Michele Cini
Francesco Fucito
Mauro Sbragaglia

Solved Problems

In Quantum
and Statistical
Mechanics




Solved Problems in Quantum and Statistical Mechanics



Michele Cini
Francesco Fucito
Mauro Sbragaglia

Solved Problems
in Quantum

and Statistical Mechanics

@ Springer



Michele Cini Francesco Fucito Mauro Sbragaglia

Department of Physics Department of Physics Department of Physics
University of Rome University of Rome University of Rome
Tor Vergata, Tor Vergata and INFN Tor Vergata and INFN
INFN

Laboratori Nazionali Frascati

UNITEXT- Collana di Fisica e Astronomia
ISSN print edition: 2038-5730 ISSN electronic edition: 2038-5765

ISBN 978-88-470-2314-7 ISBN 978-88-470-2315-4 (eBook)
DOI 10.1007/978-88-470-2315-4

Library of Congress Control Number: 2011940537
Springer Milan Dordrecht Heidelberg London New York

© Springer-Verlag Italia 2012

This work is subject to copyright. All rights are reserved by the Publisher,whether the whole or part
of thematerial is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dis-
similar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publishers location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright
Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use. While the
advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied,with
respect to the material contained herein.

Cover-Design: Simona Colombo, Milano
Typesetting with LaTeX: CompoMat S.r.1., Configni (RI)
Printing and Binding: Grafiche Porpora, Segrate (MI)

Printed in Italy

Springer-Verlag Italia S.r.1., Via Decembrio 28, I-20137 Milano
Springer fa parte di Springer Science + Business Media (www.springer.com)



Preface

Italian students start studying Quantum and Statistical Mechanics in the last year of
their undergraduate studies. Many physicists think these subjects are the core of an
education in physics. At the same time, these two subjects are not easily learnt by
the average student. In Italy the final exam is divided in two separate parts: there is,
in fact, a written and an oral one. Most textbooks concentrate on the principles of the
theory and the applications are dealt with at the end of each chapter under the head-
ings ‘problems’ or ‘exercises’. Most of the times the latter consist only of the text of
the problem with some vague indications on how to proceed with the solution. Some
other times the solution is completely left to the student. The authors of the present
book think this is didactically wrong: these applications are crucial for a correct
understanding of the subject and help the students get acquainted with the mathe-
matical tools they have learnt in other classes. Many times we have noticed that a
simple change in the denominations of the letters was enough to throw a student in
disarray: a function whose behaviour was familiar when the independent variable
was called x, became unfathomable when the very same variable was the energy E.
In reality, during the elementary study of classical physics, the exercises are mostly
straightforward applications of the general formulae deduced from experience or at
the most require the simplest notions of differential and integral calculus. Things
change with Quantum and Statistical Mechanics whose mathematical formalism is
more complex. Also the problems and exercises reflect this point and the required
solutions often need longer and more elaborate manipulations.

It is for these reasons that in our teaching we have always dedicated a large
amount of time to the discussion of the applications, to the correction of the prob-
lems, and have tried to elaborate written solutions with lengthy discussions to help
the students get ready for the written exams. From this point to the publication of
our notes it has been a natural step.
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Part I

Theoretical Background



1

Summary of Quantum and Statistical Mechanics

1.1 One Dimensional Schrodinger Equation

In Quantum Mechanics, the state of a particle in one dimension and in presence of a
potential U (x,7), is entirely described by a complex wave function y(x,) obeying
the time dependent Schrodinger equation

HOVED) 1 9y ()

5 zmTJFU(XJ)‘I’(XJ)

where m is the mass of the particle and 7 is the Planck constant, &, divided by 27.
If we multiply the Schrédinger equation by the complex conjugate wave function
v*(x,1), take the complex conjugate of the Schrodinger equation and multiply by
y(x,1), and finally subtract both expressions, we find the so-called continuity equa-
tion

x,1)[? i *(x X
alll/(at’t)_t'_;x{;n (l[/(x,t)awa(x’t)_V/*(xJ)awa(x’t))] =0.

This equation represents the conservation law for the quantity [ |w/(x,7)|>dx and
allows us to interpret |y/(x,)|? as the probability density function to find the particle
in the point x at a time #. The quantity

) = g (W) 2G5 e e 25D )

is the density flux for such probability. The physical interpretation of |y/(x,?)|? sets
some conditions on y(x,¢) that has to be chosen as a continuous not multivalued
function without singularities. Also, the derivatives of y(x,t) have to be continu-
ous, with the exception of a moving particle in a potential field possessing some
discontinuities, as we will see explicitly in the exercises. If the potential does not

depend explicitly on time, U (x,¢) = U (x), the time dependence can be separated out

Cini M., Fucito F,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_1, © Springer-Verlag Italia 2012



4 1 Summary of Quantum and Statistical Mechanics

from the Schrédinger equation and the solutions, named stationary, satisfy

w(x) = 1Py ().

In such a case, the functions p = |y|?> and J are independent of time. Using the
form of y(x,¢) in the original equation, we end up with the stationary Schrodinger
equation
n d? .
| o U0 W) = ) = Ev)

The operator A is known as the Hamiltonian of the system. Continuous, non mul-
tivalued and finite functions which are solutions of this equation exist only for par-
ticular values of the parameter £, which has to be identified with the energy of the
particle. The energy values may be continuous (the case of a continuous spectrum
for the Hamiltonian H), discrete (discrete spectrum), or even present a discrete and
continuous part together. For a discrete spectrum, the associated ¥ may be normal-
ized to unity

[IvtoPax=1.

All the functions y corresponding to precise values of the energy are called eigen-
functions and are orthogonal. With a continuous spectrum, the condition of or-
thonormality may be written using the Dirac delta function

[ iy dr=6(E—E).

The condition of continuity for the wave function and its derivatives is valid even in
the case when the potential energy U (x) is discontinuous. Nevertheless, such con-
ditions are not valid when the potential energy becomes infinite outside the domain
where we solve our differential equations. The particle cannot penetrate a region of
the space where U = +oo (you can imagine electrons inside a box), and in such a
region we must have y = 0. The condition of continuity imposes a vanishing wave
function where the potential energy barrier is infinite and, consequently, the deriva-
tives may present discontinuities.

Let U be the minimum of the potential. Since the average value of the energy is
E =T+U, and since U > U, we conclude that

E>U

due to the positive value of T, that is the average kinetic energy of the particle. This
relation is true for a generic state and, in particular, is still valid for an eigenfunction
of the discrete spectrum. It follows that E,, > U, with E,, any of the eigenvalues of
the discrete spectrum. If we now define the potential energy in such a way that it
vanishes at infinity (U (£e0) = 0), the discrete spectrum is characterized by all those
energy levels E < 0 which represent bound states. In fact, if the particle is in a bound
state, its motion takes place between two points (say xj,x3) so that y(de) = 0.
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This constraints the normalization condition for the states. In Classical Mechanics,
the inaccessible regions where E < U have an imaginary velocity. In Quantum Me-
chanics, instead, particle motion can also take place in those regions where £ < U,
although the probability density function is going rapidly to zero there.

The continuous spectrum is described by positive values of the energy. In such
a case, the region of motion is not bounded (y(+e0) # 0) and the resulting wave
function cannot be normalized.

We finally end this section giving some general properties of the solution to the
one dimensional Schrodinger equation:

o all the energy levels of the discrete spectrum are non degenerate;

e the eigenfunction y,(x), corresponding to the eigenvalue E,, (n =0,1,2,...; E; <
E;if i < j), vanishes n times for finite values of x (oscillation theorem);

e if the potential energy is symmetrical, U(x) = U(—x), all the eigenfunctions of
the discrete spectrum must be either even or odd.

1.2 One Dimensional Harmonic Oscillator

When treating the one dimensional harmonic oscillator from the point of view of
Quantum Mechanics, we need to replace the usual classical variables x (position)
and p (momentum) with the associated operators satisfying the commutation rule
[£, p] = ihll, where 1l is the identity operator. A stationary state with energy E sat-
isfies the following differential equation

ndy(x) 1 2
“Tom a2 T pmex v(x) =Ey(x)

with m the mass of the oscillator and @ the angular frequency of the oscillations.
Eigenvalues and eigenstates of the Hamiltonian are given by

1

_ _ —&n __ L (mayls
W (x) = (x|n) = C,H,(§)e Ca zn/zm<hn)

where we have used a rescaled variable & defined by

ma@

and where
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represents the n-th order Hermite polynomial. The first Hermite polynomials are
Ho(§)=1 H(5)=2§
Hy(§) =48 =2 Hs(§) =887 —12¢.

Equivalently, we can describe the properties of the harmonic oscillator with the
creation and annihilation operators, @™ and 4, such that [&,&T] = 11. In this case, the
Hamiltonian becomes

1
A= ha)(ATA-‘r 11> = ho (ﬁ—|—211)

where 72 = @' is the number operator with the property 7 |[n) = n|n) . The relations
connecting the creation and annihilation operators with the position and momentum
operators are

A mo a i N
a=y/m*T 2mho P
At — fmops L p
a 2h ol

=
Il

(]
ﬁi’
3*8

22"~ a).
The creation and annihilation operators act on a generic eigenstate as step up and
step down operators

a'lny =vn+1ln+1) aln)=+nln—1)

so that
n) = 0) (n|lm) = Sun-

1.3 Variational Method

The variational method is an approximation method used to find approximate
ground and excited states. The basis for this method is the variational principle
which we briefly describe now. Let |@) be a state of an arbitrary quantum system
with one or many particles normalized such that

= (¢l¢) =1.

The energy of the quantum system is a quadratic functional of |@)

E = (9|A|¢)
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and cannot be lower than the ground state &; in fact, let us expand the state |¢) in
the eigenfunction basis |y;,) (each one corresponding to the eigenvalue &) of H

|¢>:Z<Wn|¢>|ll/n> Z‘<l//,1|¢>|2:

n

Since €, > gy, we find that

¢|H|¢ Z| l//n‘(P £n>Z| Wn"p & = &-

From this we infer that the energy of the ground state can be found by minimization.
Let us start by variating the state |¢)

9) = 19)+159).
The variation of the energy which follows is
E=(5¢|H|9)+(9|H|5¢) + 0(5°).
At the same time, the normalization changes as

= (80|9)+(9]59) + 0(57).

The extremum we are looking for must be represented by functions whose norm is
1. This condition can be efficiently imposed by introducing a Lagrangian multiplier
and minimizing the quantity

01(9) = (#|H — A11|¢) = (E — AN).

The variation of Q, (¢) must be zero for variations in both ¢ and A

801 (9) = (89|H ~A1[9)=0  8,0:(¢) =SA((#|9)—1)=0.

The second equation is the constraint, the first must be valid for arbitrary variations,
leading to

H|¢) =119)

which is the stationary Schrodinger equation. Multiplying by (@], we get the value
of the multiplier, i.e. the energy of the ground state. We remark that the condition of
constrained minimum, follows from that of unconstrained minimum & ((¢|H|¢)) =
0 substituting A with (H — A11). This can also be done by making |¢) depend on
the multiplier A, whose value is fixed imposing

N=(0()I0(2)) =
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1.4 Angular Momentum

From the definition of the angular momentum in Classical Mechanics
L=rAp

with r = (x,,2), p = (px, Py, Pz), We get its quantum mechanical expression, once
the vectors r, p are substituted by their correspondent operators. Once the commu-
tation rule between r, p is known, it is immediate to deduce the commutation rules
of the different components of the angular momentum

a

[Ly,Ly) = ihL, [Ly,L;) = ihL, Ly, L) = —inL,.
From the theory of Lie Algebras, we know that a complete set of states is deter-
mined from a set of quantum numbers whose number is that of the maximum num-

ber of commuting operator we can build starting from the generators (in our case
Ly,Ly,L;). One of these operators is the Casimir operator

72 72 .72, 72
PP =12412+12

which is commuting with all the generators of the group, i.e. [[?,L;] =0, i = x,y,z.
The other element of this sub algebra is one of the three generators LX,LWL the
convention is to choose L.. The quantum states are thus labelled by the quantum
numbers [, m such that

L2L,m) =R+ 1) |L,m) L |l,m) =km|l,m) —m<I<m

Ly|lm) =/ —m)(I+m+1)|l,m+1)
L |1,m) =h/(I+m)(I—m+1)|l,m—1)

where L = (L, +il,) are known as raising and lowering operators for the z com-
ponent of the angular momentum. Other useful relations are

L, L) ==+nLy [I*Li)=0 [Ly,L ]=2nL,
Lol =1*—1*+nl,
LLy=01*-1?—nL,.

When acting on functions of the spherical polar coordinates, the generators and the
Casimir operator take the form

L,=ih (sm(})aa6 +cotecos¢;¢>

ﬁy = —ih (cosq)aa6 cotesind)()i))
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LZ = —lh%

o o 10 Kl 1 9*
Lr=—h Llnﬂae Smea@ +sin293¢2 '

To write the state |/, m) in spherical coordinates it is useful to introduce the spherical
harmonics

Yim(6,9) = (6,9|1,m)
which enjoy the property

(21+1) (I—m)!
. (I4+m)!

Yim(0,0)=(—1)" ™ P"(cos ) m>0
Ylm(ea(p) :Yl,f\m\<0?¢):(_I)W‘Yl*\m\(e ¢) m <0
where P/"(cos 0) is the associated Legendre polynomial defined by

1 m d
F (”)2(1—142) ﬁw

[
A) = 5o [ = 1)

where P;(u) is the Legendre polynomial of order /. Some explicit expressions for
1=0,1,2 are

Py(u) 0<m<lI

Yoo(6.6) = \%

3
Y1,0(9,¢)=\/ECOS9 Y1 +1(0,9) =F

/5 5
Y20(0,9) =1/ 1o (3cos’0—1) Y>11(0,¢)=7F S—mQCOSQei"P

15 . .
Y242(0,9) = \/;sm2 Qe

Given the two angular momentum operators L,L,, we now want to deduce the
states of the angular momentum operator sum of the two, L = L; 4+ L,. This is possi-
ble using the states |ll,lz,m1,m2> or |ll,lz,l m), where hzl(l + 1), 7im are the eigen-
values of the operators L2 = [.2 —|—L2 and L, = L1, + L. respectively. The relation
between these two sets of states is

sm fet?

_ﬁ

by Lm)y =Y (L lymy,moll, b, Lom) |1 b my my)

mp,mp
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The total angular momentum gets the values I =l + 11, L+ — 1,...,|b — 1|, m =
m1 +my and the coefficients (1,1, m;,my|l1,1,1,m) are known as Clebsh-Gordan
or Wigner coefficients.

1.5 Spin

From the experiment of Stern and Gerlach or from the splitting of the electron en-
ergy levels in an atom it follows that, besides an angular momentum, a moving
electron has a spin. Such quantity has no classical correspondence and can get the
two values £71/2. The generators of this physical quantity are

A~ h ~ N A N

Sx==6 Sy =6, S;==6

X ) x y ) 'y z ) z

where 6, 6y, 6; are the Pauli matrices . A possible representation of these matrices
(the one where 6, is diagonal) is

5 (01 5 (0 s (10
T \10 Y i 0 o lo-1)

The states which describe the spin are two dimensional vectors

(1)

and |x1|%, |x2|? is the probability to get +%/2 out of a spin measurement.

1.6 Hydrogen Atom

The problem of the motion of two interacting particles with coordinates ry, r, can
be reduced, in analogy with Classical Mechanics, to the motion of a single particle
at distance r from a fixed centre. The Hamiltonian of the two particles of masses m;
and m; and interacting with a centrally symmetric potential U (r) is given by
. wo_, o, -
H=——V——V54+U(?
P Va0
where V%, V% are the Laplacian operators in the coordinates r{, r, and r =ry —r».
Using the coordinate of the center of mass

_myry+myr;
my +myp
the Hamiltonian becomes
. ? 2 .
H=— Vi — V2407

2(my +my) 2m,
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where m| + mj is the total mass and m, = m;my /(m; + my) the reduced mass. Then,
we seek the solution in the form ¥(ry,r;) = ¢(R)y(r), where ¢ (R) describes the
motion of a free particle and y(r) describes the motion of a particle subject to the
centrally symmetric potential U(r)

2m,

+
V’ n?

E—U(r)]y=0.

With the use of spherical polar coordinates, the equation becomes

19 [,y 1 9 oy 1’y 2m,

— = inf— E-U 0.
r28r< 8r>+ { ( 86)+ o (v =

sin@ 06 sin2 @ 092
The differential operator dependent on the angular variables coincides with the
Casimir operator 12, so that

" L9 aw + L +U(r) E

— |35 - r)y = .

2m, | 12 0r "o n2r2 v v v
In the motion in a central field, the angular momentum is conserved: let us take
two arbitrary values /, m for the angular momentum and its projection on the z axis.

Given that the differential equation is separable, we look for a solution using the
ansatz

y(r) =R(r)Y;m(6,9)

where Y; ,, are the spherical harmonics, which are eigenfunctions of both L. and [%.
The above equation becomes

1 d( dR> (1+1) 2m,
r
"2

r2dr\’ dr r? R+ [E—UnIR=0.

Since the quantum number m is not appearing in this equation, the solutions will be
2/ + 1 degenerate with respect to the angular momentum. The dependence on Y,
has been removed by multiplying by Yl*m and integrating over the angular part of the
volume. Let us focus now on the radial part of the wave function and let us perform
a further change of variables, by setting R(r) = @£r> , to get

e [2m,
dr? w2

(E-U(r) - =—5=|0=0.

The domain of variation of r is now [0, 4o}, and at the boundary of this region the
wave function must vanish to guarantee that it can be normalized, thus leading to a
discrete spectrum. The equation we got after these manipulations looks like a one
dimensional Schrodinger equation with potential

R l+1)
2m, r?

Ugff(r) =U(r)+
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For a fixed /, the radial part is determined by the quantum number labelling the
energy, since in a one dimensional motion the eigenvalues are not degenerate. The
angular part with quantum numbers /, m, and the energy spectrum, E,,, determine the
particle motion without ambiguities. To label states with different angular momenta,
we use the notation

Using the theorem of oscillations we see that the ground state is always an s wave
since the wave function cannot have zeros for the lowest level, while the Y; ,, for
[ # 0 are always oscillating functions with positive and negative values.

To close this section on the theory of the angular momentum, we report its appli-
cation to the case of hydrogen-like atoms , i.e. those atoms with one electron with
charge —e (and mass m,) and nuclear charge Ze. After the center of mass is sepa-
rated out, the stationary Schrodinger equation describing the wave function of the
electron becomes

Pl 13 [ ,0Wum) [I+1) Ze?
- Rk} _— =F
2m, { r2 or (r or * r2 Vod.m r Vi lm n W lm

where we have used the wave function for the orbital motion
Wn,l,m(ra 0, ¢) = Rn,l(r)Yl,m(ea ¢)
with z the principal quantum number giving the energy
Z2e? >

E, = o 4= e (Bohr radius)

and R, ;(r) the radial part of the wave function. Some of the expressions of R, ;(r)

are here reported
3/2
V4
ot = () "2
' a

zZ\*? z
Ryo(r) = (251) (2— ar) e 4/

Z\N"? zr
Ry (r) = <2a> —ﬁae Zrf2a,

1.7 Solutions of the Three Dimensional Schrodinger Equation

Let us now discuss the three dimensional solutions of the Schrodinger equation in
full generality. We start from

h2
<2mV2—U+E> v=0
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and we will choose an appropriate coordinate system according to the symmetry
of the problem. This choice is crucial to get a separable differential equation and a
simple form for the potential. The standard example is the hydrogen atom where the
choice of spherical coordinates and a potential which is dependent only on the radius
naturally lead to variable separation. Once this is done, the left over problem is to
solve a one dimensional differential equation. The coefficients of these equations
have pole singularities. There is only a finite number of coordinate systems leading
to separable equations and their singularities can be classified according to their
number and type. The solutions are usually classified in mathematics manuals, but
to access these results some preliminary work is needed. This paragraph is meant
to be a guide on how to use these results, neglecting all mathematical rigor and
giving only the results of the theorems we will need (not many indeed) without
demonstrations. The starting point is the study of the singularities which leads to
the classification. Let us start with the one dimensional differential equation

V' +px)y +q(x)y=0

where y = y(x) is the unknown function, and p(x), ¢(x) some coefficients. Then, we
define the different kinds of singularities associated with p(x) and g(x).

A point xp(xp # +o0) is ordinary if p(x) and g(x) are analytic functions (without
singularities) in a neighborhood of x¢. As an example, take the two equations

y”—exy:()
Ky —y=0.

In the first, all the points xg (xg 7 +oo) are ordinary. In the second, all the points x,
except xo = 0, 4-c0 are ordinary. As for the behaviour close to an ordinary point xo,
the Fuchs theorem guarantees that the solution may be expanded in Taylor series,
and that the radius of convergence of this series is at least equal to the distance
between xg and the nearest singularity in the complex plane . For example, take the
equation

(P +1)y +2xy=0

that is of the first order for simplicity. The solution is y = 1/(1 +x?) that can be
expanded in Taylor series with radius of convergence equal to 1, that is the distance
between xp = 0 and i in the complex plane.

A point x(xg # +o0) is a regular singularity if p(x) has at most a single pole and
q(x) at most a pole of order two, i.e. they are of the form

_ o
i) = (x—x0) ( (x—x0)?

with pg and go non singular coefficients . To give some examples, consider the three
equations
(x—2)%"—xy=0
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2
oy tay=0

x3y// +
x—1

P an X
x—1
The first equation has a regular singularity in xo = 2, the second has regular singular
points in xyg = 0 and x¢p = 1, the third has a regular singularity in xo = 1 and a
singularity that is non regular in xy = 0.
In the case of regular singularities, a well developed theory exists and, in partic-
ular, Fuchs proved that these equations always possess a solution of the form

y +xy=0.

y(x) = (x—x0)*F(x)

where « is called indicial exponent, and F(x) is an analytic function in a neighbor-
hood of xp . F(x) can be expanded in Taylor series with radius of convergence at
least equal to the distance between xo and the nearest singularity. To make an exam-
ple, let us consider a second order differential equation with constant coefficients

/

4 4
Y=Y+ 5y=0
X X
that, with the substitution x = ¢’, becomes

Y'(1) =5y (1) +4y(1) = 0.

To find the solution we use the ansatz y = e*. Substituting, we get the equation
for the index: o> — 50 +4 = 0 which is solved by o = 1,4. With respect to x, the
general solution is y = ax 4 bx* where a, b are integration constants. This makes the
Fuchs solution look more familiar. The Fuchs solution is more general than what
we just saw in this example since it can have singular points. If two solutions of the
indicial equation are coincident, the second solution in the neighborhood of x( looks
like
y(x) = (x—x0)*F (x) In(x — xp).

A point xy # +oo is an irregular singularity if it is not an ordinary point or a regular
singularity .

To control the singularity at xo = +oo, the strategy is the following: we first
change variable as

— = — = 42—
dx dt dx? dr? + dt

X =

1od_ ,d & dad
t

and then study the equation close to r = 0. For example, consider

r Y
A
Y 2x
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This equation has a regular singularity in xo = 0. With the change of variable x = 1/z,
we get
y(®)

2t
and we see that #p = 0 (that means xp = +o0) is a regular singularity.

We are now ready to classify the solutions in terms of the singularities of the
equation. We will explicitly treat the cases with one, two, and three regular singu-
larities. We will also treat a case with both regular and irregular singularities. This
will allow us to discuss the relevant properties of the hypergeometric series and con-

fluent hypergeometric functions that we will encounter in the exercises proposed in
this book.

Y()+57-=0

¢ 1 regular singularity. The equation takes the form

/"

y +

!

y=0
X—a

where the coefficient of the first derivative must be 2 not to have a singularity at
+-o0. The solution is

G
(x—a)

y=C+
where Cy,C; are the integration constants.

e 2 regular singularities. When we have two regular singularities (say in a and b),
a typical example is provided by the equation

p (Atu—1 A4p+1Y,  Au(a—b)?
T x—a x—b (x—a)z(x—b)zy'

Let us first change variables with z = (x — a)/(x — b), so that x = a, b implies z =
0, 4oo. The differential equation for y(z) with regular singularities in z = 0, 4-oo
has the form

V' =By +Ly=o
Z Z
with p = A+ — 1, = Au. With this notation, A and u are the solutions of
the indicial equation close to z = 0. We also remark that there must be a relation

between the indicial exponents in order to have a regular singularity at infinity.
The solution is

A u
xX—a xX—a
y=Ci+Gt =C +C;
x—b x—>b

where C, C; are constants of integration. If L = y the solution becomes

A
y=7HC+Cylnz) = <"“> (C1 +Chn <x“>> .
x—b x—
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e 3 regular singularities. This is the most interesting case, since it leads to the
hypergeometric series. We have already seen how a solution looks like around
regular singularities. Given an equation with three regular singularities, we first
send these points to 0, 1, +o0. Then, we divide the solution by x*, (x — 1)ﬁ , where
o, are solutions of the indicial equation. The resulting differential equation
has a solution, F(x), which is called hypergeometric series or hypergeometric
function; we must put our differential equation in this form to use the known
formulae in the literature. We then start from the following general form of the
equation with three regular singularities in the points a, b, ¢

AL (a—b)(c—a) up'(b—c)(a—b) v (c—a)(b—c) }y
(x—a)x=b)(x—c)  (x—a)(x=Db)*(x—c) (x—a)(x—b)(x—c)?

known as Papperitz-Riemann equation. A, A', i, ', v, v’ are the solutions of the
indicial equation for the singularities a, b, c. To send a, b, ¢ to pre-assigned values,
we must change variables according to

_ (x—a) x:(}/afcz) _b-c
MCER v e

To have 4o as a regular point we must, furthermore, satisfy
AN +pu4+p' +v+v =1.

The differential equation becomes

A4+A -1 —1
y= | At LRt ]y,+
z z—1
AA } y
— T 4 v(A+ A "fv—1)| ——.
z z—l+ A A Fu+p+ ) 72(z—1)

To get to our final form, we must first make the indices as simple as possible.
Let us then take a new solution in the form y(z) = z*(z — 1)*F(z). Substituting,
we get a differential equation for F(z). This equation is again of Fuchsian type
with singularities at 0, 1, +oo. Due to our substitution, it is easy to verify that the
indices around 0, 1,40 are (0,4’ —A),(0, 1/ —u),(Vv+A+u,1—A" —pu’' —v)
respectively. Since two indices have been set to zero, we are left with another
four which must satisfy the constraint that their sum must be one. Therefore, the
final number of independent indices in the differential equation is three. We then
call A and B the indicial exponents in z = 4o, and 1 —C, C — A — B the two non
zero indicial exponents for the points z = 0 and z = 1, respectively. In the new
variables, the differential equation becomes

Z2(z—1)F"+[(A+B+1)z—C|]F' +ABF =0
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that is the second order differential equation defining the hypergeometric series
F(A,B,C|z). Before giving information on this function, let us recapitulate the
steps which brought us to this point: starting from the Papperitz-Riemann equa-
tion, which is the most general form of a differential equation with three sin-
gularities, we sent the latter to three standard positions 0, 1, +cc. Then we made
the indices as simple as possible, scaling the solution for the factors which give
the singularities. The final result is the standard form of the differential equation
which defines the hypergeometric series. Let us now analyze the solution. The
series expansion for F(A,B,C|z) is (note that F (A, B,C|0) = 1)
AB  A(A+1)B(B+1) ,

F(A,B,Clz) =1+ 2
(A.B.Cl) =1+ 52+ —5cc+1)

The general solution for the second order differential equation is given by
F(z) =CiF(A,B,Cl2)+Cz “F(1+B—C,1+A—C,2—Cl7)

where C1, C, are constants of integration.

The last argument we discuss is the analytical continuation of the hypergeo-
metric series. The hypergeometric series close to the origin is the one discussed
above: it possesses a radius of convergence equal to the distance between z =0
and the nearest singularity in the complex plane , i.e. z = 1. How to connect the
behaviour of the hypergeometric series close to the origin to that close to the
other points of singularity? The formula giving the relation between hypergeo-
metric series with variables z and 1 —z is

r(C)r(C—A-B)

[(C—AI(C-B)

r'(C)F(A+B—C)
r'(A)r()

F(A,B,C|z) =

F(A,BLA+B—C+1|1—-2)+

(1—2)*BF(C—A,C—B,C—B—A+1|1—72).

A similar formula holds for the relation between hypergeometric series with vari-
ables zand 1/z

F(A,B,C|z) —m(z)—AF(A, 1-C+A,l fB+AE)+
M(—Z)—BF(B, 1-C+B,1 +B—A\%),

Regular and irregular singularities. In this case it is standard to put the regular
singularity in zero and the irregular one at 4. This type of equation is found
after having separated the variables for the kinetic operator in the case of the
hydrogen atom. Let us start with

V' +p(x)y +q(x)y=0
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and

w q(x):_khri_,_iz

plx) = T PR

with k, a, A and A’ constants. This is not the most general choice for p(x), g(x),
but is the most popular for applications of interest for physics. Looking for a
solution of the form y(x) = x* f(x), with A a solution of the indicial equation
around the singularity in zero, we get

Y
f”+wf/+<2;xk2>f—0.

X

To study the point at infinity we change variables according to x = 1/¢. With
respect to this variable, the differential equation becomes

1+ =2 20 k?
f/l+tfl+<t3t4)f_0'

The singularity is irregular due to the term 2a/t> — k? /t* on the Lh.s. To remove
the singularity in k> /#*, we have to seek the solution in the form f(r) = ¢ */'F (1),
and the equation becomes

I __ ! _
F”+<?§+1+kt /1>F,_k(1 /l;;)L) 20,

which has an indicial equation with a solution F(r) ~ tP. After having neglected
all the less divergent terms, this equation is

2B —k(1—A' +A)+2a=0

with solution B = (1 — A’ +2)/2 — a/k. A solution for F(t) is tPv;(t), where
v1(t) is an analytic function in # = 0. We can now go back to the original equation
and use y(x) = x*¢ ¥F (x) to obtain

) R RAY
F,,+<1+l ),_Zk)F,_k(l—HL M2
X

X
Ifwesetz=2kx,C=1+A—-A,A=(1+A1—-1")/2—a/k, we get
ZF"+(C—2)F —AF =0

that is the equation defining the confluent hypergeometric function with solution
F(A,C|z). This name is due to the fact that this equation can be obtained from the
case with three regular singularities, by making the singularity around 1 merge
with the singularity at 4. The confluent hypergeometric function F(A,C|z) is
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defined by the series

Az AA+1)Z2
FAC]R) =14+=—4+" 22 4
A =1+enteerna *

and the series reduces to a polynomial of degree |A| when A = —n, with n a non
negative integer. A general solution for the differential equation is given by

1 _ 9/
y(x) :Clekax’lF(# - %, 1+ 24— A/ |2kx)+
. ’
Cze_kxx}vF(# - % 1 — A+ A'|2kx)

where Ci, C, are constants of integrations. When treating problems with spheri-
cal symmetry, it will be useful to connect the confluent hypergeometric functions
to the spherical Bessel functions. The formula of interest is the following

1 1 \"2 .
J 1(x)=— | =x e*F(n+1,2n+2| —2ix
RS -

where J,, 1/, are the Bessel functions of half-integral order, with the property

Jn(x) = \/z‘]n+l/2(x)

where j,(x) are the spherical Bessel functions. For the first values of n we get

; sinx sinx cosx . ) 3 1 3cosx
Jolx) = — JI(X)ZT—i Ja(x) = sinx S22

X X X X X

1.8 WKB Method

It is a distinctive feature of Quantum Mechanics that particles exhibit wave-like
properties. In particular, the De Broglie equation relates the wavelength A to the
momentum p of a free material particle

h
=7
When the De Broglie wavelength of a particle becomes small with respect to the
typical dimensional scale of our problem, our system is said to be quasi-classical.
In this limit, using an analogy with the case in which geometric optics is derived
starting from the equation of the electromagnetic waves, the wave function can be
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sought for in the form (we take the one dimensional case)

Substituting this expression in the stationary Schrodinger equation, we get

Ci)z i <ZZ§> —2m(E—U(x)) = 0.

The so-called quasi-classical approximation consists of the expansion of S(x) in
powers of &

2
S(x) = So(x) + ?Sl(x) + (?) Sa(x)+...

Using this expansion in the original equation and imposing the consistency order by
order in /i, we get

ﬁ(fﬁ) -2 <625'xz> — _M.

The first equation sets the zeroth order approximation: the wave function is a linear
combination of the exponential functions e/ P()4x \where p(x) = \/2m(E — U (x))
is the classical momentum of the particle. The zeroth order is obtained by neglecting
the second order derivative with respect to the square of the first order derivative

(%)
h‘ dx? aE

(%)

dx

The zeroth order approximation will then be valid in the limit in which the os-
cillations of the wave function are small with respect to the typical scale of our
problem or when the momentum is large. This approximation will not be valid in
the points in which the classical motion gets inverted since in the inversion point
p = 0. The WKB approximation (after G. Wentzel, H.A. Kramers and L.Brillouin
who put forward the proposal for the first time in 1926) consists in solving the first

two equations in the series for 7. After having solved the first equation, we can solve
the second getting S| = f% In p + const. The wave function becomes

‘ldp_l

p2dx| 2w

@
dx

v = A ifpdx + B ifpax

VP v
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The approximation is now valid for %|S,| < 1. The third equation in 7 becomes
(after having substituted the Sp(x) and S} (x) we have just found)

pdS_ L (&A1 (AN
dx 8w \ dx? 167 \ dx

and, integrating once

=5 () * [t (% )

We see that the condition 7|S>| < 1 is satisfied when |dA /dx]| is very small.
Within the WKB approach, the requirement that the wave function is not multi-

valued leads to :
fpdx: (n—|— 2>h n=0,1,2,3,...

This is known as the Bohr-Sommerfeld quantization rule. In the above expression,
$pdx=2 f;‘lz pdx, where x> are the turning points of the classical motion.

1.9 Perturbation Theory

When an eigenvalue problem is too complicated to be solved exactly, one can use
static perturbation theory. The theory of perturbations is an extremely important
computational tool in modern physics. In fact, it allows to describe real quantum
systems whose eigenvalues equations are, in general, not amenable to an exact treat-
ment. The method is based on the introduction of a “small” perturbation in the
Hamiltonian which allows for a series expansion. Let us suppose to have exactly
solved the eigenvalue problem for the Hamiltonian Hy

oy = E”|y").

Let us then consider the potential energy €U, with € < 1. The eigenvalues and
eigenfunctions of the Hamiltonian A = Hy + €U

H|vi) = Ex|we)

may be found with a power series in the parameter €. Let us then start with the case
where the eigenvalues of the Hamiltonian Hy are not degenerate. The eigenstates are
expanded as

i) = W) + Y el i)
n#k



22 1 Summary of Quantum and Statistical Mechanics

and, substituting this expansion back in the original equation, we find

(Ho+¢€U) <|‘I’1£0)> + chkhlfzgo))) = Ey <|‘I’1£0)> + chk|q/,§°)>> :
n#k n#k

The coefficients c¢,; and the energy E; are expanded as
E=E" +eAE) +2AEP +- cp=ecl) 42 4.

Projecting the Schrédinger equation on the eigenstate <l[/£|, and retaining only the
first order in €, we get

AEIEI) = U

(1) Unk
ok =~y Kk #n
£ T L0 Lo

Kk — n

where the matrix element U, is defined as

Unic = (|01 y”).

This procedure can be extended to the second order in €, and we find the correction

) | U]
AE,” = _—
k r;.k E/EO) “EO

When the eigenvalues of the Hamiltonian Ho are degenerate, let 1//,5?), ,E;)) ,...bethe

eigenstates of Hy corresponding to the same energy E. At the first order in &, the
correction to the unperturbed eigenvalue is found by diagonalizing the perturbation
matrix Uy = <l//[<,0>\l7|l//s<0)> with p,s = ki, ko, ....

Let us now proceed with the properties of time dependent perturbations. To this
end, we consider a quantum system described by a time independent Hamiltonian
Hy. Let us then assume that at time 7 = 0 we act on such system with time dependent
forces until a later time ¢t = 7. Let us further suppose that the contribution of these
forces to the Hamiltonian is given by a perturbation A’ such that

H =0t 0<t<rt
A =0 t<0,t>1.

The probability that this perturbation generates a transition from the state |n) to the
state |m) (both of them eigenstates of Hy) is given by the formula

1
Pm,n:hﬁ

Em—En
gty gy

[ imo@me
0
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1.10 Thermodynamic Potentials

Thermodynamic systems are described by measurable parameters, such as energy
E, volume V, temperature T, pressure P, etc. The transfer of heat and energy in
the various processes involved is regulated by the laws of thermodynamics. For
infinitesimal changes towards another state, the conservation of the energy for a
thermodynamic system can be stated as follows

dE = §Q +dW

where dE is the infinitesimal change in the internal energy, 6Q the amount of
heat exchanged and dW the infinitesimal work done on the system. This is known
as the first law of thermodynamics. For example, in the case of a fluid, we have
dW = —PdV (this is a case frequently considered hereafter), where P is the hydro-
static pressure and V the volume. It is obvious that a positive work (compression,
dV < 0) done on the system reduces its volume, in agreement with experimental
observations.

The second law of thermodynamics states that no thermodynamic process is pos-
sible whose only result is the transfer of heat from a body of lower temperature to
a body of higher temperature. Since the quantity 6Q is not an exact differential,
one introduces the entropy S as the thermodynamic potential whose change for an
infinitesimal and reversible transformation between two states at an absolute tem-
perature 7 is
_ %0
=7

Moreover, if the number of particles changes, the first law becomes TdS = dE +
PdV — ndN, where U is the chemical potential. The differential of the entropy S is
therefore written as

ds

1 P
dS = —dE+—dV — Ean
T T T
so that E, V, N are the natural variables for the entropy S. The derivatives of S with
respect to the natural variables lead to specific thermodynamic quantities

1 as P as u as

r(e), 7 (), 1),
Consistently with these constraints, the state of equilibrium is the state with max-
imum entropy. When the control variables of a system are different from E, V,
N, other thermodynamic potentials are used. These are the enthalpy H(S,V,N),
the free energy F(T,V,N), the Gibbs potential ¢(T,P,N) and the grand potential

Q(T,V,u). Their definitions are given below, together with their natural variables
and the resulting control variables obtained after differentiation:

e Enthalpy: H=E+ PV

dH =TdS+VdP+ udN = H(S,P,N)
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r— (28 v (28 _ (9"
“\0s )y T \or )y FTNON ),

e Free Energy: F =E—TS
dF = —SdT — PdV + udN = F(T,V,N)
JF JoF JoF
—S = P —P = _ “ = _ .
T V.N v T,N oN TV
e Gibbs Potential: ® =F+PV =H—-TS

d® = —SdT +VdP+ udN = &(T,P,N)

_s_ (22 v (2% _ (922
“\or ) T \aP )y MT\ON ),

e Grand Potential: Q = F — uN

dQ = —SdT — PdV —Ndu = Q(T,V, 1)

S_<3Q) P__<99> N__<99>
T )y W ) o)y

From all these relations, a variety of useful constraints between second order deriva-
tives of the potentials may be obtained. For example, considering the enthalpy, we

have
c_(Y (o
-\ 95 /) py C\9P gy

We derive the first equation with respect to P and the second with respect to S

9 (oH _ (2 (o1
IP\IS )py) . \9S\P /sy o

from which we find (using Schwartz lemma for mixed partial derivatives) the fol-

lowing identity
oy (v
IP)sy \9S)py

that is the mathematical condition for dH to be an exact differential. The associ-
ated relation is called Maxwell relation . Proceeding in a similar way for the other
potentials, one may prove other Maxwell relations

s\ (o
A% T,Ni T )yn
B (v

oP T’N_ oT ) py
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asy _(op
v m_ oT )y,

Another set of relations is obtained by considering that the thermodynamic poten-
tials are extensive . For example, take the free energy F = F(T,V,N): if we rescale
the volume V and the number of particles N with the same rescaling factor ¢, the
free energy rescales accordingly

F(T,V,(N) = (F(T,V,N)

that implies F = N f(T, %), where f is the free energy density.

In order to quantify the change of temperature as a function of the absorbed heat,
specific heats are frequently introduced . By definition, the specific heat of a system
characterizes the heat required to change the temperature by a given amount. One
usually defines a particular heating process by keeping fixed some thermodynamic
variable. For a fluid, we will frequently use the specific heats at constant volume

and pressure
as U
=T (aT>V,N - (aT)V,N

A oH
CP:T(aTLN: (ar)m'

When working with partial derivatives of thermodynamic variables, it is sometimes
convenient to use the method of Jacobians. Let us consider two generic functions
u(x,y),v(x,y), where x and y are independent variables. The Jacobian is defined as
the determinant

S = 20 o (%), (%), _<8u) (av> (au) (av>
A - du dv “\ox av/)  \ov ox /)
I (x,y) (‘W)x (97)); ox) \dy/, \ady) \ox/,
The Jacobian has the following properties
du,v)  d(vu) d(vu)
d(xy)  dxy) d(yx)
d(u,y) (du
d(x,y)  \dx

with ¢ and s two other generic variables.
When dealing with thermodynamic states, it is also common to find an equation
of state, i.e. a relation between three thermodynamic variables, say x, y, z. In the
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most general case, such equation of state may be formulated as

flx,y,2) =0

with f(x,y,z) some given function. Such relation clearly reduces the number of
independent variables from three to two. On the manifold where the three variables
x,y,z are still consistent with the equation of state, we get

o (¥ 2 of
=0 (50) o (5) o+ (3)

>

from which

It follows that
9x\ (I (9z) _ _,
dy) . \dz) \ax),

that is a chain rule for x, y, z which can be used as an equation relating the variables
entering the equation of state.

1.11 Fundamentals of Ensemble Theory

Let us denote by ¢ = (g1, 42, - - -,¢n) the generalized coordinates of a system with n
degrees of freedom, and p = (py, p2,. .., pn) the associated momenta. For example,
in the case of a fluid with N particles in three dimensions, we have n = 3N. A mi-
croscopic state is defined by specifying the values of the 2n variables (g, p), and the
corresponding 2n dimensional space is called the phase space. A given microscopic
state evolves in time along a trajectory given by the solution of the following 2n
differential equations

dp_ (M da_(H\ |,
a — \ g a \op: FT DSl

where H = H(p, q) is the Hamiltonian of the system and where the derivative with
respect to g; (p;) is performed by keeping fixed all the other variables. For a conser-
vative system, this trajectory lies on a surface of constant energy
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sometimes called ergodic surface. During the finite time of a measurement, micro-
scopic fluctuations are so rapid that the system explores many microstates. There-
fore, given some observable O(p, q), its time average is equivalent to the average
over an ensemble of infinite copies of the system

T

where the average (...) is computed with some probability density function of the
phase space variables f(p,q). The resulting classical average is

(0)= /f(p’q)O(p,q)d”pd”q

It has to be noted that in Quantum Mechanics, since p and g cannot be measured
simultaneously, the concept of the phase space is somehow meaningless. Never-
theless, a quantum stationary state, say |y;), with a well defined energy E;, can be
defined from the stationary Schrodinger equation

Aly:) = E|y) i=1.2,...

and a microscopic state is defined as a superposition of a set of states |y;), chosen
to be consistent with some macroscopic requirements. Let us call .# this set (or
ensemble). Consistently, we have some expectation value for the observable (an
operator) O on the i-th state

0i = (yi|Olwi) ie
and the average over the above mentioned set is
(0)=Y oif
icH

with f; the probability associated with O;. Usually, one defines the density matrix
corresponding to a given ensemble as
p=Y wilvi)(vil
icH

with w; the weight (characteristic of the ensemble) associated with the state |y;).
The corresponding ensemble average of an observable O is

() = Yic.o wilwi|O|w;) _ YieawiOi _ Tr(p A).
Yicn Wi Yicawi Tr(p)

Yicwwi

Therefore, the probability previously mentioned becomes f; =
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1.11.1 Microcanonical Ensemble

The microcanonical ensemble describes a closed physical system. For example, in
the case of a thermodynamic fluid, the associated probability distribution function
assigns equal probabilities to each microstate consistent with a fixed energy E, fixed
volume V, and fixed number of particles N. The number of states Q(E,V,N) is
connected to the thermodynamic entropy

S(E,V,N) = kInQ(E,V,N).

This equation is known as the Boltzmann formula, k = 1.38 x 10723JK~! is the
Boltzmann constant. For a system with a discrete set of microstates, the number of
states is just a discrete sum. When dealing with a continuous set of microstates, say
a classical fluid with N particles and Hamiltonian Hy(p,q) in three dimensions, the
phase space volume occupied by the microcanonical ensemble is then

d3di3Nq
h3N

ME%M:/

Hy(p.q)=E

where p = (p1,p2,...,p3n) and ¢ = (41,42, -..,q3n) are the momenta and positions
of the particles. The quantity & is a constant with dimension of action (~ [pq]),
useful to make Q(E,V,N) dimensionless, and it is appropriate to identify it with the
Planck constant. It represents the minimal volume that can be measured according to
the Heisenberg indetermination principle. When the number of degrees of freedom
is very large (N > 1) one can define the phase space volume X(E,V,N) enclosed
by the energy surface Hy(p,q) = E

d3Np d3Nq
h3N

ﬂammzf

Hy(p.q)<E

and show that, apart from corrections of order InN, the following definition of en-

tropy
S(E,V,N) =kInX(E,V,N)

is equivalent to the previous one.

1.11.2 Canonical Ensemble

The canonical ensemble describes a system with a fixed volume V, fixed number
of particles N, and in thermal equilibrium with a reservoir at temperature 7. The
system can exchange energy with the reservoir. A state is specified by the energy E
(we use the notation E for the energy of the microstate and U for the averaged one)
and the associated statistical weight is proportional to e PE, where B =1/kT. The
normalization factor, called canonical partition function, takes the form (still for the
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classical fluid considered in section 1.11.1)

1 _
On(T,V,N) = T /e BHN(P.) 3N 1 3N ¢

The factor N!, called Gibbs factor, accounts for the indistinguishability of the parti-
cles. The Thermodynamics of the system is obtained from the relation

F(T,V,N) = —kTInQn(T,V,N)

where F(T,V,N) is the thermodynamic free energy.

1.11.3 Grand Canonical Ensemble

The grand canonical ensemble is used to describe a system inside a volume V and in
equilibrium with a reservoir at temperature 7" and with a chemical potential . Both
the energy and particles exchanges are allowed in this case. A state is specified by
the energy E and the number N of particles, and the associated statistical weight is
proportional to zV e PE where 7 = ¢P" is called fugacity . The normalization factor,
called grand canonical partition function, takes the form (still for the classical fluid
considered in section 1.11.1)

2(T,V,u) =Y. NOn(T,V,N) = Y P*N O (T,V,N)
N N

where Qn(T,V,N) is the canonical partition function seen in section 1.11.2. The
thermodynamic interpretation of this ensemble is given by

PV
ﬁ = IHQ(T,V,[J)

where P is the pressure of the system.

1.11.4 Quantum Statistical Mechanics

When we deal with quantum mechanical problems where indistinguishable particles
are present, we need to distinguish two cases: particles with integer spin obeying
the Bose-Einstein statistics and called bosons; particle with half-odd-integer spin
obeying Fermi-Dirac statistics and called fermions. A generic energy state can be
occupied by an arbitrary number of bosons; for fermions, because of the Pauli ex-
clusion principle, it can be occupied by at most one particle. Quantum mechanical
effects usually emerge at high density and low temperatures while, at high temper-
atures and low densities, the classical limit (i.e. the Maxwell-Boltzmann statistics)
is recovered. A system of not interacting quantum particles is easily treated in the
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grand canonical ensemble, where
1
PV = lel’L,@(T7 V,u) — kTZ _ hl(l +aefﬁ(8*u)).
a
€

In the above expression, € stands for the single particle energy and a discrete spec-
trum has been assumed (the continuous case is recovered by properly replacing the
summation with an integral). The Bose-Einstein statistics corresponds to a = —1, the
Fermi-Dirac statistics to @ = 1, and the limit a — 0 (or z = Pr < 1) corresponds to
Maxwell-Boltzmann particles. The mean occupation number (n¢) associated to the
energy level € is given by

( >__l dln2 B 1
fel = B\ ode ﬁ“_eﬁ(s—u>+a'

1.12 Kinetic Approach

When working with very large volumes, the single particle energy levels would be so
close, that a summation over them may be replaced by an integral. Let us indicate
with € = €(p) the single particle energy, solely dependent on the absolute value
of the momentum p. Using the grand canonical ensemble, one gets the following
results for the average number of particles and pressure of an ideal quantum gas in
three dimensions

Vdip 4nV [t 1 )
N:/(np> Bon /0 TePe 1 a’ dp

pfﬂ/“o# deN o,/ de ="
"33 Je eBera\Pap)P P T3\ ap/) T3V

where v is the absolute value of the speed of each particle, n = N/V the particles
density, and where we have used

T de Bhe 1 de
el s / L ([ 4EN oy
< d£> /0 " (pdp> P h TTePeta <pdp> P

P%_

T Foo 1
/0 (np)d®p /0 —————pdp

zlePe+a

The above pressure arises from the microscopic motion of the particles and can
be deduced from purely kinetic considerations. To show this point, let us take an
infinitesimal element of area dA perpendicular to the z axis and located on the wall
of the container where the gas is placed. If we focus our attention on the particles
with velocity between v and v + dv, with f(v) the probability density function, the
relevant number of particles that in the time interval dt are able to hit the surface
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wall within the area dA and with velocities between v and v + dv is
dNyir = n(dA-v)dt x f(v)dv.

Due to the reflection from the wall, the normal component of the momentum un-
dergoes a change from p, to —p_; as a result, the normal momentum transfered by
these particles per unit time to a unit area of the wall is 2p,v.nf(v)dv. By definition,
the kinetic pressure of the gas is

~+o0 ~+oo o0 2 n
P= Zn/ dvx/ dvy FW)pv.dv, =n{pvcos” ) = §<pv>
—oo —oo 0

with 6 the angle that the velocity is forming with the z axis. The previous equation
is indeed the very same equation obtained with the grand canonical ensemble with
the specification that f(v) is just the Bose-Einstein or Fermi-Dirac probability dis-
tribution function. In a similar way, we can determine the rate of effusion of the gas
through the hole (of unit area) in the wall

+oo +oo too n
R=n[ av [ v [ popan. =20,
—oo —oo0 0

1.13 Fluctuations

In the previous sections we have treated thermodynamic systems in equilibrium.
Nevertheless, fluctuations occur around the equilibrium states, and a precise prob-
ability distribution law may be derived in the framework of statistical mechanics.
If we look at a system (s) in contact with a reservoir (r), the total variation of the
entropy AS = AS; + AS, =S5 — Sp with respect to its equilibrium value Sy is

AS=S—Sy=kInQ;—kIn&

where Q2 (£y) denotes the number of distinct microstates in the presence (or in the
absence) of the fluctuations. The probability that the fluctuation may occur is then

Qy AS/k
P % e .

If the exchange of particles between the system and the reservoir (whose tempera-
ture is 7T') is not allowed, the total variation of the entropy AS can be expressed only
in terms of the variation of the system’s temperature (A7), entropy (AS;), pressure
(APFy), and volume (AVj) to yield

1
AS = ~5T (AS;AT; — APAVY).
We may now drop the subscript s knowing that each quantity refers to the properties

of the system and write down the probability as
poc efﬁ(ASATfAPAV)
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We note, however, that only two of the four A appearing in this probability can
be chosen independently. For instance, if we choose AT and AV as independent
variables, then AS and AP may be expanded with the help of Maxwell relations for

Sand P
as as Cy JaP
AS=|==| AT — | AV =—AT -— | AV
(57),27+(5%), 4 = Fa7+(57),
P P P 1
AP = a— AT + a— AV = 8— AT — —AV
ar ), v ), aT ), krV
where we have used the isothermal compressibility k7 = —% (%)T. The associ-

ated probability is then

Cy 2 1 2
p o e w2 (AT)"— ATk V (av)

which shows that the fluctuations in 7 and V are statistically independent Gaussian
variables with variances related to the specific heat and the isothermal compressibil-

ity.

1.14 Mathematical Formulae

In this section, useful formulae are given and briefly commented.

e Gamma Function. The Gamma function is defined by the integral
+o0 .
r'(v)= / e X dx  v>0.
0
After the integration by parts, we can prove that
1
r'v)= ;F(v—i—l)

which can be iterated to give

Fv+l)=vx(v-1)x(v=2)x..x(14+p)xpxT(p) 0<p<L

Therefore, for integer values of v (say v = m), we have the factorial representa-
tion

rviy=rmj=m—-1)'=(m—-1)x(m—-2)x(m—3)...x2x1

while, when v is half-odd integer (say v =m+ %), we have

o (ns )= (o= (o) (o) ed o

X

N =

3
2



1.14 Mathematical Formulae 33

where we have used

Stirling approximation. We start from the integral representation for the facto-
rial
o0
rvin=vi= [ ear v>0
Jo

and we derive an asymptotic expression for it. It is not difficult to see that when
v > 1, the main contribution to this integral comes from the region around x ~ v,
with a width of order /Vv. In view of this, if we write

x=Vv++/VvE

and plug it back into the integral, we get

. W(Z)V/t;e—ﬁi <1+\%>vd§.

The integrand has a maximum in & = 0 and goes very fast to zero on both sides
of it. We therefore expand the logarithm of the integrand around & = 0, and take
the exponential of the resulting expression

VAV [t g2 8
V!:W(Z) /\Fe T AE
—\V

When v is large, we can approximate the integrand with a Gaussian and send
the lower limit of integration to infinity. The resulting expression is known as the
Stirling formula

A% \%
v!%(7> 2nv v> 1.
e

Multidimensional sphere. Consider a d dimensional space with coordinates x;
(i=1,2,...,d). The infinitesimal volume element of this space is

d
dVd = H(dx,)
i=1
and the volume of a d dimensional sphere with radius R may be written as
V= CuR?

with its infinitesimal variation connected to the d dimensional surface Sy

dVy; = S,dR = C;dR*dR.
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In the above expression, the constant C; has to be determined. To do that, we
make use of the formula

oo )
ﬁ:/ e ¥ dx.

Using an integral of this type for each of the x; involved, we obtain

oo o0 +oo oo
ni/? :/ dx; dx;... a’xde*):i'izl"l2 :/ eiRszdefldR
. 0

—oo0 —o0 —o0

where we have used polar coordinates with the radius given by

R = \/x%—&—x%—i—...—&—xfl.

We now use the definition of Gamma function to get

1 d
n? = _dac,r ( = ) =Cy(d/2)!
2 2
so that the volume and surface for the d dimensional sphere with radius R are

v, d/2 R 5 — 27d/2 i
(d/2)! d/2=1)

¢ Bose-Einstein functions. In the theory of the Bose-Einstein gas, we will use the

following integrals
(o) = 1 /*"" xVdx
8YITTW Tl

When v = 1, the integral can be solved exactly

1 dx

810 = Fy /0+°° Fermy = -2 )" = —In(1-2).

A simple differentiation of gy (z) leads to the following recurrence formula

dgy(2)
. dz

= gv-1(2)-

When z is small, the integrand may be expanded in powers of z

1 Foo ] Z2 Z3

oo oo
v—1 —x\1 2
- dx=Y >~ =74+ > 4+ 4+
gv(2) ) /0 x 1:2 l(ze ) dx 1:2 v ttoytyt

When z — 1 and v > 1, the function gy (z) approaches the Riemann zeta function

&(v)
1

e I |
1:7 - - =
av(1) m)./o SR =Yg

ZTZGV(V)-

=1
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Some of the useful values of the Riemann zeta function are here reported

CQ)=7¢ C@=g55 S06)=g;

The behaviour of gy (z) for z close to 1 and 0 < v < 1 is given by the following
approximate formula

r'l-v)

gv(e )~ v

Fermi-Dirac functions. In the theory of the Fermi-Dirac gas, we will use the

following integrals
1 Foo xV=lgy
fv(z)*l—v(v)/o Zilex‘i‘].

When v = 1, the integral can be solved exactly

1 Feo dx oo
fl(z)—r(l)/o ey =~ (e )T = In(1+2).

As for the case of the Bose-Einstein functions, we have a recurrence relation

%()—fv l()

and an expansion for small z

1 V = —
fv<z>:ﬁ/ 12 Y=Y () =S E

=1

The limit v — 1 is connected to the Riemann zeta function §(Vv)

=i [T = (155 ) e
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Quantum Mechanics — Problems



2

Formalism of Quantum Mechanics
and One Dimensional Problems

Problem 2.1.
Let A = AT be an observable operator with a complete set of eigenstates |¢,) with
eigenvalues o, (n =0,1,2,...). A generic state is given by

ly) =N (3|y1) —4ilyr))

where |y1),|y,) are orthonormal. Find N and the probability P that a measure-
ment of A yields o. What does it happen in case of degeneracy? Specialize these
calculations to the case |@,) = |;).

Solution
The principles of Quantum Mechanics are encoded in four postulates:

the first postulate states that all the information for a physical system is contained
in a state vector |y/(¢)) properly defined in Hilbert space;

the second postulate fixes the properties of the Hermitian operators that represent
the classical variables like x (position) and p (momentum);

the third postulate says that regardless the state |y(¢)) of a particle, the mea-
surement of an observable (with O the associated self-adjoint operator) produces
as result one of the eigenvalues O of O with probability P(0) = |(O|y(1))|?.
Soon after the measurement, the system is projected into the eigenstate |O) cor-
responding to the eigenvalue O;

the fourth postulate gives the time evolution according to the Schrédinger equa-
tion

in (o)) = Ay 1)

where H is the Hermitian operator known as Hamiltonian of the system.

It is the third postulate that applies here. However, preliminarly, we need to fix N in
order to normalize the wave function. A direct calculation shows that

1= (yly) = N*(9+16)

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_2, © Springer-Verlag Italia 2012
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from which N = % and
1 .
W) =5 Gly) —4ily2)).

The probability that a measurement of the observable A gives a particular eigenvalue
a, of the associated Hermitian operator, is given by the square modulus of the over-
lap between the state and the eigenstate |@,). In our case, the desired probability is

1
Py = 52 |3(6uly) — 410l yo)

In case of degeneracy, we have to sum over all the eigenstates corresponding to the
same eigenvalue. When |¢,) = |y,), we only have two possible outcomes for the
measurement, i.e. &¢; and . The associated probabilities can be calculated explic-
itly

9 16

P=— P=—
1725 27725

that correctly satisfy Pj + P, = 1.

Problem 2.2.

Consider the operators A, B,C,D,E, F and simplify the commutator [AEC' ,ﬁEﬁ ]
s0 as to show only commutators of type [X,¥], with X, chosen among the above
mentioned operators.

Solution
We start by analyzing the simple commutator [Aé, C’] Expanding it and introducing
the term ACB, we get

which is a bilinear relation also known as the Jacobi identity. By a systematic use
of this property, we see that

Problem 2.3.

When electrons impinge on a double slit, a diffraction pattern is obtained on a screen
located at distance / (a < [, with a the distance between the slits) from the slits: a
sketch is in Fig. 2.1, where O denotes the central maximum and x is a point seen
at angle 0, from a slit and 6, from the other. Let 2Ax be the position of the second
maximum. Determine Ax. For a given wavelength A, determine the momenta (p,
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Electron Beam

il

l>a

Fig. 2.1 Sketch of the diffraction pattern due to an electron beam passing through a double slit. The
slits are separated by a distance a. The diffraction pattern emerges on a screen located at distance
[ from the slits. The resulting momentum transferred to the slits is connected to the position of the
maxima of intensity in the diffraction pattern through the Heisenberg uncertainty relation. Details
are reported in Problem 2.3

and p,) transferred to the slits and verify that the product AxAp (Ap = |p1 — p2|)
agrees with Heisenberg uncertainty relation.

Solution
Electrons and any other kind of microscopic particles have wave properties in agree-
ment with the De Broglie relation

poe D

A A

involving momentum p and wavelength A. If a particle has such a high momentum
that the wavelength is smaller than all the characteristic lengths in the experiment,
the typical wave phenomena like interference and diffraction may be hard to see.
The electron mass is light, and if the energy is in the Electronvolt (eV) range, p is
such that A is comparable with the typical lattice spacing in many crystals. Anyhow
one can see wave phenomena in experiments such as electron diffraction through
thin metal films. The present problem illustrates this situation in the simple special
case of the double slit. Electrons hitting x on the second screen are deflected by the
first screen while passing it. Suppose the screen is set in motion by the electron and
we can calculate the momentum transfer from its recoil speed. We need to consider
only the vertical components of the momenta. The electron trajectories arriving at
point x through slit 1 or 2 have different deflections, and the momentum transfer is
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different, namely

h h h h
= —sinf ~ -0 = —sinb, ~ —-06
P 1 1~ p2 1 e
where we have assumed that 8, 6, are small, corresponding to the condition that
the distance between the slits is very small respect to the distance of the screen from
the slits, i.e. a < [. Due to the geometry of the problem, we get

x—§a
tan 6, = 7 ~ O
x—i—%a
tanezzfzez
from which we obtain
h . . h ha
AP:|P1—P2|:I|sm91—sm92|zz|91—92\:ﬁ.

Let us consider two waves with the same frequency and at the same time ¢:
Ale’(“””’l), Aze’(‘”’+¢2), with A|,A; real numbers. Let I be the intensity of the wave
resulting from the superposition of the two

I =A3+A342A1Ac08(¢1 — ¢n).

The term cos(¢; — ¢») is responsible for the phenomenon of interference, which is
constructive if

27 21
01 — ¢ = kx1p = kasin = Tasine ~ 7a@ =2mm
with m an integer number and x1; the difference in the distances travelled by the two
beams arriving in x. As for the angle 6, we can use the average value of 0; and 6,
given above
(x+3a)+(x—3a) x

1
0=-(0+6,)~ =-.
5(01+62) 21 I

Let 2Ax be the distance between the second maximum and the origin O. We may
see Ax as the maximum error allowed on the distance, i.e. if the error is above Ax
we are unable to distinguish the location of the maxima. The relation between Ax,
aand A is

2A A
g2 _~
l a
where we have used the previous result with m = 1 and 8 = %. The uncertainty

principle in this experiment takes the form: any determination of the two possible
alternatives for the electron destroys the interference between them. In other terms,
any measurement that allows one to know which slit the electron went through de-
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stroys the interference. Putting together all the results for Ax and A p, we obtain
AxA ! h
XAp=—
P=3

that is Heisenberg uncertainty relation. A possible interpretation is that the first
screen recoils due to momentum transfer and this causes a shift of order Ax on
the second screen.

Problem 2.4.

Consider a one dimensional quantum harmonic oscillator with frequency @ and
mass m. Using the creation and annihilation operators to represent the position op-
erator £, determine the matrix elements ()22)0,0, (£2) Ll ()?2)2,2, ()22)0,2, ()25)1075. The
matrix element (£),, , = (m|£|n) is defined on the eigenstates |n) of the Hamiltonian
with eigenvalues E, = (n+ %)hw withn=0,1,2,3,....

Solution
The relation between the position and the creation and annihilation operators is
Xo

V2

£=Z(a+a")

where xp = 4/ % is the characteristic length scale of the oscillator. The momentum
operator p is written as

h
P ~ At
=—i a—a
p=—i )
and the Hamiltonian becomes
A2

N 1 1 1
H’§n+2mwﬁ(ﬁa+2n>hw<ﬁ+2n>hw

where we have defined the number operator /i = d'd such that 7i|n) = n|n). The
creation and annihilation operators satisfy the commutation rule

a=aa" —n=1.

Moreover, we know that 4 and 4" act as step down and step up operators on the
eigenstates |n)

alny =+/nln—1)  a'ln) =vVn+1jn+1)
from which we see that

In) = —=(a")"(0).

-

Since 4" increases n by 1 while d decreases n by 1, the only terms in the expansion of
(G@+a")" that contribute are those with an equal number of d@ and d'. Thus, squaring
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X one finds the operator identity

2 2
X, B X,
2= 50(&2+(a')2+aaf+afa) = Eo(a2+(af)2+11+zﬁ)

and
2
(%) = 50(1 +2n)
and we find
(£)00 = 12 &)= o (£)22= o2
9 2 0 9 2 0 5 2 0

By the same token, only products of annihilation operators count in the calcula-
tion of matrix elements like ()22)072 where one must go down by one step at each
occurrence of £. Since %|2) =|1) and d|1) = |0), we find

; 1 A 1
()02 = 33(018%12) = =4

V2

A similar reasoning helps one to obtain ()?5)1075. In such a case, we consider £ =

5
2)5%(& +a")3, and select the only term allowing for 5 steps up, i.e. the term (a")°.
The result is

5 > J
s xo N5 xo AT\ 10 .xo \/170!
ios = 20 1101(aM5|5) = 10[(a")"°10) = ==/ =

:

Problem 2.5.
Consider the wave packet

l//(x,t _ O) _ Ae—x2/4azeik0x

with a, ko constants and A a normalization factor. Show that this wave packet min-
imizes Heisenberg uncertainty relations for the position and momentum operators.
Finally, determine the time evolution of the wave packet at a generic time 7.

Solution

We start by a statement of the relation between the wave packet at time r = 0 and
the energy eigenfunctions. These are solutions of the Schrodinger equation with
the energy eigenvalue falling in the free-particle continuum. Such solutions may be
labeled e.g. by the momentum. This set is complete. This is tantamount to say that
any reasonable function y(x) can be expanded in this basis

v = [ ervr(xar

where F is an appropriate set of quantum numbers. Since a generic quantum number
can take continuous values, as is the case when F stands for the momentum compo-
nents, we are using a notation involving the integral sign rather than the summation
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sign, which is typical of the discrete spectrum. In general, one has to consider con-
tinuous and discrete summations, as is the case if the continuum states bear angular
momentum quantum numbers. For definiteness, here we develop the case when F
is a continuous set, like the momentum components. The continuum eigenfunctions
yr cannot be normalized like those of the discrete spectrum, by setting the integral
of the square modulus equal to 1. Unbound particles have a comparable probability
to be at any distance from the origin, so the wave function does not vanish at infinity,
and the integral blows up. We can normalize differently. We impose that |cr|>dF is
the probability that a measurement of F' is found to be between F and F + dF. By
completeness, we have

/l//*(x)l//(x)dx: /C}CFdF =1

The coefficients cr are found, in complete analogy with the discrete spectrum, by
projecting the function y(x) on the Y (x). From the last equation, using the expan-
sion of y(x) in terms of the yr (x), we deduce that

Jei ([ vevitas—er ) ar o

For an arbitrary value of the coefficient cr, the above equation is satisfied only if
the integrand is zero, so that

cr = [ VWi (x)dx

Again, using the expansion of ¥ in terms of the Yr, we find

cr = [ Wi dr= [ epyp (v drdr.

For an arbitrary value of cg, the last equation is satisfied only if

[elvi 0 dx=8(F ~F)

and the functions W (x) are orthogonal for F # F'.

By this formalism we are now in position to deal with the wave packet. The
yr eigenfunctions cannot be realized physically. For example, if they have a well-
defined momentum, the particle cannot be localized in any spatial domain however
large. The wave packet given by the problem is still a free particle wave function,
but it is localized in a region of size a. It can be normalized by taking A such that

+oo +oo 7&
1:|A|2/ \y/(x)|2dx:\A|2/ ¢ 32 dx = |APav2r

—oo —o0
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from which A = 1/(27a®)'/*. We can also expand y(x) in terms of plane waves,
corresponding to a Fourier integral of the wave packet

_L e eikx
w(x) = m./700 y(k)edk

where y/(k), ¢** play the role of the cr, Wr we have previously introduced. The
factor v/27 is required for the correct normalization of the plane waves

1 ikx 1 Feo i(k—k")x
(k) = e <k|k’>:ﬂ/_m K gy — §(k—I).

The integral determining y/(k) can be done by completing the square, and it is found
to be proportional to an exponential function

o0 . 2. 2 2
W(k) (X/ e*lkxe—melkoxdxc>< e ¢ (k—ko) )
We can fix the normalization constant in front of it by imposing that |y(k)|? is
normalized to unity. We then get

o\ L
w(k) = (2“) ko

T

that is the Gaussian function centered in ko, i.e. the expectation value for p/h. By
the properties of the Gaussian distributions, we find that the uncertainties are

N N 1
Ax=/(£2)—R)2=a Ak=/{(k)—(k)2=—.
2a
We can verify explicitly this result in the case of the position operator £. The quantity
(%) is zero due to the symmetries in the integral. At the same time, the average
squared position is

1 too 2 1 d [t _2B
(#2) :7/ x’e 2 dx = lim(—2a2)—/ e 2 dx=
21a J—e V2ma p—1 dp J-o

1 d 1
—2a*)V2ma lim —— B2 = d?
V2ma ( ) p—1dp p
from which we prove that Ax = a. Given the relation between the wave vector and

the momentum, p = fik, we find

h
AxAp = 3

that is the Heisenberg uncertainty relation for momentum and position.
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We can now discuss the time evolution. We need to solve the Schrédinger equa-

tion
MO fy)

when the Hamiltonian does not depend explicitly on time. The general method of
separation of variables applies and we seek a solution of the form |y (¢)) = A(z)|y),
with the result

i — EA(r)
H|ye) =E |yE)

that is a couple of ordinary differential equations with constant coefficients. The

second is the stationary Schrédinger equation and yields the Hamiltonian eigen-

functions with energy E. Once E is known, we can insert it into the solution of the

first equation i

Alt)=e n.

We see that the states with a well defined value of the energy evolve like
iEt

VE(x,1) =e 7 Yg(x).

Going back to our wave packet, all the plane waves evolve in time with a well

defined phase oo
i(kx—ot)
X,t) dk
4 \/ 27 /

where, for the plane wave, we know that £ = i = p2 /2m = K2k2 /2m. The above
integral can be done exactly, once we use the y(k) previously determined

1 24> teo o 2 ik
—a”(k—ko)”+ike— "5t g7
v(xt) = i < ) /_oo e - dk

1
5 1)1/2 <202> ! R /+°° oK (4 B ) +k(2koa> +ix) gy —
1

—oo

2kga®+ix 2
(2%

2\ 4 Poaii)
1 zi + T oK o 4+ 50)
(27-,:)1/2 T (a2—|— tht)

2m

where we have completed the square in the exponential function. The resulting prob-
ability density function is
()

Pxt) = |yl = 1 ;(())
V2ma® 1+(2mu )2

The width (the variance of the Gaussian distribution) of the wave packet is propor-
tional to a*(1 4 (5155)?), i.e. it increases as a function of time. The maximum of
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AP(_\'. t)

0.5

04 4 =0

-10 -5 0 5 10

Fig. 2.2 The probability distribution function P(x,7) obtained in Problem 2.5, starting from the

2 2 .
me"‘ /44 gikox We plot the case with a = 1, ﬁ =1and

= 1 for two characteristic times f =0 and t = 2.0

initial wave packet y(x,r =0) =
ko
m

P(x,t) is not in x = 0 any longer, and it has moved to xo = fikot /m = pot /m. We see
that the average value of the position evolves in time as the position of a point-like
particle with mass m and constant velocity pg/m

d{%); _Po

dt m’

The evolution of P(x,t) is sketched in Fig. 2.2.

Problem 2.6.
Let us consider a quantum system with two states. The matrix representation of the
Hamiltonian in a given vector basis (assume 7 = 1 for simplicity) is

o 01 :
10
e determine the eigenstates and eigenvalues of H;

e determine the time evolution operator e~ ’;

o et 1 10
vor()  o-(1)

be the wave function at a time # = 0 and an observable O. Using the Schrodinger
representation, find the probability that a measurement of the observable O at a
time ¢t > 0 gives 2. Repeat the calculation with the Heisenberg representation.
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Solution
The Hamiltonian matrix H coincides with the famous Pauli 6, matrix and its eigen-
vectors and eigenvalues are particularly simple. To determine the eigenvalues, we

have to solve
Y B I S
1 -2

from which we get A = £1. To determine the eigenvector |y;), corresponding to

T 00

yielding @ = b. The normalization condition (a® +b* = 1), completely fixes 1) up
to an unessential constant phase factor. The procedure must be repeated to find the
eigenvector corresponding to the eigenvalue — 1. Eventually, we get

1 (1 1
|w1>_\ﬁ | |W2>—ﬁ 1 .

We evaluate e using three independent (but of course equivalent) approaches.
First, we rely on the definition of an analytic function of a matrix through the Taylor
series expansion

—ift

e*ilflt Jrzoo i(—lHl) f ( —iA Zoo 2n+l) _
=n! = 2n+1

A cost —isint
Il cost —iH sint = o
—isint cost

where we have used the property 62" = 1l and 62"*! = &,, where 7 is an integer
number. Alternatively, we can use the Cauchy integral

A 1 efitz 1 efitz z 1
—IiHt
P =—.yf dz =
27:17{(1an) Tomil) (@) (1 z)

1 . itz 1 . itz
<2m$g (;zil)zdz 2m5£(;21>d2> _ ( cost isint)
1 . —itz 1 —itz - . . .
T éﬁdz o ¢ éfwzdz —isint cost
As a third possibility, one starts defining a function (A ) of a diagonal matrix A
in the most obvious way, as the diagonal matrix obtained by applying F to the
elements on the diagonal. The definition extends naturally to all matrices that can

be diagonalized through a similarity transformation C. In other terms, CAC~!
diagonal, so we apply £ , go back to the original basis, and define
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A A 1
c=cio— (11
V2 \1-1
and its columns are |y), |y,). By these formulae, in our case we get again

00)_6—1‘19:_1 11 e 0 1 1) [ cost —isint
2\1 -1 0 ") \1-1 —isint cost |

The operator U (t) enables us to proceed at once with the time evolution of |y/(0))
according to |y(t)) = e~ | y(0))

_ —ift _ cost—isint) (1) _ [ cost
() = e o)) = (_gont i) (0>_<_ism>.

—iHt

The required matrix is

This is a toy example, but generally the explicit calculation of e in closed form
is prohibitively difficult. It may be easier to project the wave function on the basis
of the eigenfunctions of the Hamiltonian (|1),|»)). Then e =" is diagonal with
eigenvalues eT. We first expand | y(0))

V) = —=(1v1) +lve).

Then, the associated time evolution is

() = e |y (0)) %(6_” ly1) + e [yn)) = (_lcsc;i;) :

Let us now discuss the properties of the operator O. The eigenvectors of O are

They differ from the |y;),|w,) we found before. A measurement of O can give the
eigenvalue 2, only if the system is described by |{,). Writing

() = <Cl-°§fn> — cost (é) —isint (?) = c1(0)[P) + (1) |92

the sought probability is
P(2)i>0 = [(w(0) [ W2) > = sin’1.

Note that the initial wave function, |y(0)) = | ), has no |») component and the
probability of a measurement giving 2 is P(2),—o = sin?(0) = 0. It is the time evolu-
tion that produces this probability. In summary: the probability that a measurement
of an observable O at time 7 = 0 yields Oy (eigenvalue of O, which belongs to the
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eigenvector | )) is the square modulus of the coefficient ¢; of | ) in the expansion
of the wave function in the basis of eigenvectors of O. If O commutes with A the
coefficient ¢y is constant for ¢ > 0. Otherwise, if O fails to commute with A , its time
dependence must be computed as we have seen.

In what we have seen above, the time dependence is entirely in the quantum state
|w(t)) and the operators do not depend on time (this is known as Schrodinger (S)
representation). Quantum Mechanics, however, can also be formulated in a different
but equivalent form, in which the time dependence is passed from the quantum states
to the operators (this is known as Heisenberg (H) representation), i.e. the operators
evolve in time, while the wave function is kept the same as the initial time. The
Heisenberg operator is

N A

. " ) ..
On(t) = U’l(t)OAﬁ(t) _ it G p-ifit — 1+sin“t isintcost

—isinzcost 1+ cos?t

Since Oy (1) = U~'(t)OU (¢) is a unitary transformation, the eigenvalues of Oy are
still 1,2 and the eigenvectors are the columns of

Al e cost isint
U l(l) _ eth _ - )
isint cost

In this way, we find the relation between the Heisenberg and Schrodinger represen-

tations .
lws(1)) = U (1) [wm)
On(t) =U0"1(1)0sU (1).
The initial state is |{¥;), and we use it to calculate the expectation value in the
Heisenberg picture
(W110m (1)|91) = L +sin’t = Ay [e1 [P + Ao o]

where A;,4; = 1,2 are the eigenvalues of Oy (¢) and ¢y, ¢y the coefficients of the
expansion in the vector basis where Oy (¢) is diagonal. Since |c;|*> +|c2|> = 1, we
get

P(2)1~0 = |co]* = sin®¢
in agreement with the previous result.

Problem 2.7.
A quantum harmonic oscillator has the Hamiltonian

N 1
H:(d*aurzn) h=w=m=1

where @' and 4 are the creation/annihilation operators. The oscillator is such that,
at a time ¢ = 0, measurements of the energy never give results above E > 2. Give a
matrix representation for the operators H, %= (a+a")/v2, p=—i(a—a")/V2
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using the formalism of the creation/annihilation operators. Verify the results in the
Schrédinger formalism. Then, for ¢ > 0, determine the matrices £(¢), p(¢) in the
Heisenberg representation. Finally, verify the matrix elements of £(¢), p(z) with the
time evolution of the wave function and the Schrodinger representation.

Solution
The eigenvalues of the Hamiltonian of the quantum harmonic oscillator are

E — +7
n n
1

because 7 = @ = 1. The only eigenvalues lower than 2 are Ey = 5 and E} = %
Therefore, the wave function is a superposition of the first two states |0) and |1).
The matrix representations correspond to 2 X 2 matrices whose elements are the
scalar product with these states. For a generic operator A we have

A2<wmw (©

Using the relation between @, a', £, p given in the text and recalling the step up and
step down action of the creation and annihilation operators on the generic eigenstate

a'lny=vn+1ln+1) aln)=vnln—1)

we easily obtain all the operators at time t =0

A1 0 0 a1 {01 oy [0 —1
H_2n+<o 1) x(o)ﬁ<1 0) p(o)_ﬁ<1 0)
and the eigenstates
1 0

We can now verify these results in the Schrodinger formalism. The normalized
eigenfunctions of the ground state and the first excited state are

I _1p2 V2 12
yole) = (x10) = e i) = (xf1) = Ve
s T4

and we want to calculate the matrix elements (0| £|0), (1|£]1), (0|%|1), (1| £]0) and
those with p in place of £. The first two of these elements are always zero because
the integrand function is even while the operator is odd. The other elements are

ol =(1110) = [ (11515 (x]0) dx =

[y ac= )2 [T an=
X X)X X = — X-e X = ——.
e T ) o V2
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Similarly, for the matrix elements (0| p|1) and (1| p|0), we find
. . e . N d
(11p10) == O pI1) = [ (115 (xlplo) dx =i [ (1]2) 5 (x]0) du

[2 [+ d [2 [t '
—i f/ xe L (ef%ﬁ) dx=1i\/— e dy= 1.
T dx TJ)o V2

—oo

The expressions of £(¢) and p(¢) in the Heisenberg representation (see also Problem

2.6) are
, w1 [er o\ (o 1\ [e? 0
At — iHlAO 71'H[: ; i =
Ht) = (0)e ﬁ(o e3z’> (1 0) (0 e—3z’>

As for the Schrodinger representation, the time evolution of the eigenstates is

() = (f)) 1) =e¥ (?)

and the operators are kept the same as those at time ¢t = 0. The relevant matrix

elements are

OO 10) = —= (¢4 0) (? é) <0> -

and coincide with those of the Heisenberg representation.
Problem 2.8.
A quantum system with two orthonormal states (say |1) and |2)) is described by the

following Hamiltonian .
H = [1)2[+[2)(1].
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At time t = 0, the average value of the observable
0 =311~ [2)(2]
is (O) = —1. Determine the state |y(0)) at z = 0 and the smallest time 7 > 0 such
that [ (1)) = |1).

Solution

A comment about the notation is in order. The text does not contain matrices, yet
this problem is an exercise on the Heisenberg formulation of Quantum Mechanics,
which is equivalent in principle to the Schrodinger continuous formulation but is
suitable for systems with a finite number of states. The matrix representation of the
Hamiltonian in the vector basis |1), |2) is given by (i|H|j) where |i),|j) = [1), |2)

a=(91).
10

By diagonalisation and normalisation, one finds the well known eigenvectors of 6

1 1 1
|+>*ﬁ | |*>*ﬁ 1

with eigenvalues £1. The inverse relation is given by

Bt =)
=" =

The matrix representation of the operator O is

o=1[309).
0-1

The fact that at time ¢ = 0 any measurement of O yields the eigenvalue —1, implies
that the initial state coincides with |2)

[w(0)) = [2).

To determine the time evolution of this state, we need to express it in terms of the
eigenstates of H, which evolve by simple phase factors: from
[+ —1-)
0)=——7—~—"
yo) =
we immediately obtain ' .
_ e ) =)

lw(r) = 7
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and
2

=sin’t

|<1|w(t>>2:‘<<+|2<_> <en|+>f—zeir|—>)

is the probability that at time ¢ the system is in |1). The first time that sin?t = 1 is at
r=12.
2

Problem 2.9.
A harmonic oscillator has angular frequency ® and Hamiltonian (in standard nota-

tion)
. 1 1
H= ata+ = =(A+= .
(a a+211>ha) (n+211)ha)

We denote by |n) the n-th eigenstate of the Hamiltonian. At time ¢ = 0 the oscillator

is prepared in the state
2) +13)
0) =—F7—.
yo) ==

Write the wave function and compute the expectation values of the energy, position,
and momentum operators for > 0.

Solution
The eigenstates of the Hamiltonian evolve in time with well defined phase factors

. Bt . . .
given by e ’ht, with E the energy of the eigenstate. In the case of the harmonic

. L Zi(nrNer .
oscillator, the generic eigenstate |n) takes the phase factor e i) i the time

evolution. Therefore, we find

|2>e7i%wt + |3>efi%a)t

lw(r) = 7

The average energy on |y(t)) is

.5 .7 -5 :7
N 2 15 Wt 15 W1 N 2 —15 0t —1~ 0t 1

where we have used H|n) = (i+ 1) hw|n) = (n+ 1) ho|n). The simplest way to
calculate the expectation values of X and p takes advantage of the relations to the
creation and annihilation operators a" and @

where xp = 4/ nf‘—w is a characteristic length scale of the oscillator. We recall the step

up and step down action of the creation and annihilation operators on the generic
eigenstate

a'ln)y = vVat+1ln+1)  an) = njn—1)
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and, using the orthogonality of the eigenstates ({n|m) = ), one concludes that
.X'A 2 I ot 3 ei%wt) aA af\ (2 —ix5 wt+ 3 —I wt) —
(@ =55 (I3 4 (3l ) (@ ah) ([2)e 3+ 3)e

Z\f((ZeZw[ 3|ezwf>(f|1 ) +/3[3))e

(V3]2) +2[4))e ’2“”> \/7x0cos (o)

(P) :_iZ\/héxO (<2|€ 2004 3|e’2“’) <|2 *lzwt_|_|3> ﬂzcot) _
"'2;% (2l + @etter) ( ~V33)e

(\/§|2> 2‘4>) 1260t> — _)Z)\/gsin((l)l‘) = —mOJXO\/ESiH(COt)

corresponding to the dynamical evolution of a classical harmonic oscillator with
zero initial momentum

(%) = (X)pcos(wr)

(p)r = —mw(%)gsin(wr)

where (£)o = \/gxo (see also Problem 2.32).

Problem 2.10.

Calculate the energy levels of a Schrodinger particle in a tree dimensional potential
well with the shape of a parallelepiped of edges a, b, ¢ and infinite walls. This could
be a rough model for an electron in a quantum dot or a metal particle of this shape,
with a size of a few tens of atomic units, such that many properties depend on the
discrete energy levels.

Solution
The three dimensional stationary Schrodinger equation reads

hz
V2w+(U E)y =0

where ¥ = y(x,y,z) and where the Laplacian operator is acting on all the three
components X, Y,z

w (9?2 2?2 22
(PP w0

The potential U(x,y,z) vanishes for 0 < x < a,0 <y < b,0 < z < ¢. The wave
function cannot penetrate where U diverges: y(a,y,z) = y(0,y,z) = w(x,b,z) =
y(x,0,z) = y(x,y,c) = y(x,y,0) = 0. Since ¥ = 0 outside the parallelepiped, the
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A
20 | Ulx)
15 |

U=eo U=co
10 |
5 L
0 U=0 . =
-d 0 a 2a
X

Fig. 2.3 An infinite one dimensional potential well with a very strong repulsion in x =0 and x = a.
In Problem 2.10 we present the solution of the Schrodinger equation with such a kind of potential

derivatives also vanish there, but not inside, so they must be discontinuous at the
boundary. Thanks to the symmetry, the partial differential equation is separable

V(x,,2) = We(X) Wy () w:(2)

and in the parallelepiped with edges a,b,c

Pl 1Py 1Ay
2m \ gy, dx? gy dy* vy, dZ?

>+E:0.

We now set k> = k2 + k§ + k2 = 2mE /W* = 2m(E,+ Ey + E;) /h* and solve, sepa-
rately for each variable, three one dimensional identical problems. We choose (arbi-
trarily) to work in the x direction and set Wy, = y. The resulting potential is plotted
in Fig. 2.3. The solution of the one dimensional Schrodinger equation gives the
following wave function

y(x) = Asin(kx+ 9).

The boundary conditions ¥ (0) = y(a) = 0, if used separately, yield d = 0 and ka =
n, 7, with n, a positive integer number (n, = 1,2,3,...). The associated eigenvalues

are
R 2n?
E, = X

2ma?
and the wave function is

Wy, (x) = Asin (nxnfx)
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with A a normalization constant

22 /“ Gin? (nxnx) e — A’a /"x" i — A’a <1 - cos(2x)>
0 a T Jo nym 2

nxT A2a
0 2

so that A = /2/a. The normalized eigenstates for the three dimensional problem
are

V(X 9,2) = W, (X) Wi, () W, (2) = \/Esin (nx;l'x> sin (ny;ry) sin (nzcﬂz)

and the discrete spectrum is given by

_ wr? (2 n}2 n2
Eromne = \@ TRt

with n,, ny, n; positive integer numbers.

Problem 2.11. 5

A Schrédinger particle with Hamiltonian A = % 4V is confined in a one dimen-
sional potential well with infinite walls (V = 0 for 0 < x < a; V = 4o otherwise)
and its mass m is such that )

2ma?

with € a given constant. The eigenfunctions of the Hamiltonian are (see Problem

2.10) S
Wu(x) = \/;sin (naﬁ)

with n =1,2,3,... a positive integer number. At time ¢ = 0 the particle is prepared
in the state described by

_ i) +ivx)
¢()C,O) - ﬁ .

Compute ¢ (x,7) and the probability P,z (f) of finding the particle at time 7 in the
region 0 < x < §. Compute also the probability current density J(x,#). Verify the
continuity equation. How does ¢ (x,¢) transform under parity 2 (with respect to the
center of the well) and time reversal 7'?

Solution
Let us write for short
. (nTX nix
sn(x) = sin (—) cn(x) = cos (—) .
a a
The time evolution driven by H is such that each eigenstate takes a phase factor
e iEnt/ n where the energies can be written as E, = n2e. Therefore, we find

1 (x)e*i% +isy (x)e*‘”'%

¢(x7t): \/a
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The probability density at time ¢ of finding the particle at x is the square modulus

00,1) = plxst) = — (5306) + 536) + 251 ()3 (x)sin(@121))

a

where @, = 78 The probability Py (t) is obtained with the integral of p(x,?) in
the interval 0 <x < §

1 4
Pres(t) / p(x,1)dx = §+3—sm(w12t)

where we have used the following indefinite integrals

1

/2 /2 T
/ sin? xdx = = / (1—2cos(2x))dx = =
0 2 .Jo

n/2 T/2 1 2
/ sinxsin(2x) dx = 2/ sin xcosxdx = 2/ y2dy = 3
0 0 0

The probability density flux J(x,?) is

J(x,1) = % <¢ aafiz: 0" ¢> ES ((P*gi) = % [2s1¢2 — s2¢1] cos(@iat).

Moreover, when we calculate the time derivative of the probability density function,
we get

dp 3n’h
7? = wéj.ﬁ COS((Dlzl‘).
We see that
aJ(x,t hr d
éx ) chos(wlzt)d [2S1C27S261]
hm? 3n’h
% cos(waf) [2c1cp — 4s1s2 — 2¢act + 5281 = — 7r 35251 cos( o)
ma ma
from which we can check the continuity equation
Ip(e) | dIxr) _ APEnP | v

ot adx ot Jx

The above equation is a direct consequence of the Schrédinger equation and is fun-
damental for the Copenhagen interpretation of Quantum Mechanics.

A parity transformation P, with respect to the center of the well, is such that
X — —X, where X =x—§

f’sl =91 pSQ = —5.

In the Schrodinger theory, the time reversal operator is 7 = K, where K is the
Kramers operator which takes the complex conjugate; this means that if ¢ () is
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A Ulx)
{ 11 i
U=0 . o
-a 0 a 2a
X

Fig. 2.4 We plot the asymmetric potential well with a depth Up and an infinite barrier on one side.
The width of the well is a. The solution of the Schrodinger equation with this potential is discussed
in Problem 2.12

the solution of the Schrodinger equation with A (¢), then ¢’ (1) = ¢*(—t) solves the
Schrédinger equation with H(—t) in place of H(t); therefore ¢*(—¢) is called the
time reversed wave function. Putting all these results together, we find

spe i —ispe 4w
A 1 — 185
Po(x,t) =
0(x.1) NG

& . _4i €
A A sje "hH41spe h
TP (x,1) = - 2

Ja

Consequently, the problem is invariant under 7'P.

Problem 2.12.
A particle with mass m = 1/2 moves in the one dimensional potential well U (x)
(see Fig. 2.4) such that

Ux)=Uy x<0
Ux)=0 0<x<a
Ux)=+4 x>a.

Determine the values of Uj and a for which we find bound states.

Solution
The potential is characterized by three distinct regions and we need to solve the
stationary Schrodinger equation separately in x < 0 (region /), 0 < x < a (region



Problems 61

II), and x > a (region I1I). In these regions, the potential is constant and the general
integral of the resulting equation with constant coefficients is well known. We solve
the Schrodinger equation in each region and then impose the continuity conditions.
The particle cannot be in the region /11 where the potential is infinite; therefore, for
x> a we set y(x) = 0. In particular, we impose y(a) = 0. However, y’(x) cannot
also vanish for x — a from the left, because then y(x) = 0 everywhere; it follows
that y’'(x) has a jump at x = a, which is due to the divergence in the potential. On
the other hand, for x = 0 the potential is discontinuous but finite and we can assume
the continuity of both ¥ and y'. In the region I (where Uy > E, with E the bound
state energy) we must solve

Moreover, in the region /1, we find

5 1w d*yy
A-E)y;=0=——
( Wi =0 o

—Evyy.

The solutions of the above differential equations are

2m(Uy—E)

yr(x) =Ae & * x<0
yl,,(x):Csin(—vzﬂEx—kS) 0<x<a

where A, C, § are integration constants that we shall find by the boundary conditions.
We note that the region [ is classically forbidden, because the particle momentum
becomes imaginary. As a consequence of the Heisenberg uncertainty principle, we
cannot say that the particle is in a precise position of the region / without mixing
many momenta. Therefore, for a given momentum, this region is allowed and we
find a non zero probability (decaying exponentially to zero at infinity) to find the
particle there. The boundary condition yj;(a) = 0 leads to

sin (2:1501—&-5> =0

from which

V2mE
5 = — 70 + nmw
with n an integer number. As for the continuity of the first derivative in x = 0, it is

convenient to combine it with the continuity of the function, that is

¥(0) _ i (0)

vi(0)  yiu(0)
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so that
V2m(Uy—E)  /2mE V2mE V2mE V2mE
7 = 7 cot| — 5 a+nmw | =— 7 cot 7 a

which is a transcendental equation. The solution can be worked out graphically. If

2m(Uy—E VamE . S
we define y = a2 YE) snd x = a% (not to be confused with the position in

the beginning of the problem), the solutions are found from the intersection of the
two curves

y = —Xxcotx
and il
- - m
Vil =aUy=R* Uy= h20
given in Fig. 2.5. We note that cotx = cosx/sinx /s 1/x when x is small. Therefore,
y = —xcotx is negative close to the origin, while y> + x> = a?Uj is a circle with
radius R = a+/Uj that is positive: near the origin there is no crossing. The function
y = —xcotx is zero when x = /2. If R = m/2 we have an intersection and a bound
state. There are no bound states if
- 2mU, n?
azUo =d° 0 < —

n? 4

If a and Uy are such that this inequality is not satisfied, there are as many energy
levels as intersections, k = 1,2,..., a finite number at any rate. The intersections
occur in the first quadrant and the arc is a decreasing function; therefore the discrete
eigenvalues are ordered by the quantum number k.

Problem 2.13.
Find the energy spectrum for a particle with mass m in the symmetric potential well
(see Fig. 2.6)

Ux)=Uy x<0
Ux)=0 O0O<x<a
Ux)=Uy x>a

with Uy > 0.

Solution

We first find the general integral in the three regions where U (x) is constant, then we
discard the solutions that blow up for x — 4o in the region /11 or for x — —co in the
region /. Following the same procedures of other problems (see also Problems 2.10
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y=-xcotx

) 2 4 6 8 X
21
4}
Fig. 2.5 We look for the intersection between the two curves y = —xcotx and y* + x> = R?, where

R? = a*Uy = a* % The case considered here refers to R> = 8. These intersections are important
to characterize the bound states of a particle with mass m in the asymmetric potential well with
depth Uy, width a, and an infinite barrier on one side (see Fig. 2.4)

A Ufx)
! 11 i
. U=0 . -
-a 0 a 2a

X

Fig. 2.6 A symmetric potential well with depth Up and width a. In Problem 2.13 we study the
solution of the Schrédinger equation for a particle with mass m in this potential field

and 2.12), we arrive at

vy (x) = Aefr* x<0
yir(x) =Csin(kx+8) 0<x<a
Wi (x) = Be k1% x>a
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where A, B, C, § are integration constants, k> = 2mE / K, k% =2m(Uy—E)/ #* and
0 < E < Up. We need to impose the continuity conditions for the wave function and
its derivative in x = 0 and x = a. These are equivalent to

v (0) _ vy (0)
v(0) = yy(0)
vi(@) vy

vir(a) — vin(a)

obtaining

ki = kcotd
—ky = kcot(ka+9).

Combining these results, one finds
cotd = —cot(ka+ )

that implies 6 = —ka — & + nx and

nw ka
§=—— =
2 2

with n an integer number. Plugging this value of § in the above equations, we get

cot nw —ka _E
2 ok

that is an equation whose solution depends on whether 7 is even or odd

If we define x = ka/2 (not to be confused with the position in the beginning of the
problem), y = kja/2, the solutions of the transcendental equations are given by the
intersection of the curves (see Fig. 2.7)

2 .2 _ p2_ mUpd®
Xy =R = 2%

y = —xcotx

y = xtanx.

We note that the discrete spectrum is always present because the curves always
intersect. It is also instructive to compare this result with the one of Problem 2.12,
where the potential well has an infinite barrier on one side. In this case, the curve
y = xtanx would be missing and there is a range of R without a discrete spectrum.
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y=xmnx y=-xcotx
1 |

A

.Y

2
'";JTOZ‘I and y = xtanx or

2L

Fig. 2.7 We look for the intersection between the curve x> +y? = R> =
y = —xcotx. The case considered here refers to R* = 8. The variable x is related to the energy of

the bound states for a particle with mass m in the symmetric potential well given in Fig. 2.6. The
choice of the function tanx of cotx depends on the symmetry of the solution (odd or even)

Problem 2.14.

X

2
[N]

a2

A Schrodinger particle in one dimension is in the state whose amplitude is described

by the wave function
y(x) = Ne

where N is a normalization constant. Determine the average values of the kinetic en-
ergy and position and the density flux associated with the probability density func-

tion |y(x)[%.
First of all, we need to determine the normalization constant N from the condition

Solution
e 2
[ wtrax=1,

Physically, this says that the probability of spotting the particle in a finite region of
the x axis approximates 1 as closely as we wish, provided that the region is chosen

large enough. Such a scheme fails for ‘free’ states like plane waves: no finite region
however large has any appreciable probability of containing a plane wave state. If

N o 2
we use the Gaussian integral ffm eV dy =/, we find

4o 92 o0
Nz/ P dx:Nzi/ eV dy=1
N

—oo
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_.]1 /2 P &
sothat N =4/~ \/; . The average value of the kinetic energy 7' is

too xz 2
T|y) = T T2 e Zdx=
witly) = [ ity a Zmaf [ erine Rax
\/> 4o 2 Xz
BV — a? =
2ma / ( IR at )e dx=

a © 2y 2

. 2 ) ey,

2ma ﬁ/;w <a2 az)e Y

Using the integral [*2y%e - dy = %, we get (T') = thaZ' The average value of
the position operator (£) is zero: this is due to the symmetry of the wave function
and can be explicitly verified because the calculation of (£) leads to the integral

fj:ye_yz dy = 0. As for the density flux

(A d (L dy
J_2m<wdx lI/dx>_ms<w dx>

it vanishes (it vanishes identically for y = y*, that is, for any real y).

Problem 2.15.
Determine the discrete energy spectrum for a particle with mass m in the asymmetric
potential well

with 0 < Uy < Us.

Solution

We need to solve the Schrodinger equation in the three different regions: x < 0 (re-
gion I), 0 < x < a (region IT) and x > a (region I1I). Following the same procedures
of other problems (see Problems 2.10, 2.12, 2.13) we find the solutions in the three
regions

v (x) = Aehr* x<0

yi(x) =Csin(kx+98) 0<x<a
Vi (x) = Be k2" x>a

where A, B, C, § are integration constants and

2mE 2m(U, —E)
SV RV
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A U
U= U2
U= U}r
! I i
U=0 . -
-a 0 a 2a

X

Fig. 2.8 We plot the asymmetric potential well with depths U, U, and width a. In Problem 2.15
we determine the energy spectrum for this potential

with 0 < E < U; < U,. The wave functions for x > 0 and x < 0 go to zero when

Xx — Foo. We need to impose the continuity conditions for the wave function and its
derivative in x = 0 and x = a. These are equivalent to

vi(0) _ vy (0)
vi(0) = wi(0)
vi(a) _ wi(a)
vi(a) = vi(a)

and we get

kitand =k

—kytan(ka+0) =k
that implies

(&)
é =arctan | — | +m
ki

and

k
ka-+ 6 = —arctan () + T
ko

with ny,n, integers. Using the relation

arctanx — arcsin (

)
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and the property
(k/ki2) . E kh
VW U et
we obtain
6 = arcsin ( ki ) +mr
2mU,
and

kh
ka+ 6 = —arcsin (\/W) +ny7.

The above equations can be subtracted with the result (n = ny —ny)

kh . kh
—— | tarcsin | — | .
If we define x = k/b = kfi/\/2mU; = \/E /U, (not to be confused with the position
in the beginning of the problem) we rewrite the previous equation as

nm — ka = arcsin <

. . Up . . .
nw — abx = arcsinx + arcsin (x, / )= arcsinx + arcsin(xsiny).
2

Since we know that U; < U and 0 < /U, /U, < 1, we have set siny = /U, /Ua
with 0 <y < 7/2. Moreover, we define

yu(x) = nmw — abx

identifying different functions, each of them with a different value in x = 0, y,(x =
0) = nr. Finally, we define

y(x) = arcsinx + arcsin(xsiny).

We need 0 < E < U for the discrete spectrum. When E varies in this interval,
0 <x <1 and 0 < arcsinx < 7/2. Also, when 0 < x < 1, we see that y(x) is a
monotonically increasing function with the property

0 <y(x) < mw/2+arcsin(siny) = w/2+y

while the y,(x), which are monotonically decreasing functions, have the property
nx > y,(x) > nw — ab. The solutions are given by the intersection of the two curves
yn(x) and y(x), i.e. the condition y, (x) = y(x) (see Fig. 2.9). For a fixed (positive) n,
due to the property of y(x), the condition that there is at least one intersection is

T
nn—abgg—&—y

that implies the minimum value of y,(x) is below the maximum value of y(x).
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2.0 _\'=?E.-"2+'|f

y=T-abx

1.6

1.2 _\'=ﬂ-ﬁb
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0.4 f

7 y=asin x+asin(x sin y)
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\J

Fig. 2.9 We plot the functions y(x) = arcsinx -+ arcsin(xsin y) and y, (x) = n —abx (n is an integer)
for the case n = 1. In the upper panel we report the case with y = {; and ab = 2.0 while, in the lower
panel, we report the case with y = % and ab = 1.0. For a generic integer value n, the condition that
yn(x) intersects y(x) in the interval 0 < x < 1is n —ab < 5 + . This condition corresponds to the
existence of a bound state for a particle with mass m in the asymmetric potential well of Fig. 2.8

Problem 2.16.
A particle with mass m is subject to the following one dimensional potential

Ux)=+40 x<0,x>a
U(x)=0 0<x<a.

At time 7 = 0 the wave function y(x) is such that any measurement of the energy
cannot give results larger than 37> 72 / ma?. Besides, the mean energy is 7725? / 8ma*
and the average value of the momentum operator p is % Find as much as you can
about y(x) and the mean value of p* at time ¢ > 0.

Solution
We see that the particle is inside a well with infinite potential barriers in x = 0 and
x = a. The normalized eigenstates and eigenvalues of the Hamiltonian have been
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determined in Problem 2.10, and they are

2 . /7nx
W (x) =4/ =sin (—)
a a
E _ 2 H*n?
" 2ma?
with 7 a positive integer number. The condition E < 3h% 7> /ma® requires n < 2 and
we are left with

ly) =ciy) +ca|ya)

where ¢, ¢, are complex numbers whose moduli are easily computed from the con-

dition of normalization plus the condition that the average value of the energy is
77: h

equal to , hamely

le1P + e =1

E—7”h E1\01| —|—E2|C2|2

8maz

yielding |c1|? = 3/4,|c2|* = 1/4. We wish to find W up to a constant phase factor
which has no physical meaning. To this end, we need the phase difference between
c1 and ¢;. This can be deduced from the mean value of the momentum operator,
since

(vlply) =% = /0 v (x) (—ih‘i) w(x)dx =

* *d
—lh/ (|C|‘I/1 +| 2Py W2+1 2y} d‘l’z CHC I‘I’ZCXI)‘ZX

where, however, the first two terms can be dropped since the wave functions vanish
inx =0 and x = g and so

v, Ay
/o%dxdx_/owddx_

If we set c; = |c1|, c2 = €/%|cy| and we use the indefinite integral

cos(m; —my)x  cos(my +my)x
2(my —myp) 2(my +my)

/sin(mlx) cos(mpx)dx = — -+ const.

for my,my integer numbers, we get the following result

d
/Wl lI/2 =73,

d
/%‘I’l _
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and we find sin o = —2/+/3. We cannot find o uniquely. We can do the calculation
of (y|p*|w) without this information, since

4 —inmn\*
) = (- 8 = ()

and so

N . —ihzwn 4
(vl w) =0 <wnp4|wn>=( )

with the result

A4 454 454
VIR Y ) 167" 197°h
Wlp' W) = o1 P =+ lea = = —

Note that this does not evolve at all in time.

Problem 2.17.
Let |w4),|wp) be the eigenvectors of the Hamiltonian H of a two-level system

H|yap) = EaplWas) Ea>Eg.
Another basis |y), |y,), with
(wilyj) =6  ij=12
is related to |W4), |wg) by

|wA,B>:%<|wl>i|wZ>>.

Find the matrix elements of the Hamiltonian A’ in the basis |y;),|y,) using the
dyadic notation and the matrix notation. Then, assuming that at time # = 0 the system
isin |y1), find the time evolved state using the time dependence of the H eigenstates,
and calculate the time ¢ such that for the first time the system has probability 1 to
be in |y). Show how one obtains the same result by the time evolution operator.
Assume 7 = 1 for simplicity.

Solution
The Hamiltonian H has the matrix representation

ﬂ: EA 0
0 Ep

on the basis |Wy4), |wg). Writing the Hamiltonian in the equivalent dyadic form, we
get
H = Ez|Wa)(Wal + Eg|WB) (V5|
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Making the substitutions

ARy - \%(I%H\wﬁ) ) - \%uw—wm

and collecting terms, one readily arrives at

H = l[(EA +Eg)([w1)(wil +[v2) (va) + (Ea — E) (|w1) (wa| + [2) (v ])].

2
Es+Ep Ep—Ep
O — 2 7
Es—Ep Ep+Ep .
2

2

In matrix notation this is

One can do the same using the matrix notation by introducing the matrix C whose
columns are the vectors representing |y ) and |yp) in the new basis

. A 1 (11
C=C'l=— )
\/§<1—1>

This is the transformation matrix that yields directly the result A’ = CAC. The
evolved state is _ _

(1)) = S L) + e i)
V2

The amplitude to find the system in |y) = w is

—iEat _ e*iEBT

2

e
A = (yalyi (1) =
and the probability is therefore

1 —cos((Eq — Ep)t)
2

P =A%, =

that first attains unity at time ¢t = ﬁ. Alternatively, one can use the time evolu-

tion operator. Since H is diagonal, trivially
e—ilflt _ e Eal 0
- O e—iEBt

N A A 1 <eiEAl‘ _’_efiEBI e*iEAl _ eiEBI)

—if't —iAt
e =Ce""'C= = . . . .
2 e*lEAl _ e*lEBI e*lEAl _’_eflEBt

which leads to

One obtains back the above results by computing

il 1 —iExt —iEpt ,—iEaxt _ ,—iEpt 1
A = (yle H'|‘I/1>=2(01)<e +e e e >< )

eszAt _eszBt eszAt _|_671E31 0
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A
Vix)
=Vy V=V
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-b 0 a c=a+b
X

Fig. 2.10 A one dimensional periodic potential, which is a crude sketch of the effective potential
for an electron in a crystal. The period is ¢ = a+ b. For 0 < x < a the potential vanishes, while for
a < x < cits value is a constant Vp. In Problem 2.18 we characterize the band structure emerging
from the solution of the Schrédinger equation with this potential

Problem 2.18.

Show that the energy spectrum of a particle with mass m in the periodic potential
V(x) shown in Fig. 2.10 has a band structure (with allowed and forbidden bands)
for energies 0 < E < V. Analyze in detail the case when b — 0, Vj — 40, with
finite bV ~ bk3 while k3 — +oo, with k3 = 2m(Vy — E)/h*. This is a one dimen-
sional model of problems that commonly arise when studying the electronic states
in solids in the one body approximation; the effective periodic potential stands for
the interactions with the ion cores, assumed to be frozen, and all the many-body di-
rect and exchange interactions with the other electrons. The band theory is a useful
approximation to many solid state problems, including the conduction of electricity
in simple metals like Al at low temperatures.

Solution

The potential V(x) (see Fig. 2.10) is periodic (V (x4 a+ b) = V(x)) with period
¢ = a—+ b. The eigenfunctions of a symmetric Hamiltonian do not generally have
the full symmetry of the potential; for instance, the solutions in a central potential
are not spherically symmetric, except those with vanishing angular momentum. The
solution that we seek will be periodic up to a phase factor

w(x+n(a+b)) =" y(x)
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being simultaneous eigenstates of the Hamiltonian and of the (unitary) translation
operator that commutes with A. While a constant phase factor has no physical mean-
ing, a space-time dependent might have; for instance the current and the kinetic en-
ergy of a plane wave state are encoded in its phase. The solution of the Schrédinger
equations in the four different regions (region /-region IV') given in Fig. 2.10 is

Vi (x) = Ae*1¥ 4 Be~ihix ~b<x<0
v (x) = Ce'koX  pe—ikox 0<x<a
v (x) = e (Ae*1(—a=b) 4 ge=ihilc—a=b)y g < x <a+b
vy (x) = €® (Cetk2¥—a=b) | pe=tkalx—a=b)y g1 p <x < 2a+b
with &3 = 2m(E — V) /1%, k3 = 2mE /h*. As for the solution in the regions /I and

IV, we remark that the condition y(x +a+b) = €/ y(x) is equivalent to y(x) =
¢'®y(x —a— b). Next, we impose the continuity conditions in 0 and a as follows

0) = ki(A—B) —ky(C—D) =0
llfll(a) ‘I/III(a) ze(Ae—ilqb JrBeiklb) Jrceikza JrDe—ikza =0
vy, (a) = v, (a) = —kie® (Ae= 1P — Bekib) 4 Iy (Cek2¢ — De~h2%) = (),

To find a non zero solution for this problem, the determinant of the associated matrix

must be zero. If we define @ = ¢%1b B = e*24_ the matrix associated to this system
is

1 1 —1 —1
ei9
M = _7 N elea ﬁ %
ky —ky —ky ko
0 .
—k1 % klelea kzﬁ — %2

Only the trivial solution of the system exists, unless detM = 0 which requires

n ; : a 1 B
dethl =~ 4k (1429 ) — € (i} + K3) ([3 ~p B+ a> +
o0 1 B
2kikoe® | =+ — 2=
1koe ([3+a[3+aﬁ+a>
"0 {—8k kycos O — 2(k3 4 k3)[cos(k1b — kya) — cos(kib + kya)|+
4kiky[cos(kib — kaa) 4 cos(kib+kya)|} = 0.

Using the identity

cos(a+ ) = cosoccos B —sinasin
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Fig. 2.11 The graphical solution to the problem of a particle in the periodic potential of Fig. 2.10.

The intersections between the function f(kya) = % sin(kpa) + cos(kpa) and the £1 lines are the

band edges (since k, determines the energy). For the case in this figure we took A = 2.0

and setting k3 = 2m(Vop — E)/h*, with isinhx = sinix and coshx = cosix, we obtain
an equation for cos 0

k2 _ k2
cos 0 = cos(kpa) cosh(ksb) — ék Z 3 sin(kya) sinh(k3b) 0<E<VW.
2k3

The condition for the energy comes from the requirement that 6 be real, that is,
—1 < cos 0 < 1. We concentrate on the case b — 0, Vj — +oo, with finite bV ~ bk%
while k3 — +oo. The argument of sinh,cosh is k3b, which goes to zero like 1/k3
enabling us to develop in Taylor series. Approximating cosh(k3b) = 1, sinh(k3b) =~
k3b, ky < k3 and setting A = abk% /2, the above condition reads

—_— ka) < 1.

kod +cos(kpa) <

The function f(kya) = k;‘—u sin(kpa) + cos(kpa) is plotted in Fig. 2.11. The condition
is satisfied for all the continuous values of kya in the intervals [x1,x2], [x3,x4],. ...
This is the band structure requested by the problem.

Problem 2.19.

Let us consider a particle with mass m subject to the one dimensional potential
U(x) = —ox with o > 0:

e determine the time evolution for Ap = 1/ (p?) — (p)2, where p is the momentum
operator;

e determine the time evolution of the wave function y(x,7) knowing that y(x,0) =
£P0Y/1=i%0  with po and ¢ constants.
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Solution
The potential given in the text is not leading to an eigenvalue problem that can be
easily solved: if we write the stationary Schrodinger equation we obtain a continu-
ous spectrum with the Airy functions as eigenfunctions. Thus, instead of applying
the definition of average value based on the knowledge of the eigenfunctions of the
Hamiltonian, we use the formula for the time evolution of the average value of a
generic operator A

d(A [, ~ A

A L ),

This formula is the quantum mechanical analogue of the classical formula giving the
time evolution of a quantity in terms of its Poisson bracket with the Hamiltonian.
In our case, both p and ﬁ2 commute with the kinetic part of H, and we find the
differential equation

where pg (the constant of integration) is the average value of p at time ¢ = 0. Simi-

larly, for the average of the squared momentum (p?), we get
dp*) i~ io 2
Lo sy = _ % e 52y

We can make use of the Jacobi identity (see also Problem 2.2) to find

[£.7%)

£,p7] = £, pp] = PIX, p| + %, p|p = 2ihp

and, hence

dt h
Integrating the above differential equation, we get

<ﬁ2>t = o’ + 20 pot + const.

Therefore, the final result is

Ap = \/<ﬁ2>, —(p)? = \/a2t2 + 20t pot + const. — (ot + po)? = \/const. - 3.

Let us now face the second point. At time r = O the wave function is a plane wave
with an additional phase factor

v(x,0) = oiPox/i—idy
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When evolving in time the function y, both py and ¢y acquire a non trivial time
dependence. We therefore consider (p),; and ¢ (), whose values at time ¢ = 0 are

(PY—o=po  9(0) = go.
The time evolution for (p), has already been determined before. As for ¢, we request
that
y(x,t) = S PYx/h—ig(t) _ iowx/htipox/h—ig(t)

is a solution of the Schrodinger equation

oy, R
lhT —Hl’/()@t) = <2]nax2 — (Xx) l[/(x,t).

If we perform the derivatives, we get

dor) 1 2
h i om (O!l‘—|—po)
leading to
_(at+po)®  (po)?
00 = Gan  man T
Problem 2.20.

A quantum particle is in the ground state of a one dimensional harmonic oscillator
with Hamiltonian 0

Determine the probability P(1) that the particle is in the ground state of the new
harmonic oscillator with frequency 1 @y. Prove that the result is symmetric in 1 and
% and verify the limit n — 1.

Solution
The wave function for the ground state of the harmonic oscillator can be written as

X
Do L 22
vy (x) = e 1
xlﬁ
where x? = mi We also introduce the variable x% = mrfwo to characterize the

ground state of the new harmonic oscillator with frequency 1wy
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In the approximation given by the text, the change from H, to H,1 is abrupt and the
requested probability is P = |A|?, where A is the overlap integral (see also Problem

5.13) between the two wave functions l//(gl) (x) and w(gn) (x)

+o0 ) ( ) +oo 7L 2 1 +o0 _%
A= W ()" (x)dx = e e 2 dx= / e “adx
—oo A /7T)C1X A /qun —

where x, is such that

L_1(1 1
22\ )

2
Using the known result (¢« dx = a\/7, we get

1

A= VEa _ p N
/TX1 Xy 1+7n
and, hence
P(n)=2 vn o _ 2
I+n i+

The result is indeed symmetric in 1) and L. Moreover, in the limit n — 1 we see
that the probability becomes 1, as it should be expected because both Hamiltonians
become the same in that limit.

Problem 2.21.
A quantum system has two energy states and is characterized by the following

Hamiltonian
ho

A = —==(/0)(0 - [1)1])
where |0) and |1) are normalized orthogonal eigenstates with eigenvalues —%‘” and
—&—%“’, respectively. Let us consider the operator @ with the property

a=10)(1]

and let @' be the adjoint of a:

determine [d,a"], = aa' +a'a;

determine (4)? and 4?;

determine the commutators [H,a]_ and [H,a"]_, with [A,B]_ = AB — BA;
determine the eigenvalues of 71, with 71 = ata, and express H in terms of A and
the operator £ = [0)(0| + [1)(1].

Solution
From the definition of 4 and 47, we see that
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and, hence .
@, = 0)(1]1)(0] + [1)(0[0) (1| = £.

As for the square of @ and ', making use of the orthogonality of states, we find
a* =10)(1/0)(1/ =0
(@")* = [1){0[1)(0] =0.

Let us then determine the commutators [H,a]_ and [H,a"]_

1.8)- = "2 (10)(0] ~ 1)) 10) 1]+ 210) 0] 10) 0] ~ [1)1]) = ~hwa
2,7 = =" 0y (0]~ 1)) [1)(0] + "2 11) (0] (0} (0] — 1)1]) = heva”

As for the last point, we note that
fi=aa=1)(0/0)(1] = |1)(1]

that implies |0) and |1) are eigenstates of both H and 7i. We therefore conclude that

A

N ho . E
a=-"2 (o)1 +11) {1 =e (-5 ).

ho
(10)€0] = [1) (1| £ [1){1]) =heo|1){1] - —=
Problem 2.22.
Let us consider the motion of a particle with energy £ > Uy (Up > 0) in the one
dimensional potential field U (x) = % Determine the resulting reflection and
transmission coefficients.

Solution

To solve the problem we need to determine the properties of the solution of the
Schrddinger equation for x — =£oo. In the case of Classical Mechanics, a particle
with energy E > Uy moving from left to right, is not reflected from the potential,
due to the fact that £ > limy_, 1. U (x). In Quantum Mechanics, instead, such particle
continues to move from left to right but a portion of the associated wave function is
reflected from the potential U (x). Let

Yl ~ Cre

be the solution of the Schrédinger equation for x — 4-c0, and

-/ 2mE _:V2mE
l/l(x)%e’ i x+CRel Fx

the form of the wave function for the free particle when x — —oo. The reflection and
transmission coefficients are defined through the density flux
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A

1.0 Ulx) —

0.8 1
Ux)=Uy/(1+¢™)

0.6

Fig. 2.12 The potential field U (x) = % with Uy = 1. In Problem 2.22 we determine the asso-

ciated reflection and transmission coefficients

i (av_.dy
T 2m dx lI/dx

of the incident wave and the density flux of the reflected/transmitted wave. For
simplicity, we have normalized to unity the coefficient of the incident wave trav-
elling from left to right. This is not important because the reflection/transmission
coefficient is defined as the ratio of the density flux in the reflected/transmitted
(Jg o< V2mE|Cr|?, Jr o \/2m(E — Up)|Cr|*) wave to that of the incident wave
(Jr =< V/2mkE). These densities depend on the derivatives of the solutions previously
discussed and, consequently, on the associated exponents. Therefore, the transmis-

sion coefficient is

2m(E — Up) 2
T="+————|C
v2mE Cr]

and the reflection coefficient is given by

\/2m(E — Uy) 2 2
R=1-T=1-Y"——"|Cr|"=|C
V2mE Crl” = 1Cal

where we have used the condition of continuity in the density flux (J; +Jg = Jr).
Let us then characterize the solution of the Schrédinger equation with the potential

U(x)
\//’+<a— P )u/:O

14+e™>*




Problems 81

with o = 2mE /1%, B = 2mUy/h>. If we set z = —e*, we can write the Schrodinger
equation for y(z)

Py ldy [« B )
R _— J— —_— =0
dz? + z dz + <12 +z2(z—1) 4

where we have used that

'y _ Hd'y  dy

5 =Sz i

dx dz dz
When —oo < x < 400, we get —oo < z < 0. There are two regular singularities in the
points z =0 and z = 1 (see also Problems 2.25, 4.1, 4.2, 4.5 for a discussion of the
singularities associated with the Schrédinger equation). If we set z = 1/, we get an

equation for y(7)

Ay ldy 1 Bt
a?tZJrzcitthZ(a(z—l))wO

where we see that also z = +oo (+ = 0) is a regular singularity. The whole solution
is the product of the singular behaviour and a suitable hypergeometric function. To
determine the singular part, we need to calculate the indicial exponents with the
substitution W(z) = z* ((z— 1)*) in the original equation. In the limit z — 0 (z — 1),
we solve the resulting second order algebraic equation and we find the following
solutions

A=+iJo—B= ﬁ:% 2m(E—Uy) p=0, L.
We then seek the solution in the form

w(z) == 1)Py(z) = y(z)

since one of the solutions for u is zero. As for the value of A, we choose the minus
sign, since for x — e (z — 0) the solution must represent a transmitted wave
travelling from left to right, that is

W e e VITE D0 _ (x)~hv/2ET) _ ~f/3n(E—T)
Substituting w(z) = z*y(z) in the original equation, we get
2(z—1)y"+(z=1)24+ 1)y + By=0.
If we want to match the general equation for the hypergeometric series
2(z—1)Y"+[(A+B+1)z—Cly +ABy=0

we find

A=i(Va—/a—P)
B=—i(vo+/oa—B)
C=2A+1==2i\/a—B+1
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from which we get the solution

F(A,B,Clz) =F(i(vVa—+/a—B),—i(va++va =2iv/oo—B+1z).

When z — 0 (x — +o0) the hypergeometric series becomes 1 and y represents the
plane wave travelling from left to right. To determine the reflection coefficient, we
need to determine the solution for z — —oo (x — —oo). The problem is that of the
analytical continuation of the hypergeometric series from 0 to —oo. Therefore, we
need the formula relating the hypergeometric series with variables z and 1/

1
F(A,B,C|z) =G(—z2) F(A,1 -C+A,1 —B+A|-)+
Z
1
S(—z) BF(B,1-C+B,1+B—A|-)
<

with the constants G and S given by

c_rEOre-4 [(=2iy/o—B+1)(-2iya)
FBI(C-A)  I(-i(vo+/a—=B)L(=i(vVa+/a—p)+1)
s_LOr@-s _ 2iy/a—B+1)(2iya)

r(A(C—B) \f_ﬁ f_\/f

In the limit z — —oo, the hypergeometnc series becomes 1 and we are left with
y(z) g VOB [G(—z)i(\/ a—p-va) 4 g(—7)iv/ 0!—54-\/5)} -
A . S .
1 71\/a7BG iox y 2 —ivax|
(=1) eV 4 G¢

Therefore, the reflection coefficient is R = |S/G|?, with S and G given above.

Problem 2.23.
Consider the one dimensional rectangular potential wall (Vp)

0 x<O0
Vix)=Vp x>0.

<<
—

=
~

Il

In the case of a particle travelling from left to right, determine the energy £ > V)
such that there is the same probability to find the particle in the regions x > 0 and
x < 0. Using the same initial condition, repeat the calculation for the rectangular
potential barrier (see also Fig. 2.13)

Vix)=0 x<0
Vix)=Vp 0<x<a
Vix)=0 x>a.
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A
Vix)
V=Vy
I 1
V=0
B

0
X

A

Vix)
V=Vy
I 1 i
V=0 V=0
=
0 a

X

Fig. 2.13 A one dimensional rectangular potential wall (top) and a rectangular potential barrier
(bottom). In Problem 2.23 we study the solution of the one dimensional Schrédinger equation with
the property that the reflection and transmission coefficients are equal

Solution
The wave functions entering this problem cannot be normalized because E > V.
Consequently, the condition that there is the same probability to find the particle in
the regions x < 0,x > 0 implies that the reflection (R) and transmission (7") coeffi-
cients are the same. Furthermore, the condition R+ 7 = 1 imposes R =T = %

Let us then start with the first case. The Schrodinger equation for x < 0 (region
I) and x > O (region II) is satisfied (apart from an overall constant) by the wave
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functions

vi(x) = ef1* 4 Cre=k1¥ x <0
1//11(x) = CTeikzx x>0

with ky = v2mE /h, ky = \/2m(E —Vy) /h. The constants Cg, Cy are determined
from the condition of continuity of the wave function and its first derivative in x = 0.
In formulae, we get

14Cr=Cr k(1—Cg)=kCr

leading to
2k (k1 —k2)
Cr=——— Cr=-—"7"-.
"7 (ki +ko) B k1 k)
The transmission/reflection coefficient is the ratio of the density flux in the trans-
mitted/reflected wave to that of the incident wave (see also Problem 2.22). The def-

inition of the density flux is

_ oAyt Ldy
J_Zm (‘V dx 4 dx)l

The incident wave is given by e*1¥, ¢=#1¥ in y; represents the reflected wave and
ek2X in yy; represents the transmitted wave. Therefore, we find Jj o< ky, Jg o< ki |Cr |2,
Jr o< k|Cr|* and the transmission/reflection coefficients

k
T = |cT|2i R=|Cr|*.

The desired condition (T =R = %) is translated into

1 ki —ka\?
~—=|Cr|*=
2 ‘ Rl (kl—‘rkz)

leading to the following equation for £

2
I (VE-VE=V,
2 VE+VE=V,
yielding E = W%“)Vo.

As for the rectangular potential barrier of the second point, things are more com-
plicated. The Schrodinger equation has to be solved in the three different regions
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(x < 0,0 <x<aandx > a) and the solutions are

Y (x) = eh1* - Ae~hix x<0
Wi (x) = Be** 4 Ble=k¥ 0 <x<a
l[/][[(x) = CTeik'x xX>a.

The conditions of continuity for the y and its first derivative in x = 0 and x = a are
translated into

1+A=B+B
k;
1-A=2(B-B)
Beikztl _'_B/efl'kzll — CTeikltl
Beikza _B/e*ikza — %CTeik]a.

If we sum the first and second of these equations and divide the third by the forth,
we get

2k ki+ky
B = k1 —ky B(kl—kz

Beik2a+Ble—ik2a _ Q
BeikzaiB/efikzu - ky*

Substituting B’ in the second equation, we find

_ ki (ki +kp)e~ e
 2kikycos(kaa) — i(k3 +k3) sin(koa)

Also, in the equations for the coefficients, we can sum the third and forth equations

and we get )
23k261<k2*k| Ja

T itk
Substituting the value of B in this equation, we find
- 2kikye k1
 2kikacos(kaa) — i(k3 +k3) sin(kaa)

Cr

Moreover, for this rectangular potential barrier, we have Jj o< ky,Jr o< ky |CT|2 and
the resulting transmission coefficient is

4213
(k2 — k3)2sin? (koa) + 4k3K3

T=I|Cr|* =

Consequently, the reflection coefficient is

(k2 — k3)?sin’ (kpa)

R=1-T= :
(k2 — k3)2sin? (koa) + 4k3K3




86 2 Formalism of Quantum Mechanics and One Dimensional Problems

1'0—‘_\' /

2 > 2
x=(y"+r" )” z

-
x=r" sin y/2y

Fig. 2.14 The intersection of the two curves x = (+2siny)/2y and x = (y2 + r2)"/? (with r = 4)
allows us to determine the energy at which the transmission coefficient equals the reflection coef-
ficient for the rectangular potential barrier of Fig. 2.13

When sin’(kya) = 0, i.e. koa = nmw,n = 1,2,..., the reflection and transmission
coefficients become R = 0 and T = 1, i.e. the potential barrier is perfectly trans-
mitting the wave function. This happens when the width of the barrier satisfies
a=nn/ky, =nA/2, with A = 27 /k;. Imposing T = 1/2 we find the desired condi-
tion for the energy E
4k3h3

(kf —k3)?
If we set x = ak; (not to be confused with the position in the beginning of the
problem) and y = ak,, we realize that the desired value for E is found from the
intersection of the two curves

= sin’(ka).

2mVya®
22— mhga 2

<

x2y? = % sin?y.
In Fig. 2.14 we plot x = (r2siny) /2y, x = (y* 4 r2)"/2. Since x o< VE, we need to
look for positive solutions corresponding to a real energy. The first curve is a branch
of a hyperbola while the second is a decreasing oscillating function with maximum

2
value in y = 0. The intersection is possible when 7% /2 > r,i.e. r > 2 and 7”";0“ >2.

Problem 2.24.

Let us consider a one dimensional quantum harmonic oscillator. Using the Heisen-
berg representation, determine the time evolution of the operators £, p, 4, a'. De-
termine the average value of %, p, £2, ﬁz on the generic eigenstate |n) of the Hamil-
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tonian A = hiw (a*a+ 1), H|n) =2 (n+ 1) |n), at time # = 0 and at the generic
time ¢ > 0. If at time ¢t = O the system is in the state

lat) = c0l0) +c11)

with ¢ and ¢ real constants, determine the average value of %, p, £2, ﬁz on such a
state at time ¢ = 0 and at the generic time ¢ > 0.

Solution
To determine the time evolution of the operators, we make use of the following
identity

~

PheB=A+ [B,A] +

A A A A

B, 1B, + 5,818 [BA] +

1

2!

valid for two generic operators A and B. Therefore, let us start by demonstrating
such formula. Let us define ¢(r) = e'BAe~'B with the property ¢ (1) = e’Ae ~B The
derivatives of ¢(r) are

dé(r) ' BABeB — [B.6
= BePAe — /PABe " = [B.(1)
y
o = Lb.é0)= [8.250] — g
3 )
To0 L ppé) - (5[5 20| - 158600

A possible way to define ¢ (1) = eBAeB takes advantage of the Taylor expansion
of ¢(¢) aroundr =0

L (1)

o 3! ar’

1 .d*()
2! di?

t=0

Since ¢(0) = A, we can use the above expressions for the derivatives evaluated at
t = 0 and immediately obtain the desired result for eBAeB. Setting B = iHt/h, we
are now ready to determine the time evolution for a generic operator A(t) in the
Heisenberg representation

A (AL A At A it

A(t) =" # A(0)e™"n =A(0) + E[I:I,A(O)}—
12 . . . Bl oA
2!;_72[1—1’[ A(0)]] ;3,[11,[ [HA0)]]] +
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When A = a (the annihilation operator), we obtain

a(t) _pio(@ar i) 5, —io(@ aty ) _ jioda s, ~iodtar _ a+itola’a,al
1 . 1
- 5(wr)z[&'a,[am,a]] —i(or) [a'a,[a"a,[a"a,d])) + - =
~ . 1 2 . 3 1 A —i0t
a lflt(u—g(a)t) +i(or) §+ <) =ae

Since a' is the adjoint of @, we easily obtain a' () = d"e®. From the relation be-
tween the creation/annihilation operators (4", @) and the position/momentum oper-
ators (%, p), we know that

£(t) = \/ 5 (Ge ™ + a7 el
ﬁ(t) = mgw(ﬂeiwt _&e—ia)t).

We then consider the matrix elements of £, p, £2, p* between the states |m) and |n)
at time ¢ = 0. Such elements evolve in time as

(Em—En)t A i (Em—En)t
h

Aum(t) = (n,t|Almt) = 7 (n|A|m) =e Apm(t =0)

where A is chosen among the operators £, p, £, p2. We are interested in the diagonal

elements (n = m) where the phase e’iw is zero and we conclude that those
elements do not evolve in time. Therefore, it is necessary to calculate those matrix
elements only at time ¢ = (0. To determine the average value of the position and mo-
mentum operators, we first rewrite £ and p in terms of the creation and annihilation
operators. Then, knowing that @ and @' act as step down and step up operators on
the eigenstates |n), we get

(n+1)n
2mw

Rn) =/ g In—1) +

2mw

[n+1)
plny = —iy/mmOn |y 1) gy IOy
Using the orthogonality of the eigenstates, we find
(n|£[n) = (n| pIn) =0

and, for the squared position and momentum operators, the result is

. h h 1
(nl &1n) = o (nl (a+a")n) = o (n| (aa" +a"a) |n) = — <n+ 2)
h h 1
(n| p?n) = ,mg’ (n] (—a+a")2|n) = % (n| (aa" +a'a) |n) = hmo (n+ 2) .

To verify the above results, we can compute the average energy

A2

m 2
E=(R)= % T #) = ho (n+;)
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that is the expected result. Let us now answer the last question. At time t = 0 we
have

(affa) =(co (0] +c1(1[)%(col0) +c1[1)) =1/ %Coﬂ
(afpla) =(co (0] +c1(1])p(col0) +c1[1)) =0

(@2]0t) =(eo{0] + e1 (1) eol0) +e1]1)) = 5 (leof +3]er[?)

(@) =(eo(0] + e1 (1A (col0) +eal1)) = "2 (feol +3]er )

To compute the average values on the state |ar) at time ¢ > 0, we need to evolve
the state with the action of the time evolution operator e~/ Such operator is

diagonal with respect to the eigenstates of A and, therefore, the eigenstates |0) and
ho

|1) acquire the phase factors e "£0'/" and e~£1/ respectively, with Ey = %2 and
E, = 3o
1= 72

1) = coe % [0) + e |1).
The average values become

(a,t|f] o, 1) =(coe' ¥ (0] +cret %

2h
\/ —=coci cos(wt)
mo

301

(0,1 pla,t) =(coe™S (0] +cre™8 (1)) pleoe 3 10) +cre 5 [1)) =

—V2mhocyc sin(ot)

(1)(coe ™ 910) +cre 7 1)) =

(o, 1122, 1) =(co(0le’ +cre™% (1)) (coe 2 |0) +cre % 1)) =

h
7 (|C0|2 +3|C1|2>

j 3ot
2

j QL
(0,1 p%| 1) =(coe'2 (0] +cre’

ho
= (o +3le1?).

(1)p*(coe '3 |0) +cre 5 1)) =

Problem 2.25.
Determine the energy spectrum for the bound states of a particle with mass m subject
to the Morse potential (see Fig. 2.15) defined by U (x) = M (e 2% —2¢=%), M,a > 0.

When ¥ %’;’M =S, with § a positive integer, compute the number of bound states.
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'I A
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|| 0.8
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|II
|| 0.4 -
|
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, — : —
-2 -1 0 ) 2 /f-}-”"'_ 4
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'.IL Ulx)=M (e =" -2¢ )
\
(‘<

Fig. 2.15 We plot the Morse potential defined by U (x) = M (e 2% —2¢~*) with M = a = 1. The
associated energy spectrum for the bound states is characterized in Problem 2.25

Solution
The stationary Schrodinger equation with the Morse potential is

n d*y ,
E—M(e 2% _Dp=ax =0
a2 T (e e Ny
where E is the energy. Since the derivative of an exponential function is still an

exponential function, it is convenient to define z = e™* (z = 0 is zero when x — +oo
and z = +o when x — —o0). Therefore, we obtain

ﬂ_zzdllf

dy
2,
dx? dz? ta

dz

>y 1ldy (2B
ik A 0
dz2+zdz+<z+z B)W

where B = 2mM/(l*a*),y = 2mE /(h*a*). The complete solution of this equation
can be found in the class of the confluent hypergeometric functions (see also Prob-
lems 2.22, 4.1, 4.2, 4.5 for a discussion of the singularities associated with the
Schrddinger equation). First of all, we need to examine the singularities of the equa-
tion: the point z = 0 is a regular singularity and the indicial exponent is found by
plugging the approximate form y/(z) ~ 7* in the original equation

A(A -

and the equation

NP2+ A2+ 2B 4y 2Bt =



Problems 91

When z — 0, the terms proportional to z*~2 dominate and we find A = +,/=7. We
note that Y must be negative; otherwise the wave function would present oscillations
and would be impossible to describe bound states: we therefore conclude that the
discrete spectrum is given by the negative energies. Since 7 is negative, the correct
non divergent solution for z ~ 0 is given by z7V~7. We next separate out the be-
haviour close to z = 0 and seek the solution in the form y(z) = z* f(z). Plugging
this form in the Schrédinger equation, we find

2\/—7+1 2

f”“r( Y )f/—‘y-(ﬁ—ﬁ)f:()
Z Z

and we observe that the singular behaviour z~2 has been removed from the equation.

With the substitution z = 1/¢, we can study the behaviour close to z = +o0 (t = 0)

(A (B

and we see that there is a singularity in r = 0. The terms 3, ~* make the singularity
irregular: with this form of the equation it is not possible to find an indicial exponent
and a solution of the form f(¢) a2 ¥ when ¢ =~ 0. To find an indicial equation with a

solution, we need to use the substitution f(f) = e VBItE (¢), leading to

. (2%3_ 2@—1)1,,_ Q=T+ VB2,

13

The effect of this substitution is to cancel out the terms proportional to r~*: it is
now possible to find a solution of the form F(¢) ~ 1 and the Fuchs theorem guar-
antees that the solution close to t = 0 behaves like 79u(r), with u(r) some ana-
lytic function. Going back to the original equation for f(z), with the substitution

flz)= e VBzy (z), we obtain the equation for Y (7)
_ - 1
Y"+<2\/?}/+1—2\/E>Y’+2ﬁ 2\/BZ(\/7+2)Y:O'

With the definition z = £ /(2+/B), the equation becomes
" !/ 1
EY+(2y/=y+1-E)Y' — (MH 5 \/E) Y=0
that is the confluent hypergeometric equation with solution
1
Y(A,ClE) =Y (5 +vV=r-VB2vV=r+1,¢

with

Azé—i—ﬁ—\/ﬁ C=2/=7+1.
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Going back to the original wave function, this has the form
1
V(z) = /e VBy (2 V=7 =B, 2v=7+ 1|2\/Ez> :

To have y(+4e) = 0, the dominant contribution in ¥ when z — +oo must be ex-
ponential, i.e. the hypergeometric series must reduce to a polynomial. An infinite
number of terms would in fact spoil the exponential behaviour and the convergence
of the wave function when z — +oo. The n-th term in the series of the confluent
hypergeometric function is

AA+1)--(A+n—1)
(n!IC(C+1)---(C+n—1))

If A is zero or a negative integer number (A = —n,n = 0,1,2,3,...) the series is
truncated and reduces to a polynomial: this is the condition of quantization for the
discrete spectrum. Expressing 3 and 7 in terms of the original parameters, we find

We recall that \/—7 is positive

V—2mE, \/2mM(1ha(n+;)) 2mM<n+1>ZO

= ha - ha 2mM ha

V2mM

ah

and, therefore, n + % < , i.e. the number of energy levels is finite. When

—V%'ZM =S, with § a positive integer, we find S+ 1 bound states.

Problem 2.26.

Discuss the existence of bound states for a particle with mass m subject to the one
dimensional Dirac delta function potential U (x) = —&(x).

Solution

Our potential is a Dirac delta function for which

+&
/ S(x)dx =1
—€
for € > 0. The associated Schrodinger equation is given by
w d*y(x)
2m  dx?

+(E+6(x)y(x)=0.

The wave function has to be continuous, a condition that is necessary to interpret its
square modulus as a probability density function. As for the properties of its deriva-
tive, care has to be taken. Let us concentrate on the infinitesimal interval [—&, €],
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with € an arbitrarily small parameter. We first integrate the Schrédinger equation
between —& and &, and then send € to zero

2 £ 2
lim (fm / (W) + (B +8(0)w(x) dx) = W0 W (0) +y(0) =0

e—0 —€

where the term multiplying E is zero due to the continuity of y in zero. Such equa-
tion reveals the singularity of the logarithmic derivative of y in the origin

To find bound states, a negative energy is required, otherwise we would have a
continuous spectrum given by plane waves. Since the d(x) is centered in zero, for
x # 0 we find the Schrodinger equation for a free particle, whose solution is y/(x) o
eV =2mEx/ o ensure a vanishing wave function at infinity, we have to select

1[/()6) :A67\/72mEx/h

for x > 0 (A is a normalization constant) and

W(x) :Ae\/72mEx/h

for x < 0. Using the discontinuity condition previously found, we get

v'(04)  y'(0-) _2V=2mE 2m

w(0)  y(0) oo

This condition is enough to determine the only value of the energy for which we
find a bound state, i.e. E = —m/2h%. For this value of the energy, the normalization
condition (see also Problem 2.29) yields

m

Problem 2.27.

Consider the one dimensional quantum harmonic oscillator with Hamiltonian A, =
A oA . . 52 N
T + V>, where T is the kinetic energy (I’ = é’—m) and V, the potential energy

N 2 . . . A PN
W = U 2, Xg = 1/%). Then, consider the Hamiltonian H4y = T + V4, where

7
2mx

N 2 . . . . . .
Vo= J‘Wf‘ . Using the variational method with the Gaussian trial function
0

o(x) = Ae

determine the best estimate for the wave functions ¢2(O) , q)io) and the corresponding

energies EZ(O),E 4(‘0) for the ground states of the two Hamiltonians.
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Solution

According to the variational principle, the ground state of the Schrédinger equa-
tion corresponds to the condition that E = (¢|H|¢) is minimized with respect
to the variations of the wave function ¢. Besides the theoretical importance, the
variational principle is also very useful on practical grounds, because it allows to
construct approximate wave functions in many body problems that could not be
dealt with other elementary methods. One usually chooses a set of trial functions
¢ (x,{A1,22,...,A,}) dependent on a given set of parameters {A;,1,,...,4,}, and
minimizes the energy as a function of the parameters. If the exact state belongs
to the class of functions considered, we get the exact solution. If, on the contrary,
the exact solution does not belong to such a class, the minimum always overesti-
mates the ground state energy. Obviously, the larger is the set of parameters and
the better is the estimate of the state. When the trial function ¢ is not normalized,
the normalization condition can also be imposed with a Lagrange multiplier. In our
case, the normalization condition, [ |¢ (x)|>dx = 1, is particularly simple because

we know the Gaussian integral [ e e dx = v/Tt. Consequently, the value of A is
A= ()

V3
In the harmonic case (i.e. when we treat H,), the trial function is exactly of the

same class of functions (it is a Gaussian) describing the ground state of the harmonic
oscillator (see Problems 2.20 and 2.32) with b = 2 and E, 0 _ “’ o=l

l‘f’lXO
In the anharmonic case (i.e. when we treat Hy), we can use the variational method
with this trial function to approximate the ground state. We first need to compute the
energy E(b) = (T +V4). For the kinetic energy ('), we use the second order moment

of a Gaussian, ff; x2e* dx = \/TE , to get

N N R n2b
T :f—AZ/ Bl A / e (“2b+4p 2 )e P dx=2—
()= A e —dx= b )e m

Moreover, for the potential energy, we find

. HPAZ [t > i
Vi) = / e dx = ——
(Va) 6mx8 32111)68[92

o 42
where we have used [77 x*e™ dx = 3‘F . We now impose the condition d%}b) =0

and find
2 1

b3 16x8

from which we get b = 2X2 and E = fn— We see that this energy is lower than
X0

the energy of the ground state for the harmonic oscillator, i.e. EAE ) = %ha) < %ha)

This is due to the fact that the anharmonic potential is smaller than the harmonic
one for small x. We finally remark that the effect of the anharmonic terms can also
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be studied using a perturbative approach. As for this point, see the Problems 7.22
and 7.25 in the section of Statistical Mechanics.

Problem 2.28.

Let us consider a particle with mass m subject to the harmonic potential U (x) =

Imx?. If the particle is in the trial state ¢o(x) = Ae™5", with A a normalization

constant and B a free variational parameter, determine:

o the average value of the energy as a function of B;
e the value of B minimizing the energy.

If at time ¢ = O the particle is in the state Y = a@y + b, with ¢o(x) given above and
91 (x) the eigenstate of the harmonic oscillator with eigenvalue %h, determine:

e the probability that at time 7 = 0 a measurement of the energy gives E = /2;
e the probability that at time ¢ > 0 the particle is in the interval [—€, €], € > 0.

Solution
We first need to determine A in terms of B using the normalization condition

oo oo
1:/ \¢o(x)|2dx:A2/ e 2B gy = A %

that implies A = (2B/7)!/* and, hence, @o(x) = (2B/7)!/4¢~B* In the above ex-
pression, we have used the Gaussian integral

—oo

1p)= [ e [ 2

with B = 1. Using the property

e T R
2,-2BBx% ;. L 1 LR el
/_m ve T dy=—op Mg a8\ 28

we find the average value of the energy

. 2B [+ ”od o1
B =)=\ / ()=

2B [ teo o de B 1 1 . dI(B)

iy _ —— 1 —

T | 2m R A T T

ZB I hz oo 723)(2 22 1 1 . d T

— 4B*x* —2B)d = | =
T | 2m ( Jdx+am\ =35 ) im 25\ 38p
2B[ #? 432 . dI(B [m

RN lim 74'_7

% | 2m (—2B)poi dp " 8B \/ 2B 23

B WB m B m

“om T 8B 2m T
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We take the derivative and set it to zero

dEB) _h _m _,
dB m 4B2

to find the value of B and the explicit form of the normalized wave function

m 1 my\i _m?
B:— E:—h :<7) T 2h
2h " e =177)
We note that ¢(x) is the wave function of the ground state of the harmonic oscilla-
tor. As given in the text, also ¢;(x) is an eigenstate of the harmonic oscillator with
energy Ey = 3/2h, i.e. the first excited state. The probability that a measurement of
the energy gives E = 71/2 is P(E = 1/2) = |a|?. The time evolution of v is given by

the action of e~ H!/" on the wave function at time ¢ = 0

() = (xle” /%y (0)) = ae™ 3 go(x) + be™ % gy (x).

The probability to find the particle in the interval [—&, €] is the integral of |y/(x,?)|?
between —€ and €

P= [ lwtoPax=1af [ nGoRdr+ bR [ lortPax

—€

which is not dependent on time ¢, due to the fact that [, ¢ (x)@; (x)dx = 0 because
@o(x)@; (x) is an odd function.

Problem 2.29.
Consider the following Hamiltonian for a particle with mass m in one dimension
. n* d?
H=———-0(X)+b|%| b=>0.
2m dx? (%) + b1 -

For the special case b = 0, find the energy of the bound state with the variational
method using a trial function of the form y(x) = Ne *Ml, with A a variational pa-
rameter and N the normalization factor (to be determined). Then, suppose that b > 0,
and find the variational condition with the same form of trial functions previously
used. Solve the case with small b. Is the energy increasing or decreasing? Try to
give some qualitative explanation.

Solution
The case with b = 0 is a one dimensional problem with an attractive potential energy.
Such problems always have at least one bound state in the discrete spectrum, whose
squared wave function can be integrated.

First of all, we need to determine the normalization constant N. To do that, we
use the integral [, e 2**dx = ﬁ in the normalization condition

o o 2
/+ |y (x)|[>dx = 2N2/0+ e M dx = N 1.

—o0
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We therefore have the normalized trial function
w(x) = Ve M.

We have already discussed in Problem 2.26 the properties of the one dimensional
Schrodinger equation in presence of a Dirac delta function potential —&(x), and
we have seen that the derivative of the wave function has a discontinuity in the
origin. We now want to analyze the same physical picture from the point of view of
the variational method (see also Problem 2.27 for a discussion on the method). We
need to compute the average energy on the normalized trial functions, and find its
minimum to determine the optimal value of A. We start by calculating the average
kinetic energy on our trial functions. To do this, we note that the function y(x) has
a discontinuity with the property

lljl(0+) 7 W/(O*) — 2.
v(0)  w(0)
This means that we have to take care in evaluating the second derivative of y close to

the origin. When averaging on the state y, we can divide the domain of integration
from —eo to +o0 in the three regions [—oo, —€[,[—€,+€], | + €, 40]. We get

. Bt
WiTly)=—5_ 1 () v (x)dx =
n? B2 e
“om | W( )V/,( )dx—a e W(X)l[/’(x)dx

where we have used the symmetry properties of y(x) to write

~+oo —& oo

vy (x)dx+ [ oy (x)dx=2[ yx)y'(x)

+e —oo +€

In the limit € — 0, we find

2 4o 2 242
T e ar= - [T yatuwans -2

+e m Jie 2m

Close to the origin, if we want to take into account the above mentioned singularity
of y(x), we can use

V) _ 00— ()

with 6 (x) the Heaviside function. Therefore, in the limit € — 0, we find

2 r+e
P v dxm—l/ dx*—)Lz.
i

2m J—
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The average kinetic energy is

A2R2 AZR? ARR?
- 2m + m 2m

(y|Tly) =
We now need to determine the average potential energy
5 e 2 2
Wvly) = [ WP dx = —y3(0) =2

so that the total average energy is

R R n*A?
E() = Wi 1y) + (wlPlw) = 5~ 2
The variational condition is then imposed
dE 2
dEQA) _ WA,
dA m
leading to A = ;”—2 and E = —27%. With such a choice for A we get

ORI

that is the exact solution already studied in Problem 2.26. Let us now switch on the
term b|%| in the potential energy and compute its average on the state y(x)

oo +eo b
+ b/ e Mgy = —
0 0

—+o0
b(|z]) = 2bA /0 xe M dx = —bxe M T

The new average energy has the form

1222 b

and the resulting variational condition is

dEG) 1A b,
A m 222

To find A, we need to solve a cubic equation. The solution is simpler when b is
small (it is the case of our problem), because we can use an iterative method to find
such solution. A zeroth order approximation delivers the same result as before, i.e.
A=A = 25 As a first order approximation, we can determine a A1 such that

WA b

—1-- =0
m 2102
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A

V(x)=0(x)
V=c0o M (x) 6(1) V=eco

X=-a 0 x=+a

Fig. 2.16 A one dimensional potential well with a Dirac delta function §(x) in the middle. In
Problem 2.30 we characterize the eigenstates and eigenvalues for a particle with mass m subject to

this potential

This produces A; = hﬂz + b% to be used in the expression of E(A). The result is

h2
mop g

E~x—-——
2r*  2m

and the energy increases due to the terms proportional to b, that is an expected result
because the term b|£] is a repulsive potential.

Problem 2.30.
Determine the eigenstates and eigenvalues for a particle with mass m subject to the

potential

reported in Fig. 2.16.

Solution
The Schrédinger equation for —a < x < a is

L (E-8(x)y=0.

The boundary conditions yield y(+a) = 0, plus the condition of continuity in x = 0.
The first derivative is not continuous in x = 0 (see also Problem 2.26). We also note
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that the operator
n* d
——+(E—-0

is invariant under the spatial inversion x — —x (we recall that §(x) = 6(—x)). This
means that if y(x) is a solution to our problem, also y(—x) is automatically a so-
lution. Moreover, we are dealing with a one dimensional problem, and there cannot
be two independent solutions with the same eigenvalue. To prove this statement we
suppose the contrary to be true, and consider yi, y» as two independent solutions
with the same potential V and the same eigenvalue E

2m
v, = FTQ(V —E)y,.

If we divide the two Schrddinger equations by v, y», we get

W_om, W
v R 175}

that implies y} v, — v y; = 0. One integration leads to

Wiy — Wby = const.

where the constant of integration is zero due to the boundary condition y »(£eo) =
0. This happens because y 5 is an eigenfunction of the discrete spectrum and must
g0 to zero at oo to be normalized. Therefore, we obtain

ViV =y

and another integration gives W = cy», where c is an integration constant: we see
that the two functions v, y» are linearly dependent and this violates the previous
assumption of independence.

Let us then go back to our problem considering the two solutions y(x) and
y(—x). Applying the previous argument, we find y(x) = cy(—x) and, applying
another spatial inversion, we get W(x) = c¢?y/(x). This means that c = +1 and all the
solutions of the Schrodinger equation must be either even or odd. In general, this
is true for a generic one dimensional symmetrical potential V (x) = V(—x). When
we integrate the Schrodinger equation through the discontinuity (see also Problem
2.26), we get

2 € 2
tim (g1 (00 (= 800)w0) ) = 3 (W(0) = /(0 )) - y(0) =0
from which
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We note that the odd functions have y(0) = 0 and do not present a discontinuity in
the derivative. For these functions, the Dirac delta function in x = 0 does not exist,
and they possess the energy spectrum of a potential well (see Problem 2.10). For the
even functions things change. When x # 0, the solution of the Schrodinger equation

takes the form
2mE
y(x) = Asin {1 / % (x+ }/)]

where A, y are constants set by the boundary conditions. Imposing y(+a) = 0, we
find Y = 4a and

y(x) :Ax<0sin[ 2’”—E(x—i—a)} —a<x<0

y(x) :Ax>05in|: %’%E(xfa)} 0<x<a.

The condition Wy~o(x) = Wy<o(—x) imposes

\/2::?(—364—61) = Ay>0sin l\/z;??(x - a)]

that means —A,<o = Ay~o = A. The solutions are

Aycosin

v(x) = —Asin { 2;”—2E(x+a)} —a<x<0

y(x) :—&—Asin{ 2’};1—2’5(x—a)} 0<x<a.

The condition of discontinuity of the first derivative in x = 0 is

YO V0)  [mE_( [E\ m
vo) v V@ t( 7 )rﬁ'

The energy spectrum E is given by the solution of this equation. Setting A% =
2ma? /hz, x = v/E (not to be confused with the position in the beginning of the
problem), the solutions can be found by looking at the intersection of the two curves

y = xcot(Ax)
__A
Y= "

reported in Fig. 2.17.

Problem 2.31.

Determine the transmission and reflection coefficients for a particle with mass m in
a potential barrier given by a one dimensional Dirac delta function V (x) = V8 (x),
Vo > 0.

Solution
We need to determine the solution of the Schrédinger equation in the two regions x <
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Ay
20

|
| v=xcot (Ax)
|

|

II
10 -
\

() ———— \

x
— -
\"'5 - \
\
10 '

|| v=-Aa
-20 -

Fig. 2.17 We plot the two curves y = xcot(Ax) and y = — éia withA=2anda= % The intersec-
tion is important to characterize the eigenstates and eigenvalues for a particle with mass m subject
to the potential shown in Fig. 2.16

0 (region I) and x > O (region II). The resulting wave function must be continuous

in x = 0 while its first derivative must present a discontinuity (see Problem 2.26).
The wave functions are

V’I(x) _ eikx_’_CRefikx x<0
l[l[](x) = CTeikx x>0

with k = —Vz,;”E The condition of continuity yields y;(0) = y;;(0) and this is equiv-
alent to
14+Cr=Cr.
As for the discontinuity of the first derivative in x = 0, we get
v (04) _ v'(0-)  ikCr B ik(1—-Cg) 2mVp
w(©0)  w(0)  (1+Cr) (1+Cr) 12

Using these two conditions (continuity of the function and discontinuity of the
derivative), we get

Vi 1 ik
CRZmizoi CT=l+CR=l7.
h (ik—mh—‘;") (ik—’"h—?)
The resulting density fluxes are proportional to
Jyo<k

Jro< k|Cr|>  Jr o< k|Cr|?.
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The transmission and reflection coefficients are

1 1
— 2 _ _ 2 _
=|Cg|” = +ﬂ T=|Cr|”= V7
mVg 1+2th

With these expressions is immediate to verify that 7+ R = 1.

Problem 2.32.

Characterize the uncertainty relations for two generic self-adjoint operators (K and
F) with commutation rule [K,F] = iM (also M is a self-adjoint operator), and de-
termine the most general form of the wave packet minimizing such relation when
K=3%F= p,M hll. Using such wave packet, determine the averages (£), (),
(£2) and (p?). Finally, determine the time evolution of the wave packet with the
Hamiltonian of the harmonic oscillator and verify that the average values of the
position and momentum operators satisfy the classical equations of motion.

Solution
Let us start by defining the average of K and F' on a generic state y/(x)

/w Ky (x) /w x)Fy(x)

and introducing the operators AK and AF
AK=K—(K)Il  AF=F —(F)1.
These new operators satisfy the commutation rule
[AK,AF] =iM.
We next introduce the integral (o), with a a generic real parameter

_ / ((tAK — iAF)y(x)|>dx > 0.

The above inequality is surely true, since I(@) is defined as the integral of a squared
function. If we use the fact that K and F are self-adjoint operators, we can write
I(a) as

) =/w* (1) (QAK +iAF) (QAK — iAF) y(x) dx =

/ W () (a2 (AK)? + aM + (AF)?)y(x) dx =

24/{(AK (AK)?)
0 2 (y?
(ak) >(°‘+2<<AI%>2>> HAFY) - army 2°
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The first term of the inequality is positive because it is the square of a function. The
last two terms contribute with a positive term when

(AF)?)(AK)?) > £ (M)

that is the desired form of the uncertainty relation. If we set

A~

a—a——— M _
2((AK)?)
the integral / becomes
2 2
I(@) /‘( —HAF)l//() dx:<(Aﬁ)2>_4((<i/II>€)2>>o

that is another way to produce the uncertainty relation. The condition
N . 1 .
(AF))(AR)?) = 1 (M)?

is obtained when /(&) = 0. This means that the wave packet minimizing the uncer-
tainty relation has to satisfy

(M)AK AP _
(z<<A1%>2> * AF) )

When we set

. d
AF =Ap=p—pll = —ih— — pll M=nl

AR
dx

=

AX=%—X

with ¥ = (£) and p = (p), we obtain the differential equation

(x—x+d_ﬁ§)w@y:o

xo dx

with x3 = 2((AK)?) = 2((A%)?), whose solution is the following normalized wave
packet

We can determine the average values (%), (p), (#?), (p*) using some properties of
the Gaussian integrals

@ = [ v [ e ')2<;)xod<;;)=x

0= vw (-ing ) viar=p [ w*(x)w(x)dx+ih<f;§“> .
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We see that our wave packet has non zero average values for the position and mo-
mentum operators. We will now show that the average values evolve in time accord-
ing to the solutions of the equations of motion of the classical harmonic oscillator

x(t) = x(0) cos(et) + % sin(wt)

p(t) = —mox(0) sin(wt) + p(0) cos(wr).

To determine the time evolution, we write |y) =Y, ¢, | W,) where |y,) are the eigen-
states of the harmonic oscillator. Once we know the generic projection coefficient

¢, the time evolution of the wave packet is given by the phase factors e

—iEpt/h

mul-

tiplying the ¢,,, where E, = ho(n+ %) is the eigenvalue of the n-th eigenstate. We

first introduce the scalar quantity

x +l')COﬁ
V2xg V2

and rewrite the wave packet as

1(x 2 1(Xx 2 X
() = 2 (5) () 2 (&)
VX
Then, we consider the n-th eigenstate of the harmonic oscillator
1 Ly X (=" L(L)Zd"ei(%)z
Yy (X)) = ——=¢ 2%’ H, () = e o =
21n)\/Txg X0 2101/ Txg d(g)n
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with H, the n-th order Hermite polynomial, and compute the projection coefficient
cp as

2
_ [ e — D S3(E)T T vaa( are () dx
C“%QWWW@“‘WmmeAJ.me<0a(Qnm‘

(%)2 d"_lef(%>2 V2a( & d”_2e7<%)2 de 2u<x°>
( d()%)"—l e (o) d(%)”_z d(%) —|—>

V2l —oo d(%)n X0
0
1(x 2 1(x 2 1.2
a”e_f(xo> oo fza<i)7(i)2dx a"eﬁf(a) Taa 1 P51

Y= = 4d'en 2

—_— e 0 =
Wt Jew Xo V! Vn!

where we have used the integration by parts and set |a|> = aa*. The exponential
e'P%/21 is a constant with respect to the variable x and we neglect it, since we can
define the wave packet with an additional unimportant phase factor

_ (x=%)?
2

) e Ty = e .

The time evolution is then given by

ZLH IEn l[/ﬂ 76 %|ﬂ|26—%2%( —w)t) ‘I/n< )

where we see that the quantity a previously defined gets the phase factor e/’ (it
is exactly the time evolution of the annihilation operator we have seen in Problem
2.24). The time dependence in a is directly translated in a time dependence of the
average values x(¢) and p(r)

—ior _ f@) ixoﬁ(f)
V2xo 2

a(t) =ae

so that
at (t) el — X(ﬂ leP( )
ﬁxo h\[
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The average values %(¢) and j(¢) are then obtained from the two previous relations.

If we define xo = \/fi/mo, we get

) = (al) +a' () = \ e
%

ma@

(a(t)+a"(1)) =
(R(a)cos(wr) +3(a)sin(wr)) =
%(0) cos(t) + ﬁﬁ(O) sin(@r)

(1) ixof\lﬁ(a(t) +ar () =iy %mhw(—a(t) Fat () =

2mho(—R(a) sin(or) + 3 (a) cos(wr)) =
—mox(0) sin(wt) + p(0) cos(wt)

that is the solution of the equations of motion for the classical harmonic oscillator
previously anticipated.

Problem 2.33.

We consider a particle with charge g and mass m = 1 subject to the one dimensional
harmonic potential U (x) = % (h = o = 1), and placed in a constant electric field,
E,, directed along the positive x direction. Determine the eigenfunctions and eigen-
values of the Hamiltonian and the average values (%), (p), (£2), (p?). If at time t = 0

the wave function is Lo
Y(x,0) = (x)~5em 100

with ¢ (0) = 0 the initial phase factor, determine the wave function y/(x,7) at time 7.

Solution
The Hamiltonian of the problem is

2 2 JORN!
P F Y S
A= 1% pe=2 11 o4

T T T

where we have introduced the constant A = qu. We can complete the square and

rewrite the Hamiltonian as

A2 a2 A2 N 2
4 o 2 2 14 (X—MH) 2
A=C4% oapioa2n1—2a2n =2 L TR op2y =
y T AT 7T
D D
%+%—2A2H:I:Ih(,—2A211

with § = £ —2A1l. We also note that the derivative is not changed by the translation,
i.e. d*/dx* = d? /dy?; therefore, the momentum operators in the coordinates x and y

A p 2 . . .
are the same and the Hamiltonian Hj,, = ”7 + ‘7 is the one of the harmonic oscillator
with coordinate y. The eigenvalue problem in the stationary Schrodinger equation
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can be solved

A n) = (Hp — 2421) |n) = KH ;) —ZAZ} In)

where the eigenstates |n) are those of the harmonic oscillator in the coordinate y
with energies diminished by the quantity —2A>

1 12 (=" 1 2 dne’
yin) = y,(y) = W, (x —24) = ——¢ 2V H,(y) = e2”
1 = Walo) = s 24) = ) = S

1
E,= <n+2> —2A%

with H,(y) the n-th order Hermite polynomial. From the relation between J, p and
the creation and annihilation operators a', @

b

(@)

_|_
IS

a

<
Sl-
—

>
S

plus the step down and step up action of @, @' on the eigenstates |n)
aln)y=+nln—1) a'ln)=vn+1n+1)

we find the following average values

1
(n|%|n) = (n|$+2A1 |n) = — (n| (a+a")|n) +24 =24
V2
i .
nlpln)y=——(m|(@a—a")|ln)=0
(n| p|n) ﬂ< [( ) |n)
. . b
(n[#[n) = (n| (§+241) [n) = 5 {nl(a+a ) |n) +44% =
1 1
5l (a@" +a'a)|n) +4A% = (n+2 +4A2
2 1 A At\2 1 PN S 1
(np7|n) == > (nl(a—a")"|n) = - {n|(@d" +a"a)|n) = n+ .

We now discuss the time evolution of the wave function
W(x,0) = (1) e 27 190) = ()5~ 204247-i0(0) — ()= 7= 20-5)-i6(0)

where we have used the definition j = —2A. We expect the time evolution to appear
in the average values of the position (¥(¢)) and momentum (j(¢)) and in the phase
factor (see also Problem 2.17). Therefore, we rewrite

Y(y,1) = ()" Fe 20O i0(O)+ip(0)y,
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The average value of the position ¥(¢) is found with
dy(t) . on o FTIORR Ljia s1a | ara N
— = UH 3D = 2([7.3]) = 5([p.51p + BB, 3]) = (P) = p(1).

As for the average value of the momentum operator j(t), we get

PO _ i51.5)) = L0525 =~ (5. 19 +51p.5D) =

N
|
|
—
<>
>
Il
|
~
—~
~
S~—

If we take the derivative of the first expression, we find

2= —

that is the equation of motion for the classical harmonic oscillator with solution
¥(t) = Cysint + C cost.

Imposing the initial conditions 7(0) = —2A4, p(0) =0, we get C; =0, C, = —2A.
To determine the phase factor, we use the time dependent Schrodinger equation

- v J 2
29y +5-24 )W(y,t)

which leads to

.aw(m:{ dp . dy  do

PR |5 ity 5(0) G+ G | WO

2
e [—1 P+ (= 5(0))° —2i<y—y-<r>>ﬁ<r>] Y00).

Plugging this back into the Schrodinger equation and using the relations dp/dt =
—¥(t), p = dy/dt we find

do() _ 1 1((d7\* 2
=—+=-|(=] - —2A".
dt 2 * 2\ \ dt ¥
The above relation is integrated with the initial condition ¢ (+ = 0) = 0 leading to
L1 rrass)\ >
= — — — — 2A —
o) 2z+2(/0 (( D) R (s) ) ds - 24

— t 2_ s
%z+ % (y(t)dz(;) —/O () (ddys(z ) —|—)7(s)) ds) A% —
L s0p0)
2 2

—2A%
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where we have used % = —3(s), 0 < s <t. Summarizing, the wave function is
W(y,1) = ()~ 3 e~ 20O =T 3FOROFiply+2iA%

where y(¢), p(t) are calculated from the classical equations of motion (see also Prob-

lems 2.9 and 2.32).

Problem 2.34.

Let us consider the one dimensional quantum harmonic oscillator with frequency @,
and let @ and |n) be the annihilation operator and the normalized eigenstate of a'a
with eigenvalue n. Determine the commutator [d, (a")"], with n a positive integer
number. Then, consider the generic normalized state |@) = Y, ¢,|n), and determine
the coefficients ¢, in such a way that d|o) = a|a), with « a real number.

Solution
Let us start by determining the commutator [, (a7)"]. The idea is to use the Jacobi
identity (see also Problem 2.2)

[a,(@")") = (a")"""a,a"] +[a, (@")" """ = (@")"~" +[a, (a")"""a"

A

where we have used [@,a"] = 1. We can also determine [@, (47)"!]
[a, (@)1 = (@")"*[a,a"] +[a,(@")"]a" = (a')"? + [a,(a")"?a"
which, plugged back in the previous expression, leads to
(@, (@) =2(a")y" " + [a, a2
By iteration, we obtain
@, @'y = (@',
As for the second point, we know that
aln) = ln—1)
and the condition d|a) = a|a) is equivalent to

CpV/N = OCp_1.

Therefore, if we define co = C, we findc; =Ca, cp =C \‘%

2
. . . o . .
The normalization condition fixes the constant C = ¢~ 2z . This state is known as
coherent state

o

and, finally, ¢, =C i

).

,TZ\F
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In Problem 2.35 we will further characterize the properties of this kind of states and
determine the time evolution.

Problem 2.35.
Consider the one dimensional quantum harmonic oscillator with i =m = @ = 1.
We define the coherent state as

it
o) =A™ |0)
with o a complex number, |0) the ground state, and @' the creation operator:

determine the normalization constant A;

show that |@) is an eigenstate of the annihilation operator d with eigenvalue a;
show that the average value of the position operator £ on |¢t) is non zero;
determine the probability to find the n-th eigenvalue of the energy in the state
o)

e determine the time evolution of |ct).

Solution .
Let us consider the action of ¢*?' on the state |0)

+oo n +o0 an

where we have used (by iteration) the following relation
a'ln)y =vn+1|n+1).
If we take the square modulus of the coherent state, we find
e an (a)m

1=(ala)=A]" ) Z

nOmO

Mm:ﬂfw?

Therefore, the normalized state is
|a> _efjoux (Za |0>

As for the second point, we write ¢*¢" with its Taylor expansion

[d7 (dT)n] =
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where we have used the Jacobi identity (see also Problem 2.2). This result allows us
to rewrite d |ot) as

+oo yn

+oo n too yn
o) :Ad;)%(f)” 0) :A;)% ((@)"a-+n(@"y"") 0) =AY, (@) (0).

n=0

Setting n’ = n— 1 we can rewrite the right hand side as o |): the extra term gener-
ated by this substitution is indeed zero because (—1)! = +oo. As for the third point,
we need to calculate the average value of the position operator on |a). To do this,
we use the relation

(@) = —= (o] 4+ ") o) = \%ma*) — V2%R(a)

and write

(a|a" = o (af
with @ |&) = ot | ). The probability to find the energy eigenvalue E, = n+ % in the
state |ot) is

+ am T g

2 _ —oo* AT m —aa
cul-=e n 0 n —

i.e. a Poisson distribution. The time evolution of the state is given by

«(ao*)"

2 _ _—oQ
|m>‘ =e n!

Yoo
|OCt —e %ococ Z zEnt|n _eféococ a" e*i(n+%)t|n>:

n=0 W
AT —it

_ef%aa*e izt Z (Ota € ) |O>

|
=0 n:

t

—1
2aa it Z

where the last series sums to an exponential function (we already met this kind of
wave function in Problem 2.32).
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Angular Momentum and Spin

Problem 3.1.

Determine the uncertainty relations between the orbital angular momentum L =

(sz,iy,lzz) and the components of the position and of the momentum operators
= (£,9,2), P = (Px, Py, Pz)- Then, find the operator L, in spherical polar coordi-

nates and explain why the operators ¢ (aznnuthal angle) and L. can be measured

simultaneously. What are the functions of ¢ whose commutator with ., has a phys-

ical sense?

Solution
We start from the commutation rules involving the position and the momentum op-
erators

(%, pj] = ihd;;1l.
The orbital angular momentum is given by L = r A p. The different components of
such vector, using the Einstein convention for summation on repeated indexes, can
be written as

Li = &t pr

where ¢€;j; is the Levi-Civita tensor and 7, j,k = x,y,z. Such tensor is totally antisym-
metric and conventionally chosen in such a way that &,,, = 1. Using the commuta-
tion rule between position and momentum operators, we find

[Li, 7)) = €l pr, 7)) = —ihgi iy = ihe;jf

(Li, ;] = €walfx, P11 = ih€n pi Sk = iheiji pr.

The operator L., when acting on a function in Cartesian coordinates, is a differential

operator with the property
A d d
L, =—in
T ( y yax)

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_3, © Springer-Verlag Italia 2012
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The useful relations to rewrite it in spherical polar coordinates are
x =rsin6cos @

y=rsinBOsin¢

z=rcos0O

and the inverse
r=/x2+y2 422
0 = arccos ( )

z
r
¢ = arctan ().

Furthermore
9r — sin @' sin @; 9r sin B cos @
dy > odx
20 _ 1 O 1
= »cosOsing; FE = _cosBcos¢
d¢ _ cos¢p ., d¢ _  sing
dy ~ rsin@> dx ~  rsinf
leading to

A A N ara 909 9
Lzlh(xayygx>lhrSln9C05¢(8yar+ayae+aya¢)
0 000 900\ .02
oxor  9x90  oxae) "¢

We now write the Heisenberg uncertainty relations (see Problem 2.32)

ihirsin O sin ¢ (

(AFP)(AR)) = (1)

where LA N

[K,F|=iM
with K, ', M self-adjoint operators. If we consider the operators ¢ and L., we see
that their commutator gives a finite non zero result. Nevertheless, we note that they

have different domains. As for the case of L., its eigenfunctions and eigenvalues are
obtained from the solutions of the ordinary differential equation

_ihM = LZW(¢)

d¢
with 0 < ¢ < 27. The solutions of such equation are

w(9) = Ae=0n,

The need to interpret the square modulus as a probability distribution prevents the
functions from being multivalued

V(o +27) = y(9)



Problems 115

and imposes that the eigenvalues of L, are quantized: L, = mh, with m an integer
number. The corresponding normalized eigenfunctions are

1

— 7eim¢.

V(o)==

We see that the operator L. acts on periodic functions. The action of ¢ on a periodic
function y(¢), leads to oy (9) = ¢y (¢) = f(¢), which is manifestly non periodic

f(@+2m) = (¢ +2m)w(¢ +27) = (¢ +27m)w(9) # f(9)-

Therefore, we conclude that, before taking the commutator between two operators
and ask if they can (or cannot) be measured simultaneously, we need to be sure they
act on the same functional space. In the case of L., we need operators acting on
periodic functions, as for example cos ¢, sin ¢ and their combinations.

Problem 3.2.

Consider the orbital angular momentum L = (L,,L,,L.) in Cartesian coordinates

200 PSRN PR
(x,y,z) and determine the commutators (M[Lx, Ly, L, Lol [[[Ex, Ly), La), Ly, [[[E, Ly),
L,],L;). Finally, determine the action of L? = L2 + 12+ L? on the combination
(&[Ly,2] = $ILx, 2] + 2L, 51).
Solution

To solve this problem, we need to consider the commutation rules of the angular
momentum. In particular, we know that

= ihL

~

LA

from which we get

[zxaty] = zxz L = hL'
[i‘Z?i‘x] - zzLx - LXLZ == th}
[z)’>tz] = I:ylzz - tzz)r = zhﬁx

The above relations can be used to simplify the first commutator requested by the

text
[[Lx, L), L), L] = in[[L, L, L) = —*[Ly, L] = iR’L,

When the last L, is interchanged with Ly, we get

As for the second point, from the relation

[I:)H)A}] = [)A’Iaz_fﬁya)?] = lhf
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and its cyclic permutations, we find

$(Ly2) = I, 2]+ 2L, 5] = iR + 57 +27).

Therefore, we see that the combination £[Ly, 2] — $[Ly,2] + 2[L, 7] is directly pro-
portional to the square of the distance from the origin of coordinates (72) and is
independent of the angles, i.e. when projected on the angular variables it is propor-
tional to the spherical harmonic Yy o(6,¢). Since the spherical harmonics ¥}, are
eigenfunctions of L. with eigenvalues #1(1 4 1), we find

N

Problem 3.3.
Consider the Hamiltonian of a plane rigid rotator
. L2
H =
21

with L. the z component of the orbital angular momentum and / the momentum
of inertia. Then, consider the Hamiltonian of a free particle with anisotropic mass
(my # my) moving on a two dimensional plane

D A2
=L D
2my; - 2my

with p. ,, the x,y component of the momentum operator:

e determine the lower bound of the product 6767, with 67 = ((AH;)?) = (H?) —
(H;)? (i = 1,2) and where the average (...) is meant on a generic state |y);

e determine the energy of the ground state of the Hamiltonian A = H; + H»;

e when m, = my, determine the eigenvalues of H=HA +H.

Solution
We use the results of Problem 2.32, where we have seen that the Heisenberg uncer-
tainty relations can be written as

(AF)*)((AKR)?) =

A

where K and F' are two generic self—adjoint operators with commutation rule
[K,F] = iM. We have to identify K = A and F' = A, and determine the commutator

Lo~y 2 pnoLe ik 11
S 4 LBl = T Lapp popde) (= )

A )] =
[, 1] 2 21 me my

where we have used

Py 1 1
— P, — VP :7'h’\ Hy [ — — —
2m, + zmyvxp) ypx‘| NPy Py (mx my)

(s, Pl = 811 [§,p;] = &ihll (s, =x,y)
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and the Jacobi identity (see Problem 2.2). Therefore, the result is

2 2
otof = (MR > 5 (57) L+t (=)

and we see that we get 0 in the isotropic case. The same happens when we are in a
state with zero py, or L;. The ground state of the Hamiltonian H = H| +H; is Y =

—L_i.e. astate where both ((AH)?) and ((AH,)?) are zero. Finally, in the isotropic

V2rn’

case (my = my =m), [Hi,H,| = 0 and the eigenvalues of H;, H, are summed: H;
. o 22 . .

has a discrete spectrum with eigenvalues %, with k an integer number (see also

N . i 24p2
Problem 5.1); H, has a continuous spectrum with eigenvalues %. Therefore, the

eigenvalues of A are
K pi+ps

k,px,py = 27 2m :
Problem 3.4.
Let us consider a system whose Hamiltonian is
L
H =
n

where L are the raising and lowering operators for the z component of the orbital
angular momentum. At time ¢ = 0, the system is described by the following wave
function

y(0,9,0) =AsinOsing.

Expand the initial wave function on the spherical harmonics and determine the nor-
malization constant. Finally, determine the time evolution of the wave function
and find the time ¢ at which the wave function is identical to the initial state, i.e.
y(6,9,1) =AsinOcos¢.

Solution
We first recall some useful formulae for the spherical harmonics Y;,,(0,¢) =

(6,0[1,m)

2+1) (I—m)!
(£)2+QKM”%““ m=0

Yl,m(61¢) = (_l)m

Ylm(67¢) :Yl,f\m\<e,¢):(_I)W‘Yljm\(e,(P) m<0

where P/"(cos 6) is the associated Legendre polynomial of order / defined by

) = (- R 0<m<l

I
Au) = o [ 1))
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[3 L.
Y1 +41(0,90)=F gei"psme.

Therefore, the normalized wave function can be written as

Forl =m =1 we get

v(6.9,0) = %m?l(e,m L Y1(0,0))

that implies A = —i4/ %. To determine the time evolution, it is convenient to find

the eigenvalues of the Hamiltonian. From the definition of the raising and lowering
operators for the z component of the orbital angular momentum, we have

Ly=(L+ily)  L-=(L.—iLy)
and, hence IR 55 82 e N A
LiL =(L;+L;+nL;)=(L>—12+nL;)

where [.2 = [.2 —|—IAJ§ + li% is the squared orbital angular momentum. The Hamiltonian
is diagonal with respect to the basis given by the Y} ,

H|l,m) = (hI(I+ 1) — hm® + hm)|l,m)
with eigenvalues 5
Epm = (Rl(14+ 1) — hm* + hm).
Therefore £ 1 = 2h for Yy and E1 1 = 0 for Y1 _. The time evolution is obtained
with the action of ¢~ on y(6,0,0)

w(0,0.0)=¢ T y(6,0.0)= \%(e*z"'n,l(e,m +Y11(0,0)).

The time ¢ at which w(6,¢,1) = w(8,¢,0) is found by imposing that e~ = 1. This
happens for the first time when ¢t = 7.

Problem 3.5.
In a constant magnetic field By, a spin 1/2 particle evolves from timet =0to ¢t =T
according to the Hamiltonian

H(Z) =—UG:B)

where &; is the usual Pauli matrix for the z component of the spin. At time t = 0
the probability that the spin is +7/2 along the x axis is 1. Solve the Schrédinger

a(r)
b(t)

evolution proceeds in a discontinuous way with the Hamiltonian which depends on

equation for the spinor |y(t)) = and calculate |y(T)). Aftert =T, the time
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time according to the law
H(t)=-ué.By t<T
H(t)=+ué,By t>T.

Calculate |w(2T)). Find B, such that a measurement of spin in the y direction at
time # = 27 must give —fi/2.

Solution
At time ¢ = 0, since the probability to find the particle with spin projection +7/2
along x is 1, the wave function must be an eigenstate of the Pauli matrix &,

6:|w(0)) = [y(0))

with the Pauli matrices given by
5 — 01 6 — 0—i 5 — 10
\to) T \io) T \o-1)

The normalized eigenstate is
I (1
0)=— .
vO) =5 (1>

In the time interval 0 <7 < T, time evolution is driven by H (t) = —u6;By, whose
eigenvalues are I B;. The corresponding time evolution operator is diagonal

in
00,1 = e—tun— ("7 0
’ 0 e w81 )’

Therefore, we can apply U (0,1) to |y(0))

A e %Bll EZ%BII
lw(1)) = U(0,1)|y(0)) = ( ) :

When ¢ > T, time evolution is driven by H(¢) = 6,85, and the corresponding time
evolution operator can be applied to |w(T)) = U(0,T)|w(0))

) o WBIT By (-T) AUBT-2% By (1-T)
ly(®)) =U(T,1)|y(T)) =

V2 1

A measurement of the spin projection along y is surely —7/2 at time 27 when

ly(2T)) = ﬁ (1>
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meaning that, apart from an unimportant phase factor, we are exactly in the eigen-
state with negative eigenvalue of the Pauli matrix given by &,. The required condi-
tion is therefore

GRS
and, hence
31—32+%+@ =0,%1,+2,
Problem 3.6.

We consider a Stern-Gerlach apparatus allowing the orientation of the spin in a
generic direction 7 = (sin 6 cos ¢, sin O sin @, cos 0), with arbitrary 6 and ¢. For the
state with spin projection +§ in the 7 direction, determine the values of 6 and ¢
such that:

1) the probability that a measurement of the z component of the spin gives +% is
P(z,+) = 4

2) the angle ¢ maximizes the probability P(y,+) that a measurement of the y com-
ponent of the spin gives +%.

Solution
We start from the relation between the spin operator and the Pauli matrices

~ D
§=26
2

s (01 5 (0 s [10
10 4 i 0 o \o—1)°

The spin matrix in the direction of # = (sin6 cos @,sinOsin@,cos 0) is obtained
from the scalar product

N 1 i —i¢
§.a= s C.OSG ' sinfBe .
2 sin@e® —cosO

The eigenvectors of S -7 are

A = Cos(g) A= fsin(g)e*i‘l’ .
|+, 72) (sin(g)ei¢> |—. 1) ( cos(%) >

The state |+,7) represents the state with spin projection +% in the 7 direction. In
this state, the probability that a measurement of the z component of the spin gives
+521, is the square modulus of the scalar product with

()

where
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that is the eigenstate of 6, with eigenvalue +1. The result is cos (). Therefore, the
condition P(z,+) = 1 means that cos’ (%) = 1 and

There are two possible solutions: % =Z and Q = 2—” . Since 0 < 7, the solution is

6= 2” . Using sin( 2) \f , the state W1th spin projection +2 in the 71 direction

becomes
1
= 2 .

We now need to set the condition in 2) to determine ¢. The probability that a mea-
surement of the y component of the spin gives +%, is the square modulus of the

Scalar prOduCt With
| 7) > 1
\/i i

that is the eigenstate of &, with eigenvalue +1. Therefore, we find

P(y,+) = (1+\/§sm¢) cos 2p.

The maximum is found from the equations

Zg = cos(p(l—l—\ﬁsm(b) cos(psm(]b: 3cos(j):O
Z% = _T sing <0

with solution ¢ = 7

Problem 3.7.

At time r = 0, a quantum state | y(0)) is an eigenstate of L2, L. with eigenvalues 2/>
and 0 respectively. Determine the time evolution of |y(0)) according to the Hamil-
tonian A = L, with L; the i-th component of the orbital angular momentum and L2
its square. When a measurement of the energy gives —7, express the corresponding
state as a linear combination of the eigenstates of .2 and L.

Solution

The state |y(0)) is an eigenstate of the z component of the orbital angular momen-
tum but not of the x component. It follows that the Hamiltonian is not diagonal with
respect to the basis given by the spherical harmonics. We remark that the choice
of diagonalizing L, together with L% is purely arbitrary: the commutation rules for
the angular momentum are very general and, to perform calculations, one has to
provide a matrix representation of the operators or to write them in terms of differ-
ential operators. Two standard examples are the Pauli matrices for the spin and the
momentum operator written as —ifiV. To solve our problem it is more convenient to
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work with matrices. In this case, L, is a diagonal matrix with eigenvalues 7, 0 and
—h

100
L,=r[00 0
00-1
and its eigenvectors are
1 0 0
|]>]>Z: 0 |1’O>Z: 1 |17—1>Z: 0
0 0 1

and |y(0)) = |1,0),. The matrix representation of L, is given by

5 0vV20

I:x:* \EO\@
2

0vV20

The eigenvalues of this matrix are 7, 0, —7 and correspond to the eigenvectors

| 1 | 1 | -1
L)y== 1,0), = — 1.—1), = =
=5 | v2 10=—5| 0 -1 =5 | v2
1 -1 -1
The time evolution operator is et/ % and its action on a generic eigenstate with
energy E, is particularly simple, because it produces a phase e £/" Therefore, we
need to expand our state |y(0)) as a linear combination of the eigenvectors |1,m),
withm =0, %1

|W(0)> = a|1a 1>x+b|170>x+c|17_1>x-

The coefficients are found to be a = ¢ = l/ﬁ, b = 0. When acting with e~/ on
this state, the terms in the right hand side acquire a phase factor depending on their

eigenvalues

1 . ‘
\Tz(e 1,1+ €1, —1),).
From the text of the problem, we know that a measurement of A gives —%. Soon
after this measurement, the system is described by the state |1,—1), which can be
decomposed as

lw(r) =

|1’_1>X = a|17 1>z+b|170>z+c|1a_1>z
with the following coefficients: a =c=—1/2,b= l/\ﬁ
Problem 3.8.

An atom with the orbital angular momentum / = 1 is subject to a constant magnetic
field B = B(sin 0 cos @, sin O sin,cos 6), where B is a constant parameter and 6, ¢
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give the direction of B. The atom is described by the following Hamiltonian
H=uL-B
where U is a constant magnetic moment. Characterize the energy spectrum.

Solution

We note that the eigenvalues of the scalar product L - B are invariant under rotations.
Therefore, we can choose a reference system such that the magnetic field is oriented
along the z direction, i.e. B = B(0,0, 1). Consequently, the Hamiltonian becomes
proportional to the third component of the orbital angular momentum, L., whose
eigenvalues are /2, 0 , —h. The eigenvalues of the Hamiltonian A = uBL, follow

E+1 = [J,Bfl E() =0 E = —‘UBFZ.

It is instructive to repeat the calculation without choosing the direction of B along
z, and show that we get the same result. For [ = 1 the angular momentum has the
following matrix representation

010 L, (00 10 0

Li=—=|101]| Lyi=—=|io0—-i| L.=n|00 0
2 2 '

V2 010 V2 0i 0 00—1

Therefore, writing down explicitly A = uL- B, we get

0 sin e 0 0

cos v
A = w(BiL.+ByL,+B.L,) = unB % 0 Giﬁd)
0 % —cos 0

We can now calculate the characteristic polynomial det(H — A1l). Setting A =
UhBA, we need to calculate

5 i Geif
cosO;l b”‘\/% | ()74)
det(ﬂ_kn):,uthet % Y s1n\0/e§’
0 % —cosf — 2

The result is
det(H — A1)
uhB

B (cos® —A)sin’ @ B (—cos@ —A)sin’ @ B
2 2 B
—A(A%—sin®0 —cos’0) = —A (A2 —1).

=—2(A%*—cos’0)

The eigenvalues are the roots of the equation
AA*=1)=0

with solutions A = 0, +1, that is the same result obtained previously.
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Problem 3.9.

We consider a system with two particles, each one with spin 1/2. Let the z
components of the spins, Slz and §219 be diagonal, i.e. we use the vector basis
%7S11>Z ® %’S2Z>z with S1,,8,, = j:% (to simplify matters, set s = 1). For a general
linear combination of the elements of this vector basis, determine the probability
that a simultaneous measurement of S;. and $,. gives as result:

St =+1/2, 8. = +1/2;
St =+1/2, 8. =—1/2;
Stz =—1/2,8.=+1/2;
Si.=—1/2, 8. =—1/2.

Then, determine the probability that a simultaneous measurement of 3'1 y (the y com-
ponent of the spin for the first particle) and S5, gives S1, = +1 /2 and Sy, = +1/2.
Finally, determine the probability that a measurement of Sy, alone gives —1/2 as
result.

Solution
We take the general linear combination of the four states |%,S 1 Z>Z ® ’%,Szz>7 with

SlzstZ::t%
|>iall ®11 JrBll ®1 1 n
Vi=%ya) ®lee) TP22) 2,
At} b ) ol b) ol
27 2/, 12°2/, 27 2/.12 2/,
The probability that a simultaneous measurement of S}, and S». gives one of the

four results reported in the text, is the square modulus of the coefficient multiplying
the state with the desired values of the projections S, S2,

1 1 1 1
P(s=35u=5) =laP  P(s=55u=—7) =18

1 1 1 1
P(Slz *Q,SZZZ 2) = |y? P(Slz *Evszz: 2> =5]%.

To determine the probability associated with a measurement of $j,, we need to use
the basis where the y component of the spin Sy is diagonal. The matrix representation
of such observable is proportional to a Pauli matrix

with eigenvalues +1/2 corresponding to the eigenvectors

pi-a () 3w ()
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Also, the eigenvectors corresponding to projections +1/2 of the z component of the

spin are
00 B
2°2/, 0 2" 2/, 1

1

Then, we need to write 55 —%)Z in terms of

%7%>)" %’_%>y

1) = (b1 b))

%7%>z’

To determine the probability to find S, = 1/2 and S», = 1/2, we consider in |y)
only those states with S,, = 1/2

2D

Z Z Z Zz
%,%>Z,|%,—%>Zfortheﬁrstparticleintermsof|%,%>y,|%,—%>y
(8 -5-8) )
2o\22/), 1272/, Pe,

1 11 1 1 11
ﬂy<\z’z>ﬁ\z’z>y>®\z’z>z

oty (11N LNy 1 1\ g
V2 |22/, 122/, v |2 2/ |22

The answer to the second point is

1 1 al?+|y]?
P<51y: EvSZZ: 2> = %

‘w>522:1/2 =

and expand

Finally, the probability that a measurement of S, gives —1 /2, 1s

1
P(s:=-3) = 1BP+ 13

that is obtained taking the square of the scalar product between |y) and

|> —ﬁll ®1_1 +51_1 ®1_1
Vis==12=P |33/ “l272) %2 72) %272/
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Problem 3.10.
Let us consider two particles with spins S} =3/2 and S, = I:

e at time ¢ = 0, determine the wave function of the generic bound state with total
spin § = S| + S, = 1/2 and projection along z equal to S; = S1;+ S», = 1/2;

e determine the time evolution of the wave function y(¢) according to the Hamil-
tonian A = §y,8,, /1, and the time at which v(r) = y(0);

e determine the time evolution of the average (S, S, ).

In the above expressions, S, is the z component of the spin for the i-th particle, and
S, are the raising and lowering operators for the z component of S5.

Solution
Let |S1,S1;) and |S,S,.) be the eigenfunctions of the operators S1. and S,, respec-
tively. We need to move to the basis |S,S,S,S>) where the total spin §=4§ 1+ Sg
and its projection along z are diagonal. The relation between the two bases is pro-
vided by

|Sa SZaSl7S2> = Z Cgis,élz,sz.sh |Slvslz> ® |S27S22>
S12:52;

where we need to determine the coefficients Cﬁfgwsm" (known as Clebsh-Gordan
coefficients) in the case S| =3/2, S, =1, S =1/2, S; = 1/2. The degeneracy of the
bound states for two particles with spins S =3/2 and S = 1 is

d12:(2S1+1)(252+1)=<2><;+1)(2><1+1)=12

and the sum S = S 4+ S» can take the values S =8| + 55,51+ S5, — 1,81+ 85> —
2,...,|S2 = Si|. In our case S = 5/2,3/2,1/2. The state with the z component of the
total spin S, = S;; + S>; = 1/2 must be a linear combination of the states |S;,S1.),
|S2,S2;) such that S, = Sy, + S, =1/2

‘ ;1>_“’;;>®|1 +ﬁ’ >®|10>+y‘ 1>®1,1>.

To find explicitly the coefficients &, B and , we act with §, =S, @ 1 + 1 ®5,, on
both members of the above equation: when acting on the left hand side, we consider
the raising operator for the z component of the total spin, i.e. $,; when acting on
the right hand side, we consider that S, is the sum of S;. and S, and that both of
them act on the spin of a specific particle, leaving the other unchanged. The action
of §, on a generic state is

e
N\'—‘

S418,8) =h\/(S—S)(S+8.+1)[S,S.+1)
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and gives zero when we act on the state with S, = S. Therefore, we find
1>Oﬁa‘ >®10+IB‘ >®10>

fﬁ’ >®|1 1>+2y’ 1>®|1 1) =

(\fa+fﬁ)’ >®|10> (\fﬁ+2y)‘ >®|1 1).

~ |1 13
S+ 575557

Multiplying this equation by |3/2,3/2) ®|1,0) and |3/2,1/2) ®|1,1), and using the
orthogonality and the normalization of the states, we end up with

V2a++/3B8=0

V2B +2y=0

with solution & = —+/3/28, 7= —B/+/2. The condition that the state is normalized
leads to B = 1/+/3. Therefore, the answer to the first question is

2’22/ /2|22 ’ V31272 \f ’

The time evolution is obtained with the action of the time evolution operator e iHt/ h

where H = §,.S,. /h. The result is
33
1,—
2 2Yel-n+

‘ 31[
it

11
ez

113402

2727277 - \/i
=155 ) @11,0) - —=
\/§‘22> L0 V6

3 1
—, == 1,1).
-3 ) @Il

The condition that y(r) = y(0) leads to t = 4wk, with k an integer number. As for
the time evolution of (S>455_);, it is given by the formula

d<52+52,>, I, an A &
S22 LA D,

To compute the commutator in the right hand side, we recall that [Si,ﬁ ] = ihg; ij’k,
where €;j; is the Levi-Civita tensor and i, j,k = x,y,z. Such tensor is totally anti-
symmetric and conventionally chosen in such a way that &, = 1. Recalling the
definitions Si. = (S, £iS,), we get [S1,S,] = FhS... Using the Jacobi identity (see
also Problem 2.2)

~ ~

[A,BC) =B[A,C]+[A,B]C
and the result [SA'U,S'ZJ-] =0, Vi, j, we find
(M, 82485 =[81:82:,8:4 8] = $1.52.. 52485 ] =
S1:([822, 821182 482182, 82 1) = hS1:(S24 8- — 8248, ) = 0.
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This implies that (S, S>_); does not change in time, and its value can be found by
averaging on the state at time t =0

113

~ =2, 1,t=0
272’27 )

($248- ) = (82182 )1—0 = <

A A |1 13
S2+S2— ‘25 Ea Ea 17t = 0> .
Another possible way to determine (§2+§2_> ., is to average the operator $>,.S>_ on
the state at time 7: also in this case we conclude that (S, ,S>_) does not change in
time. We now use the relation S>> = S% - S%Z + 1Sy, leading to

A 1|33 1|31 13 1
| -—=1%,= L,—D+—|=, = 1,0)— — | =, —= 1.1) ) =
S22 ( ﬁ‘2’2>®’ >+\/§‘2’2>®"0> ﬁ‘Z’ 2>®’>)

2023 1 223 1
ity g 1,0)— 2|2, —— 1,1).
ﬁ2’2>®|’> V6|2 z>®">

Finally, since the states are orthogonal, the value of <S’2+S’2_> ¢ at time ¢t = 0 is given
by

PO 113
(82482 )1=0 = <

[u——y

1 s 131 s
— =, =,t=0{85.:8_|=,=,=,=,t=0)=n".
2727 72a 2402 ’2727252a >

Problem 3.11.
Consider a one dimensional problem where pairs of particles (each one with spin
1/2) form bound states. The Hamiltonian for such a system is

with m the effective mass and S}, S, the spin operators for the two particles. The
potential energy is U(x) = 0 for x < 0 and U(x) = Uy > 0 for x > 0. For a given
energy £ > %, determine the reflection coefficient when the bound state is a triplet.

Solution
We need to rewrite the product S| - S5 in terms of the operators $7, $3 and $2. To this

end, we write o o ® PN
S :S1+Sz+2S1'S2

from which we get |
S8 = §(§2 —§1-8%).

For a fixed value of the total spin S, the solution of the Schrédinger equation (see
Problem 2.23) has the form

ll/(x) — eik1x+CR€7ik1x X S 0
v(x) = Cre** x>0
with

5 2m(E—SUp(S(S+1)—Si(S1+1)—S2(S2+1)))
72
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where the constants Cg, Cr are determined from the condition of continuity of the
wave function and its first derivative in x = 0. As for the spin part, there are di, =
(281 +1)(252 4 2) = 4 bound states for the two particles with spin S; 2 = 1/2. The
total spin for these bound states can take the values S = S;+ 52,51+, — 1,51+ 52 —
2,...,|S2 — 81|, that implies S = 1,0 in our case. These states are (see also Problem

4.9)
11 11 11
1’1’2’2>‘2’2>®’2’2>
1011_111@114_11@11
22/ 2 \|272 2" 2 2" 2 2’2
11 1 1 1 1
I,-1,=,=)=|=,—= ==
’ ’2’2> ‘2’ 2>®’27 2>
defining the so-called triplet (i.e. a state with spin 1 that is triple degenerate).

oo LIV LUV 1 Iy (L1 gL
2/ 2\22/ 2 2/ |2 2/ 202

defines a singlet state (i.e. a state with spin O that is not degenerate). The reflection
coefficient, in line with what we have found in previous problems (see Problem

2.23), is given by
ki — ko \ 2
R=|Crl* = ——=
Cal <k1+k2)

y_ (E _ %) -
where k5 = — for the triplet. Therefore, we find

V2mE — \/2m(E — %) 24(4E—%°—4\/E(E—[f‘0)>2
VImE+\m(E-%)) Us |

Problem 3.12.
A hydrogen atom with nuclear spin S, = 1/2 (vector basis given by |%, %> y and

R=

%, —%> y and 7v =1 for simplicity) is found in a state with the orbital angular mo-

mentum [ = 2. The total angular momentum operator is F = S, + S, + L, where
S, refers to the electron (spin S, = 1/2) part. How many different quantum states
are present? What are the possible values of the total angular momentum F? How
many states belong to the different F? Denoting with My the eigenvalues of £, (the
projection of F along the z axis), write down the normalized states |F,My) = |3,3)
and |F,Mr) = |3,2). Finally, determine (3,2|S - Sy|3,2).

Solution

For a given value of the angular momentum J, we have 2J + 1 states and, hence,
I =2 means 5 states while the spin 1/2 means 2 states. Therefore, we find 5 x
2 x 2 = 20 states. The same number of states can also be seen as coming from the
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direct product of the spaces associated with the different angular momenta. When
considering two angular momenta, J; and J>, the sum of the two (J;,) can take the
values Jioy = J1 +Jo,J1 +J2 — 1,01+ — 2,...,|Jo — J1|. Therefore, when we sum
I=2and S, = 1/2, we have 5/2 and 3/2; if we further add S, we find F = 3,2, 1.
The case F = 2 is double degenerate. Counting these states, we have 7 states with
F =3, 10 states with FF = 2, and 3 states with F' = 1, for a total of 7+ 10+ 3 = 20.
The state with maximum F and MF is unique

11 11
33)=|=,= — 2,2)L.
B3 =|33) ®lpz) oR2%
Starting from |3,3) and using the lowering operator for the z component of the total

angular momentum
F=8,_+S. +L_

we can obtain states with My = 2. For the lowering operator, we recall the property

F I Mp) =T +M) (T =M+ 1)1, M;—1).

Therefore when acting with F_on |3,3) and with SA,,7, —|—SAe7, +L_on ‘%, %>N ®
3.3),®12,2)L, we find the following result

1 1 1 11
3= (12 IV gl g
A=z (l52),olas) op o
1 1> ‘1 1> ‘l l> ‘1 1>
A Ql5,—5 ®|2?2>L+2 PPy D555 ®‘271>L .
'2 2/,% 1272/, 22/, 122/,

As for the last point, we recall that

A-B=AB,+AB,+AB, =

with Ai, By the raising and lowering operators for the z component of A, B. Setting
A = Sy and B =S, we find that (3, Z\SeZ SNZB 2) =0and
PN 1 A A A a4 1
<372|SN'S€|372> = §<372|SN+S€7 +SN7S6+|332> =z
Problem 3.13.
Determine the operator Iémz, allowing for a rotation of an angle o around the z axis.
Determine the eigenstates of Iéa_,z and rotate of an angle o = 7 the state |y) =

%, with |1,m) (m = £1,0) the eigenstates of the z component of the orbital

angular momentum £..
Solution

Symmetry transformations (including rotations) are described by unitary operators.
In particular, we identify the orbital angular momentum as the operator generating
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rotations. Therefore, for a generic rotation of an angle ¢ around the n axis, we need
to use the projection of the orbital angular momentum on such axis and define

Ros = o —iai-L/n

as the operator generating the rotation. In our case, the rotation is around the z axis
and Ry, = e '®</" The matrix representation of the z component of the orbital

angular momentum is
100

L,=h|00 0
00 —1

and it is not difficult to calculate e~*L:/" because L. is diagonal

e 0 0
Ru:=| 0 00
0 0¢c

Therefore, the states |1,m) (m = =£1,0) are eigenstates of R, with eigenvalues e 7%

and 2 |w>_efia|171>+eia|1771>
o,z -
V2
from which 11,1 = [1,1)
Ry ) =~
V2
Problem 3.14.

A quantum system with spin S = 1/2 has the following Hamiltonian

with L, the z component of the orbital angular momentum, and S, the projection of
the spin on the x axis. At time ¢ = 0, a simultaneous measurement of Ly and S, (the
y components of the orbital angular momentum and the spin) gives 7 and 7i/2:

e write down the state at # = 0 in the vector basis where L., S are diagonal;

e determine the time evolution of the state at the generic time #;

e determine the first time at which a measurement of lAf} and S‘y gives the same
values found at time ¢ = 0.

Solution
The operator Ly has the following matrix representation

0 —v2 0
i’y:* \/5 0 *\/j
0 v2 0



132 3 Angular Momentum and Spin

and its eigenvectors are

i ] (! 1 1

1,1, == 1,0), = — 1,-1),==| —i
|,>)2l\? |a>,\ \ﬁ? |a>)2 l\?

corresponding to the eigenvalues 7, 0, —#. The eigenstate of S‘y with eigenvalue 7/2

is given by
11 I (-
22,750

and, therefore, the state at time t = 0 is

] .
il osal ) ()
’ 1

el (o) 0)- o)+ 0

0

where we have expanded in the vector basis where L., S, are diagonal. To determine
the time evolution, we need to expand the spin part in the vector basis where S is

diagonal. The eigenstates of S, are
1 1 > 1 1
272/, V2 \-1

1) -%()

and we can express ’2,2> in terms 0f|27 >x as
‘1 1> L =i\ A=) 1\ (41
272/, V2 \ 1 2v2 \1 2v2 \-1
Lt AN R S A N
2 2°2/, 2 202/
The time evolution is
ket i
() =e "7 @e ' =
y

{e;” +l\f(2 ,; 8 ]@[%(i)%(llﬂ

S O =
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where the operator e~‘L//" acts on the orbital part (|1,1),) while e~ iSx/2 aets on

the spin part (| 2, 2> ). The first time at which the state is equal to the initial one is
found from e~ 1 = =1, leading to t = 8.

Problem 3.15.
Consider a hydrogen atom with potential energy V(r) = —% (the electron charge

r

. . . 2 . .
is such that e = 1) and the trial function y(r) = Ne (a)", where r is the radial
coordinate and N, a constants:

e determine the normalization constant N;
e determine the average value of the energy on the state y/(r);
e determine the optimal value of a using the variational method.

Solution
We start from the normalization condition for the trial function y(r)

Feo 2n 2 @ [n
r)|“redr [ sin Y2 re @ dr =4anN"-—\ 5 =
/ ly(r)? Zd/ 006 [ do = 4N2/ 20" d 4N28\/; 1
JO 0

where we have used the integral fo r’e a2 dr = f The resulting value of N

isN= a; ( ) . We then proceed with the computation of the average energy. As
for the kinetic energy, we rewrite the Laplacian operator as

o192 (20 L2

2 &I" ar h2r2
where L7 is the squared orbital angular momentum. The trial function y/(r) has no
angular part, meaning that it is proportional to the spherical harmonic Yy (6, ¢) =

\/% that is an eigenfunction of L with zero eigenvalue. Therefore, the average
A h Fee 2/01d d _
T(a) = (y|T :7—4N2/ x 2 e dr =
(a) = (wiT|w) N [P (oA r

h too (42 —6a®\ 22 3
——47rN2/ () =2
2m 0 d a* ¢ "= a2

22 5
where we have used fo rre” & dr = 2 \/§ . As for the average value of the po-
tential energy, we get

0 > 22
V(a) = (y|V|y) = —47th/ re o dr = _\/;
0

a

kinetic energy is

9
EEHY
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_2? 2
where we have used f0+ re < dr = 9. The average energy is

2
E(a) =T(a) + V(@) = 2~ \/32.

2 ma? a
Imposing the variational condition —— d =0 (see also Problems 2.27 and 2.29), we
find that 5
3 h 22 0
ma3 Ta?

_ /E3n
and, hence, a = 2 5o
Problem 3.16.

Consider a quantum system with the total (orbital plus spin) angular momentum
J=3/2:

e write down the matrix representation of the raising and lowering operators J
for the z component of J. To this end, make use of the vector basis where fz is
diagonal;

e write down the matrix representation of J, and J; (the x and y components of .f);

e determine the sum of the diagonal elements of the matrix representation of the
angular momentum in the direction i = % (1,1,1).

Solution
The matrix representation of J; is a diagonal matrix with eigenvalues M; = —%,
2 +2, 43 thatis
300 O
j— 1010 0
=C
2{00-10
00 0 -3

The action of the raising and lowering operators J. on the generic eigenstate |J, M)
is

Tl M)y = /(T —My)(J + My + 1)|J, My + 1)
T3 My) =0/ (T + M) (= My + 1)1, My = 1)

and, hence
0v30 0
7= (0 020
00 0+3
0000O0
Once we know Ji, J and J follow
0 V30 0
J = J++Jh(\@o 2.0
210 2 03
0 0+V30
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0 —iv/3 0 0
pofil i3 0 -2 0
Y 2i 2 o 2i o -iv3

0 0 V3 0

The sum of the diagonal elements of J -7 is zero, since the trace of a matrix is
invariant under rotations.

Problem 3.17.
Let us consider the three dimensional rotator with Hamiltonian
P
21

where .2 is the squared orbital angular momentum, L, its component along the z
direction, and / the momentum of inertia:

e for a given value [ of the orbital angular momentum, determine the smallest en-
ergy available E;; and its eigenstate;

e determine the ground state for the system, showing that it corresponds to the case
[=1;

e determine the eigenstate and eigenvalue for the first excited state.

Solution
The eigenstates of A are the spherical harmonics ¥; ,, = (8, ¢ |1,m), with the property

Plm)y =rA(1+ 1) |l,m) L. |l,m)=hm|l,m).
Therefore, the eigenvalues of H are

h2
Ejp= 57 ({(I+1)—=3m).
For a given [/, we find a minimum for m = [
2

h
=2 (*—21).

.. . 2 L,
The minimum E;; is found when/ =1, E ; = f%, with eigenstate

3 .
Y1,1(0,9) = —1/ %eﬂ‘l’ sin 6.

Finally, the first excited state is double degenerate and corresponds to [ =2, m =2
or [ =0, m =0 with energy Eyo = E> > = 0. The two eigenstates are

1 115,
Yo0(0,¢) = Van 122(0,¢) = 4\/;sm2 0%,
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Problem 3.18.

Two particles of spin S; = 1 and S, = 1/2 form a bound state with total spin S =
1/2 and projection along the z axis S; = 1/2. Find the probability to measure the
different values of the projection along z and x for the spin of the second particle
(SzZ and §2x). If a measurement of §2x gives 1/2, determine the possible outcomes of
a simultaneous measurement of S}, and the associated probabilities. For simplicity,
assume /i = 1.

Solution

Let us represent the states with [S1,S1;), and |S2,S2;),, where S; is the spin of the
i-th particle and S;; its projection along the z axis. For the bound states, we use the
total spin S = S§1 +.S2, its projection along the z axis, S; = S1; + S2;, and the values of
the spin Sy and S: |S,S;,51,52) .- The total number of states for two particles with
spins S} = land S, = 1/2is

6.

1
d12:(251+1)(252+1)=(2><1+1)(2><§+1)

As already discussed in Problem 3.12, the same number of states can also be seen
as coming from the direct product of the spaces associated with the different spins.
When considering two spins, S; and S, the sum of the two can take the values
S=814+8,51+8—-1,851+5—2,...,|S2 — S1|, that implies S =3/2, S =1/2in
our case. Consequently, the degeneracy of the bound states is ds = d3/, +d1, =
442 = 6. The state with maximum S and S, is unique

33 1 1 1

If we act on the left hand side with the lowering operator S_ = $§;_ @ 1+ 1 ®S,_,

we get
33
fara) -hara),

from which (acting with §;_ @ 1 + 1 ®8,_on [1,1),®

C/J>

11
§,§>Z), we get

31 1> \[ '1 1> 1 11
7777157 |1 0> +7‘151> ® AT A .
’2 2’72/, 22 NG T2 2/,

At fixed S; = 1/2, the state with S = 1/2 must be of the form

11 1 11 1 1
= 1,=) =al1,0 —=
]2,2,,2>Z 1,003, >+l3| 1).® ]2 2>z

with a and f real constants to be determined. Since the states

11
272’1’2

1
2,2,1,2> and

> correspond to different values of the total spin S, they are orthogonal,
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that implies

2 11 1 1 1
={4/2(1 — = +—=(1,1 ——=
0 <\/;< ,0|Z®<2,2 +—={(1, Iz®<,

X
z ‘/§ 2 2z>
11 1

I 1 2
1 — - ——— ) ) =y/Za+—=B.
(oc| ,O>Z®‘2,2>Z+[3|1,1>Z®‘2, 2>Z> 3a+\/§ﬁ

This condition, together with the normalization condition 1 = a4+ B2, completely
determines the state

11 1> 1 11 2 1 1
77771a7 :7|130> ®‘7> \/7171> ®‘7> .
’2 272/, B e 2, V3 T

Z

A measurement of Sy, on this state produces 1 /2 and —1/2 as result, with probabil-
ities P(1/2) = 1/3 and P(—1/2) =2/3. To get insight on the possible outcomes for
the measurement of the x component of S,, we need to change basis, and express
%, i%>z in the basis where S, is diagonal. Therefore (see also Problem 3.14)

1y 1 11+11 1\ 1 11 1 1
2’2Z7\@ 22/, 127 2/, 2’2Z7ﬁ 22/, 127 2/,
where the subscript x means that we are dealing with the eigenstates of S,,. With
this change of basis, the state becomes

111 1 1 11

So =) = —1.0).— /=11 S 2

‘2’2’ ’2>Z <\/6 0); \[3| ’ >Z>®‘2’2>x+
1 1 11
—n 21 S
(ﬁ' ’0>Z+\/;| ’ >Z>®‘2’ 2>x

We see that a measurement of S», gives +1 /2 with probability 1/2. Also, if a mea-
surement of Sy, gives +1/2, the outcome of a simultaneous measurement of Sy is
obtained by projecting |1,0), and |1,1), on the vector basis where S, is diagonal.
The eigenvectors of S’lx are

i (! i !

) \@ ‘1,O>x:7 0 ‘1a71>x:§ _\6
1 -1 1

|171>x:

and, hence | | |
|171>z:E‘]7l>x+ﬁ|l70>x+§“’_]>x
1

‘1ﬂ0>z = ﬁ(|171>x7|1771>x)'
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The part of |3, 3,1, 3)_ with Sy, = 1/2 becomes

11 1 1 1 11
N = (= 1,0), — —=[1,-1) >®’,> .
‘2 2 2>z,52xl/2 ( V6 V3 ! 272/,

Therefore, given Sy, = 1/2, a simultaneous measurement of Six gives as result Sy, =
1,0, —1 with probabilities

1 1

P(S1:=1,5:=1/2)=0 P(S1,=0.5u=1/2)=¢ P(Su=-151=1/2)= 3.

Problem 3.19.

Two particles with spins §; = 1 and Sz = 1/2 form a bound state. Construct the
eigenstates for the total spin § = §; + S, and its projection S along the z axis. If at
time # = O the system is in the state with total spin S = 1/2 and projection S; = 1/2,
and if the Hamiltonian of the system is H = S,. (i.e. the projection of the second
spin on the z axis), determine the probability that at a time ¢ > 0 a measurement of
the squared total spin and S, gives 15 /4 and 1/2 respectively. For simplicity, use
h=1.

Solution

The total spin for these bound states can take the values S =S| + 52,51+, — 1,81 +
S2—2,...,|82 — 81|, which means S = % and S = % Following the same procedures
of previous problems (see Problems 3.10 and 3.18), we write down the unique state

with maximum S and S,
33 1 11
-, =, 1,=)y=]1,1 =, =
’2727 72> |7>®’272>

and we act with the lowering operator, S_ = $;_ @ Il + 11 ® §,_, to produce states
with smaller S; (see also Problems 3.12 and 3.18). The result is

F303)=y5hoelp ) gEnnelzg)
.y ;>:\E1,o>®’;,—;>+\%|17—1>®‘;,;>

303 1 11
22,2 =L -1® |5, —= ).
3 2,,2> L=t 2>

31 1,%> and is given by

11 1 1 11 2 1 1
S B S T 0 X T WY G VIR D) R
3313 ﬁ,>®2,2> \Em@]f 5

Again, using the lowering operator, we obtain

111 1 11 2 11
S = L=y = —[1,0)® |, —= Y=/ 2L, -1 ® |z, = ).
'2’ 2’ ’2> f3">® 2’ 2> 310 >®‘2’2>

3
27

The state with S =
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To obtain the time evolution of the state with S = 1/2 and S, = 1/2, we act with the
time evolution operator e " on the wave function at time = 0

11 1 211 1\ e 11 2 11
— o= V=e T2 Z 1 N2 110 —\[211 — =),
‘2’2’ ’2’> PP ’2> ﬁ' ’ >®’2’2> 3¢t 1 >®‘2’ 2>

The state corresponding to S(S+1) = 15/4 and S, = 1/2is |3, 1, 1,1). The desired

probability is the square modulus of the projection of ]%, %, 1, %,t> on |%, %, 1, %)
15 1 31 1|1 1

P(SS+1)=—,8.==)=(=z,=,1,=2| =,=,1,=,t

(( + ) 47 Z 2) ‘<272) 72’2’27 727>

The result is s | .
= — = — = —gj 2 z
P(S(S—i—l)— 5 2) 5 sin (2)

At time ¢ = 0 this probability is zero because the states are orthogonal. It is because

of the time evolution that we find a non zero projection on the state |%, %, 1, %}

2

Problem 3.20.

A neutron with mass m has zero charge, spin 1/2, and magnetic moment gLy, where
g~ —1.913 and uy is the nuclear magneton ty = z%’c At a time t = 0, the neutron
is found in a state such that:

e its momentum is well defined and its value is p = fik (k = const.);

e a measurement of &y (S, = %c?y is the y component of the spin and &y the Pauli
matrix) gives 1 with probability %;

e (6;)=3/5.

The neutron is plunged in a constant magnetic field B along the x axis. Write the
wave function of the particle at time r = 0 and the Hamiltonian. Determine the time
t (if it exists) at which there is a zero probability to find the system in the eigenstate
of 6, with eigenvalue —1.

Solution
From the first condition we infer that the wave function is a plane wave

(xly(t =0)) = [2(t =0))

where |x(+ = 0)) is a spinor independent of the spatial coordinates. In the basis
where 6; is diagonal, the two possible states for the projection of the spin along the
y direction are

550) sy
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At =0, the spinor | (¢ = 0)) is a superposition of |3, %>y and |, —%>y

11 > L ‘ 1 1 >

— = c|=,—=

2°2/, 202/,

where ¢ are projection constants with the properties |c | = 55, [c.[>+|c— > = L.
Therefore, apart from an unimportant overall phase factor, we get

x(1=0)) =cy

=0y = 2[4 1) w21 1)

XU=00= "0 122 , V102 2/
The relative phase ¢ is obtained from the last condition in the text
7 = Xt =0)|6:[x(r = 0)).

Indeed, the average () (t = 0)|6;|x(t = 0)) is equal to

3 e i ) 3 (1 e (1 3
—(1 —i)+ 1 )] | —= + = —cos
(2\6( ) 2\6( ) <2ﬁ<—i> 2v5 \ i 50089
from which we see that cos¢ = 1, that implies ¢ = 2n7m with n an integer number,

and x| 5
|W(f=0)>=mﬁ <l>

-2
There are two terms in the Hamiltonian: the first is the kinetic energy (f—m), and the
second is the spin-field interaction (g,uNB%cAFx) . Thus

A2 A2
. A i,
A=2 1 ouyBS, = X 1 guyB_ 6.
2m 2m 2

In order to answer the third question, we must evolve | (0)). To this end, we expand
|x(0)) in H eigenstates. The question concerns the spin. Since the field is directed
along x, we expand in the eigenstates

s -5 D5l

To determine the coefficients of the expansion, we project |x(0)) on |%, %)X and

5730,
)=o) ()5
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and, hence
1 11 1 1
0)=—=<12+i)|=,= 2—i)|=,—= .
2oy = o { @ri|3.3) +@-a|5-3) )
The time evolution is obtained with the action of the time evolution operator e

on the wave function at time # = 0. Such operator is diagonal with respect to the
eigenstates of A and, therefore, the eigenstates ’%, %>x and |%, 7%>x acquire the

—iHt/h

phase factor e /" with E = £h& (£ = gy B) being the eigenvalues. The result is
1 111 e 11 1
) = s { @i |30 ) +e-new| -0 |
V10 22/, 272/,

The last question requires the projection of this wave function on the spinor

5 —%>y. This turns out to be

1 x(,>>_<2+ie’ff<1 111> +<2—i>e”?f<1 11 1>

, VIO \2' 2,2'2/ © vio \2' 2|,2" 2/
(2=i) s (1-1)

(2+1) g (1+1) N
V10 2 V10 2

{e@a+wxw@uw?
2v/10 210 J°

In order to have a vanishing projection, we must ensure

cos(&t) +3sin(Er) = 0.

We take as auxiliary unknown y = cos(&) and write

y+3v/1—-32=0

. cos™ (=
leading to y = j:\/% andr = M

Problem 3.21.
A particle with spin % and magnetic moment fI = g§ (§ is the spin operator) is
subject to a constant magnetic field B = (0, By,0). Its Hamiltonian is given by

H=—--B=—-g-§B= —gS,B,.
At atime ¢t = 0, the particle is in a state such that:

e the probability that a measurement of the z component of the spin gives % is 2/3;

e the averages of the spin operators in the x and y directions (S, and Sy) are such
that (S,) = (S,) > 0.
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Determine the eigenvalues of the Hamiltonian. Knowing that the averages of the x
and y components of the spin are equal, i.e. (Sy) = (S}), determine the state at r =0,
and evolve the wave function to a later time ¢.

Solution
We start by writing down a matrix representation for the Hamiltonian

N A n, h(0—i
HgS'BgByZGygByz(i 0 )

where 6y is one of the Pauli matrices. The eigenvalues of the Hamiltonian are rapidly

found . )y
_ 1By h°g°B;
det< ,.gfvh 2 >E2gy0

= E 4

from which we get E+ = FgByh/2. It is then convenient to use the eigenstates of
S, = %@, even if the Hamiltonian A is not diagonal with respect to such a vector
basis. The eigenstates of G, are

22).-0) [2)-(0)

and we can always think of expressing |y/(0)) in terms of | 1, %)Z,

11 > ‘ 1 1 >

N A + ﬁ EREGY

2°2/, 27 2/,

where o can be thought of as a positive real parameter (¢ > 0). From the first
condition given in the text, it follows that

e~ (33l
2

= 2. Since |a|>+ |B|* = 1, we can write

%7_%>z

W(0) =

11
because [{ 5,3

<

Vo))

Z

=35

in terms of a yet unknown phase ¢. One can find ¢ from the condition (S,) = (SA}}.
Let us start by computing (S,). The eigenstates of S, are

i050) 250
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The states |%, i%>z can be expanded in terms of | %, :l:%)x

220w (23), 0 )
22/, va\2’2/, " |2 2/,

so that

st (33),l52).) 34 (

from which, using the orthogonality of states ’%, :I:%>X, we get

A hv2
(Sy) = T\fcos(p.

We proceed in a similar way for <§,> The eigenstates of S'y are

22, -5) ), -5()

and
-5 (h)D)
2°2/. 2\12°2/, |2 2/,
D5 (39 5D)
27 2/, ﬁ2’2y2’2}
so that

sivor s 5 {(55),15-5)) 25 (53), 13-5))
a2, 2)) - (220, +2),))

($y) = h;—@ sin @.

and

Imposing the condition (S,) = (S,) > 0, we obtain

sin @ = cos @
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and -
(p:1+2n7t n=20,1,2,3,...
In conclusion, the initial state (if n = 0) is

211 1 FT 11
von=\3[33) + 5l3-3).

2

and the average components of the spin in the x and y directions are given by

8 =) =1.

The time evolution of the wave function at any subsequent time ¢ is

11 —iE4t/h 1 1 —iE_t/h
==, = Ext/hg 1= —= ~1/hp
() \2,2>ye +373) e

(34 )37

(it o)L

where

and
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Central Force Field

Problem 4.1.

Let us consider a particle subject to the following three dimensional harmonic po-
tential

M 0*r?

2

with r the radial distance in spherical polar coordinates. Discuss the properties of
the associated Schrodinger equation for 7 =~ 0 and r — +-co.

U(r)

Solution
Our potential energy is dependent only on the absolute value of the distance from
the origin. For this reason, we seek the solution by separating radial and angular
variables

- Rn.l(r)

r

Wn,l,m(ra 97 ¢)

The associated Schrodinger equation becomes

Y (6,9).

w2 od* 1 RA(1+1)
Mo P+ B | Ruy(r) =0.
[ a2 T ”’l} wi(7)
If we define the new length scale a = \/hi/(M®), we can rewrite the equation in

terms of the variables x = r/a, € = E,, ; / (h®). Removing all quantum numbers sub-
scripts for simplicity, the Schrodinger equation takes now the form

iz_xz_l(l+1)
dx? x2

+2e} R(x)=0

which, when x = 0, yields

[651;_1(1;1)%()6):0

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_4, © Springer-Verlag Italia 2012
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where we discarded all the non divergent terms. All singularities are regular. The
regular singularities are found in the coefficients of the differential equation (on
which no derivatives act) written in the form X,f—i] k is the degree of the highest order
derivative (in our case, we have a second order differential equation, so that k = 2)
and j = 1,...,k is an index indicating the coefficient (see section 1.7 for a detailed

discussion). If we make the ansatz R (x) = x* and plug it back in the equation, we get
oa(a—1)=I(I+1)=0

which has solutions o¢ = —I,/+ 1. The physical solution is the one without diver-
gences in the origin, i.e. R(x) = x/*1.

Let us now discuss the behaviour of the solution close to infinity ( = +oo) . First
of all, we need to change variable by setting x = 1/¢. The derivatives transform like

i:7tzi d274d2 3 d
dx dt dx? dr? di
and the Schrodinger equation in the variable ¢ becomes

2 2d 1 I(1+1) 2e
I - Z)R(1)=0
(dt2+tdt 16 PR ®)

where we see that the singularities are not regular. A way to study the properties of
the solution for x >> 1, is to assume the functional form R(x) = eS("), plug it back in
the original equation, and neglect the term with the second derivative

(Z,i)z—(xz—ze):o

so that S(x) = S(xo) + [} Vs* —2¢eds ~ +% because at infinity the term s> domi-

. . . 2
nates over €. We then choose the minus sign in the exponent R(x) =~ ¢ /2 to ensure
a zero probability density function for large x. This is in line with the familiar solu-
tion of the one dimensional oscillator, since the three dimensional one is separable.

Problem 4.2.
Determine the energy spectrum for a particle with mass M subject to the following
three dimensional central potential

U(r)=0 r<a
U(r)=4oc r>a
where a is a constant and r is the radial distance in spherical polar coordinates.

Solution
The solution to our problem is given by the wave function y,;,(r,0,¢) that for
r < a describes the motion of a free particle and such that v, ,(a,0,¢) = 0. We
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seek a solution in the form

vnin(r0.0) = 1)y, (0.9)

where the term 1/r is important to remove the dependence on the first order deriva-

tive %% in the Laplacian operator. The corresponding Schrodinger equation for

Rn’l(l‘) is
m? d®R,(r)  HI(I+1)
2M dr? 2Mr?
given that the spherical harmonics Y;,,(0,¢) are eigenstates of the angular part of
the Laplacian operator. Setting k> = 2ME,, ;/ 12, and removing all quantum numbers
subscripts for simplicity, we get

R’ — <l(l+1) —k2>R:O.

Rn,l(r> = En,an,l(r)

2

In the point r = 0 we find a regular singularity. The indicial exponent around this
point is found by plugging R = r* in the original equation, with the result A =+ 1
and A = —I[. The physical solution is the first one, because in this case we can
guarantee the finiteness of the wave function when » — 0 (remember that the radial
wave function is R/r, and the behaviour for r ~ 0 is therefore given by /). We
now remove such asymptotic behaviour by setting R(r) = r'*!y(r). The resulting
Schrodinger equation for y(r) becomes

v 20+1)

Y+ y +k*y =0.

,
We can also study the behaviour of y close to infinity. To do that, we make use of
the change of variable r = 1/¢ and find the equation for y(z)

21 K
J’H*T)’/JFIT;)’:O

where we see that the singularity in # = 0 (r = 4o0) is irregular. We then seek the
solution in the form y(t) = ¢*/'F(t) to remove the singularity in #* and find the
indicial equation. The equation for F () is

2ik 21 2ik  2ikl
Fro (- 2y (2 ) p oo
2t 13 13

Setting F(¢) = tP, the resulting indicial equation has solution B = 1+ 1. Plugging
all these results back in the original equation for the function R(r) = r'*'e* F(r),

we find 2(1+1 2ik(l+1
L0y 2400

F"+ <2ik+ = =0.
r r
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The change of variable x = —2ikr allows us to obtain the confluent hypergeometric
equation
xF"+Q2(1+1)—x)F = (I+1)F=0

defining the function F(/ +1,2(/ 4+ 1)|x). We therefore write the general solution as

Vim(r,0,0) :%Rn,,(r)yl,m(e,m =M F(1+1,2(1+1)| = 2ikr)Y;,n(0,9) =

I+3
% (i) F(l—f—;) Jl+%(kr)yl,m(ea¢)‘

The J; 1/, are the Bessel functions of half-integral order, whose relation with the
hypergeometric function is

1
1 1 \!T2 .
Joa(kr) = ——( Sk KEI+1,2(1+1)| - 2ikr).
)= g (5) @t
The quantization rules are set by the boundary condition in r = a

JH%(ka):O

from which k = X,,;/a that means E,; = h’X?,/(2Ma?). X, are the zeros of the
Bessel functions which can be determined once we know the value of /. For exam-
ple, when [ = 0, the function J; , (ka) is

2ka sin(ka
b = | 5

and the zeros correspond to X, o = n = ka, with n an integer number. Therefore,
one gets E, o = h?(nm)?/(2Ma?). The other quantization rules (for / > 0) can be

obtained from
. T
Ji(x) =4/ ﬂfm/z(x)

with j;(x) the spherical Bessel functions with the property

1d\'sinx
Jix) = (=) <x dx> x
Problem 4.3.
Determine the minimum value of Uy > 0 such that a particle with mass m subject to

the following central potential

U(r)y=-Uy r<a (regionl)
U(r)=0 r>a (region II)
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has s-type bound states. In the above expressions, a is a constant and r is the radial
distance in spherical polar coordinates.

Solution
When the particle is in the bound state of s-type, the orbital angular momentum is
I = 0. We then seek a solution with a negative energy E: we set € = —E > 0 and

write the wave function as

()

v(r6,0) = ——Y00(6,9).

The corresponding Schrodinger equation for the radial part R(r) becomes

TR KRR=0 r<a

& RH k2R11 =0 r>a

where k3 = 2m(Uy — €) /h* and k3 = 2me /h*. We note that the first order derivative
z gr of the Laplacian cancels out, due to the choice of R(r)/r as the radial part of
the wave function. The solutions of the above equations, satisfying finiteness of the

wave function in r = 0, 4o, are

Ri(r)=Asin(kir) r<a
Ry (r) = Be™r r>a.

Then, we need to impose the continuity conditions for the wave function and its
derivative in r = a. These conditions are equivalent to

Rj(a) _ Ry (a)
R[ ((1) R[] (a)

yielding k; cot(kja) = —ky. We note that such a kind of condition is the same we find
when we solve the one dimensional problem of a particle in a rectangular potential
well with an infinite energy barrier on one side (see Problem 2.12). If we set x = kja
and y = kpa, the solution is given by the intersection of the two curves
2 .
24yt = szZUO _R2
y = —Xxcotux.

The smallest x such that —xcotx = 0 is x = /2. The radius R has to take this
value to find an intersection corresponding to a bound state with zero energy. That
corresponds to

n’h?
Uy =

F()] [he Values 2
2“1“ LO

R = s n*/4

we have other bound states with negative energies.
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Problem 4.4.
A hydrogen atom with Hamiltonian A = T +V, where 7 is the kinetic energy oper-

2 . -
ator and V(r) = —<- the potential energy, is in the ground state:

e determine the average value of the modulus of the force F = ‘;—Z between the
electron and the nucleus, and the one of the associated potential energy V (r);

e starting from the average energy (FI ), determine the average value of the kinetic
energy (T') and (2T +V).

Solution
We start from the wave function of the ground state

w(1,0,0) = Ry o(r)Yoo(6,0) = \/%e_é

with a the Bohr radius. We then make use of the following integrals

oo oo
/ e “dx=1 / xe Fdx=1
0 0

to obtain the average values of £ and V
2 2 2t 2
A W i3,4”e/ g2
<F><,¢2>/w (r,@,d))r2d r=-—3 A e adr= 2
2

. e’ 5 e’ 5 dmwe? [t o e
<V>:—<?>:—/y/(r,9,¢)rd r=-—3 /0 re ﬂdrz—;.
2

Since we know the energy of the ground state for the hydrogen atom, (A ) =—5
we find that

() = (i) - (V) = 5
and
Q2T +V)=0.

This result is a particular case of the so-called virial theorem, i.e. a general equation
relating the average of the total kinetic energy with that of the total potential energy
for physical systems consisting of particles bound by potential forces. In the most
general case, such relation has the form

2(y|T|y) = (y|#-V]y)

which can be simplified when treating potential forces with spherical symmetry and
proportional to " (our case corresponds to n = —1). In such cases, we find

r-v= r%V(r) =nV(r)
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so that
2y|Tly) = n(y|V]y).
If we know that the state y has an average energy equal to E

(WIT|y)+ (w|V|y)=E

we can find the average of the kinetic and potential energy as

Wit = —E  (yllly) = —
vitiy n+2 viviy n+2
which, for n = —1, is consistent with the previous result.

Problem 4.5.
Determine the energy spectrum for a particle with mass M subject to the following
three dimensional central potential

1
U(r)==-M w*r?
2
with @ a constant and r the radial distance in spherical polar coordinates. Discuss
the properties of the solution in spherical and Cartesian coordinates.

Solution
As usual with centrally symmetric potentials, we seek the solution in the form

R I\
Vnsn(1:0.0) = X1y 0.9).
The resulting three dimensional Schrodinger equation for the radial part R, ;(r) be-
comes

”od: R I+1) 1
(=37 3+ MO ) Rus(r) = B0

or, equivalently

a2 ° b4
where z = /M /hr and € = E,;/(hw), and where we have removed all quantum
numbers subscripts for simplicity. The equation has a regular singularity in z =0 and
an irregular one in z = 4o, suggesting that the solution for the differential equation
is in the class of the confluent hypergeometric functions. Close to the origin (z = 0),
we set R(z) ~ z* and find the solutions A = [+ 1, —1. The first solution is the physical
one because it does not diverge in z = 0. Moreover, for z > 1, the solution is of the

(d2 zlatw+%>m@0

form R(z) =~ ¢=%'/2, This can be seen by neglecting the terms z~2 and & with respect
to 72 (see also Problem 4.1). Therefore, the general solution can be sought in the
form

R(z) = lee*Zz/zF(z).
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The original equation becomes
[+1
FW+2(+Z>F'%Q£213FO.

z
To find the usual confluent hypergeometric form, we need to define the new variable
x =z and obtain

3 1 1.3
F'+ I+ —x|F' +|ze—=I—->|F=0.
xF" + ( + 5 x) + ¢35

The solution is F = F(—&/2+41/2+3/4,1+3/2|z%). We recall that the general
confluent hypergeometric function F(A,C|z) is defined by the series

Az AA+1)Z
FACR) =1+2+2o )%
ACl) =1+ T e 2

and that the series reduces to a polynomial of degree |A| when A = —n, with n a
non negative integer (see also Problem 2.25). Therefore, to preserve the convergent
behaviour of the solution at infinity, we have to set

B s+l+3
"mTa Ty

The corresponding eigenvalues for the Hamiltonian are

3
Eﬁp:hw<2n+l+2).

We note that we can write the potential also in Cartesian coordinates (x,y,z not to
be confused with the above variables)

1 1
Ul(x,y,z) = EM(JL)zr2 = EMC()z(xz—i—y2 +22).

The associated Schrodinger equation allows the separation of variables. The result-
ing picture is that of three independent one dimensional harmonic oscillators whose
Hamiltonian eigenvalues are

3
E”X*”.\’~”z =ho (nx +”y +n; + 2)

with n,,ny,n, non negative integers. The eigenstates are therefore

)
wnx-,ny-,nz ()C, Y Z) = Cn,\‘CnyC"ze “r /anx (ax)Hny (ay)an (az)

with

oL (Mo Mo
" 2w \hm TNV
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and where

ne2dt g2
Hy(§) = (—1)"¢5 a&n° ¢

represents the n-th order Hermite polynomial.

Problem 4.6.
The three dimensional quantum harmonic oscillator with Hamiltonian

A= += [0*(#+2)+ %]

2—0

. . . . . e
is slightly anisotropic, with 4 = =~
state:

< 1. The system is prepared in the ground

e using Cartesian coordinates, write down the wave function y(x,y,z) of the
ground state;

e using spherical polar coordinates (r,0,¢), expand y(r, 0, ¢) to first order in A;

e analyzing the wave function obtained in the previous point, write down the prob-
ability to find / = 0 as a function of the radial distance .

Solution

The Hamiltonian may be seen as that of two harmonic oscillators with frequency @
(along x and z) and one harmonic oscillator with frequency £ (along y). Variables
can be separated and the wave function can be sought as the product of functions

ll/”x7"y7”z (x’ Vs Z) = wﬂx (x) ll’”y (y) ‘I/nz (Z)
with ny,ny, n; non negative integers. The ground state is obtained when n, = n, =
n,=0 ]
1 =
_(moNz (mQNY g
V/0,0’O(x,y,Z) - ( 7h ) ( 7h > e
with the function F(x,y,z) defined by

x* 472 y2
2G5 2%

F(x.y,2) =
and x3 = -1 y2 = 1 The associated energy is

Q
E0,0,0 =h <CO+ 2) .

As for the second point, we need to start from the function F(x,y,z) written in
spherical polar coordinates
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Setting y = rsin 0 sin ¢, we find the following results

2
F(r,0,¢) = % (1 +7Lsin295in2¢)

X0

1 1 r2 r2 s 2 02
mow\z [ mQ\* —+5 —I5Asin"0sin“¢
0, =<—) — | e Me ™ .
V0,00(r,6,9) s ( s )

The isotropic limit is given by A — 0
3

; mo\i —r~

Vo00(r,0,0) =y () = (22) e 50

When A is small, we can expand the wave function in Taylor series

Yo.00(r,0,0) =y (r) 1 1—lr—zsin29sin2¢ ~
0,0,0\/, Y, 0 4 2)6(%

II/(Z'SO) (r) 1 + A 1 _ i Sinz 0 Sinz (b
0 4 2%

where the factor (1 + %) comes from

As for the third point, the probability to measure / = 0 is obtained by taking the
square of the projection of Y 0,0 on Yo

27 2
P(r,l:0>:/0 sin0d0 | ¥0o(6.9)¥ooo(r0,0)d¢
Wtso ( ) A2 2
0 Am+mA — =28 ]
‘ Var { 3x(2)

where we have used the integral ;' sin® 646 f sin? pd¢ = 37.

Problem 4.7.

Let us study a hydrogen atom and neglect its nuclear spin. We denote by n the
principal quantum number, by /,m the angular quantum numbers, and by ]%,i%>
the eigenstates of the z component of the electron spin S.. A complete set of bound
states is given by |n,l,m) ® |%, j:%> The atom is prepared in the state

|100 ®‘2,2>+|23171> |77 2>+|2’1’0> |% §>

ly) = 7 ;
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e determine the average of the z component of the spin (y|S.|w) and of the energy
(wlH|y);
e determine the standard deviation o of the energy defined by

or =/ (WIB|y) — (WA |y))>.

Solution
The average of the z component of the spin is easily found, once we recall that

~ 1 1 h 1 1
4oV =4o S+
Sz|n7l,m>®’2, 2> 2|n7l,m>®‘2, 2>

so that, using the orthogonality of the states, we find

A 1 11 1 1 11
S == (1,0,0 =, = 2,1,1 =y —= 2,1,0 =, =
wisdv) =3 ({1001 (5.5 |+ eatle (3.3 + ol (5.5) «

A 11 I 1
1 -, = 2,1,1 —, == 2,1
SZ(| a070>®‘272>+|7 9 >®‘25 2>+|7 70>®’

L1 1 1y
3 2 2 2/ 6

N —

N =

~_—

N———
I

The energy spectrum for the hydrogen atom is given by

62

E,=—-
" 2na

n=1,2,3,..

with a the Bohr radius. Therefore, we obtain (we express the result in terms of the
Rydberg R = %)

A R 11 1 1 1 1 11

from which

<wmwz—§0+j):_

For the square of the Hamiltonian, we find

R
2

. R2 11 1 1 1 1 11
A w)=— (1 — N+ —2 1, =, =Y+ —[2,1,0)® |, =

[w) ﬁ< ,0,0>®’2,2>+16| o1, >®‘27 2>+16| )1, >®‘2,2>>
from which

. R? 2 3R?
2 = — —_— = —
(W|H |y) = 3 (1—1—16) s
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The associated standard deviation is

N N R
OF = \/ H?|y) — Hly))? = —.
e =\ (VIH*|y) — (ylH]y)) 7
Problem 4.8.
A particle with unitary mass is subject to a centrally symmetric force with associated

potential

V(r)= 5
where o is a real number, 8 an integer number, and r the radial distance in spherical
polar coordinates. Determine the largest value of 8 and the corresponding values of
o such that the system has positive energies in the discrete spectrum. In this case,
analyze the wave function in a neighborhood of the origin. To simplify matters,
make use of atomic units (see Problem 5.15).

Solution

As we know from the theory, the discrete spectrum is characterized by all those
energy levels which represent bound states. In such a case, the region of motion is
bounded, the resulting wave function can be normalized, and the probability to find
the particle at infinity tends to zero. To study the problem, we need to replace the
potential V with the effective potential V, ¢ given by the sum of V and the centrifugal

term l(l 1)
o +
v, =—
eff(r) B + 272

which is different for states with different /. We see that the motion of a particle
in a spherically symmetric field, is equivalent to a one dimensional motion under
the effect of the potential energy V. s. To have positive values of the energy in the
discrete spectrum, V, sy cannot be zero at infinity but it must be a positive constant
(or infinity). Also, for r =0, V,##(0) = oo depending on the values of o and 3.
Therefore, our requirements are:

o the effective potential is positive at infinity, V (+e0) > 0;
o the effective potential has a local minimum for a finite 7.

To verify the existence of a local maximum or minimum, we take the first derivative
of V. sy, and set it to zero in the point rg

poa _ s,
a+n) 0

e the case B > 2 and o < 0 gives V(0) = —oo and V (4o) = 0. We immediately
see that rg is a local maximum. Consequently, this case cannot describe bound
states;

e the case o > 0 (still with B > 2) is not producing bound states because V (0) =
+oo, V(+4e0) = 0 and the first derivative of the potential is zero for an imaginary
105



Problems 157

e when 3 = 2 (with arbitrary ) the effective potential is monotonic without a local
minimum. No bound states are possible;

e when f3 =1, we find V(+e0) = 0 and we have to rule out this case because the
discrete spectrum, if any, has no positive energies;

e the case B = 0 produces V(0) = +o0,V(+0) = 0 and the effective potential has
not a minimum for a finite ry;

e with B =—1,a <0wefind V(0) = +o0,V(400) = —oo. Again, we do not find a
minimum in V,¢r and, consequently, the Hamiltonian has not a discrete spectrum;

e finally, the case B = —1 and a > 0 satisfies our requirements.

The stationary Schrodinger equation can be analyzed by setting y(r,0,¢9) =

R(rr) 1.m(6,9) and eliminating the spherical harmonics ¥; ,,(6, ¢) using their orthog-

onality properties. When working with atomic units (see Problem 5.15), we get

d? I(1+1)
ﬁ‘i’ZE*Z(XI‘* 2

R(r)=0.

We have regular singularities in » = 0, and we can seek the solution in the form
R(r) ~ r*. Plugging this back in the original equation, we have

A= 1) 2428 20 — 114+ 1)4 2 = 0.

The second and third terms are subleading with respect to 7*~2 when r — 0, so that
A = —1,1+ 1. The physical solution corresponds to the non divergent solution in the
origin, i.e. A =1+ 1.

Problem 4.9.

Characterize the ground state for the Helium atom. In particular, determine the value
of the total spin and determine its degeneracy when the interaction between the two
electrons is vanishingly small. Repeat the exercise for the first excited energy level.
Finally, provide qualitative arguments to characterize the energy of the first excited
state when the interaction between the electrons is taken into account. Make use of
the wave functions of the first two atomic levels

(€)'t -5 (-2)

with Z = 2 the atomic number and a the characteristic atomic length scale (the Bohr
radius).

Solution
We first neglect the interaction between the two electrons. When acting on a function
of the coordinates, the Hamiltonian takes the form

A= (vivi)_zo (}+1>.

2m A2
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In this approximation, the problem is that of two independent electrons, each one
subject to the Coulomb central field U(r) = —Ze? /r. The solution is known from
the theory of the hydrogen-like atoms, leading to the energy spectrum

7262

&=
" 2an?

n=1,273, ..
Therefore, the energy of the ground state of the Helium atom is

222
E =2 =— 6‘-

The wave function is characterized by the symmetric (s) and antisymmetric (a) lin-
ear combinations (i.e. it takes a + sign under the interchange of the electrons) of
@15(r1) and @15(r2). For the ground state, the antisymmetric combination vanishes,
and we are left with the symmetric orbital wave function

1/Z\>  zty4ry
Vs(r1,r2) = @15(r1) 915(r2) = pe () e a .

a

The total wave function is y(ry,r) = W (r1,72) X, where y refers to the spin part.
Since the total wave function has to be antisymmetric, the spin part has to be anti-

symmetric
1 11 ® 1 1 1 1 ® 11
v2\|2’2/, 12" 2/, |27 2/, 1272/,

that is a singlet state (i.e. a state with spin O that is not degenerate).

The first excited energy state is a bit more complicated. One electron is in the
state 1s (n = 1,/ = 0), while the other in 2s (n = 2,/ = 0). The possible orbital wave
functions are

R

D(ry,r) = :

(015(r1) 925 (r2) + O15(r2) P25 (1))

5

y(ri,m) = Ds(ri,m)x

where ®(ry,r2) is symmetric and defines the parahelium states, while &, (r,r2)
is antisymmetric and defines the orthohelium states. As for the total wave function
(orbital motion plus spin), ®s(r1,r2) is multiplied by the singlet state previously
described, while @,(r;,r,) is multiplied by one of the following spin wave functions

_[LIN Ll

%]_2721 2a22
e T A L A
2=5\22/,%2"2/," 12 2/,% 22/,
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oy
X3*2721 2722

defining the so-called triplet (i.e. a state with spin 1 that is triple degenerate). The
energy of the parahelium and orthohelium states is the same, unless we introduce the
interaction potential between the electrons, Ui, (r1,72) = €?/(|r1 — ra|). The wave
function @,(ry,r2) is zero when r; = r, = 0, while ®(r;,r2) has a maximum in this
point. This means that the electrons preferentially stay either away from the nuclear
region (orthohelium) or close to it (parahelium). The contribution of the interaction
potential comes from

2
N N e
(Uing) = //cb (r1,r) ———®(r1,r)d>rid*r
J . |r1 *r2|

which can be calculated for the orthohelium (@ = @,) and the parahelium states
(P = D). The result is that (Um,> is positive in sign and smaller for the orthohe-
lium. This happens because in the orthohelium case the spatial wave function is
antisymmetric, the electrons tend to stay away from each other, and this reduces the
repulsive effect of Uj,,. We conclude that the total energy is lower for the orthohe-
lium state.

Problem 4.10.

An atom has two electrons with modulus of the charge e, spin S = 1/2, and with
the orbital angular momentum / = 0. The nuclear charge is e. Characterize the en-
ergy spectrum when the two electrons occupy the lowest energy levels available,
and in the limit where the interaction potential between the electrons is negligible.
Determine the wave function of the system and verify its normalization. Finally,
determine the probability Pe to find both electrons in a spherical region of radius €
centered in the nucleus.

Solution
From the point of view of Quantum Mechanics, the two electrons have to be con-
sidered as indistinguishable particles. Particles with half-odd-integer spin obey the
Fermi-Dirac statistics and their resulting wave function has to be antisymmetric
when the two particles are interchanged. Such property is a direct consequence of
the Pauli principle which states that, in a system composed of identical fermions,
there cannot be two particles with the same quantum numbers. The antisymmetric
combination of identical objects is in fact zero.

In the case of our problem, the wave functions are those of the hydrogen atom
(W(r) =Ruy(r)Y1,u(0,0)®|%,S:/h)) withn =1, =m =0,S, = +h/2

11 1 11
—R Y, N g2 rfa_— |~
vi(ri) =Rio(r) 0,0(91,¢1)®‘2,2> a e m@ 55

1 1 1 1 1
-R Y, Z N =9g 3 mla___g|Z _Z
va(r2) = Rio(r2) 0,0(92,¢2)®‘2, 2> a e m@ 77>
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where a = I /mee2 is the Bohr radius (m, is the mass of the electron) and where
|%, :I:%> refer to the eigenstates of S, i.e. the operator describing the z component
of the spin with eigenvalues +7/2. The antisymmetric combination of y;(r;) and

ya(ra) is |
y(ri,r) = :7§(Vﬁ(r1)ue(r2)‘*Vﬁ(rz)V&(rl))

We then verify the normalization N> = [ [|w(ry,r2)|?d*rid’r

—6 T 27 2 oo 2
N? = 71(22)2 ( / sin 040 / d¢>) ( / rzezr/“dr> —1
Jo Jo Jo

where we have used that [;"x*¢~*'dx = 1. Finally, the probability to find the two
electrons in a spherical region of radius € is given by the integral of |w(ry,72)|? in
theregion 0 <ryp <€

€ 2
t t a
P = 16a_6/ r%e_zrl/”drl/ r%e_%/“drz =16 </ xze_zxdx> .
0 0 0

A direct calculation shows that
5 2
€ € 1 1
=16 —2efa | _ - . - )
<e 22 24 4)73

L ori g\

P. =16 lim — / —Pd
‘ (Bﬁ2dﬁ2 0 ° x)
Let us consider the following spherical wave function

Problem 4.11.

e:l:ik~r

r)=
y(r)=—
where r is the radial distance in spherical coordinates, k = kr/r the wave vector and
k its modulus. Determine:

o the density flux for the probability density function;
e the number of particles in the unit time passing through the spherical surface of
radius R for a given k = kr/r.

Solution
The wave vector k = kr/r is in the same direction of r. Consequently, the wave
function can be written as a function of the radial distance r and the modulus k

eizkr

y(r)=

r

The density flux for the probability density function is obtained from the usual den-
sity flux

ih * *
J= (WY —y'Vy)
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by considering its radial component

[y v
2mi ’

Ir= dr lI,alr

An explicit calculation shows that

fi Fikr +ikr +ikr +ikr Fikr Fikr fik
J = {e (iike _¢ )—e (:Fike _¢ )] —
r

2mi | r r r? r r2 mr?

The number of particles in the unit time passing (exiting or entering) through the
spherical surface of radius R is just the integral of J, over such surface

2
N = / dd)/ jrR* sinBd6 = :i:4nhk

Problem 4.12.

Consider a hydrogen atom and determine the probability distribution function for
the momentum in the ground state (ls). With such result, determine the average
kinetic energy, and compare the result with the one obtained in the position space
(see Problem 5.15). For simplicity, make use of atomic units.

Solution
The wave function of the ground (1s) state has principal quantum number n = 1 and
the orbital angular momentum / = 0

1
Van

where we have used atomic units. In this way, the variable r is dimensionless. We
recover physical units (see also Problem 5.15) by introducing the proper length scale
(a, the Bohr radius) and energy scale (e?/a, the atomic energy). To find the distri-
bution of the momentum, we have to determine the generic mode (whose absolute
value is denoted with p,) in Fourier space starting from the wave function

Vi100(r,0,9) =Ri0(r)Y00(0,9) =

~+oo
vi.00(pr) _f/ (ipr+7) g r—Z\f/ / —(iprreos0+41),2 1y cos @ =

2\/‘ (/ ,p,r+r)rdr7/ (zp,r+r)rdr) _
lpr 0 0

2ﬁ( 1 1 )_ 8VT
ipr \(=ip,+1)>  (ip,+1)2)  (p2+1)?

and take its square modulus

64w

2_ oA
lwi00(pr)|" = 12
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The integral of such quantity gives the normalization of v o (pr)

/ﬂWWOMpH%%7:2ﬁmffmggﬁif@;zsf
0 sy r r 0 ( 1 + p%)4 r
where we have used the indefinite integral
/ N d X + x I X n arctanx N .
e const.
(14+x2) 6(1+x2)3 " 24(14+x2)2 " 16(1+x2) 16

The normalized probability distribution function between p, = 0 and p, = oo is

\Wioo(pr)P4mp; _ 32p;
87’ n(1+pp)*

P(p,) =

The kinetic term in the three dimensional Schrédinger equation (With mass m =1

and /i = 1) may be written as (radial part plus angular part) 7" = i 5 + 2 32 With L? the
squared orbital angular momentum. Moreover, the angular term for the ground state
is zero, due to the fact that it is proportional to the spherical harmonic ¥y 0(6, ¢) that
is an eigenstate of L> with eigenvalue 0. Therefore, using the indefinite integral

/ x* e X B Tx N X N arctanx + const
(1422477 6(1+x2)3  24(14+x2)2  16(1 +x2) 16 ’
we find

. 16 p 1

) = ~(p2) / P(p,)p2d / Py = -

Such value is in agreement with the kinetic energy determined in Problem 5.15,
where we will use the representation of the wave functions in the position space.



5
Perturbation Theory and WKB Method

Problem 5.1.
A plane rigid rotator has the following Hamiltonian

where I is the momentum of inertia and L. = —ihdi is the component of the angular
momentum in the z direction (¢ is the azimuthal angle). A small perturbation

H =Acos(29) A <1

is applied to the rotator. Determine the average value of A on each unperturbed
eigenstate. Then, determine the off-diagonal elements of the perturbation matrix
between the degenerate states. Finally, find the first order correction to the energy
of the ground state and the splitting induced on the energy of the first excited state.

Solution
We first determine the eigenstates of ﬁo. To do that, we have to solve the differential
equation

nd
) —awle) 0<g<am

leading to the following normalized eigenstates
ko
V2r

with k an integer number. The values k and —k correspond to the same eigenvalue
of the energy

vi(¢) =

2k

&g ="h
k 21

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_5, © Springer-Verlag Italia 2012
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meaning that all the states show a degeneracy, with the only exception of k = 0. The
average value of the perturbation H; on a generic eigenstate is given by

A 2
—ik¢ ik¢ _ _
(k|Hy|k) = 7 / cos(29)e"?d¢ = —”/0 cos(2¢)d¢ =0

and, in particular, for the ground state (k = 0) we find (0|4 |0) = 0. The off-diagonal
matrix elements between degenerate states are

. Ao 1
(—K|FL k) = 2= / 20 cos(20)d = A8y k>0
27 Jo 2

as we can see by writing cos(2¢9) = (e*? 4 ¢721¢)/2 and using the fact that the
integral of the exponential function e™292%9 over a period is zero, unless k = 1.
As a consequence, the perturbation matrix is zero with the only exception of the first
excited state. In the latter case, we can represent such matrix in the following way

A1) A 01>
H' == )
! 2(10

We conclude that the ground state and the states with |k| > 1 are unperturbed. The
first excited state with energy €, splits in two states with energies 7 % + %QL.

Problem 5.2.
A quantum system is characterized by a discrete spectrum whose eigenstates are

|l[/£0)> and |l//1(eo)), corresponding to the energies E; = 0 and Eg = M respectively. In
such a vector basis, the matrix representation of the unperturbed Hamiltonian is

H0:<0 0>.
oM

A perturbation V is switched on and the new Hamiltonian is

1—}:[{70-1—\7:(0 m)
mM

Using perturbation theory, determine the first and second order corrections to the
eigenvalues of Hy. To do that, you can define a parameter A = §; and assume that
A<l

Solution
The problem is non degenerate because |l//£0>> and \l//,(eo)> correspond to different
energies. Also, the perturbation can be written as AV’ where

()
MO0/



Problems 165

The unperturbed eigenstates of Hy are

v =(y) wh=(})

corresponding to the unperturbed energies E £0> =0 and El(eo) = M. The first order
corrections to the eigenvalues correspond to the diagonal elements of the perturba-

tion matrix V,, = (l//,(,o) \4 W,EO)>, withn,k=L,R

WO 1) = Q0w = 0

For the second order corrections in A, we need to use

B Celr
AE,” =Y

LB _ED
The matrix elements of interest are
ViR=Vir =M
from which we find
M? M?
AEP = - — M AEP =" =wm
M M
and
E = EY +AAE" + A2AEP) = o
2
Er 2 EY) + 2AEY + 22AED =M+ mﬁ
Problem 5.3.

Let us consider a quantum system with Hamiltonian A such that

H|0) =
Hln)=n!Qln) n=1,2,3,...

where |n) are the eigenstates ({n|k) = J,x) and Q > 0 a positive constant. Using

perturbation theory, find the first order correction AE(()I)

state induced by the perturbation

to the energy of the ground

—+o0
V=v ;)06”/2 (In) (0] +0)(nl)

where V > 0. Also, determine the second order correction AEo(z) to the energy of

the ground state induced by the same perturbation. What is the value of o such that
the total correction AE(gl) + AE(()2> is zero?
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Solution
The ground state is |0) and has zero energy. The first order correction is

AEM = (0|7|0) = 2v.

As for the second order correction, it can be found with the Taylor series of the
exponential function

@_ w0V VPger Vo,

The value of o such that the total correction is AE(()I) —i—AE(()z) =0 is given by the
equation

V2
2V=—(e*—1
so that 5
o ( 0 +V) |
\%
Problem 5.4.

A one dimensional quantum harmonic oscillator with Hamiltonian

. L1 1
Hy = <a’a+2n)hw <ﬁ+2ll>h(u

is subject to a small perturbation V = Aa’a'aa. Determine the first order pertur-
bative corrections to the energy spectrum. Then, compute the exact solution and
compare it with the result of perturbation theory.

Solution
We need to write the perturbation in a more convenient way. We know the commu-
tation relations of the creation and annihilation operators 4" and d

with 72 = d%a the number operator. We note that the perturbation is diagonal with
respect to the eigenstates (|n)) of the harmonic oscillator

Vin) = A (A% — a)|n) = A(n* —n)|n).

The first order correction to the energy spectrum is therefore the exact solution to
our problem.
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Problem 5.5.
A quantum particle with mass M moves in a two dimensional infinite potential well

Vy) =0 <5<
V(xy) =+eo x| > 5,y >

DI~

Determine the eigenstates and eigenvalues for the Hamiltonian. Imagine to construct
states with four electrons (with spin 1/2). What is the energy of the ground state?
At some point, a perturbation

H'(%,9) = AX ()Y (9)
is switched on. In the above expression, X (£) and ¥ (§) are generic operators, £ and
¥ the position operators in the two coordinates, and A a small parameter. Construct

the perturbation matrix for the case of a single electron occupying the first excited
state. In the special case

A a £y
A(2.9) =27

determine the first order correction to such a state.

Solution

We need to solve the Schroédinger equation in the two dimensional potential well.
This is similar to the three dimensional case solved in Problem 2.10. When variables
are separated in the Schrédinger equation, we find the eigenfunctions

Wn,m(xay) = Un (x)um(y)

with n, m positive integers and u,(x) correctly normalized
) \/3 . [ T®n n L

=4/ —=sin| — =]
U (x I 7 \Xt3

2.2
Eym = 2hM7;,2 (n2 + mz).
We note that the ground state (denoted with Ej 1 and corresponding to the case
n =m = 1) is non degenerate. The first excited state (denoted with E » and corre-
sponding to the case n+m = 3) is double degenerate. When we have four electrons
with spin 1/2, two of them go in the ground state, while the remaining two in the

first excited state, with a total energy

The eigenvalues are

Es=2(Ei1+E2).

When we have a single electron in the first excited state, a vector basis is given by

{uyw:mmmw
(6, ¥[2) = w1 (D) ()
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with the property (1|2) =0, (1|1) = (2|2) = 1. The representation of the perturbation
matrix in such a vector basis is

g — [ AMualXuz) G |¥]ur) 2G| X ) ([ |u) |
Ay | X [uz) ua[Yur) A | X |ur) (ua | Y |uz)

5
ﬁ >

2/+%sin z —|—Ii sin z—n —|-11 dx = £L
L)l M\ "2 L \""2) )T Tom
2 +%sin 2z +L sin 2z —|—L d 0
— —(x+= — [x+=] | xdx=0.
-L L 2 L 2

The second integral is zero because the integrand is the product of an even function
(sin? (ZL—” (x + %) )) and an odd one (x). The first integral is non zero and can be done
using the following results

Therefore, when we have H'(%,5) = A
grals

we need to consider the following inte-

/Onsinﬁsin(Zé)édi :2/0ﬂsin2§cos§§d§ - —é/oﬂsin%dg

and

/Onsin3§d§ = /Onsinédé —/Onsinécoszédé = (—cos§ +;cos§>

T 4
0o 3
Therefore, the matrix representation of H'is

. 16\>(01
H=1—=
)L<977:2) (10)
(1)

with eigenvalues AE}’ = :I:K(%)z. We see that the perturbation removes the de-
generacy completely, and the energy of the first excited state splits in two levels with

energies E1 » —|—AE(il).

Problem 5.6.

A particle is confined in a one dimensional potential well in the segment 0 < x < L
and is under the effect of the perturbation V(x) = Vg cos(%*). Determine the first
order correction to the energy of the ground state and the first excited state.

Solution
As we know from the solution of the Schrodinger equation in the one dimensional
potential well (see Problem 2.10), the normalized eigenstates are given by

2 . /nmx _
<x|n>:l//n(x):\/:sm (T) n=1,2,3,...
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and they are not degenerate. When applying time independent perturbation theory
to determine the energy correction, we have to compute the general integral

. 2V (5 T b 2V (3
(n[V|n) = AES) = —0/2 sin’ (H) cos (—x> dx = —0/2 sin®(nt) cost dt.
L Jo L L T Jo
For n = 1 (the ground state), the integral is simple
2V (3 2V (! 2V (! 2V,
AE%I) =20 [ gin2rcostdt = —0/ sin®td(sint) = —0/ Pdr=22
T Jo T Jo T Jo 3n

For n =2, we find

Wy 3 8Vy (3
AEEI) :70/2 sin®(2t) cost dt = —0/2 sin?tcos’ tdr =
T Jo T Jo
8Vo /! 8Vo /! 16V,
=2 sin®t cos®td(sint) = —0/ 2(1=2)dx = —2.
T Jo T Jo 157

Problem 5.7.
A quantum system is described by the following Hamiltonian

H=Hy+H

N 10
H =

and A’ has to be considered as a small perturbation with the following representation

. 01
H =

with 1 a small parameter. Determine the correction to the energy of the ground state
up to second order in perturbation theory. Then, find the exact solution and compare
it with the result of perturbation theory.

where

Solution
First of all, we need to compute the eigenstates and eigenvectors of the unperturbed
Hamiltonian Hy. We determine the characteristic polynomial p(A) associated with
Ho

(1) = det(Hy— 1) = det (1 _0)‘ 10 z) —_(1-22).

Solving the equation p(A) = 0 we find the eigenvalues A = %1 and the correspond-

ing eigenstates
1 0
wn=() 1-0-(0)
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which satisfy
Ho|—1)=—[=1)  Ho[l) = +[1).

The ground state is | — 1) with energy E_; = —1; the other is the excited state with
(m

energy E1 = +1. To determine the first order correction AE” | to the ground state,
we need to compute the matrix element (—1|H’| — 1). The result is

(1) _ A _ 01)(0) _
AE" _<71\H\—1>_n<o 1) (1 0) <1> = 0.

The first non zero correction for the ground state energy comes at the second order
in perturbation theory. To compute it, we make use of the expression

[(nA] - 1)

AEY) =
=X E_|—E,

n#—1

where with |n) we mean a generic state different from the ground state. The previous
expression is particularly simple in our case, because we have only two states

where we have used that

(A= 1) = (1) =n (01) <? g) (;) =n

To answer the last question, we note that we can rewrite the full Hamiltonian as

H=Hy+H = (1 n)
n—1

and determine the characteristic polynomial

p(")(l):det(ﬁ—lﬂ):det<1_l n ):-(1—12)—172
n —-1-2

from which we extract the eigenvalues (solving p(™ (1) = 0) as
EW——/1+n2 EMW—4/1+n2.
The energy of the ground state can be expanded for small 17, and we find
() n’
EN = —VItni~—1- 2 +0(n")

in agreement with the result of perturbation theory previously found.
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Problem 5.8.
Let us consider the two dimensional harmonic oscillator with Hamiltonian

A2 A2
I:I() _ Px +py

1 2002 | &2
+ Mo~ (%" +757).
s T Mot (45
Write down the eigenstates of I:IO. Then, using Cartesian coordinates, write down
the eigenfunctions of the lowest three energy levels in terms of the eigenfunctions
of the one dimensional harmonic oscillator. At some point, the perturbation

A = A#%5*

is switched on. Determine the first order correction induced by such perturbation on
the energy of the second excited state. You can make use of the following identities
1, 3 2 5o N

(£)00 = 5%0 (&)1 = 5%0 ()22 = 5% (£)02=—=x5

V2

where xo = \/% and where we have defined the generic matrix element of the

squared position operator (£2),,, = (n|£*|m) (see also Problem 2.4), with |n), |m)
the eigenstates of the one dimensional case. Also, you can consider that £> has zero
matrix elements when evaluated between two states with opposite parity.

Solution
The Hamiltonian Hy is the sum of two Hamiltonians, each one representing a one
dimensional harmonic oscillator. The corresponding energy is the sum of the two
energies

e R

mn = ho(m+n+1)=ho | m+ 3 +ho(n+ 3

with m and n non negative integers. Let us take the eigenfunctions y;, of the one
dimensional harmonic oscillator with coordinate x

(xln) = i (§) = Cu(E)e 512

M 1 Mo\
é = 7wx CIZ = 760
h 21/24/n! \ Az

2 d" g2

aén®
represents the n-th order Hermite polynomial. These states have a well defined par-
ity, i.e. they are even (odd) for n even (odd).

We now construct the eigenstates of Hy as the product of the eigenstates of the
one dimensional case. The ground state is

where

and where

Hy(&) = (=1)"e"

%o,0(x,y) = Wo(x)wo(y)-
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The first excited state is double degenerate, with a vector basis given by

Piolx,y) =wvi(x)wo(y) ¥o1(xy) = vox)wi(y).

The second excited state is triple degenerate, with a vector basis given by

Pi(xy) =vi(x)wi(y)

¥ 0(x,y) = va(x) wo(y)

2(x,y) = wo(x)wa(y).

Therefore, the representation of the perturbation matrix in such a vector basis is

(&)1 0 0 200
Al 0 (@200 (B33, [ =20 | 05 4
0 (@)30()5, (#)22()o0 033

The perturbation removes the degeneracy completely. The energy eigenvalue cor-
responding to the state ¥ ;(x,y) is 3fiw + %lxé, with %Axﬁ the energy correction
induced by the perturbation. The other two states (W5 o(x,y) and ¥ (x,y)) mix to-
gether, with resulting energies 3%m + %lxﬁ and 3ho + %Axé.

Problem 5.9.
A three dimensional rigid rotator has Hamiltonian
N
Hy=—
07

where L2 is the square of the orbital angular momentum and / the momentum of
inertia. The rotator is subject to the following perturbation

N 3 A
HIZAHECOSG

where 0 is the azimuthal angle and A is a small parameter. Discuss a possible phys-

ical interpretation for the perturbation when the rigid rotator possesses an electric
. . AL

dipole. Determine the effect of H on the ground state of the rotator.

Solution

A possible physical interpretation for the perturbation is that of a coupling energy
between the electric dipoles (say d) and a given uniform electric field (say E) di-
rected along the z axis. The coupling between the dipole and the electric field pro-
duces the scalar product d - E and this explains the cos 6 in the perturbation. A
similar situation will be analyzed in the context of equilibrium statistical mechanics
in Problem 7.31.
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As for the unperturbed Hamiltonian, its eigenstates are given by the spherical
harmonics Y;,,(0,¢) = (6, ¢ |I,m) which are in fact eigenstates of L

HIl,m) =Epm|l,m)

2
with the energies £, = % The unperturbed ground state is given by the con-

stant spherical harmonic

<97¢|070> = Y0,0(97¢) = \/ﬁ

and the first order correction by

(1) N }L 3 2r T
AEy’ = (0,0|H'(0,0) =1z E/o d¢/0 sin 6 cos 640 = 0.

Therefore, we need to consider the second order effect to find a non zero correc-
tion. This can be easily understood because the perturbation is proportional to the

spherical harmonic
3
Y10(6,9) =14/ ECOSG

and the spherical harmonics are orthogonal. Therefore, when applying the formula
for the second order correction in perturbation theory

AEY = Y
L} 710.0)

(0,0/ 8H |1,m) |2
Eoo—Em

the only term producing a non zero effect is that with |/,m) = |1,0)

0,0[[LO)2 1A% [ 1 P
AE(<)2):*M:7T 7Y120(9,¢)dﬂ =
% h Var 4mh
Problem 5.10.

A measurement of the energy

A~

A =35,

for a particle with spin 1/2 gives surely H = 1/2. In the above expression, S, is
the x component of the spin. Assuming 7 = 1, determine the first and second order
energy corrections on this state induced by the perturbation

51:1 = 8§+§,
where S are the raising and lowering operators for the z component of the spin.

Solution
We need to determine the perturbative corrections to the eigenvalue 1/2. In the
vector basis where the z component of the spin is diagonal, the matrix representation
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of the Hamiltonian can written as

where & is one of the Pauli matrices. The eigenstates corresponding to the eigen-

values +1 of &, are
’1 1>_ 1 1
272/ Vva2\-1)’

‘ 11 > 1 (1
2’2/ 2\
From the properties of the raising and lowering operators for the z component of the

spin
a .o (6xEi6y)

S =8,+i, = 5
A 0—i a 0 1 a 0 0
6, = Sy = S_=
' <i 0 ) B (0 0) (1 0)
we can write the perturbation as

SH=¢e$, 8§ =¢ b0y
0 0

The first order correction to the energy of |%, %> is

m_ /11 s o L1\ _¢ Loy _1
AE| _< 8S+S_’2,2 —2(1 1) o o) L) =3¢

2’2
The second order correction is

and the summation is particularly simple in our case, because we have only two
states
1 0 1
£(11
Problem 5.11.

A particle without spin is found in a quantum eigenstate of the operators £? and
L,, with L the orbital angular momentum and L; its i-th component (i = x,y,2).

2)

1
AE! — —¢?
2
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Determine the average values of Ly, Ly, 12, Zf. Then, given the Hamiltonian
A=1L7+L;
determine the time evolution of the generic eigenstate. At some point, the perturba-
tion
SH=¢l. ex1
is switched on. Using first order perturbation theory, determine the correction to the

energy of the ground state for the case [ = 1.

Solution
The state of the particle |/, m) is entirely specified by the quantum numbers / and m
such that

L2 |1,m) = R2(1+1)|1,m)
L.|l,m) =tm|l,m).
Before computing the average values of the operators given in the text, let us recall
some useful properties of the angular momentum. The commutation rules are
[Li,L;] = ig;jhly

where &;j is the Levi-Civita tensor and i, j, k = x, y, z. Such tensor is totally antisym-
metric and conventionally chosen in such a way that &,,, = 1. The raising (Ly)and
lowering (L_) operators for the z component of the orbital angular momentum are
defined by

R s e . (L +L- R (Le—L-
Ly = (Lo +ily) Lx:(szi) g

The associated commutation rules are given by

[i‘iaz‘z] = :Fhifi [£+,Z\4,] = Q’hLZ

Finally, the action of L on the states |/, ) is

Loll,m)=nm/(ITm)(I£m+1)|l,m=E1).
Let us now compute the expectation values for L, i),, i%, i)z,. For L, and iy, we get

1
2

g\/(l—m)(l+m+ D{L,m|l,m+ 1)+

(Lm| Llt,m) = (Lm| (L +L) |1,m) =

g\/(l+m)(l—m+ D{,mll,m—1) =0
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and similarly for Ly. The expectation values of L2 and L are non zero. To see that,
it is useful to rewrite £ and i}z, as
o (L4 +L)?* (B2+L2+L. L +L-Ly) (L2+L2+2L_L+2nL;)

2 __ _ —
L=y~ 4 N 4

o (BB (B4P2-Libo—LLy) ((R-P242L L4l
YT 4 T 4 - 4

When averaged on the state |/,m), L give zero. Therefore, we have

. . 1 .. .
{Lm| L3 |1,m) = (1,m| L3 |1,m) = 5 {Lm| (L-Ly +RL) |, m) =
n n?
S (m+(I=m)(l+m+1)) = = (U(1+1) —m?).

This is the correct result because 1> = I.2 —1-13 + lﬁf, and the average value of 12 —1—13
must coincide with the one of £? — 1.2

{Lm| L2 = L2 {1,m) = > (I(14+1) —m?).

To determine the state at time 7 (say |/,m, 1)), we have to apply the time propagator
e MM 1o |1, m)

l,m,t) = e—iﬁz/h \,m) = e—m(z(z+1)—m2)z I,m).
As for the last point, we first have to determine the unperturbed energy spectrum
Ep = 12(I(1+1) —m?).

For I =1 we find £y = E| 1 = hZ,ELo = 2h2. Therefore, the ground state for
I =1 has energy % and is double degenerate. To find the correction to the energy
in the degenerate case, we have to determine the eigenvalues of the matrix whose
elements are (1,41|8H |1,+1). Our case is particularly simple because the pertur-
bation is diagonal. The matrix representation of L, and the eigenvectors of interest
are

10 0
L.=r|00 0 11,1) =

0
|17_1>: 0
00 -1 1

S O -

and the perturbation matrix is

(1,118H|1,1) (1,1|8H|1,-1) _en[1 0
(1,—1|8A|1,+1)  (1,-1|8A1,—1)) ~\o -1
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that is a diagonal matrix with eigenvalues +-€#. Therefore, the perturbation removes
the degeneracy with a resulting energy splitting

E) =Ei1+AE1; =1 +eh

Efell =E| 1 +AE 1 = H> — eh.

Problem 5.12.
A two dimensional quantum system in the (x,y) plane is described by the following
Hamiltonian R

A= px;py + %m(a)f)ﬁz + o)+ V(P 1)
representing a harmonic oscillator with mass m and frequencies @y, ®y, plus a per-
turbation

SH=V(M—1)

where V is a constant, 4 < 1 a perturbation parameter, and p = d.d, + d;fd};. In our
notation, aAI and d; (s = x,y) are the creation and annihilation operators for the one
dimensional oscillator
A2
A py 1 22 sia o L
Hy=—+-mw:;§"=ho|aa+=-1|.
om 207 S
Using perturbation theory in A and ignoring effects higher than ¢/(A?), determine
the correction to the energy of the ground state of the harmonic oscillator. Then,
determine the value of V for which such effect is zero.

Solution
If we expand the perturbation in Taylor series up to &(12), we get

X 252
SA=V(M?-1)=V (m LA 2p + )

When applying perturbation theory, we have to consider the effects of the first term
(AP) up to the second order in perturbation theory. Consistently, the effects of the

242
second term (ATP) are considered up to the first order in perturbation theory. The
unperturbed Hamiltonian represents two independent quantum harmonic oscillators,
that implies we have stationary states of type |ny,n,) = [ny)|ny) (n,, =0,1,2,...)

with energy
1 1
E,,,»X_’ny = hwx (l’lx —+ 2) +Fla)v (ny + 2) .

It follows that the ground state corresponds to n, = n, = 0. Let us then evaluate the
effect of the perturbation term AP on this state. The first order correction is zero
because

AE}Y) = (0,0[AVp[0,0) = AV (0,0a,a, +aal[0,0) = AV(0,0[1,1) =0
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where we have used the orthogonality of states ((0|1) = 0) and the properties of the
creation and annihilation operators

alloy=1[1) a,]0)=0 s=x,y.
A non zero effect is obtained at the second order in perturbation theory

o [00AVpILE v
D = — .
P Eoo—En1 Iy + wy)

Concerning the term A 2‘0 as explained before, we only need to consider its effect
up to first order in perturbation theory. When evaluating p2, we get

A2 A At AT AT A
p- = axayaxay —+ axay —|— a aTaxay + a;aiay'a;

and we see that, when averaged on the ground state, the only term producing a non
zero result is &xdy&;d};. Therefore, the first order perturbative correction is

2 2
1 ATV o af At ATV
AE;Z}Z == Vo, 0la,ayajat|o,0) = =
Summing all the contributions, we get

2v72 2
@) (1) AV AV
AEtot—AE)Lp‘f'AE;szz __h(wx+a)y)+ 7

We see that the effect is zero when AE;,; = 0, that implies V = M

Problem 5.13.

A one dimensional quantum harmonic oscillator with charge g (consider i = m =
® = 1) is in the ground state yp(x). At some point, a uniform electric field directed
along the positive x direction is switched on. Determine the probability that the
oscillator is found in the excited states of the new Hamiltonian.

Solution
When there is no electric field, the wave function for the ground state of the har-
monic oscillator is

e 2
T4

1 1.2
1

Wo(x) =

As discussed in Problem 2.33, the eigenstates of the one dimensional harmonic
oscillator with charge g under the effect of the uniform electric field E, are written
as
2
1 , —1)" d"e™
W) = e ) = e
2nnl\/T NG dy"
where y = x — gE; = x — 2A is a shifted coordinate (A = gE,/2). When prepared in
the state yp(x), the probability that the harmonic oscillator is in one of the excited
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states W, (y), is given by the square of the projection coefficient of y,(y) on yp(x).
For the projection coefficient, we can integrate by parts n times to get

2
+o0 —1)" a2 e dte™™ +4Ax
=/ Yo () W (v)dx = (Z”n'>ﬁe 24 . ZAX7dxn

(_ 1 )n872A2 dnefx2+4Ax 672XA B dr— 1 efx2+4Ax d€72XA N
V2T dx" dxn—1 dx

_1\n e dnefbcA —x24+4Ax _ (_ )nznAn672A2 e —x242Ax
(-1 e dxp=—""—"—— e dx.
dnx V 2"}1'\/% —oo

Using the integral [*7 e~ +24%0x = /"’ we get

dx =

—+oo

+

—o0

—oo

ch= e_A2 (\_/’17)'” (\/EA)n.

The desired probability is

1 1
Po = leal* = ;(ZAZ)ne_zA2 = El"e_l

that is a Poisson distribution with mean value A = 242.

Problem 5.14.
A one dimensional harmonic oscillator with charge ¢, mass M, and frequency  is
subject to a uniform electric field

with A, T constants. From the point of view of Classical Mechanics, determine the
momentum transferred from the perturbation to the oscillator from time ¢ = —oo to
time t = H-oo.

Then, suppose to treat the system as a quantum mechanical one. If at time t = —oo
the oscillator is in the fundamental state, determine the transition probability that it
will be in the first excited state at t = +oo.

Solution
The Hamiltonian of the system is
PP Mo Agk (12

n-r _ Agt
m T2 mt

Using the derivative of the potential V (x,1) = —gE (¢)x with respect to x and chang-
ing its sign, we can determine the force acting on the oscillator. The integral of
such a force gives the classical momentum transferred from the electric field to the
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harmonic oscillator

4 —(5)?
P= F(t)dt = Etdt:—/ e \7) dt = qA.
[ Far= [ gE@a= 22 | ¢
As for the transition probability between a generic initial state |n) and a final state
|m), it is
1 too - (Em—En) 2
Wimn = 772 / an(t)el h ’dt'

where E,, Ey, represent the eigenvalues of the states |n), |m) and V() is the matrix
element of the potential V(¢) evaluated on the unperturbed states

Vont) =~ [ V0B (02w () dx = —qE ) mlel).

We specialize these formulae to our case, using (E| — Ep)/h = o, and determining
the matrix element making use of the creation and annihilation operators

h h
1£[0) =/ =——(1](@+a")|0) = | =——.
(11610) = | o= (1(a+aMI0) = |/ 33—
The desired transition probability is
P C]2A2 /+°°e_(%)2+[wtﬂ 2 _ P? e_w22r2
YT 2 aMon|) w T 2Moh

Depending on the value of 7, representing the characteristic time of the perturbation,
we have different physical scenarios. If 7> 1/, the characteristic time of the
perturbation is much larger than the oscillation time, and the oscillator perceives a
slowly varying perturbation. This is the adiabatic case: the transition probability is
small and, in the limit of an infinitely slow perturbation, it tends to zero (the system
is then found in a stationary state). If 7 < 1/® we are in the opposite case: the
perturbation is fast, its derivative with respect to time is very large, and the result is

PZ

Y0 = SMon

that is the ratio between the classical energy and the quantum mechanical one. For
the perturbation theory to be valid, this probability must be much smaller than 1, the
latter being the probability to remain in the original ground state.

Problem 5.15.

Let us consider a hydrogen-like atom in the ground state with nuclear charge equal
to Ze (e is the absolute value of the electron charge). Determine the average values
of the kinetic and potential energies. Using the first order corrections coming from
perturbation theory, determine the energy variation when the nuclear charge changes
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from Ze to (Z+ 1)e. Finally, compare the result of perturbation theory with the exact
result. To simplify matters, you can make use of atomic units.

Solution

The ground state for an atom with nuclear charge Ze has quantum numbers n = 1
(principal quantum number) and / = 0, m = 0 (angular momentum quantum num-
bers). If we use atomic units we get

3
r0.0)=Ri0(r)Yoo(0,0) =222 % ——.
V1,00(r,0,9) = Ri0(r)Yo,0(6,¢) i
To obtain dimensional quantities, we have to multiply by the Bohr radius, a =
12 /(mye*) = 0,529 x 10~% cm, where m, is the mass of the electron. The atomic

4

unit of energy is Egomic = €*/a = ’"]f—f = 4,46 x 10~ erg = 27,21 electronvolt
(eV). To go to atomic units we set e = m, = i = 1. Let us then verify the normaliza-
tion of the wave function

too 1 d2 Foo
/|Wl,o.0|2d3V=4Z3/0 e ZZ’rzdr—Eé:rrﬁd—[p/ e Bar=1.

The radial probability distribution function between r = 0 and r = +oo is given by
P(r) = 4Z°r*¢=2?" Due to the normalization of the wave function, P(r) is correctly
normalized to unity when we integrate between r=0 and r=+oo, i.e. ;" P(r)dr =
1. The potential energy is U(r) = —Z/r and its expectation value on the ground

state is
A oo 7 +oo
<U> :423/ 722" <— > r2dr = —424/ 672erdr =
r 0

—+oo
2 7r 2 —r 2
Z éﬂdﬁ/ Bar=z 11m <_/32>/ e 'dr=-7".

The kinetic energy operator is

.1, 110 (,0 12
T=-3v —‘z<zar( ar>‘hzrz>

where the last term includes the square of the orbital angular momentum opera-
tor, whose eigenfunctions are the sphencal harmomcs Y, »(0,9) with eigenvalues

w2l (I41). In our case ! = 0, and the term r2 > is not present. The average value of
the kinetic energy is therefore

N oo 11d(,d
T :423/ —Zr 2 ,Zrd _
{r) 0 ¢ 7 22dr dr ¢ "

~+oo ~+oo Zz ]
273 / e 22r(2zr — 24 dr = ZZ/ re”"dr— 7 / e "rPdr=
0 0 0

ZZ d2 oo ZZ
2 Bry. _ 2
iy dﬁz/ erdr=5
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that is a positive value, as it should be. To verify these calculations, we can set
Z =1, and see if we recover the result for the ground state (n = 1,/ = 0,m = 0) of
the hydrogen atom whose energy is E;(Z = 1) = —1/2. Summing the kinetic and
potential contributions, we get

(HY =(T)+(U)=E =—1/2

that is the correct result.
When the nuclear charge changes from Z to Z + 1, the associated potential may
be seen as the original potential with charge Z plus a perturbation U’, defined by

z+1) z 1

+E=—-.
r r r

/
U’ = Ufinat — Uinitiat = —

Using first order perturbation theory, we know that the correction to the energy of
the ground state is
AEW(2)=(0") =~z

that is the same integral done before with —1/r instead of —Z/r. At the same time,
we also know the exact result for the ground state

Z+1)? 72 1
u_i_i:—z——.

AE(Z) = Efinal — Einitial = — 5 > 5

We observe that for large Z the perturbative calculation agrees very well with the
exact result.

Problem 5.16.
A Hydrogen atom is placed in an external electric field given by the following po-

tential
1 Btrcos@

w2+

where B, T are constants, and 6, r are the inclination angle and the radial distance in
spherical polar coordinates respectively. If at time t = —oo the atom is in the ground
state, determine the probability that it will be in the state 2p at t = +oo. To simplify
matters, you can make use of atomic units.

V(r.6.1) =

Solution
We directly apply the formula for the transition probability

400 . ) 2
Pm,oz\ [ min 000

R N J,»ooB,r ei(()t
’<2,1,}’TZ|VCOSGO,O,O>\/_oo ?m

In fact, the quantum numbers of the state 2p are n =2,/ = 1, m = 0,%1. The dif-
ference between the two energies (in atomic units the energy is E, = —1/(2n?))
iss@=E,—E;=—1/8—(—1/2) =3/8. We now calculate (2, 1,m|cos 6|1,0,0).
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First of all, we note that the state with [ = 1 is triple degenerate

Y. 1,1(1,0,0) =R 1(r)Y1,1(0,9) =

1 e .
re 2¢%sin 0
T

_r
re”2cos@

V210(10,0) =Ry1(r)Y10(0,0) =

1
42

1 5
re 2e ¥sin@.
T

V21,-1(r0,0) =Ry (r)Y1.-1(0,¢) =

The wave function for the ground state has not an angular dependence, due to the
fact that the spherical harmonic for / = 0 is constant

—r

1
r)=—=e
Vio0(r) NG
The matrix element (2, 1,m|fcosé|1,0,0> is zero if we use Y, | +1, i.e. the states
with the z component of the angular momentum equal to &1, because V and y g o

do not depend on ¢ and the integral of ¢*'® over a period is zero. The matrix element
with the state whose z component of the angular momentum is zero gives

+1
(2,1,0|7cos 8]1,0,0) / rle 7 dr/ cos’>0d(cos8) =
\f 1

1t , 2 1 4 e 27\/2
— r4e32dr:<3) — d—/ e Bar= f

3v2 Jo 3V2 /3%1 dp* Jo 35
Substituting this result back in the formula for the transition probability, we obtain
B272 215 ol 2 g2 ot 2 g2ls
o= 30| e~ m 2'”)3%@ ELR

where we have used the method of residuals, choosing a contour surrounding the
region Q of the complex plane where 3(Q) > 0.

Problem 5.17.
For a given energy €, the WKB method leads to the following expression for the
transmission coefficient through a potential barrier V (x)

T ~ e*%f}‘f \/2m(V (x)—¢€)dx

where x1,x, satisfy the condition V(x;) =V (x;) = €. Using the WKB method, give
an estimate of the transmission coefficient for an electron with charge e and mass m
through the potential barrier of Fig. 5.1: the one dimensional potential is V (x) =0
for x < 0 and V(x) = Vo — eEx for x > 0, where E, is a constant field and V} the
potential energy barrier in x = 0. You can assume that the energy is € < Vj (see
Fig. 5.1).
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V()

(0, Vo)

V=V-eE.a

(Vo/elk,,0) x

Fig. 5.1 An electron with constant energy € and charge e has a non zero probability to pass through
the one dimensional potential barrier that is V (x) = 0 for x < 0 and V (x) = Vp — eEyx for x > 0,
where E, is a constant field and Vj the potential energy barrier in x = 0. In Problem 5.17 we
determine the transmission coefficient through this potential energy barrier using the WKB method

Solution

The transmission coefficient can be computed using the same ideas of Problems
2.22,2.23,2.31, plus the WKB approximation when determining the wave function.
The result for the transmission coefficient for the penetration through the potential
barrier is the one given in the text

T~ e*%x? \/2m(V (x)—¢€)dx

The points x;,x; are found from the condition V(x;) = V(x;) = €, yielding x; =
0,x = Yot Therefore, we can compute the integral in the exponential function of

f’Ex
the previous formula
VW—e¢
( 0 — x) dx =
eE,
3

2 Vo—€\?2
—+/2meE .
3V ame x( eE, >

The resulting transmission coefficient is

Vo—¢

Yo—e NMo—e
/eEx \/Zm(Vo—s—eExx)dx:\/ZmeEx/ -
0 Jo

3
4 V2m 5
T ~ e_§ eExh (VO_S) 2 .

Problem 5.18.
Using the Bohr-Sommerfeld quantization rule, determine the energy levels of a one
dimensional harmonic oscillator with unitary frequency and mass m. Comment on
the final result.
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Solution
The Bohr-Sommerfeld quantization rule is given by

f\/mdxzz/: \/Zm (En—;mxz)dx: <n+;> 27

where x1,x; are the turning points of the classical motion and where, in the second

integral, we have used the harmonic potential V(x) = %mxz. To solve the integral,

we use 1
X a
Va+cxtdx == a+cx2+f/7dx
/ 2 2J) Va+ex?

and get

X2 1 1 X2 1 1
/ 2m | E, — mez dx= EE" Zm/ dx| = EE,,T =E,T.
JX YA 2m (En — %mxz)

This is true because the first term in the integration formula is zero, since at the turn-
ing points we have E, =V (x;) = V(x2). Moreover, T = 2n/® = 2 is the relation
between the period of motion and the (unitary) frequency, with 7 defined as the time
needed to go from x; to x, and come back

293
dx=2m fdx—Z/ de—2/ dt=T
x|

Zm/
\/Zm E —fm)c2 *1

where p = mv = /2m(E, — V) with p,v the momentum and velocity of the particle.
The final result is therefore
1
E,= — | A
(n + 2>

We note that such semi-classical result is the exact result for the quantum harmonic
oscillator. All higher other corrections in the WKB approximation are indeed zero
in this case.

Problem 5.19.

Using the Bohr-Sommerfeld quantization rule, determine the energy spectrum for
a free particle with mass m in a one dimensional infinite potential well of width a.
Compare with the exact result (see Problem 2.10).

Solution

We start by considering the potential well localized in the region 0 < x < a. The
momentum is conserved and its absolute value is equal to p,. Due to the reflection
from the wall (say the wall in x = a), momentum undergoes a change from p, to
— pn- The Bohr-Sommerfeld quantization rule yields

a 0 a 1
fpndx:pn/ dxfp,,/ dx:2pn/ dx<n+>h
0 a 0 2



186 5 Perturbation Theory and WKB Method

h 1
w=o(nt s =0,1,2,...
Pn=24 <”+2> "

The associated energy is therefore

2 2 2
Py _ _h 1
E = — = — .
" 2m 8ma? <n + 2)
The energy spectrum for a particle in a one dimensional infinite potential well can
be calculated exactly (see Problem 2.10)

so that

B R,

E — —
"7 2m T 8ma?

As we see, opposite to the result in Problem 5.18, the Bohr-Sommerfeld quantization
rule does not provide an exact result but just an approximate one.

Problem 5.20.

The potential U (x) is characterized by two symmetrical wells separated by a barrier
(see Fig. 5.2). With an impenetrable barrier, the energy levels correspond to the case
of a single particle in one well (region [ or region /7). The ground state of such case
has energy Ey, and a passage through the potential barrier results in a splitting of
the ground state into two energy levels. Using the WKB method, give an estimate
of such effect.

Solution
The subject of this problem is the quantum tunnelling, i.e. the quantum mechani-
cal phenomenon for which a particle passes through a potential energy barrier that

Ul(x)

17 I

E, 0

Iy Z2

T

Fig. 5.2 A potential barrier with two symmetric wells. Due to the tunneling effect through the
potential barrier, the ground state of the single particle motion in one well receives a correction.
Problems 5.20 and 5.21 characterize this quantum mechanical effect
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classically could not overcome, because its total kinetic energy is lower than the
potential energy of the barrier itself (see Fig. 5.2, where the energy Ej is lower
than U(x) in the origin). In Quantum Mechanics it exists a finite probability to pass
through such barrier which goes to zero as the barrier gets higher. Here we want
to characterize such probability using the WKB method. Neglecting the tunneling
through the barrier, we can solve the Schrodinger equation describing the motion of
the particle in one well (say in the region I of Fig. 5.2)

Ay (x) = Eoyo(x).

The wave function yy(x) is such that its square modulus is normalized to 1 when
integrated between 0 and +oo, i.e. Yo (x) solves the one dimensional problem with an
infinite potential barrier in x = 0. When the probability of tunneling is considered,
the particle can go through the barrier and enter into the region /1, where its wave
function is described by yy(—x). The correct zeroth order approximation for the
wave function, taking into account the tunneling effect, is given by the symmetric
and antisymmetric combinations of yp(x) and yy(—x)

S i

[Wo(x) + Yo (—x)]
[Wo(x) — yo(—x)].

v (x)
Ya(x) =

Being the potential U (x) symmetric, the wave functions have a well defined parity
when x — —x. Since the probability of the tunneling is small, the variation in the
energy levels is small as well. Moreover, in the region I we have y(x) > yp(—x),
while in the region I we have the opposite, Wo(—x) > yy(x). From these consid-
erations, it follows that the product Wy (x)Wo(—x) is a vanishingly small quantity
in both regions and the symmetric/antisymmetric combinations shown above are
correctly normalized

[ TR | [ weeoRacs [ w(-oPas| 1

[ iwsPaxs 3| [ iwwRacs [ (-] <1

Let us now consider the region / and write the corresponding Schrédinger equation
for Yo and Y

2
TR+ 2 (Eg—U)yo =0

dx?

2
TY 1+ 20 (B —U)yy =0,

dx?
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If we are interested in deriving a formula for the difference E| — E, we can multiply
the first equation by v, the second by ), and subtract the two expressions

d*y d*yi  2m
VR TV T

(E1 —Eo)y1yo = 0.

Integrating between 0 and +oo, we find

2m [t e dPy >y
(El*EO)? 0 ‘I’I(X)WO(X)dx:/O <II/1 dx2 — ¥ dx2 >dx

dyp dy \ |
(V’l P dx)

In the region 7, yo(—x) is vanishingly small, and we can further simplify

0

o0

e ]
Wi yo(dx = [ J51¥00) + Yol =0yl =

1 oo 1
5 Twrar= .

Moreover, Y (£e) = 0 because Yy represents a bound state. From the definition of
y1 it follows that
¥1(0) = v2y(0)

dyi(0) _ . 1 [dwo(x) dyo(—x)| _
2P lim — — =0.
dx x=04/2| dx d(—x)
Therefore, we obtain
n dyp(x)
Ey—E| = —yp(0)———= .
0 ! mlllo( ) dx |,._

For E; — Ey we find a similar expression with the sign changed

2

h d
E>—Eo = —y(0) Volx)

dx x=0

The explicit form of y(0) and its derivative is obtained with the WKB method. The
point x = 0 is in the forbidden classical region, because U(0) > Ey. For a generic
point x in this region, the wave function is

w L X1
— =5 s lp()lay
Yo(x) \ 27rv(x)e !

p(y) = /2m(Ey - U(y)).

with



Problems 189

Its derivative is

T L o) e

( 2\/2m3() d; NVoaww w )F(”‘)

where F(x,x1) = e i I 1POI4Y Ty these formulae, v(x) = |p(x)|/m and o is the
angular frequency of the classical period of motion, satisfying

2r

X2 dx
=)

where x;, x, are the turning points of the classical motion deduced from U (x;) =
U(x2) = Ey. If we specialize to the case where x = 0 is a maximum of the potential,
we find dv(x)

dx

=0
x=0

and, plugging all this in the formula for the energy, we get

By E = Ol 3 R oy — PR 1 ey
T T

giving the energy difference of the splitting in terms of the integral of the modulus
of the momentum |p(y)| in the classically forbidden region. In Problem 5.21 we will
apply this formula to a biquadratic potential.

Problem 5.21.
Specialize the formulae obtained in Problem 5.20 to the ground state of the potential
(x2 _ a2)2

Ul) =g

In the above expression, g and a are constants. To determine the turning points (i.e.
the points x; and x, in Fig. 5.2) and the angular frequency for the classical mo-
tion, you can approximate the potential with a quadratic form around its minimum.
Moreover, you can treat 7 as a small parameter.

Solution

The potential U (x) is very similar to the one shown in Fig. 5.2 with two minima
located at (+a,0) and a maximum in (0,g%a*/8). When we increase the parame-
ter g, the height of potential barrier increases and the two wells become separated
when g — oo, It is easy to see that, around the two minima, the potential U (x) is
well approximated by a quadratic harmonic potential. To show that, let us take the
minimum located at x = a and set y = x — a. In the limit y — 0, we can rewrite the
potential as

1
—mo?y?

2_22_&2 20 2_&2 20 1529 s
(x a)—g(era)(x a)—g(y+20)y~2gay—2
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from which we see that the angular frequency is such that ga = \/m®. The energy
of the ground state is £y = /2 and the turning points of the classical motion are
given by the condition Ey = U (x). For the region I (see Fig. 5.2), we get

1 1
Em(x)z(x—a)2 =Fy= Ehw

yielding x{ , =a+x+/h/(mw). The turning points in the region /I are determined
in a similar way, with the result x! 2 = —a*/h/(mw). Therefore, the tunneling
phenomenon takes place between the points —a+ /%i/(m®) and a — \/li/ (mo).

As discussed in the last formula of Problem 5.20, the energy splitting is

E,—E = @e*%l(xl)
T

where
I(x1) = /Oﬂ1 lp(y)|dy = /Oa_\/Z\/Zm(U(y) — Ey)dy.

Treating /i as a small parameter, the integral /(x;) can be computed as follows

a—\/ sts 2 1
I(x1) = \/2"1<i(y2—az)2—2hw>dy=

0
/a*\/ o mo(a® —y?) 1 4a’h Ay~
0 2a mo (a2 —y?)? I
a\/ 55 mo (a® —y - mha) ah
0 / Z)dy B
a\/is ( mwa _ moy* I Ay —
Jo 2 2a 2(a-y) 2a+y) Y

2
maoa 1 1 h 1 h 3
—zh+zhlny\/ —— — -hln(2—/ —— O(h2
3 2 +2 " moa? 2 n( mwa2)+ ( )
2
maoa 1 h | h 3
3 _EFH_EIH 4mcoaz+ﬁ(}‘i ):

Plugging this result back in the formula for the energy splitting, we get

Ey—Ey — ﬂhe*%l(n) . gah dmwa? e*2m3§“2 _, /g3a5he72m3a£a2'
T Vmx h m

(1[04
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Statistical Mechanics — Problems



6

Thermodynamics
and Microcanonical Ensemble

Problem 6.1.
We know that the free energy F(T,V,N) of a thermodynamic system is extensive.

Show that
N a—F +V a—F =Nf=F
ON )1y o )rn f=

with f the free energy density expressed in suitable variables. Given this result, from
the differential properties of F(T,V,N), show that

P =Nu

with @ the Gibbs potential defined as @ = F + PV. In the above expression, L is
the chemical potential properly defined in terms of F(7,V,N).

Solution
The fact that the free energy is an extensive thermodynamic potential means that

F(T,V,N)=Nf(T,v)

where v =V /N is the specific volume and f(7,v) the free energy density, which is
a function of the specific volume v and the temperature 7. From the derivatives of
F we know that

¥(aw),, v (5), ), ) = (o= (), )

where we have considered that f(7,v) depends on N because v =V /N. By the same
token, we can write

oF\ IfN (v _ . (9f
V(av)T,N‘VN<av)T (av)N—V(av)T‘

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_6, © Springer-Verlag Italia 2012
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Summing up the previous two equations, we obtain

N oF +V oF =Nf=F
ON )1y av T,Ni f=

that is the desired result. From the differential properties of F, we also know that

dF = —SdT — PdV + pudN

p__(9F _(9F
o) FT v/,

which can be used in the previous identity to find

that implies

N oF =Nu=F+PV
ON )y THT '
This answers the second question because @ = F + PV.

Problem 6.2.

A thermodynamic system has an internal energy E, a pressure P, a volume V, a
chemical potential i, and a number of particles N. Assume that the entropy of such
system is extensive and prove the relation

a8 28 28
S—N(azv)w” (av)m*E (aE)

Using such result and the first law of thermodynamics, prove the Gibbs-Duhem
equation
Ndu = —-SdT +VdP.

Solution
Due to the extensive nature of the entropy function, we can rewrite it as

S(E,V,N) = Ns(e,v)
where v = % and e = % are the specific volume and specific energy respectively.

Therefore, the function s represents the entropy density. Given the above functional
relation, we can evaluate some derivatives of interest

S ds
Y (aV)E,N =Y (av)e
S ds
£(5),. =5 (5),

a5 ds ds
N(azv)EfN“”)‘V(av);E (%),
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If we sum up the previous three relations, we obtain

as aS aS
SN(ale*V<mJ5N*E@w)M,

that is the desired result. We can now eliminate the derivatives using the first law of
thermodynamics

BN P (8N 1 (s p
o )en T OE )yy T ON)py T

and obtain
uN PV E

T T T
If we multiply by the temperature T and differentiate both sides, we get

S=

d(TS) = TdS+SdT = —d(uN) +d(PV) + dE.

Again, we can use the first law of thermodynamics in its differential form, 7dS =
dE + PdV — udN, to further simplify as

Ndu = —SdT +VdP

that is the final result.

Problem 6.3.
Prove the following Maxwell relations

S B P oT B oV oS B A%

av), \aT /), oP )¢ \dS/p oP),  \dT ),
valid for a thermodynamic system with a constant number of particles. To solve this
problem, use the first law of thermodynamics dE = TdS — PdV .

Solution
Following the hint given by the text, we can obtain

Bj =T 8£ —_P
as )y v )¢
that implies

v (36),), (), Gslav)), = (),

from which we find (using Schwartz lemma for mixed partial derivatives) the fol-

lowing identity
ary __(or
av/)s \dS),’
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We can then use the definition of the Jacobian for the variables (x,y) and (r,s)

=505 (@).(5),(3),.(5),

to rewrite the previous relation as

Jd(1,5) _J(PV)
a(V,S)  IV,S)’

Obviously, the relation between the variables (7T,S) and (P,V) can be expressed

also in terms of other variables (r,s), not necessarily equal to (V,S). To do that, it is

sufficient to multiply such relation by 3((‘/ S>)

J(T,5) _d(PV)
d(r,s)  d(rs)

where r and s have to be chosen properly. By choosing these variables as (V, T),(P,S)
and (P, T) respectively, we can prove the desired relations

(), = 5 355?1 5 =~ (57)
(57),
(S
(P

) _
T)
T,8) J(RV) [V
PS) d(P)S) as
(8S) _d(S,T) 8(T S) 8( ) (8V)
oP); O(RT)  A(RT)  I(P, ) 9T Jp

Problem 6.4.

Consider a statistical system with a constant number of particles. Using the various
thermodynamic potentials, express the specific heat at constant volume Cy, and the

one at constant pressure Cp, in terms of the thermal expansion coefficient o, the
isothermal compressibility k7, and the adiabatic compressibility ks, given by

ae L(YVY L[V e L[V
“vi\or), 7 v\er), T vior)y
Solution

From the definition of Cy we can write

)

3
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where we can use the definition of the specific heat at constant pressure Cp =

T (g—;)}) and get
(5), (57)
P T
Cy=Cp—T~~—2T\"/P
B
P )
The infinitesimal variation of the Gibbs potential & gives

d® =—-SdT +VdP

0P 0P
(aT)P:_S (8P>T:V
and also

G (5),), =), Gr(),), = (),

The use of Schwartz lemma for mixed partial derivatives leads to

(), ),

which is a Maxwell relation that we can plug in the equation obtained previously

(), :
T o
P —Cp—TV—

(LV> Kr

(‘”’ T

We now need another equation relating Cy and Cp. To this end, we make use of the
adiabatic compressibility kg, and write it in terms of the Jacobians

that implies

Cy=Cp+T

2 owv.s) oo (B), /o
= (55, = ) 305 a0 - (;)V (5),
P

that implies
Kg . C\/

Kt n FP
This is the second equation we were looking for. We can now solve the coupled
equations
2
_— o
Cv—Cp=-TVi

Cy _ Ks
Cp — KT
with the final result
TVo? ks TVo?
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Problem 6.5.
Using the various thermodynamic potentials for a gas with a fixed number of parti-
cles, prove the following identities

(), &%,

(&), =%,

~

oT

(), -+,

Moreover, prove that the first of these identities is exactly zero for a classical ideal
gas. For the first identity, make use of a relation between H, T and P of the type
f(H,T,P) =0, with f unknown. For the second and third identity, use the first law
of thermodynamics. Also, make use of Maxwell relations.

Solution
Following the hint given by the text, we start from a general relation between H, T
and P in the form

f(H,T,P)=0

with f unknown. Differentiating both sides we find
_o= (2 9f of
ir=0=(35),,1+(57),,,47+ (55),,,
that implies
omy _ (2
oT )p
oHN _
oP ),
T\ _
oP),  \opP

which may be combined as

(57, (Ga), (G ),

With the identity (a—H) » = Cp, we have

T
oT\ _ 1 (oH
oP),  Cp\oP);
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We now start from the differential expression of the enthalpy
dH =TdS+VdP

and expand dS in terms of the independent variables 7 and P

as as
dH =T [(aT>PdT+ (aP)TdP} +VdP

from which we immediately find

oH a8
(mo)fv”(ap)T'

Also, one of Maxwell relations tells us that ( ﬂ) , = — ( a—v)P, so that

OH\ o [av/T)
oP ), oT |,
with the final result

(%), (5r),~& [,

199

We also note that for a classical ideal gas, the equation of state gives PV = NkT, so

V _ Nk
that T=7 and

5,

As for the second identity, we start from
dE =TdS—PdV

and differentiate with respect to V' at constant temperature

JE

=) =T ﬁ _PpP

vV ) v )
Again, one Maxwell relation gives

as\  [JP
ov), \or),

from which we can obtain immediately the final result

@), [% ],
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Finally, for the third identity, we can use a similar procedure. Starting from
dE =TdS—PdV

we can differentiate with respect to S at constant temperature

JE PA%
(as)fT‘P(as)T

that can be further simplified using the Maxwell relations
vy _(or
s )y \oP),

OEN __a[o/p)
S ), oP |,
Problem 6.6.

Unlike an ideal gas, which cools down during an adiabatic expansion, a one dimen-
sional rubber band (with spring constant K and rest position xo = 0) is increasing
its temperature when elongated in an adiabatic way. Write down the first law of
thermodynamics for this case, looking at possible similarities with the case of the
ideal gas. If the rubber band is elongated isothermally, what happens to the entropy?
For the first part make sure that the signs are appropriate, according to experimen-
tal observations. In the second part, use Maxwell-type relations derived from the
appropriate thermodynamic potential.

with the final result

Solution

We know from the first law of thermodynamics that T7dS = 6Q = dE — dW. When
studying an ideal gas, it is appropriate to define the work on the system by dW =
—PdV , with P the pressure and V the volume. This is in agreement with the fact that
the work done on the system (positive sign) reduces the volume occupied by the gas.
This means that for an adiabatic transformation (§Q = 0) we have dW = —PdV =
dE, i.e. the gas heats up (dE > 0) during a compression (dV < 0). For the rubber
band, given the elongation x, we have a restoring force F = —Kx. The associated
work on the system is dW = Kxdx so that, for an adiabatic transformation, we have

dE = Kxdx

meaning that the energy increases upon elongation. Therefore, the first law of ther-
modynamics is
TdS =60 =dE — Kxdx.

Let us now face the second point. The appropriate thermodynamic potential is the
free energy F' whose variation is such that

dF =dW —SdT = Kxdx — SdT
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from which

IFN _ IF\ _g
ar ).~ ox ),

Let us derive the first expression with respect to x, the second with respect to 7 and
set them equal (using Schwartz lemma for mixed partial derivatives). The result is

S ox
(£),-+(3).~

which is nothing but a Maxwell-type relation for the rubber band. Such relation
implies that during an isothermal elongation the entropy stays constant.

Problem 6.7.
Let E and M be the internal energy and the magnetization of some material im-
mersed in a magnetic field H. Prove that, for the specific heat at constant H, the

following relation
JE oM
Ch=|=x) —H|-=x
T ) ar ),

holds.

Solution

Let us start by writing down the first law of thermodynamics for the magnetic sys-
tem. The work done to increase the magnetization by dM is dW = HdM. As a
consequence, if we choose T and M as variables to describe the system, the first law
gives

TdS=dE(T,M)—H(T,M)dM = <8E> dT + (8E> dM —H(T,M)dM.
oT )y, oM ),
Let us stress that the situation is the analogue of an homogeneous fluid described by
two variables among P,V,T. In our case, the variable H (that is the analogue of P
for the fluid) is intensive whereas the extensive one is given by the magnetization M
(the analogue of the volume V). We therefore find

as JE
Cu=T <ar>M— (ar)M

that is the quantity of heat that we have to supply in order to increase of a degree the
temperature of the system at constant magnetization, i.e. the analogue of the specific
heat at constant volume. If, instead of the variables T and M, we choose T and H,
we get

TdS =dE(T,H) — HdM(T,H) =

JE JE oM oM
(aT)H"”(aa)f’*"*’(aT)H”‘H(azf)ﬁH
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from which, at constant H, we immediately find

ot () _(EY (M
#="\or), \or), aT ),
Problem 6.8.

Let us consider the first law of thermodynamics for a system with volume V, number
of particles N, energy E, and entropy S = S(E,V,N). Using the definition of the

chemical potential as
_(or
H=on v

with the free energy given by F' = E — T'S, and the relation
sy 1
OE)yy T

w__(9s
T ON )y’

prove that

To solve the problem, use the differential expression of § = S(E,V,N) with the
volume V and the temperature T kept constant.

Solution
Following the hint, we start from the differential expression of S = S(E,V,N)

dS(E,V,N)z(jé) dE+<g€> dv+<g]‘f]) dN.
V.N EN EV

Now, we can follow the variation of S with both 7" and V kept constant

@sire=(5z), @Env (53 ), @

as\ _(os\ (aE\  (ds
ON)py \OE)Ny\ON)py \ON/)py
As given by the text, we also can use

98y _1
OE )y T

JN T.V_ IN TV IN EV

from which

and, hence
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which finally gives

-T 95 _(9E _T 98 - i(EfTS) _(9F —
Ny \oN )., oN ).~ \oN w \an )., =

that is

which is the desired result.

Problem 6.9.

A statistical system is composed of N independent distinguishable particles. Each
one of these particles has only two energy levels, E; and E,, such that E; — E; =
€ > 0. Choose a suitable ground state for the energy and write down the total energy
as a function of the temperature 7. Finally, discuss the limits 7 — 0 and T — +-co.

Solution
We set the ground state to have zero energy, E; = 0. As a consequence, we find
that E> = €. A general state is completely specified once we assign the set {n;}, j =
1,...,N, where nj = 0 or 1 indicates if the j-th particle is in the ground state or
in the excited one, respectively. Using this convention, the expression for the total
energy is

E= n;€ =me

™=

where m is the occupation number for the second energy level, i.e. the number of
particles having energy €. In order to compute the energy as a function of the tem-
perature, we need to use the relation

95y _1
JE)y T

where the entropy S = kIn£2 requires the knowledge of the number of microstates
£ accessible to the system. This can be computed by simply considering all the
possible ways to choose m objects out of N

N!

Q(m,N) = N =)

Using the Stirling approximation, we find

S(m,N) =kInQ(m,N) = k[NInN — (N —m)In(N —m) —mInm]

1 (8S> 1(3S> k (N—m)
N - — — - :71n -
T JE )y €\dm/)y &€ m
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hbend = € > 0 hbend = 0

f(’l"\"\(’l(’

N sites

Fig. 6.1 A one dimensional chain composed of N >> 1 localized sites. Each site is occupied by a
polymer with two energy states: it can be straight (with energy /hp.,s = € = 0) or it can bend (on
the right or on the left) with energy hpe,q = € > 0. The thermodynamic properties of this system
are discussed in Problem 6.10

from which we get
Ne

1+ eE/KT
In the limit 7 — 0, we find E — 0 meaning that only the ground state is occupied by

the particles. In the limit 7 — o0, we obtain E — N¢ /2 indicating that both energy
levels are equally populated.

E=me=

Problem 6.10.

We consider a one dimensional chain composed of N > 1 localized sites. Each site
is occupied by a polymer with two energy states: it can be straight (with energy
hpenga = 0) or it can bend (on the right or on the left) with energy hp.,y = € > 0,
independently of the bending direction (see Fig. 6.1). Compute the entropy of the
system, S(E,N), for a fixed total bending energy E = me (m is an integer number

such that m > 1). Also, determine the internal energy as a function of the tem-

JE
aT

(N —m) > 1. Finally, determine the behaviour of the internal energy in the limit of
low and high temperatures.

perature and the resulting heat capacity, Cy = ( ) , under the assumption that
N

Solution

We know that the total bending energy is fixed and equal to me. This means that
we have m bended polymers. Therefore, we have to consider all the possible ways
to extract m distinguishable (the sites are localized) objects out of N, i.e. #im)'
We also have to consider the degeneracy (that is 2 in this case) associated with the
positive bending energy, since the polymer can bend on the right and on the left.
Therefore, the total number of microstates Q2 (E,N) associated with the total energy
E =meis N

QEN)=——-2"
m!(N —m)!
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We then apply the Boltzmann entropy formula and use the Stirling approximation
for the factorials to get

S(E,N) =kInQ(E,N) ~
o[- (7) - (1) (1-5)] -
N []fgmz_]fsm (ig) - (1_158) 1n<1—]58)] |

The temperature is given by the derivative of the entropy

1 aS k E E
T (aE)N 2o (e (1)

from which
Ne
In{f——-1)=pe—-In2
n(E ) B n
so that
_ 2Ne
CoeBey

The heat capacity becomes

ePe

OE
Cy= (aT)N = ZNk(Be)zm.

In the limit of low temperatures we find

lim E=0
B—+oo

indicating that only the ground state (¢ = 0) is populated. In the limit of high tem-
peratures we find

lim E = gNs.
B—0 3

We note that if we change the degeneracy from 2 to 1, all the results coincide with
those of Problem 6.9.

Problem 6.11.

We want to study the thermodynamic properties of a magnetic system with unitary
volume. Such system is characterized by the following constitutive equations for the
magnetization and internal energy as a function of the temperature 7 and magnetic

field H
mH kT
M(T,H)=Nm {coth <) — }
kT mH

E(T,H)=CyT



206 6 Thermodynamics and Microcanonical Ensemble

with Cys, m and N constants. Working in the limit mH > kT, find the relation be-
tween the temperatures and magnetizations of two generic thermodynamic states
(say 1 and 2) connected by an adiabatic transformation. Finally, in the same limit
mH > kT, give an estimate of the entropy S(E, M) once we know the value of the
energy (Ep) and magnetization (Mj) of a given reference state.

Solution
The first part of the problem deals with an adiabatic transformation. For this reason,
we start from the first law of thermodynamics for the magnetic system

0Q =dE —HdM
and require no heat exchange, i.e. 0 = 6Q = dE — HdM. Since dE = CydT, we get

H(M,T)dM = dE = CydT

and we need to extract the function H(M,T) from our constitutive equation for the
magnetization. In the limit mH > kT we obtain

mH
th| — | ~ 1
o (w)

M(T,H) =Nm (1 - n’i)

and

from which we can find H as a function of M and T

NkT

HM.T) = g —ar

Therefore, the corresponding adiabatic transformation is characterized by the fol-
lowing differential relation

CydT _ dM
Nk T  Nm—-M
which can be integrated between (77, M) and (7>, M>) with the following result

T\ Nm—M,

f2) - Nm—M;’
As for the second point, we start from the first law of thermodynamics in its differ-
ential form

dS= — — =dM
T T
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xr

Fig. 6.2 A one dimensional rubber band is modelled with a chain of N + 1 molecules. From one
molecule we can establish a link with the successive one by moving a step forward or backward.
The characteristic length of the link between two molecules is a, and the distance between the first
and last molecule is x. In Problem 6.12 we show how to predict the thermodynamic properties of
this system starting from the microcanonical ensemble

and integrate between (Ep, Mp) and a generic state with energy £ and magnetization
M

EdE M dM
S(E,M) =C, — — Nk =
( ’ ) M E, E My Nm—M
E Nm—M
Cyln| — Nkln| — S(Ey,My).
MH<EO>+ n(NmMo>+ (Eo,Mp)

Problem 6.12.

We want to describe the elasticity of a rubber band with a very simple one dimen-
sional model characterized by a chain of N + 1 molecules (see Fig. 6.2). From one
molecule we can establish a link with the successive one by moving a step forward
or backward, with no difference from the energetical point of view (i.e. the internal
energy is only dependent on the total number N). The characteristic length of the
link between two molecules is a, and the distance between the first and last molecule
is x. Find the entropy for the system. Suppose that, for a small variation dx, we can
write the work on the system as dW = —gdx, with g a tension needed to keep the
distance x. At a fixed N, the number of all the possible pairs (., /N_) consistent with
a given macrostate at constant energy must be computed. Finally, find the relation
between the temperature and the tension, and determine the sign of the latter.

Solution
The number of links realized with forward steps must be properly related to the
number of backward steps in such a way that

x=a(Ny —N_)



208 6 Thermodynamics and Microcanonical Ensemble

plus the condition that
N=N,+N_

because the molecules are N + 1, and the links are N. Therefore, we find that

1
2
No=i-2).

The entropy is dependent on the number of total configurations, i.e. all the possi-
ble ways to extract N; forward steps and N_ backward steps out of N, with the
constraint that N = N, + N_. Therefore, we can write

N! N! N!
s = () =4 (5 ) = (@—m%m)

from which, using the Stirling approximation, we get

S(X’N)NNlnN—l(N—i-f)ln E—l—i —1<N—f>ln N_x
ko 2 a 2 "2) 2 a 2 2a)°

From the first law of thermodynamics, we know that

TdS = dE —dW = dE + gdx

and, since the internal energy is only dependent on N, we can write

as
=1(%),

KT (N+G
=——1In .
87 "2 "\N-2
We immediately see that the tension g has negative sign, because a > 0, x > 0 and

1n(xf) >0.

leading to

Problem 6.13.

A statistical system is composed of N particles with spin % immersed in a magnetic
field H. The particles are fixed in their positions and possess a magnetic moment L.
The Hamiltonian of such system is

N
A =—uHY o

i=1
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where 0; = 1. Determine the entropy, the energy, the specific heat, and the mag-
netization. Finally, defining the susceptibility as

_ (M
X=\om N

prove Curie law, i.e. that y is inversely proportional to the temperature when H — 0.

Solution
Let us set € = uH and let N1 be the number of particles with o; = 1. The Hamil-
tonian can be written as

N
A =E=—UH)Y 0;=—¢eN,+eN_=—¢eN, +&(N—N.)=¢eN—2eN,
i=1

from which v 71 v E N 71 N+E
) € T2 e )’

The entropy is connected to the number of total configurations, i.e. all the possible
ways to extract N and N_ spins out of N, with the constraint that N = Ny +N_.
Therefore, we can write

N! N!
S(E,HN)=kln|——— ) =kIn[ —— | ~
NN =N, )! N.IN_!

N E N E N E N E
IDN— (= ———|In{ =—— | - (= In( =+
k<NnN (2 2NH> n(2 2uH> <2+2NH> n<2 2uH>)

where we have used the Stirling approximation for the factorials. The dependence
on the temperature is found with
E
e (Vi)

1=(52) —ggm
7~ \0E)yy 2uH (Nﬂ%)

from which we extract the energy

_ nH
E= N,thanh(kT)

and the specific heat

E g2 H
C= a— = N 1 — tanh? il .
T )y n kT2 kT

Finally, the magnetization is given by

E H
M =Ny —N-) = = = Nytanh (iT)
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and the susceptibility by

2
xX= (8M> :Nu<1—tamh2 ("LH)>
oH )y kT kT

When the magnetic field is small, we find tanh? (%) ~ (0 and

. Nu?
lim y = ——
H1£n)0x kT

that is Curie law.

Problem 6.14.

Let us assume that the air rises in the atmosphere adiabatically like an ideal gas.
Determine the way the temperature 7' changes as a function of the height z and
express the final result in terms of the gravitational acceleration g, the ratio of the
specific heats at constant pressure and volume, the mass m of each particle, and the
Boltzmann constant k. To solve the problem, consider an infinitesimal cylinder of air
and write down the equation determining the mechanical equilibrium, from which
you can extract the variation of the pressure P in terms of the ratio P/T. Finally,
combine this result with the variation of the temperature with respect to the pressure
obtained from the equation of state and that for an adiabatic change (PV? =const.,
with 7y the ratio of the specific heats) for a simple gas to get the desired result.

Solution

Let us consider the air inside a cylinder with height dz and base S. In order to obtain
the condition of mechanical equilibrium, the pressure must be a function of the
height, P(z). The force acting on the inferior base is P(z)S, while that acting on the
upper base is —P(z+ dz)S. Also, gravity acts on the cylinder with a force equal to
—mp(z)Sdzg, where p(z) stands for the density in the number of particles and m is
the mass of each particle. The mechanical equilibrium requires that

—P(z+dz)S+P(z)S—p(z) Sdzgm =0

leading to a differential equation for P(z)

P(z+dz) —P(2) _ dP(7)

dz iz - Emee)

The equation of state for an ideal gas can be used to find

which can be substituted in the previous expression to yield

dP(z)  gmP(z)

dz ~  k T(z)
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After differentiating the equation of state, and substituting Nk using this equation
again, we find

PV
VAP + PdV = NkdT = 7dT.

Dividing by PV, we get
dp dv _ dT
PV T
Also, the condition that PV? =const. leads to
ar
P Vv

that, combined with the previous one, gives

dT dP dV _dP 1dP

T PV P 3P

()= (5)

We now combine this result with the expression obtained previously for the deriva-
tive of the pressure with respect to height

dT _(dT\ (dP\ _(1-y)mg
dz \dP)\dz) \ v ) k

that is the desired result.

or, equivalently

Problem 6.15.
Suppose we are able to measure the thermal expansion coefficient at constant pres-

sure
a (W
- V\dT /),

for a thermodynamic fluid with a constant number of particles. Determine, under the
same conditions, the derivative of the entropy with respect to the pressure, (g—f,) .
T

Solution
We can solve the problem starting from the Gibbs potential defined as @ = F + PV,
with F' the free energy. From the differential form of @ we get

d® = —-SdT +VdP

and we find immediately

9PN _ s (22) _y
oT )p oP ),
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Then, using Schwartz lemma for mixed partial derivatives, we find the following
identity

O\ (2 (3N __ (2 (99 __(ov
oP);  \oP\dT )p), \9T \oP);), \OT)p
and the final result
% =-—aV
oP), '
Problem 6.16.

A physical system is composed of N distinguishable particles, and each particle
can be found in a state with energy 0 or € > 0. The excited state has degeneracy
d = 4 while the ground state is not degenerate. The total energy of the system is
given by E = neg, with n a positive integer (n < N). Write down the number of
microstates corresponding to the macrostate with energy E = née. Then, identify the
temperature 7" and compute the ratio of the occupation numbers for the two energy
levels as a function of 7" and €. Verify the limit of high temperatures in the final
result.

Solution
The total energy is E = ne and the number of microstates related to this energy is
given by all the possible ways to choose n distinguishable objects out of N

£ = (1:) - n!(]\llvin)!'

We also know that the excited energy state has a degeneracy equal to 4, i.e. whenever
a particle occupies the energy level €, this can happen in 4 different ways. Therefore,
the number of microstates is given by

Q(E.N) = Q4" = <N> g
n

where n depends on the energy E. For large N, we can use the Stirling approximation
(N! = N¥e=N) and write

S(E,N) =kInQ(E,N) = —Nk[otlnot+ (1 — o) In(1 — &¢) — ¢ In 4]

where we have defined a = § = % The temperature 7 is given by

1 _r(asy L1 (o8 10w
kT~ k\9E), Nek\da), € o '

We can explicitly invert this expression for ¢, and find the occupation numbers

4e—Be 1
n=No=N——+ ny=N—-n=N——
| +4e-Pe 1+ 4ePe
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where 8 = kiT Their ratio is

n 4eBe

no  1+4e Pe

In the limit of high temperatures (8 < 1), we get ;- ~ 4/5, meaning that the five
levels available (one level with energy 0 and four levels with energy €) are equally
populated. Note that if we change the degeneracy from 4 to 1, all the results coincide
with those of Problem 6.9.

Problem 6.17.

Two independent statistical systems (1 and 2) are both characterized by N energy
levels and my,m; indistinguishable quanta distributed in these levels (m2 > 1).
The energy of both systems is proportional to the number of associated quanta

E; = oym Er, = oomy

with o, o > 0. Write down the number of microstates and determine the entropies
for both systems . Then, suppose we establish a contact between the two systems
so that they reach some equilibrium condition without exchanging quanta. In this
situation, determine the relation between my, my, o and Q.

Solution
The number of states available for each system is

(N—l—i—m]’z)!

AN =5 -l

that is the way to distribute m, > indistinguishable objects into N levels. If we in-
terpret the energy levels as boxes, we have N + 1 partitioning lines delimiting these
boxes. The first and last partitioning lines can be considered fixed (we are then left
with N — 1 of them) and we need to find the total number of arrangements for N — 1
partitioning lines and m; » quanta (see Fig. 6.3), for a total of (N — 1 4m; ) objects.
The total number of these arrangements is (N — 1 +m;j 2)!. Also, a permutation of
two internal partitioning lines or quanta does not change the configuration (they are
indistinguishable), and this is the reason for the presence of (N — 1)! and my2!in
the denominator. The entropy of both systems is given by the Boltzmann formula

S(mi2,N) =kInQ(m;o,N) =k(In(N —14+m;2)! —In(N—1)! —Ilnm »!) =
k(In(N+mj2)! —InN! —Inm;»!) =
k[(N+m172)1n(N+m172) 7N1anm1!21nm172}

from which we can extract the temperatures

1 ( dS ) 1 ( dS ) k <N+m1.2>
SLE e = L g (M2
Ti» JdE12)y oup \dmip/, 012 mi 2
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N+1 Vertical walls
A

(00
Box 1 \/ Box N

quanta

Fig. 6.3 The arrangement of a given number of energy quanta into N levels can be thought of as
a combinatorial problem where we distribute some indistinguishable objects (quanta) in N distin-
guishable boxes (energy levels). The boxes are characterized by indistinguishable partitioning lines
(or ‘vertical walls’) separating the energy levels. For the technical details see Problem 6.17

The condition of thermal equilibrium is 77 = 75 so that

N+
o In (—m:"‘>
(075} 1 (N+m2)

my

is the desired relation between m, my, ¢¢; and 5.

Problem 6.18.

A one dimensional harmonic oscillator has the energy (in some suitable units)
e=n+ %, where the positive integer n represents the number of energy quanta
associated with the oscillator. Let us consider N one dimensional distinguishable
harmonic oscillators with a fixed energy E and compute their total energy density
E/N, entropy density S/N, and temperature 7. Make the assumption that, in the
limit of large N, the density E/N is finite, while E — % and E + % are both very
large. Finally, analyze the high temperature limit of the energy, verifying the con-

sistency with the equipartition theorem.

Solution
We have to determine all the microstates of the system with total energy

E:Zs,-:i(ni-i-;)

where n; are the energy quanta associated with the i-th oscillator. We can write the
previous equation as

where Q is an integer number because it is a sum of integers. We can now think
that the N oscillators are boxes where we have to distribute Q quanta. The N boxes
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imply the presence of N + 1 partitioning lines: if we keep fixed the first and last
partitioning lines, we have to determine the total number of arrangements for N —
1 (indistinguishable) partitioning lines and Q (indistinguishable) quanta (see also
Problem 6.17). The total number of these arrangements is

_(Q+N-1!I  (E+5-1)
QUEN) = Q!N —1)! _(E—%)z!(N—l)!

and the entropy is given by the Boltzmann formula
S(E,N)=kInQ(E,N).

In the thermodynamic limit, for a finite density E /N, we can write (using the Stirling
approximation for the factorials)

el o) (- i3)

from which we compute the temperature

1
1:<&S> =kIn % )
T \JE/y E/N-1}

This allows us to express the energy density in terms of 7

E_1 w( L
N2\ T )

This result shows that the quantum mechanical oscillators do not obey the (classical)
equipartition theorem for the energy. Only in the limit of high temperatures, when
T > 1, we can use the Taylor expansion coth% ~x (x> 1) to find

E
— =~ kT.
N

This is in agreement with the equipartition theorem (see also Problem 7.20), which
assigns to each degree of freedom an energy contribution equal to k7' /2. In our case,
we have N one dimensional oscillators, each one with a position and a momentum.
The total energy would then be

kT
EZTXNX(I—FI):N/CT

which is in agreement with the high temperature limit previously obtained.
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Problem 6.19.
An ultrarelativistic gas with N > 1 particles is in a volume V. The total energy is

N
E=c) pi
i=1

where p; is the momentum of the i—th particle with p; = |p;| its absolute value,
and where c is the speed of light. The total energy is fixed and the particles are
indistinguishable. Give an estimate for the entropy and write down the equation of
state. Finally, determine the specific heat at constant pressure Cp. If D is the region
of the phase space such that Y~ | |p;| < E/c, the following integral

Aw(E) = [ TTrtdri= o (=
may be useful.

Solution

In the limit when N > 1 we can approximate (to determine the thermodynamic
properties of the system) the integral over the surface at constant energy with the
integral in the volume enclosed by that surface. In other words, the number of states
is well approximated by

1 N
Q(E,V,N)~ Z(E,V,N) = W/Dncﬁqifp,».
- i=1

If we use the hint given in the text of the problem and the fact that the particles are
indistinguishable, we immediately obtain that

In(E 1 srvE\"
Q(E,V,N) ~ £(E,V,N) = (4nV)" h3N(Ny) ~ NI(3N)! ( h3c3 )

Let us now use the Stirling approximation to evaluate the entropy S(E,V,N)

_VE3
S(E,V,N) =kInQ(E,V,N) ~kInZ(E,V,N) ~ Nk {m (bN4>] +4Nk

where b = 272—2’& In order to obtain the temperature and the pressure, we have to

compute the derivatives of the entropy

1 [dS _ 3Nk p_T as _ NkT

T \90E)yy E o\ ey VO
We find that the equation of state is exactly the same as that of an ideal gas: PV =
NKT. The energy is E = 3NkT. The latter result is in agreement with the classical
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equipartition theorem predicting that (see Problem 7.20)

N N
Echp,': Z<pi <§H>> = 3NkT
i=1 Di

i=1

where H is the Hamiltonian of the system, (...) is meant as an ensemble average, and
where the derivative with respect to p; is performed by keeping fixed all the other
variables. Using the equation of state and the internal energy, we can also write the
entropy as a function of (7, P,N)

+4Nk.

4~T4
S(T,P,N) = NkIn (m>

This expression is useful to determine the specific heat at constant pressure

as
CP =T ((9T>PN =4Nk.

Problem 6.20.

Let us consider 2 systems A and B, each one composed of 2 distinguishable particles.
Consider that the total energy for the system is Eror = E4 + Ep =5 in some suitable
units. A and B are in thermal equilibrium and are separated by a rigid wall not
allowing for particles and energy exchange. Compute the entropy when E4 = 3 and
Ep = 2. Repeat the same calculations when the energy exchange between the two
systems is allowed. In the calculations, consider that each particle energy can only
be a positive integer number.

Solution

Let us indicate with (g1,¢2) a microstate of two particles where the first particle
has energy ¢ and the second one has energy g». For the system A, all the possible
microstates are given by (3,0), (0,3), (2,1), (1,2). Similarly, for the system B,
we find the following set of microstates: (2,0), (0,2) and (1, 1). Therefore, for the
system A the number of microstates is Q4 (E4 = 3) = 4, while for the system B we
have Qp(Ep = 2) = 3. When particles and energy exchange are not allowed, the
total number of microstates is simply given by the product

.Q(EA +Ep = 5) = .QA(EA = 3) X .QB(EB = 2) =12

and the entropy is S = kIn 12. In the second case we have an energy exchange. All
the energies of A and B are those that satisfy Eror = E4 + Ep = 5. They are: (E4 =
5,Ep=0),(Ea=0,Eg=35), (Ea=4,Ep=1),(Ea=1,Eg=4),(Ea =3,Eg=2),
(E4 = 2,Eg = 3). For each one of these cases, the microstates are identified

(Ea=5,Eg=0):A4:(5,0),(0,5),(4,1),(1,4),(3,2),(2,3) B:(0,0);
.QA<EA—|—EB = 5) = .QA(EA = 5) X .QB(EB ZO) =6
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(EA:O,EB:S):A:(070)7B:(530)a(035) ( ) (1 4) ( )a(273);
.QA(EA +EB:5) :.QB(EAZO) XQA(EB— )

(Ea=4,Ep=1):A:(4,0),(0,4),(3,1),(1,3),(2,
QA<EA+EB:5):.QA(EA— )X.QB(EB ]

(Ea=1,Eg=4):A:(1,0),(0,1),B:(4,0),(0,4),(3,1),(1,3),(2,2);
QA(EA+EB:5) .QA(EA—l)X.QB(EB ) 10
(EA:3’EB:2)' : (3, 0) ) ( ),( ) ) B.( O),(O,Z),(],]);
.QA(EA +Eg = 5) .QA(EA = 3) X .QB( B = )

(Ex=2,Eg=3):A:(2,0),(0,2),(1,1) B:(3,0),(0,3),(2,1),(1,2);
QA(Ea+Ep=5)=Qu(Ex=2)x Qp(Ep=3) =12

6
2) B:(1,0),(0,1);
10

Therefore, the total number of states is given by

5
Q(Eror =5) =Y Q(Ex=i) x Q(Ep = Eror —i) =56
i=0

and the entropy by S = kIn56. We remark that in this case we can obtain the same
number of states by considering all the possible ways to distribute 5 indistinguish-
able quanta into 4 distinguishable levels, that is

(5+4—1)1 8!

35— 315 —8x7=2%

Q (ETOT = 5) =
Problem 6.21.
Starting from the line at zero energy, and working in the two dimensional phase
space of a classical plane rotator, draw the lines at constant energy producing cells
with volume % in the phase space. Determine the energy of these states and compare
them with the eigenvalues of the corresponding quantum mechanical problem.

Solution

The Hamiltonian of the classical plane rotator is H = g—j, where p is the momentum
associated with the rotation angle 8 and [ is the momentum of inertia. The variable 6
is periodic and the phase space is the strip of the plane (0, p) between —x and 7. In
Fig. 6.4 we draw the lines at constant energy (that implies p=const.) corresponding
to the momenta p1, pa, p3. We obtain cells with volume # if the relations 2w p; = h,
27 py = 2h, etc. hold. To summarize, we have found p,, = nf (n is an integer number)
and the corresponding energies

_ n’h?
"o
For the plane rotator in the quantum mechanical case we have

. L2 K 9?2
H= -
21 21962
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& p
B —Ps
: ; P2
h : :
7 { P1
h i i
s 0 T ¢

Fig. 6.4 In the phase space of a plane rotator, we draw the lines at constant energy producing cells

with volume 4. In this way, we find different momenta p, = n# (n is an integer number) and the

. . 22 . L
corresponding energies E,, = % with / the momentum of inertia of the plane rotator. For further

details see Problem 6.21

where I, is the orbital angular momentum in the direction of the rotation axis. An
explicit calculation (see also Problem 5.1) shows that the eigenstates for the energy
are

1 .
F,,(O) _ Eetne

with n an integer number. The eigenvalues are

E — n?h?
ol

that is the very same result obtained with the above construction in the classical

phase space.

Problem 6.22.

A statistical system is composed of R indistinguishable quanta distributed in N en-
ergy levels in such a way that we do not find empty levels (R > N > 1). Indicating
with R; the number of quanta in the i-th level, the total energy of the system is
R =R +Ry+...+ Ry. Show that the total number of microstates is

()

When N = 3 and R = 6, write down explicitly all the configurations. Finally, in the
general case with R > N > 1, compute the entropy of the system and determine
the equilibrium temperature. Try to establish an analogy between this physical sys-
tem and the combinatorial problem of arranging R indistinguishable objects in N
boxes.
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Fig. 6.5 The distribution of 6 indistinguishable quanta in 3 distinguishable energy levels. In the
top panel we show all the possible 28 microstates. The requirement that there are no empty en-
ergy levels reduces the number of microstates to 10 (bottom panel). All the details are reported in
Problem 6.22

Solution

We can think that the N levels are boxes delimited by N 4 1 partitioning lines. If we
keep fixed the first and last partitioning lines and create all the possible arrangements
of R+ N — 1 elements (quanta or partitioning lines), the number of microstates is

evaluated as
N+R—-1) [(N+R-1) (N+R-1)!
N-1 | R T RI(N-1)!
where the denominator accounts for all the permutations realized by shuffling the R
quanta and the N — 1 partitioning lines (see also Problems 6.17 and 6.18). Unfor-
tunately, this is not enough for our purposes, because we know from the text that

no empty levels are present, i.e. all the partitioning lines have to be placed in be-
tween the quanta. This means that during an arrangement of R quanta, we only have
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R — 1 interspacings to place the partitioning lines. Therefore, the correct number of
microstates is given by all the possible ways to select N — 1 interspacings out of

R—1
R—1)\ (R—1)!
N—1) (R-N)(N—-1)!

that is the expression reported in the text. Another alternative procedure is the fol-
lowing: first of all, we can think to occupy each of the N boxes with a single quan-
tum; the remaining R — N quanta can be freely arranged in the N boxes, for a total of

N+R-N-1\ (R-1)_ (R-1)!
N—1 “\N=1)  (R-N)(N-1)!

microstates. The case with N = 3 and R = 6 is treated explicitly in Fig. 6.5. For the
sake of completeness, we first report the most general case (top panel of the figure)
where the number of microstates is

<N+R—l> g
R

and where we also find empty levels. The condition that there is no empty level
reduces (see lower panel of Fig. 6.5) the number of microstates to

R=11)_ 0.
N-—1

In the case with R > N >> 1, the general form of the entropy is

(R—1)!

S(N,R) = klIn (M(Nl)!

) ~k[—(R—N)In(R—N)+RInR—NInN]

where we have used the Stirling approximation for the factorials. We then find the
temperature as

1 as as R

—=|==) =(=%) =klh——.

T JdE )\ JdR ) y (R—N)
Problem 6.23.

Let us consider N one dimensional classical harmonic oscillators with the same
mass m and frequency @ in the microcanonical ensemble. Determine the internal
energy in the limit N > 1.

Solution
Let us start from the Hamiltonian of the system

& 17'2 1 22
iy =Y, (5, +3mosl)
=
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where p; and ¢; are the momentum and position for the i-th oscillator. In order to
compute the number of states at fixed energy E, we should perform the integral

d¥gd"p
Q(E,N) = /H s

but, when determining the thermodynamic properties in the limit N > 1, we can
replace the surface integral with the volume integral

dNgd"p
I(E,N) = /HNSE L

We next introduce the new variables Y; (i = 1,2,...,2N) with the property

— [ 2 .
pj: szj qj': WY/\/J,.] ]:1,27...,]\7

in such a way that the previous volume integral becomes

N 2N
Z(E,N) = (V2m)N (‘/mzwz> hi,/j)(l_‘!dn)

where D is the region such that
i (pg + lma)zq~2> = ZZN: Y2<E.
i1 \2m 2 l 5
In other words, in the variables Y;, the region D is just a 2N dimensional sphere with

radius v/E. We recall that the volume of the 2N dimensional sphere with radius R is

AR
~ NI'(N)

Von

and we find the following result for £(E,N)

sen=(is) o) - o)

Therefore, the entropy is given by

S(E,N) ~ NkInE +C

where C is a constant independent of E. The internal energy is found through the

relation
1_ (95 _m
T \JdE)y E

E = NkT

leading to
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which is in agreement with the equipartition theorem assigning an energy contribu-
tion equal to k7 /2 to each degree of freedom (see Problems 7.20, 7.21 and 7.18).
The quantum mechanical analogue of this situation is discussed in Problem 6.18.

Problem 6.24.

N atoms are arranged regularly in N localized lattice sites so as to form a perfect
crystal. If one moves n atoms (with the condition 1 < n < N) from lattice sites to
localized interstices of the lattice, this becomes an imperfect crystal with n defects.
The number M of interstitial sites into which an atom can enter is of the same order
of magnitude as N. Let € be the energy necessary to move an atom from a lattice
site to an interstitial one. Show that, in the equilibrium state at temperature 7', the

following relation
n~/NMe %t

is valid.

Solution
The number of states is

N! M!

Q(n,M,N) = n!(N—n)! n!(M —n)!

where the first term accounts for all the possible ways to choose n atoms out of
N available sites, and the second one for all the possible ways in which these n
atoms can be arranged in the M interstices. We remark that the atoms are treated as
distinguishable, because they occupy localized sites or interstices. Using the Stirling
approximation and the Boltzmann formula § = kIn Q, we find

S(n,M,N) = k[NInN +MInM —2nlnn— (N —n)In(N —n) — (M — n) In(M — n)]

and for the inverse temperature
L_(95\ L[S\ _k ((W-m(=n)
T \JE)y, ¢€\on N’Mis n?

(N—n)(M—n)
n2

leading to
€
— @kT

which is an equation for n. Instead of solving exactly this equation, we consider the
condition N, M >> n, so that we can approximate (N —n)(M — n) ~ NM and finally

obtain .
n=+vNMe 2T,

Problem 6.25.

A statistical system is composed of two ultrarelativistic particles moving in a seg-
ment of length L. Write down the Hamiltonian for the system and compute the
volume of the phase space enclosed by the surface at constant energy E.
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Fig. 6.6 The phase space region at constant energy for 2 ultrarelativistic particles moving in a
segment of length L. Further technical details are reported in Problem 6.25

Solution
The energy for an ultrarelativistic particle is E = |p|c, with p the momentum and ¢
the speed of light. In the case of two particles, the total energy is

H(p1,p2) = c(|p1|+|p2)-

The volume of the phase space enclosed by the region at constant E is

L L .
Z(E,L) = / d%/ dtn/ dpidp =L2/ dpidp.
J0 JO H(p1,p2)<E H(p1,p2)<E

If we set x = cp/E in the Hamiltonian, we obtain

E?IL?
X(E\L)=—5 / dx1dxy.
¢ [+ <1

In the (x,x;) plane we can identify the 4 regions (see also Fig. 6.6)

x;1=—x2+1 1-stregion
xp=xp—1 2-nd region
x1 =—x2—1 3-rd region

xp=x3+1 4-th region

that constitute a rhombic region whose total area can be easily computed as

/ dxlde =2
Py [+ 2| <1

so that X(E,L) = ZEC#
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Problem 6.26.
Consider a free gas with N particles and internal energy E inside a container of
volume V. Starting from the Sackur-Tetrode formula for the entropy

2 3/2 5
S(E,V,N)sz{5—1n l(m> szl}
2 m VE2

find the free energy F, the enthalpy H, and the Gibbs potential ®.

Solution
To find the solution we must express the potentials in the right variables

F=F(T,V,N) H=H(S,PN) &=®(PT,N).
Let us start with the free energy whose variables are 7,V,N
F(T,V,N)=E(S(T,V,N),V,N)—TS(T,V,N).

With this notation we have emphasized that F' is a natural function of 7',V,N while
the entropy is a natural function of E, V, N. We must then write E, S in terms of T,
V, N to proceed further. From the Sackur-Tetrode formula we get

5
3mh?\ N3

E(S,V,N) = <”> et
m Vj

The first law of thermodynamics is dE = T'dS — PdV + udN, from which we find

r (PE) (3NN pog 2 2F
S \9S )y \ m )3 3Nk 3Nk’

This is the equipartition theorem which states that each degree of freedom con-
tributes k7' /2 to the energy. In turn, plugging this expression for E in the Sackur-

Tetrode entropy will give
3
( mkT > 2y
2nh?) N| |-

SNKT  SNKT Kka)%V}_

S(T,V,N) _Nk{g +In

Putting everything together

F(TILVN)=E-TS="—— """~ —In|(—
27h N

2 2

3

2\ 2
T dm | (NN
mkT \%
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Let us now consider the enthalpy. Using once again the first law of thermodynamics,

we find
JE 2F
_P — —_— = — —
A% SN £1%

from which E = %PV and

5
H(S,P,N)=E+PV = EPV'
This is not yet enough, since H is a function of S, P, N. We must express V in terms

of S, P, N. In the formula for the energy in terms of the entropy we previously
got starting from the Sackur-Tetrode entropy, we substitute £ = 3/2PV and we

get
3
(27th2>5 N 25,
V= — 73eSNk .
m P53

Putting all of this in the formula for the enthalpy, we find

3
5 (2nh*\° 2 a5
H(S,P,N)ZE | NP5eM
m

which is what we were looking for. At last let us consider the Gibbs potential,
&(P,T,N). We use the equation of state of an ideal gas

(8F> NkT
av N Vv

Then, taking the free energy and substituting V = NkT /P we get

(s8]

kT

2mh?
®(P,T,N) = F(T,V(P,T,N),N)+PV(P,T,N) = NkT { In (Z)
m
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Canonical Ensemble

Problem 7.1.
A classical gas in a volume V is composed of N independent and indistinguishable

particles. The single particle Hamiltonian is H = %, with m the mass of the particle
and p the absolute value of the momentum. Moreover, for each particle, we find 2
internal energy levels: a ground state with energy O and degeneracy g1, and an ex-
cited state with energy £ > 0 and degeneracy g». Determine the canonical partition
function and the specific heat Cy as a function of the temperature 7. Analyze the
limit of low temperatures and comment on the final result.

Solution

When computing the canonical partition function, we have to consider the contin-
2

uous part of the Hamiltonian (£-), plus the contribution coming from the internal

degrees of freedom. The partition function for the N particles is then the product of

N single particle partition functions

VN +oo 2 3N N
On(T,V,N) = (/ e P dp) (gl +g2e_ﬁE) =

NN\ e
VN (2mm\ pp\V
h3NN' ﬁ (gl+82€ )

due to the well known formula [ e dx = \/g . The factorial N! accounts for

the classical indistinguishability of the particles. From the partition function we
compute the energy

1 Ee E/KT
UZ_(aIlQN> :ENkT—I—NL
dp vn 2 g1+ gre BT

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_7, © Springer-Verlag Italia 2012
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and the specific heat

c _(3[’) e d [ NpEe /TN 3 NgigE2eE /T
1% oT VN 2 dT gl+g23—E/kT 2 sz(ngrgleE/kT)T

We note that the temperature appears only in the contribution of the internal degrees
of freedom. For low temperatures, we find

gIQE* M gy gE?
sz(gz —|—g|€E/kT)2 szg%eE/kT

—0

that is the expected result because in such limit only the ground state (the one with
0 energy) is populated.

Problem 7.2.
The Hamiltonian matrix for a quantum system can be written as

010

H=-g—1101 g>0.
2
V2 010

Discuss a possible physical meaning of the Hamiltonian and compute the canonical
partition function and the average energy as a function of the temperature.

Solution
We note that the Hamiltonian can be written as H = —gBL, with L, the x component
of the orbital angular momentum in three dimensions

010

Lc=—|101
2
V2 010

We therefore interpret the Hamiltonian as that of a particle with spin 1 placed in a
magnetic field with strength B and directed along the x axis. The computation of the
canonical partition function directly follows from the eigenvalues of the Hamilto-
nian

E1 :—gB E2:O E3 :gB.

The resulting canonical partition function is
3
OB) =Y e Pl = cPeB 1 4o PeB
i=1
from which we extract the average energy with a suitable derivative

_dInQ(B) _ gB(ePsE —e7Peb)

U= = .
dp ePsB 4 | 4 ¢—PsB
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Problem 7.3.

Let us consider N indistinguishable non interacting particles placed in a segment of
length a. Find the corresponding quantum mechanical partition function and deter-
mine the free energy and the internal energy in the limit of low temperatures. Finally,
assuming that the energy levels are infinitesimally spaced, give an estimate for the
free energy and the internal energy as functions of the temperature. For simplicity,
when computing the degeneracy factor for a given configuration in the energy space,
use the classical treatment for indistinguishable particles.

Solution
We can write the partition function for the N particles as

TaN Ze i

where E are the eigenvalues of the Hamiltonian of the system. We can explicitly
write down the following conditions for the total energy £ and the number N

E:ans N:an
€ €

where n¢ is the number of particles with eigenvalue €. Therefore, we can write the
partition function in the following way

On(T,a,N) = Z{ng}g{ng}e*ﬁ):gngs

with g{n.} the number of possible ways to select a set {ng} out of N objects, and
where i{ns} is meant to be the sum over all the possible configurations satisfying
N =Y ne . The degeneracy factor g{n.} depends on the statistics and, in the ap-
proximation requested by the text, is equal to

N!
(ni!lmp!ng!--+)’

glne} =

We further have to divide by N! in order to take into account the indistinguishability
of the particles, i.e. we have to use the Gibbs factor. Therefore, the degeneracy
coefficient is g{ne } = [ n%' The partition function is

0t =Ly My () = 5 ([T (7)) =

1

i (L) = ot

where we have used the generalization of the binomial formula, and where we have
denoted with Q;(T,a) the partition function of the single particle. To clarify the
above steps in the calculation, set xe = e €/*T" and consider the simple case where
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€ =1,2 (N particles with 2 energy levels). The partition function is
Al 1

le::Okl!(N—kl)!

On(T,a,N) =
where we recognize, on the right hand side, the binomial formula
N N
N N! 1 4
N _ ki N—ki _ ki N—ky _ ki
) _kIZ:O (kl>xl 2 _klz' IV — k)2 Z{k} <H ™ )

with )i{k,-} the sum over all configurations such that k; 4+ k2 = N. Therefore, we have

N N
On(T,a,N) = L —;\_])!62) -4 Z(VT!,CO '

Going back to the most general case, let us concentrate on the energy levels of

the single particle to compute the related partition function. The eigenvalues of the

Hamiltonian for a free particle in a segment a directly come from the solution of the

stationary Schrodinger equation (see also Problem 2.10 in the section of Quantum

Mechanics) for the eigenstate Y, (x)

i d*y(x)
2m dx2

= & Yu(x).

The requirement that y;, (x) is zero at x = 0 and x = a leads to the following normal-

ized eigenstates
2 T
V(%) = \fsin (M) n=1,2,3,..
a a

and gives rise to the discrete energy spectrum

. 2 h*n? Wl n2h?
= —— = n =
" 2ma? 2ma

n=1,2,3,..

The resulting partition function of the single particle for low temperatures may be
written as

g (an a o
QI(T7g) = Z e kKT =e kT + (efﬁ)4_|_. R 67%
=1
from which we compute the free energy
N 242
N7h
=—kTInQy = —kT1In g ~kTNInN +
N! 2ma?

and the internal energy

oF ~ (9InQy _NmR
U=F+TS=F— T(aT) ( 55 )wNW'
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When the energy levels are infinitesimally spaced, we can approximate the sum with
an integral as

from which we compute the free energy

F =kTInN!—NkT In
2rh

and the internal energy

UZ_(&anN) 1 NkT
a,N

ap 2,_ [ '
ma?kT
Problem 7.4.

A physical system is composed of N distinguishable spins assuming two possible
values 1. These two values correspond to the energy levels ¢, respectively. Com-
pute the total energy E using the Boltzmann formula and the microcanonical ensem-
ble. Finally, compare the results with those in the canonical ensemble.

Solution

Let us call N1 the number of particles with spin orientation +1. Then, we have to
consider the equations determining the total number of particles and the total energy
for the system

N=N;+N_
E=(N,—N_)e
from which we extract Ny as
Ny=35(N+%)
1 E
N-=3;(N=-%).

For a given E and N, the number of states is therefore given by all the possible ways
to extract Ny (or N_) objects out of NV, with the constraint that N = N; + N_. This
number is

N1 N! N
QEN = NN NN BN+E I (v-E))
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from which, with N >> 1 and the use of the Stirling approximation, we obtain

1 E E
S(E,N) =kInQ(E,N) %k[NlnN 3 (N+ 8) In (N+ 8) -

1<N—E>ln<N—E>+Nln2}

2 £ €

1_ ﬁ *filn N+§ Jriln N—E
T \9JE), 2 e) 2 €

leading to the internal energy

and

E = —Netanh(fBe).

Let us repeat the same calculation in the canonical ensemble. The partition function
for the single spin is obtained by summing e PH over the two possible energy states
(H =+¢)
01(T) =Y e P =eP? 4 e P2 =2cosh(Be)
m==%1

and the total (N particles) partition function is given by
On(T,N) = 0Y(T)

from which we determine the free energy, the entropy and the average internal en-
ergy as

F = —éanN = —NkT In(2cosh(B¢))

S=- <§§)N = Nk(In(2cosh(B¢)) — Betanh(Be))

61nQN
IB

The result is basically the same as the one obtained with the microcanonical ensem-
ble, with the exception that the energy E is replaced by the average energy U = (E).

U=F+TS=—< )N:—Nstanh(ﬁs).

Problem 7.5.
A point with mass m moves along the x axis under the effect of a conservative force
with the following potential

mo?*(g+a)? g<-—a

S =

V(g) = —a<g<a

yme*(g—a)® q>a
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with a a positive constant. When the system is in contact with a reservoir at tem-
perature T, find the canonical partition function, the average energy and the specific
heat. Finally, comment on the limit @ — 0.

Solution
We compute the canonical partition function

1 +oo 2 +o0
0i(B) = %/_ e’ﬁ%dp/_ e PV @ dgq

where the integral in g can be done by dividing in three different sub intervals
([—o, —d], [—a,+a] and [a, +<2])

L ofte 2 —a mw? +a +o0 e
0By =y [ Phar U P Pags [ Cag | eﬁz(‘i“)qu]
— Ju ;

—oo

The integral over momenta is immediate. The one over the space coordinates can be
further simplified by settingy =g+a

1/ 20m\"2 [ 1+ pwe? o 2a /2mm\ /2
-4 b - 5 )

where we have used the well known Gaussian integral ff: e—ad’ dg = \/g . The
average energy is

dl 1 kT)?
y_ Qi) 1. 7(KT)
dp 2 27kT +2aw(2wkTm)!/2
which can be rearranged as
kT AT?
U=—+

2 BT+DT'/2
with A = k%, B = 2ntk and D = 2aw(2rtkm)'/?. The specific heat is
_dU k. ABT? + 3ADT/?
- dT 2 (BT+DT/2)? "’

We note that, in the limit a — 0, the potential V (g) becomes exactly quadratic and
the Hamiltonian corresponds to a one dimensional harmonic oscillator. This can be
explicitly verified in the above results, because in that limit we find

D—0 A/B=k/2
so that

U—kkT C—k

which are the internal energy and the specific heat for a classical one dimensional
harmonic oscillator.
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Problem 7.6.
Let us consider a statistical system with N states, with energies €, = ne, n =
0,...,N — 1. The system is in contact with a reservoir at temperature 7. Determine

the probability that the system is in the state with energy &, and verify the final
result.

Solution
The canonical partition function is written as

Ze‘”’“ ZX*ZX*ZX
1 +°°xm+N_ 1 xN I A e

lfx_mzz"o T1l-x 1—-x lfx: 1 —eBe

where we have set x = e P€. The probability associated with an energy level is

e Ben e "Be(1 — o Pe)
P(en) = _N,
On(T,N)  1—e NP
It is simple to verify that
N-1
Y P(e) =1
n=0

which proves the validity of final result, i.e. the fact that the probability is properly
normalized.

Problem 7.7.

N independent and distinguishable particles move in a one dimensional segment
between ¢ = 0 and g = L. Determine the equation of state of the system, given the
following single particle Hamiltonian

2
H:p—aln<q) a>0.

In the above expression, ¢ is a constant giving the strength of the potential V (g) =
—aln (Lq—o) and L is a characteristic length scale. Determine the pressure for very
low temperatures and comment on the limit o¢ — 0.

Solution
We determine the single particle partition function by integrating in the phase space

1 [+ aBin( L) 1 [2mm LB+
T,L :7/ 2’"d / LO d — .
QL) =3[ b =\ 7B af+1 9P

Due to independence, the N particles partition function is the product of N single
particle partition functions, i.e. Oy (T,L,N) = Q’l\' (T,L). The pressure can be com-
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puted from the derivative of the free energy with respect to the ‘volume’, i.e. L in
our case. Since the free energy is F' = —kT In Qy, the pressure follows

_ (oF\ _ __(dmQ\  NKT a
r= (o) = (50),, 0 O )

In the limit of low temperatures, we find a pressure contribution different from zero

_Ne
-3

P

This is possible because, even without thermal fluctuations, we have a non zero en-
ergy contribution coming from the potential V(g) in the Hamiltonian. The pressure
becomes zero when ¢ — 0 and such potential contribution disappears.

Problem 7.8.

A physical system is characterized by two energy levels: the first one has energy E;
and degeneracy g1, while the second one has energy E, and degeneracy g,. Prove
that the entropy S can be written as

S=—k [pl In (pl) +p2In (pz)]
81 82

where p; with i = 1,2 is the probability that the system is found in the i-th energy
level. Use the connection between the entropy S and the average energy U and free
energy F. Remember that both probabilities have to satisfy p; + p> = 1.

Solution
From the definition of free energy we know that

S

S =BW-F)

where U is the average internal energy and F the free energy. For the average inter-
nal energy we can use
U=piEi+pEr

while, for the free energy, we know that —BF = InQ, where Q is the partition func-
tion of the system. Therefore, we have

S
P BpiEi + Bp2E> +1nQ.

.o~ BE;
We also note that the probability associated with the i-th level is p; = %, so that

BE;+InQ =—1n (p,)

8i
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Plugging this result in the equation for S, and recalling that p; 4+ p» = 1, we obtain

S

% =Bpi1E1 +Bp2E2 +1InQ =

—(p1+p2)InQ—piIn (m) —p2ln (pz) +InQ =
81 82

—P1 In (Pl) — P2 In (PZ)
81 &2

that is the desired result.

Problem 7.9.
The canonical partition function for a fluid, whose molecules possess two charac-
teristic frequencies @ and €2, is given by

1
Q(ﬁ) = (1 767ﬁhw)(1 _ ¢—BnQ)

Find the average internal energy U, the entropy S, and the specific heat C. Finally,
determine the low temperature limit of the entropy.

Solution
The internal energy, the entropy and the specific heat can be written as suitable
derivatives of the canonical partition function Q(f). The internal energy is

_dInQ(B) ho hQ

U=—"ap o1t pa_1

The entropy is given by

U /] (0] Q
S:?+kan: ? <eﬁhw—1 +eﬁhﬂ—1)

—k [1n(1 — e POy L 1n(1 - e*ﬁm)] .

In the limit of low temperatures (large 3) the exponential functions are < 1 and the
entropy goes to zero exponentially. Moreover, using the identity diT =—kpB 2%, we
can determine the specific heat

C

dU 5 thZeﬁha) hZQZeBhQ
dT (ePro —1)2 ~ (eBR2 _1)2

Problem 7.10.

Consider a system composed of 2 filaments (a, b) intersecting one with each other so

as to form a double helix. On these filaments there are N sites forming energy bonds

in such a way that the i-th site of the filament a can link only with the i-th site of the

filament b (see Fig. 7.1). For an open bond, the energy of the system increases by a
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(5 orientations

p=N

Fig. 7.1 We show a system composed of 2 filaments (a,b) intersecting one with each other so
as to form a double helix. Each filament possesses N sites forming energy bonds with the other
filament’s sites. When a bond connecting the different sites is open, it releases an energy € > 0. In
Problem 7.10 we study the statistical mechanics of such system in the framework of the canonical
ensemble

factor € > 0. The system presents various configurations, including the configuration
with all closed bonds, or configurations with open bonds from site 1 up to site p (p <
N) and all the others closed. The last bond (p = N) cannot be opened. Moreover,
for each site, there is a degeneracy G > 1 due to a rotational freedom around the
site itself. Write down the canonical partition function and determine the average
number of open bonds (p). Is there any critical temperature 7. above which the
canonical ensemble is meaningless for large N?

Finally, after defining the variable x = G%¢ B¢ and setting x = 1+ 7, find the
behaviour of {p) for small 1 and compute the linear response function

< 9(p) )

on )y

when 1 — 0. For large N, determine the power law dependence on N of the linear
response function.

Solution
Let us start by determining the partition function. Let us call p the number of open
bonds. From the text we know that 0 < p < N — 1. The partition function is

1—xV

x= G2 Pe
1—x

N—-1 N—1
On(T.N)= ) GPePre=y i =
p=0 p=0
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where we have assumed x # 1. For the convergence of the previous series at large
N, it is important to have
GPePe <1

from which €
T<To=——
¢ 2kInG
where T, is a critical temperature above which the canonical ensemble does not give
a finite partition function for large N. The average of p is evaluated as

N _
LyoP? _ d <N1p> NAY oy

<P>— ~N—1_, x—In Zx

Zp 0 xP dx =0

If we setx =141, we find

NN NN T4
N1 x—1 (+n¥-1 n =

N+N*n + Nz(N*l)anr Nz(N*é)(Nfz)n?... 147
N+ M8 g2y NVZDN2) g3 n
that implies
N-—1 N2—1
(P~ ——+ =5 n+0m).

The requested linear response, when n — O, is

(). -5

which grows up with the second power of N for N > 1.

Problem 7.11.
Let us take the classical Hamiltonian

AN\ 2
H=vp+ (p) +B*p*(g—wt)?

where A, B, v are constants. Moving to a quantum mechanical description, deter-
mine the eigenvalues for the energy and the canonical partition function. To solve
this problem, we suggest to simplify the form of the Hamiltonian with a canonical
transformation whose generating function is given by

q—vt
Q

F(q,0,1) =4

with the choice A = ﬁ, where M has the physical dimensions of a mass.
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Solution
The canonical transformation generated by F(q,Q,t) produces a change in the co-
ordinates from (p,q,t) to (P, Q,t) such that

%), G
P= aq Ot B aQ q_’['

The new Hamiltonian is given by

2
= — — V= ——
p q—V 2
and 5 )
_ F A
A-n+(2) 22 epp
ot A2
9,0
Finally, using the suggested value of A, we find
- P? P o1
H=_— +2MB*A’Q* = — + ~Mw*Q?
2M + Q M + 2 Q

that is not time dependent and corresponds to a one dimensional harmonic oscillator
with angular frequency @ = 2AB and mass M. The eigenvalues of the Hamiltonian
are

1
En:<n+2>ha) n=0,1,2,...
and the canonical partition function is
e—ﬁha)/Z 1
—e Ph 5 Ginh (“T‘“) '

+o0
T) — —Bho(n+1) _
or) = ) e ;

Problem 7.12.

A cylinder with radius a (see Fig. 7.2) is positively charged, due to the fact that it re-
leases negative charges in a larger cylinder with radius R. Thermal fluctuations tend
to move away the negative charges, while the electrostatic attraction makes them
move back. If the number of negative charges is N and if we neglect the repulsion
between them, the Hamiltonian for the V negative charges (in suitable units) is

HoY p—%+221 T
—; Zm ennL
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-

=

e - - - — -] —-

|

Fig. 7.2 A cylinder with radius a is positively charged, due to the fact that it releases negative
charges in a larger cylinder with radius R. Thermal fluctuations tend to move away the negative
charges, while the electrostatic attraction makes them move back. Thermodynamic equilibrium is
described in the framework of the canonical ensemble in Problem 7.12

where r; is the radial distance (a < r; < R) of the i-th charge, e the absolute value of
the charge, L the height of the cylinders and n = %

Compute the canonical partition function. Also, determine the probability density
function p(r) associated with the radial position of a single charge. Finally, deter-
mine the average radial position and, more generally, the momentum of order ¢, (r’).

Solution
The canonical partition function is

1 2 313 % 2 Ti
QN(T,L»N):W/ l_l;Ild pid’qi | exp —ﬁi; (2m +2enln (L)> ~
N

N .
() e[ ] -

DN g [RO-AT) 1=
NA? 2(1—e2n/kT)

N

where
h

V2rmmkT

is the thermal length scale and where we have used the Stirling approximation for
the factorials, i.e. N! ~ NV. The probability density function associated with the
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radial position is

re—(2¢n/KT)In(r/L)
p(}”) =R 2 =
fa re (2e n/kT)ln(r/L)dr
- 82}’[
71— ein rio2em _ A l-2en/kT
kT | R2(1—e2n/kT) _ g2(1-c2n/kT) ~—

where we have used the constant A defined as

e*n 1
A=12 (1 - kT) R2(—=En/kT) _ 2(1—e2n/kT)

The average position becomes

R AkT 52 52
r) :/a r p(r)dr— <3kT—2e2n> (R3-2/KT _ g3=20n/KT)

and the momentum of order ¢

<rf> _ /R V[ p(}") dr = ((2+€AkT ) (R2+E—262n/kT _a2+£—2ezn/kT).

YT —2e%n

Problem 7.13.

241

Let us consider a one dimensional chain composed of N rings. Each ring possesses
r different configurations of energy E; and length x; (i = 1,2,...,r). Moreover, the
chain is subject to a force F' > 0 at its ends, in such a way that the energy for the

single ring in the i-th configuration is

H,' :Ei*in-

The whole system is in thermal equilibrium at constant temperature 7. Write down
the partition function and the average length (L) of the chain. Specialize to the case
with r = 2 and, assuming that £, > E; and x, > x|, write down the average length
for F = 0. When F = 0, analyze the limit of low and high temperatures and give
an estimate of the characteristic temperature that separates the two regimes. Finally,

compute the linear response

x= (a;?>T.N

showing that limg_,9 ¥ > 0. Comment on the physical meaning of these results.

Solution
From the energy of the single ring in the i-th configuration

H,~:E,~—Fx,~
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we can write down the partition function for the system

where we explicitly keep the dependence on F to be used later in the differentiation
of the partition function. As for the average length, we can write it as a suitable
derivative of the partition function

L= % (algFQN)T,N.

QN(T’ F7N) = I:eiﬁ(Elfol) +e7ﬁ(E27F)C2):|N
I) — l aanN _ xleiﬁ(EliF)q)—'—X2e7ﬁ(E27Fx2)
< > n ﬁ oF TN - e_ﬁ(El_Fxl) +e_ﬁ(E2_FXZ>
The limit F — 0 is evaluated as
(L) =

If 6 = E, — Ey < kT, we find

On(T,F,N)

For the case r = 2 we find

X1 +xZe7ﬁ(E27E1)
14+ e—B(E2—Ey)

(x1 +x2)
Ly=N——=
=Nt
while, for & > kT, we get

(L) =N(x| —&—xge*ﬁﬁ)

meaning that the transition between the high and low temperature regimes takes
place when & = kT. In order to compute the linear response of the system, we need
to expand (L) in series of F. Neglecting the second order contributions, we find that
(0 :lee—ﬁ(El —Fx1) 4y BlE2—Fxp) B
e B(E1—Fx1) 4 o=B(E2—Fx3)
x1e PE (14 BFx;) +x2e BE2(1 4+ BFxy)
e PE (14 BFx)+ e PE2(1+ BFxy)
x1 (14 BFx1) +x2¢ PO(1 + BFxy)
(1+BFxi)+e P3(1+ BFxy)
v 1t xe PO+ BF (i + 3¢ P?)

_ BF (x;+xpe~B9)
(1+€ Bé) 1+W:|

N(xl+xze’B5)+ﬁF(x%+x%e*ﬁ5) L BF (x1 +x2¢7P9)
(1+eB3) (1+eP%)
(x1 —x2)%e PO

(1+ePo)

O(F*) =

+0O0(F*) =

+0(F?) =

+O0(F?) =

A+BFN + O(F?)
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Q Open Site

. Closed Site All closed

. o (no signal transmission)
Signal Emission
End of Transmission

O N /
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Fig. 7.3 We show a one dimensional array of lattice sites with two possible states: open and closed
sites. A signal is produced by open sites and can propagate from left to right through consecutive
open sites. In Problem 7.14 we characterize the canonical partition function of such system

where in the positive constant A we have collected all the terms independent of F.

It follows that
d(L) (x1 —x2)2e PO
x <8F )T,N P (14e7Po)2 o)

L \2,-B8
lim y = gy

F—0 (1+eB8)2
meaning that an increase of the force produces an elongation of the chain, that is the

analogue of the thermodynamic relation — (3—‘;) . > ( valid for a gas.

y

Problem 7.14.

A one dimensional array of N lattice sites is in thermal equilibrium at tempera-
ture T. These sites can be closed (with energy 0) or open (with energy €). A signal
is produced from open sites and can travel from left to right. The signal can be
transmitted from an open site, only if its nearest neighbor is open (see Fig. 7.3).
The first site of the array always produces a signal that can travel up to a given
point of the lattice. From that point on, there cannot be any other production of
signals. Find the partition function of the system and the average number of open
sites (n). At low temperatures, show that this quantity is independent of N. Fi-
nally, compute the fluctuation of the number of open sites ((An)?) = (n?) — (n)?.
When counting all states, explicitly consider the configuration with all closed
sites.

Solution

From the information given in the text, we know that there are only N available
configurations with length n = 0,1,2,3,...,N. They are all the subarrays of open
sites that allow for the transmission of the signal from the beginning of the array up
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to the n-th site (n = 1,2,3, ..., N), plus the configuration with all closed sites (n = 0).
If we set x = ¢ P, the partition function may be written as

o0

Ze_ﬁ"'g Zx *Z)f' Z X' =
n=N+1
1 Jio ) _ 1 — N+ _ | — e~ B(N+1)e
I-x /= 1—x 1 —eBe
The average number of open sites is
N —Bne d d 1 —xNV+1
(n) :% :xﬂanN =X ln Zx" —x—ln T =
d 41 d X (N+1)xN+! B
xaln(lfo )fxaln(lfx)f T
eBe (N4 1)e BN
1 —e B¢ o 1 — e BWN+1)e

In the limit of low temperatures we have x = e P¢ < 1. This means
(n) ~x=ePe

which is independent of N. The reason for this independence is that, in the limit
of low temperatures, only those configurations with low energy are available: these
configurations have a small number of open sites.

As for the fluctuations of the number of open sites, we directly derive them from
the partition function as

o d [ d R Y N\
((An) >_xdx (xdx anN> =x (n) = on O =

X (N1
(1—x)? - (1—xN+1)2 "

In the limit of low temperatures, we find x = e B¢ < 1, so that ((An)?) ~ x+2x% is
independent of N. Again, this is due to the low temperature limit, where the system
tends to occupy the lowest energy levels corresponding to a small number of open
sites.

Problem 7.15.

Determine the energy fluctuations ((AE)?) for a system of N independent one di-
mensional harmonic oscillators with frequency @, mass m, and subject to a con-
stant gravitational acceleration g along the direction of oscillation. Make use of the
canonical ensemble in the classical limit.
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Solution
If we call p the momentum and ¢ the spatial coordinate, the Hamiltonian of the

single oscillator is

ro1
H= + fma)zqz + mgq.
2m 2

The canonical partition function is determined by performing first the integral over
the momenta

1 [+
0.(T) _7/ dp/ o~ 2Bmotd “Bmea g —

/27rm/ —3Bmo*q*—Pmgq g,

For the integral in the coordinate ¢, we rearrange the exponential as

+oo 4o 1802 (g2 ) 4 1 pm e
/ e—%ﬁma)zqz—ﬁmgﬂldq:/ e 3Bmo <q+w2) +2Bm s dg =

oo 2
B /* e (a5 )

—oo0

where we can sety = g+ £ -z so that

2 2

1 oo 1

2P / e 2Bmo?y? gy, 2P 27 .
oo mB w?

The final result for the single oscillator partition function is

1 p+ee 2 +oo
= /7 o B de e~ 2B —pmeq 4\

1 [2nm 21 % 2 Bmg

W\ B\ mBe¢ T o

while, for the total partition function, we get Qn(T,N) = QY (T). The average en-

ergy is
e

ng N ng

200 B 20?7

The specific heat is then computed as C = (%)N = Nk, from which we find the

fluctuations
((AE)?) = kT?C = NK*T>.
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We note that we have obtained the same specific heat of a collection of N harmonic
oscillators without the effect of gravity. This can be easily understood in terms of
the Hamiltonian, that we can rewrite as

P2 1 22 P2 1 2
H="—+_-mo mgq = — -+ —mw
5 + 3 q° +mgq 5 + 3 (g+x0)

2
2 M8
20?
with xg = %. This is nothing but the Hamiltonian of the harmonic oscillator whose
equilibrium position is ¢ = —xg, plus the constant energy

This means that the average energy is exactly the one of the harmonic oscillator plus
the constant Ey, which is not affecting the specific heat.

Problem 7.16.

A one dimensional chain is hung on a ceiling. One of its extremes is fixed, while the
other holds a mass M (see Fig. 7.4). Gravity is acting along the negative z direction.
The chain is formed by two kinds of distinguishable rings: they are ellipses with
the major axis oriented vertically or horizontally. The major and minor axes have
lengths [ +a and [ —a respectively. The number of rings is fixed to NV and the chain is
in thermal equilibrium at temperature 7. Find the average energy U and the average
length (L) of the chain. Finally, determine the linear response function (F = Mg)

(),

in the limit of high temperatures.

Solution
If n is the number of rings with vertical major axis, the number of rings with vertical
minor axis must be N —n. The total length is then

L=(I+an+(l—a)(N—n)
and the associated energy
E(n)=—MgL=—Ein—Ey(N—n)

where E; = Mg(l +a) and E; = Mg(l — a). Therefore, the canonical partition func-
tion is given by

o BEm _ N N (v-mpE
T — n — n — * n 1 —n 2
On(T,N) n;)g e ngon!(N_n)!e
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JQ I—a } > N Rings

Fig. 7.4 A massless chain is hung on a ceiling and holds a mass M, with gravity acting along the
negative z direction. The rings are ellipses with the major axis oriented vertically or horizontally.
The total number of rings is fixed, while their arrangement (i.e. the length of the chain) changes as
a function of the temperature. The canonical partition function is computed in Problems 7.16 and
7.17

where we have explicitly considered the appropriate degeneracy (g, = ; N ) ,) for

each configuration. We recognize in the partition function the binomial representa-
tion

N
P+ = Z;)n'(N 2 T

with p = PE1 and g = ePE2. Therefore, we obtain the following result for the parti-
tion function

ON(T,N) = (eﬁEl +eﬁEZ)N

Another possible approach to compute the partition function is discussed in Problem
7.17. The average energy is

U dInQy d ln( BE, +eﬁE2> _ E1eﬁEl + EyePt2 _
B Jy dB ePEL 4 ¢BE2

—NMg[l+ atanh(BMga)].

The average length is given by

1 (JdInQy U
(L) = ( 5 =——.
Mg\ 9B )y Mg
When 8 — +eo we obtain the lowest energy state, that is (L) ~ N(I +a). In fact, the
lowest energy state imposes the maximum length of the chain, given the minus sign
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in the relation between U and (L). On the other hand, in the limit § — 0, we obtain
(L) ~ NI+NBMga®> = Nl + NBFa*.

In this limit, the linear response function is

) _ Nd?
X=\0F ),y kT

that is basically the same result we obtain (Curie law for magnetism) in the magnetic
system of Problem 6.13 with the identification a = .

Problem 7.17.

Consider the same physical situation of Problem 7.16. Show an alternative way to
determine the partition function. Then, determine the average length (L) and give
an estimate for the linear response function

o= (% )..

with F = Mg, showing that ¥ > 0.

Solution
If we think that the origin of the z axis is located at the upper end of the chain (see
Fig. 7.4) the total potential energy of the system is

E=—MgL

with L the total length of the chain, which is dependent on the number of rings with
vertical major axis. If the chain is formed by » rings with vertical major axis (and
N — n rings with vertical minor axis), the length of the chain and the energy are

L=(I+ayn+(l—a)(N—n)

E=-Mg((l+an+(—a)(N—n))=—-F(({+a)n+(Il—a)(N—n)).

We can think of each ring contributing to the total gravitational potential energy
with an energy £y = —Mg(l +a) = —F (I +a), depending on its vertical axis. This
means that the whole system can be seen as composed of N rings with two energy
states each. The partition function is then evaluated as
N F(l Fi-a)\N Fi N
On(T,F,N) = QV(T,F) = (eB (H+a) 1 B <*a>) - (2e Bcosh(aFB))

where we have explicitly kept into account the dependence on F to be used later
in the differentiation of the partition function. With respect to Problem 7.16, this is
an alternative way to compute the partition function and gives the same result. The
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average length is given by

<L>[13(81;1FQN) 1 (a(NFl/S +N1;1§:2005h(aFﬁ))))TN

v B
NI+ Natanh(aF ).

y

We remark that we would have obtained the same result starting from the expression
of the total average energy

U
L)y=——
L) =-5
andU = — (alg%)ﬂv. Finally, we compute the linear response function as
. <8<L>> _ Nd*B
JF )y  cosh’(aF)

from which we see that y > 0, i.e. the chain is elongating if the force increases.

Problem 7.18.

A two dimensional gas confined in the (x,y) plane is characterized by N non in-
teracting particles in thermal equilibrium at temperature 7. The Hamiltonian of the
single particle is

1 1
H= %(p)% +p})+ Ema)2 [a(x® +y%) +2bxy]

where py, p, are the components of the momentum and m, @, a and b are constants
(a >0 and a*> > b*). Compute the canonical partition function and the specific heat
for the system.

Solution
The particles are non interacting so that the total partition function is

On(T,N) = QY (T)

where Q is the partition function of the single particle

1 _ 1
01(T) = 2 /e Bdedydpxdpy = ﬁlplq
+ 2 oo i 2
1,,:/ e_ﬁ%ndpx/ e_ﬁ%dpy:%

o0 2 o0 2 L obyy
ly= / e~Pamo™ s g, / i

—o0
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Using the integral [© e~ (APH2BX) g — B2 /A (%) 12 we easily obtain

Lo 1\
7 Bmw? \ a? — b2

)@

In order to determine the specific heat C, we first need to compute the internal energy

81nQN>
< IB Iy

c= ("U) Nk
ar )

which is in agreement with the classical equipartition of the energy (see Problem
7.20).

leading to

On(T,N) = (

from which

Problem 7.19.
Compute the average energy and the specific heat for a system of N distinguishable
particles of mass m in d dimensions with the following Hamiltonian

where b is a positive integer and @ a positive constant independent of the temper-
ature. In the above expression, p; and g; refer to the d dimensional modulus of the
momentum and position for the i-th particle. Determine the internal energy and give
the corresponding prediction for the equipartition theorem. When working with a
generic d dimensional vector x = (x1,x3,...,Xx;), make use of the following volume
integral

I (.9.d) = / e b gl — G, )19

where G(¢,d) is a constant which is not useful to determine the average energy and
the specific heat.

Solution
We start from the canonical partition function

On(T,N) = QY (T)

where Q;(T) is the single particle partition function

QI(T) = hid/eiﬁw a’dp/e*ﬁﬂ)(q%+...+q§)b/2 ddq.
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The integral over the momentum variables is the product of d Gaussian integrals
(each one equal to /27mkT') while the integral over the position coordinates corre-
sponds to the case £ = B and ¢ = b of the integral, .#, given above. Therefore, the
total partition function is given by

On(T,N) = (G(b,d)]V < o'/’ >_NdﬁN(d/2+d/b).

1dN (27m)1/2

We can extract the energy and the specific heat as follows

_ /omoy\ . (1 1
U——( 3B >N—Nd<2+b>kT

U 1 1

We see that each degree of freedom in the momentum space contributes with a term
kT /2 to the total energy, while those in the position space with a term kT /b. This is
indeed consistent with the general result (we will discuss it in Problem 7.20)

N 2 N d
P; _l . 81‘1)> _NdkT
<il 2m> 2 ;k;l <plk (apik 2

<§wq?>:;§:2<qik<§;>>:lv‘gﬁ

where the derivative with respect to pj, g is performed by keeping fixed all the
other variables.

Problem 7.20.

Compute the canonical partition function for a gas with N particles under the effect
of a one dimensional harmonic potential in the quantum mechanical case. Deter-
mine the specific heat and show that the classical limit is in agreement with the
equipartition theorem for the energy.

Solution
The partition function is

™= 1\ ho N Nio [ £ ho \ N
QN<T,N>Q7<T><ze—w+zm> _ (Z () ) _

n=0

N

_ Nho 1 N 1

W | —— ) =
l—e T 2sinh (22)
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so that we can compute the free energy

. ho
F =—kTInQy = NkT In (251nh (2/(7"))

and the entropy

S=-— (”) — —NkIn <2sinh (m)) R —
oT N 2kT 2T tanh (%)

The internal energy U = F + TS and the specific heat C = (%)N are given by

Nho 1 o\ 1
U= ——+«—— C=Nk| —= | —5——~.
2 tanh (22) (2kT> sinh? (12.)
In the limit of high temperatures C ~ Nk. This is exactly the result obtained using
the equipartition theorem, i.e. a contribution to the average energy of kT /2 for each
degree of freedom (see Problem 7.20). In our case, for each oscillator, we have one
degree of freedom for the position and another for the momentum leading to

Nk—T kT
2 2

+ ) = NkT.

This can be made more rigorous if we consider a generic non interacting system
composed of N particles in one dimension (for simplicity) with Hamiltonian

N N
H=) Hi=}Y (T(p)+U(qi)

where T and U are the kinetic and the potential energy while p = (p1,p2,---, PN)
and ¢ = (¢1,9>2,-..,qn) represent the momenta and positions of the whole system.
If x; and x; are generic phase space variables (momentum or position), we find the
following identity

(x5) .
oH I xi (gf) e_%dequ fkaie*kﬂT ( J;Jr kT [ (%) e’%dequ
J Xj)1 J
Xi| =— = =
<l(axj)> fe’%dequ fe*%dequ

where the derivative with respect to x; is done by keeping fixed all the other vari-
ables. In the above expression, we have used the integration by parts and denoted
with (x)2, (x;)1 the values of the variable x; at the boundaries. If x; is a momentum,
we have a boundary value for the kinetic energy 7'((x;)1,2) = +oo; if it is a position,
we have U((xj)1,2) = oo to ensure particles confinement. This is enough to safely



Problems 253

assume that the boundary term is zero

(xj)2

x,-ef%(—kT)
(1

and obtain the following result

H
J(5%) e wmd¥pdVq
(s (2)) o (%) o

oxj fe_%dequ

If we use the Hamiltonian of a collection of N harmonic oscillators with mass m and
frequency

and the fact that p; (a—H) = ';7’1, qi (a—H> = mo? ql , We can write

N o/ p?
Z (’ +ma)2ql-2> = 2NkT.
=1\ ™M

This implies the following relation for the average energy

Problem 7.21.

Consider the one dimensional quantum harmonic oscillator with mass m and fre-
quency o in the canonical ensemble. Starting from the density matrix of the system,
find the correct probability density function associated with the position x and dis-
cuss the following limits: kT > fiw and /i@ > kT . Finally, analyze the average value
of the energy and compare the quantum mechanical and classical cases.

Solution
We start from the density matrix written as

g &n
=Y ¢ "n)in
n=0

with |n) the eigenstates and €, = hw(n+ 1/2) . The partition function may be written
as

O(T) =Tr(p(T)) = /x|p|xdx_/zew
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where we have used the completeness of the eigenstates of the position operator, i.e.
J |x){(x|dx = 1. The requested probability density function is

AZe le//

where the constant A is needed for the normalization and where we have used 2 (x)
instead of |y, (x)|*> because the wave functions are real. The probability density
function may be found if we are able to sum the series. We will not do that directly,
but we will instead calculate

dP(.x) i &n dll/n
=2A) e T .
dx ng(’) Wi dx
Obviously dy,/dx = é P, where p is the momentum operator and where, from
now on, we will make use of the creation and annihilation operators a', 4. Let us
then recall the relation between £, p and d', 4

Since the creation and annihilation operators act on a generic eigenstate as step up
and step down operators

a'ln)y=vn+1|n+1) aln)=+nln—1)
the term dy, /dx can be written as

dyy i i A
dx —hpl//n_ h(<i’l|p|n 1>Wn—l+<n|p|n+l>1//n+l)

meaning that the oscillator momentum has non zero matrix elements for transitions
between n and n+ 1. Also, the following relations hold

mha)

(nlpln—1) =iy/ "22

(nlpln+1) = ’"’“‘W

(nfeln 1) =/ 5 Vi
(n[xln+1) =4/ %\/n—kl
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which are all symmetric matrix elements. Moreover, from the relation between p
and X, we obtain
(n|pln—1) = imow{(n|fn—1)
(n|pln+1) = —imw({n|f|n+1).

Therefore, for the derivative of the distribution function, we get

X A
L == X e B (alphn= 1)y -+ o+ 1) (¥ 0) =

Mﬂze kT ((n|&]n— 1)1 () Yu(x)— (n|R]|n+ D) Wi () Wi (%)) =

2mAa)+°° &n ho N N
ZEELY e (e (4 1)y () W ()l + 1) Y1 ()9 () =
n=0
ZmAa) ho
RO (-t Z e (algln-+ 1) yas () a()

where we have used the matrix elements of p and £ and moved to the new variable
n' = n— 1. In this new variable, the sum goes from n' = —1 to n’ = +oo, but the
matrix element (—1|£|0) is zero, so that n’ =n = 0,... + . Finally, we have used
the fact that the matrix elements are symmetric. A similar calculation can be done
for xP(x)

o
9= X e (= 1Y V) + 5 1) (¥ () =

~+oo
_ho _ & N
AL+ 1) Y e (nleln+ 1)y () v ).
n=0
We are now ready to compute the ratio of the quantities obtained previously

1 dP(x) 2mo hw
=— tanh | —— | .
xP(x) dx h

The solution for the differential equation

Q—_zmwthhﬁd
P p A g )

is
P( ) Aef%xztanh(z—w).
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Integrating in x between —oo and 4o we are able to find the normalization. There-
fore, the probability density function for the position is

meo ho mo 2 o
P _ tanh —Tx tanh(Zk—T).
() =) g tan <2kT>e

mCOz ma? 2
P(x) = T
)=\ 2mre

that is the classical distribution. For i >> kT we get

mao me 2
Plx)=4/—e 2~
(x) nh ¢

For kT > hiw we obtain

o Lo . _mo 2
which is the square of the wave function in the ground state, i.e. Yp(x) = (%") 14 =52

If we set B = 1/kT, the average energy becomes

= eam, g =

i s (22)) = oo (722

We note that in the classical limit where Bi® < 1, we can expand

2
coth (2> = ﬁh—w

and find (H) ~ kT, that is consistent with the equipartition theorem of the energy
(see Problem 7.20) assigning to each degree of freedom a contribution equal to
kT /2. For the quantum mechanical case, we first plug the value of (H) in P(x)
2 1710)2)(2
P(x) = LwAe_ 28
2n(H)

Then, we note from the Hamiltonian that the momentum and position have the same
quadratic functional form and, instead of x, we can set p/(m) to find the probabil-
ity density function for the momentum
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where the normalization is properly found by normalizing P(p) to unity. It is now
possible to compute the following average quantities

2 +°° 7ma)2x2 ~
ma) 2 mo / ma) ¥ )e 2B dx= l<H>
2n(H 2
ﬁz 1 o0 p2 P 1 .
— )= 7A/ — e Mdp=—(H)
m 2am{H) J-w \2m 2

where we see that the averages of the momentum and position operators give the
same contribution to the average energy.

Problem 7.22.
The potential energy of a one dimensional classical oscillator can be written as the
sum of harmonic and anharmonic contributions

V(x) = Ax* -y — o

with A, 7, a@ > 0 and ¥ and o small with respect to A. The oscillator is in thermal
equilibrium at temperature 7. Use perturbation theory in y with o = 0 to show that
the leading anharmonic contribution to the average value of x is given by

3ykT
<X>An = 43{2 .

Then, in the general case when both ¥ and o are different from zero, show that
the leading anharmonic correction to the specific heat C is given by the following

expression
3 a 57
k2 —
Cin (zz M 47&)

where we have used the subscript Az to indicate that we are dealing with the anhar-
monic part.

Solution

For the classical harmonic oscillator, the average value of x is obviously zero. In the
anharmonic case, due to the presence of the cubic terms in the potential, such value
becomes different from zero. The average position is

() = [xe PHdxdp
~ [ePHdxdp
with
p’ »’
H="—+4V(x)=2+— 4+ -y —ax’.

2m 2m
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The first anharmonic contribution in perturbation theory comes from the Taylor ex-
pansion of the exponential function with respect to ¥y and o

6
e PO —y—ant) _ o BA (1 4 By 4 Bot 4 Bzszx +o).
In the ratio defining (x), the integrals in dp cancel out

[ xe PR (14 By +Bax4+B2@ +...)dx
[T e BA? (1 4 By +ﬁax4+/32@ +...)dx '

() =

When a = 0, the average (x) may be written as

o0y e BA ) dx
<x>:ffoo (1+Byx")d +ﬁ(y2)

[ e=PA gy

and the first non zero correction to the harmonic contribution is

(72 e P Byxtdx
[ e=PA gy

Fee 2 T
/ e Ydx=4/—
oo a

o 1. d* [+ 3 [z

4 —ax* . —sax?
xX'e dx:—hm—/ e dx= -4/ —=
/_m a?s51ds? ) o 4\ as

<x>An =

If we use the integrals

with a = BA, we find
3ykT
<‘x>An = 42{2 .

To obtain the second result, we set & # 0 and we expand the partition function
1 [t 2 oo 6
Q(ﬁ)Zz/ e*B%dp/ e*ﬁlxz(]—|—ﬁ7x3+[506x4+[32y27x+...)dx

where it is important to consider the Taylor expansion of the exponentials up to 3.
Together with the above integrals, we also use

oo 1 a3 e 15
/ xﬁefw‘zdx = ——lim— / efs”xzdx 2

oo a3 s—1ds3 ) 8 Va

and we find the following result
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where we have set B = %% + %% The first term is the partition function of the
. . . 1/2 .
harmonic oscillator, i.e. Oy () = % (27’") /2. The second term contains the correc-
tions of the anharmonic potential. We then recall the definition of the specific heat,
C= %’ and the relation between the average energy and the partition function,
U= 7dlnd7%(ﬁ). For InQ(f) we find

InQ(B) = Qu(B)+In(1+BB~")

where the first term is the harmonic part, while the second term is the anharmonic
correction. This second term may be expanded as

In(14+BB~')~B/B

and we obtain the anharmonic correction to the energy

UAnz@:BkT
The specific heat is
2 32 59
Can % 2BK'T = SK'T 35+ 73

that is the desired result.

Problem 7.23.

Study the magnetization of a three dimensional system with N identical dipoles,
each one with magnetic moment g and momentum of inertia my, in presence of a
constant magnetic field H = (0,0, H) (directed along the z direction) at temperature
T. These dipoles may be considered as distinguishable and localized in space. Write
down the total partition function and concentrate on the terms related to the coupling
with the magnetic field. Identify the magnetization in the limit of high and low
temperatures and compute the susceptibility when H — 0.

Solution
The physical picture of this problem is that the thermal fluctuations disrupt the or-
dered situation in which the magnetic dipoles are oriented along the direction of
the magnetic field. In this way, we expect that when 7' — 0 the system exhibits a
magnetization M # 0, while in the limit of high temperatures the dipoles orientate
in some non coherent way with resulting zero total magnetization M = 0.

The Hamiltonian 7 of the system is characterized by the kinetic terms due to
the rotational freedom of the dipoles, plus the coupling with the magnetic field

N pé. I’é- N
= 4 % _u.-H)\|=s¢,— H cos 6;
Z 2my - 2my sin? 6; Hi ot ,; K '
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where

N 2 2
P, Py,
Hor = L ——
ol ; <2ml 2my sin? 9,)

L

is the rotational part of the Hamiltonian, with (6;,¢;) the angles determining the
position of the i-th dipole in the phase space and (pg,, py,) the associated momenta.
The partition function for the system is

2
6; [

1 N —ﬁ):l 1<2m mﬂ,iHcmO)
ON(T.HN) = [ (Hdpe,.dp@de,-d«p,-) o
i=

and satisfies Qn (7, H,N) = QY (T, H), where

2 »2
oo too B(%Jrzm;%zequcosG)
(T,H) hz/ dpg/ dp¢/ de d¢ e .

The Gaussian integrals in pg and py lead to

2 T
O(T,H) = m;llzlk / d(j)/ PRI oSO Gin 6 46

w© g o
due to the well known formula [*2" e~ dx = \/g . We recognize in

2r T
OM(r,1) = [ do [ ePrex sinp g
0 0

the contribution to the partition function due to the coupling with the magnetic field.
In this way, we can easily compute the average value of the total magnetization

N 31nQ§M>
M—,LL<12100591>—N/€T<8H T.

Therefore, to compute the magnetization, it is necessary only the single dipole par-
tition function

21
(M) cos 6 AwkT . ﬂ
o™(1,H) / d¢/ P Gin0do = s s1nh<kT .




Problems 261

Given the magnetization, we can define the average magnetic moment for the single
dipole as

(M)
p=M (99T (3111 (4”kT sinh (”H>)> -
N oH ), o "\ uH T )) ),

wH\ KT (H
o (2) 5] -2

where L(uH /kT) is the Langevin function such that

~

(MH ) 1 % > 1 low temperatures
L2 ~
KT % % <1  high temperatures.

If N is the number of dipoles, the magnetization is

Nu low temperatures
M=Np= R
NS‘;(—TH high temperatures.
For high temperatures M — 0 if H — 0. Also, we can define the susceptibility } as
the variation of the magnetization with respect to the magnetic field. In the limit of
small A and for high temperatures it is found that

2
lim ¥y = lim <8M) ~ Nok =
TN

NIA

H—0 H—0 \ OH = O3kT

where the constant C = Nou?/3k is the Curie constant. The quantum mechanical
analogue of this situation is discussed in Problem 7.24.

Problem 7.24.

When we treat the problem of paramagnetism (see Problem 7.23) from the point of
view of Quantum Mechanics, the starting point is the relationship between the mag-
netic moment of a dipole and its total angular momentum operator J = (J;,thfz)

~

i — ouy?
I»l—gllBh

with ttp Bohr magneton and g the Lande degeneracy factor. Let us consider a sys-
tem of N localized dipoles, each one with a fixed total angular momentum equal
to J. These dipoles are placed in a constant magnetic field H = (0,0, H) (directed
along the z direction). It follows that the number of allowed orientation of the mag-
netic moment in the direction of the applied field is limited to the eigenvalues of J..
Compute the partition function and, in the limit of high temperatures, determine the
magnetization and the susceptibility.
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Solution
The Hamiltonian of the system is written as

N
A=Y b H
i=1
We know that the magnetic field is directed along the z direction. Therefore, we
rewrite the Hamiltonian as
TR i
H=— Z Hg ,LLB;
i=1

The major difference with respect to the classical case (treated in Problem 7.23)
arises from the fact that the magnetic moment in the direction of the applied mag-
netic field does not have arbitrary values. The eigenvalues for fzi Jhare —J <m <J.
This means that the partition function of the single dipole is

gugHm

J
Ql(T,H): e kT

m=—J

i.e. the integral over all the possible orientation angles is here replaced by a discrete
sum over all the possible projection values of J along z. If we set x = gugH /kT and
= ¢*, we obtain

J J J
e VD WS
m=—J m=—J m=—J m=0
7 J =1 J 11_}] 1
Lot L= T T
Z

1=+ Uy U+) _ sinh[(]—i—%)x} _ sinh[(1+ ) }
Z(1—2z) 1 —z1 sinh () smh( AT )

where we have used

i Z JrZoo m J+l +Z m 1_Z1+l
m:()Z Z m=J+1 a 1- m =0 - -z

The magnetization of the single dipole is given by

o fomor\ | | i NE
u_kT( 5 )T—gﬂB[(J—l—z)coth(J—i—z)x—2coth(2)}—g,uBBJ(x)

where we have used the Brillouin function B;(x)

By(x) = KH ;) coth <J+ ;) x— %coth (;)}
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whose low and high temperature limits are

By(x) J x= 81 5 1 low temperature

J\x)~

LI+t = g“BH <1 high temperature.
g p

If we introduce the number of dipoles N, the total magnetization at high tempera-
tures is
Ng*pugJ(J + 1)H

3kT '

M=

For the susceptibility y = (a—M we obtain the Curie law

)ix
( ) _ NgugI(J+1) %

li =1l

Hli?o HI% 3kT
with € = MUY
Problem 7.25.

Determine the canonical partition function for a quantum oscillator with the poten-

tial
2

N X A4
V=—+4oax".
g T

To determine the energy spectrum, treat o as a small parameter and use the first
order perturbative results. Finally, verify the classical limit at high temperatures.
For simplicity,use i= w0 =1,m=1/2.

Solution
The Hamiltonian of the system is

2
ﬁ:ﬁo+6ﬂ=ﬁ2+%+aﬁ4

N 2. . . . .
where Hy = p* + 7 is the unperturbed Hamiltonian for the harmonic oscillator. We
first have to determine the quantum mechanical correction to the energy eigenvalues
of Hy. To this end, it is convenient to use the creation and annihilation operators and
write
N a1
Hy=a'a+ 5 1.

The relations between these operators and the position and momentum operators (£
and p) are given by

=@"+a) p=-
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We recall that the action of @ and 4™ on the eigenstates is such that
aln) = /nln—1)
a'lny =vn+1n+1)
a'aln) = n|n)
aa‘ln) = (n+1)|n).
In perturbation theory, the first order correction to the n-th eigenvalue (due to £*) is

given by
(n|#|n) = (nl(a+a")*n).

In principle, we can expand the binomial with & and 4™, but the whole calculation
may be done in a more elegant and efficient way. We first observe that we only need
to consider those terms that possess two d and two 4'. The number of these terms
is equal to the number of couples available out of 4 elements, i.e. (3) = 6 in total:
ya'a'aa,2) a*aa’a, 3) a'aaa’, 4) aata'a, 5) aa'aa’, 6) aaa’a’. We also note that

we can combine daa’a’ and a'afaa in such a way that

aaa'a’ +a‘a‘aa=a@ a+ 1)at +a'(aa" — 1)a=aa‘aat +a'aata+ 1

where we have used the identity [@,a"] = da" —a'a = 1. To summarize, the whole
correction is such that

R 1
(n|&*n) = (n|2a"aa’a+a'aaa’ +2aa"aa" +aa*a*a+ 1in) =6 (n2 +n+ 2) .

The resulting partition function of the oscillator is

+oo [ b)reamint L)) T n4n+ i n
Q) =Y e ey (1 ) )
n=0

fr kT
(1 gaPtntd)
1—60~—— 22 | "
GE (1l
where we have set x = ¢~ /kT'. We recall some useful formulae

+oo 1
Y=
n=0 l—x

+o0 d +o0 X
' =x— X' =
ngb dx (l;b ) (1—x)2
= = = d* (= d (= x(x+1)
2.n 2 n 2 n n
nx =x"—— +)Y nd'=x"— X x— =
Ere - (B ) Bwree (Do) ot (£4) 10
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needed to evaluate the partition function

X 2
O1(T) = 11x_2?21+33

In the limit of high temperatures, we find

1 1
yRl-gr VaRl-on

so that the partition function becomes

01(T) ~ kT — 120.(kT)?

where we have neglected terms proportional to o and a7. We can also check that
the expansion of Q; (7, V) for high temperatures (i.e. the classical limit) is recovered
with the classical formalism

1.2 4

1 = _2 Feo gyt

QI(T):E[w e dep./ﬂc e T dx =~
Lofhe 2o e 2 X >
— i d Ut (1 —o— | dx=kT —120,(kT)".
27:/_00 ¢ p/_oo ¢ ( kT> * (kT)

The term % in front of the integral is due to the normalization of the phase space in
the system of units where 4 = 27. Also, to compute the integrals, we have used the

following identities
T2 /4
/ e Mdx=4/—
—oo a

T 2 1. d> [t g0 3 /m

/700 xte “xdx:;é;nﬁd—mlw e aBde:Z =
Problem 7.26.
In a very crude approximation, a biatomic molecule may be modelled with two
beads connected by an undeformable rod (see Fig. 7.5). Therefore, we have five
degrees of freedom, i.e. the motion of the center of mass (three degrees) and the
angular variables (two degrees). The partition function of this system is the product
of the one of the center of mass (that is equal to the one of a free particle) and the
contribution due to the angular part. Concentrate on the angular part and determine
the internal energy U and the specific heat C due to the rotational contributions for
a gas of biatomic heteronuclear molecules. Repeat the calculation for homonuclear
molecules. Discuss both the classical and quantum mechanical cases.

Solution
We choose as generalized coordinates ¢ = (6,¢) and associated momenta p =
(Po,py) (see Fig. 7.5). The Hamiltonian of the rigid rotator takes the form

2
L pg P

= —_— = —‘-7
21 21  2[sin*6



266 7 Canonical Ensemble

Fig. 7.5 We show a very crude approximation for a biatomic molecule: two beads (the two atoms)
connected by an undeformable rod. Such approximation allows us to determine the thermodynamic
properties and the specific heat deriving from the rotational degrees of freedom (see Problem 7.26)

with I the momentum of inertia. The partition function is

(2IkT)N
On(T.N) = QY (T) = "5~
because
9 2
1 (P i
too Foo —ﬁ<ﬁ+m) 2IkT
i hz/ dl’e/ dp¢/ o [“age =

where we have first done the integral over the momenta and then the one over the
angular coordinates. The specific heat is given by

- (), (3 (25)),

For the case of homonuclear molecules, the integration over ¢ in the partition func-
tion is between 0 and 7. In fact, when 8 — 7 — 8, a rigid rotation of 7 for the angle
¢ leaves the system unchanged since the two atoms are identical. In other words,
there is a relation between the partition functions for heteronuclear and homonuclear
molecules, that is

Qhete = 2Qhom0 .

Therefore, the energy U and the specific heat are unchanged because U =— (%)N

As for the quantum mechanical case, the Hamiltonian becomes an operator A that
is diagonal with respect to the basis given by the spherical harmonics ¥;,,(0,¢) =
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(6,9 1,m)
. I?
Hll,m) = 57 |l,m) = & |l,m)

where the energies are
(14 1)h?
21

with degeneracy 2/ 4 1, because the quantum number m does not appear explicitly
in the Hamiltonian. The resulting partition function for the single molecule is

& =

oo a2 2 1(1+1)@
0(T)=Y @I+ 1) =Y (24 1)e 7
=0 =0

where @ = h? /2Ik. For T > ® we approximate the sum with an integral and obtain

T [t T
0(T) ~ 5/0 e tdE = o

~(3),(5(52),),

that is the classical limit. For T < ® we keep only the first terms of the sum

from which

60

Q](T)%1+3€7? +5¢ T +---

leading to
0\2
C ~ 12Nk (T> e T

that goes exponentially to zero. For the case of homonuclear molecules, the wave
function has to satisfy

2 2

@) = w(—x)]

which means that the physical content (i.e. the probability density function) of the
wave function does not change when interchanging the atoms. This is nothing but
a parity symmetry. In other words, the wave function must be symmetric (even)
or antisymmetric (odd) under the interchange of the two atoms, y(x) = +y(—x).
The angular dependence of the wave function is given by the spherical harmonics

Y; m(0,¢) which, under the interchange of the atoms, behave like

Yim(0,0) = (—1)'Y,,(0,9).

The resulting wave function is symmetric (even) for / even and antisymmetric (odd)
for [ odd. These two cases are associated with two different partition functions

oo 2
01Ty = Y (2U+1)e T

1=13,...
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+

o

ven _IR?
0y (T)= Y (2+1)e
=0,

[3%]

yoen

For high temperatures, T > ©, we obtain

T

1

odd even

T)~ T)~-01(T)=—=
Ql()Ql()le()z@
that is the classical result. For low temperatures, T < @, we get

Q‘])dd(T) %3€7¥ —|—767%+ :g7¥(3—|—767% _|_)

60

QVN(T)~1+5¢~F + .

from which 200 7O\
= <T> kNe ™1
C™" ~ 180 <®>2k1ve6?.
T
Problem 7.27.

Determine the probability distribution function in the phase space for a relativistic
particle in a volume V and with energy £(p) = y/m2c* + p2c2, where p is the ab-
solute value of the momentum, m the mass, and c the speed of light. Give the final
result in terms of the modified Bessel functions

—+oo
Kv(Z)=/0 e 2 cosh(vr) dt

v—1)! rz\~V
Kv(z)%( ) (%) 7 1,v>0.

Check what happens in the limit ’;‘(—;2 — 0.

Solution
In general, the probability distribution function p(p,q) is

p(p,q) =Ae EPA/KT

Such distribution must be normalized in order to be considered a proper probability
distribution function

[ppaydpdq=a [T Ppaiq —1.

From this normalization condition we determine the constant A. For this specific
case, £(p,q) = €(p) is dependent only on the absolute value of the momentum and
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not on the spatial coordinates. Therefore, we have to set
ATCAV / PR 20 = 1.

We then use £(p) = \/m?c*+ p?c? and set sinhx = & = -£-. The above integral
becomes

+o0 +oo 2
% :47IV/ e RV m PR 2 gy — 47rV(mc)3/ 67%\/@?(% =
0 0

teo me?

4nV (mc)? / e k1 M ginh? xcoshxdx =
0
Feo me? teo mc?

4nV (mc)? (/ e*WCOthcosh%dx—/ e kT coshx coshxdx) .

0 0

These integrals may be expressed in terms of the modified Bessel functions K, given
in the text. Therefore, the normalization is such that

1 47t(kT)3VZ3 (d2K1 (z) K (z))

A e dz?
where z = ’ZCT When z < 1 << 1), we use the asymptotic property given in the
text to find 5 3
1 4n(kT 2 1 8 (kT
A 3 B2z 3

This is the same result we obtain when we consider the Hamiltonian H = pc and
impose the normalization

4w teo 8
| — 4rAV / e 7T pRdp = LAV (kT ) / e dx = XAV (KT)?
0 C

where [, x?e ¥ dx = 2.

Problem 7.28.

A gas of N indistinguishable and non interacting particles is placed in a volume
V and is in thermal equilibrium at temperature 7. The Hamiltonian of the single
particle can be written as

H:apb:a(p§+p)2,+pf)b/2 a,b>0

where p is the absolute value of the momentum and (py, py, p;) its components.
Compute the average internal energy U, the pressure P, and the chemical potential

u. Finally, verify the limit

1
- pb=2
a 2m

with m a constant with physical dimensions of a mass.
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Solution
The particles are non interacting and, therefore, the total partition function Qy is the
product of the partition functions of the single particles
0y (T.V)
ON(T.V.N) = =10
where N! takes into account the indistinguishability of the particles. For Q;, we can
write down the integral in the phase space

Ppdiq _ BPpdiq 5. p ARV [t 4
Ql(Tav):/ I;l3 qe ﬁH:/%e Bap :7}13 o e Bap pzdp

For the integral in the momentum space, we have used spherical polar coordinates
and integrated over the whole solid angle 47. Introducing the new variable x =
Bap?, we easily obtain

() (i) e

and the integral for Q| becomes
3
4nV (1 \? [T (-b)
TV)=— | — b e Fdx.
\(T,V) W(aﬁ)/o 2o gy
We can use the definition of the Euler Gamma function

—+o0
/ K le ™t dx=T(y)
0

to simplify the integral as

o= (3)' 1)

The average internal energy U is

aanN> <8an1>
U=- ~—N
< Jp V.N Jp 1%

and, since Q) is written as Aﬁ’3/ b with A independent of 3, we find that

 3NKT

U
b

For the pressure, we can write

p_ N (9nQ1\ _ NkT
B\ 9V ), V'
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Finally, for the chemical potential, we know that

771 BanN)
= ﬁ( IN )7y

and, using the Stirling approximation (InN! ~ NInN — N), we obtain

1 <8(Nan1NlnN+N)> 1 <N> 1 <th3(aﬁ)3/b)
TV

01

~7B IN =g B "\ anvr(3/b)

B B

We note that when a = ﬁ and b = 2 we obtain, as expected, the results for an ideal
2
classical gas with Hamiltonian H = ..

Problem 7.29.

Consider N distinguishable and non interacting particles. The single particle energy
spectrum is &, = ne, withn =0,1,2,..., 400 and degeneracy g, =n+1 (e >0isa
constant). Compute the canonical partition function Qy, the internal average energy
U, the energy fluctuations

((AE)*) = (E?) — (E)?
and the specific heat C.

Solution
The particles are non interacting and distinguishable, that implies

On(B.N) = O (B)

where Q) () is the partition function of the single particle
+o0
01(B) =Y. (n+1)e P

n=0

that we write as the sum of two terms
oo foo
01(B) =Y nePeny Y o Pen,
n=0 n=0

The first term on the right can be written as the derivative of the second term

_ d & —Ben o —Ben
Ql(ﬁ)__d(ﬁg)r;)e +n;06

so that we simply have to compute a single sum

oo 1

—Ben _
e = 0.
ng() 1— eiﬁg
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The final result is

d 1 1 e Pe 1
%) =~4pe) (1_e—ﬁe> TP T (1o Pey T oBe
1
(1—ePep

The energy is evaluated as
_ 81nQN _ dlIlQl(ﬁ)i 2Ne
V- ( ap >N N dp CePe— 17
As for ((AE)?), we observe that
<(AE>2>_1<82QN> _(1@)2_9(19%) - ()
_QN 3B2 N QN aB N_aB QN aB N_ aB N

and obtain

2Ng2ePe

(ABP) = T

The value of the specific heat is related to ((AE)?) in the following way

co(2U) _ 1 (U ~ ((AE)?)  2NeZePe
\oT )y kT2\9B )y  KT?  (ePe—1)2%T?’

Problem 7.30.

An ideal classical gas is in thermal equilibrium at temperature 7 and is formed by
N independent indistinguishable molecules in a spherical container of radius R. A
force is directed towards the center of the sphere, with the following potential

V(r)=ar a>0.
Find the pressure P and the particles density close to the surface of container.

Solution
Let us start from the Hamiltonian of the single particle
2
p
H=—+V
2 TV

and compute the total partition function

On(T,R,N) = %QZIV(T,R)
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where
1 1 +oo 3 R
01(T,R) Zﬁ/e’ﬁHcﬁpd%I: 3 {/ eﬁ”z/zmdp} 47t/ e Burgr =
—co 0
1 /2nm\>/? ‘R
— [ = 47r/ r2e Borgy,
(7))

We now set Bar=x, dr = Biadx, so that we have

1 (2zm\Y* am  [BoR ,
Q] (TyR) = h73 (ﬁ) W/O Xze xd.x.
The integral in x can be done

BaRr

BoaR
/ xetdx = [efx(—x2 -2x-2)],
0

from which we obtain the partition function

m\ 372
Qi (T,R):hi3 (273> %(f(aﬁle)ze-“ﬁk’ —2(atBR)e” PR ¢ @PR 2) :

Once we know the partition function, we can compute the pressure as

p_ (9F\ _N_1 (dIng
~ \9V/)py B4nRZ\ OR /),

dlnQ;\ R2(af)3e PR
< IR )T ~ (=(aBR)2e PR —2(qffR)e~ PR —2¢—aBR 1. 2)

where

so that

_ NkT (af)3e PR
~ 4n (—(aBR)2e~ PR —2(afR)e PR —2¢-0PR 1 2)’

From the equation of state for the ideal gas P = n(R)kT, we extract the density n(R)
close to the surface of the container

N C

") = ax ((aBRYe PR 2(apR)e PR —2e PR 2]

Problem 7.31.

An ideal classical gas is formed by N indistinguishable non interacting molecules.
Each one of the molecules is localized in space and has an electric dipole equal to d.
The whole gas is in thermal equilibrium at temperature 7" and is under the effect of
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a constant electric field with intensity E directed along the z axis. The Hamiltonian
of the single dipole is

1, 1 2 7
H=—pyg+—-—p; —dEcos0
211)9 2Isin” 6 Pe

that is the rotational energy plus the coupling with the electric field. In the above
expression, / is the momentum of inertia of the molecule, (0, ) its angles in spheri-
cal polar coordinates, and (pg, py) the associated momenta. Prove that the partition
function of the single dipole can be written as

2Isinh(BdE
Ql(TaE);;lﬁz(ldiE)'

Then, defining the polarization as P = %(J cos 0), show that

P= g (Jcoth(ﬁJE) - B]E>

where (...) is the average over the single particle statistics. Finally, in the limit of
weak field (BdE — 0), show that the dielectric constant €, defined by

eE=E+P

. 72
isequalto € = g+ %.

Solution
The partition function of the single dipole can be written as

])2 Pz ~
1 b 2 +oo “+oo 7ﬁ<2—?+ﬁdecose>
T,Ezi/de/ d/ d dpye .
Q(T.E) 4m2h* Jo 0 ¢ L Pef_ aPe

The integral in d¢ produces 27. Also, we can perform the Gaussian integrals in dpg

and dp, which produce /27l/p and \/27lsin? @/ respectively. To summarize,

we obtain
! . BAE cos 6
QI(T7E>:ﬁ/O sinfe *7do

which we can write, by setting x = cos 0, as

I +1 - I - -
- BdEx g, _ BdE _ —BdE
0ITE) = 1o [, P s @ )
that is -
2Isinh(BdE)

Q) ==
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As for the second point, we note that

_ e PHcos0dpdOdpyd 1 /01
<dc0s6>:dje cgs 9 Py p9:< an)
Je PHdgdOdpydpe B JE ),

and we obtain |
(dcos8) = dcoth(BdE) — BE

In the limit x — 0, the function cothx is expanded as cothx ~
it is possible to verify that, in the limit BdE — 0, we get

+ ’3—‘ +.... Therefore,

1
X

JN( L BPE 1\ _ NBLE
“Vv\BE' 3 BE) 3V

and, hence

&E+P=¢gE+ =&+ ——

72 72
NB&E NBAN , _ i
3V 3V

72
with € = g+ %.
Problem 7.32.
Consider an ideal gas of N non interacting indistinguishable particles placed in a
volume V. The single particle Hamiltonian is H = p?/2m, with p the absolute value
of the momentum and m the mass of each particle. Prove the following relations

S(T,V,N) _ln<Q1(T,V)) T (é?anl(T,V)>V+1

Nk N aT

S(.PN) _ (Ql(T,P,N)> r (aanl(T,P,N)>
Nk N oT PN

where S is the entropy, P the pressure, and Q; is the canonical partition function of
the single particle.

Solution

Since we are dealing with non interacting particles, the total partition function of
the system Qp can be written in terms of the single particle partition function Q; as

oY (T.V)

ON(TV,N) = ==
where N! accounts for the indistinguishability of the particles. From the definition
of the free energy F', we also know that ST = U — F, where U is the internal energy.

The relation between the free energy and the canonical partition function is

F(T,V,N) = —kT InQn(T,V,N) = —kT (In QY (T, V) —InN")
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where, using the Stirling approximation for the factorials, we find

F(T,V,N)=—kT(NInQ(T,V) —NInN +N)
that implies
T,V
F(T,V,N)=—NkTIn (QI(N’)> — NKT.

The average energy in terms of the partition function is

aanN> 2<aanN>
U=- =kT
( aﬁ V.N T V.N

and, using Qy(T,V,N) = QY (T,V)/N!, we easily obtain

8an1(T,V)>
_— V.

= NkT?
U=N. ( o7

Combining all these results, we get

S(T,V,N) 01(T,V) dnQ(T,V)
——— = =In|{ =—F—= T(———= 1.
Nk ! ( N )7 ar ),

Furthermore, for an ideal gas of massive particles (see Problems 7.1 and 7.19), we

have

2amkT \ >/
Ql(T,V):V< Z; )

and PV = NkT. Combining these results, we can rewrite the partition function of
the single particle in terms of 7 and P

O(T,P,N) =

TNk [ 2mmkT \ >
P n2

and therefore

dInQ(T,V)\ _ (9dInQi(T,P.N) 1
oT v oT onv T

The previous equation for the entropy is then equivalent to

S(T,PN) (Ql(TﬂN))+T(3an1(T7P,N)>
PN

RASELELAPA
Nk n N oT

that is the desired result.

Problem 7.33.
Consider a statistical system with a fixed number of particles and prove the Gibbs-
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Helmbholtz equation

H=®+TS=-T? {’Q(Z);T)L

with H the enthalpy and @ the Gibbs potential. Finally, substituting in H and @+ T'S
the corresponding expressions in terms of partition functions, verify that we obtain
an identity.

Solution
Let us recall the definitions of the thermodynamic potentials

H=H(S,P)=U+PV
F=F(T,V)=U—-TS
® = D(T,P)=F+PV.

From the second equation we obtain U = F + T'S. Substituting this result in the
Gibbs potential, we find

P=F+PV=U-TS+PV=H-TS.

We also know that
d®d = —-SdT +VdP

0P
SZ‘(ar)p

H=®+TS=d-T (3?)}):—# F(?;T)L.

from which

and

In the context of the canonical ensemble we can write

F = —kTInQy
N oF . 8(T1nQN) N 811‘1QN
= (o), =[], e (57),

- JoF - 8anN
P~ (), (5),

U= kg2 (20
T ),

Therefore, we obtain

dlnQOn dInQy
_ _ 2
HU+PVkT( =7 >V+VkT< ~ >T
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& =F+PV=—kTInQy +VkT <aanN>
T

av
from which we see that the relation H = & + 7'S is verified.

Problem 7.34.

A three dimensional gas is in thermal equilibrium at temperature 7 and is char-
acterized by N indistinguishable and non interacting ultrarelativistic particles. The
Hamiltonian of the single particle is

H = pc

with p the absolute value of the momentum and c the speed of light. Write down
the canonical partition function for this system. Also, find the density of states
g(E,V,N), verifying explicitly that

as
IE )y

where S = klng is the entropy and U is the average energy such that U = (E).

E=U

Solution
The particles are non interacting and the canonical partition function Qy is written
as
oY(r.y)
N!

where Q;(7T,V) is the partition function of the single particle expressed as

On(T.V,N) =

" Bpd? Y 17
Ql(T7V)=/ - p e Preap.
h3 o Jo

We can solve the integral exactly to find

N
On(T,V,N) = [8 V<];1Z> ]

The density of states is the inverse Laplace transform of the partition function

(E VN)—I/ﬁ,HwQ (T,V,N)ePEdp =
8 AR} _27” B/—ioo N\1L,V, e —

1 +°° 1 ! -0/
- - (B'+iB")E 73
sw | 0 (g V) e

where 3’ > 0. The variable § = '+ if” is now treated as a complex variable and
the integration path is parallel and to the right of the imaginary axis, i.e. along the
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straight line Re(f) = B’ = const . We can make use of the general result

1 ﬁlJ,»loo eﬁx x(X
— L _gp="" x>0
27:;'/3/_,-00 gt =g 2

and set &« = 3N — 1, x = E to obtain

1

$(EVN) = Sian = (

N
87“’) 3N
h3c3 '

In the thermodynamic limit, N > 1, and we can use 3N instead of 3N — 1. Thus, the
entropy (see also Problem 6.19) is

S = 3NkInE + const.

where the constant does not depend on E. This means that

S\ _ 3Nk
OE)yy E

At the same time, we can compute the average energy from the canonical partition

function as
1
U=— (‘9 “QN> — 3NKT
V.N

Ip

which can be substituted in the previous expression to get

o
JoE VN
Problem 7.35.

Characterize the energy fluctuations for a statistical system composed of a fixed
number of N distinguishable particles with two energy levels, € and &, with de-
generacy g1 and g; respectively.

E=U

Solution
From the canonical ensemble we know that the fluctuations of the energy are given
by

((AE)?) =kT?C

where C is the specific heat that can be computed from the partition function

2 N N
QN(T,N) = Zgre_ﬁgr — (gle—ﬁ&‘] +g2€_ﬁ82) .
r=1

The average energy is computed as
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U—_ (31HQN) _ 818 + 2896 P4
N

B B g1+ gePA

with A = & — €. We therefore find the specific heat

C_(W> __1(811) _ N siga?e Pt
IT )y KI2\OB /)y KT (g +greBa)?
leading to

g1g2A%e P4

AE)) =N
((AE)7) (gﬁgzef[m)z

that is the desired result.

Problem 7.36.
An ideal gas with N non interacting indistinguishable particles with mass m is lo-
cated in a spherical container with radius R. The system is subject to an external
force with potential

V(r)=ar o>0

with r the distance from the center of the sphere. Find the partition function for the
system in thermal equilibrium at temperature 7" and the pressure as a function of the
distance from the center. At some point, a small hole with area o is pierced on the
surface of the container, perpendicular to some given direction (say x). In the limit
of external weak field (o¢ — 0), find the pressure on the surface of the container and
give an estimate for the x momentum component transfered in the unit time through
the small hole at constant T'.

Solution
The partition function of the single particle is

3.3 2
0:i(T) :/d %l FePhupar,

With the help of spherical polar coordinates d°q = 47r?dr, and the substitution

x =17, we rewrite Q; (T) as

4 2 R3 4 R
Q1 (T) = ?ﬂ/eiﬁ%" d3p/ eiﬁaxdx = ?ﬂ/173/ e*ﬁaxdx
0 0

h

where we use the characteristic length A = ———
2wmkT

gral over momenta. The final result is

coming from the Gaussian inte-

_ 4mkT

0 (T) _ Wii%l _e*BOCR3)
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that, combined with the expression for the total partition function

N
QN(T7N) = QIN('T)

is the answer to the first question. As for the second point, we can look at the local
chemical potential which is given by

3
Hior = MHig + O

where
Lig = kT In(nA>)

is the chemical potential of an ideal free gas with density n and Hamiltonian
H = p?/2m. Due to the presence of the potential V(r), the system develops an in-
homogeneous density n(r) depending on the radial position r. When moving from
r = 0 to a generic r, we can impose the condition that p,,, stays constant and find

kT In(n(r)A*) + ar® = kT In(n(0) A°)

n(r) =n(0)e Por.

In order to find n(0), we impose that the integral of n(r) over all the domain is
exactly equal to N

R R
47r/ rzn(r)dr=47rn(0)/ P e Ber gy — TKT1(0) (1-eP®) =N
Jo Jo 3o

that is

from which

and we find
3aN 1

n0) =yt | —e—Bar®

To compute the pressure, we use the ideal gas law P(r) = n(r)kT to find

30N e Bor’
PO = S T par

When a — 0, the numerator is getting close to 1 while the denominator to SR> =
aR3 /kT. We know that 47R> /3 is the volume of the sphere and we find

 NKT
==

P

As for the effusion problem, the transferred momentum M can be found using simple
considerations (see also the section on kinetic physics, Problem 9.3). If we consider
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that the surface of the hole is perpendicular to the x axis and we impose that the
transferred momentum obeys a Maxwellian distribution function

m \32 _ig.2 lg. 2 1g. 2
f(v) —n ( ) e—zﬁmvx—zﬁmvy—jﬁmvz
2nkT

we can write

M=ocm f)vidy =
Vx>0

m 3/2 1 2 2 1 2 1
,7[3ms / 77[3mv)C 2 _ -
omn (2 k ) <L e ds) < 0 e devx> = 26nk1

where, in the limit & — 0, the density n = N/V is homogeneous and does not de-
pendent on the radial position.

Problem 7.37.

A statistical system is characterized by N distinguishable and non interacting atoms
in thermal equilibrium with a reservoir at temperature 7. Each atom can occupy the
energy levels E, = (n+1)e (¢ >0, n=0,1,2,...,40) and the degeneracy of the
n-th level is equal to g, = A", with A > 1. Compute the canonical partition function,
the specific heat, and analyze the result at low temperatures. Is there any temperature
T, above which the canonical description is not well posed?

Solution
The total partition function is

On(T,N) = 0 (T)

where Q) is the partition function for the single atom. A direct calculation can be
performed with the result

O (T) = JFZ"" },"e*ﬁ(’pfl)s — e*Bf‘? Z‘” e*(ﬁeflnk)n
n=0 7

Jr
n=0

that is

The previous calculation is meaningless if we have
elnl—ﬁs Z 1

thatis 7T > T, = ﬁ, where this T, is a characteristic temperature above which our
statistical treatment is not well posed. When 7' < T;., we can define and compute the

average energy as
dln On Ne

U=— e

B )y 1-Aebe
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and the specific heat as
c_ (U _  NAe e Pe
\9T )y kT2(1—AePe)2’
In the limit of low temperatures the specific heat goes to zero

lim C = 0.
T—0

Problem 7.38.
Consider an ideal gas formed by atoms of type A and atoms of type B. These atoms
can bound to each other and form the molecule AB, according to the reaction

A+B << AB

taking place at temperature 7 in a volume V. If Ny, Np, Njp are the numbers > 1)
of particles for the species entering the reaction, show that

Nap _ fan
NaNp  fafs

where fx (X = A, B,AB) is the single particle partition function. Treat all the atoms
as indistinguishable.

Solution
The equilibrium condition is given by the equality of the chemical potentials

Ha + UB = UAB

where [y is the chemical potential of the system X. From the canonical ensemble

we know that 1m0
nQx
= —kT
Hx ( dNx >T,v

where Qx (T,V,N) is the partition function. We find
<8anA) +((9an3> _(8IHQAB>
INa TV INp TV INag TV .

v (T.V)
Ny!

and we use the Stirling approximation for the factorials

In <fA> +1n (fB) =In (fAB)
Na Np Nap

We recall that
QX(Ta V7 NX) -
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L <

Fig. 7.6 An ideal classical gas formed by N molecules with mass m is placed inside a cylinder
with radius R and height L. The cylinder is rotating with angular velocity £ around its symmetry
axis. The particles density is inhomogeneous in space and is studied in Problem 7.39

leading to
Nap _ fas

NaNp  fafs

which is the desired result.

Problem 7.39.

Let us consider an ideal classical gas formed by N > 1 indistinguishable particles
with mass m placed in a cylinder of radius R and height L rotating around its axis
with angular velocity £2. The resulting Hamiltonian of the single particle is

= %pz — %mﬂzrz.

with p the absolute value of the momentum and r the distance from the rotation
axis. The whole system is in equilibrium at temperature 7. Using the canonical
ensemble, compute the gas density in the cylinder and discuss the limit Q — 0.
Finally, determine the pressure on the surface of the container.

Solution

We use cylindrical coordinates (r,z,¢) and start from the Hamiltonian of the single
particle H (see Fig. 7.6). The presence of the term %m.er2 in the Hamiltonian
produces an inhomogeneous density of particles throughout the cylinder. The local
density n(r,z,¢) can be written as

JePidp
0:1(T,R)

with Q1 (T,R) the partition function of the single particle. We remark that n(r,z, )
is normalized in such a way that

N:/OLdz/OMd(])/ORn(r,z,d))rdr.

n(r,z,¢) =N
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The single particle partition function is

1 )2 L 2T R Q22
0:(T,R) :—3/67 57na’3p/ dz/ d(i)/ reP™ 5 dr =
h 0 0 0

2mm\ R 02,2/ 2em\*? 27L [ pno’®?
(//ﬂﬁ) 27TL/0 reﬁm / dr = (]/ﬂﬁ) W (e 2 — 1) .

From the previous expression we find

NmQ2B oBmQ*r /2
n(r,Z,(P) - n(r) - 27t eﬁmQZRZ/Z -1 .

The dependence of the density on the local coordinates is only in the radial distance
r, as it should be expected because the term m£2r? /2 (that is responsible for the in-
homogeneity) is only dependent on r. The same result can be obtained by imposing
a constant local chemical potential in the cylinder (similarly to what we have done
in Problem 7.36). The local chemical potential is defined by
m2r?
Hror = Hia — 2

In the above expression, L, is the chemical potential of an ideal gas with density n
and Hamiltonian H = p?/2m

ig = kT In(nA?)

where
h

\2nmkT

is the thermal length scale. The density n» must depend on r in order to guarantee the
constancy of Uror, i.e.

mQ2r?
2

KT In(n(0) A3) = kT In(n(r) A%) —

from which we find
ﬁm92r2
n(r)=n(0)e 2

The normalization n(0) is found by imposing [ n(r) rdrd¢ dz = N, yielding the very
same result previously found. The limit £ — O corresponds to the case where the
density becomes homogeneous. This can be seen by Taylor expanding the exponen-
tial functions in the density for Q — 0

mQ2r?
ey (1522 009)
2rL (ﬁmng2+@(Qz))
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to find
N N

")~ TR =y

with V = nR’L the volume of the cylinder. As for the pressure, it can be derived
directly from the total free energy F = —kT In Qp, with the total partition function

N
written as Oy (T,R,N) = 2 }VT!’R>, and the definition

JoF
P=- (av)m

Differentiation with respect to V is connected to differentiation with respect to R as

% = ﬁ%, so that we find

ﬁm.Qsz

_ NmQ? e 2

an(,;szRz >
e 2z —1

that is the equation for the ideal gas, P = n(R)kT, with the local density in R

R _ngzﬁ eﬁm_QZRZ/z
n(R) = 2nL  eBmQIR/2 _ 17

Problem 7.40.

Using the first law of thermodynamics, write the chemical potential in terms of en-
ergy derivatives. Repeat this computation writing it in terms of entropy derivatives.
Using the Sackur-Tetrode formula for the entropy (see Problem 6.26), show that
these two formulae for the chemical potential lead to the same result that is found
using the formalism of the canonical ensemble.

Solution
The first law of thermodynamics, including a chemical potential, can be written as

dU = TdS — PdV + pdN.

Differentiating with respect to N, keeping S and V constant, we get

_(9U
H=\on ),

Let us now rewrite our first equation as

du P u
dS=—+ —=dV — =dN.
S T JrT T
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At the same time, differentiating with respect to N, keeping V and U constant, we
get
K_ (85)
T JdN vy

To compute these derivatives we will need the Sackur-Tetrode formula for an ideal
gas in a box of volume V

2\ 3/2 3
Sw,v,m:Nk{S_m[(W) N3

2 m VU%

and the associated energy

3nr?\ N3
U(S,V,N) = () e,
m V3

An explicit computation gives

3/2v773/2
_KB_ (“) — kIn <m2> VUS
r IN)yy 3nh N2

From the first law of thermodynamics we find

oU 3T\ N3 s 5 22U
T = == ) —e3kr 3 — =
S ) yn m )3 3Nk 3Nk

from which we find U = %NkT which can be plugged back in —% to recover the
chemical potential written as
3
1% <ka > 2
N \2n7? '

As for the expression of U in terms of energy derivatives, we get

<aU) (571712) (N)§ a5 s 28 (37m2>1v§ a5
H=\|== = — — e3Nk 3 — 5 _ 7263Nk
IN /sy m 14 3N’k m ) y3
2 _1 _1
632]5 -3 717712 5N%_2SN 3 le_%U SN%_ZSN 3 _
v <mk7)3
N \ 27h?

which coincides with the expression of ( in terms of entropy derivatives. It is now
left to check these formulae against the result that can be found using the canonical

U =—kTIn

Wi

3

2U 3nh?\2 N3
i (”) " | = 4T
3N VU2

m
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ensemble formalism. The single particle partition function is

(T[98

L[ g V([ g NV :
Ql(T,V):ﬁ/e B2mcl3pd3q:ﬁ (/m e ﬁZmdp) :h—3(27rka) .

The N particles partition function is readily obtained

Ql(TvV)

On(T,V,N) = N

from which the free energy F = —kT InQp follows. At last, using the Stirling ap-
proximation (N! ~ N¥e™N), we get

_ oF - O\
u= (a]\’)T’V ~ —kT In <N> = —kTIn
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Grand Canonical Ensemble

Problem 8.1.

A gas is in contact with a surface. On the surface we find Ny localized and distin-
guishable sites adsorbing N (N < Ny) molecules of the gas (each site can adsorb
zero or one molecule of the gas). Find the grand canonical partition function of the
system, and determine the chemical potential as a function of the average number
of particles (N) which are adsorbed by the surface. You can think that the canonical
partition function of an adsorbed molecule is a function only of the temperature,
Q(T), and that all the adsorbed molecules are non interacting.

Solution

Due to the independence of the molecules, the canonical partition function for N ad-
sorbed molecules is the product of N single molecule partition functions. Moreover,
being the sites localized (distinguishable), we have to determine all the possible
ways to select N sites out of the Ny available. This provides the following canonical
partition function for the N adsorbed molecules

Np!
T,N) = ———— T).
V(TN = e =@ (1)
We now determine the grand canonical partition function summing over all the pos-
sible values of N, i.e. N =0,1,2,..., Nyg. The result is
No

ZNi,(NO_ )ZNQN( )

No
T,2)=Y NON(T.N)=
N=0

with z the fugacity. The above expression can be directly summed using the binomial
formula

No

2(T,z) = ZN'(N zNQN
No N()' NN N
Zm(w( PNV = (20(T) + 1)

Cini M., Fucito F,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_8, © Springer-Verlag Italia 2012
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The average number of adsorbed molecules is

Cfom2\ T N
<N>Z( 7z )TA“4XT»+1leWT»+1

that implies
4=
0(T)  (N)

or, alternatively
B _(N)
0(T) = PHO(T) =

Therefore, the chemical potential can be given as a function of T, Q(T), (N) and Ny

TN
“‘kT1<anM><N»)'
Problem 8.2.

Let us consider a gas of N molecules in a volume V at temperature 7" with mass m

and fugacity
N
Z(T,V,N) = (V> A3

with A = Znhka and / the Planck constant. Some of these molecules are bound to

some independent attraction sites (each site cannot have more than one molecule),
and the total number of these sites is Ny. The associated canonical partition function,
QO(T), of the site-molecule system is made of the bound state formed from the site
and the molecule (see also Fig. 8.1). Using the grand canonical ensemble, compute
the average number of molecules for each site, together with the associated proba-
bility to have zero and one molecule respectively. Comment on the limit where the
molecules density goes to zero and the temperature is high.

e
) @
..000 )
)
22_&}‘2 2
< 22)’

> \ 2 2
A\
Attraction sites

Fig. 8.1 A molecular gas is in contact with a wall where Ny independent attraction sites are lo-
calized. The average number of adsorbed molecules can be computed using the grand canonical
ensemble (see Problem 8.2)
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Solution
The grand canonical partition function for the single site is

e@site(Ta Z) =1 +ZQ(T)
and the probabilities to find O or 1 molecule in the site are evaluated as

- 1 z0(T)
~ 1+20(7) il

1 +z0(T)

From the probability, we compute the average number of molecules in each site

P

! zQ(T) 1
N site — Pn = =
(N) ;)n

1+20(T) z'0Y(T)+1
meaning that the total average number of molecules adsorbed by the Ny sites is

No

Nisites =No(N)sive = 1577y 7

The same result is obtained by considering the grand canonical partition function
of the Ny sites (see Problem 8.1). Considering the fugacity z = (%) A3, where A =
h(2mmkT)~'/2, we see that only in the limit of small density and high temperature
(i.e. z < 1) all the sites are empty

lim <N>sites =0.

z—0
Problem 8.3.

Consider a solid-gas (s-g) system in equilibrium. Compute the variation of the pres-
sure with respect to the temperature using the Clausius-Clapeyron equation

dP\  Ah

dT ). TAv
with Av = v, — vy and Ah = hg — hy the variations of the specific volumes and en-
thalpies respectively (i.e. volume/enthalpy for a single particle). Consider that the

specific volume of the solid is small, so that vy < v, and assume that the gas is well
approximated by an ideal one. Then, define the specific heat at the coexistence of

the two phases, c. =T (g—;) , and prove the following relation

e[V (4P
ce=cr=i\or ), \ar ),

with cp the specific heat at constant pressure. In the above expression, the subscript
¢ means that we evaluate the different quantities on the coexistence curve for the
solid-gas equilibrium. To answer the first question, approximate the solid as a col-
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lection of Ny > 1 distinguishable three dimensional quantum harmonic oscillators.
To answer the second question, choose the equilibrium pressure as a function of the
temperature, P = P(T), justifying this choice.

Solution
If we assume that the change in the volume is mainly due to the gas, we find that

Avmvg:k%and
dP\ _ PAh
dr ).~ kT*’

We now need to compute both the solid and gas enthalpy from which we can extract
Ah. The grand canonical partition function of the gas is given by

+oo +o0 2. Vo F(T N .
D(T,Vy,24) = Z Z?QN(T,Vg,N) — Z % — Ve f(T)
N=0 :

N=0

N
where Qn(T,V,,N) = Wg";\(,!T)) is the N particles canonical partition function (see
Problem 7.1) and

f(T)y=n" (27rka)% 2= oM/ kT

where L1, is the chemical potential of the gas. The pressure is found by taking the
logarithm of the grand canonical partition function

T
P= k—an = zokT f(T)
Ve

and for the average number (N,) and average energy (Uy,) we get
dln2
Ny =7z < ) ) = 2gVe f(T)
g /1y,

U= — (8(1;;@) = 2 VlkT2 £ (T).
Vezg

As for the solid, we can model it as a system of three dimensional quantum har-

monic oscillators which are distinguishable and localized in a volume V. The grand

canonical partition function is

foo foo too . N\ Y
2Tz)=Y (20T =Y |z <Zeﬁh‘°<”+z)> = (1—2,(T))""
N=0 N=0 n=0

where

oir)= (2amn(22)) "
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The resulting pressure (Ps), average number (N;), and average energy (U;) are

k k
g:%lngz—%ln(l—z&(ﬂ)
_ (92N _ ze(T)
Ns_ZS( 9z, )T_ 1—2z,0(T)
o (alnfz) _ 2kT20/(T)
§ ap 2 B 1 —z0(T) .

Since z; and T are intensive, the pressure of the solid goes to zero when Vi — oo,
Moreover, the equation for N, is equivalent to

2g =Ny / (Vo f(T))
while, from the equation for Ny, we have
N 1

~] — —
~

s T)=
%9(T) Nyt 1 N,

so that z; = ¢~!(T) in the limit N; > 1. The equilibrium condition implies the
equality of fugacities (z; = z4)

Ny P f(T)

Ve kT 9(T)

This justifies the choice P = P(T) to be used later. Let us now determine the varia-
tion of the specific enthalpy. We know that

Ug = Zngszf (T)= Nngzf (T)/£(T)
from which we extract the enthalpy for the gas
NekTf (T)

f(T)

where we have used the ideal gas law. In a similar way, the enthalpy for the solid
reads

Hy = Uy + PV, = + N kT

(T
Hy=U;—kTIn(1—2z,¢(T)) = NXszd(;((T; —kTIn(1—z,9(T)).
Therefore, we can evaluate Ah = % — % which is the specific enthalpy variation.

As we noted above, the choice P = P(T) is justified by the condition of thermody-
namic equilibrium and, when looking at the entropy density s as a function of the
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pressure P and temperature 7', we have

Tas —r (% +Tﬁ PN 7 (22 (4
“="\or oT op) \ar ).~ """ \or ), \ar ),

where we have used the Maxwell relation

s\ (2

or),  \dT ),
The latter can be derived from the differential expression for the chemical potential
du = —sdT +vdP, that implies

gmN _ omy _,
T ), oP ),

If we differentiate the first expression with respect to P, and the second with respect
to T, we find the aforementioned Maxwell relation. To compute c., we first need to

compute cp
oh
w= ( T ) P

with i = hg + hg. Since h, and hg have been computed before, cp is known. More-
Jdvg

over, (g—;) ~ (—)P = k/P, because the ideal gas law is valid. Finally, using the

aT
Clausius-Clapeyron equation for (fj;) we know all the terms entering the defini-

tion of c,.

Problem 8.4.

Consider a three dimensional classical gas of independent and indistinguishable par-
ticles with a single particle Hamiltonian H(p,q) = F(p), where p and q are the
momentum and position of the single particle. Prove that, in the grand canonical
ensemble, the probability to have N molecules

NOn(T,V,N)

P(N) = 2(T,V,7)

is a Poisson distribution. In the above expression, Qn(T,V,N), z and 2(T,V,z) are
the canonical partition function of N particles, the fugacity, and the grand canonical
partition function respectively. Determine the fluctuations ((AN)?), verifying that
the correct result for the Poisson distribution is recovered, i.e. that the fluctuations
coincide with the average value.

Solution
The definition of the grand canonical partition function is

2(T,V,z) = ZZNQNTVN)
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with Qn(T,V,N) the canonical partition function for N particles

1
On(T,V,N) =i /e_ﬁHN(P]71’27---741427---) dPNpdNg =

1 - Moo 1
NN (/6 BF(">d3pd3Q> = QN (TV) = (VAT

where Hy is the total Hamiltonian (the sum of the single particle Hamiltonians), and
f(T) is a function of the temperature coming from the integral in the momentum
space: since the exact dependence on the temperature does not play a relevant role
in what follows, we will keep it in a very general form. The average number of
particles is

S NON(TVN) . (9In2 (2 & V)N B
W= L = o v N_Z( 2 )T,V_Z<azl (Z N1 ))TV_

N=0 N=0

0
(Gvsmn) =wvr
< TV
where we have used that

Jio @)™ — V(D)
= N!
The above expression reveals the probability P(N) to find a number N of particles
P(N) = NON(T,V,N) _ @VF(T)Y o VAT) _ <N>Nef<zv>
2(T,V,z) N! N!

which is exactly a Poisson distribution. The fluctuations in the grand canonical en-
semble are

(AN) = (V) — (N)? = (‘@)TV — WAT) = (N).

It is instructive to show that we obtain the same result when evaluating ((AN)?)
with the probability function previously found

(AN =(N?) — (N2 = Y N2E (V)2 =
N

N=0 :
ey e*<N> NV +oo e*(N) NV
NZ]N2N<!>_<N>2:NZIN(N<1)>!_<N>2:
ST I LV M <Rk A
D I M T
T e~ N (NN +oo N—1
EZ(N_l)(IV—Ql\I;!+6<N><N>N; (<11vv>_1)!_<N>2_
e NN
e N Y +(N) = (N)? = (N)> + (N) — (N)? = (N)
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where we have used the series expansion of the exponential function

400 o +oo
AN AN—I AN—2
d=Y =L (N—-1)! &= (N—2)!
N=0 N=1 N=2

Problem 8.5.
Consider a reaction involving proton (p), electron (e), and hydrogen (H) gases

pte—H

taking place in a volume V and in thermal equilibrium at temperature 7. Let us also
assume that the gases may be treated as ideal classical ones of non interacting par-
ticles, taking into account only the spin degeneracy. Find the electron density 7, as
a function of the hydrogen density ny and the temperature 7', assuming the condi-
tion of zero total charge. As for the energy spectrum of the hydrogen atom, consider
only the ground state with energy —Ey. Also, you can ignore the electron mass as
compared to the one of the proton, so that the hydrogen mass is well approximated
by the proton mass.

Solution
The grand canonical partition function for a classical ideal gas with independent
particles is

oo BUN AN
2(T,v,z)=Y e 'Q — 0
= N

where Qg is the partition function of the single particle and z = ePHits fugacity. We
then use the result for the ideal classical gas (see also Problem 7.1) and add the spin
degeneracy (g) as a multiplicative factor

2mkT ) 3/2

Ql(Tvv) :gV ( h2

The average number is

dln2 2amkT \ >/
<N>=z< . ) =zQ1=ZgV< = )
TV

dz h?

so that we find

3/2
g M) 200 g (27
vV oV BiZ

This leads to the following result for the electron (g = 2), proton (g = 2), and hy-
drogen (g = 4) densities
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2wm 3/2
n, = 2ePHP <Bh2p>

Bh

where we have written the hydrogen energy as the one of the ground state (—Ey) plus

32
ny = 4ePri PEo (anm,,)

the kinetic energy of the proton (2]:THH ~ %). The equilibrium condition imposes
MH = e+ Hp
so that, using the previous expressions, we can write
n, = 2&3/263(#11*#;:)

where A, = zg;;"

. The ratio 24 is
np

nHo_ 2 ePE0 B (e —1p)
np

and, hence, eP(Hi—Hp) = 2”7”e’ﬁE0. Plugging this result back in the relation for r,,
we get '
Ne = 13/2”—”(“0.
np
The condition that the total charge is zero implies n, = n,. This allows to write the
previous expression as

32 _
nzan),g/ e PP

from which we extract the desired result
Ne = \/nng/‘te_BEO/z.

Problem 8.6.
An ideal gas of N non interacting molecules with magnetic moment f and mass m
is immersed in a magnetic field B = (0,0, B), so that the single particle Hamiltonian

1S )
H=2"_sunB
2m

with p the absolute value of the momentum and s = 1 depending on the particle
we consider, i.e. with the momentum parallel or antiparallel to B . These two kinds
of molecules have densities n; and n_ respectively. What is the ratio n_/ny as a
function of B at equilibrium?

Solution

The problem can be solved by imposing the constancy of the chemical potentials.
Starting from the Hamiltonian of the single particle, we can write down the two
chemical potentials for the molecules with magnetic moment parallel (+) or an-
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tiparallel (—) to B '
y = pif —uB
po=p“4+uB

where /¢ is the chemical potential of an ideal free gas with density 7. and Hamil-
tonian H = p?/2m ‘
W = kT In(nsA?)

with A = > fka a thermal length scale. The densities n. must show a dependence
on B in order to guarantee the equality of the chemical potentials, otherwise non
equilibrium fluctuations appear (see also Problems 7.36 and 7.39 based on similar

ideas). This leads to
kT In(n_(B)A®) + uB = kT In(n, (B)A>) — uB

from which we can extract directly the ratio n_ /n. as a function of B and the tem-
perature T’
n_ _2uB
— = e kT .
ny
Problem 8.7.
Consider a reaction involving oxygen (O), hydrogen (H ), and water (H,O) molecules

O+2H <~ H,O

taking place in a volume V and in thermal equilibrium at temperature 7. Consider
that the hydrogen density (ny) is constantly twice the one of the oxygen (np). Also,
all the gases involved may be considered as ideal ones with independent particles.
Compute the water density ny,o as a function of np and 7. Assume that the masses
of water and oxygen molecules are such that mp,o = 18my and mo = 16my.

Solution
Chemical equilibrium requires the equality of the chemical potentials. This condi-
tion reads

Mo +2Un = U,0-

In general, the chemical potential u is defined as

_(9F
H=\on ),y

where the free energy F' may be defined in terms of the canonical partition function

On
F = —kTInQy ~ —NKT (m (%) n 1)

N
ou(r,v.n) = &Y
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where we used the Stirling approximation for N and where Q is the single particle
canonical partition function

2wmkT > 3/2

0\(T,V) :v( 2

The result for the chemical potential is

JF
~(9E) _ irm (&
ION)ry N
Alternatively, we can use the grand canonical ensemble for the partition function

DT,V,2) = Z ZNQ1 (T, V — 2Q1(TV)

where z = e*/*T is the fugacity. Recalling that

Wy =2(2B2L) g, =i,
9z Jry

we find for i the very same result obtained before, with the only difference that the
number of particles in the canonical ensemble has to be replaced with the averaged
number of particles. When we balance the chemical potentials, we obtain

(Q10>+21 <Q1H)_IH(Q1H20>
No Ny Nu,0

Nmyo _ Q11,0
NoNZ 03,010

With the conditions on the masses given in the text, we find

9\ 3/2 2 3
—4(- I
>0 (8) (anHkT> "o

from which we get
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Kinetic Physics

Problem 9.1.

Determine the number of particle-wall collisions per unit area for an ideal quantum
gas composed of N independent particles inside a cubic container of volume V.
Treat the general case with a single particle energy € = €(p), i.e. only dependent on
the absolute value of the momentum. Also, determine the pressure and discuss the
corresponding classical limit. Finally, discuss the case of a photon gas with a single
particle energy

E€=cp c=const.

and a chemical potential it = 0. For the general case of a quantum gas, the number
of particles per unit volume with the momentum between p and p+dp is

dN, g 1 3 2 1 . 2
by ———d'p= g5 ——d¢sin0dO p=dp
dv (27rh)3e(kT“) +1 (27rh)3e< ) +1

kT

where g is the spin degeneracy, and +1 refers to fermions/bosons respectively. In the
above expression, p, 6 and ¢ refer to spherical polar coordinates in the momentum
space.

Solution

The number of collisions per unit area and time is provided by all those particles
whose velocity v (with absolute value v) is sufficiently high to cover the distance
between their position and the walls of the container. Let us choose a wall, and set
the z axis perpendicular to the wall. The number of collisions per unit time (d¢) and
area (dA) is given by those particles contained in the volume (see also Fig. 9.1)

dV = dAv,dt = vcos 0dt.

The velocities are in general not directed along z, and that is the reason why we have
to consider only their projection vcos 6. We also have to set v, > 0 or, alternatively,
cos 6 > 0, that implies 0 < 6 < 7/2, because we are interested only in those particles
that move towards the wall and not in the opposite direction. For a given 8 and

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_9, © Springer-Verlag Italia 2012
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Fig. 9.1 The effusion of gas molecules through an opening of area dA in the walls of a vessel
containing the gas. The case of a quantum gas is discussed in Problem 9.1

momentum p, the total number of particles hitting the wall per unit time and area is
obtained by multiplying % by the quantity vcos 6

dNpiy = ne)vecos0de sin@de p>dp

_& (
(27h)3

where we have defined .

ng) = ———

< > e(el:Tu) +1
as the mean occupation number for the energy level € (see problems on the quantum
gases in the next chapters). From the kinetic point of view, the pressure is given
by the momentum transferred to the walls. If p; and py are the z components of
the momentum before and after the collisions, the total transferred momentum is
Ap = pi—py = p;— (—p;) = 2p, = 2pcos B, if we assume that the collision is
elastic, i.e. the net effect of collision is to change sign to the normal component of
the momentum. Therefore, the pressure P is given by the following expression

(2”h)3 T+ 1

2 s oo 1
P=2/pc059dN/md3p: & / d¢/2sin9cos29de/ vp ———dp.
0 0 0
e

As for the classical limit, it corresponds to the case e i7a < 1. If this condition

is well verified for all € of physical interest, the probability function reduces to

the standard Maxwell-Boltzmann factor of classical statistical mechanics. Also, for
. .. (n—¢)

the average number of particles (ng), the condition that e # < 1 may be read as

(ne) < 1, i.e. the probability that the energy level € is occupied is very small. In this
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limit, the pressure may be approximated by

(ze+p)

2g /2ﬂ /’z‘ , ) /+°° 5 (e u
P~ —— d sin O cos“ 6d 0 vp'e M (1Fe * )dp.
Brhy Jo 9, P (1¥ )dp

Let us now come to the last question of the problem, i.e. the photon gas with u =0
(see also Problems 10.10-10.14 on black body radiation in the chapter on Bose-
Einstein gases). In particular, the condition 4 = 0 may be read as the mathematical
condition to have thermodynamic equilibrium: if we consider the free energy F, it

reads
oF
0= (aN)T,V -

For a photon gas, we have to consider a spin degeneracy g = 2 to take into account
the multiplicity of transverse modes and the fact that the longitudinal modes do not
appear in the radiation. If we now use € = pc and v = c in the previous formula, we
obtain

po_* /Mdgv/g'e 2ed9/+°° sy
= sin @ cos cp’ ———dp.
(2zn)3 Jo 0 o T eF

If we use the known result

+o0 X3 4 7174
x=—

o e —1 15

we can solve exactly the integral on the right hand side

8 400 3 8 5
T (k1) Y o= T

P= =
3n3c3 o e —1 45h3¢3

(kT)*.

Problem 9.2.

An ideal three dimensional classical gas composed of N molecules with mass m is
in thermal equilibrium at temperature 7 in a container with volume V. Determine
the relation between the temperature 7 and:

e the average absolute value of the velocity for the gas;
o the average squared velocity of the gas.



304 9 Kinetic Physics

Solution

Let us start by computing the Maxwell distribution. We consider a single molecule
with coordinates g = (qx,qy,q;) and momentum p = (px, py, p;) in the three di-
mensional space. The molecule is in contact with a reservoir at temperature 7', and
we can use the canonical distribution to compute the probability that the molecule
occupies a cell with volume d3gd? p in the phase space

2
P(q,p)d’qd’p = e Phid’qd’p
or, equivalently, using the velocity v instead of the momentum p, we find
sz
Plgv)dPqd’p < e P"5 dqdPy.

We now look for the number of molecules per unit volume with velocity between
v and v+ dv. This number is proportional to the probability multiplied by the total
number N and divided by the volume element d°g

NP'd3qd3y
3

that is R
FWdPy =Ce P ady

where C is a normalization constant. The previous distribution function is the
Maxwell distribution function for the velocity. The constant C is determined by
imposing that the integral of the distribution function is equal to the total density
n=N/V

_pm? teo  pmd too _gmi teo gm?
C/eﬁ2d3v:C/ eﬁ2dvx/ eﬁ2dvy/ e'BZde:n

—oo —oo

3/2
leadingtoC =n (g—;’;) . Also, we can determine the probability distribution g(v,)

associated with one component of the velocity, for example in the x direction. This
is found by integrating in dvy and dv, the previous expression

1/2
g(vy)dvy = dvx/f(v)dvydvZ =n ([an) eiﬁ'"“%dvx.

Using the last equation, we can compute the average value (vy) = 7, in the x direc-

tion
1 e
Ve = f/ g(vy)vedvy =0

n.J—c
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that is obvious, due to the symmetry of the distribution function. The result is differ-
ent from zero if we consider the absolute value of the velocity. We first use spherical
polar coordinates, and then obtain the probability F(v) that the molecule has the ab-
solute value of the velocity between v and v+ dv by integrating out the angular
variables

3/2 m?
F(v)dv =4nn <g:) e P av.

With this new distribution function, we can compute ¥ = (v)

1/2
v=-— F(v)vdv = <8kT>
n.Jo mm

that is the answer to the first question posed by the text. Finally, using the probability
F(v), we have

1 [t
(W) = - F(v)vdv
nJo
from which we obtain the relation
1 3
§m<v2> = EkT

Problem 9.3.

An ideal three dimensional classical gas composed of N particles with unitary mass
is in thermal equilibrium at temperature 7 in a container of volume V. A small hole
with area A is present on the surface of the container. Compute:

o the effusion rate as a function of the average value of the absolute velocity;
e the momentum transferred as a function of the gas pressure.

Solution
The effusion is defined as the number of particles exiting the hole per unit time and
area. If we assume the area of the hole to be perpendicular to the x axis, this number
is given by

R= Fv)ved®v

>0

and knowing that f(v) is a Maxwellian distribution function

32,
f(v)zn(zli) .

12 je 2
_n(B B 2y "
k=3 (27:) /0 ¢ "RV = gy

%

we get
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- jo

Fig. 9.2 A schematic view of the isothermal atmosphere under the effect of gravity. The barometric
formula for the pressure is deduced with simple kinetic considerations in Problem 9.4

We also recall the average absolute value of the velocity v = (v) = (SkTT) 172 (see
Problem 9.2 and use m = 1), from which we obtain

R— nv

=T

This effusion may be regarded as an efficient method to separate molecules with dif-
ferent masses because the average velocity depends on the mass itself and, for fixed
temperature, it is larger for lighter molecules. As for the momentum transferred
through the hole, we get

12 oo i nkT
M= 2FWd3v=n | =— / BEy2gy, = 20
o vif(v)d’v=n <271'> A e vidv, 3

from which M = g, because P = nkT .

Problem 9.4.

Using simple kinetic considerations, derive the barometric formula for the pres-
sure in the atmosphere. Assume that we can treat the atmosphere as an ideal gas at
equilibrium, composed of particles with mass m. For the sake of simplicity, treat the
problem as one dimensional along the vertical coordinate z, with a local Maxwellian
distribution function of the velocity v,

m

£(v2) = n(2) (zm@) s

with a space dependent density (n(z)) and temperature (7'(z)).

Solution
Let us consider a column of air with height & (see also Fig. 9.2) and base A. The
density of the air is not constant and it varies with the height, due to the effect of
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the gravitational field. The standard derivation of the barometric formula is done by
computing the difference in pressure at the ends of the cylinder (similarly to what
we have done in Problem 6.14). However, this is unnecessary if a Boltzmann micro-
scopic approach is adopted. Here one considers a vertical column of gas, isolated
from all external disturbances and in equilibrium, i.e. with no mass, momentum,
heat transfers. Consider the two regions of the column at z =0 and z = h. Let n;
and 77 be the air density and the temperature at height z = 0, and n; and 75 those at
height z = h. As suggested by the text, we can assume that the Maxwellian distribu-
tion for the velocities is valid. Let us compute the number of molecules that move
downwards through A at z = h per unit time and area. To do that, we start from the
Maxwell distribution at height A

m /2 _m?
fa(ve)dv. =n; (27tkT2) e *2dv,.

The number of molecules moving per unit time and area through A is obtained by
integrating f>(v,) times the velocity v, (gas effusion)

1/2 —+oo mvg 1/2
m g kT,
Ny, = — 2kTy d = e .
2= (27rkT2> /0 e TEA =M (27rm>

On the contrary, molecules leaving the lower region at z = 0 lose kinetic energy in
moving to the upper region, and only those whose velocity is such that

1
Emvg >mgh — v, > +\/2gh

will reach the height 4. It follows that

]/2 +oo _ mv% kT ]/2 _ mgh
Ni=m m / v,e Fidy, =n U e i,
2rkTy V2gh 2nTm

If the gas is in equilibrium, a mass transfer through A at z = & is not possible, so that
N1 = NQ, and

meh
mvVTie ¥t =n/Th.

Let us now consider the transport of the energy through A per unit time and area.
For the molecules moving downwards we have

T gy, — )
27kT> e e

1
ng(imvngz>:n2 ( 5

Each of the molecules moving upwards will only succeed in carrying an energy
Lmv? — mgh to the height h, so that the net transfer of the energy upwards is

imvz -
1/2 Joo mv?
m 1 2 2z
Ki=ni (-2 “mv? —mgh ) v.e” T d,.
1 ny (27‘[le ) /zgh (zl/l/lv~ mg ) vze 124
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If we set £2 = v% — 2gh we end up with the following integral

1/2 mgh +oo m§2 3/2 mgh
_ m -l / 3,7 JE (KTh) ~T
Ky =n (271_le) e Miom A E2e A dE =py (an)l/ze .

If there is not a net transfer of the energy (thermal equilibrium), we need to set

_ mgh
n1T13/2e = n2T23/2.
If we use this equation with the one obtained previously for the density, we find
T\ = T3, that is the condition that the atmosphere is isothermal. We now call T the
atmosphere temperature and write the equation relating n; and n, as

_ mgh
n)=nie kT

from which, using the equation of state for the ideal gas, we find the barometric
formula for the atmosphere

mgh

p(h) = p(0)e™ 7.

Problem 9.5.

Consider an ideal classical gas in thermal equilibrium at temperature 7. The gas is
composed of N molecules in total: N/2 with mass m; (type 1) and N/2 with mass
my = 4m; (type 2). The gas is placed in a container with volume V. Attimet =0, a
small hole with area A is produced on the container’s wall, and the effusion process
starts. Assuming that the whole process takes place at equilibrium with temperature
T, compute the number of particles of type 2 that remain in the container when the
number of particles of type 1 is reduced by a factor 2.

Solution
We denote by N;(¢) the number of particles of type i as a function of time and write
down the following differential equations (i = 1, 2)

dN,'(l)
dt

— —AR

where R; denotes the number of particles of i-th type exiting the hole per unit time
and area, i.e. the i-th rate of effusion. From the general theory of effusion (see also
Problem 9.3) we know that R; = %, where n; and v; denote the density and ab-
solute value of the velocity for the molecules of type i. Given this relation, the
differential equations (i = 1, 2) become

dNi(t) _  ANi(vi)

dt 4v
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which can be solved
Ni(e) = %e—A@,):/w.

At time 7 the particles of the first type are reduced by a factor 2, which means that
their number is equal to N /4

N awnjaw _ N
2 4

4V<1n>2
A Vi
N, (t) to find the number of particles of type 2 present when ¢ = f;

from which we get t| = . It is now sufficient to plug # in the expression for

N N
Ny(t) = 2o v)In2/{vy) Eefln2/2

2

1/2
because (v;) = (M) and my = 4m; (see Problem 9.2). This means that when

Tm;
the lighter particles are reduced by a factor 0.5, the heavier ones are reduced by a
factor ~ 0.707.

Problem 9.6.

A box with volume V is separated in two equal parts by a tiny wall. In the left side
of the box there is an ideal classical gas of Ny molecules with mass m and pressure
Py, while the right side is empty. At time ¢ = 0, a small hole with area A is produced
on the wall. Determine the pressure P(¢) as a function of time that is exerted by the
gas on the left side. Assume that the temperature stays constant during the effusion
process. Discuss the limit # — +-oo.

Solution

When the small hole is made on the wall, the number of particles changes in time.
If we call N(¢) the number of particles in the left side, the right side is then filled
with Ny — N(¢) molecules. In the time interval between ¢ and ¢ 4 dt the number of
molecules moving from left to right is (see Problem 9.3)

AN(t)v

Ry =
= Y

with v the average value of the absolute velocity, v = (v) = (%) 172 (see Problem

9.2). At the same time, the number of molecules moving from right to left is
R A(No—N(@))v
r—l — 4y .

Therefore, we can write

dN(t)  AN(t)y  A(No—N())y _ Av
a - av T 04V ——W(2N(t)—N0).
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If we set M(¢) = 2N(t) — Np and dM = 2dN, the resulting differential equation is

dM(t)
— =—bM(t
= (r)
where we have used b = Av/2V. We obtain M(t) = Ce™", with C an integration
constant computed from the condition that at time ¢+ = 0 we have M = Ny. This
means that C = Ny and

N
N(@t) = 70(1 e ).
Since the pressure is proportional to N for a fixed volume and temperature, we get

> (1+e ).

P(1)

In the limit 7 — oo the pressure on both sides is equal to Fy/2.

Problem 9.7.

A cylindrical container (whose height L is very large, L > 1, with respect to the
radius of its base) with base located at z = 0, contains N particles with mass m; =m
and N particles with mass my = 4m. The gas is ideal, non interacting, in thermal
equilibrium at temperature 7', and under the effect of a constant gravitational accel-
eration g. At some point, a small hole is opened in the lateral surface and, at later
times, it is observed that the number of particles of mass m; is equal to the number
of particles of mass m;. Under the assumption that the effusion process takes place
at equilibrium, determine the height % at which the hole was opened.

Solution

When the number of particles of mass m; and m; is the same, the effusion rate of
both particles is the same, i.e. Ry = R,. When studying the effusion of a gas through
a small hole, it is known (see Problem 9.3) that the number of particles per unit time

and area is R = "(Z)V, where n(h) is the local density at height & and v the average

m;

1/2
value of the absolute velocity of the gas, v; = (v;) = <8k—T) (see Problem 9.2).
As a consequence, the condition R; = R, implies

ny (h)vl = nz(h)?z.

Using the previous expressions for v;, i = 1,2, and recalling the relation between the
particles masses, i.e. mp = 4m;, we obtain

nz(h) = 2n1 (h)

When studying the change of density for a gas under the effect of gravity, we obtain
(see also Problem 9.4)

migh

ni(h) = Cije” iT
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where C; (i = 1,2) are normalization constants which can be found by imposing that
the total number of particles for each mass is N. We find

L _ mgh oo _ mjgh
ci/ W an~c [ e dn=N
0 0

leading to C; = Nm;g/kT . Therefore, we can write

Nmg
ni (h) = xT

= 74ng e %

_ mgh i
kT
e nz( ) kT

and the condition ny(h) = 2n; (h) becomes

4mgh mgh

Qe kT = e kT

kT1n2
3mg *

or, alternatively h =

Problem 9.8.
Let us consider a two dimensional classical system composed of N particles with
mass m and single particle Hamiltonian

P Pl 22 1.4

H—2m+V(r)—2m—|—2/,Lr 47Lr
where p is the absolute value of the momentum and where V (r) is a potential (¢ > 0
and A > 0) due to external forces, with r the radial distance ( > 0) from a fixed cen-
ter. The whole system is in thermal equilibrium at temperature 7. Compute the rate
of particles dN(t)/dt escaping from ‘the peak’ of the potential energy barrier under
the assumption that the non quadratic part of the potential is a small perturbation
A<,

Solution
We need to find the peak of the potential, say located at » = b. From the condition
dH /dr =0 we find 5 3
ur—Ar=0.
If we neglect the solution r =0, we getr =b = ,u/\/z (see also Fig. 9.3, where we
plot V(r) with A = u =1).

The number of particles exiting a small hole per unit time and area (see Problems

9.2 and 9.3) is
kT
R= P(b)% = P(b)\/ m

where p(b) is the local density at r = b. Multiplying this result by 27th (the perimeter
of the circle with radius b), we get the total number of particles escaping from the
peak of the potential per unit time

dN(t) 2nkT

dt =pb)b m
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Fig. 9.3 We plot the potential energy barrier V (r) = % ur? — %lr“ for A =y = 1. In Problem 9.8
we compute the number of particles per unit time escaping from ‘the peak’ of the potential energy
barrier located at r = b = p/v/A

To solve the problem, we finally need to compute p(b), i.e. the particles density in
the peak of the potential. From the assumption of equilibrium (see also Problems
7.12,7.36 and 7.39), we know that

2.2 4
uere A
40 7<—f—>
p(}") =ce T =ce o

and we have to determine the constant ¢ by imposing that the integral of p(r) over
the space gives the total number of particles. We obtain

I—LZV2 At

+oo doo  _(urt_art
N:27r/ rp(r)dr:27rc/ re (Zkr 4kT)dr.
0 0

As reported in the text, we can treat A as a small parameter, so that we can Taylor
expand the exponential function in the integrand

400 2 4 2,2
N;:z277:c/0 r<l+4krT)e_”2der.

If we set ur? /2kT =y, we get

oo 2
N= Z”szc/ (1+’1ka )eydy
u2 o M
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from which
Nu? 1
c= .
2mkT ( 1+ 2/;# )
Finally, we have to plug this value of ¢ in the equation for p(b), consider that b =
/v, and plug p(b) in the equation for dN(r)/dt. The final result is

dN(t) Ny ut

= e ATA

di ammdAT (14242

Problem 9.9.

Let us consider a cubic container with volume V and negligible mass which is on a
smooth surface without friction. In the container we find N molecules of an ideal gas
(each particle has mass m) in thermal equilibrium at temperature 7. Attimet =0 a
small hole with area A is opened on one side of the container. This hole stays opened
for a small time interval A¢. Determine the velocity of the container as a function of
T,m,V, At. Assume that in the time interval At the pressure and the temperature of
the container stay constant.

Solution
During the effusion, the momentum transferred (see also Problem 9.3) per unit time

through A is equal to IT = %, where P is the pressure inside the container. The
velocity of the container is v = %, where M is the total mass of the gas, that we
approximate with Nm (some particles will exit, so it won’t be exactly equal). Using

this information and the equation of state for the ideal gas (PV = NkT'), we find

_ AKT At
T oomv
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Bose-Einstein Gases

Problem 10.1.

Consider a three dimensional gas of bosons with spin 0 and single particle energy
given by 5
_r

© 2m

where p is the absolute value of the momentum and m the mass of the particle. Write
down the equation determining the critical temperature (7;) for the Bose-Einstein

condensation in the ground state.

Solution
We start by writing down the logarithm of the grand canonical partition function for
the quantum gas obeying the Bose-Einstein statistics

_pe\d’pdPq _ 4mv B
2=~ [In(1-zePe)PEd h3/0 In(1—ze P€)p2dp

where € = %. For the average density of particles (N)/V, we find

(N) _z(dn2 1 1 d3pd3q_477r/‘+oc 1 24
0z Jpy V) zlePe—1 B B leBe 1P

vV Vv
The above integral may be written in terms of the Bose-Einstein functions g¢(z)

1 too xO—1gy
8alz) = ) /0 =

I'a lex —1
as
Ny (2mmkT\**
v = n2 83/2(1)‘

For a given (N), the fugacity z depends on the temperature 7. At the same time,

for a given T, z cannot be above the maximum value z,,,, = ePe |p:0 =1, to ensure

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_10, © Springer-Verlag Italia 2012
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positive occupation numbers. The equation for the critical temperature is found by
settingz=1land T =T, (B =P, = I%Tc) in the equation for (N)

N 2mmkT, \>/?
<V><hz) g32(1).

Making use of the Riemann zeta function such that {(3/2) = g3/,(1), we find

h? Ny \*?
T, = — L)
2mwmk <VC(3/2)>
Problem 10.2.

Using the continuous approximation, discuss the phenomenon of the Bose-Einstein
condensation and the existence of a critical temperature for one (d = 1) and two
dimensional (d = 2) gases placed in a cubic d dimensional volume of edge L with a

2
single particle energy € = é’—m, where p is the absolute value of the momentum and
m its mass.

Solution
In order to reveal the existence of a critical temperature, we need to consider the
equation determining the particles average density. The dimensionless volume el-

d gd
ement in the phase space is given by gén‘;l)f , where g is the spin degeneracy

(g =2S+1) and d the space dimensionality (d = 1,2). For the case with d = 2
we find

gL?d?p - gL*2mpdp - gLl>mde
2rn)? —  2rh)?  2aK?

while, ford = 1
gLdp gL\/mde
2nh 2\2emh’

The corresponding average densities are given by

N m [T de m teo dx m
(N) g /O g /0 gszgl(Z)

AN — T _
L2 2;i? zlePe—1  27n? 7 le*—1  27h

and

(N) gym [T 1 de  gVmkT [+ 1 dx  gVmkT

L 2vanh)o Verlebe—1 ovamhJo Vit le—1 22 mnst

for d =2 and d = 1 respectively. Since the average number of particles must be a
positive quantity, we must have 0 < z < 1. When we reach the critical value z =1,
the Bose-Einstein condensation sets in for the particles in the ground state € = 0.
Therefore, the equation for the critical temperature 7, is obtained by setting z = 1

(2)

and T = T in the equation for @, %) For the case d =2 we can solve the integral
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exactly because

g1(z) = —In(1—72).
Moreover, we know that when z ~ 1 we find g,(z) ~ (Inz)~(=") (0 < n < 1). This
means that for the d = 1 case (where n = 1/2) we have

g1(2) = (Inz) 2.

[~]

Therefore, the integrals defining @, %) for d = 1 and d = 2 diverge when z — 1

and the corresponding critical temperatures are zero, i.e. the Bose-Einstein conden-
sation, contrary to what happens in the three dimensional gas (see Problem 10.1),
does not take place.

Problem 10.3.

Consider a gas composed of (N) particles obeying the Bose-Einstein statistics. The
gas is in a d dimensional container with volume V. The single particle energy is
€ = p’, where p is the absolute value of the momentum and b a positive con-
stant. Suppose that (N) /V is fixed and determine the conditions for which the Bose-
Einstein condensation takes place.

Solution
Similarly to Problem 10.1, we write the logarithm of the grand canonical partition
function for the quantum gas obeying the Bose-Einstein statistics in d dimensions

lno@:—/ln(l—zefﬁs)d pd“q _ dV/ ]n(l—Zeiﬁe)pdildp
nd B Jo

and find the average density of particles (N)/V as

N) _z(dln2 :l/ 1 ddpddq:&/er 1 o dp
1% Vv 0z rv V zlePe—1 hd h Jo  zlePe—1 ’

In the above expression, €2 is the d dimensional solid angle. The equation for the
critical temperature (7;) is found by settingz =1, § = B, = ﬁ in the equation for

(N). Using the new variable x = B& = p’, the existence of a non zero T, is then
closely related to the behaviour of the integral

oo yd/b=1 g
o [
0

e —1

In particular, it is important to examine its behaviour in a neighborhood of the origin
x =0, since for large x the integrand is exponentially small and the integral is surely
convergent. We find that the integral converges only if d /b > 1, while diverges when
d/b < 1. When the integral converges (d/b > 1) there is a finite critical temperature
T, at which the ground state starts to be occupied by a significant fraction of the
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particles. At such critical temperature, we find

W) _ QU el oy
0

with

1 oo xd/b=1 gy

W i b/d
K = ( v QdF(d/b)C(d/b)>

where (d/b) is the Riemann zeta function such that {(d/b) = gq/,(1).

7 lex—1°

The final result is

Problem 10.4.
A Bose-Einstein gas is characterized by particles of mass m and spin S =0 in a
volume V. The single particle energy is

2
p
€=_—+nA
2m+n

2 . . . .
where % is the kinetic term, A > 0 a constant, and » an integer number equal to
n =0, 1. Determine the equation for the critical temperature 7. of the Bose-Einstein
condensation. In the limit A >> kT, is the critical temperature increasing or decreas-

ing with respect to the case € = % (see Problem 10.1)?

Solution
We start from the equation determining the average number of particles

1 d>pdq AV [+ 1
(N) = = /O pidp

2 3 3 2
w01 1 BEBna _ h n=o1 N —eBE+BnA |
where we have considered that the whole energy spectrum is made up of a continu-
2 .
ous part (%) and a discrete one (nA). Furthermore

x'2dx.

V=Y

V(Q2rmkT)3? 1 /+°° 1
n=0,1 )Jo 2

3 INEYR) —lox+pnaA _ 1

Using the Bose-Einstein functions

(0) = 1 /*"" X% 1dx
balz S T'()Jo zle—1

we get

N 1 1 _
<7> = F‘%/Z(Z) + Féﬁ/z(ze ha)
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with A = % a thermal length scale. The equation defining the critical temper-

ature T; is obtained by imposing that z = ePEo = | when T = T,, where Eg = 0 is
the ground state energy. Therefore, we find

N 1 1 _
W a1 pgale ™).

In the limit A > kT, we can use g3/2(e*ﬁcA) ~ e P4 (because g3/2(x) ~ x when
x < 1) and we get

N 1 I _
<‘7> = 76383/2(1) + Tge e

or, equivalently

)\ 32
B () S et =g e,

, , 2\ w)
In Fig. 10.1 we have considered the case k = 1, (m) -~ = 0.05 and reported
the functions y = 0.057, /% and y = {(3/2) + e~/ for A = 0.1. From the inter-
section we find the critical temperature. The intersection with the curve y = {(3/2),

2
instead, gives the critical temperature for the case with € = £ (see Problem 10.1).
We see that the critical temperature is decreased by the discrete spectrum when

. 2
compared to the case with £ = £-.

Problem 10.5.
Consider a two dimensional Bose-Einstein gas in a domain of area A. This gas is
characterized by a fixed average number (N) of ultrarelativistic particles with spin
0 and single particle energy

e=cp

with p the absolute value of the momentum and c the speed of light. Prove that, un-
like the non relativistic case, we find a critical temperature 7, for the Bose-Einstein
condensation. Also, below T;, determine the way the particles density changes in
the condensed phase as a function of the temperature 7.

Solution
Let us start from the average number of particles

(N) ! / L g

Tamn? ) ePer 1

where we can use spherical polar coordinates in the momentum space and perform
exactly the integral in the spatial coordinates

V) A/Om P___gp.

" 2ar? leBer — 1
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A
y=0.05T. "

54

J‘ -
y=U(3/2)+e e

3
=4(3/2

5] y=_(3/2)

‘J' 4

0 ; : : . —

0.04 0.08 0.12 016 T, 0.2

Fig. 10.1 The critical temperature 7T, for the Bose-Einstein condensation of the gas described
o )3/2 M) and

2amkT, v

in Problem 10.4 is found from the intersection of the two curves y = ( v

BeA w2\
y = 832(1) +e P2, We have considered the case k = 1, (Mmk) 5+ = 0.05 and reported the

functions y = 0.057, /%, y = £(3/2) + e O/ The intersection with the curve y = ¢ (3/2) corre-
sponds to the critical temperature of Problem 10.1

(V)

If we set Bcp = x, we can write the density n = 3% as

dx.

(N 1 /+°° xe ™

A 2nB2R? 1—ze ™

We now expand the denominator as a geometric series

__ b erfxfzkeka dr— Z T ek iy
-~ 2mB2e2? Jo = B 27:[32 2mB2e2h =

where we have interchanged the series with the integral. We then solve the integral
and obtain

1 oo k
= g L
The equation for the critical temperature 7; is found by setting z=1and T = T;.
B=B= k—ch) in the equation for n

27:[32 2mBRc2 5 Z 2 12[32 252



Problems 321

00 2 . . .
where we hgv.e used Z,j:l kiz = 7. The above equation, for a given density, deter-
mines the critical temperature

1 T 1

Be= 1t =\ 302

When f increases above f, a significant fraction (say ng) of the total number of
bosons condenses in the ground state, so that the total density is

2

m B
n=ny+-—>—5=nptn|{ 4
" gz (ﬁ)

n0:n<1 - (%)2> |
Problem 10.6.

Let us consider a collection of (N) bosonic quantum harmonic oscillators in two
dimensions, with spin 0 and frequency ®. Identify the critical value of the chemical
potential u. for which the density of states has a divergence in the ground state.
Then, give an estimate for the chemical potential y in the limit z — 0. Finally,
discuss the existence of a critical temperature for the phenomenon of the Bose-
Einstein condensation.

and, hence

Solution
In the most general case, the expression for the average number of states character-
izing the system is

1

—1,B¢ —
states < eﬁ state 1

(N) =

with z = eP# and U the chemical potential. In our case, we can write down this num-
ber using the known expression for the energy levels of a two dimensional quantum
harmonic oscillator (see for example Problem 5.8), i.e. E,_, = ho(n, + ny + 1),
with n,, non negative integers. The result for (N) is

Ty

+oo 1
<N> - n,\-,nZv:O Zfleﬁha)(nxirn}#rl) -1

If we set n = n, + ny, the degeneracy of a given n is g(n) = n+ 1. In this way, for a
generic function of the sum f(n) = f(n,+n,), we have

Y flnctny) =) g(n)f(n).

iy, iy
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The summation over n can be used to determine the average number as

iy 1 n+1
V) = nxﬁ;:() oL Bho(ncn+1) _ | Z o lePro(ntl) 1

Particles in the ground state, n = 0, have a critical value of the chemical potential. In
such a case, the denominator becomes zero when ePho — Ze, 1.8. e = ho. In order
to answer the second question, we note that when z — 0 we can approximate (N) as

+oo 1 Too
<N> _ — s Ze—ﬁhw Z e—ﬁhw(nx—&-ny) _
o 7 lePro(netny+1) _ | it
2
Zefﬁhw +Z e "Bhw | _ Zeiﬁhm _ z
n=0 (1—e Pro)2 4 Ginp? (MTUJ)
leading to

u= %ln <4<N> sinh? ([3;‘;@)) :

The critical temperature, if any, is found by imposing simultaneously that in the
limit g — ., No=0,T =T, = ﬁ and that the sum defining (N) is convergent (Ny
is the average number of bosons in the condensed state). We have

iy n—|—1 = n+1
N) = No+ -
(N) = No n; Z

eBeho _

The sum converges and, for a fixed (N), the previous equation defines implicitly the
critical temperature.

Problem 10.7.

Make use of the Clausius-Clapeyron equation for the Bose-Einstein gas treated in
Problem 10.1 and find the relationship between the pressure and the temperature in
presence of a Bose-Einstein condensation. Suppose that the condensed phase has a

£(3)

negligible specific volume. Make use of the fact that the latent heat is L = %kT HOE

where { is the Riemann zeta function.

Solution

The Clausius-Clapeyron equation (see also Problem 8.3) is given by
P L
dT  TAv

where Av is the variation of the specific volume and L the latent heat. For a Bose
gas, when both phases coexist, the gaseous one has a specific volume vg, whereas
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the condensed one has a negligible specific volume v, = 0 . This means that

&
£(3

(Sl
—

2 .
where A = % We also know that L = %kT . Therefore, we can write the

Clausius-Clapeyron equation as

(S
~—|

aP L
dT ~ TAv

5

31 5 _(5\1 5P
§—k§(>3:-
NTv, 2 °\2)A3 2T

5
— kT
2

T
—

that implies PT~3 = const.

Problem 10.8.
An average number (N) of bosons (spin § = 1) in three dimensions is subject to a
constant magnetic field with intensity B directed along the z axis. The single particle
energy is

»?

8:%_73'13

where 7 is the magnetic moment, p the absolute value of the momentum, and s, =
—1,0,+1. Using the formalism of quantum gases, determine the average occupation
numbers associated with the three different values of the spin. Also, write down the
magnetization M and its approximation in the limit of small B. Finally, in the limit of
high temperatures and small densities (the classical limit), define the susceptibility

‘= (‘W)
9B ) 1w

. (N)
smxs

and prove Curie law

Solution
We start by writing down the total average number of particles

1
<N> - Z . eB(Extare*u) — 1

states

where Y ;.. indicates all the possible states available for the system, each one with

energy Eg... We note that the energy has a kinetic term (%) plus the potential
energy of the dipoles arising from the presence of the magnetic field (7s,B). When
computing Y ;...s» the kinetic term represents a continuous spectrum and contributes
with the integral

/‘ d*pdiq
h3



324 10 Bose-Einstein Gases

while we have to consider a discrete sum (because s, = —1,0,+1) for the magnetic
term. The final result is

dpd’ 1
R I T
s:=—1,0,+1 ﬁ(%—wsz—u)
e

—1

We can think that this total number is composed of three terms, i.e. (No), (N4) and
(N_), identifying the average occupation numbers for the states with different spin
projection along the z axis

(N) = (No) + (Ny) + (N-)

from which

v a3

W)= [t 5. = £1,0.
h ﬁ(%*TBAVz*ﬂ>

e —1

2
If we setz:eﬁ“,x:ﬁé’—m and A = \/JW,Wehave

1% 1 teo /20y
_ Bts.B —
(Ns.) 1383/2(16 ) 83/2(2) F(3/2)/0 77 lex—1°

The magnetization is defined as

M =Y s (Ns) = T(N:) - (N-))

that is v
T
M= VEl {83/2(16

BTB) 7BrB) )

—83)2(ze
In the limit of small B, we can expand the exponentials to obtain
83/2(2¢*P™) ~ g3)5(2(1 £ BB))

and a Taylor series of g3/5(z(1 = 7B)) for small z37B yields

dgs(z)

83/2(z(1+B1B)) = g3)2(z) £zpTB +0(B).

We can also use the properties of the Bose-Einstein functions

dgs»(z2)
z

dz =81 /2(2)
to get the magnetization when B — 0

27%V 5
M= WB&/Z(Z)"‘@(B )-
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Moreover, for high temperatures and low densities, we have z — 0 (classical limit)
and we can approximate g3 /z(z) ~ z. Therefore, when B — 0, the total average num-
ber of particles in the classical limit is

(N) = (o) + (N )+ (V-) = T852(2) ~ 5

from which we extract z as a function of the density

AN
3V
which can be substituted in the magnetization
272V 272V 272(N)
M="-B 0(B*) ~ Bz+0(B*) = 1B+ 0(B
B0+ OB & Bt O(B) = B+ O(BY)
and, hence

: . (oM 27%(N)
limy = lim (| = =
B—0 B—0 aB T,<N> 3kT
that is Curie law (see also Problems 6.13, 7.23 and 7.24 ).

Problem 10.9.

Let us consider a system of (N) non relativistic bosons with mass m and spin 0 in a
cylindrical volume of base A and height L. The gas is under the effect of a constant
gravitational field with acceleration g. Show that the critical temperature for the
Bose-Einstein condensation is well approximated by

12
(0 § 1 TmgL
et o TG) <kTgo>>
(0)

where T, is the critical temperature in absence of an external field (see Problem

10.1). Assume that mgL < kTC(O). To solve the problem, set ® = ze’ﬁ’"gh, where
h is the vertical coordinate. Then, with @ = —In(®), make use of the following
expansion valid for w ~ 1

sp@~r(-3)aeg(3)+

Q- (D)

with
2 2

Solution
We write down the equation for the total average number of bosons

_4mA Foe
- / / —leﬁmgheﬁpz/Zm
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2
. _ — h _ p .
and, by setting @ = ze "¢ and x = B 5> WE can write

2mkT\>? 3\ 1 [ gplo)
=27A [ ==~ r({z)-—o
V) & ( h? ) <2) ﬁmg/zg—ﬁmgL 0} do

+eo x1/2 3
= (z)g3/2(“’>~

We now make use of the expansion suggested by the text for g3 /z(a)), where @ =
—In(w), valid for values of o close to 1 (small )

gp(0) =T <;> al?+¢ (;) +en

We know that I (%) = 4 and I” (— %) = —2+/7, and close to the transition (where
z~ 1 and o = Bmgh) we can write

52(0) ~ <2 (mei) ¢ (3)

where

which can be plugged into the equation for the average number (N)

(NY=A (MZ;’CT)W [LC <;) — 27 (Bmg)"? /(]Lh1/2dh} .

We then factorize the term L{ (%) and define V = AL to obtain

() 5()

This equation, for fixed (N)/V, implicitly defines the critical temperature 7, for
the Bose-Einstein condensation. To compute it, we recall that we have to assume

4 1 mmgL
3¢V kT

mgL << kTC(O). To give a zeroth order approximation for 7., we can neglect the
second term inside the square bracket, obtaining the known result

5 2/3
7O _ _h (N)
o 2mmk \ Vg (3)

which coincides with the critical temperature for a gas of free bosons without any
external field (see Problem 10.1). As a first order approximation, we can plug the
zeroth order result obtained previously into the equation for (N) and get

5 2/3
ool ( (N) > 1
% 2k \ v (3) [ r”
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where, if we expand the denominator with ﬁ ~ 1+ ax (x < 1), we finally obtain

8 1 L\’
T~T" 145 (”mg )

£3/2) \ k¥

that is the desired result.

Problem 10.10.
Determine the maximum of the Planck distribution (for the three dimensional case)
as a function of the frequency and the wavelength. Show that this is possible
if we maximize the function x*/(e¢* — 1) for @ = 3 and a = 5 respectively. This
means solving the equation x = a(1 — e™*), which can be done in an iterative way
Xy = a(1 — e *n-1), starting from x; = 1 (stop after 5 iterations). Verify Wien law,
AmaxT =const., and comment on the fact that we find two different constants in the
two approaches.

We know that the sun produces the largest amount of radiation around the wave-
length ~ 5 x 107> cm. Using the results previously obtained, determine:

e the temperature of the sun;

o the amount of energy produced, knowing that the main mechanism of produc-
tion of such energy is the transformation of hydrogen into helium, and that this
reaction stops when 10% of the hydrogen has been converted. A good approxi-
mation is to take the whole mass of the hydrogen equal to the mass of the sun
(use Einstein relation E = AMc?);

o the lifetime of the sun.

You can use the following numerical constants: 7 = 6.625 x 107 erg s; ¢ = 3 x 101°
ecms 05 =5.67x 107 erg em 2s VK4 Ry =7 %1010 ecm; My, =2 x 1033
2 k=138x10"10erg K.

Solution

The dimensionless volume element in the phase space for a free photon gas is given

by

8nV
3

Vv &nv
2. 5dpsdpydp. = =+ pPdp = vZdv
with p= h%’ The energy density per unit frequency u, is obtained by multiplying the
dimensionless volume element by the Bose-Einstein distribution and by the energy,
and dividing by the volume V

8wh vidv
I/lvdv = 3 .
ekr —1

Using the relation A v = ¢, we also obtain the energy density per unit wavelength u;

8mhe dA

A3 eflhﬁ —1
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Local maxima are found by imposing the following conditions

duy _87h (KT\*d (2 )\ _g
av. A3 \h) de\e—1)

duy _dM'dup o <k7‘>4d/l’ d ( X ) o

d\A  dA dMN h ) dAdx\e—1
with A’ = 1/A and x = % in the first case, and x = )Lhﬁ in the second. These are
the functions given in the text of the problem. Using an iterative procedure, x, =
a(l—e™ 1), we getx; = 1,xp = 1.89636, x3 = 2.54966, x4 = 2.76568, x5 = 2.8112
(fora=3)andx; =1,x, =3.1606, x3 = 4.788, x4 = 4.9584, x5 = 4.9649 (for a = 5),
from which

Wnar _ 5 65144
KT
he
— 4.96511.
Ak

The last relation proves Wien law. Using Viyqx = ¢/Auqyx in the first relation, we note
that the two constants are not equal. The reason is that both distributions, u, and u;,
are given per unit frequency and wavelength respectively. It then follows from the
relation dA = —A2dv /c that a unitary interval of frequencies is not corresponding
to a unitary interval of wavelengths, i.e. they are not directly proportional.

Wien law proves that the spectrum of our radiation is dependent only on A4, 7T,
a fact that is now used to answer the other questions of the problem. Using the
numerical constants given by the text, we obtain

1 he
Ton = —— — ~ 6000K.
M 4.96 kA
Let us now compute the total energy emitted by the sun through the mechanism of
transformation of hydrogen into Helium. From the text, we know that such reaction
stops when the 10% of hydrogen has been converted. Therefore, the total energy
produced is

Eror = AMc? =0.1 x 2 x 10% x 9 x 10%erg ~ 2 x 10”%erg.

If we assume the sun behaves like a black body, we can use Stefan-Boltzmann law
to estimate the release of energy per unit time and area. If we multiply by the total
surface 47R2,,, we obtain the energy released in the unit time. Consequently, an
estimate for the lifetime of the sun naturally emerges

_ Eror _ 2x10%erg
" opT*4mR2, 4% 1033ergs™!

sun

~ 0.5 x 10%s &~ 1.5 x 10"?years.

tsun
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Problem 10.11.

At the temperature 7, = 3000K in a volume Vy, the electromagnetic radiation de-
coupled from the plasma originating after the Big Bang. Knowing that the present
temperature is T, = 3K, what is the ratio between the present volume and Vi if
we assume an adiabatic expansion? Has the peak of the Planck distribution moved?
How much these values change if we consider a d dimensional universe? Let us
suppose that for T < T; the electrons can only interact electromagnetically. Is it
reasonable to consider them not to be interacting?

Solution

We first recall the infinitesimal volume element for a d dimensional sphere of ra-
dius R

dn? /2
(d/2)!
Then, we consider the dimensionless volume element in the phase space for the
photon gas

RIV4R.

dvy =

NI

gv
(2mn)4

gv _dm> 4 gvd d-1
dip = P ldp= — 87 il
2rh)? (4)! w7 (2c) (4)!

where V is the volume, @ = %, and g = d — 1 accounts for the independent polar-
izations in d dimensions. For the average energy we find

Y 8vdn /‘*“’ oldo §Vd___ppyan /’*“’ xldx

7d Qo) ()0 B 1 ad(2ney (4)) Jo e—1°

A photon gas has a zero chemical potential, that implies @ = uN = PV + F = 0.
This leads to PV = —F. The term PV is related to the grand canonical partition
function

Vd o 1o
F=PV=kTh2=kT—& (d)/ o n(1 — e % )dow =

a1 Jo

4y

% (2c)d

1% Bt oldo +eoxdd
kT d § 7/ ho 74 4 (kT)d+1/ al :g
m2(2c) (AN KTJo el —1 w2 (2c)e (4)1n¢ o e —1 d

where we have used the integration by parts. Finally, the entropy is

U-F d+1U J
S=—-— =2 VT
T d T

meaning that, for a fixed d, the adiabatic transformation (S = const.) leads to

VT? = const.
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Using this result with d = 3, we find the ratio of the volumes at the temperatures
T, = 3000K and Ty, = 3K as

3
Vi _ ( Iy ) ~ 10°.

VTy Tnow

ho
kT

%, and find its maximum x,; (see also Problem 10.10). After differentiation, we

obtain
df(x)

dx

As for the peak of Plank distribution, we set x = consider the function f(x) =

R g
em —1 (e —1)2

X=Xpm
leading to
(d—1)e™ —(d—1)—xye™ =0.

In general, the maximum of the distribution verifies x); = M (d) with M(d) a generic

function of d. Therefore, given the temperature, the @, for the peak is such that
ho),
—- =M(d).
T ()

For a fixed d, when moving from T, to T, we can estimate the change in frequency

M — Thow _, 1073
@y (Ty) Iy

valid for every d. Let us now answer the last question. We introduce the specific
volume v =V /(N), i.e. the volume for a single particle. The average distance among

. . 1 _1 . . .
the particles is thus r ~ v3 =n~ 3, where n is the average density which, for a photon

gas, reads
1 /+°° w*do  2§(3)(kT)?
A .

n= =
23 eho/kT _ 7r2h3c3

We then get

Sfr _éns & (2&;(3

kT ~ kT — hc \ =2

) 173 &2 1
) =~ 0.62 x e =0.62 x a7 = 0.0045.

This justifies the approximation in the text of the problem.

Problem 10.12.

An ideal black body is able to absorb all the incident radiation and emit it according
to the Planck formula. At equilibrium, the emissivity of the black body is equal to
its absorption. Assume that both the earth and the sun behave like ideal black bodies
in equilibrium. Knowing that:

e the earth’s temperature is Tz ~ 14 C =287 K;
e its distance from the sunis D = 1.5 x 1013¢m;
e the radius of the sun is Ry = 6.96 x 10%m;
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Fig. 10.2 A schematic view of the problem of two black bodies (the earth and the sun) in thermo-
dynamic equilibrium and separated by a very large distance (see Problem 10.12)

give an estimate for the sun’s temperature. The earth’s surface may be well approx-
imated by a two dimensional area on the surface of the sphere with radius D (see
Fig. 10.2).

Solution
To determine the radiation emitted by the sun, we need to compute the average
energy density of a black body with a volume V. We get

U_ n /-+°° w’do KT /-+°° Sdx  mkt
V w23 J¢_1 mr3lo e—1 1583
Using the formula for the effusion through a small hole, we find the energy emitted

per unit area and time as
cU

4V
which is the Stefan-Boltzmann law. This emission is clearly isotropic and the total
emissivity is given by the product of the radiation flux per unit area and the total
spherical surface of the sun, i.e. Py = 477:R§O'TS4 . Only a fraction of this total emitted
radiation reaches the earth: this fraction is the ratio 7R% /(4xD?) (see Fig. 10.2)
which represents the solid angle of emission in the direction of the earth. From the
information of the text, we know that all the radiation absorbed is emitted by the
earth. This implies the equation

Rs =oT¢

2
R}

4nD?

2D
Ty = | 2> Tp ~ S960K.
Rs

(47RS) (0 T3') = (4nRE)(0TZ)

which gives
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Problem 10.13.
Using the formalism of the ideal quantum gases with a continuous spectrum in the
energy, prove the pressure-energy relation

pv=2u

-3

when the single particle energy is given by € = p%, with p the absolute value of
the momentum and o > 0. Using this result, determine the relation between the
energy and the temperature for an ultrarelativistic gas (¢ = p taking the speed of
light ¢ = 1) with zero chemical potential. To this end, make use of the first law of
thermodynamics dU = TdS — PdV, where U(T,V) = u(T)V (u(T) is the energy
density) and use the Maxwell relations derived from the thermodynamic potential
suited to describe this case.

Solution
A generic quantum gas is described by the following occupation number

<n€>:f
77 'erT +a

with a = £1 (a = —1 means Bose-Einstein and a = 1 means Fermi-Dirac). It follows
that

PV gV _e14npidp
Y mo- In [1 kr] -
kT a /o Haze =

’;

4mgV deo e ] i1 de
2 lln[lJraze kT}O +/ pazerp]
0

ah3 3 3 1+a167% dep

where 2 = 2(T,V,z) is the grand canonical partition function and g the spin de-
generacy. The boundary term in the expression for PV /kT is equal to zero and we
find

dggV [+ p 1 de 4mgV /+°° 1 de\ ,
PV = g - SCap= ) prap.
W Jo 3o radp’t T 30 Jo e 1a \Pdp) TP

The average number of states and the average energy are

4mgV [T 1
(N) = /0 ——pdp.
Z

h? e +a
4ngV [T 1
U= § / 8p2dp
h JO Z—lekT +a

from which

P—@ oo 1 (de) 2 _47rgoz/+°° 1 2 aU
Wy b e \Pap )PPy T el P Ay
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Let us now look at the relation between the average energy and the temperature for
an ultrarelativistic gas with € = p and zero chemical potential. From the first law of
thermodynamics, we know that dU = T'dS — PdV . If we differentiate this expression
with respect to V' at constant temperature, we get

U as JdP
(av>T:T(av>T‘P:T(aT)V"’

where we have used the Maxwell relation

s\ _(op
ov), \or),
coming from the differential expression of the free energy dFF = —SdT — PdV . If

we now assume that U = Vu(T') and that P = 5, we end up with the following
differential equation

that is simplified to yield Tj—; = 4u. The solution is u(T) = AT* with A a normal-
ization constant. This result may be somehow useful when computing the average
energy for a a photon gas, in the sense that it predicts the correct power law in the
temperature associated with the energy density. Unfortunately, the use of a classical
approach would lead to an infinite normalization constant, A — +oo. In this case,
the use of Quantum Mechanics is needed to obtain a finite A (see Problems 10.10,
10.11 and 10.12).

Problem 10.14.

Compute the density of the states a(€), the entropy S, the free energy F, the enthalpy
H, and the Gibbs potential @, for a photon gas in three dimensions using the grand
canonical formalism for the quantum gases.

Solution

We first determine the density of states a(€) and then use it for the computation of
the partition function. The single particle energy is € = pc, with p the absolute value
of the momentum and c the speed of light. Our gas has z = 1 and the spin degeneracy
is g = 2 to take into account the two different directions of the transverse modes and
the fact that the longitudinal modes do not appear in the radiation. The density of
states a(€) is determined from

Vdip 8rnVp’dp
2 R =a(e)de

where we have used spherical polar coordinates in the momentum and integrated
over the angular variables, because the energy depends only on the absolute value
of the momentum. If we use p = €/c we get

&nv
a(e)de = Wszds.
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The pressure is given by

PV 8V [t e gnv [t g3
—:IQ:——/ 1 (1f ‘ﬁ)e2d6: / & de=
! o U TS Jy of 1

8V e 3 87V
kT3/ dx = kT)* =C(kT)?
e KT Jy - a1 = gapa (KT = €T

where we have integrated by parts and used the following definition for the con-
stant C

87V

A5k
The average energy can be computed taking the derivative of the logarithm of the
partition function

dln2
U =kT? ( ) =3C(kT)*
oT |,

so that we can write down the pressure in terms of the energy (see also Problem
10.13) as

U
PV =—.
3

Moreover, for the entropy we find
d(Thh2
s=k(2IR2N _yoers
aT v

We can now compute the free energy and the enthalpy

F=U-TS=—-CKkT)* H=U+PV =4C(kT)*.
As a check, using the results previously obtained, we compute

d=F+PV =0

This is the correct result because, given an average number of particles N, the Gibbs
potential is related to the chemical potential y, @ = uN, and u = 0 in our case
because we are dealing with a photon gas.

Problem 10.15.

An average number (N) of bosons with spin S = 0 is confined in a two dimensional
domain with surface A. The gas is ultrarelativistic with a single particle energy € =
pc, where p is the absolute value of the momentum and c the speed of light. Compute
the number of states and determine the correction to the equation of state for the
ideal gas at high temperatures. We recall that the pressure is such that PA = U /d
(see Problem 10.13), with U the average energy and d the space dimensionality.
Also, the Gamma function

—+oo
I'(n) :/ e " Yt = (n—1)!
0

may be useful.
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Solution
The average number of particles is

_2mA [t pdp
(V) = 7/0 Blre—n) _ |

and, at high temperatures, we can set z < 1 with z = eP#. We first write the integral
by setting x = B pc

(N)

_ 27A /’*"“ ze “xdx
- h2(ﬁc)2 )

and we Taylor expand in z by keeping only the first two terms of the expansion

2mA e ) e -2
(N) =~ W [z/o e “xdx+7 /0 e Xxdx]

from which, using the values of the Gamma function, we get

Z (l + 2) =n
(N)(hBc)® 1

withn' = 54— Solving for z and approximating /1 + n 14 %n, - g(n/)2 we

0o l—ze™

!
find z ~ n (1 — %) We now need the average energy to evaluate the equation of

state (PA = %). Again, making use of the Gamma function, we find

2mAc [t d 27mA o e
U— C / p-ap ~ C3 Z/ x2efxdx+z2 / xzefzxdx —
0o el 0 Jo

h? re—) —1 " h2(Bc)
4rAc z
hz(ﬁc)3z(1 +3)

where we can plug 7 = n (1 — ”Z) to obtain

Ny 4rAc I’l/ 71’1/ n/ 3
St G R

From PA = 4 we obtain the pressure

(VKT (| 1 (N)(hBe)?
p— T (1 LR

A ATl

showing a negative first order correction to the classical equation of state. A similar
problem (see Problem 11.13) can be considered for a Fermi-Dirac gas and shows a
positive correction to the ideal equation of state.
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Fermi-Dirac Gases

Problem 11.1.

An atomic nucleus of Helium consists of a gas of 0.18 nucleons in a volume of 1
fm? (1fm = 10~ 3cm). In this system, we can find two kinds of nucleons (protons
and neutrons) with spin § = 1/2 and their masses, m, ~ 1GeV, may be considered
equal. Compute the Fermi energy for the system and comment about its nature at
the ambient temperature. Assume that the particles are independent with a single

particle energy

_r

T 2my,

where p is the absolute value of the momentum. Also, make use of: 7 = 7 X
10724GeVs, 10~ 4cm ~ 7 x 1075, k = 8.61 x 1079eV /K

Solution

We first need to find the Fermi energy €r as a function of the particles density. To
this end, we impose that at zero temperature the gas occupies all the energy levels
up to €r, and the average number of particles is

(V)

4mgV [PF gV p3
_ 4mg / 20 — ngVpr
h3 3h3

with g the spin degeneracy factor and pr = v/2m,€r the Fermi momentum. There-
fore, the Fermi energy for the system is

AL 23 p2

F 4rgV 2my,

where one has to use the degeneracy factor g = 4 because each nucleon has the z
component of the spin S; = i% (see also Problem 3.9). We obtain &r ~25M eV. At

the ambient temperature we know that kT ~ 0.0259¢V. It is verified that er > kT
and, therefore, the system is fully degenerate.

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_11, © Springer-Verlag Italia 2012
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A ('-'"le)

(S

m"

Fig. 11.1 A possible approximation for the Fermi-Dirac occupation number ({n¢)): in the point
where € = u we draw the tangent to (ng). The resulting thermodynamic properties for the two
dimensional gas are discussed in Problem 11.2

Problem 11.2.

Consider a Fermi gas with spin S and energy € = p?/2m, where p is the absolute
value of the momentum and m the associated mass. The gas is placed on a two
dimensional surface A at finite temperature 7. Let us approximate the Fermi-Dirac
occupation number ((n,)) in the following way: in the point where € = y draw the
tangent to (ng) as shown in Fig. 11.1. Write down the expression for (n,) obtained
in this way and determine the average energy. Finally, compute the specific heat C4
and comment on the result.

Solution
For this system, the density of states a(€) is such that

d’pd*q
(2S+1)/ 7 / ds—C/ds

where C = (254 1)mA/(27h?) is a constant. To proceed with the calculations, we
need to determine the form of (n¢). We start by computing the tangent to (n,) where
€ = u. For the Fermi-Dirac statistics we can use

1
(ne) = e w1
so that
1

<”£>|£:u = B
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while, for the derivative, we have

d(ng) B BePE—1)
de  (eBle—n) 4 1)
from which
dine)| B
de |y 4

339

Therefore, we have to write the equation for a straight line r(€) touching the point

(1, %) and with angular coefficient —% Such equation is

re)= 5+ B o)

The desired form for (ng) is
1 0<e<u—A
rie) u—A<e<u+A
with A = 2kT. For simplicity, we can write r(€) as

1 X

with x = € — u. The average energy is
n—A C A X
U:C/<n8>£d£:C/ ede+—/ (1——)(u+x)dx
0 2J-a A

where we can expand the integrand of the second integral as

(l—g)(u+x%:u+x—ﬂf—x2

A A
so that
U:E(H—A)2+9/A {uﬂ“x’q dx:g(u—A)2+CuA—€A2.
2 2J)-a A A 2 3
The final result is c, c.,
U:§u+€A

from which

co— (Y _4KPCT  4mA(2S+1)K*T
A=\or ),y 3 ome
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The result is linear in the temperature, and this is in agreement with the specific heat
% (see
the exact solution analyzed in Problem 11.3) when S = 1/2. In the approximate case
of this problem, when S = 1/2, we find C4 = %
(ng), the constant in front of the temperature is not the same as that of the exact

solution.

of the Fermi gas only for low temperatures, where we know that C4 =

. Due to the approximations in

Problem 11.3.
A Fermi gas with (N) particles of spin S = 1/2 and mass m is placed in a two
dimensional domain of area A at finite temperature 7. Determine:

o the Fermi energy &F as a function of the density;

o the chemical potential u as a function of 7 and &r;

o the limit limy_,o i, verifying that it is equal to &f;

o the specific heat at constant area C4 in the low temperature limit.

Solution
The Fermi energy can be computed from the total number of particles at zero tem-

perature
2 2 [ n
N) = i /d q./d p

. . . . 2 . . ..
where the domain of integration is such that £~ < er. The integral in the position
coordinates gives the area of the region A. For what the momentum is concerned,
using polar coordinates, we get

<N> 1 V2mep mEer
A wh Jo h
and we easily find e = % When T # 0, the average number of particles is written

as

I J
”‘ﬁ./o Bl 1P 4P

where we have used € = p?/2m. We can set x = B¢, and obtain

m too 1
n= 5 / — dx
Brh?Jo e Prer+1
The integral can be done exactly, with the result
~+oo

m
= In(1+ePm).
) ﬁnhzn( PH)

m /*“’ 1 p m_ < e’ )
n—= X =
Brr*Jo e Prer+1 Brr?  \e Brer+1

nmh?
m ’

Using the Fermi energy &F = we obtain In(1 + eP*) = Ber or, equivalently

= %ln(eﬁe‘” —1).
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It is now immediate to show that in the limit of low temperatures (§ — +0) the
chemical potential equals the Fermi energy

1
lim — In(ePeF —1) = ep.
B—+oo

As for the last point, we need to study the internal energy U for low temperatures.
We first write down U as

mA [T €
=
and note that it is an integral of type
e fle)
1_/0 Bl 1 1€

with f(g) = € for our case. To solve the integral I, we change variables by setting
= (e — ), and obtain

+°°fu+X/ﬁ
ﬁ e+ 1
that we write as the sum of two integrals
1 0 +oo
=L futx/B) +/ futx/B) )
B\Jpu e+1 e +1
In the first integral, we change x into —x to get
Bu Foo
TS PN A (T2 1IN
B \Jo e *+1 e +1
We also note that 1/(e™*+1) =1—1/(e* + 1), so that we can write
L[ hu e fwx/B) PR f(r—x/B)
I=— )d ————dx|.
ﬁ{o Ju=x/P) x+/ e+l /0 I R
In the limit T — 0, i.e. B — oo, we find

2/"(u) x

d
B> Jo e"+1x

I=pf(u)+

because, when 8 — +o0, we have used

~ 2—xf’(u)-

fu+x/B)—f(u—x/B) B
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If we now set f(&) = €, and we note that the relevant integral involved is

oo 2
X,
o e +1 12

we can determine the behaviour of U for low temperatures as

mA [ ) k%%ﬂ
+

limU ~ —
Tlg%) nhz 6

from which, when 7' — 0, we find

U mATKAT
Ca= oT T TRz
3h

Problem 11.4.
At a finite temperature 7, we want to describe a Fermi gas in three dimensions with
an average number of particles N, spin S, and with a single particle energy given by

2m

where p is the absolute value of the momentum and m the associated mass. If we
define the fugacity as z = eP#, show that

1<8z) _ 5 f5p(d)
oT 2Tf3/2(Z)

with f(z) the Fermi function of order . Then, define the Speciﬁc volume as v = %

and, in the limit of low temperatures, determine the ratio y = &G o , where Cp and
C, are the specific heats at constant pressure and specific volume. You can make use
of the following formulae

1 too xO=lgy dfa(z)
fal) = F(OC)/O 7 ler+1 Tz = a1
S =Nk [; ;2;253 — lnz} (Entropy)

2 1 -
fip2e) = W(IHZ)I/Z (1 - ﬂﬂz(lnz) 2) T—0

fip(2) ~ 1/2 (Inz)*/? <1+ 72(Inz) 2) T—0

fs2(2) ~ 1/2 (Inz)>/? 142 7: (Inz) 2) T — 0.
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Solution
We start by considering the relation between the pressure and the internal energy for

2
a three dimensional quantum gas with a single particle energy € = é’—m (see Problem

10.13)
2U

=3y
The average energy U is then expressed in terms of the function f;5 /2(z)

P

4ngV /‘*"" 1 4 3 gV
= 3 2 pdp= *kTifS/Z(Z)
2mh3 Jo 1eBh 1 2 A
where g = 25+ 1 is the degeneracy factor and A = % a thermal length scale.

The previous result is equivalent to
U= c1VT5/2f5/2(z)

with ¢ a constant independent of the temperature. If we go back to the equation for
the pressure P, we get

2c
P= TITS/Zfs/z(Z)

We can now differentiate both sides with respect to the temperature keeping P con-

stant
0= %Tmfs/z(z) +713/2 (de542(2)> (g;)})i
from which, using the property deS(Z(Z) = f3/2(2), we obtain
1<3Z) :7if5/2(2)
2\dT Jp 2T f32(2)

that is the desired result. We can proceed in a similar way for the observable N and
obtain

N
V= 02T3/2f3/2(1)

where, again, ¢, is a numerical constant. Differentiating both sides with respect to

the temperature and keeping v = % constant, we obtain

_3pn s 452@)YN (92 1
0=">T f32@)+T7* (2 - 5r)

from which, using that zdf%ﬁ(z) = fi2(z2), we get

1<8z) 3 f3p0)
2\dT /), 2T fiplz)
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We then compute the ratio of the specific heats at constant pressure and specific
volume, Cp and C,. We note that the entropy S is a function of N and z, that means

Cr (T‘TBTS)RN B (TTazS) (%)P B (%)P 5 f52(2) fi12(2)

@, B m), G,
9z

where we have used the results obtained previously for (ﬁ) and ( aT) In the

low temperature limit, we can use the expansions given in the text and assume that

Inz=Bu~ Ber

o (@) (37 ®)) | ey
- = ~l+—(— -
3 <8F>

. <1+8n2(F) )2

Consistently, we find
_Cp—G, - kT
rmee 3 o)
Problem 11.5.

An average number (N) of fermions with spin 1/2 is confined in a one dimensional
segment of length L. We have the following dispersion relation between the energy
€ and the momentum p

£ = gosin®(121%) 0<|p|<Z
e=g3—sin?(B4)] I <|p| < 2,

In the above expressions, & = h 3,z With a and 7i constants. In the limit of a fully

degenerate gas, compute the average energy for the following cases:

o[ = {N)a ;
o L= < )a;
o= 2>
Solution

We first need to determine the Fermi momentum as a function of (N) /L. To do that,
we first compute the average particles density

+PF
T 27h /

from which we extract the value of the Fermi momentum

N rh

PF = 772
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When L = { 2> , we have pr = h, so that

o ([ (ene ] [ () o)

leading to
33L&

a

U=

In the second case, when L = (N)a, we find pr = ”h and

2L¢ a
U= Jrho # sin® (|pha>d

that means
_ L&
24’
Finally, in the last case, we get pr = ”—h and
2L¢, o » (|pla
= — — |d
i sin . P
leading to
L
poLtel, 33|
3a Am

Problem 11.6.

Consider a one dimensional fully degenerate Fermi gas with spin S = 1/2. The gas
is confined in a one dimensional segment of length L (0 < x < L). The dispersion
relation between the energy and the momentum (see also Problem 11.5) has the
following structure

€ = gsin? % 0<|p|<m

e=e|l+mn(B)] 2 <pp <
Compute the average energy when the first energy band (0 < |p| < ’2%‘) is filled and

the corresponding number of states. Repeat the calculation when both energy bands
are filled.

Solution
When the first energy band is completely filled, all the states in the momentum space
are occupied up to |p| = 72%' In this situation, the average number of states is given

by
L d 2Lwh L
o[l oL
0 < h h a a
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.. (mgznrax.0)
(er.0) . mgz

Fig. 11.2 We construct the allowed continuous energy spectrum for a fully degenerate Fermi gas

in a cylindrical container under the effect of gravity g. The kinetic energy (%) and the potential
energy (mgz) have to be chosen in such a way that the total energy (kinetic plus potential) is below
the Fermi energy €r. In Problem 11.7 we compute the Fermi energy and the internal energy

and the average energy is

L 5 pa\ dp Lg
U=4/[d i 2(—)—:—.
/o q/o SN ) T 2a

When both energy bands are filled, the corresponding average number of states is

wafla [ Gt 2
pl<m h h a a

while, for the average energy, we have

a d
U 4/ dq/2 g sin’ +4/ dq/ 1+ln haﬂ?p:

L£0
a

[2 +1n7r+1n2}

Problem 11.7.

A fully degenerate Fermi gas with spin § = 1/2 and (N) particles is placed in a
cylindrical container with base A and height H. The gas is under the effect of a
constant gravitational acceleration g acting along the negative z direction. The max-
imum height allowed for the gas coincides with H. Compute the Fermi energy as a
function of (N)/A. Finally, compute the average energy of the system.

Solution
The energy is written as

€="—+mgz
om 8
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The gas is fully degenerate, and we have € < gf, so that
2
mgz < €f — L
2m

The maximum height (zp74x) reached by the particles is obtained by minimizing

the kinetic term 5’7: (i.e. setting it equal to 0) and we get mgzyax = €. From the
information of the text, we know that this maximum height is exactly the height of
the container. This implies a relationship between the Fermi energy &r and H

&
H=".
mg

The average number of states is

3pd3q
_z/dpd 2A/ /d3

where the integral in the momentum space is over the domain defined by

P
— +mgz < €F.
2m

Therefore, for a given z, we need to integrate in the spherical region of radius p =
(2m(er —mgz))"/?, and the integral is

24 [mg 4
(N) :F/o ¢ ;(Zm(ep—mgz))%/zdz—

87 A e ! 32(2m)'2 A s)p
STA 5 3/27/ Bl2gy = 2= Em) T A
3 2mE) e ), 5 g WF

from which we extract the relation between &7 and (N)/A

B < 15K3g(N) )2/5
C\32nv2emA)

For the average energy, we can write

_ 8WA [m V2m(ep—mgz) [ p2
= / g / (p +mgz> pzdp
2m

that reduces to

87A 2m)>/? spep ! 52
= = [ (- d
h3 10m SF mg/o ( ¢) ¢+

8rAmg 3 32 (EF 2/] RSV
T oyt () [ o(1- )40
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Fig. 11.3 A fully degenerate Fermi gas is confined in a triangular region with base 2R and height
R. The gas is under the effect of gravity g. In Problem 11.8 we determine the average number of
fermions, assuming that the maximum height reached by the gas coincides with the height of the
triangle

where we can compute the two relevant integrals as

1 1

[a-opPas=2 [ o0-9)a0= .

0 7 0 35

Problem 11.8.
Let us consider a Fermi gas with spin 1/2 and mass m confined in the two dimen-
sional domain sketched in Fig. 11.3: in the (x,y) plane, it is a triangle with base 2R
and height R. This gas is at temperature 7 = 0 and is under the effect of a constant
gravitational field g. Compute the average number (N) of fermions under the as-
sumption that the maximum height reached by the gas is exactly the height of the
triangle.

Solution

The single particle energy is

2
€= L+mgy
2m

where p is the absolute value of the momentum. The gas is fully degenerate (T = 0),
and we have € < gf, defining the allowed energy domain

P’

o tmgy < €

2m
with &r the Fermi energy. Due to the symmetry of the problem, we can work with
half of the domain (the one with x > 0) and multiply the final result by two. We

therefore have

2 \/2m(ep—mgy) M R—y
(N) = n / pdp/ dy/ dx.
0 0 0

T2h?
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We finally need to compute the maximum height yy, reached by the gas (similar
ideas are discussed in Problem 11.7). In particular, yys is reached when p = 0 and
€ =¢p,sothat yy = fn—; From the information of the text we learn that yy; = R and
&r = mgR. Therefore, the integral is
o \/2m(ep—mgy) ym=R R— y
(N) = / pdp / dy /

—_ (R— 2d
2h2 Jo n2h2 g/ y)dy

with the final result

2 5 3
N) = m-gR’.
(N 3t S

Problem 11.9.
Compute the average number of particles for a fully degenerate relativistic gas with
spin S = 1/2 in a cubic container of edge L. The gas is under the effect of a constant

gravitational acceleration g acting along one direction (say —x). Consider explicitly
the cases:

e v < ¢ with negligible rest energy;
e v = ¢ (ultrarelativistic),

where v is the velocity of the particles and c the speed of light. Assume that L > ;—2,
with m the mass of each particle and &r the Fermi energy.

Solution
The general expression for the momentum is

my
P = —
V2
CZ

with associated Kinetic energy & (p) = ¢/ p* + m?c?. For small velocities and neg-

ligible rest energy, we have & (p) ~ §—. For v ~ ¢, instead, we get &(p) = pc. In our
case, we also have a constant acceleration g. Therefore, the single particle energy in
the two cases is

2

&€= p——i—mgx
2m

€ =cp+mgx.

Moreover, the gas is fully degenerate and the distribution function in the energy
space is O for € > & and 1 for € < &, with & the Fermi energy. The total average
number of particles is found by integrating in the energy space up to € = &r. In
Fig. 11.4 we have sketched the allowed regions of integration in the two cases. The
average number of particles for v < c is

2 s 5
vy = AECS ) 1 /”mff,,zdp /*d: L\ 4V2ely/m
(27h)3 0 0 ) 15 g
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Fig. 11.4 We construct the allowed continuous energy spectrum for a fully degenerate relativistic
Fermi gas under the effect of a constant gravitational acceleration (g). In Problem 12.17 we treat
the following cases: 1) v < ¢ and negligible rest energy (top) 2) v = ¢ (bottom), where v is the
velocity of the particles and c¢ the speed of light

while, for v = ¢, we get
12 T e 12 et
Ny == 24 / de— (=) &
N (n2h3>/o pap 0 * (n2h3) 12mgc3

Problem 11.10.

Determine the average number of particles (N) as a function of the Fermi energy
for a fully degenerate Fermi gas (with spin § = 1/2) in two dimensions with the
following single particle energy

e=(pi+py) >0
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where p, and p, are the two components of the momentum and s is a positive integer.
Finally, compute the average energy U as a function of (N) and the area of the
domain occupied by the gas.

Solution
The gas is fully degenerate so that the distribution in the energy space is a Heaviside
function around the Fermi energy

2
& = pp

with pr the absolute value of the Fermi momentum. In the momentum space, the
energy levels are occupied up to pr and we can write the following expression for
the total average number

2 A [PF A
Ny = —— [axdy [dpedp, = =5 [ pap= i p?
) (27rh)2/xy/ Px@Py="752 Jo PP qqp2PF

with A the area of the region occupied by the gas. The average energy is

) 1 Ap25+2
/dxdy/ pr+p3)'dpedpy = hz/ p~d

27rh T (25 12)

We can easily determine pg from the first equation and plug it back in the second

one to get
N e A
2542 A '

Problem 11.11.
A fully degenerate Fermi gas (with spin S = 1/2) is characterized by (N) non inter-
acting electrons confined in 2 dimensions within a circular region of radius R. The

single particle energy is
2

p
E=—+a
2m+ 4

where r is the distance from the center of the circular region, p the absolute value
of the momentum, and & > 0 a constant. Determine the Fermi energy &7 and the
average energy when:

e the potential energy term is small, i.e. @R < €f;
o the potential energy at the border of the disc is larger than the Fermi energy, i.e.
OR > €F.

Solution
The allowed domain of integration is obtained by imposing € < &f, that is

2
SZL—FOWSSF.
2m
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Fig. 11.5 We construct the allowed continuous energy spectrum for a fully degenerate Fermi gas
confined in a two dimensional circular region with radius R. The gas is under the effect of a central
force with potential V (r) = ctr. In Problem 11.11 we compute the Fermi energy €r and the average
energy U when aR < &r and 0R > &

Furthermore, we have to consider that the radial distance of the particles is r < R.
When aR < €r (and in particular when R < €r ) we can use the integral (see also
Fig. 11.5) over the whole circular region 0 < r <R, and 0 < p < /2m(ep — ar)
with the certainty that the argument of the square root never changes its sign. The
average number of fermions is given by the following integral

2 o/ 2m(ep—ar) R 2 R2 R3
//dzpdzq: —/ pdp/ rdr = h—’; <8FOC)
D 0 0

V)= —
 4m2n? R 2 3
where we have used polar coordinates in both the momentum (d?p = 2npdp) and
position (d>q = 2xrdr) space. If we consider the condition &R < &, the above

result is well approximated by

2m ([ R* R? 2m _ R?
W) =27 ( iy ‘“3) iy
2
from which &r = %. The average energy is
2 [V2mler—an) R [ p? 2 [(eR* o’R* eIR?
U:—/ pdp/r p——i—ar dr= | F T LT
n?Jo o \2m n? 4 8 o2

In the second case (@R > &), we cannot vary r between 0 and R (see Fig. 11.5). In
2 2

the (ar, 571) plane, we need to span the triangular region 0 < ar < €r, 0 < 571 < €r,

with area €2 /2. Therefore, the average number is given by

2 y 2 rPF L(ep—p?/2m)
W)= g | a5 | vir | rar
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Fig. 11.6 The allowed continuous energy spectrum for a fully degenerate Fermi gas is character-
ized by a forbidden gap of energy: the particles have energies below & or above 2¢y. The Fermi
energy changes when the energy gap disappears. Details are reported in Problem 11.12

where pr = \/2méer. A calculation leads to
2
1 PF P’ me;
N)= —— g —— | dp=—=L
W)= o /0 P ( 4 Zm) P=30om?

. (322w \ /3 .
from which & = | — -~ . For the average energy, we have the following

2 [pF (er=p*/2m) [ p2
U:?/o pdp/o (M—l—ar)rdr

4
m&‘F
40212

Problem 11.12.
Let us consider a fully degenerate Fermi gas with spin 1/2 placed in a volume V.

integral

leading to U =

2
The single particle energy for this gas is £ = £, with p the absolute value of the
momentum and m the mass of the particle. The average number of particles is

) = 167V (2meg)>/2
N 3h3

Furthermore, there is a forbidden gap of energy: the particles may have an energy
below gy or above 2gj, without the possibility to fill in between (see Fig. 11.6).
Compute the variation in the internal energy due to the disappearance of the energy

gap.

Solution
Let us start by computing the Fermi energy for the system without energy gap (we
call this situation ‘case B’). We have

oy = 87 /Pé‘” 2, _ 82V (2me”)
RN P= 313
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where we have used that
8 Bp="""(2m)ierde
with g = 2 the spin degeneracy. The relation between € and & is given by

87V /p(ﬁ) gy 8V (2mef” > 16mV (2meg)>?

N) = ——
) h3 3m3 3h3

leading to
B) — 22/380

from which we learn that the Fermi level for the system without the band is larger
than &j. The expression for the internal energy is

L 1% I’F
(B) — p dp
v R /0 2m

that is
16xVm(2m)'/?
m(2m) 25/383/2'
5h3
Let us now consider the situation with the energy gap (we call this situation ‘case

A’). From the above considerations, we already know that the Fermi level has to be
located above 2¢; in order to accommodate all the particles. Therefore, we obtain

(A)
8V [ [V2mE ep 4nv( 2m 3/2
Ny =21 / 2dp+ 2 ( / de+
(N) h3<0 prdpt | PP ) = Ve

U® =

(4)

from which we get & as a function of &)
£§A> =gl +23/2)2/3.
For the internal energy we have

1/2
U(A) — 167‘[‘/’;1]/55’”1) / 5/2(1+(1+2’3/2)5/’3 25/2)

and, for the difference AU = U @) _y (B>, we obtain the following result

16xVm(2m)'/? &

<3 (1+(1+23/2)5/3 25/2_25/3)

AU =

that is the variation in the internal energy due to the disappearance of the gap.
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Problem 11.13.

Determine the first order correction, for z < 1, to the equation of state for a gas
of ultrarelativistic three dimensional fermions with spin § = 1/2. In the previous
expression, z = ¢PH is the fugacity of the gas and u its chemical potential.

Solution
Starting from the energy of the ultrarelativistic particle

e=cp

with ¢ the speed of light and p the absolute value of the momentum, the expressions
for the pressure P and particles density n are such that

P 8w [t
— == In(1 —Bery2q

and
8T /+w ze—Bep )
n=— S /
h Jo  14zeBer

Since z < 1, we can expand the logarithm defining P

dp.

oo 2 -2
£:8£/+ (Ze—ﬁcp,ﬂ
kT w Jo 2

To simplify matters, let us introduce

8w [+ 8m [T
A= hi;/o e Perp2dp = h—gr/() e 2Perp2dp
in such a way that
P 1,
B — 2B
i AT

Also, in the expression for n, we can expand the denominator up to the second order
inz

n=zA—7B.
Our objective is now to find z as a function of n and plug this result in the equation
for P. We write

1
Z:Z(n—kzzB)

and solve this equation in an iterative way. When z is small, the first approxima-
tion is z = z9 = 0. If we use this information in the above equation we have the
first order approximation z = z; = n/A. Finally, the next order (i.e. z») is found by

substituting z;
— — ﬁ 1 + nB
‘TR A2 )"
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Using this expression in the equation for P, we get

where, when evaluating z2, we have neglected terms like 7> and n*. Finally, we need
to compute the integrals A and B. Recalling the definition of the Gamma function

~+o0
'(n) :/ e " Yt = (n—1)!
0

we find
167 2r
ERETE ERETE
so that
ST

showing a positive first order correction to the classical equation of state. A similar
problem (see Problem 10.15) can be considered for a Bose-Einstein gas and shows
a negative correction to the ideal equation of state.

Problem 11.14.
An average number N of fermions is placed in a volume V at temperature 7 = 0. The

2
single particle energy is € = £, with m the mass of the particle and p the absolute
value of the momentum. Give an estimate for the isothermal compressibility

e _L(V
TV or )y
Solution

When T = 0, we know that F = U — TS = U. Moreover, for a quantum three di-
mensional gas, the following pressure-energy relation

2
PV =-U
3

holds (see also Problems 10.13, 12.16). Therefore, we can write down the equation
for the pressure as

pe—(2E) —_(U) 9 (3} 31 (22} Lp
o\ )y N9V /)y VN2 )y 2 oV )y

Simplifying this relation, we find

2

oP 5 10U 2N W (6123
VI — :7P:ff:7ng:7 _
oV )ry 3 oV 3V 3m \ g

7 N

<|=

\/
Wl
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where g is the degeneracy factor due to the spin of the particles, and where we have
used the relation between the average energy and the Fermi energy

3 37 (6n2\F (N}

T N3
U=_Negp=—-—|— — | .
=53 (%) ()
This can be easily proved from the basic equations determining the average number
N and average energy U for the fully degenerate Fermi gas

47rVg PF 477:VgpF

3

4 5

_4mVg [Pr p _ 4nVg pp

B Jo 2m™PT T iom
with pr = v/2mér. From the first we get

2
. R (6m*N 3
7 om gv

_ 4nVg plsp
TR 10m

while, from the second

3 p% 3
= NPE _ g
5°m 5°°F

The requested compressibility is given by

o Lavy _[r (em\
TiVaPT’N73mg

Problem 11.15.

A gas is composed of an average number (N) of non interacting fermions with spin
1/2 in equilibrium at temperature 7 = 0. The gas is placed on a two dimensional
disc with radius R and is under the effect of a constant radial force. The energy of
the single particle is

7 N\
<=
~

wl

2
14

e=—->b
2m 4

with p the absolute value of the momentum, m the mass of the particle, and b > 0
a constant. Compute the Fermi energy &f, the average internal energy U, the free
energy F, and the pressure P exerted at the border of the disc.

Solution
We start by writing down the average number of particles in the system

2
(N) = ﬁ/l)dzpdzq
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where D is a suitable domain of integration such that the energy € is below the Fermi
2

energy, i.e. é’w —br < gr. If we set & = p?/2m and we use polar coordinates in both

the momentum (d”p = 2pdp) and position (d>q = 27rdr) space, we get

2 2 R ep+br R2 2 bR3
<N>:—’?/rdrd£:—’?/ rdr/ dé‘k:mgLZeriz
n° Jp ne Jo 0 7 3h

(V)R> 2bR
mR2 3

2m mR? b*R?
U== [ (ex—br)rdrdgg = — (g2 — — |.
ps) D( % — br) e < P )
The computation of the free energy is very simple because we are dealing with a

fully degenerate gas with T = 0, that means F = (U — T'S)|r—o = U. The pressure is
obtained using the appropriate derivative of the free energy with respect to the area

A = nTR?
P~ (%), 00~ (38)
A ) r—o ) 9A ) r—o )

and, since the infinitesimal change of the area is written as dA = 2wRdR, we get

e () () ey

Problem 11.16.

A container in d dimensions with volume 2V is separated in two equal parts, A and
B, by a wall allowing for the exchange of particles. A fully degenerate Fermi gas
with spin S = 1/2, mass m, and with a magnetic moment 7 directed along the z
direction, is placed in both regions. The gas has a kinetic energy

from which it is easily obtained that &p =
find

For the average energy, we

2

& = L

2m
with p the absolute value of the momentum in d dimensions. At some point, a weak
magnetic field H directed along the z direction is switched on in the region A. Under
the assumption that the density is the same in both regions, determine the direction
of the density flux of the particles as a function of d. Is there any dimension d,
where the system is in chemical equilibrium?

Solution
We recall that the infinitesimal volume element for the sphere with radius R in d
dimensions is

d
_dn?

dvy = R*4R.
(9)!



Problems 359

Therefore, we can write down the number of states in an infinitesimal cell of the
momentum space as

d d
2 2

gv dmz 4, 2V d(2mm)z 4y
p p'dp= — & d&

(2zh)4 (2zh)d (4)! (2zh)d 2 (%)! k

with g = 2 the spin degeneracy. The gas in the region A has also the interaction
energy with the magnetic field +=7H, where the sign depends on the orientation of
the spin. This means that the spin degeneracy is removed and we have two groups
of particles: those with spin parallel to H and energy

»
&= —TH=——-7H
2m

and those with spin antiparallel to H and energy

pZ
e =g+1tH="+1H.
2m

Since the gas is completely degenerate, we find €+ < 4 in the region A, with piyg
the Fermi energy in such a region. The average number of particles in this region is

(Ba+TH) a4, (Ma—TH) 4_,;
(Na) =C {/ g’ d£k+/ g’ dek] =
0 0

2 [a o)

1N

+(ua— )8

where we have used the definition

d
2

V. d(2mm)
2(2zn)d (4

In the region B, the spin degeneracy is not removed because the magnetic field is
not present, and we have

ol
(NB) = 7#}?

with up the Fermi energy in the region B. Both gases have the same density and
the volume in both regions is the same. Therefore, we can set (N4) = (Np) with the
result

d d d
(Ha+TH)Z 4+ (1a — TH)?2 =245 .
If we factorize 4 in the right hand side and set x = TH /U4, we can expand the
resulting binomial function in the limit of small H (x < 1) using

a
(1+x)“:1+ax+§(oc—l)x2+...
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[ 2
ug ) 2 1 (‘CH)
— =1+=dd-2){ — | .

(HA) 8 ( ) Ha

For d < 2, we have up < 4 and the particles flow from A to B (the system wants to
minimize the chemical potential). For d = d,; = 2 we have up = 4 and there is no
net flow of particles, i.e. the system is in chemical equilibrium. Finally, when d > 2,
we have g > ta with a resulting flow from B to A.

Problem 11.17.

A three dimensional volume is separated in two parts by a rigid and impenetrable
wall. The first part contains a Fermi gas composed of particles with spin 1/2, while
the second one a Fermi gas of particles with spin 3/2. In both cases the single

so that

2
particle energy is € = 5’%, with p the absolute value of the momentum and m the
associated mass. Determine the density ratio at the mechanical equilibrium in the
limit of zero temperature.

Solution
We need to impose the condition of the mechanical equilibrium between the two

parts. If the single particle energy is € = %, the relation between the pressure (P)

and the average internal energy (U) is P = %—l‘f (see also Problems 10.13 and 11.5).
The mechanical equilibrium requires

P=pP
that implies

Uu_t

ViV

Let us now compute the internal energy for the gas of particles with spin 1/2. When
the gas is fully degenerate (zero temperature) it reads
U — 47Vy /I’IF r* d
1 =41 3 o m

where pir is the Fermi momentum, and the factor g; = 25+ 1 = 2 corresponds to
the spin degeneracy. We easily obtain

U a5

Vi smmPIF

The computation of the energy for the gas with spin 3/2 goes along the same lines,
with the only exception that we have a different spin degeneracy go =2S+1=4
and a different Fermi momentum p;r. Therefore, we find

Vo smm3 P
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The final step is to replace the Fermi momentum with some function of the average
density. For a fully degenerate Fermi gas, the particles density is

N; 4m [PiF .
n; = <V> :glh—S/O pzdp 1:1,2
1

(N (3
PIF = 187r P2F = 1167: .

If we plug the expressions for pjr and pr in the equation defining the internal

energy, we find that %1 = %2 is equivalent to

so that

(3n1)5/3h2 (3n2)5/3h2

10m(8m)2/3  10m(16m)2/3

that implies Z—; =272/5,

Problem 11.18.
An electron gas is at equilibrium at temperature 7 = 0. The single particle energy is

€= %, with m the mass of the electron and p the absolute value of the momentum.
The electrons occupy a container with volume V which, in turn, occupies a larger
container of volume V + AV, with AV < V. The gas container is initially isolated
from the larger one by some walls. At some point, the walls are removed, and the
electron gas reaches a new equilibrium state in the larger volume. The total average
energy is unchanged. What is the temperature of the new equilibrium state? Given
the condition AV <V, we assume that the temperature is small. Compare the result
with the classical counterpart.

Solution
For a Fermi gas at T = 0 in a volume V, all the energy levels are occupied up to
the Fermi energy € (V). The function giving the occupation number is a Heaviside
theta function that is 1 for energies € < £¢(V) and 0 otherwise. The total average
energy is

8nV (PF p* , 4wV 3

Up_g = —— Lan > == (N)er(V
T=0 B o 2mP p 5mh3pF 5( yer(V)
where pr = /2mep (V) is the Fermi momentum. Given the average number
&nV [PF 5 8V ;4
N)= — -
== [ dp= S5k
we can write 5
ey = 2 _ L (3 )\
B T om T 2m \ 8 v '
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When T # 0 in the volume V + AV, the energy is always connected to the logarithm
of the grand canonical partition function as

_ (om2\ _,[(dm2\ 3KV -
”ﬂ“<aﬁ>m‘“1<ar>m‘ as file) =

fs/z(é) 3
WS = S Njer (v av)

3
2

|57 kT ? N
12 \er(v+av)) T
where A = h/(2wmkT)"/?, and where we have used the Fermi-Dirac functions

1 Foo xO—1gy
fa(z) - F((X)/O Z_1€X+l

with their asymptotic expansions (valid when 7' — 0)

4
T

3f(1nz)3/2 [1 + 7;2(lnz)2+...]

fap(2) =

f52(2) =

2 2
men VAV mm KT\
er(V+AV)

(Inz)*/? [1 + %(lnz)f2 +.. }

In the new equilibrium state, we know that the energy is the same as before, so that

— 2 Nyer(v),

l+ﬁ kiT 2+
12 \er(V+AV) s

The Fermi energy for the volume V + AV can be expanded as

er(V+AV) = (3h3 ) )2/3 e (V) (1_2”) .

%(N)SF(V—FAV)

2m \ 8T V+AV 3V

which can be substituted in the previous equation to obtain

er(V) [8AV
T = ——+....
km 5V +

In the classical case, making use of the equipartition theorem, we assign to each
degree of freedom an energy contribution equal to k7 /2 (see also Problems 7.138,

7.19, 7.20). For N particles in three dimensions with a single particle energy € =

PRApi+p? 3
——5—, the total energy would be U = 5NkT. Consequently, for a fixed energy

and fixed number of particles, the temperatures in the volumes V and V + AV must
be the same.
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Fluctuations and Complements

Problem 12.1.
Characterize the fluctuations of the energy in the grand canonical ensemble and
prove that

2
(AEY) = ((AE))an + (ANY) (a")

N /)1y

where U = (E) is the average energy, N the average number of particles, ((AN)?) its
fluctuations, and ((AE)?).., the energy fluctuations as obtained from the canonical
ensemble.

Solution
If the grand canonical partition function 2 = 2(T,V, z) is known, we can define the

average energy
JdIn2 JdIn2
U:<E>:‘( ap )(‘( 3p >V,a

with o« = —Inz, and the associated fluctuations are

R =t 2= (55), =4 (57),

The average number of particles is
N ( dln Q)
da Jgy

2y N2y (N2 — IN
(N = ) - =ar (1)

and its fluctuations are

Cini M., Fucito E,, Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4_12, © Springer-Verlag Italia 2012
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From the previous expressions for U and N, we obtain

(55 50),0), (3 ), - (Ga),,

or, equivalently
(2) ~1(2)
oT )y, T \Ju T,V'

We can now consider U = U(T,V,N) with N a function of 7,V,z

U U U
dU(T,V,N(T,V,z)) = (aT>VNdT+ <W>TNdV+ (aN>TVdN(T,V,z)

ON ON ON
dN(T,V,z) = | — dr — av —_— d
(T.V.2) <3T>V,z +<8V)T,z +<8Z)T,V ¢
so that

w-((2),,- (%), (30, )
(50,7 (30),, (), o G, (3,

If we compute (‘;#) " we obtain

U\ (U (U (N
ar )y, \oT VAN ON )y \OT ).

The fluctuations become

oU oU oU oON
<<AE>2>kT2(> m() +kT2<> () _
aT Vi oT VN JON TV aT Ve

((AE)?)can + kT (3%) TV ((;Z) TV

where we have used the formula for the fluctuations of the energy in the canonical
ensemble

TV
TV

(AE)?) can = kT (?;)N

(5),, = (), (i)
o)y N TV u T,V

It is also noted that
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and, hence

2
(ABP) = (AE )+ (5 ) (AN

that is the desired result.

Problem 12.2.

A system is in equilibrium with a reservoir at temperature T' and pressure P Prove
that, in a fluctuation with respect to the equilibrium state at constant pressure, the
increase or decrease of the entropy only depends upon the sign of the thermal ex-

pansion coefficient
o 1 /v
VAT ),

For simplicity, no exchange of particles is allowed. To solve the problem, relate the
entropy variation to o and Cp (the specific heat at constant pressure) and finally
show that Cp > 0. Also, consider that the total energy and volume of the system and
the reservoir is conserved.

Solution
The quantity we are interested in is the variation of the entropy during the expansion,
i.e. (dS/dV)p. Following the suggestion of the text, we can use the method of the

Jacobians and relate (g—f,)P to a and Cp

(T
= AP - :
oV ), 9(V.P) pes (%)P aTVv

a(s, as
(35) I(S.P) S (a?)P_ Cp
V.P)

Therefore, it is sufficient to show that Cp > 0. Our system is initially at equilibrium
with the reservoir at temperature T' and pressure P'. The total entropy, i.e. the one
of the system (s) plus the one of the reservoir (r), attains its maximum value at the
equilibrium. Therefore, a fluctuation can only reduce it

AS[()[ - ASX +ASr S O.

From the first law of thermodynamics we know that
f1 I P,
AS, :/ —dU. +/ —dV;
B A P A
and

f1 f P,
AS,= [ —dU, “Lav,
' /T +/ T,

where i and f stand for the initial and final state. Also, the temperature and the pres-
sure of the reservoir do not change appreciably and stay equal to their equilibrium
values (the reservoir is so large that the expansion of the system does not perturb its
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pressure and temperature). Therefore, we have
f1 rp, 1/ P f 1 P
AS, = —dU —dV,=— | dU,+ = [ dV,= AU, + —AV,.
r [T;« r+/l Tr r T//l r+T/z r T/ r+T/ r

On the contrary, for the system we have to use
f1 f P
AS :/ —dU—i—/ —=av,
S ; 7—; s ; 7} N

where we are not allowed to bring out of the integral 7 and P; because, in principle,
those parameters vary. Moreover, if the total volume and energy are conserved

AV, =—-AV, AU, = —-AU;.

Therefore, we can write

/

1 P
AS,+AS; = A8, — 5 AU~ AV, <0

or, equivalently AU+ P'AV. — T'AS. > 0
S N s .

Let us now drop the subscript s

AU+PAV —-T'AS>0

knowing that we are referring to the properties of the system hereafter. We can now
expand AU = AU(S,V) up to second order

U U
AU = <8S>VAS+ <8V>SAV+
1/ (d°U , (0°U ) d (dU
p ((as2>v<“> * (aw)&‘” ”(as (av>s)v“5”>

and we can substitute this in the previous expression, with T = (dU/dS)y and P =
—(0U/aV)s

’U , (9%U ) d (dU

(57), 97 (G ) o2 (55 (50),), 2507 -

oT , (oT oP , [oP
(aS>V(AS) + (W>SASAV— (W)S(AV) - (aS>VASAV20.

We note that AT and AP can be written as

aT oT
apP opP
AP = (W)SAV+ (S)VAS
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that implies
ATAS — APAV > 0.

This final expression is a relationship between T', P, S and V. If we choose T and P
as independent variables and expand S and V at first order, we have

7)1+ (5p),47] -ar | (57) a7+ (55), &7
AT || == | AT+ | == ) AP|—-AP|| =) AT+ | == ) AP| =
[<8T p oP ), oT ) p oP ),
S 5 A% 2 S A%
(57),arr-(55), 0+ |(55), - (57) Jarar=0
If we keep P constant (AP = 0), we find that

((?;)P(AT)Q =TCp(AT)* >0

that implies Cp > 0 because both 7 and (AT)? are positive.

Problem 12.3.

Unlike an ideal gas, which cools down during an adiabatic expansion, a one dimen-
sional rubber band (with spring constant K and rest position xo = 0) is increasing
its temperature 7 when elongated in an adiabatic way. Determine the probability for
the fluctuations from the rest position (Ax) and compute ((Ax)?) and (AxAT).

Solution
As already discussed in Problem 6.6, the first law of thermodynamics reads

TdS =dE — Kxdx.

Let us now derive the probability for the fluctuations. In the case of a fluid with
pressure P and volume V, the first law is written as TdS = dE + PdV, and the
probability of the fluctuations reads

pos efﬁ(ASATfAPAV).
When comparing the first law of thermodynamics for the fluid and the one for the
rubber band, we see that the elastic force —Kx plays the role of the pressure P, while
the elongation Ax plays the role of the variation of the volume AV. This means that
we can follow the same derivation for the probability of the fluctuations for a fluid
and replace P with —Kx and AV with Ax. Therefore, we find

poce sir (ASAT+K(Ax)?)

To compute ((Ax)?) and (AxAT) we need to expand AS in terms of Ax and AT

aS aS Cy as
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where we have introduced the specific heat at constant elongation

N
=7 (3r),

As already discussed in Problem 6.6, the entropy stays constant during an isothermal

elongation
as
(5:), 0
ox /),

and the probability of the fluctuations becomes

C; K
p < e 21;2 (AT)27 W(Ax)z

from which we see that Ax and AT are statistically independent Gaussian variables
with the property

kT
(Ax?) =
(AxAT) =0.

Problem 12.4.
Consider a gas with a fixed number of particles. Using the probability of the fluctu-
ations from the thermodynamic equilibrium, prove that:

2
o (ATAP)=T (gg)v
o (AVAP)=—T;
o (ATAS)=T:;
o (AVAS)=T (%)P

To simplify matters, assume k = 1.

Solution
As we know from the theory, the probability of the fluctuations from the thermody-
namic equilibrium is

Do e%[AVA}LASAT]

where we can use the differential expressions for P = P(T,V) and S = S(7,V)

JP dP
AP = (aV)TAV+ <3T)VAT

as as
5= (22) ave(22) ar
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) e (3 v
(50), avar—(57) @ri=(57) @vi-(57) @rr

Then, using the Maxwell relation (a—s) a—) we can simplify the formula

to obtain

Q.J

[AVAP — ASAT] = (

for the probability as
p oc o2 [(57)r@VIP=(2), (4T7]

from which we extract ((AV)?) and ((AT)?), the standard deviations of V and T
respectively

((AV)?) = — T(?}i) ((AT)2>:T<3§)V (AVAT) =0.

It is now immediate to show that

(APAT) = (gi)r (AVAT) + <§;)v ((AT)?) =

r(9P) (9T _1 (P
or ), \ds /), Cy\oT ),

where we have used P = P(7,V). Similarly, we can obtain

(APAV) = <§€>T ((AV)*) + (§I;>v (AVAT) = —T (§€>T (‘;DT =—T.

Then, we can consider S = S(7,V) and obtain

(ATAS) = ((‘;‘j)T (AVAT) + (g)v (AT)?y =T (g)v (‘;g)v =T

(AVAS) = (jé) ) ((AV)?) + (j;) ) (ATAV) =

T as vy T as\ T A%
V), \oP), op), ~\oT/,
where we have used the Maxwell relation — <§—,§) = (g—‘;) .
T P
Problem 12.5.
Consider a system with internal energy E, volume V, temperature 7, and with a
fixed number N of particles. Using the probability of the fluctuations, compute the
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energy fluctuations showing that they are

IE\?
2\ 2
(AE)®) =CyT? + ks TV (8V)T

where Cy is the specific heat at constant volume and k7 = f% (3—‘[_/,) the isothermal

compressibility. Compare this result with the one obtained in Problem 12.1. To solve
the problem, take the differential of the energy, square it and take the average. To
simplify matters, assume k = 1.

Solution
Following the suggestion in the text, we take £ = E(7,V) and compute

JE JE JE
AE = (W)TAV+ (aT)VAT = (av>TAV+CVAT.

Squaring and taking the average we get
JE\* OE
(AE?) = (50 | ((AV)2) +CH{(AT)?) +2({(AV)(AT))Cy | 5 ) -
V), V),
The formula for the probability of the fluctuations is

po e%[AVAP—ASAT]

Substituting in it P = P(T,V), S = S(T,V) we find (see Problem 12.4)

(AVAT) =0 ((AT)2>:£—2 (AV)?) = -T (‘;Z) =VTxr.

Plugging this back in ((AE)?), we get the desired result
IE\’
(AEY) =CyT? + ke TV | =— | .

v ),

All these expressions are obtained with the assumption that the number of particles
N is fixed. In particular, the equation for ((AV)?) may also be used to derive an
expression for the fluctuations in the specific volume v =V /N

or also the fluctuations in the density n = N/V

((Av)?)  TxrN?
v v

((An)*) =
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Furthermore, considering a system with a fixed volume V and a variable number of
particles N, we can write

(@M?) = ((anpyy? = T

Substituting this back in the previous result for ((AE)?), we get

V2 (9E\?

AE?) =CyT? + (AN — [ == | .

(@B =G+ (N5 (5v )

By the same token, at a fixed temperature 7', we can connect the derivative of the

energy with respect to V in a system with fixed NV, to that of the energy with respect
to N in a system with fixed V, i.e.

(815)2 B (8E>2 N?
ov ), ON ), V?
In fact N,V are extensive functions (homogeneous functions of order one) and

N =V f(P,T), i.e. N is proportional to the volume (the ideal gas gives an explicit
example). The final result is

2
(ary) =+ (anp) (G2 )

that is in agreement with the result of Problem 12.1.

Problem 12.6.

A system is in thermal equilibrium at temperature 7' and is composed of N particles
(N = 1,2). They can be found in three energy levels E = ne,n = 0,1,2. Determine
the grand canonical partition function for particles obeying:

e Fermi-Dirac Statistics (FD);

e Bose-Einstein statistics (BE);

e Maxwell-Boltzmann statistics for indistinguishable particles (MB).

Solution
The grand canonical partition function is

2
Q<T7Z) = Z ZNQN(TvN) :ZQI(Tv 1)+Z2Q2(Ta2)

N=1

where the canonical partition function has been used

On(T,N) = Z{nE}g{”E}[B YEngE

with {ng} = (no,n1,ny) the set of occupation numbers for the energy levels and
g{ng} the associated degeneracy. With }° we mean that the set {ng} is satisfying
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N=2 B.E.

—_ — —— —%— —e— —%—
N=2 MB —®— —X%— —%— —&— — —
—X— ——

()
i
i

Fig. 12.1 The possible arrangements of N = 1,2 particles in 3 energy levels. We treat explicitly the
Fermi-Dirac (FD), Bose-Einstein (BE) and Maxwell-Boltzmann (MB) cases. The resulting grand
canonical partition functions are discussed in Problem 12.6

the constraint N = Y . ng. Regarding the degeneracy coefficient, for the Fermi-Dirac
case we have

g P npt =1 ng=0,1
g Png} =0 np=2,3,4,..

For the Bose-Einstein case we have
B gt =1.
Finally, the Maxwell-Boltzmann case for indistinguishable particles leads to

1
[gne!

For the case of a single particle, the canonical partition function is independent of
the statistics and is equal to

g8 {ng} =

o"P(r,1) = 0" (1,1) = 0" (T,1) = 1+ &P 4 o7,
For the case of two particles, we find three different results, dependent on the statis-
tics. In Fig. 12.1 we report all the resulting configurations. To be noted that in the
FD and BE statistics, particles (denoted by the crosses) are indistinguishable. On
the other hand, in the MB statistics, we first consider the particles as distinguishable
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(crosses and filled symbols), and then divide by the factor 2! to account for their
indistinguishability. The final result is:

o OVPN(T,2) = e Be 1o 2Be 4 o3P,
o OF)(T2) = 1+ Be 2¢72e 4 3 4 o4P2,
o ONT2) = e Jendfe s ooy foie,

Problem 12.7.

Consider a system with a single particle and two energy levels (0 and €). Write
down the canonical partition function Q. Then, consider the same system with two
particles and write down the partition function when:

e the particles are treated as classical and distinguishable (the Maxwell-Boltzmann
case);

o the particles obey Bose-Einstein statistics;

o the particles obey Fermi-Dirac statistics.

What is the relation between these partition functions and Q;? Repeat the calcula-
tion for the case with three particles and three energy levels (0, € and &). Using
these examples, determine the number of terms generated in the general case of n
particles in m energy levels. Characterize the limit where the Maxwell-Boltzmann
case gives the same result as the quantum (Bose-Einstein and Fermi-Dirac) cases.

Solution
The single particle partition function is very simple and independent of the statistics

01(T)=1+ePe.
In the case of two particles with the Maxwell Boltzmann (MB) statistics, we find

QEMB)(T) =1+tePepePe e ?Pe—(14e7P)2 = (0)(T))>

In the quantum cases, i.e. Bose-Einstein (BE) and Fermi-Dirac (FD), we have in-
distinguishable particles. In the Bose-Einstein case, a generic energy level can be
occupied by any number of bosons

QgBE)<T) _ 1+€7ﬁ8 +€72ﬁ£.

In the Fermi-Dirac case, due to the Pauli exclusion principle, a generic energy level
is occupied by at most one particle

(FD)

051y = e Pe.
The case with three particles and three energy levels provides the following result
for the Maxwell-Boltzmann statistics

QgMB>(T) = 1 4e3Per | p3Ber | 3,-Bear | 3,-Ber | goBleiter) 4 3, BRei+er) |

3o Ble1+2e) 43¢ 2Ber L 3,72Be (1 +eBa _~_e*B82)3 — Q%(T)
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where Q(T) = 1+ ¢ B8 4 ¢ P& in this case. The total number of terms is
Nup = 3 x 3 x 3 = 3% = 27 because each particle can occupy the energy levels
independently from the others. For the case of n particles in m energy levels, we
find

NMB = nm

and the coefficients in front of the terms have the form nl'"niz""S" where n; is the
occupation number of the i-th level. In the Bose-Einstein case, the case of three
particles in three energy levels gives

QgBE>(T) — 1 qe B8 Lo 3Be | pPa | pBer y Blate) | ,—BRa+e)

e Blait2e) 4 —2Ber | 2By

The total number of terms is 10. In general, when dealing with m energy levels and
n particles, we find a total number of terms equal to

(n+m—1)!

Npe = .
BE= T m=1)n!

Finally, the case of three Fermi-Dirac particles in three energy levels, produces

QgFD)(T) — o Bla+e)

With this quantum statistics, the case of n particles and m energy levels has a total
number of terms equal to
m!

Nrp = (m—n)n!’

Only in the limit of high temperatures (more energy levels are accessible) and low
densities (not so many particles to accommodate), the behaviour of all physical sys-
tems tends asymptotically to what we expect on classical grounds. In such limit, the
occupation number for each energy level is n; = 0, 1, and all the Maxwell-Boltzmann
terms, once divided by the Gibbs factor n! (to account for the indistinguishability of
the particles), are the same as those found in QP)(T) or QBF)(T). To give an ex-
ample, in the case of three particles in three energy levels, only the term 6e Blate)
survives. Dividing by 3! = 6, we get the quantum result of QgFD) (T) and QgBE)(T)
(in which we have also neglected the contributions from states with more than one
particle per energy level).

Problem 12.8.
A volume V is filled with N independent distinguishable particles of a given gas
with constant energy E. Let us split the volume V in two subvolumes

V=Vi+W,
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where V| and V; are filled with Ny and N, particles, respectively. Let

Vi v
P=+w 4q=

v 17V
be the associated volume fractions such that p+ ¢ = 1. Find the probability Px that K
particles are located in V; and compute (K) and ((AK)?) = ((K — (K))?), where {(...)
2
means the average with respect to Px. Finally, compute the fluctuations %.
Solution
The number of possible spatial configurations for a particle located in a volume V is
proportional to V itself. If there is no spatial correlation (particles are independent),
the probability that any one of the particles is found in a given region is totally
independent of the positions of the other particles. It follows that the probability
to find K particles in V; (and obviously (N — K) particles in V,) is proportional to
vEv YK

N!
P = A ViV K
A ST ST
where we have considered the factor ﬁ to take into account all the possible

ways to choose K distinguishable particles out of N. In the above expression, A is a
normalization constant found by imposing that the sum of Px over all the possible
realizations of K is equal to 1. Using the binomial representation

u N! N—-K N
Z K'(N—K)' V (V1+V2) =V

one can write

N!

Pk=AY Vi KNk =avhN =1
K):OK ZKvN K)!

so that A = Vl—N The resulting probability is

V(N kv _ 1 [N\ kynvk N\ k Nk
PK:VN<K>VV =% Vit = e A
The average number (K) is
N N N
N\ kx vk d N\ k Nk
=Y kPc=Y K pid" K =p— TAVAES
KZ:"O IZ'O <K> dp,éo K

d -
—(p+q)N =Np(p+q)" ' =Np

P i



376 12 Fluctuations and Complements

where we have considered that p 4+ g = 1. The fluctuations are given by

N N 2
(AK)*) = (K—(K)*) = Y K*P¢— (Z KPK> =
K=0 K=0
d\* X (N B
(pdp> IZ,O (K> PRV K — (Np)? =

p%wpw)”') —(NpP =

pN(p+ )N '+ p’N(N=1)(p+9)" > = (Np)* =Npq.

The final result is (AKT) ) Npa ) 71

(K) Np PVN
We remark that for large N the fluctuations are negligible for a finite value of p and
q. Only when p gets very small they become large.

Problem 12.9.

Consider an ideal gas with N > 1 independent particles in a volume V. Using simple
considerations, determine the probability Py that K < N (i.e. p = % < 1) particles
are located in the subvolume Vy < V. Assume that N — K > 1.

Solution

The probability that a single particle is in the volume Vj is p = % The resulting
probability that K particles are in Vp and (simultaneously) N — K particles are in the
volume V — Vj is

N!

N-K _ K
S AT
where Ck y represents all the possible ways to select K particles out of N. It imme-
diately follows that the average number of particles in V) is

(K) =Np.

)NfK

Py =Cgnp*(1—p —-P

All these results are found in Problem 12.8. We now derive some asymptotic formula
for the probability Px. In the limit suggested by the text, we can use the Stirling

approximation, N! =~ /2N (%)N, to get

N! AN N K
(N—K)! 2N () 2N _K)(N—K)NK

Me_K <NZXK>N W -K)" =
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In the same limit, since we know that (K) = Np, we find

s

I=p" Kn(l=p)N=(1=p) 7 ~e K.

If we use all these results together, we find

(k) K~ (K)
_ K K€ _ <K> €
k=NP ==

that is a Poisson distribution with average value equal to (K).

Problem 12.10.

During a thermally induced emission, some electrons leave the surface of a metal.
Let us assume that the electron emissions are statistically independent events and
that the emission probability during a time interval dr is Adt, with A a constant. If
the process of emission starts at time ¢ = 0, determine the probability of emission of
n electrons in a time interval t > 0.

Solution
Let us call P,(¢) the probability to emit n electrons in the time interval ¢. The com-
position rule for the probabilities gives

Py(t+dt) =P (1)P +Pi(1)(1—P))

Po(l+dl) :P()(l‘)<l —P])

where P; = Adt is the probability to emit one electron, as explained in the text.
Clearly, (1 — P;) is the probability not to emit the electron. If we expand

dP,(t)

dt
dt

P,(t+dt) =~ P,(t) +

and we use P; = Adt, we obtain the following differential equations

D) Apur )R] n#0
‘”3{“ ) am).

These differential equations need boundary conditions which are P,(0) = 1 forn =
0, and P,(0) =0 for n # 0, i.e. at time t = 0 we have probability one to find zero
electrons and probability zero to find at least one electron. For Py we can solve
immediately and find

Py(t) =e M.

As for P, with n # 0, we start by considering the solution of the differential equation

D) L p0y) = 400
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that is given by

y(t) = = Jopx) [/ q(s /01’( )’ ds+const}

If we set y(t) = P,(¢), q(t) = AP,—1(¢) and p(¢) = A we have

!
—e M {l/ Pnl(s)e“ds—ﬁ—const} .
0

Using the boundary conditions, we can solve forn =0,1,2,3,... and find

Py(t) =e M

Pi(1) =(At)e ™

Pz(l) _ (121‘)2 e—lt
3

P3(l) _ (A';') e—lt

It is straightforward to verify that this P,(¢) is the solution of the differential equa-
tions given above.

Problem 12.11.
The Ising model is characterized by a number N of particles with spin S = 1/2 lo-
calized on a given lattice. The Hamiltonian of the system is given by the interaction
energy between these spins
H=—J Z O;0 j
(i)

where J is a coupling constant and where 0; = =£1 are the values of the projections
of the spin along the z axis. The sum };; is performed over all the values of i, j
which are nearest neighbor. Using the canonical ensemble, compute the free energy
and the specific heat in the case of a one dimensional chain of N > 1 spins with
periodic boundary conditions (Oy+1 = O7).

Solution
Starting from the Hamiltonian .7#°, we find the partition function

On(T,N)= Z Z eB):,?I:IGiGiJrl Z Z Hcoshﬁ—i—O',G,Hsmhﬁ)

\=£1  oy==1 =+1 oy==%li=
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with ﬁ = J/kT. In the above expression, we have used the following relation
Boioinn — cosh B + 0,0, sinh 3
because 0;0;41 = £1. If we expand the product, we obtain terms of type
(cosh B)N*(sinh B)*(6;, 61, +1) (01, Giy 11) - - (G4, i 1)-
It is easy to see that all the mixed terms (i.e. those involving spins on different

locations) give zero as a result when summed over all the possible realizations. Let
us make an example and compute

0x(T,2) Z Z (cosh 8 4 0105 sinh B)(cosh § 4+ 0,03 sinh B) =

o1=tloy==+1

Y Y ((coshpB)?+ (sinhB)*+2010,sinh B cosh B) =
o1=tloy==*1

4((coshB)2—|—(SinhB)2)

where we have used the periodic relation 03 = 67 and also

Y ciw=) o )} e=(01-1H1-1)=0.

o1=tloy==%1 o1=%1 or==+1

Therefore, in the case of N spins, the partition function is

On(T,N) =2"[(cosh B)N + (sinh )] ~ 2" (cosh B)

because cosh§ > sinh 3 (B # +oo) and N >> 1. As for the free energy F, internal
energy U = F + TS, and the specific heat C = (%)N, we have

F = —NkT In(2cosh )

U=F+TS=F-T oF = —NJtanh 3
aT )

Nkf?
(coshp)?’

Problem 12.12.

Consider the Ising model discussed in Problem 12.11. In presence of an external
magnetic field H, the Hamiltonian of the system is given by the interaction energy
between the spins plus the coupling with the magnetic field

N
H = —JZG,'O'/'—HZG[
i =
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where J is a constant coupling and where 0; = £1 are the values of the projections
of the spin along the z axis. The sum };; is performed over all the values of i, j
which are nearest neighbor. Show that this model does not present a magnetization
M inthe limit N > 1, H — 0 and 8 < +oo.

Solution
We need to compute the magnetization. To this end, we start from the Hamiltonian

N N
H = —JZ 0;0j11 —HZG,‘
i=1 i=1

and the partition function

J N H yvN
QN(T7H7N): Z Z eﬁzi:10i6i+l+ﬁzi:15i:
oj==1 oy==1
y - Y e L1 1011+ 3 {7 T (0it0is1)

o1==+1 oy==1

where we have used the periodic boundary condition oy = 07. In this expression,
the variables o; are just numbers assuming the values +1. Let us imagine to de-
fine the states |s; = %) so that the i-th spin may be described by a complete set of
eigenstates |+),|—) such that the ‘spin’ operator, 6;, has o; as eigenvalue

6',‘ |Si> = O; ‘S,’> .

Therefore, we recognize in the partition function matrix elements of type

AA 1 H (A A 1 H
(il eﬁ6i0i+1+zﬁ(0i+6i+1) Isip1) = eﬁGiGerzﬁ(GﬁGm)

From the generic element, we immediately find out the components

<—|—‘ekT6-i6i+]+%kT (5i+ffi+1)|+> — oI — BUTH)
A A 1 a” A
<_‘e%0'i61+1+7%(6i+0'i+1)|_> — ofT = BU-H)

(+] o7 GiGi1+3 {1 (6i46141) |-) = e i — e B
(—|etT 6:6ir1+3 Hr(6i+6i41) |4+) = e_% -

giving us the representation of the well known transfer matrix 7

[ eBUHD B
e_BJeﬁ (‘]_H)

Using these results and the completeness relation

Y Isi) (sil = [4) (+H+ =) (—|=1

S,':i
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we write down the partition function as

ON(T,HN)=) - ) (s1| T |s2) (52| T'|s3) ... (sn| T |s1) =
S1= =+ SN= +
Y, (il PV]se) = (H[ TV |4) + (<[ TV [=) =AY + 247
A‘]Zi

where A1, are the eigenvalues of 7' given by

Mo = e'P (cosh(BH) +1/cosh?(BH) —2¢-2/h sinh(2JB)>

with the property A; > A, if B < +oo. For large N, the specific magnetization is
given by

oL (9FY 1 (omoy\ 1 (9m@AY+AN)N
_N<9H)T,N_ Nﬁ( JoH )T,N_ Nﬁ( oH )T,N_

5 (i (1 (2))]), =5 (), -
ﬁ ! M TN B JH T
. sinh(BH)cosh(BH)
Sll’lh(ﬁH) * \/coshz(ﬁH)72e*2’B sinh(2J)
cosh(BH) + y/cosh?(BH) — 2e~2/F sinh(2J3)
sinh(BH)

R \/ cosh?(BH) —2e=2/P sinh(2JB)

from which we see that M goes to zero in the limit H — 0.

Problem 12.13.
Let us consider a generic ideal quantum gas of bosons in a volume V at temperature
T. Show that the following relation for the entropy

S= kZ (ni)In{n;) + (14 (n;)) In(1 4 (n;))]

holds. In the above expression, (n;) represents the occupation number for the i-th
energy level. What does it happen in the case of fermions?

Solution
Let us start from the expression of the occupation number

1
Z*leﬁsi —1

(i) =

from which we can write |
Z*leﬁ&'i — + <n’>
(n:)
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and, since z = ePH, we get
—ﬁu + ﬁ&' = ln(l + <I’ll>) — 1n(n,->.

From the logarithm of the grand canonical partition function we find the pressure

an——:—Zln Zeiﬁg")z—zln <1+]<nl>) :Zln(1+<ni>)‘

The entropy can be written as

1
§= 7 (~Nu+PV+U)

where with N we mean the average number in the grand canonical ensemble. The
average energy and average number are

U__(&an) N_Z<81n£2>
B V2 dz T,V'

We first note that

Then, for the quantity %, we find

M_E Jdln 2 B '
! —Tz( = )T’V—k;ﬁum

B T =KL (Bt Ba) () = KX () In(1 + () — KX )

i
When we substitute this expression and

PV

5 = k;ln(l + (n;))

in the equation for the entropy, we find

S = kZ (ni)In{n;) + (14 (n;)) In(1 4 (n;))]

that is the desired result. Similar calculations can be done in the case of fermions
with the occupation number
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and the final result is

S= kZ [— (i) In(n;) — (1 — (n;)) In(1 — (n;))].

Problem 12.14.
Write down the probability that an energy level is occupied by m particles in the
following cases:

e a gas of bosonic (independent) particles with density n = 10'° particles per cm?

at temperature 7 ~ 400K;
e aphoton gas at room temperature.

Before writing down the probability, determine whether the system can be treated
with the classical or quantum statistics. Make use of the following constants k =
10~ "%rg /K, h = 10~?Terg s, m, = 10~28¢.

Solution
Let us start with the bosons gas. We first need to know if the gas is in a classical or
quantum regime. To this end, we compute the thermal length scale

h
A=—— ~2x10"7cm

\2rm.kT

and we see that we are in the regime where nA> < 1: we can treat the gas with the
classical statistics, where the occupation number of the energy level € is

(ne) ~ze P < 1.

Summing (ng) over all the possible energies, we find the total average number of
particles (N), i.e. (N) = Y (ne) ~ Yo ze P, that implies

W
Ye e Be

(N)ePe
Ye e Be’

(ne) =

Z

The probability to find a particle in the energy level € is proportional to (n¢), and
the probability to have m particles is proportional to (ng)™, that is

m 1 n m
Po(m) = 2L ) :mﬁi{ir

The factor m! takes into account the (classical ) indistinguishability of the particles
and A; = e~V sets the normalization of P () in such a way that ¥,t=, Ps(m) = 1.
As for the case of the photon gas, we need to use the Bose-Einstein statistics leading
to

Pe(m) = A, (zeiﬁs)m
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with A, the normalization constant found with

oo o0 m A
Y Pe(m)=4 ) (ze_ﬁ£> =2
m=0 m=0 1- Zeiﬁg

leading to Ay = 1 — ze P€. Moreover, in the case of a photon gas, the chemical
potential is zero and z = 1. The final result is

P:(m) = (e_ﬁg)m (1 fe_ﬁs) .

Problem 12.15.

In the primordial universe the particles formed a plasma at equilibrium. Among
the various species of particles, there were electrons, positrons, photons interacting
according to

}/<—>e++e_

which was responsible for equilibrium. At that time the electrons were “hot”, i.e.
they were relativistic. Compute the density n,+ in the two limits kT >> m,c?> and
kT < mec*(v /c < 1) and show that in the latter n,+ is negligible with respect to the
photon density. Consider that, for the reaction A <+ B+ C at equilibrium, the follow-
ing relation among the chemical potentials holds: (4 = up + Uc. Furthermore, since
the number density of the electrons and positrons is the same (for “hot” particles
virtual annihilations dominate over other reactions), the charge density for the lep-
tons is zero and an odd function of the chemical potentials, and U+ + t,- = iy =0
leads to u,+ = u,~ = 0. Some useful constants are: m, = 10728g, ¢ = 10!%m/s,
T >4 x 10°K, k = 10~ '%erg /K. Moreover

tee xnil 1-n
| = -2rmm)

Foo yn—1
/0 S dr=T ().
Solution

The energy of a relativistic particle is € = /c2p? + (m.c2)2. Let us consider our
two cases. When kT >> m,c?, we have €/kT = pc/kT and this is the case of an
ultrarelativistic particle of mass close to zero. The multiplicity factor is connected
to the spin states and it is g = 2, corresponding to the two elicity states of a massless
particle. Given that the chemical potential is zero, we get the average densities for e*

2 1 (kT e X2
et = (27h)3 / ePer + 1d3p — m2(he)? /0 e +1 dx =
(kT)* 3C(3)E(3) _ 3(*T)°¢(3)

n2(he)3 4 -~ 2m2(he)d
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When kT < m.c*(v/c < 1), this is the standard relativistic case for which & ~
2
P T mec®. Therefore

2 1 2 ? 2
— By~ / =B 3y —Bmec &3
Mot (27h)3 /e %Jrﬁmgcz o p (27h)3 e p

3
2 mec2
=2 (an;;ekT> e kT,

The photon density is

400 2 3
", 1 /0 0°dw :2C(3)(kT)

T on2e3 eNO/kT _ | m2h3c3
while the argument of the exponential gives
mc?

kT

~0.25x 10°.

This makes the exponential very suppressed and therefore n,+ < ny.

Problem 12.16.

In the primordial universe the various species of particles were in thermal equilib-
rium due to the different subnuclear reactions. The cross section, &, of one of these
reactions times the particles density n gives £ & 1 /no for the free mean path, i.e. the
average distance between two collisions. Given that the cross section is the number
of scattered particles per unit area and unit time, a particle which travels the unitary
distance (1cm) collides against the other particles contained in the volume of base
o and height Icm. This volume contains on particles. When the universe becomes
larger than ¢, this specie of particles decouples from thermal equilibrium because
the number of collisions is not enough to guarantee equilibrium. The Thermody-
namics is that of a free expanding gas. Given that the universe expands linearly with
a coefficient given by the Hubble constant H ~ /pGy (p is the energy density and
Gy the Newton constant), the decoupling threshold is given by on/H ~ 1.

o Use the latter formula to compute the neutrinos decoupling temperature. Suppose
the neutrinos have a zero chemical potential. Neutrinos are weakly interacting
and their cross section is given by ¢ ~ G2T? where Gr is the Fermi constant.
For the universe density, n, and energy density, p, neglect all constants and only
retain the temperature dependence for a relativistic gas.

e The universe keeps expanding. For kT > m,c? compute the entropy of the plasma
which only contains electrons, positrons and photons (e~, e™, ¥ respectively).
Consider these particles to have zero chemical potential.

e Compute the entropy of the photon gas for kT < m.c? considering that all the
electrons and positrons have annihilated yielding photons.

b ComPUte now (VT3)kT>>mecz/(VT3)kT<<mgc2 = (TI<T>>mec2/TkT<<mecz)3 Where’ as
a first approximation, we can take the volumes to be equal. This ratio is the
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same between the temperatures of the photon background radiation and that of
the neutrinos, v. In fact, at kT ~ m,c?, the neutrinos were already decoupled
and were evolving starting from 77, 2; ¥'s, instead, evolved starting from
Tir <m,c2- Find the temperature of the neutrinos at the present time, knowing
that the ratio Ty, 2/ Tir<m,2 has kept constant from that epoch to present
times.

Use the unit system for whichc =1, k = 1.

In this system [Energy]=[Mass]=[Temperature]=1/[Length]=1/[Time]. Furthermore
1GeV =~ 10 3erg, 1GeV ~ 101K, 1GeV ~ 10~ ?*g, 1GeV ~ 10~ 4cm, 1GeV =
6.610"2s, m, = 0.5MeV, Gr ~ 107°GeV 2, Gy = mp7, . = 1/(10"°GeV)>. Fi-
nally

Foo yn—l o
| aqdx= =2 e

o -l
/0+ al ldx:F(n)C(n).

ex —
Solution
Let us start by evaluating
|~ O _ GETT?
T H  JGyT?
from which 73 = Y9 = 10~9GeV? = (10'°K)3. In fact, the relativistic particles

Gr
density is such that n ~ T3 and the energy density p ~ T* (see also Problem 12.15).
This temperature is larger than T ~ m, = 0.5MeV = 5 x 107*GeV = 5 x 10°K.
Let us compute the entropy for T >> m,. Since the chemical potential is zero, we
find

0=®=uN=E—TS+PV

4
3

from which § = ¥ (p + P). For arelativistic gas P = p /3 holds from which § = 3 ¥ p.

For the electrons and positrons e™, the energy density is

B cp B (kT)* = X3
Pex = (27h)3 / ePer + 1d3p -~ 12(hc)? /o e+ ldjC
(KT)* 7T (4)8(4)
2 (hc)3 8

while for the photons we get

2 cp 5 (kT)* /+°° X3 B
Pr= (27h)3 /eﬁcl’ - ld P= n2(hc)® Jo e — ldx N
(kT)*

@@,
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Therefore

4V 4V 11 (kT)*
SkT>>me027§?(pe+ +Pe—+Py)*§k7jW (4)E(4).

Analogously
4v 4v (kT)*
Sir<me = 3PY= 3T 2 (he)? (4)5(4).

Since the entropy stays constant, and in first approximation we can neglect volume
changes, we find
VT3 T3 T, 3
( )kT>>mgc2 ~ kT>mec? _ i - kT>m,c? _ (4)
1)

3 ~ 3
(V T )kT<<me 2 TkT<<me 2 11 TkT <Kmec?

This ratio has stayed constant until modern times and therefore Ty, = (4/11)'/3T, =
0.71 x 3K =~ 2K.

Problem 12.17.

A three dimensional container is separated in two parts by an adiabatic wall which
moves without friction. One side is filled with a photon gas in equilibrium at tem-
perature 7. The other side contains a fully degenerate Fermi gas of (N) particles
with spin § = % and single particle energy € = pc, with p the absolute value of the
momentum and c the speed of light. Find the volume occupied by the fermions, Vr,
under the assumption of mechanical equilibrium. We recall the relation between the
pressure and the energy, PV = U /d (see also Problem 10.13), with d the space di-
mensionality and V the volume occupied by the ultrarelativistic gas. Moreover, we

recall that 3 .
oo T
/ x dx = —.
o e —1 15
Solution

Let us start by analyzing the Fermi (F) gas. If we consider the single particle energy

€=pc

we can evaluate the average number (N) of fermions

dpdiq  8aVe [rr , 8nVr pr 87Ve [ep\3
(N) /egep 13 w3 / PeP="3 3 T 38 ( )

where we have used pr = %F The Fermi energy is

o (3 1/3C
F= 87'CVF '

c
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To determine the pressure, we use the information given in the text and look for the
internal energy

&3 d3 _ 8aVp [pr 87V, 4
UF—2/ p ”F/ cpdp = ”Fc(gl)
e<er 0

h3 4h3 c

1w 4/3 3\ /3

Let us then consider the photon (ph) gas. We can use, again, the relation P,;V,, =
Uph/d with d = 3. For U, we write (see also Problems 10.10 and 10.11)

from which

LAV [t 1,
Uph—2 h3 [) eﬁcl’flp (cp)dp

where, if we set x = Bcp, we find

8aVype 1 Hoo i3
U, = P / dx.
PR Ber Sy e 1

Using the integral given in the text, we get

8w kit

Upn =33 Va5
and the pressure is
_ s ()’
""" 45 (he)3

The mechanical equilibrium requires Pr = P, so that

he\3 /45 1\ /3 \3
= (i) (5) (5)
Problem 12.18.

Our starting point is the first law of thermodynamics for a gas of N (N > 1) particles
in a volume V.

1) Find the relation among the Varlatlons of the energy, dU, and volume, dV, in pro-
cesses at constant 7', V. Write ( 5 Yz in terms of the pressure P and a suitable
derivative of the entropy.

2) Take the Sackur—Tetrode equation (see Problem 6.26) for the entropy and verify
you obtain for ( ) v the right result.

3) Compute the entropy for a Fermi and Bose-Einstein gas. Consider the bosons at a
higher temperature with respect to their condensation point (what happens below
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such temperature in these equations?). Give the final result in terms of
(2) = 1 /*"" X ldx
gnl< I'(n)Jo zle—1

1 Feo =gy
falz) = I'(n) /0 7 lef+1

with a suitable n. Check these results in the classical limit against the Sackur-
Tetrode equation.

4) Repeat the computation in 2) with the entropy computed in 3) writing (%)T’N
explicitly in terms only of P and z (using the functions f,(z) and g,(z)): what
is changing? In the classical limit of high temperatures and low densities verify
that you recover the result of the computation in 2).

For point 3) you can use the fact that, in the grand canonical ensemble, the entropy
is given by

S—kT (aln°@> — Nklnz+kIn 2
T ).

where 2(T,V,z) is the grand canonical partition function and z the fugacity.

Solution
The first law of thermodynamics is

dU = TdS — PdV + udN.

We can then expand the entropy as

as as as
dS=|-= dT + | == dv+| == dN
aT VN v TN JdN TV
and plugging it back in the previous formula
du =T ﬁ dT + ﬁ dv + ﬁ dN
aT VN v TN aT TV
For constant 7', N we get
d
VN _r(95) _p|
av TN av TN

The Sackur-Tetrode entropy is a function of U, V, N

— PdV + udN.

5

32 5
5 37h? N
S(U,V,N)=Nk{2 —In (”) -

2 m VU2

}
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but, substituting the energy of a free gas (U = %NkT) we get

(224}

5
S(T,V,N) :Nk{2 +In

.. s
We can now explicitly compute (W) .

S NkT
T _ = — = P
IV )rn 1%
where we used the equation of state of an ideal gas PV = NkT. Combining now the
above expressions we find that
d
T ) —P
WV )rn

AT
v T,Ni

This is the expected result for the classical gas since, in this case, the internal energy
is not a function of the volume V. We must now repeat the previous computation in
the quantum case

—[P-P]=0.

S=kT <8ln°@> — Nklnz+kIn.2
T ).

where 2(T,V,z) is the grand canonical partition function and z the fugacity. We
furthermore remember that for a quantum gas

PV gV

T In2 = F¢5/2(Z)
N 93p()
v oET

are valid. In the above expressions, g; is the spin degeneracy, ¢ = f, g are the Fermi-
Dirac and Bose-Einstein functions respectively, and A = h/+/2wmkT is the thermal
length scale. The above equations are valid for temperatures above the point of the
Bose-Einstein condensation, otherwise we must add to N a contribution representing
the condensed phase. Finding S is now simple

g 585kV d5)2(2)

3 vE —Nklnz = 8,(T,V,z) + S2(z,N)

where we have defined S;(7,V,z) = %%ﬁﬂ@ and S>(z,N) = —NklInz. It is easy

to compare this result with the classical result: in this limit ¢,(z) ~ z and using

N 93p@) gz
R R E
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we eliminate z from S giving the result

5 8skV 9s/2(2) 5 g5kVz 5
SZET—NHHZ%E P —NkanZENk—Nklnz:
3
5 gV 5 mkT \2V
—Nk+Nkln| == — | =Nk = +1 — — .
2t n()&N) {2+n g“‘(znhz) N }

The only difference lies in the spin degeneracy term. If we repeat the classical com-
putation including g, the two results are identical. Let us then start by evaluating

I\ _(a8) (9%
v T,N_ WV Jrn v T.N

where we separated the contribution of S; and S,. The entropy S; is a function of

T,V,z, while in (‘3—3)”/ we must compute the entropy at constant 7, N. We then
need results at constant z and not at constant N. Using the formalism of the Jacobians
we find
) (3),.(8),,- (), (8)
<9S1> CISLN)| v |\ e\ 9y N9y NV g,
ov T O(V,N) |, dvN) | T N -
e YUN e I (%),

P
(), (%), (), Gv)... -
A% Tz )1y oV ). \IN TV

»

(%), (%), (%)
v Tz )y \IV ) N

where we used
(), (2, (0,
V). \ON )y \ 0z T7N_ '

The derivatives of S| with respect to V and z are easy to compute

9IS1\ _ 585k¢s)(2)
ov ), 2 A3

981\ SgkVdspz)  5kgVes()
oz Jry 2 A% dz 2 A}

remembering that

doy (Z) On—1 (Z)

dz z
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Only the derivative of z with respect to V needs a little care. In fact, g;¢3/5(z) = A%N ,

from which we get

(3¢3/2(Z)> AN 4pd)
v Jrn &V V

and

<5é> o (aq)«;@(Z) ) rw (d%ﬁ@) T éﬁ//zz(é))'

The final result for (%ivl) is
TN

y

(951) _ 585kespa(z) §k85¢32/2(z)
v )y 2 A3 2A3912(2)
The entropy S»(z,N) is a function of z and N and we get

(23) () Nkbunlo
WV )y 2\ )y V dipa)
All these results together give
1(59), (), (5,0
av TN av TN v TN

58kT9s2(c)  5KT8:955(2)  NAT 9312(2)
2 A3 2 A3¢1)5(2) V. $12(2)

and, reporting in terms of z and the pressure P, we get

as\ [5 3 93,0
! (aV)T,N a [2 2 ¢5/2(Z)¢1/2(Z)] i

where we have used

The final result is

ou\ [ ras 3 93)(2)
<aV>T,N a [T (aV>T.N —P] T2 [1 - ¢5/2(Z)¢1/2(Z)] P

In the classical limit ¢, (z) =~ z and

U\ 3 93,(2)
<8V>T.N 2 [1 - ¢5/2(Z)¢1/2(Z)] d

Q
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