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Preface

The formal theory of bargaining originated with John Nash’s work in the
early 1950s. In this book we discuss two recent developments in this theory.
The first uses the tool of extensive games to construct theories of bargain-
ing in which time is modeled explicitly. The second applies the theory of
bargaining to the study of decentralized markets.

We do not attempt to survey the field. Rather, we select a small number
of models, each of which illustrates a key point. We take the approach
that a thorough analysis of a few models is more rewarding than short
discussions of many models. Some of our selections are arbitrary and could
be replaced by other models that illustrate similar points.

The last section of each chapter is entitled “Notes”. It usually begins
by acknowledging the work on which the chapter is based. (In general we
do not make acknowledgments in the text itself.) It goes on to give a brief
guide to some of the related work. We should stress that this guide is not
complete. We include mainly references to papers that use the model of
bargaining on which most of the book is based (the bargaining game of
alternating offers).

Almost always we give detailed proofs. Although this makes some of the
chapters look “technical” we believe that only on understanding the proofs

ix



x Preface

is it possible to appreciate the models fully. Further, the proofs provide
principles that you may find useful when constructing related models.

We use the tools of game theory throughout. Although we explain the
concepts we use as we proceed, it will be useful to be familiar with the
approach and basic notions of noncooperative game theory. Luce and
Raiffa (1957) is a brilliant introduction to the subject. Two other re-
cent books that present the basic ideas of noncooperative game theory are
van Damme (1987) and Kreps (1990).

We have used drafts of this book for a semester-long graduate course.
However, in our experience one cannot cover all the material within the
time limit of such a course.

A Note on Terminology

To avoid confusion, we emphasize that we use the terms “increasing” and
“nondecreasing” in the following ways. A function f :R → R for which
f(x) > f(y) whenever x > y is increasing ; if the first inequality is weak,
the function is nondecreasing .

A Note on the Use of “He” and “She”

Unfortunately, the English language forces us to refer to individuals as “he”
or “she”. We disagree on how to handle this problem.

Ariel Rubinstein argues that we should use a “neutral” pronoun, and
agrees to the use of “he”, with the understanding that this refers to both
men and women. Given our socio-political environment, continuous re-
minders of the she/he issue simply divert the reader’s attention from the
main issues. Language is extremely important in shaping our thinking, but
in academic material it is not useful to wave it as a flag.

Martin Osborne argues that no language is “neutral”. Every choice the
author makes affects the reader. “He” is exclusive, and reinforces sexist
attitudes, no matter how well intentioned the user. Language has a pow-
erful impact on readers’ perceptions and understanding. An author should
adopt the style that is likely to have the most desirable impact on her
readers’ views (“the point . . . is to change the world”). At present, the use
of “she” for all individuals, or at least for generic individuals, would seem
best to accomplish this goal.

We had to reach a compromise. When referring to specific individuals,
we sometimes use “he” and sometimes “she”. For example, in two-player
games we treat Player 1 as female and Player 2 as male; in markets games
we treat all sellers as female and all buyers as male. We use “he” for generic
individuals.
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CHAPTER 1

Introduction

1.1 Some Basic Terms

In this book we study sequential game-theoretic models of bargaining and
we use them to address questions in economic theory.

1.1.1 Bargaining

Following Nash we use the term “bargaining” to refer to a situation in
which (i) individuals (“players”) have the possibility of concluding a mu-
tually beneficial agreement, (ii) there is a conflict of interests about which
agreement to conclude, and (iii) no agreement may be imposed on any
individual without his approval.

A bargaining theory is an exploration of the relation between the outcome
of bargaining and the characteristics of the situation. We are not concerned
with questions like “what is a just agreement?”, “what is a reasonable
outcome for an arbitrator to decide?” or “what agreement is optimal for
the society at large?” Nor do we discuss the practical issue of how to
bargain effectively.

1



2 Chapter 1. Introduction

All the theories that we discuss assume that the individuals are rational,
and the theories abstract from any differences in bargaining skill between
individuals. We consider (in Chapter 5) the possibility that the individu-
als are not perfectly informed, but we maintain throughout the assumption
that each individual has well-defined preferences over all relevant outcomes,
and, when he has to choose between several alternatives, chooses the alter-
native that yields a most preferred outcome.

1.1.2 Game-Theoretic Models

Our main tool is game theory. We usually describe bargaining situations as
(extensive) games. Predictions about the resolution of conflict are derived
from game-theoretic solutions (variants of subgame perfect equilibrium).
The analysis is intended to be precise. We do not hold the position that
every claim in economic theory must be stated formally. Sometimes formal
models are redundant—the arguments can be better made verbally. How-
ever, the models in this book, we believe, demonstrate the usefulness of
formal models. They provide clear analyses of complex situations and lead
us to a better understanding of some economic phenomena.

An interpretation of the theories in this book requires an interpretation
of game theory. At several points we make comments on the interpretation
of some of the notions we use, but we do not pretend to present a complete
and coherent interpretation.

1.1.3 Sequentiality

Almost all the models in this book have a sequential structure: the play-
ers have to make decisions sequentially in a pre-specified order. The order
reflects the procedure of bargaining (in the model in Part 1) and the proce-
dure of trade (in the models in Part 2). The bargainers are concerned about
the time at which an agreement is reached since they are impatient. The se-
quential structure is flexible and allows us to address a wide range of issues.

1.1.4 Economic Theory

Bargaining is a basic activity associated with trade. Even when a market
is large and the traders in it take as given the environment in which they
operate, there is room for bargaining when a pair of specific agents is
matched. In Part 2, we study models of decentralized trade in which prices
are determined by bilateral bargaining. One of the main targets of this
part is to explore the circumstances under which the most basic concept of
economic theory—the competitive equilibrium—is appropriate in a market
in which trade is decentralized.
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1.2 Outline of the Book

Part 1 contains a discussion of two theories of bargaining. We begin by
studying, in Chapter 2, the axiomatic theory of Nash (1950a). Nash’s
work was the starting point for formal bargaining theory. Nash defines a
“bargaining problem” to be the set of utility pairs that can be derived from
possible agreements, together with a pair of utilities which is designated
to be the “disagreement point”. A function that assigns a single outcome
to every such problem is a “bargaining solution”. Nash proposes that
a bargaining solution should satisfy four plausible conditions. It turns
out that there is only one solution that does so, which is known as the
Nash Bargaining solution. This solution has a very simple functional form,
making it convenient to apply in economic models.

In Chapter 3 we take a different tack: we impose a specific structure
on bargaining and study the outcome predicted by the notion of subgame
perfect equilibrium. The structure we impose is designed to keep the play-
ers as symmetric as possible. There are two players, who alternate offers.
Player 1 makes an offer, which Player 2 can accept or reject; in the event
of rejection, Player 2 makes a further offer, which Player 1 may accept or
reject, and so on. The players have an incentive to reach an agreement
because some time elapses between every offer and counteroffer—time that
the players value. The game has a unique subgame perfect equilibrium,
characterized by a pair of offers (x∗, y∗) with the property that Player 1
is indifferent between receiving y∗ today and x∗ tomorrow, and Player 2
is indifferent between receiving x∗ today and y∗ tomorrow. In the out-
come generated by the subgame perfect equilibrium, Player 1 proposes x∗,
which Player 2 accepts immediately. The simple form of this outcome
lends itself to applications. We refer to the game as the bargaining game of
alternating offers; it is the basic model of bargaining that we use through-
out the book.

The approaches taken in Chapters 2 and 3 are very different. While the
model of Chapter 2 is axiomatic, that of Chapter 3 is strategic. In the
model of Chapter 2 the players’ attitudes toward risk are at the forefront,
while in that of Chapter 3 their attitudes to time are the driving force.
Nevertheless we find in Chapter 4 that the subgame perfect equilibrium
outcome of the bargaining game of alternating offers is close to the Nash
solution when the bargaining problem is defined appropriately. Given this
result, each theory reinforces the other and appears to be less arbitrary.

In Chapter 5 we turn to the analysis of bargaining in the case that one
of the parties is imperfectly informed about the characteristics of his oppo-
nent. One purpose of doing so is to explain delay in reaching an agreement.
We view the analysis in this chapter as preliminary because of difficulties
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with the solution concept—difficulties that lie at the root of the game-
theoretic modeling of situations in which players are imperfectly informed,
not difficulties that are peculiar to bargaining theory. The chapter also
contains a short discussion of the light the results on “mechanism design”
shed on models of strategic bargaining.

Part 2 is devoted to the application of bargaining theory to the study
of markets. Markets are viewed as networks of interconnected bargainers.
The terms of trade between any two agents are determined by negotiation,
the course of which is influenced by the agents’ opportunities for trade with
other partners.

One of the main targets of this literature is to understand better the cir-
cumstances under which a market is “competitive”. In the theory of com-
petitive equilibrium, the process by which the equilibrium price is reached
is not modeled. One story is that there is an agency in the market that
guides the price. The agency announces a price, and the individuals report
the amounts they wish to demand and supply at this fixed price. If de-
mand and supply are not equal, the agency adjusts the price. (The agency
is sometimes called an “auctioneer”.) This story is unpersuasive. First,
we rarely observe any agency like this in actual markets. Second, it is not
clear that it is possible to specify the rules used by the agency to adjust
the price in such a way that it is in the interest of the individuals in the
market to report truthfully their demands and supplies at any given prices.

One of our goals in studying models that probe the price-determination
process is to understand the conditions (if any) under which a competitive
analysis is appropriate. When it is, we consider how the primitives of the
competitive model should be associated with the elements of our richer
models. For example, the basic competitive model is atemporal, while the
strategic models we study have a time dimension. Thus the question arises
whether the demand and supply functions of the competitive model should
be applied to the stock of agents in the market or to the flow of agents
through the market. Also, we consider models in which the set of agents
considering entering the market may be different from the set of agents
who actually participate in the market. In this case we ask whether the
competitive model should be applied to the demands and supplies of those
in the market or of those considering entering the market.

We begin, in Chapter 6, by exploring models in which agents are ran-
domly matched pairwise and conclude the agreement given by Nash’s bar-
gaining solution. We consider two basic models: one in which the number of
traders in the market is steady over time (Model A), and another in which
all traders enter the market at once and leave as they complete transactions
(Model B). A conclusion is that the notion of competitive equilibrium fits
better in the latter case. In the remainder of the book we investigate these
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basic models in more detail, using strategic models of bargaining, rather
than the Nash solution.

In Chapter 7 we discuss a strategic version of Model A. Each match in-
duces a bargaining game between the two parties. The agents are motivated
to reach agreement by two factors: their own impatience and the exogenous
risk that their partnership will terminate. Their utilities in the latter case
depend on the equilibrium prevailing in the market; the agents take these
utilities as given. We assume that the agents’ behavior in the bargaining
game does not depend on events in other matches. The equilibrium that
we characterize does not coincide with the competitive equilibrium of the
market when the demand and supply functions are those of the steady state
stock of agents in the market.

In Chapter 8 we study two strategic versions of Model B. The two
models differ in the characteristics of the underlying market. In the first
model, as in all other models in Part 2, each agent is either a seller or a
buyer of an indivisible good. In the second model there are many divisible
goods, and each agent initially holds a bundle that may contain many
of these goods, as in the classical models of general equilibrium. As in
Chapter 7, the agents in a matched pair may not condition their behavior
on events in other matches. In both models, agents are not impatient. The
models induce equilibria that correspond to the competitive equilibria of
the associated markets.

In Chapter 9 we examine how the equilibrium outcome depends on the
trading procedure. For simplicity we restrict attention to markets in which
there is one seller and two buyers. We are interested in the properties
of the trading procedure that unleash competitive forces. We assume, in
contrast to our assumption in the models of Chapters 7 and 8, that all
agents are perfectly informed about all events that occur in the market
(including events in matches of which they are not part). We conclude that
competitive forces operate only in models in which the trading procedure
allows the seller to make what is effectively a “take-it-or-leave-it” offer.

Finally, in Chapter 10 we examine the role of the informational as-
sumptions in the first model of Chapter 8. We find that when the agents
have perfect information about all past events there are equilibria in which
noncompetitive prices are sustained. Under this assumption the agents are
not anonymous and thus are able to form “personal relationships”.

It is not necessary to read the chapters in the order that they are pre-
sented. The dependence among them is shown in Figure 1.1. In particular,
the chapters in Part 2 are largely independent of each other and do not
depend on Chapters 4 and 5. Thus, if you are interested mainly in the
application of bargaining theory to the study of markets, you can read
Chapters 2 and 3 and then some subset of Chapters 6 through 10.
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Figure 1.1 The dependence among chapters. A solid arrow indicates that the chapter
above should be read before the chapter below; a dashed arrow indicates that only the
main ideas from the chapter above are necessary to appreciate the chapter below.

Notes

For very compact discussions of much of the material in this book, see Wil-
son (1987), Bester (1989b), and Binmore, Osborne, and Rubinstein (1992).
For some basic topics in bargaining theory that we do not discuss, see
the following: Schelling (1960), who provides an informal discussion of the
strategic elements in bargaining; Harsanyi (1977), who presents an early
overview of game-theoretic models of bargaining; and Roth (1988), who
discusses the large body of literature concerned with experimental tests of
models of bargaining.



PART 1

Bargaining Theory

In this part we study two bargaining theories. First, in Chapter 2, we
consider Nash’s axiomatic model; then, in Chapter 3, we study a strategic
model in which the players alternate offers. In Chapter 4 we examine the
relation between the two approaches. In both models each player knows all
the relevant characteristics of his opponent. In Chapter 5 we turn to the
case in which the players are imperfectly informed.





CHAPTER 2

The Axiomatic Approach: Nash’s

Solution

2.1 Bargaining Problems

Nash (1950a) established the framework that we use to study bargain-
ing. The set of bargainers—also called players—is N . Through most of
this book we restrict attention to the case of two players: N = {1, 2}. The
players either reach an agreement in the set A, or fail to reach agreement, in
which case the disagreement event D occurs. Each Player i ∈ N has a pref-
erence ordering1 �i over the set A∪{D}. (The interpretation is that a �i b
if and only if Player i either prefers a to b or is indifferent between them.)
The objects N , A, D, and �i for each i ∈ N define a bargaining situation.

The set A of possible agreements may take many forms. An agreement
can simply be a price, or it can be a detailed contract that specifies the
actions to be taken by the parties in each of many contingencies. We put no
restriction directly on A. One respect in which the framework is restrictive
is that it specifies a unique outcome if the players fail to reach agreement.

The players’ attitudes toward risk play a central role in Nash’s theory. We
require that each player’s preferences be defined on the set of lotteries over

1That is, a complete transitive reflexive binary relation.

9



10 Chapter 2. The Axiomatic Approach

possible agreements, not just on the set of agreements themselves. There
is no risk explicit in a bargaining situation as we have defined it. However,
uncertainty about other players’ behavior, which may cause negotiation
to break down, is a natural element in bargaining. Thus it is reasonable
for attitudes toward risk to be part of a theory of bargaining. In fact, in
Section 2.6.4 we show that there are limited possibilities for constructing
an interesting axiomatic bargaining theory using as primitives only the
players’ preferences over agreements reached with certainty. Thus we need
to enrich the model. Adding the players’ attitudes toward risk is the route
taken in Nash’s axiomatic theory.

We assume that each player’s preference ordering on the set of lotter-
ies over possible agreements satisfies the assumptions of von Neumann
and Morgenstern. Consequently, for each Player i there is a function
ui:A ∪ {D} → R, called a utility function, such that one lottery is pre-
ferred to another if and only if the expected utility of the first exceeds that
of the second. Such a utility function is unique only up to a positive affine
transformation. Precisely, if ui is a utility function that represents �i, and
vi is a utility function, then vi represents �i if and only if vi = αui + β for
some real numbers α and β with α > 0.

Given the set of possible agreements, the disagreement event, and utility
functions for the players’ preferences, we can construct the set of all utility
pairs that can be the outcome of bargaining. This is the union of the set S
of all pairs (u1(a), u2(a)) for a ∈ A and the point d = (u1(D), u2(D)).
Nash takes the pair2 〈S, d〉 as the primitive of the problem. (Note that the
same set of utility pairs could result from many different combinations of
agreement sets and preferences.)

The objects of our subsequent inquiry are bargaining solutions. A bar-
gaining solution associates with every bargaining situation in some class an
agreement or the disagreement event. Thus, a bargaining solution does not
specify an outcome for a single bargaining situation; rather, it is a function.

Formally, Nash’s central definition is the following (see also Section
2.6.3).

Definition 2.1 A bargaining problem is a pair 〈S, d〉, where S ⊂ R2 is com-
pact (i.e. closed and bounded) and convex, d ∈ S, and there exists s ∈ S
such that si > di for i = 1, 2. The set of all bargaining problems is de-
noted B. A bargaining solution is a function f :B → R2 that assigns to
each bargaining problem 〈S, d〉 ∈ B a unique element of S.

This definition restricts a bargaining problem in a number of ways. Most
significantly, it eliminates the set A of agreements from the domain of

2Our use of angle brackets indicates that the objects enclosed are the components of
a model.
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discussion. Two bargaining situations that induce the same pair 〈S, d〉 are
treated identically. Other theories of bargaining take A as a primitive.
The assumption that the set S of feasible utility pairs is bounded means
that the utilities obtainable in an outcome of bargaining are limited. The
convexity assumption on S is a more significant qualitative restriction;
it constrains the nature of the agreement set and utility functions. It is
satisfied, for example, if A is the set of all lotteries over some underlying set
of “pure” agreements (since expected utility is linear in probability). The
two remaining assumptions embodied in the definition are that the players
can agree to disagree (d ∈ S) and that there is some agreement preferred
by both to the disagreement outcome. This last assumption ensures that
the players have a mutual interest in reaching an agreement, although in
general there is a conflict of interest over the particular agreement to be
reached—a conflict that can be resolved by bargaining.

2.2 Nash’s Axioms

Nash did not attempt to construct a model that captures all the details
of any particular bargaining process; no bargaining procedure is explicit in
his model. Rather, his approach is axiomatic:

One states as axioms several properties that it would seem natural for
the solution to have and then one discovers that the axioms actually
determine the solution uniquely. (Nash (1953, p. 129).)

Nash imposes four axioms on a bargaining solution f :B → R2. The first
formalizes the assumption that the players’ preferences, not the specific
utility functions that are used to represent them, are basic. We say that
〈S′, d′〉 is obtained from the bargaining problem 〈S, d〉 by the transformations
si 7→ αisi + βi for i = 1, 2 if d′i = αidi + βi for i = 1, 2, and

S′ = {(α1s1 + β1, α2s2 + β2) ∈ R2: (s1, s2) ∈ S}.

It is easy to check that if αi > 0 for i = 1, 2, then 〈S′, d′〉 is itself a
bargaining problem.

INV (Invariance to Equivalent Utility Representations) Suppose
that the bargaining problem 〈S′, d′〉 is obtained from 〈S, d〉 by
the transformations si 7→ αisi + βi for i = 1, 2, where αi > 0
for i = 1, 2. Then fi(S′, d′) = αifi(S, d) + βi for i = 1, 2.

If we accept preferences, not utilities, as basic, then the two bargaining
problems 〈S, d〉 and 〈S′, d′〉 represent the same situation. If the utility
functions ui for i = 1, 2 generate the set S when applied to some set A of
agreements, then the utility functions vi = αiui + βi for i = 1, 2 generate
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the set S′ when applied to the same set A. Since vi represents the same
preferences as ui, the physical outcome predicted by the bargaining solution
should be the same for 〈S, d〉 as for 〈S′, d′〉. Thus the utility outcomes
should be related in the same way that the utility functions are: fi(S′, d′) =
αifi(S, d) + βi for i = 1, 2. In brief, the axiom requires that the utility
outcome of bargaining co-vary with the representation of preferences, so
that any physical outcome that corresponds to the solution of the problem
〈S, d〉 also corresponds to the solution of 〈S′, d′〉.

Nash abstracts from any differences in “bargaining ability” between the
players. If there is any asymmetry between the players then it must be
captured in 〈S, d〉. If, on the other hand, the players are interchange-
able, then the bargaining solution must assign the same utility to each
player. Formally, the bargaining problem 〈S, d〉 is symmetric if d1 = d2

and (s1, s2) ∈ S if and only if (s2, s1) ∈ S.

SYM (Symmetry) If the bargaining problem 〈S, d〉 is symmetric,
then f1(S, d) = f2(S, d).

The next axiom is more problematic.

IIA (Independence of Irrelevant Alternatives) If 〈S, d〉 and 〈T, d〉
are bargaining problems with S ⊂ T and f(T, d) ∈ S, then
f(S, d) = f(T, d).

In other words, suppose that when all the alternatives in T are available,
the players agree on an outcome s in the smaller set S. Then we require
that the players agree on the same outcome s when only the alternatives
in S are available. The idea is that in agreeing on s when they could have
chosen any point in T , the players have discarded as “irrelevant” all the
outcomes in T other than s. Consequently, when they are restricted to the
smaller set S they should also agree on s: the solution should not depend
on “irrelevant” alternatives. Note that the axiom is satisfied, in particular,
by any solution that is defined to be a member of S that maximizes the
value of some function.

The axiom relates to the (unmodeled) bargaining process. If the negotia-
tors gradually eliminate outcomes as unacceptable, until just one remains,
then it may be appropriate to assume IIA. On the other hand, there are
procedures in which the fact that a certain agreement is available influences
the outcome, even if it is not the one that is reached. Suppose, for exam-
ple, that the outcome is a compromise based on the (possibly incompatible)
demands of the players; such a procedure may not satisfy IIA. Without
specifying the details of the bargaining process, it is hard to assess how
reasonable the axiom is.
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The final axiom is also problematic and, like IIA, relates to the bargain-
ing process.

PAR (Pareto Efficiency) Suppose 〈S, d〉 is a bargaining problem,
s ∈ S, t ∈ S, and ti > si for i = 1, 2. Then f(S, d) 6= s.

This requires that the players never agree on an outcome s when there is
available an outcome t in which they are both better off. If they agreed on
the inferior outcome s, then there would be room for “renegotiation”: they
could continue bargaining, the pair of utilities in the event of disagreement
being s. The axiom implies that the players never disagree (since we have
assumed that there is an agreement in which the utility of each Player i
exceeds di). If we reinterpret each member of A as a pair consisting of a
physical agreement and the time at which this agreement is reached, and
we assume that resources are consumed by the bargaining process, then
PAR implies that agreement is reached instantly.

Note that the axioms SYM and PAR restrict the behavior of the solution
on single bargaining problems, while INV and IIA require the solution to
exhibit some consistency across bargaining problems.

2.3 Nash’s Theorem

Nash’s plan of deriving a solution from some simple axioms works perfectly.
He shows that there is precisely one bargaining solution satisfying the four
axioms above, and this solution has a very simple form: it selects the
utility pair that maximizes the product of the players’ gains in utility over
the disagreement outcome.

Theorem 2.2 There is a unique bargaining solution fN :B → R2 satisfy-
ing the axioms INV, SYM, IIA, and PAR. It is given by

fN (S, d) = arg max
(d1,d2)≤(s1,s2)∈S

(s1 − d1)(s2 − d2). (2.1)

Proof. We proceed in a number of steps.

(a)First we verify that fN is well defined. The set {s ∈ S: s ≥ d} is
compact, and the function H defined by H(s1, s2) = (s1 − d1)(s2 − d2) is
continuous, so there is a solution to the maximization problem defining fN .
Further, H is strictly quasi-concave on {s ∈ S: s > d}, there exists s ∈ S
such that s > d, and S is convex, so that the maximizer is unique.

(b)Next we check that fN satisfies the four axioms.
INV: If 〈S′, d′〉 and 〈S, d〉 are as in the statement of the axiom, then

s′ ∈ S′ if and only if there exists s ∈ S such that s′i = αisi +βi for i = 1, 2.
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For such utility pairs s and s′ we have

(s′1 − d′1)(s′2 − d′2) = α1α2(s1 − d1)(s2 − d2).

Thus (s∗1, s
∗
2) maximizes (s1 − d1)(s2 − d2) over S if and only if (α1s

∗
1 +

β1, α2s
∗
2 + β2) maximizes (s′1 − d′1)(s′2 − d′2) over S′.
SYM: If 〈S, d〉 is symmetric and (s∗1, s

∗
2) maximizes H over S, then,

since H is a symmetric function, (s∗2, s
∗
1) also maximizes H over S. Since

the maximizer is unique, we have s∗1 = s∗2.
IIA: If T ⊃ S and s∗ ∈ S maximizes H over T , then s∗ also maxi-

mizes H over S.
PAR: Since H is increasing in each of its arguments, s does not

maximize H over S if there exists t ∈ S with ti > si for i = 1, 2.

(c) Finally, we show that fN is the only bargaining solution that satisfies
all four axioms. Suppose that f is a bargaining solution that satisfies the
four axioms. We shall show that f = fN . Let 〈S, d〉 be an arbitrary
bargaining problem. We need to show that f(S, d) = fN (S, d).

Step 1. Let fN (S, d) = z. Since there exists s ∈ S such that si > di for
i = 1, 2, we have zi > di for i = 1, 2. Let 〈S′, d′〉 be the bargaining problem
that is obtained from 〈S, d〉 by the transformations si 7→ αisi + βi, which
move the disagreement point to the origin and the solution fN (S, d) to the
point (1/2, 1/2). (That is, αi = 1/(2(zi − di)) and βi = −di/(2(zi − di)),
d′i = αidi + βi = 0, and αif

N
i (S, d) + βi = αizi + βi = 1/2 for i = 1, 2.)

Since both f and fN satisfy INV we have fi(S′, 0) = αifi(S, d) + βi and
fNi (S′, 0) = αif

N
i (S, d) + βi (= 1/2) for i = 1, 2. Hence f(S, d) = fN (S, d)

if and only if f(S′, 0) = fN (S′, 0). Since fN (S′, 0) = (1/2, 1/2), it remains
to show that f(S′, 0) = (1/2, 1/2).

Step 2. We claim that S′ contains no point (s′1, s
′
2) for which s′1 +s′2 > 1.

If it does, then let (t1, t2) = ((1− ε)(1/2) + εs′1, (1− ε)(1/2) + εs′2), where
0 < ε < 1. Since S′ is convex, the point (t1, t2) is in S′; but for ε small
enough we have t1t2 > 1/4 (and thus ti > 0 for i = 1, 2), contradicting the
fact that fN (S′, 0) = (1/2, 1/2).

Step 3. Since S′ is bounded, the result of Step 2 ensures that we can
find a rectangle T that is symmetric about the 45◦ line and that contains
S′, on the boundary of which is (1/2, 1/2). (See Figure 2.1.)

Step 4. By PAR and SYM we have f(T, 0) = (1/2, 1/2).
Step 5. By IIA we have f(S′, 0) = f(T, 0), so that f(S′, 0) = (1/2, 1/2),

completing the proof. �

Note that any bargaining solution that satisfies SYM and PAR coincides
with fN on the class of symmetric bargaining problems. The proof exploits



2.3 Nash’s Theorem 15

0 1
2

1
2

r

s1 →

↑
s2

S ′

T

fN (S′, 0)

@
@

@
@
@

@
@
@

@
@
@

@
@
@@

�
�
�

�
�

�
�
�
�

@
@
@
@
@
@
@
@
@
@
@
@
@
@@

�
�
�
�
�
�
�
�
�

Figure 2.1 The sets S′ and T in the proof of Theorem 2.2.

this fact by transforming d and fN (S, d) to points on the main diagonal,
and then constructing the symmetric set T .

We refer to fN (S, d) as the Nash solution of the bargaining problem
〈S, d〉. It is illustrated in Figure 2.2 and can be characterized as follows.
First define the strong Pareto frontier of S to be

{s ∈ S: there is no s′ ∈ S with s′ 6= s and s′i ≥ si for i = 1, 2},

and let s2 = ψ(s1) be the equation of this frontier. The utility pair (s∗1, s
∗
2)

is the Nash solution of 〈S, d〉 if and only if s∗2 = ψ(s∗1) and s∗1 maximizes
(s1−d1)(ψ(s1)−d2). If ψ is differentiable at s∗1, then the second condition
is equivalent to (s∗2 − d2)/(s∗1 − d1) = |ψ′(s∗1)|.

The Nash solution depends only on the preferences of the players and not
on the utility representations of these preferences. However, the definition
of the solution we have given is in terms of utilities. This definition is
convenient in applications, but it lacks an appealing interpretation.
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Figure 2.2 The Nash solution of the bargaining problem 〈S, d〉.

We now provide an alternative definition in terms of the players’ prefer-
ences. Denote by p · a the lottery in which the agreement a ∈ A is reached
with probability p ∈ [0, 1] and the disagreement event D occurs with prob-
ability 1− p. Let �i be Player i’s preference ordering over lotteries of the
form p · a, and let �i denote strict preference. Consider an agreement a∗

with the property that for (i, j) = (1, 2) and (i, j) = (2, 1),

for every a ∈ A and p ∈ [0, 1] for which p · a �i a∗ we have p · a∗ �j a.

Any such agreement a∗ has the following interpretation, which is related
to that of Zeuthen (1930, Ch. IV). Assume that a∗ is “on the table”. If
Player i is willing to object to a∗ by proposing an alternative a, even if he
faces the risk that with probability 1− p the negotiations will break down
and end with D, then Player j is willing to take the analogous risk and
reject a in favor of the agreement a∗.

We now argue that any such agreement a∗ induces the Nash solution of
the bargaining problem. Choose utility representations ui for �i such that
ui(D) = 0, i = 1, 2. By the following argument, a∗ maximizes u1(a)u2(a).
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Suppose that Player i prefers a to a∗ and ui(a∗)/ui(a) < uj(a)/uj(a∗).
Then there exists 0 < p < 1 such that ui(a∗)/ui(a) < p < uj(a)/uj(a∗),
so that ui(a∗) < pui(a) and uj(a) > puj(a∗), contradicting the defini-
tion of a∗. Hence ui(a∗)/ui(a) ≥ uj(a)/uj(a∗), so that u1(a∗)u2(a∗) ≥
u1(a)u2(a).

2.4 Applications

The simple form of the Nash solution lends itself to applications, two of
which we now study.

2.4.1 Dividing a Dollar: The Role of Risk-Aversion

Two individuals can divide a dollar in any way they wish. If they fail to
agree on a division, the dollar is forfeited. The individuals may, if they
wish, discard some of the dollar. In terms of our model, we have

A = {(a1, a2) ∈ R2: a1 + a2 ≤ 1 and ai ≥ 0 for i = 1, 2}

(all possible divisions of the dollar), and D = (0, 0) (neither player receives
any payoff in the event of disagreement).

Each player is concerned only about the share of the dollar he receives:
Player i prefers a ∈ A to b ∈ A if and only if ai > bi (i = 1, 2). Thus,
Player i’s preferences over lotteries on A can be represented by the expected
value of a utility function ui with domain [0, 1]. We assume that each player
is risk-averse—that is, each ui is concave—and (without loss of generality)
let ui(0) = 0, for i = 1, 2. Then the set

S = {(s1, s2) ∈ R2: (s1, s2) = (u1(a1), u2(a2)) for some (a1, a2) ∈ A}

is compact and convex. Further, S contains d = (u1(0), u2(0)) = (0, 0),
and there is a point s ∈ S such that si > di for i = 1, 2. Thus 〈S, d〉 is a
bargaining problem.

First, suppose that the players’ preferences are the same, so that they
can be represented by the same utility function. Then 〈S, d〉 is a sym-
metric bargaining problem. In this case, we know the Nash solution di-
rectly from SYM and PAR: it is the unique symmetric efficient utility pair
(u(1/2), u(1/2)), which corresponds to the physical outcome in which the
dollar is shared equally between the players.

If the players have different preferences, then equal division of the dollar
may no longer be the agreement given by the Nash solution. Rather, the
solution depends on the nature of the players’ preferences. To investigate
this dependence, suppose that Player 2 becomes more risk-averse. Then
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his preferences, which formerly were represented by u2, can be represented
by v2 = h ◦ u2, where h:R → R is an increasing concave function with
h(0) = 0. (It follows that v2 is increasing and concave, with v2(0) = 0.)
Player 1’s preferences remain unchanged; for convenience define v1 = u1.
Let 〈S′, d′〉 be the bargaining problem for the new situation, in which the
utility functions of the players are v1 and v2.

Let zu be the solution of

max
0≤z≤1

u1(z)u2(1− z),

and let zv be the solution of the corresponding problem in which vi replaces
ui for i = 1, 2. Then (u1(zu), u2(1− zu)) is the Nash solution of 〈S, d〉,
while (v1(zv), v2(1− zv)) is the Nash solution of 〈S′, d′〉. If u1, u2, and h
are differentiable, and 0 < zu < 1, then zu is the solution of

u′1(z)
u1(z)

=
u′2(1− z)
u2(1− z)

. (2.2)

Similarly, zv is the solution of

u′1(z)
u1(z)

=
h′ (u2(1− z))u′2(1− z)

h (u2(1− z))
. (2.3)

The left-hand sides of equations (2.2) and (2.3) are decreasing in z, and
the right-hand sides are increasing in z. Further, since h is concave and
h(0) = 0, we have h′(t) ≤ h(t)/t for all t, so that the right-hand side of
(2.2) is at least equal to the right-hand side of (2.3). From this we can
deduce that zu ≤ zv, as illustrated in Figure 2.3. If u1 = u2 then we know,
from the earlier argument, that zu = 1/2, so that zv ≥ 1/2. Summarizing,
we have the following.

If Player 2 becomes more risk-averse, then Player 1’s share of
the dollar in the Nash solution increases. If Player 2 is more
risk-averse than Player 1, then Player 1’s share of the dollar in
the Nash solution exceeds 1/2.

Note that this result does not allow all pairs of utility functions to be
compared—it applies only when one utility function is a concave function
of the other.

An alternative interpretation of the problem of dividing a dollar involves
the transfer of a good. Suppose that Player 1—the “seller”—holds one
indivisible unit of a good, and Player 2—the “buyer”—possesses one (di-
visible) unit of money. The good is worthless to the seller; her utility for
p units of money is u1(p), where u1(0) = 0. If the buyer fails to obtain
the good then his utility is zero; if he obtains the good at a price of p then
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Figure 2.3 Comparative statics of the Nash solution for the problem of dividing a
dollar. If the utility functions of the players are ui (i = 1,2) then Player 1 receives zu
units of the dollar in the Nash solution. If Player 2 has the utility function v2 = h ◦ u2,
where h is increasing and concave (so that Player 2 is more risk-averse), while Player 1
retains the utility function u1, then Player 1 receives zv in the Nash solution.

his utility is u2(1 − p), where u2(0) = 0. Both u1 and u2 are assumed to
be concave. If the players fail to reach agreement on a sale price, then
they retain their endowments. The set of agreement utility pairs for this
problem is

S = {(s1, s2) ∈ R2: (s1, s2) = (u1(p), u2(1− p)) for some 0 ≤ p ≤ 1}

and the disagreement point is d = (0, 0), so that the problem is formally
identical to that of dividing a dollar.

2.4.2 Negotiating Wages

In the example above, an agreement specifies the amount of money to
be received by each party. In other cases, an agreement may be very
complex. In the context of negotiation between a firm and a labor union,
for example, an agreement may specify a stream of future wages, benefits,
and employment levels.
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To illustrate a relatively simple case, consider a firm and a union nego-
tiating a wage-employment package. Suppose that the union represents L
workers, each of whom can obtain a wage of w0 outside the firm. If the firm
hires ` workers, then it produces f(`) units of output. We assume that f
is strictly concave, f(0) = 0, and f(`) > `w0 for some `, and normalize the
price of output to be one. An agreement is a wage-employment pair (w, `).
The von Neumann–Morgenstern utility of the firm for the agreement (w, `)
is its profit f(`)− `w, while that of the union is the total amount of money
`w + (L− `)w0 received by its members. (This is one of a number of pos-
sible objectives for the union.) We restrict agreements to be pairs (w, `) in
which the profit of the firm is nonnegative (w ≤ f(`)/`) and the wage is at
least w0. Thus the set of utility pairs that can result from agreement is

S = {(f(`)− `w, `w + (L− `)w0) : f(`) ≥ `w, 0 ≤ ` ≤ L and w ≥ w0}.

If the two parties fail to agree, then the firm obtains a profit of zero (since
f(0) = 0) and the union receives Lw0, so that the disagreement utility pair
is d = (0, Lw0).

Each pair of utilities takes the form (f(`)− `w, `w + (L− `)w0), where
w0 ≤ w ≤ f(`)/`. Let `∗ be the unique maximizer of f(`) + (L − `)w0.
Then the set of utility pairs that can be attained in an agreement is

S = {(s1, s2) ∈ R2: s1 + s2 ≤ f(`∗) + (L− `∗)w0, s1 ≥ 0, and s2 ≥ Lw0}.

This is a compact convex set, which contains the disagreement point d =
(0, Lw0) in its interior. Thus 〈S, d〉 is a bargaining problem.

Given that the Nash solution is efficient (i.e. it is on the Pareto frontier
of S), the size of the labor force it predicts is `∗, which maximizes the profit
f(`)− `w0. To find the wage it predicts, note that the difference between
the union’s payoff at the agreement (w, `) and its disagreement payoff is
`w + (L− `)w0 − Lw0 = `(w − w0). Thus the predicted wage is

arg max
w≥w0

(f(`∗)− `∗w)`∗(w − w0).

This is w∗ = (w0 + f(`∗)/`∗) /2: the average of the outside wage and the
average product of labor.

2.5 Is Any Axiom Superfluous?

We have shown that Nash’s four axioms uniquely define a bargaining solu-
tion, but have not ruled out the possibility that some subset of the axioms is
enough to determine the solution uniquely. We now show that none of the
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axioms is superfluous. We do so by exhibiting, for each axiom, a solution
that satisfies the remaining three axioms and is different from Nash’s.

INV: Let g:R2
+ → R be increasing and strictly quasi-concave, and sup-

pose that each of its contours g(x1, x2) = c has slope −1 when x1 = x2.
Consider the bargaining solution that assigns to each bargaining problem
〈S, d〉 the (unique) maximizer of g(s1−d1, s2−d2) over {s ∈ S: s ≥ d}. This
solution satisfies PAR and IIA (since it is the maximizer of an increasing
function) and also SYM (by the condition on the slope of its contours). To
show that this solution differs from that of Nash, let g(x1, x2) =

√
x1 +
√
x2

and consider the bargaining problem 〈S, d〉 in which d = (0, 0) and S is the
convex hull3 of the points (0, 0), (1, 0), and (0, 2). The maximizer of g for
this problem is (s1, s2) = (1/3, 4/3), while its Nash solution is (1/2, 1).

Another solution that satisfies PAR, IIA, and SYM, and differs from
the Nash bargaining solution, is given by that maximizer of s1 + s2 over
{s ∈ S: s ≥ d} that is closest to the line with slope 1 through d. This
solution is appealing since it simply maximizes the sum (rather than the
product, as in Nash) of the excesses of the players’ utilities over their
disagreement utilities.

SYM: For each α ∈ (0, 1) consider the solution fα that assigns to 〈S, d〉
the utility pair

arg max
(d1,d2)≤(s1,s2)∈S

(s1 − d1)α(s2 − d2)1−α. (2.4)

The family of solutions {fα}α∈(0,1) is known as the family of asymmetric
Nash solutions. For the problem 〈S, d〉 in which d = (0, 0) and S is the
convex hull of (0, 0), (1, 0), and (0, 1), we have fα(S, d) = (α, 1−α), which,
when α 6= 1/2, is different from the Nash solution of 〈S, d〉. Every solution
fα satisfies INV, IIA, and PAR by arguments exactly like those used for
the Nash solution.

IIA: For any bargaining problem 〈S, d〉, let s̄i be the maximum utility
Player i gets in {s ∈ S: s ≥ d}, for i = 1, 2. Consider the solution fKS(S, d)
that assigns to 〈S, d〉 the maximal member of S on the line joining d and
(s̄1, s̄2) (see Figure 2.4).

For the bargaining problem in which d = (0, 0) and S is the convex hull
of (0, 0), (1, 0), (1/2, 1/2), and (0, 1/2), we have fKS(S, d) = (2/3, 1/3),
different from the utility pair (1/2, 1/2) predicted by the Nash solution. It
is immediate that the solution satisfies SYM and PAR; it is straightforward

3The convex hull of a finite set of points is the smallest convex set (a polyhedron)
containing the points.
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Figure 2.4 The Kalai–Smorodinsky solution fKS .

to argue that it also satisfies INV. This solution is known as the Kalai–
Smorodinsky solution.

PAR: Consider the solution fd defined by fd(S, d) = d. This solution
satisfies INV, SYM, and IIA and is different from the Nash solution.

For each of the four axioms, we have described a solution different from
Nash’s that satisfies the remaining three axioms. Some of these solutions
have interesting axiomatizations.

Say that a bargaining solution f satisfies strong individual rationality
(SIR) if f(S, d) > d for every bargaining problem 〈S, d〉. Then a solution
satisfies INV, PAR, IIA, and SIR if and only if it is an asymmetric Nash
solution (i.e. of the form fα for some α ∈ (0, 1)).

The Kalai–Smorodinsky solution fKS is the only solution satisfying INV,
SYM, PAR, and a “monotonicity” axiom. The last axiom requires that if
S ⊂ T and if, for i = 1, 2, the maximum utilities that Player i can obtain in
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{s ∈ S: s ≥ d} and {s ∈ T : s ≥ d} are the same, then each player receives
at least as much utility in the solution of 〈T, d〉 as in the solution of 〈S, d〉.

Finally, the solution fd, which assigns to every bargaining problem the
disagreement point, is the only solution other than Nash’s that satisfies
INV, SYM, IIA, and the condition that the solution give each player at
least his disagreement utility. Thus PAR can be replaced by SIR in the
characterization of the Nash solution.

2.6 Extensions of the Theory

2.6.1 More Than Two Players

All our arguments concerning Nash’s solution can be extended to situations
in which there are more than two players. If there are n players then a
bargaining problem is a pair 〈S, d〉, in which S is a compact convex subset
of Rn, d ∈ S, and there exists s ∈ S such that si > di for i = 1, . . . , n.
The four axioms INV, SYM, IIA, and PAR can be extended to apply to
bargaining problems with n players, and it can be shown that the unique
bargaining solution that satisfies the axioms is the function that associates
with each problem 〈S, d〉 the vector of utilities

arg max
d≤s∈S

n∏
i=1

(si − di).

2.6.2 An Alternative Interpretation of Utility

So far we have interpreted the elements of S as utility pairs derived from
the players’ preferences over lotteries on the set of physical agreements. We
have assumed that these preferences satisfy the assumptions of von Neu-
mann and Morgenstern, so that the utility functions that represent them
are unique only up to an affine transformation. Under this assumption, the
axiom INV is appropriate.

There are alternative interpretations in which risk does not enter ex-
plicitly. To make sense of Nash’s theory we require only that the utilities
represent the underlying preferences uniquely up to an affine transforma-
tion. An alternative to starting with a player’s preferences over lotteries is
to adopt as a primitive the player’s preference over the set of agreements,
combined with his answers to all possible questions of the form “Do you
prefer a to a′ more than you prefer b to b′?” Under additional assump-
tions the player’s preferences can be represented by a utility function that
is unique up to an affine transformation (see Krantz, Luce, Suppes, and
Tversky (1971, Ch. 4)).
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We previously interpreted the results in Section 2.4.1 as showing the ef-
fect on the Nash solution of changes in the degree of risk-aversion of the
players. Under the alternative interpretation of utility presented here, these
results show the effect of changes in the rate at which players’ marginal
utilities decline. More precisely, the results are the following. If the
marginal utility of Player 2′ declines more rapidly than that of Player 2,
then Player 1’s share of the dollar in the Nash solution of the divide-the-
dollar game is larger when his opponent is Player 2′ than when it is Player 2.
If Player 2’s marginal utility declines more rapidly than that of Player 1,
then Player 1’s share of the dollar in the Nash solution exceeds 1/2.

2.6.3 An Alternative Definition of a Bargaining Problem

A bargaining problem, as we have defined it so far, consists of a compact
convex set S ⊂ R2 and an element d ∈ S. However, the Nash solution of
〈S, d〉 depends only on d and the Pareto frontier of S. The compactness
and convexity of S are important only insofar as they ensure that the
Pareto frontier of S is well defined and concave. Rather than starting
with the set S, we could have imposed our axioms on a problem defined
by a nonincreasing concave function (and a disagreement point d). In the
following chapters it will frequently be more natural to define a problem
in this way. Thus, we sometimes subsequently use the term bargaining
problem to refer to a pair 〈S, d〉, where S is the graph of a nonincreasing
concave real-valued function defined on a closed interval of R, d ∈ R2, and
there exists s ∈ S such that si > di for i = 1, 2.

2.6.4 Can a Solution Be Based on Ordinal Preferences?

Utility functions are not present in Nash’s formal model of a bargaining
problem, which consists solely of a set S and a point d ∈ S. Nevertheless,
the cardinality of the players’ utility functions (a consequence, for example,
of the fact that they are derived from preferences over lotteries that satisfy
the assumptions of von Neumann and Morgenstern) plays a major role in
the arguments we have made. In particular, the appeal of the invariance
axiom INV derives from the fact that utility functions that differ by a
positive affine transformation represent the same preferences.

It is natural to ask whether a theory of bargaining can be based purely on
ordinal information about preferences. Suppose we are given the set A of
physical agreements, the disagreement outcome D ∈ A, and the (ordinal)
preferences of each player over A. Can we construct a theory of bargaining
based on only these elements? It is possible to do so if we retreat from
Nash’s basic assumption that the physical characteristics of members of A
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do not matter. However, we face a difficulty if we want the theory to select
an outcome that depends only on the players’ preferences for elements of A.
In order to construct such a theory, we must be able to describe the outcome
solely in terms of preferences. For example, the theory could predict the
outcome that Player 1 most prefers. Or it could predict the outcome that
Player 2 most prefers among those that Player 1 finds indifferent to the
disagreement outcome. Neither of these appears to be a plausible outcome
of bargaining. Further, intuition suggests that the set of outcomes that can
be described in terms of preferences may be very small and not contain any
“reasonable” outcome.

We can make a precise argument as follows. If we are to succeed in con-
structing a bargaining theory that depends only on the data 〈A,D,�1,�2〉,
then our bargaining solution F must satisfy the following condition (an
analog of INV). Let 〈A,D,�1,�2〉 and 〈A′, D′,�′1,�′2〉 be two bargaining
problems, and let T :A → A′ be a one-to-one function with T (A) = A′.
Suppose that T preserves the preference orderings (i.e. T (a) �′i T (b) if
and only if a �i b for i = 1, 2) and satisfies T (D) = D′. Then T
must transform the solution of the first problem into the solution of the
second problem: T (F (A,D,�1,�2)) = F (A′, D′,�′1,�′2). In particu-
lar, if 〈A,D,�1,�2〉 = 〈A′, D′,�′1,�′2〉, then T must map the solution
into itself.

Now suppose that the set of agreements is

A = {(a1, a2) ∈ R2: a1 + a2 ≤ 1 and ai ≥ 0 for i = 1, 2},

the disagreement outcome is D = (0, 0), and the preference ordering of
each Player i = 1, 2 is defined by (a1, a2) �i (b1, b2) if and only if ai ≥ bi.
Define T :A→ A by T (a1, a2) = (2a1/(1 + a1), a2/(2− a2)). This maps A
onto itself, satisfies T (0, 0) = (0, 0), and preserves the preference orderings.
However, the only points (a1, a2) for which T (a1, a2) = (a1, a2) are (0, 0),
(1, 0), and (0, 1). Thus a bargaining theory based solely on the information
〈A,D,�1,�2〉must assign one of these three outcomes to be the bargaining
solution. Since none of them is attractive as a solution, we conclude that
no nontrivial theory of bargaining that includes this problem can be based
on ordinal preferences.

Note that if the number of alternatives is finite, then the arguments
we have made no longer apply: in this case, many alternatives may be
given an ordinal description. Note further that our argument is limited to
the case of two players. We have not established that a nontrivial theory
of bargaining based on ordinal preferences is impossible when we restrict
attention to problems in which there are three or more players. Indeed, in
this case Shubik (1982, pp. 96–98) exhibits such a theory.
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2.6.5 Nash’s “Variable Threat” Model

In Nash’s axiomatic model the point d, which is interpreted as the outcome
in the event that the players fail to reach agreement, is fixed. Nash (1953)
extended his theory to encompass situations in which the players can in-
fluence this outcome. The primitive of this later model is a two-person
strategic game, which we denote G, in which each player has finitely many
pure strategies. Let Pi be Player i’s set of pure strategies, let Σi be his set
of mixed strategies (i.e. probability distributions over pure strategies), and
let Hi: Σ1 × Σ2 → R be his payoff function.

The players begin by simultaneously selecting mixed strategies in G.
These strategies are interpreted as the actions the players are bound to
take if they fail to reach agreement; we refer to them as threats. The
players must carry out their threats in case of disagreement even when the
pair of threats is not a Nash equilibrium of G. Once the threats have been
chosen, the agreement that is reached is given by the Nash solution of the
bargaining problem in which the set of possible agreements is the set of
probability distributions over P1 × P2, and the disagreement point is the
pair of payoffs in G in the event the threats are carried out. Given the
threat of Player j, Player i’s payoff in the Nash solution is affected by his
own threat; each player chooses his threat to maximize his payoff, given
the threat of the other player.

More precisely, let S be the (convex and compact) set of pairs of pay-
offs to probability distributions over P1 × P2, and define the function
g:S → S by g(d) = fN (S, d), where fN is the Nash solution function.
Nash’s threat game is the game G∗ in which Player i’s pure strategy set
is Σi and his payoff to the strategy pair (σ1, σ2) is gi(H(σ1, σ2)), where
H(σ1, σ2) = (H1(σ1, σ2), H2(σ1, σ2)). The game G∗ has a Nash equilib-
rium (which is sometimes referred to as a pair of optimal threats). This
follows from a standard result on the existence of Nash equilibrium, given
that gi ◦H is continuous and quasi-concave in σi for each given value of σj .
Since G∗ is strictly competitive (i.e. g1(H(σ1, σ2)) > g1(H(σ′1, σ

′
2)) if and

only if g2(H(σ1, σ2)) < g2(H(σ′1, σ
′
2))), each player’s equilibrium strategy

guarantees him his equilibrium payoff.

Notes

The main body of this chapter (Sections 2.1, 2.2, and 2.3) is based on
Nash’s seminal paper (1950a). We strongly urge you to read this paper.

The effect of the players’ risk-aversion on the agreement predicted by the
Nash solution (considered in Section 2.4.1) is explored by Kihlstrom, Roth,
and Schmeidler (1981). The analysis of wage negotiation in Section 2.4.2
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appears in McDonald and Solow (1981). Harsanyi and Selten (1972) study
the asymmetric Nash solutions fα described in Section 2.5. Precise ax-
iomatizations of these solutions, along the lines of Nash’s Theorem, are
given by Kalai (1977) and Roth (1979, p. 16). (The one stated in the
text is Kalai’s.) The axiomatization of fKS is due to Kalai and Smorodin-
sky (1975). Roth (1977) shows that PAR may be replaced by SIR in the
characterization of the Nash solution. The n-player Nash solution defined
in Section 2.6.1 is studied, for example, by Roth (1979). The discussion
in Section 2.6.4 of a bargaining theory that uses only ordinal information
about preferences is based on Shapley (1969). The model in Section 2.6.5
is due to Nash (1953); for further discussion see Owen (1982, Section VII.3)
and Hart (1979, Ch. I).

The literature on the axiomatic approach to bargaining is surveyed
by Roth (1979) and Thomson (forthcoming), and, more compactly, by
Kalai (1985).





CHAPTER 3

The Strategic Approach: A Model of

Alternating Offers

3.1 The Strategic Approach

In the axiomatic approach, the outcome of bargaining is defined by a list
of properties that it is required to satisfy. In the strategic approach, the
outcome is an equilibrium of an explicit model of the bargaining process.
In Nash’s words,

one makes the players’ steps of negotiation . . . moves in the non-
cooperative model. Of course, one cannot represent all possible bar-
gaining devices as moves in the non-cooperative game. The negoti-
ation process must be formalized and restricted, but in such a way
that each participant is still able to utilize all the essential strengths
of his position. (Nash (1953, p. 129).)

Any strategic model embodies a detailed description of a bargaining pro-
cedure. Since we observe a bewildering variety of such procedures, we are
faced with the difficult task of formulating a tractable model that expresses
the main influences on the outcome. A complex model that imposes little
structure on the negotiation is unlikely to yield definite results; a simple
model may omit a key element in the determination of the settlement. With
this tradeoff in mind, we construct in this chapter a model that focuses on
just one salient feature of bargaining: the participants’ attitudes to delay.

29
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3.2 The Structure of Bargaining

The situation we model is the following. Two players bargain over a “pie”
of size 1. An agreement is a pair (x1, x2), in which xi is Player i’s share of
the pie. The set of possible agreements is

X = {(x1, x2) ∈ R2:x1 + x2 = 1 and xi ≥ 0 for i = 1, 2}.

The players’ preferences over X are diametrically opposed. Each player is
concerned only about the share of the pie that he receives, and prefers to
receive more rather than less. That is, Player i prefers x ∈ X to y ∈ X if
and only if xi > yi. Note that X is the set of agreements, not the set of
utility pairs; we are not restricting attention to the case in which the latter
is a line segment.

This is a simple setting, but it is rich enough to include the examples
discussed in Section 2.4. In the case of bargaining over the division of a
dollar, we interpret xi as the amount that Player i receives. In the case of
negotiating the sale price of an indivisible good, x1 is the price the buyer
pays to the seller. In the model of wage negotiation, x1 is the profit of the
firm.

The bargaining procedure is as follows. The players can take actions
only at times in the (infinite) set T = {0, 1, 2, . . .}. In each period t ∈
T one of the players, say i, proposes an agreement (a member of X),
and the other player (j) either accepts the offer (chooses Y ) or rejects
it (chooses N). If the offer is accepted, then the bargaining ends, and the
agreement is implemented. If the offer is rejected, then the play passes
to period t + 1; in this period Player j proposes an agreement, which
Player i may accept or reject. The game continues in this manner; when-
ever an offer is rejected, play passes to the next period, in which it is
the rejecting player’s turn to propose an agreement. There is no limit
on the number of periods. Once an offer has been rejected, it is void;
the player who made the offer is free to propose any agreement in the
future, and there is no restriction on what he may accept or reject. At
all times, each player knows all his previous moves and all those of the
other player.

We model this procedure as an extensive game. For convenience, we
give the game an explicit time structure. The first two periods of the
game are shown in Figure 3.1. Play begins at the top of the tree, and
time starts at period 0. The number beside each node indicates the player
whose turn it is to move there. Thus Player 1 is the first to move; she
has a continuum of choices (indicated by the triangle attached to her de-
cision node). This continuum corresponds to the agreements (members of
X) that Player 1 can propose. Each possible proposal leads to a decision
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Figure 3.1 The first two periods of a bargaining game of alternating offers. The
number beside each node is the player who takes an action there. The branch labelled
x0 represents a “typical” offer of Player 1 out of the continuum available in period 0.
The labels Y and N refer to the actions “accept” and “reject”.

node for Player 2, at which he accepts (Y ) or rejects (N) the proposal.
One such node, corresponding to the proposal x0 is indicated. If Player 2
agrees (the right-hand branch), then the game ends; the label (x0, 0) in-
dicates that the agreement x0 is reached in period 0. If Player 2 rejects
Player 1’s offer (the left-hand branch), then play passes to period 1, when
it is Player 2’s turn to make an offer. A typical offer of Player 2 is x1;
for each such offer, Player 1 says either Y or N . If Player 1 chooses
Y , then the game ends with the outcome (x1, 1); if she chooses N then
the game continues—Player 1 makes a further offer, Player 2 responds,
and so on.

Note that the tree is infinite in two respects. First, at any node where
a player makes an offer, there is a continuum, rather than a finite number
of choices. Consequently, it is not possible to show in the diagram every
subsequent node of the other player; we have selected one “typical” choice
at each such point. Second, the tree contains unboundedly long paths, in
which all offers are rejected, so that a terminal node is never reached. We
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assume that every such path leads to the same outcome, which we denote
D (“disagreement”). Note also that the roles of the players are almost
symmetric; the only asymmetry is that Player 1 is the first to make an
offer.

We have attached to the terminal nodes (those at which an agreement
is concluded) labels of the form (x, t), giving the nature of the agreement
and the time at which it is reached, rather than labeling these nodes with
payoffs. Also we have assumed that all the infinite paths (at which an
agreement is never reached) lead to the same outcome D. In order to an-
alyze the players’ choices we have to specify their preferences over these
outcomes. But before we do so (in the next section), note that in defin-
ing an outcome to be either a pair (x, t) or D, we have made a restrictive
assumption about these preferences. For any period t ≥ 1, many paths
through the tree lead to a terminal node with label (x, t), since we as-
sign this outcome whenever the players agree to x at time t, regardless of
the previous path of rejected offers. (The diagram in Figure 3.1 obscures
this, since it contains only one “typical” offer at each stage.) Thus we
assume that players care only about the nature of the agreement and the
time at which it is reached, not about the sequence of offers and coun-
teroffers that leads to the agreement.1 In particular, no player regrets
having made an offer that was rejected. Similarly, we assume that the
players are indifferent about the sequence of offers and rejections that leads
to disagreement.

Finally, note that the structure of the game is different from that of a
repeated game. The structure of the tree is repetitive, but once a player
accepts an offer, the game ceases to be repeated.

3.3 Preferences

3.3.1 Assumptions

In Nash’s axiomatic approach, the players’ preferences over the physical
outcomes are augmented by their attitudes toward risk; we saw (Section
2.6) that preferences over the physical outcomes alone may not be sufficient
to determine a solution. Here, the structure of the game requires us to
include in the description of the players’ preferences their attitudes toward
agreements reached at various points in time. These time preferences are
the driving force of the model.

In order to complete our description of the game we need to specify the
players’ preferences. We assume that each player i = 1, 2 has a complete

1In using the word “outcome” for a pair (x, t) we are deviating slightly from normal
usage, in which “outcome” refers to a path through the tree.
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transitive reflexive preference ordering2 �i over the set (X × T ) ∪ {D} of
outcomes.

Definition 3.1 A bargaining game of alternating offers is an extensive game
with the structure defined in Section 3.2, in which each player’s preference
ordering �i over (X × T ) ∪ {D} is complete, transitive, and reflexive.

In the main analysis of this chapter we impose a number of conditions
on the players’ preference orderings. These conditions are weak enough to
allow a wide variety of preferences. In particular, preferences over X × T
for Player i that are represented by the function δtiui(xi) for any 0 < δi <
1 and any increasing concave function ui are allowed. Specifically, our
assumptions are the following. First, the least-preferred outcome is D.

A1 (Disagreement is the worst outcome) For every (x, t) ∈ X × T
we have (x, t) �i D.

The remaining conditions concern the behavior of �i on X × T . First, we
require that among agreements reached in the same period, Player i prefers
larger values of xi and prefers to obtain any given share of the pie sooner
rather than later.

A2 (Pie is desirable) For any t ∈ T , x ∈ X, and y ∈ X we have
(x, t) �i (y, t) if and only if xi > yi.

A3 (Time is valuable) For any t ∈ T , s ∈ T , and x ∈ X we have
(x, t) �i (x, s) if t < s, with strict preference if xi > 0.

Next we assume that Player i’s preference ordering is continuous.

A4 (Continuity) Let {(xn, t)}∞n=1 and {(yn, s)}∞n=1 be sequences of
members of X ×T for which limn→∞ xn = x and limn→∞ yn =
y. Then (x, t) �i (y, s) whenever (xn, t) �i (yn, s) for all n.

The ordering �i satisfies assumptions A2 through A4 if and only if i’s
preferences over X ×T can be represented by a continuous utility function
Ui: [0, 1]×T → R that is increasing in its first argument (the share of the pie
received by i), and decreasing in its second argument (the period of receipt)
when the first argument is positive. (See Fishburn and Rubinstein (1982,
Theorem 1).3)

2Following convention, we write z ∼i z′ if z �i z′ and z′ �i z, and say that z and z′

are indifferent for Player i; we write z �i z′ if it not true that z′ �i z.
3Fishburn and Rubinstein assume, in addition to A3, that (x, t) ∼i (x, s) for all t ∈ T

and s ∈ T whenever xi = 0. However, their proof can easily be modified to deal with
the case in which the weaker condition in A3 is satisfied.
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The next assumption greatly simplifies the structure of preferences. It
requires that the preference between (x, t) and (y, s) depend only on x, y,
and the difference s−t. Thus, for example, it implies that if (x, 1) ∼i (y, 2)
then (x, 4) ∼i (y, 5).

A5 (Stationarity) For any t ∈ T , x ∈ X, and y ∈ X we have
(x, t) �i (y, t+ 1) if and only if (x, 0) �i (y, 1).

If the ordering �i satisfies A5 in addition to A2 through A4 then there
is a utility function Ui representing i’s preferences over X × T that has a
specific form: for every δ ∈ (0, 1) there is a continuous increasing function
ui: [0, 1] → R such that Ui(xi, t) = δtui(xi). (See Fishburn and Rubin-
stein (1982, Theorem 2).4) Note that for every value of δ we can find a
suitable function ui; the value of δ is not determined by the preferences.
Note also that the function ui is not necessarily concave.

To facilitate the subsequent analysis, it is convenient to introduce some
additional notation. For any outcome (x, t), it follows from A2 through
A4 that either there is a unique y ∈ X such that Player i is indifferent
between (x, t) and (y, 0) (in which case A3 implies that if xi > 0 and t ≥ 1
then yi < xi), or every outcome (y, 0) (including that in which yi = 0) is
preferred by i to (x, t). Define vi: [0, 1]× T → [0, 1] for i = 1, 2 as follows:

vi(xi, t) =
{
yi if (y, 0) ∼i (x, t)
0 if (y, 0) �i (x, t) for all y ∈ X. (3.1)

The analysis may be simplified by making the more restrictive assump-
tion that for all (x, t) and for i = 1, 2 there exists y such that (y, 0) ∼i (x, t).
This restriction rules out some interesting cases, and therefore we do not
impose it. However, to make a first reading of the text easier we suggest
that you adopt this assumption.

It follows from (3.1) that if vi(xi, t) > 0 then Player i is indifferent
between receiving vi(xi, t) in period 0 and xi in period t. We slightly
abuse the terminology and refer to vi(xi, t) as the present value of (x, t)
for Player i even when vi(xi, t) = 0. Note that

(y, 0) �i (x, t) whenever yi = vi(xi, t) (3.2)

and (y, t) �i (x, s) whenever vi(yi, t) > vi(xi, s).
If the preference ordering �i satisfies assumptions A2 through A4, then

for each t ∈ T the function vi(·, t) is continuous, nondecreasing, and in-
creasing whenever vi(xi, t) > 0; further, we have vi(xi, t) ≤ xi for every
(x, t) ∈ X ×T , and vi(xi, t) < xi whenever xi > 0 and t ≥ 1. Under A5 we
have vi (vi(xi, 1), 1) = vi(xi, 2) for any x ∈ X. An example of the functions
v1(·, 1) and v2(·, 1) is shown in Figure 3.2.

4The comment in the previous footnote applies.
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Figure 3.2 The functions v1(·, 1) and v2(·, 1). The origin for the graph of v1(·, 1) is the
lower left corner of the box; the origin for the graph of v2(·, 1) is the upper right corner.

Under assumption A3 any given amount is worth less the later it is re-
ceived. The final condition we impose on preferences is that the loss to delay
associated with any given amount is an increasing function of the amount.

A6 (Increasing loss to delay) The difference xi − vi(xi, 1) is an
increasing function of xi.

Under this assumption the graph of each function vi(·, 1) in Figure 3.2
has a slope (relative to its origin) of less than 1 everywhere. The assumption
also restricts the character of the function ui in any representation δtui(xi)
of �i. If ui is differentiable, then A6 implies that δu′i(xi) < u′i(vi(xi, 1))
whenever vi(xi, 1) > 0. This condition is weaker than concavity of ui,
which implies u′i(xi) < u′i(vi(xi, 1)).

This completes our specification of the players’ preferences. Since there
is no uncertainty explicit in the structure of a bargaining game of alter-
nating offers, and since we restrict attention to situations in which neither
player uses a random device to make his choice, there is no need to make
assumptions about the players’ preferences over uncertain outcomes.



36 Chapter 3. The Strategic Approach

3.3.2 The Intersection of the Graphs of v1(·, 1) and v2(·, 1)

In our subsequent analysis the intersection of the graphs of v1(·, 1) and
v2(·, 1) has special significance. We now show that this intersection is
unique: i.e. there is only one pair (x, y) ∈ X ×X such that y1 = v1(x1, 1)
and x2 = v2(y2, 1). This uniqueness result is clear from Figure 3.2. Pre-
cisely, we have the following.

Lemma 3.2 If the preference ordering �i of each Player i satisfies A2
through A6, then there exists a unique pair (x∗, y∗) ∈ X × X such that
y∗1 = v1(x∗1, 1) and x∗2 = v2(y∗2 , 1).

Proof. For every x ∈ X let ψ(x) be the agreement for which ψ1(x) =
v1(x1, 1), and define H:X → R by H(x) = x2 − v2 (ψ2(x), 1). The pair
of agreements x and y = ψ(x) satisfies also x2 = v2(y2, 1) if and only if
H(x) = 0. We have H(0, 1) ≥ 0 and H(1, 0) ≤ 0, and H is continuous.
Hence (by the Intermediate Value Theorem), the function H has a zero.
Further, we have

H(x) = [v1(x1, 1)− x1] + [1− v1(x1, 1)− v2 (1− v1(x1, 1), 1)].

Since v1(x1, 1) is nondecreasing in x1, both terms are decreasing in x1 by
A6. Thus H has a unique zero. �

The unique pair (x∗, y∗) in the intersection of the graphs is shown in
Figure 3.2. Note that this intersection is below the main diagonal, so that
x∗1 > y∗1 (and x∗2 < y∗2).

3.3.3 Examples

In subsequent chapters we frequently work with the utility function Ui
defined by Ui(xi, t) = δtixi for every (x, t) ∈ X × T , and Ui(D) = 0, where
0 < δi < 1. The preferences that this function represents satisfy A1 through
A6. We refer to δi as the discount factor of Player i, and to the preferences
as time preferences with a constant discount rate.5 We have vi(xi, t) = δtixi
in this case, as illustrated in Figure 3.3a.

The utility function defined by Ui(xi, t) = xi − cit and Ui(D) = −∞,
where ci > 0, represents preferences for Player i that satisfy A1 through
A5, but not A6. We have vi(xi, t) = xi − cit if xi ≥ cit and vi(xi, t) = 0
otherwise (see Figure 3.3b). Thus if xi ≥ ci then vi(xi, 1) = xi − ci, so

5This is the conventional name for these preferences. However, given that any prefer-
ences satisfying A2 through A5 can be represented on X×T by a utility function of the
form δtiui(xi), the distinguishing feature of time preferences with a constant discount
rate is not the constancy of the discount rate but the linearity of the function ui.
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Figure 3.3 Examples of the functions v1(·, 1) and v2(·, 1) for (a) time preferences with
a constant discount factor and (b) time preferences with a constant cost of delay.

that xi− vi(xi, 1) = ci, which is constant, rather than increasing in xi. We
refer to ci as the cost of delay or bargaining cost of Player i, and to the
preferences as time preferences with a constant cost of delay.

Note that even though preferences with a constant cost of delay violate
A6, there is still a unique pair (x, y) ∈ X × X such that y1 = v1(x1, 1)
and x2 = v2(y2, 1) as long as c1 6= c2. Note also that the two families of
preferences are qualitatively different. For example, if Player i has time
preferences with a constant discount rate then he is indifferent about the
timing of an agreement that gives him 0, while if he has time preferences
with a constant cost of delay then he prefers to obtain such an agreement
as soon as possible. (Since time preferences with a constant cost of delay
satisfy A2 through A5, they can be represented on X × T by a utility
function of the form δtiui(xi) (see the discussion following A5 on p. 34).
However, there is no value of δi for which ui is linear.)

3.4 Strategies

A strategy of a player in an extensive game specifies an action at every node
of the tree at which it is his turn to move.6 Thus in a bargaining game of
alternating offers a strategy of Player 1, for example, begins by specifying
(i) the agreement she proposes at t = 0, and (ii) for every pair consisting

6Such a plan of action is sometimes called a pure strategy to distinguish it from a
plan in which the player uses a random device to choose his action. In this book we
allow players to randomize only when we explicitly say so.
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of a proposal by Player 1 at t = 0 and a counterproposal by Player 2
at t = 1, the choice of Y or N at t = 1, and, if N is chosen, a further
counterproposal for period t = 2. The strategy continues by specifying
actions at every future period, for every possible history of actions up to
that point.

More precisely, the players’ strategies in a bargaining game of alternating
offers are defined as follows. LetXt be the set of all sequences (x0, . . . , xt−1)
of members of X. A strategy of Player 1 is a sequence σ = {σt}∞t=0 of func-
tions, each of which assigns to each history an action from the relevant set.
Thus σt:Xt → X if t is even, and σt:Xt+1 → {Y,N} if t is odd: Player 1’s
strategy prescribes an offer in every even period t for every history of t
rejected offers, and a response (accept or reject) in every odd period t
for every history consisting of t rejected offers followed by a proposal of
Player 2. (The set X0 consists of the “null” history preceding period 0;
formally, it is a singleton, so that σ0 can be identified with a member of
X.) Similarly, a strategy of Player 2 is a sequence τ = {τ t}∞t=0 of functions,
with τ t:Xt+1 → {Y,N} if t is even, and τ t:Xt → X if t is odd: Player 2
accepts or rejects Player 1’s offer in every even period, and makes an offer
in every odd period.

Note that a strategy specifies actions at every period, for every possible
history of actions up to that point, including histories that are precluded by
previous actions of Player 1. Every strategy of Player 1 must, for example,
prescribe a choice of Y or N at t = 1 in the case that she herself offers
(1/2, 1/2) at t = 0, and Player 2 rejects this offer and makes a counterof-
fer, even if the strategy calls for Player 1 to make an offer different from
(1/2, 1/2) at t = 0. Thus Player 1’s strategy has to say what she will do
at nodes that will never be reached if she follows the prescriptions of her
own strategy at earlier time periods. At first this may seem strange. In
the statement “I will take action x today, and tomorrow I will take action
m in the event that I do x today, and n in the event that I do y today”,
the last clause appears to be superfluous.

If we are interested only in Nash equilibria (see Section 3.6) then there is
a redundancy in this specification of a strategy. Suppose that the strategy
σ′ of Player 1 differs from the strategy σ only in the actions it prescribes
after histories that are not reached if σ is followed. Then the strategy pairs
(σ, τ) and (σ′, τ) lead to the same outcome for every strategy τ of Player 2.
However, if we wish to use the concept of subgame perfect equilibrium
(see Section 3.7), then we need a player’s strategy to specify his actions
after histories that will never occur if he uses that strategy. In order to
examine the optimality of Player i’s strategy after an arbitrary history—
for example, after one in which Player j takes actions inconsistent with his
original strategy—we need to invoke Player i’s expectation of Player j’s
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future actions. The components of Player j’s strategy that specify his
actions after such a history can be interpreted as reflecting j’s beliefs about
what i expects j to do after this history.

Note that we do not restrict the players’ strategies to be “stationary”:
we allow the players’ offers and reactions to offers to depend on events in
all previous periods. The assumption of stationarity is sometimes made
in models of bargaining, but it is problematic. A stationary strategy is
“simple” in the sense that the actions it prescribes in every period do not
depend on time, nor on the events in previous periods. However, such a
strategy means that Player j expects Player i to adhere to his stationary
behavior even if j himself does not. For example, a stationary strategy
in which Player 1 always makes the proposal (1/2, 1/2) means that even
after Player 1 has made the offer (3/4, 1/4) a thousand times, Player 2
still believes that Player 1 will make the offer (1/2, 1/2) in the next period.
If one wishes to assume that the players’ strategies are “simple”, then it
seems that in these circumstances one should assume that Player 2 believes
that Player 1 will continue to offer (3/4, 1/4).

3.5 Strategies as Automata

A strategy in a bargaining game of alternating offers can be very complex.
The action taken by a player at any point can depend arbitrarily on the
entire history of actions up to that point. However, most of the strategies
we encounter in the sequel have a relatively simple structure. We now
introduce a language that allows us to describe such strategies in a compact
and unambiguous way.

The idea is simple. We encode those characteristics of the history that
are relevant to a player’s choice in a variable called the state. A player’s
action at any point is determined by the state and by the value of some
publicly known variables. As play proceeds, the state may change, or it
may stay the same; its progression is given by a transition rule. Assigning
an action to each of a (typically small) number of states and describing a
transition rule is often much simpler than specifying an action after each
of the huge number of possible histories.

The publicly known variables include the identity of the player whose
turn it is to move and the type of action he has to take (propose an offer
or respond to an offer). The progression of these variables is given by
the structure of the game. The publicly known variables include also the
currently outstanding offer and, in some cases that we consider in later
chapters, the most recent rejected offer.

We present our descriptions of strategy profiles in tables, an example
of which is Table 3.1. Here there are two states, Q and R. As is our



40 Chapter 3. The Strategic Approach

State Q State R

Player 1
proposes xQ xR

accepts x1 ≥ α x1 > β

Player 2
proposes yQ yR

accepts x1 = 0 x1 < η

Transitions Go to R if Player 1 pro-
poses x with x1 > θ.

Absorbing

Table 3.1 An example of the tables used to describe strategy profiles.

convention, the leftmost column describes the initial state. The first four
rows specify the behavior of the players in each state. In state Q, for
example, Player 1 proposes the agreement xQ whenever it is her turn to
make an offer and accepts any proposal x for which x1 ≥ α when it is
her turn to respond to an offer. The last row indicates the transitions.
The entry in this row that lies in the column corresponding to state I
(= Q, R) gives the conditions under which there is a transition to a state
different from I. The entry “Absorbing” for state R means that there is no
transition out of state R: once it is reached, the state remains R forever. As
is our convention, every transition occurs immediately after the event that
triggers it. (If, for example, in state Q Player 1 proposes x with x1 > xQ1 ,
then the state changes to R before Player 2 responds.) Note that the same
set of states and same transition rule are used to describe both players’
strategies. This feature is common to all the equilibria that we describe in
this book.

This way of representing a player’s strategy is closely related to the
notion of an automaton, as used in the theory of computation (see, for
example, Hopcroft and Ullman (1979)). The notion of an automaton has
been used also in recent work on repeated games; it provides a natural
tool to define measures of the complexity of a strategy. Models have been
studied in which the players are concerned about the complexity of their
strategies, in addition to their payoffs (see, for example, Rubinstein (1986)).
Here we use the notion merely as part of a convenient language to describe
strategies.

We end this discussion by addressing a delicate point concerning the re-
lation between an automaton as we have defined it and the notion that
is used in the theory of computation. We refer to the latter as a “stan-
dard automaton”. The two notions are not exactly the same, since in our
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description a player’s action depends not only on the state but also on
the publicly known variables. In order to represent players’ strategies as
standard automata we need to incorporate the publicly known variables
into the definitions of the states. The standard automaton that represents
Player 1’s strategy in Table 3.1, for example, is the following. The set of
states is {[S, i]: i = 1, 2 and S = Q,R}∪ {[S, i, x]:x ∈ X, i = 1, 2, and S =
Q,R}∪ {[x]:x ∈ X}. (The interpretation is that [S, i] is the state in which
Player i makes an offer, [S, i, x] is the state in which Player i responds to
the offer x, and [x] is the (terminal) state in which the offer x has been ac-
cepted.) The initial state is [Q, 1]. The action Player 1 takes in state [S, i]
is the offer specified in column S of the table if i = 1 and is null if i = 2;
the action she takes in state [S, i, x] is either “accept” or “reject”, as de-
termined by x and the rule specified for Player i in column S, if i = 1, and
is null if i = 2; and the action she takes in state [x] is null. The transition
rule is as follows. If the state is [S, i, x] and the action Player i takes is
“reject”, then the new state is [S, i]; if the action is “accept”, then the new
state is [x]. If the state is [S, i] and the action is the proposal x, then the
new state is [S′, j, x], where j is the other player and S′ is determined by
the transition rule given in column S. Finally, if the state is [x] then it
remains [x].

3.6 Nash Equilibrium

The following notion of equilibrium in a game is due to Nash (1950b, 1951).
A pair of strategies (σ, τ) is a Nash equilibrium7 if, given τ , no strategy
of Player 1 results in an outcome that Player 1 prefers to the outcome
generated by (σ, τ), and, given σ, no strategy of Player 2 results in an
outcome that Player 2 prefers to the outcome generated by (σ, τ).

Nash equilibrium is a standard solution used in game theory. We shall
not discuss in detail the basic issue of how it should be interpreted. We
have in mind a situation that is stable, in the sense that all players are op-
timizing given the equilibrium. We do not view an equilibrium necessarily
as the outcome of a self-enforcing agreement, or claim that it is a necessary
consequence of the players’ acting rationally that the strategy profile be a
Nash equilibrium. We view the Nash equilibrium as an appropriate solu-
tion in situations in which the players are rational, experienced, and have
played the same game, or at least similar games, many times.

In some games there is a unique Nash equilibrium, so that the theory
gives a very sharp prediction. Unfortunately, this is not so for a bargain-

7The only connection between a Nash equilibrium and the Nash solution studied in
Chapter 2 is John Nash.
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∗

Player 1
proposes x

accepts x1 ≥ x1

Player 2
proposes x

accepts x1 ≤ x1

Table 3.2 A Nash equilibrium of a bargaining game of alternating offers in which the
players’ preferences satisfy A1 through A6. The agreement x is arbitrary.

ing game of alternating offers in which the players’ preferences satisfy A1
through A6. In particular, for every agreement x ∈ X, the outcome (x, 0)
is generated by a Nash equilibrium of such a game.

To show this, let x ∈ X and consider the pair (σ, τ) of (stationary)
strategies in which Player 1 always proposes x and accepts an offer x if
and only if x1 ≥ x1, and Player 2 always proposes x and accepts an offer
if and only if x2 ≥ x2. Formally, for Player 1 let

σt(x0, . . . , xt−1) = x for all (x0, . . . , xt−1) ∈ Xt

if t is even, and

σt(x0, . . . , xt) =
{
Y if xt1 ≥ x1

N if xt1 < x1

if t is odd. Player 2’s strategy τ is defined analogously. A representation
of (σ, τ) as a pair of (one-state) automata is given in Table 3.2.

If the players use the pair of strategies (σ, τ), then Player 1 proposes
x at t = 0, which Player 2 immediately accepts, so that the outcome is
(x, 0). To see that (σ, τ) is a Nash equilibrium, suppose that Player i uses
a different strategy. Perpetual disagreement is the worst outcome (by A1),
and Player j never makes an offer different from x or accepts an agreement
x with xj < xj . Thus the best outcome that Player i can obtain, given
Player j’s strategy, is (x, 0).

The set of outcomes generated by Nash equilibria includes not only every
possible agreement in period 0, but also some agreements in period 1 or
later. Suppose, for example, that σ̂ and τ̂ differ from σ and τ only in
period 0, when Player 1 makes the offer (1, 0) (instead of x), and Player 2
rejects every offer. The strategy pair (σ̂, τ̂) yields the agreement (x, 1), and
is an equilibrium if (x, 1) �2 ((1, 0), 0). Unless Player 2 is so impatient that
he prefers to receive 0 today rather than 1 tomorrow, there exist values of
x that satisfy this condition, so that equilibria exist in which agreement is
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reached in period 1. A similar argument shows that, for some preferences,
there are Nash equilibria in which agreement is reached in period 2, or later.

In summary, the notion of Nash equilibrium puts few restrictions on the
outcome in a bargaining game of alternating offers. For this reason, we
turn to a stronger notion of equilibrium.

3.7 Subgame Perfect Equilibrium

We can interpret some of the actions prescribed by the strategies σ and τ
defined above as “incredible threats”. The strategy τ calls for Player 2 to
reject any offer less favorable to him than x. However, if Player 2 is actually
confronted with such an offer, then, under the assumption that Player 1 will
otherwise follow the strategy σ, it may be in Player 2’s interest to accept
the offer rather than reject it. Suppose that x1 < 1 and that Player 1
makes an offer x in which x1 = x1 + ε in period t, where ε > 0 is small. If
Player 2 accepts this offer he receives x2 − ε in period t, while if he rejects
it, then, according to the strategy pair (σ, τ), he offers x in period t + 1,
which Player 1 accepts, so that the outcome is (x, t+ 1). Player 2 prefers
to receive x2 − ε in period t rather than x2 in period t + 1 if ε is small
enough, so that his “threat” to reject the offer x is not convincing.

The notion of Nash equilibrium does not rule out the use of “incredible
threats”, because it evaluates the desirability of a strategy only from the
viewpoint of the start of the game. As the actions recommended by a
strategy pair are followed, a path through the tree is traced out; only a
small subset of all the nodes in the tree are reached along this path. The
optimality of actions proposed at unreached nodes is not tested when we
ask if a strategy pair is a Nash equilibrium. If the two strategies τ and
τ ′ of Player 2 differ only in the actions they prescribe at nodes that are
not reached when Player 1 uses the strategy σ, then (σ, τ) and (σ, τ ′) yield
the same path through the tree; hence Player 2 is indifferent between τ
and τ ′ when Player 1 uses σ. To be specific, consider the strategy τ ′ of
Player 2 that differs from the strategy τ defined in the previous section only
in period 0, when Player 2 accepts some offers x in which x2 < x2. When
Player 1 uses the strategy σ, the strategies τ and τ ′ generate precisely
the same path through the tree—since the strategy σ calls for Player 1 to
offer precisely x, not an offer less favorable to Player 2. Thus Player 2
is indifferent between τ and τ ′ when Player 1 uses σ; when considering
whether (σ, τ) is a Nash equilibrium we do not examine the desirability
of the action proposed by Player 2 in period 0 in the event that Player 1
makes an offer different from x.

Selten’s (1965) notion of subgame perfect equilibrium addresses this
problem by requiring that a player’s strategy be optimal in the game be-
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ginning at every node of the tree, whether or not that node is reached if the
players adhere to their strategies. In the context of the strategy pair (σ, τ)
considered in Section 3.6, we ask the following. Suppose that Player 1
makes an offer x different from x in period 0. If she otherwise follows the
precepts of σ, is it desirable for Player 2 to adhere to τ? Since the answer
is no when x1 = x1 + ε and ε > 0 is small, the pair (σ, τ) is not a subgame
perfect equilibrium. If some strategy pair (σ, τ) passes this test at every
node in the tree, then it is a subgame perfect equilibrium.

More precisely, for each node of a bargaining game of alternating offers
there is an extensive game that starts at this node, which we call a subgame.

Definition 3.3 A strategy pair is a subgame perfect equilibrium of a bar-
gaining game of alternating offers if the strategy pair it induces in every
subgame is a Nash equilibrium of that subgame.

If we represent strategies as (standard) automata (see Section 3.5), then
to establish that a strategy profile is a subgame perfect equilibrium it is
sufficient to check that no player, in any state, can increase his payoff
by a “one-shot” deviation. More precisely, for every pair of (standard)
automata and every state there is an outcome associated with the automata
if they start to operate in that state in period 0. Since the players’ time
preferences are stationary (see A5), each player faces a Markovian decision
problem, given the other player’s automaton.8 Any change in his strategy
that increases his payoff leads to agreement in a finite number of periods
(given that his preferences satisfy A1), so that his strategy is optimal if, in
every state in which he has to move, his action leads to a state for which
the outcome is the one he most prefers, among the outcomes in all the
states which can be reached by one of his actions.

3.8 The Main Result

We now show that the notion of subgame perfect equilibrium, in sharp
contrast to that of Nash equilibrium, predicts a unique outcome in a bar-
gaining game of alternating offers in which the players’ preferences satisfy
A1 through A6.

The strategies σ and τ discussed in the previous section call for both
players to propose the same agreement x and to accept offers only if they
are at least as good as x. Consider an alternative strategy pair (σ̂, τ̂) in
which Player 1 always (i.e. regardless of the history) offers x̂ and accepts
an offer y if and only if y1 ≥ ŷ1, and Player 2 always offers ŷ and accepts
an offer x if and only if x2 ≥ x̂2. Under what conditions on x̂ and ŷ is

8For a definition of a Markovian decision problem see, for example, Derman (1970).
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(σ̂, τ̂) a subgame perfect equilibrium? In the event Player 2 rejects an offer
x in period 0, he offers ŷ in period 1, which Player 1 accepts. So in order
for his rejection of every offer x with x2 < x̂2 to be credible, we must have
(ŷ, 1) �2 (x, 0) whenever x2 < x̂2; thus if x̂2 > 0 we need (ŷ, 1) �2 (x̂, 0)
by continuity (A4). At the same time we must have (x̂, 0) �2 (ŷ, 1), or
Player 2 would have an incentive to reject Player 1’s offer of x̂ in period 0.
We conclude that if the strategy pair (σ̂, τ̂) is a subgame perfect equilibrium
then either (x̂, 0) ∼2 (ŷ, 1), or x̂ = (1, 0) and (x̂, 0) �2 (ŷ, 1); or, stated
more compactly, v2(ŷ2, 1) = x̂2 (see (3.1)). Applying a similar logic to
Player 1’s rule for accepting offers in period 1, we conclude that we need
either (ŷ, 1) ∼1 (x̂, 2), or ŷ = (0, 1) and (ŷ, 1) �1 (x̂, 2). By our stationarity
assumption (A5), this is equivalent to v1(x̂1, 1) = ŷ1.

This argument shows that if (σ̂, τ̂) is a subgame perfect equilibrium then
(x̂, ŷ) must coincide with the unique solution (x∗, y∗) of the following equa-
tions.

y∗1 = v1(x∗1, 1) and x∗2 = v2(y∗2 , 1). (3.3)

(The uniqueness follows from Lemma 3.2.) Note that if y∗1 > 0 and x∗2 > 0
then

(y∗, 0) ∼1 (x∗, 1) and (x∗, 0) ∼2 (y∗, 1). (3.4)

Note further that if the players’ preferences are such that for each Player i
and every outcome (x, t) there is an agreement y such that Player i is
indifferent between (y, 0) and (x, t), then in the unique solution (x∗, y∗) of
(3.3) we have y∗1 > 0 and x∗2 > 0, so that (x∗, y∗) satisfies (3.4).

The main result of this chapter is that any bargaining game of alternating
offer in which the players’ preferences satisfy A1 through A6 has a unique
subgame perfect equilibrium, which has the structure of (σ̂, τ̂).

Theorem 3.4 Every bargaining game of alternating offers in which the
players’ preferences satisfy A1 through A6 has a unique subgame perfect
equilibrium (σ∗, τ∗). In this equilibrium Player 1 proposes the agreement
x∗ defined in (3.3) whenever it is her turn to make an offer, and accepts
an offer y of Player 2 if and only if y1 ≥ y∗1 ; Player 2 always proposes y∗,
and accepts only those offers x with x2 ≥ x∗2. The outcome is that Player 1
proposes x∗ in period 0, and Player 2 immediately accepts this offer.

Formally, the subgame perfect equilibrium strategy σ∗ of Player 1 de-
scribed in the theorem is defined by

σ∗t(x0, . . . , xt−1) = x∗ for all (x0, . . . , xt−1) ∈ Xt

if t is even, and

σ∗t(x0, . . . , xt) =
{
Y if xt1 ≥ y∗1
N if xt1 < y∗1
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∗

Player 1
proposes x∗

accepts x1 ≥ y∗1

Player 2
proposes y∗

accepts x1 ≤ x∗1

Table 3.3 The unique subgame perfect equilibrium of a bargaining game of alternating
offers in which the players’ preferences satisfy A1 through A6. The pair of agreements
(x∗, y∗) is the unique solution of (3.3).

if t is odd. The strategy τ∗ of Player 2 has the same structure; the roles of
x∗ and y∗ are reversed, the words “odd” and “even” are interchanged, and
each subscript 1 is replaced by 2. Table 3.3 describes the strategies σ∗ and
τ∗ as automata.

Note the we have not assumed that the strategies are stationary; we
have allowed actions in any period to depend on the entire history of the
game. The theorem establishes that the only subgame perfect equilibrium
strategies take this form.

Proof of Theorem 3.4. First we argue that the strategy pair (σ∗, τ∗) is
a subgame perfect equilibrium. We need to show that (σ∗, τ∗) induces a
Nash equilibrium in every subgame. Consider a subgame starting with an
offer by Player 1 in period t∗. Given that Player 2 uses the strategy τ∗,
any strategy of Player 1 that proposes x∗ in period t∗ leads to the outcome
(x∗, t∗); any other strategy of Player 1 generates either (x, t) where x1 ≤ x∗1
and t ≥ t∗, or (y∗, t) where t ≥ t∗ + 1, or D. Since x∗1 > y∗1 , it follows from
A1, A2, and A3 that the best of these outcomes for Player 1 is (x∗, t∗), so
that σ∗ is a best response to τ∗ in the subgame. Given that Player 1 uses
the strategy σ∗, any strategy of Player 2 that accepts x∗ in period t∗ leads to
the outcome (x∗, t∗); any other strategy of Player 2 generates either (x∗, t)
for t > t∗, or (y, t) where y2 ≤ y∗2 and t ≥ t∗ + 1, or D. By A1, A2, and
A3 the best of these outcomes for Player 2 is either (x∗, t∗) or (y∗, t∗ + 1).
Now, by definition we have x∗2 = v2(y∗2 , 1), so that (x∗, 0) �2 (y∗, 1) (see
(3.2)), and hence by (A5) (stationarity), (x∗, t∗) �2 (y∗, t∗+ 1). Thus τ∗ is
a best response for Player 2 to σ∗ in the subgame. Similar arguments apply
to subgames starting with an offer by Player 2 and to subgames starting
with a response by either player.

We now turn to the more difficult part of the argument, which shows
that (σ∗, τ∗) is the only subgame perfect equilibrium.
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For i = 1, 2, all subgames that begin with an offer by Player i are
isomorphic (by the stationarity assumption A5); let Gi be such a subgame.
The existence of the SPE above allows us to define

Mi = sup{vi(xi, t): there is an SPE of Gi with outcome (x, t)},

where SPE means “subgame perfect equilibrium”; letmi be the correspond-
ing infimum. Note that M1 and m1 are defined on a subgame beginning
with an offer by Player 1, while M2 and m2 are defined on a subgame
beginning with an offer by Player 2. We shall show that

M1 = m1 = x∗1 and M2 = m2 = y∗2 , (3.5)

so that the present value for Player 1 of every SPE outcome of G1 is x∗1,
and the present value for Player 2 of every SPE outcome of G2 is y∗2 . By
the following argument, this suffices to prove the theorem.

We need to show that it follows from (3.5) that every SPE of G1 is
(σ∗, τ∗). First we argue that in any SPE the first offer is accepted. Suppose
to the contrary that there is an SPE in which Player 1’s first offer x is
rejected. After the rejection, the players must follow an SPE of G2. By
(3.5) the present value to Player 2 of such an SPE is y∗2 , so that the present
value to Player 1 is no more than y∗1 . Since v1(y∗1 , 1) ≤ y∗1 < x∗1, the present
value of the SPE to Player 1 is less than x∗1, contradicting (3.5). Thus in
every SPE of G1 the first offer is accepted. A similar argument applies to
G2. It follows that in any SPE of G1, Player 1 always proposes x∗, which
Player 2 accepts, and Player 2 always proposes y∗, which Player 1 accepts.
Also, by (3.3), Player 1 rejects any offer y in which y1 < y∗1 and accepts
any offer y in which y1 > y∗1 ; analogously for Player 2.

It remains to establish (3.5). We do so in two steps.

Step 1. m2 ≥ 1− v1(M1, 1).

Proof. Suppose that in the first period of G2 Player 2 proposes z with
z1 > v1(M1, 1). If Player 1 accepts z then the outcome is (z, 0). If she
rejects z, then the outcome has present value at most v1(M1, 1) to her. Thus
in any SPE she accepts any such proposal z, and hence m2 ≥ 1−v1(M1, 1).

Step 2. M1 ≤ 1− v2(m2, 1).

Proof. If, in the first period of G1, Player 2 rejects the offer of Player 1,
then he can obtain at least m2 with one period of delay. Hence in any
SPE Player 2 rejects any offer x for which x2 < v2(m2, 1). Thus the
most that Player 1 can obtain if agreement is reached in the first period is
1−v2(m2, 1). Since the outcome in any SPE in which agreement is delayed
has present value to Player 1 no greater than v1(1 − m2, 1) ≤ 1 − m2 ≤
1− v2(m2, 1), the result follows.
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Figure 3.4 An illustration of the last part of the proof of Theorem 3.4. It follows from
Step 1 and the fact that m2 ≤ y∗2 that the pair (M1, 1−m2) lies in the region labeled
A; it follows from Step 2 and the fact that M1 ≥ x∗1 that this pair lies in the region
labeled B.

Step 1 establishes that in Figure 3.4 the pair (M1, 1 −m2) (relative to
the origin at the bottom left) lies below the line y1 = v1(x1, 1). Similarly,
Step 2 establishes that (M1, 1−m2) lies to the left of the line x2 = v2(y2, 1).
Since we showed in the first part of the proof that (σ∗, τ∗) is an SPE of
G1, we know that M1 ≥ x∗1; the same argument shows that there is an
SPE of G2 in which the outcome is (y∗, 0), so that m2 ≤ y∗2 , and hence
1 − m2 ≥ y∗1 . Combining these facts we conclude from Figure 3.4 that
M1 = x∗1 and m2 = y∗2 .

The same arguments, with the roles of the players reversed, show that
m1 = x∗1 and M2 = y∗2 . This establishes (3.5), completing the proof. �

The proof relies heavily on the fact that there is a unique solution to
(3.3) but does not otherwise use the condition of increasing loss to delay
(A6) which we imposed on preferences. Thus any other condition that
guarantees a unique solution to (3.3) can be used instead of A6.
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3.9 Examples

3.9.1 Constant Discount Rates

Suppose that the players have time preferences with constant discount rates
(i.e. Player i’s preferences over outcomes (x, t) are represented by the utility
function δtixi, where δi ∈ (0, 1) (see Section 3.3.3)). Then (3.3) implies that
y∗1 = δ1x

∗
1 and x∗2 = δ2y

∗
2 , so that

x∗ =
(

1− δ2
1− δ1δ2

,
δ2(1− δ1)
1− δ1δ2

)
and y∗ =

(
δ1(1− δ2)
1− δ1δ2

,
1− δ1

1− δ1δ2

)
. (3.6)

Thus if δ1 = δ2 = δ (the discount factors are equal), then x∗ = (1/(1 + δ),
δ/(1 + δ)).

Notice that as δ1 approaches 1, the agreement x∗ approaches (1, 0): as
Player 1 becomes more patient, her share increases, and, in the limit, she
receives all the pie. Similarly, as Player 2 becomes more patient, Player 1’s
share of the pie approaches zero. The cases in which δ1 or δ2 are actually
equal to 1 are excluded by assumption A3. Nevertheless, if only one of
the δi’s is equal to one then the proof that there is a unique subgame
perfect equilibrium payoff vector is still valid, although in this case there
is a multiplicity of subgame perfect equilibria. For example, if δ1 = 1 and
δ2 < 1, then the unique subgame perfect equilibrium payoff vector is (1, 0),
but in addition to the equilibrium described in Theorem 3.4 there is one
in which Player 2 rejects the offer (1, 0) in period 0 and proposes (1, 0) in
period 1, which Player 1 accepts.

3.9.2 Constant Costs of Delay

Preferences that display constant costs of delay are represented by the
utility function xi − cit, where ci > 0. As remarked in Section 3.3.3,
these preferences do not satisfy assumption A6. Nevertheless, as long as
c1 6= c2 there is a unique pair (x∗, y∗) that satisfies (3.3): x∗ = (1, 0) and
y∗ = (1 − c1, c1) if c1 < c2 (see Figure 3.3b), and x∗ = (c2, 1− c2) and
y∗ = (0, 1) if c1 > c2. Thus, because of the remark following the proof,
Theorem 3.4 still applies: there is a unique subgame perfect equilibrium, in
which the players immediately reach the agreement x∗ = (1, 0) if c1 < c2,
and x∗ = (c2, 1 − c2) if c1 > c2. The prediction here is quite extreme—
Player 1 gets all the pie if her delay cost is smaller than that of Player 2,
while Player 2 gets 1− c2 if his delay cost is smaller. When the delay costs
are the same and less than 1, there is no longer a unique solution to (3.3);
in this case there are multiple subgame perfect equilibria if the delay cost
is small enough, and in some of these equilibria agreement is not reached
in period 0 (see Rubinstein (1982, pp. 107–108)).
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3.10 Properties of the Subgame Perfect Equilibrium

3.10.1 Delay

The structure of a bargaining game of alternating offers allows negotiation
to continue indefinitely. Nevertheless, in the unique subgame perfect equi-
librium it terminates immediately; from an economic point of view, the
bargaining process is efficient (no resources are lost in delay). To which
features of the model can we attribute this result? We saw that in a Nash
equilibrium of the game, delay is possible. Thus the notion of subgame
perfection plays a role in the result. Yet perfection alone does not rule out
delay—our assumptions on preferences are also important.

To see this, notice that the proof that agreement is reached immediately
if the game has a unique subgame perfect equilibrium payoff vector relies
only on assumptions A1, A2, and A3. In other words, if the players’ prefer-
ences satisfy these three assumptions and there is a unique subgame perfect
equilibrium then there is no delay. Thus the presence of delay is closely
related to the existence of multiple equilibria, which arises, for example,
if both players’ time preferences have the same constant cost of delay (see
Section 3.9.2). It is convenient to demonstrate this point by considering
another case in which there is a multiplicity of equilibria.

Suppose that there are just three divisions of the pie available: X =
{a, b, c}. Assume that a1 > b1 > c1, and that the players’ preferences
satisfy A1, A2, A3, and A5. Further assume that if a player prefers (x, t)
to (y, t), then he also prefers (x, t + 1) to (y, t) (so that (a, 1) �1 (b, 0),
(b, 1) �1 (c, 0), (b, 1) �2 (a, 0), and (c, 1) �2 (b, 0)). Then for each x∈ X,
the pair of strategies in which each player always insists on x (i.e. Player i
always offers x and accepts an offer x if and only if xi ≥ xi) is a subgame
perfect equilibrium.

We now construct a subgame perfect equilibrium in which agreement is
reached in period 1. In period 0, Player 1 proposes a. Player 2 rejects an
offer of a or b, and accepts c. If Player 1 offers a in period 0 and this is
rejected, then from period 1 on the subgame perfect equilibrium strategy
pair in which each player insists on b (as described above) is played. If
Player 1 offers b or c in period 0 and this is rejected, then from period 1 on
the subgame perfect equilibrium strategy pair in which each player insists
on c is played. These strategies are described in Table 3.4 as automata.
There are three states, A, B, and C; as is our convention, the leftmost
state (A) is the initial state. (Since it is not possible to reach a situation
in which the state is A and either Player 1 has to respond to an offer or
Player 2 has to make an offer, the corresponding boxes in the table are
blank.)
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A B C

1
proposes a b c

accepts a and b a, b, and c

2
proposes b c

accepts c b and c c

Transitions Go to B if Player 2
rejects a.

Absorbing Absorbing

Go to C if Player 2
rejects b or c.

Table 3.4 A subgame perfect equilibrium of a bargaining game of alternating offers
in which there are only three divisions of the pie available. It is not possible to reach
a situation in which the state is A and either Player 1 has to respond to an offer or
Player 2 has to make an offer, so that the corresponding entries are blank.

The outcome of this strategy profile is that Player 1 offers a in period 0,
and Player 2 rejects this offer and proposes b in period 1, which Player 1
accepts. To check that the strategies constitute a subgame perfect equi-
librium, notice that if Player 1 offers b rather than a, then the outcome is
(c, 1), which is worse for her than (b, 1). If she offers c then the outcome is
(c, 0), which is also worse for her than (b, 1).

A final ingredient of the model that appears to contribute to the result
that an agreement is reached without delay is the basic assumption that
each player is completely informed about the preferences of his opponent.
Intuition suggests that if a player is uncertain about his opponent’s char-
acteristics then negotiation could be lengthy: a player might make an offer
that is accepted by some kinds of opponent and rejected by others. We
return to this issue in Chapter 5.

3.10.2 Patience

The equilibrium outcome depends on the character of the players’ pref-
erences. One characteristic that we can isolate is the degree of patience.
Define the preferences �′1 to be less patient than �1 if v′1(x1, 1) ≤ v1(x1, 1)
for all x ∈ X, and v′1(x1, 1) < v1(x1, 1) for some x ∈ X. It is imme-
diate from a diagram like that in Figure 3.2 that the value of x∗1 that
solves (3.3) for the preferences �′1 is no larger than the value that solves
(3.3) for the preferences �1, and may be smaller. Thus the model pre-
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dicts that when a player becomes less patient, his negotiated share of the
pie decreases.

If the players have time preferences with constant discount rates, then
being less patient means having a smaller value of δi. In this case we can
read off the result from (3.6): if δ1 decreases then x∗1 decreases, while if δ2
decreases then x∗1 increases.

3.10.3 Symmetry

The structure of a bargaining game of alternating offers is asymmetric in
one respect: one of the bargainers is the first to make an offer. If the player
who starts the bargaining has the preferences �2 while the player who is
the first to respond has the preferences �1, then Theorem 3.4 implies that
in the only subgame perfect equilibrium the players reach the agreement
y∗ (see (3.3)) in period 0. Since x∗1 > y∗1 , being the first to make an
offer gives a player an advantage. If the players’ attitudes to time are
the same then we can be more specific. In this case v1 = v2, so that in
the solution to (3.3) we have x∗1 = y∗2 = 1 − y∗1 . Given that x∗1 > y∗1 we
have x∗1 > 1/2 and y∗1 < 1/2: the first to move obtains more than half of
the pie.

In a game in which one player makes all the offers, there is a unique
subgame perfect equilibrium, in which that player obtains all the pie (re-
gardless of the players’ preferences). The fact that the player who makes
the first offer has an advantage when the players alternate offers is a
residue of the extreme asymmetry when one player alone makes all the
offers.

The asymmetry in the structure of a bargaining game of alternating offers
is artificial. One way of diminishing its effect is to reduce the amount of
time that elapses between periods. In Section 4.4 we consider the effect of
doing so for a wide class of preferences. Here we simply note what happens
when the players have time preferences with constant discount rates. In
this case we can simulate the effect of shrinking the length of the period by
considering a sequence of games indexed by ∆ in which Player i’s utility for
the agreement x reached after a delay of t periods is δ∆t

i xi. Let x∗(∆) be the
agreement reached (in period 0) in the unique subgame perfect equilibrium
of the game indexed by ∆ in which Player 1 is the first to make an offer.
Let y∗(∆) be the agreement reached in this game when Player 2 is the
first to make an offer. It follows from the calculations in Section 3.9.1 that
x∗1(∆) = (1 − δ∆

2 )/(1 − δ∆
1 δ

∆
2 ) and y∗2(∆) = (1 − δ∆

1 )/(1 − δ∆
1 δ

∆
2 ). Using

l’Hôpital’s rule we find that

lim
∆→0

x∗(∆) = lim
∆→0

y∗(∆) =
(

log δ2
log δ1 + log δ2

,
log δ1

log δ1 + log δ2

)
.
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Thus the limit, as the length of the period shrinks to 0, of the amount
received by a player is the same regardless of which player makes the first
offer.

As an alternative to shrinking the length of the period, we can modify
the game to make its structure symmetric. One way of doing so is to
consider a game in which at the beginning of each period each player is
chosen with probability 1/2 (independently across periods) to be the one
to make an offer. Since this introduces uncertainty into the structure of the
game, we need to make assumptions about the players’ preferences among
lotteries over outcomes. If we make the assumptions of von Neumann and
Morgenstern then we can show that this game has a unique subgame perfect
equilibrium. In this equilibrium, Player 1 always offers x̃ and Player 2
always offers ỹ, where (x̃, ỹ) is such that Player 1 is indifferent between
(ỹ, 0) and the lottery that yields (x̃, 1) and (ỹ, 1) with equal probabilities,
and Player 2 is indifferent between (x̃, 0) and the same lottery. (We omit
the details.)

3.10.4 Stationarity of Preferences

Theorem 3.4 continues to hold if we weaken assumption A5 and require only
that Player 1’s preference between the outcomes (x, t) and (y, t+ 1) when
t is odd is independent of t, and Player 2’s preference between (x, t) and
(y, t+ 1) when t is even is independent of t. The reason is that in addition
to A1, A2, and A3, the only property of preferences that we have used
concerns the players’ preference between accepting an offer and rejecting
it and thus moving the play into a subgame starting in the next period.
Thus Player 1’s preference between (x, t) and (y, t+ 1) when t is even, and
Player 2’s preference between these outcomes when t is odd, are irrelevant.
As long as the preferences continue to satisfy A1, A2, and A3, there is a
unique subgame perfect equilibrium, which is characterized by a suitably
modified version of (3.3):

v1(y∗1 , 1) = v1(x∗1, 2) and x∗2 = v2(y∗2 , 1). (3.7)

To illustrate this point, consider the case in which each period corre-
sponds to an interval of real time. Suppose that Player i’s preferences
over pairs (x, θ), where x is an agreement and θ is the real time at which
the agreement is reached, are represented by the utility function δθxi.
Assume that the time it takes Player i to make a new proposal after
he rejects one is ∆i. Then the unique subgame perfect equilibrium of
this game is the same as the unique subgame perfect equilibrium of the
game in which each period has length 1 and the players have constant
discount factors δ∆i . The more quickly Player i can make a counterof-
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fer after rejecting an offer of Player j, the larger is δ∆i , and hence the
larger is x∗1 and the smaller is y∗1 . In the limit, when Player 1 can re-
spond instantly (∆1 = 0), but Player 2 cannot, Player 1 obtains all the pie
(x∗ = y∗ = (1, 0)). In Section 4.4.4 we further study the case of asymmetric
response times.

3.11 Finite versus Infinite Horizons

Our choice of an infinite horizon for the bargaining game raises an impor-
tant modeling issue. At first glance the assumption of an infinite horizon
is not realistic: every individual’s life is finite. As an alternative, we can
construct a model in which the horizon is either some fixed finite number
or a random variable with a finite support.

A bargaining game of alternating offers with a finite horizon has a unique
subgame perfect equilibrium (under the assumptions on preferences made
in Section 3.3), which can be calculated by backwards induction. As the
horizon increases, the agreement reached in this equilibrium converges to
the agreement reached in the unique subgame perfect equilibrium of the
model with an infinite horizon. (Binmore (1987b) uses this fact to provide
an alternative proof of Theorem 3.4.) Thus the infinite horizon model of
this chapter predicts an outcome very similar to that predicted by a model
with a very long finite horizon.

Despite the similarity in the predictions of the models, we do not regard
the differences between the models as insignificant. The model with an
infinite horizon fits a situation in which the players perceive that, after
any rejection of an offer, there is room for a counterproposal. Such a
perception ignores the fact that the death of one of the players or the end
of the world may preclude any counterproposal. The model with a finite
horizon fits a situation in which the final stage of the game is perceived
clearly by the players, who fully take it into account when formulating their
strategies.

The significant difference between the two models lies not in the realism
of the horizons they posit but in the strategic reasoning of the players. In
many contexts a model in which the horizon is infinite better captures this
reasoning process. In such cases, a convergence theorem for games with
finite horizons may be useful as a technical device, even if the finite games
themselves are of limited intrinsic interest.

3.12 Models in Which Players Have Outside Options

Here we analyze two modifications of the structure of a bargaining game
of alternating offers in which one of the players has the option of leaving
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his current partner, in which case the game ends. In both cases we restrict
attention to the case in which the players have time preferences with the
same constant discount factor δ < 1.

We consider two games, in each of which Player 2 has the option of
terminating the negotiation; in this event an outcome that is worth b to
him (and 0 to Player 1) occurs. The games differ in the times at which it
is possible for Player 2 to quit. If he can quit only after he has rejected
an offer, then the game has a unique subgame perfect equilibrium. If he
can quit either only after Player 1 rejects his offer or after any rejection,
then, for some values of the outside option, the game has multiple subgame
perfect equilibria. In either case, if b is small relative to the payoff of
Player 2 in the unique subgame perfect equilibrium of the game in which
there is no outside option, then this outside option has no effect on the
outcome of the game. This result is striking. An intuition for it is that
opting out is not a credible threat for Player 2: he can achieve no more
outside the relationship than he can within it. If b is large, then in the first
model there is a unique subgame perfect equilibrium in which the players
obtain the payoffs (1− b, b), while in the second model there is a range of
subgame perfect equilibrium payoffs.

3.12.1 A Model in Which Player 2 Can Opt Out Only When Responding
to an Offer

We study a modification of the model of alternating offers in which Player 2,
and only Player 2, can unilaterally quit the negotiation. If this event (the
“outside option”) occurs in period t then the players obtain the utility
pair (0, δtb), where b < 1. If b > 0 then Player 2 seems to have an
advantage over Player 1. He has a valuable alternative to reaching an
agreement with Player 1, while Player 1 has no choice but to bargain with
Player 2.

When can Player 2 opt out? It turns out that this question is important.
In this section we assume that Player 2 can opt out only when responding
to an offer from Player 1. The structure of negotiation is thus the following.
First Player 1 proposes a division x of the pie. Player 2 may accept this
proposal, reject it and opt out, or reject it and continue bargaining. In
the first two cases the negotiation ends; in the first case the payoff vector
is x, and in the second case it is (0, b). If Player 2 rejects the offer and
continues bargaining, play passes into the next period, when it is Player 2’s
turn to make an offer, which Player 1 may accept or reject. In the event
of rejection, another period passes, and once again it is Player 1’s turn to
make an offer. The first two periods of the resulting game are shown in
Figure 3.5. The result we obtain is the following.
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Figure 3.5 The first two periods of a bargaining game in which Player 2 can opt out
only when responding to an offer. The branch labelled x0 represents a “typical” offer of
Player 1 out of the continuum available in period 0; similarly, the branch labeled x1 is
a “typical” offer of Player 2 in period 1. In period 0, Player 2 can reject the offer and
opt out (Q), reject the offer and continue bargaining (N), or accept the offer (Y ).

Proposition 3.5 Consider the bargaining game described above, in which
Player 2 can opt out only when responding to an offer, as in Figure 3.5.
Assume that the players have time preferences with the same constant dis-
count factor δ < 1, and that their payoffs in the event that Player 2 opts
out in period t are (0, δtb), where b < 1.

1. If b < δ/(1 + δ) then the game has a unique subgame perfect equi-
librium, which coincides with the subgame perfect equilibrium of the
game in which Player 2 has no outside option. That is, Player 1
always proposes the agreement (1/(1 + δ), δ/(1 + δ)) and accepts any
proposal y in which y1 ≥ δ/(1 + δ), and Player 2 always proposes
the agreement (δ/(1 + δ), 1/(1 + δ)), accepts any proposal x in which
x2 ≥ δ/(1 + δ), and never opts out. The outcome is that agreement
is reached immediately on (1/(1 + δ), δ/(1 + δ)).

2. If b > δ/(1 + δ) then the game has a unique subgame perfect equilib-
rium, in which Player 1 always proposes (1 − b, b) and accepts any
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proposal y in which y1 ≥ δ(1 − b), and Player 2 always proposes
(δ(1− b), 1− δ(1− b)), accepts any proposal x in which x2 ≥ b, and
opts out if x2 < b. The outcome is that agreement is reached imme-
diately on the division (1− b, b).

3. If b = δ/(1+δ) then in every subgame perfect equilibrium the outcome
is an immediate agreement on (1− b, b).

Proof. Throughout this proof we write SPE for “subgame perfect equi-
librium”. First note that if δ/(1 + δ) ≥ b then the SPE of the bargaining
game of alternating offers given in Theorem 3.4 is an SPE of the game here.
(Given the equilibrium strategies, Player 2 can never improve his position
by opting out.)

If δ/(1 + δ) ≤ b then the argument that the pair of strategies given
in Part 2 of the proposition is an SPE is straightforward. For example, to
check that it is optimal for Player 2 to opt out when responding to an offer x
with x2 < b in period t, consider the payoffs from his three possible actions.
If he opts out, he obtains b; if he accepts the offer, he obtains x2 < b. If he
rejects the offer and continues bargaining then the best payoff he can obtain
in period t+ 1 is 1− δ(1− b), and the payoff he can obtain in period t+ 2
is b. Because of the stationarity of Player 1’s strategy, Player 2 is worse
off if he waits beyond period t+ 2. Now, we have δ2b ≤ δ[1− δ(1− b)] ≤ b
(the second inequality since δ/(1 + δ) ≤ b). Thus Player 2’s optimal action
is to opt out if Player 1 proposes an agreement x in which x2 < b.

Let M1 and M2 be the suprema of Player 1’s and Player 2’s payoffs over
SPEs of the subgames in which Players 1 and 2, respectively, make the first
offer. Similarly, let m1 and m2 be the infima of these payoffs. We proceed
in a number of steps.

Step 1. m2 ≥ 1− δM1.

The proof is the same as that of Step 1 in the proof of Theorem 3.4.

Step 2. M1 ≤ 1−max{b, δm2}.

Proof. Since Player 2 obtains the utility b by opting out, we must have
M1 ≤ 1− b. The fact that M1 ≤ 1− δm2 follows from the same argument
as for Step 2 in the proof of Theorem 3.4.

Step 3. m1 ≥ 1−max{b, δM2} and M2 ≤ 1− δm1.

The proof is analogous to those for Steps 1 and 2.

Step 4. If δ/(1 + δ) ≥ b then mi ≤ 1/(1 + δ) ≤Mi for i = 1, 2.

Proof. These inequalities follow from the fact that in the SPE described
in the proposition Player 1 obtains the utility 1/(1 + δ) in any subgame
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in which she makes the first offer, and Player 2 obtains the same utility in
any subgame in which he makes the first offer.

Step 5. If δ/(1 + δ) ≥ b then M1 = m1 = 1/(1 + δ) and M2 = m2 =
1/(1 + δ).

Proof. By Step 2 we have 1 − M1 ≥ δm2, and by Step 1 we have
m2 ≥ 1 − δM1, so that 1 −M1 ≥ δ − δ2M1, and hence M1 ≤ 1/(1 + δ).
Hence M1 = 1/(1 + δ) by Step 4.

Now, by Step 1 we have m2 ≥ 1−δM1 = 1/(1+δ). Hence m2 = 1/(1+δ)
by Step 4.

Again using Step 4 we have δM2 ≥ δ/(1 + δ) ≥ b, and hence by Step 3
we have m1 ≥ 1 − δM2 ≥ 1 − δ(1 − δm1). Thus m1 ≥ 1/(1 + δ). Hence
m1 = 1/(1 + δ) by Step 4.

Finally, by Step 3 we have M2 ≤ 1 − δm1 = 1/(1 + δ), so that M2 =
1/(1 + δ) by Step 4.

Step 6. If b ≥ δ/(1+δ) then m1 ≤ 1−b ≤M1 and m2 ≤ 1−δ(1−b) ≤M2.

Proof. These inequalities follow from the SPE described in the proposi-
tion (as in Step 4).

Step 7. If b ≥ δ/(1+δ) then M1 = m1 = 1−b and M2 = m2 = 1−δ(1−b).

Proof. By Step 2 we have M1 ≤ 1− b, so that M1 = 1− b by Step 6. By
Step 1 we have m2 ≥ 1− δM1 = 1− δ(1− b), so that m2 = 1− δ(1− b) by
Step 6.

Now we show that δM2 ≤ b. If δM2 > b then by Step 3 we have
M2 ≤ 1−δm1 ≤ 1−δ(1−δM2), so that M2 ≤ 1/(1+δ). Hence b < δM2 ≤
δ/(1 + δ), contradicting our assumption that b ≥ δ/(1 + δ).

Given that δM2 ≤ b we have m1 ≥ 1 − b by Step 3, so that m1 = 1 − b
by Step 6. Further, M2 ≤ 1 − δm1 = 1 − δ(1 − b) by Step 3, so that
M2 = 1− δ(1− b) by Step 6.

Thus in each case the SPE outcome is unique. The argument that the
SPE strategies are unique if b 6= δ/(1 + δ) is the same as in the proof of
Theorem 3.4. If b = δ/(1 + δ) then there is more than one SPE; in some
SPEs, Player 2 opts out when facing an offer that gives him less than b,
while in others he continues bargaining in this case. �

3.12.2 A Model in Which Player 2 Can Opt Out Only After Player 1
Rejects an Offer

Here we study another modification of the bargaining game of alternating
offers. In contrast to the previous section, we assume that Player 2 may opt
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Figure 3.6 The first two periods of a bargaining game in which Player 2 can opt out
only after Player 1 rejects an offer. The branch labelled x0 represents a “typical” offer
of Player 1 out of the continuum available in period 0; similarly, the branch labeled x1

is a “typical” offer of Player 2 in period 1. In period 0, Player 2 can reject (N) or accept
(Y ) the offer. In period 1, after Player 1 rejects an offer, Player 2 can opt out (Q), or
continue bargaining (C).

out only after Player 1 rejects an offer. A similar analysis applies also to
the model in which Player 2 can opt out both when responding to an offer
and after Player 1 rejects an offer. We choose the case in which Player 2 is
more restricted in order to simplify the analysis. The first two periods of
the game we study are shown in Figure 3.6.

If b < δ2/(1 + δ) then the outside option does not matter: the game has
a unique subgame perfect equilibrium, which coincides with the subgame
perfect equilibrium of the game in which Player 2 has no outside option.
This corresponds to the first case in Proposition 3.5. We require b <
δ2/(1 + δ), rather than b < δ/(1 + δ) as in the model of the previous
section in order that, if the players make offers and respond to offers as in
the subgame perfect equilibrium of the game in which there is no outside
option, then it is optimal for Player 2 to continue bargaining rather than
opt out when Player 1 rejects an offer. (If Player 2 opts out then he collects
b immediately. If he continues bargaining, then by accepting the agreement
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(1/(1 + δ), δ/(1 + δ)) that Player 1 proposes he can obtain δ/(1 + δ) with
one period of delay, which is worth δ2/(1 + δ) now.)

If δ2/(1+δ) ≤ b ≤ δ2 then we obtain a result quite different from that in
Proposition 3.5. There is a multiplicity of subgame perfect equilibria: for
every ξ ∈ [1− δ, 1− b/δ] there is a subgame perfect equilibrium that ends
with immediate agreement on (ξ, 1− ξ). In particular, there are equilibria
in which Player 2 receives a payoff that exceeds the value of his outside
option. In these equilibria Player 2 uses his outside option as a credible
threat. Note that for this range of values of b we do not fully characterize
the set of subgame perfect equilibria, although we do show that the presence
of the outside option does not harm Player 2.

Proposition 3.6 Consider the bargaining game described above, in which
Player 2 can opt out only after Player 1 rejects an offer, as in Figure 3.6.
Assume that the players have time preferences with the same constant dis-
count factor δ < 1, and that their payoffs in the event that Player 2 opts
out in period t are (0, δtb), where b < 1.

1. If b < δ2/(1 + δ) then the game has a unique subgame perfect equi-
librium, which coincides with the subgame perfect equilibrium of the
game in which Player 2 has no outside option. That is, Player 1
always proposes the agreement (1/(1 + δ), δ/(1 + δ)) and accepts any
proposal y in which y1 ≥ δ/(1 + δ), and Player 2 always proposes
the agreement (δ/(1 + δ), 1/(1 + δ)), accepts any proposal x in which
x2 ≥ δ/(1 + δ), and never opts out. The outcome is that agreement
is reached immediately on (1/(1 + δ), δ/(1 + δ)).

2. If δ2/(1+δ) ≤ b ≤ δ2 then there are many subgame perfect equilibria.
In particular, for every ξ ∈ [1− δ, 1− b/δ] there is a subgame perfect
equilibrium that ends with immediate agreement on (ξ, 1−ξ). In every
subgame perfect equilibrium Player 2’s payoff is at least δ/(1 + δ).

Proof. We prove each part separately.

1. First consider the case b < δ2/(1 + δ). The result follows from
Theorem 3.4 once we show that, in any SPE, after every history it is
optimal for Player 2 to continue bargaining, rather than to opt out. Let
M1 and m2 be defined as in the proof of Proposition 3.5. By the arguments
in Steps 1 and 2 of the proof of Theorem 3.4 we have m2 ≥ 1 − δM1 and
M1 ≤ 1− δm2, so that m2 ≥ 1/(1+ δ). Now consider Player 2’s decision to
opt out. If he does so he obtains b immediately. If he continues bargaining
and rejects Player 1’s offer, play moves into a subgame in which he is first
to make an offer. In this subgame he obtains at least m2. He receives this
payoff with two periods of delay, so it is worth at least δ2m2 ≥ δ2/(1 + δ)



3.12 Models in Which Players Have Outside Options 61

η∗ b/δ EXIT

1
proposes (1− η∗, η∗) (1− b/δ, b/δ) (1− δ, δ)

accepts x1 ≥ δ(1− η∗) x1 ≥ δ(1− b/δ) x1 ≥ 0

proposes (δ(1− η∗) ,
1− δ(1− η∗))

(δ(1− b/δ) ,
1− δ(1− b/δ))

(0, 1)

2
accepts x2 ≥ η∗ x2 ≥ b/δ x2 ≥ δ

opts out? no no yes

Transitions Go to EXIT if
Player 1 proposes
x with x1 > 1 −
η∗.

Go to EXIT if
Player 1 proposes
x with x1 > 1 −
b/δ.

Go to b/δ if
Player 2 contin-
ues bargaining
after Player 1
rejects an offer.

Table 3.5 The subgame perfect equilibrium in the proof of Part 2 of Proposition 3.6.

to him. Thus, since b < δ2/(1+δ), after any history it is better for Player 2
to continue bargaining than to opt out.

2. Now consider the case δ/(1 + δ) ≤ b ≤ δ2. As in Part 1, we have
m2 ≥ 1/(1 + δ). We now show that for each η∗ ∈ [b/δ, δ] there is an SPE
in which Player 2’s utility is η∗. Having done so, we use these SPEs to
show that for any ξ∗ ∈ [δb, δ] there is an SPE in which Player 2’s payoff is
ξ∗. Since Player 2 can guarantee himself a payoff of δb by rejecting every
offer of Player 1 in the first period and opting out in the second period,
there is no SPE in which his payoff is less than δb. Further, since Player 2
must accept any offer x in which x2 > δ in period 0 there is clearly no SPE
in which his payoff exceeds δ. Thus our arguments show that the set of
payoffs Player 2 obtains in SPEs is precisely [δb, b].

Let η∗ ∈ [b/δ, δ]. An SPE is given in Table 3.5. (For a discussion of
this method of representing an equilibrium, see Section 3.5. Note that,
as always, the initial state is the one in the leftmost column, and the
transitions between states occur immediately after the events that trigger
them.)

We now argue that this pair of strategies is an SPE. The analysis of
the optimality of Player 1’s strategy is straightforward. Consider Player 2.
Suppose that the state is η ∈ {b/δ, η∗} and Player 1 proposes an agreement
x with x1 ≤ 1 − η. If Player 2 accepts this offer, as he is supposed to, he
obtains the payoff x2 ≥ η. If he rejects the offer, then the state remains
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η, and, given Player 1’s strategy, the best action for Player 2 is either to
propose the agreement y with y1 = δ(1− η), which Player 1 accepts, or to
propose an agreement that Player 1 rejects and opt out. The first outcome
is worth δ[1 − δ(1 − η)] to Player 2 today, which, under our assumption
that η∗ ≥ b/δ ≥ δ/(1 + δ), is equal to at most η. The second outcome is
worth δb < b/δ ≤ η∗ to Player 2 today. Thus it is optimal for Player 2 to
accept the offer x. Now suppose that Player 1 proposes an agreement x in
which x1 > 1 − η (≥ 1 − δ). Then the state changes to EXIT. If Player 2
accepts the offer then he obtains x2 < η ≤ δ. If he rejects the offer then
by proposing the agreement (0, 1) he can obtain δ. Thus it is optimal for
him to reject the offer x.

Now consider the choice of Player 2 after Player 1 has rejected an offer.
Suppose that the state is η. If Player 2 opts out, then he obtains b. If
he continues bargaining then by accepting Player 1’s offer he can obtain η
with one period of delay, which is worth δη ≥ b now. Thus it is optimal for
Player 2 to continue bargaining.

Finally, consider the behavior of Player 2 in the state EXIT. The analysis
of his acceptance and proposal policies is straightforward. Consider his
decision when Player 1 rejects an offer. If he opts out then he obtains b
immediately. If he continues bargaining then the state changes to b/δ, and
the best that can happen is that he accepts Player 1’s offer, giving him a
utility of b/δ with one period of delay. Thus it is optimal for him to opt
out. �

If δ2 < b < 1 then there is a unique subgame perfect equilibrium, in
which Player 1 always proposes (1−δ, δ) and accepts any offer, and Player 2
always proposes (0, 1), accepts any offer x in which x2 ≥ δ, and always opts
out.

We now come back to a comparison of the models in this section and the
previous one. There are two interesting properties of the equilibria. First,
when the value b to Player 2 of the outside option is relatively low—lower
than it is in the unique subgame perfect equilibrium of the game in which
he has no outside option—then his threat to opt out is not credible, and
the presence of the outside option does not affect the outcome. Second,
when the value of b is relatively high, the execution of the outside option
is a credible threat, from which Player 2 can gain. The models differ in
the way that the threat can be translated into a bargaining advantage.
Player 2’s position is stronger in the second model than in the first. In the
second model he can make an offer that, given his threat, is effectively a
“take-it-or-leave-it” offer. In the first model Player 1 has the right to make
the last offer before Player 2 exercises his threat, and therefore she can
ensure that Player 2 not get more than b. We conclude that the existence
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of an outside option for a player affects the outcome of the game only if its
use is credible, and the extent to which it helps the player depends on the
possibility of making a “take-it-or-leave-it” offer, which in turn depends on
the bargaining procedure.

3.13 A Game of Alternating Offers with Three Bargainers

Here we consider the case in which three players have access to a “pie” of
size 1 if they can agree how to split it between them. Agreement requires
the approval of all three players; no subset can reach agreement. There are
many ways of extending the bargaining game of alternating offers to this
case. An extension that appears to be natural was suggested and analyzed
by Shaked; it yields the disappointing result that if the players are suffi-
ciently patient then for every partition of the pie there is a subgame perfect
equilibrium in which immediate agreement is reached on that partition.

Shaked’s game is the following. In the first period, Player 1 proposes
a partition (i.e. a vector x = (x1, x2, x3) with x1 + x2 + x3 = 1), and
Players 2 and 3 in turn accept or reject this proposal. If either of them
rejects it, then play passes to the next period, in which it is Player 2’s turn
to propose a partition, to which Players 3 and 1 in turn respond. If at
least one of them rejects the proposal, then again play passes to the next
period, in which Player 3 makes a proposal, and Players 1 and 2 respond.
Players rotate proposals in this way until a proposal is accepted by both
responders. The players’ preferences satisfy A1 through A6 of Section 3.3.
Recall that vi(xi, t) is the present value to Player i of the agreement x in
period t (see (3.1)).

Proposition 3.7 Suppose that the players’ preferences satisfy assumptions
A1 through A6 of Section 3.3, and vi(1, 1) ≥ 1/2 for i = 1, 2, 3. Then
for any partition x∗ of the pie there is a subgame perfect equilibrium of
the three-player bargaining game defined above in which the outcome is
immediate agreement on the partition x∗.

Proof. Fix a partition x∗. Table 3.6, in which ei is the ith unit vector,
describes a subgame perfect equilibrium in which the players agree on x∗

immediately. (Refer to Section 3.5 for a discussion of our method for pre-
senting equilibria.) In each state y = (y1, y2, y3), each Player i proposes the
partition y and accepts the partition x if and only if xi ≥ vi(yi, 1). If, in
any state y, a player proposes an agreement x for which he gets more than
yi, then there is a transition to the state ej , where j 6= i is the player with
the lowest index for whom xj < 1/2. As always, any transition between
states occurs immediately after the event that triggers it; that is, imme-
diately after an offer is made, before the response. Note that whenever
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x∗ e1 e2 e3

1
proposes x∗ e1 e2 e3

accepts x1 ≥ v1(x∗1, 1) x1 ≥ v1(1, 1) x1 ≥ 0 x1 ≥ 0

2
proposes x∗ e1 e2 e3

accepts x2 ≥ v2(x∗2, 1) x2 ≥ 0 x2 ≥ v2(1, 1) x2 ≥ 0

3
proposes x∗ e1 e2 e3

accepts x3 ≥ v3(x∗3, 1) x3 ≥ 0 x3 ≥ 0 x3 ≥ v3(1, 1)

Transitions If, in any state y, any Player i proposes x with xi > yi, then
go to state ej , where j 6= i is the player with the lowest index
for whom xj < 1/2.

Table 3.6 A subgame perfect equilibrium of Shaked’s three-player bargaining game.
The players’ preferences are assumed to be such that vi(1, 1) ≥ 1/2 for i = 1, 2, 3. The
agreement x∗ is arbitrary, and ei denotes the ith unit vector.

Player i proposes an agreement x for which xi > 0 there is at least one
player j for whom xj < 1/2.

To see that these strategies form a subgame perfect equilibrium, first
consider Player i’s rule for accepting offers. If, in state y, Player i has
to respond to an offer, then the most that he can obtain if he rejects
the offer is yi with one period of delay, which is worth vi(yi, 1) to him.
Thus acceptance of x if and only if xi ≥ vi(yi, 1) is a best response to the
other players’ strategies. Now consider Player i’s rule for making offers in
state y. If he proposes x with xi > yi then the state changes to ej , j rejects
i’s proposal (since xj < 1/2 ≤ vi(e

j
j , 1) = vi(1, 1)), and i receives 0. If he

proposes x with xi ≤ yi then either this offer is accepted or it is rejected
and Player i obtains at most yi in the next period. Thus it is optimal for
Player i to propose y. �

The main force holding together the equilibrium in this proof is that one
of the players is “rewarded” for rejecting a deviant offer—after his rejection,
he obtains all of the pie. The result stands in sharp contrast to Theorem 3.4,
which shows that a two-player bargaining game of alternating offers has
a unique subgame perfect equilibrium. The key difference between the
two situations seems to be the following. When there are three (or more)
players one of the responders can always be compensated for rejecting a
deviant offer, while when there are only two players this is not so. For
example, in the two-player game there is no subgame perfect equilibrium
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in which Player 1 proposes an agreement x in which she obtains less than
1 − v2(1, 1), since if she deviates and proposes an agreement y for which
x1 < y1 < 1 − v2(1, 1), then Player 2 must accept this proposal (because
he can obtain at most v2(1, 1) by rejecting it).

Several routes may be taken in order to isolate a unique outcome in
Shaked’s three-player game. For example, it is clear that the only subgame
perfect equilibrium in which the players’ strategies are stationary has a form
similar to the unique subgame perfect equilibrium of the two-player game.
(If the players have time preferences with a common constant discount
factor δ, then this equilibrium leads to the division (ξ, δξ, δ2ξ) of the pie,
where ξ(1 + δ + δ2) = 1.) However, the restriction to stationary strategies
is extremely strong (see the discussion at the end of Section 3.4). A more
appealing route is to modify the structure of the game. For example, Perry
and Shaked have proposed a game in which the players rotate in making
demands. Once a player has made a demand, he may not subsequently
increase this demand. The game ends when the demands sum to at most
one. At the moment, no complete analysis of this game is available.

Notes

Most of the material in this chapter is based on Rubinstein (1982). For a
related presentation of the material, see Rubinstein (1987). The proof of
Theorem 3.4 is a modification of the original proof in Rubinstein (1982),
following Shaked and Sutton (1984a). The discussion in Section 3.10.3
of the effect of diminishing the amount of time between a rejection and a
counteroffer is based on Binmore (1987a, Section 5); the model in which the
proposer is chosen randomly at the beginning of each period is taken from
Binmore (1987a, Section 10). The model in Section 3.12.1, in which a player
can opt out of the game, was suggested by Binmore, Shaked, and Sutton;
see Shaked and Sutton (1984b), Binmore (1985), and Binmore, Shaked,
and Sutton (1989). It is further discussed in Sutton (1986). Section 3.12.2
is based on Shaked (1994). The modeling choice between a finite and an
infinite horizon which is discussed in Section 3.11 is not peculiar to the field
of bargaining theory. In the context of repeated games, Aumann (1959)
expresses a view similar to the one here. For a more detailed discussion of
the issue, see Rubinstein (1991). Proposition 3.7 is due to Shaked (see also
Herrero (1984)).

The first to investigate the alternating offer procedure was St̊ahl (1972,
1977). He studies subgame perfect equilibria by using backwards induction
in finite horizon models. When the horizons in his models are infinite he
postulates nonstationary time preferences, which lead to the existence of
a “critical period” at which one player prefers to yield rather than to con-
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tinue, independently of what might happen next. This creates a “last inter-
esting period” from which one can start the backwards induction. (For fur-
ther discussion, see St̊ahl (1988).) Other early work is that of Krelle (1975,
1976, pp. 607–632), who studies a T -period model in which a firm and a
worker bargain over the division of the constant stream of profit (1 unit
each period). Until an agreement is reached, both parties obtain 0 each
period. Krelle notices that in the unique subgame perfect equilibrium of
his game the wage converges to 1/2 as T goes to infinity.

As an alternative to using subgame perfect equilibrium as the solution
in the bargaining game of alternating offers, one can consider the set of
strategy pairs which remain when dominated strategies are sequentially
eliminated. (A player’s strategy is dominated if the player has another
strategy that yields him at least as high a payoff, whatever strategy the
other player uses, and yields a higher payoff against at least one of the
other player’s strategies.)

Among the variations on the bargaining game of alternating offers that
have been studied are the following. Binmore (1987b) investigates the
consequences of relaxing the assumptions on preferences (including the as-
sumption of stationarity). Muthoo (1991) and van Damme, Selten, and
Winter (1990) analyze the case in which the set of agreements is finite.
Perry and Reny (1993) (see also Sákovics (1993)) study a model in which
time runs continuously and players choose when to make offers. An offer
must stand for a given length of time, during which it cannot be revised.
Agreement is reached when the two outstanding offers are compatible. In
every subgame perfect equilibrium an agreement is accepted immediately,
and this agreement lies between x∗ and y∗ (see (3.3)). Muthoo (1992)
considers the case in which the players can commit at the beginning of
the game not to accept certain offers; they can revoke this commitment
later only at a cost. Muthoo (1990) studies a model in which each player
can withdraw from an offer if his opponent accepts it; he shows that all
partitions can be supported by subgame perfect equilibria in this case.

Haller (1991), Haller and Holden (1990), and Fernandez and Glazer (1991)
(see also Jones and McKenna (1988)) study a situation in which a firm and
a union bargain over the stream of surpluses. In any period in which an
offer is rejected, the union has to decide whether to strike (in which case
it obtains a fixed payoff) or not (in which case it obtains a given wage).
The model has a great multiplicity of subgame perfect equilibria, including
some in which there is a delay, during which the union strikes, before an
agreement is reached. This model is a special case of an interesting family
of games in which in any period that an offer is rejected each bargainer
has to choose an action from some set (see Okada (1991a, 1991b)). These
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games interlace the structure of a repeated game with that of a bargaining
game of alternating offers.

Admati and Perry (1991) study a model in which two players alter-
nately contribute to a joint project which, upon completion, yields each
of them a given payoff. Their model can be interpreted also as a variant
of the bargaining game of alternating offers in which neither player can
retreat from concessions he made in the past. Two further variants of the
bargaining game of alternating offers, in the framework of a model of debt-
renegotiation, are studied by Bulow and Rogoff (1989) and Fernandez and
Rosenthal (1990).

The idea of endogenizing the timetable of bargaining when many issues
are being negotiated is studied by Fershtman (1990) and Herrero (1988).

Models in which offers are made simultaneously are discussed, and com-
pared with the model of alternating offers, by Chatterjee and Samuel-
son (1990), Stahl (1990), and Wagner (1984). Clemhout and Wan (1988)
compare the model of alternating offers with a model of bargaining as a
differential game (see also Leitmann (1973) and Fershtman (1989)).

Wolinsky (1987), Chikte and Deshmukh (1987), and Muthoo (1989)
study models in which players may search for outside options while bargain-
ing. For example, in Wolinsky’s model both players choose the intensity
with which to search for an outside option in any period in which there is
disagreement; in Muthoo’s model, one of the players may temporarily leave
the bargaining table to search for an outside option.

Work on bargaining among more than two players includes the following.
Haller (1986) points out that if the responses to an offer in a bargaining
game of alternating offers with more than two players are simultaneous,
rather than sequential, then the restriction on preferences in Proposition 3.7
is unnecessary. Jun (1987) and Chae and Yang (1988) study a model in
which the players rotate in proposing a share for the next player in line;
acceptance leads to the exit of the accepting player from the game. Var-
ious decision-making procedures in committees are studied by Dutta and
Gevers (1984), Baron and Ferejohn (1987, 1989), and Harrington (1990).
For example, Baron and Ferejohn (1989) compare a system in which in any
period the committee members vote on a single proposal with a system in
which, before a vote, any member may propose an amendment to the pro-
posal under consideration. Chatterjee, Dutta, Ray, and Sengupta (1993)
and Okada (1988b) analyze multi-player bargaining in the context of a gen-
eral cooperative game, as do Harsanyi (1974, 1981) and Selten (1981), who
draw upon semicooperative principles to narrow down the set of equilibria.





CHAPTER 4

The Relation between the Axiomatic

and Strategic Approaches

4.1 Introduction

In Chapters 2 and 3 we took different approaches to the study of bargaining.
The model in Chapter 2, due to Nash, is axiomatic: we start with a list
of properties the solution is required to satisfy. By contrast, the model of
alternating offers in Chapter 3 is strategic: we formulate the bargaining
process as a specific extensive game. In this chapter we study the relation
between the two approaches.

Nash’s axiomatic model has advantages that are hard to exaggerate. It
achieves great generality by avoiding any specification of the bargaining
process; the solution defined by the axioms is unique, and its simple form
is highly tractable, facilitating application. However, the axiomatic ap-
proach, and Nash’s model in particular, has drawbacks. As we discussed in
Chapter 2, it is difficult to assess how reasonable some axioms are without
having in mind a specific bargaining procedure. In particular, Nash’s ax-
ioms of Independence of Irrelevant Alternatives (IIA) and Pareto Efficiency
(PAR) are hard to defend in the abstract. Further, within the axiomatic
approach one cannot address issues relating directly to the bargaining pro-
cess. For example, in Section 3.12 we used a strategic model to ask what is

69
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the effect on the negotiated outcome of a player being able to terminate the
negotiations. Nash’s axiomatic model is powerless to analyze this question,
which is perfectly suited for analysis within a strategic model.

Our investigation of the relation between the axiomatic and strategic ap-
proaches is intended to clarify the scope of the axiomatic approach. Unless
we can find a sensible strategic model that has an equilibrium correspond-
ing to the Nash solution, the appeal of Nash’s axioms is in doubt. The
characteristics of such a strategic model clarify the range of situations in
which the axioms are reasonable.

The idea of relating axiomatic solutions to equilibria of strategic models
was suggested by Nash (1953) and is now known as the “Nash program”.
In this chapter we pursue the Nash program by showing that there is a
close connection between the Nash solution and the subgame perfect equi-
librium outcome in the bargaining game of alternating offers we studied
in Chapter 3. Also we show a connection between the Nash solution and
the equilibria of a strategic model studied by Nash himself. These results
reinforce Nash’s claim that

[t]he two approaches to the problem, via the negotiation model or
via the axioms, are complementary; each helps to justify and clarify
the other. (Nash (1953, p. 129))

In addition to providing a context within which an axiomatic model is
appropriate, a formal connection between an axiomatic solution and the
equilibrium of a strategic model is helpful in applications. When we use
a model of bargaining within an economic context, we need to map the
primitive elements of the bargaining model into the economic problem.
Frequently there are several mappings that appear reasonable. For exam-
ple, there may be several candidates for the disagreement point in Nash’s
model. A strategic model for which the Nash solution is an equilibrium can
guide us to an appropriate modeling choice. We discuss the implications
of our results along these lines in Section 4.6.

Before we can link the solutions of an axiomatic and a strategic model
formally, we need to establish a common underlying model. The primitive
elements in Nash’s model are the set of outcomes (the set of agreements
and the disagreement event) and the preferences of the players on lotteries
over this set. In the model of alternating offers in Chapter 3 we are given
the players’ preferences over agreements reached at various points in time,
rather than their preferences over uncertain outcomes. We begin (in Sec-
tion 4.2) by introducing uncertainty into a bargaining game of alternating
offers and assuming that the players are indifferent to the timing of an
agreement. Specifically, after any offer is rejected there is a chance that
the bargaining will terminate, and a “breakdown” event will occur. The
probability that bargaining is interrupted in this way is fixed. (Note that
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breakdown is exogenous; in contrast to the model in Section 3.12, neither
player has any influence over the possibility of breakdown.) We show that
the limit of the subgame perfect equilibria as this probability converges to
zero corresponds to the Nash solution of an appropriately defined bargain-
ing problem.

In Section 4.3 we discuss the strategic game suggested by Nash, in which
uncertainty about the consequences of the players’ actions also intervenes
in the bargaining process. Once again, we show that the equilibria of the
strategic game are closely related to the Nash solution of a bargaining
problem.

In Section 4.4 we take a different tack: we redefine the Nash solution, us-
ing information about the players’ time preferences rather than information
about their attitudes toward risk. We consider a sequence of bargaining
games of alternating offers in which the length of a period converges to
zero. We show that the limit of the subgame perfect equilibrium outcomes
of the games in such a sequence coincides with the modified Nash solution.
In Section 4.5 we study a game in which the players are impatient and
there is a positive probability that negotiations will break down after any
offer is rejected. Finally, in Section 4.6, we discuss the implications of our
analysis for applications.

4.2 A Model of Alternating Offers with a Risk of Breakdown

4.2.1 The Game

Here we study a strategic model of bargaining similar to the model of
alternating offers in Chapter 3. As before, the set of possible agreements
is

X = {(x1, x2) ∈ R2:x1 + x2 = 1 and xi ≥ 0 for i = 1, 2}

(the set of divisions of the unit pie), and the players alternately propose
members of X. The game differs in two respects from the one we stud-
ied in Chapter 3. First, at the end of each period, after an offer has
been rejected, there is a chance that the negotiation ends with the break-
down event B. Precisely, this event occurs independently with (exogenous)
probability 0 < q < 1 at the end of each period. Second, each player is
indifferent about the period in which an agreement is reached. We denote
the resulting extensive game by Γ(q); the first two periods of the game are
shown in Figure 4.1. We study the connection between the Nash solution
and the limit of the subgame perfect equilibria of Γ(q) as the probability q
of breakdown becomes vanishingly small.

The possibility of breakdown is exogenous in the game Γ(q). The risk of
breakdown, rather than the players’ impatience (as in Chapter 3), is the
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Figure 4.1 The first two periods of the bargaining game Γ(q). After an offer is rejected,
there is a probability q that negotiations break down, in which case the outcome B
occurs.

basic force that motivates the players to reach an agreement as soon as
possible. We can interpret a breakdown as the result of the intervention
of a third party, who exploits the mutual gains. A breakdown can be
interpreted also as the event that a threat made by one of the parties
to halt the negotiations is actually realized. This possibility is especially
relevant when a bargainer is a team (e.g. government), the leaders of which
may find themselves unavoidably trapped by their own threats.

A strategy for each player in Γ(q) is defined exactly as for a bargaining
game of alternating offers (see Section 3.4). Let (σ, τ) be a pair of strategies
that leads to the outcome (x, t) in a bargaining game of alternating offers
(in which there is no possibility of breakdown). In the game Γ(q) the
probability that negotiation breaks down in any period is q, so that (σ, τ)
leads to (x, t) with probability (1−q)t and to B with probability 1−(1− q)t.

Each player is indifferent to the timing of an outcome, so the period in
which breakdown occurs is irrelevant to him. He is concerned only with
the nature of the agreement that may be reached and the probability with
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which this event occurs. Thus the consequence of a strategy pair that
is relevant to a player’s choice is the lottery in which some agreement x
occurs with probability (1 − q)t, and the breakdown event B occurs with
probability 1− (1− q)t. The probability q and the breakdown event B are
fixed throughout, so this lottery depends only on the two variables x and t.
We denote the lottery by 〈〈x, t〉〉. Thus an outcome in Γ(q), like an outcome
in the bargaining game of alternating offers studied in Chapter 3, is a pair
consisting of an agreement x, and a time t. The interpretations of the pairs
(x, t) and 〈〈x, t〉〉 are quite different. The first means that the agreement
x is reached in period t, while the second is shorthand for the lottery in
which x occurs with probability (1 − q)t, and B occurs with probability
1 − (1 − q)t. Our use of different delimiters for the outcomes (x, t) and
〈〈x, t〉〉 serves as a reminder of the disparate interpretations.

However, a key element in the analysis of Γ(q) is the exact correspondence
between Γ(q) and a bargaining game of alternating offers. Precisely, a pair
of strategies that generates the outcome (x, t) in a bargaining game of
alternating offers generates the outcome 〈〈x, t〉〉 in the game Γ(q); the pair
of strategies that generates the outcome D (perpetual disagreement) in a
bargaining game of alternating offers generates (with probability one) the
outcome B in the game Γ(q).

4.2.2 Preferences

In order to complete our description of the game Γ(q), we need to specify
the players’ preferences over outcomes. We assume that each Player i = 1, 2
has a complete transitive reflexive preference ordering �i over lotteries on
X ∪ {B} that satisfies the assumptions of von Neumann and Morgenstern.
Each preference ordering can thus be represented by the expected value of
a continuous utility function ui:X ∪ {B} → R, which is unique up to an
affine transformation. We assume that these utility functions satisfy the
following three conditions, which are sufficient to guarantee that we can
apply both the Nash solution and Theorem 3.4 to the game Γ(q).

B1 (Pie is desirable) For any x ∈ X and y ∈ X we have x �i y if
and only if xi > yi, for i = 1, 2.

B2 (Breakdown is the worst outcome) (0, 1) ∼1 B and (1, 0) ∼2 B.

B3 (Risk aversion) For any x ∈ X, y ∈ X, and α ∈ [0, 1], each
Player i = 1, 2 either prefers the certain outcome αx+(1−α)y ∈
X to the lottery in which the outcome is x with probability α,
and y with probability 1− α, or is indifferent between the two.
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Under assumption B1, Player i’s utility for x ∈ X depends only on xi, so we
subsequently write ui(xi) rather than ui(x1, x2). The significance of B2 is
that there exists an agreement that both players prefer to B. The analysis
can be easily modified to deal with the case in which some agreements are
worse for one of the players than B: the set X has merely to be redefined
to exclude such agreements. Without loss of generality, we set ui(B) = 0
for i = 1, 2.

We now check that assumptions B1, B2, and B3 are sufficient to allow us
to apply both the Nash solution and Theorem 3.4 to the game Γ(q). First
we check that the assumptions are sufficient to allow us to fit a bargaining
problem to the game. Define

S = {(s1, s2) ∈ R2: (s1, s2) = (u1(x1), u2(x2)) for some x ∈ X}, (4.1)

and d = (u1(B), u2(B)) = (0, 0). In order for 〈S, d〉 to be a bargaining
problem (see Section 2.6.3), we need S to be the graph of a nonincreasing
concave function and there to exist s ∈ S for which si > di for i = 1, 2.
The first condition is satisfied because B1 and B3 imply that each ui is
increasing and concave. The second condition follows from B1 and B2.

Next we check that we can apply Theorem 3.4 to Γ(q). To do so, we need
to ensure that the preferences over lotteries of the form 〈〈x, t〉〉 induced by
the orderings �i over lotteries on X ∪{B} satisfy assumptions A1 through
A6 of Section 3.3, when we replace the symbol (x, t) with 〈〈x, t〉〉, and the
symbol D by B. Under the assumptions above, each preference ordering
over outcomes 〈〈x, t〉〉 is complete and transitive, and

〈〈x, t〉〉 �i 〈〈y, s〉〉 if and only if (1− q)tui(xi) > (1− q)sui(yi)

(since ui(B) = 0).
It follows from B1 and B2 that 〈〈x, t〉〉 �i B for all outcomes 〈〈x, t〉〉, so

that A1 is satisfied. From B1 we deduce that 〈〈x, t〉〉 �i 〈〈y, t〉〉 if and only
if xi > yi, so that A2 is satisfied. Also 〈〈x, t〉〉 �i 〈〈x, s〉〉 if t < s, with
strict preference if xi > 0 (since ui(xi) is then positive by B1 and B2), so
that A3 is satisfied. The continuity of each ui ensures that A4 is satisfied,
and A5 follows immediately. Finally, we show that A6 is satisfied. The
continuity of ui implies that for every x ∈ X there exists y ∈ X such
that ui(yi) = (1 − q)tui(xi), so that 〈〈y, 0〉〉 ∼i 〈〈x, t〉〉. Hence the present
value vi(xi, 1) of the lottery 〈〈x, 1〉〉 satisfies ui (vi(xi, 1)) = (1−q)ui(xi), or
ui(xi) − ui (vi(xi, 1)) = qui(xi). Let xi < yi. The concavity of ui implies
that

ui(xi)− ui (vi(xi, 1))
xi − vi(xi, 1)

≥ ui(yi)− ui (vi(yi, 1))
yi − vi(yi, 1)

.
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Thus
qui(xi)

xi − vi(xi, 1)
≥ qui(yi)
yi − vi(yi, 1)

.

Since ui(xi) < ui(yi) it follows that xi − vi(xi, 1) < yi − vi(yi, 1), so that
A6 is satisfied.

4.2.3 Subgame Perfect Equilibrium

Given that the players’ preferences over lotteries of the form 〈〈x, t〉〉 satisfy
assumptions A1 through A6 of Section 3.3, we can deduce from Theorem 3.4
the character of the unique subgame perfect equilibrium of Γ(q), for any
fixed q ∈ (0, 1). As we noted above, for every lottery 〈〈x, t〉〉 there is an
agreement y ∈ X such that 〈〈y, 0〉〉 ∼i 〈〈x, t〉〉. Let (x∗(q), y∗(q)) be the
unique pair of agreements satisfying

〈〈y∗(q), 0〉〉 ∼1 〈〈x∗(q), 1〉〉 and 〈〈x∗(q), 0〉〉 ∼2 〈〈y∗(q), 1〉〉

(see (3.4)). Transforming this into a statement about utilities, we have

u1 (y∗1(q)) = (1−q)u1 (x∗1(q)) and u2 (x∗2(q)) = (1−q)u2 (y∗2(q)) . (4.2)

Thus by Theorem 3.4 we have the following.

Proposition 4.1 For each q ∈ (0, 1) the game Γ(q) has a unique subgame
perfect equilibrium. In this equilibrium Player 1 proposes the agreement
x∗(q) in period 0, which Player 2 accepts.

4.2.4 The Relation with the Nash Solution

We now show that there is a very close relation between the Nash solution
of the bargaining problem 〈S, d〉, where S is defined in (4.1) and d =
(0, 0), and the limit of the unique subgame perfect equilibrium of Γ(q)
as q → 0.

Proposition 4.2 The limit, as q → 0, of the agreement x∗(q) reached in
the unique subgame perfect equilibrium of Γ(q) is the agreement given by
the Nash solution of the bargaining problem 〈S, d〉, where S is defined in
(4.1) and d = (0, 0).

Proof. It follows from (4.2) that u1 (x∗1(q))u2 (x∗2(q)) = u1 (y∗1(q))u2 (y∗2(q)),
and that limq→0 [ui (x∗i (q))− ui (y∗i (q))] = 0 for i = 1, 2. Thus x∗(q) con-
verges to the maximizer of u1(x1)u2(x2) over S (see Figure 4.2). �
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(0, 0)
r

u1(x1)→

↑
u2(x2) u1(x1)u2(x2) = constant

S

u2(y∗2(q))

u1(y∗1(q)) u1(x∗1(q))

u2(x∗2(q))
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Figure 4.2 An illustration of the proof of Proposition 4.2.

This result is illustrated in Figure 4.3. It shows that if we perturb a
bargaining game of alternating offers by introducing a small exogenous
probability of breakdown then, when the players are indifferent to the tim-
ing of an agreement, the unique subgame perfect equilibrium outcome is
close to the Nash solution of the appropriately defined bargaining prob-
lem. We discuss the implications of this result for applications of the Nash
bargaining solution in Section 4.6.

4.3 A Model of Simultaneous Offers: Nash’s “Demand Game”

Nash himself (1953) considered a strategic model of bargaining that “sup-
ports” his axiomatic solution. In this model, time plays no role. Although
the model is static rather than sequential, and thus is a diversion from the
main theme of the book, we present it here because of its central role in
the development of the theory.

The game consists of a single stage, in which the two players simultane-
ously announce “demands”. If these are compatible, then each player re-
ceives the amount he demanded; otherwise the disagreement event occurs.
This game, like a bargaining game of alternating offers, has a plethoraof
Nash equilibria. Moreover, the notion of subgame perfect equilibrium ob-
viously has no power to discriminate among the equilibria, as it does in a
bargaining game of alternating offers, since the game has no proper sub-
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Preference orderings �i over lotteries on
X ∪ {B} for i = 1, 2 that satisfy the as-
sumptions of von Neumann and Morgen-
stern, and B1 through B3

�
�
�	

@
@
@R

Choose ui to represent �i, nor-
malizing so that ui(B) = 0, for
i = 1, 2.

For each q > 0 the bargain-
ing game Γ(q) has a unique
subgame perfect equilibrium, in
which the outcome is (x∗(q), 0)

@
@
@R

�
�
�	

arg max
(x1,x2)∈X

u1(x1)u2(x2) = lim
q→0

x∗(q)

Figure 4.3 An illustration of Proposition 4.2.

games. In order to facilitate a comparison of the strategic and axiomatic
models, Nash used a different approach to refine the set of equilibria—
an approach that foreshadows the notions of “perfection” deriving from
Selten’s (1975) work.

4.3.1 The Demand Game

Let 〈S, d〉 be a bargaining problem (see Definition 2.1) in which S has
a nonempty interior. Without loss of generality, let d = (0, 0). Nash’s
Demand Game is the two-player strategic game G defined as follows. The
strategy set of each Player i = 1, 2 isR+; the payoff function hi:R+×R+ →
R of i is defined by

hi(σ1, σ2) =
{

0 if (σ1, σ2) /∈ S
σi if (σ1, σ2) ∈ S.

An interpretation is that each Player i in G may “demand” any utility σi
at least equal to what he gets in the event of disagreement. If the demands
are infeasible, then each player receives his disagreement utility; if they are
feasible, then each player receives the amount he demands.

The set of Nash equilibria of G consists of the set of strategy pairs that
are strongly Pareto efficient and some strategy pairs (for example, those in
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which each player demands more than the maximum he can obtain at any
point in S) that yield the disagreement utility pair (0, 0).

4.3.2 The Perturbed Demand Game

Given that the notion of Nash equilibrium puts so few restrictions on the
nature of the outcome of a Demand Game, Nash considered a more discrim-
inating notion of equilibrium, which is related to Selten’s (1975) “perfect
equilibrium”. The idea is to require that an equilibrium be robust to pertur-
bations in the structure of the game. There are many ways of formulating
such a condition. We might, for example, consider a Nash equilibrium σ∗

of a game Γ to be robust if every game in which the payoff functions are
close to those of Γ has an equilibrium close to σ∗. Nash’s approach is along
these lines, though instead of requiring robustness to all perturbations of
the payoff functions, Nash considered a specific class of perturbations of
the payoff function, tailored to the interpretation of the Demand Game.

Precisely, perturb the Demand Game, so that there is some uncertainty in
the neighborhood of the boundary of S. Suppose that if a pair of demands
(σ1, σ2) ∈ S is close to the boundary of S then, despite the compatibility of
these demands, there is a positive probability that the outcome is the dis-
agreement point d, rather than the agreement (σ1, σ2). Specifically, suppose
that any pair of demands (σ1, σ2) ∈ R2

+ results in the agreement (σ1, σ2)
with probability P (σ1, σ2), and in the disagreement event with probability
1 − P (σ1, σ2). If (σ1, σ2) /∈ S then P (σ1, σ2) = 0 (incompatible demands
cannot be realized); otherwise, 0 ≤ P (σ1, σ2) ≤ 1, and P (σ1, σ2) > 0 for
all (σ1, σ2) in the interior of1 S. The payoff function of Player i (= 1, 2) in
the perturbed game is

hi(σ1, σ2) = σiP (σ1, σ2). (4.3)

We assume that the function P :R2
+ → [0, 1] defining the probability of

breakdown in the perturbed game is differentiable. We further assume that
P is quasi-concave, so that for each ρ ∈ [0, 1] the set

P (ρ) = {(σ1, σ2) ∈ R2
+:P (σ1, σ2) ≥ ρ} (4.4)

is convex. (Note that this is consistent with the convexity of S.) A bar-
gaining problem 〈S, d〉 in which d = (0, 0), and a perturbing function P
define a Perturbed Demand Game in which the strategy set of each player
is R+ and the payoff function hi of i = 1, 2 is defined in (4.3).

1Nash (1953) considers a slightly different perturbation, in which the probability
of agreement is one everywhere in S, and tapers off toward zero outside S. See
van Damme (1987, Section 7.5) for a discussion of this case.
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4.3.3 Nash Equilibria of the Perturbed Games: A Convergence Result

Every Perturbed Demand Game has equilibria that yield the disagreement
event. (Consider, for example, any strategy pair in which each player de-
mands more than the maximum he can obtain in any agreement.) However,
as the next result shows, the set of equilibria that generate agreement with
positive probability is relatively small and converges to the Nash solution of
〈S, d〉 as the Hausdorff distance between S and Pn(1) converges to zero—
i.e. as the perturbed game approaches the original demand game. (The
Hausdorff distance between the set S and T ⊂ S is the maximum distance
between a point in S and the closest point in T .)

Proposition 4.3 Let Gn be the Perturbed Demand Game defined by 〈S, d〉
and Pn. Assume that the Hausdorff distance between S and the set Pn(1)
associated with Pn converges to zero as n→∞. Then every game Gn has
a Nash equilibrium in which agreement is reached with positive probability,
and the limit as n → ∞ of every sequence {σ∗n}∞n=1 in which σ∗n is such
a Nash equilibrium is the Nash solution of 〈S, d〉.

Proof. First we show that every perturbed game Gn has a Nash equilib-
rium in which agreement is reached with positive probability. Consider the
problem

max
(σ1,σ2)∈R2

+

σ1σ2P
n(σ1, σ2).

Since Pn is continuous, and equal to zero outside the compact set S, this
problem has a solution (σ̂1, σ̂2) ∈ S. Further, since Pn(σ1, σ2) > 0 when-
ever (σ1, σ2) is in the interior of S, we have σ̂i > 0 for i = 1, 2 and
Pn(σ̂1, σ̂2) > 0. Consequently σ̂1 maximizes σ1P

n(σ1, σ̂2) over σ1 ∈ R+,
and σ̂2 maximizes σ2P

n(σ̂1, σ2) over σ2 ∈ R+. Hence (σ̂1, σ̂2) is a Nash
equilibrium of Gn.

Now let (σ∗1 , σ
∗
2) ∈ S be an equilibrium of Gn in which agreement is

reached with positive probability. If σ∗i = 0 then by the continuity of
Pn, Player i can increase his demand and obtain a positive payoff. Hence
σ∗i > 0 for i = 1, 2. Thus by the assumption that Pn is differentiable, the
fact that σ∗i maximizes i’s payoff given σ∗j implies that2

σ∗iDiP
n(σ∗1 , σ

∗
2) + Pn(σ∗1 , σ

∗
2) = 0 for i = 1, 2,

and hence
D1P

n(σ∗1 , σ
∗
2)

D2Pn(σ∗1 , σ
∗
2)

=
σ∗2
σ∗1
. (4.5)

Let π∗ = Pn(σ∗1 , σ
∗
2), so that (σ∗1 , σ

∗
2) ∈ Pn(π∗). The fact that (σ∗1 , σ

∗
2) is a

Nash equilibrium implies in addition that (σ∗1 , σ
∗
2) is on the Pareto frontier

2We use Dif to denote the partial derivative of f with respect to its ith argument.
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0 σ1 →

↑
σ2

σ1σ2 = constantPn(1)



...................
.................

...............
.............

............
...........

...........
..........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
.........
.........
.........
.........
..........
...........
............
..............
....................

.........................

...................................................................................................................................................................................................................................................................................................................................

.......... .......... .......... .......... .......... .......... .......... ....................
..........
..........
..........
..........
..........
..........

.......... .......... .......... .......... .......... .......... ....................
..........
..........
..........
..........
..........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4.4 The Perturbed Demand Game. The area enclosed by the solid line is S.
The dashed lines are contours of Pn. Every Nash equilibrium of the perturbed game in
which agreement is reached with positive probability lies in the area shaded by vertical
lines.

of Pn(π∗). It follows from (4.5) and the fact that Pn is quasi-concave that
(σ∗1 , σ

∗
2) is the maximizer of σ1σ2 subject to Pn(σ1, σ2) ≥ π∗. In particular,

σ∗1σ
∗
2 ≥ max

(σ1,σ2)
{σ1σ2: (σ1, σ2) ∈ Pn(1)},

so that (σ∗1 , σ
∗
2) lies in the shaded area of Figure 4.4. As n → ∞, the

set Pn(1) converges (in Hausdorff distance) to S ∩ R2
+, so that this area

converges to the Nash solution of 〈S, d〉.
Thus the limit of every sequence {σ∗n}∞n=1 for which σ∗n is a Nash equi-

librium of Gn and Pn(σ∗n) > 0 is the Nash solution of 〈S, d〉. �

The assumption that the perturbing functions Pn are differentiable is
essential to the result. If not, then the perturbed games Gn may have
Nash equilibria far from the Nash solution of 〈S, d〉, even when Pn(1) is
very close to S.3

3Suppose, for example, that the intersection of the set S of agreement utilities with the
nonnegative quadrant is the convex hull of (0, 0), (1, 0), and (0, 1) (the “unit simplex”),
and define Pn on the unit simplex by

Pn(σ1, σ2) =

{
1 if 0 ≤ σ1 + σ2 ≤ 1− 1/n
n(1− σ1 − σ2) if 1− 1/n ≤ σ1 + σ2 ≤ 1.

Then any pair (σ1, σ2) in the unit simplex with σ1 + σ2 = 1 − 1/n and σi ≥ 1/n for
i = 1, 2 is a Nash equilibrium of Gn. Thus all points in the unit simplex that are on
the Pareto frontier of S are limits of Nash equilibria of Gn.
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The result provides additional support for the Nash solution. In a model,
like that of the previous section, where some small amount of exogenous
uncertainty interferes with the bargaining process, we have shown that all
equilibria that lead to agreement with positive probability are close to the
Nash solution of the associated bargaining problem. The result is different
than that of the previous section in three respects. First, the demand game
is static. Second, the disagreement point is always an equilibrium outcome
of a perturbed demand game—the result restricts the character only of
equilibria that result in agreement with positive probability. Third, the
result depends on the differentiability and quasi-concavity of the perturbing
function, characteristics that do not appear to be natural.

4.4 Time Preference

We now turn back to the bargaining model of alternating offers studied in
Chapter 3, in which the players’ impatience is the driving force. In this
section we think of a period in the bargaining game as an interval of real
time of length ∆ > 0, and examine the limit of the subgame perfect equi-
libria of the game as ∆ approaches zero. Thus we generalize the discussion
in Section 3.10.3, which deals only with time preferences with a constant
discount rate.

We show that the limit of the subgame perfect equilibria of the bargaining
game as the delay between offers approaches zero can be calculated using
a simple formula closely related to the one used to characterize the Nash
solution. However, we do not consider the limit to be the Nash solution,
since the utility functions that appear in the formula reflect the players’
time preferences, not their attitudes toward risk as in the Nash bargaining
solution.

4.4.1 Bargaining Games with Short Periods

Consider a bargaining game of alternating offers (see Definition 3.1) in
which the delay between offers is ∆: offers can be made only at a time in the
denumerable set {0,∆, 2∆, . . .}. We denote such a game by Γ(∆). We wish
to study the effect of letting ∆ converge to zero. Since we want to allow any
value of ∆, we start with a preference ordering for each player defined on the
set (X×T∞)∪{D}, where T∞ = [0,∞). For each ∆ > 0, such an ordering
induces an ordering over the set (X × {0,∆, 2∆, . . .}) ∪ {D}. In order to
apply the results of Chapter 3, we impose conditions on the orderings over
(X×T∞)∪{D} so that the induced orderings satisfy conditions A1 through
A6 of that chapter.
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We require that each Player i = 1, 2 have a complete transitive reflex-
ive preference ordering �i over (X × T∞) ∪ {D} that satisfies analogs of
assumptions A1 through A6 in Chapter 3. Specifically, we assume that �i
satisfies the following.

C1 (Disagreement is the worst outcome) For every (x, t) ∈ X×T∞
we have (x, t) �i D.

C2 (Pie is desirable) For any t ∈ T∞, x ∈ X, and y ∈ X we have
(x, t) �i (y, t) if and only if xi > yi.

We slightly strengthen A3 of Chapter 3 to require that each Player i
be indifferent about the timing of an agreement x in which xi = 0. This
condition is satisfied by preferences with constant discount rates, but not
for preferences with a constant cost of delay (see Section 3.3.3).

C3 (Time is valuable) For any t ∈ T∞, s ∈ T∞, and x ∈ X with
t < s we have (x, t) �i (x, s) if xi > 0, and (x, t) ∼i (x, s) if
xi = 0.

Assumptions A4 and A5 remain essentially unchanged.

C4 (Continuity) Let {(xn, tn)}∞n=1 and {(yn, sn)}∞n=1 be conver-
gent sequences of members of X × T∞ with limits (x, t) and
(y, s), respectively. Then (x, t) �i (y, s) whenever (xn, tn) �i
(yn, sn) for all n.

C5 (Stationarity) For any t ∈ T∞, x ∈ X, y ∈ X, and θ ≥ 0 we
have (x, t) �i (y, t+ θ) if and only if (x, 0) �i (y, θ).

The fact that C3 is stronger than A3 allows us to deduce that for any
outcome (x, t) ∈ X × T∞ there exists an agreement y ∈ X such that
(y, 0) ∼i (x, t). The reason is that by C3 and C2 we have (x, 0) �i (x, t) �i
(z, t) ∼i (z, 0), where z is the agreement for which zi = 0; the claim follows
from C4. Consequently the present value vi(xi, t) of an outcome (x, t)
satisfies

(y, 0) ∼i (x, t) whenever yi = vi(xi, t) (4.6)

(see (3.1) and (3.2)).
Finally, we strengthen A6. We require, in addition to A6, that the loss

to delay be a concave function of the amount involved.

C6 (Increasing and concave loss to delay) The loss to delay xi −
vi(xi, 1) is an increasing and concave function of xi.



4.4 Time Preference 83

The condition of convexity of vi in xi has no analog in the analysis of
Chapter 3: it is an additional assumption we need to impose on preferences
in order to obtain the result of this section. The condition is satisfied, for
example, by time preferences with a constant discount rate, since the loss
to delay in this case is linear.

4.4.2 Subgame Perfect Equilibrium

If the preference ordering �i of Player i over (X × T∞) ∪ {D} satisfies
C1 through C6, then for any value of ∆ the ordering induced over (X ×
{0,∆, 2∆, . . .}) ∪ {D} satisfies A1 through A6 of Chapter 3. Hence we
can apply Theorem 3.4 to the game Γ(∆). For any value of ∆ > 0, let
(x∗(∆), y∗(∆)) ∈ X ×X be the unique pair of agreements satisfying

(y∗(∆), 0) ∼1 (x∗(∆),∆) and (x∗(∆), 0) ∼2 (y∗(∆),∆)

(see (3.3) and (4.6)). We have the following.

Proposition 4.4 Suppose that each player’s preference ordering satisfies
C1 through C6. Then for each ∆ > 0 the game Γ(∆) has a unique subgame
perfect equilibrium. In this equilibrium Player 1 proposes the agreement
x∗(∆) in period 0, which Player 2 accepts.

4.4.3 The Relation with the Nash Solution

As we noted in the discussion after A5 on p. 34, preferences that satisfy
A2 through A5 of Chapter 3 can be represented on X × T by a utility
function of the form δtiui(xi). Under our stronger assumptions here we can
be more specific. If the preference ordering �i on (X ×T∞)∪{D} satisfies
C1 through C6, then there exists δi ∈ (0, 1) such that for each δi ≥ δi there
is a increasing concave function ui:X → R, unique up to multiplication
by a positive constant, with the property that δtiui(xi) represents �i on
X × T∞. (In the case that the set of times is discrete, this follows from
Proposition 1 of Fishburn and Rubinstein (1982); the methods in the proof
of their Theorem 2 can be used to show that the result holds also when the
set of times is T∞.)

Now suppose that δtiui(xi) represents �i on X × T∞, and 0 < εi < 1.
Then [δtiui(xi)]

(log εi)/(log δi) = εti[ui(xi)]
(log εi)/(log δi) also represents �i.

We conclude that if in addition εtiwi(xi) represents �i then wi(xi) =
Ki[ui(xi)](log εi)/(log δi) for some Ki > 0.

We now consider the limit of the subgame perfect equilibrium outcome
of Γ(∆) as ∆ → 0. Fix a common discount factor δ < 1 that is large
enough for there to exist increasing concave functions ui (i = 1, 2) with
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the property that δtui(xi) represents �i. Let

S = {s ∈ R2: s = (u1(x1), u2(x2)) for some (x1, x2) ∈ X}, (4.7)

and let d = (0, 0). Since each ui is increasing and concave, S is the graph
of a nonincreasing concave function. Further, by the second part of C3
we have ui(0) = 0 for i = 1, 2, so that by C2 there exists s ∈ S such
that si > di for i = 1, 2. Thus 〈S, d〉 is a bargaining problem. The set S
depends on the discount factor δ we chose. However, the Nash solution of
〈S, d〉 is independent of this choice: the maximizer of u1(x1)u2(x2) is also
the maximizer of K1K2[u1(x1)u2(x2)](log ε)/(log δ) for any 0 < ε < 1.

We emphasize that in constructing the utility functions ui for i = 1, 2,
we use the same discount factor δ. In some contexts, the economics of a
problem suggests that the players’ preferences be represented by particu-
lar utility functions. These functions do not necessarily coincide with the
functions that must be used to construct S. For example, suppose that
in some problem it is natural for the players to have the utility functions
δtixi for i = 1, 2, where δ1 > δ2. Then the appropriate functions ui are
constructed as follows. Let δ = δ1, and define u1 by u1(x1) = x1 and u2

by u2(x2) = x
(log δ1)/(log δ2)
2 (not by u2(x2) = x2).

The main result of this section is the following. It is illustrated in Fig-
ure 4.5.

Proposition 4.5 If the preference ordering of each player satisfies C1
through C6, then the limit, as ∆ → 0, of the agreement x∗(∆) reached
in the unique subgame perfect equilibrium of Γ(∆) is the agreement given
by the Nash solution of the bargaining problem 〈S, d〉, where S is defined in
(4.7) and d = (0, 0).

Proof. It follows from Proposition 4.4 that u1(y∗1(∆)) = δ∆u1(x∗1(∆)) and
u2(x∗2(∆)) = δ∆u2(y∗2(∆)). The remainder of the argument parallels that
in the proof of Proposition 4.2. �

4.4.4 Symmetry and Asymmetry

Suppose that Player i’s preferences in a bargaining game of alternating
offers are represented by δtiwi(xi), where wi is concave (i = 1, 2), and
δ1 > δ2. To find the limit, as the delay between offers converges to
zero, of the subgame perfect equilibrium outcome of this game, we can
use Proposition 4.5 as follows. Choose δ1 to be the common discount fac-
tor with respect to which preferences are represented, and set u1 = w1. Let
u2(x2) = [w2(x2)](log δ1)/(log δ2), so that u2 is increasing and concave, and
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Preference orderings �i over (X × T∞) ∪
{D} for i = 1, 2 that satisfy C1 through
C6 (so that, in particular, (x, t) ∼i (x, s)
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arg max
(x1,x2)∈X

u1(x1)u2(x2) = lim
∆→0

x∗(∆)

Figure 4.5 An illustration of Proposition 4.5.

δt1u2(x2) represents Player 2’s preferences. By Proposition 4.5 the limit of
the agreement reached in a subgame perfect equilibrium of a bargaining
game of alternating offers as the length of a period converges to zero is the
Nash solution of 〈S, d〉, where S is defined in (4.7). This Nash solution is
given by

arg max
(x1,x2)∈X

u1(x1)u2(x2) = arg max
(x1,x2)∈X

w1(x1)[w2(x2)](log δ1)/(log δ2), (4.8)

or alternatively
arg max
(x1,x2)∈X

[w1(x1)]α[w2(x2)]1−α,

where α = (log δ2)/(log δ1 + log δ2). Thus the solution is an asymmetric
Nash solution (see (2.4)) of the bargaining problem constructed using the
original utility functions w1 and w2. The degree of asymmetry is deter-
mined by the disparity in the discount factors.

If the original utility function wi of each Player i is linear (wi(xi) = xi),
we can be more specific. In this case, the agreement given by (4.8) is(

log δ2
log δ1 + log δ2

,
log δ1

log δ1 + log δ2

)
,
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which coincides (as it should!) with the result in Section 3.10.3.
In the case we have examined so far, the players are asymmetric because

they value time differently. Another source of asymmetry may be embed-
ded in the structure of the game: the amount of time that elapses between a
rejection and an offer may be different for Player 1 than for Player 2. Specif-
ically, consider a bargaining game of alternating offers Γ(γ1, γ2), in which
the time that elapses between a rejection and a counteroffer by Player i
is γi∆ (= 1, 2). As ∆ converges to zero, the length of time between any
rejection and counteroffer diminishes, while the ratio of these times for
Players 1 and 2 remains constant. Suppose that there is a common dis-
count factor δ and a function ui for each Player i such that his preferences
are represented by δtui(xi). The preferences induced over the outcomes
(x, n), where n indexes the rounds of negotiation in Γ(γ1, γ2), are not sta-
tionary. Nevertheless, as we noted in Section 3.10.4, the game Γ(γ1, γ2) has
a unique subgame perfect equilibrium; this equilibrium is characterized by
the solution (x∗(∆), y∗(∆)) of the equations

u1(y∗1(∆)) = δγ1∆u1(x∗1(∆)) and u2(x∗2(∆)) = δγ2∆u2(y∗2(∆))

(see (3.7)). An argument like that in the proof of Proposition 4.2 shows
that the limit, as ∆→ 0, of the agreement x∗(∆) is the agreement

arg max
(x1,x2)∈X

[u1(x1)]α[u2(x2)]1−α,

where α = γ2/(γ1 + γ2).
Once again the outcome is given by an asymmetric Nash solution; in this

case the exponents reflect a difference in the real time that passes between
a rejection and a counteroffer by each player, rather than a difference in
the way the players value that time. Notice that the outcome favors the
player who can make a counteroffer more quickly. In the extreme case in
which γi = 0 the outcome of bargaining is the same as that of the model
in which only Player i makes offers.

4.5 A Model with Both Time Preference and Risk of Breakdown

Here we briefly consider a model that combines those in Sections 4.2 and
4.4. In any period, if a player rejects an offer then there is a fixed posi-
tive probability that the negotiation terminates in the breakdown event B.
The players are not indifferent about the timing of an agreement, or of
the breakdown event. Each player’s preferences over lotteries on ((X ∪
{B}) × T∞) ∪ {D} satisfy the assumptions of von Neumann and Mor-
genstern, and their preferences over this set satisfy C1 through C6. In
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addition, for i = 1, 2 there is an agreement bi ∈ X such that Player i
is indifferent between (bi, t) and (B, t) for all t. Denote by Γ(q,∆) the
game of alternating offers in which the delay between periods is ∆ > 0,
the breakdown event occurs with probability q > 0 after any rejection,
and the players’ preferences satisfy the assumptions stated above. Then
Γ(q,∆) has a unique subgame perfect equilibrium, which is characterized
by the pair of agreements (x∗(q,∆), y∗(q,∆)) that satisfies the following
two conditions, where q · (x, t) ⊕ (1 − q) · (y, s) denotes the lottery in
which (x, t) occurs with probability q and (y, s) occurs with probability
1− q:

(y∗(q,∆), 0) ∼1 q · (B, 0)⊕ (1− q) · (x∗(q,∆),∆)
(x∗(q,∆), 0) ∼2 q · (B, 0)⊕ (1− q) · (y∗(q,∆),∆).

We know that under C1 through C6 there exists 0 < δ < 1 and concave
functions ui (i = 1, 2) such that Player i’s preferences over X × T∞ are
represented by δtui(xi). However, in general it is not possible to choose
a representation of this form with the property that its expected value
represents i’s preferences over lotteries on X×T∞. (Suppose, for example,
that i’s preferences over X × T∞ are represented by δtxi. Then in every
other representation of the form εtui(xi) we have ui(xi) = (xi)(log ε)/(log δ),
so that i’s preferences over lotteries on X × T∞ can be represented in
this way only if they display constant relative risk-aversion over X.) If,
nevertheless, there exists δ and a function ui such that Player i’s preferences
over lotteries on X ×T∞ are represented as the expected value of δtui(xi),
then we have

u1(y∗1(q,∆)) = qu1(B) + (1− q)δ∆u1(x∗1(q,∆)) (4.9)
u2(x∗2(q,∆)) = qu2(B) + (1− q)δ∆u2(y∗2(q,∆)). (4.10)

Now consider the limit of the subgame perfect equilibrium as the length ∆
of each period converges to zero. Assume that q = λ∆, so that the prob-
ability of breakdown in any given interval of real time remains constant.
We can then rewrite (4.9) and (4.10) as

u1(y∗1(∆))− κ(∆)u1(B) = δ∆(1− λ∆) [u1(x∗1(∆))− κ(∆)u1(B)]
u2(x∗2(∆))− κ(∆)u2(B) = δ∆(1− λ∆) [u2(y∗2(∆))− κ(∆)u2(B)] ,

where κ(∆) = λ∆/[1− δ∆(1− λ∆)]. It follows that

(u1(y∗1(∆))− κ(∆)u1(B)) (u2(y∗2(∆))− κ(∆)u2(B)) =
(u1(x∗1(∆))− κ(∆)u1(B)) (u2(x∗2(∆))− κ(∆)u2(B)) .

Notice that if the players use strategies that never lead to agreement,
then (given that q > 0) with probability one the breakdown event oc-
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curs in some period (and D occurs with probability zero). Since κ(∆) =∑∞
t=0 δ

∆tλ∆(1− λ∆)t, it follows that κ(∆)ui(B) is precisely the expected
utility of Player i in this case. Now, letting r = − log δ, so that δ∆ = e−r∆,
we have lim∆→0 κ(∆) = λ/(λ+r). An argument like that in Proposition 4.2
shows that x∗(∆) and y∗(∆) converge to the Nash solution of the bargain-
ing problem in which the disagreement point is [λ/(λ+ r)] (u1(B), u2(B)),
and the agreement set is constructed using the utility functions ui which,
in the special case we are considering, reflect both time preferences and
risk preferences. This result supports our earlier findings: if δ is close to
one (r is close to zero), so that the fear of breakdown rather than the
time cost of bargaining is the dominant consideration, then the disagree-
ment point is close to (u1(B), u2(B)), while if λ is close to zero it is close
to (0, 0).

4.6 A Guide to Applications

In order to use a bargaining model as a component of an economic model,
we need to choose the economic elements that correspond to the primitives
of the bargaining model. The results of this chapter can aid our choice.

4.6.1 Uncertainty as the Incentive to Reach an Agreement

Suppose that we have an economic model in which the main force that
causes the parties to reach an agreement is the fear that negotiations will
break down. In this case the models of Sections 4.2 and 4.3 indicate that
we can apply the Nash solution to an appropriately defined bargaining
problem 〈S, d〉. We should use utility functions that represent the players’
preferences over lotteries on the set of physical agreements to construct the
set S, and let the disagreement point correspond to the event that occurs
if the bargaining is terminated exogenously. By contrast, as we saw in
Section 3.12, it is definitely not appropriate to take as the disagreement
point an outside option (an outcome that may or may not occur depending
on the choice made by one of the parties).

Suppose, for example, that a buyer and seller are negotiating a price.
Assume that they face a risk that the seller’s good will become worthless.
Assume also that the seller has a standing offer (from a third party) to buy
the good at a price that is lower than that which she obtains from the buyer
when the third party does not exist. In this case we can apply the Nash
solution to a bargaining problem in which the disagreement point reflects
the parties’ utilities in the event that the good is worthless, and not their
utilities in the event that the seller chooses to trade with the third party.
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4.6.2 Impatience as the Incentive to Reach an Agreement

If the main pressure to reach an agreement is simply the players’ impa-
tience, then the original bargaining game of alternating offers studied in
Chapter 3 is appropriate. If each player’s preferences have the property
that the loss to delay is concave (in addition to satisfying all the conditions
of Chapter 3), then the result of Section 4.4 shows how the formula for the
Nash solution can be used to calculate the limit of the agreement reached in
the subgame perfect equilibrium of a bargaining game of alternating offers
as the period of delay converges to zero. In this case the utility functions
used to construct the set S are concave functions ui with the property
that δtui(xi) represents Player i’s preferences (i = 1, 2) for some value of
0 < δ < 1. Player i’s disagreement utility of zero is his utility for an agree-
ment with respect to the timing of which he is indifferent (see C3). Three
points are significant here. First, the utility functions of the players are
not the utility functions they use to evaluate uncertain prospects. Second,
if we represent the players’ preferences by δt1w1(x1) and δt2w2(x2), where
δ1 6= δ2, and construct the set S using the utility functions w1 and w2, then
the limit of the agreement reached is given by an asymmetric Nash solution
in which the exponents depend only on δ1 and δ2. Third, the disagreement
point does not correspond to an outcome that may occur if the players fail
to agree; rather it is determined by their time preferences.

As an example, consider bargaining between a firm and a union. In this
case it may be that the losses to the delay of an agreement are significant,
while the possibility that one of the parties will find another partner can be
ignored. Then we should construct S as discussed above; the disagreement
point should correspond to an outcome H with the property that each side
is indifferent to the period in which H is received. It might be appropriate,
for example, to let H be the outcome in which the profit of the firm is zero
and the union members receive a wage that they regard as equivalent to
the compensation they get during a strike.

Notes

The basic research program studied in this chapter is the “Nash program”
suggested by Nash (1953). When applied to bargaining, the Nash program
calls for “supporting” an axiomatic solution by an explicit strategic model
of the bargaining process.

Binmore was the first to observe the close relationship between the sub-
game perfect equilibrium outcome of a bargaining game of alternating offers
and the Nash solution (see Binmore (1987a)). The delicacy of the analysis
with respect to the distinction between the preferences over lotteries un-
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derlying the Nash solution and the time preferences used in the model of
alternating offers is explored by Binmore, Rubinstein, and Wolinsky (1986).
Our analysis in Sections 4.2, 4.4, and 4.6 follows that paper.

The Demand Game discussed in Section 4.3 is proposed by Nash (1953),
who outlines an argument for the result proved there. His analysis is clar-
ified by Binmore (1987a, 1987c) and by van Damme (1987).

Roth (1989) further discusses the relationship between the subgame per-
fect equilibrium of the game with breakdown and the Nash solution, and
Herrero (1989) generalizes the analysis of this relationship to cases in which
the set of utilities is not convex. McLennan (1988) generalizes the analysis
by allowing nonstationary preferences. Carlsson (1991) studies a variation
of the perturbed demand game studied in Section 4.3.

Other games that implement axiomatic bargaining solutions are studied
by Howard (1992) (the Nash solution), Moulin (1984) (the Kalai–Smoro-
dinsky solution) and Dasgupta and Maskin (1989) and Anbarci (1993) (the
solution that selects the Pareto efficient point on the line through the dis-
agreement point that divides the set of individually rational utility pairs
into two equal areas). (Howard’s game is based closely on the ordinal
characterization of the Nash bargaining solution discussed at the end of
Section 2.3.)



CHAPTER 5

A Strategic Model of Bargaining

between Incompletely Informed

Players

5.1 Introduction

A standard interpretation of the bargaining game of alternating offers stud-
ied in Chapter 3 involves the assumption that all players are completely in-
formed about all aspects of the game. In this chapter we modify the model
by assuming that one player is completely informed about all aspects of
the game, while the other is unsure of the preferences of his opponent.

When each player has complete information about his opponent’s pref-
erences, it is not implausible that agreement will be reached immediately.
When information is incomplete, however, this is no longer so. Indeed, one
of the main reasons for studying models of bargaining between incompletely
informed players is to explain delays in reaching an agreement.

When the players in a bargaining game of alternating offers are incom-
pletely informed, they may use their moves as messages to communicate
with each other. Each player may try to deduce from his opponent’s moves
the private information that the opponent possesses; at the same time, he
may try to make his opponent believe that he is in a better bargaining
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position than he really is. Thus in the analysis of such a model, the issues
studied in the literature on signaling come to the forefront.

As in Chapter 3, we formulate the model of bargaining as an extensive
game. Following Harsanyi (1967), we convert a situation in which the play-
ers are incompletely informed into a game with imperfect information. The
fact that information is imperfect means that the notion of subgame perfect
equilibrium has little power. For this reason, we appeal to the stronger no-
tion of sequential equilibrium, due to Kreps and Wilson (1982). However,
as we shall see in Section 5.3, the set of sequential equilibria is enormously
large. In Section 5.4 we study the set and find that it contains outcomes
in which agreement is reached only after significant delay. In Section 5.5
we refine the notion of sequential equilibrium by imposing restrictions on
the beliefs that the players may entertain when “unexpected” events occur.
This refinement gives us a more informative result. However, this result
does not accomplish the goal of explaining delay: in any sequential equi-
librium satisfying the restrictions on beliefs, there is no significant delay
before an agreement is reached. Finally, in Section 5.6 we relate the strate-
gic approach to bargaining between incompletely informed players to the
approach taken by the literature on “mechanism design”.

5.2 A Bargaining Game of Alternating Offers

The basic model of this chapter is closely related to that of Chapter 3. Two
players bargain over the division of a “pie” of size 1. The set of possible
agreements is

X = {(x1, x2) ∈ R2:x1 + x2 = 1 and xi ≥ 0 for i = 1, 2}.

The players alternately propose agreements at times in T = {0, 1, . . . },
exactly as in the model of Chapter 3. If the agreement x is accepted in
period t, then the outcome is (x, t). The outcome in which an agreement is
never reached is denoted D. We restrict attention to the case in which each
player has time preferences with a constant cost of delay (see Section 3.3.3).
Specifically, Player i’s preferences over X×T are represented by the utility
function xi − cit for i = 1, 2, and the utility of the disagreement outcome
D is −∞. We refer to ci as Player i’s bargaining cost.

The basic model departs from that of Chapter 3 in assuming that Player 1
is uncertain of Player 2’s bargaining cost. This cost c2 may take one of the
two values cL and cH , where 0 < cL < c1 < cH . We assume that the costs
of bargaining are small enough that c1 + cL + cH < 1. With probability
πH , Player 2’s bargaining cost is cH , and with probability 1− πH it is cL.
We assume that 0 < πH < 1. Player 2 knows his own bargaining cost, as
well as that of Player 1.
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Our assumption that cL < c1 < cH means that Player 1 is in a weak
position when matched with an opponent with bargaining cost cL and in a
strong position when matched with an opponent with bargaining cost cH .
In fact, recall that when the players’ preferences have fixed bargaining costs,
the outcome of the unique subgame perfect equilibrium when the players
are completely informed is extreme. When all the bargaining costs are
relatively small and it is common knowledge that Player 2 has bargaining
cost cL, Player 1 obtains a small payoff; it is positive only because Player 1
has the advantage of being the first to make a proposal. If it is common
knowledge that Player 2’s bargaining cost is cH then Player 1 obtains all
the pie (see Section 3.9.2). Thus in the game in which Player 1 is unsure
of Player 2’s type, Player 2 has every incentive to convince Player 1 that
his bargaining cost is cL.

We represent this situation as an extensive game by introducing two
players in the role of Player 2. One of these, whom we call 2L, has bar-
gaining cost cL, while the other, whom we call 2H , has bargaining cost cH .
Player 1 does not know which of these players she faces. At the beginning
of the game, Player 2H is selected with probability πH , and Player 2L is
selected with probability 1−πH . Given the outcomes in the games of com-
plete information between Players 1 and 2H , and between Players 1 and 2L,
we refer to Player 2H as “weak” and to Player 2L as “strong”. Following
convention we sometimes refer to 2H and 2L as types of Player 2.

A representation of the game, which we denote Γ(πH), is shown in Fig-
ure 5.1. The fact that Player 1 is not informed of the selection of Player 2’s
bargaining cost is indicated by the dotted line connecting the two decision
nodes of Player 1 at t = 0.1 The first decision in the game is Player 1’s; she
proposes an agreement to Player 2. In Figure 5.1 one such proposal x0 is
indicated. Subsequently, each of Players 2H and 2L either accept or reject
the proposal. If it is accepted, then the game ends with the outcome (x0, 0).
If it is rejected, then play moves to the next period, in which Player 2 makes
a counteroffer, which may depend on his type and on Player 1’s rejected
proposal. Player 1 observes this counteroffer but cannot tell whether it
came from Player 2H or Player 2L. Thus Player 1’s response at t = 1 may
depend upon both the offer at t = 1 and the rejected offer at t = 0. The
case in which these offers are x1 and x0 is shown in Figure 5.1. If Player 1
accepts the counteroffer, then the game ends; if she rejects it, then play
passes to period 2, in which it is again her turn to propose an agreement.

A history is a sequence of proposals and responses. A strategy of each
player in Γ(πH) specifies an action for every possible history after which he

1In the language of game theory, the two nodes constitute an information set of
Player 1.
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Figure 5.1 The first two periods of the game Γ(πH). The game begins by the selection
of Player 2’s bargaining cost. The fact that Player 1 is not informed of this selection is
indicated by the dotted line that connects the first two nodes at which Player 1 has to
make a choice. The branches labeled x0 represent a “typical” offer of Player 1 out of the
continuum available in period 0; similarly the branches labeled x1 represent a “typical”
offer of Player 2 in period 1.

has to move.2 Thus a strategy of Player 1 has exactly the same structure
as a strategy of Player 1 in the game studied in Chapter 3 (see Section 3.4),
and strategies for Players 2L and 2H each have precisely the same form as
a strategy for Player 2 in that game.

A triple of strategies, one each for Players 1, 2H , and 2L, leads, from
the point of view of Player 1, to a probability distribution over outcomes.
With probability πH the outcome is that given by the combination of the
strategies of Players 1 and 2H , while with probability 1− πH the outcome
is that given by the combination of the strategies of Players 1 and 2L. In
order to compare two of her strategies, Player 1 thus has to compare two
probability distributions over outcomes. Hence we must extend the domain

2As in Chapter 3 we do not allow players to use a random device to select their
actions.
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of her preferences from (X × T ) ∪ {D} to lotteries over this space. We do
so by assuming that Player 1 evaluates each lottery by its expected utility.

5.3 Sequential Equilibrium

The notion of Nash equilibrium (see Section 3.6) can be applied in a
straightforward manner to the game Γ(πH). However, as in the game
studied in Chapter 3, in which each player is fully informed, Γ(πH) has a
great multiplicity of Nash equilibria. In Chapter 3, we isolated a unique
solution by requiring that each player’s action be optimal from any point
on, not just at the start of the game. For games in which the players
are imperfectly informed, this idea is embodied in the notion of sequential
equilibrium.3

In order to state the requirement that Player 1’s strategy be optimal for
every history after which she has to move we must specify her probabilistic
beliefs about Player 2’s type. (Notice that Player 2’s type is the only
element of uncertainty for Player 1). Therefore, the notion of sequential
equilibrium requires us to specify two elements: the profile of strategies
and the beliefs of Player 1.

A system of beliefs in Γ(πH) is a function pH that assigns a number
pH(h) ∈ [0, 1] to every history h after which Player 1 has to move. The
number pH(h) is interpreted as the probability that Player 1 assigns, after
the history h, to the event that her opponent is 2H .

We impose three conditions on the pair of strategies and beliefs. First, we
require that each player’s strategy be optimal after every history. We refer
to this condition as “sequential rationality”. The optimality of Player 1’s
strategy after any history h depends on the strategies of Players 2H and
2L and on her beliefs after h. Since Player 2 is perfectly informed, the
optimality of the strategies of Players 2H and 2L after any history h depends
only on Player 1’s strategy.

The second condition, which we refer to as “consistency”, is closely re-
lated to the consistency condition of Kreps and Wilson (1982).4 It requires
that Player 1’s beliefs be consistent with the probability πH with which
she initially faces Player 2H and with the strategies of Players 2H and 2L.
As play proceeds, Player 1 must, whenever possible, use Bayes’ rule to up-
date her beliefs. If, after any history, the strategies of Players 2H and 2L
call for them both to reject an offer and make the same counteroffer, and
this counteroffer is indeed made, then when responding to the counteroffer
Player 1’s belief remains the same as it was when she made the offer. If only

3The notion of subgame perfect equilibrium which we defined in Chapter 3 has no
power in Γ(πH), since this game has no proper subgames.

4For a discussion of the condition see Kreps and Ramey (1987).
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one of the strategies of Players 2H and 2L specifies that the offer made by
Player 1 be rejected and the counteroffer x be made, and the counteroffer x
is indeed made, then when responding to the counteroffer Player 1’s belief
is zero or one, as appropriate. If neither of the strategies of Players 2H and
2L call for them to reject an offer and make some counteroffer x, but the
counteroffer x is observed, then Player 1 cannot use Bayes’ rule to update
her belief. In this case she may choose any number in the interval [0, 1] as
her belief. In all cases Player 1’s belief when she makes a counteroffer (after
rejecting the counteroffer of Player 2) must be the same as it was when she
responded to Player 2’s counteroffer: only actions of Player 2 lead Player 1
to change her belief. To summarize, after any history Player 1’s beliefs
must be based on her previous beliefs and Player 2’s strategies as long as
the response and counteroffer of Player 2 are consistent with the strategy
of either Player 2H or Player 2L, or both. Whenever Player 2’s response
or counteroffer is inconsistent with both of these strategies, Player 1 is free
to form new beliefs.

Three points are worth noting about this condition. First, having formed
a new belief after an action of Player 2 that is inconsistent with the strate-
gies of both Player 2H and Player 2L, Player 1 is required subsequently to
update this belief in accordance with the strategies of Players 2H and 2L.
This is possible since the strategy of each player specifies his behavior after
he takes an action inconsistent with the strategy. Second, Player 1 updates
her beliefs only when she is about to take an action. If, for example, the
strategy of only one of the types of Player 2 calls for him to reject an of-
fer of Player 1, and Player 1’s offer is indeed rejected, then Player 1 does
not necessarily conclude that she faces that type unless she also receives
the counteroffer prescribed by that type’s strategy. Third, the condition
implicitly requires that a deviation by Player 1 herself not affect the belief
she uses as the basis for her updating. Thus, for example, if she proposes
an agreement in period 0 different from that specified by her strategy, she
must still use the initial probability πH as the basis for her updating when
she responds to Player 2’s counteroffer.

The last condition we impose is the following. Once Player 1 is convinced
of the identity of Player 2, she is never dissuaded from her view. We refer
to this condition as NDOC (“Never Dissuaded Once Convinced”). The
condition implies, for example, that once Player 1 reaches the conclusion
that she faces Player 2L with certainty (pH(h) = 0), she cannot revise her
belief, even if Player 2 subsequently deviates from the strategy of Player 2L:
from this point on she is engaged in a game of perfect information with
Player 2L.5

5For a discussion of this constraint see Madrigal, Tan, and Werlang (1987).
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NDOC is a strong assumption. Sometimes circumstances lead one to
retreat from a belief that with certainty one faces a given type of player.
However, if we allow a player in a game of incomplete information to change
his mind after he has been persuaded that he is playing with certainty
against a given type, then why we do not do so in a game of complete
information? The issue is unclear; more research is needed to clarify it.

To summarize, we make the following definition.

Definition 5.1 A sequential equilibrium of Γ(πH) is a pair consisting of a
triple of strategies (one each for Players 1, 2L, and 2H) and a system of
beliefs pH that satisfies the following properties.

Sequential Rationality After every history for which Player 1 has to move,
her strategy is optimal, given the strategies of Players 2H and 2L,
and given pH . After every history for which Player 2 has to move,
Player 2I ’s strategy (I = H, L) is optimal (with respect to his pref-
erences), given Player 1’s strategy.

Consistency The initial belief is πH . Let h = (x0, N, x1, N, . . . , xT , N),
where T is odd, and let h′ = (x0, N, x1, N, . . . , xT+1, N, xT+2). If,
after the history h, the strategies of Players 2H and 2L both call for
them to reject xT+1 and to counteroffer xT+2, then pH(h′) = pH(h).
If pH(h) 6= 0 and only the strategy of 2H rejects xT+1 and counterof-
fers xT+2 then pH(h′) = 1; if pH(h) 6= 1 and only the strategy of
2L rejects xT+1 and counteroffers xT+2 then pH(h′) = 0. Further,
pH(x0, N, x1, N, . . . , xT+2, N) = pH(x0, N, x1, N, . . . , xT+2).

Never Dissuaded Once Convinced (NDOC) If pH(h) = 0 for some his-
tory h then it remains zero for all subsequent histories, and if pH(h) =
1 for some history h then it remains one for all subsequent histories.

We now establish some properties of all sequential equilibria of Γ(πH).

Lemma 5.2 After any history h for which 0 < pH(h) < 1, every sequential
equilibrium of Γ(πH) has the following properties.

1. If the strategies of Players 2H and 2L call for them both to reject
an offer, then these strategies also call for them to make the same
counteroffer.

2. If the strategy of Player 2L calls for him to accept an offer, so does
the strategy of Player 2H .

3. If the strategy of Player 2H calls for him to accept the proposal x while
the strategy of Player 2L calls for him to reject it, then Player 1’s
strategy calls for her to accept the counteroffer y that Player 2L’s
strategy prescribes, and x1 − cH ≤ y1 ≤ x1 − cL.
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Proof. We prove each part in turn.

1. Assume that for some history the strategies of Players 2H and 2L
call for them to reject the agreement proposed by Player 1 and make the
different counteroffers y and z, respectively. Then the consistency con-
dition demands that if Player 1 is offered y then she believes that she
faces Player 2H with probability one, and if she is offered z then she
believes that she faces Player 2L with probability one. Under condition
NDOC this belief never changes subsequently. Thus if Player 1 rejects
y, then agreement is reached immediately on (1, 0) (the outcome in the
game of perfect information between Players 1 and 2H), whereas if she
rejects z, then agreement is reached immediately on (cL, 1− cL) (the out-
come in the game of perfect information between Players 1 and 2L). Since
cL − c1 < 0 ≤ z1, Player 1 accepts z. If also she accepts y, then one
of the types can profitably deviate by proposing either y or z, whichever
has the higher share for Player 2. Thus Player 1 must reject y. But then
Player 2H receives 0 with a delay of one period. This is worse than receiv-
ing z2 immediately, which is possible if he imitates Player 2L and proposes
z. Thus it is not optimal for Player 2H to offer y, contradicting our original
assumption.

2. Suppose that the strategy of Player 2L calls for him to accept a
proposal, while that of Player 2H calls for him to reject the same pro-
posal. Then it is better for Player 2H to deviate and accept the pro-
posal of Player 1 since by doing so he obtains at least 0, while if he fol-
lows his strategy and rejects the offer then Player 1 concludes that she
faces Player 2H , so that (under the condition NDOC) the outcome is
immediate agreement on (1 − c1, c1), which yields Player 2H a payoff of
c1 − cH < 0.

3. If Player 2 rejects the offer x and proposes y, then Player 1 concludes
that she faces Player 2L, so that it is optimal for her to accept y. If
Player 2H deviates and imitates Player 2L, then he obtains y2 with one
period of delay, instead of the x2 he gets when he accepts Player 1’s offer.
Thus we must have x2 ≥ y2 − cH , or y1 ≥ x1 − cH . Similarly, we must
have y2 − cL ≥ x2, or y1 ≤ x1 − cL, in order for it not to be profitable for
Player 2L to imitate Player 2H and accept x. �

As we noted above, in the game Γ(πH) the notion of sequential equi-
librium puts no restriction on Player 1’s belief about the opponent she
faces when an unexpected event occurs. The next result shows that unless
πH is high, this freedom to specify beliefs leads to a great multiplicity of
equilibria.
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Proposition 5.3

1. If πH > 2c1/(c1+cH) then the minimum of Player 1’s expected payoff
over all sequential equilibria of Γ(πH) is πH + (1− πH)(1− cH − c1).

2. If πH ≤ 2c1/(c1 + cH) then for every ξ∗ ∈ [c1, 1 − c1 + cL] there
is a (“pooling”) sequential equilibrium of Γ(πH) in which Player 1
proposes x∗ = (ξ∗, 1− ξ∗) in period 0, which Players 2H and 2L both
immediately accept.

3. If (c1 + cL)/(c1 + cH) ≤ πH ≤ 2c1/(c1 + cH) then for every ξ∗ ≥ cH
there is a (“separating”) sequential equilibrium of Γ(πH) in which
Player 1 proposes x∗ = (ξ∗, 1−ξ∗) in period 0, Player 2H accepts x∗,
and Player 2L rejects it and proposes (ξ∗ − cH , 1 − ξ∗ + cH), which
Player 1 accepts.

Part 1 of the proposition shows that if it is likely that Player 2 is weak
(i.e. has the high bargaining cost) then, when the bargaining costs are
small, Player 1 gets a large share of the pie in all sequential equilibria of
Γ(πH).6 Parts 2 and 3 show that when the probability that Player 2 is
weak is relatively small, however, the notion of sequential equilibrium is
very uninformative: almost every agreement to be the outcome of a se-
quential equilibrium. For example, even if πH is close to zero there is
a sequential equilibrium in which, when the bargaining costs are small,
Player 1 obtains almost all the pie. In the equilibria we construct to es-
tablish the result, Player 1 believes, after any deviation, that she faces the
weak player (and acts accordingly). More precisely, whenever an event oc-
curs that is inconsistent with the equilibrium strategies of both Player 2H
and Player 2L, Player 1 makes the “optimistic” conjecture that her oppo-
nent is Player 2H with probability one. This optimistic conjecture gives
credibility to a tough bargaining strategy for Player 1 and allows a wide
range of equilibria to be generated: if Player 2 deviates then the switch
in Player 1’s belief leads her to persistently demand the whole pie, which
deters the deviation.

Proof of Proposition 5.3. We proceed in steps.

Step 1. The strategies and beliefs described in Table 5.1 constitute a
sequential equilibrium of Γ(πH) for (c1+cL)/(c1+cH) ≤ πH ≤ 2c1/(c1+cH)
if x∗1 ≥ cH , and for πH ≥ (c1 + cL)/(c1 + cH) if x∗1 = 1.

Proof. Note that in state I, for I = H, L, Players 1 and 2I behave as
they do in the unique subgame perfect equilibrium of the complete informa-
tion game between Player 1 and Player 2I , and the other type of Player 2

6This part corrects a mistake in Part 2 of Proposition 4 of Rubinstein (1985b).
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x∗ H L

proposes x∗ (1, 0) (cL, 1− cL)

1 accepts x1 ≥ x∗1 − cH x1 ≥ 1− c1 x1 ≥ 0

belief πH 1 0

2H
proposes (x∗1 − cH , x∗2 + cH) (1− c1, c1) (0, 1)

accepts x1 ≤ x∗1 x1 ≤ 1 x1 ≤ cH

2L
proposes (x∗1 − cH , x∗2 + cH) (1− c1, c1) (0, 1)

accepts x1 ≤ x∗1 − cH + cL x1 ≤ 1− c1 + cL x1 ≤ cL
Transitions Go to L if Player 2

rejects x with x∗1 −
cH + cL < x1 ≤ x∗1
and counterproposes
(x∗1 − cH , x∗2 + cH).

Absorbing Absorbing

Go to H if Player 2
takes an action in-
consistent with the
strategies of both 2H
and 2L.

Table 5.1 A (“separating”) sequential equilibrium of Γ(πH) for (c1 + cL)/(c1 + cH) ≤
πH ≤ 2c1/(c1 + cH). The value of x∗ satisfies cH ≤ x∗1 ≤ 1. When x∗1 = 1 the strategy
profile is a sequential equilibrium also for πH > 2c1/(c1 + cH).

uses a best response to the strategy of Player 1. Following our convention,
the initial state is the one in the leftmost column, namely x∗. As always,
transitions between states occur immediately after the event that triggers
them. Thus the transition to state L occurs after Player 2 makes an offer,
before Player 1 responds, and, for example, a response of Player 2 that is
inconsistent with the strategies of both Player 2H and Player 2L causes a
transition to state H before Player 2 makes a counteroffer. (Refer to Sec-
tion 3.5 for a discussion of this method of representing an equilibrium.7 An

7The representation of the strategies presented in Table 5.1 as standard automata is
more complex than the representation for the example given in Section 3.5, since the
transition to state L depends on both the counterproposal and the previously rejected
offer. For each state in the table, we need to introduce a set of states indexed by i and
x in which Player i has to respond to the offer x, and another set indexed by the same
variables in which Player i has to make a counteroffer, given that the previously rejected
proposal was x.



5.3 Sequential Equilibrium 101

extra line is included for Player 1, since the notion of sequential equilibrium
includes a specification of Player 1’s belief as well as her actions.)

To see that players’ behavior in state x∗ is optimal, first consider Player 1.
The best proposal out of those that are accepted by both Player 2H and
Player 2L is that in which x1 = x∗1 − cH + cL. This results in a payoff
for Player 1 of x∗1 − cH + cL, which, under our assumption that πH ≥
(c1 + cL)/(c1 + cH), is at most equal to Player 1’s equilibrium payoff of
πHx

∗
1 + (1 − πH)(x∗1 − cH − c1). If Player 1 proposes an agreement x

in which x1 > x∗1, then this proposal is rejected by both Player 2H and
Player 2L, who counterpropose (x∗1− cH , x∗2 + cH), which Player 1 accepts,
yielding her a payoff of x∗1 − cH − c1. If x∗1 = 1 then Player 1’s acceptance
rule in state x∗ is never activated: after any counteroffer of Player 2 in
period 1, there is a transition to either state L or state H. If x∗1 < 1
then the only offer that Player 1 is confronted with in state x∗ gives her
x∗1 − cH . If she rejects this offer then she counterproposes x∗ and obtains
her equilibrium payoff with one period of delay, the value of which is at
most x∗1 − cH if πH ≤ 2c1/(c1 + cH).

Now consider the behavior of Player 2L. If in state x∗ he rejects an offer
x in which x1 > x∗1 − cH + cL, then he counterproposes (x∗1 − cH , x∗2 + cH),
which Player 1 accepts. (If x1 ≥ x∗1 then the state changes to L before
Player 1’s acceptance.) Thus it is optimal to reject such an offer. If he
rejects an offer x in which x1 ≤ x∗1 − cH + cL, then the state changes to
H, and he obtains c1 − cL < x∗2 + cH − cL, so it is optimal to accept. Now
consider his proposal in state x∗. Let the offer he rejected previously be
x. We must have x1 > x∗1 − cH + cL, otherwise there would have been a
transition to state H. Thus if he proposes (x∗1−cH , x∗2 +cH) then if x1 ≤ x∗1
the state changes to L, while if x1 > x∗1 the state remains x∗; in both cases
Player 1 will accept the offer. If he proposes y with y1 6= x∗1 − cH , then
the state changes to H. If y1 < 1− c1, then Player 1 rejects the offer, and
Player 2L obtains c1 − 2cL; if y1 ≥ 1− c1, then Player 1 accepts the offer,
and Player 2L obtains at most c1. Thus in both cases it is better to propose
(x∗1 − cH , x∗2 + cH). (Note that Player 1 does not conclude, after Player 2L
rejects an offer x with x∗1 − cH + cL < x1 ≤ x∗1, that she faces Player 2L.
She is required by the consistency condition to draw this conclusion only
after Player 2L makes the counteroffer (x∗1 − cH , x∗2 + cH).)

The optimality of Player 2H ’s strategy in state x∗, and of the strategies
in the other states can be checked similarly. Finally, the postulated beliefs
are consistent with the strategies.

This completes the proof of Part 3 of the proposition.

Now letm1 be the infimum of Player 1’s payoffs in all sequential equilibria
of the game Γ1(πH) (which is the same as Γ(πH)) starting with an offer by
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Player 1 in which the initial belief of Player 1 is πH , and let MH be the
supremum of Player 2H ’s payoffs in all sequential equilibria of the game
Γ2(πH) starting with an offer by Player 2 in which the initial belief of
Player 1 is πH . The first two steps follow the lines of Steps 1 and 2 in the
proof of Theorem 3.4.

Step 2. m1 ≥ πH(1−max{MH−cH , 0})+(1−πH)(1−max{MH − cH , 0}−
cH − c1).

Proof. Suppose that in Γ1(πH), Player 1 proposes an agreement x in
which x2 > max{MH−cH , 0}. If Player 2H rejects x, then so does Player 2L
(by Part 2 of Lemma 5.2), and both types make the same counteroffer (by
Part 1 of Lemma 5.2), so that play passes to the game Γ2(πH). In this game
Player 2H receives at most MH , so that in any sequential equilibrium he
must accept x. If Player 2L rejects x, then by Part 3 of Lemma 5.2, he
proposes an agreement y with y1 ≥ x1 − cH , which Player 1 accepts. Thus
by proposing the agreement x with x2 sufficiently close to max{MH−cH , 0},
Player 1 can obtain a payoff arbitrarily close to the amount on the right-
hand side of the inequality to be established.

Step 3. MH ≤ 1− (m1 − c1).

Proof. By Part 1 of Lemma 5.2, Players 2H and 2L make the same offer
in period 0 of Γ2(πH), so that if Player 1 rejects a proposal in period 0,
her belief remains πH , and play passes into the game Γ1(πH), in which
Player 1’s expected payoff is at least m1. Thus Player 1’s expected payoff
in all sequential equilibria of Γ2(πH) is at least m1− c1. The inequality we
need to establish follows from the fact that in no sequential equilibrium of
Γ2(πH) is Player 2H ’s payoff higher than that of Player 2L (since Player 2L
can imitate Player 2H , and has a lower bargaining cost).

Step 4. If πH > 2c1/(cH + c1) then m1 = πH + (1− πH)(1− cH − c1).

Proof. If MH > cH then Steps 2 and 3 imply that 1 −MH + πH(cH +
c1) − c1 ≤ m1 ≤ 1 −MH + c1, which violates the assumption that πH >
2c1/(cH + c1). Thus MH ≤ cH , so that from Step 2 we have m1 ≥ πH +
(1 − πH)(1 − cH − c1). Finally, Step 1 (for the case x∗1 = 1) shows that
m1 ≤ πH + (1− πH)(1− cH − c1) if πH ≥ (c1 + cL)/(c1 + cH), and hence
certainly if πH > 2c1/(cH + c1).

This completes the proof of Part 1 of the proposition.

Step 5. If πH ≤ 2c1/(c1 + cH) then the strategies and beliefs described
in Table 5.2 constitute a sequential equilibrium of Γ(πH) whenever c1 ≤
x∗1 ≤ 1− c1 + cL.
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x∗ H L

proposes x∗ (1, 0) (cL, 1− cL)

1 accepts x1 ≥ x∗1 − c1 x1 ≥ 1− c1 x1 ≥ 0

belief πH 1 0

2H
proposes (x∗1 − c1, x∗2 + c1) (1− c1, c1) (0, 1)

accepts x1 ≤ x∗1 + cH − c1 x1 ≤ 1 x1 ≤ cH

2L
proposes (x∗1 − c1, x∗2 + c1) (1− c1, c1) (0, 1)

accepts x1 ≤ x∗1 x1 ≤ 1− c1 + cL x1 ≤ cL
Transitions Go to L if Player 2

rejects x with x∗1 <
x1 ≤ x∗1 + cH − c1
and counterproposes
(x∗1 − c1, x∗2 + c1).

Absorbing Absorbing

Go to H if Player 2
takes an action in-
consistent with the
strategies of both 2H
and 2L.

Table 5.2 A (“pooling”) sequential equilibrium of Γ(πH) for πH ≤ 2c1/(c1 + cH). The
value of x∗ satisfies c1 ≤ x∗1 ≤ 1− c1 + cL.

Proof. Note that the states H and L are the same as for the equilib-
rium constructed in Step 1 above. To see that the strategies and beliefs
constitute a sequential equilibrium, first consider Player 1. If she proposes
an agreement x in which x∗1 < x1 ≤ x∗1 + cH − c1. Then Player 2H ac-
cepts x, while Player 2L rejects it and proposes the agreement in which
Player 1 receives x∗1 − c1, the state changes to L, and Player 1 accepts
the offer. Thus by deviating in this way, Player 1 can obtain no more
than πH(x∗1 + cH − c1) + (1 − πH)(x∗1 − 2c1) = x∗1 + πHcH − c1(2 − πH),
which is equal to at most x∗1 by our assumption that πH ≤ 2c1/(c1 + cH).
If Player 1 proposes an agreement x for which x1 > x∗1 + cH − c1 then
Players 2H and 2L both reject it and counterpropose (x∗1 − c1, x

∗
2 + c1),

which Player 1 accepts. Thus Player 1 obtains x∗1 − 2c1, which is less than
her payoff if she adheres to her strategy. The only offer that Player 1
can be confronted with in state x∗ is (x∗1 − c1, x

∗
2 + c1); if she rejects

this then she proposes x∗, which both types of Player 2 accept, so that
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she obtains x∗1 − c1, the same payoff that she obtains if she accepts the
offer.

If Player 2L rejects an offer x in which x1 < x∗1, then the state changes to
H, so that Player 2L obtains c1−cL. The condition x∗1 ≤ 1−c1+cL ensures
that this payoff is no more than x2. The fact that no player can benefit
from any other deviation can be checked similarly. Finally, the postulated
beliefs are consistent with the strategies.

This completes the proof of Part 2 of the proposition. �

5.4 Delay in Reaching Agreement

In Chapter 3 we found that in the unique subgame perfect equilibrium of a
bargaining game of alternating offers in which the players’ preferences are
common knowledge, agreement is reached immediately. In the previous
section we constructed sequential equilibria for the game Γ(πH) in which,
when Player 1 faces a strong opponent, agreement is reached with delay,
but in these equilibria this delay never exceeds one period. Are there any
equilibria in which the negotiation lasts for more than two periods? If so,
can the bargaining time remain bounded away from zero when the length
of a period of negotiation is arbitrarily small?

In the case that πH ≤ 2c1/(c1 + cH) we now construct a sequential
equilibrium in which negotiation continues for several periods. Choose
three numbers ξ∗ < η∗ < ζ∗ from the interval [c1, 1 − c1 + cL] such that
ζ∗ − η∗ > c1 − cL (this is possible if the bargaining costs are small), and
let t be an even integer. Recall that for each α ∈ [c1, 1 − c1 + cL] there
is a sequential equilibrium in which immediate agreement is reached on
(α, 1− α) (by Part 2 of Proposition 5.3). The players’ strategies in the
equilibrium we construct are as follows. Through period t, Player 1 pro-
poses the agreement (1, 0) and rejects every other agreement, and Play-
ers 2H and 2L each propose the agreement (0, 1) and reject every other
agreement; Player 1 retains her original belief that the probability with
which she faces Player 2H is πH . If period t is reached without any of the
players having deviated from these strategies, then from period t+1 on the
players use the strategies of a sequential equilibrium that leads to immedi-
ate agreement on y∗ = (η∗, 1−η∗). If in any period t ≤ t Player 1 proposes
an agreement different from (1, 0), then subsequently the players use the
strategies of a sequential equilibrium that leads to immediate agreement
on x∗ = (ξ∗, 1 − ξ∗) in the case that Player 1 is the first to make an of-
fer. If Player 2 proposes an agreement different from (0, 1) in some period
t ≤ t then Player 1 retains the belief that she faces Player 2H with prob-
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ability πH , and subsequently the players use the strategies of a sequential
equilibrium that leads to immediate agreement on z∗ = (ζ∗, 1− ζ∗).

The outcome of this strategy profile is that no offer is accepted until
period t+ 1. In this period Player 1 proposes y∗, which Players 2H and 2L
both accept.

In order for these strategies and beliefs to constitute a sequential equi-
librium, the number t has to be small enough that none of the players is
better off making a less extreme proposal in some period before t. The best
such alternative proposal for Player 1 is x∗, and the best period in which to
make this proposal is the first. If she deviates in this way, then she obtains
x∗1 rather than y∗1 − c1t. Thus we require t ≤ (y∗1 − x∗1)/c1 in order for the
deviation not to be profitable. The best deviation for Player 2I (I = H, L)
is to propose (z∗1−c1, 1−z∗1 +c1) in the second period (the first in which he
has the opportunity to make an offer). In the equilibrium, Player 1 accepts
this offer, so that Player 2I obtains 1−z∗1 +c1−cI rather than 1−y∗1−cIt.
Thus in order to prevent a deviation by either Player 2H or Player 2L we
further require that t ≤ (z∗1 − y∗1 + cI − c1)/cI for I = H, L.

We can interpret the equilibrium as follows. The players regard a devia-
tion as a sign of weakness, which they “punish” by playing according to a
sequential equilibrium in which the player who did not deviate is better off.
Note that there is delay in this equilibrium even though no information is
revealed along the equilibrium path.

Now consider the case in which a period has length ∆. Let Player 1’s
bargaining cost be γ1∆ per period, and let Player 2I ’s be γI∆ for I = H,
L. Then the strategies and beliefs we have described constitute a sequen-
tial equilibrium in which the real length t∆ of the delay before an agree-
ment is reached can certainly be as long as the minimum of (y∗1 − x∗1)/γ1,
(z∗1 − y∗1 + γH∆− γ1∆)/γH , and (z∗1 − y∗1 + γL∆− γ1∆)/γL. The limit of
this delay, as ∆→ 0, is positive, and, if the bargaining cost of each player
is relatively small, can be long. Thus if πH < 2c1/(c1 + cH), a significant
delay is consistent with sequential equilibrium even if the real length of a
period of negotiation is arbitrarily small.

In the equilibrium we have constructed, Players 2H and 2L change their
behavior after a deviation and after period t is reached, even though Player
1’s beliefs do not change. Gul and Sonnenschein (1988) impose a restriction
on strategies that rules this out. They argue that the offers and response
rules given by the strategies of Players 2H and 2L should depend only on the
belief held by Player 1, and not, for example, on the period. We show that
among the set of sequential equilibria in which the players use strategies of
this type, there is no significant delay before an agreement is reached.

Proposition 5.4 In any sequential equilibrium in which the offers and
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response rules given by the strategies of Players 2H and 2L depend only on
the belief of Player 1, agreement is reached not later than the second period.

Proof. Since the cost of perpetual disagreement is infinite, all sequential
equilibria must end with an agreement. Consider a sequential equilibrium
in which an agreement is first accepted in period t ≥ 2. Until this ac-
ceptance, it follows from Part 1 of Lemma 5.2 that in any given period t,
Players 2H and 2L propose the same agreement yt, so that Player 1 con-
tinues to maintain her initial belief πH . Hence, under the restriction on
strategies, the agreement yt, and the acceptance rules used by Players 2H
and 2L, are independent of t. Thus if it is Player 1 who first accepts an of-
fer, she is better off deviating and accepting this offer in the second period,
rather than waiting until period t. By Lemma 5.2 the only other possibil-
ity is that Player 2H accepts x in period t and Player 2L either does the
same, or rejects x and makes a counterproposal that is accepted. By the
restriction on the strategies Player 2L’s counterproposal is independent of
t. Thus in either case Player 1 is better off proposing x in period 0. Hence
we must have t ≤ 1. �

Gul and Sonnenschein actually establish a similar result in the context
of a more complicated model. Their result, as well as that of Gul, Sonnen-
schein, and Wilson (1986), is associated with the “Coase conjecture”. The
players in their model are a seller and a buyer. The seller is incompletely
informed about the buyer’s reservation value, and her initial probability
distribution F over the buyer’s reservation value is continuous and has
support [l, h]. Gul and Sonnenschein assume that (i) the buyer’s actions
depend only on the seller’s belief, (ii) the seller’s offer after histories in
which she believes that the distribution of the buyer’s reservation value is
the conditional distribution of F on some set [l, h′] is increasing in h′, and
(iii) the seller’s beliefs do not change in any period in which the negotiation
does not end if all buyers follow their equilibrium strategies. They show
that for all ε > 0 there exists ∆∗ small enough such that in any sequential
equilibrium of the game in which the length of a period is less than ∆∗ the
probability that bargaining continues after time ε is at most ε.

Gul and Sonnenschein argue that their result demonstrates the shortcom-
ings of the model as an explanation of delay in bargaining. However, note
that their result depends heavily on the assumption that the actions of the
informed player depend only on the belief of the uninformed player. (This
issue is discussed in detail by Ausubel and Deneckere (1989a).) This as-
sumption is problematic. As we discussed in Section 3.4, we view a player’s
strategy as more than simply a plan of action. The buyer’s strategy also
includes the seller’s predictions about the buyer’s behavior in case that the
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buyer does not follow his strategy. Therefore the assumption of Gul and
Sonnenschein implies not only that the buyer’s plan of action is the same
after any history in which the seller’s beliefs are the same. It implies also
that the seller does not make any inference about the buyer’s future plans
from a deviation from his strategy, unless the deviation also changes the
seller’s beliefs about the buyer’s reservation value.

5.5 A Refinement of Sequential Equilibrium

Proposition 5.3 shows that the set of sequential equilibria of the game
Γ(πH) is very large. In this section we strengthen the notion of sequen-
tial equilibrium by constraining the beliefs that the players are allowed to
entertain when unexpected events occur.

To motivate the restrictions we impose on beliefs, suppose that Player 2
rejects the proposal x and counterproposes y, where y2 ∈ (x2 +cL, x2 +cH).
If this event occurs off the equilibrium path, then the notion of sequential
equilibrium does not impose any restriction on Player 1’s beliefs about
whom she faces. However, we argue that it is unreasonable, after this
event occurs, for Player 1 to believe that she faces Player 2H . The reason
is as follows. Had Player 2 accepted the proposal he would have obtained
x2. If Player 1 accepts his counterproposal y, then Player 2 receives y2

with one period of delay, which, if he is 2H , is worse for him than receiving
x2 immediately (since y2 < x2 + cH). On the other hand, Player 2L is
better off receiving y2 with one period of delay than x2 immediately (since
y2 > x2 + cL).

This argument is compatible with the logic of some of the recent refine-
ments of the notion of sequential equilibrium—in particular that of Gross-
man and Perry (1986). In the language suggested by Cho and Kreps (1987),
Player 2L, when rejecting x and proposing y, can make the following speech.
“I am Player 2L. If you believe me and respond optimally, then you will
accept the proposal y. In this case, it is not worthwhile for Player 2H to
pretend that he is I since he prefers the agreement x in the previous period
to the agreement y this period. On the other hand it is worthwhile for me
to persuade you that I am Player 2L since I prefer the agreement y this
period to the agreement x in the previous period. Thus, you should believe
that I am Player 2L.”

Now suppose that Player 2 rejects the proposal x and counterproposes y,
where y2 > x2 + cH . In this case both types of Player 2 are better off if the
counterproposal is accepted than they would have been had they accepted
x, so that Player 1 has no reason to change the probability that she assigns
to the event that she faces Player 2H .

Thus we restrict attention to beliefs that are of the following form.
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Definition 5.5 The beliefs of Player 1 are rationalizing if, after any history
h for which pH(h) < 1, they satisfy the following conditions.

1. If Player 2 rejects the proposal x and counteroffers y where y2 ∈
(x2 + cL, x2 + cH), then Player 1 assigns probability one to the event
that she faces Player 2L.

2. If Player 2 rejects the proposal x and counteroffers y where y2 >
x2 + cH , then Player 1’s belief remains the same as it was before she
proposed x.

We refer to a sequential equilibrium in which Player 1’s beliefs are ra-
tionalizing as a rationalizing sequential equilibrium. The sequential equi-
librium constructed in the proof of Part 3 of Proposition 5.3 is not ratio-
nalizing. If, for example, in state x∗ of this equilibrium, Player 2 rejects a
proposal x for which x1 > x∗1 and proposes y with x1− cH < y1 < x1− cL,
then the state changes to H, in which Player 1 believes that she faces
Player 2H with probability one. If Player 1 has rationalizing beliefs, how-
ever, she must believe that she faces Player 2L with probability one in this
case.

Lemma 5.6 Every rationalizing sequential equilibrium of Γ(πH) has the
following properties.

1. If Player 2H accepts a proposal x for which x1 > cL then Player 2L
rejects it and counterproposes y, with y1 = max{0, x1 − cH}.

2. Along the equilibrium path, agreement is reached in one of the follow-
ing three ways.

a. Players 2H and 2L make the same offer, which Player 1
accepts.

b. Player 1 proposes (cL, 1 − cL), which Players 2H and 2L
both accept.

c. Player 1 proposes x with x1 ≥ cL, Player 2H accepts this
offer, and Player 2L rejects it and proposes y with y1 =
max{0, x1 − cH}.

3. If Player 1’s payoff exceeds M1 − 2c1, where M1 is the supremum of
her payoffs over all rationalizing sequential equilibria, then agreement
is reached immediately with Player 2H .

Proof. We establish each part separately.

1. Suppose that Player 2H accepts the proposal x, for which x1 > cL.
By Lemma 5.2, Player 2L’s strategy calls for him either to accept x or to
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reject it and to counterpropose y with max{0, x1 − cH} ≤ y1 ≤ x1 − cL.
In any case in which his strategy does not call for him to reject x and to
propose y with y1 = max{0, x1−cH} he can deviate profitably by rejecting
x and proposing z satisfying max{0, x1 − cH} < z1 < y1. Upon seeing
this counteroffer Player 1 accepts z since she concludes that she is facing
Player 2L.

2. Since in equilibrium Player 1 never proposes an agreement in which
she gets less than cL, the result follows from Lemma 5.2 and Part 1.

3. Consider an equilibrium in which Player 2H rejects Player 1’s initial
proposal of x. By Lemma 5.2, Player 2L also rejects this offer, and he
and Player 2H make the same counterproposal, say y. If Player 1 rejects
y then her payoff is at most M1 − 2c1. If she accepts it, then her payoff is
y1−c1. Since Player 2H rejected x in favor of y we must have y2 ≥ x2 +cH .
Now, in order to make unprofitable the deviation by either of the types of
Player 2 of proposing z with z2 > y2, Player 1 must reject such a proposal.
If she does so, then by the condition that her beliefs be rationalizing and
the fact that y2 ≥ x2 +cH , her belief does not change, so that play proceeds
into Γ(πH). In order to make her rejection optimal, there must therefore
be a rationalizing sequential equilibrium of Γ(πH) in which her payoff is
at least y1 + c1. Thus in any rationalizing sequential equilibrium in which
agreement with Player 2H is not reached immediately, Player 1’s payoff is
at most M1 − 2c1. �

We now establish the main result of this section.

Proposition 5.7 For all 0 < πH < 1 the game Γ(πH) has a rationalizing
sequential equilibrium, and every such equilibrium satisfies the following.

1. If πH > 2c1/(c1 + cH) then the outcome is agreement in period 0 on
(1, 0) if Player 2 is 2H , and agreement in period 1 on (1− cH , cH) if
Player 2 is 2L.

2. If (c1 + cL)/(c1 + cH) < πH < 2c1/(c1 + cH) then the outcome is
agreement in period 0 on (cH , 1−cH) if Player 2 is 2H , and agreement
in period 1 on (0, 1) if Player 2 is 2L.

3. If πH < (c1 +cL)/(c1 +cH) then the outcome is agreement in period 0
on (cL, 1− cL), whatever Player 2’s type is.

Proof. Let M1 be the supremum of Player 1’s payoffs in all rationalizing
sequential equilibria of Γ(πH).

Step 1. If πH > 2c1/(c1 + cH) then Γ(πH) has a rationalizing sequential
equilibrium, and the outcome in every such equilibrium is that specified in
Part 1 of the proposition.
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∗ L

proposes (1, 0) (cL, 1− cL)

1 accepts x1 ≥ 1− cH x1 ≥ 0

belief πH 0

2H
proposes (max{0, x1 − cH},min{1, x2 + cH}),

where x is the offer just rejected
(0, 1)

accepts x1 ≤ 1 x1 ≤ cH

2L
proposes (max{0, x1 − cH},min{1, x2 + cH}),

where x is the offer just rejected
(0, 1)

accepts x1 ≤ cL x1 ≤ cL
Transitions Go to L if Player 2 rejects x and coun-

terproposes y with y2 ≤ x2 + cH .
Absorbing

Table 5.3 A rationalizing sequential equilibrium of Γ(πH) when πH ≥ 2c1/(c1 + cH).

Proof. It is straightforward to check that the equilibrium described in
Table 5.3 is a rationalizing sequential equilibrium of Γ(πH) when πH >
2c1/(c1 + cH). (Note that state L is the same as it is in the sequential
equilibria constructed in Section 5.3.) To establish the remainder of the
claim, note that by Parts 2 and 3 of Lemma 5.6 we have M1 ≤ max{πH +
(1 − πH)(1 − cH − c1), cL}. Under our assumption that c1 + cL + cH ≤ 1
we thus have M1 ≤ πH + (1 − πH)(1 − cH − c1), and hence, by Part 1 of
Proposition 5.3, Player 1’s payoff in all rationalizing sequential equilibria is
πH + (1− πH)(1− cH − c1). The result follows from Part 2 of Lemma 5.6.

Step 2. If πH < 2c1/(c1+cH) thenM1 ≤ max{πHcH+(1−πH)(−c1), cL}.

Proof. Assume to the contrary that M1 > max{πHcH + (1− πH)(−c1),
cL}, and consider a rationalizing sequential equilibrium in which Player 1’s
payoff exceeds M1− ε > max{πHcH + (1−πH)(−c1), cL} for 0 < ε < 2c1−
πH(c1 + cH). By Part 3 of Lemma 5.6, Player 2H accepts Player 1’s offer x
in period 0 in this equilibrium. By Parts 2b and 2c of the lemma it follows
that x1 > cH (and Player 2L rejects x). We now argue that if Player 2H
deviates by rejecting x and proposing z = (x1 − cH − η, x2 + cH + η) for
some sufficiently small η > 0, then Player 1 accepts z, so that the deviation
is profitable. If Player 1 rejects z, then, since her beliefs are unchanged (by
the second condition in Definition 5.5), the most she can get is M1 with a
period of delay. But x1− cH − ε > πH(x1− c1) + (1−πH)(x1− cH −2c1) ≥
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∗ L

proposes z∗ (cL, 1− cL)

1 accepts x1 ≥ 0 x1 ≥ 0

belief πH 0

2H
proposes (0, 1) (0, 1)

accepts x1 ≤ cH x1 ≤ cH

2L
proposes (0, 1) (0, 1)

accepts x1 ≤ cL x1 ≤ cL
Transitions Go to L if Player 2

rejects x and counter-
proposes y with y2 ≤
x2 + cH .

Absorbing

Table 5.4 A rationalizing sequential equilibrium of Γ(πH). When z∗ = (cH , 1 − cH)
this is a rationalizing sequential equilibrium of Γ(πH) for (c1 + cL)/(c1 + cH) ≤ πH ≤
2c1/(c1 + cH), and when z∗ = (cL, 1− cL) it is a rationalizing sequential equilibrium of
Γ(πH) for πH ≤ (c1 + cL)/(c1 + cH).

M1 − c1 − ε (the first inequality by the condition on ε, the second by the
fact that Player 1’s payoff in the equilibrium exceeds M1 − ε), so that
for η small enough we have x1 − cH − η > M1 − c1. Hence Player 1
must accept z, making Player 2H ’s deviation profitable. Thus there is
no rationalizing sequential equilibrium in which Player 1’s payoff exceeds
πHcH + (1− πH)(−c1).

Step 3. If (c1 + cL)/(c1 + cH) ≤ πH ≤ 2c1/(c1 + cH) then Γ(πH) has a
rationalizing sequential equilibrium, and M1 ≥ πHcH + (1− πH)(−c1).

Proof. This follows from the fact that, for z∗ = (cH , 1 − cH) and (c1 +
cL)/(c1 + cH) ≤ πH ≤ 2c1/(c1 + cH), the equilibrium given in Table 5.4 is
a rationalizing sequential equilibrium of Γ(πH) in which Player 1’s payoff
is precisely πHcH + (1 − πH)(−c1). (Note that when z∗ = (cH , 1 − cH)
the players’ actions are the same in state ∗ as they are in state x∗ of the
equilibrium in Part 3 of Proposition 5.3, for x∗ = (cH , 1−cH); also, state L
is the same as in that equilibrium.)

Step 4. If (c1 + cL)/(c1 + cH) < πH < 2c1/(c1 + cH), then the outcome
in every rationalizing sequential equilibrium is that specified in Part 2 of
the proposition.
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Proof. From Steps 2 and 3 we have M1 = πHcH + (1− πH)(−c1). Since
Player 2H accepts any proposal in which Player 1 receives less than cH ,
it follows that Player 1’s expected payoff in all rationalizing sequential
equilibria is precisely πHcH + (1−πH)(−c1). Given Lemma 5.6 this payoff
can be obtained only if Player 1 proposes (cH , 1 − cH), which Player 2H
accepts and Player 2L rejects, and Player 2L counterproposes (0, 1), which
Player 1 accepts.

Step 5. If πH ≤ (c1 + cL)/(c1 + cH) then Γ(πH) has a rationalizing
sequential equilibrium, and M1 ≥ cL.

Proof. This follows from the fact that, for z∗ = (cL, 1 − cL) and πH ≤
(c1 + cL)/(c1 + cH), the equilibrium given in Table 5.4 is a rationalizing
sequential equilibrium of Γ(πH) in which Player 1’s payoff is cL.

Step 6. If πH < (c1+cL)/(c1+cH) then the outcome in every rationalizing
sequential equilibrium is that specified in Part 3 of the proposition.

Proof. From Steps 2 and 5 we have M1 = cL. Since both types of Player 2
accept any proposal in which Player 1 receives less than cL, it follows
that Player 1’s expected payoff in all rationalizing sequential equilibria is
precisely cL. The result follows from Part 2 of Lemma 5.6. �

The restriction on beliefs that is embedded in the definition of a ratio-
nalizing sequential equilibrium has achieved the target of isolating a unique
outcome. However, the rationale for the restriction is dubious. First, the
logic of the refinement assumes that Player 1 tries to rationalize any devia-
tion of Player 2. If Player 2 rejects the offer x and makes a counteroffer in
which his share is between x2 +cL and x2 +cH , then Player 1 is assumed to
interpret it as a signal that he is Player 2L. However, given the equilibrium
strategies, Player 2 does not benefit from such a deviation, so that another
valid interpretation is that Player 2 is simply irrational. Second, if indeed
Player 2 believes that it is possible to persuade Player 1 that he is Player 2L
by deviating in this way, then it seems that he should be regarded as irra-
tional if he does not make the deviation that gives him the highest possible
payoff (i.e. that in which his share is x2 +cH). Nevertheless, our refinement
assumes that Player 1 interprets any deviation in which Player 2 counterof-
fers z with z2 ∈ (x2 + cL, x2 + cH) as a signal that Player 2 is Player 2L.
Thus we should be cautious in evaluating the result (and any other result
that depends on a similar refinement of sequential equilibrium). In the lit-
erature on refinements of sequential equilibrium (see for example Cho and
Kreps (1987) and van Damme (1987)) numerous restrictions on the beliefs
are suggested, but none appears to generate a persuasive general criterion
for selecting equilibria.
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Figure 5.2 The reservation values of buyers and sellers.

5.6 Mechanism Design

In this section we depart from the study of sequential models and introduce
some of the central ideas from the enormous literature on “mechanism
design”. We discuss only some ideas that are relevant to the analysis of
bargaining between incompletely informed players; we do not provide a
comprehensive introduction to the literature.

The study of mechanism design has two aims. The first is to design mech-
anisms that have desirable properties as devices for implementing outcomes
in social conflicts. A discussion of the theory from this angle is beyond the
scope of this book. The second aim is related to the criticism that strategic
models of bargaining are too specific, since they impose a rigid structure on
the bargaining process. The work on mechanism design provides a frame-
work within which it is possible to analyze simultaneously a large set of
bargaining procedures. A theory of bargaining is viewed as a mechanism
that assigns an outcome to every possible configuration of the parameters
of the model. A study of the set of mechanisms that can be generated
by the Nash equilibria of bargaining games between incompletely informed
players sheds light on the properties shared by these equilibria.

We focus on the following bargaining problem. A seller and a buyer of
an indivisible good are negotiating a price. If they fail to reach agreement,
each can realize a certain “reservation value”. The reservation value s of the
seller takes one of the two possible values s1 and s2, each with probability
1/2; we refer to a seller with reservation value si as Si. Similarly, the
reservation value b of the buyer takes one of the two possible values b1
and b2, each with probability 1/2; we refer to a buyer with reservation
value bj as Bj . The realizations of s and b are independent, so that all
four combinations of si and bj are equally likely. We assume that s1 <
b1 < s2 < b2. To simplify the calculations we further restrict attention
to the symmetric case in which b2 − s2 = b1 − s1 = α; we let s2 − b1 =
η, and (without loss of generality) let s1 = 0. The reservation values
are shown in Figure 5.2. Notice that the model departs from those of
the previous sections in assuming that both bargainers are incompletely
informed.
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The tension in this bargaining problem is twofold. First, there is the
usual conflict between a seller who is interested in obtaining a high price
and a buyer who would like to pay as little as possible. Second, there is an
incentive for B2 to pretend to be B1, thereby strengthening his bargaining
position; similarly, there is an incentive for S1 to pretend to be S2.

A mechanism is a function that assigns an outcome to every realization
of (s, b). To complete the definition we need to specify the set of possible
outcomes. We confine attention to the case in which an outcome is a pair
consisting of a price and a time at which the good is exchanged. Thus
formally a mechanism is a pair (p, θ) of functions; p assigns a price, and θ a
time in [0,∞], to each realization of (s, b). The interpretation is that if the
realization of (s, b) is (si, bj), then agreement is reached on the price p(si, bj)
at time θ(si, bj). The case θ(si, bj) = ∞ corresponds to that in which
no trade ever occurs. (In most of the literature on mechanism design an
outcome is a pair (p, π) with the interpretation that the good is exchanged
for the price p with probability π and there is disagreement with probability
1−π. The results of this section can easily be translated into this case. We
have chosen an alternative framework in order to make a clear comparison
with the sequential bargaining models which are the focus of this book.)

The agents maximize expected utility. The utility of Si for the price p
at θ is δθ(p− si), and the utility of Bj for the price p at θ is δθ(bj − p); if
an agent does not trade his utility is zero.

Let M = (p, θ) be a mechanism, and let

UM (si) = Eb[δθ(si,b)(p(si, b)− si)]

for i = 1, 2, where Eb denotes the expectation with respect to b (which
is a random variable). Thus UM (si) is the expected utility of Si from
participating in the mechanism M . Similarly let

UM (bj) = Es[δθ(s,bj)(bj − p(s, bj))]

for j = 1, 2, the expected utility of Bj from participating in the mecha-
nism M . We consider mechanisms that satisfy the following conditions.

IR (Individual Rationality) UM (si) ≥ 0 and UM (bj) ≥ 0 for i,
j = 1, 2.

Behind IR is the assumption that each agent has the option of not taking
part in the mechanism.

IC (Incentive Compatibility) For (i, h) = (1, 2) and (i, h) = (2, 1)
we have

UM (si) ≥ Eb[δθ(sh,b)(p(sh, b)− si)],
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and for (j, k) = (1, 2) and (j, k) = (2, 1) we have

UM (bj) ≥ Es[δθ(s,bk)(bj − p(s, bk))].

Behind IC is the assumption that each agent has the option of imitating
an agent with a different reservation value.

The connection between behavior in a strategic model of bargaining and
these two conditions is the following. Consider a bargaining game in exten-
sive form in which every terminal node corresponds to an agreement on a
certain price at a certain time. Assume that the game is independent of the
realization of the types: the strategy sets of the different types of buyer,
and of seller, are the same, and the outcome of bargaining is a function only
of the strategies used by the seller and the buyer. Any function that selects
a Nash equilibrium for each realization of (s, b) is a mechanism. The fact
that a strategy pair is a Nash equilibrium means that neither player can
increase his payoff by adopting a different strategy. In particular, neither
player can increase his payoff by adopting the strategy used by a player with
a different reservation value. Thus the mechanism induced by a selection of
Nash equilibria satisfies IC. If in the bargaining game each player has the
option of not transacting, then the induced mechanism also satisfies IR.

Let σ(si) = Eb[δθ(si,b)], and similarly let β(bj) = Es[δθ(s,bj)]. Then we
can write two of the incentive compatibility constraints as

UM (s1) ≥ UM (s2) + (s2 − s1)σ(s2) (5.1)
UM (b2) ≥ UM (b1) + (b2 − b1)β(b1). (5.2)

Our first observation concerns the existence of a mechanism (p, θ) that
results in immediate agreement if the reservation value of the buyer exceeds
that of the seller, and no transaction otherwise—i.e. in which θ(s1, b1) =
θ(s1, b2) = θ(s2, b2) = 0 and θ(s2, b1) =∞. We say that such a mechanism
is efficient.

Proposition 5.8 An efficient mechanism satisfying IR and IC exists if
and only if s2 − b1 ≤ (b2 − s2) + (b1 − s1) (i.e. if and only if η ≤ 2α).

Proof. We first show that if η > 2α then no efficient mechanism exists.
The idea of the proof is that if η is large, then there is not enough surplus
available to give S1 a payoff high enough that she cannot benefit from
imitating S2. For any efficient mechanism M = (p, θ) we have σ(s2) =
β(b1) = 1/2. If M satisfies IR and IC, then from (5.1) and (5.2) we have
UM (s1) ≥ (s2 − s1)/2 and UM (b2) ≥ (b2 − b1)/2. Now, since the seller has
reservation value s1 with probability 1/2, and the buyer has reservation
value b2 with probability 1/2, the sum of the expected utilities of the seller
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b1 b2

s1 b1 (b2 + s1)/2

s2 – s2

Table 5.5 The price function for an efficient mechanism. The entry in the box (si, bj) is
the price p(si, bj). Since θ(s2, b1) =∞ in an efficient mechanism, p(s2, b1) is irrelevant.

and the buyer is at least UM (s1)/2+UM (b2)/2. From the above argument,
this is equal to at least (s2−s1 +b2−b1)/4 = (α+η)/2. But no transaction
can generate a sum of utilities in excess of [(b2−s1)+(b2−s2)+(b1−s1)+
0]/4 = (4α+ η)/4, which is strictly less than (α+ η)/2 if η > 2α. Thus no
efficient mechanism exists.

We now exhibit an efficient mechanism in the case that η ≤ 2α. The
prices p(s, b) specified by this mechanism are given in Table 5.5. It is
straightforward to check that p(si, bj) ≥ si and bj ≥ p(bj , si) for all i, j for
which agreement is reached, so that the mechanism satisfies IR. To see that
it satisfies IC, note that UM (s1) = (2b1 + b2− 3s1)/4 = α+ η/4, while S1’s
utility if she pretends to be S2 is (s2 − s1)/2 = (α + η)/2. Since η ≤ 2α,
the latter cannot exceed the former. The prices p(s1, bj) for j = 1, 2, are
both less than s2, so that S2 cannot benefit by imitating S1. Symmetric
arguments show that neither B1 nor B2 can benefit from imitating each
other. �

Thus if η > 2α then in every mechanism some of the gains from trade
are not exploited. What is the maximal sum of utilities in this case? We
give an answer to this question for a restricted class of mechanisms.

Consider a bargaining game in which each player can unilaterally enforce
disagreement (that is, he can refuse to participate in a trade from which he
loses), the bargaining powers of the players are equal, and the bargaining
procedure treats sellers and buyers symmetrically. A mechanism defined
by a selection of symmetric Nash equilibria of such a game satisfies the
following conditions.

IR∗ (Ex Post Individual Rationality) si ≤ p(si, bj) ≤ bj when-
ever θ(si, bj) <∞, and θ(s2, b1) =∞.

This condition says that no agreement is reached if the buyer’s reservation
value is smaller than the seller’s, and that both parties to an agreement
must benefit after their identities are determined. Note that IR involves
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a player’s decision to participate in the mechanism before he is aware of
the realization of his opponent’s reservation value, while IR∗ involves his
decision to trade after this realization. Obviously, IR∗ implies IR.

SY (Symmetry) p(s1, b2) = (s1 + b2)/2 = α+η/2, b2−p(s2, b2) =
p(s1, b1), and θ(s2, b2) = θ(s1, b1).

This condition expresses the symmetry between a buyer with a high reserva-
tion value and a seller with a low reservation value, as well as that between
a seller with a high reservation value and a buyer with a low reservation
value. It requires that in the bargaining between S1 and B2 the surplus be
split equally, that the time of trade between B2 and S2 is the same as that
between S1 and B1, and that the utilities obtained by S1 and B2 are the
same.

The conditions IR∗ and SY reduce the choice of a mechanism to the
choice of a triple (p(s1, b1), θ(s1, b1), θ(s1, b2)). (Note that p(s2, b1) is irrel-
evant since θ(s2, b1) =∞.) Since p(s1, b2) < s2, S2 cannot gain by imitat-
ing S1, and similarly B1 cannot gain by imitating B2. The condition that
S1 not benefit from imitating S2 is δθ(s1,b2)[(s1 +b2)/2]+δθ(s1,b1)p(s1, b1) ≥
δθ(s2,b2)p(s2, b2) = δθ(s1,b1)(b2−p(s1, b1)), which is equivalent to δθ(s1,b2)(α+
η/2) ≥ δθ(s1,b1)(2α + η − 2p(s1, b1)). The sum of the expected utilities is
δθ(s1,b1)α/2 + δθ(s1,b2)(2α + η)/4. This is maximized, subject to the con-
straint, by θ(s1, b2) = 0, p(s1, b1) = α, and δθ(s1,b1) = (α + η/2)/η =
1/2 + α/η. (Note that δθ(s1,b1) < 1 since η > 2α.) We have proved the
following.

Proposition 5.9 If η > 2α then the mechanism, among those that satisfy
IC, SY, and IR∗, that maximizes the sum of the expected utilities is given by
the following: δθ(s1,b1) = δθ(s2,b2) = 1/2+α/η, θ(b1, s2) =∞, θ(s1, b2) = 0,
p(s1, b1) = α, p(s2, b2) = α+η, and p(s1, b2) = (s1 + b2)/2. The minimized
loss of expected utilities is (1/2− α/η)α/2 = α/4− α2/2η.

This result gives us a lower bound on the inefficiency that is unavoid-
able in the outcome of any bargaining game with incomplete information.
The following is a game in which the Nash equilibrium outcome induces
the mechanism described in the proposition, thus showing that the lower
bound can be achieved. Each of the players has to announce a type: the
strategy set of the seller is {s1, s2}, and that of the buyer is {b1, b2}. The
outcomes of the four possible strategy choices are given in Table 5.6, where
δθ

∗
= 1/2+α/η. This game has a Nash equilibrium in which each player an-

nounces his true type; the outcome is the one described in Proposition 5.9.
However, the game is highly artificial; we fail to see any “natural” game
that induces the mechanism described in the proposition. In particular,
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b1 b2

s1
price α

at time θ∗
price (b2 + s1)/2

at time 0

s2 disagreement
price α+ η

at time θ∗

Table 5.6 The outcomes in a game for which the Nash equilibrium minimizes the loss
of surplus. The time θ∗ is defined by δθ

∗
= 1/2 + α/η.

in any game that does so the players must be prevented from renegoti-
ating the date of agreement in those cases in which delayed agreement is
prescribed.

To summarize, in this section we have described some representative
results from the literature on mechanism design. Proposition 5.8 shows
that inefficiency is inherent in the outcomes of a large family of bargain-
ing games with incomplete information, while Proposition 5.9 characterizes
the minimal loss of the sum of the utilities that is associated with these
games. Note that these results apply to games in which the players have
a particular type of preferences. They are not immediately applicable to
other cases, like those in which the players have different discount factors
or fixed bargaining costs. In these cases, the set of mechanisms that satisfy
IR and IC may be larger than the results in this section suggest. Alterna-
tively, we may wish to restrict the class of mechanisms that we consider:
for example, we may wish to take into account the possibility that the play-
ers will renegotiate if the mechanism assigns a delayed agreement. Note
further that the fact that an efficient mechanism exists does not mean that
it is plausible. For example, in the case in which only one player—say the
seller—is uncertain of her opponent’s type, and s < b1 < b2, the mech-
anism design problem is trivial. For every price p between s and b1, the
mechanism (p, θ) in which p(s, bi) = p and θ(s, bi) = 0 for i = 1, 2 is an
efficient mechanism that satisfies IC and IR. Nevertheless, the outcome of
reasonable bargaining games (like those described in earlier sections) may
be inefficient: the fact that the incentive compatibility constraints alone do
not imply that there must be inefficiency does not mean that the outcome
of an actual game will be efficient.

Notes

Sections 5.2 and 5.3 (which discuss the basic alternating offers model with
one-sided uncertainty) are based on Rubinstein (1985a, b). The discus-
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sion in Section 5.4 of the delay in reach an agreement when the strate-
gies of Players 2H and 2L are stationary originated in Gul and Sonnen-
schein (1988). Section 5.5, in which we study a refinement of sequential
equilibrium, is based on Rubinstein (1985a, b). The discussion of mecha-
nism design in Section 5.6 originated in Myerson and Satterthwaite (1983);
our treatment is based on Matsuo (1989).

We have not considered in this chapter the axiomatic approach to bar-
gaining with incomplete information. A paper of particular note in this area
is Harsanyi and Selten (1972), who extend the Nash bargaining solution to
the case in which the players are incompletely informed.

The literature on bargaining between incompletely informed players is
very large. We mention only a small sample here. A collection of papers
in the field is Roth (1985).

In the strategic models we have studied in this chapter, only one of the
players is incompletely informed. Cramton (1992) constructs a sequential
equilibrium for a bargaining game of alternating offers in which both players
are incompletely informed. Ausubel and Deneckere (1992a), Chatterjee and
Samuelson (1988), and Cho (1989) further analyze this case.

Admati and Perry (1987) study a model in which a player who rejects
an offer chooses how long to wait before making a counteroffer. By halting
the negotiations for some time, a player can persuade his opponent that he
is a “strong” bargainer, to whom concessions should be made. Thus the
delay is a signal that reveals information. In this model, in some cases,
the delay before an agreement is reached remains significant even when the
length of each period converges to zero.

Among other papers that analyze strategic models of bargaining in which
the players alternate offers are the following. Bikhchandani (1986) inves-
tigates the assumption that Player 1 updates her beliefs after Player 2 re-
sponds, before he makes a counteroffer. Bikhchandani (1992) explores the
consequences of imposing different restrictions on players’ beliefs in events
that do not occur if the players follow their equilibrium strategies. Gross-
man and Perry (1986) propose a refinement of sequential equilibrium in
the case in which there are many possible types (not just two) for Player 2.
Perry (1986) studies a model in which the proposer is determined endoge-
nously in the game. Sengupta and Sengupta (1988) consider a model in
which an offer is a contract that specifies a division of the pie contingent
on the state. Ausubel and Deneckere (1992b) further study the model of
Gul and Sonnenschein (1988) (see the end of Section 5.4). In a model like
that of Gul and Sonnenschein (1988), Vincent (1989) demonstrates that
if the seller’s and buyer’s values for the good are correlated, then delay is
possible in a sequential equilibrium that satisfies conditions like those of
Section 5.5 (see also Cothren and Loewenstein (n.d.)).
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If we assume that there are only two possible agreements, then the com-
plexity of the analysis is reduced dramatically, allowing sharp results to
be established (see, for example, Chatterjee and Samuelson (1987) and
Ponsati-Obiols (1989, 1992)). This literature is closely connected with that
on wars of attrition (see, for example, Osborne (1985)), since accepting the
worst agreement in a bargaining game is analogous to conceding in a war
of attrition.

Some of the results in models of bargaining with one-sided incomplete in-
formation in which both parties make offers can be obtained also in models
in which only the uninformed party is allowed to make offers. An extensive
survey of this literature is given in Fudenberg, Levine, and Tirole (1985).



PART 2

Models of Decentralized Trade

The models of bargaining in Part 1 concern isolated encounters between
pairs of players; the outcome in the event of disagreement is exogenous.
We now study decentralized markets, in which many pairs of agents simul-
taneously bargain over the gains from trade. The outcome in any match
depends upon events outside that match and upon the agents’ expectations
about these events. In particular, an agent’s evaluation of a termination of
the negotiation, whether this termination is a result of an exogenous event
or a deliberate action by one of the parties, depends upon the outcome
of negotiation between these agents and alternative partners. Further, the
existence and identities of these alternative partners are affected by the out-
come of negotiation between other pairs of agents. In short, in the models
we study, the outcome of negotiation between any pair of agents may be
influenced by the outcome in other bargaining encounters. The solution of
one bargaining situation is part of an equilibrium in the entire market.

The models we study assist our understanding of the working of markets.
For each model, we consider the relation of the outcome with the “Com-
petitive Equilibrium”. Our models indicate the scope of the competitive
model: when it is appropriate, and when it is not. In case it is not, we
investigate how the outcome depends on the time structure of trade and
the information possessed by the traders.





CHAPTER 6

A First Approach Using the Nash

Solution

6.1 Introduction

There are many choices to be made when constructing a model of a market
in which individuals meet and negotiate prices at which to trade. In par-
ticular, we need to specify the process by which individuals are matched,
the information that the individuals possess at each point in time, and the
bargaining procedure that is in use. We consider a number of possibilities
in the subsequent chapters. In most cases (the exception is the model in
Section 8.4), we study a market in which the individuals are of two types:
(potential) sellers and (potential) buyers. Each transaction takes place
between a seller and a buyer, who negotiate the terms of the transaction.

In this chapter we use the Nash bargaining solution (see Chapter 2) to
model the outcome of negotiation. In the subsequent chapters we model the
negotiation in more detail, using strategic models like the one in Chapter 3.

We distinguish two possibilities for the evolution of the number of traders
present in the market.

1. The market is in a steady state. The number of buyers and the
number of sellers in the market remain constant over time. The

123



124 Chapter 6. A First Approach Using the Nash Solution

opportunities for trade remain unchanged. The pool of potential
buyers may always be larger than the pool of potential sellers, but
the discrepancy does not change over time. An example of what we
have in mind is the market for apartments in a city in which the rate
at which individuals vacate their apartments is similar to the rate at
which individuals begin searching for an apartment.

2. All the traders are present in the market initially. Entry to the market
occurs only once. A trader who makes a transaction in some period
subsequently leaves the market. As traders complete transactions and
leave the market, the number of remaining traders dwindles. When
all possible transactions have been completed, the market closes. A
periodic market for a perishable good is an example of what we have
in mind.

In Sections 6.3 and 6.4 we study models founded on these two assump-
tions. The primitives in each model are the numbers of traders present in
the market. Alternatively we can construct models in which these numbers
are determined endogenously. In Section 6.6 we discuss two models based
on those in Sections 6.3 and 6.4 in which each trader decides whether or
not to enter the market. The primitives in these models are the numbers
of traders considering entering the market.

6.2 Two Basic Models

In this section we describe two models, in which the number of traders in
the market evolves in the two ways discussed above. Before describing the
differences between the models, we discuss features they have in common.

Goods A single indivisible good is traded for some quantity of a divisible
good (“money”).

Time Time is discrete and is indexed by the integers.

Economic Agents Two types of agents operate in the market: “sellers”
and “buyers”. Each seller owns one unit of the indivisible good,
and each buyer owns one unit of money. Each agent concludes at
most one transaction. The characteristics of a transaction that are
relevant to an agent are the price p and the number of periods t after
the agent’s entry into the market that the transaction is concluded.
Each individual’s preferences on lotteries over the pairs (p, t) satisfy
the assumptions of von Neumann and Morgenstern. Each seller’s
preferences are represented by the utility function δtp, where 0 <
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δ ≤ 1, and each buyer’s preferences are represented by the utility
function δt(1− p). If an agent never trades then his utility is zero.

The roles of buyers and sellers are symmetric. The only asymmetry is
that the numbers of sellers and buyers in the market at any time may be
different.

Matching Let B and S be the numbers of buyers and sellers active in
some period t. Every agent is matched with at most one agent of the
opposite type. If B > S then every seller is matched with a buyer,
and the probability that a buyer is matched with some seller is equal
to S/B. If sellers outnumber buyers, then every buyer is matched
with a seller, and a seller is matched with a buyer with probability
B/S. In both cases the probability that any given pair of traders are
matched is independent of the traders’ identities.

This matching technology is special, but we believe that most of the results
below can be extended to many other matching technologies.

Bargaining When matched in some period t, a buyer and a seller negotiate
a price. If they do not reach an agreement, each stays in the market
until period t + 1, when he has the chance of being matched anew.
If there exists no agreement that both prefer to the outcome when
they remain in the market till period t+1, then they do not reach an
agreement. Otherwise in period t they reach the agreement given by
the Nash solution of the bargaining problem in which a utility pair
is feasible if it arises from an agreement concluded in period t, and
the disagreement utility of each trader is his expected utility if he
remains in the market till period t+ 1.

Note that the expected utility of an agent staying in the market until
period t+1 may depend upon whether other pairs of agents reach agreement
in period t.

We saw in Chapter 4 (see in particular Section 4.6) that the disagree-
ment point should be chosen to reflect the forces that drive the bargaining
process. By specifying the utility of an agent in the event of disagreement
to be the value of being a trader in the next period, we are thinking of the
Nash solution in terms of the model in Section 4.2. That is, the main pres-
sure on the agents to reach an agreement is the possibility that negotiation
will break down.

The differences between the models we analyze concern the evolution of
the number of participants over time.

Model A The numbers of sellers and buyers in the market are constant
over time.
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A literal interpretation of this model is that a new pair consisting of
a buyer and a seller springs into existence the moment a transaction is
completed. Alternatively, we can regard the model as an approximation
for the case in which the numbers of buyers and sellers are roughly constant,
any fluctuations being small enough to be ignored by the agents.

Model B All buyers and sellers enter the market simultaneously; no new
agents enter the market at any later date.

6.3 Analysis of Model A (A Market in Steady State)

Time runs indefinitely in both directions: the set of periods is the set of
all integers, positive and negative. In every period there are S0 sellers and
B0 buyers in the market. Notice that the primitives of the model are the
numbers of buyers and sellers, not the sets of these agents. Sellers and
buyers are not identified by their names or by their histories in the market.
An agent is characterized simply by the fact that he is interested either in
buying or in selling the good.

We restrict attention to situations in which all matches in all periods
result in the same outcome. Thus, a candidate p for an equilibrium is
either a price (a number in [0, 1]), or D, the event that no agreement is
reached. We denote the expected utilities of being a seller and a buyer in
the market by Vs and Vb, respectively.

Given the linearity of the traders’ utility functions in price, the set of
utility pairs feasible within any given match is

U = {(us, ub) ∈ R2:us + ub = 1 and ui ≥ 0 for i = s, b}. (6.1)

If in period t a seller and buyer fail to reach an agreement, they remain in
the market until period t+ 1, at which time their expected utilities are Vi
for i = s, b. Thus from the point of view of period t, disagreement results
in expected utilities of δVi for i = s, b. So according to our bargaining
solution, there is disagreement in any period if δVs + δVb > 1. Otherwise
agreement is reached on the Nash solution of the bargaining problem 〈U, d〉,
where d = (δVs, δVb).

Definition 6.1 If B0 ≥ S0 then an outcome p∗ is a market equilibrium in
Model A if there exist numbers Vs ≥ 0 and Vb ≥ 0 satisfying the following
two conditions. First, if δVs + δVb ≤ 1 then p∗ ∈ [0, 1] and

p∗ − δVs = 1− p∗ − δVb, (6.2)

and if δVs + δVb > 1 then p∗ = D. Second,

Vs =
{
p∗ if p∗ ∈ [0, 1]
δVs if p∗ = D

(6.3)
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and

Vb =
{

(S0/B0)(1− p∗) + (1− S0/B0)δVb if p∗ ∈ [0, 1]
δVb if p∗ = D.

(6.4)

The first part of the definition requires that the agreement reached by the
agents be given by the Nash solution. The second part defines the numbers
Vi (i = s, b). If p∗ is a price then Vs = p∗ (since a seller is matched with
probability one), and Vb = (S0/B0)(1−p∗)+(1−S0/B0)δVb (since a buyer
in period t is matched with probability S0/B0, and otherwise stays in the
market until period t+ 1).

The definition for the case B0 ≤ S0 is symmetric. The following result
gives the unique market equilibrium of Model A.

Proposition 6.2 If δ < 1 then there is a unique market equilibrium p∗ in
Model A. In this equilibrium agreement is reached and

p∗ =


1

2− δ + δS0/B0
if B0 ≥ S0

1− 1
2− δ + δB0/S0

if B0 ≤ S0.

Proof. We deal only with the case B0 ≥ S0 (the other case is symmetric). If
p∗ = D then by (6.3) and (6.4) we have Vs = Vb = 0. But then agreement
must be reached. The rest follows from substituting the values of Vs and
Vb given by (6.3) and (6.4) into (6.2). �

The equilibrium price p∗ has the following properties. An increase in
S0/B0 decreases p∗. As the traders become more impatient (the discount
factor δ decreases) p∗ moves toward 1/2. The limit of p∗ as δ → 1 is
B0/(S0 + B0). (Note that if δ is equal to 1 then every price in [0, 1] is a
market equilibrium.)

The primitives of the model are the numbers of buyers and sellers in
the market. Alternatively, we can take the probabilities of buyers and
sellers being matched as the primitives. If B0 > S0 then the probability
of being matched is one for a seller and S0/B0 for a buyer. If we let these
probabilities be the arbitrary numbers σ for a seller and β for a buyer
(the same in every period), we need to modify the definition of a market
equilibrium: (6.3) and (6.4) must be replaced by

Vs = σp∗ + (1− σ)δVs (6.5)
Vb = β(1− p∗) + (1− β)δVb. (6.6)

In this case the limit of the unique equilibrium price as δ → 1 is σ/(σ+β).
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The constraint that the equilibrium price not depend on time is not
necessary. Extending the definition of a market equilibrium to allow the
price on which the agents reach agreement to depend on t introduces no
new equilibria.

6.4 Analysis of Model B (Simultaneous Entry of All Sellers and
Buyers)

In Model B time starts in period 0, when S0 sellers and B0 buyers enter
the market; the set of periods is the set of nonnegative integers. In each
period buyers and sellers are matched and engage in negotiation. If a pair
agrees on a price, the members of the pair conclude a transaction and leave
the market. If no agreement is reached, then both individuals remain in
the market until the next period. No more agents enter the market at any
later date. As in Model A the primitives are the numbers of sellers and
buyers in the market, not the sets of these agents.

A candidate for a market equilibrium is a function p that assigns to each
pair (S,B) either a price in [0, 1] or the disagreement outcome D. In any
given period, the same numbers of sellers and buyers leave the market,
so that we can restrict attention to pairs (S,B) for which S ≤ S0 and
B − S = B0 −S0. Thus the equilibrium price may depend on the numbers
of sellers and buyers in the market but not on the period. Our working
assumption is that buyers initially outnumber sellers (B0 > S0).

Given a function p and the matching technology we can calculate the ex-
pected value of being a seller or a buyer in a market containing S sellers and
B buyers. We denote these values by Vs(S,B) and Vb(S,B), respectively.
The set of utility pairs feasible in any given match is U , as in Model A
(see (6.1)). The number of traders in the market may vary over time, so
the disagreement point in any match is determined by the equilibrium. If
p(S,B) = D then all the agents in the market in period t remain until pe-
riod t+1, so that the utility pair in period t+1 is (δVs(S,B), δVb(S,B)). If
at the pair (S,B) there is agreement in equilibrium (i.e. p(S,B) is a price),
then if any one pair fails to agree there will be one seller and B − S + 1
buyers in the market at time t + 1. Thus the disagreement point in this
case is (δVs(1, B − S + 1), δVb(1, B − S + 1)). An appropriate definition of
market equilibrium is thus the following.

Definition 6.3 If B0 ≥ S0 then a function p∗ that assigns an outcome to
each pair (S,B) with S ≤ S0 and S−B = S0−B0 is a market equilibrium in
Model B if there exist functions Vs and Vb with Vs(S,B) ≥ 0 and Vb(S,B) ≥
0 for all (S,B), satisfying the following two conditions. First, if p∗(S,B) ∈
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[0, 1] then δVs(1, B − S + 1) + δVb(1, B − S + 1) ≤ 1 and

p∗(S,B)− δVs(1, B − S + 1) = 1− p∗(S,B)− δVb(1, B − S + 1), (6.7)

and if p∗(S,B) = D then δVs(S,B) + δVb(S,B) > 1. Second,

Vs(S,B) =
{
p∗(S,B) if p∗(S,B) ∈ [0, 1]
δVs(S,B) if p∗(S,B) = D

(6.8)

and

Vb(S,B) =
{

(S/B)(1− p∗(S,B)) if p∗(S,B) ∈ [0, 1]
δVb(S,B) if p∗(S,B) = D. (6.9)

As in Definition 6.1, the first part ensures that the negotiated price is
given by the Nash solution relative to the appropriate disagreement point.
The second part defines the value of being a seller and a buyer in the market.
Note the difference between (6.9) and (6.4). If agreement is reached in
period t, then in the market of Model B no sellers remain in period t+ 1,
so any buyer receives a payoff of zero in that period. Once again, the
definition for the case B0 ≤ S0 is symmetric. The following result gives the
unique market equilibrium of Model B.

Proposition 6.4 Unless δ = 1 and S0 = B0, there is a unique market
equilibrium p∗ in Model B. In this equilibrium agreement is reached, and
p∗ is defined by

p∗(S,B) =


1− δ/(B − S + 1)

2− δ − δ/(B − S + 1)
if B ≥ S

1− δ
2− δ − δ/(S −B + 1)

if S ≥ B.

Proof. We give the argument for the case B0 ≥ S0; the case B0 ≤ S0 is
symmetric. We first show that p∗(S,B) 6= D for all (S,B). If p∗(S,B) =
D then by (6.8) and (6.9) we have Vi(S,B) = 0 for i = s, b, so that
δVs(S,B) + δVb(S,B) ≤ 1, contradicting p∗(S,B) = D. It follows from
(6.7) that the outcomes in markets with a single seller determine the prices
upon which agreement is reached in all other markets. Setting S = 1 in
(6.8) and (6.9), and substituting these into (6.7) we obtain

Vs(1, B) =
2BVs(1, B)
δ(B + 1)

− B − δ
δ(B + 1)

.

This implies that Vs(1, B) = (1− δ/B)/(2− δ − δ/B). (The denominator
is positive unless δ = 1 and B = 1.) The result follows from (6.7), (6.8),
and (6.9) for arbitrary values of S and B. �
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The equilibrium price has properties different from those of Model A.
In particular, if S0 < B0 then the limit of the price as δ → 1 (i.e. as the
impatience of the agents diminishes) is 1. If S0 = B0 then p∗(S,B) = 1/2
for all values of δ < 1. Thus the limit of the equilibrium price as δ → 1 is
discontinuous as a function of the numbers of sellers and buyers.

As in Model A the constraint that the prices not depend on time is not
necessary. If we extend the definition of a market equilibrium to allow
p∗ to depend on t in addition to S and B then no new equilibria are
introduced.

6.5 A Limitation of Modeling Markets Using the Nash Solution

Models A and B illustrate an approach for analyzing markets in which
prices are determined by bargaining. One of the attractions of this ap-
proach is its simplicity. We can achieve interesting insights into the agents’
market interaction without specifying a strategic model of bargaining.
However, the approach is not without drawbacks. In this section we demon-
strate that it fails when applied to a simple variant of Model B.

Consider a market with one-time entry in which there is one seller whose
reservation value is 0 and two buyers BL and BH whose reservation values
are vL and vH > vL, respectively. A candidate for a market equilibrium
is a pair (pH , pL), where pI is either a price (a number in [0, vH ]) or dis-
agreement (D). The interpretation is that pI is the outcome of a match
between the seller and BI . A pair (pH , pL) is a market equilibrium if
there exist numbers Vs, VL, and VH that satisfy the following conditions.
First

pH =
{
δVs + (vH − δVs − δVH)/2 if δVs + δVH ≤ vH
D otherwise

and

pL =
{
δVs + (vL − δVs − δVL)/2 if δVs + δVL ≤ vL
D otherwise.

Second, Vs = VH = VL = 0 if pH = pL = D; Vs = (pH + pL)/2, VI =
(vI −pI)/2 for I = H, L if both pH and pL are prices; and Vs = pI/(2− δ),
VI = (vI − pI)/(2− δ), and VJ = 0 if only pI is a price.

If vH < 2 and δ is close enough to one then this system has no solution.
In Section 9.2 we construct equilibria for a strategic version of this model.

In these equilibria the outcome of a match is not independent of the history
that precedes the match. Using the approach of this chapter we fail to find
these equilibria since we implicitly restrict attention to cases in which the
outcome of a match is independent of past events.



6.6 Market Entry 131

6.6 Market Entry

In the models we have studied so far, the primitive elements are the stocks
of buyers and sellers present in the market. By contrast, in many markets
agents can decide whether or not to participate in the trading process. For
example, the owner of a good may decide to consume the good himself;
a consumer may decide to purchase the good he desires in an alternative
market. Indeed, economists who use the competitive model often take as
primitive the characteristics of the traders who are considering entering the
market.

6.6.1 Market Entry in Model A

Suppose that in each period there are S sellers and B buyers considering
entering the market, where B > S. Those who do not enter disappear
from the scene and obtain utility zero. The market operates as before:
buyers and sellers are matched, conclude agreements determined by the
Nash solution, and leave the market. We look for an equilibrium in which
the numbers of sellers and buyers participating in the market are constant
over time, as in Model A.

Each agent who enters the market bears a small cost ε > 0. Let V ∗i (S,B)
be the expected utility of being an agent of type i (= s, b) in a market
equilibrium of Model A when there are S > 0 sellers and B > 0 buyers in
the market; set V ∗s (S, 0) = V ∗b (0, B) = 0 for any values of S and B. If there
are large numbers of agents of each type in the market, then the entry of an
additional buyer or seller makes little difference to the equilibrium price (see
Proposition 6.2). Assume that each agent believes that his own entry has
no effect at all on the market outcome, so that his decision to enter a market
containing S sellers and B buyers involves simply a comparison of ε with the
value V ∗i (S,B) of being in the market. (Under the alternative assumption
that each agent anticipates the effect of his entry on the equilibrium, our
main results are unchanged.)

It is easy to see that there is an equilibrium in which no agents enter
the market. If there is no seller in the market then the value to a buyer of
entering is zero, so that no buyer finds it worthwhile to pay the entry cost
ε > 0. Similarly, if there is no buyer in the market, then no seller finds it
optimal to enter.

Now consider an equilibrium in which there are constant positive num-
bers S∗ of sellers and B∗ of buyers in the market at all times. In such an
equilibrium a positive number of buyers (and an equal number of sellers)
leaves the market each period. In order for these to be replaced by enter-
ing buyers we need V ∗b (S∗, B∗) ≥ ε. If V ∗b (S∗, B∗) > ε then all B buyers
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contemplating entry find it worthwhile to enter, a number that needs to be
balanced by sellers in order to maintain the steady state but cannot be even
if all S sellers enter, since B > S. Thus in any steady state equilibrium we
have V ∗b (S∗, B∗) = ε.

If S∗ > B∗ then by Proposition 6.2 we have V ∗b (S∗, B∗) = 1/(2 − δ +
δB∗/S∗), so that V ∗b (S∗, B∗) > 1/2. Thus as long as ε < 1/2 the fact that
V ∗b (S∗, B∗) = ε implies that S∗ ≤ B∗. From Proposition 6.2 and (6.4) we
conclude that

V ∗b (S∗, B∗) =
S∗/B∗

2− δ + δS∗/B∗
,

so that S∗/B∗ = (2− δ)ε/(1− δε), and hence

p∗ = V ∗s (S∗, B∗) =
1− δε
2− δ

.

Thus V ∗s (S∗, B∗) > ε, so that all S sellers enter the market each period.
Active buyers outnumber sellers (B∗ > S∗), so all S∗ sellers leave the
market every period. Hence S∗ = S, and B∗ = S(1− δε)/ε(2− δ).

We have shown that in a nondegenerate steady state equilibrium in which
the entry cost is small (less than 1/2) all S sellers enter the market each
period, accompanied by the same number of buyers. All the sellers are
matched, conclude an agreement, and leave the market. The constant
number B∗ of buyers in the market exceeds the number S∗ of sellers. (For
fixed δ, the limit of S∗/B∗ as ε → 0 is zero.) The excess of buyers over
sellers is just large enough to hold the value of being a buyer down to the
(small) entry cost. Each period S of the buyers are matched, conclude an
agreement, and leave the market. The remainder stay in the market until
the next period, when they are joined by S new buyers.

The fact that δ < 1 and ε > 0 creates a “friction” in the market. As this
friction converges to zero the equilibrium price converges to 1:

lim
δ→1,ε→0

p∗ = 1.

In both Model A and the model of this section the primitives are numbers
of sellers and buyers. In Model A, where these numbers are the numbers of
sellers and buyers present in the market, we showed that if the number of
sellers slightly exceeds the number of buyers then the limiting equilibrium
price as δ → 1 is close to 1/2. When these numbers are the numbers
of sellers and buyers considering entry into the market then this limiting
price is 1 whenever the number of potential buyers exceeds the number of
potential sellers.
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6.6.2 Market Entry in Model B

Now consider the effect of adding an entry decision to Model B. As in the
previous subsection, there are S sellers and B buyers considering entering
the market, with B > S.

Each agent who enters bears a small cost ε > 0. Let V ∗i (S,B) be the
expected utility of being an agent of type i (= s, b) in a market equilibrium
of Model B when S > 0 sellers and B > 0 buyers enter in period 0; set
V ∗s (S, 0) = V ∗b (0, B) = 0 for any values of S and B.

Throughout the analysis we assume that the discount factor δ is close
to 1. In this case the equilibrium price in Model B is very sensitive to the
ratio of buyers to sellers: the entry of a single seller or buyer into a market
in which the numbers of buyers and sellers are equal has a drastic effect
on the equilibrium price (see Proposition 6.4). A consequence is that the
agents’ beliefs about the effect of their entry on the market outcome are
critical in determining the nature of an equilibrium.

First maintain the assumption of the previous subsection that each agent
takes the market outcome as given when deciding whether or not to enter.
An agent of type i simply compares the expected utility V ∗i (S,B) of an
agent of his type currently in the market with the cost ε of entry. As before,
there is an equilibrium in which no agent enters the market. However, in
this case there are no other equilibria. To show this, first consider the
possibility that B∗ buyers and S∗ sellers enter, with S∗ < B∗ ≤ B. In
order for the buyers to have the incentive to enter, we need V ∗b (S∗, B∗) ≥ ε.
At the same time we have

V ∗b (S∗, B∗) =
S∗

B∗

(
1− δ

2− δ − δ/(B∗ − S∗ + 1)

)
from (6.9) and Proposition 6.4. It follows that

V ∗b (S∗, B∗) <
1− δ

2− δ − δ/(B∗ − S∗ + 1)
≤ 1− δ

2− 3δ/2
.

Thus for δ close enough to 1 we have V ∗b (S∗, B∗) < ε. Hence there is
no equilibrium in which S∗ < B∗ ≤ B. The other possibility is that
0 < B∗ ≤ S∗. In this case we have p∗(S∗, B∗) ≤ 1/2 from Proposition 6.4,
so that V ∗b (S∗, B∗) = 1 − p∗(S∗, B∗) ≥ 1/2 > ε (since every buyer is
matched immediately when B∗ ≤ S∗). But this implies that B∗ = B,
contradicting B∗ ≤ S∗.

We have shown that under the assumption that each agent takes the
current value of participating in the market as given when making his
entry decision, the only market equilibrium when δ is close to one is one in
which no agents enter the market.



134 Chapter 6. A First Approach Using the Nash Solution

An alternative assumption is that each agent anticipates the impact of
his entry into the market on the equilibrium price. As in the previous case,
if S∗ < B∗ ≤ B then the market equilibrium price is close to one when δ
is close to one, so that a buyer is better off staying out of the market and
avoiding the cost ε of entry. Thus there is no equilibrium of this type. If
B∗ < S∗ then the market equilibrium price is less than 1/2, and even after
the entry of an additional buyer it is still at most 1/2. Thus any buyer
not in the market wishes to enter; since B > S ≥ S∗ such buyers always
exist. Thus there is no equilibrium of this type either. The remaining
possibility is that B∗ = S∗. We shall show that for every integer E with
0 ≤ E ≤ S there is a market equilibrium of this type, with S∗ = B∗ = E.
In such an equilibrium the price is 1/2, so that no agent prefers to stay
out and avoid the entry cost. Suppose that a new buyer enters the market.
Then by Proposition 6.4 the price is driven up to (2 − δ)/(4 − 3δ) (which
is close to 1 when δ is close to 1). The probability of the new buyer being
matched with a seller is less than one (it is S/(S + 1), since there is now
one more buyer than seller), so that the buyer’s expected utility is less than
1−(2−δ)/(4−3δ) = 2(1−δ)/(4−3δ). Thus as long as δ is close enough to
one that 2(1− δ)/(4− 3δ) is less than ε, a buyer not in the market prefers
to stay out. Similarly the entry of a new seller will drive the price down
close to zero, so that as long as δ is close enough to one a new seller prefers
not to enter the market.

Thus when we allow market entry in Model B and assume that each
agent fully anticipates the effect of his entry on the market price, there is
a multitude of equilibria when 1− δ is small relative to ε. In this case, the
model predicts only that the numbers of buyers and sellers are the same
and that the price is 1/2.

6.7 A Comparison of the Competitive Equilibrium with the
Market Equilibria in Models A and B

The market we have studied initially contains B0 buyers, each of whom has
a “reservation price” of one for one unit of a good, and S0 < B0 sellers,
each of whom has a “reservation price” of zero for the one indivisible unit
of the good that she owns. A näıve application of the theory of competitive
equilibrium to this market uses the diagram in Figure 6.1. The demand
curve D gives the total quantity of the good that the buyers in the market
wish to purchase at each fixed price; the supply curve S gives the total
quantity the sellers wish to supply to the market at each fixed price. The
competitive price is one, determined by the intersection of the curves.

Some, but not all of the models we have studied in this chapter give rise
to the competitive equilibrium price of one. Model A (see Section 6.3), in
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Figure 6.1 Demand and supply curves for the market in this chapter.

which the numbers of buyers and sellers in the market are constant over
time, yields an outcome different from the competitive one, even when the
discount factor is close to one, if we apply the demand and supply curves
to the stocks of traders in the market. In this case the competitive model
predicts a price of one if buyers outnumber sellers, and a price of zero if
sellers outnumber buyers. However, if we apply the supply and demand
curves to the flow of new entrants into the market, the outcome predicted
by the competitive model is different. In each period the same number
of traders of each type enter the market, leading to supply and demand
curves that intersect at all prices from zero to one. Thus under this map
of the primitives of the model into the supply and demand framework,
the competitive model yields no determinate solution; it includes the price
predicted by our market equilibrium, but it also includes every other price
between zero and one.

When we add an entry stage to Model A we find that a market equi-
librium price of one emerges. In a nondegenerate steady state equilibrium
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of a market in which the number of agents is determined endogenously by
the agents’ entry decisions, the equilibrium price approaches one as the
frictions in the market go to zero. This is the “competitive” price when
we apply the supply–demand analysis to the numbers of sellers and buyers
considering entering the market.

In Model B the unique market equilibrium gives rise to the “competi-
tive” price of one. However, when we start with a pool of agents, each of
whom decides whether or not to enter the market, the equilibria no longer
correspond to those given by supply–demand analysis. The outcome is sen-
sitive to the way we model the entry decision. If each agent assumes that
his own entry into the market will have no effect on the market outcome,
then the only equilibrium is that in which no agent enters. If each agent
correctly anticipates the impact of his entry on the outcome, then there is
a multitude of equilibria, in which equal numbers of buyers and sellers en-
ter. Notice that an equilibrium in which E sellers and buyers enter Pareto
dominates an equilibrium in which fewer than E agents of each type enter.
This model is perhaps the simplest one in which a coordination problem
leads to equilibria that are Pareto dominated.

Notes

Early models of decentralized trade in which matching and bargaining
are at the forefront are contained in Butters (1977), Diamond and Mas-
kin (1979), Diamond (1981), and Mortensen (1982a, 1982b). The models
in this chapter are similar in spirit to those of Diamond and Mortensen.

Much of the material in this chapter is related to that in the introductory
paper Rubinstein (1989). The main difference between the analysis here
and in that paper concerns the model of bargaining. Rubinstein (1989)
uses a simple strategic model, while here we adopt Nash’s axiomatic model.
The importance of the distinction between flows and stocks in models of
decentralized trade, and the effect of adding an entry decision to such a
model was recognized by Gale (see, in particular, (1987)). Sections 6.3,
6.4, and 6.6 include simplified versions of Gale’s arguments, as well as
ideas developed in the work of Rubinstein and Wolinsky (see, for example,
(1985)). A model related to that of Section 6.4 is analyzed in Binmore and
Herrero (1988a).



CHAPTER 7

Strategic Bargaining in a Steady

State Market

7.1 Introduction

In this chapter and the next we further study the two basic models of decen-
tralized trade that we introduced in the previous chapter (see Sections 6.3
and 6.4). We depart from the earlier analysis by using a simple strate-
gic model of bargaining (like that described in Chapter 3), rather than
the Nash bargaining solution, to determine the outcome of each encounter
between a buyer and a seller.

The use of a sequential model of bargaining is advantageous in several
respects. First, an agent who participates in negotiations that may extend
over several periods should consider the possibility either that his partner
will abandon him or that he himself will find an alternative partner. It is il-
luminating to build an explicit model of these strategic considerations. Sec-
ond, as we saw in the previous chapter, the choice of a disagreement point
is not always clear. By using a sequential model, rather than the Nash solu-
tion, we avoid the need to specify an exogenous disagreement point. Finally,
although the model we analyze here is relatively simple, it supplies a frame-
work for analyzing more complex markets. The strategic approach lends
itself to variations in which richer economic institutions can be modeled.

137
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steady state
one indivisible good

imperfect information
homogeneous agents

δ < 1

7

one-time entry

many divisible goods
imperfect information

heterogeneous agents

δ = 1

8.4–8.7

one indivisible good

imperfect information
homogeneous agents

δ = 1

8.2–8.3

perfect information

heterogeneous agents

δ < 1

9.2.2

homogeneous agents

δ = 1

9.2.1, 10.4

δ < 1

10.3

Figure 7.1 Strategic models of markets with random matching. The figure should be
read from the top down. The numbers in boxes are the chapters and sections in which
models using the indicated assumptions are discussed. Thus, for example, a model with
one-time entry, one indivisible good, imperfect information, homogeneous agents, and
δ = 1 is discussed in Sections 8.2 and 8.3.

The models that we study in this and the following chapters differ in the
assumptions they make about the evolution of the number of participants in
the market, the nature of the goods being traded, the information possessed
by the agents, and the agents’ preferences. The various combinations of
assumptions that we investigate in markets with random matching are
summarized in Figure 7.1.

7.2 The Model

The model we study here has the structure of Model A of the previous
chapter (see Section 6.3), with a single exception: the outcome of bargain-
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ing is determined by a simple strategic model rather than being given by
Nash’s bargaining solution.

Goods There is a single indivisible good which is traded for some quantity
of a divisible good (“money”).

Time Time is discrete and is indexed by the integers; it stretches infinitely
in both directions.

Economic Agents The economic agents are (potential) buyers and sellers.
Each seller enters the market with one unit of the indivisible good;
each buyer enters with one unit of money. Each agent is concerned
about the agreement price p and the period t in which agreement is
reached. Each agent’s preferences on lotteries over pairs (p, t) satisfy
the assumptions of von Neumann and Morgenstern. Each seller’s
preferences are represented by the utility function δtp, while each
buyer’s preferences are represented by δt(1 − p). The common dis-
count factor δ satisfies 0 < δ < 1. If an agent never trades, then he
obtains the utility of zero.

Bargaining During the first phase of a period the members of any matched
pair bargain. A random device selects one of the agents to propose
a price, which the other agent may accept or reject. The probability
that a particular agent is chosen to propose a price is 1/2, indepen-
dent of all past events. In the event of acceptance, a transaction is
completed at the agreed-upon price, and the two agents leave the
market. In the event of rejection, the two agents participate in the
matching process.

Matching In the matching phase each agent in the market (whether or not
he had a partner at the beginning of the period) is matched, with
positive probability, with an agent of the opposite type. Each seller
is matched with a new buyer with probability α, and each buyer is
matched with a new seller with probability β. These events are in-
dependent of each other and of all past events (including whether
or not the agent had a partner at the beginning of the period), and
the probabilities are constant over time. Each agent who is matched
anew must abandon his old partner (if any); it is not possible to have
more than one partner simultaneously. Thus an agent who has a
partner at the beginning of period t and fails to reach agreement in
the bargaining phase continues negotiating in period t + 1 with this
partner if neither of them is newly matched; he starts new negotia-
tions if he is newly matched, and does not participate in bargaining
in period t+1 if his partner is newly matched and he is not. If a buyer
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Figure 7.2 The structure of events within some period t. S and B stand for the seller
and the buyer, and Y and N stand for acceptance and rejection. The numbers beside
the branches are the probabilities with which the branches occur.

and seller are partners at the beginning of period t, there are thus
four possibilities for period t + 1. With probability (1 − α)(1 − β)
the pair continues bargaining; with probability α(1 − β) the seller
starts bargaining with a new partner, while the buyer is idle; with
probability β(1−α) the buyer starts bargaining with a new partner,
while the seller is idle; and with probability αβ both traders start
bargaining with new partners.

The structure of events within some period t is illustrated in Figure 7.2.
In the bargaining game of alternating offers studied in Chapter 3, each

player is under pressure to reach an agreement because he is impatient.
Here also each agent is impatient. But there is an additional pressure: the
risk that his partner will be matched anew. Each agent is thus concerned
about his partner’s probability of being matched with another agent.

Note that when a trader is matched with a new partner, he does not have
the option of continuing negotiation with his current partner. At every new
encounter an agent is constrained to abandon his current partner. However,
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although in this model an agent does not decide whether to abandon his
partner (cf. the models in Sections 3.12 and 9.4), in equilibrium this act of
abandonment does not conflict with optimization.

Note also that the model is not formally a game, since we have not
specified the set of players. The primitives of the model are the (constant)
probabilities α and β of agents being matched with new partners and not
either the sets or the numbers of sellers and buyers in the market. These
assumptions are appropriate in a large market in which the variations are
small. In such a case an agent may ignore information about the names
of his partners and the exact numbers of sellers and buyers, and base his
behavior merely on his evaluation of the speed with which he finds potential
partners and the intensity of his fear that his partner will abandon him. A
model in which the sets of sellers and buyers are the primitives is studied
in Section 8.2.

We can link a model in which the primitives are the numbers S of sell-
ers and B of buyers with the current model by adding details about the
matching technology. We can assume, for example, that the probability
of being matched depends only on these numbers, that these numbers are
constant over time, and that there are M new matches in each period. If
the numbers S and B are large (so that the probability of a given agent
being rematched with his current partner is small), then this technology
gives approximately α = M/S and β = M/B.

7.3 Market Equilibrium

When a seller and a buyer are matched they start a bargaining game in
which, in each period that they remain matched, one of them is selected to
make an offer. The bargaining stops either when an agreement is reached
or when at least one of the parties is matched with a new partner. Thus,
the history of negotiation in a particular match is a sequence of selections
of a proposer, offers, and reactions. After a history that ends with the
selection of a proposer, that agent makes an offer; after a history that ends
with an offer by an agent, the other has to respond.

We define an agent’s strategy to be a function that assigns to every pos-
sible history of events within a match either a price or a response (Y or
N), according to whether the agent has to make an offer or to respond
to an offer. Thus an agent’s strategy has the same structure as that of a
strategy in a bargaining game of alternating offers in which the proposer
is chosen randomly each period (see the end of Section 3.10.3). By defin-
ing a strategy in this way, we are assuming that each agent uses the same
rule of behavior in every bargaining encounter. We refer to this assump-
tion as semi-stationarity. Behind the definition lies the assumption that
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each agent can recall perfectly the events in any particular bargaining en-
counter and may respond differently to different histories while bargaining
with the same agent. However, he cannot condition his behavior on the
events that occurred in any period before he started bargaining with his
current partner. In particular, when he is matched with a new partner
he does not know whether he was ever matched with that partner in the
past. However, an agent continues to recognize his partner until the match
dissolves.

We make the assumption that the behavior of each agent in a match
is independent of the events in previous matches in which he participated
in order to simplify the analysis. However, note that this would not be a
natural assumption were we to consider a model in which the agents are
asymmetrically informed, since in this case each agent gathers information
while bargaining.

We restrict attention to the case in which each agent of a given type
(seller, buyer) uses the same (semi-stationary) strategy. Given a pair of
strategies—one for every seller and one for every buyer—and the proba-
bilities of matches, we can calculate the expected utilities of matched and
unmatched sellers and buyers at the beginning of a period, discounted to
that period. Because each agent’s behavior is semi-stationary, these util-
ities are independent of the period. Let Vs be the expected utility of an
unmatched seller and let Vb be the expected utility of an unmatched buyer.
Let Ws and Wb be the corresponding expected utilities for matched sellers
and buyers. (Note that these expected utilities, in contrast to the ones de-
noted Vs and Vb in Chapter 6, are calculated after the matching process.)
The variables Vs, Vb, Ws, and Wb are functions of the pair of the strategies
and satisfy the following conditions.

Vs = δ[αWs + (1− α)Vs] (7.1)
Vb = δ[βWb + (1− β)Vb]. (7.2)

A pair that is bargaining in period t continues to do so in period t+ 1 if
and only if neither is matched with a new partner, an event with probability
(1−α)(1−β). Thus the probability of breakdown is q = 1− (1−α)(1−β).
Conditional on at least one of the agents being matched with a new partner,
the seller is matched with a new buyer with probability α/q and remains
unmatched with probability β(1 − α)/q. Thus the seller’s payoff in the
event of breakdown in period t (discounted to period t) is

Us = δ[αWs + β(1− α)Vs]/q. (7.3)

Similarly, the expected utility of a buyer in the event of breakdown is

Ub = δ[βWb + α(1− β)Vb]/q. (7.4)
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The game between the members of a matched pair is very similar to
the game analyzed in Section 4.2. It depends on the expected utilities of
the agents in the event of breakdown (the values of which are determined
within the model). When these utilities are us and ub its structure is as
follows. At the start of each period one of the players is selected, with
probability 1/2, to propose a price in [0, 1]. The other player responds by
accepting or rejecting the proposal. In the event of acceptance, the game
ends; in the event of rejection, there is a chance move which terminates
the game with probability q, giving the players the payoffs (us, ub). With
probability 1 − q the game continues: play passes to the next period. We
denote this game Γ(us, ub). (Notice the differences between this game and
the game analyzed in Section 4.2: the proposer is chosen randomly at the
start of every period, and the outcome in the event of breakdown is not
necessarily the worst outcome in the game.)

Recall that Vs, Vb, Ws, and Wb, and hence Us and Ub, are functions
of the pair of strategies; for clarity we now record this dependence in the
notation.

Definition 7.1 A market equilibrium is a pair (σ∗, τ∗) of (semi-stationary)
strategies that is a subgame perfect equilibrium of the game Γ(us, ub),
where us = Us(σ∗, τ∗) and ub = Ub(σ∗, τ∗).

7.4 Analysis of Market Equilibrium

We now characterize market equilibrium.

Proposition 7.2 There is a unique market equilibrium. In this equilib-
rium the seller always proposes the price x∗ and accepts any price at least
equal to y∗, and the buyer always proposes the price y∗ and accepts any
price at most equal to x∗, where

x∗ =
2(1− δ) + δα− δ(1− δ)(1− α)(1− β)

2(1− δ) + δα+ δβ
(7.5)

y∗ =
δα+ δ(1− δ)(1− α)(1− β)

2(1− δ) + δα+ δβ
. (7.6)

Proof. First, using the methods of Section 4.2 we can show that for any
given pair of numbers (us, ub) for which us + ub < 1, the game Γ(us, ub)
has a unique subgame perfect equilibrium, which is characterized by a pair
of numbers (x∗, y∗). In this equilibrium, the seller always offers the price
x∗, and accepts any price at least equal to y∗; the buyer always offers y∗,
and accepts any price at most equal to x∗. The pair (x∗, y∗) is the solution
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of the following pair of equations.

y∗ = qus + (1− q)δ(x∗ + y∗)/2 (7.7)
1− x∗ = qub + (1− q)δ(1− x∗/2− y∗/2) (7.8)

The payoffs in this equilibrium are (x∗ + y∗)/2 for the seller, and 1 −
(x∗ + y∗)/2 for the buyer.

Next, we verify that in every market equilibrium (σ∗, τ∗) we have Us +
Ub < 1. From (7.1) we have Vs < Ws; from (7.3) it follows that Us < Ws.
Similarly Ub < Wb, so that Us + Ub < Ws + Wb. Since Ws + Wb is the
expectation of a random variable all values of which are at most equal to
the unit surplus available, we have Ws +Wb ≤ 1.

Thus a market equilibrium strategy pair has to be such that the induced
variables Vs, Vb, Ws, Wb, Us, Ub, x∗, and y∗ satisfy the four equations
(7.1), (7.2), (7.3), (7.4), the two equations (7.7) and (7.8) with us = Us
and ub = Ub, and the following additional two equations.

Ws = (x∗ + y∗)/2 (7.9)
Wb = 1− (x∗ + y∗)/2. (7.10)

It is straightforward to verify that solution to these equations, which is
unique, is that given in (7.5) and (7.6). �

So far we have restricted agents to use semi-stationary strategies: each
agent is constrained to behave the same way in every match. We now
show that if every buyer uses the (semi-stationary) equilibrium strategy
described above, then any given seller cannot do better by using different
bargaining tactics in different matches. A symmetric argument applies to
sellers. In other words, the equilibrium we have found remains an equi-
librium if we extend the set of strategies to include behavior that is not
semi-stationary.

Consider some seller. Suppose that every buyer in the market is using
the equilibrium strategy described above, in which he always offers y∗ and
accepts no price above x∗ whenever he is matched. Suppose that the seller
can condition her actions on her entire history in the market. We claim
that the strategy of always offering x∗ and accepting no price below y∗ is
optimal among all possible strategies.

The environment the seller faces after any history can be characterized
by the following four states:

e1: the seller has no partner

e2: the seller has a partner, and she has been chosen to make an offer
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e3: the seller has a partner, and she has to respond to the offer y∗

e4: agreement has been reached

Each agent’s history in the market corresponds to a sequence of states.
The initial state is e1. A strategy of the seller can be characterized as a
function that assigns to each sequence of states an action of either stop or
continue. The only states in which the action has any effect are e2 and
e3. In state e2, a buyer will accept any offer at most equal to x∗, so that
any such offer stops the game. However, given the acceptance rule of each
buyer, it is clearly never optimal for the seller to offer a price less than x∗.
Thus stop in e2 means make an offer of x∗, while continue means make
an offer in excess of x∗. In state e3, stop means accept the offer y∗, while
continue means reject the offer.

The actions of the seller determine the probabilistic transitions between
states. Independent of the seller’s action the system moves from state e1

to states e2 and e3, each with probability α/2, and remains in state e1

(the seller remains unmatched) with probability 1 − α. (In this case the
action stop does not stop the game.) State e4 is absorbing: once it is
reached, the system remains there. The transitions from states e2 and e3

depend on the action the seller takes. If the seller chooses stop, then in
either case the system moves to state e4 with probability one. If the seller
chooses continue, then in either case the system moves to the states e1, e2,
and e3 with probabilities (1− α)β, [1− (1− α)β]/2, and [1− (1− α)β]/2,
respectively.

To summarize, the transition matrix when the seller chooses stop is


e1 e2 e3 e4

e1 1− α α/2 α/2 0
e2 0 0 0 1
e3 0 0 0 1
e4 0 0 0 1

,
and that when the seller chooses continue is


e1 e2 e3 e4

e1 1− α α/2 α/2 0
e2 (1− α)β [1− (1− α)β]/2 [1− (1− α)β]/2 0
e3 (1− α)β [1− (1− α)β]/2 [1− (1− α)β]/2 0
e4 0 0 0 1

.
The seller gets a payoff of zero unless she chooses stop at one of the states
e2 or e3. If she chooses stop in state e2, then her payoff is x∗, while if she
chooses stop in e3 then her payoff is y∗.
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This argument shows that the seller faces a Markovian decision problem.
Such a problem has a stationary solution (see, for example, Derman (1970)).
That is, there is a subset of states with the property that it is optimal
for the seller to choose stop whenever a state in the subset is reached.
Choosing stop in either e1 or e4 has no effect on the evolution of the system,
so we can restrict attention to rules that choose stop in some subset of
{e2, e3}. If this subset is empty (stop is never chosen), then the payoff is
zero; since the payoff is otherwise positive, an optimal stopping set is never
empty. Now suppose that stop is chosen in e3. If stop is also chosen in
e2, the seller receives a payoff of x∗, while if continue is chosen in e2, the
best that can happen is that e3 is reached in the next period, in which
case the seller receives a payoff of y∗. Since y∗ < x∗, it follows that it is
better to choose stop than continue in e2 if stop is chosen in e3. Thus the
remaining candidates for an optimal stopping set are {e2} and {e2, e3}. A
calculation shows that the expected utilities of these stopping rules are the
same, equal to1 α/[2(1−δ)+δα+δβ]. Thus {e2, e3} is an optimal stopping
set: it is optimal for a seller to use the semi-stationary strategy described
in Proposition 7.2 even when she is not restricted to use a semi-stationary
strategy. A similar argument applies to the buyer’s strategy.

Finally, we note that although an agent who is matched with a new
partner is forced to abandon his current partner, this does not conflict
with optimal behavior in equilibrium. Agreement is reached immediately
in every match, so that giving an agent the option of staying with his
current partner has no effect, given the strategies of all other agents.

7.5 Market Equilibrium and Competitive Equilibrium

The fact that the discount factor δ is less than 1 creates a friction in the
market—a friction that is absent from the standard model of a competitive
market. If we wish to compare the outcome with that predicted by a com-
petitive analysis, we need to consider the limit of the market equilibrium
as δ converges to 1.

One limit in which we may be interested is that in which δ converges to
1 while α and β are held constant. From (7.5) and (7.6) we have

lim
δ→1

x∗ = lim
δ→1

y∗ =
α

α+ β
.

Thus in the limit the surplus is divided in proportion to the matching
probabilities. This is the same as the result we obtained in Model A of

1Consider, for example, the case in which the stopping set is {e2}. Let E be the
expected utility of the seller. Then E = (1 − α)δE + (α/2)x∗ + (α/2)y∗, which yields
the result.
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Chapter 6 (see Section 6.3), where we used the Nash bargaining solution,
rather than a strategic model, to analyze a market.

This formula includes the probabilities that a seller and buyer are
matched with a partner in any given period, but not the numbers of sellers
and buyers in the market. In order to compare the market equilibrium
with the equilibrium of a competitive market, we need to relate the prob-
abilities to the population size. Suppose that the probabilities are derived
from a matching technology in a model in which the primitives are the
numbers S and B of sellers and buyers in the market. Specifically assume
that α = M/S and β = M/B for some fixed M , interpreted as the number
of matches per unit of time. Then the limit of the market equilibrium price
as δ converges to 1 is B/(S +B).

Now suppose that the number of buyers in the market exceeds the num-
ber of sellers. Then the competitive equilibrium, applied to the supply–
demand data for the agents in the market, yields a competitive price of
one (cf. the discussion in Section 6.7). By contrast, the model here yields
an equilibrium price strictly less than one. Note, however, that if we apply
the supply–demand analysis to the flows of agents into the market, then
every price equates demand and supply, so that a market equilibrium price
is a competitive price (see Section 6.7).

If we generalize the model of this chapter to allow the agents’ reserva-
tion prices to take an arbitrary finite number of different values, then the
demand and supply curves of the stocks of buyers and sellers in the market
in each period are step functions. Suppose, in this case, that the proba-
bility of an individual being matched with an agent of a particular type is
proportional to the number of agents of that type in the market. Then the
limit of the unique market equilibrium price p∗ as δ → 1 has the property
that the area above the horizontal line at p∗ and below the demand curve
is equal to the area below this horizontal line and above the supply curve
(see Figure 7.3). That is, the limiting market equilibrium price equates
the demand and supply “surpluses”. (See Gale (1987, Proposition 11).)
Note that for the special case in which there are S identical sellers with
reservation price 0 and B > S identical buyers with reservation price 1,
the limiting market equilibrium price p∗ given by this condition is precisely
B/(S +B), as we found above.

Notes

The main model and result of this chapter are due to Rubinstein and
Wolinsky (1985). The extension to markets in which the supply and de-
mand functions are arbitrary step-functions (discussed at the end of the
last section) is due to Gale (1987, Section 6).



148 Chapter 7. A Steady State Market

0

↑
p

Q→

D

S

p∗

p

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
�

�
�
�

��

@
@@

@
@
@

@
@
@
@@

@
@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@
@@

@
@

Figure 7.3 Demand and supply curves in a market of heterogeneous agents. The heavy
lines labeled D and S are the demand and supply curves of the stocks of buyers and
sellers in the market in each period. In this market the agents have a finite number of
different reservation prices. The market equilibrium price p∗ has the property that the
shaded areas are equal. The price that equates supply and demand is p.

Binmore and Herrero (1988b) investigate the model under the assump-
tion that agents’ actions in bargaining encounters are not independent of
their personal histories. If agents’ strategies are not semi-stationary then
an agent who does not know his opponent’s personal history cannot figure
out how the opponent will behave in the bargaining encounter. Therefore,
the analysis of this chapter cannot be applied in a straightforward way;
Binmore and Herrero introduce a new solution concept (which they call
“security equilibrium”). Wolinsky (1987) studies a model in which each
agent chooses the intensity with which he searches for an alternative part-
ner. Wolinsky (1988) analyzes the case in which transactions are made
by an auction, rather than by matching and bargaining. In the models in
all these papers the agents are symmetrically informed. Wolinsky (1990)
initiates the investigation of models in which agents are asymmetrically
informed (see also Samuelson (1992) and Green (1992)).
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Models of decentralized trade that explicitly specify the process of trade
are promising vehicles for analyzing the role and value of money in a market.
Gale (1986d) studies a model in which different agents are initially endowed
with different divisible goods and money, and all transactions must be
done in exchange for money. He finds that there is a great multiplicity of
inefficient equilibria. Kiyotaki and Wright (1989) study a model in which
each agent is endowed with one unit of one of the several indivisible goods in
the market, and there is only one possible exchange upon which a matched
pair can agree. In some equilibria of the model some goods play the role
of money: they are traded simply as a medium of exchange.





CHAPTER 8

Strategic Bargaining in a Market

with One-Time Entry

8.1 Introduction

In this chapter we study two strategic models of decentralized trade in a
market in which all potential traders are present initially (cf. Model B of
Chapter 6). In the first model there is a single indivisible good that is
traded for a divisible good (“money”); a trader leaves the market once he
has completed a transaction. In the second model there are many divisible
goods; agents can make a number of trades before departing from the
market. (This second model is close to the standard economic model of
competitive markets.)

We focus on the conditions under which the outcome of decentralized
trade is competitive; we point to the elements of the models that are crit-
ical for a competitive outcome to emerge. In the course of the analysis,
several issues arise concerning the nature of the information possessed by
the agents. In Chapter 10 we return to the first model and study in de-
tail the role of the informational assumptions in leading to a competitive
outcome.

151
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8.2 A Market in Which There Is a Single Indivisible Good

The first model is possibly the simplest model that combines pairwise meet-
ings with strategic bargaining.

Goods A single indivisible good is traded for some quantity of a divisible
good (“money”).

Time Time is discrete and is indexed by the nonnegative integers.

Economic Agents In period 0, S identical sellers enter the market with one
unit of the indivisible good each, and B > S identical buyers enter
with one unit of money each. No more agents enter at any later date.
Each individual’s preferences on lotteries over the price p at which
a transaction is concluded satisfy the assumptions of von Neumann
and Morgenstern. Each seller’s preferences are represented by the
utility function p, and each buyer’s preferences are represented by
the utility function 1− p (i.e. the reservation values of the seller and
buyer are zero and one respectively, and no agent is impatient). If
an agent never trades then his utility is zero.

Matching In each period any remaining sellers and buyers are matched
pairwise. The matching technology is such that each seller meets
exactly one buyer and no buyer meets more than one seller in any
period. Since there are fewer sellers than buyers, B − S buyers are
thus left unmatched in each period. The matching process is random:
in each period all possible matches are equally probable, and the
matching is independent across periods.

Although this matching technology is very special, the result below can be
extended to other technologies in which the probabilities of any particular
match are independent of history.

Bargaining After a buyer and a seller have been matched they engage in a
short bargaining process. First, one of the matched agents is selected
randomly (with probability 1/2) to propose a price between 0 and
1. Then the other agent responds by accepting the proposed price or
rejecting it. Rejection dissolves the match, in which case the agents
proceed to the next matching stage. If the proposal is accepted, the
parties implement it and depart from the market.

Information We assume that the agents have information only about the
index of the period and the names of the sellers and buyers in the
market. (Thus they know more than just the numbers of sellers and
buyers in the market.) When matched, an agent recognizes the name
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of his opponent. However, agents do not remember the past events in
their lives. This may be because their memories are poor or because
they believe that their personal experiences are irrelevant. Nor do
agents receive any information about the events in matches in which
they did not take part.

These assumptions specify an extensive game. Note that since the agents
forget their own past actions, the game is one of “imperfect recall”. We
comment briefly on the consequences of this at the end of the next section.

8.3 Market Equilibrium

Given our assumption about the structure of information, a strategy for
an agent in the game specifies an offer and a response function, possibly
depending on the index of the period, the sets of sellers and buyers still in
the market, and the name of the agent’s opponent. To describe a strategy
precisely, note that there are two circumstances in which agent i has to
move. The first is when the agent is matched and has been selected to
make an offer. Such a situation is characterized by a triple (t, A, j), where
t is a period, A is a set of agents that includes i (the set of agents in the
market in period t), and j is a member of A of the opposite type to i (i’s
partner). The second is when the agent has to respond to an offer. Such a
situation is characterized by a four-tuple (t, A, j, p), where t is a period, A
is a set of agents that includes i, j is a member of A of the opposite type
to i, and p is a price in [0, 1] (an offer by j). Thus a strategy for agent i is
a pair of functions, the first of which associates a price in the interval [0, 1]
with every triple (t, A, j), and the second of which associates a member of
the set {Y,N} (“accept”, “reject”) with every four-tuple (t, A, j, p).

The spirit of the solution concept we employ is close to that of sequential
equilibrium. An agent’s strategy is required to be optimal not only at the
beginning of the game but also at every other point at which the agent has
to make a decision. A strategy induces a plan of action starting at any
point in the game. We now explain how each agent calculates the expected
utility of each such plan of action.

First, suppose that agent i is matched and has been selected to make an
offer. In such a situation i’s information consists of (t, A, j), as described
above. The behavior of every other agent in A depends only on t, A, and
the agent with whom that agent is matched (if any). Thus the fact that
i does not know the events that have occurred in the past is irrelevant,
because neither does any other agent, so that no other agent’s actions are
conditioned on these events. In this case, agent i’s information is sufficient,
given the strategies of the other agents, to calculate the moves of his future
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partners, and thus find the expected utility of any plan of action starting
at t.

Second, suppose that agent i has to respond to an offer. In this case
i’s information consists of a four-tuple (t, A, j, p), as described above. If
he accepts the offer then his utility is determined by p. If he rejects the
offer, then his expected utility is determined by the events in other matches
(which determine the probabilities with which he will be matched with any
remaining agents) and the other agents’ strategies. If p is the offer that
is made when all agents follow their equilibrium strategies, then the agent
uses these strategies to form a belief about the events in other matches.
If p is different from the offer made in the equilibrium—if the play of the
game has moved “off the equilibrium path”—then the notion of sequen-
tial equilibrium allows the agent some freedom in forming his belief about
the events in other matches. We assume that the agent believes that the
behavior of all agents in any simultaneous matches, and in the future, is
still given by the equilibrium strategies. Even though he has observed an
action that indicates that some agent has deviated from the equilibrium, he
assumes that there will be no further deviations. Given that the agent ex-
pects the other agents to act in the future as they would in equilibrium, he
can calculate his expected utility from each possible plan of action starting
at that point.

Definition 8.1 A market equilibrium is a strategy profile (a strategy for
each of the S + B agents), such that each agent’s strategy is optimal at
every point at which the agent has to make a choice, on the assumption
that all the actions of the other agents that he does not observe conform
with their equilibrium strategies.

Proposition 8.2 There exists a market equilibrium, and in every such
equilibrium every seller’s good is sold at the price of one.

This result has two interesting features. First, although we do not assume
that all transactions take place at the same price, we obtain this as a result.
Second, the equilibrium price is the competitive price.

Proof of Proposition 8.2. We first exhibit a market equilibrium in which
all units of the good are sold at the price of one. In every event all agents
offer the price one, every seller accepts only the price one, and every buyer
accepts any price. The outcome is that all goods are transferred, at the
price of one, to the buyers who are matched with sellers in the first period.
No agent can increase his utility by adopting a different strategy. Suppose,
for example, that a seller is confronted with the offer of a price less than one
(an event inconsistent with equilibrium). If she rejects this offer, then she
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will certainly be matched in the next period. Under our assumption that
she believes, despite the previous inconsistency with equilibrium, that all
agents will behave in the future according to their equilibrium strategies,
she believes that she will sell her unit at the price one in the next period.
Thus it is optimal for her to reject the offer.

We now prove that there is no other market equilibrium outcome. We use
induction on the number of sellers in the market. First consider the case of
a market with a single seller (S = 1). In this case the set of agents in the
market remains the same as long as the market continues to operate. Thus
if no transaction has taken place prior to period t, then at the beginning of
period t, before a match is established, the expected utilities of the agents
depend only on t. For any given strategy profile let V bi (t) and V s(t) be
these expected utilities of buyer i and the seller, respectively.

Let m be the infimum of V s(t) over all market equilibria and all t. Fix
a market equilibrium. Since there is just one unit of the good available in
the economy, we have

∑B
i=1 V

b
i (t) ≤ 1−m for all t. Thus for each t there

is a buyer for whom V bi (t + 1) ≤ (1 − m)/B. Suppose the seller adopts
the strategy of proposing the price 1 − ε − (1 − m)/B, and rejecting all
lower prices, for some ε > 0. Eventually she will meet, say in period t, a
buyer for whom V bi (t + 1) ≤ (1 − m)/B. The optimality of this buyer’s
strategy demands that he accept this offer, so that the seller obtains a
utility of 1− ε− (1−m)/B. Thus V s(t) ≥ 1− ε− (1−m)/B. Therefore
m ≥ 1 − ε − (1 − m)/B, and hence m ≥ 1 − εB/(B − 1) for any ε > 0,
which means that m = 1.

Now assume the proposition is valid if the number of sellers in the mar-
kets is strictly less than S. Fix a set of sellers of size S. For any given
strategy profile let V sj (t) and V bi (t) be the expected utilities of seller j and
buyer i, respectively, at the beginning of period t (before any match is
established) if all the S sellers in the set and all B buyers remain in the
market. We shall show that for all market equilibria in a market containing
the S sellers and B buyers we have V sj (0) = 1 for every seller j. Let m be
the infimum of V sj (t) over all market equilibria, all t, and all j. Fix a market
equilibrium. For all t we have

∑B
i=1 V

b
i (t) ≤ (1−m)S. Therefore, in any pe-

riod t there exists some buyer i such that V bi (t+1) ≤ (1−m)S/B. Consider
a seller who adopts the strategy of demanding the price 1− ε− (1−m)S/B
and not agreeing to less as long as the market contains the S sellers and
B buyers. Either she will be matched in some period t with a buyer for
whom V bi (t+ 1) ≤ (1−m)S/B who will then agree to that price, or some
other seller will transact beforehand. In the first case the seller’s utility
will be 1 − ε − (1 − m)S/B, while in the second case it will be 1 by the
inductive hypothesis. Since a seller can always adopt this strategy, we have
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V sj (t) ≥ 1− ε− (1−m)S/B. Therefore m ≥ 1− ε− (1−m)S/B, and hence
m ≥ 1− εB/(B − S) for any ε > 0, which means that m = 1. �

There are three points to notice about the result. First, it does not
state that there is a unique market equilibrium—only that the price at
which each unit of the good is sold in every market equilibrium is the
same. There are in fact other market equilibria—for example, ones in
which all sellers reject all the offers made by a particular buyer. Second,
the proof remains unchanged if we assume that agents do not recognize the
name of their opponents. The informational assumptions we have made
allow us to conclude that, at the beginning of each period, the expected
utilities of being in the market depend only on the index of the period.
Assuming that agents cannot recognize their opponents does not affect
this conclusion. Third, the proof reveals the role played by the surplus of
buyers in determining the competitive outcome. The probability that a
seller is matched in any period is one, while this probability is less than
one for a buyer. Although there is no impatience in the model, the sit-
uation is somewhat similar to that of a sequential bargaining game in
which the seller’s discount factor is 1 and the buyer’s discount factor is
S/B < 1.

As we mentioned above, the model is a game with imperfect recall. Each
agent forgets information that he possessed in the past (like the names of
agents with whom he was matched and the offers that were made). The only
information that an agent recalls is the time and the set of agents remaining
in the market. The issue of how to interpret the assumption of imperfect
recall is subtle; we do not discuss it in detail (see Rubinstein (1991) for
more discussion). We simply remark that the assumption we make here has
implications beyond the fact that the behavior of an agent can depend only
on time and the set of agents remaining in the market. The components
of an agent’s strategy that specify his actions after arbitrary histories can
be interpreted as reflecting his beliefs about what other agents expect him
to do in such cases. Thus our assumption means also that no event in the
past leads an agent to change his beliefs about what other agents expect
him to do.

8.4 A Market in Which There Are Many Divisible Goods

The main differences between the model we study here and that of the
previous two sections are that the market here contains many divisible
goods, rather than a single indivisible good, and that agents may make
many transactions before departing from the market. We begin with an
outline of the model.
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There is a continuum of agents in the market, trading m divisible goods.
Time is discrete and is indexed by the nonnegative integers. All agents
enter the market simultaneously in period 0; each brings with him a bundle
of goods, which may be stored costlessly. In period 0 and all subsequent
periods there is a positive probability that any given agent is matched
with a trading partner. Once a match is formed, one of the parties is
selected at random to propose a trade (an exchange of goods). The other
agent may accept or reject this proposal. If he rejects it then he may,
if he wishes, leave the market. Agents who remain in the market are
matched anew with positive probability each period and may execute a
sequence of transactions. All matches cease after one period: even if an
agent who is matched in period t is not matched with a new partner in
period t + 1, he must abandon his old partner. An agent obtains utility
from the bundle he holds when he leaves the market. Note that agents
may not leave the market immediately after accepting an offer; they may
leave only after rejecting an offer. Although this assumption lacks intuitive
appeal, it formalizes the idea that an agent who is about to depart from
the market always has a “last chance” to receive an offer.

We now spell out the details of the model.

Goods There are m divisible goods; a bundle of goods is a member of Rm+ .

Time Time is discrete and is indexed by the nonnegative integers.

Economic Agents There is a continuum of agents in the market. Each
agent is characterized by the initial bundle with which he enters the
market and his von Neumann–Morgenstern utility function over the
union of the set Rm+ of feasible consumption bundles and the event D
of staying in the market forever. Each agent chooses the period in
which to consume, and is indifferent about the timing of his consump-
tion (i.e. is not impatient). The agents initially present in the market
are of a finite number K of types. All members of any given type k
have the same utility function uk:Rm+ ∪ {D} → R ∪ {−∞} and the
same initial bundle ωk ∈ Rm+ . For each type k there is initially the
measure nk of agents in the market (with

∑K
k=1 nk = 1). Each utility

function uk is restricted as follows. There is a continuous function
φk:Rm+ → R that is increasing and strictly concave on the interior of
Rm+ and satisfies φk(x) = 0 if x is on the boundary of Rm+ . Let φ > 0
be a number, and let Xk = {x ∈ Rm+ :φk(x) ≥ φ}. Then uk is given
by uk(x) = φk(x) if x ∈ Xk and uk(x) = −∞ for all other x (includ-
ing x = D). (The number φ can be interpreted as the minimal utility
necessary to survive. The assumption that uk(D) = −∞ means that
agents must leave the market eventually.) Further, we assume that
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ωk ∈ Xk. An interpretation of the concavity of the utility functions
is that each agent is risk-averse. We make two further assumptions
on the utility functions.

1. For each k there is a unique tangent to each indifference curve
of uk at every point in Xk.

2. Fix some type k and some nonzero vector p ∈ Rm+ . Consider the
set S(k, p) of bundles c for which the tangent to the indifference
curve of uk through c is {x: px = pc} (i.e. S(k, p) is k’s “income-
expansion” path at the price vector p). Then for every vector z ∈
Rm for which pz > 0 there exists a positive integer L such that
uk(c+ z/L) > uk(c) for every c in S(k, p).

The first assumption is weaker than differentiability of uk on Xk

(since it relates only to the indifference curves of uk). Note that
it guarantees that for each vector z ∈ Rm and each bundle c in
S(k, p) we can find an integer L such that uk(c + z/L) > uk(c).
The second assumption imposes the stronger condition that for each
vector z ∈ Rm we can find a single L such that uk(c+z/L) > uk(c) for
all c in S(k, p). This second assumption is illustrated in Figure 8.1.
(It is related to Gale’s (1986c) assumption that the indifference curves
of the utility function have uniformly bounded curvature.)

Matching In every period each agent is matched with a partner with prob-
ability 0 < α < 1 (independent of all past events). Matches are made
randomly; the probability that any given agent is matched in any
given period with an agent in a given set is proportional to the mea-
sure of that set in the market in that period. Notice that since the
probability of an agent being matched is less than one, in every period
there are agents who have never been matched. Thus even though
agents leave the market as time passes, at any finite time a positive
measure of every type remains.

Bargaining Once a match is established, each party learns the type (i.e.
utility function and initial bundle) and current bundle of his oppo-
nent. The members of the match then conduct a short bargaining
session. First, one of them is selected to propose a vector z of goods,
to be transferred to him from his opponent. (That is, an agent who
holds the bundle x and proposes the trade z will hold the bundle x+z
if his proposal is accepted.) This vector will typically contain positive
and negative elements; it must have the property that it is feasible, in
the sense that the bundles held by both parties after the exchange are
nonnegative. The probability of each party being selected to make a
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Figure 8.1 An illustration of Assumption 2 on the utility functions.

proposal is 1/2, independent of all past events. After a proposal is
made, the other party either accepts or rejects the offer.

Exit In the event an agent rejects an offer, he chooses whether or not to
stay in the market. An agent who makes an offer, accepts an offer,
or who is unmatched, must stay in the market until the next period:
he may not exit. An agent who exits obtains the utility of the bundle
he holds at that time.

8.5 Market Equilibrium

A strategy for an agent is a plan that prescribes his bargaining behavior
for each period, each bundle he currently holds, and each type and current
bundle of his opponent. An agent’s bargaining behavior is specified by
the offer to be made in case he is chosen to be the proposer and, for each
possible offer, one of the actions “accept”, “reject and stay”, or “reject and
exit”.
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An assumption that leads to this definition of a strategy is that each agent
observes the index of the period, his current bundle, and the current bundle
and type of his opponent, but no past events. Events in the life of the agent
(like the type of agents he met in the past, the offers that were made, and
the sequence of trades) cannot affect his behavior except insofar as they
influence his current bundle. Gale (1986a, Proposition 1) derives the re-
striction from more primitive assumptions. The idea is the following. Given
that there is a continuum of agents, the probability of an agent meeting any
particular individual is zero, so that an agent can learn from his personal
history about only a finite number of other agents—a set of measure zero.
Further, the matching technology forces partners to separate at the end of
each period. Thus even if an agent records the entire list of past events,
there is no advantage in conditioning his strategy on this information.

We restrict attention to the case in which all agents of a given type use
the same strategy. As trade occurs, the bundle held by each agent changes.
Different agents of the same type, even though they use the same strategy,
may execute different trades. Thus the number of different bundles held
by agents may increase. However, the number of different bundles held by
agents is finite at all times. Thus in any period the market is given by a
finite list (ki, ci, νi)i=1,...,I , where νi is the measure of agents who are still
in the market, currently hold the bundle ci, and are of type ki. We call
such a list a state of the market. We say that an agent of type k who holds
the bundle c is characterized by (k, c).

With each K-tuple σ of strategies is associated a state of the market
ρ(σ, t) in each period t. Although each agent faces uncertainty, the presence
of a continuum of agents allows us to define ρ in a deterministic fashion.
For example, since in each period the probability that any given agent is
matched is α, we take the fraction of agents with any given characteristic
who are matched to be precisely α.

Formally, ρ(σ, t + 1) is generated from ρ(σ, t) = (ki, ci, νi)i=1,...,I by
the following transition rules. The set of agents characterized by (kj , cj)
who are matched with agents characterized by (kh, ch) and are selected to
make an offer has measure ανjνh/2

∑I
i=1 νi. If σ instructs these agents

to offer a trade z that, according to σ, is accepted, then the measure
ανjνh/2

∑I
i=1 νi of agents is transferred from (kj , cj) to (kj , cj + z), and

the measure ανjνh/2
∑I
i=1 νi of agents is transferred from (kh, ch) to (kh,

ch − z). If σ instructs the responders to reject z and exit, then the measure
of agents characterized by (kh, ch) is reduced by ανjνh/2

∑I
i=1 νi. Other-

wise the measures of agents remain the same.
As an illustration of the determination of ρ(σ, t), consider a market in

which there are two types, each comprising half of the population. Both
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types have the same utility function. There are two goods; each agent of
type 1 initially owns the bundle (2, 0), while each agent of type 2 owns the
bundle (0, 2). Suppose that the agents use the following pair of strategies.
An agent of type 1 offers and accepts only the trade (−1, 1) whenever
he holds the bundle (2, 0); in all other cases he offers (0, 0) and rejects
all offers. An agent of type 2 offers and accepts only the trade (1,−1)
whenever he holds the bundle (0, 2); in all other cases he offers (0, 0) and
rejects all offers. An agent leaves the market if and only if he holds the
bundle (1, 1), is matched with a partner, and is chosen to respond to an
offer.

In any period, the bundle held by each agent is (2, 0), (0, 2), or (1, 1).
Suppose that in period t the measures of agents holding these three bundles
are p, q, and r. Let s = p + q + r. The measures of agents holding these
bundles in period t + 1 can be found as follows. The measure αr of those
holding (1, 1) will be matched in period t + 1; the measure αr/2 will be
chosen to respond, and hence will leave the market. The remainder of those
holding (1, 1) (the measure r(1 − α)/2) will stay in the market through
period t+ 1, making the null offer (0, 0) if matched. Of the agents holding
(2, 0), the measure αpq/s will be matched with agents holding (0, 2), and
will trade and join the set of agents holding (1, 1). The remainder will
retain (2, 0). Thus the total measure of agents holding (2, 0) in period t+1
is p(1 − αq/s). Similarly, the total measure of agents holding (0, 2) in
period t + 1 is q(1 − αp/s). The total measure of agents holding (1, 1) in
period t+ 1 is 2αpq/s+ r(1− α/2).

We emphasize that although we take the evolution of the state of the
market to be deterministic, each agent still faces a nondegenerate stochastic
process. Given a strategy profile σ, for all pairs (k, c) the state of the market
ρ(σ, t) induces a well-defined probability that any agent will be matched in
period t with an agent characterized by (k, c).

The notion of equilibrium we use is the following.

Definition 8.3 A market equilibrium is a K-tuple σ∗ of strategies, one for
each type, each of which satisfies the following condition for any trade z,
bundles c and c′, type k, and period t. The behavior prescribed by each
agent’s strategy from period t on is optimal, given that in period t the
agent holds c and has either to make an offer or to respond to the offer z
made by his opponent, who is of type k and holds the bundle c′, given the
strategies of the other types, and given that the agent believes that the
state of the market is ρ(σ∗, t).

This notion of equilibrium is not directly equivalent to any game-theo-
retic notion. However, as in the previous model, it is closely related to the
notion of sequential equilibrium. Each agent’s strategy has to be optimal
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after every event, including events that are inconsistent with the equilib-
rium. (These events are: (1) being matched in period t with an agent of
type k holding a bundle c when no agent of type k holds c in period t if
all agents follows σ∗; (2) being confronted with an offer that the opponent
does not make if he adheres to σ∗; (3) having an offer rejected when σ∗

calls for the opponent to accept; (4) making a move that is different from
that dictated by σ∗.) In order to test the optimality of his strategy, an
agent must form a belief about the state of the market, which determines
the probabilities with which he meets the various types of agents. If no un-
expected event has occurred up to period t, then the equilibrium state of
the market in period t, namely ρ(σ∗, t), provides this belief. However, once
an event that is inconsistent with equilibrium has occurred, an agent must
make a conjecture about the current state of the market. The definition
of equilibrium requires that each agent believe that, after any sequence of
events, the state of the market is the same as it is in equilibrium. This
excludes the possibility that an agent interprets out-of-equilibrium behav-
ior by other agents as a signal that the behavior of a positive measure of
agents was different than in equilibrium, so that the state of the market
has changed. This assumption is close to that of the previous model.

8.6 Characterization of Market Equilibrium

An allocation is a K-tuple of bundles (x1, . . . , xK) for which
∑K
k=1 nkxk =∑K

k=1 nkωk. An allocation (x1, . . . , xK) is competitive if there exists a price
vector p ∈ Rm++ such that for all k the bundle xk maximizes uk over the
budget set {x ∈ Xk: px ≤ pωk}.

The result below establishes a close relationship between competitive
allocations and the allocations induced by market equilibria. Before stating
this result we need to introduce some terminology. Suppose that the market
equilibrium calls for agents characterized by (k, c) who are matched in
period t with agents characterized by (k′, c′) to reject some offer z and
leave the market. Then we say that all agents characterized by (k, c) are
ready to leave the market in period t.

Proposition 8.4 For every market equilibrium there is a competitive al-
location (x1, . . . , xK) such that each agent of type k (= 1, . . . ,K) leaves the
market with the bundle xk with probability one.

Proof. Consider a market equilibrium; all of our statements are relative
to this equilibrium. All agents of type k who hold the bundle c at the
beginning of period t (before their match has been determined) face the
same probability distribution of future trading opportunities. Thus in the
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equilibrium all such agents have the same expected utility; we denote this
utility by Vk(c, t).

Step 1. Vk(c, t) ≥ uk(c) for all values of k, c, and t.

Proof. Suppose that an agent of type k who holds the bundle c in period t
makes the null offer whenever he is matched and is chosen to propose a
trade, and rejects every offer and leaves the market when he is matched
and chosen to respond. Since he is matched and chosen to respond to an
offer in finite time with probability one, this strategy guarantees him a
payoff of uk(c). (Recall that all agents are indifferent about the timing of
consumption.) Thus Vk(c, t) ≥ uk(c).

Step 2. Vk(c, t) ≥ Vk(c, t+ 1) for all values of k, c, and t.

Proof. The assertion follows from the fact that by proposing the null
trade and rejecting any offer and staying in the market, any agent in the
market in period t is sure of staying in the market until period t+ 1 with
his current bundle.

Step 3. For an agent of type k who holds the bundle c and is ready to
leave the market in period t we have Vk(c, t+ 1) = uk(c).

Proof. By Step 1 we have Vk(c, t + 1) ≥ uk(c). If Vk(c, t + 1) > uk(c)
and the circumstances that make the agent leave the market are realized
(in which case he would leave with the bundle c), then he is better off by
deviating and staying in the market until period t+ 1.

Step 4. Suppose that an agent of type k holds the bundle c and is ready
to leave the market in period t. Then it is optimal for him to accept any
offer z (of a transfer from him to the proposer) for which uk(c−z) > uk(c).

Proof. If he accepts the offer, then his expected utility Vk(c − z, t + 1)
in the continuation is at least uk(c − z) (by Step 1), and this exceeds
his expected utility in the continuation if he rejects the offer, which is
Vk(c, t+ 1) = uk(c) (see Step 3).

Step 5. For any period t and any given agent, the probability that in
some future period the agent will be chosen to make an offer to an agent
who is ready to leave the market is one.

Proof. Let Qs be the measure of the set of agents in the market in
period s, and let Es be the measure of the set of agents who are ready to
leave the market in period s. The probability that an agent in the market
is matched with an agent who is ready to leave is αEs/Qs, in which case
the agent will be chosen with probability 1/2 to make an offer. Thus the
probability of not being able to make an offer to an agent who is ready to
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leave is 1−αEs/2Qs. The measure of agents who actually leave is at most
αEs/2. (Recall that an agent who is ready to leave does so only under
some circumstances, not necessarily whenever he has to respond to an
offer.) Hence Qs−αEs/2 ≤ Qs+1, so that 1−αEs/2Qs ≤ Qs+1/Qs. Thus
the probability of not being able to make an offer from period t through
period s to an agent who is ready to leave the market, where s > t, is at
most Qs+1/Qt. Since the utility of staying in the market forever is −∞,
Qs → 0 as s → ∞, and thus the probability that an agent will be able to
make an offer in some future period to an agent who is ready to leave the
market is one.

Step 6. There is a vector p ∈ Rm++, unique up to multiplication by a
nonnegative scaler, such that, for all k, if each member of a set of agents
of positive measure of type k leaves the market in some period with the
bundle c, then the tangent to the indifference curve {x ∈ Xk:uk(x) =
uk(c)} at c is {x: px = pc} (i.e. pz > 0 for all z such that uk(c+z) > uk(c)).

Proof. Suppose that each member of a set of positive measure of agents
of type k1 leaves the market in period t1 with the bundle c1, and each
member of a set of positive measure of agents of type k2 leaves the market
in period t2 with the bundle c2. Assume, contrary to the claim, that the
tangent to the indifference curve {x ∈ Xk1 :uk1(x) = uk1(c1)} at c1 is
different from the tangent to the indifference curve {x ∈ Xk2 :uk2(x) =
uk2(c2)} at c2. Then (by the assumption that each indifference curve has a
unique tangent at every point) there is a trade z between an agent of type k1

holding the bundle c1 and an agent of type k2 holding the bundle c2 that
makes both agents better off. More precisely, c1 + z ∈ Xk1 , c2 − z ∈ Xk2 ,
uk1(c1 + z) > uk1(c1), and uk2(c2 − z) > uk2(c2).

First assume that t1 < t2. Consider an agent of type k1 who holds
the bundle c1 in period t1. By our hypothesis he is ready to leave the
market. We will show that the following is a profitable deviation. Instead of
leaving the market, he stays until period t2 (by proposing the null trade and
rejecting all offers as necessary). In period t2 there is a positive probability
that he is matched with an agent of type k2 who holds c2 (and thus is ready
to leave the market). In this event he proposes the mutually beneficial
trade z. In every other event he departs from the market at the first
opportunity. By Step 4 the agent of type k2 accepts the offer, so that
the agent of type k1 either achieves the bundle c1 + z in period t2 (with
positive probability) or holds the bundle c1 in that period. Thus the agent
of type k1 achieves an expected utility in excess of uk1(c1), so that the
deviation is profitable.

If t1 = t2 = t then an agent of type k1 who faces the circumstances in
which he plans to leave the market can deviate from the equilibrium and
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postpone his departure by one period. In period t + 1 there is a positive
probability that he will be matched with an agent of type k2 who was
ready to leave the market in period t but did not do so. Suppose the
agent of type k1 offers the trade z to such an agent of type k2. If the
latter accepts this offer then by Step 1 that agent’s expected utility in the
continuation is at least uk2(c2 − z), while if he rejects the offer then he
either leaves the market with the bundle c2 or enters period t + 2 with
that bundle. But Vk2(c2, t + 2) ≤ Vk2(c2, t + 1) = uk2(c2) by Steps 2 and
3. So the fact that uk2(c2 − z) > uk2(c2), and the requirement that each
agent’s strategy prescribe optimal actions after every history, demand that
the agent of type k2 accept the offer. Hence, as in the previous case, the
agent of type k1 has a profitable deviation from his purported equilibrium
strategy.

We conclude that the tangents to the indifference curves of agents who
leave the market, at the bundles with which they depart, coincide.

Step 7. Let p be the vector defined in Step 6. Then for all k, c, and t we
have Vk(c, t) ≥ maxx∈Xk{uk(x): px ≤ pc}.

Proof. Assume to the contrary that Vκ(c, t) < maxx∈Xκ{uκ(x): px ≤ pc}
for some κ, c, and t. Then there is a vector z such that Vκ(c, t) < uκ(c+ z)
and pz < 0. (See Figure 8.2.) We shall argue that an agent of type κ who
holds the bundle c has a deviation that yields him the utility uκ(c + z).
By Assumption 2 (p. 158) for each k = 1, . . . ,K there exists a positive
integer Lk such that uk(ck − z/Lk) > uk(ck) whenever ck is a bundle with
which agents of type k leave the market (using Step 6). By Step 4, an
agent of type k who is ready to leave the market thus accepts an offer
of the trade −z/Lk. Hence there exists a positive integer L such that all
agents (of whatever type) who are ready to leave the market would accept
the trade −z/L before doing so. Now, by Step 5 the probability that in
some future period a given agent of type κ will be able to make an offer to
an agent who is ready to leave the market is one. Thus the probability that
he will be able to make L such offers is also one. Hence an agent of type κ
who holds the bundle c in period t can profitably deviate from his original
strategy and with certainty carry out L trades of z/L before he leaves the
market, thereby attaining the utility uκ(c+ z), which exceeds Vκ(c, t).

Step 8. For an agent of type k who leaves the market with the bundle c
we have uk(c) = maxx∈Xk{uk(x): px ≤ pωk}.

Proof. By Step 7 we have Vk(ωk, 0) ≥ maxx∈Xk{uk(x): px ≤ pωk}.
Let yk be the random bundle with which an agent of type k leaves the
market. We show that for all k the random variable yk is degenerate
and Vk(ωk, 0) = maxx∈Xk{uk(x): px ≤ pωk}. Assume this is not so for
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Figure 8.2 A vector z for which Vκ(c, t) < uκ(c+ z) and pz < 0.

k = κ. By the strict concavity of uk and Jensen’s inequality we have
Vk(ωk, 0) = E[uk(yk)] ≤ uk(E[yk]) (where E is the expectation operator),
with strict inequality unless yk is degenerate. Let yk = E[yk]. Hence
uk(yk) ≥ maxx∈Xk{uk(x): px ≤ pωk}, with strict inequality for k = κ.
Therefore pyk ≥ pωk for all k, and pyκ > pωκ. Thus p

∑K
k=1 nkyk >

p
∑K
k=1 nkωk, contradicting the condition

∑K
k=1 nkyk =

∑K
k=1 nkωk for

(y1, . . . , yK) to be an allocation. �

Note that Assumption 2 (p. 158) is used in Step 7. It is used to show that
if pz < 0 then there is a trade in the direction −z that makes any agent
who is ready to leave the market better off. Thus, by executing a sequence
of such trades, an agent who holds the bundle c is assured of eventually
obtaining the bundle c− z. Suppose the agents’ preferences do not satisfy
Assumption 2. Then the curvature of the agents’ indifference curves at the
bundles with which they exit from the market in period t might increase
with t, in such a way that the exiting agents are willing to accept only a
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sequence of successively smaller trades in the direction −z, a sequence that
never adds up to z itself.

Two arguments are central to the proof. First, the allocation associated
with the bundles with which agents exit is efficient (Step 6). The idea
is that if there remain feasible trades between the members of two sets
of agents that make the members of both sets better off, then by waiting
sufficiently long each member of one set is sure of meeting a member of
the other set, in which case a mutually beneficial trade can take place.
Three assumptions are important here. First, no agent is impatient. Every
agent is willing to wait as long as necessary to execute a trade. Second,
the matching technology has the property that if in some period there
is a positive measure of agents of type k holding the bundle c, then in
every future period there will be a positive measure of such agents, so
that the probability that any other given agent meets such an agent is
positive. Third, an agent may not leave the market until he has rejected
an offer. This gives every agent a chance to make an offer to an agent who
is ready to leave the market. If we assume that an agent can leave the
market whenever he wishes then we cannot avoid inefficient equilibria in
which all agents leave the market simultaneously, leaving gains from trade
unexploited.

The second argument central to the proof is contained in Step 7. Con-
sider a market containing two types of agents and two goods. Suppose
that the bundles with which the members of the two types exit from the
market leave no opportunities for mutually beneficial trade unexploited.
Given the matching technology, in every period there will remain agents
of each type who have never been matched and hence who still hold their
initial bundles. At the same time, after a number of periods some agents
will hold their final bundles, ready to leave the market. If the final bundles
are not competitive, then for one of the types—say type 1—the straight
line joining the initial bundle and the final bundle intersects the indiffer-
ence curve through the final bundle. This means that there is some trade z
with the property that u1(ω1 +Lz) > u1(x1) for some integer L, where x1

is the final bundle of an agent of type 1, and u1(x1 − z) > u1(x1). Put
differently, a number of executions of z makes an agent of type 1 currently
holding the initial bundle better off than he is when he holds the final bun-
dle, and a single execution of −z makes an agent of type 1 who is ready
to leave the market better off. Given the matching technology, any agent
can (eventually) meet as many agents of type 1 who are ready to leave as
he wishes. Thus, given that the matching technology forces some agents to
achieve their final bundles before others (rather than all of them achieving
the final bundles simultaneously), there emerge unexploited opportunities
for trade whenever the final outcome is not competitive, even when it is ef-
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ficient. Once again we see the role of the three assumptions that the agents
are patient, the matching technology leaves a positive measure unmatched
in every period, and an agent cannot exit until he has rejected an offer.
Another assumption that is significant here is that each agent can make a
sequence of transactions before leaving the market. This assumption in-
creases the forces of competition in the market, since it allows an agent to
exploit the opportunity of a small gain from trade without prejudicing his
chances of participating in further transactions.

8.7 Existence of a Market Equilibrium

Proposition 8.4 leaves open the question of the existence of a market equi-
librium. Gale (1986b) studies this issue in detail and establishes a converse
of Proposition 8.4: to every competitive equilibrium there is a correspond-
ing market equilibrium. (Thus, in particular, a market equilibrium exists.)
We do not provide a detailed argument here. Rather we consider two cases
in which a straightforward argument can be made.

First consider a modification of the model in which agents may make
“short sales”—that is, agents may hold negative amounts of goods, so that
any trade is feasible. This case avoids some difficulties associated with
the requirement that trades be feasible and illustrates the main ideas. (It
is studied by McLennan and Sonnenschein (1991).) Assume that for ev-
ery bundle c, type k, and price vector p, the maximizer of uk(x) over
{x: px ≤ pc} is unique, and let ẑ(p, c, k) be the difference between this
maximizer and c; we refer to ẑ(p, c, k) as the excess demand at the price
vector p of an agent characterized by (k, c). If ẑ(p, c, k) = 0 then an agent
characterized by (k, c) holds the bundle (c) that maximizes his utility at the
price vector p. Let p∗ be the price vector corresponding to a competitive
equilibrium of the market. Consider the strategy profile in which the strat-
egy of an agent characterized by (k, c) is the following. Propose the trade
ẑ(p∗, k, c). If ẑ(p∗, k, c) 6= 0 then accept an offer1 z if p∗(−z) ≥ 0; otherwise
reject z and stay in the market. If ẑ(p∗, k, c) = 0 then accept an offer z if
p∗(−z) > 0; otherwise reject z and leave the market. The outcome of this
strategy profile is that each agent eventually leaves the market with his
competitive bundle (the bundle that maximizes his utility over his budget
set at the price p∗). If all other agents adhere to the strategy profile, then
any given agent accepts any offer he is faced with; his proposal to trade
his excess demand is accepted the first time he is matched and chosen to
be the proposer, and he leaves the market in the next period in which he
is matched and chosen to be the responder.

1That is, a trade after which the agent holds the bundle c− z.
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We claim that the strategy profile is a market equilibrium. It is optimal
for an agent to accept any trade that results in a bundle that is worth not
less than his current bundle, since with probability one he will be matched
and chosen to propose in the future, and in this event his proposal to trade
his excess demand will be accepted. It is optimal for an agent to reject any
trade that results in a bundle that is worth less than his current bundle,
since no agent accepts any trade that decreases the value of his bundle.
Finally, it is optimal for an agent to propose his excess demand, since this
results in the bundle that gives the highest utility among all the trades that
are accepted.

We now return to the model in which in each period each agent must
hold a nonnegative amount of each good. In this case the trading strategies
must be modified to take into account the feasibility constraints. We con-
sider only the case in which there are two goods, the market contains only
two types of equal measure, and the initial allocation is not competitive.
Then for any competitive price p∗ we have ẑ(p∗, 1, ω1) = −ẑ(p∗, 2, ω2) 6= 0.
Consider the strategy profile in which the strategy of an agent characterized
by (k, c) is the following.

Proposals Propose the maximal trade in the direction of the agent’s opti-
mal bundle that does not increase or change the sign of the respon-
der’s excess demand. Precisely, if matched with an agent character-
ized by (k′, c′) and if ẑ1(p∗, k, c) has the same sign as ẑ1(p∗, k′, c′)
(where the subscript indicates good 1), then propose z = 0. Other-
wise, propose the trade ẑ(p∗, k, c) if |ẑ(p∗, k, c)| ≤ |ẑ(p∗, k′, c′)|, and
the trade −ẑ(p∗, k′, c′) if |ẑ(p∗, k, c)| > |ẑ(p∗, k′, c′)|, where |x| is the
Euclidian norm of x.

Responses If ẑ(p∗, k, c) 6= 0 then accept an offer z if p∗(−z) > 0, or if
p∗(−z) = 0 and ẑi(p∗, k, c − z) has the same sign as, and is smaller
than ẑi(p∗, k, c) for i = 1, 2. Otherwise reject z and stay in the
market. If ẑ(p∗, k, c) = 0 then accept an offer z if p∗(−z) > 0;
otherwise reject z and leave the market.

As in the previous case, the outcome of this strategy profile is that each
agent eventually leaves the market with the bundle that maximizes his
utility over his budget set at the price p∗. If all other agents adhere to
the strategy profile, then any given agent realizes his competitive bundle
the first time he is matched with an agent of the other type; until then he
makes no trade. The argument that the strategy profile is a market equi-
librium is very similar to the argument for the model in which the feasibil-
ity constraints are ignored. An agent characterized by (k, c) is assured of
eventually achieving the bundle that maximizes uk over {x ∈ Xk: px ≤ pc},
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since he does so after meeting only a finite number of agents of one of the
types who have never traded (since any such agent has a nonzero excess
demand), and the probability of such an event is one.

8.8 Market Equilibrium and Competitive Equilibrium

Propositions 8.2 and 8.4 show that the noncooperative models of decen-
tralized trade we have defined lead to competitive outcomes. The first
proposition, and the arguments of Gale (1986b), show that the converse of
the results are also true: every distribution of the goods that is generated
by a competitive equilibrium can be attained as the outcome of a market
equilibrium.

In both models the technology of trade and the agents’ lack of impa-
tience give rein to competitive forces. If, in the first model, a price below 1
prevails, then a seller can push the price up by waiting (patiently) until he
has the opportunity to offer a slightly higher price; such a price is accepted
by a buyer since otherwise he will be unable, with positive probability, to
purchase the good. If, in the second model, the allocation is not competi-
tive, then an agent is able to wait (patiently) until he is matched with an
agent to whom he can offer a mutually beneficial trade.

An assumption that is significant in the two models is that agents cannot
develop personal relationships. They are anonymous, are forced to separate
at the end of each bargaining session, and, once separated, are not matched
again. In Chapter 10 we will see that if the agents have personal identities
then the competitive outcome does not necessarily emerge.

Notes

The model of Section 8.2 is closely related to the models of Binmore and
Herrero (1988a) and Gale (1987, Section 5), although the exact form of
Proposition 8.2 appears in Rubinstein and Wolinsky (1990). The model of
Section 8.4 and the subsequent analysis is based on Gale (1986c), which
is a simplification of the earlier paper Gale (1986a). The existence of a
market equilibrium in this model is established in Gale (1986b).

Proposition 8.2 is related to Gale (1987, Theorem 1), though Gale deals
with the limit of the equilibrium prices when δ → 1, rather than with the
limit case δ = 1 itself. Gale’s model differs from the one here in that there
is a finite number of types of agents (distinguished by different reservation
prices), and a continuum of agents of each type. Further, each agent can
condition his behavior on his entire personal history. However, given the
matching technology and the fact that each pair must separate at the end
of each period, the only information relevant to each agent is the time
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and the names of the agents remaining in the market, as we assumed in
Proposition 8.2. Thus we view Proposition 8.2 as the analog of Gale’s
theorem in the case that the market contains a finite number of agents.

Binmore and Herrero (1988a) investigate alternative information struc-
tures and define a solution concept that leads to the same conclusion about
the relation between the sets of market equilibria and competitive equilib-
ria as the models we have described. The relation between Proposition 8.4
and the theory of General Equilibrium is investigated by McLennan and
Sonnenschein (1991), who also prove a variant of the result under the as-
sumption that the behavior dictated by the strategies does not depend
on time. Gale (1986e) studies a model in which the agents—workers and
firms—are asymmetrically informed. Workers differ in their productivi-
ties and in their payoffs outside the market under consideration. These
productivities and payoffs are not known by the firms and are positively
correlated, so that a decrease in the offered wage reduces the quality of the
supply of workers. Gale examines the nature of wage schedule offered in
equilibrium.





CHAPTER 9

The Role of the Trading Procedure

9.1 Introduction

In this chapter we focus on the role of the trading procedure in determining
the outcome of trade. The models of markets in the previous three chapters
have in common the following three features.

1. The bargaining is always bilateral. All negotiations take place be-
tween two agents. In particular, an agent is not allowed to make
offers simultaneously to more than one other agent.

2. The termination of an unsuccessful match is exogenous. No agent
has the option of deciding to stop the negotiations.

3. An agreement is restricted to be a price at which the good is ex-
changed. Other agreements are not allowed: a pair of agents cannot
agree that one of them will pay the other to leave the market, or that
they will execute a trade only under certain conditions.

The strategic approach has the advantage that it allows us to construct
models in which we can explore the role of these three features.

173
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As in other parts of the book, we aim to exhibit only the main ideas in
the field. To do so we study several models, in all of which we make the
following assumptions.

Goods A single indivisible good is traded for some quantity of a divisible
good (“money”).

Time Time is discrete and is indexed by the nonnegative integers.

Economic Agents In period 0 a single seller, whom we refer to as S, and
two buyers, whom we refer to as BH and BL, enter the market. The
seller owns one unit of the indivisible good. The two buyers have
reservation values for the good of vH and vL, respectively, where
vH ≥ vL > 0. No more agents enter the market at any later date
(cf. Model B in Chapter 6). All three agents have time preferences
with a constant discount factor of 0 < δ < 1. An agreement on the
price p in period t yields a payoff of δtp for the seller and of δt(v− p)
for a buyer with reservation value v. If an agent does not trade then
his payoff is zero. When uncertainty is involved we assume that the
agents maximize their expected utilities.

Information All agents have full information about the history of the mar-
ket at all times: the seller always knows the buyer with whom she
is matched, and every agent learns about, and remembers, all events
that occur in the market, including the events in matches in which
he does not take part.

In a market containing only S and BH , the price at which the good is
sold in the unique subgame perfect equilibrium of the bargaining game of
alternating offers in which S makes the first offer is vH/(1 + δ). We denote
this price by p∗H .

When bargaining with BH , the seller can threaten to trade with BL, so
that it appears that the presence of BL enhances her bargaining position.
However, the threat to trade with BL may not be credible, since the surplus
available to S and BL is lower than that available to S and BH . Thus the
extent to which the seller can profit from the existence of BL is not clear;
it depends on the exact trading procedure.

We start, in Section 9.2, with a model in which the three features men-
tioned at the beginning of this section are retained. As in the previous three
chapters we assume that the matching process is random and is given ex-
ogenously. A buyer who rejects an offer runs the risk of losing the seller
and having to wait to be matched anew. We show that if vH = vL then
this fact improves the seller’s bargaining position: the price at which the
good is sold exceeds p∗H .
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Next, in Section 9.3, we study a model in which the seller can make an
offer that is heard simultaneously by the two buyers. We find that if vH
is not too large and δ is close to 1, then once again the presence of BL
increases the equilibrium price above p∗H .

In Section 9.4 we assume that in each period the seller can choose the
buyer with whom to negotiate. The results in this case depend on the
times at which the seller can switch to a new buyer. If she can switch only
after she rejects an offer, then the equilibrium price is precisely p∗H : in this
case a threat by S to abandon BH is not credible. If the seller can switch
only after the buyer rejects an offer, then there are many subgame perfect
equilibria. In some of these, the equilibrium price exceeds p∗H .

Finally, in Section 9.5 we allow BH to make a payment to BL in ex-
change for which BL leaves the market, and we allow the seller to make a
payment to BL in exchange for which BL is committed to buying the good
at the price vL in the event that S does not reach agreement with BH .
The equilibrium payoffs in this model coincide with those predicted by the
Shapley value; the equilibrium payoff of the seller exceeds p∗H .

We see that the results we obtain are sensitive to the precise character-
istics of the trading procedure. One general conclusion is that only when
the procedure allows the seller to effectively commit to trade with BL in
the event she does not reach agreement with BH does she obtain a price
that exceeds p∗H .

9.2 Random Matching

At the beginning of each period the seller is randomly matched with one of
the two buyers, and one of the matched parties is selected randomly to make
a proposal. Each random event occurs with probability 1/2, independent of
all past events. The other party can either accept or reject the proposal. In
the event of acceptance, the parties trade, and the game ends. In the event
of rejection, the match dissolves, and the seller is (randomly) matched anew
in the next period. Note that the game between the seller and the buyer
with whom she is matched is similar to the model of alternating offers with
breakdown that we studied in Section 4.2 (with a probability of breakdown
of 1/2). The main difference is that the payoffs of the agents in the event
of breakdown are determined endogenously rather than being fixed.

9.2.1 The Case vH = vL

Without loss of generality we let vH = vL = 1. The game has a unique
subgame perfect equilibrium, in which the good is sold to the first buyer
to be matched at a price close to the competitive price of 1.
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Proposition 9.1 If vH = vL = 1 then the game has a unique subgame
perfect equilibrium, in which the good is sold immediately at the price ps =
(2− δ)2/(4− 3δ) if the seller is selected to make the first offer, and at the
price pb = δ(2 − δ)/(4 − 3δ) if the matched buyer is selected to make the
first offer. These prices converge to 1 as δ converges to 1.

Proof. Define Ms and ms to be the supremum and the infimum of the
seller’s payoff over all subgame perfect equilibria of the game. Similarly,
define Mb and mb to be the corresponding values for either of the buyers in
the same game. Four equally probable events may occur at the beginning
of each period. Denoting by i/j the event that i is selected to make an
offer to j, these events are S/BH , BH/S, S/BL, and BL/S.

Step 1. Ms ≥ (2(1− δmb) + 2δMs) /4 and mb ≤ (1− δMs + δmb)/4.

Proof. For every subgame perfect equilibrium that gives j a payoff of v
we can construct a subgame perfect equilibrium for the subgame starting
with the event i/j such that agreement is reached immediately, j’s payoff is
δv and i’s payoff is 1− δv. The inequalities follow from the fact that there
exists a subgame perfect equilibrium such that after each of the events
S/BI the good is sold at a price arbitrarily close to 1− δmb, and after each
of the events BI/S the good is sold at a price arbitrarily close to δMs.

Step 2. mb = (1− δ)/(4− 3δ) and Ms = (2− δ)/(4− 3δ).

Proof. The seller obtains no more than δMs when she has to respond, and
no more than 1−δmb when she is the proposer. Hence Ms ≤ (2δMs+2(1−
δmb))/4. Combined with Step 1 we obtain Ms = (2δMs + 2(1− δmb)) /4.
Similarly, a buyer obtains at least 1−δMs when he is matched and is chosen
to be the proposer, and at least δmb when he is matched and is chosen to
respond. Therefore mb ≥ (1−δMs+δmb)/4, which, combined with Step 1,
means that mb = (1− δMs + δmb)/4. The two equalities imply the result.

Step 3. Mb ≤ 1−mb −ms.

Proof. This follows from the fact that the most that a buyer gets in
equilibrium does not exceed the surplus minus the sum of the minima of
the two other agents’ payoffs.

Step 4. Ms = ms = (2− δ)/(4− 3δ) and Mb = mb = (1− δ)/(4− 3δ).

Proof. If the seller is the responder then she obtains at least δms, and if
she is the proposer then she obtains at least 1−δMb.ByStep 3wehave1−δMb ≥
1− δ(1−mb−ms), so that ms ≥ [2δms + 2(1− δ(1−mb−ms))]/4, which
implies that ms ≥ 1/2+δmb/[2(1−δ)] = 1/2+δ/[2(4−3δ)] = Ms. Finally,
we have Mb ≤ 1−mb −ms = (1− δ)/(4− 3δ) = mb.
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By the same argument as in the proof of Theorem 3.4 it follows that
there is a unique subgame perfect equilibrium in which the seller always
proposes the price 1 − δMb = ps, and each buyer always offers the price
δMs = pb. �

Note that the technique used in the proof of Step 1 is different from that
used in the proofs of Steps 1 and 2 of Theorem 3.4. Given a collection of
subgame perfect equilibria in the subgames starting in the second period
we construct a subgame perfect equilibrium for the game starting in the
first period. This line of argument is useful in other models that are similar
to the one here.

So far we have assumed that a match may be broken after any offer is
rejected. If instead a match may be broken only after the seller rejects an
offer, then the unique subgame perfect equilibrium coincides with that in
the game in which the seller faces a single buyer (and the proposer is chosen
randomly at the start of each period). The prices the agents propose thus
converge to 1/2 as δ converges to 1. On the other hand, if a match may be
broken only after a buyer rejects an offer, then there is a unique subgame
perfect equilibrium, which coincides with the one given in Proposition 9.1.
This leads us to a conclusion about how to model competitive forces. If we
want to capture the pressure on the price caused by the presence of more
than one buyer, we must include in the model the risk that a match may
be broken after the buyer rejects an offer; it is not enough that there be
this risk only after the seller rejects an offer.

We now consider briefly the case in which the probability that a match
terminates after an offer is rejected is one, rather than 1/2: that is, the
case in which the seller is matched in alternate periods with BH and BL.
Retaining the assumption that the proposer is selected randomly, the game
has a unique subgame perfect equilibrium, in which the seller always pro-
poses the price 1, and each buyer always proposes the price pb = δ/(2− δ).
(The equation that determines pb is pb = δ(1/2 + pb/2).) A buyer accepts
the price 1, since if he does not then the good will be sold to the other
buyer. When a buyer is selected to make a proposal he is able to extract
some surplus from the seller since she is uncertain whether she will be the
proposer or the responder in the next match.

If we assume that the matches and the selection of proposer are both
deterministic, then the subgame perfect equilibrium depends on the order in
which the agents are matched and chosen to propose. If the order is S/BI ,
BI/S, S/BJ , BJ/S (for {I, J} = {L,H}), then the unique subgame perfect
equilibrium is essentially the same as if there were only one buyer: the seller
always proposes the price 1/(1 + δ), while each buyer always proposes
δ/(1 + δ). If the order is BI/S, S/BI , BJ/S, S/BJ then in the unique
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subgame perfect equilibrium the seller always proposes the price 1, while
each buyer always proposes the price δ. The comparison between these
two protocols demonstrates again that in order to model the competition
between the two buyers we need to construct a model in which a match is
broken after a buyer, rather than a seller, rejects an offer.

9.2.2 The Case vH > vL

We now turn to the case in which the buyers have different reservation
values, with vH > vL. We return to our initial assumptions in this section
that each match is terminated with probability 1/2 after a rejection, and
that the probability that each of the parties is chosen to be the proposer is
also 1/2. If vH/2 > vL and δ is close enough to 1, then there is a unique
subgame perfect equilibrium in which the good is sold to BH at a price
close to vH/2. The intuition is that the seller prefers to sell the good to
BH at the price that would prevail were BL absent from the market, so
that both the seller and BH consider the termination of their match to be
equally appalling.

We now consider the case vH/2 < vL. (This is the case we considered
in Section 6.5.) In this case, the game does not have a stationary subgame
perfect equilibrium if δ is close to 1. The intuition is as follows. Assume
that there is a stationary subgame perfect equilibrium in which the seller
trades with BL when she is matched with him, for at least one of the two
choices of proposer. The interaction between S and BH is then the same
as in a bilateral bargaining game in which with probability at least 1/4 the
match does not continue: negotiations between S and BH break down, and
an agreement is reached between S and BL. This breakdown is exogenous
from the point of view of the interaction between S and BH . The payoff of
BH of such a breakdown is zero, and some number u ≤ 3vH/4+vL/4 < vH
for the seller. The equilibrium price in the bargaining between S and
BH is therefore approximately (u + vH)/2 when δ is close to 1. Since
(u+vH)/2 > u, it is thus better for the seller to wait for an opportunity to
trade with BH than to trade with BL. Thus in no stationary equilibrium
does the seller trade with BL.

Now consider a stationary subgame perfect equilibrium in which the
seller trades only with BH . If δ is close to 1, the surplus vH is split more
or less equally between the seller and BH . However, given the assump-
tion that vL > vH/2, buyer BL should agree to a price between vL and
vH/2, and the seller is better off waiting until she is matched with BL
and has the opportunity to make him such an offer. Therefore there is
no stationary equilibrium in which with probability 1 the unit is sold to
BH .
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TH THL

proposes to BH p∗ p∗

S
proposes to BL p∗ vL

accepts from BH p ≥ vL p ≥ vL
accepts from BL p > vL p ≥ vL

BH
proposes vL vL

accepts p ≤ p∗ p ≤ p∗

BL
proposes vL vL

accepts p ≤ vL p ≤ vL
Transitions Go to THL if BH re-

jects a price p ≤ p∗.
Go to TH after any re-
jection except a rejec-
tion of p ≤ p∗ by BH .

Table 9.1 A nonstationary subgame perfect equilibrium for the model of Section 9.2.2,
under the assumption that vL < vH < 2vL. The price p∗ is equal to (4 − 3δ)vL/δ
(> vL).

We now describe a nonstationary subgame perfect equilibrium. There
are two states, TH (“trade only with BH”) and THL (“trade with both
BH and BL”), and p∗ = (4 − 3δ)vL/δ > vL. The initial state is TH . The
strategies are given in Table 9.1.

We now check that this strategy profile is a subgame perfect equilibrium
for δ close enough to 1. The price p∗ is chosen so that in each state the
expected utility of the seller before being matched is vL/δ. (In state TH this
utility is the number V that satisfies V = (vL+p∗)/4 + δV/2; in state THL
it is p∗/4 + 3vL/4.) Therefore in each state the seller is indifferent between
selling the good at the price vL and taking an action that delays agreement.
Hence her strategy is optimal.

Now consider the strategy of BH . It is optimal for him to accept p∗

in state TH since if he rejects it then the state changes to THL, in which
he obtains the good only with probability 1/2. More precisely, if he ac-
cepts p∗ he obtains vH − p∗, while if he rejects it he obtains δ[(1/2) · 0 +
(1/4) · (vH − p∗) + (1/4) · (vH − vL)] < vH − p∗ if δ is close enough to 1.
For a similar reason, BH cannot benefit by proposing a price less than vL
in either state. It is optimal for him to reject p > p∗ in both states since
if he accepts it he obtains vH − p, while if he rejects it, the state either
remains or becomes TH , and he obtains close to the average of vH − p∗
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and vH − vL if δ is close to 1. Precisely, his expected utility before being
matched in state TH is vH/(2 − δ) − vL/δ (the number V that satisfies
V = (1/2)(vH − (vL + p∗)/2) + (1/2)δV ), which exceeds vH − p if δ is
close enough to 1 and p > p∗. Finally, BL’s strategy is optimal since his
expected utility is zero in both states.

This equilibrium is efficient, since the good is sold to BH at the first
opportunity. However, the argument shows that there is another subgame
perfect equilibrium, in which the initial state is THL rather than TH , which
is inefficient. In this equilibrium the good is sold toBL with probability 1/2.
We know of no characterization of the set of all subgame perfect equilibria.

9.3 A Model of Public Price Announcements

In this section we relax the assumption that bargaining is bilateral. The
seller starts the game by announcing a price, which both buyers hear. Then
BH responds to the offer. If he accepts the offer then he trades with the
seller, and the game ends. If he rejects it, then BL responds to the offer. If
both buyers reject the offer, then play passes into the next period, in which
both buyers simultaneously make counteroffers. The seller may accept one
of these, or neither of them. In the latter case, play passes to the next
period, in which it is once again the seller’s turn to announce a price.
Recall that p∗H = vH/(1+δ), the unique subgame perfect equilibrium price
in the bargaining game of alternating offers between the seller and BH in
which the seller makes the first offer.

Proposition 9.2 If δp∗H < vL, then the model of public price announce-
ments has a subgame perfect equilibrium, and in all subgame perfect equi-
libria the good is sold (to BH if vH > vL) at the price p∗ = δvL+(1−δ)vH .
If δp∗H > vL then the game has a unique subgame perfect equilibrium. In
this equilibrium the good is sold to BH at the price p∗H .

Thus if the value to the seller of receiving p∗H with one period of delay is
less than vL then the seller gains from the existence of BL: p∗ > p∗H . The
price p∗ lies between vL and vH ; it exceeds vL if vH > vL, and converges
to vL as δ converges to 1. By contrast, if the value to the seller of receiving
p∗H with one period of delay exceeds vL, then the existence of BL does not
improve the seller’s position. This part of the result is similar to the first
part of Proposition 3.5, which shows that the fact that a player has an
outside option with a payoff lower than the equilibrium payoff in bilateral
bargaining does not affect the bargaining outcome.

Proof of Proposition 9.2. If δp∗H > vL then there is a subgame perfect
equilibrium in which S and BH behave as they do in the unique subgame
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perfect equilibrium of the bargaining game of alternating offers between
themselves. The argument for the uniqueness of the equilibrium outcome
is similar to that in the proof of the first part of Proposition 3.5.

Now consider the case δp∗H < vL. The game has a stationary subgame
perfect equilibrium in which the seller always proposes the price p∗, and
accepts the highest proposed price when that price is at least vL, trading
with BH if the proposed prices are equal. Both buyers propose the price
vL; BH accepts any price at most equal to p∗, and BL accepts any price
less than vL. Notice that the seller is better off accepting the price vL
than waiting to get the price p∗ since δp∗H < vL implies that δp∗ = δ2vL +
δ(1− δ)vH <vL, and BH is indifferent between accepting p∗ and waiting
to get the price vL, since vH − p∗ = δ(vH − vL).

We now show that in all subgame perfect equilibria the good is sold
(to BH if vH > vL) at the price p∗. Let Ms and ms be the supremum
and infimum, respectively, of the seller’s payoff over all subgame perfect
equilibria of the game in which the seller makes the first offer, and let MI

and mI (I = H, L) be the supremum and infimum, respectively, of BI ’s
payoff over all subgame perfect equilibria of the game in which the buyers
make the first offers.

Step 1. mH ≥ vH −max{vL, δMs}.

Proof. This follows from the facts that the seller must accept any price
in excess of δMs, and BL never proposes a price in excess of vL.

Step 2. Ms ≤ p∗ (= δvL + (1− δ)vH).

Proof. We have Ms ≤ vH−δmH by the argument in the proof of Step 2 of
Theorem 3.4, and thus by Step 1 we have Ms ≤ vH−δ(vH−max{vL, δMs}).
If δMs ≤ vL the result follows. If δMs > vL then the result follows from
the assumption that δp∗H < vL.

Step 3. MH ≤ vH − vL.

Proof. From Step 2 and δp∗H < vL we have δMs < vL, so the seller
must accept any price slightly less than vL. If there is an equilibrium of
the game in which the buyers make the first offers for which BH ’s payoff
exceeds vH − vL then in this equilibrium BL’s payoff is 0, and hence BL
can profitably deviate by proposing a price close to vL, which the seller
accepts.

Step 4. ms ≥ p∗.

Proof. Since BH must accept any price p for which vH − p > δMH , we
have ms ≥ vH − δMH ≥ p∗ (using Step 3).
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We have now shown that Ms = ms = p∗ and MH = mH = vH−vL. Since
p∗ ≥ vL, the sum of the payoffs of S and BH is at least p∗+δ(vH−vL) = vH ,
so that the game must end with immediate agreement on the price p∗. If
vH > vL then p∗ > vL, so that it is BH who accepts the first offer of the
seller. �

Note that if δ = 1 in this model then immediate agreement on any price
between vL and vH is a subgame perfect equilibrium outcome. Note also
that if BL responds to an offer of the seller before rather than after BH , or
if the responses are simultaneous, then the result is the same.

9.4 Models with Choice of Partner

Here we study two models in which the seller chooses the buyer with whom
to bargain. The models are related to those in Section 3.12; choosing to
abandon one’s current partner is akin to “opting out”. In Section 3.12,
the payoff to opting out is exogenous. Here, the corresponding payoff is
determined by the outcome of the negotiations with the new buyer, which
in turn is affected by the possibility that the seller can move back to the
first buyer.

In both models, the seller and a buyer alternate offers until either one of
them accepts an offer, or the seller abandons the buyer. In the latter case,
the seller starts negotiating with the other buyer, until an offer is accepted
or the seller returns to the first buyer. The main difference between the
models lies in the times at which the seller may replace her partner. In the
first model, the seller is the first to make an offer in any partnership, and
can switch to the other buyer only at the beginning of a period in which
she has to make an offer (cf. the model in Section 3.12.1). In the second
model, it is the buyer who makes the first offer in any partnership, and
the seller can switch to another buyer only at the beginning of a period in
which the buyer has to make an offer (cf. the model in Section 3.12.2).

By comparison with the model of Section 9.3, the seller has an extra tool:
she can threaten to terminate her negotiations with one of the buyers if he
does not accept her demand. On the other hand, when matched with the
seller a buyer is in a less competitive situation than in the model of public
price announcements since he is the only buyer conversing with the seller.

9.4.1 The Case in Which the Seller Can Switch Partners Only Before
Making an Offer

This model predicts a price equal to the equilibrium price in bilateral bar-
gaining between the seller and BH . The fact that the seller confronts more
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than one buyer has no effect on the equilibrium price: the model does not
capture any “competition” between the buyers.

Proposition 9.3 In all subgame perfect equilibria the good is sold (to BH
if vH > vL) at the price p∗H = vH/(1 + δ) (i.e. the unique subgame perfect
equilibrium price of the bargaining game of alternating offers between the
seller and BH).

Proof. We first describe a subgame perfect equilibrium with the properties
given in the result. In this equilibrium, the seller always chooses BH , pro-
poses the price p∗H , and accepts a price only if it is at least δp∗H ; buyer BH
proposes the price δp∗H , and accepts any price at most equal to p∗H ; and
buyer BL proposes the price min{vL, δp∗H}, and accepts any price at most
equal to min{vL, p∗H}.

We now prove that the payoff of the seller in all subgame perfect equilib-
ria is p∗H . Let Ms and ms be the supremum and infimum, respectively, of
the seller’s payoff over all subgame perfect equilibria of the game in which
the seller makes the first offer, and let MI and mI (I = H, L) be the
suprema and infima, respectively, of BI ’s payoff over all subgame perfect
equilibria of the game in which BI is bargaining with the seller and makes
the first offer.

Step 1. mI ≥ vI − δMs for I = L, H, ms ≥ vH − δMH , Ms ≤
maxI=L,H(vI − δmI), and MH ≤ vH − δms.

The proofs of these inequalities are very similar to the proofs of Steps 1
and 2 of the proof of Theorem 3.4.

Step 2. Ms ≤ p∗H .

Proof. By the first and third inequalities in Step 1 we have Ms ≤
maxI=L,H (vI − δ(vI − δMs)). Since vH−δ(vH−δMs) ≥ vL−δ(vL−δMs)
for any value of Ms, we have Ms ≤ vH/(1 + δ).

Step 3. ms ≥ p∗H .

Proof. This follows from the second and fourth inequalities in Step 1.

From Steps 2 and 3 the seller’s payoff in every subgame perfect equilib-
rium is precisely p∗H . If vH > vL then there is no equilibrium in which
the seller trades with BL, since in any such equilibrium the seller must
obtain at least ms and BL must obtain at least δmL, and ms + δmL ≥
vH/(1 + δ) + δvL − δ2vH/(1 + δ) = (1 − δ)vH + δvL > vL. Further, trade
with BH must occur in period 0 since ms + δmH = vH . �
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H1 H2 L

proposes p∗ p∗H p∗H

S accepts p ≥ δp∗ p ≥ δp∗H p ≥ δp∗H
bargains with BH BH BL

BI proposes δp∗ δp∗H δp∗H

(I = L,H) accepts p ≤ p∗ p1 ≤ p∗H p ≤ p∗H
Transitions Go to L if BH

rejects a price
p ≤ p∗.

Absorbing Go to H2 if BL
rejects a price
p ≤ p∗H .

Table 9.2 A subgame perfect equilibrium for the model in Section 9.4.2 when p∗H (=
vH/(1 + δ)) < vL. The price p∗ may take any value between p∗H and vH .

9.4.2 The Case in Which the Seller Can Switch Partners Only Before
Her Partner Makes an Offer

In this case, the buyer makes the first offer when the seller switches part-
ners. We restrict attention to the interesting case in which p∗H < vL. For
any price p∗ with p∗H ≤ p∗ ≤ vH , Table 9.2 gives a subgame perfect equilib-
rium that ends with immediate agreement on δp∗. In any subgame starting
in state H1 the good is sold to BH at the price p∗ or δp∗, depending on
who moves first; in any subgame starting in state H2 the good is sold to
BH at the price p∗H or δp∗H ; and in any subgame starting in state L the
good is sold to BL at the price p∗H or δp∗H .

To see that the strategy profile is a subgame perfect equilibrium notice
the following. Once state H2 is reached, the seller stays with BH , and
she and BH behave as in the subgame perfect equilibrium of the game in
which BL is absent. In state H1 buyer BH prefers the price δp∗ with one
period of delay to the price p∗ (δ(vH − δp∗) > vH − p∗). However, he is
deterred from rejecting p∗ by the transition to L, in which the good is sold
to BL. If vH > vL then in state L buyer BL prefers the price δp∗H with
one period of delay to the price p∗H , but he is deterred from rejecting p∗H
by the transition to the absorbing state H2. (If vH = vL there is no need
for deterrence, since BL is indifferent between these two prices.)

Note that the game has other equilibria, some of which generate inef-
ficient outcomes. For example, if the initial state is L then the strategy
profile defined in the table is a subgame perfect equilibrium in which the
good is sold to BL.
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We see that in a model in which the seller chooses whether or not to
terminate bargaining with one buyer and move to the other, the results
do not capture our intuition about competition between the buyers. In
the first model, the presence of BL is irrelevant for the equilibrium. The
reason is clear, in light of the analysis in Section 3.12.1. The seller can
never obtain more by moving to BL than by staying with BH , and thus a
threat to move is not credible. In the second model, the ability to move to
the other buyer after her offer is rejected enhances the power of the seller.
In this case she can credibly threaten to abandon her current partner, and
thus make a “take-it-or-leave-it” offer. This allows us to construct subgame
perfect equilibria in which she obtains a price in excess of that which she
would obtain in the absence of BL.

9.5 A Model with More General Contracts and Resale

We conclude by investigating a model in which the range of contracts avail-
able to the agents is greater than it is in the models of the previous sections.
The buyers are allowed to agree to a contract according to which BH pays
BL a sum of money and in exchange BL leaves the market. This contract
leaves BH alone in the market and thus presumably puts him in a better
bargaining position. In addition, the seller and each of the buyers are al-
lowed to agree to exchange the good for some sum of money, and if BL buys
the good then he is allowed to resell it to BH . For simplicity we depart
from the strategic approach of the previous sections and, as in Chapter 6,
use the Nash solution to model bargaining; we restrict attention to the case
vH > vL and assume that δ = 1.

The trading procedure is the following. In each period, two agents are
matched and reach the agreement given by the Nash solution of the ap-
propriate bargaining problem. If no agreement has been reached, then all
three possible matches (including that between BH and BL) are equally
probable. If the seller is matched with a buyer, then they agree on the
amount of money paid by the buyer in exchange for the good. If the buy-
ers are matched, then they agree on the amount of money BH pays to BL
for him to leave the market.

We now consider the outcome after an agreement has been reached. If the
seller reaches agreement with BH , then the game ends. If the seller reaches
agreement with BL, then in the next period BL is matched with BH ; the
disagreement point gives BL and BH the payoffs vL and 0, respectively
(disagreement results in BL consuming the good; BL’s payment is a sunk
cost), and the size of the pie to be divided is vH . Thus BL and BH agree
on the price vL + (vH − vL)/2 = (vH + vL)/2. If the two buyers reach
agreement, then in the next period the seller is matched with BH ; the
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disagreement point gives S and BH each the payoff 0, and the size of the
pie to be divided is vH , so that S and BH agree on the price vH/2 (the
payment to BL is a sunk cost).

We now analyze the agreements reached in the first period. Denote by
wS , wH , and wL the expected payoffs of S, BH , and BL in the market.
If the agents I and J who are matched fail to reach agreement, then the
matching process occurs again in the next period. Thus the disagreement
point for the bargaining in the first period is (wI , wJ). Hence if S is matched
with BH in the first period then the Nash solution gives S the payoff
wS + (vH −wS −wH)/2. If she is matched with BL then the surplus to be
divided is the price (vH +vL)/2 that BL will obtain from BH in the second
period after he reaches agreement with S. Thus the Nash solution assigns
her wS + [(vH + vL)/2− wS − wL] /2. If the two buyers are matched in
the first period, then the surplus to be divided between BH and the seller
is vH , so that the Nash solution assigns her vH/2. Therefore

wS = 1
3

(
wS +

vH − wS − wH
2

)
+ 1

3

(
wS +

(vH + vL)/2− wS − wL
2

)
+ 1

3

(vH
2

)
.

The first term corresponds to the case that S is matched first with BH , the
second to the case that S is matched first with BL, and the third to the
case that the two buyers are matched first. Similarly, we have

wH = 1
3

(
wH +

vH − wS − wH
2

)
+ 1

3

(vH − vL
2

)
+ 1

3

(
wH +

vH/2− wH − wL
2

)
and

wL = 1
3
· 0 + 1

3

(
wL +

(vH + vL)/2− wS − wL
2

)
+ 1

3

(
wL +

vH/2− wH − wL
2

)
.

The solution of this set of three equations is (wS , wH , wL) = (vL/6 + vH/2,
vH/2− vL/3, vL/6).

An interesting feature of this vector of payoffs is its connection with the
Shapley value. Recall that a cooperative game is specified by a function v
that assigns to every coalition C its worth v(C). In the market discussed
here we have v(S,BH) = v(S,BH , BL) = vH , v(S,BL) = vL, and v(C) = 0
for all other coalitions C. The Shapley value of the cooperative game v
assigns to each Player i the average, over all orderings of the players, of
his marginal contribution v(C ∪ {i})− v(C), where C is the set of players
preceding i in the ordering. Thus in the market here the Shapley value
assigns

1
3 · 0 + 1

6vL + 1
2vH = vL/6 + vH/2

to the seller,

1
2 · 0 + 1

3 (vH − vL) + 1
6vH = vH/2− vL/3
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to BH , and vL/6 to BL. This vector is precisely the vector of payments
that we isolated above. Note that the seller’s payoff exceeds p∗H (which is
equal to vH/2, since δ = 1): the seller gains from the existence of BL.

We have already mentioned that one of the attractions of models of
matching and bargaining is that they enable us to interpret and better
understand solution concepts from cooperative game theory. The model of
this section illustrates this point.

Notes

The random matching model of Section 9.2 is based on Rubinstein and
Wolinsky (1990); the proof of Proposition 9.1 is due to Shaked, and the
nonstationary equilibrium for the case vH > vL is due to Hendon and
Tranæs (1991). The model in Section 9.3 is based on models of Bin-
more (1985) and Wilson (1984). The first model in Section 9.4 is due
to Binmore (1985) and Wilson (1984); the second model is closely related
to a model in Shaked (1994). Gul (1989) is the basis for the model of
Section 9.5, although our interpretation is different from his.

A number of variations of the model in Section 9.2 have been investigated
in the context of concrete economic problems. Among these is the model of
Horn and Wolinsky (1988), in which the players are a firm and two unions.
In this case the question whether an agreement between the firm and one of
the unions is implemented immediately, or only after an agreement with the
other union, is an important factor in determining the outcome. Related
models are discussed by Davidson (1988), Jun (1989), and Fernandez and
Glazer (1990). Bester (1988b) studies a model in which there is a single
seller, who is randomly matched with a succession of buyers; the quality
of the indivisible good that the seller holds is unknown to the buyers, and
the reservation values of the buyers are unknown to the seller. Bester
finds conditions under which there is an equilibrium in which price signals
quality, and under which adverse selection leads a seller with a high-quality
good to leave the market.

Gale (1988) and Peters (1991) study the relation between the equilibria
of models in which, as in Section 9.3, sellers announce prices, which all
buyers hear (ex ante pricing), and the equilibria of models in which (as
in Section 9.2, for example) prices are determined by bargaining after a
match is made (ex post pricing). Peters (1991) considers a model of a
large market; when the agents’ common discount factor is close to 1 the
equilibrium sequence of ex ante prices as the market clears out approaches
the competitive price. When demand and supply are relatively close, ex
ante prices are lower than ex post prices; when excess demand is large, the
reverse is true.
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Shaked and Sutton (1984a) and Bester (1989a) study variations of the
model in Section 9.4.1, in which the delay before the seller can make an offer
to a new buyer may differ from the delay between any two successive peri-
ods of bargaining. (See also Muthoo (1993).) Shaked and Sutton use their
model, in which a firm bargains with two workers, to study unemployment.
Bester uses his model to replace the price-setting stage of Hotelling’s model
of spatial competition. Bester (1988a) is related; the aim is to explain the
dependence of price on quality. Casella and Feinstein (1990, 1992) study a
model in which the desire of a seller to move to a new buyer arises because
inflation reduces the real value of the monetary holdings of her existing
partner relative to that of a fresh buyer.

Peters (1988) studies a model that contains elements from the models
of Sections 9.3 and 9.4. Sellers post prices, but a buyer who is matched
with a seller has the option of making a counteroffer; the seller can accept
this offer, reject it and continue bargaining, or terminate the match. When
excess demand is small, posted prices are accepted in equilibrium; when it
is large, they are not. The limit of the equilibrium outcome as the common
discount factor approaches 1 is different from the competitive outcome.
Peters (1989) studies a model in which, in each period, each seller chooses
the trading rule she will use—i.e. the game that she will play with the
buyer with whom she is matched. He shows that equilibrium trading rules
lead to outcomes close to the competitive one.

The results of Gul (1989) are more general than those in Section 9.5. For
a distinct but related implementation of the Shapley value, see Dow (1989).
A steady-state model in which some agents are middlemen who buy from
sellers and resell to buyers (and do not themselves consume the good) is
studied by Rubinstein and Wolinsky (1987).



CHAPTER 10

The Role of Anonymity

10.1 Introduction

In this chapter we study the effect of the information structure on the re-
lationship between market equilibria and competitive outcomes. As back-
ground for the analysis, recall that the models of Chapters 6 (Model B) and
8, in which all agents enter the market at once, yield competitive outcomes.

There are many aspects of the market about which an agent may or may
not be informed. He may know the name of his opponent or may know only
some of that agent’s characteristics. He may remember his history in the
market (whether he was matched, the characteristics of his opponent, the
events in the match, etc.) or may retain only partial information about his
experience. He may obtain information about the histories of other agents
or may have no information at all about the events in bargaining sessions
in which he did not take part.

In this chapter we focus on an assumption made in Chapter 8 that agents
cannot condition their behavior in a bargaining encounter on their expe-
rience in previous encounters, or on the identity of their opponents. We
refer to this as the “anonymity” assumption. We return to the model of
Section 8.2. We change only the assumption about the agents’ information;

189
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we assume that they have full information about all past events. We show
that under this assumption the outcome generated by a market equilibrium
is not necessarily competitive.

10.2 The Model

For convenience we specify all the details of the model, although (as we
noted above) the model is almost the same as that in Section 8.2. It is also
closely related to the model of random matching studied in Section 9.2.

Goods A single indivisible good is traded for some quantity of a divisible
good (“money”).

Time Time is discrete and is indexed by the nonnegative integers.

Economic Agents In period 0, S identical sellers enter the market with
one unit of the indivisible good each, and B > S identical buyers
enter with one unit of money each. No more agents enter at any
later date. Each individual’s preferences on lotteries over the pairs
(p, t) giving the price and time at which a transaction is concluded
satisfy the assumptions of von Neumann and Morgenstern. Each
seller’s preferences are represented by the utility function δtp, where
0 < δ ≤ 1, and each buyer’s preferences are represented by the utility
function δt(1− p) (i.e. the reservation values of the seller and buyer
are 0 and 1, respectively). If an agent never trades, then his utility
is zero. In most of the chapter, we consider the case δ = 1.

Matching In each period any remaining sellers and buyers are matched
pairwise. The matching technology is such that each seller meets
exactly one buyer and no buyer meets more than one seller in any
period. Since there are fewer sellers than buyers, B − S buyers are
thus left unmatched in each period. The matching process is random:
in each period all possible matches are equally probable, and the
matching is independent across periods.

Bargaining After a buyer and a seller have been matched they engage in a
short bargaining process. First, one of the matched agents is selected
randomly (with probability 1/2) to propose a price between 0 and
1. Then the other agent responds by accepting the proposed price or
rejecting it. Rejection dissolves the match, in which case the agents
proceed to the next matching stage. If the proposal is accepted, the
parties implement it and depart from the market.



10.3 Market Equilibrium 191

What remains to be specified is the information structure. The natu-
ral case to consider seems to be that in which each agent fully recalls his
own personal experience but does not have information about the events in
matches in which he did not take part. However, to simplify the presenta-
tion we analyze a simpler case in which each agent does possess information
about other matches.

Information In period t each agent has perfect information about all the
events that occurred through period t − 1, including the events in
matches in which he did not participate. When taking an action in
period t, however, each agent does not have any information about
the other matches that are formed in that period or the actions that
are taken by the members of those matches.

10.3 Market Equilibrium

In this section we show that the competitive outcome is not the unique
market equilibrium outcome when an agent’s information allows him to
base his behavior on events that occurred in the past. If there is a single
seller in the market, then in any given period at most one match is pos-
sible, so that the game is one of perfect information. In this case, we use
the notion of subgame perfect equilibrium. When there is more than one
seller the game is one of imperfect information, and we use the notion of
sequential equilibrium.

A strategy for an agent in the game specifies an action (offer or response
rule) in every period, for every history of the market up to the beginning of
the period. For the sake of uniformity, we refer to a sequential equilibrium
of the game as a market equilibrium.

Proposition 10.1 If δ = 1 then for every price p∗ between 0 and 1, and
for every one-to-one function β from the set of sellers to the set of buyers,
there is a market equilibrium in which each seller s sells her unit of the
good to buyer β(s) for the price p∗.

We give a proof only for the case S = 1, a case that reveals most of the
ideas of the proof of the more general case. Before doing so, we give an
intuitive description of an equilibrium with the properties claimed in the
proposition.

The idea behind the equilibrium is that at any time a distinguished buyer
has the “right” to purchase the seller’s unit at the price p∗. If buyer i has
the right, then in the equilibrium the seller offers buyer i, and no other
buyer, the unit she owns at the price p∗ and accepts an offer from buyer i,
and from no one else, provided it is at least equal to p∗. Initially buyer β(s)
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has the right to purchase the seller’s unit at the price p∗, where s is the
name of the seller. A buyer who has the right retains it unless one of the
following events occurs.

1. The seller offers some other buyer, say i′, a price in excess of p∗. In
this event the right is transferred from the previous right-holder to
i′.

2. A buyer who does not hold the right to purchase a unit at the price p∗

proposes a price in excess of p∗. In this case no agent obtains or
retains the right to purchase the good at the price of p∗; instead, the
original right-holder obtains the right to purchase the good at the
(unattractive) price of 1 (his reservation value).

Once some buyer has the right to purchase the good at the price of one,
he retains this right whatever happens. Given the way in which the right
to purchase the good is transferred, no buyer different from β(s) has an
incentive to offer a price in excess of p∗ (for this will simply lead to the
original right-holder obtaining the good at the price of one), and the seller
has no incentive to offer the good to any buyer at a price in excess of p∗

(for this will result in that buyer obtaining the right to buy the good at
the price of p∗).

We turn now to a formal presentation of the equilibrium.

Proof of Proposition 10.1 for the case of a single seller. As usual, we
describe each agent’s strategy as an automaton. The states are R(i) and
C(i) for i = 1, 2, . . . , B. Their interpretations are as follows.

R(i) Buyer i has the right to buy the unit from the seller at the price p∗.

C(i) Buyer i has the right to buy the unit from the seller at the price 1.

The agents’ actions and the transition rules between states when the
seller is matched with buyer i are given in Table 10.1. The initial state is
R(β(s)), and (as always) transitions between states take place immediately
after the events that trigger them.

The outcome of the (B + 1)-tuple of strategies is the following. If the
seller is matched with a buyer different from β(s) and is chosen to make an
offer, she proposes the price 1, so that the state remains R(β(s)), and the
offer is rejected. If the seller is matched with a buyer different from β(s)
and the buyer is chosen to make an offer, then the buyer offers the price
p∗, the state remains R(β(s)), and the seller rejects the offer. The first
time that the seller is matched with buyer β(s), the price p∗ is proposed by
whoever is chosen to make an offer, this proposal is accepted, the parties
leave the market, and no further trade takes place.
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R(i) R(j), j 6= i C(i) C(j), j 6= i

Seller
proposes p∗ 1 1 1

accepts p ≥ p∗ p = 1 p = 1 no price

Buyer i
proposes p∗ p∗ 1 1

accepts p ≤ p∗ p ≤ p∗ p ≤ 1 p < 1

Transitions Go to R(i) if the
seller proposes p
with p∗ < p < 1.

Absorbing Absorbing

Go to C(j) if
Buyer i proposes
p with p∗ < p < 1.

Table 10.1 The agents’ actions and the transitions between states when the seller is
matched with buyer i.

To see that the strategy profile is a subgame perfect equilibrium, suppose
that the current state is R(h), and consider two deviations that might upset
the seller’s “plan” to sell her good to buyer h. First, suppose that the seller
offers a price in excess of p∗ to a different buyer, say i. In this case the
state changes to R(i), and the buyer rejects the offer. It is optimal for the
buyer to behave in this way since, given the state is R(i), the strategies
lead to his eventually receiving the good at the price p∗. Thus the seller
does not gain from this deviation.

Second, suppose that buyer i, with i 6= h, proposes a price in excess of
p∗, but less than 1. Then the state changes to C(h), and the seller rejects
the offer. It is optimal for the seller to act in this way because, starting
from state C(h), the strategies lead to the seller obtaining the price 1 from
buyer h. Given this, buyer i does not benefit from the deviation.

Finally, if the current state is C(i), it never changes; the good is eventu-
ally sold to buyer i at the price of 1, and no deviation can make any agent
better off. �

Notice that a buyer’s personal history is not sufficient for him to calculate
the state. For example, if buyer β(s) is not matched in the first period,
then he needs to know what happened in that period in order to calculate
the state in the second period. However, one can construct equilibria with
the same outcome as the one here, in which each agent bases his behavior
only on his own history. (See Rubinstein and Wolinsky (1990) for details.)
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We can simplify the equilibrium given in the proof by replacing all the
states C(i) by a single state C, in which the seller offers and accepts the
competitive price from any buyer with whom he is matched, and all the
buyers accept and offer the price of one. However, this equilibrium is not
robust to the following modification of the model. Suppose that the set of
possible prices is discrete, and does not include 1. Then the competitive
price is the largest price less than 1, and all buyers prefer to obtain the
good at this price to not trading at all. Suppose that a buyer who does
not have the right to purchase the good at the price p∗ deviates from the
strategy described in the proof by offering a price in excess of p∗. Then
the state becomes C, in which there is a positive probability that this
buyer obtains the good at the competitive price. Thus the buyer benefits
from his deviation, and the strategy profile is no longer a subgame perfect
equilibrium.

The model has a great multiplicity of equilibria. The proposition shows
that all prices p∗ can be sustained in market equilibria. Further, for each
price p∗ there is a rich set of market equilibria (in addition to that described
in the proof of the proposition) supporting that price. The interest of the
model derives from the character of the equilibrium we constructed in the
proof. This equilibrium is interesting because it captures a social institution
that is close (but not identical) to some that we observe. For example, the
workers in a firm may have the right to buy that firm at a certain price; a
neighbor may have priority in buying a piece of land; and Academic Press
has the right to buy any book on bargaining that we write. Although there
are many equilibria in which all units of the good are sold at the price p∗,
and although some of them are more simply stated, we have chosen one
equilibrium because of its attractive interpretation. In any given context,
the appeal of the equilibrium we describe depends on how natural are
the price p∗ and the identity of the buyer β(s). The price p∗ may be
determined, for example, by considerations of fairness, and the identity of
the right-holder may be an expression of a social arrangement that gives
special priority to a particular potential buyer. The existence of such an
explanation of the price p∗ and the asymmetric statuses of the buyers is
necessary for the result to be of interest.

In the equilibria shown to exist by the proposition, all trades occur at the
same price. However, there are other equilibria in which different prices are
obtained by different sellers. For example, consider the case of two sellers
and two buyers. Let p1 and p2 be two different prices. The following is a
market equilibrium in which seller i sells the good to buyer i at the price
pi, i = 1, 2. Seller i offers buyer i the price pi and accepts from buyer i
any price of pi or more. She offers buyer j the price 1 and rejects any
price below 1 that buyer j offers. Analogously buyer i offers seller i the
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price pi and accepts from buyer i any price of pi or less. He offers seller j
the price 0 and rejects any price above 0 offered by seller j. If one of the
sellers deviates, then the agents continue with the equilibrium strategies
described in the proposition for the uniform price of 0, while if one of the
buyers deviates, then the agents continue with the equilibrium strategies
described in the proposition for the uniform price of 1.

Note that the strategy profile constructed in the proof of the proposition
is not a market equilibrium when the market contains a single seller and
two buyers bH and bL with reservation values vH > vL > 0, and the set of
possible prices is discrete, includes a price between vL and vH , and does
not include vH . Obviously p∗ cannot exceed vL. If p∗ ≤ vL the strategy
profile is not a market equilibrium for the following reason. When bL holds
the right to purchase the good at the price p∗, the seller must reject any
offer by bH that is above vL. Therefore the price at which the good is sold
in C(bL) must exceed vL. But if the price attached to C(bL) exceeds vL,
then it is not optimal for bL to purchase the good at this price. We know
of no result that characterizes the set of market equilibria in this case.

10.4 The No-Discount Assumption

The assumption that the agents are indifferent to the timing of their payoffs
is crucial to the proof of Proposition 10.1. Under this assumption, an agent
is content to wait as long as necessary to be matched with the “right”
partner. If he discounts future payoffs, then he prefers to trade at any
given price as soon as possible, and the equilibrium of Proposition 10.1
disintegrates. In this case the model, for S = 1, is the same as that in
Section 9.2.1. We showed there that there is a unique market equilibrium
in which all transactions are concluded in the first period. (Proposition 9.1
covers only the case B = 2, but the extension is immediate.) In this
equilibrium the seller always proposes the price ps(B), each buyer always
proposes the price pb(B), and these prices are always accepted. The prices
satisfy the following pair of equations.

pb(B) = δ(ps(B) + pb(B))/2
1− ps(B) = δ(1− ps(B) + 1− pb(B))/2B.

For B > 1 the limit as δ → 1 of both prices is the competitive price of
1. For B = 1 the equations define the unique subgame perfect equilibrium
in a bargaining game of alternating offers in which the proposer is chosen
randomly at the beginning of each period (see Section 3.10.3). The limit
as δ → 1 of both agreed-upon prices ps(1) and pb(1) in this case is 1/2.

This result, especially for the case δ → 1, seems at first glance to cast
doubt on the significance of Proposition 10.1. We argue that upon closer
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examination the assumption that agents discount future payoffs, when com-
bined with the other assumptions of the model, is not as natural as it seems.
The fact that agents discount the future not only makes a delay in reach-
ing agreement costly; the key fact in this model is that it makes holding
a special relationship costly. A buyer and a seller who are matched are
forced to separate at the end of the bargaining session even if they have a
special “personal relationship”. The chance that they will be reunited is
the same as the chance that each of them will meet another buyer or seller.
Thus there is a “tax” on personal relationships, a tax that prevents the
formation of such relationships in equilibrium. It seems that this tax does
not capture any realistic feature of the situations we observe.

We now try to separate the two different roles that discounting plays in
the model. Remove the assumption that pairs have to separate at the end
of a bargaining session; assume instead that each partner may stay with
his current partner for another period or return to the pool of agents wait-
ing to be matched in the next period. Suppose that the agents make the
decision whether or not to stay with their current partner simultaneously.
These assumptions do not penalize personal relationships, and indeed the
results show that noncompetitive prices are consistent with subgame per-
fect equilibrium.

The model is very similar to that of Section 9.4.2. Here the proposer
is selected randomly, and the seller may switch buyers at the beginning of
each period. In the model of Section 9.4.2 the agents take turns in making
proposals and the seller may switch buyers only at the beginning of a period
in which her partner is scheduled to make an offer. The important feature
of the model here that makes it similar to that of Section 9.4.2 rather than
that of Section 9.4.1 is that the seller is allowed to leave her partner after
he rejects her offer, which, as we saw, allows the seller to make what is
effectively a “take-it-or-leave-it” offer.

As in Section 9.4.2 we can construct subgame perfect equilibria that
support a wide range of prices. Suppose for simplicity that there is a single
seller (and an arbitrary number B of buyers). For every p∗s such that
ps(1) ≤ p∗s ≤ ps(B) we can construct a subgame perfect equilibrium in
which immediate agreement is reached on either the price p∗s, or the price
p∗b satisfying p∗b = δ(p∗s + p∗b)/2, depending on the selection of the first
proposer. In this equilibrium the seller always proposes p∗s, accepts any
price of p∗b or more, and stays with her partner unless he rejected a price
of at most p∗s. Each buyer proposes p∗b , accepts any price of p∗s or less, and
never abandons the seller.

Recall that ps(1) (which depends on δ) is the offer made by the seller
in the unique subgame perfect equilibrium of the game in which there is a
single buyer; ps(B) is the offer made by the seller when there are B buyers
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and partners are forced to separate at the end of each period. The limits
of ps(1) and ps(B) as δ converges to 1 are 1/2 and 1, respectively. Thus
when δ is close to 1 almost all prices between 1/2 and 1 can be supported
as subgame perfect equilibrium prices.

Thus when partners are not forced to separate at the end of each period,
a wide range of outcomes—not just the competitive one—can be supported
by market equilibria even if agents discount the future. We do not claim
that the model in this section is a good model of a market. Moreover,
the set of outcomes predicted by the theory includes the competitive one;
we have not ruled out the possibility that another theory will isolate the
competitive outcome. However, we have shown that the fact that agents
are impatient does not automatically rule out noncompetitive outcomes
when the other elements of the model do not unduly penalize “personal
relationships”.

10.5 Market Equilibrium and Competitive Equilibrium

“Anonymity” is sometimes stated as a condition that must be satisfied in
order for an application of a competitive model to be reasonable. We have
explored the meaning of anonymity in a model in which agents meet and
bargain over the terms of trade. As Proposition 8.2 shows, when agents are
anonymous, the only market equilibrium is competitive. When agents have
sufficiently detailed information about events that occurred in the past and
recognize their partners, then noncompetitive outcomes can emerge, even
though the matching process is anonymous (agents are matched randomly).

The fact that this result is sensitive to our assumption that there is no
discounting can be attributed to other elements of the model, which inhibit
the agents’ abilities to form special relationships. In our models, matches
are random, and partners are forced to separate at the end of each period.
If the latter assumption is modified, then we find that once again special
relationships can emerge, and noncompetitive outcomes are possible.

We do not have a theory to explain how agents form special relationships.
But the results in this chapter suggest that there is room for such a theory
in any market where agents are not anonymous.

Notes

This chapter is based on Rubinstein and Wolinsky (1990).
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asymmetric information, 148
heterogeneous agents, 147
market equilibrium, 141–146, 143
non-semi-stationary strategies, 148
role of money, 149
strategy, 141

market with choice of partner, 182–185,
196–197

characterization of market equilibrium,
183

market equilibrium, 184
market with general contracts, 185–187
market with one-time entry, 124

different reservation values, 178–180
equal reservation values, 175–178
ex ante and ex post pricing, 187
many divisible goods

agent characterized by (k, c), 160
allocation, 162
competitive allocation, 162
curvature assumption, 158, 165,

166–167
excess demand, 168
existence of market equilibrium,

168–170
market equilibrium, 159–170, 161
market equilibrium and competitive

equilibrium, 170
ready to leave the market, 162
ρ(σ, t), 160
state of the market, 160
strategy, 159

with Nash solution, 128–130
different reservation values, 130
entry, 133–134
market equilibrium, 128–129
single indivisible good, 185–187

p∗H , 174
single indivisible good, 152–156

choice of partner, 182–185
general contracts, 185–187
market equilibrium, 153–156, 154
market equilibrium and competitive

equilibrium, 170
one seller, two buyers, 173–187
public price announcements, 180–182
random matching, 175–180
role of anonymity, 189–197
strategy, 153

with strategic bargaining, 151–170
asymmetric information, 171
many divisible goods, 156–170
relation with general equilibrium,

171
single indivisible good, 152–156

market with perfect information, 189–197
case of discounting, 195–197
characterization of market equilibrium,

191
market equilibrium and competitive

equilibrium, 197
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right to purchase good, 191
market with public price announcements,

180–182
characterization of market equilibrium,

180
market with random matching, 175–180

different reservation values, 178–180
nonexistence of stationary market

equilibrium, 178
nonstationary market equilibrium,

179
equal reservation values, 175–178, 195

characterization of market
equilibrium, 176

markets with random matching
figure summarizing models, 138

Markovian decision problem, 44, 146
mechanism, 114

connection with bargaining game, 115
efficient, 115
minimal inefficiency, 117

mechanism design, 113–118
aims, 113
buyer-seller bargaining, 113
IC, 114
IR, 114
IR∗, 116
mechanism, 114
SY, 117

mi, 47
Mi, 47
middlemen, 188
Model A (steady state market), 125

with entry, 131–132, 135
Model B (one-time entry market), 126

with entry, 133–134, 136
money

role in markets, 149
monotonicity axiom, 22
multi-player bargaining, 63–65, 67

N

Nash equilibrium, 41
Nash program, 70, 89
Nash solution, 13, 15, 75, 79, 84, 88

asymmetric, 21, 22, 85, 86, 89
cardinal utility, 23–24
characterization, 15
definition via preferences, 16
divide the dollar, 17–19
effect of risk-aversion, 17–19
many players, 23

sale of indivisible good, 18–19
used in market models, 123–136

limitation, 130
wage negotiation, 19–20

Nash’s demand game, 76–81
definition, 77
Nash equilibria, 77

Nash’s model of variable threats, 26
Nash’s perturbed demand game, 78–81

definition, 78
Nash equilibria and Nash solution, 79

Nash’s Theorem, 13
Nash’s threat game, 26
NDOC, 96, 97
nondecreasing function, x

O

one-shot deviation, 44
one-time entry market. See market with

one-time entry
optimal threats, 26
optimistic conjectures, 99
ordinal preferences, 24–25
outside options, 54–63

P

PAR, 13, 22, 69
Pareto frontier, strong, 15
perfect equilibrium, 78
personal relationships, 170, 196–197
perturbed demand game, 78–81

definition, 78
Nash equilibria and Nash solution, 79

πH , 92
preference ordering, 9
preferences

patience, 51
representations, 33, 34, 36, 53, 73, 83,

84, 87, 88, 89
present value of outcome, 34
p∗H , 174
(p, θ), 114

R

rationalizing beliefs, 108
rationalizing sequential equilibrium,

107–112, 108
critique, 112

reservation value, 113
right to purchase good, 191
risk of breakdown, 71
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risk-aversion in bargaining, 17–19

S

S, 10
sale of indivisible good, 18–19, 30

choice of disagreement point, 88
〈S, d〉, 10
security equilibrium, 148
semi-stationary strategy, 141, 144
sequential equilibrium, 95–97, 153, 161

in bargaining game with imperfect
information, 95–112

consistency, 95–96, 97
NDOC, 96, 97
of Γ(πH), 97
optimistic conjectures, 99
rationalizing, 107–112, 108

critique, 112
sequential rationality, 95, 97
system of beliefs, 95

sequential rationality, 95, 97
set of agreements, 9, 30, 71

finite, 50
Shapley value, 186, 188
SIR, 22
spatial competition, 188
standard automaton, 40
stationarity of strategy, 39
steady state market. See market in

steady state
strategic approach, 29–65, 69
strategy

as automaton, 39–41
in bargaining game of alternating

offers, 38
in bargaining game with imperfect

information, 93
dominated, 66
semi-stationary, 141

strong Pareto frontier, 15
subgame perfect equilibrium, 43

in bargaining game of alternating
offers, 43–54

multiplicity, 50
SYM, 12, 21
system of beliefs, 95

T

T , 30, 92
take-it-or-leave-it offer, 5, 62, 185, 196
threat game, 26
time preferences, 32, 82, 86

with constant cost of delay, 37, 92
with constant discount rate, 36, 49
examples, 36–37
with linear utility, 36
patience, 51
representations, 33, 34, 83, 84, 87, 89
stationary, 53–54

types of player, 93

U

ui, 10, 34
concavity, 83

Ui, 33, 34
unemployment, 188
utility function, 10, 33, 34

V

variable threats, 26
vi(xi, t), 34

W

wage negotiation, 19–20, 30, 66
choice of disagreement point, 89

war of attrition, 120

X

X, 30, 71, 92
(x, t), 32, 92
〈〈x, t〉〉, 73
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