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The MAF2010 Conference, organized by University of Salerno in Ravello (Salerno,
Italy), was developed on the basis of cooperation between mathematicians and statis-
ticians working in insurance and finance fields.

The idea arises from the belief that the interdisciplinary approach can improve
research on these topics, and the proof of this is that interest in this guideline has
evolved and been re-enforced.

The Conference aims at providing state of the art research in development, im-
plementation and real world applications of statistical and mathematical models in
actuarial and finance sciences, as well as for discussion of problems of national and
international interest.

These considerations imply the strengthening of the involved methods and tech-
niques towards the purpose, shared by an increasing part of the scientific community,
of the integration between mathematics and statistics applied in finance and insur-
ance fields.

The Conference was open to both academic and non-academic communities from
universities, insurance companies and banks, and it was specifically designed to con-
tribute in fostering the cooperation between practitioners and theoreticians in the
field.

About 170 researchers attended the Conference and a total of 25 contributed ses-
sions and 9 organized sessions, containing more than 130 communications, were
accepted for the presentation.

Four prestigious keynote lecturers increased the scientific value of the meeting:

• Nonparametric methods in survival analysis by Prof. Narayanaswamy Balakrish-
nan (McMaster University, Canada)

• Some Recent Developments in Multiplicative Error Models by Prof. Giampiero
Gallo (University of Florence, Italy)

• Too Interconnected to Fail: Financial Contagion and Systemic Risk in Network
Model of Credit Default Swaps and Credit Enhancement Obligations of US Banks
by Prof. Sheri Markose (University of Essex, U.K.)

• Some Results for Skip-Free Random Walks by Prof. Sheldon M. Ross (University
of California, Berkeley, U.S.A.).
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The collection published here gathers some of the papers presented at the conference
MAF2010 and successively worked out to this aim. They cover a wide variety of
subjects:

Mathematical Models for Insurance: Insurance Portfolio Risk Analysis, Solvency,
Longevity Risk, Actuarial models, Management in Insurance Business, Stochastic
models in Insurance.

Statistical Methods for Finance: Analysis of High Frequency Data, Data Mining,
Nonparametric methods for the analysis of financial time series, Forecasting from
Dynamic Phenomena, Artificial Neural Network, Multivariate Methods for the Anal-
ysis of Financial Markets.

Mathematical Tools in Finance: Stock market Risk and Selection, Mathematical
Models for Derivatives, Stochastic Models for Finance, Stochastic Optimization.

The papers follow in alphabetic order from the first author.
The scientific value of the papers is due to the authors and, in the name of the

scientific and organizing committee of the conference MAF2010, we truly thank
them all. In particular we want to point out the precious cooperation of the referees:
their work has been decisive in the improvement of the quality of this book.

Moreover we thank the Faculty of Economics, the Faculty of Political Sciences
and the Department of Economics and Statistics of the University of Salerno for the
opportunity they gave us to go ahead with this idea.

We would like to express our gratitude to the members of the Scientific and Orga-
nizing Committee and to all the people who contributed to the success of the event.

We are grateful for the kind effort in particular of the sponsors: Italian Associa-
tion for Mathematics applied to Economics and Social Sciences (AMASES), Italian
Statistical Society (SIS), Comune di Fisciano, Comune di Mercato San Severino,
Comune di Ravello, Assessorato alle Politiche Ambientali of Provincia di Salerno
for making the meeting more comfortable and pleasant. We would like as well to ex-
press special acknowledgements to Springer Editor, for its support in the initiative.

Finally, we truly thank the Department of Applied Mathematics and the Depart-
ment of Statistics of the University of Venice for the enthusiastic sharing and the
cooperation in this initiative and for the involvement in organizing and hosting the
next edition of the Conference, to be held in 2012 in Venice.

Fisciano, May 2011 Cira Perna and Marilena Sibillo
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TOn the estimation in continuous limit
of GARCH processes

Giuseppina Albano, Francesco Giordano, and Cira Perna

Abstract. This paper focuses on the estimation of parameters in stochastic volatility
models which can be considered as continuous time approximation of GARCH(1, 1)
processes. In particular the properties of the involved estimators are discussed under
suitable assumptions on the parameters of the model. Moreover, in order to estimate
the variance of the involved statistics a bootstrap technique is proposed. Simulations
on the model are also performed under different choices of the frequency data.

Key words: Stochastic volatility, moving block bootstrap, diffusion processes

1 Introduction

Many econometric studies show that financial time series tend to be highly het-
eroskedastic since the variance of returns on assets generally changes over time.
Many of theoretical models in such field have made extensive use of Ito calculus,
since it provides a lot of theoretical instruments to handle with the resulting stochas-
tic processes. Here, the variance is specified by means of a latent diffusion process.
Such models are usually referred to as stochastic volatility (SV) models. An alterna-
tive approach to SV framework makes use of dynamic conditional variance, based

Giuseppina Albano ( )
Dept. of Economics and Statistics, University of Salerno, Via Ponte don Melillo, 84084, Fisciano
(SA), Italy
e-mail: pialbano@unisa.it

Francesco Giordano
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(SA), Italy
e-mail: giordano@unisa.it

Cira Perna
Dept. of Economics and Statistics, University of Salerno, Via Ponte don Melillo, 84084, Fisciano
(SA), Italy
e-mail: perna@unisa.it

Perna C., Sibillo M. (eds.): Mathematical and Statistical Methods for Actuarial Sciences
and Finance DOI 10.1007/978-88-470-2342-0 1
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on a discrete time approach of GARCH models (see, for example, [5]). The gap
between the two approaches was bridged by [9] who developed conditions under
which ARCH stochastic difference equations systems converge in distribution to
Ito’s processes as the length of the discrete time goes to zero. So, thenceforth an
extensive use of the Ito’s approach and the GARCH one to capture some relevant
characteristics in financial data has been made (see, for example, [6] and [7]). In
particular, whereas a discrete-time approach is desirable when data are observed
at fixed times, a continuous time approach can be useful when irregular steps are
present. Moreover, statistical properties are easy to derive using well-known results
on log-normal distributions. Those reasons justify the extensive use of SV models
in finance to describe a lot of empirical facts of the stock and the derivative prices.

The estimation of the parameters in such kind of models is still a challenging issue
(see, for example, [3] and references within). Recently in [6] asymptotic properties
of the sample autocovariance of suitable scaled squared returns of a given stock have
been derived.

The aim of this paper is to propose an alternative method to estimate parameters
in a SV model and to investigate the properties of the involved estimators under suit-
able assumptions on the parameters. Moreover, in order to estimate the variance of
the involved statistics a bootstrap technique is proposed and discussed.

The paper is organized as follows: in Section 2 the model is presented, in Sec-
tion 3 inference is studied and the strong consistency and the asymptotic normality
of the proposed estimators are discussed. Moreover the asymptotic variance of the
estimators is derived by using a moving block bootstrap approach. Section 4 is ded-
icated to simulations and some concluding remarks.

2 The model

The so-called stochastic volatility models for describing the dynamics of the price
St of a given stock are usually defined through the following bivariate stochastic
differential equation:

d St = μ dt + σt dW1,t ,

dσ 2
t = b(θ, σ 2

t ) dt + a(θ, σ 2
t ) dW2,t , (1)

defined in a complete probability space. Here a and b are suitable functions in order
to have the existence of a strong solution to (1), μ ∈ R and θ ∈ Rd (d ≥ 1) and W1
and W2 are two independent Brownian motions. In the GARCH diffusion model,
using the centered log-prices Yt , model (1) becomes:

dYt = σt dW1,t ,

dσ 2
t = (ω − θσ 2

t ) dt + ασ 2
t dW2,t , (2)

where {Yt } is the observed process and {σ 2
t } represents its volatility. We point out

that the model in (2), under some assumptions on the parameters, comes out in [9]
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as the continuous limit in law of a suitable GARCH model. Moreover, the process
σ 2

t is an ergodic diffusion with a lognormal invariant probability measure ([9]).
If ω and α in (2) are positive constants, then there exists a strong solution to (2)

(see [4]). Moreover, if σ 2
0 , i.e. the volatility at initial time t0, is a random variable

(r.v.) independent on W2,t , by Ito’s formula, we can obtain the explicit expression
of the volatility:

σ 2
t = ωF−1(t, W2,t )

∫ t

0
F(s, W2,s)ds + F−1(t, W2,t )σ

2
0 , ∀t ≥ 0, (3)

where F(t, W2,t ) = exp{(θ + α2

2 )t −αW2,t }. For simplicity, in (3) we have assumed
t0 = 0. From (3) it is easy to see that the volatility process {σ 2

t } is non negative for
all t ≥ 0. Moreover, after some cumbersome calculations, we obtain the following
approximation of first order for the stochastic integral in (3):

F−1(t, W2,t )

∫ t

0
F(s, W2,s)ds =

∫ t

0
exp

{− (θ + α2

2
)s + αW2,s

}
ds ≈ 1 − e−θ t

θ
,

(4)
so that the volatility process in (3) can be written as:

σ 2
t = σ 2

0 �(t) + ω

θ

(
1 − e−θ t), (5)

where �(t) ∼ L N
(− (θ + α2

2 )t, α2t
)
.

3 Inference on the model

Let us assume that the data generating the process (5) are given with frequency δ, i.e.
Y0,Yδ, . . . ,Yhδ, . . . ,Ynδ with corresponding volatilities σ 2

0 , σ
2
δ , . . . , σ

2
hδ, . . . , σ

2
nδ .

From (5) we obtain the following recursive relation for the volatility:

σ 2
hδ = e{−(θ+ α2

2 )δ+αWδ}σ 2
(h−1)δ + ω

θ

(
1 − e−θδ

)
, h = 1, 2, 3, . . . . (6)

In the estimation of the parameters α, θ, ω, methods based on classical maxi-
mum likelihood or conditional moments do not work since the volatility process is
unobservable, so in the following a method based on the unconditional moments is
suggested.

In the following proposition the asymptotic moments of the volatility process are
derived.

Proposition 1. The asymptotic moments of σ 2
t defined in (2) are:

lim
h→∞E[σ 2

hδ] = ω

θ
, (7)
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lim
h→∞E[σ 4

hδ] = ω2

θ2

1 − e−2θδ

1 − e(−2θ+α2)δ
, (8)

lim
h→∞E[σ 2

hδσ
2
(t−1)δ] = e−θδ Eσ 4

tδ + ω2

θ2

(
1 − e−θδ

)
. (9)

Proof. From the recursive relation (6) we obtain:

E[σ 2
hδ] = E[e−cδ+αWδ σ 2

(h−1)δ] + ω

θ

(
1 − e−θδ

)
= e−cδ+ α2

2 δE[σ 2
(h−1)δ] + ω

θ

(
1 − e−θδ

)
. (10)

In (10) it is c = θ + α2

2 . For the ergodicity of the process {σ 2
t }, we have:

(
1 − e(−c+ α2

2 )δ
)

lim
h→∞E[σ 2

hδ] = ω

θ

(
1 − e−θδ

)
, (11)

from which we obtain (7). In the same way, from (6) we have:

E[σ 4
hδ] = e−2(θ+ α2

2 )δ+2α2δEσ 4
(h−1)δ + ω2

θ2
[1 − e−θδ]2 + 2ω2

θ2
(1 − e−θδ)e−θδ,

E[σ 2
hδσ

2
(h−1)δ] = e−θδEσ 4

(h−1)δ + ω2

θ2

(
1 − e−θδ

)
.

Taking the limit for h → ∞, we obtain (8) and (9). 	


In the following proposition we show the relation between the moments of the in-
crement process of the observed process {Yt } and those one of the volatility process.
To this aim, let us consider the increment process {Xt } of the observed process {Yt }:

Xhδ = Yhδ − Y(h−1)δ = √
σhδδ Zh, (12)

with Zh
iid∼ N (0, 1) and independent of σ 2

hδ for each h = 1, 2, . . .. Moreover, let
(X1, X2, . . . , Xn) be a time series of length n of {Xt }.

Proposition 2. The asymptotic moments of the process (12) are:

lim
h→∞EX2

hδ = δ lim
h→∞Eσ

2
hδ,

lim
h→∞EX4

hδ = 3δ2 lim
h→∞Eσ

4
hδ, (13)

lim
h→∞E[X2

hδ X2
(h−k)δ] = δ2 lim

h→∞E[σ 2
hδσ

2
(h−k)δ].
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Then, if there exists the second moment of the volatility, the method based on the
moments of the volatility process suggests the following estimators for θ , ω and α2:

θ̂ := f1(M2, M4, E1) = 1

δ
log

γ̂ (0)

γ̂ (1)
,

ω̂ := f2(M2, M4, E1) = M2 θ̂ , (14)

α̂2 := f3(M2, M4, E1) = 1

δ
log

{
e2θ̂ δ

(
1 − M2

2

M4

)
+ M2

2

M4

}
,

where the statistics M2, M4 and E1 are defined as follows:

M2 := 1

nδ

n∑
i=1

X2
i , M4 := 1

3nδ2

n∑
i=1

X4
i , E1 := 1

nδ2

n∑
i=1

X2
i X2

i−1 (15)

and γ̂ (0) and γ̂ (1) are the sample variance and covariance of {Xhδ}:
γ̂ (0) = M4 − M2

2 , γ̂ (1) = E1 − M2
2 . (16)

Proof. Relations (13) follow from (12) and from the independence of the r.v.’s Zh

and σ 2
hδ for each h = 1, 2, . . ..

In order to prove (14), let us introduce the autocovariance function of {σ 2
t }, i.e.

γ (k) := cov(σ 2
hδ, σ

2
(h−k)δ) (h ∈ N0 and k = 0, 1, . . . , h). From (6) it is easy to

obtain the following recursive relation for γ (k):

γ (k) = e−θδγ (k − 1), (17)

so γ (k) = e−kθδγ (0), with γ (0) = var
(
σ 2

hδ

)
. Then the autocorrelation function is:

ρ(k) = γ (k)

γ (0)
= e−kθδ (18)

and it depends only on the parameter θ .
Now, making explicit θ , ω and α2, respectively in (18) (k = 1), (7) and (8), (14)

follows. 	


3.1 Properties of the estimators

In this section we investigate the properties of the estimators obtained in (14).

Proposition 3. If 2θ
α2 > 1, the estimators ω̂, θ̂ , α̂2 defined in (14) are strongly con-

sistent for ω, θ and α2, respectively.

Proof. Let Vn be the vector of our statistics, i.e. Vn := (M2, M4, E1). Let us define

μ2 := lim
h→∞EX2

hδ, μ4 := lim
h→∞

EX4
hδ

3
, e1 := lim

h→∞E[X2
hδ X2

(h−1)δ].
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For the ergodic theorem (see [2]), if E[X4
hδ] < ∞,

Vn
a.s.−→ v := (

μ2, μ4, e1
)
. (19)

Since fi (i = 1, 2, 3) defined in (14) are continuous functions of the parameters,
we have:

fi
(
Vn
) a.s.−→ fi (v), i = 1, 2, 3, (20)

so the strong consistency holds. Moreover, from (12) and (13), it’s easy to prove that
assuming that there exists limh→∞ E[X4

hδ] is equivalent to assume that the ratio 2θ
α2

is greater than 1. 	


Proposition 4. If 2θ
α2 > 3, the estimators ω̂, θ̂ and α̂2 are asymptotically normal, i.e.

√
n
[

fi (Vn) − fi (v)
] d−→ N (0, ai

T 
vai), (21)

with ai
T =

( ∂ fi

∂μ2
,
∂ fi

∂μ4
,
∂ fi

∂e1

)
, (i = 1, 2, 3).

Proof. As shown in [1], the increment process {Xt } satisfies the geometrically α-
mixing condition, so, if E |Xt |8+β < ∞, β > 0

√
n(Vn − v)

d−→ N (0, 
v).

Moreover, since fi (i = 1, 2, 3) have continuous partial derivatives and those
derivatives are different from zero in (μ2, μ4, e1), we obtain (21). Furthermore, as-
suming that there exists finite E[X8

t ] corresponds to ask that the ratio 2θ
α2 is greater

than 3. 	


3.2 Estimating the variance of the estimators

In order to estimate 
v in (21) we use a moving block bootstrap (MBB) approach
(see, for example, [10]). This approach generally works satisfactory and enjoys the
properties of being robust against misspecified models.

In order to illustrate the procedure in our context, we consider the centered and
scaled estimator Vn given by Tn = √

n
(
Vn − v

)
. Suppose that b = �n/ l blocks

are resampled so the resample size is n1 = bl. Let V∗
n be the sample mean of the n1

bootstrap observations based on the MBB. The block bootstrap version of Tn is:

T∗
n = √

n1
(
V∗

n − E∗V∗
n

)
,

where E∗ denotes the conditional expectation given the observations χn = {X1,
X2, . . . , Xn}.

We will assume for simplicity that n1 ≈ n. This assumption is reasonable in the
case of long time series.
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Since the process {Xt } is geometrically α−mixing and E |Xt |8+β < ∞, choosing
the length l of the blocks such that l → ∞ and l

n → 0 when n → ∞, we have that

var∗T∗
n

p−→ 
v,

so MBB is weakly consistent for the variance (see Theorem 3.1 in [8]).
Under the same hypotheses we have the convergence in probability of the boot-

strap distributions with respect to the sup norm (see Theorem 3.2 in [8]).

4 Conclusions

In the setup simulations the increment process {Xt } is generated from relation (6)
and from:

Xhδ = √
σhδδ Zh, Zh

iid∼ N (0, 1), (h = 0, 1, . . . , n).

The parameters in (2) are chosen as: θ = 0.6, ω = 0.5, α = 0.1. We fix the length
between the observations, δ = 1/4 and δ = 1/12. Moreover we choose n = {500,
1000, 2000} time series lengths and for each length we generate N = 3000 Monte-
Carlo runs. In Fig. 1 results for the statistic M2, M4 and E1 are shown. Straight line
indicates the real value. It is evident that the widths of the corresponding box plots

Fig. 1. Box-plots for M2, M4 and E1 for δ = 1/4 (top) and δ = 1/12 (bottom). The straight line
represents the real value of the parameter
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Table 1. Bootstrap variance of A j
n ( j = 1, 2, 3) (MEAN), its standard deviation (SD) and its mean

square error (RMSE) for δ = 1/4 (left) and for δ = 1/12 (right)

δ = 1/4 δ = 1/12

n M E AN SD RM SE M E AN SD RM SE

500 1.395638 0.2992639 0.3265654 1.397150 0.3000958 0.3730771

M2 1000 1.411560 0.2337336 0.2340540 1.400773 0.2336848 0.3315045

2000 1.400609 0.1916976 0.1975044 1.407785 0.1977563 0.2603200

500 5.311146 3.682014 3.688477 5.335364 3.481555 3.530922

M4 1000 5.419772 2.662962 2.683963 5.440806 2.875277 2.936198

2000 5.376348 1.873631 1.873332 5.434032 1.949936 1.997512

500 6.037674 3.464000 3.480897 6.036609 3.532099 3.582262

E1 1000 5.985166 2.370325 2.426217 6.218848 2.995292 3.049426

2000 6.029416 1.852414 1.852310 6.168984 1.961602 1.974000

become smaller and smaller as the length of the time series increases. Moreover also
the bias seems to be slight for the three statistics. These empirical results confirm
the theoretical ones proved in Proposition 3.

Now let us introduce the rescaled statistics A(1)
n = √

n M2, A(2)
n = √

n M4 and
A(3)

n = √
n E1; let v( j) = var A( j)

n ( j = 1, 2, 3) be the variance of A( j)
n calculated

on the Monte-Carlo runs. In Table 1 the quantities M E AN : = EN [var∗
(

A( j)
n
)
],

SD : =
√
varN

[
var∗(A( j)

n )
]
, and RM SE : =

√
EN
[
var∗(A j

n) − v( j)
]

are shown
for j = 1, 2, 3 and for different choices of the length of the time series (n =
500, 1000, 2000). We can observe that the bias of A j

n ( j = 1, 2, 3) seems to de-
crease as the length of the time series increases. This is more evident in the case of
δ = 1/4 (left); in the right table in which δ = 1/12 we can see that the bias is greater
than the case δ = 1/4, so the proposed estimators present an higher bias when the
distance between the observations δ becomes smaller. Indeed, when δ goes to zero,
we have a situation near the non-stationarity case, as we can see looking at the re-
cursive relation (6). We point out that from the estimation of 
v and from (21), we
can obtain the estimations of the variances for θ̂ , ω̂ and α̂, defined in (14).

This work opens the way to developments in the estimation in the GARCH mod-
els exploiting the relations between those models and their continuous limits.
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TVariable selection in forecasting models
for default risk

Alessandra Amendola, Marialuisa Restaino, and Luca Sensini

Abstract. The aim of the paper is to investigate different aspects involved in de-
veloping prediction models in default risk analysis. In particular, we focused on
the comparison of different statistical methods addressing several issues such as the
structure of the data-base, the sampling procedure and the selection of financial pre-
dictors by means of different variable selection techniques. The analysis is carried
out on a data-set of accounting ratios created from a sample of industrial firms an-
nual reports. The reached findings aim to contribute to the elaboration of efficient
prevention and recovery strategies.

Key words: Forecasting, default risk, variable selection, shrinkage, lasso

1 Introduction

Business Failure prediction has been largely investigated in corporate finance since
the seminal papers of [5] and [1], and different statistical approaches have been ap-
plied in this context (see the recent reviews [4] and [17]). The exponential growth
of financial data availability and the development of computer intensive techniques
have recently attracted further attention on the topic [16, 13]. However, even with
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an increasing number of data warehouse, it is still not an easy task to collect data on
a specific set of homogeneous firms related to a specific geographic area or a small
economic district. Furthermore, despite of the large amount of empirical findings,
significant issues are still unsolved. Among the different problems discussed in lit-
erature we can mention: the arbitrary definition of failure; the non-stationarity and
instability of data; the choice of the optimization criteria; the sample design and the
variable selection problem.

Our aim is to investigate several aspects of bankruptcy prediction focusing on
the variable selection. In corporate failure prediction, the purpose is to develop a
methodological approach which discriminates firms with a high probability of future
failure from those which could be considered to be healthy using a large number of
financial indicators as potential predictors. In order to select the relevant information,
several selection methods can be applied leading to different optimal predictions set.

We proposed to use modern selection techniques based on shrinkage and com-
pare their performance to traditional ones. The analysis, carried out on a sample of
healthy and failed industrial firms throughout the Campania region, aim at evaluat-
ing the capability of a regional model to improve the forecasting performance over
different sampling approaches. The results on various optimal prediction sets are
also compared.

The structure of the paper is as follows. The next section introduces the sample
characteristics and the predictors data-set. Section 3 briefly illustrates the proposed
approach. The results of the empirical analysis are reported in Section 4. The final
section will give some concluding remarks.

2 The data base

The considered sample is composed of those companies that belong to industrial sec-
tor and had undertaken the juridical procedure of bankruptcy in the italian regions
in a given time period, t . The legal status as well as the financial information for
the analysis were collected from the Infocamere database and the AIDA database
of Bureau Van Dijk (BVD). In particular, the disease sample is composed of those
industrial firms that had entered the juridical procedure of bankruptcy in Campania
at t=2004 for a total of 93 failed firms. For each company five years of financial
statement information prior to failure (t − i ; i = [1, 5]) have been collected. Among
them, not all the firms provide information suitable for the purpose of our analysis.
In order to evaluate the availability and the significance of the financial data, a pre-

Table 1. Failed firms sample

1999 2000 2001 2002 2003

Published Statement 72 72 70 62 39

Total firms 93 93 93 93 93

Percentage 77.42% 77.42% 75.27% 66.67% 41.94%
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Table 2. Sampling Designs

Unbalanced Sample Balanced Sample

Failed Healthy Failed Healthy

50 124 50 50

liminary screening was performed (Table 1), dividing for each year of interest the
whole population of failed firms into two groups: firms that provided full information
(have published their financial statements) and firms with incomplete data (did not
present their financial statements, presented an incomplete report or stopped their
activity).

We chose the year 2004 as a reference period, t , in order to have at least 4 years
of future annual reports (at t + i ; i = [1, 4]), to assure that the company selected as
healthy at time t does not get into financial problems in the next 4 years. The healthy
sample was randomly selected among the Campania industrial firms according to
the following criteria: were still active at time t ; have not incurred in any kind of
bankruptcy procedures in the period from 2004 to 2009; had provided full infor-
mation at time (t − i ; i = [1, 4]) and (t + i ; i = [0, 4]). In order to have a panel
of firms with complete financial information available for the entire period consid-
ered, we restricted the analysis on three years of interest (2000, 2001, 2002). This
because these firms are a ”going concern” and provide all the information needed
for building a forecasting model for each year of interest. The sample units have
been selected according to unbalanced and balanced cluster sampling designs. The
sample dimensions have been reported in Table 2.

For each sample, the 70% of the observations are included in the training set for
estimating the forecasting models, while the remaining 30% are selected for the test
set for evaluating the predictive power of the models. The predictors data-base for the
three years considered (2000, 2001, 2002) was elaborated starting from the financial
statements of each firm included in the sample for a total of 522 balance sheets.
We computed p=55 indicators selected as potential bankruptcy predictors among
the most relevant in highlighting current and prospective conditions of operational
unbalance [2, 7]. They have been chosen on the basis of the following criteria: they
have a relevant financial meaning in a failure context; they have been commonly
used in failure predictions literature; and finally, the information needed to calculate
these ratios is available. The selected indicators reflect different aspects of the firms’
structure: Liquidity (p = 14); Operating structure (p = 5); Profitability (p = 17);
Size and Capitalization (p = 14); Turnover (p = 5).

A pre-processing procedure was performed on the original data set. In particular
we applied a modified logarithmic transformation which is still defined for non-
positive argument and deleted from the data base those firms that show values outside
the 5th and 95th percentiles windows to attenuate the effect and the impact of the
outliers [6, 15].
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3 Variable selection

A relevant problem for the analysts who attempt to forecast the risk of failure is
to identifying the optimal subset of predictive variables. This problem, addressed
since [1], has been largely debated in the financial literature. It belongs to the general
context of variable selection, considered one of the most relevant issues in statistical
analysis.

Different selection procedures have been proposed across the years, mainly based
on: personal judgment; empirical and theoretical evidence; meta heuristic strategies;
statistical methods. We focused on the last group developed in the context of regres-
sion analysis. One of the widely used technique is the subset regression that aims at
choosing the set of the most important regressors removing the noise regressors from
the model. In this class we can mention different methods: best-subset; backward se-
lection; forward selection; stepwise selection. Despite the very large diffusion in the
applications, these techniques have some limits and drawbacks. In particular, small
changes in the data can lead to very different solutions; they do not work particu-
larly well in presence of multicollinearity; since predictors are included one by one,
significant combinations and iterations of variables could be easily missed.

A different approach is given by shrinkage methods. They try to find a stable
model that fits the data well via constrained least squares optimization. In this class
we can mention the Ridge regression and some more recent proposals such as the
Lasso, the Least Angle regression and the Elastic Net [12].

Suppose we have n independent observations (x; y) = (xi1, xi2, . . . , xip; yi )with
i = 1, . . . , n from a multiple linear regression model:

yi = x′
iβ + εi , ∀i,

with xi a p-vector of covariates and yi the response variable for the n cases, β =
(β1, β2, . . . , βp) the vector of regression coefficients and the error term, εi , assumed
to be i.i.d. with E(εi ) = 0 and var(εi ) = σ 2 > 0.

The Least Absolute Shrinkage and Selection Operator, Lasso [18] minimizes the
penalized residual sum of squares:

β̂Lasso = argmin
β

n∑
i=1

⎛⎝yi − β0 −
p∑

j=1

xi jβ j

⎞⎠2

,

subject to
p∑

j=1

∣∣β j
∣∣ ≤ δ,

with δ a tuning parameter. This is equivalent to:

β̂Lasso = argmin
β

⎧⎪⎨⎪⎩
n∑

i=1

⎛⎝yi − β0 −
p∑

j=1

xi jβ j

⎞⎠2

+ λ

p∑
j=1

∣∣β j
∣∣
⎫⎪⎬⎪⎭ ,
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with λ > 0 the parameter that controls the amount of shrinkage. A small value of
the threshold δ or a large value of the penalty term λ will set some coefficients to be
zero, therefore the Lasso does a kind of continuous subset selection.

Correlated variables still have chance to be selected. The Lasso linear regression
can be generalized to other models, such as GLM, hazards model, etc. [14]. Since its
first appearance in the literature, the Lasso technique has not had a large diffusion
because of the relative complicate computational algorithms. A new selection crite-
ria has been proposed by [8], the Least Angle Regression, LAR. The LAR procedure
can be easily modified to efficiently compute the Lasso solution (LARS algorithm)
enlarging the gain in application context. The LAR selection is based on the corre-
lation between each variable and the residuals. It starts with all coefficients equal
to zero and find the predictor x j most correlated with the residual r = y − ȳ. Put
r = y − γ x1, where γ is determined such that:

|cor(r, x1)| = max
j �=i

| cor(r, x j )|.

Then, select x2 corresponding to the maximum above and continue the Lars steps
procedure adding a covariate at each step. These algorithms have been developed
in the context of generalized linear model [11] providing computationally efficient
tools that have further attracted the research activity in the area.

4 Forecasting methods

Our main interest is in developing forecasting models for the predictions and diagno-
sis of the risk of bankruptcy addressing the capability of such models of evaluating
the discriminant power of each indicator and selecting the best optimal set of pre-
dictors. For this purpose we compared different selection strategies evaluating their
performances, in terms of predicting the risk that an industrial enterprise incurs le-
gal bankruptcy, at different time horizons. In particular we considered the traditional
Logistic Regression with a stepwise variable selection (Model 1) and the regularized
Logistic Regression with a Lasso selection (Model 2). As benchmark we estimated
a Linear Discriminant Analysis with a stepwise selection procedure (Model 3).

The Logistic Regression equation can be written as:

ln

(
p(y)

1 − p(y)

)
≡ logit(p(y)) = β0 + β1x1 + β2x2 + . . . + βpx p, (1)

β̂ = argmin
β

n∑
i=1

{yi lnp(yi ) + (1 − yi )ln(1 − p(yi ))} . (2)
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Table 3. Confusion Matrix

Predicted Class

Failed Healthy

Actual Failed True Positive False Negative

Class Healthy False Positive True Negative

It is modified adding a L1 norm penalty term in the Regularized Logistic Regression:

β̂Lasso = argmin
β

⎡⎣ n∑
i=1

{yi lnp(yi ) + (1 − yi )ln(1 − p(yi ))} − λ

p∑
j=1

∣∣β j
∣∣⎤⎦ . (3)

In order to generate the maximum likelihood solution we need to properly choose
the tuning parameter λ. For this purpose we used a Cross Validation (CV) ap-
proach partitioning the training data N into K separate sets of equal size, N =
(N1, N2, . . . , Nk), for each k = 1, 2, . . . , K ; we fit the model to the training set ex-
cluding the kth-fold Nk , and select the value of λ that reached the minimum cross-
validation error (CVE).

The predictive performance of the developed models has been evaluated by
means of training and test sets considering appropriate accuracy measures widely
used in bankruptcy prediction studies [9, 10]. Starting from the classification results
summarized in the Confusion matrix (Table 3), we computed the Type I Error Rate
(a failing firm is misclassified as a non-failing firm) and the Type II Error Rate (a
non-failing firm is wrongly assigned to the failing group). These rates are associated
with the Receiver Operating Characteristics (ROC) analysis that shows the abil-
ity of the classifier to rank the positive instances relative to the negative instances.
Namely, we compare the results in terms of:

• Correct Classification Rate (CCR): correct classified instances over total instan-
ces;

• Area Under the ROC Curve (AUC): the probability that the classifier will rank
a randomly chosen failed firm higher than a randomly chosen solvent company.
The area is 0.5 for a random model without discriminative power and it is 1.0 for
a perfect model;

• Accurancy Ratio (AR): related to the AUC and assume value in the range [0, 1].

The results of models performance have been summarized in Table 4 and Ta-
ble 5, where the accuracy measures have been computed for the training and test set
respectively.

The results give evidence in favor of forecasting models based on unbalanced
sample and shrinkage selection methods. The Lasso procedure leads to more sta-
ble results and gives advantage also in terms of computational time and number of
variables selected as predictors. Overall the models performance increases as the
forecasting horizon decreases, even if some drawbacks can be registered for the Lo-



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TVariable selection in forecasting models for default risk 17

Table 4. Accuracy measures for training set

Unbalanced Sample Balanced Sample

Model1 LR Model2 Lasso Model3 LDA Model1 LR Model2 Lasso Model3 LDA

2000 2000

CCR 0.8361 0.8934 0.8197 0.8429 0.8714 0.7857

AUC 0.8768 0.9471 0.8089 0.9151 0.9412 0.8857

AR 0.7537 0.8942 0.6177 0.8302 0.8824 0.7714

2001 2001

CCR 0.8443 0.9180 0.8770 0.7571 0.8857 0.8750

AUC 0.8640 0.9681 0.9212 0.8563 0.9453 0.8953

AR 0.7281 0.9363 0.8424 0.7126 0.8906 0.7906

2002 2002

CCR 0.9344 0.9426 0.8852 0.9286 0.9714 0.9571

AUC 0.9629 0.9688 0.9484 0.9755 0.9927 0.9837

AR 0.9258 0.9376 0.8969 0.9510 0.9853 0.9673

Table 5. Accuracy measures for test set

Unbalanced Sample Balanced Sample

Model1 LR Model2 Lasso Model3 LDA Model1 LR Model2 Lasso Model3 LDA

2000 2000

CCR 0.7500 0.8653 0.7884 0.7667 0.8000 0.7333

AUC 0.7063 0.9117 0.6775 0.7689 0.9244 0.7467

AR 0.4126 0.8234 0.3549 0.5378 0.8489 0.4933

2001 2001

CCR 0.8654 0.8846 0.8077 0.8000 0.9000 0.8333

AUC 0.9279 0.9729 0.8360 0.8844 0.9644 0.8978

AR 0.8558 0.9459 0.6721 0.7689 0.9289 0.7956

2002 2002

CCR 0.9231 0.9807 0.9038 0.8333 0.9333 0.9000

AUC 0.9676 0.9946 0.9675 0.8933 0.9956 0.9422

AR 0.9351 0.9892 0.9351 0.7867 0.9911 0.8844

gistic Regression in the year 2001. The indicators selected as predictors for the three
estimated models1 are in line with those included, at different levels, in many other
empirical studies [3, 7].

5 Conclusions

Regional industrial enterprise default risk models have been investigated assessing
the usefulness of the geographic sampling approach to better estimate the risk of

1 The selected predictors and the estimations results are available upon requests from the authors.
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bankruptcy. The performance of different variable selection procedures as well as
the capability of each model at different time horizons have been evaluated by means
of properly chosen accuracy measures.

From the results on balance and unbalanced samples of solvent and insolvent
companies in Campania, the Lasso procedure seems superior in terms of prediction
performance and very stable in terms of error rates. It could be considered as an
alternative over traditional methods (logistic regression and discriminant analysis)
generating additional findings even in terms of number of predictors included in the
model. As expected, the overall performance depends on the time horizon. This leads
to further investigation taking into account the time dimension and the evolutionary
behavior of the financial variables.
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TCapital structure with firm’s net cash payouts

Flavia Barsotti, Maria Elvira Mancino, and Monique Pontier

Abstract. In this paper a structural model of corporate debt is analyzed following an
approach of optimal stopping problem. We extend Leland model introducing a div-
idend δ paid to equity holders and studying its effect on corporate debt and optimal
capital structure. Varying the parameter δ affects not only the level of endogenous
bankruptcy, which is decreased, but modifies the magnitude of a change on the en-
dogenous failure level as a consequence of an increase in risk free rate, corporate
tax rate, riskiness of the firm and coupon payments. Concerning the optimal capital
structure, the introduction of dividends allows to obtain results more in line with
historical norms: lower optimal leverage ratios and higher yield spreads, compared
to Leland’s results.

Key words: Structural model, endogenous bankruptcy, optimal stopping

1 Introduction

Many firm value models have been proposed since [6] which provides an analytical
framework in which the capital structure of a firm is analyzed in terms of deriva-
tives contracts. We focus on the corporate model proposed by [5] assuming that the
firm’s assets value evolves as a geometric Brownian motion. The firm realizes its
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capital from both debt and equity. Debt is perpetual, it pays a constant coupon C per
instant of time and this determines tax benefits proportional to coupon payments.
Bankruptcy is determined endogenously by the inability of the firm to raise suffi-
cient equity capital to cover its debt obligations. On the failure time T , agents which
hold debt claims will get the residual value of the firm (because of bankruptcy costs),
and those who hold equity will get nothing (the strict priority rule holds). This pa-
per examines the case where the firm has net cash outflows resulting from payments
to bondholders or stockholders, for instance if dividends are paid to equity holders.
The interest in this problem is posed in [5] section VI-B, nevertheless the resulting
optimal capital structure is not analyzed in detail. The aim of this note is twofold:
from one hand we complete the study of corporate debt and optimal leverage in the
presence of dividends in all analytical aspects, from the other hand we study nu-
merically the effects of this variation on the capital structure. We will follow [5] by
considering only cash outflows which are proportional to firm’s assets value but our
analysis differs from Leland’s one since we solve the optimal control problem as an
optimal stopping problem (see also [2]). The paper is organized as follows: Section 2
introduces the model and determines the optimal failure time as an optimal stopping
time, getting the endogenous failure level. Then, the influence of coupon, dividend
and corporate tax rate on all financial variables is studied. Section 3 describes opti-
mal capital structure as a consequence of optimal coupon choice.

2 Capital structure model with dividends

In this section we introduce the model, which is very close to [5], but we modify the
drift with a parameter δ, which might represent a constant proportional cash flow
generated by the assets and distributed to security holders. A firm realizes its capital
from both debt and equity. Debt is perpetual and pays a constant coupon C per instant
of time. On the failure time T , agents which hold debt claims will get the residual
value of the firm, and those who hold equity will get nothing. We assume that the
firm’s activities value is described by the process Vt = V eXt , where Xt evolves,
under the risk neutral probability measure, as

d Xt =
(

r − δ − 1

2
σ 2
)

dt + σdWt , X0 = 0, (1)

where W is a standard Brownian motion, r the constant risk-free rate, r , δ and σ > 0.
When bankruptcy occurs at stopping time T , a fraction α (0 ≤ α < 1) of firm value is
lost (for instance payed because of bankruptcy procedures), debt holders receive the
rest and stockholders nothing, meaning that the strict priority rule holds. We suppose
that the failure time T is a stopping time. Thus, applying contingent claim analysis
in a Black-Scholes setting, for a given stopping (failure) time T, debt value is

D(V ,C, T ) = EV

[∫ T

0
e−rsCds + (1 − α)e−rT VT

]
, (2)
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where the expectation is taken with respect to the risk neutral probability and we de-
note EV [·] =: E[·|V0 = V ]. From paying coupons the firm obtains tax deductions,
namely τ , 0 ≤ τ < 1, proportionally to coupon payments, so we get equity value

E(V ,C, T ) = V −EV

[
(1 − τ )

(∫ T

0
e−rsCds

)
+ e−rT VT

]
. (3)

The total value of the (levered) firm can always be expressed as sum of equity
and debt value: this leads to write the total value of the levered firm as the firm’s
assets value (unlevered) plus tax deductions on debt payments C less the value of
bankruptcy costs:

v(V ,C, T ) = V +EV

[
τ

∫ T

0
e−rsCds − αe−rT VT

]
. (4)

2.1 Endogenous failure level

The failure level is endogenously determined. Equity value T �→ E(V ,C, T ) is
maximized for an arbitrary level of the coupon C , on the set of stopping times. Ap-
plying optimal stopping theory (see e.g. [3]), the failure time is known to be constant
level hitting time (see [1], [2]). Hence default happens at passage time T when the
value V. falls to some constant level VB . Equity holders’ optimal stopping problem
is turned to maximize E(V ,C, T ) defined in (3) as a function of VB . In order to
compute EV

[
e−rT

]
in (3) we use the following formula for the Laplace transform

of a constant level hitting time by a Brownian motion with drift ([4] p. 196-197):

Proposition 1. Let Xt = μt + σWt and Tb = inf{s : Xs = b}, then for all γ > 0,

E[e−γ Tb ] = exp

⎡⎣μb

σ 2
− |b|

σ

√
μ2

σ 2
+ 2γ

⎤⎦ .

Since Vt = V exp[(r − δ − 1
2σ

2)t + σWt ], we get EV [e−rT ] =
(

VB
V

)λ(δ)
, where

λ(δ) =
r − δ − 1

2σ
2 +

√
(r − δ − 1

2σ
2)2 + 2rσ 2

σ 2
. (5)

Remark 2. As a function of δ, the coefficient λ(δ) in (5) is decreasing and convex.
In order to simplify the notation, we will denote λ(δ) as λ in the sequel.

Finally the equity function to be optimized w.r.t. VB is

E : VB �→ V − (1 − τ )C

r
+
(
(1 − τ )C

r
− VB

)(
VB

V

)λ

. (6)

Equity has limited liability, therefore VB cannot be arbitrary small and E(V ,C, T )
must be nonnegative: in particular E(V ,C,∞) = V − C(1−τ)

r ≥ 0 leads to the
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constraint
C(1 − τ )

r
≤ V . (7)

Moreover E(V ,C, T )− E(V ,C,∞) =
(

(1−τ)C
r − VB

) (
VB
V

)λ
. Since this term

is the option embodied in equity to be exercised by the firm, it must have positive
value. So we are lead to the constraint:

VB ≤ C(1 − τ )

r
. (8)

Observe that under (8) equity is convex w.r.t. firm’s current assets value V , re-
flecting its ”option-like” nature. A natural constraint on VB is VB < V , indeed, if
not, the optimal stopping time would necessarily be T = 0 and then

E(V ,C, T ) = V − (1 − τ )C

r
+
[
(1 − τ )C

r
− VB

]
= V − VB < 0.

Finally E(V ,C, T ) ≥ 0 for all V ≥ VB . The maximization of function (6) gives
the following endogenous failure level satisfying constraint (8):

VB(C ; δ, τ ) = C(1 − τ )

r

λ

λ + 1
, (9)

with λ given by (5). VB(C ; δ, τ ) satisfies the smooth pasting condition ∂E
∂V |V=VB = 0.

Remark 3. As a particular case when δ = 0 we obtain Leland [5], where λ = 2r
σ 2

and the failure level is VB(C ; 0, τ ) = C(1−τ)

r+ 1
2 σ

2 .

Since the application δ �→ λ
λ+1 is decreasing, the failure level VB(C ; δ, τ ) in (9) is

decreasing with respect to δ for any value of τ , in particular VB(C ; 0, τ ) is greater
than (9). Moreover VB(C ; δ, τ ) is decreasing with respect to τ, r, σ 2 and propor-
tional to the coupon C , for any value of δ. We note that the dependence of VB(C ; δ, τ )
on all parameters τ, r, σ 2,C is affected by the choice of parameter δ. The applica-
tion δ �→ ∂VB (C ;δ,τ )

∂τ is negative and increasing while δ �→ ∂VB (C ;δ,τ )
∂C is positive and

decreasing: thus introducing a dividend δ > 0 implies a lower reduction (increase)
of the optimal failure level as a consequence of a higher tax rate (coupon), if com-
pared to the case δ = 0. Similarly a change in the risk free rate r or in the riskiness
σ 2 of the firm has a different impact on VB(C ; δ, τ ) depending on the choice of δ. In
line with the results in [5] the failure level VB(C ; δ, τ ) in (9) is independent of both
firm’s assets value V and bankruptcy costs α (since the strict priority rule holds).
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2.2 Comparative statics of financial variables

We aim at analyzing the dependence of all financial variables on C , δ, τ at the en-
dogenous failure level VB(C ; δ, τ ), by substituting its expression (9) into equity,
debt and total value of the firm, thus obtaining:

E : (C ; δ, τ ) �→ V − (1 − τ )C

r
+ (1 − τ )C

r

1

λ + 1

(
C(1 − τ )

r V

λ

λ + 1

)λ

, (10)

D : (C ; δ, τ ) �→ C

r
− C

r

(
1 − (1 − α)(1 − τ )

λ

λ + 1

)(
C(1 − τ )

r V

λ

λ + 1

)λ

, (11)

v : (C ; δ, τ ) �→ V + τC

r
−
(
τC

r
+ α

C(1 − τ )

r

λ

λ + 1

)(
C(1 − τ )

r V

λ

λ + 1

)λ

.

(12)
In order to analyze equity’s behaviour with respect to δ, using Remark 2, we ob-

serve that E is decreasing and convex as function of λ, and increasing as function
of δ. 1 Observe that also in the presence of a dividend δ > 0, equity holders have
incentives to increase the riskiness of the firm, since λ decreases with higher volatil-
ity. Since E is a function of product C(1 − τ ), the application C �→ E(C ; δ, τ ) is
decreasing and convex, while τ �→ E(C ; δ, τ ) is increasing and convex.

We consider now debt function D(C ; δ, τ ). The application C �→ D(C ; δ, τ ) is
concave and achieves its maximum at

Cmax (V ; δ, τ ) = r V (λ + 1)

λ(1 − τ )

(
1

λ(τ + α(1 − τ )) + 1

) 1
λ

. (13)

Cmax (V ; δ, τ ) represents the maximum capacity of the firm’s debt. Substituting this
value for the coupon into debt function D(C ; δ, τ ) and simplifying yields:

Dmax (V ; δ, τ ) = V

(1 − τ )

(
1

λ(τ + α(1 − τ )) + 1

) 1
λ

. (14)

Equation (14) represents the debt capacity of the firm: the maximum value that
debt can achieve by choosing the coupon C . Not surprisingly the debt capacity
of the firm is proportional to firm’s current assets value V , decreases with higher
bankruptcy costs α and increases if the corporate tax rate rises.

In presence of a positive dividend, if τ changes, its effect on debt capacity is lower
than in case δ = 0, since δ �→ ∂Dmax (V ;δ,τ )

∂τ is decreasing. As δ increases, for each

1 Equity’s behaviour is summarized by f (λ) =
(

C(1−τ )
r V

)λ
λλ

(λ+1)λ+1 . The logarithmic deriva-

tive of f is log(C(1−τ )
r V

λ
λ+1 ) < 0 as V ≥ VB and (9). Moreover f ′′(λ) = 1

λ(1+λ) f (λ) +(
log C(1−τ )

r V + log λ
1+λ

)
f ′(λ) > 0.
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level of coupon C satisfying (7), debt decreases2: as a consequence, the maximum
capacity of debt also reduces (the application λ �→ Dmax (V ; δ, τ ) is increasing) and
is achieved for a higher coupon Cmax . While equity holders have incentives to in-
crease the riskiness of the firm since ∂E

∂σ > 0, the opposite happens for debt holders,
∂D
∂σ < 0 : higher volatility decreases debt value. Finally, a higher coupon C has a
positive effect on the interest rate paid by risky debt (yield) defined as R = C

D : actu-
ally R is increasing as function of C , and decreasing as function of τ , since a higher
corporate tax rate τ increases debt by lowering the optimal failure level VB(C ; δ, τ )
(see also [5] footnote 22). Similarly, we deduce from D behaviour that δ �→ R is
increasing 3.

As we can notice, as V → ∞, debt becomes risk free, since yield spread R − r
approaches to r (see Table 1): this is exactly as in [5], meaning that this behaviour
of R w.r.t. firm’s current assets value V is not affected by the choice of dividend δ.

Finally, the total value of the firm v(C ; δ, τ ) is a concave function of coupon C
and an increasing function of corporate tax rate τ .

Proposition 4. If V > VB(C ; δ, τ )e τ+α(1−τ)
τ+λ(τ+α(1−τ )) , then δ �→ v(C ; δ, τ ) is decreas-

ing.4

Table 1. Comparative statics of financial variables. The table shows the behaviour of all financial
variables at VB(C ; δ, τ ) under constraint (7)

Limit as Behaviour w.r.t.

Variable V → ∞ V → VB C δ τ

E ∼ V − (1−τ )C
r 0 Convex, ↘ ↗ Convex, ↗

D C
r

λC(1−τ )(1−α)
r(1+λ) Concave, ∩-Shaped ↘ ↗

v ∼ V + τC
r

λC(1−τ )(1−α)
r(1+λ) Concave ↘ a ↗

R r r(1+λ)
λ(1−α)(1−τ ) Concave ↗ ↘

R − r 0 r(1+λ(α+τ−ατ))
λ(1−α)(1−τ ) Concave ↗ ↘

a See Proposition 4.

2 Debt’s dependence on λ is the opposite of g(λ) =
(

1 − (1 − α)(1 − τ) λ
λ+1

) (
C(1−τ )

r V
λ

λ+1

)λ
, its

log-derivative being increasing from −∞ to log C(1−τ )
r V which is negative since C(1 − τ) < r V .

3 The behaviour of R is the one of (C, τ, δ) �→
(

1 − (1 − α)(1 − τ) λ
λ+1

)(
C(1−τ )

r V
λ

λ+1

)λ
.

4 The behaviour is the one of: G : λ �→ (τ + λ(τ + α(1 − τ)) 1
λ+1

(
C(1−τ )

r V
λ

λ+1

)λ
. Actually, let-

ting x = τ
1−τ , the behaviour of G is given by the sign of h(λ) := G ′

G (λ) = x+α
x+λ(x+α)+log VB (C ;δ,τ )

V .

Since x+α
x+λ(x+α) > 0 and log VB (C ;δ,τ )

V < 0, in case V > VB(C ; δ, τ )e x+α
x+λ(x+α) we have h(λ) < 0

and the total value of the firm is decreasing w.r.t. δ.
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3 Optimal leverage

Now we turn to the optimization of the total value of the firm v(C ; δ, τ ) with respect
to the coupon C , depending on the failure level VB(C ; δ, τ ) in (9). This application is
concave since A := τ

r +α λ(1−τ)
r(λ+1) > 0 and λ > 0, therefore the following Proposition

holds.

Proposition 5. For any fixed δ, τ , the optimal coupon is:

C∗(V ; δ, τ ) = r V (λ + 1)

λ(1 − τ )

(
τ

λ(τ + α(1 − τ )) + τ

) 1
λ

. (15)

We observe that C∗(V ; δ, τ ) < Cmax (V ; δ, τ ), where Cmax is defined in (13). More-
over, this max-coupon satisfies V > (1−τ)Cmax

r
λ

λ+1 .
Replacing (15) in (9) yields the optimal failure level

V ∗
B(V ; δ, τ ) = V

(
τ

λ(τ + α(1 − τ )) + τ

) 1
λ

. (16)

In case δ = 0, we have λ = 2r
σ 2 and we get the same results as in [5].

Routine calculus shows the consequence of introducing a positive dividend into
(16): δ �→ V ∗

B(V ; δ, τ ) is a decreasing function for any value of τ while τ �→
V ∗

B(V ; δ, τ ) is increasing for any value of δ. Similarly optimal coupon C∗(V ; δ, τ )
given by (15) will benefit from a higher corporate tax rate and decrease w.r.t. div-
idend δ, as Figure 1 shows. Optimal leverage ratio L∗ = D∗

v∗ , optimal yield spread

R∗ − r = C∗
D∗ − r together with debt D∗, equity E∗ and total value of the firm v∗ are

strongly affected by dividends. Table 2 shows the behaviour of all financial variables
at optimal leverage ratio, when the parameter δ moves away from zero. Equity value
increases with a higher dividend, while optimal coupon and optimal debt decrease.
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Fig. 1. Optimal coupon. This plot shows the behaviour of optimal coupon C∗ as function of divi-
dend δ and corporate tax rate τ . We consider V0 = 100, σ = 0.2, r = 6%, α = 0.5
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Table 2. Effect of dividend δ on all financial variables at the optimal leverage ratio. Base case
parameters’ values: V0 = 100, σ = 0.2, τ = 0.35, r = 6%, α = 0.5. The first row of the table
shows Leland’s [5] framework with his base case parameters’ values. R∗, L∗ are in percentage (%),
R∗ − r in basis point (bps)

δ C∗ D∗ R∗ R∗ − r E∗ V ∗
B v∗ L∗

0 6.501 96.275 6.753 75.257 32.167 52.821 128.442 74.956

0.005 6.459 94.924 6.804 80.437 32.879 51.634 127.804 74.274

0.010 6.419 93.547 6.862 86.177 33.602 50.422 127.149 73.573

0.015 6.380 92.135 6.925 92.463 34.347 49.177 126.482 72.845

0.020 6.344 90.706 6.994 99.401 35.097 47.918 125.803 72.102

0.025 6.312 89.272 7.071 107.053 35.847 46.653 125.119 71.350

0.030 6.283 87.826 7.154 115.389 36.606 45.377 124.432 70.582

0.035 6.258 86.382 7.245 124.457 37.366 44.103 123.748 69.805

0.040 6.239 84.960 7.343 134.342 38.111 42.850 123.072 69.033

Dividends influence on debt is higher than δ impact on equity: as a consequence the
total value of the firm reduces, since introducing dividends makes bankruptcy more
likely. In such a case debtholders will pay less for debt: optimal leverage ratio will
reduce and yield spreads will be higher.

4 Conclusions

Adding dividends has an actual influence on all financial variables: for an arbitrary
coupon level C , a positive dividend increases equity and decreases both debt and to-
tal value of the firm, making bankruptcy more likely. Dividends strongly modify the
influence of all parameters r , τ , C , σ 2 on the endogenous failure level VB(C ; δ, τ )
(magnitude of the change). Concerning optimal capital structure results in [5] show
too high leverage ratios (and/or too low yield spreads): assuming δ > 0 allows to
overcome this, providing lower optimal leverage ratios (and higher yield spreads).
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TConvex ordering of Esscher and minimal
entropy martingale measures for discrete
time models

Fabio Bellini and Carlo Sgarra

Abstract. We recall and extend some sufficient conditions for the convex compar-
ison of martingale measures in a one period setting, based on the elasticity of the
pricing kernel.

We show that the minimal entropy martingale measure (MEMM) and the Esscher
martingale measure are comparable in the convex order, and which one is dominat-
ing depends on the sign of the risk premium on the underlying. If it is positive, then
the MEMM gives a lower price to each convex payoff. We show how the comparison
result can be extended to the multiperiod i.i.d. case and discuss the problems related
to the general, non i.i.d. case, proving a Lemma that links one period comparison
with multi period comparison under more general assumptions.

Key words: Convex order, Esscher transform, minimal entropy martingale measure

1 Introduction

The relationship between stochastic orders and option prices is well established in
the financial literature, at least starting with the seminal paper [14]. In Theorem 8
on page 149 ([14]) the author states that “the rationally determined warrant price is
a nondecreasing function of the riskiness of its associated common stock”, where
the riskiness is defined in the sense of the Rotschild-Stiglitz order defined in [16]
(nowadays more usually called convex order, the terminology that we will adopt in
this paper). As pointed out later by [12] by means of a simple counterexample, Mer-
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ton’s statement has to be referred to the risk neutral distribution of the stock.
Convex ordering of martingale measures is underlying many papers related to the

comparison of option prices under different models, such as [10, 2, 3] in continuous
time and [19, 17, 5] in discrete time, where the same techniques are applied for com-
puting option pricing bounds, which are provided by extremal martingale measures.

The purpose of this note is to show that in a one period setting the minimal en-
tropy martingale measure (MEMM henceforth, introduced in [8]) and the Esscher
martingale measure (in the original sense of [9]) are always comparable in the con-
vex order, and which one is dominating depends on the sign of the risk premium
of the underlying; in the typical case of a positive risk premium the MEMM gives
lower prices to each convex payoff (in particular, it gives lower prices to each plain
vanilla call and put). This result can be easily extended to the multiperiod i.i.d. case,
while the extension to a general dependent case is the subject of current research.

In Section 2 we briefly review and generalize some sufficient conditions for the
convex ordering of martingale measures; in Section 3 we state our main result on the
comparison of the Esscher and the MEMM measures; finally in Section 4 we show
how the comparison can be generalized in the multiperiod i.i.d. case and discuss the
problems arising in more general cases.

2 Ordering martingale measures

Given two martingale measures Q1 and Q2 we say that Q1 ≤ cx Q2 if for each
convex payoff h : [0,+∞) → R we have that

EQ1 [h(S)] ≤ EQ2 [h(S)], (1)

where S is the terminal price of the underlying; equivalently we can say that the law
of S under Q1 is dominated by the law of S under Q2 in the convex order. Clearly
the mean of S is the same under any martingale measure (and is equal to the forward
price) and hence the elementary necessary condition for the convex order ([15],[18])
is always satisfied.

In financial models martingale measures are typically specified by means of their
densities ϕi = d Qi

d Pi
with respect to the physical probability measure P ; in the eco-

nomic literature some sufficient conditions for Q1 ≤cx Q2 in terms of the “pricing
kernels” ϕi has been proposed.

The simplest condition requires that the densities ϕ1 and ϕ2 cut in two points;
then the one with higher tails is dominating (see [7], [11]). In [7] the authors also
provide another sufficient condition based on the elasticities of the pricing kernels,
defined as

ηi = − S

ϕi

dϕi

d S
. (2)

Indeed they prove that if η1 is constant and η2 is decreasing, then Q1 ≤cx Q2.
This criterion is quite useful in the applications since in the Black-Scholes case the
pricing kernel has constant elasticity.
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In the following theorem we generalize this result and state several similar suffi-
cient conditions for the convex ordering of densities:

Theorem 1. Let ϕ1, ϕ2 ∈ C1[0,+∞); if any of the following conditions hold, then
ϕ1 and ϕ2 cut in two points, and hence are comparable in the convex order:

i) the ratio
ϕ′

1(S)
ϕ′

2(S)
is monotone;

ii) the ratio of elasticities η1(S)
η2(S) = ϕ2(S)

ϕ1(S)
ϕ′

1(S)
ϕ′

2(S)
is monotone;

iii) ϕ1 and ϕ2 are comonotone (both increasing or both decreasing) and ϕ1 = h(ϕ2),
with h convex (or concave);
iv) ϕ1 and ϕ2 are comonotone and logϕ1 = h(log ϕ2), with h convex (or concave).

Proof. First of all, following [7], we remark that two pricing kernels must cut in at
least two points. Indeed, since

∫ +∞
0 ϕ1(S)d P = ∫ +∞

0 ϕ2(S)d P = 1, there must be
at least one intersection; suppose by contradiction that there exists only one inter-
section, that is there exists S such that ϕ1(S) < ϕ2(S) for S ≤ S and ϕ1(S) > ϕ2(S)
for S > S; then∫ +∞

0
(S − S)ϕ1(S)d P =

∫ S

0
(S − S)ϕ1(S)d P +

∫ +∞

S
(S − S)ϕ1(S)d P >

>

∫ S

0
(S − S)ϕ2(S)d P +

∫ +∞

S
(S − S)ϕ2(S)d P =

∫ +∞

0
(S − S)ϕ2(S)d P,

that is a contradiction since for all pricing kernels we have∫ +∞

0
Sϕ1(S)d P =

∫ +∞

0
Sϕ2(S)d P.

Hence all pricing kernels have to cut in at least two points; each sufficient con-
dition excludes that there are more than two cuts. Assume by contradiction that
there are three cuts in S1 < S2 < S3; if ϕ′

1(S1) < ϕ′
2(S1), then we have that

ϕ′
1(S2) > ϕ′

2(S2) and ϕ ′
1(S3) < ϕ′

2(S3), while on the contrary if ϕ ′
1(S1) > ϕ′

2(S1)

then ϕ′
1(S2) < ϕ′

2(S2) and ϕ ′
1(S3) > ϕ′

2(S3); in both cases the function
ϕ′

1(S)
ϕ′

2(S)
cannot

be monotone. This immediately leads to a contradiction with i), and with ii) (as al-

ready remarked in [7]), since in the intersection points η1(S)
η2(S) = ϕ′

1(S)
ϕ′

2(S)
.

If iii) holds, then we have that the function ϕ1(ϕ
−1
2 (x)) = h(x) is convex (or

concave); then h′(x) = ϕ′
1(ϕ

−1
2 (x))

ϕ′
2(ϕ

−1
2 (x))

= ϕ′
1(S)

ϕ′
2(S)

should be monotone, again leading to a

contradiction; finally if iv) holds with the same reasoning we have that (log ϕ1(S))′
(log ϕ2(S))′ =

ϕ2(S)
ϕ1(S)

ϕ′
1(S)

ϕ′
2(S)

= η1
η2

is monotone and hence i) holds.
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3 Comparison between Esscher and MEMM

We apply the preceding results to the comparison between the Esscher and MEMM
martingale measures in a one period setting. The underlying risky stock has final
price S = S0eX , where X is the logreturn, and the bond has initial price B0 = 1 and
final price B = er . The model is free of arbitrage opportunities if P(X > r) > 0 and
P(X < r) > 0 (see for example [20] pag. 418). There are infinitely many absolutely
continuous pricing measures Q satisfying the condition

EQ[eX ] = er . (3)

It is well known (see for example [8] or [6]) that the density of the MEMM is of
the form

ϕ1(S) = eh1 S

E[eh1 S]
, (4)

while the density of the exponential Esscher martingale measure is of the form [9]

ϕ2(S) = eh2 X

E[eh2 X ]
= Sh2

E[Sh2 ]
, (5)

where the parameters h1 and h2 are chosen in order to satisfy (3) that becomes

E[Seh1 S]

E[eh1 S]
= er (6)

and
E[e(h2+1)X ]

E[eh2 X ]
= er . (7)

The solutions of (6) and (7) may in general not exist; however we can state the
following:

Lemma 1. a) If S is not constant and for some c > 0 we have that E[ecS] < +∞,
then the function g1(t) = E[Set S]/E[et S] is strictly increasing in (−∞, c).
b) If S is not constant and for some c1, c2 > 0, with c2 + c1 > 1, we have that
E[e−c1 X ] < +∞ and E[ec2 X ] < +∞, then the function g2(t) = E[e(t+1)X ]/E[et X ]
is strictly increasing in the interval (−c1, c2 − 1).

Proof. a) Since S > 0 we have that the m.g.f fS(t) = E[et S] exists for t ∈ (−∞, c).
It can be derived under the integral sign, hence for t < c we have that g1(t) = f ′(t)

f (t) =
d
dt log fS(t). It then follows that g′

1(t) = d2

dt2 log fS(t) > 0 since S is not constant
(see for example [1] or [13]).

b) We have that g′
2(t) = f ′

X (t+1) fX (t)− fX (t+1) f ′
X (t)

f 2
X (t)

> 0 since
f ′
X (t+1)

fX (t+1) >
f ′
X (t)

fX (t) from

the strict log-convexity of log fX (t) (see for example [1] or [13]).

Since h1 and h2 are defined by means of (6) and (7), that can be rewritten as
g1(h1) = er and g2(h2) = er , we have the following trivial corollary:
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Proposition 1. Assuming that the solutions h1 and h2 of (6) and (7) exist, they are
both strictly increasing as a function of the riskfree logreturn r . Moreover, we have
that h1 < 0 and h2 < 0 if and only if E[S] > S0er , while h1 > 0 and h2 > 0 if and
only if E[S] < S0er . The case h1 = h2 = 0 arises when P is already a martingale
measure.

It follows that the two densities ϕ1 and ϕ2 are always comonotone; they are both
decreasing if E[S] > S0er and both increasing if E[S] < S0er . This enables us to
state our main comparison result:

Theorem 2. In the considered setting, we have that if E[S] < S0er the MEMM price
of each convex payoff is greater than the Esscher price, while if E[S] > S0er the
Esscher price is greater than the MEMM price.

Proof. We can apply the item ii) of Theorem 1; the elasticities are given by η1(S) =
− S

ϕ1

dϕ1
d S = −h1S in the MEMM case and η1(S) = − S

ϕ2

dϕ2
d S = −h2 in the Esscher

case, and their ratio is given by h1
h2

S, that is monotone increasing.
It follows that the two densities always cut in two points; in the case of E[S] >

S0er we have h1 < 0 and h2 < 0 and hence that Esscher density has the higher tails,
while in the E[S] < S0er the situation is reversed.

In Fig. 1, a numerical example is provided offering a direct comparison of Es-
scher and MEMM densities.

4 The Multiperiod case

Consider now a multiperiod model with Sn = Sn−1eXn , Bn = enr for n = 1, . . . , N
and assume that the logreturns Xn are independent. We denote with Rn the simple
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Fig. 1. An example of comparison between Esscher and MEMM in a one period model with bi-
nomial logreturns (n=50, p=0.7, u=1.01, d=0.99). In the left panel r=0.05 and the risk premium is
positive; the Esscher density has higher tails and is dominating in the convex order. In the right
panel r=0.15, the risk premium is negative and the situation is reversed
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returns defined as Rn = Sn−Sn−1
Sn−1

= eXn − 1.
The density of the MEMM is given by (see for example [4], corollary 5.8):

ϕ1 =
exp(

N∑
n=1

h(n)
1 Rn)

E[exp(
N∑

i=1
h(n)

1 Rn)]

, (8)

where each h(n)
1 solves

E[Rneh(n)
1 Rn ]

E[eh(n)
1 Rn ]

= er − 1, (9)

while the density of the Esscher measure is given by

ϕ2 =
exp(

N∑
n=1

h(n)
2 Xn)

E[exp(
N∑

n=1
h(n)

2 Xn)]

, (10)

where each h(n)
2 solves:

E[e(h
(n)
2 +1)Xn ]

E[eh(n)
2 Xn ]

= er . (11)

If the logreturns are also identically distributed, we have that h(n)
1 = h1 and h(n)

2 =
h2, and hence the MEMM and Esscher densities can be expressed as a function of
the price S1 alone:

ϕ1(S1) = exp(h1 N S1)

E[exp(h1 N S1)]
, (12)

ϕ2(S1) = SNh2
1

E[SNh2
1 ]

, (13)

In this case the analytical expressions of the densities are identical to the one
period case with Nh1 and Nh2 replacing h1 and h2, and hence the two measures are
ordered as in the thesis of Theorem 2.

If we try to remove the hypothesis of independent logreturns, the problem is that
the representation (8) does not hold anymore; it is no more true that the density of
the MEMM is a product of one period entropy minimizing densities. In contrast, the
multiperiod Esscher measure is always by construction defined as a product of one
period Esscher densities. We can however state a positive general result that shows
that if two densities are defined as products of one period densities, then convex
ordering of the one period factors implies the convex ordering of product densities:
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Theorem 3. Let ϕ1 =
N∏

n=1
ϕ
(n)
1 and ϕ2 =

N∏
n=1

ϕ
(n)
2 , with ϕ

(n)
i > 0 a.s., E[ϕ(n)

i |Fn−1]

= 1, E[Snϕ
(n)
i |Fn−1] = Sn−1er . Moreover, we assume that Sn satisfies the strong

Markov property with respect to the filtration Fn.
If for each n = 1, . . . , N we have that ϕ(n)

1 ≤cx ϕ
(n)
2 , in the sense that

E[ϕ(n)
1 h(Sn)|Fn−1] ≤ E[ϕ(n)

2 h(Sn)|Fn−1]

for each convex payoff h(Sn), then ϕ1 ≤cx ϕ2.

Proof. The proof is by induction on N ; the case N = 1 is trivial. We have to show
that for each convex payoff h(SN ) we have E[ϕ1h(SN )] ≤ E[ϕ2h(SN )]. First of all
we remark that from the strong Markov property

E[ϕ(N )
i h(SN )|FN−1] = gi (SN−1). (14)

Moreover, it is easy to see that the function gi are convex, since

gi (αu+(1−α)v) = E[ϕ(N)
i h(SN )|SN−1 = αu+(1−α)v] = E[ϕ(N)

i h(αueX N +(1−α)veX N )] ≤

≤ αE[ϕ(N)
i h(ueX N )] + (1 − α)E[ϕ(N)

i h(veX N )] = αgi (u) + (1 − α)gi (v).

From the hypothesis ϕ
(N )
1 ≤cx ϕ

(N )
2 we get that

g1(SN−1) = E[ϕ(N )
1 h(SN )|FN−1] ≤ E[ϕ(N )

2 h(SN )|FN−1] = g2(SN−1).

Hence we have

E[ϕ1h(SN )] = E[E[ϕ1h(SN )|FN−1]] = E[E[
N∏

n=1

ϕ
(n)
1 h(SN )|FN−1]] =

= E[
N−1∏
n=1

ϕ
(n)
1 E[ϕ(N )

1 h(SN )|FN−1]] = E[
N−1∏
n=1

ϕ
(n)
1 g1(SN−1)] ≤

≤ E[
N−1∏
n=1

ϕ
(n)
2 g1(SN−1)] ≤ E[

N−1∏
n=1

ϕ
(n)
2 g2(SN−1)] = E[ϕ2h(SN )],

where the first inequality follows from the induction hypothesis.

This Lemma shows that in the general, non i.i.d. case it is possible to compare the
Esscher measure and a “local” minimal entropy martingale measure, that is defined
as in (8) as the product of one period entropy minimizing densities; this local MEMM
will be however in general different from the MEMM, as it can be shown already in
very simple two period examples.
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TOn hyperbolic iterated distortions
for the adjustment of survival functions

Alexis Bienvenüe and Didier Rullière

Abstract. This paper presents a class of distortions of survival functions. Studied
distortions are built in order to respect several properties that seem to us useful in
actuarial science. We focus here on some particular hyperbolic distortions, which
preserve analytic invertibility of the distorted survival function, and for which in-
verse distortions belong to the same hyperbolic class. We propose some specific
parameterizations of these distortions which give a straightforward inversion, and
discuss the importance of such an inversion in insurance and finance. We prove the
convergence of composed distortions to any target law, and give initial values and
a particular methodology for the parameters estimation. Numerical figures illustrate
the adaptation of these distortions to several actuarial fields.

Key words: Probability distortions, iterated compositions, hyperbolic transform,
risk measure, survival function transformation, conversion function

1 Introduction

Parametric approximations of some target survival functions are useful in many ac-
tuarial fields. In this paper we will consider a parametric approximation S̃ of some
target survival function S. The target survival function S is defined by S(x) =
P [X > x], x ∈ R, where the random variable X can be for example some insurance
loss, asset returns over periods of a given length, or a conditional survival lifetime.
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If one observes insurance claims, a parametric invertible distortion of a simple
survival function can be useful to get random deviates from the claim distribution. In
the financial field, a gaussian assumption is often contested, and it may be interesting
to distort an initial gaussian return in order to adjust higher moments and better fit an
empirical distribution. In the following, our applications will be focused on mortality
adjustments.

Classical parametric representations may have some pitfalls. First, improvement
of data adequation or addition of parameters is not always simple [4, 6, 7]. Secondly,
estimation problems may occur [4] and it can be difficult to get good initial values
for the estimation. At last, analytical representation of the inverse survival function
is sometimes required, especially when using monte-carlo simulations. In this paper,
we design parametric representations that can settle these issues.

We propose here to use a particular methodology, namely probability distortions.
We will show hereafter what are the constraints we impose for such a distortion.
One can briefly recall that probability distortions have a long history, and were used
in a very large context [2, 3, 7, 8, 9, 10]. Some usages of probability distortions are
listed below:

• improving a fit by distorting a reference function (adjusting an official mortality
table to business data, adjusting claims distribution on a segment given a global
distribution);

• explaining a phenomenon by the considered distortion (shape of the distortion,
evolution over time of the distortion, incidence of a quantitative factor);

• applying a prudential rule (for example making a loss distribution tail heavier
than the one estimated from empirical data).

Let us now present the probability distortions we are looking for:

Definition 1 (distorted survival functions). Denote by S the set of survival func-
tions of non-negative integrable random variables, so that for any function S of S,
S is cadlag from R to [0, 1], S(x) = 1 for all x < 0 and

∫ +∞
0 S(t)dt < ∞. A

parameterized function Tθ will be called in this paper a probability distortion if for
any S ∈ S we have S̃ ∈ S, with

Tθ : [0, 1] → [0, 1] ,

∀x ∈ R, S̃(x) = Tθ (S(x)),

where θ ∈ � is a vector of parameters.

Let us consider the class of distortions

T = {Tθ : [0, 1] → [0, 1]}θ∈� .

On can wonder how to choose the class T . We will now look for some good
properties for each distortion of this set. Here are some properties that are required
for a distortion Tθ ∈ T :
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• C1. Invertibility. (Tθ )
−1 should exist, with an explicit analytical form;

• C2. Stability. (Tθ )
−1 should belong to T ;

• C3. Regularity. Partial derivatives of Tθ should be continuous:

∀x ∈ [0, 1], θ �→ Tθ (x) continuously differentiable,

∀θ ∈ �, x �→ Tθ (x) continuously differentiable;
• C4. Convergence. One should find a sequence of distortions that converge to any

target: for all S0, S1 ∈ S, there exists a sequence (Ti )i∈N such that

Tn ◦ · · · ◦ T1(S0) → S1 ;
• C5. Parameterization. One should write (Tθ )

−1 = Tθ ′ , with θ ′ easily deduced
from θ :

θ ′ = DT · θ , (symmetrical parameterization),

DT diagonal matrix, with elements in {−1, 1} ,
or θ ′ = −θ , (entirely symmetrical parameterization).

Distortions are acting from [0, 1] to [0, 1]. A problem is that some parameterized
functions are defined out of this interval, so that it would be convenient to act in the
logit scale.

Definition 2 (distortion from a conversion function f). For any bijective increas-
ing function f from R to R, called conversion function, let us define the associated
distortion function T f by:

T f : [0, 1] → [0, 1]

T f (u) =
⎧⎨⎩

0 if u = 0,
logit−1( f (logit(u))) if 0 < u < 1,
1 if u = 1.

The distorted function S̃ of a survival function S will be:

S̃ (x) = T f (S(x)) .

Note that:
T f ◦ Tg = T f ◦g.

In [1], we listed some interesting conversion functions. Here, we will focus in-
stead on a simple and useful particular distortion that respect all constraints. In Sec-
tion 2, we will introduce a particular hyperbolic distortion. In Section 3, we will
show one particular application of this distortion to Italian mortality.
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2 Hyperbolic distortion

We defined previously five properties C1-C5 useful for distortions of survival func-
tions. In this section, we build some distortions aiming to respect these properties,
by defining some particular conversion functions. First, one can consider affine and
angle conversion functions, which appear in Fig. 1.

Affine conversion functions are acting in the same spirit as Wang’s transforms [7].
The main problem of affine conversion functions is that, once composed, the corre-
sponding distortion is still an affine conversion function distortion. Angles are far
much interesting, since they allow, by composition, to build any continuous piece-
wise linear conversion function.

The problem of angle conversion functions is their derivatives discontinuity, so
that, at last, we will use a smooth version of angle functions. This smooth version is
easy to get by using a simple hyperbola, as we can see it it Fig. 2.
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Fig. 1. Affine and angle conversion functions. On ]0, 1[, the corresponding distortion is T f (u) =
logit−1( f (logit(u)))
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Fig. 2. Hyperbolic function: smooth version of angle functions f . On ]0, 1[, the corresponding
distortion is T f (u) = logit−1( f (logit(u)))
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Definition 3. The considered two parameter hyperbola H, with one smoothing pa-
rameter η ∈ R, is for m, ρ ∈ R:

Hm,ρ,η(x) = m + (1 + eρ)
x − m

2
− (1 − eρ)

√(
x − m

2

)2

+ eη−
ρ
2 ;

(Hm,ρ,η)
−1(x) = Hm,−ρ,η(x).

This hyperbola correspond to the more general one given in Fig. 2, when we fix
slopes p1 = 1, p2 = eρ , and when x0 = y0 = m.

As one can see, the inversion of such an hyperbola is straightforward, and the
conversion function is naturally increasing. The induced 2+1 parameter distortion,
with smooth parameter η is:

TH (u) = logit−1 ◦ H ◦ logit(u),

(TH )−1(u) = logit−1 ◦ H−1 ◦ logit(u).

At last the induced 2n + 1 parameters distortion (with common smooth para-
meter η) is given by:

TG(u) = logit−1 ◦ H1 ◦ · · · ◦ Hn ◦ logit(u),

(TG)−1(u) = logit−1 ◦ H−1
n ◦ · · · ◦ H−1

1 ◦ logit(u).

General results for several kind of distortions are given in [1], and concern for
example the impact of distortions on random variables, the impact on hazard rates,
some results for regular variation distorted functions, and some results for distortions
to be used as risk measures. Methods for eliminating some parameters are also given
in this previous paper.

An important result is that one can get easily some initial values for the parameters
m and ρ. This is based on the fact that one can express the target survival function as
a function of the initial one, into a logit scale. It is easy to propose an adjustment of
this empirical curve by a piecewise linear function. The empirical piecewise linear
function will correspond to composition of angle functions, which will give required
initial values for parameters, except for the smooth parameter η.

Here, we will focus on one important specific result for composition of these 2
parameters hyperbolic distortions:

Theorem 1 (convergence). Let D(S, S′) = ∫ +∞
0

∣∣S(x) − S′(x)
∣∣ dx. For any ε > 0,

there exists n and a set of distortions {H1, . . . , Hn} such that, for any strictly de-
creasing initial survival function S0 ∈ S, and any strictly decreasing target S ∈ S,

D
(
TH1 ◦ · · · ◦ THn ◦ S0, S

)
< ε .

Proof. This result has been proved in a similar context in [1], and can be easily
adapted to this new one. The key point here is that any piecewise affine function from
R to R with finite number of apex can be seen as a composition of two parameters
hyperbolas. To approach S, S0 is then distorted so as to coincide with S at some well



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP
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chosen points x1, . . . , xn , in such a way that the distance from S to the distorted
function TH1 ◦ · · · ◦ THn ◦ S0 can be controlled. �

3 Numerical Application to Italian mortality

We presented in the previous section a particular hyperbolic distortion. This section
shows how this distortion may be useful for some actuarial problems. We will give
one brief example on Italian mortality. Suppose we are looking for a parametric rep-
resentation of the Italian mortality, for death year 2005. The nonparametric survival
data to be adjusted can be found in [5]. This data gives in particular {S(x)}x=0..110 for
some integer ages x , where S(x) = P [T > x] for a global random lifetime T ∈ R+.
To fit these values with a parametric survival function, one can distort an initial para-
metric survival function S0. An Heligman-Pollard shape for S0 would not be easy
to invert analytically, and a Gompertz or Makeham shape would add some more
parameters without significantly improving the fit of the distorted survival function.
Furthermore, to show the ability of such hyperbolic distortions to induce radical
changes from the initial survival function, we started here from a initial exponential
distribution, with parameter 1 (i.e. without parameters). Such an initial distribution is
evidently very far from Italian mortality, since the loss of memory of the exponential
law induces a lack of ageing, and since the life expectancy equals the mean of the
chosen exponential distribution, which is one in this case. Obtained estimated pa-
rameters are given in the Table 1. We also gave a quality index, which gives a direct
idea of the average number of correct decimals of the adjusted parametric function:

IQ = − log10

(
1

xmax

xmax∑
x=1

∣∣∣S̃(x) − S(x)
∣∣∣) ,

where S̃ and S are respectively the parametric distorted function and the target sur-
vival function, and where xmax represent the maximal available age on the target
mortality table.

Figure 3 gives the target and the survival function obtained by both H2 ◦ H2 and
H2 ◦ H2 ◦ H2 adjustments done in Table 1. As one can see, we cannot distinguish
the difference between the three curves, indicating that the proposed adjustments are
pretty good. We can check in Table 1 that quality index are around 3, which mean
an average of three correct digits on the survival functions. Only an important zoom

Table 1. Parameters for distortions H2 ◦ H2 and H2 ◦ H2 ◦ H2 of an exponential of parameter 1,
to adjust Italian mortality table, death year 2005. The smooth parameter η is chosen identical for
composited H2 distortions

m1 ρ1 η m2 ρ2 m3 ρ3 IQ

H2 ◦ H2 –123.6 2.6243 4.4421 2.0744 –5.7298 — — 2.98

H2 ◦ H2 ◦ H2 –6902.8 0.0161 3.0400 13.427 –1.352 9.7869 –3.9807 3.19
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Fig. 3. H2 ◦ H2 (bold dashed line) and H2 ◦ H2 ◦ H2 (thin dotted line) adjustments of Italian
mortality table, death year 2005 (curves almost merged)
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Fig. 4. Zoom of Fig. 3 for ages over 100

on very large ages show some differences between the three curves, as one can see
in Fig. 4. We can see on this last figure that the H2 ◦ H2 ◦ H2 distortion is a little bit
closer to the target, even if the difference remains very small.

As a conclusion, these composite hyperbolic distortions allow to start from initial
survival functions very far from the target one. They have good fitting properties:
estimation of parameters can be made easily (using initial values detailed in [1]),
and convergence to the target is ensured by Theorem 1. These distortions maybe
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useful for stochastic simulations, when using the invertibility property. As an exam-
ple, simulating the random residual lifetime Tx of someone aged x , according to the
considered Italian table is straightforward using the H2 ◦ H2 parametric representa-
tion:

x + Tx = S−1 (U · S(x)) ,

where S(x) = TH2◦H2 S0(x) and S0(x) = e−x is the initial survival function. The
inversion of S is straightforward due to invertibility properties.

Many perspectives are open. We are now working on the choice of parameters
number in dynamic models, in order to allow forecasting, on adaptation of some mul-
tiplicative or additive models, on multivariate case and integration of dependencies,
and on the usage of stochastic distortions.
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TBeyond Basel2: Modeling loss given default
through survival analysis

Stefano Bonini and Giuliana Caivano

Abstract. In the last years the majority of European Banking Groups has chosen to
adopt the advance status under Basel2. This has required banks to develop statisti-
cal models for estimating Probability of Default, Loss Given Default and Exposure
at Default, within a horizon time of 1 year. Such models make no attempt at de-
scribing the exact timing of default, in particular, beside an extensive academic and
practitioner’s literature on PD, LGD studies are in a less advance status. One of the
main reasons could be due to the difficulties in modeling and forecasting the danger
rates. The aim of this paper is to show the results of the first application on an Italian
Bank Retail portfolio of survival analysis technique for estimating LGD, by model-
ing the danger rate. Two issues arise from the forecasting of danger rates: dealing
positions that change, or not, their status towards charge off and obtaining a certain
level of accuracy across time, thus resulting more difficult than in simpler classifi-
cation methods. This paper analyzes the use of a parametric survival model, where
time is assumed to follow some distribution whose PDF can be expressed in terms
of unknown parameters: hazard and shape.

Key words: Loss Given Default forecasts, Basel2, credit risk modeling, time to
default, quantitative finance, survival analysis

1 Introduction

In the last years the biggest European Banking Groups started to assess the possi-
bility of adopting the Advanced Internal Rating Based Approach (AIRBA) under
Basel2. The AIRBA Framework requires banks to develop statistical models for
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estimating probability of default (PD), Loss Given Default (LGD) and Exposure at
Default (EAD), within a horizon time of 1 year. A big issue banks face in developing
PD, LGD and EAD models is the lack of data: consequently such models make no
attempt at describing the exact timing of default1. The problem is even more serious
for LGD [9]. The best practice in Italian Banks is to adopt a workout approach for
estimating LGD on defaulted positions (where the default event is given by the legal
charge-off status). For the adoption of a workout approach financial institutions have
started to collect data on recoveries from defaulted receivables in systematic manner
relatively recently and moreover the recovery process usually takes up to three or
even more years. Hence even if a bank observed recoveries on loans that defaulted
in the past five years many or majority of LGD observations may be incomplete. The
LGD models lack in taking into account the description of exact timing of default.
Predicting time to default is part of a larger field of studies called survival analysis.

On PD models, the technique allows the use of censored default data as well as to
model consistently probabilities of default in different time horizons [7] and there is
a relatively extensive literature on the subject [3] and the technique is used by some
banks and practitioners.

On LGD models there is no literature to the authors’ knowledge on possible ap-
plications of the survival time modeling techniques to danger rate estimation [11],
[12]. The aim of this paper is to show the results of the first study of survival analysis
for estimating LGD by modeling the danger rate parameter and its application.

The methods have been applied on an Italian Bank’s Retail Portfolio to several
periods of time and the results suggest that the customer’s employer type results to
be an important driver in predicting danger rate event.

2 Basel2 and LGD framework

The New Basel2 Accord, implemented since 1 January 2007, has highlighted the
relevant role of LGD modeling and its impact in facility ratings, approval levels,
and the setting of loss reserves, as well as developing credit capital underlying risk
an profitability calculations [8].

The best practice on European Banks, in particular on Retail Portfolios, is to use
a workout approach [5]. On Italian Banks, in particular, it is practice the adoption
of a block approach, based on different LGD estimation for: charge-offs, doubtful
loans2, and performing loans [2]. This approach has considerable advantages when
there are not enough historical time series data for reconstruction of the whole pro-
cess of default facilities, from the status of doubtful to the final closing of recovery
process.

The workout LGD estimation is based on economic notion of loss and consists in
the calculation of empirical loss rates through the observation of each charge-off at

1 The assumption under the models is that the default event will occur within 1 year.
2 180+ days past due (the Basel 2 Committee gives the possibility to adopt 180dpd instead of 90dpd
until the end of 2011) or objective doubtful.
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Table 1. Parameters for LGD computation

Parameter Description

LG Dc LGD estimated on charge-offs positions
LG Dd LGD estimated on doubtful positions
LG Db LGD estimated on performing positions
P(c) Prob. for doubtful facilities of entering to charge-off status (danger rate)
P(b) Prob. for doubtful facilities of returning back to performing (cure rate)
P(c(d)) Probability of migrating into charge-off, given the default status
P(p(d)) Probability of migrating into doubtful status, given the default status
R R Recovery rate on charge-offs
Reci Recovery flow at time i
Ai Increase flow at time i
Cost1 Costs of litigation, collection procedures (e.g. legal expenses)
E AD Exposure at charge off opening date
i Date in which each flow has been registered
T Time before the charge-off opening date
δT

i Discount rate of each flow at time i , for a doubtful position, next moved
into charge-off, opened before time T

the end of recovery process, according to the following formula:

LG Dc = 1 − R R = 1 − 1

E AD

(
T∑

i=0

Reciδ
T
i −

T∑
i=0

Aiδ
T
i −

T∑
i=0

Costiδ
T
i

)
. (1)

Following the block approach, LGD on doubtful loans can be derived from LGD
on charge-offs, applying a corrective factor that includes the probability of going
into charge-off (danger rate) or coming back into a performing status (cure rate).

LG Dd = P (c) × LG Dc + P (b) × 0. (2)

Thus LGD rate for performing loans can be derived from loss rates of each default
status (charge-off & doubtful) weighted for the probability of migration:

LG Db = P (c (d)) × LG Dc + P (p (b)) × LG Dd . (3)

All the parameters used in the previous formulas and their meaning are shown in
the Table 1.

3 Survival analysis: the modeling approach

The survival analysis techniques is used in a variety of contexts describing whether
or when events occur [10]. In this framework the event occurrence represents a bor-
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rower’s transition from one state, loan default that is not in charge-off, to another
state, either charge off or performing.

To introduce survival approach to loans it is assumed that:

• a generation (or cohort) is formed by loans in default at the observation date;
• the death of the loan occurs with the charge-off, that is an uncertain event: it is

not known when and if occurs;
• time to survival has been computed in the following way:

– for charge-off positions as the difference between the observation and the
charge-off event date;

– on positions not gone into a charge-off status it has been set on each sample to
a constant value equal to the difference (in months) between 31/12/2008 (the
maximum available horizon time) and the observation date of each sample.

Thus, following the empirical evidence observed on the sample object of study,
the maximum horizon time within default positions can go into a charge-off status
has been set to a value of 6 years. The use of survival analysis techniques to study
credit risk, and more particularly to model LGD, can be principally motivated via the
censoring concept. It presents three common situations that may occur in practice
when a credit company observes the lifetime of a credit.

Let us consider the interval
[
0, τ ) as the horizon of the study. A credit can charge-

off before the endpoint of the time under study (T ). In this case, the lifetime of
the credit, t , which is the time to default of the credit, is an observable variable.
Sometimes it is not possible to observe the moment when a credit enters to default,
generating an incomplete survival time at the right of the follow-up period: it occurs
on loans with an anticipated cancellation or on credits whose maturities arise before
the charge-off event. The likelihood formula contains a probability factor that has
an exponent of 1 when the charge-off event occurs and 0 when it is censored. In this
context a loan is censored when, in the period of study (named follow-up), it is not
in charge-off or it goes out of the study to verify an event different from charge-off.

Let t be a non-negative continuous random variable representing the time to
charge-off of an individual from a homogeneous population in which all individ-
uals experience the same probability laws governing their default.

In survival analysis the probability distribution of τ is described in the following
three most popular ways:

• the survival function S(t), which gives the probability of surviving over time t ;
• the probability density function denoted f (t);
• the hazard function (hazard rate) h(t), which is the risk of charging off at time t .

In parametric survival models time is assumed to follow some distribution whose
probability density function f (t) can be expressed in terms of unknown parameters
once a probability density function is specified for survival time. The corresponding
survival and hazard functions can be determined. The danger rates can be modeled
estimating a feasible PDF through an appropriate choice of regressive variables. The
important distinction among modeling methods is the type of outcome variable being
used, actually in survival analysis the outcome variable is time to an event and there
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Table 2. Survival Analysis Distributions

Distribution Survival Function Hazard Function

Exponential S(t) = e−λt H(t) = λ

Weibull S(t) = e−(λt)p
H(t) = λp(λt)p−1

Log-Logistic S(t) = 1
1+(λt)p H(t) = λp(λt)p−1

1+(λt)p

where:
S(t) Survival Function: survival rate of sample population at time t
λ hazard parameter: represents the marginal average delinquency rate of sample population
p shape parameter: determines the shape of the hazard function, verify the presence of correlation
effect between marginal delinquency rate

Table 3. Test of Equality over Strata

Test Chi-Square PR>Chi-Square

Log-Rank 20.3968 < .0001

Wilcoxon 20.4582 < .0001

-2Log(LR) 14.9244 < .0001

may be censored data that let the model be independent from the original sample
size.

In order to choose the correct survival analysis distribution for the parameters
estimation, among the ones shown in the Table 2, some preliminary tests have been
performed. It has been adopted a classical methodology of testing and investigation
in the analysis of survival functions: Kaplan - Meier survival estimates tests, as also
explained in [6]. Two alternative statistics has been computed in order to test the null
hypothesis: the log-rank test (also called Mantel-Haenszel test) and the Wilcoxon
test. For both the null hypothesis (H0) is that there is no difference between survival
curves.

The likelihood-ratio statistic has also been performed by testing the null hypoth-
esis (H0) that the timing event has not an exponential distribution. Table 3 shows
the results of these tests.

The low P-value on Log-Rank and Wilcoxon tests indicates that the null hypoth-
esis should be rejected, thus highlighting that danger rate phenomenon can be well
modeled through survival analysis techniques. Furthermore, the low P-value on like-
lihood ratio suggests to adopt a distribution from the exponential family (the null
hypothesis has been rejected) and also according to the difference between the Log-
Rank and Wilcoxon tests, the phenomenon should be analyzed by Accelerated fail-
ure time models.

A log-log survival curves simulation has been performed through SAS LLS (log-
log survival) procedure in order to support the results of tests [1]. This procedure
makes possible a representation of function log

[− log S (t)
]

on log (t). In the simu-
lation the first part follows the theory, the second one can be approximated to a line
thus a Weibull distribution has been chosen for the danger rate modeling.
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4 Survival analysis application

The sample used for estimating parameters of the final danger rate has been build by
taking into account the default positions at the end of 2002, 2003, 2004 and 2005.
The default positions have been observed at each snapshot in order to monitor their
changing of status into charge-off or coming back to performing. The outcome pe-
riod is 12 months, within a maximum horizon time of 72 months3.

The following activities have been performed on each sample/snapshot in order
to apply the survival analysis:

• identification of the event of delinquency: it has been identified when a change
into a charge-off status occurs, and the date of this change of status has been taken
into account as a key information;

• building of the censored variable: it has been defined by assigning a value of 0
on positions on which no change into a charge-off status has been registered and
1 on positions gone into a charge-off status.

• definition of time to survival: for details refers to Section 3.

4.1 Model development

The model has been developed with software SAS, by using the PROC LIFEREG
procedure [1, 4]. This procedure has enabled the treatment of right, left, and inter-
val censored positions; performing statistical tests of hypothesis on p parameters of
hazard function and the automatic creation of dummies on categorical variables.

The parameters used for defining the final hazard (danger) rate have been com-
puted as an average of the parameters obtained for 2002, 2003 and 2004 as shown in
Table 4. This choice has been lead by the necessity of avoiding double counting of
observations and consequently instable estimations (a position can come to perform-
ing for one snapshot, but it can change to charge-off in the following snapshot) and
in order to use 2005 as a validation sample. In Table 5 the final hazard rate (danger
rate) estimations are shown.

A comparison has been done between the historical danger rate and the results ob-
tained by applying the hazard rate function deriving from the application of survival
analysis, as shown in Fig. 1 and Fig. 2.

On all the samples, the high value of R-square shows the high estimating power
of the model. As shown in Fig. 2, the application of model on 2005 test sample
generates a high fitting (R-square of 73%). At the end of horizon time there is a
negligible overestimation of 5 bps.

3 72 months is the average time in which all the defaults in portfolio register a final status of charge-
off or performing, as observed on the development sample.



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TBeyond Basel2: Modeling loss given default through survival analysis 49

(a)

(b)

Fig. 1. Obs. vs Estimated danger rate on 2002, 2003
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(a)

(b)

Fig. 2. Obs. vs Estimated danger rate on 2004 and Model application to year 2005
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Table 4. Parameters Estimation

Year of Observation λ Variable 1 λ Variable 2 P

2002 0.000308 0.0001 0.835

2003 0.000808 0.0001 1.003

2004 0.001290 0.0002 0.803

2005 0.001696 0.0001 0.773

average at 3 years 0.000802 0.0001 0.880

Table 5. Final danger rate estimation

Final Hazard Rate

Months Variable 1 Variable 2

12 1.67% 0.37%

24 3.04% 0.68%

36 4.32% 0.97%

48 5.53% 1.25%

60 6.69% 1.52%

72 7.81% 1.78%

5 Conclusions

The survival analysis techniques have been applied to an Italian Banks Retail portfo-
lio in order to estimate LGD risk parameter by modeling the danger rates. This statis-
tical methodology has been taken into consideration above all because the censoring
phenomenon ensures consistent forecasting independent from the size of the credit
loan portfolio. The model also provides forecasting time-based thus make possible a
non performing portfolio active management, typically during economic downturn.

Possible further research developments can be identified in application of non
parametric survival models and application of the model on Corporate and SME
Credit Portfolios.
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distortion risk measures in XL reinsurance
with reinstatements

Antonella Campana and Paola Ferretti

Abstract. With reference to risk adjusted premium principle, in this paper we study
excess of loss reinsurance with reinstatements in the case in which the aggregate
claims are generated by a discrete distribution. In particular, we focus our study on
conditions ensuring feasibility of the initial premium, for example with reference
to the limit on the payment of each claim. Comonotonic exchangeability shows the
way forward to a more general definition of the initial premium: some properties
characterizing the proposed premium are presented.

Key words: Excess of loss reinsurance, reinstatements, distortion risk measures,
initial premium, exchangeability

1 Introduction

The excess of loss reinsurance model we study in this paper is related to the model
that has been originally proposed and analyzed in [9] and that it has been subse-
quently generalized (see [8, 7] and, more recently, [1] and [3]). Given the initial
premium P , the limit on the payment of each claim m, the number of reinstatements
K (such that the aggregate limit M satisfies M = (K + 1)m), the aggregate de-
ductible D, the percentages of reinstatement ci , (i = 1, . . . , K ), the total premium
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income results to be a random variable, say δ(P), which is so defined

δ(P) = P

(
1 + 1

m

K−1∑
i=0

ci+1L X (D + im, D + (i + 1)m)

)
, (1)

where L X (a, a+b) = min{(X −a)+, b} and (X −a)+ = X −a if X > a, otherwise
(X − a)+ = 0 (a, b ∈ R+). From the point of view of the reinsurer, the aggregate
claims S paid by the reinsurer for this X L reinsurance treaty, namely

S = L X (D, D + (K + 1)m) (2)

satisfy the relation

S =
K∑

i=0

L X (D + im, D + (i + 1)m). (3)

This reinsurance cover is called an X L reinsurance for the layer m xs d with ag-
gregate deductible D and K reinstatements and provides total cover for the amount S.
The initial premium P is supposed to cover the original layer

L X (D, D + m) = min{(X − D)+,m}. (4)

The condition that the reinstatement is paid pro rata means that the premium for
the i-th reinstatement is a random variable given by

ci P

m
L X (D + (i − 1)m, D + im), (5)

where 0 ≤ ci ≤ 1 is the i-th percentage of reinstatement.
As it is well-known, excess of loss reinsurance with reinstatement has been essen-

tially studied in Actuarial Literature in the framework of collective model of risk the-
ory and this choice requires the knowledge of the claim size distribution in the clas-
sical evaluation of pure premiums. Conversely, as a rule, only few characteristics of
aggregate claims can be explained and the interest for general properties characteri-
zing the involved premiums is still flourishing. In order to contribute to this research,
we set our analysis in the framework of risk adjusted premiums (see [11, 4]), a more
general choice than that in [10], and we concentrate our attention on properties ex-
hibited by initial premiums, both with respect to equilibrium condition (Section 2),
both with respect to feasibility with reference to the limit on the payment of each
claim (Section 3). Then the attention is moved to the recent framework of general-
ized risk adjusted premiums (see [12]) where the main role is played by comonotonic
exchangeability assumption: we propose the definition of the related generalized ini-
tial premium and we state some regularity properties displayed by it (Section 4).
Finally Section 5 ends the paper with some concluding remarks.
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2 Excess of loss reinsurance with reinstatements:
some preliminary results

Recently (see [3]) we studied the initial risk adjusted premium P as solution of the
equilibrium condition expressing the fact that the value of the total premium income
δ(P) equals the distorted expected value of the aggregate claims S, that is

Wg1(δ(P)) = Wg2(S), (6)

where

Wg j (X) =
∫ ∞

0
g j (SX (x))dx (7)

and the functions g j ( j = 1, 2) are distortion function, i.e. non-decreasing functions
g j : [0, 1] → [0, 1] such that g j (0) = 0 and g j (1) = 1; SX (x) = P(X > x) is the
decumulative distribution function of X . This initial premium P is well-defined and
it is given by

P =
∑K

i=0 Wg2(L X (im, (i + 1)m))

1 + 1
m

∑K−1
i=0 ci+1 Wg1(L X (im, (i + 1)m))

. (8)

We see that (6) gives a sort of global equilibrium: the distortion risk measure
associated with the aggregate claims to the layer S must be equal to the distortion
risk measure associated with the total premium income δ(P). If we apply the same
scheme to each layer, we derive that the premium Pi , for all i ∈ {0, 1, . . . , K }, must
satisfy the following equation

Wg1(Pi ) = Wg2(L X (im, (i + 1)m)). (9)

Given that distortion risk measures obey positive homogeneity, the initial pre-
mium P0 is easily defined by the previous equation; in fact

Wg1(P0) = P0 = Wg2(L X (0,m)). (10)

The premium for the i-th reinstatement is given by

Pi = ci P0

m
L X (D + (i − 1)m, D + im), (11)

then we have

ci P0

m
Wg1(L X ((i − 1)m, im)) = Wg2(L X (im, (i + 1)m)). (12)
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Hitherto we have implicitly assumed the reinstatements percentages ci to be
known. If the reinstatement percentages ci are not fixed in advance, we obtain

ci = mWg2(L X (im, (i + 1)m))

P0Wg1(L X ((i − 1)m, im))
, (13)

where the initial premium P0 given by (10). We note that both the initial premium
P0 both the percentages ci do not depend on the number of reinstatements K . The
values given by (13) are useful even when the ci are to be determined in advance.
They will give us a point of reference in order to obtain local equilibrium for each
reinstatement. If the reinstatements percentages ci are determined by formula (13),
one can easily verify that the following equality holds

P = P0

both in the case of same distortion functions g1 = g2 (see [1]) both in the case of
not necessarily equal distortion functions g j ( j = 1, 2).

In fact, by (8) and (13) it is

P =
∑K

i=0 Wg2(L X (im, (i + 1)m))

1 + 1
P0

∑K−1
i=0 Wg2(L X ((i + 1)m, (i + 2)m))

, (14)

that is,

P =
∑K

i=0 Wg2(L X (im, (i + 1)m))

1 +∑K−1
i=0

Wg2 (L X ((i+1)m,(i+2)m))

Wg2 (L X (0,m))

(15)

and, finally,
P = Wg2(L X (0,m)) = P0. (16)

Therefore local equilibrium condition for each reinstatement ensures global equi-
librium as defined in (6).

3 Initial premiums and limit on the payment of each claim

Generally, reinstatement percentages are fixed in advance: this assumption moves
our attention to the study of the initial premium defined by local equilibrium condi-
tion (9). From now on we make the assumption that the premium for the i-th rein-
statement (5) is a two-point random variable distributed as ci P Bpi and Bpi denotes
a Bernoulli random variable such that Pr [Bpi = 1] = pi = 1 − Pr [Bpi = 0].
Closely related to equation (12) is the definition of the initial premium P0i (i =
1, . . . , K ) for which the local equilibrium condition is satisfied in each layer, that is

P0i = mWg2(L X (im, (i + 1)m))

ci Wg1(L X ((i − 1)m, im))
= mg2(pi+1)

ci g1(pi )
. (17)
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Clearly acceptability of the treaty in the market requires that P0i ≤ m for each
i = 1, . . . , K . In order to determine conditions ensuring the validity of this con-
dition which is not generally true (see [2]), we direct our attention to the analysis
of the relation between two consecutive values of the initial premium, that is to the
comparison of P0i to P0i+1.

Let us consider the following real-valued function H defined on [0, pi+1]:

H(x) = ci+1g1(pi+1)g2(pi+1) − ci g1(pi )g2(x).

Note that H(0) = ci+1g1(pi+1)g2(pi+1) ≥ 0. Given that

H(pi+1) = g2(pi+1)[ci+1g1(pi+1)−ci g1(pi )] ≤ g2(pi+1)ci+1[g1(pi+1)−g1(pi )]

if the percentages of reinstatement are decreasing, then increasing monotonicity of
the distortion function g ensures both non-positivity of H(pi+1) both decreasing
monotonicity of H. If the distortion function g2 is continuous, intermediate value
theorem ensures that there exists at least one point x in [0, pi+1] such that

H(x) = ci+1g1(pi+1)g2(pi+1) − ci g1(pi )g2(x) = 0.

As a consequence, we have that

H(x)

{ ≥ 0, 0 ≤ x ≤ x ;
≤ 0, x ≤ x ≤ pi+1.

This means that, given any choice of probabilities pi+1 and pi (pi+1 ≤ pi ),
it is possible to state that there exists al least one probability x ∈ [0, pi+1] such
that P0i+1 = P0i . Moreover, we can conclude that it is possible to anticipate the
relation underlying two consecutive initial premiums P0i and P0i+1 for any choice
of a probability pi+2 such as follows

P0i+1

{ ≤ P0i , 0 ≤ pi+2 ≤ x ;
≥ P0i , x ≤ pi+2 ≤ pi+1.

(18)

In this way, it is possible to define a finite sequence of initial premiums P0i (i =
1, . . . , K ) such that P0i is increasing (decreasing): it is sufficient to choose a finite
sequence of probabilities p0i (i = 2, . . . , K + 1) where at any step, x ≤ pi ≤ pi−1,
(respectively, 0 ≤ pi ≤ x). In this way we obtain the following results.

Proposition 1. Given an X L reinsurance with K reinstatements and distortion func-
tions g1 and g2, where g2 is continuous and the percentages of reinstatement are
decreasing, then there exists a finite sequence of probabilities pi (i = 1, . . . , K +1)
such that the finite sequence of initial risk adjusted premiums P0i (i = 1, . . . , K ) is
monotone (increasing or decreasing).

Proposition 2. Given an X L reinsurance with K reinstatements and distortion func-
tions g1 and g2, where g2 is continuous and the percentages of reinstatement are de-
creasing, there exists a finite sequence of probabilities pi (i = 1, . . . , K + 1), with
g2(pK+1) ≤ g1(pK ) or g2(p2) ≤ g1(p1), such that P0i ≤ m, for all i = 1, . . . , K .
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4 Generalized initial premiums and exchangeability

As it is well-known, insurance premium principles and risk measures can be char-
acterized with reference to a set of axioms, that is to a set of desirable properties
that they should have for actuarial practice. Among them, recently Goovaerts et al.
([5, 6]), Wu and Zhou (see [12]) propose a generalization of Yaari’s risk measure
by relaxing his proposal. Comonotonic additivity has been generalized to comono-
tonic exchangeability in [5], while the link between comonotonic additivity and in-
dependent additivity has been addressed in [6]. Additivity for a finite number of
comonotonic risks is substituted by countable additivity and countable exchange-
ability in [12] in order to characterize generalized distortion premium principles. In
this context, we refer to a non-empty collection of risks L on (�,F , P) such that
min{X, a} − min{X, b}, aX and X + a are all in L for any X ∈ L and for any
a, b ∈ R. In studying different characterizations of insurance premium principles
and risk measures, Goovaerts et al. (see [5]) refer to some realistic situations ow-
ing to specific sets of axioms: they refer to the notion of exchangeability, that with
reference to a principle H states

A1. Exchangeability

H(Xc + Yc) = H(X∗c + Yc) provided that H(X) = H(X∗), (19)

where the random vectors Xc and Yc admit the same marginal distributions of X and
Y, respectively, with the comonotonic dependence structure. The following theorem
states a representation result of the so called generalized distortion principle.

Theorem 1. A premium principle H : L → R+ admits for all X ∈ L the represen-
tation

H(X) = h

(∫ ∞

0
g(SX (x))dx

)
, (20)

where h is a continuous non-decreasing function on R+, if and only if H satisfies
exchangeability, monotonicity in stochastic order and continuity.

As comonotonic additivity is the most essential property of distortion integral
(and Choquet integral), comonotonic exchangeability by generalizing comonotonic
additivity suggests a new definition of distortion premium principle (and Choquet
price principle), that is

W h
g (X) = h

(∫ ∞

0
g(SX (x))dx

)
, (21)

which is called generalized risk adjusted premium principle; the function g is a
distortion function and h is a continuous non-decreasing function on R+.

Now we turn our attention to the analysis of local equilibrium condition (9) and in
order to consider the case of generalized risk adjusted premium principle we define
and study the following generalized local equilibrium condition

W h1
g1

(Pi ) = W h2
g2

(L X (im, (i + 1)m)), (22)
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where the functions g j are distortion functions and h j are continuous non-decreasing
functions on R+ ( j = 1, 2). Accordingly, the definition of generalized initial pre-
mium naturally follows: it is solution, write P0i (i = 1, . . . , K ), of the general-
ized local equilibrium condition (22). Clearly, positivity of P0i is assumed. In the
following we focus our attention on properties exhibited by the generalized initial
premium P0i , with reference to some assumptions made on the functions involved,
namely the distortion functions g j and the composing functions h j , ( j = 1, 2). The
analysis of equation (22) when aggregate claims are generated by a discrete distri-
bution may be conducted by introducing the following related function

Fh1h2
g1g2

(x, pi , pi+1) = h1

[ci x

m
g1(pi )

]
− h2

[
g2(pi+1)

]
. (23)

In this way, the generalized initial premium P0i is such that

Fh1h2
g1g2

(P0i , pi , pi+1) = 0.

Then if g j ( j = 1, 2) are continuously differentiable distortion functions and
h j are continuously differentiable and non-decreasing functions on R+ ( j = 1, 2),
where g1(pi ) �= 0 and h′

1

[ ci x
m g1(pi )

] �= 0, P0i results to be a continuously differ-
entiable function of (pi , pi+1). Moreover

∂P0i

∂pi
(pi , pi+1) = −

[
∂Fh1h2

g1g2 (x, pi , pi+1)

∂pi

]/[∂Fh1h2
g1g2 (x, pi , pi+1)

∂x

]

= −x
g′

1(pi )

g1(pi )
(24)

∂P0i

∂pi+1
(pi , pi+1) = −

[
∂Fh1h2

g1g2 (x, pi , pi+1)

∂pi+1

]/[∂Fh1h2
g1g2 (x, pi , pi+1)

∂x

]

= m

ci

h′
2[g2(pi+1)]

h′
1[ ci x

m g1(pi )]

g′
2(pi+1)

g1(pi )
,

where x = P0i . Then we can state the following result.

Proposition 3. Let g j be continuously differentiable distortion functions and let h j

be continuously differentiable and non-decreasing functions on R+ ( j = 1, 2),
where g1(pi ) �= 0 and h′

1

[ ci x
m g1(pi )

] �= 0. Then the generalized initial premium
P0i (i = 1, . . . , K ) is a continuously differentiable function of (pi , pi+1) with

∇ P0i (pi , pi+1) =
(
−x

g′
1(pi )

g1(pi )
,

m

ci

h′
2[g2(pi+1)]

h′
1[ ci x

m g1(pi )]

g′
2(pi+1)

g1(pi )

)
,

where x = P0i .

Note that the generalized initial premium P0i is monotone function of the proba-
bilities: as a function of the probability pi it is decreasing, while as a function of the
probability pi+1 it is increasing.
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5 Conclusions

In the considered X L model of reinsurance, when the reinstatements are paid the
total premium income becomes a random variable which is correlated to aggregate
claims. Incomplete information on aggregate claims distribution amplifies the inter-
est for general properties characterizing the involved premiums. In this paper our
main goal is to study properties exhibited by initial premium: our analysis refers to
two settings, that of risk adjusted premiums and that of generalized risk adjusted
premiums. We assume that the premium for each reinstatement is a two-point ran-
dom variable, a particularly interesting hypothesis given that the reinsurance com-
panies often assess treaties under the conjecture that there are only total losses. This
happens, for example, when they use the rate on line method to price catastrophe
reinsurance. As a matter of fact, conditions ensuring feasibility of the initial pre-
mium with respect to comparison with the limit on the payment of each claim and
regularity properties displayed by the generalized initial premium are presented. In
particular, the regularity results of the generalized initial premium hint that further
research may be addressed to the analysis of optimal initial premiums.
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TPopulation dynamics in a spatial Solow model
with a convex-concave production function

Vincenzo Capasso, Ralf Engbers, and Davide La Torre

Abstract. In this paper the classical Solow model is extended, by considering spatial
dependence of the physical capital and population dynamics, and by introducing
a nonconcave production function. The physical capital and population evolution
equations are governed by semilinear parabolic differential equations which describe
their evolution over time and space. The convergence to a steady state according to
different hypotheses on the production function is discussed. The analysis is focused
on an S-shaped production function, which allows the existence of saddle points and
poverty traps. The evolution of this system over time, and its convergence to the
steady state is described mainly through numerical simulations.

Key words: The Solow model, economic geography, convex-concave production
function, poverty traps

1 Introduction

The Solow model [21], introduced in 1956, represents one of the milestones of en-
dogenous growth literature; despite its relative simplicity, it provides a first dynamic
model that is still used in today’s macroeconomic theory. Solow’s purpose was to
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develop a model to describe the dynamics of the growth process and the long-run
evolution of the economy, ignoring short-run fluctuations.

For many economic growth models based on inter-temporal allocation the hy-
pothesis of a concave production function has played a crucial role. The production
function is the most important part of an economic model. It specifies the maximum
output for all possible combinations of input factors and therefore determines the
way the economic model evolves in time. The Cobb-Douglas production function
(see Fig. 1) is by far the most used production function for describing situations with
substitutional input factors although there are of course alternatives. Nonetheless,
even if a Cobb-Douglas production function is not imposed, usually a production
function f is assumed to be non-negative, increasing and concave and also fulfill
the so called Inada conditions (see [1]).

From an economic point of view, the Inada conditions say that it is possible to
gain infinitely high returns by investing only a small amount of money. This obvi-
ously can not be realistic. Before getting returns it is necessary to create prerequi-
sites, by investing a certain amount of money. After establishing a basic structure
for production, one might get only small returns until reaching a threshold where the
returns will increase greatly to the point where the law of diminishing returns takes
effect. In literature this fact is known as poverty traps (see [18]). In other words, we
should expect that there is a critical level of physical capital having the property that
if the initial value of physical capital is smaller than such a level, then the dynamic
of physical capital will descend to the zero level, thus vanishing any possibility of
economic growth.

What happens to the Solow model if we do not assume Cobb-Douglas production
functions or, more general, a nonconcave production function? A small amount of
money may have an effect in the short-run but this effect will tend to zero in the
long-run, if there are no more investments. Thus it makes sense to assume that only
an amount of money bigger than some threshold will lead to returns.

A first model with nonconcave production function was introduced by [8] and
[19]. Recently several contributions have focused on the existence and implications
of critical levels. In this paper we consider a parametric class of nonconcave pro-
duction functions

F(K , L) = α1 K p L1−p

1 + α2K p L−p
, (1)

where K and L denote capital and labor respectively and all involved parameters
are nonnegative. Note that, by setting α1 = 1, α2 = 0 and p = α, we end up with
the same equation as in the Cobb-Douglas case, thus (1) can be understood as an
extension of the Cobb-Douglas production function. It does not satisfy some of the
classical Inada conditions, thus allowing a larger variety of dynamics and include the
possibility of poverty traps. In particular, this production function shows an S-shaped
behavior for p ≥ 2, and it can be classified in the class of nonconcave or convex-
concave production functions. Obviously it fulfills lim(K ,L)→(0,0) F(K , L) = 0 with
a smooth junction in the area of the threshold.
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2 Spatially structured Solow model with population dynamics

At this point we introduce a spatial component to the model. Following some other
papers in literature (see, for instance, [2, 3, 9, 12]), we are assuming a continuous
space structure, as a mathematical representation of the assumption that in modern
economies all locations have access to goods. Thus, K (x, t) denotes the capital stock
held by the representative household located at x , at date t , in a bounded domain
� ⊂ Rn , n = 1, 2, t ≥ 0. We assume that population (raw labor) coincides with the
available number of workers and it is driven by the following PDE⎧⎪⎨⎪⎩

∂L
∂t (x, t) = �L(x, t) + L(x, t)gL(x), (x, t) ∈ � × [0,+∞),
∂L
∂n = 0, (x, t) ∈ ∂� × [0,+∞),

L(x, 0) = L0(x), x ∈ �,

(2)

where gL is the population growth rate.
Furthermore, it appears evident to consider net flows of capital to a given location

or space interval to describe the motion of capital. We normalize the saving capacity
to one for simplicity, because we are more interested in the way the production func-
tion and population dynamics affect economic growth. Thus the budget constraint
can be written as

∂K

∂t
(x, t) = �K (x, t) + F

(
K (x, t), L(x, t)

)− δK (x, t), (3)

for all (x, t) ∈ � × [0,+∞), where F is the production function, � represents
the Laplacian operator and δ the physical capital depreciation. In addition to (3) we
assume that the initial capital distribution, K (x, 0), is known and that there is no
capital flow through the boundary ∂�, i.e. the directional derivative ∂K

∂n is equal to
zero.

By combining all these equations, the model can be rewritten in a compact form as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂K
∂t (x, t) = �K (x, t) + F

(
K (x, t), L(K , t)

)− δK (x, t), (x, t) ∈ � × [0,+∞),

∂L
∂t (x, t) = �L(x, t) + L(x, t)gL(x), (x, t) ∈ � × [0,+∞),

∂K
∂n = 0 ∂L

∂n = 0, (x, t) ∈ ∂� × [0,+∞),

K (x, 0) = K0(x), L(x, 0) = L0(x), x ∈ �.

(4)
It is easy to verify that if a Cobb-Douglas production function is assumed, then

one can easily prove the existence of a nontrivial global stable equilibrium. This
is not true anymore if we assume nonconcave production functions; in fact, under
this hypothesis, classical results in literature concerning the existence of nontrivial
equilibria cannot be applied. The analysis of the S-shaped case is much more com-
plicated due to lack of concavity of the relevant evolution operator. In particular,
global uniqueness of a nontrivial steady state solution is lost and the analysis of
a saddle point behavior is required. Some analytical results about local stability of
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steady states can be found in [4, 6, 7, 10, 13, 14, 20]. Here we shall limit ourselves to
show the behavior of the system through numerical simulations and we then discuss
the obtained results.

3 Numerical simulations

The main goal of this section is to describe the long run behavior of the model⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂K
∂t (x, t) = �K (x, t) + α1K (x, t)p L(x, t)1−p

1 + α2 K (x, t)p L(x, t)−p
− δK (x, t), (x, t) ∈ � × [0,+∞),

∂L
∂t (x, t) = �L(x, t) + L(x, t)gL(x), (x, t) ∈ � × [0,+∞),

∂K
∂n = 0 ∂L

∂n = 0, (x, t) ∈ ∂� × [0,+∞),

K (x, 0) = K0(x), L(x, 0) = L0(x), x ∈ �,

(5)
when an S-shaped production function is assumed. Due to its complexity, we shall
limit ourselves to show this analysis through numerical simulations and then discuss
the obtained results.

For our numerical results we use (1) with α1 = α2 = 0.0005 and p = 4 (see
Fig. 2).

Our production function is in some sense flattened when the amount of labor is
larger than a certain amount of capital and this will allow the possibility of poverty
traps. We examine the behavior of our spatial Solow model for different combina-
tions of values. In particular we will look at some threshold situations where the solu-
tion depends on even small changes of the parameters. Concerning the instantaneous
depreciation rate of physical capital (δ = 0.05) we follow the baseline specification
of [15, p. 761].

We provide two numerical simulations with, respectively, gL(x) = 0.0144 and

gL(x) = 0.0144e− x2
2 . The parameter gL , giving the change of population size over

time, represents the so-called growth rate coefficient. In the first numerical simula-
tion, we attribute to this parameter the value of 0.0144, which is the average growth

Fig. 1. Cobb-Douglas type production function Fig. 2. Production function according to (1)
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rate of the labor-force in the U.S. private business sector over the period 1948-1997
[11, Table 1, p. 73]. Such a value is not distant from the estimate of 0.019 obtained
for the population of Great Britain from 1801 to 1971 [16, p. 360]. In the second

numerical simulation we assume spatial heterogeneity with gL(x) = 0.0144e− x2
2 .

3.1 Numerical results and discussion

In this part of this section we assume to have homogeneous labor growth with a
constant gL(x) = 0.0144.

Figure 3 shows the long run behavior of L over space and time. Depending on
the initial capital, the behavior of the solution over space and time can vary. We first
assume that the initial capital is shaped as a piecewise linear function as shown in
Fig. 4. Figure 5(a) shows that the solution tends to the trivial stationary solution when
there is not enough money. On the other hand, with more initial capital available, the
solution will grow showing a long run behavior similar to that occurring for labor
(see Fig. 5(b)).

Let us now consider the heterogenous case by assuming gL(x) = 0.0144e− x2
2 .

Since we run these numerical simulations when x ∈ [0, 1], we rescaled the function
gL(x) to obtain a bell-shaped function in this interval. So gL(x) actually looks like

gL(x) = 0.0144e
− (x−0.5)2

2×0.22 . Figure 6 shows the behavior of L(x, t) over time and
space.

The simulations we obtain for the case of heterogeneous labor growth are pro-
vided in Fig. 7. Figure 7(a) describes the situation in which we assume an high ini-
tial capital level. For those spatial locations in which there is enough initial capital
to sustain labor growth, the model exhibits a long-run behavior similar to that oc-
curring for L(x, t), i.e. the locations with the highest labor growth will show the
highest economic growth as well. The other locations, in which a low level of ini-
tial capital is assumed, will remain stuck in the poverty trap: there is no available
money to escape from there (only small amounts of money are flowing into that
region due to diffusion). The case in which a medium initial capital level is as-

Fig. 3. Labor growth gL (x) = 0.0144

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30
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k

Fig. 4. Initial distribution of physical capital
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(a) Homogeneous labor growth – tending to
zero, because there is not enough money to sus-
tain labor growth

(b) Homogeneous labor growth – will be in-
creasing according to labor growth because
there is enough money initially available

Fig. 5. Comparing simulations for homogeneous labor growth and different initial capital

Fig. 6. Labor growth according to gL (x) = 0.0144e
− (x−0.5)2

2·0.22

sumed is shown in Fig. 7(b). Under this initial condition, only the locations (on
the left part of the interval [0,1]) which show an initial high capital and low labor
growth are able to sustain economic growth. The locations in the center of the inter-
val, which show an high population growth rate but high labor growth, are stuck in
the poverty trap.

To better illustrate the effect of the heterogeneous labor growth, we now run two
numerical simulations with constant initial capital levels. In Fig. 8(a) we assume
k1,0(x) = 5.3 while in Fig. 8(b) we assume k2,0(x) = 5.5. In both cases, at the very
beginning of the simulation, the level of capital in the center of the interval (which
shows an high population growth rate) will quickly tend to zero while the remaining
parts of the interval show economic growth. The situations radically changes in the
long-run: in the first case there is not enough flow of capital to sustain the econ-
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(a) High initial capital – will tend to a solution
similar to L(x, t)

(b) Medium initial capital – high labor growth
is a disadvantage at first

Fig. 7. Comparing simulations for homogeneous labor growth and constant labor – high initial
capital

(a) Constant initial capital – all capital decays (b) Constant initial capital – center escapes
poverty trap

Fig. 8. Comparing simulations for homogeneous labor growth and constant labor – high initial
capital

omy and, as a consequence, the level of capital will decay to zero. However, in the
second case, the spatial flow of capital is enough to sustain economic growth and
this will affect the level of capital in the center of the interval which will escape the
poverty trap.

4 Conclusions

By comparing the dynamics of this model with the one presented in [5], where an
higher technological level was always better than a lower one, here higher values of
L are not an advantage in all situations. The economic motivations of these numerical



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T68 V. Capasso, R. Engbers, and D. La Torre

evidences are quite easy to interpret; according to Romer’s definition of ideas [17],
the use of ideas by one person does not diminish others’use and therefore ideas are
non-rival goods. If the level of technology increases this is a benefit for the whole
economy. On the other hand, an high level of population together with a low/medium
level of capital are not enough to sustain economic growth; in some situations the
flow of capital can help to escape the poverty traps, but in other cases this does not
happen and the economy collapses.
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TPopulation dynamics in a patch growth model
with S-shaped production functions and
migration effects

Vincenzo Capasso, Herb E. Kunze, and Davide La Torre

Abstract. The main contribution of this paper is the analysis of a patch model which
includes migration effects and interactions between two different economies. The
migration coefficients are driven by differences between salaries. The dynamics of
each economy is described through a generalized Solow model which combines to-
gether a convex-concave production function and logistic population dynamics. Nu-
merical simulations show the long-run behavior of these systems.

Key words: Population dynamics, economic growth, S-shaped production, migra-
tion effects

1 Introduction

The last decades have witnessed an explosion in population numbers caused by the
lowering of mortality rates and high fertility rates. Since the work [1], it is widely
recognized that population changes may affect economic growth. In [6] the authors
say that “Until the early 18th century, the global population size was relatively static
and the lives of the vast majority of people were nasty, brutish, and short. Since
then, the size and structure of the global population have undergone extraordinary
change. Over three decades have been added to life expectancy, with a further gain of
close to two more decades projected for this century. World population has increased
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by an order of magnitude to over 6 billion, and is projected to reach 9 billion by
mid-century. Past and projected additions to world population have been, and will
increasingly be, distributed unevenly across the world. The disparities reflect the
existence of considerable heterogeneity in birth, death, and migration processes, both
over time and across national populations”.

The main contributions of this paper are provided in Sections 4 and 5; a patch
model, which is formulated in terms of coupled differential equations and which de-
scribes the interactions between two different economies, is presented and studied.
The interactions are described through migration effects which are driven by differ-
ences between salaries. The dynamics of each economy is supposed to be modeled by
an extended Solow model which combines in a unique framework two ingredients: a
S-shaped production function, which guarantees the existence of poverty traps, and
logistic population growth. This extension can be understood as a discrete version
of a continuous spatial model (see [7]). Numerical simulations are shown to ana-
lyze the long-run behavior of this dynamical system. Finally, Section 2 is devoted to
the analysis of population behavior and to the solution of a parameter identification
problem while in Section 3 we provide an example of a convex-concave production.

2 Population dynamics in economic growth

The first study on population dynamics was due to [13]1. Malthus was among the
first to point out the existence of two distinct phases in the evolution of world popu-
lation and, if the Malthusian conjecture is assumed, then there exists an upper limit
to population growth. This idea was formalized by a logistic process by [17], and
by the famous papers by [12] and [18]. Applied mathematicians and biologists have
studied extensively the dynamics of populations by using logistic processes and their
generalizations and many authors have considered logistic growth and, more gener-
ally, S-shaped population growths (see, for instance, [2, 3, 4, 11, 14]). [9] claimed
that, depending on the country, population growth might have contributed, deterred
or even had no impact on economic development. It is well known that, on one hand,
demographic realities are affected by economic and social factors; on the other hand
they also have influence on them through a variety of different channels. Links be-
tween demographic indicators and economic growth have been studied by many
authors in literature; population size can affect the production function GDP, pop-
ulation age structure can modify aggregate labor supply and savings, the influence
of longevity on savings and retirements, and so on. According to up-to-date demo-
graphic forecasts (United Nations webpage, http://www.un.org), the world popula-
tion annual growth rate is expected to fall gradually from 1.8% (1950-2000) to 0.9%
(2000-2050), before reaching a value of 0.2% between the years 2050 and 2100.
As stated by the same study, the world population will stabilize at a level of about
eleven billion people by 2200. If we assume that the work-intensity per person in the
population equals one, then population and the aggregate labor-force do coincide.

1 The author showed the explosion of the birth rate when income increases and then the increase
of mortality because of competition on the relatively scarce output of productive land.
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Table 1. Minimal collage distance parameters

g0 g1 g2 g3

Canada 0.00634726 0.00000242 −0.00000000 0.00000000

Italy 0.10548241 −0.00000776 0.00000000 −0.00000000

UK 0.15565694 −0.00000869 0.00000000 −0.00000000

USA 0.03857713 −0.00000041 0.00000000 −0.00000000

We now provide an empirical evidence to model population size by using higher
order polynomials (which include the logistic process) and real data. To do this,
we estimate the unknown parameters through the solution of an inverse problem.
If we follow [12, Eqn. 3, p. 65], population dynamics can be described through a
non-autonomous differential equation as ˙L(t) = L(t)g(L(t)) (if L(t) = 0 then
there is no population growth). We are interested in the estimation of the func-
tion g. In many papers in literature g is supposed to be constant (which leads to
an exponential population growth) or to be equal to n − d L(t) (which implies
a logistic behavior), with n, d > 0. Here we wish to solve an inverse problem
for this kind of differential equation, using real data (Angus Maddison webpage,
http://www.ggdc.net/MADDISON/oriindex.htm) and fractal-based methods (more
details on this method can be found in [10]). We use data in four countries (Canada,
Italy, UK, USA) over the period 1870-2008 and we look for a polynomial solution
of the form g(L(t)) = ∑m

i=0 gi Li (t); the results to eight decimal digits (using third-
order polynomials) are provided in Table 1.

The solution of the inverse problem suggests that a good fitting curve for Italy,
UK and USA for this data is the logistic one (see Fig. 1) while Canada shows an
exponential behavior (g0, g1 > 0) due to high immigration rates.

3 A convex-concave production function

Let us consider an economy in which the output is a numeraire good, its price is
normalized to one and is produced competitively by combining physical capital and
labor. The classical aggregate production function is the following Cobb-Douglas
function Y = F(K , L) = K p L1−p, with K and L being, respectively, the stock
of physical capital and the number of effective units of labor employed in the pro-
duction of the homogeneous consumption good (Y ) and p and 1 − p are the phys-
ical capital share and the population share, respectively. In this paper we consider
the following generalization of the Cobb-Douglas function (it is easy to see that

it can be obtained by posing γ = 0 or β = 0) Y = F(K , L) = αK p L1−p

γ+βK p L−p

where all involved parameters are nonnegative and γβ �= 0. This production func-
tion shows an S-shaped behavior for p ≥ 2, and it can be classified in the class
of nonconcave or convex-concave production functions. Obviously we still have
F(K , L) = L F( K

L , 1) = L f (k), and it fulfills limk→0 f (k) = 0 with a smooth
junction in the area of the threshold. However it does not satisfy many of the clas-
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Fig. 1. Population dynamics in Canada, Italy, UK, USA. The origin corresponds to the year 1870

sical Inada conditions2 and this allows us to have different dynamics including the
existence of poverty traps. One property which is satisfied by F is that it has constant
returns to scale, that is F(λK , λL) = λF(K , L) for all λ. This means that Euler’s
homogeneous function theorem applies, thus giving F = ∂F

∂K K + ∂F
∂L L . Thanks to

the homogeneity, ∂F
∂L can be interpreted as the averaged salary in the economy.

A first model with nonconcave production function was introduced by [8] and
[15]. Recently several contributions have focused on the existence and implications
of critical levels [5]. We refer to an extension of the classical Solow model [16]
which includes the previous convex-concave production function and logistic pop-
ulation dynamics. It reads as follows:⎧⎨⎩

˙K (t) = (1 − s)Y (t) − δK (t),
˙L(t) = L(t)g(L(t)),

K (0) = K0, L(0) = L0,

(1)

2 (i) limk→0 f ′(k) = +∞, (ii) limk→∞ f ′(k) = 0, (iii) f (0) = 0 (see [1]).
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where Y = αK p L1−p

γ+βK p L−p is the production function, δ is the depreciation rate, g(L(t))
= n − bL(t), K0 and L0 are the initial conditions, and b, n and p < 1 are positive
parameters, and s ∈ (0, 1) is the portion of Y which is consumed. If we define κ(t) =
K (t)
L(t) and n(t) = ˙L(t)

L(t) = L(t) then by easy calculations and using the properties of
F , the model can be rewritten as:⎧⎪⎨⎪⎩

˙κ(t) = f (κ(t)) − (δ + n(t))κ(t),
˙L(t) = L(t)g(L(t)),

κ(0) = K0
L0

, L(0) = L0,

(2)

where f (κ(t)) = (1 − s)F
(

K (t)
L(t) , 1

)
, that is f (κ) = (1 − s) ακ p

γ+βκ p . We are now

interested in the existence of equilibria of this model; the presence of a S-shaped
production function guarantees a reacher dynamics allowing the existence of poverty
traps. A nontrivial equilibrium is a pair (κ∗, L∗), with κ∗ �= 0 and L∗ �= 0, such
that (1−s)α(κ∗)p

γ+β(κ∗)p − δκ∗ = 0 and g(L∗) = 0. It is easy to prove that if δ < (1−s)α
pγ[

γ (p−1)
β

] p−1
p

then the system exhibits two equilibria k∗
1 and k∗

2 , with k∗
1 < k∗

2 ; the

first is unstable, the second is stable. If δ = (1−s)α
pγ

[
γ (p−1)

β

] p−1
p

then the system

admits a unique nontrivial stable equilibrium [7].

4 A patch model with convex-concave production functions and
migration effects

Given two economies E1 and E2, we analyze a model in which migration effects are
driven by differences between salaries. In each economy E i the aggregate produc-

tion function is the following Yi = Fi (Ki , Li ) = αi (Ki )
pi (Li )

1−pi

γi+βi (Ki )
pi (Li )

−pi
, where αi , βi ,

and γi are positive constants, i = 1, 2. As already highlighted above, thanks to the
homogeneity of the production functions Yi , the partial derivatives ∂Y1

∂L1
and ∂Y2

∂L2
can

be interpreted as the averaged salaries in E1 and E2, respectively. Let us consider
the dynamic model

K̇1 = Y1 − δ1 K1, (3)

K̇2 = Y2 − δ2 K2, (4)

L̇1 = s1

(
∂Y1

∂L1
− ∂Y2

∂L2

)
L1g1(L1), (5)

L̇2 = s2

(
∂Y2

∂L2
− ∂Y1

∂L1

)
L2g2(L2), (6)

where K1(0), K2(0), L1(0), L2(0) are given initial conditions and s1, s2 > 0 are
two scaling parameters. In each economy E1 the evolution is driven by the above
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extended Solow model, which has been modified to include migration effects due to
the difference between salaries. In particular, whenever the difference ∂Y1

∂L1
− ∂Y2

∂L2
will

be positive there will be a migration flow from the second country towards the first.
This flow will affect the population growth rate of the first economy through the

endogenous coefficient s1

(
∂Y1
∂L1

− ∂Y2
∂L2

)
. Analogous considerations could be done

for the economy E2. We are interested in analyzing the positive equilibria of the
system. It is helpful to introduce fi (x) = αi x pi

γi+βi x pi , so that Yi = Fi (Ki , Li ) =
Li fi

(
Ki
Li

)
. Equations (3) and (4) show that if Yi = δi Ki then fi

(
Ki
Li

)
= δi

Ki
Li

, i =
1, 2. For i = 1, 2, Equations (5) and (6) give either gi (Li ) = 0 or ∂Y1

∂L1
= ∂Y2

∂L2
. We

calculate that ∂Yi
∂Li

= fi

(
Ki
Li

)
− K1

Li
f ′
i

(
Ki
Li

)
. Hence, the positive equilibria of the

system satisfy either

A :

⎧⎨⎩ Yi = δi Ki
∂Y1

∂L1
= ∂Y2

∂L2

, i = 1, 2, (7)

or

B :

{
Yi = δi Ki

gi (Li ) = 0
, i = 1, 2. (8)

The Jacobian matrix of the linearized system is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Y1
∂K1

− δ1 0 ∂Y1
∂L1

0

0 ∂Y2
∂K2

− δ2 0 ∂Y2
∂L2

s1

[
∂2Y1

∂(L1)2 L1g1(L1)

s1g1(L1)L1
∂2Y1

∂K1∂L1
−s1g1(L1)L1

∂2Y2
∂K2∂L2

+
(

∂Y1
∂L1

− ∂Y2
∂L2

)
−s1g1(L1)L1

∂2Y2
∂2 L2

(g1(L1) + L1g′
1(L1))

]
s2

[
∂2Y2

∂(L2)2 L2g2(L2)

−s2g2(L2)L2
∂2Y1

∂K1∂L1
s2g2(L2)L2

∂2Y2
∂K2∂L2

−s2g2(L2)L2
∂2Y1

∂(L1)2 +
(

∂Y2
∂L2

− ∂Y1
∂L1

)
(g2(L2) + L2g′

2(L2))

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the Jacobian matrix is evaluated at elements (κ1, κ2, L1, L2) of an equilibrium
point in the set A of (7), we get⎛⎜⎜⎜⎜⎜⎝

∂Y1
∂K1

− δ1 0 ∂Y1
∂L1

0

0 ∂Y2
∂K2

− δ2 0 ∂Y2
∂L2

s1g1(L1)L1
∂2Y1

∂K1∂L1
−s1g1(L1)L1

∂2Y2
∂K2∂L2

s1 L1g1(L1)
∂2Y1

∂(L1)2 −s1g1(L1)L1
∂2Y2
∂2 L2

−s2g2(L2)L2
∂2Y1

∂K1∂L1
s2 L2g2(L2)

∂2Y2
∂K2∂L2

−s2g2(L2)L2
∂2Y1

∂(L1)2 s2 L2g2(L2)
∂2Y2

∂(L2)2

⎞⎟⎟⎟⎟⎟⎠
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and we see that 0 is one of its eigenvalues. If we evaluate the Jacobian matrix at the
equilibrium point (κ1, κ2, L1, L2) in the set B of (8), we obtain⎛⎜⎜⎜⎜⎜⎝

∂Y1
∂K1

− δ1 0 ∂Y1
∂L1

0

0 ∂Y2
∂K2

− δ2 0 ∂Y2
∂L2

0 0 s1 L1g′
1(L1)

(
∂Y1
∂L1

− ∂Y2
∂L2

)
0

0 0 0 s2 L2g′
2(L2)

(
∂Y2
∂L2

− ∂Y1
∂L1

)

⎞⎟⎟⎟⎟⎟⎠ .

We find that ∂Yi
∂Ki

− δi = Ki
Li

f ′
(

Ki
Li

)
. In this case, one can determine the stability

of the equilibria in set B by examining the signs of the quantities on the diagonal of
the Jacobian matrix.

If one allows an equilibrium population value of L1 = 0 and/or L2 = 0, the third
and/or fourth row of the Jacobian matrix becomes a zero row and the classification
of the equilibrium point via linearization is inconclusive.

5 Numerical simulations and discussion

In this section we provide two numerical simulations to analyze the long-run behav-
ior of the previous patch model. Let us assume the following parameter values (the
estimates of the population parameters have been obtained in a previous section):
α1 = α2 = β1 = β2 = γ1 = γ2 = 1; δ1 = 0.05; δ2 = 0.05; s1 = s2 = 0.2.

Simulation 1: we now consider the case of two economies, Italy and Canada. The
parameters with subscript 1 correspond to Canada, and the parameters with sub-
script 2 correspond to Italy. We use the following initial conditions: L01 = 3781
(initial population of Canada), L02 = 27888 (initial population of Italy), K01 =
1.5∗103.3/1000, K02 = 103.3/1000. The graphs of the simulated populations L1(t)
and L2(t), and the graphs of K1(t) and K2(t) appear in Fig. 2.

In this case, we see from the graphs in Fig. 2 that the population of Canada quickly
increases to an equilibrium value of 3804, while Italy’s population decreases to
22419. K1 and K2 also approach positive equilibrium values, but after a longer time.
At time t = 200, we compute (Y1)L1 = (Y2)L2 = 0.62247, Y1 = δ1 K1 = 2613,
and Y2 = δ2 K2 = 15400. That is, the system reaches an equilibrium point in
set A.3

3 In order to generate a simulation for which the system reaches an equilibrium in set B of
Equation (8), we consider our functions g1 and g2. We calculate that g1(x) = 0.00634726x +
0.00000242x2 = 0 at x = 0 and x ≈ −2623, while g2(x) = 0.10548241x − 0.00000776x2 = 0
at x = 0 and x ≈ 13593. This means that there are no (necessarily positive) equilibria in set
B. When we use the initial conditions L01 = 1, L02 = 27888, K01 = 1.5 ∗ 103.3/1000, and
K02 = 103.3/1000, at time t = 200, we reach (L1, L2) = (1, 13593). But it turns out that
(Y1)L1 = (Y2)L2 = 0.62247, Y1 = δ1 K1 = 0.6875, and Y2 = δ2 K2 = 9337, so we have
reached an equilibrium in set A.
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Fig. 2. Graphs of L1(t), L2(t), K1(t) and K2(t), respectively

Fig. 3. Graphs of L1(t), L2(t), K1(t) and K2(t), respectively
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Simulation 2: we now generate a simulation involving the economics of Italy and
UK, using again the population parameters of the previous section. We set L01 =
20000 (initial population of UK), L02 = 14000 (initial population of Italy), and
set all other parameters as in Simulation 1. The resulting plots appear in Fig. 3.
The system approaches an equilibrium in set B, (L1, L2) = (17912, 13593), where
g1 = 0 = g2.
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TAn ordinal approach to risk measurement

Marta Cardin and Miguel Couceiro

Abstract. In this short note, we aim at a qualitative framework for modeling mul-
tivariate risk. To this extent, we consider completely distributive lattices as under-
lying universes, and make use of lattice functions to formalize the notion of risk
measure. Several properties of risk measures are translated into this general setting,
and used to provide axiomatic characterizations. Moreover, a notion of quantile of a
lattice-valued random variable is proposed, which is shown to retain several desir-
able properties of its real-valued counterpart.

Key words: Completely distributive lattice, invariance, continuity, Sugeno integral,
risk measure, quantile

1 Introduction

During the last decades, researchers joined efforts to properly compare, quantify
and manage risk. In this direction, risk measures constitute an important and widely
studied tool. Traditionally, risk measures are thought of as mappings from a set of
real-valued random variables to the real numbers. As a well-known example we have
the so-called “value at risk” (VaR).

There are many different contexts in which the structure of real numbers seems
to be insufficient, since it only provides a quantitative setting of risk which heavily
relies on the linear ordering of reals. In particular, many problems in insurance and
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finance involve the measurement of multivariate risk. Then modeling and measuring
multivariate risks is a theoretically demanding problem and it is of major importance
in practice.

In this short note we aim at a unified qualitative framework for modeling risks
in such a way that qualitative evaluations are not necessarily expressed in a totally
ordered universe. This goal is two-folded. In the one hand, we take as motivating
frameworks those of [4] where risk measures take values in certain partially ordered
cones, and of [8] where risk measures are assumed to be vector-valued, each of which
generalizing the classical real-valued setting proposed by [1]. On the other hand,
we wish to treat risks from a purely ordinal point of view, and thus abandon their
numerical interpretation. Here the motivating approach is that of [5] where quantile-
based risk measures are treated from an ordinal point of view and not bounded by
probabilistic interpretations.

In order to unify these settings, we take completely distributive lattices as underly-
ing universes, and consider an important class of aggregation functionals considered
on these structures, namely, the class of Sugeno integrals. This setting has several
appealing aspects, for it provides sufficiently rich structures well studied in the lit-
erature, which allow models and measures of risk from an ordinal point of view,
and which do not depend on the usual arithmetical structure of the reals. In the next
section, we survey the general background on lattice theory as well as representation
and characterization results concerning Sugeno integrals on completely distributive
lattices. In Section 3, we propose notions of risk measure and of quantile-based risk
measure within this ordinal setting, as well as present their axiomatizations and rep-
resentations. In Section 4 we briefly discuss possible directions for future work.

2 Basic notions and preliminary results

In this section we recall concepts and preliminary results relevant to studying risk
measures on, not necessarily linearly ordered, distributive lattices. For further back-
ground in lattice theory we refer the reader to (e.g. [2], [6] or [12]).

2.1 Basic background in lattice theory

A lattice is an algebraic structure 〈L; ∧,∨〉 where L is a nonempty set, called uni-
verse, and where ∧ and ∨ are two binary operations, called meet and join, respec-
tively, which satisfy the idempotency, commutativity, associativity and absorption
laws.

With no danger of ambiguity, we will denote lattices by their universes. As it is
well-known, every lattice L constitutes a partially ordered set endowed with the par-
tial order ≤ given by: for every x, y ∈ L , write x ≤ y if x ∧ y = x or, equivalently,
if x ∨ y = y. If for every a, b ∈ L , we have a ≤ b or b ≤ a, then L is said to
be a chain. A lattice L is said to be bounded if it has a least and a greatest element,
denoted by 0 and 1, respectively. A lattice L is said to be distributive, if for every
a, b, c ∈ L ,
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a ∨ (b ∧ c) = (a ∨ b)∧ (a ∨ c) or, equivalently, a ∧ (b ∨ c) = (a ∧ b)∨ (a ∧ c).

Clearly, every chain is distributive.
For an arbitrary nonempty set A and a lattice L , the set L A of all functions from

A to L constitutes a lattice under the operations ∧ and ∨ defined pointwise, i.e.

( f ∧g)(x) = f (x)∧g(x) and ( f ∨g)(x) = f (x)∨g(x), for every f, g ∈ L A.

In particular, for any lattice L , the cartesian product Ln also constitutes a lattice
by defining the lattice operations componentwise. Observe that if L is bounded (dis-
tributive), then L A is also bounded (resp. distributive). We denote by 0 and 1 the
least and the greatest elements, respectively, of L A. Likewise, for each c ∈ L , we
denote by c the constant c map in L A. Moreover, for each X ⊂ A, we denote by IX

the characteristic function of X in L A, i.e. IX (x) = 1, if x ∈ X , and IX (x) = 0,
otherwise.

2.2 Completely distributive lattices

A lattice L is said to be complete if for every S ⊆ L , its supremum
∧

S := ∧
x∈S x

and infimum
∨

S := ∨
x∈S x exist. Clearly, every complete lattice is necessarily

bounded.
A complete lattice L is said to be completely distributive is the following more

stringent distributive law holds∧
i∈I

(∨
j∈J

xi j

)
=
∨
f ∈J I

(∧
i∈I

xi f (i)

)
, (1)

for every doubly indexed subset {xi j : i ∈ I, j ∈ J } of L . Note that every complete
chain (in particular, the extended real line and each product of complete chains) is
completely distributive. Moreover, complete distributivity reduces to distributivity
in the case of finite lattices.

Complete distributivity is a self-dual property. This was observed by [11] who
showed that (1) and its dual are equivalent, and thus that either is sufficient to define
complete distributivity. In [15], the author presented a characterization of complete
distributivity which relied on the notion of a “cone”. We shall make use of the fol-
lowing alternative characterization given in [3].

Theorem 1. A complete lattice L is completely distributive if and only if for every
set A and every family A of nonempty subsets of A, we have

PA( f ) :=
∨

X∈A

∧
x∈X

f (x) =
∧
X∈B

∨
x∈X

f (x) =: PB( f ),

for every f ∈ L A where B = {B ⊆ A : B ∩ X �= ∅ for all X ∈ A}.
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2.3 Lattice homomorphisms, continuity and invariance

We now recall the notion of lattice homomorphism. Let L be a lattice. A map γ : L →
L is said to be a (lattice) homomorphism if it preserves ∧ and ∨, i.e.

γ (x ∧ y) = γ (x) ∧ γ (y) and γ (x ∨ y) = γ (x) ∨ γ (y), for every x, y ∈ L .

The following notion extends that of homomorphism. A map γ : L → L , where
L is a complete lattice, is said to be continuous if it preserves arbitrary meets and
and arbitrary joins, i.e. for every S ⊆ L , γ (

∧
S) = ∧

γ (S) and γ (
∨

S) = ∨
γ (S).

The term continuous is justified by the following fact (see [7]): if γ : L → L is
continuous, then it is continuous with respect to the Lawson topology on L .

We say that a functional F : L A → L on a complete lattice L is invariant if, for
every f ∈ L A and every continuous mapping γ : L → L , we have F(γ ◦ f ) =
γ ◦ F( f ).

In this paper we shall also consider the following weaker property. A functional
F : L A → L is said to be homogeneous if it is invariant under continuous mappings
of the form γ (x) = x ∧ c and γ (x) = x ∨ c, for every c ∈ L . Note that every ho-
mogeneous functional F : L A → L is idempotent, i.e. F(c) = c, for every constant
map c ∈ L A.

2.4 Sugeno integrals as lattice polynomial functionals

By a (lattice) functional on L we mean a mapping F : L A → L , where A is a
nonempty set. The range of a functional F : L A → L is defined by RF = {F( f ) :
f ∈ L A}. A functional F : L A → L is said to be nondecreasing if, for every f, g ∈
L A such that f (i) ≤ g(i), for every i ∈ A, we have F( f ) ≤ F(g). Note that if F is
nondecreasing, then RF = [F(0), F(1)].

An aggregation functional on a bounded lattice L is a nondecreasing functional
F : L A → L such that RF = L , that is, F(c) = c for c ∈ {0, 1}. For instance,
each projection Fa : L A → L , a ∈ A, defined by Fa( f ) = f (a), is an aggregation
functional, as well as the mappings PA and PA given in Theorem 1.

As mentioned, in this paper we are particularly interested in certain aggregation
functionals, namely, Sugeno integrals. A convenient way to introduce the Sugeno
integral is via the so-called lattice polynomial functionals, that is, lattice function-
als which can be obtained from projections and constants by taking arbitrary meets
and joins. A Sugeno integral on L is simply a polynomial functional F : L A → L
which is idempotent. In the case when L is completely distributive, Sugeno inte-
grals can be equivalently defined in terms of capacities, i.e. nondecreasing mappings
v : P(A) → L , where P(A) denotes the set of all subsets of A. More precisely, a
functional F : L A → L is a Sugeno integral if and only if there exists a capacity
v : P(A) → L such that

F( f ) = Fv ( f ) :=
∨

X∈P(A)

v(X) ∧
∧
x∈X

f (x).
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(Sugeno integrals were introduced by [13, 14] on linearly ordered domains. In the
finitary case, [9] observed that this concept can be extended to the setting of bounded
distributive lattices by defining Sugeno integrals as idempotent polynomial func-
tions.) Note that the polynomial functionals obtained solely from projections by tak-
ing arbitrary meets and joins, coincide exactly with those Sugeno integrals associated
with {0, 1}-valued capacities, i.e. nondecreasing mappings v : P(A) → {0, 1} such
that v(A) ∈ {0, 1}.

Sugeno integrals over completely distributive lattices were axiomatized in [3] in
terms of nondecreasing monotonicity and homogeneity.

Theorem 2. Let L be a completely distributive lattice, A an arbitrary nonempty set,
and let F : L A → L be a functional. Then F is a Sugeno integral if and only if it is
nondecreasing and homogeneous.

In order to axiomatize the subclass of those Sugeno integrals associated with
{0, 1}-valued capacities, we need to strengthen the conditions of Theorem 2. As it
turned out, invariance rather than homogeneity suffices.

Theorem 3 ([3]). Let L be a completely distributive lattice, A an arbitrary non-
empty set, and let F : L A → L be a functional such that, for every X ⊆ A, F(IX ) ∈
{0, 1}. Then F is a Sugeno integral associated with a {0, 1}-capacity if and only if it
is nondecreasing and invariant.

In the case when L is a complete chain with at least 3 elements, Theorem 3 can
be strengthened since nondecreasing monotonicity becomes redundant.

Theorem 4 ([3]). Let L �= {0, 1} be a complete chain, A an arbitrary nonempty set,
and let F : L A → L be a functional such that, for every X ⊆ A, F(IX ) ∈ {0, 1}.
Then F is a Sugeno integral associated with a {0, 1}-capacity if and only if it is
invariant.

3 Applications to risk measurement: risk measures on
completely distributive lattices

The notion of risk measure arose from the problem of quantifying risk. In the sim-
plest setting, a risk situation is modeled as a bounded real-valued random variable.
The concept of risk measure together with its axiomatic characterization was pro-
posed in [1] for finite probability spaces and further extended to more general prob-
abilistic settings. In particular, in [8] it is considered a more realistic situation of
Rn-valued random variables while in [4] risk measures take values in abstract cones.

In this section we aim at bringing the notions of random variable and risk mea-
sure into the more general setting of completely distributive lattices. As we will see,
many of the desirable properties of risk measures can be naturally translated into the
realm of completely distributive lattices, and used to provide axiomatic character-
izations of risk measures similar to those found in the literature. We also propose
a notion of quantile of a lattice-valued random variable, and provide an axiomatic
characterization based on the results of the previous section.
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3.1 Risk measures on completely distributive lattices

We suppose that a risk at a given position (e.g. time) is described by a function
f : � → L where L is a completely distributive lattice and � is a set of possible
states. The goal is to determine a value F( f ) that meaningfully represents risk f .
In the current ordinal setting, the natural approach is to consider risk measures as
mappings F : L� → L .

Several desirable properties of risk measures have been proposed in the literature
(see e.g. [1, 8, 4]). Given the ordered structure of our underlying universe L , we
retain the following: nondecreasing monotonicity, idempotence and homogeneity
(we shall also consider the more stringent condition of invariance in Subsection 3.2).
Immediately from Theorem 2, we get the following description of nondecreasing and
homogeneous risk measures.

Corollary 1. Let F : L� → L be a risk measure. Then F is nondecreasing and
homogeneous if and only if there is a capacity v : P(�) → L such that F = Fv .

3.2 Quantiles on completely distributive lattices

Quantiles of real-valued random variables have been proved to be an important tool
in statistics and to have a valuable role in application fields such as economics. We
consider quantile-based risk measures in a qualitative framework and we propose a
notion of quantile of a lattice-valued random variable. We establish that these quan-
tiles have several desirable features and we derive an axiomatic representation of
quantiles.

Given a real-valued random variable f and a confidence level α ∈ (0, 1), the α%
worst realizations of f , situated at the left tail of its distribution are described by the
α quantile defined by qα = inf {x ∈ R : P( f ≥ x) < α} (α ∈ (0, 1)). Integral
representations of quantiles were obtained in [10, 5].

Proposition 1. Let (�, 2�, P) is a probability space and A = {A ⊆ � :
P(A) ≥ α}. Then for every bounded real-valued random variable f defined on �

qα( f ) =
∨
A∈A

∧
s∈A

f (s).

Proof. Let f be a bounded random variable defined on �, and let A� be the set of
subsets A ∈ A which satisfy the following condition: if s ∈ A and t ∈ � is such
that f (t) ≥ f (s), then t ∈ A. Thus

∨
A∈A

∧
s∈A f (s) = ∨

A∈A�

∧
s∈A f (s). Since

f is bounded, for every A ∈ A�, we have f (A) := { f (s) : s ∈ A} = { f (s) : s ∈
� and f (s) ≥ ∧

s∈A f (s)}. Let x = ∧
s∈A f (s), and define Ax = {s ∈ � : f (s) ≥

x}. Hence, ∨
A∈A

∧
s∈A

f (s) =
∨

A∈A�

∧
s∈A

f (s) =
∨

Ax∈A

∧
s∈Ax

f (s).

Now, if qα( f ) > x , then P(Ax ) ≥ α and, hence, Ax ∈ A. Also, if Ax ∈ A, then
P(Ax ) ≥ α and qα( f ) ≥ x . Hence, by the density ofR, we have qα( f ) = ∨

Ax∈A x .
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Moreover, for each Ax ∈ A we have
∧

s∈Ax
f (s) = x , and thus

qα( f ) =
∨

Ax∈A

∧
s∈Ax

f (s) =
∨
A∈A

∧
s∈A

f (s), which completes the proof.

In view of Proposition 1, we propose the following definition of quantile of a
lattice-valued random variable. Let L be a completely distributive lattice and take
α ∈ L . For a capacity v : P(�) → L , set Aα

v := {X ∈ P(�) : v(X) ≥ α}. We say
that a functional F : L� → L is an α-quantile if there is a capacity v : P(�) → L
such that

F( f ) :=
∨

X∈Aα
v

∧
x∈X

f (x).

Note that v can be chosen to be a {0, 1}-capacity.
In [5] quantiles are described as nondecreasing functionals which satisfy an invar-

iance-like condition referred to as “ordinal covariance”. The following corollary of
Theorem 3 indicates that these desirable properties are retained by the current refor-
mulation of quantiles of lattice-valued random variables.

Corollary 2. Let L be a completely distributive lattice, and let F : L� → L be a
functional such that, for every X ⊆ �, F(IX ) ∈ {0, 1}. If F is nondecreasing and
invariant then and only then F is an α-quantile, for some α ∈ L.

As in the case of Theorem 4, Corollary 2 can be refined when L is a complete
chain.

Corollary 3. Let L �= {0, 1} be a complete chain, and let F : L� → L be a func-
tional such that, for every X ⊆ �, F(IX ) ∈ {0, 1}. If F is invariant then and only
then F is an α-quantile, for some α ∈ L.

Remark 1. Even though our underlying universe L is implicitly assumed to be bound-
ed, this condition is not really necessary as discussed in [3]. This boundness condi-
tion is not required in the literature, however the functionals considered are defined
on spaces of measurable functions which are bounded. Thus such a requirement is
also not necessary in the latter settings.

Another difference to the existing literature (e.g. the ordinal framework proposed
in [5]), is that we do not assume L to be linearly ordered, and thus allowing incompa-
rability on the values of a given domain function. Motivations to such a framework
can be found in [8, 4] which consider multivariate random variables.

4 Conclusions

In this paper we have introduced a unified qualitative framework for studying risk
measures, which can account for classical univariate as well as multivariate random
variables. Moreover, we have illustrated how certain notions and axioms in the tra-
ditional theory of risk measures may be brought into this qualitative setting.
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Looking at natural extensions to this framework, we are inevitably drawn to con-
sider the utilitarian and multi-sorted settings. More precisely, we have considered
risk measures as mappings F : L� → L . However, it could be of interest to con-
sider models G : L� → L ′ where risks are valued in L but their assessment is made
in a possibly different lattice L ′, i.e. G would be decomposable into a composition
G = F ◦ϕ where ϕ : L → L ′ and F is a risk measure on L ′. Moreover, we could fur-
ther generalize and consider multivariate random variables of different sorts. Here,
risks would be seen as mappings f : � → ∏

i∈I Li , and their assessment attained by
mappings factorizable in terms of risk measures on L composed with utility func-
tions ϕi : Li → L .
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Abstract. Under Solvency 2, there is a growing need to develop Internal Risk Mod-
els (IRM) to get accurate estimates of liabilities under a one-year time horizon. Con-
sidering also the advices in CEIOPS Consultation Paper 56, a natural extension of
this procedure is to employ IRM in Own Risk Solvency Assessment (ORSA) also in
a long time horizon. Under an ORSA, insurance companies will have to understand
how their strategic choices affect the solvency ratio. In this analysis the real risk pro-
file, risk tolerance and supervisor’s rules can also be included. In this framework, the
underwriting cycle could provide an additional volatility source to the liabilities dis-
tribution and so it could increase the solvency capital requirement or influence neg-
atively the profitability of insurance companies and so it could be included inside
an IRM. The aim of this paper is to explain how to use Piecewise Linear Dynamic
Systems under an ORSA process. A dynamic control policy is defined to specify
the relationship between solvency ratio and safety loading, and so to model the un-
derwriting cycle. Under some simplifying assumptions, the corresponding dynamic
equation for the solvency ratio assumes the form of a one dimensional piecewise lin-
ear map. The model could be easily extended to include dividend policies, in order
to control profitability taking into account solvency requirements.
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1 Introduction

Solvency 2 represents a complex project for reforming the present vigilance system
of solvency for European insurance companies. In this context, many innovative
elements arise, such as the formal introduction of risk management techniques. Re-
garding Solvency Capital Requirement under Solvency 2, it is crucial for non-life
insurance to correctly assess risk from different sources, such as Underwriting Risk
with particular reference to Premium, Reserving and Catastrophe risks on a one–
year time horizon (see [7]). With this aim, it is possible to develop Internal Risk
Models (IRM) to get more accurate estimates of liabilities, but there are strong rules
for IRM assessment. The CEIOPS Consultation Paper (CP) 56 (see [1]) advises that
“This is all part of the undertaking’s business planning / strategy, and CEIOPS ex-
pects that undertakings will use the internal model to assess the riskiness of its fu-
ture business strategy and the variation in possible outcomes. A natural extension of
this is the expectation that the internal model will be used in the undertaking’s Own
Risk Solvency Assessment (ORSA) process also in a long time horizon”. The ORSA
could be important in the pre-application process. In fact CEIOPS wrote in [3]: “It
can be expected that many undertakings will want to participate in a pre-application
process. . . . As the pre-application facilitates the development of IRM it would in
principle be desirable to review the IRM of all undertakings that are interested. Yet
the resources of supervisors need to be used efficiently and effectively, . . . the al-
location of these resources may have to be based on suitable criteria”. A possible
criterion to judge internal model current state could be the use of the ORSA. Under
an ORSA, insurance companies will have to understand how their strategic choices
affect the solvency ratio, including in this analysis the real risk profile, risk tolerance
and supervisor rules. But looking at a long time horizon, it is also necessary to take
into account the effect of the underwriting cycle. In [11] it has been underlined that
“The underwriting cycle contributes an artificial volatility to underwriting results
that lies outside the statistical realm of insurance risk”. In CP 75 (see [2]), we also
read that “the premium risk factors are based on a consideration of the results from
5 methods. A critical issue is that none of these methods make an allowance for the
underwriting cycle, which will potentially lead to an overstatement of the premium
risk factors”. So for IRM development under Solvency 2, underwriting cycle should
be analyzed, because the additional volatility could produce a higher capital require-
ment. In the risk theory literature there are some papers where are presented tools to
quantify the additional risk associated with these cycles. In [5] underwriting cycles
and ruin probabilities have been analyzed using simulation approach. [8] presents
a model for analyzing the impact of underwriting cycles on ruin probabilities using
both simulation and a Lundberg-type upper bound. In [14] the solvency of an in-
surance firm in the presence of underwriting cycles has been analyzed. In particular
under this classical AR(2) dynamics governing the premium income, an explicit ex-
pression for the ultimate ruin probability is derived, using a martingale approach. In
the paper presented at ICA 2010 (see [4]) and MAF 2010 conferences, starting from
Collective Risk Theory, we defined a dynamic control policy, which specifies the
relationship between solvency ratio and safety loading; in this way, the underwrit-
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ing cycle can be modelled through the so-called Piecewise Linear Dynamic Systems
(PLDS), thus combining traditional actuarial techniques with tools from PLDS. In
this short paper, we show how to build, through the control policy, a target zone
where the solvency ratio could be kept in. We mainly focus on ORSA, maintaining
a long time horizon perspective.

The paper is organized as follows. In Section 2 the actuarial model under Col-
lective Risk Theory is specified and its main dynamic properties are summarized.
Section 3 shows how to apply this model in strategic decisions and ORSA. Section
4 concludes, also suggesting further improvements of the model.

2 Model specifications

In this section, we briefly outline the main results on the modeling of underwriting
cycle through PLDS, in order to gain a better understanding of the advantages of this
approach under an ORSA. See [4] for more details, proofs and numerical examples.

The basic model is derived from Collective Risk Theory (see [5], [9] and [13]
for more details). Starting from an initial level u(0), the solvency ratio u(t), i.e. risk
reserve U (t + 1) on gross premium B(t + 1), at the end of the year t + 1 is given
by:

u(t + 1) = ru(t) + p

{[
1 + λ (t + 1)

]− X (t + 1)

P(t + 1)

}
, (1)

where:

• λ(t + 1) is the coefficient of safety loading;
• r is a function (constant for our purposes) of the rate of return j , the rate of

portfolio growth g and the inflation rate i (supposed constants):

r = 1 + j

(1 + g)(1 + i)
;

• X (t + 1) is the aggregate claim amount;
• p = P(t+1)

B(t+1) (1 + j)1/2 is the ratio of risk premium P(t + 1) = E
[
x (t + 1)

]
by

gross premium B(t + 1), considered at half year.

Now, assuming p = 1 (not considering also time lag effects), (1) becomes:

u(t + 1) = ru(t) + [
1 + λ(t + 1)

]− x(t + 1), (2)

where x(t + 1) is the loss ratio.
Starting from the ideas in [12] and [5], in [4] a dynamic control policy is proposed

to specify the relationship between solvency ratio and premium rates (underwriting
cycle). For this reason, it is assumed that the company changes its safety loading
according to the control rule:

λ(t + 1) = λ0 + c1 max
[
0, R1 − u(t)

]− c2 max
[
0, u(t) − R2

]
, (3)
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with 0 < R1 ≤ R2. (3) shows how, starting from a basic level λ0, safety loading
will be dynamically:

• increased, with a percentage of c1, if u(t) decreases under a floor level R1; or
• decreased, with a percentage of c2, if u(t) is higher than a roof level R2.

Note that c1, c2, R1, R2 could represent strategic parameters which depend on
risk management choices.

Under the rough assumption that aggregate loss distribution does not change in
time, we define a simplified version of (1) that assumes the form of a one dimensional
piecewise linear map in the state variable u(t):

u(t + 1) =
r u(t) + {1 + λ0 + c1 max

[
0, R1 − u(t)

]− c2 max
[
0, u(t) − R2

]}− x(t + 1).
(4)

This dynamic control could prevent the tendency to infinity of u(t), which is the
typical situation for uncontrolled long-term process for r ≥ 1. In [4], we generalize
the proof in [5] for asymptotic behavior of u(t) in a long-term process, introducing
this dynamic control policy, thus obtaining different levels of equilibrium, varying
in particular with the parameter r . In doing so, we do not use, at least in a simplified
setting, any simulation approach, but only analytical results on Piecewise Linear
Dynamical Systems (PLDS).

In [4], it has been analyzed a deterministic version of this map, where x(t+1) = x
is simply regarded as a parameter. In this case, local and global analysis of (4) can be
analytically performed, showing the long-term behavior of the solvency ratio u(t)
as the main parameters of the model vary. In particular, for r > 1 we show the
possibility of so called “Border-collision bifurcations” (see [6] for details), related
to the crossing of the trajectory of (4) into regions where the definition of the map
changes. We first observe that (4) can also be written as

u(t+1) = f (u(t)) = ru(t)+1+λ0−x+
⎧⎨⎩

c1(R1 − u(t)), if u(t) < R1,
0, if R1 ≤ u(t) ≤ R2,
c2 (R2 − u(t)) , if u(t) > R2,

(5)
where, of course, c1, c2 ∈ [0, 1].

Without enforcing any control on safety loading, it is c1 = c2 = 0, and the
dynamical system (5) reduces to a linear map, whose unique equilibrium

u∗
M = 1 + λ0 − x

1 − r
(6)

(provided r �= 1) is globally asymptotically stable as long as r < 1 and unstable
otherwise.

In the general case, map (5) is piecewise linear, since it is continuous at each point
and there is an interval partition of the domain where the map is linear in each inter-
val; however it presents (up to) two kinks at the points u1 = R1 and u2 = R2, where
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the definition of the map changes. Moreover we observe that if r > max[c1, c2] then
(5) is a strictly increasing map.

Different expression of fixed points are obtained according to the branch of the
map f (.) that intersects the identity map. Since there are basically three different
branches for (5) we can have the following possible equilibria:

u∗
L = 1 + λ0 + c1 R1 − x

1 − r + c1
; u∗

M = 1+λ0−x
1−r ; u∗

H = 1+λ0+c2 R2−x
1−r+c2

. (7)

The number of equilibria (and related dynamic properties) depends on the param-
eter configuration. The case 0 < r < 1 is easy to deal with (see [4]). As for the case
r ≥ 1, if no equilibrium exists, then the generic trajectory of u(t) will diverge to in-
finity. The results in [4] characterize existence and stability of all possible equilibria
of the map (5). Moreover, in [4], we discuss possible bifurcations of fixed points and
the corresponding dynamic scenarios.

3 How to use PLDS for ORSA

For Own Risk Solvency Assessment, insurance risk management tries to control
the fluctuation of the solvency ratio u(t) in consecutive accounting years. So the
solvency ratio should be kept in a specific target zone (see Fig. 1).

In this framework, starting from the original idea proposed in [12], we try to con-
ceive our model as an operational tool to support management decisions, explaining
how to define initial values for the parameters R1, R2, c1, c2, r and u(0), and give
practical means to the equilibria defined in Section 2.

Thus, R1 and R2 represent the low and the high barriers for solvency ratio. For
instance, a regulatory required minimum margin of solvency can be present, i.e.
R1 ≥ ureq . So the company have to maintain the fluctuating solvency ratio u(t)
above this barrier, because if the solvency ratio u(t) falls close to ureq , there is a
probability that random fluctuation of loss ratio x could lead below the barrier, es-
pecially for Line of Business where the variability of losses is very high (Fire, Third

Fig. 1. Target zone
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Party Liability, etc.). For the upper limit, the determination of the level R2 = uupper ,
or at least of its order of magnitude, is entirely a Risk manager’s decision, as this is
also related to profitability goals. Moreover, these barriers could be defined employ-
ing different approaches, not only judgemental ones, but also based on Risk Theory,
Utility Theory and so forth. It is worth mentioning that these limits not only depend
on stochastic variability of the process, but also on the management actions (Pricing,
Reinsurance and Investments). Hence, both analytic and qualitative instruments are
necessary to correctly implement the model. Note that parameters c1, c2 in (4), which
are also fixed by the risk management, affect significantly the speed of convergence
to fixed points. So the area above the alarm barrier ureq and below the upper limit
uupper in which the actual solvency ratio u(t) should fluctuate, can be regarded as a
target zone, as shown in Fig. 1.

In [4], we underlined the importance of the parameter r and the concept of global
stability of an fixed point in practice. In fact if r < 1, we have one solvency ratio
equilibrium, which is globally asymptotically stable, so that for any initial condition
u(0) the long run convergence to this equilibrium is achieved. On the other hand,
for r ≥ 1, when stable solvency ratio equilibria exist, they are always outside the
interval (R1, R2). So, depending on parameters and with particular reference to the
initial solvency ratio level u(0), we could distinguish two main cases:

1. Uniqueness of the attractor, i.e. convergence to the lower or the higher equilib-
rium for any initial condition u(0);

2. Multistability, i.e. convergence to the lower equilibrium as long as u(0) < u∗
M

and convergence to the higher equilibrium as long as u(0) > u∗
M .

So, a risk manager can ’a priori’ be able to calculate suitable intervals of the initial
solvency ratio u(0), in order to understand if the solvency ratio tendency is towards
a low or a high equilibrium in a long time horizon or what level of u(0) is necessary
to obtain a specific target. Remember that u∗

L and u∗
H can be regarded, respectively,

as the minimum and maximum levels of solvency ratio that could be reached with
that control policy in the long run.

With this method, we not only can model the safety loading dynamic, but also
are able to determine one or more levels of the long-run solvency ratio. In the case
r < 1, this is usually an easy task because of uniqueness of the attracting fixed point;
otherwise, for r ≥ 1, the risk manager (or the actuary, etc.) can obtain insightful in-
formation where this policy could drive the solvency ratio to. We remark that in real
world cases, it possible to have either r < 1 or r ≥ 1 . If risk manager understands
’a priori’ that the solvency ratio could fall outside the desired interval, he should try
to force the system to reach the higher equilibrium level.

Besides, through the results of previous section and suitable management control
tools, risk management could establish ‘a priori’ an early warning limit utarget (u∗

L
or u∗

M or u∗
H ), at a safe margin above ureq , and nonetheless try to control the behavior

of u(t).
In order to include this kind of control policy (see [12]), another premium control

rule based on a second-order autoregressive time-series AR(2) of the form can be
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implemented:

1 + λ(t + 1)

1 + λ0
− 1 = α2

[
utarget − u (t)

]+ α2
[
utarget − u (t − 1)

]+ ε (t)

and so

λ(t + 1) = {
α1
[
utarget − u (t)

]+ α2
[
utarget − u (t − 1)

]+ ε (t)
} · (1 + λ0)− 1,

where α1 and α2 are constant coefficients and ε(t) is a random term, with or without
skewed distribution depending on the particular Line of Business considered (Fire,
Credit, Motor Third Party Liability, etc.).

Finally, another possible development of this model is related to profitability is-
sues. Both the upper limit and utarget can be considered as decision variables in
determining how much of the annual profit can be distributed as dividends (e.g. de-
riving them as a percentage of u′ = u(t)− utarget, where u′, as in [12], denotes the
’operational margin’) and how much should be devoted to reinforce the solvency
margin.

In fact, in [12] it is reported that “a sound strategy is to retain sufficient resources
to maintain the target zone. When the target zone is fixed, the operations must be
planned so that solvency ratio can be kept within the zone”. Indeed, this condition
relates financial strength to other business goals, to the ORSA and finally to the
Solvency 2 requirements.

4 Conclusions

As required by the Solvency 2 Directive, the modeling of management actions/rules
must be taken into account in the risk quantification process. Within the proposed
model, it is possible to define analytical control rules for the solvency ratio by setting
the parameters properly, thus fixing the safety loading level. Moreover, it is possi-
ble to ‘guarantee’ prefixed levels of equilibrium of the solvency ratio, taking into
account own business strategies.

Understanding which solvency ratio behavior could prevail in the long time is
relevant for profitability as well as for ORSA requirements. Of course, we understand
that a single numerical value for u(t) is insufficient to come to conclusions about
financial strength of an insurer, as underlined in [12]. An evaluation of the position
and the construction of the target zone should be based also (and not only) on the risk
structure of the portfolio, the nature and the phase of possible cycles in the market.
The effect of reinsurance price index on loss ratios could be also considered as shown
in [10].

In further improvements of this work, we will investigate these issues, trying to
apply the model on real data and improve the use of PLDS in actuarial sciences both
from theoretical and practical points of view.
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Abstract. Pension funds have adopted different management approaches to over-
come the arising difficulties to maintain a solid financial status. Among these, there
is the adoption of an indexation policy which is conditional on the solvability of
the fund. Pension funds recognizing conditional inflation indexation are obliged to
pay an additional payoff linked to the inflation rate through some specific rule. The
additional payoff normally takes the form of a contingent claim conditional to a mea-
sure of sustainability of the payoff itself; in most cases, the measure is linked to an
asset/liability ratio able to capture the solvability of the fund. Therefore, a full valua-
tion of the obligation towards funds participants cannot exclude the proper appraisal
of this additional option. The option payoff is conditional to a measurement asset
that is different from the reference underlying asset. This structure recalls a barrier
option with different measurement and payoff asset. The paper investigates the op-
portunity to apply barrier option schemes in an asset/liability context to provide a
full valuation of the obligation towards participants. Results derive from a simula-
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tion procedure applied by means of scenario-based analysis. Numerical results give
the opportunity to state the absolute and relative value of the inflation option.

Key words: Conditional indexation, ALM, barrier option, pension funds

1 Introduction

The indexation represents a correction of the pension rights aimed at compensating
the loss in terms of purchasing power due to inflation rate increases and it has been
an undisputed guarantee offered to the participants of a pension fund so far. Nowa-
days, most of the DB pension plans switched to voluntary and conditional/limited
indexation policy, due to the difficult market conditions [8]. From a managerial per-
spective, a conditional indexation policy implies a quantification of the risks arising
from this in an asset and liability management [11]. The prospected payoff of the
indexation policy can be assimilated to an option scheme and should be accurately
evaluated to lead to an appropriate ALM strategy. The main objective is twofold: the
identification of the more appropriate option scheme to adopt as an efficient repli-
cation of the pension fund flows and the selection of an evaluation procedure con-
sistent with the scenario analysis driving asset allocation policy in ALM. Numerical
results derive from a simulation procedure applied to an exemplar Dutch based DB
pension fund. Evidences give the opportunity to state the absolute value of the in-
flation option and the relative value with respect to the fund liability. The literature
on pension funds focuses on the risks that various stakeholders assume in terms of
an embedded option approach. The seminal paper [2] shows, for example, that a DB
pension fund can be replicated by an investment in a portfolio containing the under-
lying asset, a long position in a put and a short position in a call option on this asset,
and applies a traditional option pricing model [1]. As the whole fund can be repli-
cated by an appropriate portfolio, also specific (innovative) features can be treated as
embedded options. In particular, conditional indexation can be regarded as a barrier
option embedded in the pension contract that the pension fund sells to its participants
[4]. We originally evaluate this Indexation Option (IO) as an outside barrier option
call down-and-out. Next sections describe the features of the fund. The following
paragraph evaluates this option by means of scenario analysis in ALM context and
empirical results conclude.

2 The features of the fund

We assume a Dutch-based defined benefit (DB) pension fund. Every year the liabil-
ities are fully indexed to the annual Dutch inflation rate, conditional on a given level
of the funding ratio, defined as the ratio of current value of assets to current value of
liabilities. By definition the analysis is framed into a run-off context. Therefore, the
cash flow dynamics is influenced neither by new participants inflows, nor by addi-
tional contributions. The liabilities face only interest and inflation rate risks, while
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the asset flows are exposed to relevant market risk factors. The indexation policy
depends on the financial status of the fund expressed by the funding ratio at the end
of the year t. It is computed using the annual market values for both assets (AU

t ) and
liabilities (LU

t ):

F RU
t = AU

t

LU
t
, (1)

where (F RU
t ) is the ultimate funding ratio and expresses the financial status of the

fund as the capability of the amount of the resources available to cover the related
nominal liabilities at the end of the year. In most of the DB pension funds, the in-
dexation rule consists of granting full indexation, only if the funding ratio is greater
than a required ratio. Therefore, if the funding ratio is lower than the threshold value,
the nominal liabilities at time t + 1 correspond to the nominal liabilities at time t,
without any indexation. Hence, only if the nominal liabilities are counterbalanced
in terms of assets, the pension fund will proceed to consider an update of the nomi-
nal liabilities to the inflation rate, granting indexation. To evaluate the funding ratio,
the market value of the assets and liabilities must be computed. We set the time t
as the moment from which the pension fund is formally closed and exclusively has
annual nominal cash flows (CF) to be paid at the end of each year until the definitive
closing date n. The present value of all these future nominal obligations is computed
market-to-market as:

LU
t =

n∑
k=0

C Ft+k

(1 + ik,t )k
, (2)

where k is the maturity of each residual cash flow and ik,t is the spot rate associated to
the corresponding node on the interest rate yield curve. The notation LU

t accounts for
the fact that the present value is calculated on the basis of a yield curve estimated at
time t. The interest rate yield curve is generated by the well-known model developed
by [7], fitted via a least-squares procedure according to a standard defined by [5].
From the ultimate value, we derive the corresponding primary value of the liabilities
at time t, by subtracting the nominal cash flow to be paid at time t. That is:

L P
t = LU

t − C Ft . (3)

The primary value of the liabilities L P
t represents the end of the year value eval-

uated on the basis of the yield curve as estimated at time t, and hereafter the initial
value of the liabilities at the beginning of the next year filtered by the information
available at time t and synthesized in the yield curve. Every year the primary value
of the liabilities at time t, that is to say the initial value of the liabilities at time t + 1,
is updated by the nominal rate of growth, to obtain the nominal ultimate value at
time t + 1 as below:

LU
t+1 = L P

t · (1 + rL ,t+1). (4)

Then, depending on the value of the funding ratio at time t +1, the indexation de-
cision is taken and applied to the ultimate value in (4), to obtain the indexed ultimate



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T98 R. Cocozza, A. Gallo, and G. Xella

value of the liabilities, as follows:

LUindex
t+1 = LU

t+1 · (1 + πt+1), (5)

where πt+1 is the inflation rate as recorded at time t + 1. By subtracting the t + 1
maturing cash flow (also updated by indexation), we compute a new primary value
for the liabilities, which also takes into account the indexation:

L Pindex
t+1 = LUindex

t+1 − (C Ft+1 · (1 + πt+1)). (6)

It is denominated Pindex to be distinguished by the previously defined primary
value, which does not include indexation. However, once the indexation is recog-
nised, it is acquired and guaranteed: it becomes the nominal value for the next year.
Therefore (4) can be extended as:

LU
t+2 = L Pindex

t+1 · (1 + rL ,t+2). (7)

On the other side of the intermediation portfolio, for each time t, according to the
Liability Driven Investment (LDI) paradigm, the asset portfolio At is divided into
two sections: the Matching Portfolio AM,t and the Risk Return Portfolio AR R,t . The
Matching Portfolio is assumed to earn exactly the liability return to match nominal
liabilities as a result of a perfect immunization strategy. The Risk Return Portfo-
lio consists of different asset classes as equity and alternative assets. It is meant to
provide enough resources to grant indexation. The amount invested in each port-
folio is defined according to the ratio of the matching portfolio to the total value
(wM = AM,t

At
) and of the risk-return portfolio to the total value (wR R = AR R,t

At
). The

portfolio is rebalanced to these pre-defined weights each year. Let us assume, using
average data concerning the Dutch pension fund, that the percentage of assets in-
vested in the Matching Portfolio is 37%, while the remaining 63% is invested in the
Risk-Return portfolio. Consistently with the liabilities framework, we define two
different values of the assets. The first one, defined as ultimate asset value AU

t+1,
is the reference value for the computation of nominal funding ratio on which the
indexation will depend on. It is computed as:

AU
t+1 = AP

M,t · (1 + rL ,t ) + AP
R R,t · (1 + rR R,t ), (8)

where rR R,t is the return on the Risk-Return Portfolio. The ultimate asset value ex-
presses the value of the invested assets before the indexation and the payment of
the cash flow for the corresponding year, where AP is the primary value for each
portfolio. Similarly to the primary value of the liabilities, it is computed as:

AP
t+1 = AU

t+1 − (C Ft+1 · (1 + πt+1)). (9)



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TConditional option in ALM 99

3 Evaluation of the indexation option in ALM

Barrier options are contingent claims that either are born (in barrier or knock in)
or expire (out barrier or knock out) when the underlying asset price reaches a speci-
fied value h defined as barrier. The common feature is that in options start their lives
worthless and only become active in the event a predetermined knock-in barrier price
is breached, while out options start their lives active and become null and void in
the event a certain knock-out barrier price is breached. To configure the conditional
indexation policy we will refer to a barrier down-and-out option, characterized by
the presence of two underlying assets. The funding ratio takes the place of the mea-
surement asset and sets the condition that eliminates any positive payoff, given a
decrease in the value of the measurement itself. Accordingly to this scheme, if the
barrier is hit, there is no additional payoff and the option expires. The indexed ad-
dendum is the proper payoff asset, which ultimately defines the positive payoff of
the option. This framework, here originally applied to pension funds, exactly por-
trays the case of the minimum requirement for the funding ratio. In the majority
of cases, the funding ratio is higher than the minimum requirement (both institu-
tional and internal) and only if it goes down the minimum, the indexation will not be
paid. To evaluate an outside barrier option an analytical solution has been developed
[10]. The crux is that in this pricing approach the barrier is modelled in a continu-
ous framework. For the application to the indexation case, this solution cannot be
appropriately used. In the pension fund case, the barrier is represented by a specified
level of the funding ratio and is not observed continuously, but in a discrete time and
on a specific date. Therefore, we will define the indexation option IO as an outside
barrier option (down-and-out). The observation time is set equal to the last day of
each year, when the market value of the assets and liabilities are computed and the
inflation rate is observed. As a consequence we proceed on by using a scenario-based
approach. The simulation approach gives the opportunity to state simultaneously the
value of the barrier and the value of the payoff. The implementation of this method-
ology consents the modeling of the relevant values according to correlation factors
of the primary risk and value drivers, since these correlations are included in the sce-
nario generation by means of the scenario generation scheme (see below). Since we
concentrate on the additional amount paid if the relevant condition holds, we define
the option payoff as LU

t+1(ik,t+1) · (πt+1) or nothing. In practice, if the funding ratio
at time t + 1 falls below the minimum requirement (barrier), the pension fund will
recognise only the nominal liability value LU

t+1. On the other hand, if the funding
ratio is equal or higher than the barrier, the pension fund will recognise the indexed
value of the liability as in (5). Therefore, we have, as total payoff:

LU
t +

⎧⎪⎪⎨⎪⎪⎩
0, if F RU

t+1 ≤ h,

LU
t+1 (πt+1) , if F RU

t+1 > h,︸ ︷︷ ︸
indexation option

(10)

where the last addendum is the payoff of the indexation option (IOPt+1), that is the
payoff referred to time t + 1. The present value at time t of the option payoff is
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calculated using the spot rate referring to the first node of the yield curve observed
in t (i1,t ). And so on for the residual duration of the pension fund. Therefore the
present value of the whole indexation option payoff (WIOPt ) at time t is the sum of
n indexation options payoffs differing for the time to maturity and discounting with
the appropriate spot rate as observed in time t. Formally:

W I O Pt = I O Pt+1

1 + i1,t
+ I O Pt+2

(1 + i2,t )2
+ . . . + I O Pt+n

(1 + in,t )n
=

n∑
k=1

I O Pt+k

(1 + ik,t )k
. (11)

The value of the option is estimated by numerical methods, based on scenario
analysis consistent with the asset and liability values are concerned. More specif-
ically, since each scenario s (with s = 1, 2, . . . , q) gives rise to a different yield
curve, the expected value of WIOPt is computed as the average present value of the
whole indexation option payoffs generated in q states of the world, as follows:

E[WIOPt ] = 1

q

q∑
s=1

n∑
k=1

I O Pt+k,s

(1 + ik,t,s)k
, (12)

where ik,t,s is the spot rate observed in t referring to period t −(t +k) and to scenario
s and (IOPt+k,s) is the value of the option payoff at time t + k under scenario s.
As in most ALM studies, a statistical model called Vector Auto Regressive Model
(VAR) generates the scenarios for the economic relevant variables [9]. The model is
formalized as follows:

xt+1 = a + Dxt + εt+1, (13)

where a denotes a vector of the intercepts, D denotes the matrix of coefficients, xt

is the state vector composed by the economic variables and εt+1 is the vector of
shocks to the system which is assumed to be normally distributed with zero mean
and variance-covariance matrix 
ε, εt ∼ N (0, 
ε). This model is preferred to others
because it is able to create scenarios that are essentially consistent [3]. Hence, the
present value of the conditional payoff is put into the same probability space of
management decisions. After the estimation of the coefficients D of the VAR model,
the scenarios are generated by simulating recursively from the VAR model by means
of the Cholesky matrix [6].

4 Numerical results

This methodology is applied to our dataset to generate a total number of q scenarios
equal to 2500 for the relevant economic time series and the asset classes j for the
period 2009-2022 on an annual basis. We use annual data of these series for the pe-
riod from 1970 to 2006 as the inputs for the estimation of an unrestricted first order
VAR model including assets returns, interest rates, and price inflation as endogenous
variables. On the asset side, the asset returns are generated for Commodity (GSCI
Index), Property (ROZ/IPD Dutch Property Index), Equity Growth (MSCIWI), Eq-
uity Value (MSCIWI hedged), Emerging Markets Equity (MSCI Emerging Markets
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Index). On the liability side, we make use of an original dataset provided by a real
Dutch pension fund composed by all the residual cash flows from 2008 to 2022 in the
hypothesis of the closing of the fund in 2022, estimated by actuarial simulation that
are properly linked to the other simulated economic times series. The option value at
time 0 gives the value of the option written by the pension fund to the participants.
The valuation of the IO is applied to the dataset assuming that the investment horizon
n is set equal to 14 years and the barrier h is set equal to 105 as minimum solvency
requirement defined by the Dutch Pension Law. The methodology is applied to the
dataset by means of MATLAB. An original script was devoted to the evaluation of
the embedded option. Figure 1 shows the distribution of the option payoff (IOP) for
each year as a stochastic process when the barrier is set at 105.

Therefore, for each time node, we can observe the distribution of the annual pay-
off across scenarios. We notice that the means and the standard deviations of the
payoff increase over time according to the increasing volatility of the underlying
scenario over time. We can also notice that because of the higher volatility of the
funding ratio, the frequency associated with the case where the option is knocked
out increases over time. The application of formulation 12 gives us the value of the
option. Starting from the monetary value, we can deduce the relative value to the
nominal liabilities. In this case, the option value at evaluation time (1/1/2009) for
the residual 14 years accounts for approximately 27% of the nominal liabilities, that
is to say more than 1/4 of the nominal liabilities. It is not an irrelevant percentage of
the value of the liabilities and cannot be neglected in a fair valuation.

5 Conclusions

Conditional indexation is an important issue to be taken into account in the valuation
of the liabilities of a pension fund. It is an embedded option written by the fund to
the participants in the indexation agreements. We show that a knock-out call barrier
option (with two reference assets) provides with a good framework to replicate the
conditional indexation policy. It is able to depict the full cash flows dynamics and
the adoption of a scenario based analysis allows for a valuation consistent with both
managerial targets and accounting reports. It gives the opportunity to calibrate per-
formance measurement and improve risk management to assess both the suitability
of the funding level and the effectiveness of the asset allocation. Further investiga-
tions should extend the static asset allocation to dynamic and try to define an optimal
level for the barrier. This last point is of special interest for supervision issues.
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TConditional performance attribution
for equity portfolio

Claudio Conversano and Alessio Lizzeri

Abstract. The influence of the three Performance Attribution (PA) components (As-
set Allocation, Stock Selection and Interaction) on the extra-return provided by an
equity portfolio is investigated by simulating a style investing approach based on a
Micro Decision Making (MDM) model. A Monte Carlo experiment is carried out in
order to consider different scenarios in which the MDM model operates. A condi-
tional regression tree is grown to conditionally decompose the extra-return into the
three above-mentioned PA components while controlling for Tracking Error Volatil-
ity and the turnover of each MDM portfolio. The ability of such portfolios to over-
perform the benchmark in a single period is also investigated.

Key words: Style investing, model based recursive partitioning

1 Introduction

Nowadays, a common tasks of financial market investors is to classify a huge number
of relatively homogeneous securities in specific categories. When making portfolio
allocation decisions, portfolio managers categorize these assets into broad classes
and then decide how to allocate their funds across the asset classes usually referred
to as styles [2]. The process involving the allocation of money among styles rather
than among individual securities is known as style investing [3]. Assets included in
the same style share a common feature (e.g. growth vs. value stocks, etc.). Managers
should choose to follow a specific style investing for two reasons: 1) the creation
of categories simplifies allocation decisions and allows us to efficiently process a
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great amount of information [9]; 2) classification of styles helps investors to judge
the managers’ performance, since an a priori defined asset class identifies a group of
similar managers that pursue a specific investment style. They are evaluated by com-
paring the performance of the managed portfolio with that of a benchmark portfolio
which is in some way related to their own style investing [11].

The processes of style investing are usually divided in passive and active man-
agement [10]: in passive management the aim of manager is to replicate the bench-
mark portfolio composition and performance. This approach gives broad diversifi-
cation and lower costs through a longer-term buy and hold approach to securities
which guarantees a low manager risk. Instead, the goal of active management is
to exceed the benchmark performance in a specific holding period by varying the
portfolio composition at the cost of increasing portfolio turnover and transaction
costs.

Several approaches have been developed to estimate the performance of port-
folio managers. The most popular one is Performance Attribution (PA) methodol-
ogy [4]. It decomposes the extra-return of the managed portfolio into single iden-
tifiable components according to previously identified benchmark portfolio com-
ponents. PA evaluates the effectiveness of the management decision process and
allow institutional investors to quantify the impact of managers’ decisions on the
extra-return components, provided that the analysis is consistent with the decision
process.

This paper focuses on equity portfolio management and investigates the depen-
dence of changes in the PA components with respect to features which are external
to the PA estimation model itself, such as the historical volatility, the manager abil-
ity to beat the benchmark and the degree to which the managed portfolio differs
from the benchmark one (active management). The investigation starts from a style
investing approach based on a simple Micro Decision-Making (MDM) model. A
conditional regression tree estimated through a model-based recursive partitioning
algorithm evaluates how changes in PA components are sensible to external fea-
tures.

2 Background

2.1 Performance Attribution (PA)

PA evaluates the contribution of investment decisions to the extra-return formation
through the identification of “virtual” portfolios combining the features of both the
managed and the benchmark portfolios. Denoting with Rt = ∑K

k wk,t rk,t (R̄t =∑K
k w̄k,t r̄k,t ) the total return of the managed (benchmark) portfolio in a specific

period t and with rk,t (r̄k,t ) and wk,t (w̄k,t ) the return and the relative weight of the
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k-th portfolio component, the following decomposition holds (see [1] and [5]):

δt = Rt − R̄t =
K∑
k

wk,t rk,t −
K∑
k

w̄k,t r̄k,t +
K∑
k

w̄k,t Rt −
K∑
k

wk,t R̄t

=
K∑
k

(wk,t − w̄k,t )(r̄k,t − R̄t )︸ ︷︷ ︸
Asset Allocation (AA)

+
K∑
k

w̄k,t (rk,t − r̄k,t )︸ ︷︷ ︸
Stock Selection (ST)

+
K∑
k

(wk,t − w̄k,t )(rk,t − R̄t )︸ ︷︷ ︸
Interaction (Int)

. (1)

The first virtual portfolio in (1) measures Asset Allocation (AA) by combining
the returns of the benchmark portfolio constituents with the weights of the managed
portfolio constituents. AA expresses the manager ability to take advantage from ap-
propriate market movement forecasts by changing the weights of the managed port-
folio in the most profitable way. The second virtual portfolio measures Stock Selec-
tion (ST) by combining the returns of the managed portfolio with the weights of the
benchmark portfolio constituents. ST evaluates the ability of the manager to adopt a
correct investment style since the decomposition assumes he buys stocks based on
a specific style. The third virtual portfolio represents the Interaction (Int) between
allocation and selection.

2.2 The Micro Decision-Making (MDM) model

Following [7], we consider a moving window composed by h time occasions and a
portfolio composed by K equities. MDM model can be summarized in three steps:

1. The initial weights at time t−1 of the K equities in the Time Zero Portfolio (TZP)
is determined by selecting a subset i = K/2 of portfolio constituents such that
i/2 constituents are the “best performers” and the remaining i/2 are the “worst
performers” with respect to the total return obtained by each equity from (t−1−h)
to (t − 1). TZP is inspired by the minimization of the systematic risk as defined,
among others, in [8].

2. The portfolio weight at time t of the k-th equity (k = 1, . . . , K ) is denoted as
wt,k . At each time occasion t the weight of the k-th component is defined as:

wt,k =
⎧⎨⎩

wt−1,k · (1 + ψt−1,k), if r(t−1,t),k < q1(r(t−h,...,t),k ) and wt−1,k < tα,
wt−1,k · (1 − ψt−1,k), if r(t−1,t),k > q2(r(t−h,...,t),k ) and wt−1,k > 0,
wt−1,k, otherwise,

where r(t−1,t),k the one-period return of the k-th equity while q1(r(t−h,...,t),k ) and
q2(r(t−h,...,t),k ) are two empirical quantiles such that q2(r(t−h,...,t),k ) = 1−q1(r(t−h,...,t),k ).
They refer to the distribution of the one-period returns observed from t − h to t .
For sake of brevity, hereinafter they are indicated as q1 and q2. In practice, if the
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last observed return r(t−1,t),k is lower (greater) than the left-tail (right-tail) quan-
tile q1 (q2) and the portfolio weight of the k-th equity at time t − 1 (wt−1,k) is
lower than (greater than) a threshold tα (zero), the manager has to increase (de-
crease) the weight of the k-th equity: tα is set by the user and represents the max-
imum weight of an asset in the portfolio. As such, changes in portfolio weights
derives from the comparison of the most recent 1-period return with the extreme
values of their empirical distribution so that q1 and q2 allow to set up the degree
of turnover of the managing portfolio. The extent of the increase or decrease of
portfolio weights derives from wt−1,k · (1 ± ψt−1,k), where ψt−1,k is a Trad-
ing Rule indicator which generates a buy (ψt−1,k > 0) or a sell (ψt−1,k < 0)
signal, respectively. Once that changes in weights are defined for the K equi-
ties, normalized weights are computed as w̃t,k = wt,k/

∑K
k wt,k , in order to get∑K

k w̃t,k = 1.
3. At each time t , if the number of portfolio constituents reduces such that:

K∑
k

I (w̃t,k �= 0) < i/2, with I (w̃t,k) =
{

1, if w̃t,k �= 0,
0, otherwise

a portfolio rebalancing is performed to control for diversification. A new TZP is
defined according to step 1. and portfolio weights change according to step 2.

2.3 Model Based Recursive Partitioning (MOB)

The MDM model can lead to different degrees of influence of the components of
the extra-return on the extra-return itself. To investigate this influence, a recently
proposed model-based recursive partitioning (MOB) algorithm [13] is used. MOB
estimates a parametric model M(Y, θ) in which Y is a set of n observations Yi (i =
1, . . . , n) and θ a p-dimensional vector of parameters.

In this framework, it is assumed thatM is a linear regression model yi = x ′
iθ+ei ,

such that yi is the dependent variable and xi a set of regressors. Model fitting consists
in minimizing an objective function �(Y, θ) through a regression tree in which a
model of type M is fitted in each node. Thus, �(Y, θ) corresponds to the residual
sum of squares to be minimized through Ordinary Least Squares (OLS) estimation.
MOB is based on the intuition that a global model for the whole data set may not
fit well and additional covariates zi1, . . . , zid (partitioning variables) can be used to
recursively partition the n observations.

Model-based recursive partitioning works adaptively through a greedy forward
search. The algorithm starts with the fit of M for all the observations located in
the root node. To assess whether splitting is necessary a generalized M-fluctuation
test [12] for parameter instability is performed. If there is significant instability with
respect to any of the partitioning variables zi j ( j = 1, . . . , d), the node is split into
two child nodes. The splitting variable zi j∗ is the one presenting the minimal p-
value (p j∗) falling below a pre-specified significance level α (p-values are adjusted
with the Bonferroni correction to control for multiple testing). To find out the split
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point si j∗ , an exhaustive search procedure is adopted for each conceivable split point
si j : two models M are fitted in the two possible subnodes and the split point si j∗
associated with the minimal value of the objective function �(·) is chosen. This
splitting procedure is repeated in each of the child nodes until no more significant
instabilities are found (stopping criterion).

3 Data and simulation setting

The analyzed dataset is obtained from the finance.yahoo.com database. It concerns
the time series of the major Italian Stock Exchange equity index (FTSE MIB), which
serves as benchmark, and those of the K = 40 equities composing the index itself,
which concur to define the managing portfolio, hereafter MDM portfolio. Data are
observed on daily basis from 1 January, 2000 to 31 December, 2009 (n = 2, 440).
The goal is to assess the ability of the MDM portfolio to provide an extra-return with
respect to the benchmark as well as to evaluate in different situations the incidence of
the performance components (AA, ST and Int) on the extra-return. To this purpose,
a Monte Carlo experiment is carried out: 100 independent samples of the original
FTSE MIB dataset are generated and the MDM model is applied 50 times on each
replication by varying the values of q1 with respect to 50 equally spaced values in
[.002, .100]. Consequently, since q2 = 1−q1, q2 ranges in [.090, .998]. As a result,
the simulation setting involves 5,000 different scenarios.

The MDM model described in Section 2.2 is applied in each scenario as fol-
lows:

a) The Return Based Style Analysis is used to preliminarily estimate the weights of
the benchmark portfolio constituents which are not retrievable from the original
database (see [7] and [10] for similar examples): a rolling constrained regression
model provides at each time the weight of each stock in the FTSE MIB portfolio;

b) consistent with the notation used for the MDM model, we set h=60. This time
period is used to get: a) the i = K/2 = 40/2 = 20 equities composing the TZP
(step 1. of the MDM); b) the width of the rolling window for the derivation of the
distribution of the 1-period returns on which q1 and q2 are computed (step 2. of
the MDM); c) the FTSE MIB portfolio weights as specified in a);

c) weights wt,k changes according to the rule specified in step 2. of the MDM: to
this aim, for each stock k the %b of Bollinger bands [6] is used as a Trading Rule
indicator (ψt−1,k) and the maximum weight of each asset is set to 20% (tα = .20).

The PA components introduced in Section 2.1 are then computed for the aver-
age (1-period) extra-return of the 5,000 portfolios obtained from the MDM model
together with their Tracking Error Volatility (V ). The latter and the value of the em-
pirical quantiles q1 are discretized in order to be used as partitioning variables in the
MOB algorithm. The conditional regression model is:

yi = [
β1xi,1 + β2xi,2 + β3xi,3|(zi,1 + zi,2)

]+ εi . (2)
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The goal is to measure, for each single portfolio i (i = 1, . . . , 5, 000), the condi-
tional dependence of the average extra-return (yi ) from the average PA components:
AA (xi1), ST (xi2) and Int (xi3) as specified in (2), while controlling for Vi (zi1) and
q1i (zi2). Original values of Vi and q1i have been transformed into three classes ac-
cording to the following rules:

Vi ≤ P25,V �→ Vi = 1; P25,V < Vi ≤ P75,V �→ Vi = 2; Vi > P75,V �→
Vi = 3.
q1i ≤ P25,q1 �→ q1i = 1; P25,q1 < q1i ≤ P75,q1 �→ q1i = 2; q1i > P75,q1 �→

q1i = 3,
where Pnum is the num-percentile.

The model introduced in (2) is estimated with the R package party [13].

4 Results and concluding remarks

The tree obtained by applying the MOB algorithm to the data described in Section 3
is shown in Fig. 1. It illustrates the fit of the conditional regression model intro-
duced in (2) for each terminal node of the tree through the partial scatter plots of
the response yi against each of the regressors xi j , and a line connecting the fitted
values.

Fig. 1. The tree obtained from the MOB algorithm for the data described in Section 3. Each splitting
node shows the splits induced by the partitioning variables V and q1, the split points and their
associated p-values. Each terminal node contains a fitted linear regression model as described in
(2). For these models, the partial scatter plots of the response yi against each of the regressors xi j
with a line connecting the fitted values are also reported
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It can be noted that the two partitioning variables V and q1, discretized according
to the rule described at the end of Section 3, strongly affect the relationship between
the PA components and the extra-return. This influence emerges either with respect
to a variable which does not directly affect the MDM portfolio composition (V ),
since it is a posteriori calculated as the standard deviation of the difference between
the returns of the MDM portfolio and that of the FTSE MIB portfolio, or with respect
to a variable playing a major role in the determination of the MDM portfolio com-
position (q1). From the tree inspection, it emerges that portfolios with low volatility
are located in the right branch, whereas those with high (medium) volatility in the
right (central) branch. For each branch, MDM portfolios are further partitioned by
separating those with q1 = 3 from the others (q1 = 1 and q1 = 2).

Overall, the tree structure confirms that V and q1 affect in various ways the PA
components AA, ST and Int. These differences clearly emerge from the values of the
estimated regression coefficients reported in Table 1. The latter shows a decreasing
influence of the three above-mentioned components on the extra-return when mov-
ing from the right branch to the left branch of the regression tree, i.e. as long as
Tracking Error Volatility increases. In particular, AA and Int markedly affect the
extra-return in portfolios presenting a low Tracking Error Volatility (Vi = 1) since
the values of β̂1 and β̂3 are remarkably high in the terminal nodes 4, 5 and 6. As
for ST, values obtained for β̂2 show that ST can positively affect the extra-return
only when the volatility is low (Vi = 1); it has a reverse effect when Vi = 1 or
Vi = 2 despite the value of q1 since, in these cases, β̂2 is negative. Nevertheless, the
positive value of β̂3 provides evidence that the interaction (Int) of both components
still plays an important role in these situations. This finding is also confirmed by the
values of the estimated regression coefficients obtained for the whole set of 5,000
portfolios (last row of Table 1). In general, when Vi = 1 adopting the MDM model
leads to a consistent separate contribution of both the manager ability in profitably
changing the weights of the managed portfolio (AA) and in stock picking (ST) on the

Table 1. Fitted conditional regression modelsa

Node # n β̂1(p-value) β̂2(p-value) β̂3(p-value) AIC Splits

4 552 14.11(.00) .48(.00) 14.76(.00) −3,820 V = 1, q1 = 1

5 576 14.45(.00) .71(.00) 15.44(.00) −4,145 V = 1, q1 = 2

6 122 8.50(.00) .22(.22) 9.12(.00) -901 V = 1, q1 = 3

9 1,786 3.66(.00) .10(.01) 3.56(.00) −12,405 V = 2, q1 ≤ 2

10 716 4.02(.00) −.04(.64) 3.74(.00) −4,823 V = 2, q1 = 3

12 162 2.85(.00) −.25(.01) 2.55(.01) −1,217 V = 3, q1 = 1

13 1,086 1.17(.00) −.07(.04) .61(.00) −7,688 V = 3, q1 ≥ 2

All data 5,000 3.30(.00) −.04(.05) 3.02(.00) −34,666

a Estimated coefficients (with associated p-values), number of observations, AI Cs and value as-
sumed by the partitioning variables for the fit of the regression model introduced in (2) and related
to each terminal node of the conditional regression tree shown in Fig. 1. For comparison purposes,
the last row reports the outcome of the unconditional regression model.
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Fig. 2. Boxplots summarizing the empirical distribution of the proportion of times the MDM port-
folio is able to provide a 1-period return greater than that of the benchmark portfolio. Each boxplot
refers to one terminal node of the tree obtained by applying the MOB algorithm (shown in Fig. 1)

extra-return. For Vi ≥ 2, the contribution of ST is less important and it is probably
absorbed in the interaction (Int) term.

Another important issue to investigate is the ability of the MDM portfolio to beat
the benchmark, i.e. to overperform the FTSE MIB portfolio, in each single period.
This aspect is analyzed by calculating, for the portfolios belonging to each terminal
node of the regression tree shown in Fig. 1, the proportion of times the MDM port-
folio overperforms the benchmark in a single period for each run of the Monte Carlo
experiment described in Section 3. Fig. 2 shows the notched boxplots summarizing
the empirical distribution of these proportions. For each node, the position of the
median is always above 0.5: thus, the MDM portfolio is able (on average) to beat
the benchmark particularly when the volatility is low (terminal nodes 4, 5 and 6).

Summarizing, results confirm that the PA components affect in different ways
the extra-return. Various effects are retrievable according to the observed Tracking
Error Volatility and the quantiles used to define the MDM portfolio composition.
The latter is generally able to beat the benchmark in a single period.
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TCapital requirements for aggregate risks in long
term living products: A stochastic approach

Mariarosaria Coppola, Albina Orlando, and Massimiliano Politano

Abstract. Referring to the Solvency II regulation, aim of the paper is to obtain
an estimate for the Solvency Capital Requirement of a life annuity portfolio when
stochastic interest and mortality rates are considered. We propose a computationally
tractable approach that yields an estimate for the required solvency capital when
mortality and interest rates are forecasted by means of diffusion processes. To this
aim we determine the capital requirements for each considered risk factor and then
we compute the Global Solvency Capital Requirement. Numerical applications ana-
lyzing the effect of the choice of different scenarios on the Global SCR quantification
are proposed.

Key words: Solvency II, Solvency Capital Requirement, internal models, quantile
analysis, CIR model

1 Introduction

The European solvency regulation is currently in progress. At present time, EU mem-
ber states are subject to common minimum standards beyond which the majority of
jurisdictions are applying their own additional standards, but even during the de-
velopment of Solvency I it became clear that a more comprehensive approach was
necessary. In fact, the usual practice in life insurance is based on a deterministic
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point of view. Although this practice is very prudent as to ensure the solvency of the
insurer, any unexpected deviation of the risk is excluded. For this reason the Euro-
pean Commission adopted the Solvency II directive Proposal in 2007. The Proposal
follows the three pillar philosophy developed for banks in the Basel II accords, but
it evidently introduces some innovations.

It is the main aim of Solvency II to harmonize insurance regulation across the
EU members country, improve the policy holder protection and increase the stabil-
ity of the financial system. In this context the determination of capital requirement
represents the first Pillar of Solvency II and according to [2], it is based on the de-
termination of a two level capital requirement: the Minimum Capital Requirement
(MCR) and the Solvency Capital Requirement (SCR). The MCR is the minimum
level of security below which the amount of financial resource should not fall. The
SCR represents the amount of capital that an insurer needs in ortder to remain viable
in the market and maintain its default probability below a certain level. According
to the new directive Proposal the calculation of the SCR could rely on a standard
formula, full internal models or partial internal models coupled with some parts of
the standard model.

The impact and the significance of Solvency II regulation on life insurance prod-
ucts has been analyzed by several authors. For instance, [9] gives an overview of
the main features of the Solvency II project, [6] provides an analysis of risk based
capital requirements as implemented in the U.S.A., E.U. and Switzerland. In [1] the
authors discuss the use of quantile based risk measures developed in financial and
actuarial science. [7] focuses on alternative approaches to solvency assessment over
a multiyear time horizon. The same authors in [8] analyse capital requirements for
certain portfolios coming to the conclusion that the standard formula proposed by the
CEIOPS contains some strong simplifications and argue that internal models should
be adopted instead.

In line with Solvency II directive in the following we focus on the Solvency Cap-
ital Requirement calculation based on internal models. In particular we perform a
scenario analysis for the stochastic evolution of future interest and mortality rates.
We describe the financial scenario by a square root CIR process and the demographic
one by a stochastic proportional hazard model. Considering a life annuity portfolio
we study the impact of mortality and interest changes on the expected level of the
SCR fixing our attention on some significant times of evaluation.

The paper is organised as follows: Section 2 describes the mathematical formal-
isazion of the SCR. In Section 3 the main risk components in long term living prod-
ucts are introduced and the demographic and financial risk models are presented. In
Section 4 numerical evidences are illustrated and Section 5 concludes.

2 The Solvency Capital Requirement

The SCR is one of the most important contributes of Solvency II regulation. It
“should reflect a level of eligible sum funds that enables insurance and reinsur-
ance undertakings to absorb significant losses and that gives reasonable assurance
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to policy holders and beneficiaries that payments will be made as they fall due”. As
said in the previous section the SCR calculation could rely on a full internal model.
Using an internal risk model rather than a standard formula to determine the SCR is
the more significant step in the process of shifting from simple regulatory require-
ments based on short-cut formulae to more complex calculation structures. Internal
models should provide a more accurate assessment of the insurer’s risk and enable to
manage that risk more efficiently. Therefore those models should identify, measure
and model the insurer key risks.

The Solvency II guidelines, when an internal model is considered, suggest to
compute the required capital using the Value at Risk. In particular, it is required
that the SCR “shall be calculated on the presumption that undertaking will carry
on its business as a going concern, and shall be calibrated so as to ensure that all
quantifiable risks to which an insurance or reinsurance undertakings is exposed are
taken into account. It shall correspond to the Value at Risk of the basic own funds
of an insurance or reinsurance undertaking subject to a confidence level of 99,5%
over one-year period”. Thence the required capital for the year t can be calculated
as follows:

SC Rt = V a Rα(Lt ) − E(Lt ), (1)

where Lt is the actuarial liability we refer to compute the associated solvency cap-
itals. In this context, Value at Risk is computed using a stochastic simulation ap-
proach referring to different scenarios. Most often, scenario analysis is one of the
widely used methods in insurance: for example one should perturb the best estimate
of the risk factors by stressing some of the parameters in order to quantify the capital
necessary to face adverse fluctuations in the level of the risk factor considered.

When different risk factors are considered the capital requirement is calculated
separately for each of them and then the Global SCR at time t can be derived by
aggregating each single SCR accordingly the equation:

SC R(t)
global =

√∑
j

∑
i

θi, j SC R(t)
j SC R(t)

i , (2)

being the dependency structure � = (
θi, j
)

i>0, j>0 pre-defined by the regulator.
Those required capitals, for each different year t, have to yield a return to the

shareholders. The whole margin to take into account, the shareholders return re-
quirement, is called risk margin and is seen as the price of risk.

3 Risk components in long term living products:
description and modeling

Considering long term living products such as life annuities or pension annuities, the
overall risk derives from the background where the insurance company performs its
activity. In particular, in this background we can recognize two main risk factors:
the financial risk and the demographic risk. The former is due to the uncertainty in
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the markets where the company invests and comes out from the differences between
the actual return on assets and the interest rates adopted in the technical bases. The
latter results from the differences between the anticipated mortality rates and the
actual ones. In long term life contracts the time horizon is generally wide enough to
capture significant variations in mortality trends with considerable consequences on
financial valuations. Therefore, in a solvency perspective, the different risk aspects
connected to the deviations of life duration are crucial: such risk sources come true
throughout both accidental errors and systematic deviations of the real data about
deaths from their expected values.

In light of the above considerations, to obtain a correct valuation of the future
exposure of the insurer or pension fund, it is fundamental a careful choice of models
depicting the financial and the demographic dynamics respectively. To describe the
financial scenario we refer to the CIR model which has many desirable features such
as supporting empirical evidence, positiveness of the interest rates under certain con-
ditions [3], uncomplicated fitting to data, mean reversion, interest rates dependent
volatility and availability of closed-form pricing formula. Under the CIR model the
short rate evolves according to the SDE:

drt = −α (rt − μ) dt + σ
√

rt dWt , (3)

where α and σ are positive constants, μ is the long term mean and Wt is a Wiener
process. For describing the evolution in time of the actual scenario concerning the
development of mortality we choose the stochastic proportional hazard model sug-
gested in [5], where it is proposed the following stochastic model for the death rate in
which the deterministic anticipated realization of the force of mortality is considered
together with a stochastic factor:

Bx,t = μx+t Yt , (4)

being μx+t the deterministic function chosen to depict the development of the force
of mortality for a live aged x after t years and representing the baseline of the process.
In formula (4) Yt is described by a CIR model governed by the SDE:

dYt = −α∗ (Yt − γ ) dt + σ ∗√Yt dWt Y0 = 1, (5)

where α∗ and σ ∗ are positive constants, γ is the long term and Wt is a Wiener pro-
cess. Posing Y0 = 1 we obtain that the value of the process Bx,t in t = 0 coincides
with the initial observation, that is Bx,t = μx+t , t = 0. Yt is positive and for
2α∗ ≥ σ ∗2 it does not reach 0. As a consequence, the death rate Bx,t is positive
too. The drift factor α∗ (γ − Yt ) ensures mean reversion of Yt towards the long term
mean γ . Therefore setting γ = 1 is reasonable if a good choice of the deterministic
function μx+t is made being, in this case, the long term value equal to the position
of the process in t = 0. This feature of the model allows us to calibrate the long term
mean γ taking into account the improvement in survival trend of the lives aged x
depicting different mortality scenarios.
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4 Numerical applications

In this section we discuss the Global SCR calculation for a portfolio of life annuities.
In particular we refer to a cohort of 1000 immediate life annuities. We assume that
all annuitants are aged 65 at time 0 and are all entitled to receive a unitary annual
amount at each time t = 1, 2, 3, . . . until death.

The two considered risk sources (financial and demographic) are modelled as in
Section 3 and are treated as independent each other. In both cases the parameter
estimation procedure follows the methodology proposed in [4]. Referring to the 3-
month Euribor rate for the period January 1999 - October 2009 and setting the initial
value r(0) = 0.0074, we obtain for the CIR describing the evolution in time of the
spot rate the following values: α = 0.0362, σ = 0.011.

Considering the input dataset given by the mortality data of Italian male-female
population for the period 1961-2006, we estimate for the stochastic proportional
hazard model the values: α∗ = 0.0972, σ ∗ = 0.0062. As these rates are tabled
for age classes, we obtain a set of parameters for each age class. In our case the
parameters refer to a life aged 65, the baseline of the process is given by the Italian
survival male-female table 2006 and the initial value of the stochastic factor equals
one as mentioned in Section 3.

In line with a scenario analysis approach, we perturb the best estimate of the risk
factors by stressing the long term mean of both processes. In particular we consider
two different scenarios:

Scenario a
As regard the interest rates we choose μ = 2.5% according to the interest rate ap-
plied by I.N.P.S. (Italian National Pension Institute). Referring to the demographic
scenario we set γ = 1; as explained in Section 3 it means that we made a good
choice of deterministic function as shown in Fig. 1.
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Fig. 1. Survival probabilities. γ = 1. Italian male-female population 2006
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Fig. 2. Survival probabilities.γ = 0.35. Italian male-female population 2006

Scenario b
We suppose a worsening respect to scenario a both for financial and demographic
environments setting respectively μ = 1% and γ = 0.35. Choosing γ = 0.35 we
obtain a survival function more projected than in scenario a as shown in Fig. 2. We
calibrated γ taking into account the betterment in the Italian mortality trend over the
last 20 years.

Then we calculate the Global SCR of the considered life annuity portfolio in a
year by year approach referring to the net present debt towards the policyholder Lt .

In the case of an immediate life annuity portfolio, if t px is the probability that the
individual aged x survives at the age x + t , we have:

E [Lt ] =
∑
j>t

cY j E
[

t px j px+t
]

E
[
v (t, j)

]
, (6)

where c is the number of the policies, Y j for j > t consists of the insurer’s obliga-
tions at time j and v(t, j) is the value at time t of a monetary unit available at time
j . In our case E

[
t px j px+t

]
and E

[
v (t, j)

]
are calculated according to the models

described in Section 3.
With reference to formulas (1) and (2) we need to compute the VaR of the li-

abilities at each time t for the financial risk factor (V ar f
α (Lt )) and for the demo-

graphic one (V arm
α (Lt )). Coherently to the Solvency II Proposal the chosen con-

fidence level is α = 99.5%. To this purpose we resort to a stochastic simulation
procedure. The distribution of Lt can be approximated by the histogram of Lt val-
ues. Sorting the values into an increasing sequence from the worst to the better cases,
so that Lt ( j −1) > Lt ( j), the V arα for each risk factor is estimated. To this aim we
simulated 10000 paths for interest and mortality rates. Referring to the two described
scenarios we focus our attention on some results shown in Table 1.
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Table 1. SC R(t)
global calculations for some t value

time scenarios V ar f
α (Lt ) V arm

α (Lt ) E [Lt ] SC R(t)
global

t = 5 a 12547.5 12485.8 12386.3 189.4

b 19282.1 19306.9 18996.6 439.7

t = 10 a 9909.2 9910.2 9825.8 118.7

b 16078.3 16212.6 15926.5 323.9

t = 15 a 7400.4 7423.7 7358.5 77.5

b 12996.2 13048.8 12884.2 199.1

t = 20 a 5175.3 5197.7 5151.4 52.1

b 10101.9 10112 10017.1 127.3

It clearly shows a decreasing trend of E [Lt ], V ar f
α (Lt ) and V arm

α (Lt ) when
the valuation time increases, coherently with the kind of contracts composing the
portfolio. According to its nature the SC R(t)

global decreases with time too.
Shifting from scenario a to scenario b we can observe that, for each t , all the

quantities increase determining a worsening of the insurer’s financial position. In
particular in that case a higher level of SCR will be required. From an actuarial
point of view this phenomenon is due to the decreasing risk exposure of the insurer
as the remaining lifetime of the insured decreases. Choosing different values for the
two stochastic processes described in Section 3, we depict two possible scenarios for
interest and mortality rates. Hence this analysis enables the insurer getting prudential
valuations. In our case the adoption of scenario b leads to a Global SCR that is more
than double the one obtained adopting the less prudential scenario a.

5 Conclusions

In this paper we proposed a stochastic approach for evaluating the Solvency Capital
Requirement. In line with the Solvency II proposal we based our analysis on internal
model and we computed the required capital using the Value at Risk. We considered
two main risk sources, the financial and the demographic one, supposing them inde-
pendent each other. We chose the CIR model and the stochastic proportional hazard
model for describing respectively the evolution in time of the financial and demo-
graphic environment. According to a scenario analysis approach we perturbed the
best estimate of the risk factors stressing the long term mean of both the processes.
In this context we considered the case study of a life annuity portfolio. Referring
to the net present debt towards the policyholder we estimated the global SCR in a
year by year approach. The suggested methodology enables the insurer to evaluate
its financial position taking into account different cases for the evolution in time of
interest and mortality rates.

Further research on this subject could be oriented in considering the volatility of
mortality behaviour and the quantification of the risk components contribution on
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the GlobalSCR focusing on longevity risk. Finally another interesting development
could be the adoption of the more complicated hypothesis of dependence between
the changes occurring in financial and demographic scenarios, according with the
recent literature.
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Abstract. In the classical model for portfolio selection the risk is measured by the
variance of returns. Recently several alternative measures of risk have been pro-
posed. In this contribution we focus on a class of measures that uses information
contained both in lower and in upper tail of the distribution of the returns. We con-
sider a nonlinear mixed-integer portfolio selection model which takes into account
several constraints used in fund management practice. The latter problem is NP-
hard in general, and exact algorithms for its minimization, which are both effective
and efficient, are still sought at present. Thus, to approximately solve this model
we experience the heuristics Particle Swarm Optimization (PSO) and we compare
the performances of this methodology with respect to another well-known heuristic
technique for optimization problems, that is Genetic Algorithms (GA).
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1 Introduction to PSO

Particle Swarm Optimization is an iterative heuristics for the solution of nonlinear
global optimization problems [10]. It is based on a biological paradigm, which is
inspired by the flight of birds in a flock, looking for food. Every member of the flock
explores the search area keeping memory of its best position reached so far, and it
exchanges this information with its neighbors.

In its mathematical counterpart the paradigm of a flying flock may be formu-
lated as follows: find a global minimum (best global position) in a nonlinear and
nonconvex minimization problem. Every member of the swarm (namely a particle)
represents a possible solution of the minimization problem, and it is initially posi-
tioned randomly in the feasible set of the problem. Every particle is also initially
assigned with a random velocity which is used to determine its initial direction of
movement.

The overall PSO algorithm with M particles , as in the version with inertia weight
proposed in [13], works as follows in a minimization problem:

1. Set k = 1 and evaluate f (xk
j ) for j = 1, . . . , M . Set pbest j = +∞ for j =

1, . . . , M .
2. If f (xk

j ) < pbest j then set p j = xk
j and pbest j = f (xk

j ).
3. Update position and velocity of the j -th particle, j = 1, . . . , M , as

vk+1
j = wk+1vk

j + Uφ1 ⊗ (p j − xk
j ) + Uφ2 ⊗ (pg( j) − xk

j ), (1)

xk+1
j = xk

j + vk+1
j , (2)

where Uφ1,Uφ2 ∈ Rd and their components are uniformly randomly distributed
in [0, φ1] and [0, φ2] respectively.

4. If a convergence test is not satisfied then go to 1.

The symbol ⊗ denotes component-wise product and pg( j) is the best position in
a neighborhood of the j -th particle. The specification of the neighborhood topology
is then a choice to set. In our implementation we have considered the so called gbest
topology, that is g( j) = g for every j = 1, . . . , M , and g is the index of the best
particle in the whole swarm. The value of the inertia weight wk , a parameter that
forces the convergence of the swarm to solution and prevents the “explosion” of the
particles’ trajectories in the search space, is generally linearly decreasing with the
number of steps, i.e.

wk = wmax + wmin − wmax

K
k . (3)

In this work we have used the most common values for wmax and wmin found in
the literature, that are respectively 0.9 and 0.4, while K is the maximum number of
steps allowed.



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TPortfolio selection with an alternative measure of risk: comparison of PSO and GA 125

2 Portfolio selection and risk measures

The basic idea in the portfolio selection problem is to select stocks in order to maxi-
mize the portfolio performance and at the same time to minimize its risk. This implies
that for a formal approach to the latter problem, a correct definition of performance
and risk of the portfolio is required. While there is a general agreement about the
measurement of performance by the expected value of the future return of the port-
folio, the discussion regarding an adequate measure of risk is still open.

In the classical approach, since the work of Markowitz [11], variance is used to
measure risk, but this has one major shortcoming: it leads to optimal investment de-
cisions only if investment returns are elliptically distributed or if the utility function
of investors is quadratic. This consideration has opened the way for the research on
alternative measures of risk, and recently there has been a growing interest for the
so called coherent risk measures introduced in [1].

In [4] Chen and Wang have investigated the possibility of building a new class of
coherent risk measures, by combining upper and lower moments of different orders.
This approach seems to have several advantages with respect to others considered so
far. Indeed, on one hand these measures better couple with non normal distributions
than ones based only on first order moments. On the other hand, they better reflect
investors’ risk attitude, for at least a couple of reasons. First they are less affected by
estimation risk than measures that use only information from the lower part of the
return distribution. Moreover, according with the conclusions presented in [4], their
use in the portfolio selection problem allows for more realistic and robust results,
compared with the ones obtained using CVaR.

In this contribution we use this class of risk measures for a portfolio selection
problem similar to the one considered in [4], with the addition of the cardinality con-
straints, which yield a final model in the class of nonlinear mixed-integer program-
ming problems. For the latter scheme (which is an NP-hard problem [12]) at present
there are not both efficient and effective algorithms as for the problem considered
in [4]: this motivates the possible introduction of evolutionary heuristic methodolo-
gies as PSO.

2.1 The portfolio selection model

Let X be a real valued random variable defined on a probability space (�,F ,P),
and let us denote ‖X‖p = (E[|X |p])1/p, p ∈ [1,+∞[, where E[·] indicates the
expected value of a random variable. Then, the measures of risk introduced in [4]
are defined as:

ρa,p(X) = a‖(X − E[X ])+‖1 + (1 − a)‖(X − E[X ])−‖p − E[X ], (4)

where a ∈ [0, 1], X− = max{−X, 0} and X+ = (−X)−.
For a and p fixed, any risk measure of this class is a coherent risk measure (see

[7]): for a proof of this and a detailed description of its properties we refer the reader
to [4]. We only remark here that ρa,p is non-decreasing with respect to p and non-
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increasing with respect to a. Thus, the value of these parameters can be adjusted to
reflect different attitudes of the investors towards risk.

The portfolio selection model we consider is the following one: suppose we have
N assets to choose from, and for i = 1, . . . , N let xi ∈ R be the weight of asset i
in the portfolio, with X T = (x1 · · · xN ). Let zi ∈ {0, 1} with Z T = (z1 · · · zN ) be
a binary variable, such that zi = 1 if the asset i is included in the portfolio, zi = 0
otherwise. Moreover, for i = 1, . . . , N , let ri be a real valued random variable that
represents the return of asset i , with r̂i its expected value, i.e. r̂i = E[ri ]. Then,
the random variable R ∈ R that represents the return of the whole portfolio can be
expressed as R = ∑N

i=1 xiri , with expected value R̂ = ∑N
i=1 xi r̂i .

Then, our overall portfolio selection problem can be written as follows:

min
X,Z

ρa,p(R),

s.t. R̂ ≥ l,
N∑

i=1

xi = 1,

Kd ≤
N∑

i=1

zi ≤ Ku,

zi d ≤ xi ≤ zi u, i = 1, . . . , N ,

zi (zi − 1) = 0, i = 1, . . . , N .

(5)

The first constraint in (5) represents the minimum desirable expected return l of
the portfolio, while the second one is the usual budget constraint. Then we have the
cardinality constraint: we neither select a too small subset of our assets (Kd ) nor
a too large one (Ku). The latter choice summarizes a quite common problem for a
fund manager, who has to build a portfolio by choosing from several hundreds of
assets. Moreover, we require that any of the selected assets xi must not constitute a
too large or too small fraction of the portfolio (i.e. zi d ≤ xi ≤ zi u, where d and u
are positive parameters, with d ≤ u). The last N constraints are introduced to model
the relations zi ∈ {0, 1}, i = 1, . . . , N .

Of course, (5) is a reformulation of a nonlinear and nonconvex mixed-integer
problem, where the constraints zi ∈ {0, 1}, i = 1, . . . , N , are replaced by the re-
laxations zi (1 − zi ) = 0, i = 1, . . . , N . Detecting precise solutions of (5) may be
heavily time consuming in case exact methods are adopted.

3 Optimization using PSO and GA: reformulation of the
portfolio selection problem

Originally PSO was conceived for unconstrained problems. Thus, in general using
PSO formulae (1)-(2), when constraints are included in the formulation, is improper.
Indeed, in the latter case the PSO algorithm cannot prevent from generating infea-
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sible particles’ positions, unless specific adjustments are adopted. When constraints
are included, different strategies were proposed in the literature (see also [2]) to en-
sure that at any step of PSO, feasible positions are generated. Most of them involve
repositioning of the particles, as for example the bumping and random positioning
strategies proposed in [15]. In this paper we decided to use PSO as in its original
formulation, so we have reformulated our problem into an unconstrained one, using
the nondifferentiable �1 penalty function method described in [14, 8]. Our reformu-
lation of (5) (which has N +1 equality constraints and 2N +3 inequality constraints)
is given by

min
X,Z

P(X, Z ; ε)
and uses the nondifferentiable penalty function

P(X, Z ; ε) = ρa,p(R) + 1

ε

[
max{0, l − R̂} +

∣∣∣∣∣
N∑

i=1

xi − 1

∣∣∣∣∣
+ max

{
0, Kd −

N∑
i=1

zi

}
+ max

{
0,

N∑
i=1

zi − Ku

}
(6)

+
N∑

i=1

max{0, zi d − xi } +
N∑

i=1

max{0, xi − zi u}

+
N∑

i=1

|zi (1 − zi )|
]

and ε is the penalty parameter. The correct choice of ε ensures the correspondence
between the solutions of problems (6) and (5) (see also [6]). Of course, since PSO is a
heuristics, the minimization of the penalty function P(X, Z ; ε) theoretically does not
ensure that a global minimum of (5) is detected. Nevertheless, PSO often provides
a suitable compromise between the performance (i.e. a satisfactory estimate of a
global minimizer for (5)) and the computational cost. To analyze the performance
of PSO we compare it with another well known evolutionary heuristic methodology
for optimization problems, that is a genetic algorithm (GA) in its standard form, that
is starting from an initial population of solutions we generate a new one using the
following three steps: tournament, basic crossover and basic mutation. For sake of
brevity we refer the reader to [9] for more details on GA.

4 Numerical results

In this section we briefly report the conclusions of the numerical results we have
obtained (for further results and references see also [5]).

As input data we have used the time series of the daily close prices of the 32 assets
belonging to Italian FTSE MIB index from January 2003 to May 2009. Using the
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same idea of [4] we have estimated the risk measure for any portfolio X as

ρa,p(R) = a

T

⎡⎣ T∑
t=1

(
N∑

i=1

(ri,t − r̂i )xi

)+⎤⎦

+ (1 − a)

⎧⎨⎩ 1

T

T∑
t=1

⎡⎣( N∑
i=1

(ri,t − r̂i )xi

)−⎤⎦p⎫⎬⎭
1
p

,

where r̂i is estimated using the historical data, that is

r̂i = 1

T

T∑
t=1

ri,t .

To reflect a realistic problem of portfolio selection, we set the values d = 0.05
and u = 0.20 in (6). For the cardinality constraint we have set Kd = 5, while we
have considered two different values for Ku : Ku = 20 and Ku = 10. The PSO and
GA algorithms to solve problem (6) have been implemented in MATLAB 7, and
the experiments have been performed on a workstation Acer Aspire M1610 with an
Intel Core 2 Duo E4500 processor.

We stopped PSO iterations when either of the following stopping criteria was
satisfied:

a) the maximum number of 10000 steps was outreached;
b) | f bestk+1 − f bestk | < 10−8 for 2000 consecutive steps, where f best = f (pg)

is the current best value of the fitness function f = P(X, Z ; ε).
After some preliminary tests, aiming to use values for the parameters as standard

as possible in the literature, we selected the values ε = 10−6 and M = 50.
We solved the portfolio selection problems for different values of the parameters

of the risk measure ρa,p , and Ku , considering one year data of daily returns of dif-
ferent time periods. For every combinations of the parameters and the data-set, we
did first 50 runs of the algorithm, each with different random initial positions and
velocities. We then iterated the procedure in the following way: we did other 50 runs
of the algorithm, with again random initial velocities for all particles, but we used the
50 global best positions found in the previous phase as initial positions. At the end of
this second phase we obtained convergence to the same global best position for each
run (in general not corresponding to the best position of the previous 50 ones) and
we assumed this to be the global minimum (X∗, Z∗) of the optimization problem.

We remark that the monotonicity properties expected by theoretical results ([4,
Theorem 2.3]) were respected by the results found using PSO, also with Ku = 10.
This is shown in Table 1 and Table 2. We also observe that the diversification of
the portfolio, measured by the number of assets, is decreasing with a and increasing
with p, and this is consistent with the different attitudes towards risk expressed by the
values of these parameters. The same considerations apply using data from different
time periods.
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Table 1. Monotonicity of ρa,p(X∗) for p = 2 and different values of a and Ku , with one year data
from 2003-04

a = 0 a = 0.25 a = 0.5 a = 0.75 a = 1

ρa,2;Ku=20 0.004962 0.004667 0.003560 0.002816 0.002165

N. of assets 20 18 17 16 15

ρa,2;Ku=10 0.004968 0.004748 0.003619 0.002934 0.002372

N. of assets 9 10 9 9 9

Table 2. Monotonicity of ρa,p(X∗) for a = 0.5 and different values of p and Ku , with one year
data from 2003-04

p = 1 p = 2 p = 5

ρ0.5,p;Ku=20 0.002024 0.00356 0.006787

N. of assets 15 18 19

ρ0.5,p;Ku=10 0.00209 0.003619 0.00697

N. of assets 8 10 10

Table 3. Average standard deviation and computational time of 50 runs of PSO and GA for p = 2,
Ku = 10 and different values of p

a = 0 a = 0.25 a = 0.5 a = 0.75 a = 1

σ(P SO) 0.0904% 0.1026% 0.0727% 0.0657% 0.0315%

σ(G A) 0.0751% 0.0701% 0.0636% 0.0529% 0.0286%

t̄(P SO) 30.04 31.25 29.87 30.35 32.03

t̄(G A) 315.27 298.82 308.12 330.23 321.73

To analyze the performance of PSO with respect to GA, since the results in terms
of the risk measure are approximately the same, we compared the standard deviations
of the optimal risk measure in the first 50 runs of the two algorithms, in order to
investigate the consistency of the algorithms, that is the capability of the two methods
to converge to the same solution in each run. We observed a little better performance
of GA in this respect, especially in the case Ku = 10, but this has a cost: the average
computational time in seconds is then approximately 10 times larger. An example
of the results obtained is reported in Table 3.

In order to analyze the financial meaning of the portfolios obtained, we used PSO
to solve another portfolio selection problem, using variance as measure of risk, and
keeping the same set of constraints of problem (5). By comparing the diversification
of the two portfolios obtained, it appears that when the cardinality constraint is in its
weaker form, that is Ku = 20, the diversification obtained using ρa,p is higher than
using variance, and it is increasing with p. This is also consistent with the results
obtained in [4], where the cardinality constraint was not explicitly introduced, and
the comparison was made with respect to CVaR.
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5 Conclusions

The results obtained suggest that when challenging nonlinear and nonconvex mixed-
integer reformulations of portfolio selection are considered, including complex ob-
jective function landscapes and a set of constraints, then PSO provides a satisfactory
compromise between the performance and the computational workload required.
The latter conclusion comes up from our experience, by comparing PSO with GA,
when the dimensionality of the problem is high. More investigation is needed to
check the dependence of the performance of PSO with respect to the initial position
and velocities of the particles (see [3]) and to a different strategy for handling the
constraints of the problem.
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Abstract. In the last decades, interdependence among financial markets of different
countries has represented a preferred topic in both theoretical and empirical studies.
The prime focus of this paper is on the detection and evaluation of financial con-
tagion and herd behaviour, which are accounted as predominant features of inter-
national markets. To this purpose we suggest to exploit the framework provided by
latent Markov modelling, which we find extremely useful for detecting and defin-
ing the different stock market phases, referred to as regimes. Furthermore, we in-
vestigate the transitions between market phases by means of the regime switching
probabilities, still provided within latent Markov models. The comparison between
the dynamics of the latent stochastic processes underlying the observed time series
of the international stock market returns provides significant insights on the level of
their interdependence and on the measurement of contagion effects during financial
crises. Our work contributes to the existing literature on both financial time series
analysis and clustering and introduces a powerful and innovative approach for eval-
uating the linkages of the stock markets in different countries.
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1 Introduction

Interdependence and linkage among financial markets of different countries have
grown substantially over the last decades. Stronger and more frequent co-movements
in stock markets have also increased the chance of financial contagion, that is the
cross-country transmission of shocks. Since the early 90s, detection and evaluation
of financial contagion represent a preferred topic in both theoretical and empirical
studies. Among the earlier contributions to the assessment of interdependence and
contagion among international stock markets, the analysis of correlation coefficients
in low and high volatility periods plays a fundamental methodological role. In this
framework, a sharp increase in the correlations between stock market returns after a
shock in one country can be interpreted as evidence of contagion. This approach has
been introduced by [7] which develop a straightforward correlation test. The authors
find evidence of both interdependence and contagion between US, UK, and Japanese
stock markets after the US crash of October 1987.

However, the finding of the increase in cross-market correlations during the vola-
tile period of financial crisis has recently been challenged. In particular, [5] and [10]
argue that the presence of heteroskedasticity in stock market returns have a signif-
icant impact on estimates of correlation coefficients. This heteroskedasticity bias is
explained by the tendency of correlation coefficients to substantially increase dur-
ing periods of high market volatility. Once cross-market correlations are adjusted for
heteroskedasticity, evidence of contagion disappears. For this reason, [5] conclude
that there is ’no contagion, only interdependence’.

Against this finding, [3] assert that it is not possible to use the procedure proposed
by [5] for detecting contagion since it does not allow one to distinguish whether
the rejections of the null hypothesis of stability are due to parameter shift (case of
contagion) or to a violation of its restrictive heteroskedasticity assumption under the
null. Furthermore, [4] argue that the lack of evidence of contagion can be attributed
to arbitrary assumptions on the variance of the market-specific noise in the country
where the crisis started.

Finally, [3] state that the exogenous choice of stable and crisis periods dramati-
cally affects the results.

We propose to address these limitations by using Markov-Switching (MS) ap-
proaches. The MS models provide a framework in which market regimes are asso-
ciated with various combinations of low and high volatility in each country. In this
context, interdependence is detected when a switch in regime in the stock market in
one country leads to a change in regime in the market of another country. Whereas
contagion is represented by a switch in regime of the dominant market, that is the
country which is considered the originator of the crisis, which causes a shift in regime
in another market with a lag.

In the framework of MS models, many authors have advanced some proposals,
obtaining mixed evidence about the presence of contagion across international stock
markets. For instance, [1] proposes a study on the effect of globalization on market
interdependence using a MS-GARCH model, finding evidence of interdependence
between stock markets and some contagion. [6] advance a multi-chain MS model for
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detecting volatility spillovers and interdependence, concluding that there has been
some contagion effects and interdependence between the East Asian stock markets
during the financial crises of the late 1990s. Analyzing the same crisis and countries,
[9] use an extension of the procedure developed by [10] by modeling the conditional
correlation coefficients with a MS-VAR, finding evidence of contagion.

The main advantages of MS approaches can be summarized in two points. First,
MS models allow us to make endogenous the process of separating crisis from non-
crisis periods. In these approaches, the analysis is not limited to specific episodes
of crisis but the periods of high and low volatility are selected by the model itself.
Second, MS considers some well-known properties of the return distribution such
as non-normality, the presence of fat-tails, regime-switching in the conditional mo-
ments (non-linearity), and time-varying volatility.

In this paper, we further develop the methodology for the analysis of contagion
by suggesting a latent Markov model (LMM) approach. In this framework, we are
able to analyze the dynamic pattern and co-movements of financial markets on the
basis of an unobservable stochastic process characterized by a first-order Markov
chain which underlies the observed return time series distribution. In particular, we
specify a model defined by two dependent processes, the first for the dominant mar-
ket and the second which evaluates the interrelations between the dominated and the
dominant markets. Our proposal shares the same advantages of the MS approaches.
In particular, LMM allows the endogenous discrimination of stable and crisis peri-
ods and treats non-normality, fat-tails and non-linearity in the conditional moments.
As the MS approaches, LMM enables the implementation of a test and the use of
information criteria for determining the number of latent states which character-
ize the unobservable Markov chain and which, in our proposal, represent the dif-
ferent regimes of the stock markets. Furthermore, with respect to MS approaches,
LMM leads to a simplification of the model specification which provides the re-
quired flexibility for an accurate definition of the number of the regimes. Within our
proposal, we are able to achieve a specific focus on crisis periods and, in particular,
to obtain a probabilistic evaluation of interdependence and contagion between stock
markets.

2 Methodology

The latent Markov model, also known as the hidden Markov model [2, 8], is a pow-
erful tool for investigating the dynamics of a set of observed responses. In particular,
LMM is extremely useful for describing the dynamic pattern of financial time series
and provides conditional probabilities as a measure of regime-switching.

The model classifies the time observations in S latent classes (which are usually
referred to as latent states), representing homogenous groups, which can be seen
as different stock market regimes. In this framework, we propose to focus on condi-
tional means which characterize the different market regimes, while conditional vari-
ances are controlled by means of the classification process provided by the LMM.
Since different latent states are able to capture heteroskedasticity which character-
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izes financial data, our proposal allows us to control both latent expected return and
heteroskedastic latent risk (i.e. volatility).

2.1 Model specification

Denoting by zit the return observation of stock market index in country i at time
t, where t = 1, . . . , T , the LMM analyzes f (�zi ) which is the probability density
function of the return distribution of stock market i, over time by means of a latent
transition structure defined by a first-order Markov process. For each time point t the
model defines one discrete latent variable, denoted by y(i)

t , constituted by Si latent
states. The LMM is specified as

f (�zi ) =
Si∑

y(i)
1 =1

· · ·
Si∑

y(i)
T =1

f (y(i)
1 )

T∏
t=2

f (y(i)
t |y(i)

t−1)

T∏
t=1

f (zit |y(i)
t ). (1)

The model in (1) is characterized by three probability functions:

1. f (y(i)
1 ) is the (latent) initial-state probability;

2. f (y(i)
t |y(i)

t−1) is a latent transition probability which denotes the probability of
being in a particular latent state at time t conditional on the state at time t − 1.
The generic element of the latent transition matrix P(i) is the p(i)

kw, with k, w =
1, . . . , Si , which denotes the probability of switching from latent state k to latent
state w.

3. f (zit |y(i)
t ) is the Gaussian density function for the observation, that is the prob-

ability density of having a particular observed return of stock market index in
country i at time t conditional on the latent state occupied at time t .

The LMM relies on two main assumptions: first, we assume that the sequence of
the latent states y(i)

t for t = 1, . . . , T follows a first-order Markov chain, i.e. y(i)
t is

associated only with y(i)
t−1 and y(i)

t+1; second, the observation at a particular time point
is independent of observations at other time points conditionally on the latent state
y(i)

t . The latter implies that the observed index return at time t depends only on the
latent state at time t and it is often referred to as the local independence assumption.

In order to evaluate interdependence and comovements, we propose to specify
two dependent processes, that is we extend the LMM in (1) by adding the following
equation to the model:

f ( �z j |�zi ) =
S j∑

y( j)
1 =1

· · ·
S j∑

y( j)
T =1

Si∑
y(i)

1 =1

· · ·
Si∑

y(i)
T =1

f (y( j)
1 |y(i)

1 ) ×

×
T∏

t=2

f (y( j)
t |y( j)

t−1, y(i)
t−1)

T∏
t=1

f (z j t |y( j)
t ). (2)
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Here, we assume that stock market in country j depends on the stock market in
country i . In this specification, the model is a system of two LMMs, the first, which
is referred to country i , is given in (1), whereas the second, which analyzes the re-
lationship between the stock market in country j conditional on the stock market in
country i , is reported in (2). The latter equation explicitly specifies the relationships
of dependence and interaction of the two stock markets. Specifically, both latent
initial-state and latent transition probabilities of country j depend on the correspond-
ing probabilities of country i . In particular, the latent transition probabilities of stock
market in country j at time t depend on both the latent state of country j occupied
at time t − 1 and the state of country i occupied at time t − 1. Thus, market regime
switching for country j is influenced by the market regime experienced by country
i at the previous time point.

The total number of parameters of the LMM specified above is N Par =
Si (Si + 1) + S j (S j + 1) + 2(Si − 1)(S j − 1). These parameters are estimated
by means a variant of the EM procedure, the forward-backward or Baum-Welch al-
gorithm [2] which exploits the conditional independencies implied by the model in
order to circumvent the computational problem due to high values of T .

2.2 Evaluation of interdependence and contagion

The LMM specified in Section 2.1 allows a straightforward evaluation of both inter-
dependence and contagion. In our framework, we identify a period of crisis on the
basis of the regime characterized by strong negative returns, i.e. on the basis of the
latent state estimated by the LMM which corresponds to the most negative value for
the conditional mean.

First, interdependence can be detected by means of the conditional probabilities

Ik = f (y( j)
t = k|y(i)

t = k), (3)

that is when the country j is experiencing the same latent state as country i at time
t . In particular, denoting latent state 1 as the crisis regime, the probability I1 =
f (y( j)

t = 1|y(i)
t = 1) suggests the presence of interdependence of crisis between

countries i and j .
Analogously, also the evaluation of contagion can be achieved by means of the

conditional probabilities; again, indicating a crisis with latent state 1, we detect con-
tagion when, whatever state country j was at time t − 1, country i was in state 1 at
time t − 1 and country j is in state 1 at time t :

C = f (y( j)
t = 1|y( j)

t−1 = k, y(i)
t−1 = 1), (4)

for k = 1, . . . , S j .
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3 Model estimation and results

We apply the LMM described above to a data set concerning the weekly return dis-
tribution from January 5th 1990 to January 1st 2010 for a total of T = 1044 obser-
vations of two international stock market indices: the US S&P-500 and the German
XETRA-DAX. The correlation coefficient between S&P-500 and XETRA-DAX in-
dices is 0.697 which underlies a strong (positive) relationship among the two stock
markets. Obviously, our assumption is that the US stock market dynamics could in-
fluence the German market. This assumption implies a LMM specification in which
the country i is represented by the US and it can be modelled as a LMM for a single
stochastic process (i.e. (1)), whereas Germany is denoted by j in (2).

The first step of the analysis consists of determining the number of latent states
which characterize the two stock markets. This is a fundamental step of our analysis
since Si and S j represent the different market regimes which characterize the US and
German market, respectively. According to AI C and chi-square likelihood ratio test,
the model which provides the best fit to the data is the LMM with Si = 7 and S j = 5
latent states (L L = -4620.86, N Par = 134, AI C = 9509.72). Hence, the model
identifies 7 and 5 different market phases for US and Germany, respectively. We
could have expected a lower number of market phases but, by interpreting this result,
we want to stress how our completely subjective opinion about the stock market
regimes could have been too optimistic and how it could also be possible that the data
generating processes in stock markets are not so simple as we would like. Moreover,
during the period 1990-2010, stock markets have experienced many shocks and big
crises and, therefore, many phases could lead to a consistent representation of the
financial variable dynamics. We want to point out how, within our framework, we
are able to introduce a rigorous methodological approach for defining the number of
market regimes which allows to avoid a subjective a priori decision.

Each latent state can be characterized on the basis of the probability density func-
tions and conditional means, as reported in Table 1 where latent states are ranked
according to their μ̂ values. The first and third rows in Table 1 provide the size of
each latent state which indicates the proportion of time observations classified into a
particular state and, thus, represents their level of occurrence in the analyzed period.
For example, 52% of the time points for S&P-500 index are allocated into state 4
which represents the modal state, while very negative state 1 contains only 1.1% of
the observations. The modal state for XETRA-DAX index is represented by state
3 which contains about 67% of the observations, whereas state 1 for the German
market classifies only 0.7% of the observations.

The conditional means μ̂ in Table 1 show how the German stock market is char-
acterized by more extreme regimes than the US market. However, the occurrence of
states 1 and 5 for Germany are much less likely than corresponding states 1 and 7 for
the US. In particular, the probability of experiencing a crisis is f̂ (zU St |yU S

t = 1) =
0.0112 for the US stock market and f̂ (zDEt |y DE

t = 1) = 0.0067 for Germany.
In this framework, we are able both to define the turmoil and crisis periods and

to detect the low-volatility market phases by referring to the classification of the
time observations into the latent states and the estimated transition probabilities
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Table 1. LMM estimation results for US S&P-500 and German XETRA-DAX indices

State 1 2 3 4 5 6 7

f̂ (zU St |yU S
t ) 0.011 0.102 0.097 0.521 0.100 0.132 0.037

μ̂(zU St |yU S
t ) −8.850 −2.781 −1.313 0.276 0.391 2.002 5.505

f̂ (zDEt |yDE
t ) 0.007 0.178 0.668 0.143 0.004

μ̂(zDEt |yDE
t ) −12.381 −3.417 0.445 3.868 13.717

p̂kw . In particular, the modal state for both indexes (SU S = 4 and SDE = 3) is
characterized by a positive mean return and a high state persistence probability:
p̂U S

44 = 0.9584 and p̂DE
33 = 0.8526 which correspond to T = (1 − p̂U S

44 )−1 ≈ 24
and T = (1 − p̂DE

33 )−1 ≈ 7 weeks, respectively. These two latent states represent
long stable periods, that is low-volatility market phases during which switches in
regimes do not occur for quite a long time. The probability of a stable regime in
both markets at time t is estimated to be I = f̂ (y DE

t = 3|yU S
t = 4) = 0.5172, that

is the interdependence of the low-volatility market phase.
On the contrary, periods characterized by frequent switches in regimes represent

high-volatility market phases. In particular, we address the evaluation of the latent
states 1 which, in our framework, represent the crisis regimes. The interdependence
of a crisis is provided by the probability I1 = f̂ (yDE

t = 1|yU S
t = 1) = 0.0038

which corresponds to T = 4 observations: 09/21/2001, 10/10/2008, 10/24/2008,
and 11/21/2008.

Table 2 focuses on the reaction of the German stock market at time t when the US
market is experiencing a crisis at time t −1. The evaluation of contagion is provided
by the estimated conditional transition probability C = f̂ (y DE

t = 1|yU S
t−1 = 1)

which is equal to 0.3266. From the last column of Table 2, it can be noted that
0.3266 is the highest value: The most probable switch of the German stock market
is to the crisis regime represented by latent state 1. However, it must be noted that,
despite a crisis period in the US market at time t −1, the German stock market could
also experience a positive regime at time t with approximately the same probability,
f̂ (yDE

t = 4|yU S
t−1 = 1) = 0.3151.

We also develop a tentative robustness analysis by splitting our data set into two
sub-samples: also the results related to the two data sets confirm the latent state
characterization previously detected.

Table 2. Reaction of the German market at time t when the US market is in a crisis at time t − 1

State SDE 1 2 3 4 5

μ̂(zDEt |yDE
t = SDE ) −12.38 −3.417 0.445 3.868 13.72

f̂ (yDE
t = SDE |yU S

t−1 = 1) 0.3266 0.0691 0.1784 0.3151 0.1108
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4 Conclusions and future developments

In this paper, we show that the LMM is a powerful approach for detecting and defin-
ing the different stock market regimes and for achieving a straightforward probabilis-
tic measurement of both interdependence and contagion. By referring to German and
US stock markets, we find evidence of a quite strong interdependence of the stable
low-volatility phases. Furthermore, when the US stock market is experiencing a cri-
sis at time t −1, the probability that the German market switches to the crisis regime
at time t is almost one third, thus stressing some contagion effect.

A further step for the analysis is the definition of a test for detecting contagion
among international stock markets. To achieve this purpose, we plan to investigate
how the probability functions provided by the model are distributed, for instance,
using bootstrap simulations.

Furthermore, our analysis can be extended by investigating if the dependent sto-
chastic processes are governed by a second-order (or higher) Markov chain, that is
if stock market j is affected by the crisis in market i two or more weeks afterwards.

Finally, the LMM specification could be extended by including an autoregres-
sive component and/or some macroeconomic covariate in order to evaluate also the
relationship and the spillover effect to the real economy.
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TValuation of portfolio loss derivatives
in an infectious model

Areski Cousin, Diana Dorobantu, and Didier Rullière

Abstract. In this paper we investigate a dynamic credit risk contagion model. We
consider an economy of n firms which may default directly or may be infected by
other defaulting firms (a domino effect being also possible). The spontaneous de-
fault without external influence and the infections are described by conditionally
independent Bernoulli-type random variables. We provide a recursive algorithm for
the computation of the loss distribution that involves successive applications of the
so-called Waring’s formula. The major advantage of this algorithm is that it can be
applied for a large portfolio. We then examine the calibration of model parameters
on CDX.NA.IG tranche quotes during the crisis.

Key words: Credit risk, contagion model, dependent defaults, default distribution,
exchangeability, CDO tranches

1 Introduction

The recent financial crisis marked the need for paying more attention to the systemic
risk which can partially be the result of dependence on many factors to a global eco-
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nomic environment. A tractable and common way of modeling dependence among
default events is to rely on the conditional independence assumption. Conditionally
on the evolution of some business cycle or macroeconomic related factors, defaults
are assumed to be independent. However, as shown by some empirical studies such
as [7, 10] or [2], the latter assumption seems to be rejected when tested on historical
default data. An additional source of dependence, namely the chain contagion effect,
is observed and requires the construction of contagion models which would be able
to explain the ”domino effects”: a defaulting firm causes the default of another firm
which infects another one etc.

In this paper we consider a particular model inspired from [4] which will be
shortly summarized here. In this previous extension, we studied the case of credit
entities that can default either directly or by infection. We extended Davis and Lo’s
framework, by relaxing the i.i.d. assumption of direct defaults and the i.i.d. assump-
tion of contaminations. We also introduced some features allowing to take into ac-
count a higher number of contaminations required to cause a direct default. Further-
more, the one-period setting in Davis and Lo’s paper was extended to a fully dynamic
discrete-time setting. Compared to Davis and Lo’s model in which only directly de-
faulting bonds can infect others, our model accounts for a “domino effect” which
can exist between firms due to counterparty relationships. Thus in the model pre-
sented here, the firms can default because of a chain reaction, phenomena which is
often a reason for financial crises. However, in this model, there is no inter-temporal
effect in the infection (see [3] for a model in which there is a delayed effect between
defaults and contagion).

The model proposed in this paper preserves the exchangeability assumption of
the previous model, but is more specific, in order to reduce the complexity of several
formulas and to cope with numerical instability of some of our previous results. This
model is based on conditional independence assumption. Particularly, direct defaults
and contaminations are assumed to be mixtures of independent Bernoulli variables
mixed with a Beta-distributed factor. The main contribution of the paper is a tractable
expression for the distribution of the total number of defaults. The latter expression
can be computed by successive application of the same analytical function based on
the so-called Waring’s formula. This is very appealing on practical grounds, given
that the latter formula can be computed efficiently using recursive algorithms [5].

The outline of the present paper is as follows: in Section 2 we present the Davis
and Lo’s model and a previous extension of their model. Then, in Section 3, we ana-
lyze a particular case of this extension and give a specific algorithm more suitable for
large portfolios case. At last, in Section 4, we present a short numerical application
of this model to CDX.NA.IG tranche quotes during the crisis.

2 Previous studies

A model where each credit reference can default either directly, or may be infected
by other defaulted references has been presented in [8]. Let n be the number of credit
references. For name i , we denote by Xi the direct default indicator, Ci the indirect
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default indicator and Zi the default indicator (direct or indirect). The Davis and Lo’s
one-period model may be written as follows: Zi = Xi + (1 − Xi )Ci .

Default of name i occurs if there is a direct default Xi = 1, or otherwise if there
is a contamination Xi = 0 and Ci = 1. The contagion occurs if at least another
reference j defaults directly (X j = 1), and contaminates the considered reference i
(Y ji = 1), so that: Ci = 1at least one X j Y ji=1, j=1,...,n = 1∑

j=1...n, j �=i X j Y ji≥1.

The distribution of the total number of defaults N = ∑n
i=1 Zi is obtained by:

P [N = k] = Ck
n

k∑
i=1

Ci
k pi (1 − p)n−i (1 − (1 − q)i )k−i (1 − q)i(n−k),

where Ck
n = n!

k!(n−k)! . This result is obtained under the following assumptions:

• {Xi , i = 1, . . . , n} are i.i.d. Bernoulli r.v. with parameter p;
• {

Yi j , i, j = 1, . . . , n
}

are i.i.d. Bernoulli r.v. with parameter q;
• at least one infection causes an indirect default;
• an infected entity cannot contaminate others (no chain-reaction effect).

We showed in a previous paper [4] that these assumptions were quite restrictive,
so that it is important to release them. One of the most important feature of this
paper is to consider a contagion credit risk model with several periods [t, t + 1],
t ∈ {1, . . . , T }, where T ∈ N∗ is the maximum time horizon.

Recall that n is the number of names in the credit portfolio and � = {1, . . . , n}
the corresponding set of entities. We denote by Xi

t the direct default indicator, C i
t

the indirect default indicator, Zi
t the default indicator (direct or indirect) associated

with name i in the period [t, t + 1[. The model is:{
Zi

0 = 0, i = 1, . . . , n,

Zi
t = Zi

t−1 + (1 − Zi
t−1)[Xi

t + (1 − Xi
t )C

i
t ], i = 1, . . . , n, t = 1, . . . , T,

(1)

where C i
t = f

(∑
j∈Ft

Y ji
t

)
and

• Y ji
t , i, j = 1, . . . , n are Bernoulli random variables such that Y ji

t = 1 if entity j
infects entity i between t and t + 1;

• Ft is the set of the defaulting entities that are likely to infect other entities between
t and t + 1. Here, Ft is the set of entities that have defaulted directly during this
period, like in [8]. Other choices allow inter-periodic contagion effect [3, 4];

• f is a contamination trigger function, for example f (x) = 1x≥1 (like in Davis
and Lo’s model) or f (x) = 1x≥2 (several infections may be required to cause
an indirect default, two in this particular case).

Hence, Zi
t = 1 if the entity has been declared in default at the end of period t − 1

(Zi
t−1 = 1) or if, during the period [t, t + 1], it defaults directly (Xi

t = 1) or by
infection (C i

t = 1).
Again, each credit entity can default either directly or by infection of other refer-

ences. Nevertheless, two features have been extended: the monoperiodic framework
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is changed into a multiperiodic framework, and the contamination trigger function
is more general than Davis and Lo’s one. From now on, the following notations are
used throughout the paper:

Notation 1. For every t ∈ {1, . . . , T }, we denote by:

• �t the set of entities which did not default in the previous periods: �t ={
i ∈ �, Zi

t = 0
}
;

• N D
t (resp. N C

t ) the number of direct (resp. indirect) defaults during the period
[t, t + 1[: N D

t = ∑
i∈�t−1

Xi
t (resp. NC

t = ∑
i∈�t−1

(1 − Xi
t )C

i
t );

• Nt the number of defaults occurred up to time t: Nt = ∑
i∈� Zi

t = Nt−1 + N D
t +

NC
t ;

• N R
t the residual number of non defaulted entities at time t, N R

t = n − Nt .

The aim is to study the law of Nt under the following assumption:

Assumption 1 (direct defaults and contamination sequence).

• The random vectors
−→
Xt = (X1

t , . . . , Xn
t ), t ∈ {1, . . . , T }, are mutually indepen-

dent, but their components are exchangeable.
• The vectors

−→
Yt = (Y 11

t ,Y 12
t , . . . ,Y nn

t ), t ∈ {1, . . . , T }, are mutually indepen-

dent.For all t ∈ {1, . . . , T }, the variables
{

Y ji
t , ( j, i) ∈ �2

}
are exchangeable

(and independent of
{

Xi
t , t = 1, . . . , T, i ∈ �

}
).

Theorem 2 (distribution of the Nt, exchangeable case, T periods). Under As-
sumption 1, the distribution of Nt is given by the recursive formula:⎧⎪⎨⎪⎩

P [N0 = r ] = 1r=0 , r=0,. . . ,n,

P [Nt = r] =
r∑

k=0

P
[
Nt = r Nt−1 = k

]
P
[
Nt−1 = k

]
, r=0,. . . ,n, (2)

P
[
Nt = r Nt−1 = k

] = Cr−k
n−k

r−k∑
γ=0

Cγ
r−k

n−k−γ∑
α=0

Cα
n−k−γ μγ+α, t

n−r∑
j=0

C j
n−r (−1) j+αξ j+r−k−γ,t (γ ) ,

and

⎧⎪⎪⎨⎪⎪⎩
μk, t = P

[
X1

t = 1 ∩ · · · ∩ Xk
t = 1

]
, 1 ≤ k ≤ n ,

ξk,t (γ ) = P
[
C 1

t = 1 ∩ · · · ∩ C k
t = 1 N D

t = γ
]
,

1 ≤ k ≤ n − γ, γ ≤ n,
ξ0,t (γ ) = 1 (including the case γ = 0).

(3)

The coefficients ξk,t (·) may be computed recursively. For more details and proof
of this theorem, see [4]. This formula was obtained using life insurance tools (namely
Waring’s formula). If the number of underlying credit entities is too large, some
difficulties may arise when it turns to compute such a formula:

• first, expression (2) involves three successive sums and may lead to large com-
putation time. When n is large, one needs to pre-compute parts of these sums to
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fasten the computation. As a consequence, this expression should be transformed
in order to reduce time complexity;

• second, this can lead to very large binomial coefficients and to numerical issues
due to the limited floating point precision of the computer.

It can be useful to get special cases of the model leading to straightforward com-
putations and to a greater stability of the formula.

3 The model

As in the original paper ([8]), the contamination trigger function is equal to f (x) =
1x≥1 and the set Ft of entities likely to contaminate others is here the set of entities
which default directly on period t . We examine here how formulas in Theorem 2
can be clarified under conditional independence assumption:

• the components of
−→
Xt are conditionally independent given a random variable �X ;

• the components of
−→
Yt are conditionally independent given a random variable �Y .

Consider m indicator random variables X1, . . . , Xm ∈ {0, 1}. Suppose that these
random variables are mixtures of mutually i.i.d. Bernoulli random variables. In other
words, X1, . . . , Xm are conditionally independent Bernoulli’s with a common ran-
dom parameter �. More precisely, for any i ∈ �, the probability that Xi equals one
is thus given by the latent factor �. This corresponds to the situation where each
probability is governed by a common macro-economic environment variable �:

P [X1 + · · · + Xm = k] =
∫ 1

0
Ck

mθk(1 − θ)m−kd F�(θ) , (4)

where F� denotes the distribution function of �. Let us note that the distribution
of the sum X1 + · · · + Xm is a Binomial mixture. Of course, numerical integration
techniques may be used to compute expression (4). But, as described below, exact
quantities can be extracted when the moments of the underlying factor � are known.
To this aim we use Waring’s formula, which is well known in the actuarial field, see
[9] or [11] for an older reference. Remark that, with an underlying random factor
�, P

[
X1 = 1, . . . , X j = 1

] = E
[
P
[
X1 = 1, . . . , X j = 1 �

]] = E
[
� j
]

, for j ∈
{1, . . . m}.

Theorem 3 (Waring’s formula, binomial mixture). If μk = E
[
�k
]

is the kth

moment of the underlying factor �, then for k ∈ {0, . . . ,m}:

P

[
m∑

i=1

Xi = k

]
= 1k≤mCk

m

m−k∑
j=0

C j
m−k(−1) jμ j+k .
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Proof. Some elements of the proof and references are given in [4], and in [9]. �

We will see that it is interesting to express Waring’s formula as a function of an
input vector −→ν = (ν1, . . . , νn). Particularly, for k, z,m ∈ N, m ≤ n, Waring’s
formula can be written:

W :
(−→ν , k,m

) �→ 1k≤mCk
m
∑m−k

j=0 C j
m−k(−1) jν j+k . (5)

Some recursive algorithms for calculating Waring’s formula (5) are given in [5].
It turns out that these algorithms may significantly improve the computation time.
In the special case where � has a Beta distribution with parameters α and β, the
function W can be expressed as a function of α and β instead of −→ν : W (−→ν , k,m) =
W̃α,β(k,m) := Ck

m
B(α+k,m−k+β)

B(α,β) where B(α, β) = �(α)�(β)
�(α+β) is the Beta function.

Now consider again the credit risk model described by (1). One contribution of
the paper is to express the law of number of defaults in terms of successive evaluation
of Waring’s formula (5), the latter formula being applied with different vectors −→ν .
This allows to clarify all quantities that can be pre-computed, and to reduce the
complexity of transition probabilities given by expression (2) in Theorem 2. This
helps to find which quantity can be solved analytically in some particular cases.

Theorem 4 (transition probabilities). With underlying random factors �X and
�Y , the transition probabilities of the total number of defaults is given by :

P
[
Nt = r Nt−1 = k

] =
r−k∑
γ=0

pD
t (γ, n − k)pC

t (r − k − γ, γ, n − k − γ ),

with

{
pD

t (k,m) = P
[
N D

t = k N R
t = m

] = W (−→μ , k,m) ,

pC
t (k, z,m) = P

[
NC

t = k N D
t = z, N R

t − N D
t = m

] = W (
−−→
ξ(z), k,m) ,

and where μk = E
[
�k

X

]
, ξk(z) = W (

−−→
h(z), 0, k), hi (z) = W (

−→
λ , 0, i z), λk =

E
[
�k

Y

]
are the components of (resp.) vectors −→μ ,

−−→
ξ(z),

−−→
h(z),

−→
λ .

Corollary 1 (transition probabilities, beta-dirac case). If �X is Beta-distributed
with parameters (α, β) and �Y = q ∈ [0, 1] (so that Y ji

t are i.i.d.), then

P
[
Nt = r Nt−1 = k

] =
r−k∑
γ=0

P
[

N D
t = γ N R

t = n − k
]

× P
[

NC
t = r − k − γ N D

t = γ, N R
t − N D

t = n − k − γ
]

with P
[
N D

t = k N R
t = m

] = W̃α,β(k,m), P
[
NC

t = k N D
t = z, N R

t − N D
t = m

]
= 1k≤mCk

m(xz)
k(1 − xz)

m−k and xz = (1 − (1 − q)z).
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4 Calibration of parameters on liquid CDO tranche quotes

In [4], we perform a calibration analysis of model parameters on iTraxx Europe
tranches. Here instead, the focus is put on standardized tranches referencing the 5-
years CDX North American Investment Grade index (CDX.NA.IG henceforth). The
model used for calibration of CDO tranche quotes is such that, for any t ≥ 0, direct
defaults Xi

t , i = 1, . . . , n are Bernoulli mixtures with a common random parameter
that is Beta-distributed with mean p and variance σ 2. The infectious transition links
Y i j

t , 1 ≤ i, j ≤ n are independent Bernoulli random variables with the same constant
mean q. We also consider the case where only one contamination is required to
trigger a default. This corresponds to the assumptions of Corollary 1. Using the latter
restrictions, the discrete-time contagion model is stationary and it can be entirely
described by the vector of annual scaled parameters η = (p, σ, q). Note that there
is a one-to-one correspondence between parameters (α, β) associated with the Beta-
distributed variable �X in Corollary 1 and its mean and standard deviation (p, σ ).

Let us recall that the computation of CDO tranche spreads only involves the ex-
pectation of tranche losses at several time horizons (see [6] for more details regard-
ing cash-flows of synthetic CDO tranches). In the case where recovery rates are
the same across names and equal to a constant R, it is straightforward to remark
that the current cumulative loss is merely proportional to the current number of de-
faults. Then, Theorem 2 and Corollary 1 can be used properly to compute CDO
tranche spreads. Let us denote by s̃0, s̃1, s̃2, s̃4, s̃5, s̃6 the market spreads associated
with (respectively) the CDS index, [0%–3%], [3%–7%], [7%–10%], [10%–15%]
and [15%–30%] standard CDX.NA.IG tranches and by s0(η), s1(η), s2(η), s4(η),
s5(η), s6(η), the corresponding spreads generated by the contagion model using the
vector of parameters η. The calibration process aims at finding out the optimal pa-
rameter set η∗ = (p∗, σ ∗, q∗) which minimizes the following least-square objective
functionRM SE(η)2 = 1

6

∑6
i=1(s̃i − si (η))

2/s̃2
i . For both data sets, in order to an-

alyze the calibration efficiency in a deeper way, we have compared the global cali-
bration with three alternative ones, where some of the available market spreads were
excluded from the fitting. Here are the calibration procedures we have considered:

• C1: all available market spreads are included in the fitting;
• C2: the equity [0%-3%] tranche spread is excluded;
• C3: both equity [0%-3%] tranche and CDS index spreads are excluded;
• C4: all tranche spreads are excluded except equity tranche and CDS index

spreads.

In all calibrations the interest rate is set to 3%, the payment frequency is quarterly
and the recovery rate is R = 40%. We provide in Table 1 model spreads and opti-
mal parameters resulting from the four benchmark calibration processes performed
on March 31st, 2008 CDX quotes. As can be seen from Table 1, the calibration of
the three parameters on all market spreads is rather disappointing. This is not sur-
prising, especially given the poor calibration performance of standard factor models
during the crisis, when the fit is achieved on all tranches and index quotes. However,
one can note that the calibration error decreases when we subsequently exclude the
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Table 1. Market and model spreads (in bp) in the four calibrations and the corresponding root
mean square errors. The [0%-3%] spread is quoted in %

0%-3% 3%–7% 7%–10% 10%–15% 15%–30% index RMSE p∗ σ ∗ q∗

Market quotes 55 619 321 204 95 143 – – – –

Calibration 1 30 689 406 240 72 91 0.29 0.0074 0.0133 0.010

Calibration 2 – 568 364 237 90 84 0.21 0.0070 0.0154 0.010

Calibration 3 – 540 335 227 88 – 0.09 0.0011 0.0026 0.094

Calibration 4 55 – – – – 143 0 0.0020 0.0002 0.089

equity tranche quote and the index quote in Calibrations 2 and 3. Unsurprisingly,
as illustrated by results from Calibration 4, the fit on equity and index spreads only
is perfect. We have checked that this is actually the case for all tranches when they
are jointly fitted with the index. This can be seen as a fundamental required behav-
ior of the model since we try to fit three parameters on two market quotes. Let us
recall however that the base correlation framework had some difficulties to fit the
super-senior tranches in the same period [1].

5 Conclusions

In this paper, we studied a particular specification of an infectious model. In our
model each entity can default directly or can be infected by another defaulted entity.
We analyzed the case of conditional independence of direct defaults indicators and
of infections indicators. This allows us to obtain some formulas for the distribution
of the number of defaults that can be applied even with large credit portfolios. This
result paves the way to some operational applications regarding the pricing of CDO
tranches. We then consider the fit of model parameters on CDX.NA.IG index quotes
in March 2008. This allows to exploit the dynamic feature of the model and illustrate
its tractability when the number of reference entities is large (and equal to 125). We
can remark that, for all calibration procedures, the dependence among direct default
events is exacerbated by a significant level of infectious risk, as can be expected
during this distressed period.
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Abstract. The paper deals with the solvency analysis through internal models in
the case of a portfolio of life annuities, focusing on the interplay between stochastic
interest rate dynamics and the survival evolution in time. This specific aspect is in-
vestigated basing the survival death rates on Poisson Lee Carter model approached
according to the Iterative Procedure and two simulated approaches on the Poisson
Lee Carter: the Standard Procedure and the Stratified Sampling Procedure. The fi-
nancial aspect, particularly notable in portfolios with long duration and multiplicity
of payments as in the considered case, is tackled assuming different stochastic hy-
potheses on the interest rates evolution. Aim of the paper is to deepen the reaction of
solvency measures as the surplus index and the ruin probability to the specific finan-
cial and demographic scenario. The indexes are studied in different loading factor
assumptions and several numerical applications illustrate the model setup.
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1 Life insurance internal models inside the financial crisis

In the current financial situation, still drenched with the financial crisis consequences
and results, the risk management assumes or strengthens his task in an anticipatory
perspective and is strongly interested in defining and quantifying risk measurement
systems for studying the overall risk position, quantifying the risks and defining
strategies in order to meet those risks, within a prudential frame for the economic
capital required to. It concerns the definition of adequate internal control models [2],
those assuming a crucial job in a changeable and unreliable financial situation per-
spective. The Solvency II acknowledgment asserts this principle considering that an
internal model provides a meaningful output for the insurer in the SCR framework
and advocates insurance companies make their valuations by means of present values
of projected cash flows, measured in terms of their market value. The basic principle
is that asset and liabilities valuations have to be market-consistent inside a valuation
and risk disclosure ([6]), persuaded that opportunely operating in this sense, even
though inside a prudential frame, would not limit the capability of a financial sector,
as the insurance one, to amplify the business cycle, so not compounding procycli-
cality. Market consistency in actuarial control models valuations tries to guarantee
the realistic anticipation of the risk the company is able to front, avoiding danger-
ous impracticable perception of the sense of security. The aim is the stability of the
insurance activity based on and at the same time producing an adequate platform
of market confidence. As a consequence risk management is induced to think and
plan in terms of risk sensitive quantitative methodologies based on different sce-
narios hypotheses impressed in a prudential general approach. In practice the risk
management activity has to be based on frequent and accurate internal quantitative
reports for having a continuously updated description of the vivacious economic and
financial environment in which the activity will be developed.

2 Risk drivers and solvency measures in pension annuities
actuarial systems

A wide literature explains in detail the main risk sources insisting on a portfolio of
life or pension annuities (for example [10, 4, 3, 14, 15, 8, 7]). Here is a brief general
outline of an annuity portfolio risk map.

If we consider a portfolio large enough to assume well counterbalanced the pool-
ing risk due to the accidental deviations of the number of deaths from the expected
values, the main risk drivers are the volatility in the market in which the insurer in-
vests and the increasing longevity: by virtue of this phenomenon the survival func-
tion describing the number of survivors at a given time and age at issue, is charac-
terised by a trend stochastically extending the human life duration. Both the risks
possess the systematic nature making them deeply involved in the surplus correct
valuation. Posing to be at the portfolio issue time, from the strictly financial point
of view the surplus valuation at time t feels the interest rate process describing the
market investment opportunity the insurer will be able to effect (financial risk); the
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financial assumptions concern both the asset retrospective value in the accumulation
process and the liabilities prospective value in the discounted valuations. From the
strictly demographic point of view, the surplus value is conditioned on the number
of survivors at each payment term and the choice of the right mortality table is cru-
cial to avoid the underestimation of future costs, leading to insolvency problems,
or overestimation of future obligations involving more capital locked in than that
one effectively required, leading to competitive troubles [10]. The demographic risk
source lies in the choice of the demographic model suitable to represent the proba-
ble evolution of the survival phenomenon, in particular for the age class represented
in the specific portfolio. Although having experience of the longevity phenomenon
in its two effects, specifically the rectangularization and expansion, the question is
the description of the demographic phenomenon for the age classes involved in the
actuarial valuations. To this aim, unlike the financial component, no elements come
out from the market; the longevity bond market, even though in an evolution phase,
can be considered still inadequate to represent the diversified life annuity business
world [10].

3 The surplus indicator

The financial situation of an insurance portfolio is meaningfully synthesized by the
surplus value. With this term we refer to the difference between the actuarial value
of assets and that of the liabilities, both valued at the selected valuation date. When
the first value exceeds the second one a surplus exists, otherwise a deficiency comes
true. The study is pursued on a portfolio of deferred life annuities, characterized by
an actuarial scheme exploitable for defining a pension annuity structure. We con-
sider a portfolio of homogeneous life annuities in the measure of the surplus valued
at each valuation time: before and after this time the outflow of the constant instal-
ments paid to the survivors and the inflow of the constant premiums paid by the
survivors constitute the cash flow movements interesting the annuity business and
in particular the surplus appraisal. Referred to the valuation time, the accumulated
value of the preceding cash flow represents the retrospective gain or assets while the
following payments, discounted at the time of valuation, is the prospective loss or
the liabilities of the company [13]. The surplus analysis assumes a particular relief if
framed in the institutional request of the maintenance of an adequate surplus level.
Regulators impose a minimum solvency margin that is the need of an excess of as-
sets over liabilities. The problem has to be framed in the risk context in which the
insurer acts, this assessment resulting particularly complex in the life annuity sector.
The multiplicity of payments lengthening for often very long periods makes not im-
mediate quantifying risks and assessing an opportune risk management. Several are
the management implications arising from the surplus information: the existence of
the surplus at a certain date could lead to the capability of taking more risks: for ex-
ample, always in an uncertainty framework, financing new business both proposing
new products and expanding the market size.
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4 The ruin probability

The insurer has to assure an opportune surplus level. An important information ob-
tainable by the stochastic surplus distribution at a given valuation date is the proba-
bility that the surplus falls down a fixed level considered in line with the risk man-
agement aims or below zero, to give a measure of the capability of the assets to cover
the future liabilities. In the case of too high level of this probability, the company
will for example increase the premium amount boosting the loading factor or raising
the initial surplus. From this point of view, an interesting solvency measure is the
probability that the stochastic surplus falls below zero, meaning that assets will not
cover the liabilities.

5 Surplus moments in living benefit products

We consider a portfolio of c pension annuities m-years deferred, issued on individ-
uals aged x . We pose that each contract produces the net cash flow Xs at time s and
is structured in a cash inflow, constituted by annual anticipated constant premiums
P paid for n years during the deferment (or accumulation) period (n ≤ m) and in a
cash outflow consisting in constant instalments R payable at the end of each year in
case of the insured life at that moment, from m on. If T is the annuity duration and
K Xi is the curtate future lifetime of the i-th insured, we can write the following gen-
eral expression for the surplus at time t of a portfolio of the life insurance contracts
above described:

St =
c∑

i=1

⎛⎝(Kxi ∧t)∑
s=0

Xse
∫ t

s δ(u)du −
(Kxi ∧T )−t∑

s=t+1

Xse− ∫ s
t δ(u)du

⎞⎠ , (1)

in which x ∧ y = min(x, y), and, in the specific case we consider here, Xs is the
surplus given by the net value of the cash flow at time s, that is the difference be-
tween premiums and instalments for s < t and the opposite otherwise (±P and ∓R,
respectively). We indicate by Ns the number of survivors at time s, {Ns} being i.i.d.
and multinomial (c,s px ) and mutually independent on the random interest δs .

The expected value and the variance of St are given by the following formula:

E(St ) =
c∑

i=1

⎛⎝ t∑
s=0

E(Xs)E(e
∫ t

s δ(u)du) −
T∑

s=t+1

E(Xs)E(e− ∫ s
t δ(u)du)

⎞⎠ ; (2)
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Var(St ) = Var

⎛⎝ c∑
i=1

(Kxi ∧t)∑
s=0

Xse
∫ t

s δ(u)du

⎞⎠+ Var

⎛⎝ c∑
i=1

(Kxi ∧T )−t∑
s=t+1

Xse− ∫ s
t δ(u)du

⎞⎠−

−2cov

⎛⎝ c∑
i=1

(Kxi ∧t)∑
s=0

Xse
∫ t

s δ(u)du,

c∑
i=1

(Kxi ∧T )−t∑
s=t+1

Xse− ∫ s
t δ(u)du

⎞⎠
(3)

6 The model setup and numerical comparisons

The surplus model has been implemented considering a homogeneous portfolio of
c = 1000 deferred life annuities issued on insureds aged 30 with anticipated level
premiums, payable during the deferment period of 35 years, and anticipated instal-
ments, payable during the following period, from year 35 on, that is beginning at the
retirement age of 65. Both premiums and instalments are due if the insured is alive.
The model outputs have been obtained describing the stochastic scenarios, demo-
graphic and financial, by means of the models briefly presented in what follows.

Demographic scenarios
The Poisson Lee Carter model has been applied to the Italian male population death
rates collected in the period 1950-2006 through three different approaches applied to
the Poisson Lee Carter model: the Iterative Procedure, proposed in [16] and two sim-
ulated approaches on the Poisson Lee Carter: the Standard Procedure, as presented
in [1] and the Stratified Sampling Procedure, as proposed in [7].

Financial scenarios
Stochastic interest rates have been described taking into account three different mod-
els as well: the Ho-Lee process (HL) [12], the simplest model that can be calibrated
to market data in which the short rate follows a normal process, σ is a positive con-
stant and Wt is a standard Wiener process:

drt = θt dt + σdWt (4)

(where θt comes out straightforward from market prices).

The Heath, Jarrow and Morton model (HJM) [11] where f is the instantaneous
forward curve observed at time t = 0 in the market, W is an N -dimensional Brow-
nian motion and α and σ are continuous and adapted:

d f (t, T ) = α(t, T, f (t, T ))dt + σ(t, T, f (t, T ))dW (t) (5)

f (0, T ) = f W (0, T ) (6)

and finally the Cox, Ingersoll and Ross square root model (CIR) [5], described by
the SDE:

drt = −k(rt − γ )dt + σ
√

rt dWt , (7)
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Table 1. Expected surplus: θ= 0%

Expected
surplus

H-L HJM CIR

θ = 0% t = 10 t = 35 t = 40 t = 10 t = 35 t = 40 t = 10 t = 35 t = 40

PLC 5.605 3.470 2.956 5.874 3.129 2.549 6.772 4.113 3.536

SB 5.519 3.252 2.738 5.777 2.917 2.341 6.651 3.878 3.308

SSB 5.755 2.715 2.083 6.103 2.323 1.633 6.881 3.287 2.610

Table 2. Expected surplus: θ= 10%

Expected
surplus

H-L HJM CIR

θ = 10% t = 10 t = 35 t = 40 t = 10 t = 35 t = 40 t = 10 t = 35 t = 40

PLC 6.178 4.795 4.389 6.493 4.441 3.947 7.533 5.551 5.042

SB 6.084 4.542 4.134 6.386 4.195 3.703 7.399 5.279 4.775

SSB 6.345 4.076 3.555 6.649 3.670 3.068 7.664 4.764 4.156

Table 3. Expected surplus: θ= 20%

Expected
surplus

H-L HJM CIR

θ = 10% t = 10 t = 35 t = 40 t = 10 t = 35 t = 40 t = 10 t = 35 t = 40

PLC 6.752 6.120 5.823 7.111 5.753 5.345 8.294 6.989 6.458

SB 6.649 5.832 5.530 6.995 5.472 5.065 8.147 6.681 6.243

SSB 6.935 5.436 5.027 7.285 5.017 4.504 8.446 6.241 5.702

where k and σ are positive costants, γ the long term mean and Wt a Brownian mo-
tion.

The surplus model has been considered as a function of t , t varying from 0 to the
ultimate lifetime. In particular we have specialized the surplus function in t = 10, 35
and 40, in this way getting information during the deferment period, precisely at the
retirement date and during the annuitization period.

Table 1 provides the expected surplus in the different financial scenario hypothe-
ses, supposing the survival probabilities obtained applying the three procedures to
the Lee Carter model and supposing no loading factor (θ = 0). As we can observe,
the expected surplus decreases when time increases in each financial framework and
with respect to each demographic description.

Furthermore, when the premium loading increases, we have higher expected sur-
plus, for each financial and demographic model, as evident in Tables 2 (θ = 10%)
and 3 (θ = 20%).
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Table 4. Ruin Probability: Iterative procedure

Ruin H-L HJM CIR
Probability

θ = 0% θ = 10% θ = 20% θ = 0% θ = 10% θ = 20% θ = 0% θ = 10% θ = 20%

t = 10 0.2930 0.0549 0.0150 0.3912 0.0349 0.0101 0.3578 0.2790 0.0301

t = 35 0.4650 0.0759 0.0450 0.4150 0.0367 0.0179 0.4578 0.3621 0.0390

t = 40 0.4938 0.0873 0.0480 0.4555 0.0449 0.0239 0.4770 0.3931 0.0435

Table 5. Standard deviation: Iterative procedure, θ= 0%

Standard
deviation

H-L HJM CIR

θ = 0% t = 10 t = 35 t = 40 t = 10 t = 35 t = 40 t = 10 t = 35 t = 40

PLC 1.64 1.61 1.52 1.42 1.47 1.51 1.39 1.40 1.37

SB 1.67 1.64 1.60 1.56 1.45 1.59 1.37 1.32 1.22

SSB 1.70 1.64 1.61 1.54 1.42 1.10 1.47 1.43 1.35

Table 6. Skewness coefficients: Iterative procedure, HJM model

Skewness HJM

t = 10 t = 35 t = 40

θ = 0% 0.001400 −0.00308 0.04000

θ = 10% 0.001631 0.000301 0.05942

θ = 20% 0.001340 0.000340 0.05744

From the point of view of the capacity of the insurer to be solvent, it is useful
to quantify the probability that the surplus falls below zero at a given time t, infor-
mation available from the distribution function. To this aim we built the empirical
distribution function on the basis of the simulated flows in the different financial
scenarios. We have based the approximation of the cumulative distribution function
for surplus on a Monte Carlo method.

The ruin probability numerical values are collected in Table 4 fixing the survival
model (here the Poisson Lee Carter treated by the Iterative Procedure) when the
premium loading increases and in the case of HL, HJM and CIR models for interest
rates.

Table 4 clearly shows how the ruin probability decreases as the loading factor
increases and presents an increasing trend when time passes.

In Table 5 an example of standard deviation values at the three selected valuation
time using the Iterative Procedure and in the case of θ = 0% is reported, as the
simulation procedure provides.

Finally in Table 6 the estimates of the skewness coefficients when time vary-
ing, on the basis of the survival probabilities extracted from the Poisson LC by the
Iterative Procedure, and with HJM model for interest rates, are reported.
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TMeasuring mortality heterogeneity
in pension annuities

Valeria D’Amato, Gabriella Piscopo, and Maria Russolillo

Abstract. Pension plan sponsors face a myriad of risks, one of which is longevity
risk that arises from the increasing life expectancy trends among pensioners. Tra-
ditionally, plan sponsors manage longevity risk by forecasting the mortality rates.
However, recent acceleration in longevity improvement forces the insurance compa-
nies to assess accurately the survival trend, in order to avoid paying much longer than
expected. As regards the mortality trend we have to empathize different features with
respect to mortality due to different race, ethnicity, income, wealth, marital status,
educational attainment and so on. The mortality heterogeneity tends to determine a
phenomenon termed as overdispersion, according to which the variance compared to
the mean increases. Some authors take into account the mortality overdispersion by
estimating the parameter in a mixed Poisson model. In the current literature, there are
several papers which have considered the modelling and forecasting of population
mortality using the Lee-Carter framework. In this paper, we propose an extended
version of the model under consideration, in order to capture the phenomenon of the
heterogeneity in mortality trend, by using the geographical stratification of the pop-
ulation. Diagnostic plots are provided to show the results and actuarial application
is performed in a context of pension products.
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1 Introduction

Longevity has become a high-profile risk for life annuity providers, defined benefit
pension plans, and plan sponsors, who must ultimately meet the cost of increasing
life expectancy. When life expectancy increases firms with defined benefit pension
plans suffer an increase in liabilities and this negatively affects their stock prices [7].
The longevity risk derives from improvements in mortality trend, which determine
systematic deviations of the number of the deaths from its expected values. The
unanticipated improvements in mortality involve substantial underestimation of the
actual outcomes, underfunding the solvency of the portfolios under consideration.
In that respect, the most important challenge is to describe the mortality trend, being
difficult measuring mortality accurately. The set of paths for future mortality leads
to a set of paths for the future value of pension liabilities and the uncertainties associ-
ated to them. In order to develop forecasts of future mortality rates, it is necessary to
transform the raw or crude mortality data into appropriate mortality rates, probabil-
ities and other metrics suitable for valuation and risk management. To this aim, the
Lee and Carter model (from herein LC model) is the most popular theoretical frame-
work, which is discussed in greater detail in Section 2. This methodology has become
widely used and there have been various modifications as in [1, 5], etc.. In particular,
to provide more reliable mortality projections, the mortality heterogeneity should be
taken into account. In fact, individuals are different with respect to mortality due to
different race, ethnicity, income, wealth, marital status, educational attainment and
so on (as shown in [4, 10]). The mortality heterogeneity tends to determine a phe-
nomenon termed as overdispersion, according to which the variance compared to
the mean increases, which rules out the Poisson specification and favours a mixed
Poisson model. Some authors work out the negative binomial regression model for
taking into account the heterogeneity feature ([9] and [12]). The aim of the paper is
properly to propose a variant of LC, in order to obtain accurate survival projections,
capturing the heterogeneity in mortality trend. The paper is organized as follows: in
Section 2, we describe the LC model and its main modifications; Section 3 intro-
duces the discussion about the heterogeneity in trend of the mortality; in Section 4,
we propose our extension of the LC model; the numerical applications are performed
on the Italian population, in a context of pension products in Section 5.

2 The original Lee Carter model and its extensions

Since its introduction in 1992, the LC model [11] has undertaken a leading role in the
framework of mortality forecasting. One of the reason why this model is widely used
for representing the improvements in the mortality trend is that it possesses many
desirable analytical properties useful for mortality analysis. In its original version,
the LC model suggested a log-bilinear form for the death rate mx,t :

mx,t = exp
(
αx + βxκt + εx,t

)
, (1)
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by describing the logarithm of a time series of age-specific death rates mx,t as the
sum of an age-specific parameter ax , indicating the average level of mortality at age
x and a component given by the product of a timevarying parameter kt , reflecting
the general level of mortality and the parameter bx , characterising the sensitivity of
mortality at each age to changes in the general level of mortality. The parameters ax ,
bx and kt can be estimated from historic data using the method of Singular Value
Decomposition (SVD). In order to ensure the full identification of the model, the
parameters have to satisfy the following constraints:∑

t κt = 0 and
∑

x βx = 1.

The error terms εxt are Gaussian distributed random effects by age and time, as-
sumed to be homoskedastic. This hypothesis has been considered quite unrealistic:
the logarithm of the observed death rates is much more variable at older ages than at
younger ages because of the much smaller absolute number of deaths at older ages.
In recent years, many researcher have extended the original LC model to attain a
broader interpretation and to capture the main features of the dynamics of the mor-
tality intensity, e.g. the log-bilinear Poisson version of the Lee Carter model as in
[13, 14, 15].Some authors [2, 3] keep unchanged the LC log-bilinear form for the
central rate of death, but base their approach on heteroskedastic Poisson error struc-
tures. This means that the LC parameters are estimated under the assumption that
the number of deaths recorded at age x during year t , Dx,t , are distributed according
to the Poisson distribution:

Dx,t ≈ Poisson
(
Ex,t ,mx,t

)
,

where the exposure to risk Ext is the number of person years from which the number
of deaths occurred. This model induces equidispersion, that is the variance of the
number of deaths coincides with the mean. An extension of the Lee-Carter model
to include cohort effects has been proposed in [16] and [9] introduced a single (non
age-specific) parameter to the original model, with the aim of obtaining a better
goodness-of-fit.

3 Heterogeneity

In the original LC model, it is assumed that individuals in each age-period cell are
homogeneous and have the same probability of death. Nevertheless, the individu-
als are different with respect to mortality even if they share the same status such as
age and gender. In fact, the mortality rates are influenced by race, ethnicity, income,
wealth, marital status and educational attainment. These factors can determine that
individuals in the same cells will have different probability of death. This hetero-
geneity tends to determine a phenomenon termed as overdispersion, according to
which the variance compared to the mean increases. If overdispersion exists, the
analysis of data using a single parameter distribution such as Poisson will result in
overestimating the degree of precision. For this reason, some authors have replaced
the Poisson model with a mixed Poisson model, where Dx,t obeys to a mixture of
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Poisson distributions. In particular, in order to take into account overdispersion in
the data, they estimate the parameter φ, by considering the Cameron Trivedi test,
according to which the null hypothesis of equidispersion in the data is tested. The
general rule is that if the associated p-value is less than 10−4, we can reject the
equidispersion hypothesis and state that there is overdispersion in the data, i.e. the
variance of Dx,t is greater than the mean.

4 The Extended Stratified Lee Carter

As above mentioned, the traditional version of the LC method considers an invariant
age component and most applications have adopted a linear time component. The
implementation of this method with dataset of some populations shows a significant
departures from linearity in the time component and changes over time in the age
component (as Australia for example, see [1]). In the class of the LC type modelling
structures, we take into account a methodology for the measurement of the additive
effect on the log scale of an explanatory factor: the Stratified LC model (from herein
SLC) proposed by [5]. In particular, splitting the population into homogeneous strata
is more representative for heterogeneous population and it ensures greater accuracy
(as shown in [8]). In order to quantify the differences in the mortality experience
of population subgroups differentiated by an additional measurable covariate (other
than age and period), the authors developed a new modelling approach that assumes
a direct additive effect of an observable factor on the log mortality rates across all
ages and calendar time periods. In the LC framework with a Poisson error structure,
the classical relationship becomes the following:

ln(μ̂g
x,t ) = αx + αg + βxκt , (2)

where αg is the ’reduction factor’ between the group g and the whole population.
The main underlying hypothesis is that the additional effect acts constantly across
age and time. We propose an extended version of the model under consideration, on
the basis of a geographical stratification as pointer of socio-economic differences.
Our aim is to model the number of deaths Dx,t within a generalized LC framework
with a Poisson error structure. In particular, we introduce the following formula:

ᾱg =
∑t

t=1
∑ω

x=1(μ̂
g
x,t μ̂x,t )

Tω
, (3)

μ
g′
x,t = μ

g
x,tςx,t , (4)

where ςx,t ≈ Poisson(exp(ᾱg))

ln(μg′
x,t ) = αx + αg′ + βxκt . (5)

We point out that our original contribution lies in calculating the geographical
reduction factor alphag as the mean of the fitted mortality rates for each age and
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time within the groups and the whole population. Furthermore we adjust the log of
the mortality rates by an additive effect having a Poisson distribution with parameter
αg . Finally, we re-fit the SLC on every geographical strata. We note that relationship
(5) can be viewed as an adjusted LC model, whereas the estimation method is the
specialised iterative regression methodology as shown in [16] and then reformulated
on the stratified model as in [5]. This forecasting method allows us to generate future
average values and to evaluate the future variability of the mortality rates according
to the LC family model.

5 Numerical application

In this section, we evaluate the performance of our proposed extended model using
Italian male mortality data divided into different geographical area (North, Center,
South and Isles), in a context of pension annuity portfolio. For the population under
consideration, the number of deaths Dx,t and the exposures to risk Ex,t by single
year of age from 0 to 100 are provided by ISTAT. From risk management insurance
company point of view, the longevity risk affects dramatically pension products.
Retirement security can be potentially enhanced with the purchase of a pension an-
nuity, which provides a retirement income stream as long as the insured is alive on
the payment day. The risk-reward profile of the fund can be only determined once
the liabilities of the fund have been specified. The actuary determines the value of the
long-term pension liabilities and the acceptable level of risk, sometimes expressed
in terms of minimum acceptable value of the fund. One of the goal of this section is
to measure the portfolio fund values on the basis of a stochastic hypotheses on the
evolution of the mortality rates as regards the extended SLC model. We consider a
pension scheme referred to a cohort of c = 1000 beneficiaries aged x = 45 at time
t = 0 and entering in the retirement state 20 years later, that is at the age 65. The cash
flow structure is composed by a sequence of constant premiums P , payable at the
beginning of each year up to t = 20 in case of the beneficiarys life (accumulation
phase) and in the sequence of constant benefits R = 100 payable at the beginning
of each year after t = 20 (annuitization phase), again in case of the beneficiarys
life. The extended SLC model is fitted on mortality dataset, the implications of the
choice of the model structure are immediately apparent from the parameter esti-
mates (Fig. 1) and the respective residual plots (Fig. 2). The former figure displays
the familiar features of the main age-effect plots (α̂x versus x) referring to the static
cross-sectional life-tables, including the ’accident’ hump. In particular, the kttrend
is consistent with similar findings from trend in the male Italian mortality rates as
in [8]. The latter figure is revealing: the distinctive ripple effects in the year-of-birth
residual plots on the left hand of Fig. 2 corresponds to a failure of the LC model to
correctly capture the mortality trend, where instead they are largely removed under
the stratification operated in the extended SLC model as in the right hand side of
Fig. 2.

For the sake of brevity, we focus our attention on the dramatic differences among
the portfolio fund value given by the sum effectively existing in the fund at time k,
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Fig. 1. Parameter estimates for the extended SLC model: Italian male population

Fig. 2. Residual plots for SLC model, Italian male population: LH frame before stratification, RH
after stratification
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Fig. 3. Portfolio Funds in different geographical areas of Italy

net of the sums going in or of the sums going out at time k as in [6]. In particular,
Fig. 3 shows the portfolio fund values on the basis of the stratification of the Italian
population in different areas and the whole Italian population one. The results are
self-evident. In particular, the following aspects can be pointed out: the significant
risk of underestimation of the actual fund value in the case of the Centre Italy in
the Italy one respect. In this case, the scheme of the fund value deforms the scheme
providers own perception of his ability to face of face with the future obligations.
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TIs technical analysis able to beat
market inefficiency?

Elisa Daniotti

Abstract. We started by looking into the opposing views of the market efficiency
supporters and technical analysts. We then applied a simple trading rule, i.e. the
crossing of two moving averages, to three equity indexes which represent the world
leading equity markets: the Dow Jones Euro Stoxx for Europe, the S&P 500 for the
USA and the Topix for Japan. We had two aims, the first was to test if the trading
rules have predictive power, thus demonstrating that markets are inefficient. The
second was, whether their predictive ability could be profitably exploited by traders
through an active trading strategy. Our findings revealed that there is not one trading
rule among those analyzed that can predict market returns in each market and in any
market trend. Moreover, the trading rule with the highest predictive ability is un-
able to beat a buy-and-hold strategy after trading costs are taken into consideration.
However, we established that the rule without predictive power revealed itself to be
the most profitable. We can therefore conclude that the equity markets analyzed in
our study can be considered efficient and that moving averages result in a reduction
in losses during downward trends.

Key words: Moving averages, returns predictability, profitability, market efficiency

1 Introduction

This study starts by looking into the opposing views of the market efficiency sup-
porters and technical analysts. According to the efficient market hypothesis (EMH),
stock prices fully reflect the set of information and move randomly [4, 5] making it
impossible to predict future returns from past returns. However, technical analysts
sustain that, by applying a wide set of technical rules to market prices, it is possible
to forecast future trends and earn extra-returns because markets are inefficient. In
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the last three decades, more and more researches have provided evidence that eq-
uity returns can be predicted from past returns [8, 3]. Starting from this evidence [2]
tested moving averages over the Dow Jones Index and found that stock returns can
be predicted but without earning extra-returns because of trading costs. Further stud-
ies carried out over other large capitalization indexes of different European [7, 9, 6]
and Asiatic markets [1] confirmed [2] findings.

We investigated the European, the U.S. and the Japanese markets in order to es-
tablish similarities or differences among them. The paper addresses three main ques-
tions: the first being, are moving averages predictive? Can they signal exactly when
staying in the market during an upward trend is profitable or indicate when getting
out is the best alternative to avoid a fall in prices? The second point is, if they are
predictable, are they profitable? Is an active trader, who uses moving averages, able
to earn higher returns than a passive trader who buys assets and holds them until
its term, once trading costs have been calculated? The final point is, have markets
become more efficient over the years?

The remainder of the paper is organized as follows: Section 2 sets out the data and
the technical trading rules, Section 3 presents the empirical results regarding returns
predictability and profitability and Section 4 concludes.

2 Data and technical rules

Moving averages were applied to the closing daily prices of the Dow Jones Eu-
rostoxx Index for Europe, the Standard and Poor’s 500 Index for the Usa and
the Topix Index for Japan for the period 01/01/1993–31/12/2009. The same rules
were applied to four subsamples: 01/01/1993–31/12/1997; 01/01/1998–31/12/2001;
01/01/2002–31/12/2005; 01/01/2006 –31/12/2009.

Technicians apply two moving averages, a long-period and a short-period one,
to the time series of prices in order to generate buy or sell signals. According to
the simplest form of this rule, a buy (sell) signal is generated when the short period
moving average rises above (or falls below) the long period one. If markets are very
volatile, there could be false signals due to the fact that the two moving averages
are very close. In these cases the rules are often modified by introducing a band that
eliminates these signals.

We used the four most popular moving averages which are: 1-200, so that the
short period average is the level of the index and the long-period one is the average
of the previous ten months prices, 1-50, 1-150, 5-150. We tested them with and
without a 1% band.
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3 Empirical results

3.1 Predictability of market returns

The predictive ability of the trading rules was firstly tested by computing the buy
and sell signals given by the relative position of the two moving averages: that is,
each day in which the long moving average is below the short-one is considered a
buy day, while when it is above, it is classified as a sell day. Furthermore, when the
short moving average is between the bands, no signal is generated. We then went
on to calculate the average daily returns referred to the buy and sell days and the
difference between them. Markets are efficient, if: the number of buy and sell days
is the same, the average daily return is equal to the unconditional one and if the
difference between buy and sell daily returns is equal to zero.

Results for the Dow Jones Euro Stoxx Index are presented in Panel A of the
Table 1. The third and fourth columns report the number of buy days and sell days.
As can be seen the number of buy days is about 80% higher than the number of
sell days. That means that the market was characterized by an upward trend during
the last seventeen years. The fifth and sixth columns show the average daily returns
conditioned on buy or sell signals. The average buy returns are positive and much
higher than the unconditional ones (an average of 0.12% against 0.02%). Instead the
sell returns are definitively negative. The t-tests1 confirm that conditional returns are
different to the unconditional ones at a 5% level of confidence for all the rules barr
for the 5-150. As far as the 1-50 moving average is concerned, it is strongly different.
In the last column the differences between buy and sell returns are reported. As is
evident, the buy daily returns are significantly different from the sell ones. Results
of the 1-50 and 5-150 are confirmed in the sub-periods analysis. The 1-200-0.01 rule
worked only in the downturn market (from 2006 to 2009), whereas the 1-150-0.01
always worked except in the first period characterized by a long upward trend (see
Panel B of the Table 1). The findings for the US and Japanese markets are quite
similar to the European ones but it is necessary to highlight that the Topix Index
had a completely different behavior during the past seventeen years as shown by
the number of buy and sell days in Panel A of the Table 2. As for sub-periods, the
1-200-0.01 and 1-150-0.01 rules worked only for the 1993-1997 time span.

The results presented permit us to say that moving averages have predictive abil-
ity, however: long periods are required to permit the rules to display their ability;

1 As calculated by [2], the t-statistics for the buys (sells) are,pt plus .1ptpt plus .1pt
μr − μ

(σ 2/N + σ 2/Nr )1/2
,

where μr and Nr are the mean return and number of signals for the buys and sells, and μ and N
are the unconditional mean and number of observations. σ 2 is the estimated variance for the entire
sample. For the buy-sell the t-statistics is,

μb − μs

(σ 2/Nb + σ 2/Ns)1/2
,

where μb and Nb are the mean return and number of signals for the buys and μs and Ns are the
mean return and number of signals for the sells.
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Table 1. Standard Test Results for the Dow Jones Eurostoxx Index

Panel A: Full Sample

Period Test Buy Days Sell Days Rb Rs Rb - Rs

1993-2009 1-200 2886 1490 0,1053% -0,1360% 0,2412%

3,1853* -3,1961* 4,9287**

1-200-0.01 2768 1376 0,1163% -0,1385% 0,2548%

3,5913* -3,0744* 4,9132**

1-150 2782 1594 0,1171% -0,1410% 0,2582%

3,6358* -3,4496* 5,5224**

1-150-0.01 2622 1424 0,1208% -0,1730% 0,2938%

3,7403* -3,8216* 5,7971**

5-150 2770 1606 0,0729% -0,0628% 0,1357%

1,9020 -1,8273 2,9275**

5-150-0.01 2617 1438 0,0735% -0,0717% 0,1452%

1,9023 -1,8690 2,8879**

1-50 2766 1610 0,1823% -0,2505% 0,4328%

6,1347* -5,8660* 9,4412**

1-50-0.01 2348 1287 0,2089% -0,3130% 0,5220%

6,8979* -6,1801* 9,6314**

average returns of the rules 0,1246% −0,1608% 0,2855%

uncoditional average returns 0,0235%

Panel B: Sub-periods

1993-1997 1-200-0.01 1016 217 0,1054% −0,0938% 0,1991%

1,3083 −2,6170* 3,2623**

1998-2001 1-200-0.01 597 397 0,1226% −0,0866% 0,2092%

1,3654 −1,2470 2,1551**

2002-2005 1-200-0.01 627 338 0,0999% −0,1568% 0,2567%

1,8565 −1,3869 2,2713**

2006-2009 1-200-0.01 528 424 0,1495% −0,1954% 0,3449%

2,6394* −1,5441 3,0961**

1993-1997 1-150-0.01 945 251 0,1025% −0,1092% 0,2117%

1,2222 −2,9515* 3,5638**

1998-2001 1-150-0.01 533 421 0,1680% −0,1396% 0,3075%

1,9974* −1,8558 3,2090**

2002-2005 1-150-0.01 618 318 0,1120% −0,2133% 0,3254%

2,0789* −1,8007 2,7575**

2006-2009 1-150-0.01 526 434 0,1161% −0,2128% 0,3289%

2,0757* −1,7263 2,9925**

∗ Significantly different from the unconditional returns at a 5% level of confidence.
∗∗ The buy returns are significantly different from the sell returns at a 5% level of confidence.
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Table 2. Standard Test Results for the Topix Index

Panel A: Full Sample

Period Test Buy Days Sell Days Rb Rs Rb - Rs

1993-2009 1-200 1999 2197 0,1049% −0,1121% 0,2171%

3,5754* −2,5789* 5,2311**

1-200-0.01 1860 2062 0,1171% −0,1190% 0,2361%

3,8718* −2,6528* 5,4338**

1-150 2008 2188 0,1115% −0,1191% 0,2306%

3,7764* −2,7509* 5,5497**

1-150-0.01 1875 2038 0,1201% −0,1436% 0,2636%

3,9620* −3,2242* 6,0330**

5-150 2017 2179 0,0533% -0,0661% 0,1194%

1,9331 −1,4299 2,8598**

5-150-0.01 1869 2043 0,0512% −0,0712% 0,1224%

1,8293 −1,4981 2,7966**

1-50 2034 2162 0,2159% −0,2200% 0,4359%

7,0692* −5,2862* 10,5391**

1-50-0.01 1718 1818 0,2426% −0,2681% 0,5107%

7,4932* −5,8731* 10,9408**

average returns of the rules 0,1271% −0,1399% 0,2670%

uncoditional average returns 0,0141%

∗ Significantly different from the unconditional returns at a 5% level of confidence.
∗∗ The buy returns are significantly different from the sell returns at a 5% level of confidence.

in the short period it depends on the length of the long moving averages (short) and
the market trends (decreasing phases). In concluding, it is not possible to find a rule
which works in every time and in any market.

3.2 Profitability of trading rules

After having verified that moving averages have predictive ability, we compared an
active strategy based on buy and sell signals generated by the rules with a passive
strategy. In fact, the extra-profits, earned through the active strategy, may not be high
enough to cover the trading costs that a trader has to pay each time he buys or sells
an asset.

The active strategy is the following: a trader invests 100.000 euro (100.000 USD
for the S&P 500, 10.000.000 JPY for the Topix) and buys x shares of the index at
the first buy signal starting from 1/1/1993. When a sell signal is given, he sells the
x shares and invests the whole amount in a free-risk asset until a new buy signal
is generated. So then he buys y shares of the index and so on until the end of the
period analyzed. The passive strategy is a simple buy-and-hold: the trader buys x
shares of the index the same day as the active trader and holds them until the end
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Table 3. Profitability of the moving averages for the Dow Jones Euro Stoxx Index

Panel A: 1-200-0.01

B&H MA STRATEGY

yearly yearly average breakeven Number average average

Period average returns - zero trading costs of days days

returns trading cost per trade Trade IN OUT

Full sample 9,93% 26,59% 1,62% 44 186 95

1993-1997 24,96% 21,19% −0,73% 12 245 67

1998-2001 7,36% 11,79% 1,85% 8 223 141

2002-2005 0,72% 9,41% 4,31% 8 234 151

2006-2009 −3,46% 4,24% 2,32% 16 103 90

Panel B: 1-150-0.01

Full sample 10,28% 33,86% 1,93% 46 169 104

1993-1997 25,97% 22,89% −0,68% 10 273 114

1998-2001 7,36% 11,65% 1,00% 14 115 92

2002-2005 1,12% 6,12% 1,47% 16 119 72

2006-2009 −3,46% 9,57% 5,62% 10 154 171

Panel C: 5-150-0.01

Full sample 10,28% 33,91% 2,46% 36 214 138

1993-1997 25,97% 22,98% −0,68% 10 271 117

1998-2001 7,36% 12,44% 1,64% 10 163 128

2002-2005 1,22% 6,32% 1,75% 12 152 107

2006-2009 −3,46% 9,18% 6,86% 8 191 230

Panel D: 1-50-0.01

Full sample 10,28% 10,10% −0,02% 120 66 37

1993-1997 25,97% 19,26% −0,52% 30 87 37

1998-2001 7,36% 10,82% 0,34% 34 50 37

2002-2005 1,12% -0,07% −0,19% 32 61 31

2006-2009 −3,46% 5,72% 2,67% 30 54 45

of the period of the analysis. We compared the profitability of these two strategies
both considering and not considering trading costs and computing their breakeven
level, that is the level of trading costs that equals the returns of the two strategies.
We applied the two strategies only to the moving averages with bands because they
perform better due to the lower number of signals generated. The evidence shows
that the technical rule with the highest predictive ability did not permit the investor to
earn extra-returns even without taking into consideration the trading commissions.
As for Europe and the USA, this rule was able to beat the market only in the last
period during which the trader stayed out of the market for more days than in the
other sub-periods and the buy-and-hold recorded a negative performance (see Panel
D of the Table 3 and Panel B of the Table 4). As for Japan, this strategy allowed the
investor to beat the passive one in the first and the last sub-periods (see Panel B of
the Table 5).
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Table 4. Profitability of the moving averages for the S&P 500 Index

Panel A: 5-150-0.01

B&H MA STRATEGY

yearly yearly average breakeven Number average average

Period average returns – zero trading costs of days days

returns trading cost per trade Trade IN OUT

Full sample 9,14% 13,73% 0,63% 42 199 100

1993-1997 24,45% 20,37% −1,18% 8 403 69

1998-2001 3,42% 4,32% 0,25% 12 142 33

2002-2005 −1,23% 0,97% 0,23% 18 100 68

2006-2009 −2,60% 5,42% 4,48% 8 202 216

Panel B: 1-50-0.01

Full sample 9,14% 3,30% −0,40% 118 67 37

1993-1997 24,45% 7,56% −1,37% 36 84 24

1998-2001 3,42% −1,40% -0,61% 36 44 38

2002-2005 11,27% −1,77% -0,56% 30 59 40

2006-2009 −2,60% 2,75% 1,12% 24 72 64

Table 5. Profitability of the moving averages for the Topix Index

Panel A: 5-150-0.01

B&H MA STRATEGY

yearly yearly average breakeven Number average average

Period average returns – zero trading costs of days days

returns trading cost per trade Trade IN OUT

Full sample −1,79% 5,31% 2,61% 38 154 172

1993-1997 −2,00% 2,87% 1,69% 14 135 124

1998-2001 −3,73% 2,81% 4,13% 8 129 189

2002-2005 10,04% 13,41% 1,31% 8 212 182

2006-2009 −9,15% −2,80% 4,49% 10 121 169

Panel B: 1-50-0.01

Full sample −1,84% 5,01% 0,83% 118 50 54

1993-1997 −2,21% 8,36% 1,65% 28 60 65

1998-2001 −3,24% −3,30% 0,01% 38 34 41

2002-2005 11,27% 11,48% 0,03% 26 63 52

2006-2009 −9,15% -0,66% 2,59% 22 71 74

The moving average 5-150-0.01 showed a complete inability to forecast future
returns but, actually, it was very profitable. This technical rule, applied to the Dow
Jones Euro Stoxx, generated high returns specially in the last sub-period. In fact, the
breakeven trading costs were 6.86%, a level which is difficult to find in the market.
This impressive performance was due to the fact that the strategy permits the investor
to avoid the long downturn of the market as is demonstrated by the average days
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during which the trader is out (see Panel C of the Table 3). The only exception
to this is the 1993 to 1997 period during which prices increased by about 250%.
The S&P 500 displayed a similar pattern to Dow Jones Euro Stoxx as well as the
Topix (see Panel A of the Table 4 and Panel A of the Table 5). The other two rules
obtained results in line with the 5-150-0.01 strategy but with a lower profitability. It
is interesting to note that the 1-200-0.01 strategy shows, for Europe, similar levels
of breakeven costs to the 1-150-0.01 one with the exception of the third and fourth
period. These differences are due to the number of trades executed by the investor
that are roughly half for the 2002–2005 and the double for the 2006–2009 periods
(see Panels A and B of the Table 3).

The evidence presented above demonstrates that predictive ability does not imply
profitability. In fact, in comparison the active strategy on the buy-and-hold performs
better when there are very long downward periods (i.e. the fourth period), whereas in
the other periods there is no univocal answer. At times the active one prevails while
in other situations the passive one is better. This demonstrates the absence of a gen-
eral rule. The strategy based on technical rules is less profitable during long periods
of positive trends even without considering trading costs. Moreover, the number of
signals has a relevant impact on the value of breakeven trading costs so the moving
averages with a higher number of terms are more profitable than the shorter ones.

4 Conclusions

The aim of this paper is to established if moving averages are a valid instrument in
foreseeing future index prices and beating the market after taking into consideration
trading costs. Our findings are quite challenging. The most predictive rule is the most
used and so the less profitable. The trader’s behavior made the markets efficient. On
the contrary, the less predictive rule is the most profitable: it is the less used and so
it is able to exploit the inefficiency of the market. Moreover, profitability depends
on the market trend: during upward trends no rules are able to provide extra-returns,
whereas during the long downward trends (e.g. from August 2007 to March 2009)
they are profitable because they permit the trader to go out from the market and
avoid losses. However, they are unable to predict exactly the beginning of the fall
in prices. In conclusion, we can say that technical analysis is not able to beat market
inefficiency at any time and with any rule.
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TOn the damped geometric telegrapher’s process

Antonio Di Crescenzo, Barbara Martinucci, and Shelemyahu Zacks

Abstract. The geometric telegrapher’s process has been proposed in 2002 as a model
to describe the dynamics of the price of risky assets. In this contribution we con-
sider a related stochastic process, whose trajectories have two alternating slopes, for
which the random times between consecutive slope changes have exponential dis-
tribution with linearly increasing parameters. This leads to a process characterized
by a damped behavior. We study the main features of the transient probability law
of the process, and of its stationary limit.

Key words: Geometric telegrapher’s process, damped processes, exponential
times, linear rates, log-logistic stationary distribution, moment generating function

1 Introduction

Motivated by the need of describing the price of a risky asset by means of a process
with bounded variations, which seems quite realistic in true markets, [4] introduced
the geometric telegrapher’s process expressed via an exponential transformation of
the telegrapher’s process. Paper [8] proposed a similar financial market model that
is free of arbitrage under suitable conditions, and is based on a continuous time
random motion with alternating constant velocities and jumps occurring when the
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velocities are switching. Other contributions on stochastic processes characterized
by alternating finite velocities are given in [2, 7, 9] and [10]. Moreover, the problem
of estimating the parameters of the geometric telegrapher’s process has been faced
in [1].

In this contribution we study a modified version of the geometric telegrapher’s
process under the assumption that the random times between consecutive slope
changes are exponentially distributed with linearly increasing parameters. This is
suggested in the recent paper [3], where a damped telegrapher’s process is stud-
ied. In this framework the trajectories of damped processes are continuous curves
composed by stochastically smaller and smaller paths. Some examples of damped
diffusion processes can be found in the literature of financial modeling, such as [6].

The damped geometric telegrapher’s process is introduced in Section 2, where we
obtain its probability law and study the asymptotic behavior. The moment generating
function-approach is then used to evaluate the m-th moment of the process.

We remark that our contribution can be seen as an initial attempt to modify the
geometric telegrapher’s process. Specific problems of mathematical finance, such
as the problem of existence of arbitrage opportunities, will be the object of future
investigations.

2 The stochastic model and probability laws

Let us assume that the price of risky assets is described by the following stochastic
process, named damped geometric telegrapher’s process:

St = s0 exp [a t + Xt ] , with Xt = c
∫ t

0
(−1)Nτ dτ, t ≥ 0, (1)

where s0 > 0, a ∈ R, c > 0, and where Nt is an alternating counting process
characterized by independent random times Uk, Dk , k ≥ 1. Hence,

N0 = 0, Nt =
∞∑

n=1

1{Tn≤t}, t > 0,

where T2k = U (k) + D(k) and T2k+1 = T2k + Uk+1 for k = 0, 1, . . ., with U (0) =
D(0) = 0 and

U (k) = U1+U2+· · ·+Uk, D(k) = D1+D2+· · ·+Dk, k = 1, 2, . . . . (2)

We assume that {Uk} and {Dk} are mutually independent sequences of indepen-
dent random variables characterized by exponential distribution with parameters

λk = λ k, μk = μ k, (λ, μ > 0; k = 1, 2, . . .), (3)

respectively. We remark that process St has bounded variations and its sample-paths
are constituted by connected lines having exponential behavior, characterized alter-
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Fig. 1. A simulated sample path of St

nately by growth rates a + c and a − c, where a is the growth rate of risky assets’
price in the absence of randomness, and c is the intensity of the random factor of
alternating type. Assumption (3) implies that the reversal rates λk and μk linearly
increase with the number of reversals, so that the sample paths of St are subject to an
increasing number of slope changes when t increases, this giving a damped behavior.
An example is shown in Fig. 1.

Denoting by F (k)(u) the distribution function of the k-fold convolution of random
variables U j (see (2)), hereafter we show a suitable method to disclose it.

Proposition 1. For k = 1, 2, . . . we have

F (k)(u) := P(U (k) ≤ u) = (1 − e−λu)k, u ≥ 0. (4)

Proof. We proceed by induction on k. For k = 1, the result is obvious. Let us now
assume (4) holding for all m = 1, . . . , k − 1. Hence, due to independence,

F (k)(u) = λk
∫ u

0
e−λky(1 − e−λ(u−y))k−1dy

= λk
k−1∑
j=0

(−1) j
(

k − 1

j

)
e−λju

∫ u

0
e−λ(k− j)ydy

= k

k − j

k−1∑
j=0

(−1) j
(

k − 1

j

)
e−λ ju[1 − e−λ(k− j)u]

=
k−1∑
j=0

(−1) j
(

k

j

)
[e−λ ju − e−λku] =

k−1∑
j=0

(−1) j
(

k

j

)
e−λju + (−1)ke−λku

= (1 − e−λu)k,

this giving (4). �
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Making use of a similar reasoning, for k = 1, 2, . . . we also have

G(k)(u) := P(D(k) ≤ u) = (1 − e−μu)k, u ≥ 0. (5)

Note that (4) and (5) identify with the distribution functions of the maximum
of k independent and exponentially distributed random variables with parameters
λ and μ, respectively. Moreover, denoting by Ũ j (D̃ j ), j ≥ 1, independent and
exponentially distributed random variables with parameters λ (μ), recalling (2) and
(3) we remark that

U (k) d=
k∑

j=1

Ũ j

j
,

⎛⎝D(k) d=
k∑

j=1

D̃ j

j

⎞⎠ , k = 1, 2, . . . .

In order to obtain the distribution function of process Xt , let us now introduce the
compound process

Yt =
Mt∑

n=0

Dn, where Mt := max{n ≥ 0 :
n∑

j=1

U j ≤ t}, t > 0.

Hereafter we obtain the distribution function of Yt .

Proposition 2. For any fixed t > 0 and y ∈ [0,+∞), we have

H(y, t) := P(Yt ≤ y) = e−λt

e−λt + e−μy (1 − e−λt )
. (6)

Proof. For t > 0 the distribution function of Yt can be expressed as

H(y, t) =
+∞∑
n=0

P(Mt = n) G(n)(y),

where, due to (4),

P(Mt = n) = F (n)(t) − F (n+1)(t) = e−λt (1 − e−λt )n, n = 0, 1, . . . .

Hence, recalling (5), we obtain

H(y, t) = e−λt
+∞∑
n=0

(1 − e−λt )n(1 − e−μy)n,

so that (6) immediately follows. �

Notice that P(Yt = 0) = e−λt .
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Let us now define the stochastic process identifying the total time spent by St

going upward:

Wt =
∫ t

0
1{Ns even}ds, t > 0,

so that
Xt = c(2Wt − t), t > 0. (7)

Proposition 3. For all 0 < τ < t , the distribution function of Wt is:

P(Wt ≤ τ ) = e−μ(t−τ)(1 − e−λτ )

e−λτ + e−μ(t−τ) (1 − e−λτ )
. (8)

Moreover,
P(Wt < t) = 1 − e−λt , P(Wt ≤ t) = 1.

Proof. Note that, for a fixed value t0 > 0,

Wt0 = inf{t > 0 : Y (t) ≥ t0 − t}. (9)

Moreover, if Wt0 = τ , τ ≤ t0, and Yτ = t0 − τ (Yτ > t0 − τ ), then the motion
is going upward (downward) at time t0. Finally, since Yt is an increasing process,
due to (9), the survival function P(Wt > τ) is equal to H(t − τ, τ ) for 0 < τ ≤ t .
Hence, (8) immediately follows from (6). �

Due to (7) and Proposition 3, the probability law of Xt can be easily obtained.

Proposition 4. Let τ∗ = τ∗(x, t) = (x + ct)/(2c). For all t > 0 and x < ct we
have

P(Xt ≤ x) = e−μ(t−τ∗)(1 − e−λτ∗)

e−λτ∗ + e−μ(t−τ∗) (1 − e−λτ∗)
.

Moreover, P(Xt < ct) = 1 − e−λt and P(Xt ≤ ct) = 1.

In the following proposition we finally obtain the distribution function of St .

Proposition 5. For all t > 0 and x < s0 e(a+c)t , we have

P(St ≤ x) = Aμ(t)
[
x/s0

](λ+μ)/(2c) − Aμ(t)Aλ(t)
[
x/s0

]μ/(2c)

Aλ(t) + Aμ(t)
[
x/s0

](λ+μ)/(2c) − Aμ(t)Aλ(t)
[
x/s0

]μ/(2c)
,

where Aλ(t) = exp
{−λ

2

(
1 − a

c

)
t
}

and Aμ(t) = exp
{−μ

2

(
1 + a

c

)
t
}
. Moreover,

P(St < s0 e(a+c)t ) = 1 − e−λt , P(St ≤ s0 e(a+c)t ) = 1.

Proof. It immediately follows from (1) and recalling Proposition 4. �
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• • • •

Fig. 2. Plot of p(x, t) for s0 = 1, a = 0.1, c = 1, μ = 2, and λ = 2, 3, 4, 5, from bottom to top
near the origin, with t = 1 (left-hand-side) and t = 3 (right-hand-side)

By straightforward use of Proposition 5, hereafter we come to the probability law
of St , which is characterized by a discrete component on s0 e(a+c)t having probability
e−λt , and by an absolutely continuous component on (s0 e(a−c)t , s0 e(a+c)t ).

Proposition 6. The absolutely continuous component of the probability law of St for
t > 0 and x ∈ (s0 e(a−c)t , s0 e(a+c)t ) is given by:

p(x, t) := d

dx
P(St ≤ x) = λ + μ − μ

( x
s0

)− λ
2c exp{−λt (c−a)

2c }
2cx

× 1

{2 cosh{λ+μ
4c log

( x
s0

)+ λt (c−a)−μt (c+a)
4c } − ( x

s0

)− λ−μ
4c exp{−λt (c−a)+μt (c+a)

4c }}2
.

Some plots of density p(x, t) are shown in Fig. 2 for various choices of λ and t .
Let us now analyze the behavior of p(x, t) in the limit as t tends to +∞.

Corollary 1. If λ(c − a) = μ(c + a) then

lim
t→+∞ p(x, t) = β

s0

(x/s0)
β−1

[1 + (x/s0)β ]2
, x ∈ (0,+∞),

where β = λ/(c + a); whereas, if λ(c − a) �= μ(c + a) then

lim
t→+∞ p(x, t) = 0.

Hence, under condition λ(c − a) = μ(c + a), process St has a stationary density
which is of log-logistic type with shape parameter β and scale parameter s0. We
remark that a similar result also holds under the suitable scaling conditions given
hereafter.

Corollary 2. Let αt = s0 exp{at}. If λ = μ → +∞, c → +∞, with λ/c → θ , then

p(x, t) → θ

αt

(x/αt )
θ−1

[1 + (x/αt )θ ]2
, x ∈ (0,+∞).
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Let us now analyse the behavior of p(x, t) when x approaches the endpoints of
its support, i.e. the interval [s1, s2] := [s0 e(a−c)t , s0 e(a+c)t ].

Corollary 3. For any fixed t > 0, we have

lim
x↓s1

p(x, t) = λ

2cs0
e(c−a−μ)t , lim

x↑s2
p(x, t) = [λ + μ(1 − e−λt )] e−(c+a+λ)t

2cs0
.

Hereafter we express the m-th moment of St in terms of the Gauss hypergeometric
function 2 F1.

Proposition 7. Let m be a positive integer. Then, for t > 0,

E[Sm
t ] = sm

0 em (a−c)t
{

1 + 2 m c

λ

+∞∑
k=0

(1 − e−λt )k+1

k + 1

×
k∑

r=0

(
k

r

)
(−e−μt )r

2 F1

(
2 m c

λ
+ μ

λ
r, k + 1; k + 2; 1 − e−λt

)}
. (10)

Proof. Due to Proposition 4, by setting y = (ct + x)/2c we have

MXt (s) := E
[
es X (t)

]
= e−sct

{
1 + 2sc

∫ t

0

e−(λ−2cs)y

e−λy + e−μ(t−y)(1 − e−λy)
dy

}
.

(11)
After some calculations (11) gives

MXt (s) = e−sct

{
1 + 2sc

λ

+∞∑
k=0

k∑
r=0

(
k

r

)
(−e−μt )k−r

∫
I

xk(1 − x)−[2cs+μ(k−r)]/λ dx

}
,

where I = (0, 1 − e−λt ). Hence, recalling the equation (3.194.1) of [5], and noting
that E[Sm

t ] = sm
0 em at MXt (m), the right-hand-side of (10) immediately follows. �

Figures 3 and 4 show some plots of mean and variance of St , respectively, evalu-
ated by using (10). The right-hand-sides of both figures show cases when condition
λ(c − a) = μ(c + a) is fulfilled.

Remark 1. If λ = μ, then the moment (10) can be expressed as:

E[Sm
t ] = sm

0 em (a−c)t
{

1 + 2 m c

λ

+∞∑
k=0

(k !)2(1 − e−λt )2k+1

(2k + 1) !

× 2 F1

(
2 m c

λ
+ k, k + 1; 2k + 2; 1 − e−λt

)}
.
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• •
• •

Fig. 3. Plot of E(St ) for (λ, μ) = (1.5, 0.9), (1.75, 1.05), (2, 1.2) (left-hand-side) and for
(λ, μ) = (3, 1.8), (3.5, 2.1), (4, 2.4) (right-hand-side) from top to bottom, with s0 = 1, a = 0.5,
c = 2

•

•

•

•

•

•

•

• •
• •

Fig. 4. Plot of Var(St ) for (λ, μ) = (1, 0.6), (1.5, 0.9), (2, 1.2) (left-hand-side) and for (λ, μ) =
(6, 3.6), (7, 4.2), (8, 4.8) (right-hand-side) from top to bottom, with s0 = 1, a = 0.5, c = 2.
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TRisk measures and Pareto style tails

Anna Maria Fiori, Emanuela Rosazza Gianin, and Anna Spasova

Abstract. We discuss asymptotic scaling rules for VaR and CVaR in the context of
distributions with Pareto style tails. These relationships are easily turned into semi-
parametric VaR and CVaR estimates with appealing backtesting properties.

Key words: Value at Risk, Conditional Value at Risk, scaling rules, tail index

1 Introduction

Although tail heaviness is a well-established stylized fact of financial series, there
is an ongoing debate on which heavy tailed statistical distributions are best suited
for risk measurement and control. In this work we propose a semiparametric ap-
proach relying on the only assumption that return distributions have Pareto style
tails. Asymptotic scaling rules available in this framework are discussed in Section 2
and then turned into empirical estimates of Value at Risk (VaR) and Conditional
Value at Risk (CVaR) in Section 3. In practice, the method requires a combination
of historical estimates of VaR (respectively, CVaR) at a “low” confidence level (e.g.
90%) with a regression estimate of the tail index. In Section 4 we present an em-
pirical application to several series of daily returns collected over recent periods of
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volatile markets. Backtesting results obtained for single assets and composite portfo-
lios show that the proposed approach is both an effective and an easily implemented
tool for risk management purposes.

2 Value at Risk and Conditional Value at Risk

In the following we will consider a continuous integrable random variable X repre-
senting the opposite of returns. Denote by FX the cumulative distribution function of
X and by F̄X its survival function. Following [3], [7] and [12], we define the Value
at Risk and the Conditional Value at Risk at level α ∈ (0, 1) of X , respectively, by
V a Rα (X) = F−1

X (1 − α) and

CV a Rα (X) = min
x∈(

{
x + 1

α
E
[
(X − x)+

]} = E [ X | X > V a Rα (X)] .

In this work we develop VaR and CVaR calculations assuming only that the sur-
vival function of X fulfils the following:

Definition 1 (see [2, 11, 13]). A random variable X is said to have a Pareto style
distribution with parameters x0 > 0 and a > 0 if

F̄X (x) = P (X > x) = 1 −
(

1 − L (x)

xa

)
1[x0,+∞), (1)

for some function L : (0,+∞) → (0,+∞) that is slowly varying at infinity, i.e.
limx→+∞ L(lx)

L(x) = 1 for any l > 0. The strict Pareto distribution is obtained when
the slowly varying function L reduces to the constant value xa

0 .

Examples of Pareto style distributions range from well known economic size dis-
tributions (e.g. the Gamma, the Dagum, the Burr, . . . ) to popular models of finan-
cial interest (including the Generalized Pareto, Cauchy and Student t). We recall
that a Pareto style random variable is integrable iff a > 1 (see, e.g. [11]) with
E [X ] = a

a−1 x0 in the strictly Pareto case. The parameter a is usually called tail
index.

In the context of distributions with Pareto style tails, a useful relationship between
Value at Risk figures at different significance levels is derived in [8] (see also [13]).

Proposition 1 (see [13]). For a random variable X with a Pareto style distribution
it holds that for any α0, α1 such that 0 < α1 ≤ α0 < 1

V a Rα1 (X) = V a Rα0 (X) ·
(
α0

α1

)1/a

·
[

L
(
V a Rα0 (X)

)
L
(
V a Rα1 (X)

)]1/a

. (2)
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Since L is slowly varying at infinity, the following approximation holds

V a Rα1 (X) ∼= V a Rα0 (X) ·
(
α0

α1

)1/a

, (3)

for large enough V a Rs. When L is constant, the approximation above is exact.

Given a significance level α ∈ (0, 1) and the corresponding V a Rα (X), there are
many choices of how to compute/approximate CV a Rα (X).

Proposition 2. For a random variable X with Pareto style distribution with param-
eters x0 > 0 and a > 1 it holds that for any y ≥ x0:
(i) E

[
X | X > y

] = y + ya

L(y)

∫ +∞
y L (x) · x−a dx.

(ii) E
[

X | X > y
] = a

a−1 y + 1
a−1

ya

L(y)

∫ +∞
y L ′ (x) x−a+1 dx.

(iii) E
[

X | X > y
] ∼y→+∞ a

a−1 y.

Moreover, if X is strictly Pareto distributed:
(iv) CV a Rα (X) = a

a−1 V a Rα (X) for any α ∈ (0, 1).

(v) CV a Rα1 (X) = CV a Rα0 (X) ·
(

α0
α1

)1/a
for any 0 < α1 ≤ α0 < 1.

Proof. (i) It is easy to check that for any y ≥ x0

f X |X>y (x) = ya

L (y)

[
aL (x) · x−a−1 − L ′ (x) · x−a

]
1[y,+∞).

Integration by parts leads to:

E
[

X | X > y
] =

∫ +∞

y

ya

L (y)

[
aL (x) · x−a − L ′ (x) · x−a+1

]
dx

= y a

L (y)

[∫ +∞

y
L (x) · x−adx + L (y) · y−a+1

]
(4)

= y + y a

L (y)

∫ +∞

y
L (x) · x−adx,

where equality (4) is a consequence of the fact that for a slowly varying function L
it holds that L (x) · x−a+1 is regularly varying with index (1 − a), and limx→+∞(
L (x) · x−a+1

) = 0 for a > 1 (see [11] and Corollary A3.4 of [6]).

(ii) can be obtained similarly.

(iii) By Karamata’s theorem (see [6] and [11]) applied to (i), it follows that
E
[

X | X > y
] ∼y→+∞ y − ya

L(y)
1

1−a y−a+1 L (y) = a
a−1 y.

(iv) If X has a strict Pareto distribution, its right tail above a given threshold (for
instance, to the right of a convenient V a R) has the same distribution (a property
known as tail replication) and E

[
X | X > y

] = a
a−1 y. Hence, CV a Rα (X) =



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T186 A.M. Fiori, E. Rosazza Gianin, and A. Spasova

E [ X | X > V a Rα (X)] = a
a−1 V a Rα (X). The same could also be deduced by both

(i) and (ii).

(v) follows from Proposition 1 and item (iv). 	


Note that item (iv) in the above Proposition implies that CV a Rα (X) ≥ V a Rα

(X), in line with a well known result on the link between V a R and CV a R at the
same level.

3 Semiparametric VaR and CVaR estimation

The approximate scaling rule (3) is easily turned into an estimate of V a Rα1 if V a Rα0

is replaced by a nonparametric estimate and the tail index a is estimated by Hill or
similar techniques. As noticed in [13], the resulting V a R estimate may be called
semiparametric because the tail index is specified by a parameter but the slowly
varying function L is not assumed to be in a parametric family and so is modelled
nonparametrically. An advantage of (3) is that it provides an estimate of V a R not
just for a single significance level, but for all values of α1 ∈ (0, α0). In spite of
its appealing simplicity, this intuitive approach has received no attention in either
literature or financial practice. In this section, we elaborate on [13] and construct a
two-step procedure for the estimation of V a Rα1 based on (3). An additional step
describes estimation of CV a R according to Proposition 2.

Step 1: V a Rα0 by Exponentially Weighted Historical Simulation (EWHS)
Historical simulation (HS) is probably the simplest way of estimating V a Rα0 non-
parametrically. To account for time dependence of financial losses, we apply the
exponentially weighted variant of HS discussed in [4]. We take a sample of size T

from X ,
{

X(T+1−τ)

}T
τ=1, and assign a weight λτ = {

λτ−1 (1 − λ) /
(
1 − λT

)}T
τ=1

to each observation, with λ in the range (0, 1). It is easy to check that
∑T

τ=1 λτ = 1
and that the function λτ decreases exponentially as we move back into the past,
thus emphasizing the role of more recent observations. The sample is now sorted
in decreasing order and the corresponding weights are summed up until the signifi-
cance level α0 is reached. The observation associated with cumulative weight α0 is
then taken as an estimate of V a Rα0 (with possible use of linear interpolation when
none of the cumulative weights matches α0 exactly). Choosing λ = 0.94 as in JP
Morgan’s RiskMetrics, we have verified that the resulting VaR estimate (henceforth

denoted by V̂ a R
EWHS
α0

) gives accurate backtesting results for values of α0 between
0.05 and 0.10.

Step 2: tail index estimation
Taking logarithms of (1) we obtain, for x > x0, ln F X (x) = ln L (x) − a · ln x ,
where the slowly varying function L may be approximated by a constant for large
values of x . The plot of {(

ln x, ln F X (x)
)
, x > x0

}
(5)
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should therefore give a line of slope −a, at least for large x . Consequently, a regres-
sion estimate of the tail index a (here denoted by âR) is simply given by minus the
slope of the O L S line through the sample points:

{(
ln xT :k, ln k

T

)
, k = 1, 2, . . . ,m

}
where xT :k denotes the k-th largest observation in the sample, for k = 1, 2, . . . ,m.
The choice of m (i.e. the number of observations to be included in tail estimation) is
conventionally based on visual inspection of the portion of the log-log plot (5) that
looks approximately linear. As emphasized in [11], “choosing m is an art as well
as a science”, and the resulting estimate of a is rather sensitive to this choice. Here,
we let m be determined by the number of observations which exceed the EW H S
estimate of V a Rα0 defined in Step 1, for α0 equal to either 0.05 or 0.10. Plugging

âR and V̂ a R
EWHS
α0

into (3) we obtain a semiparametric V a R estimate:

V̂ a R
S P
α1

= V̂ a R
EW H S
α0

·
(
α0

α1

) 1
âR

(6)

which is less sensitive to subjective judgement and makes use of the whole sample
information rather than focusing only on the m largest losses. Equation (6) is in-
tended to be useful in V a R estimation for either regulatory purposes (α1 = 0.01) or
stress analysis (e.g. incremental risk charge, with α1 = 0.001).

Step 3: from VaR to CVaR
Combining Propositions 1 and 2(iii) we obtain an approximate scaling rule for CVaR
that mimics the exact relationship derived in Proposition 2(v). This is easily turned
into a semiparametric estimate of CV a Rα1 (0 < α1 ≤ α0) by one of the following:

ĈV a R
(1)
α1

= ĈV a R
EWHS
α0

·
(
α0

α1

)1/̂aR

, (7)

where ĈV a R
EWHS
α0

is the exponentially weighted average of the loss values exceed-

ing V̂ a R
EWHS
α0

, based on the same weigthing scheme described in Step 1;

ĈV a R
(2)
α1

= ĈV a R
H S
α0

·
(
α0

α1

)1/̂aR

, (8)

where ĈV a R
H S
α0

is the equally weighted average of the loss values exceeding

V̂ a R
EW H S
α0

;

ĈV a R
(3)
α1

= ĈV a R
S P
α0

·
(
α0

α1

)1/̂aR

, (9)

with ĈV a R
S P
α0

= âR
âR−1 V̂ a R

EW H S
α0

.

Proposition 2(iii) suggests the alternative estimate: ĈV a Rα1 = âR
âR−1 V̂ a R

S P
α1

,
which is an approximation of the conventional CVaR estimate provided by extreme
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value analysis (see, e.g. [10]). However, this will not be considered in the following
since preliminary backtesting results seem to favour the three estimates (7), (8), (9)
obtained by scaling an estimate of CV a Rα0 for α0 equal to either 0.1 or 0.05.

4 Empirical application

From Bloomberg we have obtained daily logarithmic returns of six equity indexes
(S&P500, FTSE100, FTSEMIB, SOFIX, RTSI and PX) and two exchange rates
(EURUSD and EURJPY). This choice is representative of both mature economies
(S&P500, FTSE100, FTSEMIB and the currencies) and medium-developed markets
(SOFIX: Bulgaria, RTSI: Russia, PX: Czech Republic). For a more realistic appli-
cation, we have also constructed two portfolios that are simultaneously exposed to
the six equity indexes. The former is an equally weighted portfolio, while the latter
is a “riskier” portfolio with 75% of the weight equally invested in the three Eastern
Europe economies (SOFIX, RTSI, PX) and the remaining 25% equally invested in
the three Western economies (S&P500, FTSE100, FTSEMIB).

Using consecutive trading days from 15-Apr-2004 to 31-Mar-2010 we have col-
lected a sample of size 1500 for all assets. In accordance with familiar stylized facts
of financial series, the data exhibit severe departures from normality and volatil-

Table 1. Backtesting VaR estimates at level 1%: number of exceptions and p-values of a one-sided
binomial test (in parenthesis)

NORM HS EWHS EWHS-Par(5%) EWHS-Par(10%)

FTSEMIB 35 19 14 2 3

p-value (0.0000) (0.0000) (0.0006) (0.9602) (0.8766)

FTSE100 27 17 10 4 3

p-value (0.0000) (0.0000) (0.0311) (0.7364) (0.8766)

S&P500 33 21 12 6 4

p-value (0.0000) (0.0000) (0.0052) (0.3840) (0.7364)

EUR/USD 28 18 11 5 3

p-value (0.0000) (0.0000) (0.0132) (0.5604) (0.8766)

EUR/JPY 28 14 15 6 7

p-value (0.0000) (0.0006) (0.0002) (0.3840) (0.2371)

SOFIX 30 14 13 3 4

p-value (0.0000) (0.0006) (0.0019) (0.8766) (0.7364)

RTSI 31 17 16 4 3

p-value (0.0000) (0.0000) (0.0001) (0.7364) (0.8766)

PX 25 15 13 6 5

p-value (0.0000) (0.0002) (0.0019) (0.3840) (0.5604)

PORT1 34 19 15 6 2

p-value (0.0000) (0.0000) (0.0002) (0.3840) (0.9602)

PORT2 35 15 15 5 4

p-value (0.0000) (0.0002) (0.0002) (0.5604) (0.7364)
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Table 2. Backtesting CVaR estimates at level 1% obtained by scaling various estimates of CVaR
at level α0

α0 = 0.05 α0 = 0.1

CVaR1 CVaR2 CVaR3 CVaR1 CVaR2 CVaR3

FTSEMIB 3.39e-07 1.65e-05 −1.20e-05 −3.03e-05 −2.08e-05 −3.62e-05

FTSE100 −4.72e-05 −8.57e-05 −1.26e-04 −4.99e-05 −2.40e-05 −4.26e-05

S&P 500 6.36e-07 −1.48e-05 −1.95e-05 −3.44e-05 −1.70e-05 −5.88e-05

EUR/USD −1.47e-05 −2.77e-06 −4.72e-06 1.08e-05 1.30e-05 1.60e-05

EUR/JPY 2.49e-05 4.46e-06 4.49e-06 −7.73e-05 −7.08e-05 −6.46e-05

SOFIX −1.57e-05 −2.40e-05 −4.37e-05 −1.35e-04 −6.86e-05 −7.65e-05

RTSI 4.18e-05 2.65e-06 −9.44e-05 −1.85e-06 2.89e-06 −5.83e-05

PX −4.07e-05 −3.62e-05 −1.23e-04 −1.01e-04 −1.26e-04 −1.84e-04

PORT1 −4.58e-05 −5.92e-05 −8.83e-05 −2.60e-05 −4.43e-05 −6.07e-05

PORT2 −3.62e-05 −4.41e-05 −9.68e-05 −5.17e-05 −3.70e-05 −7.89e-05

ity persistence (descriptive statistics are available from the authors). Using a rolling
window of length T = 1000, we have estimated V a R0.01 by each of the following
methods: the parametric-normal approach, the traditional H S, the EW H S described
in Step 1 (Section 3), the semiparametric estimate (6) with α0 = 0.05 and 0.10. The
resulting V a R estimates have been evaluated by a backtesting procedure over the
last 500 trading days in the sample, which represent a period of highly volatile mar-
kets. The number of V a R violations and the p-values of the corresponding (one-
sided) binomial test are reported in Table 1 (further backtesting analyses were con-
ducted according to [5] and are available from the authors). Although its computation
is just as simple as a parametric-normal or a H S V a R, the semiparametric estimate

V̂ a R
S P
0.01 emerges from our comparison as the most reliable measure of the market

risk embedded in the data.
We now consider the problem of backtesting the reliability of CVaR estimates

(7), (8), (9) at level α1 = 0.01. Following [10], we take the identity:

E

[(
Xt+1 − CV a Rt

α1

)
I{

Xt+1>V aRt
α1

}] = 0 (10)

as our starting point. This suggests that the discrepancies between the observed loss
values Xt+1 and the estimated CVaRs on days when the estimated VaRα1 is violated
should come from a distribution with zero mean. The results in Table 2 seem to con-
firm this property for each of the three estimates (7), (8), (9). In addition to being
very close to zero, the sample estimates of (10) have negative sign in most circum-
stances, thus revealing a properly prudential behaviour of the estimated CVaRs at
level α1 = 0.01.

An illustrative example of backtesting results involving the FTSE100 series is
diplayed in Fig. 1.
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Fig. 1. Backtesting VaR and CVaR estimates of FTSE100 at level 1%. All the risk measures are
computed by scaling an estimate of the same measure at level 10%

Further backtesting analyses of VaR and CVaR estimates derived from Proposi-
tion 2 are the subject of our current research. In particular, we are checking relation
(10) on different portfolios and longer backtesting periods (1000 or 2000 data), and
we are looking for alternative tests. This leads us to consider the problem of char-
acterizing the statistical properties of the estimated VaRs and CVaRs and compare
them with alternative methods. Interested readers are referred to recent literature
on Pareto tail estimation (e.g. [9]), VaR and VaR scaling (see [1] and [14], among
others).
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TCredit risk and incomplete information:
A filtering framework for pricing and risk
management

Claudio Fontana

Abstract. We propose a reduced-form credit risk model where default intensities,
interest rates and risk premia are determined by a not fully observable factor process
with affine dynamics. The inclusion of latent factors enriches the model flexibility
and induces an information-driven contagion effect among defaults of different is-
suers. The information on the unobserved factors is dynamically updated via stochas-
tic filtering, on the basis of market data as well as rating scores. This allows for a
continuous tuning of the model to the actual (latent) situation of the economy and
provides a coherent and unified approach to pricing and risk management.

Key words: Default risk, partial information, stochastic filtering, credit rating, risk
premium, affine models

1 Introduction

Multi-factor intensity-based models have proven to be an effective tool for the moel-
ing of credit risk. The characterizing aspect of these models is the dependence of the
default intensities, which determine the law of the random default times, on a vector
of stochastic factors. However, the choice of the underlying factors and the model-
ing of the correlation among defaults of different issuers represent crucial issues that
have to be properly addressed.

To this purpose, we formulate a model in an incomplete information framework.
More specifically, we assume that both default intensities and interest rates are lin-
ear functions of a multivariate, not fully observable stochastic factor process with
affine dynamics. Such a factor process is very general. The inclusion of latent com-
ponents, which may not have a clear economic interpretation, not only helps to avoid
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an inadequate specification of the factor process and enhance the model flexibility,
but can also explain contagion phenomena such as clustering of defaults and large
comovements of credit spreads, as shown in [8] and [11]. Moreover, latent factors
can capture both omitted variables and truly unmeasurable effects, such as trust in
the accuracy of public accounting information (see [17, 18]). Observable macroe-
conomic covariates that may characterize the general state of the economy, as well
as sectorial, geographic and idiosyncratic components can also be included. Indeed,
such variables have been shown to play a significant role in explaining the level
of credit risk (see [4, 11, 17, 18]). Such a modeling approach can be seen as a dy-
namic generalization of the so-called frailty-based approach, which also allows one
to introduce information-driven default contagion effects (see [2, 11, 23]).

We aim at extending the modeling approach originally proposed in [14], in order
to cover not only applications to pricing but also to risk management. This raises the
need to formulate the model under both the physical and the risk-neutral probabil-
ity measures, which are linked via the risk premium process. The latter will not be
assumed to be directly observable (compare [3, 22]) and will be characterized in a
rather flexible way as a function of the underlying latent factor process.

Both for risk management as well as for pricing, most quantities of interest can be
expressed as functionals of the factor process. Since the latter is not fully observable,
a filtering procedure is proposed in order to dynamically update the information on
the unobserved factors on the basis of publicly available information. Such informa-
tion consists not only of market data (the interest rate, yields on default-free bonds
and credit spreads on defaultable bonds) but also of the information coming from the
rating scores, thereby extending the filtering methodology presented in [14]. Indeed,
as pointed out in [15], credit ratings contain important information not captured by
credit spreads about corporate defaults and can also be regarded as noisy measures
of actual default probabilities (see also [9, 13], Chap. 5, and [19]).

The proposed approach has a number of advantages. First of all, the dynamic up-
dating via stochastic filtering allows the model to stay always tuned to the actual
market situation and coherent with the whole default-free and defaultable observed
term structures. In particular, this yields a continuous updating of the risk premium
process, thereby allowing the model to track the dynamic behavior of investors’
preferences and the implied pricing measure. Secondly, by combining market-based
with rating-based data, the model can capture both forward- and backward-looking
sources of information. Moreover, the model preserves the usual analytical tractabil-
ity of affine models and allows for the explicit computation of default probabilities,
default correlations, bond prices and CDS spreads.

The structure of the paper is as follows. Section 2 describes the model setup.
Section 3 shows how essential ingredients such as default probabilities and bond
prices can be easily computed in the hypothetical situation of complete information.
Section 4 describes the structure of the information actually available to the investors
and, finally, Section 5 deals with the formulation and (an outline of) the solution
of the filtering problem. We refer the reader to [14] for a thorough analysis of the
parameter estimation problem, which turns out to be deeply linked to the filtering
problem, and for a numerical study of the main features of the proposed algorithm.
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2 The modeling framework

We place ourselves in the context of a large financial market with M active firms,
each of which may default. Given a time horizon T ∗ ∈ (0,∞), we let τm represent
the random default time of firm m, for m = 1, . . . , M , and let Hm

t := 1{τm≤t} be
the corresponding default indicator, for t ∈ [0, T ∗]. The default state of the market
at time t is then described by Ht := (

H1
t , . . . , H M

t

)
and the default history is repre-

sented by the filtration (Ht )t , withHt := σ {Hs : s ≤ t}. Let
(
�,G, (Gt )t , P

)
be the

underlying filtered probability space, with P denoting the physical probability mea-
sure. (Gt )t represents the full information filtration and is defined by Gt := Ft ∨Ht ,
where (Ft )t is a given background filtration. The default times {τm}m=1,...,M are
modeled as (Ft )t -conditionally independent doubly stochastic random times (see
[20], Sect. 9.6) and we denote by λm

t the stochastic default intensity of firm m, for
m = 1, . . . , M . We assume that the underlying behavior of the economy is deter-
mined by an N -dimensional (Ft )t -adapted factor process Xt satisfying the following
dynamics:

dXt = (A Xt + b) dt +√
St dWt , (1)

where Wt is an RN -valued
(
(Ft )t , P

)
-Brownian motion, St is a diagonal N -matrix

with S i,i
t = α i +βi

′Xt , for i = 1, . . . , N , and the parameters A ∈ RN×N , b ∈ RN ,
α := (α 1, . . . , α N )′ ∈ RN and β := (β1, . . . , βN ) ∈ RN×N satisfy the assump-
tions of Def. 1 in [7]. In particular, this ensures both econometric identifiability and
the existence of a solution to the SDE (1). Furthermore, let us make the following
Assumption.

Assumption 1. For a fixed N̄ ∈ {1, . . . , N }, the parameter vector b ∈ RN satisfies
bi ≥ 1/2 for i = 1, . . . , N̄ .

Assumption 1 ensures that the process X̄t := (
X1

t , . . . , X N̄
t

)′ has P-a.s. strictly
positive components (compare [12], Condition A), while, for i ∈ {N̄ + 1, . . . , N

}
,

the process Xi
t can also take negative values.

We assume that all firms are grouped into L rating classes and we denote by
#(m) the rating score attached to firm m. For m ∈ {1, . . . , M}, the default intensity
λm

t of firm m and the risk-free spot interest rate rt are given as linear functions of
the subvector X̄t of Xt , for every t ∈ [0, T ∗] and where � = #(m) ∈ {1, . . . , L}:⎧⎨⎩ rt := r̄ + k ′ X̄t ,

λm
t := λ̂�

t + λ̌m
t :=

(
ĉ� + d̂�

′ X̄t

)
+
(

čm + ďm
′ X̄t

)
,

(2)

where r̄ , ĉ�, čm ∈ R+ and k, d̂�, ďm ∈ RN̄+ , for � ∈ {1, . . . , L} and m ∈ {1, . . . , M}.
Intuitively, this amounts to decompose the default intensity λm

t into an idiosyncratic
component λ̌m

t and a rating component λ̂�
t . The latter is common to all firms with

rating score � and denotes the default intensity of a representative firm belonging to
the �-th rating class. Notice that (2) ensures that both interest rates and default inten-
sities are positive and correlated. Moreover, the common dependence on the factor
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process X̄t introduces correlation among the default intensities, as suggested in [24].
In particular, this implies that default times of different firms are also correlated.

The following Assumption, concerning the risk premium associated to the ran-
domness generated by Wt , completes the description of our model.

Assumption 2. The RN -valued process θt denoting the risk premium associated to
Wt can be represented as follows, for every t ∈ [0, T ∗]:

θt :=
(√

St

)−1 (
γ̄ + γ Xt

)
, (3)

where the parameters γ̄ ∈ RN and γ ∈ RN×N are such that:

1. γ̄ i ≤ bi − 1/2 for i = 1, . . . , N̄ ;
2. γ i, j = 0 for i = 1, . . . , N̄ , j = N̄ + 1, . . . , N and γ i, j ≤ A i, j for i, j =

1, . . . , N̄ with i �= j .

Notice that the risk premium θt may depend in general on all N components of
the factor process Xt . This reflects the fact that in the underlying financial market
there may be additional sources of randomness affecting the dynamics of asset prices
besides the N̄ Brownian motions driving the interest rate and the default intensities1.
Furthermore, the process θt is not restricted to the positive orthant and is also allowed
to change sign over time. As already pointed out in [5], this specification of the risk
premium is very flexible and generalizes the cases considered in [3], [7] and [10].
We have then the following Proposition, where we denote by E (·) the stochastic
exponential (see [21, Sect. II.8]):

Proposition 1. Under Assumptions 1 and 2 the following hold:

1. if we let d P∗
d P |Gt := E

(− ∫ θ dW
)

t , for t ∈ [
0, T ∗], then P∗ is a well-defined

risk-neutral probability measure on (�,G) equivalent to P;
2. under the measure P∗ the process Xt solves an affine SDE of the form (1) with

parameters satisfying Assumption 1.

Proof. Under Assumptions 1 and 2, part 1 can be proved as in Theorem 1 of
[5]. To prove part 2, construct via Girsanov’s theorem (see [21, Thm. III.46]) the(
(Ft )t , P∗)-Brownian motion W ∗

t as W ∗
t := Wt + ∫ t

0 θs ds, for t ∈ [0, T ∗]. Then:

dXt = (A Xt + b) dt +√
St
(
dW ∗

t − θt dt
)

(4)

= (
(A − γ ) Xt + (b − γ̄ )

)
dt +√

St dW ∗
t

=:
(

A∗ Xt + b∗) dt +√
St dW ∗

t . (5)

Finally, due to Assumptions 1 and 2, it is clear that b∗ satisfies Assumption 1. 	


1 Since we are considering a large financial market, we implicitly assume that the default event risk
can be asymptotically diversified, in the sense of [16]. As a consequence, jump-type risk premia
can be neglected (see also Sect. 5.1 of [13] for related comments).
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In particular, notice that Proposition 1 guarantees that our model is arbitrage free
and ensures positive interest rates and default intensities under both probability mea-
sures P and P∗. Furthermore, as will be shown in the next Section, part 2 of Propo-
sition 1 allows us to obtain explicit and tractable valuation formulas for credit risky
products.

3 Default probabilities and bond prices under full information

In this Section we assume that all investors have access to the full information repre-
sented by the filtration (Gt )t . For 0 ≤ t < T ≤ T ∗, let us denote by P Dm (t, T ) the
Gt -conditional default probability of a firm m with Hm

t = 0. It is then well known
that P Dm (t, T ) can be expressed as follows (see e.g. [20], Chap. 9):

P Dm (t, T ) = P (t < τm ≤ T |Gt ) = 1 − EP
[
e− ∫ T

t λm
s ds

∣∣Ft

]
.

For 0 ≤ t < T ≤ T ∗, let us denote by $d f (t, T ) and $m (t, T ) the prices at
time t of a 0-coupon default-free bond and of a 0-coupon 0-recovery defaultable
bond issued by firm m, respectively, with maturity T and unitary face value2. Then
the following hold:

$d f (t, T ) = EP∗ [
e− ∫ T

t rs ds
∣∣Gt

]
= EP∗ [

e− ∫ T
t rs ds

∣∣Ft

]
,

$m (t, T ) = EP∗ [
e− ∫ T

t rs ds (1 − Hm
T

)∣∣Gt

]
= (

1 − Hm
t

)
EP∗ [

e− ∫ T
t (rs+λm

s ) ds
∣∣Ft

]
.

Under full information, we have then the following Proposition, the proof of which
follows from [12] together with part 2 of Proposition 1 (see also [20], Sect. 9.5).

Proposition 2. Under Assumptions 1 and 2 the following hold, for 0 ≤ t < T ≤ T ∗
and m ∈ {1, . . . , M}:

P Dm (t, T ) = 1 − e Cm (t,T )−Dm (t,T ) Xt , (6a)

$d f (t, T ) = e A(t,T )−B(t,T ) Xt , (6b)

$m (t, T ) = (
1 − Hm

t

)
e Ãm (t,T )−B̃m(t,T ) Xt , (6c)

where Cm (·, T ), Dm (·, T ), A (·, T ), B (·, T ), Ãm (·, T ), B̃m (·, T ) are given as so-
lutions of first-order ODEs which depend on the model parameters (compare [7]
and [12]).

2 As shown in Sect. 2.2 of [14], more general credit risky products such as coupon-bearing corporate
bonds and CDS spreads can be expressed by means of these elementary building blocks.
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As a consequence of Proposition 2, we have that yields and credit spreads com-
puted on default-free and defaultable bonds, respectively, are linear in Xt :

Y L (t, T ) := − 1

T − t
log$d f (t, T ) = − A (t, T )

T − t
+ B (t, T )

T − t
Xt

C Sm (t, T ) :=− 1

T − t
log

(
$m (t, T )

$d f (t, T )

)
= A (t, T ) − Ãm (t, T )

T − t
+ B̃m (t, T ) − B (t, T )

T − t
Xt .

(7)

Of course, an analogous result holds true for the logarithm of the survival probability
of any firm m as well as of a representative firm with rating �, for � ∈ {1, . . . , L}:

P S� (t, T ) := log
(
1 − P D� (t, T )

) = C� (t, T ) − D� (t, T ) Xt . (8)

4 Incomplete information and the investors’ filtration

As mentioned in the Introduction, some of the components of the factor process Xt

may not be observable, due to the presence of frailty variables and other unmeasur-
able effects. Without loss of generality, we shall assume here that all components of
Xt are unobservable3, meaning that investors do not have access to the full informa-
tion represented by the filtration (Gt )t . Let us denote by (Yt )t the investors’ filtration
that represents all publicly available information. More specifically, we assume that
at any time t ∈ [0, T ∗] one can observe the following quantities:

1. the default history up to time t ;
2. the risk-free spot interest rate rt ;
3. a vector of p yields computed on 0-coupon default-free bonds for p different

maturities Ti , i = 1, . . . , p;
4. a vector of q credit spreads computed on 0-coupon 0-recovery defaultable bonds

issued by q different firms (and/or for q different maturities Tj , j = 1, . . . , q);
5. the default probabilities for each rating class �, as published by rating agencies4.

We assume that rt can be perfectly observed (via a proxy). However, since yields
and credit spreads have mostly to be reconstructed from more complex market data
and may also be affected by liquidity and tax effects, we assume that they are noisily
observed. Similarly, we consider rating-based default probabilities as noisy prox-
ies of actual real-world default probabilities. Summing up, the observations are

3 Due to (3), this also implies that the risk premium is unobservable, as in [3] and [22].
4 This setting can also be extended to include the whole rating transition matrix among the obser-
vations if we assume that the intensities driving the rating transitions are of the form (2). In this
way we can also capture non-Markovian effects in the observed rating transitions (see [6, 19]).
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given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rt = r̄ + k

′
X̄t ,

Ỹ L (t, Ti ) = ϕ̄ (i, t) + ϕ (i, t) Xt + ϕ̃ (i, t) Vt , i = 1, . . . , p,

C̃ S j
(
t, Tj

) = ψ̄ ( j, t) + ψ ( j, t) Xt + ψ̃ ( j, t) Vt , j = 1, . . . , q,

P̃ S� (t, T ) = ξ̄ (�, t) + ξ (�, t) Xt + ξ̃ (�, t) Vt , � = 1, . . . , L ,

(9)

where ϕ̄, ϕ, ψ̄, ψ, ξ̄ , ξ represent a shorthand notation for the functions appear-
ing in (7)–(8), ϕ̃, ψ̃, ξ̃ are parameters to be estimated and Vt represents an N∗-
dimensional vector of noise factors, with N∗ ∈ N such that N ′ := N + N∗ −
(1 + p + q + L) > 0 5.

Definition 1. The observation process Yt is defined as follows:

Yt :=
(

rt ,
{
Ỹ L (t, Ti )

}
i=1,...,p,

{
C̃ S j

(
t, Tj

)}
j=1,...,q ,

{
P̃ S� (t, T )

}
�=1,...,L

)′

and the investors’ filtration (Yt )t is defined as Yt := FY
t ∨ Ht , where FY

t :=
σ {Ys : s ≤ t}, so that we have Ht ⊂ Yt ⊂ Gt , for every t ∈ [0, T ∗].
5 The filtering framework

Since Xt is unobservable, we cannot directly rely on formulas (6a)-(6c) to compute
default probabilities and bond prices. Since these represent the essential building
blocks in most risk management and pricing applications, we are interested in ob-
taining optimal estimates of such quantities on the basis of the publicly available
information. Mathematically, this amounts to compute the following conditional ex-
pectations, for 0 ≤ t < T ≤ T ∗ and m ∈ {1, . . . , M}:

P̂ Dm (t, T ) := EP [P Dm (t, T ) |Yt ] = 1 − e Cm (t,T ) EP
[
e−Dm (t,T ) Xt

∣∣Yt

]
,

(10a)

F̂ (t, T ) := EP∗
[F (t, T ; Xt ) |Yt ] , (10b)

where F (t, T ; Xt ) denotes a generic pricing functional in the (hypothetical) situa-
tion of full information, as in (6b)-(6c). It is clear that P̂ Dm (t, T ) and F̂ (t, T ) are by
construction coherent with the observed default-free and defaultable term structures
and also with the rating-based information, due to the definition of Yt . Furthermore,
since rt is assumed to be (Yt )t -adapted, it can be easily shown that (10b) defines an
arbitrage-free price system in the investors’ filtration (Yt )t (see [14], Lemma 6).

In order to compute (10a) and (10b), we need to derive the conditional distribution
(i.e. the filter distribution) of Xt wrt.

(
Q, (Yt )t

)
, for Q ∈ {P, P∗}. Let us first rewrite

5 This condition ensures that the filtering problem to be considered in the next Section (Proposition
3) is non-degenerate, i.e. there are truly unobservable factors (compare also [14], Sect. 3).
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(9) in vector notation as Yt = μt + Mt X̃t , for suitable μt ∈ R1+p+q+L and Mt ∈
R(1+p+q+L)×(N+N∗) and where X̃t := (

X ′
t , V ′

t

)′. The following Proposition shows
that the original filtering problem for Xt can be reduced to an equivalent auxiliary
filtering problem for an N ′-dimensional state process Zt (see [14], Prop. 7)6.

Proposition 3. There exists a time-varying
(
N ′, N + N∗)-matrix Lt such that the

square matrix
(
L ′

t , M ′
t

)′
is non-singular. Under suitable technical conditions, one

can also define a process Zt ∈ RN ′
by eZ i

t := ∑N+N∗
j=1 Li, j

t X̃ j
t , for i = 1, . . . , N ′,

such that we have, for suitable matrices �t ,�t :

Xt = �t eZt + �t (Yt − μt ) (11)

and the couple (Zt ,Yt ) solves a non-degenerate non-linear filtering system.

Observe that the filtering system (Zt ,Yt ) depends on the reference probability
measure Q ∈ {P, P∗}. However, due to Assumption 2 and relation (11), we can
always express the risk premium process, and hence the observations’ dynamics,
in terms of Zt and Yt . Expressions (10a) and (10b) can then by computed by using
relation (11) and integrating over the filter distribution of Zt wrt.

(
Q, (Yt )t

)
, for

Q ∈ {P, P∗}7. Filtered estimates of default intensities and risk premia can also be
computed.
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Abstract. Often in non-life insurance claims reserves are the largest position on the
liability side of the balance sheet. Therefore, the estimation of adequate claims re-
serves for a portfolio consisting of several lines of business is relevant for every
non-life insurance company. In old accounting tradition italian insurance compa-
nies used to estimate nominal claims reserves for their outstanding loss liabilities.
The new solvency regulations require insurance companies to move to a market-
consistent valuation of their liabilities (full balance sheet approach) and to prove the
adequacy every year. Under new Solvency II developments insurance companies
need to calculate a risk margin to cover possible shortfalls in their liability runoff. A
popular approach for the calculation of the risk margin is the cost-of-capital approach
which involves the consideration of multiperiod risk measures. Because multiperiod
risk measures are complex mathematical objects, various proxies are used to calcu-
late this risk margin. In the present paper we derive an analytic formula for the risk
margin which allows the comparison of the different proxies used in practise and
we develop a flexible internal model that can be used for evaluating a specific risk
profile. A case study on different liability datasets investigates the influence of the
dimension on the results and gives a possible answer to some questions raised by
the International Actuarial Association. Moreover, a backtesting process compares
historical results to those produced by the current model in order to validate both the
reasonableness and the implementation of the assumptions.
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1 Introduction

The runoff of general insurance liabilities (outstanding loss liabilities) usually takes
several years. Therefore, general insurance companies need to build appropriate re-
serves (provisions) for the runoff of the outstanding loss liabilities. These reserves
need to be incessantly adjusted according to the latest information available. Under
new solvency regulations, [6], general insurance companies have to protect against
possible shortfalls in these reserves adjustments with risk bearing capital. In this
spirit, this work provides a comprehensive discourse on multiperiod solvency con-
siderations for a general insurance liability runoff and aims to give a possible answer
to the questions raised by the International Actuarial Association, [10]. The discourse
involves the description of the cost-of-capital approach in a multiperiod risk mea-
sure setting. In a cost-of-capital approach the insurance company needs to prove that
it holds sufficient reserves firstly to pay for the insurance liabilities (claims reserves)
and secondly to pay the costs of risk bearing capital (cost-of-capital margin or risk
margin). Hence, at time 0, the insurer needs to hold risk-adjusted claims reserves that
comprise best-estimate reserves for the outstanding loss liabilities and an additional
margin for the coverage of the cash flow generated by the cost-of-capital loadings.
Such risk-adjusted claims reserves are often called a market-consistent price for the
runoff liabilities (in a marked-to-model approach), see e.g. [13]. Because the multi-
period cost-of-capital approach is rather involved, state-of-the-art solvency models
consider a one-period measure together with a proxy for all later periods. Only high-
quality internal models optimally reflecting the risk situation facing the company
allow insurers to assess the level of risk capital required. This importantly involves
measuring and evaluating reserve risk as a part of insurance risks. In literature there
is a wide variety of methods for stochastic reserving such as the Mack method, [11],
the Bootstrap method, [4], regression approaches, [3], Bayesian methods, [5], etc..
All these approaches are based on an ultimo view, so that the uncertainty of full
run-off of the liabilities is quantified. In contrast Solvency II requires the quantifi-
cation of the one-year reserve risk. In addition the investment results, which have
to be added to insurance results, are also based on a one-year view, which means
that actually many internal models show an ultimo view for insurance results and
the one-year view for investment results. So at the moment there is a discussion in
academic literature and in insurance practice, how this one-year reserve risk can be
quantified. This paper presents the idea of re-reserving discussed in [8], following
the approach otulined in [1], which can be applied in modelling reserve risk. Based
on this approach we can quantify one-year risk capital and multi-year risk capital.
The results of the re-reserving method are compared with the results of the analytic
approaches proposed in [2].

2 Reserve risk and risk margin

In the Solvency II Directive framework the Solvency Capital Requirement has the
following definition: “The SCR corresponds to the economic capital a (re)insurance
undertaking needs to hold in order to limit the probability of ruin to 0.5%, i.e. ruin
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would occur once every 200 years. The SCR is calculated using Value-at-Risk tech-
niques, either in accordance with the standard formula, or using an internal model:
all potential losses, including adverse revaluation of assets and liabilities over the
next 12 months are to be assessed. The SCR reflects the true risk profile of the un-
dertaking, taking account of all quantifiable risks, as well as the net impact of risk
mitigation techniques.” Within this framework, the reserve risk is defined as a part
of the underwriting risk, as follows: “Underwriting risk means the risk of loss, or
of adverse change in the value of insurance liabilities, due to inadequate pricing and
provisioning”. If we apply this framework to the reserve risk (see [9]), the concept of
time horizon should distinguish between a period of one year over which an adverse
event occurs, i.e. “shock period” , and a period over which the adverse event will im-
pact the liabilities, i.e. the “effect period”. In any case the reserve risk should capture
the risks arising over the occurrence period and their financial consequences over the
whole run-off of liabilities (for example, a court judgement or judicial opinion in one
year - the shock period - may have permanent consequences for the value of claims
and hence will change the projected cash flows to be considered over the full run-off
of liabilities - the effect period). The risk margin captures uncertainty over the whole
run-off of liabilities. The Solvency II Directive framework provides the following
definition of the risk margin: “The risk margin ensures that the overall value of the
technical provisions is equivalent to the amount (re)insurance undertakings would
expect to have to pay today if it transferred its contractual rights and obligations
immediately to another undertakings; or alternatively, the additional cost, above the
best estimate of providing capital to support the (re)insurance obligations over the
lifetime of the portfolio”. For non-life liabilities (which are non-hedgeable in gen-
eral) the risk margin is the financial cost of uncertainty of liabilities over the whole
run-off giving that this uncertainty is calibrated through the solvency filter: “Where
insurance and reinsurance undertakings value the best estimate and the risk margin
separately, the risk margin shall be calculated by determining the cost of providing
an amount of eligible own funds equal to the Solvency Capital Requirement neces-
sary to support the insurance and reinsurance obligations over the lifetime thereof.”
The Cost of Capital method for the assessment of the risk margin relies on a pro-
jection of the Solvency Capital Required to face potential adverse events until the
last payment of liabilities, i.e. over the whole run-off of the reserves. Among the
problems that can arise in the assessment two have to be considered inevitably: the
projection of the capital requirement in future years and the the double counting of
the risk margin in the approach chosen. One of the possibilities for the calculation
is based on the following formula (see [7] for a more accurate discussion):

RM0 =
n−1∑
t=1

CoC · SC R0 · C Et

C E0
· max (1, ln (1 + γt )) · 1

(1 + i (0, t))t , (1)

where RM represents the risk margin, CoC the cost of capital, SC R the solvency
capital requirement, C E the current estimate, i(0, t) the interest rate, γt = CV (Rest )

CV (Res0)
the ratio between coefficients of variation of the random variable Res, which repre-
sents the outstanding claim reserve. The capital requirement is determined as
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follows:
SC R0 = V a R99.5% (Res0) − RM0 − C E0, (2)

where V a R99.5% (Res0) represents the Value at Risk at the valuation date of the
outstanding claim reserve at a 99.5% confidence level over a one-year time horizon.
Substituting the (2) in (1) the risk margin becomes :

RM0 = CoC · (V a R99.5% (Res0) − C E0
) · ProFact

1 + CoC · ProFact
, (3)

where

ProFact =
n−1∑
t=1

C Et

C E0
· max (1, ln (1 + γt )) · 1

(1 + i (0, t))t . (4)

The assessment of the risk margin through (3) has some advantages:

• the solvency capital requirement follows the underlying driver, i.e. the current
estimate;

• the formula considers that the variance increases as the time passes and conse-
quently the SCR should increase as well, as the variance is a risk measure;

• the future variance of the current estimate is over estimated at the valuation date:
this is due to the lack of information on the development factors for the extreme
development years. The increase is mitigated through the use of the function;

• the double counting of risk margin both in the fair value and in the capital re-
quirement is eliminated;

• the formula considers the real variance and the real Value-at-Risk of the current
estimate instead of approximations and simplifications.

3 Backtesting

Firms that use VaR as a risk disclosure or risk management tool are facing growing
pressure from internal and external parties such as senior management, regulators,
auditors, investors, creditors, and credit rating agencies to provide estimates of the
accuracy of the risk models being used. Users of VaR realized early that they must
carry out a cost-benefit analysis with respect to the VaR implementation. A wide
range of simplifying assumptions is usually used in VaR models (distributions of
returns, historical data window defining the range of possible outcomes, etc.), and
as the number of assumptions grows, the accuracy of the VaR estimates tends to
decrease. As the use of VaR extends from pure risk measurement to risk control in
areas such as VaR-based Stress Testing and capital allocation, it is essential that the
risk numbers provide accurate information, and that someone in the organization is
accountable for producing the best possible risk estimates. In order to ensure the ac-
curacy of the forecasted risk numbers, risk managers should regularly backtest the
risk models being used, and evaluate alternative models if the results are not entirely
satisfactory. VaR models provide a framework to measure risk, and if a particular
model does not perform its intended task properly, it should be refined or replaced,
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and the risk measurement process should continue. The traditional excuse given by
many risk managers is that “VaR models only measure risk in normal market con-
ditions” or “VaR models make too many wrong assumptions about market or port-
folio behavior” or “VaR models are useless” should no longer be taken seriously,
and risk managers should be accountable to implement the best possible framework
to measure risk, even if it involves introducing subjective judgment into the risk
calculations. It is always better to be approximately right than exactly wrong. How
can the accuracy and performance of a VaR model be assessed? In order to answer
this question, we first need to define what we mean by “accuracy.” By accuracy,
we could mean not only how well the model measures a particular percentile of or
the entire profit-and-loss distribution, but also how well the model predicts the size
and frequency of losses. Many standard backtests of VaR models compare the actual
portfolio losses for a given horizon vs. the estimated VaR numbers. In its simplest
form, the backtesting procedure consists of calculating the number or percentage of
times that the actual portfolio returns fall outside the VaR estimate, and comparing
that number to the confidence level used. For example, if the confidence level were
95%, we would expect portfolio returns to exceed the VaR numbers on about 5%
of the days. Backtesting can be as much an art as a science. It is important to incor-
porate rigorous statistical tests with other visual and qualitative ones. The approach
followed in the work in order to understand if the reserve predicted by the model
matches the reserve held by the insurance company is to compare prior year devel-
opment to model predictions, that is to say compare the probability distribution and
the expected value of the first diagonal of the run-off triangle obtained by the ex-
clusion of the last generation and the actual paid value written in the balance sheet.
After applying this actual-versus-expected analyses (“AvE”) to all the methods used
to evaluate the best estimate a ranking of preference can be outlined. This type of
back-testing should be a significant part of the validation process, although the test
should not be limited to this.

4 Case study

This paragraphs shows the results obtained through different stochastic methods for
the assessment of the best estimate of the claim reserve, the risk margin and the cap-
ital requirement for the reserve risk. The initial data set is represented by the run-off
triangles of incremental payments (considering ten generations) of three different
insurance companies operating in the general liability LoB. The aim is the analysis
of the effects of the portfolio’s dimensions on the variability measures (coefficient
of variation) and the risk measures (reserve risk capital) of the claim provision. Two
different approaches for the assessment of the reserve risk capitale are compared,
the “Internal Model One Year Horizon” approach, [7], and the “Standard QIS4” ap-
proach, [2]. The different columns of the following Tables (Table 1, Table 2, Table 3)
represent the different way of calculations adopted:

• I (method) : Mack, see [11];
• II (method) : ODP, see [5];
• III (method) : BF Bayes, see [12];
• IV (method) : FL Bayes, see [8].
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Table 1. Large Company (Euro Thousands)

Values/Methods I II III IV

Internal Model 1 year

Current Estimate 261,884 261,770 259,500 236,000

Risk Margin (%CE) 1.65% 2.39% 1.85% 1.75%

Reserve Risk Capital (%CE) 6.92% 11.92% 5.11% 4.56%

Sigma (1year) 3.22% 5.18% 2.88% 2.75%

Standard QIS4

Current Estimate 261,884 261,770 259,500 236,000

Risk Margin (%CE) 8.88% 8.88% 8.90% 5.76%

Reserve Risk Capital (%CE) 45.22% 45.22% 45.22% 45.22%

Sigma (1year) 15.00% 15.00% 15.00% 15.00%

Table 2. Mid-Size Company (Euro Thousands)

Values/Methods I II III IV

Internal Model 1 year

Current Estimate 84,902 85,847 91,010 76,820

Risk Margin (%CE) 5.37% 5.83% 6.17% 3.64%

Reserve Risk Capital (%CE) 21.48% 27.69% 25.58% 20.41%

Sigma (1year) 9.43% 11.41% 15.12% 9.48%

Standard QIS4

Current Estimate 84,902 85,847 91,010 76,820

Risk Margin (%CE) 9.20% 9.23% 9.05% 7.81%

Reserve Risk Capital (%CE) 45.22% 45.22% 45.22% 45.22%

Sigma (1year) 15.00% 15.00% 15.00% 15.00%

Table 3. Small Company (Euro Thousands)

Values/Methods I II III IV

Internal Model 1 year

Current Estimate 18,591 19,062 20,072 33,282

Risk Margin (%CE) 13.99% 8.72% 7.09% 5.07%

Reserve Risk Capital (%CE) 45.27% 44.12% 43.45% 44.90%

Sigma (1year) 18.92% 23.35% 17.15% 18.05%

Standard QIS4

Current Estimate 18,591 19,062 20,072 33,282

Risk Margin (%CE) 10.75% 10.73% 7.30% 6.45%

Reserve Risk Capital (%CE) 45.22% 45.22% 45.22% 45.22%

Sigma (1year) 15.00% 15.00% 15.00% 15.00%



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TClaims reserving uncertainty in the development of internal risk models 209

Table 4. Backtesting – AvE Analysis (Euro Thousands)

Large Company MidSize Company Small Company

I - Expected 56,360 17,798 2,493

II - Expected 56,360 17,798 2,493

III - Expected 58,724 19,597 4,901

IV - Expected 106,363 23,954 10,597

Actual Paid Value 69,903 22,337 2,831

Preference Order

I 2 3 1

II 2 3 1

III 1 2 2

IV 3 1 3

Table 4 shows the results of the backtesting: after the comparison of the prior
year development to model predictions, that is to say the comparison of the proba-
bility distribution and the expected value of the first diagonal of the run-off triangle
obtained by the exclusion of the last generation with the actual paid value written in
the balance sheet, a ranking of preference can be outlined.

The results of the case study presented seem to lead to the following conclusions:

• the assessment of the current estimate is much more influenced by the determinis-
tic methodology underlying the stochastic model rather than by the probabilistic
structure of the stochastic model itself;

• the variability measure (sigma) and the reserve risk capital are significantly af-
fected by the probabilistic structure of the model and by the insurer dimensions;

• the QIS4 standard formula states that the risk capital is a percentage of the best
estimate, different for each LoB. This approach could penalize prudential insurers
and could lead the management to select the methodology for the claim reserve
assessment that gives the lower result;

• the use of a unique sigma for all the insurance companies could lead to an over-
estimation both of the risk capital and the risk margin; a size factor or an entity
specific sigma to be combined with the market wide sigma could be possible so-
lutions;

• the choice of the internal model for the reserve risk assessment has a great impor-
tance; that is the reason a set of validation criteria should be defined and verified
through a backtesting analysis.

The results presented and the conclusions exposed depend significantly on the
datasets considered and on the insurance companies analyzed; the intention is to
apply the methodologies to other insurers and verify the possibility to extend the
conclusions to other case studies.
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TSome inequalities between measures of
multivariate kurtosis, with application
to financial returns

Cinzia Franceschini and Nicola Loperfido

Abstract. The kurtosis of a random variable is often measured by its fourth stan-
dardized moment. Similarly, measures of multivariate kurtosis are often functions
of a matrix containing all the fourth order moments which can be obtained from
a standardized random vector. This paper examines some properties of the fourth
moment matrix, and uses them to establish some inequalities between well-known
scalar measures of multivariate kurtosis. Theoretical results are applied to multivari-
ate financial returns.

Key words: Fourth moment, linear transformation, log-return, multivariate kurtosis

1 Introduction

Kurtosis is a fundamental concept in Statistics as well as in Finance. It can be in-
formally presented as a measure of the distribution’s tailweight: the heavier the tails
(i.e. the more likely is the occurrence of extreme events) the greater the kurtosis. The
kurtosis of a random variable X satisfying E

(
X4
)
< +∞ is often measured by its

fourth standardized moment

β2 (X) = E

[
(X − μ)4

σ 4

]
, (1)

where μ and σ 2 are the mean and the variance of X, respectively.
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In order to generalize β2 to the multivariate case, let x = (X1, . . . , Xd)
T be a

d−dimensional random vector satisfying E
(∣∣Xi X j Xh Xk

∣∣) < +∞, for i, j, h, k =
1, . . . , d. The fourth moment of x is the d2 × d2 matrix

μ4 (x) = E
(

x ⊗ xT ⊗ x ⊗ xT
)

(2)

[8]. Similarly, the fourth central moment of x is μ4 (x) = μ4 (x − μ), where μ is
the expectation of x . The fourth standardized moment of x is μ4 (z), where z =

−1/2 (x − μ) and 
−1/2 is the symmetric square root of the inverse of the covari-
ance matrix 
 of x , which is assumed to be a full rank matrix. All generalizations of
β2 to the multivariate case depend on the fourth standardized moment of a random
vector.

The best known measure of multivariate kurtosis is

βR
2,d = E

{[
(x − μ)T 
−1 (x − μ)

]2
}
, (3)

where the superscript “R” reminds that it depends on the underlying distribution only
through its “radial” part [11]. It is often referred to as Mardia’s measure of multi-
variate kurtosis, having been discussed in detail by [13]. However, similar measures
appeared in the statistical literature before [18] and [2]. For this reason, we shall
follow a hint in [11] and refer to βR

2,d as to radial kurtosis. Values of βR
2,d have been

calculated for several well-known families of distributions, including the normal one
[13] and some of its generalizations, as for example finite mixtures of normal dis-
tributions [14] and the extended skew-normal distribution [1]. Under quite general
conditions, its sample counterpart provides the locally optimal invariant test for the
presence of outliers in a multivariate sample [21, 22, 4, 17].

Another measure of multivariate kurtosis is

β I
2,d (x) = E

{[
(x − μ)T 
−1 (y − μ)

]4
}
, (4)

where x and y are independent and identically distributed random vectors. The su-
perscript “I” reminds that it is the fourth power of the inner product of two indepen-
dent, identically distributed and standardized random vectors [11]. We shall then
refer to it as the inner kurtosis of x . It first appeared as an empirical kurtosis mea-
sure in a bivariate projection pursuit index [7]. In the discussion of the same paper
[15] generalized it to higher dimensions and motivated it as a Rao score statistic for
testing normality within a wider class of exponential distributions. [16] discussed
the same test in greater detail. [10] showed the relationship of the same statistic with
Neyman’s smooth test for normality. [8] focused on inner kurtosis in the popula-
tion rather than in the sample, showing its relationships with some matrix-variate
measures of multivariate kurtosis.

A third measure of multivariate kurtosis is

βD
2,d (x) = maxc∈Sd−1β2

(
cT x

)
, (5)
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where Sd−1 denotes the set of all d-dimensional real vectors of unit length. We shall
refer to the above measure as to directional kurtosis, as reminded by the superscript
“D”, since it is the maximal kurtosis achievable by a projection of the random vector
onto a direction. Directional kurtosis is a fundamental tool in independent compo-
nent analysis [6]. It also appears in outliers detection [19] and in cluster analysis
[20]. The analytical form of the directional kurtosis might be very complicated, but
[3] and [12] show that it has a simple analytical form for the independent components
model and for the multivariate skew-normal distribution, respectively.

To the best of the authors’ knowledge, no one investigated the relationships be-
tween the directional, inner and radial kurtosis. The present paper aims at filling the
gap by means of inequalities. As an intermediate step in their proof, it also shows
some properties of the fourth moment matrix, which are interesting in their own
right. The rest of the paper is organized as follows. Section 2 presents some results
regarding the fourth moment of a random vector. Section 3 deals with inequalities
between directional, inner and radial kurtosis. Section 4 applies results in the previ-
ous section to multivariate financial returns.

2 Fourth moment

This section presents some properties of the fourth moment matrix, which are of in-
terest in their own right as well as being useful in proving some inequalities between
measures of multivariate kurtosis.

It is well-known that the covariance matrix of a linear function Ax of a random
vector x is A
AT , where 
 is the covariance matrix of x . The following theorem
shows that a similar result holds for fourth moments of a linear functions.

Theorem 1. Let x be a d−dimensional random vector with finite fourth moment
μ4 (x) and let A be a k ×d real matrix. Then the fourth moment of Ax is μ4 (Ax) =
(A ⊗ A) μ4 (x)

(
AT ⊗ AT

)
.

Proof. We shall first recall some fundamental properties of the Kronecker product
(see, for example, [9], pages 81 and 82): (P1) the Kronecker product is associative:
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) = A ⊗ B ⊗ C ; (P2) if matrices A, B, C and D are
of appropriate size, then (A ⊗ B) (C ⊗ D) = AC ⊗ B D; (P3) If a and b are two
vectors, then abT , a ⊗ bT and bT ⊗ a denote the same matrix. By definition,

μ4 (Ax) = E
(

Ax ⊗ xT AT ⊗ Ax ⊗ xT AT
)
. (6)

First apply property P1:

μ4 (Ax) = E
[

Ax ⊗
(

xT AT ⊗ Ax
)

⊗ xT AT
]
. (7)

Then apply property P3:

μ4 (Ax) = E
(

Ax ⊗ Ax ⊗ xT AT ⊗ xT AT
)
. (8)
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By properties P1 and P2 μ4 (Ax) equals

E
[
(Ax ⊗ Ax) ⊗

(
xT AT ⊗ xT AT

)]
= E

[
(A ⊗ A)

(
x ⊗ x ⊗ xT ⊗ xT

) (
AT ⊗ AT

)]
. (9)

Linear properties of the expected value imply

μ4 (Ax) = (A ⊗ A) E
(

x ⊗ x ⊗ xT ⊗ xT
) (

AT ⊗ AT
)
. (10)

Further application of P1 and P3 leads to

μ4 (Ax) = (A ⊗ A) E
(

x ⊗ xT ⊗ x ⊗ xT
) (

AT ⊗ AT
)
. (11)

The expected value in the above equation is the fourth moment of x , that is μ4 (x).
Hence we can write μ4 (Ax) = (A ⊗ A) μ4 (x)

(
AT ⊗ AT

)
and complete the proof.

The following corollary of Theorem 1 is particularly useful for obtaining the
fourth moment of a linear combination aT x of the random vector x as a function
of the fourth moment of the vector x itself.

Corollary 1. Let x be a d−dimensional random vector with finite fourth moment
μ4 (x) and let a be a d−dimensional real vector. Then the fourth moment of aT x is
μ4
(
aT x

) = (
aT ⊗ aT

)
μ4 (x) (a ⊗ a) .

The following theorem and its corollary give some insight into the eigenstructure
of fourth moment matrices.

Theorem 2. The fourth moment of a d−dimensional random vector is a symmetric,
positive semi-definite matrix of rank never greater than d(d + 1)/2.

Proof. We shall first apply property P1 and P2, as defined in the previous proof:

μ4 (x) = E
[
x ⊗

(
xT ⊗ x

)
⊗ xT

]
= E

[
x ⊗

(
x ⊗ xT

)
⊗ xT

]
. (12)

Further application of P3 leads to

μ4 (x) = E
[
(x ⊗ x) ⊗

(
xT ⊗ xT

)]
. (13)

The transpose of a Kronecker product of two matrices equals the Kronecker prod-
uct of the transposed matrices:

μ4 (x) = E
[
(x ⊗ x) ⊗ (x ⊗ x)T

]
. (14)

By property P3 in the previous proof the Kronecker product of a column vector
and a row vector equals the ordinary product of the vectors themselves:

μ4 (x) = E
[
(x ⊗ x) (x ⊗ x)T

]
. (15)
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Hence the fourth moment of x can be regarded as the second moment of the
random vector x ⊗ x : μ4 (x) = μ2 (x ⊗ x). It follows that μ4 (x) is a positive, semi-
definite symmetric matrix. Since the p(p−1)/2 products Xi X j , where i �= j, appear
twice in x⊗x , the rank of μ4 (x) is never greater than p2− p(p−1)/2 = p(p+1)/2.

Corollary 2. The eigenvalues of the fourth moment of a d− dimensional random
vector are nonnegative real numbers, with at most d(d + 1)/2 of them greater than
zero.

3 Inequalities

This section presents some inequalities between the directional, radial and inner kur-
tosis. An inequality relating inner kurtosis with the vector’s dimension follows as a
direct consequence.

Theorem 3. Let βD
2,d , βR

2,d and β I
2,d be the directional, radial and inner kurtosis of

a d− dimensional random vector x. Then the following inequalities hold:

βD
2,d ≤ βR

2,d ≤
√

d (d + 1)

2
β I

2,d . (16)

Proof. Let μ4 (z) be the fourth standardized moment of x . Moreover, let λ1 ≥ λ2 ≥
. . . λd2 be the eigenvalues of μ4 (z), arranged in decreasing order of magnitude. Ra-
dial kurtosis equals the trace of the fourth standardized moment [8], which in turn
equals the sum of its eigenvalues. Hence, by Corollary 2, radial kurtosis is the sum
of the largest d(d + 1)/2 eigenvalues of μ4 (z):

βR
2,d =

∑q

i=1
λi , q = d (d + 1)

2
. (17)

We shall first prove the inequality βD
2,d ≤ βR

2,d . First notice that βD
2,d (x) equals

βD
2,d (z) by the invariance property of the directional kurtosis, implying

βD
2,d (x) = maxa∈Sd−1

(
aT ⊗ aT

)
μ4 (z) (a ⊗ a) (18)

by Corollary 1. By assumption, a is a d−dimensional real vector of unit length, so
that a ⊗ a is a d2−dimensional real vector of unit length and

maxa∈Sd−1

(
aT ⊗ aT

)
μ4 (z) (a ⊗ a) ≤ eT

1 μ4 (z) e1 = λ1, (19)

e1 ∈ Rd2
is a unit-length eigenvector corresponding to the dominant eigenvalue λ1

of μ4 (z). Radial kurtosis is the sum of the d(d + 1)/2 largest eigenvalues of μ4 (z),
which are nonnegative by Corollary 2, so that

βD
2,d ≤ λ1 ≤

∑q

i=1
λi = βR

2,d , (20)

thus completing the first part of the proof.
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We shall now prove the second inequality. Inner kurtosis equals the squared
Frobenius norm of the fourth standardized moment μ4 (z) [8], which in turn equals
the trace of the product of μ4 (z) and its transpose. Hence, by Corollary 2, inner
kurtosis equals the sum of the squared d(d + 1)/2 largest eigenvalues of μ4 (z), i.e.

β I
2,d =

∑q

i=1
λ2

i . (21)

The squared mean of given values is never greater than the mean of the squared
values themselves, so that(

1

q

∑q

i=1
λi

)2

≤ 1

q

∑q

i=1
λ2

i ⇐⇒
∑q

i=1
λi ≤

√
q
∑q

i=1
λ2

i . (22)

We shall now complete the proof by recalling the definitions of inner and radial
kurtosis:

βR
2,d =

∑q

i=1
λi ≤

√
qβ I

2,d . (23)

Corollary 3: Inner kurtosis of a d−dimensional random vector x is never smaller
than 2d3/ (d + 1).

The proof directly follows from the above theorem and the inequality βR
2,d ≥ d2

[13].

4 Financial data

This section uses previous section’s result to get a better insight into the kurtosis
of multivariate financial returns. We shall first define sample counterparts of the
directional, inner and radial kurtosis as follows:

bD
2,d (X) = max

c∈Sd−1

∑n

i=1

1

n

(
cT xi − cT x√

cT Sc

)4

. (24)

bI
1,d (X) = 1

n2

∑n

i=1

∑n

j=1

[
(xi − x)T S−1 (x j − x

)]4
. (25)

bR
2,d (X) = 1

n

∑n

i=1

[
(xi − x)T S−1 (xi − x)

]2
. (26)

where x , S and X denote the sample mean, the sample covariance matrix and the
data matrix X whose rows are the vectors xT

1,
. . . , xT

n .
We shall now evaluate and discuss directional, inner and radial kurtosis of data

previously analyzed by [5]. They considered the univariate kurtosis of Dutch, Swiss
and Italian financial returns, in the whole sample as well as in the subsamples of
returns following bear and bull days in the US financial market. The Dutch, Swiss
and Italian markets are represented by the AEX, SMI and MIB index, respectively.
The returns of the US market are represented by the Standard & Poor 500 (S&P),
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Table 1. Measures of multivariate kurtosis in the Dutch, Swiss and Italian financial markets

Directional Inner Radial Bound

Negative 6.2992 132.2412 25.2782 28.1682

Positive 8.0838 240.3294 33.4869 37.9734

Overall 6.7525 181.0580 29.7184 32.9598

Table 2. Measures of multivariate kurtosis for several triplets of financial markets

Countries Directional Inner Radial Bound

Group 1 7.2224 138.9453 25.3664 28.8734

Group 2 8.3064 199.7622 29.9875 34.6204

Group 3 8.1002 176.0385 28.2438 32.4997

the most popular market index for the New York Stock Exchange. The log-returns
have been observed from January 18 of 1995 to February 2 in 2003.

Table 1 clearly shows that radial kurtosis is much closer to directional kurtosis
than to inner kurtosis. However, radial kurtosis is much closer to its upper bound than
to its lower one. The same pattern occurs in other datasets. We also computed the
above mentioned measures of multivariate kurtosis for several triplets of financial
returns recorded from June 24, 2003, to June 23, 2008. The first triplet includes the
same financial markets of the previously analized dataset (Group 1: Italy, Netherland
and Switzerland). The second triplet includes the largest financial European markets
(Group 2: France, Germany and United Kingdom). The third triplet includes three
Asian markets (Group 3: Hong Kong, Singapore and Japan). The results are reported
in Table 2 and suggest that in financial markets radial kurtosis tends to be very close
to its upper bound. However, more theoretical and empirical work is needed to as-
certain whether this feature constitutes a stylized fact.
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Manuel Franco, Johan René van Dorp, and Juana-Marı́a Vivo

Abstract. In many practical problems, it is important to consider different distribu-
tions that could be used to model a data set. In this work, we analyze the generalized
trapezoidal (GT) model in financial application. The primary reason for this is that
the family of the GT distributions includes models with bounded domain used in risk
analysis, and it belongs to the nonparametric class of log-concave densities under de-
termined parametric restrictions. In the literature, one can find several references on
the log-concavity and applications with interesting qualitative implications in many
areas of economics, actuarial sciences, biology and engineering. Here, we classify
the log-concavity of the GT model based on its parameters. We observe that it can
be useful in analyzing some data sets, especially a financial market data example is
used to illustrate that the GT distribution is better fitting than the symmetric distribu-
tions previously considered for this data set. Furthermore, in the particular example,
the fitted GT distribution satisfies the log-concavity constraints.

Key words: Generalized trapezoidal distribution, log-concavity, finance

1 Introduction

In many practical problems, it is important to consider different distributions that
could be used to model a data set. Especially when there are natural limits on the
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Johan René van Dorp
Dept. Engineering Management and Systems Engineering, The George Washington University,
1776 G Street NW, Washington D.C. 20052, USA
e-mail: dorpjr@gwu.edu

Juana-Marı́a Vivo ( )
Dept. Quantitative Methods for Economy, University of Murcia, 30100 Murcia, Spain
e-mail: jmvivomo@um.es

Perna C., Sibillo M. (eds.): Mathematical and Statistical Methods for Actuarial Sciences
and Finance DOI 10.1007/978-88-470-2342-0 26
© Springer-Verlag Italia 2012



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T220 M. Franco, J.R. van Dorp, and J.-M. Vivo

values that data can take on. For instance, the revenues and the market value of
a firm cannot be negative and the profit margin cannot be exceed 100%. A distri-
bution that does not constraint the values to these limits could derive some draw-
backs.

Thus, we consider the generalized trapezoidal (GT) model of [13] in a financial
application. The primary reason for this is that the family of the GT distributions
includes models with bounded domain used in risk analysis, e.g. see [7, 8, 9, 11,
12, 14], and it belongs to the nonparametric class of log-concave densities under
determined parametric restrictions. An excellent review on the log-concavity and
applications with interesting qualitative implications in many areas of economics,
political science, actuarial science, biology and engineering can be found in [2].

In this work, we classify the log-concavity of the GT model based on its pa-
rameters. In particular, the log-concavity of the survival and density functions (in-
creasing/decreasing failure rate, IFR/DFR, and increasing/decreasing likelihood ra-
tio, ILR/DLR, aging classes, respectively) for this five-parameter distribution family
are analyzed. Moreover, we observe that it can be useful in analyzing some data sets,
especially a financial market data example is used to illustrate that the GT distribu-
tion is better fitting than the symmetric distributions previously considered for this
data set by [6]. Furthermore, in the particular example, the fitted GT distribution
satisfies the log-concavity constraints.

The work is organized as follows. In Section 2, we display the family of the GT
distribution. Moreover, we review some previous results on log-concavity proper-
ties. In Section 3, we analyze the log-concavity of the density function for the GT
model based on its parameters, and consequently, for the well-known bounded dis-
tributions belonging to the GT model. Finally, we show the GT model can be used
quite effectively in analyzing some financial market data.

2 The generalized trapezoidal model and preliminaries

The generalized trapezoidal distribution model was proposed by [13] as a class of
continuous distributions of an arbitrary form defined on a bounded support that
seems to be suitable for modelling the duration and shape of many processes. Most
of them present three stages, the first and third stages are not limited to linear form
and may exhibit a nonlinear convex and concave behavior (growth or decline), and
a middle stage of stability might present a light slope (positive or negative), i.e. it is
not restricted to total stability.

Definition 1. Let X be an rv with support in (0, 1) ⊂ R. It is said that X follows a
GT model with parameters (m, M, n1, n2, α), such that 0 < m ≤ M < 1, n1 > 0,
n2 > 0 and α > 0, if its pdf is given by
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f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2αn1n2
A

( x
m

)n1−1
, if 0 < x < m,

2n1n2
A

(
1 + (α − 1) M−x

M−m

)
, if m ≤ x < M,

2n1n2
A

(
1−x
1−M

)n2−1
, if M ≤ x < 1,

0, elsewhere,

(1)

where A = 2αn2m + (α + 1) (M − m) n1n2 + 2 (1 − M) n1.

The parameters n1 and n2 represent the growth and decay rates in the first and
third stages of the distribution, respectively. Besides, α > 0 is the boundary ratio
parameter such that f (m) = α f (M).

Remark 1. The GT distribution family contains the following well-known distribu-
tions:

1. For n1 = n2 = 1 and α = 1, the uniform model.
2. For m = M , n1 = n2 = 2 and α = 1, the triangular model.
3. For n1 = n2 = 2 and α = 1, the trapezoidal model.
4. For m = M , n1 = n2 = n and α = 1, the two-sided power (TSP) model.
5. For m = M and α = 1, the generalized triangular or extended TSP model.

Now we review some log-concavity properties of a distribution model, based on
its survival function, and then based on its density function, which are widely used
to classify the ageing of a random variable, or as requirement to preserve interesting
results.

Definition 2. Let X be a nonnegative rv with survival function S(x) = P(X > x).
It is said that X has a log-concave (log-convex) survival function, if log S(x) is
concave (convex) in its support.

In the absolutely continuous case, the log-concavity of a survival function can be
introduced in terms of the failure rate function. The failure or hazard rate function
r(x) = − d

dx log S(x) = f (x)/S(x) represents the probability of failure or death in
each moment. So, an absolutely continuous rv X is said to be increasing (decreasing)
failure rate, X ∈ I F R(DF R), if its failure rate function is increasing (decreasing).
Thus, the property of log-concave (log-convex) survival is well known as the ageing
class I F R (DF R), e.g. see [3].

Definition 3. Let X be a nonnegative rv with pdf f (x). It is said that X has a log-
concave (log-convex) density function, if log f (x) is concave (convex) in its support.

Remark that an r.v. with this property is called log-concavely (log-convexly) dis-
tributed by An [1]. Besides, it is also well known as increasing (decreasing) likeli-
hood ratio, X ∈ I L R(DL R), where the likelihood ratio is l(x) = − d

dx log f (x) =
− f ′(x)/ f (x). Hence, the log-concavity of the pdf is determined by the monotonicity
of the likelihood ratio (e.g. see [5] and [10]). Likewise, the following implications
of log-concavity between density and survival functions, can be seen in [4] and [10],
among others.
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Lemma 1. Let X be an absolutely continuous rv with survival function S(x) and
density function f (x). If f (x) is log-concave in its support then S(x) is log-concave
in its support. Analogously, if f (x) is log-convex with not upper bounded support
then S(x) is also log-convex.

Finally, we give the following technical lemma on the concavity (convexity) of
the piecewise differentiable function in its support, and then we display the preser-
vation of the log-concavity by changing of support.

Lemma 2. Let g(x) be a real continuous and piecewise differentiable function in its
support. If g(x) is piecewise concave (convex) and g′(x−) = limh→0+ g′(x − h) ≥
(≤)g′(x+) = limh→0+ g′(x + h), then is concave (convex) in its support.

Lemma 3. Let X be an rv with support (0, 1), and SX (x) and fX (x) its survival and
pdf, respectively. Let Y = a + (b − a)X be the location-scale transformation to
support (a, b), then its survival and pdf given by

SY (y) = SX

(
y − a

b − a

)
and fY (y) = 1

b − a
fX

(
y − a

b − a

)
preserve the log-concavity type of SX (x) and fX (x), respectively.

3 Log-concavity of the GT models

Let us see now the log-concavity properties of the survival function of the GT model
according to its parameters. The proofs can be obtained from the authors.

Theorem 1. The survival function of a GT model with parameters (m, M, n1, n2, α),
such that 0 < m ≤ M < 1, n1 > 0, n2 > 0 and α > 0, is log-concave in its support
if and only if

n1 ≥ 1 and α ≤ 1 + n2
M − m

1 − M
.

Moreover, it cannot be log-convex.

Corollary 1. As consequence of Theorem 1 and Remark 1, the following classifica-
tions hold:

1. The uniform model has log-concave survival.
2. The triangular model has log-concave survival.
3. The trapezoidal model has log-concave survival.
4. The TSP model has log-concave survival if and only if n ≥ 1. Otherwise, it cannot

be log-convex.
5. The generalized triangular or extended TSP model has log-concave survival if

and only if n1 ≥ 1. Otherwise, it cannot be log-convex.
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Theorem 2. The pdf of a GT model with parameters (m, M, n1, n2, α), such that
0 < m ≤ M < 1, n1 > 0, n2 > 0 and α > 0, is log-concave in its support if and
only if

n1 ≥ 1, n2 ≥ 1 and α ∈
[

1 − (n1 − 1)(M − m)

m + (n1 − 1)(M − m)
, 1 + (n2 − 1)

M − m

1 − M

]
.

Moreover, it can be log-convex if and only if α = 1, n1 ≤ 1 and n2 ≤ 1.

Remark 2. From Lemma 1, the log-concavity of pdf implies the log-concavity of its
survival function. Thus, the constraints of Theorem 1 includes those of Theorem 2.
Nevertheless, the GT model is upper bounded, and so the log-convexity of its pdf
does not imply to have log-convex survival.

Corollary 2. As consequence of Theorem 2 and Remark 1, the following classifica-
tions hold:

1. The uniform model has log-concave and log-convex pdf in its support.
2. The triangular model has log-concave pdf.
3. The trapezoidal model has log-concave pdf.
4. The TSP model has log-concave pdf if and only if n ≥ 1. Likewise, it has log-

convex pdf in its support if and only if n ≤ 1.
5. The generalized triangular or extended TSP model has log-concave pdf if and

only if n1 ≥ 1 and n2 ≥ 1. Likewise, it has log-convex pdf in its support if and
only if n1 ≤ 1 and n2 ≤ 1.

As consequence of Theorems 1 and 2 and Lemma 3, the following results estab-
lish the log-concavity of the GT model by changing of support.

Corollary 3. Let Y be a GT model with support (a, b) and parameters (mY , MY , n1,
n2, α), such that a < mY ≤ MY < b, n1 > 0, n2 > 0 and α > 0. Then, Y has
log-concave survival for n1 ≥ 1 and α ≤ 1 + n2

MY −mY
b−MY

. Moreover, it cannot be
log-convex.

Corollary 4. Let Y be a GT model with support (a, b) and parameters (mY , MY , n1,
n2, α), such that a < mY ≤ MY < b, n1 > 0, n2 > 0 and α > 0. Then, Y has
log-concave pdf for

n1 ≥ 1, n2 ≥ 1 and

α ∈
[

1 − (n1 − 1)(MY − mY )

mY − a + (n1 − 1)(MY − mY )
, 1 + (n2 − 1)

MY − mY

1 − MY

]
.

Moreover, it can be log-convex if and only if α = 1, n1 ≤ 1 and n2 ≤ 1.
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4 Application in a financial data example

For an illustrative application, we consider the Swiss Market Index (SMI) daily cu-
mulative returns between September 29, 1998 and September 24, 1999. The n = 250
observations of the SMI daily cumulative returns data were grouped by [6] into 26
classes with boundaries and frequencies given in Table 1.

For this data set, [6] proposed the normal inverted gamma mixture (NIG), log-
arithmic double Weibull (lnDW), log-normal (lnN), logarithm Laplace (lnLaplace)
and symmetric α-stable (Sas) distributions. The estimated parameters of these dis-
tribution models can be seen in Table 6.2 of [6].

Here, we study these data by fitting a generalized trapezoidal (GT) model, and
then we compare the different fitted models.

Firstly, we briefly describe a fitting procedure for the parameters of the GT model.
The five parameters θ = (m, M, n1, n2, α) of the GT distribution are assessed via a
least squares fitting procedure minimizing the objective function

L SQ(x | %) =
N∑

i=1

(
F(xi | %) − i

N

)2

, (2)

where % = (a, b, θ), X ∼ F(· | %), x = (x1, . . . , xN ) is an observed sample data
set for X and F(· | %) is the GT cdf with support (a, b).

Algorithm:

Step 0: k=0. Set a and b. Set θ0 = (m0, M0, n1,0, n2,0, α0).
Step 1: Solve for mk+1,Mk+1 by minimizing L SQ(x | a, b,m, M, n1,k , n2,k, αk)

given by (2) as a function of m and M .
Step 2: Solve for n1,k+1, n2,k+1, αk+1 by minimizing L SQ(x | a, b,mk+1, Mk+1,

n1, n2, α) given by (2) as a function of n1, n2 and α.

Table 1. SMI daily cumulative returns data grouped by [6]

Classes Frequencies Classes Frequencies

0.950 – 0.955 1 1.015 – 1.020 22
0.955 – 0.960 4 1.020 – 1.025 8
0.960 – 0.965 0 1.025 – 1.030 3
0.965 – 0.970 1 1.030 – 1.035 2
0.970 – 0.975 1 1.035 – 1.040 1
0.975 – 0.980 11 1.040 – 1.045 0
0.980 – 0.985 14 1.045 – 1.050 0
0.985 – 0.990 15 1.050- - 1.055 0
0.990 – 0.995 43 1.055 – 1.060 1
0.995 – 1.000 31 1.060 – 1.065 0
1.000 – 1.005 36 1.065 – 1.070 0
1.005 – 1.010 25 1.070 – 1.075 0
1.010 – 1.015 30 1.075 – 1.080 1
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Fig. 1. The optimal fitted GT model

Step 3: θk+1 = (mk+1, Mk+1, n1,k+1, n2,k+1, αk+1).
Step 4: If

∣∣L SQ(x | a, b, θk) − L SQ(x | a, b, θk+1)
∣∣ > δ then k = k + 1. Goto

Step 1.
Else Stop.

In order to apply the algorithm, the bounded support is preset with a reasonable
safety margin prior to the fitting procedure. A small variation in the a and b does
not have strong impact on the estimators, but a large variation may significantly in-
fluence in the shape parameters. The possible presence of local minima requires the
selection of a good starting point prior to executing the least squares fitting proce-
dure. This can straightforwardly be achieved by manually selecting the parameters
such that the GT pdf reasonably aligns with an empirical pdf of the data set. Note
that for this financial data set example the observations ranged from 0.95 to 1.08.
Thus, the boundaries were preset to a = 0.5 and b = 1.5, the starting point was
chosen θ0 = (0.99, 1.02, 55, 75, 1.5) and the threshold δ = 0.000001.

By applying of the algorithm, the optimal fitted GT distribution has the following
parameter values (see Fig. 1): m = 0.993, M = 1.016, n1 = 54.682, n2 = 74.563
and α = 1.498. Furthermore, the fitted GT model has log-concave density function
because the constraints of Corollary 4 are satisfied, and consequently, it also has
log-concave survival. Hence, it follows that the mean residual lifetime function is
monotone decreasing, i.e. the mean excess of the SMI daily cumulative returns is
decreasing.

In order to compare the different fitted models for the SMI daily cumulative re-
turns data, the overall goodness-of-fit of them are assessed by using different statis-
tics given by [6]. In detail, the negative log-likelihood (lnL), the minimum distance
or weighted Cramer-von Mises (K) and chi-square (χ2) statistics which are suitable
with the grouped data.

However, to perform a correct formal chi-square test, the data in Table 1 must
be grouped to have expected frequencies of at least 5%. [6] grouped the data into
7 classes by using some technical rules. Nevertheless, other usual rules provide a
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Table 2. Goodness-of-fit results for fitted models to the SMI data

Overall rank Distribution −lnL K χ2 p-value

1 GT 586.27 0.101 9.062 0.17013
2 NIG2 589.70 0.307 16.08 0.0413
3 Sas 591.21 0.52 17.83 0.0225
4 lnN 591.26 0.67 18.85 0.0004
5 NIG1 592.92 0.48 22.22 0.00453
6 lnDW 598.66 0.838 35.41 0.00002
7 lnLaplace 598.95 0.86 36.04 0.00004

procedure to retain as many of the original classes in Table 1 as possible by only
joining in the two sided tails, i.e. the first five classes into a single class and the last
eleven classes into another single class without to overlap all original classes.

Based on the parameter values for the fitted GT model, and the distribution models
discussed by [6], the up-dated goodness-of-fit statistics, together with the p-value
of the chi-square test, are found in Table 2, which order the distribution models
according to the new overall rank.

From Table 2 the fitted GT distribution ranks first outperforming not only the
other fitted distributions in all three goodness-of-fit statistics but also in terms of
chi-square p-value.
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Francesco Giordano, Michele La Rocca, and Cira Perna

Abstract. Neural network models are appealing tools in finance because of the abun-
dance of high quality financial data and the paucity of testable financial models. This
class of models has been very popular in the last decade for estimating nonlinear
models and financial risk measures such as Value at Risk and Expected shortfall.
However, there are a number of alternative nonparametric approaches that can be
used, each with its own advantages and disadvantages. In this paper we compare
nonparametric volatility function estimators based on kernel estimators and on neu-
ral networks in terms of their accuracy to fit the true unknown volatility function.

Key words: Feedforward neural networks, volatility function, kernel estimation

1 Introduction

Nonlinear modeling of time series plays a key role in financial time series analysis.
In this paper we consider nonparametric models of nonlinear autoregression which
provide flexible alternatives to traditional parametric modelling methods. Consider
the following nonparametric heteroskedastic regression model:

Yt = m (Yt−1) + s (Yt−1) εt , t = 0, 1, 2, . . . , (1)
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where εt are independent and identically distributed (iid) random variables with
mean 0 and variance 1. Furthermore, E (Yt |It−1) = m (Yt−1) and var (Yt |It−1) =
s2 (Yt−1) are unknown smooth functions. Model (1) can also be regarded as the dis-
cretized version of the general continuous-time stochastic diffusion model, with arbi-
trary (nonlinear) trend function m(·) and volatility function s(·), which is commonly
used in financial derivative pricing:

d Xt = m (Xt−1) dt + s (Xt−1) dWt , t = 0, 1, 2, . . . , (2)

where Wt is a standard Wiener process [2]. Moreover, the class of processes (1)
includes as special cases the classical AR, the standard ARCH, the TARCH and
QTARCH processes, that are very popular parametric models for financial data.

This paper focuses on nonparametric estimation of the conditional variance func-
tion s2 which is crucial in inference for the conditional mean function m, construct-
ing confidence intervals and selecting data-driven bandwidths. It is also of great
importance in practical applications, e.g. volatility or risk measurement in finance
[14]. For recent applications of conditional variance estimation in the estimation of
value-at-risk and expected shortfall functions for a financial asset see also [11].

The aim of the paper is to compare the performance of two well known nonpara-
metric approaches to estimate volatility functions based on kernel smoothing and on
feedforward neural networks. In Section 2 the two alternative approaches are briefly
reviewed while in Section 3 the results of a simulation experiment are reported and
discussed. Some remarks close the paper.

2 Some nonparametric estimators of volatility functions

We assume in model (1) rather arbitrary trend and volatility functions m(·) and s(·)
and, therefore, we want to estimate those model functions nonparametrically. Here
we focus on feedforward neural networks and on local smoothers.

Neural network models are very flexible non-linear models designed to mimic
biological neural systems. They have become the focus of considerable attention
as a possible tool for modelling complex non-linear systems by using highly inter-
connected non-linear memoryless computing elements. Artificial neural networks
can be considered as parallel distributed models made up of simple data processing
units, organized on multiple layers, with one or more hidden (latent) layers which
add flexibility to the model. This class of models offers some clear advantages over
classical techniques. Because of their massively parallel structure, they can perform
very fast computations if implemented on dedicated hardware; due to their adaptive
nature, they can learn the characteristics of input signals and adapt to changes in data;
given their non-linear nature they can perform functional approximations which are
beyond optimal linear techniques [3, inter alia].

For all these reasons, neural networks have shown considerable success in mod-
elling financial data series and can be seen as an effective alternative tool to classical
parametric modelling, especially when the underlying data generating process is not
fully understood or when the nature of the relationships being modelled may display
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a complex structure [15, 1, inter alia]. By using neural networks, the unknown re-
gression function m(·) and the volatility function s(·) can be approximated by using
single input, single layer feedforward neural network models in the class

O(rn,�n) =
{

hrn (y; w) : w ∈ RM ,

rn∑
k=1

|ck | < �n

}
, (3)

where

hrn (y; w) =
rn∑

k=1

ck L (ak y + bk) + c0, (4)

with L (·) sigmoidal activation function, L (·) ∈ C∞ (R); rn → ∞ and �n → ∞,
as n → ∞, with n denoting the length of the time series. It is well known that neural
networks provide consistent estimates of functions representing conditional expec-
tations of a time series given past information [5].

By using this class of models the variance function can be estimated as

ŝ2 = argminh∈O(r ′
n ,�

′
n)

1

n

n∑
t=1

(
r̂2

t − h (Yt−1)
)2

, (5)

where r̂t = Yt − m̂(Yt−1) and the regression function m(·) as

m̂ = argminh∈O(rn ,�n)

1

n

n∑
t=1

(Yt − h(Yt−1)
2 . (6)

The variance function s2(·) can also be estimated as ŝ2(y) = m̂2(y) − m̂(y)2,
where m2(y) = E(Y 2

t |Yt−1 = y) is estimated as

m̂2 = argminh∈O(r ′
n,�

′
n)

1

n

n∑
t=1

(
Y 2

t − h(Yt−1

)2
. (7)

Alternatively, by using kernel smoothing of Nadaraya-Watson type, the regres-
sion function m(·) can be estimated as:

m̂h (y) =
(

p̂h (y)
)−1

n − 1

n−1∑
t=1

Kh (y − Yt )Yt+1, (8)

while the variance function s2(·) can be estimated as

ŝ2
h′ (y) =

(
p̂h′ (y)

)−1

n − 1

n−1∑
t=1

Kh′ (y − Yt )Y 2
t+1 − m̂2

h (y) (9)
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or, alternatively, as

s2
h′ (y) =

(
p̂h′ (y)

)−1

n − 1

n−1∑
t=1

Kh′ (y − Yt ) r̂2
t+1

. (10)

Here Kh(·) denotes h−1K (·/h) for a given kernel K . The residuals Yt+1−m̂h (Yt )
are denoted by r̂t+1. In (10) the residuals r̂t+1 could be replaced by Yt+1 − m̂h′(Yt )
without changing the first order asymptotic properties. The estimate p̂h is a kernel
estimate of the univariate stationary density of the time series {Yt }

p̂h(y) = 1

n − 1

n−1∑
t=1

Kh (y − Yt ). (11)

For further references on the now extensively discussed field of nonparametric
time series analysis, see [9, inter alia] and for the bandwidth selection problem see
also [7, 8, inter alia].

However, kernel or local polynomial estimates suffer from the sparsity of data
in high-dimensional spaces and are no longer applicable without an excessive sam-
ple size or restrictive assumptions on the functions to be estimated. Moreover, some
case studies (see [4] inter alia) show that using additional exogenous information
helps in forecasting time series and in developing portfolio management strategies.
This latter remark points towards nonparametric function estimates based on neu-
ral networks which are able to cope with a higher dimensional argument than local
smoothers and allow for a straightforward implementation.

3 Simulation results

To compare performances of the two alternative approaches a Monte Carlo exper-
iment was performed. In the data generating processes we assumed m(y) = 0 and
so Yt = s (Yt−1) εt with four different variance functions: (i) s2(z) = 0.7, εt ∼
N (0, 1) (model M1); (ii)s2(z) = 0.1 + 0.3z2, εt ∼ N (0, 1), (model M2); (iii)
s2(z) = 0.1 + 0.15z2, εt ∼ T(10), (model M3) and (iv) s2(z) = 0.01 + 0.1z2 +
0.35z2I(z < 0), εt ∼ N (0, 1), (model M4). Model M1 is clearly homoschedastic.
Models M2 and M3 are ARCH models with, respectively, Gaussian and Student T
innovation terms. Model M4 is a threshold ARCH model introduced to study per-
formances of the two procedures with respect to asymmetric volatility functions.

Kernel estimation of the volatility function has been implemented by using Nada-
raya-Watson kernel type estimators. The bandwidth has been chosen by estimating
the asymptotically optimal mean integrated squared error optimal bandwidths, using
both global and local approaches [6].

Feedforward neural network models have been estimated by using nonlinear least
squares and the hidden layer size have been selected by using several alternative in-
formation criteria. Namely, the Akaike Information Criterion, AI C = ln (RSS/n)+
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Table 1. Medians of the distribution of efficiency measures for neural network models with hidden
layer size ranging from 0 (linear model) to 8

Model n lok NN(0) NN(1) NN(2) NN(3) NN(4) NN(5) NN(6) NN(7) NN(8)

M1 1000 0.98 3.79 1.86 1.07 0.72 0.54 0.45 0.38 0.34 0.29
2000 0.99 4.53 3.29 1.36 0.81 0.62 0.60 0.46 0.40 0.40
5000 1.09 4.14 2.99 1.48 1.11 0.89 0.70 0.62 0.57 0.46
10000 1.13 6.13 6.00 1.92 1.22 0.89 0.76 0.75 0.67 0.64

M2 1000 1.08 0.19 0.29 1.55 1.34 1.12 1.04 0.94 0.91 0.89
2000 1.17 0.14 0.21 1.96 1.66 1.45 1.35 1.26 1.16 1.12
5000 1.43 0.16 0.24 4.42 4.24 4.59 3.69 3.75 3.49 3.23
10000 1.49 0.23 0.32 10.20 11.26 13.36 12.43 9.77 8.35 7.95

M3 1000 1.08 0.43 0.61 1.29 1.10 0.97 0.85 0.80 0.78 0.71
2000 1.23 0.33 0.47 1.70 1.58 1.57 1.29 1.24 1.18 1.18
5000 1.37 0.39 0.56 4.91 3.96 4.16 4.15 3.60 3.28 3.38
10000 1.51 0.68 1.04 13.42 14.46 18.46 16.77 15.92 13.10 11.63

M4 1000 0.99 0.27 0.37 2.16 2.18 2.10 2.13 2.14 2.13 2.13
2000 1.07 0.17 0.32 2.06 2.10 2.06 2.14 2.07 2.03 2.05
5000 1.19 0.09 0.22 2.78 3.03 2.95 2.95 2.92 2.92 3.00
10000 1.47 0.07 0.22 4.21 4.14 4.22 4.09 4.14 4.27 4.21

2k/n; the corrected AIC, AI CC = ln (RSS/n) + (n + k) / (n − k − 2) and
AI CU = ln (RSS/(n − k))+ (n + k) / (n − k − 2); the Bayesian Information Cri-
terion, B I C = ln (RSS/n)+k ln(n)/n and the Hannan-Quinn Information Criterion
H QC = ln (RSS/(n))+k ln ln(n)/n where k denotes the number of parameters and
RSS denotes the residuals sum of squares. All computations have been implemented
in R (ver. 2.11.1) using procedures developed by the authors to take advantage of the
multicore nature of modern personal computers using the packages lokern, nnet
and snowfall [12, 13, 10].

For each model and for each estimation technique we computed the Mean Inte-
grated Square Error and, then, the efficiency as the ratio between the MISE of the
neural network estimator and the MISE of the kernel estimator with global plug-in
bandwidth choice. For sake of comparison we also reported the efficiency of the
kernel estimator with local plug-in bandwidth choice.

In most cases the efficiency of the neural network estimator is much higher than
that of the kernel estimator, both using global and local plug-in bandwidth selection
(see Figs. 1 and 2). Moreover, efficiency grows when the the sample size increases
for all models. The larger the sample size is, the more accurate are the estimates de-
livered by neural networks, with respect to kernels. Some problems (connected to the
model selection step) arise in models M2 and M3 for lower sample sizes (n = 1000
and in some cases n = 2000). By looking at the results in Table 1, it is clear that
in all the problematic cases it is possible to find neural networks which are able to
deliver better results with respect to kernel estimates. The problem is that the model
selection criteria considered here are not always able to select the “best” network
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Fig. 1. Models M1 and M2. Distribution of the efficiency of neural network estimators chosen with
different information criteria (AIC, AICC, AICU, BIC and HQC) with respect to kernel estimator
with global plug-in bandwidth choice. For sake of comparison the efficiency of the kernel estimator
with local plug-in bandwidth choice (lok) is also reported

model. Basically, all indexes are prone to select linear structures for small sample
sizes and they are not able to discriminate the nonlinear structure of the volatility
function. Finally observe that, once the nonlinear structure has been correctly iden-
tified, the choice of the hidden layer size appears to be less critical than other tuning
parameters in nonparametric regression (see Table 1). Efficiency does not change
dramatically when changing the hidden layer size.
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(a) Model M3
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Fig. 2. Models M3 and M4. Distribution of the efficiency of neural network estimators chosen with
different information criteria (AIC, AICC, AICU, BIC and HQC) with respect to kernel estimator
with global plug-in bandwidth choice. For sake of comparison the efficiency of the kernel estimator
with local plug-in bandwidth choice (lok) is also reported

4 Conclusions

Nonparametric approaches for volatility function estimation have been compared in
a framework where local smoothers can work at their best and the curse of dimen-
sionality does not apply. Nevertheless, estimators based on neural network models
appear to be more efficient than those based on kernel estimators. Moreover, the
gain in efficiency increases when the sample size increases and the hidden layer size
appears to be less critical to fix than the bandwidth of local smoothers.
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However, model selection for neural networks still appears to be an open issue
especially for moderate sample sizes where the usually employed information crite-
ria, in some cases, are not able to discriminate the nonlinear structure of the volatility
function.
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TInvestigating and modelling the perception
of economic security in the Survey of Household
Income and Wealth

Maria Iannario and Domenico Piccolo

Abstract. The standard practice to predict economic behaviour has been to infer
decision processes from the business cycle. Current decisions depend on the indi-
vidual expectation of future variables including stock market returns, job loss, earn-
ing and social security benefit. Recently, several studies have looked at identifying
how the effects of (subjective) perception affect the economic security of household
well-being. After reviewing some preliminary concepts in this area, we implement
a statistical model to analyse individual choices. We discuss properties and check
their usefulness and consistency by means of data related to the Survey of House-
hold Income and Wealth. An analysis of this model helps us understand individual
uncertainty and how perception evolves over the life cycle conditioned by education
and happiness. Some final remarks conclude the paper.

Key words: Economic security, ordinal data, CUB models, SHIW data

1 Introduction

The economic household condition is a combination of financial health, willingness
to meet financial obligations and commitments to provide daily services. All these
dimensions cover the objective features of pattern but miss subjective aspects such
as perceived conditions and capabilities. Economics assigns a central role to expec-
tations as a determinant of decisions [25]. Several studies propose models in which
choices depend on the expectation of future variables including stock market re-
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Naples, Italy
e-mail: domenico.piccolo@unina.it

Perna C., Sibillo M. (eds.): Mathematical and Statistical Methods for Actuarial Sciences
and Finance DOI 10.1007/978-88-470-2342-0 28
© Springer-Verlag Italia 2012



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T238 M. Iannario and D. Piccolo

turns, job loss, earning and social security benefit. Employment risk, uncertainty of
earnings and precautionary saving bias subjective probabilities of choice. Moreover,
central to the theory of the utility-maximizing consumer is the notion of individuals’
horizon1 which is the base of life-cycle behavior [18].

Household perspectives and subjective perception of economic security influence
the scope and efficacy of family activities. They take into account individuals feel-
ings, behavior and expectations of well-being, usually measured by self-reported
evaluation2.

Although economists have been sceptical about subjective data [7], recent ap-
proaches, which focus on the relationship between economic variables and compo-
nents of well-being, reveal the centrality of subjective evaluation data [29] which are
highly and robustly correlated to objective/alternative measures of personal charac-
teristics [8, 17].

Differences in individuals’ behaviour are related to the self-reported evaluation
of income expectations. Misspecifying how these expectations are formed can lead
to incorrect parameter estimates. Several studies focus on testing the rationality of
the expectations [9, 5]. However, there has been little analysis of whether subjective
expectations data help predict people’ s behavior or the related household choices.

Lacking models for the analysis of the decision process, economists have only
been able to speculate about the uncertainty that persons perceive concerning their
future incomes. In studies inferring expectations from realizations, one of the more
practical analysis could be the probabilistic measures of perceived household in-
security. This aspect is now available through the data related to specific surveys
(as European Social Survey or Survey of Household Income and Wealth) in which
respondents were asked questions eliciting their subjective probabilities of job inse-
curity, happiness, perceived well-being, and so on.

In addition to income and wealth, the evaluation of health, family and employ-
ment policies, and subjective evaluation of life satisfaction [22] have been consid-
ered as variables which contribute to Economics of Happiness related to the house-
hold perception of economic security. In this context well-being is not influenced
by the distribution of income per se, but by the social ordering observers read into
it. In fact, information relevant to valuing household activities go beyond objective
variables to include measures of people’s self-reports and evaluations. The combi-
nation of choice data with other data should improve the ability to predict people’s
behavior [25].

In this paper, we analyse the contribution of perception on household economic
security. Specifically, we examine the Survey of Household Income and Wealth
(SHIW) by describing the overall sample distribution of responses to the item: house-
hold income is sufficient to see the family to make ends meet. A similar query has

1 [24] studied how consumption is affected by a mean-preserving change in life-time uncertainty
whereas [1] analyzed how changing actuarial survival probabilities affect life-cycle maximization.
2 Since the early 1990’s, economists have increasingly undertaken to elicit from survey respondents
probabilistic expectations of significant personal events. Respondents are able to formulate and ex-
press subjective probabilities with reasonable care. Probabilistic elicitation has been recommended
as long as 30 years ago [23].
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been used in other contexts to provide income information where item non-response
for a household’s total net income was very high [2].

In the following section we introduce data, whereas in Section 3 we present a
statistical model for responses designed as realizations of a mixture random vari-
able whose parameters are related to the individual perception towards the item and
some intrinsic uncertainty that refers to the operational aspects of the final choice.
Specifically, we consider uncertainty as specific components/values (knowledge, ig-
norance, personal interest, boredom, engagement, time spent to decide) concerning
people and the modalities to submit questionnaires; it is not related to randomness
or magnitude of microeconomic uncertainty [3].

In Section 4 we check the validity of the model on data in order to confirm the
usefulness of the proposed model approach by summarizing our main findings. Some
concluding remarks end the paper.

2 Data description

Data stems from SHIW organized by the Bank of Italy since 1965 in order to collect
information on the economic behaviour of Italian households by measuring income
and wealth components. In this contribution we restrict attention to data collected
from the 2006 wave of the SHIW (final sample size concerns information related to
1.290 households).

The sample is drawn in two stages (municipalities and households), with the strat-
ification of the primary sampling units (municipalities) by region and demographic
size. Data are collected by means of personal interviews conducted by trained in-
terviewers and using computer-assisted devices (computer assisted personal inter-
viewing)3.

The format used to investigate the perception of economic security is an ordinal
variable related to a household’s income. As mentioned previously, it has been asked
if household income is sufficient to see the family to make ends meet: rating ranges
from 1 (with great difficulty) to 6 (very easily). Moreover, to measure a household’s
socioeconomic prospect concerning real life chances, we found significant Educa-
tion, Income and Happiness.

Education is invariably selected as an important explanatory variable of job and
life satisfaction. It can be used to measure, besides people’s unobservable skills, their
unobservable socioeconomic aspirations. From an empirical viewpoint, the connec-
tion between education and life satisfaction is somewhat vague, and it has manifold
facets, of which income is just a minor one [11]. Instead, the evidence concerning
its effects on job satisfaction is plain: higher educational attainments reduce job sat-
isfaction [4, 15]. It is also possible to assume a relationship between education and
happiness; the more educated people are, on average, the happier they are [11].

3 Microdata, documentation and publications can be downloaded from www.bancaditalia.it
statistiche/indcamp/bilfait.
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Also Income related to household, whose distribution is approximately log-
normal4 plays an important role in influencing well-being. It affects the ordinal re-
sponse because household aspirations and expectations grow with income but it also
influences the projected happiness and economic health. Specifically, clear evidence
has been found of a positive effect of income on happiness at an individual level, but
the growth in per capita income is not reflected in increasing happiness (Easterlin
Paradox [10]). Some supporters of this view explain that income improves happi-
ness only when basic needs are met. But beyond a certain level, income does not
influence feeling happy [31].

Then, Happiness5 can guide policymaking by studying its determinants, adding
new knowledge and advancing on the theory of how households make choices and
from what drives the utility function. Institutional conditions can have an impact on
happiness, so enhancing transparency, accountability and social cohesion may be
desirable from the point of view of increasing subjective well-being [16]. This last
consideration biases a household’s perception of subjective economic conditions.

3 A statistical approach based on a discrete mixture model

For this context, the standard approach – as preference analysis developed by Mc-
Fadden [26] – supposes that a researcher observes the decisions made by a random
sample of heterogeneous subjects, each of whom faces one discrete choice prob-
lem [30]. He showed that these data, combined with assumptions on the population
distribution of preferences, enable estimation of probabilistic choice models.

Economists commonly assume that persons form probabilistic expectations for
unknown quantities and maximize expected utility. The use of expectation when
ordinal data are collected reflects a correspondence with a continuous latent vari-
able. However, some caution is needed when we compare these data by expectation
since many values of the parameters are admissible leading to different distributional
shapes.

In this paper, we assume that two latent components move the psychological pro-
cess of selection among discrete ordered alternatives: the first component, Percep-
tion, is generated by a continuous random variable whose discretization is expressed
by a shifted Binomial distribution and the second component, Uncertainty, expressed
by a discrete Uniform random variable.

These considerations motivate the introduction of CU B models [27, 6] defined
as a mixture distribution in which the rating r is the realization of a random variable
R with probability mass:

Pr(R = r) = π

(
m − 1

r − 1

)
(1 − ξ)r−1ξm−r + (1 − π)

(
1

m

)
, (1)

4 Following analysis involves the log of income.
5 Economists have used the terms “happiness” and “life satisfaction” interchangeably as measures
of subjective well-being [12].
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for r = 1, 2, . . . ,m. For a given m > 3, it has been proved that these models are
identifiable [20] and the parametric space is the (left open) unit square:

�(π, ξ) = {(π, ξ) : 0 < π ≤ 1; 0 ≤ ξ ≤ 1}.
These parameters play a different role in determining the shape and interpretation
of the mixture. Feeling parameter (ξ) may be interpreted as related to location mea-
sures and strongly determined by the skewness of responses. It is inversely related
to perception of how much a family makes ends meet. Uncertainty parameter (π)
adds dispersion to the shifted Binomial distribution; it modifies the heterogeneity of
the distribution and explains the degree of difficulty to answer the specific question.

In CU B models with covariates, both parameters are related -via logistic function-
to subject’s covariates in order to interpret the observed responses as a function of
the respondent’s (household’s) characteristics.

Maximum likelihood (ML) estimation is pursued by E-M algorithm [28]. In this
context we perform a new algorithm which takes into account the sampling design
with unequal probabilities wi , i = 1, 2, . . . , n. SHIW, in fact, combines three basic
features: stratification, clustering, and weighting to correct for unequal probabilities
of selection among sampling units [13]. The E-M algorithm allows us to find ML
estimates of parameters whereas a Jackknife Repeated Replication method6 (Fig. 1)
is employed to estimate variance (as in [14]).
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Fig. 1. Jackknife repeated replication (JRR) is a method to estimate the sampling variability of
a statistic that takes the properties of the sample design into account. The distribution provides
unbiased estimates of the sampling error and reflects the component of sampling error introduced
by the use of weighting factors that are dependent on the sample data obtained

6 When data are collected as part of a complex sample survey, it is difficult to analytically produce
approximately unbiased and design-consistent estimates of variance. Generally, the variances of
survey statistics are inappropriate and usually too small. Thus, a class of techniques called repli-
cation method provides a general method of estimating variances for the types of complex sample
designs and weighting procedures usually performed in empirical contexts.
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Generally, for the analysis of model we usually perform a CU B model without
covariates and then improve it by introduction of variables [21] thanks to a stepwise
selection.

4 Results

The core sections of the questionnaire are composed of numerous questions. As men-
tioned in the data description, the covariates found to have influence on the selected
response (familycond) are: Education (degree with 5 modalities), Infoinc, (a contin-
uous variable which represents the logarithm of family income) and Happy, (overall
life well-being indicator from 1 (very unhappy) to 10 (very happy)).

By performing a CU B model without covariates the value of π̂ denotes a low
level of uncertainty (1 − π̂ = 0.0842) in the answers. Respondents, interviewed
by experts, give accurate rating to the investigated question, whereas the level of
feeling parameter presents an intermediate perception value (1 − ξ̂ = 0.434). The
estimated model satisfies fitting requirements according to specific measures for or-
dinal data [19].

For the analysis of a more complete model, several covariates related by a logistic
function to monetary compensation are significant7. However, as partial correlations
and analysis of deviance8 suggest, Infoinc may be selected as a unique covariate
which markedly affects the responses.

A comprehensive estimated CU B model, which includes previous covariates,
leads to the following relationship for the feeling parameter:

ξi = 1

1 + exp(−11.762 + 0.166 ∗ Edui + 1.014 ∗ Ini + 0.062 ∗ Hi )
.

This relationship quantifies the expected perception of ordinal variable which in-
creases with Education, Income and Happiness. The log-likelihood in this context
raises to −1994.5 compared to the previous best model (−2016.7) with only Income.

Table 1. Log-likelihoods and related analysis of deviance

Weighted Model log-likelihood Deviance differences
CUB(familycond) −2343.8

CUB(familycond,W = infoinc) −2016.7 100.3
CUB(familycond,W = consume) −2191.5 152.3
CUB(familycond,W = saving) −2167.9 175.9
CUB(familycond,W = indincome) −2090.3 253.5
CUB(familycond,W = wealthfam) −2219.3 124.5
CUB(familycond,W = realatt) −2243.5 100.3

7 Among the analysed covariates we quote: infoinc (family income); indincome (total individual
income); wealthfam (family net wealth); realatt (family real assets); consume and saving of family.
8 For the second approach we refer to Table 1.
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The relevance of covariates clarifies the progress of a household’s perceived se-
curity with a higher level of Education which is an explanatory variable of job -and
the related Income- and the feeling happy which is not a proxy of life satisfaction
(it reflects an individual’s perceived distance from their aspirations) but a hedonic
approach concerning a positive interpretation of moods and emotion (it varies with
age, health, marital status and important events in family life).

It is also possible to perform a specific model for uncertainty as related to π :

πi = 1

1 + exp(84.529 − 8.67466 ∗ Ini )
.

It quantifies how uncertainty decreases with a high level of Income.
Specifically, it expresses that the level of uncertainty on the capability to make

ends meet is practically absent with an income greater than 15000 Euro. Notice that
this consideration would be difficult to assess with standard ordinal models.

5 Conclusions

CU B models allow us to analyse how several aspects affect the perception of eco-
nomic security in households. Specifically, using SHIW data, we can observe how
Income but also Education and Happiness -as proxy of subjective perception- influ-
ence results.

Several other covariates could be used for explaining a feeling parameter whereas
uncertainty is mainly determined by Income. Measuring individual uncertainty is
crucial when trying to determine family portfolio choices and, thus, the perspective
of households’ economic behaviour. The investigated question is related to expec-
tations of the future; it aims at eliciting the household’s probability distribution of
future demand and investment.

These remarks have implications for much further research. Specifically, the struc-
ture of models allows the possibility to enhance the level of knowledge on different
profiles of households. Thus, this analysis supports the recent literature on microe-
conomic behavior which considers the centrality of subjective perception to orient
the policies of global economy.
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Nino Kordzakhia, Alexander Novikov, and Gurami Tsitsiashvili

Abstract. An explicit formula for the finite-time ruin probability in a discrete-time
collective ruin model with constant interest rate is found under the assumption that
claims follow a generalised hyperexponential distribution. The formula can be used
for finding approximations for finite-time ruin probabilities in the case when claim
sizes follow a heavy-tailed distribution e.g. Pareto. We also provide theoretical
bounds for the accuracy of approximations of the finite-time ruin probabilities in
terms of a distance between the distribution of claims and its approximation. Results
of numerical comparisons with asymptotic formulas and simulations are presented.

Key words: Discrete time risk process, autoregressive risk process, ruin probabil-
ity, Pareto distribution, hyperexponential distribution

1 Introduction

We assume that the surplus process Xn satisfies a recursive equation

Xn = R Xn−1 + Q − ηn, X0 = x, n = 1, 2, . . . , (1)

where R = 1 + r > 1, r > 0, r is a known interest rate parameter, the claims
of size ηn, n = 1, 2, . . . , are independent random variables with a common dis-
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tribution function F(y) = P(ηn < y), Q is the total incoming premium over a
time-period of interest. In fact, in the suggested approach Q and F(y) may depend
on the time parameter, however, for the simplicity of exposition we will keep them
time-invariant.

The collective risk models of this type and their continuous time analogs were
studied in many papers (see [1] and references therein).

This paper aims to find an accurate approximation for the finite-time ruin proba-
bilities ψ(x, n), n = 1, 2, . . . ,

ψ(x, n) = P (τ (x) ≤ n) ,

where τ (x) = inf{n ≥ 1 : Xn < 0}.
In Section 2 we suggest a recurrent algorithm for the exact computation ofψ(x, n)

in the case when ηn has a generalised hyperexponential distribution (GH). The class
of GH distributions is weakly dense in the class of all distributions on a positive
line, [3]. Thus, we can use the suggested recurrent algorithm to approximate ruin
probabilities for claim sizes following other distributions (such as Pareto, Weibull
or similar) that are the weak limits of GH distributions.

In principle ψ(x, n) can be calculated numerically via integral equations (see Sec-
tions 2 and 4 below) or using simulations, but these approaches are, generally speak-
ing, very time-consuming, and are not computationally very reliable when ψ(x, n)
takes small values (e.g. less than 0.01) , even for moderate values of n ≥ 50. In the
case when claims follow a regular heavy tailed distribution such as

P{η1 > x} = L(x)

xρ
, ρ > 0,

where L(x) is a slowly varying function as x → ∞, the following asymptotic for-
mula has been proved in [7]

ψ(x, n) ∼ P(η1 > x)
1 − R−ρn

1 − R−ρ
, x → ∞. (2)

As far as we know there are no results in the literature about accuracy of approx-
imation (2).

In Section 3 we present estimates for distances between the true value ψ(x, n)
and its approximation ψ∗(x, n) that corresponds to an approximating distribution
F∗(y) , where F∗(y) = P(η∗

n < y). These results could be used for establishing
errors of suggested approximations.

In Section 4 we will discuss a numerical example with Pareto distributed claim
sizes and compare the accuracy of approximation (2) with the results obtained via
numerical solution of integral equations. In addition we also compare these results
with approximations obtained using the GH distribution.
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2 The finite-time ruin probability for claims with the
GH distribution

Using standard arguments based on the Markov property of process Xn , introduced
in (2),one can verify that ψ(x, 1) = P(η1 > Rx + Q) and the ruin probabilities
ψ(x, n) fulfill the following recursive equation

ψ(x, n) = ψ(x, 1) +
∫ Rx+Q

0
ψ(z, n − 1) f (Rx + Q − z)dz, n ≥ 2, (3)

where f (z) is the probability density function (pdf) of claims ηn .
Indeed, due to the Markov property

ψ(x, n) = P(X1 < 0) + E(I{X1 > 0}E(I{ min
2≤k≤n

Xk < 0}|X1)) =

ψ(x, 1) +
∫

I{y > 0}E(I{ min
2≤k≤n

Xk < 0}|X1 = y) fX1(y)dy =

ψ(x, 1) +
∫ Rx+Q

0
ψ(y, n − 1) f (Rx + Q − y)dy.

In the case when claim sizes follow a distribution of the form

P(ηn > x) =
l∑

r=1

pr (x) exp(−λr x), λr > 0,
l∑

r=1

pr (0) = 1, (4)

where pr (x) are polynomials, we get

ψ(x, 1) =
l∑

r=1

pr (Rx + Q) exp(−λr (Rx + Q)). (5)

The (3) implies that ψ(x, n) can be represented in a similar form, namely,

ψ(x, n) =
n∑

j=1

l∑
r=1

P( j, r)
n (x) exp(−R jλr x), (6)

where P ( j, r)
n (x) are polynomials which can be found using the integration by parts

formula. This observation is based on the simple fact that for any y > 0 and integer
k ≥ 0 ∫ y

0
zke−zdz = k ! +e−y Pk(y),

where polynomials Pk(y) can be found recursively

Pk(y) = k Pk−1(y) − yk, k = 1, 2, . . . ; P0(y) = −1.
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Alternatively, one can calculate the polynomials P( j, r)
n (x) in (6) using the Mathe-

matica command ‘CoefficientList[poly,var]’. Further, we assume that claims follow
a GH distribution, that is

P(ηn > x) =
l∑

r=1

pr exp(−λr x), λr > 0,
l∑

r=1

pr = 1. (7)

In this special case, under an additional assumption

λr �= Rkλ j for all r �= j, (8)

we can show that the polynomials P( j, r)
n (x) in (6) default to constants, which are

explicitly found in the following proposition.

Proposition 1. Let (7) and (8) hold. Then for n ≥ 1 and t > 0

ψ(t, n) =
n∑

k=1

l∑
r=1

P(k, r)
n exp(−Rkλr t),

where coefficients P(0)
n , P(k, r)

n , 0 ≤ k ≤ n, 1 ≤ r ≤ l, satisfy recurrent formulas

P(1, r)
n+1 = P(0)

n pr exp(−λr Q) +
n∑

k=1

l∑
j=1

P(k, j)
n pr

Rkλ j exp(−λr Q)

Rkλ j − λr
, (9)

P(k+1, r)
n+1 = −P(k,r)

n

l∑
j=1

p jλ j
exp(−Rkλr Q)

Rkλr − λ j
, 1 ≤ k ≤ n, 1 ≤ r ≤ l,(10)

P(0)
n+1 = 1 − P(0)

n

l∑
r=1

pr exp(−λr Q)−

n∑
k=1

l∑
r=1

l∑
j=1

P(k,r)
n p j

Rkλr exp(−λ j Q) − λ j exp(−Rkλr Q)

Rkλr − λ j
, (11)

with

P (0)
1 = 1 −

l∑
r=1

pr exp(−λr Q), (12)

P(1, r)
1 = pr exp(−λr Q), 1 ≤ r ≤ l. (13)

The proof of Proposition 1 follows from (3) and the definition of GH distribution
(7).
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3 Upper bounds for accuracy of approximations

In this section we assume that the claim sizes follow a heavy tailed distribution,
which may be represented as a weak limit of a sequence of GH distributions. Let
ψ(x, n) and ψ∗(x, n) be ruin probabilities with the claim-size distributions F(x)
and F∗(x) respectively.

Proposition 2. For any fixed n ≥ 1

1. sup
x≥0

|ψ(x, n) − ψ∗(x, n)| ≤ n sup
x≥0

|F(x) − F∗(x)|. (14)

2.
∫ ∞

0
|ψ(x, n) − ψ∗(x, n)|dx ≤

∫∞
0 |F(x) − F∗(x)|dx

R − 1
. (15)

See the proof of Proposition 2 in the Appendix.

Remark 1. The estimates provided in (14) and (15) are similar to estimates obtained
in [9] for distributions of queue-lengths.

4 Numerical example

In this example we assume that R = 1.01, Q = 1 and that claim sizes follow a
Pareto distribution

F(x) = P(ηn > x) =
(

1 + x

1.2

)−2.2
, x > 0.

Note that E(ηn) = Q = 1. We approximate the Pareto distribution of ηn by
the hyperexponential distribution

P(ηn > x) ≈
l∑

r=1

pr exp(−λr x).

The parameters (pr , λr ) can be found using the algorithm presented in [6]. The
quantiles of P(ηn > x) were equated to those of the approximating generalised
hyperexponential distribution with constant mixing coefficients In our example we
chose l = 13, c1 = 107 for the highest quantile and c13 = 0.15 for the lowest
quantile. For this selection of quantiles we found that

sup
x≥0

|F(x) −
l∑

r=1

pr exp(−λr x)| = 0.0023.

The history of the problem of approximation of distributions of positive random
variables via a mixture of exponential distributions goes back to S. Bernstein, [2].
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Table 1. Approximations for ψ(x, 10)

x RE MC Hyper-exp (2)

5 0.1702 0.1711 0.1725 0.1857
10 0.06598 0.06686 0.06675 0.0582
20 0.01780 0.01826 0.01858 0.01559
50 0.002438 0.002403 0.002404 0.002377

Table 2. Approximations for ψ(x, 50)

x MC Hyper-exp (2)

10 0.229343 0.226860 0.242786
20 0.081407 0.079953 0.065074
30 0.034899 0.034998 0.028719
40 0.017861 0.017583 0.015841
50 0.010397 0.009804 0.009923
60 0.006687 0.006066 0.006748
70 0.004622 0.004143 0.004861
80 0.003370 0.003066 0.003654
90 0.002560 0.002402 0.002839

100 0.001976 0.001950 0.002263
200 0.000412 0.000416 0.000504

There are other methods, apart from the quantile fitting method, which can be applied
for approximating heavy tailed distributions using the class of GH distributions, [4].

Table 1 contains results of numerical approximations for ψ(x, 10) obtained with
(3) using the trapezoidal integration rule with steps h = 0.05, 0.025, 0.0125 in com-
bination with Richardson extrapolation, and Monte-Carlo simulation which are pre-
sented in the columns ‘RE’ and ‘MC’ respectively. The number of paths in Monte-
Carlo simulation is 107 . Approximations obtained from Proposition 1 and asymp-
totic approximations computed from (2) are presented in the columns ‘Hyper-exp’
and ‘(2)’ respectively.

For n = 50, Table 2 contains the results of Monte-Carlo simulations, approxi-
mations obtained from Proposition 1, and asymptotic approximations computed us-
ing (2), which are presented under the following headings ‘MC’, ‘Hyper-exp’ and
‘(2)’ respectively. It does not come as a surprise that the results computed using
the asymptotic formula (2) do not exhibit a tendency to convergence to the results
computed using the exact formula for modereate values of threshold x .

5 Conclusions

The Solvency II supervisory requirements lead to the refinement of models utilised in
the insurance industry in order to be able to achieve high accuracy in the calculation
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of probabilities of rare events, such as ruin probabilities and other risk measures, [5].
In this paper, in a discrete time setup of the collective risk model with the inclusion of
an interest rate variable, the recursive formulas for computation of ruin probabilities
have been obtained based on the Markov property of autoregressive surplus process
with GH distributed innovation terms.
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Appendix

Proof of Proposition 2
The proof is based on the following lemma which was proved in [7].

Lemma. Let the Markov chain Vn be a solution of the

V0 = 0, Vn = R−1 max {0, Vn−1 + ηn − Q} , n = 1, 2, . . . . (16)

Then
ψ(x, n) = P(Vn > x). (17)

1. Proof of (14)
Set

Hn(x) = P(Vn ≤ x), H∗
n (x) = P(V ∗

n ≤ x),

then

sup
x≥0

|ψ(x, n) − ψ∗(x, n)| = sup
x≥0

|Hn(x) − H∗
n (x)| = ρ(Hn, H∗

n ).

For n = 1 we have

ρ(H1, H∗
1 ) =

sup
x≥0

|P(R−1 max(0, η1 − Q) > x) − P(R−1 max(0, η∗
1 − Q) > x)| ≤ ρ(F, F∗).

We use the induction method, let us assume that

ρ(Hn, H∗
n ) ≤ nρ(F, F∗).
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Next,

ρ(Hn+1, H∗
n+1) ≤

sup
x≥0

|P(R−1 max(0, Vn + ηn+1 − Q) > x) − P(R−1 max(0, V ∗
n + η∗

n+1 − Q)) > x)| ≤

sup
x≥0

|P(Vn + ηn+1 > x) − P(V ∗
n + η∗

n+1 > x)| ≤

ρ(F, F∗) + ρ(Hn, H∗
n ) ≤ ρ(F, F∗) + nρ(F, F∗) = (n + 1)ρ(F, F∗).

Thus, the statement 1 is proved. 	

2. Proof of (15)
Set

ηi = F (−1)(ωi ), η∗
i = F∗(−1)(ωi ), V0 = V ∗

0 = 0,

where random variables ωi , i = 1, 2 follow the uniform distribution on [0, 1],

Vn = R−1 max {0, ηn − Q + Vn−1} , V ∗
n = R−1 max

{
0, η∗

n − Q + V ∗
n−1

}
.

Then by induction we have

E |Vn − V ∗
n | ≤

n∑
i=1

E |ηi − η∗
i |

Ri
=

n∑
i=1

∫ 1
0 |F (−1)(x) − F

∗(−1)(x)|dx

Ri
≤∫∞

0 |F(t) − F∗(t)|dt

R − 1
.

Note that in view of results in [8], we obtained

inf E |Vn − V ∗
n | =

∫ ∞

0
|P(Vn > t) − P(V ∗

n > t)|dt,

where infimum is taken over all joint distributions that have the same marginal dis-
tributions as that of Vn and V ∗

n . This completes the proof of statement 2. 	


References

1. Asmussen, S.: Ruin Probabilities, Singapore, World Scientific (2000)
2. Bernstein, S.: Sur les fonctions absolument monotones, Acta Math. 52(1), 1–66 (1929)
3. Botta, R.F. Harris C.M.: Approximation with generalised hyperexponential distributions:

weak convergence results, Queueing Syst. 2, 169–190 (1986)
4. Dufresne, D.: Fitting combinations of exponentials to probability distributions, Appl. Stoch.

Models in Bus. and Ind. 23(1), 23–48 (2007)
5. Embrechts, P. Blum, P. Neslehova J.: Developments in Actuarial Science. Tokyo (2005)

Available via http://www.math.ethz.ch/ baltes/ftp/Tokyo2005.pdf
6. Feldmann, A. Whitt, W.: Fitting mixtures of exponentials to long-tailed distributions to ana-

lyze network performance models, Perform. Eval. 31, 245–279 (1998)



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TOn ruin probabilities in risk models with interest rate 253

7. Tang, Q. Tsitsiashvili, G.: Precise estimates for the ruin probability in finite horizon in a
discrete-time model with heavy-tailed insurance and financial risks, Stoch. Process. Appl.
108, 299–325 (2003)

8. Vallender S. S.: Calculation of the Wasserstein distance between probability distributions on
the line, Theory Prob. Appl. 18(4), 784–786 (1974)

9. Zolotarev, V.M.: Stochastic Continuity of Queueing Systems, Theory Prob. Appl. 21(2), 260-
279 (1976)



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TOn longevity risk securitization and solvency
capital requirements in life annuities

Susanna Levantesi, Massimiliano Menzietti, and Tiziana Torri

Abstract. In the current work we analyze two longevity-linked securities and try to
price them coherently in the Solvency II framework. We consider a vanilla survivor
swap and a survivor option. The mortality index underlying these derivatives is built
on the survivors of a specific cohort of individuals. Although extensively discussed,
it does not exist yet a satisfactory methodology for pricing these products. At the root
of the problem lies the incompleteness of the market of longevity-linked securities.
Innovative solutions continue to be presented. Moving from the consideration that
the market price of longevity risk is intrinsic in the risk margin computed for the
same risk, some authors suggest using the risk margin to price longevity risk. We
follow their suggestion to price the vanilla survivor swap and the survivor option.

Key words: Longevity risk, longevity-linked securities, risk margin, Solvency II

1 Introduction

The progressive increase in the lifetime duration that occurred over time, not always
has been correctly foreseen by annuity providers. At the aggregate level the longevity
risk is the risk that, on average, annuitants live longer than expected. While the indi-
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vidual longevity risk is originated by the randomness of the individual lifetimes, and
it is the risk of random fluctuations of the observed mortality around the expected
value. The implications of aggregate longevity risk are represented by the extension
of the average period of payment of the annuities, corresponding to unexpectedly
higher actuarial liabilities. The last risk is referred as the longevity risk (LR).

One of the possible ways to manage LR is by investing in longevity-linked se-
curities. However, depending on the selected index of mortality, these financial in-
struments, may involve cash-flows not perfectly correlated with the insurer’s losses.
Indeed choosing the mortality of a population for computing the mortality index, the
annuity provider may be exposed to a new risk, the so-called basis risk. This is the
risk generated by imperfect hedging. Trading custom-tailored derivatives on over-
the-counter markets, as the survivor swaps, would reduce the basic risk. However,
credit risk, the risk that the counterparty may not meet its obligations, is introduced.
Survivor swaps are very promising instruments due to their low transactions costs;
their high flexibility; their easiness to be cancelled; and they require only the will of
counterparties to transfer their death exposure without need for a liquid market.

Significant attempts to hedge the LR have been observed among reinsurers and
investment banks [2]. By hedging its exposure to LR an insurance company is also
able to reduce its obligations in terms of solvency capital requirements. Remaining
within the same framework of Solvency II, we follow [4] to use the risk margin (RM)
to price vanilla survivor swaps [10] and survivor options [3]. The concept of the RM
has been introduced by the Solvency II project and can be seen here as the maximum
price an annuity provider would be willing to pay for longevity risk securitization.
Using Börger’s words “if a market for longevity risk existed an insolvent insurer
could guarantee the portfolio run-off by transferring the risk to the market at the
cost of the best estimate liabilities and the risk margin” [4].

2 Longevity-linked securities: cash-flows

Let consider an annuity provider having to pay immediate annuities to a cohort of
lx annuitants all aged x at initial time. For easiness of representation annuities are
assumed to be constant and fixed to one monetary unit. At time t the expected number
of survivors to age x + t is l̂x+t , and, lx+t , is the realized number. The annuity
provider is exposed to the risk of systematic deviations between lx+t and l̂x+t , at
each time t until the extinction of the cohort.

We consider in this section the cash-flows generated by the two longevity-linked
securities: vanilla survivor swap and survivor option. Firstly, we consider the vanilla
survivor swap, an agreement between two counterparties to exchange a series of
periodic payments until maturity S. Let l̂x+t be the fixed leg of the swap at time t ,
and lx+t the floating one. We set the fixed proportional swap premium, π , in a way
that the swap value is zero at the inception date. We are assuming that the market
values of the fixed and floating legs are equal. On each payment date t , the cash-
flows are equal to the difference between the amount (1 + π)l̂x+t , paid by the fixed
payer, and lx+t , paid by the floating payer. The value in zero of the vanilla survivor
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swap is:
Swap value = V [lx+t ] − V [(1 + π) l̂x+t ], (1)

where V [lx+t ] and V [(1+π)l̂x+t ] are the market price at time zero of the floating and
fixed leg, respectively. Assuming independence between interest rates and mortality
rates, V [lx+t ] is equal to the expected present value of the floating leg under the
risk-adjusted probability measure:

V [lx+t ] =
T∑

t=1

E∗[lx+t ] d(0, t), (2)

where d(0, t) is the risk-free discount factor, T the portfolio run-off and E∗[.] the ex-
pectation operator associated with risk adjusted probabilities. Analogously, V [(1 +
π)l̂x+t ] is the expected present value of the fixed leg, under the real-world probabil-
ity measure:

V [(1 + π) l̂x+t ] = (1 + π)

T∑
t=1

l̂x+t d(0, t). (3)

Let consider the previous three equations. Substituting the last two in the first
one, and equating it to zero (the value of the swap in zero) we obtain the mentioned
fixed proportional swap premium, π :

π =
∑T

t=1 E∗[lx+t ] d(0, t)∑T
t=1 l̂x+t d(0, t)

− 1. (4)

Secondly, we consider a survivor option, i.e. an option having the survivors of a
selected cohort as the underlying index. More precisely, we focus on survivor caps
and floors, which correspond to series of survivor caplets (call options) and floorlets
(put options) on different maturities. The payoff of the survivor caplet at the exercise
date t is xc

t = max (lx+t −kc
t ; 0) where kc

t = (1+πc)l̂x+t is the cap rate. The payoff

of the survivor floorlet is x f
t = max (k f

t − lx+t ; 0) where k f
t = (1 + π f )l̂x+t is the

floor rate. Assuming again independence between interest rates and mortality rates
we have that the prices of a survivor cap, Pc

T , and of a survivor floor, P f
T , are equal

to:

Pc
T =

T∑
t=1

E∗[xc
t ] d(0, t) ; P f

T =
T∑

t=1

E∗[x f
t ] d(0, t). (5)

3 Longevity-linked securities: pricing

There is currently a vivid debate on how to price longevity derivatives. Two ap-
proaches have been mainly used so far: the risk-neutral and the distortion approach
(see [1] for a detailed comparison between the two approaches). We consider the
latter approach, based on the Wang transform (see [15]), for the purpose of our anal-
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ysis. It generates risk-adjusted death probabilities that can be used, together with
the risk-free interest rate, in the longevity-linked securities pricing. The model has
been often criticized because it does not produce a universal framework for pric-
ing financial and insurance risks. Moreover it produces different market prices of
risk for different ages and cohorts. In an incomplete market, such as the longevity
market, generally there is an infinite number of possible risk neutral measures or
equivalent martingale measures. Therefore the estimation of a unique risk-adjusted
probability measure is impossible. Although highly criticized, the Wang transform
still remains a valid approach for practical applications concerning the pricing of
longevity derivatives. The approach has been used by many authors, among others
we recall [14], [8] and [9]. The Wang distortion operator, applied to the best estimate
of projected death probabilities, t q̂x , is defined implicitly from:

t q
∗
x = %

[
%−1(t q̂x ) − λ

]
, (6)

where % is the standard normal cumulative distribution function, the parameter λ
corresponds to the market price of risk, and t q∗

x are the distorted death probabilities.
Once we selected the model for pricing the derivatives, we still have to derive the

price of risk, λ, from the market. The next section is devoted to the calibration of λ
directly from the estimates of the RM.

4 Market price of longevity risk and risk margin

Under the Solvency II project, if the risks are unhedgeable, the market value of re-
lated liabilities is set equal to the sum of its best estimate (BE) and a risk margin
(RM), representing a risk adjustment of the BE. More technically the RM is defined,
following the cost-of-capital (CoC) approach, as the cost of providing an amount of
capital necessary to fulfil insurance obligations. In formula, the RM in t is equal to:

RMt = 0.06
T−1∑
i=t

SC Ri d(t, i), (7)

where we set the CoC rate equal to 6% and the SC Ri refers to the solvency capital
requirements (SCR) for the year i . In the definition proposed in Solvency II, the
SCR is the capital required to cover, with 99.5% probability, the unexpected losses
on a 1-year time horizon. If we consider only the SCR relative to LR, and assume
no other risk, the SCR in t is equal to:

SC Rt = �N AVt
∣∣longevi t y shock = V ′

t −V̂t = lx

T−1∑
h=t+1

(h p′
x −h p̂x ) d(t, h), (8)

where �N AVt denotes the change in the net value of assets minus liabilities at time
t due to a longevity shock ; V ′

t is the value of the technical provisions after expe-
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riencing a longevity shock; V̂t is the BE of the technical provisions; h p′
x −h p̂x is

the difference between survival probabilities with a longevity shock and their BE.
Solvency II suggests a standard formula to compute, with a fair approximation, the
SCR (see [6]). The formula assumes a permanent reduction of 25% of the BE of the
mortality rates at each age.

Assuming that an annuity provider is completely hedged against LR, for assump-
tion the only risk, there is no need for the company to set any solvency capital aside.
Both the SC R and the RM reduce to zero. Reasonably we can assume that an an-
nuity provider might be interested in securitizing its LR if the transaction price is
lower or equal to the present value of the future CoC required in presence of LR. It
follows that the RM can be considered also as the maximum price that an insurance
company would pay for LR securitization (see [4]).

If we consider now an insurance company holding a survivor swap with maturity
S = T , the corresponding value of the SCR in t , is equal to:

SC RSW
t = (lx − l SW

x ) ·
T∑

h=t+1

(h p′
x −h p̂x ) d(t, h), (9)

where lx and l SW
x are the survivors in the portfolio of annuitants and underlying the

swap, respectively. Note that if lx = l SW
x then SC RSW = 0. Substituting (8) and (9)

in (7) we derive the following values of the RM in t = 0:

RM0 = 0.06
T−1∑
i=0

SC Ri d(0, i) = 0.06 · lx

T−1∑
i=0

T∑
h=i+1

(h p′
x −h p̂x ) d(0, h), (10)

RM SW
0 = 0.06

T−1∑
i=0

SC RSW
i d(0, i) = 0.06·(lx −l SW

x )

T−1∑
i=0

T∑
h=i+1

(h p′
x−h p̂x )d(0, h).

(11)
Computing the difference between the RM required in absence and in presence of

a vanilla survivor swap, we get a measure of the amount of RM saved by the annuity
provider hedging the LR:

RM0 − RM SW
0 = 0.06 · l SW

x

T−1∑
i=0

T∑
h=i+1

(h p′
x −h p̂x ) d(0, h). (12)

These savings correspond also to the maximum premium that an annuity provider
would pay for hedging the risk, which in formula is equal to π

∑T
h=1 l̂ SW

x+h d(0, h).
At this point we are able to derive the value of the maximum price π :

π = 0.06
∑T−1

i=0

∑T
h=i+1

(
h p′

x − h p̂x
)

d(0, h)∑T
h=1 h p̂x d(0, h)

. (13)
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Provided the value ofπ we find the corresponding value of λ solution of (4) trough
(6). The risk-adjusted probabilities of (4) are also used to price survivors caplets and
floorlets according to (5), written on the same underlying index.

5 Stochastic mortality model

To construct the mortality index underlying the longevity-linked securities, we model
and forecast the period central death rates at age x and time t , mx (t), with the Poisson
log-bilinear model suggested by [5]. The model assumes that the observed number
of deaths, Dx (t), is a random variable following a Poisson distribution with mean
equal to Nx (t) · mx (t), with Nx (t) indicating the mid-year population aged x in t .
The central death rates mx (t) follow the classic Lee-Carter model [12]:

ln mx (t) = αx + βx kt , (14)

where αx refers to the average shape across ages of the log-mortality schedule; βx

describes the pattern of deviations from the previous age profile, as the parameter kt

changes; kt can be seen as an index of general level of mortality over time. Mortality
forecasts are obtained with the mere extrapolation of kt . ARIMA models are used to
forecast it. Besides, we apply the non-parametric bootstrap to combine more sources
of uncertainty (see [13] for a detailed description):

• the Poisson variability enclosed in the data;
• the sample variability of the parameters estimated with the Lee-Carter and

ARIMA models;
• the uncertainty in the forecasted values of kt .

6 Conclusions

We consider a portfolio of immediate life annuities sold to a cohort of lx =10,000
policyholders, all aged x = 65 in the year 2007 (t = 0). The analysis is conducted on
the mortality of the Italian population, specifically on the cohort of individuals born
in 1942 and aged 65 in 2007. We use data downloaded from the Human Mortality
Database [11], relative to the age range 65-110 and period 1975-2006. The risk-
free interest rate term structure is taken from CEIOPS [7] for the year 2007. We
performed 300,000 simulations. The estimated parameters of the Lee-Carter model
for Italian population are shown in Fig. 1.

We calculate the distortion operator, λ, for different maturities, S, and then the
corresponding swap premiums (see Table 1). The table shows that the market price of
LR, λ, rises with the swap maturity. It indicates that investors require higher premia
as the maturity of the swap increases.

Cap and floor prices are calculated assuming different strike prices xc, f
t = (1 +

π
c, f
t )l̂x+t for levels of π

c, f
t varying from 0.02 to 0.1 and for a fix maturity of 30

years (see Table 2). Not surprisingly we obtained cap prices (floor prices) decreas-
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Fig. 1. Parameters of the Lee-Carter model fitted to Italian males (top) and females (bottom)

Table 1. Vanilla survivor swap premiums, π and market price of LR, λ, calculated on different
maturities

Males Females
Maturity S λ πS λ πS

10 0.0591 0.0087 0.0518 0.0043
15 0.0981 0.0197 0.0860 0.0100
20 0.1426 0.0354 0.1276 0.0192
25 0.1903 0.0545 0.1777 0.0325
30 0.2340 0.0726 0.2335 0.0490
35 0.2623 0.0837 0.2820 0.0634
40 0.2732 0.0877 0.3092 0.0709

Table 2. Cap and floor prices for different level of π . λ calculated on the maturity S = 30

Males Females

π
c= f
t Cap price Floor price Cap price Floor price

0.02 6231.39 224.11 4246.06 485.65
0.03 5416.64 551.78 3527.60 1066.64
0.04 4721.14 998.69 2958.23 1796.72
0.05 4126.35 1546.31 2499.55 2637.50
0.06 3616.12 2178.48 2124.88 3562.29
0.07 3177.18 2881.95 1814.62 4551.48
0.08 2798.15 3645.33 1554.54 5590.85
0.09 2469.78 4459.37 1334.40 6670.17
0.10 2184.45 5316.45 1146.59 7781.81
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ing (increasing) with the strike, something well known in finance. Caps and floors
can be combined to provide different hedging strategies. Specifically a long position
on a cap and a short position on a floor with the same strike prices corresponds to
a plain vanilla swap. From the first results it seems that this pricing approach is ef-
fective. However, as pointed out also in [4], some drawbacks exists. First of all the
company’s cost of capital can be different from 6%, if lower (if bigger) the market
price of LR decreases (increases); sometimes strategic reasons could induce a com-
pany accepting higher market price of risk; finally LR prices depend on company’s
attitude toward risk, in other words different companies may accept different LR
prices. Although this approach is not providing yet a unique price for LR, it has the
advantage to work in the known and possibly standardized framework of the Sol-
vency II. The assessment and pricing of the risk is done in the same context, with
the RM being a possible benchmark for the market price of risk.
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TModelling the share prices as a hidden random
walk on the lamplighter group

Xiaojuan Ma and Sergey Utev

Abstract. Based on an analysis of six groups of share prices, we suggest modelling
the data as a geometric random walk on the lamplighter group perturbed by Gaussian
noises. It is assumed that the movement of the lamplighter is known, but we do
not observe the status of the lamps (the hidden part). We construct the λ-biased
random walk and choose diagonal elements α. Then we want to find the best fit of
the stochastic matrices estimated by MLE and the stochastic matrices estimated by
the Monte Carlo simulation. Stochastic simulations and the L2 approximation of two
random stochastic matrices were used to analyse the fitting of the model to data.

Key words: Random walk, lamplighter group, share prices

1 Introduction

Aim. In this paper, we want to use different ways to construct models for share
prices, compare the different results by using L2 norm and get a better fit of the data.

Motivation. Six groups of share prices were chosen at random from internet share
prices data. More exactly, the data are financial years 2003-2004, 2004-2005, 2005-
2006, 2006-2007, 2007-2008 of CITI Group (NYSE), Barclays (London), Barclays
(NYSE), BT (NYSE), BT (London), Vodafone (London) [5].

Firstly, the data are modelled as a discrete-time Markov chain perturbed by Gaus-
sian noises. The idea behind the model is the following: The Markov chain models
big jumps (e.g. interest rate changes, or sudden big development in fluctuation from
financial or economic policy) and the Brownian Motion is applied to model the small
fluctuations. In this research, we choose three states to avoid overcomplicated cal-
culations and still capture the data behaviour. This also partly reflects the number of
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changes in the Bank of England interest rates [6]. The details will be explained in
Section 2.

Modelling. Assume that St is the daily share price process, where S1 is the initial
value of the share price, t labels each day in a financial year t ∈ {1, 2, . . . , n}, and n
is the number of days in a financial year. Based on the previous arguments and also
partly motivated by [4], the suggested model is

log St = log S1 + bt +
t∑

i=1

(Mai + σηi ), (1)

where n = 253, b is the slope of the share price, Mai is the sample path of the
Markov chain, σ is the volatility of the residual, and ηi is an i.i.d. sequence of stan-
dard normal random variables.

Unfortunately, traditional models such as a geometric Levy process pricing mod-
els do not fit our data because the estimated transition matrices for all our datasets
have highly different rows. In our previous research, we also found the discrete
time Markov chains are not embeddable into homogeneous continuous time Markov
chains.

As an alternative, a random walk on the (hidden) lamplighter group is chosen to
model the transition matrices in the data. In previous research we use P to denote
the transition matrices estimated by MLE. Now we use Q to denote the transition
matrices here. The choice of the lamplighter group was motivated by its particular
algorithmic structure.

2 Random walk on the lamplighter group

2.1 Lamplighter group G1(G)

Definition 1. Let G be either Z or Z p = {0, 1, . . . , p − 1} with the standard mod
(p) operations, specifically for p = 2 and p = 3. We define a semidirect product
G1(G) := G �

∑
x∈G Z2 of Z with the direct sum of copies of Z2 indexed by

G. Then, let ℘ be the left shift operator. ℘ is defined on a class of sequences {η :
G → G} by ℘(η)( j) := η( j + 1) (usually referred to as configurations). Let ⊕
be an addition modulo 2 (for example, 1 ⊕ 1 = 0). Then, for m, m

′ ∈ Z and η,
η

′ ∈ ∑x∈Z Z2, the group operation is defined by

(m, η)(m
′
, η

′
) := (m + m

′
, η ⊕ ℘−mη

′
), (2)

where ⊕ is component-wise addition modulo 2 [3].

Example. Let ℘ be the left shift on Z3. Then, for the element P = {0, 1, 2}, ℘P =
{1, 2, 0}. Similarly, let ℘−1 be the right shift on Z3 and ℘−m be the m steps right
shift. Then, for the same element P = {0, 1, 2}, ℘−1 P = {2, 0, 1} and ℘−3 P =
{0, 1, 2}. In addition, we will use standard group characteristics such as generators
etc.. The first component of an element x = (m, η) ∈ G1 is called the position
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of the marker in the state x , denoted by M(x). Traditional generators of G1 are
(1, 0), (−1, 0) and (0, 10), where 10 denotes the sequence such that 10(0) = 1 and
10( j) = 0 for j �= 0.

The reason for the name of the group is that we may think of a streetlamp at
each integer with the configuration η representing which lights are on, namely, those
where η = 1. We also may imagine a lamplighter at the position of the marker.

Finally the first two generators of G1 correspond to the lamplighter taking a step
either to the right or to the left (leaving the lights unchanged). The third generator
corresponds to flipping the light at the position of the lamplighter [3].

2.2 Branching type random walk on the lamplighter group

We now consider a simple random walk on the lamplighter group.
Define the s × s matrix W as follows:

wi j =
{

1
d if i → j and j is a new link

0 if otherwise,

where i and j are the number of elements of the group, s is the state and d is the
number of new different j for which we have a new link i → j , i, j = 1, 2, . . . , s.

In the comparison with the traditional simple random walk, d may be interpreted
as the number of new different neighbours, or the number of new edges, whereas in
the classical random walk we consider all possible links or edges.

(A1) Application to the data 1
In particular, the lamplighter group G1(Z3) will be used in the modelling where the
three positions 0, 1 and 2 are treated as the three classes of share prices: minimum,
average and maximum.

Step 1. Firstly, we notice that G1(Z3) has the following 24 elements:

E = {e1 = (0, (0, 0, 0)), e2 = (0, (0, 0, 1)), e3 = (0, (0, 1, 0)), e4 = (0, (1, 0, 0)),

e5 = (0, (0, 1, 1)), e6 = (0, (1, 0, 1)), e7 = (0, (1, 1, 0)), e8 = (0, (1, 1, 1)),

e9 = (1, (0, 0, 0)), e10 = (1, (0, 0, 1)), e11 = (1, (0, 1, 0)), e12 = (1, (1, 0, 0)),

e13 = (1, (0, 1, 1)), e14 = (1, (1, 0, 1)), e15 = (1, (1, 1, 0)), e16 = (1, (1, 1, 1)),

e17 = (2, (0, 0, 0)), e18 = (2, (0, 0, 1)), 19 = (2, (0, 1, 0), e20 = (2, (1, 0, 0)),

e21 = (2, (0, 1, 1)), e22 = (2, (1, 0, 1)), e23 = (2, (1, 1, 0)), e24 = (2, (1, 1, 1))}.
As the (semi-group) generator of G1(Z3), take

S = {e10 = (1, (0, 0, 1)), e20 = (2, (1, 0, 0))}.
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Step 2. Secondly we construct the branching type random walk using the generator
S which yields to possible links to each element e → e10 and e → e20.

In this example, the number of new edges is d = 2.

Step 3. Now, we use a hidden Markov chain on the lamplighter group to model the
data. For the hidden part, we assume that we know the positions of the lamplighters,
but we do not know the status of the lamplighters. The possible known positions are
the following three sets:

0 = {e1 = (0, (0, 0, 0)), e2 = (0, (0, 0, 1)), e3 = (0, (0, 1, 0)), e4 = (0, (1, 0, 0)),

e5 = (0, (0, 1, 1)), e6 = (0, (1, 0, 1)), e7 = (0, (1, 1, 0)), e8 = (0, (1, 1, 1))}
1 = {e9 = (1, (0, 0, 0)), e10 = (1, (0, 0, 1)), e11 = (1, (0, 1, 0)), e12 = (1, (1, 0, 0)),

e13 = (1, (0, 1, 1)), e14 = (1, (1, 0, 1)), e15 = (1, (1, 1, 0)), e16 = (1, (1, 1, 1))}
2 = {e17 = (2, (0, 0, 0)), e18 = (2, (0, 0, 1)), 19 = (2, (0, 1, 0), e20 = (2, (1, 0, 0)),

e21 = (2, (0, 1, 1)), e22 = (2, (1, 0, 1)), e23 = (2, (1, 1, 0)), e24 = (2, (1, 1, 1))}.
We know the sets where we are, but do not know the elements.

Step 4. Finally we apply the stochastic simulation.

(i) On a 24 element state space E , we simulated Markov chain X1 . . . Xn , n = 253
as before. We found hidden probabilities and derived the corresponding (3 × 3)
transition matrices Q.

(ii) We run the random data several times and find the one which gives the smallest
L2 error for all free parameters, if any.

Results are summarised in Table 1 and Table 2. Table 1 shows the transition ma-
trices estimated by MLE for the certain share prices data. In the following part, we
used the different ways to construct models for getting the better fit of the transition
matrices in Table 1. Table 2 displays the transition matrices by simulation based on
the branching type random walk on the lamplighter group.

Table 1. 3 × 3 transition matrices estimated by MLE

Cases CITI Group 2003-2004 CITI Group 2004-2005 CITI Group 2005-2006

P̂

⎛⎝ 0.9740 0.0260 0
0.1538 0.6538 0.1923

0 0.1212 0.8788

⎞⎠ ⎛⎝ 0.9231 0.0513 0.0256
0.1667 0.5000 0.3333
0.0185 0.0123 0.9691

⎞⎠ ⎛⎝ 0.9855 0.0097 0.0048
0.1000 0.6000 0.3000
0.0312 0.0625 0.9062

⎞⎠

Table 2. 3×3 transition matrices estimated by the simulation based on the branching type random
walk on the lamplighter group

Cases CITI Group 2003-2004 CITI Group 2004-2005 CITI Group 2005-2006

Q̂

⎛⎝ 0.5041 0.3306 0.1653
0.5735 0 0.4265
0.3387 0.4516 0.2097

⎞⎠ ⎛⎝ 0.3939 0.4545 0.1515
0.4521 0 0.5479
0.3418 0.3544 0.3038

⎞⎠ ⎛⎝ 0.4425 0.3540 0.2035
0.5634 0 0.4366
0.3284 0.4627 0.2090

⎞⎠
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Table 3. 3 × 3 transition matrices estimated by the simulation based on the λ-biased random walk
on the lamplighter group

Cases CITI Group 2003-2004 CITI Group 2004-2005 CITI Group 2005-2006

Q̂

⎛⎝ 0.0405 0.4189 0.5405
0.5600 0 0.4400
0.2745 0.4412 0.2843

⎞⎠ ⎛⎝ 0 0.3370 0.6630
0.7463 0 0.2537
0.4457 0.4022 0.1522

⎞⎠ ⎛⎝ 0.0417 0.2917 0.6667
0.6818 0 0.3182
0.5281 0.4270 0.0449

⎞⎠

2.3 The λ-biased random walk on the lamplighter group

In this section, we consider a slightly modified λ-biased random walk on a lamp-
lighter group G1(Z3) (similar to one suggested in [3]). The main difference is that
as a generator we consider non-symmetric set S = {e10, e20} (same as in the previous
section).

Definition 2. For λ > 0, we define the λ-biased random walk RWλ on a connected
locally finite graph with a distinguished vertex � as the time-homogeneous Markov
chain Xn where n ≥ 0. Next, let |v| denote the distance |v| from a vertex v to �,
defining the number of the edges on the shortest path joining the two vertexes. Given
a vertex v , let v1,. . . ,vk (k ≥ 1 unless v = �) be the neighbours of v at distance
|v| − 1 from � and let u1, u2,. . . ,u j ( j ≥ 0) be the other neighbours of v [3]. Then
the transition probabilities are

w(v, vi ) = λ

(kλ + j)
, w(v, ui ) = 1

(kλ + j)
, i = 1, . . . , k.

(A2) Application to the data
The only difference with the previous application (A1), is in Step 2 and Step 4.

Step 2’. Now, we construct the λ-biased random walk on the group

w(v, vi ) = λ

(λ + 1)
, w(v, ui ) = 1

(λ + 1)
.

Step 4’. The free parameter λ is chosen by using the smallest L2 norm.

Results are summarised in Table 3. Table 3 shows transition matrices estimated
by constructing the model as the λ-biased random walk on the lamplighter group.

2.4 The ααα-biased random walk on the lamplighter group

Next we use a slightly perturbed classical random walk on the lamplighter group
generated as a semigroup by a non-symmetric set of generators S = {e10, e20}

wi j =

⎧⎪⎨⎪⎩
(1 − α) 1

d = 1
2 (1 − α) if i links to j ,

α if i = j ,

0 otherwise.
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Table 4. 3 × 3 transition matrices estimated by the simulation based on the α-biased random walk
on the lamplighter group

Cases CITI Group 2003-2004 CITI Group 2004-2005 CITI Group 2005-2006

Q̂

⎛⎝ 0.9906 0.0047 0.0047
0.1667 0.6667 0.1667

0 0.1154 0.8846

⎞⎠ ⎛⎝ 0.9531 0.0234 0.0234
0.1538 0.5385 0.3077
0.0364 0.0273 0.9364

⎞⎠ ⎛⎝ 0.9894 0.0106 0
0.1000 0.6000 0.3000
0.0192 0.0385 0.9423

⎞⎠

Table 5. 3 × 3 transition matrices estimated by the simulation based on the α-λ-biased random
walk on the lamplighter group

Cases CITI Group 2003-2004 CITI Group 2004-2005 CITI Group 2005-2006

Q̂

⎛⎝ 0.9394 0.0227 0.0379
0.1667 0.6250 0.2083
0.0316 0.0737 0.8947

⎞⎠ ⎛⎝ 0.9271 0.0104 0.0625
0.2000 0.5000 0.3000
0.0345 0.0276 0.9379

⎞⎠ ⎛⎝ 0.9559 0.0074 0.0368
0.1429 0.5714 0.2857
0.0370 0.0185 0.9444

⎞⎠

(A3) Application to the data
The whole process is similar to the previous ones. At Step 2”, the transition matrix
is defined in the previous part. And at Step 4”, the free parameter α is chosen by
using the smallest L2 norm.

Results are summarised in Table 4. In Table 4, we show the transition matrices
estimated by constructing the model as the α-biased random walk on the lamplighter
group.

2.5 The ααα-λλλ-biased random walk on the lamplighter group

In this method we combine the α-biased and λ-biased random walk. Here we con-
sider the modified α-λ-biased random walk on the lamplighter group for modelling
the data

w(v, vi ) = λ

(kλ + j)
, w(v, ui ) = 1

(kλ + j)
, i = 1, . . . , k

and the neighbours of the vertex v are satisfied with the λ-biased condition

wi j =

⎧⎪⎨⎪⎩
(1 − α) 1

d = 1
2 (1 − α) if i links to j ,

α if i = j ,

0 otherwise.

(A4) Application to the data
In a similar manner to the previous case, at Step 2”’ the transition matrix is defined
in the previous part, and at Step 4”’ now the two free parameters λ and α are chosen
by using the smallest L2 norm.

Results are summarised in Table 5. Table 5 shows the transition matrices esti-
mated by the way of the α-λ-biased random walk on the lamplighter group.
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Table 6. 3×3 transition matrices estimated by the simulation based on the the Weighted PageRank
random walk on the lamplighter group

Cases CITI Group 2003-2004 CITI Group 2004-2005 CITI Group 2005-2006

Q̂

⎛⎝ 0.0519 0.3247 0.6234
0.5600 0 0.4400
0.3030 0.5152 0.1818

⎞⎠ ⎛⎝ 0.0617 0.4198 0.5185
0.5513 0 0.4487
0.3587 0.4783 0.1630

⎞⎠ ⎛⎝ 0.0282 0.3521 0.6197
0.5595 0 0.4405
0.2188 0.6250 0.1562

⎞⎠

2.6 The Weighted PageRank random walk on the lamplighter group

We introduce the Weighted PageRank random walk on the lamplighter group to
model the transition matrix W [1]:

wi j =

⎧⎪⎨⎪⎩
1
d if i links to j ,
1
n if i does not have outgoing links,

0 otherwise.

for i, j = 1, . . . ,m where i and j are an integer, and di is the number of outgoing
links from i .

(A5) Application to the data
As before, at Step 2””, the transition matrix was defined in the previous part. But at
Step 4””, since we do not have free parameters, we run the simulated random data
several times and find the one which gives the smallest L2 error.

Results are summarised in Table 6. Table 6 shows the transition matrices esti-
mated by the simulation of constructing the model as the Weighted PageRank ran-
dom walk on the lamplighter group.

3 Conclusions

To compare the five different methods with the five different random walks on the
lamplighter group G1(Z3), we calculated the L2 error (norm) [2] between the sim-
ulated matrices and the one based on MLE. In Table 7, we found that the α-biased
random walk and α-λ-biased random walk could get better fit than the others.

We measured the goodness of fit of the suggested models by using simple “mean
squared errors” between the real time series of data and a simulation of prices ob-
tained by the model through the estimated transition matrices. Also modelling via
non-homogeneous continuous time Markov chains was partly considered but more
research has to be done in this area.
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Table 7. L2 norms error comparison result

Cases Branching type
random walk

λ-biased
random walk

α-biased
random walk

CITI(2003-2004) 0.9723 1.2915 0.0340
CITI(2004-2005) 0.8976 1.5646 0.0614
CITI(2005-2006) 0.9861 1.5719 0.0453

Cases α-λ-biased random walk The Weighted PageRank random walk

CITI(2003-2004) 0.0687 1.3179
CITI(2004-2005) 0.0723 1.2730
CITI(2005-2006) 0.0645 1.3336

Acknowledgements We wish to thank the referees for their detailed and constructive comments.
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TMultivariate jump arrivals: The variance
gamma case

Roberto Marfè

Abstract. This work proposes a tractable multivariate Lévy process able to approx-
imate margins of VG type. Jump arrivals are modelled as multivariate subordinators
with common and idiosyncratic components which generate linear and nonlinear
dependence. Jumps of any sign and size show an own degree of common jump ar-
rivals which is explicitly modelled and offers high flexibility in calibrating nonlinear
dependence. The approximation of margins, the joint characteristic exponent and
measures of dependence are studied via simple closed formulas and a multivariate
simulation procedure is available. An empirical analysis supports the choice of VG
margins and documents an accurate fit of linear and nonlinear dependence.

Key words: Lévy processes, correlation, dependence, multivariate asset pricing,
variance gamma

1 Introduction

Pure jump models for univariate asset prices are today a standard in financial liter-
ature. In particular Lévy processes, the basic building block of jump models, offer
a rich class of distributions for modeling financial returns. However, multivariate
jump models have been studied much less and are more difficult to construct: then
many financial applications continue to be dominated by Brownian motion or jump-
diffusion.

This work specializes the approach in [8] to the variance gamma (VG) case, which
has comparable multivariate representations in literature. Multivariate jump arrivals
featuring a degree of dependence which varies between jumps of any sign and size
are used to capture nonlinear dependence once margins and linear dependence are
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fixed. An empirical analysis supports such construction of dependence under the VG
choice for margins.

2 The model

The VG model for financial asset returns was introduced in the symmetric case by [4]
and later extended to incorporate skewness by [5]. The model gives a stock market
return (log price increment) X as having, conditional on a gamma random variable
V say, a normal distribution, i.e.

X |V ∼ N (μ + θV , σ 2V ), (1)

where μ, θ ∈ R and σ > 0 are constants. As such, the realisations of V drive both
volatility, via σ 2V , and skewness, via θV . The characteristic function of X has the
simple representation, for V ∼ �(1/α, 1/α),

φV G(u) = eiμu
(

1 − αiθu + 1

2
ασ 2u2

)−1/α

. (2)

The stock price process resulting in VG distributed returns has the representation
of a subordinator model:

Pt = P0eμt+θτt +σWτt , (3)

where {Wt } is a standard Brownian motion independent of {τt }, which is a positive
non-decreasing random process with stationary, independent increments of gamma
type such that τt − τt−1 ∼ �(1/α, 1/α) for unit time intervals. Therefore, if we set
the returns Xt ≡ log Pt − log Pt−1, they will have VG distribution as described by
(1) and (2).

As an alternative representation, the characteristic function (2) also results from
the exponentiated difference of two independent gamma processes which have in-
dependent gamma distributed increments:

φV G(u) = eiμu (1 − iu/b)−a (1 + iu/c)−a , (4)

with parameters satisfying α = 1/a, θ = a(1/b − 1/c), and σ 2 = 2a/(bc). The
resulting price process can be written as

Pt = P0eμt+Gt (a,b)−Gt (a,c), (5)

where Gt (α, β) denotes a gamma process with unit time increments following
�(α, β).

Some contributions in literature have studied a multivariate representation of the
VG process with the intent of capturing dependence between asset returns. A quite
intuitive approach is to decompose the return process {Xt } in an idiosyncratic com-
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ponent and a common one shared by all margins: a loading factor for the latter will
govern the amount of dependence. Such approach is proposed in [9] and has the
drawback of inducing strong restrictions between margins due to the scaling and
convolution property of the VG distribution. A different approach is to introduce a
common univariate subordinator (the process {τt } in (3)) to force all assets to move
at precisely the same instant as in [4] and [2]. More recently, [10] and [3] allow for a
decomposition of a multivariate subordinator in a common and an idiosyncratic part:
such approach does not induce marginal restrctions and provides higher flexibility.
In [6] and [7], the multivariate subordinator is used to provide a multivariate counter-
part of the univariate representation in (5) and to model dependence independently
in positive and negative jumps without marginal restrictions.

In this work, I follow [8] with the intent of building a tractable multivariate Lévy
process which approximates margins of VG type but allows for high flexibility into
calibrate dependence between jumps of any sign and size.

2.1 Univariate characterization

The representation of the VG process, {Xt }, as the difference of two independent
gammas as in (5) allows to write the VG Lévy measure as follows

ν(dx) = ae−bx x−1dx1x>0 + ae−c|x ||x |−1dx1x<0. (6)

Lévy-Itô decomposition ensures that Xt can be represented as a sum of a Com-
pound Poisson process and an almost sure limit of compensated compound Poisson
processes:

Xt = γ t +
∑

s≤t
�Xs1|�Xs |≥1 + lim

ε↓0
N ε

t , (7)

where ε ∈ (0, 1) and

N ε
t =

∑
s≤t

�Xs1ε≤|�Xs |≤1 − t
∫
ε≤|x |≤1

xν(dx). (8)

Since the VG process has finite variation, for a fixed ε, an approximation of Xt

is given by
Xε

t = γ ′t +
∑

s≤t
�Xs1ε≤|�Xs | + �ε

t , (9)

where �ε
t ≡ E[

∑
s≤t �Xs1|�Xs |<ε] and the residual term Rε

t = limδ↓0 N δ
t − �ε

t is
zero-mean Lévy with measure 1|x |≤εν(dx). See [1] for the details.

Consider the following approximation of the Lévy measure ν. For a fixed ε ∈
(0, 1), let $ = {π j }d

j=1 be a partition of R\[−ε, ε] of the form

π j =
{

[z j−1, z j ), 1 ≤ j ≤ h,

[z j , z j+1), h + 1 ≤ j ≤ d,
(10)
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where the real numbers {z j }d+1
j=0 satisfy

z0 < z1 < . . . < zh = −ε, ε = zh+1 < zh+2 < . . . < zd+1. (11)

The jumps of Xt are approximated by a weighted sum of independent Poisson
processes. Take a Poisson process, N j

t , for each interval, π j , of the partition $, with
intensity, λ j , given by the Lévy measure of the interval:

λ j =
∫
π j

ν(dx), (12)

and weight, κ j , chosen such that the variance of the process, Xt , on the interval π j

is matched by |κ j |N j
t :

κ j = ς j

√
λ−1

j

∫
π j

x2ν(dx), with ς j =
{
−1, 1 ≤ j ≤ h,

1, h + 1 ≤ j ≤ d.
. (13)

The approximation process

Xε
t = γ ′t +

∑d

j=1
κ j N j

t , (14)

has a straightforward characterization: Lévy measure and characteristic exponent are
respectively given by

νε(dx) =
∑d

j=1
λ jδ1(κ

−1
j dx), ψ(u) = iγ ′u +

∑d

j=1
λ j (e

iκ j u − 1). (15)

For the VG case, using (6), intensities and weights have simple formulas

γ ′ = μ, (16)

λ j =
{

a(�̃(0,−z j c) − �̃(0,−z j−1c)), 1 ≤ j ≤ h;
a(�̃(0, z j b) − �̃(0, z j+1b)), h + 1 ≤ j ≤ d; (17)

κ2
j λ j =

{
ac−2(�̃(2,−z j c) − �̃(2,−z j−1c)), 1 ≤ j ≤ h;
ab−2(�̃(2, z j b) − �̃(2, z j+1b)), h + 1 ≤ j ≤ d,

(18)

where �̃(x, y) denotes the incomplete gamma function.

2.2 Multivariate characterization

Following [8], I build a multivariate Lévy process, {�Xε
t }, where margins, {Xε

s,t },
approximate the VG type and dependence is generated by one or more common
sources of jump arrivals per each type of jump. Using the convolution property of
Poisson processes, it is easy to decompose the arrivals of each type of jump as driven
by a factor that can be interpreted as idiosyncratic and by one or more factors that
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are shared also by other margins and can be interpreted as common factors. Without
loss of generality I consider the one-factor case. The marginal process is defined as

X ε
s,t = γ ′

s t +
∑d

j=1
κ j N j

s,t
d= γ ′

s t +
∑d

j=1
κ j (N̂ j

s,t + M j
t ), s = 1, . . . , n, (19)

where N j
s,t , N̂ j

s,t and M j
t are independent Poisson processes with intensities λ j,s ,

ζ j,s and θ j such that

ζ j,s + θ j = λ j,s ∀s, ∀ j = 1, . . . , d. (20)

The multivariate process has the following joint characteristic exponent

�(�u) = i
∑n

s=1
γ ′

s us +
∑d

j=1
[θ j (e

i
∑n

s=1 κ j,s us − 1) +
∑n

s=1
ζ j,s(e

iκ j,s us − 1)].

(21)
Linear and nonlinear dependence can be observed via simple closed formulas:

covariance, m11, coskewness, m21,m12, and cokurtosis, m22, are respectively given
by

m11(s, i) = t
∑d

j=1
θ jκ j,sκ j,i , (22)

m21(s, i) = t
∑d

j=1
θ jκ

2
j,sκ j,i , m12(s, i) = m21(i, s), (23)

m22(s, i) = t
∑d

j=1
θ jκ

2
j,sκ

2
j,i . (24)

Following [8], a parsimonious approach to calibrate dependence is the following.
Marginal parameters {κ j,s, λ j,s}d,n

j=1,s=1 can be determined, without restrictions, by
independent estimation of VG margins and using (16), (17) and (18). Common pa-
rameters {θ j }d

j=1 should be determined subject to the following constraint

0 < θ j < min
s

λ j,s ∀ j = 1, . . . , d, (25)

while parameters {ζ j,s}d,n
j=1,s=1 are obtained by difference. Consider a function

ρ : R→ [0, 1] which depends on few parameters ϑ , then the intensities of the com-
mon jump arrivals can be defined as

θ j = ρ j min
s

λ j,s ∀ j = 1, . . . , d, (26)

where

ρ j = 1∫
π j

dx

∫
π j

ρ(x ; ϑ)dx . (27)

A candidate function of the form ρ(x ; ϑ) = 1 − e−w0−w1xw2 1x>0−w3|x |w4 1x<0

with ϑ = (w0, w1, w2, w3, w4) > 0 ensures high flexibility and can be calibrated
by matching of comoments m11,m21,m12 and m22 or other measures (e.g. tail de-
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Fig. 1. Examples of dependence patterns with equal and symmetric VG margins (a = 1/2, b =
c = 1), equal covariance (m11 = 1/2) but different coskewness and cokurtosis effects: m21 =
m12 = {0, .6,−.6}, m22 = {3, 3.75, 3.75}

pendence). If the degree of dependence is constant, only the parameter w0 is needed.
The other parameters govern the slope and curvature of the degree of dependence
between jumps of any sign and size. Figure 1 provides some examples.

Each line displays the dependence function (left), the scatter plots (center) and
the empirical copula (right) of increments at time one. Margins (equal and sym-
metric VG) and covariance are the same in the three cases but different patterns of
nonlinear dependence can be observed because of the different parametrization of
ρ(x ; ϑ). In particular in the second and the third case higher dependence concen-
trates respectively on the joint positive and negative tail. Any smooth transition can
be accounted for.

3 The financial model and the empirical analysis

In this section I propose a financial model based on the multivariate Lévy process,
described before and based on [8], which approximates VG margins. As mentioned
in the introduction, exponential Lévy models are widely used in finance: the price
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Table 1. Percentage relative error from pairwise moment-matching calibration of the dependence
function ρ(x ; ϑ). Upper triangular matrix: m11. Lower triangular matrix: m11,m21,m12 and m22

% 1 2 3 4 5

1 Belgium 0 0 0 0
2 Canada 10.27 0 0 0
3 Denmark 5.91 9.18 0 0
4 South Africa 7.72 6.87 7.94 0
5 US 3.92 11.31 9.06 6.91

process, {�St }, is then the exponential of the multivariate Lévy process, {�Xt }:
�St = �S0 exp( �Xt ). (28)

Such a model captures statistical properties generally shown by asset returns like
fat-tails and asymmetry and provides new features in particular to describe nonlinear
dependence. At the same time it is very tractable and a straightforward simulation
procedure is available in both the univariate and the multivariate case.

I propose an empirical analysis in order to investigate the ability of the model
to fit linear and nonlinear dependence of financial returns. I consider daily stock
index dollar total returns from five stock indexes (BELGIUM, CANADA, DEN-
MARK, SOUTH AFRICA and US) as provided by DataStream from March 22,
2005 to May 7, 2009. The model is estimated using the VG for the margins and
then by calibrating common parameters. The univariate fit is performed with maxi-
mum likelihood estimation, recovering the density function by fast Fourier transform
from the characteristic function. As expected, the VG process allows for an accurate
description of unconditional distributions.1 The multivariate fit is based on the cal-
ibration of common parameters: only one pairwise parameter, w0, is used when the
distance wrt empirical covariance only is minimized. Also the other parameters in
ϑ = (w0, w1, . . . ) are used when the minimized distance also accounts for coskew-
ness and cokurtosis coefficients. Results are shown in the Table 1.

The model provides high upper bounds to linear correlation and in all of the cases
allows to calibrate perfectly the empirical value for the covariance coefficient m11.
The model-implied comoments lead to average calibration errors about 7.9% when
also coskewness (m21,m12) and cokurtosis (m22) effects are calibrated jointly to
m11. The results are very robust with respect the construction of the partition, $,
in (10)–(11): using equally spaced intervals for several values of d, differences in
calibration errors are negligible.

1 Details are available upon request.
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4 Conclusions

A tractable multivariate model for asset returns – based on the general multivariate
Lévy framework proposed in [8] – is studied in the special case of approximated
VG margins. The model does not require marginal restrictions and has the peculiarity
w.r.t. comparable Lévy models in literature of modelling nonlinear dependence with
flexibility also once margins and linear dependence are fixed. An empirical analysis
shows that such multivariate VG model is able to fit linear and nonlinear dependence
in asset returns with high accuracy.
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TModelling the skewed exponential power
distribution in finance

J. Miguel Marı́n and Genaro Sucarrat

Abstract. We study the properties of two methods for financial density selection of
the Skewed Exponential Power (SEP) distribution. The simulations suggest the two
methods can be of great use in financial practice, since the recovery probabilities
are sufficiently high in finite samples. For the first method, which simply consists
of selecting a density by means of an information criterion, the Schwarz criterion
stands out since it performs well across density categories, and in particular when
the Data Generating Process (DGP) is normal. In smaller samples the simulations
suggest that our second method, General-to-Specific (GETS) density selection, can
improve the recovery rate in predictable ways by changing the significance level.
This is useful because it enables us to increase the recovery rate of a chosen density
category, if one wishes to do so.

Key words: Density selection, general-to-specific density selection, skewed expo-
nential power distribution, financial returns, ARCH models

1 Introduction

Financial returns are often characterised by autoregressive conditional hetero-scedas-
ticity (ARCH), and by heavier tails than the normal – possibly skewed – even after
standardising the returns. One may consider modelling everything simultaneously,
say, by means of an ARCH type model that admits both skewed and heavy-tailed er-
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rors. However, in practice this is not always desirable. For example, many practition-
ers prefer using simple ARCH models like the RiskMetrics and Equally Weighted
Moving Average (EqWMA) specifications in predicting volatility, models that do
not require the specification of a density on the standardised error. Modelling the
density of the standardised error thus becomes a separate step. Also, if the modelling
problem involves many explanatory variables in addition to the ARCH and density
structures, as when modelling the relative change in daily electricity prices for ex-
ample, or if the density is simply too complex for reliable estimation in practice,
then simultaneous estimation and inference can be numerically inefficient or impos-
sible in practice. This motivates modelling the density of the standardised errors in
a separate step.

Here we propose and evaluate simple methods that model a standardised Skewed
Exponential Power (SEP) distribution.1 The SEP is attractive since the normal can
be obtained as a special case through parameter restrictions, and since the SEP can
produce densities that are both more and less heavy-tailed than the normal. The latter
property is a real—although uncommon—possibility, in particular for low frequency
financial returns and for models with explanatory variables. Also, the moments of
the EP distribution exist under weaker assumptions than many other heavy-tailed
distributions, say, the Student’s t .

We study the finite sample properties of two density specification search algo-
rithms through simulation. The first density search algorithm we study consists sim-
ply of choosing, among four densities, the density that minimises an appropriately
chosen information criterion. The four densities are all nested within the standard-
ised SEP: the standard normal (N) density, the standardised skew-normal (SN) den-
sity, the standardised symmetric exponential power (EP) density and the standard-
ised skewed exponential power (SEP) density. The second density search algorithm
we study can be viewed as a density selection analogue to multi-path General-to-
Specific (GETS) model selection, see [4] for a comprehensive overview of GETS
model selection in regression analysis. Summarised, in a regression context multi-
path GETS combines repeated backwards stepwise regression (with continuous di-
agnostic checking and parsimonious encompassing tests of each terminal specifica-
tion) with the use of an information criterion as a tie-breaker in the case of multiple
terminal specifications. The attractiveness of this modelling strategy is that the re-
covery rate can be altered in controlled and predictable ways via the significance
level.

The rest of the paper contains two sections. The next section outlines the statistical
framework, and the final section contains our simulations of the density selection
algorithms.

1 In financial econometrics, because of [10] and [12], the Exponential Power (EP) distribution is
also commonly known as the Generalised Error Distribution (GED).
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2 Statistical framework

The generic ARCH model is given by

rt = μt + εt , εt = σt zt , zt ∼ I I D(0, 1), σ 2
t = V ar(rt |It ),

where It is the conditioning information at time t , εt is the error of the mean spec-
ification μt , σ 2

t is the conditional variance and {zt } is an Independently and Identi-
cally Distributed (IID) process with mean zero and unit variance. Typically, It =
{It−1, It−2, . . .} where It = {rt , σt , zt }, as for example when the mean specifi-
cation μt is an Autoregressive Moving Average (ARMA) model. The most com-
mon specification of σ 2

t is the Generalised ARCH (GARCH) model of [3], where
σ 2

t = α0 + α1ε
2
t−1 + β1σ

2
t−1.

The Exponential Power (EP) distribution of order p is usually parametrised as

E P(z, p, μ, σ ) = 1

2p1/p�(1 + 1/p)σ
exp

(
−|z − μ|p

pσ p

)
, (1)

with μ ∈ (−∞,∞), σ > 0 and p ∈ (0,∞). μ is a location parameter, σ is a scale
parameter and p is a shape parameter. The normal distribution is obtained when p =
2, whereas fatter (thinner) tails are produced when p < 2 (p > 2). In particular, the
double exponential distribution (also known as the Laplace distribution) is obtained
when p = 1, whereas p → ∞ yields a uniform distribution. The standardised EP
density of [12] is obtained by setting

μ = 0, σ = �(1/p)(1/2)

p(1/p)�(3/p)(1/2)
, (2)

which means E(z) = 0 and V ar(z) = 1.
Following [16] we may distinguish between two main approaches to the skewing

of an EP distribution. The method of [2] on the one hand, and the method of [7],
[8], [14] and [11] on the other. The main advantage of the [2] method is that it en-
ables some elegant and attractive manipulation properties. Also, as pointed out by
one of the reviewers, it has a simple and straightforward economic interpretation in
some GARCH models, see [6], and [5]. Unfortunately, however, it is not clear that
ML estimation provides consistent parameter estimates (see [16], p.90). By contrast,
consistency of ML estimation for the second method, which we will refer to as the [8]
method, is proved by [16] when the shape parameter p is greater than 1. Moreover,
the [8] method is conceptually simpler and readily applicable to other densities. For
these reasons we skew the standardised EP distribution by means of the [8] method.

According to the [8] method, if f (z) is a probability density function that is uni-
modal and symmetric about 0, then

g(z) = 2

γ + 1
γ

[
f

(
z

γ

)
I[0,∞)(z) + f (zγ )I(−∞,0)(z)

]
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is a skewed probability density function, where I(·)(z) is an indicator function, and
where γ ∈ (0,∞). Symmetry is attained when γ = 1, whereas γ < 1 and γ > 1
produce left and right skewness, respectively. That is, heavier tails to the left and
right, respectively. From the formula for the r th. (positive) integer moment ([8], p.
360) it follows (assuming f (z) is the standardised version of (1) such that (2) is
satisfied) that:

Mr = 2
∫ ∞

0
zr f (z)dz, (r th. absolute moment; M2 = 1);

μγ = M1(γ − 1/γ ), (mean);
σ 2
γ = (1 − M2

1 )(γ
2 + 1/γ 2) + 2M2

1 − 1, (variance).

Next, the change of variable z∗ = (z − μγ )/σγ yields the standardised SEP:

f ∗(z∗) = 2σγ

γ + 1
γ

f (zμγ σγ |γ ), zμγ σγ = σγ z∗ + μγ

γ sign(σγ z∗+μγ )
.

Henceforth, for notational convenience, we will not make a distinction between
z and z∗. The variable z will always satisfy E(z) = 0 and V ar(z) = 1.

Studying the properties of a density selection algorithm necessitates a numerically
robust estimation algorithm, and the main properties of our ML code,2 which is
available on request, are contained in Table 1. It should be noted that we restrict the
parameter space numerically, so that only the values in the regions γ ∈ [0.6, 5] and
p ∈ [1, 3] are considered. These values cover the range of values that (we believe)
are likely to be encountered in empirical practice, and restricting the search space
in this way improves the estimation accuracy substantially in small samples. The
initial values of the algorithm are always γ = 1 and p = 2, which correspond to the
symmetric standard normal density.

3 Financial density selection

We study the finite sample performance of two density selection algorithms under
four different Data Generating Processes (DGPs): (1) z ∼ N (0, 1), (2) z ∼ SN (γ =
0.7), (3) z ∼ E P(p = 1.1) and (4) z ∼ SE P(γ = 0.7, p = 1.1). For expository
brevity we will refer to these four DGPs as N, SN, EP and SEP, respectively. The
values γ = 0.7 and p = 1.1 are at the border in terms of fat-tailness and skewness
of what one is likely to find in practice.

3.1 Density selection by means of information criteria

Choosing the density that minimises an appropriate information criterion results in
consistent density selection. However, the success rate may not be very high in finite
samples. Here, our objective is to shed light on this by comparing the performance of

2 Our code is a modified version of code from the fGarch package, see [15].
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Table 1. Numerical performance of ML estimation

T γ p M(γ̂ ) V (γ̂ ) M( p̂) V ( p̂) M(i ters) % no-conv.

100 1.0 2.0 1.024 0.051 2.113 0.261 8.00 0
1.1 1.008 0.014 1.146 0.039 17.29 25

200 2.0 1.005 0.014 2.059 0.125 7.70 0
1.1 1.001 0.005 1.123 0.017 17.16 24

500 2.0 1.002 0.005 2.022 0.044 8.21 0
1.1 1.002 0.204 1.104 0.007 16.91 20

1000 2.0 1.001 0.002 2.014 0.021 8.62 0
1.1 1.000 0.001 1.102 0.004 16.43 19

100 0.7 2.0 0.711 0.013 2.089 0.220 8.26 0
1.1 0.703 0.006 1.135 0.028 16.34 26

200 2.0 0.702 0.006 2.053 0.118 8.79 0
1.1 0.699 0.003 1.122 0.015 16.98 26

500 2.0 0.699 0.002 2.024 0.043 9.53 0
1.1 0.699 0.001 1.104 0.006 17.36 23

1000 2.0 0.698 0.001 2.009 0.020 9.89 0
1.1 0.699 0.000 1.101 0.003 16.92 20

Simulations (2000 replications) in R with ML estimation implemented via the nlminb() func-
tion. T is the sample size, M(·) and V (·) denote the mean and sample variance, respectively, i ters
is short for iterations and % no-conv. is the percent of time that the algorithm did not converge.

three different information criteria: the Schwarz criterion (SC) of [13],3 the Akaike
criterion (AIC) of [1] and the Hannan-Quinn criterion (HQ) of [9]. The three criteria
we compute as

SC: −2logl/T + k(log T )/T ,
AIC: −2logl/T + 2k/T ,
HQ: −2logl/T + 2k log[log(T )]/T ,

where logl is the empirical log-likelihood, and where k = 0, k = 1, k = 1 and k = 2
for N, SN, EP and SEP, respectively.

Table 2 contains the probabilities of recovering the correct density under four
different DGPs. The SC criterion has the best overall performance, since it performes
well in all four cases, and since it performs well in both small and large samples.
Also, consistent model selection is attained relatively fast in all four cases. Indeed,
the simulations suggest that when the sample size is greater than 300, then SC is
the preferred information criterion. Of course, this is to some extent because of the
large differences between the four densities (smaller differences would presumably
result in lower recover rates). When the sample size is smaller than 300, however,
then the simulations suggest that the HQ criterion should be preferred. The AIC is
sometimes slightly better than HQ in small samples, but the probabilities increase
slower than for HQ, in particular when the DGP is normal.

3 The SC is also known as the Bayesian Information Criterion (BIC).
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Table 2. Probabilities of recovering the right density for different information criteria, under dif-
ferent DGPs

DG P = N : DG P = SN : DG P = E P: DG P = SE P:
T SC AI C H Q SC AI C H Q SC AI C H Q SC AI C H Q

100 0.93 0.69 0.83 0.53 0.68 0.64 0.74 0.75 0.80 0.77 0.91 0.87
200 0.96 0.72 0.87 0.81 0.81 0.86 0.94 0.82 0.91 0.96 1.00 0.99
300 0.96 0.69 0.88 0.93 0.83 0.93 0.97 0.83 0.93 1.00 1.00 1.00
500 0.97 0.71 0.88 0.98 0.84 0.94 0.98 0.84 0.95 1.00 1.00 1.00

1000 0.98 0.71 0.89 0.99 0.83 0.95 0.99 0.84 0.94 1.00 1.00 1.00

Simulations (2000 replications) in R.

3.2 GETS density selection

The GETS density selection algorithm that we propose starts with the unrestricted
estimate of a SEP density. Next, two different simplification paths are considered.
The first path consists of first testing the restriction p = 2 and then γ = 1, and the
second path consists of first testing the restriction γ = 1 and then p = 2. Inference
is by means of likelihood ratio (LR) tests, and simplification along a path stops when
a null hypothesis is rejected.

Sometimes, simplification can result in two different terminal models, say, SN
and EP, or SN and N, or EP and N. In such cases the model with the lowest value on
the chosen information criterion is selected. As the sample size T goes to infinity,
this density selection algorithm has some very useful and known properties, namely
that the probabilities of recovering the DGP depends on the significance level α:

p(DG P|N ) → (1 − α)2, p(DG P|E P) → (1 − α),
p(DG P|SN ) → (1 − α), p(DG P|SE P) → 1.

That is, when the DGP is equal to N, then the probability of recovering the DGP
tends to (1 − α)2 as the sample size goes to infinity. For example, for the nominal
sizes 10% and 5% the probability p(DG P|N ) tends to 0.81 and 0.9025, respectively.
If the DGP is SN, then the probability of recovering SN tends to (1 − α), and so on.
The usefulness of these properties is that one can use the significance level α to
“push” the algorithm either towards or away from normality, if one wishes to do so.
For example, the simulations above showed that the SC criterion performs very well
in both small and large sample sizes when the DGP is normal. However, when the
DGP is not normal, then the SC criterion does not always recover the DGP more
often than the other criteria. Hence one may increase the recovering probabilities
when the DGP is not normal (or alternatively when the cost of falsely characterising
the density as non-normal is not large) in a controlled and predictable way by simply
increasing the significance level.

Figure 1 provides a snapshot of how GETS density selection actually works in
practice. The figure contains the probabilities of recovering the DGP with an SC
criterion, and the probabilities of recovering the DGP using GETS density selection
combined with an SC criterion. The first thing to note is that the asymptotic proba-
bilities are (approximately) attained relatively fast: at 100 observations at the earliest
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Fig. 1. Probabilities of recovering the DGP by means of an SC information criterion (solid line),
and by means of GETS density selection combined with an SC criterion using 5% (dashed line)
and 10% (dotted line) significance levels, respectively. All simulations (2000 replications) in R

and at about 300 to 500 observations at the latest. Of course, this convergence will
be slower when the DGPs differ less. The second thing to note is that there are no-
table gains to be made in small samples. For example, when the DGP is equal to
SEP then there is a gain of about 13 percentage points when the sample size is 100
observations. In finance, where one would expect departure from normality, this can
be a very useful gain. Indeed, the gain might even be larger when the departure from
normality is not as large as in the simulations. All in all, then, the simulations suggest
the methods can be very useful in practice.
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Marco Marozzi

Abstract. Financial analysts, managers, lenders and academic researchers widely
use financial ratios. For example, financial analysts use them to predict how well the
securities of one company will perform relative to that of another one, and lenders
use them to predict if the borrower will be able to sustain interests and pay the princi-
pal. Ratios measuring profitability, activity, efficiency and liquidity are considered.
Since most financial ratios by themselves may not be highly meaningful, they should
be viewed as indicators, with some of them combined to get a more complete pic-
ture of the company. In the literature, this question has been addressed by using
composite financial indicators, and a simple method for reducing the dimension of
a composite indicator has been proposed. In this paper we analyze the liquidity is-
sue following a sectorial perspective. Financial ratio industry averages may differ
markedly and therefore it is of interest to explicitly take into account company sec-
tor when computing a composite financial indicator. The results indicate that both
the short-term and the long-term liquidity point of view are important in ranking the
companies irrespective of the sector they belong to. However, it is suggested to group
the companies according to the industry sector they belong to before applying the
dimension reduction procedure because the importance of the ratios differ between
sector and sector. The comparison with principal component analysis is addressed.

Key words: Composite indicators, liquidity ratios, industry sector, ranking, dimen-
sion reduction

1 Introduction

Financial analysts, managers, lenders and academic researchers widely use financial
ratios. Financial analysts use them to predict how well the securities of one com-
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pany will perform relative to that of another one. Managers use them to know what
divisions have performed well or to know when existing capacity will be exceeded.
Lenders use them to predict if the borrower will be able to sustain interests and pay
the principal. Common applications of financial ratios in academic researches in-
clude distress and failure prediction studies, trend analysis studies of individual com-
pany performance and cross-sectional studies comparing individual company ratios
versus industry average ratios [11]. Financial ratios are computed from company
annual reports and required disclosures, in particular for publicly traded companies.
Ratios measuring profitability, activity, efficiency and liquidity are considered [1].
Most financial ratios by themselves may not be highly meaningful. They should be
viewed as indicators, with some of them combined to get a more complete picture of
the company. [9] showed how to pursue this aim by computing a composite financial
indicator, and proposed a simple method for reducing the dimension of a composite
indicator. The liquidity issue has been considered. In this paper we extend [9] results
by following a sectorial perspective. In fact, a limitation of [9] was to not consider
the industry sector companies belong to. Financial ratio industry averages may dif-
fer markedly and therefore it is of interest to explicitly take into account company
sector when computing a composite financial indicator.

The paper is organized as follows. In Section 2 we review the composite indica-
tor dimension reduction procedure due to [9]. In Section 3 we discuss how to rank
different industry sector companies at the basis of the liquidity issue. In Section 4
we present the results of a practical application to publicly traded companies belong-
ing to the consumer non cyclical, industrial, consumer cyclical and communication
sectors. The comparison with principal component analysis is addressed. Section 5
concludes the paper with some remarks and cautions.

2 Composite indicator dimension reduction

Let Xik denote the k-th financial ratio, k = 1, . . . , K , for the i-th company, i =
1, . . . , N . We assume that the financial ratios follow, possibly after proper transfor-
mations and without loss of generality, the larger the better rule, so that for each fi-
nancial ratio a partial ordering criterion is well established. The corresponding com-
posite indicator is defined as

Mi = f (T (Xi1), . . . , T (Xi K )), (1)

for the i-th company, where T (.) is a function which makes the original data com-
parable and f (.) is a link function which combines T (X1), . . . , T (X K ). See [4] for
a review on composite indicators and [10] for a set of recommendations on how to
design, develop and disseminate a composite indicator. The sum is generally used
as the link function [4]. It should be noted that M assigns equal weights to each par-
tial aspect. Even if equal weights may not be optimal, they are usually adequate and
various authors have noted that in practice different weights make little impact on
the final result [4].
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Later on we analyze a data set about publicly traded companies, in particular we
consider four different liquidity ratios. For the i-th company we denote these ratios
by Xi1, Xi2, Xi3, Xi4. Note that T (Xi1), T (Xi2), T (Xi3), T (Xi4) are partial finan-
cial indicators since they correspond to a unique financial ratio: T (Xik) > T (X jk)
lets us to conclude that company i is better than company j as far as the financial
ratio Xk is concerned (since of course T (Xik) > T (X jk) ⇔ Xik > X jk). Whereas
Mi is a composite financial indicator since it considers simultaneously all the finan-
cial ratios. M1, . . . , MN allow us to rank the companies since Mi > M j means that
company i is better than company j as regard all the financial ratios together. There
is reason to believe that financial ratios are correlated. Therefore it is very often
of interest to reduce the dimension of a composite indicator by selecting among its
components the most important ones. To this end, [9] presented a simple method to
reduce the dimension of a composite indicator, with the following steps.

• STEP 1. The vector RK (Xk, k ∈ {1, . . . , K }) = RK of unit ranks obtained
following the composite indicator Mi = ∑K

k=1 T (Xik), is computed and com-
pared to the rank vectors h1 RK−1(Xk, k ∈ {1, . . . , K } − {h1}) =h1 RK−1,
h1 = 1, . . . , K , obtained following the composite indicator after leaving out the
partial aspect Xh1 . The aspect Xh1 such that the Spearman correlation coefficient

s(RK ,h1 RK−1) = 1 − 6
∑N

i=1(RK −h1 RK−1)
2

N (N 2−1)
is maximum is left out;

• STEP 2. h1 RK−1 is compared to h2,h1 RK−2(Xk, k ∈ {1, . . . , K } −
{h2, h1}) =h2,h1 RK−2 for h2 = 1, . . . , K and h2 �= h1.
The partial aspect such that s(h1 RK−1,h2,h1 RK−2) is maximum is left out;

• STEPS 3, 4, . . . The procedure continues by leaving out one more partial aspect,
and so on;

• STOPPING RULE. Stop the procedure as soon as s drops below a value to be
fixed a priori.

[9] applied this method to study the liquidity issue of a set of publicly traded com-
panies and made comparisons with principal component analysis. From the practical
point of view, it has been shown that this method is more natural since imitates what
one implicitly does in practice by focusing on the most important aspects, discarding
the others; and that it is always readily comprehended, while with principal compo-
nent or factor analysis it may happen that some components or factors are difficult to
be actually interpreted. For example, [3] considered various studies applying factor
analysis to quality of life of cancer patients and noted that the analyzes yielded some
factors with strange combinations of items because the items did not make clinical
sense as interrelated symptoms. From the theoretical point of view, it has been shown
that a unique and very mild assumption should be fulfilled: that partial aspects follow
the larger the better rule. Further hypotheses, see [12], generally requested by other
dimension reduction methods, such as principal component analysis or factor anal-
ysis, are not necessary. Moreover, it is important to emphasize that, if one considers
particular transformations T (.), the composite indicator simplifying procedure can
be applied also to ordered categorical variables or to mixed ones, partly quantitative
and partly ordered categorical. Finally, note that this method may be used also in
other contexts like customer satisfaction measurement [8].
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3 To rank different sector companies through liquidity

In this paper, we are interested in company liquidity which is one of the most impor-
tant aspect in company valuation [2]. To address the liquidity issue of a company,
two main aspects should be taken into account: the short-term liquidity and the long-
term liquidity. Short-term liquidity is the ability of a company to meet its short-term
financial commitments (taxes, accounts payable, bank overdraft PAYE and any other
amount of money that must be paid within the next year) using its current assets (cash
and cash equivalents, accounts receivable, inventory, prepaid expenses and other as-
sets that may be converted into cash in less than one year). Short-term liquidity ratios
measure the relationship between current liabilities and current assets. The key short-
term liquidity ratios are the current ratio X1 = total current assets

total current liabili ties and the quick

ratio X2 = total current assets − inventory
total current liabili ties . The current ratio assumes that all current

assets can be liquidated immediately to meet all current liabilities. The quick ratio
considers the most liquid assets by subtracting the inventory from current assets.
The rationale is that the inventory is not always readily convertible into cash at full
value. It is important to note that the usage of ratios in financial statement analysis
begun with the advent of the current ratio in the last few years of the 1890’s [5].

Long-term liquidity is concerned with the financial risk the company has taken on.
As long-term liquidity ratios we consider the following coverage ratios: the interest
coverage ratio X3 = earnings be f ore interest and taxes

interest expenses and the cash flow to interest

expense ratio X4 = cash f low
interest expenses , which compare respectively the EBIT and the

cash flow available to meet the interest obligation with the interest obligation itself.
From the lender perspective, the higher the coverage ratios, the safer the company.

To measure a company ability to pay off both its short-term and long-term debt
obligations, one may sequentially examine each ratio addressing the problem from
a partial point of view. Alternatively, one may analyze together different combina-
tions of ratios in order to simultaneously take into account different partial aspects
with the aim at getting a more complete picture of company liquidity. In both situ-
ations, it may be important to compare businesses within the same industry sector.
In fact, it is quite difficult to indicate a desirable value for some financial ratios, and
in particular without considering the industry sector of the company. Think about
the current and the quick ratios. They differ because the first includes the inventory
and the second does not. Technological advances in inventory management and lo-
gistics have reduced the amount of the inventory for many companies. This does
not occur similarly for all the industry sectors. Moreover, the cash conversion cycle
may differ markedly from sector to sector. A company belonging to a sector with
typically a long cash conversion cycle has generally more need for liquid assets than
a company belonging to a sector with short conversion cycle. The first company
should have greater short-term liquidity ratios than the second company because it
takes longer to convert inventory and receivables into cash, but this does not auto-
matically mean that the first company is more short-term liquid than the second one.
Therefore ranking the first company higher than the second one, as far as short-term
liquidity is concerned, may be misleading if you do not consider the industry sector
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they belong to. There are not liquidity ratio standard values which exceeds industry
boundaries and are applicable to all companies. Typical values for the liquidity ratios
vary by industry, for example cyclical companies may maintain higher short-term
liquidity ratios to remain solvent during downturns. For this reason, it is preferable
to group companies according to the industry sector they belong to before computing
the composite indicator of liquidity.

4 Results of the application

Liquidity data of 338 publicly traded companies have been analyzed. More precisely,
the four liquidity ratios listed in the previous section have been considered: the cur-
rent ratio X1, the quick ratio X2, the interest coverage ratio X3 and the cash flow to
interest expense ratio X4. The source of the data is a financial firm who asked not to
disclose its name nor the names of the companies to which financial data refer. The
companies are listed on European equity markets and compose an equity index used
by the financial firm who gave us the data. Companies have been classified by the
financial firm in different industry sectors mainly at the basis of the similarities of
the production process and of the primary economic activity. We analyze the data
through the composite indicator and the dimension reduction procedure proposed by
[9]. In our study we consider the four largest industry sectors in number:

• the consumer non cyclical one which contains agriculture, beverages, biotech-
nology, commercial services, cosmetics/personal care, food, healthcare products,
household products/wares, and pharmaceuticals companies (88 companies);

• the industrial one which contains aerospace/defense, building materials, electri-
cal components and equipments, electronics, engineering and construction, hand/
machine tools, machinery-construction and mining, machinery-diversified, metal
fabricate/hardware, miscellaneous manufacturer, packaging and containers, and
transportation companies (60 companies);

• the consumer cyclical one which contains airlines, apparel, auto manufacturers,
auto parts and equipment, distribution/wholesale, entertainment, food service,
home builders, home furnishings, leisure time, and lodging companies (54 com-
panies);

• the communication one which contains advertising, internet, media, and telecom-
munications companies (42 companies).

The other industry sectors are: basic materials, utilities, financial, technology,
energy and diversified. Our aim is to study if the composite indicator dimension
reduction scheme differs according to the industry sector. Fist of all we review the
results obtained by [9] and regarding all the companies without considering their
industry sector. For each company i the following composite indicator is computed

Mi =
4∑

k=1

Xik − M E D(Xk)

M AD(Xk)
, (2)
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where M E D(Xk) and M AD(Xk) are respectively the median and the median abso-
lute deviation of Xk . Mi is a composite indicator of liquidity for company i which
takes into account simultaneously all the partial liquidity ratios X1, X2, X3, X4. [9]
adopted this formulation because the median absolute deviation is the most useful
ancillary estimate of scale according to [6] (p. 107). By applying the dimension re-
duction procedure [9] excluded in this order: the quick ratio X2, the cash flow to
interest expense ratio X4 and the current ratio X1. These results suggest to address
the liquidity issue of the companies by focusing in particular on the interest coverage
ratio X3 since the ranking of the companies according to X1, X2, X3, X4 is similar
to the ranking based on X3. The dimension reduction method drops step by step the
relatively unimportant data. These dropped financial data, however, might have im-
portant information in comparing a certain set of companies. For example, the quick
ratio has been excluded in the first step of the procedure, and then the inventory has
not been taken into account primarily to address company liquidity; but the impor-
tance of the inventory might differ from industry sector to industry sector. Therefore
a possible drawback of the results found by [9] is to not consider the industry sector
of the companies and it might preferable to group the companies according to the
industry sector they belong to before applying the dimension reduction procedure.
This has been done here for the consumer non cyclical (NCYC), industrial (IND),
consumer cyclical (CYC) and the communication (COMM) sectors. Table 1 displays
the results.

First, it is interesting to note that the simplification scheme of CYC is very sim-
ilar to that of the COMM which in turn is the same of that of all the companies
considered together. Second, it is interesting to note that the first financial ratio that
is excluded is always a short-term liquidity ratio: the current ratio for NCYC and
IND, and the quick ratio for CYC and COMM. Third, it is interesting to note that
the second financial ratio that is excluded is always a long term liquidity ratio: the
interest coverage ratio for NCYC and the cash flow to interest expense ratio for IND,
CYC and COMM. Fourth, note that by setting s = 0.9 as the cut-off point the sim-
plification method suggests a two variable solution for all the sectors which always
includes both a short-term liquidity ratio and a long-term liquidity ratio.

The short-term liquidity ratio that survived the exclusion process is the quick
ratio for NCYC and IND, and the current ratio for CYC and COMM. The long-term
liquidity ratio that survived the analysis is the cash flow to interest expense ratio for
NCYC and the EBIT to interest expense ratio for IND, CYC and COMM.

PCA, which is the most familiar method for dimension reduction, has been ap-
plied to the data for the purpose of comparison. Following the Kaiser criterion of
retaining only the PCs with eigenvalues greater than one, PCA suggests that there
exist two principal components for the consumer non cyclical and industrial sectors,
and one for the consumer cyclical and communication sectors. For simplicity we
focus on the first PC. For all the sectors the loadings of the first PC are positive and
therefore the first PC is a sort of weighted mean of the liquidity ratios. The load-
ings are .489, .492, .505, .513 (NCYC), .398, .416, .592, .565 (IND), .374, .475,
.563, .563 (CYC), .541, .544, .368, .525 (COMM). As it can be seen, the loadings
differ from sector to sector consistently with our results and in favor of the secto-
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Table 1. Correlation coefficients concerning the sectorial application of the dimension reduction
procedure

Consumer non cyclical Industrial

Step 1 4 R3 3 R3 2 R3 1 R3 Step 1 4 R3 3 R3 2 R3 1 R3

R4 0.955 0.962 0.971 0.980 R4 0.957 0.935 0.956 0.962

Step 2 4,1 R2 3,1 R2 2,1 R2 Step 2 4,1 R2 3,1 R2 2,1 R2

1 R3 0.946 0.956 0.905 1 R3 0.946 0.927 0.896

Step 3 4,3,1 R1 2,3,1 R1 Step 3 3,4,1 R1 2,4,1 R1

3,1 R2 0.763 0.779 4,1 R2 0.644 0.844

Consumer cyclical Communication

Step 1 4 R3 3 R3 2 R3 1 R3 Step 1 4 R3 3 R3 2 R3 1 R3

R4 0.959 0.953 0.981 0.893 R4 0.933 0.626 0.960 0.946

Step 2 4,2 R2 3,2 R2 1,2 R2 Step 2 4,2 R2 3,2 R2 1,2 R2

2 R3 0.971 0.966 0.905 2 R3 0.933 0.628 0.811

Step 3 3,4,2 R1 1,4,2 R1 Step 3 3,4,2 R1 1,4,2 R1

4,2 R2 0.886 0.855 4,2 R2 0.436 0.751

rial point of view in analyzing the data. Bartlett’s test is always highly significant
with p-values less than .0001. The K M O statistic is .493 (NCYC), .507 (IND),
.607 (CYC) and .742 (COMM). Except for NCYC with a value slightly less than .5,
the K M O statistic shows acceptable values. At the basis of the Bartlett’s test and
K M O statistic you conclude that PCA is appropriate to analyze the data sets. It is
important to emphasize that the correlation between the ranking based on our solu-
tion and on the first PC is .896 (NCYC), .922 (IND), .748 (CYC) and .626 (COMM).
Therefore PCA results are consistent with our method results. However, we suggest
our method rather than PCA because it is simpler and require milder assumptions
as discussed at the end of section 2. Moreover, we underline that, if one considers
particular transformations T (.), the composite indicator simplifying procedure can
be applied also to ordered categorical variables or to mixed ones, partly quantitative
and partly ordered categorical.

5 Conclusions

The results of the application indicate that both the short-term and the long-term
liquidity point of view are important in ranking the companies irrespective of the
sector they belong to. This is not surprising because all the companies have to man-
age both short-term and long-term obligations irrespective of the sector they belong
to. However, it is suggested to group the companies according to the industry sec-
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tor they belong to before applying the dimension reduction procedure because the
importance of the ratios differs between sector and sector. Between the sectors, fol-
lowing the short-term liquidity point of view, it is interesting to note that the quick
ratio is more important than the current ratio in ranking consumer non cyclical and
industrial companies; whereas the contrary happens in ranking consumer cyclical
and communication companies. Following the long-term liquidity point of view, the
EBIT to interest expense ratio is more important than the cash flow to interest ex-
pense ratio in ranking industrial, consumer cyclical and communication companies;
whereas the contrary happens in ranking non cyclical companies. This could be a
result that speaks in favor of the EBIT against the cash flow as the key aspect in
company valuation in accordance with recent literature [7].
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TDynamic model of pension savings management
with stochastic interest rates and stock returns

Igor Melicherčı́k and Daniel Ševčovič

Abstract. In this paper we recall and summarize results on a dynamic stochastic ac-
cumulation model for determining optimal decision between stock and bond invest-
ments during accumulation of pension savings. We assume stock prices to be driven
by a geometric Brownian motion whereas interest rates are modeled by means of
a one factor interest rate model. It turns out that the optimal decision representing
stock to bond proportion is a function of the duration of saving, the level of savings
and the short rate. We furthermore summarize the results of testing the model on the
fully funded second pillar of the Slovak pension system.

Key words: Dynamic stochastic programming, utility function, Bellman equation

1 Introduction

The ongoing demographic crisis has motivated pension reforms across the world.
One can observe a shift from public pay-as-you-go systems towards funded defined-
contribution (DC) ones. The DC system is considered to be more resistant to the
demographic change. On the other hand, the risk of asset returns during the accumu-
lation phase is charged to members. A natural question is whether a future pensioner
should invest savings to assets with low risk and low returns (bonds with low du-
ration and money market instruments) or to assets with higher risk associated with
higher expected returns (stocks). Conventional wisdom is that stock returns should
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outperform bond ones in the long term run. Consequently, young people should in-
vest their savings to stocks. On the other hand, being close to the retirement age, it
is too risky to invest the savings to stocks because of the high risk of fall in the asset
value without a sufficient time to recovery. In [9, 11], it was showed that when one
considers a model with one-shot investment with maximizing the expected CRRA
utility function of the final wealth, the stocks to bonds proportion is independent of
the time to maturity and depends only on the savers risk aversion. However, if one
considers a series of defined contributions throughout a lifespan a fall in the asset
value early in life does not affect value of accumulated future contributions, while if
it occurs close to retirement it affects all past accumulated contributions and returns
on them, i.e. most of one’s pension wealth. Therefore, in the case of successive con-
tributions the investment decision should depend on the time to maturity of saving.
A similar argument has been used in [2]. They concluded that pension saving be-
comes more conservative as retirement approaches. In [3] the authors investigated
the stochastic dynamic accumulation model with stochastic wages and its applica-
tion to optimal asset allocation for defined contribution pension plans. The dynamic
accumulation with stochastic interest rates (following CIR process) with no contri-
butions has been studied by [4] in which the authors were able to derive explicit
formulae for optimal porfolio decisions. A model for a defined-contribution pension
fund in continuous time with exponential utility was investigated in [1, 7]. In [5] a
simple dynamic stochastic model of pension fund management with regular yearly
contributions has been developed. Future pensioner can choose from finitely many
funds with different risk profiles. The bond investments were supposed to have in-
dependent in time and normally distributed returns. In the present paper we improve
the simplified model proposed in [5]. We describe bond returns by means of one
factor short rate model. Furthermore, instead of choosing from a finite number of
funds, the decision variable is the weight of the portfolio invested to stocks.

2 The two factor dynamic stochastic accumulation model

Suppose that a future pensioner deposits once a year a τ -part of his/her yearly salary
wt to a pension fund with a δ-part of assets in stocks and a (1 − δ)-part of assets in
bonds where δ ∈ [0, 1]. Denote by γt , t = 1, 2, . . . T, the accumulated sum at time t
where T is the expected retirement time. Then the budget-constraint equations read
as follows:

γt+1 = δγt exp(Rs(t, t + 1)) + (1 − δ)γt exp(Rb(t, t + 1)) + wt+1τ, (1)

for t = 1, 2, . . . , T −1, where γ1 = w1τ . Rs(t, t +1) and Rb(t, t +1) are the annual
returns on stocks and bonds in the time interval [t, t +1). When retiring, a pensioner
will strive to maintain his/her living standards in the level of the last salary. From this
point of view, the saved sum γT at the time of retirement T is not precisely what a
future pensioner cares about. For a given life expectancy, the ratio of the cumulative
sum γT and the yearly salary wT is of a practical importance. Using the quantity



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TDynamic model of pension savings management 297

dt = γt/wt one can reformulate the budget-constraint equation (1) as follows:

dt+1 = dt
δ exp(Rs(t, t + 1)) + (1 − δ) exp(Rb(t, t + 1))

1 + βt
+ τ, (2)

for t = 1, 2, . . . , T − 1, where d1 = τ and βt denotes the wage growth: wt+1 =
wt (1 + βt ). We shall assume that the term structure of the wage growth βt , t =
1, . . . , T, is known and can be externally estimated from a macroeconometric model.
Notice that for a future pensioner it might be also reasonable to express her post
retirement income as a percentage of the yearly salary γT . For this purpose assump-
tions concerning the annuization rate should be introduced. Moreover, in many coun-
tries (including Slovakia, where the model is tested) the annuitization is not com-
pulsory immediately after reaching the retirement age. Therefore, the problem of
optimal annuization time arises. This problem, however, can be treated separately
and this is why we do not discuss this issue in the present paper. These problems are
investigated by many authors. We only refer to [10] among others.

The term structure development is driven by one factor short rate rate model:

drt = μ(rt , t) dt + ω(rt , t)dZt , (3)

where rt stands for a short rate and Zt is the Wiener process. Suppose that the bond
part of the fund consists of 1-year zero coupon bonds. If Rb(t, t + 1) is the return
on a one year maturing zero coupon bond at time t then it can be expressed as a
function of the short rate rt , Rb(t, t + 1) = R1(rt , t). Using a discretization of the
short rate process (3) we obtain rt+1 = g(rt ,%) where % ∼ N (0, 1) is a normally
distributed random variable. We shall assume that the stock prices St are driven by
the geometric Brownian motion. The annual stock return Rs(t, t +1) = ln(St+1/St )
can be therefore expressed as: Rs(t, t + 1) = μs + σ s � where μs and σ s are
the mean value and volatility of annual stock returns in the time interval [t, t + 1),
� ∼ N (0, 1) is a normally distributed random variable. The random variables %,�
are assumed to be correlated with correlation # = E(%�) ∈ (−1, 1). Based on
historical data, the correlation coefficient # has typically negative values.

Suppose that each year the saver has the possibility to choose a level of stocks
included in the portfolio δt (It ), where It denotes the information set consisting of
the history of bond and stock returns Rb(t ′, t ′ +1), Rs(t ′, t ′ +1), and wage growths
βt ′ , t ′ = 1, 2, . . . , t − 1. We suppose that the forecasts of the wage growths βt ,
t = 1, 2, . . . , T − 1 are deterministic, the stock returns Rs(t, t + 1) are assumed
to be random, independent for different times t = 1, 2, . . . , T − 1, and the interest
rates are driven by the Markov process (3). Then the only relevant information are
the quantities dt and the short rate rt . Hence δt (It ) ≡ δt (dt , rt ). One can formulate
a problem of dynamic stochastic programming:

max
δ
E(U (dT )), (4)
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subject to the following recurrent budget constraints:

dt+1 = Ft (dt , rt , δt (dt , rt ),�) , t = 1, 2, . . . , T − 1, where d1 = τ, (5)

Ft (d, r, δ, y) = d
δ exp[μs

t + σ s
t y] + (1 − δ) exp[R1(r, t)]

1 + βt
+ τ (6)

and the short rate process is driven by a discretization of (3):

rt+1 = g(rt ,%) , t = 1, 2, . . . , T − 1 , (7)

with r1 = rini t . In particular, a general form of the AR(1) process (7) includes
various one-factor interest rate models like e.g. the Vasicek model or Cox-Ingersoll-
Ross model (CIR). In our calculations the term structure is driven by the one factor
CIR model, where equation (3) has the form

drt = κ(θ − rt ) dt + σ b |rt | 1
2 dZt . (8)

Here Zt stands for the Wiener process, θ > 0 is the long term interest rate, κ > 0
is the rate of reversion and σ b > 0 is the volatility of the process. In this case

g(r, x) = θ + e−κ (r − θ) + σ b|r | 1
2 e−κ

(
(e2κ − 1)/2κ

) 1
2

x (9)

and R1(r, t) is an affine function of the short rate r . In the dynamic stochastic op-
timization problem (4) the maximum is taken over all non-anticipative strategies
δ = δt (dt , rt ). We assume the stock part of the portfolio is bounded by a given upper
barrier function �t : 0 ≤ δt (dt , rt ) ≤ �t . The function �t : {1, . . . , T −1} �→ [0, 1]
is subject to governmental regulations. In our modeling we shall use the constant rel-
ative risk aversion (CRRA) utility function U (d) = −d1−a, d > 0 where a > 1 is
the constant coefficient of relative risk aversion. Let us denote by Vt (d, r) saver’s
intermediate utility function at time t defined as:

Vt (d, r) = max
0≤δ≤�t

E(U (dT )|dt = d, rt = r) . (10)

Then, by using the law of iterated expectations we obtain the Bellman equation

Vt (d, r) = max
0≤δ≤�t

E[Vt+1(Ft (d, r, δ,�), g(r,%))], (11)

for every d, r > 0 and t = 1, 2, . . . , T − 1. Using VT (d, r) = U (d) the optimal
strategy can be calculated backwards. One can prove (see [8]) that there exists the
unique argument of the maximum in (11) δ̂t = δ̂t (dt , rt ). An efficient numerical
procedure how to solve the recurrent Bellman equation (11) and determine the value
δ̂t (d, r) has been also discussed in [8].

Remark 1. At the end of this section, we shall discuss the dependence of the level
of savings dt and the optimal stock to bond ratio δ̂t with respect to the contribu-
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tion rate τ > 0. Let us denote by Vt (d, r ; τ ) and δ̂t (d, r ; τ ) the value function
and the optimal stock to bond ratio corresponding to the contribution rate τ >
0. One can prove the identity: Vt (λd, r ; λτ) = λ1−a Vt (d, r ; τ ), for any con-
stant λ > 0, provided that U (d) = −d1−a . The statement is obvious for t =
T where VT (λd, r ; λτ) = U (λd) = λ1−a VT (d, r ; τ ). As Ft (λd, r, δ, y ; λτ) =
λFt (d, r, δ, y ; τ ) the statement easily follows from the backward mathematical in-
duction for t = T, T − 1, . . . , 2, 1 with the optimal stock to bond ratio satisfying
the relationship: δ̂t (λd, r ; λτ) = δ̂t (d, r ; τ ). As a consequence, by a forward math-
ematical induction, one can prove that the stochastic variable dt defined recursively
dt+1 = Ft (dt , rt , δ̂t (dt , rt ; τ ),� ; τ ) depends linearly on the contribution rate τ and
corresponding decision δ̂t is invariant with respect to τ .

3 Computational results

Since January 2005, pensions in Slovakia are operated by a three-pillar system: the
mandatory non-funded 1st pay-as-you-go pillar, the mandatory funded 2nd pillar
and the voluntary funded 3rd pillar. The old-age contribution rates were set at 9%
for 1st and 2nd pillars, i.e. τ = 0.09. The savings in the second pillar are managed
by pension asset administrators. Each pension administrator manages three funds:
Growth Fund, Balanced Fund and Conservative fund, each of them with different
limits for investment (see Table 1). At the same time instant savers may hold assets
in one fund only. In the last 15 years preceding retirement, a saver may not hold
assets in the Growth Fund and in the last 7 years all assets must be deposited in the
Conservative Fund.

Our model is applied to the 2nd pillar. According to Slovak legislature the per-
centage of salary transferred each year to a pension fund is 9% (τ = 0.09). We have
assumed the period T = 40 of saving. The forecast for the expected wage growth βt

in Slovakia has been taken from [6]. The term structure {βt , t = 1, . . . , T } from 2007
to 2048 is shown in Table 2. Stocks have been represented by the S&P500 Index.
The stock returns were assumed to be normally distributed. As for the calibration,

Table 1. Governmental limits for investment for the pension funds

Fund type Stocks Bonds and money market instruments

Growth Fund up to 80% at least 20%
Balanced Fund up to 50% at least 50%
Conservative Fund no stocks 100%

Table 2. Expected wage growths from 2007 (t = 1) to 2048 (t = 40) in Slovakia. Econometric
estimate from [6]

1 ≤ t ≤ 4 5 ≤ t ≤ 9 10 ≤ t ≤ 14 15 ≤ t ≤ 19 20 ≤ t ≤ 24 25 ≤ t ≤ 29 30 ≤ t ≤ 34 35 ≤ t ≤ 40

βt 7% 7.1% 6.4% 5.9% 5.6% 5.2% 4.9% 4.5%
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Fig. 1. 3D and contour plots of the function δ̂t (d, r) for r = 4% with no limitations. Source: [8]

we chose the same time period (Jan 1996-June 2002) as in [5] with average return
μs = 0.1028 and standard deviation σ s = 0.169. The model parameters describing
the Slovakian term structure of the zero coupon bonds have been adopted from the
paper [12]. We assumed the long term interest rate θ = 0.029, σ b = 0.15, κ = 1
and λ = 0. The correlation between stock and bond returns was set to # = −0.1151
(the same as in [5]).

In Fig. 1 we present a typical result of our analysis with the risk aversion coeffi-
cient a = 9 and the time T = 40 years of the pension savings. It contains optimal
decisions (without governmental regulations) δ̂t (d, r) with fixed short rate r = 4%.
One can see that pension saving becomes more conservative as the retirement ap-
proaches. The reason for such a behavior is that more contributions are accumulated
and higher part of the future pension is affected by asset returns. The dependence of
the decision on the level of savings gradually decreases. This is due to the fact that
less amount of forthcoming contributions is expected. In the case of no future con-
tributions, a decision based on a CRRA utility function is independent of the level
of savings (see e.g. Samuelson [11]).

One can see the impact of governmental regulations in Fig. 2 and Table 3. The
mean wealthE(dt ) and standard deviations were calculated using 10 000 simulations
with the risk aversion coefficient a = 9. It is clear that the average wealth achieved

Fig. 2. The average valueE(dt ) for the risk aversion parameter a = 9. No governmental limitations
on the optimal choice of δ̂t (left); governmental limitations imposed (right). The error bars show
the standard deviation of dt . Source: [8]
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Table 3. The average value E(dT ) of dT and its standard deviation σ(dT ) for various risk aversion
parameters a. Source: [8]

a 3 4 5 6 7 8 9 10 11 12

Governmental limitations

E(dT ) 5.264 5.261 5.247 5.203 5.109 4.966 4.791 4.6 4.427 4.275

σ(dT ) 2.033 2.026 1.997 1.928 1.809 1.644 1.462 1.288 1.143 1.023

No limits

E(dT ) 9.871 9.574 9.04 8.402 7.738 7.112 6.561 6.089 5.697 5.375

σ(dT ) 3.075 3.024 3.002 2.912 2.736 2.496 2.233 1.968 1.718 1.505

Cautious investment

E(dT ) 3.818 3.818 3.818 3.818 3.818 3.817 3.814 3.806 3.793 3.774

σ(dT ) 0.848 0.848 0.848 0.848 0.848 0.846 0.839 0.825 0.805 0.78

is higher without governmental regulations. The regulations reduce standard devi-
ations of the wealth achieved. The values of the average final wealth and standard
deviations for various risk aversion parameters a can be found in Table 3. One can
observe that the higher the risk aversion, the lower the expected wealth associated
with lower risk (standard deviation).

Even before the financial crisis, pension asset managers used very conservative
investment strategies. In March 2007 growth funds contained only up to 20% of
stock investments. In this case the difference between the pension funds was in-
significant. In our calculations we have supposed that this proportion will be linearly
increased up to 50% in the next 3 years. After that the proportion of the stock in-
vestment in the balanced fund will be 30%. The development of the average level of
savings and average proportion of the stock investment with standard deviations for
such a cautious investment strategies can be found in Fig. 3 and Table 3. In order to
demonstrate that these strategies are still too conservative, we have considered very
high risk aversion coefficient a = 12. One can observe that even in this case, it is
optimal to stay in the growth and balanced funds as long as possible (according to
governmental regulations). If we compare the cautious strategies with the ones that

Fig. 3. The average values E(dt ) (left) and E(δ̂t ) (right) for the cautious investment strategy. Error
bars depict standard deviations. The risk aversion coefficient a = 12. Source: [8]



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T302 I. Melicherčı́k and D. Ševčovič

undergo just governmental regulations, the level of savings is significantly lower
(see Fig. 2 (right) and Table 3). Therefore, the stock investments should be soon
increased to higher levels.

4 Conclusions

We have applied a dynamic model of saving with incremental contributions to the
funded pillar of the Slovak pension system. Stock prices were assumed to be driven
by the geometric Brownian motion. Interest rates were modeled by one factor short
rate model. The optimal decision strategy is dynamic and depends on the duration
of saving t , the level of savings dt and the short rate rt . In accord with [2] the re-
sults confirmed that saving becomes more conservative close to the retirement time.
This is a consequence of gradual saving. As the retirement approaches, the model
resembles the one with one-shot investment [9, 11] and therefore the decision be-
comes less sensitive to the level of savings. We have used a family of CRRA utility
functions with a parameter representing individual risk preferences. In accord with
intuition, the higher the risk aversion, the lower the expected level of savings as-
sociated with lower standard deviations. Not surprisingly, the strategies respecting
the governmental regulations have lower expected level of savings associated with
lower risk (standard deviation). Cautious strategies of pension asset managers in Slo-
vakia imply that savers stay in the most risky funds as long as possible (respecting
the governmental regulations). Such strategies could lead to insufficient pensions.
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VEGA 1/0381/09 projects.
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TFinancial and demographic risks impact on a
pay-as-you-go pension fund

Roberta Melis and Alessandro Trudda

Abstract. This paper studies the financial sustainability of a pay-as-you-go pension
fund within a stochastic framework. To this aim, a set of risk indicators of the sol-
vency of the fund are also constructed. Financial and demographic risks are analyzed
by investigating and comparing their impact on the evolution of the fund. Numerical
results are approached by means of a simulation methodology, on the Italian pension
funds.

Key words: Pension funds, demographic risk, pay-as-you-go, new entrants

1 Introduction

The aim of this contribution is to investigate the sustainability of private pension
funds which operate according to the pay-as-you-go rule.

From a financial perspective, pension schemes can be classified into pay-as-you-
go (PAYG) and funded systems. In the former, contributions paid by the workers
are used for financing current pensions (in a pure PAYG system, revenues exactly
equal outlays each year), while in the latter there is no intergenerational transfer or
redistribution because contributions are used to purchase assets that finance benefits
upon retirement (see [3]).

For PAYG pension funds, in which the financial sustainability depends on the
balance between the active and retired members, there is a demographic risk source
to take into account: the risk relates to future monetary cash flows necessary to ensure
payments of future pensions. This risk is related to the demographic variable “new
entrants” and to their future contribution capacity.
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The literature on public PAYG pension system has recently attempted to apply
actuarial solvency analysis methodology, used in the insurance field, to the public
PAYG pension system management by introducing an Automatic Balance Mecha-
nism (ABM). The ABM is a set of predetermined measures established by law to be
applied immediately as required by the solvency indicator. Its aim is to restore the
solvency or financial sustainability of PAYG systems, through successive applica-
tions, avoiding in this way the intervention of the Legislator (on this topic see [7]
and [11]). The ABM can then be seen as an adjustment mechanism of the pension
benefits adopted to maintain the soundness of the pension financing. This kind of
mechanism is useful to re-establish the financial equilibrium of a PAYG pension
system without the intervention of the Legislator.

In [1], after highlighting that the sustainability indicator (balance ratio) of the
Swedish pension system requires a steady state hypothesis, a logical mathematical
model to manage a pension system with a structural funded component, valid also
in the case of non-stable population is proposed.

Examples of private PAYG pension funds are provided by those of Italian Pro-
fessional Orders. The Italian Legislation for these funds, which were privatized in
1995, imposes to draw up actuarial balances and risk indicators to monitor the evolu-
tion of the fund in the long run (30–50 years; on this topic see Trudda [8]). Melis and
Trudda [5] analyze the evolution of a “closed” pension fund financed by a PAYG
system, in a discrete time framework, with an application to the pension funds of
Italian Professional Orders.

In this paper we construct stochastic risk indicators to monitor the solvency of the
fund, namely its capability to pay future obligations. We analyze a spurious PAYG
scheme, in a growth phase (more contributors than pensioners) where there is accu-
mulation of partial reserves. The model presented is in a continuous time and it is
characterized by two stochastic components: the global asset return and the intensity
of new entrants into the fund.

The remainder of the paper is organized as follows. In Section 2 the mathematical
framework is illustrated. A risk indicator measure for the solvency of the fund is
presented in Section 3. In Section 4 a numerical application on the pension funds of
the Italian Chartered Accountants is implemented. Section 5 concludes.

2 Mathematical framework

In this section we study the fund evolution, through the dynamical analysis of its
single components.

The evolution of the fund is described by the following differential equation:

d F(t) = [F(t)δ (t) + C(t) − B(t)] dt, (1)

where F(t) is the fund value at time t , δ(t) is the instantaneous rate of return, C(t)
and B(t) are the total contribution function and the benefit function (paid to pen-
sioners) at time t .
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Notation and assumptions

• The age x and time t are treated as continuous variables;
• N (x, t): active population aged x at time t ;
• α is the only entry age into the scheme;
• π is the age of retirement;
• the scheme provides pensions only upon reaching the age of retirement (disability

or survivors’ pensions are not considered);
• we consider the evolution over a long time horizon T (typically 50 up to 100

years).

The total contribution depends on the active population, the wage function and
the contribution rate as follows:

C(t) =
∫ π

α
c (x, t) N (x, t) dx, (2)

with c (x, t) = γ (t)w (x, t), where w(x, t) is the wage function and γ (t) the con-
tribution rate at time t . If incomes are constant over time we set w(x, t) = w(x).

Indicating with A(x, t) and A∗ (x, t) the number of active people aged x at time
t already member of the scheme at time 0 and, respectively, entered into the scheme
after time 0, (2) becomes:

C(t) =
∫ π

α+t
γ (t)w (x, t) A (x, t) dx +

∫ α+t

α
γ (t)w (x, t) A∗ (x, t) dx . (3)

The original active population evolves in this way:

A(x, t) = A(x − t, 0)e− ∫ x
x−t μ(u) du, (4)

where μ(x) is the mortality intensity at age x .
The new entrants, entering into the scheme at the age α evolve as follows:

A∗(α, t + dt) = A∗(α, t) · e
∫ t+dt

t θ(s)ds, (5)

where θ(t) is the intensity of new entrants at time t . Then, once entered into the
scheme they evolve as follows:

A∗(x, t) = A∗(α, t −(x −α)) ·e− ∫ x
α μ(u)du = A∗(α, 0) ·e

∫ t−(x−α)
0 θ(s)ds ·e− ∫ x

α μ(u)du .
(6)

Then N (x, t) =
{

A (x, t) , if t ≤ x − α;
A∗ (x, t) , if t > x − α.
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The total pensions are calculated by:

B (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ ω

π
ρ (x, t) · P (x, t) dx, if 0 ≤ t ≤ π − α;∫ t+α

π
ρ (x, t) · P∗ (x, t) dx +

+
∫ ω

t+α
ρ (x, t) · P (x, t) dx, if π − α < t ≤ ω − α,

(7)

where ρ(x, t) is the average pension for people aged x at time t and ω is the extreme
age. Moreover, P(x, t) denotes the number of pensioners aged x at time t already
members of the fund at time 0, whereas P∗ (x, t) denotes the number of pensioners
aged x at time t entered into the fund after 0. Both groups of pensioners evolve
according to the force of mortality.

When the projection is shorter than the length of the working life if π+t ≤ x ≤ ω
the member was already a pensioner at time 0, if π ≤ x < π + t ≤ ω he was an
active member at time 0:

if 0 ≤ t ≤ π − α:

P(x, t) =

⎧⎪⎨⎪⎩
P (x − t, 0) e− ∫ x

x−t μ(u)du, if π + t ≤ x ≤ ω;
P (π, t − (x − π)) e− ∫ x

π μ(u)du =
= A (x − t, 0) e− ∫ x

x−t μ(u)du, if π ≤ x < π + t ≤ ω;
(8)

when the projection is longer than π − α then if π ≤ α + t ≤ x < π + t ≤ ω the
member was already in the scheme as a contributor, and finally if π ≤ x < α+t ≤ ω
he was not already member of the scheme at time 0, but entered as A∗ (α, t − x + α)
at time t − x + α:

if π − α < t < ω − α:

P (x, t) = P (π, t − (x − π)) e− ∫ x
π μ(u)du =

= A (x − t, 0) e− ∫ x
x−t μ(u)du, if π ≤ α + t ≤ x < π + t ≤ ω

(9)

and

P∗(x, t) = P∗ (π, t − (x − π)) e− ∫ x
π μ(u)du =

= A∗ (α, t − x + α) e− ∫ x
α μ(u)du, if π ≤ x < α + t ≤ ω. (10)

In the applications we use a mixed method, called pro rata mechanism (see [2]
and [8]), where the pension received by those who were already members of the
scheme at time 0 is the sum of two components: the first is calculated according
to a defined benefit rule, the second with a defined contribution rule. For the new
members it is calculated entirely with the defined contribution scheme.
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3 Stochastic evolution

3.1 A model for the force of new entrants

The purpose of the analysis is to study the impact of the evolution of new entrants
in a pension fund financed with PAYG. There are different approaches to analyze
the future flows of new entrants for these types of professions. An approach con-
sists of studying variables related to the demographic evolution of the population,
the development of education and the attractiveness of the profession, through the
analysis of the transition probabilities from states of the population (university stu-
dents, graduates, employment rates, active workers, members of the pension fund)
[8]. This method is useful for short term forecasting (5-10 years). As our aim is to
study the fund dynamics in the long run, here we propose a model for the evolu-
tion of the population based on the analysis of the force of new entrants, that is the
instantaneous rate of new entrants.

Let η (t) (with 0 ≤ t < T ) be a deterministic function. We propose the following
stochastic model for the force of new entrants:

θ (t) = η (t) + X (t) , (11)

where η (t) is the baseline for the process θ and X (t) is described by an Ornstein
Uhlenbeck process, characterized by the following stochastic differential equation:

d X (t) = −βX (t) dt + σdW (t) , (12)

with X (0) = 0, β and σ strictly positive real numbers, and W (t) denoting a Wiener
process.

Substituting (11) into (5) we obtain then:

A∗(α, t + dt) = A∗(α, t) · e
∫ t+dt

t [η(s)+X (s)]ds . (13)

3.2 Global asset return

The following model is used to represent the interest rate dynamics:

δ(t) = δ̂(t) + Y (t), (14)

where δ(t) is the stochastic force of interest, δ̂(t) is the deterministic component of
the force of interest and Y (t) the stochastic component described as follows:

dY (t) = −βr Y (t)dt + σr dWr (t), (15)

Y (0) = 0.

We use the Vasicek model ([10], see also Orlando-Trudda [6]) to describe the
return on assets of the fund. The Vasicek model is suitable to represent the global
return on a risky asset portfolio, that can reach also negative values as there can be
losses of capital. The choice of the process (14) is due to the fact that the analyzed
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funds are characterized by prudential portfolios composed with low-risk assets (the
heritage is in large part composed of real estate and liquidity and only in limited part
of stock funds); subsequently portfolio’s returns show low volatility around their
historical trend.

4 Solvency indicators

In a PAYG pension scheme, where the current pensions are financed through the
current contributions, it is essential for the financial sustainability of the system that
there is a balance between active and retired people. We propose to employ the ratio
between the contributions and the pensions to monitor the solvency of the fund:

C Pr(t) = C(t)

B(t)
. (16)

This index could be seen as an indicator of the fund’s liquidity. If the ratio is below
1, the fund is in a situation of financial instability and it must be monitored properly.

Another index to monitor the solvency of the fund is the funding ratio, i.e. the
ratio between the assets and the present net value of future obligations (see [9]),
which can be used to control, together with C Pr index, those systems in which the
demographic ratio is not stable and there is a partial accumulation of reserves.

The Italian Legislation proposes the ratio of the heritage (fund value) to the cur-
rent expenditure for pensions as indicator of the financial sustainability of the retire-
ment funds of the Professional Orders analyzed in the applications. This ratio must
be not less than 5. As highlighted by [5] this empiric index is not a good indicator
for the solvency of the fund.

5 A numerical application

In this section we consider a numerical application in order to illustrate the dynamic
evolution, using data provided by Cassa Nazionale Previdenza e Assistenza Dottori
Commercialisti CNPADC, the pension fund of Italian Chartered Accountants. Data
are available from 1976 to 2006.

The following assumptions are adopted:

• the starting population is the actual population of CNPADC pension fund on Jan-
uary the 1st 2006;

• evolution of the population based on IPS55 male and female mortality tables1;
• for new entrants fixed entry age α = 30, retirement age π = 65;
• for the initial population real age of ingress and contributory seniority is consid-

ered;
• the initial value of the fund is that resulting from the 2005 balance sheet;

1 IPS55 are projected life tables for Italian males and females, cohort 1955.
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• the inflation rate is fixed at 2%;
• a subjective contribution rate is equal to 10.7% of annual professional income

and an integrative contribution rate is equal to 2% of the total amount of annual
sales 2;

• the transformation coefficients3 ex lege 335/1995 have been employed;
• professional incomes and annual sales are appreciated at the rate of inflation;
• benefits are calculated with the mixed method;
• administrative costs are considered resulting from the 2005 balance sheet, appre-

ciated at 3% annual rate.

By means of Monte Carlo simulations (10000 simulations) the probabilistic struc-
ture of the fund has been estimated. Fig. 1 (on the left side) shows the evolution of
the fund. The continuous line represents the expected value of the fund, while the
dotted line represents the expected value of a corresponding fund assumed to be
closed to new entrants. In the case of absence of new entrants the fund goes to zero
very rapidly.

In Fig. 1 (on the right side) the cV a R at 95% (dotted line) and the expected value
(continuous line) are represented. Observing the C Pr index we see its particular
shape, due to the demographic structure of the population. The CNPADC is a “young
retirement fund”, meaning that there is a high component of young members: the
main age class is represented by the 35-45 years category. The chart highlights that
the expected value of the C Pr index is higher than 1 only until 2036, after decreasing
and becoming stable around the value of 0.7. But observing the cV a R we can see
that this index is below 1 already around 2030, and reaches values close to 0 (0.1).
This confirms that the fund is exposed to the default risk. In fact, if the C Pr index is
stable below 1, then the fund is progressively reducing the accumulated resources.
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Fig. 1. On the left: Evolution of the fund. On the right: CPr index: CVaR 95% and expected value

2 Pension funds of Italian Professional Orders are fed by two types of contributions: the first, called
subjective, is calculated applying to the professional annual income a contribution rate which varies
electively between 10% and 17%, with the obligation to pay a minimum annual contribution. In
2005 the average rate was 10.71%. The second type of contribution, called integrative, is calculated
applying to the total amount of professional annual sales, subjected to VAT, a rate of 2%.
3 The transformation coefficient is the annuitization coefficient used for the conversion into annuity
of the notional contribution amount accumulated by each worker. For an exhaustive explanation of
the argument we refer to [4].
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Fig. 2. Fund value and C Pr index

Figure 2 shows the expected value of the fund and C Pr index. As can be ob-
served, the fund begins to decrease 4–5 years after the C Pr index becomes < 1.
This is because returns on assets have to cover the difference B(t) − C(t).

6 Conclusions

In this paper we have proposed a stochastic model for the “force of new entrants”
in a PAYG pension fund. We have studied the financial sustainability of the fund
through the application of risk indicators to monitor the solvency of the fund.

The analysis highlights the importance of studying risk indicators that take into
account the demographic variable “new entrants”. The numerical application demon-
strates that the analyzed fund is exposed to the risk of default due to changes in the
ratio contributions-pensions. As a result, the demographic variable “new entrants”
has a strong influence on the future dynamics of the fund. The risk indicators con-
structed in this way, respond in advance to the demographic crisis.

Further research will be add other risk measures for the fund and introduce sto-
chastic mortality.
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TExtracting implied dividends from options
prices: Some applications to the Italian
derivatives market

Martina Nardon and Paolo Pianca

Abstract. This contribution deals with options on assets which pay discrete divi-
dends. We analyze some methodologies to extract information on dividends from
observable option prices. Implied dividends can be computed using a modified ver-
sion of the well known put-call parity relationship. This technique is straightforward,
nevertheless, its use is limited to European options and, when dealing with equities,
most traded options are of American-type. As an alternative, numerical inversion
of pricing methods can be used. We apply different procedures to obtain implied
dividends of stocks of the Italian Derivatives Market.

Key words: Implied dividends, put-call parity, option pricing, binomial methods

1 Introduction

Stock options are normally unprotected from cash dividends paid on the underlying.
Dividend payments during the option’s life reduce the stock price by an amount
proportional to the size of the dividend and hence reduce (increase) the value of
call (put) options. In the event of extraordinary cash dividends, the Options Clearing
Corporation protects the value of options by adjusting the exercise prices. When
considering aggregated dividends, which is the case when dealing with indexes, one
can assume that the uncertainty is balanced out, but stock options can be affected
by a single cash dividend; thus a change in the latter has a significant impact on the
options prices.
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In this contribution we analyze some methodologies to extract information on div-
idend uncertainty from observable option prices. A fundamental aspect when valuing
index and stock options correctly is the knowledge of the amount and the timing of
the cash dividends that will be paid before the option expiration. Usually, derivative
pricing theory assumes that dividends are known both in size and timing. However,
this assumption might be too strong.

In absence of arbitrage, put-call parity relationship must occur between the price
of European call and put options. Such a relation is independent of a pricing model
and, therefore, it can be used to test the market efficiency. First note that for each
pair of European call and put options with the same strike and maturity, implied
dividends can be computed using a modified version of the well known parity re-
lationship. [2] and [3] use the parity to predict dividends on S&P Index and single
stocks. This technique is straightforward and does not depend on the assumptions
about the underlying price dynamics. Nevertheless, its use is limited to European
options. As an alternative, numerical inversion of pricing methods, such as an in-
terpolated binomial approach analyzed in [7], can be used to derive implied div-
idends from market data. By equating the observed market prices and the corre-
sponding theoretical option values, one has to solve a problem in two unknowns:
the implied volatility and the implied dividend. As a solution, we propose to fix the
volatility by using a model-free implied volatility; in particular, in order to com-
pute implied volatilities one can apply a procedure similar to VIX, based on a set
of at-the-money and out-of-the-money call and put options in the two nearest-term
expiration months. We apply such a procedure to obtain implied dividends of stocks
in FTSEMIB index. However, our main interest is on American options on dividend
paying stocks for which a very few empirical contributions have been published. In
particular, when considering the Italian market, to our knowledge a similar study
has not been carried out. Additional drawbacks in the implementation of the proce-
dures here proposed are due to the lack of data: for longer maturity there are lower
traded volumes and no quotations for a wide range of strikes. Furthermore, dividend
policies are not uniform for all traded assets. This and other issues are discussed in
Section 4.

The remainder of this paper is structured as follows. Next section considers Eu-
ropean options on indexes and information on cash dividends using put-call parity.
Section 3 focuses on American options written on a single stock. In Section 4, ex-
perimental analysis is reported and some conclusions are drawn.

2 Cash dividends predictions using put-call parity

Using no arbitrage arguments it is easy to prove the put-call parity relation

c0 − p0 = S0 − D e−rtD − X e−rT , (1)
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where: D is the cash dividend1 paid at time tD , S0 is the current asset price, r is the
risk-free rate of interest, p0 is the current premium of a European put option, c0 is
the current premium of a European call option, T is the time (in years) to expiration,
X is the option strike price. Theoretically, one can obtain the implied dividend D
in (1) from any pair of option premia with the same strike and maturity. Neverthe-
less, implementing the put-call relationship faces several theoretical and practical
problems that can be conveniently mitigated. The practical use of the put-call rela-
tionship requires an estimation of the risk-free rate. Options literature employs either
LIBOR or treasure T-note rate. T-notes are the safest traded investments, but only
Governments can borrow at this rate. On the other hand, LIBOR rate can be subject
to credit risk. Therefore, it is not totally clear which interest rate one can use in order
to implement the model. Another problem concerns the bid-ask quote convention for
trading stocks and options. To mitigate the noise introduced by the bid-ask spread
one can use the quote midpoints. A further drawback is the necessity to transform the
index points into dividends payed on the single stocks. Overcoming all these issues
is a difficult task.

Although most index options are of European type, options on single stock are
normally of American type. Many empirical studies test the put-call parity both for
European and American options. As well known, parity (1) does not hold for Amer-
ican options, due to the possibility of early exercise, which cannot be completely
ruled out when the strategies are established. If the options are of American style,
the following double inequality holds

S0 − D e−rtD − X ≤ C0 − P0 ≤ S0 − X e−rT , (2)

where C0 and P0 are the current prices of an American call and put option, respec-
tively. Note that the first inequality in (2) can be used to obtain a lower bound for
the expected dividend: D e−rtD ≥ S0 + P0 − C0 − X (with D ≥ 0).

Regarding the optimal exercise of American call options, it is easy to prove that
early exercise can be convenient just before a dividend payment. If the amount of
the dividend is less than the time value of the strike price, D < X

[
1 − e−r(T−tD)

]
,

then it is never convenient to exercise the call option before the expiration. As a
result, also in presence of dividends we have c0 = C0. For American put options,
early exercise may be optimal even in the absence of dividends and normally the
inequality P0 ≥ p0 is strictly verified.

3 Valuing equity options with cash dividends

Assume that dividends are a pure cash amount D to be paid at a specified date tD .
Empirically, one observes that at the ex-dividend date the stock price drops: in or-
der to exclude arbitrage opportunities, the jump in the stock price must be equal to
the size of the net dividend. Dividends affect option prices through their effect on

1 In the case of multiple dividends, D e−r tD is replaced by the sum of the present values of the
future dividends.
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the underlying stock price. Since in the case of cash dividends we cannot use the
proportionality argument, the price dynamics depends on the timing of the dividend
payment. In a continuous time setting, the underlying price is no longer lognormal
but in the form

St = S0e(r−σ 2/2)t+σWt − DtD e(r−σ 2/2)(t−tD)+σWt−tD I{t≥tD} . (3)

In [4] the authors (henceforth HHL) derived an exact expression for the fair price
of a European call option on a cash dividend paying stock. The basic idea is that after
the dividend payment, option pricing reduces to simple Black-Scholes (BS) formula
for a non-dividend paying stock. Before tD one considers the discounted expected
value of the BS formula adjusted for the dividend payment. In the geometric Brow-
nian motion setup, the HHL formula for a European call option is

cH H L(S0, T ; D, tD) = e−rtD

∫ ∞

d
cBS(Sx − D, T − tD)

e−x2/2

√
2π

dx , (4)

where d = log(D/S0)−(r−σ 2/2)tD
σ
√

tD
, Sx = S0e(r−σ 2/2)tD+σ

√
tD x , and cBS(Sx − D, T −

tD) is given by the BS formula with time to maturity T − tD . The price of a European
put option with a discrete dividend can be obtained by exploiting put-call parity
results.

For an American call option, since early exercise may be optimal only an instant
prior to the ex-dividend date, one can merely replace relation (4) with

CH H L(S0, T ; D, tD, ) = e−rtD

∫ ∞

d
max {Sx − X, cBS(Sx − D, T − tD)} e−x2/2

√
2π

dx .

(5)
For American put options, early exercise can be optimal even in the absence of

dividends. Since no analytical solutions for both the option price and the exercise
strategy are available, one is generally forced to numerical solutions, such as lattice
approaches. The evaluation of options using binomial methods entails some numeri-
cal difficulties when the underlying asset pays one or more discrete dividends, due to
the fact that the tree is no longer recombining. For a discussion of alternative pricing
methods and their implementation we refer to [7] and references cited therein.

A method which performs very efficiently and can be applied to both European
and American call and put options is a binomial method2 which maintains the re-
combining feature and is based on an interpolation idea proposed by [8] (see also
[7]). It is worth noting that such a method can be easily extended to the valuation of
options with multiple dividends, which is of interest when one considers long term
options (also traded on IDEM) and options written on stocks which pay dividends
bi-annually or quarterly.

The procedure can be described as follows: a binomial tree is constructed without
considering dividends (with Si j = S0u j di− j , u = eσ

√
T/n , and d = 1/u), then it

2 The interpolation procedure here described can be applied also to other numerical schemes, such
as finite difference schemes for the pricing of European and American options.
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is evaluated by backward induction from maturity until a dividend payment; at the
node corresponding to an ex-dividend date (at step nD), the continuation value VnD

is approximated using the following linear interpolation3

V (SnD, j ) = V (SnD ,k+1) − V (SnD ,k)

SnD ,k+1 − SnD,k
(SnD , j − SnD,k) + V (SnD,k) , (6)

for j = 0, 1, . . . , nD and SnD ,k ≤ SnD , j ≤ SnD ,k+1; then continue backward along
the tree. Negative prices may arise in some cases, in particular when dividends are
high. As a solution, one can impose an absorbing barrier at zero when the dividend is
higher than the underlying price (dividends are not fully paid due to limited liability).

4 Implied dividends

Besides information about the distribution of the underlying price and its volatility,
inference about dividend payouts can be carried out on market data. Option pricing
theory usually assumes that stocks pay known dividends, both in size and timing.
Moreover, new dividends are often supposed to be equal to the former ones. As
already pointed out, these assumptions are strong and not realistic. In this work we
assume that the time at which dividends are paid is announced, but their amount is
unknown. The aim is to derive implied dividends from market information about
option prices.

Let us observe that dividend policies are not uniform for all traded assets. With
reference to the Italian market (in particular we consider stocks in the FTSEMIB
index), there are some firms that pay no dividends at all (this choice has been justi-
fied by the recent financial crisis) and firms that during the year pay dividends once,
twice or even quarterly. Dividends can be paid in cash (normally in euro, but some-
times in dollars, hence one has to evaluate currency risk) or alternatively by issuing
new shares of stock (in a number which is proportional to the shares already held)
or warrants, or could be a mixture of stocks and cash. Taking into account in the
evaluation model all such different dividend policies is a tough task.

If dividends are announced, the (4) and (5) can be used to obtain implied volatil-
ities from option prices4. It is worth noting that the computation and numerical in-
version of (4) and (5) entail some drawbacks concerning the approximation of the
integral in order to obtain accurate results. In particular, difficulties arise when con-
sidering dividends paid very near in the future or very close to the option’s maturity.
Truncation of the interval of integration has also to be chosen carefully. As an alter-
native, we also used the binomial method based on interpolation (6).

Due to the computational efforts required by the method, and the fact the div-
idend policies are differentiate, one may wonder if it is possible to obtain implied

3 Other interpolation schemes can be considered.
4 In particular, the (5) can be numerically inverted in order to compute the implied volatilities from
the prices of American equity options; some results of empirical experiments on options of the
Italian Derivatives Market (IDEM) are reported in [6].
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volatilities which are not model-based, but derived using only market price of traded
options (see, for instance, [5]). Along this line, a procedure that computes a volatility
index is that applied by CBOE for the calculation of VIX, which provides a measure
of the expected stock market volatility over the next 30 calendar days.

In the case of unknown dividends, the (4) and (5) and the numerical procedure
described in section 3 can be used to derive implied dividends from market data.
By equating the observed market prices and the corresponding theoretical option
values, we have to solve an equation in two unknowns: the implied volatility and
the implied dividend. We then suggest to fix the volatility by using a model-free
implied volatility σ̂ obtained with a procedure similar to VIX, which is based on a
set of at-the-money and out-of-the-money call and put options in the two nearest-
term expiration months5.

5 Empirical experiments

In this contribution, our aim is to draw information on the future dividends by an-
alyzing the prices of both single stocks and index options traded on the IDEM. A
set of option prices is observed, and we assume that such prices contain all relevant
information concerning the underlying assets. We introduce a short empirical study
based on options written on FTSE MIB. The FSTE MIB index is a recent re-branded
of the S&P MIB index. The FSTE index options are of European style; the quota-
tions are in index points and the value of one index point (multiplier) is 2.50 euros.
There are at least 15 price levels with interval of 500 index points for the series with
remaining life shorter than one year; at least 21 price levels with interval of 1 000
index points for the series with remaining life longer than one year. At the same time
in each section, the negotiable expirations are the four quarterly expirations (March,
June, September, December), the two nearest monthly expirations and the four six-
months maturities (June and December) of the two years subsequent the current year,
for a total of ten expirations. New issued options are quoted on the first trading day
following expiration. The expiration day is the third Friday of the month in which the
option expires. The exercise at maturity for in-the-money options is automatic and
settled in cash. The trading hours are: from 9:00 a.m. to 5:40 p.m. (during expiration
day: from 9:00 to 9:05 a.m.).

The empirical analysis relates to quotations at the trading day 11th March 2010;
at that time that there are some news on future dividends. We considered put and call
options that expire in June and dividends paid the 24th May (time is computed in
years, considering calendar days). Numerical results are reported in Table 1, which
compares implied dividend obtained using put-call parity and numerical inversion
of HHL formula6. We have calculated the bid-ask average for the call and put rices.
Dividend in the last column are computed as an average between dividends obtained
from put and call options. The two approaches yield implied dividends (measured

5 Calibration can be an alternative solution to the problem.
6 Alternatively, an interpolated binomial method with 1 000 or 2 000 steps provides the same results.
Moreover, a very fast algorithm have been implemented.
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Table 1. Implied dividends of European call and put options on FTSEMIB (with St = 22506,
t = 11 March 2010, tD = 24 May 2010, T = 18 June 2010, r = 0.0064, σ̂ = 0.23899432
computed on options expiring in April and May)

X call put D implied
(bid-ask av.) (bid-ask av.) (put-call par.) dividend

19500 2572.5 294.0 762.31 785.54
20000 2510.0 376.0 407.22 496.64
20500 2115.0 482.0 409.09 445.56
21000 1750.0 612.5 405.45 408.09
21500 1412.5 775.0 406.32 395.63
22000 1110.0 970.0 404.68 402.53
22500 845.0 1205.0 405.55 435.33
23000 625.0 1485.0 406.42 489.36
23500 449.0 1807.5 405.78 559.08
24000 314.0 2165.0 399.14 635.79
24500 217.0 2577.5 409.52 721.30

in index points) which are similar for strikes near at-the-money. Put-call parity vi-
olations are due to various reasons, among which we mention the fact that we do
not take into account taxation (see e.g. [1] for a study on the Australian market).
The higher variability of the dividend in the second approach can be explained as
follows: when a model with constant volatility is considered, we have a sort of smile
effect for the dividend.

As a second experiment, we focused on American options. First we have consid-
ered American call and put options written on ENI stock, traded at the 11th March,
with maturity June 2010. Figure 1 shows the dividends obtained using the interpo-
lated binomial method, based on a set of put option prices. We have also computed
the implied dividend from American call and put options written on Italcementi
stock, traded at the 11th March, with maturity June 2010. Dividends will be paid the
24th May. Figure 2 shows the dividends obtained using the interpolated binomial

Fig. 1. Dividend predictions on American put options on ENI (St = 17.78, t = 11 March, r =
0.0064, tD = 0.202740, 24 May, T = 0.271233, 18 June, σ̂ = 0.20022985)
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Fig. 2. Dividend predictions on American put options on Italcementi (St = 8.9, t = 11 March,
r = 0.0064, tD = 0.202740, 24 May, T = 0.271233, 18 June, σ̂ = 0.28514498)

method, based on a set of put option prices. In both examples σ̂ has been computed
using a set of at-the-money and out-of-the-money options expiring in April and May.
Similar results have been obtained considering other trading dates. It is interesting
to observe the behavior of implied dividends, which show a smile effect in the case
of ENI put options and a more skewed shape in the latter case. Implied dividends
can be compared with the announced dividends: which are 0.5 in the case of ENI,
and 0.12 for Italcementi.
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TGeneralization of some linear time series
property to nonlinear domain

Marcella Niglio and Cosimo Damiano Vitale

Abstract. In nonlinear time series literature the proposal of new models is often
motivated by the need of generalize the linear ARMA structure and/or the need of
catch some features of data neglected by the linear processes (such as the asymme-
try and/or kurtosis of most economic and financial time series). In this paper the
attention is given to nonlinear Threshold Autoregressive Moving Average models
(TARMA) that are an immediate generalization of the ARMA class and share with
them some interesting properties discussed in details. In particular we have investi-
gated the main consequences of the weak stationarity and invertibility of TARMA
processes that allow to extend some results, widely known in the linear time series
context, to nonlinear domain.

Key words: Threshold model, stationarity, invertibility

1 Introduction

In time series analysis the investigation of the statistical properties of the generating
process plays a crucial role to identify the model, estimate parameters and generate
forecasts.

In this paper we focus the attention on the main consequences of the weak station-
arity (shortly called stationarity in the paper) and invertibility of a particular class
of nonlinear processes: the Threshold Autoregressive Moving Average (TARMA)
models.
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A stochastic process {Xt } follows a TARMA(�; p, q) structure when:

Xt =
�∑

i=1

⎛⎝ p∑
j=1

φ
(i)
j Xt− j + at −

q∑
j=1

θ
(i)
j at− j

⎞⎠ I{Yt−d∈Ri }, (1)

where {at } is a sequence of independent and identically distributed (i.i.d.) random
variables with E[at ] = 0 and E[a2

t ] = σ 2 < ∞, Yt−d is the stationary threshold
process with d the threshold delay, I{Yt−d∈Ri } is the indicator function

I{Yt−d∈Ri } =
{

1 if Yt−d ∈ Ri

0 otherwise,

with R = ⋃�
i=1 Ri and Ri = [ri−1, ri ) such that −∞ = r0 < r1 < . . . < r�−1 <

r� = ∞.
The stationarity of TARMA models has been widely investigated in [6] that make

a distinction between local and global stationarity: they show that the process {Xt } is
(globally) stationary even in presence of (locally) non stationary regimes. It allows
to introduce for this class of models a wider notion of stationarity with respect to
what traditionally stated in the literature (among the others [4], [9]).

Starting from these results, in Section 2 we show that the stationarity of the gen-
erating process allows to extend to nonlinear domain some issues widely developed
in the linear context, mainly related to the Wold decomposition and autocorrelation
function. In Section 3 the attention is focused on the invertibility of the TARMA
model that is discussed giving new theoretical results and empirical examples.

2 Some relevant consequence of the (global) stationarity
of TARMA models

The definition of linear process is based on the Wold decomposition (see among the
others [2, p. 47–48]), who establishes that any zero-mean purely nondeterministic
stationary process {Zt } posseses a linear representation

Zt =
∞∑
j=0

ψ j at− j , at ∼ W N (0, σ 2), (2)

with ψ0 = 1 and
∑∞

j=1 ψ2
j < ∞.

More precisely, [2] reserve the term linear for processes {Zt } having independent
at ’s.

It is widely known that the representation (2) has seminal importance to study the
stochastic processes belonging to the linear class.

Now we show that similar results can be obtained for stationary TARMA models.
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The stationarity of this class of models has been recently investigated in [6]. They
state that, under proper assumptions on the process, a TARMA(�; p, q) model is
stationary if:

�∏
i=1

λ(�(i))pi < 1,

with λ(A) the dominant eigenvalue of the matrix A, pi = E[I{Yt−d∈Ri }], with 0 <

pi < 1, for i = 1, 2, . . . , �,
∑�

i=1 pi = 1, and �(i) is a square (p + q) matrix:

�(i) =
[
�

(i)
11 �

(i)
12

�
(i)
21 �

(i)
22

]
,

where

�
(i)
11 =

[
φ
(i)
1 . . . φ

(i)
p

I(p−1) 0

]
, �

(i)
12 =

[−θ
(i)
1 . . . −θ

(i)
q

0(q−1)

]
,

�
(i)
21 = [0] , �

(i)
22 =

[
0
I

]
.

Starting from these results, let Xt a stationary TARMA(�; p, q) process with � =
2 and E[Xt ] = 0. Model (1) can be given as:

Xt =
∞∑
j=0

ψ j,t at− j , (3)

with:

ψ0,t = 1;

ψ j,t =
j∑

i=1

(
φ
(1)
i It−d−( j−1) + φ

(2)
i (1 − It−d−( j−1))

)
ψ j−i,t

−
(
θ
(1)
j It−d−( j−1) + θ

(2)
j (1 − It−d−( j−1))

)
; for 1 ≤ j ≤ q;

ψ j,t =
j∑

i=1

(
φ
(1)
i It−d−( j−1) + φ

(2)
i (1 − It−d−( j−1))

)
ψ j−i,t , for j > q,

where the weights ψ j,t are obtained from the following representation of the TAR-
MA(2; p, q) model:

%t (B)Xt = �t (B)at ,

with %t (B) = 1 −∑p
j=1

(
φ
(1)
j It−d + φ

(2)
j (1 − It−d)

)
B j , B the backshift opera-

tor, such that Bs Xt = Xt−s , �t (B) = 1 −∑q
j=1

(
θ
(1)
j It−d + θ

(2)
j (1 − It−d)

)
B j ,

whereas �t (B) = 1 + ψ1,t B + . . . + ψ j,t B j + . . . is determined from �t (B) =
�t (B)%−1

t (B).
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It is interesting to note that what mainly distinguishes the representation (3) with
respect to the Wold decomposition (2), is that the weights ψ j,t in (3) are conditionally
deterministic functions of time t through the indicator function It−d . Further the
ψ j,t ’s can be seen as direct generalizations of the weights obtained from the MA(∞)
representation of the linear ARMA(p, q) model (for more details see [2, p.80]).

To illustrate these last remarks, consider the following example.

Example 1. Let Xt ∼TARMA(2;1,1):

Xt =
[
φ
(1)
1 It−d + φ

(2)
1 (1 − It−d)

]
Xt−1 + at −

[
θ
(1)
1 It−d + θ

(2)
1 (1 − It−d)

]
at−1,

(4)
model (4) follows the representation (3) with weights:

• ψ0,t = 1;

• ψ1,t =
[
φ
(1)
1 It−d + φ

(2)
1 (1 − It−d)

]
−
[
θ
(1)
1 It−d + θ

(2)
1 (1 − It−d)

]
;

• ψ j,t = ψ j−1,t

[
φ
(1)
1 It−d−( j−1) + φ

(2)
1 (1 − It−d−( j−1))

]
, for j > 1.

As expected, under stationarity, the distribution of weights converges to zero as
j grows. It can be appreciated in Fig. 1 where the box-plots of the weights ψn,t of
the approximation Xt,n = ∑n

j=0 ψ j,t at− j are compared, for different values of n,
for the (globally) stationary model:

Xt =
(αXt−1 + at − 0.6at−1)I{Yt−1∈R1} − (0.63Xt−1 − at − 0.45at−1)(1 − I{Yt−1∈R1}),

(5)

where R1 = (−∞, 0], Yt−1 is a stationary AR(1) process and the parameter α = 1
in frame (a) and α = 0.76 in frame (b). As expected in both cases the weights ψn,t

decrease to zero as n grows but the speed of convergence becomes slower in presence
of locally non stationary processes. 	


n=5 n=10 n=20 n=40
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n=5 n=10 n=20 n=40

-1
.0

-0
.5
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5
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Fig. 1. Box-plots of the weights ψn,t of model (5), for n = 5, 10, 20, 40, with α = 1 in frame (a)
and α = 0.76 in frame (b)
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A further interesting consequence of the (global) stationarity of the TARMA
model is related to the autocorrelation function:

ρX (h) = ρX (−h) = γX (h)

γX (0)
, for h = 0, 1, 2, . . . ,

with γX (h) = γX (−h) = Cov(Xt , Xt+h) and corresponding estimators:

ρ̂X (h) = ρ̂X (−h) = γ̂X (h)

γ̂X (0)
, γ̂X (h) = 1

T

T−h∑
t=1

Xt Xt+h,

when Xt is a mean zero process.
It is widely known that the graphical representation of the autocorrelation func-

tion (usually called correlogram) is a tool commonly used to explore the dynamic of
a time series and, in some case, to identify the model underlying the data generating
process.

In the linear domain [1] derives an explicit formula for the asymptotic covariance
between sample autocorrelations and it is used to define proper confidence intervals
for ρ̂X (h).

More recently [5] propose a generalization of the Bartlett formula for nonlin-
ear processes starting from the assumption that the generating process Xt admits a
MA(∞) expansion. One of the assumption given in [5, Theorem 2] is the Gaussian
distribution of γ̂X (h) (and ρ̂X (h)). In presence of a stationary process Xt that admits
the expansion (2) and with finite central moment of order fourth, the Gaussian dis-
tribution of ρ̂X (h) is widely known (see among the others [3, Chapter 7]) but it has
not been investigated in presence of globally stationary processes that, at the same
time, are locally non stationary.

Let Xt a TARMA process (1), we have shown that, under stationarity, it admits
the expansion (3), that generalizes the expansion (2) using weights that are condi-
tionally deterministic.

In the following example we show that in presence of locally nonstationary
TARMA models, the Gaussian distribution of ρ̂X (h) is preserved (according to the
results of [8] in presence of models with i.i.d. errors).

Example 2. Let Xt a locally non stationary (but globally stationary) TARMA(2;1,1)
model:

Xt = (−Xt−1 +at −0.8at−1)I{Yt−1∈R1} − (0.6Xt−1 −at −0.5at−1)(1− I{Yt−1∈R1}),
(6)

with R1 = (−∞, 0] and Yt−1 a stationary AR(1) process. Starting from model (6),
10000 time series of length T = 5000 have been simulated and for each of them the
autocorrelations, ρ̂X (h), have been evaluated for h = 1, 2 . . . , 20.

The qq-plots of the first four sample autocorrelations of the simulated time series
are presented in Fig. 2 where the quantiles of the sample autocorrelations and of the
corresponding Gaussian distribution are compared. The Normality of ρ̂X (h) can be
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Fig. 2. qq-plots of ρ̂X (h) with h = 1, 2, 3, 4

clearly appreciated, for h = 1, 2, 3, 4 and, as expected, similar results are obtained
when h > 4.

Other simulated examples, not reported here, show that the Gaussian distribu-
tions is always preserved when we deal with globally stationary process that are
characterized by a locally non stationary structure. This interesting property of the
TARMA process allows to apply the results of [5] and confidence intervals can be
obtained for ρ̂X (h) using a generalization, to this nonlinear domain, of the Bartlett
formula. 	


3 Invertibility of TARMA models and related consequences

In time series analysis the invertibility is an important requirement of the model that
allows to generate forecasts. In our knowledge the invertibility of TARMA models
has not been investigated until now but, as shown in the following, it can be studied
taking advantage of some results recently proposed in [7] for the Threshold Moving
Average models.

Let Xt a TARMA model (1) with � = 2 and p = q (this last equality is not so
restrictive if zeroes are included in the vector of parameters), it can be equivalently
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given as:

Xt =
p∑

i=1

[(
φ
(1)
i − φ

(2)
i

)
It−d + φ

(2)
i

]
Xt−i −

q∑
i=1

[(
θ
(1)
i − θ

(2)
i

)
It−d + θ

(2)
i

]
at−i + at .

(7)

Model (7) can be represented in matrix form letting φi,t−d =
(
φ
(1)
i − φ

(2)
i

)
It−d +

φ
(2)
i and θi,t−d =

(
θ
(1)
i − θ

(2)
i

)
It−d + θ

(2)
i , such that the TARMA model becomes:

Xt = %t−dXt−1 − �t−dat−1 + at , (8)

with

Xt =

⎡⎢⎢⎢⎣
Xt

Xt−1
...

Xt−p+1

⎤⎥⎥⎥⎦ , at =

⎡⎢⎢⎢⎣
at

at−1
...

at−q+1

⎤⎥⎥⎥⎦ ,

%t−d =
[
φ1 . . . φp

I(p−1) 0

]
, �t−d =

[
θ1 . . . θq

I(q−1) 0

]
.

After k iterations, model (8) has form:

Xt =
(

k∑
i=1

%t−d−i�t−d −
k∑

i=0

�t−d

)
i−1∏
j=1

�t−d− j Xt−i−1 −
k∏

j=0

�t−d− j at−k + at

that, if pre-multiplied by 1′ = (1, 0, . . . , 0), becomes:

Xt =

1′
(

k∑
i=1

%t−d−i�t−d −
k∑

i=0

�t−d

)
i−1∏
j=1

�t−d− j Xt−i−1 − 1′
k∏

j=0

�t−d− j at−k + at .

(9)

Starting from model (9), we can state that its invertibility is related to the con-
vergence to zero of

∏k
j=0 �t−d− j , which, as expected, includes only the moving

average parameters of the model.
Noting that �t−d = �(1) It−d + �(2)(1 − It−d) with

�(i) =
[
θ
(i)
1 θ

(i)
2 . . . θ

(i)
q

I(q−1) 0

]
, for i = 1, 2,

the results given in [7, Theorem 1], can be applied to the TARMA model to state
that under proper conditions (explicitly given in [7] and related to the presence of q



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T330 M. Niglio and C.D. Vitale

distinct eigenvalues for �(i)), model (9) is invertible if:

|λ(�(1))|p|λ(�(2))|1−p < 1,

with p = E[It−d ] and λ(A) the dominant eigenvalue of A.
The invertibility of the TARMA model has interesting consequences: as in the

stationary case, this class of models can be (globally) invertible even in presence of
regimes locally non invertible. Further the error term at can be expanded with:

at =
∞∑
j=0

π j,t Xt− j (10)

generalizing, even in this case, some well known results of the linear ARMA(p, q)
models (see [2]) and where the conditionally deterministic weights π j,t are:

• π0,t = 1;

• π j,t =
j∑

i=1
(θ

(1)
i )It−d−( j−1) + θ

(2)
i (1 − It−d−( j−1))π j−i,t − [φ(1)

j It−d−( j−1) +
φ
(2)
j (1 − It−d−( j−1))], for 1 ≤ j ≤ p;

• π j,t =
j∑

i=1
[θ(1)

i It−d−( j−1) + θ
(2)
i (1 − It−d−( j−1))]π j−i,t , for j > p.

To illustrate this last result, consider the following example.

Example 3. Let Xt the TARMA(2;1,1) model given in (4). The π j,t weights of (10)
now become:

• π1,t = (θ
(1)
1 It−d + θ

(2)
1 (1 − It−d)) − (φ

(1)
1 It−d + φ

(2)
1 (1 − It−1)),

• π j,t = π j−1,t (θ
(1)
1 It−d−( j−1) + θ

(2)
1 (1 − It−d−( j−1))), for j ≥ 2,

that, under the invertibility condition, decrease to zero as j → ∞ so reproducing,
in a different context, what discussed in Sect. 2 for the stationary processes.

To illustrate these results, we have generated from the following TARMA model:

Xt = (Xt−1 + at − 0.6at−1)It−1 − (0.63Xt−1 − at − at−1)(1 − It−d) (11)

a time series of length T = 1000, with threshold variable Yt−1 generated from a
stationary AR(1) process.

The at ’s of model (11) have been approximated from (10) using at,n = ∑n
j=0

π j,t Xt− j for different values of n and the convergence of πn,t to zero has been em-
pirically evaluated. In Fig. 3 the box-plots of πn,t and the qq-plots of the standardized
at and at,n are compared for n = 5, 10, 40. It can be noted that even in presence of
a non invertible second regime the convergence of πn,t is quite fast, as n increases,
and the approximation of at with at,n is quite good even for small values of n.
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Fig. 3. Box-plot of πn,t and qq-plots of the standardized at and at,n for n = 5, 10, 40

References

1. Bartlett, M.S.: On theoretical specification and sampling properties of autocorrelated time series,
Supplement to the J. R. Stat. Soc. 8, 27–41 (1946)

2. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time series analysis. Forecasting and control. Wiley,
Hoboken, New Jersey (2008)

3. Brockwell, P.J., Davis, R.A.: Time series: Theory and methods. Springer, New York (1991)
4. Fan, J., Yao, Q.: Nonlinear time series. Nonparametric and parametric methods. Springer, New

York (2003)
5. Francq, C., Zakoı̈an, J.M.: Bartlett’s formula for a general class of nonlinear processes, J. Time

Ser. Anal. 30, 449–465 (2009)
6. Niglio, M., Vitale, C.D.: Local unit roots and global stationarity of TARMA models, Method.

Comput. Appl. Probab. in press (2011) doi: 0.1007/s11009-010-9166-y
7. Niglio, M., Vitale, C.D.: Threshold moving average invertibility: theoretical results and main

consequences. Manuscript (2011)
8. Romano, P., Thombs, L.A.: Inference for autocorrelations under weak assumptions, J. Am. Stat.

Assoc. 91, 590–600 (1996)
9. Tong, H.: Nonlinear time series: a dynamical system approach. Oxford University Press, Oxford

(1990)



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TEvaluating the behavior of a function in kernel
based regression

Maria Lucia Parrella

Abstract. Given a specific model and a regression function, this work analyses the
sensitivity of the kernel estimator on the bandwidth, considered as a function pa-
rameter. The problem is well known and has been investigated quite thoroughly.
The novelty of our study is that we invert the perspective: instead of examining the
estimated regression function and the influence of the bandwidth function, we anal-
yse the complexity of the bandwidth function that is determined by the structure of
the process. We show that preliminary evaluation of the structure of the unknown
function can improve the results of the kernel regression and, contextually, may sig-
nificantly simplify the estimation procedure.

Key words: Kernel regression, variable bandwidth selection, dependent data

1 Introduction

Kernel based estimators are among the most popular nonparametric tools used to
estimate a regression function. The good asymptotic properties of the local poly-
nomial estimators are often challenged by misspecification of the tuning parameter,
the bandwidth of the kernel function. The difficulties involved in specifying the tun-
ing parameter may compromise the advantages of using these nonparametric tools.
Also, the asymptotic mean squared error of the kernel estimator is a function of both
the bandwidth and the particular point of estimation, so a local bandwidth (variable
on the support of the function) may be useful in order to capture the complexity
of the unknown regression curve. However, this may increase the variability of the
estimator and the computational costs of the estimation procedure. Using a given
specific model and a regression function, we analyze the sensitivity of the kernel
estimator on the bandwidth parameter, considered as a function (local) parameter.
We show that preliminary evaluation of the “complexity” of the unknown function
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can improve the results of the kernel regression and, contextually, may simplify the
estimation procedure significantly. For example, if the unknown regression function
has a “simple” structure, the use of a global bandwidth (defined globally, as a con-
stant value on the whole support of the function) may be the best solution. Here we
propose a method for evaluating the opportunity of using a local bandwidth instead
of a global bandwidth.

We set out the rationale for our proposal. In the case of a local polynomial esti-
mation of a regression function it is usual to choose the (local or global) bandwidth
by minimizing some (local or global) estimated measure of the mean squared error
(MSE). For a kernel estimation of the regression function, it is expected that use of
a local optimal bandwidth rather than a global optimal bandwidth will provide im-
provements. Here we propose analytically to measure the extent of these improve-
ments. We propose a relative indicator and we estimate it adopting the approach used
in [4, 5].

We consider a setup that involves dependent and heteroscedastic data, which is
a requirement for analysing economic and financial time series. In the next section
we present the framework for the kernel estimators and describe the problem of
bandwidth selection. In section 3 we derive the relative indicator, and in section 4
we estimate the indicator using a modified version of the procedure in [5]. Finally,
we present the results of a simulation study to provide evidence of the performance
of the proposed procedure.

2 Framework

Consider the process {Yt , Xt }, where Xt and Yt are real valued observed processes.
We can define the following nonparametric regression model

Yt = m(Xt ) + σ(Xt )εt , t = 1, 2, . . . , (1)

where the errors εt are real random variables independent from Xt , where E(εt ) = 0
and V ar(εt ) = 1, for all t . Given model (1), we consider the generic problem of
estimating the conditional regression function

mφ(x) = E {φ(Yt )|Xt = x} , ∀x ∈ R, (2)

which includes several special cases, defined by the function φ(·) (conditional mo-
ment functions, conditional distribution functions, etc.). Given a realization of the
process {Yt , Xt ; t = 1, . . . , n}, the unknown function mφ (x) and its first p deriva-
tives can be estimated non-parametrically using the local polynomial estimators of
degree p, assuming that the derivative of order p + 1 exists ([1]). Model (1) can
be extended to a nonparametric ARCH model by putting Yt = Xt+1. In this paper
we assume that the process is strictly stationary and exponentially ergodic; these as-
sumptions are formulated in the paper by [5]. Let us write m̂φ (x ; h) to denote the LP
estimator (of degree p) for the function mφ(x), where h is the smoothing parameter.
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The asymptotical optimal local bandwidth hopt
AM SE (x) is the bandwidth that min-

imizes the asymptotic mean square error (AMSE) of the estimator. It is given by

hopt
AM SE (x) =

{
(2v + 1)V(x)

2(p − v + 1)B2(x)

}1/(2p+3)

, ∀x ∈ R, (3)

where

B2(x) =
{

C1m(p+1)
φ (x)

}2
, V(x) = C2σ

2
φ(x)

n fX (x)
. (4)

Note that the unknown components in the (4) are the variance function σ 2
φ(x) =

V ar{φ(Yt )|Xt = x}, the derivative function m(p+1)
φ (x) and the design density

fX (x). The constant values C1 and C2 depend on known quantities, such as the
kernel function and the order of the polynomial p. For details, see, for example, [1].
The plug-in method derives an estimation of the optimal bandwidth by estimating
the unknown functionals V(x) and B2(x), and plugging them into equation (3).

We can consider also the asymptotically optimal global bandwidth, derived by
minimizing an integrated measure of the AMSE on a compact interval IX ⊆ R:

hopt
AM I SE =

{
(2v + 1)V

2(p − v + 1)B2

}1/(2p+3)

, (5)

where we have

B2 = C2
1 R f

(
m(p+1)

φ

)
, V = C2 R(σφ)

n
, (6)

R f

(
m(p+1)

φ

)
=
∫

IX

[m(p+1)
φ (x)]2dμX , R(σφ) =

∫
IX

σ 2
φ(x)dx . (7)

3 Evaluating the behavior of the regression function
on the support

The following relation holds, ∀x ∈ R, for the AMSE

AM SE{m̂φ(x ; hopt
AM SE (x))} ≤ AM SE{m̂φ(x ; hopt

AM I SE )}. (8)

So, when used for local estimations, the global bandwidth is suboptimal. For partic-
ular structures of model (1), the difference between the two terms in the (8) may be
very small and, in these cases, the relation (8) may not hold if we replace the optimal
bandwidths hopt

AM SE (x) and hopt
AM I SE with the estimated ones. Moreover, estimations

of the (3) are generally less efficient than estimations of the (5). So the use of an esti-
mated local bandwidth may imply an increase in the variability of the nonparametric
kernel regression which may compromise the benefit from using a more “refined”
bandwidth. Therefore, notwithstanding the relation (8), it is questionable whether
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there is an effective gain from using an estimated local bandwidth hopt
AM SE (x) rather

than an estimated global bandwidth hopt
AM I SE .

However, suppose we want to estimate the function mφ(x), for each x belonging
to the subset IX ⊂ R. Consider the optimal global bandwidth hopt

AM I SE and the local
bandwidth hopt

AM SE (x), both defined on the subset IX . To simplify the notation, we
denote the first with hglob and the second with hloc(x). Starting from the relation
shown in (8), consider the relative variation of the AM SE observed when we use a
global rather than a local bandwidth on the subset IX :

�AM SE (x) = AM SE{m̂φ(x ; hglob)} − AM SE{m̂φ(x ; hloc(x))}
AM SE{m̂φ(x ; hloc(x))}

= AM SE{m̂φ(x ; hglob)}
AM SE{m̂φ(x ; hloc(x))} − 1, ∀x ∈ IX . (9)

The minimum value for eq. (9) is zero, which is observed when there is no gain
from using the local bandwidth. Recall our expression of the AMSE, then we can
write

AM SE{m̂(v)
φ (x ; h)} = B2(x)h2(p+1−v) + V(x)h−(2v+1), ∀x ∈ R,

�AM SE (x) =
⎡⎣B2(x)h2(p+1)

glob

V(x)h−1
loc(x)

+ h−1
glob

h−1
loc(x)

⎤⎦[B2(x)h2(p+1)
loc (x)

V(x)h−1
loc(x)

+ 1

]−1

− 1. (10)

By (3), it can be shown that

B2(x)h2(p+1)
loc (x)

V(x)h−1
loc(x)

= 1

2(p + 1)
. (11)

Now using (11) and defining πh(x) = hloc(x)
hglob

,we can write eq. (10) as follows

�AM SE (x) = 1

2p + 3
[πh(x)]

−2(p+1) + 2p + 2

2p + 3
πh(x) − 1. (12)

Note that the equation (12) depends on the unknown functionals of the process
only by means of πh(x). Note also that πh(x) ≥ 0. If we study the equation (12)
as a function of z = πh(x), for z ≥ 0, we can see that the unique solution for
which there is no gain in using the local bandwidth, is when πh(x) = 1, as shown
in Fig. 1 (and this is true for each p). The higher the deviations from 1, the higher
the relative increments of �AM SE (x). For example, for p = 0, a relative increment
of about 50% of �AM SE (x) will be observed for those x ∈ IX for which the local
bandwidth is approximately doubled, or is one half of the global bandwidth. A global
measure of the (9) can be derived by considering some kind of mean value on the
subset IX . To obtain a robust measure we propose the following. We fix an initial
threshold β for the �AM SE and derive the extreme values of the interval [aβ, bβ ]
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Fig. 1. Left: plot of the function f (z) = 1/(2p+3)z−2(p+1)+(2p+2)/(2p+3)z−1, for different
values of p. Right: the interval [a, b] for a fixed threshold β. The symbols (dots and stars) denote
respectively the points inside and outside the interval [a, b]

where �AM SE < β, as indicated in Fig. 1. Note that the values aβ and bβ can be
derived directly by solving the equation (12) for the desired value of p. Consider the
set of points Sβ = {x : x ∈ IX , π(x) ∈ [aβ, bβ ]} and Sβ = {x : x ∈ IX , π(x) /∈
[aβ, bβ ]}. They are represented by the symbols (dots and stars) in Fig. 1. Now, given
the measure of the process μX , note that∫
Sβ

�AM SE (x) fX (x)dx ≤ βμX (Sβ),

∫
Sβ

�AM SE (x) fX (x)dx ≥ βμX (Sβ).

Let β∗ denote the threshold value for which μX (Sβ∗) = μX (Sβ∗). This means
that β∗ is a median value of �AM SE (x) on the subset IX . Note that we do not need
to calculate the integral of �AM SE in order to derive the median value, we need
only to search iteratively for β∗, based on the estimation of πh(·) and the relation
μX (Sβ∗) = μX (Sβ∗).

4 Simulation study

Consider an application of LPE of degree p = 1 to estimate the volatility function
of the following time series models (here ψ(·) denotes the density function of the
normal N (0, 1), and I(A) is the indicator function, which is equal to 1 if condition
A is satisfied and zero otherwise)

Model 1: Yt = [
ψ(Yt−1 + 1.2) + 1.5ψ(Yt−1 − 1.2)

]
εt .

Model 2: Yt =
√

0.1 + 0.3Y 2
t−1εt .

Model 3: Yt =
√

0.01 + 0.1Y 2
t−1 + 0.2Y 2

t−1I(Yt−1 < 0)εt .

The errors are εt ∼ N (0, 1) in all the models. Models 1–2 are autoregressive
and heteroscedastic, Yt ∼ ARC H . Model 3 is a threshold autoregressive model,
Yt ∼ T ARC H . Note that all of these models assume that the conditional mean
function is equal to zero. Some of these models are considered in other papers. In
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Fig. 2. Optimal local bandwidth and global bandwidth (constant) for models 1–3

particular, see [7] for model 1; [2] and [3] for model 3. We performed a Monte Carlo
simulation study with 100 replications for each model, with three different lengths:
n = (500, 1000, 2000). We want to estimate the volatility function σ 2(x), which
implies that we need to consider φ(z) = z2 in equation (2). Here we analyse the
performance of the method proposed in section 3 to estimate the relative indicator
β∗. This indicator can be used to evaluate the opportunity of using a local instead of
a global bandwidth to estimate the volatility functions for models 1-3. Fig. 2 depicts
the two kinds of bandwidth (local and global) for the three models.

Here, we would stress that the method proposed in this paper is a general method
and can be adapted to any bandwidth selection method where both global and a local
bandwidth estimations are available. Note that here, we implement a modified ver-
sion of the procedure described in [5], in order to estimate the function πh(x). Since
the bandwidth selection method described in [5] is aimed at selecting a global band-
width on a given interval IX , we adapted the procedure in order to get an estimation
of the (local) function πh(x) on the whole support of the function, as follows:

1. for each realization x = (x1, . . . , xn), estimate the global bandwidth ĥglob on the
interval IX = [min(x); max(x)], following [5];

2. for a given integer k, derive a box-width w by splitting the support of the function
into k subintervals of equal lengths, i.e. w = [max(x) − min(x)]/k;

3. for each x j , j = 1, . . . , n, approximate the local bandwidth ĥloc(x j ) by estimat-
ing a global bandwidth on the interval [x j − w; x j + w], as in 1);
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Fig. 3. Each plot shows the boxplot of the estimations of the coefficient β∗, for the three differ-
ent values of k = (3, 4, 5). The constant line denotes the true value of β∗, derived by a Monte
Carlo approximation. Rows 1-3 refer respectively to models 1-3. Columns 1-3 report the results for
different time series lengths, n = (500, 1000, 2000)

4. derive the estimated function π̂h(x j ) = ĥ(x j )/ĥglob, for j = 1, . . . , n;
5. estimate the value of β∗ by searching iteratively for the level β such that the

number of points for which π̂h(x j ) ∈ [aβ, bβ ] is (approximately) equal to the
number of points on IX for which π̂h(x j ) /∈ [aβ, bβ ], j = 1, . . . , n, as described
in the previous section (see also Fig. 1).

Note that the above can be considered a classic bandwidth selection procedure
since it derives a consistent estimation for both the local and global optimal band-
widths on the interval IX . Also, in addition to estimating the optimal bandwidths,
we can assess the opportunity for using an estimated local bandwidth as opposed
to an estimated global bandwidth in the kernel regression. To this end, we need to
complete the procedure by comparing the relative indicator β∗ with some relative in-
dicator measuring the increment in the variability of the kernel estimator. Note also
that the above procedure guarantees some smoothness condition for the estimated lo-
cal bandwidth ĥloc(x), for which the parameter k acts as a tuning parameter, which
means we do not have to consider a separate smoothing step (see [6]). Our simulation
study considers three different values for the parameter k, i.e. k = (3, 4, 5).

Figure 3 summarizes the results of the simulations. Each plot in the figure shows
the boxplot of the estimations of the coefficient β∗, for the three different values of k.
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The constant lines denote the true value of β∗, derived by Monte Carlo approxima-
tion. From top to bottom, the results refer respectively to models 1-3; from left to
right to the different time series lengths, n = (500, 1000, 2000). If we compare the
results for different values of n, we see that the variability reduces for longer time
series, which is an indication of the efficiency of the procedure. In terms of estimator
bias, this is influenced by the parameter k. It is evident that the optimal value of k is
a function of n, since for longer time series we need higher values of k in order to
reduce the bias. For example, for model 1, we have k = 3 for n = (500, 1000) and
k = 4 for n = 2000. In any case, higher values of k imply higher variability in the
estimations. In model 3 there are some problems for short time series. This might be
due to the asymmetric structure of the model and the presence of one discontinuity
point in the bandwidth function. Longer time series are needed for better results. If
we compare the β∗ coefficient for the three models, we see that an optimal global
rather than a local bandwidth implies a (median) relative increment in the AMSE of
the estimator, of 10% for model 1, 14% for model 2, and 8% for model 3.
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in the foreign exchange markets

Danilo Pelusi and Massimo Tivegna

Abstract. An accurate measure of profitability of Technical Analysis, free of “data
snooping”, requires the separation of the Training Set (where the parameters of the
technical filter are obtained) from the Trading Set (where the profit results of this
technical filter are studied, using parameters obtained in the former). The next task
is how to obtain the “best” parameters for high profits. Following the suggestions
of the literature, we used a Genetic Algorithm (GA) to spot the “best” parameters in
the Training Set to be used, separately and independently, in the Trading Set. This
paper presents quantitative results in the use of one GA applied to the Dual Moving
Average Crossover rule (DMAC) applied to hourly data of the Euro-Dollar exchange
rate between 1999 and 2006. One important feature of the paper is the use of a GA in
an unconstrained and constrained optimization set-up. The first optimization aims at
obtaining the highest profit rates. The second one looks for smoother profit rates. We
study the impact of these two techniques on a kind of mean-variance relationship of
profit rates. Unconstrained optimization yields an yearly average profits of 16.8%;
the constrained one gets 13.4% (but with much lower volatility of cumulative profits
overtime).
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1 Introduction

Technical Analysis (TA) is widespread in the foreign exchange market and is an “ob-
stinate passion” for traders [5]. More and more practitioners attribute a significant
role to TA. It includes, lato sensu, various forecasting techniques such as chart anal-
ysis, pattern recognition analysis and computerized technical trading systems. This
latter tool consists of a set of rules that can be used to generate “buy or sell” sig-
nals. Among technical filter rules, the most well-known types are moving averages,
channel rules and momentum oscillators.

In the TA literature the relevant techniques are expressed in mathematical form.
[8] used genetic programming techniques to find optimal technical rules. They found
strong evidence of economically significant out-of-sample excess returns. Similar
results were obtained by [1]. Their trading strategies lead to positive excess returns
in the out-of-sample test period considered. They found that the excess returns are
both statistically and economically significant, even when transaction costs are taken
into account. One recent study [11] attempts to test visual chart patterns using pattern
recognition algorithms.

The aim of this paper is to present quantitative findings in the application of one
technical trading rule to the Euro-Dollar exchange rate between 1999 and 2006. A
technical rule is characterized by parameters which generate trading signals (long,
short, or no-trade). The Dual Moving Average Crossover (DMAC) rule tested here is
defined through the parameters “Stop-Loss” (SL), “Take-Profit” (TP), Fast and Slow
Moving Average (FMA, SMA). The FMA computes a moving average (simple or
exponential) over a number of periods smaller than in the SMA. As such the FMA
picks up the short-term movements of the rate whereas the SMA draws the longer-
term trend of it. Trading signals are obtained by their contemporaneous movements.

As [12] stated, this filter rule is a very simple trend-following system used by
most practitioners. In the DMAC rule, the opening of trades occurs at the crossing
of FMA and SMA. If the crossing of the SMA by the FMA occurs from below, a
long trade in the chosen exchange rate is initiated. Viceversa, if the crossing occurs
from above, the same rate is shorted.

As customary in the literature of TA, in order to avoid data snooping (see [13] and
also [10, 9]), profitability of technical trading was analyzed by dividing the available
sample into a Training Set (TNS) and a Trading Set (TRS). The choice of training
and trading sets length is a delicate issue [1, 6, 11]. We analyze the profitability of
our technical rule by dividing the available sample into a TNS and a TRS. The opti-
mized parameters in the training sample are plugged into the DMAC in the trading
sample. As an optimization method, we use a computer-intensive search procedure
for problems derived from the Darwinian principle of the survival of the fittest: the
Genetic Algorithms (GA). The applications of GA to Technical Analysis [1, 4, 8]
can be considered as a synonymous of data mining techniques, used to compute the
optimum parameters of a multivariate objective function.

In this paper, we present two kinds of optimization algorithms. The first one is an
unconstrained optimization, whereas the second one computes the optimal parame-
ters considering some constraints.
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We use hourly data (with opening, high, low and closing values) of the Euro-
Dollar rate, between 1999/1 and 2006/12, in order to find the best trading rule ac-
cording to two predefined criteria: the highest profit rates in absolute terms and the
best ones consistent with a smooth overtime profile. The second criterion (the one
generally preferred by practitioners) consists of attaining the highest excess profit
rates combined with the lowest volatility of cumulative profits. This constraint is
imposed by limiting the drawdowns of cumulative profits to a maximum of four
percent monthly. We impose this limit separately on longs and shorts to achieve
faster convergence of the algorithm to solution.

All that can be realized in the best trading set-up in terms of either the possibility
of using automatic trading procedures or in terms of keeping the number of trades
low.

The use of hourly data is quite rare in the literature and can represent a good
compromise between the use of daily or tik data. Daily data can miss important
technical points. Tik data are typically pretty dirty.

All the above features are probably an absolute novelty in the TA literature.

2 Optimization algorithms

Procedure 1. Unconstrained algorithm. Let f be a function

f : IIR2 → IIR (1)

continuous on IIR2 and let g,h be functions

g, h : IIR4 → IIR (2)

continuous on IIR4, where the function f = f (g(x1, x2, x3, x4), h(x1, x2, x3, x4))
represents the total profit which depends on longs profits g and short profits h. The
variables x1, x2, x3 and x4 represent respectively the TP, SL, FMA and SMA in the
DMAC. To find the best trading rule we needed to find their values, leading to the
highest profit rate (here in this subparagraph). This is an optimization problem that
can be formalized as follows.

Let (A, f ) be a pair where A ⊆ IIR4 is the set of admissible solutions and f is
the objective function which needs to be maximized. Let M be the maximum of the
function f as defined in (1)

M
def= max

(g,h)∈IIR2
f(g(x1,x2,x3,x4),h(x1,x2,x3,x4)).

The attempt is to find the values (x1, x2, x3, x4)∈ A such that

f (g(y1, y2, y3, y4), h(y1, y2, y3, y4)) ≤ M,
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for all (y1, y2, y3, y4)∈ A. These x’s values are the optimal solution of the problem.
In our case, we must obtain the best values of TP, SL, FMA and SMA, that is the
values for the maximum profit. For this kind of optimization GA are useful [1], [6].

To avoid a huge computer time to obtain the best technical parameters, we reduce
the variation ranges of x1, x2, x3 and x4 from IIR respectively to Ix1 for TP, Ix2 for
SL, Ix3 for fast moving average order and Ix4 for slow moving average order. The
extrema values choice of Ix1 , Ix2 , Ix3 and Ix4 come from standard trading practice.

Procedure 2. Constrained algorithm. The algorithm described in the previous sub-
paragraph searches for the maximum profit rates without considering their cumula-
tive behaviour overtime. This issue is now approached here.

In order to avoid excessive and continuous losses overtime, we consider a con-
straint on long trades g and short trades h separately. We assume that for the longs
and shorts, the losses in the month must be not greater than four per cent. This thresh-
old of four per cent is suggested by traders in the foreign exchange market. Recalling
that the algorithms operate on hourly data, it follows that a four-weeks month cor-
responds to 480 hours.

Let gt and ht be the long and short trades at time t respectively. If gt and ht are
defined as in (2), it follows that the constraint conditions are{

gt (x1, x2, x3, x4) − gt−480(x1, x2, x3, x4) > −0.04,
ht (x1, x2, x3, x4) − ht−480(x1, x2, x3, x4) > −0.04.

(3)

The expectation is that with the application of (3), the losses will be limited. In
other words, the constrained profit rates are in general less than the unconstrained
ones but always smother. There will not be excessive losses overtime, making our
technique more viable in a real trading environment.

3 Results description

An open issue in the use of GA in the foreign exchange market is the choice of
the time length of TNS and TRS. Generally, the testing sample is contiguous to the
training sample, but it is not always so. A possibility could be to consider overlapping
samples. Moreover the length of TNS and TRS can be different [1], [2], [6]. However
in our work we opted for the following mechanical choice: two years for the TNS
and the subsequent two years for TRS.

Before starting with the optimization process, we establish the extrema values of
intervals Ix1 , Ix2 , Ix3 and Ix4 . In particular, Ix1 = [0.005, 0.05], Ix2 = [0.005, 0.05],
Ix3 = [10, 20] and Ix4 = [55, 65]. These values are in accordance with the most
frequent behaviour of traders.

Table 1 and Table 2 show the profit results which come from the application of
our unconstrained algorithm to the euro-dollar exchange rates.

We underline that the profit rates are computed over two years and that several
long and short trades remain open at each moment during the trading sample. There-
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Table 1. Unconstrained case. Training results by application of DMAC to the Euro-Dollar ex-
change rates

DMAC rule parameters and profits 1999–2000 2001–2002 2003–2004

Take Profita 0.0476 0.0500 0.0399
Stop Lossa 0.0078 0.0315 0.0079
Fast Moving Averageb 13 14 12
Slow Moving Averageb 55 55 62

Longs profits −0.3169 2.6306 1.0084
Shorts profits 2.0654 −1.4444 −0.0983
Total profits 1.7484 1.1862 0.9101

aTP and SL are measured in basis points, or “pips”, of the Euro-Dollar exchange rate, as convention-
ally quoted, with four decimal points. For example a TP of 0.0476 (in the TNS 1999–2000) means that
whenever a cumulative profit on a long trade, obtained from the exchange rate where the current trade
starts, is higher than 476 basis points (e.g. from 1.4000 to 1.4476), then profit is taken. The same, mutatis
mutandis, is for SL.
bThe round digits here indicate the number of periods, as expressed in hours, of the moving averages.

Table 2. Unconstrained case. Trading results by application of DMAC to the Euro-Dollar exchange
rates. The DMAC parameters are the same of Table 1

DMAC rule profitsc 2001–2002 2003–2004 2005–2006

Longs profits 0.8871 2.3325 0.2858
Shorts profits 0.0007 −2.0999 −0.3994
Total profits 0.8878 0.2326 −0.1136

cProfits here are not expressed in percentage terms. For example, a profit of say 0.8878 indicates a cumu-
lative profit rate between the first exchange rate of TRS 2001–2002 in Table 2 and the last one. It means
that the trader earned 88.78% in two years, on average 44.39% per year.

fore, the actual profit performance of trades is affected by the average number of
trades that remain open and could be somewhat lower from that shown in the tables.

Using the optimal parameters of DMAC found in the TNS (Table 1) in TRS,
we obtain the results of Table 2. We note that the profit values in TRS (Table 2)
are lower than those of TNS (Table 1), as maintained by the data snooping argu-
ment [13]. There are some noteworthy results. We obtain profits for the two years
2001–2002 (88.8%) and 2003–2004 (23.3%), whereas we have losses in the two
years 2005–2006 (−11.4%). Beyond that, analyzing the profit trends, we observe
that there are excessive and continuous losses overtime in some specific subperiods
(see Fig. 1), even though the overall profit rates of the entire exercise are positive:
100.7%, roughly 16.8% per year.

Figure 1 shows the overtime fluctuations of long and short cumulative profits
over 2001–2002 trading set (as an example of just one TRS, for space limitation).
The chart shows that, when using the unconstrained algorithm, cumulative profit
rates depend strongly on the local trend of the exchange rate. Therefore, in order
to avoid excessive profit swings and deep drawdowns, we apply the constraint (3)
separately for longs and shorts. The results are shown in the Tables 3 and 4.
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Fig. 1. Unconstrained longs and shorts profits over 2001–2002 Euro-Dollar exchange rate

Table 3. Constrained case. Training results by application of DMAC to the Euro-Dollar exchange
rates. (The same notes of Table 1 and 2 are to be used here and in Table 4)

DMAC rule parameters and profitsd 1999–2000 2001–2002 2003–2004

Take Profit 0.0484 0.0407 0.0228
Stop Loss 0.0055 0.0094 0.0075
Fast Moving Average 14 12 12
Slow Moving Average 58 62 60

Longs profits −0.0316 0.9182 0.8906
Shorts profits 1.7462 0.0673 −0.0264
Total profits 1.7146 0.9855 0.8642

d See footnotes of Table 1

Table 4. Constrained case. Trading results by application of DMAC to the Euro-Dollar exchange
rates. The DMAC parameters values are the same of Table 3

DMAC rule profitse 2001–2002 2003–2004 2005–2006

Longs profits 0.5711 1.0681 −0.1091
Shorts profits −0.1293 −0.3426 −0.2761
Total profits 0.4419 0.7255 −0.3852

eSee footnotes of Table 2

Comparing the results between unconstrained (Tables 1, 2) and constrained (Ta-
bles 3, 4) algorithms we observe that constrained profit rates are smaller than the
unconstrained ones both in TNS and TRS. The sum of the annual profit rates in
the six-years exercise here is 78.22%, 13.4% per year. Losses overtime are reduced
and the cumulative profit line is much smoother. The notorious result in finance



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TOptimal trading rules at hourly frequency in the foreign exchange markets 347

Fig. 2. Constrained longs and shorts profits over 2001–2002 Euro-Dollar exchange rate

holds here: higher profits-higher risk, lower profits-lower risk. This result is shown
in Fig. 2.

4 Conclusions

An accurate measure of profitability of Technical Analysis, free of “data snooping”,
[13], requires the separation of the TNS (where the parameters of the technical filter
are obtained) from the TRS (where the profit results of this technical filter are studied,
using parameters obtained in the TNS). Using a large sample of hourly data of the
Euro-Dollar exchange rate (January 1999–December 2006), we produce three TNS
of two years (1999–2000, 2001–2002, 2003–2004) to get optimal parameters for our
DMAC technical filter, to be tested for profitability, in three TRS also of two years
(2001–2002, 2003–2004, 2005–2006).

Following the suggestions of the literature [1, 3, 4, 8], we used a GA to spot the
“best” parameters in the TNS, to be used separately and independently in the TRS.

One novel feature of the paper is the use of a GA in an unconstrained and con-
strained optimization set-up. The first optimization (described in subparagraph 2.1)
aimed at obtaining the highest profit rates, is shown in Tables 1, 2 and Fig. 1. The
second one (described in subparagraph 2.2) aimed at smoother profit rates, is shown
in Tables 3, 4 and Fig. 2.

In terms of rough performance, unconstrained optimization gives an average year-
ly profit of 16.8%; constrained optimization gets 13.4%. Looking at the cumulative
profits line, the first optimization (Fig. 1) swings overtime between huge profits and
huge losses, unbearable for risk control in any financial Institution. Constrained op-
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timization (Fig. 2) produces a much smoother profit line, without giving up too much
in terms of profitability.

Our future lines of research will extend the application of our algorithms to other
technical rules, like those in the channel and momentum families. We will investigate
also other profit optimization methods. Beyond that, we will try to asses how the
profits performance is affected by the trades that remain open in the TRS. We do not
anticipate a significant impact. Another interesting development (also studied by
others, [7]) is to evaluate the impact of news on optimized technical trading. Pattern
recognition in TNS in order to be used in TRS remains an open interest for us [11].
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TThe influence of correlation and loading
on M-V efficient retentions in variable quota
share proportional reinsurance

Flavio Pressacco and Laura Ziani

Abstract. Based on our recent discovery of closed form formulae of efficient Mean
Variance retentions in variable quota-share proportional reinsurance under group
correlation, we analyzed the influence on the efficient frontier of two key variables,
correlation and safety loading levels, in a single period stylized problem. We found
a clear separated influence of each variable (given the level of the other) and a sur-
prising joint influence of both on the efficient set.

Key words: Mean Variance efficiency, constrained quadratic optimization, variable
quota share, proportional reinsurance, group correlation, loading strategies

1 Introduction

It is well known that reinsurance is one of the key strategic variables in risk manage-
ment of insurance companies [1, 2, 5, 10, 14, 15], and there is no need to underline
the importance of correlation of risks in problems of financial risk management. Yet,
it is not easy to find reliable synthetic measures of the related impact in theoretical
and/or practical problems. This paper aims to face the question of measuring the
impact of the correlation level, as well as of loading strategies, in a stylized single-
period problem of Mean Variance efficient proportional reinsurance under “group
correlation”. To reach this goal, we make recourse to the application of the closed
form formulae of the efficient retentions we have recently obtained [13]. In detail, we
analyzed the consequences of different combinations of correlation and safety load-
ing coefficients on a stylized five-group portfolio of 5.000 policies (1.000 policies
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for each group), computing the set of efficient retentions and plotting the efficient
frontiers on the Mean Variance space. These graphs show clear evidence of such
consequences. The plan of the paper is as follows: in Section 2 a short recall of our
stylized problem is given. In Sections 3 and 4 we offer a quick resume of our closed
form expressions of the Mean Variance efficient retentions both in the retentions
space and respectively in the Mean Variance one. In Section 5 the stylized model
applied to evaluate and measure the effect of different correlation levels and load-
ing strategies is introduced and discussed. Conclusions as well as perspectives for
further research follow in the final Section 6.

2 Mean Variance efficiency in proportional reinsurance under
group correlation: basics

Let us briefly recall the essentials of a proportional reinsurance problem under group
correlation in a single period model.

An insurance company is faced with n risks (policies) partitioned into a number g
of groups q = 1, . . . , g. The net profit, that is the difference between net premiums
and losses, of these risks is described by a vector of random variables with expected
values m > 0, and by a non-singular covariance matrix C , whose generic element
is denoted by σ(i, j).

Under group correlation, the elements of m satisfy mi,q = �q σi,q , where �q

is a group specific loading coefficient used to charge premiums through a safety
loading inspired by the standard deviation principle; C is a block diagonal matrix,
C = diag(C1, . . . ,Cg) i.e. with non null elements only on the main diagonal squared
blocks, given for iq �= jq by σ(iq , jq) = ρq σi,q σ j,q with ρq ≥ 0 the group specific
correlation coefficient and obviously σ(iq , iq) = σ 2

i,q .1 We remark that, under group
correlation, the pre-reinsurance random gain of the company is fully described by
the couple of g−dimensional vectors of correlation and loading coefficients and by
the set of g standard deviations’ vectors (may be of different dimensions), the latter
briefly named standard deviations structure. The company has to choose a variable
quota-share reinsurance specified by a retention vector x. The retention is feasible
if 0 ≤ x ≤ 1. By applying reinsurance on original terms, a retention x induces a
random profit with expectation E = x/m and variance V = x/C x.

Now, how to choose x?
In his milestone paper de Finetti [4] introduced the Mean Variance paradigm in

financial decisions under uncertainty suggesting that the choice should be restricted
to the set of Mean Variance efficient retentions, that is among those feasible x such
that there are no feasible retentions y with E(y) ≥ E(x), V (y) ≤ V (x) and at least
one of the two inequalities holding in a strict sense.

Keeping account of the condition m > 0, which implies that feasible values for
E are those of the closed interval [0, 1/m], the efficient set is found solving, for any

1 Note that σ(iq , jq ) is a covariance symbol, while σi,q is a standard deviation.
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E of that interval, the constrained optimization problem:

min
1

2
x/C x,

x/m ≥ E,

0 ≤ x ≤ 1. (1)

A standard way to solve the problem is to introduce the Lagrangian:

L(x, λ,u, v) = 1

2
x/C x + λ (E − mT x) + u (x − 1) − v x (2)

and make recourse to the Karush-Kuhn-Tucker (KKT) conditions [7, 8].
It is interesting to note that KKT optimality conditions may be eventually ex-

pressed in a very simple way through the so called advantage functions2:

Fi (x) = 1

2

∂V/∂xi

∂E/∂xi
:=

n∑
j=1

σ(i, j)

mi
x j , i = 1, . . . , n, (3)

which under group correlation, become (with xq the retention vector of group q):

Fi,q(x) = Fi,q(xq) = �−1
q

(
xi,qσi,q + ρq

∑
j �=i

x j,qσ j,q

)
. (4)

Indeed, the efficient set is characterized in terms of the advantage functions as
follows (for details of the proof, see [13], Sect. 3.1):

Optimality conditions under group correlation: x̂ is Mean Variance efficient iff
there exists λ ≥ 0 such that, for any q = 1, . . . , g:

I) Fi,q(x̂) = �−1
q

(
x̂i,qσi,q + ρq

∑
j �=i x̂ j,qσ j,q

)
= λ, if 0 < x̂i,q < 1;

II) Fi,q(x̂) = �−1
q ρq

∑
j �=i x̂ j,qσ j,q ≥ λ, if x̂i,q = 0;

III) Fi,q(x̂) = �−1
q

(
σi,q + ρq

∑
j �=i x̂ j,qσ j,q

)
≤ λ, if x̂i,q = 1.

To capture the intuitive meaning of the condition, look at the advantage function
Fi,q(x) as the pseudo marginal utility at x of buying reinsurance of the i-th risk of the
group q and at λ as the shadow price of any (marginal in quota terms) reinsurance.
After that, the optimality conditions mean that, given the shadow price, reinsurance
of a risk is bought if the marginal utility is larger than the price and up to the point

2 We recall that such functions have been introduced in [4] as a tool to find, through an intuitive
simple procedure, the Mean Variance efficient set at a time where the KKT conditions were not yet
available. In a recent paper [12] it has been proposed to call these functions advantage functions,
as they intuitively capture the advantage coming at a retention point x from a marginal (additional
or initial) reinsurance of the i-th risk. The advantage is measured precisely by the ratio (one half)
decrease of variance over decrease of expectation.
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where the (diminishing) marginal utility just matches the price, or obviously if zero
retention has been reached this way.

3 The efficient set in the space of retentions

Contrarily to what have been thought up to recent times (see e.g. [6]), the set x̂(λ)
of efficient retentions under group correlation may be expressed in a closed form.
Precisely, this set is given, for q = 1, . . . , g, by x̂(λ) = 1 for λ > λ1,1 and for any
0 ≤ λ ≤ λ1,1 by3:

x̂i,q(λ) = �q σ−1
i,q φ−1 λ − ρqσ

−1
i,q φ−1

nq∑
j=χ

σ j,q , i = 1, . . . , (χ − 1), (5a)

x̂i,q(λ) = 1, i = χ, . . . , nq , (5b)

where χ(q, λ) is a group specific function of the shadow price to be explained below,
while φ = φ(q, λ) = [1+ρq (χ(q, λ)−2)] is another group specific function of the
shadow price. To understand the meaning of (5a) and (5b), keep account that there
is a labeling of the risks within each group according to their standard deviation
ranking, σ1,q > σ2,q > . . . > σnq ,q , and a labeling of groups according to their
advantage functions ranking at full retention, so as F1,1(11) > F1,2(12) > . . . >
F1,g(1g), where coherently with (4):

F1,q(1q) = �−1
q

(
σ1,q + ρq

nq∑
j=2

σ j,q

)
, q = 1, . . . , g. (6)

Now, let us consider the set of “critical” values of the shadow price given by:

λi,q = �−1
q

(
σi,q (1+ρq (i −2))+ρq

∑nq
j=i σ j,q

)
whose meaning is that of shadow

price level at which the risk iq begins to be reinsured, so as xi,q = 1 for λ ≥ λi,q

and xi,q < 1 for λ < λi,q . For any (i, q), it is λi,q > λi+1,q , hence, with the
dummy positions λ0,q = +∞ and λn+1,q = 0, χ(q, λ) is the group specific counter
of the number of risks already reinsured at λ. In the end, the counter has constant
group and interval specific value χ(q, λ) = hq for λh+1,q ≤ λ < λh,q and in turn,
φ(q, λ) = φq(hq) = [1+ρq (hq −2)]. In addition, the fact that λ1,1 is the maximum
of λi,q explains why x̂(λ) = 1 or χ(q, λ) = 0 for any λ > λ1,1.

4 The efficient set in the Mean Variance space

Let us now consider the whole set of critical values λi,q on the entire portfolio. In any
interval between two consecutive critical values of λ (in general belonging to two

3 For details of the proof, see [13, Sect. 3.2].
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different groups), the vector h = h(λ) = [h1(λ), . . . , hq(λ), . . . , hg(λ)] does not
change with λ (i.e. the vector is interval specific). This opens the way to write closed
form interval specific expressions both for the groups and for the global expectations
and variances of the efficient retentions as functions of λ. Denoting in any of such
intervals, by Eq(λ) and respectively by Vq(λ) the group expectation and variance,
it is straightforward for the expectation and a bit tedious for the variance to obtain:4

Eq(λ) = λα(q, hq) + β(q, hq), (7)

Vq(λ) = λ2 α(q, hq) + γ (q, hq), (8)

with
α(q, hq) = �2

q (hq − 1) [φq(hq)]
−1;

β(q, hq) =
nq∑

i=hq

mi,q − [φq(hq)]
−1 �q ρq (hq − 1)

nq∑
j=hq

σ j,q ;

γ (q, hq) =

2ρq

nq∑
i=hq

σi,q

nq∑
j=hq+1

σ j,q +
nq∑

i=hq

σ 2
i,q − [φq(hq)]

−1 ρ2
q (hq − 1)

( nq∑
i=hq

σi,q

)2
.

Note that α, β, γ are functions which (besides the standard deviations of the
group) depend on q through the couple (�q , ρq) of group specific parameters as well
as on hq(λ) (directly and also indirectly through φ), which is both group and inter-
val specific. After that, to obtain the closed form (interval specific) expressions of
the global mean and variance of the efficient portfolios as a function of λ, simply
add over q the group expectations and respectively (exploiting the zero correlation
between different groups) the group variances. After some elementary algebra, it is
possible to write the global variance as the following quadratic, interval specific,
function of the global expectation.

V (E) = [E − β(h)]2

α(h)
+ γ (h), (9)

where α(h) = ∑
q α(q, hq), β(h) = ∑

q β(q, hq) and γ (h) = ∑
q γ (q, hq) are

piecewise constant interval specific functions of λ. Hence, the efficient set in the
Mean Variance space is a union of parabolas, whose graph turns out to be continuous
and differentiable (without kinks) also at the connection points (see [13, p. 13]).
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5 Analysis of the impact of correlation and loading levels

These results open the way for interesting analysis concerning the consequences on
efficient retentions of different correlation and loading levels. To focus the attention
on this couple of parameters, sterilizing the influence of differences of the standard
deviations between groups, a stylized portfolio of 5.000 policies (1.000 policies for
each group) has been considered. Coherently with this aim5, this portfolio is charac-
terized by a neutral standard deviation structure, i.e. with σi,q = σi constant, given
i , for any q; furthermore, the σi are equally spaced with σ1 = 40 (the greatest) and
σn = 0.04 (the smallest), so as (σi − σi+1) = 40/1.000 = (σ1 − σn)/(n − 1) ∀q.

As regards correlation levels, we considered four different correlation structures:
N(ull) correlation useful for the sake of comparison and three positive correlation
levels L(ow), M(edium) and H(igh), each one increasing with the group labeling,
while keeping constant the ratios M/L = 2.5 and H/L = 4 across groups (see
Table 1, Correlation). As for the loading strategies, we defined at first two different
loading trigger levels, labeled S(mall) (5%) and B(ig) (10%), to be intended as mean
along groups. On these bases, three different connections between loading strate-
gies and correlation levels have been considered: U(niform), which means constant
loading; D(irect), that is loading increasing with labeling on a proper range, but re-
specting the mean constraint; I(nverse), that is loading decreasing with labeling, on
the same range (see Table 1, Loading). All combinations of correlation and loading
have been considered; e.g. L correlation coupled with SD loading implies the joint
structure showed in Table 2.

For all described scenarios, we computed the efficient retentions set and plotted
the efficient frontiers on the Mean Variance space. This gives an immediate flavor
of the influence either of the loading levels given the correlation (dotted lines ver-
sus continuous of the same type), or of the correlation structure given the loading

Table 1. Correlation and loading structures

Correlation
q 1 2 3 4 5

N 0% 0% 0% 0% 0%
L 2% 4% 6% 8% 10%
M 5% 10% 15% 20% 25%
H 8% 16% 24% 32% 40%

Small Loading at 5%
1 2 3 4 5

U 5% 5% 5% 5% 5%
D 1% 3% 5% 7% 9%
I 9% 7% 5% 3% 1%

Big Loading at 10%
1 2 3 4 5

U 10% 10% 10% 10% 10%
D 2% 6% 10% 14% 18%
I 18% 14% 10% 6% 4%

Table 2. Example of correlation and loading structure

Group q 1 2 3 4 5

ρq L 2% 4% 6% 8% 10%
�q SD 1% 3% 5% 7% 9%

4 See [13, Sect. 5.2].
5 We are well aware that real life portfolio are very different from this artificial framework.
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Fig. 1. Disjoint influence of correlation and loading

Fig. 2. Joint influence of loading and correlation

(different types of lines of the same loading) (see Figs. 1 and 2). As regards to the
interaction between loading and correlation for a given loading trigger, it comes out
that a loading charge inversely related to the correlation level gives a best efficient
frontier than the one obtained in the D or U case (see Fig. 2). The explanation of
this, at first sight, surprising result is that the efficient retentions give rise to a higher
reinsurance level of policies of the more risky group(s), that is (as a consequence
of the neutrality of the standard deviation) those with the higher group correlation.
Under the I relation, this involves giving up higher quotas of policies with compara-
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tively smaller expected gain (coming from a lower loading). Of course, this implies
a corresponding disadvantage for the reinsurer(s).

On the basis of this asymmetric position, in a framework of group correlation,
this result could be seen as a further explanation of the superiority of quota treaties
in reconciling insurers and reinsurers interests. Quota treaties are well known in the
classical theory of optimal reinsurance [2, 3, 5, 9, 11] and are largely prevailing in
the most recent literature treating the problem of optimal proportional reinsurance
in continuous models [1, 10, 14, 15].

6 Conclusions

Based on our recent discovery of closed form formulae of efficient Mean Variance
retentions in variable quota-share proportional reinsurance under group correlation,
we analyzed the influence on the efficient frontier of two key variables, correlation
and safety loading levels, in a single period stylized problem. We found a clear sep-
arated influence of each variable (given the level of the other) and a surprising joint
influence of both on the efficient set. The last result, in turn, could offer a further
explanation in favour of the quota treaties practice. As regards to further research,
we think that the same approach could be easily and advantageously extended to
understand and measure the impact of correlation and loading levels on target risk
measures (e.g. ruin probability, V@R, . . .) characterizing single period as well as
multi period problems.
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3. Bühlmann, H.: Mathematical methods in risk theory. Springer (1970)
4. de Finetti, B.: Il problema dei pieni, G. Ist. Ital. Attuari, 9, 1–88 (1940)
5. Gerber, H.U.: Equilibria in a proportional reinsurance market, Insur.: Math. and Econ., 3, 97–

100 (1984)
6. Glineur, F., Walhin, J.F.: de Finetti’s retention problem for proportional reinsurance revisited,

Ger. Actuar. Bull., 28(1), 451–462 (2006)
7. Karush, W.: Minima of functions of several variables with inequalities as side constraints,

M.Sc. dissertation, Department of Mathematics, University of Chicago, Chicago, IL, USA
(1939)

8. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability. J. Neyman ed., University of Califor-
nia Press, Berkeley, CA, USA (1951)

9. Lampaert, I., Walhin, J.F.: On the optimality of proportional reinsurance, Scand. Actuar. J., 3,
225–239 (2005)



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TInfluence of correlation and loading on M-V efficient proportional reinsurance 357

10. Luo, S., Taksar, M., Tsoi, A.: On reinsurance and investment for large insurance portfolio,
Insur.: Math. & Econ., 42(1), 434–444 (2008)

11. Pressacco, F.: Separation theorems in proportional reinsurance, Insur. and Risk Theory.
Goovaerts, M., et al. eds., Reidel Publishing, 209–215 (1986)

12. Pressacco, F., Serafini, P.: The origins of the mean-variance approach in finance: revisiting de
Finetti 65 years later, Decis. in Econ. and Finance, 10(1), 19–49 (2007)

13. Pressacco, F., Serafini, P., Ziani, L.: M-V efficient strategies in proportional reinsurance under
group correlation in a Gaussian framework. Accepted for publication in Eur. Actuar. J., 1
(2010). Available on http://hal.archives-ouvertes.fr/hal-00496300/en/, with validation no.: hal-
00496300, version 1

14. Schmidli, H.: Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar.
J., 1, 55–68 (2002)

15. Zhang, X.L., Zhang, K.C., Yu, X.J.: Optimal reinsurance and investment with transaction
costs, I: Maximizing the terminal wealth, Insur.: Math. & Econ., 44, 473–478 (2009)



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

TGood and bad banks

Luca Regis

Abstract. In the recent financial crisis, reorganizations of distressed financial institu-
tions following the good bank and bad bank model were discussed. In the context of
a structural framework and under perfect information, we analyze endogenous cap-
ital structure choices of an arrangement constituted by a large regulated unit which
manages the more secure assets of a bank and a smaller division – possibly unreg-
ulated – which gathers the more risky and volatile ones. We question whether such
an arrangement is a priori optimal and whether financial institutions have private
incentives to set up different risk-classes of assets in separate entities. We investi-
gate the effect of intra-group guarantees on optimal leverage and expected default
costs. Numerical results show that these guarantees can enhance group value and
limit default costs when the firm separates its more secure from its more risky assets
in regulated entities.

Key words: Capital structure, good/bad banks, intra-group guarantees, financial
groups

1 Introduction

During the recent financial crisis, many large financial institutions had to restructure.
This largely involved the intervention of the states – and, thus, of taxpayers – which
had to partly take charge of the large amount of “toxic” assets that had been generated
by banks. National governments, mainly the U.S. one, had to inject capital into the
major financial global actors and to coordinate restructurings. An advocated way of
performing this kind of intervention followed the Swedish bank crisis experience of
Nordbanken and Gota – see [2] – in the beginning of the Nineties and suggested to
split firms into good banks and bad banks. The “toxic” assets of the company are

Luca Regis ( )
University of Torino, Corso Unione Sovietica 218/bis, 10134 Torino, Italy
e-mail: luca.regis@carloalberto.org

Perna C., Sibillo M. (eds.): Mathematical and Statistical Methods for Actuarial Sciences
and Finance DOI 10.1007/978-88-470-2342-0 42
© Springer-Verlag Italia 2012



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T360 L. Regis

isolated in proper units – the bad banks – with the purpose of limiting the overall
expected losses of the company. This separation attempts to keep financing costs at
a low level in the entity that holds the more secure assets – the good bank – while
enhancing the focus of the bad bank on the liquidation and managing of its assets.
The recent crisis led both policymakers and economists to address the pros and cons
of this model, that was used for example by the British government in the bail-out
of Northern Rock (see f.i. [3] and [10]).

We analyze the optimal financing of the two entities created in a good/bad bank
restructuring: a large regulated unit which manages the more secure assets and a
smaller – and possibly unregulated – division which gathers the more risky ones.
We address the problem in the context of a structural static two-period framework
and under perfect information. Up to our knowledge, this paper is the first attempt
to analyze the optimal financing of good and bad banks in a fully developed theoret-
ical framework. After discussing the possible ways of setting up a firm constituted
by a good and a bad bank1, we analyze through a calibrated numerical application
whether joint incorporation or separate incorporation of these units is optimal. Then,
we investigate the effect of linking the units through binding intra-group guarantees.2

Our results show that such transfers can both enhance group value and reduce ex-
pected default costs when firms separate different risk-classes of assets in regulated
good and bad banks.

2 The model

Two units, which we denote with the subscript i = 1, 2, have to finance a future
exogenous operating income Xi at a certain time horizon T . They can be incorpo-
rated3:

1. separately, as two independently managed stand alone (SA) units which constitute
a horizontal group4(HG). They independently choose their capital structures.

2. jointly, through an integrated conglomerate (IC) structure: the units are separate
divisions, but they constitute a unique firm which files a unique balance sheet.

3. jointly, through a holding/subsidiary structure (HS). The units, to which we refer
with the subscripts i = H, S, are legally separated entities, both enjoying limited
liability, but they are part of a unique group, in which an holding company (H)
controls a subsidiary (S).

We refer the reader to [6] for a detailed description of the basic set up we use in
modeling the units of a SA and an IC. For a full account of our modeling of HS, we
refer the reader to [7].

1 The importance of the decision of how the two units are incorporated is clearly recognized by [9].
2 This analysis is motivated by the fact that recently, during the Solvency II Directive proposal
meetings, rules on capital transfers among members of the same group – the so called Group Support
framework – have been extensively discussed.
3 See [1] for a full account of the structures financial institutions can take.
4 Usually, in this kind of arrangement, the units are owned by an “umbrella” holding corporation.
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In summary, we analyze capital structure choices in a two-period static environ-
ment. We include frictions in the market in the form of proportional taxes and default
costs.5 Operating cash flows are financed through debt or equity. The former is tax
advantaged since interests are tax deductible. Firms choose the amount of principal
debt Pi to issue in their units at time 0 optimally maximizing their value, which is
given by the sum of the market values of equity and debt. They experience default
if they are not able to repay their obligations to debt holders in full at the end of the
period. Default is costly: a trade-off between tax savings through leverage and de-
fault costs emerges. Units in the HS are linked together by the existence of a rescue
guarantee issued by the holding to its subsidiary’s debt holders, conditional on the
survival of the parent itself.6

We introduce capital regulation in the form of a minimum own funds requirement
the firm has to fulfill to be allowed to set up. We define the operating loss as Li =
−Xi and as E0i and D0i the equity and debt values of unit i at time 0. The capital
requirement for firm i is a VaR-type constraint on E0i at a certain confidence level
βi at a one-year horizon7. Firms that constitute as HS structures can be required to
meet the capital requirement:

1. at a consolidated level:

E0H + E0S ≥ V a RβH S (L H + L S), (1)

2. at a solo level:

E0H ≥ V a RβH (L H ), E0S ≥ V a RβS (L S). (2)

Hence, the optimal financing of the firm is determined as a solution to the follow-
ing program:

max
P1,P2

V0(P1, P2) = max
P1,P2

∑
i

E0i (P1, P2) + D0i (P1, P2),

s.t. (1) or (2).

5 Other works – see f.i. [5] – studied inter-divisional capital allocation problems under agency or
asymmetric information problems. In their models, market frictions are due to underinvestment or
imperfect knowledge of future cash flows’ distribution.
6 We refer the reader to [7] for a discussion on the existence of such guarantees in reality, in the
form of capital transfers and for an analysis of the properties of such guarantees. The rationale
for their existence lies in the opportunity fot the parent company to save reputation costs due to
defaulting subsidiaries and, thus, to find financing more easily in that unit.
7 This kind of constraint is consistent with the current internal model Basel II/Solvency II practice.
Cash flows are assumed independently and identically distributed through the years of the time
horizon.
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Numerical solution to this program is required, since the functions that define the
values of debt and equity are implicit functions which depend on how the firm is
incorporated.8

3 Good and bad banks

We now presents numerical results concerning the application of the good/bad bank
model to a financial institution. Parameters are calibrated to the ones of observed
Ba/B rated financial companies.9 We consider splitting this institution in a good
bank (G), which is larger and keeps the more secure assets, and a bad bank(B), which
is endowed with the more risky assets.10 The latter can either be subject to capital
regulation or not. In this last case we refer to the bad bank as to a Special Invest-
ment Vehicle (SIV). We now analyze the optimal financing of these two units under
different incorporation choices. In the following paragraphs we analyze first joint
incorporation and HG structures, then two alternative ways of incorporating a bad
bank into a HS structure: as a regulated subsidiary entity or as an unregulated SIV.

3.1 IC and HG

Table 1 presents the optimal figures of the regulated merger (IC) of the two entities,
of the good bank and the bad bank units when they are SA regulated companies and
of the bad bank when stand-alone and unregulated. The capital requirement is the
VaR type constraint in (2) with βi = 99%. The results show an odd feature: the
good bank, when optimally financed, has a higher default probability than the bad
one. This happens because the good bank, after giving away its most volatile assets,
levers up more (87%). This generates tax savings, while the increase in default costs
is less than proportional. A huge amount of equity capital – due to the stricter capital

8 pt plus .1ptpt plus .1ptEquity and debt values in one unit can depend on the principal issued by
the other unit. In the SA case – see [6] – this does not happen and E0 and D0 are defined as

D0 = φ

[∫ Xd

0
Xn f (x)dx + P

∫ +∞

Xd
f (x)dx

]
, E0 = φ

[∫ +∞

Xd
Xn f (x)dx]

]
,

where φ is the discount factor, Xd is the level of realized gross cash flows under which default
occurs, Xn denotes cash flows net of taxes and default costs and f (x) is the density of the cash
flow distribution. In the HS case, the conditional rescue event makes debt and equity values in one
unit dependent also on the financing choices of the other one (see [7] and [8]): their expressions
and the solution to the optimization program is indeed much more complicated.
9 Following [6], we set the risk-free interest rate to 5% and the effective tax rate to 20%. Time
horizon T is set to 10 years, which is approximately the average maturity of financial institutions’
bonds and SIVs’ assets. Exogenous cash flows are normally distributed with mean E0[X ] = 100.
Default costs and cash flow volatility σ [X ] are set respectively to 10% and 17% in order to match
observed default probabilities, leverage ratios and recovery rates of Ba/B rated companies.
10 Operating cash flows of the good bank are normally distributed with mean E0[XG ] = μG =
75 and standard deviation σ [XG ] = σG = 14%, the bad bank ones are also normal with mean
E0[X B ] = μB = 25 and standard deviation σ [X B ] = σB = 36.45. This values match the ones of
the original institution, which is indeed the IC of G and B.
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Table 1. This table presents the SA optimal properties of the good bank, the bad bank and the
unregulated bad bank (SIV)

Figure IC Good bank Bad bank SIV

V0 84.37 63.37 20.79 21.36
D0 60.98 51.01 3.32 13.75
E0 23.39 12.35 17.48 7.61
P 107 90 6 30
DC0 1.26 1.41 0.01 0.87
T S0 5.62 4.78 0.30 1.73
T0 14.38 10.22 4.82 3.39
Leverage 82.06% 87.93% 25.55% 79.76%
Default Prob 22.48% 27.94% 11.98% 40.02%
Recovery Rate 68.10% 72.55% 16.84% 36.64%
Yield Spread (bp) 78 84 107 312

V0 stands for optimal value, D0 for debt value, E0 for equity value, DC0 for expected default costs,
T S0 for expected tax savings, T0 for the expected tax burden

requirement – is instead required to set up the bad bank unit, which optimally raises
a low level of debt (6). The debt of the bad bank is anyway more risky than the good
bank one: its implied credit spread is 30 bp higher, due to its very low recovery rate
(19.34%).

Our figures shows that separate financing of highly risky projects is value-enhanc-
ing with respect to their joint financing (IC in the first column of Table 1) when the
more risky unit is not regulated11.

3.2 HS: unregulated bad banks

The role of SIVs in pooling volatile assets clearly emerged in the recent financial
crisis. Being unregulated, they offer the possibility to let some assets go “off the
balance sheets” of financial institutions. Thus, through the use of SIVs, firms are
able to lower their capital requirements and separate different risk-classes of assets
at the same time.

We assume that an SIV – being unregulated – suffers higher proportional default
costs than regulated firms.12 The last column of Table 1 collects the optimal figures
of an SIV as a stand-alone entity. Its optimal leverage (79.75%) is way higher than
the one of the regulated bad bank. Its spread is more than 200 bp higher than the good
bank’s one. The higher tax savings obtained lead to an increase in value with respect
to the regulated bad bank. Anyway, still a high level of equity capital is optimally
chosen, 7.61.

When restructuring as good and bad banks, financial institutions usually receive
equity capital injection from the governments, since the market will not finance them.

11 While an HG where both units are regulated is less valuable than the IC (84.17 vs. 84.36) the
HG has higher value (84.73) than an IC that merges the good bank and an unregulated bad bank
(unreported, 84.01).
12 We set them to 23%, the same value used in [6] for unregulated commercial firms.
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Table 2. This table presents the optimal figures of an HG constituted by the good bank and the
SIV and of an equivalent HS

HG Good bank (H) SIV (S) HS

V0 84.73 56.37 28.58 85.95
D0 64.76 39.06 29.15 69.21
E0 19.97 17.31 0.44 17.75
P 120 65 76 141
DC0 2.28 0.28 1.51 1.79
T S0 6.51 3.18 4.06 7.24
T0 13.62 11.82 1.07 12.89
Leverage 85.73% 78.97% 99.43% 88.82%
Default Prob // 7.67% 48.23% //
Yield Spread (bp) 132 23 505 //

In [4] an alternative to capital injection by the government, using equity capital from
the good bank to capitalize the bad one, is described. The bad bank should then hold
all the equity of the good one and all the long-term liabilities. Our results from the
HS model highlight a possible way of realizing this. Equity is almost entirely held
in the good bank, but equity holders of this unit guarantee directly for the bad bank
liabilities.

Table 2 presents the optimal configuration of an HS in which the bad bank is
unregulated but its debt is (conditionally) guaranteed by the equity holders in the
good bank and compares it to the case of an horizontal group constituted by the
regulated good bank and the SIV.

First of all, we notice that the expected default costs of the HS structure are lower
than both the HG and the IC ones. This is mainly due to the fact that the good bank –
which is the largest unit in terms of income – is safer than in the HG (7.67% 10-year
default probability), less levered and optimally keeps more equity than it is required
to by the VaR-type constraint. The SIV, instead, is almost entirely financed through
highly risky debt13 (505 bp spread). Thus, very little capital is optimally required in
the form of equity in the bad bank, while a large amount of “junk” debt is issued,
leading to a high default probability, 48.23%. Debt holders of the SIV are anyway
backed by equity holders of the good bank thanks to the presence of the guarantee14

and expect a low level of losses when the good bank performs well.

3.3 HS: bad banks as regulated subsidiaries

As highlighted in Section 2, capital adequacy rules in a HS can be prescribed at a
consolidated or at a “solo” level. We compare the optimal figures of an HS consti-
tuted by a good bank and a regulated bad bank under both regimes. Table 3 presents
the most interesting case in which the units meet the requirement at a consolidated

13 This fact reconciles with the empirical evidence that equity tranches in SIVs account for less
than 1% of the total financing of the unit.
14 Rescue happens with a high probability, 44.79%.
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Table 3. This table presents the optimal figures of an HG constituted by the good bank and the
regulated bad bank when they met the capital requirement at a consolidated level

Figure HG Good bank (H) Bad Bank (S) HS

V0 84.17 51.32 35.26 86.59
D0 54.33 28.08 35.24 63.32
E0 29.83 23.24 0.02 23.26
P 97 46 108 154
DC0 1.42 0.05 0.96 1.01
T S0 5.13 2.20 4.89 7.09
T0 14.99 12.80 0.24 13.04
Default Prob // 1.86% 59.44% //
Yield Spread (bp) // 6 685 //

level. Debt spread in the bad bank is higher (685 bp), reproducing the difficulty in
financing such a structure highlighted in [9]. This happens even when, in the (unre-
ported) “solo” regulation case, leverage in the bad bank is very low (25.5%).

When the bad bank meets its capital requirement at a consolidated level, it shows
the lowest level of capitalization (0.02). Its leverage is extreme (the face value of
debt is 108) and the default probability of the unit is more than 59.44%. The amount
of debt issued by the good bank is relatively low: financing through equity is opti-
mally high enough to meet the capital requirement and to enlarge the set of states of
the world in which the conditional guarantee is effective. As Table 3 clearly shows,
despite this highly risky subsidiary, the expected default costs of such an arrange-
ment reach the lowest level among the organizations we analyzed (1.01 vs. 1.26 of
the IC and 1.42 of the HG): the good bank is very sound (its 10-year default prob-
ability is only 1.86%) and the guarantee is effective 38% of the times. The value of
this HS structure is 86.59, nearly 3% higher than both the IC and the HG one when
the bad bank is unregulated. Hence, the separation of assets of different risk-classes,
coupled with the presence of a conditional intra-group guarantee makes the choice
of the HS arrangement – which is the default costs minimizing organization – also
incentive compatible. Notice that the highest level of expected losses is attributed to
the HG, which could best approximate the way financial firms manage their assets
through securitization and unregulated entities.

4 Conclusions

In the context of a structural model in which there is a trade-off between tax sav-
ings and default costs, we analyzed whether it is optimal for a financial firm to split
its activities into a good bank and a bad bank. We questioned the effects of – con-
ditionally – committing equity holders of the good bank to take charge of the bad
bank’s obligations and its regulatory requirements. Our model reproduces the fact
that when the bad bank unit is regulated, a large amount of equity capital must be
raised, while when it is an unregulated subsidiary its equity tranche is instead very



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T366 L. Regis

small. We found that if the more volatile assets can be pooled into an unregulated
special investment vehicle the group is able to enhance its value, but it pays the price
of suffering higher expected default costs. While separate financing in the presence
of an unregulated entity is per se optimal but increases welfare losses with respect
to the IC case, linking regulated units through a conditional intra-group guarantee
turns out to be both value maximizing and default costs minimizing with respect to
other arrangements.
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MSCI World Sector Indices

Giorgia Rivieccio

Abstract. This paper provides an innovative method to choose the prudent combi-
nation of the assets in portfolio, taking into account the sector co-movements of the
MSCI World Sector Indices returns and considering, in the selecting procedure, mea-
sures of the tail dependence. In order to analyse the multivariate tail performance,
a Copula-GARCH model has been proposed, applying a class of copula functions
defined as Multivariate Biparametric (MB). In particular, the MB1 and MB7 cop-
ulae have been selected, because they allow to estimate both tail dependence in an
asymmetric way.

Key words: Archimedean copula, tail dependence, GARCH model

1 Introduction

In the theory of asset allocation and in the practice of portfolio management the di-
versification strategy is generally thought of in terms of market capitalization and
investment style, yet sector diversification is equally important. As demonstrated
empirically in recent years, pursuing a growth investment style via internet stocks
leads to substantially different portfolios and results than pursuing growth via health-
care stocks [19].

In addition, the severe recent crisis induces to consider extreme values depen-
dence, preferring in the selecting procedure assets with low dependence between
negative extreme returns, that provides a kind of tail diversification strategy.

The literature is full of contributes on extreme values dependence theme, focus-
ing, in particular, on mechanisms through which shocks are transmitted internation-
ally and on linear dependence measures (e.g the correlation coefficient). Some au-

Giorgia Rivieccio ( )
Department of Statistics and Mathematics for Economic Research, Parthenope University, via
Medina 40, 80133 Napoli, Italy
e-mail: giorgia.rivieccio@uniparthenope.it

Perna C., Sibillo M. (eds.): Mathematical and Statistical Methods for Actuarial Sciences
and Finance DOI 10.1007/978-88-470-2342-0 43
© Springer-Verlag Italia 2012



U
N

PU
B

LI
SH

ED
  M

A
N

U
SC

R
IP

T368 G. Rivieccio

thors (e.g. [1, 4, 9, 12, 13, 20]) verified that cross market correlation coefficients are
conditional on market volatility and their estimates tend to increase, in particular,
during crises. This suggests a significant dependence in the tails of the joint distri-
bution of asset returns which has to be analysed with an asimetrical and non linear
measures.

Other approaches involve the multivariate Extreme Value Theory (EVT), e.g. [3,
7, 10, 15, 16], and non-parametric estimation techniques of the concordance between
rare events, e.g. [6, 18].

Anyway, a popular way of proceeding can be to model the whole dependence
structure with a copula function and, then, to measure the relationship in the tails of
the joint distribution using the bivariate tail dependence coefficients (see e.g. [2, 8,
17]).

Preferring this last method, due to its great flexibility, the aim of this paper is to
give a contribute to portfolio selection theory and to risk management, through the
combination of the tail diversification concept and the sector performance analysis,
investigating the tail relationships, in particular the lower ones, in a multivariate
framework.

In this point of view, this paper provides a way to compose a portfolio choos-
ing among MSCI (Morgan Stanley Capital International) Sector Weighted Indices,
proposing a Copula-GARCH approach (see [12]).

The selection procedure is based on modeling marginal behaviour of each stock
index returns via a GARCH type model and, after, using a copula function to join
the margins, in order to estimate the multivariate lower tail dependence coefficients.

A particular family of copula functions has been proposed in this work to model
the multivariate distribution of MSCI stock index returns, defined as Multivariate Bi-
parametric (MB) (see [5]), a multivariate extension of Bivariate Biparametric (BB)
family (for a definition, [11]). In particular, the MB1 and MB7 copula functions
have been selected, due to their ability in capturing, asimmetrically, the dependence
between both positive and negative extreme events.

2 Multivariate Biparametric (MB) copulae

The Multivariate Biparametric (MB) copulae belong to the Archimedean family,
defined by a generator function % : I → R+, continuous, decreasing and convex,
such that %(1) = 0 [2].

Let %−1(t) be the inverse of a strict generator of an Archimedean copula, %(t),
(for a definition, see [14])); then, an Archimedean copula can be expressed as

C(u1, . . . , un) = %−1(%(u1) + . . . + %(un)).

Archimedean copulae share the important features to be symmetric and associa-
tive. Two-parameter families, like the MB copulae, can be used to capture different
types of dependence structure, in particular lower or upper tail dependence or both.
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The formulation of MB copulae is derived (see [5]) extending their bivariate def-
inition (e.g. [11])

C(u1, . . . , un) = ψ(− log K (e−ψ−1(u1), . . . , e−ψ−1(un))),

where K is max-infinitely divisible and ψ belongs to the class of Laplace Trans-
forms.

Two-parameter families result if K and ψ are parametrized, respectively, by pa-
rameters κ and θ . If K has the Archimedean copula form, then also C has the same
form.

The MB1 copula is obtained letting K be the Gumbel family and ψ the Laplace
Trasform B (see [11, p. 375]), then

C(u1, . . . , un) =
⎧⎨⎩1 +

[
n∑

i=1

(u−θ
i − 1)κ

]1/κ
⎫⎬⎭

−1/θ

,

where θ > 0, κ ≥ 1. For κ = 1 it becomes the popular Clayton copula.

The generator function is (see [11, p. 152], here denoted as η(s)−1)

%(t) = (t−θ − 1)κ

and its inverse is given by (see [11, p. 153], here denoted as η(s))

%−1(t) = (1 + t1/κ)−1/θ .

The MB7 copula, also known in the bivariate case as Joe-Clayton Copula, can be
derived assuming that K be the Clayton copula and ψ belongs to a class of Laplace
Trasform C (see [11, p. 375]),

C(u1, . . . , un) = 1 −
⎛⎝1 −

[
n∑

i=1

(1 − (1 − ui )
θ )−κ − (n − 1)

]−1/κ
⎞⎠1/θ

,

where κ > 0, θ ≥ 1. The Clayton copula is obtained for θ = 1.
The generator function is defined as (see [11, p. 152], here denoted as η(s)−1)

%(t) = [1 − (1 − t)θ ]−κ − 1

and its inverse is (see [11, p. 153], here denoted as η(s))

%−1(t) = 1 − [1 − (1 + t)−1/κ ]1/θ .
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3 Multivariate Lower Tail Dependence (MLTD)

To choose the prudent combination of assets which can guarantee against a risk of
capital investment loss due to the influence on whole portfolio of a single sector
collapse, it becomes essential to measure the tail dependence, in particular, the as-
sociation between negative returns.

Concordance between less probable negative values of variables is concentrated
on the lower quadrant tails of the joint multivariate distribution function.

In a bivariate context, let Fi (i = 1, 2) be the marginal distribution functions of
two random variables X1 and X2 and let u be a threshold value; then the lower tail
dependence coefficient, λL , is defined as

λL = lim
u→0+ P(F1(X1) ≤ u|F2(X2) ≤ u)

= lim
u→0+ P(U1 ≤ u|U2 ≤ u)

and, hence,

P(U1 ≤ u|U2 ≤ u) = P(U1 ≤ u,U2 ≤ u)

P(U2 ≤ u)
.

Then, the lower tail dependence coefficient can be expressed in terms of copula
as

λL = lim
u→0+

C(u, u)

u
. (1)

It is easy to show that for an Archimedean copula each tail dependence coefficient
(both lower and upper) can be derived using the generator function (e.g. [2], 2004).

Now, considering the financial returns of n assets, X1, . . . , Xn , then the Multi-
variate Lower Tail Dependence (MLTD) coefficient, λ1...h|h+1...n

L , can be interpreted
as the probability of very low returns for h assets given that very low returns have
occurred for the remaining n − h assets. As shown in [5], the MLTD coefficient can
be expressed as

λ
1...h|h+1...n
L =
lim

u→0+ P(F1(X1) ≤ u, . . . , Fh(Xh) ≤ u|Fh+1(Xh+1) ≤ u, . . . , Fn(Xn) ≤ u)

and, in terms of copula and its generator function, is given by

λ
1...h|h+1...n
L = lim

u→0+
Cn(u, . . . , u)

Cn−h(u, . . . , u)
= lim

u→0+
%−1 (n%(u))

%−1 ((n − h)%(u))
.

Exploiting de L’Hôpital theorem to solve the limit, the result is

λ
1...h|h+1...n
L = n

n − h
lim

t→∞
%−1′

(nt)

%−1′
((n − h)t)

. (2)
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For the associative property, the expression holds for each n − 1 ! coefficients in
correspondence of the h ! and n − h ! permutations of the variables X1, . . . , Xn .

Solving the limit for the MB1 Copula, the Multivariate Lower Tail Dependence
(MLTD) coefficient is

λ
1...h|h+1...n
L =

(
n

n − h

)−1/κθ

. (3)

The solution of the MLTD for the MB7 copula leads to

λ
1...h|h+1...n
L =

(
n

n − h

)−1/κ

. (4)

4 An application

The analysis of the multivariate tail dependence has concerned the MSCI (Morgan
Stanley Capital International) World Sector Indices, designed to measure the eq-
uity performance of Industry. Have been selected 22 MSCI indices (July 8th 2002–
July 16th 2007), the SEMICD E&P has been eliminated from the analysis because
from June 2003 does not show any variation.

In this framework, the Inference for Margins (IFM) method has been used, ob-
taining into separate steps the margins and the copula parameters, both via maximum
likelihood estimates.

Firstly, the marginal distributions of each stock index have been independently
derived through a GARCH model with innovations distributed as standardized Stu-
dent’s t . After transforming the standardized residuals into uniform margins, the
Multivariate Biparametric (MB) copulae, MB1 and MB7, have been estimated, in
order to join the margins into a multivariate distribution and, then, to measure the
negative extreme values dependence.

Therefore, in order to choose the copula with the best fit to the data, beyond the
comparison among the log-likelihood functions through the AI C criterion, a multi-
variate extent of [6] has been considered.

Instead of the general null hypothesis that a multivariate data set can be described
by a specified copula

H0 : (X1, X2 . . . , Xn) has copula C

has been selected the auxiliary hypothesis

H∗
0 : S(X1, X2, . . . , Xn) ∼ χ2

n ,

where

S(X1, X2, . . . , Xn) = [%−1(F1(X1))]
2 + [%−1(C(F2(X2)|F1(X1)))]

2 + . . .

+ [%−1(C(Fn(Xn)|F1(X1), F2(X2), . . . , Fn−1(Xn−1)))]
2,
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Table 1. Parameters estimates and lower tail dependence coefficients of the selected MB copulae

Number Best of GoF Statistics Parameters MSCI World λ
1...h|h+1...n
L

of MSCI Fit Copula Sector Indices

II MB1 AD=0.4905 θ = 0.1015 - Marine - λ
1|2
L = 0.0011

K=0.0148 κ = 1 - Biotechnology

III MB7 AD=0.7694 κ = 0.1656 - Marine - λ
1|23
L = 0.0864

K=0.0192 θ = 1.0135 - Biotechnology - λ
12|3
L = 0.0013

- Water Util

IV MB1 AD=1.2189 θ = 0.1763 - Marine - λ
1|234
L = 0.2101

K=0.0196 κ = 1.0456 - Biotechnology - λ
12|34
L = 0.0233

- Water Util - λ
123|4
L = 0.0005

- Oil and Gas

which can be tested by a goodness of fit test statistics, such as the Kolmogorov (K )
or the Anderson-Darling (AD) (Table 1).

Due to computational complexity of high-dimensional copulae estimation, the
selection of MSCI stock index returns in portfolio has been sequentially executed.

At each step, the joint multivariate distribution has been obtained selecting one
of the MB copula functions adopted.

The selection procedure has started from the application of the MB1 and MB7
copula functions to any pair (231) of standardized residuals of GARCH model and,
then, choosing the copula with the best fit to the data; indeed, the pair with the min-
imum lower tail dependence coefficient has been selected.In this first step, the MB1
bivariate copula function and the pair Marine (Transportation Industry of the Indus-
trials Sector) and Biotechnology (Pharmaceuticals, Biotechnology and Life Sciences
Industry of the Health Care Sector) MSCI World Sector Indices have been chosen
(Table 1). This can imply that a single sector collapse does not have any great impact
on the other one.

To choose a tern of assets in portfolio, a further estimation of the trivariate MB1
and MB7 copula functions to any possible set of three standardized residuals of
GARCH has been carried out, given the pair selected in the previous step (20 trivari-
ate copulae estimations). The choice of the trivariate copula, for each triple, has been
performed by the application of AD and K goodness of fit test statistics. The selec-
tion of the triple has been based on the minimum trivariate lower tail dependence
coefficient.

The procedure has followed the same path to add the remaining assets, privi-
leging, at each step, those with the minimum multivariate lower tail dependence
coefficient. Table 1 reports the results at each steps (only for four step).
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Fig. 1. Multiple Scatter Plot of the selected MSCI World Sector Indices

In the last three years (as of July 1st 2010) the Biotechnology Sector has exhib-
ited a positive performance (0.40%) even if the Marine, the Water Utilities (Utilities
Industry of Utilities Sector) and Oil&Gas (Energy Industry of Energy Sector) in-
dustry have displayed a very bad peformance (of, respectively, −14.18%, −5.61%
and −7.81%). This, confirming the analysis results, implies the lowest dependence
of Biotechnology negative extreme returns with respect to the others (see e.g. λ1|2

L ,

λ
1|23
L and λ

1|234
L , Table 1 and Fig. 1).

In the last year (as of July 1st 2010), the bad performance of Oil&Gas (−5.06%)
did not involve the other taken industry sectors (see λ

123|4
L , Table 1), like Biotechnol-

ogy, Water Utilities and Marine, which have shown, conversely, a great performance
of, respectively, 0.26%, 15.01% and 36.061%.

5 Conclusions

The title explains the aim of the work, which consists in to combine a tail diver-
sification portfolio concept with the interest toward sector co-movements. This pa-
per suggests a way to achieve cautious investments in order to reduce the risk that
extreme negative values of financial variables can have any impact on the whole
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portfolio return.The asset allocation is based on the minimum multivariate lower
tail dependence coefficient of joint distribution estimated by means of MB copula
functions family. The interest is focused on sector co-movements of MSCI World
Sector Indices returns, selecting those with the lowest dependence among extreme
values. This implyes that each single (or more) sector collapse does not have any
influence on the other taken industry sectors performance. The last years returns
confirm, indeed, the analysis results.
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TMarginalization and aggregation of
exponential smoothing models in forecasting
portfolio volatility

Giacomo Sbrana and Andrea Silvestrini

Abstract. This paper examines exponentially weighted moving average models for
predicting volatility and assessing risk in portfolios. It proposes a method that iden-
tifies the decay factors of the marginal volatility models for portfolio’s individual
components, without imposing the same smoothing constant across all assets. To
illustrate how the method can be applied, the paper provides an example dealing
with Value-at-Risk calculation, prediction and backtesting evaluation of an equally
weighted portfolio composed of CDS banking indices, which are useful market in-
dicators for credit risk.

Key words: EWMA, aggregation, ARMA, GARCH

1 Introduction

This paper deals with volatility forecasting in portfolios of financial assets. There
are a number of well established approaches that have been applied in the literature.
In this work, the focus is on the Exponentially Weighted Moving Average (EWMA)
model, which is widely used by academics and practitioners to produce forecasts of
volatilities of financial data. The EWMA has been popularized by RiskMetricsTM, a
risk management methodology for measuring market risk developed by J.P. Morgan.
This model features a forecast function which depends on a single smoothing param-
eter: this latter expresses the weight by which past observations are discounted. Its
simplicity is also responsible for its popularity.
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This work contains two contributions. First, in the framework of multivariate
EWMA volatility models, it considers the implied univariate marginal models for
the conditional volatility of the individual components of the portfolio. The marginal
models can be obtained by applying results on marginalization and contemporaneous
aggregation of vector IMA(1,1) models. Second, it presents an example dealing with
Value-at-Risk (VaR) calculation, prediction and backtesting evaluation of an equally
weighted portfolio composed of Credit Default Swap (CDS) banking indices.

The CDS is a swap contract in which the buyer pays the seller a periodic premium
and, in exchange, receives a pay-off if a credit instrument goes into default. This kind
of contract is generally used to facilitate the distribution of risk across a wide range
of investors. In the banking sector, the CDS has achieved great importance in the
latest years. The explosion of the CDS market after mid-2007 reinforces the need of
tools for modelling this credit derivative.

The remainder of the paper is organized as follows. After this introduction, Sec-
tion 2 describes the econometric framework. Section 3 contains some analytical re-
sults on the parameters of the univariate implied marginal models for the individ-
ual components of the portfolio. Section 4 illustrates the empirical application and
presents the main findings.

2 The econometric framework

Consider a portfolio made up of n financial assets. Let the vector of log-returns,
ri,t = ln(Pi,t ) − ln(Pi,t−1), i = 1, 2, . . . , n, given by

rt
(n×1)

= H1/2
t zt . (1)

By assumption, zt is an i.i.d. vector error process such that E(zt) = 0 and E(ztz′
t)

= In. In (1), E(rtr′
t|Ft−1) = Ht =

⎡⎢⎣ h11,t . . . h1n,t
...

. . .
...

hn1,t . . . hnn,t

⎤⎥⎦ is the (n×n) conditional

covariance matrix of rt .1

The dynamics of the Ht matrix can be described using a variety of multivariate
conditional heteroskedasticity models. The modelling strategy for the conditional
volatilities across asset returns has a great practical importance for the portfolio it-
self, for instance if we are interested in computing the VaR at the aggregate level.
Let us denote with r p

t the log-returns of the portfolio, given by the inner product

r p
t = F′rt , (2)

1 We denote by Ft−1 the information set at time t-1.
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where F = (η1, η2, . . . , ηn)
′,
∑n

j=1 η j = 1, is a (n ×1) constant aggregation vector
and η j is the share of asset j in the portfolio. Then the portfolio volatility is given by
the quadratic form

F′Ht F,

where Ht enters directly.
A general problem with multivariate conditional heteroskedasticity models is

that the number of parameters to estimate increases rapidly in high-dimensional
spaces.To construct parsimonious specifications, several solutions have been sug-
gested in the literature, such as imposing strong restrictions on the parameters of the
existing models, or proposing new parameterizations for Ht .

In this paper, in order to model the covariance matrix Ht , we use the extended
CCC-GARCH(1,1) model proposed by [4] for the conditional standard deviations
in Dt

(n×n)
= diag(h1/2

11,t , . . . , h1/2
nn,t ), defined as:

Ht = Dt RDt , (3)

where R = [ρ]i j is a symmetric positive definite matrix of constant conditional
correlations with ones along the diagonal. We use the extended-CCC model because,
with respect to the standard CCC, it allows a richer autocorrelation structure for the
squared returns.

Furthermore, we assume univariate GARCH(1,1) models to parameterize each
element of Dt in (3). Therefore, the conditional volatilities can be written in a vector
form as

ht = ω + Ar(2)t−1 + Bht−1, (4)

where r(2)t = rt 0 rt ,2 ht = (h11,t , . . . , hnn,t )
′ is the (n × 1) vector of conditional

volatilities, ω is a vector of constants and A and B are (n × n) non-negative definite
parameter matrices.

In (4), it is possible to introduce the RiskMetrics EWMA specification (see [6]),
which is perhaps the most widely used conditional volatility model in the financial
industry for measuring market risk. In particular, it suffices to impose in (4) ω = 0
and A + B = In . With these two conditions, each conditional volatility equation
is specified as a zero mean univariate IGARCH(1,1) model.3 The latter condition
seems to be a rather realistic assumption. Indeed, a stylized fact emerging from the
analysis of financial markets is that the volatility process is close to being integrated.

As well known, multivariate GARCH models are characterized by equivalent
VARMA representations. A zero mean multivariate IGARCH(1,1), such as ht =
(In − B)r(2)t−1 + Bht−1, can be re-written as a vector IMA(1,1) model for r(2)t−1

r(2)t = r(2)t−1 + εt + Φεt−1, (5)

2 The operator 0 denotes the Hadamard product.
3 The IGARCH model was introduced by [2]. It implies infinite persistence of the conditional
variance to shocks in squared returns.
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where εt
(n×1)

:= r(2)t − ht is a vector martingale difference sequence with covariance

matrix Σ =
⎡⎢⎣ σ 2

1 . . . σ1n
...

. . .
...

σn1 . . . σ 2
n

⎤⎥⎦ and where −B := Φ =
⎡⎢⎣ φ11 . . . φ1n

...
. . .

...
φn1 . . . φnn

⎤⎥⎦.

We remark that RiskMetricsTM employs a tightly parameterized multivariate
IGARCH model, in particular a scalar multivariate IGARCH. In (5), this restricts
Φ to a diagonal matrix, i.e. Φ = λIn , where λ is a single scalar. The use of the
same decay factor λ across all assets guarantees that the covariance matrix is posi-
tive semi-definite. Yet, this is a rather strong assumption not easy to justify.

3 The implied marginal models

The focus of this paper is on forecasting short-term volatility for the portfolio in (2).
One obvious approach is to work with the aggregate volatility directly. A different
approach consists of modelling and forecasting, equation by equation, the system of
multiple volatilities at asset level. In particular, this requires to estimate ex-ante each
univariate equation contained in (5) and to aggregate ex-post the forecasts.

It is well known that, given the vector IMA(1,1) in (5), each implied marginal
model is a univariate IMA(1,1). Therefore, we can re-parameterize (5) as⎡⎢⎣ r2

1,t
...

r2
n,t

⎤⎥⎦ =
⎡⎢⎣ r2

1,t−1
...

r2
n,t−1

⎤⎥⎦+
⎡⎢⎣ (1 + θ1L) . . . 0

...
. . .

...
0 . . . (1 + θn L)

⎤⎥⎦
⎡⎢⎣ υ1,t

...
υn,t

⎤⎥⎦ , (6)

where L is the usual lag operator. Recalling the properties of the MA(1) processes
as above, each θi in (6) can be expressed as

θi = δi ±
√
δ2

i − 1, i = 1, 2, . . . , n, (7)

where

δi = σ 2
i + φ2

i1σ
2
1 + . . . + φ2

inσ
2
n +∑n

j=1
∑n

k �= j φi jφikσ jk

2(φi iσ
2
i +∑n

k �=i φikσik)
. (8)

That is, the individual MA coefficients θi in (7) are exact analytical functions of
the parameters in (5). Furthermore we can also infer the individual decay factors,
at asset level (λi = −θi , i = 1, 2, . . . , n), without imposing the same smoothing
constant across all returns.
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4 Empirical application

The empirical analysis focuses on VaR calculation, prediction and backtesting eval-
uation of an equally weighted portfolio composed of a EU banks sector CDS index
(5Y) and a US banks sector CDS index (5Y). For both indices, closing prices data
over the period from January 01, 2004, to January 11, 2010, were collected from
Datastream (1572 observations).

Figure 1 shows a graph of the data used. In general, the second part of the sample
puts evidence on the turbulence of financial markets during the last years. It is worth
noting the negative spikes in August 2007 and in September 2008 (Lehman Brothers’
failure), clearly dating the acute period of the recent financial crisis. Therefore, the
choice of the data employed and especially the period of turbulence makes the VaR
analysis more challenging.

Our empirical exercise aims at estimating the 1-day ahead VaR of a long posi-
tion in an equally weighted portfolio containing the two CDS indices. To provide a
forecast of portfolio level VaR it is possible to:

1. Specify a univariate volatility model for the portfolio log-returns r p
t in (2), and

forecast on the basis of the aggregate series (portfolio/aggregate level);
2. Build univariate volatility models for the individual components of the portfolio,

and pool the individual predictions (asset/disaggregate level), namely√
0.52σ 2

U S,t |t−1 + 0.52σ 2
EU,t |t−1 + 2(0.5)2ρU S,EUσU S,t |t−1σEU,t |t−1, (9)

US BANKS SECTOR CDS INDEX 5Y 
EU BANKS SECTOR CDS INDEX 5Y 

2004 2005 2006 2007 2008 2009 2010

50

100
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200
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300 US BANKS SECTOR CDS INDEX 5Y 
EU BANKS SECTOR CDS INDEX 5Y 

Fig. 1. Plot of the US CDS index and EU CDS index
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where σ 2
U S,t |t−1 and σ 2

EU,t |t−1 represent, respectively, the forecast conditional
volatility of the US index and of the EU index, while ρU S,EU is the correlation
between the two indices.

We consider three estimation methods. The first one is the technique suggested
by RiskMetricsTM to produce the volatility and correlation forecasts (in its two vari-
ants). At portfolio level, the decay factor λ is fixed at 0.94 for daily data (0.97 for
monthly data). Alternatively, an estimate of the decay factor is obtained by selecting
that value which minimizes the root mean squared prediction error (RMSE), i.e.

RM SET (λ) =
√√√√ 1

T

T∑
t=2

((r p
t )2 − σ 2

p,t |t−1(λ))
2, (10)

where σ 2
p,t |t−1 is the portfolio forecast volatility.

However, it has recently been shown that the estimation method in (10) is a non-
consistent methodology (see [7]). In fact, the resulting estimator lacks of the usual
asymptotic statistical properties. As an alternative, it is recommended to use the
pseudo maximum likelihood estimator (MLE), which requires to maximize a Gaus-
sian pseudo log-likelihood function with respect to the unknown decay factor. This
is the second estimation method.

These two estimation techniques can be employed both at portfolio level and at
asset level. At asset level, univariate predictions for the individual components can
be obtained and subsequently pooled in order to predict at portfolio level using (9).
Equivalently, at portfolio level, one can apply the estimation techniques directly to
the portfolio log-returns.

Working at asset/disaggregate level, we propose a third method for estimating
the smoothing parameters of the EWMA volatility equations in (6). This is based
on the estimation of a multivariate IMA(1,1) model by approximate methods.4 The
decay rates of the implied marginal models are then recovered as a function of the
MA matrix coefficients, as in (7) and (8).5

The backtesting exercise is carried out by making 1-step ahead forecasts on a fixed
rolling window scheme. The out-of-sample forecasting period considered goes from
01/11/2007 until 11/01/2010.

Tables 1 and 2 display backtesting VaR results using the examined estimation
methods. The tables compare the proportion of exceptions reported by the competing
methods together with some VaR diagnostic test statistics at the significance levels
α = 0.01; 0.025; 0.05; 0.10. In particular, to test whether the hypothesis of “correct
unconditional coverage” holds, we use the likelihood ratio test proposed by [5]; we
also perform the likelihood ratio test for “independence of VaR violations” (see [1]),
which assesses whether or not exceptions are clustered in time. Furthermore, “correct

4 To estimate the vector IMA(1,1) model, we implement the method suggested by [3]. This repre-
sents an indirect procedure that relies on a vector autoregressive (VAR) approximation to the vector
MA process. The maximum VAR lag length chosen is 5.
5 Once the implied moving average coefficients θi (i = 1, 2, . . . , n) have been inferred, it is auto-
matic to recover the λi (i = 1, 2, . . . , n) decay factors, since θi = −λi .
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Table 1. VaR evaluation tests (aggregate level)

RiskMetrics RiskMetrics Student-t
EWMA EWMA EWMA
(min MSFE) (λ set at 0.94) MLE

PORTFOLIO (AGGREGATE LEVEL)
Confidence level (α) 0.1000 0.1000 0.1000
Proportion of exceptions 0.0754 0.0789 0.0789
P-value Unconditional coverage test 0.0419 0.0831 0.0831
P-value Independence test 0.0033 0.0003 0.4298
P-value Conditional coverage test 0.0017 0.0004 0.1631

Confidence level (α) 0.0500 0.0500 0.0500
Proportion of exceptions 0.0386 0.0404 0.0368
P-value Unconditional coverage test 0.1939 0.2748 0.1313
P-value Independence test 0.2634 0.0111 0.7989
P-value Conditional coverage test 0.2301 0.0219 0.3100

Confidence level (α) 0.0250 0.0250 0.0250
Proportion of exceptions 0.0211 0.0193 0.0175
P-value Unconditional coverage test 0.5351 0.3640 0.2287
P-value Independence test 0.2449 0.2003 0.5497
P-value Conditional coverage test 0.4196 0.2916 0.4052

Confidence level (α) 0.0100 0.0100 0.0100
Proportion of exceptions 0.0088 0.0088 0.0053
P-value Unconditional coverage test 0.7634 0.7634 0.2114
P-value Independence test 0.7659 0.7659 0.8585
P-value Conditional coverage test 0.9143 0.9143 0.4508

unconditional coverage” and “independence of VaR violations” are jointly tested by
means of the “correct conditional coverage” (see [1]). Note that Table 1 refers to
the direct portfolio VaR calculation (portfolio/aggregate level). Table 2 refers to the
portfolio’s VaR calculation by estimating each component firstly and pooling the
forecasts afterwards (asset/disaggregate level).

In all cases, we use a non-parametric estimator of the quantile of the time t+1 re-
turn distribution, based on the Kaplan–Meier estimate of the cumulative distribution
function. For a given α, each cell in the table displays the out-of-sample empiri-
cal coverage (i.e. proportion of exceptions) and the p-values of the corresponding
Kupiec and Christoffersen tests. A p-value smaller than α (in boldface) implies a
rejection of the null hypothesis.

In general, comparing Table 1 and Table 2, it seems preferable to forecast at asset
rather than at portfolio level. Interestingly, the estimation method based on the aggre-
gation of the implied marginal IMA(1,1) models outperforms the RiskMetricsTM ap-
proach (in its two versions, i.e. calibrating the decay factor, as in (10), and fixing it at
0.94), either when the portfolio’s VaR is estimated directly or when it is pooled from
the components. In addition, it reports a similar performance when compared with
the MLE. Yet, despite the optimal asymptotic properties of the MLE, the algorithm
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Table 2. VaR evaluation tests (disaggregate level)

RiskMetrics RiskMetrics Aggregation Student-t
EWMA EWMA Vector EWMA
(min MSFE) (λ set at 0.94) IMA(1,1) MLE

ASSET (DISAGGREGATE LEVEL)
Confidence level (α) 0.1000 0.1000 0.1000 0.1000
Proportion of exceptions 0.0842 0.0965 0.0825 0.0860
P-value Unconditional coverage test 0.1977 0.7789 0.1511 0.2536
P-value Independence test 0.0012 0.0000 0.9483 0.6848
P-value Conditional coverage test 0.0023 0.0001 0.3561 0.4799

Confidence level (α) 0.0500 0.0500 0.0500 0.0500
Proportion of exceptions 0.0491 0.0456 0.0456 0.0456
P-value Unconditional coverage test 0.9232 0.6260 0.6260 0.6260
P-value Independence test 0.0504 0.0290 0.1145 0.8529
P-value Conditional coverage test 0.1467 0.0819 0.2556 0.8729

Confidence level (α) 0.0250 0.0250 0.0250 0.0250
Proportion of exceptions 0.0246 0.0263 0.0263 0.0263
P-value Unconditional coverage test 0.9464 0.8418 0.8418 0.8418
P-value Independence test 0.0417 0.0562 0.3674 0.3674
P-value Conditional coverage test 0.1254 0.1584 0.6531 0.6531

Confidence level (α) 0.0100 0.0100 0.0100 0.0100
Proportion of exceptions 0.0123 0.0105 0.0158 0.0140
P-value Unconditional coverage test 0.5972 0.9004 0.2002 0.3614
P-value Independence test 0.6763 0.7206 0.5907 0.6329
P-value Conditional coverage test 0.7971 0.9307 0.3809 0.5883

exhibits several convergence failures, especially at asset level and in the second part
of the sample (after August-2007). Therefore, in this specific application, we claim
that our proposed estimation approach is not only simple to be implemented, but it
also guarantees good performance in VaR prediction.
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TGeneralization of stratified variance reduction
methods for Monte Carlo exchange options
pricing

Giovanni Villani

Abstract. In this paper, we propose a generalization of stratified techniques in order
to minimize the variance of Monte Carlo exchange option simulations. Exchange
options arise quite naturally in a number of significant financial arrangements such
as bond futures contracts, investment performance, spread options, averaged strike
Asian options, and so on.
Exchange options require two volatilities, two dividend-yelds and the correlation
between the assets. It is noteworthy that the reduction of the bi-dimensionality of va-
luation problem to a single stochastic factor requires a better analysis about variance
reduction methods. In particular way, we assume a new a-sampling in the stratified
procedure that allows us to minimize the variance using a pilot simulation. We illus-
trate a set of numerical experiments to verify the accuracy derived by a-sampling.

Key words: Exchange options, Monte Carlo simulations, variance reduction

1 Introduction

Monte Carlo (MC) simulation is used on a daily basis by financial institutions for
pricing financial derivatives products. These simulations must provide precise esti-
mates in a very short period of time. Therefore, the efficiency improvement through
variance reduction is quite important in this context. In our paper, we give some
examples of how efficiency can be improved for pricing exchange options. We ana-
lyse four types of exchange options: the Simple and the Compound European Ex-
change option (SEEO, CEEO), the Pseudo Simple and Pseudo Compound American
Exchange option (PSAEO, PCAEO). Analytic formulas are given for the first three
options, as it is witnessed in [3, 4, 10, 11], but not for the PCAEO. So MC simulations
are an appropriate tool in this case.
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The PCAEO is suitable to model R&D investment opportunities. In fact, R&D
projects often involve considerable cost uncertainty and, at each stage, the company
may decide to exercise the option or not, that is to continue to invest in the project
or to shut it down. So, as several researchers have noted, R&D investments can be
valued as compound exchange options.

Simulation methods were introduced in finance by [1]. Since that time simulation
has been applied to a wide range of pricing problems. In particular way, the pricing
of American options by simulation techniques is an important and difficult task, as
it is surveyed by [9, 12, 13], and so on.

To reduce the variance of MC exchange option simulations, we propose a genera-
lization of stratified technique. In particular way, the evolution of asset ratio P re-
quires a new sampling procedure to concentrate the simulations in the range in which
P is more sensitive. Among the papers where the variance reduction methods are
studied in this context, we cite for instance [2, 5, 6, 7, 8].

The paper is organized as follows. Section 2 presents the pricing of most rele-
vant exchange options through MC approach using a single stochastic factor P . In
Section 3 we propose the generalization of stratified techniques and we also present
some numerical studies. Finally, Section 4 concludes.

2 Pricing exchange options through Monte Carlo simulation

In this section, we present the main results about the exchange options pricing. As
it is well known, exchange options give the holder the right to exchange one risky
asset V for another risky asset D. We assume that the evolutions of assets V and D
under the risk neutral probability Q are given by:

dV

V
= (r − δv )dt + σvd Z∗

v , (1)

d D

D
= (r − δd)dt + σdd Z∗

d , (2)

Cov
(
d Z∗

v , d Z∗
d

) = ρvd dt, (3)

where r is the risk-free interest rate, δv and δd are the corresponding dividend yields,
σ 2
v and σ 2

d are the respective variance rates, Z∗
v and Z∗

d are two Brownian standard
motions under the probability Q with correlation coefficient ρvd .

Applying the Ito’s lemma and after some manipulations, we reach the equation

for the ratio-price P = V
D under a new probability measure

∼
Q equivalent to Q:

d P

P
= −δ dt + σd Z p, (4)
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where δ = δv −δd , σ =
√
σ 2
v + σ 2

d − 2σvσdρvd and Z p is a Brownian motion under
∼
Q. Using the log-transformation, we obtain the equation for the risk-neutral price P :

Pt = P0 exp

{(
−δ − σ 2

2

)
t + σ Z p(t)

}
. (5)

Then, we begin considering the pricing of SEEO. Denoting by s(V , D, T ) the
value at initial time t = 0 of a SEEO with maturity T , we price a SEEO as:

s(V , D, T ) = e−rT EQ[max(0, VT − DT )]

= D0e−δd T E ∼
Q

[gs(PT )], (6)

where gs(PT ) = max(PT − 1, 0). So, it’s possible to implement the MC simulation
to approximate the SEEO:

s(V , D, T ) ≈ D0e−δd T

(
1

n

n∑
i=1

gi
s(P̂ i

T )

)
, (7)

where n is the number of simulated-paths effected, P̂ i
T for i = 1, 2 . . . , n are the

simulated values and gi
s(P̂ i

T ) = max(0, P̂ i
T − 1) are the n simulated payoffs of

SEEO.
The CEEO is a derivative in which the underlying asset is a SEEO s(V , D, τ )

whose time to maturity is τ = T − t1 with t1 < T , the exercise price is a proportion
q of asset D at time t1 and the expiration date is t1. We price the CEEO as:

c(s, q D, t1) = e−rt1 EQ[max(s(Vt1 , Dt1 , τ ) − q Dt1 , 0)]

= D0e−δd t1 E ∼
Q

[gc(Pt1)], (8)

where

• gc(Pt1) = max[Pt1 e−δv τ N (d1(Pt1, τ )) − e−δdτ N (d2(Pt1, τ ) − q, 0];
• N (d) is the cumulative standard normal distribution;

• d1(P, t) = log P+
(

σ2
2 −δ

)
t

σ
√

t
; d2(P, t) = d1(P, t) − σ

√
t .

Using MC simulation, we can approximate the value of CEEO as:

c(s, q D, t1) ≈ D0e−δd t1

(∑n
i=1 gi

c(P̂ i
t1)

n

)
, (9)

where gi
c(P̂ i

t1), for i = 1 · · · n, are the n simulated payoffs of CEEO.
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Let S2(V , D, T ) the value at time t = 0 of a PSAEO that can be exercised at time
T
2 or T . We can price the PSAEO as:

S2(V , D, T ) = e−r T
2 EQ[(VT/2 − DT/2)1ε] + e−rT EQ[max(0, VT − DT )1ε̄]

= D0

(
e−δd

T
2 E ∼

Q
[gs(PT/2)1ε] + e−δd T E ∼

Q
[gs(PT )1ε̄]

)
, (10)

where gs(PT/2) = (PT/2 − 1), ε = (PT/2 ≥ P∗
1 ) and P∗

1 is the critical value of P
that makes indifferent the exercise or not at time T

2 . By MC approach, we have that:

S2(V , D, T ) 1 D0

(∑
i∈A gi

s(P̂ i
T/2)e

−δd T/2 +∑i∈ Ā gi
s(P̂ i

T )e−δd T

n

)
, (11)

where A = {i = 1 . . . , n s.t. P̂ i
T/2 ≥ P∗

1 }.
Finally, we examine the PCAEO, whose underlying asset is a PSAEO that may

be exercised at mid-life time �t = t1+T
2 or at final time T , the exercise price is

a proportion q of asset D at time t1 and the expiration date is t1. So, we price the
PCAEO as:

c2(S2, q D, t1) = e−rt1 EQ[max(S2(Vt1 , Dt1 , τ ) − q Dt1 , 0)]

= D0e−δd t1 E ∼
Q

[gC (Pt1)], (12)

where:

gC = max[Pt1e−δv τ N2

(
−d1

(
Pt1

P∗
2
,
τ

2

)
, d1(Pt1 , τ ),−ρ

)
+ Pt1e−δv

τ
2 N

(
d1

(
Pt1

P∗
2
,
τ

2

))
− e−δdτ N2

(
−d2

(
Pt1

P∗
2
,
τ

2

)
, d2(Pt1 , τ ),−ρ

)
− e−δd

τ
2 N

(
d2

(
Pt1

P∗
2
,
τ

2

))
− q; 0],

N2(a, b, ρ) is the standard bivariate normal distribution and P∗
2 is the critical value

that makes indifferent the exercise or not of PSAEO at time �t . Using MC simula-
tion, we can approximate the value of PCAEO as:

c2(S2, q D, t1) ≈ D0e−δd t1

(∑n
i=1 gi

C (P̂ i
t1)

n

)
. (13)

3 Generalization of stratified variance reduction methods

In this section we propose a generalization of stratified sampling in order to improve
on the speed and the efficiency of simulations and we report the numerical results of
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SEEO, CEEO, PSAEO and PCAEO. The idea of stratified sampling is to subdivide
the sampling domain into small intervals, for each of which a representative value of
the function is selected. Stratified sampling can be of advantage when the function
which is being sampled varies very little in any subdomain and each evaluation is
rather CPU-time expensive. Also, the accuracy of any one calculation is limited by
the stratification, whence taking more and more samples will not make the result
eventually converge to the exact answer. So the idea is to pick the optimal splitting
of the sampling domain with a pilot MC simulation. The results obtained shown evi-
dently that, when the exchange options are valued using a single stochastic factor P ,
the optimal a-sampling requires an a > 0, 7. The intervals into which the domain is
partitioned do not have to be equal size.

To compute the simulations, we assume that the number of simulated-paths n is
equal to 500 000 for SEEO and CEEO and 100 000 for PSAEO and PCAEO. The
parameter values are σv = 0.40, σd = 0.30, ρvd = 0.20, δv = 0.15, δd = 0
and T = 2 years. Furthermore, to compute the CEEO and PCAEO we consider that
t1 = 1 year and the exchange ratio q = 0.10. Tables 1, 2 and 3 summarize the
numerical results of SEEO, CEEO and PSAEO, respectively. For these options, we

Table 1. Simulation Prices of Simple European Exchange Option (SEEO)

V0 D0 SEEO MC σ̂ 2
mc â σ̂ 2

st Effst â Effgst n1 n2 n3

180 180 19.8354 19.8513 0.1156 0.85 0.0116 4.99 (0.83; 0.96) 27.31 89 042 199 582 211 375
180 200 16.0095 16.0557 0.0801 0.88 0.0063 6.30 (0.87; 0.97) 32.72 117 989 188 445 193 565
180 220 12.9829 12.9477 0.0555 0.90 0.0035 7.90 (0.89; 0.97) 41.69 91 571 168 467 239 960
200 180 26.8315 26.8301 0.1668 0.83 0.0201 4.15 (0.81; 0.96) 21.14 129 095 197 294 173 610
200 200 22.0393 22.0524 0.1159 0.85 0.0115 5.02 (0.83; 0.96) 27.24 90 383 200 044 209 571
200 220 18.1697 18.1491 0.0824 0.87 0.0068 6.10 (0.87; 0.97) 31.07 128 607 182 079 189 312

Table 2. Simulation Prices of Compound European Exchange Option (CEEO)

V0 D0 CEEO MC σ̂ 2
mc â σ̂ 2

st Effst â Effgst n1 n2 n3

180 180 11.1542 11.1225 0.0280 0.84 0.0037 3.82 (0.80; 0.96) 19.81 123 546 207 903 168 549
180 200 8.0580 8.0547 0.0170 0.87 0.0017 4.92 (0.84; 0.96) 26.95 106 353 169 301 224 344
180 220 5.8277 5.8288 0.0104 0.89 0.0008 6.36 (0.88; 0.97) 34.63 116 580 163 314 220 104
200 180 16.6015 16.5776 0.0458 0.82 0.0072 3.17 (0.75; 0.94) 16.44 121 997 180 152 197 850
200 200 12.3935 12.3839 0.0283 0.84 0.0037 3.85 (0.81; 0.96) 12.40 143 748 187 833 168 418
200 220 9.2490 9.2380 0.0178 0.87 0.0019 4.75 (0.83; 0.96) 26.68 93 869 188 104 218 026

Table 3. Simulation Prices of Pseudo Simple American Exchange Option (PSAEO)

V0 D0 PSAEO MC σ̂ 2
mc â σ̂ 2

st Effst â Effgst n1 n2 n3

180 180 23.5056 23.5551 0.0838 0.85 0.0121 3.45 (0.81; 0.91) 8.96 71 862 9 480 18 657
180 200 18.6054 18.4479 0.0578 0.88 0.0078 3.68 (0.82; 0.89) 7.24 64 859 12 907 22 233
180 220 14.8145 14.9991 0.0422 0.89 0.0049 4.29 (0.81; 0.89) 8.29 56 642 15 562 27 795
200 180 32.3724 32.2730 0.1181 0.82 0.0190 3.11 (0.76; 0.92) 9.18 71 684 11 258 17 057
200 200 26.1173 26.3759 0.0857 0.85 0.0122 3.51 (0.82; 0.91) 8.65 74 480 6 864 18 654
200 220 21.1563 21.1992 0.0603 0.88 0.0083 3.63 (0.81; 0.90) 8.19 63 461 15 642 20 895
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Table 4. Simulation Prices of Pseudo Compound American Exchange Option (PCAEO)

V0 D0 MC σ̂ 2
mc â σ̂ 2

st Effst â Effgst n1 n2 n3

180 180 13.3422 0.0387 0.84 0.0031 6.30 (0.80; 0.95) 19.39 28 676 32 573 38 749
180 200 9.7400 0.0227 0.87 0.0015 7.42 (0.84; 0.96) 24.17 25 650 32 860 41 488
180 220 7.0386 0.0142 0.89 0.0008 8.83 (0.88; 0.97) 31.02 28 793 30 900 40 306
200 180 19.7751 0.0608 0.80 0.0060 5.02 (0.76; 0.94) 15.22 30 384 32 763 36 851
200 200 15.1163 0.0395 0.83 0.0032 6.10 (0.80; 0.95) 19.83 28 195 33 025 38 778
200 220 11.0078 0.0237 0.86 0.0017 6.88 (0.84; 0.96) 22.84 28 733 31 800 39 465

Table 5. Simulation Prices of PCAEO assuming D0 = 180 and V0 = 180

σv σd ρ δv δd t1 T MC â εn Effst â εn Effgst

0.60 0.30 0.20 0.15 0.00 1 2 25.1149 0.84 0.0011 5.58 (0.76; 0.94) 8.6355e-06 15.98
0.80 0.30 0.20 0.15 0.00 1 2 38.6892 0.84 0.0017 5.15 (0.77; 0.93) 4.6578e-06 13.92
0.40 0.50 0.20 0.15 0.00 1 2 21.8158 0.83 0.0009 5.41 (0.81; 0.95) 2.5094e-06 14.59
0.40 0.70 0.20 0.15 0.00 1 2 33.9309 0.86 0.0015 5.79 (0.80; 0.94) 4.0157e-06 14.20
0.40 0.30 -0.50 0.15 0.00 1 2 24.7402 0.84 0.0011 5.76 (0.76; 0.94) 2.7135e-06 16.78
0.40 0.30 0.50 0.15 0.00 1 2 7.8219 0.85 0.0004 6.99 (0.78; 0.94) 7.9080e-07 25.90
0.40 0.30 0.20 0.30 0.00 1 2 4.9156 0.91 0.0003 10.71 (0.90; 0.98) 5.9657e-07 34.56
0.40 0.30 0.20 0.50 0.00 1 2 0.9726 0.97 0.0001 29.19 (0.97; 0.99) 1.3942e-07 97.74
0.40 0.30 0.20 0.15 0.15 1 2 24.2587 0.70 0.0009 4.85 (0.72; 0.92) 2.6739e-07 12.15
0.40 0.30 0.20 0.15 0.30 1 2 38.8102 0.72 0.0013 3.73 (0.62; 0.86) 4.3635e-06 8.45
0.40 0.30 0.20 0.15 0.00 1 3 12.5504 0.83 0.0005 5.71 (0.76; 0.94) 1.3003e-06 17.68
0.40 0.30 0.20 0.15 0.00 1 4 11.5624 0.82 0.0004 5.36 (0.77; 0.94) 1.2270e-06 15.74
0.40 0.30 0.20 0.15 0.00 2 3 14.6225 0.88 0.0008 7.74 (0.89; 0.95) 2.1161e-06 17.17
0.40 0.30 0.20 0.15 0.00 2 4 13.5659 0.88 0.0007 7.32 (0.78; 0.94) 1.6191e-06 23.15

can compare the simulated values with the theoretical ones using [10, 3, 4] models,
respectively. At last, Tables 4 and 5 contain the numerical results about the PCAEO.
For this option we do not have an analytic formula. The pricing of PCAEO is very
important in real options context to value R&D investments. So, Table 5 analyses
the variance reduction and the accuracy letting varying all the parameters.

By (5), it results that Y = ln( Pt
P0

) follows a normal distribution with mean (−δ −
σ 2

2 )t and variance σ 2t . So, the random variable Y can be generate by inverse of the

normal cumulative distribution function Y = F−1(u; (−δ− σ 2

2 )t, σ 2t) where u is a

function of a uniform random variable U [0, 1]. As the simulated prices P̂ i
t depend by

random value ui , we write henceforth that the SEEO, CEEO, PSAEO and PCAEO
payoffs gi

k , for k = s, c,C , depend by ui .
For each simulation, we compute the variance

σ̂ 2
mc =

∑n
i=1

(
gi

k(ui )
)2

n
−
(∑n

i=1 gi
k(ui )

n

)2

without any reduction method. In particular way, about the PCAEO simulations re-
ported in Table 5, we compute the standard error εn = σ̂√

n
. It is a measure of accu-
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rancy of MC simulation and it is usually estimated as the realised standard deviation
of the simulation divided by the square root on the number of iterations.

First of all, we propose a simple stratified sample (ST) with two intervals [0, a]
and [a, 1]. In particular way, we consider the piecewise agi

k(u1,i )+ (1 − a)gi
k(u2,i )

where u1 ∼ U [0, a] and u2 ∼ U [a, 1], as an individual sample.The estimator of sev-
eral exchange option payoffs is θ̂st = 1

n

(
a
∑n

i=1 gi
k(u1,i ) + (1 − a)

∑n
i=1 gi

k(u1,i )
)
.

Let denote by σ̂ 2
1 = var [gk(u1)] and by σ̂ 2

2 = var [gk(u2)]. As u1,i and u2,i are

i.i.d., the variance with stratified sampling is σ̂ 2
st = a2 σ̂ 2

1
n + (1 − a)2 σ̂ 2

2
n . Therefore,

we obtain a dramatic improvement with respect to MC variance.
In order to split the interval [0, 1], considering the payoffs gk of several exchange

options, we pick the optimal â that allows us to minimize the variance:

â = min
a

σ̂ 2
st . (14)

To solve (14), we use a pilot MC simulation with a number of simulations na =
10 000 . In this way we endogenize the choice of a. Moreover, in order to compute the
variance reduction improvement, we observe that the total function evaluations is 2n
since we generate n uniform variates both in the interval [0, a] and [a, 1]. Therefore,
the MC variance should be compared with the same number of simulations. We

can determine the efficiency index Effst = σ̂ 2
mc/2n

σ̂ 2
st/n

. As it shown in Tables 1-5, the

improvement using the simple stratified method is approximately five for SEEO,
four for CEEE and PSAEO, six for PCAEO. To give an idea of computation time,
using a Pentium IV computer, it takes about three seconds to compute the SEEO,
CEEO, ten seconds for the PSAEO and four minutes for the PCAEO.

Finally, we consider the general stratified sample (GST) subdividing the inter-
val [0, 1] into m subintervals, so that a ∈ Rm+1 and in particular a0 = 0 and
am = 1. To determine the optimal vector a, we implement a pilot MC simula-
tion with na = 10 000. So, denoting by σ̂ 2

j = var [gk(u j )] for j = 1 · · · m

where u j,i ∼ U [a j−1, a j ], i = 1 · · · na are i.i.d., the variance will be σ̂ 2
na ,m =

1
na

(∑m
j=1(a j − a j−1)

2σ̂ 2
j

)
. We choice the optimal vector â, that allows us to min-

imize the variance:
â = min

a
σ̂ 2

na ,m . (15)

After that, we need to determine the number of random variables n j , for j =
1 · · · m with

∑m
j=1 n j = n, uniform on the corresponding interval u j,i ∼

U [a j−1, a j ], i = 1, 2, . . . , n j . Using the GST, the estimator of several exchange
option payoffs is θ̂stg = ∑m

j=1(a j − a j−1)
1

n j

∑n j

i=1 gi
k(u j,i ). Since all the u j,i are

i.i.d., the variance using the GST is given by σ̂ 2
gst = ∑m

j=1(a j − a j−1)
2 σ̂ 2

j
n j

. There-
fore, we have to solve the following problem:⎧⎨⎩ min

∑m
j=1(a j − a j−1)

2 σ̂ 2
j

n j
,

sub
∑m

j=1 n j = n.
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Using the method of Lagrange multipliers, the optimal sample sizes within intervals

are n j = n
(a j −a j−1)

√
σ̂ 2

j∑m
j=1(a j −a j−1)

√
σ̂ 2

j

, j = 1 · · · m. For instance, we consider the opportu-

nity to split the interval [0, 1] in three convenient subintervals (m = 3). We have
to determine the optimal vector â = (a1, a2), since a0 = 0 and a3 = 1, that allows
us to minimize the variance σ̂ 2

na ,3
= 1

na
(a2

1 σ̂
2
1 + (a2 − a1)

2σ̂ 2
2 + (1 − a2)

2σ̂ 2
3 . Ta-

bles 1–5 summarize the results about the optimal vector â, the number of simulations

n j and the efficiency gain Effgst = σ̂ 2
mc∑m

j=1 n j σ̂
2
stg

. In our numerical examples, we ob-

tain approximately variance reduction factors of 27 for SEEO, 21 for CEEO, 9 for
PSAEO and 20 for PCAEO. The variance reduction is better than stratified sample,
but in terms of computation times, the GTS with m = 3 takes about ten seconds
for the SEEO and CEEO, thirty seconds for the PSAEO and seven minutes for the
PCAEO.

4 Conclusions

In this paper, we have shown a generalization of stratified techniques in order to
improve the MC simulation for exchange options pricing. Using the delivery asset D
as numeraire, we have reduced the bi-dimensionality of evaluation to one stochastic
variable P . The particular evolution of asset P requires a better analysis of variance
reduction methods. In particular way, we have proposed an a-sampling of stratified
method that allows to minimize the variance, and so to improve the efficiency, with
a pilot simulation. Finally, we have presented some numerical examples, focusing
on the pricing and the variance reduction of PCAEO.
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TPrice discovery in a dynamic structural model

Lei Wu and Hans van der Weide

Abstract. Foreign banks have been quoting as market makers for more than 10 years
in China’s interbank bond market. This paper proposes a dynamic structural model
for quotes in tick time, which can capture the full dynamic process of price discovery,
to measure the price discovery contributions of these foreign banks and Chinese
local dealers. Empirical analysis shows that foreign banks can quickly adjust their
quotes to converge to the new equilibrium and contribute more to price discovery
than Chinese local dealers.

Key words: Price discovery, foreign banks, Chinese interbank bond market

1 Introduction

To further deregulate the domestic bond market, China has licensed some foreign
banks to act as market makers in China’s interbank bond market. These market mak-
ers boost liquidity by continuously quoting bid and ask with the aim of profiting on
the spread. Do these foreign banks contribute more to price discovery than Chinese
local dealers? This paper will focus to address this issue.

Widely used measure of price discovery is the information share introduced by
[5], but there has been substantial confusion over what it really implies. In fact, a
clear interpretation of price discovery is only possible in a structural model, in which
the sources of shocks are identified. Therefore, the aim of this paper is to introduce
a dynamic structural model for quotes in tick time.
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2 Traditional structural models

Consider M markets trading the same asset. Let Pt = (p1,t , p2,t · · · pM,t )
′
M×1 de-

note the M×1 vector of asset prices.According to Wold representation, price change
�Pt has a multivariate moving average representation:

�pt = �(L)et = et + �1et−1 + �2et−2 · · · , (1)

where �(L) = ∑∞
k=0 �k Lk , �0 = IM , and et is a M ×1 vector satisfying E[et ] = 0

and

E[et és] =
{

0 if t �= s
� otherwise.

The Permanent-Transitory decomposition applied to (1) yields

pt = p0 + �(1)
t∑

j=0

e j + st , (2)

where �(1) = ∑∞
k=0 �k , st = (s1,t , s2,t · · · sM,t )

′
M×1 = �∗(L)et , and �∗

k =
−∑∞

j=k+1 � j .
The matrix �(1) contains the cumulative long-run impact of et on prices. Since

M markets trade the same asset, the long-run impacts of an et on each of the prices
should be identical. Thus, (2) is written as

pt = p0 + lmt + st , (3)

where l = (1, 1 · · · 1)′M×1, mt = mt−1 + ηP
t .

The (3) shows that each of the prices is composed of an efficient price mt , a pricing
error si,t and a constant pi,0. The efficient price is driven by permanent shock ηP

t .
The pricing error si,t captures any stochastic deviation of the price from its current
efficient price. The constant pi,0 reflects any non-stochastic difference between the
price and its efficient price.

As mentioned by [7], all the pricing error si,t relate to two types of trading fric-
tions: information-related and non-information-related trading frictions. Many arti-
cles focus on identifying si,t and typical examples are [3,7], but all these models
have a common structure given by

pi,t = mt + si,t ,

mt = mt−1 + ηP
t ,

si,t = bP
i ηP

t + ηT
i,t , (4)
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Fig. 1. Evolution of the price pi,t of a one-unit permanent shock at time t1. Here, assume the initial
value pi,t0 = 0

where the pricing errors si,t is related to permanent shock ηP
t and its own transitory

shock ηT
i,t . Furthermore, the representation for �pi,t from (4) is

�pi,t = ηP
t + bP

i ηP
t + ηT

i,t − bP
i ηP

t−1 − ηT
i,t−1, (5)

So the evolution of price pi,t of a one-unit permanent shock at time t1 can be
drawn as Fig. 1. Though the market price may overreact (as Fig. 1) or underreact re-
sponding to new information, it will be corrected to the true value at next time. Thus,
there is an implicit constraint: at time t , previous efficient price mt−1 is known to
all market makers, and price convergence to new equilibrium can always be finished
within two periods.

3 A dynamic structural model for quotes in tick time

Many phenomena suggest autoregressive forms of pricing error st , such as slowly
revealed information, herding effect, price discreteness and trading frictions from
the daily limit. Based on this, we construct a dynamic structural model for quotes
in tick time. Consider M dealers issue bid and ask quotes, which arrive at times t�
(� = 1, . . . , L). Let q� be the 2M × 1 vector of all standing quotes at time t�, where
the bid (ask) of dealer i corresponds to element 2i − 1 (2i) of q�. Our model can be
described as

q� = c + lm� + s�,

m� = m�−1 + σ(τ�)
δr�,

s� = %s�−1 + ασ(τ�)
δr� + ηT

� , (6)

where l = (1, 1 · · · 1)′2M×1, r ∼ N (0, 1), and

var(ηT
� ) =

⎛⎜⎝ �1
. . .

�M

⎞⎟⎠ ,
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where each �i is a 2 × 2 matrix, measuring the covariance of bid and ask quotes of
dealer i . According to [3], bid and ask quotes of the same dealer are nearly uncor-
related, so we only estimate the diagonal elements �i,b and �i,a . The difference of
element 2i and element 2i − 1 of c measures the average bid-ask spread for dealer
i . 2M × 1 vector α is the asymmetric information vector measuring the temporary
deviations from permanent shocks.

Efficient price m� is assumed to follow a random walk driven by σ(τ�)
δr�, i.e.

ηP
� = σ(τ�)

δr�. τ� is the duration between two consecutive quote arrivals, measured
by t� − t�−1. According to [2,4], duration can affect the volatility of efficient price.
Thus, given r ∼ N (0, 1) we can specify volatility of efficient price as a function of
duration and estimate the parameter δ to test for the time scale in which the efficient
price evolves.

A parameter matrix % is designed to test for the autoregressive form of pricing
error. At time t previous efficient price m�−1 is not a common knowledge and dealers
need to use previous quotes to adjust their expectation of previous efficient price.
Thus, pricing error in our model is a combination of the information-related friction
ασ(τ�)

δr�, transitory shock ηT
� , and the autoregressive part %s�−1 which measures

the deviations of dealers’ expectation of previous efficient price to its true value.
The representation for price changes in our model is

�qt = [l + (1 − L)(I − %L)−1α]σ(τ�)
δr� + (1 − L)(I − %L)−1ηT

� . (7)

When % is set to meet the convergence conditions, the long-term cumulative
impact of a one-unit permanent shock ηP

� (here ηP
� = σ(τ�)

δr�) on price change is
1, and the long-term cumulative impact of a one-unit transitory shock is 0. Therefore,
the price discovery in (7) is an impulse response function rather than a traditional
static measure as in (5).

4 Data and methodology

The samples consist of four bonds which are the ones quoted and traded most actively
in sample period. According to [6], we divide all dealers into three types: state-
owned banks, foreign banks and institutional brokers1.The quotes data contain all
quotes issued from Jan 2, 2008 to Aug 30, 2008. The dataset comes from Wind Info,
a leading financial data provider in China. Table 1 shows that the average quote
duration is about 20 minutes and foreign banks have relatively small quote ratios.

We estimate the model by putting it in state space form and define efficient price
m� as a state vector. The initial observation of each day begins with the second quote,
so it will not reach back to the prior day. Since every dealer uses the previous quotes
to deduce a unique expectation of previous efficient price, the row vectors 2i − 1
and 2i of % should be identical. Meanwhile, we assume that every dealer uses the
midpoints of other dealers’ previous quotes to make prediction, so the parameters
estimated in % form a 3×3 matrix instead of a 6×6 matrix. It is also arguable to let

1 Institutional brokers here include city commercial banks, security companies and other dealers.
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Table 1. Descriptive statistics for the selected bonds

Code
(Name)

Dealer
Typea

Dealers Involved Average
Duration

Quote
ratio(%)b

030001 1 Construction Bank, Mingsheng Bank 9.7 30.6
(National 2 Citibank, HSBC 22.0 25.0
bond) 3 Bank of Nanjing, Bank of Hangzhou, Postal and

Saving Bank
23.2 37.6

050005
(National

1 Merchant Bank, Bank of China, Construction Bank,
Agriculture Bank

15.6 47.3

bond) 2 Citibank, JPMorgan 26.3 24.7
3 Bank of Nanjing, Industrial Bank, China International

Capital Corporation
30.6 27.3

070309
(Export-

1 Construction Bank, Bank of China, Merchant Bank,
CITIC Bank

18.9 51.3

-import 2 BNPPARIBAS, HSBC, Citibank 15.6 27.0
bank bond) 3 Bank of DongguanBank of Guangdong, CITIC Secu-

rity
20.9 20.9

0700008 1 Everbright Bank, Bank of China, Merchant Bank 31.9 42.3
(Special 2 JPMorgan 13.8 1.4
treasury) 3 Bank of Beijing, Hengfeng Bank, Bank of Hangzhou,

Bank of Shanghai, Bank of Xi’an, Postal and Saving
Bank

20.5 55.9

a “1” denotes state-owned banks; “2” denotes foreign banks; “3” denotes institutional brokers.
b Quote ratio is the total number of quotes issued by a type of dealers divided by the total number
of all dealers’ quotes. The unit of duration is minute.

the elements 2i −1 and 2i of α be identical, only leaving ηT
� unrestricted for dealers’

bid and ask quotes.

5 Results

5.1 Parameter estimates

Table 2 presents the estimation results. We find δ significantly negative. A negative
value for δ implies that periods with short durations are periods with higher volatil-
ity. This provides evidence for the price discovery process evolving in tick time
as suggested by [1], who show that long durations convey little or no information.
Most parameters in the matrix % are significantly positive, indicating the existence
of autoregressive form of pricing errors. Some insignificant parameters in matrix
%, especially in the third column of %, indicate that previous quotes of institutional
brokers have no significant effect on the price adjustments of other dealers.

The fourth column of Table 2 reports estimates for the asymmetric information
vector α. Most of our estimated α are negative,which is different from the result
of [3]. That is because in China’s interbank bond market, dealers are mainly com-
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Table 2. Estimation results a

Bond code δ % α �b �a

030001 −0.003
(0.001)

⎡⎢⎢⎢⎢⎣
0 0 0

0.453
(0.167)

0.199
(0.105) 0

0.305
(0.069)

−0.018
(0.006)

0.794
(0.036)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

−0.257
(0.014)

−0.311
(0.090)

−0.098
(0.017)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1.54
(0.289)

1.49
(0.485)

2.43
(0.191)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.00
(0.206)

1.07
(0.357)

1.82
(0.120)

⎤⎥⎥⎥⎥⎦

050005 −0.881
(0.021)

⎡⎢⎢⎢⎢⎣
0.093
(0.011) 0 0

0.101
(0.006)

0.247
(0.007) 0

0.520
(0.072)

0.197
(0.002)

0.694
(0.023)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

−0.301
(0.035)

−0.330
(0.000)

−0.576
(0.144)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.26
(0.119)

0.14
(0.066)

0.44
(0.121)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.22
(0.109)

0.23
(0.085)

0.25
(0.103)

⎤⎥⎥⎥⎥⎦

070309 −0.018
(0.001)

⎡⎢⎢⎢⎢⎣
0.704
(0.004)

0.160
(0.000)

0.001
(0.000)

0.161
(0.003)

0.364
(0.007)

0.002
(0.000)

0.339
(0.001)

−0.206
(0.001)

0.682
(0.004)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

−0.283
(0.002)

−0.342
(0.003)

−0.979
(0.010)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.85
(0.203)

1.07
(0.257)

1.04
(0.301)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.82
(0.211)

1.03
(0.209)

1.08
(0.300)

⎤⎥⎥⎥⎥⎦

0700008 −0.010
(0.002)

⎡⎢⎢⎢⎢⎣
0.553
(0.130) 0 0

0.045
(0.002)

−0.267
(0.000)

0.032
(0.048)

0.451
(0.003)

0.312
(0.000)

0.360
(0.000)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

−0.571
(0.004)

0.098
(0.004)

−0.322
(0.001)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1.02
(0.211)

0.99
(0.393)

0.87
(0.099)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1.97
(0.401)

1.04
(0.353)

2.56
(0.191)

⎤⎥⎥⎥⎥⎦
a With state-owned banks quotes ordered first, foreign banks quotes second and institutional brokers
quotes last, parameters significant at the 10% level are reported in the table, insignificant ones are
denoted as 0. Standard errors are in parentheses.

mercial banks. They have the same long-term bond investment strategy and tend to
underreact responding to new information.

The fifth and sixth columns of Table 2 show the estimates of transitory shock vari-
ance. Since we estimate bid and ask separately, �b and �a are both reported. A low
transitory shock variance indicates that a dealer can track efficient price closely. In
general, foreign banks have the lowest transitory shock variance, while institutional
brokers have largest one.

5.2 Price discovery process

This section presents the price discovery processes for the selected bonds. We plot
impulse responses of dealers’ quotes to a one-unit permanent shock, by iterating for-
ward on the estimated model in (7). In terms of the tick time required for the system
to converge to a new equilibrium, the impulse responses are plotted for 12 intervals.
Since the quote durations are about 20 minutes on average, 12 intervals, i.e. 240 min-
utes, are normal trading hours of a trading day. While results differ somewhat across
the various plots in Fig. 2, convergence to a new equilibrium always occurs within
about 12 intervals, i.e. a trading day.
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q

q

q

q

Fig. 2. Impulse response functions. The figures trace the long run impact of a one-unit permanent
shock in the quotes of state-owned banks, foreign banks and institutional brokers respectively, by
iterating forward on the estimated model in (7). Here, assume initial value q�0 = 0

Figure 2 shows that no type of dealers has advantage in current new information,
while foreign banks quotes accommodate permanent shocks as quickly as possible
in the following adjustments. In 070309, it is very striking that foreign banks can
adjust their quotes to new equilibrium within about 4 intervals, while it takes a long
time for local dealers to finish their adjustments. In our selected bonds, almost all of
adjustments can be finished within about 4 intervals in foreign banks quotes, while
that always take about 12 intervals, i.e. a trading day, for institutional brokers.

5.3 Impulse response to transitory shocks

Figure 3 shows how a dealer responds to the transitory shocks of other dealers. While
results differ somewhat across these impulse response functions, the value to which
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q
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Fig. 3. Impulse response functions. The figures trace the long run impact of a one-unit transitory
shock in the quotes of state-owned banks, foreign banks and institutional brokers respectively, by
iterating forward on the estimated model in (7). “1” denotes state-owned banks; “2” denotes foreign
banks; “3” denotes institutional brokers. Here, assume initial value q�0 = 0

these plots converge is the expected value “0”. These impulse response functions
can help us to trace out the degree of persistence of these transitory shocks.

In Fig. 3, one can see that state-owned banks have larger impact on institutional
brokers than on foreign banks. One exception is 030001 in which the earlier re-
sponse of foreign banks is larger than that of institutional brokers, but this larger
impact can be eliminated more quickly. Foreign banks’ transitory shocks can also
have some effect on other dealers, as in 050005 and 0700008, but no apparent ef-
fect on state-owned banks. Institutional brokers’ transitory shocks almost have no
effect on other dealers. All these effects prove that price discovery occurs slowly
in institutional brokers and their quotes contain too much non-information-related
components.
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6 Conclusions

This paper introduces a dynamic structure model for quotes in tick time, which in-
corporates the autoregressive form of pricing error and is constructed as the impulse
response form to trace out the propagating mechanism of permanent shocks and tran-
sitory shocks. Based on this model, empirical result shows significant evidence that
foreign banks can quickly adjust their quotes to converge to the new equilibrium and
contribute more to price discovery than Chinese local dealers.
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