

Lecture Notes in Computer Science 7554
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Francisco Heron de Carvalho Junior
Luis Soares Barbosa (Eds.)

Programming
Languages
16th Brazilian Symposium, SBLP 2012
Natal, Brazil, September 23-28, 2012
Proceedings

13

Volume Editors

Francisco Heron de Carvalho Junior
Universidade Federal do Ceará, Departamento de Computação
Campus Universitário do Pici, Bloco 910, 60440-900 Fortaleza, Brazil
E-mail: heron@lia.ufc.br

Luis Soares Barbosa
Universidade do Minho, Departamento de Informática
Campus de Gualtar, 4710-057 Braga, Portugal
E-mail: lsb@di.uminho.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33181-7 e-ISBN 978-3-642-33182-4
DOI 10.1007/978-3-642-33182-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012945547

CR Subject Classification (1998): D.3.1-2, D.3.4, D.2.5-6, D.2.9, D.1.5, D.2.11

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Brazilian Symposium on Programming Languages (SBLP) is an annual con-
ference that has been promoted by the Brazilian Computer Society (SBC) since
1996. In the last three years, it has been organized in the context of CBSOFT
(Brazilian Conference on Software: Theory and Practice), co-located with a num-
ber of other events on computer science and software engineering.

SBLP 2012 was its 16th edition held in Natal, Brazil. It was organized by the
Department of Informatics and Applied Mathematics (DIMAP) of the Federal
University of Rio Grande do Norte (UFRN), collocated with the 2012 editions
of SBMF (Brazilian Symposium on Formal Methods), SBES (Brazilian Sympo-
sium on Software Engineering), and SBCARS (Brazilian Symposium on Software
Components, Architecture and Reuse), under CBSOFT 2012. The previous edi-
tions of SBLP were held in São Paulo (2011), Salvador (2010), Gramado (2009),
Fortaleza (2008), Natal (2007), Itatiaia (2006), Recife (2005), Niterói (2004),
Ouro Preto (2003), Rio de Janeiro (2002), Curitiba (2001), Recife (2000), Porto
Alegre (1999), Campinas (1997), and Belo Horizonte (1996).

The Program Committee (PC) of SBLP 2012 was formed by 36 members,
from 10 countries. The Committee was responsible for selecting 10 full papers
and 2 short papers from a total of 27 submissions, with authors from Brazil,
Czech Republic, France, Netherlands, Portugal, USA and Uruguay. Each paper
was reviewed by at least five reviewers, including 21 reviewers outside the PC.
The refereeing reports were discussed by the reviewers, generally leading to a
consensus. The final selection was made by the Program Committee Co-chairs,
based on the final evaluations but also taking into account the reviewers reports
as well as all comments received during the discussion phase. As in previous edi-
tions, the authors of the 10 full papers were invited to submit extended versions
of their works to be considered for publication in a special issue of a reputed
journal in computer science.

The technical program of SBLP 2012 also included keynote talks from Bern-
hard K. Aichernig (Graz University of Technology, Austria), entitled “The Sci-
ence of Killing Bugs in a Black Box”, and Luis S. Barbosa (Universidade do
Minho, Portugal), entitled “Software Components as Invariant-Typed Arrows.”

Finally, we would like to thank all members of the PC for their efforts, the
referees for their reviews and contribution to the final discussion, the invited
speakers for accepting our invitation and enriching the technical program with
interesting talks, and all the authors, the sponsors and the Organizing Commit-
tee of CBSOFT 2012 for contributing to the success of SBLP 2012.

September 2012 Francisco Heron de Carvalho Junior
Luis Soares Barbosa

Organization

SBLP 2012 was organized by the Department of Informatics and Applied Mathe-
matics, Federal University of Rio Grande do Norte, and sponsored by the Brazil-
ian Computer Society (SBC), in the context of CBSOFT 2012 (Third Brazilian
Conference on Software: Theory and Practice).

Organizing Committee

Nélio Cacho UFRN, Brazil
Martin Musicante UFRN, Brazil

Steering Committee

Christiano Braga UFF, Brazil
Ricardo Massa Ferreira Lima UFPE, Brazil
André Luis de Medeiros Santos UFPE, Brazil
Francisco Carvalho Junior UFC, Brazil

Program Committee Chairs

Francisco Carvalho Junior UFC, Brazil
Luis Soares Barbosa Universidade do Minho, Portugal

Program Committee

Alberto Pardo Universidad de La Republica, Uruguay
Alex Garcia IME, Brazil
Alvaro Freitas Moreira UFRGS, Brazil
André Rauber Du Bois UFPel, Brazil
Andre Santos UFPE, Brazil
Carlos Camarão UFMG, Brazil
Christiano Braga UFF, Brazil
Fernando Castor Filho UFPE, Brazil
Fernando Quintão Pereira UFMG, Brazil
João Saraiva Universidade do Minho, Portugal
João F. Ferreira Teesside University, UK
Jonathan Aldrich Carnegie Mellon University, USA
José Luiz Fiadeiro University of Leicester, UK
Lucilia Figueiredo UFOP, Brazil
Manuel António Martins Universidade de Aveiro, Portugal

VIII Organization

Marcelo A. Maia UFU, Brazil
Marcello Bonsangue Leiden University/CWI, The Netherlands
Marcelo d’Amorim UFPE, Brazil
Marco Tulio Valente UFMG, Brazil
Mariza A. S. Bigonha UFMG, Brazil
Martin A. Musicante UFRN, Brazil
Noemi Rodriguez PUC-Rio, Brazil
Paulo Borba UFPE, Brazil
Peter Mosses Swansea University, UK
Qiu Zongyang Peking University, China
Rafael Dueire Lins UFPE, Brazil
Renato Cerqueira PUC-Rio, Brazil
Ricardo Massa UFPE, Brazil
Roberto S. Bigonha UFMG, Brazil
Roberto Ierusalimschy PUC-Rio, Brazil
Sandro Rigo UNICAMP, Brazil
Sérgio Soares UFPE, Brazil
Simon Thompson University of Kent, UK
Varmo Vene University of Tartu, Estonian

Additional Referees

T. M. Gawlitza
V. Vojdani
M. Garcia
J. Mendes
J. Barbosa
V. Rebello
S. Gouw

L. Santos
A. Annamaa
P. Martins
N. Oliveira
M. Viera
H. Yang
A. Sanchez

G. Albuquerque-Junior
C. Vieira
H. Rebêlo
J. Saraiva
L. Sierra

Sponsoring Institutions

CNPq - Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
http://www.cnpq.br

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
http://www.capes.gov.br

Ministério da Educação, Brazilian Government
http://www.mec.gov.br

Instituto Nacional de Ciência e Tecnologia para Engenharia de Software
http://www.ines.org.br

Microsoft Research
http://research.microsoft.com
NatalCard
http://www.natalcard.com.br

Table of Contents

Software Components as Invariant-Typed Arrows (Keynote Talk) 1
Luis Soares Barbosa

The Science of Killing Bugs in a Black Box (Keynote Talk) 6
Bernhard Klaus Aichernig

Spill Code Placement for SIMD Machines . 12
Diogo Nunes Sampaio, Elie Gedeon,
Fernando Magno Quintão Pereira, and Sylvain Collange

Left Recursion in Parsing Expression Grammars . 27
Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy

Speed and Precision in Range Analysis . 42
Victor Hugo Sperle Campos, Raphael Ernani Rodrigues,
Igor Rafael de Assis Costa, and Fernando Magno Quintão Pereira

Parameter Based Constant Propagation . 57
Péricles Rafael Oliveira Alves, Igor Rafael de Assis Costa,
Fernando Magno Quintão Pereira, and Eduardo Lage Figueiredo

Adaptable Parsing Expression Grammars . 72
Leonardo Vieira dos Santos Reis, Roberto da Silva Bigonha,
Vladimir Oliveira Di Iorio, and Luis Eduardo de Souza Amorim

Optimizing a Geomodeling Domain Specific Language 87
Bruno Morais Ferreira, Fernando Magno Quintão Pereira,
Hermann Rodrigues, and Britaldo Silveira Soares-Filho

A System for Runtime Type Introspection in C++ 102
Maximilien de Bayser and Renato Cerqueira

Model-Based Programming Environments for Spreadsheets 117
Jácome Cunha, João Saraiva, and Joost Visser

A Quantitative Assessment of Aspectual Feature Modules for Evolving
Software Product Lines . 134

Felipe Nunes Gaia, Gabriel Coutinho Sousa Ferreira,
Eduardo Figueiredo, and Marcelo de Almeida Maia

Attribute Grammar Macros . 150
Marcos Viera and Doaitse Swierstra

Author Index . 165

Software Components as Invariant-Typed Arrows

(Keynote Talk)

Luis Soares Barbosa

HASLab - High Assurance Software Laboratory,
INESC TEC & Universidade do Minho, Portugal

lsb@di.uminho.pt

Abstract. Invariants are constraints on software components which res-
trict their behavior in some desirable way, but whose maintenance entails
some kind of proof obligation discharge. Such constraints may act not
only over the input and output domains, as in a purely functional setting,
but also over the underlying state space, as in the case of reactive com-
ponents. This talk introduces an approach for reasoning about invariants
which is both compositional and calculational: compositional because it
is based on rules which break the complexity of such proof obligations
across the structures involved; calculational because such rules are de-
rived thanks to an algebra of invariants encoded in the language of binary
relations. A main tool of this approach is the pointfree transform of the
predicate calculus, which opens the possibility of changing the underly-
ing mathematical space so as to enable agile algebraic calculation. The
development of a theory of invariant preservation requires a broad, but
uniform view of computational processes embodied in software compo-
nents able to take into account data persistence and continued interac-
tion. Such is the plan for this talk: we first introduce such processes as
arrows, and then invariants as their types.

1 Components as Arrows

Probably the most elementary model of a computational process is that of a
function f : I −→ O, which specifies a transformation rule between two struc-
tures I and O. In a (metaphorical) sense, this may be dubbed as the ‘engineer’s
view’ of reality: here is a recipe to build gnus from gnats. Often, however, reality
is not so simple. For example, one may know how to produce ‘gnus’ from ‘gnats’
but not in all cases. This is expressed by observing the output of f in a more
refined context: O is replaced by O + 1 and f is said to be a partial function.
In other situations one may recognise that there is some context information
about ‘gnats’ that, for some reason, should be hidden from input. It may be the
case that such information is huge to be give as a parameter to f , or shared
by other functions as well. It might also be the case that building gnus would
eventually modify the environment, thus influencing latter production of more
‘gnus’. For U a denotation of such context information, the signature of f be-
comes f : I −→ (O × U)U . In both cases f can be typed as f : I −→ T O,

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 1–5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 L.S. Barbosa

for T = Id + 1 and T = (Id × U)U , respectively, where, intuitively, T is a type
transformer providing a shape for the output of f . Technically, T is a functor
which, to facilitate composition and manipulation of such functions, is often re-
quired to be a monad. In this way, the ‘universe’ in which f : I −→ T O lives
and is reasoned about is the Kleisli category for T . In fact, monads in functional
programming offer a general technique to smoothly incorporate, and delimit,
‘computational effects’ of this kind without compromising the purely functional
semantics of such languages, in particular, referential transparency.

A function computed within a context is often referred to as ‘state-based’, in
the sense the word ‘state’ has in automata theory — the memory which both
constrains and is constrained by the execution of actions. In fact, the ‘nature’ of
f : I −→ (O×U)U as a ‘state-based function’ is made more explicit by rewriting
its signature as f : U −→ (O × U)I

This, in turn, may suggest an alternative model for computations, which
(again in a metaphorical sense) one may dub as the ‘natural scientist’s view’.
Instead of a recipe to build ‘gnus’ from ‘gnats’, the simple awareness that there
exist gnus and gnats and that their evolution can be observed. That observation
may entail some form of interference is well known, even from Physics, and thus
the underlying notion of computation is not necessarily a passive one.

The able ‘natural scientist’ will equip herself with the right ‘lens’ — that is, a
tool to observe with, which necessarily entails a particular shape for observation.
Similarly, the engineer will resort to a ‘tool box’ emphasizing the possibility of at
least some (essentially finite) things being not only observed, but actually built.
In summary,

an observation structure: universe
c−→ ©�© universe

an assembly process :
���

artifact
a−→ artifact

Assembly processes are specified in a similar (but dual) way to observation struc-
tures. Note that in the picture ‘artifact’ has replaced ‘universe’, to stress that one
is now dealing with ‘culture’ (as opposed to ‘nature’) and, what is far more rel-
evant, that the arrow has been reversed. Formally, both ‘lenses’ and ‘toolboxes’
are functors. And, therefore, an observation structure is a ©�©-coalgebra, and

an assembly process is a
���

-algebra.
Algebras and coalgebras for a functor [13] provide abstract models of essen-

tially construction (or data-oriented) and observation (or behaviour -oriented)
computational processes, respectively. Construction compatibility and indistin-
guishability under observation emerge as the basic notions of equivalence which,
moreover, are characterized in a way which is parametric on the particular ‘tool-
box’ or ‘lens’ used, respectively. Algebraic compatibility and bisimilarity acquire
a shape, which is the source of abstraction such models are proud of. Moreover, it
is well known that, if ‘toolboxs’ or ‘lens’ are ‘smooth enough’, there exist canon-
ical representations of all ‘artifacts’ or ‘behaviours into an initial (respectively,
final) algebra (respectively, coalgebra).

Software Components as Invariant-Typed Arrows 3

Both assembly and observation processes, as discussed above, can be modeled
by functions, or more generally, by arrows in a suitable category, between the
universes-of-interest. Both aspects can be combined in a single arrow

���
U

d−→ ©�© U

formally known as a dialgebra. Initially defined in [14], their theory was devel-
oped in [15,1] and later by [16] in the style of universal algebra. In Computer
Science, dialgebras were firstly used in [7] to deal with data types in a purely
categorical way and more recently in [11], as a generalization of both algebras
and coalgebras. In [12], they are used to specify systems whose states may have
an algebraic structure, i.e., as models of evolving algebras [6].

Dialgebras (d : FU −→ GU) generalize many interesting computational struc-
tures, among which algebras (a : FU −→ U) and coalgebras (c : U −→ G U) as
the simplest instantiations. A basic example is provided by transition systems
with specified initial states. If the transition shape is given by G , functor Id+1
introduces initial states as constants. This makes possible, for example, to intro-
duce initial states on models of automata, as in d : Q+ 1 −→ QIn × 2. Another
example are components whose services may have a non deterministic output.
If functor F captures an algebraic signature, d : FU −→ P(U) caters for non
deterministic outcomes.

2 Invariants as Types

If dialgebras provide a very general model for computational processes regarded
as arrows between the universes-of-interest, one has also to be precise on what
such ‘universes’ really are. A key observation is that, along their lifetime, com-
puter systems are expected to maintain a certain number of properties on which
depend their consistency and data integrity. On the other hand, they are subject
to the permanent stress of ever changing business rules, which materialise into
(either static or dynamic) properties of the underlying code.

Both integrity constraints and domain business rules are examples of invariant
properties. The word ‘invariant’ captures the idea that such desirable properties
are to be maintained invariant, that is, unharmed across all transactions which
are embodied in the system’s functionality.

Invariants are ubiquitous in systems design. Actually, they take several forms
and are defined not only over the input and output domains, as in a purely
functional setting, but also over the underlying state space, as in imperative
programming or reactive systems design. Software evolution and reconfiguration,
on the other hand, entails the need for invariant checking whenever running
code is upgraded or even dynamically reconfigured. While testing is the most
widely used technique for such purpose, it is highly costly and does not ensure
correctness. Ideally, one should be able to formally verify that the new invariants
are enforced without running the (new) code at all.

4 L.S. Barbosa

This calls for a general theory of invariant preservation upon which one could
base such an extended static checking mechanism. This talk sums up a number
of steps towards such a theory which is both

– compositional : based on rules which break the complexity of the relevant
proof obligations across the structures involved

– calculational : amenable to agile algebraic manipulation

Our starting point is the explicit use of relational techniques, a body of knowledge
often referred to as the algebra of programming [5]. In particular an invariant
P ⊆ X is represented as a binary relation y ΦP x ≡ y = x ∧ x ∈ P , which is
called coreflexive because it is a fragment of the identity relation, i.e., ΦP ⊆ id.
Notice this is one of the standard ways of encoding a set as a binary relation.
Since predicates and coreflexives are in one to one correspondence, we will use
uppercase Greek letters to denote such coreflexives and will refer to them as
‘invariants’ with no further explanation.

Then, we resort to such relations to model types for arrows representing com-
putational processes. Actually, if one regards invariants as types, the computa-
tional processes they type are arrows :

FΦP
d �� GΦP (1)

where FΦ and GΦ represent invariant Φ placed in a context abstracted by func-
tors F and G , in the sense discussed above.

Typing computational processes (modelled as dialgebras) by invariants en-
codes a proof obligation. Actually the meaning of arrow (1) is

d · FΦP ⊆ GΦP · d (2)

which is computed as the relational counterpart to the following first-order for-
mula 〈∀ u :: u ∈ F(P) ⇒ d(u) ∈ G(P)〉.

The intuition behind this move is that a dialgebra typed by a predicate is a
structure for which such a predicate is to be maintained along its evolution. We
will show how this can generalised in the context of a category whose objects
are predicates and arrows encode proof obligations, cf,

– for general functions: Φ
f �� Ψ

– for reactive processes modelled as dialgebras FΦ
d �� GΦ

– for imperative programs : Φpre
R �� Φpost corresponding to Hoare triples

{post}R{pre}. This requires a generalization of the invariant calculus to
relations, to capture the calculus of weakest pre-conditions.

In each case, a calculus of invariants’ proof obligation discharge is developed,
generalising our previous work. References [2,8,3,9] provide a roadmap through
our research on (coalgebraic) calculi for components-as-arrows. Most results on
typing such arrows by predicates first appeared in [4], with further developments
in [10].

Software Components as Invariant-Typed Arrows 5

Acknowlegments. Long time collaboration with J. N. Oliveira (Minho),
Alexandra Silva (Nijmegen) and Manuel A. Martins (Aveiro), is deeply acknowl-
edged. This work is funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - the Portuguese Foundation for
Science and Technology within project FCOMP-01-0124-FEDER-010047.

References

1. Adámek, J.: Limits and colimits in generalized algebraic categories. Czechoslovak
Mathematical Journal 26, 55–64 (1976)

2. Barbosa, L.S.: Towards a Calculus of State-based Software Components. Journal
of Universal Computer Science 9(8), 891–909 (2003)

3. Barbosa, L.S., Oliveira, J.N.: Transposing partial components: an exercise on coal-
gebraic refinement. Theor. Comp. Sci. 365(1-2), 2–22 (2006)

4. Barbosa, L.S., Oliveira, J.N., Silva, A.: Calculating Invariants as Coreflexive Bisim-
ulations. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp.
83–99. Springer, Heidelberg (2008)

5. Bird, R., Moor, O.: The Algebra of Programming. Series in Computer Science.
Prentice Hall (1997)

6. Börger, E., Stärk, R.: Abstract state machines: A method for high-level system
design and analysis. Springer (2003)

7. Hagino, T.: A Typed Lambda Calculus with Categorical Type Constructors. In:
Pitt, D.H., Rydeheard, D.E., Poigné, A. (eds.) Category Theory and Computer
Science. LNCS, vol. 283, pp. 140–157. Springer, Heidelberg (1987)

8. Meng, S., Barbosa, L.S.: Components as coalgebras: The refinement dimension.
Theor. Comp. Sci. 351, 276–294 (2005)

9. Meng, S., Barbosa, L.S.: Towards the introduction of qos information in a com-
ponent model. In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung,
C.-C. (eds.) Proceedings of the 2010 ACM Symposium on Applied Computing,
Sierre, Switzerland, pp. 2045–2046. ACM (2010)

10. Oliveira, J.N.: Extended Static Checking by Calculation Using the Pointfree Trans-
form. In: Bove, A., Barbosa, L.S., Pardo, A., Pinto, J.S. (eds.) LerNet 2008. LNCS,
vol. 5520, pp. 195–251. Springer, Heidelberg (2009)

11. Poll, E., Zwanenburg, J.: From algebras and coalgebras to dialgebras. In: CMCS
2001. ENTCS, vol. 44, pp. 1–19. Elsevier (2001)

12. Reichel, H.: Unifying adt– and evolving algebra specifications. EATCS Bulletin 59,
112–126 (1996)

13. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Sci-
ence 249, 3–80 (2000)

14. Trnková, V., Goralćık, P.: On products in generalized algebraic categories. Com-
mentationes Mathematicae Universitatis Carolinae 1, 49–89 (1972)

15. Trnková, V.: On descriptive classification of set-functors. I. Commentat. Math.
Univ. Carol. 12, 143–174 (1971)

16. Voutsadakis, G.: Universal dialgebra: Unifying universal algebra and coalgebra.
Far East Journal of Mathematical Sciences 44(1) (2010)

The Science of Killing Bugs in a Black Box

(Keynote Talk)

Bernhard Klaus Aichernig

Institute for Software Technology,
Graz University of Technology, Austria

aichernig@ist.tugraz.at

Abstract. In this talk I will discuss the combination of model-based
testing and mutation testing. Model-based testing is a black-box testing
technique that avoids the labour of manually writing hundreds of test
cases, but instead advocates the capturing of the expected behaviour
in a model of the system under test. The test cases are automatically
generated from this model. The technique is receiving growing interest
in the embedded-systems domain, where models are the rule rather than
the exception.

Mutation testing is a technique for assessing and improving a test
suite. A number of faulty versions of a program under test are produced
by injecting bugs into its source code. These faulty programs are called
mutants. A tester analyses if his test suite can ”kill” all mutants. We say
that a test kills a mutant if it is able to distinguish it from the original.
The tester improves his test suite until all faulty mutants get killed.

In model-based mutation testing, we combine the central ideas of
model-based testing and mutation testing: we inject bugs in a model
and generate a test suite that will kill these bugs. In this talk, I will
discuss its scientific foundations, tools, and results. The foundations in-
clude semantics and conformance relations; the supporting tools involve
model checkers, constraint solvers and SMT solvers; our experimental
results are taken from two European projects on embedded-systems. I
will conclude with a proposal how model-based mutation testing can be
integrated into an agile, iterative development process.

1 Combining Model-Based and Mutation Testing

In this keynote talk I discuss the results of our ongoing research on model-based
mutation testing. Mutation testing is a fault-based white-box testing technique.
Model-based testing is a black-box testing technique. Their combination leads
to a fault-based black-box testing technique that we call model-based mutation
testing. Similar to the Science of Programming [12], we build our automated
testing approach on formal semantics and refinement techniques.

Model-based testing is a black-box testing technique focusing on the external
behaviour of a system under test (SUT). Hence, we assume that we have no
access to the internals of the SUT, like e.g., the source code. The test stimuli are

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 6–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Science of Killing Bugs in a Black Box 7

automatically generated from an abstract model of the SUT. This test model
is usually derived from the requirements. The model serves also as a test oracle
providing the verdict (pass or fail) of a test case execution. The models are
expressed in special modelling languages that support the abstract specification
of the central properties to be tested. A detailed introduction to model-based
testing can be found in [18,19].

Why should practitioners accept the efforts to learn new modelling languages
and create models along their implementations? The answer is cost reduction.
Testing consumes up to 50% of the development costs in a mission-critical
project. Once the models and adaptors are created, the test cases come for free,
i.e. they are automatically generated. Furthermore, when requirements change,
it is much easier to change an abstract model compared to updating hundreds
of hand-written test cases. Similarly, when the interface changes, only the test
adaptor, mapping abstract test cases to the concrete implementation level, needs
an update. Hence, test automation for saving costs is the major motivation from
a practitioner’s point of view.

Mutation testing is a way of assessing and improving a test suite by checking if
its test cases can detect a number of injected faults in a program. The faults are
introduced by syntactically changing the source code following patterns of typical
programming errors. These deviations in the code are called mutations. The
resulting faulty versions of the program are called mutants. Usually, each mutant
includes only one mutation. Examples of typical mutations include renaming of
variables, replacing operators, e.g., an assignment for an equivalence operator,
and slightly changing Boolean and arithmetic expressions. The number and kind
of mutations depend on the programming language and are defined as so-called
mutation operators.

A mutation operator is a rewrite rule that defines how certain terms in the
programming language are replaced by mutations. For every occurrence of the
term the mutation operator rewrites the original program into a new mutant.
After a set of mutants has been generated, the test cases are run both on the
original and on each mutant. If a test case can distinguish a mutant from the
original program, i.e. a different output behaviour can be observed, we say that
this test case kills a mutant. The goal is to develop a test suite that kills all
mutants, if possible (some mutants are behaviourally equivalent). This technique
is known since the 1970ies and receives growing interest [14]. However,“most
work on Mutation Testing has been concerned with the generation of mutants.
Comparatively less work has concentrated on the generation of test cases to kill
mutants.” [14] In our work we address this, by focusing on test case generation.

Model-based mutation testing uses the model for both, generating test vectors
and as a test oracle. Hence, we generate test cases from a model in order to
test the conformance of a SUT. In contrast to classical model-based testing,
only those test cases are generated that would kill a set of mutated models. The
generated tests are then executed on the SUT and will detect if a mutated model
has been implemented. Hence, model-based mutation testing rather tests against

8 B.K. Aichernig

non-conformance, than for conformance. In terms of epistemology, we are rather
aiming for falsification than for verification. It is a complementary fault-centred
testing approach.

2 From Semantics to Automated Test-Case Generation

Contracts are pre-postcondition specifications added to the source code of a pro-
gram. Contracts abstract away from the internals of an algorithm. Semantically,
they represent relations between the program’s state before and after execution.

Our first work on model-based mutation testing was purely theoretical [1,4].
The idea was to mutate the contracts and to derive test cases that would kill
implementations of the mutated contract. We exploited the negated refinement
laws of the refinement calculus. The result was a condition for a mutation test
case for non-deterministic contracts: the input should cover the case where the
mutant allows behaviour that is forbidden by the specification. In addition, the
tests should cover valid inputs with undefined behaviour in the mutated specifi-
cation. The insights gained were the key to our following more applied results.

We implemented a tool that took an UML-OCL contract and its mutant,
translated it to a constraint solving problem, and generated a test case covering
the fault in the mutant [8]. Later we applied this concept also to contracts in
the C# language [15].

Communication protocols. More recently, we applied model-based mutation test-
ing to several implementations of communication protocols. In this domain we
are interested in sequences of observable communication events. Hence, the gen-
erated test cases have the form of event sequences in the deterministic case, or
they have a tree-like shape in the non-deterministic case. This is in contrast
to the work on contracts, where we only generated test cases as input-output
vectors.

Our first work in this domain was the model-based testing of the Apache
web-server[3]. In this project we modelled parts of the HTTP-protocol in a pro-
cess algebra. We used counter-examples from conformance checks in the CADP
toolbox as test-purposes for the test-case generator TGV [13]. The hundred gen-
erated mutation tests did find some unexpected behaviour in the conditional
page requests to Apache.

Later, we optimised the technique for testing SIP registrars used in voice-over-
IP applications, see e.g. [20]. Here, we developed our own input-output confor-
mance checker (ioco) for generating mutation test cases. In one experiment the
mutation tests detected one additional fault in the commercial implementation
that was not revealed by other model-based testing techniques.

An interesting alternative to process algebras like LOTOS is the coordination
language REO [9]. It is a visual modelling language for expressing a network
coordinating the communication between a set of components. The coordination
is exogenous, which means that the network is responsible for connecting and
synchronising the communication. This new language for protocols opens new

The Science of Killing Bugs in a Black Box 9

opportunities for mutation. For example, exchanging one type of a connector
by another, changes the coordination pattern of a network. Hence, new fault
models can be expressed by single (first order) mutations. The basis for test case
generation was a new relational REO semantics [17]. This formulation made it
possible to adopt our earlier theoretical results [4].

Embedded systems are another line of research. We developed a tool chain com-
prising a translator from UML to a version of Back’s Action Systems [16] and a
newly developed conformance checker for Action System models [11]. The tool
can also handle the mutation testing of hybrid systems. Action systems are a
kind of guarded command language for modelling concurrent reactive systems
[10].

Our test case generator is an ioco checker for Action Systems. It takes two Ac-
tion Systems, an original and a mutated one, and generates a test case that kills
the mutant. It expects the actions being labelled as input, output and internal
actions. For non-deterministic models a tree-like adaptive test case is generated.
The tool was implemented in Sicstus Prolog exploiting the backtracking facilities
during the model explorations.

Different strategies for selecting the test cases are supported: linear test cases
to each fault, adaptive test cases to each fault, adaptive test cases to one fault.
The test-case generator also checks if a given or previously generated test case
is able to kill a mutant. Only if none of the test cases in a directory can kill
a new mutant, a new test case is generated. Furthermore, the tool is able to
generate test cases randomly. Our experiments showed that for complex models
it is beneficial to generate first a number of long random tests for killing the most
trivial mutants. Only when the randomly generated tests cannot kill a mutant,
the computationally more expensive conformance check is started. The different
strategies for generating test cases are reported in [2].

3 Symbolic Mutation Testing

We currently investigate different symbolic analysis techniques to address state
space explosion: constraint solving and SMT solving are promising candidates.
However, for reactive systems with long input-output traces, we cannot simply
translate the non-conformance problem to one big formula and let the solvers
do the job. A clever combination of normal form transformation, directed search
and solving is necessary. Note that the solving of non-deterministic models is
complex, since the formula includes negation [7].

First experiments with our tool based on a constraint solver have shown
promising results [6]. By now, our symbolic tool has been applied to a car alarm
system. The refinement checks for 207 mutants require 19 seconds, whereas our
previous explicit ioco checker, spends 68 seconds for the same set of mutants
[5]. Another implementation using the SMT solver Z3 shows similar good per-
formance.

10 B.K. Aichernig

Generating test cases from mutants is computationally costly. This might be
a reason for the limited amount of research in this direction. However, recent
results show that for many systems under test this can be put into practise.

Acknowledgement. The recent research has received funding from the
ARTEMIS Joint Undertaking under grant agreement No 269335 and from the
Austrian Research Promotion Agency (FFG) under grant agreement No 829817
for the implementation of the project MBAT, Combined Model-based Analysis
and Testing of Embedded Systems. The work was also funded by the Austrian
Research Promotion Agency (FFG), program line “Trust in IT Systems”, project
number 829583, TRUst via Failed FALsification of Complex Dependable Systems
Using Automated Test Case Generation through Model Mutation (TRUFAL).

References

1. Aichernig, B.K.: Mutation Testing in the Refinement Calculus. Formal Aspects of
Computing 15(2-3), 280–295 (2003)

2. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Efficient mutation killers in
action. In: IEEE Fourth International Conference on Software Testing, Verification
and Validation, ICST 2011, Berlin, Germany, March 21-25, pp. 120–129. IEEE
Computer Society (2011)

3. Aichernig, B.K., Delgado, C.C.: From Faults Via Test Purposes to Test Cases: On
the Fault-Based Testing of Concurrent Systems. In: Baresi, L., Heckel, R. (eds.)
FASE 2006. LNCS, vol. 3922, pp. 324–338. Springer, Heidelberg (2006)

4. Aichernig, B.K., He, J.: Mutation testing in UTP. Formal Aspects of Comput-
ing 21(1-2), 33–64 (2009)

5. Aichernig, B.K., Jöbstl, E.: Efficient refinement checking for model-based mutation
testing. In: Proceedings of the 12th International Conference on Quality Software
(QSIC 2012). IEEE Computer Society (in press, 2012)

6. Aichernig, B.K., Jöbstl, E.: Towards symbolic model-based mutation testing: Com-
bining reachability and refinement checking. In: 7th Workshop on Model-Based
Testing (MBT 2012). EPTCS, vol. 80, pp. 88–102 (2012)

7. Aichernig, B.K., Jöbstl, E.: Towards symbolic model-based mutation testing: Pit-
falls in expressing semantics as constraints. In: Workshops Proc. of the 5th Int.
Conf. on Software Testing, Verification and Validation (ICST 2012), pp. 752–757.
IEEE Computer Society (2012)

8. Aichernig, B.K., Salas, P.A.P.: Test case generation by OCL mutation and con-
straint solving. In: Cai, K.-Y., Ohnishi, A. (eds.) Fifth International Confer-
ence on Quality Software, QSIC 2005, Melbourne, Australia, September 19-21,
pp. 64–71. IEEE Computer Society (2005)

9. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composi-
tion. Mathematical Structures in Computer Science 14(3), 329–366 (2004)

10. Back, R.-J., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. In: 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, PODC 1983, pp. 131–142. ACM (1983)

11. Brandl, H., Weiglhofer, M., Aichernig, B.K.: Automated conformance verification
of hybrid systems. In: Wang, J., Chan, W.K., Kuo, F.-C. (eds.) Proceedings of
the 10th International Conference on Quality Software, QSIC 2010, Zhangjiajie,
China, July 14-15, pp. 3–12. IEEE Computer Society (2010)

The Science of Killing Bugs in a Black Box 11

12. Gries, D.: The Science of Programming. Texts and Monographs in Computer Sci-
ence. Springer (1981)

13. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer (STTT) 7(4), 297–315 (2005)

14. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering 37(5), 649–678 (2011)

15. Krenn, W., Aichernig, B.K.: Test case generation by contract mutation in Spec#.
In: Finkbeiner, B., Gurevich, Y., Petrenko, A.K. (eds.) Proceedings of Fifth Work-
shop on Model Based Testing (MBT 2009), York, England, March 22. Electronic
Notes in Theoretical Computer Science, vol. 253(2), pp. 71–86. Elsevier (October
2009)

16. Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to Labeled Transition
Systems for Test-Case Generation – A Translation via Object-Oriented Action
Systems. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 186–207. Springer, Heidelberg (2010)

17. Meng, S., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.:
Connectors as designs: Modeling, refinement and test case generation. Science of
Computer Programming 77(7-8), 799–822 (2012)

18. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers (2007)

19. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability (2011)

20. Weiglhofer, M., Aichernig, B.K., Wotawa, F.: Fault-based conformance testing in
practice. International Journal of Software and Informatics 3(2-3), 375–411 (2009);
Special double issue on Formal Methods of Program Development edited by Dines
Bjoerner

Spill Code Placement for SIMD Machines

Diogo Nunes Sampaio, Elie Gedeon, Fernando Magno Quintão Pereira,
and Sylvain Collange

Departamento de Ciência da Computação – UFMG – Brazil
{diogo,fernando,sylvain.collange}@dcc.ufmg.br, elie.gedeon@ens-lyon.fr

Abstract. The Single Instruction, Multiple Data (SIMD) execution model has
been receiving renewed attention recently. This awareness stems from the rise of
graphics processing units (GPUs) as a powerful alternative for parallel comput-
ing. Many compiler optimizations have been recently proposed for this hardware,
but register allocation is a field yet to be explored. In this context, this paper de-
scribes a register spiller for SIMD machines that capitalizes on the opportunity
to share identical data between threads. It provides two different benefits: first, it
uses less memory, as more spilled values are shared among threads. Second, it
improves the access times to spilled values. We have implemented our proposed
allocator in the Ocelot open source compiler, and have been able to speedup the
code produced by this framework by 21%. Although we have designed our al-
gorithm on top of a linear scan register allocator, we claim that our ideas can be
easily adapted to fit the necessities of other register allocators.

1 Introduction

The increasing programmability, allied to the decreasing costs of graphics processing
units (GPUs), is boosting the interest of the industry and the academia in this hard-
ware. Today it is possible to acquire, for a few hundred dollars GPUs with a thousand
processing units on the same board. This possibility is bringing together academics,
engineers and enthusiasts, who join efforts to develop new programming models that fit
the subtleties of the graphics hardware. The compiler community is taking active part
in such efforts. Each day novel analyses and code generation techniques that specifi-
cally target GPUs are designed and implemented. Examples of this new breed include
back-end optimizations such as Branch Fusion [10], thread reallocation [29], iteration
delaying [7] and branch distribution [17]. Nevertheless, register allocation, which is ar-
guably the most important compiler optimization, has still to be revisited under the light
of graphics processing units.

Register allocation is the problem of finding locations for the values manipulated by
a program. These values can be stored either in registers, few but fast, or in memory,
plenty but slow. Values mapped to memory are called spills. A good allocator keeps
the most used values in registers. Register allocation was already an important issue
when the first compilers where designed, sixty years ago [2]. Since then, this problem
has been explored in a plethora of ways, and today an industrial-strength compiler is as
good as a seasoned assembly programmer at assigning registers to variables. However,
GPUs, with their Single Instruction, Multiple Data (SIMD) execution model, pose new

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 12–26, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Spill Code Placement for SIMD Machines 13

challenges to traditional register allocators. By taking advantage of explicit data-level
parallelism, GPUs provide about ten times the computational throughput of compara-
ble CPUs [19]. They run tens of thousands of instances (or threads) of a program at
the same time. Such massive parallelism causes intense register pressure, because the
register bank is partitioned between all threads. For instance, the GeForce 8800 has
8,192 registers per multiprocessor. This number might seem large at first, but it must be
shared with up to 768 threads, leaving each thread with at most 10 registers. It is our
goal, in this paper, to describe a register allocator that explores the opportunity to share
identical data between threads to relieve register pressure.

In this paper we propose a Divergence Aware Spilling Strategy. This algorithm is
specifically tailored for SIMD machines. In such model we have many threads, also
called processing elements (PEs), executing in lock-step. All these PEs see the same
set of virtual variable names; however, these names are mapped into different physical
locations. Some of these variables, which we call uniform, always hold the same value
for all the threads at a given point during the program execution. Our register allocator is
able to place this common data into fast-access locations that can be shared among many
threads. When compared to a traditional allocator, the gains that we can obtain with our
divergence aware design are remarkable. We have implemented the register allocator
proposed in this paper in the Ocelot open source CUDA compiler [12], and have used
it to compile 46 well-known benchmarks to a high-end GPU. The code that we produce
outperforms the code produced by Ocelot’s original allocator by almost 21%. Notice
that we are not comparing against a straw-man: Ocelot is an industrial quality compiler,
able to process the whole PTX instruction set, i.e., the intermediate format that NVIDIA
uses to represent CUDA programs. The divergence aware capabilities of our allocator
have been implemented as re-writing rules on top of Ocelot’s allocator. In other words,
both register allocators that we empirically evaluate use the same algorithm. Thus, we
claim in this paper that most of the traditional register allocation algorithms used in
compilers today can be easily adapted to be divergence aware.

2 Background

C for CUDA is a programming language that allows programmers to develop appli-
cations to NVIDIA’s graphics processing units. This language has a syntax similar to
standard C; however, its semantics is substantially different. This language follows the
so called Single Instruction, Multiple Thread (SIMT) execution model [14,15,20,21]. In
this model, the same program is executed by many virtual threads. Each virtual thread
is instantiated to a physical thread, and the maximum number of physical threads si-
multaneously in execution depends on the capacity of the parallel hardware. In order
to keep the hardware cost low, GPUs resort to SIMD execution. Threads are bundled
together into groups called warps in NVIDIA’s jargon, or wavefronts in ATI’s. Threads
in a warp execute in lockstep, which allows them to share a common instruction con-
trol logic. As an example, the GeForce GTX 580 has 16 Streaming Multiprocessors,
and each of them can run 48 warps of 32 threads. Thus, each warp might perform 32
instances of the same instruction in lockstep mode.

Regular applications, such as scalar vector multiplication, fare very well in GPUs, as
we have the same operation being independently performed on different chunks of data.

14 D.N. Sampaio et al.

However, divergences may happen in less regular applications when threads inside the
same warp follow different paths after processing the same branch. The branching con-
dition might be true to some threads, and false to others. Given that each warp has ac-
cess to only one instruction at each time, in face of a divergence, some threads will have
to wait, idly, while others execute. Hence, divergences may be a major source of per-
formance degradation. As an example, Baghsorkhi et al. [3] have analytically showed
that approximately one third of the execution time of the prefix scan benchmark [18],
included in the CUDA software development kit (SDK), is lost due to divergences.

Divergence Analysis. A divergence analysis is a static program analysis that identifies
variables that hold the same value for all the threads in the same warp. In this paper
we will be working with a divergence analysis with affine constraints, which we have
implemented previously [25]. This analysis binds each integer variable in the target
program to an expression a1Tid+a2, where the special variable Tid is the thread identifier,
and a1, a2 are elements of a lattice C. C is the lattice formed by the set of integers Z
augmented with a top element � and a bottom element ⊥, plus a meet operator ∧. We
let c1 ∧ c2 = ⊥ if c1 � c2, c ∧ � = � ∧ c = c, and c ∧ c = c. Similarly, we let
c + ⊥ = ⊥ + c = ⊥. Notice that C is the lattice normally used to implement constant
propagation; hence, for a proof of monotonicity, see Aho et al [1, p.633-635]. We define
A as the product lattice C×C. If (a1, a2) are elements of A, we represent them using the
notation a1Tid + a2. We define the meet operator of A as follows:

(a1Tid + a2) ∧ (a′1Tid + a′2) = (a1 ∧ a′1)Tid + (a2 ∧ a′2) (1)

A divergence analysis with affine constraints classifies the program variables in the
following groups:

– Constant: every processing element sees the variable as a constant. Its abstract
state is given by the expression 0Tid + c, c ∈ Z.

– Uniform: the variable has the same value for all the processing elements, but this
value is not constant along the execution of the program. Its abstract state is given
by the expression 0Tid + ⊥.

– Constant affine: the variable is an affine expression of the identifier of the process-
ing element, and the coefficients of this expression are constants known at compi-
lation time. Its abstract state is given by the expression cTid + c′, {c, c′} ⊂ Z.

– Affine: the variable is an affine expression of the identifier of the processing ele-
ment, but the free coefficient is not known. Its abstract state is given by the expres-
sion cTid + ⊥, c ∈ Z.

– Divergent: the variable might have possibly different values for different threads,
and these values cannot be reconstructed as an affine expression of the thread iden-
tifier. Its abstract state is given by the expression ⊥Tid + ⊥.

Figure 1 illustrates how the divergence analysis is used. The kernel in Figure 1(a) av-
erages the columns of a matrix m, placing the results in a vector v. Figure 1(b) shows
this kernel in assembly format. We will be working in this representation henceforth.
It is clear that all the threads that do useful work, e.g., that enter the gray area in 1(a)
iterate the loop the same number of times. Some variables in this program always have

Spill Code Placement for SIMD Machines 15

d = 0
s = 0.0F
t0 = c * c
N = tid + t0
i = tid

if i N jp L12

t1 = i * 4
ld.global [m+t1] t2
s = t2 + s
d = d + 1
i = i + c
jp L5

t3 = s / d
t4 = 4 * tid
st.global t3 [v+t4]

__global__ void avgColumn(float* m, float* v, int c) {

 int tid = blockIdx.x * blockDim.x + threadIdx.x;

 if (tid < c) {

 int d = 0;

 float s = 0.0F;

 int N = tid + c * c;

 for (int i = tid; i < N; i += c) {

 s += m[i];

 d += 1;

 }

 v[tid] = s / d;

 }

}

[c] = 0 tid +

[d] = 0 tid +

[s] = tid +

[t0] = 0 tid +

[N] = 1 tid +

[i] = 1 tid +

(a) (b)

(c) [t1] = 4 tid +

[t3] = tid +

[t4] = 4 tid + 0

L0:

L5:

L6:

L12:

Fig. 1. (a) A kernel, written in C for CUDA, that fills a vector v with the averages of the columns
of matrix m. (b) The control flow graph (CFG) of the gray area in the kernel code. (c) The results
of a divergence analysis for this kernel.

the same value for all the threads. The constant c, and the base addresses m and v,
for instance. Furthermore, variable d, which is incremented once for each iteration is
also uniform. Other variables, like i, do not have the same value for all the processing
elements, but their values are functions of the thread identifier Tid; hence, these vari-
ables are classified as affine. The limit of the loop, N, is also an affine expression of
Tid. Because i and N are both affine expression of Tid with the same coefficient 1, their
difference is uniform. Therefore, the divergence analysis can conclude that the loop is
non-divergent; that is, all the threads that enter the loop iterate it the same number of
times. Finally, there are variables that might have a completely different value for each
processing element, such as s, the sum of each column, and t3, the final average which
depends on s. Figure 1(c) summarizes the results of the divergence analysis.

3 Divergence Aware Register Allocation

In this section we explain why register allocation for GPUs differs from traditional
register allocation. We also show how the divergence analysis can improve the results
of register allocation. Finally, we close this section discussing some important design
decisions that we chose to apply in our implementation.

3.1 Defining the Register Allocation Problem for GPUs

Similar to traditional register allocation we are interested in finding storage area to
the values produced during program execution. However, in the context of graphics
processing units, we have different types of memory to consider. Thus, in the rest of
this paper we assume that a value can be stored in one of the following locations:

16 D.N. Sampaio et al.

– Registers: these are the fastest storage regions. A traditional GPU might have a
very large number of registers, for instance, one streaming multiprocessor (SM) of
a GTX 580 GPU has 32,768 registers. However, running 1536 threads at the same
time, this SM can afford at most 21 registers (32768 / 1536) to each thread in order
to achieve maximum hardware occupancy.

– Shared memory: this fast memory is addressable by each thread in flight, and
usually is used as a scratchpad cache. It must be used carefully, to avoid common
parallel hazards, such as data races. Henceforth we will assume that accessing data
in the shared memory is less than 3 times slower than in registers [24].

– Local memory: this off-chip memory is private to each thread. Modern GPUs pro-
vide a cache to the local memory, which is as fast as the shared memory. We will
assume that a cache miss is 100 times more expensive than a hit.

– Global memory: this memory is shared among all the threads in execution, and
is located in the same chip area as the local memory. The global memory is also
cached. We shall assume that it has the same access times as the local memory.

As we have seen, the local and the global memories might benefit from a cache, which
uses the same access machinery as the shared memory. Usually this cache is small: the
GTX 580 has 64KB of fast memory, out of which 48KB are given to the shared memory
by default, and only 16KB are used as a cache. This cache area must be further divided
between global and local memories. Equipped with these different notions of storage
space, we define the divergence aware register allocation problem as follows:

Definition 1. Given a set of variables V, plus a divergence analysis D : V �→ A, find
a mapping R : V �→ M that minimizes the costs paid to access these variables. The
possible storage locations M are registers, shared memory, local memory and global
memory. Two variables whose live ranges overlap must be given different positions if
they are placed on the same location.

Figure 2 shows the instance of the register allocation problem that we obtain from the
program in Figure 1. We use bars to represent the live ranges of the variables. The live
range of a variable is the collection of program points where that variable is alive. A
variable v is alive at a program point p if v is used at a program point p′ that is reachable
from p on the control flow graph, and v is not redefined along this path. The colors of
the bars represent the abstract state of the variables, as determined by the divergence
analysis.

3.2 A Quick Glance at Traditional Register Allocation

Figure 3 shows a possible allocation, as produced by a traditional algorithm, such as
the one used in nvcc, NVIDIA’s CUDA compiler. In this example we assume that a
warp is formed by only two threads, and that each thread can use up to three general
purpose registers. For simplicity we consider that the registers are type agnostic and
might hold either integer or floating point values. Finally, we assume that the parameters
of the kernel, variables c, m and v are already stored in the global memory. A quick
inspection of Figure 2 reveals that only three registers are not enough to provide fast
storage units to all the variables in this program. For instance, at label L8 we have

Spill Code Placement for SIMD Machines 17

c m v

d
s

t0

N

i

t1

t2

t3

t4

: (0 Tid + c) : (c Tid +) : (Tid +)

if i < N jp L12

d = 0

s = 0.0F

t0 = c * c

N = tid + t0

i = tid

t3 = s / d

t4 = tid*4

st.global t3 [v+t4]

L0

L1

L2

L3

L4

L5

L6 t1 = i * 4

ld.global [m+t1] t2

s = t2 + s

d = d + 1

i = i + c

jp L5

L7

L14

L13

L12

L8

L9

L10

L11

Fig. 2. An instance of the register allocation problem in graphics processing units

eight overlapping live ranges. Therefore, some variables must be mapped to memory,
in a process known as spilling. The variables that are assigned memory locations are
called spills. Minimizing the number of spilled values is a well-known NP-complete
problem [8,22,26]. Furthermore, minimizing the number of stores and loads in the target
program is also NP-complete [13]. Thus, we must use some heuristics to solve register
allocation.

There exist many algorithms to perform register allocation. In this paper we adopt an
approach called linear scan [23], which is used in many industrial strength compilers.
The linear scan algorithm sees register allocation as the problem of coloring an interval
graph, which has polynomial time solution [16]. However, this correspondence is not
perfect: live ranges might have holes, which the intervals in an interval graph do not
have. Thus, the linear scan algorithm provides an approximation of the optimal solu-
tion to the register allocation problem. This algorithms starts by linearizing the control
flow graph of the program, finding an arbitrary ordering of basic blocks, in such a way
that each live range is seen as an interval. The left side of Figure 2 shows a possible
linearization of the program given in Figure 1(b). After linearizing the program, the
allocator scans the live ranges, from the beginning of the program towards the end, as-
signing variables to registers in the process. If a spill must happen, then a conventional
approach is to send to memory the variable with the furthest use from the spilling point
onwards. This approach is known as Belady’s Heuristics, as it has been first described
by Belady in the context of virtual page management in operating systems [4].

18 D.N. Sampaio et al.

Program

r0 r1 r2 r0 r1 r2 0 1 2 0 1 2 0 1 2

L0 d = 0 c m v

L1 st.local d [1] d d c m v

L2 s = 0.0F d d d d c m v

L3 st.local s [0] d s d s d d c m v

L4 ld.global [0] c d s d s s d s d c m v

L5 t0 = c * c d s c d s c s d s d c m v

L6 N = tid + t0 t0 s c t0 s c s d s d c m v

L7 st.local N [2] t0 s N t0 s N s d s d c m v

L8 i = tid t0 s N t0 s N s d N s d N c m v

L9 ld.local [2] N i s N i s N s d N s d N c m v

L10 if i < N jp L24 i s N i s N s d N s d N c m v

L11 t1 = i * 4 i s N i s N s d N s d N c m v

L12 ld.global [1] m i s t1 i s t1 s d N s d N c m v

L13 ld.global [m+t1] t2 i m t1 i m t1 s d N s d N c m v

L14 ld.local [0] s i m t2 i m t2 s d N s d N c m v

L15 s = t2 + s i s t2 i s t2 s d N s d N c m v

L16 st.local s [0] i s t2 i s t2 s d N s d N c m v

L17 ld.local [1] d i s t2 i s t2 s d N s d N c m v

L18 d = d + 1 i s d i s d s d N s d N c m v

L19 st.local d [1] i s d i s d s d N s d N c m v

L20 ld.global [0] c i s d i s d s d N s d N c m v

L21 i = i + c i s c i s c s d N s d N c m v

L22 jp L9 i s c i s c s d N s d N c m v

L23 ld.local [1] d i s c i s c s d N s d N c m v

L24 t3 = s / d i s d i s d s d N s d N c m v

L25 t4 = tid*4 t3 s d t3 s d s d N s d N c m v

L26 ld.global [2] v t3 t4 d t3 t4 d s d N s d N c m v

L27 st.global t3 [v+t4] t3 t4 v t3 t4 v s d N s d N c m v

globalregister file

PE0 PE1 PE0 PE1

local

Fig. 3. Traditional register allocation, with spilled values placed in local memory

Current register allocators for graphics processing units place spilled values in the
local memory. Figure 3 illustrates this approach. In this example, variables s, d and
N had to be spilled. Thus, each of these variables receive a slot in local memory. The
spilled data must be replicated once for each processing element, as each of them has a
private local memory area. Accessing data from the local memory is an expensive oper-
ation, because this region is off-chip. To mitigate this problem, modern GPUs provide a
cache to the local and to the global memories. However, because the number of threads
using the cache is large – in the order of thousands – and the cache itself is small, e.g.,
16KBs, cache misses are common. In the next section we show that it is possible to
improve this situation considerably, by taking the results of the divergence analysis into
consideration.

3.3 Divergence Aware Spilling as a Set of Rewriting Rules

Figure 4 shows the code that we generate for the program in Figure 2. The most apparent
departure from the allocation given in Figure 3 is the fact that we have moved to shared
memory some information that was originally placed in local memory. Our divergence

Spill Code Placement for SIMD Machines 19

Program

PE0 PE1

r0 r1 r2 r0 r1 r2 0 0 0 1 0 1 2

L0 d = 0 c m v

L1 st.shared d [0] d d c m v

L2 s = 0.0F d d d c m v

L3 st.local s [0] d s d s d c m v

L4 ld.global [0] c d s d s s s d c m v

L5 t0 = c * c d s c d s c s s d c m v

L6 N = tid + t0 t0 s c t0 s c s s d c m v

L7 st.shared t0 [1] t0 s N t0 s N s s d c m v

L8 i = tid t0 s N t0 s N s s d t0 c m v

L9 ld.shared [1] t0 i s N i s N s s d t0 c m v

L10 N = tid + t0 i s t0 i s t0 s s d t0 c m v

L11 if i < N jp L24 i s N i s N s s d t0 c m v

L12 t1 = i * 4 i s N i s N s s d t0 c m v

L13 ld.global [1] m i s t1 i s t1 s s d t0 c m v

L14 ld.global [m+t1] t2 i m t1 i m t1 s s d t0 c m v

L15 ld.local [0] s i m t2 i m t2 s s d t0 c m v

L16 s = t2 + s i s t2 i s t2 s s d t0 c m v

L17 st.local s [0] i s t2 i s t2 s s d t0 c m v

L18 ld.shared [0] d i s t2 i s t2 s s d t0 c m v

L19 d = d + 1 i s d i s d s s d t0 c m v

L20 st.shared d [0] i s d i s d s s d t0 c m v

L21 ld.global [0] c i s d i s d s s d t0 c m v

L22 i = i + c i s c i s c s s d t0 c m v

L23 jp L9 i s c i s c s s d t0 c m v

L24 ld.shared [0] d i s c i s c s s d t0 c m v

L25 t3 = s / d i s d i s d s s d t0 c m v

L26 t4 = tid*4 t3 s d t3 s d s s d t0 c m v

L27 ld.global [2] v t3 t4 d t3 t4 d s s d t0 c m v

L28 st.global t3 [v+t4] t3 t4 v t3 t4 v s s d t0 c m v

global

PE0 PE1

register file local shared

Fig. 4. Register allocation with variable sharing

aware register allocator is basically a system of rewriting rules built on top of a host
algorithm. We have identified four different ways to rewrite the code produced by the
traditional allocator, given the information made available by the divergence analysis.
These rules are described in Figure 5. In the rest of this section we will describe each
of these rules, and, in the process, explain how we arrived at the allocation given in
Figure 4.

Constant Propagation. The divergence analysis discussed in Section 2 marks, as a
byproduct, some variables as constants. Thus, it enables us to do constant propagation,
a well-known compiler optimization [28]. Indeed, as mentioned before, the lattice that
underlies this analysis is the same structure that grounds constant propagation. Variables
that are proved to be constant do not need to be mapped into memory. As we see in the
Figure 5(a), constant propagation can eliminate all the memory accesses related to the
spilled value, cutting the stores off, and replacing the loads by simple variable assign-
ments. In many cases it is possible to fold the constant value directly in the instruction
where that value is necessary; thus, even avoiding the copy that replaces loads. In our
experiments we did not find many opportunities to do constant propagation, simply be-
cause the code that we received from the NVIDIA compiler had already been optimized.

20 D.N. Sampaio et al.

Original spill code:

st.local v [@]

ld.local [@] v

Constant Propagation:

{}

v = c

[v] = 0 tid + c

Original spill code:

st.local v [@]

ld.local [@] v

Rematerialization:

{}

v = c tid + c'

[v] = c tid + c'

Original spill code:

st.local v [@]

Sharing:

t = v c tid

st.shared t [@']

ld.shared [@'] t

v = c tid + t

[v] = c tid +

ld.local [@] v

Original spill code:

st.local v [@]

ld.local [@] v

Sharing:

st.shared v [@']

ld.shared [@'] v

[v] = 0 tid +

(a) (b)

(c) (d)

Fig. 5. Rules that rewrite the code produced by a divergent aware register allocator in order to
take benefit from divergence information

However, we found many situations that benefit from the next rewriting rules that we
describe.

Rematerialization. Variables that the divergence analysis identifies as affine constants
can be rematerialized. Rematerialization is a technique proposed by Briggs et al. [6]
to trade memory accesses by recomputation of values. If all the information neces-
sary to reconstruct a spilled value is available in registers at the point where that value
is needed, the register allocator can recompute this value, instead of bringing it back
from memory. Like constant propagation, rematerialization is an optimization that com-
pletely eliminates all the memory accesses related to the spilled value. Figure 5(b)
shows the rewriting rules that we use to rematerialize spilled values. Loads can be com-
pletely eliminated. Stores can be replaced by a recomputation of the spilled value, given
the thread identifier.

Sharing of Uniform Variables. Threads inside a warp can share uniform variables.
Figure 5(c) shows the rewriting rules that we use in this case. Accesses to the local
memory are replaced by analogous accesses to the shared memory. In Figure 4 variable
d has been shared in this way. Notice how the store in labels L1 and L19 in Figure 3
have been replaced by stores to shared memory in labels L1 and L20 of Figure 4. Similar
changes happened to the instructions that load d from local memory in Figure 3.

Sharing of Affine Variables. The last type of rewriting rule, describing the sharing of
affine variables, is shown in Figure 5(d). If the spilled variable v is an affine expression
of the thread identifier, then its abstract state is �v� = cTid + t, where c is a constant
known statically, and t is a uniform value. In order to implement variable sharing in this
case, we must extract t, the unknown part of v, and store it in shared memory. Whenever
necessary to reload v, we must get back from shared memory its dynamic component t,

Spill Code Placement for SIMD Machines 21

and then rebuild v’s value from the thread identifier and t. Notice that only one image
of the value t is stored for all the threads in the warp. Thus, the sharing of affine and
uniform variables produce the same number of accesses to the shared memory. The
difference is that a multiply-add operation is necessary to reconstruct the affine value.
Variable N has been spilled in this way in Figure 4. In line L7we have stored its dynamic
component. In lines L9 and L10 we rebuild the value of N, an action that replaces the
load from local memory seen at line L9 of Figure 3.

3.4 Implementation Details

Handling Multiple Warps: There is an important implementation detail that deserves
attention: a variable is uniform per warp; however, many warps integrate a GPU appli-
cation. In fact, modern GPUs are implemented as multiple SIMD units [15]. In order
to do variable sharing, we partition the shared memory among all the warps that might
run simultaneously. This partitioning avoids the need to synchronize accesses to the
shared memory between different warps. On the other hand, the register allocator re-
quires more space in the shared memory. That is, if the allocator finds out that a given
program demands N bytes to store uniform variables, and the target GPU runs up to M
warps simultaneously, then the divergent aware register allocator will need M×N bytes
in shared memory. We had to face an additional difficulty: we do not know, at com-
pilation time, how many warps will run simultaneously. To circumvent this obstacle,
our implementation assumes the existence of 32 warps in flight, the maximum number
that our hardware supports. If the shared memory does not provide enough space for
spilling, then our allocator falls back to the default execution mode, mapping spilled
variables to local memory. This kind of situation will happen if the original program is
already using too much of the shared memory space.

Spilling Policy. A good spilling policy for a divergent aware register allocator must
consider the data type of the spilled variable and this variable’s access frequency. For
instance, the cost to rematerialize a variable depends on its size. Operations involving
64-bit integer values, on a NVIDIA’s Fermi GPU, can be as much as four times slower
than similar operations with 32-bits operands. Thus, the re-writing rule that replaces
loads in Figure 5(b) and (d) can cost up to eight times more when applied onto doubles.
In addition to the variable’s data time, its access frequency also plays an important
role in the overall cost of spilling it. The access frequency is more important when we
consider the spilling of affine variables, as described in Figure 5(d). Each load of an
affine variable has a fixed cost that includes reading the shared memory and performing
a multiply-add operation to reconstruct the spilled value. If the variable is kept in the
local memory, loading it might require an expensive trip to the off-chip memory space.
However, if the variable is frequently accessed, then it is likely to be kept in cache from
one load to the other. Thus, the cost of reading it from the local memory is amortized
over the many times the variable is read or updated. On the other hand, if it is stored
in the shared memory, not only the data access fee, but also the multiply-add cost must
still be paid whenever the variable is loaded or stored.

SSA Elimination. Many compilers use the Static Single Assignment (SSA) form [11]
as the default intermediate representation. Examples include gcc, LLVM, Jikes, and

22 D.N. Sampaio et al.

...

a
0
 = 1

...

a
2
 = tid

a
1
 = (a

0
, a

2
)

• = a
1

[a0] = 0 tid + 1

[a1] = 1 tid + 0

[a2] = (0 1) tid + (0 1)

 = tid +

...

a = 1

...

a = tid

• = a

...

[a] = a0 a1 a2

 = tid +

(a) (b) (c) (d)

Fig. 6. (a) Program before SSA elimination. (b) Divergent status of the variables before SSA
elimination. (c) Program after SSA elimination. (d) Divergent status after SSA elimination.

Ocelot, our target compiler. Programs in this format provide the core property that any
variable has only one definition site. To ensure this property, the SSA format relies on a
notational abstraction called φ-function, which merges the live ranges of different defi-
nitions of the same variable, as we show in Figure 6(a). It is possible to perform register
allocation on SSA form programs [5]. However, it is more common to precede register
allocation with a step called SSA Elimination, which replace the φ-functions by instruc-
tions usually found in assembly languages. There are different ways to perform SSA
Elimination. A typical approach is to replace all the variables related by φ-functions by
the same name [27]. This is the solution that we outline in Figure 6(c). Independent on
the strategy used to eliminate φ-functions, the compiler must propagate the divergent
status of variables when merging variable names. This propagation follows the meet
operator that we defined for the lattice A in Equation 1. Continuing with our example,
Figure 6(b) shows the divergent status of the variables before SSA Elimination, and
Figure 6(d) shows it after. As the divergence analyses are done over SSA intermediate
representation no coallesced variable will finish with a undefined value.

4 Experiments

Compiler and Hardware: we have implemented our divergence analysis and diver-
gence aware register allocator in the Ocelot [12] open source compiler, SVN revision
1824 of April 2012. We have tested our implementation on an Intel Xeon X3440 with
8GB RAM equipped with a GPU Geforce GTX 470 with Nvidia’s Cuda toolkit 4.1 and
Device driver 295.41 (4.2).

Register Allocators: we have implemented two divergence aware register allocators,
as re-writing rules on top of Ocelot’s original linear scan register allocator. Thus, in
this section we compare three different implementations. The first, which we use as a
baseline, is the linear scan implementation publicly available in Ocelot. The second,
which we call the divergent allocator uses Ocelot’s default divergence analysis [10].
This analysis only classifies variables as divergent or uniform; hence, it can only use
Rule (c) from Figure 5. The other divergence aware register allocator, which we call
affine, uses the divergence analysis with affine constraints that we describe in [25]. It
can use all the four rules in Figure 5. In our experiments we give each allocator only
eight registers. For the two divergent aware implementations, this number includes the
register necessary to hold the base of the spilling area in the shared memory.

Spill Code Placement for SIMD Machines 23

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

65
A ne Divergence

Fig. 7. Runtime results. Each bar gives the percentage of gain of the new allocator over Ocelot’s
original linear scan. Dark bars: divergence aware allocation with affine constraints – all the four
rules in Figure 5. Light gray bars: allocation with simple divergence analysis – only Rule (c) of
Figure 5.

330
2%

4128
28%

713
5%

1371
9%

8459
56%

(a) Variables

14
0%

1431
38%

250
7%374

10%

1660
45%

(c) Load instructions

9
0%

686
37%

89
5%205

11%

875
47%

(b) Spilled variables

9
0%

767
35%

89
4%

224
10%

1109
51%

(d) Store instructions

Constant Uniform Constant Affine Affine Divergent

Fig. 8. Overall distribution, into the 5 types of affinity, of divergent states. (a)Variables (b)Spilled
variables (c)Load instructions (d)Store instructions

24 D.N. Sampaio et al.

Benchmarks: We have compiled 177 CUDA kernels from 46 applications taken from
the Rodinia [9] and the NVIDIA SDK benchmarks, which are publicly available. In
this paper we show results for the 23 applications that gave us more than one hun-
dred PTX instructions. We convert these applications from C for CUDA to PTX using
NVIDIA’s compiler, nvcc. We then use the Ocelot compiler to perform register allo-
cation on these PTX files, lowering the register pressure to eight registers. In order to
obtain runtime numbers, each tested application was executed 11 times in sequence.
For each application we discarded the results of the first, the fastest and the slowest
runs, and averaged the remaining eight results. The time is given in CPU ticks, and is
taken right before each kernel call and right after it exits and all threads are synchro-
nized. Some applications consists of many kernels, and some kernels are called more
than once per application. Thus, we present the sum of the times taken by each kernel
that constitutes an application. The total average numbers, like 21% of speedup, have
been obtained by averaging the sum of the total absolute numbers.

Runtime Comparison: Figure 7 shows the speedup that the different divergence aware
register allocators provide over Ocelot’s original linear scan. Overall, the divergence
aware allocator with affine constraints speeds up the applications by 20.81%. The reg-
ister allocator that only classifies variables as uniform or divergent provides a speed
up of 6.21%. We cut the negative scale of the figure in −20%, but for two applications,
Rodinia’s nw and NVIDIA’s SobolQRNG the affine allocator provides substantial slow-
down: -380.55% and -146.55%. We believe that this slowdown is caused by the fact that
the affine allocator must reserve two registers to handle spills: one for rematerializing
values, and another for the base of the spill stack. The simple divergent aware alloca-
tor only spares one register for the spill stack, and Ocelot’s linear scan can use all the
eight registers. Hence, there are more spills in the affine allocator. Furthermore, these
applications deal with 64 bit values, and the cost of rematerializing them, as discussed
before, is substantially higher than if 32-bit values were used instead.

Static Results. Figure 8 shows how often each re-writing rules of Figure 5 have been
used by the divergent aware register allocator with affine constraints. By analyzing Fig-
ure 8(a) we see that, on the average, 56% of the variables were classified as divergent.
28% of the variables were classified as uniform, and thus could be handle by the re-
writing rules in Figure 5(c). 9% of the variables were classified as affine, and could
be handled by Rule(d). 5% of the variables were shown to be constant affine; hence,
fit Rule(b) of Figure 5. Finally, 2% of the variables were constants, and could be han-
dled by Rule(a). The low number of constants is due to nvcc already optimizing the
programs that we give to Ocelot.

Comparing the charts in part (a) and (b) of Figure 8 we see that with eight registers,
about 13.89% of all the program variables had to be spilled, and thus mapped to mem-
ory. From Figure 8(b) we infer that most of the spill code, 47% uses the local memory,
reflecting the fact that the majority of the program variables are divergent. 37% of the
spilling code uses the shared memory according to Rule (c) from Figure 5. We could
replace less than one percent of the spill code by constants, what is due to the low con-
centration of constants in the code that we obtain from nvcc. The other rules, for affine
and constant affine variables account for 16% of the spill code. Figure 8(c) and (d)

Spill Code Placement for SIMD Machines 25

further distriminate between rules used to re-write stores, and rules used to re-write
loads. Looking at these last two pies we observe a proportion of 1.69 uses of spilled
variables for each definition. Ocelot adopts a spill-everywhere approach to place loads.
According to this policy, each use of a spilled variable is replaced by a load instruc-
tion. In the case of divergence aware register allocation, some of these load and store
instructions are re-written by the rules in Figure 5.

5 Conclusion

This paper has described what we believe is the first register allocator specifically tai-
lored for the Single Instruction, Multiple Data execution model ever discussed in the
compiler related literature. We have implemented the proposed allocator as a set of re-
writing rules on top of the linear scan allocator used in an open source PTX compiler.
Our code is available for download at http://simdopt.wordpress.com. This web-
page also contains raw data, like the absolute numbers that we have used to produce
the charts in Section 4. We have presented an extensive evaluation of the proposed al-
locator, but there are still work to be done in this area. In particular, we are interested
in trying different spill policies that take into consideration more information related to
the divergent state of program variables. We are also interested in identifying uniform
variables that do not need to be replicated among every warp in the target program.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison Wesley (2006)

2. Backus, J.: The history of fortran i, ii, and iii. SIGPLAN Not. 13(8), 165–180 (1978)
3. Baghsorkhi, S.S., Delahaye, M., Patel, S.J., Gropp, W.D., Hwu, W.M.W.: An adaptive per-

formance modeling tool for GPU architectures. In: PPoPP, pp. 105–114. ACM (2010)
4. Belady, L.A.: A study of replacement algorithms for a virtual storage computer. IBM Systems

Journal 5(2), 78–101 (1966)
5. Bouchez, F.: Allocation de Registres et Vidage en Mémoire. Master’s thesis, ENS Lyon

(October 2005)
6. Briggs, P., Cooper, K.D., Torczon, L.: Rematerialization. In: PLDI, pp. 311–321. ACM

(1992)
7. Carrillo, S., Siegel, J., Li, X.: A control-structure splitting optimization for GPGPU. In: Com-

puting Frontiers, pp. 147–150. ACM (2009)
8. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.:

Register allocation via coloring. Computer Languages 6, 47–57 (1981)
9. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Rodinia: A

benchmark suite for heterogeneous computing. In: IISWC, pp. 44–54. IEEE (2009)
10. Coutinho, B., Sampaio, D., Pereira, F.M.Q., Meira, W.: Divergence analysis and optimiza-

tions. In: PACT. IEEE (2011)
11. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing

static single assignment form and the control dependence graph. TOPLAS 13(4), 451–490
(1991)

12. Diamos, G., Kerr, A., Yalamanchili, S., Clark, N.: Ocelot, a dynamic optimization framework
for bulk-synchronous applications in heterogeneous systems. In: PACT, pp. 354–364 (2010)

26 D.N. Sampaio et al.

13. Farach-colton, M., Liberatore, V.: On local register allocation. Journal of Algorithms 37(1),
37–65 (2000)

14. Garland, M.: Parallel computing experiences with CUDA. IEEE Micro 28, 13–27 (2008)
15. Garland, M., Kirk, D.B.: Understanding throughput-oriented architectures. Commun.

ACM 53, 58–66 (2010)
16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 1st edn. Elsevier (2004)
17. Han, T.D., Abdelrahman, T.S.: Reducing branch divergence in GPU programs. In: GPGPU-4,

pp. 3:1–3:8. ACM (2011)
18. Harris, M.: The parallel prefix sum (scan) with CUDA. Tech. Rep. Initial release on February

14, 2007, NVIDIA (2008)
19. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N., Smelyan-

skiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: Debunking the 100X GPU
vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: ISCA, pp.
451–460. ACM (2010)

20. Nickolls, J., Dally, W.J.: The GPU computing era. IEEE Micro 30, 56–69 (2010)
21. Nickolls, J., Kirk, D.: Graphics and Computing GPUs. In: Patterson, Hennessy (eds.) Com-

puter Organization and Design, 4th edn., ch. A, pp. A.1–A.77. Elsevier (2009)
22. Pereira, F.M.Q., Palsberg, J.: Register Allocation After Classical SSA Elimination is

NP-Complete. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921,
pp. 79–93. Springer, Heidelberg (2006)

23. Poletto, M., Sarkar, V.: Linear scan register allocation. TOPLAS 21(5), 895–913 (1999)
24. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.M.W.: Opti-

mization principles and application performance evaluation of a multithreaded GPU using
CUDA. In: PPoPP, pp. 73–82. ACM (2008)

25. Sampaio, D., Martins, R., Collange, S., Pereira, F.M.Q.: Divergence analysis with affine con-
straints. Tech. rep., École normale supérieure de Lyon (2011)

26. Sethi, R.: Complete register allocation problems. In: 5th annual ACM Symposium on Theory
of Computing, pp. 182–195. ACM Press (1973)

27. Sreedhar, V.C., Gao, G.R.: A linear time algorithm for placing φ-nodes. In: POPL, pp. 62–73.
ACM (1995)

28. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches. TOPLAS
13(2) (1991)

29. Zhang, E.Z., Jiang, Y., Guo, Z., Tian, K., Shen, X.: On-the-fly elimination of dynamic irreg-
ularities for GPU computing. In: ASPLOS, pp. 369–380. ACM (2011)

Left Recursion in Parsing Expression Grammars

Sérgio Medeiros1, Fabio Mascarenhas2, and Roberto Ierusalimschy3

1 Department of Computer Science – UFS – Aracaju – Brazil
sergio@ufs.br

2 Department of Computer Science – UFRJ – Rio de Janeiro – Brazil
fabiom@dcc.ufrj.br

3 Department of Computer Science – PUC-Rio – Rio de Janeiro – Brazil
roberto@inf.puc-rio.br

Abstract. Parsing Expression Grammars (PEGs) are a formalism that
can describe all deterministic context-free languages through a set of
rules that specify a top-down parser for some language. PEGs are easy
to use, and there are efficient implementations of PEG libraries in several
programming languages.

A frequently missed feature of PEGs is left recursion, which is com-
monly used in Context-Free Grammars (CFGs) to encode left-associative
operations. We present a simple conservative extension to the semantics
of PEGs that gives useful meaning to direct and indirect left-recursive
rules, and show that our extensions make it easy to express left-recursive
idioms from CFGs in PEGs, with similar results. We prove the conser-
vativeness of these extensions, and also prove that they work with any
left-recursive PEG.

Keywords: parsing expression grammars, parsing, left recursion, natu-
ral semantics, packrat parsing.

1 Introduction

Parsing Expression Grammars (PEGs) [3] are a formalism for describing a lan-
guage’s syntax, and an alternative to the commonly used Context Free Gram-
mars (CFGs). Unlike CFGs, PEGs are unambiguous by construction, and their
standard semantics is based on recognizing instead of deriving strings. Further-
more, a PEG can be considered both the specification of a language and the
specification of a top-down parser for that language.

PEGs use the notion of limited backtracking: the parser, when faced with sev-
eral alternatives, tries them in a deterministic order (left to right), discarding
remaining alternatives after one of them succeeds. They also have an expressive
syntax, based on the syntax of extended regular expressions, and syntactic pred-
icates, a form of unrestricted lookahead where the parser checks whether the rest
of the input matches a parsing expression without consuming the input.

The top-down parsing approach of PEGs means that they cannot handle left
recursion in grammar rules, as they would make the parser loop forever. Left
recursion can be detected structurally, so PEGs with left-recursive rules can be

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 27–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

28 S. Medeiros, F. Mascarenhas, and R. Ierusalimschy

simply rejected by PEG implementations instead of leading to parsers that do
not terminate, but the lack of support for left recursion is a restriction on the
expressiveness of PEGs. The use of left recursion is a common idiom for express-
ing language constructs in a grammar, and is present in published grammars for
programming languages; the use of left recursion can make rewriting an existing
grammar as a PEG a difficult task [17].

There are proposals for adding support for left recursion to PEGs, but they
either assume a particular PEG implementation approach, packrat parsing [23],
or support just direct left recursion [21]. Packrat parsing [2] is an optimization of
PEGs that uses memoization to guarantee linear time behavior in the presence
of backtracking and syntactic predicates, but can be slower in practice [18,14].
Packrat parsing is a common implementation approach for PEGs, but there are
others [12]. Indirect left recursion is present in real grammars, and is difficult to
untangle [17].

In this paper, we present a novel operational semantics for PEGs that gives a
well-defined and useful meaning for PEGs with left-recursive rules. The seman-
tics is given as a conservative extension of the existing semantics, so PEGs that
do not have left-recursive rules continue having the same meaning as they had. It
is also implementation agnostic, and should be easily implementable on packrat
implementations, plain recursive descent implementations, and implementations
based on a parsing machine.

We also introduce parse strings as a possible semantic value resulting from a
PEG parsing some input, in parallel to the parse trees of context-free grammars.
We show that the parse strings that left-recursive PEGs yield for the common
left-recursive grammar idioms are similar to the parse trees we get from bottom-
up parsers and left-recursive CFGs, so the use of left-recursive rules in PEGs
with out semantics should be intuitive for grammar writers.

The rest of this paper is organized as follows: Section 2 presents a brief intro-
duction to PEGs and discusses the problem of left recursion in PEGs; Section 3
presents our semantic extensions for PEGs with left-recursive rules; Section 4
reviews some related work on PEGs and left recursion in more detail; finally,
Section 5 presents our concluding remarks.

2 Parsing Expression Grammars and Left Recursion

Parsing Expression Grammars borrow the use of non-terminals and rules (or
productions) to express context-free recursion, although all non-terminals in a
PEG must have only one rule. The syntax of the right side of the rules, the
parsing expressions, is borrowed from regular expressions and its extensions,
in order to make it easier to build parsers that parse directly from characters
instead of tokens from a previous lexical analysis step. The semantics of PEGs
come from backtracking top-down parsers, but in PEGs the backtracking is local
to each choice point.

Our presentation of PEGs is slightly different from Ford’s [3], and comes from
earlier work [12,13]. This style makes the exposition of our extensions, and their

Left Recursion in Parsing Expression Grammars 29

Empty String
G[ε] x

PEG
� (x, ε)

(empty.1) Terminal
G[a] ax

PEG
� (x, a)

(char.1)

G[b] ax
PEG
� fail

, b �= a (char.2)
G[a] ε

PEG
� fail

(char.3)

Variable
G[P (A)] xy

PEG
� (y, x′)

G[A] xy
PEG
� (y, A[x′])

(var.1)
G[P (A)] x

PEG
� fail

G[A] x
PEG
� fail

(var.2)

Concatenation
G[p1] xyz

PEG
� (yz, x′) G[p2] yz

PEG
� (z, y′)

G[p1 p2] xyz
PEG
� (z, x′y′)

(con.1)

G[p1] xy
PEG
� (y, x′) G[p2] y

PEG
� fail

G[p1 p2] xy
PEG
� fail

(con.2)
G[p1] x

PEG
� fail

G[p1 p2] x
PEG
� fail

(con.3)

Choice
G[p1] xy

PEG
� (y, x′)

G[p1 / p2] xy
PEG
� (y, x′)

(ord.1)
G[p1] x

PEG
� fail G[p2] x

PEG
� fail

G[p1 / p2] x
PEG
� fail

(ord.2)

G[p1] xy
PEG
� fail G[p2] xy

PEG
� (y, x′)

G[p1 / p2] xy
PEG
� (y, x′)

(ord.3)

Not Predicate
G[p] x

PEG
� fail

G[!p] x
PEG
� (x, ε)

(not.1)
G[p] xy

PEG
� (y, x′)

G[!p] xy
PEG
� fail

(not.2)

Repetition
G[p] x

PEG
� fail

G[p∗] x
PEG
� (x, ε)

(rep.1)
G[p] xyz

PEG
� (yz, x′) G[p∗] yz

PEG
� (z, y′)

G[p∗] xyz
PEG
� (z, x′y′)

(rep.2)

Fig. 1. Semantics of the
PEG
� relation

behavior, easier to understand. We define a PEG G as a tuple (V, T, P, pS) where
V is the finite set of non-terminals, T is the alphabet (finite set of terminals),
P is a function from V to parsing expressions, and pS is the starting expression,
the one that the PEG matches. Function P is commonly described through a
set of rules of the form A ← p, where A ∈ V and p is a parsing expression.

Parsing expressions are the core of our formalism, and they are defined induc-
tively as the empty expression ε, a terminal symbol a, a non-terminal symbol
A, a concatenation p1p2 of two parsing expressions p1 and p2, an ordered choice
p1/p2 between two parsing expressions p1 and p2, a repetition p∗ of a parsing
expression p, or a not-predicate !p of a parsing expression p. We leave out exten-
sions such as the dot, character classes, strings, and the and-predicate, as their
addition is straightforward.

We define the semantics of PEGs via a relation
PEG
� among a PEG, a parsing

expression, a subject, and a result. The notation G[p] xy
PEG
� (y, x′) means that

the expression p matches the input xy, consuming the prefix x, while leaving y

30 S. Medeiros, F. Mascarenhas, and R. Ierusalimschy

and yielding a parse string x′ as the output, while resolving any non-terminals

using the rules of G. We use G[p] xy
PEG
� fail to express an unsuccessful match.

The language of a PEG G is defined as all strings that G’s starting expression

consumes, that is, the set {x ∈ T ∗ | G[ps] xy
PEG
� (y, x′)}.

Figure 1 presents the definition of
PEG
� using natural semantics [11,25], as a set

of inference rules. Intuitively, ε just succeeds and leaves the subject unaffected;
a matches and consumes itself, or fails; A tries to match the expression P (A);
p1p2 tries to match p1, and if it succeeds tries to match p2 on the part of the
subject that p1 did not consume; p1/p2 tries to match p1, and if it fails tries to
match p2; p

∗ repeatedly tries to match p until it fails, thus consuming as much
of the subject as it can; finally, !p tries to match p and fails if p succeeds and
succeeds if p fails, in any case leaving the subject unaffected. It is easy to see
that the result of a match is either failure or a suffix of the subject (not a proper
suffix, as the expression may succeed without consuming anything).

Context-Free Grammars have the notion of a parse tree, a graphical represen-
tation of the structure that a valid subject has, according to the grammar. The
proof trees of our semantics can have a similar role, but they have extra infor-
mation that can obscure the desired structure. This problem will be exacerbated
in the proof trees that our rules for left-recursion yield, and is the reason we in-
troduce parse strings to our formalism. A parse string is roughly a linearization
of a parse tree, and shows which non-terminals have been used in the process
of matching a given subject. Having the result of a parse be an actual tree and
having arbitrary semantic actions are straightforward extensions.

When using PEGs for parsing it is important to guarantee that a given gram-
mar will either yield a successful result or fail for every subject, so parsing
always terminates. Grammars where this is true are complete [3]. In order to
guarantee completeness, it is sufficient to check for the absence of direct or
indirect left recursion, a property that can be checked structurally using the
well-formed predicate from Ford [3] (abbreviated WF).

Inductively, empty expressions and symbol expressions are always well-formed;
a non-terminal is well-formed if it has a production and it is well-formed; a choice
is well-formed if the alternatives are well-formed; a not predicate is well-formed if
the expression it uses is well-formed; a repetition is well-formed if the expression
it repeats is well-formed and cannot succeed without consuming input; finally, a
concatenation is well-formed if either its first expression is well-formed and can-
not succeed without consuming input or both of its expressions are well-formed.

A grammar is well-formed if its non-terminals and starting expression are
all well-formed. The test of whether an expression cannot succeed while not
consuming input is also computable from the structure of the expression and
its grammar from an inductive definition [3]. The rule for well-formedness of
repetitions just derives from writing a repetition p∗ as a recursion A ← pA / ε,
so a non-well-formed repetition is just a special case of a left-recursive rule.

Left recursion is not a problem in the popular bottom-up parsing approaches,
and is a natural way to express several common parsing idioms. Expressing rep-
etition using left recursion in a CFG yields a left-associative parse tree, which

Left Recursion in Parsing Expression Grammars 31

is often desirable when parsing programming languages, either because oper-
ations have to be left-associative or because left-associativity is more efficient
in bottom-up parsers [6]. For example, the following is a simple left-associative
CFG for additive expressions, written in EBNF notation:

E → E + T | E − T | T
T → n | (E)

Rewriting the above grammar as a PEG, by replacing | with the ordered choice
operator, yields a non-well-formed PEG that does not have a proof tree for any
subject. We can rewrite the grammar to eliminate the left recursion, giving the
following CFG, again in EBNF (the curly brackets are metasymbols of EBNF no-
tation, and express zero-or-more repetition, white the parentheses are terminals):

E → T {E′}
T → n | (E)

E′ → +T | − T

This is a simple transformation, but it yields a different parse tree, and obscures
the intentions of the grammar writer, even though it is possible to transform the
parse tree of the non-left-recursive grammar into the left-associative parse tree
of the left-recursive grammar. But at least we can straightforwardly express the
non-left-recursive grammar with the following PEG:

E ← T E′∗

T ← n / (E)

E′ ← +T / − T

Indirect left recursion is harder to eliminate, and its elimination changes the
structure of the grammar and the resulting trees even more. For example, the
following indirectly left-recursive CFG denotes a very simplified grammar for
l-values in a language with variables, first-class functions, and records (where x
stands for identifiers and n for expressions):

L → P.x | x
P → P (n) | L

This grammar generates x and x followed by any number of (n) or .x, as long
as it ends with .x. An l-value is a prefix expression followed by a field access, or
a single variable, and a prefix expression is a prefix expression followed by an
operand, denoting a function call, or a valid l-value. In the parse trees for this
grammar each (n) or .x associates to the left.

Writing a PEG that parses the same language is difficult. We can eliminate the
indirect left recursion on L by substitution inside P , getting P → P (n) | P.x | x,
and then eliminate the direct left recursion on P to get the following CFG:

32 S. Medeiros, F. Mascarenhas, and R. Ierusalimschy

L → P.x | x
P → x{P ′}
P ′ → (n) | .x

But a direct translation of this CFG to a PEG will not work because PEG repe-
tition is greedy; the repetition on P ′ will consume the last .x of the l-value, and
the first alternative of L will always fail. One possible solution is to not use the
P non-terminal in L, and encode l-values directly with the following PEG (the
bolded parentheses are terminals, the non-bolded parentheses are metasymbols
of PEGs that mean grouping):

L ← x S∗

S ← ((n))∗.x

The above uses of left recursion are common in published grammars, with more
complex versions (involving more rules and a deeper level of indirection) ap-
pearing in the grammars in the specifications of Java [5] and Lua [10]. Having
a straightforward way of expressing these in a PEG would make the process of
translating a grammar specification from an EBNF CFG to a PEG easier and
less error-prone.

In the next session we will propose a semantic extension to the PEG formalism
that will give meaningful proof trees to left-recursive grammars. In particular,
we want to have the straightforward translation of common left-recursive idioms
such as left-associative expressions to yield parse strings that are similar in
structure to parse trees of the original CFGs.

3 Bounded Left Recursion

Intuitively, bounded left recursion is a use of a non-terminal where we limit the
number of left-recursive uses it may have. This is the basis of our extension
for supporting left recursion in PEGs. We use the notation An to mean a non-
terminal where we can have less than n left-recursive uses, with A0 being an
expression that always fails. Any left-recursive use of An will use An−1, any
left-recursive use of An−1 will use An−2, and so on, with A1 using A0 for any
left-recursive use, so left recursion will fail for A1.

For the left-recursive definition E ← E+n / n we have the following progres-
sion, where we write expressions equivalent to En on the right side:

E0 ← fail

E1 ← E0 + n / n = ⊥ + n / n = n

E2 ← E1 + n / n = n+ n / n

E3 ← E2 + n / n = (n+ n / n) + n / n

...

En ← En−1 + n / n

Left Recursion in Parsing Expression Grammars 33

Table 1. Matching E with different bounds

Subject E0 E1 E2 E3 E4 E5 E6

n fail ε ε ε ε ε ε
n+n fail +n ε +n ε +n ε

n+n+n fail +n+n +n ε +n+n +n ε

It would be natural to expect that increasing the bound will eventually reach
a fixed point with respect to a given subject, but the behavior of the ordered
choice operator breaks this expectation. For example, with a subject n+n and the
previous PEG, E2 will match the whole subject, while E3 will match just the
first n. Table 1 summarizes the results of trying to match some subjects against
E with different left-recursive bounds (they show the suffix that remains, not
the matched prefix).

The fact that increasing the bound can lead to matching a smaller prefix
means we have to pick the bound carefully if we wish to match as much of the
subject as possible. Fortunately, it is sufficient to increase the bound until the
size of the matched prefix stops increasing. In the above example, we would pick
1 as the bound for n, 2 as the bound for n+n, and 3 as the bound for n+n+n.

When the bound of a non-terminal A is 1 we are effectively prohibiting a
match via any left-recursive path, as all left-recursive uses of A will fail. An+1

uses An on all its left-recursive paths, so if An matches a prefix of length k,
An+1 matching a prefix of length k or less means that either there is nothing
to do after matching An (the grammar is cyclic), in which case it is pointless to
increase the bound after An, or all paths starting with An failed, and the match
actually used a non-left-recursive path, so An+1 is equivalent with A1. Either
option means that n is the bound that makes A match the longest prefix of the
subject.

We can easily see this dynamic in the E ← E + n / n example. To match
En+1 we have to match En +n /n. Assume En matches a prefix x of the input.
We then try to match the rest of the input with +n, if this succeeds we will have
matched x+n, a prefix bigger than x. If this fails we will have matched just n,
which is the same prefix matched by E1.

Indirect, and even mutual, left recursion is not a problem, as the bounds are
on left-recursive uses of a non-terminal, which are a property of the proof tree,
and not of the structure of the PEG. The bounds on two mutually recursive
non-terminals A and B will depend on which non-terminal is being matched
first, if it is A then the bound of A is fixed while varying the bound of B, and
vice-versa. A particular case of mutual left recursion is when a non-terminal is
both left and right-recursive, such as E ← E + E/n. In our semantics, En will
match En−1 +E/n, where the right-recursive use of E will have its own bound.
Later in this section we will elaborate on the behavior of both kinds of mutual
recursion.

In order to extend the semantics of PEGs with bounded left recursion, we
will show a conservative extension of the rules in Figure 1, with new rules for

34 S. Medeiros, F. Mascarenhas, and R. Ierusalimschy

Left-Recursive Variable

(A, xyz) /∈ L G[P (A)] xyz L[(A, xyz) �→ fail]
PEG
� (yz, x′)

G[P (A)] xyz L[(A, xyz) �→ (yz, x′)] INC
� (z, (xy)′)

G[A] xyz L PEG
� (z,A[(xy)′])

(lvar.1)

(A, x) /∈ L G[P (A)] x L[(A,x) �→ fail]
PEG
� fail

G[A] x L PEG
� fail

(lvar.2)

L(A, xy) = fail

G[A] xy L PEG
� fail

(lvar.3)
L(A, xy) = (y, x′)

G[A] xy L PEG
� (y,A[x′])

(lvar.4)

Increase Bound

G[P (A)] xyzw L[(A,xyzw) �→ (yzw, x′)] PEG
� (zw, (xy)′)

G[P (A)] xyzw L[(A, xyzw) �→ (zw, (xy)′)] INC
� (w, (xyz)′)

G[P (A)] xyzw L[(A,xyzw) �→ (yzw, x′)] INC
� (w, (xyz)′)

,where y �= ε (inc.1)

G[P (A)] x L PEG
� fail

G[P (A)] x L INC
� L(A,x)

(inc.2)
G[P (A)] xyz L[(A,xyz) �→ (z, (xy)′)] PEG

� (yz, x′)

G[P (A)] xyz L[(A, xyz) �→ (z, (xy)′)] INC
� (z, (xy)′)

(inc.3)

Fig. 2. Semantics for PEGs with left-recursive non-terminals

left-recursive non-terminals. For non-left-recursive non-terminals we will still use
rules var.1 and var.2, although we will later prove that this is unnecessary, and
the new rules for non-terminals can replace the current ones. The basic idea of
the extension is to use A1 when matching a left-recursive non-terminal A for the
first time, and then try to increase the bound, while using a memoization table
L to keep the result of the current bound. We use a different relation, with its
own inference rules, for this iterative process of increasing the bound.

Figure 2 presents the new rules. We give the behavior of the memoization
table L in the usual substitution style, where L[(A, x) �→ X](B, y) = L(B, y) if
B �= A or y �= x and L[(A, x) �→ X](A, x) = X otherwise. All of the rules in

Figure 1 just ignore this extra parameter of relation
PEG
� . We also have rules for

the new relation
INC
� , responsible for the iterative process of finding the correct

bound for a given left-recursive use of a non-terminal.
Rules lvar.1 and lvar.2 apply the first time a left-recursive non-terminal is

used with a given subject, and they try to match A1 by trying to match the
production of A using fail for any left-recursive use of A (those uses will fail
through rule lvar.3). If A1 fails we do not try bigger bounds (rule lvar.2), but
if A1 succeeds we store the result in L and try to find a bigger bound (rule
lvar.1). Rule lvar.4 is used for left-recursive invocations of An in the process of
matching An+1.

Relation
INC
� tries to find the bound where Amatches the longest prefix. Which

rule applies depends on whether matching the production of A using the mem-
oized value for the current bound leads to a longer match or not; rule inc.1

Left Recursion in Parsing Expression Grammars 35

covers the first case, where we use relation
INC
� again to continue increasing the

bound after updating L. Rules inc.2 and inc.3 cover the second case, where the
current bound is the correct one and we just return its result.

Let us walk through an example, again using E ← E + n / n as our PEG,
with n+n+n as the subject. When first matching E against n+n+n we have
(E, n+ n+ n) �∈ L, as L is initially empty, so we have to match E+n / n against
n+n+n with L = {(E, n+ n+ n) �→ fail}. We now have to match E +n against
n+n+n, which means matching E again, but now we use rule lvar.3. The first
alternative, E + n, fails, and we have G[E + n /n] n+ n+ n {(E, n+ n+ n) �→
fail} PEG

� (+n+ n, n) using the second alternative, n, and rule ord.3.
In order to finish rule lvar.1 and the initial match we have to try to increase

the bound through relation
INC
� with L = {(E, n+ n+ n) �→ (+n+ n, n)}. This

means we must try to match E + n / n against n+n+n again, using the new L.
When we try the first alternative and match E with n+n+n the result will be
(+n+ n, E[n]) via lvar.4, and we can then use con.1 to match E + n yielding
(+n, E[n]+n). We have successfully increased the bound, and are in rule inc.1,
with x = n, y = +n, and zw = +n.

In order to finish rule inc.1 we have to try to increase the bound again using

relation
INC
� , now with L = {(E, n+ n+ n) �→ (+n, E[n]+n)}. We try to match

P (E) again with this new L, and this yields (ε, E[E[n]+n]+n) via lvar.4, con.1,
and ord.1. We have successfully increased the bound and are using rule inc.1
again, with x = n+ n, y = +n, and zw = ε.

We are in rule inc.1, and have to try to increase the bound a third time with
INC
� , with L = {(E, n+ n+ n) �→ (ε, E[E[n]+n]+n)}. We have to match E+n /n
against n+n+n again, using this L. In the first alternative E matches and yields
(ε, E[E[E[n]+n]+n]) via lvar.4, but the first alternative itself fails via con.2. We
then have to match E + n / n against n+n+n using ord.2, yielding (+n+ n, n).
The attempt to increase the bound for the third time failed (we are back to the
same result we had when L = {(A, n+ n+ n) �→ fail}), and we use rule inc.3
once and rule inc.1 twice to propagate (ε, E[E[n]+n]+n) back to rule lvar.1, and

use this rule to get the final result, G[E] n+ n+ n {} PEG
� (ε, E[E[E[n]+n]+n]).

We can see that the parse string E[E[E[n]+n]+n] implies left-associativity in
the + operations, as intended by the use of a left-recursive rule.

More complex grammars, that encode different precedences and associativ-
ities, behave as expected. For example, the following grammar has a right-
associative + with a left-associative −:

E ← M + E / M

M ← M − n / n

Matching E with n+n+n yields E[M [n]+E[M [n]+E[M [n]]]], as matching M
against n+n+n, n+n, and n all consume just the first n while generating M [n],

because G[M − n / n] n+ n+ n {(M, n+ n+ n) �→ fail} PEG
� (+n+ n, n) via

lvar.3, con.3, and ord.3, and G[M − n / n] n+ n+ n {(M, n+ n+ n) �→
(+n+ n, n)} INC

� (+n+ n, n) via inc.3. The same holds for subjects n+n and n

36 S. Medeiros, F. Mascarenhas, and R. Ierusalimschy

with different suffixes. Now, when E matches n+n+n we will have M in M + E
matching the first n, while E recursively matching the second n+n, with M
again matching the first n and E recursively matching the last n via the second
alternative.

Matching E with n-n-n will yield E[M [M [M [n]−n]−n]], as M now matches
n-n-n with a proof tree similar to our first example (E ← E + n / n against
n+n+n). The first alternative of E fails because M consumed the whole subject,
and the second alternative yields the final result via ord.3 and var.1.

The semantics of Figure 2 also handles indirect and mutual left recursion
well. The following mutually left-recursive PEG is a direct translation of the
CFG used as the last example of Section 2:

L ← P.x / x

P ← P (n) / L

It is instructive to work out what happens when matching L with a subject such
as x(n)(n).x(n).x. We will use our superscript notation for bounded recursion,
but it is easy to check that the explanation corresponds exactly with what is
happening with the semantics using L.

The first alternative of L1 will fail because both alternatives of P 1 fail, as they
use P 0, due to the direct left recursion on P , and L0, due to the indirect left
recursion on L. The second alternative of L1 matches the first x of the subject.
Now L2 will try to match P 1 again, and the first alternative of P 1 fails because
it uses P 0, while the second alternative uses L1 and matches the first x, and so
P 1 now matches x, and we have to try P 2, which will match x(n) through the
first alternative, now using P 1. P 3 uses P 2 and matches x(n)(n) with the first
alternative, but P 4 matches just x again, so P 3 is the answer, and L2 matches
x(n)(n).x via its first alternative.

L3 will try to match P 1 again, but P 1 now matches x(n)(n).x via its sec-
ond alternative, as it uses L2. This means P 2 will match x(n)(n).x(n), while
P 3 will match x(n)(n).x again, so P 2 is the correct bound, and L3 matches
x(n)(n).x(n).x, the entire subject. It is easy to see that L4 will match just x
again, as P 1 will now match the whole subject using L3, and the first alternative
of L4 will fail.

Intuitively, the mutual recursion is playing as nested repetitions, with the
inner repetition consuming (n) and the outer repetition consuming the result
of the inner repetition plus .x. The result is a PEG equivalent to the PEG for
l-values in the end of Section 2 in the subjects it matches, but that yields parse
strings that are correctly left-associative on each (n) and .x.

We presented the new rules as extensions intended only for non-terminals
with left-recursive rules, but this is not necessary: the lvar rules can replace
var without changing the result of any proof tree. If a non-terminal does not
appear in a left-recursive position then rules lvar.3 and lvar.4 can never apply
by definition. These rules are the only place in the semantics where the con-
tents of L affects the result, so lvar.2 is equivalent to var.2 in the absence of

left recursion. Analogously, if G[(P (A)] xy L[(A, xy) �→ fail]
PEG
� (y, x′) then

Left Recursion in Parsing Expression Grammars 37

G[(P (A)] xy L[(A, xy) �→ (y, x′)] PEG
� (y, x′) in the absence of left recursion,

so we will always have G[A] xy L[(A, xy) �→ (y, x′)] INC
� (y, x′) via inc.3, and

lvar.1 is equivalent to var.1. We can formalize this argument with the following
lemma:

Lemma 1 (Conservativeness). Given a PEG G, a parsing expression p and

a subject xy, we have one of the following: if G[p] xy
PEG
� X, where X is fail

or (y, x′), then G[p] xy L PEG
� X, as long as (A,w) �∈ L for any non-terminal A

and subject w appearing as G[A] w in the proof tree of if G[p] xy
PEG
� X.

Proof. By induction on the height of the proof tree for G[p] xy
PEG
� X . Most

cases are trivial, as the extension of their rules with L does not change the table.
The interesting cases are var.1 and var.2.

For case var.2 we need to use rule lvar.2. We introduce (A, xy) �→ fail in

L, but G[A] xy cannot appear in any part of the proof tree of G[P (A)] xy
PEG
�

fail, so we can just use the induction hypothesis.
For case var.1 we need to use rule lvar.1. Again we have (A, xy) �→ fail in L,

but we can use the induction hypothesis on G[P (A)] xy L[(A, xy) �→ fail] to

get (y, x′). We also use inc.3 to get G[P (A)] xy L[(A, xy) �→ (y, x′) INC
� (y, x′)]

from G[P (A)] xy L[(A, xy) �→ (y, x′)] , using the induction hypothesis, finishing
lvar.1.

A non-obvious consequence of our bounded left recursion semantics is that a rule
that mixes left and right recursion is right-associative. For example, matching
E ← E +E / n against n+n+n yields the parse string E[E[n] +E[E[n] +E[n]]].
The reason is that E2 already matches the whole string:

E1 ← E0 + E / n = n

E2 ← E1 + E / n = n+ E / n

We have the first alternative of E2 matching n+ and then trying to match E with
n+n. Again we will have E2 matching the whole string, with the first alternative
matching n+ and then matching E with n via E1. In practice this behavior is
not a problem, as similar constructions are also problematic in parsing CFGs,
and grammar writers are aware of them.

An implementation of our semantics can use ad-hoc extensions to control
associativity in this kind of PEG, by having a right-recursive use of non-terminal
A with a pending left-recursive use match through A1 directly instead of going
through the regular process. Similar extensions can be used to have different
associativities and precedences in operator grammars such as E ← E+E / E−
E / E ∗ E / (E) / n.

In order to prove that our semantics for PEGs with left-recursion gives mean-
ing to any closed PEG (that is, any PEG G where P (A) is defined for all non-
terminals in G) we have to fix the case where a repetition may not terminate (p
in p∗ has not failed but not consumed any input). We can add a x �= ε predicate
to rule rep.2 and then add a new rule:

38 S. Medeiros, F. Mascarenhas, and R. Ierusalimschy

G[p] x L PEG
� (x, ε)

G[p∗] x L PEG
� (x, ε)

(rep.3)

We also need a well-founded ordering < among the elements of the left side of

relation
PEG
� . For the subject we can use x < y if and only if x is a proper suffix

of y as the order, for the parsing expression we can use p1 < p2 if and only if p1
is a proper part of the structure of p2, and for L we can use L[A �→ (x, y)] < L
if and only if either L(A) is not defined or x < z, where L(A) = (z, w). Now we
can prove the following lemma:

Lemma 2 (Completeness). Given a closed PEG G, a parsing expression p,

a subject xy, and a memoization table L, we have either G[p] xy L PEG
� (y, x′)

or G[p] xy L PEG
� fail.

Proof. By induction on the triple (L, xy, p). It is straightforward to check that
we can always use the induction hypothesis on the antecedent of the rules of our
semantics.

4 Related Work

Warth et al. [23] describes a modification of the packrat parsing algorithm to
support both direct and indirect left recursion. The algorithm uses the packrat
memoization table to detect left recursion, and then begins an iterative process
that is similar to the process of finding the correct bound in our semantics.

Warth et al.’s algorithm is tightly coupled to the packrat parsing approach,
and its full version, with support for indirect left recursion, is complex, as noted
by the authors [22]. The release versions of the authors’ PEG parsing library,
OMeta [24], only implement support for direct left recursion to avoid the extra
complexity [22].

The algorithm also produces surprising results with some grammars, both
directly and indirectly left-recursive, due to the way it tries to reuse the packrat
memoization table [1]. Our semantics does not share these issues, although it
shows that a left-recursive packrat parser cannot index the packrat memoization
table just by a parsing expression and a subject, as the L table is also involved.
One solution to this issue is to have a scoped packrat memoization table, with
a new entry to L introducing a new scope. We believe this solution is simpler to
implement in a packrat parser than Warth et al.’s.

Tratt [21] presents an algorithm for supporting direct left recursion in PEGs,
based on Warth et al.’s, that does not use a packrat memoization table and
does not assume a packrat parser. The algorithm is simple, although Tratt also
presents a more complex algorithm that tries to “fix” the right-recursive bias in
productions that have both left and right recursion, like the E ← E + E / n
example we discussed at the end of Section 3. We do not believe this bias is a
problem, although it can be fixed in our semantics with ad-hoc methods.

IronMeta [20] is a PEG library for the Microsoft Common Language Runtime,
based on OMeta [24], that supports direct and indirect left recursion using an

Left Recursion in Parsing Expression Grammars 39

implementation of an unpublished preliminary version of our semantics. This
preliminary version is essentially the same, apart from notational details, so
IronMeta can be considered a working implementation of our semantics. Initial
versions of IronMeta used Warth et al.’s algorithm for left recursion [23], but in
version 2.0 the author switched to an implementation of our semantics, which
he considered “much simpler and more general” [20].

Parser combinators [8] are a top-down parsing method that is similar to PEGs,
being another way to declaratively specify a recursive descent parser for a lan-
guage, and share with PEGs the same issues of non-termination in the presence
of left recursion. Frost et al. [4] describes an approach for supporting left recur-
sion in parser combinators where a count of the number of left-recursive uses
of a non-terminal is kept, and the non-terminal fails if the count exceeds the
number of tokens of the input. We have shown in Section 3 that such an ap-
proach would not work with PEGs, because of the semantics of ordered choice
(parser combinators use the same non-deterministic choice operator as CFGs).
Ridge [19] presents another way of implementing the same approach for handling
left recursion, and has the same issues regarding its application to PEGs.

ANTLR [16] is a popular parser generator that produces top-down parsers for
Context-Free Grammars based on LL(*), an extension of LL(k) parsing. Version
4 of ANTLR will have support for direct left recursion that is specialized for
expression parsers [15], handling precedence and associativity by rewriting the
grammar to encode a precedence climbing parser [7]. This support is heavily
dependent on ANTLR extensions such as semantic predicates and backtracking.

5 Conclusion

We presented a conservative extension to the semantics of PEGs that gives an
useful meaning for PEGs with left-recursive rules. It is the first extension that
is not based on packrat parsing as the parsing approach, while supporting both
direct and indirect left recursion. The extension is based on bounded left recur-
sion, where we limit the number of left-recursive uses a non-terminal may have,
guaranteeing termination, and we use an iterative process to find the smallest
bound that gives the longest match for a particular use of the non-terminal.

We also presented some examples that show how grammar writers can use our
extension to express in PEGs common left-recursive idioms from Context-Free
Grammars, such as using left recursion for left-associative repetition in expres-
sion grammars, and the use of mutual left recursion for nested left-associative
repetition. We augmented the semantics with parse strings to show how we get
a similar structure with left-recursive PEGs that we get with the parse trees of
left-recursive CFGs.

Finally, we have proved the conservativeness of our extension, and also proved
that all PEGs are complete with the extension, so termination is guaranteed for
the parsing of any subject with any PEG, removing the need for any static
checks of well-formedness beyond the simple check that every non-terminal in
the grammar has a rule.

40 S. Medeiros, F. Mascarenhas, and R. Ierusalimschy

Our semantics has already been implemented in a PEG library that uses
packrat parsing [20]. We are now working on adapting the semantics to a PEG
parsing machine [12], as the first step towards an alternative implementation
based on LPEG [9]. This implementation will incorporate ad-hoc extensions
for controlling precedence and associativity in grammars mixing left and right
recursion in the same rule, leading to more concise grammars.

References

1. Cooney, D.: Problem with nullable left recursion and trailing rules in Packrat
Parsers Can Support Left Recursion. PEG Mailing List (2009),
https://lists.csail.mit.edu/pipermail/peg/2009-November/000244.html

2. Ford, B.: Packrat parsing: Simple, powerful, lazy, linear time. In: Proceedings of
the 7th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2002, pp. 36–47. ACM, New York (2002)

3. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: POPL 2004: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 111–122. ACM, New York (2004)

4. Frost, R.A., Hafiz, R., Callaghan, P.: Parser Combinators for Ambiguous Left-
Recursive Grammars. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 167–181. Springer, Heidelberg (2008),
http://dl.acm.org/citation.cfm?id=1785754.1785766

5. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification.
Addison-Wesley Professional (2005)

6. Grune, D., Jacobs, C.J.: Parsing Techniques – A Practical Guide. Ellis Horwood
(1991)

7. Hanson, D.R.: Compact recursive-descent parsing of expressions. Software: Practice
and Experience 15(12), 1205–1212 (1985),
http://dx.doi.org/10.1002/spe.4380151206

8. Hutton, G.: Higher-order Functions for Parsing. Journal of Functional Program-
ming 2(3), 323–343 (1992)

9. Ierusalimschy, R.: A text pattern-matching tool based on Parsing Expression Gram-
mars. Software - Practice and Experience 39(3), 221–258 (2009)

10. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua 5.1 Reference Manual.
Lua.Org (2006)

11. Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

12. Medeiros, S., Ierusalimschy, R.: A parsing machine for PEGs. In: DLS 2008: Dy-
namic Languages Symposium, pp. 1–12. ACM, New York (2008)

13. Medeiros, S., Mascarenhas, F., Ierusalimschy, R.: From Regular Expressions to
Parsing Expression Grammars. In: SBLP 2011: Brazilian Programming Languages
Symposium (2011)

14. Mizushima, K., Maeda, A., Yamaguchi, Y.: Packrat parsers can handle practical
grammars in mostly constant space. In: Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE 2010, pp. 29–36. ACM, New York (2010)

15. Parr, T.: ANTLR’s left-recursion prototype. PEG mailing list (2011),
https://lists.csail.mit.edu/pipermail/peg/2011-April/000414.html

https://lists.csail.mit.edu/pipermail/peg/2009-November/000244.html
http://dl.acm.org/citation.cfm?id=1785754.1785766
http://dx.doi.org/10.1002/spe.4380151206
https://lists.csail.mit.edu/pipermail/peg/2011-April/000414.html

Left Recursion in Parsing Expression Grammars 41

16. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. In:
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, pp. 425–436. ACM, New York (2011),
http://doi.acm.org/10.1145/1993498.1993548

17. Redziejowski, R.R.: Parsing expression grammar as a primitive recursive-descent
parser with backtracking. Fundamenta Informaticae 79(3-4), 513–524 (2008)

18. Redziejowski, R.R.: Some aspects of parsing expression grammar. Fundamenta
Informaticae 85, 441–451 (2008)

19. Ridge, T.: Simple, Functional, Sound and Complete Parsing for All Context-Free
Grammars. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp.
103–118. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-25379-9_10

20. Tisher, G.: IronMeta parser generator (2012), http://ironmeta.sourceforge.net
21. Tratt, L.: Direct left-recursive parsing expression grammars. Tech. Rep. EIS-10-01,

School of Engineering and Information Sciences, Middlesex University (October
2010)

22. Warth, A.: OMeta squeak left recursion? OMeta Mailing List (June 2008),
http://vpri.org/pipermail/ometa/2008-June/000006.html

23. Warth, A., Douglass, J., Millstein, T.: Packrat parsers can support left recursion.
In: PEPM 2008: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pp. 103–110. ACM, New
York (2008)

24. Warth, A., Piumarta, I.: OMeta: an object-oriented language for pattern match-
ing. In: DLS 2007: Proceedings of the 2007 Symposium on Dynamic Languages,
pp. 11–19. ACM, New York (2007)

25. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing. MIT Press (1993)

http://doi.acm.org/10.1145/1993498.1993548
http://dx.doi.org/10.1007/978-3-642-25379-9_10
http://ironmeta.sourceforge.net
http://vpri.org/pipermail/ometa/2008-June/000006.html

Speed and Precision in Range Analysis

Victor Hugo Sperle Campos, Raphael Ernani Rodrigues,
Igor Rafael de Assis Costa, and Fernando Magno Quintão Pereira

Department of Computer Science – UFMG – Brazil
{victorsc,raphael,igor,fernando}@dcc.ufmg.br

Abstract. Range analysis is a compiler technique that determines stat-
ically the lower and upper values that each integer variable from a target
program may assume during this program’s execution. This type of infer-
ence is very important, because it enables several compiler optimizations,
such as dead and redundant code elimination, bitwidth aware register
allocation, and detection of program vulnerabilities. In this paper we
describe an inter-procedural, context-sensitive range analysis algorithm
that we have implemented in the LLVM compiler. During the effort to
produce an industrial-quality implementation of our algorithm, we had
to face a constant tension between precision and speed. The foremost
goal of this paper is to discuss the many engineering choices that, due
to this tension, have shaped our implementation. Given the breath of
our evaluation, we believe that this paper contains the most comprehen-
sive empirical study of a range analysis algorithm ever presented in the
compiler related literature.

1 Introduction

Range analysis is a compiler technique whose objective is to determine stati-
cally, for each program variable, limits for the minimum and maximum values
that this variable might assume during the program execution. Range analy-
sis is important because it enables many compiler optimizations. Among these
optimizations, the most well-known are dead and redundant code elimination.
Examples of redundant code elimination include the removal of array bounds
checks [3,13,27] and overflow checks [22]. Additionally, range analysis is also
used in bitwidth aware register allocation [1,19,26], branch prediction [18] and
synthesis of hardware for specific applications [4,12,14,23]. Because of this impor-
tance, the programming language community has put much effort in the design
and implementation of efficient and precise range analysis algorithms.

However, the compiler related literature does not contain a comprehensive
evaluation of range analysis algorithms that scale up to entire programs. Many
works on this subject are limited to very small programs [14,21,23], or, given
their theoretic perspective, have never been implemented in production compil-
ers [9,10,24,25]. There are implementations of range analysis that deal with very
large programs [2,6,13,16]; nevertheless, because these papers focus on applica-
tions of range analysis, and not on its implementation, they do not provide a
thorough discussion about their engineering decisions. A noticeable exception is

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 42–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Speed and Precision in Range Analysis 43

the recent work of Oh et al. [17], which discusses a range analysis algorithm de-
veloped for C programs that can handle very large benchmarks. Oh et al. present
an evaluation of the speed and memory consumption of their implementation.
In this paper we claim to push this discussion considerably further.

We have implemented an industrial-quality range analysis algorithm in the
LLVM compiler [11]. While designing and implementing our algorithm we had
to face several important engineering choices. Many approaches that we have
used in an attempt to increase the precision of our implementation would re-
sult in runtime slowdowns. Although we cannot determine the optimum spot in
this design space, given the vast number of possibilities, we discuss our most
important implementation decisions in Section 3. Section 3.1 shows how we can
improve runtime and precision substantially by processing data-flow informa-
tion in the strongly connected components that underly our constraint system.
Section 3.2 discuss the importance of choosing a suitable intermediate represen-
tation when implementing a sparse data-flow framework. Section 3.3 compares
the intra-procedural and the inter-procedural versions of our algorithm. The role
of context sensitiveness is discussed in Section 3.4. Finally, Section 3.5 discusses
the different widening strategies that we have experimented with.

This work concludes a two years long effort to produce a solid and scal-
able implementation of range analysis. Our first endeavor to implement such an
algorithm was based on Su and Wagner’s constraint system [24,25]. However,
although we could use their formulation to handle a subset of C-like constructs,
their description of how to deal with loops was not very explicit. Thus, in order
to solve loops we adopted Gawlitza et al.’s [9] approach. This technique uses
the Bellman-Ford algorithm to detect increasing or decreasing cycles in the con-
straint system, and then saturates these cycles via a simple widening operator.
A detailed description of our implementation has been published by Couto and
Pereira [8]. Nevertheless, the inability to handle comparisons between variables,
and the cubic complexity of the Bellman-Ford method eventually led us to seek
alternative solutions to range analysis. This quest reached a pinnacle in the
present work, which we summarize in this paper.

2 Brief Description of Our Range Analysis Algorithm

The Interval Lattice. Following Gawlitza et al.’s notation, we shall be per-
forming arithmetic operations over the lattice Z = Z ∪ {−∞,+∞}, where the
ordering is naturally given by −∞ < . . .− 1 < 0 < 1 . . . < +∞. We let meet and
join be the min and max operators respectively. For any x > −∞ we define:

x+∞ = ∞ x−∞ = −∞
x×∞ = ∞ if x > 0 x×∞ = −∞ if x < 0
0×∞ = 0 (−∞)×∞ = not defined

From the lattice Z we define the product lattice Z2, partially ordered by the
subset relation �, and defined as Z2 = ∅ ∪ {[z1, z2]| z1, z2 ∈ Z, z1 ≤ z2, −∞ <
z2}. The objective of range analysis is to determine a mapping I : V �→ Z2 from

44 V.H.S. Campos et al.

e-SSA
(Section 3.2)

Interprocedural
(Section 3.3)

Context
Sensitiveness
(Section 3.4)

Extract
Constraints

Build
constraint

graph

Compute
SCCs

Sort
topologically

Remove control
dep. edges

Growth
analysis

(Section 3.5)

Future
Resolution

Narrowing
analysis

The micro algorithm:
for each SCC in topological orderStrongly Connected Components (Section 3.1)

Fig. 1. Our implementation of range analysis. Rounded boxes are optional modules.
The grey box is a module implemented in LLVM; the other parts are our contributions.

the set of integer program variables V to intervals, such that, for any variable
v ∈ V , if I(v) = [l, u], then, during the execution of the target program, any
value i assigned to v is such that l ≤ i ≤ u.

A Holistic View of Our Range Analysis Algorithm. Figure 1 gives a global
view of our range analysis algorithm. We perform range analysis in a number
of steps, some of which are optional. The optional parts improve the precision
of the range analysis, at the expense of a longer running time. In Section 3 we
discuss in more detail these tradeoffs.

We will illustrate the mandatory parts of the algorithm via the example pro-
gram in Figure 2. More details about each phase of the algorithm will be in-
troduced in Section 3, when we discuss our engineering decisions. Figure 2(a)
shows an example program taken from the partition function of the quicksort
algorithm used by Bodik et al. [3]. Figure 2(b) shows one possible way to rep-
resent this program internally. As we explain in Section 3.2, a good program
representation helps range analysis to find more precise results. In this example
we chose a program representation called Extended Static Single Assignment
form [3], which lets us solve range analysis via a path sensitive algorithm. This
representation uses the φ-functions typical in SSA form programs [7], plus fu-
tures (ft), which we shall define later. Figure 2(c) shows the constraints that
we extract from the intermediate representation seen in part (b) of this figure.
From these constraints we build the constraint graph in Figure 2(d). This graph
is the main data-structure that we use to solve range analysis. For each variable
v in the constraint system, the constraint graph has a node nv. Similarly, for
each constraint v = f(. . . , u, . . .) in the constraint system, the graph has an op-
eration node nf . For each constraint v = f(. . . , u, . . .) we add two edges to the
graph: −−−→nunf and −−−→nfnv. Some edges in the constraint graph are dashed. These
are called control dependence edges. If a constraint v = f(. . . , ft(u), . . .) uses a
future bound from a variable u, then we add to the constraint graph a control
dependence edge −−−→nunf . The final solution to this instance of the range analysis
problem is given in Figure 2(e).

The Micro Algorithm. We find the solution given in Figure 2(e) in a process
that we call the micro algorithm. This process is divided into three sub-steps:
(i) growth analysis; (ii) future resolution and (iii) narrowing analysis.

Speed and Precision in Range Analysis 45

k = 0

while k < 100:

 i = 0

 j = k

 while i < j:

 i = i + 1

 j = j - 1

 k = k + 1

k
0
 = 0

k
1
 = (k

0
, k

2
)

k
t
 = k

1
 [, 99]

i
0
 = 0

j
0
 = k

t

i
1
 = (i

0
, i

2
)

j
1
 = (j

0
, j

2
)

i
2
 = i

t
 + 1

j
2
 = j

t
 - 1

k
2
 = k

t
 + 1

j
t
 = j

1
 [ft(i

1
), +]

i
t
 = i

1
 [, ft(j

1
)]

k
0
 = 0

k
1
 = (k

0
, k

2
)

(k
1
 < 100)?

k
t
 = k

1
[- ,99]

i
0
 = 0

j
0
 = k

t

i
1
 = (i

0
, i

2
)

j
1
 = (j

0
, j

2
)

(i
1
 < j

1
)?

k
2
 = k

t
 + 1

i
t
 = i

1
[- ,ft(j

1
)-1]

j
t
 = j

1
[ft(i

1
),+]

i
2
 = i

t
 + 1

j
2
 = j

t
 - 1

I[i
0
] = [0, 0]

I[i
1
] = [0, 99]

I[i
2
] = [1, 99]

I[i
t
] = [0, 98]

I[j
0
] = [0, 99]

I[j
1
] = [-1, 99]

I[j
2
] = [-1, 98]

I[j
t
] = [0, 99]

I[k
0
] = [0, 0]

I[k
1
] = [0, 100]

I[k
2
] = [1, 100]

I[k
t
] = [0, 99]

0 k
0

k
1

k
t

k
2

j
0

j
1

j
t

j
2

0 i
0

i
1

i
t

i
2

[- ,99]

[- , ft(j1)-1] [ft(i1), +]

+1

=

1+1

(a) (b) (c)

(d) (e)

Fig. 2. Range analysis by example. (a) Input program. (b) Internal compiler represen-
tation. (c) Constraints of the range analysis problem. (d) The constraint graph. (e)
The final solution.

Growth Analysis. The objective of growth analysis is to determine the growth
behavior of each program variable. There are four possible behaviors: (a) the vari-
able is bound to a constant interval, such as k0 in Figure 2(b). (b) The variable
is bound to a decreasing interval, i.e., an interval whose lower bound decreases.
This is the case of j1 in our example. (c) The variable is bound to an increasing
interval, i.e., its upper bound increases. This is the case of i1 in the example. (d)
The variable is bound to an interval that expands in both directions. The growth
analysis uses an infinite lattice, i.e., Z2. Thus, a careless implementation of an
algorithm that infers growth patterns might not terminate. In order to ensure
termination, we must rely on a technique called widening, first introduced by
Cousot and Cousot as a key component of abstract interpretation [5]. There are
many different widening strategies. We discuss some of them in Section 3.5.

Future Resolution. In order to learn information from comparisons between
variables, such as i < j in Figure 2(a), we bind some intervals to futures. Fu-
tures are symbolic limits, which will be replaced by actual numbers once we
finish the growth analysis. The ranges found by the growth analysis tells us

46 V.H.S. Campos et al.

Y = X � [l, ft(V) + c] I(V)↑ = u

Y = X � [l, u+ c]
u, c ∈ Z ∪ {−∞,+∞}

Y = X � [ft(V) + c, u] I(V)↓ = l

Y = X � [l + c, u]
l, c ∈ Z ∪ {−∞,+∞}

Fig. 3. Rules to replace futures by actual bounds. Given an interval ι = [l, u], we let
ι↓ = l, and ι↑ = u

I(V)↓ = −∞ e(V)↓ > −∞
I(V)← [e(V)↓, I(V)↑]

I(V)↓ > e(V)↓
I(V)← [e(V)↓, I(V)↑]

I(V)↑ = +∞ e(V)↑ < +∞
I(V)← [I(V)↓, e(V)↑]

I(V)↑ < e(V)↑
I(V)← [I(V)↓, e(V)↑]

Fig. 4. Cousot and Cousot’s narrowing operator. Function e(V) is an abstract evalua-
tion, on the interval lattice, of the instruction that produces V .

which variables have fixed bounds, independent on the intersections in the con-
straint system. Thus, we can use actual limits to replace intersections bounded
by futures. Figure 3 shows the rules to perform these substitutions. In order to
correctly replace a future ft(v) that limits a variable v′, we need to have already
applied the growth analysis onto v. Had we considered only data dependence
edges, then it would be possible that v′ be analyzed before v. However, because
of control dependence edges, this case cannot happen. The control dependence
edges ensure that any topological ordering of the constraint graph either places
Nv before Nv′ , or places these nodes in the same strongly connected component.
For instance, in Figure 2(d), variables j1 and it are in the same SCC only because
of the control dependence edges.

Narrowing Analysis. The growth analysis associates very conservative bounds
to each variable. Thus, the last step of our algorithm consists in narrowing these
intervals. We accomplish this step via Cousot and Cousot’s classic narrowing
operator [5, p.248], which we show in Figure 4.

Example. Continuing with our example, Figure 5 shows the application of our
algorithm on the last strong component of Figure 2(d). Upon meeting this SCC,
we have already determined that the interval [0, 0] is bound to i0 and that the
interval [100, 100] is bound to j0. We are not guaranteed to find the least fixed
point of a constraint system. However, in this example we did it. We empha-
size that finding this tight solution was only possible because of the topological
ordering of the constraint graph in Figure 2(d). Had we applied the widening

Speed and Precision in Range Analysis 47

j
1

[,]

j
t

[,]

j
2

[,]i
1

[,]

i
t

[,]

i
2

[,]

[- , ft(J
1
)-1] [ft(I

1
), +]

1+1

[0, 0] [0, 99]

j
1

[, 99]

j
t

[, 99]

j
2

[, 98]i
1

[0, +]

i
t

[0, +]

i
2

[1, +]

[- , ft(J
1
)-1] [ft(I

1
), +]

1+1

[0, 0] [0, 99]

j
1

[-1, 99]

j
t

[0, 99]

j
2

[1, 98]i
1

[0, 99]

i
t

[0, 98]

i
2

[1, 99]

[- , 98] [0, +]

1+1

[0, 0] [0, 99]

(a)

(b)

(c)

(d)

(i
0
) (j

0
)

j
1

[- , 99]

j
t

[- , 99]

j
2

[, 98]i
1

[0, +]

i
t

[0, +]

i
2

[1, +]

[- , 98] [0, +]

1+1

[0, 0] [0, 99]

Fig. 5. Four snapshots of the last SCC of Figure 2(d). (a) After removing control de-
pendence edges. (b) After running the growth analysis. (c) After fixing the intersections
bound to futures. (d) After running the narrowing analysis.

operator onto the whole graph, then we would have found out that variable j0
is bound to [−∞,+∞], because (i) it receives its interval directly from variable
kt, which is upper bounded by +∞, and (ii) it is part of a negative cycle. On
the other hand, by only analyzing j’s SCC after we have analyzed k’s, k only
contributes the constant range [0, 99] to j0.

3 Design Space

As we see from a cursory glance at Figure 1, our range analysis algorithm has
many optional modules. These modules give the user the chance to choose be-
tween more precise results, or a faster analysis. Given the number of options, the
design space of a range analysis algorithm is vast. In this section we try to cover
some of the most important tradeoffs. All the numbers that we show have been
obtained as the average of 15 runs in an Intel Core 2 Quad processor with 2.4
GHz, and 3.5 GB of main memory. Figure 6 plots, for the integer programs in
the SPEC CPU 2006 benchmark suite, precision versus speed for different con-
figurations of our implementation. Our initial goal when developing this analysis
was to support a bitwidth-aware register allocator. Thus, we measure precision
by the average number of bits that our analysis allows us to save per program
variable. It is very important to notice that we do not consider constants in our
statistics of precision. In other words, we only measure bitwidth reduction in
variables that a constant propagation step could not remove.

48 V.H.S. Campos et al.

ACEGI

ACEGJ

ADEGI

AEDGJ

BCEGI

BCEGJ

BDEGI

BDEGJ

ACEHI

ACEHJ

ADEHJ

ADEHI

BCEHI

BCEHJ
BDEHI

ACFGI

ADFGI

ADFGJ

BCFGJ

ACFHI

ADFHI

ADFHJ

BCFHI

BCFHJ

BDFHJ

BDFHI

ACFHJ

BDEHJ

ACFGJ

BCFGI

BDFGI
BDFGJ

A: SSA

B: e-SSA

C: 0 iterations

D: 16 iterations

E: intra

F: inter

G: no inlining

H: inlining

I: simple widening

J: jump-set widening

Time (secs)

P
re

c
is

io
n

Fig. 6. Design space exploration: precision (percentage of bitwidth reduction) versus
speed (secs) for different configurations of our algorithm analyzing the SPEC CPU
2006 integer benchmarks.

3.1 Strongly Connected Components

The greatest source of improvement in our implementation is the use of strongly
connected components. To propagate ranges across the constraint graph, we
fragment it into strongly connected components, collapse each of these compo-
nents into single nodes, and sort the resulting directed acyclic graph topologi-
cally. We then solve the range analysis problem for each component individually.
Once we have solved a component, we propagate its ranges to the next compo-
nents, and repeat the process until we walk over the entire constraint graph.
It is well-known that this technique is essential to speedup constraint solving
algorithms [15, Sec 6.3]. In our case, the results are dramatic, mostly in terms of
speed, but also in terms of precision. Figure 7 shows the speedup that we gain by
using strong components. We show results for the integer programs in the SPEC
CPU 2006 benchmark suite. In xalancbmk, the analysis on strong components
is 450x faster.

According to Figure 7, in some cases, as in bzip2, strong components increase
our precision by 40%. The gains in precision happen because, by completely re-
solving a component, we are able to propagate constant intervals to the next
components, instead of propagating intervals that can grow in both directions.
An an example, in Figure 5 we pass the range [0, 99] from variable k to the com-
ponent that contains variable j. Had we run the analysis in the entire constraint
graph, by the time we applied the growth analysis on j we would still find k
bound to [0,+∞].

Speed and Precision in Range Analysis 49

Fig. 7. (Left) Bars give time to run our analysis without building strong components
divided by time to run the analysis on strongly connected components. (Right) Bars
give precision, in bitwidth reduction, that we obtain with strong components, divided
by the precision that we obtain without them.

3.2 The Choice of a Program Representation

If strong components account for the largest gains in speed, the choice of a
suitable program representation is responsible for the largest gains in precision.
However, here we no longer have a win-win condition: a more expressive pro-
gram representation decreases our speed, because it increases the size of the
target program. We have tried our analysis in two different program represen-
tations: the Static Single Assignment (SSA) form [7], and the Extended Static
Single Assignment (e-SSA) form [3]. The SSA form gives us a faster, albeit more
imprecise, analysis. Any program in e-SSA form has also the SSA core property:
any variable name has at most one definition site. The contrary is not true: SSA
form programs do not have the core e-SSA property: any use site of a variable
that appears in a conditional test post-dominates its definition. The program in
Figure 2(b) is in e-SSA form. The live ranges of variables i1 and j1 have been
split right after the conditional test via the assertions that creates variables it
and jt. The e-SSA format serves well analyses that extract information from
definition sites and conditional tests, and propagate this information forwardly.
Examples include, in addition to range analysis, tainted flow analysis [20] and
array bounds checks elimination [3].

Figure 8 compares these two program representations in terms of runtime. As
we see in Figure 8(Left), the e-SSA form slows down our analysis. In some cases,
as in xalancbmk, this slowdown increases execution time by 71%. Runtime in-
creases for two reasons. Firstly, the e-SSA form programs are larger than the SSA
form programs, as we show in Figure 8(Right). However, this growth is small: we
did not verify any growth larger than 9% in any integer program of SPEC CPU
2006. Second, the e-SSA form program has futures; hence requiring the future
resolution phase of our algorithm, which is not necessary in SSA form programs.
Nevertheless, whereas the e-SSA form slows down the analysis runtime, its gains
in precision are remarkable, as seen in Figure 9. These gains happen because the
e-SSA format lets the analysis to use the results of comparisons to narrow the
ranges of variables.

50 V.H.S. Campos et al.

Fig. 8. (Left) Bars give the time to run analysis on e-SSA form programs divided by
the time to run analysis on SSA form programs. (Right) Bars give the size of the e-SSA
form program, in number of assembly instructions, divided by the size of the SSA form
program.

Intra Intra+inline Inter Inter+inline
154

121 97

SPEC CPU 2006 Stanford Bitwise

Fig. 9. The impact of the e-SSA transformation on precision for three different bench-
mark suites. Bars give the ratio of precision (in bitwidth reduction), obtained with
e-SSA form conversion divided by precision without e-SSA form conversion.

3.3 Intra versus Inter-procedural Analysis

A naive implementation of range analysis would be intra-procedural; that is,
would solve the range analysis problem once per each function. However, we can
gain in precision by performing it inter-procedurally. An inter-procedural imple-
mentation allows the results found for a function f to flow into other functions
that f calls. Figure 10 illustrates the inter-procedural analysis for the program
seen in Figure 2(a). The trivial way to produce an inter-procedural implementa-
tion is to insert into the constraint system assignments from the actual parameter
names to the formal parameter names. In our example of Figure 10, our con-
straint graph contains a flow of information from 0, the actual parameter, to k0,
the formal parameter of function foo.

Figure 12 compares the precision of the intra and inter-procedural analy-
ses for the five largest programs in three different categories of benchmarks:
SPEC CPU 2006, the Stanford Suite1 and Bitwise [23]. Our results for the
SPEC programs were disappointing: on average, for the five largest programs,

1 http://classes.engineering.wustl.edu/cse465/docs/BCCExamples/stanford.c

Speed and Precision in Range Analysis 51

main():

 foo(0, 100)

foo(k, N):

 while k < N:

 i = 0

 j = k

 while i < j:

 i = i + 1

 j = j - 1

 k = k + 1

0 k
0

k
1

k
t

k
2

j
0

j
1

j
t

j
2

0 i
0

i
1

i
t

i
2

[- ,ft(N)]

[- , ft(j1)-1] [ft(i1), +]

+1

=

1+1

N100

Fig. 10. Example where an inter-procedural analysis is more precise than an intra-
procedural analysis

the intra-procedural version of our analysis saves 5.23% of bits per variable. The
inter-procedural version increases this number to 8.89%. A manual inspection of
the SPEC programs reveals that this result is expected: these programs use many
external library functions, which we cannot analyze, and their source codes do
not provide enough explicit constants to power our analysis up. However, with
numerical benchmarks we fare much better. On average, our inter-procedural al-
gorithm reduces the bitwidth of the Stanford benchmarks by 36.24%. For Bitwise
we obtain a bitwidth reduction of 12.27%. However, this average is lowered by
two outliers: edge detect and sha, which cannot be reduced. The Bitwise bench-
marks were implemented by Stephenson et al. [23] to validate their bitwidth
analysis. Our results are on par with those found by the original authors. The
Bitwise programs contain only the main function; thus, different versions of our
algorithm find the same results when applied onto these programs.

3.4 Context Sensitive versus Context Insensitive Analysis

Another way to increase the precision of range analysis is via a context-sensitive
implementation. Context-sensitiveness allows us to distinguish different calling
sites of the same function. Figure 11 shows why the ability to make this dis-
tinction is important for precision. In Figure 11(a) we have two different calls of
function foo. An usual way to perform a data-flow analysis inter-procedurally is
to create assignments between formal and actual parameters, as we show in Fig-
ure 11(b). If a function is called more than once, then its formal parameters will
receive information from many actual parameters. We use the SSA’s φ-functions
to bind this information together into a single flow. However, in this case the
multiple assignment of values to parameters makes the ranges of these parame-
ters very large, whereas in reality they are not. As an example, in Figure 11(b),
variable k ends up associated with the range [0, 105], but in reality this variable
contains an interval that is only 100 units long. A way to circumvent this source
of imprecision is via function inlining, as we show in Figure 11(c). The results
that we can derive for the transformed program are more precise, as each input
parameter is assigned a single value.

52 V.H.S. Campos et al.

main():

 foo(0, 100)

 foo(10000, 100000)

foo(k, N):

 while k < N:

 i = 0; j = k

 while i < j:

 i = i + 1; j = j - 1

 k = k + 1

0

k N

100

constraint
graph of
the body

of foo

10000 100000

main():

 k
a
 = 0; N

a
 = 100

 while k
a
 < N

a
:

 i
a
 = 0; j

a
 = k

a

 while i
a
 < j

a
:

 i
a
 = i

a
 + 1; j

a
 = j

a
 - 1

 k
a
 = k

a
 + 1

 k
b
 = 10000; N

b
 = 100000

 while k
b
 < N

b
:

 i
b
 = 0; j

b
 = k

b

 while i
b
 < j

b
:

 i
b
 = i

b
 + 1; j

b
 = j

b
 - 1

 k
b
 = k

b
 + 1(a) (b) (c)

Fig. 11. Example where a context-sensitive implementation improves the results of
range analysis

Intra Intra+inline Inter Inter+inline

SPEC CPU 2006 Stanford Bitwise

Fig. 12. The impact of whole program analysis on precision. Each bar gives precision
in %bitwidth reduction.

Figure 12 shows how function inlining modifies the precision of our results.
It is difficult to find an adequate way to compare the precision of our analysis
with, and without inlining. This difficulty stems from the fact that this transfor-
mation tends to change the target program too much. In absolute numbers, we
always reduce the bitwidth of more variables after function inlining. However,
proportionally function inlining leads to a smaller percentage of bitwidth reduc-
tion for many benchmarks. In the Stanford Collection, for instance, where most
of the functions are called in only one location, inlining leads to worse precision
results. On the other hand, for the SPEC programs, inlining, even in terms of
percentage of reduction, tends to increase our measure of precision.

Intra vs Inter-procedural Runtimes. Figure 13(Right) compares three dif-
ferent execution modes. Bars are normalized to the time to run the intra-
procedural analysis without inlining. On average, the intra-procedural mode is
28.92% faster than the inter-procedural mode. If we perform function inlining,
then this difference is 45.87%. These numbers are close because our runtime is
bound to the size of the strong components. We have observed that function
inlining does not increase too much these components.

Speed and Precision in Range Analysis 53

Fig. 13. Runtime comparison between intra, inter and inter+inline versions of our
algorithm. The bars are normalized to the time to run the intra-procedural analysis.

[,]

[, c] [c, +]

[c1, c2]

[, +]
I(V) = [⊥,⊥]
I(V)← e(V)

e(V)↓ < I(V)↓ e(V)↑ > I(V)↑
I(V)← [−∞,+∞]

e(V)↓ < I(V)↓
I(V)← [−∞, I(V)↑]

e(V)↑ > I(V)↑
I(V)← [I(V)↓,+∞]

Fig. 14. (Left) The lattice used in the simple widening strategy. (Right) Cousot and
Cousot’s widening operator. We evaluate the rules from left-to-right, top-to-bottom,
and stop upon finding a pattern matching.

3.5 Choosing a Widening Strategy

We have implemented the widening operator used in the growth analysis in
two different ways. The first way, which we call simple, is based on Cousot and
Cousot’s original widening operator [5]. This operator is shown in Figure 14,
and it is the one used in Figure 5(b). The second widening strategy, which
we call jump-set widening consists in using the constants that appear in the
program text, in sorted order, as the next limits of each interval after widening
is applied. This operator is common in implementations of range analysis [15,
p.228]. There are situations in which jump-set widening produces better results
than the simple operator. Figure 15 shows an example taken from the code of
SPEC CPU bzip2. Part of the constraint graph of the program in Figure 15(a)
is given in Figure 15(b). The result of applying the simple operator is shown in
Figure 15(c). Jump-set widening would use the lattice in Figure 15(d), instead of
the lattice in Figure 14(Right). This lattice yields the result given in Figure 15(e),
which is more precise.

Another way to improve the precision of growth analysis is to perform a few
rounds of abstract interpretation on the constraint graph, and to apply widen-
ing only if this process does not reach a fixed point. Each round of abstract
interpretation consists in evaluating all the constraints, and then updating the

54 V.H.S. Campos et al.

int main(int N) {

 int i = 0;

 while (1) {

 int tooLong = 0;

 while (i <= N) {

 if (i == N) {

 tooLong = 1;

 }

 }

 if (tooLong) {

 break;

 }

 }

 return i;

}

tooLong0

tooLong1 0

1

tooLong0[0, +]

tooLong1 [- , 1] 0

1

[,]

[, 0]

[0, 0]

[, +]

[1, 1]

[0, 1]

[0, +] [, 1] [1, +]

tooLong0[0, 1]

tooLong1 [0, 1] 0

1

(a)

(b)

(c)

(d)

(e)

Fig. 15. An example where jump-set widening is more precise

Benchmark Size 0 + Simple 16 + Simple 0 + Jump 16 + Jump

hmmer 38,409 9.98 11.40 (12.45) 10.98 (9.11) 11.40 (12.45)

gobmk 84,846 8.15 9.93 (17.92) 9.02 (9.64) 10.13 (19.54)

h264ref 97,494 12.58 13.11 (4.04) 13.00 (3.23) 13.11 (4.04)

xalancbmk 352,423 7.71 7.98 (3.38) 7.95 (3.02) 7.98 (3.38)

gcc 449,442 16.09 16.63 (3.25) 16.41 (1.95) 16.64 (3.31)

Fig. 16. Variation in the precision of our analysis given the widening strategy. The
size of each benchmark is given in number of variable nodes in the constraint graph.
Precision is given in percentage of bitwidth reduction. Numbers in parenthesis are
percentage of gain over 0 + Simple.

intervals that change from one evaluation to the other. For instance, in Figure 15
one round of abstract interpretation, coupled with the simple widening operator,
would be enough to reach the fixed point of that constraint system. We have
experimented with 0 and 16 iterations before doing widening, and the overall
result, for the programs in the SPEC CPU 2006 suite is given in Figure 6. Fig-
ure 16 shows some of these results in more detail for the five largest benchmarks
in this collection. In general jump-set widening improves the precision of our
results in non-trivial ways. Nevertheless, the simple widening operator preceded
by 16 rounds of abstract interpretation in general is more precise than jump-set
widening without any cycle of pre-evaluation, as we see in Figure 16.

4 Final Remarks

This paper presents what we believe is the most comprehensive evaluation
of range analysis in the literature. Altogether we have experimented with
32 different configurations of our range analysis algorithm. Our implemen-
tation is publicly available at http://code.google.com/p/range-analysis/.

Speed and Precision in Range Analysis 55

This repository contains instructions about how to deploy and use our im-
plementation. We provide a gallery of examples, including source codes,
CFGs and constraint graphs that we produce for meaningful programs at
http://code.google.com/p/range-analysis/wiki/gallery.

References

1. Barik, R., Grothoff, C., Gupta, R., Pandit, V., Udupa, R.: Optimal Bitwise Register
Allocation Using Integer Linear Programming. In: Almási, G.S., Caşcaval, C., Wu,
P. (eds.) KSEM 2006. LNCS, vol. 4382, pp. 267–282. Springer, Heidelberg (2007)

2. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
In: I@A, pp. 1–38. AIAA (2010)

3. Bodik, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: PLDI, pp. 321–333. ACM (2000)

4. Cong, J., Fan, Y., Han, G., Lin, Y., Xu, J., Zhang, Z., Cheng, X.: Bitwidth-aware
scheduling and binding in high-level synthesis. In: Proceedings of the Asia and
South Pacific Design Automation Conference, ASP-DAC 2005, January 18-21,
vol. 2, pp. 856–861 (2005)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

6. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
astrée scale up? Form. Methods Syst. Des. 35(3), 229–264 (2009)

7. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Effi-
ciently computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

8. do Couto Teixeira, D., Pereira, F.M.Q.: The design and implementation of a non-
iterative range analysis algorithm on a production compiler. In: SBLP, pp. 45–59.
SBC (2011)

9. Gawlitza, T., Leroux, J., Reineke, J., Seidl, H., Sutre, G., Wilhelm, R.: Polynomial
precise interval analysis revisited. Efficient Algorithms 1, 422–437 (2009)

10. Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with Thresholds for Pro-
grams with Complex Control Graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidelberg (2011)

11. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE (2004)

12. Lhairech-Lebreton, G., Coussy, P., Heller, D., Martin, E.: Bitwidth-aware high-
level synthesis for designing low-power dsp applications. In: ICECS, pp. 531–534.
IEEE (2010)

13. Logozzo, F., Fahndrich, M.: Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. In: SAC, pp. 184–188. ACM (2008)

14. Mahlke, S., Ravindran, R., Schlansker, M., Schreiber, R., Sherwood, T.: Bitwidth
cognizant architecture synthesis of custom hardware accelerators. Computer-Aided
Design of Integrated Circuits and Systems 20(11), 1355–1371 (2001)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

16. Oh, H., Brutschy, L., Yi, K.: Access Analysis-Based Tight Localization of Abstract
Memories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
356–370. Springer, Heidelberg (2011)

56 V.H.S. Campos et al.

17. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for C-like languages. In: PLDI, pp. 229–238. ACM (2012)

18. Patterson, J.R.C.: Accurate static branch prediction by value range propagation.
In: PLDI, pp. 67–78. ACM (1995)

19. Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: PLDI, pp.
216–226. ACM (2008)

20. Rimsa, A., d’Amorim, M., Pereira, F.M. Q.: Tainted Flow Analysis on e-SSA-Form
Programs. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 124–143. Springer,
Heidelberg (2011)

21. Simon, A.: Value-Range Analysis of C Programs: Towards Proving the Absence of
Buffer Overflow Vulnerabilities, 1st edn. Springer (2008)

22. Sol, R., Guillon, C., Pereira, F.M.Q., Bigonha, M.A.S.: Dynamic Elimination of
Overflow Tests in a Trace Compiler. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601,
pp. 2–21. Springer, Heidelberg (2011)

23. Stephenson, M., Babb, J., Amarasinghe, S.: Bitwidth analysis with application to
silicon compilation. In: PLDI, pp. 108–120. ACM (2000)

24. Su, Z., Wagner, D.: A Class of Polynomially Solvable Range Constraints for Interval
Analysis without Widenings and Narrowings. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 280–295. Springer, Heidelberg (2004)

25. Su, Z., Wagner, D.: A class of polynomially solvable range constraints for inter-
val analysis without widenings. Theoretical Computeter Science 345(1), 122–138
(2005)

26. Tallam, S., Gupta, R.: Bitwidth aware global register allocation. In: POPL, pp.
85–96. ACM (2003)

27. Venet, A., Brat, G.: Precise and efficient static array bound checking for large
embedded c programs. SIGPLAN Not. 39, 231–242 (2004)

Parameter Based Constant Propagation

Péricles Rafael Oliveira Alves, Igor Rafael de Assis Costa,
Fernando Magno Quintão Pereira, and Eduardo Lage Figueiredo

Departamento de Ciência da Computação – UFMG
Av. Antônio Carlos, 6627 – 31.270-010 – Belo Horizonte – MG – Brazil

{periclesrafael,igor,fernando,figueiredo}@dcc.ufmg.br

Abstract. JavaScript is nowadays the lingua franca of web browsers.
This programming language is not only the main tool that developers
have to implement the client side of web applications, but it is also the
target of frameworks such as Google Web Toolkit. Given this importance,
it is fundamental that JavaScript programs can be executed efficiently.
Just-in-time (JIT) compilation is one of the keys to achieve this much
necessary efficiency. An advantage that a JIT compiler has over a tradi-
tional compiler is the possibility to use runtime values to specialize the
target code. In this paper we push JIT speculation to a new extreme:
we have empirically observed that many JavaScript functions are called
only once during a typical browser section. A natural way to capitalize
on this observation is to specialize the code produced by a function to
the particular values that are passed to this function as parameters. We
have implemented this approach on IonMonkey, the newest JIT compiler
used in the Mozilla Firefox browser. By coupling this type of parameter
specialization with constant propagation, a classical compiler optimiza-
tion, we have been able to experimentally observe speedups of up to
25% on well-known algorithms. These gains are even more remarkable
because they have been obtained over a worldly known, industrial quality
JavaScript runtime environment.

1 Introduction

Dynamically typed programming languages are today widespread in the com-
puter science industry. Testimony of this fact is the ubiquity of PHP, Python and
Ruby in the server side of web applications, and the dominance of JavaScript
on its client side. This last programming language, JavaScript, today not only
works as a tool that developers may use to code programs directly, but also fills
the role of an assembly language for the Internet [13]. The Google Web Toolkit,
for instance, allows programmers to develop applications in Java or Python, but
translates these programs to a combination of JavaScript and HTML [5]. Given
this importance, it is fundamental that dynamically typed languages, which are
generally interpreted, can be executed efficiently, and the just-in-time (JIT) com-
pilers seem to be a key player to achieve this much needed speed [2].

However, in spite of the undeniable importance of a language such as
JavaScript, executing its programs efficiently is still a challenge even for a JIT

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 57–71, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

58 P.R.O. Alves et al.

compiler. The combination of dynamic typing and late binding hides from the
compiler core information that is necessary to generate good code. The type
of the values manipulated by a JavaScript program is only known at runtime,
and even then it might change during program execution. Moreover, having a
very constrained time window to generate machine code, the JIT compiler many
times gives up important optimizations that a traditional translator would prob-
ably use. Therefore, it comes as no surprise that the industry and the academic
community are investing a huge amount of effort in the advance of JIT technol-
ogy [11,13]. Our intention in this paper is to contribute further in this effort.

In this paper we discuss a key observation, and a suite of ideas to capital-
ize on it. After instrumenting the Mozilla Firefox browser, we have empirically
observed that almost half the JavaScript functions in the 100 most visited web-
sites in the Alexa index1 are only called once. This observation motivates us
to specialize these functions to their arguments. Hence, we give to the JIT com-
piler an advantage that a traditional compilation system could never have: the
knowledge of the values manipulated at runtime.

We propose a form of constant propagation that treats the arguments passed
to the function to be compiled as constants. Such approach is feasible, because
we can check the values of these parameters at runtime, during JIT compilation.
If the target function is only called once, then we have a win-win condition: we
can generate simpler and more effective code, without having to pay any penalty.
On the other hand, if the function is called more than once, we must recompile
it, this time using a traditional approach, which makes no assumptions about
the function arguments.

1.1 Why Parameter Specialization Matters

The main motivation to our work comes out of an observation: most of the
JavaScript functions in typical webpages are called only once. To corroborate
this statement, Figure 1 plots the percentage of JavaScript functions called N
times, 1 ≤ N ≤ 50. To obtain this plot we have used the same methodology
adopted by Richard et al. [10]: we have instrumented the browser, and have
used it to navigate through the 100 most visited pages according to the Alexa
index. This company offers users a toolbar that, once added to their browsers,
tracks data about browsing behavior. This data is then collected and used to
rank millions of websites by visiting rate.

From Figure 1 we see that the number of times each JavaScript function is
called during a typical browser section clearly obeys a power law. About 47% of
the functions are called only once, and about 59% of the functions are called at
most twice. Therefore, many functions will be given only one set of arguments.
Nevertheless, a traditional just-in-time compiler generates code that is general
enough to handle any possible combination of parameters that their types allow.
In this paper, we propose the exact opposite: lets specialize functions to their
arguments; hence, producing efficient code to the common case. Functions that

1 http://www.alexa.com/

Parameter Based Constant Propagation 59

Fig. 1. A plot that shows how many times each different JavaScript function is called in
a typical browser section in the 100 most visited pages according to the Alexa website

are called more than once must either be re-compiled or interpreted. In this way
we can produce super-specialized binaries, using knowledge that is only available
at runtime; thus, achieving an advantage that is beyond the reach of any ordinary
static compiler.

2 Parameter Based Method Specialization

In this section we illustrate our approach to runtime code optimization via an ex-
ample. Then we explain how we can use runtime knowledge to improve constant
propagation, a well-known compiler optimization.

2.1 Parameter Based Specialization by Example

We illustrate how a just-in-time compiler can benefit from parameter based spe-
cialization via the example program in Figure 2. The function closest finds,
among the n elements of the array v, the one which has the smallest difference
to an integer q. We see the control flow graph (CFG) of this program at the
figure’s right side. This CFG is given in the Static Single Assignment [9] (SSA)
intermediate representation, which is adopted by IonMonkey, our baseline com-
piler. The SSA format has the core property that each variable name has only
one definition site. Special instructions, called φ-functions, are used to merge to-
gether different definitions of a variable. This program representation simplifies
substantially the optimizations that we describe in this paper.

60 P.R.O. Alves et al.

function closest(v, q, n) {

 if (n == 0) {

 throw "Error";

 } else {

 var i = 0;

 var d = 2147483647;

 while (i < n) {

 var nd = abs(s[i] - q);

 if (nd <= d)

 d = nd;

 i++;

 }

 return d;

 }

}

Function entry point
v = param[0]

q = param[1]

n = param[2]

if (n == 0) goto L1

L1:

throw "Error"
L2: i0 = 0

 d0 = 2147483647

L3: i1 = (i0, i2, i3)

 d1 = (d0, d3, d4)

 if (i1 < n) goto L5

L4:

return d1

L5: t0 = 4 * i

 t1 = v[t0]

 inbounds(t1, n) goto L8

L6: d2 = nd

L9: d3 = (d1, d2)

 i2 = i1 + 1

 goto L3

On stack replacement
v = param[0]

q = param[1]

n = param[2]

i3 = stack[0]

d4 = stack[0]

L7: nd = abs(t1, q)

 if (nd > d1) goto L9

L8:

throw BoundsErr

Fig. 2. (Left) The JavaScript program that will be our running example. (Right) A
SSA-form, three-address code representation of the example.

The control flow graph in Figure 2(Right) differs from the CFG normally
produced by a compiler because it has two entry points. The first, which we call
function entry point, is the equivalent to the entry point of an ordinary CFG. The
second, which we call the On-Stack Replacement block (OSR), is created by the
just-in-time compiler, in case the function was compiled while being executed.
All the functions that we optimize start execution from this block, as they are
compiled only once. If a function is executed several times, then subsequent calls
will start at the function entry.

The knowledge of the runtime values of the parameters improve some compiler
optimizations. In this section we will show how this improvement applies onto
four different compiler optimizations: dead-code elimination, array bounds check
elimination, loop inversion and constant propagation. Figure 3(a) shows the code
that we obtain after a round of dead-code elimination. Because we enter the
function from the OSR block, the code that is reachable only from the function
entry point is dead, and can be safely removed. This elimination also removes
the test that checks if the array has a non zero size. Notice that even if reachable
from the OSR block, we would be able to eliminate this test, given that we know
that the result would be always positive.

Figure 3(b) shows the result of applying array bounds check elimination onto
our example. JavaScript is a strongly typed language; thus, to guarantee the
runtime consistency of programs, every array access is checked, so that memory
is never indexed out of declared bounds. In our case, a simple combination of
range analysis [16], plus dead-code elimination is enough to remove the test
performed over the limits of v. This limit, 100, is always greater than any value
that the loop counter i can assume throughout program execution.

Parameter Based Constant Propagation 61

L3: i1 = (i2, i3)

 d1 = (d3, d4)

 if (i1 < n) goto L7

L4:

return d3

L6: d2 = nd

L9: d3 = (d1, d2)

 i2 = i1 + 1

 goto L3

On stack replacement
v = load[0]

q = 42

n = 100

i3 = 4

d4 = 2147483647

L7: t0 = 4 * i

 t1 = v[t0]

 nd = abs(t1, q)

 if (nd > d1) goto L9

(b)

L3: i1 = (i2, i3)

 d1 = (d3, d4)

 if (i1 < n) goto L5

L4:

return d3

L5: t0 = 4 * i

 t1 = v[t0]

 inbounds(t1, n) goto L8

L6: d2 = nd

L9: d3 = (d1, d2)

 i2 = i1 + 1

 goto L3

L7: nd = abs(t1, q)

 if (nd > d1) goto L9

L8:

throw BoundsErr

On stack replacement
v = load[0]

q = 42

n = 100

i3 = 4

d4 = 2147483647

(a)

Fig. 3. The code that results from two different optimizations in sequence. (a) Dead-
code elimination. (b) Array bounds check elimination.

Figure 4(a) shows the result of applying loop inversion on the example, after
dead-code elimination has pruned useless code. Loop inversion [15] converts a
while into a do-while loop. The main benefit of this optimization is to replace
the combination of conditional and unconditional branches used to implement
the while loop by a single conditional jump, used to implement the repeat loop.
Under ordinary circumstances an extra conditional test, wrapped around the
while, is necessary, to certify that iterations will be performed only on non-null
counters. However, given that we know that the loop will be executed at least
once, this wrapping is not necessary.

Finally, Figure 4(b) shows the code that we obtain after performing constant
propagation. Out of all the optimizations that we have discussed here, constant
propagation is the one that most benefits from parameter specialization. Given
that the parameters are all treated as constants, this optimization has many
opportunities to transform the code. In our example, we have been able to prop-
agate the array limit n, and the query distance q. Constant propagation is the
optimization that we have chosen, in this paper, to demonstrate the effective-
ness of parameter based code specialization. In the rest of this paper we will be
discussing its implementation in our scenario, and its effectiveness.

2.2 “Constification”

Argument based value specialization works by replacing the references to the
parameters of a function about to be JIT compiled by the actual values of these

62 P.R.O. Alves et al.

L3: i1 = (i2, i3)

 d1 = (d3, d4)

L4:

return d3
L6: d2 = nd

L7: d3 = (d1, d2)

 i2 = i1 + 1

 if (i2 > n) goto L4

On stack replacement
v = load[0]

q = 42

n = 100

i3 = 4

d4 = 2147483647

L7: t0 = 4 * i

 t1 = v[t0]

 nd = abs(t1, q)

 if (nd > d1) goto L7

(a)

L3: i1 = (i2, i3)

 d1 = (d3, d4)

L4:

return d3
L6: d2 = nd

L7: d3 = (d1, d2)

 i2 = i1 + 1

 if (i2 > 100) goto L4

On stack replacement
v = load[0]

i3 = 4

d4 = 2147483647

L7: t0 = 4 * i

 t1 = v[t0]

 nd = abs(t1, 42)

 if (nd > d1) goto L7

(a)

Fig. 4. Final code after two more optimizations. (a) Loop inversion. (b) Constant
Propagation.

parameters, in a process that we have dubbed constification. Before introducing
the basic principles that underlie this technique, we will explain how the inter-
preter and the native code produced by the just-in-time compiler communicate.
In this section we will describe the memory layout used by the SpiderMonkey
interpreter; however, this organization is typical in other environments where
the interplay between just-in-time compilation and interpretation happens, such
as the Java Virtual Machine 2.

Whenever SpiderMonkey needs to interpret a JavaScript program, it allo-
cates a memory space for this script, which, in Mozilla’s jargon is called the
stack space. This memory area will store the global data created by the script,
plus the data allocated dynamically, for instance, due to function calls. A func-
tions keep the data that it manipulates in a structure called activation record.
This structure contains the function’s parameters, its return address, the local
variables, a pointer to the previous activation record, and a nesting link, which
allows a nested function to find variables in the scope of the enclosing function.
Activation records are piled on a stack, as different function calls take place.
For instance, Figure 5(a) shows a stack configuration containing the activation
records of two functions.

In principle, both the interpreter and the just-in-time compiled program could
share the same stack of activation records, and thus we would have a seam-
less conversation between these two worlds. However, whereas the interpreter
is a stack-based architecture, the native code runs on a register based ma-
chine. In other words, the two execution modes use different memory layouts. To

2 See Java SE HotSpot at a Glance, available on-line

Parameter Based Constant Propagation 63

Stack Frame

Stack Segment

Slots

Slots

Stack Frame

Slots
PREV

PREV

S
ta

c
k
 P

o
in

te
r

S
T
A

C
K

 S
P

A
C

E

Stack Frame

Stack Segment

Slots

Slots

Stack Frame

Slots

S
T
A

C
K

 S
P

A
C

E

Native Call

Native Call

Slots

N
a
ti

v
e
 S

ta
c
k
 P

o
in

te
r

Stack Frame

Local Variables

Expression Stack

Function

Arguments

(a) (b)

S
ta

c
k
 P

o
in

te
r

Fig. 5. SpiderMonkey’s memory layout. (a) Interpretation. (b) Execution of native
code. Data that is not visible to the interpreter is colored in gray. Stack Segment
contains a pointer to the current top of stack, and to the chain of activation records of
the native functions. Each activation record has a fixed-size area called the stack frame.
Slots denote area whose layout depends on the function. Arguments of the function are
stored before the stack frame, and the local variables are stored after it.

circumvent this shortcoming, once an initially interpreted function is JIT com-
piled, its activation record is extended with a new memory area that is only
visible to the JITed code. Figure 5(b) illustrates this new layout. In this ex-
ample, we assume that both functions in execution in Figure 5(a) have been
compiled to native code. The native code shares the activation records used
by the interpreter – that is how it reads the values of the parameters, or writes
back the return value that it produces upon termination. The interpreter, on the
other hand, is oblivious to the execution of code produced by the just-in-time
compiler.

Reading the Values of Parameters: JavaScript methods, in the Firefox
browser, are initially interpreted. Once a method reaches a certain threshold of
calls, or a loop reaches a certain threshold of iterations, the interpreter invokes
the just-in-time compiler. At this point, a control flow graph is produced, with
the two entry blocks that we have described in Section 2.1. Independent on
the reason that has triggered just-in-time compilation, number of iterations or
number of calls, the function’s actual parameters are in the interpreter’s stack,
and can be easily retrieved. However, we are only interested in compilation due to
an excessive number of loop iterations. We do not specialize functions compiled
due to an excessive number of calls; these functions are likely to be called many
more times in the future. During the generation of the native code, we can find
the values bound to the parameters of a function by inspecting its activation
record. Reading these parameters has almost zero overhead when compared to
the time to compile and execute the program.

64 P.R.O. Alves et al.

After inspecting the parameter values, we redefine them in the two entry
blocks of the CFG. For instance, in Figure 2(Right) we would replace the two
load instructions, e.g., v = param[0] in the function entry and the OSR block,
by the value of v at the moment the just-in-time compiler was invoked. Then,
we replace all the uses of the parameters in the function body by their actual
values. This last phase is trivial in the Static Single Assignment representation,
because each variable name has only one definition site; hence, there is not the
possibility of we wrongly changing a use that is not a parameter.

2.3 Argument Based Constant Propagation

In order to show that parameter based code specialization is effective and useful
to just-in-time compilers, we have adapted the classic constant propagation algo-
rithm [19] to make the most of the values passed to the functions as parameters.
We call the ensuing algorithm argument based constant propagation, or ABCP for
short. We have implemented ABCP in the IonMonkey3 compiler. This compiler
is the newest member of theMonkey family, a collection of JavaScript just-in-time
engines developed in theMozilla Foundation to be used in the Firefox browser.We
chose to work in this compiler for two reasons. Firstly, because it is an open-source
tool, whichmeans that its code can be easily obtained andmodified. Secondly, con-
trary to previous Mozilla compilers, IonMonkey has a clean design and a modern
implementation. In particular, because it uses the SSA form, IonMonkey serves as
a basis for the implementation of many modern compiler techniques.

Constant propagation, given its simple specification and straightforward im-
plementation, is the canonical example of a compiler optimization [15, p.362].
Constant propagation is a sparse optimization. In other words, abstract states
are associated directly with variables. The classic approach to constant propa-
gation relies on an iterative algorithm. Initially all the variables are associated
with the � abstract state. Then, those variables that are initialized with con-
stants are added to a work list. If a variable is inserted into the worklist, then we
know, as an invariant, that it has a constant value c1, in which case its abstract
state is c1 itself. In the iterative phase, an arbitrary variable is removed from
the worklist, and all its uses in the program code are replaced by the constant
that it represents. It is possible that during this updating some instruction i is
changed to use only constants in its right side. If such an event occurs, then
the variable defined by i, if any, is associated to the value produced by i, and is
inserted into the worklist. These iterations happen until the worklist is empty.
At the end of the algorithm, each variable is known to have a constant value
(Ci) or is not guaranteed to be a constant, and is thus bound to ⊥.

Constant propagation suits well JIT compilers, because it is fast. The worst-
case time complexity of this algorithm is O(V 2), where V is the number of
variables in the program. To derive this complexity, we notice that a variable
can enter into the worklist at most once, when we find that it holds a constant
value. A variable can be used in up to O(I) program instructions, where I is
the number of instructions. Normally O(I) = O(V); thus, replacing a variable

3 https://wiki.mozilla.org/IonMonkey

Parameter Based Constant Propagation 65

by the constant it represents takes O(V) worst-case time. In practice a variable
will be used in a few sites; therefore, constant propagation tends to be O(V).

3 Experiments

In order to validate our approach, we have created a small bench-
mark that contains 8 well known algorithms, plus three programs from
the SunSpider test suite. These benchmarks are publicly available at
http://code.google.com/p/im-abcp/source/browse/trunk/tests. Figure 6
describes each of these programs.

Benchmark LoC Complexity Description

SunSpider::math-cordic(R,C,A) 68 O(R) Calls a sequence of transcendental functions R times.
SunSpider::3d-morph(L,X,Z) 56 O(L×X × Z) Performs L×X × Z calls to the sin transcendental function.
SunSpider::string-base64(T64, B, T2) 133 O(|T64|) Converts an array of integers to a Base-64 string.
matrix-multiplication(M1,M2,K, L,M) 46 O(K × L×M) Multiplies a K × L matrix M1 by a L×M matrix M2.
k-nearest-neighbors(P, V,N,K) 47 O(K ×N) Finds the K 2-D points stored in V that are closest of the 2-D

point P .
rabin-karp(T,P) 46 O(|T | × |P |) Finds the first occurrence of the pattern P in the string —T—.
1d-trim(V,L, U,N) 22 O(N) Given a vector V with N numbers, remove all those numbers

that are outside the interval [L, U].
closest-point(P, V,N) 35 O(N) Finds, among the 2-D points stored in V , the one which is the

closest to P .
tokenizer(S, P) 23 O(|S| × |P |) Splits the string S into substrings separated by the characters

in the pattern P .
split-line(V,N,A,B) 41 O(N) Separates the 2-D points stored in V into two groups, those

below the line y = Ax+ b, and those above.
string-contains-char(C,S) 13 O(|S|) Tells if the string S contains the character C.

Fig. 6. Our benchmark suite. LoC: lines of JavaScript code

IonMonkey does not provide a built-in implementation of Constant Propa-
gation. Therefore, to demonstrate the effectiveness of our implementation, we
compare it with the implementation of Global Value Numbering (GVN) already
available in the IonMonkey toolset. GVN is another classic compiler optimiza-
tion. IonMonkey uses the algorithm first described by Alpern et al. [1], which
relies on the SSA form to be fast and precise. Alpern et al. have proposed two
different approaches to GVN: pessimistic and optimistic. Both are available in
IonMonkey. In this section we use the pessimistic approach, because it is con-
siderably faster when applied to our benchmarks. All the implementations that
we discuss in this section are intra-procedural. None of the IonMonkey built-in
optimizations are inter-procedural, given the difficulties to see the entirety of
dynamically loaded programs. All the runtime numbers that we provide are the
average of 1000 executions. We do not provide average errors, because they are
negligible given this high quantity of executions.

Figure 7 compares our implementation of constant propagation with the im-
plementation of global value number produced by the engineers that work in the
Mozilla Foundation. The baseline of all charts in this section is the IonMonkey
compiler running with no optimizations. The goal of figure 7 is to show that
our implementation is not a straw-man: for our suite of benchmarks it produces
better code than GVN, which is industrial-quality. We see in the figure that both

http://code.google.com/p/im-abcp/source/browse/trunk/tests

66 P.R.O. Alves et al.

Fig. 7. Speedup of the original version of Constant Propagation and Global Value
Numbering

optimizations slowdown the benchmarks. This slowdown happens because the
total execution time includes the time to optimize the program, and the time
that the program spends executing. Neither optimization, constant propagation
or global value numbering, finds many opportunities to improve the target code
in a way to pay for the optimization overhead. On the other hand, they all add
an overhead on top of the just-in-time engine. However, the overhead imposed by
constant propagation, a simpler optimization, is much smaller than the overhead
imposed by global value numbering, as it is evident from the bars in Figure 7.

Figure 8 compares our implementation of constant propagation, with and
without parameter specialization. We see that traditional constant propagation
in fact slows down many of our benchmarks. Our implementation of the classic
Rabin-Karp algorithm, for instance, suffers a 4% slowdown. Traditional constant
propagation does not find many opportunities to remove instructions, given the
very small number of constants in the program code, and given the fact that it
runs intra-procedurally. On the other hand, the argument based implementation
fares much better. It naturally gives us constants to propagate in all the bench-
marks, and it also allows us to replace boxed values by constants. The algorithm
of highest asymptotic complexity, matrix multiplication, experiments a speedup
of almost 25%, for instance.

Figure 9 compares the implementation of global value numbering with and
without parameter based specialization. Contrary to constant propagation,
global value numbering does not benefit much from the presence of more
constants in the program text. We see, for instance, that the SunSpider’s
string-based64 benchmark suffers a slowdown of over 30%. This slowdown
happens because of the time spent to load and propagate the values of the ar-
guments. None of these arguments are used inside loops - although expressions
derived from them are - and thus GVN cannot improve the quality of these

Parameter Based Constant Propagation 67

Fig. 8. Speedup of the original and parameter based version of Constant Propagation

Fig. 9. Speedup of the original and parameter based version of Global Value Numbering

loops. On the other hand, again we observe a speed up in matrix multiplica-
tion. This speedup does not come from GVN directly. Rather, it is due to the
fact that our constification replaces the loop boundaries by integer values, as
a result of the initial value propagation that we perform upon reading values
from the interpreter stack. Figure 10 compares constant propagation and global
value numbering when preceded by parameter based value specialization. On
the average the argument based constant propagation delivers almost 25% more
speedup than argument based global value numbering.

68 P.R.O. Alves et al.

Fig. 10. Speedup of the parameter based versions of Constant Propagation and Global
Value Numbering

Figure 11 gives us some further subsidies to understand the speedups that
parameter specialization delivers on top of constant propagation. First, we no-
tice that in general constant propagation leads to less code recompilation. In
general a just-in-time compiler might have to re-compile the same function sev-
eral times, while this function is still executing. These recompilations happen
because some assumptions made by the JIT may no longer hold during program
execution, or it may infer new facts about the program. For instance, the JIT
may discover that a reference is used as an integer inside a loop, and this new
knowledge may trigger another compilation. If, eventually this reference receives
a non-integer value, or some arithmetic operation causes this integer to over-
flow, then a new compilation is in order. Second, it is clear from the table that
argument based specialization considerably improves the capacity of constant
propagation to eliminate instructions. When an instruction is eliminated be-
cause all the variables that it uses are constants, we say that the instruction has
been folded. At least in our benchmark suite, traditional constant propagation
does not find many opportunities to fold instructions. However, once we replace
parameters by constants, it produces remarkably good results. In some cases, as
in the function string-contains-char, it can eliminate almost one fourth of
all the native instructions generated.

4 Related Work

The dispute for market share among Microsoft, Google, Mozilla and Apple has
been known in recent years as the “browser war” [17]. Performance is a key
factor in this competition. Given that the performance of a browser is strongly
connected to its capacity to execute JavaScript efficiently, today we watch the
development of increasingly more reliable and efficient JavaScript engines.

Parameter Based Constant Propagation 69

CP ABCP
Benchmark R I F % F R I F % F

math-cordic 1 287 0 0% 1 295 22 7%
3d-morph 2 582 0 0% 2 600 63 11%
string-base64 3 1503 30 2% 3 1519 58 4%
matrix-mul 8 1574 0 0% 3 558 84 15%
k-nearest-neighbors 2 530 4 1% 1 432 46 11%
rabin-karp 2 583 9 2% 2 595 57 10%
strim 1 154 0 0% 0 82 13 16%
closest-point 1 228 0 0% 0 142 13 9%
tokenizer 2 296 3 1% 2 308 39 13%
split-line 2 390 0 0% 1 300 26 9%
string-contains-char 0 58 0 0% 0 64 15 23%

Fig. 11. A comparison, in numbers, between constant propagation, and argument
based constant propagation. R: number of recompilations. I: total number of instruc-
tions produced by the JIT compiler. F: number of instructions removed (folded) due
to constant propagation. %F: percentage of folded instructions.

The first just-in-time compilers were method based [2]. This approach to just-
in-time compilation is still used today with very good results. Google’s V84 and
Mozilla’s JaegerMonkey5, are method-based JIT compilers. Method based com-
pilation is popular for a number of reasons. It can be easily combined with many
classical compiler optimization, such as Value Numbering and Loop Invariant
Code Motion. It also capitalizes on decades of evolution of JIT technology, and
can use old ideas such as Self’s style type specialization [6]. Furthermore, this
technique supports well profiling guided optimizations [8], such as Zhou’s dy-
namic elimination of partial redundancies [22] and Bodik’s array bounds checks
elimination [4]. IonMonkey, the compiler that we have adopted as a baseline in
this paper, is an method-based JIT compiler, that resorts to hybrid type infer-
ence [14] in order to produce better native code.

A more recent, and substantially different JIT technique is trace compila-
tion [3]. This approach only compiles linear sequences of code from hot loops,
based on the assumption that programs spend most of their execution time in a
few parts of a function. Trace compilation is used in compilers such as Tamarim-
trace [7], HotpathVM [12], Yeti [21] and TraceMonkey [11]. There exist code
optimization techniques tailored for trace compilation, such as Sol et al.’s [18]
algorithm to eliminate redundant overflow tests. There are also theoretical works
that describe the semantics of trace compilers [20].

5 Conclusion

In this paper we have introduced the notion of parameter based code special-
ization. We have shown how this technique can be used to speedup the code

4 http://code.google.com/p/v8/
5 https://wiki.mozilla.org/JaegerMonkey

70 P.R.O. Alves et al.

produced by IonMonkey, an industrial-strength just-in-time compiler that is
scheduled to be used in the Mozilla Firefox browser. Parameter based specializa-
tion has some resemblance to partial evaluation; however, we do not pre-execute
the code in order to improve it. On the contrary, we transform it using static
compiler optimizations, such as constant propagation for instance. Our entire
implementation plus the benchmarks that we have used in this paper are com-
pletely available at http://code.google.com/p/im-abcp/.

We believe that parameter based code specialization opens up many different
ways to enhance just-in-time compilers. In this paper we have only scratched the
tip of these possibilities, and much work is still left to be done. In particular,
we would like to explore how different compiler optimizations fare in face of
parameter specialization. From our preliminary experiments we know that some
optimizations such as constant propagation do well in this new world; however,
optimizations such as global value numbering cannot benefit much from it. We
have already a small list of optimizations that we believe could benefit from our
ideas. Promising candidates include loop inversion, loop unrolling and dead code
elimination.

Even though we could add non-trivial speedups on top of Mozilla’s JavaScript
engine, our current implementation of parameter based code specialization is still
research-quality. We are actively working to make it more robust. Priorities in
our to-do list include to specialize functions that are compiled more than once,
and to cache the values of the specialized parameters, so that future function calls
can use this code. Nevertheless, the preliminary results seem to be encouraging.

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: POPL, pp. 1–11. ACM (1988)

2. Aycock, J.: A brief history of just-in-time. ACM Computing Surveys 35(2), 97–113
(2003)

3. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: A transparent dynamic optimiza-
tion system. In: PLDI, pp. 1–12. ACM (2000)

4. Bodik, R., Gupta, R., Sarkar, V.: ABCD: Eliminating array bounds checks on
demand. In: PLDI, pp. 321–333. ACM (2000)

5. Chaganti, P.: Google Web Toolkit GWT Java AJAX Programming, 1st edn.
PACKT (2007)

6. Chambers, C., Ungar, D.: Customization: Optimizing compiler technology for
SELF, a dynamically-typed object-oriented programming language. SIGPLAN
Not. 24(7), 146–160 (1989)

7. Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A., Wimmer, C., Eich,
B., Franz, M.: Tracing for web 3.0: Trace compilation for the next generation web
applications. In: VEE, pp. 71–80. ACM (2009)

8. Chang, P.P., Mahlke, S.A., Hwu, W.-M.W.: Using profile information to assist
classic code optimizations. Software Practice and Experience 21(12), 1301–1321
(1991)

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

http://code.google.com/p/im-abcp/

Parameter Based Constant Propagation 71

10. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of JavaScript programs. In: PLDI, pp. 1–12 (2010)

11. Gal, A., Eich, B., Shaver, M., Anderson, D., Kaplan, B., Hoare, G., Mandelin, D.,
Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmair, R., Haghighat, M.R.,
Bebenita, M., Change, M., Franz, M.: Trace-based just-in-time type specialization
for dynamic languages. In: PLDI, pp. 465–478. ACM (2009)

12. Gal, A., Probst, C.W., Franz, M.: HotpathVM: An effective JIT compiler for
resource-constrained devices. In: VEE, pp. 144–153 (2006)

13. Gardner, P., Maffeis, S., Smith, G.D.: Towards a program logic for JavaScript. In:
POPL, pp. 31–44. ACM (2012)

14. Hackett, B., Guo, S.Y.: Fast and precise hybrid type inference for JavaScript. In:
PLDI. ACM (2012)

15. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

16. Patterson, J.R.C.: Accurate static branch prediction by value range propagation.
In: PLDI, pp. 67–78. ACM (1995)

17. Shankland, S.: How JavaScript became a browser-war battleground (2009),
http://www2.galcit.caltech.edu/~jeshep/GraphicsBib/NatBib/node3.html

(accessed in April 30, 2012)
18. Sol, R., Guillon, C., Pereira, F.M.Q., Bigonha, M.A.S.: Dynamic Elimination of

Overflow Tests in a Trace Compiler. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601,
pp. 2–21. Springer, Heidelberg (2011)

19. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
TOPLAS 13(2) (1991)

20. Guo, S.Y., Palsberg, J.: The essence of compiling with traces. In: POPL, page to
appear. ACM (2011)

21. Zaleski, M.: YETI: A Gradually Extensible Trace Interpreter. PhD thesis, Univer-
sity of Toronto (2007)

22. Zhou, H., Chen, W., Chow, F.C.: An SSA-based algorithm for optimal speculative
code motion under an execution profile. In: PLDI, pp. 98–108. ACM (2011)

http://www2.galcit.caltech.edu/~jeshep/GraphicsBib/NatBib/node3.html

Adaptable Parsing Expression Grammars

Leonardo Vieira dos Santos Reis1, Roberto da Silva Bigonha1,
Vladimir Oliveira Di Iorio2, and Luis Eduardo de Souza Amorim2

1 Departamento de Ciência da Computação, Universidade Federal de Minas Gerais
{leo,bigonha}@dcc.ufmg.br

2 Departamento de Informática, Universidade Federal de Viçosa
vladimir@dpi.ufv.br, luis.amorim@ufv.br

Abstract. The term “extensible language” is especially used when a
language allows the extension of its own concrete syntax and the defini-
tion of the semantics of new constructs. Most popular tools designed for
automatic generation of syntactic analyzers do not offer any desirable
resources for the specification of extensible languages. When used in the
implementation of features like syntax macro definitions, these tools usu-
ally impose severe restrictions. We claim that one of the main reasons
for these limitations is the lack of formal models that are appropriate for
the definition of the syntax of extensible languages.

This paper presents the design and formal definition for Adaptable
Parsing Expression Grammars (APEG), an extension to the PEG model
that allows the manipulation of its own production rules during the anal-
ysis of an input string. It is shown that the proposed model may compare
favorably with similar approaches for the definition of the syntax of ex-
tensible languages.

Keywords: extensible languages, adaptable grammars, PEG.

1 Introduction

In recent years, we have witnessed important advances in parsing theory. For
example, Ford created Parsing Expression Grammars (PEG) [13], an alterna-
tive formal foundation for describing syntax, and packrat parsers [12], top-down
parsers with backtracking that guarantee unlimited lookahead and a linear pars-
ing time. Parr has devised a new parsing strategy called LL(*) for the ANTLR
tool, that allows arbitrary lookahead and recognizes some context-sensitive lan-
guages [20]. The parser generator YAKKER presents new facilities for applica-
tions that operate over binary data [16]. These advances do not include important
features for the definition of extensible languages, although the importance of
extensible languages and the motivation for using it have been vastly discussed
in recent literature [1,10,11,25].

As a simple example of desirable features for the implementation of extensible
languages, Figure 1 shows an excerpt from a program written in the Fortress
language [1]. Initially, a new syntax for loops is defined, and then the new syntax
is used in the same program. Standard tools for the definition of the syntax of

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 72–86, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Adaptable Parsing Expression Grammars 73

programming languages are not well suited for this type of extension, because
the syntax of the language is modified while the program is processed. A Fortress
interpreter, written with the tool Rats! [14], uses the following method: it collects
only the macro (extension) definitions in a first pass, processes the necessary
modifications to the grammar, and then parses the rest of the program in a
second pass [21]. Another solution for similar problems, used in a compiler for
the extensible language OCamL [19], is to require that macro definitions and
their usage always reside in different files [15].

grammar ForLoop extends {Expression, Identifier}
Expr | :=
for {i:Id ← e:Expr, ?Space}* do block:Expr end ⇒

// ... define translation to pure Fortress code
end
...
// Using the new construct
g1 = < 1, 2, 3, 4, 5 >
g2 = < 6, 7, 8, 9, 10 >
for i← g1, j ← g2 do println “(” i “,” j “)” end

Fig. 1. A Fortress program with a syntax macro

A tool that is able to parse the program in Figure 1 in one pass must be
based in a model that allows syntax extensions. We propose Adaptable Parsing
Expression Grammars (APEG), a model that combines the ideas of Extended
Attribute Grammars , Adaptable Grammars and Parsing Expression Grammars .
The main goals that the model has to achieve are: legibility and simplicity for
syntactic extension, otherwise it would be restricted to a very small set of users;
and it must be suitable for automatic generation of syntactic analyzers.

1.1 From Context-Free to Adaptable Grammars

Context Free Grammars (CFGs) are a formalism widely used for the description
of the syntax of programming languages. However, it is not powerful enough to
describe context dependent aspects of any interesting programming language, let
alone languages with extensible syntax. In order to deal with context dependency,
several augmentations to the CFG model have been proposed, and the most
commonly used is Attribute Grammars (AGs) [17]. In AGs, evaluation rules
define the values for attributes associated to symbols on production rules, and
constraints are predicates that must be satisfied by the attributes.

Authors like Christiansen [7] and Shutt [22] argue that, in AG and other
extensions for CFGs, the clarity of the original base CFG model is under-
mined by the power of the extending facilities. Christiansen gives as an
example an attribute grammar for ADA, in which a single rule representing
function calls has two and a half pages associated to it, to describe the context
conditions. He proposes an approach called Adaptable Grammars [8], explicitly

74 L.V.S. Reis et al.

providing mechanisms within the formalism to allow the production rules to be
manipulated.

In an adaptable grammar, the task of checking whether a variable used in
an expression has been previously defined may be performed as follows. Instead
of having a general rule like variable -> identifier, each variable declaration
may add a new rule to the grammar. For example, the declaration of a variable
with name x adds the following production rule: variable -> "x". The nonter-
minal variable will then generate only the declared variables, and not a general
identifier. There is no need to use an auxiliary symbol table and additional code
to manipulate it.

Adaptable grammars are powerful enough even for the definition of advanced
extensibility mechanisms of programming languages, like the one presented in
Figure 1. However, as the model is based on CFG, undesirable ambiguities may
arise when the set of production rules is modified. There are also problems when
using the model for defining some context sensitive dependencies. For example, it
is hard to build context free rules that define that an identifier cannot be declared
twice in a same environment [22], although this task can be easily accomplished
using attribute grammars and a symbol table.

1.2 From Adaptable Grammars to Adaptable PEGs

We propose an adaptable model that is based on Parsing Expression Grammars
(PEGs) [13]. Similarly to Extended Attribute Grammars (EAGs) [26], attributes
are associated to the symbols of production rules. And similarly to Adaptable
Grammars [8], the first attribute of every nonterminal symbol represents the
current valid grammar. Every time a nonterminal is rewritten, the production
rule is fetched from the grammar in its own attribute, and not from a global
static grammar, as in a standard CFG. Different grammars may be built and
passed to other nonterminal symbols.

A fundamental difference between CFGs and PEGs is that the choice operator
in PEG is ordered, giving more control of which alternative will be used and
eliminating ambiguity. PEG also defines operators that can check an arbitrarily
long prefix of the input, without consuming it. We will show that this feature
may allow for a simple solution for specifying the constraint that an identifier
cannot be defined twice in a same environment.

The main contributions of this paper are: 1) the design of an adaptable model
based on PEG for definition of the syntax of extensible languages; 2) a careful
formalization for the model; 3) a comparation with adaptable models based on
CFG, that exhibits the advantages of the proposal.

The rest of the paper is organized as follows. In Section 2, we present works
related to ours. Section 3 contains the formalization of Adaptable PEG. Ex-
amples of usage are presented in Section 4. Conclusions and future works are
discussed in Section 5.

Adaptable Parsing Expression Grammars 75

2 Related Work

It seems that Wegbreit was the first to formalize the idea of grammars that
allow for the manipulation of their own set of rules [27], so the idea has been
around for at least 40 years. Wegbreit proposed Extensible Context Free Gram-
mars (ECFGs), consisting of a context free grammar together with a finite state
transducer. The instructions for the transducer allow the insertion of a new
production rule on the grammar or the removal of an existing rule.

In his survey of approaches for extensible or adaptable grammar formalisms,
Christiansen proposes the term Adaptable Grammar [8]. In previous works, he
had used the term Generative Grammar [7]. Although Shutt has designated his
own model as Recursive Adaptable Grammar [22], he has later used the term
Adaptive Grammar [23]. The lack of uniformity of the terms may be one of the
reasons for some authors to publish works that are completely unaware of impor-
tant previous contributions. A recent example is [24], where the authors propose
a new term Reflective Grammar and a new formalism that has no reference to
the works of Christiansen, Shutt and other important similar models.

In [22], Shutt classifies adaptable models as imperative or declarative, depend-
ing on the way the set of rules is manipulated. Imperative models are inherently
dependent on the parsing algorithm. The set of rules is treated as a global entity
that is modified while derivations are processed. So the grammar designer must
know exactly the order of decisions made by the parser. One example is the
ECFG model mentioned above.

The following works may also be classified as imperative approaches. Bur-
shteyn proposes Modifiable Grammars [4], using the model in the tool USSA
[5]. A Modifiable Grammar consists of a CFG and a Turing transducer, with in-
structions that may define a list of rules to be added, and another to be deleted.
Because of the dependency on the parser algorithm, Burshteyn presents two
different formalisms, one for bottom-up and another one for top-down parsing.
Cabasino and Todesco [6] propose Dynamic Parsers and Evolving Grammars.
Instead of a transducer, as works mentioned above, each production of a CFG
may have an associated rule that creates new nonterminals and productions. The
derivations must be rightmost and the associated parser must be bottom-up.
Boullier’s Dynamic Grammars [2] is another example that forces the grammar
designer to be aware that derivations are rightmost and the associated parser is
bottom-up.

One advantage of declarative adaptable models is the relative independency
from the parsing algorithm. Christiansen’s Adaptable Grammars , mentioned
above, is an example of a declarative model. Here we refer to the first formaliza-
tion presented by Christiansen – later, he proposed an equivalent approach, using
definite clause grammars [9]. It is essentially an Extended Attribute Grammar
where the first attribute of every non terminal symbol is inherited and repre-
sents the language attribute, which contains the set of production rules allowed
in each derivation. The initial grammar works as the language attribute for the
root node of the parse tree, and new language attributes may be built and used
in different nodes. Each grammar adaptation is restricted to a specific branch

76 L.V.S. Reis et al.

of the parse tree. One advantage of this approach is that it is easy to define
statically scope dependent relations, such as the block structure declarations of
several programming languages.

Shutt observes that Christiansen’s Adaptable Grammars inherits the non or-
thogonality of attribute grammars, with two different models competing. The
CFG kernel is simple, generative, but computationally weak. The augmenting
facility is obscure and computationally strong. He proposes Recursive Adaptable
Grammars [22], where a single domain combines the syntactic elements (termi-
nals), meta-syntactic (nonterminals and the language attribute) and semantic
values (all other attributes).

Our work is inspired on Adaptable Grammars . The main difference is that,
instead of a CFG as the base model, we use PEG. Defining a special inherited
attribute as the language attribute, our model keeps the advantage of easy defi-
nitions for block structured scope. The use of PEG brings additional advantages,
such as coping with ambiguities when modifying the set of rules and more pow-
erful operators that provide arbitrary lookahead. With these operators is easy,
for example, to define constraints that prevent multiple declarations, a problem
that is difficult to solve in other adaptable models.

Our model has some similarities also with the imperative approaches. PEG
may be viewed as a formal description of a top-down parser, so the order the pro-
ductions are used is important to determine the adaptations our model performs.
But we believe that it is not a disadvantage as it is for imperative adaptable
models based on CFG. Even for standard PEG (non adaptable), designers must
be aware of the top-down nature of model, so adaptability is not a significant
increase on the complexity of the model.

We believe that problems regarding efficient implementation are one of the
reasons that adaptable models are not used yet in important tools for automatic
parser generation. Evidence comes from recent works like Sugar Libraries [11],
that provide developers with tools for importing syntax extensions and their
desugaring as libraries. The authors use SDF and Stratego [3] for the imple-
mentation. They mention that adaptable grammars could be an alternative that
would simplify the parsing procedures, but indicate that their efficiency is ques-
tionable. One goal of our work is to develop an implementation for our model
that will cope with the efficiency demands of parser generators.

3 Definition of the Model

The adaptability of Adaptable PEGs is achieved by means of an attribute as-
sociated with every nonterminal to represent the current grammar. In order to
understand the formal definition of the model, it is necessary to know how at-
tributes are evaluated and how constraints over them can be defined. In this
section, we discuss our design decisions on how to combine PEG and attributes
(Attribute PEGs), and then present a formal definition for Adaptable PEG. Basic
knowledge about Extended Attribute Grammars and Parsing Expression Gram-
mars is desirable – we recommend [26] and [13].

Adaptable Parsing Expression Grammars 77

3.1 PEG with Attributes

Extended Attribute Grammar (EAG) is a model for formalizing context sensitive
features of programming languages, proposed by Watt and Madsen [26]. Com-
pared to Attribute Grammar (AG) [17] and Affix Grammar [18], EAG is more
readable and generative in nature [26].

Figure 2 shows an example of a EAG that generates a binary numeral and
calculates its value. Inherited attributes are represented by a down arrow symbol,
and synthesized attributes are represented by an up arrow symbol. Inherited
attributes on the left side and synthesized attributes on the right side of a rule
are called defining positions . Synthesized attributes on the left side and inherited
attributes on the right side of a rule are called applying positions .

〈S ↑ x1〉 → 〈T ↓ 0 ↑ x1〉
〈T ↓ x0 ↑ x2〉 → 〈B ↑ x1〉 〈T ↓ 2 ∗ x0 + x1 ↑ x2〉
〈T ↓ x0 ↑ 2 ∗ x0 + x1〉 → 〈B ↑ x1〉
〈B ↑ 0〉 → 0
〈B ↑ 1〉 → 1

Fig. 2. An example of an EAG that generates binary numerals

A reader not familiar with the EAG notation can use the following associa-
tion with procedure calls of an imperative programming language, at least for
the examples presented in this paper. The left side of a rule may be compared to
a procedure signature, with the inherited attributes representing the names of
the formal parameters and the synthesized attributes representing expressions
that define the values returned (it is possible to return more than one value).
For example, 〈T ↓ x0 ↑ 2 ∗ x0 + x1〉 (third line of Figure 2) would represent
the signature of a procedure with name T having x0 as formal parameter, and
returning the value 2 ∗ x0 + x1, an expression that involves another variable x1

defined in the right side of the rule. The right side of a rule may be compared
to the body of a procedure, with every symbol being a new procedure call. Now
inherited attributes represent expressions that define the values for the argu-
ments, and synthesized attributes are variables that store the resulting values.
For example, 〈T ↓ 2 ∗ x0 + x1 ↑ x2〉 (second line of Figure 2) would represent a
call to procedure T having the value of 2 ∗ x0 + x1 as argument, and storing the
result in variable x2.

One of the improvements introduced by EAG is the use of attribute expressions
in applying positions, allowing a more concise specification of AG evaluation
rules . For example, the rules with B as left side indicate that the synthesized
attribute is evaluated as either 0 or 1. Without the improvement proposed by
EAG, it would be necessary to choose a name for an attribute variable and to
add an explicit evaluation rule defining the value for this variable.

We define Attribute PEGs as an extension to PEGs, including attribute ma-
nipulation. Attribute expressions are not powerful enough to replace all uses of
explicit evaluation rules in PEGs, so we propose that Attribute PEGs combine

78 L.V.S. Reis et al.

attribute expressions and explicit evaluation rules. In PEGs, the use of recursion
is frequently replaced by the use of the repetition operator “*”, giving defini-
tions more related to an imperative model. So we propose that evaluation rules
in Attribute PEGs may update the values of the attribute variables, treating
them as variables of an imperative language.

Figure 3 shows an Attribute PEG equivalent to the EAG presented in Figure 2.
Expressions in brackets are explicit evaluation rules. In the third line, each of the
options of the ordered choice has its own evaluation rule, defining that the value
of the variable x1 is either 0 (if the input is “0”) or 1 (if the input is “1”). It is
not possible to replace these evaluation rules with attribute expressions because
the options are defined in a single parsing expression. In the second line, the
value of variable x0 is initially defined on the first use of the nonterminal B.
Then it is cumulatively updated by the evaluation rule [x0 := 2 ∗ x0 + x1].

〈S ↑ x0〉 ← 〈T ↑ x0〉
〈T ↑ x0〉 ← 〈B ↑ x0〉 (〈B ↑ x1〉[x0 := 2 ∗ x0 + x1]) ∗
〈B ↑ x1〉 ← (0 [x1 := 0]) / (1 [x1 := 1])

Fig. 3. An example of an attribute PEG

Besides explicit evaluation rules, AGs augment context-free production rules
with constraints , predicates which must be satisfied by the attributes in each
application of the rules. In Attribute PEGs, we allow also the use of constraints,
as predicates defined in any position on the right side of a rule. If a predicate
fails, the evaluation of the parsing expression also fails. The use of attributes as
variables of an imperative language and predicate evaluation are similar to the
approach adopted for the formal definition of YAKKER in [16].

Another improvement provided by EAG is the possibility of using the same
attribute variable in more than one defining rule position. It defines an implicit
constraint, requiring the variable to have the same value in all instances. In our
proposition for Attribute PEG, we do not adopt this last improvement of EAG,
because it would not be consistent with our design decision of allowing attributes
to be updated as variables of an imperative language.

3.2 Formal Definition of Attribute PEG

We extend the definition of PEG presented in [13] and define Attribute PEG as
a 6-tuple (VN , VT , A, R, S, F), where VN and VT are finite sets of nonterminals
and terminals, respectively. A : VN → P(Z+ × {↑, ↓}) is an attribute function
that maps every nonterminal to a set of attributes. Each attribute is represented
by a pair (n, t), where n is a distinct attribute position number and t is an
element of the set {↑, ↓}. The use of positions instead of names makes definitions
shorter [26]. The symbol ↑ represents an inherited attribute and ↓ represents a
synthesized attribute. R : VN → Pe is a total rule function which maps every
nonterminal to a parsing expression and S ∈ VN is an initial parsing expression.

Adaptable Parsing Expression Grammars 79

F is a finite set of functions that operate over the domain of attributes, used
in attribute expressions. We assume a simple, untyped language of attribute
expressions that include variables, boolean, integer and string values. If f ∈ F is
a function of arity n and e1, . . . , en are attribute expressions, then f(e1, . . . , en)
is also an attribute expression.

Suppose that e, e1 and e2 are attribute parsing expressions . The set of valid
attribute parsing expressions (Pe) can be recursively defined as:

λ ∈ Pe (empty expression)
a ∈ Pe, for every a ∈ VT (terminal expression)

A ∈ Pe, for every A ∈ VN (nonterminal expression)
e1e2 ∈ Pe (sequence expression)
e1/e2 ∈ Pe (ordered choice expression)

e∗ ∈ Pe (zero-or-more repetition expression)
!e ∈ Pe (not-predicate expression)

[v := exp] ∈ Pe (update expression)
[exp] ∈ Pe (constraint expression)

To the set of standard parsing expressions , we add two new types of expressions.
Update expressions have the format [v := exp], where v is a variable name and
exp is an attribute expression, using functions from F . They are used to update
the value of variables in an environment. Constraint expresssions with the format
[exp], where exp is an attribute expression that evaluates to a boolean value, are
used to test for predicates over the attributes.

Nonterminal expressions are nonterminals symbols with attribute expressions.
Without losing generality, we will assume that all inherited attributes are rep-
resented in a nonterminal before its synthesized attributes. So, suppose that
e ∈ R(A) is the parsing expression associated with nonterminal A, p is its num-
ber of inherited attributes and q the number of synthesized attributes. Then
〈A ↓ a1 ↓ a2 . . . ↓ ap ↑ b1 ↑ . . . ↑ bq〉 ← e represents the rule for A and its at-
tributes. We will also assume that the attribute expressions in defining positions
of nonterminals are always represented by a single variable.

The example of Figure 3 can be expressed formally as G = ({S, T,B}, {0,1},
{(S, {(1, ↑)}), (T, {(1, ↑)}), (B, {(1, ↑)})}, R, S, {+, ∗}), where R represents the
rules described in Figure 3.

3.3 Semantics of Adaptable PEG

An Adaptable PEG is an Attribute PEG whose first attribute of all nontermi-
nals is inherited and represents the language attribute. Figure 4 presents the
semantics of an Adaptable PEG. Almost all the formalization is related to PEG
with attributes. Only the last equation defines adaptability.

An environment maps variables to values, with the following notation: . (a
dot) represents an empty environment, i.e., all variables map to the unbound
value; [x1/v1, . . . , xn/vn] maps xi to vi, 1 ≤ i ≤ n; E[x1/v1, . . . , xn/vn] is an
environment which is equal to E, except for the values of xi that map to vi,

80 L.V.S. Reis et al.

1 ≤ i ≤ n. We write E[[e]] to indicate the value of the expression e evaluated in
the environment E.

Figure 4 defines the judgement E � (e, x) ⇒ (n, o) � E
′
, which says that the

interpretation of the parsing expression e, for the input string x, in an environ-
ment E, results in (n, o), and produces a new environment E

′
. In the pair (n, o),

n indicates the number of steps for the interpretation and o ∈ V ∗
T ∪{f} indicates

the prefix of x that is consumed, if the expression succeeds, or f �∈ V ∗
T , if it fails.

Note that the changes in an environment are discarded when an expression
fails. For example, in a sequence expression, a new environment is computed
when it succeeds, a situation represented by rule Seq. If the first or the second
subexpression of a sequence expression fails, the changes are discarded and the
environment used is the one before the sequence expression. These situations
are represented by rules ¬Seq1 and ¬Seq2. A similar behaviour is defined for
¬Term1 and ¬Term2, when a terminal expression fails, and for ¬Rep, when a
repetition fails.

Rules Neg and ¬Neg show that the environment changes computed inside
a not-predicate expression are not considered in the outer level, allowing arbi-
trary lookahead without colateral effects. Rules Atrib and ¬Atrib define the
behaviour for update expression, and rules True and False represent predicate
evaluation in constraint expressions.

The most interesting rule is Adapt. It defines how nonterminal expressions
are evaluated. Attribute values are associated with variables using an approach
similar to EAG, but in a way more operational; it is also similar to parameterized
nonterminals described in [16], but allowing several return values instead of just
one. When a nonterminal is processed, the values of its inherited attributes
are calculated considering the current environment. The corresponding parsing
expression is fetched from the current set of production rules, defined by the
language attribute, that is always the first attribute of the symbol. It is indeed the
only point in all the rules of Figure 4 associated with the property of adaptability.

Now we can define the language accepted by an Adaptable PEG as follows.
Let G = (VN , VT , A, R, S, F) be an Adaptable PEG. Then

L(G) = {w ∈ V ∗
T | . � (〈S ↓ G . . .〉, w) ⇒ (n,w

′
) � E

′}
The derivation process begins using an empty environment, with the starting
parsing expression S matching the input string w. The original grammar G
is used as the value for the inherited language attribute of S. If the process
succeeds, n represents the number of steps for the derivation, w

′
is the prefix of

w matched and E
′
is the resulting environment as in [13]. The language L(G) is

the set of words w that do not produce f (failure).

4 Empirical Results

In this section, we present three examples of usage of Adaptable PEG. The first
example is a definition of context dependent constraints commonly required
in binary data specification. The second illustrates the specifications of static

Adaptable Parsing Expression Grammars 81

E � (e, x)⇒ (n, o) � E
′

x ∈ V ∗
T

Empty
E � (λ, x)⇒ (1, λ) � E

a ∈ VT x ∈ V ∗
T

Term
E � (a, ax)⇒ (1, a) � E

a, b ∈ VT a �= b x ∈ V ∗
T¬Term1

E � (a, bx)⇒ (1, f) � E

a ∈ VT¬Term2
E � (a, λ)⇒ (1, f) � E

E1 � (e1, x1x2y)⇒ (n1, x1) � E2 E2 � (e2, x2y)⇒ (n2, x2) � E3
Seq

E1 � (e1e2, x1x2y)⇒ (n1 + n2 + 1, x1x2) � E3

E1 � (e1, x1y)⇒ (n1, x1) � E2 E2 � (e2, y)⇒ (n2, f) � E3¬Seq1
E1 � (e1e2, x1y)⇒ (n1 + n2 + 1, f) � E1

E1 � (e1, x)⇒ (n1, f) � E2¬Seq2
E1 � (e1e2, x)⇒ (n1 + 1, f) � E1

E � (e1, x1y)⇒ (n1, x1) � E
′

Choice1
E � (e1/e2, x1y)⇒ (n1 + 1, x1) � E

′

E1 � (e1, x)⇒ (n1, f) � E2 E1 � (e2, x)⇒ (n2, o) � E3
Choice2

E1 � (e1/e2, x)⇒ (n1 + n2 + 1, o) � E3

E1 � (e, x1x2y)⇒ (n1, x1) � E2 E2 � (e∗, x2y)⇒ (n2, x2) � E3
Rep

E1 � (e∗, x1x2y)⇒ (n1 + n2 + 1, x1x2) � E3

E1 � (e, x)⇒ (n1, f) � E2¬Rep
E1 � (e∗, x)⇒ (n1 + 1, λ) � E1

E � (e, xy)⇒ (n1, x) � E
′

Neg
E � (!e, xy)⇒ (n1 + 1, f) � E

E � (e, xy)⇒ (n1, f) � E
′

¬Neg
E � (!e, x)⇒ (n1 + 1, λ) � E

v = E[[e]]
Atrib

E � ([x := e], y)⇒ (1, λ) � E[x/v]

unbound = E[[e]]
¬Atrib

E � ([x := e], y)⇒ (1, f) � E

true = E[[e]]
True

E � ([e], x)⇒ (1, λ) � E

false = E[[e]]
False

E � ([e], x)⇒ (1, f) � E

〈A ↓ a1 ↓ . . . ↓ ap ↑ e′1 ↑ . . . ↑ e
′
q〉 ← e ∈ E[[e1]], where E[[e1]] ≡ language attribute

vi = E[[ei]], 1 ≤ i ≤ p v
′
j = E1[[e

′
j]], 1 ≤ j ≤ q

[a1/v1, . . . , ap/vp] � (e, x)⇒ (n, o) � E1
Adapt

E � (〈A ↓ e1 ↓ . . . ↓ ep ↑ b1 ↑ . . . ↑ bq〉, x)⇒ (n+ 1, o) � E[b1/v
′
1, . . . , bq/v

′
q]

Fig. 4. Semantics of Adaptable PEG

82 L.V.S. Reis et al.

semantics of programming languages. And the third one shows how syntax ex-
tensibility can be expressed with Adaptable PEG.

4.1 Data Dependent Languages

As a motivating example of a context-sensitive language specification, Jim et alii
[16] present a data format language in which an integer number is used to define
the length of the text that follows it. Figure 5 shows how a similar language
may be defined in an Attribute (non adaptable) PEG. The nonterminal number
has a synthesized attribute, whose value is used in the constraint expression
that controls the length of text to be parsed in the sequel. The terminal CHAR
represents any single character.

〈literal〉 ← 〈number ↑ n〉 〈strN ↓ n〉
〈strN ↓ n〉 ← ([n > 0] CHAR [n := n− 1])∗ [n = 0]
〈number ↑ x2〉 ← 〈digit ↑ x2〉 (〈digit ↑ x1〉[x2 := x2 ∗ 10 + x1])

∗

〈digit ↑ x1〉 ← 0 [x1 := 0] / 1 [x1 := 1] / . . . / 9 [x1 := 9]

Fig. 5. An example of a data dependent language

Using features from Adaptable PEG in the same language, we could replace
the first two rules of Figure 5 by:

〈literal ↓ g〉 ← 〈number ↓ g ↑ n〉
[g1 = g ⊕ rule(“〈strN ↓ g〉 ←” + rep(“CHAR ”, n))]
〈strN ↓ g1〉

In an Adaptable PEG, every nonterminal has the language attribute as its first
inherited attribute. The attribute g of the start symbol is initialized with the
original PEG, but when nonterminal strN is used, a new grammar g1 is consid-
ered. The symbol “⊕” represents an operator for adding rules to a grammar and
function rep produces a string repeatedly concatenated, then g1 will be equal to
g together with a new rule that indicates that strN can generate a string with
length n. These two functions are not formalized here for short.

4.2 Static Semantics

Figure 6 presents a PEG definition for a language where a block starts with a list
of declarations of integer variables, followed by a list of update commands. For
simplification, white spaces are not considered. An update command is formed
by a variable on the left side and a variable on the right side.

Suppose that the context dependent constraints are: a variable cannot be used
if it was not declared, and a variable cannot be declared more than once. The
Adaptable PEG in Figure 7 implements these context dependent constraints.

Adaptable Parsing Expression Grammars 83

block ← { dlist slist } decl ← int id ;
dlist ← decl decl∗ stmt ← id = id ;
slist ← stmt stmt∗ id ← alpha alpha∗

Fig. 6. Syntax of block with declaration and use of variables (simplified)

〈block ↓ g〉 ← { 〈dlist ↓ g ↑ g1〉 〈slist ↓ g1〉 }
〈dlist ↓ g ↑ g1〉 ← 〈decl ↓ g ↑ g1〉 [g := g1] (〈decl ↓ g ↑ g1〉 [g := g1])

∗

〈decl ↓ g ↑ g1〉 ← !(int 〈var ↓ g〉) int 〈id ↓ g ↑ n〉 ;
[g1 := g ⊕ rule(“〈var ↓ g〉 ← #n”)]

〈slist ↓ g〉 ← 〈stmt ↓ g〉 〈stmt ↓ g〉∗
〈stmt ↓ g〉 ← 〈var ↓ g〉 = 〈var ↓ g〉 ;
〈id ↓ g ↑ n〉 ← 〈alpha ↓ g ↑ ch1〉[n = ch1](〈alpha ↓ g ↑ ch2〉[n = n+ ch2])

∗

Fig. 7. Adaptable PEG for declaration and use of variables

In the rule that defines dlist, the PEG synthesized by each decl is passed
on to the next one. The rule that defines decl first checks whether the input
matches a declaration generated by the current PEG g. If so, it is an indication
that the variable has already been declared. Using the PEG operator “!”, it is
possible to perform this checking without consuming the input and indicating a
failure, in case of repeated declaration. Next, a new declaration is processed and
the name of the identifier is collected in n. Finally, a new PEG is built, adding
a rule that states that the nonterminal var may derive the name n. The symbol
“#” indicates that the string n must be treated as a variable.

The use of the PEG operator “!” on rule for decl prevents multiple declarations,
a problem reported as very difficult to solve when using adaptable models based
on CFG. The new rule added to the current PEG ensures that a variable may be
used only if it was previously declared. The symbol block may be part of a larger
PEG, with the declarations restricted to the static scope defined by the block.

4.3 Fortress Language

In Figure 8, we show how extensions defined to Fortress could be integrated into
the language base grammar using Adaptable PEG. It is an adapted version of the
original grammar proposed in the open source Fortress project, considering only
the parts related to syntax extension. The rules can derive grammar definitions
as the one presented in Figure 1.

Nonterminal gram defines a grammar which has a name specified by nonter-
minal Id , a list of extended grammars (extends) and a list of definitions. The
grammar declared is located in the synthesized attribute t2, which is a map of
names to grammars. Note that language attribute is not changed, because the
nonterminal gram only declares a new grammar that can be imported when

84 L.V.S. Reis et al.

〈gram ↓ g ↓ t1 ↑ t2〉 ← grammar 〈Id ↓ g ↑ id〉 〈extends ↓ g ↑ l〉
(〈nonterm ↓ g ↓ t1 ↓ l ↑ g1〉
[t2 := [id / t2(id)

⋃
g1]])

∗ end

〈extends ↓ g ↑ l〉 ← extends { 〈Id ↓ g ↑ id1〉 [l := [id1]]
(, 〈Id ↓ g ↑ id2〉 [l := l : [id2])

∗ }
/ λ [l := []]

〈nonterm ↓ g ↓ t1 ↓ l ↑ g1〉 ← 〈Id ↓ g ↑ id1〉 |:= 〈syntax ↓ g ↑ e1〉
[g1 := {id1 ← ⊗(t1, l, id1, e1)}]

/ 〈Id ↓ g ↑ id2〉 ::= 〈syntax ↓ g ↑ e2〉 [g1 := {id2 ← e2}]

〈syntax ↓ g ↑ e〉 ← (〈part ↓ g ↑ e1〉 [e := e e1])
∗⇒ 〈sem ↓ g〉

(| (〈part ↓ g↑e2〉 [x := x e2])
∗

[e := e / x]⇒〈sem↓g〉)∗

〈part ↓ g ↑ e〉 ← 〈single ↓ g ↑ e1〉? [e← e1 / λ]
/ 〈single ↓ g ↑ e2〉∗ [e := e∗2]
/ 〈single ↓ g ↑ e3〉+ [e := e3 e∗3]
/ 〈single ↓ g ↑ e4〉 [e := e4]
/ ¬〈single ↓ g ↑ e5〉∗ [e :=!e5]
/ ∧〈single ↓ g ↑ e6〉 [e :=!(!e6)]
/ { (〈part ↓ g ↑ e7〉[x := x e7])

∗ } [e := (x)]

〈single ↓ g ↑ e〉 ← 〈Id ↓ g ↑ id〉 : 〈Base ↓ g ↑ e〉
/ 〈Base ↓ g ↑ e〉

Fig. 8. Fortress syntax grammar

needed. The attribute t1 is also a map, and it is used for looking up available
grammars.

Nonterminal extends defines a list of grammars that can be used in the defi-
nition of the new grammar. Every nonterminal of the imported grammar can be
extended or used in new nonterminals definitions. Nonterminal nonterm defines
a rule for extending the grammar, either extending the definition of a nonter-
minal or declaring a new one, depending whether the symbol used is |:= or ::=.
If the definition of a nonterminal is extended, the function ⊗ is used to put to-
gether the original rule and the new expression defined. Otherwise, a grammar
that has only one rule is created and stored in attribute g1.

The rule of the nonterminal syntax has two parts: one is a parsing expression
of a nonterminal (sequence of part) and the other is a transformation rule. A
transformation rule defines the semantics of an extension, which is specified by
nonterminal sem. Nonterminal part defines the elements that can be used in a
parsing expression with addition that nonterminal can have aliases. Nonterminal
Base generates nonterminal names, terminals and strings.

The rules in Figure 8 do not change the Fortress grammar directly; the ex-
tensions are only accomplished when an import statement is used.

Adaptable Parsing Expression Grammars 85

5 Conclusion and Future Work

The main goals for the model proposed in this work, as stated in Section 1,
are: legibility and simplicity; and it must be suitable for automatic generation
of syntactic analyzers. We have no proofs that these goals have been attained,
however we believe that we have presented enough evidence for the first goal.
Our model has a syntax as clear as Christiansen’s Adaptable Grammars, since
the same principles are used. In order to explore the full power of the model,
it is enough for a developer to be familiar with Extended Attribute Grammars
and Parsing Expression Grammars.

We keep some of the most important advantages of declarative models, such
as an easy definition of context dependent aspects associated to static scope and
nested blocks. We showed that the use of PEG as the basis for the model allowed
a very simple solution for the problem of checking for multiple declarations of
an identifier. This problem is reported as very difficult to solve with adaptable
models based on CFG.

When defining the syntax of extensible languages, the use of PEG has at
least two important advantages. The production rules can be freely manipulated
without the insertion of undesirable ambiguities, since it is not possible to ex-
press ambiguity with PEG. Extending a language specification may require the
extension of the set of its lexemes. PEGs is scannerless, so the extension of the
set of lexemes in a language is performed with the same features used for the
extension of the syntax of the language.

In order to know exactly the adaptations performed by an Adaptable PEG,
a developer must be aware that it works as a top down parser. It could be
considered as a disadvantage when compared to declarative models, but any
PEG developer is already prepared to deal with this feature, since PEG is, by
definition, a description of a top down parser.

We have not developed yet any proof that our model is suitable for automatic
generation of syntactic analyzers. So the immediate next step of our work is to
develop an efficient implementation for Adaptable PEG, considering frequent
modifications on the set of production rules. In this implementation, we must
offer an appropriate set of operations to manipulate the grammar. Grimm pro-
poses an interesting mechanism for the tool Rats! [14], inserting labels in places
that the rules may be modified. We may use a similar approach in our future
implementation.

References

1. Allen, E., Culpepper, R., Nielsen, J.D., Rafkind, J., Ryu, S.: Growing a syntax. In:
Proceedings of FOOL 2009 (2009)

2. Boullier, P.: Dynamic grammars and semantic analysis. Rapport de recherche RR-
2322, INRIA. Projet CHLOE (1994)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Sci. Comput. Program. 72(1-2),
52–70 (2008)

86 L.V.S. Reis et al.

4. Burshteyn, B.: Generation and recognition of formal languages by modifiable gram-
mars. SIGPLAN Not. 25, 45–53 (1990)

5. Burshteyn, B.: Ussa – universal syntax and semantics analyzer. SIGPLAN Not. 27,
42–60 (1992)

6. Cabasino, S., Paolucci, P.S., Todesco, G.M.: Dynamic parsers and evolving gram-
mars. SIGPLAN Not. 27, 39–48 (1992)

7. Christiansen, H.: The Syntax and Semantics of Extensible Languages. Roskilde
datalogiske skrifter. Computer Science, Roskilde University Centre (1987)

8. Christiansen, H.: A survey of adaptable grammars. SIGPLAN Not. 25, 35–44 (1990)
9. Christiansen, H.: Adaptable Grammars for Non-Context-Free Languages. In:

Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009,
Part I. LNCS, vol. 5517, pp. 488–495. Springer, Heidelberg (2009)

10. Dinkelaker, T., Eichberg, M., Mezini, M.: Incremental concrete syntax for embed-
ded languages. In: Proceedings of the 2011 ACM Symposium on Applied Comput-
ing, SAC 2011, pp. 1309–1316. ACM, New York (2011)

11. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Sugarj: library-based syntactic
language extensibility. In: Proceedings of OOPSLA 2011, pp. 391–406. ACM, New
York (2011)

12. Ford, B.: Packrat parsing: simple, powerful, lazy, linear time, functional pearl.
SIGPLAN Not. 37(9), 36–47 (2002)

13. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
SIGPLAN Not. 39(1), 111–122 (2004)

14. Grimm, R.: Better extensibility through modular syntax. SIGPLAN Not. 41(6),
38–51 (2006)

15. Jambon, M.: How to customize the syntax of ocaml, using camlp5 (2011),
http://mjambon.com/extend-ocaml-syntax.html

16. Jim, T., Mandelbaum, Y., Walker, D.: Semantics and algorithms for data-
dependent grammars. SIGPLAN Not. 45, 417–430 (2010)

17. Knuth, D.E.: Semantics of Context-Free Languages. Mathematical Systems The-
ory 2(2), 127–145 (1968)

18. Koster, C.H.A.: Affix grammars. In: Algol 68 Implementation, pp. 95–109. North-
Holland (1971)

19. Minsky, Y.: Ocaml for the masses. Commun. ACM 54(11), 53–58 (2011)
20. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator.

SIGPLAN Not. 46(6), 425–436 (2011)
21. Ryu, S.: Parsing fortress syntax. In: Proceedings of PPPJ 2009, pp. 76–84. ACM,

New York (2009)
22. Shutt, J.N.: Recursive adaptable grammars. Master’s thesis, Worchester Polytech-

nic Institute (1998)
23. Shutt, J.N.: What is an adaptive grammar? (2001),

http://www.cs.wpi.edu/~jshutt/adapt/adapt.html

24. Stansifer, P., Wand, M.: Parsing reflective grammars. In: Proceedings of LDTA
2011, pp. 10:1–10:7. ACM, New York (2011)

25. Steele Jr., G.L.: Growing a language. In: Addendum to OOPSLA 1998, pp. 0.01–
A1. ACM, New York (1998)

26. Watt, D.A., Madsen, O.L.: Extended attribute grammars. Comput. J. 26(2),
142–153 (1983)

27. Wegbreit, B.: Studies in Extensible Programming Languages. Outstanding Disser-
tations in the Computer Sciences. Garland Publishing, New York (1970)

http://mjambon.com/extend-ocaml-syntax.html
http://www.cs.wpi.edu/~jshutt/adapt/adapt.html

Optimizing a Geomodeling Domain Specific

Language

Bruno Morais Ferreira, Fernando Magno Quintão Pereira,
Hermann Rodrigues, and Britaldo Silveira Soares-Filho

Departamento de Ciência da Computação – UFMG
Av. Antônio Carlos, 6627 – 31.270-010 – Belo Horizonte – MG – Brazil
{brunomf,fernando}@dcc.ufmg.br, {hermann,britaldo}@csr.ufmg.br

Abstract. In this paper we describe Dinamica EGO, a domain specific
languages (DSL) for geomodeling. Dinamica EGO provides users with
a rich suite of operators available in a script language and in a graphi-
cal interface, which they can use to process information extracted from
geographic entities, such as maps and tables. We analyze this language
through the lens of compiler writers. Under this perspective we describe
a key optimization that we have implemented on top of the Dinamica
EGO execution environment. This optimization consists in the system-
atic elimination of memory copies that Dinamica EGO uses to ensure
referential transparency. Our algorithm is currently part of the official
distribution of this framework. We show, via a real-life case study, that
our optimization can speedup geomodeling applications by almost 100x.

1 Introduction

Domain Specific Languages (DSLs) are used in the most varied domains, and
have been shown to be effective to increase the productivity of programmers [10].
In particular, DSLs enjoy remarkable success in the geomodeling domain [2]. In
this case, DSLs help non-professional programmers to extract information from
maps, to blend and modify this information in different ways, and to infer new
knowledge from this processing. A tool that stands out in this area is Dinamica
EGO [11,14,13,15]. This application, a Brazilian home-brew created in the Cen-
tro de Sensoriamento Remoto of the Federal University of Minas Gerais (UFMG),
today enjoys international recognition as an effective and useful framework for
geographic modeling. Applications of it include, for instance, carbon emissions
and deforestation [3], assessment of biodiversity loss [12], urbanization and cli-
mate change [9], emission reduction(REDD) [8] and urban growth [17].

Users interact with this framework via a graphical programming language
which allows them to describe how information is extracted from maps, possi-
bly modified, and written back into the knowledge base. Henceforth we will use
the term EGO Script to describe the graphical programming language that is
used as the scripting language in the Dinamica EGO framework. This language,
and its underlying execution environment, has been designed to fulfill two main

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 87–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

88 B.M. Ferreira et al.

goals. Firstly, it must be easy to use; hence, requiring a minimum of program-
ming skill. Users manipulate maps and other geographic entities via graphical
symbols which can be connected through different data-flow channels to build
patterns for branches and loops. Secondly, it must be efficient. To achieve this
goal, it provides a 64-bit native version written in C++ and java with multi-
threading and dynamic compilation. Being a dynamic execution environment,
EGO Script relies heavily on Just-in-time compilation to achieve the much nec-
essary speed.

Dinamica’s current success is the result of a long development process, which
includes engineering decisions that have not been formally documented. In this
paper we partially rectify this omission, describing a key compiler optimization
that has been implemented in the Dinamica EGO execution environment. In
order to provide users with a high-level programming environment, one of the
key aspects of Dinamica’s semantics is referential transparency, as we explain
in Section 3. Scripts are formed by components, and these components must
not modify the data that they receive as inputs. This semantics imposes on the
tool a heavy burden, because tables containing data to be processed must be
copied before been passed from one component to the other. Removing these
copies is a non-trivial endeavor, inasmuch as minimizing such copies is a NP-
complete problem, as we show in Section 3. Because this problem is NP-complete,
we must recourse to heuristics to eliminate redundant copies. We discuss these
heuristics in Section 4. Although we have discussed this algorithm in the context
of Dinamica EGO, we believe that it can also be applied in other data-flow based
systems, such as programs built on top of the filter-stream paradigm [16].

We provide empirical evidence that supports our design decisions in Section 5,
by analyzing the runtime behavior of a complex application in face of our op-
timization. This application divides an altitude map into slices of same height.
In order to get more precise ground information, we must decrease the height of
each slice; hence, increasing the amount of slices in the overall database. In this
case, for highly accurate simulations our copy elimination algorithm boosts the
performance of Dinamica EGO by almost 100x.

2 A Bird’s Eye View of Dinamica EGO

We illustrate EGO Script through an example that, although artificial, contains
some of the key elements that we will discuss in the rest of this paper. Consider
the following problem: “what is the mean slope of the cities from a given region?”
We can answer this query by combining data from two maps encompassing the
same geographic area. The first map contains the slope of each area. We can
assume that each cell of this matrix represents a region of a few hectares, and
that the value stored in it is the average inclination of that region. The second
map is a matrix that associates with each region a number that identifies the
municipality where that region is located. Regions that are part of the same city
jurisdiction have the same identifier. The EGO script that solves this problem
is shown in Figure 1. An EGO Script program is an ensemble of components,

Optimizing a Geomodeling Domain Specific Language 89

mux

map
slopes

map
cities

Table T
Empty

Group 1
Calculate
mean slope
for one city W1

T[x] mean
slope of city x

R1
Get total
number of
cities

W3
Set number of
cities at T[-1]

W2
Set mean slope
of the whole
map at T[-2]

Table T
-2: mean slope
-1: N
i, 0 < i < N:
mean slope of
each city

Categories

For each category (for each city)
R2
Get mean
slot of all
the cities

T

T

T||

T||

T||
T

T

T

Lp

Fig. 1. An EGO Script program that finds the average slope of the cities that form a
certain region. The parallel bars (||) denote places where the original implementation
of Dinamica EGO replicates the table T .

which are linked together by data channels. Some components encode data,
others computation. Components in this last category are called functors. The
order in which functors must execute is determined by the runtime environment,
and should obey the dependencies created by the data channels.

EGO Script uses the trapezoid symbol to describe data to be processed, which
is usually loaded from files. In our example, this data are the two maps. We call
the map of cities a categorical map, as it divides a matrix into equivalence classes.
Each equivalence class contains the cells that belong to the same city adminis-
tration. The large rectangle named Lp with smaller components inside it is a
container, which represents a loop. It will cause some processing to be executed
for each different category in the map of cities. The results produced by this
script will be accumulated in the table T. Some functors can write into T. We
use names starting with W to refer to them. Others only read the table. Their
names start with R. In our example, the positive indices of T represent city en-
tries. Once the script terminates, T will map each city to its slope. Additionally,
this accumulator will have in its -1 index the total number of cities that have
been processed, and in its -2 index the average slope of the entire map of slopes.

The functor called W1 is responsible for filling the table with the results ob-
tained for each city. The element called mux works as a loop header: it passes
the empty accumulator to the loop, and after the first iteration, it is in charge of
merging the newly produced data with the old accumulator. W1 always copies
the table before updating it. We denote this copy by the double pipes after the
table name in the input channel, e.g., T||. The attentive reader must be wonder-
ing: why is this copy necessary? Even more if we consider that it is performed
inside a loop? The answer is pragmatic: before we had implemented the opti-
mization described in this paper, each component that could update data should
replicate this data. In this way, any component could be reused as a black box,
without compromising the referential transparency that is a key characteristics
of the language. We have departed from this original model by moving data repli-
cation to the channels, instead of the components, and using a whole program
analysis to eliminate unnecessary copies.

90 B.M. Ferreira et al.

W1 W2

M RW1

W2

(a) (b)

L

L

Lp

Fig. 2. Two examples in which copies are necessary

The functor called R1 counts the number of cities in the map, and gives this
information to W3, which writes it in the index -1 of the table. Functor R2
computes the mean slope of the entire map. This information is inserted into
the index -2 of the table by W2. Even though the updates happen in differ-
ent locations of T, the components still perform data replication to preserve
referential transparency. The running example cannot trivially discover that up-
dates happen at different locations of the data-structure. In this simple example,
each of these indices, -1 and -2, are different constants. However, the locations
to be written could have been derived, instead, from much more complicated
expressions whose values could only be known at execution time.

As we will show later in this paper, we can remove all the three copies in the
script from Figure 1. However, there are situations in which copies are necessary.
Figure 2 provides two such examples. A copy is necessary in Figure 2(a), either
in channel α or in channel β – but not in both – because of a write-write hazard.
Both functors, W1 and W2 need to process the original data that comes out of
the loader L. Without the copy, one of them would read a stained value. Data
replication is necessary in Figure 2(b), either in channel α or β, because there
is a read-write hazard between R and W1, and it is not possible to schedule
R to run before W1. W1 is part of a container, Lp, that precedes R in any
scheduling, i.e., a topological ordering, of the script.

3 The Core Semantics

In order to formally state the copy minimization problem that we are interested,
we will define a core language, which we call μ-Ego. A μ-Ego program is defined
by a tuple (S, T,Σ), where S, a scheduling, is a list of processing elements to
be evaluated, T is an output table, and Σ is a storage memory. Each processing
element is either a functor or a container. Functors are three element tuples
(N, I, P), where N is this component’s unique identifier in T , I is the index
of the storage area that the component owns inside Σ, and P is the list of
predecessors of the component. We let T : N �→ N, and Σ : I �→ N. A container
is a pair (N, S), where S is a scheduling of processing elements.

Figure 3 describes the operational semantics of μ-Ego. Rule Cont defines the
evaluation of a container. Containers work like loops: the evaluation of (N,Sl)

Optimizing a Geomodeling Domain Specific Language 91

[Null] ([], T,Σ)→ (T,Σ)

[Cont]
S′ = SK

l @ S (S′, T, Σ)→ (T ′, Σ′)

((K,Sl) :: S, T, Σ)→ (T ′, Σ′)

[Func]

V = max(P,Σ)
Σ′ = Σ \ [I �→ V + 1] T ′ = T \ [N �→ V + 1] (S,T ′, Σ′)→ (T ′′, Σ′′)

((N, I, P) :: S, T,Σ)→ (T ′′, Σ′′)

Fig. 3. The operational semantics of μ-Ego

consists in evaluating sequentially N copies of the scheduling Sl. We let the
symbol @ denote list concatenation, like in the ML programming language. The
expression SK

l @ S denotes the concatenation of K copies of the list Sl in front
of the list S. Rule Func describes the evaluation of functors. Each functor
(N, I, P) produces a value V . If we let Vm be the maximum value produced
by any predecessor of the component, i.e., some node in P , then V = Vm + 1.
When processing the component (N, I, P), our interpreter binds V to N in T ,
and binds V to I in Σ.

Figure 4 illustrates the evaluation of a simple μ-Ego program. The digraph in
Figure 4(a) denotes a program with five functors and a container. We represent
each functor as a box, with a natural number on its upper-right corner, and
a letter on its lower-left corner. The number is the component’s name N , and
the letter is its index I in the store. The edges in Figure 4(a) determine the
predecessor relations among the components. Figure 4(b) shows the scheduling
that we are using to evaluate this program. We use the notation (p1, . . . , pn)

k

to denote a container with k iterations over the processing elements p1, . . . , pn.
Figure 4(c) shows the store Σ, and Figure 4(d) shows the output table T , after
each time the Rule Func is evaluated. In this example, Σ and T have the same
number of indices. Whenever this is the case, these two tables will contain the
same data, as one can check in Rule Func. We use gray boxes to mark the value
that is updated at each iteration of the interpreter. These boxes, in Figure 5(d),
also identify which component is been evaluated at each iteration.

We say that a μ-Ego program is canonical if it assigns a unique index I in
the domain of Σ to each component. We call the evaluation of such a program
a canonical evaluation. The canonical evaluation provides an upper bound on
the number of storage cells that a μ-Ego program requires to execute correctly.
Given that each component has its own storage area, data is copied whenever
it reaches a new component. In this case, there is no possibility of data races.
However, there is a clear waste of memory in a canonical evaluation. It is possible
to re-use storage indices, and still to reach the same final configuration of the
output table. This observation brings us to Definition 1, which formally states
the storage minimization problem.

92 B.M. Ferreira et al.

()

[a] [b] [c] [d] [e]

0 0 0 0 0

1 0 0 0 0

1 2 0 0 0

1 2 3 0 0

1 4 3 0 0

1 4 5 0 0

1 4 5 2 0

1 4 5 2 6

1

2

3

4

5

6

7

8

1

a

2

b

3

c

4

d

5

e

2

(a)

(b) (c)

T[1] T[2] T[3] T[4] T[5]

0 0 0 0 0

1 0 0 0 0

1 2 0 0 0

1 2 3 0 0

1 4 3 0 0

1 4 5 0 0

1 4 5 2 0

1 4 5 2 6

1

2

3

4

5

6

7

8

(d)

1

a

2

b

3

c

4

d

5

e

2

Fig. 4. Canonical evaluation of an μ-Ego program. (a) The graph formed by the com-
ponents. (b) The scheduling. (c) The final configuration of Σ. (d) The final configura-
tion of T .

Definition 1. Storage Minimization with Fixed Scheduling [Smfs]
Instance: a scheduling S of the components in a μ-Ego program, plus a

natural K, the number of storage cells that any evaluation can use.
Problem: find an assignment of storage indices to the components in S with

K or less indices that produces the same T as a canonical evaluation of S.

For instance, the program in Figure 5 produces the same result as the canonical
evaluation given in Figure 4; however, it uses only 3 storage cells. In this example,
the smallest number of storage indices that we can use to simulate a canonical
evaluation is three. Figure 6 illustrates an evaluation that does not lead to a
canonical result. In this case, we are using only two storage cells to keep the
values of the components. In order to obtain a canonical result, when evaluating
component 4 we need to remember the value of components 2 and 3. However,
this is not possible in the configuration seen in Figure 6, because these two
different components reuse the same storage unit.

3.1 SMFS Has Polynomial Solution for Schedulings with No
Back-Edges

If a scheduling S has a component c” scheduled to execute after a component

c′ = (N, I, P), and c” ∈ P , then we say that the scheduling has a back-edge
−−→
c”c′.

Smfs has a polynomial time - exact - solution for programs without back-edges,
even if they contain loops. We solve instances of Smfs that have this restriction
by reducing them to interval graph coloring. Interval graph coloring has an O(N)
exact solution, where N is the number of lines in the interval [7]. The reduction

Optimizing a Geomodeling Domain Specific Language 93

()

[a] [b] [c]

0 0 0

1 0 0

1 2 0

1 2 3

1 4 3

1 4 5

2 4 5

6 4 5

1

2

3

4

5

6

7

8

1

a

2

b

3

c

4

a

5

a

2

(a)

(b) (c)

T[1] T[2] T[3] T[4] T[5]

0 0 0 0 0

1 0 0 0 0

1 2 0 0 0

1 2 3 0 0

1 4 3 0 0

1 4 5 0 0

1 4 5 2 0

1 4 5 2 6

1

2

3

4

5

6

7

8

(d)

1

a

2

b

3

c

4

a

5

a

2

Fig. 5. Evaluation of an optimized μ-Ego program

()

[a] [b]

0 0

1 0

1 2

3 2

1 4

5 4

2 4

3 4

1

2

3

4

5

6

7

8

1

a

2

b

3

a

4

a

5

a

2

(a)

(b) (c)

T[1] T[2] T[3] T[4] T[5]

0 0 0 0 0

1 0 0 0 0

1 2 0 0 0

1 2 3 0 0

1 4 3 0 0

1 4 5 0 0

1 4 5 2 0

1 4 5 2 3

1

2

3

4

5

6

7

8

(d)

1

a

2

b

3

a

4

a

5

a

2

Fig. 6. Evaluation of an μ-Ego program that does not produce a canonical result

is as follows: given a scheduling S, let sc be the order of component c in S; that
is, if component c appears after n− 1 other components in S, then sc = n. For
each component c we create an interval that starts at sc and ends at sx, where
sx is the greatest element among:

– s′c, where c′ is a successor of c.
– scf , where cf is the first component after any component in a loop that

contains a successor of c.

94 B.M. Ferreira et al.

1

a

2

a

4

c

3

b

5

a

6

d

8

d

7

a

3

2

1

a

3

b

4

c

2

a

6

d

8

b

7

a

5

a

d

(a) (b)
1

3

4

2

6

8

7

5

1

2

3

4

5

6

7

8

a

a a

d

(c)

ab c

lo
o
plo
o
p

Fig. 7. Reducing Smfs to interval graph coloring for schedulings without back-edges.
(a) The input μ-Ego program. (b) The input scheduling. (c) The corresponding inter-
vals. The integers on the left are the orderings of each component in the scheduling.

Figure 7 illustrates this reduction. A coloring of the interval graph consists of
an assignment of colors to the intervals, in such a way that two intervals may
get the same color if, and only if, they have no common overlapping point, or
they share only their extremities. Theorem 1 shows that a coloring of the in-
terval graph can be converted to a valid index assignment to the program, and
that this assignment is optimal. In the figure, notice that the interval associated
to component three goes until component five, even though these components
have no direct connection. This happens because component five is the leftmost
element after any component in the two loops that contain successors of compo-
nent three. Notice also that, by our definition of interval coloring, components
six and eight, or five and seven, can be assigned the same colors, even though
they have common extremities.

Theorem 1. A tight coloring of the interval graph provides a tight index as-
signment in the μ-Ego program.

proof: See [4].

3.2 SMFS Is NP-Complete for General Programs with Fixed
Scheduling

We show that Smfs is NP-complete for general programs with fixed schedulings
by reducing this problem to the coloring of Circular-Arc graphs. A circular-arc
graph is the intersection graph formed by arcs on a circle. The problem of finding
a minimum coloring of such graphs is NP-complete, as proved by Garey et al [6].
Notice that if the number of colors k is fixed, then this problem has an exact
solution in O(n× k!× k × ln k), where n is the number of arcs [5].

Optimizing a Geomodeling Domain Specific Language 95

1

2 3

4

5

6

7
8

9

10

1
a

2
b

3
b

4
a

5
a

6
b

7
b

8
a

9
c

10
a

(a) (b)

Fig. 8. Reducing Smfs to circular-arc graph coloring for general schedulings. (a) The
input arcs. (b) The corresponding μ-Ego program.

We define a reduction R, such that, given an instance Pg of the coloring of
arc-graphs, R(Pg) produces an equivalent instance Ps of Smfs as follows: firstly,
we associate an increasing sequence of integer number with each end point of
an arc, in clockwise order, starting from any arc. If i and j are the integers
associated with a given arc, then we create two functors, ci and cj . We let ci be
the single element in the predecessor set of cj , and we let the predecessor set
of ci be empty. We define a fixed scheduling S that contains these components
in the same order their corresponding integers appear in the input set of arcs.
Figure 8 illustrates this reduction. We claim that solving Smfs to this μ-Ego
program is equivalent to coloring the input graph.

Theorem 2. Let Ps be an instance of Smfs produced by R(Pg). Ps can be
allocated with K indices, if, and only if, Pg can be colored with K colors.

proof: See [4].

4 Copy Minimization

Data-Flow Analysis: We start the process of copy pruning with a backward-
must data-flow analysis that determines which channels can lead to places where
data is written. Our data-flow analysis is similar to the well-known liveness
analysis used in compilers [1, p.608]. Figure 9 defines this data-flow analysis via
four inference rules. If (N, I, P) is a component, and N ′ ∈ P , then the relation
channel(N ′, N) is true. If N is a component that writes data, then the relation
write(N) is true. Contrary to the original semantics of μ-Ego, given in Figure 3,
we also consider, for the sake of completeness, the existence of functors that only
read the data. If N is such a functor, than the predicate read(N) is true. This

96 B.M. Ferreira et al.

[Df1]
channel(N1, N2) write(N2)

abs(N1, N2, {N2})
[Df2]

abs(N1, N2, A
′) out(N1, A)

A′ ⊆ A

[Df3]
channel(N1, N2) ¬write(N2) out(N2, A)

abs(N1, N2, A)

[Df4]
channel(N1, N2) read(N2) out(N2, A)

abs(N1, N2, A ∪ {r})

Fig. 9. Inference rules that define our data-flow analysis

analysis uses the lattice constituted by the power-set of functor names, plus a
special name “r”, that is different from any functor name. We define the abstract
state of each channel by the predicate abs(N1, N2, P), which is true if P is the
set of functors that can write data along any path that starts in the channel
(N1, N2), or P = {r}. Rule Df1 states that if a functor N2 updates the data,
then the abstract state of any channel ending at N2 is a singleton that contains
only the name of this functor. We associate with each functor N a set (out) of all
the functor names present in abstract states of channels that leave N . This set
is defined by Rule Df2. According to Rule Df3, if a functor N does not write
data, the abstract state of any channel that ends at N is formed by N ’s out set.
Finally, Rule Df4 back propagates the information that a functor reads data.

Figure 10 shows the result of applying our data-flow analysis onto the example
from Section 2. The channels that lead to functors where table T can be read or
written have been labeled with the abstract states that the data-flow analysis
computes, i.e., sets of functor names. In this example each of these sets is a
singleton. There is no information on the dashed-channels, because T is not
transmitted through them. Notice that we must run one data-flow analysis for
each data whose copies we want to eliminate. In this sense, our data-flow problem
is a partitioned variable problem, following Zadeck’s taxonomy [18]. A partitioned
variable problem can be decomposed into a set of data-flow problems – usually
one per variable – each independent on the other.

Criteria to Eliminate Copies: Once we are done with the data-flow analysis,
we proceed to determine which data copies are necessary, and which can be
eliminated without compromising the semantics of the script. Figure 11 shows
the two rules that we use to eliminate copies: (Cp1) write-write race, and (Cp2)
write-read race. Before explaining each of these rules, we introduce a number of
relations used in Figure 11. The rules Pt1 and Pt2 denote a path between two
components. Rule Dom defines a predicate dom(C,N), which is true whenever
the component N names a functor that is scheduled to execute inside a container
C. We say that C dominates N , because N will be evaluated if, and only if, C

Optimizing a Geomodeling Domain Specific Language 97

mux

map
slopes

map
cities

T

Group 1

W1 R1

W3

W2R2Lp

w1

w1

w1

w3

w2 T

r

r

Fig. 10. The result of the data-flow analysis on the program seen in Figure 1

[Pt1]
channel(N1, N2)

path(N1, N2)
[Pt2]

channel(N1, N) path(N,N2)

path(N1, N2)

[Dom]
C = (N, S) N ∈ S

dom(C,N)
[Ori]

channel(N,N1) channel(N,N2) N1 �= N2

orig(N,N1, N2)

[Dp1]
path(N1, N2)

dep(N1, N2)
[Dp2]

path(N1, N) dom(N2, N)

dep(N1, N2)

[Dp3]
dom(N1, N) path(N,N2)

dep(N1, N2)
[Dp4]

dom(N1, N
′
1) dom(N2, N

′
2) path(N ′

1, N
′
2)

dep(N1, N2)

[Lcd]
dom(N,N1) dom(N,N2) �N ′, dom(N ′, N1), dom(N ′, N2), dom(N,N ′)

lcd(N1, N2, N)

[Prd]
orig(O,N1, N2) lcd(N1, N2, D) dom(D,O) ¬dep(N2, N1)

pred(N1, N2)

[Cp1]
orig(N,N1, N2) out(N1, {. . . , f1, . . . , }) out(N2, {. . . , f2, . . .}) f1 �= f2 �= N

need copy(N,N1)

[Cp2]
orig(N,N1, N2) out(N1, {. . . , f1, . . .}) out(N2, {r}) f1 �= N ¬pred(N2, N1)

need copy(N,N1)

Fig. 11. Criteria to replicate data in Ego Script programs

is evaluated. Rule Lcd defines the concept of least common dominator. The
predicate lcd(N1, N2, N) is true if N dominates both N1 and N2, and for any
other component N ′ that also dominates these two components, we have that
N ′ dominates N . The relation orig(N,N1, N2) is true whenever the functor N is
linked through channels to two different components N1 and N2. As an example,
in Figure 7(a) we have orig(3, 4, 6).

Rules Dp1 through Dp4 define the concept of data dependence between com-
ponents. A component N2 depends on a component N1 if a canonical evaluation
of the script requires N1 to be evaluated before N2. The relation pred(N1, N2)

98 B.M. Ferreira et al.

indicates that N1 can always precede N2 in a canonical evaluation of the Ego
Script program, where components N1 and N2 have a common origin. In order
for this predicate to be true, N1 and N2 cannot be part of a loop that does
not contain O. Going back to Figure 7(a), we have that pred(4, 6) is not true,
because 3, the common origin of components 4 and 6, is located outside the loop
that dominates these two components. Furthermore, N1 should not depend on
N2 for pred(N1, N2) to be true.

By using the predicates that we have introduced, we can determine which
copies need to be performed in the flow chart of the Ego Script program. The
first rule, Cp1, states that if there exist two channels leaving a functor f , and
these channels lead to other functors different than f where the data can be
overwritten, then it is necessary to replicate the data in one of these channels.
Going back to the example in Figure 10, we do not need a copy between the
components W1 and mux, because this channel is bound to the name of W1
itself. This saving is possible because any path from mux to all the other functors
that can update the data must go across W1. Otherwise, we would have also
the names of these functors along the W1-mux channel. On the other hand, by
this very Rule Cp1, a copy is necessary between one of the channels that leave
L in Figure 2(a). The second rule, Cp2, is more elaborated. If two components,
N1 and N2 are reached from a common component N , N2 only reads data, and
N1 writes it, it might be possible to avoid the data replication. This saving is
legal if it is possible to schedule N2 to be executed before N1. In this case, once
the data is written by N1, it will have already been read by N2. If that is not
the case, e.g., pred(N2, N1) is false, then a copy is necessary along one of the
channels that leave out N . This rule lets us avoid the data replication in the
channel that links W1 and W3 in Figure 1. In this case, there is no data-hazard
between W3 and either R1 or R2. These components that only read data can
be scheduled to execute before W3.

4.1 Correctness

In order to show that the rules in Figure 11 correctly determine the copies
that must be performed in the program, we define a correctness criterion in
Theorem 3. A μ-Ego program is correct if its evaluation produces the same
output table as a canonical evaluation. The condition in Theorem 3 provides
us with a practical way to check if the execution of a program is canonical.
Given a scheduling of components S, we define a dynamic scheduling S as the
complete trace of component names observed in an execution of S. For instance,
in Figure 5, we have S = 1, (2, 3)2, 4, 5, and we have S = 1, 2, 3, 2, 3, 4, 5. We let
S[i] be the i-th functor in the trace S, and we let |S| be the number of elements
in this trace. In our example, we have S[1] = 1, S[7] = 5, and |S| = 7. Finally,
if p = S[j] is a predecessor of the functor S[i], and for any k, j < k < i, we have
that S[k] �= S[j], then we say that S[j] is an immediate dynamic predecessor
of S[i].

Optimizing a Geomodeling Domain Specific Language 99

Theorem 3. The execution of an μ-Ego program (S, T,Σ) is canonical if, for
any n, 1 ≤ n ≤ |S|, we have that, for any predecessor p of S[n], if S[i] = p
and i, 1 ≤ i < n is an immediate dynamic predecessor of S[i], then for any
j, i < j < n, we have that Σ[S[j]] �= Σ[p].

proof: See [4].

We prove that the algorithm to place copies is correct by showing that each copy
that it eliminates preserves the condition in Theorem 3. There is a technical in-
convenient that must be circumvented: the Rules Cp1 and Cp2 from Figure 11
determine which copies cannot be eliminated. We want to show that the elimi-
nation of a copy is safe. Thus, we proceed by negating the conditions in each of
these rules, and deriving the correctness criterion from Theorem 3.

Theorem 4. The elimination of copies via the algorithm in Figure 11 preserves
the correctness criterion from Theorem 3.

proof: See [4].

5 Experiments

We show how our optimization speeds up Dinamica EGO via a case study. This
case study comes from a model used to detect hilltops in protected areas, which
is available in Dinamica’s webpage. Figure 12 gives a visual overview of this
application. This model receives two inputs: an elevation map and a vertical
resolution value. The EGO script divides the elevation map vertically into slices
of equal height. This height is defined by the vertical resolution. Then the map
is normalized and divided in discrete regions, as we see in Figure 12(b) and (c).
Before running the functor that finds hilltops, this script performs other analyses
to calculate average slopes, to compute the area of each region and to find the
average elevation of each region. The model outputs relative height, plateau iden-
tifiers, hilltops, plus coordinates of local minima and local maxima. This EGO
script uses tables intensively; hence, data replication was a bottleneck serious
enough to prevent it from scaling to higher resolutions before the deployment of
our optimization.

Figure 13 shows the speedup that we obtain via our copy elimination algo-
rithm. These numbers were obtained in an Intel Core2Duo with a 3.00 GHz
processor and 4.00 GB RAM. We have run this model for several different verti-
cal resolution values. The smaller this value, more slices the map will have and,
therefore more regions and more table inputs. This model has three operators
that perform data replication, but given that they happen inside loops, the dy-
namic number of copies is much greater. Figure 13 shows the number of dynamic
copies in the unoptimized program. High resolution, plus the excessive number
of copies, hinders scalability, as we can deduce from the execution times given in
Figure 13. This model has three components that copy data, and our optimiza-
tion has been able to eliminate all of them. The end result is an improvement of
almost 100x in execution speed, as we observe in the fourth column of Figure 13.

100 B.M. Ferreira et al.

Fig. 12. Hilltop detection. (a) Height map. (b) Normalized map. (c) Extracted discrete
regions.

V D Tu To R

20 1,956 20 20 1
15 2,676 28 26 1.0769
13 3,270 30 29 1.0344
11 4,677 32 32 1
10 6,126 36 36 1
9 9,129 39 36 1.08333
8 15,150 49 39 1.25641
7 29,982 87 50 1.74
5 137,745 995 76 13.0921
4 279,495 4,817 116 41.5258
3 518,526 18,706 197 94.9543

Fig. 13. V: Vertical resolution(m). D: Number of dynamic copies without optimization.
Tu: Execution time without optimization (sec). To: Execution time with optimization
(sec). R: Execution time ratio: (time non optimized / time optimized).

6 Conclusion

This paper has described a compiler optimization that we have implemented
on top of the Dinamica EGO domain specific language for geomodeling. This
optimization is, nowadays, part of the official distribution of Dinamica EGO, and
is one of the key elements responsible for the high scalability of this framework.
Dinamica EGO is freeware, and its use is licensed only for educational or scientific
purposes. The entire software, and accompanying documentation can be found
in Dinamica’s website at http://www.csr.ufmg.br/dinamica/.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison Wesley (2006)

2. Beven, K.: Towards a coherent philosophy for modelling the environment. Proceed-
ings of the Royal Society 458, 2465–2484 (2002)

Optimizing a Geomodeling Domain Specific Language 101

3. Carlson, K.M., Curran, L.M., Ratnasari, D., Pittman, A.M., Soares-Filho, B.S.,
Asner, G.P., Trigg, S.N., Gaveau, D.A., Lawrence, D., Rodrigues, H.O.: Committed
carbon emissions, deforestation, and community land conversion from oil palm
plantation expansion in West Kalimantan, Indonesia. Proceedings of the National
Academy of Sciences (2012)

4. Ferreira, B.M., Pereira, F.M.Q., Rodrigues, H., Soares-Filho, B.S.: Optimizing a ge-
omodeling domain specific language. Tech. Rep. LLP001/2012, Universidade Fed-
eral de Minas Gerais (2012)

5. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of
coloring circular arcs and chords. J. Algebraic Discrete Methods 1, 216–227 (1980)

6. Garey, M.R., Johnson, D.S., Sockmeyer, L.: Some simplified NP-complete prob-
lems. Theoretical Computer Science 1, 193–267 (1976)

7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 1st edn. Elsevier
(2004)

8. Hajek, F., Ventresca, M.J., Scriven, J., Castro, A.: Regime-building for redd+:
Evidence from a cluster of local initiatives in south-eastern peru. Environmental
Science and Policy 14(2), 201–215 (2011)

9. Huong, H.T.L., Pathirana, A.: Urbanization and climate change impacts on future
urban flood risk in Can Tho city, Vietnam. Hydrology and Earth System Sciences
Discussions 8(6), 10781–10824 (2011)

10. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

11. Nepstad, D., Soares-Filho, B., Merry, F., Lima, A., Moutinho, P., Carter, J., Bow-
man, M., Cattaneo, A., Rodrigues, H., Schwartzman, S., McGrath, D., Stickler, C.,
Lubowski, R., Piris-Cabeza, P., Rivero, S., Alencar, A., Almeida, O., Stella, O.:
The end of deforestation in the brazilian amazon. Science 326, 1350–1351 (2009)

12. Pérez-Vega, A., Mas, J.F., Ligmann-Zielinska, A.: Comparing two approaches to
land use/cover change modeling and their implications for the assessment of bio-
diversity loss in a deciduous tropical forest. Environmental Modelling and Soft-
ware 29(1), 11–23 (2012)

13. Soares-Filho, B., Nepstad, D., Curran, L., Cerqueira, G., Garcia, R., Ramos, C.,
Voll, E., McDonald, A., Lefebvre, P., Schlesinger, P.: Modelling conservation in the
Amazon basin. Nature 440, 520–523 (2006)

14. Soares-Filho, B., Pennachin, C., Cerqueira, G.: Dinamica - a stochastic cellular
automata model designed to simulate the landscape dynamics in an Amazonian
colonization frontier. Ecological Modeling 154, 217–235 (2002)

15. Soares-Filho, B., Rodrigues, H., Costa, W.: Modeling Environmental Dynamics
with Dinamica EGO. Centro de Sensoriamento Remoto, IGC/UFMG (2009)

16. Spring, J.H., Privat, J., Guerraoui, R., Vitek, J.: Streamflex: high-throughput
stream programming in java. In: OOPSLA, pp. 211–228. ACM (2007)

17. Thapa, R.B., Murayama, Y.: Urban growth modeling of Kathmandu metropolitan
region, Nepal. Computers, Environment and Urban Systems 35(1), 25–34 (2011)

18. Zadeck, F.K.: Incremental Data Flow Analysis in a Structured Program Editor.
Ph.D. thesis, Rice University (1984)

A System for Runtime Type

Introspection in C++

Maximilien de Bayser and Renato Cerqueira

Pontifcia Universidade Catlica do Rio de Janeiro, Brasil
{rcerq,mbayser}@inf.puc-rio.br

http://www.inf.puc-rio.br

Abstract. Many object-oriented languages support some kind of run-
time introspection that allows programmers to navigate through meta-
data describing the available classes, their attributes and methods. In
general, the meta-data can be used to instantiate new objects, manip-
ulate their attributes and call their methods. The meta-programming
enabled by this kind of reflection has proven itself useful in a variety of
applications such as object-relational mappings and inversion-of-control
containers and test automation

Motivated by the need of programmatic support for composition and
configuration of software components at runtime, in this work we show
how to implement a runtime reflection support for C++11, using the avail-
able runtime type information, template metaprogramming and source
code analysis. We will show the capabilities of the reflection API and the
memory footprint for different kinds of meta-data. The API relies on a
few features introduced by C++11, the new ISO standard for C++. Our
reflection system is not invasive as it requires no modifications whatso-
ever of the application code.

Keywords: reflection, introspection, C++.

1 Introduction

In some languages, such as Lua and Smalltalk, reflection is a direct consequence
of the way object-oriented programming is implemented. In other languages, like
Java, reflection is provided as a part of the standard library. C++, on the other
hand, offers only a very limited form of runtime type information. C++ template
meta-programming provides some introspection capabilities at compile-time but
too limited to extract informations such as the number and type of the attributes
defined by a class. In this work, we show how to implement a reflection library
similar to Java’s but respecting the language’s own characteristics.

Of course we don’t expect to have meta-data for all classes in an application,
as it would be impossible to recover the private type definitions out of third-
party libraries. The types in an application, however, can be divided into two
categories: the types used for implementation and the types used as interface
between modules. Because as users of a library we only need to use the types
that are part of its API, a reflection support system only needs to retrieve type

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 102–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.inf.puc-rio.br

A System for Runtime Type Introspection in C++ 103

definitions from the exported header files. With sufficiently powerful introspec-
tion support for these types, we can build tools such as an inversion of control
(IoC) container for C++.

Inversion of control, also known as dependency injection, is a design pattern
that enhances the re-usability of software components[1]. 1 The less assumptions
a piece of code makes, the more general and the more reusable it is. If a compo-
nent actively searches for resources it depends on, there is no other way but to
make several assumptions about the availability of the mechanisms to do so. On
the other hand, using IoC the component only assumes that there is an explicit
configuration phase where all of its dependencies will be provided externally.

Reflection is useful for IoC because it allows the container implementation
to be independent of the definitions of the manipulated types. It also helps to
create bindings to scripting languages which can be used for the configuration
phase. These languages are often better suited for this task because it can be
done in a more natural declarative style. Besides, scripting has the added benefit
that the applications can be reconfigured without the need for recompilation.

Reflection support and IoC containers are already common for higher-level
languages like Java but some applications need flexibility, performance and low-
level interaction with the operating system. For example, ReservationSuite [2]
is an application monitor that tries to guarantee quality of services levels for
specific processes by manipulating operating system priorities. It runs as a high-
priority process and needs to respond to changes in system load with the lowest
possible latency. It also must run very fast to reduce the CPU usage overhead.
It has components for CPU time, disk I/O rate and network I/O rate. Some
components support several scheduling policies that can be changed at runtime.
The user can even write components implementing new policies and load them
into the monitor. With a good IoC container the user of this application could
select the components he needs and add components he implemented himself.

The main contribution of this work is to show how C++’s new feature of vari-
adic macros can be used to implement a method call mechanism that shields the
application code from the type definitions of the object, the return value and the
parameters. Our solution is type-safe and by construction there are no restrictions
on the number of parameters of reflected methods. It is very flexible because it
makes implicit type conversions that the compiler would automatically apply such
as conversions between arithmetic types or from a derived class to a more abstract
class. Our solution is also standards conforming and is not invasive as it can be
used with third-party components without requiring their modification.

The remainder of this text is organized as follows. Section 2 presents our goal
which is the reflection API and its properties. Section 3 presents the features of
C++ that are relevant to the implementation and in section 4 we show how we
can combine them to build an effective method call mechanism. Section 5 analyzes
the overhead of meta-data. Section 6 list a few related works and in section 7 we
present our conclusions about this work and the possibilities of extending it.

1 In this text, we adopt a loose definition of software components. It is anything that
can be seen as a building block of applications, in binary form or as source code.

104 M. de Bayser and R. Cerqueira

2 Proposed Reflection API

In short, this work’s objective is to create an introspection API with the following
features:

1. Listing of reflected classes and functions
2. Listing of the relevant characteristics of classes: accessible attributes, meth-

ods, constructors and super classes.
3. Invocation of functions, methods and constructors.
4. Compile-time independence of reflected types.

In listing 1 we present a simplified view of the API we want to implement.
We have omitted many methods and classes for attributes and functions, but
the essential parts are there. Basically, the user can obtain a Class meta-data
object by name (line 7) and, from there, locate its methods and attributes. The
Method class at line 10 gives basic informations about the corresponding method
including name, number of parameters and their types, among other features.
The sequences of three dots are part of C++11’s notation for templates that
accept an unknown number of arguments.

We can divide the reflection API in two parts: a descriptive one comprised of
read-only information and an active one supporting the invocation of callable
entities and modification of attributes. The descriptive part has been covered
by other authors so we will not enter into much detail here ([3], [4]). The active
part is represented here by the call and callArgArray methods at lines 16
and 17 respectivly. The VariantValue type that appears in their signature is
a wrapper class for unknown types that will be described in section 4.1. The
template method call is only provided as syntactic sugar that captures the
arguments, wraps them in variants and calls callArgArray.

As we want to manipulate binary components, we don’t reflect compile-time
entities such as typedefs and templates (we do represent template instantiations).

Listing 1. The simplified interface for Class and Method introspection objects

1 class Class {
2 s t r i n g name () ;
3 Class s up e r c l a s s e s () ;
4 MethodList methods () ;
5 A t t r i b u t e sL i s t a t t r i bu t e s () ;
6 Con s t ru c to rL i s t c on s t ru c to r s () ;
7 static Class forName (s t r i n g name) ;
8 } ;
9

10 class Method {
11 s t r i n g name () ;
12 s t r i n g re turnTypeSpe l l ing () ;
13 l i s t <s t r i n g> re turnArgumentSpe l l ings () ;
14
15 template<class . . . Args>
16 VariantValue c a l l (VariantValue& objec t , Args . . . a rgs) { // impl }
17 VariantValue ca l lArgArray (VariantValue& objec t , vector<

VariantValue>& args) ;
18 } ;

A System for Runtime Type Introspection in C++ 105

Because we want the API to be as natural and as easy to use as possible for
C++ programmers, we want the arguments to be converted implicitly and safely
to the types that the method requires. For example, if a parameter is passed by
reference we want to get a reference to the value passed as argument. On the
other hand, if the parameter is passed by value we want a copy of the value. The
best place to implement these conversion is the VariantValue class. We can see
some of the conversions that we would like to support in listing 2.

Listing 2. Requirements for VariantValue
1
2 VariantValue v (”5”) ; // i n i t i a l i z e
3 std : : s t r i n g s = v . convertTo<std : : s t r i n g >() ; // copy
4 std : : s t r i n g& sr = v . convertTo<std : : s t r i n g&>() ; // ge t re ference
5 std : : s t r i n g ∗ sp = v . convertTo<std : : s t r i n g ∗>() ; // ge t pointer
6 int n = v . convertTo<int >() ; // convert to to in t e g e r

The main issue faced when building an infrastructure of meta-data for C++

is the sheer number of possibilities. For example, a method can be virtual or
not. It can be const qualified or volatile qualified, or even be static (in that
case, it is really a function). Parameters may be passed by value, by pointer
or by reference. For all these options, the const and volatile qualifiers may be
applied. A reflection APImust cope with most of these special cases in order to be
useful.

3 Overview of Relevant C++ Features

In this section, we will analyze what features of C++ are relevant to the imple-
mentation of the reflection API. We start by analyzing the type information C++

gives us at runtime and end with the type information available at compile-time.

3.1 Runtime Type Information

To build a reflection API that shields the application code from the definitions of
reflected types we must introduce a layer that hides these types. At some point,
however, we need to recover the abstracted type information in order to use it.
For example, the user of the reflection API wraps a value inside a VariantValue

and passes it to the method call mechanisms. The implementation of this method
call mechanism must be able to verify if the wrapped value can be converted to
the expected type and recover the value. In this section we will analyze what
tools the language has to offer and how we can employ them to safely inquire
the types of values defined in another translation unit.

C++ provides some forms of introspection, collectively known as runtime type
information (rtti). The most commonly used rtti operation is the dynamic cast

that permits the programmer to navigate in a class hierarchy. The dynamic cast

can be seen as a built-in template function which takes a pointer to a polymor-
phic object and a destination type as template parameter. It thus takes two
types as parameters: the origin type implicitly specified by the pointer argu-
ment, and the explicitly specified destination type. If the object referred to by the

106 M. de Bayser and R. Cerqueira

argument pointer is an instance of the requested class, a pointer of the correct
type, pointing to that same object, is returned. Otherwise, a null pointer is re-
turned. Therefore the dynamic cast enables us to ask if the object pointed to is
an instance of the destination type, with the restriction that both types must be
in a the same hierarchy of polymorphic classes. And this is where the problem
lies because we can’t use this cast to find out if a void pointer points to an
integer value. And even if it were possible, both types must be provided at the
same source location. What we want is to take the type information of a value
whose type is known in one translation unit and use it in another translation
unit, which leads us to the next form of rtti: the type info.

C++ provides a special operator called typeid that returns a reference to
type info, a type defined by the standard library. The standard library also
provides a special operator== to compare two references to type info. If this
comparison operator returns true, both type infos refer to the same type. The
type info works for all types and we can compare instances even if the repre-
sented type is not known, so we could use it to compare the type af a generic
reference to a unknown type. The problem is that type info is agnostic to class
hierarchies. Because of this, typeid(A) == typeid(B) evaluates to false even if
B inherits A.

The last form of rtti is rather surprising because it is not usually seen as
such, but it is really the most powerful one. Because in C++ anything is throwable,
the exception machinery must include the type information to guarantee that
the correct catch statement is called. Listing 3 shows how the dynamic cast can
be implemented with exception handling.

Listing 3. A cast implementation using exception handling

1 template<class Orig , class Dest>
2 Dest∗ dyn cast (Orig∗ o) {
3 try {
4 throw o ;
5 } catch (Dest∗ d) {
6 return d ;
7 } catch (. . .) {
8 return nu l l p t r ;
9 }

10 }

In fact, the above dyn cast is more powerful than the dynamic cast because
Orig and Dest need not be in an inheritance relation. Of course, this is an abuse
of exception handling for a totally different purpose, so we cannot expect it to be
as efficient as the other forms of rtti. The advantage of this mechanism is that
the code that throws can be defined in one translation unit and the catching
code in another. Better yet is the fact that the catching code does not need to
know the type that is effectively thrown and, conversely, the throwing code does
not need to know the types that appear in the catch statement.2 In section 4.1
we show how we can make use of exception handling type information.

2 By “knowing a type” we mean that, at a certain code location, the entire textual
declaration of the type is available to the compiler.

A System for Runtime Type Introspection in C++ 107

3.2 Template Metaprogramming

With the intention of allowing reusable data structures and algorithms, the de-
signers of C++ introduced a Turing-complete compile-time language. This has
originated a number of interesting techniques called template metaprogramming,
which was exploited to generate optimal linear algebra code[5], create concrete
products out of product lines[6] and implement object-oriented design patterns
efficiently [7]. The introduction of templates that accept a variable number of
arguments, known as variadic templates, has greatly improved the programming
style for an unknown number of arguments.

The basis for template metaprogramming is template specialization which
works like a compile-time if, as seen in listing 4

Listing 4. Static if

1 template<class T>
2 struct i s a p o i n t e r {
3 enum { va lue = fa l se } ;
4 }
5
6 template<class T>
7 struct i s a p o i n t e r<T∗> {
8 enum { va lue = true } ;
9 }

Listing 5. Static recursion

1 template<int N>
2 struct f a c t {
3 enum { va lue = N∗ f ac t<N−1>:: va lue } ;
4 }
5
6 template<>
7 struct f ac t<0> {
8 enum { va lue = 1 } ;
9 }

And since integer constants may be used as template arguments, we have
recursion as well, as shown in listing 5

C++ may not have runtime reflection, but templates do provide some compile-
time reflection. Using these techniques, we can query if a class has a default
constructor, if it is polymorphic, if a method is const qualified, and much more.
The compile-time type information and the runtime type information can be
applied in a complementary manner to implement a big part of a runtime in-
trospection supports. The only things lacking are the iteration over all existing
classes and within them, the iteration over their attributes and methods.

4 API Implementation

As we seen, there are two parts to the reflection API: the active one and the
descriptive one. The active part is tricky to implement in a language with such a
diversity of options as C++ and, therefore, its implementation takes the greatest
part of this section. We made use of several of the new features introduced by
the new C++ standard, especially variadic templates. Without this feature the
syntax required merely to use it would so convoluted that macros would be
needed simplify its API. The remainder of this section deals with how we gather
all this type information form the source files.

4.1 Variant

Variants are like void pointers enhanced with type information and life-cycle
management. They are essential for normalizing the parameter and return

108 M. de Bayser and R. Cerqueira

values for generic method calls and are, therefore, a central piece in our reflec-
tion system. Most variants are implemented either using unions, as described
by Alexandrescu[8], or a template class implementing an abstract interface,
a technique called type erasure [9] described by Henney[10]. boost::any and
boost::variant[11] are good examples of both alternatives. The problem of the
union approach is that the variant is restricted to a finite set of types, so our
variant implementation follows the type erasure approach due to its greater flex-
ibility, but incorporates several improvements from Alexandrescu’s approach.
Our variant can hold objects of concrete types by value. The object can be
constructed in place and it does not need to have default or copy constructors.
Because the constructor of the variant is a variadic template, any constructor
of the selected type can be used. Variants holding references to objects are also
supported. The object held can be accessed by copy, by reference or by pointer.
Most importantly objects can be accessed by references and pointers to base
classes. Additionally, it is detected at compile time if the type is convertible
to std::string or arithmetic types. If this is the case, conversions to any arith-
metic type or std::string are automatically implemented. The arithmetic type
conversion is very convenient because it allows us to pass a variant containing a

Listing 6. Conversion of variants

1 class VariantValue
2 un ique ptr<IValueHolder> m impl ;
3
4 template<class ValueType>
5 typename s t r i p r e f e r e n c e <ValueType> : : p t r type
6 i sA pr i v () const {
7 try {
8 m impl−>throwCast () ;
9 } catch (typename s t r i p r e f e r e n c e <ValueType> : : p t r type ptr) {

10 return ptr ;
11 } catch (. . .) {
12 return nu l l p t r ;
13 }
14 }
15
16 public :
17 template<class ValueType>
18 ValueType va lue () const {
19 auto ptr = isA pr iv< ValueType >() ;
20 i f (ptr == nu l l p t r) {
21 // throw (error handling omitted)
22 }
23 return ∗ ptr ;
24 }
25 // other methods . . .
26 } ;
27
28 template<class ValueType>
29 class ValueHolder : public IValueHolder {
30 ValueHolder m value ;
31 public :
32 virtual void throwCast () const {
33 throw &m value ;
34 }
35 private :
36 } ;

A System for Runtime Type Introspection in C++ 109

char where an int is expected, just like the compiler would accept for temporary
values. The philosophy of our variant in this respect is like Qt’s QVariant’s[12]:
what matters most is not the real type hidden inside the variant, but the types
it can be converted to. This frees us from painstakingly constructing variants of
an exact type.

In listing 12 we can see the essential aspects of our Variant implementation. We
have a front-end called VariantValue (line 1) with value-semantics that holds a
pointer to the abstract base class IValueHolder which in turn is implemented
by the class template ValueHolder (line 28). (The abstract base class has been
omitted to avoid redundancy)

It is here that the flexibility of exception handling rtti is used. At line 33 in
method throwCast, where the type of the contained value is known, we throw
a pointer to it. At line 8 we call the throwCast method and an line 9 we try
to catch a pointer to a type provided by the user. If the catch is successful we
return the pointer, else we return a null pointer.

4.2 Call Forwarding

We want to generate a uniform interface to call methods with an arbitrary
number of parameters, the tools we have are variants and pointers-to-methods.
The main idea is to capture the parameters into a vector of variants and unpack
the variant into the argument list of the function call expression. The first thing
is to take a variable number of arguments, pack each of them in a variant, and
place it in a vector. We can use variadic templates to do this:

Listing 7. Packing of parameters
1
2 in l ine void emplace (std : : vector<VariantValue>& v) { }
3
4 template<class T, class . . . U>
5 in l ine void emplace (std : : vector<VariantValue>& v , T&& t , U&&.. . u)
6 {
7 v . emplace back (t) ;
8 emplace (v , u . . .) ;
9 }

10
11 class Method {
12 public :
13 template<class . . . Args>
14 VariantValue c a l l (VariantValue& objec t , const Args & . . . args) const

{
15 : : s td : : vector<VariantValue> vargs ;
16 emplace (vargs , args . . .) ;
17 return ca l lArgArray (ob jec t , vargs) ;
18 }
19 // other methods and a t t r i b u t e s . . .
20 }

In listing 7 at line 17 callArgArray forwards the two parameters to the call
method of MethodImpl, seen in listing 8 at line 9.

110 M. de Bayser and R. Cerqueira

Listing 8. Dispatching the parameters

1 typedef VariantValue (∗boundmethod) (
2 const vo la t i l e VariantValue&, const vector<VariantValue>& args) ;
3
4 class MethodImpl {
5 boundmethod m method ;
6 public :
7
8 VariantValue c a l l (VariantValue& objec t , const vector<VariantValue

>& args)
9 {

10 i f (args . s i z e () < m numArgs) {
11 // throw except ion
12 }
13 return m method(ob jec t , args) ; // c a l l func t ion pointer
14 }
15 // other methods and a t t r i b u t e s . . .
16 } ;

The m method at line 6 attribute is simply a pointer to a function that is used
to normalize a pointer to method. Its type is declared at line 1. Because the type
of a method pointer depends on the entire signature, it would be impossible for
a non-templated class to have such a pointer as member. However, in addition
to types and integer constants, pointers to functions and methods can be used
as template arguments. We can use this to capture each pointer to method as a
template parameter of a function template with a uniform signature.

The next step is to implement this function template that does the real method
invocation. It has to know the number of arguments and their types, as well as
the return type (there are other subtleties as well, such as the constness of a
method, but for the sake of simplicity we will ignore them for now). Again, we
use variadic templates to pass these types to the call function.

It is difficult to manipulate unexpanded parameter packs and pass them as
argument to other templates, but we can employ a helper template called Type-
list, due to Alexandrescu[7]. Basically, Typelists use a head and tail structure to
encode a sequence of types as a type. They are very useful to group together a
list of unrelated types, such as the argument types of a function. Alexandrescu
showed how to implemented algorithms to find types in typelists, insert new
types, query types by position and sort them from the most abstract to the
most derived. The only drawback in his implementation was that C++98 did
not support variadic templates or at least variadic macros, which made its use
somewhat cumbersome. Using the new variadic templates, we designed a more
natural Typelist that is used to implement the functions that forward the argu-
ments vector of variants. We use it to compute to which type each argument in
the variant vector should be converted.

With the vector ofwrapped arguments and theTypelist containing the expected
types we have all the information that is necessary to invoke a method. The next
problem to be addressed is how to expand the arguments inside the parentheses
of the call expression. We cannot use iteration inside the parentheses. We could
somehow capture the arguments to the typelist as an unexpandend parameter,

A System for Runtime Type Introspection in C++ 111

and pack and re-expand them. However, types cannot be used to index the
elements of a vector. The answer is to use a helper template call Indices, an
idea by Preney[13] to handle the problem of passing the content of an std::tuple
as parameters to a function call. Indices are just a way to encode a sequence
of numbers as a type. Because integers can be used to implement compile-time
recursion, we are able to generate a type containing the numbers from 0 to N. If
we capture the unexpanded pack of integers, we can use it to generates indices
for the typelist and the vector at the same time. We use the expansion of an
expression containing the indices to emplace the arguments at the correct place.
The simplified templates can be seen in listing 9

Listing 9. Unpacking the parameters and calling the method

1 template<class Method>
2 struct method type ;
3
4 // We use sp e c i a l i z a t i on to capture the
5 // parameter pack ins ide a method pointer dec l a ra t ion
6
7 template<class Clazz , class Resu l t , class . . . Args>
8 struct method type< Resu l t (Clazz : : ∗) (Args . . .)> {
9

10 typedef Resu l t (Clazz : : ∗ ptr to method) (Args . . .) ;
11 typedef TypeList<Args . . . > Arguments ;
12
13 static VariantValue
14 b i nd ca l l (VariantValue& objec t , const vector<VariantValue>& args)
15 {
16 return c a l l h e l p e r <typename make indices<s izeof . . . (Args) > : : type ,
17 Result > : : c a l l (r e f , ptr , args) ;
18 }
19
20 template<class Ind , class RType>
21 struct c a l l h e l p e r ;
22
23 template< s i z e t . . . I , template< s i z e t . . . > class Ind , class RType

>
24 struct c a l l h e l p e r <Ind<I . . . > , RType> {
25 static VariantValue
26 c a l l (ClazzRef ob jec t , ptr to method ptr , const vector<

VariantValue>& args)
27 {
28 // This i s where the magic happens
29 return (ob j e c t .∗ ptr) (args [I] .
30 moveValue<typename type at<Arguments , I > : : type >() . . .) ;
31 }
32 } ;
33
34 } ;

Forwarding functions and constructor calls is simpler but uses the same
mechanism, so for the sake of brevity we will not discuss them. In reality, the
method type template has more specializations to detect if a method is const-
qualified, volatile-qualified or static. The result of all this work is that we can
call methods of objects of unknown types in a very natural way. An example
usage can be seen in listing 10.

112 M. de Bayser and R. Cerqueira

Listing 10. Example usage
1
2 Class a = Class : : forname(”A”) ;
3 Construc tor c = a . c on s t ru c to r s () . f r on t () ;
4 VariantValue i n s t anc e = c . c a l l (” t e s t ” , 1) ;
5 Method m = a . methods () . f r on t () ;
6 VariantValue r e s u l t = m. c a l l (in stance , 4 , 6) ;

Listing 11 presents an equivalent sequence of calls for
Java’s java.lang.reflect API.

Listing 11. Equivalent Java reflection usage
1
2 Class a = Class . forName (”A”) ;
3 Construc tor c = a . ge tDec laredConstruc tors () [0] ;
4 Object i n s t anc e = c . newInstance (” t e s t ” , 1) ;
5 Method m = a . getDeclaredMethods () [0] ;
6 Object r e s u l t = m. invoke (instance , 4 , 6) ;

As the reader might have noticed we have chosen to use a template function
for each method call instead of having a template MethodImpl implementing a
AbstractMethodIml abstract base class. We will explain the reason why in the
evaluation section.

4.3 Meta-data Declarations

At this stage, the only missing piece for our introspection API is how we extract
all the meta-data from source and feed it to our library. As previously stated,
what C++ lacks is a way to discover declarations from within the language, so this
information must be provided in another way. For each kind of declaration, there
is a corresponding meta-data class, so, for each declaration, a global instance of
the corresponding meta-data class must be instantiated. To make the meta-data
definitions more readable, we provide a set of macros which can be easily used
by the programmer:

Listing 12. Meta-data input

1 BEGIN CLASS(TextFi l e)
2 SUPERCLASS(F i l e)
3 METHOD(write , int , const std : : s t r i n g&)
4 CONSTMETHOD(s i z e , int)
5 END CLASS

When many classes and method declarations must be defined, writing all these
declarations can be a very labour-intensive and error-prone task. Because of this,
we have built a program that parses C++ header files and produces the meta-data
for all usable declarations. This program is built around clang’s parser libraries
[14]. Basically, clang parses the files and returns an abstract syntax tree (AST).
Since we are only interested in the interface of C++ entities, we only read public
declarations. The private sections and function bodies are ignored. We also ignore
definitions that generate no symbols, such as global static functions and every-
thing inside private namespaces. In C++, classes can be forward-declared if they
are used only as parameter types, return types, pointers and references. However,
in order to generate the method call code, our reflection system needs the full

A System for Runtime Type Introspection in C++ 113

declaration of all types used in parameter or return types. When a declaration is
not available, our parser prints a warning and ignores the entity that depended
on it. In clang, there is an interaction between the ”forward declarable” and the
template instantiation rules. Whenever a template instance name is used where
a forward declaration is sufficient, clang does not generate the AST nodes for it.
If we want to generate meta-data for this template class instance, we need this
piece of the AST and, therefore, we force its instantiation, effectively modifying
the AST. The output of the parser is a C++ code file containing all meta-data
that must be compiled by a C++11 conforming compiler. We have not tested it
but, in principle, the meta-data code could be compiled into a separate dynamic
library that could be shipped separately and loaded only if needed.

5 Evaluation

Inevitably the meta-data introduces a memory usage overhead. A quite rea-
sonable way to calculate this overhead is to look at the size of the compiled
translation unit containing the meta-data, but keeping in mind that the oper-
ating systems may never load the unused parts into working memory. As an
example, we have generated the meta-data for qtextedit.h, a file shipped with
Qt’s C++ SDK, once with forced template instantiation and once without. We
have selectively suppressed the generation of certain kinds of meta-data to see
how each one contributes on terms of space usage. The result can be seen in the
tables 1 and 2. In both tables, classes, methods, attributes and functions refer
to the number of reflected entities of each kind.

Table 1. qtextedit.h with templates

Mesurement result

object file size 2.9MB
classes 71
public methods 3262
public attributes 2
functions 0
rtti 486KB (16.5%)
method call code 1.2MB (42.8%)
code per method 395 bytes
type spellings 9KB (0.32%)

Table 2. qtextedit.h without templates

Measurement result

object file size 200KB
classes 3
public methods 154
public attributes 2
functions 0
rtti 25KB (12.6%)
method call code 101KB (42.8%)
code per method 675 bytes
type spellings 1KB (0.54%)

From the numbers, the information that stands out the most is the percentage
of space dedicated to method call forwarding. Because of the way C++ method
pointers work, for each combination of class, return type, parameter types and
qualifiers, the whole method procedure call must be generated again. The size
of a single method call function is below 1K, which is acceptable if we consider
how much work is involved in converting every variant to the correct type. But,

114 M. de Bayser and R. Cerqueira

because it is very difficult to share the same code for different methods, we have
no choice but repeating it for every method. That is not to say that there is no
difference in the code generated for a method with three parameters and one
with four, but, for example, there should be no difference in the machine code
generated for two methods of the same class with almost the same signature,
differing only in constness. Experience with existing compilers suggests that one
could cast a method pointer to another one of a similar type [15] and call it
without problems if certain restrictions are observed. The casting of method
pointers could be used to reduce the repetition of equal code, but we would no
longer be standards-conforming, as the standard states that calling a converted
method pointer results in undefined behavior.

Another relevant observation is the percentage of space used for type info

data. Our system makes no use of this information internally, it is only there
for the API and can be disabled with a compiler flag if the user does not need
it. For example, if the API is used through a binding for another language such
as Lua, the type info rtti is useless. The type spellings, that is the textual
representation of parameter and return types, take a negligible amount of space,
but are very useful for language bindings because the code in another language
can make textual comparisons to check the parameter types of a method.

We can see that there is a great difference both in the number of code entities
as in translation unit size when all templates are instantiated. We remind the
reader that, in C++, a template method that is not used does not generate code.
However, taking the address of a template’s method, forces the compiler to fully
instantiate that code. Additionally, as at this stage the compiler has no clue
whether the template classes are already defined in other translation units or not,
it has no choice but generating all their code into the current one. This certainly
accounts for some of the size of the resulting file, but it is difficult to measure
exactly how much. The template instances included in this example are instances
of QList<class T>, QList<class T>::iterator and QList<class T>::const iterator.

Finally, we note that the amount of the code generated per method call is
smaller for the file with more methods. We can only speculate about why this
happens, but perhaps the compiler is more likely to reuse the same piece of code
for different methods.

Having this discussion in mind, we can explain why we did not use the type
erasure technique for the meta-data classes. In fact, this was our first approach,
but the result was not very encouraging. With the type erasure approach, the
compiler had to generate a new class for each method, which means a new
vtable, a new set of methods, etc. With all this unnecessary code, the object
file for qtextedit.h’s meta-data surpassed the size of 30MB, what was clearly
unacceptable.

We have not yet done benchmarks to measure the call overhead in CPU time,
but inevitably there will be a considerable cost for all the extra flexibility. In
any case, the call mechanism is not meant to be used in tight inner loops, but
to facilitate the configuration and composition of software components, which
typically are done only at start-up.

A System for Runtime Type Introspection in C++ 115

6 Related Work

SEAL Reflex [3] is a very detailed reflection library including meta-data for
typedefs, scopes, primitives and arrays. It has a method call construct but it is
not type-safe as arguments are passed as an array of void pointers. Internally
it uses method call functions generated in plain text by a meta-data generation
tool.

Devadithya et. al. [4] present a reflection system similar to SEAL. It uses tem-
plate classes to hold method pointers and do the calls. The number of of argu-
ments is limited to the number of template specializations implemented in the
library. The exact types of arguments and return types must be known, which
has as consequence that the end user code needs their complete definitions.

PocoCapsule[16] is not a reflection library but a IoC container for C++ that
uses an interesting approach to deal with method calls and attributes. The C++
parser takes as input both the source files and the XML configuration file, so
XML binding code is only generated for the methods that are actually used.
After the binding’s generation, parameters like string or integer constants can
be changed but calls to previously unused methods require re-compilation.

Reflection for C++ [17] proposes the gathering of meta-data out of debug
information generated by compilers. This has the advantage that the meta-data
can be extracted of executable files. The drawback is that the code must be
compiled in debug mode. Also each compiler uses a different representation for
debug information.

And finally there are invasive approaches that require code modifications for
reflected classes [17]. Other approaches require extensions of C++. For exam-
ple, Microsoft supports an extended C++ for their common language runtime,
which provides reflection for all supported languages [18]. Qt’s signals and slots
mechanisms adds a few keywords to C++ and depends on a separate tool to
generate standard C++ code for these features [12].

7 Conclusion

We have presented a type introspection API for C++, similar to Java’s, but re-
specting the characteristics of the language. The reflection API makes heavy use
of some features new to C++11, so compiler support may be an issue. We have
successfully compiled the code with g++ 4.7 and clang++ 3.1. We also made a
binding for Lua that enables us to instantiate and use C++ objects. The usage in
C++ is very natural as it requires no manual ”boxing” of parameter types into
variants in method calls. No modifications of existing code are required and the
meta-data can be compiled separately. The most serious problem is the space
overhead incurred by the method call code if we consider that, in most situa-
tions, probably less than 10% of these methods will be called. We believe that
we have gone as far in reducing its size as possible in a standards conforming
way. However, it might be interesting to investigate the possibility of generating

116 M. de Bayser and R. Cerqueira

the required code on demand at runtime for a standard ABI such as the Itanium
ABI used by gcc and clang, among other compilers. Possibilities include JIT
compilation using clang or creating the call frames with libffi.

The entire source code can be found at https://github.com/maxdebayser/
reflection

References

1. Fowler, M.: Inversion of control containers and the dependency injection pattern,
http://martinfowler.com/articles/injection.html

2. dos Reis, V.Q., Cerqueira, R.: Controlling processing usage at user level: a way
to make resource sharing more flexible. Concurr. Comput.: Pract. Exper. 22(3),
278–294 (2010)

3. Roiser, S., Mato, P.: The seal c++ reflection system. In: Proceedings of CHEP 2004,
Interlaken, Switzerland, September 24-October 1, CERN-2005-02, vol. 1, p. 437.
International Standard; Programming Languages - C++; ISO/IEC 14882:2003(E);
2nd edn. (October 15, 2003); ISO, CH-1211 Geneva 20 (2004)

4. Devadithya, T., Chiu, K., Lu, W.: C++ reflection for high performance problem
solving environments. In: Proceedings of the 2007 Spring Simulation Multicon-
ference - SpringSim 2007, vol. 2, pp. 435–440. Society for Computer Simulation
International, San Diego (2007)

5. Veldhuizen, T.: Using template metaprograms. C++ Report 7, 26–31 (1995)
6. Czarnecki, K.: Generative Programming. Phd. thesis, Technical University of

Ilmenau (1998)
7. Alexandrescu, A.: Modern C++ Desing. Addison-Wesley (2001)
8. Alexandrescu, A.: Discriminated unions. C/C++ Users Journal (April 2002)
9. Becker, T.: On the tension between object-oriented and generic programming in

C++ and what type erasure can do about it,
http://www.artima.com/cppsource/type_erasure2.html

10. Henney, K.: Valued conversions. C++ Report (July-August 2000)
11. Boost C++ libraries, http://www.boost.org/
12. Qt library, http://doc.qt.nokia.com/4.7/
13. Preney, P.: Applying std::tuple to functors efficiently,

http://preney.ca/paul/archives/486

14. Clang C language family frontend for LLVM, http://clang.llvm.org/
15. Clugston, D.: Member function pointers and the fastest possible C++ delegates,

http://clang.llvm.org/

16. Pococapsule/C++ ioc, http://www.pocomatic.com/prod-docs.html
17. Knizhnik, K.: Reflection for C++,

http://www.garret.ru/cppreflection/docs/reflect.html

18. MSDN: Reflection in C++,
http://msdn.microsoft.com/en-us/library/y0114hz2(v=vs.80).aspx

https://github.com/maxdebayser/reflection
https://github.com/maxdebayser/reflection
http://martinfowler.com/articles/injection.html
http://www.artima.com/cppsource/type_erasure2.html
http://www.boost.org/
http://doc.qt.nokia.com/4.7/
http://preney.ca/paul/archives/486
http://clang.llvm.org/
http://clang.llvm.org/
http://www.pocomatic.com/prod-docs.html
http://www.garret.ru/cppreflection/docs/reflect.html
http://msdn.microsoft.com/en-us/library/y0114hz2(v=vs.80).aspx

Model-Based Programming Environments
for Spreadsheets�

Jácome Cunha1,3, João Saraiva1, and Joost Visser2

1 HASLab / INESC TEC, Universidade do Minho, Portugal
{jacome,jas}@di.uminho.pt

2 Software Improvement Group & Radboud University Nijmegen, The Netherlands
j.visser@sig.eu

3 Escola Superior de Tecnologia e Gestão de Felgueiras, IPP, Portugal

Abstract. Although spreadsheets can be seen as a flexible programming envi-
ronment, they lack some of the concepts of regular programming languages, such
as structured data types. This can lead the user to edit the spreadsheet in a wrong
way and perhaps cause corrupt or redundant data.

We devised a method for extraction of a relational model from a spreadsheet
and the subsequent embedding of the model back into the spreadsheet to create
a model-based spreadsheet programming environment. The extraction algorithm
is specific for spreadsheets since it considers particularities such as layout and
column arrangement. The extracted model is used to generate formulas and visual
elements that are then embedded in the spreadsheet helping the user to edit data
in a correct way.

We present preliminary experimental results from applying our approach to a
sample of spreadsheets from the EUSES Spreadsheet Corpus.

1 Introduction

Developments in programming languages are changing the way in which we construct
programs: naive text editors are now replaced by powerful programming language en-
vironments which are specialized for the programming language under consideration
and which help the user throughout the editing process. Helpful features like highlight-
ing keywords of the language or maintaining a beautified indentation of the program
being edited are now provided by several text editors. Recent advances in programing
languages extend such naive editors to powerful language-based environments [1–6].
Language-based environments use knowledge of the programming language to provide
the users with more powerful mechanisms to develop their programs. This knowledge
is based on the structure and the meaning of the language. To be more precise, it is
based on the syntactic and (static) semantic characteristics of the language. Having this

� The authors would like to thank Martin Erwig and his team for providing us the code from
the UCheck project. This work is funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) within project FCOMP-01-0124-FEDER-010048. The first
author is supported by the FCT grant SFRH/BPD/73358/2010.

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 117–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FCOMP-01-0124-FEDER-010048
SFRH/BPD/73358/2010

118 J. Cunha, J. Saraiva, and J. Visser

knowledge about a language, the language-based environment is not only able to high-
light keywords and beautify programs, but it can also detect features of the programs
being edited that, for example, violate the properties of the underlying language. Fur-
thermore, a language-based environment may also give information to the user about
properties of the program under consideration. Consequently, language-based environ-
ments guide the user in writing correct and more reliable programs.

Spreadsheet systems can be viewed as programming environments for non-profes-
sional programmers. These so-called end-user programmers vastly outnumber profes-
sional programmers [7].

In this paper, we propose a technique to enhance a spreadsheet system with mecha-
nisms to guide end users to introduce correct data. A background process adds formulas
and visual objects to an existing spreadsheet, based on a relational database schema. To
obtain this schema, or model, we follow the approach used in language-based envi-
ronments: we use the knowledge about the data already existing in the spreadsheet to
guide end users in introducing correct data. The knowledge about the spreadsheet under
consideration is based on the meaning of its data that we infer using data mining and
database normalization techniques.

Data mining techniques specific to spreadsheets are used to infer functional depen-
dencies from the spreadsheet data. These functional dependencies define how certain
spreadsheet columns determine the values of other columns. Database normalization
techniques, namely the use of normal forms [8], are used to eliminate redundant func-
tional dependencies, and to define a relational database model. Knowing the relational
database model induced by the spreadsheet data, we construct a new spreadsheet en-
vironment that not only contains the data of the original one, but that also includes
advanced features which provide information to the end user about correct data that
can be introduced. We consider three types of advanced features: auto-completion of
column values, non-editable columns and safe deletion of rows.

Our techniques work not only for database-like spreadsheets, like the example we
will use throughout the paper, but they work also for realistic spreadsheets defined in
other contexts (for example, inventory, grades or modeling). In this paper we present our
first experimental results obtained by considering a large set of spreadsheets included
in the EUSES Spreadsheet Corpus [9].

This paper is organized as follows. Section 2 presents an example used throughout
the paper. Section 3 presents our algorithm to infer functional dependencies and how to
construct a relational model. Section 4 discusses how to embed assisted editing features
into spreadsheets. A preliminary evaluation of our techniques is present in Section 5.
Section 6 discusses related work and Section 7 concludes the paper.

2 A Spreadsheet Programming Environment

In order to present our approach we shall consider the following well-known example
taken from [10] and modeled in a spreadsheet as shown in Figure 1.

This spreadsheet contains information related to a housing rental system. It gathers
information about clients, owners, properties, prices and rental periods. The name of
each column gives a clear idea of the information it represents. We extend this example

Model-Based Programming Environments for Spreadsheets 119

Fig. 1. A spreadsheet representing a property rental system

with three additional columns, named days (that computes the total number of rental
days by subtracting the column rentStart to rentFinish), total (that multiplies the
number of rental days by the rent per day value, rent) and country (that represents
the property’s country). As usually in spreadsheets, the columns days and rent are
expressed by formulas.

This spreadsheet defines a valid model to represent the information of the rental
system. However, it contains redundant information: the displayed data specifies the
house rental of two clients (and owners) only, but their names are included five times, for
example. This kind of redundancy makes the maintenance and update of the spreadsheet
complex and error-prone. A mistake is easily made, for example, by mistyping a name,
thus corrupting the data on the spreadsheet.

Two common problems occur as a consequence of redundant data: update anomalies
and deletion anomalies [11]. The former problem occurs when we change information
in one place but leave the same information unchanged in the other places. The problem
also occurs if the update is not performed exactly in the same way. In our example, this
happens if we change the rent of property number pg4 from 50 to 60 only one row
and leave the others unchanged, for example. The latter problem occurs when we delete
some data and lose other information as a side effect. For example, if we delete row 5
in the our example all the information concerning property pg36 is lost.

The database community has developed techniques, such as data normalization, to
eliminate such redundancy and improve data integrity [11, 12]. Database normalization
is based on the detection and exploitation of functional dependencies inherent in the
data [13]. Can we leverage these database techniques for spreadsheets systems so that
the system eliminates the update and deletion anomalies by guiding the end user to
introduce correct data? Based on the data contained in our example spreadsheet, we
would like to discover the following functional dependencies which represent the four
entities involved in our house rental system: countries, clients, owners and properties.

country ⇀
clientNr ⇀ cName
ownerNr ⇀ oName
propNr ⇀ pAddress , rent , ownerNr

A functional dependency A ⇀ B means that if we have two equal inhabitants of A,
then the corresponding inhabitants of B are also equal. For instance, the client num-
ber functionally determines his/her name, since no two clients have the same number.
The right hand side of a functional dependency can be an empty set. This occurs, for
example, in the country functional dependency. Note that there are several columns

120 J. Cunha, J. Saraiva, and J. Visser

(labeled rentStart , rentFinish, days and total) that are not included in any functional
dependency. This happens because their data do not define any functional dependency.

Using these functional dependencies it is possible to construct a relational database
schema. Each functional dependency is translated into a table where the attributes are
the ones participating in the functional dependency and the primary key is the left hand
side of the functional dependency. In some cases, foreign keys can be inferred from the
schema. The relational database schema can be normalized in order to eliminate data
redundancy. A possible normalized relational database schema created for the house
rental spreadsheet is presented bellow.

country

clientNr , cName
ownerNr , oName
propNr , pAddress , rent , ownerNr

This database schema defines a table for each of the entities described before. Having
defined a relational database schema we would like to construct a spreadsheet environ-
ment that respects that relational model, as shown in Figure 2.

Fig. 2. A spreadsheet with auto-completion based on relational tables

Fig. 3. Selecting possible values
of columns using a combo box

For example, this spreadsheet would not allow the
user to introduce two different properties with the
same property number propNr. Instead, we would like
that the spreadsheet offers to the user a list of possi-
ble properties, such that he can choose the value to fill
in the cell. Figure 3 shows a possible spreadsheet envi-
ronment where possible properties can be chosen from
a combo box.

Using the relational data base schema we would
like that our spreadsheet offers the following features:

Auto-completion of Column Values: The columns cor-
responding to primary keys in the relational model de-
termine the values of other columns; we want the spreadsheet environment to be able
to automatically fill those columns provided the end -user defines the value of the
primary key.

Model-Based Programming Environments for Spreadsheets 121

For example, the value of the property number (propNr, column B) determines the
values of the address (pAddress, column D), rent per day (rent, column I), and owner
number (ownerNr, column K). Consequently, the spreadsheet environment should be
able to automatically fill in the values of the columns D, I and K, given the value
of column B. Since ownerNr (column K) is a primary key of another table, transi-
tively the value of oName (column L) is also defined. This auto-completion mech-
anism has been implemented and is presented in the spreadsheet environment of
Figure 2.

Non-Editable Columns: Columns that are part of a table but not part of its primary
key must not be editable. For example, column L is part of the owner table but it is not
part of its primary key. Thus, it must be protected from being edited. The primary key
of a table must not be editable also since it can destroy the dependency. This feature
prevents the end user from introducing potentially incorrect data and, thus, producing
update anomalies. Figure 4 illustrates this edit restriction.

Fig. 4. In order to prevent update
anomalies some columns must not be
editable

Safe Deletion of Rows: Another usual problem
with non-normalized data is the deletion prob-
lem. Suppose in our running example that row
5 is deleted. In such scenario, all the informa-
tion about the pg36 property is lost. However, it
is likely that the user wanted to delete the rental
transaction represented by that row only. In order
to prevent this type of deletion problems, we have
added a button per spreadsheet row (see Figure 2).
When pressed, this button detects whether the end
user is deleting important information included in
the corresponding row. In case important information is removed by such deletion, a
warning window is displayed, as shown in Figure 5.

Fig. 5. Window to warn the end
user that crucial information may be
deleted

Apart from these new features, the user can still
access traditional editing features, and can rely
on recalculation of functional dependencies in the
background.

Traditional Editing: Advanced programming lan-
guage environments provide both advanced edit-
ing mechanisms and traditional ones (i.e., text
editing). In a similar way, a spreadsheet environ-
ment should allow the user to perform traditional
spreadsheet editing too. In traditional editing the end user is able to introduce data that
may violate the relational database model that the spreadsheet data induces.

Recalculation of the Relational Database Model: Because standard editing allows the
end user to introduce data violating the underlying relational model, we would like

122 J. Cunha, J. Saraiva, and J. Visser

that the spreadsheet environment may enable/disable the advanced features described
in this section. When advanced features are disabled, the end user would be able to in-
troduce data that violates the (previously) inferred relational model. However, when the
end user returns to advanced editing, then the spreadsheet should infer a new relational
model that will be used in future (advanced) interactions.

In this section we have described an instance of our techniques. In fact, the spread-
sheet programming environment shown in the Figures 2, 3, 4 and 5 was automatically
produced from the original spreadsheet displayed in Figure 1. In the following sec-
tions we will present in detail the technique to perform such an automatic spreadsheet
refactoring.

3 From Spreadsheets to Relational Databases

This section briefly explains how to extract functional dependencies from the spread-
sheet data and how to construct a normalized relational database schema modeling such
data. These techniques were introduced in detail in our work on defining a bidirectional
mapping between spreadsheets and relational databases [14]. In this section we briefly
present an extension to that algorithm that uses spreadsheet specific properties in order
to infer a more realistic set of functional dependencies.

Relational Databases: A relational schema R is a finite set of attributes {A1, ..., Ak}.
Corresponding to each attribute Ai is a set Di called the domain of Ai. These domains
are arbitrary, non-empty sets, finite or countably infinite. A relation (or table) r on a
relation schema R is a finite set of tuples (or rows) of the form {t1, ..., tk}. For each t ∈
r, t(Ai) must be in Di. A relational database schema is a collection of relation schemas
{R1, ..., Rn}. A Relational Database (RDB) is a collection of relations {r1, ..., rn}.

Each tuple is uniquely identified by a minimum non-empty set of attributes called a
Primary Key (PK). On certain occasions there may be more then one set suitable for
becoming the primary key. They are designated candidate keys and only one is chosen
to become primary key. A Foreign Key (FK) is a set of attributes within one relation that
matches the primary key of some relation.

The normalization of a database is important to prevent data redundancy. Although
there are several different normal forms, in general, a RDB is considered normalized if
it respects the Third Normal Form (3NF) [10].

Discovering Functional Dependencies: In order to define the RDB schema, we first
need to compute the functional dependencies presented in a given spreadsheet data.
In [14] we reused the well known data mining algorithm, named FUN, to infer such
dependencies. This algorithm was developed in the context of databases with the main
goal of inferring all existing functional dependencies in the input data. As a result, FUN

may infer a large set of functional dependencies depending on the input data. For our
example, we list the functional dependencies inferred from the data using FUN:

Model-Based Programming Environments for Spreadsheets 123

clientNr ⇀ cName , country
propNr ⇀ country , pAddress , rent , ownerNr , oName
cName ⇀ clientNr , country
pAddress ⇀ propNr , country , rent , ownerNr , oName
rent ⇀ propNr , country , pAddress , ownerNr , oName
ownerNr ⇀ country , oName
oName ⇀ country , ownerNr

Note that, data contained in the spreadsheet exhibits all those dependencies. In fact, even
the non-natural dependency rent ⇀ propNr , country, pAddress , ownerNr , oName
is inferred. Indeed, the functional dependencies derived by the FUN algorithm depend
heavily on the quantity and quality of the data. Thus, for small samples of data, or data
that exhibits too many or too few dependencies, the FUN algorithm may not produce
the desired functional dependencies.

Note also that the country column occurs in most of the functional dependencies
although only a single country actually appears in a column of the spreadsheet, namely
UK. Such single value columns are common in spreadsheets. However, for the FUN

algorithm they induce redundant fields and redundant functional dependencies.
In order to derive more realistic functional dependencies for spreadsheets we have

extended the FUN algorithm so that it considers the following spreadsheet properties:

– Single value columns: these columns produce a single functional dependency with
no right hand side (country ⇀, for example). This columns are not considered
when finding other functional dependencies.

– Semantic of labels: we consider label names as strings and we look for the occur-
rence of words like code, number, nr, id given them more priority when considered
as primary keys.

– Column arrangement: we give more priority to functional dependencies that respect
the order of columns. For example, clientNr ⇀ cName has more priority than
cName ⇀ clientNr .

Moreover, to minimize the number of functional dependencies we consider the smallest
subset that includes all attributes/columns in the original set computed by FUN. The
result of our spreadsheet functional dependency inference algorithm is:

country ⇀
clientNr ⇀ cName
ownerNr ⇀ oName
propNr ⇀ pAddress , rent , ownerNr , oName

This set of dependencies is very similar to the one presented in the previous section.
The exception is the last functional dependency which has an extra attribute (oName).

Spreadsheet Formulas: Spreadsheets use formulas to define the values of some ele-
ments in terms of other elements. For example, in the house rental spreadsheet, the
column days is computed by subtracting the column rentFinish from rentStart , and it
is usually written as follows H3 = G3 - F3. This formula states that the values of G3

124 J. Cunha, J. Saraiva, and J. Visser

and F3 determine the value of H3, thus inducing the following functional dependency:
rentStart, rentF inish ⇀ days.

Formulas can have references to other formulas. Consider, for example, the second
formula of the running example J3 = H3 * I3, which defines the total rent by mul-
tiplying the total number of days by the value of the rent. Because H3 is defined by
another formula, the values that determine H3 also determine J3. As a result, the two
formulas induce the following functional dependencies:

rentStart , rentFinish ⇀ days
rentStart , rentFinish , rent ⇀ total

In general, a spreadsheet formula of the following form X0 = f(X1, . . . , Xn) induces
the following functional dependency: X1, . . . , Xn ⇀ X0. In spreadsheet systems, for-
mulas are usually introduced by copying them through all the elements in a column,
thus making the functional dependency explicit in all the elements. This may not al-
ways be the case and some elements can be defined otherwise (e.g. by using a constant
value or a different formula). In both cases, all the cells referenced must be used in the
antecedent of the functional dependency.

These functional dependencies are useful for the mapping of spreadsheets to databases
as presented in [14]. In this work, they are not relevant since the existing formulas are
used to fill in those columns.

Normalizing Functional Dependencies: Having computed the functional dependencies,
we can now normalize them. Next, we show the results produced by the synthesize algo-
rithm introduced by Maier in [15]. The synthesize algorithm receives a set of functional
dependencies as argument and returns a new set of compound functional dependencies.
A compound functional dependency (CFD) has the form (X1, . . . , Xn) ⇀ Y , where
X1, . . . , Xn are all distinct subsets of a scheme R and Y is also a subset of R. A rela-
tion r satisfies the CFD (X1, . . . , Xn) ⇀ Y if it satisfies the functional dependencies
Xi ⇀ Xj and Xi ⇀ Y , where 1 � i and j � k. In a CFD, (X1, . . . , Xn) is the left
side, X1, . . . , Xn are the left sets and Y is the right side.

Next, we list the compound functional dependencies computed from the functional
dependencies induced by our running example.

({country }) ⇀ { }
({clientNr }) ⇀ {cName }
({ownerNr }) ⇀ {oName }
({propNr }) ⇀ {pAddress , rent , ownerNr }

Computing the Relational Database Schema: Each compound functional dependency
defines several candidate keys for each table. However, to fully characterize the rela-
tional database schema we need to choose the primary key from those candidates. To
find such keys we use a simple algorithm: we produce all the possible tables using each
candidate key as the primary key; we then use the same algorithm that is used to choose
the initial functional dependencies to choose the best table. Note that before applying
the synthesize algorithm, all the functional dependencies with antecedents’ attributes

Model-Based Programming Environments for Spreadsheets 125

representing formulas should be eliminated since a primary key must not change over
time. The final result is listed bellow.

country

clientNr , cName
ownerNr , oName
propNr , pAddress , rent , ownerNr

This relational database model corresponds exactly to the one shown in Section 2. Note
that the synthesize algorithm removed the redundant attribute oName that occurred in
the last functional dependency.

4 Building Spreadsheet Programming Environments

This section presents techniques to refactor spreadsheets into powerful spreadsheet pro-
gramming environments as described in Section 2. This spreadsheet refactoring is im-
plemented as the embedding of the inferred functional dependencies and the computed
relational model in the spreadsheet. This embedding is modeled in the spreadsheet itself
by standard formulas and visual objects: formulas are added to the spreadsheet to guide
end users to introduce correct data.

Before we present how this embedding is defined, let us first define a spreadsheet.
A spreadsheet can be seen as a partial function S : A → V mapping addresses to
spreadsheet values. Elements of S are called cells and are represented as (a, v). A cell
address is taken from the set A = N × N. A value v ∈ V can be an input plain value
c ∈ C like a string or a number, references to other cells using addresses or formulas
f ∈ F that can be applied to one or more values: v ∈ V ::= c | a | f(v, . . . , v).

Auto-completion of Column Values: This feature is implemented by embedding each of
the relational tables in the spreadsheet. It is implemented by a spreadsheet formula and
a combo box visual object. The combo box displays the possible values of one column,
associated to the primary key of the table, while the formula is used to fill in the values
of the columns that the primary key determines.

Let us consider the table ownerNr , oName from our running example. In the spread-
sheet, ownerNr is in column K and oName in column L. This table is embed in the
spreadsheet introducing a combo box containing the existing values in the column K
(as displayed in Figure 2). Knowing the value in the column K we can automatically
introduce the value in column L. To achieve this, we embed the following formula in
row 7 of column L:

S (L, 7) = if (isna (vlookup (K7 ,K2 : L6 , 2, 0)),"", vlookup (K7 ,K2 : L6 , 2, 0))

This formula uses a (library) function isna to test if there is a value introduced in column
K . In case that value exists, it searches (with the function vlookup) the corresponding
value in the column L and references it. If there is no selected value, it produces the
empty string. The combination of the combo box and this formula guides the user to
introduce correct data as illustrated in Figure 2.

126 J. Cunha, J. Saraiva, and J. Visser

We have just presented a particular case of the formula and visual object induced by
a relational table. Next we present the general case. Let minr be the very next row after
the existing data in the spreadsheet, maxr the last row in the spreadsheet, and r1 the
first row with already existing data. Each relational database table a1, ..., an, c1, ..., cm,
with a1, ..., an, c1, ..., cm column indexes of the spreadsheet, induces firstly, a combo
box defined as follows:

∀ c ∈ {a1, ..., an },∀ r ∈ {minr , ...,maxr } :
S (c, r) = combobox := { linked cell := (c, r);

source cells := (c, r1) : (c, r − 1)}
secondly, a spreadsheet formula defined as:

∀ c ∈ {c1, ..., cm }, ∀ r ∈ {minr , ...,maxr } :
S (c, r) = if (if (isna (vlookup ((a1, r), (a1, r1) : (c, r − 1), r − a1 + 1, 0)),

"",
vlookup ((a1, r), (a1, r1) : (c, r − 1), r − a1 + 1, 0))

==
if (isna (vlookup ((a2, r), (a2, r1) : (c, r − 1), r − a2 + 1, 0)),

"",
vlookup ((a2, r), (a2, r1) : (c, r − 1), r − a2 + 1, 0))

==
...
==
if (isna (vlookup ((an , r), (an , r1) : (c, r − 1), r − an + 1, 0)),

"",
vlookup ((an , r), (an , r1) : (c, r − 1), r − an + 1, 0)),

vlookup ((a1, r), (a1, r1) : (c, r − 1), r − a1 + 1, 0),
"")

This formula must be used for each non primary key column created by our algorithm.
Each conditional if inside the main if is responsible for checking a primary key column.
In the case a primary key column value is chosen, isna (vlookup (...)), the formula
calculates the corresponding non primary key column value, vlookup (...). If the values
chosen by all primary key columns are the same, then that value is used in the non
primary key column. This formula considers tables with primary keys consisting of
multiple attributes (columns). Note also that the formula is defined in each column
associated to non-key attribute values.

The example table analysed before is an instance of this general one. In the table
ownerNr , oName , ownerNr is a1, oName is c1, c is L, r1 is 2, minr is 7. The value
of maxr is always the last row supported by the spreadsheet system.

Foreign keys pointing to primary keys become very helpful in this setting. For exam-
ple, if we have the relational tables A,B and B,C where B is a foreign key from the
second table to the first one, then when we perform auto-completion in column A, both
B and C are automatically filled in. This was the case presented in Figure 2.

Non-Editable Columns: To prevent wrong introduction of data, and thus, producing
update anomalies, we protect some columns from edition. A relational table, such as
a1, ..., an, c1, ..., cm, induces the non-edition of columns a1, ..., an, c1, ..., cm. That is

Model-Based Programming Environments for Spreadsheets 127

to say that all columns that form a table become non-editable. Figure 4 illustrates such
a restriction. In the case where the end user really needs to change the value of such
protected columns, we provide traditional editing (explained below).

Safe Deletion of Rows: Another usual problem with non-normalized data is the deletion
of data. Suppose in our running example that row 5 is deleted. All the information
about property pg36 is lost, although the user would probably want to delete that rental
transaction only. To correctly delete rows in the spreadsheet, a button is added to each
row in the spreadsheet as follows: for each relational table a1, ..., an, c1, ..., cm each
button checks, on its corresponding row, the columns that are part of the primary key,
a1, ..., an. For each primary key column, it verifies if the value to remove is the last one.

Let c ∈ {a1, ..., an}, let r be the button row, r1 be the first row of column c with
data and rn be the last row of column c with data. The test is defined as follows:

if (isLast ((c, r), (c, r1) : (c, rn)), showMessage, deleteRow (r))

If the value is the last one, the spreadsheet warns the user (showMessage) as can be
seen in Figure 5. If the user presses the OK button, the spreadsheet will remove the row.
In the other case, Cancel, no action will be performed. In the case the value is not
the last one, the row will simply be removed, deleteRow (r). For example, in column
propNr of our running example, the row 5 contains the last data about the house with
code pg36. If the user tries to delete this row, the warning will be triggered.

Traditional Editing: Advanced programming language environments provide both ad-
vanced editing mechanisms and traditional ones (i.e., text editing). In a similar way, a
spreadsheet environment should allow the user to perform traditional spreadsheet edit-
ing too. Thus, the environment should provide a mechanism to enable/disable the ad-
vanced features described in this section. When advanced features are disabled, the end
user is be able to introduce data that violates the (previously) inferred relational model.
However, when the end user returns to advance editing, the spreadsheet infers a new
relational model that will be used in future (advanced) interactions.

4.1 HaExcel Add-in

We have implemented the FUN algorithm, the extensions described in this paper, the
synthesize algorithm, and the embedding of the relational model in the HASKELL pro-
gramming language [16]. We have also defined the mapping from spreadsheet to rela-
tional databases in the same framework named HaExcel [14]. Finally, we have extended
this framework to produce the visual objects and formulas to model the relational tables
in the spreadsheet. An Excel add-in as been also constructed so that the end user can
use spreadsheets in this popular system and at the same time our advanced features.

5 Preliminary Experimental Results

In order to evaluate the applicability of our approach, we have performed a preliminary
experiment on the EUSES Corpus [9]. This corpus was conceived as a shared resource
to support research on technologies for improving the dependability of spreadsheet

128 J. Cunha, J. Saraiva, and J. Visser

programming. It contains more than 4500 spreadsheets gathered from different sources
and developed for different domains. These spreadsheets are assigned to eleven differ-
ent categories. including financial (containing 19% of the total number of spreadsheets),
inventory (17%), homework (14%), grades (15%), database (17%) and modeling (17%)
(the remaining 1% represents other spreadsheets). Among the spreadsheets in the cor-
pus, about 4.4% contain macros, about 2.3% contain charts, and about 56% do not have
formulas being only used to store data.

In our preliminary experiment we have selected the first ten spreadsheets from each
of the eleven categories of the corpus. We then applied our tool to each spreadsheet, with
different results (see also Table 1): a few spreadsheets failed to parse, due to glitches
in the Excel to Gnumeric conversion (which we use to bring spreadsheets into a pro-
cessable form). Other spreadsheets were parsed, but no tables could be recognized in
them, i.e., their users did not adhere to any of the supported layout conventions. The
layout conventions we support are the ones presented in the UCheck project [17]. This
was the case for about one third of the spreadsheets in our item. The other spreadsheets
were parsed, tables were recognized, and edit assistance was generated for them. We
will focus on the last groups in the upcoming sections.

Processed Spreadsheets: The results of processing our sample of spreadsheets from
the EUSES corpus are summarized in Table 1. The rows of the table are grouped by
category as documented in the corpus. The first three columns contain size metrics on
the spreadsheets. They indicate how many tables were recognized, how many columns
are present in these tables, and how many cells. For example, the first spreadsheet in the
financial category contains 15 tables with a total of 65 columns and 242 cells.

Table 1. Preliminary results of processing the selected spreadsheets

File name Recognized
tables

Cols. Cells FDs Cols. w/ safe
insertion &

deletion

Auto-
compl.

cols.

Non-
editab.

cols.
cs101

Act4 023 capen 5 24 402 0 0 0 0
act3 23 bartholomew 6 21 84 1 8 1 9
act4 023 bartholomew 6 23 365 0 0 0 0
meyer Q1 2 8 74 0 0 0 0
posey Q1 5 23 72 0 8 0 8

database
%5CDepartmental%20Fol#A8. . . 2 4 3463 0 0 0 0
00061r0P802-15 TG2-Un. . . 69 23 55 491 0 18 4 21
00061r5P802-15 TG2-Un. . . 6C 30 83 600 25 21 5 26
0104TexasNutrientdb 5 7 77 1 1 1 2
01BTS framework 52 80 305 4 23 2 25
03-1-report-annex-5 20 150 1599 12 15 8 22

filby
BROWN 5 14 9047 2 3 1 4
CHOFAS 6 48 4288 3 3 1 4

continues on the next page

Model-Based Programming Environments for Spreadsheets 129

Table 1. (continued)

File name Recognized
tables

Cols. Cells FDs Cols. w/ safe
insertion &

deletion

Auto-
compl.

cols.

Non-
editab.

cols.
financial

03PFMJOURnalBOOKSFina... 15 65 242 0 7 0 7
10-formc 12 20 53 8 5 4 9

forms3
ELECLAB3.reichwja.xl97 1 4 44 0 0 0 0
burnett-clockAsPieChart 3 8 14 0 1 0 1
chen-heapSortTimes 1 2 24 0 0 0 0
chen-insertSortTimes 1 2 22 0 0 0 0
chen-lcsTimes 1 2 22 0 0 0 0
chen-quickSortTimes 1 2 24 0 0 0 0
cs515 npeg chart.reichwja.xl97 7 9 93 0 0 0 0
cs515 polynomials.reichwja.xl97 6 12 105 0 0 0 0
cs515 runtimeData.reichwja.X... 2 6 45 0 0 0 0

grades
0304deptcal 11 41 383 19 18 17 28
03 04ballots1 4 20 96 6 4 0 4
030902 5 20 110 0 0 0 0
031001 5 20 110 0 0 0 0
031501 5 15 51 31 3 1 4

homework
01 Intro Chapter Home#A9171 6 15 2115 0 1 0 1
01readsdis 4 16 953 5 4 3 6
02%20fbb%20medshor 1 7 51 0 0 0 0
022timeline4dev 28 28 28 0 0 0 0
026timeline4dev 28 28 30 0 2 0 2
03 Stochastic Systems#A9172 4 6 48 0 2 0 2
04-05 proviso list 79 232 2992 0 25 0 25

inventory
02MDE framework 50 83 207 10 31 1 32
02f202assignment%234soln 37 72 246 7 20 1 21
03-1-report-annex-2 5 31 111 10 5 5 8
03singapore elec gene#A8236 9 45 153 3 5 2 7
0038 10 22 370 0 0 0 0

modeling
%7B94402d63-cdd8-4cc3#A. . . 1 3 561 0 0 0 0
%EC%86%90%ED%97%8C. . . 1 10 270 13 7 5 9
%EC%9D%98%EB%8C%80. . . 1 7 1442 4 4 5 6
%EC%A1%B0%EC%9B%90. . . 2 17 534 18 13 5 15
%ED%99%98%EA%B2%B. . . 3 7 289 2 1 2 3
0,10900,0-0-45-109057-0,00 4 14 6558 9 9 2 10
00-323r2 24 55 269 31 9 6 15
00000r6xP802-15 Docum#A. . . 3 13 3528 10 9 3 11
003 4 25 50 2090 0 0 0 0

130 J. Cunha, J. Saraiva, and J. Visser

The fourth column shows how many functional dependencies were extracted from
the recognized tables. These are the non-trivial functional dependencies that remain
after we use our extension to the FUN algorithm to discard redundant dependencies.
The last three columns are metrics on the generated edit assistance. In some cases, no
edit assistance was generated, indicated by zeros in these columns. This situation occurs
when no (non-trivial) functional dependencies are extracted from the recognized tables.
In the other cases, the three columns respectively indicate:

– For how many columns a combo box has been generated for controlled insertion.
The same columns are also enhanced with the safe deletion of rows feature.

– For how many columns the auto-completion of column values has been activated,
i.e., for how many columns the user is no longer required to insert values manually.

– How many columns are locked to prevent edit actions where information that does
not appear elsewhere is deleted inadvertently.

For example, for the first spreadsheet of the inventory category, combo boxes have been
generated for 31 columns, auto-completion has been activated for 1 column, and locking
has been applied to 32 columns. Note that for the categories jackson and personal, no
results were obtained due to absent or unrecognized layout conventions or to the size of
the spreadsheets (more than 150,000 cells).

Observations: On the basis of these preliminary results, a number of interesting ob-
servations can be made. For some categories, edit assistance is successfully added to
almost all spreadsheets (e.g. inventory and database), while for others almost none of
the spreadsheets lead to results (e.g. the forms/3 category). The latter may be due to
the small sizes of the spreadsheets in this category. For the financials category, we can
observe that in only 2 out of 10 sample spreadsheets tables were recognized, but edit
assistance was successfully generated for both of these.

The percentage of columns for which edit assistance was generated varies. The high-
est percentage was obtained for the second spreadsheet of the modeling category, with 9
out of 10 columns (90 %). A good result is also obtained for the first spreadsheet of the
grades category with 28 out of 41 columns (68.3 %). On the other hand, the 5th of the
homework category gets edit assistance for only 2 out of 28 columns (7.1 %). The num-
ber of columns with combo boxes often outnumbers the columns with auto-completion.
This may be due to the fact that many of the functional dependencies are small, with
many having only one column in the antecedent and none in consequent.

Evaluation: Our preliminary experiment justifies two preliminary conclusions. Firstly,
the tool is able to successfully add edit assistance to a series of non-trivial spreadsheets.
A more thorough study of these and other cases can now be started to identify tech-
nical improvements that can be made to the algorithms for table recognition and func-
tional dependency extraction. Secondly, in the enhanced spreadsheets a large number of
columns are generally affected by the generated edit assistance, which indicates that the
user experience can be impacted in a significant manner. Thus, a validation experiment
can be started to evaluate how users experience the additional assistance and to which
extent their productivity and effectiveness can be improved.

Model-Based Programming Environments for Spreadsheets 131

6 Related Work

Our work is strongly related to a series of techniques by Abraham et al.. Firstly, they
designed and implemented an algorithm that uses the labels within a spreadsheet for
unit checking [18, 19]. By typing the cells in a spreadsheet with unit information and
tracking them through references and formulas, various types of users errors can be
caught. We have adopted the view of Abraham et. al.of a spreadsheet as a collection of
tables and we have reused their algorithm for identifying the spatial boundaries of these
tables. Rather than exploiting the labels in the spreadsheet to reconstruct implicit user
intentions, we exploit redundancies in data elements. Consequently, the errors caught by
our approach are of a different kind. Secondly, Abraham et. al.developed a type system
and corresponding inference algorithm that assigns types to values, operations, cells,
formulas, and entire spreadsheets [20]. The type system can be used to catch errors
in spreadsheets or to infer spreadsheet models that can help to prevent future errors.
We have used such spreadsheet models, namely the ClassSheet models [21], to realize
model-driven software evolution in the context of spreadsheets [22–28].

In previous work we presented techniques and tools to transform spreadsheets into
relational databases and back [14]. We used the FUN algorithm to construct a relational
model, but rather than generating edit assistance, the recovered information was used
to perform spreadsheet refactoring. The algorithm for extracting and filtering spread-
sheets presented in the current paper is an improvement over the algorithm that we used
previously.

We provided a short user-centered overview of the idea of generating edit assis-
tance for spreadsheets via extraction of functional dependencies in a previous short
paper [29]. In the current paper, we have provided the technical details of the solution,
including the improved algorithm for extraction and filtering functional dependencies.
Also, we have provided the first preliminary evaluation of the approach by application
to a sample of spreadsheets from the EUSES corpus.

7 Conclusions

Contributions: We have demonstrated how implicit structural properties of spreadsheet
data can be exploited to offer edit assistance to spreadsheet users. To discover these
properties, we have made use of our improved approach for mining functional depen-
dencies from spreadsheets and subsequent synthesis of a relational database. On this
basis, we have made the following contributions:

– Derivation of formulas and visual elements that capture the knowledge encoded in
the reconstructed relational database schema.

– Embedding of these formulas and visual elements into the original spreadsheet in
the form of features for auto-completion, guarded deletion, and controlled insertion.

– Integration of the algorithms for reconstruction of a schema, for derivation of cor-
responding formulas and visual elements, and for their embedding into a add-in for
spreadsheet environments.

A spreadsheet environment enhanced with our add-in compensates to a significant ex-
tent for the lack of the structured programming concepts in spreadsheets. In particular,
it assists users to prevent common update and deletion anomalies during edit actions.

132 J. Cunha, J. Saraiva, and J. Visser

Future Work: There are several extensions of our work that we would like to explore.
The algorithms running in the background need to recalculate the relational schema and
the ensuing formulas and visual elements every time new data is inserted. For larger
spreadsheets, this recalculation may incur waiting time for the user. Several optimiza-
tions of our algorithms can be attempted to eliminate such waiting times, for example,
by use of incremental evaluation. Our approach could be integrated with similar, com-
plementary approaches to cover a wider range of possible user errors. In particular, the
work of Abraham et al. [20, 30] for preventing range, reference, and type errors could be
combined with our work for preventing data loss and inconsistency. We have presented
some preliminary experimental results to pave the way for a more comprehensive vali-
dation experiments. In particular, we intend to set up a structured experiment for testing
the impact on end-user productivity, and effectiveness.

References

1. Saraiva, J.: Design, Implementation and Animation of Spreadsheets in the Lrc System. In:
Erwig, M. (ed.) Int. Workshop on Foundations of Spreadsheet. ENTCS (2004)

2. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented Tools. In:
Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298–301. Springer, Heidelberg (1998)

3. Reps, T., Teitelbaum, T.: The synthesizer generator. SIGSOFT Softw. Eng. Notes 9(3), 42–48
(1984)

4. van den Brand, M., Klint, P., Olivier, P.: Compilation and Memory Management for
ASF+SDF. In: Jähnichen, S. (ed.) CC 1999. LNCS, vol. 1575, pp. 198–215. Springer, Hei-
delberg (1999)

5. Saraiva, J., Swierstra, S.D.: Generating Spreadsheet-Like Tools from Strong Attribute Gram-
mars. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 307–323.
Springer, Heidelberg (2003)

6. Holzner, S.: Eclipse. O’Reilly (May 2004)
7. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user program-

mers. In: VLHCC 2005: Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 207–214 (2005)

8. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377–387 (1970)

9. Fisher II, M., Rothermel, G.: The EUSES Spreadsheet Corpus: A shared resource for sup-
porting experimentation with spreadsheet dependability mechanisms. In: Proceedings of the
1st Workshop on End-User Software Engineering, pp. 47–51 (2005)

10. Connolly, T., Begg, C.: Database Systems, A Practical Approach to Design, Implementation,
and Management, 3rd edn. Addison-Wesley (2002)

11. Ullman, J.D., Widom, J.: A First Course in Database Systems. Prentice Hall (1997)
12. Date, C.J.: An Introduction to Database Systems. Addison-Wesley (1995)
13. Beeri, C., Fagin, R., Howard, J.: A complete axiomatization for functional and multivalued

dependencies in database relations. In: Proc. of the ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp. 47–61 (1977)

14. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and back. In:
PEPM 2009: Proc. of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation, pp. 179–188. ACM (2009)

15. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
16. Peyton Jones, S.: Haskell 98: Language and libraries. J. Funct. Program. 13(1), 1–255 (2003)

Model-Based Programming Environments for Spreadsheets 133

17. Abraham, R., Erwig, M.: UCheck: A spreadsheet type checker for end users. J. Vis. Lang.
Comput. 18(1), 71–95 (2007)

18. Erwig, M., Burnett, M.: Adding Apples and Oranges. In: Adsul, B., Ramakrishnan, C.R.
(eds.) PADL 2002. LNCS, vol. 2257, pp. 173–191. Springer, Heidelberg (2002)

19. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial anal-
yses. In: 2004 IEEE Symposium on Visual Languages and Human Centric Computing,
pp. 165–172 (September 2004)

20. Abraham, R., Erwig, M.: Type inference for spreadsheets. In: Bossi, A., Maher, M.J. (eds.)
Proceedings of the 8th Int. ACM SIGPLAN Conference on Principles and Practice of Declar-
ative Programming, Venice, Italy, July 10-12, pp. 73–84. ACM (2006)

21. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applications from
object-oriented specifications. In: ASE 2005: Proc. of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 124–133. ACM (2005)

22. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from spread-
sheets. In: VL/HCC 2010: IEEE Symp. on Visual Languages and Human-Centric Comput-
ing, pp. 93–100. IEEE Computer Society (2010)

23. Beckwith, L., Cunha, J., Paulo Fernandes, J., Saraiva, J.: End-users productivity in model-
based spreadsheets: An empirical study. In: Proceedings of the Third International Sympo-
sium on End-User Development, IS-EUD 2011, pp. 282–288 (2011)

24. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Towards an Evaluation of Bidirectional
Model-driven Spreadsheets. In: USER 2012: User evaluation for Software Engineering Re-
searchers (to appear, 2012)

25. Cunha, J., Fernandes, J.P., Mendes, J., Pacheco, H., Saraiva, J.: Bidirectional Transformation
of Model-Driven Spreadsheets. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307,
pp. 105–120. Springer, Heidelberg (2012)

26. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A framework for model-driven
spreadsheet engineering. In: ICSE 2012: Proc. of the 34th International Conference on Soft-
ware Engineering, pp. 1412–1415. ACM (2012)

27. Cunha, J., Visser, J., Alves, T., Saraiva, J.: Type-Safe Evolution of Spreadsheets. In: Gi-
annakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 186–201. Springer,
Heidelberg (2011)

28. Cunha, J., Mendes, J., Fernandes, J.P., Saraiva, J.: Extension and implementation of
classsheet models. In: VL/HCC 2012: IEEE Symposium on Visual Languages and Human-
Centric Computing. IEEE Computer Society (2011) (to appear)

29. Cunha, J., Saraiva, J., Visser, J.: Discovery-based edit assistance for spreadsheets. In: Pro-
ceedings of the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), VLHCC 2009, pp. 233–237. IEEE Computer Society, Washington, DC (2009)

30. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proc. of the 28th Int.
Conf. on Software Engineering, pp. 182–191. ACM, New York (2006)

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 134–149, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Quantitative Assessment of Aspectual Feature Modules
for Evolving Software Product Lines

Felipe Nunes Gaia1, Gabriel Coutinho Sousa Ferreira1, Eduardo Figueiredo2,
and Marcelo de Almeida Maia1

1 Federal University of Uberlândia, Brazil
2 Federal University of Minas Gerais, Brazil

{felipegaia,gabriel}@mestrado.ufu.br,
 figueiredo@dcc.ufmg.br, marcmaia@facom.ufu.br

Abstract. Feature-Oriented Programming (FOP) and Aspect-Oriented Pro-
gramming (AOP) are programming techniques based on composition mechan-
isms, called refinements and aspects, respectively. These techniques are
assumed to be good variability mechanisms for implementing Software Product
Lines (SPLs). Aspectual Feature Modules (AFM) is an approach that combines
advantages of feature modules and aspects to increase concern modularity.
Some guidelines of how to integrate these techniques have been established in
some studies, but these studies do not focus the analysis on how effectively
AFM can preserve the modularity and stability facilitating SPL evolution. The
main purpose of this paper is to investigate whether the simultaneous use as-
pects and features through the AFM approach facilitates the evolution of SPLs.
The quantitative data were collected from a SPL developed using four different
variability mechanisms: (1) feature modules, aspects and aspects refinements of
AFM, (2) aspects of aspect-oriented programming (AOP), (3) feature modules
of feature-oriented programming (FOP), and (4) conditional compilation (CC)
with object-oriented programming. Metrics for change propagation and mod-
ularity stability were calculated and the results support the benefits of the AFM
option in a context where the product line has been evolved with addition or
modification of crosscutting concerns.

Keywords: Software product lines, feature-oriented programming, aspect-
oriented programming, aspectual feature modules, variability mechanisms.

1 Introduction

Software Product Line (SPL) refers to an emerging engineering technique that aims to
establish the systematic reuse of a common core and shared modules by several soft-
ware products [11]. Optional features define points of variability and their role is to
permit the instantiation of different products by enabling or disabling them. SPL
products share the same application domain and have points of variability among
them. The potential benefits of SPLs are achieved through the reuse of the core in
different products, enabling higher quality and productivity.

 A Quantitative Assessment of Aspectual Feature Modules 135

During the software life cycle, change requests are not only inevitable, but also
highly frequent [19] in SPL since they target several different products. These change
requests must be accommodated since they include demands from multiple stakehold-
ers [15].

Variability mechanisms play a crucial role when considering evolving SPLs. They
must guarantee the architecture stability and, at the same time, facilitate future
changes in the SPL. Therefore, variability mechanisms should not degenerate mod-
ularity and should minimize the need of future changes. This can be reached through
non-intrusive and self-contained changes that favor insertions and do not require deep
modifications into existing components. The inefficacy of variability mechanisms to
accommodate changes might lead to several undesirable consequences related to the
product line stability, including invasive wide changes, significant ripple effects, ar-
tificial dependences between core and optional features, and the lack of independence
of the optional code [16, 27].

Our work aims at better understanding how contemporary variability mechanisms
contribute to the mentioned SPL evolution practices. To this aim, this paper presents a
case study that evaluates comparatively four mechanisms for implementing variability
on evolving product lines: conditional compilation (CC), aspect-oriented program-
ming (AOP), feature-oriented programming (FOP), and aspectual feature modules
(AFM). Our investigation focuses on the evolution of six versions of a software prod-
uct line (Section 3), called WebStore.

In Section 2, the implementation mechanisms used in the case study are presented.
Section 3 describes the study settings, including the target SPL and change scenarios.
Section 4 analyzes changes made in the WebStore SPL and how they propagate
through its releases. Section 5 discusses the modularity of WebStore while Section 6
presents some limitations of this work. Section 7 presents some related work and
points out directions for future work. Finally, Section 8 concludes this paper.

2 Variability Mechanisms

This section presents some concepts about the four techniques evaluated in the study:
conditional compilation (CC), aspect-oriented programming (AOP), feature-oriented
programming (FOP), and aspectual feature modules (AFM). Our main goal is to com-
pare the different composition mechanisms available to understand their strengths and
weaknesses. Although conditional compilation is not a new variability mechanism,
we decide to include it in this study because it is a state-of-the-practice option adopted
in SPL industry, and can serve as a baseline for comparison [1, 33].

2.1 Conditional Compilation

The CC approach used in this work is a well-known technique for handling software
variability [1, 4, 21]. It has been used in programming languages like C for decades
and it is also available in object-oriented languages such as C++. Basically, the pre-
processor directives indicate pieces of code that should be compiled or not, based on
the value of preprocessor variables. The pieces of code can be marked at granularity
of a single line of code or to a whole file.

136 F.N. Gaia et al.

The code snippet below shows the use of conditional compilation mechanisms by
inserting the pre-processing directives.

1 public class ControllerServlet extends HttpServlet {

2 public void init() {

3 actions.put("goToHome", new GoToAction("home.jsp"));
4 //#if defined(BankSlip)

5 actions.put("goToBankSlip",

 new GoToAction("bankslip.jsp"));
6 //#endif
7 //#if defined(Logging)

8 Logger.getRootLogger().addAppender(new ConsoleAppender(

 new PatternLayout("[%C{1}] Method %M

 executed with success.")));
9 //#endif

10 }

11 }

Listing 1. Example of variability management with conditional compilation

In the example above, there are some directives that characterize the CC way of
handling variability. On line 4 there is a directive //#if defined (BankSlip)
that indicates the beginning of the code belonging to BankSlip feature. In line 7,6
there is a #endif directive that determines the end of the code associated to this fea-
ture. The identifiers used in the construction of these directives, in this case "Bank-
Slip", are defined in a configuration file and are always associated with a boolean
value. This value indicates the presence of the feature in the product, and consequent-
ly the inclusion of the bounded piece of code in the compiled product. The same rea-
soning applies to the bounded piece of code that belongs to Logging feature.

2.2 Feature-Oriented Programming

Feature-oriented programming (FOP) [31] is a paradigm for software modularization
by considering features as a major abstraction. This work relies on AHEAD [9, 10]
which is an approach to support FOP based on step-wise refinements. The main idea
behind AHEAD is that programs are constants and features are added to programs
using refinement functions. The code snippets in Listings 2-4 show examples of a
class and a class refinement used to implement variation points.

1 public class ControllerServlet extends HttpServlet {

2 public void init() {

3 actions.put("goToHome", new GoToAction("home.jsp"));

5 }

6 }

Listing 2. Example of variability mechanism with FOP (base class)

 A Quantitative Assessment of Aspectual Feature Modules 137

1 layer bankslip;

2 refines class ControllerServlet {

3 public void init() {

4 Super().init();

5 actions.put("goToBankSlip",

 new GoToAction("bankslip.jsp"));

6 }

7 }

Listing 3. Example of variability mechanism with FOP (bankslip class refinement)

The example in Listing 2 shows an ordinary base class that implements a default
action for going to home and Listing 3 presents the respective FOP class refinement
that considers going to bank slip payment in checkout. Line 1 of Listing 3 is a clause
that indicates a layer of the class refinements. The bankslip identifier in line 1 is
used to compose the layers according to some pre-established order in the SPL confi-
guration script that creates a specific product.

1 layer logging;

2 refines class ControllerServlet {

3 public void init() {

4 Super().init();

5 Logger.getRootLogger().addAppender(new ConsoleAppender(

 new PatternLayout("[%C{1}] Method %M

 executed with success.")));

6 }

7 }

Listing 4. Example of variability mechanism with FOP (logging class refinement)

Listing 4 provides another class refinement to include the behavior of feature log-
ging in the class. This feature is designed to register successful execution of public
methods.

2.3 Aspect-Oriented Programming

Aspect-oriented programming has been proposed to modularize crosscutting con-
cerns. The main mechanism of modularization is the aspect, which encapsulate a con-
cern code that would be tangled with and scattered across the code of other concerns.
An extension of Java for AOP is AspectJ [23]. Listing 5 shows how an aspect can
modularize the BankSlip payment feature. An aspect usually needs to provide the
interception points in the base code in order to get the code adequately weaved. Line
3 shows an example of intercepting the execution of the method init of Control-
lerServlet. Line 5 shows how and what will be executed in that interception point
(pointcut).

138 F.N. Gaia et al.

1 public privileged aspect BankSlipAspect {

2 pointcut init(ControllerServlet controller):

3 execution(public void ControllerServlet.init())&&

 this(controller) && args();

4 after(ControllerServlet controller): init(controller) {

5 controller.actions.put("goToBankSlip",

 new GoToAction("bankslip.jsp"));

6 }

Listing 5. Example of variability mechanism with AOP (aspect)

2.4 Aspectual Feature Modules

Aspectual feature modules (AFM) are an approach to implement the symbiosis of
FOP and AOP [5, 6, 7]. An AFM encapsulates the roles of collaborating classes and
aspects that contribute to a feature. In other words, a feature is implemented by a col-
lection of artifacts, e.g., classes, refinements and aspects. Typically, an aspect inside
an AFM does not implement a role. Usually, a refinement is more adequate for this
task. Aspects in AFM usually are used to do what they are good for, and in the same
way of AOP: modularize code that otherwise would be tangled with or scattered
across other concerns. It is important to note that an aspect is a legitimate part of a
feature module and so, is applied and removed together with the feature it belongs to.
First enabled features are composed using AHEAD, after aspects belonging to these
features are weaved using AspectJ.

3 Case Study

This section describes the study based on the analysis of the evolution of a software
product line. This SPL was developed from the scratch. The study was conducted to
answer the following research questions.

RQ1. Does the use of AFM have smoother change propagation impact
than using CC, FOP, or AOP?

RQ2. Does the use of AFM provide more stable design of the SPL fea-
tures than using CC, FOP, or AOP during the evolution?

3.1 Infrastructure Setting

The independent variable of this study is the variability mechanism used to implement
SPLs, namely, Conditional Compilation (CC), Feature-oriented programming (FOP),
Aspect-oriented programming (AOP), and Aspectual Feature Modules (AFM). A
subject system is used to analyze the behavior of the dependent variables: change
propagation and modularity metrics. The study was organized in four phases: (1) con-
struction of the subject SPL with complete releases that correspond to their respective
change scenarios using the four techniques aforementioned for each release (2) fea-
ture source code shadowing of all produced source code, (3) measurement and metrics

 A Quantitative Assessment of Aspectual Feature Modules 139

calculation, and (4) quantitative and qualitative analysis of the results. In the first
phase, the first two authors implemented the WebStore SPL from the scratch using all
different variability mechanisms resulting in 24 different versions of the SPL. In the
second phase, all code was marked according to each designed feature. The concrete
result of this phase was text files, one for each code file, marked with the correspond-
ing feature. In the third phase, changes propagation [32] was measured and modulari-
ty metrics [15] were calculated. Finally, the results were analyzed in the fourth phase.
The next sections present the analyzed target SPL WebStore, and discuss their change
scenarios.

3.2 The Evolved WebStore SPL

The target SPL was developed to represent major features of an interactive web store
system. It was designed for academic purpose, but focusing on real features available
in typical web store systems. We have also designed representative changes scenarios
(the same for all studied techniques – CC, FOP, AOP and AFM), considered impor-
tant, that could exercise the SPL evolution.

WebStore is an SPL for applications that manage products and their categories,
show products catalog, control access, and payments. Table 1 provides some meas-
ures about the size of the SPL implementation in terms of number of components,
methods, and lines of source code (LOC). Classes, class refinements, and aspects
were accounted as components. The number of components varies from 23 (CC) to 85
(FOP).

Table 1. WebStore SPL implementation

CC FOP

R.1 R.2 R.3 R.4 R.5 R.6 R.1 R.2 R.3 R.4 R.5 R.6

#Components 23 23 26 26 26 32 28 32 38 40 44 85

#Methods 138 139 165 164 167 197 142 147 175 177 182 394

LOC (aprox.) 885 900 1045 1052 1066 1496 915 950 1107 1121 1149 2181

AOP AFM

R.1 R.2 R.3 R.4 R.5 R.6 R.1 R.2 R.3 R.4 R.5 R.6

#Components 23 46 48 53 52 53 30 34 40 42 46 50

#Methods 138 143 171 171 176 212 130 135 163 165 170 206

LOC (aprox.) 885 924 1080 1081 1105 1371 784 819 976 990 1018 1284

Figure 1 presents a simplified view of the WebStore SPL feature model [8]. Exam-

ples of core features are CategoryManagement and ProductManagement. In addition,
some optional features are DisplayByCategory and BankSlip. We use numbers in the
top right-hand corner of a feature in Figure 1 to indicate in which release the feature
was included (see Table 2).

140 F.N. Gaia et al.

The WebStore versions are very similar from the architecture design point-of-view,
even though they are implemented using four distinct variability mechanisms. In all
versions the Release 1 contains the core of the target SPL. All subsequent releases
were designed to incorporate the required changes in order to include the correspond-
ing feature. For instance, the FOP version was developed trying to maximize the de-
composition of the product features. This explains why Release 1 in FOP contains
more artifacts than Release 1 that uses CC. All new scenarios were incorporated by
including, changing, or removing classes, class refinements, or aspects.

Fig. 1. WebStore Basic Feature Model

3.3 Change Scenarios

As aforementioned, we designed and implemented a set of change scenarios in the
first phase of our investigation. A total of five change scenarios were incorporated
into WebStore, resulting in six releases. Table 2 summarizes changes made in each
release. The scenarios comprised different types of changes involving mandatory and
optional features. Table 2 also presents which types of change each release encom-
passed. The purpose of these changes is to exercise the implementation of the feature
boundaries and, so, to assess the design stability of the SPL.

Table 2. Summary of change scenarios in WebStore

Release Description Type of Change
R1 WebStore core
R2 Two types of payment included (Paypal and

BankSlip)
Inclusion of optional
feature

R3 New feature included to manage category Inclusion of optional
feature

R4 The management of category was changed to
mandatory feature and new feature included to
display products by category

Changing optional
feature to mandatory
and inclusion of
optional feature

R5 New feature included to display products by
nearest day of inclusion

Inclusion of optional
feature

R6 Two crosscutting features included (Login and
Logging)

Inclusion of optional
feature

 A Quantitative Assessment of Aspectual Feature Modules 141

4 Propagation Analysis

This section presents a quantitative analysis to answer RQ1. In particular, we are in-
terested to know how different variability mechanisms affect changes in software
product line evolution. The quantitative analysis uses traditional measures of change
impact [32], considering different levels of granularity: components, methods, and
lines of source code (Table 1). A general interpretation is that lower number of mod-
ified and removed artifacts suggests more stable solution, possibly supported by the
variability mechanisms. In the case of additions, we expect that a higher addition of
artifacts indicates the conformance with the Open-Closed principle. In this case, the
lowest number of additions may suggest that the evolution is not being supported by
non intrusive extensions.

Fig. 2. Additions, Removals and Changes in WebStore versions

Figure 2 in the first column shows the number of added components, methods, and
lines of code, respectively, in Releases 2 to 6 of the WebStore SPL. The CC mechan-
ism has the lowest number of added components compared to the other approaches.
Concerning the number of methods and lines of code, there is no sharp difference
between the measures of the four mechanisms. An important exception is for the

142 F.N. Gaia et al.

implementation of Release 6. In that case, there is a substantial higher number of
methods and LOCs with FOP. This can be explained because the implementation of
the Logging concern required a class refinement for each component what almost
doubled the number of components in FOP implementation of Release 6. It is also
important to note that AOP and AFM solution of Release 6 required the lowest num-
ber of line additions.

The middle column of Figure 2 shows the number of removed components, me-
thods, and lines of code in Releases 2 to 6 of the WebStore SPL. Release 4 using AOP
had a significant difference because the numbers of components, methods and lines
removed were significantly higher than in other approaches. This is because the fea-
ture change from optional to mandatory, resulting in removing the aspect components
that allow enabling this feature and code distribution of it by the system.

The right column of Figure 2 shows the number of changed components, methods
and lines of code in Releases 2 to 6 of the WebStore SPL. The AFM and FOP me-
chanism has a lower number of modified components than AOP (except in Releases 5
and 6) and CC. The number of lines changes is quantitatively irrelevant for all ver-
sions. The changes in components and methods were due to insertions that occurred
inside them.

Considering some specific releases, we could observe that the addition of crosscut-
ting concerns with FOP is a painful task. In this case, we could clearly see the impor-
tance of AFM to overcome this situation. On the other hand, aspects did not work
well when transforming an optional feature into mandatory.

Considering all releases, one finding in the change propagation is that CC releases
have consistently lower number of added components than the others. Considering
that there is no notably difference in changes and removals when all releases are con-
sidered, we conclude that CC does not adhere as closely to the Open-Close principle
as the other mechanisms do.

5 Modularity Analysis

This section presents and discusses the results for the analysis of the stability of the
SPLs design throughout the implemented changes. To support our analysis, we used a
suite of metrics for quantifying feature modularity [37]. This suite measures the de-
gree to which a single feature of the system maps to: (i) components (i.e. classes,
class refinements and aspects) – based on the metric Concern Diffusion over Compo-
nents (CDC), (ii) operations (i.e. methods and advices) – based on the metric Concern
Diffusion over Operations (CDO) and (iii) lines of code – based on the metrics Con-
cern Diffusion over Lines of Code (CDLOC) and Number of Lines of Concern Code
(LOCC) [16]. We choose these metrics because they have been used and validated in
several previous empirical studies [12, 13, 14, 17, 18, 20].

Optional features are the locus of variation in the SPLs and, therefore, they have to
be well modularized. On the other hand, mandatory features also need to be investi-
gated in order to assess the impact of changes on the core SPL architecture. From the
analysis of the measures, three interesting situations, discussed below, naturally

 A Quantitative Assessment of Aspectual Feature Modules 143

emerged with respect to which type of modularization paradigm presents superior
modularity and stability. The data was collected and organized in one spreadsheet for
each metric. For WebStore, each sheet of one studied metric has 8435 lines, i.e., one
line for each combination of feature, version, technique and artifact.

Figure 3 presents CDC, CDO, CDLOC and LOCC mean values for each release of
the subject SPL. The CDC mean values for FOP and AFM were consistently the low-
est in all releases. The values for AOP stayed in between, while CC had the worst
values. The CDLOC mean values for FOP were also consistently the lowest in all
releases. The CDLOC mean values for AFM were slightly better than AOP in Releas-
es 4, 5, and 6. CDLOC values for CC were the worst ones, especially in Release 6.
For CDO and LOCC there was no significant difference between releases or tech-
niques, except in Release 6 where the CC values were significantly the worst ones.

Fig. 3. Metrics values through WebStore evolution

Since Figure 3 shows only mean values, it is not possible to understand the
variation occurred in that data. Figure 4 show the boxplot of the corresponding data,
allowing us to visualize the variation on the CDC concerning the several features and

144 F.N. Gaia et al.

components. FOP and AFM have consistently lower variation than AOP and CC,
which supports our analysis that the CDC mean is confidently lower for FOP and
AFM. Moreover, this boxplot shows interesting outliers in Release 6 for CC and FOP.
The cause of those outliers is the crosscutting feature introduced in Release 6 that
produced undesirable consequence in the CDC values of CC and FOP, as expected.
The boxplots for the other metrics are omitted because they produce the same pattern
of variation, which enables us to interpret the mean values adequately.

Fig. 4. Boxplot of the CDC Metric

AFM and FOP Succeed in Features with No Shared Code. This situation was ob-
served with three optional features of WebStore SPL (Bankslip, Paypal, and Dis-
playWhatIsNew). In these cases, the code for these features were independent (no
sharing) and then, AFM and FOP solutions presented lower values and superior sta-
bility in terms of tangling, specially FOP (CDLOC) and scattering over components
(CDC) which explain the previous data. The results of the other metrics (CDO and
LOCC) did not follow the same trend of the CDC metric, which can be explained
because since the granularity of the methods and lines of code is lower, then the dis-
tribution of features occurs in a proportional fashion in all mechanisms. On the other
hand, since the granularity of components is higher, the impact on modularity metrics
is higher too.

When Crosscutting Concerns Are Present in the Solution AFM Are
Recommended over FOP. Another interesting finding that emerged from our analy-
sis is that FOP does not cope well with crosscutting concerns. In this case, AFM

 A Quantitative Assessment of Aspectual Feature Modules 145

provided an adequate solution, because it did not forced the use of aspects to modular-
ize features with no shared code, but still did not force painful scattered refinements
to implement a crosscutting feature.

CC Compilation Should Be Avoided Whenever Possible. Although conditional
compilation is still widely used in large scale projects, our data have shown that its
use does not produced a stable architecture and should be avoided specially in situa-
tions where changes are frequent.

6 Threats to Validity

Even with the careful planning of the study, some factors should be considered in the
evaluation of the results validity. Concerning the conclusion validity, since 33740
data points were collected the reliability of the measurement process is an issue,
which was alleviated because most of the measurements were independently checked
by one of the authors that did not collect the respective data. Concerning the internal
validity, the versions of the SPLs used in this study were constructed by some of the
authors. There is a reasonably large space for different designs, so different designs
would produce different results. However, all designs of WebStore were carefully
constructed to take the best of each implementation technique and at the same time to
maintain a similar division of components. Concerning the external validity, some
other factors limit the generalization of the results, such as, the special purpose sub-
ject system and evolution scenarios. Also, the languages and tools used limit the gene-
ralization. Finally, concerning the construct validity, one issue is on how much sup-
port modularity metrics offer to produce robust answers to the design stability prob-
lem. As a matter of fact, these metrics offers a limited view on the overall quality of
design. They are mostly related to the quality of modularization of features, which
are notably important for SPLs. The scope of this study has been narrowed to SPLs
systems in order to cope with this issue.

7 Related Work

Recent research work has also analyzed stability and reuse of SPLs [12, 15]. Figuei-
redo et al. [15] performed an empirical study to assess modularity, change propaga-
tion, and feature dependency of two evolving SPLs. Their study focused on aspect-
oriented programming while we analyzed variability mechanisms available in feature-
oriented programming in this study. Dantas and his colleagues [12] conducted an
exploratory study to analyze the support of new modularization techniques to imple-
ment SPLs. However, their study aimed at comparing the advantage and drawbacks of
different techniques in terms of stability and reuse. Although Dantas also used a FOP
language, named CaesarJ [28], we focused on different goals and on a different lan-
guage: AHEAD [9]. Other studies also analyzed the variability management of SPLs
and benefits of using FOP in software reuse [5, 29].

146 F.N. Gaia et al.

Apel and others [5], who have proposed the Aspectual Feature Modules [6, 7] ap-
proach , have also used size metrics to quantify the number of components and lines
of code in an SPL implementation. Their study, however, did not consider a signifi-
cant suite of software metrics and did not address SPL evolution and stability. In other
work Greenwood et al. [20] used similar suites of metrics to ours to assess the design
stability of an evolving application. However, they did not target at assessing the im-
pact of changes in the core and variable features of SPLs.

Other studies focused on challenges in software evolution field [19, 27]. These
works have in common the concern about measuring different artifacts through soft-
ware evolution, which relies directly on the use of reliable software metrics [22]. Fur-
thermore, there is a shared sense about software metrics on engineering perspective:
they are far from being mature and are constantly the focus of disagreements
[22, 26, 34].

Several studies have investigated variability management on SPLs [2, 3, 24, 30].
Batory et al. have reported an increased flexibility in changes and significant reduc-
tion in program complexity measured by number of methods, lines of code, and num-
ber of tokens per class [10]. Simplification in evolving SPL architecture has also been
reported in [29, 32], as consequence of variability management.

In our previous study [14], we analyzed and compared variability mechanisms to
evolve SPLs, using FOP, Design Patterns and Conditional Compilation. The evalua-
tion was also based on the change propagation and modularity stability metrics. In
that work, the result was mostly favorable for FOP. It is important to consider that
crosscutting concerns were not considered in the subject system analyzed in that
study.

8 Concluding Remarks and Future Work

This study evolved a SPL in order to assess the capabilities of contemporary variabili-
ty mechanisms to provide SPL modularity and stability in the presence of change
requests. Such evaluation included two complementary analyses: change propagation
and feature modularity. The use of variability mechanisms to develop SPLs largely
depends on our ability to empirically understand their positive and negative effects
through design changes.

Some interesting results emerged from our analysis. First, the AFM and FOP de-
signs of the studied SPL tend to be more stable than the other approaches. This advan-
tage of AFM and FOP is particularly observable when a change targets optional fea-
tures. Second, we observed that AFM and FOP class refinements adhere more closely
the Open-Closed principle. Furthermore, such mechanisms usually scale well for
dependencies that do not involve shared code and facilitate multiple different product
instantiations. However, FOP does not cope well when crosscutting concerns must be
addressed. In this case, AFM provides a better scenario concerning the propagation of
changes.

 A Quantitative Assessment of Aspectual Feature Modules 147

Our results also indicate that conditional compilation (CC) may not be adequate
when feature modularity is a major concern in the evolving SPL. For instance, the
addition of new features using CC mechanisms usually causes the increase of feature
tangling and scattering. These crosscutting features destabilize the SPL architecture
and make it difficult to accommodate future changes.

For the future work, the study of other metrics and its relationship to other quality
attributes in SPLs, such as robustness and reuse could be an interesting way. We also
aim to replicate this study with additional SPLs.

Acknowledgments. This work was partially supported by FAPEMIG, grants APQ-
02932-10 and APQ-02376-11, and CNPq grant 485235/2011-0.

References

1. Adams, B., De Meuter, W., Tromp, H., Hassan, A.E.: Can we Refactor Conditional Com-
pilation into Aspects? In: 8th ACM International Conference on Aspect-oriented Software
Development, AOSD 2009, pp. 243–254. ACM, New York (2009)

2. Adler, C.: Optional Composition - A Solution to the Optional Feature Problem? Master
thesis, University of Magdeburg, Germany (February 2011)

3. Ali Babar, M., Chen, L., Shull, F.: Managing variability in software product lines. IEEE
Software 27, 89–91 (2010)

4. Alves, V., Neto, A.C., Soares, S., Santos, G., Calheiros, F., Nepomuceno, V., Pires, D.,
Leal, J., Borba, P.: From Conditional Compilation to Aspects: A Case Study in Software
Product Lines Migration. In: First Workshop on Aspect-Oriented Product Line Engineer-
ing (AOPLE), Portland, USA (2006)

5. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. In: GPCE, Port-
land, Oregon (2006)

6. Apel, S., et al.: Aspectual Mixin Layers: Aspects and Features in Concert. In: Proceedings
of ICSE 2006, Shanghai, China (2006)

7. Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Trans. Softw. Eng. 34,
162–180 (2008)

8. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

9. Batory, D.: Feature-Oriented Programming and the AHEAD tool suite. In: 26th Interna-
tional Conference on Software Engineering, ICSE 2004, pp. 702–703. IEEE Computer
Society, Washington (2004)

10. Batory, D., Sarvela, J., Rauschmayer: Scaling step-wise refinement. IEEE Transactions on
Software Engineering 30(6), 355–371 (2004)

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley (2002)

12. Dantas, F., Garcia, A.: Software Reuse versus Stability: Evaluating Advanced Programming
Techniques. In: 23rd Brazilian Symposium on Software Engineering, SBES 2010 (2010)

13. Eaddy, M., et al.: Do Crosscutting Concerns Cause Defects? IEEE Trans. on Software En-
gineering (TSE) 34, 497–515 (2008)

14. Ferreira, G., Gaia, F., Figueiredo, E., Maia, M.: On the Use of Feature-Oriented Program-
ming for Evolving Software Product Lines – a Comparative Study. In: Proc. of the XV
Brazilian Symposium on Programming Languages, São Paulo, pp. 121–135

148 F.N. Gaia et al.

15. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares,
S., Ferrari, F., Khan, S., Castor Filho, F., Dantas, F.: Evolving Software Product Lines
with Aspects: An Empirical Study on Design Stability. In: 30th International Conference
on Software Engineering, ICSE 2008, pp. 261–270. ACM, New York (2008)

16. Figueiredo, E., et al.: On the Maintainability of Aspect-Oriented Software: A Concern-
Oriented Measurement Framework. In: Proc. of European Conf. on Soft. Maint. and
Reeng. (CSMR), Athens (2008)

17. Figueiredo, E., Sant’Anna, C., Garcia, A., Lucena, C.: Applying and Evaluating Concern-
Sensitive Design Heuristics. In: 23rd Brazilian Symposium on Software Engineering
(SBES), Fortaleza, Brazil (2009)

18. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.: Modula-
rizing design patterns with aspects: a quantitative study. In: Proceedings of the 4th Interna-
tional Conference on Aspect-Oriented Software Development, AOSD 2005, pp. 3–14.
ACM, New York (2005)

19. Godfrey, M., German, D.: The past, present, and future of software evolution. In: Frontiers
of Software Maintenance, pp. 129–138 (2008)

20. Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study. In: Bateni, M. (ed.) ECOOP
2007. LNCS, vol. 4609, pp. 176–200. Springer, Heidelberg (2007)

21. Hu, Y., Merlo, E., Dagenais, M., Lague, B.: C/C++ Conditional Compilation Analysis Us-
ing Symbolic Execution. In: Proceedings of the IEEE International Conference on Soft-
ware Maintenance, ICSM (2000)

22. Jones, C.: Software metrics: good, bad and missing. Computer 27, 98–100 (1994)
23. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features using AspectJ. In:

International SPL Conference (2007)
24. Lee, K., Kang, K.C., Koh, E., Chae, W., Bokyoung, K., Choi, B.W.: Domain-oriented en-

gineering of elevator control software: a product line practice. In: Proceedings of the First
Conference on Software Product Lines: Experience and Research Directions, pp. 3–22.
Kluwer Academic Publishers (2000)

25. Maletic, J., Kagdi, H.: Expressiveness and effectiveness of program comprehension:
thoughts on future research directions. In: Frontiers of Software Maintenance, pp. 31–40
(2008)

26. Mayer, T., Hall, T.: A critical analysis of current OO design metrics. Softw. Qual. J. 8, 97–110
(1999)

27. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfield, R., Jazayeri, M.: Chal-
lenges in software evolution. In: IWPSE 2005: Proceedings of the Eighth International
Workshop on Principles of Software Evolution, pp. 13–22. IEEE Computer Society
(2005)

28. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: 2nd International Confe-
rence on Aspect-Oriented Software Development (AOSD), Boston, USA (2003)

29. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming
and Aspects. In: 12th ACM SIG-SOFT Twelfth International Symposium on Foundations
of Software Engineering, SIGSOFT 2004/FSE-12, pp. 127–136. ACM, New York
(2004)

30. Pettersson, U., Jarzabek, S.: Industrial experience with building a web portal product line
using a lightweight, reactive approach. In: Proceedings of the 10th European Software En-
gineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 326–335. ACM (2005)

 A Quantitative Assessment of Aspectual Feature Modules 149

31. Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Aksit,
M., Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer, Heidelberg
(1997)

32. Sant’Anna, C., et al.: On the Reuse and Maintenance of Aspect-Oriented Software: An As-
sessment Framework. In.: Brazilian Symposium on Software Engineering (SBES),
pp. 19–34 (2003)

33. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Software—Practice and Experience 35, 705–754 (2005)

34. Yau, S.S., Collofello, J.S.: Design Stability Measures for Software Maintenance. IEEE
Transactions on Software Engineering 11(9), 849–856 (1985)

Attribute Grammar Macros

Marcos Viera1 and Doaitse Swierstra2

1 Instituto de Computación, Universidad de la República
Montevideo, Uruguay
mviera@fing.edu.uy

2 Department of Computer Science, Utrecht University
Utrecht, The Netherlands

doaitse@cs.uu.nl

Abstract. Having extensible languages is appealing, but raises the ques-
tion of how to construct extensible compilers and how to compose com-
pilers out of a collection of pre-compiled components.

Being able to deal with attribute grammar fragments as first-class
values makes it possible to describe semantics in a compositional way;
this leads naturally to a plug-in architecture, in which a core compiler
can be constructed as a (collection of) pre-compiled component(s), and
to which extra components can safely be added as need arises.

We extend AspectAG , a Haskell library for building strongly typed
first-class attribute grammars, with a set of combinators that make it
easy to describe semantics in terms of already existing semantics in a
macro-like style, just as syntax macros extend the syntax of a language.
We also show how existing semantics can be redefined, thus adapting
some aspects from the behavior defined by the macros.

1 Introduction

Since the introduction of the very first programming languages, and the invention
of grammatical formalisms for describing them, people have investigated how an
initial language definition can be extended by someone else than the original
language designer by providing separate language-definition fragments.

The simplest approach starts from the text which describes a compiler for
the base language. Just before the compiler is compiled, several extra ingredi-
ents may be added textually. In this way we get great flexibility and there is
virtually no limit to the things we may add. The Utrecht Haskell Compiler [5]
has shown the effectiveness of this approach by composing a large number of at-
tribute grammar fragments textually into a complete compiler description. This
approach however is not very practical when defining relatively small language
extensions; we do not want an individual user to have to generate a completely
new compiler for each small extension. Another problematic aspect of this ap-
proach is that, by making the complete text of the compiler available for modi-
fication or extension, we also loose important safety guarantees provided by e.g.
the type system; we definitely do not want everyone to mess around with the
delicate internals of a compiler for a complex language.

F.H. de Carvalho Junior and L.S. Barbosa (Eds.): SBLP 2012, LNCS 7554, pp. 150–164, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Attribute Grammar Macros 151

So the question arises how we can reach the effect of textual composition,
but without opening up the whole compiler source. The most commonly found
approach is to introduce so-called syntax macros [8], which enable the program-
mer to add syntactic sugar to a language by defining new notation in terms of
already existing syntax.

In this paper we will focus on how to provide such mechanisms at the semantic
level [9] too. As a running example we take a minimal expression language
described by the grammar:

expr → "let" var "=" expr "in" expr | term "+" expr | term
term → factor "*" term | factor
factor → int | var

with the following abstract syntax (as a Haskell data type):

data Root = Root {expr :: Expr }
data Expr = Cst {cv :: Int } | Var {vnm :: String }

| Mul {me1 :: Expr , me2 :: Expr }
| Add {ae1 :: Expr , ae2 :: Expr }
| Let { lnm :: String , val :: Expr , body :: Expr }

Suppose we want to extend the language with one extra production for defining
the square of a value. A syntax macro aware compiler might accept definitions
of the form square (se ::Expr) ⇒ Mul se se, translating the new syntax into the
existing abstract syntax.

Althought this approach may be very effective and seems attractive, such
transformational programming [3] has its shortcomings too; as a consequence of
mapping the new constructs onto existing constructs and performing any further
processing such as type checking on this simpler, but often more detailed program
representation, feedback from later stages of the compiler is given in terms of the
intermediate program representations in which the original program structure
if often hard to recognise. For example, if we do not change the pretty printing
phase of the compiler, the expression square 2 will be printed as 2 ∗ 2. Hence
the implementation details shine through, and the produced error messages can
be confusing or even incomprehensible. Similar problems show up when defining
embedded domain specific languages: the error messages from the type system
are typically given in terms of the underlying representation [6].

In a previous paper [16] we introduced AspectAG1, a Haskell library of first-
class attribute grammars, which can be used to implement a language semantics
and its extensions in a safe way, i.e. by constructing a core compiler as a (col-
lection of) pre-compiled component(s), to which extra components can safely be
added at will. In this paper we show how we can define the semantics of the
right hand side in terms of existing semantics, in the form of attribute grammar
macros.

1 http://hackage.haskell.org/package/AspectAG

http://hackage.haskell.org/package/AspectAG

152 M. Viera and D. Swierstra

We also show how, by using first class attribute grammars, the already defined
semantics can easily be redefined at the places where it makes a difference, e.g.
in pretty printing and generating error messages.

The functionality provided by the combination of attribute grammar macros
and redefinition is similar to the forwarding attributes [14] technique for higher-
order attribute grammars, implemented in the Silver AG system [15]. We however
implement our proposal as a set of combinators embedded in Haskell, such that
the correctness of the composite system is checked by the Haskell type checker.

In Section 2 we give a top-level overview of our approach. In Section 3 we
describe our approach to first-class attribute grammars, and in Section 4 we
show how to define semantic macros and how to redefine attributes. We close by
presenting our conclusions and future work.

2 Attribute Grammar Combinators

Before delving into the technical details, we show in this section how the seman-
tics of our running example language and some simple extensions can be imple-
mented using our approach. We have chosen our example to be very simple, in
order to help the understanding of the technique. For a more involved exam-
ple, including an implementation of the Oberon-0 language [17] using macros to
represent the FOR and CASE statements in terms of a core sub-language, we
refer to the web page of the AspectAG project2.

The semantics are defined by two aspects: pretty printing, realized by a syn-
thesized attribute spp, which holds a pretty printed document, and expression
evaluation, realized by two attributes: a synthesized sval of type Int , which
holds the result of an expression, and an inherited ienv which holds the envi-
ronment ([(String , Int)]) in which an expression is to be evaluated. We show
how the attributes are directly definable in Haskell using the functions syndefM
and inhdefM from the AspectAG library, which define a single synthesized or
inherited attribute respectively. Figure 1 lists some of the rule definitions of the
semantics of our example. In our naming convention a rule with name attProd
defines the attribute att for the production Prod . The rule sppAdd for the at-
tribute spp of the production Add looks for its children attributions and binds
them (ei ← at ch ae i) and then combines the pretty printed children ei # spp
with the string "+" using the pretty printing combinator (>#<) for horizontal
(beside) composition, from the uulib3 library. The rule ienvLet specifies that the
ienv value coming from the parent (lhs stands for “left-hand side”) is copied to
the ienv position of the child val ; the ienv attribute of the body is this environ-
ment extended with a pair composed of the name (lnm) associated with the first
child and the value (the sval attribute) of the second child.

In Figure 2 we show for each production of the example how we combine the
various aspects introduced by the attributes using the function ext .

2 http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG
3 http://hackage.haskell.org/package/uulib

http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG
http://hackage.haskell.org/package/uulib

Attribute Grammar Macros 153

-- Pretty-Printing
sppRoot = syndefM spp $ liftM (#spp) (at ch expr)
...
sppAdd = syndefM spp $ do e1 ← at ch ae1

e2 ← at ch ae2

return $ e1 # spp >#< "+" >#< e2 # spp
...

-- Environment

ienvRoot = inhdefM ienv { nt Expr } $
do return {{ ch expr .=. ([] :: [(String , Int)]) }}

...
ienvLet = inhdefM ienv { nt Expr } $

do lnm ← at ch lnm
val ← at ch val
lhs ← at lhs
return {{ ch val .=. lhs # ienv

, ch body .=. (lnm, val # sval) : lhs # ienv }}
-- Value

svalRoot = syndefM sval $ liftM (#sval) (at ch expr)
...
svalVar = syndefM sval $ do vnm ← at ch vnm

lhs ← at lhs
return $ fromJust (lookup vnm (lhs # ienv))

...

Fig. 1. Fragments of the specification of the example’s semantics using the AspectAG
library

The semantics we associate with an abstract syntax tree is a function which
maps the inherited attributes of the root node to its synthesized attributes.
So for each production that may be applied at the root node of the tree we
have to construct a function that takes the semantics of its children and uses
these to construct the semantics of the complete tree. We will refer to such
functions as semantic functions. The hard work is done by the function knit ,
that “ties the knot”, combining the attribute computations (i.e. the data flow at
the node) with the semantics of the children trees (describing the flow of data
from their inherited to their synthesized attributes) into the semantic function for
the parent. The following code defines the semantic functions of the production
Add :

semExpr Add sae1 sae2 = knit aspAdd {{ ch ae1 .=. sae1 , ch ae2 .=. sae2 }}
where the function knit is applied to the combined attributes for the production.

The resulting semantic functions can be associated with the concrete syntax
by using parser combinators [13] in an applicative style:

154 M. Viera and D. Swierstra

aspRoot = sppRoot ‘ext ‘ svalRoot ‘ext ‘ ienvRoot
aspCst = sppCst ‘ext ‘ svalCst
aspVar = sppVar ‘ext ‘ svalVar
aspMul = sppMul ‘ext ‘ svalMul ‘ext ‘ ienvMul
aspAdd = sppAdd ‘ext ‘ svalAdd ‘ext ‘ ienvAdd
aspLet = sppLet ‘ext ‘ svalLet ‘ext ‘ ienvLet

Fig. 2. Composition of the semantics

pExpr = semExpr Let <$ pKeyw "let" <*> pString
<* pKeyw "=" <*> pExpr
<* pKeyw "in" <*> pExpr

<|> semExpr Add <$> pTerm <* pKeyw "+" <*> pExpr <|> pTerm
pTerm = semExpr Mul <$> pFactor <* pKeyw "*" <*> pTerm <|> pFactor
pFactor = semExpr Cst <$> pInt <|> semExpr Var <$> pString

Thus far we have described a methodology to define the static semantics of a
language. The goal of this paper is to show how we can define new productions
by combining existing productions, while probably updating some of the aspects.
We want to express the semantics of new productions in terms of already ex-
isting semantics and by adapting parts of the semantics resulting from such a
composition.

To show our approach we will extend the language of our example with some
extra productions; one for defining the square of a value, one for defining the
sum of the squares of two values, and one for doubling a value:

expr → ... | "square" expr | "pyth" expr expr | "double" expr

In the rest of this section we define the semantic functions semExpr Sq ,
semExpr Pyth and semExpr Double, of the new productions, in a macro style,
although providing specific definitions for the pretty-printing attributes. Thus,
if the expressions’ parser is extended with these new productions:

pExpr = ... <|> semExpr Sq <$ pKeyw "square" <*> pExpr
<|> semExpr Pyth <$ pKeyw "pyth" <*> pExpr <*> pExpr
<|> semExpr Double <$ pKeyw "double" <*> pExpr

the semantic action associated to parse, for example, "square 2" returns the
value 2 for the attribute sval and "square 2" for spp.

Thus far, when extending the example language with a square production,
we would have to define its semantics from scratch, i.e we had to define all
its attributes in the same way we did for the original language. Thus, if the
semantics of a language are defined by about twenty attributes4 (to perform
pretty-printing, name binding, type checking, optimizations, code generation,

4 As is the case in the UHC Haskell compiler.

Attribute Grammar Macros 155

etc.), a definition of all these twenty attributes has to be provided. To avoid this,
we introduce attribute grammar macros in Figure 3 to define the extensions of
the example.

The square of a value is the multiplication of this value by itself. Thus, the
semantics of multiplication can be used as a basis, by passing to it the semantics
of the only child (ch se) of the square production both as ch me1 and ch me2.
We do so in the definition of aspSq in Figure 3; we declare an attribute grammar
macro based on the attribute computations for the production Mul , defined in
aspMul , with its children (ch me1 and ch me2) mapped to the new child ch se.

aspSq = agMacro (aspMul , ch me1 ↪−→ ch se
<.> ch me2 ↪−→ ch se)

aspPyth = agMacro (aspAdd , ch ae1 =⇒ (aspSq , ch se ↪−→ ch pe1)
<.> ch ae2 =⇒ (aspSq , ch se ↪−→ ch pe2))

aspDouble = agMacro (aspMul , ch me1 =⇒ (aspCst , ch cv −� 2)
<.> ch me2 ↪−→ ch de)

Fig. 3. Language Extension

Attribute macros can map children to other macros, and so on. For example, in
the definition of aspPyth (sum of the squares of ch pe1 and ch pe2) the children
are mapped to macros based on the semantics of square (aspSq).

When defining a macro based on the semantics of a production which has
literal children, these children can be mapped to literals. In the definition of
aspDouble the child ch me1 of the multiplication is mapped to a constant, which
is mapped to the literal 2.

In some cases we may want to introduce a specialized behavior for some
specific attributes of an aspect defined by a macro. For example, the pretty
printing attribute spp of the macros of Figure 3 currently is expressed in terms
of the base rule. Thus when pretty printing square x , instead x ∗ x will be
shown. Fortunately it turns out to be very easy to overwrite the definition of
some specific attribute instead of adding a new one. This is implemented by the
functions synmodM and inhmodM .

In Figure 4 we show how the pretty printing attributes of the language exten-
sions we defined in Figure 3 can be redefined to reflect their original appearance
in the input program:

3 AspectAG

In this section we describe AspectAG, a library for defining first-class attribute
grammars. The key technique underlying our embedded approach lies in using
the HList library [7] for typed heterogeneous collections (extensible polymorphic

156 M. Viera and D. Swierstra

sppSq = synmodM spp $ do de ← at ch de
return $ "square" >#< de # spp

aspSq ′ = sppSq ‘ext ‘ aspSq

sppPyth = synmodM spp $ do e1 ← at ch pe1

e2 ← at ch pe2

return $ "pyth" >#< e1 # spp >#< e2 # spp

aspPyth ′ = sppPyth ‘ext ‘ aspPyth

sppDouble = synmodM spp $ do de ← at ch de
return $ "double" >#< de # spp

aspDouble ′ = sppDouble ‘ext ‘ aspDouble

Fig. 4. Redefiniton of the spp attribute

records) for representing collections of attributes, and expressing the AG well-
formedness conditions by type-level predicates (i.e., type-class constraints), thus
mimicking dependently typed programming techniques in Haskell [10].

Heterogeneous lists are constructed using the functions (.*.) and hNil , mod-
eling the structure of a normal list both at the value and the type level. An
extensible record is an heterogeneous list of uniquely labeled fields marked with
the type Record . A field (l .=. v) relates a (first-class) label l with the value v .
Extensible records can be constructed with the functions (.*.) and emptyRecord ;
where (.*.) is overloaded to not only extend the list both at type and value level,
but also to impose by (type class) constraints that elements in a record are
uniquely labeled. In order to keep our programs readable we will use the some
syntactic sugar to denote lists and records in the rest of the paper:

– { v1, ..., vn } for (v1 .*.*. vn .*. hNil)
– {{ f1, ..., fn }} for (f1 .*.*. fn .*. emptyRecord)

Thus, if label1 and label2 are labels, the following is the definition of a record
(myR) with the elements True and "bla":

myR = {{ label1 .=. True, label2 .=. "bla" }}
The operator (#) is used to retrieve the value part corresponding to a specific
label from a record, statically enforcing that the record indeed has a field with
this label. The expression (myR# label2) returns the string "bla", while, given
a label label3, the expression (myR # label3) does not compile.

3.1 Rules

In this subsection we show how attributes and their defining rules are repre-
sented. An attribution is a finite mapping from attribute names to attribute
values, represented by a Record , in which each field represents the name and
value of an attribute.

Attribute Grammar Macros 157

Fig. 5. Rule: black arrows represent input and gray arrows represent output; dotted
gray arrows represent the already constructed output which can be used to compute
further output elements (hence the direction of the arrow)

When inspecting what happens at a production (a node of the abstract syntax
tree) we see that information flows from the inherited attribute of the parent (ip)
and the synthesized attributes of the children (sc) to the synthesized attributes
(sp) of the parent and the inherited attributes of the children (ic). Henceforth
the attributes ip and sc together are called input family while the attributes sp
and ic are called output family, both represented by:

data Fam children parent = Fam children parent

A Fam contains a single attribution for the parent and a collection of attributions
for the children. Hence the type parent will always be a Record with fields labeled
by attribute names; the type of children is a Record with fields labeled by children
names and attributions (Records) as values. The labels of the children can be
defined out of the abstract syntax using the Template Haskell function deriveAG .
For our example, the call $(deriveAG “Root) generates the labels ch expr , ch cv ,
ch vnm, ch me1, ch me2, ch ae1, ch ae2, ch lnm, ch val and ch body .

Attributes are defined by rules [4], where a rule is a mapping from an input
family (the inherited attributes of the parent and the synthesized attributes
of the children) to a function which extends the output family (the inherited
attributes of the children and the synthesized attributes of the parent) with the
new elements defined by this rule:

type Rule sc ip ic sp ic′ sp′ = Fam sc ip → (Fam ic sp → Fam ic′ sp′)

Figure 5 shows a graphic representation of a rule; each rule describes a node of
a data flow graph which has an underlying tree-shaped structure induced by the
abstract syntax tree at hand.

Rule Definition. The functions syndefM and inhdefM are versions of syndef
and inhdef , that use a Reader monad to make definitions look somewhat “pret-
tier”.

The function syndef adds the definition of a synthesized attribute. It takes a
label att representing the name of the new attribute, a value val to be assigned to
this attribute, and it builds a function which updates the output for the parent
as constructed thus far (sp):

158 M. Viera and D. Swierstra

syndef att val (Fam ic sp) = Fam ic (att .=. val .*. sp)

syndefM att mval inpFam = syndef att (runReader mval inpFam)

Let us take a look at how the rule definition sppAdd of the attribute spp for the
production Add is defined using syndef instead of syndefM :

sppAdd (Fam sc ip)
= syndef spp $ ((sc # ch ae1) # spp) >#< "+" >#< ((sc # ch ae2) # spp)

The children ch ae1 and ch ae2 are retrieved from the input family so we can
subsequently retrieve the attribute spp from these attributions, and construct
the computation of the synthesized attribute spp. The function inhdef introduces
new inherited attributes for a collection of non-terminals at the same time, all
with the same name.

inhdef :: Defs att nts vals ic ic′

⇒ att → nts → vals → (Fam ic sp → Fam ic′ sp)

It results in a function which updates the output constructed thus far and takes
the following parameters: the attribute att which is being defined, the list nts
of non-terminals with which this attribute is being associated, and a record
vals labeled with child names and containing values, describing how to compute
the attribute being defined at each of the applicable child positions. The class
Defs introduces a type-level function used to iterate over the record vals and to
compute the new record of inherited attributes ic′, extending the record ic with
the inherited attributes defined thus far.

Thus, in the rule ienvLet , described before, we give a definition for the
attribute ienv for each child of which the semantic category is in the list
{{ nt Expr }}, and these are stored in an extensible record labeled by the names
of the children. It is the possibility of defining such functions in Haskell which
shows the advantages of expressing one’s attribute grammars using an embedded
domain specific language.

Rules Composition. The composition of two rules is the composition of the
two functions resulting from applying each of them to the input family:

ext :: Rule sc ip ic′ sp′ ic′′ sp′′ → Rule sc ip ic sp ic′ sp′

→ Rule sc ip ic sp ic′′ sp′′

(rule1 ‘ext ‘ rule2) input = rule1 input ◦ rule2 input

Figure 6 represents a composition rule1 ‘ext ‘ rule2 , of rules with two children.
By inspecting the labyrinths of this figure, it can be seen how the inputs (black
arrows) are shared and the outputs are combined by using the outputs of rule2
(solid gray) as output constructed thus far of rule1 (dotted gray). Thus, the
outputs constructed thus far (dotted gray) of the composed rule are passed to
rule2 and the resulting outputs (solid gray) of the composed rule are equivalent
to the resulting outputs of rule1 .

Attribute Grammar Macros 159

Fig. 6. Rules Composition: produces a new rule, represented by the external oval

Fig. 7. Rule Knitting: produces a semantic function (external rounded rectangle)

Semantic Functions. Figure 7 represents the resulting semantic function for
the production Add . Notice that the function knit initializes the already con-
structed outputs with empty records ({{ }}).

4 Attribute Grammar Macros

An attribute grammar macro is determined by a pair with the base rule (ruleb)
of the macro and the mapping (chMap) between the children of this rule and
their newly defined semantics, and returns a macro rule. As shown in Figure 8,
chMap (rectangle) is an interface between the children of the base rule (inner
oval) and the children of the macro rule (outer oval). The number of children of
the macro rule (below chMap in the figure) does not need to be the same as the
number of children of the base rule.

The function agMacro constructs the macro rule; it performs the “knitting”
of ruleb, by applying this rule to its input and the output produced thus far.
These elements have to be obtained from the corresponding elements of the
macro rule and the mapping chMap. To keep the code clear, we will use the
subindex b for the elements of the base rule and m for the elements of the macro
rule. Thus, the macro rule takes as input the family (Fam scm ipm) and updates
the output family constructed thus far (Fam icm spm) to a new output family
(Fam ic′′m sp′m):

160 M. Viera and D. Swierstra

Fig. 8. AG Macro

agMacro (ruleb, chMap) (Fam scm ipm) (Fam icm spm) =
let ipb = ipm

spb = spm

(Fam ic′b sp
′
b) = ruleb (Fam scb ipb) (Fam icb spb)

(ic′m, icb, scb) = chMap (scm, icm) (ic′b, emptyRecord , emptyRecord)
ic′′m = hRearrange (recordLabels icm) ic′m
sp′m = sp′b

in (Fam ic′′m sp′m)

The inherited and synthesized attributes of the parent of the base rule (ipb and
spb) respectively correspond to ipm and spm, the inherited and synthesized at-
tributes of the parent of the macro rule. The inherited and synthesized attributes
of the children of the base rule (icb and scb), as well as the updated inherited at-
tributes of the children of the macro rule (ic′m), are generated by the children
mapping function chMap. The function chMap takes as input a pair (scm, icm)
with the synthesized attributes and the inherited attributes constructed thus far
of the children of the macro rule, and returns a function that updates a triple with
the updated inherited attributes (ic′m) of the children of the macro rule and the
inherited (icb) and synthesized (scb) attributes of the children of the base rule.
We start with an “initial” triple composed of the updated inherited attributes of
the children of the base rule (ic′b), which has been converted into ic′m, and two
empty records (to be extended to icb and scb). Notice that the attributes we pass
to chMap are effectively the ones indicated by the incoming arrows in Figure 8.

The rearranging of ic′m is just a technical detail stemming from the use of
HList; by doing this we make sure that the children in icm and ic′m are in
the same order, thus informing the type system that both represent the same
production. The synthesized attributes of the parent of the macro rule (sp′m) are
just sp′b, the synthesized attributes of the parent of the base rule.

Mapping functions resemble rules in the sense that they take an input and
return a function that updates its “output”, that in this case is the triple
(ic′m, icb, scb) instead of an output family. Thus, they can be combined in the
same way as rules are combined; the combinator (<.>), used in Figure 3, is exactly
the same as the ext function but with a different type:5

5 To avoid confusion with rule combination, instead of using apostrophes to denote
updates we use numeric suffixes.

Attribute Grammar Macros 161

Fig. 9. aspSq

(<.>) :: ((scm, icm) → ((ic′1m, ic1b, sc1b) → (ic′2m, ic2b, sc2b)))
→ ((scm, icm) → ((ic′0m, ic0b, sc0b) → (ic′1m, ic1b, sc1b)))
→ ((scm, icm) → ((ic′0m, ic0b, sc0b) → (ic′2m, ic2b, sc2b)))

(chMap1 <.> chMap2) inp = chMap1 inp ◦ chMap2 inp

We use the combinator (↪−→) to map a child lchb of the base rule to a child lchm

of the macro rule.

lchb ↪−→ lchm = λ(scm, icm) (ic′0m, ic0b, sc0b) →
let ic′1m = hRenameLabel lchb lchm (hDeleteAtLabel lchm ic′0m)

ic1b = lchb .=. (icm # lchm) .*. ic0b
sc1b = lchb .=. (scm # lchm) .*. sc0b

in (ic′1m, ic1b, sc1b)

The updated inherited attributes for the child lchm correspond to the updated
inherited attributes of the child lchb. Thus, the new ic′m (ic′1m) is the original
one with the field lchb renamed to lchm. Since more than a single child of the
base rule can be mapped to a child of the macro rule, like in aspSq of Figure 3, we
have to avoid duplicates in the record by deleting a possible previous occurrence
of lchm. This decision fixes the semantics of multiple occurrences of a child in
a macro: the child will receive the inherited attributes of its left-most mapping.
We represent this behavior in Figure 9 with the gray arrow, which corresponds
to the inherited attributes of ch me2, pointing nowhere outside the mapping.
In the cases of the initial inherited attributes and the synthesized attributes,
they have to be extended with a field corresponding to the child lchb with the
attributions for the child lchm from the inherited and synthesized attributes,
respectively, of the macro rule.

Inside a macro a child can be mapped to some other macro (rulec, chMap),
where the subindex c stands for child. This is the case of the definitions of
aspPyth and aspDouble , graphically represented in Figure 10 and Figure 11,
where the rectangles representing the children mappings have rules (ovals) inside.

lchb =⇒ (rulec, chMap) = λ(scm, icm) (ic′0m, ic0b, sc0b) →
let (Fam ic′c sp′c) = agMacro (rulec, chMap) (Fam scm (ic′0m # lchb))

(Fam icm emptyRecord)

162 M. Viera and D. Swierstra

Fig. 10. aspPyth Fig. 11. aspDouble

ic′1m = hLeftUnion ic′c (hDeleteAtLabel lchb ic
′0m)

ic1b = lchb .=. emptyRecord .*. ic0b
sc1b = lchb .=. sp

′
c .*. sc0b

in (ic′0m, ic1b, sc1b)

In this case, the inner macro has to be evaluated using agMacro. The children of
the inner macro will be included in the children of the outer macro; thus the syn-
thesized attributes of the inner macro are included in scm, and the new inherited
attributes of the children have to extend icm. The inherited attributes of the par-
ent of the inner macro are the inherited attributes of the child lch b of the base rule
of the outer macro. The synthesized attributes of the parent of the inner macro
are initialized with an empty attribution. The child lchb is removed from ic′0m,
because the macro rule will not include it. On the other hand, the inherited at-
tributes of the children of the inner macro (ic′c) have to be added to the inherited
attributes of the children of the macro. With the function hLeftUnion from HList
we perform an union of records, choosing the elements of the left record in case
of duplication. We initialize the inherited attributes for lchb with an empty attri-
bution, since it cannot be seen “from the outside”. The synthesized attributes are
initialized with the resulting synthesized attributes of the inner rule.

With the combinator (−�) we define a mapping from a child with label lch
to a literal value cst . For the base rule, the initial synthesized attributes of the
child lchb are fixed to the literal cst .

lchb −� cst = λ(,) (ic′0m, ic0b, sc0b) →
let ic′1m = hDeleteAtLabel lch ic′0m

ic1b = lchb .=. emptyRecord .*. ic0b
sc1b = lchb .=. cst .*. sc0b

in (ic′1m, ic1b, sc1b)

The (internal) macro associated to the mapping of the child ch me1 in Figure 11
shows the semantics of the combinator (−�). The synthesized attributes of ch cv
are fixed to the constant (hexagon) 2. Since the child is mapped to a constant,

Attribute Grammar Macros 163

the inherited attributes are ignored (the arrow points nowhere). Although, we
have to provide a (empty) set of inherited attributes constructed thus far to the
rule aspCst .

4.1 Attribute Redefinitions

We have shown how to introduce new syntax and how to express its meaning in
terms of existing constructs. In this section we show how we can redefine parts of
the just defined semantics by showing how to redefine attribute computations.

The function synmod (and its monadic version synmodM) modifies the defi-
nition of an existing synthesized attribute:

synmod att val (Fam ic sp) = Fam ic (hUpdateAtLabel att val sp)

Note that the only difference between syndef , from subsection 3.1, and synmod ,
is that the latter updates an existing field of the attribution sp, instead of adding
a new field. With the use of the HList’s function hUpdateAtLabel we enforce (by
type class constraints) the record sp, which contains the synthesized attributes
of the parent constructed thus far, indeed contains a field labeled att . Thus, a
rule created using synmod has to extend, using ext , some other rule that has
already defined the synthesized attribute this rule is redefining.

The AspectAG library also provides functions inhmodM and inhmod , analo-
gous to inhdefM and inhdef , that modify the definition of an inherited attribute
for all children coming from a specified collection of semantic categories.

5 Conclusions and Future Work

Building on top of a set of combinators that allow us to formulate extensions to
semantics as first class attribute grammars (i.e. as plain typed Haskell values), we
introduced in this paper amechanismwhich allows us to express semantics in terms
of already existing semantics, without the need to use higher order attributes.

The programmer of the extensions does not need to know the details of the im-
plementation of every attribute. In order to implement a macro or a redefinition
for a production he only needs the names of the attributes used and the names
of the children of the production, the latter being provided by the definition of
the abstract syntax tree.

This work is part of a bigger plan, involving the development of a series
of techniques [1,2,12,13] to deal with the problems involved in both syntactic
and semantic extensions of a compiler by composing compiled and type-checked
Haskell values. In this way we leverage the type checking capabilities of the
Haskel world into such specifications, and we profit from all the abstraction
mechanisms Haskell provides.

We already think that the current approach is to be preferred over stacking
more and more monads when defining a compositional semantics as is conven-
tionally done in the Haskell world [11].

164 M. Viera and D. Swierstra

References

1. Baars, A.I., Doaitse Swierstra, S., Viera, M.: Typed transformations of typed ab-
stract syntax. In: TLDI 2009, pp. 15–26. ACM (2009)

2. Baars, A.I., Doaitse Swierstra, S., Viera, M.: Typed transformations of typed gram-
mars: The left corner transform. In: LDTA 2009. ENTCS (2009)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Program-
ming 72(1-2), 52–70 (2008)

4. de Moor, O., Backhouse, K., Doaitse Swierstra, S.: First-class attribute grammars.
Informatica (Slovenia) 24(3) (2000)

5. Dijkstra, A., Fokker, J., Doaitse Swierstra, S.: The architecture of the Utrecht
Haskell compiler. In: Haskell 2009, pp. 93–104. ACM (2009)

6. Heeren, B., Hage, J., Doaitse Swierstra, S.: Scripting the type inference process.
In: ICFP 2003, pp. 3–13. ACM Press (2003)

7. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Haskell 2004, pp. 96–107. ACM Press (2004)

8. Leavenworth, B.M.: Syntax macros and extended translation. Commun.
ACM 9(11), 790–793 (1966)

9. Maddox, W.: Semantically-sensitive macroprocessing. Technical report, Berkeley,
CA, USA (1989)

10. McBride, C.: Faking it simulating dependent types in Haskell. J. Funct. Pro-
gram. 12(5), 375–392 (2002)

11. Schrijvers, T., Oliveira, B.C.d.S.: Monads, zippers and views: virtualizing the
monad stack. In: ICFP 2011, pp. 32–44. ACM (2011)

12. Doaitse Swierstra, S.: Parser combinators: from toys to tools. In: Haskell Workshop
(2000)

13. Doaitse Swierstra, S.: Combinator Parsing: A Short Tutorial. In: Bove, A., Barbosa,
L.S., Pardo, A., Pinto, J.S. (eds.) LerNet 2008. LNCS, vol. 5520, pp. 252–300.
Springer, Heidelberg (2009)

14. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in At-
tribute Grammars for Modular Language Design. In: Horspool, R.N. (ed.) CC
2002. LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

15. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Science of Computer Programming 75(1-2), 39–54 (2010)

16. Viera, M., Doaitse Swierstra, S., Swierstra, W.: Attribute grammars fly first-class:
how to do aspect oriented programming in Haskell. In: ICFP 2009, pp. 245–256.
ACM (2009)

17. Wirth, N.: Compiler construction. International computer science series. Addison-
Wesley (1996)

Author Index

Aichernig, Bernhard Klaus 6
Alves, Péricles Rafael Oliveira 57
Amorim, Luis Eduardo de Souza 72

Barbosa, Luis Soares 1
Bigonha, Roberto da Silva 72

Campos, Victor Hugo Sperle 42
Cerqueira, Renato 102
Collange, Sylvain 12
Cunha, Jácome 117

de Almeida Maia, Marcelo 134
de Assis Costa, Igor Rafael 42, 57
de Bayser, Maximilien 102
Di Iorio, Vladimir Oliveira 72

Ferreira, Bruno Morais 87
Ferreira, Gabriel Coutinho Sousa 134
Figueiredo, Eduardo 134
Figueiredo, Eduardo Lage 57

Gaia, Felipe Nunes 134
Gedeon, Elie 12

Ierusalimschy, Roberto 27

Mascarenhas, Fabio 27
Medeiros, Sérgio 27

Pereira, Fernando Magno Quintão 12,
42, 57, 87

Reis, Leonardo Vieira dos Santos 72
Rodrigues, Hermann 87
Rodrigues, Raphael Ernani 42

Sampaio, Diogo Nunes 12
Saraiva, João 117
Soares-Filho, Britaldo Silveira 87
Swierstra, Doaitse 150

Viera, Marcos 150
Visser, Joost 117

	Title
	Preface
	Organization
	Table of Contents
	Software Components as Invariant-Typed Arrows
	Components as Arrows
	Invariants as Types
	References

	The Science of Killing Bugs in a Black Box
	Combining Model-Based and Mutation Testing
	From Semantics to Automated Test-Case Generation
	Symbolic Mutation Testing
	References

	Spill Code Placement for SIMD Machines
	Introduction
	Background
	Divergence Aware Register Allocation
	Defining the Register Allocation Problem for GPUs
	A Quick Glance at Traditional Register Allocation
	Divergence Aware Spilling as a Set of Rewriting Rules
	Implementation Details

	Experiments
	Conclusion
	References

	Left Recursion in Parsing Expression Grammars
	Introduction
	Parsing Expression Grammars and Left Recursion
	Bounded Left Recursion
	Related Work
	Conclusion
	References

	Speed and Precision in Range Analysis
	Introduction
	Brief Description of Our Range Analysis Algorithm
	Design Space
	Strongly Connected Components
	The Choice of a Program Representation
	Intra versus Inter-procedural Analysis
	Context Sensitive versus Context Insensitive Analysis
	Choosing a Widening Strategy

	Final Remarks
	References

	Parameter Based Constant Propagation
	Introduction
	Why Parameter Specialization Matters

	Parameter Based Method Specialization
	Parameter Based Specialization by Example
	``Constification"
	Argument Based Constant Propagation

	Experiments
	Related Work
	Conclusion
	References

	Adaptable Parsing Expression Grammars
	Introduction
	From Context-Free to Adaptable Grammars
	From Adaptable Grammars to Adaptable PEGs

	Related Work
	Definition of the Model
	PEG with Attributes
	Formal Definition of Attribute PEG
	Semantics of Adaptable PEG

	Empirical Results
	Data Dependent Languages
	Static Semantics
	Fortress Language

	Conclusion and Future Work
	References

	Optimizing a Geomodeling Domain Specific Language
	Introduction
	A Bird's Eye View of Dinamica EGO
	The Core Semantics
	SMFS Has Polynomial Solution for Schedulings with No Back-Edges
	SMFS Is NP-Complete for General Programs with Fixed Scheduling

	Copy Minimization
	Correctness

	Experiments
	Conclusion
	References

	A System for Runtime Type Introspection in C++
	Introduction
	Proposed Reflection API
	Overview of Relevant C++ Features
	Runtime Type Information
	Template Metaprogramming

	API Implementation
	Variant
	Call Forwarding
	Meta-data Declarations

	Evaluation
	Related Work
	Conclusion
	References

	Model-Based Programming Environments for Spreadsheets
	Introduction
	A Spreadsheet Programming Environment
	From Spreadsheets to Relational Databases
	Building Spreadsheet Programming Environments
	HaExcel Add-in

	Preliminary Experimental Results
	Related Work
	Conclusions
	References

	A Quantitative Assessment of Aspectual Feature Modules for Evolving Software Product Lines
	Introduction
	Variability Mechanisms
	Conditional Compilation
	Feature-Oriented Programming
	Aspect-Oriented Programming
	Aspectual Feature Modules

	Case Study
	Infrastructure Setting
	The Evolved WebStore SPL
	Change Scenarios

	Propagation Analysis
	Modularity Analysis
	Threats to Validity
	Related Work
	Concluding Remarks and Future Work
	References

	Attribute Grammar Macros
	Introduction
	Attribute Grammar Combinators
	AspectAG
	Rules

	Attribute Grammar Macros
	Attribute Redefinitions

	Conclusions and Future Work
	References

	Author Index

