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       General Introduction   

 The notion of chance has always been present in human culture from earliest 
 antiquity, and all peoples have used a wide variety of games in which chance plays 
a relatively important role (David 1955). For example, traces of the game of knuckle-
bones 1  can be found during the First Dynasty in Egypt as early as 3500 B.C.E., and 
Roman soldiers played it by betting on the sides that would turn up after a throw. 
There is evidence of dice games in Mesopotamia, Egypt and Babylon dating from 
the third millennium B.C.E. Games with sticks were played by the Mayas, the 
Greeks, the Romans, the ancient Bretons, and the Egyptians—along with card 
games, chess, and others. These games were disseminated either for religious pur-
poses, such as Jewish Talmud (Hasofer 1967; Rabinovitch 1969, 1970), divining 
among the Greeks, the Romans, and Tibetan Buddhists, or for recreational purposes 
(David 1955). However, this application of chance was not formalized more rigor-
ously until much later  2  (Kendall 1956) and in gradual stages. Examples include the 
Latin poem  De Vetula , possibly written by Richard de Fournival between 1200 and 
1250,  Liber de ludo aleae  by Cardano written in approximately 1564 but published 
only in 1663, a fragment by Galileo Galilei (ca. 1642), and the studies by Pascal and 
Fermat (1654, 1922). These texts set the stage for the emergence of probability 
theory as a full-fl edged scientifi c discipline. 

 The same pattern applies to the study of population and the efforts to enumerate 
human beings. Population counts were already performed by the Egyptians around 
3000 B.C.E., partly to meet labor requirements for the construction of the Pyramids; 
they were carried out in Mesopotamia during the same period for religious reasons, 
by Moses in Sinai at God’s behest (‘Take a census of the whole community of 
Israelites by clans and families, taking a count of the names of all the males, head 

   1   Small bones of the tarsus connected to the tibia and fi bula. Knuckle-bones of hoofed animals such 
as sheep and goats have been found in large quantities on archeological sites dating back to at least 
40,000 years. The knuckle-bone in these animals is roughly symmetrical; in others such as cats and 
dogs, it is totally asymmetrical and thus unsuitable for games of chance.  
   2   Italian authors from the early fourteenth century to the fi fteenth century offered various partial 
formalizations: see the article by Meusnier (2004).  
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by head […] 20 years of age and over […]’,  Numbers , 1, 2), by the Chinese Emperor 
Yu or Yao in the Empire of the Center after a great fl ood in 2238 B.C.E., by the 
Greeks in sixteenth century B.C.E (Missiakoulis 2010), the Romans, the Incas of 
Peru, and others (Hecht 1977). Once it had developed an organized structure, a State 
manifestly needed to count not only its citizens but also its economic resources. 
Here as well, however, the analysis of censuses and registers occurred much later, 
when scientists succeeded in measuring and quantifying phenomena that were 
 previously God’s secret. The fi rst such analysis was published by Graunt (1662), 
followed by Christiaan and Lodewijck Huygens (1669, see Huygens 1895; Véron 
and Rohrbasser 2000) and Leibniz (early 1680s, see Rohrbasser and Véron 2001). 
The social sciences—such as demography, economics, and epidemiology—could 
now enter the scene. 

 A large body of literature has addressed these two broad themes separately: fi rst, 
the history, methodology, and epistemology of probability and statistics (Gouraud 
1848; Todhunter 1865; Matalon 1967; Hacking 1975, 1990; Krüger et al. 1986; Stigler 
1986; Porter 1986; Daston 1988; Gigerenzer et al. 1989; Desrosières 1993; Barbin 
and Lamarche 2004); second, the history, methodology, and epistemology of popula-
tion and other social sciences (Durkheim 1895; Landry 1945; Granger 1967; Piaget 
1967; Franck 1994, 2002; Berthelot 2001; Courgeau 2002, 2003; Martin 2003). 

 Our purpose here is entirely different. We want to examine the historical connec-
tions between those two broad sectors. Analysis and research projects were not 
carried out independently of one another but, on the contrary, in close interaction. 

 Pascal, for example, worked on mathematics ( Essay sur les coniques , 1640), 
probability theory ( Traité du triangle arithmétique III , 1654), physics ( Récit de la 
grande expérience de l’équilibre des liqueurs , 1648), and philosophy ( Entretien 
avec Sacy sur la philosophie  and  Les pensées , 1670). Leibniz worked alternatively 
on logic, mathematics, probability theory, history, linguistics, law, politics, philoso-
phy, and other disciplines. All these subjects are addressed in his complete works 
(see the website: http://www.leibniz-edition.de/). 

 The same is true of many researchers since the seventeenth century, although a 
greater specialization developed over time. In the twentieth century, for instance, 
Fisher worked simultaneously on probability theory, statistics, and genetics through-
out his life, Keynes on economics and probability theory, and so on. Our aim here is 
to describe the origin and development of the relationships that have always existed 
between these disciplines. That is what makes this volume different from its predeces-
sors. In the fi rst part of this General introduction, we illustrate the links that were 
established between probability theory and the social science at their very inception. 

 As noted above, the concept of probability arose from the examination of the 
outcomes of a wide variety of games such as dice and cards. It took shape through 
a theoretical and mathematical evaluation of the number of possible outcomes, 
assumed to be equally likely. This  geometry of chance  ( géométrie du hasard  ), as 
Pascal called it, does not suffi ce in social science, where probabilities cannot be 
determined in advance. All we can do is perform a certain number of comparable 
tests and observe a posteriori the number of events occurring in the sample, such as 
the number of deaths in a population. How can we then use these fi gures to recon-
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struct an unknown probability? What signifi cance should we assign to the principles 
of statistical inference and induction that we can use to infer a probability from an 
earlier observation of facts? 

 Moreover, the social sciences have not yet managed to defi ne their specifi c 
‘object’ and their present state ‘may be compared to that of natural sciences in pre-
Galilean times’ (Granger 1994). The complex and changing life experience that 
constitutes a ‘human fact’ still needs to be conceptualized as a scientifi c object, and 
we shall try to make some progress toward that goal here. In the second part of this 
introduction, we address the issues raised by this statistical inference, the problems 
encountered in social science and possible ways to solve them. 

 Despite its fl owering in the seventeenth century, probability theory was not axi-
omatized until the twentieth century, with the work of Kolmogorov (1933). However, 
while the role of axiomatization is to defi ne mathematical beings in formal terms, it 
does not tell us what entities in nature can be represented by them. For instance 
Kolmogorov clearly conveys his belief that not every event has a probability (1951):

  Certainly not every event whose occurrence is not entirely determined under given condi-
tions has a defi nite probability under these conditions 

 and he asserts his frequentist position (1933). Nevertheless, with slight alterations, 
his axioms can apply to other approaches to probability theory—for instance, the 
subjectivist or logicist approaches. It is therefore important to realize that ‘probabil-
ity theory formalizes something that, in a manner of speaking, ‘exists’ indepen-
dently; the divergences concern the nature of that ‘something’ which, according to 
this approach, is represented by the mathematician’s probability’ (Matalon 1967). 

 In the third part of this introduction, we shall examine this axiomatization and 
the problems encountered in applying it to a universe of experience—in social, bio-
logical, or physical science. 

 The fourth and fi nal part will outline the path followed in this book, so that the 
readers can locate their position in the overall plan at all times. 

   Links  Between Probability Theory and Social Science 
at Their Inception 

 While the investigations by Greek philosophers and mathematicians did not lead 
them to probability theory or to social science (Granger 1976), their work did enable 
them to raise the issue of chance and introduce the notion of  justice , a crucial factor 
in the establishment of links between probability and social science. 

 For instance, Aristotle already made a clear distinction between things that 
‘always occur identically and others [that occur] frequently.’(Physics, 196b). In the 
Nichomachean Ethics, he writes (III:3):

  And in the case of exact and self-contained sciences there is no deliberation […]; but the 
things that are brought about by our own efforts, but not always in the same way, are the 
things about which we deliberate […]. Deliberation is concerned with things that happen in 
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a certain way for the most part, but in which the event is obscure, and with things in which 
it is indeterminate. 3    

 While he does not succeed in formalizing this probable outcome correctly, the 
introduction of the notion of justice (fairness) and its formalization led to rules that 
preceded probability theory by centuries and made it possible. Aristotle defi nes 
justice as ‘that kind of state of character which makes people disposed to do what is 
just and makes them act justly and wish for what is just’ (Nichomachean Ethics, 
V:1). He goes on to formalize the notion as follows:

  The just, therefore, involves at least four terms; for the persons for whom it is in fact just are 
two, and the things in which it is manifested, the objects distributed, are two. And the same 
equality will exist between the persons and between the things concerned; for as the latter—
the things concerned—are related, so are the former; if they are not equal, they will not have 
what is equal, but this is the origin of quarrels and complaints—when either equals have and 
are awarded unequal shares, or unequals equal shares.   

 Aristotle views justice as a critical element in, for example, concepts such as 
markets and money, which allow contracts between different and unequal persons. 
He therefore extends the argument by stating:

  This is why all things that are exchanged must be somehow comparable. It is for this end 
that money has been introduced, and it becomes in a sense an intermediate; for it measures 
all things, and therefore the excess and the defect—how many shoes are equal to a house or 
to a given amount of food. (Nichomachean Ethics, V:5)   

 What ultimately gives justice its full importance in the genesis of the notion of 
probability is the random contract (Daston 1988). 

 In his book  Liber de ludo aleae , written in the mid-sixteenth century but not 
published until 1663, Cardano invokes Aristotle to defi ne a fair wager:

  Other questions must be examined in a subtler manner, for mathematicians too can err, but 
differently. I did not want this issue to be set aside, for many people, who have not  understood 
Aristotle, have erred, incurring losses. Thus there is a general rule that requires us to 
 consider the total circuit, 4  and the number of outcomes representing all the ways in which a 
favorable result can occur, then to compare this number to the rest of the circuit, and lastly 
to examine the proportion to be used in reciprocal wagers so that they apply to equal 
terms. 5    

 We shall see later how to formalize such a line of argument, which enables us to 
compute the probability of an event using the notion of circuit. 

   3   Translation by W.D. Ross,   http://classics.mit.edu/Aristotle/nicomachean.html    .  
   4   Cardano uses the term ‘circuit’ to denote the set of throws of different dice that can be examined 
in a given game.  
   5   Reliqua ergo subtiliter consideranda; cum etiam in Mathematicis deceptio contigat, sed alia 
ratione. Volui hoc non latere, quia multi non intellegentes Aristotelem, decipiuntur, & cum iactura. 
Vna is ergo ratio generalis, vt consideremus totum circuitum, & ictus illos, quot modis contingere 
possunt, eorumque numerum, & ad residuum circuitus, eum numerum comparentur, & iuxta pro-
portionem erit commutatio pignorum, vt equali conditione certent.  

http://classics.mit.edu/Aristotle/nicomachean.html


xviiLinks Between Probability Theory and Social Science at Their Inception

 For Pascal as well, fairness is the concept that enabled him to develop the ‘geometry 
of chance’ Indeed, he presented his treatise in the following terms (Pascal 1654):

  …an entirely new treatise, on a subject hitherto utterly unexplored, namely: the distribution 
of chance in games that are governed by chance—what is known in French as  faire les 
partis des jeux  [setting the odds of the game]; the uncertain outcome is so well controlled 
by the fairness of the computation that each player always receives exactly the amount 
consistent with justice. 6    

 Pascal goes on to show how reasoning allows progress in this area, where experi-
ence seems of little use to him:

  And it is there, surely, that we must seek by means of reasoning all the more so as we are 
less likely to be informed by experience. Indeed, the results of ambiguous chance are rightly 
attributed to fortuitous contingency rather than to natural necessity. That is why the issue 
has drifted uncertainly until today. But now, having remained impervious to experience, it 
has failed to escape the empire of reason. And thanks to geometry, we have reduced it so 
effectively to an exact art that it partakes of geometry’s certainty and has already made bold 
progress. Thus, by combining the rigor of scientifi c demonstration with the uncertainty of 
chance, and reconciling these apparent opposites, it can, drawing its name from both, right-
fully claim this astonishing title:  The Geometry of chance . 7    

 In the third section of his  Traité du triangle arithmétique  [Treatise on the 
 arithmetical triangle] (1654), Pascal spells out the prerequisites for reasoning on 
chance:

  …the money that players have wagered no longer belongs to them, for they have relin-
quished their property of it; but, in exchange, they have received the right to expect the 
share of that money which chance can give them, under the terms they have agreed upon at 
the outset.   

 In the third section, Pascal also formulates the two principles that he views as the 
prerequisites for computing probability:

  The fi rst principle, which is designed to determine how shares should be divided, is this. 
 If one of the players fi nds himself in such a situation that, whatever the outcome, a cer-

tain sum accrues to him in the event of loss and gain, without chance being able to deprive 
him of it, he must not wager it, but take it in its entirety as guaranteed. This is because the 
wager must be proportional to the chances, and since there is no risk of loss, he must with-
draw the entire amount undivided. 

 The second principle is this. If two players fi nd themselves in such a situation that, if a 
player wins, he is entitled to a certain sum, and if he loses, the sum will go to the other 

   6   Novissima autem ac penitus intentatae materiae tractatio, scilicet de compositione aleae in ludis 
ipsi subjecti, quod gallico nostro idiomate dicitur  faire les partis des jeux , ubi anticeps fortuna 
aequitate rationis ita reprimitur ut utrique lusorum quod jure competit exacté semper assignetur.  
   7   Quod quidem eô fortius ratiocinando quaerendum, quò minus ten tando investigari possit. 
Ambiguae enim sortis eventus fortuitae contingentiae potius quam naturali necessitati meritò 
tribuuntur. Ideò res hactenus erravit incerta; nunc autem quae experimento rebellis fuit rationis 
dominium effugerenon potuit. Eam quippè tantâ securitate in artem per Geometriam reduximus, ut 
certitudinis ejus particeps facta, jam audacter prodeat; & sic matheseos demonstrationes cum aleae 
incertitudine jungendo, ab utraque nominatinem suam accipiens, stupendum hunc titulum jure sibi 
arrogat:  aleae Geometria .  
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player; if the game is of pure chance and if the chances of winning are equal for both play-
ers and therefore the chances of winning are no greater for one player than for the other, if 
they want to part ways without playing, and reclaim their legitimate shares, they should 
divide the sum at stake in half, and each should take his half.   

 Pascal clearly indicates that this is a game of pure chance, i.e., for example, that 
the dice are not loaded. Using the arithmetical triangle, he generalizes this result to 
the broader case in which the players break up the game at a time when the fi rst 
player is missing  m  shares and the second player  n  shares. Interestingly, Fermat, 
who discussed his approach in his correspondence with Pascal on this subject 
(Pascal 1922), reached the same result by means of a purely combinational method, 
and this enabled Pascal to conclude:

  I admire your method for wagers, all the more so as I comprehend it very well; it is entirely 
your own, and has nothing in common with mine, and reaches the same goal but easily. Our 
[mutual] understanding is thus restored .    

 In this exchange, Pascal and Fermat were addressing objective probability, for 
the chances of winning are determined by the fact that the playing tokens have not 
been tampered with. But Pascal’s wager takes the reasoning further and introduces 
epistemic probability, for unique events, such as the existence of God. In a section 
of the  Pensées  entitled  Infi ni rien  [ Infi nite nothingness ] (1670), he shows how an 
examination of chance can lead to a decision of a theological nature. Let us sum-
marize his approach briefl y here; we can return to it in greater detail in later sections 
of this book, when needed. Pascal argues as follows. Consider an individual who 
hesitates between faith and unbelief, but does not want to rely on the testimony of 
believers, doctors of the Church or miracles. Pascal begins by stating how the ques-
tion is formulated absent experimental data:

  And let us say: God is or is not; but to which side shall we lean? Reason is of no avail here. 
An infi nite chaos separates us. A game is being played at the far end of this infi nite distance, 
where heads or tails will turn up. What will you wager?   

 Pascal shows that we must wager the existence of God, and that a probabilistic 
approach is possible here:

  Let us weight the gain and loss, wagering tails that God exists. Let us estimate the two 
outcomes: if you win, you win all, and if you lose, you lose nothing: therefore, without hesi-
tation, wager that God exists. That is admirable.   

 Here, Pascal examines a hypothesis—the existence of God—and shows that the 
previous probabilistic argument, which concerned the occurrence of events that 
could reoccur in identical conditions, remains possible. While we can criticize its 
premises, this reasoning closely resembles that of game theory, but is based on 
entirely different arguments. 

 Let us now examine the situation in social science at the time. The fi rst experi-
ment in social science was, in fact, provided by John Graunt (1662), who submitted 
his fi ndings to John Lord Roberts, Lord Privy Seal, in these terms:

  Now having (I know not by what accident) engaged my thoughts upon the Bills of 
Mortality, and so far succeeded therein, as to have reduced several great confused 
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Volumes into a few perspicuous Tables, and abridged such Observations as naturally 
fl owed from them, into a few succinct Paragraphs, without any long series of  multiloqui-
ous Deductions …   

 Graunt’s approach effectively summarizes many observations by means of clear 
statistical tables. He uses these mortality statistics to deduce, through probabilistic 
reasoning, the population of London, formerly estimated at six million by worthy 
persons:

  Next considering, That it is esteemed an even Lay, whether any man lives ten years longer, 
I supposed it was the same, that one of any 10 might die within one year. But when I con-
sidered, that of the 15000 afore-mentioned about 5000 were  Abortive , and  Still-born , or 
died of  Teeth, Convulsion ,  Rickets , or as  Infants  are  Chrysoms , and  Aged . I concluded, that 
of men, and women, between ten and sixty, there scarce died 10000 per Annum in London, 
which number being multiplied by 10, there must be 100000 in all, that is not the 1/60 part 
of what the  Alderman  imagined.   

 We shall see later on the errors committed in this reasoning. Suffi ce it to say 
here that Graunt’s method is still highly approximative and his hypotheses 
extremely crude. Compiling a true life table would require, at the very least, a 
series of age-specifi c probabilities of dying, which are far from constant. This was 
achieved decades later by Edmond Halley (1693), who set out to estimate the 
‘Degrees of the Mortality of Mankind’ from the bills of mortality and birth of 
Breslau, a town whose population was less affected by migration than that of 
Graunt’s London. 

 William Petty (1690) generalized the approach—which he designated as  Political 
Arithmetic —not only to demographic issues but also to economic, political, epide-
miological, administrative, and other issues in social science:

  The Method I take to do this is not yet very usual: for instead of using only comparative 
and superlative Words, and intellectual Arguments, I have taken the course (as a 
Specimen of the Political Arithmetic I have long aimed at) to express myself in Terms 
of Number, Weight, or Measure; to use only Arguments of Sense, and to consider only 
such Causes as visible Foundations in Nature; leaving those that depend upon the 
 mutable Minds, Opinions, Appetites of particular Men, to the Consideration of others. 
(Petty 1690)   

 It is under the label of political arithmetic that the social sciences developed 
 during the seventeenth, eighteenth, and early nineteenth centuries. The rise of 
 political economics began with Petty and de Boisguilbert (1695), followed by 
Cantillon (1755), Quesnay (1758), and Adam Smith (1776). After Graunt and 
Petty, demography and epidemiology progressed thanks to Halley (1693), 
Süßmilch (1741, 1761–1762), and Deparcieux (1746). But the term  demogra-
phy  did not appear until much later—in its French form of  démographie —in the 
title of Guillard’s book  Eléments de Statistique Humaine ou Démographie 
Comparée  (1855). Epidemiology followed a similar path. The term was initially 
used to denote a medical discipline devoted to large-scale outbreaks of infec-
tious diseases. But it did not emerge as a scientifi c discipline until the nine-
teenth century, most notably with the founding of the London Epidemiological 
Society in 1850.  
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   Statistical Inference, Induction, and Social Science 

 If the probabilities of successive plays in a game of pure chance can be computed 
by strictly rational means, in other cases—particularly in social science—they can-
not be  a priori  probabilities but only be determined  a posteriori . Unlike Pascal, who 
was working on results that he could regard as equiprobable, Graunt had to use 
empirical observations to deduce probabilities of dying. It is after these observa-
tions on human mortality that Pascal’s successors tried to generalize the notion of 
probability. 

 This involves going back from effects to causes—from empirical observations to 
the factors that generate them—in order to achieve greater certainty and, above all, 
greater generality in the analysis. This is known as the problem of statistical infer-
ence. After the initial efforts by Jacob Bernoulli (1713) to solve it, the solution was 
eventually proposed by Bayes (1763). Condorcet and Laplace developed it as the 
mathematical instrument perfectly suited to social science, where the  a priori  prob-
abilities of causes were always unknown. Let us briefl y review the issues raised and 
solved, which we shall examine in greater detail in the fi rst section of this volume. 

 Jacob Bernoulli died in 1705, but his book, published by his nephew Nicolas, did 
not appear until 1713. In it, the author clearly stated the problem of a priori and a 
posteriori probabilities:

  But, in truth, another path is open to us in our quest for what we are seeking. What we can-
not obtain  a priori  can at least be determined  a posteriori , i.e., we shall be able to extract it 
by observing the outcomes of many similar examples; for we must assume that, later on, 
each fact can occur or not occur in the same number of cases as it was previously observed 
to occur or not occur in similar circumstances. 8    

 The problem that Bernoulli is trying to solve is thus indeed complementary to the 
one raised by Pascal: when we do not know the a priori probability, we must obtain 
it a posteriori, from the observation of many similar outcomes. However, we are 
dealing here with objectivist probabilities ,  where the law of large numbers enables 
us to confer an objective, non-equivocal status upon the notion of probability. In the 
process, Bernoulli demonstrates a theorem still known in probability theory as the 
weak law of large numbers:

  Thus it is this problem that I now propose to solve, after having refl ected on it for twenty 
years: its novelty and great usefulness, combined with its great diffi culty, may exceed in 
weight and value all the other chapters of this thesis. 9    

   8   Verum enimverò alia hîc nobis via suppetit, quâ qæsitum obtineamus; & quod  à priori  elicere non 
datur, saltem  à posteriori , hoc is, ex eventu in similibus exemplis multoties observato eruere lice-
bit; quandoquidem præsumi debet, tot casibus unumquodque posthac contingere & non contingere 
posse, quoties id antehac in simili rerum statu contigisse & non contigisse fuerit deprehensum.  
   9   Hoc igitur is illud problema, quod evulgandum hoc loco proposui, postquam jam per vicennium 
pressi, and cujus tum novitas, tum summa utilitas cum pari conjuncta diffi cultate omnibus reliquis 
hujus doctrinæ capitibus pondus and pretium superaddere potest.  
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 His demonstration of the theorem is perfectly correct, but he was expecting a 
fuller result from his investigations. His fi nding applies to objectivist probabilities 
whereas his work was intended to apply to subjectivist probabilities, as he clearly 
states in his treatise. 

 Jacob Bernoulli accordingly demonstrates that if we know the probability of a 
phenomenon (assumed to be constant in successive observations), then, when we 
increase the number of observations, the observed frequency will diverge from its 
probability by a given quantity, which we can determine with the aid of that number 
and can set to as low a value as we want. 

 Bayes managed to go further by proving the opposite theorem, at least in a sim-
ple given case. He begins his article (1763) by clearly announcing the problem he 
intends to solve:

   Given  the number of times in which an unknown event has happened and failed:  Required  
the chance that the probability of its happening in a single trial lies somewhere between any 
two degrees of probability that can be named.   

 That is indeed the principle of statistical inference. The approach consists in 
using the observation of occurrences of an event to draw an inference on the proba-
bilistic distribution responsible for the phenomenon—i.e., to provide an analysis of 
a past phenomenon, or a prediction of a similar future phenomenon. Throughout 
this volume, we shall see the various meanings that have been assigned to statistical 
inference and their links to social science.  

   Concordance Between Basic Probability Concepts 
and Social Science 

 As noted earlier, the notions of chance and of counting populations as well as some 
of the events they experience have been present in human thought since earliest 
antiquity. However, the concepts were not refi ned and initially mathematized until 
around the seventeenth century—by Pascal and Fermat (1654) for probability and 
Graunt (1662) for social science. This mathematization should logically lead to a 
more precise search for the bases on which to build a more robust theory of proba-
bility and social science. 

 Our introduction attempts to outline some of these bases in order to show the 
concordance or discordance between probability and social science. We shall elabo-
rate on the bases in growing detail throughout the rest of the volume. 

 As Pascal and Fermat showed, probability could be mathematized, paving the 
way for probability theory. However, the research on probability focused on con-
cepts that did not fi t into the mathematics or the logic of the period: events, proof, 
randomness, chance, likelihood of an event, expected winnings, and so on—none of 
these concepts entered into the formalization of social science. Likewise, some of 
the chosen examples drawn from social science since the very inception of probabil-
ity theory clearly showed the theory’s potential use in fi elds other than games. Hence 
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the need to defi ne those concepts more precisely in order to use them with greater 
confi dence and ensure that everyone was referring to the same things when applying 
them. 

 From the outset, Cardano clearly enunciated the main precondition of equiprob-
able outcomes, without which there could be no fair wager:

  The most fundamental principle of all in gambling is simply equal conditions, e.g., of oppo-
nents, of bystanders, of money, of situation, of the dice box, and of the die itself. To the 
extent to which you depart from that equality, if it is in your opponent’s favor, you are a 
fool, and if in your own, you are unjust. 10    

 This broad notion of equality is thus indeed the bedrock of probability theory, 
without which it would be meaningless. 

 Similarly, when Huygens sought to axiomatize probability—in the fi rst true 
handbook on the subject published in 1657 under the title  On ratiocination in dice 
games —he clearly showed that one cannot determine the fair amount of a wager 
except in a game with even chances:

  … I start from the hypothesis that in a game, the chance of winning something has a value 
such that if we possess that value we can obtain the same chance by means of a fair game, 
i.e., a game that seeks to deprive no-one.   

 Again, this is a fundamental notion that allowed a reasoned investigation of prob-
ability. The notion was taken up by many later authors to serve as a basis for prob-
ability theory. Hence the classic defi nition of probability as: the ratio of the number 
of positive outcomes to the total number of outcomes provided that these are all 
equally possible. However, this defi nition contains a circular element,  equally pos-
sible  being an exact synonym of  equally probable . 

 For instance, in a game of heads or tails, the only way to determine that the coin 
is as likely to land face up as face down is to toss it an infi nite number of times. In 
social science, the problem is even trickier, for we must assume that the probability 
of an event is identical for all individuals in a given population. 

 This question was directly addressed by Henry (1959) in his discussion of a fun-
damental issue in demographic analysis:

  A homogeneous cohort may be viewed as consisting of identical individuals whose life 
histories differ only by chance. We can classify their histories according to the events that 
characterize them and the dates of their occurrence. This yields a statistical history of the 
cohort: a given proportion of individuals has experienced a given type of history. Let us now 
imagine that each individual in the cohort can repeat his or her history indefi nitely; the 
infi nite set of histories of each individual could, in turn, be classifi ed according to the same 
criteria as before; we would obtain a statistical history of the individual. For a homogeneous 
cohort, the statistical history of the individuals who compose it is identical to the statistical 
history of the cohort.   

   10   Is autem, omnium in Alea principalissimum, aequalitas, ut pote colusoris, astantium, pecunar-
ium, loci, fritilli, Aleae ipsius. And quantumcumque declinaueris ab ea aequalitatae aduersum te, 
stultus es, & pro te iniustus.  



xxiiiConcordance Between Basic Probability Concepts and Social Science

 However, Henry is then forced to admit that actual cohorts do not consist of 
identical individuals and that no human group is homogeneous. This fi nding under-
mines the analytical methods commonly used in demography, which assume cohort 
homogeneity or do not address that homogeneity. The author examines the equally 
theoretical case of a heterogeneous cohort formed by the amalgamation of infi nitely 
large homogeneous cohorts. Once again, we are faced with diffi culties similar to 
those encountered in probability theory when analyzing equally probable outcomes. 
Henry shows that error can be null only when the cohort is, in fact, homogeneous 
with respect to the topic studied. We shall return to these issues later. 

 Another basic notion of probability theory was defi ned somewhat later by Jacob 
Bernoulli (1713) and elaborated by Cournot (1843). It involves the case where the 
possibility of an event may be so close to zero that we may regard it as  physically 
impossible  or, on the contrary, so close to unity that we may regard it as  physically 
certain . In Chap. IV of Part IV of  Ars Conjectandi  (1713), before demonstrating his 
theorem on the law of large numbers, Jacob Bernoulli clearly states:

  Some new points must be examined here, which may never have occurred to anyone before. 
We certainly still need to ask ourselves why, after the number of observations increases, 
there is a greater probability of reaching the true ratio between the number of cases where 
a given event can occur and the number of cases in which it cannot, so that the probability 
ultimately exceeds all given degree of certainty… 11    

 This notion of certainty or ‘moral’ impossibility opposed with mathematical 
impossibility was widely discussed throughout the eighteenth century and in the 
early nineteenth. It was then revisited more thoroughly by Cournot (1843), who 
introduced continuity in the measurement of probability. This enabled him to dis-
cuss the notions of physical or moral possibility and impossibility:

   The physically impossible event is therefore the one whose mathematical probability is 
infi nitely small  ;  and this single statement imparts substance—an objective and phenomenal 
value—to the theory of mathematical probability.   

 Let us take the example of a jar containing a single white ball and an infi nity of 
black ones. The probability that a blind agent will extract the white ball is mathe-
matically possible but in fact so small as to be physically impossible. However, the 
only way to demonstrate this physical impossibility by means of Bernoulli’s theo-
rem is to draw an infi nity of balls from the jar. 

 Do we fi nd a similar notion in social science? Again, we can refer to Cournot 
(1843), who tells us:

  The acts of living, intelligent and moral beings have no explanation, in the present state of 
our knowledge, and we can boldly proclaim that they can never be explained by the mechan-
ics of geometricians.   

   11   Ulterius aliquid hic contemplandum superest, quod nemini fortassis vel cogitando adhucdum 
incidit. Inquirendum nimirum restat, an aucto sic observationum numero ita continuò augeatur 
probabilitas assequendæ genuinæ rationis inter numeros casuum, quibus eventus aliquis contigere 
& quibus non contigere potest, ut probabilitas hæc tandem datum quemvis certitudinis gradum 
superet …  
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 The notion of probability is therefore the only one applicable to social science, 
for this second notion of physically impossible event is perfectly suited to human 
acts. The two disciplines—probability theory and social science—set out to mea-
sure and quantify phenomena regarded as secrets of the gods before the seventeenth 
century: games of chance (such as dice, and cards) and games of life (births, dis-
eases, deaths, migrations, and so on). The means used for these measurements and 
quantifi cations will, of course, form the basic theme of this book. 

 We now reach the twentieth century, in which the axiomatization of probability 
reached its broadest extension and in which the social sciences sought fi rmer foun-
dations on which to address human affairs in rational terms. 

 After a series of more or less fruitful attempts to axiomatize probability (Laemmel 
(1904), Broggi (1907), Bernstein (1917), von Mises (1919), Slutsky (1922), 
Łomnicki (1923), Steinhaus (1923), Ulam (1932), Cantelli (1932), etc.), the work of 
Kolmogorov (1933) is now regarded by most probability theorists as the most con-
summate foundation for the science. We shall examine its basic principles in greater 
detail throughout this book, and point out the links between that axiomatization and 
the way in which we can interpret that formalization. Despite near-general accep-
tance of the axioms, controversies over the nature of this calculation and its possible 
interpretation persist in barely muted form. We shall therefore need to examine in 
greater detail how the different approaches view social science, in order to assess 
their validity in that fi eld. 

 In social science, we are still a long way from axiomatization, and ‘the transfor-
mation of the complex and changing life experience that constitutes the human fact 
into a scientifi c object—even in those of its aspects that are commonly recognized 
as public—remains problematic’ (Granger 1994). We shall therefore need to exam-
ine in detail the multiplicity of viewpoints adopted on human facts over time in 
order to identify the operation that may enable us to reconstruct them in all their 
complexity. For this reconstruction, probability may prove essential.  

   Overview of Entire Volume 

 This volume will be structured as follows: 

   Part I From Probability to Social Science 

   Introduction to Part I 

 Depending on the historical period examined and the authors, the number of alterna-
tives theories of probability is very variable and ultimately leads us to distinguish 
three broad types: objective probability, subjective probability, and logical probability. 
The last two categories can be grouped under the heading of epistemic probability.  
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   Chapter 1 The Objectivist Approach 

 Classical probability theory relied from the outset—as early as Aristotle—on the 
notion of fairness. In 1654, Pascal referred to it for the purpose of defi ning a fair 
wager. But the notion, fully applicable to games of chance, did not hold up when 
transposed to the social sciences. These needed to assume that the now unknown 
probability of a demographic event—or, more generally, a social event—never-
theless existed, and remained the same throughout the period observed. This led 
to the notion of frequentist probability. The nineteenth-century debates over its 
validity showed that it cannot be applied to all feelings of uncertainty. The 
approach is suited to only a small number of social phenomena—particularly 
demographic ones. 

 The paradigm of objective probability had to reconcile the notions of equipossi-
bility and physical impossibility. While the fi rst was not specifi c to objective prob-
ability, the second proved indispensable, contrary to what later happened for 
epistemic probability. Objective probability is confi ned to events that can repeat 
themselves in identical conditions. Therefore, we cannot speak of the probability 
that a proposition, unique by nature, is true. 

 A proper search for axioms, however, did not become possible until after the 
establishment of set theory and axiomatics in the late nineteenth century. Setting 
aside many other attempts, we describe in greater detail two main types of axioma-
tization of probability, which were to formalize the two notions of paradigm. The 
fi rst, introduced by von Mises in 1919, defi ned the notion of  collective  as the origin 
of probability. But many authors questioned the notion’s consistency, undermining 
von Mises’s axiomatics. In the end, it was the second type, introduced by 
Kolmogorov in 1933, that won the acceptance of most authors working on objec-
tive probability. 

 At this point, it is important to see how to apply objective probability to the sta-
tistics supplied by the physical and social sciences: this is known as the problem of 
statistical inference. The aim is to make the best use of the incomplete information 
available in order to move from data on a given phenomenon to the prediction of a 
similar phenomenon in the future. But, as the notion of ‘an objective probability that 
a proposition is true’ is meaningless, all we can estimate here is the probability of 
obtaining the observed sample if the hypothesis underlying the prediction is met. 

 We give some examples of applications of this approach to the social sciences. In 
developing political arithmetic, Graunt and Arbuthnott still used the notion clum-
sily. Another application concerns epidemiology, with the analysis of the effects of 
inoculation to prevent smallpox. Likewise, in sociology, Durkheim sought to iden-
tify social phenomena stripped of all extraneous elements by using the method of 
concomitant variations, i.e., a regression method. 

 This approach raises various problems. For example, while it allows a proper 
analysis of the outcomes of games with no cheating, it cannot determine whether a 
player is cheating or not. Similarly, the statistical inference made possible by objec-
tive probability is imperfectly suited to the study of decision-making. And it is suit-
able for analyzing only a small proportion of social phenomena.  
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   Chapter 2 The Epistemic Approach: Subjectivist Interpretation 

 To apply probability calculus to the greatest possible number of feelings of uncer-
tainty, however subjective they may be, we must abandon the notion of frequency—
the foundation of objective probability—and hence the notion of physical 
impossibility. In 1713, Jacob Bernoulli envisaged what is now called a direct 
approach, which actually takes the probability of the studied event as a given. In 
1763, Bayes solved the problem of the inverse approach, which assumes not only 
that the probability is unknown, but that its very existence is hypothetical. This 
leads to the notion of epistemic probability, which becomes fully subjective when 
one takes the view that it can be defi ned only for a specifi c individual, and not for 
an event as in the objective approach. As a result, the scope of application is sub-
stantially enlarged. For instance, we no longer need to assume the lack of cheating, 
for this probability is also defi ned in situations where players cheat, and the proba-
bility that a proposition is true now has a clear meaning. 

 The subjective-probability paradigm must rely on notions that differ from those 
underlying the objective approach. The notion of  coherence  in individual behavior 
must be reconciled with the notion of utility of winning for the individual. Coherence 
means that the reasoning of individuals must not contain any intrinsic contradiction, 
even as they are free to adopt any probability value that they prefer for an event. 
The notion of  utility , introduced by Daniel Bernoulli in 1738, represents the subjec-
tive value of the stakes and will depend on each individual’s condition. We can 
complete this paradigm by introducing the notion of  belief , which is not probabilis-
tic but allows the formalization of a psychological level outside the forecasting 
domain, and that of  plausibility  in order to reintroduce probability. 

 We must now apply a set of axioms to characterize the choice made by a rational 
individual faced with an uncertainty situation. Here as well, many axiomatizations 
have been proposed and we shall describe only the main ones. In 1931, de Finetti 
showed that a set of personal opinions, if it satisfi ed certain axioms, could be repre-
sented by a numerical measure. His axioms specifi ed the notion of coherence. 
Savage completed them in 1954 by introducing the notion of utility, which arith-
metizes the preference relationship between actions. Interestingly, the resulting 
quantitative probability satisfi es Kolmogorov’s axioms. Some criticisms of the axi-
oms led to modifi cations introducing the notion of belief, which exists indepen-
dently of the notion of probability examined in this volume. We shall therefore give 
only a brief presentation of it: Suppes in 1974 and Shafer in 1985 proposed axioma-
tizations incorporating two probabilities; Smets, in 1990, proposed an axiomatiza-
tion that did not even include the concept of probability. 

 The objectivist approach offered only a partial solution to the problem of infer-
ence by twisting its meaning. By contrast, the subjectivist approach provided a per-
fectly clear answer. Using a  prior distribution  12  and a data set, it allows an 

   12   We need to distinguish here the term  prior , which denotes any information beyond the immediate 
data and even used to express our ignorance, from the term  a priori , which denotes a proposition, 
whose truth can be known independently of experience (Jeffreys 1939; Jaynes 2003).  
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estimation—under certain conditions—of a  posterior distribution  that predicts a 
future phenomenon. To ensure this outcome, the notion of  exchangeable  events, 
introduced by de Finetti, becomes indispensable. 

 We give examples of applications. The fi rst concerns the combination of testimo-
nies and is applicable in jurisprudence, artifi cial intelligence, and other areas. This 
problem has been addressed by many researchers over several centuries: the earliest 
solution used results found by Hooper in 1699; the latest uses Smets’s theory of 
1990. In our second example, the notion of exchangeability is applied to educa-
tional-science data for the purpose of drawing a correct statistical inference. 

 The approach is open to several criticisms. Psychological experiments have 
shown that, depending on how events are described, the subjective probabilities 
actually chosen by individuals do not necessarily meet the coherence principle. 
Although subjectivists reply that they study rational choices, the psychological 
problems posed by actual choices remain a fundamental issue. Moreover, an indi-
vidual cannot always make choices transitively or even decide which choices to 
make: in such cases, his or her feelings of uncertainty cannot be represented by 
subjective probability. We also examine the criticisms of Savage’s axiomatics by 
Allais in 1953 and show that the attempted modifi cations of his axioms cannot ade-
quately explain all the phenomena connected to the choice paradox. The subjectivist 
approach seems too closely tied to individual psychology. Could a more logical yet 
still epistemic approach offer a means to avoid such criticisms?  

   Chapter 3 The Epistemic Approach: Logicist Interpretation 

 While a subjective probability is defi ned only for a given individual, a logical prob-
ability must be defi nable in the same manner for all individuals. For this, rather than 
start from the notion of personal odds for each individual, we must return to Pascal’s 
notion of fair odds: when an individual wagers on a random event, fair odds yield a 
zero loss or zero expected gain. Yet fair odds will always refl ect a degree of belief 
and are therefore applicable to all situations involving uncertain events, such as 
subjective probabilities. 

 The logical-probability paradigm introduced the logical notion of  consistency , 
which specifi es the required relationship between a proposition and the information 
available. Subjective probability depends on the individual. By contrast, logical 
probability, when obtainable in different ways, must yield the same result. It must 
also use all the information available for defi ning it. To this end, it incorporates the 
notion of  entropy  proposed by Shannon in 1948. Lastly, its focus is not on repetitive 
events, as in objective probability, or a single event, as in subjective probability, but 
on propositions made about events. 

 At this point it is useful to provide an axiomatics of the logic of propositions, 
introduced by Boole in 1854. It forms a basis for describing the main axiomatics of 
logical probability. The axiomatics proposed by Jeffreys in 1939 was initially 
rejected by most probabilists, philosophers, and statisticians of the time, but came 
to be recognized as highly innovative. However, without the notion of entropy, 
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introduced later, Jeffreys was led to question the uniqueness of the choice of the 
prior probability. In 1961, Richard Cox showed that it was possible to derive the 
rules of probability from two axioms independent of the notion of set. One could 
thus use Kolmogorov’s axioms, applying them now not to sets but to propositions. 
However, these axioms contain implicit conditions that van Horn later spelled out in 
order to make them more comprehensive. Similarly, while Cox effectively intro-
duced the notion of entropy, it is Jaynes (2003) who showed more clearly how to use 
it to estimate a distribution of prior probabilities under different information 
scenarios. 

 For its application to social science, the epistemic approach concentrated on the 
incomplete information available on a phenomenon in order to draw inferences on 
the outcome of future experiments, using the consistency condition. It would no 
longer consider the personal probability that different individuals may choose, but 
those that they should choose on the basis of information shared by all. Statistical 
inference and probability would then form an inseparable whole. 

 We give examples of the use of logical probability in social science. The fi rst 
example, from demography, is Laplace’s application to the masculinity proportion 
at birth in 1781. The second is an application to legal science, which we illustrate 
with a wide-ranging review of results from 1785 to 2003, from Condorcet to Jaynes, 
via Laplace, Quetelet, Poisson, and others. 

 We conclude with a discussion of problems posed by this approach. The fi rst is 
that impossibility and logical necessity are incompatible with the notion of zero 
probability for certain events when they can actually occur. But this criticism, which 
would be valid for an Aristotelian deductive logic, does not apply to a logic of 
 plausible reasoning. The second problem is the diffi culty, in certain cases, of fi nding 
a single prior distribution, although in many other cases we can deduce a non- 
informative distribution directly from the distribution of observations. This leads to 
a more general problem of dependency between the language used to pose a prob-
lem and the prior probability that can be deduced from it. We offer some solutions, 
but it is important to realize that the problem is inherent in all forms of epistemic 
probability, whether logical or subjective.  

   Conclusion to Part I 

 We begin by setting the three different approaches described in the preceding chap-
ters in the context of the history of probability. The classical theory of probability 
that prevailed from the mid-seventeenth century to the fi rst half of the nineteenth 
century was a unifi ed theory in which the three aspects were closely linked: the 
probability of an event was simultaneously objective (considering its long-term fre-
quency when it could be measured), subjective (considering the degree of our belief 
in its occurrence), and logical (considering the notion of fair odds). This type of 
probability was used in all fi elds, particularly the social sciences. In the fi rst half of 
the nineteenth century, many criticisms led specialists to prefer the objective 
approach, which soon established its dominance for reasons that we discuss. In the 



xxixOverview of Entire Volume

1930s, Kolmogorov’s axiomatization of objective probability was swiftly followed 
by an in-depth examination of subjective and logical probabilities, although this did 
not result in their immediate adoption. They did not regain a stronger position until 
the second half of the twentieth century. However, they did not loosen the grip of 
objective probability—particularly in the social sciences, where it prevails to this 
day. We conclude with a methodological refl ection on this revival of subjective and 
logical approaches, which leads us to examine if there is some cumulativity in 
probability.   

   Part II From Population Sciences to Probability 

   Introduction to Part II 

 We now examine the development of population sciences to show their method-
ological ties with probability throughout their history. While we cannot discuss all 
the social sciences—our work is not an encyclopedia—we show, when possible, 
that some methods used in this fi eld are also suited to many other social sciences. 
We can thus extend the conclusions of these chapters beyond the specifi c fi eld of 
population sciences.  

   Chapter 4 The Dispersion of Measures in Population Sciences 

 The aspect of probability that played a crucial role in the history of population sci-
ences pertains to the  dispersion  of measures, either around their mean value, called 
 rate  (fi rst sense of ‘dispersion’), or as a function of other characteristics of the popu-
lation studied (second sense). We devote particular attention to the use of statistical 
regression methods. 

 From the outset, Graunt’s wager on the probability of dying is based on other 
hypotheses than Pascal’s wager on the outcome of a game. Whereas Pascal can 
assume without too much diffi culty that the odds are fair, it is far harder for Graunt 
to assume that the probability of dying is identical for all members of a population. 
Although the only information available to him was the number of observed deaths, 
he nevertheless chose that course in order to establish political arithmetic by posit-
ing an identical probability for all persons between ages 10 and 60. We show his 
errors, and how other researchers with access to fuller data improved his estimate by 
demonstrating that one should regard mortality as a function of age. Moving in the 
other direction, the introduction of the law of large numbers allowed Nicolas 
Bernoulli to refute Arbuthnott’s argument on the distribution by sex of births in 
London from 1629 to 1710. 

 At the beginning of the nineteenth century, Laplace’s application of the multi-
plier method, which allows a transition from observed births to the total population, 
supplied an estimate of the French population in 1782 within precise limits, 
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 confi rmed by modern studies in historical demography. One might have thought 
that the regression methods developed by Gauss between 1795 and 1809 would 
have provided applications of interest for population sciences, but it took nearly a 
century for the methods to be used in  cross-sectional  (period) analysis. 

 The reason for the delay is that in the nineteenth century, at the same time as the 
abandonment of epistemic methods in probability, the dissemination of exhaustive 
censuses in Europe led to the rejection of Bayesian methods in population sciences. 
There was no longer any point in calculating the variance of a rate once the variance 
had become so insignifi cant. For dispersion in the second sense (see above), after a 
long refl ection described in next chapter,  cross-sectional  analysis was fi nally able—
in the late nineteenth century—to use the aggregated regression models to study the 
effect of different characteristics on rates. However, the advent of  longitudinal  anal-
ysis at the end of World War II, by introducing the time lived by the individual, no 
longer allowed the use of regression methods in the absence of a theory that could 
perform these regressions throughout an individual’s life. 

 Such a theory did take shape in the 1970s—driven, in fact, by the social sciences. 
By the early 1980s, it was being used in population and other social sciences. Known 
as the  event-history  approach, it was fi rst developed by David Cox in 1972 and 
Aalen in 1975 in an objectivist framework. More recently, it has been adapted to the 
Bayesian framework, which allows a better integration of all the information rele-
vant to the topic of study. In both cases, the approach reintroduces the notions of 
variance and regression model, now applied to the fl ow of time. It was later extended 
by a  contextual , then  multilevel  approach. These make it possible to avoid the 
  ecological fallacy  (a risk with aggregate models) and the  atomistic fallacy  (a risk 
with event-history models) once individuals’ living environments have been prop-
erly taken into account. 

 We conclude this chapter by presenting a very recent study conducted by 
Caussinus and Courgeau (2010, 2011) in paleodemography. The study shows that it 
is possible to estimate the age structure of a past population for which no age mea-
surements exist but for which proxy indicators are available. After a detailed criti-
cism of methods proposed in the past, we show that only a fully Bayesian approach 
allows a correct estimate of the age structure and its dispersion from samples of a 
few dozen observed individuals.  

   Chapter 5 Closer Links Between Population Sciences and Probability 

 We now look at how the complex experience of a human lifetime has become a 
better-defi ned object for population sciences, while losing some of its complexity in 
exchange. 

 The notions of  population  and  individual  formed the basic framework of popula-
tion sciences. While Plato and Aristotle managed to address some aspects of both 
notions, we show why they did not succeed in establishing a science of population. 
The concept of population did not take shape until the seventeenth century with the 
notions of ‘comprehension’ and ‘extent’ (étendue) introduced by the logicians of 
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Port Royal. In today’s language, we would speak instead of the  intension  of the term 
population, which establishes its properties and characteristics, and its  extension , 
which consists of the set of individuals who satisfy these properties. To defi ne the 
concept of individual, we must replace its unlimited and unknowable character of 
the observed individual—fully recognized by Aristotle—and reduce it to a small set 
of aspects that can be addressed by a science. We thus arrive at the notion of abstract 
individual, called the  statistical individual , whose characteristics we describe. 

 The object of population sciences is not the study of births, deaths, and migration 
fl ows that concern the members of a population, but indeed the study of their fertil-
ity, mortality, and mobility, measured by their probability. This clearly establishes 
close links between probability and population sciences, and the reason for their 
near-simultaneous emergence in the seventeenth century. Ultimately, population 
sciences were to study the changes to the population caused by the above-mentioned 
events. Depending on the perspective from which the changes have been viewed, 
different approaches have been applied. 

 The fi rst perspective was the  cross-sectional analysis , which prevailed from the 
earliest days up to the end of World War II. It holds that the social facts of a given 
period exist independently of the individuals who experience them and that they are 
explained by the various characteristics of the society to which the individuals 
belong. As early as 1760, Euler framed the independence hypothesis and defi ned 
the notion of stationary or stable population. The methods to study forms of depen-
dence were developed later. We follow the path taken by several authors throughout 
the nineteenth century, and describe how they eventually showed—with the aid of 
the notion of correlation—that the least-squares method, used to study astronomic 
phenomena, was also suited to the social sciences. Durkheim applied it to demo-
graphic and social data at the end of the nineteenth century. Under this approach, the 
statistical individual became, in fact, a group of individuals defi ned by their age and 
various characteristics. Their aggregated behavior was observed in specifi c units 
such as geographic regions. 

 But these methods posed a number of problems—examined in detail here—
which led researchers in population sciences at the end of World War II to incorpo-
rate personal ‘lived time’ into their approach. This was a two-stage process. 

 The initial  longitudinal analysis  observed the life of a cohort over time, and deter-
mined what would be the frequency of the studied phenomenon and its time distribu-
tion in the absence of disturbing phenomena. The approach assumed that the studied 
phenomena and disturbing phenomena are  independent , and that the studied cohort 
is  homogeneous . These assumptions overcame some of the objections to cross- 
sectional analysis. In the longitudinal approach, the statistical individual still consists 
of a group of homogeneous individuals, but they are tracked over their entire lives 
instead of being observed at a given point in time. 

 This approach, however, raised new problems, of which the most important were: 
(1) the impossibility of studying—as in cross-sectional analysis—the effect of vari-
ous characteristics of the population on the probability of the studied events and (2) 
the impossibility of determining whether the condition of independence between 
phenomena is effectively met. 
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 The consequent introduction of an  event-history analysis  solved these diffi cul-
ties. Event-history methods originated in the martingale theory elaborated by Doob 
in 1953, which allows the study of ever more complex stochastic processes. To 
answer questions posed by demographers in particular, Aalen developed stochastic 
counting processes in 1975. They provided a solid probabilistic foundation for the 
analysis of life histories that began to take shape in demography in the early 1980s. 
The event-history approach could now properly integrate an analysis of  dependence  
between events and an analysis of the  heterogeneity  of populations, thereby solving 
the diffi culties encountered in longitudinal analysis. Statistical individuals were 
now assumed to follow an identical complex random process, whose parameters 
could be estimated with the aid of a sample of observed individuals. We also show 
that this approach, initially developed in an objectivist context, was extended to the 
epistemic approach. 

 As before, we review some of the criticisms of this approach, notably the prob-
lems raised by unobserved characteristics and by the existence of other aggregation 
levels, which frailty models attempt to incorporate. 

 First, we discuss a hierarchical, latent vision that covers a wide spectrum of mod-
els described briefl y here, with a more detailed examination of frailty models. These 
assume an underlying distribution of individual probabilities and try to estimate it. 
However, the distribution is unknown, whereas only one model exists that can be 
estimated without observed heterogeneity: as a result, an infi nity of distributions 
will fi t observed data identically. 

 We also discuss the introduction of epistemic models, with fuller details on the 
artifi cial neural network method. It should be noted, however, that such models sup-
ply a ‘black box’ for effectively predicting a given distribution, without actually 
explaining the phenomenon studied. 

 We therefore turn now to a  contextual analysis , followed by a fully  multilevel 
analysis . Contextual analysis incorporates both individual and group characteristics 
into event-history models. This avoids two fallacies: (1) the  ecological fallacy  that 
an aggregate-level study can generate, and (2) the  atomistic fallacy  inherent in a 
pure event-history analysis. However, contextual analysis ignores potential intra-
group dependence between individuals, which may produce overly narrow confi -
dence intervals. Multilevel analysis overcomes this drawback by introducing random 
effects at group level in addition to individual variance. 

 To conclude, we present some of the objections to the approach, most notably that 
it fails to take into account the mechanisms for moving from more aggregated levels 
to the individual level. Only a new paradigm could allow advances in this fi eld.  

   Conclusion to Part II 

 Our study has thus shown that nearly all population studies paradigms display such 
close ties with probability as to make it impossible to separate the two disciplines: 
population study is the application of probabilistic concepts to populations. We have 
also shown that, throughout their history, the social sciences have used the succes-
sive approaches to probability to address specifi c issues. For instance, in the late 
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eighteenth and early nineteenth centuries, Laplace and Duvillard applied logical 
probability to a number of demographic subjects. By contrast, the late nineteenth 
century and the fi rst half of the twentieth century saw the triumph of objective prob-
ability with the use of census data and aggregate regression methods. While the 
objectivist approach prevailed in the early days of event-history analysis, the 
epistemic approach later became important owing to the smallness of the popula-
tions observed. The same is true for the multilevel approach. 

 We also examine shortly here the role of counterfactual causality in social 
science and give some arguments against its use. Lastly we try to show how some 
cumulativity is possible in population sciences.    

   General Conclusion 

 Our general conclusion summarizes the main fi ndings of our study, emphasizing 
what can and what cannot be generalized from population sciences to the other 
social sciences. While we cannot explore all the vaster implications of this issue—
our book is not an encyclopedia—we suggest some ways of gaining a clearer pic-
ture of the situation. 

 Accordingly, we examine in greater detail the links between sociology or artifi -
cial intelligence and probability in order to understand their limits and to see the 
alternatives to statistical logic. 

 This leads us to discuss in more details the problem of causality in probability 
and social science and to go further than the counterfactual approach previously 
discussed. The role that mechanisms play in social sciences seems very important to 
explore simultaneously with their multilevel character. 

 We move on to various questions to which our book has provided only partial 
answers, and we suggest various approaches to supplement those answers. 

 For instance, we have solved the delicate problem of individual cases by means 
of the notion of statistical individual. This allows the introduction of many time-
dependent individual characteristics into an event-history analysis where, initially, 
all individuals were equally likely to experience the event. True, there will always 
be unobserved characteristics capable of infl uencing the phenomenon, and an effect 
specifi c to each individual: his or her frailty. The more general problem is thus the 
transition from the individual to the population, under these various conditions. We 
show the formal relationships that link the parameters of an analysis of event histo-
ries at individual level and population level. We discuss recent approaches introduc-
ing more complex stochastic processes. 

 Lastly, we discuss the problem of forecasting in the social sciences, which 
implies the use of probability. We show the importance of using epistemic methods 
to solve the forecasting problem, with particular reference to the results obtained by 
microsimulation methods. 

 All the recent examples given in the conclusion show the enduring relevance of 
the methodological problem addressed in our work—a problem whose history we 
have recounted from its seventeenth-century origins to the present.              
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 In Part I, we will explore the path that runs from probability to statistics and social 
science. Before we begin, a cautionary note: it would be vain to assign a historical 
order of precedence to the three fi elds, as Good  (  1956  )  has shown so clearly for 
probability and statistics:

  Fermat and Pascal, and the other authors mentioned, started the mathematical theory of 
probability in order to explain the results of some statistics obtained experimentally, so 
that it could be contended that statistics came fi rst. But since we have dated probability by 
mathematical probability, the reasonable question is ‘When did mathematical statistics 
start?’ … Apparently, then, the  mathematical  theory of statistics started at least sixty years 
later than that of probability.   

 In other words, the answer to the question depends on the defi nitions given for 
probability and statistics, and cannot be provided without bringing them into the 
discussion. In our view however, as noted below, Graunt’s book  (  1662  )  marks the de 
facto establishment of a full-fl edged statistical theory. That theory, therefore, 
appeared well before the date given by Good. However, it follows the advent of 
probability (Pascal 1654a), so Good’s basic argument remains correct. The interval 
has simply shortened from 60 years to 8. In this ‘chicken-or-egg’ situation, we can-
not determine which came fi rst. 

 The same is true of social science, which we can view as preceding or follow-
ing probability and statistics. Accordingly, under a certain defi nition of social 
science, we can say that when Plato and Aristotle described the foundation of a 
society, they were already engaged in population science by defi ning the compo-
nent groups of a population (for more details, see Chap.   5    ), well before Pascal and 
Fermat introduced probability. Yet we can also argue that a truly statistical 
approach to population did not appear before John Graunt  (  1662  ) , and this time it 
followed the introduction of probability. 

 To underscore this duality, Part II of our book will examine the opposite path 
from social science to probability and statistics—in the specifi c case of population 
science, for our scope is not encyclopedic. 

 As noted in the General Introduction, probability made it possible to reason about 
chance, i.e., about uncertain events. For more than three and a half centuries now, 
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probability theory has developed in many different directions whose number, as well, 
is hard to specify. For Laplace  (  1814  ) , the analytical theory of probability is unique 
and governs all our knowledge, even of mathematics, for the principal means of 
arriving at the truth—induction and analogy—are based on probability. Good  (  1971  ) , 
on the contrary, believes that one can distinguish between 46,656 varieties of Bayesian 
probability, to which he adds the non-Bayesian variety proposed by von Mises  (  1942  ) . 
Good arrives at his fi gure by considering that there are 11 facets to probability, each 
with 2, 3 or even 4 categories, yielding a total of     ´ ´ =4 62 3 4 46,656    categories. It is 
not useful to elaborate on the categories here, since some may be empty—as Good 
himself recognizes. 

 Between these extremes, we shall focus on three broad types of approaches: the 
objective approach, the subjective approach, and the logicist approach—the second 
and third of which can be regarded as epistemological. The fi rst approach, which is 
purely empirical, concerns events that can recur in identical conditions. The second 
approach, which is purely subjective, is concerned with all types of feelings of 
uncertainty—however subjective they may be; it takes individual opinions on these 
events as a starting point to develop a coherent theory. The third approach, based on 
an extension of logic, also examines feelings of uncertainty but begins with the 
notion of fair wager in order to develop a consistent theory. As the second and third 
approaches consider the total set of feelings of uncertainty, we may regard them as 
‘epistemological’ in the sense that Hacking  (  1975  )  uses the term to describe a 
knowledge-related entity. Here, however, we prefer to maintain the distinction 
between subjective and logicist, which we view as essential. 

 We shall add to the discussion the theories that resemble the two approaches, but 
without lingering on those that are of little value in social science (such as Popper’s 
 propensionist  interpretation of the probability of isolated events  (  1983  ) , which he 
notably applies to quantum theory and Werner Heisenberg’s uncertainty equations), 
or on those (such as Zadeh’s theory of fuzzy sets  (  1965,   1978  ) ) that diverge too 
sharply from the notion of Boolean tribe, a characteristic of the forms of probability 
examined here. 

 It is not enough to describe the main theories related to the three approaches. We 
must also try to identify the underlying paradigm and axiomatics. The object of 
probability theory was initially elaborated via paradigms that sought to better defi ne 
the object using abstract models whose elements, such as ‘coherence’ and ‘consis-
tency’, must be defi ned more precisely. The probabilists then attempted to place 
their science on fi rmer foundations, i.e., to fi nd the most suitable axiomatics for it. 
These axiomatics are now well established, but sometimes exhibit differences 
depending on the approach adopted. However, as we shall see in Part II, while some 
social sciences have tried to follow this path, most are still a long way from having 
fully axiomatized their discipline. Economy may be the fi eld that has gone furthest 
in that direction (see, for example, the discussion between Mongin  (  2003  ) , Agliardi 
 (  2004  ) , and Armatte  (  2004  ) ), for it is the most mathematized of the social sciences. 
However, in our opinion, we cannot say that this axiomatization has entirely 
succeeded. We can also say that population sciences have not yet succeeded in 
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axiomatizing their fi eld, although one can defi ne manifestly different paradigms in 
the discipline. 

 To connect these types of probability to existing statistics, we must take a closer 
look at what is known as statistical inference. The purpose of inference is to make 
the most appropriate use of the incomplete information that statistics give us on a 
specifi c phenomenon. Inference consists in verifying the possible hypotheses on the 
behavior of the population studied and in estimating the population’s underlying 
characteristics. Again, we shall see the very different meanings that the various 
approaches to probability can assign to inference. The notion of statistical inference 
plays a critical role in the application of probability to social science. 

 In these conditions, how should we apply the different forms of probability and 
the resulting varieties of statistical inference to the social sciences—for example, 
demography, economics, sociology, education sciences, and legal science? We 
illustrate the application of a type of probability to these disciplines without dwelling 
on their conceptual implications and the reasons that have driven authors to use 
probability. Here however, we examine succinctly different social sciences, while 
in Part II we will examine population sciences in more detail. 

 Lastly, it is obvious that each approach to probability, while offering solutions 
to certain problems posed by the others, has its own limitations and is open to 
criticism. In the conclusion to Part I, we seek to transcend these criticisms by offering 
a broader view of the different approaches to probability. After discussing their 
emergence over the centuries, we offer an overview of issues raised by statistical 
inference in social science.                           
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 We have already noted that, from its inception, probability displayed two totally 
distinct facets: (1) objective probability, which concerns observed facts and relies 
on the frequencies of such events as rolls of the dice, human deaths, and human 
births; (2) epistemic probability, which concerns knowledge and relies on the assess-
ment of degrees of belief in the truth of propositions as diverse as the existence of 
God, miracles, and a defendant’s guilt. We shall examine each form separately here, 
bearing in mind that one did not precede the other, but that both emerged simultane-
ously. As we shall see, they imply a fuller, more encompassing approach: the  logicist 
approach. 

 We have chosen to begin with the objectivist approach, for it seems to be more 
attuned to the initial concerns of the social sciences—particularly demography. 
From the outset, these disciplines addressed statistical and frequentist issues with 
the aim of measuring human phenomena such as births and deaths rather than topics 
of a more subjective kind such as law, jurisdiction, and certainty. 

 Moreover, the fi rst theoretician to truly axiomatize probability, Kolmogorov, was 
an utterly convinced objectivist. He based the application of his probability theory 
on the existence of systems capable of infi nite repetition. He sought to apply prob-
ability not to the largest possible number of feelings of uncertainty, but only to the 
feeling of uncertainty regarding the occurrence of events liable to be repeated in 
identical conditions. However, as discussed later, his purely formal axioms are open 
to a subjective interpretation as much as to a logical interpretation—with major 
 differences, of course, in the concepts used. 

 By contrast, Kolmogorov fully realized that his axioms could have non- 
probabilistic interpretations, in a wide variety of research fi elds. Indeed, many 
quantities that have nothing to do with probability satisfy these axioms: stan-
dardized masses, lengths, areas, volumes, and so on—in fact, everything that 
falls within the scope of measure theory. That is the specifi c characteristic of 
successful axiomatization, which can apply to totally different systems, whether 
natural or human. 

    Chapter 1   
 The Objectivist Approach                  
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    1.1   Objectivist Probability 

 Let us fi rst try to see how this notion of probability took hold over time before 
 discussing its paradigm and axioms, the inference it involves, and its application to 
demographic issues. 

    1.1.1   First Step: A Classical Theory 

 As already noted in our introduction, the notion of justice lies at the root of proba-
bility, and we would add objectivist probability here, for that is exactly what Cardano 
already meant in the mid-sixteenth century, when he spoke of a just wager:

  I am equally capable of casting a one, a three or a fi ve as I am of casting a two, a four or a 
six. Consequently, bets are placed in keeping with this equality if the die is fair, and, if it is 
not, the bets are more or less proportional to the divergence from true fairness .  1    

 He clearly sets out an equal number of alternatives, sustained by the vision of a 
fair die. 

 Let us examine more closely how to formalize in mathematical terms Aristotle’s 
rule for a fair wager using Cardano’s terms, quoted in our introduction. 

 Let us suppose that a player bets a sum  x  against another player who bets a sum  y . 
The ratio of the number of positive outcomes for the fi rst player to the total 
‘ circuit’ is in fact his/her probability of winning  p , while that of the second player 
is 1 −  p . The game is, in this case, fair if the expected gains for both players are 
identical, i.e.:

     

· ·(1 · 1 )

' '

) ( ·y p x p x p y p

first player s expected gains second player s expected gains

− − = − −

   

which we can rewrite as:    
1

x p

y p
=

−
   

 This is tantamount to stating that the ratio of bets must be identical to the ratio of 
the chances of winning, which is exactly the rule given by Cardano. This is also 
consistent with Aristotle’s rule, where the ‘shares’ constitute the wagers and the 
‘justice’ of individuals denotes their respective chances of winning. 

 Obviously, to make those wagers, we need to know the chances of winning, 
without which no reasoning is possible. Thus, as already noted, when Cardano 
refers to the basic principle of games, he clearly indicates the impossibility of rea-
soning when we do not know those chances. This confi rms the general hypothesis 
formulated in the early days of probability calculus, namely, that the game is fair. 

   1   Tam possum proiicere unum tria quinque, quam duo quatuor sex. Iuxta ergo hanc aeqalitatem 
pacta constant, si alea sit iusta; & tanto plus, aut minus, quanto a vera aequilitate longius 
distiterit.  
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For instance, if we play heads or tails, we must assume that the probability of the 
coin’s coming up heads is one-half, and that of coming up tails is also one-half. We 
thus assume that the coin is perfectly fair—a heroic assumption. The same reason-
ing applies to a die for which we assume a 1/6 probability of landing on a given side, 
to a deck of cards for which we assume a 1/52 probability of drawing a given card 
(for a 52-card deck), and so on. That is how Pascal, Fermat, Christiaan Huygens, 
Jacob Bernoulli, de Montmort, and many other authors reasoned in the earliest days 
of probability calculus, by introducing ever more complex games, but keeping this 
hypothesis consistently in mind. Only by framing it could they determine the prob-
abilities of the various possible outcomes. This initial approach forms what is known 
as  classic  probability theory. 

 This hypothesis of ‘a fair game’ or ‘equally possible events’ would lead us, when 
analyzing events other than games, to a defi nition of probability as a branch of psy-
chology, for probability would be the only way to decide, in this case, whether the 
hypothesis is true or false. But objective probability concerns itself not with what 
people believe, but with what they should think of objective facts.  

    1.1.2   Second Step: A Frequentist Theory 

 We must therefore try to defi ne probability by means of an objective property of the 
objects examined. Let us consider the classical defi nition of probability as the ratio 
of the number of favorable outcomes for an event to the total number of equally 
possible outcomes. This possibility is not measurable in the same way as a length or 
duration. The expression ‘equally possible’ is merely a synonym for ‘equally prob-
able’. As a result, the defi nition is circular: it merely reduces the general case in 
which the probabilities of several possible events are different to the specifi c case 
where all the probabilities have the same value. 

 Moreover, if we want to generalize these results to other phenomena—for exam-
ple, demographic phenomena—or even to the situation where we do not know 
whether the coin is perfectly fair in the game of heads or tails, we need to posit new 
hypotheses. As we do not know the number of favorable outcomes and so cannot 
compute their ratio to all possible outcomes, the occurrence or non-occurrence of an 
event in a single trial can hardly tell us about its probability. We need to repeat the 
trial many times and observe the ratio of the number of trials that effectively pro-
duced the phenomenon studied to the total number of trials. 

 For this operation to be meaningful, we must defi ne more precisely the phenom-
ena to which it can apply. This approach was fully elaborated by the logician Venn 
 (  1866  ) , known for his representation of sets by means of a simple diagram that can 
be applied to display various probabilistic operations. The approach ‘combines 
individual irregularity with aggregate regularity.’ Let us examine his argument in 
greater detail. 

 For Venn, the main error of certain earlier probabilists—and not the least emi-
nent among them: Laplace, for example, is to have applied probability theory to 
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events for which it was not applicable. Venn argues that the notion of series is the 
most essential for deciding whether probability theory applies to a given event or 
not, and the theory makes no sense unless it is linked to that notion. But he then 
needs to defi ne with precision what he means by series. Venn’s demographic exam-
ple clarifi es the term. 

 Let us consider the statement: ‘Some children will not reach age 30.’ If we view 
the statement as a logical proposition, the notion of series is utterly foreign to it. If, 
instead, it is a proposition that we can express in numerical form by replacing the 
term ‘some’ with a given proportion, then it is hard not to speak of a series any 
longer. This is not, however, the same thing as stating that if we observe a certain 
number of children, we shall observe this exact proportion of deaths before age 30. 
What it does mean is that if we observe a growing number of children, the propor-
tion of deaths observed will tend toward that limit. The problem then becomes

  to see whether, with a steady increase in the number of observations, there is a growing 
likelihood of obtaining the true proportion between the number of cases in which an event 
can occur, and the number of cases in which it cannot, so that this likelihood will exceed the 
degree of certainty that we want (Jacob Bernoulli  1713 , chapter IV). 2    

 The underlying hypothesis is that this probability, while not calculable a priori as 
in games, exists and remains identical over time for the event studied. Bernoulli 
demonstrates this proposition—which in fact is anything but self-evident—in 
Chapter V of his book. 

 We shall now no longer need to assume that we can determine probabilities 
 a priori  but that they exist, even if we do not know them. For example, in a coin-toss 
exercise, the observation of a large number of persons tossing the same coin will 
enable us to estimate the probability of heads or tails, which may no longer be 50:50 
if the coin is not fair. We shall also be able to estimate the probability of dying at a 
given age from the observation of a very large number of individuals in a population, 
even though there is no combinatory calculus enabling us to estimate it. Lastly, this 
approach leads to the notion of geometric probability, which means that instead of 
counting equally likely outcomes, we measure the extension of their surface area in 
a geometric space. But the probability remains a ratio of favorable outcomes to total 
outcomes—this time, a ratio of areas rather than of whole numbers (Cournot  1843  ) . 

 We can thus assign an objective and non-equivocal status to the concept of prob-
ability when dealing with events liable to occur in identical conditions, during 
repeated trials. Normally, the trials should be indefi nitely repeatable in order to 
allow the defi nition of an objective probability. While that is indeed the case of the 
coin in the previous example—provided that its wear over time leaves the probability 
unchanged—the same is not true of deaths observed at a given moment in a fi nite 
population. In the latter case, we need an additional hypothesis, namely, that this 

   2   Inquirendum nimirum restat, an aucto sic observationum numero ita continuό augeatur probabilitas 
assequendae genuinæ rationis inter numeros casuum, quibus eventus aliquis contingere & quibus 
non contingere potest, ut probabilitas hæc tandem datum quemvis certitudinis gradum superet.  
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fi nite population is extracted from an infi nite population for which the probability of 
dying at a given age is always the same. Fisher follows this approach  (  1922b  ) , when 
he defi nes probability as follows:

  It is a parameter which specifi es a simple dichotomy in an infi nite hypothetical population, 
and it represents neither more or less than the frequency ratio which we imagine such a 
population to exhibit. 3   

We can accordingly perform an empirical estimation from the objectivist stand-
point, with a degree of certainty determined by the size of the sample observed. This 
is known as frequentist probability theory. 

 As noted earlier, in the approach defended by Venn  (  1866  ) , many events are not 
open to probabilization. For example, he has this to say about social science:

  Many of the events which occur to human beings cannot be repeated at all, or not often 
enough to secure in the case of one individual any suffi cient statistical uniformity.  

Thus, in the objectivist approach:

  We can say nothing about the probability of death of an individual even if we know his 
condition of life and health in detail. (   von Mises 1957)  

In this case, we can only speak about the probability of dying in a population as 
large as we wish. Likewise, to speak of the probability of an inherently unique 
event or, more generally, of the probability that a proposition is true makes no 
sense for an objectivist. The event must form part of a series in which it is merely 
one of an infi nity of elements. 

 As we shall see later, this frequentist probability theory was elaborated on a sys-
tematic scale by von Mises  (  1919,   1928 , 1932), who named such series a  collective :

  A collective is an infi nite sequence of experiments whose results are represented by certain 
points in a space with  r  dimensions, the correspondence between the results and the order 
of the experiments meeting the two following conditions:

    1.    Let  A  be a random portion of the characteristic set; the ratio     An

n
   of the

  number     An    of such experiments among the fi rst  n  whose results belong to  A  to the total 
number  n  of experiments tends toward a specifi c limit, with  n  rising infi nitely;  

    2.    Let  A  and  B  be two non-empty portions of the characteristic set without common points, 
    A Bn and n    the numbers of such experiments among the fi rst  n  whose results belong to 
A or B respectively; the limits     A Bp and p    do not both vanish. If we select 

  a place on the     ( )A Bn n+    experiments such that only     A Bn and n′ ′    remain, the ratio     A

A B

n
n n

′
+′ ′

   

  tends toward a limit equal to the limit of the ratio     A

A B

n
n n+

   or to     A

A B

p
p p+

  . With both 

   conditions met, the limit is ‘called the probability of a result belonging to set A in the 
collective examined’ (von Mises  1932  ) .       

   3   While Fisher may be viewed as a frequentist in most of his writings, he gave a different defi nition 
of probability at the end of his life, noting that ‘no sub-set may be recognizable having a fraction 
possessing the characteristic differing from the fraction  P  of the whole’ (Fisher  1960  ) . This con-
cept of probability is generally regarded as unclear and has been little used since (Savage  1976  ) .  
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 Kolmogorov followed a different approach in his book  (  1933  ) , where he set out 
a solid axiomatics of probability. In a footnote, however, he indicated that:

  In laying out the assumptions needed to make probability theory applicable to the world of 
real events, the author has followed in large measure the model provided by Mr. von Mises .   

In a later article  (  1951  ) , he added that he believed many events have no probability 
in the objective sense:

  The assumption that a defi nite probability (i.e. a completely defi ned fraction of the number 
of occurrences of an event if the conditions are repeated a large number of times) in fact 
exists for a given event under given conditions is a hypothesis which must be verifi ed or 
justifi ed in each individual case .   

In our section on the axiomatics of objective probability, we shall take a more 
detailed look at the contribution of von Mises and Kolmogorov in this area. 

 The philosopher of science Popper  (  1982  )  also defended this position. For quan-
tum mechanics, he proposed a propensionist interpretation of probability, which is 
a refi ned version of the frequentist position. He began by noting:

  For a long time, it was believed (and many eminent mathematicians and physicists still do) that 
we could take a system of subjectively interpreted probabilistic premises  and then draw objec-
tive statistical conclusions from these subjectivist premises. That, however, is a grave blunder .  

Later, he added: ‘The error was carefully analyzed by Richard von Mises and 
also by me’, to arrive at the following conclusion: ‘the error is quite clear: from 
premises regarding degrees of belief, we can never reach a conclusion regarding the 
frequency of events.’ 

 In Chap.   2    , we shall see how the subjectivists respond to this criticism. Popper 
did, however, indicate  (  1959,   1983  )  that von Mises’s axiomatics was met by a 
 number of objections and that there was a need to elaborate a  propensionist  approach. 
The latter preserves the objective idea that probabilities are estimates of statistical 
frequencies observed in long real or virtual sequences. But it takes into account the 
fact that these sequences are defi ned by the way in which their elements are generated. 
These probabilities will thus depend on the generation conditions, and they can 
change when the conditions change (Popper  1983  ) . This approach is particularly 
useful for studying stochastic processes found in nature—such as the radioactivity 
of certain sources—and it may be suitable for understanding probabilistic theories 
in physics. We shall not discuss it further here, as it is less relevant to social science 
(for more details see Suppes     (  2002a,   b  ) ). 

 In sum, the objectivist or frequentist approach to probability has come to prevail 
in the thought processes of many researchers, including statisticians and probabi-
lists, in both the physical and social sciences.   

    1.2   Paradigm and Axiomatics of Objective Probability 

 Let us begin by specifying what we mean by ‘paradigm’ and ‘axiomatics’ before 
describing how these concepts emerged and developed in the fi eld of objective 
probability. 
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 First, although Masterman  (  1970  )  identifi ed 21 different meanings of the term 
‘paradigm’ in Thomas Kuhn’s work  (  1962  ) , Kuhn himself eventually isolated two 
main meanings:

  On the one hand, it stands for the entire constellation of beliefs, values, techniques and so 
on shared by the members of a given community. On the other, it denotes one sort of ele-
ment in that constellation, the concrete puzzle-solutions which, employed as models or as 
examples, can replace explicit rules as a basis for the solution of the remaining puzzles of 
normal science. (Kuhn  1970  )   

Here, we propose a slightly different approach from those offered by Kuhn—an 
approach that actually addresses the following question: how does one move from 
experienced phenomena to the scientifi c object as defi ned by the philosopher 
Granger  (  1994  ) ? For Granger:

  the complex life experience grasped in the experience of sensitive things has become the 
 object  of a mechanics and a physics, for example, when the idea was conceived of reduc-
ing it to an abstract model, initially comprising only spatiality, time, and ‘resistance’ to 
motion.  

Granger further recognizes that the content of this object is not explicitly and 
broadly defi ned at the outset. For instance, sciences such as physics and biology 
perform successive elaborations of their objects, as illustrated by the transition from 
Newton’s physics to Einstein’s general relativity. Likewise, probability spelled out 
its object by means of successive paradigms, each of which specifi ed its own dis-
tinct relationship between observed phenomena and the scientifi c object (Courgeau 
and Franck  2007  ) . This notion will suit us well here for our examination of proba-
bility and population sciences. 

 Once we have identifi ed the paradigm of a science, it is useful to formalize the 
science more fully by means of an axiomatics. Let us spell out what we mean by 
this term. 

 We begin with the period that gave birth to modern science and probability, and 
the rules established by their founders: Galileo  (  1613  ) , Bacon  (  1620  ) , Descartes 
 (  1647  ) , Newton  (  1687  ) , and others. We shall not explore their approach in detail 
here. Franck  (  2007  )  has provided a very clear description of it, and his main conclu-
sions are as follows:

  Descartes teaches us that Euclid’s axioms are not self-evident truths that need no demon-
stration; nor are they postulates, contrary to a common assertion. These axioms have indeed 
been demonstrated, admittedly not by means of logical deduction, but by analyzing the 
properties of geometric fi gures.  

Descartes  (  1647  ) , for instance, writes: ‘Euclidean axioms have been deduced 
from the properties of geometric fi gures, contrary to what geometers pretend to 
believe.’ 

 This thesis was recently revived, most notably by McKinsey, Sugar, and Suppes, 
in  1953 . In 2002, taking measure theory as an example, Suppes showed that

  [a]n analysis of how this passage from the qualitative to the quantitative may be accom-
plished is provided by axiomatizing appropriate algebras of experimentally realizable oper-
ations and relations.  
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These studies led to the development of the semantic approach to theories 
(van Fraassen  1980 ; Suppe  1989  ) . Similarly, the analysis of the empirical properties 
of objective probability is what allowed a defi nition of its basic axioms. 

    1.2.1   The Paradigm 

 From the outset, the theory of objective probability was fully rooted in the empirical 
phenomena that it aimed to address, such as games and population science’s events. 
Gauss, for instance, counted the number of aces that chance allotted to him in his 
daily games of whist. We can even say that, although it is not possible to perform an 
infi nity of trials in a game, the experiment can be conducted and confi rmed a very 
large number of times, but this number will always be fi nite. By contrast, if these 
phenomena do not produce frequencies broadly converging toward a value that is, 
in principle, unknown, then they do not fi t into the framework of the theory. 

 The study of games highlighted a fi rst key principle for this axiomatics. By 
observing a large number of dice games, card games, and so on, we can determine 
the number of different outcomes—provided, of course, that the games are not 
biased, for example by loaded dice or marked cards. As discussed earlier, that is the 
principle used by Cardano to estimate his chances of winning. Likewise, Jacob 
Bernoulli  (  1713  )  observed that

  the number of outcomes is known from the dice; indeed, there are as many outcomes as 
there are sides, and all equally predisposed, since because of the similarity of the sides and 
the even weight of the die, there is no reason why one side should tend to turn up more than 
another, as would occur if the sides were shaped differently, or if one part of a die were 
made of heavier material than another. 4   

In the same vein, de Moivre  (  1711  )  introduced equally possible 5  events to defi ne 
probability. A few years later  (  1718  ) , he spelled out two essential notions to con-
sider in analyzing probability: independent events and dependent events:

  Two Events are independent, when they have no connection one with the other, and that the 
happening of one neither forwards nor obstructs the happening of the other. Two Events are 
dependent, when they are so connected together as the Probability of either’s happening is 
altered by the happening of the other.  

He goes on to defi ne the notion of compound probability:

  the Probability of the happening of two Events dependent, is the product of the Probability 
of the happening of one of them, by the Probability which the other will have of happening, 
when the fi rst is considered as having happened.  

   4   Ita ex. gr. noti sunt numeri casuum in tesseris; in singulis enim tot manifestè sunt quot hedrae, 
iique omnes æquè proclives; cùm propter similitudinem hedrarum & conforme tesseræ pondus 
nulla sit ratio, cur una hedrarum pronior esset ad cadendum quàm altera, quemadmodum fi eret, si 
hedræ dissimilis forent fi gurae, aut tessera una in parte ex ponderosiore material constaret quàm in 
altera.  
   5   eæque faciles.  
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He also uses, without defi ning it precisely, the notion of total probability: if two 
events are independent, the probability of either happening is equal to the sum of the 
respective probabilities of one happening and the other happening. 

 Should we include all these concepts in the paradigm or, on the contrary, can 
some be deduced from the others? To answer this question, we must examine the 
essential preconditions for the emergence of the concept of probability. 

 When the dice are loaded or when the probability of an event cannot be deter-
mined in advance—as is the case in demography—we must see which hypothesis 
enables us to calculate a probability for these events. To do so, the hypothesis that 
each successive draw is always equally possible (equipossibility) suffi ces to make 
the concept of probability usable. In this case, if the probability of a draw is unknown, 
but if we know that all the draws are equipossible, then Bernoulli’s theorem cited 
above will apply, allowing us to estimate the probability. For instance, if a die is 
loaded, we can estimate probabilities differing from one-sixth for each side; in 
demography, we can estimate a probability of dying, marrying, migrating, and so 
on. In the words of de Montessus  (  1908  ) :

  The term ‘probability’ merely indicates that, for a large number of trials, the ratio of the 
number of occurrences of an event to the number of tests will converge precisely toward 
the ratio of the number of positive outcomes to the number of possible outcomes: and 
nothing more.   

 We can thus state a portion of the paradigm of the calculus of objective probability. 
That is what Poincaré  (  1912  )  calls  petitio principii  (‘begging the question’):

  how can we recognize that all outcomes are equally probable? A mathematical defi nition is 
not possible here; we shall have to formulate  conventions  in each application, to say that we 
regard given outcomes as equally probable.  

Once these conventions are framed, the concepts of compound or total probabil-
ity become theorems for Poincaré. Interestingly, as we shall see later, Kolmogorov 
 (  1933  )  took the opposite stance, introducing the concept of total probability as one 
of his axioms. Some of his contemporaries, instead, preferred to choose compound 
probability as one of their axioms (Lévy  1937 ; Ville  1939  ) . But, in our view, this 
 petitio principii  seems to be the true foundation of the paradigm of the concept of 
objective probability. 

 Another important concept for objective probability is physical possibility or 
impossibility—known in the eighteenth century as ‘moral certainty’. Jacob Bernoulli 
 (  1713  )  had already showed that, when the number of observations increases, the 
probability that the measured frequency converges toward the event’s probability 
tends toward unity. He noted that this probability may be viewed as a moral cer-
tainty: ‘which is a reasonable practice in civil life, where moral certainty is viewed 
as absolute certainty’. 6  Moral certainty was the subject of considerable discussion in 

   6   quod sane in usu vitæ ciilis, ubi moraliter certum pro absoulte certo habetur.  
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the eighteenth century, particularly by D’Alembert  (  1761a  )  in his  Réfl exions sur le 
calcul des probabilités :

  Indeed, we must distinguish between what is  metaphysically  possible, & what is  physically  
possible. The fi rst class contains all things whose existence is in no way absurd; the second 
comprises all things whose existence not only has nothing absurd about it, but even has 
nothing too extraordinary about it, & [nothing] that does not belong to the daily course of 
events. 7    

 Cournot  (  1843  )  gave the clearest defi nition of this concept of physical impos-
sibility. For this, he shifted his focus away from fair games—which always offer 
a countable number of possible outcomes—toward the possibility of increasing to 
infi nity the number of concomitant causes generating a given event. This enabled 
Cournot to examine events whose probability can be infi nitely small from the 
outset. In his Chapter IV, ‘On chance – on physical possibility and impossibility’, 
he wrote:

   the physically impossible event is therefore the one whose probability is infi nitely small;  and 
this remark alone gives substance, an objective and phenomenal value to the theory of 
mathematical probability.  

A physically impossible event may be envisaged as mathematically possible, but 
in fact it never occurs. What Bernoulli had shown for games by increasing the num-
ber of trials is just as valid for events that have an infi nity of causes. 

 Hadamard  (  1922  )  stated the two basic concepts on which probability is 
based: totally equivalent events and totally impossible events. This is an exact 
reformulation of the concepts of equipossibility and physical impossibility. Lévy 
 (  1925,   1937  )  spelled out the role of both concepts in fuller detail. The concept of 
equipossible events offers a foundation for probability theory, but does not enable 
us to distinguish between objective and epistemic probability. By contrast, the con-
cept of physically impossible events allows us to characterize objective probability 
with precision:

  A very improbable event is therefore  practically  equatable with an impossible event; we 
shall describe it  as practically impossible , or  nearly impossible ; its opposite is  nearly 
certain . (Lévy  1925  )   

Bernoulli’s law of large numbers offers an illustration: we must expect the 
 difference between frequency and probability to be all the smaller as the number of 
observations increases. ‘We must expect’ effectively means here that the opposite is 
practically impossible. 

 Thus, with the aid of the two concepts of equipossibility and physical impossibility, 
we can defi ne the paradigm on which objective probability is based.  

   7   Indeed, Fréchet  (  1951  )  remarks that this principle, while attributed to Cournot, ‘seems to have 
been already stated more or less clearly by D’Alembert’. But we should note that D’Alembert, 
while a great mathematician, made a number of errors in his reasoning on probability (Bertrand 
 1889 ; Delannoy  1895 ; Maupin  1895  ) . However, as we shall see later, D’Alembert’s occasionally 
subjective stance in his reasonings gave rise to some of the criticisms directed against objectivist 
probabilists.  
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    1.2.2   The Axioms 

 Lastly, we must identify the more specifi c axioms on which this discipline is 
founded. While Euclid had defi ned the axioms of geometry about 33 centuries ago, 
the axioms of probability were not clearly set out until the twentieth century. It was 
Hilbert—in his famous list of the 23 problems to be addressed in the twentieth cen-
tury, which he presented at the International Congress of Mathematicians in Paris in 
1900—who set the sixth problem as follows:

  The investigations on the foundations of geometry suggests the problem: to treat in the 
same manner, by means of axioms, those physical sciences in which mathematics plays 
an important part; in the fi rst rank are the theory of probabilities and mechanics. 
(Hilbert  1902  )    

 Before axiomatizing probability, however, we need to elaborate a theory and an 
axiomatics of sets and set measurement, known in Hilbert’s day as additive function 
of abstract sets. The events of interest to the probabilist—such as the tosses in a 
heads-or-tails game, the draws from a jar, or the occurrence of demographic events—
are neither geometrical or arithmetical elements. By contrast, the concept of ‘set’ 
allows us to capture these events, and the concept of ‘set measurement’ allows us to 
measure them. Each can be viewed as an element of a set, and we shall see that 
operations on these sets indeed apply to more complex events whose probability we 
want to estimate. 

 Space precludes a detailed discussion here of the concept of set, which has 
been extensively debated. Suffi ce it to recall that the theory was largely elaborated 
by Cantor  (  1874  ) , who was also interested in probability. In an earlier paper 
 (  1873  ) , Cantor had called for a debate in which the validity of his calculations 
could be established with exactitude. Set theory raised a number of paradoxes, 
later resolved thanks to a more precise and more general axiomatics (axioms of 
the ZFC theory 8 ). 

 To develop an axiomatics of objective probability, we do not need to examine the 
general concept of set but only the concept of measurable set. Three operations on 
these sets will suffi ce for our purposes: (1) and (2), union and intersection applied 
either to a finite number or to a countable infinity of elements in the set; and 
(3) complement. Such a set is called closed with respect to these operations if, by 
applying it to a fi nite or countable number of its elements, we still obtain an element 
of the same set. A  s -algebra or tribe is a closed set with respect to the three opera-
tions above. In fact, if we axiomatize this concept of tribe, we simply need to posit 
the axiom of closure with respect to the fi nite or countable union of sets and the 
axiom of closure with respect to the transition to the complement: from this, we 
deduce closure with respect to the fi nite or countable intersection. If  W  is the set 

   8   The acronym stands for the Zermelo-Fraenkel theory, formulated with the axiom of Choice.  
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examined, B a collection of sub-sets of  W , and     ∪    the operation to unite the sets, the 
axioms are as follows:

      1.    The empty set and  W  are elements of B  
    2.    If  B  is an element of B ,  its complement is an element of B  
    3.    If     nB    is an element of B ,  then     nB ∈∪   B       

 These axioms of set theory were developed from the observation of a large number 
of countable sets that meet all the conditions above but cannot be demonstrated. 
They then served as a basis to demonstrate theorems on these sets and formalize 
probability theory. 

 From the notion of  s -algebra, Borel  (  1898  )  was able to establish a measure the-
ory that is inseparable from Lebesgue’s theory of integration  (  1901  ) : the integral of 
a function of a numeric variable is a measure of the area bounded by the  x -axis and 
the curve plotting the function. While Borel confi ned himself to Euclidean spaces, 
Fréchet  (  1915  )  generalized the approach from  n -dimensional spaces (Radon  1913  )  
to any abstract set. 

 Such a measure is a function that associates each element  A  of an  s -algebra with 
a value     ( )Aμ    that is a positive or infi nite real number. The conclusively recognized 
axioms that allowed a defi nition of this measure are as follows:

      1.    The empty set, Ø, has a null measure.  

   2.    The measure is  s -additive: if  B  is the union of sets     1 2, ,...B B   , disjoined two by two, 
then the measure     ( )Bμ   is equal to the sum     

1

( )i
i

B
∞

=

μ∑   .       

 This defi nition of measure is in fact based on many earlier defi nitions (such as 
Jordan’s measure, Cauchy-Riemann integral, and Stieltjes integral) and it remedies 
some of their defects. As we can see, the notion of measure has evolved over time, 
as have its axioms. However, while the empty set has a null measure, it is not neces-
sarily the only set: we shall see how valuable this result is when studying practically 
impossible events. The axioms would later be needed for probability theory, as Lévy 
 (  1936  )  showed so well. 

 Interestingly, most mathematicians responsible for advances in measure theory 
worked on probability at the same time, clearly demonstrating the common ground 
between the two. Borel wrote  Éléments de la théorie des probabilités   (  1909  )  and 
 Le hasard   (  1914  ) . Fréchet wrote a book entitled  Généralités sur les probabilités. 
Variables aléatoires  (1937). Lévy published two volumes:  Calcul des probabilités  
 (  1925  )  and  Théorie de l’addition des variables aléatoires   (  1937  ) . 

 This brief overview of set theory and measure theory shows that it was impossible 
to axiomatize probability without the groundwork described above, for probability 
is based on the concepts embodied in both theories. We can now see how to move 
from the many observations made since the seventeenth century in fi elds where 
objective probability applies (such as games of chance, demographic events, and 
Brownian motion) to the foundations of this science: induction, advocated by 
Francis Bacon  (  1620  ) , aims to discover and demonstrate the axioms on which prob-
ability is based. 
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 We shall not give a detailed description of all the axiomatics proposed for 
probability: for more details, see Shafer and Vovk  (  2005 ,  2006 ). In particular, we 
shall not examine the attempts made by Laemmel  (  1904  ) , Broggi  (  1907  ) , Bernstein 
(1917), and others before 1919, the year von Mises published his essay on axioma-
tization. But we shall discuss in detail the axiomatics of von Mises and the  criticisms 
that it raised. This will give us a better idea of the requirements that an axiomatics 
must meet in order to be accepted by the majority of researchers, as occurred with 
Kolmogorov’s axiomatics. 

 The fi rst objective of von Mises  (  1919,   1928  )  was to axiomatize the notion of 
collective, mentioned earlier. At that stage, probability was merely an attribute of 
the collective: the probability of an element of a collective is simply the element’s 
limit frequency in the collective. Let us briefl y recall the meaning von Mises gives to 
the concept of collective: ‘A collective is an infi nite sequence of experiments whose 
results are represented by certain points in an r-dimensional space’ (von Mises 
 1932  ) . He specifi es that without the notion of collective, one cannot speak of the 
probability of an event. He goes on to give the two founding axioms of probability 
theory, in the simple case of a sequence of  n  trials repeated with one coin, where  x  
is the ratio of the number of ‘heads’ results to  n :

      1.    The fi rst axiom of probability theory holds that if one continues the trials by increasing 
 n  to infi nity, the ratio  x  tends toward a determined limit  p .  

    2.    The second axiom holds that if we make a place selection and if we take into account 
only the chosen elements when calculating the ratio  x , the limit remains invariable.       

 It is easy to generalize these axioms to the case where the results of the trials are 
represented by points in an  r -dimensional space. Von Mises is more specifi c about 
what he means by ‘axioms’:

  In these axioms use is made of general experience; they do not, however, state directly 
observable facts. They delineate the subject of the theory; all theorems are but deductions 
from the axioms, i.e. tautological transformations […]  

Von Mises therefore seems to have come fairly close to our view of what axioms 
should be, but we shall see that the validity of his axioms has been disputed. 

 From these two axioms, von Mises demonstrated the main results of probability 
theory, which became its theorems. Without discussing these demonstrations, we 
shall examine the axioms in greater detail in connection with the paradigm and with 
the criticisms directed at them. 

 To begin with, the axioms do not use the equipossibility hypothesis that formed 
part of the probability-theory paradigm. As von Mises put it  (  1932  ) :

  No doubt the expression ‘equally possible’ is merely a misnomer for ‘equally probable,’ so 
that the expression contains a partial  vicious circle ; it simply reduces the general case where 
the probabilities of several possible events are different to the special case where they all 
have the same value.  

Its axiomatics, on the other hand, enables us to show that ‘the classic statement 
on the ratio of the number of positive outcomes, etc., will obtain the legitimate sta-
tus of a special theorem.’ 
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 Likewise, the physical-impossibility hypothesis is not viewed as an axiom but as 
a consequence of a theorem on the summing of  n  collectives. These axioms there-
fore allow us to identify more relevant elements—according to von Mises—than 
those constituting the paradigm, so that we can defi ne unequivocally a more robust 
theory, all of whose theorems can be deduced from the axioms. 

 Unfortunately, these axioms were the target of many justifi ed criticisms, which 
eventually led to Kolmogorov’s axiomatics. Let us examine these criticisms. 

 An initial series of criticisms challenged the consistency of the theory of 
 collectives 9  and entailed a more specifi c defi nition of the second axiom, also called 
irregularity axiom ( Regellosigkeitsaxiom ). The term refl ects the fact that the 
sequences complying with this axiom cannot be represented by a formula or 
rule. Hence, we cannot speak of a ‘limit’ for these sequences. For example, Kamke 
 (  1932  )  examines the simple case in which collective  x  induces probabilities 
 P (0) =  P (1) = ½. Let us now consider, independently of this collective, the increasing 
sequence     { } 1k k

n
≥

   and let us extract selection     
1 2
, ,...n nx x    from the collective  x . If all 

place selections made on  x  are allowed (axiom 2), then there will be at least one 
choice such that     1

knx =    for all  k  and another such that     0
knx =   . As a result,  x  cannot 

be a collective, for these values differ from ½, counter to expectations. The demon-
stration is valid for all more complex cases. In sum, if arbitrary selection rules are 
allowed, then there can be no collective. 

 We must therefore restrict these overly general sequences to more narrowly 
defi ned sequences, but they must be suffi ciently numerous to form a set with a non-
null measure. We shall not go into the details of the discussions on this topic 
(see, in particular, Copeland  1928,   1936 ; Tornier  1929 ; Wald  1936 ; Church  1940  ) . 
However, none of the proposed solutions allows the defi nition of a general probability 
theory, as von Mises himself admitted  (  1928  ) :

  It is not possible to build a theory of probability on the assumption that the limiting values 
of the relative frequencies should remain unchanged only for a certain group of place selec-
tions, predetermined once and for all.  

Indeed, whatever the group chosen, we can always fi nd sequences of places that 
lie outside the group yet comply with the second axiom as initially posited. The 
most recent studies on the defi nition of random sequences (Martin-Löf  1966  )  
 actually lead to a totally fresh interpretation of von Mises’s theory: ‘Such an inter-
pretation of the randomness axiom is of course anathema to von Mises’ (van 
Lambalgen  1987  ) . 

   9   This consistency is essential for the  constructivist  mathematical school, of which Gauss, Borel 
and Lebesgue are the best-known representatives: for them, mathematical objects exist only if 
there is a precise method that tells us how to construct them. By contrast, for the  formalist  school, 
of which Moritz Pasch and David Hilbert were the most famous representatives, the lack of con-
tradiction in a system of axioms is a suffi cient precondition for accepting that system. Despite 
siding with the constructivists, von Mises was not unduly troubled by these criticisms. He actually 
claimed that ‘collectives are in a sense ‘the rule,’ whereas lawfully ordered sequences are ‘the 
exception’.’  
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 A second series of criticisms concerns the combination of axioms 1 and 2 
(Waismann  1930  ) : they argue that it is inadmissible to apply the mathematical 
 concept of convergence in axiom 1 to a sequence that, by virtue of its defi nition in 
axiom 2, can be subject to no mathematical rule or law. The notion of mathematical 
limit is only a property of the law that defi nes the sequence. 

 Next, for his own theory, von Mises borrowed many elements of game theory, 
notably the fact that, whatever the players’ strategies, their fi nal fortunes can never 
exceed their initial fortunes (on average). The strategies are effectively equivalent to 
the replacement of the full sequence of observations with a random sub-sequence. 
However, Ville  (  1939  )  began by showing that, given a countable set of selection 
rules, there is always one collective that reaches its limit at infi nity without fl uctuat-
ing around the limit, i.e., it remains consistently greater than or equal to the limit. 
Such a collective cannot be equated with the intuitive notion of the game of heads 
or tails. Moreover, Ville showed the existence of strategies, called martingales that 
cannot always be represented by selections of sub-sequences. He thus demonstrates 
a theorem of martingale theory that ‘one cannot imagine demonstrating […] by 
means of the theory of collectives’. 

 Von Mises also rejected from the fi eld of his theory a number of studies that 
addressed the concept of probability and were even closely tied to its axiomatics. 
For instance, Borel showed the paradoxical properties of what he termed abso-
lutely normal numbers  (  1909  ) . Taking segment [0, 1] supplied with Lebesgue’s 
measure and developing a random number in this segment in base two, Borel 
demonstrated that nearly all real numbers in the segment are absolutely normal. 
Such sequences indeed appear to be random, as they hold up to many classic sto-
chasticity tests. Even more important, Borel provided an explicit construction of 
such a sequence. However, von Mises  (  1932  )  refused to recognize such sequences 
as collectives, which, in his view, are the object of probability calculus in the 
usual sense:

  If we only supposed, for a sequence of numbers forming a collective, the restricted irregu-
larity that defi nes a normal number, we could no longer state that no martingale, no game 
system was possible.  

This position is surprising, given that von Mises’s collectives are a step in 
the definition of random sequences that began with Borel  (  1909  ) , continued 
with the collectives of von Mises  (  1919  )  and Wald  (  1936  ) , the studies by Ville 
 (  1939  ) , and Church’s random sequences  (  1940  ) , and extended to the work of 
Martin-Löf  (  1966  ) : for more details see the excellent synthesis made by 
Dellacherie  (  1978  ) . 

 Lastly, von Mises stated that the concept of random variable used by Cantelli and 
Fréchet is not ‘a special class of independent variables, but rather a special class of 
 functions , namely, distribution functions’  (  1932  ) . But Fréchet  (  1938  )  believed that 
von Mises unduly restricted his theory’s scope of application:

  No probabilist will refuse to admit that the collectives defi ned by Mr. De Misès [sic] are 
particularly interesting sequences, which accordingly deserve the fullest attention. Likewise, 
in function theory, it is quite legitimate to focus on derivable functions, provided one does 
not assume that all functions are derivable .   
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This reading downplays von Mises’s contribution to special sequences that are 
far from exhausting all conceivable sequences in probability theory. 

 All these diffi culties encountered by collectives show that the concept is far from 
perfect for axiomatizing objective probability. Indeed, this axiomatization has now 
been completely abandoned. In the words of Suppes  (  2002a  ) :

  the von Mises relative-frequency theory ultimately seems to fall between two stools. On the 
one hand, it is a very awkward and unnatural mathematical theory of probability as com-
pared to the standard measure-theoretic approach […]. Yet despite its technical complexity, 
it fails to provide an adequate theory of application for dealing with fi nite sequences .    

 There were other, later attempts, for example by Steinhaus  (  1923  )  and Cantelli 
 (  1932,   1935  ) , which in many respects anticipated Kolmogorov’s axiomatics  (  1933  ) . 
We shall leave them aside here in order to examine the latter in detail. Its validity 
was eventually recognized by most objective probabilists, and—unlike von Mises’s 
axiomatics—it proved immune to criticism. 

 Kolmogorov begins his book with the fi ve founding axioms of probability 
theory, which use all elements of set theory and measure theory. For this purpose, 
he considers a set  W  of elementary events and a collection of sub-sets B of  W ; the 
elements of set B are called random events. 10  Kolmogorov then introduces the 
fi ve axioms:

         I.    B is a fi eld of sets.  
       II.    B contains the set  E .  
    III.    To each set  A  in B is assigned a non-negative real number  P  ( A ). This number  P ( A ) is 

called the probability of the event  A .  
      IV.     P  ( E ) equals 1.  
        V.    If  A  and  B  have no element in common, then  P  ( A  +  B ) =  P  ( A ) +  P  ( B ).       

 He adds a sixth axiom, called continuity axiom, which is useless when B is 
fi nite, but which, when B is infi nitely countable, is independent of the fi ve others:

      VI.    For a decreasing sequence of events     1 2 ... ...nA A A⊃ ⊃ ⊃ ⊃    of B ,  for which     
1 nn
A

∞

=
∩ =

  Ø the following equation holds:     lim ( ) 0nn
P A

→∞
=   .       

 Today, the triplet ( W ,B,  P ) is called a probability space. Kolmogorov shows that 
this system of axioms is consistent, i.e., no statement in it can be both true and false, 
but it is not complete, i.e. some statements may be neither true nor false ‘for in vari-
ous problems in the theory of probability different fi elds of probability have to be 
examined’ (Kolmogorov  1933  ) . 

 The sixth axiom is indispensable only for infi nite probability spaces: in 
Kolmogorov’s own view, ‘it is almost impossible to elucidate its empirical meaning, 
as has been done, for example, in the case of axioms I-V’ .  In his opinion, infi nite 
probability spaces can occur only as idealized models of real random processes. We 
can clearly recognize his distinctive concept of objective probability. 

   10   For consistency with the notations already used in this chapter, we have modifi ed those used by 
Kolmogorov.  
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 Indeed, Kolmogorov devotes an entire section of his book to spelling out the 
links between the world of experience and the axioms, and the empirical procedure 
that he has used to deduce his axioms. He recognizes that if one works in certain 
conditions, which do not need to be described here, then:

      a   )    One can be practically certain that if the complex of conditions is repeated a large 
number of times,  n , then if  m  is the number of occurrences of event  A , the ratio  m / n  will 
differ very slightly from  P ( A ).  

    b)    If  P ( A ) is very small, one can be practically certain that when the conditions are realized 
only once, the event  A  would not occur at all.       

 He shows that the proposed axioms can be empirically deduced from these 
premises. 

 Condition  a)  is equivalent, in the fi nite case, to von Mises’s axiom 1, which, as 
we have seen, replaces equipossibility with the frequency of the event. Condition  b)  
is a strong form of Cournot’s principle. An event A with zero probability will practi-
cally never occur in an individual trial. This does not mean, however, that it cannot 
occur in a suffi ciently long series of trials. For instance, in a fair game of heads or 
tails, let us consider the theoretical set of all games with an infi nite number of 
tosses. That is possible under Kolmogorov’s axiom VI, although he regards this case 
as ‘ideal’. All games with a fi nite number of tails versus an infi nite number of 
heads—or, on the contrary, a fi nite number of heads versus an infi nite number of 
tails—will constitute a null set, i.e., a set of events with zero probability. Of course, 
when the number of games is fi nite, the games that produce a very small number of 
heads versus a large number of tails—or the opposite—will have a very low prob-
ability. The probability of one tail versus ( n −1) heads will thus be     

2n

n   , a value that 

tends quickly toward zero when  n  increases. With the zero-measure concept, we can 
thus clearly specify the meaning of the paradigm that states that a highly unlikely 
event is virtually the same thing as an impossible event. 

 That is indeed the paradigm of objective probability formulated above, which 
Kolmogorov now chose as the basis of his axioms. 

 Kolmogorov has used, in a large measure, the work of von Mises, but he no 
longer resorted to the concept of collective. On the other hand, he introduced the 
substantial contribution of set theory and measure theory by showing the perfect 
parallel between set theory and the theory of random events. In a 1939 letter to 
Fréchet (Shafer and Vovk  2005  ) , he noted that a theory based on the concept of 
fi nite collectives would rely on notions that cannot be defi ned in purely formal 
terms. By contrast, Wald’s work, based on infi nite collectives, may be defi ned in 
a non-contradictory manner, but in this case the relationship to experience is not 
of the same nature as in other axiomatized theories. Far more than that, 
Kolmogorov’s axiomatics made it possible—along with the concept of recursive 
function developed by logicians in the 1930s—to mathematize the intuitive 
notion of effectively negligible set; it also allowed Martin-Löf to provide an exact 
characterization of random sequences, which are in fact collectives as defi ned by 
von Mises (Dellacherie  1978  ) . 
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 As early as  1934 , the mathematician Feller 11  was commenting enthusiastically 
on Kolmogorov’s book:

  The calculus of probabilities is constructed axiomatically, with no gaps and in the greatest 
generality, and for the fi rst time systematically integrated, fully and naturally, with abstract 
measure theory.   

 At the 1937 Geneva Conference on the Theory of Probability (Wavre  1938 –1939), 
the best probabilists and mathematicians of the time compared the axiomatics of 
von Mises and Kolmogorov. They included Bernstein, Cantelli, Cramér, Dœblin, 
Feller, de Finetti, Fréchet, Glivenko, Heisenberg, Jordan, Kolmogorov, Lévy, von 
Mises, Neyman, Pòlya, Slutsky, Steinhaus, and Wald. While neither von Mises nor 
Kolmogorov participated in the event, both submitted papers. 

 In his opening presentation, Fréchet attacked von Mises’s approach:

  Here, therefore, is how we see the distribution of roles in probability theory. After 
observing as a practical fact that the frequency of a fortuitous event in a large number of 
trials behaves like the measure of a particular physical constant attached to this event in 
a particular  category of trials—a constant that we can call ‘probability’—we deduce, 
through reasonings of less than absolute rigor, the laws of total and compound pro-
bability and we verify them in practice. The possibility of performing this verifi cation 
means that the looseness of the reasonings used to induce these laws ceases to be of 
any consequence. Inductive synthesis stops here. We now match these realities (riddled 
with experimental errors) to an abstract model, the one described in the axiom set, 
which—unlike the axioms of Mr. de Misès [sic]—offer not a constructive defi nition of 
probability, but a descriptive defi nition [.]  

In contrast, Fréchet congratulated Kolmogorov for having put into practice an 
axiomatics created by Borel by adding countable additivity to classic probability. 
Most conference participants—apart from Wald, who presented a demonstration of 
the existence of collectives—endorsed Fréchet’s verdict, rejecting collectives and 
recognizing that Kolmogorov had correctly axiomatized the classic theory of objec-
tive probability. 

 This axiomatics became standard in many objective-probability textbooks that 
followed Kolmogorov’s book. We shall see later that its strength was also recognized 
in other approaches to probability, whose axiomatization bears at least a partial 
resemblance to Kolmogorov’s. 

 Let us now examine how this objective approach to probability makes it possible 
to defi ne the principles of statistical inference that can be associated with it.   

    1.3   Objectivist Statistical Inference 

 Before describing the application of objective probability to social science, we must 
address the complex issue of the interpretation of statistical inference. First, what 
exactly do we mean by ‘statistical inference’? 

   11   Author of a major work on probability theory (Feller  1950,   1961  ) .  
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 Only in exceptional cases do researchers have all the information they would 
require to reach a defi nitive conclusion. They therefore need to make the most of 
whatever information is available. The purpose of statistical inference is to try to 
reach the most robust conclusion possible by making the best use of this incomplete 
information on a given phenomenon. 

 Also, as the data cannot say more than what they are, the transition from incom-
plete premises to a conclusion that is as specifi c as possible cannot be achieved 
without recourse to principles that are inherently extrinsic to the data. Consequently, 
the inference principle that we shall use will always be somewhat arbitrary, and 
will  inevitably depend on our conception of the nature of knowledge. In particu-
lar, the objectivist conception of probability will place a number of constraints on 
this inference. 

 Chapter   2     will examine in greater detail the use of the Bayesian theorem to per-
form this inference under the epistemic-probability hypothesis. For the moment, 
suffi ce it to say that the theorem posits prior probabilities of observing the sample 
under different possible hypotheses, in order to estimate the posterior probability of 
each hypothesis. The theorem is easy to demonstrate using Kolmogorov’s axioms, 
provided that the prior probabilities have been defi ned. Now we have already indi-
cated that, for an objectivist probabilist, the ‘probability’ of a hypothesis is a mean-
ingless notion: it is impossible to defi ne unambiguously a trial that can be repeated 
in an identical manner and that would produce one of two outcomes: either ‘the 
hypothesis is verifi ed or the hypothesis is not verifi ed.’ Moreover, under pain of 
being dragged into a regression  ad infi nitum , we must introduce the prior probabili-
ties at a certain point—probabilities whose origin cannot be empirical. As a result, 
when we work on objective probability, it is out of the question to use the Bayesian 
theorem for drawing an inference from incomplete data. 

 For this purpose, we must therefore frame the issue of statistical inference in 
terms more restricted than before. Let us consider a sample of observations, among 
the set of all those potentially observable in a wider population of observations. 
That is the population we want to capture in its entirety, but in practice we have only 
the sample observed. We must therefore extrapolate some of our fi ndings on this 
sample to the total population. 

 Statistical inference involves two procedures. First, we need to verify the validity 
of several hypotheses on the population studied: this procedure is called hypothesis 
testing. Second, we need to estimate the population’s characteristics and conduct 
statistical tests to see if their effect is signifi cant. The two procedures are actually 
very similar and closely interlinked: both aim to draw conclusions about the total 
population from information on the sample alone. 

 To this end, let us fi rst examine the approach used by Pearson  (  1900  ) , Student 
[Gosset]  (  1908a,   b  )  and Fisher  (  1923,   1935  ) . We want to determine if a given factor 
infl uences the phenomenon under study or not. We shall estimate parameters link-
ing the factor to the phenomenon. At this point, a question arises: can we explain the 
values of the estimated parameters by chance alone, or does the factor studied also 
play a role? This ‘Type I error’ is the one we commit when wrongly rejecting the 
hypothesis that observations can be explained by chance alone. The authors listed 
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above devised hypothesis tests to verify whether the factor does or does not  infl uence 
the phenomenon examined. 

 We can interpret the tests in strictly frequential terms. Suppose a population in 
which the hypothesis we want to test is true. Let us assume that we draw a large 
number of samples at random from this population, in the same conditions as the 
sample already selected. Some of these samples will be very rare, others far more 
frequent. If the probability of the sample drawn is too low—say, under 0.05—we 
shall reject the hypothesis. The solution consisting of a large number of draws—not 
actually performed, but supposed—does indeed enable us to work with probabilities 
open to a frequential interpretation. At this point, we are no longer examining the 
probability of a hypothesis, but only the probability of obtaining a particular sam-
ple, if the hypothesis is true. 

 In the wake of the authors above, Neyman and Pearson  (  1928,   1933a,   b  )  observed 
that another type of error can occur at the same time, which the ‘Type I error’ 
leaves aside. This other type of error, called ‘Type II error’ is the one incurred by 
wrongly rejecting the opposite hypothesis, namely, that the observations cannot be 
explained by chance alone. We must estimate both types of error to obtain a more 
robust conclusion: when we guard against one, we necessarily increase the proba-
bility of the other, if the information remains the same. However, we can see that 
this second risk is far more complex to analyze, for the contrary hypothesis actu-
ally comprises an infi nity of possibilities of deviations from chance: strictly speak-
ing, therefore, we should compute an infi nity of type-two errors. That is why 
probabilists very often simply assign a low value to type-one error, setting aside the 
‘Type II error’. In any event, accepting a hypothesis after subjecting it to a statisti-
cal test does not mean that we declare it to have been verifi ed, but only that we 
choose to act as if it were. 

 Often, the reasoning that we have just used to obtain a frequentist statistical 
inference from observed data is interpreted incorrectly. Let us take the statement 
that the 95% confi dence interval for an unknown parameter,     θ    (such as the mean 
age at fi rst childbirth, in the French 1920 birth cohort,    estimated from a representa-
tive sample of that cohort), lies between two values     1θ    and     2θ   . This appears to 
indicate that the parameter has a 95% probability of lying in that interval. But that 
is incorrect, for we can apply the interval only to the parameter’s estimation and not 
to the parameter itself, which is unknown. 

 We would actually want to answer the following question: what is the probabil-
ity that the unknown parameter lies in a given interval? But in this case we can 
only state that, if we draw many samples of identical size and if we build such an 
interval around the mean of each sample, then we can expect that 95% of the 
resulting confi dence intervals will contain the unknown parameter. That is an 
answer to a far more complex question than the fi rst, which seemed much clearer 
and does not actually exist in frequentist theory. The question is the following: if 
we draw a large number of different samples,  N , what is the probability that the 
unknown parameter is contained in a certain number of the samples,  n ? As the 
analysis is often confi ned to a single sample, we conclude that the question makes 
little sense. 
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 Let us go further and try to establish more specifi cally what objectivist statistical 
inference can demonstrate. Suppose we want to see whether a given factor infl u-
ences the phenomenon studied or not: for example, we want to determine if the fact 
of being a farmer infl uences a given sub-population’s probability of migrating. The 
question then becomes whether the differences between the estimated probabilities 
of migrating for farmers and the rest of the population can be explained by chance 
alone or whether they diverge signifi cantly. If these probabilities prove to be differ-
ent at a preset limit, for example at a 1% ‘signifi cance level’, then we can conclude 
that they do diverge, since the result observed is hardly likely to have been obtained 
by chance. We therefore interpret these probabilities here in frequential terms, by 
imagining a population larger than the one observed, from which we can draw many 
sub-populations at random, including the one observed. If the probability of the 
observed sample is too low, we shall reject the tested hypothesis. This fi nding is 
consistent with our earlier statement: objectivist statistical inference makes it pos-
sible to test the probability of obtaining the observed sample—if the hypothesis is 
true—but not the probability of the hypothesis itself, which is either true or false 
(Matalon  1967  ) . 

 The above is also consistent with Fisher’s position  (  1956  ) :

  This fundamental requirement [of no recognisable subset] for the applicability to individual 
cases of the concepts of classical probability shows clearly the role of subjective ignorance, 
as well as that of objective knowledge in a typical probability statement. It has been often 
recognised that any probability statement, being a rigorous statement involving uncertainty, 
has less factual content than an assertion of a certain fact would have, and at the same time 
has more factual content than a statement of complete ignorance. The knowledge required 
for such a statement refers to a well-defi ned aggregate or population of possibilities [,] 
within which the limiting frequency ratio must be exactly known. The necessary ignorance 
is specifi ed by our inability to discriminate any of the different subaggregates having differ-
ent limiting frequency ratios, such as must always exist.  

This quotation generalizes the diffi culty of defi ning an interval in which an 
unknown parameter lies, by indicating that frequentists are unable to discern with 
suffi cient clarity the different sub-populations with different limiting frequencies. 

 Thus, when we work on a sample of a larger population, the results of a statistical 
analysis of these data enable us, under certain hypotheses, to draw an inference 
about the behavior studied with regard to a member of the population who lies out-
side the sample but displays some of the characteristics observed. We must assume 
that the member resembles the individuals in the sample possessing the characteris-
tics and that he or she belongs to the same subgroup, which cannot be broken down 
in greater detail either. It is hard to see how to incorporate this individual into such 
a sub-population. 

 The situation is even more complex when we are working not on a sample but on 
the total population. We must assume that this observed population is itself a sample 
of a ‘super-population’ (Royall  1970  )  from which we have been able to draw only one 
selection, which we therefore need to examine. This is indeed what we do when we 
try to project the population into the future on the assumption that its behavior will 
remain identical to its observed behavior. The demographic methods of population 
projection and micro-simulation use this hypothesis (van Imhoff and Post  1997 , 1998). 
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However, there is no obvious reason why it should hold, and, as the  population 
changes over time, the hypothesis soon becomes irrelevant. 

 In such cases, statistical inference is possibly only through a postulate of 
 ignorance, i.e., stating that some things are unknown but that the validity of the 
argument implies that they should not be (Fisher  1958  ) . Later, we shall see that the 
epistemic approach enables us to address this inference more clearly.  

    1.4   Application to Social Science 

 This probabilistic reasoning was applied very rapidly to social science—in particu-
lar, to demographic issues—as early as the seventeenth century. However, our aim 
is not to provide an overview of the application of probability to social science, but 
rather to give an idea of how the process occurred. 

 The fi rst use of probability calculus in games of chance, by Pascal and Fermat, 
foreshadows the application of probability to economics, which, centuries later, 
would draw on game theory. For instance, von Neumann and Morgenstern  (  1944  )  
proposed a classic game theory that rested on a few simple principles governing 
confrontation between players. Economic behavior was accordingly viewed as the 
choice of a tactic in a situation where the set of possible tactics can be determined. 
This approach led to many advances in economics, but we shall not discuss it in 
further detail here. 

 In our introduction, we noted the use of probability calculus in Graunt’s  Natural 
and political observations   (  1662  ) , which prefi gured demography and epidemiol-
ogy. 12  His book is on the objective side of probability. As Hacking  (  1975  )  said: 
‘Graunt’s  Observations , [.], is entirely dedicated to demography and the analysis of 
stable frequencies’. For example, he tried to compute the probability of dying within 
a year from the probability of dying within 10 years. Although Henri VIII had intro-
duced parish registers of burials, baptisms, and marriages as early as 1538, Graunt’s 
book was the fi rst to use statistics from them in order to construct chronological 
tables—with the greatest possible accuracy—of the numbers of persons having 
experienced these events and to analyze those numbers. Graunt elaborated a method 
for determining population size from the registers alone, using an indirect calcula-
tion method (later called multiplier). He also tried to compile a life table, although 

   12   Ever since the  Observations  appeared, it has been claimed that their true author was William 
Petty. Petty himself claimed authorship when applying for a political offi ce in Ireland. Some 
observers, such as Le Bras  (  2000  ) , use this argument to prove that demography never was and 
never will be a science—contrary to the thesis advocated by Graunt’s supporters. Rather, because 
of the possibility that Petty might have founded it, demography should be viewed as a political 
instrument in the hands of political authorities. Le Bras’s contentions—particularly on the deter-
mination of the number of deaths—and his attacks on some Graunt specialists hardly allow us to 
take his demonstration seriously (for more details, see Reungoat  2004  ) .  
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his observations did not enable him to do so, for he lacked data on the distribution 
of the population and deaths by age. 

 However, Graunt’s implementation of probabilistic reasoning remained far from 
perfect. Let us begin by examining in greater detail how he applied it to calculate 
the probability of dying within a year from the probability of dying within 10 years 
(see text quoted in the Introduction). 

 Contrary to Hacking’s presentation 13   (  1975  ) , this probabilistic reasoning is still 
far from totally correct. Let us consider, as Hacking does, a population of  N  persons. 
If we assume a constant annual probability of dying, written  q , 14  the number of 
survivors 

in 10 years will indeed be, as Hacking says,     10(1 )N q−   , equal here to     
1

2
N    

according to Graunt’s fi rst hypothesis. As a result, the annual probability is 

    101 0,5 0,067q = − =    and not     1
0.05

20
=    as claimed by Graunt (‘I supposed it was 

the same (an even lay), that one of any 10 might die within one year’) and Hacking. 15  
Hacking’s reasoning actually assumes an equal number of deaths,  d , each year and not an 
equal probability of dying each year. The resulting number of survivors within 10 years is 

 N −10 d , hence     10 1

2

d

N
=   . But in that case,     d

N
   is not an annual probability of dying. 

 From the probability above, the London population can be estimated at 

    
10000

150000
0.067

N = ≈   . Graunt made a new error by calculating the population with 

a multiplier of 10 and not 20, as his prior calculation showed him. He obtained a 
population of 100,000, an estimate 50% lower than the previous one, whereas he 
should have found a population of 200,000. 

 It is also interesting to compare this estimate with the one that Graunt gave later 
in his book, starting from age six, to construct the life table given below on the basis 
of a 10-year probability of surviving close to 5/8. This led to an annual probability 
of dying of     101 0.625 0.046q = − =′   —again, a different value from the two earlier 
estimates. 

 How did Graunt construct the age-specifi c life table that he proposed later in his 
book? His fi rst fi gure was based on the observation ‘of 100 quick Conceptions about 
36 of them die before they be six years old’. 16  As for the following six proportions 

   13   Hacking offers the following argument: ‘Graunt assumes a uniform death rate, that is, that there 
is a constant chance p of dying in a given year. If the chance of living 10 years is 0.5, consider a 
population of size N. The number who survive the fi rst year is  N (1− p ). The number who survive 
the second is [ N (1− p )− pN (1− p )] or  N (1− p ) 2 . The number who survive 10 years is  N (1− p ) 10  = 0.5  N . 
Now let  q  be the chance that at least one man in a group of ten dies in a given year; then 1− q  is the 
chance that no one dies. This is just (1− p ) 10 , which, solving the above equation is 0.5. So, as Graunt 
says,  q  is also 0.5’.  
   14   We use the standard demographic notation for a probability (quotient),  q , which Hacking writes  p .  
   15   Leibniz  (  1675  )  gave the correct solution to this problem.  
   16   ‘quick Conceptions’: ‘live births’ in modern English.  
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of deceased, he based their determination on ‘six mean proportional numbers 
between 64, the remainder, living at six years, and the one, which survive 76’. This 
is tantamount to calculating the terms of a geometric progression of root 54 and 
ratio 5/8 (see commentaries by Vilquin in French translation of Graunt’s book, 
1997, page 106). He rounds off the fi gures and arrives at the life table, given in 
Table  1.1 .  

 As we can see, this table is still far from a true life table, for it is based on hypoth-
eses too crude to be valid. In fact, as noted above, its calculation is based on a con-
stant 10-year probability of dying, of 3/8, leading to the rounded percentages of 
deaths between ages 6 and 66. At no point does Graunt discuss the validity of this 
hypothesis. 

 We may therefore conclude that Graunt’s probabilistic reasoning was still highly 
uncertain and that its demographic hypotheses are equally debatable. 17  As Lodewijk 
Huygens wrote in a letter to Christiaan Huygens in 1669 (Huygens ( 1895 ), corre-
spondence 1666–1669), when they were seeking to estimate mean length of life at 
different ages: ‘I admit that my determination of ages is not totally correct, but there 
is so little to say that it [ i.e., the error ] is no way considerable, and even less so as 
the English table, on which we rely, is not of the utmost accuracy either [.]’. 

 The astronomer Halley  (  1693  )  went further in the quest for a more satisfactory 
life table. He recognized some shortcomings of Graunt’s initial calculations. The 
population at risk was lacking, ages of death were unknown, and immigration to 
London and Dublin was substantial. 18  Halley decided to use the data for Breslau, a 

   Table 1.1    Graunt’s life table     Viz . of 100 there dies within the fi rst 6 years  36 
 The next 10 years, or  Decad   24 
 The second  Decad   15 
 The third  Decad   9 
 The fourth  6 
 The next  4 
 The next  3 
 The next  2 
 The next  1 

  Source: Graunt    1662     

   17   Let us again note his misuse of his own table, when he confuses the number of deceased persons 
and living persons. He gives the percentage of individuals aged between 16 and 56 as 34%, which 
is in fact the percentage of deaths. According to his life table, the percentage of living persons is in 
fact 41%.  
   18   Halley’s exact words are as follows: ‘But the Deduction from those Bills of  Mortality  seemed 
even to their Authors to be defective: First, In that the  Number  of the People was wanting. Secondly, 
That the  Ages  of the People Dying was not to be had. And Lastly, That both  London  and  Dublin  by 
reason of the great and casual accession of Strangers who die therein, (as appeared in both, by the 
great Excess of the  Funerals  above the  Births ) rendered them incapable of being Standards for this 
purpose; [.]’  
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town with far less migration (1,238 births per year versus 1,174 deaths). This 
enabled him to formulate the underlying hypothesis of a stationary population, later 
elaborated by Euler (1760). Admittedly, Euler did not use the term, but he did clearly 
note that ‘if every year as many children are born as men die, the number of all men 
will always remain the same, & there will then be no multiplication’. 

 From the data over the 5-year period 1687–1691, Halley provided the table of 
age-specifi c deaths per year in Breslau: the upper lines show the ages and the lower 
lines show deaths (Table  1.2 ).  

 When no age is shown above a number of deaths, we should assume that this 
annual fi gure indicates persons who died between the ages of the previous and fol-
lowing columns. Halley noted that 348 newborns died in their fi rst year and 198 
children died between ages one and six. In other words, he aggregated certain ages 
and therefore smoothed his results, without giving reasons for doing so or for his 
choice of ages. 

 Our fi rst observation is that the table is incomplete: there are no deaths between 
ages 50–53 and 92–97, despite the fact that the fi gures are based on a table of data 
by annual age. 

 Halley then estimated an age-specifi c life table, from birth to 84; he reconstructed 
the Breslau population by 7-year age groups, whose sum—34,000—gives an esti-
mate of the total population (Table  1.3 ).  

 This table, which should have been derived directly from the previous one, 
exhibits differences, for Halley again smoothed the data without saying how he did 
so. For a stationary population, from an estimated 1,238 annual births (    0n   ), we can 
determine the population at age  x  by recurrence, taking     −= +1x x xn n d   , where     xd    is 
the smoothing estimator of deaths between ages  x –1 and  x . 

 Halley did not use the term ‘probability’, but he also computed the odds that a 
person of a given age will live another year:

  […] if the number of Persons of any Age remaining after one year, be divided by the differ-
ence between that and the number of the Age proposed, it shews the odds that there is, that 
a Person of that Age does not die in a Year.   

   Table 1.2    Halley’s    fi rst table   

  

Source: Halley 1693
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 In fact, this table was based on annual age-specifi c data supplied by Neumann 
(Graetzer  1883 ; Rohrbasser  2002 ; Bellhouse  2011  ) . We can therefore reconstruct 
Halley’s source table and compare the numbers of annual deaths calculated from dif-
ferent sources: Neumann’s table and Halley’s death function and life table (Fig.  1.1 ).  

 We can see that Halley’s fi rst table refl ects an initial smoothing of Neumann’s 
data, but uncertainty persists on how Halley proceeded and on the difference between 
deaths and survivors. Today, we would apply one of two procedures: (1) an aggrega-
tion by 5-year intervals—3–7, 8–12, 13–17, and so on—as ages ending in 0 or 5 are 
favored (which is the case here); (2) moving averages on 5-year intervals. 

 Moreover, we can fi ll the gaps in Halley’s age-specifi c mortality table for ages 
50–53 and 90–97 from Neumann’s table 19  or even the life table. This yields 9.75 
deaths and 1 death per year respectively. 

 Lastly, while the population may seem stationary, it is only approximately so, 
and modern demographers reject Halley’s estimate. For instance, Henry  (  1957  )  took 
an example of the use of Halley’s method to note:

  At a time when historical demography is enjoying a revival, we thought it would be useful 
to give an example of the errors that an obsolete method [Halley’s] may entail .    

 By estimating infant mortality from the ratio of deaths in the fi rst year to total 
deaths enumerated, 20  Halley would fi nd 265 per 1,000, whereas if he divided the 

   19   Ignoring Neumann’s table, Jaynes  (  2003  ) , who describes Halley’s work in detail, regrets that 
Halley did not supply his data in more detailed form. However, despite Neumann’s detailed table, 
it is clearly impossible to reconstruct Halley’s tables without additional hypotheses.  
   20   Interestingly, Neumann distinguished between stillbirths and deaths occurring before the age of 
1 year. This would have made it possible to determine separate probabilities of stillbirth and 
infant mortality.  

   Table 1.3    Halley’s second table   

  

Source: Halley 1693
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fi rst-year deaths by total births, he would obtain a rate of 233 per 1,000—in other 
words, a 20% overestimation with the fi rst method. By using this method, he would 
unfortunately be unable to estimate any mortality rates at older ages, because migra-
tion exerts an unmeasurable infl uence. 

 We can therefore conclude that Halley’s method—while an improvement on 
Graunt’s rough procedure—did not allow him to obtain an accurate estimate of 
mortality in the late seventeenth century. 

 In fact, Halley, like most researchers in the seventeenth century and the fi rst half 
of the eighteenth century, had only birth and death statistics at his disposal, which 
are inadequate for constructing a proper life table. He was missing populations at 
risk. It was not until  1766  that the Swedish astronomer Wargentin gave a true life 
table—thanks to the fact that his country compiled population registers, which 
 provide fi gures for populations at risk, and death registers, which give the numera-
tors of the rates or quotients to calculate. The censuses introduced in the nineteenth 
century made it possible to generalize life-table compilation. 

 The eighteenth century saw the rise of political arithmetic in Europe, which led 
to an ever fuller knowledge of its inhabitants and demographic phenomena. Without 
discussing this development in detail here, let us highlight some aspects that are 
most relevant to probability. 

 Arbuthnott  (  1710  )  introduced the fi rst statistical test, applying it to the hypoth-
esis that the number of male and female births is identical. Let us examine 
more fully the calculations he performed for this purpose. He began with a table 
listing the annual numbers of baptisms of boys and girls in London from 1629 to 
1710. In his article, he sought to demonstrate two propositions, expressed here in 
modern terms:

     1.    It is not by chance that the number of baptisms of boys and girls is roughly the same.  
   2.    It is not by chance that the number of baptisms of boys exceeds that of girls, in a 

constant proportion.       

 We shall see that his demonstration of the fi rst is incorrect, whereas that of the 
second leads to an accurate statistical test. 

 To demonstrate the fi rst proposition, he began with an argument resembling 
that of Pascal by using the numbers of the arithmetic triangle: for example, if two 
children are born and the probability of the birth of a boy or girl is one-half, then 
there is one chance that two boys will be born, one chance that two girls will be 
born, and two chances that a boy and a girl will be born. When the number of births 
increases, the number of chances that there will be as many boys as girls divided by 
the total number of births becomes very small. 21  Naturally, Arbuthnot recognized 
that the equality of proportion between boys and girls is not mathematically verifi ed 
but that, even in this case, he noted that it is highly unlikely not to obtain extreme 

   21   Arbuthnot wrote: ‘in the vast Number of Mortals there would be but a small part of all the 
possible Chances, for its happening at any assignable time, that an equal Number of Males and 
Females should be born’.  
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values occasionally. His reasoning was incorrect, as Nicolas Bernoulli promptly 
showed in a letter to Montmort of October 11, 1712 (de Montmort  1713  ) . Bernoulli’s 
argument is very clear:

  I was forced to refute this argument, & to prove the high probability that the number males 
and females occurs each year between limits even more narrow than those observed for 80 
years in a row .    

 Indeed, it is not enough to remain vague and invoke the possibility of an extreme 
result. We must calculate the probability that, after performing a large number of 
draws, we will obtain the extreme result. We can then verify that the probability of 
an extreme result can be regarded as physically impossible although mathematically 
possible, as noted above. Taking the same example as Arbuthnott, Nicolas Bernoulli, 
writing to Montmort on January 23, 1713 (de Montmort  1713  ) , asserted that

  the probability that among 14,000 children the number of males will be neither greater than 
7,363, nor smaller than 7,037, will stand in a ratio greater than 43     58

100    to 1 to the probability 
that the number of males will fall outside these limits .    

 In other words, when the number of observations increases, the probability of 
overstepping narrow boundaries around their mean value decreases sharply. Nicolas 
Bernoulli added that his uncle Jacques Bernoulli had already demonstrated a similar 
proposition in his treatise  De Arte Conjectandi , i.e., the solution to the problem that 
we described at the start of this chapter. 

 By contrast, Arbuthnott’s demonstration of his second proposition is far more 
robust as it closely resembles a statistical test. 

 Arbuthnott states the problem thus:

  A lays against B, that every Year there shall be born more Males than Females: To fi nd A’s 
Lot or the Value of its Expectation.   

 Arbuthnott formulates his hypothesis as a wager. From his data, the probability 
of A is obviously below 1/2 for each year observed. Let us suppose, however, that it 
is 1/2 for a given year. If this hypothesis remains the same for all 82 observation 

years, its probability will be     
821

2( )   . As a result, we can reject hypothesis A of 

equiprobability of male and female births. Therefore, this is indeed a statistical test. 
Arbuthnott does add that he attributes these observed proportions to Divine 
Providence, but on that point we part ways with him, and refer interested readers to 
Brian and Jaisson’s book,  The descent of human sex ratio at birth   (  2007  ) . 

 The other application of objective probability that we shall now examine concerns 
epidemiology. It consists of Daniel Bernoulli’s analysis  (  1760  )  of the effects of 
inoculation to prevent smallpox. Interestingly, Bernoulli uses Halley’s table, discussed 
above, to ‘distinguish, in total mortality, that due to smallpox at all ages’. 

 It is important to bear in mind that there were no vaccines at the time, and that 
smallpox was a scourge. Bernoulli wrote:

  A long series of observations shows that smallpox takes away one-thirteenth or one-
fourteenth of each generation; […] and that it takes away one-eighth or one-seventh of 
those who are ill with it.   
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 However it was said that, as early as the eleventh century, the Chinese practiced 
inoculation by placing the person to be immunized in contact with the pus of an ill 
person. The practice spread to countries near the Caspian Sea, particularly Circassia 
(Voltaire  1734  ) , then to England in 1721 and France in 1723, but Europe did not 
effectively adopt inoculation until 1750. Meanwhile, a sharp dispute erupted 
between advocates and opponents of the practice, leading Daniel Bernoulli to per-
form a full-fl edged exercise in probabilistic modeling. 

 From the outset, Bernoulli stated very clearly the two questions that he would 
consider in defi ning his hypotheses:

  The fi rst issue is the risk that people who have never had smallpox incur every year 
of  catching it; the second is the risk of dying from it at different ages when people 
catch it.   

 He then showed, with the aid of observations, that his hypotheses were confi rmed 
by ‘our notions on this illness & by the results of all the calculations concerning this 
foundation’. The fi rst hypothesis is that ‘as long as one has never had smallpox, one 
continually runs the same risk of catching it. The second hypothesis is that the risk 
of dying from smallpox, when one is attacked by it, may well be, in the same year, 
identical at all ages’. 

 Having enunciated these hypotheses, Bernoulli could begin to model the 
phenomenon (a process that we shall not discuss here). This led him to estimate 
the parameters of his model from the data, which he posited as known. From 
Halley’s table, he deduced the proportion of individuals who had or had not caught 
smallpox at each age, and the proportion of persons who had died of smallpox and 
other diseases as well, at each age from 0 to 24. He then calculated (1) the potential 
size of the population at each of these ages, if no one died of smallpox, and (2) the 
outcome if persons had a one-in-200 chance of dying after inoculation. Probabilistic 
arguments led him to conclude, for the latter scenario, that

  the danger of inoculation reduces the average length of life by only one month and twenty 
days; & notwithstanding this danger, the gain is still three years on twenty-six years and 
seven months, which is the average length of life in the natural state.   

 Section  1.5  below provides greater details on the debate triggered by Bernoulli’s 
study—a controversy in which D’Alembert played a very active part. 

 Let us now move to the most recent period. Population censuses, which appeared 
in the eighteenth century, came into general use in Europe during the nineteenth 
century. Their adoption, coupled with vital statistics, would change the use of prob-
ability. By collecting exhaustive data on the total population at a given moment, 
demographers, for example, could now implement an objectivist approach for study-
ing very large numbers of individuals. The variance of estimated probabilities became 
so weak that demographers would no longer even calculate them. Let us illustrate 
this with the example of the size of the French male cohort reaching age 60 in 1962 
(Pressat  1966  ) : given the number of deaths between ages 60 and 61,     60D   , and the 
number of 60-year-olds,     (60)N   , the annual probability of dying is  estimated 
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 There are only two cases where demographers will need to take these variances 
into account: (1) the determination of probabilities for shorter periods (for example, 
monthly ratios) (Hoem  1983  ) , as the number of persons experiencing the event will 
be much lower, even if measured exhaustively; (2) the analysis of survey data, for 
topics not covered in censuses or population registers. 

 Similarly, the sociologist Durkheim  (  1895  ) , when he sought to identify and 
 isolate what he called social facts, observed:

  But statistics gives us the means to isolate them. They are indeed quantifi ed, not without 
exactitude, by the birth rate, the marriage rate, and the suicide rate, i.e., by the number 
obtained by dividing the average annual total of marriages, births, and voluntary deaths by 
the number of persons old enough to marry, procreate, and commit suicide .    

 These statistics, which encompass all special cases without distinction, make it 
possible to neutralize individual circumstances and so to highlight social phenom-
ena, stripped of all extraneous elements. To link these social facts together, Durkheim 
recommended the method of concomitant variations—in essence, a regression on 
aggregate data (Courgeau  2004a,   2007a  ) . He clearly stated his position on the sub-
ject (see for more details   5.3    ):

  For [ the method ] to be demonstrative, we do not need to strictly exclude all the variations 
that differ from the ones we are comparing. The mere parallel pattern of the values assumed 
by both phenomena, provided that the pattern has been identifi ed in a suffi cient number of 
suffi ciently diverse cases, is the proof that a relationship exists between them.   

 His applications of the method—for example, to suicide rates among Protestants 
and non-Protestants in Prussia (Durkheim  1897  ) —show that he is examining a suf-
fi ciently long period (1883–1889) to work with signifi cant numbers of suicides and 
is covering the population of all 14 Prussian provinces. As in the demographic 
example given earlier, Durkheim worked on the rates, without concerning himself 
with their variance. 

 But the possibility of infi nite repetition of observations does not exist even in 
studies using exhaustive data, such as cross-sectional and longitudinal analyses in 
demography (with data from censuses and comprehensive population registers) or 
Durkheim’s method for explaining social facts in sociology. The reason is that if we 
try to extend the observation over time, the population will not remain identical and 
the probabilities of the events observed will thus change. As we shall see in Chap.   5    , 
the introduction of event-history and multilevel analysis methods was to raise this 
same question even more acutely. 

 The time has come, therefore, to take a more detailed look at the main problems 
posed by the objective approach.  
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    1.5   Problems Posed by the Objective Approach 

 In this chapter, we have sometimes noted various problems encountered in the 
introduction or application of the objective approach. In this section, we shall try to 
identify the main problems more specifi cally and to show that, in fact, they are often 
interlinked. 

 We already mentioned D’Alembert in presenting the concept of physical impos-
sibility, but we did not discuss his criticisms of the concept of objective probability, 
which we shall now examine. 

 It is important to bear in mind that when objective probability, in the wake of 
Venn, was regarded as the only valid form of probability, many probabilists violently 
attacked D’Alembert for his errors in resolving certain probability problems. At the 
start of his chapter on D’Alembert, Todhunter  (  1865  )  wrote:

  This great mathematician is known in the history of the Theory of Probability for his 
opposition to the opinions generally received; his high reputation in science, philosophy, 
and literature have secured an amount of attention for his paradoxes and errors which they 
would not have gained if they had proceeded from a less distinguished writer.  

Similarly, Joseph Bertrand, in his preface to  Calcul des probabilités   (  1889  ) , 
comments:

  D’Alembert’s mind, usually balanced and subtle, went totally askew when addressing 
probability calculus .   

However Delannoy  (  1895  )  showed that D’Alembert’s errors in probability were 
not, as Maupin  (  1895  )  thought, omissions but that he emphasized those points 
strongly enough for us to regard them as genuine reasoning errors. 

 While some of these criticisms are entirely appropriate, others—leveled by 
objectivists—take on a new dimension when viewed from an epistemic standpoint. 

 For instance, in an initial article on probability  (  1761a  ) , D’Alembert examined 
whether, if the same event occurs several times in a row, there is an equal probability 
that heads or tails will turn up in the following throw. He states:

  Therefore the more often  tails  will have occurred consecutively, the more likely  heads  will 
turn up on the following toss.  

An objectivist may reasonably conclude that D’Alembert had committed a true 
error. But in a later article  (  1768a  ) , he spelled out what he meant by those terms:

  If chance alone decides the event,  tails  cannot turn up, in my view, many times in a row; that 
seems proved to me by the reasons I have given above and elsewhere. Therefore if tails turn 
up many times in a row, say, a hundred times, it is a sign that some special cause is at work 
to bring up  tails  rather than  heads ; hence we may reckon that, if the cause persists,  tails  will 
turn up on the one hundred and fi rst toss […]   

 This shows more clearly that D’Alembert was reasoning in terms of epistemic 
probability here. Observing past events, he offered a probability for the outcome of 
the next toss that took those past events into account. Here, the observation led him 
to conclude that the player was cheating because the coin was loaded, and so 
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D’Alembert responded accordingly. We can see why such reasoning is unacceptable 
for an objectivist probabilist: to speak of the probability of a person cheating in a 
game is meaningless to the objectivist probabilist in probability calculus, even if the 
notion has a meaning in ordinary language. It is diffi cult to provide an unambiguous 
defi nition of a trial that can be repeated identically, and whose outcome would be 
either ‘the player is cheating’ or ‘the player is not cheating.’ 

 We mentioned the second problem in our section on statistical inference. 
After conducting a campaign in 1934–1936 against the misuse of the correlation 
coeffi cient, Fréchet sent his colleagues at the  International Institute of Statistics , 
in  1948 , a problem regarding an assessment based on a sample. He obtained 16 
different types of response, showing that the leap from inadequate premises to a 
conclusion cannot be taken without recourse to arguments extraneous to 
probability. 

 Later, Kendall  (  1963  ) , discussing the controversies on statistical inference in his 
obituary of Fisher, noted that

  a man’s attitude towards inference, like his attitude towards religion, is determined by his 
emotional make-up, not by reason or mathematics.   

 Despite this, in their quest to defi ne the epistemological bases of their practice, 
statisticians and probabilists have attempted to spell out—if not justify—the inference 
principles that they advocated. However, for the objective approach to probability, 
this justifi cation is nearly impossible because of the many epistemological problems 
raised by the establishment of a theory of statistical tests aimed at drawing an infer-
ence on an observed phenomenon from observed data. 

 For instance, let us suppose that we perform a statistical test, in the objectivist 
manner, to determine if an estimated parameter may be regarded as signifi cantly 
different from zero. One might conclude that the rejection of this hypothesis at the 
5% limit, for example, indicates a 5% probability of the hypothesis being verifi ed. 
However, as noted earlier, the objectivist approach cannot address the probability of 
a hypothesis. 

 In fact, what we can state here is that, if we perform a large number of identical 
trials, then the parameter studied would differ from zero in only 5% of the trials. But 
as a rule, especially in social science, the trial can be repeated in identical conditions 
only a few times, and often not at all. This answer is therefore very different from 
what we should expect in a statistical test. 

 If we cannot test a hypothesis, we must therefore content ourselves, in objective 
probability, with testing the probability of obtaining a given sample if the hypothesis 
is true. Statistical inference is defi ned here in a narrower sense, so as to avoid speaking 
of the probability of a hypothesis. 

 The third problem is the application of objective probability to social science. 
While objective probability does seem applicable to games of chance and to the 
measurement of stable physical phenomena—such as the speed of sound and 
light—over a very long period, we may question its suitability for human pheno-
mena, which are far less predictable and stable. 
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 It is therefore curious to note that probability and social science were born 
nearly simultaneously and that probability was applied to the study of human phe-
nomena from the outset, as Graunt showed us. Arguably, there is considerable 
evidence that, at the time, the belief in a divine order made it possible to assume 
that human phenomena were as stable as physical phenomena. For instance, 
Arbuthnott  (  1710  )  concluded his earlier-quoted study by stating that it was not by 
chance that the number of male births exceeded the number of female births, in 
constant proportion, and that this proved the existence of a  Divine Providence . 
Similarly, Süssmilch  (  1741 , 1761–1762) widened his observation to many 
 demographic phenomena for the sole purpose of revealing the existence and nature 
of the  Divine Order . Studying mortality (1761–1762), while showing that ‘the dif-
ference between towns and villages lies in the manner of feeding, habits, and the 
way of life’, he concluded: ‘If habits and ways of life were similar everywhere—as 
nature is—mortality would be so as well.’ 

 Süssmilch brought in mythological thought to offset the lack of an explanation 
for the observed regularities. But his approach was rapidly superseded in the social 
sciences by a more thorough investigation of the economic, political, religious, 
social, and other causes of these phenomena. 

 Social scientists were forced to admit the close and complex links between these 
various aspects of human life and their extreme variability across time and space. 

 How, in these conditions, could one continue to apply the objective approach, which 
supposes that such phenomena can be repeated identically across time and space? 

 We have already noted how cross-sectional analysis, by using exhaustive census 
data, and longitudinal analysis, which adds the equally exhaustive data from 
population registers, allowed population scientists to set aside the study of variance 
and confi ne themselves to studying the mathematical expectations of the rates and 
probabilities used. But once event-history analysis sought to explore in greater 
detail the effect of a large number of characteristics on the behavior studied, it 
became necessary to deploy the full probabilistic arsenal in order to conduct this 
research. In particular, variance became a central topic again (Courgeau and Lelièvre 
 1989 , 1992, 2001). Multilevel analysis (Courgeau  2003,   2004a,   b,   2007a  ) , which 
additionally introduces a large number of regions or units of different levels, 
naturally intensifi ed the need for epistemic analysis, for the use of an objective 
approach to probability became a pressing issue. 

 To conclude, let us examine D’Alembert’s eleventh paper ( mémoire )  (  1761  b    ) on 
the inoculation of smallpox, discussed by Daniel Bernoulli  (  1760  )  and already 
described earlier. 22  

 First, D’Alembert did not reject Bernoulli’s conclusions, and he ended the fi rst 
part of the text by stating that

  these advantages are real for those who will undergo it [inoculation] with appropriate 
precautions; we must therefore carefully avoid halting or delaying its spread.   

   22   D’Alembert returned to the subject in his twenty-third and twenty-seventh ‘ mémoires ’  (  1768a,   b  ) .  
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 However, he did point out that this approach made it possible to measure ‘the 
advantage that the State can draw from inoculation but hardly addressed the advan-
tage that individuals may hope to obtain from it’. In support of this statement, he 
noted that individuals

  see inoculation as an instant and imminent peril of losing their lives in a month, & smallpox 
as an uncertain danger, & whose place in a long life cannot be assigned.   

 Thus D’Alembert did draw a contrast between an objective approach to probabil-
ity—as we defi ned it in this chapter—and a subjective approach that would seek to 
apply probability calculus to the largest possible number of feelings of uncertainty, 
however subjective they may be. 

 The time has come, therefore, to engage in a deeper examination of the other side 
of probability. We shall thus be able to consider propositions that are more subjec-
tive than events repeatable to infi nity in identical conditions. In other words, we 
must turn to the realm of epistemic probability.                                                                                                                                   
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 Unlike the objectivist approach, which applies probability calculus to events  liable 
to repeat themselves in identical conditions, the epistemic approach seeks to apply 
probability calculus to the largest possible number of feelings of uncertainty, 
however subjective they may be. The goal, however, is not only to extend the 
scope of application of the calculus by taking into account the most diverse cate-
gories of human knowledge, especially of non-frequential origin. The epistemic 
approach also aims to change the mode of reasoning and the premises on which 
objective probability is based, starting from a very different paradigm—as we 
shall see later. 

 As already noted, both approaches were used practically from the introduction of 
probability calculus. But two very different paths were soon taken to explore 
epistemic probability. 

 Pascal had already used an initial subjectivist approach in the section of the 
 Pensées  entitled  Infi ni rien  (‘Infi nite nothingness’)  (  1670  ) , cited in our General 
introduction. The object of Pascal’s wager was no longer a repeatable event as in a 
game of pure chance, but a unique event: the existence of God. Thus he could no 
longer rely on the constancy of the chances of coming up heads in a coin-toss game, 
for example. His wager had to be made in the absence of all prior experience. This 
is, of course, an extreme approach, for probability theory usually deals with situa-
tions where the future is uncertain, and where data on prior experience are available. 
Ramsey  (  1926  ) , de Finetti  (  1937  ) , Savage  (  1954  ) , and other authors elaborated on 
this approach in the twentieth century. 

 By contrast, Leibniz took a distinctly logicist approach when seeking the origin 
of probability in logic. In  New essays on human understanding  (written around 
1703 but only published in 1765), he wrote:

  I believe the study of the degrees of probability would be very valuable and we do not yet 
have such a study, and this is a serious shortcoming in our logic textbooks.  

Hence the need to try to develop an alternative to classic deductive logic—an 
alternative introduced by Keynes  (  1921  ) , Jeffreys  (  1939  ) , Richard Cox  (  1961  ) , and 
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others in the twentieth century. Chapter   3     will discuss this development. Here, we 
shall focus on the more subjectivist approach. 

 We need, therefore, to defi ne probability not only for objective events, such as a 
dice toss or a card draw, but also for totally subjective events, such as the fact that a 
player cheats or any other hypothesis. As a result, we can no longer rely on the 
 frequency of identically defi ned events, since the event may be non-repetitive. After 
describing the origins of this approach, the present chapter identifi es its underlying 
paradigm and axioms, discusses the resulting inference, and gives examples of 
applications to social science. 

    2.1   Subjectivist Probability 

 In the seventeenth and eighteenth centuries, probabilists had not yet drawn the sharp 
divide between objective and epistemic probability. That was accomplished in the 
nineteenth and twentieth centuries, when Venn, von Mises, Fisher, and others 
rejected the use of probability calculus for totally subjective events. For this reason, 
many of the seventeenth- and eighteenth-century authors quoted in this chapter also 
appeared in Chap.   1    , and some will return in Chap.   3    . 

 As early as the seventeenth century, a number of authors proposed the applica-
tion of probability calculus to the degree of certainty of a legal ruling, an insurance 
policy, an annuity, a witness’s testimony, and so on. Arnauld and Nicole  (  1662  ) , for 
instance, speak of the judgment ‘that we make with regard to the truth or falsehood 
of human events’, particularly when we ‘consider them in the time to come’. To 
judge the truth of such an event, they said:

  we must take heed of all the attendant circumstances, both internal and external. I use the 
term ‘internal circumstances’ to refer to the circumstances inherent in the fact itself and 
‘external circumstances’ to those that concern the persons whose testimony leads us to 
believe that fact.   

 Arnauld and Nicole accordingly used this approach to examine the belief in 
 miracles as well as notarized deeds, future contingent events such as the positive or 
negative outcome of diseases, future events in a war, the loss of one’s life or prop-
erty, fear of thunder, and so on. For instance, to judge whether a contract signed by 
two notaries has been ante-dated, Arnauld and Nicole observe that:

  of one thousand contracts, there are nine hundred ninety-nine that are not ante-dated; it is 
thus incomparably more likely that this contract that I see is one of the nine hundred ninety-
nine than the one in a thousand that may be ante-dated.  

 If we also know the honesty of the notaries who signed the contract, we can be 
very certain that it is not ante-dated. But if, instead, we know that it might have been 
in these notaries’ interest to falsify the date, the circumstance lessens the degree to 
which we can believe that the document is properly dated, even though we cannot 
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conclude with certainty that the contract is ante-dated. This marks the appearance of 
the epistemic interpretation of probability as a  degree of certainty . In their last 
 chapter, Arnauld and Nicole even supply a measure for roughly estimating the 
 probability of a risk such as dying by thunder:

   but if it is only the danger of death that fi lls them with their extraordinary fear, it is easy to 
show that this is unreasonable. It would be an exaggeration to say that one in two million 
people is killed by a thunderstorm; there is scarcely any kind of violent death less 
common.  

Thus the authors greatly minimize an excessive fear displayed by a very large 
number of people. 

 At the same time, Arnauld and Nicole believe that, in making a decision, we 
should consider not only the degree of certainty of an event, but also what they 
describe as its advantage ( avantage ), now called its utility. Taking the example of a 
lottery, they write:

  That is what attracts so many people to lotteries: winning, they say, twenty thousand  écus  
for one  écu,  is that not a most advantageous thing? Everyone believes he will be that happy 
person who will collect the jackpot; and nobody will refl ect on the fact that if the jackpot is, 
say, twenty thousand  écus , each person will perhaps be thirty thousand times more likely 
not to win it than to win it.  

To decide on the best course of action, we must therefore take into account not 
only the degree of certainty of a gain but also its advantage. This marks the emer-
gence of the link between probability and utility—one of the basic concepts of 
subjective probability. 

 In an unsigned paper, Hooper  (  1699  )  went further and introduced human testi-
mony into the  credibility  calculus. He gave the example of the calculation required 
to assess concordant accounts by several witnesses:

  if the First Witness gives me     a

a c+
   of Certainty, and there is wanting of it     c

a c+
  ; the

 Second Attester will add     a

a c+
   of that     c

a c+
  ; and consequently leaves nothing but … 

    
2

2( )

c

a c+
  .  

 Hooper was thus able to determine the degree of credibility of concomitant infor-
mation, and to show that it tends toward unity when the number of witnesses 
increases. Conversely, he showed that the credibility for information that is not con-
comitant but sequential will tend toward zero when the number of witnesses 
increases. He notes that:

   I therefore suppos’d to have     a

a c+
    of Certainty from the First Reporter; I shall have from 

the second     a

a c+
  ; from the third     

3

3( )

a

a c+
  .  

In a later section, we shall discuss the  interpretation of these results with the aid 
of the  belief function , introduced by Smets  (  1988  )  and others. 
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 Jacob Bernoulli  (  1713  )  offered a more detailed reasoning on degrees of certainty. 
For him, chance does not reside in the external world, for he clearly states:

  All things that exist or are done under the sun, in the past, present, and future, always carry 
the greatest certainty in themselves and objectively so. 1   

Rather, chance resides in the imperfection of our grasp of this world:

  An opinion of certainty that we can voice is not identical for all things, but varies in many 
ways, toward either a greater or lesser degree. … The other things cannot be measured by 
our mind except imperfectly, more or less precisely depending on their probability, which 
teaches us that something is, will be, or has been 2    

 Bernoulli goes on to state that ‘probability is indeed the degree of certainty, and 
it differs from certainty as the part does from the whole’. 3  He is therefore describing 
a full-fl edged epistemic probability, a degree of certainty or belief, which he will try 
to measure—a process that he calls ‘to conjecture’ ( conjicere ). 

 To perform such a measure, he posits nine axioms that such a conjecture must 
satisfy. Without describing them all in detail here, we shall present the fourth, as it 
provides the bridge between ‘universal things’ and conjectures on specifi c events. 
This shows us how strongly Bernoulli believed that probabilities are applicable not 
only to objective events—such as those occurring in games of chance—but above 
all to subjective events of any kind. His demographic example is most eloquent:

  For instance when we search, in the abstract, how much more likely it would be for a youth 
of twenty to outlive an old sexagenarian, rather than the latter outliving the former, there is 
nothing you can take into account apart from their difference in age and their years; but 
when the discussion specifi cally concerns young man Peter and old man Paul, you need 
once again to pay careful attention to their particular constitution and their likings, which 
determine how the two take care of their health; for if Peter is more ill, if he indulges in 
passions, if he lives an intemperate life, it is conceivable that Paul, despite his older age, 
may yet be able to contemplate a longer life expectancy. 4   

In the classic demographic approach using objective probability, the only criteria 
for distinguishing between any two members of a population were their ages and 
their age gap. Bernoulli’s example above implies that the classic approach ceases to 
apply when we examine two specifi c persons many of whose other characteristics—

   1   Omnia, quæ sub sole sunt vel fi unt, præterita, præsentia, præsentia sive futura, in se & objectivè 
summam semper certitudinem habent.  
   2   Certitudo rerum, spectatata in ordine at nos, non omnium eadem is, sed multipliciter variat 
secundùm magis & minus. …Cætera omnia imperfectiorem ejus mensuram in mentibus nostris 
obtinent, majorem minoremve, prout plures vel pauciores sunt probabilitates, quæ suadent rem 
aliquam esse, fore aut fuisse.  
   3   Probabilitas enim is gradus certitudinis, &ab hac differt ut pars à toto.  
   4   Ita cùm qæritur in abstracto, quantò sit probabilius, juvenem vigenti annorum senem sexagenario 
fore superstitem, quàm verò hunc illi, præter discrimen ætatis & annorum nihil is, quod consider-
are possis; sed ubi specialiter sermo is de individuis Petri juvenis & Pauli senis, attendere insuper 
opportet ad specialem eorum complexionem & studium, quo uterque valetudinem suam curat; nam 
si Petrus sit valetudinarius, if infectibus indulgeat, if intepemperanter vivat, fi eri potest, ut Paulus, 
etsi ætate provectior, optima tamen ratione longioris spem vitæ concipere valeat.  
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apart from age—are very familiar to us. Signifi cantly, Bernoulli indicates that the 
characteristics are to be included in the analysis ‘only if they can be acquired.’ 5  If 
so, they will improve our estimation of the chances that one individual will outlive 
the other. A few pages later, Bernoulli describes how, from trials performed on 
people who resemble one another as closely as possible, we can extract more spe-
cifi c information on a given person’s probability of survival:

  if, for example, in a test conducted on three hundred men resembling Titius, of identical age 
and constitution, you observed that two hundred of them had already died before the exact 
age of ten, you could conclude more surely that Titius is twice as likely to die before age ten 
as he is of living beyond that limit. 6   

Bernoulli therefore believed that, by testing a large number of individuals (here, 300) 
he could obtain a rough estimate of the unknown subjective probability that an indi-
vidual (here, Titius) will survive beyond age ten. 

 While noting that no mortal will ever be able to determine the number of diseases, 
accidents, and other potential causes of human death, Bernoulli argues that, by observ-
ing a large number of similar cases, we can extract this probability with a precision 
proportional to that number. In fact, he acknowledges that Arnauld and Nicole  (  1662  )  
already proposed this method, but he elaborates it, fi rst by positing what would later 
be called the  principle of insuffi cient reason , 7  then by seeking to estimate what we 
now call a confi dence interval. Bernoulli notes that, to estimate a probability: ‘All 
cases are equally possible, i.e., each can occur as easily as any other;’. 8  

 He can thus assign an epistemic probability to a fact about which he knows the 
various arguments for or against its existence. Later, we shall examine the exten-
sions of this principle and the criticisms that have been voiced against it. 

 Elaborating on the estimation of a confi dence interval, Bernoulli assumes from 
the outset that the probability of the event studied is known to the author but not to 
the experimenter:

  in a given urn I place three thousand white tokens and two thousand black ones, these num-
bers being unknown to you, and to determine the number by experiment you remove one 
token after another (replacing each token as you remove it, before choosing the next one, so 
that the number of tokens in the urn remains constant) and you observe how many times a 
white token comes out and how many times a black one comes out. 9   

   5   si modo haberi possunt.  
   6   si ex. gr. facto olim experimento in tercentis hominibus ejusdem, cujus nunc Titius is, ætatis & 
complexionis, observaveris ducentos eorum ante exactum decennium mortem oppetiisse, reliquos 
ultravitam protraxisse, satis tu colligere poteris, duplo plures casus esse, quibus & Titio intra 
decennium proximum naturae debitutm solvendum sit, quàm quibus terminium hunc transgredi 
possit.  
   7   This designation allows the principle to be contrasted with Leibniz’s  principle of suffi cient rea-
son , which posits that for each fact there exists a suffi cient reason to explain why it occurs and not 
another. Keynes, who was dissatisfi ed with the term, renamed it the  indifference principle .  
   8   omnes casus æquaè possibiles esse, seu pari facilitate evenire posse;  
   9   pono in urna quadem te inscio reconditos esse ter thousand calculos albos & bis thousand nigros, 
teque eorum nyumerum experimentis exploraturum educere calculum unum post alternum 
(reponendo tamen singulis vicibus illum quem eduxisti, priusquam sequentem eligas, ne numerus 
calculorum in urna minuatur) & observare, quoties albus & quoties ater exeat.  
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It is precisely with respect to this probability—unknown to the experimenter—that 
Bernoulli then determines what we now call a confi dence interval ‘between two 
limits, which we can reduce as much as we want’. 10  Using current notations, if  p  is 
the unknown probability, he can calculate the number of observations  n  needed to 

obtain a confi dence interval   e   such that the estimated value,     ˆ n

m
p

n
=    (where  m  is, 

for example, the number of draws of a white token divided by the total number of 
trials  n ), lies within the interval        [ ],p pe e− +   . This does indeed assume the initial 
hypothesis of our imperfect grasp of a world that is totally deterministic. An increas-
ingly precise observation of that world should enable us to reveal all of its mecha-
nisms and—returning to the previous example—to compute with a growing accuracy 
the probability that Titius will live beyond 10 years. But as the experimenter, in this 
case, does not know the reference value  p , the confi dence interval thus determined 
is of little use to him. 

 Bernoulli’s theorem allows what we call a  direct approach  to probability—which 
is, in fact, the one adopted by his predecessors—and allows an accurate quantifi ca-
tion of probability. The approach assumes that the probability of the event studied is 
known, and shows how through successive trials the estimated frequency tends 
toward that probability. One example is fair games, where we can determine  a priori  
the probability of the various outcomes considered. By contrast, the approach is not 
applicable to subjective phenomena. 

 The problem that constitutes the  inverse approach  is the one that Bernoulli thought 
he had solved by exploring an ever greater number of cases. However, Leibniz chal-
lenged the solution by noting, for example, that new diseases could spread—making 
the estimation of mortality not perfect but variable in the future (Bernoulli and 
Leibniz  1692 –1704). This time, all we know is the sample observed. Not only is the 
population from which it is drawn unknown, but its very existence is a hypothesis. In 
such circumstances, can we estimate the probability of the event studied? It is this 
question that Bayes  (  1763  )  tackled from a specifi c angle and that later investigators, 
such as Condorcet and Laplace, tried to generalize to more complex cases. 

 Beforehand, let us see how the notion of utility—already glimpsed by Arnauld 
and Nicole  (  1662  ) , and one of the bases of subjective analysis—gradually devel-
oped from the  Saint Petersburg paradox  11  in the eighteenth century. 

 Nicolas Bernoulli, in a letter to Montmort  (  1713  )  is the fi rst to have formulated 
the following problem:

  A promises to give an écu to B, if with an ordinary die he turns up a six at the fi rst throw, two 
écus if he turns up a six at the second, four (2 2 ) écus if he turns it up at the third throw, eight 
écus (2 3 ) if he turns it up at the fourth, & so on. The question is: what is B’s expectation.  

A simple calculation shows that we need to gamble an infi nite sum to ensure a 
fair game. But any sane individual will refuse to play such a game because the initial 

   10   binis limitibus conclusam, sed qui tam arcti constitui possunt, quam quis voluerit.  
   11   This paradox owes its name to the fact that Nicolas Bernoulli’s cousin Daniel Bernoulli 
 published a paper on the problem in the  Commentaires de l’Académie des Sciences de Saint-
Pétersbourg  in 1738.  
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wager is too high. This situation is called the  Saint Petersburg paradox . The prob-
lem was revisited by Daniel Bernoulli  (  1738  ) , who believed that not all persons can 
use the same rules to assess a game. To allow for this fact, he introduced the concept 
of utility ( emolumento ), which he described as resting on:

   the value  estimated not from the price of the thing but from the  utility  that each person can 
derive from it. The price estimated from the thing itself is the same for all; the  utility  
depends on each person’s circumstances. 12   

Utility introduces a probability that differs for each individual. The concept later 
proved very important in the theory of subjective probability as well as in economic 
and fi nancial theories of risk aversion. Daniel Bernoulli posited the following rule:

  By multiplying the utility of each lot by the number of outcomes in which it is obtained, 
summing the products and dividing by the total number of outcomes, we will unfailingly 
obtain a mean  utility  and the gain associated with this  utility  will be equal to the value of the 
risk in question. 13   

Mean utility thus provides a measure of the risk. This notion was later profi tably 
used in the subjective approach, most notably by Savage  (  1954  ) , who recognized his 
debt to Daniel Bernoulli in no uncertain terms:

  it is Bernoulli’s formulation together with some of the ideas that were specifi cally his that 
became popular and have had widespread infl uence to the present day.   

 Let us now examine the highly innovative approach introduced by Bayes. At the 
very start of his paper, he states the problem clearly:

   Given  the number of times in which an unknown event has happened and failed:  Required  
the chance that the probability of its happening in a single trial lies somewhere between any 
two degrees of probability that can be named.  

He thus sets out to predict the occurrence of a trial on the basis of a fi nite number 
of similar trials, which can be very small. 

 Bayes begins with the simple case of a fl at square table. First, he casts a ball  W , 
which determines an initial stopping point. He then casts a ball  O ,  n  times; the ball 

lands  m  times to the right of  W . This yields an estimation of the frequency     ˆ n

m
p

n
=   . 

Bayes assumes that  W ’s position on the table is uniform. We shall not go into the 
details of his demonstration, which ultimately shows that the probability that  W ’s 
projection on one side of the square lies in the interval     [ ]ˆ ˆ,n np p− ε + ε    is equal to 14 :

     

2( 1)!
ˆ ˆ(1 )

!( ) !
m n m

n n

n
p p

m n m
−+

− ε
−    

   12    valor  non is aestimandus ex pretio rei, sed ex  emolumento,  quod unusquisque inde capessit. 
Pretium ex re ipsa aestimatur omnibusque idem is,  emolumentum  ex conditione personae.  
   13   Cum  emolumenta  singula expectata multiplicantur per numerum casuum, quibus obtinetur 
aggregatumque productorum dividitur per numerum omnium casuum, obtinebitur  emolumentum  
medium, and lucrum huic emolumento respondens aequivalebit sorti quaesitae.  
   14   Bayes, in fact, seeks the more complex probability that the sought-for probability lies in an interval 
[ b ,  f ]. He thus obtains an integral relative to     ˆ np   , between  b  and  f , of the equation below divided by 2.  
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Bayes, therefore, effectively obtains an interval around the estimated probability 
    ˆ np   , in which the sought-for probability must lie, while Bernoulli built an interval 
around the unknown value of  p . This time, the interval is perfectly usable by the 
experimenter. 

 Bayes then generalizes his result in a scholium in which he considers a random 
event whose probability he does not know, but on which he has performed  n  trials, 
resulting in  m  positive outcomes. Bayes notes:

  concerning such an event I have no reason to think, that, in a certain number of trials, it 
should rather happen any one possible number of times than another.  

It is indeed the number of trials producing the event, not its unknown prob-
ability, 15  that Bayes regards as being uniformly distributed. He can thus regard the 
 previous formula as equally valid for random events. 

 Laplace, in his  1774  paper 16  on the probability of causes, generalized this 
 principle of inverse probability to any given number of different causes:

  If an event can be produced by a number  n  of different causes, the probabilities of the 
 existence of these causes given the event stand with respect to one another as the probabili-
ties of the event given these causes, and the probability of the existence of each is equal to 
the probability of the event given this cause, divided by the sum of all the probabilities of 
the event given each of these causes .   

We can express this principle more concisely. Let  E  be an observable event and 
    { }1 2, ,... , nC C C    the set of its causes. Let us assume that we know the probabilities 
of  E  for each cause,     iC   . If we view all the causes as equally likely, the probability 
of     iC   , knowing  E , is:
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   (2.1)  

   15   A number of authors (Pearson  1920 ; Fisher  1956 ; Hacking  1965  )  have not properly understood 
this hypothesis advanced by Bayes; they believe that it consists of Laplace’s  principle of insuffi -
cient reason , which we shall examine later. Laplace’s principle states that, when no information 
exists, it is the unknown probability that we must regard as uniformly distributed. In this case, we 
would also be unaware of any monotonic function of the unknown probability, which would yield 
different results (see Stigler  (  1986  )  for a fuller discussion of this hypothesis).  
   16   Interestingly, Laplace does not seem to have been aware of Bayes’s work at that date, for the 
introduction to his paper (written by Condorcet) does not mention Bayes. By contrast, 4 years later 
 (  1778  ) , Laplace’s introduction by Condorcet quotes Bayes and Price, who published his results in 
the  Philosophical Transactions .  
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That is exactly what Laplace demonstrated  (  1783a  ) , clearly designating the 
hypothesis that all the causes are equally possible (this hypothesis was already men-
tioned in note 15 as the principle of insuffi cient reason 17 ):

  we shall obtain the probability of a cause, determined from the event, by dividing the prob-
ability of the event, given this cause, by the sum of all the similar probabilities .   

In the same paper, he generalized the formula to the case where the events     iC    are 
not equally possible but have different probabilities:

  If the values of  x , regarded independently of the observed result, are not all equally possible, 
but if their probability is expressed as a function  z  of  x , we need only replace  y  by  yz  in the 
preceding equations; this is the same as assuming that all values of  x  are equally possible, 
and considering the result observed as comprising two independent results, whose probabil-
ities are  y  &  z .  

If we write this function     ( )ip C I   , where  I  is the information available on the 
events, the previous equation applied to the present case becomes:
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=
∑
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p E C p C I
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p E C p C I
   (2.2)  

However, Laplace himself clearly noted the constraints to which both formulas 
are subjected  (  1814  ) :

  But that [ the fi rst equation discussed here ] assumes that the various cases are equally pos-
sible. If they are not [ i.e., if the second equation applies ] ,  we shall begin by determining 
their respective possibilities, whose fair evaluation is one of the most delicate points of the 
theory of chance.  

He visibly confi ned himself to indicating the limitations without actually offer-
ing a means to escape them. In fact, Laplace had no principle for determining these 
 prior  probabilities in the case where the information available does not allow us to 
make the various outcomes equally possible. Admittedly, his determinism led him 
to believe that probability is related partly to our ignorance and partly to our knowl-
edge, but that all phenomena can eventually be explained in full. 

 Poisson continued on this path by applying epistemic probability calculus to 
judging crimes  (  1837  ) , as did Bienaymé  (  1838  ) . However, afterwards many stat-
isticians rejected this method, sometimes violently, recommending a strictly 
objective approach to probability calculus (Ellis  1849 ; Boole  1854 ; Venn  1866  ) . 
In particular, they refused Bayes’s formula, which assumes a uniform prior 

   17   This hypothesis is therefore different from Bayes’s hypothesis, namely, that it is the number of 
trials leading to the event that is regarded as uniformly distributed and not its probability. Many 
authors criticized Laplace’s hypothesis (Edgeworth  1885a ; Fisher  1922a,   1956  ) , arguing that other 

monotonic distributions of  p , for example     12 cos(1 2 )Arc p−   , could be equally suitable and yield 

different results. We shall discuss the hypothesis in greater detail at the end of the chapter.  
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 probability in order to estimate from observations the probability of the event 
studied. In fact, what they rejected as strictly meaningless was the probability of 
a hypothesis—here, the hypothesis of a uniform distribution—as well as the 
notion of probability as a description of a state of our knowledge. For these critics, 
the term ‘probability’ merely designates the frequency of an event in a given trial, 
as we showed in Chap.   1    . 

 This rejection lasted nearly a century, although some researchers continued to 
support Laplace’s position (Pearson  1920,   1925  )  without, however, using it in 
 specifi c applications. Jeffreys  (  1939  ) , for instance, had this to say about Pearson:

  The anomalous feature of his work is that though he always maintained the principle of 
inverse probability, and made this important advance, he seldom used it in actual applica-
tions, and usually presented his results in a form that appears to identify a probability with 
a frequency.   

 Toward the 1930s, a number of authors revived this epistemic argument, which 
was now channeled toward the subjectivist approach (by Ramsey, de Finetti, Savage, 
and others) or the logicist approach (by Keynes, Jeffreys, Carnap, Jaynes, and 
 others). As noted earlier, this chapter will discuss the subjectivist approach, while 
Chap.   3     will focus on the logicist approach. 

 In an essay published after his death at 26, Ramsey  (  1931  )  laid the foundations 
of a subjective approach to probability, while Kolmogorov axiomatized objective 
probability in  1933 . Ramsey introduced the notion of  degree of belief  in the occur-
rence of an event and sought to formalize the way in which people may defi ne belief 
when making decisions in uncertain situations. But it was de Finetti who defi ned the 
true principles of the subjectivist approach. 

 For this purpose, he considered a relationship of subjective comparison between 
different events and sought the conditions that would enable us to transform the 
comparison into a measure of probability (de Finetti  1931a  ) . For example, in a tour-
nament between several teams, in order to calculate the probability of victory that a 
person may assign to either team, de Finetti showed the need to assume that the 
person is coherent in his or her choices. De Finetti saw this coherence condition as 
the sole principle from which he could deduce all of probability calculus:

  this calculus accordingly emerges as the set of rules with which a given person’s subjective 
assessment of the probabilities of various events must comply in order to avoid a fundamen-
tal contradiction between them. (de Finetti  1937  )   

It is important to understand that, for de Finetti, an event is always unique, and 
that if he is examining several trials, he will speak of trials for a single phenomenon. 
Likewise, people are free to adopt whatever assessment of probability they prefer, 
provided that the assessment satisfi es the property of coherence. 

 Let us now see in greater detail how he defi nes subjective probability on the 
basis of this notion, which is common to all subjectivists, although authors differ 
slightly as to what they mean by coherent behavior. For the sake of clarity, De 
Finetti introduces the notion of wager and looks for what a perfectly rational  person 
would be willing to accept concerning the occurrence of a certain event. The prob-
ability  p  attributed by a person to an event  E  is defi ned as the ratio of the sum that 
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(s)he would be willing to bet,  pS , to win a sum  S , if  E  occurs. Using this defi nition and 
the coherence condition, de Finetti shows that the probability of a random event 
must be non-negative and less than unity. He generalizes this result to a random 
number of incompatible events, in order to show that the sum of their probabilities 
must equal unity. He goes on to the determination of conditional probability, and—
again for consistency’s sake—deduces the Bayesian theorem from conditional 
probability. 

 De Finetti thus shows that subjective probability is suited to a wide range 
of events to which objective probability did not apply, such as sports results, weather 
events, and political events. But subjective probability is also appropriate for events 
for which objective probability applies. For example, in the theory of games of 
chance,

  the symmetry characteristics displayed by the various ‘possible outcomes’ can force our 
mind to view them as equally possible, but not to  impose  such an evaluation of probability 
by logical means. (de Finetti  1937  )   

For instance, if we toss a loaded coin, the observation of successive trials will 
allow us to adjust our assessment of the chances of coming up heads. 

 Another important component of this theory is the notion of ‘equivalence’, now 
called ‘exchangeability’. 18  We shall examine it in greater detail in the section on 
subjectivist statistical inference. Let us note here that it makes it possible, for exam-
ple in a game of heads or tails, to replace an unclear defi nition of ‘independent 
events with fi xed but unknown probabilities’ with that of ‘equivalent events’ 
(de Finetti  1937  ) , now called exchangeable events. This notion applies to the assess-
ment of the probabilities of individual events and allows a clear response to  statistical 
inference, as we shall see later. 

 Lastly, de Finetti offered an axiomatization of subjective probability, which we 
shall examine in the next section. This work was continued by Savage  (  1954  ) , who 
linked subjective probability to game theory (von Neumann and Morgenstern  1944  )  
in economics. Savage extended de Finetti’s studies by taking fuller account of the 
behavioral aspects of decision-making. He introduced a utility function, which 
refl ects a person’s risk aversion, and developed a methodology for maximizing 
mean utility. Suppes and Zanotti  (  1982  )  supplemented these axioms by constructing 
a measure of probability for a single distribution. 

 None of these subjective theories challenged the additivity principle for proba-
bilities of independent events, which was also valid for objective probability. 
A generalization of this approach is found in the Dempster-Shafer theory of degrees 
of credibility, which specifi cally waives this condition. 

 The Dempster-Shafer theory was foreshadowed by Hooper’s rules of credibility 
of successive or concurrent information  (  1699  ) , described at the beginning of this 

   18   In his 1937 article, de Finetti used the term ‘equivalent events’, but the designation was not kept 
in later publications dealing with the concept. Today, the term ‘exchangeable events’ is used in all 
of the literature, even though some authors do not regard it as perfect.  
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chapter. Shafer  (  1986  )  shows that the Bayesian interpretations of these rules by 
Gärdenfors et al.  (  1983  )  are open to criticism and that an interpretation in terms of 
degrees of confi dence is the only way to understand them properly. The same applies 
to Lambert’s generalization of these rules  (  1764  ) , which led Dempster  (  1967  )  to 
defi ne the notions of upper and lower probability 19  and the combination rule for 
confi dence functions. 

 Starting from an initial space  X  where a classic measure of probability exists, 
Dempster assigns to each element of the space one or more elements of a new space, 
 S . He shows that we can defi ne an upper probability and a lower probability for any 
element  T  in  S —probabilities whose various properties he describes. He then shows 
that these notions apply when we try to combine different sources of information on 
a given phenomenon. Suppes  (  1974  )  uses these results to offer a better axiomatiza-
tion of subjective probability, examined in the next section. 

 Following in this path, Shafer  (  1976  )  argues that this belief should be measured 
on two levels and not on a single one, as additive theories assume: that of belief or 
support, and that of plausibility, where these degrees of confi dence are used in 
 decision-making. This ties in with earlier work by Choquet on the theory of capaci-
ties (Choquet  1953 ; Shafer  1979  ) . The postulate that propositions need to be well 
defi ned—i.e., that we must be able to determine if a proposition is true or false—is 
not applied here, for there may exist well-defi ned propositions to which no degree 
of belief is assigned. 

 The difference between probability functions and belief functions can now be 
stated clearly:

  Whereas probability functions assume belief is apportioned to the points of the frame  Q , 
belief functions allow basic probability numbers (or mass numbers) to be assigned to whole 
sets of points in  Q  without further subdivision. (Yager and Liu  2007  )   

With these mass numbers we can defi ne the belief for a set  A ,     ( )Bel A   , as the sum 
of all the masses of subsets  B  of this set:

     

( ) ( )
B B A

Bel A m B
⊆

= ∑
   

and the plausibility of the same set,     ( )Pl A   , as the sum of all the masses of the sets 
 B  that intersect  A :

     

( ) ( ).
B B A

Pl A m B
F∩ ≠

= ∑
    

 The relationship between the subjective probabilities of an event  A  and its oppo-
site,     A   , under the state of knowledge  C :

     
( ) ( ) 1p A C p A C+ =

   

   19   In fact, this notion predates Dempster’s work. It was notably formulated by Good  (  1962  ) , Cedrik 
Smith  (  1961,   1965  ) , and Fishburn  (  1964  ) .  
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is replaced by a relationship between  A ’s plausibility,     ( )Pl A   , and the credibility of 
its opposite,     ( ) :Bel A   

     ( ) ( ) 1Pl A Bel A+ =    

but there is no longer a general direct relationship between     ( )Pl A    and     ( ).Pl A   When 
multiple states exist, they must be combined according to Dempster’s orthogonal 
rule. According to the latter, in a two-state situation, we can write:

     

1 2

1 2
1 2

( ) ( )
( ) ( )

1 ( ) ( )
B C A

B C

m B m C

Bel Bel A
m B m C

F

∩ =

∩ =

⊕ =
−

∑
∑

   

where     1m    and     2m    are the weights calculated on the two independent bodies of evi-
dence noted 1 and 2. The rule is easy to generalize to any number of states. 

 The theory can now serve to take account of imprecise information and the igno-
rance of certain probabilities. It is freed from the additivity constraint for probabili-
ties of independent events in classical subjective theories. From imperfect knowledge 
and data, it constructs the most consistent set possible. 

 It does, however, impose a complex rule for combination of beliefs (Dempster’s 
orthogonal rule) without clear theoretical justifi cation. A number of authors have 
sought to justify this rule (Dubois and Prade  (  1988  ) , Gacôgne  (  1993  ) ) by means of 
various simpler notions. However, it was Smets  (  1988,   1991  )  who, starting with a 
conditioning rule that was easier to axiomatize than the combination rule, ended up 
with a transferable belief model not tied to any interpretation or probabilistic 
hypothesis. This is what distinguishes Smets’s theory from those of Dempster 
 (  1967  )  and Shafer  (  1976  ) , which, although also based on belief functions, remain 
linked to a subjectivist probabilistic model (Smets  1994  ) . As this approach departs 
from probability theory while generalizing it, we shall provide only a succinct 
description of Smets’s approach in the next section. By contrast, we shall not dis-
cuss the theory of  fuzzy sets  (Zadeh  1965,   1978 ; Dubois and Prade  1988  ) . It diverges 
even further from probability theory, as fuzzy sets no longer form a Boolean tribe, 
but lead to weaker structures. 

 In sum, the subjectivist approach to probability, after having been largely rejected 
during the second half of the nineteenth century and the fi rst half of the twentieth 
century, enjoyed a revival of interest by the mid-twentieth century and is now com-
monly used by many researchers.  

    2.2   Paradigm and Axiomatics of Subjective Probability 

 As in Sect.   1.2    , let us begin by trying to isolate the paradigm underlying the subjec-
tivist approach before examining in greater detail the various axiomatizations that 
have been offered for it. 
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    2.2.1   The Paradigm 

 As already noted, subjective reasoning must abandon any notion of event frequency 
in order to defi ne as generally as possible the probability of the largest number of 
feelings of uncertainty, however subjective they may be. In this case, subjective 
probability will be derived from a reasoning that is valid for a given person and 
not—as in the objectivist approach—for the observed event. However, to avoid the 
arbitrariness that this situation would engender, we need to lay down conditions for 
the person’s reasonings so that the probability can be used and calculated in the larg-
est possible number of cases considered. 

 Subjectivists start with the notion of coherence of behavior, of which we have 
already spoken, in order to calculate the degree of probability that a person will 
assign to an observation. The authors who have addressed the subject offer slightly 
different defi nitions of coherent behavior, but we shall not examine those differ-
ences in detail here. It will be the fi rst basic notion in the subjectivist paradigm. 
From that notion, we shall be able to demonstrate a certain number of classic prop-
erties of probability—such as the theorem of total probability and the Bayesian 
theorem—that now apply to subjective probability. 

 The second fundamental notion is the utility expected by a given person. We saw 
how Arnauld and Nicole  (  1662  ) , then Daniel Bernoulli  (  1738  ) , introduced it to 
denote the fact that a person’s assessment of probability may vary according to cir-
cumstances. It is therefore important to estimate a subjective probability by taking 
into account the expected utility of the gain considered, i.e., the subjective value of 
the wager. For instance, the perceived utility of an identical gain may be greater for 
a poor person than for a rich person. Likewise, a wealthy prisoner who possesses 
2,000 ducats but needs 2,000 more to buy back his freedom will assign a greater 
utility to a gain of 2,000 ducats than another, less wealthy player. This notion, which 
allows us to determine a preference relationship between different actions, was used 
by    von Neumann and Morgenstern ( 1944 ) in economics, and later by Savage  (  1954  )  
to axiomatize subjective probability. 

 However, when we want to explore the subjectivity of probability further, we 
need to ask questions about the origin of the feeling of belief. Coherence no longer 
suffi ces. Nor does the notion of expected utility, which is the foundation of subjec-
tive probability and allows decision-making amid uncertain events. But if we are 
only interested in the credibility of events, outside of all decision-making, we need 
to move out of the probabilistic framework to address the feeling of belief in an 
event, when a person has a set of information—naturally, an incomplete set—on a 
specifi c proposition. 

 In particular, this situation renders obsolete the principle of insuffi cient reason—
which consists, in the absence of information on the various outcomes of an event, in 
assigning equal probabilities to them. The problem is that the principle does not 
enable us to take total ignorance properly into account. Consequently, if we assign a 
non-null belief to all simple outcomes of the event, then we should attribute a double 
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belief to all outcomes comprising two simple and mutually incompatible outcomes. 
However, there is no reason for these two beliefs to differ, and the only logical 
solution is to assign a null belief to each simple or compound outcome. By contrast, 
a single belief is attributed to the combination of all these outcomes, which is the 
only proposition to be verifi ed. This third element of the paradigm therefore leads not 
to a probability in the strict sense, as before, but to a characterization of the proposi-
tions by two numbers: belief, a new and non-probabilistic notion, and plausibility, 
which reintroduces subjective probability and is thus not actually new. In other words, 
only new information will enable us to assign a non-null belief to a given set of event 
outcomes, but will still leave a null belief in each outcome taken separately. 

 Later, we shall discuss the axioms that allow the defi nition of belief functions. 
These therefore precede the notion of probability, but from them we can deduce 
probabilities when we need to make a decision in the presence of such events.  

    2.2.2   The Axioms 

 We must now examine how to axiomatize this coherent behavior in the face of 
uncertainty—and that is where divergences between subjectivists appear. As in 
Sect.  2.1 , we shall not recount the history of the axiomatization of subjective prob-
ability, but simply outline the main stages. 

 Once the bases of set theory had been fi rmly established, the quest for axioms for 
subjective probability followed very closely on the search for axioms for objective 
probability. In a 1926 article entitled  Truth and probability  (published posthumously 
in 1931), Ramsey sketched out a program for an axiomatics, but unfortunately he 
did not have the time to elaborate on it before his premature death at age 26. It was 
de Finetti  (  1931a  )  who effectively showed that, by complying with a certain number 
of axioms, a set of personal opinions on probabilities could be represented by a 
numerical measure. Let us examine his axioms. 

 De Finetti considers a specifi c event about which we do not know if it will  happen 
or not. He shows that our doubt regarding its occurrence can be measured by degrees 
of probability if the following axioms are fulfi lled (de Finetti  1937  ) :

     1.     an uncertain event can only appear to us to be: ( a ) as probable as, ( b ) more probable 
than, and ( c ) less probable than another;  

   2.     an uncertain event will always appear more probable to us than an impossible event and 
less probable than a certain event;  

   3.     an event     ′E    cannot appear more probable than another event     ′′E   , when we deem     ′E    
more probable than a third event  E , itself viewed as more probable than     ′′E    (transitive 
property);  

   4.     the inequalities remain in the logical sum: if  E  is an event incompatible with  E  
1
  and with 

 E  
2
 , then  E  

1
  +  E  will be more or less probable than, or as probable as,  E  

2
  +  E  depending 

on whether  E  
1
  is more or less probable than, or as probable as,  E  

2
 .      

This is tantamount to defi ning a binary relationship for the event set, often noted     �   , 
which constitutes a weak-order relation among the events. De Finetti had to add a 
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fi fth axiom for what he called subordinate events, which we now call  conditional 
events . He designated the three-value logical entity     ′ ′′E E    20  as: true, if     E ′′   and     ′E
  are true; false ,  if     ′′E   is true and     ′E   is false; null, if     ′′E   is false. This fi fth axiom for 
subordinate (i.e., conditional) probabilities is accordingly enunciated as follows:

     5.     if     ′E   and     ′′E   are contained in  E ,     ′E E   is more or less probable than, or as probable as, 
    ′′E E   depending on whether     ′E   is more or less probable than, or as probable as,     ′′E   .       

 While taking a system of purely qualitative axioms as a starting point to defi ne a 
structure of qualitative probability, de Finetti thus succeeded in obtaining a quanti-
tative measure of that probability. He then showed that his structure satisfi es various 
classical properties of probability, such as the theorem of total probability, the theo-
rem of compound probability, and the Bayesian theorem. We should note, however, 
that a probability complying with de Finetti’s coherence condition does not need to 
satisfy the  s -additivity condition, discussed in Chap.   1    , which was used to defi ne an 
objective probability. The only condition that needs to be met is fi nite additivity. But 
we can preserve coherence by moving to the limit when studying a sequence of 
probabilities whose number tends toward infi nity. 

 Thanks to these axioms, we can spell out the coherence paradigm. The fi rst 
axiom states that we are examining events for which we must be able to say that 
one is more or less probable than, or as probable as, the other. The second effec-
tively curtails the freedom of opinion of a person who wants to remain coherent: 
the person cannot regard an event as more probable than a certain event and less 
probable than an impossible event. The third axiom specifi es how this coher-
ence satisfi es transitivity: a person cannot hold an event     ′E   to be more probable 
than an event  E , itself more probable than a third event     ′′E   , and regard this third 
event as more probable than the fi rst. The fourth axiom states that inequalities 
between probabilities can be compounded, in the same manner as logical addi-
tions of incompatible events. The fi fth axiom enables us to deduce the theorem 
of compound probabilities, which could not be shown with the fi rst four. On 
the other hand, de Finetti’s axioms make hardly any allowance for the utility 
paradigm. 

 De Finetti does not incorporate the wager concept into his presentation of the 
axioms, but he does indicate that it offers a clearer way to make the concept of prob-
ability understandable. In fact, he defi nes the degree of probability as follows:

  Let us assume that a person must evaluate the price  p  for which he would consent to 
exchange the possession of any given sum S (positive or negative), contingent upon the 
occurrence of a given event,  E , for the possession of the sum  p S; we shall say by defi ni-
tion that this number  p  is the measure of the degree of probability attributed by the person 
in question to the event  E , or, more simply, that  p  is the probability of E (depending on 
the person considered; this specifi cation may actually be implied if there is no ambiguity). 
(de Finetti  1937  )   

   20   Actually, de Finetti noted this event     E

E

′

′′
  , but we shall use standard probability notations here.  
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This defi nition—under the assumption that the person is coherent—leads to a 
psychological approach to the concept of probability, already recommended by 
Ramsey  (  1931  )  but criticized by many authors (Jaynes  2003  ) , as we shall see at the 
end of this chapter. 

 In the next section, when discussing statistical inference from a subjectivist 
standpoint, we shall look at another important concept introduced by de Finetti, 
exchangeability, which allows a clearer approach to inference. 

 De Finetti’s axiomatization raises a number of problems, however. Let us exam-
ine a few of them. 

 The fi rst problem was raised by de Finetti himself  (  1951  ) . He failed to prove that 
there always exists a measure of probability that satisfi es the following relationship 
for two events  A  and  B :

    ( ) ( )p A p B≥   if and only if     A B�   .

In other words, if  A  is at least as probable as  B,  the weak-order relation between 
the events holds true. For an infi nite set, de Finetti’s axioms are not strong enough 
to ensure the existence of such a measure (Suppes and Zanotti  1975  ) . For fi nite sets, 
Kraft et al.  (  1959  )  have shown that the relation may not be satisfi ed either. To this 
end, the authors built an example with fi ve subsets that complies with the axioms; 
the addition of its probabilities yields an unacceptable result (0 > 0). Scott  (  1964  )  
found that it was necessary, in this case, to impose an additional algebraic condition 
in order to fulfi ll the relationship. The condition concerns the characteristic func-
tion, which assigns a value of unity to elements of the set and zero to elements 
outside it. In such circumstances, however, we cannot formulate the condition using 
de Finetti’s set-theory language (Suppes and Zanotti  1975  ) , so the condition poses 
a tricky problem for the axiomatization procedure. 

 The second problem is due to de Finetti’s belief that everyone must always have an 
opinion on events of whatever sort. Before presenting his axioms, he clearly stated:

  Let us consider a well-determined event, and let us suppose that we do not know in advance 
whether it will happen or not; our doubt as to its occurrence is open to comparison, and, 
consequently, to a gradation (de Finetti  1937  ) .   

 In principle, it is diffi cult to assert this for all future events. If I am asked for my 
opinion on whether it will rain 10 years from now in my present location, I can 
express no opinion on the subject, and I shall not be able to compare this fact to the 
fact that the same event will occur in 20 years’ time. It therefore seems beyond the 
possibilities of probability theory to assign a probability to any imaginable event. 
While we can take into account a far greater number of events than in objective 
probability theory, we cannot take them all into consideration. 

 We have also seen that de Finetti made extensive use of the coherence paradigm to 
establish his axioms but that he made virtually no use of the utility paradigm. Despite 
devoting considerable attention to it throughout his work (Muliere and Parmigiani 
 1993  ) , he believed that the notions of probability and utility should be treated sepa-
rately. For him, the notion of probability, cleansed of utility-related  factors, belongs to 
a higher logical level than utility, and the development of probability calculus requires 
considerable elaboration unrelated to utility (de Finetti  1952  ) . 



60 2 The Epistemic Approach: Subjectivist Interpretation

 Other authors (ex. Ramsey  1931 ; von Neumann and Morgenstern 1947; Savage 
 1954  )  believed, on the contrary, that utility was an integral part of the axiomatiza-
tion of probability as decision-making theory. Here, we offer a more detailed 
 presentation of Savage’s axiomatization. 

 Savage set out to establish a theory of the behavior of a rational ‘person’ needing 
to take a decision. The ‘person’ could be defi ned as a unit differing from an ‘indi-
vidual’ in the ordinary sense—for example, it could consist of a family, a company 
or a nation. Savage proceeds by examining a set  S  of elements  s ,  s’ , …, viewed as a 
complete description of the world, with subsets  A ,  B ,  C , … constituting the various 
possible states of nature. The consequences of acts form another set  F  of elements 
 f ,  g ,  h , …. The acts producing these consequences are arbitrary functions from  S  to 
 F ,  f ,  g ,  h  …: we thus link the consequence     ( )f s   to the state  s . The ‘is not preferred 
to’ relationship between acts is noted     ≺   , implying that the ‘is preferred to’ relation-
ship is written     �   . Savage offers seven axioms for subjective probability:

     1.     The relation     ≺   is a simple ordering.  
   2.     For every  f ,  g,  and  B ,     ≺f g   given  B  or     ≺g f   given  B.   
   3.     If     ≺f g   for every , and  B  is not null; then     ′≺f f   given  B , if and only if     ′≺g g   .  
   4.     For every  A ,  B ,     ≺A B   or     ≺A B   .  
   5.     There is at last one pair of consequences  f ,     ′f   such that     ′ ≺f f   .  
   6.     Suppose it is false that     ≺g h   ; then, for every  f,  there is a (fi nite) partition of  S  such that, 

if     ′g   agrees with  g  and     ′h   agrees with h except on an arbitrary element of the  partition, 
    ′g   and     ′g   being equal to f there, then it will be false that     ′ ≺g h   or     ′≺g h   .  

   7.     If     ≺ ( )f g s   given  B  (    ≺( )g s f   given  B ) for every     ∈s B   , then     ∈s B   given  B  (    ≺g f   
given  B ).       

 In non-mathematical terms, the situation that Savage envisages is that of a 
 ‘person’ who must take a decision, i.e., choose between different, mutually exclu-
sive acts. Consequently, if the decision satisfi es the axioms, it will generate a sub-
jective-probability distribution and a utility function that will maximize its mean 
utility. The consequences of the person’s decision will depend on the chosen act and 
the state of nature that will occur, whose occurrence is unrelated to the decision 
taken. The ‘person’ is supposed to know all possible acts, all possible states of 
nature, and the consequences of each act for each state of nature. The person’s 
uncertainty stems from his or her ignorance of which state of nature will occur. 

 In these conditions, we can state the axioms in less abstract terms to show their 
implications more clearly. The fi rst axiom indicates that the notion of preference 
between decisions must be transitive and that, given two decisions, one is at least as 
preferable as the other. This is to ensure coherence in decision-making. Savage 
considered replacing the simple-order relation by a partial-order relation in order to 
take feelings of indecision into account. However, he eventually rejected this solu-
tion, as it would have narrowed the scope of his axiomatics excessively. The second 
axiom extends the notion to the case where the fi eld of defi nition of the decisions is 
restricted to any subset of states of nature  B . We can say that if the person prefers 
act  f  to act  g  for each state of nature examined, (s)he will continue to prefer  f  to  g  
when (s)he does not know which state will occur (this is the independence axiom, 
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which expresses Savage’s ‘ sure-thing principle’ ). These fi rst three axioms defi ne 
the general conditions in which, according to Savage, decisions are taken. 

 The last four axioms spell out what he means by personal probability, which, of 
course, may vary from one person to another, as in de Finetti’s system. The fourth 
axiom states that, given any two events  A  and  B , one is at least as probable as the other. 
The fi fth axiom excludes the trivial case where all consequences have equivalent utili-
ties. The sixth axiom basically indicates that if event  A  is less probable than  B , there 
exists a partition of  S — the set of elements considered—such that the union of each 
of its elements with  A  is less probable than  B . The seventh and fi nal axiom extends the 
sure-thing principle to the case where an act may have an infi nite number of conse-
quences. Once we admit these axioms, we can replace the notion of qualitative subjec-
tive probability by the notion of quantitative probability, i.e., a measure of probability 
that displays its conventional properties given by the Kolmogorov’s axioms. 

 To some extent, these axioms incorporate the notion of coherence introduced by 
de Finetti, adding the notion of utility, which arithmetizes the preference relation-
ship between acts. Indeed, Savage recognizes that Daniel Bernoulli’s general con-
cept of utility  (  1738  )  matches the one he uses in his book  (  1954  ) . An individual 
who complies with his axioms will maximize the utility, i.e., the subjective value, 
of the stakes. 

 Savage draws various consequences from his axioms. The fi rst is that there exists 
a numerical probability that is associated with the states of nature and complies with 
the main rules of probability calculus, including the Bayesian rule. The second is 
that we can associate a numerical value with each consequence representing its util-
ity for the person, which the person will seek to maximize. Lastly, the order of 
preference for the acts is that of their mathematical expectations, calculated from 
the probabilities and utilities defi ned earlier. 

 While promptly criticized, this axiomatization was used extensively, in particular 
by economists. 

 Savage had already presented his axiomatization of subjective probability at an 
international conference on risk in May 1952. Allais, 21  who was in attendance, had 
criticized what he called the postulates and axioms of the American school repre-
sented by Friedman, Marshack, Neumann-Morgenstern, Savage, and others. Allais 
gave a fuller version his criticism in an article in  Economica   (  1953  ) . We shall dis-
cuss only some of his criticisms here in order to illustrate the weaknesses of Savage’s 
axiomatization. 

 Allais elaborated on various paradoxes that transgressed Savage’s axioms. Let us 
examine one of them. Suppose we ask someone two questions:

     1.        Do you prefer situation A to situation B?  

  Situation A: Certainty of receiving 100 million.  

        
⎧
⎪
⎨
⎪⎩

10 100 500 .

89 100 100 .

1 100 .

chances in of winning millions

chances in of winniSituation ng millions

chance in of win

B

ning nothing

    

   21   Allais won the Nobel Prize for Economics in 1988 for his contributions to market theory.  
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   2.     Do you prefer situation C to situation D?  

       ⎧
⎨
⎩

11 100 100 .

89 100 .

chances in of winning millions

chances of of winning nothi
Situation 

ng
C    

        ⎧
⎨
⎩

.

.

chances in of winning millions

chance
Situation

s in of winning nothing
 D

10 100 500

90 100

         

 Experience shows that most people will answer  A  to the fi rst question and  D  to 
the second. Now according to Savage’s axioms, people should seek to maximize 
the mathematical expectation of their gains. The gain is 100 million in situation  A  
versus 139 million in situation  B , which should lead to choice  B ; the gain is 11 
million in situation  C  versus 50 million in situation  D , so the choice here should be 
 D . These results contradict Savage’s axiom 2—more simply, the sure-thing prin-
ciple, which states that all preferences should be independent of the outcomes of 
all possible options. 

 Many other examples have been described in which Savage’s axioms are vio-
lated by observed human behavior (Kahneman and Tversky  1979 ; Grether and Plott 
 1979 ; Loomes and Sugden  1982  ) . These examples challenge the very foundations 
of his axiomatization and, in some cases, the authors propose far more complex 
alternative theories. We shall not examine them here, for they provide only a partial 
solution to Allais’s paradox (Weber  1998  ) . 

 Allais’s criticisms mostly concerned axioms 2 and 7, which formalize the inde-
pendence principle. Suppes  (  1956,   1960,   1974  )  began by focusing on two classes of 
axioms. The fi rst comprises the axioms that we may assume to be valid everywhere 
and at all times: he calls them  pure-rationality axioms . In Savage’s system, they 
consist of axioms 1–4 and axiom 7, i.e., those singled out for criticism by Allais. 
Suppes argues that these axioms seem to be ones with which a rational person would 
comply. The second class contains the axioms that postulate certain structural prop-
erties of the environment. Suppes calls them  structural axioms . They consist of 
axioms 5 and 6, which Suppes proceeds to criticize. 

 Savage defended axiom 6 in particular, on the following grounds:

  Suppose, for example, that you yourself consider  B      ≺    C , that is, that you would defi nitively 
rather stake a gain in your fortune on  C  than on  B.  Consider a partition of your own world 
into 2 n  events each of which corresponds to a particular sequence of  n  heads and tails, 
thrown by yourself, with a coin of your own choosing. It seems to me that you could easily 
choose such a coin and choose  n  suffi ciently large so that you could continue to prefer to 
stake your gain on  C , rather than on the union of  B  and any particular sequence of  n  heads 
and tails. (Savage  1954  )   

Suppes sees many objections to this argument. Specifi cally, he notes that:

  without radical changes in human thinking, it is simply not natural on the part of human 
beings to think of fi nite sequences of fl ips of a coin in evaluating likelihoods or probabili-
ties, qualitative or quantitative, of signifi cant events with which they are concerned. 
(Suppes  1974  )   

Savage’s introduction of this idea is equivalent to a  deus ex machina  and under-
mines one of the main goals of his axiomatization: to extend the theory of rational 
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behavior to fi elds of action where it is not natural to think in terms of random 
 mechanisms. Suppes also criticized the use of acts that always produce the same 
consequences, whatever the state of nature, which Savage introduces to show that 
his axioms entail a maximization of the utility’s expectation. 

 To test the axioms’ validity in subjective probability, the work of psychologists 
(Preston and Baratta  1948 ; Kahneman and Tversky  1972 ; Tversky  1974  )  may be 
useful, as Luce or Suppes showed (Luce and Suppes  1965 ; Suppes  1974  ) . As noted 
in Chap.   1    , the axioms are not self-evident truths requiring no demonstration. Rather, 
they must be deduced from relationships that can be produced experimentally. For 
example, many trials show that, for events whose objective probabilities can be 
predicted (various types of games), subjects routinely overestimated low probabili-
ties and underestimated high ones. There is also a major diffi culty involved in using 
these subjective results, for most people modify their behavior in the face of risk 
when the sums wagered change. These criticisms partly converge with the objec-
tions by Allais. 

 One of Suppes’s criticisms concerned the accuracy of the measures of proba-
bility used:

  to insist that we assign sharp probability values to all our beliefs is a mistake and a kind of 
Bayesian intellectual imperialism. (Suppes  1976  )   

In real life, the use of subjective probability is indeed an imprecise notion. 
 Shafer’s article  (  1986  )  and comments provide a fuller view of the criticisms lev-

eled at Savage, of which we have described the main ones here. Moreover many 
variations on these axioms have been developed since in order to answer some of 
these criticisms (Suppes  1956 ; Luce and Krantz  1971 ; Stigum  1972 ; Roberts  1974 ; 
Fishburn  1975 ; Narens  1976 ; Bernardo and Smith  1994  ) . However, the main issue 
remains unchanged: to give the conditions which will permit a more precise defi ni-
tion of subjective probabilities checking with Kolmogorov axioms. 

 Simultaneously, this body of criticisms of Savage’s axioms led Suppes  (  1974  )  to 
propose replacing the notion of a single probability for an event by that of upper and 
lower probabilities, already suggested by Cyril Smith  (  1961  ) , Good  (  1962  ) , and 
Dempster  (  1967,   1968  ) . 

 This new axiomatization extends de Finetti’s qualitative axioms and leads to an 
approximate measure of beliefs, which, however, is close to that of Savage. Let us 
take a closer look at the new proposal. 

 The basic idea is that there must be events whose probability can be estimated 
accurately and others whose probability is more approximate. A structure 
    ( ), , ,SWΩ = ℑ �   is a rough measure of beliefs if and only if     Ω   is a non-empty set, 
    ℑ   and     S   are algebras of subsets of     Ω   , and     �   is a binary relationship on     ℑ   . 
Intuitively,     ℑ   comprises all the events to which probabilities will be assigned, and 
    S   contains the standard events whose precise probability is known. 

 The fi rst four axioms are identical to de Finetti’s. Suppes  (  1974  )  adds three 
others:

     5.     S  is a fi nite subset of     ℑ   ;  
   6.    If     S ≠   Ø then     S �   Ø;  
   7.       If     S T then there is a V in S such that S T V≈ ∪�         
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The fi fth axiom simply states that standard events belong to the set of events 
whose probability we want to determine. The sixth ensures that any minimal  element 
of  S  has a positive qualitative probability. The seventh lays down a simple solvabi-
lity condition for standard events. 

 Suppes shows that in addition to a single measure of probability for standard 
events, we can use upper and lower probabilities to express the inaccuracy of the 
measure of arbitrary events. If     * ( )p A   is the lower probability and     * ( )p A   the upper 
probability of any event, both probabilities exhibit the following three properties:

   I.        • ( ) 0.p A ≥     

   II.        •
• ( ) ( ) 1p pW W= =   .  

   III.    If     A B∩ =   Ø then:

     
• • • •

• • • •( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p A p B p A B p A p B p A B p A p B+ ≤ ∪ ≤ + ≤ ∪ ≤ +
   

    For standard events, naturally, we have     *
*( ) ( ) ( ).p S p S p S= =   These lower and 

upper probabilities display several properties, including:

     

*
*

1
( ) ( )p A p A

n
− ≤

   

where  n  is the number of minimal elements in  S . Moreover, if we defi ne the relation-
ship     �*   for     ℑ    by:     �*A B   if and only if there exists a set  C  in  S  such that 
    � � ,A C B   we can then show that     �*   defi nes a semi-order 22  for     ℑ   , and that:

   if  •    �*A B   , then     ≥ *
*( ) ( ),p A p B     

  if  •    ≥ *
*( ) ( ),p A p B   then     � .A B      

Suppes demonstrates these relationships  (  1974  ) . 
 This axiomatization provides a measure that allows us to introduce a series of 

standard events whose probability is measured accurately. In turn, that probability 
will serve as an approximate measure for other events of interest. 

 But Shafer  (  1976  )  goes one step further by offering a reinterpretation of 
Dempster’s work in a new theory, whose antecedents we can fi nd in Hooper’s cred-
ibility calculus  (  1699  )  and J. Bernoulli’s combination rules  (  1713  ) . The new theory 
is a generalization of subjective-probability theory:

  a reinterpretation that identifi es his ‘lower probabilities’ as epistemic probabilities or 
degrees of belief, takes the rule for combining such degrees of belief as fundamental, and 
abandons the idea that they arise as lower bounds over classes of Bayesian probabilities.  

This theory is often called the Dempster-Shafer theory. Let us see on what  axioms 
it is based. 

   22   The notion of semi-order rests on the idea that one alternative is preferable to another only if the 
utility of the fi rst alternative exceeds the utility of the second by a certain constant threshold.  
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 Let  Q  be a reference framework for a specifi c issue, which is a counterpart to the 
sample space. We postulate the existence of a numerical measure of the degree of 
belief     ( )Bel H   obtained from the information available on hypothesis     ⊆ ΘH   . We 
lay down the following conditions, as axioms for the function  Cr  defi ned for a set:

     1.     Bel  (Ø) = 0  
   2.    Bel ( Q ) = 1  

   3.         ( ) 1( ) 1 ( )I

i
i I

Bel H Bel H+

∈

⎧ ⎫≥ −⎨ ⎬
⎩ ⎭

∑ ∩   with     { }1, ...,I n⊆   for any     1n ≥   and any  set  H ,     iH   

being located in  Q  with     iH H⊇   .      

 Bel  is called a belief function. From these axioms, we can construct the function 
 Pl , called the plausibility of  H :     = −( ) 1 ( )Pl H Bel H   , where     H   is the complementary 
set to  H . We show that, unlike probability, the belief function is sub-additive, i.e.,:

     ( ) ( ) 1,Bel H Bel H+ ≤    

and plausibility is super-additive, i.e.,:     ( ) ( ) 1Pl H Pl H+ ≥   . 
 However, this axiomatization still relies on the notion of events not located in 

time. To remedy this problem, Shafer  (  2001  )  proposes a fuller theory that incorpo-
rates an event tree for events occurring over time. By introducing time, he general-
izes Boolean algebra and sets up an event space where events can happen one after 
another. Shafer axiomatizes these event spaces (Shafer et al.  2000  ) , which leads him 
to view subjective probability from a new angle. We shall not elaborate on this axi-
omatization, however, as it lies too far outside the scope of our book: it is no more 
related to classical logic, considered here, but to intuitionistic logic. 

 Belief theory has also been criticized for imposing an  ad hoc  combination rule—
Dempster’s orthogonal rule—without theoretical justifi cation. And, while Shafer 
does note that Dempster’s results can be used both for subjective probability and for 
belief functions, he does not clearly spell out the reasons. 

 In our opinion, the most general and most satisfactory axiomatics has been pro-
vided by Smets  (  1988,   1990  ) , who distinguishes between two levels that were not 
separated in the subjective approach. 

 The fi rst level is that of beliefs ( credal level ), a psychological level where beliefs 
are formed outside of any decision-making context. This concept of belief differs 
from the concept of subjective probability. Smets  (  1988  )  quantifi es it by means of 
belief functions, defi ned without reference to the concept of probability. However, 
when we need to take a decision, the belief formed at the previous level induces a 
measure of subjective probability, which now lies at the decision level ( pignistic 
level , from the Latin  pignus , ‘wager’). This measure of probability will serve to take 
decisions using subjective-probability theory. 

 As noted above, we shall not discuss in detail the axiomatization of belief func-
tions, credibility, and the transition from the belief level to the decision level (and 
hence the probability level), as these issues would distract us from the subject of our 
book. We refer the interested reader to Smets’s many articles on the axiomatization 
(Smets  1988,   1990,   1997,   1998  ) . However, we offer a simplifi ed version to show its 
considerable value. 
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 We focus exclusively on Dempster’s combination rule,     ⊕   , given earlier in 
Sect.  2.1 , defi ned for a discernment space  D , whose existence—as shown previ-
ously—requires axiomatization (Smets  1990  ) :

     1.        ( )1 2 ( )Bel Bel A⊕   is a function only of  A ,     1Bel   , and     2.Bel     
   2.    The     ⊕   rule is commutative.  
   3.    The     ⊕   rule is associative.  
   4.    If     2 ( ) 1m B =   , then     1m   and     2m   must fulfi ll:

        ( )1 2 1( ) ( )

0 
X B

m m A m A X
A B

otherwise
⊂

⎫⊕ = ∪ ⎪ ∀ ⊂⎬
⎪= ⎭

∑     

   5.    The distribution must display internal symmetry (invariance through permutation).  
   6.    For,     A D≠   ,     1 2( ) ( )m m A⊕   does not depend on     1( )m X   for all     X A⊂   .  
   7.     D  contains at least 3 elements.  
   8.    The distribution must satisfy a continuity hypothesis:
       

( ) ( )
2 2

1 2 10

( ) 1 , ( ) , ( ) 1

, lim ( ) ( ) 
A

A

if m A m D m A then

X m m X m m X
e

e e

→

= − = =

∀ ⊕ = ⊕

   

      1m   being a basic mass function. 23       

These axioms being satisfi ed, we can show that they imply the uniqueness of 
Dempster’s combination rule (Smets  1990  ) . Further axioms—not described in detail 
here—are needed to defi ne more fully the belief functions and their transformation 
into probabilities for decision-making. These axioms use the three notions of the 
paradigm stated earlier: coherence, utility, and belief. 

 We have thus moved from an axiomatization of subjective probability to a 
more general axiomatization of belief functions, defi ned on incomplete data, 
which constitute a generalization of probability. We have simply noted the main 
stages here. For fuller details, we refer the interested reader to Fishburn’s article 
 (  1986  )  on  subjective-probability axioms, Shafer’s book  (  1976  )  on the mathemati-
cal theory of evidence, the chapter of Suppes’s book  (  2002a  )  on representations of 

   23   Smets  (  1990  )  formulated these axioms slightly differently, calling the belief function  bel :

    1.     compositionality  axiom:     12 ( )bel A   is a function of  A ,     1 2bel and bel   only.  
    2.     symmetry:      1 2 2 1bel bel bel bel⊕ = ⊕   .  
    3.     associativity :     ( )⊕ ⊕ = ⊕ ⊕1 2 3 1 2 3( )bel bel bel bel bel bel   .  
    4.     conditioning : if     2bel   is such that     2 ( ) 1m B =   , then  

             

12 1( ) ( )

0
C B

m A m A C for all A B

otherwise
→

= ∪ →

=

∑
     

    5.     internal symmetry  :  the mass given by     12m   to     A W∈   is independent of the masses given 
by     1m   (and     2m   to propositions     B A→   .  

    6.     auto functionality :     12, 1 , ( )A A m AΩ∀ ∈Ω ≠   does not depend on     1( )m X   for all     X A→   .  
    7.     three elements : there are at least three elementary propositions in     D  .  
    8.     continuity : let     ( )2 2( ) 1 , 1m A m Ω= − ε = ε   . Let     ( ) 1Am A =   . For any     1bel   defi ned on  W , 

let     1 1A Abel bel bel= ⊕   then for all     X ∈Ω   ,     12 10
lim ( ) ( )Am X m X
ε→

=   .      
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probability, and the articles by Smets, cited above, on the axiomatization of the 
 transferable-belief model. 

 However, unlike objective probability, most of whose advocates have recognized 
Kolmogorov’s axioms, the axiomatization of subjective probability has been more 
controversial and has often been fl eshed out. It has not generated as solid a consen-
sus, and some criticisms, such as those of Allais, remain relevant.   

    2.3   Subjectivist Statistical Inference 

 Recall that statistical inference may be viewed as a process for moving from data on 
a set of units to assertions about a new unit (Johnson  1932 ; Lindley and Novick 
 1981  ) . In Sect.   1.3    , we saw how hard it was to draw a correct inference in an objec-
tivist framework and that, in fact, we could only respond to questions other than the 
simple problem posed above. In this section, we shall see that, when we take the 
subjective approach, the simple problem receives an answer that is naturally subjec-
tive but perfectly clear in its logic. The notion of exchangeable events introduced by 
de Finetti  (  1937  )  makes it easier to provide an answer. 

 Let us begin with the simple case of a game of heads or tails, using a coin of 
irregular appearance. The probability of obtaining heads on the ( n  + 1)th toss, 
    +1( )np E   , depends on the result  A  of the  n  previous tosses. As a rule, we shall need 
to assume that these probabilities depend on the order in which we obtained the 
result, whether we assume the infl uence of one toss on the next, or the existence of 
external conditions that vary with each toss. But, when we can assume that the 
probability does not depend on the order of trials, the results will be substantially 
simplifi ed: the  n  trials will be said to be exchangeable if the joint probability dis-
tribution     1( , ... , )np E E   is invariant for all permutations of the  n  units. In this case, 
an additional unit     +1nE   will be exchangeable for  E  if all ( n  + 1) units are exchange-
able as well. 

 Let     ω n
r   be the probability that in  n  tosses we shall obtain, in random order,  r  

heads and ( n  −  r ) tails:     ω n
r   will be the sum of probabilities of the     r

nC   distinct ways in 
which we can achieve this result. If the trials are exchangeable, then the probability 
that  r  outcomes will be positive and ( n  –  r ) negative, in whatever order, will always 
be equal to:

     

1
1

1 1
1

( ) and ( )
n n
r r

nr r
n n

p A P A E
C C

+
+

+ +
+

ω ω
= ∩ =

   

where     r
nC   is the number of combinations of  r  elements among  n . This yields the 

following inference for the ( n  + 1)th toss:
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1
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1

( 1)
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=
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which will be a function of  r  and  n  only. We can therefore state that:

  whatever the infl uence of the observation on the future prediction, it in no way requires us 
to  correct  the initial assessment of the probability  p  that was  invalidated  by the trial, by 
replacing it with another probability     *

1( )np E +   that is  consistent  with the trial and therefore 
probably  closer to the actual probability ; on the contrary, it is manifest only in the sense 
that, when the experiment gives us the result A of the fi rst  n  trials, our opinion will 
be expressed not by the probability     1( )np E +   , but by the probability     ( )1np E A+   , namely, 
the one that our initial opinion already assigned to the event     1nE +   regarded as dependent 
upon the contingency  A . This initial opinion, therefore, is in no way repudiated or corrected: 
it is not the function  p  that has been altered (replaced by another,     *p   ), but indeed the argu-
ment     1nE +   that has been replaced by     1nE A+   , and it is precisely to abide by the initial 
opinion (as manifested in the choice of function  p ) and to remain consistent in our judgment 
that our predictions vary when a change occurs in known circumstances. (de Finetti  1937  )   

Thus, by adopting the subjective approach, we can fi nd a perfectly logical solu-
tion to the inference problem. We evaluate the probability of each event in the series 
that has not yet occurred as being nearly identical to the frequency of earlier positive 
outcomes. Likewise, if we apply the insuffi cient-reason principle, we obtain:

     

0 1 1
... .

1
n

n n n n
ω = ω = = ω =

+    

Hence, in this case:

     
( )1

1 1 1
.

1 2 2n

r n r
p E A

n n n+
+ + +

= × =
+ + +    

This is a restatement of Laplace’s succession rule, fi ercely attacked by the 
objectivists. 

 We have taken the simple case of a heads-or-tails game, but we can generalize 
these results to the case of variables characterized not by a number (probability), as 
in our example, but by a function (distribution function, probability density, charac-
teristic function, and so on). While theoretically self-evident, this general result is 
far from easy to demonstrate. De Finetti provided a rigorous presentation of it, 
which he summarized as follows:

  The laws of probability of a class of equivalent [ i.e., exchangeable ] random elements are the 
‘averages’ of the laws of probability applying to cases of independence. (de Finetti  1937  )   

Similarly, we can defi ne conditional exchangeability for two variables  X  and  Y  
that are unknown to the researcher. In this case, a number of units  n  is said to be 
exchangeable for  X , knowing that  Y = y , if the joint conditional distribution, 
    1( , ... , , )n ip X X Y y i= ∀   , is invariant for whatever permutation of the units. 

 The objectivist statistical inference could not answer the question ‘What is the 
probability that the unknown parameter lies in a given interval?’ As shown in Chap.   1    , 
it can only answer a far more complex question whose relevance was not self-
evident. Subjectivist statistical inference, with the notion of exchangeability, enables 
us to answer the question directly—under certain assumptions, of course, but these 
can be clearly stated. It is the researcher who, given his or her subject and the  available 
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information, can say whether the events studied are exchangeable,  conditionally 
exchangeable or non-exchangeable. Even in the latter instance, where events could 
be viewed as non-exchangeable, we may be led to modify the inferences in a very 
different way so as to take account of the circumstances in which they occur. 

 Let us take the case examined by de Finetti  (  1937  ) , where the fi rst  n  trials roughly 
yield a positive outcome and a negative outcome in alternation. Clearly:

  The most natural attitude will notably consist in predicting that the next toss will be more 
likely to produce a result that is contrary to the previous one.  

It will be the researcher’s task to draw the consequences of the non- exchangeability 
of earlier results in order to formulate in the most satisfactory manner the inference 
needed to predict the following outcome. 

 The comparison between the quotation from Fisher given in Sect.   1.3     and the 
concept of exchangeability led Lindley and Novick  (  1981  )  to note how the latter 
concept indeed enables us to properly defi ne the notions of population and sub-
population, which Fisher left vague for practical applications. De Finetti defi nes a 
population on the basis of the exchangeability of units, and a sub-population on the 
basis of the conditional exchangeability of its units. This same notion makes it pos-
sible to identify the specifi c population to which an individual about whom we want 
to formulate an inference belongs. In the applications of this approach, we shall 
examine a specifi c example of the role of exchangeability in statistical inference.  

    2.4   Applications to Social Science 

 Regression analysis—used in such diverse disciplines as medicine, biology, demog-
raphy, epidemiology, economic, and education science—may resort to Bayesian 
methods for estimating its models (Lee  1989 ; Gelman et al.  1995 ; Rouanet et al. 
 1998 ; Leonard and Hsu  1999 ; Gill  2008  ) . Likewise, event-history analysis devel-
oped Bayesian methods (Ibrahim et al.  2001  ) , although many frequentist approaches 
preceded it (Kalbfl eisch and Prentice  1980 ; David Cox and Oakes  1984 ; Courgeau 
and Lelièvre  1989 ; Andersen et al.  1993  ) . Multilevel analysis, as well, was to draw 
on Bayesian methods (Goldstein  2003  ) . We shall not discuss all these analytical 
methods here. Instead, we shall describe one application to multilevel analysis—in 
particular, the subjectivist statistical inference that the methods allow with the aid of 
the concept of exchangeability. We have chosen our examples from the fi eld of edu-
cation science (Rouanet et al.  2002 ; Courgeau  2007b  )  and of testimonies, from 
Hooper  (  1699  )  to Dempster  (  1967  ) . 

 The starting point is a paradox examined in detail by Edward Simpson  (  1951  )  but 
previously addressed by Cohen and Nagel  (  1934  )  and Chung  (  1942  ) . We describe it 
here using a simple example: a comparison of test results for students in a given 
town (Courgeau  2007b  ) , broken down by gender. Table  2.1  shows the total fi gures.  

 The pass rate in all of the town’s high schools combined is 34.25% for girls 
versus 45.75% for boys, a gap of over 10 percentage points. 
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 However, as the town has ten high schools, we can also tabulate the number of 
boys and girls who pass or fail the exam at each high school (Table  2.2 ).  

 This time, the result is—on the face of it—surprising: the pass rate for girls is 
consistently fi ve points higher than the boys’ rate in every school. In the second 
school, for example, the pass rate is 25% for girls versus 20% for boys. Simpson’s 
paradox stems from the comparison of the two results. In this case, the high school 
is referred to as a ‘confusion factor’ when we are studying the effect of gender on 
success in an exam. To resolve the apparent contradiction between these results, we 
therefore need to analyze the data more fully. 

 An initial solution is to perform separate logit analyses for each school,  i , with 
gender as the only predictive variable:

     
( ){ }1

0 1( 1 ) 1 expi i ip R S a a S
−

⎡ ⎤= = + − +⎣ ⎦     

 In this case certain schools may have a very small student population and the 
standard deviation of the parameters     0ia   and     1ia   may be very large, making the 
results impossible to interpret. 

 For a more general result, valid for a larger high-school population (all French 
high schools, for example), we can suppose that the chosen schools will provide 
more general information on all French high schools. Just as we draw samples of 
individuals to deduce estimates for the entire population, so we can draw a sample 
of high schools to deduce information on all high schools. We can use either the 
objectivist approach to probability or the subjectivist approach. 

   Table 2.1    Total results in the 
town’s high schools   

 Passes  Fails  Total 

 Boys  915  1,085  2,000 
 Girls  685  1,315  2,000 

   Table 2.2    Results for each high school   

 High 
school 

 Boys  Girls 

 Total  Passes  Fails  Total  Passes  Fails  Total 

 1  3  17  20  76  304  380  400 
 2  12  48  60  85  255  340  400 
 3  25  75  100  90  210  300  400 
 4  42  98  140  91  169  260  400 
 5  63  117  180  88  132  220  400 
 6  88  132  220  81  99  180  400 
 7  117  143  260  70  70  140  400 
 8  150  150  300  55  45  100  400 
 9  187  153  340  36  24  60  400 
 10  228  152  380  13  7  20  400 

 Total  915  1,085  2,000  685  1,315  2,000  4,000 
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 In the fi rst case, we may regard the parameters      0ia   and     1ia   as random variables 
that we can write as:

     0 0 0 1 1 1andi i i ia u a u= α + = α +    

where     0iu   and     1iu   are zero-average random variables with the following 
variances:  

    
2 2

0 0 1 1 0 1 01var( ) var( ) and ( ) .,i u i u i i uu u cov u u= σ = σ = σ    

 This gives us a multilevel logit model:

     
( ){ }1

0 0 1 1( 1 ) 1 exp .i ip R S u u S
−

⎡ ⎤= = + − α + + α +⎣ ⎦     

 We know how to estimate the model’s parameters and variance-covariance 
matrix, as well as the     0iu   and     1iu   values for each school (Goldstein  2003  ) . 

 In the second case, we can estimate Bayesian models using MCMC (Markov 
Chain Monte Carlo) and Bootstrap methods, with Mlwin software (Goldstein  2003 ; 
Browne  1998  ) . The MCMC method derives its name from the following notion: to 
produce acceptable approximations of integrals and other functions that depend on 
a distribution of interest, it is suffi cient to generate a Markov chain whose limit 
distribution is the distribution of interest (Robert  2006  ) . The Bootstrap method 
consists in building a series of samples similar to the observed sample and to use 
the series to estimate the distribution’s parameters of interest. We have assumed 
here that a binomial model was well suited, as we can show in a non-Bayesian 
example. The assumption is easily confi rmed here in the Bayesian example. We 
shall use the Bootstrap option only (for the results with the MCMC option, see 
Courgeau  2007b  ) . 

 For the Bootstrap option, we have chosen to perform 500 draws in 10 sets: a test 
on 100 draws in 5 sets gave us bimodal estimates for the core density of certain 
parameters. We have used the parametric option, taking the least-squares estimators 
as our starting point. The non-parametric option yields unstable results, as the 
parameter values increase with the number of iterations: we have not reported the 
fi gures here. 

 Table  2.3  lists the resulting estimates of objectivist and subjectivist probabilities, 
with gender among the fi xed parameters and high school among the random 
parameters.  

 In all models, we see that boys have a lower pass rate than girls, regardless of 
high school (36.87% versus 41.42%). By contrast, we fi nd a signifi cant random 
value at high-school level. It is similar for the objectivist model and for the Bootstrap 
estimate, and shows different results for each school. The girls’ pass rate exceeds 
the boys’ pass rate by approximately 5% in each school. 

 If we now include the percentage of boys, and estimate only a Bootstrap model 
with the non-Bayesian model, we obtain the results listed in Table  2.4 .  

 As we can see, the two models yield nearly identical estimators, the random 
parameter at school level does not differ signifi cantly from zero. Gender and the 
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percentage of boys in the school accurately explain the exam results, without the 
inclusion of the random parameter at school level. In this instance, where the popu-
lations observed are large, the objectivist and subjectivist results are thus virtually 
identical. As noted earlier, subjectivist inference will give clear results—with the 
aid of the notion of exchangeability—when we want to draw inferences on a new 
student’s performance. 

 Before that, let us take a more detailed look at the results of the model including 
gender and school compared with the results of the model including gender and the 
percentage of boys in the school. 

 In the fi rst, pure multilevel model, the underlying hypothesis is that pass rates are 
determined by the school and its teaching staff, for it includes no contextual variable 
enabling us to take account of students’ specifi c characteristics. The random param-
eter at school level is large and substantiates the preceding argument. 

 The second, contextual multilevel model comprises a contextual variable specifi c 
to each school: the percentage of male students. Here, the percentage plays an 
essential role, single-handedly enabling us to distinguish between schools. By con-
trast, the random parameter for the school falls to zero. This shows that the differ-
ences are totally explained by the gender proportions and not by the teaching staff, 
as the previous analysis appeared to indicate. 

   Table 2.3    Results of objectivist and subjectivist multilevel models, without  inclusion of percent-
age of boys (parameters and variances in parentheses)   

 Parameters  Objectivist method  Bootstrap (parametric) 

  Fixed : 
 Intercept (    0α   )  −0.538 (0.203)  −0.512 (0.191) 
 Gender (    1α   )  0.191 (0.081)  0.197 (0.081) 

  Random:  
     

0

2
us     0.384 (1.177)  0.439 (0.184) 

     
0

2
es      1     1  

   Table 2.4    Results of objectivist and subjectivist multilevel models, with inclusion of percentage 
of boys (parameters and variances in parentheses)   

 Parameters 

 Estimators (standard error) 

 Objectivist method  Bootstrap (parametric) 

  Fixed:  
 Intercept  −1.641 (0.110)  −1.642 (0.108) 
 Gender ( a  

1
 )  0.221 (0.082)  0.223 (0.081) 

 Percentage of boys ( a  
2
 )  2.186 (0.147)  2.187 (0.145) 

  Random:  
     

0

2
us      0   0 

 
    0

2
es

   
  1   1 
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 The model is, of course, somewhat artifi cial and yields this extreme result. 
In actual cases, the solution is less categorical, but it does lead to similar situations. 
One example concerns migration by Norwegian farmers compared with other occu-
pations, which I examined in detail in an article (Courgeau  2002  )  and in a more 
general volume (Courgeau  2004b,   2007a  ) . An initial, pure multilevel model enables 
us to distinguish migration behavior by region of origin, without bringing into play 
the percentage of farmers inhabiting each region; a second, contextual multilevel 
model allows us to qualify this result by showing the effect of the percentage. The 
effect sharply reduces the regional random parameter, without, however, offsetting 
it completely, as in the example analyzed here. 

 Let us now try to make predictions from these results. The notion of exchange-
ability will be essential for our purpose. 

 If we pick a new individual, can we predict his or her success with the aid of the 
parameters     0 1 2 0, , , iua a a   , estimated from the population initially observed? This 
prediction will be a subjective probability one. Let us examine various cases, for we 
have seen that the hypotheses will change signifi cantly depending on whether we 
perform a pure multilevel analysis or a contextual multilevel analysis. 

 We begin with the results of a pure multilevel analysis. As noted earlier, in dif-
ferent terms, the exchangeability test will concern the student’s success in the exam, 
taking the school and gender as given, the effects of the two factors being indepen-
dent here. 

 First, let us observe a new student of a given gender, attending a known school. 
For instance, in the case of a new male student taking the same type of exam in 
school no. 7, we can assume that the set of male students of school no. 7 is exchange-
able as regards their chances of passing the exam, and that this new student is 
exchangeable with them as well. By factoring in the random parameter estimated 
for school no. 7, we can predict his success rate using the fi rst model, 24  writing:

     
( 1 0, 7) 0.448p R S L= = = =

   

or 44.8%. The result for a girl in the same school would be 49.6% using the same 
model. 

 If we do not know the student’s school, we can write:

     

( 1 0) ( 1 0, 1) ( 1 0) ...

( 1 0, 10) ( 10 0).

p R S p R S L p L S

p R S L p L S

= = = = = = = = +

+ = = = = =
   

We know the probabilities of success for boys in each school thanks to the per-
centages observed, but we do not know the gender-specifi c probabilities for each 
school. For the pure multilevel model, we can assume that all these probabilities are 

   24   We have taken the objectivist model here, as the population observed is large. However, as noted 
earlier, the results with the subjectivist model would be very similar.  
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identical and equal to one in ten, for the school effect seems independent of gender 
here. We thus obtain:     = = =( 1 0) 0.379p R S   . A similar reasoning applied to girls 
yields     = = =( 1 1) 0.421p R S   , in other words, a higher probability of success for a 
new girl than for a new boy. These results show that Table  2.1 , which we should use 
for an objectivist inference, is not recommended, as it yields an opposite result 
owing to the non-exchangeability of the observations. 

 Let us turn to the results obtained with a contextual multilevel analysis. The 
exchangeability test now concerns the student’s success and the school effect, mea-
sured by its percentage of boys, given the new student’s gender. 

 We return to the fi rst case in the previous analysis, i.e., a new male student taking 
the same kind of exam in school no. 7. Absent information on the percentage of 
boys taking the test, we can assume the percentage is unchanged from the previous 
example, and the second model gives us:

     
( 1 0, 7) 0.445p R S L= = = =

    

 For girls attending the same school, the fi gure is 0.500, a result very close to the 
one given by the fi rst model. 

 However, if the percentage of boys in the school has changed for this exam—a 
fact that could be known in advance—the second model will supply a different esti-
mate of the pass rate. For instance, if the percentage of boys falls from 65% to 55%, 
the expected pass rate will drop to 39.2%, for the relevant characteristic is now the 
percentage of boys in the school and not the school itself, whereas the fi rst model 
will still indicate 44.8%. In this case, the predictions generated by the two models 
may diverge sharply. 

 If we now disregard the school, we can continue to write the same formula as 
before. But the hypothesis posited for the fi rst model does not apply to the second, 
for we see that it is the percentage of boys in the school that introduces the differ-
ences in exam outcome. Absent new information on the percentages of boys taking 
this new exam, the most relevant percentages will be those observed in the previous 
test. This yield the following probabilities of success:

       = = =( 1 0) 0.4575p R S    for a new boy and

        = = =( 1 1) 0.3425p R S    for a new girl.   

In other words, this result corresponds to that of the combined schools and con-
tradicts the result supplied by the fi rst model. If we know the new percentages of 
boys in each school for the new test, we must apply them to determine a new boy’s 
probability of success. If the percentages of boys are equal to those of girls in all 
schools for the new test, then the result will be close to that obtained with the fi rst 
model. Indeed, using the results from Table  2.4 , we fi nd:

      = = =( 1 0) 0.377p R S    for boys as against 0.379 in the fi rst model, and 
    = = =( 1 1) 0.419p R S    for girls as against 0.421 in the fi rst model as well. On the 
other hand, each possible distribution will now yield a different result. 
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 This example shows how the use of the concept of exchangeability allows 
 statistical inference from the observation of a sample. However, the link between 
the initial sample and the new individual for whom we perform the inference must 
be formulated with great care if we want to obtain an accurate prediction. The link 
requires underlying hypotheses for the data, which we must combine with the data 
in order to set the precise conditions for exchangeability and arrive at the fi nal infer-
ence. For instance, with the fi rst pure multilevel model, we assumed that exchange-
ability concerned the result determined by school and gender, whereas in the second 
contextual multilevel model, exchangeability concerned the result and the school 
conditional only upon the student’s gender. The latter analysis was confi ned to two 
sub-populations: boys and girls. A student’s enrollment in a particular school is 
taken into account only through the percentage of boys in the school, not through 
the quality of the teaching staff. 

 Our other example of the application of subjective probability concerns the com-
bination of testimonies. It is relevant to such areas as jurisprudence, artifi cial intel-
ligence, and signal processing (particularly speech, images, and information). We 
assume that     =1 0.8p   and     =2 0.6p   are the degrees of confi dence attributed to two 
witnesses of a given event—the equivalent to the degree of belief in the Dempster-
Shafer theory. It is easy, of course, to generalize this example to any number of 
testimonies. 

 We begin with Hooper’s processing of testimonies  (  1699  ) , already described in 
theoretical terms at the start of this chapter. We need only generalize his formulas 
to the situation where degrees of confi dence vary from one witness to another. 
Thus, the degree of confi dence that he attributes to two testimonies when they are 
simultaneous (assuming that the two witnesses concur, but that each is assigned a 
different degree of confi dence) is:

     = + − =1 2 1(1 ) 0.92.p p p p     

 As we can see, this confi dence exceeds the degree assigned to the two testimo-
nies considered separately, and it tends toward unity when the number of testimo-
nies tends toward infi nity. This rule is effectively justifi ed if the two witnesses are 
not conniving with each other. If they are, the rule is less relevant. By contrast, when 
the two testimonies are given in succession, the degree of confi dence falls to:

     = =1 2 0.48.p p p    

In this case it is lower than the confi dence assigned to the two testimonies con-
sidered separately, and it tends toward zero when the number of testimonies tends 
toward infi nity. 

 Naturally, these rules are based on very simple hypotheses, which we need to 
make more specifi c in order to obtain robust results. 

 Jacob Bernoulli  (  1713  )  pursued this path and set more detailed conditions for 
what he designated more broadly as  arguments —which could consist of testimo-
nies, but also of signs or circumstances relating to the event studied. 
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 He examines two types of argument: (1) what he calls  pure arguments , which 
support a proposition in some cases and provide no support in others; (2) what he 
calls  mixed arguments , which prove a proposition in some cases and prove the con-
trary in others. He gives the example of two testimonies in a murder case. The fi rst 
comes from people who witnessed the crime at a distance and only saw that the 
perpetrator was wearing a black tunic. Now Gracchus and three other persons near 
the victim were wearing black tunics. This can therefore be viewed as a mixed argu-
ment against Gracchus. The second argument is that Gracchus was pale when being 
interrogated. This is a pure argument, for Gracchus may be pale for a reason other 
than the murder, yet he may be the perpetrator. 

 When two pure arguments are involved, Bernoulli shows that the confi dence we 
can assign to them is:

     = − − − =1 21 (1 )(1 ) 0.92.p p p    

This situation is indeed identical to Hooper’s two instantaneous witnesses. In the 
case of two mixed events, Bernoulli shows that the confi dence we can assign to 
them is:

     

1 2

1 2 1 2

0.857.
(1 )(1 )

p p
p

p p p p
= =

+ − −    

The confi dence value here is lower than in the previous example. When we have 
a pure argument and a mixed argument, if the pure argument proves the case, then 
the mixed argument does not come into play; when the pure argument proves noth-
ing, the mixed argument comes into play:

     = + − =1 1 2(1 ) 0.92.p p p p    

We are back to the situation with two pure arguments. 
 Lambert  (  1764  )  fl eshed out this reasoning by distinguishing between (1) cases 

where we believe the witness, (2) cases where we do not believe the witness, but can 
say nothing more, and (3) cases where we believe the opposite of what the witness 
states. We shall not discuss his arguments here (see detailed presentation in Bloch 
1996), but we shall give the results obtained in the example studied (Table  2.5 ).  

 We see that Lambert replicates Bernoulli’s formula when both arguments are 
pure or mixed, and the two witnesses agree. By contrast, Lambert’s formula seems 
more satisfactory than Bernoulli’s one when one argument is pure and the other 
mixed, and the formula is different when the fi rst or the second argument is pure. 

 Laplace  (  1812  )  introduces four probabilities instead of two:     1p   and     2p   , which he 
calls the witnesses’ veracity (the probability that they are not trying to deceive), and 
the probabilities     1r   and     2r   that the witnesses are not mistaken. When the witnesses 
are not mistaken and agree, Laplace fi nds the same probabilities as Bernoulli and 
Lambert in the mixed case; when the witnesses are mistaken and disagree, Laplace 
fi nds the same probability as Lambert, again in the mixed case. 
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 If Laplace simultaneously introduces the probabilities that the witnesses are not 
mistaken, he obtains more complex results. Consequently, when the witnesses 
agree, the confi dence that we can assign to their testimony becomes:

     

1 2 1 2 1 1 2 2 2 1

1 2 1 2 1 2 2 1 1 2 1 2

(1 ) (1 )
.

(1 ) (1 ) (1 )(1 )

p p r r p r r p r r
p

p p r r r r r r p p r r

+ − + −
=

+ − + − + − −    

We see that when     = =1 2 1r r   , i.e., when witnesses have observed the phenome-
non accurately, we reproduce the result obtained by Bernoulli and Lambert in the 
mixed case, i.e.,     = 0.857p   . By contrast, the results differ according to their chances 
of being wrong. Thus, when the two witnesses have one chance in two of being 
wrong,     = =1 2

1

2
r r   , we obtain:

     

+ +
= =

+ + − −
1 2 1 2

1 2 1 2

0.734.
2 (1 )(1 )

p p p p
p

p p p p    

This indeed reduces the probability that the phenomenon occurred. 
 Lastly, let us examine the results obtained by applying the Dempster-Shafer 

 theory— which introduces belief functions and plausibility—to the same example. 
 For the fi rst witness, by defi nition, the belief function is     1p   and his or her plausi-

bility is     + =1 2 1p p   . The weightings applied to this person satisfy the following 
equations:

     

= =
= = + ∪

1 1 1

1 1 1

( ) ( )

( ) 1 ( ) (

 

).

Bel A p m A

Pl A m A m A A
   

Hence:

     

1 1

1

1 1

( ) 0.8

( ) 0

( ) 1 0.2

m A p

m A

m A A p

= =

=

∪ = − =
    

   Table 2.5    Lambert’s combination rules for     =1 0.8p   and     =1 0.6p      

 Witnesses agree  Value  Witnesses disagree  Value 

 2 pure  
    

1 21 (1 )(1 )p p− − −
   

 0.920  
    

1 2

1 2

(1 )

1

p p

p p

−
−    

 0.615 

 2 mixed  
    

1 2

1 2 1 2(1 )(1 )

p p

p p p p+ − −    
 0.857  

    
1 2

1 2 1 2

(1 )

2

p p

p p p p

−
+ −    

 0.421 

 1st pure, 2nd 
mixed 

 
    

2

1 21 (1 )

p

p p− −    
 0.882  

    
2

1 2

1

1

p

p p

−
−    

 0.769 

 1st mixed, 2nd 
pure 

 
    

1

2 11 (1 )

p

p p− −    
 0.909  

    
1 2

1 2

(1 )

1

p p

p p

−
−    

 0.516 



78 2 The Epistemic Approach: Subjectivist Interpretation

 We obtain similar equations for the second witness and, if the witnesses agree, 
Dempster’s combination rule gives:

     

1 2 1 2 1 2 2 1

1 2 1 2

1 2 1 2 1 2

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

0.92

( )( ) ( ) ( ) (1 )(1 ) 0.08

m m A m A m A m A m A A m A m A A

p p p p

m m A A m A A m A A p p

⊕ = + ∪ + ∪
= + − =

⊕ ∪ = ∪ ∪ = − − =
   

This yields the belief function and the plausibility for both witnesses:The belief 
function effectively matches the result obtained for pure arguments by Hooper, 
Bernoulli, and Lambert. 

 If the witnesses disagree, we obtain the following values for the second 
witness:

     

2 2

2  

( )

( ) 1

Bel A p

Pl A

=

=    

and the mass functions become:

     

2

2 2

2 2

( ) 0

( )

 ( ) 1 .

m A

m A p

m A A p

=

=

∪ = −
   

In this case, Dempster’s combination rule will yield:

     

1 2 1 2 2 1
1 2

1 2 1 2

1 2

1 2

( ) ( ) ( ) ( ) ( ) ( )
( )( )

( ) ( ) ( ) ( )

(1 )
0.615

1
 

m A m A m A m A A m A m A A
m m A

m A m A m A m A

p p

p p

+ ∪ + ∪
⊕ =

+
−

= =
−    

and

     

( )( ) ( ) ( )
( ) ( )

( )( )1 2 1 2
1 2

1 21 2 1 2

1 1
0.154,

1( ) ( )

m A A m A A p p
m m A A

p pm A m A m A m A

∪ ∪ − −
⊕ ∪ = = =

−+
   

with the following values for the belief function and plausibility:

     

1 2

1 2

2

1 2

(1 )
( ) 0.615

1

1
( ) 0. 9 76

1

p p
Cr A

p p

p
Pl A

p p

−
= =

−
−

= =
−     

 The value of the belief function is the one found by Lambert for two pure argu-
ments when the witnesses disagree; the plausibility value is the one found by Lambert 
for one pure argument and one mixed argument when the witnesses disagree. 
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 While each of the methods that we have just examined uses a different model, the 
results show a great similarity between the seventeenth- and eighteenth-century 
models and the ones recently developed by Dempster, Shafer, Smets, and others. 

 In conclusion, all the examples given here 25  show that subjective probability can 
be used successfully in all social sciences and that it allows inferences whose sig-
nifi cance is far clearer than those obtained with objective probability. However, 
when the number of individuals observed becomes large, the two probability esti-
mates converge to identity. Depending on the issue studied, the importance of that 
number can vary: we have seen, for example, that the comparison between two sex 
ratios at birth required a very substantial number of individuals. 

 Nevertheless, this approach has raised and continues to raise problems that we 
have already mentioned and shall now discuss.  

    2.5   Problems Posed by the Subjective Approach 

 The paradigms and axioms on which subjective probability is based have been the 
target of many criticisms, of which we have already presented a selection. We 
shall now try to review the main objections and problems, without aiming for 
exhaustiveness. 

 First, we can challenge the assumption that a behavior defi ned by the axioms of 
subjective probability is a rational behavior. These axioms describe decisions taken 
in a situation of uncertainty by a theoretical individual, the rationality of whose 
behavior may not necessarily apply to real persons. We shall examine shortly the 
criticisms aimed at the notion of the utility of a risk and particularly at the indepen-
dence axiom. Beforehand, let us look at the more general paradigm of behavioral 
coherence. To be fully corroborated, the paradigm should be based on the observa-
tion of the behavior of real individuals or at least should be verifi ed  ex post  by tests 
of these behaviors. But subjectivists reject the results of such trials outright, arguing 
that some of the people tested do not display that consistency and are not rational. 
But the subjectivists are in a false situation, for they cannot extract from the experi-
ment what they mean by coherence. Without observing actual behavior, they can 
hardly build an acceptable system of axioms. We shall see later that the testing of 
the independence axiom—what Savage calls the sure-thing principle—through psy-
chological experiments leads to its rejection. 

 However, a number of psychologists have conducted tests to substantiate the 
notion of coherence. The results have shown that the probabilities assigned by peo-
ple to events are infl uenced by the way in which the events are described and do not 

   25   Apart from Allais’s criticisms discussed above, we could, of course, have quoted many examples 
in economics making extensive use of subjective probability. Some of these examples are reported 
in the next section on issues raised by subjective analysis.  
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satisfy the coherence condition. Several studies (Frischhoff et al.  1978 ; Ayton  1997 ; 
Mandel  2005  )  have shown that the probability attributed to a disjunction described 
in a condensed manner in a sentence,     ( )p X   , tends to be lower than when the dis-
junction is spelled out,     ∪ ∪1 2( ... )np X X X   ; the latter probability, in turn, tends to 
be smaller when it is spelled out in even greater detail,     + +1 2 3( ) ( ) ... ( )p X p X p X   . 
This leads psychologists to conclude that ‘probability judgments are attached not to 
events but to descriptions of events’ (Tversky and Koeler  1994  ) . Psychologists are 
continuing their research in an effort to understand why the processes underlying 
human judgments systematically diverge from the coherence criteria on which sub-
jective probability rests (Mandel  2008  ) . 

 It is interesting to see the reaction of probabilists—here, Lindley discussing the 
article by the psychologist Tversky  (  1974  ) , reviewed jointly with another article by 
Suppes:

  Why do you spend your time studying how people make decisions when we know how they 
 should  make decisions? Would it not be better to devote your energies to teaching them the 
principles of maximum expected utility?  

To which the philosopher Suppes replied:

  it is the obligation of the psychologist qua scientist to teach the truth, not to preach it. I am 
all in favour of teaching sound methods of decision-making, but the psychological task of 
understanding the subtle and complex problems of how real choices are made remains still 
largely unexplored territory.  

We would add that, despite major advances by psychologists in the understand-
ing of these issues since 1974, many questions remain unanswered. In any event, the 
issue of an axiomatization without experimental foundations is still on the table. 

 A second line of criticism has been directed against the notion of transitivity, 
which we fi nd in de Finetti’s third axiom and Savage’s fi rst axiom. The notion pos-
tulates the existence of a complete order of preference for acts, and we have seen 
that Savage had tried in vain to replace it with a partial order of preference. But here 
as well, we know that real acts are not always transitive: we may prefer act B to act 
A and act C to act B, without necessarily preferring act C to act A. That is what 
happens if people react in discontinuous fashion when sensitivity thresholds are 
crossed. However, we may assume that when people are incapable of making 
choices transitively, or cannot make up their minds as to the right choice, then their 
feelings of uncertainty cannot be represented by subjective probabilities. This does, 
however, limit the scope of application of subjective probabilities. 

 Thirdly, we have already described the scathing criticisms leveled against 
Savage’s independence axiom, particularly by Allais  (  1953  ) . Recall that these 
attacks focused on the hypothesis that if an agent is indifferent to the choice between 
two simple lotteries     1L   and     2L   , then the same agent is indifferent to the choice 
between the combination of     1L   and another simple lottery     3L   , with a probability  p , 
and the combination of     2L   and     3L   , displaying the same probability  p . When the 
winnings offered by     3L   increase,     1L   and     2L   become consolation prizes, and the 
agent will modify his or her preferences between the two lotteries in order to mini-
mize risk in the event that (s)he would not win the bigger prize offered by     3L   . Allais 
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decided to verify the validity of this independence axiom experimentally back in 
1953, and his results refuted the axiom. This protocol was reproduced several times, 
with lower winnings and real choices where the subjects received the winnings 
associated with the chosen lottery (Morrison  1967 ; Slovic and Tversky  1974 ). The 
results show 30–60% incompatibility with the independence axiom. The more thor-
ough study by McCrimmon and Larson  (  1979  )  concluded that the frequencies of 
violations of the axiom depended on the value of possible winnings and on proba-
bilities. Again, experiments have shown that one cannot arbitrarily posit an axiom 
unsupported by experimental verifi cation. It should be noted that many other viola-
tions of the theory of expected utility have been recognized: for a detailed descrip-
tion, see Starmer  (  2000  ) . 

 We cannot dwell here on all the debates that have taken place between econo-
mists on this topic, for we would digress from our subject. However, these debates 
have too often addressed the psychological foundations of subjective probability for 
us to ignore them altogether. 

 Two psychologists—Kahneman 26  and Tversky  (  1979  )  with their ‘prospect 
 theory’—were the fi rst to loosen the over-restrictive conditions of the independence 
axiom. Their studies generalized the results obtained by Allais and led to the use of 
probability weighting to allow for inconsistencies with respect to Savage’s theory. 
The weighting describes the way in which people evaluate their loss and gain pros-
pects asymmetrically. The authors generalized their theory (Tversky and Kahneman 
 1992  )  by proposing a cumulative function for the transformation of probabilities 
rather than weightings. This approach remains highly experimental and hardly pro-
vides a theoretical justifi cation of the functions chosen or of the reasons why low 
probabilities are overestimated and high probabilities underestimated. 

 Also in 1982, Loomes and Sugden, as well as Bell followed by Fishburn, pub-
lished an approach now commonly known as ‘regret theory’, which attempts to 
incorporate the regret or pleasure felt by people when receiving a sum  x  instead of 
a sum  y  that they would have received by choosing another alternative. The theory 
proposed by these authors therefore allows for such feelings when persons must 
make decisions amid uncertainty. However, it does not provide an explanation for 
what is known as the ‘framing effect’. Depending on how a question is framed, 
Tversky and Kahneman  (  1981  )  have shown that people may choose one solution in 
one case and the opposite solution in the other, even though the content of the ques-
tions itself remains identical. Regret theory, therefore, fails to rebut the criticisms 
against the theory of expected utility. 

 Machina  (  1982  ) , for his part, tries to develop a modifi ed theory of expected util-
ity by eliminating the independence axiom, which Allais had attacked. But Machina’s 
theory, as well, does not avoid some other violations of the original expected-utility 
theory (Starmer  1992  ) . 

 To sum up, the multiple variants of expected-utility theory, while immune to 
certain criticisms based on test results, consistently succumb to other criticisms 

   26   Kahneman won the Nobel Prize for Economics in 2002 for this theory.  
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based on other tests. As a recent article on the subject (Bethany Weber  2007  )  
concluded:

  Ultimately it may be that no single theory can provide an adequate explanation of all the 
phenomena related to the Allais paradox.  

In light of these fi ndings, the solution that consists in stating a theory’s axioms 
fi rst and trying to verify them later is doomed to fail without a deeper examination 
of the rationale behind the axioms. 

 Subjective-probability axioms also pose a major problem that did not exist with 
objective probability. Knowledge [for objective probability] ‘is reduced to a pure 
recording by the subject of data that are already fully organized, independently of 
the subject, in an external world (physical or ideational)’ (Piaget  1967  ) . In these 
circumstances, the estimated probability allows us to measure an ideal probability 
whose existence and value are independent of experiment. The measure will be all 
the more accurate as the observations are numerous and repeated in identical fash-
ion. By contrast, for subjective probability, ‘the subject is actively involved in 
knowledge’ (Piaget  1967  ) . 

 Accordingly, many authors have shown that people’s willingness to behave in 
compliance with subjective-probability axioms is proportional to the degree of their 
prior awareness of this mode of reasoning. We therefore seem to be in the presence 
of a circle from which we cannot escape without a deeper study of

  the formation of normative facts pertaining to chance, i.e., the genesis of standards taken as 
an object of empirical investigation (Matalon  1967  ) .  

Savage  (  1954  ) , for example, believed that his axiomatics was normative, as it 
supplied

  a set of criteria by which to detect, with suffi cient trouble, any inconsistencies there may be 
among our beliefs and to derive them from the beliefs we already hold such new ones as 
consistency demands.  

Allais’s criticisms and the changes that have been proposed by a number of econ-
omists and psychologists for over 50 years clearly show that Savage was mistaken. 
Even more forcefully, Shafer  (  1985  )  demonstrated the need to give up this pretense 
and recognize that when we perform a Bayesian estimate, in the subjectivist sense, 
we are merely constructing an argument by analogy with a similar problem relating 
to games of chance, but we have no proof of the argument’s validity. Shafer believes 
that a conditional probability can be valid not in all cases—as the subjectivists 
claim—but only when a clear protocol has been established. The protocol must 
specify all the elements that should be observed and determine a partition or at least 
a system of partitions for the set of events concerned. 

 Freund’s example  (  1965  )  of the two-aces puzzle clearly illustrates this. Let us 
describe it briefl y. Suppose we have only four cards on a table: the ace and two of 
spades, and the ace and two of hearts. I pick two cards at random. There are six pos-
sible pairs: ace and two of spades, ace and two of hearts; ace of hearts and two of 
spades; ace of spades and two of hearts; two of hearts and two of spades. The prob-
ability of each pair is:     1

6
  . Someone with no other information than the fact that I 
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have picked two cards can determine the probability of event  A : I have both aces; the 
probability of event  B  

1
 : I have at least one ace; and the probability of event  B  

2
 : I have 

the ace of spades. All these probabilities are subjective:

     
= = = ∩ = ∩ =1 2 1 2

5 1 1
( ) ( ) ( ) ( ) ( ) .

6 2 6
p B p B p A p A B p A B

    

 Now I tell the person: I have one ace. With this information, (s)he can use the 
theorem of compound probabilities to determine the probability of  A  conditional 
upon  B  

1
 , i.e., the fact that I have said that I have an ace:

     

∩
= = =1

1
1

( ) 1 / 6 1
( ) .

( ) 5 / 6 5

p A B
p A B

p B    

This information therefore allows the person to increase the probability that I 
have two aces, which seems perfectly normal. 

 I give the person new information by announcing that I have the ace of spades. 
To introduce the new information, (s)he will again make the probability conditional 
upon the event  B  

2
 :

     

∩
∩ = = = =2

1 2 2
2

( ) 1 / 6 1
( ) ( ) ,

( ) 1 / 2 3

p A B
p A B B p A B

p B    

since my holding the ace of spades necessarily implies that I have an ace. This rea-
soning apparently allows the person to improve his or her estimate of the probability 
that I have two aces. This claim seems paradoxical in that it does not seem that 
knowing that I have the ace of spades instead of one ace should have any effect on 
the probability that I have two aces. 

 In fact, in this case, no protocol has been established to determine what 
information I would give the. Consequently, the application of the theorem of 
compound probabilities is not legitimate, as Shafer  (  1985  )  has shown. Shafer 
proposes supplementing Savage’s axioms with the hypothesis that we have a 
protocol for all new information. But, if so, the axiomatics of subjective prob-
ability can no longer be regarded as normative, and Savage’s wish is therefore 
unfulfilled. 

 Even more importantly, de Finetti and Savage built their axiomatization not on 
fair wagers—as earlier authors had since Pascal—but on people’s personal degrees 
of belief. As de Finetti stated very clearly  (  1937  ) :

  given a complete class of incompatible events  E  
1
 ,  E  

2
 , … ,  E  

n
 , all assessments of probability 

that assign random non-negative values to  p  
1
 ,  p  

2
 , … ,  p  

n
  that sum to unity are acceptable 

assessments: each of these assessments refl ects a consistent opinion, an intrinsically legiti-
mate opinion, and each individual is free to adopt, among these opinions, the one that he 
prefers, or, to put it more accurately, the one that he  feels.   

De Finetti and Savage thus freed the estimation of a probability from the fair-
wager criterion, but at the same time they incorporated a degree of personal belief 
for each individual who must take a decision. This introduces all the  earlier- mentioned 
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diffi culties encountered by psychologists and economists. Jaynes  (  2003  ) , for 
instance, attacks this approach with the following arguments:

  If probabilities are thought to be defi ned basically in terms of betting preferences, then for 
assigning probabilities one’s attention is focused on how to elicit the personal probabilities 
of different people. In our view, that is a worthy endeavour, but one that belongs to the fi eld 
of psychology rather than probability theory [.]  

He also notes that he feels uncomfortable with the idea of defi ning an approach 
in terms of profi ts. 

 Far more forcefully, Seidenfeld et al.  (  1990  )  have shown that these degrees of 
belief or personal probabilities may fail to provide fair wagers for certain events 
characterized by ‘state-dependent utilities’. This runs counter to the assumption 
made by Ramsey, de Finetti, and Savage in defi ning subjective probability—namely, 
that people’s beliefs were consistent with the sums they bet (the ‘Dutch Book argu-
ment’). We thus need to reconsider the subjectivists’ attempt to dispense with the 
notion of fair wager through their axiomatics. 

 Our criticisms of the subjective approach advocated by Ramsey, de Finetti, and 
Savage are also largely applicable to the more complex theories of Shafer and 
Smets. They too examine the consistent choices made by a rational person. Smets 
 (  1998  )  notes:

  They ( Ramsey,   1931  ; Savage,   1954  ; DeGroot,   1970  )  have shown that if decisions must be 
‘coherent’, the uncertainty over the possible outcomes must be represented by a probability 
function. This result is accepted here except that  such probability functions quantify the 
uncertainty only when a decision is really involved . … We also accept that this probability 
function is induced from the beliefs entertained at the credal level .   

But of course these beliefs are situated at another level, where coherence is no 
longer called for. 

 As noted earlier, we have not been able to explore all the issues raised by the 
subjectivist approach, which would have taken us too far. For readers seeking fur-
ther information, we particularly recommend the following philosophical studies on 
the subject: Kyburg  1978 ; Kaplan  1996 ; Gillies  2000 ; Eriksson and Hájek  2007 ; 
Hájek  2008a,   b . 

 However, the issues raised in this chapter show that another epistemic approach 
may address some of them and dispense with the reliance on psychology, which the 
subjective approach cannot avoid. In particular, a logical epistemic approach has 
been developed for as long as the subjective epistemic approach, and it may answer 
some of these questions. We shall therefore devote the next chapter to examining it.                                                                                                                                                   
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 At the start of Chap.   2    , we noted that Leibniz (written around 1703 but only 
published in 1765), after reviewing the progress of studies by Pascal, Huygens, and 
de Witt on wagers, had advanced the notion of a new logic of probability. In particular, 
Leibniz showed that the basis on which such a discipline had been built consisted in 
adopting an arithmetical mean between several equally plausible propositions:

  This is the axiom:  aequalibus aequalia , like hypotheses must receive like consideration. 
But when the hypotheses are unlike, we must compare them with one another.  

At that point, we may ask: how can we compare them? Leibniz goes one step 
further:

  I have said more than once that a new sort of logic would be required, which would address 
degrees of probability, since Aristotle did nothing less than that, and merely put some order 
into certain popular rules distributed according to commonplace thoughts, which can be of 
use in some occasion where the purpose is to enlarge upon discourse and give it some coun-
tenance, without troubling to give ourselves the necessary scales for weighing appearances 
and forming a solid judgment thereupon.  

But Leibniz hardly provided the systematic treatment of knowledge that we 
might have expected of him—a treatment that would be needed to determine the 
degrees of probability associated with that knowledge. 

 The efforts of eighteenth-century and early-nineteenth-century authors partly 
satisfi ed his wishes. As noted in Sect.   2.1    , Nicolas Bernoulli, Bayes, Laplace, and 
others succeeded in establishing a theory of epistemic probability by using the fair-
wager hypothesis, a fuller version of the axiom cited at the start of that section. For 
example, Laplace’s principle  (  1812  )  stated that:

  The probability of a future event is the sum of the products of the probability of each cause, 
derived from the observed event, times the probability that, with this cause obtaining, the future 
event will occur.  

As shown in Sect.   2.1    , this principle allowed Laplace to defi ne the probabilities of 
many events. However, he was obliged to add the following condition, still known 
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today as the  principle of insuffi cient reason , in the case where certain probabilities are 
unknown:

  When the probability of a simple event is unknown, we can also assume that its values range 
anywhere from zero to unity. 

 But Laplace had no principle for determining these  prior  probabilities in cases 
where the information available does not enable us to assume their uniform distribu-
tion over the interval [0, 1]. 

 As noted earlier, there was no distinction between subjective probability and 
logical probability in this period; the only form discussed was epistemic probability. 
Indeed, Laplace used his theory to address both astronomical problems, for which 
logical probability may be suitable, and problems in political and moral science 
(testimonies, court rulings, etc.), for which subjective probability would seem better 
appropriate. Divergences between the two approaches did not truly emerge until the 
early twentieth century. 

 For a start, Poincaré  (  1912  )  described the defi nition of a probability as a sort of 
 petitio principii  (begging the question):

  how can one recognize that all cases are equally probable? A mathematical defi nition is not 
possible here; therefore, in each application of the conventions, we must state that we regard 
such and such a case as equally probable. 

 Here, the conventions will elude the mathematician’s mind, but they may be 
either subjective, as the subjectivists advocated, or logical, as we shall see now. 

    3.1   Logical Probability 

 The representatives of this current share with the subjectivists the notion that prob-
ability expresses a degree of belief. The entire approach presented in Chap.   2     
remained identical for subjective probability and logical probability until the early 
twentieth century. However, contrary to the principles that guided the subjectivists 
from Ramsey onward, the logicist approach views the degree of belief not as a per-
sonal opinion but as a logical relationship between propositions, valid for all. 

 First, let us see how the approach developed starting in the early twentieth century. 
Rather than attempting an exhaustive survey, we shall focus on the most prominent 
and active advocates. 

 One of the fi rst representatives of the logicist approach was the economist John 
Maynard Keynes, who turned the 1909 dissertation that won him a Fellowship at 
King’s College (Cambridge) into a book on probability  (  1921  ) . 

 In the Chap.   1     of this book, one page after the Leibniz epitaph on the need for a 
new logic of probability, he clearly stated his program:

  The Theory of Probability is logical, therefore, because it is concerned with the degree of 
belief which is  rational  to entertain in given conditions and not merely with the actual 
beliefs of particular individuals which may or may not be rational.  
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Keynes was restating the goal of developing a logical theory of probability without 
reference to individual beliefs, which—as seen in Sect.   2.5     —are highly problematic. 
He also announced his intention

  to discuss the truth and the probability of  propositions  instead of the occurrence and the 
probability of  events.   

On this count as well, he parted company with the subjectivists, who treated the 
event as a signifi cant fact (de Finetti  1937  ) , and the objectivists, whose reasoning 
centers on sets of events rather than on propositions. By contrast, Keynes concurred 
with the subjectivists in recognizing the principle of inverse probability — or, more 
simply, the Bayesian principle—as essential to his approach, whereas the objectiv-
ists hardly ever applied it. 

 While resorting to the notion of ‘single probability’ for certain propositions, 
Keynes suggested the use of an interval when a single measure is both theoretically 
and practically impossible. He noted that:

  Many probabilities, which are incapable of numerical measurement, can be placed never-
theless  between  numerical limits. And by taking particular non-numerical probabilities as 
standards a great number of comparisons or approximate measurements become possible.  

The term ‘non-numerical’ here denotes the inability to assign a single measure to 
a probability. Keynes elaborated on these measures in some chapters of his book. 
The notion was taken up in subjective probability by Koopman  (  1940,   1941  )  and 
later by Dempster  (  1967  )  and Shafer  (  1976  ) . In contrast, logicists hardly ever 
applied it. 

 Lastly, Keynes introduced the notion of the ‘weight’ of an argument independent 
of its probability, which ‘measures the  sum  of favourable and unfavourable evi-
dence, [ while ] the probability measures the  difference ’. In a sense, this resembles 
the notion of entropy, which Richard Cox  (  1961  )  later applied to probability theory. 
Keynes states:

  As the relevant evidence at our disposal increases, the magnitude of the probability of the 
argument may either decrease or increase, according as the new knowledge strengthens the 
unfavourable or the favourable evidence; but  something  seems to have increased in either 
case,—we have a more substantial basis on which to rest our conclusion. I express this by 
saying that an accession of new evidence increases the  weight  of an argument. New evi-
dence will sometimes decrease the probability of an argument, but it will always increase 
its ‘weight’. (Keynes  1921  )    

 The description of this weight and the attributes assigned to it—which he dis-
cusses in an entire chapter devoted to the subject—are strongly reminiscent of, but 
not identical to, the notion of entropy, to which we shall return. The latter notion 
was taken up by the economist Ellsberg  (  1961,   2001  )  in his critique of Savage’s 
axioms. 

 Unfortunately, Keynes never spells out exactly what he means by ‘degree of 
rational belief’. He indicates that some persons may have greater logical intuition 
than others, and that the perception of certain probability relationships may be 
beyond the capabilities of some of us, but he provides no evidence for the existence 
of these logical entities (Mattheu Wilson  2007  ) . 
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 Keynes also rejects Laplace’s indifference principle, which states that mutually 
exclusive propositions concerning the same data should be assigned equal probabil-
ities, if nothing allows us to choose between them. It would be too long to rehearse 
his arguments here, but let us quote his conclusion:

  This account may seem rather confusing; but it is not easy to give a lucid account of such a 
confusing doctrine.  

Later, we shall see that Jeffreys rebutted this position by showing that it totally 
prevents the establishment of a theory of logical probability. 

 Keynes’s book was criticized by many authors such as Fisher  (  1922a  ) , Ramsey 
 (  1926  ) , and Jeffreys  (  1939  ) , who respectively addressed probability from objectivist, 
subjectivist, and logicist standpoints. Jeffreys  (  1939  )  voices a defi nitive—and, in 
our view, wholly justifi ed—opinion on the author:

  This book is full of interesting historical data and contains many important critical remarks. 
It is not very successful on the constructive side, since an unwillingness to generalise the 
axioms has prevented Keynes from obtaining many important results.  

Keynes actually seems to have abandoned a number of his ideas on probability, 
particularly after Ramsey’s critique (Bateman  1987 ; Davis  2003 ; Gillies  2003  ) , 
although some scholars argue otherwise (Gerrard  2003 ; O’Donnel  2003  ) . Keynes 
virtually stopped writing about probability after these attacks. On his own admis-
sion (Keynes  1971  ) :

  probability is concerned not with objective relations between propositions but (in some 
sense) with degrees of belief … [, and] the basis of our degrees of belief—or the a priori 
probabilities as they used to be called[—]is part of our human outfi t, perhaps given us 
merely by natural selection, analogous to our perceptions and our memories rather than 
formal logic. So far I yield to Ramsey—I think he is right.  

Later in the text, however, he adds:

  in attempting to distinguish ‘rational’ degrees of belief from belief in general he [ Ramsey ] 
was not yet, I think, quite successful. It is not getting to the bottom of the principle of induc-
tion merely to say that it is a useful mental habit.  

Clearly, while Keynes believed that his probability theory faced theoretical 
diffi culties, he was dissatisfi ed with Ramsey’s inability to distinguish between 
personal opinion and rational belief (Mattheu Wilson  2007  ) . 

 In the event, it was Jeffreys—geophysicist, astrophysicist, and statistician—who 
effectively launched logical probability. He fi rst set out his ideas on scientifi c inference 
with Wrinch  (  1919,   1921,   1923  ) , then expanded them in a book  (  1931  ) . Next, he 
established his conceptual framework of logical epistemic probability  (  1932,   1933b, 
  1934,   1937  ) , which he presented in a seminal work on probability  (  1939  ) . 

 In their very fi rst article, Wrinch and Jeffreys  (  1919  )  described probability as an 
extension of classical logic to cases where the premises do not allow us to draw 
conclusions with absolute certainty. This notion was later elaborated in detail by 
Richard Cox  (  1946,   1961  ) . The focus was no longer—as in de Finetti’s work—on 
events whose occurrence a person may put in doubt, but on propositions about 
which this new logic should enable us to reason. Wrinch and Jeffreys thus took up 
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the fundamental notion that Leibniz had pledged to develop and that Keynes had 
already advocated. 

 The article also defended the indifference principle, which Keynes rejected. The 
authors did so by introducing the notion of a base of data combinations that can be 
ranked:

  If in one combination the proposition is more probable relative to the data than in another, 
the number corresponding to the fi rst is greater than that corresponding to the second.  

The obvious corollary to this notion is Laplace’s principle, which assigns equal 
probabilities to propositions about data that give us no reason to expect one proposi-
tion to be more valid than the other. As we shall see later, however, this principle is 
not applicable to any estimation problem whatsoever. 

 Wrinch and Jeffreys also distance themselves from the objectivist theory of prob-
ability, and reject the adoption of objectivist probability as the limit of a ratio when 
observations tend to infi nity:

  The existence of a probability on this theory requires that a limit shall exist to which a cer-
tain ratio tends in the long run; and one is led to ask what the evidence is for the existence 
of such a limit.  

Jeffreys never regarded that limit as mathematically viable. 
 In their following, two-part article, Wrinch and Jeffreys  (  1921,   1923  )  showed 

that, while the number of possible quantitative laws for a given phenomenon is infi -
nite, this set is countable and the laws can be ranked by decreasing order of simplic-
ity. The laws’ probabilities form the terms of a convergent series of sum 1. We can 
thus choose the simplest law, in keeping with a simplicity principle, and this choice 
is based on a reasonable degree of belief. 

 In his singly-authored book, Jeffreys  (  1931  )  reconsidered the problem of scien-
tifi c inference and shifted the issue of the validity of scientifi c methods toward the 
notion of probability:

  When we make a scientifi c generalization we do not assert the generalization or its conse-
quences with certainty; we assert that they have a high degree of probability on the knowl-
edge available to us at that time, but that this probability may be modifi ed by additional 
knowledge.  

This relativism led him to a notion of probability defi ned as a relationship 
between a proposition and a data set, which makes it possible to draw statistical 
inferences from past observations to predict future outcomes. 

 Jeffreys also discusses the application Laplace’s principle to any given estimation 
problem. He shows that the prior distribution of the unknown standard deviation, 1    s  , 
of a normal distribution cannot be uniform, under pain of generating an inconsis-
tency with the fact that we know nothing about the standard deviation, except that it 

   1   What Jeffreys used was not the standard deviation but the quantity     
1

2
h =

σ
  . This does not alter 

the reasoning signifi cantly.  
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is positive. If we take a random fi nite value   a   for   s  , Jeffreys shows that the probability 
of   s   <   a   is always null, which is inconsistent with the fact that we know nothing 
about it   s  . The distribution should in fact be proportional to the inverse of the stan-
dard deviation, which is based on the fact that this prior is invariant for the change 
in parameter   s  ¢   = 1/  s   as well as for any power of   s  ¢  . By contrast, for the random 
variable itself, Jeffrey adopts the standard distribution, which is a uniform prior. We 
shall see later how to complete his imperfect demonstration to show that this distri-
bution is perfectly non-informative, for he omits to recognize that other transforma-
tions that preserve the positivity of   s   lack the invariance property. 

 On the same subject, a bitter argument erupted in the  Proceedings of the Royal 
Society  in the early 1930s between Jeffreys  (  1932,   1933a,   1934  ) , who advocated a 
logicist approach to probability, and Fisher  (  1933,   1934  ) , then a pure objectivist. 2  
Interestingly, it was in the same period that Kolmogorov proposed his axiomatiza-
tion of objective probability. Jeffreys  (  1933a  )  attacked the argument that objective 
probability was the limit of a frequency:

  That a mathematician of Dr. Fisher’s ability should commit himself to the statement that the 
ratio of 2 infi nite numbers has an exact value can only be regarded as astonishing .   

In rebuttal, Fisher  (  1934  )  totally rejected any defi nition of subjective probability:

  Jeffreys’ defi nition of probability is subjective and psychological: ‘We introduce the idea 
that the idea of a relation between one proposition  p  and another proposition  q , expressing 
the  degree  of knowledge concerning  p  provided by  q ’. In this it resembles the more expres-
sive phrase used by Keynes, ‘the degree of rational belief’. Obviously no mathematical 
theory can really be based on such verbal statement.  

This exchange clearly shows the gulf between the objectivist and logicist 
approaches, which prevented the two protagonists from speaking a common lan-
guage. Jeffreys     (  1933a,   b  )  took advantage of this exchange to engage in a searching 
examination of what a theory of probability should be:

  It seems to be necessary therefore for me to begin at an earlier stage and explain why a 
theory of probability is necessary, and what is the scope of such a theory.  

In these articles, he began a project that he extended in his 1939 book, namely, to 
establish a theory of logical probability or, rather, of logical probabilist inference. In 
the following section, we look at the basic principles and the axiomatics that he 
proposed. Here, suffi ce it to note that the book is regarded as the founding text of 
logical probability, even though, as discussed later, it still avoided many basic issues 
concerning that type of probability (Robert et al.  2009  ) . In particular, like Laplace, 
Jeffreys failed to present his principles as the necessary consequences of the analysis 
of incomplete information. As a result, for more than 30 years, he was subjected to 
the same attacks as Laplace had been. 

   2   Fisher later moved toward a different defi nition of probability that, as noted earlier (Section 1.1), 
was regarded as lacking clarity and was barely used after him.  
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 In his wake, the physicist and probabilist Richard Cox  (  1946,   1961  ) , rather than 
quibbling endlessly on whether it is legitimate or not to use logical or objectivist 
probability, asked the crucial question: is it possible to construct a consistent set 
of mathematical rules to establish a reasoning that is no longer deductive but 
plausible? 

 He showed that, if we try to represent the degrees of plausibility of a proposition 
by real numbers, then we can state the consistency conditions in the form of func-
tional equations, whose general solutions can be expressed. At this point, Cox was 
reasoning only on propositions, without yet bringing the concept of probability into 
play. His propositions conform to the rules of Boolean algebra, already used by 
Jeffreys. Cox introduces a function of these arguments here. He shows that, among 
all the functions that can theoretically meet these conditions, there is one with par-
ticularly simple properties, which he calls ‘probability’ and which complies with all 
the rules of probability calculus. He thus proves that all inference methods in which 
we represent the degrees of plausibility by real numbers are necessarily equivalent 
to Laplace’s method, otherwise they are inconsistent. We shall examine his axioms 
in greater detail in the axiomatics section below. 

 In his book  (  1961  ) , Cox also draws a major parallel between probability and 
‘entropy’, on which, as we shall see, Jaynes was to elaborate  (  1963,   1979  ) . The term 
entropy was introduced in thermodynamics by Clausius in  1865 , in the wake of 
Carnot’s paper  (  1824  ) . This is not the place for a detailed account of the history and 
evolution of the concept in physics—a fi eld where it was elaborated most notably 
by Maxwell  (  1859  ) , Boltzmann  (  1871  ) , Gibbs  (  1902  ) , and Shannon  (  1948  ) . We 
merely want to show its link to probability theory. 

 The notion of entropy complements that of logical probability. It can supply a 
measure of the information provided by a full set of propositions on a subject. To 
defi ne entropy, let us consider the hypothesis,  h,  and the comprehensive set of not 
equally probable but mutually exclusive propositions,     1 2, , ... ma a a   , that partly result 
from the hypothesis. Entropy  H  is accordingly defi ned as a numerical measure 
whose value is equal to:

     
= −∑1 2( , , ..., ) ( ) ln ( ),m i i

i

H a a a h p a h p a h
   

where     ( ).p   is a probability measure. This formula is deduced from Shannon’s 
 (  1948  )  with the addition of the hypothesis  h . As     ( ) 1ip a h £   , we see that the measure 
can never be negative, and if one of the propositions is certain, all the others are 
impossible and the system’s entropy is null. We can also show that the entropy of a 
set of mutually exclusive propositions reaches maximum when the propositions are 
equally probable. It will then equal ln( m ), where  m  is their number. 

 We can generalize entropy to a system of propositions that form a comprehensive 
set. Each proposition in the set implying a proposition in the system belongs to the 
system. 
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 As noted earlier, Cox made full use of Boolean algebra—already employed by 
Jeffreys, who, oddly, does not mention Boole. Cox notes that the algebra is perfectly 
suited to a theory of logical probability. We shall expand on his axiomatics in the 
next section. For the moment, let us provide a more general picture of Cox’s algebra 
of propositions. The purpose is:

  to investigate the fundamental laws of those operations of the mind by which reasoning is 
performed; to give expression to them in the symbolical language of Calculus, and upon 
this foundation to establish the science of Logic and construct its method. (Boole  1854  )   

Thus a given proposition may have a fi xed meaning, such as the sentence 
‘Socrates is a man,’ or a meaning that may vary according to the context of the utter-
ance, such as the sentence ‘I agree with what all previous speakers have said.’ We 
can show that these rules are roughly the same as those of classical algebra, where 
a quantity may be regarded as a constant or a variable. 

 We can spell out the three basic operations of this algebra of propositions: nega-
tion of a proposition, conjunction of two propositions, and disjunction of two propo-
sitions. The combination of these operations suffi ces to represent all the propositions 
that we can deduce from the two initial ones. However, some results of these opera-
tions differ substantially from those observed in classical algebra. For instance, the 
conjunction of a proposition with itself yields that same proposition, whereas in 
classical algebra it yields the square of the number considered. 

 As in classical algebra, we can defi ne a proposition as a function of one or more 
propositions. But we can readily see, as the previous example shows, that the func-
tions generated by the propositions of Boolean algebra display far less variety than 
those of classical algebra. 

 Cox’s direct successor was Jaynes, who already cited Cox in a  1957  report on 
plausible reasoning that was not published until many years later (1981). Jaynes 
carried on Cox’s work all his life; a posthumous book by Jaynes,  Probability theory: 
the logic of science , was published in  2003 . Let us examine Jaynes’s contribution to 
logical probability. 

 Like Polya  (  1954  )  before him, Jaynes showed how our brain performs not only 
deductive reasoning, but also plausible reasoning. Deductive reasoning was formal-
ized by Aristotle in the fourth century B.C.E. In volume V of the  Organon ,  Topics , 
he lists strong syllogisms of the two following types:

     

implies

is true

is true

A B

A

B    

or:

     

implies

is false

A is false

A B

B
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In most cases, however, we cannot apply these deductive reasonings, but must 
make do with plausible reasonings of the following third and fourth type:

     

implies

is true

becomes more plausible

A B

B

A    

or:

     

If is true,  then becomes more plausible is true

becomes more plausible
 

A B B

A    

It is easy to see that these statements no longer enable us to assert the conclusion, 
but they are essential for correct reasoning. Logical probability should allow such 
reasoning. 

 The next problem is to how to calculate these plausibilities, so that from the initial 
information and from observations we can obtain a single value for each proposition 
whose logical probability we wish to estimate. To avoid all controversy, Jaynes intro-
duced a robot and gave it rules that it would apply blindly to compute the probabilities, 
by comparing its reasoning to ours when confronted with the same problem. The robot 
must therefore be given unambiguous information of a simple logical type. Of course 
the truth or falsehood of this proposition, which has two possible values, is generally 
not known, since the purpose of the search is to determine its logical probability. 

 The paradigm and axioms proposed by Jaynes were thus very similar to those of 
Richard Cox, as we shall see in the following section. Consistently with the notations 
of Keynes  (  1921  )  and Cox  (  1961  ) , Jaynes uses the symbol A| B to represent the 
 conditional plausibility that  A  is true, given that  B  is true. Using two rules—‘product’ 3  
and ‘sum’—he is able to defi ne a continuous function, ranging between 0 and 1, that 
matches the conditional plausibility with a conditional probability     ( )P A B   . 

 The qualitative properties of his theory make it possible to put the syllogisms shown 
above into a clear quantitative form. Let us see in greater detail how this is done. 

 For the fi rst two strong syllogisms, let  C  be their major premise:

     ≡ ⇒ .C A B     

 These syllogisms will therefore obey the ‘product’ rule, which defi nes its probabil-
ities 4  :

      ∩ = ∩( ) ( ) ( )P A B C P A C P B A C    and     ∩ = ∩( ) ( ) ( ).P A B C P B C P A B C    

   3   Accordingly, the ‘product’ rule is written:  
    ( ) ( ) ( ) ( ) ( )P A B C P A C P B A C P B C P A B C∩ = ∩ = ∩   .  

   4   In order to differentiate sets from propositions, some authors use the terms     ∪    or     ∩    for the dis-
junction or the conjunction of sets, and the terms     ∨    or     ∧    for the conjunction and disjunction of 
propositions. As the same rules hold for sets and propositions we will use here the same terms, but 
we inform the reader that we are now speaking about propositions.  
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 As these syllogisms tell us that     ∩ =( ) ( )P A B C P A C    and     ∩ =( ) 0P A B C   , 
then, in terms of logical probability, the syllogisms reduce to:

      ∩ =( ) 1P B A C    and      ∩ =( ) 0P A B C   . 

 This shows us that Aristotle’s deductive logic is the limit form of logical proba-
bility, when the robot becomes increasingly certain of its conclusions. 

 For the two plausible reasonings that follow, we can again apply the ‘product’ 
rule: 

     ∩ = ∩( ) ( ) ( ) ( )P A B C P B C P B A C P A C    and 

    ∩ = ∩( ) ( ) ( ) ( ).P B A C P A C P A B C P B C    

 In the fi rst case, we know that     ( ) 1,P B A C∩ =    and since     ( ) 1P B C ≤   , then:

     
( ) ( ),P A B C P A C∩ ≥

   

as the plausible reasoning predicted. 
 In the second case, we know that     ( ) ( ),P A B C P A C£∩   hence:

     ( ) ( ),P B A C P B C£∩
   

as the plausible reasoning predicted. 
 We also see that Jaynes’s approach to probability is fundamentally different from 

that of the objectivists, who measure it from observed frequencies:

  The probabilities assigned to individual measurements are not measurable frequencies; they 
are only a means of describing a  state of knowledge ; just the original sense in which Laplace 
and Jeffreys interpreted a probability distribution. (Jaynes  1979  )   

The only difference with Laplace’s approach is that the principle of insuffi cient 
reason can now be generalized with the aid of the notion of entropy. Let us take a 
more detailed look at how Jaynes achieved this generalization. 

 As noted earlier, Laplace proposed a prior uniform distribution of probability 
when he lacked information on the phenomenon studied, but he hardly knew how to 
proceed when he had fuller information available. Later, Jeffreys exposed the dan-
ger of estimating the prior probability of a standard deviation as being uniformly 
distributed, but he realized that his demonstration was incomplete. Jaynes showed 
the need for a more clearly formulated method that his robot could use to estimate 
these prior probabilities correctly. 

 For a discrete distribution, these requirements were met by Shannon’s entropy, 5  
a notion that Richard Cox applied to probability. Shannon’s entropy made it possible 

   5   It is preferable to distinguish this notion using the term Shannon’s entropy, which concerns infor-
mation, from classical entropy, which concerns a thermodynamic system.  
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to quantify the preconditions for a reasonable measure of the degree of uncertainty, 
by writing more simply the entropy as:

     
( ) ( )1 2

1

, , , log .
n

n i i
i

H p p p p p
=

… = −∑
   

for the  n  values of this distribution     ( )…1 2, , , np p p   , to which we add as many 
constraints as we have prior information items available. The distribution that maxi-
mizes this equation, under the specifi ed constraints, will give a complete description 
of all the prior information at our disposal. 

 A schematic but simple example will illustrate this method. Let us imagine 
that nineteenth-century archeologists had recorded the ages at death in an 
ancient cemetery, but that their report gives only the mean age at death (36 years) 
of the population, whose cemetery was later destroyed. Let us try, from this 
information, to estimate the distribution of the population into three broad age 
groups (30 years or less, 31–60, and 61–90), which we can deduce from the 
prior information. 

 For simplicity’s sake, we note the three age groups (1, 2, 3), so the mean age 
measured is equal to 1.2, and the sum of probabilities is equal to 1. We can then 
resolve the system by means of Lagrange’s multipliers   :

     

λ μ λ μ
= = =

⎡ ⎤∂⎡ ⎤∂ − − = − − ∂ =⎢ ⎥⎢ ⎥ ∂⎣ ⎦ ⎣ ⎦
∑ ∑ ∑

3 3 3

1 1 1

0,i i i
i i i i

H
H ip p i p

p
   

hence the solutions:

     μ λ= − − −exp( 1 ).ip i    

By defi ning the function:

     
( ) ( )

3

1

exp ,
i

f i
=

= −∑λ λ
   

we see that Lagrange’s multipliers can be written:

     ( )1 log ,f+ =μ λ
   

     

( )λ
λ

∂
= −

∂
log

1.2
f

   

This leads to the following age distribution:

     

1

2

3

0.8263

0.1474

0.0263

p

p

p

=
=
=    
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We see how far removed this distribution is from the equal-probabilities 
distribution. In fact, we can compute it for any mean-age value, and verify that the 
estimates do lie within the limits [0, 1] of the probabilities. To improve the estimate, 
we can, of course, introduce other information drawn from the observation of other 
populations of the same type. 

 For a continuous distribution, the problem is more complex, but can be partly 
solved by the entropy maximization—as Jaynes showed  (  2003  ) —provided that we 
can compute a correct measure for the problem posed. 

 We can grasp the notion by means of Bertrand’s paradox  (  1889  ) . This problem—
which, at fi rst glance, seems simple—consists in determining the probability that a 
chord of a given circumference is larger than the side of the equilateral triangle 
inscribed in the circumference. Depending on the method used to address the prob-
lem, which we need not describe in detail here, the results differ. In the fi rst case, we 

fi nd a probability of     
1

3
  ; in the second case, it is equal to     

1

2
  . This contradiction

stems from the underlying hypotheses framed for each estimation, concerning how to 
measure the probability that a point lies inside a given area. In the case of a continuous 
distribution, this measure is also—to within one constant factor—the prior distribu-
tion describing total ignorance of the variable examined. Continuous group theory 
enables us to solve most of these problems. Let us see how, in a specifi c case. 

 Take a sample     { }…1 2, , , nx x x   , obtained from a two-parameter distribution 
    μ σ μ σ= Φ( , ) ( , , )P x x dx   , for which we want to estimate the mean  m  and the standard 
deviation  s . We can introduce a prior distribution of the probability of  m  and  s :

     ( )μ σ μ σ μ σ μ σ=( , ) , .P I d d f d d
   

But, as noted above, there are many ways to measure this probability and we do 
not know which function  f  to use. Let us suppose, however, that we change variables 
as follows:

     ( )

b

a

x a x

= +′
=′
− = −′ ′

μ μ
σ σ

μ μ    

where     < < ∞0 a    and     −∞ < < ∞b   , which constitutes a transformation group. With 
these new variables, the prior distribution becomes:

     
μ σ μ σ′ ′ ′ ′ ′ ′= Ψ( , ) ( , , ),P x x

   

giving us:

     ( ) 1, , ( , , )x a x−Ψ =′ ′ ′ Φμ σ μ σ
   

and the  prior  distribution  g :

     μ σ μ σ−′ ′ = 1( , ) ( , ).g a f    
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We can then show (Jaynes  2003  )  that the invariance condition under the preceding 
transformation group leads to the solution:

     

μμ σ
σ σ

−⎛ ⎞Φ = ⎜ ⎟⎝ ⎠
1

( , , ) ,
x

x h
   

where  h  is an arbitrary function. In this case we see that under the term ‘complete 
ignorance’ we actually put a ‘state of knowledge’ such that, under the transforma-
tions examined here, this state of knowledge will not be modifi ed. Let us now see 
what we can determine about the prior distribution. 

 Let us consider a sample     { }′ ′ ′…1 2, , , nx x x   , and try to estimate its mean     μ′    and 
standard deviation     σ ′   . If we are in a state of ‘complete ignorance’ as defi ned ear-
lier, then the problem is equivalent to the previous one. The functions  f  and  g  must 
therefore be identical whatever the values of  a  and  b . Consequently,  f  must satisfy 
the functional equation:

     ( ) ( )μ σ μ σ= +, ,f a f b a
   

whose general solution is:

     
( )μ σ

σ
=, ,

C
f

   

where  C  is a constant term. This gives us a now complete demonstration of Jeffreys’s 
rule, described above in this Sect.  3.1 . 

 But this rule applies only to the preceding transformation group. Had we chosen 
another group, another rule would have applied. We must always, therefore, specify 
the transformation group on which we are working. However, in the example stud-
ied here, the transformation group used seems to be the most logical choice, as we 
can change the mean through translation, and modify the standard deviation through 
multiplication by a constant. 

 In our view, it was the physicist and computer scientist Knuth  (  2003a,   b,   2005, 
  2007,   2008  )  who succeeded—using lattice theory—in showing that the theory of 
logical probability and information theory were dual with respect to each other. He 
thus combined probability and entropy into a more general theory: we will discuss 
it in more details on Sect.  3.2  and Conclusion of Part I. 

 We have deliberately refrained from discussing the work of the philosopher Rudolf 
Carnap on probability  (  1950  ) . First, unlike all the authors cited here, Carnap considers 
two different concepts of probability: (1) what he calls ‘probability 

1
 ’ or ‘inductive 

probability’ denotes a logical probability that people use constantly, so there can be no 
doubt as to its meaning; (2) what he calls probability 

2
 ’ is objective probability. A great 

many authors have criticized this dualist approach (Suppes  2002a  ) . Second, Carnap’s 
more general philosophical program to reduce the theoretical language of science to a 
language of observations (Carnap  1928,   1933  )  is now recognized by most philoso-
phers as a failure (Pierre Jacob  1980 ; Sarkar  1996  ) . Mainly for these reasons, we shall 
not address his approach to logical probability here. 
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 In sum, the logicist approach to probability enjoyed a powerful expansion in the 
late eighteenth and early nineteenth centuries with Laplace. It then declined to the 
point of total extinction in the second half of the nineteenth century and the early 
twentieth century, but has since been revitalized, winning a growing number of 
advocates.  

    3.2   Paradigm and Axiomatics of Logical Probability 

 As in the previous chapters, we begin by defi ning the underlying paradigm of this 
approach before examining the main axiomatizations that have been derived from it 
over time. 

    3.2.1   The Paradigm 

 We shall try to identify here the main ideas that inform the logicist approach. Let us 
begin by specifying which aspects of its predecessors it rejected. 

 The notion of frequency had been crucial for objective probability and had pre-
vailed for over a century: the probability of an event was regarded as equivalent to 
its frequency. This notion was stripped of its importance in logical probability:

  The essence of the present theory is that no probability, direct, prior, or posterior is simply 
a frequency. (Jeffreys  1939  )   

Jeffreys recognized that a numerical estimate is often the same as a frequency 
but, even so, this does not imply that probability and frequency are identical con-
cepts. Likewise, Jaynes attacked the objectivists for rejecting the notion of probabil-
ity defended by Bernoulli, Bayes, and Laplace as describing a state of knowledge 
and for replacing it with the notion of frequency. Examining Shannon’s results, he 
observed:

  The probabilities assigned to individual messages are not measurable frequencies; they are 
only a means of describing a  state of knowledge ; just the original sense in which Laplace 
and Jeffreys interpreted a probability distribution. (Jaynes  1979  )   

This overall rejection of the notion of frequency by the logical-probability theo-
rists shows the extent of their hostility to von Mises’s axiomatization. However, as 
we shall see, their axiomatization converges in many respects with that of 
Kolmogorov, replacing the latter’s notion of ‘set’ with that of ‘propositions’ in the 
Boolean sense. 

 Similarly, they rejected any defi nition of probability in terms of infi nite sets of 
possible observations, as noted earlier for Jeffreys. He is very clear about this:

  In fact, no ‘objective’ defi nition of probability in terms of actual or possible observations, 
or possible properties of the world, is admissible. (Jeffreys  1939  )    
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 At the other end, the logicists rejected the subjective notion of personal probability. 
Let us take a more detailed look at the reasons for this rejection. 

 After showing how the principle of inverse probability describes a process of 
learning from experience, Jeffreys states:

  Differences between individual assessments that do not agree with the results of the theory 
will be part of the subject-matter of psychology. Their existence can be admitted without 
reducing the importance of a unique standard of reference. (Jeffreys  1939  )   

Polya  (  1954  )  went further by engaging in a very interesting discussion on the 
subject. He took up the third plausible reasoning outlined in Sect.  3.1 , where we 
know that  A  implies  B  and that  B  is true. In this situation, two people may agree that 
 A  becomes more probable, but may disagree on the strength of this evidence. The 
subjectivists recognize this by allowing the probability to take all values from zero 
to unity, as the person wishes, subject only to compliance with consistency rules. 
The logicists, for their part, do not accept that this probability can be individual. 
They conclude that two people agree that  A  becomes more probable, but set aside 
the strength of its evidence. Their plausible reasoning is thus unilateral, leaving 
open a wide margin of disagreement between different individuals. 

 Jaynes also clearly stated his disagreement with the subjectivist approach:

  Subjective Bayesians face an awkward ambiguity at the beginning of a problem, when one 
assigns prior probabilities. If these represent merely opinions, then they are basically arbi-
trary and undefi ned; it seems that only private introspection could assign them, and differ-
ent people will make different assignments. (Jaynes  2003  )   

In his view, prior probabilities should be determined solely by logical analysis, 
not introspection. 

 We can now distinguish more clearly the fundamental differences between the 
three approaches to probability, and we can more easily defi ne the paradigm of the 
logicist approach. 

 This approach examines propositions, not events (as in the objectivist approach), 
and it submits them to logical analysis in order to extract all the objective informa-
tion that they contain. The information is therefore independent of the individual, 
contrary to the subjective-probability approach. The paradigm of logical probability 
is predicated upon the notion of consistency. Let us take a more detailed look at its 
implications. 

 First, if a probability can be obtained through several different reasonings, then 
all possible reasonings should yield the same result. Second, to determine a proba-
bility, we need to factor in all the objective information available on this proposi-
tion, without neglecting any of that information. We can therefore state that the 
notion of consistency effectively characterizes the logical relationship that should 
exist between a proposition and the information available on it, whether this con-
sists of observed data or a more complex form of information. 

 As we can see, this notion of consistency is different from that of coherence, 
used in subjective probability. Coherence encompasses not only objective informa-
tion but also the subjective information that a person may possess on the phenomenon 
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studied. For the logicists, a rule that exhibits the property of coherence, but not that 
of consistency, cannot be accepted as a rule of logical inference, for it may lead to 
different results for different individuals, depending on their psychological 
conditions. 

 We also saw that the theory of logical probability needs to introduce the notion 
of Shannon’s entropy in order to produce a more correct formulation of the prior 
information at our disposal. This notion allows us, by maximizing its expression, to 
formalize the incomplete information often available on a phenomenon of interest. 
Maximization will therefore generalize the principle of insuffi cient reason, also 
called the indifference principle. On this score, logical probability stands in opposi-
tion to subjective probability: for the latter, prior probabilities represent totally sub-
jective degrees of belief, which can therefore take on any value provided that the 
coherence principle is met. For this reason, we believe it is useful to incorporate 
entropy into the paradigm of logical probability.  

    3.2.2   The Axioms 

 Before examining the various axiomatics proposed for logical probability, we must 
defi ne what we mean by  proposition  and review the axiomatics of the algebra estab-
lished by Boole  (  1854  )  for the logic of propositions. 

 We cannot engage in a detailed discussion of the signifi cance of the notion of 
proposition. However, we should state the specifi c meaning that we assign to it here. 
We shall defi ne a proposition as a syntactical construct for which it makes sense to 
speak of truth. Accordingly, we shall not regard optative statements (expressing a 
wish), imperative statements, and questions as propositions. We also adopt the 
framework of classical logic, which does not consider propositions of indeterminate 
status: a proposition will be either true or false. The propositional calculus becomes 
an algebraic structure called  Boolean algebra . Let us see in greater detail how to 
defi ne it. 

 We start from a set of propositions     { }= , ,...P A B   , defi ned in the sense that we 
have given them. We introduce two laws of internal composition: the logical prod-
uct or conjunction of two propositions  A  and  B  is noted     ∩A B   ; the logical sum or 
disjunction of two propositions  A  and  B  is noted     ∪A B   ; the negation of a proposi-
tion  A  is noted     A   . Two specifi c elements must be included in set  P : ‘the proposition 
is true’, noted  1 , ‘and the proposition is false’, noted   F  ; these elements are the truth 
values of any proposition. In this algebra, the sign = does not denote equal values, 
but equal truth. In writing complex propositions, we can use parentheses to indicate 
the order in which the propositions must be combined. 

 The algebra is accordingly defi ned by the following axioms, which apply both to 
the two laws of internal composition and to all elements of  P :

    1.    Idempotence: for all  A ,     A A A∪ =    and     A A A∩ =   .  
    2.    Commutativity: for all  A  and  B ,     A B B A∪ = ∪    and     A B B A∩ = ∩   .  
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    3.    Associativity: for all  A ,  B  and  C ,     ( ) ( )A B C A B C A B C∪ ∪ = ∪ ∪ = ∪ ∪    and 
    ( ) ( )A B C A B C A B C∩ ∩ = ∩ ∩ = ∩ ∩   .  

    4.    Distributivity of one law relative to the other: for all  A ,  B ,  C ,     ( ) ( ) ( )A B C A C B C∪ ∩ = ∩ ∪ ∩
  and     ( ) ( ) ( )A B C A C B C∩ ∪ = ∪ ∩ ∪   .  

    5.    Absorption: for all  A  and  B ,     ( )A A B A∩ ∪ =    and     ( )A A B A∪ ∩ =   .  
    6.    Bounds: for all  A :  1     A∪ =    1  and   F       A∩ =      F .   
    7.    Complementarity: for all  A ,     A A∪ =    1  and     A A∩ =      F .      

 As we can see, this algebra meets the duality principle, where we can consistently 
permutate the symbols     ∪    and     ∩    conjointly with the symbols  1  and   F  . If a result is 
true in one Boolean algebra it is true in its dual. 

 The implication     ⇒A B    is merely a simplifi ed expression of     = ∩A A B   . In this 
case, the two strong syllogisms stated in Sect.  3.1  can be represented simultane-
ously as follows: if     =B    1 , and is therefore true, then the formula shows that     =A    1 , 
therefore  A  is also true; if     =B    Ф , and is therefore false, then the formula shows that 
    =A    Ф , therefore  A  is also false. By contrast, this formulation can no longer say 
anything about the two plausible propositions given after the previous syllogisms. 
We need to extend Boolean deductive logic in order to take account of these cases, 
whose examination is essential here. 

 We shall now present some axiomatics of logical probability. However, we shall 
set aside the axioms put forward by Keynes  (  1921  ) . Unlike his highly original ideas 
on probability, they are not of great interest, as they merely formalize a classical 
view of probability (Suppes  2002a  ) . 

 Let us move directly to the far more original approach developed by Jeffreys. 
His basic idea is to represent the probability of a proposition  A , for which we 
have information  I , by     ( )P A I   . He does not immediately offer a measure of this 
probability, but tries to determine which axioms must satisfy the probabilities 
(Jeffreys  1939  ) :

    1.    Given  I ,  A  is either more, equally, or less probable than  B , and no two of these alternatives can 
be true.  

    2.    If  I ,  A ,  B ,  C  are four propositions, and, given  I ,  A  is more probable than  B  and  B  is more 
probable than  C , then, given  I ,  A  is more probable than  C .  

    3.    All propositions deducible from a proposition  I  have the same probability on data  I ; all proposi-
tions inconsistent with  I  have the same probability on data  I .  

    4.    If, given  I ,  A  and  A ′ cannot both be true, and if, given  I ,  B  and  B  ′ cannot be both true, and if, 
given  I ,  A  and  B  are equally probable and  A ′ and  B  ′ are equally probable, then, given  I ,     A A∪ ′   
and     B B∪ ′    are equally probable.  

    5.    The set of possible probabilities on given data, ordered in terms of the relation ‘more probable 
than’, can be put into one-one correspondence with a set of real numbers in increasing order.  

    6.    If     I A∩   entails  B , then     ( ) ( ).P A B I P A I∩ =    6    

 The fi rst axiom entails the comparability of probabilities and resembles de 
Finetti’s fi rst axiom—with, however, the additional condition on available informa-

   6   For the sake of consistency with the rest of our discussion in this volume, we have designated the 
propositions in different terms from those used by Jeffreys.  



102 3 The    Epistemic Approach: Logicist Interpretation

tion. The second axiom entails the transitivity of the probability relation and 
resembles de Finetti’s third axiom. The third axiom states that the extreme degrees 
of probability are certainty and impossibility. It ensures consistency between deduc-
tive logic and the logic of the probable. It is similar to de Finetti’s second axiom. 
The fourth axiom states that the equality of probabilities is preserved in the logical 
sum of propositions: we can qualify it as the additivity axiom. De Finetti formu-
lated his fourth axiom in more general terms, since he considers inequalities as 
well as equalities, but, again, the two axioms resemble each other. The fifth 
axiom states that we can establish a correspondence between the set of probabili-
ties and a set of real numbers in increasing order. The sixth axiom is an extension 
of the third axiom: ‘it is impossible, given  I , that either  A  or     ∩A B    should be true 

without the other’. 
 Most interestingly, although Jeffreys  (  1939  )  completely ignored de Finetti’s axi-

oms     (  1931a,   b,   1937  ) , his fi rst four axioms closely resemble the fi rst four axioms 
of the Italian subjectivist. Naturally, they differ by being subordinated to prior infor-
mation, which subjectivists did not consider in their axioms. Conversely, in 1938 
(published in English in  1985  ) , de Finetti reviewed Jeffreys’s book on scientifi c 
inference  (  1931  ) . He was therefore aware of Jeffreys but proposed his axioms before 
Jeffreys. 

 Jeffreys showed that the principle of inverse probability—fi rst enunciated by 
Bayes—follows very easily from this axiomatics, as do many other logical-probability 
results. This set of axioms, as we shall see later, also allowed him to build a theory 
of statistical inference. He named it ‘induction’ in contrast to ‘deduction’, which he 
regarded as inapplicable to non-mathematical sciences. 

 Immediately on publication, however, his axiomatics and many of his positions 
were met with considerable skepticism by most critics, who included some of the 
best probabilists and statisticians of his day (Neyman  1940 ; Irwin  1941 ; Wilks 
 1941  ) . Irwin  (  1941  ) , for instance, stated unequivocally that

  one must reject its axioms. Jeffreys’ fi rst axiom is ‘Given  p ,  q  is either more or less probable 
than  r , or both are equally probable; and no two of these alternatives are true’. Now, if prob-
ability is a degree of rational belief, this axiom might legitimately be rejected. Its accep-
tance is a matter of opinion. It by no means follows that degrees of rational belief can be 
ordered in a linear series.  

Clearly, Irwin failed to grasp Jeffreys’s argument and attributed to him the sub-
jectivist stance that individuals should be left free to choose the probability they 
prefer, as de Finetti argued. Irwin concluded with a very clear rejection:

  From a scientifi c point of view it is doubtful that there will be many scholars thoroughly 
familiar with the system of statistical inference initiated by R.A. Fisher and extended by 
J. Neyman, E.S. Pearson, A. Wald and others who will abandon this system in favour of the 
one proposed by Jeffreys in which inverse probability plays the central role.  

Interestingly, Wald, mentioned here, was an ardent advocate of von Mises’s 
objectivist approach: he supplied the general strategies for decision-making in the 
presence of uncertainty  (  1950  ) . In so doing, he merely revived the rules given by 
Bayes and Laplace in the eighteenth century. Wald openly recognized this, calling 
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his rules ‘Bayes strategies.’ Some objectivist authors have been honest enough to 
recognize the principles of the logicist school, when necessary. 

 The response from philosophers and mathematicians was just as negative as that 
of the probabilists (Nagel  1940 ; Braithwaite  1941  ) . Let us simply quote Nagel 
 (  1940  ) , echoing criticism of the fi rst axiom:

  But if there is no common agreement on the degree of probability a proposition possesses, 
of what value is the elaborate calculus?  

This is another example of the confusion between subjective probability and 
logical probability. The quotations above are merely a small fraction of the criti-
cisms directed against Jeffreys. 

 The critics’ tone did not change until the second edition of the work, in 1961, at 
a time when the Bayesian approach was making a comeback. For instance, Lindley 
 (  1962  ) , one of the fi rst to revive the Bayesian approach, wrote:

  This is probably the most original and important book on statistics that had appeared in the 
last 40 years. The only serious competitor is Fisher’s ‘Statistical analysis for research work-
ers’. The distinction between the two is that Fisher is usually right for the wrong reason, 
whereas Jeffreys gets the reasoning broadly correct, as well as the answers .   

There is no other way to describe this than as an outspoken tribute to Jeffreys’s 
work. 

 Since Lindley, a great many authors have recognized the importance of Jeffreys’s 
book and cite it as the seminal text for this approach. The article by    Robert et al. 
(2009), while noting the book’s weaknesses, states that one can reasonably claim it 
as the main reference in the fi eld. On the axiomatics, the authors write that these

  paragraphs derive standard mathematical logic axioms that directly follow from a formal 
[modern] defi nition of a probability distribution, with the provision that this probability is 
always conditional on the same data.  

We shall not go as far as these authors, for—as they themselves noted for the 
book as a whole—Jeffreys’s axiomatics requires further adjustments. Let us see, 
specifi cally, whether it meets the conditions of the paradigm outlined earlier. 

 The axiomatics does indeed satisfy the fi rst condition for the consistency of the 
theory:

  For any assessment of the prior probability the principle of inverse probability will give a 
unique posterior probability. (Jeffreys  1939  )   

The result obtained is therefore unique. But, for the prior distribution, it is harder 
not to set aside a part of the total information available in order to estimate it. 
Jeffreys gives some principles—particularly for non-informative prior elements 
such as the estimation of a standard deviation—but he notes:

  These principles sometimes indicate a unique choice, but in many problems some latitude 
is permissible, so far as we know at present. (Jeffreys  1939  )   

Thus the two conditions for the theory’s consistency are not always met by the 
prior distribution. Lastly, for these prior distributions, Jeffreys could not use the 
maximization provided by Shannon’s entropy, which was not known at the time 
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when he wrote his book. His axiomatics, therefore, does not cover the entire fi eld 
defi ned by our paradigm. 

 Let us now see how Richard Cox  (  1946,   1961  )  axiomatizes these probabilities. 
When using the rules of Boolean algebra, he argued, only two axioms are useful:

     1.    The probability of an inference on given evidence determines the probability of its con-
tradictory on the same evidence.  

   2.    The probability on given evidence that both of two inferences are true is determined by 
their separate probabilities, one on the given evidence, the other on this evidence with 
the additional assumption that the fi rst inference is true. (Cox  1961  )        

 These axioms do not use the term probability in its conventional meaning, for 
Cox does not defi ne this probability until later, as we shall see. The term ‘likeliness’ ,  
proposed by Shafer  (  2004  ) , seems to us to be the most satisfactory term, if we want 
to avoid all confusion with the terms likelihood (used by Cox but problematic today 
owing to its use by Fisher  1956  ) , credibility 7  and plausibility, 8  already used with 
another meaning, as seen in Chap.   2    . We shall therefore use likeliness in the subse-
quent discussion. 

 Cox introduces the notation     A I   for the likeliness of inference  A , on the basis of 
hypothesis  I . He then states that the second axiom implies that the likeliness of 
    ∩A B I   is a function of the likeliness     B I   and of     ∩A B I   :

     
∩ = ∩( ) ( , ).A B A F A B H B H

   

But, because of the rules of Boolean algebra, as:

     
∩ ∩ = ∩ ∩ = ∩ ∩( ) ( ) ,A B C I A B C I A B C I

   

the function  F  must satisfy the functional equation:

     [ ] [ ]( , ), , ( , ) ,F F x y z F x F y z=
   

for     = ∩ ∩x A B C I   ,     = ∩y B C I   , and     =z C I   . 9  Under certain conditions that the 
function  F  must meet—here, it must be twice differentiable with a continuous sec-
ond derivative —the result is a function of a single variable  P  satisfying:

     
∩ = ∩( ) ( ) ( ),P A B I CP A I P B A I

   

   7   Authors using the term with this meaning include Paris  (  1994  ) , Halpern  (  1999a,   b  ) , and Colyvan 
 (  2004,   2008  ) .  
   8   Authors using the term in this sense include Jaynes  (  2003  )  and Arnborg and Sjödin  (  2001  ) .  
   9   This equation was solved by Abel  (  1826  ) .  
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where the constant  C  can be taken as equal to unity. As this function is arbitrary, we 
can take     =( )P u u   , which entails the following relationship, also known as multipli-
cative rule:

     
∩ = ∩( )( ).A B I A I B A I

    

 Similarly, Cox shows that the negation of a proposition  A  must satisfy the equation 
    = ( )A I f A I   , so that the function  f  satisfi es the functional equation     [ ]=( ) .f f x x    

Cox’s axioms therefore entail the following additive rule:

     
+ = 1A I A I

   

and the generalized additive rule:

     
∪ = + − ∩ .A B I A I B I A B I

    

 Using the fi rst two rules alone, Cox was able to demonstrate what is known as 
Cox’s theorem, which states that the only measures of likeliness satisfying the rules 
are the measures that are isomorphic with the measure of logical probabilities. This 
theorem and its axioms suffi ce to demonstrate the validity of the entire analysis of 
logical probability—Bayes’s theorem included—except the procedure for assigning 
prior probabilities. Cox thus appears to have fully met his goal, namely:

  [to] try to show that … it is possible to derive the rules of probability from two quite primi-
tive notions which are independent of the notion of ensemble and which … appeal rather 
immediately to common sense. (Cox  1946  )    

 However, some authors have pointed out weaknesses in his reasoning. In particular, 
they have shown that Cox omitted various axioms and hypotheses that consequently 
remained implicit, and their non-fulfi llment can actually invalidate his approach 
altogether. In fact, Cox’s approach relied less on common sense than he claimed. 

 Paris  (  1994  ) , for instance, showed the need to add fi ve hypotheses to prove Cox’s 
rules. Some are not problematic, but others are more inconvenient. In particular, the 
possible values of the probability thus defi ned must form a dense set to ensure that 
Cox’s measure is isomorphic with the measure of probability. 

 Halpern  (  1999a  ) , using an explicit counter-example, shows that Cox’s rules are 
not always met in a fi nite set, even under hypotheses more heroic than Cox’s own. 
Moreover, in infi nite sets, these rules are inadequate. But in a later article  (  1999b  ) , 
Halpern shows that two conditions are necessary for the validity of Cox’s rules, even 
in fi nite sets. First, the previously mentioned function  F  should be associative—a 
condition that Cox stated in his 1946 article but did not in his 1961 book. Second, the 
function  f  should also meet the condition:

     

⎛ ⎞ ⎡ ⎤
=⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦

( )
( ) .

( )

x f y
y f f x f

y f x    
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Halpern notes, however, that it is hard (at least for himself) to see this condition 
as grounded in common sense. More simply, Shafer  (  2004  )  suggests adding the fol-
lowing two axioms, which are implicit in Cox’s text, on the existence of the two 
functions, with the notations used here:

     3.    The likeliness     A I   is determined in some way by the likeliness     A I   : 

    ( )A I f A I=   , where  f  is some function of one variable.  

   4.    The likeliness     A B I∩    is determined in some way by the two likeliness     A I   and 

     B A I∩   :     ( , )A B I F A B I B I∩ = ∩   , where F is some function of two variables .       

Regarding #4, Cox  (  1946  )  observed that: ‘Written in symbolic form, this assump-
tion may not appear very axiomatic’. He thus apparently recognized that this was 
indeed an axiom. However, in his book  (  1961  ) , he no longer described it as an 
axiom. 

 Van Horn  (  2003  )  set out in detail the arguments needed to obtain complete proof 
of Cox’s theorem. First, he clearly made the likeliness of a proposition conditional 
upon the information available. Second, he showed the conditions for ensuring the 
accountability of the likeliness in the propositional calculus. 

 Van Horn proposed the following axioms, which provide a substantial response 
to the criticisms discussed above:

     1.    The likeliness     A I   , is a single real number. There exists a real number  T  such that 
    ( )A I T£   for every  I  and  A .  

   2.    Likeliness statements are compatible with the propositional calculus (Boolean 
algebra).  

   3.    There exists a nonincreasing function  f  such that     ( ) ( ).A I f A I=   for all  A  and consis-
tent  I . Defi ne     ( ).F f T=     

   4.    There exists a nonempty set of real numbers     
0P    with the following two properties:

   •     
0P    is a dense subset of     ( , )F T   . That is, for every pair of real numbers  a ,  b  such that 

    F a b T£ £<   , there exists some     
0c P∈   such that     a c b< <    .   

  • For every     1 2 3 0, ,y y y P∈    there exists some consistent  I  with a basis of at least 
three atomic propositions—call them     1 2 3,A A and A   —such that     1 1( )A I y=   , 
    2 1 2( , )A A I y=    and     3 2 1 3( , , )A A A I y=   .     

   5.    There exists a continuous function  F :     [ ] [ ]2
, ,F T F T→   , strictly increasing in both 

 arguments on     [ ]2
,F T   , such that     ( ) [( , ), ( )A B I F A B I B I∩ =    for any  A ,  B  and 

consistent  I .       

 We have slightly modifi ed some notations. In particular, we have replaced the term 
‘plausibility’ with ‘likeliness’ and have not reproduced the Boolean algebra axioms. 

 Van Horn took up Cox’s initial axioms, giving a clearer formulation of their con-
ditions. To these, Van Horn added the conditions that were often implicit in Cox’s 
own presentations—an absence regretted by his critics. Van Horn then revisited 
Cox’s demonstration, adding some of the previous hypotheses, and obtained the 
multiplicative and additive rules. He thus arrived at a theorem that supplies the basic 
conditions for probability calculus: 

 There exists a continuous, strictly increasing function  P  such that, for every  A ,  B , and 
consistent  I ,
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     1.        ( ) 0P A I =    iff  A  is known to be false given the information  I .  

   2.        ( ) 1P A I =    iff  A  is known to be true given the information  I .  

   3.        ( )0 1P A I£ £   .  

   4.        ( ) ( ) ( , )P A B I P A I P B A I∩ =   .  

   5.        ( ) 1 ( )P A I P A I= −    if  I  is consistent .        

 We can see again that the main Kolmogorov’s axioms are also valid for logical 
probabilities, with the difference that these probabilities apply to propositions and 
are information-dependent (Jaynes  2003  ) . Van Horn also gives them here in theo-
rem form, as he has deduced them from more fundamental axioms. 

 Cox ( 1961 ), as well, introduced Shannon’s entropy, devoting an entire chapter to 
it. He showed that the notion makes it possible to measure the quantity of informa-
tion contained in a set of inferences that we want to assess in probabilistic terms. 
Unfortunately, Cox does not use Shannon’s entropy to estimate prior probabilities 
in the presence of incomplete information. 

 Jaynes took up most of Cox’s analysis, additionally seeking general principles in 
order to determine prior probabilities from qualitative information on the phenom-
ena studied. 

 As shown earlier, Jaynes’s main contribution was to apply the notions of entropy 
and transformation group for the purpose of estimating prior probabilities under 
various conditions of information availability. We have already given specifi c exam-
ples. Let us now examine the more general solution. 

 In the discrete case, let us assume that a variable,  x , can take  n  values,     ( )1 2, ,..., nx x x   , 
corresponding to  n  different propositions, and that there are  m  different functions of 
 x , yielding the constraints:

     ( )kf x    

where     1 k m n£ £ <   , and we have at our disposal a set of values,     kF   , which must 
satisfy the expectations of these functions. In this case, therefore, we must fi nd the 
values of the  n  parameters     ip    that comply with the system of  k  equations:

     =

= ∑
1

( ).
n

k i k i
i

F p f x
   

These values are the ones possessing maximum entropy, subject to all the con-
straints. Incorporating Lagrange multipliers,     λ j

  , this confi guration is written:

     

λ λ λ λ
= = = = =

⎡ ⎤ ⎡ ⎤∂∂ − − − = − − − ∂ =⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ ∑ ∑0 0

1 1 1 1 1

( 1) ( ) ( 1) ( ) 0
n m n n m

i j i j i j j i i
i j i i ji

H
H p p f x f x p

p
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The solution of this equation system yields the solutions:

     

λ λ
=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑0

1

exp ( ) ,
m

i j j i
j

p f x

   

with the condition that the probabilities must sum to unity. If we now defi ne the 
function:

     
( )λ λ λ λ

= =

⎡ ⎤
… = −⎢ ⎥

⎣ ⎦
∑ ∑1 2

1 1

, , , exp ( ) ,
n m

m j j i
i j

Z f x

   

we can show that the values of     kF    are equal to:

     

( )λ λ λ
λ

∂ …
= −

∂
1 2log , , ,

,m
k

k

Z
F

   

which allows us to estimate all the     ip    values. 
 For continuous distributions, the solution is more complex and requires a prior 

distribution describing our complete ignorance of the variable  x . Earlier, we gave 
the solution for estimating the standard deviation of such a distribution, using a 
transformation group that involves a change of scale and a translation. We refer 
the interested reader to the chapter of Jaynes’s book,  Ignorance priors and transfor-
mation groups   (  2003  ) , which shows the complexity of a general solution to this 
problem. 

 However, not all Bayesians join in this quest for a unique prior (see, in particular, 
the issues discussed by Seidenfeld  (  1987  )  and Robert  (  2006  ) , and their criticisms of 
the entropy-maximization approach). Even Jeffreys—who initially believed in the 
existence of a single logically correct prior—later altered his position. In the fi rst 
edition of  Scientifi c inference   (  1931  ) , he wrote:

  Logical demonstration is right or wrong as a matter of the logic itself, and is not a matter 
for personal judgement. We say the same about probability. On a given set of data  p  we say 
that a proposition  q  has in relation to these data one and only one probability. If any person 
assigns a different probability, he is simply wrong, and for the same reason as we assign in 
the case of logical judgements .   

A similar passage occurs in the fi rst edition of  Theory of probability   (  1939  ) . 
But in an article published many years later, he noted:

  It may still turn out that there are many equally good methods […] if this happens there 
need be no great diffi culty. Once the alternatives are stated a decision can be made by inter-
national agreement, just as it had been in the choice of units of measurement and many 
other standards of reference. (Jeffreys  1955  )   

In the second edition of  Scientifi c inference  (1957), Jeffreys omitted the passage 
quoted above. He actually proposed another method  (  1946  )  than those used in 
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 Theory of probability   (  1939  )  to estimate the prior by means of the information 
matrix, introduced by Fisher  (  1925a  ) :

     

θ
θ θ

⎛ ⎞∂= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

2

( ) ,ij
i j

l
I E

   

where  l  is likelihood, and   q   the parameters to estimate. The rule consists in taking 
the  prior  values:

     
( ) ( )

1
2 det I⎡ ⎤∝ ⎣ ⎦θπ θ θ
   

where the symbol     []det .   denotes the determinant of the information matrix. This 
estimate possesses the invariance property. Many other prior estimates have been 
suggested, which we cannot describe in detail here. For a fuller presentation and 
discussion, see Kass and Wasserman  (  1996  ) . 

 Admittedly, entropy maximization is not the only method that can be used to 
estimate priors. Yet we believe the concept is essential for understanding entropy’s 
deeper connections to logical probability. Let us begin by looking at the axiomatiza-
tion of entropy. 

 As we said in Sect.  3.1 , Shannon  (  1948  )  set the conditions that a measure must 
fulfi ll in order to characterize the information contained in a discrete distribution of 
probabilities     …1 2, , , np p p   . The measure     …1 2( , , , )nH p p p   needs to meet the following 
conditions: 

  1.        H  should be continuous in the     ip   . 

        2. If all the     ip   are equal,     1
ip n=   , then  H  should be a monotonic increasing function of  n . With 

equally likely events there is more choice, or uncertainty, when there are more possible 
events.       

  3. If a choice be broken down into two successive choices, the original  H  should be the weighted 
sum of the individual values of  H .       

 Shannon then showed that the only function  H  satisfying these three axioms is of 
the form:

     =

= − ∑
1

log .
n

i i
i

H K p p
    

 If we set the constant     = 1K   , we effectively obtain Shannon’s entropy. Other 
authors (Shore and Johnson  1980 ; Skilling  1988 ; Caticha  2004  )  have naturally dis-
cussed these axioms and suggested more precise ones, in particular with a view to 
making them applicable to more complex conditions and continuous probability 
distributions. We shall not describe them here, for the subject of this book is not 
entropy: our focus will be, instead, on the links between probability and entropy, 
which we have not yet fully spelled out. Our discussion is then confi ned to the three 
simple axioms given by Shannon for discrete probabilities. 

 As noted earlier, Richard Cox  (  1946,   1961  )  showed that probability is the only 
logically consistent measure of the relative degree of implication between propositions. 
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He did so by generalizing the Boolean implication and defi ning probability as the 
degree below which an assertion  B  is implied by another assertion  A . We can thus 
write:

     
≡ →( ) ( ),P B A A B

   

where the right-hand member represents the value of the degree of implication of 
proposition  B  by proposition  A . Cox was able to show that probability was the only 
measure (to within one constant) allowing an estimation of that value. Cox  (  1979  )  
pursued this path of inquiry by defi ning a  question  as the exhaustive set of proposi-
tions that answer the question. He showed that, in the same way as one had consid-
ered the relations between propositions under the effect of implication, one can 
consider the relations of one question with another question. One can then defi ne 
the relevance of a question with respect to another as the degree to which a question 
 a  provides information on another question  b . As a result, we can write:

     
≡ →( ) ( ),H a b a b

   

where the right-hand member represents the value of the relevance of question  a  to 
question  b . We shall see below that this measure is performed by entropy, hence the 
notation     ( ).H   , which we have already used for entropy. 

 While generalized Boolean algebra supplies a suitable mathematical structure 
for propositions, hence for logical probability, it is not fully appropriate for ques-
tions, and thus for the concept of relevance. True, we saw Sect.  3.2  that we can 
defi ne the complementary of an assertion as the negation of that assertion, such as 
    ∪ =A A    1  and     ∩ =A A     F  . But we shall now demonstrate that this complementarity 
does not obtain for questions (Knuth  2002  ) . 

 To do so, it is useful to examine in greater detail how we can defi ne Boolean 
algebra from more general notions of partly ordered sets, lattices, and distributive 
lattices, which eventually lead to Boolean algebra. In particular, lattice theory—in 
which the order relationship is fundamental—will provide a better understanding of 
this process (Birkhoff  1935 ; Barbut  1968 ; Barbut and Monjardet  1970  ) . Let us see 
more specifi cally how the theory developed. 

 Lattice theory works on sets partly ordered by the order relation     ⊆   , 10  which 
satisfi es the following axioms for all elements  a ,  b ,  c :

     1.    Refl exivity: for all  a ,     ⊆a a   .  

   2.    Antisymmetry: if     ⊆a b    and if     ⊆b a   , then     =a b   .  

   3.    Transitivity: if     ⊆a b    and if     ⊆b c   , then     ⊆a c   .      

   10   This relation is more general, as it applies not only to sets but also to aggregates in which objects 
can be individualized even though the total defi nition of the objects is not possible. In such cases, 
the relation is written     ≤   .  
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This order relation is partial, as there are elements that cannot be placed in a 
relation either in one direction or another. This relation possesses the duality property, 
which means that the reciprocal of a partial order is itself a partial order. In conse-
quence, the relation     ⊇    is also a partial order. Each pair of elements admits of an 
upper bound and a lower bound, as does the complete set itself. 

 From these partly ordered sets, we can defi ne a  lattice  that will satisfy the fi rst 
two axioms of Boolean algebra stated earlier: commutativity and associativity. 
Moreover, the relation     ⊆a b   can be expressed by the two consistency relations:

     ∪ = ∩ =and .a b a a b b    

We can therefore define such a lattice either as an algebra provided with the 
two internal distributions noted     ∩    and     ∪   , or as a set provided with an order 
relation     ⊆    

 When we introduce the third axiom of Boolean algebra (distributivity), we obtain 
a distributive lattice. And when we introduce the complementarity axiom, we end 
up with a Boolean lattice. 

 Richard Cox  (  1946,   1961  )  showed that the propositions formed a Boolean lattice 
and that the two internal composition laws comply with Boolean algebra. If the 
number of elements of the most detailed partition of the propositions is  n , the total 
number of partitions will be 2  n  . By contrast, Knuth  (  2002,   2003a,   b  )  has shown that 
the questions form a distributive lattice composed of the set of proposition subsets. 
The number of subsets follows a monotonic Boolean function, 11  which increases far 
more rapidly than the number of distinct propositions: for example, if for 4 
 propositions, of which two are join-irreducible, we have 5 questions, then for 8 
propositions there will be 19 questions; for 16 propositions, 167 questions; for 32 
propositions, 7,580 questions; for 64 propositions, 7,828,353 questions, and so on. 
But this  distributive lattice, even reduced to the questions that can be answered 
by a  proposition, is not Boolean: Knuth  (  2002  )  has shown that—unlike with the 
 propositions—some questions have no complement. However, the distributive lat-
tices share the associativity and commutativity properties of Boolean lattices. This 
allows a calculation similar to that of the propositions with a multiplicative rule and 
an additive rule, as well as the equivalent of a Bayesian theorem. The symmetry 
between the two calculations, in this case, is remarkable. 

 We can go even further by showing that, as probability is the only valid measure 
of the Boolean space of the propositions (to within one constant) (Cox  1946,   1961  ) , 
entropy will be the only valid measure (to within two constants) of the question 
space (Aczèl et al.  1974 ; Knuth  2009  ) , which forms a lattice. We can thus normalize 
this measure between zero and unity, as well as the probability. 

 This approach also justifi es the entropy maximization advocated by Jaynes, for it 
involves the use of available information on the question space to assign priors in 
the proposition space (Caticha  2004  ) . We will develop in the Conclusion of Part I, 
its use in order to show a cumulativity in probability theories.   

   11   For more details, see the website   http://research.att.com/~njas/sequences/    .  

http://research.att.com/~njas/sequences/
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    3.3   Logicist Statistical Inference 

 The subjectivists, such as Ramsey and de Finetti, emphasized the individual in order 
to introduce probability and statistical inference. By replacing the fair price of a 
wager—suggested by Pascal and the eighteenth-century probabilists—with the per-
sonal price that an individual was willing to pay for a wager, they introduced a 
purely individual psychological behavior. In contrast, the logicists were to leave no 
room for the individual in probability theory, as Jaynes  (  2003  )  stated very clearly:

  When we apply probability theory as the normative extension of logic, our concern is not 
with the personal probabilities that different people might happen to have, but with the 
probabilities that they ‘ought to’ have, in view of their information […]  

For Jaynes, the probabilist must concentrate on the incomplete information avail-
able on a phenomenon in order to draw an inference, i.e., to derive a forecast of a 
future phenomenon from a similar past phenomenon. 

 Likewise, we saw in Sect.   1.3     how diffi cult it was, if not impossible, to draw a 
correct inference under an objectivist approach. We must now examine, therefore, 
the logicist approach to inference. 

 In fact, the main goal of the logicist approach is to supply a method that will 
allow us to draw inferences from observation data. These inferences must be consis-
tent with one another and usable for predicting the outcome of future experiments 
in the same fi eld. The term ‘predict’ is important here, for it in no way implies a 
mathematical form of deduction. 

 As seen earlier, the objectivists reject the notion of a probability of a hypothesis; 
they therefore refuse induction and accept only deduction as valid. 12  By contrast, the 
logicists clearly accept both: they effectively recognize the role of deduction in 
mathematics, 13  but reject the notion that any scientifi c method can somehow be 
reduced to deductive logic (Jeffreys  1931,   1939  ) . They go well beyond, by empha-
sizing that inference of future behavior from past observations is not deductive but, 
on the contrary, fully inductive:

  A common argument for induction is that induction has always worked in the past and 
therefore may be expected to hold in the future. It had been objected that this is itself an 
inductive argument and cannot be used in support of induction. What is hardly ever men-
tioned is that induction has often failed in the past and that progress in science is very 
largely the consequence of direct attention to instances where the inductive method has led 
to incorrect predictions. (Jeffreys  1931  )   

Jeffreys later showed that this process not only suffers no contradiction but consti-
tutes the only possible method for scientifi c progress. It is this method of successive 

   12   Induction—a term coined by Francis Bacon  (  1620  ) —‘consists in discovering the principles of a 
system through the study of its properties, by means of observation and experiment’ (Franck  2002  ) . 
It has been used by all the pioneers of modern science, including Galileo, Descartes, and Newton.  
   13   The term  mathematical induction —which implies that mathematicians use induction—is mis-
leading, for the method is actually a form of deduction whose conclusion contains no more infor-
mation than was present in latent form in its premises.  
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approximations that underpins the strength of the approaches used not only in logical 
probability but also in most natural and social sciences. 

 At the same time, unlike the subjectivists who rely solely on coherence as defi ned 
by de Finetti, the logicists emphasize the consistency property spelled out by Cox. 
The latter is the only means of setting rules for logical inference:

  Yet it is consistency—not merely coherence—that is essential here, and we fi nd that, when our 
rules have been made to satisfy the consistency requirements, then they have automatically 
(and trivially) the property of coherence. (Jaynes  2003  )   

This notion of consistency, already advanced by Jeffreys  (  1931  ) , has for Jaynes 
a triple signifi cance:

     If we can reach a conclusion in several ways, then each reasoning must lead to the same • 
result.  
  We must take into account all the information available regarding a question, without overlook-• 
ing any of it.  
  We must always represent equivalent states of knowledge by equivalent plausibility distribu-• 
tions. In other words, if we have the same information set on two questions, we must assign the 
same plausibility to both sets.     

Jaynes  (  2003  )  actually introduced a robot to avoid all subjective judgment in 
assessing consistency: in this case, each individual, with access to the same infor-
mation, must arrive at the same estimate of the probability of a given event. In 
contrast, the coherence condition merely implies the absences of basic contradiction 
in an individual’s subjective assessment of probabilities: under this condition, each 
person can assign a different probability to a given event (de Finetti  1937  ) . 

 The consistency condition is the most signifi cant difference between subjectivist 
statistical inference and logicist statistical inference. On the other hand, the subjec-
tive and logical approaches to probability are in total accord on the notion of 
exchangeability and the theorem demonstrated by de Finetti, which we discussed in 
the section on subjectivist statistical inference in Sect.   2.3    . Hence logicist statistical 
inference also enables us to answer the question on which objectivist inference 
stumbled: what is the probability that an unknown parameter lies in a given inter-
val? In this connection, it is interesting to note that, in order for his subjectivism to 
be able to predict the outcome of coin tosses (heads or tails), de Finetti needed to set 
certain symmetry principles for logical probability, enabling certain probabilities to 
be identical to others (de Finetti  1964  ) . He did not explain, however, why a sym-
metry argument may be acceptable in certain cases and not more generally in all 
cases (Franklin  2001  ) , as the logicists admit. 

 We can conclude that, in the logical approach to probability, statistical inference 
and probability theory form an inseparable whole.  

    3.4   Application to Social Science 

 From his paper  La probabilité des causes par les événements  ( The probability of 
causes by events )  (  1774  )  to his book  La théorie analytique des probabilités  
( The analytical theory of probability )  (  1812  ) , Laplace extensively examined the 
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 application of inverse probability to various fi elds such as population sciences, 
astronomy, and human testimony. We begin with the application to the sex ratio at 
birth (Laplace  1778  ) , while recalling that Laplace addressed many other demo-
graphic phenomena including mortality, nuptiality, and fertility in different popula-
tion groups. 

 Laplace begins with an initial estimate based on the observation of     +m n    births, 
of which  m  are boys and  n  are girls. 14  He seeks the probability  p  that     +r s    future 
births will include  r  boys and  s  girls. Assuming that all values of the prior probabil-
ity  x  that a future birth will be a boy are equally probable, he shows that:
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After calculation of the integrals and simplifi cations owing to the fact that  m  and 
 n  are large numbers, the equation becomes:
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 The value  p  is identical to the one that we would obtain under the assumption that

the likelihoods of male and female births stand in the ratio     
m

n
  . Laplace therefore

concludes that these likelihoods also stand in the same ratio. 
 Next, Laplace seeks the probability     ′p   that the birth of an another boy in addition

to the     +m n   births observed lies between     θ−
+
m

m n
  and     θ+

+
m

m n
  . Positing     

α
= 1

m   

and     μ
α

=n   , and using a calculation procedure of the same kind as the previous one

although even more complex, Laplace obtains the following approximate value for 

the probability (ignoring the     
− 5

2m   -order quantities), which—when the number of 
observations is large—becomes very small:
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   14   We have changed Laplace’s notations to preserve consistency with our notation system.  
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Examining the values of all the terms of the equation above, he therefore 
concludes that the value of     ′p    will differ all the less from certainty or unity as  m  and 
 n  will be larger numbers. 

 As an example, Laplace takes the births that occurred in Paris between 1745 and 
1770. In those 26 years, 251,527 boys and 241,945 girls were born, which translates 
into a masculinity proportion of 50.971%. Using a formula similar to the previous 
equation, Laplace computes the probability of a male birth being equal to or less 
than one-half at     −× 421.1521 10   . He draws this conclusion:

  As it is exceedingly small, we can assert, with the same certainty as any other moral truth, 
that the difference observed in Paris between births of boys and those of girls is due to a 
greater likelihood for births of boys (Laplace 1781).   

 Thanks to the preceding equation, we can also determine the probability that the 
chances of a male birth lie within the limits 0.50971 ± 0.001. That probability is 
roughly 0.99984, i.e., very close to unity. For this estimation, we have used the 
series development given by Laplace (1781) for the fi nal terms of the equation:
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replacing  q  by −  q  in the other term. 
 For London, data equivalent to the Parisian numbers show 737,629 male births 

versus 698,958 female births in the period 1664–1758. The resulting masculinity 
proportion is 51.346%, which is even higher than the Paris value. This leads Laplace 
to wonder whether the higher proportion is evidence of a higher probability. 

 Let  u  be the probability of a male birth in Paris,  m  the number of male births and 
 n  that of female births in Paris,     −u x    the probability of a male birth in London,     ′m    
the number of male births and     ′n    that of female births in London. The probability 
of this double event is thus:

     
′ ′− − − +(1 ) ( ) (1 ) ,m n m nK u u u x u x    

where  K  is a constant coeffi cient. In consequence, the probability that a male birth 
will be less likely in London than in Paris is:
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After a series development of this quantity, and taking the fi rst three terms of the 
series, Laplace obtains the approximate value of  p :
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He can therefore conclude:

  the odds are over four hundred thousand to one that boys are more easily born in London 
than in Paris; we can thus regard as a very probable thing that there exists in the former town 
one more cause than in the second that facilitates the birth of boys, and that depends either 
on climate, or on food and customs. (Laplace  1778  )   

He even seeks to identify one of the causes for Paris:

  parents in the surrounding countryside, having found it advantageous to keep their male 
children with them, had sent them to the Hospice des Enfants-Trouvés de Paris [Paris 
Foundling Home] in a smaller proportion than that of the sex ratio at birth. (Laplace  1812  )   

This marked the start of a fuller demographic analysis that used various charac-
teristics of the two cities in order to attempt to explain the differences. 

 Curiously, later demographers showed scarce interest in pursuing such a refi ned 
analysis of the phenomena that they were studying. In this connection, we should 
bear in mind that the introduction of population censuses sidelined some earlier 
concerns, particularly by supplying exhaustive populations at risk. This avoided the 
use of civil-registration data for population estimates (multiplier method). Moreover, 
as pointed out in Chap.   1    , the variances of the computed rates were so small as to 
become of negligible value for analytical purposes. 

 The second example that we shall examine is the application of logical probability 
to judicial affairs, which will take us from Condorcet  (  1785  )  to Laplace  (  1812  )  and 
Poisson  (  1837  ) , with a brief detour via Quetelet’s non-Bayesian approach  (  1835  ) , to 
fi nish with nowadays Bayesian jurisprudence (Vignaux and Robertson  1996  ) . 

 Condorcet  (  1785  )  published a 500-page memoir on the application of probability 
to court rulings. Although he did not use the term ‘logical probability’ — which none 
of his contemporaries did either—we can easily see that it is indeed the subject of 
his book. Condorcet was already familiar with Bayes (Condorcet  1778  )  and, in par-
ticular, with Laplace’s memoir on probability  (  1778  ) , which elaborated on these 
concepts. The third section of Condorcet’s memoir (1785) opens with a very explicit 
statement of the need to begin by establishing, in a general way,

  the principles according to which one can determine the probability of a future or unknown 
event, not from the knowledge of the number of possible combinations that produce the event, 
or the opposite event, but only from the knowledge of the order of known or past events of 
the same kind.  

There is no clearer defi nition of this approach, which takes the observation of 
past events as the starting point to determine the probability of a future event through 
logical reasoning. 

 Condorcet applied the approach to legal and social science. He stated the purpose 
of his memoir in the  Discours préliminaire  [introduction]:

  Reason, with a modicum of refl ection, will make one feel the need to compose a Tribunal 
in such a manner as to make it nearly impossible for a single innocent to be sentenced, even 
over a long lapse of time; but it will not indicate the bounds that can be set on that probabil-
ity, nor how to obtain it, without multiplying the number of Judges beyond the limits that 
one can hardly exceed.  
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From the outset, Condorcet thus saw the need to protect the individual from a 
wrong decision by the jury, but reason would not suffi ce for the purpose. Probability 
calculus was indispensable for measuring the desired goal with precision. Poisson 
 (  1837  )  pointed out the originality of Condorcet’s use of probability calculus:

  but, as regards the probability of rulings, it is fair to say that Condorcet deserves credit for 
the ingenious idea of making the solution depend on the Bayesian principle, by considering 
successively the defendant’s guilt and innocence, as an unknown cause of the ruling handed 
down, which accordingly becomes an observed fact, from which we must deduce the prob-
ability of that cause.  

Let us see how Condorcet proceeds to attain his objective. 
 Condorcet begins by defi ning a general model for a jury’s decision-making pro-

cess, which takes various characteristics of the jury into account. The model depends 
on the jury’s size, 2 q  + 1, the majority of votes required to make a decision, 1, 2, …, 
2 q ¢   + 1, and a qualitative characteristic of the jury, which he will then try to estimate, 
namely, the probability that the opinion of one of the voters will be consistent with 
the truth , v , and therefore simultaneously the probability that it will be contrary to 
the truth,  e , with     + = 1v e   . 

 Condorcet initially assumes that the characteristics are known, in order to express 
the probability that there will be at least one more vote for the truth, expressed 
by     qV   :
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where, more generally,     ⎛ ⎞
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n

m
   designates the binomial coeffi cient of  m  among  n . 

Condorcet shows that this equation may be written more simply as:
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Thus, when     >v e   , we can—by increasing the number of voters—obtain as high 
a probability as we want that the decision will be consistent with the truth, for the 
value of     qV   constitutes the fi rst terms of the series expansion of the quantity:
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equal to 1 when we use the relation     = −1v e   :
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 Condorcet easily generalizes the expression to the case where the majority will 
be of     ′ +2 1q    votes:
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We can see that when     ′=q q   —i.e., in a unanimous vote, the second term 
being negative and the following terms being null—a defendant who is not guilty 
may nevertheless be convicted, as     += − 2 11q qV e    in this case. When     ′>q q   , we 
shall always need to remove the second term, and then—as long as the factor in 
parentheses is negative—the subsequent terms. This will initially diminish     qV   , 
which will later increase. For instance, assuming that a seven-vote majority is 
required, and that the probability of error is 1/3,     qV   will be lowest when the num-
ber of voters is 19. 

 Next, Condorcet needs to determine the probability,  v , of a correct verdict. He 
proposes two approaches, but we shall examine only the second. The fi rst consists 
in forming a Tribunal of truly enlightened men to examine the evidence: it is of little 
relevance to our discussion, and Condorcet himself preferred the second—which 
requires the use of logical Bayesian methods. 

 The second approach consists in assuming that the probability of a fair deci-
sion by each juror ranges between one-half and unity, i.e., that it will conform to 
truth rather than error. Otherwise, it would be absurd to hand down a verdict by 
majority vote in order to approach the truth. In this case, therefore, Condorcet 
clearly does not take all possible values for these priors, but he estimates them as 
greater than ½. 

 To this end, he must now determine the prior that each judge will individually 
make the right decision,  v . Condorcet proposes three alternatives:

  1. that in each decision the votes of all Voters have a constant probability; 2. that in each 
decision and for each Voter, the probability varies; 3. that we admit both hypotheses 
together, by multiplying the probability resulting from each by the probability that this 
hypothesis will occur.  

We shall set aside the fi rst hypothesis—which Condorcet does not fi nd natural to 
accept on its own—and explore the second in greater detail. We shall then report 
only the outcome obtained under the third hypothesis, which results from the com-
bination of the other two and has Condorcet’s preference. 

 Under the second hypothesis, the problem is to determine the probability of 
obtaining a new vote consistent with the truth, knowing that in the past the vote was 
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 m  times consistent and  n  times inconsistent with the truth. If we know, in addition, 
that this prior lies between ½ and 1, then we can write it as equal to 15 :
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As a result, this probability,  v , will be independent of  m  and  n , and we need only 
replace  v  by this value and  e  by ¼ in the equations above to obtain the values of     qV   . 

 By contrast, under the third hypothesis, Condorcet shows that the probability can 
be written as:
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In this case the probability  v  will depend on  m  and  n , and the equation giving  V   q   
will be more complex. 

 We shall not pursue Condorcet’s reasoning further, for our aim was to show his 
use of logical probability. Let us simply note that one of the consequences of 
Condorcet’s arguments is his condemnation of the death penalty:

  Justice would demand no less strongly that a defendant should not be condemned as long as 
the crime was not proven, and there can be no injustice in acquitting a defendant whenever 
the probability of his crime, however high, does not reach the limit that we have found to 
be the starting point for genuine certainty .   

However, the principle of probability calculus ensures that this certainty can 
never be obtained. 

 Condorcet’s memoir met with little approval from his contemporaries. La Harpe 
 (  1799  )  viewed the intrusion of probability in legal science as one of the misuses of 
late-eighteenth-century philosophy. Destutt de Tracy, in the second edition of his 
work  (  1801 , 1804–1818), launched an argumentative attack on Condorcet’s 

   15   Condorcet uses a different notation for his integrals than the standard form used today. For 

example, he writes     
1

2 m
x x∂∫

   the expression now written     
1
2

1
m

xdx⎡ ⎤
⎢ ⎥⎣ ⎦∫   . Here, we use the modern 

notations.  
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probability plan, while calling Condorcet himself ‘a superior man who shall always 
be regretted’. Destutt de Tracy had this to say on probability:

  Under this collective and common noun are wrongly gathered a multitude of sciences or 
portions of sciences, all of them different, alien to one another, and impossible to bring 
together without creating total confusion. Indeed, what is commonly known as the science of 
probability comprises two distinct parts, namely, on the one hand, the search for an evalua-
tion of the data, and, on the other hand, the calculation or combinations of those data.  

He continued by listing a number of things, far more numerous than generally 
believed, that are not amenable to probability-based treatment:

  the degrees of capability of men, the degrees of the energy and power of their passions, their 
prejudices, their habits […]  

He therefore did not totally reject the usefulness of probability, but placed limits on 
their use. His text contains many of the arguments later wielded by the objectivists, 
particularly Venn  (  1866  ) . 

 Most jurists merely ignored the intrusion of probability calculus in their discipline. 
Bentham  (  1823  ) , for instance, rejected the false certainty implied by the mathematical 
treatment of legal and social matters. 

 Despite these objections, Laplace  (  1816  )  resumed these investigations more than 
20 years later, in order to assess the French legal system that, in 1808, allowed juries 
to return verdicts by seven votes to fi ve. He noted from the outset that:

  To convict a defendant, the judge must not await mathematical evidence, which is unattain-
able in moral matters. But when the probability of the crime is such that citizens would have 
more to fear from the attacks that could arise from its impunity than from court errors, it is 
in the interest of society to demand the defendant’s conviction.  

Unlike Condorcet, who required certain proof—never attainable—to convict a 
presumed criminal, Laplace sought to avert social danger by demanding not a cer-
tainty but a degree of probability,  a : he ‘assumes that the judge who convicts a defen-
dant thereby asserts that the probability of his crime is at least  a’ . On the other hand, 
he adopted Condorcet’s hypothesis by assuming that the probability that each judge 
will make the right decision, which he calls  x , is equal to or greater than ½, and that 
it varies uniformly over the entire interval. Lastly, he supposed that the tribunal con-
sists of     +p q   judges, of whom  p  fi nd the accused guilty and  q  absolve him. 

 In this case, the probability of a correct verdict will be:
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We now need to multiply this probability by the probability of the value of  x , for 
the observed event:
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which, by multiplying this probability by  a , gives the probability of a correct verdict 
relative to a value of  x :
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Summing this quantity from ½ to 1, we fi nd that the probability of a correct 
verdict for all possible values of  x  is:
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and that the probability of the potential error in the verdict will be:
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The latter value is easy to calculate:
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If  we demand unanimity, the quantity, i.e., the probability of error, simplifi es 
to     

1

1
.

2 p+
   

 In the French legal system of the time, the jury was composed of 12 members 
and the court comprised fi ve judges. When a defendant was declared guilty by eight 
votes to four, he had to be convicted. Applying the equation above, the probability 

of an error by the jury was     
1093

8192
  , or ap.proximately 13%, which is very far from 

negligible. In special courts, where fi ve votes out of eight suffi ced to convict, the

probability of the potential error was     
125

512
  , or nearly one-quarter: we can understand 

Laplace’s conclusion that ‘the magnitude of this fraction is frightening’. In England, 
by contrast, when the jury comprised 12 members, a unanimous vote was required 

for a conviction. The jury’s potential error fell to     1

8192
  , i.e., less than one-thousandth 

of the French value. The difference between the two countries was glaring. Moreover, 
in France, when a defendant was found guilty by a simply majority of seven jurors to 

fi ve, entailing a risk of error of     
2380

8192
   or 29%, the fi ve judges had to cast votes as 
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well: when only three of the fi ve judges joined the minority of the jury, the defendant 
was convicted. 16  In this case, and assuming the judges’ opinion followed the same 

distribution as that of the jurors, the probability of an erroneous verdict was     
106762

262144
   

or 40.73%. This system, which claimed to protect citizens, therefore exposed them 
to an even greater risk of conviction. Laplace did not perform that calculation 17 —for 
he assumed that judges were more qualifi ed to make a reliable judgment than 
jurors—but it led him to criticize the  Code d’instruction criminelle  harshly on this 
issue in his treatise. 

 Laplace also realized the complexity of the problems posed by the calculation of 
the probability of court rulings:

  For this, one needs to know the probability of the crime below which a defendant cannot be 
convicted, without the citizens having to fear miscarriages of justice more than the attacks 
that could result from the impunity of an absolved culprit. One must then determine the 
probability of the crime resulting from the court’s decision and set the majority so that these 
probabilities are equal.  

Laplace was forced to admit that those probabilities are impossible to obtain and 
that—given our ignorance of these two elements of the calculus—we can only solve 
the problem of the probability of error in the court’s decision, as we have just done. 

 As with Condorcet, many authors rejected Laplace’s work on the probability of 
court rulings. For example, it was condemned by Pope Pius VII and poorly 
received by the university (Barbin and Marec  1987  ) . 

 Let us now examine how Quetelet  (  1835  )  and Poisson  (  1837  )  both used the same 
source: the  Comptes généraux de l’administration de la justice criminelle  (French 
criminal justice statistics), one using an objectivist approach, the other a logicist 
approach. 

 Initially, Quetelet had proposed using Laplace’s method, particularly in demog-
raphy  (  1827  ) . But he changed his mind when establishing his theory of the  average 
man   (  1835  ) . The theory lies too far outside our subject for us to elaborate on it 
here. However, we should note that it was based on the analysis of exhaustive 
data, such as census data but also administrative sources. For instance, in the same 
work, Quetelet analyzed French data on convictions from 1825 to 1830. 18  He 
began by observing a slight decline in the proportion of convictions of defendants 
without testing its signifi cance as Laplace would have done. He then tried to 
identify the characteristics that could alter these proportions, such as the type of 

   16   Article 351 of the Criminal Procedure Code (Code d’Instruction Criminelle) stipulated as follows 
‘If, notwithstanding, the defendant is found guilty only by a simple majority [of jurors], the judges 
shall deliberate in private on this same matter; and if the opinion of the minority of jurors is adopted 
by the majority of judges, so that by adding the number of votes, the total exceeds that of the major-
ity of jurors and the minority of judges, then the fi nding in favor of the defendant shall prevail’. In 
the case examined here, we have nine ‘guilty’ votes (seven jurors and two judges) and only eight 
‘not guilty’ votes (fi ve jurors and three judges): the defendant will therefore be convicted.  
   17   It was performed by Gergonne  (  1818–1819  ) .  
   18   Quetelet’s fi gures for 1825 differ from Poisson’s, for the latter had been corrected by the Justice 
Ministry in  1827  (Stigler  1986  ) .  
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offense (property crime, personal crime), sex and age of defendant, literacy level, 
and educational attainment. His chosen approach for processing the data was 
therefore already fully objectivist, and thus lies outside the scope of this chapter. 

 Poisson’s approach  (  1835,   1836b,   1837  )  to the same data—to which he added 
those of the period 1831–1833 19 —was quite different: he applied the logical 
probability method to measure the effects of various jury characteristics on the 
fi nal verdicts. In the opening of the very fi rst chapter of his book (Poisson  1837  ) , 
he clearly stated that ‘the probability of an event is our reason for believing that it 
will occur’. Specifi cally, his main goal was to test his model of jury decision-
making rather than to estimate, as Quetelet had done, the effects of different charac-
teristics on the jury’s verdict. He used the annual fi gures provided by the ministry, 
and not only the computed rates as Quetelet had done. 

 The Table  3.1  gives the personal-crime data for the period 1825–1831 used by 
Poisson.  

 From these data, Poisson examined in greater detail the hypotheses formulated 
by Laplace for his analysis of verdicts. In particular, Poisson found it hard to justify 
 a priori  the hypothesis that the probability of a juror reaching the correct decision 
should range between ½ and unity. As a result, the equation expressing the probabil-
ity of errors by jurors never factors in their degree of knowledge of the case submit-
ted to them. It also assumes that, prior to the jury’s decision, there was no presumption 
of the defendant’s guilt. Poisson found this hypothesis, as well, unacceptable. 

 Poisson sought to avoid any hypotheses, relying solely on the laws of probability 
calculus. He decided to use factual data—here, the  Comptes généraux de 
l’administration de la justice criminelle  (Table  3.1 )—to estimate two quantities that 
depended on the conditions in which the verdicts were reached:

  One expresses the probability that a juror picked at random from the list available to a 
criminal court will not cast the wrong vote; the other is the probability, before the opening 
of proceedings, that the defendant is guilty.  

   Table 3.1    Data from French criminal justice administration on 
personal crimes, 1825–1831   

 Year 

 Number of individuals 
charged with personal 
crimes 

 Number of 
convictions 

 Probability 
of conviction 

 1825  1,897  882  0.4649 
 1826  1,907  967  0.5071 
 1827  1,911  948  0.4961 
 1828  1,844  871  0.4723 
 1829  1,791  834  0.4657 
 1830  1,666  766  0.4598 
 1831  2,046  743  0.3631 

   19   Poisson corrected the 1825 data to harmonize the defi nitions for the entire period, for, contrary 
to the data concerning other years, they included persons not present at the verdict (note in the 
report for 1827). Poisson also stated that he had to process separately the data for the years after 
1830, because new legislation changed the majority required for a verdict from 7 jurors out of 12 
to 8 out of 12.  
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Although Poisson did not want his probabilistic reasoning to rest on any 
hypothesis, we can see that he did set up an underlying model, whose parameters he 
proceeded to estimate. 

 For the estimation, he began by assuming that the parameters are known. He 
noted  u  the probability that a juror would not cast the wrong vote (the probability 
could vary from one juror to another) and  k  the probability that the defendant was 
guilty or, more accurately, susceptible to conviction—for, as Poisson clearly stated, 
we can never obtain mathematical proof of a defendant’s guilt. 

 Poisson started with the simplest case, involving a single juror. It can easily be 
shown that the probability of a defendant’s conviction,  g , is written:

     ( )γ = + − −(1 ) 1 ,ku k u
   (3.1)  

for the event occurs either when (1) the defendant is guilty and the juror does not 
cast the wrong vote (an event with a probability of  ku ) or (2) when the defendant is 
not guilty and the juror casts the wrong vote (   an event with a probability of 
    ( )( )− −1 1k u   ). After the juror’s decision, let us assume that the defendant is guilty, 
with a probability of  p . Using the Bayesian rule, we can write:

     ( )( )=
+ − −

,
1 1

ku
p

ku k u
   (3.2)  

for the event observed here is the defendant’s conviction, whose probability is  ku . 
 In the general case, when each juror is equally likely to cast the wrong vote, 

Poisson showed that, if we consider the probability     iγ    that the defendant will be 
convicted by     −n i    votes to  i , Eq.  3.1  becomes:

     
( ) ( ) ( )1 1 1 ,n i i i n i

i

i
ku u k u u

n
− −⎛ ⎞ ⎡ ⎤= − + − −⎜ ⎟ ⎣ ⎦⎝ ⎠

γ
   (3.3)  

and Eq.  3.2 , which gives the probability of the defendant’s guilt,     ip   , can be 
written:

     
( )

( ) ( )( )
1

,
1 1 1

n i i

i n i i n i i

ku u
p

ku u k u u

−

− −

−
=

− + − −    (3.4)  

We can readily verify that this probability of a correct verdict depends only on the 
majority     = − 2m n i    of votes cast in favor of it, not on the total number of jurors  n . 

 These equations can easily be generalized to the case where we only know that the 
defendant was convicted by a majority of at least  m  votes, i.e., that the number of 
votes could have ranged from  m  to     + 2m   , … , up to     + 2m i   —that is, a unanimous 
decision. That was the procedure applied in France between 1825 and 1830, when 
convictions required a majority of at least seven votes to fi ve, and between 1831 and 
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1833, when the minimum required majority was eight votes to four. The probability 
that the defendant will be found guilty by at least     −n i    votes will therefore be:

     ( )= + −1 ,i i ic kU k V
   (3.5)  

where:

     
( ) ( ) ( )21 21 2
1 1 1 ,

in n n n i
i

i
U u u u u u u u

n n n
− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + − + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
�

   

     
( ) ( ) ( ) ( )1 2 21 2
1 1 1 1 .

n n n n i i
i

i
V u u u u u u u

n n n
− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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�

   

Similarly, the probability of the defendant’s guilt will become:

     ( )=
+ −

.
1

i
i

i i

kU
P

kU k V    (3.6)   

 We must now examine the actual case where the probability of a juror’s casting 
the wrong vote is unknown. We must therefore introduce an unknown function 
    ϕ( )u du   , which represents the probability of a value of that possibility,  u , such that

    ϕ =∫
1

0
( ) 1.u du    In this case, the probability     λi    that the chances of not making the 

wrong decision will range between the given limits  l  and     ′l   , when the defendant is 
convicted by     −n i    votes to  i , is:

     

( ) ( ) ( )
( ) ( ) ( )1 1

0 0

1 ( ) 1 1 ( )
.

1 ( ) 1 1 ( )

l li n in i i

l l
i i n in i i
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∫ ∫
∫ ∫    (3.7)  

Poisson showed that, in some cases, notably when  l  and     ′l    are symmetrical with 
respect to ½, this probability becomes independent of the defendant’s guilt,  k . He 
also calculated the probability of guilt,     ζ i   , under the same conditions:
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0 0
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Unlike the situation where  u  is assumed to be known,     ζ i    will not depend exclu-
sively, like     ip   , on the majority  m , but also on the total number of jurors and on the 
probability distribution of the chances of not casting the wrong vote. 

 As earlier, when the accused is convicted by a majority of at least     − 2n i    votes, 
the equations, for     λi   , become:
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and for     ζ i
  :
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ϕ ϕ
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Poisson calculated approximate values of the integrals contained in these 
equations, which will depend only on the constant  k  and the function     ϕ( )u   . 

 We can now compare these equations to Laplace’s results. Laplace assumed that

    ϕ( )u    is zero for     < 1

2
u   , and is constant for     

1

2
u ≥   . The preceding equation accordingly 

becomes:
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Moreover, Laplace did not consider the probability  k  of guilt before the verdict. 
In other words, guilt is neither more nor less probable than non-guilt, i.e.     1

2k =   . 
Under this new condition, we have:

     

( )

( )

1

1

2
1

0

1

.
1

in i

i in i

u u du

u u du

−

−

−
=

−

∫

∫
ζ

   (3.12)  

We effectively obtain the probability that the accused will be not guilty,     ( )ζ−1 i   , 
by performing the integrations. The value will be the same as the one given earlier, 
substituting  n  for     +p q    and  i  for  q . However, Laplace’s hypotheses are no doubt too 
simple to be plausible. This led Poisson to state:

  If, therefore, only one verdict had been reached by the jurors picked from this list, the pre-
ceding equations would have no useful application; the same would still be true if a modest 
number of verdicts had been reached; but we know that, on the contrary, very large numbers 
of convictions, in known proportions, have been handed down by juries picked successively 
at random from the same general list[.]  

Poisson used this argument as the basis for applying Eqs.  3.3 ,  3.4 ,  3.5 , and  3.6 , 
which would allow an estimation of the unknown constants  k  and  u  from observa-
tions, as well as of the probability of a correct verdict. 

 By aggregating the years 1825–1830, when verdicts were reached by seven votes 
to fi ve, Poisson obtained an estimate,     5ĉ   , of the probability of conviction by at least 
seven votes,     5c   , equal to 0.4782. There was also a near-certain probability (P = 0.9953) 
that the unknown probability and its estimate would differ by no more than 0.0135. 
Likewise, for 1831, when convictions were reached by eight votes to four, Poisson 
obtained a far lower estimate:     =4

ˆ 0.3631c   . Subtracting this estimate from the 
previous one, he found a difference of 0.1151, indicating a strong effect of the 
change in legislation, which reduced the probability of conviction. 
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 Poisson could then estimate the two parameters of his model. First, he observed 
that the expression     ic    did not change when  k  and  u  are replaced by     ( )−1 k    and 
    ( )−1 u   . The problem therefore had two solutions: a pair of values greater than ½, 
and a pair smaller than ½. He assumed that, in normal times, the average probability 
of guilt must exceed that of innocence. However, he noted that in more troubled 
times, such as the French Revolution of 1789, the legal innocence of defendants 
could be more probable than their guilt. He thus arrived at an estimate of the prob-
ability  k  of a defendant’s guilt of 0.5354, and an estimate of the probability  u  that a 
juror would not cast the wrong vote of 0.6786 (recall that this probability is assumed 
to be identical for each juror here). It should be borne in mind that these estimates 
concern personal crimes, and that both parameters remained constant throughout 
the 7-year period studied. For property crimes, the probabilities were different: 
Poisson found     ′ = 0.6744k    for a defendant’s guilt and     ′ = 0.7771u    for a juror’s 
error. Poisson presented these results more vividly:

  Before a verdict was handed down, someone who would not have known the identity of the 
jurors, or even the place where the case would be tried, could have wagered, at that time, 
slightly over two to one, that each juror would not cast the wrong vote if the crime were of 
the fi rst type [personal crime] and nearly seven to two, for a crime of the second kind 
[property crime]. We use the crude expression  wager so much to so much  here in order to 
convey in a more vivid manner the signifi cance that we should attach to the values of  u  and 
 u’ , and despite the fact that our hypothetical wager is a fallacy, since we would never know 
who won.   

 The fi nal step was to show the probability that a verdict was correct, once it had 
been reached. For 1831, Poisson showed that     =4 0.9811P   , in other words, of the 
743 persons convicted that year, fi ve should not have been. This is a far cry from 
Laplace’s estimates of the chances of error in criminal verdicts—results that Laplace 
had described as terrifying. 

 Like earlier studies, Poisson’s work on the probability of verdicts attracted little 
notice from jurists but sparked lively debates among scientists. For instance, the 
discussions that followed the reading of his papers on the law of large numbers 
 (  1836a  )  and on probability calculus  (  1836b  )  pitted the members of the Academy of 
Science hostile to the application of probability to moral matters—Poinsot and 
Dupin—against those who were in favor, including Navier and, of course, Poisson, 
all alumni of the École Polytechnique:

  M[onsieur] Poinsot regards probability calculus in moral matters, such as court verdicts and 
assembly votes, as an erroneous application of mathematical science: he believes that one 
can draw no consequence from it that could serve to improve human decisions (comment 
made in the discussion of Poisson’s paper, 1836a).  

He reiterates his doubts in the discussion of the other paper from Poisson 
 (  1836b  ) . Similarly, Dupin believed that probability could not apply to human 
affairs, which are too complex to be reduced to suffi ciently simple hypotheses 
amenable to mathematical treatment. Conversely:

  M[onsieur] Navier believes that the facts of all kinds on which our observations may dwell, 
and even the political or judicial facts that involve human passions and interests, equally 
depend on determined and subsisting laws, based on human nature. This principle having 
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been accepted, we shall necessarily conclude that the attentive and regular observation of 
facts can shed light on events to come, by highlighting the effects of the laws at work, and 
can lead to the determination of results that we may accept with a certain degree of confi -
dence, the main purpose of probability calculus being to provide a measure for them. [com-
ment made in the discussion of Poisson’s paper, 1836a].  

These quotations clearly show a clash between a probabilist conception of the 
world and a positivist conception, as defended by Comte in his  Cours de philosophie 
positive   (  1830–1842  ) . For instance, in the 27th lecture, he wrote:

  It is the basic notion of assessed probability that I fi nd directly irrational and even sophistic: 
I view it as essentially unfi t to guide our conduct in any instance, or at most in games of 
chance. It would routinely lead us in practice to reject, as numerically implausible, events 
that will occur nevertheless.  

Many authors have analyzed Comte’s rejection of probability (Coumet  2003 ; 
Brian  2006  ) . Brian ties it to the ‘three states’ law, which charts a path from the 
theological state defended by Leibniz, Süssmilch, and others, to the metaphysical 
state, of which Laplace is a privileged representative, and lastly to the positive state 
championed by Comte. 

 Even without going as far as Comte’s rejection, Poisson’s study was nevertheless 
one of the last nineteenth-century manifestations of Laplace’s logical probability, 
which disappeared to give way to objective probability. Only after the mid-
nineteenth-century did the Laplacian approach enjoy a revival, with growing appli-
cations to judicial issues. 

 Nearly a century and a half later, Gelfand and Solomon  (  1973  )  took up Poisson’s 
model to show its applicability to a decision by the United States Supreme Court 
concerning 12-member juries. Lindley  (  1977  )  examined the problem of determin-
ing the probability that two items of evidence found on the crime scene and the 
suspect come from the same source. 

 With the development of new criminal-investigation methods (such as fi ngerprint 
analysis and techniques based on DNA collected from blood samples), many 
researchers have pursued these methods by using logical probability to better assess 
a defendant’s guilt or innocence (Robertson and Vignaux  1991,   1993,   1995 ; Vignaux 
and Robertson  1996 ; Dawid and Mortera  1996  ) . We shall not describe these many 
applications in detail here but simply outline the spirit in which they were conceived 
(Jaynes  2003  ) , taking a fi ctitious example. 

 Let us suppose that a crime has been committed in the Paris area but that, at the 
outset, we know nothing about the circumstances. All we know is that the capital 
has ten million inhabitants. This information item alone gives us the odds that a 
random inhabitant of the Paris area,  x , is guilty:

     
( ) 7

1

10
O guilty x =

   

which gives the plausibility of the person’s guilt measured in decibels:

     
( ) ( )= = −1010 log 70 .e guilty x O guilty x db
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Let us now suppose that we know that the criminal did not act gratuitously, but 
had a motive. We can then recalculate the plausibility of guilt:

     

( ) ( ) ( )
( )

( )

10
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10 log

70 log

P motive guilty
e guilty motive e guilty x

P motive not guilty

P motive not guilty

⎡ ⎤
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≅ − −

   

for the probability of the event     ( )≅ 1P motive guilty   , as it is highly improbable 
that the crime was unmotivated. Let us now suppose that the investigation has deter-
mined the number of persons with a motive for the crime. If the number is  N , then:

     
( ) ( )−−= ≅ −

−
7

7

1
10 1 ,

10 1

N
P motive not guity N

   

and the plausibility of guilt becomes:

     
( ) ( )≅ − −1010 log 1 .e guilty motive N

   

As we can see, the Paris-area population has disappeared from the equation, 
which now refers only to the number of motivated persons—a number that may 
actually be very low. Any new information can thus be added, so that the measure 
of plausibility will become suffi cient to allow the defendant’s conviction or, on the 
contrary, will be insuffi cient for that purpose, even if each information item taken 
separately is totally inadequate to prove the defendant’s guilt. 

 To conclude, we can see that logical probability—like subjective probability—can 
be used successfully in social science. The basic difference between the two approaches 
is that a logical probability cannot be obtained from any random prior, provided that 
it lies between zero and unity; rather, it must justify this prior using arguments based 
on the information about the phenomenon studied available before the experiment.  

    3.5   Problems Posed by the Logicist Approach 

 Like the other approaches, the logicist approach has been subject to various criti-
cisms, which we shall now examine. 

 First, the logicists regard a degree of probability not as a personal feeling (as in 
the subjectivist conception), but as a logical relation valid for all. The limit proba-
bilities of zero and one represent logical impossibility and necessity. One of the 
criticisms directed at logical probability is that logical impossibility for the logician 
is not compatible with the zero probability of certain events, which may neverthe-
less occur. The logicists make the following claim:

  This linkage of probability and logical necessity, while refl ecting a common usage in 
many cases, is not consistent with the modern conception. To say that an event has zero 
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probability in no way means that it is logically impossible but only that, at the limit, the 
ratio of the number of occurrences of the event to the total number of trials converges 
toward zero. (Matalon  1967  )    

 For these authors, therefore, logic and probability do not exist on the same level 
of analysis. 

 Jeffreys  (  1939  )  had shown that his third axiom introduced a new logic of which 
deductive logic, actually used by Matalon, was only a part. Under this new logic, 
Jeffreys was able to demonstrate the following theorem:

  If p is consistent with the general rules, and  p  entails     q   , then     ( ) 0P q p =   .  

But the theorem’s inverse:

  If     ( ) 0P q p =    ,  then p entails     q   ,  

is false according to his proposed convention 3, a rule generally adopted:

  If  p  entails  q , then     ( ) 1P q p =   .  

 For example, a continuous random variable can take all values between zero and 
unity. The probability that its value will be exactly ½ is zero, although the value ½ 
is not impossible for the variable. 

 We may therefore conclude that this criticism is easily answered, and was actually 
aimed at Carnap’s approach, not examined here. 

 We also mentioned some of the discussions concerning Cox’s axiomatization 
 (  1946,   1961  ) —which at the outset had not been suffi ciently elaborated, particularly 
by Halpern  (  1999a,   b  ) —and the solutions offered by van Horn  (  2003  ) , which seem 
satisfactory to us. However, these issues have generated a broader discussion (Snow 
 1998 ; Skilling  1998 ; Arnborg and Sjödin  2000,   2001 ; Arnborg  2006 ; Shafer  2004 ; 
Colyvan  2004,   2008  ) , notably on the uniqueness of Cox’s axiomatics for probability 
calculus and, more generally, for a logic of uncertain reasoning. We have partially 
described the forms of logic of uncertain reasoning in our chapter on subjective 
probability (Dubois and Prade  1988 ; Smets  1997 ; Shafer and Vovk  2001  ) , and 
shown that these belief functions defi ned on incomplete data generalized probabil-
ity by leading to weaker structures that use the theory of  fuzzy sets  (Zadeh  1965, 
  1978  ) . We are no longer dealing here with probability  per se  but with a theory of 
beliefs, which we shall not discuss in detail, as noted in Sect.   2.2    . 

 We have also pointed out the diffi culty in fi nding a unique prior in some cases, 
and cited Jeffreys’s doubts about obtaining a general solution to this problem. 
Arnborg  (  2006  ) , for instance, observes:

  A lot of effort went into the idea of fi nding a canonical and unique prior, an idea that seems 
to have failed except for fi nite problems with some kind of symmetry, where a natural gen-
eralization of Bernoulli’s indifference principle has become accepted. The problem is that 
no proposed priors are invariant under arbitrary rescaling of numerical quantities or non-
uniform coarsening or refi nement of the current frame of discernment.  

It has been shown that priors complying with the principles of suffi cient reason 
or maximum entropy are not invariant under rescaling (Robert  2006  ) . For example, 
if the masculinity proportion,  p , obeys a uniform distribution in the interval [0, 1], 
then the sex ratio,     

1
p
p= −π   , will obey a prior of density     

( )2
1

1+π
  . However, we did 
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note that the use of well-defi ned transformation groups allowed the introduction of 
invariance with respect to these groups (Harr  1933  ) . Robert  (  2006  )  writes:

  The corresponding measures can accordingly be viewed as non-informative priors derived 
from the invariance structure.  

As a change of scale or location shows us a problem from a different angle, we 
can state that we do have some knowledge of the problem:

  ‘complete ignorance’ of a location and a scale parameter is a state of knowledge such 
that  a change of scale and shift in location does not change that state of knowledge  .  
(Jaynes  2003  )   

Consequently, invariance gives us an alternative method to construct these non-
informative priors. Current research in this area holds the promise of signifi cant 
advances on the subject. 

 We also know that the way in which a problem is presented infl uences the ease 
with which we can solve it. To take this issue one step further, one frequent criticism 
of logical probability is even more basic: to what extent may priors, which we assign 
by means of entropy maximization, depend on the problem’s presentation? 

 Let us take an example from social science: the probability of being an internal 
migrant. We assume that we have no information on whether a person is a migrant 
or non-migrant. What prior should we assign to the proposition ‘is a migrant’ repre-
sented by  m ? As we have no other information, the person is equally likely to be a 
migrant or non-migrant. Using symmetry arguments, we can say that the prior of 
this proposition is ½. Entropy maximization yields the same conclusion when our 
language  L  possesses only the proposition  m . But let us now suppose that we have a 
new language  L  ’ that enables us to distinguish three categories of internal migrants, 
and that we now have propositions for each category: ‘is an intra-municipal migrant,’ 
 mic , ‘is a migrant between  municipalities of the same  département  [French admin-
istrative division],’     mid , and ‘is a migrant between  départements ,’  med . Proposition 
 m  can thus now be expressed as     ∪ ∪mic mid med   . In this case, entropy maximiza-
tion gives us the prior of     ∪ ∪mic mid med   ,     7 8   , which differs from the previous 
value. We can therefore conclude, at fi rst glance, that entropy maximization yields 
a prior that depends on the language used. 

 As early as  1961 , Salmon defi ned a linguistic-invariance criterion, but was dis-
satisfi ed with the proposed method. More recently, Halpern and Koller  (  1995 ; arti-
cle completed in  2004  ) , Paris and Vencovská  (  1997  ) , and Williamson  (  2009  )  have 
examined this language dependency in greater detail. Paris and Vencovská  (  1997  )  
suggest the following interpretation. The entropy-maximization method has been 
incorrectly applied to such cases. In fact, when an agent states that proposition  m  
becomes a new proposition     ∪ ∪mic mid med   , we must take into consideration not 
the language  L  ¢  but the language  L  ″     { }= , , ,m mic mid med   , which allows us to spell 
out the relation     ↔ ∪ ∪m mic mid med   . In this new language, entropy maximiza-
tion effectively yields a  prior  of ½, equal to the fi rst one, for     ∪ ∪mic mid med   . 
Here, language dependency no longer obtains. 

 Unfortunately, however, this solution works only in cases where an individual 
refi nes his or her language. If, instead, two persons use languages  L  and L   ¢  
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respectively, then they will assign two different priors to what we know—but 
they do not know—to be the same proposition. Here, the probabilities generated 
by entropy maximization will depend on the language used. 

 This dependency, however, is not confi rmed solely by entropy maximization: it 
also applies to subjective probability. The dependency property is thus inherent in 
all epistemic probabilities, and cannot serve as an argument against logical proba-
bility alone: it is a general property of epistemic probabilities. 

 We shall not elaborate on the other criticisms directed against logical proba-
bility (Pearl  1988 ; Hunter  1989  ) : for a detailed presentation, see Williamson 
 (  2005,   2009  )  and Paris and Vencovská  (  1997  ) . Most often, these criticisms are 
fully compatible with the logical-probability approach and can be incorporated 
into it. 

 In conclusion, logical probability has been the target of a fair number of attacks, 
but its advocates have succeeded in countering a great number of them.   
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 After the detailed examination of the main approaches to probability, the statistical 
inference that they imply, and their application to social science, we can now try to 
provide more detailed and better-informed answers to questions to which we have 
so far offered only partial answers: What is probability? What type of inference 
does it allow, particularly for social science? Can the three approaches be combined 
to any extent? 

   A Unique Notion or a Multi-faceted Notion? 

 It will be useful to begin with a historical summary of the emergence of the three 
approaches described separately in the preceding chapters. This will give us a clearer 
idea of how the main approaches to probability have developed over time. 

 From the earliest reasonings on events related to chance (Pascal and his 
correspondence with Fermat 1654, 1922) until the fi rst half of the nineteenth 
century, when Cournot  (  1843  )  began to distinguish between objective probability 
and subjective probability, the notions of belief, frequency, and, more generally, of 
logic of the probable were in fact perceived as forming an inseparable whole. 

 In the last four chapters of their treatise on logic, Arnauld and Nicole  (  1662  )  
clearly distinguish the truths that concern the essence of things from those that 
concern the belief in events:

  the ones that concern only the nature of things and their immutable essence, independently 
of their existence; and the others, which concern existing things, and especially human and 
contingent events, which may or may not occur when we are dealing with the future, and 
which may not have occurred when we are dealing with the past.  

We see that mathematical logic will apply to the fi rst sort of truths, for ‘we must 
conclude that a thing is false, if it is false in a single case’. We can recognize the 
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principle of deductive reasoning formalized by Aristotle in the fourth century B.C. 
(see Chap.   3    ). But to the second sort of truths, another form of logic must apply:

  One must therefore posit as a certain and indubitable maxim in this respect, that the mere 
possibility of an event is not a suffi cient reason for me to believe it; and that I may have 
reason to believe it, even though I deem it not impossible that the contrary may have occurred. 
Accordingly, of two events, I may have reason to believe the one and not believe the other, 
even though I believe both are possible.  

This is a clear manifestation of the principle of plausible reasoning, which 
Leibniz later sought to introduce  (  1765  ) , but was eventually developed in the twen-
tieth century by Polya  (  1954  )  and Jaynes (1981), as we have described it in Chap.   3    . 
Arnauld and Nicole add the following to this mode of reasoning:

  To judge the truth of an event, and to persuade myself into a resolution to believe or not 
to believe it, it must not be considered nakedly, and in itself, like a proposition in geo-
metry; but all the circumstances that accompany it, both internal and external, are to be 
weighed with the same consideration. I call internal circumstances those that belong to 
the fact itself; and external, those that relate to the persons whose testimonies induce us 
to believe it.  

Once again, therefore, they pit geometrical reasoning—more generally, mathe-
matical reasoning—against probabilistic reasoning and introduce the circumstances 
attending the latter. Thus, for an event that may have occurred several times in the 
past, we need to consider its frequency, which is one of its internal circumstances. 
Regarding thunder, for example, they note:

  Out of two million people, it is very much if there is one who dies in that manner, and we 
may even say that there is hardly any violent death that happens more rarely.  

In other cases, of course, it may be useful to consider testimonies of persons 
whom we can trust. 

 Under this unitary theory, we can thus discern the fi rst signs of factors that were 
later distinguished with greater precision in order to defi ne the three approaches 
examined here. For instance, when Jacob  (  1713  )  defi nes probability as a degree of 
certainty, 1  he is effectively adopting a subjective interpretation, but when he demon-
strates the weak law of large numbers, he is choosing an objective (frequentist) 
interpretation. Similarly, Leibniz (1765 but written around 1703) asserts the need to 
introduce a new logic for probability:

  And as regards the magnitude of the consequence and the degrees of probability, we still 
lack the part of logic needed to estimate them, and most of the casuists who have written on 
probability have not even understood its nature, basing it on authority with Aristotle, 2  
instead of basing it on likelihood as they should, authority being only one part of the 
reasons that contribute to likelihood.  

   1   Gradus certitudinis.  
   2   Leibniz is referring to the logic of probability that Aristotle links to the art of rhetoric in 
 Rhetoric.   
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This is indeed a logicist interpretation of probability, even though Leibniz, who 
repeatedly insists on its establishment, is barely capable of articulating its founda-
tions. Jacob Bernoulli  (  1713  )  had fi rmly established direct probability with the law 
of large numbers, which makes it possible to deduce effects from observed causes. 
By contrast, Bayes  (  1763  )  and Laplace  (  1774  ) , using inverse probability, made it 
possible to travel the opposite path from effects back to causes (see Chap.   2    ). 
Laplace’s  Essai philosophique sur les probabilités   (  1814  )  crowns this synthesis:

  One can even say, strictly speaking, that nearly all our knowledge is merely probable; and 
in the small number of things that we can say we know with certainty, in mathematical 
science itself, the principal means of arriving at the truth—induction and analogy—are 
based on probability, so that the entire system of human knowledge is connected to the 
theory set out in this monograph.  

Laplace illustrates this totalizing vision by showing the use of probability in 
every fi eld, from gambling to astronomy, moral science, testimonies, political 
decisions, court verdicts, population sciences, economics, and others. 

 In fact, it is our ignorance of the ties that bind events to the entire system of the 
universe that explains this importance of probability. As Laplace puts it: ‘Probability 
is partly related to this ignorance, partly to our knowledge’. But all the efforts of 
humans will bring them ever closer to the knowledge of those ties:

  An intellect that at any given moment knew all the forces that animate nature and the mutual 
positions of the beings that compose it, if this intellect were vast enough to submit its data 
to analysis, it could condense into a single formula the movement of the greatest bodies of 
the universe and those of the lightest atom: for such an intellect nothing could be uncertain; 
and the future, just like the past, would be present before its eyes.   

 Laplace recognizes, however, that the human mind will ‘forever remain infi nitely 
distant’ from such omniscience, and that probability is the only way to approach it. 

 Throughout the nineteenth century, many criticisms were directed against Laplace’s 
unitary approach, with the ever sharper dualist distinction between subjective probability 
and objective probability .  This eventually led to an objectivist approach to probability, 
adopted by a large majority of probabilists by the late nineteenth century—although a 
small number remained staunchly loyal to some of Laplace’s principles. 

 In Chap.   3    , we quoted the objections by members of the French Academy of 
Science to Poisson’s use of probability  (  1836a,   b,   1837  )  to deal with ‘moral’ 
issues—specifi cally, court verdicts (   Poinsot and Dupin  1836  ) —whereas the studies 
by Condorcet and Laplace on the same subject had not been criticized in their time 
except by philosophers and clergymen. 

 Later, Cournot  (  1843  )  introduced a number of new notions, while partly preserv-
ing Laplace’s legacy. 

 Cournot began by breaking up the unity of probability. He did so by distinguish-
ing between ‘the dual meanings of the term  probability —understood now in an 
objective sense, now in a subjective sense’. For the objective sense, he sometimes 
used the term physical possibility:

  The advantage of the term  possibility  (which has already come into use because of the 
awareness of the truths described here) is that is clearly designates the existence of a 
relationship that subsists between things themselves, a relationship that is not determined 
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by our way of appraising or feeling—which can vary from one individual to another, 
depending on the circumstances in which they fi nd themselves and to the extent of their 
knowledge.  

For the subjective sense, Cournot spoke of ‘issues of  probability  that indeed 
relate in part to our knowledge, in part to our ignorance’. But he did not contrast 
objective phenomena with subjective phenomena, as later authors would. In fact, he 
took the human perception of a phenomenon and considered it in both objective and 
subjective terms. This is very clear from the example he offered:

  When we say that the probability of rolling a double six in backgammon is     1

36
  , we can 

express an opinion based on possibility; and this means that, if the dice are perfectly even, 
cubic, and homogeneous, so that there is no reason inherent in their physical structure for 
one side to turn up rather than another, the number of double sixes obtained in a large num-
ber of throws, by impulsive forces whose direction is totally independent of the points 
marked on the sides, will be broadly one-thirty-sixth of the total number. But we can also 
express an opinion based on mere probability; and without investigating whether that even-
ness of structure exists or not, we need only be unaware of the direction in which the 
unevennesses of structure operate—if they exist—for us to have no reason to assume that 
one side will turn up rather than another.  

As we shall see, this reasoning is actually very different from the later reasoning on 
objective probability. In fact, Cournot devoted several chapters of his book to the prob-
ability of court verdicts, in the wake of the studies by Condorcet, Laplace, and Poisson. 

 Laplace had used his theory of probability to estimate the best average of differ-
ent observations—by examining, for instance, the case in astronomy in which only 
three measures are available  (  1774  ) . Cournot does not seem to follow him on this 
ground. He writes:

  When the number of trials is insignifi cant, the formulas commonly given to assess probabil-
ity  a posteriori  become fallacious: they now indicate merely subjective probability, suitable 
for setting the conditions of a wager, but incapable of application in the order of natural 
phenomena.  

We can see that in this case he rejects the use of subjective probability, with 
which ‘we shall be unable to determine the ratio of erroneous verdicts to the total 
number of verdicts pronounced in similar circumstances’. 

 Boole  (  1854  )  goes even further than Carnot in this rejection, describing Laplace’s 
law of succession (see Sect.   4.3    ) as follows: ‘I apprehend, however, that this is an 
arbitrary method of procedure’. Likewise, in regard to verdicts, Boole writes:

  Laplace makes the assumption, that all values of  x  from     
1

2
x =   , to     1x =   , are equally 

probable. He thus excludes that a juryman is more likely to be deceived than not, but assumes 
that within the limits to which the probabilities of individual correctness of judgment are 
confi ned, we have no reason to give preference to one value of  x  over another. This hypoth-
esis is entirely arbitrary, and it would be unavailing to examine into its consequences.  

These criticisms were taken up by authors such as John Venn  (  1866  ) , who noted 
that the law of succession:

  does not merely mislead us by giving one determinate but incorrect answer; it perplexes us 
by the offer of several discordant and often contradictory answers, all of them presumably 
incorrect.  
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The same attitude was voiced by Peirce  (  1883  )  and most researchers who 
espoused an objectivist approach to probability—despite the previously noted fact 
that such objections were totally unjustifi ed in regard to epistemic probability. Venn 
 (  1866  )  also stated that ‘the distinction between Direct and Inverse probability must 
be abandoned’, thus rejecting a basic distinction in epistemic probability .  

 These critiques led to the endorsement by most probabilists, in the late nine-
teenth century, of the objectivist approach described in Chap.   1    . Only a few authors 
still defended some of Laplace’s ideas. Francis Edgeworth (1885a), for example, 
clearly showed—but apparently in vain—the errors of reasoning committed by 
Boole, Venn, Peirce and many others. This objectivist approach continued with the 
axiomatization by von Mises  (  1919,   1928  ) , criticized by many authors, and by 
Kolmogorov  (  1933  ) . It culminated in the studies by Fisher  (  1922a,   b , 1956), and 
others marked the major stages in the development of these methods during the fi rst 
half of the twentieth century. 

 By the 1920s, however, some authors were questioning the objectivist view and 
proposing other approaches to probability, which did not begin to take hold until 
after World War II. 

 First, the subjectivist epistemic approach—introduced by Ramsey  (  1926  )  but 
effectively elaborated by de Finetti (1937)—axiomatized this type of probability 
using the notion of coherence (see Chap.   2    ). Here, ‘each person is free to adopt the 
opinion (s)he prefers, or, more accurately, the opinion that (s)he  feels ’, if it is a 
coherent opinion. The theory was fl eshed out by Savage  (  1954  ) , who introduced the 
concept of utility proposed by the economists von Neumann and Morgenstern 
 (  1944  ) . This subjectivist approach made it possible to restore a structure of proba-
bility of degrees of belief complying with Kolmogorov’s axiomatization (Bernardo 
and Smith  1994  )  while adding other conditions—in particular certain exchangeabil-
ity properties—that also need to be met. 

 However, the psychological basis of this approach led a number of authors to 
generalize the notion of subjective probability, initially replacing the single proba-
bility of a given event by a double probability, upper and lower (Good  1962 ; 
Dempster  1967 ; Suppes  1974 ; Shafer  1976  ) . Going one step further, Smets  (  1988, 
  1990  )  distinguished between (1) a credal (psychological) level, for which he defi nes 
belief functions without resorting to the concept of probability, and (2) a pignistic 
(decision-making) level, where it becomes possible to defi ne a subjective probabil-
ity (see Chap.   2    ). This approach has allowed the use of subjective probability in 
fi elds where conventional probabilistic modeling is inappropriate because the statis-
tical data are unavailable, but where quantitative opinions seem very useful. 

 Meanwhile, the logicist epistemic approach (see Chap.   3    ), outlined by Keynes 
 (  1921  )  but fl eshed out by Jeffreys  (  1939  ) , largely revived Laplace’s approach by 
axiomatizing it with the aid of the notion of consistency. It was also used by the 
philosopher Carnap  (  1950,   1952  ) , but his over-abstract presentation led him to dis-
tinguish between frequential probability and logical probability—a distinction that 
is actually unwarranted in Jeffreys’s approach. The logicist epistemic approach was 
later reworked by Richard Cox  (  1961  ) —who showed how the intuitive notion of 
plausibility can be formalized by the notion of logical probability—then by Jaynes 
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 (  2003  ) . Both authors added the notion of entropy as a measure of the information 
available. They also recognized that Kolmogorov’s axiomatization is consistent 
with their approach, provided that the reasoning concerns propositions rather than 
sets. Despite many identical algebraic properties, it is necessary to distinguish 
between the different intrinsic meanings of the two terms (Kardaun et al.  2003  ) . 

 Classical probability began as a unitary construct, but was replaced by three 
main approaches often in confl ict with one another. However, as we have seen, the 
same mathematical rules, defi ned by Kolmogorov’s axiomatization, apply equally 
well to objective, subjective, and logical probability. The only way to tell them apart 
is to engage in a deeper interpretation of these rules, with the aid of new axioms or 
by distinguishing between the elements of a set of propositions concerning them 
(Shafer  1992  ) . 

 Before examining whether a synthesis of the three approaches is possible, let us 
see how to move from these forms of probability to the statistics gathered by the 
various sciences, and what inference we can draw from those statistics.  

   Inference and Decision-Making Theory 

 In the previous chapters, we viewed statistical inference as a whole that enables us 
to move from data on specifi c units to statements about a new unit. But we did so 
without distinguishing between the two terms of the expression: ‘statistical’ and 
‘inference.’ Let us now consider the two terms separately in order to identify their 
more precise meaning. We shall see whether this examination allows an extension 
of what we referred to earlier as ‘statistical inference’. 

 First, let us see what is meant by statistics. The term is linked to the notion of the 
State (Latin:  status ), which collects all the information needed to manage its affairs. 
As indicated earlier, such information has been used since remote antiquity. In the 
seventeenth century, William Petty (1690) adopted the notion of the State as the 
foundation of political arithmetic, an enterprise that involved collecting numerical 
data from mortality and baptism bills, but also from all other sources. Petty did 
advocate the collection of observations as the fi rst step in any scientifi c approach. 
His goal, however, was to go back—in the Baconian tradition—to the social and 
economic principles of the observed facts in order to defi ne a political action, such 
as the massive resettlement of the Irish on English territory (Reungoat  2004  ) . This 
approach viewed people not as autonomous entities, but as members of a State with-
out an individuality of their own (Porter  1986  ) . By contrast, this vision did not 
inform the discipline of statistics that emerged in the early nineteenth century. The 
new science set out to provide information on all aspects of the life of individuals, 
now viewed as autonomous. The difference is manifest in this introduction by the 
Council of the Statistical Society of London  (  1838  ) :

  The Science of Statistics differs from political economy, because, although it has the same in 
view, it does not discuss causes nor reason upon probable effects; it seeks only to collect, 
arrange, and compare, that class of facts which alone can form the basis of correct conclusions 
with respect to social and political government.  
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Information was to be collected not only on all aspects of people’s lives but on 
all characteristics:

  In fact, as all things on earth were given to man for his use, and all things in creation were so 
ordained as to contribute to his advantage and comfort, it follows that Statistics enter more 
or less into every branch of Science, and form part of each which immediately connects with 
human interests.  

Statistics thus came to be seen as a set of methods of mathematical interpretation 
applied to these phenomena. The result was a new science, with close links to probabil-
ity from the outset, although it remained distinct from the latter and could even be 
practiced without relying on probabilistic concepts. March  (  1908  ) , for instance, wrote:

  It would thus be appropriate, in statistics, to renounce the use of the word probability to 
express the expectation born of the observation of a frequency; for, while in probability 
theory the convention on which this expectation rests is wholly trustworthy, in statistics the 
degree of confi dence that this expectation deserves is often altered by the study of connec-
tions between facts, and by the lessons of social science.  

But such an attitude was rare. Most often, statistics coexisted with probability 
theory, although it pursued another goal. 

 First, while probability was axiomatized in the twentieth century along with all 
the other branches of mathematics, statistics was not. Bernardo (discussant of the 
paper by Kardaun et al.  2003  )  had this to say about the issue:

  No wonder that contradictions arose in conventional statistics, and no surprise at the often 
derogatory attitude of mathematicians to mathematical statistics, too often presented as an 
‘art’ where contradictions could be acknowledged and were to be decided by the wit of the 
‘artist’ statistician.   

 In talking about statistics, we are therefore already in a fi eld close to that of the 
social sciences, where axiomatization is also practically non-existent, as we shall 
see in Part II. 

 Let us now examine the second term: ‘inference.’ Again, this notion is general in 
scope and has been applied to a domain ranging well beyond statistics. The term has 
been used since the development of logic by the Greek philosophers. In its broadest 
logical sense, inference is an operation in which a proposition is accepted by virtue 
of its connection with other propositions deemed to be true. By this defi nition, 
Aristotle’s syllogism is an inference enabling us to deduce a third premise from two 
that are held to be true (see Sect.  3.1 ). 

 While such an inference may be viewed as deductive in logic and mathematics, 3  
it cannot in the other sciences. This is because the researcher will now observe a 
data set or engage in reasoning, and then deduce via scientifi c inference the rela-
tions that will exist between those data. Another name for this method is amplifi ca-
tive induction, which generalizes an observation or a reasoning from the observation 
of individual cases. 

   3   In fact, Gödel  (  1931  )  showed that the theories intended to provide a foundation for mathematics, 
such as Peano’s arithmetic and set theory, contain at least one proposition that can be neither 
proven nor rejected as false by the theory.  
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 Scientifi c inference lies outside the realm of deductive logic. As shown in Chap.   3    , 
we need to introduce a more general logic to handle it. Also, as its defi nition indicates, 
it does not necessarily use statistical data. In some cases, it will use reasonings. 

 In physics, for example, Einstein  (  1905  )  developed his theory of relativity 
without having access to data that would confi rm it. He suggested his two postu-
lates with no experimental basis: ‘(1) the same laws of electrodynamics and optics 
will be valid for all frames of reference for which the equations of mechanics 
hold; (2) light is always propagated in empty space with a defi nite velocity V 
which is independent of the state of motion of the emitting body’. 4  Indeed, the 
German physicist Kaufman  (  1906  ) , who tried to verify the predictions of relativ-
ity theory by experiment, declared: ‘these measures are incompatible with the 
fundamental Lorenz-Einstein hypotheses’. 5  Not until later did more rigorous 
experiments disprove Kaufmann and confi rm the accuracy of Einstein’s postu-
lates: these were based not on experiment but only on a thorough analysis of the 
concepts used, i.e., on reasoning. 

 This analysis, however, required a deep knowledge of the phenomena studied, a 
knowledge based in turn on many experiments. We shall see that Pascal and Fermat’s 
fi ndings were not based on statistics either, but on their knowledge of the rules of 
games of chance. Their fi ndings can, similarly, be verifi ed by experiment or through 
the use of statistics. 

 We therefore believe it is useful to extend the results on statistical inference 
obtained in the previous chapters to the more general case of other scientifi c infer-
ences (Jeffreys  1931  ) . The goal of such inferences is to make the most of the infor-
mation available on one or more phenomena in order to infer which hypothesis best 
explains them (the information may be supplied by the data observed or the proper-
ties of the phenomena). The explanation may be very simple: for example, when 
different balls are picked from a jar of unknown composition, which distribution 
best explains the draw? More generally, when several hypotheses can account for 
the connections between various phenomena, which hypothesis best explains them? 
We may have at our disposal statistics on the phenomena or a detailed observation 
of their properties. 

 It is also clear that the resolution of this problem enables us to extend the notion of 
inference to the broader yet related domain of decision-making theory. Admittedly, 
using statistical inference, we can, for example, deduce the probability distribution that 
best represents the fi nal state of our knowledge. But we lack the rule that allows us to 
transform this representation into action. That is the role of decision-making theory. 

 To better appreciate the signifi cance and implications of both inference and 
decision-making theory, and their links with probability theory, we must begin by 
viewing these issues in a historical perspective. 

   4   (1) die gleichen elektrodynamischen und optischen Gesetze gelten, wie diese für die Größen 
erster Ordnung bereits erwiesen ist, (2) das Licht im leeren Raume stets mit einer bestimmten, von 
Bewegungszustande des emittierenden Körpers unabhängigen Geschwindigkeit  V  fortpfl anze.  
   5   Die Messungsergebnisse sind mit der  lorentz - einstein schen Grundannahme nicht vereinbar.  
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 From the outset, Pascal and Fermat used their observations of games of chance 
to develop the notion of mathematical mean (expectation), which enabled them to 
solve the problem they had posed. This consisted in determining the fairest distribution 
( parti ) to be inferred from the rules of the game, in the event that the players want 
to stop the game at a certain point (see General Introduction). The solution sug-
gested by Pascal and Fermat is the mathematical mean of each player’s expected 
gains—a mean that, according to a fairness argument, must be identical for each. 
This is indeed a scientifi c inference and not a statistical one, for we do not need to 
observe a sample in order to make the decision: the information on the rules of the 
game suffi ces to infer the gains expected by each player. As noted earlier, there is no 
collection of statistical data on which to base the inference. All we have is the 
experience of games of chance. The decision-making criterion adopted here is 
expectation, i.e., the same one used for inference. 

 Sometimes, however, it is hard to equate the mathematical mean with the 
decision to be taken. One example is the Saint Petersburg paradox, submitted by 
Nicolas Bernoulli to de Montmort in 1713 (see Chap.   2    ), which consists in tossing 
a coin until it comes up heads for the fi rst time. If this happens on the nth toss, the 
gain will be     2n    écus . The question is: what initial sum is needed for a player to be 
able to join the game? The previous solution, which is to take the mathematical 
mean of the gains, would here require a wager tending toward infi nity in order to 
ensure a fair game. While such an inference is mathematically acceptable, the deci-
sion is not. In the words of Nicolas Bernoulli, quoted by Daniel Bernoulli  (  1738  ) :

  Although the standard calculation shows that the value of Paul’s expectation is infi nitely 
great, it has, he said, to be admitted that any fairly reasonable man would sell his chance, 
with great pleasure for twenty ducats. 6   

To solve the problem, Daniel Bernoulli  (  1738  )  7  assumed that people do not nec-
essarily think in terms of mathematical mean; instead, they introduce the notion of 
‘emolumentum medium’—today called mean utility 8 —to take a decision. In other 
words, one needs to take each player’s wealth into account:

  the utility resulting from any small increase in wealth will be inversely proportionate to the 
quantity of goods previously possessed .  9   

This condition yields a linear utility function of the log of the person’s wealth. 
Bernoulli shows that, if  a  is Paul’s wealth, his expected gain is:

     
( ) ( ) ( ) ( )+= + + + + −� �

1/21/2 1/4 1/8 11 2 4 2 .
n

nG a a a a a
   

   6   Quando-quidem calculus dicet, sortem Pauli infi ntum esse, nec tamen ullus sanae mentis, ut dicit, 
futurus sit, qui non libentissime spem suam vendiderit pro summa viginti ducatorum.  
   7   At the end of his presentation, given in 1731 but published in 1738, he notes that Cramer, the 
famous Swiss mathematician (1704–1752), had already described a similar theory in a letter to his 
cousin Nicolas in 1728, which Daniel Bernoulli quotes.  
   8   Cramer and Laplace still refer to this notion as moral expectation.  
   9   aestimari posse emolumentum lucri valde parvi summae bonorum reciproce proportionale.  
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Hence:

  If he owned ten ducats his opportunity would be worth approximately three ducats; it would 
be worth four if his wealth were one hundred, and six if he possessed one thousand. From 
this we can easily see what a tremendous fortune a man must own for it to make sense for 
him to purchase Paul’s opportunity for twenty ducats. 10   

As in Pascal’s wager, we must take the players’ wealth into account in order to 
estimate the utility of the game. If a player with a wealth of 100 ducats bets 50 in a 
game of heads or tails, his or her wealth after placing the bet will be reduced to 87 
ducats. This example also enables Bernoulli to demonstrate the inanity of games of 
chance. 

 These ideas introduced by Daniel Bernoulli and Cramer were used by Laplace to 
examine the application of probability to many decision-making problems. 

 However, the rejection of classical probability theory in the nineteenth century 
and the adoption of objective probability led to a very different approach both to 
inference and decision-making criteria. The objective approach confi ned itself to 
events capable of recurring in identical circumstances. In consequence, the notion 
of the probability of an intrinsically unique event—or, more generally, of the prob-
ability that a proposition is true—no longer made sense. But inference should apply 
precisely to testing the truth of a statistical hypothesis, such as the null hypothesis. 
The objectivist approach could not draw such an inference directly. It fell back on 
the probability of obtaining the observed sample if the hypothesis is true and not on 
the probability that the hypothesis is true (see Chap.   1    )—a roundabout answer to an 
initially clear problem. Moreover, for the objectivist approach to be of value here, 
we would need to be able to repeat the sample selection an infi nite number of times 
(Jaynes  1976  ) . 

 Despite these diffi culties, Neyman and Egon Pearson succeeded in developing 
an objectivist theory of statistical tests (Neyman and Pearson  1933a,   b ; Neyman 
 1937  ) . For this purpose, they distinguished between two types of errors. The fi rst is 
the one we commit by wrongly rejecting the hypothesis that the phenomenon stud-
ied is due to chance; the second consists in rejecting the opposite hypothesis. If we 
guard against one of the two, then we necessarily increase the probability of the 
other, on a constant-information basis. As a result, the inference that should have 
informed us whether a hypothesis was true or not has been replaced by rules of 
action whose meaning is not the one we could have expected. For instance, when we 
calculate a 95% confi dence interval for an estimated parameter, all we know is that 
if we picked a large number of samples, the estimated parameters would lie within 
the interval in 95% of cases. 

 The objectivists viewed decision-making theory as totally distinct from inference. 
This led them to use game-theory concepts to address decision-making. By the 1940s, 
Wald had developed a complex decision-making theory from game-theory concepts. 

   10   Si decem habuerit ducatos, proxime tres valebit expectatio, and quatuor cum triente praeter 
propter si centum habuerit, ac denique sex cum mille habuerit. Facile hinc indicatu is quam immen-
sas quis divitas possidere debeat, ut cum ratione viginti ducatis sortem Pauli emere possit.  



143Inference and Decision-Making Theory

However, after a series of articles (Wald  1947a,   b  ) , he eventually admitted in  1949  that 
the admissible decision-making rules were actually Bayes strategies (Jaynes  2003  ) . 
We therefore do not feel it is useful to describe his theory in greater detail here. Let us 
see instead what the epistemic approach contributes to these strategies. 

 The subjective approach, elaborated by Bruno de Finetti and Leonard Savage, 
not only provided a means to analyze many events about which the approach objec-
tivist had nothing to say, but also brought a totally fresh approach to these issues. 

 By introducing the notions of coherence and exchangeability, de Finetti  (  1937  )  
opened up the possibility of calculating an inference with which one could move 
from data on a set of units to assertions about a new unit (see Chap.   2    ). The tests that 
could be conducted under this subjective approach would indicate whether a hypoth-
esis is true or not. Thus, when calculating a 95% confi dence interval, we know that 
the estimated parameter effectively has a 95% probability of lying in that range. 

 Meanwhile, the introduction of utility by Savage  (  1954  )  allowed the develop-
ment of a decision-making theory whose meaning would merge with that of infer-
ence. To the question: ‘Is it fruitful to treat inference and decision analysis somewhat 
separately?’ (Kardaun et al.  2003  ) , Bernardo responded in discussion on the paper:

  At a foundational level certainly it is  not : decision analysis provides the coherent frame-
work which guarantees that no inconsistencies and/or obvious wrong answers (a  negative  
unbiased estimate of a probability, or a 95% confi dence region for a real-valued quantity 
which happens to be the  entire  real line, say), will be derived.  

By using prior probability to take into account the utilities of the potential conse-
quences of different actions, it thus became possible to provide a solid foundation to 
Wald’s decision-making theory, initially developed  in an objectivist framework. 

 The logicist approach, developed by Jeffreys, Cox, and Jaynes, had many 
features in common with the subjective approach in its treatment of statistical infer-
ence (see Chap.   3    ) and decision-making theory. However, the personal viewpoint on 
which coherence was based gave way to independent analysis of the user’s person-
ality and to a vision rooted in consistency. 

 Unlike the objectivists’ confi dence intervals, the Bayesian intervals proposed by 
Jaynes  (  1976  )  for estimating an inference thus shared the objectives of the intervals 
advocated by the subjectivists:

  Our job is not to follow blindly a rule which would prove correct 90% of the time in the long 
run; there are an infi nite number of radically different rules, all with this property. Our job 
is to draw the conclusions that are more likely to be right in the specifi c case at hand; 
indeed, the problems in which it is more important that we get this theory right are just the 
ones (such as arise in geophysics, econometrics, or antimissile defense) where we know 
from the start that the experiment can  never  be repeated.  

At the same time, he rejected the individualist view of subjective probability. 
Commenting on the use of Bayes’s theorem, he noted:

  To recognize these things in no way forces us to accept the ‘personalistic’ view of probabil-
ity (Savage  1954,   1962  ) . ‘Objectivity’ clearly does demand at least this much: the results of 
a statistical analysis ought to be independent of the personality of the user. In particular, our 
prior probabilities should describe the prior information; and not anybody’s vague personal 
fi ndings.  
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This concern for objectivity is shared by all advocates of logicist probability 
(Berger et al.  2009 ; Bernardo  2011  ) . 

 Similarly, this approach recognized a theory of statistical inference resembling 
that of the subjectivists. Jaynes  (  2003  )  showed the rules for solving a decision-
making problem that avoided the drawbacks of both the objective and subjective 
approaches. We shall not describe the rules in detail here, but merely note that they 
are determined by ‘elementary desiderata of rationality and consistency’. Jaynes 
also pointed out their closeness to those offered in the eighteenth century by Cramer, 
Daniel Bernoulli, and Laplace.  

   Does Cumulativity Exist in Probability? 

 The desire or, on the contrary, the refusal to restore the unity of classical probability 
has driven many researchers and philosophers of science to offer arguments of vari-
able persuasiveness. We set aside those who have striven to establish the relevance 
of their theory, such as von Mises  (  1928,   1932  )  and Kolmogorov  (  1933  )  for objec-
tive probability; de Finetti  (  1937  )  and Savage  (  1954  )  for subjective probability; 
Jeffreys  (  1939  ) , Cox  (  1961  ) , and Jaynes  (  2003  ) . They naturally defended their 
points of view and showed the reasons why the approaches followed by the other 
theories are mistaken or fl awed. Thomas Kuhn’s term ‘scientifi c revolution’  (  1962  )  
would seem to suit them well, but as all these schools are still very much alive, can 
we speak of revolution? 

 We begin by reviewing the arguments of those who, without really choosing one 
of the three approaches, have militated against the unity of probability; we then look 
at the arguments of those who championed unity. However, we shall not aim to be 
exhaustive. 

 To begin with, most statisticians, physical scientists or social scientists display 
little interest in the foundations of probability. They apply statistical concepts to 
their data pragmatically, without any concern for their basis. Mosteller and Wallace 
 (  1964  )  clearly show the pragmatic attitude of statisticians:

  Even though individual statisticians may claim generally to follow the Bayesian school or 
the classical school, no one has an adequate rule for deciding what school is being repre-
sented at a given moment. When we have thought we were at our most Bayesian, classicists 
have told us that we were utterly classical; and when we have thought ourselves to be giving 
a classical treatment, Bayesians have told us that the ideas are not in the classical lexicon. 
So we cannot pretend to speak for anyone but ourselves.  

This approach has prevailed in many applications, although in some cases the 
paucity of data points has forced the researcher to adopt the Bayesian method. 

 The philosopher Ian Hacking takes a similar but clearly different attitude. In 
 1975 , he admitted that probability had two facets:

  On the one side it is statistical, concerning itself with stochastic laws of chance processes. 
On the other side it is epistemological, dedicated to assessing reasonable degrees of belief 
in propositions quite devoid of statistical background.  
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As we can see, each of these facets does not apply equally to all problems 
involving probability: the fi rst applies to statistics, the second to personal beliefs. 
Hacking goes even further when, in discussing an article by Glenn Shafer  (  1990a  ) , 
he totally rejects all reunifi cation of the concept of probability, arguing that: ‘It is 
like most of our other concepts, a radial one, not characterized by necessary and 
suffi cient conditions’. 

 Similarly, the philosopher Patrick Suppes  (  2002a  ) , after describing in detail the 
various theories of probability, recommends probability users to adopt a pragmatic 
attitude:

  Probability is too rich and diversifi ed in application to be restricted to one single overween-
ing representation. The pragmatic context of use will sometimes fi x the representation cho-
sen, but more often, a deeper pragmatic attitude will dominate and no explicit choice of 
representation will be made […]  

This attitude is supported by examples from quantum mechanics as well as ‘data 
mining, adaptive statistics, boosting, neural networks and a variety of other 
approaches to large-scale data analysis’. 

 However, in the opposite direction, some authors have sought a more cumulative 
approach, which would allow a synthesis of the different schools. 

 Shafer  (  1985,   1990a,   b,   1992  ) , for instance, regrets that the unity of classical 
probability has been lost because of the split into divergent schools, and he suggests 
that we should think about ways to restore that unity. He starts with the games of 
chance studied by Pascal and Fermat, which he calls the ‘ideal picture of probabil-
ity’, where the unity between belief and frequency is unquestionably visible. When 
we use probability theory for an altogether different type of problem, however, 
Shafer  (  1985  )  argues that:

  the different ways Bayesians, frequentists and others use probability should be thought of 
as different ways of relating problems to the ideal picture.  

He notes that what he calls the Bayesian approach is now regarded as subjectiv-
ist, and that it is useful to consider the logicist Bayesian approach as well:

  Today, most scholars who understand probability as degree of belief have dropped the 
adjective ‘rational’. These scholars no longer hold, as Keynes did, that given evidence logi-
cally determines a probability for a given proposition.  

Shafer accordingly believes  (  1992  )  that we need to return to the notion of ‘fair odds’ 
rather than to that of ‘personal odds’ if we want to reunify probability:

  There is no reason for a person to have personal odds at which she would bet on either side. 
But a person can draw an analogy between her evidence and the special situation where fair 
odds are known. She can say that her evidence is analogous, in it strength and import, to 
knowing certain fair odds, which are based on long-run frequencies. This recasting of belief 
interpretation pulls it towards both the frequency and support interpretations.  

He sets out to axiomatize these odds differently from Kolmogorov’s axiomatiza-
tion, which concerned the probability of isolated events. Shafer sees the need to 
reintroduce the repetition of events in this context. For this purpose, he develops a 
wager-based (‘game-theoretic’) interpretation of probability (Shafer  1996,   2010  )  that 
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we have already presented (in part) and criticized in Chap.   2    . We shall not examine 
this approach any further here, for we believe it is too focused on games and fi nance 
(Shafer  2001  )  to supply a fully valid generalization of probability theory. However, 
the introduction of a time dimension is a valuable feature of Shafer’s theory. 

 More recently, Knuth  (  2008,   2009,   2010a,   b  )  uses the studies by Shannon  (  1948  ) , 
Cox  (  1961  ) , and Jaynes  (  1956,   2003  )  as his starting point to propose a synthesis not 
only of probability theory, but also of information theory and entropy. He begins by 
noting that probability and entropy describe our state of knowledge about both physi-
cal and social systems, but do not describe those systems themselves. From this 
observation, he shows that the theory of partly ordered sets (posets) and lattice theory 
make it possible to unify the frequentist and epistemic logicist approaches  (  2010a  ) :

  Here the two perspectives of logic and sets, on which the Cox and Kolmogorov foundations 
are based, are united within the lattice-theoretic framework.  

It will be recalled that a partial order, producing a ‘poset,’ is a binary relation on 
a set that is refl exive, antisymmetrical, and transitive (see Chap.   3    ), and that a lattice 
is a partially ordered set in which each couple of elements admits an upper bound 
and a lower bound. Having briefl y described the approach in Sect.  3.2 , let us now 
examine in greater detail how this unifi cation is possible. 

 The theory considers three closely interlinked spaces, each of which constitutes 
either a partially ordered set or a lattice. Knuth  (  2008  )  characterizes them as follows:

  the poset that describes the state space gives rise to a lattice of statements, called the hypothesis 
space, and a lattice of questions, which is called the inquiry space, via order-theoretic 
exponentiation. 11   

He sets out to work simultaneously in all three spaces to unify probability theory, 
information theory, and entropy. 

 Knuth defi nes a set of logic propositions composed of identifi able elements 
(‘atoms’), which can be combined with the aid of a ‘join’ operator,     ∪   , which is the 
equivalent of the logical operation OR and includes the null element Ø. Also, when 
we consider two independent systems, their direct-product,     ×   , consists in taking two 
elements of each system as a new unit. Knuth has shown that both Cox’s logicist 
approach and Kolmogorov’s set-theory approach can be based on this more general 
lattice theory. The latter possesses a set of seven symmetries, leading to seven axioms 
governing the theory’s quantifi cation (Knuth  2010a  ) :

   1.    Ø does nothing 12   
   2.        ∪    obeys strict order  

   11   Exponentiation relies on generating new lattice elements from old by grouping the old elements 
into sets called downsets. Downsets are constructed so that they contain their lower bound. That is, 
given any element in the downset, all elements included by this element are also members of the 
set (Knuth  2008  ) .  
   12   Here we use the notations that we have adopted for the present book and not Knuth’s  (  2010a  ) , 
which are slightly different.  
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   3.        ∪    is       associative  
   5.        ×    is distributive  
   6.        ×    is associative  
   7.    order is associative     

 To begin with, axioms 1, 2, 3, and 4 make it possible to defi ne a measure     ( )m x    
on the space of states that satisfi es:

     ( )∪ = +( ) ( ).m x y m x m y
   

Axioms 5 and 6 enable us to deduce the direct-product rule:

     ( )× = ( ) ( ).m x t m x m t
   

The increase in the number of independent measures results in:

  a unique form of variational potential for assigning measures under constraints, yielding a 
unique divergence of one measure from another.  

In addition to this measure on the space of states, we can defi ne a corresponding 
measure for the space of hypotheses,     ( )p x t   , which represents the plausibility of 
question  x  conditioned by context  t . Using axiom 7, combined with axioms 1–4, we 
can show that the measure satisfi es the condition:

     
( ) ( ) ( )= ,p x z p x y p y z

   

and that this takes us back to Kolmogorov’s probability axioms and Bayes’ theorem. 
Working now on probability distributions, Knuth concludes as follows:

  The variational potential defi nes the information (Kullbach and Leiber  1951  )  carried by a 
destination probability relative to its source, and also yields the Shannon entropy of a 
partitioned probability distribution.   

 As we can see, this approach not only unifi es Kolmogorov’s objective probabil-
ity and Cox’s logicist probability, but, at the same time, offers a single quantifi cation 
of Shannon’s information theory and entropy. We should also note that these results 
are valid for all lattices whereas probability theory was established in the context of 
Boolean algebra. The new theory therefore paves the way for a true cumulativity of 
probability. 

 However, it does not allow the inclusion of subjective probability theory, in 
which the degrees of belief may no longer be ‘rational’—in other words, everyone 
is free to have his or her own opinion. This is consistent with Shafer’s position and 
confi rms it. However, unlike Shafer’s approach, Knuth’s does not make it possible 
to introduce temporality into the defi nition of probability. It is perhaps in this direc-
tion that probability theory could still evolve.         



     Part II 
  From Population Sciences to Probability                       
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 Taking the opposite path to the one followed in Part I, we shall now explore the 
relationship that developed over time between social science and probability. 
However, as this book is not an encyclopedia, our analysis will necessarily focus on 
a selected group of social sciences. 

 Let us fi rst examine what are the links between social science and probability. 
 We previously noted the near-simultaneous introduction of a geometry of chance 

by Pascal and Fermat and of a political arithmetic by Graunt and Petty. While the 
two approaches were linked, the historical development of social science also left 
room for the possibility that those connections may have been very weak, and even 
irrational. 

 In his course on positive philosophy applied to astronomy (Lecture 27), Auguste 
Comte rejected the notion of probability (see our Sect.   3.4    ). Later, in Lecture 49 
(vol. 4 [1839] on social physics), he spoke of a ‘fanciful subordination to the 
illusory mathematical theory of chance’, for which he castigated Jacob Bernoulli 
and Condorcet. But he saved his harshest criticism for Laplace, fi nding it truly 
impossible to excuse his ‘sterile reproduction of such a philosophical aberration, 
even as the general condition of human reason was already making it possible to 
glimpse the true fundamental spirit of sound political philosophy […].’ Comte 
pursued his attack as follows:

  Indeed, would it be possible to imagine a more radically irrational conception than that 
which consists in assigning as a philosophical base for the totality of social science, or as 
the principal means of its fi nal elaboration, a so-called mathematical theory in which, by 
routinely taking signs for ideas—in keeping with the customary nature of purely meta-
physical speculations—one seeks to submit to calculation the necessarily sophistic notion 
of numerical probability, whose direct result is to offer our own true ignorance as the natural 
measure of the degree of likelihood of our various opinions?   

 This violent condemnation of the use of probability in social science—a practice 
that, in Comte’s view, has registered no tangible improvement in a century—was 
also endorsed by members of the French Academy of Science (Poinsot and Dupin 
 1836  )  hostile to the use of probability for moral issues. Many contemporary 
philosophers, such as Bordas-Desmoulins  (  1843  ) , similarly rejected the application 
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of probability to social or cultural phenomena. This refusal, tied to a particular 
historical period, should, in fact, be viewed in a fuller perspective on the social 
sciences in order to assess it in its true context. 

 More recently, Shafer     (  1990a    )  has noted the need to consider the limits of prob-
ability as a method for dealing with many problems:

  In truth, most problems of inference in science and in the professions do not lend them-
selves to effective probabilistic or statistical treatment. An understanding of the intellectual 
content of applied probability and applied statistics must therefore include an understand-
ing of their limits. What are the characteristics of problems in which statistical logic is not 
useful?  

He gives the example of inference methods specifi c to artifi cial intelligence, but 
his argument is broader and notably extends to all the social sciences. What prob-
lems in these sciences does probability enable us to address? Is it truly indispens-
able for the progress of those sciences? 

 Part II examines fi rst how probability can be incorporated into some of the social 
sciences, whether it plays a major role there, and, if not, the role it does play. 

 Let us now see why to restrict the fi eld of social science, too large for a non 
encyclopedic study, to a more restricted fi eld of research. In Part I, we examined 
the applications of probability to a large number of social sciences. However, we 
shall need to confi ne ourselves to a smaller group of social sciences so that we can 
examine their development in greater detail and see how they used probability 
throughout their history. We think that population sciences will constitute an inter-
esting case to consider here, as their development was simultaneous with the 
development of probability. 

 We have already pointed out the near-simultaneity of the emergence of probabil-
ity and political arithmetic. It would therefore be interesting to examine the latter 
science here. From the seventeenth century to the early nineteenth century, political 
arithmetic was regarded as an indivisible whole. However, as it eventually split up 
into different social sciences such as demography, epidemiology, political science, 
actuarial science, and sociology, we must restrict our scope even further. 

 In consequence, we shall take a more detailed look at population sciences, 
particularly: actuarial science, demography, paleodemography, historical demogra-
phy, etc., without excluding the other sciences when useful. 

 For example, epidemiology, which was a part of political arithmetic on providing 
‘a method to quantify the costs of mortality’ (Susser  1996  ) , shares many features 
with population sciences. Our investigation must even include the form of sociology 
championed by Durkheim  (  1895,   1897  ) , which adopted approaches similar to those 
followed by population sciences at the time. Population genetics is also partly in the 
same fi eld but will not be examined in detail here: the interested reader may refer to 
Vetta and Courgeau  (  2003  ) . 

 Similarly, numerous social sciences today practice common statistical approaches. 
Regression methods, event-history approaches, and multilevel approaches are used 
not only in population sciences, but in epidemiology (Greenland  2000  ) , economics 
(Florens  2002 ; Heckman and Singer  1984a  ) , sociology (Yule  1895 ; Tuma and 



153Introduction to Part II

Hannan  1984  ) , medical statistics (Andersen et al.  1993  ) , education sciences 
(Goldstein  2003  ) , population geography (Jones  1993  ) , and many other disciplines. 
When we discuss these methods in population sciences, we shall thus need to show 
their more general scope of application. 

 As a result, even restricting our choice of social sciences to population sciences, 
our examination will be much broader and will enable us, in certain cases, to draw 
more general conclusions.                               
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           Having presented and discussed the various meanings of the term probability, in 
Part I of this volume, we shall focus in this chapter on the more detailed links that 
exist between population sciences and probability. More specifi cally, we shall 
examine the concept of  dispersion  in the two disciplines. 

 The term ‘dispersion’ derives from the Latin verb  dispergere , which means ‘to 
spread.’ In French, the fi rst edition of the  Dictionnaire de l’Académie Française  
(1694) defi ned the term only as ‘action of dispersing or by which one is dispersed’, 
illustrating it by the example of the dispersion of the Jews. Over time, the word has 
come to designate far more diverse realities, notably in the scientifi c fi eld. 

 Today, the  Académiciens  distinguish between two major meanings of the term, 
and we shall see that these meanings are also used—albeit in more specifi c senses—
in probability and social science. 

 The fi rst meaning of dispersion is ‘action of spreading, of scattering abroad’, 
which has led, among other things, to the probabilistic meaning of the term: a 
spread of observations around their central value. We can thus defi ne and measure 
this dispersion using various numerical indicators: variance, 1  standard deviation, 
confi dence interval, variation coeffi cient, etc.—at the cost, however, of a loss of 
information on the broader concept of spread (Barbut  2002  ) . Likewise, in popula-
tion sciences, one can speak of the dispersion of a rate, a probability or an index, 
in the same sense as above. 

 The second meaning is ‘action of separating elements, of breaking the unity of a 
set’. For instance, in probability, we can use a single random variable, defi ned for 
the total population considered. The variable may be characterized by its mean and 
variance. After breaking down the population into more specifi c sub-populations, 
we fi nd that the variable’s mean and variance are strongly dispersed for each 

    Chapter 4   
 The Dispersion of Measures 
in Population Sciences       

   1   In modern Greek, the term for variance is diaspora ( d  i  a  s  p  o  r ά), which brings us back to the 
dispersion of the Jewish people.  
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sub-population. We must then split up the population and examine each sub-group 
separately. As a result, a set of facts regarded as equivalent in the explanation of a 
phenomenon may cease to be equivalent when we analyze the phenomenon in 
greater depth. In population sciences, for example, we shall see that the multilevel 
approach will examine separately the effect of a characteristic on various groups, 
whereas, in the earlier approaches, the characteristic was assumed to have a uniform 
effect on a total population. 

 We shall also examine the opposite of dispersion, namely, ‘homogeneity’, which 
denotes the concentration of observations on a single value, or the characteristic of 
a set whose breakdown into constituent elements does not seem useful. 

 We shall review the variations in the meaning of ‘dispersion’ throughout the history 
of population sciences, and we shall link it to the paradigms prevailing in each period. 

    4.1   From Pascal and Fermat’s Wagers to Graunt’s Bets 

 This section looks at the works of some authors already discussed in earlier chapters 
but also new ones; here, however, the focus is on dispersion. 

 As noted earlier,    Pascal and his correspondence with Fermat (1654, 1922), the 
founders of probability theory, made the hypothesis that the game rests on pure 
chance, in other words, is fair, i.e., not rigged in any way. Thus, rather than predict 
the outcome of each future round of play—an impossible task—they can calculate 
each player’s fair share of winnings if the game did not continue. More generally, 
even when the game is fi xed (for example, by using a loaded coin or die), a player’s 
odds of winning or losing always has a determined value. As Bernoulli’s theorem 
states, the value can be calculated from a large number of tosses of the loaded coin 
or die, with an accuracy that increases with the number of tosses. Objective probabil-
ity theory will apply perfectly here. 

 By contrast, when Graunt  (  1662  ) , as mentioned in the General introduction, 
writes that:

  it is esteemed an even Lay, whether any man lives ten years longer, I supposed it was the 
same, that one of any 10 might die within one year,  

he is no longer speaking of a known or at least knowable probability—as in 
gaming—but of a probability that is not only unknown, but whose very existence 
cannot be established a priori. Graunt’s assumption is a heroic one, whereas the 
death of an individual seemed inherently irreducible to all rational consideration. 
As Vilquin stated  (  1977  ) :

  Measuring and quantifying phenomena that were God’s secret (birth, illness, death, the 
games of life and chance)—the only ones who dared engage in these pursuits were experts 
whose science was too mysterious for them to fear public disapproval: doctors, theologians, 
or polemicists with scant regard for truth and falsehood.  

Vilquin puts the ‘games of life’ and ‘games of chance’ on an equal footing here. In 
our view, however, the games of chance, where the probability of an outcome can 
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be estimated even if the game is not fi xed, differ from the games of life, where the 
probability can be estimated only by making far more heroic assumptions. 

 Graunt effectively posits such hypotheses to estimate human probabilities of 
dying. We shall try to identify them in greater detail. 

 First, he is working on the life of an individual, whose probabilities of dying can 
vary, in principle, from age to age. In contrast, the probability of an outcome in a 
game of chance is independent of the instant in which the toss occurs, provided that 
we use the same coin, die, etc. However, as he does not know the age distribution of 
deaths, he assumes that the annual probability of dying during the ‘ten years longer’ 
period is the same. Then, he extends the probability from ages 10–60—in other 
words, he regards the probability as age-invariant, i.e., without dispersion or homo-
geneous, in the second meaning of the word. He therefore treats the study of 
games of chance and the study of human life as equivalent, which is what Vilquin 
ultimately argues. 

 Second, Graunt posits another underlying hypothesis by treating deaths 
observed in a given year as equivalent to deaths observed over a generation. 
Admittedly, the distinction between period analysis and longitudinal analysis was 
still far from established, but only this hypothesis allows him to reason thus. In 
Sect.   1.3    , however, we showed that his calculation was incorrect and that the 

annual probability, which he estimates at     
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where     
xp    is the probability of dying at age  x ,     ( ), 1D x x +    the number of deaths 

between ages  x  and  x  + 1, and     xN    the number of survivors at age  x . We can thus 
deduce the population aged 10–60 from the deaths observed and the estimated 
probability  p :
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If, like Graunt, we assume a probability of     1

20
  , we obtain, from the 10,000 

deaths observed, a population of 200,000 people aged 10–60 years and not 100,000, 
as he states incorrectly, for he takes a multiplier of 10 instead of 20 (‘which number 
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being multiplied by 10,…,). But we have also seen that his estimate of  p  is 
inaccurate; we must take     0.067p =    instead, i.e., a multiplier of 14.925, which 
yields an estimate of 149,250 inhabitants, or approximately 150,000. 

 We shall see that the use of the multiplier not only persisted but expanded 
throughout the following century, when deaths and births were the only fi gures 
available to estimate a country’s population. 

 Although Graunt’s probabilistic reasoning was still very uncertain, his demo-
graphic hypotheses—given his knowledge of human mortality—were clearly 
defi ned, even if they are debatable. He took Pascal’s reasoning one step further: 
Pascal spoke only of expected gains, whereas Graunt introduced the probability of 
dying. 

 It is Halley  (  1693  )  who made it possible to establish a more satisfactory life 
table, albeit still subject to the second hypothesis noted above. He verifi ed the 
dispersion—in the second sense of the term—of age-specifi c probabilities of dying. 
After him, no-one would regard them as equal. 

 However, like most savants of the seventeenth century and fi rst half of the eigh-
teenth century, Halley had only birth and death statistics at his disposal, and they 
were inadequate for constructing an accurate life table. The population categories at 
risk were missing. The gap was not fi lled until 1766, when the Swedish astronomer 
Wargentin produced a true life table. He was able to do so because his country main-
tained population registers, which give the fi gures for population at risk, and death 
registers, which provide the numerators of the rates or probabilities to be computed. 
The censuses introduced in the nineteenth century made it possible to generalize the 
calculation of these tables. 

 In conclusion, we can say that, without the estimation of age-specifi c deaths, 
Graunt assumes their homogeneity, at least between ages 10 and 60, in order to be 
able to estimate the corresponding population. Once these deaths have been mea-
sured, the hypothesis becomes useless, for one can now verify its validity and show 
the dispersion—in the second meaning of the word—of their values by age. 

 What about the statistical dispersion of population science measurements—in 
the fi rst meaning of the term—throughout the same period? As we have already 
seen in Sect.   2.1    , Jacob Bernoulli  (  1713  )  showed that ‘the estimate of a probability 
can be bounded by two limits, as precise as we wish them to be’. 2  We should there-
fore be able to estimate the dispersion of population sciences indices, when we have 
the measured population size to estimate them. 

 To our knowledge, only one author applied these results to population science 
data: Nicolas Bernoulli (in de Montmort, 1713). He sought to refute Arbuthnott’s 
argument of Divine Providence  (  1710  )  using the observation of children born in 
London between 1629 and 1710, which he presents as follows:

  if chance ruled the world, it would be impossible for the number of males and females to 
converge as closely for several consecutive years as they have been doing for the past 
80 years […]  

   2   binis limitibus conclusam, sed qui tam arcti constitui possunt, quàm quis voulerit.  
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To this end, he sets out to prove:

  that there is a very high probability that the number of males and females lies each year 
between even narrower limits [sic] than those observed in the past 80 years in a row.  

His demonstration actually resembles the one offered by Jacob Bernoulli, as he 
himself recognizes:

  I recall that my late uncle demonstrated a similar thing in his treatise  De Arte conjectandi , 
now printed in Basel […]   

 By contrast, none of the other authors working on population until 1774 thought 
of setting limits within which to perform calculations. Neither Kersseboom  (  1742  ) , 
nor Deparcieux  (  1746  ) , nor    Sü b milch  (  1741,   1761–1762  ) , nor any other contempo-
rary attempted to assess the dispersion of his estimates. Doubtless some of these 
authors, such as Sü b milch, believed that the immutable causes underlying these 
phenomena lay in the Divine Order, which a perfect society would illustrate. In that 
case, the observed dispersion of the indices would vanish. But, as Nicolas Bernoulli 
showed, using a probabilistic reasoning (see Sect.   1.4    ), this argument had to be 
refuted: mythological thought—which substituted for the lack of explanation of the 
observed phenomena—cannot provide valid research guidelines (Courgeau  2010  ) .  

    4.2   Introduction of Epistemic Probability 
in Population Sciences 

 In Sect.   2.1     we examined the emergence of epistemic probability. We began with 
Jacob Bernoulli’s direct approach  (  1713  ) , and we ended with the so-called indirect 
approach initially proposed by Bayes  (  1763  ) , then expanded and applied by Laplace 
to many scientifi c fi elds from 1774 onward. It is as well applicable to objective 
events, such as a person’s probability of dying, as to more subjective ones, such as 
trial verdicts. 

 Laplace  (  1778  )  showed very clearly how the probabilities of elementary events 
can be obtained in three different ways:

  1.  a priori , when by the very nature of events, we see that they are possible in a given 
ratio; […] 2.  a posteriori , by repeating many times the trial that may produce the event in 
question, and by examining how many times it has occurred; 3. lastly, by considering the 
reasons that may lead us to assert the existence of this event […]  

In the fi rst situation, we know what Laplace calls the absolute possibility of events, 
as when Pascal (Pascal     1654a  )  assumes a fair game in which the probability 

of winning is     1

2
  . In the second situation, we obtain the absolute possibility after an

infi nite number of trials—for example, when Jacob Bernoulli  (  1713  )  determines 
with increasing precision the probability of drawing, with replacement, a token of a 
given color from an urn of unknown composition. In the third situation, we fi nd only 
the relative possibility of the event given the state of our knowledge. Laplace decided 
to focus all his efforts on the analysis of this third situation. 
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 We have already described his approach to the masculinity proportion at birth, 
absent any prior data on the possibilities of male and female births (see Sect.   3.4    ). Here, 
Laplace assumes that all possibilities from zero to unity are equally probable. He can 
thus provide not only the best estimate of the masculinity proportion but also the prob-
ability that the proportion will lie within given limits around the estimated value. 

 Let us examine his treatment of one of the major population-related topics in the 
absence of census data, a topic fi rst broached by Graunt  (  1662  )  as we have just seen: 
the estimation of the population from the ratio of the population to annual deaths 
and births (Laplace  1783b  ) —also known as the multiplier method. 

 In the introduction to his article, Laplace underscores the importance of knowing 
a country’s population:

  The population is one of the surest ways to judge the prosperity of an empire; and the varia-
tions that it experiences, compared with the events preceding them, are the fairest measure 
of the infl uence of physical and moral causes on the happiness or misfortune of the human 
species. It is therefore of interest, in every respect, to know the population of France, to 
track its progress, and to determine the law whereby men are distributed across the surface 
of this great kingdom.  

Like most countries at the time, however, France had neither a reliable census 
nor a good-quality population register that would have allowed an accurate estimate 
of its population. The only sources available were birth and death registers. Laplace 
does note that in a country where the number of deaths is roughly equal to that of 
births—i.e., what we would now call a stationary population—there is a constant 
ratio of the population to annual births or annual deaths: life expectancy at birth. 
More generally, this factor,  i , by which we need to multiply births 3  in order to obtain 
the population, is the most subtle and interesting topic in population research. 

 Laplace did state that the result obtained with this multiplier method can never 
be strictly accurate and is subject to error. He therefore concentrated his work on the 
estimator’s accuracy, i.e., its dispersion in the fi rst meaning of the term. 

 For this purpose, he imagines each annual birth as represented by a white ball, and 
each individual in the population studied as represented by a black ball. To simplify 
the calculation, their total number is assumed to be infi nite, whereas in fact it is very 
high. Laplace proposes what would now be called a sampling operation, which con-
sists here in selecting a large number of parishes from all of the country’s provinces 
to properly represent its total population. 4  The sampling will involve an enumeration 
of inhabitants and a tabulation of births recorded in the 10 years prior to the enumera-
tion. This will constitute an initial sampling of  p  inhabitants and  q  annual births,

so that     
p

i
q

=   . The second sampling will cover the entire country, but we shall only

obtain the number     q′   of annual births; the population     p′   will be unknown. 

   3   As Moheau  (  1778  )  noted, ‘humane mortality is not regulated in the same manner as fertility: there 
are years that produce a multitude of deaths, there are others that spare our days, whereas the rate 
of annual newcomers is almost equal and invariable’. That is one of the reasons why eighteenth-
century authors preferred to calculate a birth multiplier rather than a death multiplier.  
   4   It is interesting to note that such a sampling replaces the exhaustive census in France after 1999.  
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 To determine this unknown population, we rely on the sampling, which yields a 

value of        
pq

p
q

′
′ =�   . But it is important to fi nd the probability that the error in this 

result does not exceed     
pq

a
q

′=
ω

  , where  a  can, for example, be set at 500,000. 

To this end, Laplace uses the results obtained in two earlier articles (Laplace  1782, 
  1783a  ) , which present his theory of the probability of future events derived from 
observed events. 

 Let  x  be the unknown ratio of the total population to this total population plus 
annual births. The probability of the second sampling will be:
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But as     p′    is unknown, it can take all the prior values in the interval     [ ]0,∞   . 
These values, however, will be more or less probable, according to whether they 
make the second sampling more or less probable. We shall therefore obtain the 
probability for each value of     ′p    by dividing the previous quantity by the sum of 
all whole values of this quantity taken from zero to infi nity, i.e., by the following 
series:
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If we call the quantity in brackets     1qS ′+   , we can easily ascertain that the following 
relation is verifi ed:
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and, as a result, the probability for each value of     ′p   , with  x  assumed known, will be:
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 But, as  x  is unknown, we again need to make its prior vary from zero to unity. 
These different values are also more or less probable depending on whether they 
make the fi rst sampling more or less probable. As the probability of this fi rst 
sampling is:
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the probability of  x  will be:
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and multiplying this probability by the one determined earlier for     p′  , with  x  known, 
we obtain the fi nal probability for each value of     p′  :
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 The last step is to calculate the probability,  P , that the total French population 

lies between the two values     ( )1
pq

q

′ + ω    and     ( )1
pq

q

′ − ω   . We shall not describe 

these approximate calculations based on the previous equation but simply give 
the fi nal result:
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   This value of  P  is accurate to within the 

value of     ω  . 
 Let us examine France in early 1782 within its borders of the time. The average 

number of births between 1781 and 1782 was 973,054.5. Let     = 500,000a   : 

consequently, the probability     
1000

1001
P =   , hence     π∞

−

=

=∫
2

2002
t

t V

e   . This equation 

therefore determines     = 2.327V   . But as Laplace had not yet performed the 
enumeration that should have yielded the multiplier to be used,  i , he resorted to 
earlier enumerations that gave him a multiplier of roughly 26. As the exact 
multiplier did not diverge signifi cantly from this number, he took the values 
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    = = =1 2 325.5, 26, 26.5i i i   , which yielded, respectively, the following populations 
to be enumerated:     = = =1 2 3727,510, 771,469, 817,219p p p   . We should note 
that Louis Henry’s survey on the population of France from 1740 to 1860 
(Henry and Blayo  1975  )  indicated a population of 27,550,000 in 1780 for 
1,053,800 births recorded within the borders of 1861, 5  in other words, a multiplier 
of 26.14—well within the limits given by Laplace. 6  

 Thus Laplace introduced into demography the concept of dispersion of mea-
sures, in the fi rst meaning of the term. As we shall see, the concept would later 
disappear entirely from the discipline, when most European countries introduced 
exhaustive census-based population counts. 

 In his  Mémoire sur les probabilités  (1778) Laplace recommended also an analy-
sis of dispersion in the second sense of the term:

  it is here, above all, that we need to have a rigorous method for distinguishing, among the 
phenomena observed, those that may depend on chance from those that depend on specifi c 
causes, and to determine the probability with which the latter [ phenomena ] indicate the 
existence of the causes.  

In our view, his recommended distinction is essential for defi ning present-day 
demographic approaches, whether of the event-history or multilevel type. 

 But it was Gauss  (  1809  )  who actually proposed using the least-squares method 
for a true regression analysis. The main goal of his book was to present his detailed 
mathematical research on planetary orbits. This research, begun in 1795, enabled 
him to predict the position of the asteroid Ceres in 1801 from a small number of 
observations made early that year. 7  Gauss concluded his volume with a more 
general description of his least-squares method, whose principle consisted in 
resolving a system of linear equations containing fewer variables than equations. 
When the number is equal, we can simply resolve the system, which usually has a 
single solution. When the variables outnumber the equations, there is generally no 
solution. But when the number of variables is smaller, the problem is overdetermined. 
For the unknown variables, we therefore need to fi nd values that most closely 
approximate the true values. 

   5   The Comté de Nice and Savoie (Savoy) were annexed to France in 1860.  
   6   For the record, these fi gures are currently challenged (Brian  2001  ) . However, our purpose here is 
not an accurate reconstruction of France’s population, but a discussion of Laplace’s estimates. 
Laplace himself revisited the subject in  Théorie analytique des probabilités  (1812), using a differ-
ent approach from the one described here. In this later study, he worked on an enumeration of 1802 
and on the average number of births recorded between September 22, 1799, and September 22, 
1802. Laplace also introduced the longitudinal analysis of mortality (‘Let us suppose that we have 
tracked the distribution of mortality among a very large number  n  of children, from their birth to their 
total extinction’), and the mean duration of marriages between boys aged  a  and girls aged     ′a   . 
He naturally calculated confi dence intervals for all these quantities.  
   7   Legendre published an application of the least-squares method to a simpler case  (  1805  )  before 
Gauss and claimed precedence for the discovery. However, besides the evidence that Gauss used 
the method before 1805, the key element of this approach is missing from Legendre’s publication: 
he fails to present it in a clear probabilistic framework.  
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 To pose this problem in terms of probabilities, Gauss assumed   m   linear equations:
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where the observations are     , , , ...a b c   , with   n   unknown coeffi cients     , , , ...p q r   , 
which we must estimate using observations of the values     ′, , ...M M   of the functions 
    ′, , ...V V    Gauss then assumes that the errors:     , , ...V M V MD D¢= − = −′ ′    have 
probabilities given by the function     ( ) ( ), , ...D D¢ϕ ϕ    Applying Laplace’s inverse 
probability principle, he assumes that all the values of the unknowns are equally 
plausible priors. This leads him to the values of the unknown coeffi cients that will 
maximize the quantity:

     ( ) ( ) ...W D D¢= ϕ ϕ
   

All that is needed now is to derive  W  relative to the unknowns, and to resolve the 
corresponding equation system. But these equations comprise the unknown func-
tion     ( )ϕ Δ   , whose formulation must be determined. 

 Gauss then starts from the axiom that the arithmetical mean of a variable’s 
observed values is the variable’s most probable value. Here, he shows that  D  is nor-
mally distributed, in other words:
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where  h  is a positive constant, which may be viewed as a measure of estimation 
accuracy. Here, we can write:
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a quantity that takes its maximum value when the quantity:

     
2 2 ...L D D¢= + +    

is minimal. This leads to what has since been named the least-squares method to 
supply the values of     , , , ...p q r    

 Laplace, however, while recognizing the merits of Gauss’s linkage of the least-
squares method to probability theory, quite rightly criticized this axiom:

  Mr. Gauss, in his  Theory of elliptical motion , sought to tie this method to Probability the-
ory, by showing that the same law of observation errors, which generally yields the rule of 
the arithmetical mean between several observations, accepted by observers, likewise yields 
the rule of least squares of observation errors, […] But, as nothing proves that the fi rst of 
these rules yields the most advantageous result, the same uncertainty exists for the second. 
(Laplace  1812  )   
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In the fi rst of two papers  (  1809a  ) , Laplace showed that if we assume that positive 
and negative errors are equally possible in each observation, then the probability 
that the mean error of  n  observations will lie within the limits     rh

n
±    is:
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where  h  is the interval in which the errors of each observation can lie,  k  is the 
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⎛ ⎞ϕ⎜ ⎟⎝ ⎠∫   . In his second paper  (  1809b  ) , written after seeing Gauss’s book 

 (  1809  ) , Laplace shows how this theorem can provide a solid basis for Gauss’s 
choice of a normal distribution for observation errors, by using the ‘mean error to 
be feared’:
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Laplace combines the   m   previous equations so as to obtain a system of   n   equa-
tions that are linear combinations of the earlier ones, such that for each unknown 
    , , , ...p q r   , the mean error to be feared is minimal. 

 This supplies a clear demonstration of the least-squares method, without 
resorting to the axiom that the arithmetical mean of a variable’s observed values 
is the variable’s most probable value. However, as Laplace notes:

  When the observations are few in number, the choice of these systems depends on the 
law of errors of each observation. But, if we consider a large number of observations, 
which is the most common occurrence in astronomical research, that choice becomes 
independent of the law, and we have seen, in the preceding discussion, that the analysis 
will then directly yield the results of the least-squares method for observation errors. 
(Laplace  1812  )   

Independence from the error distribution is obtained from what we now call the 
‘central limit theorem’. However, we can discern in the use of the least-squares 
method the fi rst step in the abandonment of inverse probability and the move toward 
objective probability, which is solely concerned with events whose frequency is 
stable. Furthermore, as early as 1816, Gauss used probability in its frequentist sense 
to estimate the standard deviation of the parameters of his regressions (Hald  2007  ) . 
This is equivalent to using the maximum-likelihood method, now standard in 
frequentist statistics. 

 Over the years, the least-squares linear regression method was refi ned: Laplace  (  1827  )  
applied it in conjunction with correlated errors and a known variance-covariance 
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matrix. Its use was long confi ned to astronomical, geodesic, and climatological 
applications, although there was every reason to assume that its application to the 
social sciences, particularly demography would be highly profi table (Stigler  1986  ) . 
For example, with regard to mortality, Laplace quite rightly stated:

  So many causes infl uence mortality, that the Tables representing it must change according 
to place and time. The different states of life offer, in this respect, signifi cant differences 
relative to the dangers inseparable from each state, differences that must be taken into 
account in calculations based on length of life. But these differences have not yet been 
suffi ciently observed. They will be, some day; then we shall know what sacrifi ce of life 
each occupation demands, and we shall take advantage of this knowledge to reduce its 
hazards. (Laplace  1812  )   

It is interesting to note, however, that Laplace, like many other investigators 
before him and in his day, worked on certain data drawn from parish registers—
which, in France, became ‘civil registers’ ( registres d’état civil ) in 1793—such as 
the sex of newborn children. But he did not realize the richness of these sources for 
the study of many demographic issues, which only recent surveys have made it 
possible to grasp (for example, the Henry Survey on the population of France from 
1670 to 1792, and Dupâquier’s TRA survey on persons whose last names begin 
with the letters TRA from 1803 to 1986). 

 After Laplace, few researchers pursued this path (Poisson  1837 ; Bienaymé  1838  )  
and his approach soon came under fi re, as we shall see in the next section.  

    4.3   Toward an Objectivist Approach in Population Sciences 

 By the mid-nineteenth century, most statisticians and population scientists had 
begun to reject the epistemic approach to probability—sometimes violently. For the 
population sciences, there are several reasons for this, which we shall now examine 
in some detail. 

 First, the distinction grew sharper between objective probability and subjective 
probability, a distinction that not all earlier authors since Pascal had made as we 
have already said. For instance, in his 1812 work, Laplace discussed objective prob-
lems of dice tosses and lottery draws alongside the most subjective problems such 
as the probability of testimonies and convictions. Cournot  (  1843  )  draws a very clear 
distinction between these two meanings:

  Nothing is more important than to carefully distinguish between the dual meanings of the 
term  probability —understood now in an objective sense, now in a subjective sense—if 
we want to avoid confusion and error, both in the exposition of the theory and in its 
applications.  

For Cournot, only objective probability is measurable, when the trials of the 
same natural phenomenon, physical or moral, can be repeated  ad infi nitum , leading 
to an ever more precise measure of their probability. Thus we can say that a demo-
graphic phenomenon such as the probability of dying at a given age or moment can 
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be determined with the aid of a population large enough to be regarded as infi nite, 
or rather as being drawn from an infi nite population. By contrast:

  When the number of trials is not very signifi cant, the formulas commonly given for measuring 
posterior probability become fallacious: they now indicate merely subjective probabilities, 
suitable for setting the terms of a wager, but inapplicable to the production of natural 
phenomena.  

His criticisms focused on what is called the law of succession, identifi ed by 
Laplace back in 1774. Let us take the case of an urn containing an infi nity of 
white or black tickets. We have previously drawn     p q+    tickets, of which  p  are 

white. The probability that a new ticket drawn from the urn is white is     
1

2

p

p q

+
+ +

  . 

Cournot applies this rule to the demographic example of the masculinity propor-
tion at birth. He remarks that, as we do not know each woman’s chances of bearing 
a child of either sex, Laplace’s rule should lead us to conclude that if a woman 
already had a boy, her chances of having another boy would be     2

3
  . But in this 

case, no-one would be willing to make such a wager, thus demonstrating that the 
law would have ‘only a futile and derisory consequence’. He did not take into 
account that this rule is verifi ed when we have no other information on the studied 
phenomenon. More generally, Cournot observes:

  However, people have not feared to make applications with just as little basis, in matters of 
grave import for society and morals, such as those concerning judicial decisions and testi-
monies; and we have thus fallen into aberrations unworthy of great geometers.  

We can see the depth of the disagreement with Laplace, for Cournot refuses to 
apply probability theory to cases where the number of observations is small and to 
subjective events. 

 Ellis  (  1849  )  wrote:

  The principle, on which the whole depends, is the necessity of recognizing the tendency of 
a series towards regularity, as the basis of the theory of probabilities .   

He also sought to show that the estimators supplied by the inverse epistemic 
probability method are fallacious. As mentioned in Sect.   1.1.2    , Venn  (  1866  )  dis-
cussed in detail the characteristics that a series should possess in order for it to be 
studied using probability theory. Boole  (  1854  ) , after examining different applica-
tions of epistemic probability, expressed doubts about their use:

  These results only illustrate the fact, that when the defect of the data is supplied by hypoth-
esis, the solutions will, in general, vary with the nature of the hypotheses assumed; so that 
the question still remains, only more defi nite in form, whether the principles of the theory 
of probabilities serve to guide us in the election of such hypotheses. 

 Boole specifi es that he is voicing these criticisms for the benefi t of English 
authors who would want to use Laplace’s methods. 

 Thus, as we have seen, a theory of objectivist or frequentist probability was 
taking hold—a theory that would prevail for over a century. For example, von 
Mises (1957), taking a demographic example, was prompted to write: ‘The phrase 
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‘probability of death’, when it refers to a single person, has no meaning for us’. 
We can see how strongly his approach to probability differed from that of 
Bernoulli, who sought to measure the chances of dying of an individual whom he 
calls Titus (see Sect.   2.1    ), but especially from that of Bayes or Laplace, who 
sought to refi ne the estimate of those chances from a certain number of individuals 
resembling the person concerned. In this case, we can speak only of the probabil-
ity of dying in a population whose size may be regarded as being as large as we 
want, tending toward infi nity. Moreover, to speak of the probability of an intrinsi-
cally unique event or more generally of the probability that a proposition is true 
makes no sense for an objectivist. 

 At the same time, population sciences practically gave up their pursuit of an 
analysis as refi ned as Laplace’s of the phenomena that they were studying. It is 
important to realize that the introduction of population censuses took some earlier 
concerns off the agenda—most notably by supplying exhaustive counts of popula-
tions at risk. This avoided the use of civil-registration data to estimate population by 
means of the multiplier method, already used by Graunt. 

 In other words, the use of probability was changed by the population censuses—
which fi rst appeared in the eighteenth century and were gradually established in 
Europe all during the nineteenth century—coupled with exhaustive civil-registra-
tion data. By collecting data on the total population at a given moment, population 
scientists can work with an objectivist approach, given the large number of indi-
viduals involved. The variance of their probabilities becomes so small that they will 
no longer even calculate it. In fact, neither the cross-sectional approach, with the 
concomitant-variation method (Durkheim  1895 ; Landry  1945 ), nor the longitudinal 
approach (Pressat  1966 ; Henry  1972  )  ever envisaged the calculation of variance. As 
shown in Sect.   1.4    , the determination of the variance of an annual probability of 
mortality, assuming a binomial distribution of deaths (i.e., among a homogeneous 
population), yielded such low values that they were no longer worth computing. 

 Only very seldom, when calculating probabilities over shorter periods (for exam-
ple, monthly), would population scientists need to take these variances into account 
(Hoem  1983  ) . The reason is that the number of individuals experiencing the event 
was far smaller, even when fully counted. This explains perfectly why classical 
demography, while preserving the probabilistic meaning of dispersion, refrained 
from measuring dispersion in the fi rst sense of the term. However, the hypothesis of 
a population in which the probability of dying at a given age is identical for all its 
members is utterly unrealistic—as the following section will show. 

 For dispersion, in its second meaning, the situation differs depending on whether 
cross-sectional or longitudinal analysis is involved. 

 As censuses were introduced, population sciences developed what is known as 
cross-sectional (or: period) analysis, taking civil-registration data contemporaneous 
with the censuses to calculate ‘period’ indices. This type of analysis was practiced 
until the end of World War II. 

 After a purely descriptive phase, which consisted in compiling population pyra-
mids, crude rates, age-specifi c rates, and so on, these data underwent a more statisti-
cal analysis. In our view, the clearest exposition of the goals of this approach was 
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given by the sociologist Durkheim  (  1895,   1897  ) . We shall describe it briefl y here, 
referring the interested reader to our more detailed examination elsewhere (Courgeau    
 2004a,   b,   2007a  ) . 

 Durkheim sought to show that one social phenomenon could be the cause of 
another. To this end, he used a suitable comparative method, which he called the 
concomitant-variation method. It was identical to the one proposed later by Landry 
 (  1945  ) , who noted that if we want to ‘understand a variation across time, a differ-
ence across space, we shall need to prove a relationship of obviousness, concomi-
tance, covariation or all other’, between the phenomena studied. In reality, this 
was tantamount to a regression analysis of the kind that Gauss and Laplace had 
advocated back in the early nineteenth century, simplifi ed here by the fact that it 
consisted of a linear regression. 

 The concomitant-variation method actually concerns aggregated data. For 
instance, to demonstrate the infl uence of religion on suicide in Bavaria and Prussia, 
Durkheim used suicide rates showing the share of Protestantism and other religions 
in the different provinces of the two States (Durkheim  1897  ) . Moreover, Durkheim 
did not even calculate the parameters of a simple regression, but merely observed 
that ‘suicides are directly proportional to the number of Protestants and inversely 
proportional to that of Catholics’. As noted earlier, these regression methods were 
not used in demography until much later—to our knowledge, around the 1950s 
(Robert Schmitt and Crosetti  1954  ) . But their principle is indeed identical to that of 
a linear regression. It effectively allows a distinction between sub-groups with 
different behaviors in a population, so that one can measure the dispersion of a 
phenomenon across a heterogeneous population. 

 By contrast, longitudinal analysis, which emerged after World War II, completely 
disregarded this dispersion in the second meaning of the term. This was because the 
main goal of the new approach was to remediate the vision of cross-sectional analysis, 
which assumed that phenomena were determined by the characteristics of the 
population studied immediately preceding their occurrence. By giving precedence 
to a time span linked to people’s persistence in a given state, the longitudinal 
approach stressed duration and allowed a clearer separation between long-term and 
momentary factors. It therefore allowed a more relevant analysis of the timing and 
intensity of demographic phenomena in a given cohort. 

 To do this, however, it was obliged to frame various hypotheses on the phenomena 
that would make the study of dispersion, in the second sense of the term, nearly 
impossible. Under this approach, the only truly feasible analysis is that of phenomena 
regarded as  independent  of one another and occurring in a  homogeneous  population 
(Blayo  1995  ) . The events that determine the entry or exit of the population studied 
must be viewed as independent of the phenomenon studied. In particular, this makes 
it impossible to study exits via competing events, such as exit from never-married 
status via marriage or cohabitation. Most important, the study of dispersion, in the 
second meaning of the term, which assumes a heterogeneous population, eventually 
clashed with the hypothesis of a homogeneous population. The solution for break-
ing out of the impasse by dividing the population into homogeneous sub-groups 
made the analysis so complex as to become impossible. 
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 We refer the reader to Courgeau  (  2003 , 2004a, 2007a) for a more detailed critical 
analysis of this approach. The outcome was the impossibility of taking account of 
dispersion, in the second sense of the term—including both the dispersion created 
by the other demographic phenomena for the one under study and the dispersion 
created by the diversity of the population’s members. 

 To sum up, in the period when longitudinal analysis prevailed—from the end of 
World War II to the early 1980s—population science was able to almost totally 
ignore the two aspects of the dispersion of the phenomena that it studied, preserving 
only the age-specifi c difference in probability.  

    4.4   Return of Dispersion in the Event-History 
and Multilevel Approach 

 In response to criticisms of the longitudinal approach, the event history approach 
involved setting up ways to analyze individual life histories by examining (1) the 
characteristics of people at the time when they are about to experience various 
events and (2) the links between the phenomenon studied and the other phenomena 
that have marked the person’s earlier life. This required access to far more detailed 
surveys that, unlike census and register data, provide detailed event histories of 
respondents. For instance, the ‘Triple Biographie’ (Triple Event History) survey 
(also known as 3B for short), which we conducted at INED in 1981, was designed 
to permit an event-history analysis of the interactions between the various aspects of 
respondents’ family life, working career, and migration history (Courgeau  1982  ) . 

 The event-history approach will therefore consider a set of individual trajectories 
in all their complexity, generally captured by detailed surveys. The unit of analysis 
will no longer be the single event, as in longitudinal analysis, but the personal event 
history, regarded as a complex stochastic process. It will no longer consider the 
events studied as unrelated; on the contrary, it will analyze the dependences between 
them. Similarly, it will no longer treat the population as homogeneous, but instead 
examine its heterogeneity. This approach addresses most of the criticisms directed 
against longitudinal analysis (Courgeau and Lelièvre  1996  ) . 

 Let us take a simple example to illustrate how to formulate such a semi-paramet-
ric analysis, from which we can show the dispersion (in both senses of the term) of 
the population. Despite its simplicity, the example is complete enough to include 
both the interaction between phenomena and the heterogeneity of the population. 
Suppose we wish to study an initial phenomenon such as exits from agriculture in 
France, knowing that another phenomenon—nuptiality—can interfere with the 
exits. At the same time, however, other individual characteristics will infl uence 
these phenomena, such as the number of siblings, being the eldest child, and so on 
(Courgeau and Lelièvre  1986  ) . 

 Next, we defi ne two random variables,     1T    and     2T   , corresponding to the durations 
at which the two types of events occur: exit from agriculture and marriage. We then 
defi ne what are known as instantaneous rates of occurrence of each event according 
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to whether the other event has occurred previously or not (for more details, see 
Aalen et al.  1980 , and Courgeau and Lelièvre  1989  ) . We can thus write:

     
( )01 1 1 20

1
( ) lim , ,

t
h t P T t t T t T t

tΔ →
= < + Δ ≥ ≥

Δ    

which, when     Δt    tends toward zero, yields the instantaneous rate of the fi rst event 
when the second has not occurred beforehand. We similarly defi ne a rate     21( )h t   , 
when the second event precedes the fi rst:
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the second event having occurred at a date  u  prior to  t . 
 The estimation of these rates and their variance makes it possible to show their 

dispersion in the fi rst sense. When the confi dence intervals are disjoined, the estima-
tion enables us to measure a dispersion in the second sense of the term—namely, that 
the occurrence of the second phenomenon, at an instant  u  prior to  t , will identify a 
new sub-population whose behavior differs from the population initially examined. 

 Now, let us incorporate the fi xed characteristics of the individuals studied. We 
shall represent them by a column vector  z  before the occurrence of the second event 
and     ′z    after, 8  and we shall estimate the following model, known as semi-parametric, 
which is fuller:

     
( ) ( )( )1 1 1 0 2; , , exp ,th t z z u h z H t u z⎡ ⎤= β + − β + β′ ′⎣ ⎦    

where:

      

0
) ,

 

0

1  
(

0

si x
H x

si x

<⎧
= ⎨ ≥⎩    

where  u  is the date of occurrence of the other event,     β0    a parameter to estimate, and 
    β1   and     β2   two parameter vectors to estimate as well. The fi rst analysis shows that 
the number of never-married women exiting agriculture greatly exceeds that of mar-
ried women. But when we incorporate various characteristics of these women 
initially analyzed separately, we obtain highly signifi cant parameters, whose 
effect—this time, their combined effect—is given in Table  4.1 .  

 We can see that the more siblings a woman has, the more likely she is to exit agri-
culture. Conversely, women who are the eldest siblings and those with a farmer father 
will be less likely to leave agriculture. But once married, while the sibling-number 

   8   When the second event has occurred, and consists of the marriage of the surveyed individual, it is 
useful to incorporate the spouse’s fi xed characteristics in addition to those of the individual.  
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effect is unchanged, the fact of having a farmer father will no longer affect the 
probability of exiting agriculture. The results also show that having a farmer husband 
will keep the woman in agriculture. The analysis indicates that the parameter     β0  , 
which measures the effect of marriage on exit from agriculture, is no longer signifi -
cantly different from zero, although still negative. The characteristics introduced 
actually make it possible to explain this effect. We shall not elaborate on the analysis 
of these results any further, referring the reader to our article for fuller explanations 
(Courgeau and Lelièvre  1986  ) . This brief presentation has shown the essential role of 
the dispersion—in both senses of the term—of the results of the analysis. 

 David Cox  (  1972  )  initially presented this analysis under a purely objectivist 
statistical approach, 9  but the potential application of these methods to many other 
fi elds—such as epidemiology, industrial reliability and medical statistics—was 
already raised as distinct possibility. Many other authors who have explored this 
approach (Kalbfl eisch and Prentice  1980 ; David Cox and Oakes  1984 ; Courgeau 
and Lelièvre  1989 ; Andersen et al.  1993  )  have also set out a basically objectivist 
version of this analysis. 

 Over time, however, some authors have preferred to adopt a Bayesian approach 
that has, more recently, made it possible to overcome many estimation diffi culties 
and is more consistent with the spirit in which this analysis is performed. One 
example is the semi-parametric analysis proposed by David Cox, which we applied 
earlier to a demographic example. Several authors published articles on this analysis 
in the 1990s using Bayesian processes (Clayton  1991 ; Sinha  1993  ) . Finally, Ibrahim 
et al.  (  2001  )  wrote a detailed book on Bayesian event-history analysis. This approach 
was made possible by the critique of the objectivist approach, as discussed in Chaps. 

   Table 4.1    Effect of characteristics taken simultaneously in semi-parametric model for women’s 
exit from agriculture   

 Total characteristics  Main effect     β1    Disturbance     β0    Interaction     β2   

 Number of siblings  0.012 a   0.000 
 Eldest  −0.320 a   0.296 
 Farmer father  −0.928 a   0.806 b  
 Married  −0.228 
 Farmer husband  −0.359 a  
 Farmer father-in-law  −0.126 
 Farmer at marriage  −1.040 

  Source: Courgeau and Lelièvre  (  1986  )  
  a Result signifi cant at 5% limit 
  b Result signifi cant at 10% limit  

   9   It is interesting to note how strongly David Cox criticized the Bayesian approach. For instance, in 
discussing a later work by Cox and Hinkley  (  1974  ) , Jaynes  (  2003  )  stated that the presentation of 
Bayesian methods led Cox ‘to repeat all the old, erroneous objections to them, showing no com-
prehension that these were ancient misunderstandings long since corrected by Jeffreys  (  1939  ) , 
Savage  (  1954  )  and Lindley  (  1956  ) .’  
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  2     and   3    , and by the computational possibilities offered by Monte Carlo Markov 
Chain (MCMC) methods, which provide acceptable approximations of integrals 
and other functions that depend on a distribution of interest. 

 In particular, the Bayesian approach makes it possible to include all information 
potentially useful for the issue studied, which the objectivist approach did not 
allow. Similarly, these methods, thanks to Gibbs sampling and MCMC methods 
(Robert  2006  ) , have made it far easier to solve complex problems without resorting 
to asymptotic objectivist calculations. It offers many other advantages over the 
objective approach, thanks to the availability and fl exibility of tools for developing 
models and analyzing data. 

 As regards dispersion, in the second sense of the term, the Bayesian approach takes 
it into account as well, by introducing the estimation of the heterogeneity of a popula-
tion and of the dependence between the phenomena studied. The reasons both internal 
to population sciences (dependence between phenomena) and external to them (hetero-
geneity of a population) can thus be identifi ed and their effects on individual behaviors 
can be analyzed in great detail. However, we run the risk, in this case, of committing 
what is known as the atomistic fallacy, for by taking only the individual’s characteris-
tics into account, we ignore the context in which human behaviors occur. This risk 
stands in contrast to that of the ecological fallacy under the cross-sectional approach, 
noted by sociologists (Robinson  1950  ) , which involved assigning to the individual 
reasons of a more collective nature, pertaining to the groups used in the analysis. 

 To avoid these fallacy risks, the contextual and multilevel approaches enable us to 
explain an individual’s behavior by bringing several groupings of individuals into the 
process simultaneously. Using the contextual approach, we can associate an indi-
vidual’s behavior both with his or her characteristics (individual measure) and with 
the characteristics of the groups to which he or she belongs (aggregated measure). 
The multilevel approach enables us to go one step further by introducing an internal 
dependence in each group to individual and contextual characteristics simultane-
ously. These approaches therefore provide a means of avoiding both the ecological 
fallacy (for the aggregate characteristics are no longer viewed as a substitute for 
individual characteristics), and the atomistic fallacy (assuming the individuals’ living 
environment is properly taken into account) (Courgeau  2003,   2004a,   b,   2007a  ) . 

 Of course the Bayesian approach allows an even more satisfactory multilevel 
analysis (Goldstein  2003 ; Courgeau  2007b ; Draper  2008  ) , as in the case of event-
history analysis. In particular, when the number of units in one of the aggregation 
levels is small, the maximum-likelihood estimation of asymptotic standard devia-
tions may be heavily biased as a result, and the maximum may actually be negative 
(Draper  2008  ) . The situation is even more delicate with binary variables and, more 
generally, discrete variables: in certain cases, the classic likelihood methods do not 
even allow an evaluation of the model’s parameters. The use of Bayesian methods 
then becomes necessary. 

 In other words, after completely neglecting the dispersion of their measures, 
population sciences have reverted for nearly 30 years now to the notion that the 
population is heterogeneous and that phenomena are interdependent. This allows 
the introduction of a fuller analysis of dispersion. More recently, these sciences 
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have also begun to use a Bayesian analysis, better suited to capturing the refi nement 
of event-history and multilevel approaches. 

 To show more clearly how only a Bayesian analysis can solve certain problems, 
we shall now give a more detailed example of an application to paleodemography 
(Caussinus and Courgeau  2010  ) , a population science where the number of observed 
individuals is very often small. The purpose of this analysis is to estimate the age 
structure of a population without measuring it.  

    4.5   Estimating the Age Structure in Paleodemography 

 At their very origin, population sciences set out to determine the age structure of 
human populations (Graunt  1662  ) . As noted earlier, they soon managed to do so 
with increasing accuracy (Halley  1693 ; Wargentin  1766  )  by exploiting data from 
parish registers, then from population registers. Unfortunately, paleodemography 
does not have such data at its disposal and is forced to rely on indirect measures of 
the ages of past populations, mostly thanks to the structure by evolution stage of 
selected biological indicators (Séguy and Buchet  2011  ) . 

 We thus need another source of information to link these indicators to the 
chronological ages of individuals. The source may consist in the observation of a 
 reference population  for which both the direct and indirect measures exist. These 
two sources combined should enable us to extract an age structure for the  observed 
population . However, various solutions to this problem are feasible and have been 
discussed extensively among paleodemographers. 

 First, let us present, in the most general terms, a situation in which we observe  l  
stages tracked by a given biological indicator (stages in which the femurs of 
individuals are classifi ed [Bocquet-Appel  2005  ] ; stages in which the cranial sutures 
of individuals are classifi ed [Séguy and Buchet  2011  ] ; etc.) of a reference popula-
tion and in which we distinguish  c  age groups. This reference population is shown 
in Table  4.2 , with the number of individuals     ijn   , by age,  j , and by stage,  i .  

   Table 4.2    Matrix of reference population by stage and age group   

 Age groups  Totals by stage 

 Stages      11n     .  .  .      1 jn     .  .  .      1cn         1.n    
 . 
 . 
 . 
     1in     .  .  .      ijn     .  .  .      icn         .in    
 . 
 . 
 . 
     1ln     .  .  .      ljn     .  .  .      lcn         .ln    

 Totals by age      .1n     .  .  .      . jn     .  .  .      .cn         ..n    
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 From this table we can calculate different frequencies: fi rst, the frequency of the 

age,  j , given the stage  i :     
.

ij

j i
i

n
f n=   , and the frequency of the stage,  i , given the age,

 j :     
.

ij

i j
j

n
f n=   . We can also calculate the marginal frequencies: age frequency of 

reference population:     
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n
f n=    and stage frequency of reference population:     .
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n
f n=   . 

 We now want to estimate the age structure of a new population of which we only 
know the number of individuals by stage,     im   , given in Table  4.3 . From this table, 

we deduce the stage frequency of the observed population:     
.

i
i

m
mπ =   . These consist, 

therefore, of measures taken either on a reference population (Table  4.2 ), or on the 
population whose age structure we want to estimate even though we only know the 
number of individuals by stage (Table  4.3 ).  

 To these measured numbers of individuals and frequencies correspond various 
unknown probabilities. Let     ijp    be the probability that an individual taken at random 
in the population studied will be in stage  i  ( i =  1 ,…,l ) and in the age class  j  ( j =  1 ,…,c ) 
of a given indicator; the sum of     ijp    values on  i  will be written       simply     jp    (probabil-
ity that an individual is of age  j ), the sum of     ijp    values on  j  will be written 
      simply     ip    (probability that an individual is in stage  i ); the conditional probabil-
ity of stage  i  given age  j  will be noted      i jp   . These various probabilities are 

positive and satisfy the equations     = =∑ ∑ 1i j
i j

p p    and     =∑ 1i j
i

p    for all  j . They 

are also linked by the following equation:

     for all 1, ,j ii j
j

p p p i l= = …∑    (4.1)  

Depending on the hypotheses posited to estimate these probabilities, we can use 
different solutions to obtain the age structure of the observed paleodemographic 
population. 

    4.5.1   Methods Proposed Earlier 

 The fi rst method seeks to estimate the matrix for the observed population by using 
the criterion of greatest closeness between this matrix and that of the reference 
population. This approach was introduced by Kruithof  (  1937  ) . In a study of tele-
phone networks, he used a complete table of telephone fl ows derived from a refer-
ence population in order to estimate a new matrix of telephone fl ows, of which the 
only elements known to him were the margins for an observed population. 

   Table 4.3    Number of individuals by stage observed in the new population   

 Stages  1  .  .   i   .  .   l   Total 

 Nb of individuals      
1m         

im     .  .      
lm         

.m    
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 This research was extended in 1940 (   Demming and Stephan  1940 ; Stephan 
 1942  10 ) to estimate the cells of a contingency table subject to various constraints on 
one or both of its margins, given that we know all the cells of an initial table toward 
which it must converge as closely as possible. This method is usually called IPFP 
(Iterative Proportional Fitting Procedure) but, as shown later, paleodemographers 
have given it other names. 

 It consists in assuming that the probabilities are correctly estimated by the 
frequencies derived from Tables  4.2  and  4.3 . A simple reasoning is applied: we 
minimize the distance of     χ 2

   between each cell of the reference-population 
table and the cells of the table to be estimated, under the constraint that its stage-
specifi c frequencies are equal to     π i   . This yields the following estimate of the age 
structure of the observed population:

     1

ˆ
l

j i j i
i

p f
=

= π∑    (4.2)  

This estimate is identical to the one given in paleodemography by the  probability-
vectors method  (Masset  1971  )  or the ALK (Age Length Key) method. The latter 
was initially developed by Fridriksson  (  1934  )  to determine the age of fi sh belonging 
to a given species from a sample taken from the same catch. The method was later 
proposed in paleodemography by Konigsberg and Frankenberg  (  1992  ) . 

 The distribution thus computed is necessarily dependent on the age distribution 
in the reference sample and is ‘fl attened by the infl uence of the reference sample,’ 
as Masset notes  (  1995  ) . This is self-evident, given the hypothesis that each cell of 
the estimated matrix must be as close as possible to each cell of the reference matrix. 
Of course, the stronger the correlation between age and stage, the more satisfactory the 
estimate. But unfortunately these correlations are rather weak in paleodemography—
typically around 0.5 (Bocquet-Appel and Masset  1982  ) —generating a signifi -
cant effect of the reference population on the age structure of the observed 
population. 

 Moreover, the hypothesis underlying the ALK method—i.e., the reference popu-
lation must be extracted from the observed population—no longer applies when we 
have two populations of the same species taken from different catches. This prob-
lem has been raised by a number of researchers (Kimura  1977  )  and is of crucial 
importance in paleodemography. Indeed, in this case, the two populations are neces-
sarily different, as noted earlier. 

 Both the probability-vectors method and the ALK method seek to estimate an 
observed theoretical matrix that is closest, term for term, to the initial matrix. This 
explains the dependence between the two matrixes. It also disregards the  invariance 
hypothesis  (Müller et al.  2002  ) —also called  uniformity hypothesis —which holds 

   10   In this second article, Stephan recognized that the results published in the previous article did not 
coincide with those given by the least-squares method—as the authors had mistakenly claimed—
but he argued that they supplied a proxy solution.  
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that, for any bone of given age at death, the probability that a bone will be classifi ed 
in a given stage depends only on that age, regardless of the population from which 
the bone was taken. 

 This assumption introduces a dissymmetry in the tables considered. Hence the 
search for another, more satisfactory estimation method, which takes the hypothesis 
fully into account. 

 The alternative method will not assume that each cell of the reference matrix must 
be as close as possible to the cell of the matrix corresponding to the observed stages; 
rather, each column of the reference table, relative to its margin, must be as close as 
possible to the identically defi ned column of the corresponding table for the observed 
population. In paleodemography, we begin with the stage-specifi c distribution for 
each age group of the reference population .  We shall then fi nd the weights that enable 
us, by multiplying them by the various distributions previously estimated, to fi nd the 
number of individuals per stage of the observed population. These weights will 
accordingly refl ect the number of individuals by age in the observed population. In 
this case, the invariance hypothesis is perfectly verifi ed. The problem, which differs 
from the previous one, requires different methods for its resolution (Masset  1982 ; 
Konigsberg and Frankenberg  1992 ; Bocquet-Appel and Masset  1996  ) . 

 Like the previous one, the problem was fi rst posed to determine the age of an 
observed population of fi sh, of which only the size distribution is known. Here, 
however, the reference population is derived not from the same observed popula-
tion, but only from a population of the same species, for which we know both the 
length and age, again measured from otoliths. Hasselblad  (  1966  )  supplied an itera-
tive method for this type of estimation, followed by Orchard and Woodbury  (  1972  ) , 
then Chikuni  (  1975  ) . It was developed statistically by Kimura and Chikuni  (  1987  ) , 
who proposed the name IALK for the method, to indicate that it involved iterations. 
Unlike ALK, the only assumption in IALK is that size distributions for each age of 
the reference population are applicable to the observed population ,  which is no 
longer derived from the same total population (Kimura and Chikuni  1987  )  and may 
therefore have a very different age structure. 

 In paleodemography, Masset  (  1982  ) , in his unpublished dissertation, sets forth 
a method of successive approximations to avoid the excessively fl at result obtained 
with the probability-vectors method. Masset’s method proved very similar to 
IALK. For this purpose, he wrote an iterative program called  Approx  with Bocquet-
Appel, supplied in an appendix to his dissertation. The sample application of the 
method (pp. 275–276 of the dissertation), on a population comprising seven age 
groups, yields results that are hard to accept. Although Masset starts with a refer-
ence population composed of seven age classes and seven stages, and the stage 
vector for the observed population of 60 individuals has no null element, he obtains 
an age structure of the observed population that is implausible:

     ( )34.10 1.72 0 24.18 0 0 0 ,
   

for it includes four null proportions. Faced with these disappointing results, he 
prefers the probability-vectors method, which is more rustic but, as he notes, truer. 
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 Meanwhile, Konigsberg and Frankenberg  (  1992  ) , who were searching for a more 
satisfactory method than ALK, realized that IALK provided a means to avoid the 
biases above. The authors applied IALK to paleodemography using the maximum-
likelihood method. 

 Bocquet-Appel and Masset  (  1996  )  revived their approximations method, which 
they now wrongly called IPFP, for we have shown that the latter seeks to minimize 
a distance of     2χ    between each cell of the reference-population matrix and the 
unknown cell of the observed population, of which we know only one margin. 
Here, instead, the aim is to minimize the distances between each of the two col-
umns corresponding to the same age. To distinguish the method from the ‘original’ 
IPFP, we shall therefore refer to it here as  approximations method —the initial 
name assigned by the authors. In their article, the authors continue to point out the 
diffi culties in achieving convergence toward acceptable results with this method. 
Consequently, they now suggest confi ning its use to determining the mean age at 
death of the individuals in the population. But this restriction greatly diminishes 
the method’s value. 

 The two approaches described above—which, for simplicity’s sake, we shall call 
American and French—stirred many controversies between 1992 and 2002. In the 
end, however, they proved nearly identical (Konigsberg and Frankenberg  2002 ; 
Konigsberg and Herrmann  2002  ) . To show this, let us examine their principles. 

 We begin with the basic principle of the IALK method. This time, we shall take 
the frequencies of the distribution of the biological indicator, conditioned by the age 
group in the reference population, i.e.,     

i jf   . We still assume that this frequency gives 
a valid estimate of the probability     

i jp   . Applying the maximum-likelihood method, 
we see that we can obtain the age structure,     ̂ jp   , through successive iterations from 
any initial structure, but often set at     1

c
  , i.e., uniform:
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We then perform as many iterations as needed for     ˆ n
jp    to differ from     +1ˆ n

jp    by as 
small a quantity as we want. This solution is not valid unless all the estimators are 
positive. In the case where some of them are zero, the solution is no longer that of 
the maximum-likelihood method. We can also estimate the variances of the estima-
tors (see, for example, Cribari-Neto and Zarkos  1999  ) . 

 The approximation method differs only in the first iteration. It too starts 
from an initial age structure that is purely uniform, and not generic as in the 
previous method. The two basic equations of this algorithm are consequently 
as follows:
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From the initial values     =0ˆ
j

m
p

c
   and     =0

ij ijf f   , we deduce, from the fi rst equation:
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Note that for this fi rst iteration, the expression ( 4.4 ) differs from the general 
form ( 4.3 ). The second equation enables us to calculate:
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We now return to Eq.  4.3 . We also observe that it is not useful to consider     1ˆ
ijf    

or the population count     
m

c
  , which, being included in both the numerator and 

denominator, disappears from the equation. At this point, all we need is to see 
that, if the relation:
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which is simple to show using the previous algorithm. As we have demon-
strated that these equations were true for     = 2n   , they are true for all  n . This 
does indeed take us back to the same formulation ( 4.3 ) as with IALK, but only 
from the second iteration onward. What Konigsberg and Frankenberg  (  2002  )  
had shown empirically has thus now been demonstrated mathematically in its 
most general form. 

 However, the main difference between the two methods is that the fi rst makes it 
possible to start from any initial structure, provided that its probabilities sum to 
unity, whereas the second requires us to begin with a uniform structure. This is 
simply due to the different formulations and therefore the different values in the 
fi rst stage, as the formulations are identical from the second stage on. If we take a 
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non-uniform initial distribution for the second method, then the solutions found 
will no longer be maximum-likelihood estimators. 11  

 We should also note that another method can be used to estimate the same age struc-
ture, but has never been proposed by paleodemographers: the least-squares method. 
It consists in searching for the     jp    values that minimize the following sum of squares:

     

2 2 2

1 1 ··· ···j j j ij i j lj l
j j j

S p f p f p f
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − + + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∑ ∑ ∑π π π
   

under the constraint     =∑ 1j
j

p   . To begin with, we see that, when  l  =  c , we obtain 

a Cramer system whose solution verifi es the linear relations:
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When  l  >  c , let us assume that we had the     jp    values. Applying a variation     ∂ jp   , 
the differentials of the previous two equations give us:
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 Multiplying the last equation by the arbitrary Lagrangian multiplier     λ    and adding 
the two equations together, we obtain:
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   11   For more details on this comparison, see Courgeau  (  2011  ) .  
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 If the invariance condition and the hypothesis that the observed population sizes 
are error-free are fulfi lled, we should fi nd that this equation system is solved by a 
weighting system whose values all lie in the interval [0, 1]—which will correspond 
to the age distribution of deaths. But as the data are necessarily affected by uncer-
tainty, given their modest number, and as we obtain the estimate from least squares, 
some of the estimates may lie outside the interval [0, 1] even if the invariance 
hypothesis is satisfi ed. 

 After this detour toward the various possible estimates in the chosen example, 
let us return to the estimates proposed by paleodemographers and the further 
research conducted. 

 The Americans continued to use the IALK method, introducing a continuous 
age rather than a discretized age, but without changing the principle. This is impec-
cably presented in the volume edited by Hoppa and Vaupel  (  2002 a), after a seminar 
on the topic in Rostock, attended by many English-speaking anthropologists—but 
with no French specialists invited. Konigsberg and Herrmann  (  2002  )  clearly noted 
the similarity of results obtained with IALK and these more sophisticated methods: 
‘Our current methods fi t fairly comfortably within the approaches taken during the 
Rostock workshop’. 

 First, the age distribution of a given stage in the reference population—with age 
now treated as a continuous variable—is provided by various types of non-parametric 
or parametric regression models. However, the volume’s main originality is the use 
of a parametric event-history model (Courgeau and Lelièvre  1989  )  to model the 
probability density of the observed population’s mortality. Provided the model does 
not include too many parameters (Gompertz two-parameter model, Gompertz-
Makeham three-parameter model, Siler fi ve-parameter model, etc.), we can esti-
mate it using the maximum-likelihood method with the previously estimated 
age distribution of stages. Applying a notation similar to the previous one, we can 
summarize this formulation in the following form, where the age variable,  j , is now 
continuous:

     
( )( ) , ,i i

j

w j p j dj= ∫π θ
   

and where     ( )iw j    is the distribution of the stage,  i , by age,  j , estimated in the refer-
ence population and     ( )θ,p j    the age-specifi c probability density of the observed 
populatio n , whose parameters,  q , we need to estimate using the  l  similar relations 
for each stage. 

 The problem is that these methods introduce a number of additional hypotheses, 
notably: a stationary or stable population, so that the event-history model can 
apply to a current population; and continuity in the age distribution of a given stage, 
yielding different estimates according to the methods used. In principle, therefore, 
there is no reason why these hypotheses—which we have no way of verifying—
should be fully satisfactory. For instance, a past population that has experienced an 
epidemic cannot be considered stationary or stable. Similarly, to impose on that 
population a parametric event-history model—ultimately rather simple and verifi ed 
on current populations—may fail to capture past situations where these models 
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were not verifi ed. Lastly, these methods always regard the reference population as 
perfectly observed, whereas large sampling errors may occur in paleodemography. 
Failure to take this into account, as in the IALK method, introduces a major risk of 
error in estimating the age structure of the observed population. 

 The French, for their part, not only doubted the validity of the approximation method 
for calculating a fully reliable age structure—as shown in Masset’s example  (  1982  )  
reproduced earlier—but held that taking a uniform distribution as a starting point to 
determine the age distribution could produce an unsatisfactory solution. After various 
tests (Bocquet-Appel  2005  ) , which we shall not describe here, 12  let us conclude with 
the latest method proposed (Bocquet-Appel and Bacro  2008  ) . 

 This time, we perform 1,000 equiprobable draws with replacement, using the 
bootstrap procedure, in each age group of the reference population. The population 
size is not fi xed as before, but can vary according to the draw. The essential reason 
for introducing the procedure here is to be able to estimate the age distribution’s 
confi dence intervals. For each of these reference populations, we then use each of 
the age-specifi c prior probabilities—calculated from a mortality model that encom-
passes standard mortality (through attrition) and crisis mortality (catastrophic)—to 
determine a distance between (1) the stage composition of the observed population 
and (2) the composition obtained by performing a calculation that uses each prior 
probability and stage structure for each age of the reference population. 

 The authors point out that this procedure does not allow any valid estimation of 
the terms of the now random matrix     

ijf   , but it does enable us to choose for each 
draw the age-specifi c prior probability that supplies the shortest distance to the stage 
structure of the observed population. They then determine the mean of each of these 
probabilities and, from the result, compute a 95% confi dence interval with the aid 
of the various bootstrap estimates. Now we know that, while the bootstrap method 
can be used when the model is properly specifi ed, no theoretical result allows vali-
dation of its results when—as here—one uses an empirical model without suffi cient 
specifi cations. 

 While the method does indeed introduce a random factor into the reference pop-
ulation, it is still not fully Bayesian, for the observed population is treated here as 
non-random. In fact, as we shall see later, it is more important to consider the 
observed frequencies as random than those of the reference population. By choos-
ing the age structure in a parametric mortality model, it introduces—as before—a 
structure that is not necessarily verifi ed by past populations. If the solution lies out-
side the proposed list, we have no means to verify it.  

    4.5.2   A New, Truly Epistemic Approach 

 All these reasons drove us to fi nd a fully epistemic solution to the problem (Caussinus 
and Courgeau  2010,   2011  ) . We view the parameters themselves as random, with a 

   12   Again, we refer the reader to Courgeau  (  2011  )  for fuller details.  
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probability distribution—called a ‘prior distribution’—chosen by the user to refl ect 
his or her knowledge (and ignorance) prior to the observation. We then adjust the 
distribution on the basis of observations to arrive at the ‘posterior distribution’, 
which is the conditional probability distribution of the parameters taking the obser-
vations into account. The method involves both a dispersion in the table based on 
the reference population and a dispersion in the data on the observed population. 

 It is logical to regard the frequencies     im    ( i =  1 , … ,  l ), observed on site for the 
different stages as the observed values of a multinomial distribution whose 
parameters     ip    are linked to the     jp    and     

i jp    values under system [1]. We shall use 
the latter parameters to continue the modeling. 

 Let G be the prior density of the parameters     
i jp   ,  i =  1 ,…, l  and  j =  1 ,…, c  (we 

shall see, shortly, how to express it) and let us suppose that the parameters     jp
  ( j =  1 ,…, c ) have a prior density  g  and are independent of the     

i jp   values. 
 With  M  as the  m  

 i 
  vector,  P  as the     

i jp    vector, and  p  as the     
jp    vector, the joint 

density of ( M, P, p ) will be  f , given by:
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where the index  i  always ranges from 1 to  l  and the index  j  from 1 to  c . 
 The marginal density of the pair ( M ,  p ) is:

     ( ), ,f M P p dP∫    

and the marginal density of M is:

     ( ), , .f M P p dpdP∫∫    

The integrals are taken from the variation domains of  P  and/or  p , which are a 
simplex (for  p ) or a product of simplexes (for  P ). 

 The conditional density of  p , given  M , is therefore:
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This is the posterior density of the     jp    ( j =  1 ,…, c ) values, on which we shall base 
the Bayesian estimate. 

 For example, the posterior mean of     
jp    will be:
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More generally, the conditional expectation relative to M of a function  j  of  p  will 
be given by:
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ϕ∫∫
∫∫    (4.5)  

This gives us, for example, the  k th-order moment of     jp    with     ϕ =( ) k
jp p    .  Taking 

for     ϕ( )p    the function equal to 0 for     
jp x≥    and 1 for     

jp x<    (dummy of the event 
    <jp x   ) ,  we express the posterior distribution function of     jp    at point  x.  

 We can evaluate the integrals of Eq.  4.5  using a Monte Carlo method as 
follows. 

 Let     ( )= …1, , cX X X    be a random vector with a density distribution g and  Y  a 
family of  c  vectors     ( )= …1 , ,j j ljY Y Y    ( j =  1 ,…, c ), whose joint distribution is indepen-
dent of X and admits density G. We verify that [5] is equal to:
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Let us generate  S  independent sets of such random vectors ( X, Y) , with  s  
    ( ).1, ,..s S=    denoting the different repetitions. By virtue of the law of large numbers, 
if  S  is large enough, the expression above is proxied by:
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This supplies, in particular, the posterior expectation of each     jp        ( )= …1, ,j c   , 
which can be taken as a one-time estimate, or the posterior variance that is useful to 
characterize the accuracy of the estimate. If we wish, we can use the same method 
to evaluate cross-moments, such as the covariance matrix of the posterior distribu-
tion of the     jp    values. Lastly, the posterior distribution function of a     jp    enables us, 
for example, to calculate intervals containing     jp    with a given probability. Called 
‘credibility intervals’ in the Bayesian context, they are equivalent to ‘confi dence 
intervals’ in the classical approach. 

 We must now consider the choice of prior distributions. 
 Our only source of information on the conditional probabilities     

i jp    is the refer-
ence data. If they consist of raw data obtained simply by recording the frequencies 
of stages in a sample of skeletons of known ages, it is logical to admit that, for each 
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age  j      ( )1,...,j c=   , the frequencies     ijn    are the observed values of a multinomial 
distribution with a total     jn    and probabilities     i jp        ( )1, ,i l= …   . Adopting a prior dis-
tribution for the     

i jp    probabilities, we deduce a posterior distribution, conditional 
upon the reference data. This distribution, in turn, is taken as a prior distribution of 
the     i jp    probabilities in the fi nal model. Given the scarcity of additional information 
on the     

i jp    probabilities beyond what the reference data provide, it makes sense to 
adopt a uniform distribution as the prior distribution of the     i jp    probabilities for 
each  j . For a given  j , the posterior distribution of the     

i jp    probabilities will accord-
ingly consist of a Dirichlet distribution with parameters     α = +1ij ijn    ( i = 1,…,  l). The 
density  G  is the product of these  c  Dirichlet densities:
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 In practice, the raw reference data can be ‘worked’ in different ways (for example, 
to apply a suitable weighting to a sample of men and a sample of women), so that 
their distribution is no longer strictly multinomial. But the prior distribution  G  
defi ned above appears to remain suitable, as the multinomial property mentioned 
was merely a notional means of obtaining this distribution. 

 We can, however, consider refi ning the choice of  G . One option seems of interest 
for addressing the practical problem in paleodemography. The reference data 
provide an instrument for modeling conditional probabilities by relying on the 
invariance hypothesis, but there are grounds for not placing excessive confi dence in 
this hypothesis. If we want to guard against excessive confi dence in the reference 
data, we can multiply the     αij    values by a ‘reducing’ coeffi cient  r      ( )< <0 1r    and 
choose     ( )α = +1ij ijr n   . This does not affect the prior means of the     

i jp    probabili-
ties, but it increases prior variances, thereby expressing our lack of confi dence. 
These variances are approximately multiplied by     1r   . We can observe that it is 
virtually equivalent to assume the     ijn    values multiplied by  r . This is yet another way 
to reduce the information contained in the reference data, since we proceed as if the 
relative frequencies observed for the reference data were preserved but obtained on 
a smaller sample. 

 The choice of the prior distribution of the parameters  p  
 j 
  is more delicate. We shall 

state our preference, using it throughout our presentation, but we shall also briefl y 
mention other possibilities. 

 As the ‘class’ of distributions in which we should search for the prior distribution 
does not appear to stand out in any particular way, the most logical choice is a 
Dirichlet distribution, well suited to probability vectors. We are left with the prob-
lem of choosing the distribution parameters, say     ( )β β…1, , c   . Absent specifi c infor-
mation, we can, as above, opt for a uniform distribution and take     β = 1j    for all  j . 
Such a choice, coherent with a logicist interpretation, allows us to stay ‘neutral’ and 
may be justifi ed in certain cases. We shall see that it yields reasonable results on 
simple examples. However, in paleodemography, other choices are presumably 
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more appropriate, as certain indications are naturally available. We can, for example, 
start from a ‘standard’ mortality distribution for which we calculate probabilities by 
age class. We then take these as the means of the prior distribution, giving us the     β j    
parameters to within one proportionality coeffi cient, i.e., the     β β./j    values, where  b  

.
  

is the sum of the     β j    values for  j =  1 ,…, c . We are left with the choice of     β.    values, 
i.e., in practice, the variances of the prior distribution. We should bear in mind that 
the variances must be relatively small in order to express the fact that the prior 
means are not very reliable and that the prior distribution should not play a domi-
nant role—in other words, that the family of options considered covers a broad fi eld. 
It seems, therefore, that the     β.    values should be fairly small—for example, below or 
barely above unity. We shall see that this is indeed the case in the simulated 
examples studied below. 

 The prior means may be viewed as ‘test’ values: if the data are few in number 
and the estimates consequently imprecise, it will be interesting to use the posterior 
distribution in a qualitative manner, and observe which way the means move—i.e., 
how the data ‘adjust’ the prior values. 

 We can extend the above principle for choosing the prior distribution in different 
ways. For example, instead of picking a standard mortality distribution as a base for 
constructing the prior distribution, we can choose a mixture of two ‘standard’ distri-
butions, which will yield a mixture of two Dirichlet distributions. The mixture could 
consist (in judiciously chosen proportions) of a standard mortality distribution 
(attrition) and a catastrophic mortality distribution. 

 As noted earlier, system ( 4.1 ) is undetermined when we use frequentist methods, 
if the number of rows (stages)  l  is smaller than the number  c  of columns (ages). In 
other words, the parameters of interest are not identifi able, in the sense that several 
values yield the same distribution of observable samples. The Bayesian method 
enables us to circumvent the diffi culty since we start from a prior distribution and 
need only to make it change by means of the data. The posterior distribution will, in 
that case, direct us toward a distribution of the unknown parameters, which is entirely 
compatible with the fact that they are not fully determined. We can therefore use this 
method with  l < c . Obviously, the posterior distribution will be relatively dispersed to 
take account of the indeterminacy inherent in the situation. 

 We shall now use an observed example to illustrate more clearly the advantages 
of a Bayesian method.  

    4.5.3   Example of Archeological Application 

 Using an actually observed data set, we shall now report the results obtained with 
the various methods. This will clearly demonstrate the need for a fully Bayesian 
method in order to achieve satisfactory results. 

 The data set concerns a population of nuns at the Maubuisson abbey (France) 
observed during the seventeenth and eighteenth centuries. To check the quality of the 
various estimates, we have the actual age structure for the entire population of nuns. 



1874.5 Estimating the Age Structure in Paleodemography

In most cases, of course, the age structure will never be available, and we shall 
have only the estimate obtained with one of the methods available. Table  4.4  sup-
plies the age breakdown.  

 We also have a sample of nuns whose cranial sutures have been measured as an 
age indicator. Table  4.5  gives the numbers by observed stage.  

 As a female reference population, we shall use a compilation of three Portuguese 
data collections (Séguy and Buchet  2011  ) . The reference population is shown in 
Table  4.6 .  

 We are now in a position to use all the methods proposed earlier to estimate the 
age structure of the Maubuisson nuns from these two populations and then compare 
it with the actual structure. 

 We should begin by noting that a     χ
2

   distance is an approximate distance between 
distributions, especially when the population observed is small (as here), but it 
already supplies information on the adjustment quality for a calculated distribution 
compared with a theoretical distribution. We proxied this theoretical distribution by 
that of the total population of Maubuisson nuns applied to the 37 skeletons exam-
ined. The results are given on Table  4.7 .  

 The probability-vectors method (Prob. Vect.) gives results far removed from 
the expected distribution: the value of     χ 2

   with six degrees of freedom is 31.64, 
signaling the method’s poor quality. In fact, its results are far closer to those of the 
reference population with a     χ 2

   of 2.299. 

   Table 4.4    Deceased Maubuisson nuns in the table (per 1,000)   

 Age group  20–29  30–39  40–49  50–59  60–69  70–79  80+  Total 

 Deceased  12  25  87  170  289  210  207  1,000 

   Table 4.5    Stage-specifi c distribution of sample of Maubuisson nuns   

 Stage  0–4  5–7  8–12  13–18  19–23  24–34  31–40  Total 

 Nb of individuals  6  2  4  5  3  9  8  37 

   Table 4.6    Distribution (combined synostosis coeffi cients) by stage and age group observed in 
female reference population (compiled from three Portuguese data collections)   

 20–29  30–39  40–49  50–59  60–69  70–79  80+  Total 

 0–4  85  40  45  26  11  7  5  219 
 5–7  6  13  12  10  2  4  5  52 
 8–12  6  11  15  14  6  11  5  68 
 13–18  5  2  11  13  13  11  11  66 
 19–23  3  6  6  11  7  12  8  53 
 24–30  3  5  6  12  19  13  12  70 
 31–40  1  6  2  14  12  8  23  66 
 Total  109  83  97  100  70  66  69  594 
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 The IALK method using maximum likelihood (IALK ML) yields even worse 
results, with a     χ 2

   of 42.496. The population of four age groups is zero, an unbeliev-
able result. If we try IALK with least squares (IALK LS), the result is worse yet, for 
many age groups now post negative population fi gures, although they still sum to 
unity. In this case it is not even useful to estimate a     χ 2

   distance between the estimated 
and theoretical distributions, given that the estimated distribution is fl awed. 

 The method proposed by Bocquet-Appel and Bacro  (  2008  )  yields a now accept-
able     χ 2

   of 2.153. The estimates for young age groups are very accurate, but the 
number of older nuns is overstated. 

 The Bayesian method (Bayesian) gives an even better     χ 2
   of 1.528. For this 

estimate, we have used information on the population concerned. In particular, as 
the population consisted of a nuns’ convent, it was immune to the then very high 
risk of maternal mortality in childbirth. We modifi ed the prior-probability vector 
to take account of this important information, which cannot be factored into the 
Bocquet-Appel and Bacro method. 13  

 For the Bocquet and Bayesian estimates, we can calculate a more satisfactory 
distance than the     χ 2

   distance. Recall that the mean quadratic deviation of an esti-
mator  X  of the real parameter  q  is equal to the mathematical expectation of the

square of the deviation     θ−X   , i.e.     ( ){ } ( ){ }2 2
( ) ( )θ− = + −E X Var X E X E X   .

It therefore takes into account (1) the variance of the estimator, the fi rst term of the 
sum above, and (2) its bias via the second term of the sum. We shall study the qual-
ity of the results obtained for these two larger examples by means of a total crite-
rion for the distance between the vector of the actual probabilities and the vector of 
the estimated probabilities. In fact, we shall test two criteria: (1) the sum of the 
mean quadratic deviations obtained for the various age groups (‘total MQD’) and 
(2) a comparable sum, weighted by the actual probabilities (‘relative MQD’). Here, 
these quantities are respectively as follows:

     

for the Bayesian method : 0.003 and 0.040

for the Bocquet Appel and Bacro method : 0.014 and 0.078.−
    

   13   For more details on this estimation, see Caussinus and Courgeau  (  2010  ) .  

   Table 4.7    Proportions estimated using alternative methods, theoretical proportions, and distances 
between them   

 Method 

 Age groups 

     
2χ   distance  20–29  30–39  40–49  50–59  60–69  70–79  80+ 

 Prob. Vect.  0.11  0.11  0.13  0.18  0.16  0.14  0.17  31.64 
 IALK ML  0.00  0.11  0.00  0.00  0.61  0.000  0.28  42.50 
 IALK LS  0.09  −0.50  −5.02  11.56  1.71  −3.39  −3.45  – 
 Bocquet  0.02  0.04  0.07  0.13  0.21  0.27  0.26  2.15 
 Bayesian  0.03  0.04  0.08  0.15  0.31  0.23  0.16  1.53 
 Theoretical  0.01  0.02  0.09  0.17  0.29  0.21  0.21 
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 The results give a signifi cant advantage to the Bayesian method. However, if we 
had simply performed the Bayesian analysis without taking into account the infor-
mation supplied by the nuns’ specifi c status, we would have obtained the distances 
0.007 and 0.199. The method would thus have preserved an advantage in terms of 
total deviation but would have lost it in terms of relative deviation because of an 
excessively large ‘error’ on small probabilities. 

 From our examination of this archeological case, and its analysis provided by the 
Bayesian method compared with the other methods, we can conclude that the fi rst 
method gives a better estimation of the age structure of past populations—an 
instance where records of age at death are lacking, but are replaced by measures of 
biological indicators.   

    4.6   Conclusion 

 Throughout this chapter we have observed an alternation between homogeneity and 
dispersion that, however, occurred between different units, depending on the period 
considered. The reason is that, like any scientifi c discipline, population science 
concerns itself not with population refl ecting the full complexity of the individuals 
who compose it, but with selected aspects of it. These may become complex over 
time, but they are always characterized by a small number of measures, deemed 
essential for understanding the phenomena that affect the population. 

 At the outset, our investigation was confi ned to probabilities concerning a total 
population. We tested the hypothesis of their dispersion—in the second sense of the 
term—by age. The conclusion is that we need to consider different probabilities for 
each age. We also tested the dispersion—in the fi rst sense of the term—of certain 
indices. However, we fi nd few examples of its use, particularly in eighteenth-
century works of political arithmetic. 

 Laplace continued to observe a population in its entirety but, this time, from a 
Bayesian standpoint. He started from the hypothesis of prior probabilities uniformly 
distributed in the interval [0,1] in order to obtain posterior probabilities, whose 
dispersion—in the fi rst sense of the term—he could estimate accurately. He also 
noted the usefulness of analyzing dispersion—in the second sense of the term—by 
bringing in causes that would affect certain sub-populations and not others: man-
ners, climate, food. However, the regression methods proposed by Gauss were not 
used in population sciences at that time. 

 The spread of censuses in the nineteenth century and a critique of the foundations 
of Bayesian calculus led to a rejection of Laplace’s approach. The cross-sectional 
and longitudinal analyses used until the early 1980s left aside all evaluation of the 
dispersion of demographic measures, in both senses of the term. 

 Dispersion then made a comeback in population sciences through the event-
history and multilevel approach, whose inclusion of individual and aggregate 
characteristics broke up the analytical framework. Dispersion came into play in the 
fi rst sense of the term, for it became essential in estimating the variance of the 
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estimated effects in order to assess their validity. Dispersion also came into play in 
the second sense of the term, because of (1) the simultaneous introduction of units 
of different levels into the analysis and (2) individual characteristics affecting a 
different sub-population each time. 

 In the fi nal section of this chapter, we examined the estimation of the age struc-
ture of a population for which the only data available to paleodemographers were 
biological indicators measured on skeletons. We were able to show the power of 
Bayesian methods as a tool for preparing such estimates. 

 To conclude this chapter, we need to address one fi nal issue. Throughout our 
discussion, we have contrasted the points of view of those who apply probability to 
an individual case and those who reject this possibility altogether. To put it simply: 
in one camp, Jacob Bernoulli, when he examines Titus’s chances of dying; in the 
other, von Mises, when he states that the probability of dying makes no sense for 
him if it refers to a single individual. We are dealing here, in fact, with the distinction 
between subjective probability and objective probability, applied to population 
sciences data. 

 For instance, de Finetti  (  1937  ) , one of the leading representatives of the subjective 
approach, clearly stated:

  The degree of probability assigned by an individual to a given event is revealed by the 
conditions in which he would be willing to bet on the event.  

Later, he specifi cally expresses his belief that an ‘event is always a singular fact’. 
In contrast, von Mises—one of the leading representatives of the objective 
approach—refuses to speak of the probability of a singular fact, which does not 
exist for him. It is important to see where population science stands in regard to 
these two extreme positions. 

 For the classical approach, objective probability seems entirely suitable, under 
the hypothesis that the exhaustively observed population can be regarded as drawn 
from an infi nite theoretical population with the same probabilities as itself of 
experiencing different events. The variances of the probabilities estimated under 
this hypothesis are weak enough, as we have shown, to sustain it perfectly. 

 But once we move to event-history or multilevel approaches, which often rely on 
non-exhaustive data from surveys, the choice of objective probability can be called 
into question—although it remains a possible alternative and is used by demogra-
phers. Similarly, when we want to address a paleodemographic problem, with a 
limited amount of data, the continued recourse to objective probability yields results 
that are often totally erroneous and even impossible to accept. In such conditions, 
subjective probability seems better suited to incorporating all the theoretically use-
ful information on the phenomena studied, which objective probability did not 
allow. Indeed, the use of subjective probability is often indispensable because of the 
extreme dispersion of probabilities (in the second sense of the term ‘dispersion’) 
according to individual characteristics and due to interactions between the phenom-
ena studied. But subjective probability allows only very approximate individual 
forecasts, for people have many other characteristics besides the ones analyzed, and 
those other characteristics can strongly modify the forecast (Courgeau  2007b  ) .                                                                                                            
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 We could extend the analysis in the previous chapter to the other social sciences. In 
Sects.   1.4    ,   2.4     and   3.4    , we have already given some examples of the use of  probability 
in economics, sociology, education science, and political science. Equally well, we 
could have described its use in human geography, anthropology, and other disci-
plines. The topic deserves a full volume for each of the social sciences, given the 
number of such connections and the extent of their development throughout the his-
tory of these disciplines. The exercise has already been conducted, for example, in 
econometrics (Louçã  2007  ) . Here, however, we prefer to explore in greater depth 
the close ties between probability and the population sciences. This calls for a 
detailed analysis of the basic concepts and symbols used, and the various paradigms 
that have supported the probability-based approach to social phenomena. We shall 
try to show how the axioms that have marked the history of probability are inti-
mately linked to those paradigms. 

 The concepts of population and individual range well beyond the boundaries of 
population sciences, and their history has already been recounted by many authors 
(   Landry 1909; Vidal  1994 ; Charbit  2010  ) . Our discussion will largely focus on a 
new angle: what is their relationship with probability? What is the position of an 
individual in a population, and can we analyze these literally individual cases one 
by one, or must we resort to a more abstract concept of fi ctitious individual? 

 Population sciences also use other primitive symbols and concepts, and we shall 
examine them in detail later, again from the standpoint of their ties with probability. 
What events should we consider, and what individual or more general characteris-
tics of groups—such as family, household, fi rm, and religion—should we introduce 
into the analysis? What role does time play in these sciences, and how should we 
apply stochastic temporal processes to deal with these issues? 

 Once we have clearly framed all these prior questions, we shall be able to 
examine in greater detail the paradigms that have successively prevailed in popu-
lation sciences (Courgeau     2004a,   b,   2007a,   b ;    Courgeau and Franck  2007  ) . Our 
notion of paradigm differs slightly from those proposed by Thomas Kuhn  (  1962  ) . 
Recall that Kuhn, who had used many different meanings of ‘paradigm’ in the 
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fi rst edition of his book  (  1962  ) , 1  ended up distinguishing two main meanings in 
the expanded 1970 edition:

  On the one hand, it stands for the entire constellation of beliefs, values, techniques and so 
on shared by the members of a given community. On the other, it denotes one sort of ele-
ment in that constellation, the concrete puzzle-solutions which, employed as models or as 
examples, can replace explicit rules as a basis for the solution of the remaining puzzles of 
normal science. (Kuhn  1970  )    

 The slightly different version offered here addresses the following question: how 
do we go from experienced phenomena to the scientifi c object as defi ned by the 
philosopher Granger  (  1994  ) ?

  The complex real-life captured in the experience of sensible things has become the  object  
of a mechanics and a physics, for example, when the decision was taken to reduce it to an 
abstract model, which initially incorporated only spatiality, time, and “resistance” to 
movement.  

Granger also admits that the content of this object has not been assigned a broad, 
explicit defi nition from the outset. Sciences such as physics and biology have pro-
duced successive elaborations of their object, as evidenced by the transition from 
Newtonian physics to Einstein’s general relativity. Similarly, population sciences 
have spelled out their object in successive paradigms, each of which provides a dif-
ferent way of relating observed phenomena to the scientifi c object (Courgeau and 
Franck  2007 ; Courgeau  2009  ) . 2  

 Here, we do not distinguish this notion from what are more generally referred to 
as programs. These are defi ned in purely literary terms and offer schemas of the 
observed system that highlight the social system’s relevant entities with their proper-
ties and basic relationships (Walliser  2009  ) . We shall not extend our discussion to 
axioms, which would allow us to characterize with greater precision the principles of 
the social properties capable of guiding empirical investigations and underpinning 
our proposed explanations (Franck  2009  ) . The reason is that, unlike probability, axi-
oms are still far from totally defi ned in these sciences, particularly demography. The 
history of their establishment deserves a full volume for each of these sciences 3  but 
would be a digression from the subject of this chapter: the links between social sci-
ence and probability. However, we shall try to approach axioms as best as possible. 4  

   1   See Masterman  (  1970  ) , who has collected 21 different meanings of the term ‘paradigm.’  
   2   This notion is similar, in our view, to what Gonseth  (  1975  )  proposed under the term ‘referential’ 
( référentiel ). In particular, he noted that ‘the referential may be described as holographic, in the 
sense that the aspect under which it manifests itself to the subject may change according to the 
relationship that the subject establishes with it.’ We shall see that this is what occurs for the various 
population sciences paradigms.  
   3   The best example we can give is Pratt’s book (Pratt  2010  ) ,  Modeling written communication , 
whose aim is to discover the principles or axioms of written communication, considered as a social 
property (Franck  2002  ) .  
   4   I wish to thank Robert Franck and Xavier Bry for our many exchanges on this topic, which 
allowed me to better defi ne the goal of this chapter.  
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 As just noted, the fi rst concept to consider is population, which is closely connected 
to the concept of individual. We shall try to see how these have evolved through 
history, and if they can be treated as scientifi c objects. 

 We cannot describe the points of view of all the authors who have discussed 
these concepts, but we shall give a few examples, 5     chosen for their particular rele-
vance to the present volume. 

 Plato gives a detailed and even quantitative description of the establishment of a 
political society (Republic, II, 369 ff.), that is, of a City,  p ό l  i  V , (Laws, V, 737 ff.). 
One could view this as the origin of demography. Using a political criterion to 
defi ne it, he sets up a unit that appears to be suitable for this discipline:

  Then, as we have many wants, and many persons are needed to supply them, one takes a 
helper for one purpose and another for another; and when these partners and helpers are gath-
ered together in one habitation the body of inhabitants is termed a State. (Republic, II, 369)  

But Plato goes on to use criteria that cause him to move away from demography. 
To begin with, his unit of account for the components of a State is not the individual 
but the head of the family:

  The number of our citizens shall be 5,040—this will be a convenient number; and these 
shall be owners of the land and protectors of the allotment. (Laws, V, 737)  

Let us set aside the fi gure of 5,040, which has generated many hypotheses 
(Charbit  2010  ) , to focus on the defi nition of the unit of account. By taking the num-
ber of families as his starting point, Plato effectively rules out any measure of indi-
vidual mortality, which population sciences must take into consideration, whereas 
the family can far outlive its members. Similarly, for the generation of children, 
Plato lays down rules to ensure that there will always be 5,040 family houses (Laws, 
V, 740) when there is more than one heir per family, but the arrangement allows no 
measurement of fertility. Plato also envisages emigration and immigration (Laws, V, 
740), again without quantifying them. Lastly, he totally ignores slaves, whose num-
ber per family can be very large, but who have been ‘separated from royal and 
political science’ (Stateman, 289). 6  

 In sum, by placing the discussion directly at the aggregated level of the family, 
Plato lacked the material needed to institute a truly analysis in population sciences. 

 Aristotle (Politics, I, 2) goes further than Plato in defi ning the groups that make 
up a population:

  As in other departments of science, so in politics, the compound should always be resolved 
into the simple elements or least parts of the whole. We must therefore look at the elements 
of which the State is composed, in order that we may see in what the different kinds of rule 
differ from one another.  

   5   The work by Charbit  (  2010  )  offers a fuller view, although he is forced to choose from among the 
many historical examples.  
   6   The website   http://classics.mit.edu/Plato/stateman.html     display incomplete: see ‘text only ver-
sion’ for quotation in context.  

http://classics.mit.edu/Plato/stateman.html
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He begins by showing that ‘the family is the association established by nature for 
the supply of men’s everyday wants.’ He goes on to state that ‘when several families 
are united, and the association aims at something more than the supply of daily 
needs, the fi rst society to be formed is the village.’ Lastly, ‘when several villages are 
united in a single complete community, large enough to be nearly or quite self- 
suffi cing, the State comes into existence.’ Aristotle also ranks these units by order 
of precedence:

  The State is by nature clearly prior to the family and to the individual, since the whole is of 
necessity prior to the part; for example, if the whole body be destroyed, there will be no foot 
or hand, except in an equivocal sense, as we might speak of a stone hand; for when destroyed 
the hand will be no better than that.  

Aristotle thus clearly defi nes all these aggregation levels, and may thus be char-
acterized as a precursor of today’s multilevel analysis. There are, however, major 
differences between the two approaches. First, the order of precedence is reversed: 
whereas multilevel analysis centers on the individual to determine the effect of more 
aggregated levels on individual behavior, Aristotle focuses on the State to deduce 
behaviors at less aggregated levels. Second, he proposes no scientifi c approach to 
the individual, as population sciences do. As he clearly indicates in  Rhetoric , the 
individual cannot be the object of any science:

  But none of the arts theorize about individual cases. Medicine, for instance, does not theo-
rize about what will help to cure Socrates or Callias, but only about what will help to cure 
any or all of a given class of patients: this alone is business: individual cases are so infi nitely 
various that no systematic knowledge of them is possible.  

We should begin by noting that Aristotle often uses the term ‘art’ ( t έ c  n  h ) as a 
substitute for ‘science’ ( e  p  i  s  t ή m  h ). Most importantly, he does not identify the 
concept of statistical individual, which, as we shall see, is the foundation of popu-
lation sciences. 

 In other words, unlike multilevel analysis, which starts with this statistical indi-
vidual in order to show the effect of higher aggregation levels on his or her behavior, 
here this individual behavior is deemed unknowable. We can therefore conclude 
that the modern idea of a science of man has not yet taken shape in Aristotle’s mind 
(Granger  1976  ) . 

 In fact, the hegemony of Aristotelian thought in the Western world did not begin 
to falter until the sixteenth century. The  Revolutions  of Copernicus  (  1543  )  attacked 
Aristotle’s astronomy head-on by replacing its Earth-centered system by a Sun-
centered one. Francis Bacon  (  1605  )  contested his authority in every fi eld:

  so knowledge derived from Aristotle, and exempted from liberty of examination, will not 
rise higher than the knowledge of Aristotle.  

Bacon wrote  Novum organon   (  1620  )  to elaborate an inductive method and oppose 
it to the  Organon,  the name given by Aristotle’s disciples to the set of his six works 
on logic. Contrary to the then standard approach, the inductive method could be 
reached as follows:

  There are and can be only two ways of searching into and discovering truth. The one fl ies 
from the senses and particulars to the most general axioms, and from these principles, the 
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truth of which it takes for settled and immovable, proceeds to judgement and to the  discovery 
of middle axioms. And this way is now in fashion. The other derives from the senses and 
particulars, rising by a gradual and unbroken ascent, so that it arrives at the most general 
axioms at last. This is the true way, but as yet untried .  7  (Bacon  1620  )   

Thus, for Bacon, observation comes fi rst and underpins an inductive approach 
that enables us to follow the trail back to axioms. 8  

 This is precisely the same induction that allowed Pascal to develop a geometry of 
chance  (  1654a,   b  ) , using the player’s uncertain luck as a starting point. The purpose 
was to demonstrate, if not an axiomatics of probability at this early stage, at least a 
hidden logic that enabled Pascal to grasp the facts of the matter. In his own words 
 (  1654  b  ) : ‘but now, having held out against experience, it [i.e., the logic of probabil-
ity] was unable to escape the empire of reason.’ 

 Similarly, Graunt  (  1662  )  notes the following in his preface addressed to Robert 
Moray, the main founder of the Royal Society:

  because Sr. Francis Bacon reckons his Discourses of Life and Death 9  to be Natural History; 
… I am humbly bold to think Natural History also, and, consequently, that I am obliged to 
cast in this small Mite into your great Treasury of that kinde Sir Francis Bacon.  

Faithfully obeying Bacon’s precepts, he begins with an observation that, while 
detailed, is still far from complete. In particular, it does not mention of the age of the 
deceased, supplied by the mortality bills of the time. Graunt’s objective is to pro-
duce a full picture of mortality in London during the period considered, with the few 
characteristics that he was able to glean from the mortality bills. 

 In truth, to establish a science—whether mathematical, physical or human—
one must select only a few aspects of the phenomena studied, aspects that can 
be characterized with great precision (Franck  2002  ) . Graunt’s merit was there-
fore to gloss over most differences between individuals, concentrate on what 
was recorded in the mortality bills of his time, and offer some clear tables sum-
marizing the information contained in these registers. The information that he 
takes into account regards the deaths recorded with the mention of their cause 
(plague, accident, illness, etc.), the person’s sex, and the place and date of death. 
These are some of the characteristics examined in population studies. Moreover, 
from the outset, Graunt addresses the important question of the generality of 
this information. If he had been dealing with a small number of bills collected 
here and there, the results would be of little value. But Graunt took care to 

   7   Duae viae sunt, atque esse possunt, ad inquirendam and inveniendam veritatem. Altera a sensu 
and particularibus advolat ad axiomara maxime generalia, atque ex iis principiis eorumque immota 
veritate judicat and invenit axiomate media; atque haec via in usu is. Altera a sensu and particulari-
bus excitat axiomata, ascendendo continenter and gradatim, ut ultimo loco perveniatur ad maxime 
generalia; quae via vera is, sed intentata.  
   8   See Franck  (  2009  )  for a detailed description of Bacon’s proposed method for seeking the form of 
a property.  
   9   (Bacon  1623  ) . In this book, however, he resorted mainly to compilation, without truly applying 
his induction principle, and without always relying on experience, as Graunt did.  



196 5 Closer    Links Between Population Sciences and Probability

peruse and record every possible bill gathered in London over a certain number 
of years. 10  

 The very same year as Graunt published his pioneering work, the logicians of 
Port Royal 11  (Arnauld and Nicole  1662  )  elaborated two aspects of the same concept 
(which they termed ‘universal idea’) that were essential for defi ning a population:

  I call  comprehension  [ compréhension ] of the idea the attributes that it contains and that 
cannot be removed without destroying it, for instance, the comprehension of the idea of the 
triangle encompasses extension, fi gure, three lines, three angles, the fact that these three 
angles sum to two right angles, etc. 

 I call  extent  [ étendue ] of the idea the subjects to which this idea is suited; this is also called 
the inferiors of a general term, which is called superior with respect to them; for instance, 
the idea of the triangle in general extends to all the various kinds of triangles.  

Today, we would speak of intension or signifi cance to denote the comprehension 
of a concept, and extension to denote its extent (Nadeau  1999  ) . If we look more 
closely at how these aspects appear in the defi nition of the concept of population, 
we arrive at the following defi nition: the intension of the term ‘population’ estab-
lishes its properties and characteristics, whereas its extension consists of the set of 
individuals who satisfy these properties. Thus, if this property or characteristic con-
sists of nationality alone, we can defi ne the population of French nationality and 
determine all the individuals who belong to it: they are located around the world, 
although most reside in France; they will also change continuously over time. If the 
property or characteristic is both the nationality and the country of residence, we 
can defi ne more precisely the population of French nationality living in France. 

 More generally, therefore, a population can be characterized as an ‘aggregate of 
individuals which conform to a given defi nition. This defi nition is at least spatial 
and temporal in specifi city’ (Ryder  1964  ) . The criteria used for it may, of course, be 
of many different kinds: political (such as nationality, discussed above), economic 
(people working in the same fi rm or industry), religious (church parishioners) or 
social (persons related through specifi c family ties). We can take a single criterion, 
or several. In consequence, these various populations are not distinct but partially 
overlapping. 

 As Aristotle very rightly points out, however, individuals belonging to a given 
population will have an unlimited number of different characteristics other than 
those assigning them to that particular population. But a true social science cannot 
be implemented except to explain a fi nite number of individual characteristics. 

 For this purpose, we need to deprive individuals of their unlimited and unknow-
able character, reducing them to a limited number of aspects that will allow the estab-
lishment of a social science. This small set of characters can form a usable scientifi c 
object. The researcher will set aside an infi nity of other characters regarded as 

   10   He used the bills prepared continuously since December 29, 1603, for earlier bills had been 
compiled and preserved haphazardly.  
   11   Pascal had close ties with the Port Royal authors in this period, when many studies were con-
ducted on a cooperative basis and published anonymously.  
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 secondary to the study to be conducted. Naturally, the choice of characters is  essential 
and must be made with a very detailed knowledge of the phenomena studied. 

 In population sciences—as in many other social sciences—we shall indeed start 
by observing the individuals in a population, but we shall observe only a small num-
ber of phenomena and of characteristics of these individuals. The characteristics 
will be examined in greater detail in the next section. For the time being, we shall 
be vague about them, apart from noting their small number. It is on this reduced set 
that the discipline will operate. In this case, we shall create an abstract fi ctitious 
individual, whom we can call statistical individual as distinct from the observed 
individual. The statistical individual will experience events that obey the axioms of 
probability theory chosen to treat the observations. Under this scenario, two observed 
individuals, with identical characteristics, will certainly have different chances 12  of 
experiencing a given event, for they will have an infi nity of other characteristics that 
can infl uence the outcome. By contrast, two statistical individuals, seen as units of 
a repeated random draw, subjected to the same sampling conditions and possessing 
the same characteristics, will have the same probability of experiencing the 
event. We can now see more clearly how the use of observed phenomena and 
 characteristics—which constitute the statistical reality of human facts—can now be 
transformed into an abstract description of human reality. This is achieved by means 
of concepts deliberately stripped of those concrete circumstances that, in the 
researcher’s view, can be left aside. We shall explore this notion of statistical indi-
vidual more fully when examining the different paradigms of population sciences. 

 Lastly, it is useful to note that, while each individual in a population has a limited 
life span, their aggregation (which constitutes a population) has an indefi nite exis-
tence, which can greatly exceed that of its members. The demographic events dis-
cussed in the following section introduce a process of creation of new individuals, 
through birth and immigration, while others disappear, through death or 
emigration. 

 We have thus succeeded in narrowing the fi eld of our work in order to make it 
usable for social-science research. After describing the framework and content, we 
must highlight the phenomena that will alter them over time.  

    5.2   The Object: Not Individual Behaviors 
but More Abstract Concepts 

 Many authors see population sciences as the study of ‘the behaviors of human popu-
lations, from the individual level to the social level’ (Tabutin  2007  ) , thereby assign-
ing it a fi eld that is both indefi nite and infi nite. If it were to follow that path, these 
sciences would end up covering everything. We believe, instead, that it is useful to 

   12   We deliberately refrain from using the term ‘probability’ here, for it cannot be estimated in these 
circumstances.  
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refocus research on a more specifi c object of population sciences (Courgeau and 
Franck  2007  ) . 

 On the face of it, one might think that its object is the study of births ,  deaths ,  and 
migration fl ows, which affect the population. But, like the concept of population 
itself, such an object has been envisaged since Antiquity without ever producing a 
truly approach in population sciences, as noted earlier. Vilquin  (  1977  )  expresses this 
idea very clearly in his introduction to Graunt’s work:

  Measuring, quantifying phenomena that were God’s secret (birth, illness, death, the games 
of life and chance): the only ones who dared to venture there were scholars whose science 
was mysterious enough for them not to fear public censure: physicians, theologians, or 
polemicists caring little for truth and falsehood. The multiplicity of the numbers reported 
without mystery and with assurance in Graunt’s work was therefore bound to provoke 
astonishment, if not scandal.  

He shows that Graunt goes beyond quantifi cation by envisaging—as we have 
seen—wagers on the numbers (‘it is esteemed an even lay […]’), an exercise that 
requires introducing the notion of probability. Similarly, Lotka  (  1939  )  writes:

  the large number of variables, and the random nature of their connections, give demo-
graphic analysis a special character.  

Setting aside the fact that the variables far outnumber the phenomena of classical 
physics, the main point here is the randomness not only of the events themselves but 
also of the connections between them. 

 Therein lies the originality and deep foundation of population sciences, which 
we can thus describe as the study of the probability of fertility, mortality, and 
 migration—a defi nition that clearly introduces probability as a fundamental  concept. 
For instance, fertility is a measure of the probability of having children, provided we 
simultaneously defi ne the population at risk. 

 Interestingly, most researchers in the mid-twentieth century regarded the link 
between probability and population sciences as so obvious that they no longer 
 bothered to point it out, or viewed it as one of several possibilities. The term ‘prob-
ability’ hardly ever occurs in Henry’s major demographic treatise  (  1972  ) . 13  He 
speaks far more often of frequency in the sense of the ratio of a part to a whole. Even 
more strikingly, in the  Multilingual Demographic Dictionary   (  1981  ) , the same 
author notes:

  The  relative frequency  of a non-renewable event is often regarded as an empirical measure 
of the  probability  of occurrence of that event. This presumes that all the individuals who 
appear in the denominator have been exposed to risk in some way, i.e. there must have been 
a chance or risk that the event in question could happen to them. 14   

He therefore views the interpretation in terms of probability as a possible inter-
pretation of frequencies, which he does not deem indispensable. This is totally 

   13   However, he uses it in the expressions ‘probability of family enlargement’ and ‘probability of 
survival.’  
   14   The English edition uses ‘often’ whereas the original term in the French version is ‘parfois’ 
(sometimes), which attenuates the link with probability.  



1995.2 The Object: Not Individual Behaviors but More Abstract Concepts 

 consistent with the attitude described in Chap.   4    , which prevailed in population 
 sciences from the mid-nineteenth century through most of the twentieth: to cope 
with the large numbers of persons observed in censuses, an objective approach suf-
fi ced, without even introducing the notion of probability. 

 However, in Chap.   4    , we also noted the importance attached by Laplace in 
 Théorie analytique des probabilités   (  1812  )  to the analysis of population sciences 
phenomena, which he viewed as an integral part of his book. We also showed the 
need to use probability in the event-history and multilevel approaches, now preva-
lent in population sciences analysis. Our proposed defi nition is consistent with this 
approach, which we believe is essential in today’s population sciences. 

 We must also show that, from the outset, events are situated in a time frame that 
is always present, even though the cross-sectional approach tends to minimize it. 
The frame may consist of the date at which the events occur, of age or, more gener-
ally, of the time elapsed since a founding event taken as the origin of time. On the 
latter defi nition, age becomes the time elapsed since the individual’s birth. 

 In sum, although this individual characteristic was missing from his  mortality 
bills , Graunt  (  1662  )  did see its crucial value very clearly. He tried to estimate the 
age-specifi c probability of dying, under hypotheses that were rough but the only 
conceivable ones (see Sect.   1.4    ). Later, all political arithmeticians, then all research-
ers in population science, have used age by connecting birth certifi cates to the other 
certifi cates for named persons recording the occurrence of a demographic event for 
the same individual. 

 Time can also play its conventional role as the instant at which an event occurs. 
We shall see that this notion of time is the one prevailing in cross-sectional analysis, 
where time is static, since we are looking at a given moment. But time can also play 
a role as a marker for events affecting personal lives, such as wars and crises. 

 We can now try to see more precisely what demographers mean by the study of 
the probability of fertility, mortality, and migration, which are the object of their 
discipline. 

 To begin with, we should note that an explicit defi nition of the object is not nec-
essary. Granger  (  1994  )  states this clearly:

  In the case of social sciences [ sciences de l’homme ], the transmutation into a scientifi c 
object of the complex and changing life experience that consists of the human fact remains 
problematic, even in its aspects commonly recognized as public. This is not because a prior 
and general explicit defi nition of the object of a science is a prerequisite for its develop-
ment. Quite to the contrary, physics and biology are, if anything, progressive explanations 
of their object. But it is no less true that, in these conditions, every objectivated aspect of 
sensitive experience, every phenomenon, is identifi ed by means of criteria accessible to all 
those who possess a specifi c physical and intellectual tool set. These criteria, however 
refi ned, mediated, and abstract they may seem, nevertheless ‘salvage’ phenomena, in the 
sense that they always allow, within the limits of a recognized tolerance, the establishment 
of a univocal correspondence of the phenomena perceived, and consequently experienced 
by a private conscience, with their publicly intelligible schematization.  

This text therefore encourages us to spell out the meaning of the object of popu-
lation sciences as we gradually examine the various proposed interpretations, and it 
spares us from having to provide a prior and general explicit defi nition of the object. 
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In contrast, we note the object’s close ties with the phenomena known to all: births, 
deaths, and migration fl ows, which are common occurrences in a population. It is 
perfectly legitimate to establish a univocal correspondence between these phenom-
ena and the schematization involved in speaking of fertility, mortality, and migra-
tion, but it is vital to distinguish between the two here. The term ‘probability’ allows 
us to show that we are dealing with a property of the populations that we can use to 
explain and try to predict their changes. 

 For instance, fertility makes it possible to increase the size of a population by 
introducing new individuals who have just been born. Immigration will have the 
same effect, but by introducing new individuals at any age. By contrast, mortality 
will reduce population size in a similar manner to emigration. Population sciences 
will study the changes in the population due to these events, taking different points 
of view of the time frame in which they occur. Moreover, these phenomena cannot 
be studied without reference to the factors that can infl uence their occurrence. The 
examination of such factors can thus be introduced into the fi eld of population 
 sciences, but at a later stage and in a limited number. The purpose will be to deter-
mine whether they infl uence the three phenomena and, if so, how. 

 We must now explore in greater detail the various approaches followed by popu-
lation sciences. Only by examining these different points of view can we attempt to 
defi ne their object more precisely.  

    5.3   The Cross-Sectional Approach 

 This approach largely prevailed in the early days of population sciences and con-
sisted in taking a period point of view to study phenomena. By period we mean a 
short duration, typically 1 year, in which we can measure the numbers of events 
occurring in a given population. 

 We have already described (Courgeau  2003,   2004a,   b,   2007a  )  the paradigm of 
this approach. Let us recall it briefl y here. The social facts of the period exist inde-
pendently of the individuals who experience them. We can explain them by the 
economic, political, religious, social, and other characteristics of society. 
Furthermore, these phenomena are independent of one another. Let us look in 
greater detail at the consequences of the independence posited between period 
 phenomena and the consequences of their dependence on the characteristics of the 
society in which they occur. 

    5.3.1   Independence Between Phenomena 

 Euler  (  1760  ) , for instance, already set three hypotheses in his work on mortality and 
the multiplication of the human species:

   The fi rst hypothesis is based on ‘the vitality or power of life that is specifi c to • 
humans.’ It leads to equating this vitality with the probability of dying at each 
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age for members of a given population. Therefore, the fi rst hypothesis will indeed 
be represented by a probability, assumed identical for all persons of the same 
age. Moreover, as Euler was studying very large populations, he did not need to 
take the estimated dispersion of the probability into account.  
  The second hypothesis rests on ‘the principle of propagation, which depends • 
on marriages and fertility.’ For Euler, it consists in identifying the principle 
with the fact that ‘the number of children born every year is always propor-
tional to the number of all living persons.’ Once again, therefore, he  introduces 
a probability: that of the birth of a child in a given population. Admittedly, 
this is a rough approach to the fertility of a population. All present-day 
 population scientists would reject it as utterly inadequate, for the ratio is cal-
culated not with respect to the female population of childbearing age, but to 
the total population. However, the notion of identifying the principle with the 
fertility of a population, conceived as a probability, is already well established 
in Euler’s work.  
  The third and fi nal hypothesis is that ‘the two principles of mortality and propa-• 
gation are independent of each other.’ Therefore, Euler does not need to take 
account of possible interactions between the two probabilities.    

 From these principles, he can thus calculate all the other probabilities that popu-
lation scientists would want to estimate, such as: ‘given a certain number of men, all 
of the same age, fi nd how many will probably be alive after a certain number of 
years’. Likewise, what is ‘the probability that a man of a certain age will die during 
a given year’ [?], and also ‘fi nd the point in time that a man of a given age may hope 
to reach, such that it is equally probable that he will die before the point as after.’ 
[and so on]. 

 Euler also recognizes the accidents of history that introduce discontinuities in 
population change, as well as migration phenomena, which he does not address. 
However, he notes the following:

  For places subjected to such irregularities, one should keep accurate registers of all the liv-
ing as well as of the dead, and then, following the principles that I have just set out, we 
would be able to apply the same calculation. Everything always comes back to these two 
principles, that of mortality and that of fertility; once these are well established for a par-
ticular location, it will not be diffi cult to resolve all the questions that may be raised on this 
topic, of which I have merely described the main ones.  

It follows that, if we have detailed data on these phenomena (population regis-
ters are an example for migrations), we can treat them in a manner similar to mor-
tality (e.g., famine, emigration) or fertility (e.g., immigration, colonization). The 
fi rst set of phenomena remove members from a population, the second add new 
ones, not only at the age of birth but also at all ages for immigration. Indeed the 
propagation principle implies the possibility of entering a population otherwise 
than through birth. 

 In fact, we could speak here not of an axiomatization in the full sense, but of a 
proto-axiomatization of population sciences. Let us show why. 

 First, the probabilities on which this proto-axiomatization is based were not axi-
omatized themselves until more than 160 years later (Kolmogorov  1933  ) . But Euler 



202 5 Closer    Links Between Population Sciences and Probability

built his approach on these probabilities. Next, let us examine the  successive stages 
that Franck  (  2002  )  proposes for modeling in the other social sciences as well:

  (1) Beginning with the systematic observation of certain properties of a given social system, 
(2) we infer the formal (conceptual) structure which is implied by those properties. (3) This 
formal structure, in turn, guides our study of the social mechanism which generates the 
observed properties. (4) The mechanism, once identifi ed, either confi rms the advanced for-
mal structure, or indicates that we need to revise it.   

 We shall show that this approach resembles Euler’s. Regarding the fi rst point, he 
clearly tells us:

  As this task is most diffi cult to perform, we must be very grateful to Mr. Süssmilch, 
Councilor of the Higher Consistory, who, after overcoming nearly insuperable obstacles, 
supplied us with so great a number of such observations that they seem adequate to settle 
most of the questions arising in this research.  

Euler indeed relies on a very large corpus of observation data to determine their 
properties: the data from birth and death registers. He then seeks out the various 
properties of the corpus and identifi es the basic ones, which will allow him to recon-
struct everything that can be said about the data, whatever they are. However, he 
does not address these phenomena in all their complexity. He selects a small number 
of aspects, which he sees as essential for his approach: the age-specifi c probability 
of dying in a given year, the probability of giving birth to children in that same year, 
the independence between these two probabilities, and their constancy over time 
and for the location studied (city, province, country, and so on), which he adds to the 
three previous properties in order to extend his period results to the fl ow of time. 

 He can state that these four properties of a population allow him to reconstruct 
the set of characteristics of each population and test their validity on the many 
examples provided by Süssmilch. 

 We can consider the forces acting on a population as altering its mortality and 
fertility rates, as Euler defi nes them (Bourgeois-Pichat  1994  ) . If the rates stay 
 constant over time, then the population remains stationary or stable, depending on 
the rates’ respective values. Equally well, if these formerly variable rates become 
identical at a given moment, the stationary or stable population is not reached imme-
diately. As Lotka showed  (  1939  ) , it will serve only as a limit. 

 We can draw a parallel between these results and the fi rst axiom (or law) of 
Newton’s theory  (  1687  ) , known as the inertia principle:

  Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is 
compelled to change that state by forces impress’d thereon. 15   

Similarly, any population whose fertility and mortality are assumed to become 
constant from a given instant on will tend toward the stationary or stable population 
that meets these conditions. But, whereas the physical body immediately acquires 
its uniform motion when no force acts upon it, the stable population is not affected 

   15   Projectilia perseverant in motibus suis nisi quatenus a resistentia aeris retardantur & vi gravitatis 
impelluntur deorsum (English transl. by Andrew Motte, 1729 ed., p. 19).  
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at once, since it is a limit. However, if certain conditions are met, this population can 
also promptly reach its stable state. 

 Bourgeois-Pichat  (  1994  )  showed that, in reality, many observed populations—
such as most developing-country populations at the time of his writing, in which 
fertility varied little—meet these conditions and can thus promptly reach a stable 
state while preserving an invariable age structure over time. Such populations are 
called semi-stable populations. This is less true today, however, with the downtrend 
in fertility in these countries. 

 It is also easy to fl esh out this model of population change with age-specifi c 
emigration and immigration rates, expressed as a net emigration rate. This yields a 
basic relationship between age structure, mortality, fertility, and migration at a given 
point in time (Preston and Coale  1982  ) . 

 From a cross-sectional population sciences study giving the probabilities of 
events in the period, we can thus deduce the future change in the population or 
social group considered, if conditions remain the same. However, the conditions 
will depend on the social, economic, religious, political, and other characteristics of 
the society or group in which the events occur. We must therefore identify any links 
between these characteristics and the phenomena studied.  

    5.3.2   Dependence of Characteristics on Society 

 In Chap.   4    , we showed that the least-squares method, introduced by the probabilists 
Legendre, Gauss, and Laplace in the early nineteenth century to study planetary 
orbits, was long confi ned to the examination of astronomical or geodesic phenom-
ena in the physical sciences. Its use in the social sciences for dealing with popula-
tion characteristics required a long process during the nineteenth century, whose 
main stages are described below. 

 In astronomy and, more generally, the physical sciences, it was possible to 
reduce the complexity of events captured in experiments to an abstract model—for 
example, by incorporating a small number of facts into a regression equation. 
The biological and social sciences, by contrast, lacked the tool for choosing, among 
myriad possible causes of the phenomena studied, those whose impact could be 
distinguished while disregarding the rest. 

 We should also bear in mind that the social sciences observe phenomena whose 
variability is far greater and, more importantly, very different from those of physical 
phenomena, which could be dealt with by means of the least-squares method. The 
uncertainty of physical phenomena is solely due to the quality of measurement. For 
human phenomena, it is far more complex; above all, it is related to the diversity of 
the societies in which we observe them. 

 In Chap.   3    , we examined some of Quetelet’s studies on court convictions. Let us 
now examine in greater detail his work on subjects more related to population 
 sciences. The fi rst volume of his monograph on ‘social physics’  (  1835  )  is an attempt 
to explain phenomena by what the author describes as natural causes: age, sex, and 
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occupational differences between individuals, climate and place, affi liations with 
civil and religious institutions, and so on. He takes the following statement by 
Laplace as his epigraph  (  1814  ) :

  Let us apply to the political and moral sciences the method based on observation and calcu-
lation, a method that has served us so well in the natural sciences.  

In fact, however, Quetelet makes no explicit use of probability calculus or the 
least-squares method. He simply notes that:

  the larger the number of individuals observed, the more individual characteristics, whether 
physical or moral, fade away, leaving as the dominant factor the series of general facts by 
virtue of which society exists and is preserved.  

While physical measures are genuine mathematical quantities, non-physical 
measures—such as ‘the age at which the average man’ in a given country ‘passes 
away’—are based on time, which is ‘amenable to as much precision as that which 
we use in physics.’ To study demographic phenomena, Quetelet proposes the use of 
a large data set. He clearly states:

  We must, above all, lose sight of individual man, and view him as merely a fraction of the 
species. By stripping him of his individuality, we eliminate all that is only accidental; and 
the individual particularities that have little or no effect on the mass will vanish of their own 
accord, enabling us to grasp the general results.  

He thus implicitly assumes the existence of laws to which humans are subject—
laws that a frequentist statistical analysis should reveal, once we work on large 
populations. 

 Unfortunately, Quetelet does not always follow these principles. In discussing 
the infl uence of the sexes on the number of births by parents’ age, he uses Sadler’s 
data  (  1830  )  on very small populations without performing the signifi cance tests 
suggested by Arbuthnott as early as 1710 and elaborated by Laplace ( 1778 ), which 
would have allowed Quetelet to demonstrate the inanity of the hypothesis. Likewise, 
he uses Hofacker’s data  (  1829  ) , which are completely biased as well. 16  While his 
method is fairly suitable for anthropometric data, it is less appropriate for popula-
tion sciences measures. 

 Most important, Quetelet’s method also requires a test of the homogeneity of the 
groups examined. His theory of the  average man  is valid only if the individuals have 
a normal distribution around a single value for the characteristic considered. But 
many human characteristics are not distributed normally. In addition, there are as 
many average men as there are ways to categorize various sub-populations. For 
instance, when examining mortality and birth rates in Belgium’s 19 provinces 
 (  1827  ) , he cannot help observing how widely they differ, without offering a means 
to aggregate them into larger regions that could be regarded as homogeneous. 

 The truth is that Quetelet lacked a suffi ciently elaborate statistical theory to 
decide whether a particular human group could be viewed as consisting of units 

   16   For more details, see the full description by Brian and Jaisson  (  2007  ) .  



2055.3 The Cross-Sectional Approach

homogeneous enough for a regression analysis to be applied to it. Quetelet never 
even uses regression analysis in this work. He merely provides simple tables  showing 
the proportionality of effects usually taken in pairs. 

 The statistician Lexis tried to generalize Quetelet’s methods, which are valid for 
anthropometric measures, by attempting to apply them to population sciences quan-
tities from 1876 to 1880. In so doing, he showed more precisely the conditions that 
a series of statistical rates had to meet in order to be regarded as derived from the 
same probability distribution. 

 The topic had already been addressed and partially resolved by Dormoy  (  1874  ) , 
but Lexis  (  1877,   1879  )  gave a fuller and more general presentation. Lastly, trying to 
use the least-squares method, he explained the reasons why this method of averages 
is of little use in population sciences. He concluded as follows  (  1880  ) :

  It teaches us that there are very few statistical ratios that actually behave as mathematical 
probabilities, i.e., that vary roughly in the same manner as empirical expressions of a con-
stant probability. By dividing the number of deaths between ages 0 and 1 by the correspond-
ing number of births, one believes that one has obtained the probability of dying for this age 
group. But by calculating this probability for twenty successive annual cohorts, we fi nd 
variations that greatly exceed the values consistent with the average annual number of 
births, under the hypothesis of a constant probability of dying.  

Among all the ratios and rates considered, he fi nds that the ratio of male births 
to births of both sexes combined is the only one that can be viewed as a mathemati-
cal probability, although it was later shown to vary as well (Brian and Jaisson 
 2007  ) . Clearly, the method proposed by Lexis is too strict for analyzing population 
 sciences data. 

 The late nineteenth century saw the introduction of more effi cient methods, 
largely thanks to British statisticians—in particular, Galton, Edgeworth, Pearson, 
and Yule—who also addressed topics in social sciences such as genetics and 
psychology. But let us fi rst examine the approach of the French sociologist: 
Durkheim. His subjects of study—for example, mortality from suicide  (  1897  ) —
were close to population sciences, and his sources were very different from those 
used by the British. 

 Durkheim  (  1895  )  advocated what he called the concomitant-variation method, 
the only valid one, in his view, for the social sciences among the fi ve methods pro-
posed by Mill  (  1843  )  for the physical sciences. 17  Durkheim wrote:

  The reason is that, for [ the method ] to be demonstrative, there is no need to strictly exclude 
all of the variations that differ from the ones being compared. The simple parallelism of the 
values taken by the two phenomena, provided that it has been established in a suffi cient 
number of suffi ciently varied cases, is the proof of a relationship between the two. The 
method owes this privilege to the fact that it arrives at the causal relationship not from the 
outside, as with the previous methods, but from the inside.  

   17   In fact, Mill had declared that experimentation, even indirect, was inapplicable to the social sci-
ences. Durkheim, however, showed that of the fi ve methods proposed by Mill ( method of agree-
ment, method of difference, joint method of agreement and difference, method of residue, method 
of concomitant variation ), the method of concomitant variation is, in fact, perfectly applicable to 
these sciences.  
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Actually, Durkheim and Mill, like the demographer Landry  (  1945  ) , had not made 
the connection between the concomitant-variation method and the least-squares or 
linear-regression approach—to which it is, in fact, equivalent. Far more important, 
the fact that it is not necessary to exclude all the variations differing from those 
being compared has been mathematically demonstrated in the case where these 
characteristics are independent of one another (for a more general discussion of 
the effect of omitted variables on generalized linear models and non-linear regres-
sions: Gail et al.  1984 ; Neuhaus and Jewell  1993  ) , whereas Durkheim asserts it 
without truly demonstrating it. 

 By examining separately each of the various social, political, religious, and other 
characteristics capable of infl uencing a phenomenon, it thus became possible to 
 dissect their effect on the phenomenon. Durkheim  (  1895  )  admits that statistics pro-
vides a means to isolate these social facts:

  They are, indeed, represented, not without exactitude, by the birth rate, the marriage rate, 
the suicide rate, i.e., by the number obtained by dividing the total average annual number of 
marriages, births, and self-infl icted deaths by the number of persons old enough to marry, 
procreate, and commit suicide.  

He then uses the concomitant-variation method—i.e., ultimately, linear-
regression methods—to show the effect of religion (Protestantism, Catholicism 
or Judaism) or family status (single, married, widow (er) or divorced) on suicide 
 (  1897  ) . 

 As noted earlier, these regression methods were further elaborated to allow their 
use in biological and social sciences: Galton  (  1875,   1886a,   1888  ) , Edgeworth  (  1885 , 
1893a, b, 1895), Pearson  (  1896  ) , and Yule  (  1895,   1897,   1899  )  crafted the effective 
integration of probability into these sciences. Let us look at their core 
contributions. 18  

 Galton introduced the notion of correlation between two variables—which he 
termed ‘co-relation’ between ‘co-related’ variables. Having isolated two variables, he 
published an initial article  (  1886a  )  in which he showed in mathematical terms, with 
the aid of Dickson, the probabilistic relationship between them. In another article 
 (  1888  ) , he described how to measure their correlation. In this  article, Galton noted:

  It is not necessary to extend the list of examples to show how to measure the degree in 
which one variable may be co-related with the combined effect of  n  other variables, whether 
these be themselves co-related or not.  

In fact, however, his discussion was confi ned to the case of two normally distrib-
uted variables with a linear relationship between them. It was Edgeworth and 
Pearson who generalized these results to the case of  n  variables, also normally 
distributed. 

 As early as  1892 , Edgeworth clearly stated the problem in its most general form:

  What is the  most probable  value of one deviation  x , corresponding to assigned values    1 2, ,x x′ ′
  & c. of the other variables? And What is the dispersion of values of  x , about its mean (the 
other variables being assigned)?  

   18   For a more detailed analysis of their contributions, see Stigler  (  1986  )  and Hald  (  2007  ) .  
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Note that he was still working on normal variables. However, he did not supply 
their general solution  (  1893a  )  in the form of a determinant until after writing four 
other articles on the subject, then showing how its application to the social sciences 
 (  1893b  )  was a logical consequence. Later, Pearson (Pearson  1896 ; Pearson and 
Filon  1898  )  provided estimates of the standard deviation of the variances and cor-
relation coeffi cients between the variables, under the same hypotheses. 

 Yule sought to determine the normality condition of the variables. In  1895 , he 
wrote:

  Though, as we have said, no great stress can be laid on the value of the correlation coeffi -
cient (the surfaces not being normal), its magnitude may at least be suggestive.  

He spelled out his idea  (  1897  )  with examples from biology and population 
sciences:

  The only theory of correlation at present available for practical use is based on the normal 
law of frequency, but, unfortunately, this law is not valid in a great many cases which are 
both common and important. It does not hold good, to take examples from biology, for 
statistics on fertility in man, for measurements on fl owers, or for weight measurements even 
on adults.  

To emancipate himself from this normality condition, he turned to the relation-
ship that exists between the variables, irrespective of their frequencies. For example, 
when there are two variables, we can construct a regression line for one relative to 
the other. When the regression line is close to a straight line, we can calculate its 
parameters by means of the least-squares method. Yule felt confi dent enough to 
assert:

  The exponential character of the surface appears to have nothing whatever to do with the 
result.  

This may seem a somewhat extreme conclusion in our time, but in 1897 it freed 
the regression from all normality conditions. Above all, it allowed the biological 
and social sciences to use the least-squares method, which had been devised for the 
astronomical and physical sciences a century earlier. 

 These advances ended with Fisher  (  1922a,   b  ) , who developed the maximum-
likelihood theory and a theory of statistical inference based on the objective approach 
to probability discussed in Chap.   2    . 

 In sum, objective probability played a crucial role in the cross-sectional approach 
in population sciences and, more generally, in the social and biological sciences. 
The approach involves the observation of phenomena in a short period—typically 
1 year—and of the characteristics of the population concerned at the start of the 
period, with the aid of a census conducted in a set of parts of the population’s terri-
tory. This provides a fi rm foundation for the objective approach used to analyze the 
phenomena and the characteristics. 19  

   19   One can estimate the linear regression model with purely Bayesian methods (Lindley and Smith 
 1972  ) , but this solution is of little value in demography, given the exhaustive observation of the 
population.  
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 We end this section with a simple cross-sectional analysis of the effect of a 
 characteristic on a demographic behavior. The exercise will serve for comparison 
purposes with the later sections of this chapter. 

 Our example concerns migrations between regions of Norway of men born in 
1948 and observed over a 2-year period after the 1970 census. 20  We calculate the 
emigration rates for the 19 regions and try to see whether farmers are more or less 
likely to migrate than other occupations. A regression on the aggregate data shows 
a signifi cant effect of farmer status on the probability of emigrating from each 
region: the estimated parameter is 0.597 for farmers and 0.119 for other occupa-
tions and men with no occupation, and the share of variance explained (0.24) is 
quite signifi cantly different from zero at the 5% confi dence limit. We can therefore 
conclude that 22-year-old Norwegian farmers are almost six times more likely to 
emigrate than other occupations, if the hypothesis that social facts exist indepen-
dently of the individuals who experience them were met. This result may seem 
surprising given the fi nancial and personal cost of changing regions for farmers. 
The only way to settle the issue is through a comparison with results obtained 
under other paradigms. 

 In sum, the statistical individual in the cross-sectional approach will actually be 
a group of individuals defi ned either by age or by one or more social, economic, 
family, or other characteristics specifi ed in a census or cross-sectional survey. We 
observe their aggregate behavior in given units (such as regions or districts) in a 
short period. This is indeed an aggregate period approach.  

    5.3.3   Problems Posed by the Cross-Sectional Approach 

 We shall now discuss various problems that arise when using the cross-sectional 
approach. 

 The fi rst problem, pointed out by Robinson  (  1950  ) , generates what is known as 
the ecological fallacy. Robinson showed that correlations measured on individual 
characteristics generally differed from those measured on the same characteristics 
aggregated by region. This discrepancy may, in fact, apply to the example given at 
the end of the previous sub-section: the probability of migrating rises with the 
 proportion of farmers in the region, but is not necessarily higher for farmers than for 
non-farmers. Galton  (  1886b  )  encountered the problem when showing that the rela-
tionship between the weight of pea seeds and their average diameter is linear: the 
relationship between weight and average diameter does not imply the same connec-
tion between the weight and diameter of an individual seed. 

 The second problem stems from the grouping of results of a cross-sectional anal-
ysis ‘as if they were those of a fi ctitious cohort, experiencing the conditions of the 
year or period considered throughout its life’ (Henry  1959  ) . This use of composite 

   20   For more details, see Courgeau  (  2004a,   b,   2007a,   b  ) .  
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indices in cross-sectional analysis to summarize a series of age-specifi c rates can 
raise serious objections in certain cases. For instance, diffi culties arise in the study 
of phenomena comprising periods of deferral followed by periods of recovery after 
an economic crisis or a war. As Henry explains  (  1966  ) :

  in a recovery period, behavior is infl uenced by the earlier delay; assigning to a fi ctitious 
cohort a series of indices observed in a recovery period is thus tantamount to postulating the 
existence of a cohort that—from one end of its life to the other—would strive to close a gap 
that had never opened.  

That explains why the sum of the age-specifi c probabilities of marrying (fi rst 
marriages), which measure marriage intensity and should always be below or 
equal to unity in an actual cohort, can take on far higher values in a fi ctitious 
cohort. In France, just after World War II, the sum exceeded 1.5. Similarly, 
Whelpton  (  1946  )  showed that the sum of fi rst births for a woman in the United 
States in 1947 was 1.38. 

 More generally, restricting the analysis to period events does not suffi ce to explain 
demographic behaviors, which need to be viewed in the context of individual lives. 

 A third problem is that the value we are trying to estimate with the least-squares 
method is, in fact, a probability. The value must therefore lie between 0 and 1. But 
there is nothing in regression models that forces the estimated coeffi cients to com-
ply with these constraints. Moreover, when several characteristics are included, a 
strong correlation between some of them can lead to incorrect results. 

 Lastly, so long as we are working on a suffi ciently large population, the  objectivist 
approach is perfectly valid—but if the population diminishes, the approach can 
yield aberrant results. In Chap.   4    , we observed this outcome in paleodemography, 
where objectivist methods led to incorrect age-specifi c probabilities of dying. In 
such cases, we must adopt an epistemic approach to obtain acceptable results. 

 Researchers have tried to resolve these diffi culties by taking into account the 
time experienced by individuals in a given population, then combining population 
sciences with an epistemic approach to probability.   

    5.4   From a Longitudinal Vision to a Full-Fledged 
Event-History Approach 

 The approach using individual life experiences gained ground steadily after World 
War II. It consisted in taking a longitudinal point of view, then an event-history 
(i.e., biographical) point of view to study phenomena. The term ‘longitudinal’ refers 
to individual life courses aggregated into a generation or cohort, in which we study 
the evolution of each phenomenon, treated separately. The term ‘event history’ also 
refers to individual life courses, but the unfolding of phenomena is now studied in 
the aggregate. 

 This section tells the history of the approach—with its pitfalls and successes—
through its connections with probability. 
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    5.4.1   An Initially Longitudinal Approach 

 Because it worked on period data, cross-sectional analysis could not take account of 
individuals’ past histories. It therefore had to aggregate its period results as if they 
applied to a fi ctitious cohort. As seen in the previous section, this fi ction raised seri-
ous objections. To move beyond it, we must work on cohorts or generations actually 
observed. 

 Although some earlier voices suggested that period analysis might not be the 
best approach (Delaporte  1941  ) , it is mainly after World War II, that population 
scientists set up this new form of longitudinal analysis, which introduces individu-
als’ ‘lived time’ (Whelpton  1949 ; Ryder  1951,   1954  ) . The main theoretician of the 
approach was Henry  (  1959,   1966  ) . 

 The observation period is no longer a given point in time, but the life-span of a 
cohort that can be defi ned as ‘the set of persons who entered into a given population 
category during a given period, such as the calendar year’ (Henry  1959  ) . When the 
period corresponds to the persons’ birth, it is called a birth cohort (generation). The 
time spent by individuals in the category is reckoned from their entry: it is called 
their seniority (duration) in the group. 

 A member of the cohort may experience several events during the period exam-
ined. However, from the outset, the analysis will focus on a particular phenomenon 
that may include one or more studied events of the same type (a woman’s fi rst mar-
riage or, instead, her successive births). These events can be affected by others, 
called disturbing events. 

 Longitudinal analysis will seek to determine the frequency of the phenomenon 
studied and its temporal distribution absent disturbing events. The goal is to obtain 
the phenomenon in a pure state, just as the chemist separates simple bodies whereas 
most substances do not exist in unalloyed form in nature (Henry  1972  ) . 

 For this purpose, we must make two hypotheses about the phenomena involved, 
i.e., both the phenomena studied and the disturbing events. 

 First, we assume that each cohort member is characterized by a probability 21  of 
occurrence of the studied event(s) and disturbing events that is identical for all indi-
viduals of the population at each seniority. We therefore suppose that the cohorts are 
homogeneous with respect to each event. 

 But this condition is not suffi cient to estimate the probability of the studied phe-
nomenon (a), after eliminating the effect of disturbing events. We must additionally 

   21   Let us note that we are speaking here about annual or multiannual probabilities. When later 
we will introduce instantaneous rates or hazard rates, we will no more use the term probability as 
these rates or functions are defi ned on continuous time and did no more depend on the length of 
the age interval. However they have the dimension of a time frequency, because of the time interval 
in their denominator (time −1 ). They have no upper boundary and so may be greater than one, in 
contrast to probability: this is observed at extreme old ages for human mortality, when survival 
times are measured in months and these monthly rates are transformed to yearly rates by multiply-
ing them by a factor of 12 (Gavrilova and Gavrilov  2001  ) .  
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assume that the fi rst individuals to experience the disturbing phenomena had the 
same response to the studied phenomenon as the individuals who did not experience 
it. In other words, we must assume independence between studied phenomena and 
disturbing phenomena. 

 Having posited these two hypotheses, and using vital statistics we can estimate a 
probability of occurrence for each seniority (Henry  1959 ; Pressat  1966  )  and a sur-
vivor function for the studied and disturbing phenomena. 22  Under the homogeneity 
and independence hypotheses, the values would be identical to those calculated for 
population not exposed to the disturbing phenomena. Their distribution over time 
gives the calendar of the studied phenomenon; their sum up to the age when the 
phenomenon can occur gives its intensity. 

 These estimates are based on objective probability and it is not even useful to 
estimate the variances of the probabilities or survivor functions, as the populations 
observed are generally very large. As noted in Sect.   1.4    , the calculation of a variance 
of an annual probability of dying—assuming a binomial distribution of deaths (i.e., 
in a homogeneous population)—yielded values so low as to become meaningless. 

 The results of such an analysis, which observes an actual cohort, do not lend 
themselves to the objections voiced against the composite (synthetic) indices of the 
cross-sectional approach. For instance, the intensity of marriage (fi rst marriages) or 
the sum of fi rst births will never exceed unity. 

 For longitudinal analysis, we can also use data from successive censuses. If so, 
however, we must set an additional condition: the fact of having experienced the 
studied event(s) must not infl uence the probability of disturbing events occurring 
after them (Henry  1966  ) . This condition, called a continuity hypothesis, must there-
fore be met for such data to yield satisfactory results. 

 In sum, longitudinal analysis entails a denial of all specifi city of individual lives 
in order to focus on the occurrence of a type of event, independent of other phenom-
ena, in a population that remains homogenous over time as it is composed of inter-
changeable units. While the notion of probability underlies the approach, it is 
secondary in this analysis, which concerns exhaustive populations and focuses on a 
small number of characteristics that may infl uence the rate values. 

 As in the cross-sectional approach, the statistical individual is a homogeneous 
group of individuals of the same age or having experienced a founding event at the 
same time—the probability of experiencing the studied event(s) being the same for 
all individuals. Unlike in the previous analysis, we observe these groups throughout 
their lives. By contrast, we no longer have the equivalent of regression methods to 
show the effect of various characteristics on the groups’ behavior. 

 This form of analysis prevailed until the early 1980s, but raised a number of 
methodological problems, some of which had already been identifi ed by Henry 
back in 1959. 

 The fi rst problem is that, in practice, ‘demographers very often proceed without 
concerning themselves with homogeneity’ (Henry  1959  ) , or, rather, that this 

   22   For more details on this estimation, ser Henry  (  1959,   1972  ) .  
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 hypothesis is very seldom mentioned. Henry clearly addresses the issue by 
 introducing heterogeneous cohorts, each composed of homogeneous cohorts of infi -
nite size. His main goal, however, is not to measure the infl uence of observed 
 heterogeneity on the studied phenomenon. His fi rst priority is to look for formulas 
similar to the ones obtained by assuming a homogeneous cohort and, if not, to see 
how the formulas differ. 

 For this purpose, he calculates the survivor functions for the observed phenom-
enon and the disturbing phenomenon of the cohort formed by combining the sub-
cohorts. He shows that the number of members who have not experienced the 
observed event and have not been affected by the disturbing event depends on the 
correlation coeffi cient between the survivor functions for the seniority considered 
and on the variation coeffi cients of the two survivor functions. These coeffi cients 
between groups can now be estimated, unlike the coeffi cients between individuals 
of the same group. Consequently, the formulas are only identical to those obtained 
for a homogeneous cohort when either (a) the correlation coeffi cient between survi-
vor functions is zero, or (b) the variation coeffi cient of the observed phenomenon is 
zero, or (c) when the variation coeffi cient of the disturbing phenomenon is zero. 
Henry notes, however, that the error may be negligible, even in the presence of 
rather signifi cant heterogeneity. For example, using past data on family histories, he 
shows that in the study of marital fertility by marriage age and duration, one can 
neglect age heterogeneity without adverse effects. 

 He then observes that differential demography ought to allow the study of ‘dif-
ferences between different categories (ethnic, religious, social, etc.),’ but that, as 
practiced at the time, differential demography does not seem to him to be of much 
potential help. He merely states:

  Thus, to solve one of the basic problems of demographic analysis, differential demography 
ought to be renewed and extended. It should display greater concern for correlations 
between the differences that it observes; it should cease to confi ne itself to the study of 
groups defi ned by demographic or sociological criteria and should turn its attention to phys-
ical or psychological criteria. (Henry  1959  )   

He goes further in a footnote: ‘Given the practical diffi culties, the question is 
bound to arise as to whether the problem posed is soluble. From a certain stand-
point, one can conclude that the answer is no.’ 

 In sum, the solution that consists in choosing sub-cohorts treated separately in 
order to analyze, by means of differential demography, a phenomenon dependent on 
different characteristics would soon lead to working on groups so small as to pre-
clude longitudinal analysis. The use of objective probability, without even estimat-
ing probability variance, is no longer justifi ed either, in this instance where the 
importance of the variances becomes decisive. 

 The second problem is that of independence between probabilities. In the same 
article, Henry writes that ‘ordinary observation and refl ection lead us, moreover, to 
believe that in most cases there is no independence between hazards.’ But he does 
not analyze more fully how this dependence between hazards can arise, or how it 
may infl uence the probabilities calculated. On the face of it, this hypothesis does not 
seem very likely when we consider events such as union formation and marriage, 
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entry into the labor market, and the move into one’s fi rst independent dwelling—
events that must strongly infl uence one another. More generally, it becomes impos-
sible to study exits by competing events, and

  for the same reason […] one must give up the idea of conducting the study in a population 
to which several events allow entry. (Blayo  1995  )   

In many cases, therefore, the independence condition rules out any possibility of 
analysis. It is interesting to note that this paper, whose main purpose was to offer a 
critique of the event-history approach that we will present in the next section, points 
out the main problems in longitudinal analysis, to which event-history analysis pre-
cisely offered solutions with a new paradigm (Courgeau and Lelièvre  1996 ,  1997 ). 

 When longitudinal analysis attempts to treat more complex problems than the 
separate analysis of individual phenomena, it runs into serious diffi culties. Unlike 
cross-sectional analysis, it offers no method precise enough to deal with the hetero-
geneity of populations—apart from a rough differential analysis that would require 
such detailed breakdowns of the population studied as to invalidate any serious 
calculation. It imposes such constraints on the studied events as to exclude an entire 
sector of population sciences analysis: analysis of competing or interacting events, 
analysis of events in a population with entries and exits, and so on. 

 We therefore need to alter the assumptions on which the analysis is based in 
order to put the reasoning process on a fi rmer footing.  

    5.4.2   An Event-History Approach 

 Instead of concentrating on the study of homogeneous sub-populations, the event-
history approach will examine individual trajectories between any number of statuses 
(to take the example discussed in the cross-sectional approach: never married vs. 
 married; working in agriculture vs. working in other sectors or being economically 
inactive). The unit of analysis will not be the isolated event, as in longitudinal analysis, 
but the individual event history, viewed as a complex stochastic process determined by 
personal characteristics. This change of perspective removes the requirements of 
homogeneity for the populations studied, and of independence between longitudinal-
analysis phenomena. It introduces also a continuous time dimension. 

 By tracking an individual’s life events over time, we see that the main way for 
him or her to escape observation will be to leave the sample at the survey date or—if 
we are using date from population registers—the study date. As there is no reason 
for these dates to be tied to the life of an individual, the independence condition is 
fully met here. The observation is called non-informative and there is a way to 
 factor the exits into the instantaneous rates 23  estimations. On the other hand, there is 

   23   See note 21 of this chapter for the difference between an instantaneous rate and a 1-year proba-
bility. We will see in the following pages how to give a more precise mathematical defi nition of this 
intuitive concept.  
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no longer any reason for the events experienced by an individual to be independent 
of one another. On the contrary, event-history analyses will largely concern them-
selves with the dependence between events. 

 We must now distinguish between interacting events and competing events. 
Longitudinal analysis did not do so, referring to them collectively as disturbing 
events. 

 An interacting event will change the rate of occurrence of the studied event .  Let 
us take the example discussed earlier in connection with cross-sectional analysis: 
the probability of migrating for a Norwegian depending on whether he or she is a 
farmer or not. Using a simple analysis (Courgeau  2004a,   b,   2007a,   b  ) , we can esti-
mate the instantaneous rates at 0.095 for farmers, with a standard error of 0.007, and 
at 0.150 for non-farmers, with a standard error of 0.002. These values are therefore 
signifi cantly different, and contradict the ones obtained on aggregate data. However, 
as noted earlier, the newer result is more consistent with expectations. In Sect.  5.5  
below, we shall take a closer look at the signifi cance of these divergences. 

 When we speak of competing events, we refer to different variants of an event 
that produce the same outcome: mortality by cause, union formation through 
 marriage or cohabitation, and so on. These events, as well, are fully suited to event-
history analysis (Courgeau and Lelièvre  1989 , 1992). 

 Next, when attempting to understand individual behavior, we shall need to factor 
in the person’s social origins and entire past history. Behaviors are not inborn, but 
change during a lifetime thanks to personal experiences and successive acquisitions 
of information. Thus event-history analysis effectively addresses the heterogeneity 
of populations, from a dynamic standpoint rather than a static one as in cross- 
sectional analysis. In Chap.   4    , we saw that the event-history approach allows a 
regression not on period data, but on complex temporal processes. 

 Its paradigm can be stated as follows: individuals moves on complex trajectories 
in the course of their lives; these trajectories depend at any given instant on people’s 
earlier trajectories and on information that they have acquired in the past (Courgeau 
and Lelièvre  1996, 1997  ) . 

 The event-history approach began with the non-parametric estimation of the 
survivor function of an event (Kaplan and Meier  1958  ) , and was then generalized 
into a semi-parametric approach (Cox  1972  )  involving individual characteristics. 
Since the early 1980s, it has proved to be particularly suitable for the analysis of 
social phenomena in demography (Menken and Trussel  1981 ; Courgeau  1982  ) , as 
well as for applications in epidemiology, sociology, psychology, medicine, and 
other fi elds. 

 Unlike in Chap.   4    , which examined the event-history approach from the stand-
point of population sciences, we shall now try to show its closer links to probability 
theory. This will enable us to address new aspects of probability not yet described 
in the present work: martingale theory and counting processes. 

 While the article by Kaplan and Meier  (  1958  )  and the articles by Cox  (  1972, 
  1975  )  represented major advances toward event-history analysis, the probabilistic 
theory underlying the model had not yet been suffi ciently elaborated. One could not 
offer very clear answers to questions such as: What are the asymptotic properties of 
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the Kaplan-Meier estimator? How and why does the Cox model yield robust 
 estimates? Consequently, the partial likelihood proposed by Cox has been the sub-
ject of many articles in statistical journals aimed at justifying its interpretation and 
the conditions for its validity (Prentice  1978 ; Kalbfl eisch and Prentice  1980  ) . 

 Aalen  (  1975  )  was the fi rst to show the close ties between these methods and 
martingale theory. Andersen and Gill  (  1982  )  incorporated them into counting- 
process theory. Let us see how this occurred. 

 In France, the term  martingale  appeared in the 1798 edition of the Dictionary of 
the Académie Française. Its classic defi nition was given in the 1832 edition: ‘man-
ner of gambling that consists in staking, in each round, twice the amount lost in the 
previous round.’ This strategy, which yields a small identical gain throughout the 
game, has some drawbacks. It can lead players to exceed the amount that they can 
wager, and hence lose their entire fortune. The term was later incorporated into the 
vocabulary of probability when Ville  (  1939  )  used it to denote any strategy applied 
by a player, here in a mathematical sense (we referred to Ville in Chap.   1     in connec-
tion with the axiomatization of von Mises’s notion of collective). 

 Ville begins by considering the player’s capitalization process determined by the 
martingale strategy in a game of heads or tails. Let us write the capital as     ( )nX m x=   , 
where  x  represents the player’s strategy, in the form of a sequence of  n  zeros or ones. 
The player defi nes a martingale by the condition:

     
( 0) ( 1)

( ) ,
2

m x m x
m x

+
=    (5.1)  

valid for any fi nite string. Consequently (Bienvenu et al.  2009  ) :

  Any function  m  satisfying ( 5.1 ) for every fi nite string  x  is a capital process arising from a 
strategy and from some initial capital, and uniquely determines that strategy and initial 
capital. Because of this one-to-one correspondence, and because capital processes play the 
most direct role in his theory, Ville transferred the name martingale from the strategies to 
the capital process.  

Ville was thus able to show that the collectives proposed by von Mises and later 
by Wald did not contain all the zero-measure sets, which his martingale concept 
defi ned in their totality. 

 Doob  (  1940 , 1953)—followed by Hunt  (  1966  ) , Neveu  (  1972  ) , and Meyer 
 (  1972  ) —essentially extended this defi nition to ever more complex stochastic processes 
and demonstrated the theory’s basic results, which we shall merely outline here. 

 Let us consider what probabilists call a fi ltration on the probability space 
    ( ), ,B PΩ   . It consists of a string     { }= �: 0, 1, 2,nB n    of sub-spaces of additive mea-
sures such that for all  n :     +⊂ 1n nB B   . A fi ltration, also called a history, represents our 
knowledge at successive instants of the process studied, which increases with time. 
In     nt   the player’s strategy brought his or her capital to     nX   . In these conditions, a 
process     { }= = �, , 0, 1, 2,n nX X B n   is a martingale if for all  n :

    (i)        { }= �: 0, 1, 2,nB n    is a fi ltration and  X  is adapted to     ( )nB   ;  

    (ii)    for each value of  n ,     nX   is integrable;  

    (iii)    for each  n ,     { }1 .n n nE X B X+ =        
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 Through the fi ltration concept, this theory, based on Kolmogorov’s axioms, 
introduces time, which was initially missing from the latter. 

 Meanwhile, Doob  (  1949  )  showed that the convergence of the Bayesian esti-
mator, in logical probability, 24  is a consequence of martingale theory. However, 
this consequence is not observed in zero-measure sets. Space precludes a fuller 
account here of discussions over this problem in the more general case where the 
models or prior distributions are incorrectly specifi ed (see Ghosal  1996  and 
Shalizi  2009  ) . 

 After formalizing martingales, we shall show that the counting processes are 
based on the same notion. The processes were studied mathematically by Bremaud 
 (  1973  )  and, later, Aalen  (  1975  ) . Regarding Aalen, we can even say that the theory 
was initiated to answer questions raised by demographers:

  Aalen was infl uenced by his master thesis supervisor Jan M. Hoem who emphasized the 
importance of continuous-time Markov chains as a tool in the analysis when several events 
may occur to each individual (e.g. fi rst occurrence of an illness, and then maybe death; or 
the occurrence of several births for a woman). (Aalen et al.  2009  )    

 A stochastic process of this kind, with values in  N  (the set of whole numbers), 
makes it possible to model a random number that changes over time. Let us show 
how to formalize the intensity process that characterizes it in the basic case of the 
study of a unique event. 

 The intensity process is the conditional probability that an event will occur in the 
interval     [ , )t t dt+   , given all that has been observed previously, divided by the 
interval’s duration. Let us write        ( )tl   :

     

1
( ) ( ) 1 ,t P dN t past

dt
l ⎡ ⎤= =⎣ ⎦

   

where     ( )dN t    represents the number of jumps (basically 0 or 1) in the time interval 
    )⎡ +⎣ ,t t dt   . We can rewrite the formula as:

     
( ) ( ) 0.E dN t t pastl⎡ ⎤− =⎣ ⎦    

As     ( )tl    is only a function of the past, we can remove the expression from the 
conditional mean. Let us now introduce the new process:

     0

( ) ( ) ( ) .
t

s

M t N t s dsl
=

= − ∫
   

We can accordingly rewrite the previous formula as:

     
( ) 0,E dM t past⎡ ⎤ =⎣ ⎦    

   24   As noted in Chap.   3    , Kolmogorov’s axioms are consistent with this logical probability 
(Jaynes  2003  ) .  
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which is the defi nition of a martingale. In other words, the intuitive concept of an 
instantaneous hazard rate is the same as saying that the counting process minus the 
integrated intensity process is a martingale (Aalen et al.  2009  ) . 

 We can thus easily generalize this result to the study of censored data, under 
certain conditions, or multiple events. Most counting processes can be shown to 
contain components that are martingales. 

 Now let us look at the models that, like regressions in the cross-sectional 
approach, will allow us to introduce population heterogeneity. For these models, we 
need to consider different counting processes for each individual. Let us suppose 
that for a given individual  i  we have at instant  t  a vector of variables     ( )ix t   whose 
components can be time-dependent or time-independent. The intensity process 
    ( )i tl   of the counting process    ( )iN t   can be written as:

     ( ) ( ) ( ) ,i i it Y t h t x tl ⎡ ⎤= ⎣ ⎦    (5.2)  

where     ( )iY t   is an indicator equal to 1 if individual  i  is at risk of the studied event just 
before instant  t , and equal to 0 otherwise;     ⎡ ⎤⎣ ⎦( )ih t x t   is the instantaneous rate of 
individual  i , conditional upon the values of the variables in  t  (Aalen et al.  2008  ) . 
This process assumes that all individuals with the same characteristics     ( )ix t   have 
the same instantaneous rate of experiencing the event. Similarly, the survivor func-
tion     ⎡ ⎤⎣ ⎦( )iS t x t   can be written:

     
0

( ) exp ( ) .
t

i i

s

S t x t h s x s ds
=

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤= −⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∫    (5.3)  

To obtain a regression model, we must specify in greater detail how the instanta-
neous rate or survivor function depend on the characteristics considered. We can use 
a Cox semi-parametric model of the multiplicative type, or any other formulation, 
for example of the additive type. For fuller details on these options beyond our dis-
cussion in Chap.   4    , see Andersen et al.  (  1993  )  and Aalen et al.  (  2008  ) . 

 We now have a much clearer picture of the close ties between the event-
history approach and probability theory, and even of its pioneering role in the 
development of certain probabilistic approaches such as the theory of counting 
processes. Outside of population sciences, the event-history approach has now 
been adopted by many social sciences such as economics, epidemiology, sociol-
ogy, and bio-statistics. 

 How do we introduce the notion of statistical individual into the event-history 
approach? Here, we cannot view an individual trajectory as the outcome of a pro-
cess specifi c to each person. As we observe only a single outcome (the individual’s 
trajectory), the process is not identifi able. We must therefore adopt a collective point 
of view: all individuals are assumed to follow the same random process, whose 
parameters we can estimate from the observation of a sample of individuals with 
their own characteristics. At fi rst glance, this may seem a very heroic assumption. 
However, it is important to realize that it is not a hypothesis about observed persons, 
but about the construction of a process underlying a set of trajectories. In this case, 
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two observed individuals have no reason to follow the same process, whereas two 
statistical individuals do so automatically, for we see them as random-sampling 
units (being subject to identical selection conditions) that display identical 
characteristics. 

 Before discussing various problems posed by this approach, let us note its high 
compatibility with a Bayesian point of view. Earlier, we saw that martingale theory 
was used to show the convergence of the Bayesian estimator in logical probability 
(Doob  1949  ) . Similarly, the analysis of life tables has long used a Bayesian approach 
(Fergusson  1973 ; Kalbfl eisch  1978 ; Kalbfl eish and Prentice 1980). We shall not 
give a detailed description of the approach—as in Florens et al.  (  1999  ) , Ibrahim 
et al.  (  2001  )  and Florens  (  2002  ) —but simply an outline. We shall focus more spe-
cifi cally on the non- parametric estimation model for a survivor function and the 
Cox semi-parametric model, which are largely used in population sciences. 

 Let us begin by examining how to estimate a non-parametric survivor function. 
To do this, we must introduce the notion of Dirichlet process (Fergusson  1973  ) :

  Let X  be a space and A a     σ   -fi eld of subsets and     α   be a fi nite non-null measure on (X , A )      . 
Then a stochastic process P indexed by elements A of A, is said to be a Dirichlet process on 
      (X , A ) with parameter     α   if for any measurable partition     ( )1, , kA A�   of X , the  random 

vector     ( ) ( )( )1 , , nP A P A�    has a Dirichlet distribution 25  with parameters    ( ) ( )( )1 , , nA Aα α�   .  

We can see that such a process can be defi ned as a probability about a probability. 
Fergusson  (  1973  )  shows what happens when we take a prior Dirichlet process:

  If  P  is a Dirichlet process on (X , A )       with parameter     α   , and if     1, , nX X�   is a sample from 
 P , then the posterior distribution of  P  given     �1, , nX X   is also a Dirichlet process on 
(X , A )       with parameter     

1 i

n

xα + δ∑   , where     
ixδ   denotes the measure giving mass one to the 

point  x .  

These results apply to the Bayesian estimation of a survivor function with right-
censored data (Susarla and van Rysin  1976  ) . 

 When we introduce individual characteristics into a semi-parametric proportional-
risk model, the use of a prior Dirichlet process is more delicate, and requires com-
plex numerical processing, particularly when dealing with equal durations (Florens 
et al.  1999  ) . For cumulative rates, we may therefore prefer a Gamma process 
(Kalbfl eisch  1978  ) , which is fairly similar to a Dirichlet process. A brief description 
follows. 

 The Gamma process is a special case of a Levy process (stochastic process with 
independent increments, right-continuous and left-censored) with a Gamma  density. 

   25   The random vector     ( )1, ... , kX X X=   follows a Dirichlet distribution of parameter     ( )1, ... , ka a a=   
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 of this distribution, see, for example, Robert  (  2006  ) .  
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Let     ( )| ,G x α λ    be the Gamma distribution 26  with the parameter of shape     0α >    and 
scale     0λ >   . Let     ( ), 0t tα ≥    now be a continuous left-continuous increasing func-
tion such that     (0) 0α =   , and let     ( ), 0H t t ≥   be a stochastic process with the follow-
ing properties:

    (i)        =(0) 0H   ;  
    (ii)        ( )H t   displays independent steps in disjoint intervals;  
    (iii)    for     ( )( ), ( ) ( ) ( ) ( ) ,t s H t H s G c t s c> − ≈ α − α   .     

 The     { }( ) : 0H t t ≥   process is called a Gamma process, where  c  is a weight or a 
confi dence parameter about the mean (Ibrahim et al.  2001  ) . For event-history analy-
sis, Kalbfl eisch  (  1978  )  considers a semi-parametric model whose survivor function 
may be written as:

     
( ) ( ) ( ) ( ), , exp exp ,i i i i i i iP T t z H S t z H H t z b⎡ ⎤≥ = = ⎣ ⎦    (5.4)  

where the random variable     iT   is the duration in which the studied event occurred for 
individual  i  with the characteristics vector     iz   ,     ( )iH t   being the corresponding cumu-
lative probability. The latter is conditional upon the stochastic process  H , which we 
can accordingly defi ne as a Gamma process. If we start with a prior function     * ( )H t   , 
associated with the weight  c , we can write the process examined as:

     
( )*( ) ( ), .H t G H t c≈

    

 We can then estimate the posterior distribution of     ( )H t   and the values of the   b   
parameters. If the estimated values of these parameters remain stable when  c  varies 
from zero to infi nity, we can conclude that the model’s hypotheses are effectively met. 

 These results have, of course, been the subject of many generalizations, which 
we shall not discuss at greater length here: see Ibrahim et al.  (  2001  )  for more details 
on Bayesian event-history models.  

    5.4.3   Problems Posed by This Approach 

 The fi rst important point is to determine whether the exclusion of all the character-
istics infl uencing the studied events will affect the results of the analysis. In 
Sect.  5.3.2  on the cross-sectional approach, we noted that the results of linear regres-
sions were not infl uenced by variables omitted from an analysis (unobserved 

   26   The random vector     ( )1, , nX X X= �   obeys a Gamma distribution of parameters   a   and   l  , if it 
admits density     
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 heterogeneity), when they are uncorrelated with those introduced in the model. Do 
event-history models display the same property? 

 Bretagnolle and Huber-Carol  (  1988  )  have shown that the property was not met 
by a Cox semi-parametric model with censoring. In fact, the omission does not 
affect the signs of the estimated parameters, but it does reduce their absolute values. 
Thus, if the effect of a characteristic seemed signifi cant when others were left out, 
their introduction into the model will merely strengthen the effect of the fi rst char-
acteristic. By contrast, some characteristics that appeared to have no signifi cant 
effect may become quite signifi cant when the initially unobserved characteristics 
are introduced. This is an important fi nding that could be usefully compared with 
results from other types of models. 

 The following section on hierarchies examines in greater detail the solution rec-
ommended by certain authors (Vaupel et al.  1979 ; Heckman and Singer  1984a,   b ; 
Manton et al.  1992  ) : modeling unobserved heterogeneity as a latent distribution, 
often called frailty. 

 Another problem is that individual characteristics are now used to explain the 
behavior of individuals themselves, whereas in cross-sectional analysis the aggregate 
characteristics explain behaviors that are themselves aggregated according to the 
same division of the country into provinces, regions, and so on. We showed the risk 
of ecological fallacy in the cross-sectional approach, but now another risk emerges, 
usually called the atomistic fallacy. By concentrating on individual characteristics, 
we disregard the context in which human behaviors occur. This context can be defi ned 
in very many ways. It may consist of the individual’s family environment, or, more 
generally, a contact circle around the individual: neighborhood, town, network of 
family relations or a larger network including friends, and so on. Context will clearly 
infl uence individual behavior, and it seems misleading to isolate individuals from the 
constraints imposed by these networks or their living environment. 

 Sociologists have long recognized this risk (Lazarsfeld and Menzel  1961  ) . They 
have shown the need for a precise defi nition of the various kinds of groups, communi-
ties, organizations, and so on. A group is composed of members possessing common 
features that make it possible to differentiate the group from others. More generally, 
what may be treated as a group in one study may be viewed as a member of a broader 
aggregate in another study. This property is very important for it shows the relativity 
of the individual, whom the event-history approach regards as the prime unit. 

 But the formalization of this problem—notably from the probabilistic angle of 
interest to us here—is complex and required the development of a new approach, 
which we shall now examine.   

    5.5   From a Latent Hierarchical Vision 
to a Multilevel Approach 

 In probability theory, the hierarchical vision dates from the early twentieth century 
and was linked to psychological research on intelligence. It was later used in 
 decision-making theory (Good  1952  ) , fi rst mainly in economics, then in sociology, 
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 psychology, and political science, but only more recently in demography. It also 
constituted a major topic of discussion among proponents of epistemic probability 
(both subjective and logical), who were still in a minority. 

 It is worth describing here, for it was generalized in the multilevel approach in 
the mid-1980s. As discussed below, hierarchies represented a special case for mul-
tilevel analysis. The approach was introduced and used by the social sciences, which 
had to deal with different aggregation levels: education science, for example, needed 
to distinguish between student level, class level, school level, and so on. It then 
spread rapidly to many other social sciences, including population sciences, with 
multilevel event-history analysis. 

 We shall attempt to relate this development to probability theory and the various 
social sciences. 

    5.5.1   An Initially Hierarchical and Latent Vision 

 The hierarchical vision emerged when the psychologist Spearman  (  1904  )  intro-
duced factor analysis. With his unifactorial model, he sought a latent level above the 
quantitative characteristics that he was measuring: this level made it possible to 
summarize observations, although it was not itself observed. More generally, this 
research rested on the following notion:

  If a latent variable underlies a number of observed variables, then conditionalizing on that 
latent variable will render the observed variables statistically independent. (Borsboom 
et al.  2003  )   

The goal became to seek a more general set of latent variables. This was done by 
Garnett  (  1919  )  and Thurstone  (  1927,   1938  ) . The latter developed a multifactor 
model, in which the factors were always situated at the same level and summed up 
quantitative characteristics. 

 In the 1940s–1960s, the sociologist Lazarsfeld introduced the latent-class the-
ory (Lazarsfeld and Henry  1968  ) , now using qualitative variables, most often 
binary. The theory postulates the existence of a latent variable, also qualitative, 
displaying a certain number of categories. More generally, the factor analysis of 
correspondences designed by Benzécri et al.  (  1973  )  makes it possible to determine 
all the dependencies between rows and columns in a cross-table. One can also add 
supplementary data, not used in computing the inertia of the table(s) but projected 
on the axes. However, these hierarchies were simple constructs comprising two 
levels: that of the observed variables and that of the factors extracted by the analy-
sis. In principle, the two factors were orthogonal to each other, i.e., independent of 
each other. 

 Factor methods, initially developed in psychology, came into widespread use in 
most social sciences in the 1970s. 

 In demography, Le Bras  (  1971  )  determined total fertility rates from the 1954 
census for seven age groups and for each French  département , a principal plane 
representing 97.93% of the inertia of the cloud of points. Noting that the main axes 
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have only a physical signifi cance, he sought the classic demographic indices that 
would give a clearer vision of fertility. He ended up with the gross reproduction 
rate and the mean age of mothers at childbearing, which cross-sectional analysis 
had identifi ed long ago. In his own words: ‘the identifi cation is hardly surprising 
for a demographer.’ Its analysis, however, does make it possible to show the domi-
nant role of the two dimensions. Next, the change that Le Bras observed in the 
standard deviation of the mean age of mothers, which decreased steadily from 
1921 to 1962, prompted him to state: ‘one could predict that by 1993 any differ-
ence due to mean ages will have disappeared.’ Unfortunately this prediction did 
not come true: by 1975, the standard deviation of the mean age of mothers was 
growing (Courgeau and Pumain  1993  ) , particularly owing to the increase in the 
mean age, which differed from one  département  to another. While factor analysis 
makes it possible to summarize past changes, it proves too rudimentary to predict 
future changes in this case. 

 Meanwhile, Reichenbach—in his 1935 doctoral thesis in German, translated into 
English in 1949—introduced a series of nested levels in his objectivist theory of 
probability. He clearly states:

  We fi nd instances in which we do not know for certain which probability exists in a given 
sequence. We speak, therefore, of  probabilities of the second level ; they are employed in 
probability statements concerning the existence of a probability. The iterations may be fur-
ther continued: it is possible to make a probability statement about the existence of a prob-
ability of the second level, so that a probability of third level results and so on. The operations 
that are carried out with probabilities of a higher level constitute the  theory of probability of 
a higher level  or the  theory of the hierarchy of probabilities . (Reichenbach  1937 )  

Reichenbach developed this theory to answer critics who claimed that objective 
probability made unfalsifi able predictions. By introducing hierarchy, he believed he 
would make the theory falsifi able. But unfortunately, even if a limit exists, the speed 
at which it is reached is unknown. Salmon, after attempting to defend his teacher’s 
thesis, conceded defeat:

  Reichenbach’s attempt to vindicate his rule of induction cannot be considered successful. 
[…] My attempt to vindicate Reichenbach’s rule of induction cannot be considered success-
ful. (Salmon  1991  )   

However, the introduction of several hierarchical levels, which he recommended, 
allowed progress in this area. 

 The factor analysis described earlier sought to discover the underlying structure 
of a large set of variables, in the absence of prior hypotheses available to the 
researcher: this is known as exploratory factor analysis (EFA). The factors extracted 
are independent of one another, as noted previously. But when a pre-established 
 theory is available, the task is to verify whether the structure developed beforehand 
is compatible with the observed variables—an approach called confi rmatory factor 
analysis (CFA). In this case, the theory may comprise several hierarchic levels. The 
factors extracted from observed characteristics, for example, will no longer be inde-
pendent of one another, and it will be possible to conduct a new factor analysis of 
these factors leading to a second level (Thurstone  1947 ; Schmid and Leiman  1957  ) . 
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 For instance, again in the fi eld of psychology, Vernon  (  1950  )  sought to  generalize 
the models described earlier by introducing Spearman’s general factor,  g , as a 
 second-order factor, followed by less general primary factors. In this case, the tests 
that are supposed to measure the intelligence quotient (IQ) seek to approximate the 
value of  g  as closely as possible. Horn and Catell  (  1966  )  introduced three sec-
ondary factors—fl uid intelligence, crystallized intelligence, and visualization 
 intelligence 27 —without a more general third-order factor to correlate these three 
second-order factors. Statistical procedures, such as the analysis of linear structural 
relations (Jöreskog and Thillo’s LISREL program (1972)), allow a selection of the 
model with the best data fi t. 

 However, a number of later models failed to elicit consensus. Gustafsson (1984), 
for instance, showed that when a third level corresponding to  g  is introduced in the 
Horn-Catell model, fl uid intelligence displays a unity correlation with  g , demon-
strating their identical roles. But Colom et al.  (  2004  )  found that a different factor—
working memory 28 —can be viewed as identical to  g . These contradictory results can 
be shown to be due to the ambiguity of the models at several hierarchical levels 
(Gignac  2007,   2008  ) . 

 Gould  (  1981  )  brought heavy arguments to bear against the measurement of IQ 
and Spearman’s  g  factor, in which he saw ‘our tendency to convert abstract concepts 
into entities.’ 

 The social sciences, especially demography, seldom used this hierarchical approach 
when they were working on objective probability. The situation changed with the 
adoption of a subjective or logical epistemic approach, as we shall see later. 

 A third class of models consists in treating an observed empirical distribution 
as a combination of unknown theoretical distributions, which one will then attempt 
to estimate. 

 In Sect.  5.3.2  on the cross-sectional approach, we noted Pearson’s contribution 
to the development of regression models. We shall mention him here as the initiator 
of the method for estimating the components of a combination of two normal distri-
butions (Pearson  1894  ) . Pearson observed many cases where the frequency curves 
for the sizes of various organs of a given species were normally distributed. When 
encountering an asymmetrical curve in such cases, he speculated that selection may 
recently have caused the species to split into two or more new species. This is pre-
cisely what he observed in the values of the ratio of the forehead to body length 
among crabs from Naples. Choosing a method that uses the moments of the distri-
bution, and with the aid of a ninth-degree equation, Pearson managed to show that 

   27   Fluid intelligence is the ability to fi nd new solutions to new problems, independently of earlier 
knowledge; crystallized intelligence is the ability to apply past experience to a present situation; 
visualization intelligence is the capacity for mental handling of two- or three- dimensional 
fi gures.  
   28   This factor is the ability to keep active in the mind the information needed to perform complex 
tasks such as reasoning, understanding a concept or learning a concept.  
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the population can indeed be regarded as a combination of two normally distributed 
sub-populations, for which he estimated the parameters. 

 Because of the massive calculations required at a time when computers were not 
yet available, the method was barely used in the following decades. Only in 1965 
did Wolfe offer a program for estimating the maximum likelihood of mixed distri-
butions, reviving research on the issue. Today, many monographs have generalized 
the method and applied it to a wide range of social sciences (Lindsay  1995 ; 
McLachlan and Peel  2000  ) . Let us elaborate on its application to the event-history 
approach, which—as the reader will recall—is used in demography, epidemiology, 
economics, sociology, and other disciplines. 

 In Sect.  5.4.3  above, we pointed out the problem of unobserved heterogeneity. 
This section takes a closer look at a solution considered as a combination of distri-
butions that differ among individuals. 

 In contrast to the applications that we have just discussed, these models intro-
duce a temporal aspect of the phenomena studied. 

 As seen earlier, all individuals with the same characteristics     ( )ix t   in  t  obeyed the 
same intensity process     ( )i tl   . It may be useful to ease this condition by introducing 
an unobserved heterogeneity to express the variations among individuals with the 
same characteristics. Analysts speak here of frailty, denoting that some individuals 
are more likely than others to experience the studied event. This entails a distinction 
between an analysis at individual level and an analysis at population level, the popu-
lation being regarded here as a mix of individuals obeying different intensity 
 processes. It is important to see how this can be expressed more clearly in terms of 
event-history analysis. 

 Let us assume the frailty of an individual measured by a number  z  ranging, for 
example, from zero to  m , with a distribution     ( )g z   at the start of the observation. For 
an individual with frailty  z , we can write the survivor function as     ( ),S t z   and the 
instantaneous rate as     ( ),h t z   . One should keep in mind that the distribution of popu-
lation frailty will vary over time, precisely because of the different survivor func-
tions. It can be shown (Vaupel and Yashin  1985 ; Aalen et al.  2008  )  that the survivor 
function for the total population in  t  is equal to:

     
( )

0

( ) , ( ) .
m

z

S t S t z g z dz
=

= ∫
   

In other words, it is measured by the mathematical mean of individual survivor 
functions—a mean calculated from the variable’s initial distribution. Similarly, we 
show that the instantaneous rate in  t , estimated for the total population, is the math-
ematical mean of individual probabilities, conditional upon the fact that the calcula-
tion is confi ned to individuals still present in  t . 

 The problem is that we know nothing about the distribution     ( )g z   , since it repre-
sents an unobserved situation. Admittedly, we can use a random distribution to 
(1) observe whether its introduction will alter the effects of the observed character-
istics, in a manner not signifi cantly dependent on the distribution, and (2) compare 
the likelihood of a model without and with heterogeneity. But this does not suffi ce, 
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as shown by the instability problems discussed by Heckman and Singer  (  1982, 
  1984a  )  and Manton et al.  (  1992  ) . These authors observe that the effects of the 
observed variables were strongly infl uenced by the presumed distribution of the 
unobserved variable. These results were more than confi rmed by Trussell and 
Richards  (  1985  ) , who showed that the choice of distribution could even change the 
sign of certain parameters. Given the instability of these results, we can question the 
usefulness of introducing a mixture model in event-history analysis. 

 In fact, we can show that, to analyze non-repetitive phenomena, there is only one 
model estimatable without unobserved heterogeneity, but when we try to introduce 
an unobserved heterogeneity, there is an infi nity of models that fi t the data identi-
cally with different estimated probabilities (Trussell and Rodriguez  1990 ; Trussell 
 1992  ) . In this case, we fi nd that the choice of a distribution to represent unobserved 
heterogeneity, with no biological or other information on its form, is of little use and 
can actually be harmful. 

 However, if we analyze repetitive events, we can better distinguish each indi-
vidual’s contribution even if we have no information on his or her biological char-
acteristics. We can apply another type of model comprising an event level nested in 
an individual level, as discussed in the next section (Lillard  1993  ) . 

 Let us now turn to the use of hierarchies in models based on either subjective or 
logical epistemic probability. 

 This approach is derived from the work of Good  (  1952,   1980,   1983  ) , who was 
among the fi rst to introduce hierarchical epistemic models:

  Once we have decided to objectify a rational degree of belief into a credibility it begins to 
make sense to talk about a degree of belief concerning the numerical value of a credibility. It 
is possible to use probability type-chains (to coin a phrase) with more than two links, such 
as a degree of belief equal to ½       that the credibility of  H  is ⅓       where H is statistical

hypothesis such that     ( )P E H =   ¼. It is tempting to talk about reasonable degrees of 

belief of higher and higher types, but it is convenient to think of all these degrees of belief 
as being of the same kind […] by introducing propositions of different kinds. (Good  1952  ).   

Note that Good defi nes probability theory as the logic of the degrees of sub-
jective or objective belief, which we can objectivate in the form of credibilities.  
 The simplest approach will consider the existence of hyperparameters and use given 
prior distributions to estimate the parameters of the resulting Bayesian hierarchical 
model (Bhattacharya et al.  1992 ; Younes et al.  2007 ; Kumar  2010  ) . More generally, 
however, a hierarchical epistemic approach will model the prior information by 
breaking it down into several conditional prior distribution levels. Later, we shall 
see its application to multilevel models when we have specifi c information on the 
higher levels, such as the class in which a student is enrolled. Here, we take the case 
in which we have only sketchy information on the form of the prior distribution, 
which may itself depend on a prior distribution of its parameters, and so on. In other 
words, we assume that the observed population can be decomposed into a usually 
unknown number of latent heterogeneous sub-populations, for which no specifi c 
prior information is available. 

 Mixture models—elaborated most fully in hierarchical Bayesian analysis—
prove very useful for addressing this type of problem (Titterington et al.  1985 ; 
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West et al. 1994)   . Richardson and Green  (  1997  )  propose a prior distribution com-
posed of normal mixtures. However, while such a distribution may often prove 
entirely suitable, it may turn out to be dangerous and misleading in other instances, 
as Bernardo points out in the discussion on Richardson and Green’s paper. 

 There are many applications of mixture models to the event-history approach 
(Hanson and Johnson  2002 ; Hanson  2006 ; Karlis and Patilea  2007  ) . Let us examine 
the use of artifi cial neural networks (Ripley  1994  ) , which may be viewed as a spe-
cial form of normal mixture models. 

 This approach was inspired by the functioning of biological neurons (McCulloch 
and Pitts  1943  )  and has since been applied in many other fi elds, notably probability. 
It allows the introduction of the ultimately non-additive effects of the various char-
acteristics into models that were initially of the proportional-risk type. 

 How do such models operate? Let us take the conventional proportional-risk 
model, in which, on the basis of equation [4] in Sect.  5.4.2 , the log of the instanta-
neous rate for individual  i  is written:

     ( ) ( ) ( )0 0
1

log log log .
p

i i i i i i j j
j

h t z h t z h t z
=

= + β = + β∑    (5.5)  

The observed characteristics,     i jz   , are assumed to be binary for simplicity’s sake. 
We now introduce weights,     k jw   , where     ≠k j   , which will produce a linear transfor-
mation of the     i jz   values. This function is called a transfer function,     ( )xϕ   , often 
regarded as logistical. We also make the     jb   parameters time-dependent: this will be 
indicated by the notation     ( )j tb   (Ripley  1998 ; Ripley and Ripley  1998  ) . The new 
model is written:

     ( ) ( )0
1

log log ( ).
p

i i i i j k j ik j
j k j

h t z h t z w z t
= ≠

⎛ ⎞
= + ϕ β⎜ ⎟⎝ ⎠∑ ∑    (5.6)  

We choose the transfer function     ϕ   such that     (0) 1ϕ =   . Consequently, when it is 
regarded as logistical, it will take the form:

     ( )
2

( ) .
1 exp

x
x

ϕ =
+ −     

 We can thus interpret the parameter     ( )j tβ    as the additive effect of the  j th explana-
tory variable, when all the others are null. The reason is that, if     0kz =    for all     k j≠   , 
then the model reduces to:

     
( ) 0

1

log log ( ) ( ),
p

j j
j

h t z h t z t
=

= + β∑
   

which enables us to return to the initial model ( 5.5 ), with     β ( )j t   instead of     β j   , in the 
case where all weights are zero. 
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 In this model, therefore, the network input comprises an individual’s characteristics, 
and the output is the log of the instantaneous rate. The input-output link will depend on 
the weights     i jw    and a transfer function     ϕ  . This neural arrangement is commonly 
called a feed-forward network. In essence, it consists in turning the initial model 
( 5.5 ) into a non-proportional-risk model with non-additive effects of the character-
istics ( 5.6 ), while preserving the possibility of interpreting its parameters. 

 It would be outside the scope of this book to examine in detail the various stages 
in the estimation of a hierarchical epistemic model using the neural-network method. 
In specifi c cases, this process enables us to estimate the parameters introduced with 
the aid of prior distributions located at several levels. These distributions will, for 
example, promote weak deviations from the additivity and proportionality of effects, 
which the proportional-risk model provided: for more details, see Gustafson  (  1998  )  
and Ibrahim et al.  (  2001  ) . 

 However, neural networks—and, more generally, the mixture models described 
above—supply a ‘black box’ that allows us to predict a given distribution accurately 
but is incapable of offering a genuine explanation of the phenomenon studied 
(Ripley and Ripley  1998  ) . 

 We must now move on to truly multilevel models, where levels are not necessar-
ily ranked in a hierarchy, and where their meaning is more explicit.  

    5.5.2   A Contextual Then Fully Multilevel Approach 

 Statisticians generally do not regard these approaches as different from hierarchical 
ones. However, in population sciences, and even more broadly in the social 
sciences, they refl ect a very clear paradigm that incorporates into the analysis other 
levels besides the individual level that was the focus of the event-history approach. 
The analytical process no longer introduces latent hierarchical levels whose links to 
an explanation in practical terms may leave something to be desired. Now, the 
analysis operates on concrete aggregation levels whose existence and meaning are 
clear—levels that can arguably infl uence individual behaviour. 

 These levels correspond to different types of groupings of individuals found in 
all human societies: social groupings, such as the nuclear or extended family, the 
network of contacts, etc.; economic groupings, such as the fi rm or organization 
where a person works; education-related groupings, such as the classes in a school, 
the school itself or the university; healthcare-related groupings, such as a hospital 
ward or clinic; groupings of events experienced by the same individual (successive 
births or migrations during a lifetime); and so on. Other geographic or administra-
tive groupings may be used, such as a building, a town, a county, a region, or a 
country (for an international study). Their effect may be less direct, but they may 
serve as viable proxies for other groupings that would be more relevant but are inac-
cessible to the researcher. 

 The levels are no longer necessarily nested in a hierarchy, although such an 
arrangement remains important. There will be cross-classifi cations that will make it 
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possible to introduce non-hierarchic levels. For example, people may be involved in 
their family and workplace circles without our being able to establish a hierarchy, as 
some members of the family circle may also form part of the workplace circle. 
There may also be both hierarchical classifi cations and cross-classifi cations. For 
instance, the family/work cross-classifi cation may be combined with a hierarchical 
classifi cation of places of residence by town, county, region, and so on. 

 Lastly, in an event-history analysis, where several events may occur in the life of 
the same person, we can introduce a cross-classifi cation in which the fi rst level is no 
longer individual but records the events experienced by the same person; a second 
level will be individual, while other cross levels or hierarchical levels may be added. 
The problem here is that events may occur at different levels. Consider, for example, 
a woman’s successive childbirths: when she gives birth to a new child, the event is 
recorded at level 1, but when she migrates from her region of residence, or changes 
households after a divorce, these events are recorded at higher levels. 

 Let us begin with contextual analysis, which uses aggregate characteristics to 
handle these different levels. It is the simplest solution to the problem posed by the 
atomistic fallacy, which can arise in event-history analyses of individual data. 
Contextual analysis also eliminates the risk of ecological fallacy, which we may 
encounter in an analysis confi ned to the aggregate level. The aggregate characteris-
tic will measure a construct that differs from its equivalent at individual level. Here, 
the aggregate characteristic serves not as a substitute, but as a characteristic of the 
sub-population that will affect the behaviour of a member of that sub-population. 

 Consider the example of the migration of Norwegian farmers, used throughout 
this chapter. We now introduce into the analysis, simultaneously, their farmer status, 
the percentage of farmers in the region where they live, and the interaction between 
these two characteristics (Courgeau  2004a,   b,   2007a,   b  ) . We observe that, when the 
percentage of farmers rises, the probability of migrating remains identical and con-
sistently below non-farmers’ probability of migrating. By contrast, non-farmers’ 
probability of migrating will rise sharply when the percentage of farmers in the 
region increases. Thanks to this fi nding, we can combine the results of the analyses 
at the aggregate and individual levels, by clarifying the apparent paradox between 
the two analyses. A plausible explanation is that the relative lack of non-farm jobs 
will make non-farmers more likely to emigrate than farmers, all the more so if the 
percentage of farmers is rising. 

 However, the use of these contextual models imposes restrictive conditions on 
the formulation of relative risks as a function of characteristics. The models notably 
assume that individuals belonging to a given group behave independently of one 
another. The more likely assumption is that the risk incurred by the member of a 
group depends on the risks encountered by other members of the same group. 
Ignoring this intra-group dependence may yield biased estimates of the variances of 
contextual effects and so produce overly narrow confi dence intervals. 

 Multilevel models offer a satisfactory means of addressing these issues. Proposed 
by Harvey Goldstein  (  1986,   1987,   1991  ) , they were fi rst used in the education 
sciences then generalized to the other social sciences (Goldstein  2003 ; Courgeau 
 2004a,   b,   2007a,   b  ) . They comprise not only linear models but also non-linear ones, 
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in particular the multilevel models for event-history analysis, which complement 
the approach described earlier. 

 Let us briefl y examine the proportional-risk event-history model, which com-
prises a single aggregation level—for example, the region—in addition to the indi-
vidual level. Using Eq.  5.4 , we can write the instantaneous rate for individual  i  
located at aggregation level  j  and exhibiting the characteristic  k  as:

     ( ) ( )0 0
1 1

exp ,
p p

ij kij i k kij kj kji j
k k

h t z h t z u z u
= =

⎛ ⎞
= β + +⎜ ⎟

⎝ ⎠
∑ ∑    (5.7)  

where     βk    is the region-independent parameter for characteristic  k ,     kju    is the ran-
dom parameter for the same characteristic but region-dependent, and     0 ju    is the 
random parameter that makes the underlying probability dependent on region  j  as 
well. This model ( 5.7 ) is, of course, rather simple, and we can introduce more 
complex dependences between the underlying probability and the region or 
between the explanatory characteristics and the region. We can also include a 
greater number of levels. As we can see, this type of model introduces no new 
concepts in demography, but it generalizes the models used if we want to examine 
different aggregation levels. 

 What is the status of the multilevel model with respect to (1) the contextual 
mode, which imposes many constraints, and (2) constraint-free models estimated 
for each group observed? We return to the previous example, in which contextual 
analysis used the percentages of farmers living in each region (Courgeau  2004a,   b, 
  2007a,   b  ) . It will be useful to begin with a separate analysis of each region to deter-
mine the local probability of migration by farmers and non-farmers. Because of the 
small number of people observed in certain regions, the difference between these 
probabilities is far from diverging consistently and signifi cantly from zero. The 
results however, show a higher dispersion of regional results than what we found by 
applying a contextual model. While not yielding a clear-cut conclusion, the analysis 
shows us that the contextual model cannot explain all the variations in regional 
results. We should thus seek a compromise between a model that imposes no con-
straints but allows few if any signifi cant estimates, and a contextual model with 
excessive constraints whose validity is almost impossible to test. 

 The multilevel solution consists in introducing random effects at regional level in 
addition to individual variance, so as to generalize the logistic regression methods 
considered here. We continue with the example of Norwegian farmer and non-farmer 
migrations. 

 The simple multilevel model supplies fi xed parameters close to those obtained with 
the logit model estimated in Sect.  5.4.2 : the probabilities of migrating are 0.092 for 
farmers and 0.153 for non-farmers, versus 0.095 and 0.150 respectively. By contrast, 
their standard deviation is greater: 0.011 versus 0.007 for farmers; 0.009 versus 0.002 
for non-farmers. This is because we longer assume that all members of the population 
are equally likely to experience the event. Instead, we now suppose that the probabil-
ity can vary with the region. The random parameters at regional level point to the same 
conclusion, as their variance for non-farmers differs signifi cantly from zero. 
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 The contextual multilevel model, which now uses both aggregate and individual 
characteristics, also yields parameter estimates consistent with those of the contex-
tual model described above. Most strikingly, the variance in the random parameter 
for non-farmers is nearly one-half of the value found with the simple multilevel 
model. This decrease is due to the introduction of aggregate characteristics. However, 
it does not make the parameter differ signifi cantly from zero. 

 In sum, under the paradigm of the multilevel approach, individual behaviour is 
always determined by the person’s past history, seen in all its complexity. But the 
paradigm also states that behaviour can also depend on external constraints, whether 
or not the person is aware of them. Our society is composed of many social, eco-
nomic, political, religious, educational, and other groups, and any given person is 
involved in a number of these groups that can shape his or her actions throughout 
his or her life. 

 The resulting statistical individual is even more complex than the protagonist 
of the event-history approach, for (s)he will be involved in different levels, both 
hierarchical and cross-level. However, the two statistical individuals will remain 
identical in nature.  

    5.5.3   Problems Posed by the Multilevel Approach 

 While the multilevel approach offers solutions to certain problems, such as those 
posed by the ecological and atomistic fallacies, a signifi cant number of issues 
remain for which it provides only partial answers. 

 The fi rst issue is the relevance of some of the aggregation levels customarily 
used. While some levels, such as the household, seem thoroughly relevant, others 
may be far less so. Certain levels often refl ect geographic or administrative divi-
sions, such as municipalities and regions, whose effects on given behaviours may 
once have been more visible but are now more doubtful. Although an effect of this 
kind may show up in a multilevel study, it may originate in other levels that are not 
individualized in the analysis because of their greater complexity. The observed 
effect thus serves as a proxy for the more fundamental levels. Hence the importance 
of using appropriate surveys to better identify the latter, which would be a more 
accurate refl ection of our current social organization. We are still a long way from 
implementing such a program. 

 The second issue is the choice of an ultimately individual approach here. In other 
words, the effects of aggregation levels are always defi ned with respect to the 
individual. How, then, can we explain the changes observed in the rules prevailing at 
higher levels—changes that may, however, be due to individual actions? For example, 
a series of isolated actions in a given community may foster awareness of a problem 
that concerns the entire community. This may lead to political measures, taken at a 
more aggregated level. These measures will naturally affect individual behaviours, 
generating new actions to offset their perverse effects, and so on. The multilevel 
approach as described here does not allow inclusion of this two-way fl ow. 
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 The third issue is the complexity of the social structure of the groups studied. 
Even small groups such as the family or household are hard to view as homoge-
neous. The head of household, his or her adult dependents, and the dependent chil-
dren all play perfectly distinct roles. Given these circumstances, how should we 
analyze the interactions between group members? A study by Bonvalet et al.  (  1997  )  
has made progress in addressing the issue in small groups but without providing a 
full solution. Its generalization to even more complex groups will require the imple-
mentation of new observation tools. 

 We can conclude from this examination that the multilevel approach will surely 
entail the establishment of a new paradigm that will enable us to answer at least 
some of the questions posed above.                                                                                                                                                                                                                                                                                                         
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 After this detailed examination of the links between population sciences, statistics, 
and probability, we can now provide clearer answers to some of the questions under-
lying Part II of our book. First, what is the intensity of the ties between population 
sciences and probability, partly mediated by statistics? Second, what is the nature of 
the connections between probability, social sciences, and causal inference? Third, 
does cumulativity exist in these sciences, and, if so, what form does it take? 

   Intensity of Ties with Probability 

 The connection between population sciences and probability was vital from the 
outset. One can say that population sciences could not exist without statistics. 

 Ever since 1662, Graunt has rightly been regarded as the fi rst statistician in the social 
sciences. Using all the precautions needed to obtain the most accurate fi gures possible, 
he tabulated the bills of baptisms and burials in London and the provinces over nearly 
60 years. He rejected certain data, such as baptisms prior to 1642, on grounds of shoddy 
record-keeping; in other cases, he adjusted the data, such as the number of deaths from 
the plague in 1625, which, he plausibly argued, exceeded the offi cial number by one 
quarter. From these statistics, Graunt drew pioneering conclusions about many demo-
graphic and epidemiological phenomena: infant mortality, the effects of the plague, neo-
natal mortality, the link between the number of births and insalubriousness in a given 
year, migration to London, the proportion of male births, causes of death, the imbalance 
between burials and baptisms in London and the provinces, and so on. 

 At the same time, Graunt established ties between the social sciences and prob-
ability. His wager on the annual probability of death clearly shows the role of proba-
bilistic reasoning in his approach. In seeking to connect these statistics to quantities 
of a more theoretical kind, he assumes an identical probability of dying for all indi-
viduals in a 10-year age group and even in a 50-year age group. Although he failed 
to produce an actual life table, his attempt marked the fi rst step in that direction. 

    Conclusion to Part II 
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 Throughout the eighteenth and early nineteenth centuries, probability played a 
major role in the social sciences. Laplace  (  1814  )  contended that all our knowledge 
is merely probable, and he applied this precept in remarkable fashion to the social 
sciences, particularly population sciences, by using Bayesian probability. 

 Another priority was the quest for ever more exhaustive statistics. One example 
is the life table compiled by Wargentin  (  1766  ) , whose access to population registers 
of excellent quality gave him both the numerators and the denominators of the rates 
to be calculated. 

 The introduction of censuses—with their exhaustive enumerations linked to 
civil-registration data—caused probability to lose much of its appeal for popula-
tion scientists, who began to concentrate on statistics. Cross-sectional analysis in 
demography focused on the rates themselves, i.e., on frequencies. Their vari-
ance, under the hypothesis of a homogeneous population, was so weak as to 
make its estimation pointless, and contemporary demographers never mentioned 
it. Many statisticians working in demography and economics in the late nine-
teenth and early twentieth centuries rejected the very notion of probability as 
useless (Armatte  2005  ) . They preferred the notion of frequency to that of prob-
ability, and the notion of trend to that of distribution. Even population scientists 
turned away from probability until the early 1980s. The advent of longitudinal 
analysis after World War II enabled them to continue working on very large pop-
ulations, and the underlying hypotheses of a homogeneous population and inde-
pendence between the phenomena studied deprived probability of its usefulness 
(Henry  1957  ) . Relative frequency was sometimes viewed as an experimental 
measure of the probability of occurrence of an event, but the issue was of little 
concern to population sciences. 

 The shift to the event-history paradigm in the early 1980s brought a total 
change of attitude. The examination of large sets of characteristics made it essen-
tial for population scientists to return to probabilistic logic. Even when the data 
are exhaustive, the event-history approach—whether objectivist or Bayesian—
requires probability theory. The abandonment of the homogeneous-population 
and independent-phenomena hypotheses made it impossible to ignore the essen-
tial role of probability in demographic analysis. 

 But statistics were to change as well. Obtaining individual life histories with 
their many characteristics most often requires surveys of small numbers of persons. 
Sampling methods are now well tested, but we must ensure that non-responses do 
not bias the results and that the information provided by respondents is reliable. The 
test conducted with the aid of an event-history survey (3B bis) and the Belgian 
population register has allowed a consolidation of this array of collection methods, 
which is specifi c to population sciences analysis (Poulain et al.  1991,   1992 ; Courgeau 
 1991,   1992  ) . The conclusions of the test are clear:

  Even if errors in the  dating  of past events are frequent, apparently these do not affect their 
 logical sequence , or only very slightly so. This sequence is correctly memorized, and the 
errors only form a kind of background noise, which does not prevent coherent information 
from being drawn from all sources. Thus, memory seems to be reliable where the analysis 
needs it to be. (Courgeau  1992  )    
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 The multilevel paradigm intensifi ed this need to think in terms of probability and 
conduct surveys to obtain results. Given the small size of the population observed at 
a given aggregation level, it is usually necessary to use Bayesian probability. The 
latter is also mandatory in fi elds such as paleodemography, which studies popula-
tions comprising only a few dozen individuals. 

 Many other social sciences use both the event-history and multilevel approaches. 
The conclusions we have just drawn therefore apply to those disciplines as well, 
including epidemiology, economics, sociology, medical statistical studies, and edu-
cation sciences. 

 By contrast, the population sciences and even social science as a whole are barely 
concerned about which type of epistemic probability they apply—subjective or 
logical. However, the prior distribution they use is seldom adopted without incorpo-
rating the information available on the phenomenon studied (Ibrahim et al.  2001  ) . 
When no such information is at hand, a uniform distribution is often chosen. In 
other words, social scientists tend to opt for a logical rather than subjective epistemic 
approach, without being genuinely aware of the fact.  

   Links Between Probability, Social Science, 
and Counterfactual Causality 

 In this section we will consider more generally the links between social sciences and 
causality, as population sciences do not differ largely from social science on this topic. 

 This subject has already been explored in many studies, and space precludes a 
full discussion of it here (see especially: Franck  1994 ; Illari et al.  2011 ; Russo  2009 ; 
Williamson  2005,   2009  ) . In the following pages, we take a more detailed look at the 
notion of counterfactual causality, introduced by Lewis  (  1973a,   b  )  and elaborated 
by Holland  (  1986  ) . It is routinely used by many statisticians, population and social 
scientists, in particular in the U.S. 

 The approach is based on a hypothesis that is intrinsically non-testable. Let  u  be 
an individual to whom, for example, we can apply a course of treatment to be 
assessed,  t , or a conventional treatment,  c . Let     ( )tY u    be his/her response to the 
treatment and     ( )cY u    his/her response to the control (i.e., conventional) treatment. 
Treatment’s effect relative to  c , which we can assume to be causal, is:

     −( ) ( ).t cY u Y u     

 Unfortunately it is impossible to apply both treatments to the same person, and if 
we apply them in sequence (when feasible), we generally can no longer speak of 
causality. We thus cannot observe the effect of the treatment on a given individual. 
The hypothesis, therefore, is not testable. 

 However, statisticians will try to circumvent the diffi culty by working on a popu-
lation that they will subject to strict conditions. Suppose we form two groups by 
random sampling, such that for two persons taken in each of the groups,     1u    and 
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    2u   ,     ( ) ( )=1 2t tY u Y u    and     ( ) ( )=1 2c cY u Y u   . In other words, apart from the treatment, 
the two groups are strictly comparable. We can thus say that the causal effect of the 
treatment is:

     ( ) ( )1 2 .t cY u Y u−
   

Consequently, if a laboratory can form the two groups by randomization, it may 
be able to demonstrate a causal effect of the treatment—not with certainty, for that 
is impossible, but with plausibility. 

 While such an experiment can sometimes be performed in epidemiology, ethical 
and material considerations preclude the same experiment in population sciences or 
any other social science. This has not stopped many researchers from applying the 
procedure to non-randomized studies. In their opinion, however, the looser condi-
tions in which these studies are performed make it possible to address the causality 
issue (Rubin  1974,   1977  ) . 

 Let us take two recent examples of such an analysis, which has in fact been used 
in a very large number of comparable cases. 

 First, an article by Randall Kuhn et al.  (  2011  )  concerns the effect of internal 
migration of children on their parents’ health. The article uses a pseudo- 
randomization in which a sample is formed with a set of characteristics (age, sex, 
and number of children aged 15+) such that each migrant is linked to another, 
 non-migrant individual in the counterfactual control group. Kuhn shows a positive 
effect of children’s migration on the health of non-migrant parents. 

 Second, an article by Torche  (  2011  )  seeks to assess the effect of a massive earth-
quake that struck northern Chile in 2005 on the weight at birth of children born 
after the event. As an earthquake may be regarded as independent of the other 
characteristics infl uencing the birth of the persons affected, we may consider that 
the randomization condition is met. Torche shows an average decrease of 51 g in 
the weight of children of mothers located in the quake-struck areas relative to the 
weights in areas that were spared. 

 The studies by Herbert Smith cast doubt on these fi ndings. In many instances, 
such as the fi rst example above, he notes:

  How does the investigator know when the proper specifying variables have been incorpo-
rated in the experimental design? As with the specifi cation of models for the analysis of 
data obtained from observational studies, theory is the ultimate guide  (  1990  ) .  

The characteristics taken into account in this example are not necessarily the 
ones that should be considered, for the phenomenon studied has not been suffi -
ciently theorized. For the second example, Smith cites a condition described by 
Holland  (  1986  )  as crucial: ‘no causation without manipulation’. In such circum-
stances, it is hard to see what actions could avert earthquake-related risks. More 
generally, the number of characteristics found in these types of models makes the 
manipulability criterion impossible to enforce:

  The manipulability criterion for causal inference has been diffi cult to assimilate in a disci-
pline that routinely reports measurements of the causal effects of sex, race, and age, inter 
alia, on various phenomena (Herbert Smith  1997  ) .  
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It seems important to avoid these characteristics as far as possible in analyses. 
For instance, in an event-history analysis of internal migrations (Courgeau  1985  ) , I 
showed that the age effect, so popular among many demographers, vanished entirely 
when the person’s family-related, social, economic, and other characteristics are 
factored in. 

 In our view, however, Herbert Smith goes too far when he says: ‘We measure at 
the micro level, but we intervene—manipulate—at some higher level’  (  2003  ) . He 
concludes that analyses at individual level are of little practical value in deciding a 
course of action. 

 The example of the analysis of farmer migration discussed throughout this chap-
ter shows the need to qualify Smith’s assertion. When looking at the macro level of 
regions, and performing a standard regression analysis, we fi nd that the probability 
of migration rises with the percentage of farmers in the local population. We could 
interpret this fi nding—as Durkheim would have—as evidence that farmers are more 
likely to migrate. But a micro analysis shows the exact opposite: farmers are less 
likely to migrate than other occupational groups. Only a multilevel analysis can 
reconcile these two apparently contradictory results. While farmers are less likely to 
migrate whatever their percentage, it is non-farmers who are more likely to migrate 
when the proportion of farmers in their region rises. 

 Thus, if we want to promote farmer mobility, the macro-level analysis would 
prompt us to increase migration bonuses, or any other comparable benefi t, for farm-
ers living in areas where they constitute a small proportion of the population. But 
multilevel analysis shows us that such a measure would have no effect, since their 
probability of migrating is the same regardless of where they live. Examining the 
different levels, therefore, gives us a clear understanding of why the macro-level 
analysis has misled us in our policy-making. 

 To conclude on this topic, let us note that Dawid  (  2000  )  has gone further in the 
critique of the counterfactual approach, when applied under a strict test protocol. His 
arguments are very convincing, and we shall recall some of the stronger ones here. 

 First, he shows that these analyses, in seeking the effects of causes, are based on 
an attitude he calls ‘fatalism’:

  This considers the various potential responses     ( )iY u   , when treatment  i  is applied to unit  u , 
as predetermined attributes of unit  u , waiting only to be recovered by suitable experimenta-
tion. […] Note that because each unit label u is regarded as individual and unrepeatable, 
there is never any possibility of empirically testing this assumption of fatalism, which thus 
can be categorized as metaphysical.  

Second, in seeking the causes of effects, attention will shift to the following 
question: for a given individual     0u   , did the application of the treatment  t  cause the 
observed response     ( )=0 0tY u y    or not? Dawid shows that this inference is even 
more problematic than the previous one:

  It appears that, to address this question, there is no alternative but to somehow compare the 
observed valued     0y    with the counterfactual quantity     ( )0cY u   , the response that would have 
resulted from application of  c  to     0u   . Equivalently, inference about the individual effect 
    ( ) ( )0 0 0cu y Y u= −τ    is required. However, the fact that such an inference may be desirable 
does not, in itself, render it possible.  
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Dawid concludes that this counterfactual approach can, in most cases, lead to 
inferences that are not justifi ed by empirical data and are therefore unscientifi c. 

 In our General Conclusion, we shall examine whether other approaches to 
inference can yield more satisfactory results.  

   Does Cumulativity Exist in the Population Sciences? 

 In this chapter, we described the paradigms that population sciences have encoun-
tered throughout their history. We shall now examine in greater detail, as we did 
with probability, whether cumulativity exists in these paradigms or not. 

 Let us begin by taking a more detailed look at the shift from the cohort paradigm 
to the event history paradigm, and let us try to compare it with the move from 
Newtonian physics to Einstein’s general relativity. 

 As we indicated, the longitudinal approach rested on the notion of a homoge-
neous population and mutually independent events. Likewise, Newton’s physics 
rested on the notion of a space that was homogeneous and isotropic in its dimen-
sions. The two approaches can be regarded as roughly comparable if we consider 
that physics is interested in space (we deliberately set aside time, which complicates 
the comparison, without altering its conclusions) and population sciences in popula-
tion (again, setting aside time). Both are homogeneous and the entities that we can 
regard as the dimensions of population sciences—the phenomena studied—are 
equally isotropic, that is, independent of one another. The shift to the event history 
paradigm was mandated by the observation of survey data, which are more detailed 
than register data. The transition seems to generalize results to heterogeneous 
populations and interdependent events. Likewise, the shift to Einsteinian general 
relativity, made necessary by major conceptual problems posed by Newtonian the-
ory, led to a curved space-time, determined by the physical content of the universe 
and, in this sense, heterogeneous and non-isotropic in its dimensions. Newton’s 
physics, one could argue, was generalized by Einstein’s: some of the axioms cor-
responding to both views are identical, others different (Suppes  2002a    ) . 

 For a number of authors, however, this generalization is not as obvious as it 
seems: Thomas Kuhn  (  1970  )  asked: ‘Can Newtonian dynamics really be derived 
from relativistic dynamics?’ The detailed examination of the denomination con-
cepts that are identical for Newton and Einstein showed him that ‘the physical 
referents of these Einsteinian concepts are by no means identical with those of the 
Newtonian concepts that bear the same name. (Newtonian mass is conserved; 
Einsteinian is convertible with energy. Only at low relative velocities may the two 
be measured in the same way, and even then they must not be conceived to be the 
same.) Let us, therefore, now take it for granted that the differences between suc-
cessive paradigms are both necessary and irreconcilable.’ Similarly, whereas 
Newton’s theory was implied by observations, Einstein’s theory was, on the con-
trary, implied by the conceptual problems in Newtonian physics: only later was 
Einstein able to verify his theory through observations, such as the precession of 
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Mercury’s perihelion over a century. Under the Kuhnian defi nition of paradigms, 
there can be no cumulativeness here. 

 We have already been able to show, in a comparable way, that the event history 
approach was very different from the cohort approach, and Blayo’s attack (1995) 
clearly illustrates this (see Sect.  5.4.1 ). In fact the two approaches do not use similar 
defi nitions for the populations on which they work, and the links that they study 
between phenomena are very different, if not incompatible. Could we therefore take 
this as proving the absence of cumulativeness here? 

 At this point in the discussion we need to distinguish between: (a) cumulative-
ness of paradigms, and (b) cumulativeness of knowledge acquired in different para-
digms. In theory, the non-cumulativeness of paradigms does not exclude the 
cumulativeness of knowledge obtained through different paradigms. Thus, as noted 
earlier, when Thomas Kuhn emphasizes the conceptual heterogeneity of Newtonian 
and Einsteinian paradigms, we cannot conclude that the knowledge of classical 
mechanics was nullifi ed by the theory of relativity. Let us begin by analyzing the 
second point in greater detail before drawing conclusions on the fi rst. 

 Cumulativeness of knowledge seems self-evident throughout the history of pop-
ulation sciences and our presentations in this article show this perfectly: the shift 
from regularity of rates to their variation; the shift from independent phenomena 
and homogeneous populations to interdependent phenomena and heterogeneous 
populations; the shift from dependence on society to dependence on the individual, 
ending in a fully multilevel approach. Each new stage incorporates some elements 
of the previous one and rejects others. The discipline has thus effectively advanced 
thanks to the introduction of successive paradigms. Each takes the shortcomings of 
its predecessor as a starting point and offers a method for surmounting them—
without, however, erasing all of the knowledge attained through the earlier para-
digm. Indeed, for some questions that are asked to the population scientist, 
cross-sectional analysis can suffi ce, just as any other form of analysis may be suf-
fi cient for other issues. The same is true for some questions asked to the physician, 
that may perfectly been answered by Newtonian’s physic, without taking account of 
Einsteinian’s physics. 

 We can therefore say that each new paradigm comes as a complement to the 
preceding one for the purpose of treating cases that lie outside of the latter’s scope, 
while partly preserving some of the results obtained with its predecessor. However, 
this preservation is far from being consistently guaranteed, for the new paradigm 
allows more accurate and detailed reasoning than the previous paradigm. In some 
cases this can yield very different results, as we have shown for event history analy-
sis compared with cohort analysis and, especially, for multilevel analysis compared 
with cross-sectional analysis and event history analysis. 

 This shows a certain cumulativeness of paradigms that is far from linear. The 
reason is that the objects treated by population sciences are selected by the different 
paradigms and are therefore specifi c to each of them. For instance, cross-sectional 
analysis ignores the time lived by an individual and connects the phenomena observed 
at a given moment with the characteristics of populations observed in that same 
instant. Its objects are therefore those observed in a census, for example. Cohort 
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analysis introduces time lived by a generation or cohort, but fails to  incorporate 
 individual characteristics or the links between known events, for it assumes a homo-
geneous population and mutually independent events. Its objects are those observed 
with the aid of vital statistics. Event history analysis fi nally allows population scien-
tists to incorporate the various individual characteristics and the links between events. 
Its objects are those observed with the aid of event history surveys. Lastly, multilevel 
analysis allows a synthesis between cross-sectional analysis and event history 
 analysis by introducing various levels of aggregation. Its objects are those observed 
with the aid of surveys even more complex than event history surveys, simultane-
ously involving events observed at different aggregation levels. 

 Each of these paradigms is confi ned in analytical scope to its own objects, but 
has been proved to be totally consistent with them, as a number of works on popula-
tion sciences have shown since the seventeenth century. Yet the reason why we 
cannot demonstrate a perfectly linear relationship between them is that these objects 
are different. On the other hand, there exists a non-linear relationship and a very 
strong continuity between them, and these features can be interpreted as a form of 
cumulativeness, provided we do not forget that each paradigm can be verifi ed only 
by its own objects (Agazzi  1985  ) . Going beyond Thomas Kuhn’s position, Agazzi 
shows very clearly for the natural sciences—but this could be transposed to social 
science—that ‘scientifi c progress does not consist in a purely logical relationship 
between theories, and moreover it is not linear. Yet it exists and may even be inter-
preted as an accumulation of truth, provided we do not forget that every scientifi c 
theory is true only about its own specifi c objects.’ 

 Without repeating his demonstration in detail here, we shall summarize the points 
of use to our discussion. Agazzi notes that researchers actually choose a small 
number of objects for inclusion in their theories. Some of these objects depend very 
strongly on the theory’s context (contextual part); others, on the contrary, do not 
depend on it (referential part) and so allow a comparison between different theories. 
For instance, in population sciences, the events analyzed do not depend on the type 
of analysis conducted. Mortality, fertility, migration, and so on are objects indepen-
dent of the theory used to treat them. By contrast, the relationships assumed to exist 
between these objects are strongly dependent on the theory: independence between 
objects in cohort analysis, heavy dependence in event history analysis. This makes it 
possible to compare theories. Most important, it ensures that the results of one theory 
can never be destroyed by another theory with different objects of research. To the 
contrary, ‘the new truths remain  together with  the old ones and  complement  them.’ 
Classical mechanics is still demonstrated by its objects, as is cohort analysis. But 
relativity theory complements classical mechanics, just as event history analysis 
complements cohort analysis. As Granger very rightly points out  (  1994  ) :

  True, the human fact can indeed be scientifi cally understood only through multiple angles 
of vision, but on condition that we discover the controllable operation that uses these angles 
to recreate the fact stereoscopically.   

 We believe that the multiplicity of paradigms observed in population sciences effec-
tively corresponds to this multiplicity of angles of vision, and that the relationships we 
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have been able to demonstrate between paradigms enable us to obtain a stereoscopic 
reproduction of them that is highly promising for the future. The resulting notion 
of cumulativeness is, of course, far removed from basic additivity but—in our 
 opinion—allows an advance that is entirely relevant to demography and even to the 
social sciences as a whole.   
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 A number of social sciences, as we have seen, were born at the same time as probability 
and now routinely use its concepts. These play an essential role in population sci-
ences and in fi elds such as epidemiology and economics. However, the connection is 
not always as close in other social sciences. 

 The fi rst part of this conclusion will describe the current situation more specifi cally 
in sociology and in artifi cial-intelligence, a science using mainly nonprobabilistic 
methods in the past. 

 This last theory using causal diagrams, the notions of counterfactual causality 
and of structural equations, will lead us to examine in broader terms how different 
causality theories fi t into the social sciences. 

 We shall then return to the notions of individual and levels before discussing how 
probabilistic reasoning is incorporated into the forecasting of individual and collec-
tive behavior. 

 In this General Conclusion, we shall therefore need to address these topics in 
greater detail. Although the scope of our book precludes an exhaustive treatment, 
we offer some suggestions for more clearly assessing the situation in a larger num-
ber of social sciences. 

 Our epilogue summarizes the main fi ndings of our study, the issues that still need 
to be addressed, and the pathways toward a fuller analysis of societies. 

   Generality of the Use of Probability and Statistics 
in Social Science 

 In our detailed examination of the history of population sciences over three and a half 
centuries, we have seen how strongly their concepts and methods depended on the 
notions of probability and statistics, which emerged almost simultaneously. Although 
the links may have seemed looser at certain moments, population scientists, probabi-
lists, and statisticians cooperated closely most of the time. Often, it was the same 

                               General Conclusion 
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scientist who, like Laplace, designed the probabilistic methods, developed the 
appropriate statistics, and applied them to population issues (see Chaps.   3     and   4    ). 

 In Chaps.   1    ,   2    , and   3    , we saw how other social sciences, as well, relied heavily 
on probability and statistics for tackling certain problems. Those disciplines 
include, together with population sciences, economics, epidemiology, jurisprudence, 
 education sciences, and sociology. Admittedly, we have not examined them in 
depth, and it is possible that they may not always need probability in their work. 

 For instance, we have shown (Chaps.   1     and   4    ) that Durkheim’s sociology required 
the concomitant-variation method, i.e., linear regressions, to establish causality 
relationships (Durkheim  1895  ) :

  We have only one means of demonstrating that a phenomenon is the cause of another: it is 
to compare the cases where they are present or absent simultaneously and to determine if 
the variations that they display in these different combinations of circumstances are evi-
dence that one depends on the other.  

In his study on suicide (Durkheim  1897  ) , for example, he observed that suicide 
rates varied with the local percentage of Protestants, and he deduced the more 
general conclusion that:

  [s]uicide varies in inverse proportion to the degree of integration of religious society.  

He showed that the same reasoning applied to domestic and political society. To 
explain suicide, he therefore sought a cause common to all these societies:

  Now the only one that meets this condition is that these are all strongly integrated social 
groups. We therefore arrive at this general conclusion: suicide varies in inverse proportion 
to the degree of integration of the social groups to which the individual belongs.  

In other words, his demonstration, while based on probability, transcends the 
probabilistic approach in order to identify the more general causes of a specifi c 
sociological phenomenon: suicide. 

 The same is likely true in other social sciences, but we can also assume that while 
many use probability calculus, some do not make it their prime method. We have 
seen this assumption confi rmed in sociology; below, we shall examine whether it 
also applies to artifi cial intelligence. 

 Another point is that some approaches used in population sciences are common 
to other social sciences as well. 

 For instance, the event-history approach, whose probabilistic bases we have 
shown to be essential, is used not only in many social sciences, but in mechanics and 
physics, as it applies to the more general study of phenomena occurring over time. 
Examples for which it is perfectly suited include: measuring task performance in 
psychological experiments; medical and epidemiological studies on the develop-
ment of diseases; studies on the durability of manufactured parts and machines; 
studies on the length of strikes and unemployment spells in economics; and studies 
on the length of traces left on a photographic plate in particle physics. 

 Likewise, the multilevel approach—which studies data that are ranked hierar-
chically or belong to different levels—is widely used in education sciences, medi-
cal sciences, organization sciences, economic, epidemiology, biology, sociology, 
and other fi elds. Here as well, scientists use characteristics measured at different 
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aggregation levels in their search for an overall treatment of a more general problem 
posed by the existence of levels in all sciences. These methods, too, are based on 
probability, and in particular the crucial notion of exchangeability. 

 However—like Durkheim, who sought to generalize the results obtained with the 
aid of regression methods—most social sciences aim beyond the mere observation 
of statistical regularities, identifi ed with the aid of probabilistic and statistical 
models. Hence the importance of intensifying the search for whatever tools can 
supplement the use of probability in the social sciences. 

 Shafer  (  1990a    )  clearly frames the problem of the limits of the application of 
probability to certain social sciences:

  An understanding of the intellectual content of applied probability and applied statistics 
must therefore include an understanding of their limits. What are the characteristics of 
problems in which statistical logic is not helpful? What are the alternatives that scientists, 
engineers, and others use? What for example are the characteristics of problems for which 
expert systems should use nonprobabilistic tools of inference? 

 He suggests that we should seek the reasons for the use of these non-probabilistic 
methods in certain sciences: ‘We must, for example, understand the nonprobabilis-
tic methods of inference for artifi cial intelligence […].’ Accordingly, we shall 
review the situation in artifi cial intelligence, but not in the same detail as we have 
analyzed population sciences. 

 While the origins of artifi cial intelligence go back to Antiquity, it is once again 
Pascal  (  1645  )  who, with his arithmetic machine, stands out as one of the true fore-
runners of the science 1 :

  [T]he instrument compensates the failings due to ignorance or lack of habit, and, by perform-
ing the required movements, it executes alone, without even requiring the user’s intention 
to do so, all the shortcuts of which nature is capable, and every time that the numbers are 
arranged on it.  

Although he does not actually claim that the machine can think, he does note that 
it can perform operations without memory errors, particularly all arithmetical calcu-
lations regardless of complexity. 

 However, it was not until the twentieth century that ways were found to formal-
ize arithmetical reasoning, then set theory, by means of Gödel’s incompleteness 
theorems  (  1931  ) , Turing’s machine  (  1936  ) , and Church’s Lambda calculus  (  1932  ) . 
First, Gödel’s two incompleteness theorems showed that those axiomatized theories 
contain true but unprovable expressions. Second, Turing’s machine, similar to a 
computer but with no limitations on its memory space, made it possible to analyze 
a problem’s effective computability. Lastly, Church’s Lambda calculus provided a 
formal system for defi ning a function, applying it, and repeating it recursively. 

 This sequence paved the way for artifi cial intelligence with Turing’s article 
 (  1950  )  envisaging the creation of machines endowed with true intelligence. In its 
most outspoken form, artifi cial intelligence refers to a machine capable not only of 
producing intelligent behavior, but also of experiencing true self-consciousness and 

  1   Guillaume Schickart reportedly built a similar machine in 1624, but it was destroyed in a fi re. 
Pascal was clearly unaware of it. 
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of understanding its own logic. Let us now examine some stages in the development 
of the science and their connections to probability. 

 Solomonoff had elaborated a general theory of inductive inference. Taking a long 
sequence of symbols that contained all the information to be used in an induction, 
he sought to design the best prior distribution of the following symbol (Solomonoff 
 1964a,   b  ) . 2  He relied especially on Turing’s work. Interestingly, many probabilists 
largely overlooked this theory of algorithmic probability for a very long time: as we 
shall see later, symbolic logic was the main qualitative tool for representing intelli-
gence before 1980. 

 Solomonoff’s method is based on the following principle. Let us take, for 
instance, the sequence of numbers 2, 4, 6, 8 and try to determine the probability 
distribution of the following number. It should be noted that very often—for exam-
ple, in IQ tests—the respondent is asked to give the following number directly, not 
the distribution. Indeed, when we examine the sequence, we immediately assume 
that the  n th term should be 2 n . In principle, therefore, the answer for the fi fth term 
is 10. But in fact there are many sequences that begin with the same four terms. For 
example, the sequence expressed by the formula     − + − +4 3 22 20 70 90 48n n n n    also 
begins with the fi rst four numbers and yields another solution to our problem: 98. 
Why, then, do we regard the fi rst formula as the most likely? No doubt because we 
unconsciously apply the principle of Occam’s razor: ‘entities must not be multiplied 
beyond necessity’. 3  To solve this problem, we thus need to consider all possible 
solutions and give their distribution. More specifi cally, it is preferable to weight 
each of these answers using a function refl ecting the complexity of each. The func-
tion may consist of Kolmogorov’s complexity, 4      ( )K s   , defi ned as the length of the 
shortest description of the sequence  s  in a universal description language such as 
Church’s Lambda calculus, used by a Turing machine. Solomonoff defi nes a prior 
 algorithmic probability , on the space of all possible binary sequences, equal to 

    −= ∑ ( )( ) 2 K s

s

P x   , where the sum applies to all descriptions of infi nite sequences 

starting with the string  x . Of this probability’s many properties, the most interesting is 
that the sum of quadratic errors in the set of sequences is limited by a constant term, 
which implies that the algorithmic probability tends toward the true probability 

when     → ∞n    faster than     1

n
  . 

 Unfortunately, the method’s main drawback is that the model is generally 
incomputable—or rather is calculable only asymptotically—because Kolmogorov’s 

  2   Back in 1960, Solomonoff had already presented a preliminary report on this theory. He noted 
that at the Summer Study Group in Artifi cial Intelligence at Dartmouth (1956), McCarthy, who 
coined the term ‘artifi cial intelligence,’ asked him the following question: ‘Suppose we were wan-
dering about in an old house, and we suddenly opened a door to a room and in that room was a 
computer that was printing out your sequence. Eventually it came to the end of the sequence and 
was about to print the next symbol. Wouldn’t you bet that it would be correct?’ (Solomonoff  1997  ) . 
Solomonoff later succeeded in answering the question with his theory of algorithmic probability. 
  3   Entia non sunt multiplicanda praeter necessitatem. 
  4   In fact, this concept was introduced by Solomonoff in  1960 , and Kolmogorov presented it later. 
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complexity is incomputable as well. However, there are proxy solutions that make 
allowance for the calculation time and, under these assumptions, offer a partial 
solution to the problem. 

 This theory is applicable to many problems in artifi cial intelligence, using 
probability distributions to represent all the relevant information for solving them. 
Solomonoff  (  1986  )  applies the theory to passive-learning problems, where the fact 
that a current prediction by the agent is correct or not has no impact on the future 
series. But we need to go one step further and examine the general case of an agent 
capable of performing actions that will affect his or her future behavior. Hutter 
 (  2001  )  extended Solomonoff’s model to active learning, combining it with sequential 
decision theory. This allowed the development of a very general theory applicable 
to a large class of interactive environments. 

 However, the forecasts based on this broader theory are limited not only by the 
fact that the model is usually incomputable, but also by the fact that the convergence 
for the algorithmic probability may not be possible in certain environments (Legg 
 1997 ). It therefore remains an ideal but unattainable model for inductive inference 
in artifi cial intelligence. 

 In fact, most artifi cial-intelligence specialists have long viewed symbolic logic as 
the ideal tool for representing intelligent knowledge and solving problems. For this 
purpose, symbolic logic relied on essentially qualitative methods. Shafer and Pearl 
 (  1990  )  described this period as follows:

  Ray Solomonoff, for example, has long argued that AI should be based on the use of algo-
rithmic probability to learn from experience (Solomonoff  1986  ) . Most of the formal work 
in AI before 1980s, however, was based on symbolic logic rather than probability theory.   

 At the beginning of the 1980s, however, many artifi cial-intelligence specialists 
came to realize that symbolic logic would never be able to describe all human pro-
cesses, such as perception, learning, planning, and form recognition. By the mid-
1980s, researchers were developing truly probabilistic methods to address these 
issues (Pearl  1985  ) . 

 Pearl’s theories initially focused on  Bayesian networks . He introduced the term, 
and the networks themselves, in an article published in 1985:

  Bayesian networks are directed acyclic graphs in which the nodes represent proportions (or 
variables), the arcs signify the existence of direct causal dependencies between the linked 
propositions, and the strengths of these dependencies are quantifi ed by conditional proba-
bilities. A network of this sort can be used to represent the deep causal knowledge of an 
agent or a domain expert and turns into a computational architecture if the links are used not 
merely for storing factual knowledge but also for directing and activating the data fl ow in 
the computations which manipulate this knowledge.  

Pearl elaborated the theory in a book (Pearl  1988  )  that used the graphs to repre-
sent the dependency structures occurring in a number of multivariate probability 
distributions. Let us see in greater detail how this matching is achieved. 

 When we analyze human reasoning, we aim to identify the mechanism 
whereby people integrate data from different sources in order to arrive at a 
coherent interpretation of them. We can always plot a graph showing these 
data—or, rather, these propositions—and the links between them. We can then 
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observe that the dependency graph forms a tree structure with nodes represent-
ing the propositions and links, arrowed or not, between the propositions that we 
regard as directly connected. For example, Fig.  1  (Shafer and Pearl  1990  )  shows 
how a doctor:

  combines evidence from a physical examination and a health history to get a judgement 
about how much at risk of heart disease the patient is, and then he or she combines this with 
the patient’s description of an apparent angina episode to get a judgement about whether the 
patient really has angina.  

From this fi gure, Shafer and Pearl conclude that:

  Physical examination and Health history are conditionally independent of Episode descrip-
tion given Risk.    

 This conditional independence is the sought-for link with probability theory, 
where two events  A  and  B  are conditionally independent given a third event  C  if 
and only if:

     
( ) ( ) ( ).P A B C P A C P B C∩ =

   

It is thus easy to see that, in principle, conditionally independent events have no 
reason to be independent of one another. 

 For the moment, the fi gure does not contain any numbers. As applied here, prob-
ability theory is more fundamentally concerned with the structure of reasoning and 

  Fig. 1    Diagnostic of angina (Source: Shafer and Pearl  1990  )        

Physical examination Health history

Risk Episode description

Angina
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the causality links contained therein than with the actual values of the probabilities. 
Pearl  (  1985  )  summed up the approach as follows:

  This suggests that the fundamental structure of human judgemental knowledge can be rep-
resented by dependency graphs and that mental tracing links in these graphs are responsible 
for the basic steps in querying and updating that knowledge.  

We can thus link probability theory to other formalisms used in artifi cial 
intelligence—in particular, symbolic logic. 

 Lastly, we need to quantify the links between propositions that will indicate the 
strength and type of the conditional dependencies between the propositions. These 
weights can be regarded as conditional probabilities. Such probabilities are in fact 
subjective, for they represent degrees of belief in events; the data serve to strengthen, 
update, or reduce the degrees. That is why Pearl called these fi gures ‘Bayesian net-
works.’ They also enable us to identify relationships lasting over a period of time. 

 We shall not take our discussion of the probability-based approach in artifi cial 
intelligence further: for more details, see Pearl  1988,   2000 ; Shafer and Pearl  1990 . 
Bayesian networks are now used in many other fi elds such as econometrics, epidemi-
ology, speech recognition, signal processing, error-control codes, medical diagnosis, 
weather forecasting, and cellular networks.  

   Revisiting Causality in Social Science 

 Using Pearl’s work as our starting point, we shall now examine the more general 
conditions for the validity of the counterfactual theory in most social sciences. We 
shall also investigate whether alternative theories provide a more effective approach 
to causality in social science as a whole. 

 Pearl  (  1995,   2001  )  takes the models that he initially proposed for artifi cial intel-
ligence and generalizes them to other social sciences. He shows that the causal 
models derived from the graphic models described above are generalizations of 
structural analyses used in engineering (Duncan and Collar  1934  ) , biology and 
genetics (Wright  1921  ) , economics (Tinbergen  1939 ; Manski and McFadden  1981  ) , 
epidemiology (Greenland and Poole  1988  ) , and many other social sciences (Degenne 
and Forsé  1994,   1999 ; Sobel  1995  ) . 5  Counterfactual analyses (Lewis  1973a,   1973b ; 
Holland  1986 ; Rubin  1974,   1977  ) —which we outlined briefl y in the Conclusion to 
Part II—are also intimately linked to causal models. 

 Most of the discussions published in conjunction with Pearl’s fi rst article  (  1995  )  
on this generalization note the value of addressing causality in probabilistic models 
but are highly critical of the author’s conclusions. David Cox, for instance, has this 
to say about structural analyses:

  The diffi culties here are related to those of interpreting structural equations with random 
terms, diffi culties emphasised by Haavelmo 6  many years ago: we cannot see that Pearl’s 
discussion resolves the matter.  

  5   These models are still referred to as ‘social networks’. 
  6   Nobel price in economic sciences, 1989: he wrote a paper (Haavelmo  1943  )  which is at the early 
roots of structural equations. 
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In the same vein, Dawid shows that counterfactual analysis is of little value:

  To build either a distributional or a counterfactual causal model, we need to assess evidence 
on how interventions affect the system, and what remains unchanged. This will typically 
require a major scientifi c undertaking. […] In most branches of science such a goal is quite 
unattainable.  

For our fi nal quotation, we take Imbens and Rubin, but other discussants concur:

  We feel that Pearl’s methods, although formidable tools for manipulating directed acyclical 
graphs, can easily lull the researcher into false confi dence in the resulting causal conclu-
sions. Consequently, until we see convincing applications of Pearl’s approach to substantive 
questions, we remain somewhat sceptical about its general applicability as a conceptual 
framework for causal inference in practice.   

 However, as noted in our Conclusion to Part II, the most powerful attack on 
counterfactual analysis was the article by Dawid  (  2000  ) , who rests his case with 
these words:

  I have argued that the counterfactual approach to causal inference is essentially meta-
physical, and full of temptation to make “inferences” that cannot be justifi ed on the basis 
of empirical data and are thus unscientifi c.  

He clearly demonstrates the dangers of counterfactual approaches, graphic 
models, and structural analyses, which leave implicit too many assumptions needed 
for causal inference. In structural graphic models, there are no scientifi c grounds for 
using counterfactuals, which are by defi nition unobservable, or latent variables, 
which are not genuine concomitant variables, i.e., measurable variables not affected 
by the treatment. His position is unambiguous:

  I term such functional models  pseudodeterministic  and regard it as misleading to base 
analyses on them. In particular, I regard it as unscientifi c to impose intrinsically unverifi -
able assumed forms for functional relationships, in a misguided attempt to eliminate the 
essential ambiguity in our inferences.   

 Many discussants of this article, particularly Pearl, actually confi ned themselves to 
arguments on principle without truly addressing the more basic issues. Despite these 
reactions, Dawid confi rms that there is nothing to be gained by introducing vague and 
unverifi able information into probabilistic reasoning in addition to basic information. 

 In fact, in the same article, Dawid  (  2000  )  distinguishes two types of causality already 
singled out by Holland  (  1986  ) : the ‘effects of causes’ and the ‘causes of effects.’ The 
fi rst type answers the question: ‘I have a headache. Will it help if I take aspirin?’ 

 The aim here is to compare the expected consequences of different possible inter-
ventions. Whereas this type of question is barely addressed by counterfactual analysis, 
it is effectively dealt with by  decision theory  (DT), which offers a clear solution. 

 The second type of causality answers the question: ‘My headache is gone. Is it 
because I took aspirin?’ The goal here is to understand the causal relation between 
a phenomenon that has already occurred and an earlier intervention. This is the 
effect examined by counterfactual analysis—an effect that decision theory fi nds 
problematic. As Dawid explains:

  Since, within DT, both indicative and subjunctive conditioning are affected by the same 
formal conditioning rule, this would require conditioning my initial uncertainty both 
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(indicatively) on  X  = 1 7  and (subjunctively and counterfactually) on  X  = 0. But the conjunction 
of these two conditions is the impossible event Ø—and conditioning on Ø is not meaningful 
within DT. (Dawid  2007  )   

As noted earlier, Dawid, along with many other researchers (Cartwright  2007, 
  2009 ; Lecoutre  2004  ) , considers that neither counterfactual analysis nor structural-
equation modeling nor graphic models are ultimately capable of dealing with the 
‘causes of effects’ properly. 

 Moreover, we should not forget that there are many other ways of ‘seeking a 
reason for causes’—as the title of a volume edited by Franck clearly indicates 
[ Faut-il chercher aux causes une raison? ]  (  1994  ) . An excellent contribution by 
Hespel  (  1994  )  to this gathering explains that there are at least eight major contem-
porary theories of causation, and that counterfactual theory is just one of many: 
classical theory (Nagel  1961  ) , nomologico-deductive theory (Hempel and 
Oppenheim  1948  ) , functional theory (Pearson  1911  ) , conditional theories (Mill 
 1843  ) , probabilistic theories (Suppes  1970  ) , manipulability theories (von Wright 
 1971  ) , activity theory (Madden  1969  ) , and counterfactual theory (Lewis  1973a,   b ; 
Pearl  1995  ) . Accordingly, we would be well advised to reconsider the rejection of 
the notion of ‘cause’ on the grounds that counterfactual causality is unsuitable: we 
should not throw out the causality baby with the counterfactual bathwater. 

 The approach to causality by various philosophers of science (Railton  1978 ; 
Salmon  1984 ; Franck  1994,   2002 ; Bechtel and Richardson  1993 ; Craver  2007 ; 
Darden  2002,   2006 ; Glennan  2002,   2005 ; Little  2010 ; et al.) working in close coop-
eration with scientists offers another answer to the question—thanks to the notion 
of ‘mechanism’ or underlying process. First used in discussing machines, the notion 
was rapidly adopted in the seventeenth century for describing more complex sys-
tems such as cells and biological processes. The recent application by Illari and 
Williamson  (  2010  )  to natural selection and protein synthesis seems to augur well for 
its implementation in biology. Meanwhile, Frank has proposed its use in the social 
sciences  (  1994,   2002  ) . 

 As the focus of our book is not the philosophy of science, we can provide only a 
brief description of the approach set out by these authors. The term ‘mechanism’ was 
introduced into the discussion and explanation of causality by Railton  (  1978  )  and 
Salmon  (  1984  ) , who view it as a network of interactive processes (Glennan  2002  ) . 
More recent writings describe it as a complex system instead. Glennan  (  2002  ) , for 
example, defi nes it thus:

  A mechanism for a behavior is a complex system that produces that behavior by the interac-
tion of a number of parts, where interaction between parts can be characterized by direct, 
invariant, change-relating generalizations.  

This defi nition, initially applied to biological and neurological sciences, is also 
valid for many other fi elds such as the social sciences, where one speaks of social 
mechanisms. The concept is also hierarchical (Machamer et al.  2000  ) , for the parts 
of a mechanism may themselves be full mechanisms and vice versa. 

  7    X  = 1 means that I have taken aspirin,  X  = 0 that I have not. [D.C. note]. 
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 Let us now see how the approach operates more specifi cally in the social sciences. 
The fi rst step is to systematically observe the social phenomenon or phenomena that 
we want to explain. This is, for example, what demographers have been doing for 
the past 350 years by measuring mortality, fertility, nuptiality, then internal and 
international migrations. The second step is to infer from the observation of this 
phenomenon the functions of the mechanism that are needed to generate it. 
Unfortunately, it is a step that a number of social sciences, including demography, 
have not yet succeeded in taking. However, the study by Illari and Williamson 
 (  2010  )  shows, for example, that protein synthesis can be understood as a process 
whose function is to decode the information contained in DNA in order to allow the 
production of proteins. The third step is to use the identifi ed functions as the basis 
for modeling the social or more general mechanism that produces the phenomenon 
studied. Some of these mechanisms have already been studied in demographic 
cases, but the lack of understanding of the functions makes this study incomplete 
and—most important—almost impossible to generalize. Lastly, the causes of 
the mechanism are those that perform its functions through certain operations. 
The causes can vary according to the societies and the phenomena studied, whereas 
the functions will be stabler, albeit not eternal. 

 The ‘mechanism’ approach can also satisfy the wish to infl uence behavior, 
although such a capability may, on the face of it, seem far removed from the pur-
poses of the approach. If we understand the social mechanism that generates a 
behavior, it becomes possible to act on that behavior. But, if we have not identifi ed 
the mechanism’s functions, the action may be misdirected. 

 Lastly, by providing full knowledge of the social or biological mechanism 
studied, the approach allows a more effective use of Bayesian networks (Casini 
et al.  2011  )  without the problems posed by unobservable and latent variables, as in 
counterfactual and structural analysis. 

 For the moment, however—apart from some fi elds such as game and sports 
modeling (Parlebas  2002  ) , archeology (Gardin  2002  ) , and written communication 
(Pratt  2010  ) —the ‘mechanism’ approach has not yet managed to model broader 
domains in the social sciences, such as sociology, economics, and demography. In 
sum, this is a highly promising avenue for strengthening the validity of the social 
sciences; unfortunately, it has been little explored so far, owing to the complexity 
of social phenomena.  

   Revisiting the Notions of Individual and Levels 

 In Chap. 5, we solved the complicated problem of individual cases by introducing 
the notion of statistical individual, which informs all paradigms of population 
sciences by showing that each paradigm corresponds to a different statistical indi-
vidual, and that:

  [a]dmittedly, scientifi c knowledge of the human fact cannot be gained except through 
different planes, but only if one discovers the controllable operation that reproduces the fact 
stereoscopically from those planes (Granger  1994  ) .  
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This reasoning extends to all the social sciences, and the more general problem 
now is not ‘how do we move from the statistical individual to the population?’ but 
‘how do we move from the actual individual to the statistical individual?’ and, in 
the opposite direction, from the statistical individual to different supra- or infra-
individual aggregation levels. 

 Let us begin by examining how the probabilist can formulate the problem more 
precisely. Suppose that each member of a given population follows a personal pro-
cess, whether demographic, economic, sociological, or other. We pick a random set 
of paths in this population. As any random process can be viewed as a probability 
distribution over a set of paths, it is ultimately as if we were making repeated obser-
vations of a particular random process. We can thus construct the process underly-
ing the set of observed paths, whose probabilist structure is identifi able here. The 
process will be applicable to the statistical individual, defi ned by the observation 
set, but not to any random person selected from the total population. 

 How do we go from observed individuals to the statistical individual, for exam-
ple in the event-history analysis of an event such as death or fi rst childbirth? 8  Let  i  
be an observed individual whose instantaneous rate in  t  is     ( )ih t   . As a specifi c 
performance of the process represents an individual picked at random, it is possible 
to eliminate index  i . 

 For a particular individual, the distribution of the random instant of event  T  is 
determined by the instantaneous rate in the form:

     
( ) ( )
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where     ( )S t h    is the individual survivor function. To obtain the survivor function 
for the population of statistical individuals, we simply take the formula’s mathe-
matical mean:
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In other words, the population’s survivor function is the mean of the individual 
ones, calculated from the distribution of individuals in the initial instant. 

 Similarly, there is a link between each individual’s instantaneous rate,     ( )h t   , and 
that of the population of statistical individuals,     ( )h t   :

     ( )⎡ ⎤= >⎣ ⎦( ) .h t E h t T t    (2)  

The instantaneous rate for the population is a mean of the individual instanta-
neous rates, but the mean is calculated only for individuals at risk in instant  t . 

 To illustrate the above, let us consider a population,  P , that we assume to be 
either homogeneous in its entirety, or composed of two homogeneous groups, 

  8   See Yashin and Manton  (  1997  )  and Aalen et al.  (  2008  )  for more details. 
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    1P    and     2P   . If we say that the statistical individuals drawn in P follow an identical 
process, we obtain the preceding estimates of the survivor function (1) and the 
instantaneous rate (2). But we can also state, without the slightest contradiction, 
that the statistical individuals picked separately in     1P    and     2P    respectively follow 
the processes defi ned by     1( )h t    and     2 ( )h t   . In this case, if the groups contain     1N    and 
    2N    individuals with     = +1 2N N N   , then the survivor function will be:

     
= +1 2

1 2( ) ( ) ( ),
N N

S t S t S t
N N    

and the instantaneous rate will be:

     
= +1 1 2 2

1 2

( ) ( )
( ) (1) ( ).

( ) ( )

N S t N S t
h t h h t

N S t N S t     

 Thus, depending on whether we make our selection from  P  or separately from 
    1P    and     2P   , the statistical individuals are not identical, despite the fact that they are 
the same people. 

 More generally, we can connect the risks faced by statistical individuals to those 
faced by the population when we introduce observed or even unobserved character-
istics. For further details, we refer the interested reader to the article by Yashin and 
Manton  (  1997  ) . 

 But, in Aristotle’s words, ‘none of the arts theorize about individual cases’ 
(Rhetoric, I:2). Whatever characteristics we include in the analysis, it will never be 
possible to predict the behavior of a given individual, even if we know his or her 
past history in many areas of life. All we can do is estimate a probability for the 
behavior, whose variance will be all the smaller as the number of observed charac-
teristics is high and well chosen. In this way, we can approach Jacob Bernoulli’s 
wish of being able to determine, from a study of a large number of individuals, the 
probability that ‘Titus will die before age ten.’ 

 We can, however, explore the possibility of identifying the type of process that, 
independently of the characteristics that infl uence it, governs the occurrence of 
demographic, medical, economic, and social events in people’s lives. 

 This is worth doing for the following reason: some theoretical processes have 
been studied for their ability to generate the standard forms of curves showing the 
instantaneous rates, but the efforts to prove the validity of the processes remain 
uncertain because of the absence of robust theories on the occurrence of these 
events. Two main approaches have been followed. 

 In this chapter, we already discussed the concept of frailty, which assumes that 
individual instantaneous rates are proportional to one another, each individual being 
characterized by his or her specifi c proportionality ratio. The inability to identify 
these individual ratios (Trussell  1992  )  makes the approach highly speculative and 
weakens its results. In some fi elds such as medicine, however, biological informa-
tion can provide a more robust underpinning for the analysis. 

 Regarding testicular cancer, for instance, there is good evidence to suggest 
that variations in individual risk exposure are determined by events in fetal life 
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(Klotz  1999  ) . This makes it possible to develop a more robust frailty model 
(Aalen and Tretli  1999  )  with a very good fi t to observations, even though it can-
not fully demonstrate the model’s validity. 

 Another approach consists in introducing a frailty that develops like a stochastic 
process, such as a diffusion process. Aalen et al.  (  2008  )  describe it thus:

  The stochastic process would then have a deterministic component which could be controlled 
though observed covariates, and a random component describing a level of uncertainty regard-
ing unobserved covariates and a fundamental level of time-changing heterogeneity.   

 They accordingly introduce different types of stochastic processes, including dif-
fusion models 9  and models based on Levy processes. 10  However, it is hard to separate 
the mechanisms underlying these models solely on the basis of the observation of 
instantaneous rates measured for the total population. This leaves little hope, for the 
time being, of identifying the types of processes at work in the various sciences. 

 The introduction of multiple aggregation levels makes the analysis even more 
complex. In Chaps.   4     and 5, we noted that multilevel analysis can supplement an 
event-history analysis in demography and other social sciences. In our view, multi-
level analysis is necessary in most biological and social sciences, and it is useful to 
generalize it. 

 Let us return to the example of Illari and Williamson’s study  (  2010  )  on natural 
selection and protein synthesis envisaged in terms of ‘mechanisms.’ The authors 
have this to say:

  Once the phenomenon is identifi ed, mechanistic explanation characteristically proceeds by 
decomposing the phenomenon into lower-level components. The activities of lower-level 
components are often regarded as further phenomena and further explanations are sought, 
so that decomposition moves to another level down. This may iterate many times. So mech-
anisms discovered are usually located in just such a nested hierarchy, with relations to both 
lower-level and higher-level mechanisms in the hierarchy.  

While multilevel analysis allows an examination of some of these issues, it 
does so under assumptions that we may regard as restrictive, such as the normality 
of the distribution of randoms at a given aggregation level. This fi eld of analysis 
is in fact far wider and deserves further exploration. As Franck very rightly 
observes  (  1995  ) :

  The point is to determine how the different stages or levels connect, from top to bottom and 
from bottom to top.  

He shows that, once we have accepted the concept of hierarchy, there is no longer 
any reason to choose between holism and individualism. 11  But he does not propose 
a specifi c method to analyze these levels. 

 By contrast, as noted in Chap. 5, Goldstein  (  2003  )  has developed multilevel-
analysis methods applicable to many social sciences including education sciences, 

  9   A diffusion process is a Markov process in continuous time, with continuous sample paths. 
  10   A Levy process is a stochastic process whose increments are stationary and independent. 
  11   This concept had already been introduced by Jacob  (  1970  )  with his notion of a hierarchy of 
‘integrons.’ 
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epidemiology, demography, and geography. But, despite such successes, these 
models still require considerable development. 

 First, we need to determine more specifi cally which aggregation levels to use in 
order to ensure that such an analysis will be effi cient. These levels, very often man-
dated by the nature of the survey (Courgeau  2003,   2007a  ) , are not necessarily the 
ideal ones for analytical purposes. We must try to identify which levels are truly 
needed in a given analysis. 

 It would also be essential to round out such an analysis—which starts from a 
specifi c, often individual aggregation level—with other analyses that would improve 
the links between levels. For instance, at the level of a given community, isolated 
individual actions may address a problem concerning the entire community. At a 
more aggregated level, those actions may move institutions to offer proposals 
eventually resulting in policy measures. The latter will, of course, infl uence 
individual behavior, producing new actions in response to their unexpected but 
undesirable effects, and so on. 

 This feedback loop offers a broad research topic that remains to be investigated 
in many fi elds.  

   Predicting Behavior in Social Science 

 In the Conclusion to Part I and in this General Conclusion, we have discussed 
 decision-making in response to uncertainty. Another, related issue arising in the 
social sciences is forecasting. Here as well, our aim is not to offer an in-depth 
 discussion of so vast a subject, but to outline some recently explored paths and show 
the connections with probability. 

 One approach—the systemic approach—regards many sets, particularly social 
and economic, as complex systems whose functioning cannot be understood 
unless they are examined in their totality. Founded by Bertalanffy in  1968 , the 
approach considers a system of time-dependent simultaneous equations that enable 
us to incorporate a large number of characteristics as well as their interactions. 
It therefore does not introduce probability, and that is why we shall not discuss it 
further here. However, as an example, we should mention the Club of Rome 
Report (Meadows et al.  1972  ) —the target of well-known mathematical, economic, 
demographic, biological, and environmental criticisms (Berlinski  1976  ) . 

 The second approach—known as the agent-based model or multi-agent 
simulation—simulates the behaviors of a set of individuals or collective entities 
belonging to a complex system. Like the fi rst approach, it is time-dependent, but it 
can also be spatially situated. These models are used in many social and biological 
sciences. They are based on the very often complex modeling of agent behavior in 
a wide variety of fi elds, simulated stochastically on computers. For this purpose, the 
models use the results of event-history and multilevel studies that model behavior 
using their full array of probabilistic tools. 
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 As space precludes a detailed presentation here of forecasting methods using 
agent-based models in biological, environmental, and social sciences, we refer the 
interested reader to the following studies in specifi c fi elds: population sciences 
(Billari and Prskawetz  2003  ) , epidemiology (Hooten et al.  2010  ) , economics 
(Remenik  2009  ) , biology (Inkelmann et al.  2010  ) , sociology (Macy and Willer 
 2002  ) , geography (Gimblett  2002  ) , and ecology (Hooten and Wilke  2010  ) . 

 Let us, however, take a closer look at the theoretical bases of these models of 
computer-based simulation of human behavior, and at the procedures for verifying 
the validity of their underlying assumptions. 

 The models for predicting human behavior, particularly agent-based models, 
are essentially theoretical models that use certain aspects of the phenomena studied 
in order to try to reconstruct the phenomena as fully as possible with the aid of 
computers. Burch  (  2003  )  describes computer-assisted modeling as follows:

  The genre of agent-based modelling will likely occupy a central place in this work. It pro-
vides a feasible approach to study interrelations between the macro- and micro-levels in 
demography—exploring links between individual decisions and aggregate demographic 
patterns, a realm that up until now has resisted analysis.  

What he says about demography fully applies to all social and biological 
sciences. 

 As we can also see, this is the opposite of the empirical approach, which pre-
vailed in the social sciences at least throughout the twentieth century. The empirical 
approach sought to test the validity of statistical models and theories, and rejected 
those that did not fi t the data. By contrast, the new approach is less restrictive from 
a statistical standpoint, but seeks to deduce observed facts from a formal system of 
connections between different characteristics and multiple aggregation levels. The 
search for these underlying processes requires a theoretical refl ection on the observed 
properties of the phenomenon or phenomena studied, and an abstraction of the for-
mal model that explains the phenomena. This    new approach therefore resembles 
the mechanist approach to causality described in Sect. 2 of this General Conclusion. 
Both are based on induction, in contrast to the primacy of deduction in the empirical 
approach. 

 To test the validity of such processes, we examine whether they can reconstruct 
the development of the phenomena studied over time. This verifi cation is far more 
complex than the simple statistical test of an empirical model, for we need to evalu-
ate both a simulation model and its underlying assumptions. Such testing, therefore, 
will inevitably be incomplete and will require a variety of approaches. 

 We can begin by testing the model in standard fashion, i.e., by comparing its 
results with the observed changes in the phenomena studied. Some changes may be 
estimated correctly, others far less so. Unlike with the empirical approach, these 
fi ndings do not invalidate the model but will allow us to improve it by trying to 
model the improperly estimated changes differently. 

 Reeves  (  1987  ) , for instance, developed a microsimulation model for households, 
families, and kinship members based on U.S. observations ranging from 1900 to 1981. 
Wachter et al.  (  1997,   1998  )  tested the quality of these results using the 1987–1988 
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round of the National Survey of Families and Households, which supplied detailed 
information on the numbers of persons and their ages. Here are some of the positive 
results of these tests  (  1998  ) :

      (i)    Some kinship statistics—average grandchildren below age 70, average siblings 
below age 40—were predicted with impeccable accuracy. Where the survey results 
are themselves more precise, the microsimulations achieve good accuracy.  

    (ii)    The random error in the simulations done in 1981 was as small as the sampling 
error in the 1987–1988 survey.      

Others are negative:

      (v)    There are occasional substantial systematic discrepancies.  
    (vi)    Not surprisingly, wrong guesses about future demographic rates produce 

wrong numbers for kinship forecasts.      

The authors conclude that while some results are very accurate, the negative ones 
are due to assumptions on mortality at older ages and the heterogeneity of fecund-
ability that need to be reviewed in order to improve the projections. As suggested 
above, however, these negative results do not call into question the theoretical model 
developed for simulation purposes; instead, they will allow us to improve it. 

 Bijak  (  2011  )  has proposed another type of model to forecast international migra-
tion fl ows. He notes the many problems involved, such as the diversity of defi nitions 
and measurement errors. One way to overcome these inconsistencies is to use a 
Bayesian approach, which Bijak regards as an ‘axiomatic reduction of the notion of 
“uncertain” to the notion of “random” ’ (Robert  2006  ) . For this purpose, he uses 
observations collected in the previous 15–20 years in order to compare the forecasts 
prepared by means of Bayesian and frequentist methods with observations for the 
period 2005–2007. The forecasts concern several European countries. The results 
clearly show the superiority of Bayesian methods: the frequency of empirical obser-
vations lying within the confi dence intervals predicted by the Bayesian projection 
consistently exceeds—by far—the one predicted by the frequentist projection under 
the same assumptions. 

 Reviewing many other examples of estimates of future behavior in various social 
sciences, Burch  (  2002  )  concludes:

  The key to all of this is that the computer and associated software has extended much more 
our ability to do numerical computations. It had in effect extended our powers of logical 
inference and reasoning. We are able to deduce the strict logical consequences or entailments 
of systems of propositions much more complicated than can be dealt with using logic or even 
analytic mathematics.  

We can also conclude that, while probability has a role to play in these forecasts, 
it is a modest one for the time being, although a Bayesian approach seems more 
capable of dealing with the uncertainty of the projections. 

 However, while the issue has barely been addressed so far, the links between the 
mechanist approach and probability will need to be examined in depth, despite the 
fact that the two approaches seem—at least on the face of it—hard to reconcile.  
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   Epilogue 

 While we have sometimes touched upon the contribution of probability to the natural 
and biological sciences, the main purpose of our book is to discuss their contribution 
to the social sciences. We use this term to designate all the sciences that study social 
groups (whether human or animal), their behavior, and their evolution. Throughout 
the volume we have offered many examples of the application of probability to soci-
ology, demography, epidemiology, education sciences, legal sciences, actuarial 
 sciences, economics, criminology, political sciences, communication  theory, paleo-
demography, and artifi cial intelligence. There are clearly many other uses of proba-
bility in these sciences that cannot all be mentioned here, but the overriding point is 
that the applications concern nearly all the other social sciences, including  archeology 
(Buck et al.  1996  ) , anthropology (Thomas  1986  ) , linguistics (Bod et al.  2003  ) , 
 ecology (Patil and Rao  1994  ) , and history (Roehner and Syme  2002  ) . 

 We can therefore conclude that probability is used throughout the social sci-
ences, none of which seems to elude its hold, even if other approaches and theories 
are also used in these sciences. 

 This permits Lazarsfeld  (  1954  )  to note:

  There is a general awareness that probability ideas play a dominant role, explicitly or 
implicitly, in the study of human behaviour. […] The predictions of the social scientist will 
always be probabilistic ones […].  

Indeed, since those words were written, probability has steadily extended its 
reach. However, in some social sciences, particularly the last-mentioned above, the 
applications have become less frequent and have sometimes been criticized. 

 The attacks often proceed from a misunderstanding of the various approaches to 
probability that we have described in detail: objective probability and subjective or 
logical epistemic probability. As we noted, social scientists barely distinguish 
between these approaches, often assuming that probability can only be objective, or 
interpreting the Bayesian approach incorrectly. 

 For instance, we showed in Chap.   4     the diffi culties encountered by paleodemog-
raphers in estimating the age structure of past populations in the absence of civil-
registration data. This diffi culty is largely due to the use of frequentist methods or 
to an interpretation of the terms ‘Bayesian’ or ‘epistemic’ that differs from the 
ones offered here. Masset  (  1982  ) , using the approximations method—which is 
 frequentist—obtained disappointing results, with many null age groups. This led 
him to prefer the probability-vectors method, which he regarded as more rustic but 
truer. Similarly, Konigsberg and Frankenberg  (  1992  )  describe the IALK method as 
Bayesian, because it makes some use of Bayes’s theorem. In fact, however, it closely 
resembles Masset’s approximations method: the unknown parameters are always 
assumed to be fi xed, whereas a Bayesian method will assume them to be random. 
As we have seen, the use of a Bayesian method overcomes all these diffi culties. 

 Likewise, Bonneuil  (  2004  )  recognizes the usefulness of statistical methods in 
history, for example to study inter-minority confl icts (Gurr  1993  ) . But he criticizes 
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their use by Roehner and Syme  (  2002  ) , who justify a frequentist approach on the 
grounds of similarities between different historical events. Bonneuil argues that an 
approach based on dynamic game theory would be better suited, as it allows 
 decision-making in the historical domain. His suggestion seems eminently sensible, 
but he forgets to point out that the approach based on game theory and decision 
theory, although amenable to other theories, can also resort to subjective probability 
theory. This has been noted by a number of economists and probabilists 
(von Neumann and Morgenstern  1944 ; Robert  2006  ) , and by us in Chap.   2    . 

 However, although the role of probability in the social sciences has sometimes 
been misinterpreted, it is hardly possible to assert that its importance in all these 
sciences is identical. In particular, many aspects of social phenomena must use 
other, non-probabilistic approaches. As Bartholomew  (  1975  )  observed:

  The statistician fully recognizes that his contribution concerns only one of many aspects 
and that when major policy decisions are made his part must be weighed with others and, 
in the end, may not be decisive. Yet he insists that to ignore the quantitative dimension is as 
serious an error as to rely on it alone.  

Bartholomew was responding to critics who argued that human values can be 
neither measured nor quantifi ed, and that any method claiming that they could be is 
ineffi cient at best, and dangerous at worst. 

 Keeping this major restriction in mind, we can say, at the end of this work, that the 
notion of probability truly fostered the emergence of the main social sciences in the 
seventeenth century by enabling their practitioners to formalize the uncertainty that lies 
at the heart of all those disciplines. This formalization, of course, was steadily enhanced 
to the point of allowing an axiomatization of probability in the twentieth century. We 
have shown that, despite the resulting fragmentation into at least three broad types—
objective, subjective, and logical probability—a reunifi cation seems possible and has 
even already been attempted. New paths have also been opened to extend the use of 
probability outside the decision-making sphere and to develop intuitionist approaches. 

 In most social sciences, by contrast, axiomatization remains a very remote prospect. 
However, our discussion of the paradigms of population sciences has shed light on the 
topic and provided a ‘stereoscopic’ reproduction of the various angles from which that 
science has been approached. We have shown that there is room for non-additive cumu-
lativity in these sciences. A similar exercise concerning the other social sciences would 
be needed in order to understand them better, and we strongly encourage it. 

 Lastly, we have highlighted new alternatives—such as the event-history and 
multilevel approaches—that can be implemented in many social sciences. While 
these shared methods enable us to adopt a synthetic view of the social sciences, they 
do not diminish the need for each of these sciences. Nevertheless, the social 
sciences will be able to converge toward the real individual only by integrating the 
statistical individual into a world whose nature is all at once social, political, eco-
nomic, religious, and so on—a world ever closer to the complexity of the world 
inhabited by the people actually observed, a world where these diversities are expe-
rienced simultaneously and not in separate sciences. However, the observed indi-
vidual will never be attained, but can only be envisaged as the unattainable asymptote 
of all the worlds to which the statistical individuals belong.   
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   Glossary 

  Axioms    Collection of formally stated assertions deduced from the properties of 
experimental phenomena, from which other formally stated assertions follow by 
the application of well-defi ned rules.   

  Coherence (probability)    One should assign and manipulate probabilities so that 
one cannot be made a sure looser in betting based on them.   

  Completeness (axioms)    A set of axioms is complete if, for any statement in the 
axiom’s language, either that statement or its negation is provable from the axi-
oms.   

  Consistency (axioms)    A set of axioms is consistent if there is no statement such 
that both the statement and his negation are provable by the axioms.   

  Consistency (plausibility)    (1) If a conclusion can be reasoned out in more than 
one way, then every possible way must lead to the same result. (2) All the evi-
dence relevant to the question must be taken into account. (3) Equivalent states of 
knowledge are always represented by equivalent plausibility assignments.   

  Cumulativity    A dynamic principle of consistency during the revisions of social 
sciences, which ensures that the results of a new theory remain together with 
some results of the old one and complement them.   

  Entropy (Shannon)    A numerical measure of the information provided by a full set 
of propositions on a subject.   

  Equipossibility    Concept that allows one to assign equal probabilities to outcomes 
when they are judged to be equally likely.   

  Exchangeability    Random variables are exchangeable if their joint distribution is 
invariant under permutation of its arguments.   

  Paradigm    Theoretical framework within which one moves from experimental 
phenomena to a scientifi c object.   

  Physical impossibility    Random event corresponding to a measure zero set.   
  Population sciences    Studies of populations, including: size, composition and dis-

tribution, and the causes and consequences of changes in these characteristics.   
  Probability    A numerical measure, between 0 and 1, of the certainty of some event 

or some proposition.   
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  Probability space    A triplet ( W , B ,  P ), consisting of a set  W  (called the sample 
space), a  s -algebra of sub-sets B , (called events) and a measure  P  (called the 
probability measure).   

  Set theory    Branch of mathematics that studies collections of objects.   
  Social science    Study of social groups.   
  Statistical inference    To reach the most robust conclusion possible by making the 

best use of the incomplete information one may have on a given phenomenon.   
  Statistics    Study of the collection, organization, analysis and interpretation of 

data.   
  Utility    A function that takes a numerical value for each possible state of a system 

and is intended to measure the benefi ce or usefulness of that state.    
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