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Supervisor’s Foreword

The last decade has seen a rapidly growing scientific community studying the
quantum behavior of fabricated mechanical objects—from nanomechanical reso-
nators with mass of a few picogram up to macroscale mirrors of several kilogram.
Although the interest in this topic is not new, it was for a long time far from being
an experimental reality. In fact, early Gedanken experiments that involve quantum
states of massive mechanical mirrors can be traced back to the very beginning of
quantum theory: Einstein used blackbody radiation pressure fluctuations on a
mechanically moving mirror to argue for the intrinsic wave-particle duality of
light [1]; Schrödinger, being puzzled about the question of completeness of a
quantum description of nature, essentially discussed entanglement between a
single photon and a massive mirror—4 years prior to the seminal paper by
Einstein, Podolsky, and Rosen on this topic [2].

Later, in 2003, the pioneering experiments by Schwab et al. showed that such
quantum states have finally come within reach of technology, at least for nano-
mechanical devices [3, 4]. These first experiments were motivated purely by
curiosity about the behavior of quantum physics for macroscopic objects. Also
today, this is one of the main driving forces, having now culminated in the first
demonstrations of nanomechanical quantum behavior [5, 6]. At the same time, the
prospect of quantum control over mechanical devices has inspired numerous ideas
for applications in the domain of (classical and quantum) information processing
and high-precision sensing.

The use of quantum optic concepts emerged early as a promising direction.
Radiation pressure forces on mechanical devices inside optical or microwave
cavities provide, in principle, full quantum control over the mechanics [7].
Following up on prior results in the microwave domain, cavity-optomechanics with
laser light was eventually realized by a series of experiments that demonstrated for
the first time self-cooling and -amplification of micro-mechanical motion (see the
introduction of this thesis for references). This was the state-of-the-art in the field
when Simon started his Ph.D.
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Simon’s thesis focused on the next generation of cavity optomechanics
experiments that aim to achieve quantum optical control over mechanical quantum
states, i.e., quantum optomechanics. This requires (i) the initialization of the
mechanics in a state of low entropy, and (ii) a sufficiently strong coupling rate
compared to the decoherence rates of the system. His experiments were taking the
first steps in this direction. He realized the first successful laser cooling experiment
in a cryogenic environment, which allows to significantly reduce the mechanical
coupling to the thermal environment. A follow-up experiment with improved
micromechanical structures achieved cooling of the center-of-mass motion of a
micromirror to a thermal occupation of 30 phonons, which was a world-record low
temperature at that time. Further development of the optical readout techniques, in
particular the implementation of optical homodyning at sideband frequencies,
finally allowed to demonstrate the first instance of the strong coupling regime
between micromechanical motion and the optical cavity field.

These experiments have been part of a worldwide, concerted effort to push the
optical control of mechanical systems into the quantum regime, and many other
groups have worked hard and successfully on related experiments with different
nano-, micro-, and macromechanical structures. They all have played an important
role in bringing quantum optomechanics experiments with micromachined
mechanical devices to the next level. In the short time since the completion of this
thesis the field has developed at an even faster pace. We have by now already seen
first mechanical devices in their quantum regime and a plethora of ideas and
experiments have been put forward to exploit this fascinating new world of
quantum ‘‘mechanics’’.

Vienna, August 2012 Markus Aspelmeyer
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Chapter 1
Preamble

Classical physics describes our everyday world very accurately and has done so
for the past centuries. However, when we look very closely, that is, on the scale of
molecules and atoms, things start to behave differently and we have to use a physical
description that has become known as quantum theory. This theory was devised in the
first half of the Twentieth century and has been successful at predicting experimental
outcomes with unprecedented precision, leading to many new inventions without
which the modern computer age, for example, would be unthinkable. Quantum effects
however have remained elusive, only being observable in the microscopic world and
the study of quantum behavior of truly macroscopic systems has remained a long
outstanding research goal of modern physics. Observing such effects would help to
answer some of the most fundamental questions in quantum physics today: Why
is the world around us classical and not quantum? Is there a size- or mass-limit to
systems for them to behave according to quantum mechanics? Is quantum theory
complete or do we have to extend it to include mechanisms such as decoherence?
Can we use the quantum nature of macroscopic objects to, for example, improve the
measurement precision of classical apparatuses?

Researchers have tried to study quantum effects on macroscopic systems for many
years now and over the past decade mechanical oscillators have emerged as a lead-
ing system of choice for many such experiments. One of their advantages is that
they can be coupled to a multitude of different systems, like microwaves, atoms,
superconductors and light. Much progress has been made and the first success-
ful experiments have been demonstrated. In the following thesis we describe more
than four years of research on the effects of the radiation-pressure force of light on
macroscopic mechanical structures. The basic system studied here is a mechanical
oscillator that is highly reflective and part of an optical resonator. It interacts with
the optical cavity mode via the radiation-pressure force. Both the dynamics of the
mechanical oscillation and the properties of the light field are modified through this
interaction. In our experiments we use quantum optical tools (such as homodyning
and down-conversion) with the goal of ultimately showing quantum behavior of the
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2 1 Preamble

mechanical center of mass motion. In this thesis we present several experiments that
pave the way towards this goal and when combined should allow the demonstration
of the envisioned quantum phenomena, including entanglement, teleportation and
Schrödinger cat states.



Chapter 2
Introduction and Basic Theory

2.1 A Classical Mechanical Harmonic Oscillator

The harmonic oscillator is a prominent, basic textbook example of a classical mechan-
ical system. While we do not want to discuss it in great detail as it can be found in any
introductory physics textbook (see for example [1]), we would like to briefly review
its features and introduce some of the nomenclature that will be used throughout this
thesis.

Mechanical oscillations are a widespread form of motion in nature, for example,
it can be found in almost any kind of physical system—from microscopic objects
such as molecules up to the biggest found in our universe including neutron stars
or more familiarly in systems like clocks, engines or musical instruments. The con-
cept is always the same: an oscillation is the repetitive variation of some parameter
around a central value. For example, a system at an initial position x0 experiences a
restoring force F that is proportional to its position x , returns to its point of origin
and subsequently moves back to x0. As long as the system stays decoupled from
its environment it continues with this oscillatory movement. According to Newton’s
second law, the system is described by

F = mẍ = −kx, (2.1)

where F is a force, m is the mass of the harmonic oscillator, ẍ is the second derivative
of its position with respect to time and k is a positive constant, usually referred to
as the spring constant. This is a simple differential equation and one easily sees that
the equation of motion is given by

x(t) = A sin(ωmt + ϕ). (2.2)

Here A is the amplitude, which is determined by the initial conditions and ωm =
2π fm is the oscillator’s eigenfrequency. The phase ϕ is the position of the oscillator
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4 2 Introduction and Basic Theory

relative to the point of origin at t = 0 and is also determined by the initial conditions.
In fact A and ϕ are given by [1]

A =
√

ẋ2(0)

ωm
+ x2(0), (2.3)

ϕ = arctan

(
ωm

x(0)

ẋ(0)

)
. (2.4)

The eigenfrequency of the system is

ωm = 2π

τm
=

√
k

m
, (2.5)

with τm being the oscillation period. The total energy Etot of the system is conserved
and only its kinetic Ek and potential E p components vary over time

Ek(t) = m

2
ẋ2 = k

2
A2 cos2(ωmt + ϕ) (2.6)

E p(t) = k

2
x2 = k

2
A2 sin2(ωmt + ϕ). (2.7)

As a result the total energy is

Etot = Ek + E p = m

2
ω2

m A2. (2.8)

Any real harmonic oscillator, however, experiences some kind of friction as it
interacts with its environment and therefore we have to include a damping term in
the differential equation describing the system:

ẍ + γm ẋ + ω2
m x = 0. (2.9)

Here γm is the damping rate and it determines how fast the oscillation decays. Again,
the equation of motion can be easily solved and is given by [1]

x(t) = Ad e− γm
2 t sin

[√
ω2

m −
(γm

2

)2
t + ϕd

]
. (2.10)

A very useful quantity for a damped harmonic oscillator is its quality factor Q, which
is a measure of how many oscillations it undergoes before its amplitude decays by a
factor of e:

Q := ωm

γm
. (2.11)
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The quality factor determines the behavior of the damped harmonic oscillator and
the three different alternatives are:

• Q > 1
2 : The underdamped oscillator is a system that oscillates at a slightly different

frequency than the free harmonic oscillator and gradually decays to zero.

• Q = 1
2 : The critically damped oscillator attempts to return to its equilibrium

position as quickly as possible and does this without oscillating at all.

• Q < 1
2 : The overdamped oscillator also returns to its equilibrium position without

oscillations but takes longer than in the critically damped case—the smaller Q
becomes, the longer it takes (Fig. 2.1).

Often harmonic oscillators are not only damped but they are also coupled to an
external bath that drives their motion. The differential equation describing such a
damped, driven harmonic oscillator reads

ẍ + γm ẋ + ω2
m x = F(t)

m
, (2.12)

where F(t) in the simplest case is a harmonic driving force of the form F(t) =
F0 sin(ωt) but can in general take the form of any arbitrary external force. We can
again take an Ansatz of the form x(t) = A sin(ωt + ϕ) (if we neglect the initial
transient behavior of the system [2]) and after some simple calculations we obtain

A = F0/m√
(ω2

m − ω2)2 + ω2γ2
m

(2.13)

for the amplitude of the motion of the oscillator, while the phase evolves according to

ϕ = arctan
−ωγm

ω2
m − ω2 . (2.14)

m

Fig. 2.1 The amplitude response A of a damped, driven harmonic oscillator described by (2.13)
as a function of frequency ω. In this example the unperturbed frequency ωm = 1 and the damping
γm = 0.1 · ωm , which is defined as the full width at half maximum (FWHM) of the resonance
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The response of the damped, driven harmonic oscillator is similar to a Lorentzian
and has its resonance close to the natural frequency of the oscillator. It is given by

ωres = ωm

√
1 − γ2

m

2ω2
m

. (2.15)

The general form of x(t) in its Fourier space is [2]

x̃(ω) = F̃(ω)

m
· 1

ω2
m − ω2 + iωγm

, (2.16)

where F̃(ω) is the Fourier transform of an external driving force F(t). For an oscil-
lator subject to Brownian noise, i.e. coupled to a thermal bath at temperature T , the
bath can be described as an infinite sum of harmonic oscillators exerting a force of
equal amplitude, i.e. Fth(t) = ∑

i
Fi

ext . Its power spectrum Sxx (ω) = 〈x̃(ω)x̃∗(ω)〉
is given by

Sxx (ω) = F̃th

m2 · 1

(ω2
m − ω2)2 + ω2γ2

m
, (2.17)

where F̃th is constant in frequency for the Brownian bath. Throughout this thesis
γm is defined as the full width at half maximum (FWHM). The Wiener-Khinchin
theorem states that the power spectral density of a wide-sense stationary random
process, i.e. a stochastic process with a constant mean (here x(t)), is equal to the
Fourier transform of its autocorrelation function [3]:

Sxx (ω) =
+∞∫

−∞
〈x(t)x∗(t − τ )〉e−iωτ dτ , (2.18)

or equivalently for τ = 0

〈x2〉 =
+∞∫

−∞
Sxx (ω) dω = Fth

m2 · π

ω2
mγm

. (2.19)

Here the solution of the integral for Brownian noise is taken from [4], where the
integral is done from 0 to ∞ and therefore differs by a factor of 2. This result is very
important for this work—it connects the measured power spectrum of a harmonic
oscillator to its temperature. This can be seen by using the equipartition theorem:
for a 1-dimensional oscillator in thermal equilibrium the total average energy 〈E〉 is
equally distributed between the kinetic Ek and the potential energy E p of the system
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〈E〉 = 〈Ek〉 + 〈E p〉 = 1

2
kB T + 1

2
kB T = kB T, (2.20)

where kB is the Boltzmann constant and T the oscillators temperature. Therefore,
using (2.7) and (2.20) we obtain m ω2

m 〈x2〉 = kB T . Given that (2.19) holds

Fth = m γm · kB T

π
. (2.21)

The power spectrum for a damped harmonic oscillator, driven by Brownian noise is
finally given by

Sxx (ω) = γm · kB T

πm
· 1

(ω2
m − ω2)2 + ω2γ2

m
. (2.22)

2.1.1 Normal Modes of Coupled Harmonic Oscillators

An interesting effect occurs if two harmonic oscillators are coupled together (see
Fig. 2.2)—for sufficiently strong coupling the two oscillators can be described as
one single system oscillating at frequencies that are determined by their coupling
strength. The differential equations for two simple harmonic oscillators that are
coupled by a spring with spring constant k j are

mẍ1 = −kx1 + k j (x2 − x1),

mẍ2 = −kx2 + k j (x1 − x2). (2.23)

Fig. 2.2 Coupled harmonic oscillators. Two oscillators with masses m and frequencies ωm are each
coupled to an environment via a spring with a spring constant k and a damping rate γm . In addition,
they are coupled to each other via a joint spring with a spring constant k j . In Chap. 6 we present
an experiment where the two oscillators are a mechanical resonator and an optical field that are
strongly coupled to each other

http://dx.doi.org/10.1007/978-3-642-34955-3_6
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For simplicity, here the oscillators have the same mass m and spring constant k. Taking
the Ansatz x1(t) = A sin(ωt + ϕ) and x2(t) = B sin(ωt + ϕ) and substituting into
(2.23) we find

(k + k j − mω2)A − k j B = 0,

−k j A + (k + k j − mω2)B = 0. (2.24)

For the equation to have a non-trivial solution the determinant of the system of
equations must be singular, i.e. zero:

(k + k j − mω2)2 − k2
j = 0. (2.25)

This is a simple quadratic equation in ω and assuming that ω ≥ 0 we obtain

ω1 =
√

k + 2k j

m
, (2.26)

ω2 =
√

k

m
. (2.27)

Substituting back into (2.24) we find A = B ≡ A1 and A = −B ≡ A2 for the two
frequencies, respectively. The most general equations of motions now are

x1(t) = A1 sin(ω1t + ϕ1) + A2 sin(ω2t + ϕ2),

x2(t) = −A1 sin(ω1t + ϕ1) + A2 sin(ω2t + ϕ2). (2.28)

The amplitudes A1,2 and the phases ϕ1,2 are determined by the initial conditions
of x1,2(0) and ẋ1,2(0). The motion of the oscillators can therefore be decomposed
into two normal modes with frequencies ω1,2 and amplitudes A1,2, which are non-
degenerate for k j �= 0. This is true for arbitrarily small k j as the damping γm is
zero.

The system becomes even more interesting for two damped (and driven) oscilla-
tors. Their uncoupled equations of motions are given by (2.12)

ẍ1 + γm ẋ1 + ω2
m x1 − k j

m
(x2 − x1) = 0,

ẍ2 + γm ẋ2 + ω2
m x2 − k j

m
(x1 − x2) = F(t)

m
. (2.29)

For simplicity we have assumed that the damping rates γm , the masses m and the
frequencies ωm of the oscillators are the same, while only one oscillator is externally
driven by a force F(t). These differential equations are solved by (if we neglect the
transient terms) [5]
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Fig. 2.3 Normal mode splitting of coupled damped harmonic oscillators. The spectrum of two
coupled oscillators (Eq. (2.32)) is shown for different coupling constants k j . The parameters of the
oscillators are chosen to be F(t) = m = k = ωm = 1 and γm = 0.1 · ωm . a For a coupling
k j = 0.5 · γm the normal modes are still degenerate, while for k j = γm the splitting can already be
observed b. c When increasing the coupling further to k j = 4 · γm the modes become very distinct

q1(t) = A1 sin(ωt + ϕ1),

q2(t) = A2 sin(ωt + ϕ2), (2.30)

where we have introduced the normal mode coordinates q1 = x1 + x2 and q2 =
x2 − x1. The frequencies of the normal modes are given by

ω1 =
√

k + 2k j

m − γ2
m/4

,

ω2 =
√

k

m − γ2
m/4

, (2.31)

and their respective amplitudes

Ai = F0/m√
(ω2

i − ω2)2 + ω2γ2
m

, (2.32)

with i = 1, 2. If we now look at the spectrum of the normal modes (Fig. 2.3) we see
that the modes are degenerate as long as the coupling strength between the oscillators
is small, i.e. k j < γm . A splitting of the spectrum only occurs if the coupling is
stronger than the damping to the environment. In Chap. 6 we use this condition to
demonstrate that we enter the strong coupling regime of an optomechanical system.

2.2 A Quantum Mechanical Harmonic Oscillator

In quantum mechanics the harmonic oscillator is one of the simplest examples that
is analytically solvable. But already this simple system shows some of the peculiar
quantum features that make it so distinct from classical mechanics. The usual starting

http://dx.doi.org/10.1007/978-3-642-34955-3_6
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point is the classical Hamiltonian function, i.e. the total energy of the system 2.8. If
one replaces the classical variables with their corresponding quantum operators, i.e.
x → x and mẋ = p → −i� d

dx one obtains the quantum mechanical Hamiltonian
operator

H = − �
2

2m

d2

dx2 + mω2x2

2
, (2.33)

with � being the reduced Planck constant. One can rewrite the operators x and p in
terms of the creation a† and annihilation a operators

x =
√

�

2mω
(a + a†),

p =
√

mω�

2
(a − a†). (2.34)

As x and p fulfill the commutation relation [x, p] = i�, a and a† obey the following
relations

[a, a†] = 1 and [a, a] = [a†, a†] = 0. (2.35)

Hence the Hamiltonian can be expressed as

H = �ω

(
a†a + 1

2

)
, (2.36)

and the corresponding Schrödinger equation reads

a†a ψ =
(

E

�ω
− 1

2

)
ψ. (2.37)

This is an eigenvalue equation for the so-called number operator a†a, which obeys
the commutation relations

[
a†a, a†

] = a† and
[
a†a, a

] = −a. The eigenfunctions
of the eigenvalue equation are solutions of the Schrödinger equation. The lowest
eigenfunctionψ0 is the ground state of the harmonic oscillator, which we can calculate
using a ψ0 = 0

ψ0(x) =
(mω

2�

)1/4
exp

(
−mω

2�
x2

)
. (2.38)

The eigenfunction for the nth energy eigenstate then is

ψn(x) =
√

1

n! (a
†)nψ0(x). (2.39)
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It is now easy to find the energy spectrum for the harmonic oscillator by simply
writing down the eigenvalue equation for the Hamiltonian defined in Eq. (2.36),
which is discrete and the energy levels are equidistant:

En = �ω

(
n + 1

2

)
. (2.40)

We can now also calculate the expectation value for the position operator x and the
position operator squared x2 and find

〈x〉 = 〈ψn|x |ψn〉 = 0, (2.41)

〈x2〉 = 〈ψn|x2|ψn〉 = �

mω

(
n + 1

2

)
. (2.42)

The ground state of a quantum mechanical oscillator therefore has non-zero energy
and an associated extension

E0 = 1

2
�ω,

xzp =
√

〈x2〉0 − 〈x〉2
0 =

√
�

2mω
. (2.43)

This so-called zero-point energy is the minimal energy compatible with the
Heisenberg uncertainty principle. Another widely used definition of the zero-point
extension is the half width at half maximum of the associated wavepacket (2.38) of
the oscillator, which differs by a factor

√
2 from how xzp is defined here.

2.2.1 Quantum States

The quantum state that most closely resembles a classical harmonic oscillator is the
so-called coherent state, which was first described by Schrödinger in 1926 [6], while
the term itself was introduced by Glauber [7]. It is defined as

|α〉 = e− 1
2 |α|2

∞∑
n=0

αn

√
n! |n〉, (2.44)

where |n〉 are the number or Fock states and the average occupation number of the
state is given by n̄ = |α|2. The variance then is �n = √

n̄ = |α|. The probability
Pα(n) of finding an oscillator described by the coherent state in its nth state is given
by a Poissonian distribution

Pα(n) = e−|α|2 |α|2n

n! . (2.45)
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Often the coherent state is also defined as a displaced vacuum state [7]

|α〉 = D(α)|0〉, (2.46)

where |0〉 is the vacuum state and D(α) = exp(αa†−α∗a) the displacement operator.
As D(α) is unitary, it is relatively easy to see (cf. [7]) that the coherent state is an
eigenfunction of the annihilation operator, i.e. a|α〉 = α|α〉. The output field of a
laser, for example, is well described by a coherent state. The phase of such a coherent
state has an uncertainty of �φ = 1/2

√
n̄ (see e.g. [3]) for α � 1 and hence the

coherent state obeys the uncertainty relation �φ · �n = 1
2 . In other words, the

coherent state has an equally spread uncertainty in phase-space with a width of 1/2.
It approaches the case of a classical oscillator that has no uncertainty with increasing
α as the uncertainty becomes less significant.

A harmonic oscillator in thermal equilibrium with a bath at temperature T must be
described as a mixture of pure states, i.e. it is in a thermal state (see for example [8])

ρ =
∞∑

n=0

n̄n

(1 + n̄)n+1 |n〉〈n|, (2.47)

where n̄ = (exp {�ω/kB T } − 1)−1 is the oscillator’s mean occupation number fol-
lowing the Bose-Einstein statistics. In the large temperature limit, i.e. kB T � �ω,
the mean thermal occupation n̄ due the equipartition of energies is

n̄ ≈ kB T

�ω
− 1

2
. (2.48)

Only close to the ground state, i.e. for n̄ = O (1), this approximation does not hold
and one has to use the full Bose-Einstein statistics. Here we have used the density
matrix representation of the state in the Fock basis, which is defined as

ρ =
∑
m,n

cm,n|m〉〈n|, (2.49)

with cm,n = 〈m|ρ|n〉.

2.2.2 Phase-Space Distribution

A classical particle has well defined position x and momentum p. For an ensemble of
such particles one can define a probability distribution, which gives the probability
of finding a particle for a given x and p in phase space. In the quantum domain there
is no exact analogue due to the Heisenberg uncertainty principle, but nonetheless a
quasi-probability distribution can be defined, the Wigner function [9]. If one takes



2.2 A Quantum Mechanical Harmonic Oscillator 13

the marginal of the Wigner function, i.e. the projection onto the vertical plane defined
by for example the x-axis, one recovers the distribution obtained by measurements
of (in this example) the x-quadrature of an ensemble of equally prepared quantum
systems. This is completely analogous to the classical case. The Wigner function has
many properties of a classical probability distribution, e.g. it is real and normalized.
However, it can also have negative values, which is the reason why it is called a
quasi-probabilistic distribution. The negativity is often taken to determine whether a
state is non-classical or not—while this is a sufficient condition, it is not a necessary
one. Often states that have a fully positive Wigner distribution, such as the vacuum
state or a squeezed coherent state (in fact this is the case for all Gaussian states), are
still considered to be quantum (for a more detailed discussion see for example [10]).
The Wigner function is defined as [11]

W (x, p) = 1

π�

+∞∫
−∞

e2i py/�〈x − y|ρ|x + y〉dy, (2.50)

where ρ is the density matrix of a general mixed state. The marginals for example
for x and p are

+∞∫
−∞

dx W (x, p) = 〈x |ρ|x〉 = |ψ(x)|2,

+∞∫
−∞

dp W (x, p) = 〈p|ρ|p〉. (2.51)

And as it is normalized
∫

dx
∫

dp W (x, p) = Tr(ρ) = 1, where Tr is the trace. The
Wigner function for the thermal state (2.49) and a squeezed coherent state are shown
in Fig. 2.4. More details on Wigner functions can be found in [4].

Fig. 2.4 a shows the Wigner function W (x, p) of a thermal state. The state has no phase and its
mean occupation n̄ follows the Bose-Einstein statistics. b in contrast, is the Wigner function of a
squeezed coherent state, where squeezing of approximately 6 dB in the x-quadrature is shown. All
axes are in arbitrary units
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2.3 Radiation Pressure

Radiation-pressure effects, i.e. forces acting solely due to the momentum of light,
have been discussed as early as the seventeenth century when Johannes Kepler sus-
pected that the inclination of the tails of comets could be due to a mechanical force
exerted by the sun [12, 13]. In fact, the tails of a comet are due to the solar radiation
that vaporizes particles on the surface of the comet. Radiation pressure from the sun
then exerts a force on the coma of the comet (white tail), while the force of the solar
wind creates the ionized (blue) tail. In the early twentieth century, experiments by
Lebedev [14] and Nichols and Hull [15] first verified unambiguously predictions by
Maxwell [16] and Bartoli [17] on the strength of the radiation-pressure force.

In the 1960s and 70s, Braginsky and colleagues studied radiation-pressure effects
in the context of gravitational wave antennae—they experimentally and theoretically
analyzed the sensitivity limits due to the quantum nature of light [18, 19]. Bragin-
sky also predicted that the radiation pressure inside a cavity with finite decay time
would give rise to dynamic backaction, the underlying mechanism to the parametric
instabilities and cooling of a mechanical oscillator, which will be discussed later in
this section [20]. In the 1980s, also Caves [21] and Meystre et al. [22] analyzed the
radiation-pressure noise in interferometers. First experiments on radiation-pressure
effects in cavities with macroscopic mechanical oscillators were performed in the
1980s [23]. Subsequently, several theoretical proposals for quantum optics experi-
ments in a cavity using radiation-pressure effects were published, such as the gener-
ation of squeezed light [24, 25], quantum non-demolition measurements of photon
numbers [26, 27], feedback-cooling of the mechanical motion [28] (which was exper-
imentally realized in [29]), entanglement between the optical and the mechanical
mode [30–32], and the quantum-state transfer from the light field to the mechanical
oscillator [33]. However, first experiments were only realized in recent years (except
for [23]): measurements of the motion of a mechanical oscillator [34–36], paramet-
ric amplification of the mechanical motion [37], cavity cooling of the mechanical
resonator [38–41], cryogenic cavity cooling [42–45] and strongly coupled opto-
mechanics [46, 47]. For a more detailed historic overview of radiation-pressure forces
up to the early twentieth century see [14, 48] and for the more recent developments
see for example [49–54]. It is important to note that experiments involving nanome-
chanical oscillators and microwave cavities have achieved similar results [55–59].
And very recently, the first experimental observation of the quantization of mechan-
ical motion in an optomechanical system was demonstrated [60]. In experiments
involving mechanics and qubits [61], as well as microscopic mechanical oscillators
quantum effects have also been observed [62].

The system studied throughout this thesis is a Fabry-Pérot cavity, in which one of
the end-mirrors is suspended, i.e. it can be described as a damped harmonic oscillator
with a resonance frequency ωm and a mass m, subject to an external thermal bath
and coupled to the light inside the cavity via the radiation-pressure force (Fig. 2.5).
The interaction between the mechanical and the optical system can be understood
qualitatively as follows: light with a wavelength λ impinges on the moving mirror



2.3 Radiation Pressure 15

m,m

m

Fig. 2.5 Sketch of the radiation-pressure interaction: light is coupled through a rigid input mirror
into an optical resonator with a movable back-mirror of frequency ωm and mass m. The photons
inside the cavity each transfer momentum of 2�k onto the movable mirror, displace it and hence
acquire a phase shift, depending on its position. The intensity of the light field inside the cavity
strongly depends on the relative distance between the mirrors, as well as on their reflectivities—the
amplitude cavity decay rate is given by κ. The movable mirror couples to its environment at a
rate γm

and each photon transfers momentum of 2�k onto the mechanics, where k = 2π/λ is
the wavenumber of the light. A quasi-static displacement of the mirror due to the light
force changes the length of the cavity and hence the phase of the light field. In a cavity
detuned from resonance, the sensitivity of the intra-cavity intensity strongly depends
on the length of the cavity and even the typically very small displacement of the
suspended end-mirror can modify the light fields’ amplitude and phase significantly
(see Sect. 3.2.1 for details). In turn, the mechanical displacement is modified by the
momentum transfer of the radiation-pressure force. This interaction hence generates
an intensity dependent phase shift of the light incident onto the cavity, which is
equivalent to the optical or AC Kerr effect [63]. Also, the frequency of the photons
hitting the mirrors is changed due to a Doppler-shift from the oscillating mirror,
resulting in frequency sidebands in the optical field that are spaced by ωm .

The radiation-pressure interaction can now be exploited to modify the dynamics
of the mechanical oscillator, which is described in detail in the following subsections.
One particularly interesting effect is the possibility to damp, i.e. cool, the mechanical
motion with the help of the radiation-pressure force. In a very intuitive picture, in
close analogy to the sideband cooling of atoms [64], the sidebands in the light field
are created due to an energy exchange between the optical and the mechanical mode,
where the creation of a photon at the frequency ωc +ωm (ωc is the cavity frequency)
results in the annihilation of a phonon in the mechanical oscillator, while the opti-
cal sideband at ωc − ωm comes from the creation of a phonon. If we now detune
the cavity resonance with respect to the incoming laser, or vice versa, an imbalance
between the two first-order sidebands is created resulting in an effective cooling of
the mechanical mode or a net heating, depending on the sign of the detuning (cf.
Fig. 2.6). The latter case also gives rise to entanglement between the optical and
the mechanical mode, a true optomechanical feature. The detailed physical mecha-
nisms behind the cooling, the entanglement and the modification of the dynamics in
general, both in a classical and a quantum framework, are derived in the following
sections.

http://dx.doi.org/10.1007/978-3-642-34955-3_3
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A+ A-

l l ml m

A+ A-

l l ml m

A+ A-

l l ml m

H ~ x xa b H ~ ab+abeff eff

†† H ~ ab+a beff
† †

(a) (c)(b)

Fig. 2.6 a A laser field (green) with frequency ωl drives the optomechanical cavity (dashed black
line) on resonance. Due to the radiation-pressure interaction frequency sidebands are created at
ωl −ωm (red) and ωl +ωm (blue) with rates A±, respectively, given by Eq. (2.72). The rates A± are
equal and this configuration allows for example to perform quantum non-demolition measurements
as proposed in [26, 27]. b The situation becomes quite different if the cavity is detuned with respect
to the laser by � = ωm . The rates become unbalanced and A− > A+, which results in cooling
of the mechanical mode. This can be intuitively understood as the sideband with higher energy
(which is created by extracting phonons from the mechanical resonator), the anti-Stokes sideband,
becomes stronger than the lower energy Stokes sideband. The corresponding effective interaction
Hamiltonian is ∝ a†b+ab† (see Sect. 2.3.3). c When detuning the cavity by � = −ωm the effective
interaction Hamiltonian becomes a two-mode squeezer, i.e. is ∝ ab + a†b†, which can be used for
creating optomechanical entanglement (see Sect. 2.3.6 and Chap. 7). The effective interactions in
b and c are valid in the rotating wave approximation (RWA), i.e. for weak coupling and sideband
resolved operation (ωm > κ)

2.3.1 Classical Analysis

The radiation-pressure force Fr p inside a Fabry-Pérot cavity is proportional to the
intra-cavity light intensity I (see Sect. 3.2.1), which in turn is a function of the length
of the cavity (and of the detuning of the laser with respect to the cavity resonance)
and hence Fr p = Fr p(x). If a damped harmonic oscillator is now not only driven by
Brownian noise but in addition by an external radiation-pressure force, the differential
Eq. (2.12) is modified to

ẍ + γm ẋ + ω2
m x = Fth(t) + Fr p(x(t))

m
. (2.52)

The equation of motion for such an oscillator in thermal equilibrium can be expressed
in terms of its susceptibility, which is simply the response of the system to an applied
force, i.e. χ(ω) = x̃(ω)/F(ω), or for our case

x̃(ω) = χ(ω)
(

F̃th + F̃r p(ω)
)

. (2.53)

For a damped harmonic oscillator driven by Brownian noise we know from (2.16)
that the susceptibility is given by

http://dx.doi.org/10.1007/978-3-642-34955-3_7
http://dx.doi.org/10.1007/978-3-642-34955-3_3
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χ(ω) = 1

m · (ω2
m − ω2 + iω γm)

. (2.54)

The radiation-pressure force modifies the dynamics of the oscillator and therefore
the susceptibility can be rewritten as an effective susceptibility, with an effective
frequency ωe f f and an effective oscillator damping γe f f

χe f f (ω) = 1

m · (ω2
e f f − ω2 + iω γe f f )

, (2.55)

where, in the limit of Q � 1, the modified frequency and damping rate are given by
[39]

ωe f f (ω) = ωm

⎛
⎝1 + M ·

[
1 − ω2 + �2

0

κ2

]−1
⎞
⎠ , (2.56)

γe f f (ω) = γm

(
1 + M · Qκ

ω

)
. (2.57)

Here M = 4π�0·I
λ·κ2·L·mω2

m
and κ = πc

2L·F is the cavity amplitude decay rate, with L being

the cavity length, c the speed of light and F the finesse, while �0 = ωc − ωl is the
cavity detuning (modulo [2π · F S R]), with the free spectral range F S R = c/2L and
the laser frequency ωl . The dynamics can be modified by choosing the sign of the
detuning, which will be explained in more detail later. We can now write down the
spectral response of the oscillator

Sxx (ω) = γm · kB T

πm
· 1

(ω2
e f f − ω2)2 + ω2γ2

e f f

. (2.58)

It is interesting to note that the radiation-pressure force is completely contained in the
effective frequency and damping rate and that only the Brownian noise force appears
in the equation of motion x̃(ω). According to the fluctuation-dissipation theorem the
coupling to the thermal bath at temperature T is uniquely described by γm [3, 65].
In analogy to the damped harmonic oscillator subject to a thermal Brownian driving
force we use the Wiener-Khinchin theorem and find

mω2
e f f 〈x2〉 = mω2

e f f

+∞∫
−∞

x̃(ω)dω = kB T · γm

γe f f
= kB Tef f , (2.59)

here we have introduced an effective temperature Te f f = T γm
γe f f

, which again satisfies
the equipartition theorem for the harmonic oscillator. For an experiment where the
parameters are chosen such that γe f f is increased, the radiation-pressure interaction
allows for cooling of the mechanical mode.
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In our optomechanical system the mass in the radiation-pressure interaction is
not the actual mass m of the oscillating mirror but rather a quantity that takes the
finite overlap of the optical and the mechanical mode into account, the effective mass
mef f . An extensive theoretical analysis of the matter can be found in [66], while the
experimental procedure to determine the effective mass is described in Sect. 3.10.

2.3.2 Quantum Analysis

In this section we will analyze the radiation-pressure interaction between an optical
cavity mode and a mechanical oscillator in a quantum framework. The derivation
closely follows [67, 68] and assumes that we detect a single mechanical mode only,
that the individual mechanical modes do not couple to each other and that we only
have to consider a single cavity mode, i.e. ωm � c/2L . The full Hamiltonian of the
system at hand is [69]

H = �ωc a†a + 1

2
�ωm

(
p2

m + x2
m

)
− �g0a†axm + i�E

(
a†e−iωl t − aeiωl t

)
.

(2.60)

Here ωc is the cavity frequency, a and a† are the annihilation and creation operators
of the cavity field, with

[
a, a†

] = 1, pm and xm are the dimensionless versions
of the momentum and position operators of the mechanical oscillator defined in
Eq. (2.34), i.e. [xm, pm] = i and their creation and annihilation operators are b and
b†, respectively, g0 is the frequency shift of the cavity due to the displacement of the
mechanical oscillator by a single-photon, E related to the input laser power P by
|E | = √

2Pκ/�ωl and ωl the laser frequency. The optomechanical coupling rate g0
is a measure for the frequency shift of the cavity when the mechanics is displaced
by xzp and is defined as g0 = ∂ωc

∂x · xzp. For a Fabry-Pérot cavity g0 is given by

g0 = ωc

L

√
�

mef f · ωm
, (2.61)

as ωc = 2πc
λ = 2πc·n

L , with n ∈ N, where L is the cavity length. The first term of
the Hamiltonian is the energy of the cavity field, while the second term is the cor-
responding quantity for the mechanical mode. The third term is the optomechanical
interaction Hamiltonian Hr p on which we will concentrate in the following and the
last term describes the coupling of the laser to the cavity mode.

In order to obtain the dynamics of the optomechanical system, one usually finds
the Langevin equations of the system—they are stochastic differential equations
describing the time evolution of a subset of degrees of freedom, where the mean
value of the system slowly varies and is treated dynamically, while the small fluc-
tuations around the mean value are treated probabilistically. Paul Langevin initially
considered the Brownian motion of particles [70] and assumed that such a particle

http://dx.doi.org/10.1007/978-3-642-34955-3_3
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is subject to a systematic force, i.e. a viscous drag, and a rapidly fluctuating force,
which comes from surrounding particles randomly impacting on the system under
investigation with a mean amplitude of zero, i.e. the net force is zero on average.
He treated this rapid force statistically, assuming that it was independent from the
viscous drag and arrived at an expression for the mean motion of the particle (for an
introduction to Langevin equations see for example [71]). In general, the Langevin

equations for an operator Ô are given by ∂ Ô/∂t = (i/�)
[

H, Ô
]

+ N̂ , where N̂

is the corresponding noise operator of Ô . The quantum Langevin equations for the
optomechanical system therefore are

ẋm = ωm pm,

ṗm = −ωm xm − γm pm + g0 a†a + ξ,

ȧ = −(κ+ i�0) a + ig0 a xm + E + √
2κ ain, (2.62)

where γm is the damping of the viscous force that acts on the mechanical mode and ξ
is the Brownian stochastic force with zero mean amplitude. We have also introduced
the cavity detuning �0 = ωc − ωl and the optical vacuum input noise ain . In order
to simplify the problem we can take a semi-classical approach by assuming a strong
intra-cavity field amplitude |αs | � 1, which allows us to write down a steady state
amplitude for each operator with small zero-mean fluctuations, i.e. for the generic
operator Ô = Ôs +δÔ , where Ôs now is the mean value with the fluctuation operator
δÔ . We first find the steady state values by setting the time derivatives in (2.62) to
zero

xs = g0|αs |2
ωm

, (2.63)

αs = E

κ+ i�
. (2.64)

Due to the bright light field inside the cavity the mechanical oscillator is displaced
by x ′

s = xs · xzp into a new equilibrium position. Here � is the detuning of the cavity
including radiation-pressure effects

� = �0 − g2
0 |αs |2
ωm

. (2.65)

The nonlinear equation for � can be solved analytically but gives a rather lengthy
expression which will not be shown here.1 The Langevin equations can now be
rewritten for the fluctuation operators, while neglecting their higher order terms:

1 Note that the detuning of the laser to the cavity in an experiment equals the detuning for an empty
cavity, if the laser frequency is kept on resonance with the cavity and only part of it is detuned and
used for radiation-pressure coupling, i.e. � = �0 for our experimental situation (cf. Chaps. 5 and

6). This of course does not imply
g2

0 |αs |2
ωm

= 0 in (2.65).

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_6


20 2 Introduction and Basic Theory

δẋm = ωmδ pm,

δ ṗm = −ωmδxm − γmδ pm + gδX + ξ,

δ Ẋ = −κδX + �δY + √
2κXin,

δẎ = −κδY − �δX + gδxm + √
2κY in . (2.66)

We have introduced the cavity field quadratures δX = (
δa + δa†

)
/
√

2 and δY =(
δa − δa†

)
/ i

√
2, as well as the corresponding Hermitian input noise operators

Xin = (
ain + ain,†

)
/
√

2 and Y in = (
ain − ain,†

)
/ i

√
2. The effective optome-

chanical coupling rate in the linearized quantum Langevin equations is

g = αs · g0 = 2ωc

L

√
Pκ

mef f ωmωl
(
κ2 + �2

) . (2.67)

In an actual experiment the cavity is never perfectly single-sided, i.e. it is not possible
for a mirror to have unity reflectivity, and therefore leakage of the field through the
second mirror needs to be taken into account

g = 2ωc

L

√
Pκ′

mef f ωmωl
(
(κ′ + κ̄)2 + �2

) , (2.68)

where we have introduced the amplitude cavity decay rate for the first κ′ and the
second mirror κ̄. They are defined as κi = c

4L ·�i , where �i are the losses associated
with the respective mirror and κ = ∑

i
κi .

By linearizing the problem we have lost the non-linear interaction character in
Eq. (2.60), which would be accessible for example by single photons. However, we
have gained significantly in the achievable interaction strength by simply increasing
the intra-cavity field. When solving the linearized Langevin equations according to
[67, 68] we finally obtain the effective susceptibility for the mechanical oscillator
interacting with the cavity mode via radiation pressure

χe f f (ω) = ωm

ω2
m − ω2 − iωγm − g2�ωm

(κ−iω)2+�2

. (2.69)

The effective mechanical frequency and damping rate are given by

ωe f f (ω) =
(
ω2

m − 2 g2�ωm
(
κ2 − ω2 + �2

)
[
κ2 + (ω − �)2

] [
κ2 + (ω + �)2

]
)1/2

, (2.70)

γe f f (ω) = γm + g2�ωmκ[
κ2 + (ω − �)2

] [
κ2 + (ω + �)2

] . (2.71)



2.3 Radiation Pressure 21

The modification of the mechanical oscillation frequency is called the optical spring
effect, as the spring constant of the resonator is effectively modified. This effect
has first been observed experimentally in [72] and subsequently been confirmed in
several experiments [73–75]. In extreme cases this effect can change the resonance
frequency by almost two orders of magnitude [76]. The change in the damping rate
can be used to heat or cool the mechanical resonator—when choosing the detuning
� between the laser and the cavity to be negative the mechanical system is excited
by radiation pressure and therefore parametrically driven [37]. However, if � > 0
the mechanical motion is damped, which corresponds to an effective cooling of
the mode as long as the laser noise is small compared to the thermal noise [77,
78]. The thermal mean occupation of such a damped oscillator is given by the Bose-
Einstein statistics n̄ = (

exp
{
�ωm/kB Tef f

} − 1
)−1, where the temperature now is an

effective mode temperature Tef f . It has been theoretically shown that this technique
in principle allows for cooling the mechanical mode into its quantum ground state
if operating in the sideband-resolved regime, i.e. ωm > κ [68, 79, 80]. The first
experimental demonstrations of such a passive mechanical cavity-cooling have been
realized by [38–41, 81], with similar experiments in the microwave regime [55, 57,
58], and recently ground state cooling has been experimentally demonstrated using
this technique, both in the optical [82] and the microwave regime [83]. Another
interesting quantity for such cooling experiments is the scattering rate A± of laser
photons into the Stokes (+) and anti-Stokes (−) sideband, where for positive detuning
an imbalance between the sidebands of the form A− > A+ results in the desired
cooling

A± = g2κ

8
[
κ2 + (� ± ωm)2

] . (2.72)

2.3.3 Quantum Opto-Mechanics

The Hamiltonian (2.60) can be rewritten in the interaction picture, i.e. we make a basis
change into the frame rotating at the laser frequency ωl . The corresponding unitary
transformation is U (t) = exp

(
iωl ta†a

)
and we can first transform the Schrödinger

equation

i�
d

dt
|ψ〉 = H |ψ〉 → i�

d

dt

(
U †|ψ̃〉

)
= HU †|ψ̃〉, (2.73)

where |ψ̃〉 = U |ψ〉. After some simple algebra we get i� d
dt |ψ̃〉 = H̃ |ψ̃〉, with

H̃ = U

(
H − i�

d

dt

)
U †

= ��a†a + 1

2
�ωm(p2

m + x2
m) − �g0a†axm + �E(a† + a). (2.74)
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Another way of qualitatively describing the cooling is to analyze the interaction term
Hr p of the Hamiltonian. By assuming αs � 1 one can write a → αs + a, where a
now is the associated fluctuation operator and a† → αs + a†. By factorizing Hr p

and neglecting higher order terms in the fluctuation operators we obtain

Hr p ≈ �αsg0(a + a†) · (b + b†), (2.75)

where we have used the definition for xm and omitted a static mirror displacement of
O(α2xm), which is defined by (2.63). If we go into another rotating frame by using
the unitary operator U ′(t) = exp

(
i(�a†a + ωmb†b)t

)
we obtain for the linearized

interaction Hamiltonian

H̃ ′
r p = �g(ae−i�t + a†ei�t ) · (be−iωm t + b†eiωm t )

= �g(ab e−i(�+ωm )t + a†b†ei(�+ωm )t )

+ �g(a†b ei(�−ωm )t + ab†e−i(�−ωm )t ). (2.76)

The first term is ∝ ab + a†b†, which is a two-mode squeezing (TMS) operation and
hence can be used to entangle the optical with the mechanical mode (see Sect. 2.3.6).
The second term ∝ a†b + ab† in turn is simply a beamsplitter (BS) interaction,
which results in the cooling described above. If the detuning � is chosen to be +ωm

the phase of the BS vanishes, while the TMS oscillates at a frequency of 2ωm . By
performing a perturbation expansion we can see that for this case the TMS term
only contributes on the order of g

ωm
and the BS dominates for small g and sideband

resolution (ωm > κ), which corresponds to the so-called rotating wave approximation
(RWA). The inverse is true for � = −ωm .

2.3.4 SQL + Backaction

Due to the quantum nature of light, measurements of the motion of a mechani-
cal oscillator as described in this thesis are fundamentally limited in sensitivity. In
general, the uncertainty principle poses a limit on how well one can continuously
measure a certain quantity. The phase and the photon number (amplitude) of a light
field, for example, are connected by the uncertainty relation �φ · �n ≥ 1/2 (for a
coherent state this actually becomes an equality if α is large, as shown in Sect. 2.2.1).
In order to determine the displacement of the mechanical oscillator we measure the
phase shift the movement imparts on a probing light field. The field itself however
has a phase uncertainty of �φ = 1/(2

√
n̄), which is due to the shot-noise of the laser

and for small n̄ makes the measurement noisy. This can be overcome by increasing
the read-out intensity. However, increasing the laser power also increases another
noise source, namely the shot-noise induced backaction of the laser, which is just
the uncertainty in the photon number �n = √

n̄ of the laser. This results in random
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“kicks” of the mechanical oscillator, which is proportional to 2�k
√

n̄, and com-
monly called backaction noise. When increasing the read-out power the noise is first
dominated by the phase uncertainty, while the backaction dominates at large powers.
The point where the two contributions are of equal size is the so-called standard
quantum limit (SQL), which for a position measurement of an oscillator with mass
m and frequency ωm is given by [84, 85]

�xSQL =
√

�

2mωm
. (2.77)

In all optomechanical experiments to date either the phase noise or the thermal
noise dominate the backaction noise, and therefore it remains an outstanding goal
to observe the backaction effects of radiation pressure (for a review on the quantum
noise in measurements see [3]). Note that several schemes exist to circumvent this
measurement limit by, for example, measuring only one quadrature of the resonator
in a backaction evading scheme [86–88].2

2.3.5 Strong Coupling

In our experimental arrangement, the optomechanical system comprises two har-
monic oscillators in the linearized regime, namely the light field and the mechanical
resonator. In Sect. 2.1.1 we have seen that two coupled oscillators exhibit normal
modes, which are non-degenerate in energy if their coupling exceeds the damping
rates of the individual systems. This so-called strong coupling regime is interesting
for optomechanical systems as coherent quantum control of the mechanical oscil-
lator requires an energy exchange between the optical and the mechanical part that
is faster than the dissipation rates of the two systems into their local environments,
i.e. g � κ, γm . This condition is also known from cavity QED [89] and solid state
qubits coupled to photons [90, 91]. The normal mode splitting can be used as unam-
biguous evidence that the system actually is in the strong coupling regime, while the
modes stay degenerate if g is small. As we have seen in Sect. 2.3.2 the optomechan-
ical coupling can be increased by increasing the intra-cavity amplitude αs , which
experimentally corresponds to increasing the input laser power P .

In this section we will use a quantum approach to briefly derive the normal
modes for the coupled optomechanical system and show that the splitting can only
be observed when entering the strong coupling regime. The derivation and figures in
this section are taken from the Supplementary Information of Observation of strong
coupling between a micromechanical resonator and an optical cavity field, Nature
460, 724–727 (2009) [46].

2 Note that in the experiment presented in Sect. 5.2 we have achieved sub-SQL measurement
precision [3].

http://dx.doi.org/10.1007/978-3-642-34955-3_5
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We start by defining �RT = (xc, pc, xm, pm), where x and p are the amplitude
(position) and phase (momentum) operators for the cavity field (the mechanical
mode), respectively, and express the linearized Hamiltonian as H = �

2
�RT M �R where

M =

⎛
⎜⎜⎝

� 0 g 0
0 � 0 0
g 0 ωm 0
0 0 0 ωm

⎞
⎟⎟⎠ .

The transformation to normal modes �RN M = (x+, p+, x−, p−) is achieved with a
linear transformation �RN M = S �R, where S fulfills M = ST diag(ω+,ω+,ω−,ω−)S
and is symplectic, i.e. it obeys J = S J ST where

J =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ .

The latter property guarantees that canonical commutation relations are conserved,
i.e. [ �Ri , �R j ] = [ �RN M

i , �RN M
j ] = i Ji j . The explicit form of S can in principle be

determined, but is quite involved and does not give much insight. As will become
clear in a moment, the normal mode frequencies ω± can be easily calculated without
constructing S and are (in the absence of damping) given by

ω2± = 1

2

(
�2 + ω2

m ±
√

(�2 − ω2
m)2 + 4g2ωm�

)
. (2.78)

The canonical operators evolve according to

�̇R(t) = i[H, �R(t)]−D �R(t)−√
2D �Rin(t) = (J M−D) �R(t)−√

2D �Rin(t), (2.79)

where we included damping of the cavity field and the mechanical resonator with
D = diag(κ,κ, γm, γm) and Langevin forces �Rin(t) = (xin, pin, fxm , f pm ). For
white vacuum noise input to the cavity and a thermal white noise bath coupling to
the mechanical system, all first moments vanish 〈 �R(t)〉 ≡ 0 and the only non-zero
time correlation functions are

〈xin(t)xin(t ′)〉 = 〈pin(t)pin(t ′)〉 = 1

2
δ(t − t ′),

〈 fxm (t) fxm (t ′)〉 = 〈 f pm (t) f pm (t ′)〉 =
(

n̄ + 1

2

)
δ(t − t ′), (2.80)

where n̄ ≈ kB T
�ωm

.
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From (2.79) it is clear that eigenfrequencies and effective damping rates of the
system are given by, respectively, the imaginary and real parts of the eigenvalues
of i(J M − D). The eigenvalues occur in complex conjugate pairs and the imagi-
nary parts of the ones in the upper half plane determine eigenfrequencies. For the
undamped system, D = 0, the eigenvalues are purely complex and one arrives at
expression (2.78) for the normal mode frequencies. For the damped system, D �= 0,
the eigenvalues of i(J M − D) will in general be complex and thus determine normal
mode frequencies ω± and effective damping rates γ± of normal modes, as exempli-
fied in Fig. 2.7. While normal mode splitting (NMS) occurs for any non-zero coupling
g in an undamped, a threshold of g � κ must be surpassed to observe NMS in a
damped system [80, 92]. The effective damping rates behave complementary and
merge above the same threshold. Comparison of the normal mode damping rates γ±
to the effective mechanical damping rate (2.71) shows that the condition for resolving
the normal mode peaks is g � κ, γm .

In terms of normal mode operators the full linearized Hamiltonian (2.75) is given
by H = �ω+

2 (x2++p2+) + �ω−
2 (x2− + p2−). It can be expressed also in terms of creation

and annihilation operators a± = (x± + i p±)/
√

2 as H = �ω+
(

a†
+a+ + 1

2

)
+

�ω−
(

a†
−a− + 1

2

)
. The Eigenstates and -energies are thus H |n, m〉 = En,m |n, m〉,

where

|n, m〉 = 1√
n!m! (a

†
+)n(a†

−)m |0, 0〉,

En,m = �ω+
(

n + 1

2

)
+ �ω−

(
m + 1

2

)
. (2.81)

0 2 4 6 8
0.85
0.90
0.95
1.00
1.05
1.10
1.15

P mW

m

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

P

ef
f

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.2
0.4
0.6
0.8
1.0

ef
f

ω γ γ

ω

(a) (b) (c)

mW mωΔ

k k

Fig. 2.7 a Normal mode frequencies ω± for an undamped (red) and a damped system (blue)
for varying power of the driving laser. b Same for effective normal mode damping γ±. c Effective
damping rates of normal modes (blue), cavity amplitude decay rate κ (red) and effective mechanical
decay rate γe f f (green) for varying detuning. Not shown is the natural mechanical damping rate as
γm/κ � 10−3. Parameters are as in Chap. 6, ωm = 2π × 947 kHz, γm = 2π × 140 Hz, mef f =
145 ng, L = 25 mm, ωc = 1.77 × 1015 Hz, κ′ = 2π × 172 kHz and κ̄ = 2π × 43 kHz. In a and b
� = ωm and in c P = 10.7 mW. Thanks to Klemens Hammerer for providing the plots
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Emission of a cavity photon is in general accompanied by a transition of the optome-
chanical system from one eigenstate to another by changing a single excitation,
|n, m〉 ↔ |n − 1, m〉 and |n, m〉 ↔ |n, m − 1〉. In order for such a transi-
tion to be allowed, the matrix element 〈k, l|ac|n, m〉 must be non-zero, where
ac = (xc + i pc)/

√
2 is the annihilation operator for a cavity photon. From the linear

relation �R = S−1 �RN M it is clear that ac can be related to the normal mode creation
and annihilation operators via a Bogoliubov transformation ac = η1a+ + η2a†

+ +
η3a− + η4a†

− where ηi are complex numbers. The energy splitting between these
states is En,m − En−1,m = �ω+ and En,m − En,m−1 = �ω− respectively. Photons
emitted from the cavity have to carry away this energy excess/deficiency relative
to the incoming laser photons of frequency ωl , i.e. they have to have frequencies
ωl ± ω+ or ωl ± ω−.

The power spectral density of light emitted by the cavity is explicitly determined
as follows: In frequency space [ �R(ω) = ∫

dω �R(t) exp(iωt)/
√

2π] the steady state
solutions to the equations of motion (2.79) are

�R(ω) = 1

iω + J M − D

√
2D �Rin(ω). (2.82)

With the quantum optical cavity input-output relations (see for example [93, 94]) it
follows that

�Rout (ω) = √
2D �R(ω) + �Rin(ω) =

(√
2D

1

iω + J M − D

√
2D + 1

)
�Rin(ω),

where �Rout (ω) = (xout , pout , fxm ,out , f pm ,out ). (xout , pout ) are quadratures for the
cavity output field which are subject to homodyne detection (see Sect. 3.6). In order
to calculate their stationary properties we formally introduce also “phononic output
fields” ( fxm ,out , f pm ,out ). The spectral correlation functions can be collected in a
Hermitian spectral 4 × 4 correlation matrix γout

i j (ω,ω′) = 〈( �Rout (ω
′))i ( �Rout (ω)) j 〉.

Straight forward calculation yields γout (ω,ω′) = δ(ω + ω′)�(ω) where

�(ω) =
(√

2D
1

iω + J M − D

√
2D + 1

)
N

(√
2D

1

−iω + J M − D

√
2D + 1

)T

and N = diag
( 1

2 , 1
2 , n̄ + 1

2 , n̄ + 1
2

)
. The generalization of �(ω) where a lossy second

mirror with an associated κ̄ is taken into account can be found in [46]. Finally, the
spectral density S(ω) is defined as S(ω)δ(ω + ω′) = 〈a†

out (ω
′)aout (ω)〉 where the

amplitude operator for the cavity output field is aout (ω) = (xout (ω) + i pout (ω))
√

2.
It follows from the definition of the spectral correlation matrix given above that

S(ω) = 1

2
[�11(ω) + �22(ω) + i(�12(ω) − �21(ω))] .
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This expression gives the spectral density of sideband modes at a frequencyωl + ω. In
homodyne detection of sideband modes we do not distinguish sideband frequencies
ωl ±ω and extract only the overall noise power spectrum at a sideband frequency |ω|,
which is given by SN P S(ω) = √

S(ω)2 + S(−ω)2. The calculated positions of the
spectral peaks are in excellent agreement with measured data presented in Chap. 6.

2.3.6 Optomechanical Entanglement

The generation of entanglement between an optical light field and a mechanical oscil-
lator is a major outstanding goal in the field of quantum opto-mechanics. Showing
quantum entanglement with a massive macroscopic object is a sufficient condition for
unambiguously demonstrating that quantum physics remains valid even for macro-
scopic systems. Besides the purely academic benefit of generating optomechanical
entanglement and using it for generating non-classical mechanical states [31, 95], it
is also at the heart of several applications in quantum information processing, such
as quantum teleportation [96–98].

In quantum optics the generation of entangled states between two optical modes
can nowadays be routinely achieved both for continuous variables [99] and discrete
quantum systems [100]. The most commonly used technique to create an entangled
state is to use down-conversion in a nonlinear medium. It is interesting to note, that
the interaction of an optical field with the mechanical motion of an oscillator inside
an optical cavity is also of a nonlinear nature, in fact part of it is the exact ana-
logue to the down-conversion interaction in quantum optics. In the quantum optical
continuous variable approach the resulting quantum states of the down-conversion
process are 2-mode squeezed fields—exactly the same is produced if we pump the
optical cavity in the optomechanical setup with a blue-detuned beam, only this time
2-mode squeezing between an optical and a mechanical continuous variable system
is generated. For large squeezing the 2-mode squeezed states approximate the per-
fect correlations between conjugate observables as are required for an entangled state
of the type described in the seminal paper by Einstein, Podolsky and Rosen (EPR)
[101].

Let us first recall the situation for two optical modes. In simple conceptual terms
the down-conversion (2-mode squeezing) interaction in a non-linear medium couples
two previously uncorrelated modes via a Hamiltonian

Hdc = −i�χ(a†
1a†

2 − a1a2), (2.83)

where χ ∝ |αp|2 is the coupling strength between the optical modes 1, 2 and αp

is the amplitude of the optical pump field [99, 102, 103]. The main action of this
interaction is to correlate one pair of quadratures between the outgoing modes, say the
amplitude quadratures x1,2 = (a1,2 +a†

1,2)/
√

2, and anti-correlate the conjugate pair

of quadratures, here the phase quadratures p1,2 = (a1,2−a†
1,2)/

√
2i . With increasing
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interaction strength the uncertainty in the sum (difference) between the quadratures
decreases, �(x1 −x2)

2, �(p1 + p2)
2 → 0, whereas the uncertainty in the individual

quadrature increases. In the limiting case of infinite squeezing of these variances the
two modes will eventually approximate the entangled state underlying the famous
EPR argument [101], |�〉 = ∫

dx |x, x〉 = ∫
dp|p,−p〉 = ∑

n |n, n〉 (written here
in position, momentum and number state representation, respectively). Realizations
of sources for EPR entangled light, such as an optical parametric oscillator, typically
require a cavity containing the nonlinear medium and supporting both modes 1 and
2. The EPR correlations between the modes can then be observed by performing two
independent homodyne detections of light coupled out of these two cavities. The
respective photocurrents for a given local oscillator phase φ j ( j = 1, 2) essentially
provide a measurement of x j (φ j ) = (a j eiφ j + h.c.)/

√
2. Cross correlating the two

photocurrents thus constitutes a measurement of the correlations 〈x1(φ1)x2(φ2)〉,
and scanning the local oscillator phases φ j gives direct access to the quadrature
correlations and anti-correlations characteristic of an EPR state. This way it was
possible to realize the EPR paradox [99] and to use this entanglement for quantum
teleportation [104].

Let us now draw the direct analogy to the optomechanical case. The radiation-
pressure interaction between a mechanical oscillator with resonance frequency ωm

and an optical cavity field can effectively be described by (2.75)

Hr p = �g(ab† + a†b) + �g(ab + a†b†), (2.84)

where the full Hamiltonian of the system is H = H0 + Hr p given by (2.60). The first
term in the interaction Hr p describes the exchange of energy between the mechani-
cal oscillator and the cavity field. As long as photons can leave the cavity this leads
to (optical) cooling of the mechanical mode [38–40, 106]. The second term is the
2-mode squeezing, or down-conversion interaction, and stands for creation and anni-
hilation of phonons and photons in pairs. Up to a change in phase it is equivalent to
Hdc in Eq. (2.83). By choosing the detuning � of the laser from cavity resonance to
be either +ωm or −ωm the first or the second process becomes resonant, respectively.
The latter case resembles the desired down-conversion interaction Hdc between an
optical cavity mode and a mechanical resonator mode, cf. Fig. 2.8b.

We focus on the situation where � ≈ ωm . In this case the so-called co-rotating
(cooling) terms ab† + a†b dominate the interaction while the so-called counter-
rotating (down-conversion) terms ab + a†b† contribute on the order of g

ωm
, as

can be directly seen from first-order perturbation theory. As long as the coupling
strength is small, i.e. for g � ωm , one can neglect the counter-rotating terms and
obtains the rotating wave approximation where only co-rotating terms are kept in
the Hamiltonian [107]. This means that only cooling of the mechanical mode occurs
(whose quantum limit is ultimately given exactly by the effects of counter-rotating
terms). For increasing coupling strength, however, i.e. for g

ωm
≈ O(1), this approx-

imation is no longer valid and the regime beyond the rotating wave approximation
becomes accessible. Specifically, while the co-rotating interaction increases its cool-
ing action and hence prepares a mechanical input state of increasingly higher purity



2.3 Radiation Pressure 29

(a)

(b)

Fig. 2.8 a Down-conversion in continuous variable quantum optics. Two optical fields (signal
and idler) interact in a nonlinear χ(2) medium generating a 2-mode squeezed output state. The
quadratures Xs,i and Ys,i of the fields become non-classically correlated (figure adapted from Ou
et al. [99]). b The optomechanical analogue to down-conversion—here the signal is an optical field
non-linearly interacting with the vibrations of a mechanical resonator inside a properly detuned
optical cavity. The effective interaction Hamiltonians of both a and b are equivalent. For properly
chosen parameters (see text and Fig. 2.9) the optomechanical system becomes entangled and hence
also exhibits non-classical correlations
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Fig. 2.9 Optomechanical entanglement. The entanglement measure plotted here is the logarithmic
negativity EN (for a definition see for example [105]) as a function of optical detuning � and input
power P . Positive values of EN mean that the optical and the mechanical systems are entangled.
a The parameters are ωm = 950 kHz, mef f = 50 ng, Q = 30,000, L = 10 mm, F = 7,000
and T = 100 mK. The maximal value of EN is 0.2. b For this plot we chose ωm = 360 kHz,
mef f = 50 ng, Q = 63,000, L = 25 mm, F = 14,000 and T = 100 mK. We find a maximal EN
of 0.5. Note that the color coding of the contour plots is different for a and b. White areas mean
that no entanglement is present. Thanks to Sebastian Hofer for providing the plots



30 2 Introduction and Basic Theory

(i.e. smaller entropy), the strength of the counter-rotating interaction also increases
and enables optomechanical down-conversion to take place. Note that in the realm
of atomic physics the rotating wave approximation is so good that there are only few
demonstrations of physical effects that are due to counter-rotating terms [108]. In our
experiment (see Chap. 7) it is the explicit breakdown of the rotating wave approx-
imation that will allow us to combine state preparation with the desired nonlinear
2-mode interaction in a simple way (Fig. 2.9).
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Chapter 3
Experimental Techniques

3.1 Fiber-Interferometer

In order to have a testing station for our mechanical devices, we built a simple,
fiber-based interferometer. It had several advantages over the actual Fabry-Pérot
setup—it was easy to use, i.e. it did not require any active stabilization, the chips
with the mechanical resonators could be easily swapped, the travel on the piezo-stage
was larger and hence allowed for measuring a full chip at once and most importantly,
in contrast to the actual setup, the radiation-pressure backaction was negligible and
hence it did not have to be taken into account when determining the mechanical
frequency and Q. The working principle is to use a cleaved fiber, put it above the
chip with the mechanical devices, and measure the interference between the light that
is directly reflected off the fiber-tip (which is approx. 4 %) and the light being reflected
by the mechanical device, which imparts a phase modulation due to its mechanical
motion (see Fig. 3.1). This simple scheme allowed us to measure the mechanical
properties at room temperature in a vacuum chamber, with the drawback that the
devices had to be resonantly driven to increase the interference to a level where it
was detectable. For a review see [1, 2]. Recently, several upgrades to the first design
have been made and the current fiber interferometer is built in a continuous flow
4He cryostat, which allows for measurements down to 20 K. In addition, the read-out
was replaced by a fiber-based homodyne detection scheme (see Sect. 3.6), which can
directly measure the phase modulation of the mechanical motion in the light field,
and the fiber tip has been replaced with a fiber lens [3] to allow for automated mode
tomography.

3.2 Optical Resonators

An optical resonator, often referred to as an optical cavity, confines light between
two or more mirrors. They are extensively used in lasers, where they surround the
gain medium and provide feedback of the laser light. Only light with a certain phase

S. Gröblacher, Quantum Opto-Mechanics with Micromirrors, Springer Theses, 35
DOI: 10.1007/978-3-642-34955-3_3, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 3.1 Working principle
of the fiber interferometer. A
fiber tip is positioned above
the mechanical resonator,
which modulates the phase
φ of the light field upon
back-reflection into the fiber.
The modulation can either
be detected by observing the
amplitude of the beam, as
the fiber tip partially reflects
light (around 4 %), which
then interferes with the signal
reflected off the resonator, or
by performing a homodyne
measurement

shift upon reflection off the mirrors can be stored in the cavity, which makes it a
frequency filter for light. It also acts as a spatial filter and produces either a standing
or a traveling wave inside the resonator. The detailed properties of a cavity will
be discussed in the following section (for a sketch of a typical cavity response see
Fig. 3.2).

In our experiments there are two main applications for a cavity—first, for the
optomechanical interaction we use a Fabry-Pérot type cavity, i.e. a linear cavity with
end mirrors, which enhances the interaction strength between the light field and the
mechanical motion and also allows us to cool and eventually entangle the mechanical
mirror (see Chap. 2). And secondly, triangular cavities are used to spatially and
spectrally filter the laser [4].

3.2.1 Fabry-Pérot Cavity

The simplest kind of an optical resonator is a planar-mirror cavity. The basic design
is made of two flat mirrors that face each other at a distance L . The wave function
of an incident monochromatic field of frequency ω = 2π · f can be written as

E(r, t) = A(r)eiωt . (3.1)

The complex amplitude A(r) satisfies the Helmholtz equation, i.e. ∇2 A(r) +
k2 A(r) = 0, where k = ω/c is the wavenumber and c = c0/n is the speed of
light in the medium, with c0 being the vacuum speed of light and n the refractive
index of the medium. The modes of the optical resonators are the solutions of the

http://dx.doi.org/10.1007/978-3-642-34955-3_2
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Fig. 3.2 When scanning the
length of a cavity its amplitude
response shows resonances
when the input laser field
matches a resonator mode. For
a single-mode field, adjacent
resonances are spaced by
the free spectral range (FSR)
given by Eq. (3.3). The half
width at half maximum of a
resonance is the amplitude
cavity decay rate κ

Helmholtz equation with the boundary conditions set by the two mirrors, i.e. the
wave has to vanish at z = 0 and z = L . Here z is the longitudinal propagation direc-
tion of the beam. A solution satisfying these conditions is a standing wave of the
form A(r) = A sin(kz), given that kL = q π, with q being an integer. The general
solution for the resonator mode can therefore be written as

A(r) =
∑

q

Aq sin(kqz), (3.2)

where Aq are constants and kq = q π
L , with q = 1, 2, . . . . The spacing between two

adjacent resonator modes is called the free spectral range (FSR) of the cavity and is
given by

FSR = c

2 L
, (3.3)

as the wavelengths of each mode are λq = 2 L/q. The phase shift ϕ of a resonant
wave has to be an integer multiple of itself after one roundtrip, i.e. ϕ = q 2π. So
far we have considered equal mirrors with perfect (intensity) reflectivity R = 1.
For partially reflecting mirrors however, the amplitude of the wave changes with
each roundtrip by a complex factor h = √

Re−iϕ, as
√

R �= 1 now is an amplitude
attenuation factor. The amplitude after n roundtrips is therefore

A =
∑

n

hn A0 = A0

1 − h
, (3.4)

for n → ∞. The intensity of the light inside the optical resonator as a function of
the optical frequency f is hence given by
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I = |A|2 = I0

(1 − √
R)2(1 + (2F/π)2 sin2(π f/FSR))

, (3.5)

where I0 = |A0|2 and F the finesse of the cavity, which is a measure of the quality
of the cavity [5]

F := π
√√

R

1 − √
R

. (3.6)

In a real experiment the cavity is in general not impedance matched, i.e. the reflec-
tivities of the mirrors are not equal, R1 �= R2. Also any real cavity will have some
losses that cannot be attributed to the transmission losses of the mirrors, for example
absorption or scattering—both in the mirror and in the cavity medium. Those losses
together with the partial intensity transmission of the mirrors T1, T2 are the overall
losses �, which degrade the quality of the cavity and therefore the finesse. In its most
general form it is given by [6]

F = π

2 arcsin
(

1−√
ρ

2 4√ρ
) , (3.7)

with ρ = R1 + R2 −�−1. For large finesse F � 1 the width of the cavity resonance
κ is given by

κ

2π
= FSR

2F
= c

4 L F
, (3.8)

which makes it easy to determine the finesse of a cavity in practice, by simply
measuring FSR and κ on an oscilloscope. Note that κ is the amplitude cavity decay
rate and hence corresponds to the half width at half maximum (HWHM) of the
resonance. Also, the finesse can be estimated to be F ≈ 2π/� for large finesse.
The incident power I0 is enhanced inside the cavity and the circulating power (on
resonance) is given by [7]

Icirc = I0

√
T1T2

(
√

R1 R2 − ρ)2
, (3.9)

which for a high-finesse cavity can be many times the incident power.
It is typically unfavorable to make a high-performance cavity out of planar mir-

rors. Instead one uses spherical mirrors, as planar mirrors would have to be perfectly
parallel, as well as the input field would have to be a perfectly aligned planar wave.
Any deviation from this ideal case causes the light to escape the optical resonator.
Therefore, it is common to build cavities from spherical mirrors, making the align-
ment less sensitive and making it possible to build a variety of different cavities.
The condition for a cavity to be stable, i.e. to confine the light without the size of the
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beam continuously growing with every reflection, is [5]

0 � g1g2 � 1. (3.10)

Here g1,2 are defined as g1,2 = 1 + L/C1,2, where C1,2 are the radii of curvature of
the mirrors. Planar mirrors have a curvature C = ∞, concave mirrors C < 0 and
convex mirrors C > 0. The most common stable cavity designs are the confocal
(C1 = C2 = L), the concentric or spherical (C1 = C2 = L/2), the hemispherical
(C1 = L , C2 = ∞) and the concave-convex (C1 > L , C2 = L − C1) cavity.
Throughout this thesis the optomechanical Fabry-Pérot cavity is a hemispherical
cavity, while other designs were tested, e.g. C1 � L and C2 = ∞, however never
used in an actual experiment.

In most experiments the laser has a Gaussian profile and therefore Gaussian beam
optics should be used to adequately describe the system. While most of the cavity
description obtained so far remains valid, a few properties of a Gaussian beam in a
cavity will now be discussed. The electric field of a Gaussian beam is given by [5]

E(x, y, z) = E0
W0

W (z)
exp

(
−x2 + y2

W 2(z)

)
exp

(
−ikz − ik

x2 + y2

2R(z)
+ iζ(z)

)
,

(3.11)

where W0 is the waist size (the waist radius at z = 0), W (z) = W0

√
1 +

(
z
zR

)2

the waist as a function of z, R(z) = z

[
1 +

(
z
zR

)2
]

the radius of curvature of the

wavefront, ζ(z) = tan−1 z
zR

the Gouy phase and zR = πW 2
0

λ the Rayleigh range at

which W0 increases by a factor of
√

2. In order for a Gaussian beam to be resonant
with a cavity its wavefront radius of curvature must match the radius of curvature of
the mirrors. This condition, together with the length of the cavity L = z2 − z1 lets
us define a unique Rayleigh range for the cavity:

zR =
√
g1g2(1 − g1g2)

g1 + g2 − 2g1g2
L . (3.12)

The position of mirror 1 can also be calculated to be

z1 = g2(1 − g1)

g1 + g2 − 2g1g2
L , (3.13)

while z2 is identical, just with swapped indices. The optical resonator is stable if
(3.10) is fulfilled. In addition, the waist radius of the beam on mirror 1 is given by

W 2
1 = Lλ

π

√
g2

g1(1 − g1g2)
(3.14)
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and vice versa for mirror 2. The waist size is defined as

W 2
0 = Lλ

π

√
g1g2(1 − g1g2)

|g1 + g2 − 2g1g2| . (3.15)

The phase of a Gaussian beam is given by

ϕ(x, y, z) = kz − ζ(z) + k(x2 + y2)

2R(z)
. (3.16)

The phase retardation on the optical axis with respect to a plane wave is therefore
the Gouy phase ζ(z) and the phase change per roundtrip is �ϕ = 2kL − 2(ζ(z2) −
ζ(z1)), which again must be a multiple of 2π. Going from simple plane waves
to Gaussian waves therefore does not change the free spectral range but only the
absolute resonance frequency, which is shifted by �ζ

π FSR. This is also the reason
why different modes have different resonance frequencies.

Several conditions have to be fulfilled for a real cavity with a Gaussian input beam
to work properly. For example, the mode of the input field has to match the mode of
the resonant field. In order to achieve the best possible mode matching the incoming
beam is typically collimated, adjusted in size with a telescope and finally focused
by a properly chosen mode-matching lens. If this is done carefully almost all of the
incident laser power can go into the desired cavity mode.

In our experiments it is crucial that the mode size on the second mirror is as small
as possible, as the diffraction losses on the micromirror have to minimized, while
the mirror should be as small as possible to reduce the effective mass (see Sect. 3.10)
and hence maximize the optomechanical coupling strength g (2.67). The best way
to achieve this is to use a hemispherical cavity design, where the micromirror has a
radius of curvature of CMM = ∞, while choosing the length of the cavity to be as
close to the radius of curvature of the input mirror as possible (see Fig. 3.3). This is
achieved by mounting the chip with the mechanical resonator on a xyz-piezo stage
(see Chap. 3.4 for details), with a typical step size of a few nanometers.

Another important requirement for our Fabry-Pérot cavity is that the amount of
light transmitted through the cavity should be as small as possible. The reason for
that is manifold—for one, if operated in a cryostat we do not want the power to be
dissipated in the cryostat as this adds an additional heat load. The other main reason
is that when eventually operating in the quantum regime, any quantum features, for
example entanglement, created inside the cavity should leave the cavity through only
one mirror. Any light exiting through the transmitted port is lost and the fidelity of the
quantum state is reduced by the ratio of the losses to the detected light (see Sect. 3.6).
Therefore we try to make the micromirror as highly reflective as possible (currently
limited to RMM ≈ 99.991 % by the coating design, however better reflectivities
should be achievable if necessary) and choose the input coupler’s reflectivity RIC

such that we obtain the finesse needed for the experiment, while still retaining a high
ratio of RMM/RIC .

http://dx.doi.org/10.1007/978-3-642-34955-3_2
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Fig. 3.3 a Optical waist size W0 (in µm) as a function of the cavity length L for a hemispherical
cavity on the flat mirror. The more L approaches the radius of curvature of the input mirror (here
chosen to be 25 mm), the steeper the change in W0. b Diffraction losses as a function of mode size.
σ is defined as the ratio of W0 to the mirror size. For a 50µm mirror of reflectivity 99.99 % σ needs
to be greater than 3.9 for the diffraction losses to be smaller than the mirror losses, corresponding
to W0 ≤ 6.4µm. This requires alignment precision of the cavity length on the sub-µm scale

3.2.2 Ring Cavity

The second cavity design that we use in our experiments is a ring resonator that is
made of three instead of two mirrors. The input mode is incident onto the first, flat
mirror under an angle of slightly more than 45◦. The optical mode entering the cavity
now runs between a second flat mirror, the output mirror, tilted under the same angle
as the input mirror and a curved mirror (2 m radius of curvature) that is mounted
on a piezo-electric stack for stabilizing the cavity (see Sect. 3.3.3 for details). The
filter cavities were designed by Hannes Böhm and they are described in detail in
his PhD thesis [4]. The physics of such a ring cavity is essentially the same as for
a Fabry-Pérot cavity, with only a small difference, namely that the mode spacing is
given by

FSR◦ = c

L
. (3.17)

The reason for that is, that the cavity can be seen as half a FP cavity, only folded and
the optical mode is not reflected onto itself but rather propagates around the cavity.

3.3 Locking Techniques

Obtaining a fixed frequency relation between the pump laser and the cavity is a
very crucial requirement for operating an optical resonator. The accuracy one has to
achieve is determined by the length of the cavity and its finesse—it should not vary by
more than a fraction of the cavity linewidth κ. This can be achieved by building a very
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rigid, stable cavity, which for high-finesse cavities is normally not sufficient, as the
stability needs to be typically better than �λq/F (�λq is the difference in wavelength
for two adjacent cavity modes), which is around a few femtometers for our parameter
regime. Alternatively, the relative distance can be stabilized, i.e. locked, with an
active feedback on, for example, a piezo (on which one of the mirrors is mounted)
or by actively tuning the laser frequency—the laser can be kept resonant despite
the actual distance between the mirrors being unstable. For any of the stabilization
schemes typically used in optics experiments, an error-signal has to be generated,
which contains information on the relative distance between the mirrors. The simplest
example is to detect the transmission (or equivalently the reflection) curve of the laser
through the cavity. This method is however only sensitive to whether the cavity is
out of resonance but not if it is too long or too short. This is the reason why it
is not possible to use this signal to stabilize the cavity on resonance but only off
resonance—in general, locking requires an error-signal with a linear slope at the
desired lock-point, i.e. the derivative of the signal should be large and not zero.
Therefore, several methods exist which allow the generation of an error-signal for
resonant locking of a cavity. The ones that were used in this thesis will be described
in the following sections.

3.3.1 Pound-Drever-Hall

Originally devised in the early 1980s [8] based on work used in microwave applica-
tions in the 1940s [9], this technique relies on the interference of frequency sidebands
with the main laser carrier to generate an error-signal for cavity stabilization. To gen-
erate the sidebands one typically uses an electro-optical modulator (EOM), which
produces a phase modulation on an input laser beam. Given a laser field Ein with
an amplitude A and a frequency ω, i.e. Ein = Aeiωt , a phase modulator generates a
field

Ein,EOM = Aeiωt+iβ sin �t , (3.18)

where β is the modulation depth of the EOM and � the modulation frequency. In
the limit of small β we can do a Taylor expansion and by neglecting higher than first
order terms we obtain

Ein,EOM = A

(
eiωt + β

2
ei(ω+�)t − β

2
ei(ω−�)t

)
. (3.19)

It is easy to see that the generated field contains three different frequencies, where
the amplitude of the sidebands is determined by β. The expansion can also be done
using Bessel functions
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Ein,E O M = Aeiωt

(
J0(β) +

∞∑
n=1

Jn(β)ein�t +
∞∑

n=1

(−1)n Jn(β)e−in�t

)

≈ Aeiωt
(

J0(β) + J1(β)ei�t − J1(β)e−i�t
)

, (3.20)

where the Bessel functions are defined as

Ja(x) =
∞∑

n=0

(−1)n

n!(n + a)!
(x

2

)2n+a
. (3.21)

The relative powers in the carrier and the upper and lower sidebands are Pc =
J 2

0 (β)P0, P± = J 2
1 (β)P0, respectively. Here P0 = |A|2 is the absolute power in the

laser. The reflection coefficient R(ω) for a Fabry-Pérot cavity is simply the ratio of
the incident laser to the reflected field and in general given by [10]

R(ω) = −r1 + r2(r2
1 + t2

1 ) exp {i ω/FSR}
1 − r1r2 exp {i ω/FSR} . (3.22)

Here r1 = √
R1 (t1 = √

T1) is the amplitude reflection (transmission) coefficient of
the input mirror and r2 = √

R2 of the end mirror of the cavity. The field reflected off
the cavity then reads

Ere f = Aeiωt
(

R(ω)J0(β) + R(ω + �)J1(β)ei�t − R(ω − �)J1(β)e−i�t
)

.

(3.23)

In an experiment what is actually measured is the power on the photodetector, which
is given by

Pdet = |Eref |2 = Pc|R(ω)|2 + P±[|R(ω + �)|2 + |R(ω − �)|2]
+ √

Pc P±[R(ω)R∗(ω + �)e−i�t − R(ω)R∗(ω − �)ei�t

+ R∗(ω)R(ω + �)ei�t − R∗(ω)R(ω − �)e−i�t ] + O(2�). (3.24)

The first three terms give rise to a DC signal on the photodiode, while the next order
terms oscillate at �. Those are the parts of the signal we are actually interested in, as
they come from the interference of the carrier with the sidebands, which gives direct
access to the phase response of the cavity. For κ � � and ω being sufficiently close
to the cavity resonance, the sidebands created in the EOM are directly reflected off
the cavity, i.e. R(ω±�) ≈ −1, and the carrier acquires a phase inside the cavity. This
is the regime we work in in all our experiments. In our setup the terms oscillating at
� can be isolated by mixing the photodetector output signal with the same frequency
the EOM is modulated with and low-pass filtering that signal. More quantitatively,
the mixing of two sinusoidal signals with frequencies � and �′ results in
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sin(�t) sin(�′t) = 1

2

{
cos

[
(� − �′)t

] − cos
[
(� + �′)t

]}
, (3.25)

and hence the first term is 1/2 for � = �′, while the second term can be neglected if
a low-pass filter with a cut-off frequency that is smaller than � is used. It is important
to note that

sin(�t) cos(�′t) = 1

2

{
sin

[
(� − �′)t

] − sin
[
(� + �′)t

]}
, (3.26)

and hence the signal for � = �′ would vanish at DC. Therefore, the phase between
the signal from the photodetector and the function generator always has to be properly
chosen. As we are working in the regime where the sidebands are completely reflected
off the cavity we can simplify

R(ω)R∗(ω + �) − R∗(ω)R(ω − �) ≈ −i 2 · Im {R(ω)} . (3.27)

In this limit, we can neglect the real part of (3.24) and we finally arrive at an expression
for the error-signal

εPDH = −2
√

Pc P± · Im
{

R(ω)R∗(ω + �) − R∗(ω)R(ω − �)
}
. (3.28)

As can be seen from Fig. 3.4, the error-signal has a maximal slope and also crosses
zero when the laser is on resonance. For a rigorous derivation of the Pound-Drever-
Hall error-signal, including the case κ > �, see [10].

(a) (b)

Fig. 3.4 A schematic drawing for the Pound-Drever-Hall (PDH) locking technique is shown in a.
A laser is phase-modulated using an electro-optical modulator (EOM), which is driven by a function
generator (FG) at a frequency �. After being reflected off a cavity, the laser with its modulated
frequency sidebands is detected on a photodiode. The interference signal of the sidebands with the
carrier contains information on the length of the cavity, which is accessible after being mixed with
the FG signal. For details see the text. The magenta trace in b shows a typical experimental PDH
error-signal, while the green signal is the cavity resonance obtained from scanning the cavity length.
The cavity finesse for this particular case was approx. 7,000, with a length of 25 mm. The cavity
amplitude decay rate was hence κ = 2π × 430 kHz, while � ≈ 18 MHz
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For most of our experiments we have used a broadband EOM (New Focus 4004),
driven by a function generator (Agilent 33220A). The function generator (FG) has
a maximum output voltage of 10 Vpp, which only corresponds to a very small β.
We therefore built a RLC circuit, where the output of the function generator is the
resistance (50�), the EOM itself is the capacitor (18 nF) and a self wound coil
the inductance of 4.3µH. This circuit had a resonance frequency of approximately
18 MHz (which easily fulfills κ � �, as κ typically is �2π × 1 MHz), and a Q-
factor of almost 10. By splitting off a small fraction of the function generators’
output (Minicircuits ZDC-10-1) we ensured � = �′. The mixing of the output
signal from the photodetector and the coupled output of the function generator was
performed on a Minicircuits ZAD-1-1. The signal was subsequently low-pass filtered
(Minicircuits BLP-10.7) to remove higher-order terms from the signal. For locking,
this error-signal was amplified with a home-built amplifier and a variable ±100 mV
signal was added for fine tuning of the setpoint of the lock. In order to decrease the
optical power needed to generate the error-signal we replaced the original EOM with
a resonant New Focus 4003 (resonance frequency 20 MHz), for which the half-wave
voltage (the voltage needed to make a π phase-shift) is approx. 16 Vpp. Instead of
using one FG, we now use two that are frequency locked, which allows us to adjust
the phase between the EOM driving and the demodulation signal arbitrarily.

3.3.2 Tilt Locking

A technique for generating a modulation-free error-signal is the so called tilt lock. It
purely relies on the interference of different spatial modes. Any optical field can be
decomposed in an orthonormal basis, such as the Hermite-Gauss modes, which are
also a solution of the paraxial Helmholtz equation. They are of particular importance,
as they have paraboloidal wavefronts and hence match the curvature of spherical
mirrors. Hermite-Gauss modes are a natural choice for decomposing the field of an
optical cavity. Their amplitude is given by [5]

Ul,m(x, y, z) = Al,m

[
W0

W (z)

]
Gl

[ √
2x

W (z)

]
Gm

[ √
2y

W (z)

]

× exp

[
−ikz − ik

x2 + y2

2R(z)
+ i(l + m + 1)ζ(z)

]
, (3.29)

where W (z) is the beam width, W0 the waist radius, k the wavenumber, R(z) the

wavefront curvature and ζ(z) the Gouy phase. Gl(u) = Hl(u) exp
(−u2

2

)
is the so-

called Hermite-Gaussian function, Hl(u) are the Hermite polynomials and Al,m is
a constant (for more details see [5]). The Hermite-Gauss mode with l = m = 0 is
simply the Gaussian mode (c.f. Fig. 3.5). In the reflected signal of a cavity which
length is scanned over a full free spectral range, one can see a number of higher order
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Fig. 3.5 a Shows the theoretical intensity profiles
∣∣Ul,m

∣∣2 for several Hermite-Gaussian (HG)
modes defined by (3.29), that are supported by an optical cavity. From top-left to lower-left (in
clockwise direction) the modes are (l = m = 0), (l = 1, m = 0), (l = 0, m = 1), and (l = 0, m =
2), respectively. In b the same modes are recorded experimentally using a CCD camera placed at
the output port of a ring-cavity. In order to obtain the images, the cavity length was scanned and
the cavity itself was slightly misaligned. Higher order HG modes were also observed, as well as
Laguerre-Gaussian and more exotic modes, which are however not shown here

modes, with different amplitude. If the laser output would be perfectly Gaussian and
the cavity perfectly aligned all modes but the U0,0 would vanish. As this is never the
case in a real cavity, it is possible to use the different spatial properties of the modes
to generate an error-signal. More precisely, distinct modes have different Guoy phase
shifts and therefore have different resonance frequencies in the cavity. The phase of
a mode with indices l, m on the beam axis is given by ϕ = kz− (l + m + 1)ζ(z) and
for a beam to be resonant to a cavity its phase has to change by multiples of 2π over
a full roundtrip (cf. Sect. 3.2.1). Therefore, modes where l +m differs, have different
resonant frequencies. It is hence possible to use a higher order Hermite-Gauss mode
as a phase reference for the fundamental Gaussian mode, e.g. the U1,0 mode. The
signal on a photodetector of the two reflected modes is

S0,0+1,0 =
+∞∫

−∞

+∞∫
−∞

∣∣U0,0(x, y) + U1,0(x, y)
∣∣2

dx dy = const., (3.30)

for constant signal amplitudes. This is intuitively clear, as the interference term of
the two fields is proportional to

I0,0+1,0 =
∣∣∣∣∣∣

+∞∫
−∞

+∞∫
−∞

U∗
0,0(x, y) U1,0(x, y)dx dy

∣∣∣∣∣∣ , (3.31)

which is always equal to zero as the Hermite-Gaussian modes form an orthonormal
basis and hence their overlap integral per definition is zero. In order to obtain a usable
error-signal, one cannot detect the whole signal on a photodetector but rather has to
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use the unique spatial properties of the U1,0 mode: by using a photodiode that is
split into two halves and subtracting their photocurrents, it is possible to obtain the
constructively and destructively interfering parts of the fields separately [11]:

εTilt =
+∞∫

−∞

0∫
−∞

∣∣U0,0(x, y) + U1,0(x, y)
∣∣2

dx dy

−
+∞∫

−∞

+∞∫
0

∣∣U0,0(x, y) + U1,0(x, y)
∣∣2

dx dy. (3.32)

For the case where U0,0 is on resonance with the cavity, the two terms cancel each
other out. However, when the fundamental mode slightly shifts out of resonance it
acquires a phase shift (the phase change for an on-resonance mode is very steep,
while the phase acquired by an off-resonant mode is almost zero), which leads to
different signals on the two photodiode halves and produces a non-zero error-signal
(c.f. Fig. 3.6). The 1, 0 mode acts as a stable phase-reference for the fundamental
mode. In our experiments this locking technique is used for the stabilization of the
ring filter cavities, as well as for one Fabry-Pérot filter cavity. For more details on the
cavities and the split photodiode detectors see [4]. Note, that the original design of
the detectors included a small error, which is however easy to fix: the numbering of
the pins was clockwise but in fact should be counterclockwise. This can be corrected
by short-circuiting pins 2 and 8.
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Fig. 3.6 a Shows a simplified sketch of a cavity which is stabilized with the tilt locking scheme.
The reflected port of the resonator is detected on a split-photodiode, and the difference signal of the
two halves of the diode is used as an error-signal for the stabilization. b The intensity of the photo-
current on the split-diode is shown as a function of the position on the detector. The purple curve is
the signal when the fundamental cavity mode is on resonance, i.e. has a detuning �0—as the two
halves have equal signals their difference is zero. When the fundamental mode is off-resonance it
acquires a phase shift with respect to the U1,0 mode and their interference results in an unbalanced
signal on the diode which can be used as an error-signal. The blue curve, detuning �1, comes from
a negative phase shift, while the dark yellow curve (�2) corresponds to a positive phase shift. The
dotted line indicates the two halves of the photodetector which are subtracted. c The difference
signal of the detector halves (green trace) exhibits the characteristic tilt lock error-signal when the
cavity length is scanned. The blue trace is the cavity response obtained from adding the signal of
the detector halves
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3.3.3 Experimental Locking

Once an error-signal is generated it is electronically processed and an appropriate
signal is fed back either to the laser or to a piezo actuator in order to stabilize the cavity.
Our error-signals are typically amplified with home-built wide-band amplifiers and
then fed into a proportional-integral-derivative controller (PID controller). The PID
controller we use for almost all lock-loops is the Toptica PID 110. It has a low-voltage
bandwidth of up to 1.5 MHz (a jumper can be set to operate it in a low-voltage
mode of ±10 V output), although we mostly operate it in the high-voltage mode
(−30 to +150 V, bandwidth >10 kHz), which gives us a larger dynamic range, while
sacrificing some of the bandwidth.

• In our early experiments (see Sect. 5.1) we actively stabilized the length of the
optomechanical Fabry-Pérot cavity. The input coupler was mounted on a ring piezo
(Piezomechanik HPSt 150/14-10/12), which was part of the cavity. Besides the
glue (Master Bond EP21TDC-2), which attached the holder for the input mirror to
the piezo stack, slowly decomposing the piezo (Fig. 3.7a), there was an additional
major drawback to the design: while working well at room temperature, the design
did not allow any stable lock of a cryogenic cavity. Below 100 K it was only possible
to find a stable lock during the first few minutes, until the piezo thermalized. We
measured the piezo capacitance to quantify the amount of extra driving that would
be necessary for stabilizing the cavity, and saw that it decreased from an initial
2.8µF at room temperature to 800 nF at 17 K (cf. Fig. 3.7b). Driving the piezo
at even higher voltages (an increase of a factor of approximately 4 would have
been necessary) was not possible as the output of the PID controller was limited to
150 V and with an additional amplifier we would have not only reduced our locking

(a) (b)

Fig. 3.7 a Shown is the ring-piezo used for locking the Fabry-Pérot cavity in Sect. 5.1 after approx-
imately half a year being glued to a Teflon stage. The part that is covered in glue pealed off the
remaining piezo ceramics over time. b The capacitance of the piezo stack as a function of tempera-
ture. The capacitance clearly decreases and makes it impossible to lock the cavity at low temperature

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_5
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bandwidth (due to the finite output current of the amplifier) but we would have
also created an even higher heat load on the cryostat, which would have increased
the minimum bath temperature. The solution we devised was to mount the piezo
stack with the input coupler on the outer shield of the cryostat (however still in
vacuum), effectively keeping it at room temperature throughout the experiments
(see Sect. 5.1 for a detailed sketch of the mounting). This approach had two main
limitations: first, the cavity was split into two halves, making it more unstable
and second, the heat load created from blackbody radiation of a 300 K object
in close proximity (a few millimeters) to the sample, increased the mechanical
mode temperature by almost a factor of 2. The optical resonator finesse used in
the locking tests was between 5,000 and 8,000.

• Our lasers, see Sect. 3.4, have a fast piezo input for tuning the laser frequency,
which can take an input voltage of up to ±100 V, while the corresponding range
is approximately 1 MHz/V at a bandwidth of 100 kHz. We use a voltage divider
(a simple high-voltage potentiometer) to reduce the maximum output voltage of
the PID box to the appropriate input voltage of the laser and in most experiments
used a BNC T-adapter to combine the PID signal with the calibration signal from
the function generator (see Sect. 3.9 for details). The combined signal then feeds
back to the laser frequency, such that it always stays resonant with the cavity. The
laser frequency lock is exclusively used for locking the Fabry-Pérot cavity using
a PDH error-signal in Sect. 5.2 and Chaps. 6 and 7.

• The filtering cavities are locked using the tilt locking technique. The output of
the PID controller is directly applied to a piezo holding the back mirror of the
cavity. In the early designs these mirrors (1” diameter, 2 m radius of curva-
ture, see [4] for details) were mounted on Piezomechanik PSt 150/7/20 VS 12
piezo actuators, that had an unloaded resonance frequency of 30 kHz. The mirror,
with a mass of 6.9 g reduced the resonance frequency of the piezo according to

f ′
0 = f0

√
m piezo

m piezo + mmirror
≈ 20 kHz. Given that one can typically only use the

bandwidth of up to a third or one half of the piezo’s resonance frequency with-
out starting to excite it (as they normally have small Q factors), this is rather low.
A stable lock of the filtering cavities with an input beam of the high-finesse (which
is typically around 4,000) polarization therefore proved to be rather difficult. In
order to improve the lock we tried to reduce the mass of the mirror and increase
the resonance frequency of the piezo itself. The latter one was easily achieved
by replacing the piezo elements with Piezomechanik PSt 150/7×7/2, that have
an intrinsic resonance frequency of >500 kHz. The reduction of the mass of the
mirrors was somewhat more difficult as no ultra-thin mirrors with a proper radius
of curvature were readily available. We therefore decided to cut out a small piece
of the mirrors by using a diamond mill. The diameter was reduced from 1" to
approximately 1/4", while the thickness was cut down to less than 1 mm, greatly
reducing the mass to approximately 0.35 g. In order to protect the high-reflectivity
coating of the mirror, we coated it with a thick layer of photoresist, which we
removed after the process with acetone (see Fig. 3.8b). The resonance frequency
with the attached mirror was estimated to be f ′

0 ≈ 450 kHz. In addition to max-

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_6
http://dx.doi.org/10.1007/978-3-642-34955-3_7
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(a) (b)

Fig. 3.8 a Model for a high-bandwidth mirror mount. The holder is made of stainless steel, with
a rod of molybdenum mounted inside. On top of the rod is a high-frequency piezo (we typically
use a Piezomechanik PSt 150/7×7/2), which holds a small mirror. The gap between the holder is
filled with glue (Araldite 2015) and lead-cuttings in order to damp vibrational modes from the steel
holder. The gaps in both the holder and the rod are for increasing the surface for better damping. The
holder is used for the filtering cavities, as well as for locking the phase of the homodyne detectors.
The mount was designed by Stefan Goßler. b Picture of an actual mirror-mount. The piezo and
the mirror are clearly visible. The inset shows an image of a filter cavity mirror with 2 m radius
of curvature, that was cut out of the original 1" mirror to significantly reduce the mass and hence
increase the lock bandwidth. The diameter of the mirror is approx. 6.5 mm, while it is less than
1 mm thick. A 1 Cent coin is shown for comparison. The mirror in the picture is still covered with
a protective layer of photoresist

imizing the resonance frequency it is also vital to reduce all other mechanical
resonances in the system, i.e. damp out any mechanical modes of the mirror and
piezo holder. To achieve this, we built a special mount that was designed by Stefan
Goßler (S. Goßler, Private communication). The idea is to use a molybdenum rod
and embed it in a holder filled with glue and lead-cuttings. Figure 3.8a shows a
sketch of the holder design. This design was finally used in both filtering cavities,
allowing us to stably lock the cavities either at high finesse or lock all 3 (2 filter +
FP cavity) at once, which is a major challenge but necessary for shot-noise limited
operation of the setup (see Sect. 3.4 for details).

• Recently, we have also started to use a modified tilt locking technique for Fabry-
Pérot cavities. In order to have access to the spatial properties of the light field
we introduce a polarizing beamsplitter and a quarter-wave plate in front of the
cavity and look at the interference of the Gaussian mode with higher order modes
in the reflected signal on a split photodiode, just as in the conventional tilt locking
scheme.

• Several different PID controllers were tested throughout this thesis. An idea
was to incorporate the locking into a computer based program and automa-
tize (re-) locking of the cavities, which is a very useful feature for a cascaded
lock (see Sect. 3.4). Initial tests were done with a field-programmable gate array
(FPGA) based input-output card (National Instruments PCI-7833R), which is pro-
grammable in LabView. The main problem with this approach was the limited
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analog-to-digital conversion (ADC) rate of the card (200 kS/s), which was too slow
for the digitization of even a medium-finesse error-signal. We therefore tested a
commercial product, namely the Toptica DigiLock 110, which seemed to work
sufficiently well, even came with an auto-lock feature but had no interfaces with
LabView or any other lab software. It was essentially a digital standalone ver-
sion of the PID 110. We therefore decided to build a proper FPGA based PID
controller that featured all our requirements. We worked with Thomas Lehner
from dotfast-consulting (http://www.dotfast-consulting.at) to develop a system
that incorporated the following envisioned features: input voltage range ±1 V, 12
bit ADC, variable output range with a variable offset point—maximum of ±5 V,
bandwidth for input and output 10 MHz, triangular output for scanning and find-
ing the resonance, interface for computer control and LabView integration. The
PID boxes were built by Thomas Lehner and first tests show promising results,
meeting the specifications. Further tests are currently underway and if successful
the controllers should replace the Toptica PID 110, allowing us to use new features
such as auto-lock or re-locking a cascaded cavity system.

3.4 Experimental Setup

The experimental setup has evolved significantly over the course of this thesis and
was also adapted to meet the different requirements for the measurements presented
in Chaps. 5–7. While it is beyond the scope of this work to discuss the “historical”
development of the setup, we would like to discuss the most important features and
present the latest setup. Most of the more relevant parts are discussed in great detail
throughout this chapter.

3.4.1 Two-Color Setup

The original setup used in [12], as well as in the experiment described in Sect. 5.1,
comprised a single laser beam for read-out and radiation-pressure cooling of the
mechanical oscillator. This had the consequence that the read-out sensitivity was a
function of detuning and laser power. In addition, the locking of the Fabry-Pérot cav-
ity became rather complicated—for close to resonance operation the Pound-Drever-
Hall error-signal was used, while locking at or beyond the detuning by the mechanical
frequency required to use the cavity reflection signal as an error-signal. This resulted
in more unstable locks, as the error-signal did not have a perfectly linear dependence
for all setpoints. We therefore decided to replace the single-laser with a two-color
scheme. The idea was to have a faint read-out beam that was always kept on reso-
nance with the FP cavity and a detuned cooling beam that was variable in power.
The two beams were to have similar frequency, however with a variable detuning of
the cooling beam with respect to the cavity resonance. Therefore, the laser was simply
split on a polarizing beam splitter (PBS) and both beams sent through a double-pass

http://www.dotfast-consulting.at
http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_7
http://dx.doi.org/10.1007/978-3-642-34955-3_5
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acousto-optic modulator (AOM) beam line (see Sect. 3.5 for details). The reason
why we had to use an AOM for each beam, was that AOMs always have a fixed
offset frequency of 80 MHz or more, around which the frequency can be detuned. In
this scheme, the beams are recombined just before entering the FP cavity on a PBS.
This allows us to use the beams in the same spatial mode, making sure that they
couple to the same cavity mode, but always keep them separate as they have orthog-
onal polarizations. For separating the beams reflected off the cavity from the input
beams we had to introduce a non-reciprocal polarizing element—a Faraday rotator.
In combination with a half-wave plate and a PBS it allows to distinguish two counter-
propagating beams with equal polarizations. The Faraday rotators we use (Leysop
FOI-1064) have an aperture of 5 mm, a transmission of ∼99 %, a polarization rota-
tion of 45 ± 0.5◦ and a temperature stability of 0.1◦ K−1. The cooling beam also
has two steering mirrors, with which the spatial overlap with the locking beam can
be adjusted. The main challenge in this scheme is the polarization separation—the
cooling beam is typically more than 3 orders of magnitude stronger than the locking
beam and a beat signal between the two will appear in the locking beam spectrum,
which is close to the mechanical peak and will add significant noise to the spectrum.
The situation is not as dramatic as it would be if the FP cavity were polarization
independent, however due to a small birefringence the cavity resonances for the two
beams are approximately 800 kHz apart (the birefringence of the AlGaAs samples
can be much higher, resulting in two distinct resonance peaks when scanning the
cavity length). Nonetheless, the polarization separation is crucial, as any extra noise
from the beating signal or other noise from the cooling beam will make it extremely
hard to perform a shot-noise limited read-out. While a PBS typically has an extinc-
tion ration of 10−3 for the reflected port, the transmission port has only ∼10−2. We
therefore chose the cooling beam to be vertically polarized when impinging on the
combining PBS. The polarization of the two beams before entering the FP cavity is
matched to the cavity polarization axis by a half- and a quarter-wave plate. This is
crucial, as this also sets the polarization incident on the PBS upon reflection from the
cavity. In addition, the cooling beam is adjusted with a half-wave plate just in front
of the PBS. This scheme worked satisfactory for most experiments, however when
using large cooling powers, the leakage of the cooling beam into the locking beam
became significant, raising the noise-floor and making the temperature calibration
less accurate. We therefore replaced the PBS with a Wollaston polarizer (FOCtek
WSP7010) that has an extinction ratio of <5 × 10−6. The improvement was not
as good as expected and the high transmission loss (>10 %) precluded the use of
the Wollaston polarizer in any experiment. However, replacing the wave plates with
yttrium vanadate (YVO4, 0.3 mm thick) crystals (one before the PBS in the cooling
beam and one behind the PBS) improved the separation significantly. The crystals
are birefringent and one can rotate the polarization by tilting and rotating the crystal
with respect to the laser beam.

Only recently however, we have completely eliminated the problem of beating
between the locking and the cooling beam—we replaced the AOM in the locking
arm with a fiber based high-bandwidth electro-optic modulator (EOM) (EOSpace
PM-5K5-20-PFA-PFA-106-LV-UL). Using a high-frequency signal generator
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(Rohde & Schwarz SMF100A) we generate frequency sidebands (as explained in
Sect. 3.3.1) that are 3 times the free spectral range of the cavity away from the cooling
beam. In order to obtain a laser field solely oscillating at this sideband frequency we
pass the laser through a volume holographic filter (Ondax, 90 pm or 24 GHz band-
width) and are left with the sideband plus a few percent of residual higher order
sidebands. We perform additional filtering with a very short (L = 2 mm) low-finesse
(F = 350) FP cavity, which suppresses any higher order sidebands and hence leaves
us with a clean single-mode laser beam at the modulated sideband frequency. This
signal is used to lock the cavity and the beating of the cooling and the locking beam
is now completely negligible as it occurs at approximately 18 GHz for our standard
FP cavity of 25 mm length.

3.4.2 Laser Systems

For most experiments we used a Nd:YAG laser (Innolight Mephisto) with a nominal
output power of approximately 1.1 W at 1064 nm wavelength. The natural linewidth
of the laser is specified to be <1 kHz. The laser has a fast frequency tuning port
(100 kHz bandwidth, ±100 V maximum input voltage, >1 MHz/V tuning, 2 M�

input impedance, and 2 nF capacitance), with which a piezo acting on the laser
cavity is tuned and which we use for locking the laser frequency to the Fabry-Pérot
cavity resonance. It also has a slow frequency tuning port (1 Hz bandwidth, ±10 V
input voltage, −3 GHz/K tuning, and a tuning range of 30 GHz), with which the
temperature of the laser crystal is controlled—we use this port to find the cavity
resonance and for compensating for long-term cavity drifts. The laser has an intensity
noise peak at around 700 kHz that is due to relaxation oscillations from changes of
the pump power in the gain medium. Most of this noise peak is suppressed by a
noise-eater (suppression of around 40 dB), however it adds to the overall intensity
noise of the laser—if the laser is not additionally filtered it exhibits noise that is above
its shot-noise up to 5 MHz. Due to the need for slightly more laser power we recently
replaced the Mephisto laser with a Prometheus (also Innolight) laser, that has an
output power of 1.32 W, while almost all the other specifications remain the same.
Only the relaxation peak is now centered around 1 MHz and the laser only starts to
be shot-noise limited at frequencies higher than 12 MHz. An additional feature of the
Prometheus is that it also has a 70 mW output at the frequency doubled wavelength
(532 nm). This second laser is completely coherent with the 1064 nm output and we
envision to potentially use it as a read-out beam for the mechanical motion. The
advantages would be that we could have two cavities with different finesse that are
truly distinct in frequency. One possible application would be to build a high-finesse
cavity for 1064 nm for the cooling beam, while the cavity mirrors only have low
reflectivity for 532 nm, which would allow the read-out field to follow the mechanical
oscillations adiabatically (i.e. with no time delay due to the cavity linewidth κ). We
did initial tests for such a scheme, however with non-optimized mirrors, which made
it very hard to see any mechanical displacement in the power spectrum of the 532 nm
beam.
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3.4.3 Cavities

Immediately after the laser there is a Faraday isolator (Linos FI-1060-5SI) preventing
any reflected light from entering and possibly destabilizing the laser. Before the beam
is split into the locking and the cooling fields we have an optional filter cavity—it can
either serve as a spatial filter (with a finesse of 400) or additionally as an intensity
noise filter. For the latter implementation, the input polarization is chosen such that the
mirrors are highly reflective (dielectric 45◦ mirrors always show some dependence of
their reflectivity on polarization), which gives us a finesse of 4,000–7,000, depending
on the cleanliness of the mirrors. This, with a length of L ≈ 0.7 m gives a cavity
linewidth of κ = 270 kHz for the low- and of κ = 27 − 15 kHz for the high-finesse
cavity. This allows us to obtain a shot-noise limited pump beam for frequencies
greater than 1 MHz (see Fig. 3.9). The cavity itself is made of a solid Invar body in
order to reduce thermal variations from affecting the cavity stability (see Hannes
Böhm’s thesis for details [4]). The error-signal for the cavity is generated using the
tilt lock technique. The curved back mirror was substantially reduced in mass and
the piezo bandwidth increased in order to be able to lock the cavity simultaneously
with the Fabry-Pérot cavity (see Sect. 3.3). The difficulty here is that if the frequency
change required for locking the FP cavity is large and fast, the bandwidth of the filter
cavity lock must be even larger as it always has to follow the laser in addition to
its own lock. Also, if the filter cavity loses lock, the FP cavity loses lock too and
starts to oscillate as it looks for a lock point but no laser light is hitting the detector,
making it impossible for the filter cavity to re-lock. The purpose of a cascaded lock
with digital lock boxes would be to “know” when the filtering cavity loses the lock

Fig. 3.9 Shot-noise measurement of the laser. The difference- (blue curve) and sum-signal (green)
of two photodetectors are measured and their power spectra plotted. Just around 1.1 MHz the two
curves start to coincide, which is the frequency above which the laser is shot-noise limited, i.e. free
of classical noise. The traces were taken after filtering the laser with a ring cavity (finesse 4,000
and L ≈ 0.7 m). The detector noise is shown for comparison (black)
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and therefore automatically stop the lock of the FP cavity and restart one lock after
the other.

We use a second filter cavity in the arm of the cooling beam for a reduction of the
laser power on the photo detectors. The idea is to lock the cavity on its low-finesse
polarization and while the laser in the first pass goes through the cavity unhindered,
on the way back from the Fabry-Pérot cavity only the original pump frequency
gets transmitted. The mechanical sidebands created inside the FP-cavity are not
resonant with the filter cavity and are therefore reflected (the effective reflectivity
for the sidebands with frequency ωsb is given by Reff = 1 − κ2

κ2 +ωsb
). Due to

the cavity’s ring-design, the non-resonant part of the laser is reflected under an
angle of approximately 45◦. This makes it easy to pick it off and it is the actual
information we would like to detect. Even if the cooling beam is very strong, the
sidebands that are detected are very weak (they are only created with a rate given by
Eq. (2.72)) and therefore we do not run into the problem that the detectors saturate,
even though we have to use a local oscillator that is up to 50 times stronger than the
signal.

As already mentioned in Sect. 3.2.1, the finesse of a cavity is easily determined
by scanning its length and measure the free spectral range and the width of the cavity
resonance, with the ratio of the two being the finesse. This method is quick and
simple and gives a good estimate, however it is limited by the linearity of the piezo
used for scanning and by the speed of the photodetector. For high finesse cavities
(>a few thousand) the detector has to have a bandwidth of around 106 Hz, which is
in principle easily possible with the diodes we use (rise times <10 ns) but requires
small modifications of the circuits we use. The reason is that the photodetectors are
built such that they have a DC and an AC output with a cut-off frequency at around
30 kHz. By removing the capacitance providing the high-pass for the AC part (C7)
and shorting another capacitance (C9) all the signal is DC coupled (see [13] for
details) and the full bandwidth of the circuit (∼10 MHz) can be used in one port to
reliably measure the finesse. Such a modified detector is placed in the second output
port of the PBS that combines the local oscillator and the signal in the locking beam
and is used for finesse measurements, as well as initial alignment of the cavity. A
more precise method of measuring the finesse is to lock the cavity on resonance and
scan the cooling beam in frequency with very little power and in small steps over
the resonance—fitting this peak gives direct access to the cavity decay rate κ and
hence its optical quality. This scheme is normally used once the cavity is properly
aligned as it is much more involved than the scanning measurement. We have also
tested a third method, that is useful for very high-finesse cavities but also requires
fast detectors. It is described in detail in [14].

http://dx.doi.org/10.1007/978-3-642-34955-3_2
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Fig. 3.10 An image of a group
of mechanical resonators
inside the 4He cryostat taken
with a CCD camera, which
is used for alignment of
the mechanical system to
the cavity mode. The arrow
indicates the oscillator used
in experiments Sect. 5.2 and
Chaps. 6 and 7

100 μm

3.4.4 Imaging and Miscellaneous

In order to see which of the mechanical resonators we are addressing with our laser,
we require some kind of imaging system. As dielectric high-reflectivity mirrors (and
optics in general) for 1064 nm are almost completely transparent for white light, the
imaging can be built independent of the setup. We placed a charge-coupled device
(CCD) camera such that we could look straight into the cryostat and used the mode-
matching lens in combination with a second lens as a microscope. A typical image
of a group of cantilevers is shown in Fig. 3.10. Thanks to the non-zero sensitivity of
the silicon CCD at 1064 nm, the laser spot can easily be seen and the position of the
mechanical resonators can be adjusted accordingly. In the setup with the 4He cryostat,
the illumination was realized by shining a white light source through the second onto
the first alignment mirror and the few percent (typically around 4 %) that are reflected
off the uncoated (for white light) mirror surface were directed into the cryostat onto
the chip. The situation is somewhat more complicated for the dilution refrigerator, as
the arms are rather long (for details see Sect. 3.11). However, the imaging itself works
exactly the same as for the small cryostat and only the illumination is more tedious.
We swapped the position of the CCD with the illumination, so now the illumination
goes straight into the cryostat and the imaging is done via a 50/50 beamsplitter. The
image quality is worse than before due to the sub-optimal illumination, but still good
enough to get a rough idea of where the laser is hitting the chip.

As electronic noise can be a major problem for the detection of the small signals
we typically want to observe, we power all the sensitive equipment (detectors, signal
combiners, amplifiers, etc.) with car-batteries, as they provide a perfectly quiet source
with enough power for our requirements. Before introducing the batteries we had a lot
of problems with noise from the power line (50 Hz), which could then be eliminated.

A sketch of the complete experimental setup can be found in Fig. 3.12, while a
simplified sketch is shown in Fig. 3.11.

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_6
http://dx.doi.org/10.1007/978-3-642-34955-3_7
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Fig. 3.11 Functional sketch of the experimental setup. A Nd:YAG laser is split into a faint locking
beam and a strong cooling or driving beam. The locking beam is shifted in frequency by several
free spectral ranges of the Fabry-Pérot (FP) cavity using a high-bandwidth (GHz) electro-optical
modulator (EOM) and subsequent filtering, which is not shown here. The beam is then split into a
local oscillator and a signal field, which passes another EOM for Pound-Drever-Hall locking. The
beam is sent into the FP cavity (which is mounted inside a cryostat) and measured in reflection in a
homodyne detector. The strong field in turn is shifted in frequency by an acousto-optic modulator
(AOM), split into a local oscillator and a signal field and then recombined with the locking signal
beam on a polarizing beamsplitter. Also the reflected strong field can be measured in a homodyne
detector. For a complete sketch of the setup see Fig. 3.12

3.5 Acousto-Optic Modulator

An integral part of the setup are the acousto-optic modulators (AOM). They allow us
to change the frequency of the cooling beam with respect to the locking beam. The
basic working principle of an AOM is a crystal (typically made of SiO2 or TeO2)
in which sound waves are produced by a piezo transducer forming a grating. An
incoming light beam is diffracted off that grating, acquiring a Doppler-shift that is
proportional to the driving frequency and the diffraction order. Typical diffraction
efficiencies into the first order are around 80 %, however they can vary significantly
with the spot size of the laser beam. We use our AOMs in a double-pass configuration,
i.e. after the first pass the laser is reflected right back into the AOM giving it double the
frequency shift. The advantage of this scheme is that the beam is always superimposed
with the original incoming beam (independent of the AOM frequency), while in
single-pass the beam direction changes with the applied frequency shift. The outgoing
field can be separated from the incoming beam using a quarter-wave plate and a PBS.
In our double-pass configuration we typically achieve a total efficiency of shifting
the input laser by the desired frequency of ∼50 %.
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Fig. 3.12 The picture shows a complete overview of the current experimental setup. A less
detailed, functional sketch can be found in Fig. 3.11. The red box with the laser symbol in the
top-left corner is a Nd:YAG laser. The unlabeled plates are half-wave plates, while the quarter-wave
plates are marked as λ/4. All beamsplitters in the figure are polarizing beamsplitters. Proportional-
integral-derivative controllers (PID) are used for stabilizing several cavities and also the phase
between the signal and local oscillator beams for the homodyne detectors (those PID loops are
omitted for reasons of simplicity). The blue box represents a Faraday isolator, while the yellow
boxes are Faraday rotators. Electro-optical modulators are labeled EOM, while AOM stands for
the acousto-optic modulator. The volume holographic filter (VHF) is used, in combination with
a low-finesse cavity, for filtering unwanted modes left after modulation with the high-bandwidth
EOM. The Fabry-Pérot cavity comprising the mechanical oscillator is either inside a 4He cryostat
(4 K) or a dilution refrigerator (20 mK). For detailed discussions of the experimental parts see the
various sections throughout this chapter
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We chose our AOMs to be as high frequency as possible while still providing
us with a reasonable efficiency—the higher the frequency, the higher the bandwidth
of the AOM, which is important in order for the laser beam not to experience any
drop in intensity while changing its frequency. The central frequency of our AOMs
(AA Opto-Electronic MT200-B100A0.5-1064) is 200 MHz and their bandwidth is
50 MHz, more than sufficient for our mechanical frequencies of around 1 MHz, with
a single-pass diffraction efficiency of 80 % into the first order.

In the beginning we used direct digital synthesizer drivers (AA Opto-Electronics
DDSA-B431b-0-M01 with AMPA-B-33 amplifiers) to produce the sound waves
inside the AOM crystal. The advantage of such drivers is that they are very stable
in frequency (∼200 Hz/K), can easily be computer controlled and their frequencies
can be almost perfectly matched. However, they exhibit spurious emission of around
55 dBc, which produced regularly spaced noise peaks in our homodyne power spec-
trum, which we had to remove from the spectrum in order to obtain good fits of our
mechanical peaks. We therefore replaced the digital drivers with analog drivers (EQ
Photonics AODR 1205FM-2), which are essentially voltage controlled oscillators
(VCO) with a high-frequency amplifier. These drivers are much quieter, however at
the cost of frequency stability and also the integration into LabView requires ana-
log output voltages from the computer, with a frequency calibration that depends
strongly on the temperature of the drivers.

3.6 Homodyne Detection

In our experiments the quantity we are normally interested in is the motion of the
mechanical resonator. When probing the optomechanical cavity with a resonant laser
beam, the displacement couples directly to the phase of the beam, as the mechanical
oscillation corresponds to a length change of the cavity, which translates into a phase
change of the optical field. A phase measurement of a light field always requires some
form of reference, which is normally another laser and the measurement is typically
performed interferometrically. In our setup we already have such a reference which
is generated for the Pound-Drever-Hall lock: the sidebands that are reflected off
the cavity. The same way we can produce the error-signal, we can also extract the
mechanical motion by just splitting off a small part of the signal and spectrally
analyze it—as the mechanical frequency in our case is much larger than the locking
bandwidth, the locking and the analysis can be seen as two completely separate parts
of the setup. In the early experiments ([12] and Sect. 5.1) this was also the way we
measured the mechanical displacement. However, we quickly ran into a signal-to-
noise problem, as the modulation depth of the sidebands was rather low (we still used
the broadband EOM). In addition, the power in the locking arm and therefore the
detector noise became problematic. The noise equivalent power (NEP) of our self-
made detectors is approximately 400µW at 15 MHz and 100µW at 1 MHz. Also,
using the PDH signal for the read-out allows to only measure the phase and not the
amplitude fluctuations of the field.

http://dx.doi.org/10.1007/978-3-642-34955-3_5
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We therefore decided to implement a homodyne read-out for our mechanical
system. Homodyne detection is a common technique in quantum optics used to
measure amplitude and phase fluctuations of laser fields and can be a quantum limited
read-out technique, i.e. not be susceptible to classical noise (the improvement in
signal-to-noise from the PDH read-out to the homodyne detection can be seen in
Fig. 3.13b). The basic scheme for a homodyne detector is sketched in Fig. 3.13a. A
signal with a steady-state amplitude αs and amplitude and phase quadratures δXs(t)
and δYs(t) can be written as

αs(t) = αs + δXs(t) + iδYs(t), (3.33)

where αs , δXs(t) and δYs(t) ∈ R. The quadratures are the amplitude and phase
fluctuations around a steady-state value α. The signal is mixed with a strong field,
typically called the local oscillator (LO), on a 50/50 beam-splitter and subsequently
detected in two detectors. In order for the two beams to interfere on the beamsplitter,
they of course not only have to be in the same spatial mode but also have to have the
same polarization. The local oscillator signal can be written as

αlo(t) = [αlo + δXlo(t) + iδYlo(t)] eiϕ, (3.34)

(a) (b)

Fig. 3.13 Generic scheme of a homodyne detector. a Laser is split into a strong local oscillator and
a weak signal beam. The signal passes a blackbox which represents any phase- and/or amplitude-
modification which is the actual information to be measured. The phase of the local oscillator can
be controlled by, for example, a piezo actuator. The two beams are interfered on a beamsplitter and
the two output signals are detected. The difference signal of the detector is the homodyne signal,
containing information on the amplitude- and phase quadratures of the signal field, depending on
the relative phase between the two optical beams. b Mechanical noise power-spectrum measured
using the Pound-Drever-Hall (PDH) error-signal (black curve) and using the homodyne detection
scheme (red). The signal-to-noise ratio is at least 30 dB better for the latter case, probably owing
to the non-ideal modulation depth of the phase modulation in this measurement
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whereϕ is an arbitrary phase between the signal and local oscillator beam. Normally,
the two beams are derived from the same laser, which makes their frequencies match
exactly. If they have different frequencies, the detection is called heterodyning, but
here we will concentrate on the homodyning only. Following the derivation of [15],
the field on the detectors D1 and D2 can be written as

αD1(t) =
√

1

2
αlo(t) +

√
1

2
αs(t),

αD2(t) =
√

1

2
αlo(t) −

√
1

2
αs(t), (3.35)

where one of the fields experiences a π-phase shift upon reflection off the beamsplit-
ter. As the detectors only measure intensities, the photocurrents are

iD1(t) = |αD1(t)|2 = 1

2

(
|αlo(t)|2 + αlo(t)α

∗
s (t) + α∗

lo(t)αs(t) + |αs(t)|2
)

,

iD2(t) = |αD2(t)|2 = 1

2

(
|αlo(t)|2 − αlo(t)α

∗
s (t) − α∗

lo(t)αs(t) + |αs(t)|2
)

.

(3.36)

If we substitute Eqs. (3.33) and (3.34) into (3.36) and use the fact that |αlo|2 � |αs |2,
i.e. we can neglect terms of the formαsδX∗ and similar, as well as all terms containing
two quadrature components, we can approximate

iD1(t) ≈ 1

2
α2

lo + αloδXlo(t) + cosϕ · αloαs + cosϕ · αloδXs(t)

+ sinϕ · αloδYs(t),

iD2(t) ≈ 1

2
α2

lo + αloδXlo(t) − cosϕ · αloαs − cosϕ · αloδXs(t)

− sinϕ · αloδYs(t). (3.37)

The final step to obtain the homodyne signal now is to subtract the two photocurrents
and we find

i−(t) = iD1(t) − iD2(t) ≈ 2 cosϕ · αloαs + 2αlo [cosϕ · δXs(t) + sinϕ · δYs(t)] .

(3.38)

This result is very interesting insofar as the difference signal, besides a DC term that
is proportional to αlo · αs , only depends on the amplitude of the local oscillator and
on the relative phase ϕ between the signal and the local oscillator—by changing ϕ
we can measure either one of the signal’s quadrature or a combination of both.

Experimentally this means that the local oscillator power needs to be at least a
factor of 10 higher than the signal power. As a true 50/50 splitter is very hard to find
(normally they are closer to 45/55), we realize our splitting with a polarizing beam
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splitter. For this purpose the beams are first combined on a PBS, where they remain
orthogonally polarized but are already in the same spatial mode. The adjustable
splitting is then realized with a half-wave plate, with which the polarizations are
rotated into the 45◦, basis and subsequently mixed on another PBS. As the PBS
are however far from perfect (the extinction ration between horizontal and vertical
polarization is only around 10−2 in the transmitted beam), we insert another wave
plate and a PBS into the reflected port of the second PBS to filter out any remaining
horizontally polarized light (cf. Fig. 3.12).

In our experiment the relative phase ϕ between the local oscillator and the signal
can be controlled in two different ways: for both schemes the local oscillator is
reflected off a mirror that is mounted on a piezo actuator. This allows us to actively
change the phase, which we then lock to the setpoint that corresponds to the desired
quadrature. The error-signal is simply the DC output of one of the two homodyne
detectors, which contains the interference signal of the two laser beams. However,
this approach does not allow us to lock to any arbitrary phase, as the interference
signal is a sin2 and it is not possible to lock on the maxima and minima of the
signal. This can be circumvented however, by taking the interference signal on the
PBS where the signal and the local oscillator beams are combined as the error-signal
for locking the phase (cf. Fig. 3.12). The phase is then changed by introducing an
additional YVO4 crystal in between the two PBS where the beams are already in
the same spatial mode but still have orthogonal polarizations. The setpoint can be
chosen such that the lock is on the maximum slope of the error-signal—by tilting
the birefringent crystal, the relative phase can now be arbitrarily changed over 2π.
This scheme relies on the phase being stable in between the two PBS, which for all
practical purposes is the case in our experiment.

The interference signals between the local oscillator and the signal beam are π/2
out of phase on the two homodyne detectors and therefore when taking the sum
cancel each other out. The signal beam also contains sidebands, that are created for
the PDH lock, that oscillate at relatively high frequency, typically 18 MHz in our
experiments. These terms are not canceled in the sum signal and hence can be used
to derive the Pound-Drever-Hall error-signal. In a real experiment it is very hard to
make the interference terms perfectly cancel and if we don’t take great care, the level
of the PDH signal oscillates with the interference. When locking the relative phase
of the signal and the local oscillator however, this problem is eliminated. Another
way of avoiding that problem is to use an additional detector before combining the
signal with the LO and use this to generate the PDH error-signal. This approach can
be very handy as it is completely independent of the relative phase—we have simply
connected a JDSU ETX-500 diode to an ultra-low noise transimpedance amplifier
(Femto DHPCA-S). In the future it might also be interesting to replace the home-
built photodetector circuits in the homodyning with such a configuration, as the
amplification is adjustable, allowing detection of even very low power levels and the
noise figure of 1.5 pA/

√
Hz at 105 gain, with a bandwidth of 14 MHz and a measured

NEP of 15µW at 1 MHz is very hard to match.
Homodyne detection is a very sensitive way of measuring the amplitude and

the phase quadrature of the light field and is therefore used in quantum optics to
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reconstruct the full quantum state of a system. For our system the situation is slightly
different as we do not probe the mechanical oscillator directly but rather measure the
light field that has interacted with it. Therefore, we are currently limited to measuring
the displacement quadrature x of the mechanical resonator only and cannot directly
measure the energy of the system, known as a x2-measurement. Thus, we have to rely
on the fact that the system we are looking at behaves like a harmonic oscillator and
that the equipartition theorem is valid. However there are ideas and implementations
on how to measure the energy of the oscillator directly [16].

In our experiments, the reconstruction of the phase-space distribution of the
mechanical motion, such as the Wigner function (2.50), can be done by measur-
ing the phase quadrature of the resonant locking beam. This is a direct measure of
the mechanical displacement, however oscillating at the mechanical frequency ωm .
The extraction of the mechanical quadratures from the raw, digitized detector data
is done by post-processing the data in LabView and MatLab, which makes it highly
adjustable and the experiment itself remains very simple. The same technique, how-
ever with no post-processing was used in [17]. We multiply the digitized signal with
sin(ωmt + φ) and also with cos(ωmt + φ), where ωm is determined from fitting the
spectra and φ is an arbitrary phase typically set to zero. The two signals we obtain are
the quadratures of the mechanical oscillator, after we remove higher order terms by
low-pass filtering the data. The quadratures can be plotted in a phase-space diagram
or histograms of the data can be generated and displayed in a 3-dimensional distribu-
tion plot. Such plots are shown for various cooling beam detunings for a mechanical
resonator at low bath temperatures in Fig. 3.14.

In order to reconstruct quantum states with homodyne detection it is essential to
avoid losses in the detection—any loss means that the quantum state of the light,
which is used to measure the quantum state of the mechanical oscillator, is mixed
with an equivalent amount of the vacuum state, reducing the fidelity of the quantum
state. Losses in an experiment are manifold, where four main contributions can be
identified in our setup:

• Diffraction and absorption losses on optical components. While this is currently
the biggest contribution to our loss budget it is also one that can be managed
relatively easily—we are upgrading most of the lenses that are in the path of our
read-out beam from standard Thorlabs components to high-quality, specifically
anti-reflection (AR) coated optics from Layertec. At the moment we have losses
on the order of 15 % solely due to non-ideal optics, which should be reduced to a
few percent with the upgrade.

• Another loss contribution is that the optomechanical cavity is not perfectly single-
sided. Light that leaves the cavity through the transmitted port is lost and therefore
reduces the read-out fidelity. The ratio of the reflectivities of the input coupler with
the mechanical oscillator is a measure of how much of the light created inside the
cavity, i.e. the sidebands on the light field, can be detected in the reflected port.
Typically this ratio is 1:10 but can be almost arbitrarily adjusted at the cost of the
cavity finesse or by using micromirrors with better coatings.

http://dx.doi.org/10.1007/978-3-642-34955-3_2
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Fig. 3.14 Shown are the thermal phase-space distributions of a mechanical resonator (ωm = 2π×
944.7 kHz) at 5 K and with an optical power in the cooling beam of 500µW. The detunings are
shown in units of ωm , and the corresponding effective temperatures of the mechanical mode are
(from top-left to bottom-left in clockwise direction) 3.5, 0.28, 0.08 and 0.04 K, respectively. The
axes are in arbitrary units

• The spatial mode matching of the local oscillator with the signal beam is another
loss mechanism—we typically achieve interference visibilities of greater than
90 %, which could be further improved if needed by spatially filtering the local
oscillator in a cavity.

• The finite quantum efficiency (QE) η of the photo-detectors also introduces losses
and therefore it is desirable to have photodiodes with an as high QE as possible.
While in the past it was possible to buy diodes from JDSU with η > 99 %, the
diodes they manufacture now have much lower efficiencies. Apparently, the QE
depends on which part of the InGaAs wafer the diode comes from—they used to
measure the QE of their diodes and it was possible to cherry-pick the best devices.
However, as they changed their manufacturing process they do not measure the
QE anymore. We therefore ordered a large set of photodiodes and measured their
quantum efficiencies ourselves, picking the best and also making pairs of diodes
that had the best match in efficiency. The QE of a diode is defined as

η = Idiode · � · ω
Popt · e

, (3.39)
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Fig. 3.15 Circuit for measur-
ing the quantum efficiency of
a photodiode. The left box is
an operational amplifier, for
example a SGS Thomson low
noise J-FET TL072, while the
upper right box represents the
photodiode to be measured.
Here K stands for the cathode
and A for the anode of the
diode. The output voltage
Vdiode is measured across a
resistor R for several optical
input powers, which gives the
quantum efficiency according
to (3.39)

whereω is the optical frequency, Popt the optical power on the diode and e = 1.602
C the elementary charge. We obtain Idiode from fitting Vdiode/R plotted against
Popt for several Popt . Vdiode is measured with the help of the circuit shown
in Fig. 3.15, where R = 1 k� and Popt is determined with a power meter.
A comparison of the first batch of diodes can be seen in Table 3.1 (all diodes
are from JDSU).

.

3.7 Data Acquisition

The data we need to acquire changed with the advance of the experiment. While in
the first experiments ([12] and 5.1) it was sufficient to just save the trace from the
spectrum analyzer (plus the bandpowers of the mechanical and the calibration peak),
when we started doing homodyning it became favorable to record the time trace of
the difference signal. With this data it is possible to calculate spectra with different
amount of averaging and to obtain correlation functions of two homodyne detectors,
as is needed for the experiment presented in Chap. 7. However the demand on the
performance on the acquisition system is greatly increased, as now the acquisition
rate must be larger than the mechanical oscillation frequency to at least be equal to
the Nyquist rate [18]. In addition, the amount of data taken directly influences the
resolution one can achieve in the power spectrum, which is crucial especially for
high-Q mechanical resonances. Some of the early tests we made were done with a
National Instruments PCI-5640R card, which featured a maximum sampling rate of

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_7
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Table 3.1 Typical quantum efficiencies for a batch of photodiodes

Type # of diode Slope η (%) Box #

ETX500 1 0.86209 84.271 6
ETX500 2 0.86227 84.288 7
ETX500 3 0.85591 83.666 11
ETX500 4 0.84718 82.813 12
ETX500 5 0.85923 83.991 –
ETX500 6 0.85427 83.506 –
ETX500 7 0.857 83.773 10
ETX500 8 0.85641 83.715 –
ETX500 9 0.86341 84.4 –
ETX500 10 0.85827 83.897 –
ETX1000 1 0.94005 91.891 1
ETX1000 2 0.94068 91.953 5

They are measured by determining the current produced in the diode Idiode for several optical input
powers Popt and using Eq. (3.39). More precisely, the potential difference Vdiode across a resistor R
(here 1.1922 k�) is measured in a circuit similar to that shown in Fig. 3.15 and the slope of Vdiode/R
over Popt is fitted to obtain Idiode. The errors of the QEs are less than 1% and the number of the
box corresponds to the detector it is used in the experimental setup. While the ETX500 diodes have
rather poor η, the ETX1000 show close to unity QEs, given that all diodes were measured with a
protective window that typically reduces η by around 4 %. The values shown here were actually
measured in Kopenhagen by Alexander Huck

100 MS/s at 14 bit. The main limitation, besides the pure AC coupling, was that the
data was acquired via the FPGA chip of the card, allowing for fast rates but quickly
overflowing the FIFO (first-in first-out) buffer. The PCI-5640R card was not intended
to be an actual fast data acquisition card acquiring broadband signals and we therefore
replaced it with a proper data acquisition (DAQ) system. We purchased a National
Instruments PXIe-1062Q chasis, which is a configurable and expandable controller
that uses the PCI Express standard for data transfers between different acquisition
cards and the host computer. The DAQ card we use is a NI PXIe-5122 digitizer,
with a maximum sampling rate of 100 MS/s at 14 bit. If not run at maximum speed
and in combination with a hard disk array (NI HDD-8264) this system is capable of
streaming two channels continuously onto the hard disk without dropping a single bit.
In addition, one can expand the DAQ with a second PXIe-5122 and run 4 channels
at a rate of 10 MS/s each, limited only by the hard disk array that can take up to
600 MB/s. In combination with the fast channels we also use an acquisition card (NI
PXI-6251) for slow signals, like the ramp for the phase scan in Chap. 7.

3.8 Data Analysis

In all recent experiments we digitize the homodyne current and perform different
post-processing procedures to obtain the desired measurement values. Most pro-
grams for the data analysis are written in LabView, where some routines are realized

http://dx.doi.org/10.1007/978-3-642-34955-3_7
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using MatLab. For example, the mechanical spectra are calculated using a LabView
routine, which turned out to be more efficient than the corresponding MatLab code.
Post-processing the data offers great flexibility and can be automated to a very large
extent, which makes it very convenient.

3.9 Calibration

The spectrum of the mechanical oscillation contains the information on the (effec-
tive) frequency and linewidth of the mechanical motion, as well as its displacement
as the area under the mechanical peak is directly proportional to 〈�x2〉. Without
knowing the exact values of the laser power, the quantum efficiency of the detectors,
the amplification gain, etc. the mechanical power spectrum however only gives a
signal that is proportional to the displacement, with unknown prefactors. Our signal
is therefore calibrated, which is done by applying a known frequency (or phase) mod-
ulation to the laser that is close to the mechanical motion in frequency and use this as
a reference to get absolute numbers for the displacement. In most experiments this
was done by directly applying a modulation signal to the lasers fast frequency mod-
ulation port—the same that is used for stabilizing the Fabry-Pérot cavity. The signal
for locking the cavity is simply combined with the output of a function generator
on a BNC T-piece (typical modulations were 1.05 MHz for a mechanical resonance
of 950 kHz and a voltage of 10 mVpp), while the output of the function generator
is protected by a DC-block (e.g. a capacitor or the Minicircuits BLK-222) from the
high-voltage signal of the PID controller. This has the drawback, besides the obvious
one of combining a high- and low-voltage signal, that all laser fields have the same
modulation, while it is only needed for the read-out beam. We therefore recently
introduced a second, broad-band phase modulator (New Focus 4004) in the locking
beam, which allows us to phase modulate only the signal arm of the locking beam.
The actual calibration remains the same.

We apply an oscillating voltage of amplitude AF M at frequency � either to the
piezo giving optical feedback to the laser diode or the EOM, frequency modulating
the laser according to:

E(t) = AF M cos(2πνL t + β sin(2π�t)), (3.40)

where νL is the laser frequency, β = �ν/� is the modulation index and �ν is
the peak frequency-deviation. In the frequency domain, applying the modulation
creates sidebands of frequency n·� from the carrier frequency, where n = ±1 for
small modulations. The presence of these sidebands gives rise to an optical beating
in the amplitude E , which in principle can be detected directly and the modulation
index could be determined from the beat amplitude, however this requires strong
amplification as the signal is very small.

A different way to observe the small frequency modulation, is to lock a cavity at
half its maximum and detect its transmission. The frequency modulation is translated
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into an appreciable amplitude modulation, proportional to the gradient of the cavity’s
frequency response ∂U/∂ν, where U (ν) is the Lorentzian cavity spectrum (neglect-
ing any offset in central frequency and DC output level):

U (ν) = �2Up

4ν2 + �2 , (3.41)

with � being the full width at half maximum (FWHM) of the cavity resonance and
Up the peak voltage generated by the photodiode at cavity resonance. Its spectral
derivative is

∂U

∂ν
= −8�2Upν

(4ν2 + �2)2 . (3.42)

For ν = κ = �/2 the slope of the cavity response is

∂U (κ)

∂ν
= −Up

2κ
= −U1/2

κ
, (3.43)

with Up = 2 · U1/2 and κ is the cavity linewidth (HWHM). The free spectral range
of a ring cavity (used in our setup) is FSR◦ = c/L , where L is the cavity length and
the finesse is F = FSR◦/(2κ◦), thus giving

κ◦ = c

2L F
. (3.44)

The amplitude modulation is converted into a frequency modulation according to

�ν = AAM

∂U (κ◦)/∂ν
, (3.45)

where AAM is the amplitude of the oscillation in root mean square (rms) voltage and
hence �ν is in rms units. As an aside,

β = kν AF M

�
= �ν

�
, (3.46)

where kν is the frequency deviation constant of the laser and AF M is the amplitude
of the modulating signal. Thus, the laser frequency will deviate for a given voltage
according to kν = �ν/AF M .

Now, in order to determine the calibrated displacement of the mechanical motion,
we apply a modulation to the laser with �νcal , calibrated as outlined above. We can
use

�νcal

νL
= �xcal

L F P
, (3.47)
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where �xcal is the equivalent cavity displacement and L F P the Fabry-Pérot cavity
length. The rms micromirror displacement is then given by

�xm = �νcal L F P

νL

Vm

Vcal
, (3.48)

where Vm and Vcal are the band powers converted to volts rms of the mechanical and
the calibration peak, respectively. These band powers can be directly measured on a
spectrum analyzer. To convert a power Pd Bm measured across a resistor R to volts
rms use:

Vrms =
√

R

1000
10Pd Bm/20. (3.49)

It is now possible to measure a fully calibrated noise power spectrum and hence, for
example, determine the effective mass meff using (3.48)

meff = kB Teff

ω2
m〈�x2

m〉 , (3.50)

or similarly the effective mode temperature Teff .

3.10 Effective Mass

While the effective mass of a particular mode of the mechanical resonator can be
experimentally determined according to Sect. 3.9 it is also possible to calculate the
effective mass one expects as a function of the optical beam size, the position of the
laser on the mechanical oscillator and the mode of the oscillator itself. The idea is to
take the mode of a doubly clamped beam (in the Euler-Bernoulli approximation) [19]

MF F (x, y) =
[

cosh

(
ξ x

L

)
− cos

(
ξ x

L

)
− cosh ξ − cos ξ

sinh ξ + sin ξ

×
[

sinh

(
ξ x

L

)
− sin

(
ξ x

L

)] ]
M(y), (3.51)

where L is the length of the beam, M(y) = 1 the mode shape of the beam in the y-
direction, and ξ is 4.73, 7.85, and 11 for the 0th , 1st , and 2nd order mode, respectively
(see [19–21] for details). The effective mass of a mechanical resonator is the overlap
of its mode mass (the mass actually contributing to the motion of the mode) with the
optical mode probing the motion. The fundamental mode mass is
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mmode = mextra + ρ · t

L∫
0

w∫
0

M2
F F (x, y)dx dy, (3.52)

where mextra is any additional mass on the resonator that is not directly contributing
to its motion (such as a mirror pad), ρ is the density of the material, t the thickness of
the beam and w its width. Here the fact that only ∼74 % of the total mass of a doubly
clamped resonator contribute to the mechanical motion is taken into account [22].
The overlap of the spot where the laser field is probing the mechanical motion with
MF F is

ALaser = Re

⎧⎨
⎩

L∫
0

w∫
0

MF F (x, y)M2
Beam(x, y)dx dy

⎫⎬
⎭ , (3.53)

with MBeam being the mode shape of the laser beam, which typically is a two-
dimensional Gaussian. The effective mass is then given by [22]

meff = mmode

A2
Laser

. (3.54)

For our doubly-clamped resonator used in Sect. 5.2 and Chaps. 6 and 7 this calculation
underestimates the effective mass by a factor of ∼2. The reason for that is that the
real mode shape of the doubly clamped beam loaded with a mirror pad of comparable
size is somewhat different. We did the same calculation only replacing MF F with a
polynomial fit to the mode shape of the FEM simulation of the mechanical resonator
(see Fig. 3.16 for a graphical comparison of the two)

M ′
F F (x, y) = (−0.03 + 19654.35x+ 5.3 · 109x2 − 3.11 · 1014x3

+ 6.81 · 1018x4 − 6.6 · 1022x5 + 2.35 · 1026x6 − 955291.46x7

− 110.43x8 − 0.01x9)M(y). (3.55)

This adjusted calculation gave us a more accurate result to within 10 % of the actually
measured value of the effective mass.

A third way of determining the effective mass is to use finite element method
(FEM) simulation. This is briefly described in the supplementary information of [23].

3.11 Cryogenic Operation of an Optical Cavity

According to Teff = T γm
γeff

(cf. Sect. 2.3), if we would like to reduce the effective
mode temperature of the mechanical resonator we have to minimize the coupling
to its environment. There are two ways of achieving that: first by increasing the
mechanical quality factor Q, i.e. reducing the damping of the mechanical mode γm ,

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_6
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Fig. 3.16 a Mode shape of a doubly clamped resonator. b in contrast shows the polynomial approx-
imation (3.55) to a doubly clamped, flat top mode shape, which is closer to the actual mode shape
of the resonator used in the experiments in Sect. 5.2 and Chaps. 6 and 7. This mode was used for
calculating the effective mass of the resonator

where several approaches are discussed in Chap. 4, or secondly by decreasing the
bath temperature T to which the mechanics is coupled to. This can be done by putting
the chip with the oscillator inside a cryostat. In the simplest case this is a 4He cryostat,
which can in principle reach temperatures of 4.2 K—or even as low as around 1 K if
the pressure of the helium is decreased by pumping on it.

3.11.1 Continuous-Flow 4He Cryostat

Our 4 K experiments were performed using a Janis ST-500 microscopy cryostat.
This cryostat is a continuous-flow cryostat, where liquid helium is taken from a
dewar with a transfer line and run through a spiral to cool the cold-finger inside
the cryostat. The sample chamber is evacuated to a pressure of around 10−6 mbar
at room temperature and 10−7 mbar when cooled down, as additional cryo-pumping
helps to freeze out residual gas inside the cryostat. The vacuum prevents freezing
of water and nitrogen inside the cryostat and for our experiments it is required to
avoid damping of the mechanical mode from residual gas, which can severely limit
the mechanical Q at pressures above 10−3 mbar. For optimizing the coupling of the
laser light to the mechanical resonator one needs to be able to position the mechanics
to within a precision of around one micrometer. This is achieved by mounting the
chip on a three-axis piezo positioning system (2x Attocube ANPx51+1x Attocube
ANPz51), which has a resolution of ∼10 nm at low temperature. In between the
Attocubes and the chip is a thin (∼5 mm) copper piece with copper braids (they are
cold-pressed into the copper), which can be clamped to the cold-finger and are used
for thermalizing the chip. The chip is attached to the copper block by applying a
thin layer of Apiezon N grease for better thermal contact and the chip is typically
also clamped down with two small copper slabs. The thermalization block also has
a small clearance for a Si-diode (DT-670A1-SD) for measuring the temperature as

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_6
http://dx.doi.org/10.1007/978-3-642-34955-3_7
http://dx.doi.org/10.1007/978-3-642-34955-3_4
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close to the chip as possible. The rest of the cavity, i.e. the input coupler, was also
mounted inside the cavity throughout all our experiments.

In the first low-temperature experiment (see Sect. 5.1) the cavity was still locked
with the help of a ring-piezo which could not be thermalized and therefore had to
be attached to the cryostat cap to remain at room temperature. In the subsequent
experiment (Sect. 5.2), this was replaced with a solid copper block directly attached
to the cold-finger. The input coupler was therefore also thermalized at the base
temperature of the cryostat. This approach helped greatly in reducing the cryostat
temperature as well as the mode temperature of the mechanical oscillator. However,
only the use of radiation shielding, which minimizes the effect of 300 K blackbody
radiation heating up the experiment, and proper thermalization of all wiring inside
the cryostat allowed us to reach a base temperature of approximately 5 K. Prior to
that, temperatures in excess of 10–15 K were the lower limit. We attached the wires
connecting the Attocubes to the cold-finger by tying them down at several different
points using dental floss and Teflon tape. The laser was coupled to the cavity through
a 1" anti-reflection coated window. The cross section of the cryostat in a rigid 25 mm
configuration (i.e. the cavity is 25 mm long and the input coupler is mounted on a
solid copper piece) can be seen in Fig. 3.17. While we mostly operated the cryostat
with a 25 mm long cavity, we also tested 50 mm long cavities and any arbitrary length
should in principle be feasible. For a typical cool-down it took us around 1 h to reach

Fig. 3.17 Shown is a SolidWorks drawing of the Janis ST-500 continuous-flow 4He cryostat in
the configuration used for the experiments described in Sect. 5.2 and Chap. 6. The input mirror is
mounted in a solid piece of copper (the reddish components are the copper mounts we designed for
the cavity), while the chip with the micromechanical oscillator (black) sits on top of xyz-positioning
piezo actuators (gray) and a thermalization copper-block (gold). The radiation shields (orange) keep
300 K blackbody radiation from heating up the experiment
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5 K and we used a little more than 10 l of liquid helium, while during operation at
low temperature we used around 2 l/h. We could not observe any significant (> a
few hundred mK) heating of the sample stage from laser absorption, not even at
high input powers of >20 mW and a locked Fabry-Pérot cavity, even though all the
transmitted laser power was dumped into the thermalization copper block. This is
due to the large cooling power of the cryostat of approximately 1 W at 5 K. Also,
we did not experience any problems with stabilizing the cavity during cryogenic
operation even for high-finesse configurations (the specified vibration level of the
cryostat is 25 nm at the cold finger) once we removed the vibrations generated in the
liquid helium dewar due to evaporating and boiling helium (this was achieved by
putting the transfer line all the way into the liquid helium). The copper we used to
build the sample and input coupler holder was mostly oxygen-free (OFHC) copper,
which in retrospect however, is probably not necessary for a 4 K cryostat. The mode
matching to the cavity was performed with a lens (50 mm focal length) outside of
the cryostat.

3.11.2 Closed-Cycle 4He Cryostat

In the continuous-flow 4He cryostat helium is vented directly into the atmosphere
and therefore lost. Even though it can also be collected and recycled, running a
4He cryostat can be rather expensive. We therefore started looking into closed-cycle
systems, in which the helium is directly reused and the operation of such a cryostat
only requires electrical power and cooling water. The test system we had was a
Vericold VT4-500 pulse tube cooler, which delivered a cooling power of 500 mW at
∼2.8 K. The cryostat worked using the Joule-Thomson effect, where a gas (helium
in this case) is forced through a valve and, if well isolated, cools during expansion
(as no heat exchange is performed). The helium is than compressed again and reused
for cooling (see [24] for a detailed introduction into pulse-tube cooling). The main
disadvantage of this cooling approach is that large vibrations are generated when the
gas passes the valve, typically on the micrometer scale. For our experimental trials
this was a major limitation, as the cavity was directly attached to the cold-finger in
which the vibrations are generated and our cavity started to move with a big enough
amplitude, that the beam reflected off it was visibly steering around, making any
alignment very hard and locking of the cavity impossible. We could therefore only
perform tests at low temperature when we switched the cooling off, which resulted
in a quick heat up of the cold-finger and the sample. We tried to increase the time it
needed to warm up by adding additional mass to the cold finger (a solid lead block,
as lead has one of the highest specific heat capacitance at low temperatures of all
materials) but even though, within 15 min the temperature increased from 4.6 to 9 K.
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3.11.3 Dilution Refrigerator

As our experiments in the 4He cryostat already allowed us to cool to thermal
occupations of the mechanical resonators of around 30 (see Sect. 5.2) we decided to
go to even lower bath temperatures by using a closed-cycle dilution refrigerator (see
for example [25] for a detailed introduction) that can operate with a 3 order of mag-
nitude lower base temperature (typically around 10 mK) compared to a 4He cryostat.
In such a cryostat the mK regime is reached by having a cold mixture of 3He/4He,
which below a certain temperature (the triple point) separates into two phases—a
3He and a 4He rich phase. The 3He poor phase saturates at a level of approximately
6 % 3He and when pumping on this part of the mixture, 3He is removed (it evaporates
at a much higher rate than 4He) and is refilled with 3He from the other phase in order
to restore an equilibrium state. However, the 3He needs energy to cross the boundary
of the two phases and therefore provides cooling, as this energy is taken from the
surrounding of the mixing chamber. The pumped 3He is circulated back into the 3He
rich phase.

Vericold had come up with a completely new design that would allow them to meet
all of our requirements: optical access with large windows, low vibrations (<1 nm
at the sample stage), 200µW cooling power at 100 mK and a base temperature of
20 mK. The idea for the design was to mechanically decouple the experimental stage
from the rest of the cryostat and only thermally connect it. This was realized with
two glass-fiber reinforced plastic tubes, that are connected to the sample stage on
one of their ends and can be bolted down to the optical table on the other side.
In this configuration the experiment is floating inside the cryostat and only rigidly
connected to the optical table. In order to reach a base temperature of 20 mK the tubes
have to have a length of approximately 1 m each and are thermally linked to each
of the different temperature stages (except for the mixing chamber) of the cryostat
(approximately 55, 4, 1 K, and 200 mK, with cooling powers of 200, 20, 2 mW and
20µW, respectively) with copper braids. After a few tests those braids turned out to be
too stiff at low temperatures, hence transmitting excess vibrations of the cryostat onto
the experiment, and were replaced with unbraided copper wires. The experimental
stage itself is also connected to the cryostat with copper wires, specifically to the
mixing chamber. A cross section of the design is shown in Fig. 3.18. Optical access
to the cold experiment is provided through several special windows (Suprasil WF
with AR coating for 1064 nm) that are inside the tubes at the different temperatures in
order to reduce the heat load generated by blackbody radiation. Great care has to be
taken to prevent radiation leaks in general, while the tubes still have to be able to move
with respect to the cryostat in order to avoid coupling of mechanical vibrations to the
experiment as well as to allow for thermal contraction upon cool-down, which can be
up to a few mm. While the base temperature at the mixing chamber actually reaches
20 mK, the temperature of the experiment is slightly higher, at or around 30 mK. Even
though the base temperature is very low, the actual working temperature we expect
is around 150 mK or more, as diffraction of the laser on the lenses and absorption of
the transmitted cavity light heat up the cryostat. The latter issue can be eliminated

http://dx.doi.org/10.1007/978-3-642-34955-3_5
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Fig. 3.18 Cross section of the lower part of our Vericold dilution refrigerator. The black pipe is
the glass-fiber reinforced plastic tube, which allows us to directly mount the 20 mK experiment
(copper colored assembly in the center—cf. Fig. 3.19) on the optical table. The experiment is only
thermally connected to the cryostat through copper wires. This design reduces the mechanical
vibrations coupled from the refrigerator to our cold optical setup

by designing the cavity such that the transmitted light can be collected with a lens
and guided out through the other arm of the cryostat. We have included this feature
in all new designs, however the samples also need to have the back-side of the wafer
removed, which is not a trivial task for all resonator designs. A full cool-down from
room temperature to 20 mK takes approximately 2.5 days, while there is in principle
no limit on how long the fridge can stay cold.

Due to the closed-cycle operation of the cryostat only electrical power, cooling
water and liquid nitrogen for an external cold trap for the 3He/4He mixture are nec-
essary, greatly reducing the complexity of operating a dilution refrigerator compared
to the standard design. Everything is computer controlled and in principle the cryo-
stat can be switched on and only needs further attention after it is cold. In practice
however, the cavity needs to be regularly realigned as the copper contracts upon
cooling and the cavity therefore becomes misaligned. Despite the design and great
attention in reducing the vibration level at the sample stage there is still significant
mechanical movement of the cryostat coupling onto the experiment. For our laser-
lock performance the maximum allowed relative movement of the cavity mirrors can
be estimated to be on the order of a few picometers or less (see Sect. 3.3). In practice,
at optical finesses of smaller than 3,500 the cavity can be continuously locked, how-
ever the lock gets noisy with increasing optical quality and starts to regularly unlock.
The vibrations couple to the stack of Attocubes that are quite compliant and therefore
are susceptible to mechanical noise, making a stable lock difficult. We have reduced
a few of the noise sources and coupling mechanisms, e.g. as mentioned already the
braided copper wires have been replaced with unbraided ones and the line connecting
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the roughing pump to the turbo pumping on the helium mixture is running through a
tub filled with concrete, which removed all the vibrations of the roughing pump on
the cryostat. In addition, we have designed several different cavity holders trying to
make the cavity as rigid as possible:

• Our first design was a block of copper with a cylindrical hole at the bottom in which
the Attocube stack could be mounted. It was built such that the stack was standing
up, which we initially thought would make the design more stable. However, it
turned out to be the contrary—the direction of least stability in this configuration
was the cavity axis and the Attocube stack was free to wobble, making it impossible
to lock the cavity while the dilution refrigerator was running. We also tried to
replace the piezo positioners with the bigger, supposedly more stable version,
the ANPx101 (ANPz101). The difference in stability was however marginal. In
addition, the copper piece holding the chip was relatively heavy and therefore
made the stack even more unstable. Thermalization of the mechanical chip was
achieved using copper braids that connected the chip holder to the copper block.

• In our second approach we therefore returned to the original design from our
4He cryostat—here the Attocubes were aligned horizontally and any shaking of
the stack would to first order only result in a misalignment of the mechanical
resonator with respect to the optical cavity mode. In this degree of freedom we
are only susceptible to micrometer vibrations, which is orders of magnitude larger
than the expected vibration level at the sample stage. In fact, the stability of our
cavity was significantly improved, now allowing continuous locks of cavities with
a finesse <3,500. While this is a great improvement, the lock becomes quite noisy
when working at large finesse and the cavity starts to frequently unlock when the
finesse is increased above 3,500.

• We therefore decided to remove as many of the Attocubes as possible, which are
the most unstable part in our cavity. While the z-axis is indispensable, as we require
very precise control of the cavity length, the x- and y-axis do not necessarily have to
be part of the cavity itself. All that is required is control of the chip position to within
a few hundred nanometers over a few tens of micrometers at low temperatures.
In our newest design we hence only left the ANPz51 directly attached to the chip
and positioned the ANPx51 and an additional ANPz51 such that they can push
and pull the sample holder on which the chip is mounted. A cross-section of the
design is shown in Fig. 3.19c. The main challenge here is that one copper piece
has to glide on top of another with as little friction as possible, while a force from
the top has to keep it in place. We try to minimize the friction by attaching a thin
Teflon sheet on each copper piece and the chip holder is kept in place by springs.
While the details are currently still subject to testing, the main purpose of the new
design was already shown to work: we built a test cavity with only one ANPz51
as part of the cavity and it showed a very stable lock even at low temperatures
and with additional noise (like hitting the optical table with a hammer). We are
therefore confident that, if the movements in the x–y-plane work, we can stably
lock any finesse in the fully operating dilution refrigerator.
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Fig. 3.19 Dilution refrigerator cavity designs. a was the very first design, where the Attocube
positioners were aligned vertically, which was too unstable for operation inside the refrigerator. b
This configuration was essentially the same is in the ST-500 cryostat, improving the stability over
a significantly, however the design was still not stable enough for high-finesse cavities. The latest
design is shown in c, where the cavity only features one positioner, while alignment in the x–y plane
is done from the side. This configuration relies on the low friction of Teflon on Teflon and shows
promising first results at low temperatures

All designs have in common the fact that the mode-matching lens is inside the
cryostat and therefore is also thermalized to the base temperature. The copper pieces
that are cooled to temperatures of a few hundred mK and lower are tempered, i.e. they
are baked in vacuum at 700 ◦C for 10 h. This has the effect that magnetic inclusions of
iron or similar metals in the copper get oxidized, increasing the thermal conductivity
of the copper significantly. The standard copper that can typically be purchased has
a residual resistivity ratio (RRR) of 50–100. The RRR is a measure of the purity and
the thermal conductivity at low temperatures of a material. By annealing the copper,
the RRR can be increased to around 1,000. It is important to not use OFHC copper
for this purpose as this lacks the oxygen for the oxidation process (D. Wernicke,
Private communication) (for details see for example [26]).

Recently, we have also included a fiber feedthrough into the dilution refrigerator.
10 fibers (6x SMF-28 and 4x SM980-5.8-125) are running through a single KF-25
flange, where each of the fibers has a separate feedthrough. The design for a single
fiber feedthrough can be found in [27]. The vacuum level we achieve in the dilution
fridge, typically around 5 · 10−7 mbar at low temperatures, has not changed since
the fibers were put in. Each fiber is thermalized at every temperature stage and tests
show that no significant increase of the base temperature can be observed due to the
fibers running into the cryostat. This newly added feature will allow us to not only
do free-space but also perform fiber based experiments.
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Chapter 4
High-Reflectivity, High-Q Mechanical
Resonators

In order to perform quantum optical experiments with macroscopic mechanical
oscillators the mechanical systems have to fulfill a number of criterions:

• the optical quality must be outstanding for several reasons: the finesse of the cavity
influences the optomechanical coupling strength g (2.67), as well as the sensitivity
of the read-out of the mechanical motion. No absorption of laser light in the mirror
should be present, as this results in heating of the mechanical mode, limiting the
achievable radiation-pressure cooling. Note that the required optical quality sets a
lower bound on the size of the mechanical resonator: the lateral dimensions have
to be around 40µm or bigger, otherwise diffraction losses become dominant as
we can only achieve a finite optical mode size (see Fig. 3.3). Also, the reflectivity
sets a limit on the thickness of the mechanical structures—typically a distributed
Bragg reflector (DBR) has to be thicker than 5µm to allow for reflectivites of
99.99 % or more. Those constraints are hard to circumvent and currently limit our
possible geometries.

• the mechanical quality factor Q of the resonator determines its thermal coupling
rate �m = kB T/�Q to the environment, which sets a bound for the achievable
radiation-pressure cooling and the lifetime of a mechanical quantum state. It is
therefore highly favorable to fabricate as high-Q resonators as possible.

• the mechanical frequency ωm = 2π · fm plays a manifold role in what kind
of experiments can be realized: the most obvious one is that it sets the ground
state temperature for a mechanical oscillator, favoring higher frequencies to make
quantum experiments more easy to realize. In addition, high frequencies are also
a big technical advantage as there tends to be more noise at low frequencies, e.g.
lasers are typically shot-noise limited (i.e. no excess classical amplitude noise is
present) around 10 MHz. However, excessively high frequencies are also techni-
cally challenging, namely GHz electronics typically comes at the price of more
losses and optical detectors sacrifice responsivity, which is crucial for continuous
variable quantum optics experiments. Also, low frequency mechanics has a large
ground state extension, which is important for tests of macroscopic realism [1–3].

S. Gröblacher, Quantum Opto-Mechanics with Micromirrors, Springer Theses, 81
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Therefore it is crucial to optimize the mechanical frequency to the desired range,
which for our experiments is typically around a few MHz.

• the effective mass mef f of the mechanical system is a measure of how well the
optical cavity and the mechanical mode spatially overlap. It can be minimized,
and hence the optomechanical coupling maximized, by optimizing the waist size
of the optical mode in the cavity and by aligning the maximum deflection of the
mechanical mode to the cavity axis. The minimum achievable effective mass is
approx. 74 % of the total mass of the mechanical system, for the fundamental
mode of a doubly clamped resonator (see for example Sect. 3.10, [4] or any other
standard literature on elasticity theory). Hence, it is important to reduce the mass
of the mechanical oscillator to the minimum that is compatible with the desired
frequency and cavity finesse.

The first proof-of-principle experiment of radiation-pressure cavity cooling of a
micromechanical oscillator was performed in Vienna [5] and featured a mechani-
cal oscillator with a frequency fm = 278.3 kHz, a mechanical quality factor Q of
∼10,000, an effective mass of 400 ng, and a reflectivity R of 99.6 %. It became clear
that the utilized mechanical resonator had to be significantly improved in reflectivity
for more refined experiments. It was suspected that the net-cooling effect in this work
was only about half due to actual radiation-pressure interaction, while the remaining
cooling could be attributed to bolometric (photothermal) effects, similar to [6]. The
mechanical system was made of a DBR of alternating layers of TiO2 and SiO2 [7].
Further attempts to improve the mechanical system were not successful and different
materials systems such as TaO5/SiO2 had to be investigated. The various approaches
to high reflectivity and high mechanical quality resonators will be discussed in the
following sections.

4.1 Ta2O5/SiO2 Distributed Bragg Reflector Resonators

In the spirit of the early approaches we fabricated devices that were made entirely
of DBR material, combining the optical and mechanical system into one device. For
our laser wavelength of 1064 nm the natural choice was to use Ta2O5 and SiO2 as
high- and low-index materials for the mirror, as those are widely used in high-finesse
cavity applications such as gravitational wave antennae (like LIGO, VIRGO and
GEO) or cavity QED and exhibit reflectivities in excess of 99.999 % and absorptions
coefficients below 10−6 [8] (R. Lalezari, Private communication). For the fabrication
we used standard silicon wafers that were coated with the DBR by Advanced Thin
Films (ATFilms), growing 40 alternating layers of Ta2O5 and SiO2 on the wafer by ion
beam sputtering. The design reflectivity was >99.99 %, with an overall thickness of
the DBR of 5.98µm. The successive fabrication itself was done by Jared Hertzberg,
back then a graduate student of Keith Schwab at Maryland, MD, based on a recipe
developed by him, Sylvain Gigan and Hannes R. Böhm. In contrast to the laser ablated

http://dx.doi.org/10.1007/978-3-642-34955-3_3
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samples from Refs. [5, 7], they used a reactive ion etch to form the resonators and
underetched them in a XeF2 atmosphere (see Sect. 4.2 for details). The process itself
overcame a lot of the drawbacks of the laser ablation, namely the rough edges and
the relatively large device size (for a comparison see Fig. 4.1). The devices, a variety
of singly- and doubly-clamped beams, had a range of mechanical frequencies fm

between a few tens of a kHz up to a few hundred kHz. We measured the reflectivity
by building a Fabry-Pérot cavity, where the mechanical resonator was one of the end
mirrors (see Sects. 2.3 and 3.2.1 for more details) and the optical finesse gave us a
measure of the losses inside the cavity. For several input mirrors with different, yet
known reflectivities, we determined the finesse and could not find any degradation in
the micromirror reflectivity due to processing with respect to the design reflectivity.
We measured the mechanical properties of the individual devices by using the fiber
interferometer (see Sect. 3.1) and for consistency also confirmed the numbers in the
actual experiment with the Fabry-Pérot cavity. The frequencies of the resonators
were close to the values we expected from simple beam theory [9]. However, the
mechanical quality factors did not exceed 2,000 for all the devices, and did not change
(or got even worse) upon cooling to a few Kelvin. At first it was unclear what caused
the uniform low-Q values and we tested several possible explanations including
(micro-) cracking or an excessive undercut of the structures. After ruling them out,
we found that our data is consistent with the effect being due to thermal noise in the
coating, which is a well studied loss mechanism in gravitational wave antennae. More
precisely, internal friction in the tantala layer causes mechanical losses, which limits
the mechanical quality to a few thousand [10, 11]. We however did not perform
additional measurements to confirm this hypothesis. The low Q posed a serious
limit to our cooling efforts. Nevertheless, we used the devices for radiation-pressure
cooling to perform a proof-of-principle experiment without any bolometric effects
but rather pure radiation-pressure coupling at cryogenic temperatures (see Sect. 5.1).

Fig. 4.1 a Shows a close-up of a scanning electron microscope (SEM) image of a micro-resonator
made of TiO2/SiO2. The beam-forming was done using laser abblation in which the material is
partially molten, which resulted in very rough, non-uniformly cut edges. In comparison, b is a
mechanical oscillator made of Ta2O5/SiO2, which was processed using a reactive ion etch

http://dx.doi.org/10.1007/978-3-642-34955-3_2
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4.2 Si3N4 + Ta2O5/SiO2 Resonators

Given the high reflectivity we achieved with the micro-fabricated Ta2O5/SiO2
resonators that overcame all the possible absorption problems from the early
TiO2/SiO2 samples, we decided to stick to the same mirror material but decouple the
mechanical from the optical system. In the first new devices we experimented with,
the mechanical part was made of a 1µm thick layer of SiO2 (which we had already
coated previously with mirror material). However, those were mostly intended to
work out a fabrication process and exhibited poor mechanical quality. The actual
material we wanted to work with was silicon nitride (SiN), as SiN, despite being an
amorphous material, has shown excellent mechanical properties in previous experi-
ments [12–14]. Also its similarity to SiO2 in terms of fabrication made it a perfect
choice as we had wafers with silica and a mirror coating ready for testing. For the
processing we first grew 2µm of low stress (∼200 MPa) Si3N4 in a furnace at 700 ◦C
for 11 h. After the deposition we measured the surface roughness, which was around
7 Å rms. We also attempted to grow even thicker silicon nitride but at a thickness
larger than 2.2µm the nitride showed stress induced cracking, which would have
significantly degraded any optical coating. The wafers were sent to ATFilms and a
36 layers Ta2O5/SiO2 mirror was deposited, with a design reflectivity of 99.991 %.
The actual device fabrication (as well as the growing of the nitride film) was done
in collaboration with Keith Schwab and Jared Hertzberg at Cornell University, NY.
The process is sketched in Fig. 4.2 and described in detail in Table 4.2.

Fig. 4.2 Microfabrication of Si3N4 + Ta2O5/SiO2 resonators. For the fabrication process we start
with a Si wafer (yellow), with a layer of Si3N4 which is coated with a dielectric mirror made of
Ta2O5/SiO2. The red layer symbolizes the photoresist which is omitted in the subsequent images.
In a first step (top right) the mirror is etched and only small pads (with a typical diameter of
50µm) are left. In the next fabrication step the mechanical resonator is formed by plasma etching
through the Si3N4. Finally, the mechanical resonator is released in a XeF2 atmosphere. The lower
left picture shows the final free-standing resonator, where a quarter of the chip is removed for
clarity. A detailed description of the etching process can be found in Table 4.2 and pictures of actual
resonators in Figs. 4.3 and 3.1

http://dx.doi.org/10.1007/978-3-642-34955-3_3
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As expected from the first experiments with tantala/silica mirrors the reflectivity
was not degraded in the processing. The mechanical properties were again measured
in the fiber interferometer and most of the devices showed a much lower frequency
than expected from our simulations. The main reason for that was a thinning of the SiN
in the mirror etch, as well as in the freeing of the beams in the XeF2 atmosphere. The
selectivity of Si to Si3N4 in XeF2 is approximately 100:1, where the exact selectivity
can vary with the silicon content in the SiN. However, a few of the mechanical
resonators had frequencies close to 1 MHz, which was the regime we were aiming for.
A list of Q values and frequencies can be found in Table 4.1. The gain in mechanical
quality with respect to the previous devices was small at room temperature but a
significant improvement could be observed at low temperature. The devices are
most likely limited by thermo-elastic damping at room temperature (see Sect. 4.4 for
details). It is interesting to note that the product between the mechanical frequency
and the mechanical quality factor fm · Q seems to be constant at low temperatures at
around 2.7×1010 throughout the measured set of devices. It is likely that the dominant
loss mechanism here is an inherent material property. One possible explanation would
be losses either in the SiN itself or the pads made of dielectric multilayer coatings
as these materials systems exhibit particularly large losses as a consequence of their
intrinsic amorphous structure [11, 15, 16].

One of the resonators was used in the experiments described in Sect. 5.2 and
Chaps. 6 and 7 and such SiN oscillators will most likely be used in a number of
future experiments due to their relatively easy fabrication process and their high
fm · Q product.

.

.

4.3 Si + Ta2O5/SiO2 Resonators

In order to reach even higher frequencies than are possible with the SiN + Ta2O5/SiO2
resonators due to the limited thickness of SiN we used silicon as the mechanical part
of the hybrid approach. We had SOI (silicon on insulator) wafers coated with the
same mirror as the SiN resonators, where the device layer of the SOI varied in
thickness between 2 and 7µm. The buried oxide layer (BOX) was between 0.5 and
1µm thick. The processing was slightly more elaborate than for the SiN, as the beams
could not be freed in a XeF2 atmosphere and therefore we had to perform a back-side
etch, which was done using a deep reactive ion etch (RIE), specifically the Bosch
process—details on the processing can be found in Table 4.2. In a first processing
run in December 2008 we used a 4.5µm device layer SOI wafer and fabricated only
free-free resonators. The idea behind this design is to minimize clamping losses by
not attaching the mechanical resonators on their short end at all (hence the name
“free-free”) but only have four very thin support beams that hold the resonators in
their zero-displacement points (for the fundamental mode). This way the clamping
losses in such a device should in principle be negligible—for a detailed discussion

http://dx.doi.org/10.1007/978-3-642-34955-3_5
http://dx.doi.org/10.1007/978-3-642-34955-3_6
http://dx.doi.org/10.1007/978-3-642-34955-3_7
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Table 4.2 Fabrication recipes for silicon nitride and silicon resonators with TaO5/SiO2 mirror pads

Si3N4 + Ta2O5/SiO2 Si + Ta2O5/SiO2

The wafers are first cleaned in a hot resist stripping bath and then dried. Shipley SPR220-7 resist
is spun on the wafers at 3,000 RPM for 30 s, with a ramp of 1,000 RPM/s, which results in a 8–9
micron thick resist layer. The wafers are than baked for 90 s at 115 ◦C. Exposure of the resist with
the desired mirror pattern is done in an ABM contact aligner for 18 s and subsequently exposed with
an edge-bead removal mask for 50 s. Before post-exposure baking the resist for 90 s at 115 ◦C the
wafers have to sit for around 2.5 h. They are finally developed by hand in MIF 300 for approximately
120 s and can also be dry spinned. In order to avoid cracking and wrinkling of the resist during the
etch the wafers are hard baked in a convection oven at 90 ◦C for several hours (>3).

Etching of the mirror is done in an Oxford PlasmaLab 100 RIE system. The process we use is a
CHF3/O2 etch, where we use 52 cm3 of CHF3 and 2 cm3 of O2. The other parameters of the etch are
ICP: 2500 W, RF power: 25 W, pressure: 5 mTorr, He backing: 10 Torr and a table temperature of
10 ◦C. The etch is done in short steps, typically interrupted by an oxygen clean of the plasma chamber
with a dummy wafer of 5–10 min. Normally we start with two 15 min etches and subsequently use
shorter steps of a few minutes and check the etch depth and the remaining resist in a profilometer
until the mirror is completely removed. This process can take up to 50 min of total etch time. The
remaining resist is then stripped in a hot resist stripping bath.

The back-side of the SOI wafers needs to
have a thick silicon oxide layer that can
be later used as a mask for the back-side
etch. If it is not already there, it should be
grown latest at this stage, possibly already
before doing the first etch. The front-side
of the wafer is covered with a protective
layer of resist and a ∼1.6µm layer of SiO2
is grown in the IPE 1000 plasma enhanced
chemical vapor deposition (PECVD) sys-
tem at 100 ◦C in around 40 min. After the
deposition the resist is stripped again.

For the device pattern, a new layer of resist is spun on top of the etched mirror pads, following the
same steps as above. It is important to pre-bake the wafer, let it cool down, then apply P20 primer
and wait for 10 s before covering the wafer in resist for the silicon devices as otherwise the resist
does not adhere properly to the substrate. If after developing there is still resist left in the openings,
an oxygen plasma clean can be used to remove the resist, which typically takes a few minutes in
an Oxford PlasmaLab 80+ RIE System. It is important to check by how much the wanted resist is
thinned during this etch in a profilometer, especially on top of the mirror pads.

The devices are etched in an Oxford Plas-
maLab 80+ RIE System using a CHF3/O2
nitride etch (50 cm3 CHF3, 5 cm3 O2,
150 W RF power, and 55 mTorr pres-
sure). Typical etch times are around 30 min
total—it is good to over-etch the silicon
nitride in order to make sure that it is
completely removed throughout the wafer.
After etching, the resist is removed in a hot
resist stripping bath.

The silicon device layer is etched in a
Bosch etcher, for example the Unaxis 770,
where it only takes a few cycles (12 with
the 0TRENCH program for a 4µm device
layer) to etch through the silicon. It is
important not to strip the resist as this is
used as protection in the final release of the
devices.

(continued)
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Table 4.2 (continued)

A protective layer of resist is spun on the
wafer and it is diced into 5.5 × 5.5 mm
square pieces in a K&S 7100 dicing saw
using the S1235 blade. There is very
few debris generated in this process.

Now resist is spun the usual way on the back-
side of the wafer. This can be done using a spe-
cial non-vacuum chuck, however with the risk of
the wafer falling off and shattering into pieces.
The back-side alignment is done in the EV620
contact aligner and exposed for 15 s. The devel-
opment can also be done in the HMP 900.

After stripping the resist (e.g. in ace-
tone), the beams are freed in XeF2. The
etch recipe is 4 Torr XeF2 for 60 s and
a 0 Torr pumpout. Normally around 7
such cycles are needed to completely
free the beam.

The mask is transferred into the SiO2 by etch-
ing it for a total time of approximately 1 h in
an Oxford PlasmaLab 80+ RIE System using
a CHF3/O2 oxide etch (50 cm3 CHF3, 2 cm3

O2, 200 W RF power, and 50 mTorr pressure).
The back-side etch is performed in a Bosch
etcher such as the Unaxis 770. There the pro-
gram is called 0TRENCH and etches at a rate
of ∼500 nm per cycle, where one cycle takes
around 15 s. That allows to perform the full etch
in approximately 3.5 h, where the progress can
be measured using a standard light microscope.
After the etch the wafer is diced into 5.5×5.5 mm
square pieces.

Final release of the device from the buried oxide
is done in 38 % HF. While BOE takes so long
that the mirror is slowly attacked, the HF only
requires an etch of 2 min for a 500 nm BOX
layer and leaves the mirror completely intact.
When etch times approach 3 min however, the
resist starts to peel. The remaining resist can be
removed with acetone or 1165.

Some general remarks on the processing:

• Never bake resist at >115 ◦C, not even for a few seconds, as it is very difficult to get off again.
However, if this ever happens, hot piranha slowly removes the resist and does not attack the
mirror at all.

• The back-side mask needs large openings around the alignment marks and the marks should be
in the same row.

• The mask must be mirrored if used as a back-side mask.

The recipes were worked out together with Jared Hertzberg and Tchefor Ndukum at the Cornell
NanoScale Science & Technology Facility (CNF), with significant help from Meredith Metzler,
Rob Ilic and Mike Skvarla

see [17–19]. The fundamental free-free mode had frequencies between 2 and 6 MHz,
depending on the geometry of the beam, and the best mechanical quality factors we
observed at low temperatures were around 40,000 for the lower end of the frequency
spectrum. A summary of a selection of resonators can be found in Table 4.1.
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Fig. 4.3 a Scanning electron microscope (SEM) image of a pair of cantilevers made of Si3N4 with
a distributed Bragg reflector pad (DBR). The silicon etched in the XeF2 atmosphere is very rough,
making it easy to distinguish the undercut areas. b Part of a chip with mechanical resonators of
different shapes and sizes

In a second fabrication run in July 2010 we experimented with normal doubly-
clamped designs, as well as membranes with mirror pads in the center. We processed
two wafers—one with a 2 and the other with a 4µm device layer. While the thicker
one was destroyed in the processing (during resist spinning on a non-vacuum chuck),
the 2 µm wafer was completed, however had a very small yield of working resonators.
The reason for that was that the back-side etch was done in a new RIE deep-etcher,
in which the back-side mask did not hold up very well and the edge of the wafer
slowly disintegrated, not allowing us to etch through the whole wafer everywhere.
See Table 4.1 for a list of their mechanical properties. A very likely reason for the
limit in mechanical quality is the finite contribution of the Ta2O5/SiO2 mirror pad
to the mechanical motion, which probably introduces dissipation and hence limits
the Q.

4.4 AlxGa1−xAs Resonators

Another approach we took was to use a completely different materials system: III–V
semiconductors, i.e. semiconductors made of elements of the groups III and V of
the periodic table like Al, Ga and As. In collaboration with Prof. Arthur Gossard’s
group at UCSB we manufactured GaAs wafers with epitaxially grown DBRs made
of 32 alternating layers Al0.12Ga0.88As and Al0.92Ga0.08As, with a measured surface
roughness of 1.5 Å and with a reflectivity of �99.98 % at 1064 nm at low temper-
atures. Such a materials system is ideally suited for micromechanical structures as
it is single-crystalline, which removes the problem of intrinsic losses such as the
dangling bonds in Ta2O5 completely. With the AlGaAs resonators, thermo elastic
damping (TED) is found to be the limiting loss mechanism at room temperature
[20–22]. This mechanism is a coupled thermo-mechanical process involving the
scattering of thermal phonons with the acoustic phonons responsible for the vibra-
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tions of the resonator. It is important to note that the TED limited quality factor has an
inverse temperature dependence and thus TED can be minimized through cryogenic
operation of the optomechanical system. The mechanical resonators we fabricated
indeed showed a small improvement in Q upon cooling, however much lower than
we had anticipated. The most likely reason for that are additional loss mechanisms,
such as process-induced damages as well as clamping losses into the supporting
structures. The optical absorption in the first device set [23] was less than 10 ppm
(possibly only a few ppm), while newer samples [18] showed absorptions of up
to 70 ppm. This is probably due to different growing techniques—molecular beam
epitaxy (MBE) versus metalorganic vapour phase epitaxy (MOVPE, also known
as MOCVD). The source of the excess absorption in the MOVPE-grown mirrors
is currently unknown, but probably originates from impurities incorporated in the
structure during the growth process, with the most likely constituents being carbon
and oxygen. In MOVPE, carbon is incorporated as a decomposition product of the
metalorganic reactants. MBE typically exhibit lower unintentional dopant concen-
trations as the process operates at ultra-high vacuum (total pressure < 10−10 mbar)
and with elemental sources [24].

The clamping losses have been further reduced in new designs like the free-free
devices [17–19] and tests of different growing techniques are underway, as well as
the use of different compounds [25].
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The following article is reprinted with permission from Monocrystalline
Alx Ga1−x As heterostructures for high-reflectivity high-Q micromechanical res-
onators in the megahertz regime, Garrett D. Cole, Simon Gröblacher, Katharina
Gugler, Sylvain Gigan, and Markus Aspelmeyer, Appl. Phys. Lett. 92, 261108 (2008).
Copyright 2008, American Institute of Physics [23].

Abstract
We present high-performance Megahertz micromechanical oscillators based on free-
standing epitaxial Alx Ga1−x As distributed Bragg reflectors. Compared with dielec-
tric reflectors, the low mechanical loss of the monocrystalline heterostructure gives
rise to significant improvements in the achievable mechanical quality factor Q
while simultaneously exhibiting near unity reflectivity. Experimental characteriza-
tion yields an optical reflectivity exceeding 99.98 % and mechanical quality factors
up to 20,000 at 4 K. This materials system is not only an interesting candidate for
optical coatings with ultralow thermal noise, but also provides a promising path
towards quantum optical control of massive micromechanical mirrors.

High-quality Bragg mirrors with small mechanical dissipation have generated recent
interest due to their versatile use in both fundamental and applied sciences. Specif-
ically, mechanical dissipation in optical coatings is known to limit the performance
of high-finesse cavity applications, in particular gravitational wave interferometry
[11] and laser frequency stabilization for optical clocks [26], because of residual
phase noise, also referred to as coating thermal noise [16]. On the other hand,
microstructures of high mechanical and optical quality have become a leading can-
didate to achieve quantum optical control of mechanical systems. One specific goal
in this emerging field of quantum optomechanics is to combine the concepts of cav-
ity quantum optics with radiation-pressure coupling to generate and detect quantum
states of massive mechanical systems such as the quantum ground state [27–29] or
even entangled quantum states [30–32]. The recent demonstrations of cavity-assisted
laser-cooling of mechanical modes [5, 6, 33, 34] can be considered an important
milestone in this direction.

Most of these schemes rely crucially on mechanical structures that combine both
high optical reflectivity R and low mechanical dissipation, i.e. a high quality factor
Q of the mechanical mode of interest. In addition, entering the quantum regime will
require operation in the so-called sideband-limited regime [27–29], in which the
cavity bandwidth of the optomechanical device is much smaller than the mechanical
resonance frequency. While toroidal microcavities have recently shown such perfor-
mance [35], high-quality distributed Bragg reflectors (DBRs) in combination with
Fabry-Pérot cavities have not yet reached this regime [5, 7, 33, 36]. For example,
whereas DBRs based on SiO2/Ta2O5 can achieve R values in excess of 99.99 % [8],
the mechanical quality factor of free-standing DBRs is limited to below 3000 due to
internal losses in the Ta2O5 layers [37]. It is interesting to note that the low Q-value
obtained with these devices is consistent with the coating loss angles observed in the
LIGO studies of gravitational wave detector coatings of the same material [11, 16].
On the other hand, the use of SiO2/TiO2-based DBRs has led to the demonstration of
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mechanical quality factors approaching 10,000 at room temperature [5]; there, how-
ever, optical absorption in TiO2 at 1064 nm both limits the reflectivity and results in
residual photothermal effects (Fig. 4.4).

Fig. 4.4 a Sketch of the initial layers constituting the Bragg mirror and illustration of the etch
process used to fabricate free standing structures. b Micrograph of a group of cantilevers. The
beams shown have a width of 50µm and vary in length between 50 and 200µm. c The finesse of
the cavity is obtained by measuring the light reflected from the cavity as a function of laser detuning
�. The observed linewidth κ of 1.1 MHz corresponds to an optical finesse of 5500

The concept outlined here seeks to improve upon these previous works by fabri-
cating the oscillator directly from a single-crystal Bragg reflector. In particular, the
use of compound semiconductor materials such as GaAs and related alloys allows
for the generation of arbitrary stacks of high-index-contrast materials, resulting in
significant improvements in the achievable mechanical quality factor. Given the alle-
viation of the dangling bonds typically found in amorphous dielectric materials such
as Ta2O5 [16], the use of a single-crystal mirror stack should allow for a significant
reduction in the intrinsic damping, while maintaining excellent reflectivity. Neglect-
ing support loss or modal coupling, mechanical dissipation in a single-crystal is
ultimately limited by intrinsic processes such as thermoelastic damping, as well
as phonon-phonon and phonon-electron interactions. Our devices do not approach
this fundamental value but are most likely limited by extrensic effects including
process-induced damage (e.g., ion bombardment and surface roughness created dur-
ing microfabrication) as well as acoustic loss to the surrounding support structure.
For example, if thermoelastic damping were the lower limit to the mechanical dissi-
pation of the device, we would expect a room temperature Q value of approximately
4 × 108 for a GaAs resonator [38].

Although a somewhat uncommon materials system for the development of
micromechanical structures, GaAs and its alloys exhibit a number of advanta-
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geous properties [39]. The direct bandgap optical transition in GaAs allows for the
integration of optoelectronic functionality with micromechanical elements [40]. Fur-
thermore, the noncentrosymmetric nature of the zinc-blende crystal structure gives
rise to an appreciable piezoelectric coefficient, allowing for efficient actuation or
transduction in these materials. For our purposes, we take advantage of the ability to
produce high-quality single-crystal Bragg stacks through the use of lattice-matched
ternary alloys based on Alx Ga1−x As. These materials may be epitaxially grown as
monocrystalline heterostructures via deposition methods such as molecular beam
epitaxy (MBE) and metal-organic chemical vapor deposition. The ability to control
the lattice matching condition through the use of alloying gives one the ability to
“strain engineer” films in order to create built-in tensile or compressive stresses. In
addition, variations in the aluminum composition allow for a wide range of selec-
tive etch chemistries over GaAs. Generally, these films display extremely high etch
selectivites—in fact HF etching of the lattice-matched binary material AlAs versus
GaAs exhibits a selectivity approaching 107:1 [41]. Alx Ga1−x As heterostructures
may thus be processed using standard micromachining techniques to yield atom-
ically flat optical surfaces that are ideal for optomechanical structures, as previ-
ously demonstrated in micromechanically-tunable surface-normal photonic devices
[42–44].

As shown in Fig. 4.4a, the epitaxial materials structure for the monocrystalline
oscillators consists of 32.5 periods of alternating Al0.12Ga0.88As (high index) and
Al0.92Ga0.08As (low index), followed by a 250-nm thick high-aluminum content
etch-protection layer, grown on a 3 in. semi-insulating GaAs substrate via MBE. In
this design, the thick high-aluminum-content layer below the Bragg stack is included
to protect the bottom of the mirror structure in subsequent processing steps. The peak
reflectivity of the DBR is designed to be at 1078 nm at room temperature; in this case,
the wavelength of maximum reflectivity is red-shifted to allow for thermo-optic
effects upon cooling. The refractive index of the ternary compounds at cryogenic
temperatures is estimated using the modified Afromowitz model developed in [45].
Assuming no absorption and atomically smooth interfaces, the maximum reflectivity
(after stripping the protective Al0.92Ga0.08As layer and with air cladding top and
bottom) is calculated to be 99.991 % at 1064 nm for temperatures below 20 K and
99.976 % at 300 K.

Fabrication of the resonators begins with the deposition of a SiNx hard mask via
plasma enhanced chemical vapor deposition. Next, the device geometry is patterned
lithographically using a standard positive photoresist. This pattern is then transferred
into the SiNx via plasma etching with CF4/O2. Definition of the resonator geometry
in the Alx Ga1−x As epilayers relies on electron cyclotron resonance etching through
the mirror stack using Cl2/Ar, with masking provided by the resist/SiNx . To under-
cut the cantilevers, a buffered citric acid solution is utilized [46]. This selective wet
etch allows for the removal of the binary GaAs, in this case the substrate, over the
low-aluminum content ternary Al0.12Ga0.88As layers with excellent selectivity [44].
During the undercutting process, the SiNx coating protects the top of the mirror
surface, while the thick Al0.92Ga0.08As layer protects the bottom, ensuring minimal
surface roughness and maximum reflectivity. To complete the fabrication sequence,
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the protective SiNx and Al0.92Ga0.08As layers are removed in a dilute HF solution
and the beams are allowed to air-dry after soaking in methanol. The resonators char-
acterized here consist of both fixed-fixed (doubly clamped) and cantilever (singly
clamped) beams with a thickness of 5.5µm, a nominal width of 50 or 100µm, and
nominal lengths between 50 and 400µm. A scanning electron micrograph highlight-
ing a completed set of cantilevers is shown in Fig. 4.4b.

We have characterized the mechanical properties of the resonators optically via
interferometric measurements of their displacement. Room-temperature measure-
ments were performed in a standard fiber interferometer [47] while temperature-
dependent measurements were carried out using a cryogenic Fabry-Pérot cavity, in
which the micromirror formed one of the cavity’s end mirrors (this setup is described
in detail in Refs. [7, 37]). In the case of the fiber interferometer, the displacement
power spectrum is directly obtained from the interferometer output, while in the case
of the cryogenic Fabry-Pérot cavity, the noise spectrum of the Pound-Drever-Hall
error signal of the cavity is used [37]. At room temperature we obtain mechanical
quality factors of up to 7000 for singly clamped and 5000 for doubly-clamped beams.
We observe fundamental resonance frequencies of the beams up to 1 MHz in accor-
dance with theoretical estimates based on standard beam theory (see for example,
Ref. [48]). In particular, we identified a doubly clamped resonator (150×50µm)
with a fundamental frequency of 730 kHz and higher order resonance at 1.99 MHz.
At low temperatures, i.e. operating inside a 4 K helium cryostat, we measure a quality
factor of the high frequency mode of 20,000, compared to a Q value of 5000 at room
temperature. We observe a similar increase of Q for the fundamental mode of the
micromirror, namely from 2200 at room temperature to 12,000 at 4 K (see Fig. 4.5).

Fig. 4.5 a Fundamental mechanical mode of a 150µm long doubly clamped resonator at 300
and 4 K. Central frequencies are 731 and 697 kHz, respectively. The corresponding Q factors are
2200 and 12,000. b Second order mode of the same resonator showing Qs of 5000 and 20,000 for
frequencies of 1.997 and 1.971 MHz at 300 and 4 K, respectively
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As expected, the frequency of the resonator modes does not change significantly
upon cooling. Cryogenic Q-values of a similar range (10,000 < Q < 30,000) have
previously been reported for micromechanical resonators fabricated in this materials
system [49, 50]; however, these examples exhibited insufficient reflectivity for our
application. Although our devices are not optimized for force detection, we have
estimated the thermal force noise of the resonators, which provides an upper bound
for the achievable resolution [51]. For the vibration mode near 700 kHz (2 MHz),
we calculate an approximate force sensitivity of 220 fN/

√
Hz (24 fN/

√
Hz) at 300 K,

decreasing to roughly 20 fN/
√

Hz (3 fN/
√

Hz) at cryogenic temperatures. These val-
ues are on par with previous examples of GaAs-based nanomechanical resonators as
presented in [52].

In order to obtain the micromirror reflectivity we measure the finesse of the Fabry-
Pérot cavity (see above), which provides a measure of the overall intensity losses in
the cavity. Knowing the independently determined reflectivity of the macroscopic
input mirror (Rin = 99.91 %) one hence obtains a lower limit on the reflectivity
Rmicro of the micromirror. The observed finesse of greater than 5500 (Fig. 4.4c)
yields a reflectivity Rmicro � 99.98 %, in good agreement with the expected values
from theory. The reflectivity of our Alx Ga1−x As Bragg mirrors is comparable to that
measured in high-finesse semiconductor microcavities [53].

We have demonstrated high-performance micromechanical megahertz oscilla-
tors based on free-standing monocrystalline Alx Ga1−x As DBRs. We observe opti-
cal reflectivities exceeding 99.98 % combined with mechanical quality factors up
to 20,000 at 4 K for mechanical modes as high as 2 MHz. Given the alleviation
of mechanical dissipation compared to previous high reflectivity dielectric stacks,
this materials system is an interesting candidate for low-noise optical coatings as
needed for example for gravitational-wave detection or for high-precision frequency
stabilization of lasers as are used for optical frequency standards. The reported per-
formance can readily achieve an optical finesse of up to 30,000, assuming a matched
input coupler reflectivity of Rmicro, allowing these micromechanical devices to oper-
ate in a regime of mechanical-sideband limited performance as is required to achieve
ground state cavity-cooling of mechanical systems. As the microfabrication process
does not deteriorate the reflectivity of the coating, higher finesse values should be
achievable by further improving the initial DBR quality.
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4.5 FEM Simulations

In order to simulate the mechanical devices before we actually fabricate them we
use finite element (FEM) simulation software (Comsol Multiphysics) and extract the
expected frequency and effective mass for different geometries. We also analyze the
higher order modes, as the spacing between them and the fundamental mode (which
is the one we typically work with) should be large enough such that they do not
overlap upon radiation-pressure cooling. FEM simulation is especially useful for the
SiN and Si devices with the mirror pads, as it can simulate arbitrary shapes and sizes.
The design is simply drawn in SolidWorks and then imported into the FEM software,
where parameters such as length, width and thickness can be automatically varied
and a plot of, for example, the resonance frequency versus the length can be generated
(see Table 4.1 for a comparison of frequencies obtained from FEM simulation with
measured values). In addition, for the free-free devices Garrett Cole and Ignacio
Wilson-Rae have developed a routine in which they can calculate the limit on the
mechanical Q from clamping losses [19] (Fig. 4.6).

Fig. 4.6 On the left is a finite element method (FEM) simulation of the fundamental mode of
the doubly-clamped resonator used in Sect. 5.2 and Chap. 6. The color coding shows different
displacement amplitudes, where the scale is in arbitrary units. The right image is a simulation of a
membrane with a diameter of 300µm made of 4µm thick silicon and with a central DBR mirror
pad. Its fundamental frequency is approx. 800 kHz. Both figures show the free standing part of the
resonators only
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Chapter 5
Mechanical Laser Cooling
in Cryogenic Cavities

In order to control mechanical systems in the quantum regime it is necessary to
prepare the resonator in or close to its quantum ground state. This can be achieved
by cooling it cryogenically if the mechanical frequency is high enough (for a dilution
refrigerator around 1 GHz) [1], by using active feedback cooling [2–6] or by using the
radiation-pressure interaction presented in this thesis to passively cool the mechanical
motion [7]. A combination of cryogenic precooling and radiation-pressure cooling
relaxes the requirements in quality and frequency on the mechanical systems and
should make ground state cooling experimentally accessible even for low frequencies.
The two experiments in this chapter aim at demonstrating that this is in principle
possible and show the current limitations of our experiment.

5.1 Radiation-Pressure Self-cooling of a Micromirror
in a Cryogenic Environment

While a first experiment in our group [8] demonstrated that radiation-pressure cooling
worked in principle, it operated at room temperature and suffered from a high effective
mass, relatively low Q and probably some absorption of the laser in the mirror. We
subsequently replaced the mechanical oscillator with a different DBR material (see
Chap. 4 for details) to make sure we were not limited by the latter and also reduced
the mechanical resonators significantly in size. In addition, we lowered the starting
temperature to that of liquid helium by mounting the cavity inside a continuous flow
4He cryostat and demonstrated pure radiation-pressure cooling of the mechanical
resonance to 290 mK, corresponding to a mean thermal occupation n̄ of 104 phonons.
This was the first experiment ever to demonstrate radiation-pressure self-cooling in
a cryogenic environment. The performance was limited by the piezo stabilizing the
cavity, which had to be mounted at room temperature in order to function properly
and therefore raised the base temperature of the cryostat to ∼35 K due to blackbody
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radiation heating the micromirror. Also the low mechanical Q of the devices of
approximately 1,000 did not allow us to cool any further.

This work was originally published as Radiation-pressure self-cooling of a
micromirror in a cryogenic environment, Europhys. Lett. 81, 54003 (2008) [9].

Abstract
We demonstrate radiation-pressure cavity-cooling of a mechanical mode of a
micromirror starting from cryogenic temperatures. To achieve that, a high-finesse
Fabry-Pérot cavity (F ≈ 2200) was actively stabilized inside a continuous-flow 4He
cryostat. We observed optical cooling of the fundamental mode of a 50×50×5.4 µm
singly-clamped micromirror at ωm = 3.5 MHz from 35 K to approx. 290 mK. This
corresponds to a thermal occupation factor of 〈n〉 ≈ 1 × 104. The cooling per-
formance is only limited by the mechanical quality and by the optical finesse of
the system. Heating effects, e.g. due to absorption of photons in the micromirror,
could not be observed. These results represent a next step towards cavity-cooling a
mechanical oscillator into its quantum ground state.

Optomechanical interactions in high-finesse cavities offer a new promising route for
the ongoing experimental efforts to achieve the quantum regime of massive mechan-
ical systems [10, 11]. They allow to cool mechanical degrees of freedom of movable
mirrors via radiation-pressure backaction [12], in principle even into their quan-
tum ground state [13–15]. The working principle of this cooling method has been
demonstrated in a series of recent experiments [8, 16–18]. Ground-state cooling will
eventually require to realize the scheme in a cryogenic environment. Optomechani-
cal feedback cooling [3, 5, 19–21], another quantum limited strategy [15, 22, 23],
has recently taken this step by demonstrating cooling of a 3.8 kHz resonator mode
from a starting temperature of 2 K to an effective noise temperature of 2.9 mK (or
〈n〉 ≈ 2.1 × 104) [21]. To achieve and surpass such a performance for radiation-
pressure backaction schemes requires stable operation of a high-finesse cavity inside
a cryostat [24] and sufficiently strong optomechanical coupling [8, 16–18]. Here we
report the combination of these requirements in a single experiment using a high-
reflectivity micromechanical resonator. We observe radiation-pressure backaction
cooling of the fundamental mode of the micromirror at ωm/2π = 557 kHz from
35 K to 290 mK (or 〈n〉 ≈ 1 × 104), limited only by the optical finesse of the cavity
and by the mechanical quality of the micromirror.

How does radiation-pressure cooling work? The basic setup comprises an opti-
cal cavity of frequency ωc, pumped by a laser at frequency ωl , that is bounded by
a mechanical oscillator of resonance frequency ωm . By reflecting photons off the
mechanical resonator, in our case a movable micromirror, the intracavity field exerts
a radiation-pressure force on the mechanical system. Detuning of the optical cavity
(� = ωc − ωl �= 0) can result in a net positive (� < 0) or negative (� > 0) energy
transfer from the radiation field to the mechanical oscillator, corresponding to either
heating or cooling of the mechanical mode. There are different views to understand
the cooling effect. Considering the full dynamics of the system, radiation-pressure
forces in a detuned cavity behave as a viscous force that modifies the mechanical
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susceptibility [12, 25, 26]. Cooling occurs as a consequence of the delayed (retarded)
force response to thermal fluctuations of the mechanical resonator, which is caused
by the finite cavity decay rate κ. It is worth noting that retardation-based optome-
chanical cooling is not restricted to radiation pressure and its principle was in fact
for the first time demonstrated using photothermal forces [25]. Going beyond (semi-
)classical descriptions, a full quantum treatment [13, 14, 27, 28] can provide an
interesting interpretation of the cooling effect as quantum state transfer between
two oscillators, i.e. the cavity field and the mechanical mode [29]. This is related
to the thermodynamic analogy, by which an entropy flow occurs from the thermally
excited mechanical mode to the low-entropy laser field. Finally, the comparison of
the photon-phonon interaction with three-wave mixing leads to the intuitive picture
of sideband-cooling [13, 14], as is well known from laser-cooling of atoms and ions.1

Our mechanical objects are oscillating micromirrors of high reflectivity that con-
sist solely of a dielectric Bragg-mirror coating [30]. Compared to our previous work
[8] we have used a different coating material to achieve both higher reflectivity and
lower inherent absorption. This allowed us to increase the radiation-pressure coupling
and to avoid residual photothermal effects. For the fabrication process we start from
a high-reflectivity coating (R > 0.9999) made out of 40 alternating layers of Ta2O5
and SiO2 deposited on silicon. We used reactive ion etching to define the resonator
shape and selective dry etching of the substrate to free the structures. All mechani-
cal resonators form singly clamped cantilevers with a thickness of 5.4 µm, a width
of 50 µm and a length between 50 and 300 µm (Fig. 5.1b). We found mechanical
quality factors Q ≈ 1000 – 3000 and reflectivities of R > 0.9999.

The full experimental setup is sketched in Fig. 5.1a. We use the micromirror as
an end mirror in a high-finesse Fabry-Pérot (FP) cavity, which is pumped by a an
ultrastable Nd:YAG laser operating in continuous-wave mode at a wavelength of
1064 nm. The input coupler of the FP cavity is a concave massive mirror (radius
of curvature: 25 mm; reflectivity at 1064 nm: 0.9993) that is attached to a ring
piezo (PZT) in order to actively modify the cavity length. We chose the length
L of the cavity slightly shorter than for the semi-concentric case (L = 25 mm) in
order to have a stable cavity and a small cavity-mode waist w0 on the micromirror
(w0 ≈ 10 µm). The cavity is mounted inside a continuous-flow 4 He cryostat
(Fig. 5.1c). The input coupler is attached to the outer shield of the cryostat and
therefore always maintains at room temperature. The silicon wafer that holds the
micromirrors is glued on a sample holder that is in thermal contact with the cryostat
cold finger. A 3-axis translation stage allows precise positioning of the micromirror
on the chip with respect to the footprint of the cavity beam. We monitor both posi-
tion and size of the cavity mode via an external imaging system. In operation, the
cryostat is first evacuated to 10−6 mbar. Cryogenic cooling is achieved by a contin-
uous flow of helium in direct contact with the cold finger. The additional cryogenic

1 Note that in our case radiation pressure originates from the reflection of photons off the mirror
surface and not from absorption and re-emission as is the case in conventional laser cooling. Still,
the cooling mechanism of both schemes is completely analogous.
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Fig. 5.1 Experimental scheme. a The pump beam is spatially and spectrally filtered in a ring cavity
locked to the laser frequency. After phase modulation using an electro-optic modulator (EOM),
for Pound-Drever-Hall (PDH) locking, the pump is injected into the micromirror Fabry-Pérot (FP)
cavity, which is mounted inside a 4He cryostat. The beam reflected from the FP cavity is detected
behind a polarizing beam splitter (PBS). The PDH signal is obtained by demodulating the detected
signal by the EOM driving frequency and is used for actively stabilizing the cavity length and for
monitoring the dynamics of the mechanical mode. Alignment is done via a CCD camera. b SEM
picture of a group of micromirrors. c Cavity mounting inside the cryostat (see text)

freeze out reduces the pressure to below 3 × 10−7 mbar. On cooling the cryostat
from room temperature to approx. 6 K (measured temperature at the cold finger),
the thermal contraction of the cavity (1–2 mm in total) can be compensated by the
3-axis translation stage. The temperature of the sample holder is monitored via an
additional sensor directly attached to it. For a measured cold-finger temperature of
6 K we observe a sample holder temperature of approx. 20 K and an actual sam-
ple temperature of 35 K, which we infer from the calibrated power spectrum of the
micromirror motion as mode temperature at zero optical detuning (see below). We
attribute the temperature gradient to heating of the sample by blackbody radiation
from the input coupler, which is kept at 295 K only a few millimeters away from
the sample, in combination with finite thermal conductivity between sample, sample
holder and cold finger. Both at room temperature and at cryogenic temperatures we
observe stable locking of the cavity for a finesse of up to 8000. We achieve typical
mode matching efficiencies into the cavity of 80 %.

To observe the desired backaction cooling we monitor the dynamics of the differ-
ent eigenmodes of the micromirror vibration by measuring its displacement power
spectrum Sx (ω) [27]. This is done by analyzing the Pound-Drever-Hall (PDH) sig-
nal in the light backreflected from the FP cavity [8, 20, 24], a method which is
based on the interference of phase-modulated side bands of the pump laser [8, 16].
The main idea is that the PDH error signal of a locked cavity is proportional to
the cavity length. While we use the low-frequency part of the PDH signal as an
error signal to actively stabilize the cavity length to the wanted detuning �, the high
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frequency part is directly proportional to the displacement power spectrum Sx of the
micromirror [27].2 One can evaluate the effective mode temperature via the area of the

measured power spectrum as Tef f = mω2
0

kB
〈x2〉 (m: effective mass at the probing point,

ω0: mode frequency, kB : Boltzmann’s constant, 〈x2〉 = ∫ +∞
−∞ dωSx (ω)).

Backaction cooling is accompanied by a modified dynamics of the mechanical
mode, specifically by a shift both in resonance frequency ωe f f and in damping
γe f f . This can be used to identify the nature of the backaction force: for a known
effective mass and optical pump power, radiation-pressure forces are uniquely deter-
mined by the time dependence of the cavity decay and can therefore be distinguished
from forces of dissipative nature such as photothermal forces [13]. We obtain these
effective values directly via the power spectrum Sx , which, for a classical harmonic
oscillator, is given by

Sx (ω) = 4kB Tγ0

πm

1

(ω2
e f f − ω2)2 + 4γ2

e f f ω
2
, (5.1)

where γ0 is the mechanical damping of the unperturbed mechanical oscillator, i.e.
the damping at zero detuning. To minimize radiation pressure effects we used very
low input power (≈30 µW) and probed the mode at a point of high effective mass,
i.e. close to a node of vibration. The values for γe f f and ωe f f were obtained from
fits to the measured power spectra using Eq. (5.1).

We first confirmed that our optomechanical system is dominated by radiation-
pressure backaction. For that purpose, we monitor the modified dynamics of the
mechanical mode of a micromirror and compare it with the theoretical predictions
for radiation-pressure effects. The results for various cavity detunings are shown
in Fig. 5.2. The solid lines are fits to the data using the semi-classical approach
described in [26]. We obtain a fitted cavity finesse F = 2300 and a fitted effective
mass of m = 125 ng. These values are consistent with our independent estimate of
F = 2800 ± 600 and m = (110 ± 30)ng (obtained from Sre f ).3 Note that the finesse
is measured by slowly scanning the cavity length. The corresponding measurement
uncertainty arises from mechanical vibrations of the setup. We also performed a
measurement on the mirror at 35 K (Fig. 5.2), however with a reduced detuning range
(for technical reasons the full detuning range was not available at low temperature).
Again, the fit values of F = 2200 and m = 40 ng are consistent with our estimates of
F = 2800 ± 800 and m = (30 ± 10)ng and therefore confirm the radiation-pressure

2 The ratio between PDH power spectrum and displacement power spectrum Sx depends on the
cavity detuning �. We can eliminate the unwanted detuning dependence by normalizing Sx via
a reference signal of a known constant displacement power spectrum Sre f that is generated by
frequency modulation of the pump laser. In addition, Sre f is an absolute calibration of the effective
mass of the mechanical oscillator, as is outlined in detail e.g. in [8].
3 The reduction in finesse compared to the value of 8000 is due to our choice of the optimal working
point on the cantilever close to the tip of the micromirror, where edge diffraction increased the
losses in the cavity.
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Fig. 5.2 Modified micromirror dynamics due to cavity detuning. Shown is the micromirror’s effec-
tive frequencyωe f f /2π and effective damping γe f f both at room temperature and at 35 K for various
detuning values at a laser power of 1 mW. Maximal cooling is obtained approximately at a detuning
of ωm , where the net phonon transfer to the optical field is maximized. The solid lines are fits to the
data based on the semi-classical model for radiation-pressure backaction (see text)

nature of the interaction. In contrast to radiation-pressure forces, photothermal forces
are always subject to an exponential retardation due to the dissipative nature of the
force and therefore produce a different dynamics on detuning [13]. We have used
the same parameters to simulate the expected behavior resulting from such a force
(Fig. 5.3), which can clearly not serve as an explanation for our data.
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Fig. 5.3 Radiation-pressure backaction. The data follow the curve from the top-left to the bottom-
left. The solid lines are fits to the data based on the semi-classical model for pure radiation-pressure
backaction (see text). The dotted lines show the expected behavior for bolometric (photothermal)
forces when using the same parameters. Even at low temperature a clear deviation from photo-
thermal behavior is observed and the data is well described by radiation-pressure effects

Finally, we demonstrate radiation-pressure backaction cooling in a cryogenic cav-
ity. Figure 5.4 shows measurements performed on the fundamental mechanical mode
at ωm = 2π×557 kHz of the micromirror. For each detuning and optical power level
we obtained 〈x2〉, ωe f f and γe f f directly from the fits to the measured displacement
spectrum Sx . The effective mass mef f is obtained as described in the previous para-
graph by fitting the data sets of same optical power (at a given cryostat temperature)
using a semi-classical approach to radiation-pressure backaction. The effective tem-
perature is obtained by plotting mef f · ω2

e f f · 〈x2〉 normalized to the value obtained
at zero detuning at room temperature (295 K). When cooling the cavity down to a
sample holder temperature of 20 K we find a measured mode temperature at zero
detuning (corresponding to γ35 K

0 = 2π× 269 Hz) of approximately 35 K. On detun-
ing, the mode temperature decreases as expected for both starting temperatures. For
a given laser power the effective mode temperature decreases with increasing detun-
ing until � ≈ ωm , where the cooling is optimal. The effective temperature increases
again on further increasing the detuning. When starting from room temperature we
observe a minimum temperature of approximately 17 K at an input laser power of
3.7 mW. Starting with a cryogenic cavity we observe a minimum mode temperature
of approximately 290 mK for 14 mW laser power. This corresponds to a thermal
occupation factor of 〈n〉 ≈ 1 × 104.

The cooling performance is not limited by residual heating effects. In the ideal
(semi-)classical case Tef f ≈ T0

γ0
γe f f

(for ωe f f � γe f f and T0: environment tem-
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Fig. 5.4 Radiation-pressure cooling in a cryogenic high-finesse cavity. Shown are effective tem-
perature Tef f and the effective damping γe f f in a detuned cavity for various laser powers. Different
laser powers correspond to different symbols. Values of detuning (in units of ωm ) are encoded in
color. Starting from cryogenic temperatures (the given cryostat temperature is the measured sam-
ple holder temperature) we observe backaction cooling down to 290 mK (or 〈n〉 ≈ 1 × 104). The
cooling performance is not limited by heating but by optical finesse and mechanical quality factor
of the optomechanical system

perature), as one can see from integrating Eq. (5.1) and by using the equipartition
theorem. We observe this behavior as linear dependence on the double-logarithmic
scale of Fig. 5.4. In case of heating, e.g. by absorption of photons, one would expect
a dependence of the mode temperature on the laser power even for the same effective
damping γe f f . In other words, data points taken at different laser powers would not
fall on the same line. The fact that we observe no deviation from the linear dependence
for increasing laser power indicates that no significant heating of the mode occurs. We
should also note that our experimental parameters (F = 2200,ωm = 3.5 × 106) ful-
fill the threshold condition for ground-state cooling, because ωm/κ = 0.2 > 1/

√
32

[14]. Our present cooling performance is only limited by the initial temperature T0
of the environment, i.e. the performance of the cryostat, and by the achieved damp-
ing ratio γ0

γe f f
. Future improvements will have to include a further reduction of T0,

e.g. by including a radiation shield to protect the sample from blackbody radiation,
a decrease in γ0, i.e. a larger mechanical Q, and an increase of optical intracavity
power, in particular via an increase of finesse.

We have demonstrated radiation-pressure backaction cooling of a micromirror in
a high-finesse cavity at cryogenic temperatures. Starting from a sample temperature
of approximately 35 K we achieve an effective mode temperature of 290 mK (〈n〉 ≈
1 × 104), limited only by the micromirror’s mechanical quality factor and by its
optical reflectivity. We consider this a next step towards exploiting the rich structure
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promised by optomechanical systems when entering the mechanical quantum regime
[28, 31–33]. We believe that the combination of cryogenic cooling with (active or
passive) feedback techniques [21, 34, 35] will be an essential step to achieve this
goal.
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5.2 Demonstration of an Ultracold Micro-Optomechanical
Oscillator in a Cryogenic Cavity

Our first demonstration of self-cooling of a cryogenically precooled mechani-
cal resonator left a lot of room for experimental improvements. First of all, we
developed new, hybrid mechanical structures combining excellent reflectivities with
relatively high mechanical quality factors—see Sect. 4.2. The optical setup was mod-
ified to include a locking/read-out beam and a separate cooling beam (the details
are explained in Sect. 3.4). The single photodetector read-out was replaced with a
homodyne detection scheme (Sect. 3.6), which improved our signal-to-noise ratio
by several orders of magnitude (cf. Fig. 3.13). In addition, acting back on the laser
frequency for cavity stabilization, instead of the piezo-lock that was used in the
early experiments ([8] and Sect. 5.1), enabled stable operation of the full cavity at
cryogenic temperatures. The cavity was now a rigid design, where both the micromir-
ror and the input coupler were cryogenically cooled, allowing us to routinely reach
temperatures as low as 5 K. All these improvements finally allowed us to use the
radiation-pressure force to cool the mechanical motion by a factor of more than
4,000 to a thermal occupation of 30 quanta. The cooling performance was limited
only by the coupling of the mechanical device to its environment. It is also worth
noting that the measurement precision in this experiment was better than the standard
quantum limit of the mechanical oscillator [36].

This work was originally published as Demonstration of an ultracold micro-
optomechanical oscillator in a cryogenic cavity, Nat. Phys. 5, 485–488 (2009) [37].

Abstract
Preparing and manipulating quantum states of mechanical resonators is a highly
interdisciplinary undertaking that now receives enormous interest for its far-reaching
potential in fundamental and applied science [11, 38]. Up to now, only nanoscale
mechanical devices achieved operation close to the quantum regime [10, 34]. We
report a new micro-optomechanical resonator that is laser cooled to a level of 30 ther-
mal quanta. This is equivalent to the best nanomechanical devices, however, with a
mass more than four orders of magnitude larger (43 ng vs. 1 pg) and at more than two
orders of magnitude higher environment temperature (5 K vs. 30 mK). Despite the
large laser-added cooling factor of 4,000 and the cryogenic environment, our cooling
performance is not limited by residual absorption effects. These results pave the way
for the preparation of 100-µm scale objects in the quantum regime. Possible applica-
tions range from quantum-limited optomechanical sensing devices to macroscopic
tests of quantum physics [28, 39].

Recently, the combination of high-finesse optical cavities with mechanical resonators
has opened up new possibilities for preparing and detecting mechanical systems close
to—and even in—the quantum regime by using well-established methods of quan-
tum optics. Most prominently, the mechanism of efficient laser cooling has been
demonstrated [8, 16, 18, 25, 35, 40, 41] and has been shown to be capable, in

http://dx.doi.org/10.1007/978-3-642-34955-3_4
http://dx.doi.org/10.1007/978-3-642-34955-3_3
http://dx.doi.org/10.1007/978-3-642-34955-3_3
http://dx.doi.org/10.1007/978-3-642-34955-3_3


5.2 Demonstration of an Ultracold Micro-Optomechanical Oscillator 111

principle, of reaching the quantum ground state [13–15]. A particularly intriguing
feature of this approach is that it can be applied to mechanical objects of almost
arbitrary size, from the nanoscale in microwave strip-line cavities [41] up to the
centimetre scale in gravitational-wave interferometers [18]. In addition, whereas
quantum-limited readout is still a challenging development step for non-optical
schemes [10, 42, 43], optical readout techniques at the quantum limit are readily
available [20].

Approaching and eventually entering the quantum regime of mechanical res-
onators through optomechanical interactions essentially requires the following three
conditions to be fulfilled: (1) sideband-resolved operation; that is, the cavity ampli-
tude decay rate κ has to be small with respect to the mechanical frequency ωm ; (2)
both ultralow noise and low absorption of the optical cavity field (phase noise at the
mechanical frequency can act as a finite-temperature thermal reservoir and absorp-
tion can increase the mode temperature and even diminish the cavity performance
in the case of superconducting cavities); and (3) sufficiently small coupling of the
mechanical resonator to the thermal environment; that is, low environment temper-
ature T and large mechanical quality factor Q (the thermal coupling rate is given by
kB T/�Q, where kB is the Boltzmann constant and � is the reduced Planck constant).
So far, no experiment has demonstrated all three requirements simultaneously. Cri-
terion (1) has been achieved [40, 41, 44]; however, the performance was limited
in one case by laser phase noise [40] and in the other cases by absorption in the
cavity [41, 44]. Other, independent, experiments have implemented only criterion
(2) [9, 18, 20, 35]. Finally, criterion (3) has been realized in several cryogenic exper-
iments [9, 21, 34, 41], however not in combination with both (1) and (2).

We have designed a novel micro-optomechanical device that enables us to meet
all requirements at the same time. Specifically, we have fabricated a Si3N4 micro-
mechanical resonator that carries a high-reflectivity, ultralow-loss Bragg mirror
(Fig. 5.5a), which serves as the end mirror of a Fabry-Pérot cavity. We designed the
system to exhibit a fundamental mechanical mode at relatively high frequency (of
the order of 1 MHz; Fig. 5.5b) such that sideband-resolved operation (criterion (1))
can be achieved already with a medium-finesse cavity. Criterion (2) can first be
fulfilled because our solid-state pump laser used for optical cooling exhibits low
phase noise (laser linewidth below 1 kHz). Second, absorption in the Bragg mirror is
sufficiently low to prevent residual heating in the mechanical structure. Absorption
levels as low as 10−6 have been reported for similar Bragg mirrors [45] and recent
measurements suggest even lower values of 4×10−7 for the specific coatings used in
this experiment (R. Lalezari, private communication). In addition, although absorp-
tion in Si3N4 is comparable to silicon, the transmission mismatch of the two cavity
mirrors (∼10:1) and the resulting low transmission through the Bragg mirror prevents
residual heating of the resonator as has been observed for cryogenically cooled silicon
cantilevers [46]. Finally, criterion (3) requires low temperature and high mechanical
quality. The mechanical properties of our design are dominated by the Si3N4, which
is known to exhibit superior performance in particular at low temperatures, where
Q-factors beyond 106 have been observed at millikelvin temperatures [47].
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(a) (b)

Fig. 5.5 High-quality micro-optomechanical resonator. a Scanning electron micrograph of the
basic mechanical system, which is formed by a doubly clamped Si3N4 beam. A circular, high-
reflectivity Bragg mirror is used as the end mirror of a Fabry-Pérot cavity. The Bragg mirror is
made of low-absorption, alternating dielectric stacks of Ta2O5/SiO2. The magnified section in the
inset shows the stacking sequence. b Micromechanical displacement spectra shown as noise power
spectra of the readout-beam phase quadrature for a locked and an unlocked cavity. The fundamental
mode at ωm = 2π × 945 kHz and all higher mechanical modes are identified by finite element
simulation. For the cases that involve large Bragg mirror displacements, we provide the simulated
mode profile

We operate our device, a 100 × 50 × 1 µm microresonator, in a cryogenic 4He
environment at 10−7 mbar and in direct contact with the cryostat cold finger. To
measure the mechanical displacement, the frequency of a 7 µW continuous-wave
Nd:YAG laser is locked close to resonance of the cryogenic Fabry-Pérot cavity (length
L ≈ 25 mm), which consists of a fixed macroscopic mirror and the moving microme-
chanical mirror. The optical cavity of finesse F ≈ 3,900 achieves moderate sideband
resolution (κ ≈ 0.8ωm), which in principle would allow cooling to a final occupa-
tion number 〈n〉min = ( κ2

4ω2
m
) ≈ 0.16, that is, well into the quantum ground state

[13, 14]. The experimentally achievable temperature is obtained as the equilibrium
state of two competing processes, namely the laser cooling rate and the coupling
rate to the thermal (cryogenic) environment. In essence, laser cooling is driven (in
the ideal resolved-sideband limit and at detuning � = ωm) at a rate � ≈ G2/(2κ)
(G is the effective optomechanical coupling rate, as defined in Ref. [15]), whereas
mechanical relaxation to the thermal environment at temperature T takes place at a
rate (kB T/�Q). The final achievable mechanical occupation number is therefore, to
first order, given by n f ≈ (1/�) × (kB T/�Q). A more accurate derivation taking
into account effects of non-ideal sideband resolution can be found, for example, in
Refs. [13–15, 48]. Our experimental parameters limit the minimum achievable mode
temperature to approximately 1 mK (n f ≈ 30). The fact that we can observe this
value in the experiment (see below) shows that other residual heating effects are
negligible. The micromechanical flexural motion modulates the cavity-field phase
quadrature, which is measured by optical homodyning. For Q 
 1 its noise power
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spectrum (NPS) is a direct measure of the mechanical position spectrum Sq(ω), as
described in Ref. [15]. We observe a minimum noise floor of 2.6 × 10−17 mHz−0.5,
which is a factor of 4 above the achievable quantum (shot-noise) limit, when tak-
ing into account the finite cavity linewidth, the cavity losses and the non-perfect
mode-matching, and due to the residual amplitude noise of the pump laser at the
sideband frequency of our mechanical mode. We observe the fundamental mechan-
ical mode at ωm = 945 kHz with an effective mass mef f = (43 ± 2)ng and a
quality factor Q ≈ 30,000 at 5.3 K (Q ≈ 5,000 at 300 K). These values are consis-
tent with independent estimates based on finite-element method simulations yielding
ωm = 945 kHz and mef f = (53 ± 5)ng (see the section Effective Mass).

Optomechanical laser cooling requires driving of the cavity with a red-detuned
(that is, off-resonant), optical field [8, 16, 18, 25, 28, 35, 40, 41]. We achieve
this by coupling a second laser beam—detuned by � in frequency but orthogonal
in polarization—into the same spatial cavity mode (Fig. 5.6a). Birefringence of the
cavity material leads to both an optical path length difference for the two cavity
modes (resulting in an 800 kHz frequency difference of the cavity peak positions)
and a polarization rotation of the outgoing fields. We compensate both effects by
an offset in � and by extra linear optical phase retarders, respectively. A change in
detuning � modifies the mechanical rigidity and results in both an optical spring
effect (ωe f f (�)) and damping (γe f f (�)), which is directly extracted by fitting the
NPS using the expressions from Ref. [15]. Figure 5.6b shows the predicted behaviour
for several powers of the red-detuned beam. The low-power curve at 140 µW is
used to determine both the effective mass of the mechanical mode, mef f , and the
cavity finesse, F . For higher powers and detunings closer to cavity resonance, the
onset of cavity instability prevents a stable lock (see, for example, Ref. [15]). All
experimental data are in agreement with theory and hence in accordance with pure
radiation-pressure effects [13].

The effective mode temperature is obtained through the equipartition theo-
rem. For our experimental parameter regime, Q 
 1 and 〈n〉 
 0.5, the inte-
grated NPS is also a direct measure of the mean mechanical mode energy and
hence, through the equipartition theorem, of its effective temperature through
Tef f = (mef f ω

2
e f f /kB)

∫ +∞
−∞ N P S(ω)dω. Note that, for the case of strong opto-

mechanical coupling, normal-mode splitting can occur and has to be taken into
account when evaluating the mode temperature [49]. In our present case, this effect
is negligible because of the large cavity decay rate κ. The amplitude of the NPS
is calibrated by comparing the mechanical NPS with the NPS of a known fre-
quency modulation applied to the laser (see, for example, Ref. [50]). For a cold-finger
temperature of 5.3 K, we obtain a mode temperature T = 2.3 K, which is consis-
tent with an expected moderate cooling due to slightly off-resonant locking of the
Fabry-Pérot cavity (by less than 3 % of the cavity intensity linewidth). The locking
point is deliberately chosen to be on the cooling side to avoid unwanted parametric
mechanical instabilities. The mean thermal occupancy was calculated according to
〈n〉 = kB Tef f /�ωe f f . We note, however, that Bose-Einstein statistics will have a
dominant role as one approaches the quantum ground state.
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(a) (b)

Fig. 5.6 Experimental set-up and characterization of optomechanical radiation-pressure
interaction. a The laser is split at a polarizing beamsplitter (PBS) into a weak locking field (red)
tuned near cavity resonance ωc and the cooling field (blue) tuned off-resonant with an acousto-
optical modulator (AOM) to ωc + � ≈ ωc −ωm . An electro-optical modulator (EOM) in the weak
field is used to generate a Pound-Drever-Hall error signal for cavity locking. The beams are recom-
bined on a PBS into the same spatial mode at orthogonal polarization before they enter the cavity
comprising an input mirror (IM) and the micro-mechanical mirror. The phase quadrature of the
locking beam is measured in a homodyne detection scheme (BS: beamsplitter; LO: local oscillator;
�: local oscillator phase; SA: spectrum analyser). � is stabilized in a separate proportional-integral-
derivative controller (PID). A combination of a Faraday rotator (FR) and a half-wave plate (λ/2)
separates the reflected from the original signal. b The effective frequency ωe f f and damping γe f f
of the micro-mechanical motion for different detuning and power settings. All power levels follow
the theoretical predictions for pure radiation-pressure interaction. The symbols are experimental
data, and the solid lines are simulations based on Ref. [15]. The inset shows the data set taken at
140 µW optical power

Figure 5.7a shows mechanical noise power spectra with the cooling beam switched
off and with maximum cooling beam pump power at 7 mW. For a detuning � ≈ ωm ,
we demonstrate laser cooling to a mean thermal occupation of 32 ± 4 quanta, which
is more than 2 orders of magnitude lower than previously reported values for opto-
mechanical devices [40] and is comparable to the lowest reported temperature of
25 quanta for nano-electromechanical systems [34] (NEMS). In contrast to previous
experiments [40, 41], the achieved cooling performance is not limited by optical
absorption or residual phase noise, but follows exactly the theoretically predicted
behaviour (Fig. 5.7b). This agrees with the expected device performance: a fraction
of approximately 10−6 of the intra-cavity power is absorbed by the Bragg mirror
(∼13 µW at maximum cooling) and a maximum of 1 % of the transmitted power
is absorbed by the Si3N4 beam [51] (∼14 µW at maximum cooling and taking
into account the impedance mismatch of the cavity mirrors). The cryogenic cooling
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(a) (b)

Fig. 5.7 Optomechanical laser cooling inside a cryogenic cavity. a Calibrated noise power
spectra for the fundamental mechanical mode at 5.3 K environmental temperature with small cavity
cooling (top) and at maximum cooling (bottom). The thermal energy is reduced from ≈53,000
quanta at 7 µW laser power to 32±4 quanta at 7 mW. The vertical axes in both plots are logarithmic.
The change in the technical noise floor is due to different locking levels of the local oscillator phase
� in the homodyne detection. b Plot of the calibrated effective temperature Tef f versus the observed
damping γe f f for various power and detuning values of the cooling beam. No deviations from the
theoretically expected power-law dependence (red solid line) can be observed. The inset shows the
mean thermal occupation 〈n〉 as a function of detuning for maximal laser power. Cavity instability
prevents detunings arbitrarily close to resonance. The red solid curve is a simulation based on Ref.
[15] that uses only experimentally obtained parameters

power of the cryostat used is orders of magnitude larger than the maximum heat load
expected on the micromechanical structures. The absence of absorption can also be
seen from the inferred mode temperature Tef f , which decreases with the mechanical
damping rate γe f f in strict accordance with the power law Tef f ∝ γ−1

e f f . This relation
follows immediately from the simple expression for the mechanical occupation n f

given above (n f ∝ T −1) and from the fact that the laser cooling rate � is to first
approximation equivalent to the effective mechanical damping γe f f , at least for all
data points of our experiment. Both heating and the onset of normal-mode splitting
for strong coupling [49] would result in a deviation of this behaviour.

The remaining obstacle that prohibits us from reaching the quantum ground state
is the intrinsic phonon coupling to the thermal environment at rate kB T/�Q ≈
1.4 × 107 Hz. By reducing the reservoir temperature to that of NEMS experiments
(20 mK), this coupling will significantly reduce, not only owing to the lower bath
temperature but also because Si3N4 resonators markedly improve in mechanical Q
with decreasing temperature. For example, thermal heating rates as low as 3×103 Hz
have been observed for Si3N4 at 300 mK (Ref. [47]), which would place our effec-
tive mode temperature already well into the quantum ground state using otherwise
unchanged parameters.

In summary, we have demonstrated optical cooling of the fundamental mode of a
100 µm scale mechanical resonator in a cryogenic cavity to a thermal occupation of
only 32 ± 4 quanta. This is comparable to the performance of state-of-theart NEMS
devices. In contrast to previous approaches, the large laser cooling rates attained are
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no longer limited by residual absorption or phase-noise effects. This is achieved by a
new micro-optomechanical resonator design with exceptionally low intrinsic optical
absorption and both high optical and mechanical quality. This leaves the reduction of
the thermal coupling, for example, by further decreasing the environment temperature
to those available in conventional 3He cryostats, as the only remaining hurdle to
prepare the mechanical quantum ground state. Our approach hence establishes a
feasible route towards the quantum regime of massive micromechanical systems.

Methods

Micro-Mirror Fabrication

Our micro-mechanical oscillator is made of 1-µm-thick low-stress Si3N4 deposited
on a Si substrate and coated through ion beam sputtering with a high-reflectivity
Bragg mirror. Standard photolithography and plasma etching is used for forming, in
subsequent steps, the mirror pad and the micro-mechanical resonator, which is finally
released from the Si substrate in a XeF2 atmosphere. The mirror stack, designed and
deposited by ATFilms, comprises 36 alternating layers of Ta2O5 and SiO2 with an
overall nominal reflectivity of 99.991 % at 1,064 nm. The measured finesse of 3,900
is consistent with an input coupler reflectivity of 99.91 % and with extra diffraction
losses due to a finite size of the cavity beam waist.

Supplementary Information

Effective Mass

We have estimated the effective mass of the fundamental mode of our microme-
chanical structure using both analytic models and FEM analysis. The experimen-
tally observed value of 43 ± 2 ng agrees to within 10 % with the estimated value of
53 ± 5 ng.

The total mass of the dielectric Bragg mirror (radius R ≈ 24.5 ± 0.5 µm) made
of 36 alternating layers of Ta2O5 (ρ ≈ 8,200 kg/m3, t = 126.4 nm) and SiO2
(ρ = 2,200 kg/m3, t = 179.6 nm) is 45 ± 5 ng, not taking into account the lateral
etch and tapering of the mirror pad. The large error stems from the uncertainty in the
exact value of the Ta2O5 density, which can vary between 6,800 and 8,300 kg/m3.
The mass of the Si3N4 resonator (ρ = 3,000 kg/m3, approximate dimensions of
100 × 50 × 1 µm3) is approx. 11 ng, resulting in a maximum total mass of 56 ± 5 ng
for the full optomechanical device.

The mode mass, i.e. the actual mass contributing to the motion of the Si3N4
resonator fundamental mode, is approx. 74 % of the total mass of the Si3N4 resonator
(see any standard literature on elasticity theory, for example [52]). This would result
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in a total mode mass of the optomechanical resonator (Si3N4 beam plus micromirror)
of approx. 53 ± 5 ng. However, because of the flat-top mode shape of our actual device
(see the FEM simulation shown in Fig. 5.8), this value is only a conservative lower
bound. A more realistic value that takes into account the actual mode shape can be
obtained directly from FEM simulation and is approx. 56 ± 5 ng (see below).

Finally, to calculate the effective mass one has to take into account the mode
overlap between the mechanical resonator mode and the mode of the optical probe
beam (for a detailed analysis on the calculation of the effective mass see for example
[50]). Based on the experimentally obtained optical finesse, which is limited by
intensity losses due to a finite mirror size, we can provide an upper bound on the
cavity beam waist at the micromirror position of 8 ± 2 µm. If we assume a mechanical
mode shape of an ideal doubly-clamped beam of dimensions 100 × 50 × 1 µm3 we
would calculate an effective mass (see e.g. [8, 50]) of 50 ± 5 ng. Again, the actual
flat-top mode shape of our device results in a decreased mean square displacement (by
approx. 6 %) compared to the ideal doubly-clamped beam. Taking this into account
yields a final effective mass of 53 ± 5 ng, which agrees to within 10 % with the
experimentally observed value of 43 ± 2 ng.

The above mentioned FEM simulations make use of the exact geometry and
material data for our resonator. The main idea is to impose a force on the structure
and have the FEM simulation calculate the deflection. Using Hooke’s law one can
then extract the spring constant k of the device. The mode mass can be extracted by
using ωm = √

k/mmode. For our specific device the FEM solver provides us with
a spring constant of 2,196 N/m and a fundamental mode at ωm = 2π × 945 kHz,
which results in mmode = 57 ± 5 ng.

Fig. 5.8 FEM simulation of our optomechanical device. Shown is the side-view of the fundamental
resonance mode at its maximum displacement (below). The cylindrical mirror pad on top of the
Si3N4 beam induces a flat-top mode shape (inset)
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Error Analysis

The error associated with the noise power spectra peak areas, which provide the
mechanical mean square displacement, can be estimated as follows: Assuming that
the NPS comprises a sequence of N independent data points (xi , yi ) (with i = 1 . . . N )
with measurement uncertainty (δxi , δyi ) one can calculate the area underneath the
NPS by Riemann integration as A = ∑N−1

i=1 (xi+1 − xi )yi with an uncertainty δA =√∑N−1
i=1 (xi+1 − xi )2(δyi )2, which is obtained by Gaussian error propagation and

neglecting the uncertainty in x . The strongly cooled NPS shown in Fig. 5.7a is given
by a data set of N = 5,000 points with xi+1 − xi = 100 Hz and with δyi ≈
1 × 10−34 m2 Hz−1 for all i . We obtain A = 3.780 × 10−28 m2 (by numerically
integrating the data set), δA ≈ √

N ×100 Hz ×1×10−34 m2 Hz−1 = 7.1×10−31 m2

and an integrated noise floor of N × 100 Hz ×7.3 × 10−34 m2 Hz−1 = 3.65 ×
10−28 m2. This results in an integrated “real thermal noise” of (3.78 − 3.65) ×
10−28 m2 = 1.3×10−29 m2 with an overall error of approx.

√
2×7.3×10−31 m2 ≈

1 × 10−30 m2, i.e. with an error of approx. 8 %. The SNR of our measurement is
therefore sufficient to support our result of 〈n〉 = 32 and accounts for an uncertainty
of 〈δn〉 = ±1.5.

Other possible sources of experimental uncertainty are: an uncertainty related to
the absolute displacement amplitude calibration (amounting to approx. 12 % rela-
tive uncertainty), an uncertainty related to determining the mechanical resonance
frequency (known up to an error of approx. 5 %) and an uncertainty related to the
absolute power calibration of the intracavity optical pump field (known up to an
error of approx. 10 %). These additional experimental uncertainties add up to an
additional overall error of approx. 25 %. All errors are conservatively estimated and
finally result in 〈n〉 = 32 ± 4.

Shot-Noise

The noise floor of our measurement is limited by optical shot-noise. The correspond-
ing displacement noise can be calculated according to [53] as

δxShot = λ

16F
√

Pλ
hc

·
√

1 +
(ωm

κ

)2 ·
√

T + l

T
· P

PM M

Our experimental parameters (finesse F = 3,900, input power P = 14 µW,
λ = 1064 nm, ωm = 2π × 945 kHz, κ = 2π × 770 kHz, input coupler transmission
T = 900 ppm, overall intra-cavity losses l = 620 ppm, optical input power (cor-
rected for imperfect mode-matching) PM M = 7 µW) result in a minimal noise-floor
of δxShot = 6 × 10−18 m Hz−0.5.
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Chapter 6
Opto-Mechanics in the Strong
Coupling Regime

Full coherent quantum control over optomechanical systems is one of the main
outstanding goals in the young research field of cavity opto-mechanics. While the
progress towards low-entropy states was tremendous in recent years (including the
cooling experiments presented in Chap. 5), the second necessary condition for most
quantum protocols [1–4] has received far less attention: the system needs to be in
the so-called strong coupling regime. In this regime, the optomechanical coupling
rate g must be larger than the individual coupling rates of the subsystems to their
environments, namely κ for the cavity and γm for the mechanical resonator and
therefore allowing for coherent energy exchange between the systems, i.e. g ≥ κ, γm .
In most experimentsγm is negligibly small but the cavity amplitude decay rateκposes
a major challenge. According to Eq. (2.61), in order to increase the bare single photon
coupling rate g0 either the cavity length L can be decreased or the zero point motion
xzp of the mechanics increased (by decreasing the effective mass and/or the frequency
of the oscillator). Table 6.1 shows a comparison of g0 for a selection of publications.
In most experiments the coupling rate is several orders of magnitude lower than the
cavity decay rate. Nonetheless, linearizing the interaction allows to reach the strong
coupling regime by increasing the intra-cavity fieldαs (cf. Eq. (2.67)). In this chapter
we present the first experiment that was able to enter this strong coupling regime. We
gradually increased g by increasing the laser input power to approx. 11 mW, which
corresponded to a coupling rate g = 325 kHz, while κ = 215 kHz and γm = 140 Hz.
We observed normal mode splitting as unambiguous evidence for entering the strong
coupling regime (see Sects. 2.1.1 and 2.3.5 and [5, 6]).

Besides simultaneous ground state cooling and strong coupling, as has been
recently demonstrated in a mechanical system coupled to microwaves [7], it would be
highly interesting to also reach the single photon strong coupling regime, where the
full non-linear character of the Hamiltonian (2.60) could be exploited for quantum
experiments with macroscopic mechanical resonators.
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Table 6.1 Comparison of the single photon coupling strength g0 for several opto-mechanics exper-
iments

ωm/2π (Hz) g0/2π(Hz) g0/κ

Gigan et al. [8] 278 × 103 3.09 4.1 × 10−7

Arcizet et al. [9] 817 × 103 0.86 8.3 × 10−7

Schliesser et al. [10] 57.8 × 106 161 6.5 × 10−6

Corbitt et al. [11] 1 × 103 8.2 × 10−3 8.6 × 10−8

Thompson et al. [12] 134 × 103 4.7 2.9 × 10−5

Schliesser et al. [13] 62 × 106 380 4.0 × 10−5

Anetsberger et al. [14] 10.7 × 106 589 1.2 × 10−4

Gröblacher et al. [15] 945 × 103 5.1 6.6 × 10−6

Eichenfield et al. [16] 8.2 × 106 6.0 × 105 6.0 × 10−4

Gröblacher et al. [17] 945 × 103 2.8 1.3 × 10−5

Eichenfield et al. [18] 2.3 × 109 2.3 × 105 4.3 × 10−5

Wilson et al. [19] 4.82 × 106 6.1 4.9 × 10−7

Li et al. [20] 25.5 × 106 37.8 4.7 × 10−8

Safavi-Naeini et al. [21] 150 × 106 8.0 × 105 1.0 × 10−2

Ding et al. [22] 383.5 × 106 1.7 × 105 1.0 × 10−4

Chan et al. [23] 3.68 × 109 9.1 × 105 3.6 × 10−3

In order to reach the single photon strong coupling regime g0 must be greater than κ, which for
most current experiments seems to be out of reach

The following work was originally published as Observation of strong
coupling between a micromechanical resonator and an optical cavity field, Nature
460, 724–727 (2009) [17].

Abstract
Achieving coherent quantum control over massive mechanical resonators is a current
research goal. Nano- and micromechanical devices can be coupled to a variety of
systems, for example to single electrons by electrostatic [24, 25] or magnetic cou-
pling [26, 27], and to photons by radiation pressure [8, 9, 12, 28, 29] or optical
dipole forces [30, 31]. So far, all such experiments have operated in a regime of
weak coupling, in which reversible energy exchange between the mechanical device
and its coupled partner is suppressed by fast decoherence of the individual systems
to their local environments. Controlled quantum experiments are in principle not
possible in such a regime, but instead require strong coupling. So far, this has been
demonstrated only between microscopic quantum systems, such as atoms and pho-
tons (in the context of cavity quantum electrodynamics [32]) or solid state qubits and
photons [33, 34]. Strong coupling is an essential requirement for the preparation of
mechanical quantum states, such as squeezed or entangled states [1–4], and also for
using mechanical resonators in the context of quantum information processing, for
example, as quantum transducers. Here we report the observation of optomechani-
cal normal mode splitting [5, 6], which provides unambiguous evidence for strong
coupling of cavity photons to a mechanical resonator. This paves the way towards
full quantum optical control of nano- and micromechanical devices.
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A common feature of all coupled quantum systems is that their dynamics are
dominated by the competition between the joint coupling rate and the rates at which
the coupled systems decohere into their local environments. Only for sufficiently
strong coupling can the effects of decoherence be overcome. This so-called “strong
coupling regime” is, in all cases, indispensable for the experimental investigation of
a manifold of quantum phenomena. Nano- and micro-optomechanical oscillators are
currently emerging as a new “textbook” example for coupled quantum systems. In
this case, a single electromagnetic field mode is coupled to a (nano- or micrometre
sized) mechanical oscillator. In analogy to cavity quantum electrodynamics (cQED),
one can identify strong coupling as the regime where the coupling rate g exceeds
both the cavity amplitude decay rate κ and the mechanical damping rate γm—as
required, for example, in Refs. [1–3]. Another class of proposals requires the weaker
condition of “large cooperativity”, that is, g >

√
κ · γm (Refs. [4, 35]). Strong

coupling, ideally in combination with the preparation of zero entropy initial states (for
example, by ground-state cooling of the mechanical resonator), is essential to obtain
(quantum) control over this new domain of quantum physics. Whereas ground state
preparation is a goal of continuing research (in which much progress has been made,
in particular by using optical laser cooling techniques [36]), here we demonstrate
strong optomechanical coupling using state-of-the-art micromechanical resonators.

Consider the canonical situation in which a mechanical resonator is coupled to
the electromagnetic field of a high-finesse cavity via momentum transfer of the
cavity photons (Fig. 6.1). The system naturally comprises two coupled oscillators:
the electromagnetic field at cavity frequency ωc (typically of the order of 1015 Hz)
and the mechanical resonator at frequency ωm (∼107 Hz). At first sight, the large
discrepancy in the oscillator frequencies seems to inhibit any coupling; it is, however,
alleviated by the fact that the cavity is driven by a laser field at frequency ωL , which
effectively creates an optical oscillator at frequency � = ωc−ωL −δr p (in a reference
frame rotating at ωL ; δr p is the mean shift of the cavity frequency due to radiation
pressure). Each of the two oscillators decoheres into its local environment: the optical
field at the cavity amplitude decay rate κ and the mechanics at the damping rate γm .
Entering the desired strong coupling regime requires a coupling rate g � κ, γm .

The fundamental optomechanical radiation-pressure interaction Hint =
−�g0nc Xm couples the cavity photon number nc to the position Xm of the mechanics
(� is h/2π, where h is Planck’s constant). On the single-photon level, this interaction

provides an intrinsically nonlinear coupling, where the coupling rate g0 = ωc
L

√
�

mωm

(L , cavity length; m, effective mass) describes the effect of a single photon on the
optomechanical cavity. In all currently available optomechanical systems, however,
g0 is well below 100 Hz. Because the corresponding cavity decay rates are typically
much larger than 10 kHz, the effect is too small to exploit the strong coupling regime
on the single-photon level. For our experiment g0 = 2π × 2.7 Hz, which is smaller
than both κ (2π×215 kHz) and γm (2π×140 Hz). To circumvent this limitation, we
use a strong optical driving field (λ = 1, 064 nm), which shifts the optomechanical
steady state by means of radiation pressure from vacuum to a mean cavity amplitude
α (mean cavity photon number 〈nc〉 = α2) and from zero displacement to a mean
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Fig. 6.1 Experimental set-up and characterization of the uncoupled mechanical and optical oscil-
lator. a Our micromechanical resonator with a high-reflectivity mirror pad (R > 0.99991) that
forms the end-face of a 25-mm-long Fabry-Pérot cavity (magnified view circled, bottom right).
A strong continuous-wave Nd:YAG laser is used to drive the optomechanical system (purple beam).
By splitting off a faint part (15 µW) of the drive laser, the laser frequency is actively locked to the
Fabry-Pérot cavity frequency (orange beam). Locking is achieved by phase-modulation (electro-
optical modulator, EOM) and by obtaining a Pound-Drever-Hall error signal required for feedback
with a proportional-integral-derivative controller (PID). Acousto-optical modulators (AOM) control
the relative frequency detuning � and thus allow for off-resonant driving of the cavity. Data pre-
sented here have been taken by varying the detuning � and the power of the drive beam. Both beams
are coupled to the Fabry-Pérot cavity via the same spatial mode but orthogonal in polarization. The
measured cavity linewidth (full-width at half-maximum, FWHM) 2κ ≈ 2π× 430 kHz corresponds
to an optical finesse F ≈ 14, 000. The fundamental mechanical mode of the microresonator at
ωm = 2π × 947 kHz has a natural linewidth (FWHM) of γm ≈ 2π × 140 Hz (mechanical quality
factor Q ≈ 6, 700) at room temperature. With κ/ωm ≈ 0.2, these parameters place us well into the
resolved sideband regime κ/ωm � 1. The effective mass of 145 ng was obtained by direct fitting
of the optomechanical response at low driving powers. After interaction with the optomechanical
system, both (drive and lock) beams are separated by a polarizing beamsplitter and Faraday rotators
(FR) and are each independently measured by optical homodyning (Supplementary Information).
Each homodyne phase can be either scanned or locked to a fixed value by actuating a piezo-driven
mirror. b Mechanical noise power spectrum obtained by homodyne detection of the lock beam.
Red line, fit to the data assuming an ideal harmonic oscillator in thermal equilibrium. c Intensity
of the drive beam that is reflected off the Fabry-Pérot cavity when scanning its detuning �, which
provides direct access to the cavity transfer function. Dashed red line, Lorentzian fit to the data
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mechanical displacement β. The resulting effective interaction is obtained by stan-
dard mean-field expansion, and resembles two harmonic oscillators that are coupled
linearly in their optical and mechanical position quadratures Xc = (ac + a†

c ) and
Xm = (am + a†

m), respectively. This strongly driven optomechanical system is then
described by Eq. 6.1 (see Supplementary Information):

H = ��

2
(X2

c + P2
c ) + �ωm

2
(X2

m + P2
m) − �gXc Xm (6.1)

The effective coupling strength g = g0α is now enhanced by a factor of α = √〈nc〉.
Note that this enhancement comes at the cost of losing the nonlinear character of the
interaction. Although there exist proposals that do require strong nonlinear coupling
at the single-photon level [2], the majority of schemes for quantum optomechanical
state manipulation work well within the regime of linear albeit strong coupling. They
rely on the fact that linear interactions allow for protocols such as quantum state
transfer and readout [37], generation of entanglement [1, 3], conditional preparation
of states via projective measurements on light [4, 35], and so on, a fact which is
well established in the fields of quantum optics and quantum information. In our
experiment, by using external optical pump powers of up to 11 mW, we are able to
achieve an increase in coupling by more than five orders of magnitude, sufficient to
reach the desired strong coupling regime.

An unambiguous signature of strongly coupled systems is the occurrence of
normal mode splitting, a phenomenon known to both classical and quantum physics.
In the simplest case, two independent harmonic oscillators coupled via an additional
joint spring will behave as a pair of uncoupled oscillators—so-called normal mod-
es—with shifted resonance frequencies compared to the individual resonators. For
the particular case of resonators with equal bare frequencies, a sufficiently strong
coupling will introduce a spectral splitting of the two normal modes that is of the
order of the coupling strength g. Normal mode splitting has been observed in a
number of realizations of cQED, where it is also known as Rabi splitting, with
photons coupled either to atoms [38–40], to excitons in semiconductor structures
[41–43] or to Cooper pair box qubits in circuit QED [34]. In case of the strongly
driven optomechanical system described by Eq. (6.1), the normal modes occur at
frequencies ω2± = 1

2 (�2 + ω2
m ± √

(�2 − ω2
m)2 + 4g2ωm�) and exhibit a splitting

ω+ − ω− ≈ g. In the given simple expression for normal mode frequencies, cavity
decay and mechanical damping are neglected. A more careful analysis is carried out
in the Supplementary Information, and shows that normal mode splitting occurs only
above a threshold g � κ (Refs. [5, 6]) for our damped optomechanical system. The
Hamiltonian can be re-written in terms of the normal modes and one obtains:

H = �ω+
2

(X2+ + P2+) + �ω−
2

(X2− + P2−) (6.2)

For the resonant case � = ωm , Eq. 6.2 describes two uncoupled oscillators with

position and momentum quadratures X± =
√
ωm±g
2ωm

(Xc ± Xm) and P± =
√

ωm
2(ωm±g)
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(Pc±Pm). These new dynamical variables cannot be ascribed to either the cavity
field or the mechanical resonator, but are true hybrid optomechanical degrees of
freedom. The overall system energy spectrum Em, n is therefore given by the sum
of the energies of the two normal modes, that is, Em, n = �(mω+ + nω−). The
degeneracy of the uncoupled energy levels is lifted, and normal mode splitting of
adjacent levels occurs with a separation that is equivalent to the coupling strength
g. In the presence of decoherence, the spectral lines are broadened to a width of
(κ+ γm) and the splitting can therefore only be resolved for g � κ, γm , that is, for
strong coupling.

We observe normal mode splitting via direct spectroscopy of the optical field
emitted by the cavity. Emission of a cavity photon can in general be understood as
a transition between dressed states of the optomechanical system, that is, between
mechanical states that are dressed by the cavity radiation field. The structure of the
optomechanical interaction only allows for transitions that lower or raise the total
number of normal mode excitations by one (see Supplementary Information). Pho-
tons emitted from the cavity therefore have to lie at sidebands equal to the dressed
state frequencies ω± relative to the incoming laser photons of frequency ωL , that is,
they have to be emitted at sideband frequencies ωL ± ω+ or ωL ± ω−. Homodyne
detection provides us with direct access to the optical sideband spectrum, which is
presented in Fig. 6.2a for the resonant case � ≈ ωm . For small optical pump power,
that is, in the regime of weak coupling, the splitting cannot be resolved and one
obtains the well known situation of resolved sideband laser cooling, in which Stokes
and anti-Stokes photons are emitted at one specific sideband frequency. The splitting
becomes clearly visible at larger pump powers, which is unambiguous evidence for
entering the strong coupling regime. Indeed, at a maximum optical driving power of
∼11 mW, we obtain a coupling strength g = 2π×325 kHz, which is larger than both
κ = 2π×215 kHz and γm = 2π×140 Hz and which corresponds to the magnitude of
the level crossing shown in Fig. 6.2b. As is expected, for detunings � off resonance,
the normal mode frequencies approach the values of the uncoupled system.

These characteristics of our strongly driven optomechanical system are reminis-
cent of a strongly driven two-level atom, and indeed a strong and instructive analogy
exists. If an atom is pumped by a strong laser field, optical transitions can only occur
between dressed atomic states, that is, atomic states “dressed” by the interaction
with the laser field. For strong driving, any Rabi splitting that is induced by strong
coupling is effectively of order G0

√〈nL〉 (nL , mean number of laser photons; G0,
electric dipole coupling) and one therefore obtains an equally spaced level splitting,
fully analogous to the coupled optomechanical spectrum. From this point of view,
the optomechanical modes can be interpreted in a dressed state approach as excita-
tions of mechanical states that are dressed by the cavity radiation field. The origin
of the sideband doublet as observed in the output field of the strongly driven opto-
mechanical cavity corresponds to the resonance fluorescence spectrum of a strongly
driven atom, in which strong coupling gives rise to the two side-peaks in the so-called
Mollow triplet. It is interesting to note that the analogy even holds for the single-
photon regime, in which both systems are close to their quantum ground state. For
both cases (that is, the atom-cavity system and the cavity-optomechanical system),
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(a) (b)

(c)

Fig. 6.2 Optomechanical normal mode splitting and avoided crossing in the normal-mode fre-
quency spectrum. a Emission spectra of the driven optomechanical cavity, obtained from sideband
homodyne detection on the strong driving field after its interaction with the optomechanical system
(see Supplementary Information). The power levels from top to bottom (0.6, 3.8, 6.9, 10.7 mW)
correspond to an increasing coupling strength of g = 78, 192, 260 and 325 kHz (g = 0.4, 0.9,
1.2, 1.5 κ). All measurements are performed close to resonance (� = 1.02ωm ). For strong driving
powers a splitting of the cavity emission occurs, corresponding to the normal mode frequencies
of true hybrid optomechanical degrees of freedom. This normal mode splitting is an unambiguous
signature of the strong coupling regime. All plots are shown on a logarithmic scale. Green dashed
lines are fits to the data assuming two independent Lorentzian curves, red solid lines are the sum
signal of these two fits. b Normal mode frequencies obtained from the fits to the spectra as a func-
tion of detuning �. For far off-resonant driving, the normal modes approach the limiting case of
two uncoupled systems. Dashed lines indicate the frequencies of the uncoupled optical (diagonal)
and mechanical (horizontal) resonator, respectively. At resonance, normal mode splitting prevents a
frequency degeneracy, which results in the shown avoided level crossing. Error bars, s.d. Solid lines
are simulations (see Supplementary Information). For larger detuning values, the second normal
mode peak could no longer be fitted owing to a nearby torsional mechanical mode. c Normal mode
spectra measured off resonance

a sufficiently strong single-photon interaction g0 would allow one to obtain the well
known vacuum Rabi splitting as well as state-dependent level spacing, which is due
to intrinsic nonlinearities in the coupling.

We should stress that normal mode splitting alone does not establish a proof
for coherent dynamics, that is, for quantum interference effects. With the present
experimental parameters, such effects are washed out by thermal decoherence
and normal mode splitting has a classical explanation in the framework of linear
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dispersion theory [44]. Still, the demonstration of normal mode splitting is a neces-
sary condition for future quantum experiments.

We finally comment on the prospects for mechanical quantum state manipula-
tion in the regime of strong coupling. One important additional requirement in most
proposed schemes is the initialization of the mechanical device close to its quantum
ground state. Recent theoretical results show that both ground state laser cooling
and strong coupling can be achieved simultaneously, provided that the conditions
kB T
�Q � κ � ωm are fulfilled [6, 36]. Thus, in addition to operating in the resolved

sideband regime, a thermal decoherence rate that is small compared to the cavity
decay rate is required. Cryogenic experiments have demonstrated thermal decoher-
ence rates as low as 20 kHz for nanomechanical resonators for a 20 mK environment
temperature [29]. For our experiment, temperatures below 300 mK would be suffi-
cient to combine strong coupling with ground state cooling.

We have demonstrated strong coupling of a micromechanical resonator to an opti-
cal cavity field. This regime is a necessary precondition to obtaining quantum control
of mechanical systems. Together with the availability of high-quality mechanical res-
onators operated at low temperatures, which minimizes thermal decoherence of the
mechanics, strong optomechanical coupling provides the basis for full photonic quan-
tum control of massive mechanical resonators. We suggest that future developments
will eventually also allow strong coupling to be achieved in the nonlinear regime,
that is, at the single-photon level [2, 31], to exploit optomechanical vacuum Rabi
splitting.
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Chapter 7
Optomechanical Down-Conversion

To demonstrate optomechanical down-conversion we follow the scheme described
in Sect. 2.3.6. We set the detuning � ≈ ωm for the pump beam and increase the
pump power until breaking the rotating wave approximation. For our parameters
the limit for g � ωm is at a power level of P � 15 mW (this takes into account
a typical coupling efficiency of ∼75 % of the pump beam to the cavity mode).
Our optomechanical cavity comprises a micromechanical resonator, made of a
150 × 50 × 1µm3 SiN beam with a high reflectivity (>99.991 %) dielectric mir-
ror pad in its center (diameter 50µm) as one of the end mirrors of a Fabry-Pérot
cavity of length L = 25 mm and linewidth κ = 464 kHz. Its mechanical resonance
frequency is ωm/2π ≈ 950 kHz, its mechanical quality factor Q ≈ 6,700 and the
effective mass mef f = 55 ng (see Sect. 3.10). Due to the lower reflectivity of the
second cavity mirror (99.91 %) we obtain a good approximation of a single-sided
cavity of finesse F ≈ 6,300. We use a Nd:YAG laser at λ = 1,064 nm both for
pumping the optomechanical cavity and for read-out of the mechanics. For this we
split the laser beam into a faint (≈15µW) read-out and a strong (up to 4 mW) driving
beam on a polarizing beam splitter (PBS), as is shown in Fig. 7.1 and described in
detail in Sect. 3.4. In addition, the faint beam is phase modulated by an electro-optical
modulator (EOM) to achieve Pound-Drever-Hall stabilization (cf. Sect. 3.3.1) of the
pump laser frequency with respect to the optomechanical cavity by acting back on the
laser. Frequency detuning of the driving beam with respect to the cavity frequency
is achieved by acousto-optic modulation (AOM). Both beams are then recombined
into the same spatial mode of the optomechanical cavity. Note, however that they
always remain distinguishable due to their orthogonal polarization. The experiment
is performed at room temperature in vacuum (∼10−6 mbar).

We confirm the specific nature of the optomechanical interaction via direct phase-
sensitive correlation measurements. The generalized optical and mechanical quadra-
tures Xc and Xm are obtained via two independent, simultaneous optical homodyne
measurements, which are performed on the reflected parts of the driving and the lock-
ing field, respectively. For the homodyne detection the signal beam is mixed with a
strong local oscillator on a 50:50 beamsplitter and each output port is measured on
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Fig. 7.1 a Experimental setup. The generalized optical and mechanical quadratures Xc(φ, t) and
Xm(θ, t) are obtained from two independent, time-synchronized homodyne measurements of the
driving and the locking beam, respectively. Electronic demodulation of the homodyne currents at the
mechanical frequencyωm provides access to this slowly varying sideband components of the optical
fields. The phase angles φ and θ are varied by scanning both the optical local oscillator phase of the
driving beam homodyne and the electronic phase of the lock beam demodulation. We only consider
the regime of resonant coupling, i.e. � = ωm . b Scanning electron microscope (SEM) picture of
the micromechanical resonator, with the high-reflectivity dielectric mirror pad in its center

balanced photodetectors. The two photocurrents are subtracted, which gives direct
access to the generalized quadrature X (φ, t) = a(t)eiφ + a†(t)e−iφ of the signal
beam. Here φ is the phase between the local oscillator and the signal field, with
X (φ = 0, t) and X (φ = π

2 , t) being the amplitude and phase quadratures, respec-
tively. In order to measure Xc(φ), the off-resonant driving beam is homodyned after
its interaction with the cavity, while in the second homodyne detector the locking
beam is measured after its resonant interaction with the cavity (cf. Fig. 7.1). The lock
beam is chosen to be very faint g � κ and hence its cavity fields phase quadra-
ture adiabatically follows the evolution of the mechanical resonator, providing direct
access to Xm . In addition, the phase between the local oscillator and the lock beam
signal is actively stabilized in order to only detect the fields phase quadrature. We
finally have to consider that the generalized quadratures Xc and Xm are defined
relative to a frame rotating at their respective eigenmode frequencies � and ωm .
Since we only consider the resonant case, multiplication of each real time data set
by sin(ωmt + θc,m) and application of a low-pass filter to suppress higher order
harmonics of the demodulation results in the wanted quadratures [1].

For our measurements the local oscillator phase φ of the drive beam homodyne
measurement was scanned at a rate of 0.1 Hz while independently storing the real time
data for both homodyne detectors with a high-speed analogue-to-digital converter
(14 bit, 10 MSample s−1). Each 2π interval of the traces is divided into 36 equidistant
time bins, in which φ is assumed to be constant. After electronic demodulation, in
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Fig. 7.2 Optomechanical correlations. a Theoretical plot of the correlation function (7.1) for
g � ωm and various values of θ and φ. b The correlation measurements were performed close
to resonant coupling (� = 1.03ωm ). To achieve the mechanical read-out with minimum distur-
bance we useκ = 2π×475 kHz and hence fulfill strong adiabaticity in the coupling of the lock beam
(glock ≤ 30 kHz � κ,ωm ). For weak driving power (P = 0.35 mW, g ≈ 2π×135 kHz) the symme-
try is still present, indicating the validity of the rotating wave approximation (RWA) to a high degree.
When approaching the strong coupling regime (P = 4 mW, g ≈ 2π× 464 kHz ≈ κ) the symmetry
is clearly broken, which can be directly attributed to the counter-rotating interaction terms and a
corresponding breakdown of the RWA. c Although the contribution of the counter-rotating terms
for g4 mW ≈ ωm/2 < ωm is already visible, they are not sufficiently strong to produce detectable
2-mode squeezing, which is the reason why the correlations remain fully positive. The crossing
between correlations and anti-correlations is determined by the noise floor—if it is dominated by
classical (quantum) noise, anti-correlations correspond to optomechanical squashing(squeezing).
The quadrature phase denotes the phase difference between θ and φ

which the phase θ is only varied for the mechanical quadrature, i.e. the data of the
resonant field, we therefore obtain data pairs {Xc(φ, t), Xm(θ, t)}. The correlation
function 〈Xc(φ)Xm(θ)〉 is obtained by calculating the normalized co-variances

C(θ,φ) = 〈(A − 〈A〉) · (B − 〈B〉)〉√〈(A − 〈A〉)2〉 · 〈(B − 〈B〉)2〉 (7.1)
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for data sets measured within the same time window. Here A (B) is the demodulated
and low-pass filtered signal for the weak (strong) field and 〈·〉 denotes the mean for
data pairs measured at different times t at a fixed electronic and optical phase θ and
φ, respectively. By changing both phases over 2π the density plots (Fig. 7.2b) of the
correlation function C(θ,φ) were obtained.

In the regime were the rotating wave approximation is valid, and where the
interaction between the optical and the mechanical mode is effectively given by
a “beam splitter” Hamiltonian Hbs = g(aca†

m + a†
c am), the observed correlations

obey the specific symmetry C(φ,φ) = const., independent of φ. This implies in
particular 〈Xc Xm〉 = 〈Pc Pm〉. This symmetry is actually required by the interaction
Hamiltonian Hbs itself, which is invariant under a change of phases am → ameiφ

and ac → aceiφ, imposing this symmetry also for the steady state of the system,
and therefore also on the observed correlations. In the regime beyond the rotating
wave approximation, where counter-rotating terms contribute, the steady state will
be determined by the full Hamiltonian in Eq. (2.84). The said symmetry is broken
in this Hamiltonian, and by the same reasoning, also in the observed correlations
C(φ,φ) 	= C(φ′,φ′). This symmetry breaking can be attributed to the contribution
of down-conversion dynamics in the optomechanical interaction.

Moreover, if the observed correlations were solely due to a down-conversion
interaction, we would expect an oscillation between positive and negative values of
C , corresponding to correlations in the X -quadratures—C(φ,φ) = 〈Xc Xm〉—and
anti-correlations in the P-quadratures C(φ+ π

2 ,φ+ π
2 ) = 〈Pc Pm〉. For the present

system we accordingly observe increasing oscillations in C for larger optomechanical
coupling g, however no negative values as the maximum coupling rate achieved was
g ≈ ωm/2 < ωm . In a more refined experiment we expect to be able to overcome
the technical difficulties currently limiting g and be able to show anti-correlations,
which would demonstrate important characteristics of EPR correlations.

In order to witness entanglement, it is in fact enough to measure correlations
C which are strong on a scale set essentially by the zero point fluctuations of the
system. The data presented here was taken at room temperature, such that no quantum
entanglement can occur. However, our measurements do show striking evidence
of optomechanical down-conversion dynamics and accordingly strong correlations
between a micromechanical resonator and an optical cavity field.

At this stage the presented data is unpublished but as soon as more refined mea-
surements are performed will be made public.
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Chapter 8
Conclusions and Outlook

In this work we have shown how light can be used to modify the dynamics of a
mechanical oscillator via the radiation-pressure force. By utilizing the toolbox of
quantum optics, the interaction can in principle be used to demonstrate mechanical
quantum behavior of a truly macroscopic system. We have demonstrated the nec-
essary experimental requirements for entering this regime, including a high-finesse
Fabry-Pérot cavity, a mechanical resonator with high optical reflectivity and very
good mechanical quality, homodyne detection, cryogenic precooling of the mechan-
ical system, a classical-noise free laser system and stable locking loops, among oth-
ers. In our experiments we have demonstrated all the ingredients needed for showing
macroscopic quantum phenomena. We have passively cooled the mechanical motion
close to its quantum ground state in a cryogenic cavity, as well as shown that the
optical and mechanical system in our experiment can be strongly coupled, which
is necessary for achieving coherent energy exchange between the two. In addition,
we have performed an experiment where we have measured the correlations of the
optical and the mechanical system, a prerequisite for demonstrating optomechanical
entanglement. While we did not succeed in actually showing any quantum effect, we
are confident that this is within very close reach.

Future experimental improvements might include a digital locking system for
cascaded cavity locks, allowing stable operation of multiple high-finesse cavities.

Further advances in the quality of our mechanical systems are vital as a higher
quality factor Q allows for larger cooling factors in our self-cooling scheme. Also,
the stable operation of a cavity inside the dilution refrigerator at mK temperatures
has recently been achieved, finally allowing us to cool the mechanical oscillation
into its ground state.

More ambitious future goals include the realization of an optomechanical system
that can be strongly coupled to a single photon. This would open up the possibility
to directly exploit the single photon non-linearities, with consequences for both the
classical and quantum domain. For example, experiments such as the observation of
optomechanical vacuum Rabi splitting would become feasible, which is the basis for
several quantum information schemes [1].

S. Gröblacher, Quantum Opto-Mechanics with Micromirrors, Springer Theses, 137
DOI: 10.1007/978-3-642-34955-3_8, © Springer-Verlag Berlin Heidelberg 2012



138 8 Conclusions and Outlook

The field of cavity opto-mechanics has evolved very rapidly over the past years,
with experiments recently entering the quantum regime [2], putting it on the verge
of becoming the field of cavity quantum-optomechanics. A lot of work has already
been done but the most exciting and revolutionary experiments are yet to come.
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