ±1,±1/2,±1/3,±1/6,±2,±2/3

The theorem states that if there is a rational root , it must be one of these. In fa
t,

the roots are (2, 1/2,−1/3) whi
h belong to this set.

72 CHAPTER 4. NUMERICAL ANALYSIS

Theorem 6 (Irrational Root Theorem) If p(x) is a polynomial with rational
oef-

�
ients and a +
√
b where a and b are rational and

√
b is irrational is a root, then the

onjugate a−
√
b is also a root.

For example, if p(x) = 2x3 − x2 − 9x − 4, its roots are x0 = 1/2, x± = (1 ±
√
17)/2.

Irrational roots o

ur in pairs.

Theorem 7 (Complex Root Theorem) If p(x) is a polynomial fun
tion with real

oe�
ients and a+ ib is a root, then a− ib must also be a root of p(x).

This theorem states that if the Coe�
ients are real, all Complex Roots o

ur in Conju-

gate Pairs. For example, the roots of p(x) = 3x3+7x2+11x+3 are x± = −1±i
√
2, x0 =

1/3
An obvious
orollary is for an odd-degree polynomial there exist at least one real root.

A method of determining the maximum number of positive and negative real roots

of a polynomial is given by Des
artes Rule.

For positive roots, start with the sign of the
oe�
ient of the lowest (or highest) power

of x. Count the number of sign
hanges n as you pro
eed from the lowest to the

highest power (ignoring powers whi
h do not appear). Then n is the maximum number

of positive roots. Consider p(x) = x7 + x6 − x4 − x3 − x2 + x − 1. Sin
e there

are three sign
hanges, there are a maximum of three possible real positive roots.

A
tually, there is only one real positive root x = 1.1147 and three pairs of
omplex

roots −1.2± 0.6i,−0.3± i, 0.4± 0.5i for this polynomial.

Theorem 8 Every polynomial p of degree n with
omplex
oe�
ients ai and an 6= 0

an be represented as

p(x) =

n
∏

i=1

ai(x− bi)

where bi are the roots of p .

Sum and produ
t of roots of polynomials Any polynomial p(x) =
∑n

i=0 aix
i
of

degree n has n roots bi, i = 1, 2, 3..n. If ai are real, the sum and produ
t of roots are

given by

n
∑

i=1

bi = −
an−1

an
,

n
∏

i=1

bi = (−1)n a0
an

4.1. NUMERICAL METHODS 73

Numeri
al pro
edure: De�ation

Consider a polynomials of degree n > 2. Any one root b1 is found by any one of the

methods - bise
tion, Newton-Raphson, se
ant, Laguerre's et
. The polynomial
an

be written as a produ
t p(x) = (x − b1)q1(x) where q1(x) is a redu
ed or de�ated

polynomial of degree n− 1. Also the roots of q1 are exa
tly the remaining roots of p.
Any one root of q1 is then determined as b2. De�ating q1, q1(x) = (x − b2)q2(x). The
same pro
edure may be repeated till the degree of qi is 2. Then quadrati
 formula gives

the last two roots. This method of su

essive de�ation has the following advantages.

1. De�ation is just polynomial division.

2. The e�ort of �nding a root generally de
reases in ea
h step.

3. The method
annot
onverge twi
e to the same non-multiple root.

4. Su

essive De�ation is numeri
ally stable, if the root of smallest absolute value

is divided out in ea
h step.

Laguerre's Method of �nding polynomial roots: Polynomial roots
an be ra-

tional, irrational, real or
omplex, this method will
onverge to all types of roots.

The basi
 prin
iple of this iterative method is given below.

Let p(x) be a nth
degree polynomial.

p(x) = a0 + a1x+ a2x
2 + ... + anx

n =
n

∑

i=0

aix
i

If the n roots are bi, i = 1, 2, 3, ...n.

p(x) = (x− b1)(x− b2).....(x− bn) =
n
∏

i=1

(x− bi)

Taking logarithm of modulus on both sides

ln |p(x)| = ln |(x− b1)|+ ln |(x− b2)|.....+ ln |(x− bn)| =
n

∑

i=1

ln |(x− bi)|

The modulus is taken sin
e logarithm of negative real numbers and
omplex numbers

are not de�ned. Di�erentiating with respe
t to x

d ln |p(x)|
dx

= +
1

(x− b1)
+

1

(x− b2)
..... +

1

(x− bn)

74 CHAPTER 4. NUMERICAL ANALYSIS

p′(x)

p(x)
=

n
∑

i=1

1

(x− bi)
= c(say)

Di�erentiating again

d2 ln |p(x)|
dx2

= − 1

(x− b1)2
− 1

(x− b2)2
.....− 1

(x− bn)2

p′′(x)p(x)− p′(x)p′(x)
p(x).p(x)

=
p′′(x)

p(x)
−

[

p′(x)

p(x)

]2

= −
n

∑

i=1

1

(x− bi)2

[

p′(x)

p(x)

]2

− p′′(x)

p(x)
=

n
∑

i=1

1

(x− bi)2
= d(say)

Let xj − bj = ej where xj is the jth trial root and bj , the a
tual root. To �nd ej ,
we assume that all other roots bi are equidistant from xj . Let xj − bi = s, i =
1, 2, .., n and i 6= j. Then

c = +
1

s
+

1

s
.....+

1

ej
+ +

1

s
=

1

ej
+
n− 1

s

Similarly

d =
1

e2j
+
n− 1

s2

Eliminating s and solving for ej

ej =
n

c±
√

(n− 1)(n d− c2)

For |ej | to be small, the modulus of denominator |c ±
√

(n− 1)(n d− c2)| must be

large. If c < 0, denominator is c−
√

(n− 1)(n d− c2). If c > 0, the denominator must

be c+
√

(n− 1)(n d− c2). To redu
e ej , the pro
ess is repeated with xj → xj − ej till
reasonable a

ura
y is obtained.

The polynomial is then divided by (x − bj) to get a lower degree polynomial q(x).
The root of q(x) is found using the same method. This pro
edure is repeated, till all

the roots are obtained.

Example-1 : To �nd the roots of the polynomial p(x) = 6x4+23x3+37x2+28x+6
we �nd that all
oe�
ients are real and positive and rational. Hen
e
omplex and

irrational roots o

ur in pairs. No
hange of sign means no real positive root. p′(x) =
24x3 + 69x2 + 74x+ 28 and p′′(x) = 72x2 + 138x+ 74. Let us assume that xj = −1.0

4.1. NUMERICAL METHODS 75

in Legurre's pro
edure

−2.0 −1.5 −1.0 −0.5 0.0
x

−4

−2

0

2

4

6

8

10

p(
x)

b1 b2

Trial value: x=-1.0000

(1),p(-1.0000)=-2.0000,p'(-1.0000)=-1.0000,

p''(-1.0000)= 8.0000,
=0.5000,d=4.2500, x=-1.5271,

(2)p(-1.5271)=0.2480,p'(-1.5271)=-9.5650,

p''(-1.5271)=31.1665,
=-38.5659,d=1361.6680, x=-1.5000

(3) p(-1.5000)=-0.0000 .Hen
e it is one root.

Hen
e x = −1.5 is a root. (x+ 1.5) = (2x+ 3)/2 is a fa
tor of given polynomial.

q(x) =
p(x)

2x+ 3
= 3x3 + 7x2 + 8x+ 2

Trial value: x=0.0000

(1) q(0)=2.0000 q'(0)=8.0000

q''(0)=14.0000
=4.0000 d=9.0000, x=-0.3405

(2)q(0.3405)=-0.0310 q'(0.3405)=4.2761

q''(0.3405)=7.8702
=-137.7945 d=19240.9417, x=-0.3333

(3)q(0.3333)=0.0000 Hen
e it is another root.

Hen
e x = −0.333 is a root. (x+ 0.3333) = (x+ 1/3) = (3x+ 1)/3 is a fa
tor of given
polynomial.

q1(x) =
q(x)

3x+ 1
= x2 + 2x+ 2

76 CHAPTER 4. NUMERICAL ANALYSIS

This quadrati
 equation has roots

x± =
−2 ±

√
22 − 4.1.2

2
= −1± i

Hen
e the set of roots are (x = (1/3, 3/2, 1 + i, 1− i)

Example-2 : To �nd the roots of the polynomial p(x) = x4+1x3+6x2+4x+16 we
�nd that all
oe�
ients are real and positive. Hen
e
omplex and irrational roots o

ur

in pairs. No
hange of sign means no real positive root. p′(x) = 4x3 + 3x2 + 12x + 4
and p′′(x) = 12x2+6x+12. We start with a small trial root xj = −1.0. The iterations
give following values. (1)xj = (−0.8− 1.2499j), (2)xj = (−0.9851− 1.7613j), (3)xj =

(−1.0000 − 1.7320j) = −1 −
√
3j Sin
e −1 −

√
3j is a root its
omplex
onjugate

−1 +
√
3j is also a root. Hen
e by fa
tor theorem

p(x) = q(x)[x+ 1 +
√
3j][x+ 1 +

√
3j] = q(x)(x+ 1)2 + 3 = q(x)(x2 + 2x+ 4)

q(x) =
x4 + 1x3 + 6x2 + 4x+ 16

x2 + 2x+ 4
= x2 − x+ 4

The roots of this quadrati
 equation are given by x± = 0.5± 1.9365j. Hen
e the set of
roots are (−1 ±

√
3j, 0.5± 1.9365j)

Problem 8 Gas tank that is 10 meters in length (end to end)
onsists of a right-

ylinder and is
apped at either end by a hemisphere. What is the radius of the tank if

the volume is 50
ubi
 meters?

Answer: V olume = 2πr3/3+πr2(L−2r)+2πr3/3 simplify to the form πr3−15πr2+
75 = 0 The three roots are r = 14.89235732, 1.32108215,−1.21343947. The �rst is not
possible as the total length is only 10m. Third value is una

eptable as radius
annot

be negative. So r = 1.32108215. Also 2πr3/3 + πr2(L− 2r) + 2πr3/3 = 50.00104m3

Example-3 : To �nd the roots of a
ubi
 polynomial p(x) = x3 + x− 10, we observe
that there is one sign
hange so that there may be a positive root. Sin
e
oe�
ients

are real,
omplex and/or irrational roots o

ur in pairs. Sin
e there are only 3 roots

one of them must be real. We start with a trial xj = 0 in Legurre's pro
edure. The two
iterations give (1) xj = 1.4293 and (2) xj = 2.0068 so that p(x) = 0.0 Hen
e (x− 2) is
a fa
tor. Dividing with this fa
tor

q(x) =
x3 + x− 10

x− 2
= x2 + 2x+ 5

4.1. NUMERICAL METHODS 77

Using quadrati
 formula

x± =
−2±

√
4− 20

2
= −1 ± 2j

Hen
e the roots are (2,−1± 2j)

Example-4 : To �nd the roots of a
ubi
 polynomial p(x) = 6x3 − 11x2 − 14x+ 24,
we observe that there are 2 sign
hanges so that there may be 2 positive roots. As

before we start with xj = 0 in Legurre's pro
edure. Su

essive iterations give xj =
0.9101, 1.3001, 1.3333(= 4/3) Hen
e x− 4/3 or (3x− 4) is a fa
tor.

q(x) =
6x3 − 11x2 − 14x+ 24

3x− 4
= 2x2−x−6 = 2x2−4x+3x−6 = 2x(x−2)+3(x−2) = (x−2)(2x+3)

The roots are x = 2 and x = −3/2. The set of 3 roots are x = 2, 4/3,−3/2.

Problem 9 Find roots of following polynomials using Legurre's method.

No. polynomial p(x) Answer(j =
√
−1)

1 x4 − 10x3 + 35x2 − 50x+ 24 1, 2, 3, 4
2 x4 − 2x3 + 2x− 1 1,−2,−3, 4
3 x4 − 3x3 − 3x2 + 11x− 6 2,−1/3, 3/2, 2
4 x4 − 4x3 + 6x2 − 4x+ 1 1, 3, (2± 1j)
5 x4 + 4x3 + 6x2 + 4x+ 5 2± j, 0± j
6 x3 − 3x2 + 3x− 1 (2± 3j), 4
7 x3 − 6x2 + 11x− 6 2, 3, 4
8 x3 − 4x2 + 5x− 2 (1± 5j), 3
9 x3 − 8x2 + 20x− 16 3, 3, 0.5

4.1.4 Monte Carlo Methods

Monte Carlo method is an iterative
omputational method used to
al
ulate multi-

dimensional integrals and investigate the behaviour of physi
al systems using sto
hasti

methods. It is used as a statisti
al tool in studying situations whi
h are not amenable

to
ompute using deterministi
 algorithms. With the development of powerful
om-

puters and e�
ient algorithms, the Monte Carlo method is found to be very useful

in �nding numeri
al solutions to quantitative problems whi
h are nonlinear and in-

volving un
ertain parameters. In physi
s, Monte Carlo methods are used in nu
lear

physi
s(nu
lear model), mole
ular dynami
s,
rystal physi
s, statisti
al physi
s(Ising

model), X-ray Imaging, Ele
tron Dynami
s in Doped Semi
ondu
tors, Quantum
hro-

modynami
s et
. This method is based on the following
on
epts and prin
iples.

78 CHAPTER 4. NUMERICAL ANALYSIS

De�nition 4 (Random variable) A random variable is an assignment of numbers

to possible out
omes of random events.

For example,
onsider tossing a pair of
oins. The number of heads n showing when

the
oins land is a random variable. It
an be assigned the number 0 to the out
ome

[Tail, Tail℄. That is n(T, T) = 0. Similarly n(T,H) = n(H, T) = 1 and n(H,H) = 2.

De�nition 5 (Expe
tation or Expe
ted Value) The expe
ted value of a random

variable is the long-term limiting average of its values in independent repeated events.

The expe
ted value of the random variable X is denoted E[X℄. For example, while

tossing a
oin, the fra
tion of times the
oin lands with head up is half when the

number of tosses are very large. It is expressed as E[n(H)] = 0.5. This idea
an be

expressed mathemati
ally as follows. Let a random variable X takes a values xi with
probability pi. If the sum of produ
ts
onverges absolutely to some value Y , that is,

lim
n→∞

n
∑

i=1

pi.xi = Y

, then Y is the expe
tation of X . For a
ontinuous random variable X , the expe
tation

may be de�ned as

E[X] =

∫

xP (x)dx

where P (x) is the probability of random variable X having a value x.

Taking the expe
ted value is a linear operation: if X and Y are two random

variables,E[X + Y] = E[X] + E[Y], and for any
onstant a, E[aX] = aE[X]

Theorem 9 (Law of large numbers) As the number of trials of a random pro
ess

in
reases, the per
entage di�eren
e between the expe
ted values and a
tual values (mean

measured values) of all random variables goes to zero.

The mean of values of x obtained from n independent trials is given by

〈x〉 = 1

N

N
∑

i=1

xi

The law of large numbers states that

lim
N→∞

E[x]− 〈x〉 = 0

4.1. NUMERICAL METHODS 79

Simple integration

Basi
 Prin
iple: Consider the de�nite integral

∫ b

a
f(x)dx where f(x) is di�erentiable

in the interval (a, b). By de�nition,

∫ b

a

f(x)dx = lim
N→∞

N
∑

i=0

f(xi)δxi

where a ≤ xi ≤ b. If δxi is a
onstant for all i, δxi = (b− a)/N .

∫ b

a

f(x)dx = lim
N→∞

b− a
N

N
∑

i=0

f(xi)

if xi are
hosen at random between a and b. But

1

N

N
∑

i=0

f(xi) = 〈f〉

lim
N→∞

1

N

N
∑

i=0

f(xi) = lim
N→∞

〈f(xi)〉 = E[f]

where E[f] is the expe
tation by law of large numbers. If b− a) = L,

∫ b

a

f(x)dx = L〈f〉

For surfa
e and volume integrals, the above relation be
omes

∫

s

f(x)dx = S〈f〉,
∫

v

f(x)dx = V 〈f〉

The error e in the above
al
ulation is the di�eren
e between the expe
ted value and the
mean value whi
h is given by their standard deviation. For a k-dimensional integral,

it is given by

e = ±τ
√

〈f 2〉 − 〈f〉2
N

where τ is k-dimensional volume and 〈f 2〉 =
∑N

i=0 f
2(xi). It is only a rough estimate

of the error.

Numeri
al pro
edure: In order to integrate a fun
tion over a
ompli
ated domain

D, Monte Carlo integration uses random points over some simple domain D′
, whi
h

en
loses D. Ea
h random number generated is then
he
ked to see whether it is within

80 CHAPTER 4. NUMERICAL ANALYSIS

D. Out of the n random numbers, if m are within D, then the ratio (m/n) gives the
ratio of n-dimensional volumes D/D′

. For example, to
al
ulate the area D of one

quadrant of a
ir
le of radius r, we en
lose it within a square (D′
) of side r. Pairs

of random numbers (xi, yi) in the interval (0, r) are generated and
he
ked to see if

x2 + y2 ≤ r2 so that it is within D. The ratio m/n of the number of random pairs to

the total number of pairs gives the ratio of their areas D/D′
. Then

D = D′(m/n)

.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

For example, the integral

∫ 2π

0

dθ

2 + cos θ
whi
h is 2π/

√
3 = 3.62759872847, gives the

following values.

No.of random points in (0, 2π) Value of integral

10000 3.63293517

20000 3.63805025

30000 3.63569129

40000 3.63152102

50000 3.62770939

Integration by Importan
e Sampling

To redu
e the varian
e(standard deviation) in the
al
ulation of a de�nite integral

using Monte Carlo method, sampling of the data points is introdu
ed. Sampling is

the pro
ess of sele
ting data from a domain of interest. By studying the sample, one

an generalize the results ba
k to the data set from whi
h sample
hosen. Sampling

redu
es volume of data to be pro
essed, thereby redu
ing
omputing time.

4.1. NUMERICAL METHODS 81

Importan
e sampling: The term importan
e sampling refers to the pro
ess of
las-

sifying values of the input random variables in a simulation a

ording to the impa
t on

the quantity being estimated. If the large impa
t values (important values) are empha-

sized by sampling more frequently, then the varian
e of the estimated quantity
an be

redu
ed. Hen
e, the basi
 methodology in importan
e sampling is to
hoose a distri-

bution whi
h gives more weight to the important values. In a simulation, outputs are

again weighted to
orre
t for the use of the biased distribution. This ensures that the

new importan
e sampling is unbiased. Thus the fundamental problem in importan
e

sampling is to determine the distribution that is properly biased. Su
h a distribution

saves large amounts of
omputing time.

Integration using importan
e sampling Consider the integral I =
∫

f dτ where

f is a
ontinuous fun
tion in some n-dimensional volume τ . Let f(x) = g(x)h(x) where
g(x) is a positive fun
tion satisfying the
ondition

∫

g(x)dτ = 1. Then the integral

be
omes I =
∫

h(x)g(x) dτ . This
an be interpreted as follows.

One
an integrate f by sampling it with uniform probability density dτ in simple

Monte Carlo method. But the same
an be done by sampling h(x) with non-uniform

probability density g(x)dτ . The generalized fundamental theorem is that the integral

of any fun
tion f is estimated, using N sample points xi, ..., xN , by

∫ b

a

f(x)dτ = τ〈f
g
〉

with an error estimate

error = ±τ
√

〈f 2/g2〉 − 〈f/g〉2
N

To
hoose the probability distribution g(x), one pro
eeds by sear
hing a fun
tion whi
h
minimises the absolute value of error (variational method). This may be taken as a

onstraint so that Legrange's multiplier method
an also be used for �nding g(x).

4.1.5 Sampled Data

Sampled data refers to a subset of a large data system that is dis
rete or
ontinuous

and whi
h has all the
hara
teristi
s of the
omplete data system. The size of the

sample required for this purpose is given by sampling theorem.

Theorem 10 (Nyquist-Shannon Sampling Theorem) In order for a band-limited

signal of maximum frequen
y νm to be re
onstru
ted fully, it must be sampled at a rate

f ≥ 2νm.

82 CHAPTER 4. NUMERICAL ANALYSIS

Here band-limited signal refers to a signal with a zero power for frequen
ies ν > νm.
A signal sampled at f = 2νm is said to be Nyquist sampled, and fc is
alled the

Nyquist
riti
al frequen
y. No information is lost if a signal is sampled at fc, and no

additional information is gained by sampling faster than this rate. For example, to

sample a sine wave of frequen
y ν, the minimum sampling rate is fc = 2ν. That is the
time interval ∆ between samples and period of sine wave T are related as Delta = T/2.
Hen
e a
onvenient
hoi
e is to sample at positive and negative peak of the wave. If h(t)

ontains frequen
ies f outside of the range (−fc, fc) where fc is the Nyquist frequen
y,
then the power
ontent of these frequen
ies is moved into that range −fc < f < fc so
that power spe
trum is modi�ed. This phenomenon is
alled aliasing . Any frequen
y

omponent outside of the range (−fc, fc) is translated into that range as a result of

dis
rete sampling.

4.1.6 Dis
rete Fourier Transform

Consider a fun
tion h(t) of a
ontinuous variable t transformed into a fun
tion H of

another independent variable ω having range (−∞,∞) by the equation

H(ω) =

∫

∞

−∞

h(t)eiωtdt

where ω = 2πf . h(t)
an be retrieved using the inverse transform

h(t) =

∫

∞

−∞

H(ω)e−iωtdω

The integration in these transforms
an be repla
ed with a summation over the fun
tion

values h(t)
orresponding to properly sampled values of t. Consider N
onse
utive

sampled values at
onstant separation ∆. Let

tk = k∆, hk ≡ h(tk), k = 0, 1, 2, ..., N − 1

If the fun
tion h(t) is
ontinuous and not periodi
, then we assume that the sampled

points are su
h that h(t) is similar in stru
ture at all times t. Even though all frequen-

ies in the Nyquist frequen
y range (−fc, fc) are possible, we
an get Fourier transforms

H(fk) only for N-frequen
ies as there are only N-input samples. Consider N values

fn =
n

N∆
, n = [N/2, (N/2)− 1, (N/2)− 2, ...(−N/2) + 1,−N/2]

The extreme values of n, that is ±N/2 exa
tly
orrespond to the lower and upper limits

±fc. If ωn = 2πfn, then the dis
rete Fourier transform is given by

H(ωn) =

∫

∞

−∞

h(t)eiωntdt ≈
N−!
∑

k=0

hke
(iωntk)∆ = ∆

N−!
∑

k=0

hke
(iωnk∆)

4.1. NUMERICAL METHODS 83

Substituting for ωn∆ = 2πfn∆ = 2πn/N in the exponent

H(ωn) = ∆
N−!
∑

k=0

hk exp

(

2πikn

N

)

The quantity

N−!
∑

k=0

hk exp

(

2πikn

N

)

= Hn

where Hn is
alled the dis
rete Fourier transform of the N points hk.

H(fn) ≈ Hn∆

The inverse dis
rete Fourier transform is then given by

hk =
1

N

N−!
∑

n=0

Hn exp

(

−2πikn
N

)

Algorithm For n data points

1: Read input list x of length n
2: ω ← 2π/n
3: for p = 0 to n− 1 do
4: s← 0
5: for q = 0 to n− 1 do
6: s← s+ xqe

iωpq

7: end for

8: yp ← s
9: end for

Program: The following fun
tion will
al
ulate the dis
rete Fourier transform of list

of values x.

#input x is list, y is output list

from
math import*

def dft(x):

n = len(x)

omega, y = 2*pi/n,[0℄*n

for p in xrange(n):

s = 0

for q in xrange(n):

s +=x[q℄*exp(omega*q*p*1j)

84 CHAPTER 4. NUMERICAL ANALYSIS

y[p℄ = s

return y

print dft([1,3,5,3,1,-1,-3℄)

Output

[(9+0j), (-3.49+11.41j), (-0.11+1.681j), (2.60-0.14j),

(2.60+0.14j), (-0.11-1.68j), (-3.49-11.41j)℄

Thus the
al
ulation of dis
rete Fourier transform of N -sampled points requires N ×
N = N2

omputations. There is an algorithm to redu
e the number of
omputations

N log2N
alled Fast Fourier Transform.

4.1.7 Fast Fourier Transform(FFT)

This algorithm was �rst
on
eived by Gauss in the 18th
entuary. With the advent of

modern
omputers, Tukey and Cooley developed an algorithm to implement it on a

digital
omputer. There are other algorithms similar to this one developed re
ently.

The basi
 prin
iple is the divide and
onquer strategy just like any other large data

systems. The dis
rete Fourier transform of n-sampled points requires N × N = N2

omputations. If the data set is divided into two equal parts, ea
h part requires N2/4

omputations for its Fourier transform. Hen
e total number of
omputations is only

N2/2 = N2/21 whi
h shows a redu
tion by N2/2. If ea
h half is still divided, the

number of
omputations gets redu
ed to 4 × (N/4)2 = N2/4 = N2/22 In general if

the N = 2p-points are divided into M = 2q equal parts, the number of
omputations

be
omes N2/2M = 22p−q
.

Pro
edure: There are di�erent algorithms for FFT. One of the simplest is the Sande-

Tukey algorithm. It is given below.

Let N = 2p an integer power of 2. If the length of the data set is not a power of two,
zeros may be added as data elements up to the next power of two. If fn are n-data
points separated by N equal intervals, then its dis
rete Fourier transform (DFT) is

given by

Fk =

N−1
∑

n=0

fnW
nk, k = 0, 1, 2, 3..N − 1

where W = e2πi/N . Let us divide the entire data into two sets-odd and even indi
es-

4.1. NUMERICAL METHODS 85

ea
h of length N/2 with

Fk =

(N/2)−1
∑

n=0

f2nW
2nk +

(N/2)−1
∑

n=0

f2n+1W
(2n+1)k

=

(N/2)−1
∑

n=0

W 2nk
[

f2n + f2n+1W
k
]

= F
(e)
k +W kF

(o)
k

where F
(e)
k =

∑N/2−1
n=0 W 2nkf2n and F

(o)
k =

∑N/2−1
n=0 W 2nkf2n+1, supers
ript 'o' and 'e'

stands for odd and even number4ed data. The
rux of the solution is to
onsider these

odd and even sets of N/2 numbers as transforms of sequen
es of length N/2. This is

alled Danielson-Lan
zos Lemma. It is found that this Lemma
an be used re
ursively.

Having redu
ed the problem of
omputing Fk to that of
omputing F
(e)
k and F

(o)
k , the

same redu
tion of F
(e)
k to the problem of
omputing the transform of its N/4 even-

numbered input data (even k in f2k) as F
(ee)
k and N/4 odd-numbered data (odd k in

f2k) F
(eo)
k . Similarly division of F

(o)
k
an also be done into F

(oe)
k and F

(oo)
k . In other

words, one
an de�ne dis
rete Fourier transforms of the points whi
h are respe
tively

even-even, even-odd, odd-even and odd-odd on the su

essive subdivisions of the data.

Sin
e N is a power of 2, it is evident that one
an
ontinue applying the Danielson-

Lan
zos Lemma until we have subdivided the data all the way down to transforms of

length 1. The Fourier transform of length one is just the identity operation that
opies

its one input number into its one output slot! In other words, for every pattern of

log2N there is a one-point transform that is just one of the input numbers fn for some

n.

4.1.8 Shooting method

Shooting method is employed to solve ordinary se
ond order di�erential equations with

a pair of boundary
onditions . It is a two-point boundary value problem. The bound-

ary
onditions at the starting point do not determine a unique solution to start with.

Starting boundary
onditions is almost
ertain not to satisfy the boundary
onditions

at the other boundary point. In general, iteration is required to
orrelate boundary

onditions into a single global solution of the di�erential equation. Di�erential equa-

tions are to be integrated over the interval of interest several times. Only for linear

di�erential equations, the number of iterations
an be predi
ted. Consider the general

form of a se
ond order linear di�erential equation for the fun
tion y(x)

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x)

86 CHAPTER 4. NUMERICAL ANALYSIS

with boundary
ondition y(a) = α, y(b) = β. Suppose u(x) is a fun
tion whi
h satis�es

the above equation with initial
onditions u(a) = α, u′(a) = 0

u′′(x) = p(x)u′(x) + q(x)u(x) + r(x)

Let v(x) be a fun
tion whi
h satis�es the equation

v′′(x) = p(x)v′(x) + q(x)v(x), v(a) = 0, v′(a) = 1

Then the linear
ombination y = u+ cv is a solution.

y′′(x) = u′′(x) + cv′′(x)

= p(x)u′(x) + q(x)u(x) + r(x) + c[p(x)v′(x) + q(x)v(x)]

= p(x)[u′(x) + cv′(x)] + q(x)[u(x) + cv(x)] + r(x)

= p(x)y′(x) + q(x)y + r(x)

To evaluate
, we use the boundary
ondition at x = b

u(b) + cv(b) = β, c =
β − u(b)
v(b)

Hen
e the solution is

y(x) = u(x) +
β − u(b)
v(b)

v(x)

Pro
edure: Any se
ond order linear di�erential equation
an be split into two
ou-

pled �rst order equations and solved by Runge-Kutta method if two initial
onditions

are known. In linear shooting method, the following pro
edure is followed.

1. First solve

u′(x) = s(x), u(a) = α

s′(x) = p(x)s(x) + q(x)u(x) + r(x), s(a) = 0

2. Then solve

v′(x) = t(x), v(a) = 0

t′(x) = p(x)t(x) + q(x)v(x), t(a) = 1

3. Finally, the desired solution y(x) is the linear
ombination

y(x) = u(x) +
β − u(b)
v(b)

v(x)

4.1. NUMERICAL METHODS 87

Eigenvalue problems: Consider boundary value problem

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x), y(a) = α, y(b) = β

. If q(x) = λ a
onstant and r(x) = 0, it be
omes an eigenvalue problem in di�erential

equations.

y′′(x)− p(x)y′(x) = λy(x), y(a) = α, y(b) = β

. Here λ is an eigenvalue and y(x) is an eigenfun
tion
orresponding to λ. The method

of solution involves the
omputation y(b) for di�erent λ and �nd the one for whi
h

y(b) = β. This
an be done e�
iently if we �nd the roots of the logarithmi
 derivative

as it will
an
el all multipli
ative
onstants from y and y′.

[

y′(x, λ

y(x, λ)

]

x=β

= 0

4.1.9 Relaxation method:

It is an approa
h di�erent from shooting method. The di�erential equations are re-

pla
ed by �nite-di�eren
e equations between a set of points in the range of integration.

The
onversion of a di�erential operator to a di�eren
e operator is done as follows. Let

y0, y1, y2 be three points
orresponding to the x-values x0, x0+ δx, x0+2δx respe
tively

y′(x0) =

[

dy

dx

]

x=0

≈ y1 − y0
x0 + δx− x0

=
y1 − y0
δx

y′′(x0) =

[

dy′

dx

]

x=0

≈ y′1 − y′0
δx

≈
[

y2 − y1
δx

− y1 − y0
δx

]

1

δx
=
y2 − 2y1 + y0

(δx)2

Pro
edure: The method of solution involves the following steps. Let y(x) be the

unknown fun
tion

1. The di�erential equation is
onverted into a di�eren
e equation.

2. A trial solution is assumed whi
h
onsists of values for the dependent variables

at ea
h mesh point. It may not satisfy the desired �nite-di�eren
e equation, nor

the required boundary
onditions.

3. It is then substituted in the di�eren
e equation and a solution is obtained.

4. This solution is substituted ba
k to the di�eren
e equation and solution is again

found.

88 CHAPTER 4. NUMERICAL ANALYSIS

5. This iterative pro
ess is
ontinued till the solution is in
lose agreement with

the true solution. This is indi
ated by the agreement with di�eren
e equation

and boundary
ondition. Also further iteration will not
hange the solution

signi�
antly.

Relaxation method is preferred over shooting method in the following situations.

• If the boundary
onditions are subtle, or involve
ompli
ated algebrai
 relations.

• If the solution is smooth and not highly os
illatory.

• If the di�erential equations have extraneous solutions whi
h disappears during

iteration. They will not appear in the �nal solution satisfying all boundary

onditions.

• If a good initial guess is possible, relaxation methods are very e�
ient. Often

it may be ne
essary to solve a problem many times, ea
h time using a slightly

di�erent value of some parameter like an eigenvalue. In that
ase, the previous

solution is usually a good initial guess when the parameter is
hanged.

Chapter 5

Simulations

5.1 A
omputational approa
h to physi
s

Simulation in physi
s refers to the imitation of the behaviour of physi
al systems with

time (temporal evolution). Time evolution of a system follow deterministi
 laws. These

laws are invariably di�erential equations. If the di�erential equations are non-linear

or they are sets of
oupled equations, analyti
 solutions are either too di�
ult or

impossible without heavy approximations. Numeri
al solutions are the only alternative

in those
ases. To redu
e the errors in the results, often one has to use a large number

of time steps. A
omputer be
omes an absolute ne
essity in su
h
ases. By
hanging

variables in the simulation, the behaviour of the system under di�erent
ir
umstan
es

an be studied virtually. It thus leads to the
on
ept of a theoreti
al lab.

Steps involved in Simulation

The number of steps involved depends generally on the
omplexity of the phenomena

to be simulated. But the following 7 steps are mandatory.

1. Identify the property or phenomena of interest to be studied.

Eg. Motion of masses under mutual attra
tion.

2. Choose the �eld of for
e whi
h des
ribes how the atoms or other parti
les within

the system intera
t with ea
h other and also with the external world.

In the above
ase, it
an be an inverse-square law for
e.

f =
k

r2

89

90 CHAPTER 5. SIMULATIONS

3. Create a set of variables that you may need to
onstru
t a simulation.

In the above
ase, initial and
urrent positions (x0, y0), (x, y), initial and
urrent

velo
ities (vx0, vy0), (vx, vy), a

eleration a = f/m and time step dt

4. Derive an equation relating di�erent variables. In most of the
ases of interest in

physi
s, it may be a di�erential equation.

In the above
ase, as a

eleration is radial ax = a cos θ, ay = a sin θ = ky/r3

ax =
d2x

dt2
= k.x/r3

ay =
d2y

dt2
= k.y/r3

5. Choose a suitable method of solution of the equation. For ordinary di�erential

equations any of these methods- Runge-Kutta, predi
tor-
orre
tor, Monte-Carlo,

Euler et
.-may be used. In Euler method.

vx = vx0 + axdt

vy = vy0 + aydt

x = x0 + vxdt

y = y0 + vydt

6. Solve the equation for di�erent values of the variable starting from initial values

and in
rementing in steps of proper size.

Cal
ulate [x(t + n dt), y(t+ n dt)] from [x{t + (n− 1)dt}, y{t+ (n− 1)dt}].

7. Either print the output as a table of values or plot the output as a graph.

5.1.1 Simple harmoni
 os
illator

Prin
iple

A simple harmoni
 os
illator is des
ribed by the equation

d2x

dt2
+ ω2x = 0

This
an be split into 3 equations using a

eleration a, velo
ity v and displa
ement x
as follows.

a = −ω2x, δv = a δt, δx = v δt

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 91

As before, the last two relations
an be expressed as

vi = vi−1 + a δt

Similarly the displa
ement is given by

xi = xi−1 + viδt

The x− t graph and x− v graph (Phase
urve) are drawn for the os
illator.

Program

from pylab import*

n=50

x=zeros(n,dtype=float)

t=zeros(n,dtype=float)

v=zeros(n,dtype=float)

a=zeros(n,dtype=float)

x[0℄,v[0℄,omega=0,2,1 #input('initial displa
ement, velo
ity and angular frequen
y')

dt=2.1*pi/(n*omega)

a[0℄=-x[0℄*omega**2

for i in range(1,n):

a[i℄=-x[i-1℄*omega**2

v[i℄=v[i-1℄+a[i℄*dt

x[i℄=x[i-1℄+v[i℄*dt

t[i℄=t[i-1℄+dt

subplot(2,2,1)

xlabel("time")

ylabel("displa
ement")

grid(True)

plot(t,x)

subplot(2,2,2)

xlabel("time")

ylabel("velo
ity")

grid(True)

plot(t,v)

subplot(2,2,3)

xlabel("displa
ement")

ylabel("velo
ity")

grid(True)

plot(x,v)

subplot(2,2,4)

xlabel("time")

92 CHAPTER 5. SIMULATIONS

ylabel("a

eleration")

grid(True)

plot(t,a)

show()

0 1 2 3 4 5 6 7
time

−3

−2

−1

0

1

2

3

di
sp
la
ce
m
en

t

0 1 2 3 4 5 6 7
time

−3

−2

−1

0

1

2

3

ve
lo
ci
ty

−3 −2 −1 0 1 2 3
displacement

−3

−2

−1

0

1

2

3

ve
lo
ci
ty

0 1 2 3 4 5 6 7
time

−3

−2

−1

0

1

2

3

ac
ce
le
ra
tio

n

5.1.2 Central �eld motion

A for
e �eld having a potential fun
tion V (r, θ, φ) = V (r) is
alled a
entral �eld. As

it depends only on r it has spheri
al symmetry and
onsequently angular momentum

is
onserved. Gravitational �eld and Coulomb �eld are examples of
entral �elds. The

general form of the potential is V (r) = krn where k is a
onstant and n a real number.

Rutherford s
attering is an example of motion in a repulsive
entral �eld.

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 93

.

.......
......
......
......
......
......
......
......

.......
......
...

.........
...........................

............................

........
...........

..........
...........

...........
..........

...

.

....
.....
....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.

..
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
..

..
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
..

..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..

.

.

..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.

.

.

.

.

..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

① b

θ

B(xn, yn)

A(x1, y1) C

Prin
iple

Rutherford's experiment is to measure the de�e
tion of a beam of α− parti
les by gold

nu
lii due to Coulomb repulsion. The ele
trostati
 for
e is given by

~F =
Ze.2e

4πǫ0r2
r̂

Resolving and putting r2 = x2 + y2, the
omponents of a

eleration are

ax =
2ze2x

4mπǫ0r3
(1)

ay =
2ze2y

4mπǫ0r3

Putting c =
2ze2

4mπǫ0
, ax =

d2x

dt2
and ay =

d2y

dt2
one gets

d2x

dt2
=

cx

(x2 + y2)3/2
(2)

d2y

dt2
=

cy

(x2 + y2)3/2

The velo
ity and position of every α−parti
le at di�erent instants of time are then

determined by solving the above di�erential equations numeri
ally. From �gure, if

(x1, y1) are asymptoti
 points , △ABC is isos
eles. If θ is the angle of de�e
tion,

cot (θ/2) =
xn − x0
yn − y0

94 CHAPTER 5. SIMULATIONS

−6 −4 −2 0 2 4 6
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
y

Path of alpha particle

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
impact parameter b

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

co
t(t

he
ta

/2
)

Relation between b and theta

Algorithm

1: Read the initial values of velo
ities and positions of parti
les in the beam, the

impa
t parameter and the time step dt.
2: for b=0 to 20 step 1 do

3: while ‖y‖ is below a �xed value yn do
4: Cal
ulate ax and ay using formulae 3 and 5.1.2

5: Cal
ulate x and y using 4th-order Runge-Kutta Method.

6: plot (x, y)
7: end while

8: Cal
ulate cot (θ/2) and b/ cot (θ/2)
9: plot cot (θ/2) against b

10: end for

11: End

Program

from pylab import*

=21.82743562;

dt=0.0001

x=zeros(10001,'float')

y=zeros(10001,'float')

b=linspa
e(0,1,10)

otthetaby2=zeros(10,'float')

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 95

for j in range(10):

x[0℄,y[0℄,t,vx,vy=-5,b[j℄,0,10,0

for i in range(10000):

vx+=x[i℄*
*dt/(x[i℄*x[i℄+y[i℄*y[i℄)**1.5

vy+=y[i℄*
*dt/(x[i℄*x[i℄+y[i℄*y[i℄)**1.5

x[i+1℄=x[i℄+vx*dt

y[i+1℄=y[i℄+vy*dt

subplot(1,2,1)

xlabel('x')

ylabel('y')

title("Path of alpha parti
le")

plot(x,y)

otthetaby2[j℄=(x[i℄-x[0℄)/(y[i℄-y[0℄)

subplot(1,2,2)

xlabel('impa
t parameter b')

ylabel('
ot(theta/2)')

title("Relation between b and theta")

grid(True)

plot(b,
otthetaby2)

show()

5.1.3 Monte-Carlo simulations- value of π

Prin
iple

Points in the �rst quadrant of a unit
ir
le
entered at origin satis�es the following

inequalities.

1. 0 ≤ x ≤ +1

2. 0 ≤ y ≤ +1

3. x2 + y2 ≤ 1 .

.The �rst two
onditions are satis�ed by all points in a unit square in the �rst quadrant

as shown in �gure. The ratio of area of the se
tor(= π/4) to the area of the square(= 12)
is π/4. Four times this ratio gives the value of π.

To determine this ratio in Monte Carlo Method, pairs of pseudo-random numbers

in the range (0, 1) are generated for
oordinates (x, y). All these pairs fall within the

square, but only those points belong to the
ir
le for whi
h

√

x2 + y2 ≤ 1. The number

96 CHAPTER 5. SIMULATIONS

of su
h points N are
ounted. The ratio of number N to the total number of points

gives the ratio of their areas.

In PYTHON there is one in-built random number generator using the multipli
ative

ongruential re
ursive method developed by D.Lehmer. The ith and (i + 1)th random

numbers are related as

xi+1 = (axi + c)mod m

where the multiplier a = 75 − 1 = 16, 806, the in
rement c = 0 and the modulus

m = 231 − 1 = 2, 14, 74, 83, 647 are
alled magi
 numbers. The re
urren
e relation

suggests that the random numbers will repeat with a period less than m. The magi

numbers for the set (a,m, c) are
hosen so that period is ≈ m and every number

between 0 and m − 1 o

ur at some point. The role of initial seed x0 has only little

e�e
t.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.

..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
.

.

..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..

.

...
..
...
...
..
...
..
...
...
..
...
...
..
...
.

(1,1)

(0,0)

(0,1)

(1,0)

Algorithm

1: Read N ,the
ount of random numbers to be generated

2: j ← 0
3: for i = 1 to N do

4: x← rand()
5: y ← rand()
6: if (x2 + y2) ≤ 1 then
7: j ← j + 1
8: end if

9: end for

10: π ← 4.j/i
11: Print π
12: End

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 97

Program

from random import random

j=0

for i in range(1000000):

if (random()**2+random()**2)<=1:j+=1

print "Value of pi = ",4.0*j/i

5.1.4 Logisti
 map

Prin
iple

A map is a fun
tion whi
h relates the
oordinates of a point Pn+1 in terms of those

of the previous point Pn. A map is always dis
rete as it uses the previous value of

the dependent variable as the present value of independent variable. There is thus no

question of di�erentiability for a map.

The logisti
 map is developed by Robert May in 1876 as a mathemati
al model of

population growth whose generations do not overlap with a �xed environment. It is

given by

xn+1 = cxn(1− xn)

This is
alled logisti
 map. where 0 < x < 1 and c > 1. A
ontinuous form of this map

is the logisti
 equation f(x) = cx(1− x)

Chara
teristi
s of logisti
 equation and map:

1. The roots of logisti
 equation are obtained by setting f(x) = 0. They are x=0

and x=1.

2.

df(x)

dx
= c(1− 2x)

Extremum o

urs at df(x)/dx=0 whi
h is, at x = 1/2. This is a maximum

be
ause d2f(x)/dx2 = −c whi
h is negative. This point x=1/2 is
alled the

riti
al point of the fun
tion possessing only a single maximum in a given intervel

(0 < x < 1) in this
ase.

98 CHAPTER 5. SIMULATIONS

3. After some iterations of the map , it often
onverges to some �xed value
alled

an 'attra
tor'. Any further iteration of will yield the same value. If x∗n is su
h a

value,

x∗n = cx∗n(1− x∗n) (3)

x∗n = 1− 1/c

Condition for stability of attra
tor

In the map if xn < 0, then iterations will lead xn+1to−∞. If xn = 0 then xn+1 is zero

always. For x = 1/c, xn+1 = 1− 1/c = x∗n. The range 0 < xn ≤ 1/c is
alled the 'basin

of attra
tion' of x∗n. A value xn approa
hes x∗n if su

essive iterations bring it
loser to

x∗n .

∣

∣

∣

∣

xn+1 − x∗n
xn − x∗n

∣

∣

∣

∣

< 1

∣

∣

∣

∣

f(xn)− x∗n
f(xn−1)− x∗n

∣

∣

∣

∣

< 1

In the limit f(xn−1)− x∗n → 0

∣

∣

∣

∣

df(xn)

dxn

∣

∣

∣

∣

xn=x∗

n

< 1

|c(1− 2x∗n)| = |2− c| < 1

This is possible only if 1 < c < 3.

When c = 3 the attra
tor bifur
ates to two �xed points x∗1 and x∗2 in su
h a way

that

x∗2 = f(x∗1)

x∗1 = f(x∗2)

x∗2 = f [f(x∗2)]

= c2x∗2(1− x∗2)[1− cx∗2(1− x∗2)]

Ea
h x2 is said to be a �xed point of period 2. In general, if xp is a �xed point of

period p , xp repeats after a set of p iterations of f. That is

f (p)(xp) = f(f(f...p− times...(xp) = xp

This bifur
ation of the attra
tor at c = 3 is
alled pit
hfork bifur
ation due to its

shape.

|f(f(xn))| ≤ 1

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 99

This requires c ≥ 1 +
√
6 = 3.449489743. Then ea
h bran
h of �xed points bifur
ates

into two separate bran
hes. The points on these bran
hes will be of period 4.

If c is further in
reased, further bran
hing o

urs. Fixed points of period p give rise

to 2p bran
hes. It is found that for c = 3.5699....., an in�nite number of bifur
ations

o

ur. In logisti
 map, �xed points never repeat. The band of �xed points forms a

ontinuum. Complete
haos begins from this point. Thus bifur
ation is the route to

haos for logisti
 equation.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Control Parameter

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n

Logistic Map

100 CHAPTER 5. SIMULATIONS

Program

from pylab import*

def f(
, x): return
 * x * (1 - x)

i,
f,x0,n,g =2.9,3.655, 0.1,50,1000

i,
f=input("range of
ontrol parameter = ")

s=(
f-
i)/1000.0

L
,Lx = [℄,[℄

for
 in arange(
i,
f,
s):

x = x0

for i in range(g): x = f(
, x)

p = 0

while p < n:

x = f(
, x)

L
.append(
)

Lx.append(x)

p += 1

plot(L
, Lx, ".")

xlabel("Control Parameter")

ylabel("Population")

show()

5.1.5 Driven LCR
ir
uit

v(t)

L

R

C

i

Prin
iple:

If a voltage v(t) is given to a series LCR-
ir
uit, Kir
ho�'s voltage law gives

L
di

dt
+Ri+

q

C
= V (t)

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 101

Sin
e
urrent is rate of �ow of
harge

L
d2q

dt2
+R

dq

dt
+
q

C
− V (t) = 0

This se
ond order di�erential equation
an be split into two �rst order
oupled equa-

tions and solved simultaneously.

dq(t)

dt
= i(t),

di(t)

dt
= −R

L
i(t)− q

LC
+
V (t)

L

These
oupled equations
an be solved numeri
ally using Runge-Kutta fourth order

method. The general formula for
oupled di�erential equations is given below.

Let

dy

dx
= f(x, y, z),

dz

dx
= g(x, y, z)

be two
oupled equations with initial
onditions y(x0) = y0, z(x0) = z0. Then the

values y(x + δx), z(x + δx) are given by a 4-step determination of slopes at x0, x0 +
δx/2, x0+δx/2, x0+δx su

essively as follows. let δx = h whi
h is the usual
onvention.

k1=h f(x0,y0,z0)

m1=h g(x0,y0,z0)

k2=h f(x0+h/2,y0+k1/2,z0+m1/2)

m2=h g(x0+h/2,y0+k1/2,z0+m1/2)

k3=h f(x0+h/2,y0+k2/2,z0+m2/2)

m3=h g(x0+h/2,y0+k2/2,z0+m2/2)

k4=h f(x0+h,y0+k3,z0+m3)

m4=h g(x0+h,y0+k3,z0+m3)

y(x0+h)=y0+(k1+2 k2+2 k3+k4)/6

z(x0+h)=z0+(m1+2 m2+2 m3+m4)/6

Using the pair (y(x0 + h), z(x0 + h) the values at x0 + 2h (y(x0 + 2h), z(x0 + 2h) are
found using the above formula. The pro
ess is repeated till we get the value of (y, z)
at the desired x.

Program:

#x=time, y=
harge, z=
urrent

#The following fun
tion solves the

#
oupled equations y'=f(x,y,z) and z'=g(x,y,z)

from pylab import*

102 CHAPTER 5. SIMULATIONS

def f(x,y,z):return z

def g(x,y,z):return (-0.2*z-y+sin(4*x))#L=1H,C=1F, omega=4/s,R=0.2ohm.

#Runge-Kutta fourth order fun
tion

def rk4solution(f,g,x,y,z,h,n):

result=[[℄,[℄,[℄℄

for i in range(n):

k1=h*f(x,y,z)

m1=h*g(x,y,z)

k2=h*f(x+h/2,y+k1/2,z+m1/2)

m2=h*g(x+h/2,y+k1/2,z+m1/2)

k3=h*f(x+h/2,y+k2/2,z+m2/2)

m3=h*g(x+h/2,y+k2/2,z+m2/2)

k4=h*f(x+h,y+k3,z+m3)

m4=h*g(x+h,y+k3,z+m3)

x,y,z=x+h,y+(k1+2*k2+2*k3+k4)/6,z+(m1+2*m2+2*m3+m4)/6

result[0℄.append(x)

result[1℄.append(y)

result[2℄.append(z)

return result

s=rk4solution(f,g,0.,0.,0.,0.05,1000)

figure(1)

subplot(1,2,1)

xlabel('time')

ylabel('
harge')

title('Charge variation')

grid(True)

plot(s[0℄,s[1℄)

subplot(1,2,2)

xlabel('time')

ylabel('Current')

title('Current variation')

grid(True)

plot(s[0℄,s[2℄)

figure(2)

xlabel('Charge')

ylabel('Current')

title('Current-Charge plot')

grid(True)

plot(s[1℄,s[2℄)

show()

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 103

0 10 20 30 40 50
time

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

ch
ar

ge

Charge variation

0 10 20 30 40 50
time

−0.4

−0.2

0.0

0.2

0.4

Cu
rre

nt

Current variation

The graphs show some initial distortions but later starts os
illating with the im-

pressed frequen
y ω. It
an be explained if we look at the analyti
 solution of the

104 CHAPTER 5. SIMULATIONS

di�erential equation

L
d2q

dt2
+R

dq

dt
+
q

C
− V0 sin (ωt)(t) = 0

d2q

t2
+ 2γ

dq

dt
+ ω2

0q − v0 sin (ωt)(t) = 0

where 2γ = R/L, ω2
0 = 1/LC, v0 = V (0)/L

q(t) = Ae−γt sin (ω′t+ φ) +B sin (ωt+ ψ)

where A is real and positive amplitude, φ, ψ are additional phases ω′ =
√

ω2
0 − γ2 and

B =
v0

√

(ω2
0 − ω2)2 + 4γ2ω2

The �rst term of the solution represents damped os
illations while the se
ond term gives

the for
ed os
illations. They interfere to give some distorted waveforms. Gradually the

amplitude of damped os
illation redu
es to zero and the LCR-
ir
uit starts os
illating

with impressed frequen
y.

5.1.6 Standing waves

Standing waves are produ
ed when a travelling wave gets re�e
ted and superimpose

with the original wave.

Prin
iple

Let y1 = f(x−vt) be the forward wave and y2 = f(x+vt) be the re�e
ted wave. Then

y = y1 + y2 will be the
omposite wave. If it is a harmoni
 wave of spatial frequen
y

k = 2π/λ and angular frequen
y ω = 2πν, it
an be represented as y1 = A sin (kx− ωt)
and y2 = A sin (kx+ ωt). Hen
e superposed wave is given by

y = A sin (kx− ωt) + A sin (kx+ ωt)

It
an be seen that the superposed pattern
onsists of points of zero amplitude
alled

nodes . Energy is not transmitted through nodes. Hen
e the name stationary waves.

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 105

0 2 4 6 8 10
displacement y

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

Stationary waves for k=2,omega=1

Program

from pylab import*

k,omega,=2.,1.

t=x=linspa
e(0,10,100)

y=[sin(k*x-omega*i)+sin(k*x+omega*i) for i in t℄

xlabel('displa
ement y')

ylabel('x')

title('Stationary waves for k=2,omega=1')

plot(x,y)

show()

5.1.7 Simulation of radioa
tivity

Prin
iple

Radioa
tive de
ay is an inherently non-deterministi
 pro
ess that
an be simulated

very naturally using the Monte Carlo method. The observation that the mean-life is a

hara
teristi
 of the nu
leus leads to the assumption that the probability P of any one

parti
le de
aying per unit time in a radioa
tive sample is a
onstant. Suppose that the

probability of any given atom de
aying over a time interval ∆t is given by λ, where
0 < λ < 1. Then the history of a single atom
an be simulated by
hoosing a sequen
e

106 CHAPTER 5. SIMULATIONS

of random numbers xk, k = 1, .. uniformly distributed on (0, 1). The atom survives

until the �rst o

uran
e of xk < λ. This approa
h
an be used to simulate an ensemble

of N atoms. Let ∆N be the number of parti
les that de
ay in some small time interval

∆t. Then the de
ay probability per parti
le, ∆N/N , is proportional to the length of

the time interval over whi
h we observe the parti
le.

∆N(t)

N(t)
= −λ∆t, ∆N(t) = −λ∆tN(t)

This is a �nite-di�eren
e equation in whi
h ∆N(t) and ∆t are experimental observ-

ables. Hen
e it
annot be integrated the way one solves a di�erential equation. But

numeri
al or algebrai
 solutions are possible. Be
ause the de
ay pro
ess is random, an

exa
t value for ∆N(t)
annot be predi
ted. ∆N(t) may be taken as the average num-

ber of de
ays when observations are made of many identi
al systems of N radioa
tive

parti
les.

Algorithm

1: Read N ,D,(initial number of parent and daughter atoms), maximum no of time

intervals m and de
ay
onstant λ
2: T ← 0
3: while N > 0 and T < m do

4: NU ← N
5: for i = 1 to NU do

6: x← rand()
7: if 0 < x ≤ lambda then
8: N ← N − 1
9: end if

10: end for

11: T ← T + 1
12: end while

13: End

Program:

from pylab import*

N,M,Lambda,T=100,10,0.21,0

NU=[N℄

while N>0 and T<M:

for i in range(N):

if random()<= Lambda:N-=1

5.1. A COMPUTATIONAL APPROACH TO PHYSICS 107

NU+=[N℄

T+=1

T=arange(T+1)

plot(T,NU)

plot(T,Y)

Y=NU[0℄*exp(-Lambda*T)

legend(['Simulated','Exponential'℄)

xlabel('time')

ylabel('No.of unde
ayed atoms')

title('Radioa
tive de
ay')

grid(True)

It
an be seen that asN in
reases, the de
ay graph
oin
ides with the exponential
urve.

Hen
e the di�erential equation

dN

N
= −λdt is only a large-number approximation of

the di�eren
e equation

∆N

N
= −λ∆t

0 2 4 6 8 10
time

0

20

40

60

80

100

No
.o

f u
nd

ec
ay

ed
 a

to
m

s

Radioactive decay

Simulated
Exponential

Index

mth
root, 25

Fa
tor theorem, 70

Irrational Root Theorem, 70

Rational Root Theorem, 70

algorithm, 63

aliasing, 82

angular frequen
y, 104

append, 6

array, 29

axis(), 50

bar, 50

barh, 50

Bessel's Fun
tion, 59

binomial
oe�
ients, 20

bise
tion method, 25

boundary
onditions, 85

entigrade, 25

lose, 16

math, 22

o-domain, 61

ombination, 19

Complex Root Theorem, 70

on
atenation, 6

onstru
tor, 10

ontour, 50

ontourf, 50

ount, 6

ross, 39

ross produ
t, 40

ubi
 polynomial, 76

ubi
 spline, 66

D.Lehmer, 96

Danielson-Lan
zos Lemma, 85

de�ation, 73

Des
artes Rule, 70

det, 45

determinant, 45

di
tionaries, 2

di
tionary, 5, 12

di�eren
e, 10

di�eren
e operator, 87

di�erential operator, 87

dis
rete transform, 82

domain, 61

dump, 16

eig, 46

eigenvalue, 46

eigenve
tor, 46

eigh, 46

eigvals, 46

eigvalsh, 46

elif, 14

else, 14

expe
tation, 78

expe
ted value, 78

extend, 6

fa
torial, 19

Fahrenheit, 25

Fast Fourier Transform, 84

Fibona

i series, 18

�gure(), 50

�le, 16

Fourier transforms, 82

frozenset, 5

fun
tion, 15

Gamma fun
tion, 56

Gaussian fun
tion, 56

108

INDEX 109

genfromtxt, 35

grid(), 50

Hailstorm number, 21

harmoni
 wave, 104

hermitian matrix, 46

homogeneous, 29

if, 14

image, 61

immutable, 5, 10, 12

importan
e sampling, 81

imshow, 54

imshow(), 1

index, 7, 39

inner produ
t, 39

input, 1

insert, 7

interpolate, 66

interse
tion, 10

inv, 45

inverse fun
tion, 61

invertible matri
es, 45

irrational roots, 74

key, 12

Laguerre's Method, 73

law of large numbers, 78

legend(), 50

Legendre Fun
tion, 57

Legurre's pro
edure, 76

linalg, 45

linear algebra, 45

linear equation, 45

list, 2, 5

load, 16

logisti
 map, 97

loglog plot, 51

magi
 numbers, 96

math, 15

Matplotlib, 49

module, 15

Monte Carlo, 77, 95

multidimensional, 29

multipli
ative
ongruential re
ursive method,

96

mutable, 5

n-Zero theorem, 70

ndarray, 29

Newton-Raphson method, 24, 25

node, 104

non-singular, 45

norm, 45

numeri
, 2

Numpy, 49

numpy, 15

Nyquist
riti
al frequen
y, 82

Nyquist sampled, 82

Nyquist-Shannon Sampling Theorem, 81

ogrid[℄, 51

one-to-one, 62

one-to-one mapping, 61

onto mapping, 61

open, 16

operand, 3

operator, 3

orthogonality, 22

os, 15

outer, 40

outer produ
t, 40

palindrome, 23

parametri
 plot, 53

Pas
al's triangle, 20

Permutation, 19

pi
kle, 16

Pie
harts, 53

pinv, 45

plot(), 49

Polar
oordinate, 52

polar plot, 51

pop, 7

preimage, 61

prime number, 23

pseudo-random numbers, 95

pseudoinverse, 45

110 INDEX

pylab, 15

quadrati
 equation, 22

quadrati
 formula, 77

random, 15

random variable, 78

rational number, 52

ravel, 33

raw_input, 1

read, 16

relaxation method, 87

Remainder theorem, 70

remove, 7

reshape, 33

reshape fun
tion, 34

resize, 33

reverse, 8

rhodonea, 52

Robert May, 97

rose
urve, 52

sampling, 80

sampling theorem, 81

Sande-Tukey algorithm, 84

save�g(), 1

savetxt, 35

s
atter plot, 51

semilogx, 51

semilogy, 51

shooting method, 85

show(), 1, 49

simple harmoni
 os
illator, 90

simulation, 81

sinusoid, 52

skiprows, 35

sli
e, 39

solve, 45

sort, 8

sorted, 8

spatial frequen
y, 104

square matrix, 46

square root, 24

standard deviation, 79

standing waves, 104

String, 4, 5

string, 2

swapping method, 64

symmetri
 di�eren
e, 10

text(), 50

the horizontal line test, 62

title(), 50

transpose, 33

triangular sequen
e, 20

tuple, 5, 12

tuples, 2

unary operation, 42

union, 10

unit matrix, 30

varian
e, 80

write, 16

xlabel(), 50

ylabel(), 50

