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Preface

The aim of this book is to present fundamental concepts in quantum mechanics and a general mathematical
formalism beyond the wavefunction framework taught in introductory quantum mechanics courses. This includes
topics such as Dirac formalism with bra- and ket-vectors in Hilbert space, Heisenberg formalism with matrices,
approximation methods in quantum mechanics, scattering theory, atoms and electrons in magnetic fields, coherent
states, field quantization and radiation theory, and the density matrix formalism. In addition to explaining the
underlying theory in a detailed manner, we shall also provide a number of examples that will illustrate the
formalisms "in action".

This book is primarily based on my lecture notes from teaching this class to undergraduate students, and the notes
in turn are based on the book "Kvantemekanikk" by P. C. Hemmer. I have also included additional topics and
instructive examples which hopefully will allow the reader to obtain a more thorough physical understanding of
the material. This book is suitable as material for a full-semester course in intermediate quantum mechanics at the
undergraduate level.

It is my goal that students who study this book afterwards will find themselves well prepared to dig deeper into
the remarkable world of theoretical physics at a more advanced level. I welcome feedback on the book (including
any typos that you may find, although I have endeavored to eliminate as many of them as possible) and hope that
you will have an exciting time reading it!

Jacob Linder (jacob.linder@ntnu.no)
Norwegian University of Science and Technology
Trondheim, Norway

mailto:jacob.linder%40ntnu.no?subject=
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"Outstanding Referee" award, selected among over 60.000 active referees. In teaching courses such as Quantum
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invariably received high scores from the students for his pedagogical qualities and lectures. His webpage is found
here. He has also written the book "Introduction to Lagrangian & Hamiltonian Mechanics" together with Prof.
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I. GENERAL FORMULATION OF QUANTUM MECHANICS

Learning goals. After reading this chapter, the student should:

• Be able to understand and use Dirac’s bra-ket notation.

• Know the fundamental axioms of the general formulation of QM.

• Know how the general formulation and the wavemechanics formulation of QM are related.

Introductory quantum mechanics (QM) utilizes a position-representation where one works with wavefunctions
ψ = ψ(r). However, this is in fact just a special case of a more general theory. The general theory is important
because some QM systems cannot be treated by wavefunctions in position space, such as the spin degree of
freedom. We therefore develop the foundation for the general theory in what follows.

A. Dirac’s bra-ket notation

We introduce a new formulation where a QM state is described by a state vector |ψ〉 in a complex linear vector
space H , namely the so-called Hilbert space. The Hilbert space H may have a finite or infinite dimension, and
in often cases the latter. For instance, we need infinite Hilbert spaces to represent a vector describing continuous
variables (such as position). In contrast, only a two-dimensional Hilbert space is required to describe a single
spin-1/2 state. We will show this explicitly later on. For now, you may simply think of H as the space where
the state vector |ψ〉 resides. Mathematically, H is required in order to perform operations such as inner products
between state vectors in a well-defined manner.

There are different notations which are used for the state vector. A common convention is to denote the state with
its quantum numbers. For instance, stationary states in a Coulomb-field would then be written as |nlm〉, where
{n, l,m} are the quantum numbers characterizing the eigenstates of the system (as treated in introductory courses
to quantum mechanics). Generally, the state vector may also depend on time. In what follows, we usually suppress
the t-dependence notation-wise unless it is of importance.

INSERT ADVERTISEMENT HERE
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For any state |a〉 in H , there is assigned a dual vector 〈a| in a dual vector space. The relation between the two
state vectors is that the scalar product

〈a| · |b〉 ≡ 〈a|b〉 (1.1)

is defined as a complex number with the property

〈a|b〉 = 〈b|a〉∗. (1.2)

The two states |a〉 and |b〉 are orthogonal if their inner product 〈a|b〉 = 0. The notation used here is due to Dirac
and known as bra-ket notation:

〈. . . | ≡ bra, | . . .〉 ≡ ket. (1.3)

If a vector is multiplied with a number c, the corresponding dual vector must be multiplied by c∗. To see this, let
|a′〉 = c|a〉. It follows that 〈b|a′〉 = c〈b|a〉 and thus

〈a′|b〉 = 〈b|a′〉∗ = c∗〈b|a〉∗ = c∗〈a|b〉. (1.4)

It is then clear that 〈a′| = c∗〈a|.

In a n-dimensional vector space, we may choose n linearly independent vectors |1〉, |2〉, . . . |n〉 as basis vectors
and expand an arbitrary state vector |ψ〉 in these:

|ψ〉 =
n∑

k=1

ck|k〉, (1.5)

where ck are complex numbers. Assume for simplicity that these basis vectors are orthonormal, so that 〈k|m〉 =
δkm. We allow the dimension n to not necessarily be finite. It follows that cm = 〈m|ψ〉, so that we may write

|ψ〉 =
∑
k

〈k|ψ〉|k〉. (1.6)

In turn, this can be written as

|ψ〉 =
∑
k

|k〉〈k| · |ψ〉 (1.7)

(we simply interchanged the position of 〈k|ψ〉 and |k〉 which is fine since 〈k|ψ〉 is a scalar) which means that we
must have

∑
k

|k〉〈k| = 1. (1.8)

This is the so-called completeness relation which will turn out to be very useful. The corresponding relation for
usual vectors in three dimensional Cartesian space can in fact be written in a similar fashion:

∑
k

(ek)ek· = (ex)ex ·+(ey)ey ·+(ez)ez· = 1, (1.9)

because using this operator on a vector A is equivalent to the identity operation:

exAx + eyAy + ezAz = A. (1.10)

While 〈a|b〉 is the inner product and equal to a complex number in general, the outer product of the vectors |a〉
and |b〉 is |a〉〈b| and is generally equal to an operator. For instance, |k〉〈k| is a projection operator that projects a
state vector onto the |k〉-axis.

Some basis vector sets {|k〉} are such that k takes on continuous values. Then, we replace the summation with an
integration and also a delta function normalization:

〈k|k′〉 = δ(k − k′). (1.11)
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The expansion of a state vector |ψ〉 using such basis vectors then takes the form

|ψ〉 =
∫

dk c(k)|k〉. (1.12)

Multiplying from the left with 〈k′|, we find the expansion coefficients

〈k′|ψ〉 =
∫

dk c(k)〈k′|k〉 =
∫

dk c(k)δ(k′ − k) = c(k′). (1.13)

We may thus write that

|ψ〉 =
∫

dk〈k|ψ〉|k〉. (1.14)

The completeness relation for continuous variables then takes the form
∫

dk|k〉〈k| = 1. (1.15)

The norm ||f || of a vector |f〉 is defined as

||f || =
√
〈f |f〉 ≥ 0. (1.16)

We can see that ||f || is always real and non-negative by using the completeness relation we derived. It follows
from the property:

〈f |f〉 =
∑
k

〈f |k〉〈k|f〉 =
∑
k

|〈k|f〉|2 (1.17)

since 〈f |k〉 = 〈k|f〉∗.

B. Operators and eigenvectors

An operator in Hilbert space H is an image of H on itself. This means that the operator A assigns a vector |c〉 to
any vector |a〉 according to:

A|a〉 = |c〉. (1.18)

The adjoint operator A† is defined by

〈a|A†|b〉 = 〈b|A|a〉∗ (1.19)

which must hold for any two vectors |a〉 and |b〉 in H . By setting A|a〉 = |c〉, we may write Eq. (1.19) as

〈a|A†|b〉 = 〈b|c〉∗ = 〈c|b〉. (1.20)

It then follows that 〈c| = 〈a|A†. We have thus shown that the dual vector of A|a〉 is 〈a|A†. The following
properties of the adjoint operation follow from our definitions so far (try to prove them yourself!)

• (A†)† = A

• (αA)† = α∗A† where α is a constant

• (AB)† = B†A†.

An operator is self-adjoint (also known as Hermitian) if

A† = A. (1.21)

It follows that for such operators

〈a|A|a〉 = 〈a|A|a〉∗ → 〈a|A|a〉 ∈ �. (1.22)

We define an eigenvector of A to be |α〉 where

A|α〉 = λα|α〉. (1.23)

The number λα is the eigenvalue. The collection of eigenvalues for the operator A are known as the spectrum of
A. An important observation is that:
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Eigenvalues of Hermitian operators A are real.

This follows since λα = 〈α|A|α〉
〈α|α〉 ∈ �, as shown above. Representing a physical observable with a Hermitian

operator thus guarantees that the corresponding eigenvalues are real, as they should be for a measurable quantity.
The set of eigenvectors {|α〉} for an operator corresponding to a physical quantity is assumed to be a complete set.
This means that such eigenvectors may be used as basis vectors.

C. The axioms of the general formulation of QM

The general formulation of QM, which we have now established the notation for, is based on the following
postulates.

A: To any observable quantity F , one assigns a linear Hermitian operator F̂ in Hilbert space. The operators of
a generalized coordinate qn and the corresponding generalized momentum pn satsify the commutation relation
[q̂n, p̂n] = i�.

B: The state of a physical system is described by a state vector |ψ(t)〉 in a Hilbert space. It has the property
〈ψ(t)|ψ(t)〉 = 1 and satisfies the time-dependent Schrödinger-equation

i�∂t|ψ(t)〉 = Ĥ|ψ(t)〉. (1.24)

Here, Ĥ is the Hamilton operator.

C: The expectation value of an observable quantity F in the state |ψ〉 is 〈F 〉 = 〈ψ|F̂ |ψ〉.

D: The measurement of an observable quantity F yields as a result one of the eigenvalues fn of the operator F̂ .
An observable quantity is defined as a property of the system’s state which may be determined by performing
physical operations on the system (such as subjecting a charged particle to a magnetic field and reading off its
position).

INSERT ADVERTISEMENT HERE
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With these postulates, we can now describe QM with different sets of basis vectors. To begin with, we will
look at this in more detail using the position representation and establish how this is related to the wavefunction
formalism in introductory courses of quantum mechanics.

D. Different representations

We start with the position representation and consider motion only in 1D, in order to keep the notation simple. The
eigenvectors of the position operator x̂ are dneoted |x′〉 where x′ is the eigenvalue:

x̂|x′〉 = x′|x′〉. (1.25)

We then have x′ ∈ (−∞,∞). The total state vector may be expanded as

|ψ〉 =
∫

dx′〈x′|ψ〉|x′〉. (1.26)

The complex number 〈x′|ψ〉 is the contribution to the state vector |ψ〉 from position x′. Hence, this is in fact
nothing but the familiar wavefunction in position space:

ψ(x′) = 〈x′|ψ〉. (1.27)

We see that ψ(x) = 〈x|ψ〉 are the components of |ψ〉 with the basis vectors |x〉. If x instead took discrete values,
we could have written

|ψ〉 =



ψ(x1)
ψ(x2)
. . .


 . (1.28)

Since x is a continuous variable, we must δ-function normalize the basis-vectors:

〈x′′|x′〉 = δ(x′′ − x′). (1.29)

The scalar product between |ψ1〉 and |ψ2〉 may be written as

〈ψ1|ψ2〉 =
∫

dx〈ψ1|x〉〈x|ψ2〉 (1.30)

=

∫
dx〈x|ψ1〉∗〈x|ψ2〉 (1.31)

=

∫
dx ψ∗

1(x)ψ2(x), (1.32)

where we made use of the completeness relation
∫
dx|x〉〈x| = 1. Let us also consider how to work with operators

in this representation. The expectation value of F̂ may be written as:

〈ψ|F̂ |ψ〉 =
∫

dx′′
∫

dx′〈ψ|x′′〉〈x′′|F̂ |x′〉〈x′|ψ〉. (1.33)

The first and last factors inside the integral are wavefunctions, as we showed previously, so it remains to clarify
what the matrix elements 〈x′′|F̂ |x′〉 are. If F̂ = x̂, it is simple. We then have:

〈x′′|x̂|x′〉 = x′〈x′′|x′〉 = x′δ(x′′ − x′). (1.34)

More generally, if F̂ is a function of x̂ [F̂ = F (x̂)], then

〈x′′|F (x̂)|x′〉 = F (x′)δ(x′′ − x′). (1.35)

This follows for any power of x̂ since x̂n|x′〉 = (x′)n|x′〉, and thus the same is true for any function F (x̂) that
may be expanded in powers of x̂.

What about the case F̂ = p̂x ≡ p̂? We know that [x̂, p̂] = i�, and thus

〈x′′|x̂p̂− p̂x̂|x′〉 = i�〈x′′|x′〉 = i�δ(x′′ − x′). (1.36)
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The second term on the l.h.s. is

〈x′′| − p̂x̂|x′〉 = −x′〈x′′|p̂|x′〉. (1.37)

The first term on the l.h.s. may be computed as follows:

〈x′′|x̂p̂|x′〉 =
∫

dx1〈x′′|x̂|x1〉〈x1|p̂|x′〉

=

∫
dx1x1δ(x

′′ − x1)〈x1|p̂|x′〉

= x′′〈x′′|p̂|x′〉. (1.38)

An alternative way to show this explicitly for the second term is as follows. First, note that if Â|a〉 = λ|a〉, then
〈a|Â† = 〈a|λ∗. We then see that

〈x′′|p̂x̂|x′〉 = 〈x′|(p̂x̂)†|x′′〉∗ = 〈x′|x̂†p̂†|x′′〉∗. (1.39)

But x̂ and p̂ must be Hermitian so that x̂† = x̂ and similarly for p̂. By using this, we obtain that

〈x′|x̂†p̂†|x′′〉∗ = x′〈x′|p̂|x′′〉∗
= x′〈x′′|p̂|x′〉, (1.40)

which is consistent with Eq. (1.37). Combining the results we obtained so far, we then have that

(x′′ − x′)〈x′′|p̂|x′〉 = i�δ(x′′ − x′). (1.41)

Now, a fundamental property of the δ-function is that x∂δ(x)
∂x = −δ(x). We now use this by letting x ≡ x′′ − x′

and hold x′ to be constant. It follows that

(x′′ − x′)
∂

∂x′′ δ(x
′′ − x′) = −δ(x′′ − x′). (1.42)

We can then rewrite Eq. (1.41) to

〈x′′|p̂|x′〉 = �
i

∂

∂x′′ δ(x
′′ − x′). (1.43)

This can be further generalized to a power p̂n:

〈x′′|p̂n|x′〉 =
(�
i

∂

∂x′′

)n

δ(x′′ − x′). (1.44)

Since we have now proven that for an arbitrary function F (p), we have

〈x′′|F (p̂)|x′〉 = F
(�
i

∂

∂x′′

)
δ(x′′ − x′), (1.45)

it follows that in the most general case where the operator depends on both p̂ and x̂, we have:

〈x′′|F (p̂, x̂)|x′〉 = F
(�
i

∂

∂x′′ , x
′′
)
δ(x′′ − x′), (1.46)

Since we now know this expectation value, we can finally go back and evaluate the expression we started out with:

〈ψ|F̂ |ψ〉 =
∫

dx′′
∫

dx′〈ψ|x′′〉〈x′′|F̂ |x′〉〈x′|ψ〉

=

∫
dx′′

∫
dx′ψ∗(x′′)F

(�
i

∂

∂x′′ , x
′′
)
δ(x′′ − x′)ψ(x′)

=

∫
dx′ψ∗(x′)F

(�
i

∂

∂x′ , x
′
)
ψ(x′). (1.47)

In the end, we see that this is precisely how we are used to evaluate expectation values in the wavefunction
formulation. Hence, there is consistency between the general formulation of QM and the position representation.



1010

General formulation of quantum meChaniCsINTERMEDIATE QUANTUM MECHANICS

10

We may also show that the two versions of the Schrödinger equation (SE) are consistent. The general formula is:

i�∂t|ψ〉 = Ĥ|ψ〉 (1.48)

and can be brought to the position representation by multiplying with 〈x| from the left side, so that one obtains

i�∂t〈x|ψ〉 = 〈x|Ĥ|ψ〉 =
∫

dx′〈x|Ĥ|x′〉〈x′|ψ〉. (1.49)

We previously established that 〈x|ψ〉 = ψ(x). For a Hamiltonian operator Ĥ = H(p̂, x̂), it follows that

i�∂tψ(x) =
∫

dx′H
(�
i

∂

∂x
, x

)
δ(x− x′)ψ(x′) = H

(�
i

∂

∂x
, x

)
ψ(x). (1.50)

Summarizing, we see that when the eigenvectors for the position operator are used as basis vectors, the general
formulation of QM is reduced to wavemechanics in position space. In the same manner as above, the wave-
mechanics in momentum space is contained in the general formulation of QM. In this case, we want to use the
eigenvectors |p〉 of the momentum operator p̂ as basis vectors. The wavefunction in the momentum representation
is then φ(p) = 〈p|ψ〉.

Interestingly, the wavemechanics formulation in position space was not the first one to be developed. Instead,
the matrix mechanics formulation of QM was the originally developed representation by Heisenberg in 1925,
six months before Schrödinger developed the wavemechanics. In the matrix mechanics case, the state vector is
projected down on an arbitrary, discrete, orthonormal set of basis vectors |k〉, k = {1, 2, . . .}. A vector |a〉 may
then be expanded as |a〉 = ∑

k ak|k〉 where ak = 〈k|a〉. These coefficients can be visualized as components of a
vector:

a =



a1
a2
. . .


 (1.51)

INSERT ADVERTISEMENT HERE
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The scalar product 〈b|a〉 is then

〈b|a〉 =
∑
k

〈b|k〉〈k|a〉 =
∑
k

〈k|b〉∗〈k|a〉 =
∑
k

b∗kak. (1.52)

We see that

b†a = [b∗1, b
∗
2, . . .]



a1
a2
. . .


 =

∑
k

b∗kak. (1.53)

With this representation, an operator Â has an expectation value which is a matrix with elements Amn = 〈m|Â|n〉.
If |b〉 = Â|a〉, we then obtain that

〈m|b〉 = 〈m|Â|a〉 =
∑
n

〈m|Â|n〉〈n|a〉, m = 1, 2, . . . (1.54)

which in turn can be written as bm =
∑

n Amnan. But this is nothing but the very definition of matrix multiplica-
tion:



b1
b2
. . .


 =



A11 A12 . . .
A21 A22 . . .
. . . . . . . . .





a1
a2
. . .


 (1.55)

In effect, the result of acting with the operator on the state vector is represented by conventional matrix mul-
tiplication. This representation is commonly used and its most important application is on the stationary SE
Ĥ|ψ〉 = E|ψ〉. If we know the eigenvalues |n〉 (although usually we do not: the task is to find them), using them
as basis vectors gives:

〈m|Ĥ|n〉 = En〈m|n〉 → Hmn = Enδmn. (1.56)

We used that Ĥ|n〉 = En|n〉. The matrix-representation of Ĥ is then diagonal. Explicitly, we have


E1 0 . . .
0 E2 . . .
. . . . . . . . .





a1
a2
. . .


 = E



a1
a2
. . .


 . (1.57)

The solution for the eigenstates becomes an = δmn, E = En. However, if the eigenvectors are not known, one
has to use a different basis set for which 〈m|Ĥ|n〉 is not diagonal to begin with, i.e.:



H11 H12 . . .
H21 H22 . . .
. . . . . . . . .





c1
c2
. . .


 = E



c1
c2
. . .


 . (1.58)

The task to solve the SE is then mathematically equivalent to changing the basis, ck =
∑

k Snkak, so that the
matrix becomes diagonal. This is a standard method, suitable for numerics, which we later will use for degenerate
perturbation theory.

E. Briefly about the Schrödinger- and Heisenberg-picture

So far, we have described quantum mechanical systems by a state |ψ〉 which "moves" in a Hilbert space where the
axes (basis vectors) are time-independent. This is known as the Schrödinger picture. However, it is fully possible
to take the perspective from a rotating coordinate system. The simplest option is in fact that the rotation of the
system is such that the state vector is at rest. This is known as the Heisenberg picture.

Let us first recap how time-evolution is treated in the position representation. Since the SE is linear and 1st order
in time, the propagator U = U(r, t; r0, t0) determines the evolution of the wavefunction from t0 to t:

Ψ(r, t) =

∫
U(r, t; r0, t0)Ψ(r0, t0)dr0. (1.59)
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For a Hamilton operator that does not depend explicitly on time, we can expand

Ψ(r, t) =
∑
n

cnψn(r)e
−iEnt/� (1.60)

where cn are determined by

cn = eiEnt0/�
∫

Ψ(r0, t0)ψ
∗
n(r0)dr0. (1.61)

Inserting this cn into the expression for Ψ, we obtain an equation for the propagator:

U(r, t; r0, t0) =
∑
n

ψ∗
n(r0)ψn(r)e

−i(t−t0)En/�. (1.62)

If we instead have a continuous eigenvalue spectrum, the summation is replaced by an integral:

U(r, t; r0, t0) =

∫ ∞

−∞
ψ∗
p(r0)ψp(r)e

−i(t−t0)Epdp (1.63)

where p is the eigenvalue parameter. To be concrete, consider the example of a free one-dimensionally moving
particle for which

ψp(x) =
1√
2π�

eipx/�, Ep = p2/2m. (1.64)

INSERT ADVERTISEMENT HERE
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The propagator then turns into:

U(x, t;x0, t0) =
1

2π�

∫ ∞

−∞
eip(x−x0)/�e−i(t−t0)p

2/2m�dp

=

√
m

2πi�(t− t0)
eim(x−x0)

2/2�(t−t0). (1.65)

With this in mind, let us now turn to the general formulation of QM. The time evolution is given by

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉. (1.66)

If the Hamilton operator does not contain time explicitly, we have

Û(t, t0) = e−i(t−t0)Ĥ/� (1.67)

where the exponential operator should be interpreted via the formula

eX̂ =
∞∑

n=0

X̂n

n!
. (1.68)

We see that |Ψ(t)〉 = e−i(t−t0)Ĥ/�|Ψ(t0)〉 satisfies the time-dependent SE i∂t|Ψ(t)〉 = Ĥ|Ψ(t)〉. The correspond-
ing bra to the above ket is

〈Ψ(t)| = 〈Ψ(t0)|ei(t−t0)Ĥ/�. (1.69)

Normalization is thus preserved since:

〈Ψ(t)|Ψ(t)〉 = 〈Ψ(t0)|Ψ(t0)〉. (1.70)

We may compute the expectation value of some physical quantity F at the time t in the usual way:

〈F 〉 = 〈Ψ(t)|F̂ |Ψ(t)〉 = 〈Ψ(t0)|F̂H |Ψ(t0)〉 (1.71)

where we defined

F̂H = ei(t−t0)Ĥ/�F e−i(t−t0)Ĥ/�. (1.72)

We see that 〈F 〉 can be expressed in two equivalent ways:

• Schrödinger picture: expectation value of a time-independent operator F̂ in a time-dependent state.

• Heisenberg picture: expectation value of a time-dependent operator F̂H in a time-independent state.

We see that F̂H = Û †F̂ Û where the evolution operator satisfies Û† = Û−1, meaning that it is a unitary operator.
In the Schrödinger picture, we know that

d

dt
〈F 〉 = i

�
〈[Ĥ, F̂ ]〉. (1.73)

In the Heisenberg picture, we may differentiate F̂H to obtain the equation:

d

dt
F̂H =

i

�
[Ĥ, F̂H ]. (1.74)

Note that the commutator relations are preserved when making a transition to time-dependent operators. If
[Â, B̂] = Ĉ, then

[ÂH , B̂H ] = [Û†ÂÛ , Û †B̂Û ] = Û †(ÂB̂ − B̂Â)Û = Û †ĈÛ = ĈH . (1.75)

Example 1. Heisenberg picture representation of creation and annihilation operators. For the creation and
annihilation operators a† and a of a harmonic oscillator, we obtain from Eq. (1.74):

daH
dt

= −iωaH ,
da†H
dt

= iωa†H . (1.76)

The solution is straightforward to obtain:

aH(t) = e−iωtaH(0), a†H(t) = eiωta†H(0). (1.77)



1414

General formulation of quantum meChaniCsINTERMEDIATE QUANTUM MECHANICS

14

It is also worth mentioning that it is possible with an approach where only part of the time dependence is transferred
to the operators. This is the interaction picture, which is often used when the Hamilton operator can be written
as Ĥ = Ĥ0 + ĤI , where ĤI has to be handled via perturbation theory. We may then transform with Û0 =

e−i(t−t0)Ĥ0/� so that the state vector would be time independent if ĤI could be neglected. Which picture that one
ultimately decides to use is a matter of convenience: the physics is the same.
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II. HARMONIC OSCILLATOR: CREATION AND ANNIHILATION OPERATORS & COHERENT STATES

Learning goals. After reading this chapter, the student should:

• Be able to work with creation and annihilation operators and know their mathematical properties.

• Know how to describe coherent states and why they are physically significant.

In introductory QM courses, one learns about a wavemechanical treatment of the 1D harmonic oscillator. Let us
now use operator-algebra for the state vectors in Hilbert space to study the same problem in a simpler and more
elegant manner.

A. Creation and annihilation operators

The Hamilton operator for a harmonic oscillator is known from introductory courses on QM, namely:

Ĥ =
p̂2

2m
+

m

2
ω2q̂2. (2.1)

It follows that the equation

Ĥ

�ω
=

p̂2

2m�ω
+

mω

2�
q̂2 (2.2)

is dimensionless since [�ω] = energy. Instead of q̂ and p̂, we now introduce the dimensionless operators a and a†

(dropping the superscript ˆ. . . for brevity of notation)

a =

√
mω

2�
q̂ +

i√
2m�ω

p̂, a† =

√
mω

2�
q̂ − i√

2m�ω
p̂. (2.3)

While q̂ and p̂ are Hermitian operators, we see that a and a† are not since a �= a†. It is also useful to note the
inverse relations

q̂ =

√
�

2mω
(a+ a†), p̂ = i

√
m�ω
2

(a† − a). (2.4)

Keep in mind that [q̂, p̂] = i�. It then follows from Eq. (2.4) that

a†a =
mω

2�
q̂2 +

1

2m�ω
p̂2 +

i

2�
(q̂p̂− p̂q̂) =

Ĥ

�ω
− 1

2
. (2.5)

Similarly, one shows that aa† = Ĥ/�ω + 1/2. Combining these results, one obtains

[a, a†] = aa† − a†a = 1. (2.6)

We have now found a very simple expression for Ĥ:

Ĥ = �ω(a†a+
1

2
). (2.7)

The next step is to find the eigenvalues of Ĥ . This amounts to finding the eigenvalues of N̂ ≡ a†a, since Ĥ =

(N̂ + 1
2 )�ω. The quantity N̂ is known as the number operator, the reason being that the eigenvalues of N̂ are

positive integers. We will now prove this. The following relations will be useful in order to accomplish this task:

[N̂ , a] = a†aa− aa†a = (a†a− aa†)a = −a,

[N̂ , a†] = a†aa† − a†a†a = a†(aa† − a†a) = a†. (2.8)

For reasons that will become clear soon, a is known as the annihilation operator while a† is the creation operator.
To identitfy the energy spectrum, let |n〉 be the orthonormal eigenvectors for Ĥ with eigenvalues En, so that
Ĥ|n〉 = En|n〉. To find En, let us start by examining a|n〉. Using the above relations, we find that

Ĥa|n〉 = aĤ|n〉 − �ωa|n〉 = (En − �ω)a|n〉. (2.9)
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We thus conclude that as long as a|n〉 �= 0, a|n〉 is an eigenvector of Ĥ with eigenvalue En − �ω. This argument
can be generalized: a2|n〉 has eigenvalue En − 2�ω and so forth. This cannot continue forever, however, since the
energy of a harmonic oscillator cannot be negative. To see this, recall that the norm of a vector is always ≥ 0, and
we have that:

||a|n〉||2 = 〈n|a†a|n〉 = 〈n| Ĥ
�ω

− 1

2
|n〉 = En

�ω
− 1

2
. (2.10)

Therefore, we must have En ≥ �ω/2. In order to guarantee that this is the case, there must exist a final eigenvector
|0〉 so that a|0〉 = 0. The belonging energy to the state |0〉 must be the lowest energy available, so that

Ĥ|0〉 = �ω(a†a+
1

2
)|0〉 = 1

2
�ω|0〉 → E0 =

1

2
�ω. (2.11)

Now, since we could reach this state from any higher-energy state by moving downwards with energy steps of �ω,
we conclude that the general eigenvalues must be

En = (n+
1

2
)�ω. (2.12)

This is consistent with the known result derived in a more complicated way in introductory courses of QM, but we
managed to find it in a quite simple and elegant manner using the general formulation of QM.

Let us then turn to the eigenvectors. First, note that since Ĥ = (N̂ + 1
2 )�ω and En = (n + 1

2 )�ω, it follows that
N̂ |n〉 = n|n〉. The eigenvalue of N̂ thus denotes by how many energy quanta �ω that the energy of the system
exceeds the ground-state (lowest energy). We have that Ĥa|n〉 = (n − 1

2 )�ωa|n〉. But since (n − 1
2 )�ω is the

eigenvalue of the state |n − 1〉, we must have |n − 1〉 = cna|n〉. Here, cn is a constant which we can determine
through normalization:

1 = 〈n− 1|n− 1〉 = |cn|2〈n|a†a|n〉 = |cn|2〈n|N̂ |n〉 = |cn|2n. (2.13)

Therefore, cn = eiδ/
√
n where δ ∈ �. We set δ = 0 for now and thus obtain the central result

a|n〉 = √
n|n− 1〉. (2.14)

However, if time-dependence is included in the notation |n〉 for stationary states, then

|n〉 ∝ e−iEnt/� = e−i(n+1/2)ωt (2.15)

which means that δ becomes time-dependent:

a|n〉 = e−iωt
√
n|n− 1〉. (2.16)

To find a†|n〉, we operate on the above equation on both sides with a† to find

e−iωt
√
na†|n− 1〉 = a†a|n〉 = N̂ |n〉 = n|n〉, (2.17)

which after rearranging the equation produces

a†|n〉 = eiωt
√
n+ 1|n+ 1〉. (2.18)

This time-dependence is disregarded in the rest of this section, which means we set t = 0. Summarizing so far, we
have then found the following two fundamental relations regarding how annihilation and creation operators act:

a|n〉 = √
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉.

We can finally understand why a† is referred to as a creation operator, since its effect is |n〉 → |n+1〉 (creates one
quantum of energy). In the same way, a is the annihilation operator since |n〉 → |n− 1〉. Any excited state |n〉 can
thus be obtained by acting on the ground state |0〉 n times with a†:

|n〉 = 1√
n!
(a†)n|0〉. (2.19)
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Example 2. Computation of the expectation value of the potential energy of a harmonic oscillator in the
state |n〉. We know that

V =
1

2
mω2q2 =

1

2
mω2 �

2mω
(a+ a†)2. (2.20)

Inserted into 〈n|V |n〉, we obtain

〈n|1
4
�ω(aa+ aa† + a†a+ a†a†)|n〉 = 〈n|1

4
�ω(aa† + a†a)|n〉

=
1

4
�ω(

√
n+ 1

√
n+ 1 +

√
n
√
n)

=
1

2
�ω(n+ 1/2) = En/2. (2.21)

The average potential energy is thus equal to the average kinetic energy, namely 50% of the total energy in state
|n〉. Note that, in comparison, if we wanted to compute 〈q2〉 in the position representation, it would have been
necessary to evluate an integral with the square of a Hermite-polynomial, which is a much more difficult task!

For completeness, let us show how the position representation wavefunctions are recovered from the eigenstates
|n〉 = 1√

n!
(a†)n|0〉. We know that the starting point to find ψn(q), where q is the position coordinate, is ψn(q) =

〈q|n〉. Using the completeness relation
∫
dq′|q′〉〈q′| = 1, we obtain

〈q|n〉 = 1√
n!

∫
dq′〈q|(a†)n|q′〉〈q′|0〉. (2.22)

First, we evaluate

〈q|(a†)n|q′〉 = 〈q|
(√mω

2�
q̂ − i√

2m�ω
p̂
)n

|q′〉

=
(√mω

2�
q̂ − �√

2m�ω
d

dq

)n

δ(q − q′). (2.23)

Inserting this into Eq. (2.22), we obtain

〈q|n〉 = 1√
n!

(√mω

2�
q̂ − �√

2m�ω
d

dq

)n

〈q|0〉. (2.24)

We see that the n-th wavefunction ψn = 〈q|n〉 is expressed via ψ0(q) = 〈q|0〉. We determine ψ0(q) by the criterion
that defined |0〉, namely a|0〉 = 0. Projected onto |q〉, we get:

〈q|a|0〉 =
∫

dq′〈q|a|q′〉〈q′|0〉 = 0. (2.25)

In turn, this yields

〈q|a|0〉 = 0 =

∫
dq′〈q|

√
mω

2�
q̂ +

i√
2m�ω

p̂|q′〉〈q′|0〉

=
(√mω

2�
q̂ +

�√
2m�ω

d

dq

)
〈q|0〉. (2.26)

This means that we have obtained the following differential equation for the scalar 〈q|0〉:

d

dq
〈q|0〉 = −mω

�
q〈q|0〉. (2.27)

It can be readily solved to yield ln〈q|0〉 = −mω
2� q2 + C where C is a constant. Therefore,

〈q|0〉 = eCe−mωq2/2� =
(mω

π�

)1/4

e−mωq2/2� (2.28)
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where we determined the constant through normalization. Now, by inserting this back into our expression for
ψn(q) we get:

ψn =
(mω

π�

)1/4 1√
2nn!

(
x− d

dx

)n

e−x2/2 (2.29)

where x ≡ q
√

mω/�, which is the correct result for the position representation wavefunction.

We mention in passing that we can now also identify the matrix representation for the operators by using the energy
eigenvectors as a basis. From a|n〉 = √

n|n− 1〉 and a†|n〉 =
√
n+ 1|n+ 1〉, we see that

a =




0
√
1 0 0 . . .

0 0
√
2 0 . . .

0 0 0
√
3 . . .

0 0 0 0 . . .
. . . . . . . . . . . . . . .



, a† =




0 0 0 0 . . .√
1 0 0 0 . . .

0
√
2 0 0 . . .

0 0
√
3 0 . . .

. . . . . . . . . . . . . . .




(2.30)

B. Coherent states

The eigenstates of the annihilation operator a, |α〉, are known as coherent states:

a|α〉 ∝ |α〉. (2.31)

The reason for this is that the time-evolution of such a state does not cause the state to spatially "diffuse" and
become delocalized. Instead, the state’s spatial distribution oscillates with a preserved width of the oscillation as
we now shall prove.

We expand the eigenstate of the operator a in energy eigenstates:

|α〉 =
∞∑

n=0

cn|n〉. (2.32)

We showed previously that:

a|α〉 = e−iωt
∞∑

n=0

cn
√
n|n− 1〉. (2.33)

When cn
√
n = αcn−1, where α is a constant, a|α〉 becomes proportional to |α〉. Using this relation, we have

cn = c0α
n/

√
n!, so that

|α〉 = c0

∞∑
n=0

αn

√
n!
|n〉 = e−|α|2/2

∞∑
n=0

αn

√
n!
|n〉 (2.34)

We have chosen c0 so that 〈α|α〉 = 1 by using that
∑∞

n=0(α
∗α)n/n! = e|α|

2

. These states then satisfy a|α〉 =
e−iωtα|α〉 and the expectation values for a and a† are:

〈α|a|α〉 = αe−iωt, 〈α|a†|α〉∗ = α∗eiωt. (2.35)

It remains to justify why we have said that these are known as coherent states. In order to see this, we consider
how these states behave spatially. Since q̂ =

√
�/2mω(a+ a†), we can show that:

|〈q|α〉|2 =

√
mω

π�
e−mω[q−q0 cos(ωt−θ)]2/�, (2.36)

where α = |α|eiθ. The meaning of this inner product is the distribution of the spatial position, which is seen to
describe an oscillating wavepacket which maintains a constant width as time evolves, hence the name coherent
state.
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III. TIME-INDEPENDENT APPROXIMATE METHODS

Learning goals. After reading this chapter, the student should:

• Know the fundamental idea behind non-degenerate and degenerate perturbation theory, when they are valid,
and be able to mathematically outline how to apply them on a quantum mechanical problem..

• Know the fundamental idea behind the variational method, when it is valid, and be able to mathematically
outline how to apply it on a quantum mechanical problem.

• Know the fundamental idea behind the WKB-approximation, when it is valid, and be able to mathematically
outline how to apply it on a quantum mechanical problem.

Only rarely is a QM problem exactly solvable. Thus, having a "toolbox" of useful approximative methods is
indispensible for a physicist. In this chapter, we will establish precisely such a toolbox.

A. Non-degenerate perturbation theory

Assume that Ĥ0 corresponds to an exactly solvable problem. Often times, a physical system may be described by
a Ĥ which only slightly deviates from Ĥ0. Then, Ĥ − Ĥ0 is the perturbation of the system. Assume E0

n and |n〉
are known for Ĥ0

Ĥ0|n〉 = E0
n|n〉. (3.1)

We want to find eigenvalues and eigenstates for the perturbed Hamilton operator Ĥ = Ĥ0+λĤ1, where Ĥ1 is time
independent. Here, λ is an expansion parameter which is assumed to be small. This kind of perturbation theory
is suitable and commonly used in the context of atomic energy levels influenced by E or B fields. We start by
assuming that the unperturbed energy level is non-degenerate. The exact eigenvalue problem can then be written
as:

(Ĥ0 + λĤ1 − En)|ψn〉 = 0. (3.2)

We now expand the eigenvalues and eigenstates in corrections to the unperturbed solutions:

En = E0
n + λE(1)

n + λ2E(2)
n + . . . ,

|ψn〉 = |n(0)〉+ λ|n(1)〉+ . . . (3.3)

and thus obtain

(Ĥ0 + λĤ1 − E0
n − λE(1)

n − . . .)(|n(0)〉+ λ|n(1)〉+ . . .) = 0. (3.4)

For brevity of notation, we use |n〉 ≡ |n(0)〉 in what follows. If this is to be valid for all λ, the equation must be
fulfilled for each power of λ. We obtain to O(λ0):

(Ĥ0 − E(0)
n )|n〉 = 0, (3.5)

while to order O(λ1):

(Ĥ0 − E(0)
n )|n(1)〉+ (Ĥ1 − E(1)

n )|n〉 = 0 (3.6)

and finally to order O(λ2):

(Ĥ0 − E(0)
n )|n(2)〉+ (Ĥ1 − E(1)

n )|n(1)〉 − E(2)
n |n〉 = 0. (3.7)

The 0th order equation is known to be valid from the outset, since it corresponds to the exact unperturbed problem.
If we multiply the 1st order equation 〈n| from the left we obtain:

〈n|Ĥ0 − E0
n|n(1)〉+ 〈n|Ĥ1|n〉 = E(1)

n . (3.8)

The first term is zero since it is equal to 〈n(1)|Ĥ0 − E0
n|n〉∗ = 0. Therefore, we obtain



INTERMEDIATE QUANTUM MECHANICS

21

time-indePendent aPProximate methods

21

λE(1)
n = 〈n|λĤ1|n〉.

This is the lowest order energy correction. It can also be written explicitly as

λE(1)
n =

∫
[ψ(0)

n ]∗λĤ1ψ
(0)
n dr (3.9)

What about the correction to the eigenstates? Multiply the O(λ) equation with 〈m| where m �= n to obtain

〈m|Ĥ0 − E(0)
n |n(1)〉+ 〈m|Ĥ1|n〉 = 0. (3.10)

Defining E0
j ≡ E

(0)
j and using that

〈m|Ĥ0 − E0
n|n(1)〉 = 〈n(1)|Ĥ0 − E0

n|m〉∗

= (E0
m − E0

n)〈n(1)|m〉∗

= (E0
m − E0

n)〈m|n(1)〉, (3.11)

we obtain

〈m|n(1)〉 = 〈m|Ĥ1|n〉
E0

n − E0
m

. (3.12)

It is now clear why a problem would arise if the unperturbed eigenvalues were degenerate, since the denominator
would beome zero then. By finally expanding |n(1)〉 in the unperturbed eigenstates

|n(1)〉 =
∑
m

|m〉〈m|n(1)〉 (3.13)

via the completeness relation, we end up with the first order correction to the eigenstates:

|n(1)〉 =
∑
m �=n

〈m|Ĥ1|n〉
E0

n − E0
m

|m〉. (3.14)

We have now determined the eigenvalues and eigenstates up to O(λ1). For some applications, it turns out that
〈n|Ĥ1|n〉 = 0, which means that we have to go to second order in λ to find the first non-vanishing correction.
Following a similar procedure as in the first order case, one obtains for the eigenvalues

En = E0
n + 〈n|λĤ1|n〉+

∑
m �=n

|〈m|λĤ1|n〉|2
E0

n − E0
m

+ . . . (3.15)

Note that if we are perturbing the ground state, then E0
m > E0

n, which means that E(2)
n will always be negative.

Moreover, the above expression gives a criterion for the applicability of this method, namely that

|〈m|λĤ1|n〉| � |E0
n − E0

m| (3.16)

so that the correction to En is indeed small as assumed. This type of approximation theory is known as Rayleigh-
Schrödinger perturbation theory.

Example 3. Relativistic correction to the Coulomb-levels. Even if the levels above the ground-state have a
degeneracy, we can still use our approximation theory because the perturbation matrix elements between degen-
erate states, 〈m|λĤ1|n〉, turn out to vanish. The relativistic expression for kinetic energy can be expandaed in
momentum as follows:

√
m2c4 + p2c2 −mc2 = mc2

√
1 + p2/m2c2 −mc2 (3.17)

and when assuming that |p| � mc, we obtain

mc2
√

1 + p2/m2c2 −mc2 � p2

2m
− p4

8m3c2
+ . . . (3.18)
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Here, m is the rest mass of the particle. The perturbation is then:

λĤ1 = − �4

8m3c2
∇4. (3.19)

We know that the first order correction to the energy eigenvalue is the expectation value:

λE(1)
n = 〈n|λĤ1|n〉 = − �4

8m3c2

∫
|∇2ψn|2dr. (3.20)

This result was obtained by performing two partial integrations. The integral is most easily evaluated by using the
SE for the Coulomb-potential which reads

− �2

2m
∇2ψnlm =

Ze2

4πε0
ψnlm + Enψnlm =

Ze2

4πε0

(1
r
− 1

2an2

)
ψnlm. (3.21)

Inserted into our expression Eq. (3.20), we obtain

λE(1) = − 1

2mc2

( Ze2

4πε0

)2

〈
(1
r
− 1

2an2

)2

〉. (3.22)

This expectation value may be computed by using the known form of the hydrogen wavefunction. Introducing the
fine-structure constant α = e2/4πε0�c, we obtain

Enl = mc2
[
1− Z2α2

2n2
− Z4α4

n4

( n

2l + 1
− 3

8

)]
. (3.23)

The term ∝ Z4 is the lowest order relativistic correction to the energy level. Importantly, the energy level is
now not only dependent on n, but also on the angular momentum quantum number l. This means that the energy
spectrum has acquired a fine-structure. This result is correct for a spinless particle. The result is slightly modified
for e.g. an electron that has spin 1/2.

INSERT ADVERTISEMENT HERE

http://www.nidostudentliving.com/Bookboon
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B. Degenerate perturbation theory

Consider now the case where the eigenvalue E0
n for the unperturbed Hamilton operator Ĥ0 is degenerate. Let there

be g orthonormal states |n1〉, |n2〉, . . . with eigenvalue E0
n. An example is the four states |200〉, |211〉, |210〉, |21−

1〉 corresponding to the first excited level for the Coulomb potential. We again expand in powers of λ. For the state
vector:

|ψn〉 =
g∑

r=1

ar|nr〉+ λ|N1〉+ . . . (3.24)

with so far unknown coefficients ar. To first order in λ, the time independent SE gives:

(Ĥ0 − E0
n)|N1〉+ (Ĥ1 − E(1)

n )

g∑
r=1

ar|nr〉 = 0. (3.25)

Multiplying from the left with one of the unperturbed states 〈ns|:
g∑

r=1

〈ns|Ĥ1 − E(1)
n |nr〉ar = 0 (3.26)

where we used that 〈N1|Ĥ0 − E0
n|ns〉∗ = 0. In Eq. (3.26), all the matrix elements are known:

〈ns|Ĥ1|nr〉 ≡ H ′
sr. (3.27)

They are computed via the unperturbed states. Since 〈ns|nr〉 = δsr, we get

g∑
r=1

(H ′
sr − E(1)

n δsr)ar = 0, s = 1, 2, . . . g. (3.28)

This is in fact a homogeneous set of equations for the unknown ar:



H ′
11 − E

(1)
n H ′

12 . . . H ′
1g

H ′
21 H ′

22 − E
(1)
n . . . H ′

2g

. . . . . . . . . . . .

H ′
g1 H ′

g2 . . . H ′
gg − E

(1)
n






a1
a2
. . .
ag


 = 0. (3.29)

This only has a non-trivial solution for the coefficients {ar} when det(M) = 0 where M is the matrix in the
above equation. This gives an equation of the g-th degree for E(1)

n . If all g solutions for E(1)
n are different, it

means that the perturbation λĤ1 has completely lifted the degeneracy of the energy level and split it into g levels.
This method for degenerate levels can and should be used on a level which is not exactly degenerate, but nearly
degenerate, so that the criterion |〈m|λĤ1|n〉 � |E0

n − E0
m| is not safisfied. Here, |n〉 and |m〉 are unperturbed

eigenstates of the Hamiltonian.

As an application of this framework, we consider the Stark-effect: the displacement of energy levels due to an
external constant electric field E . Choosing z as the direction of the field, we get λĤ1 = eEz where E = Ez. The
perturbation is thus the potential energy for a charged particle in an electric field. Assume that the particle is an
electron in a Coulomb potential and that the field is so weak that perturbation theory is permissible. Let the energy
states in the Coulomb potential be denoted |nlm〉. The ground state |100〉 is non-degenerate, and the correction to
the ground state energy E1 becomes

λE
(1)
1 = eE〈100|z|100〉 = eE

∫
z|ψ100|2dr. (3.30)

However, this integral is zero due to symmetry since ψ100 ∝ e−r/a. Therefore, the lowest order non-vanishing
correction to the ground state is 2nd order in the perturbation (the field E):

E1 = E0
1 − constant × E2. (3.31)

The constant may be evaluated using our formula for the 2nd order correction and one finds:

E1 = E0
1

[
1 +

9

8

(ea0E
E0

1

)2]
, (3.32)
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where we emphasize that E0
1 < 0. The correction to the ground state is atypical, because it is quadratic in the

perturbation. For all other levels, the Stark effect is actually linear in the field E = |E |, and the reason for
this is that all excited energy levels are degenerate. Consider for instance the n = 2 level which has a 4-fold
degeneracy: |200〉, |210〉, |211〉, |21 − 1〉. To do perturbation theory for a degenerate level, we need the matrix
elements eE〈2lm|z|2l′m′〉. Several of these vanish:

• Diagonal elements 〈2lm|z|2lm〉 are zero due to symmetry, just like the first-order term for the ground state.

• All elements where m �= m′ vanish, the reason being that z = r cos θ does not contain φ, while ψnlm ∝
eimφ. As a result, the φ-integration gives

∫ 2π

0

e−imφeim
′φ = 2πδmm′ . (3.33)

In effect, we fortunately only need to evaluate the matrix elements 〈210|z|200〉 and 〈200|z|210〉 = 〈210|z|200〉∗.
Therefore, it suffices to compute

eE〈210|z|200〉 = eE
∫

ψ∗
210zψ200dr. (3.34)

The wavefunctions in the integral can be derived or looked up in a table and we simply write the result here:

ψ210 = (32πa30)
−1/2ra−1

0 e−r/2a0 cos θ, ψ200 = (32πa30)
−1/2(2− ra−1

0 )e−r/2a0 . (3.35)

Inserted into the integral one obtains

eE〈210|z|200〉 = −3eEa0. (3.36)

The determinant that provides us with the first order energy correction is then:
∣∣∣∣∣∣∣∣∣

−E
(1)
2 −3ea0E 0 0

−3ea0E −E
(1)
2 0 0

0 0 −E
(1)
2 0

0 0 0 −E
(1)
2

∣∣∣∣∣∣∣∣∣
= (E

(1)
2 )2[(E

(1)
2 )2 − (3ea0E)2] = 0. (3.37)

The solutions are E
(1)
2 = 0, 0,±3ea0E . We thus see that the degeneracy is not completely lifted: the field splits

the n = 2 level into three levels instead of four as shown in the figure.

E0
2

E = 0

E > 0

E0
2 + 3ea0E +O(E2)

E0
2 +O(E2)

E0
2 − 3ea0E +O(E2)

(degenerate)

We here assumed that the field E is weak in order to use perturbation theory, but what does weak mean quantita-
tively? Let us compare the energy splitting due to the field with the distance to the next unperturbed energy level
which is

E0
3 − E0

2 =
(1
4
− 1

9

)
E0

1 | = 1.89 eV. (3.38)

The ratio between the field-splitting of the levels and the above energy gap is then

3ea0E
E0

3 − E0
2

=
E

1.2× 1010 V/m
. (3.39)

We may conclude that our approach is valid so long as E = |E | � 1010 V/m, which is an extremely large electric
field. Finally, it is instructive to consider the state belonging to the lowest energy level E(1)

2 = −3ea0E . The state
is specified by computing the {aj} coefficients in our previous derivation and one finds that

|ψ−〉 =
1√
2
(|200〉 − |210〉). (3.40)

This state has a finite dipole-moment along the z-axis, namely

d = 〈ψ−| − ez|ψ−〉 = 3a0e. (3.41)

Therefore, the physical meaning of the energy shift due to the electric field is that it represents the dipole-energy
−d · E .
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C. Variational method

There are problems where one cannot split Ĥ into an exactly solvable part and a small perturbation. In such events,
perturbation theory is not applicable and we may instead employ a so called variational method. This method is
particularly useful to determine the lowest-lying eigenvalue E0. It is based on the fact that the expectation value
Ĥ in any state |f〉 must be ≥ E0:

〈f |Ĥ|f〉
〈f |f〉 ≥ E0.

We prove this result using the wavemechanics formulation of QM. First, expand the states f in the eigenfunctions of
Ĥ , so that f =

∑
n cnψn. Using the orthonormality of the set {ψn}, we obtain

∫
f∗fdr =

∑
n |cn|2. Therefore:

∫
f∗Ĥfdr =

∑
n

|cn|2En. (3.42)

Since En ≥ E0 per definition, we obtain
∫

f∗Ĥfdr ≥ E0

∑
n

|cn|2 = E0

∫
f∗fdr, (3.43)

which completes the proof. The equality sign is obtained only if the state f actually is the ground state ψ0. In other
words, E0 is obtained by minimizing the functional E[f ] with respect to the function f where

E[f ] =

∫
f∗Ĥfdr∫
f∗fdr

. (3.44)

The variational method then consists of selecting trial functions f that depend on one or more parameters, comput-
ing E[f ], and then minimizing it w.r.t. f . The result will be an upper limit for E0, and the lowest value obtained
will always be the best. To be successful, one should ideally try to guess on a trial function form f which seems
physically reasonable for the system.

INSERT ADVERTISEMENT HERE
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Ĥ , so that f =

∑
n cnψn. Using the orthonormality of the set {ψn}, we obtain

∫
f∗fdr =

∑
n |cn|2. Therefore:

∫
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Example 4. Triangular well. We use the variational method to estimate E0 for a triangular well, where V (z) = ∞
for z < 0 and V (z) = Fz for z ≥ 0.

z

V (z)

Physically, this could be realized by pushing an electron with an electric field E toward a hard potential wall, so
that the force is F = eE . This is a commonly encountered situation in experimental electronics when one wants
to create artificial 2D electron systems. What kind of wavefunction should we expect in this system? It should be
zero upon entering the V = ∞ region (and in the region itself) and also fall off as z increases. Thus, a possible
choice which satisfies this is f(z) = ze−αz/2 for z ≥ 0. We then obtain

E[f ] =

∫∞
0

(−�2/2m)ff ′′dz + F
∫∞
0

zf2dz∫∞
0

f2dz
. (3.45)

All integrals may be evaluated analytically, and in total one obtains

E[f ] =
�2

2m

α2

4
+

3F

α
. (3.46)

Here, α is the free parameter that we may adjust in order to obtain as good a guess as possible for E0. In effect,
we want to minimize E[f ] with respect to α. Setting ∂E[f ]/∂α = 0 gives

α =
(12mF

�2
)1/3

. (3.47)

The corresponding minimum value of E[f ] for our particular trial function is then 2.48(�2/2m)1/3F 2/3 for that
choice of α. Now, we don’t know how good this result is, i.e. how far away from the true ground state energy it
is. In this particular case, however, we are lucky because the triangular well problem can actually be solved exactly.

To see this, consider the SE for z ≥ 0:

− �2

2m

∂2ψ

∂z2
+ Fzψ = Eψ. (3.48)

Now, introduce the quantities κ = (�2/2mF )1/3 and x = z/κ in order to bring the equation to dimensionless
form:

∂2ψ

∂x2
− (x− Ẽ)ψ = 0, (3.49)

where we defined Ẽ = E/Fk. The key observation here is that the equation y′′ − xy = 0 is Airy’s differential
equation, which has two known independent solutions: y = Ai(x) and y = Bi(x). While Bi(x) diverges for large
x, and thus is physically unacceptable in our system, Ai(x − Ẽ) has an acceptable behavior as it decreases for
x− Ẽ > 0. The physically acceptable solution to the SE for this system thus has to be ψ(x) = Ai(x− Ẽ) where
the definition is:

Ai(x) =
1

π

∫ ∞

0

cos(xz + z3/3)dz. (3.50)

Since ψ(0) = 0 due to the infinite wall potential, we obtain the energy eigenvalues from Ai(−Ẽ) = 0. The smallest
value of Ẽ must be the ground state, which is found numerically to occur at Ẽ = 2.33811. Since Ẽ = E/Fk, we
get

E0 = 2.33811(�2/2m)1/3F 2/3. (3.51)

Comparing with the result we obtained using the variational method, we see now that it was quite good: only 6%
deviation from the exact result!
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The variational method can also be used for the lowest-lying excited level E1, granted that we can choose a trial
function that is orthogonal to the ground state. To see this, expand f =

∑∞
n=1 cnψn, thus excluding n = 0 since

f has to be orthogonal to ψ0. It follows, proceeding as we did before, that for this f we have

〈f |Ĥ|f〉
〈f |f |〉 ≥ E1. (3.52)

Symmetry can be used as a guideline to ensure orthogonality between f and ψ0. For instance, in a 1D symmetric
potential, the first excited state is antisymmetric while the ground state is symmetric. If symmetry arguments are
not available, another option is to compute the ground state as accurately as we can, and then ensure that f is
orthogonal to that function.

D. WKB approximation

Whereas the variatonal method is useful for approximating the ground state of a system, it is useless for the
purpose of determining highly excited states. In contrast, the WKB-method (Wentzel, Kramers, Brillouin) is
particularly accurate for highly excited states, and also quite accurate for lower states. This method is also known
as a semiclassical approach and the key idea behind is to assume that the potential varies slowly in space (we will
later specify what this means quantitatively, i.e. how slowly it must vary).

To outline the strategy behind the WKB approximation, consider the 1D SE with a general potential V (x)

d2

dx2
ψ(x) +

2m

�2
[E − V (x)]ψ(x) = 0. (3.53)

We now try to solve this using the ansatz ψ(x) = eiS(x)/�. For V (x) = V0, this is indeed an exact solution with

S(x) = ±
√
2m(E − V )x. (3.54)

We may thus view ψ(x) as a wavefunction with variable wavelength. Inserting it into the SE gives the following
equation for S:

(S′)2 − 2m[E − V (x)]− i�S′′ = 0. (3.55)

If V (x) = V0, then S′′ = 0. Thus, if the potential is slowly varying, it seems reasonable to solve Eq. (3.55) iter-
atively while treating the term i�S′′ as a small perturbation. Let us use � as a book-keeping expansion parameter,
similarly to what we did with λ in previous perturbation theory. We expand

S(x) = S0(x) + �S1(x) + �2S2(x) + . . . (3.56)

Inserting this expansion into Eq. (3.55), we first collect the O(�0) terms:

(S′
0)

2 = 2m[E − V (x)]. (3.57)

The solution of this equation is

S0(x) = ±
∫ x

x0

√
2m[E − V (y)]dy + c1,±. (3.58)

Here, c1,± is a constant. Next, the O(�) terms provide the equation

2S′
0S

′
1 = iS′′

0 → S′
1(x) =

i

2

S′′
0

S′
0

. (3.59)

Integration gives:

S1(x) =
i

2
lnS′

0(x) + c2,± (3.60)

where c2,± is a new integration constant. Since we now have identified S0 and S1, we find that

ψ(x) = eiS(x)/� � ei(S0+�S1)/�, (3.61)
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and by renaming the constants to A± ≡ eic1,±eic2,± we thus obtain

ψ(x) =
A±

[E − V (x)]1/4
e
± i

�
∫ x
x0

√
2m[E−V (y)]dy

. (3.62)

This is the WKB approximation for the solution ψ(x). Note that if V (x) > E (classically forbidden area), ψ(x)
exponentially increases or decreases since the exponent becomes purely real:

ψ(x) =
B±

[V (x)− E]1/4
e
± 1

�
∫ x
x0

√
2m[V (y)−E]dy

, (3.63)

where we absorbed some numerical constants [(−1)1/4] into A± and renamed it to B±. For a bound state, one of
the coefficients B± thus has to be zero in order to prevent ψ(x) from diverging.

When is WKB valid?
The premise of our approach is that the term i�S′′ is small compared to 2m[E − V (x)] due to a slowly varying
potential. Let p2 = 2m[E − V (x)]. In effect, we demand that

|i�S′′| � |p2|. (3.64)

If S′′ is small, it means that we may approximate

(S′)2 − 2m[E − V (x)]− i�S′′ � (S′)2 − p2 = 0. (3.65)

Therefore, S′ = p → S′′ = p′. This gives us

|i� dp/dx| � |p2| →
∣∣∣� d

dx

(1
p

)∣∣∣ � 1. (3.66)

Since �/p = λ is the wavelength of the particle, this means that

∣∣∣dλ
dx

∣∣∣ � 1.

Physically, this means that the change in wavelength λ over a distance λ should be small compared to λ itself in
order for the WKB treatment to be valid, which can be satisfied by a slowly varying potential.

Application #1: quantization with hard walls.
Consider a potential containing two hard walls at x = xV and x = xH , so that V (x) = ∞ for x < xV and
x > xH .

E

V (x)

x
xHxV

Since the wavefunction is zero outside xV < x < xH , we must have ψ(xV ) = ψ(xH) = 0. We then need a

linear combination of the solutions ψ(x) = A±
[E−V (x)]1/4

e
± i

�
∫ x
x0

√
2m[E−V (y)]dy which vanishes at those points.

One combination that satisfies this is

ψ(x) = A[E − V (x)]−1/4 sin[(1/�)
∫ x

xV

√
2m[E − V (y)]dy] (3.67)

if we demand that

1

�

∫ xH

xV

√
2m[E − V (y)]dy = nπ, n = integer. (3.68)
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This is effectively a quantization condition for the energy, which may be written as (using 1/� = 2π/h)

2

∫ xH

xV

√
2m[En − V (y)]dy = nh. (3.69)

In the simple limit that V (y) = 0, we obtain 2
√
2mEn(xH − xV ) = nh, which is an exact result.

Application #2: quantization with continuous potential.
Consider a continuously varying potential with a minimum.

x
xHxV

V (x)

E

We should then expect to have oscillating WKB-solutions for xV < x < xH , but decaying solutions for x < xV

and x > xH since those areas are classically forbidden. A problem nevertheless arises at the points where E =
V (x) since the WKB-solution diverges there due to the factor [E − V (x)]−1/4. The challenge is then: how do we
connect the inner solutions (xV < x < xH)

ψ(x) = [E − V (x)]−1/4[A+e
i
�
∫ x
xV

√
2m[E−V (y)]dy

+A−e
− i

�
∫ x
xV

√
2m[E−V (y)]dy

] (3.70)

with the outer solutions

ψ(x) = B−[V (x)− E]−1/4e
1
�
∫ x
xV

√
2m[V (y)−E]dy

, x < xV ,

ψ(x) = B+[V (x)− E]−1/4e
− 1

�
∫ x
xH

√
2m[V (y)−E]dy

, x > xH . (3.71)
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Our strategy will be to treat the areas close to x = xV and x = xH exactly, since the potential can then be
approximated as linear (via e.g. a Taylor expansion), and then use this exact solution to connect the inner and outer
solutions. Close to the right turning point x = xH , we have V (x)−E � c(x− xH) where c > 0. The SE for this
linear potential reads

d2ψ

dx2
− 2mc

�2
(x− xH)ψ = 0 (3.72)

and is equivalent to the previously mentioned Airy’s differential equation

d2ψ

dξ2
− ξψ = 0 (3.73)

where we introduced ξ =
(

2mc
�2

)1/3

(x − xH). We have previously looked at the solutions Ai(x) and Bi(x) and
the non-divergent solution Ai(ξ) has the following asymptic behavior:

Ai(ξ) =

{
1

2
√
π
ξ−1/4e−2ξ3/2/3 for large positive ξ

1√
π
(−ξ)−1/4 cos[ 23 (−ξ)3/2 − π

4 ] for large negative ξ.
(3.74)

If we use the linear potential c(x− xH) in the WKB wavefunction, then for x < xH we obtain

1

�

∫ xH

x

√
2m[E − V (y)]dy =

2

3
(2mc/�2)1/2(xH − x)3/2 =

2

3
(−ξ)3/2. (3.75)

We then see that we can write the asymptotic Ai(ξ) function as

Ai(ξ) =
1√
π

[
−
(2mc

�2
)1/3

(x− xH)
]−1/4

cos
[1
�

∫ xH

x

√
2m[E − V (y)]dy − π

4

]
(3.76)

for large negative ξ. Since E − V (x) ∝ (x− xH), we see that

Ai(ξ) ∝ [E − V (x)]−1/4 cos
[1
�

∫ xH

x

√
2m[E − V (y)]dy − π

4

]
(3.77)

and this is precisely the WKB wavefunction for suitably chosen coefficients A±. In other words, by choosing A±
so that the WKB wavefunction becomes the asymptotic part of Ai(ξ), we may then connect the inner wavefunction
to the outer one for x > xH . Performing the same procedure at the left interface gives us

ψ(x) ∝ [E − V (x)]−1/4 cos
[1
�

∫ x

xV

√
2m[E − V (y)]dy − π

4

]
. (3.78)

We now have two expressions for the inner wavefunction which should be equal for consistency. Using that∫ x

xV
=

∫ xH

xV
−
∫ xH

x
, we can write

ψ(x) ∝ [E − V (x)]−1/4 cos
[1
�

∫ xH

x

√
2m[E − V (y)]dy − 1

�

∫ xH

xV

√
2m[E − V (y)]dy +

π

4

]
. (3.79)

For the two wavefunctions to be equal, we thus obtain the criterion that

1

�

∫ xH

xV

√
2m[E − V (y)]dy = nπ − π

2
. (3.80)

Note that we have used here that the wavefunctions only need to be equal up to an overall sign ±1 since this
sign can be taken care of by the normalization factor. In the above equation, n is an integer. Therefore, it can be
rewritten as

2

∫ xH

xV

√
2m[E − V (y)]dy = (n− 1

2
)h, n = 1, 2, 3, . . . (3.81)

The energies E satisfying this equation then determines the energy eigenvalues E = En. Since the classical
energy-momentum relation is E = p2/2m+ V , we can write the above result as

∮
p(x)dx = (n+

1

2
)h, n = 0, 1, 2, . . . (3.82)
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where the integral is taken over one period of the classical motion (starting and ending up with the same
momentum). This is the Bohr-Sommerfeld quantization condition.The quantization condition Eq. (3.81) gives
better results the larger n is, but decent results may also be obtained for lower-lying levels n as well. For a
harmonic oscillator, Eq. (3.81) in fact gives the exact eigenvalues for all n.

We previously treated the case with two hard walls. If the potential instead has one hard wall, e.g. at x = xV ,
the wavefunction must vanish at x = xV . From our expression for the inner wavefunction obtained from the
asymptotic behavior at x = xH , we see that the quantization condition becomes: 2

∫ xH

xV

√
2m[E − V (y)]dy =

(n − 1
4 )h. It is then possible to summarize our WKB results for the energy eigenvalues in the presence of hard

walls as follows:

• 0 hard walls: 2
∫ xH

xV

√
2m[E − V (y)]dy = (n− 1

2 )h.

• 1 hard walls: 2
∫ xH

xV

√
2m[E − V (y)]dy = (n− 1

4 )h.

• 2 hard walls: 2
∫ xH

xV

√
2m[E − V (y)]dy = (n− 0)h.

Example 5. Triangular well. Let us apply the WKB method to the triangular well problem to see how well it
approximates the eigenvalues. We have V (x) = ∞ for z < 0 and V (z) = Fz for z ≥ 0. This problem thus has
one hard wall and to use the quantization condition we have to set zV = 0 and zH = E/F , since zH was assumed
to be located at the classical turning point. We get:

2

∫ E/F

0

√
2m(E − Fz)dz = (n− 1

4
)h, (3.83)

which solving for E provides E = En =
[
3
2π

(
n − 1

4

)]2/3(
�2

2m

)1/3

F 2/3. The numerical coefficients for n =

1, 2, 3 are respectively 0.8%, 0.15%, and 0.08% off the exact results!
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IV. TIME-DEPENDENT APPROXIMATIVE METHODS

Learning goals. After reading this chapter, the student should:

• Know the fundamental idea behind time-dependent perturbation theory, when it is valid, and be able to
mathematically outline how to apply it on a quantum mechanical problem.

• Know the fundamental idea behind the sudden approximation, when it is valid, and be able to mathematically
outline how to apply it on a quantum mechanical problem.

So far, we have studied weak or slowly (spatially) varying perturbations of a QM system. Now, we take the step
to time dependent perturbations. Important applications for such a framework include EM radiation, spectroscopy,
and laser physics.

A. Perturbation theory

We start by considering the case of a weak perturbation (in magnitude) and set out to derive the differential equa-
tions governing the state coefficients. Let V̂ (r, t) be a weak time dependent perturbation:

Ĥ(r, t) = Ĥ0(r) + V̂ (r, t). (4.1)

Assume that the stationary states Ψ0
n(r, t) = ψn(r)e

−iEnt/� for the unperturbed system Ĥ0(r) are known. We
thus have Ĥ0(r)ψn = Enψn. The time evolution of the time dependent, non-stationary states Ψ are governed by

i�∂tΨ = ĤΨ. (4.2)

We are not able to solve this in its exact form, and thus look for a perturbation method valid for weak V̂ . Since the
eigenstates for the unperturbed system is, as usual, assumed to be a complete and orthonormal set, we may expand

Ψ(r, t) =
∑
k

ak(t)ψk(r)e
−iEkt/�. (4.3)

Note that the coefficients {ak} have to be time dependent. Due to the normalization of Ψ(r, t), we obtain
∑
k

|ak(t)|2 = 1. (4.4)

Inserting the expansion Eq. (4.3) into the time dependent SE, we obtain

∑
k

i�
(dak

dt
− i

�
Ekak

)
ψk(r)e

−iEkt/� =
∑
k

ak[Ĥ
0 + V̂ (r, t)]ψk(r)e

−iEkt/�. (4.5)

We know use that Ĥ0ψk = Ekψk to cancel two terms in the above equations and then multiply it with [ψn(r)]
∗

and integrate over space, in order to obtain

i�
dan
dt

e−iEnt/� =
∑
k

Vnk(t)e
−iEkt/�. (4.6)

We here defined

Vnk(t) ≡
∫

[ψn(r)]
∗V̂ (r, t)ψk(r)dr = 〈n|V̂ |k〉. (4.7)

This is a known quantity since it can be computed from the known ψn and V̂ . With the short-hand notation
ωnk ≡ (En − Ek)/�, we may then write the result as

dan(t)

dt
=

1

i�
∑
k

Vnke
iωnk(t)ak(t), n = 1, 2, 3, . . . (4.8)
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Note that so far, we have not actually made any approximations: this coupled set of equations for the state
coefficients is fully equivalent to the SE.

If we now, however, do assume that V̂ is weak, ak will only have a weak time dependence and we can approximate
the solution by neglecting the time dependence of ak(t) on the r.h.s. of the equation. Doing so and integrating with
respect to t gives:

an(t) = an(t0) +
1

i�
∑
k

ak(t0)

∫ t

t0

Vnk(τ)e
iωnkτdτ. (4.9)

If the system starts out in state b at t = t0, then ak(t0) = δkb and we obtain

as(t) =
1

i�

∫ t

t0

Vsb(τ)e
iωsbτdτ (s �= b). (4.10)

This is a key result because it tells us that the probability that the system at a time t has made a transition from
state b to s is Pb→s(t) = |as(t)|2. Note that Pb→b = 1−∑

s�=b Pb→s.

Detailed balance.
Let us compare the probability for the transitions b → s and s → b. The first one was calculated above. The
second one is

as→b(t) =
1

i�

∫ t

t0

Vbs(τ)e
iωbsτdτ. (4.11)

Since ωbs = (Eb − Es)/� = −ωsb and Vbs = 〈b|V̂ |s〉 = 〈s|V̂ |b〉∗ = V ∗
sb, the amplitudes satisfy ab→s(t) =

−a∗s→b(t). Taking | . . . |2, we see that

Ps→b(t) = Pb→s(t). (4.12)

In other words, to first order in time dependent perturbation theory, the probability for a transition is equal to the
probability for the opposite transition. This result is known as detailed balance.

Transient perturbations.
Assume that we are dealing with a perturbation that is transient, such as a charged particle passing by an atom
and exciting the electrons in the atom. This is actually the dominant mechanism that causes deceleration of an
individual charged particle injected into a material. Since the coefficients {as} stop changing after the perturbation
has ceased, we may set t = ∞ and use t0 = −∞ as the initial time. The transition probability from state b to s
then takes the form:

Pb→s =
∣∣∣1�

∫ ∞

−∞
eiωsbτVsb(τ)dτ

∣∣∣
2

. (4.13)

In the special case where V̂ varies slowly in time compared to the period ω−1
sb , the integrand oscillates rapidly

around zero and the integral become very small. If instead the perturbation varies in the same way as the "eigen-
frequency" ωsb of the system, a resonance can occur which strongly influences the system. We now proceed to
consider such a scenario.

B. Harmonic perturbations

An important special case is when the perturbation varies harmonically:

V̂ (r, t) = V+(r)e
iωt + V−(r)e

−iωt. (4.14)

The interaction between an atomic system and a radiation field in the form of EM waves has this form. The limit
ω → 0 corresponds to a constant perturbation. In order for V̂ to be Hermitian, we need V ∗

+ = V−. Inserting this V̂
into our result for the transition coefficients, we obtain:

ab→s(t) =
1

i�
(V+)sb

∫ t

0

ei(ωsb+ω)τdτ +
1

i�
(V−)sb

∫ t

0

ei(ωsb−ω)τdτ

= (V+)sb
1− ei(ωsb+ω)t

�ωsb + ω�
+ (V−)sb

1− ei(ωsb−ω)t

�ωsb − ω�
. (4.15)
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We have set t0 = 0 as the reference point. To obtain the transition probability we need |as|2. This gives | . . . |2 of
the individual terms in Eq. (4.15) and a cross-term. Consider the last term ∝ V− which after | . . . |2 gives:

4|(V−)sb|2
sin2[(Es − Eb − �ω)t/2�]

(Es − Eb − �ω)2
. (4.16)

This contribution has a peak (with a height ∝ t2) at the energy Es = Eb + �ω. The width of the peak, on the other
hand, goes like t−1. As a crude approximation, we may then write

4|(V−)sb|2
sin2[(Es − Eb − �ω)t/2�]

(Es − Eb − �ω)2
� |(V−)sb|2

2πt

�
δ(Es − Eb − �ω). (4.17)

The term ∝ V+ similarly gives a sharp maximum at Es = Eb − �ω. The cross-term, however, has no sharp
maximum and thus for large times t we have the following transition probability per unit time:

ωb→s =
|ab→s(t)|2

t
� 2π

�
|(V−)sb|2δ(Es − Eb − �ω) +

2π

�
|(V+)sb|2δ(Es − Eb + �ω). (4.18)

A sketch of the true behavior of the |ab→s|2 would look like this:

|ab→s|2

EsEb − h̄ω Eb + h̄ω

πh̄
t

∝ t2

The formula for ωb→s is useful when the energy spectrum or frequencies are continuous so that Eb ± �ω = Es

can indeed be satisfied.
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Example 6. Continuous ω. An EM field (e.g. visible light, X-rays) with a broad spectum of frequencies causes
transitions between discrete atomic or molecular states. The resulting absorption spectrum consists of sharp lines.

Continuous Es. A laser beam with fixed frequency ω can ionize an atom, causing a transition from a discrete
bound state to a state in the continuous spectrum. This is the photoelectric effect.

Continuous Eb and Es. A typical scattering experiment consists of particles in a beam being perturbed by some
target (i.e. potential) and changing direction. Such scattering is a transition between different states in continuous
spectra.

Transition to continuum states.
Assume that we start out with a state with fixed Eb and that the perturbation has a specific ω, while the final state
s lies in a continuum of final states. Let there be ρ(E)dE energy states in the range (E,E + dE), such that ρ(E)
is the density of states (DOS). For instance, in previous QM courses you may have shown that the DOS for a free
particle in a volume V0 is

ρ(E) = 2π(2m/�2)3/2V0E
1/2. (4.19)

We may then compute the total transition probability to a state with energy close to Es. This is obtained by

ωb→s =
2π

�
|Vsb|2ρ(Es).

The formula expresses that the transition rate ω increases both with the "overlap" |Vsb| element between the states
and the amount of available states ρ(Es). This is known as the golden rule. If one is interested in only a subset of
the states with energy Es, such as particles moving in a certain direction which a detector can pick up, one simply
uses the DOS for that subset. For a free particle, it would be the fraction dΩ/4π of the total DOS:

ρ = 2π(2m/�2)3/2V0E
1/2 dΩ

4π
= V0

mpf
h3

dΩ, (4.20)

where E = p2f/2m.

We can apply this to a scattering scenario, where a scattering potential V (r) acts as a perturbation on a particle-
beam ψ(r) = 1√

V0
eipi·r/�. The aim is to find the probability per unit time for a transition to the final state

ψf (r) = 1√
V0
eipf ·r/�. Here, V0 is the volume under consideration. We may treat this process as stationary

(corresponding to ω = 0) and the energy before and after is thus the same: |pf | = |pi| ≡ p.

V (r)
pi

pf

To obtain ωb→s via the golden rule, we need the matrix-element:

Vfi =
1

V0

∫
ei(pi−pf )·r/�V (r)dr. (4.21)

It follows that

ωi→f =
2π

�
1

V 2
0

∣∣∣∣∣
∫

ei(pi−pf )·r/�V (r)dr

∣∣∣∣∣
2

× V0
mp

h3
dΩ. (4.22)

A common way to measure scattering is the scattering cross section dσ:

dσ =
number of particles scattered into dΩ per unit time

incident particle intensity
. (4.23)



INTERMEDIATE QUANTUM MECHANICS

36

time-dePendent aPProximative methods

36

Quantitatively, the nominator is ωi→f and the incoming particle intensity is the product of the particle density
|ψi|2 = 1/V0 and the velocity p/m so that

dσ = ωi→f
mV0

p
. (4.24)

With our expression for ωi→f , we end up with

dσ

dΩ
=

∣∣∣∣∣
m

2π�2

∫
V (r)ei(pi−pf )·r/�dr

∣∣∣∣∣
2

.

Later, we will regain this result using a different method. The above formula is the so-called Born approximation
for the scattering cross section. In chapter 13, we will also examine the range of validity for this result.

C. Sudden approximation

Let us now consider a scenario where the magnitude of the perturbation is not necessarily weak, but where the
disturbance is switched on very abruptly. The simplest scenario where one can envision this is where H changes
abruptly from H0 to H1 at t = 0, where H0 and H1 are both time independent in themselves. Thus, we have

t < 0 : H0ψ
0
k = E0

kψ
0
k (4.25)

where ψ0
k are orthonormal and form a complete set, which is not necessarily discrete. Moreover,

t > 0 : H1φ
1
n = E1

nφ
1
n (4.26)

where {φ1
n} are also orthonormal and complete. The general solution of the time dependent SE is then:

t < 0 : Ψ(t) =
∑
k

c0kψ
0
ke

−iE0
kt/�,

t > 0 : Ψ(t) =
∑
n

d1nψ
1
ne

−iE1
nt/�. (4.27)

Assume that Ψ(t) is normalized to unity, so that c0k and d0n are the usual probability coefficients for finding the
system in state ψ0

k and φ1
n at t < 0 and t > 0. Now, since the time dependent SE is first order in the time coordinate,

it means that Ψ(t) must be a continuous function of t. Thus, at t = 0:
∑
k

c0kψ
0
k =

∑
n

d1nφ
1
n. (4.28)

Take the scalar product with φ1
n:

d1n =
∑
k

c0k〈φ1
n|ψ0

k〉. (4.29)

We now have a way to obtain the probability coefficients after the sudden change at t = 0, given that {c0k} are
known. In practice, the change from H0 to H1 will take place over a short time interval τ rather than being
instantaneous. The simplest way to approximate this scenario is to use Eq. (4.29), but how large can τ while Eq.
(4.29) remains useful?

We derive a simple criterion of validity. Let:

H =




H0 for t < 0

Hi for 0 < t < τ

H1 for t > τ

(4.30)

where Hi is the time independent Hamiltonian during the intermediate period τ . If {χi
l} denotes the complete

orthonormal set of eigenfunctions of Hi, so that Hiχ
i
l = Ei

lχ
i
l , then the general solution for the state coefficients

{d1n} determining the state at t > τ can be found in the same way as above, namely by using continuity of the
wavefunction at t = 0 and t = τ . It yields:

d1n =
∑
k

∑
l

c0k〈φ1
n|χi

l〉〈χi
l|ψ0

k〉ei(E
1
n−Ei

l )τ/�. (4.31)
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Compare this with Eq. (4.29) which was obtained for τ = 0, i.e. instantaneous switch from H0 to H1 rather than
through an intermediate Hamiltonian Hi. If we set τ = 0 in Eq. (4.31), the equations are equivalent as expected.
However, if τ �= 0, the difference arises because of ei(E

1
n−Ei

l )τ/� not being unity. If the sudden approximation
is to be valid, we thus need τ to be small compared to all the inverse energy differences �/|E1

n − Ei
l | so that the

exponential is close to unity:

τ � �/|E1
n − Ei

l |. (4.32)

An interesting special case of the sudden approximation is when the system initially (t < 0) is in a particular
stationary state ψ0

ae
−iE0

at/� where ψ0
a is an eigenstate of H0. Then, c0k = δka and the probability amplitude of

finding the system in eigenstate φ1
n of H1 after the sudden change in the Hamiltonian has occurred is simply

d1n = 〈φ1
n|ψ0

a〉.

Example 7. Beta decay of the tritium nucleus. A tritium atom consists of a nuclear 3H (one proton + two
neutrons) and one electron. It is unstable and decays into the nucleus 3He (two protons + one neutron):

3H → 3He + e− + ν̄e. (4.33)

Assume that the tritium atom is in its ground state before the β-decay of 3H takes place. The question is now:
what is the influence of the decay on the atomic electron?

We first note that in the β-decay process above, the electron is emitted from the nucleus with, in most cases, an
energy of several keV. This means that its resulting velocity v is much higher than the velocity v0 � c/137 of
the atomic electron in the ground state of tritium. If a0 is the Bohr radius, the emitted electron will leave the
atom in a time τ � a0/v. This is much shorter than the period T = 2πa0/v0 associated with the motion of the
atomic electron. Thus, we can justify a scenario where the nuclear charge "seen" by the atomic electron changes
instantaneously from Ze to Z ′e where Z = 1 and Z ′ = 2. The relevant Hamiltonians we have to work with are
then:

H(t < 0) = H0 = − �2

2m
∇2 − Ze2

4πε0r
,

H(t > 0) = H1 = − �2

2m
∇2 − Z ′e2

4πε0r
. (4.34)

with m being the mass of the atomic electron. We neglected here the recoil effect on the nucleus, since its mass
M � m. The eigenfunctions of H0 and H1 are hydrogenic wavefunctions and thus known. Since the tritium atom
is assumed to initially be in its ground state (quantum nunbers n = 1, l = 0,m = 0), the probability coefficients
d1n′l′m′ of finding the atomic electron in a discrete eigenstate (n′l′m′) of H1 at t > 0 is:

d1n′l′m′ = 〈ψ(Z′=2)
n′l′m′ |ψ(Z=1)

100 〉 =
∫ (

ψ
(Z′=2
n′l′m′)(r)

)∗
ψ
(Z=1)
100 (r)dr (4.35)

where ψ(Z)
nlm(r) is a hydrogenic wavefunction with atomic number Z. We know that ψ(Z)

nlm(r) = R
(Z)
nl (r)Ylm(θ, φ),

and from the orthonormality properties of Ylm one may verify that the only non-vanishing probability coefficients
d1n′l′m′ are those belonging to the s-states (l′ = m′ = 0):

d1n′00 =

∫ ∞

0

R
(Z′=2)
n′0 (r)R

(Z=1)
10 (r)r2dr. (4.36)

For the particular case n′ = 1, we obtain

d1100 = 27/2a−3
0

∫ ∞

0

dr r2e−3r/a0 =
16

√
2

27
. (4.37)

Hence, the probability that the 3He ion is found in its ground state is P 1
100 = |d1100|2 � 0.702. The total probability

for the ion to be either excited or even ionized is then 1− P 1
100 � 0.298.
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V. ADIABATIC APPROXIMATION AND THE BERRY PHASE

Learning goals. After reading this chapter, the student should:

• Know the fundamental idea behind the adiabatic approximation, when it is valid, and be able to mathemati-
cally outline how to apply it on a quantum mechanical problem.

• Be able to explain what the Berry phase is and in which scenario it is of relevance. The student should also
be able to give concrete examples of systems where the Berry phase plays an important role.

The lecture notes forming the basis for this chapter follow roughly the same structure as the corresponding chapters
in "Quantum Mechanics" by Bransden & Joachain.

A. The adiabatic approximation

The perturbation method we have initially considered was based on the assumption that the magnitude of the time
dependent part of H has been small. We now present a new approximation where the key parameter is the rate of
change of H . Start by assuming that H varies very slowly with time, i.e. the completely opposite scenario of the
sudden approximation. One should then expect that the approximate solution of i�∂tΨ = H(t)Ψ can be obtained
in terms of the eigenfunctions ψk(t) of the "instantaneous" Hamiltonian H(t) so that

H(t)ψk(t) = Ek(t)ψ(t) (5.1)

at any given time t. Physically, what we are stating here is that if H(t) changes very slowly, a system which at
t = t0 is in a discrete non-degenerate state ψa(t0) with energy Ea(t0) is very likely to be in the state ψa(t) with
energy Ea(t) at a later time t, i.e. without making any transition. We now proceed to prove this adiabatic theorem,
using the method of Born & Fock from 1928.
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In fact, the original formulation of this theorem was:

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and
if there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.

We can think of this physically as follows: if a QM system is exposed to a slowly changing perturbation, the
system has time to adapt to the perturbation. In contrast, if the perturbation occurs very rapidly there is not
sufficient time for the system to adapt, so that the probability density remains unaltered.

Assume that Ψ is known at t = t0. Now, expand for t ≥ t0 in the instantaneous eigenfunctions ψk(t):

Ψ =
∑
k

ck(t)ψk(t)exp
[
− (i/�)

∫ t

t0

Ek(t
′)dt′

]
. (5.2)

We assume that {ψk} form an orthonormal and complete set, as usual. The energies Ek(t) are non-degenerate and
form a discrete spectrum. Note that the "energy levels" is just a formal name, since energy is not strictly speaking
conserved for a time dependent H . Inserting the above expansion into the time dependent SE provides:

i�
∑
k

(
ċkψk + ck∂tψk − (i/�)ckψkEk

)
exp

[
− (i/�)

∫ t

t0

Ek(t
′)dt′

]
= H(t)

∑
k

ckψkexp
[
− (i/�)

∫ t

t0

Ek(t
′)dt′

]
.

(5.3)

There is a cancellation of the last term on the l.h.s. by using Eq. (5.1). Now, do the following:

• Multiply with ψ∗
b (t) (which is part of the set {ψk(t)}).

• Integrate over the coordinates of the system.

• Use that 〈ψb|ψk〉 = δbk.

This gives:

ċb(t) = −
∑
k

ck(t)exp
{ i

�

∫ t

t0

[Eb(t
′)− Ek(t

′)]dt′
}
〈ψb|∂tψk〉. (5.4)

This is a set of coupled first order differential equations for all the coefficients ck(t). The diagonal terms can be
removed as follows. Consider first αk(t) = 〈ψk|∂tψk〉. Use the normalization 〈ψk(t)|ψk(t)〉 = 1 and differentiate
it with respect to time:

〈∂tψk|ψk〉+ 〈ψk|∂tψk〉 = [αk(t)]
∗ + αk(t) = 0. (5.5)

Thus, αk(t) is purely imaginary, so that we may write αk(t) = iβk(t) where β ∈ �. Now, define

c′k(t) = ck(t)e
i
∫ t
t0

βk(t
′)dt′

. (5.6)

Differentiating c′b with respect to time in order to get ċ′b, we obtain:

ċ′b = −
∑
k �=b

c′k(t)exp
{ i

�

∫ t

t0

[E′
b(t

′)− E′
k(t

′)]dt′
}
〈ψ′

b|∂tψ′
k〉, (5.7)

where E′
k(t) = Ek(t) + �βk(t). We defined ψ′

k(t) via:

ck(t)ψk(t) = ck(t)e
i
∫ t
t0

βk(t
′)dt′

ψk(t)e
−i

∫ t
t0

βk(t
′)dt′ ≡ c′k(t)ψ

′
k(t). (5.8)

If we assume that the phases of the eigenfunctions ψk are arbitrary at each instant of time, we can do this change
on all ψk. Assume from now on that this change has been made and we thus omit the ′ notation. It is important to
note that this assumption is invalid for the case of cyclic systems, but we return to this issue later.
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Looking at Eq. (5.7) again, we examine 〈ψb|∂tψk〉 for k �= b. Differentiate w.r.t. time on the equation H(t)ψk(t) =
Ek(t)ψk(t) and obtain:

∂tHψk +H∂tψk = ∂tEkψk + Ek∂tψk. (5.9)

Using the notation 〈ψa|ψb〉 =
∫
[ψa(r)]

∗ψb(r)dr and taking the scalar product with ψb, this gives:

〈ψb|∂tH|ψk〉+ 〈ψb|H|∂tψk〉 = Ek〈ψb|∂tψk〉. (5.10)

Using that H is Hermitian, we obtain for the second term that

〈ψb|H|∂tψk〉 = Eb〈ψb|∂ψk〉, (5.11)

and plugging this back into Eq. (5.10) gives:

〈ψb|∂tψk〉 = − (∂tH)bk
�ωbk(t)

, b �= k. (5.12)

We introduced the notation (∂tH)bk = 〈ψb|∂tH|ψk〉 and ωbk(t) = [Eb(t) − Ek(t)]/�, b �= k. Thus, ωbk �= 0
always since we assumed that the energy levels were non-degenerate.

If we now use our obtained results and plug them back into our expression for the coupled equations for the ck(t)
coefficients, we obtain (keep in mind that we omit the primes, as explained previously):

ċb(t) =
∑
k �=b

ck(t)

�ωbk(t)
(∂tH)bke

i
∫ t
t0

ωbk(t
′)dt′

. (5.13)

This system of equations then determine the cb coefficients, which in turn determine the wavefunction via Eq.
(5.2). This is a convenient starting point to make approximations, especially when ∂tH is small (slowly varying
Hamiltonian in time). If ∂tH = 0, then the solution is seen to be simply cb =constant for all b. If ∂tH is finite, but
small, we can try to solve Eq. (5.13) by setting all ck on the r.h.s. to be constants. Assume that the system initially
(t = t0) is in a state a. We substitute the values ck = δka in the r.h.s. and get

ċb(t) = �−1ω−1
ba (t)(∂tH)bae

i
∫ t
t0

ωba(t
′)dt′

, b �= a. (5.14)

For b = a, we get ċa = 0 in this approximation. Now integrate the above equation with the initial condition
cb(t ≤ t0) = 0 (b �= a) and obtain:

cb(t) = �−1

∫ t

t0

dt′ω−1
ba [∂t′H(t′)]baexp

[
i

∫ t

t0

ωba(t
′′)dt′′

]
, (b �= a).

This is the result for the adiabatic approximation for the probability amplitude cb(t). We should expect this result
to yield a small |cb(t)| in order to be valid. Thus, Pba(t) = |cb(t)|2 denotes the transition probability from the
initial state a to state b, and we must have Pba(t) � 1.

A crude estimate is to assume that ωba and ∂tH are time independent. We then obtain

cb(t) � (i�)−1ω−2
ba (∂tH)ba(e

iωba(t−t0) − 1),

Pba(t) � 4�−2ω−4
ba |(∂tH)ba|2 sin2[ωba(t− t0)/2]. (5.15)

This probability behaves reasonably as time increases since it merely oscillates, and the upper bound is [since
sin2(x) ≤ 1]:

Pba(t) ≤
4|(∂tH)ba|2

�2ω4
ba

. (5.16)

The adiabatic approximation is thus valid if

|(∂tH)ba|2 � �2ω4
ba

4
. (5.17)
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Example 8. Charged harmonic oscillator in a time dependent electric field. Let us now try out the adiabatic
approxmation and consider a charged particle subject to a linear harmonic oscillator potential and a spatially
uniform, time dependent electric field E(t). The Hamiltonian is then:

H(t) = − �2

2m
∂2
x +

1

2
kx2 − qE(t)x =

−�2

2m
∂2
x +

1

2
k[x− a(t)]2 − 1

2
ka2(t). (5.18)

Here, we defined a(t) = qE(t)/k. We can physically interpret this H(t) as, at a given time t, describing a
standard harmonic oscillator with frequency ω =

√
k/m, but displaced equilibrium position to x = a(t). The

term − 1
2ka

2(t) is just a constant. The instantaneous energy eigenfunctions are thus obtained as:

ψn =
( α√

π2nn!

)1/2

exp[−α2(x− a)2/2]Hn[α(x− a)], (5.19)

where α ≡
√
mω/�. The corresponding instantaneous energy eigenvalues take the form

En(t) = (n+ 1/2)�ω − ka2(t)/2, n = 0, 1, 2, . . . (5.20)

The angular frequencies ωnn′ = [En′(t) − En(t)]/� = (n′ − n)ω are thus independent of time and equal to the
unperturbed value. Assume now that

• E(t) is applied at t = t0 and that it varies slowly.

• The harmonic oscillator is initially in its ground state (n = 0).

We want to compute the probability that the system is in an excited state at t = t1. First, note that ∂tH = −kȧx
with ȧ = (q/k)(dE/dt). To find the transition probabilities, we will need (as derived previously)

〈ψb|∂tH|ψ0〉 = (∂tH)b0. (5.21)

In effect, we need to compute matrix elements of the type

xb0 ≡ 〈ψb|x|ψ0〉. (5.22)

It can be shown that all these matrix elements vanish when b �= 1, while for b = 1 we have x10 =
√

�/(2mω).
From the general expression of Pba(t) derived previously, the only non-vanishing transition probability is 0 → 1.
Inserting our expression for ∂tH and ω10 = ω, we get

P10(t1) = |c1(t1)|2 =
q2

2m�ω3

∣∣∣∣∣
∫ t1

t0

dE(t)
dt

eiω(t−t0)dt

∣∣∣∣∣
2

. (5.23)

The slower the E-field varies, the smaller the transition probability 0 → 1.

B. The Berry phase

When we discussed the adiabatic approximation, it was assumed that the phases of the eigenfunctions ψk(t) are
arbitrary at each instant of time. This was in fact generally accepted up to 1984 when M. V. Berry showed that:

In a cyclic system where the Hamiltonian at time tf is the same as at time t0,
there is a relative change in the phase between ψk(t0) and ψk(tf ) which

cannot be removed by a phase transformation and thus has observable consequences.

To show this, consider the case where H(t) varies so slowly that the system remains in its initial non-degenerate
state with energy Ea(t) and eigenfunction ψa(t). According to our previous treatment of such an adiabatic sce-
nario, the approximate solution of i�∂tΨ = H(t)Ψ is then:

Ψ(t) = ca(t)ψa(t)e
−(i/�)

∫ t
t0

Ea(t
′)dt′

. (5.24)
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Since Ψ(t) is in the state ψa(t) at t = t0, we can set ca(t0) = 1. Moreover, since ψa(t) should also be normalized to
unity, we can write generally at t �= t0 that ca(t) = eiγa(t) with γa(t) ∈ � and γa(t0) = 0. Now, e−(i/�)

∫ t
0
Ea(t

′)dt′

is the usual dynamical phase factor whereas the SE gives us the following equation for γa(t):

iγ̇a(t)ψa(t) = −∂tψa(t), (5.25)

with the solution

γa(t) = i

∫ t

t0

〈ψa(t
′)|∂t′ψa(t

′)〉dt′. (5.26)

If the system is cyclic, then H(tf ) = H(t0) since the Hamiltonian returns to its value at t = t0 at a later time
t = tf . This also implies that Ea(tf ) = Ea(t0) and ψa(t0) = ψa(tf ). The Berry phase is the accumulated phase
change from t0 to tf :

γ̄a ≡ i

∫ tf

t0

〈ψa(t
′)|∂t′ψa(t

′)〉dt′.
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This turns out to be a physically observable quantity, thus with experimentally verifiable quantities. Importantly,
the Berry-phase is gauge-invariant and a key message in the 1984 paper by Berry was that any gauge-invariant
quantity is in principle observable. In fact, let us see what happens if we try to eliminate γ̄a by transforming
ψa → ψ′

a = ψae
iη(t). Under this transformation, the Berry phase becomes γ̄′

a where:

γ̄′
a = i

∫ tf

t0

〈ψ′
a(t

′)|∂t′ψ′
a(t

′)〉dt′

= i

∫ tf

t0

〈ψa(t
′)|∂t′ψa(t

′)〉dt′ −
∫ tf

t0

dη(t′)
dt′

dt′

= γ̄a − η(tf ) + η(t0). (5.27)

Since ψa(tf ) = ψa(t0), it follows that η(tf )− η(t0) = 2πn, n = 0, 1, 2, . . . Thus, eiγ̄a = eiγ̄
′
a cannot be removed

by a phase transformation. Strictly speaking, the Berry phase γ̄a is gauge invariant up to an integer multiple of 2π,
whereas eiγ̄a is absolutely gauge invariant and thus related to physical observables.

The H(t) may be time dependent through a number of parameters, each of which slowly vary with time. A
common example: components of an exernal electric or magnetic field which interact with the system. Consider
the case where H(t) depends on t via three parameters R1(t), R2(t), R3(t):

H(t) = H[Ri(t)], i = 1, 2, 3. (5.28)

Since H(tf ) = H(t0) for a cyclic Hamiltonian, we have Ri(tf ) = Ri(t0). In vector notation, R = (R1, R2, R3),
we can then write the Berry phase as

γ̄a = i

∮
〈ψa(R)|∇Rψa(R)〉 · dR (5.29)

where ∇R is the gradient in parameter space and the closed integral is taken along the curve C in parameter space.
We define the Berry connection:

A(r) ≡ i〈ψa(R)|∇Rψa(R)〉. (5.30)

Since it depends on the closed curve C, the Berry phase is often called a geometrical phase. Such phases arise also
in a number of non-adiabatic situations as well - not only the strictly adiabatic context discussed here. In fact, a
generalization of Berry’s phase is the Aharonov-Anandan phase. Suppose a system evolves according to the SE,
but that the change in H is neither adiabatic or cylic. The system can then still exhibit a geometrical phase: all
that is needed is a cyclic evolution of the state of the system. Such a cyclic evolution defines a closed path C in
the Hilbert space of the state. Regardless of whether this evolution is adiabatic or not, it leaves the system with a
dynamical phase which depends on the Hamiltonian, and a geometrical phase which depends on the path C.

We also remark that by applying Stoke’s theorem, we have:

γ̄a =

∮

C
A(R) · dR =

∫ ∫
B · dS (5.31)

where S is the surface bound by the closed path C and

B = ∇R ×A(R) ≡ Berry curvature. (5.32)

When treating the Aharonov-Bohm effect, we will see a concrete example of the physical consequences of these
kind of geometrical phases.

In closing, we comment on whether or not the Berry/geometrical phase is reconcilable with the commonly stated
fact that the overall phase of a quantum system is unobservable. Yes, because the Berry phase expresses the total
phase change acccumulated during a cycle (either a cyclic evolution of the state or the Hamiltonian). We assumed
for simplicity in our derivation that we know the phase at t = t0 was γa(t = t0) = 0, but generally the Berry
phase expresses the phase difference:

γ̄a = γ(t = tf )− γa(t = t0) = i

∫ tf

t0

〈ψa(t
′)|∂t′ψa(t

′)〉dt′. (5.33)

Now, phase differences are certainly observable, even if the phase at a given time is not.
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Example 9. Relative phase in a superposition of states. A quantum system may be in a superposition of states.
Then, the relative phase between the state is observable:

ψ = ψA + ψB = |ψA|eiαA + |ψB |eiαB = (|ψA|ei(αA−αB) + |ψB |)eiαB . (5.34)

It is clear that |ψ|2 depends on ∆α = αA − αB . More generally, consider two paths R(t) and R′(t) with the
same end-points: R(t0) = R′(t0) and R(tf ) = R′(tf ). If the system now evolves in a superposition of states
|ψi[R(t)]〉 and |ψi[R

′(t)]〉, then the relative phase of this superposition (analogously to ∆α above) contains two
parts at t = tf :

• The relative dynamical phase.

• The Berry phase: the difference between the Berry connection A integrated along R and A integrated along
R′. In effect, it is the circular integral

∮
C A(r) · dr where C is the closed path comprised of the paths R and

R′.
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VI. QUANTUM MECHANICAL SCATTERING THEORY

Learning goals. After reading this chapter, the student should:

• Be able to explain what the scattering cross section is and what it provides information about.

• Understand how scattering can be formulated as a stationary problem in quantum mechanics and set up the
corresponding asymptotic wavefunction, as well as how to modify this for scattering of identical particles.

• Know the underlying idea behind the Born approximation and the method of partial waves, and explain when
these two frameworks can be used.

• Know what the optical theorem states physically and the principle from which it is derived.

A. Intro to scattering cross section

Particles that are incident toward a scattering center - e.g. a different particle - will in general be deflected due to
the interaction. The distribution of angles of deflection will depend on the details of the setup. Experimentally
measuring this distribution will provide us with information about the type of interaction that is in play. We
distinguish between

• Elastic scattering: the kinetic energy of the scattered particles is preserved.

• Inelastic scattering: kinetic energy is not conserved, e.g. due to a photon taking off with part of the energy.

We will consider elastic scattering with the two same particles before and after. For a potential V (r1 − r2), we
know that this can be reduced to an effective one-body problem where only the relative motion of the particles
matter. We shall initially consider the scattering problem in the corresponding center-of-mass (CM) frame and
later see how the results are expressed in the lab-frame.

Consider the following idealized model.

dΩ

θ

S

jin

A uniform flux of particles with density j in is incident on a scattering center S. A detector counts particles scattered
into solid angle dΩ = sin θdθdφ enclosing the direction (θ, φ). The incident axis is θ = 0. We have previously
(chapter 4) defined

dσ

dΩ
=

# particles scattered into dΩ per unit time
dΩ · jin

. (6.1)

Since jin = |j in| is the number of particles incident per time and area, inspection shows that dσ/dΩ has dimension
area. The total scattering cross section is obtained as:

σ =

∫
dσ

dΩ
dΩ =

∫ 2π

φ=0

∫ π

θ=0

dσ

dΩ
sin θdθdφ. (6.2)

The dimension of σ is area as well. It corresponds to the total area the incident particles are passing through that
will cause scattering. Put differently: imagine an area of size σ in the incident flux of the particles. The number
of particles passing through this area will be equally large as the number of particles that ultimately are scattered
in some direction. For instance, for scattering between hard spheres of radius R, we have σ = 4πR2. For point
particles scattering on a sphere of radius R, we would obtain σ = πR2. We will primarily stick to central potentials
V (r) = V (|r|) which thus do not depend on the azimuthal angle φ due to symmetry.
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B. Briefly about the classical scattering cross section

We will look at the classical case prior to the QM treatment. For a central potential (spherically symmetric), the
trajectory of the particle will lie in a plane and is characterized by two quantities:

• The velocity v0 far away from the scattering center.

• The impact parameter b (see figure below).

α(t)

θ

v(t)

r(t)

rmin
v0

b

The scattering angle θ is determined by v0 and b, as we show below. Assuming that V (r → ∞) = 0, energy
conservation gives

E =
1

2
mv20 =

1

2
mv(t)2 + V [(r(t)] =

1

2
m(ṙ2 + r2α̇2) + V (r), (6.3)

and conservation of angular momentum (due to rotational symemtry) gives L = mbv0 = m|r×v| = mr2α̇ where
α characterizes the angle of the instantaoues point along the trajectory. Now, express E via L:

E =
1

2
mṙ2 +

L2

2mr2
+ V (r), (6.4)

and use that ṙ = dr
dt = dr

dα
L

mr2 . Combine these two equations to obtain:

dα = ± L/r2√
2mE − 2mV (r)− L2/r2

dr. (6.5)

We integrate this expression from r = rmin to r = ∞. Since rmin by definition is given by dr/dα = 0, the √
. . .

must be zero there. The ± sign indicates whether dα/dr is positive or negative, which depends on the nature of
the potential.

For repulsive forces (as shown in our previous figure), the change in α when going from rmin to r = ∞ is then
(π − θ)/2, while for attractive forces it would be (π + θ)/2. The integration thus provides:

1

2
(π ± θ) =

∫ ∞

rmin

L/r2√
2mE − 2mV (r)− L2/r2

dr. (6.6)

Using L = mbv0 and E = 1
2mv20 , we get:

1

2
(π ± θ) =

∫ ∞

rmin

b/r2√
1− V (r)E−1 − b2r−2

dr. (6.7)

This relation defines the connection between b and θ: knowing b of the incident particle, we can compute θ. A
certain interval db corresponds to an interval dθ according to:

db =
∣∣∣db(θ)

dθ

∣∣∣dθ =
∣∣∣db(θ)

dθ

∣∣∣ dΩ

2π sin θ
. (6.8)
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Absolute values have been introduced since db/dθ is often negative: a large impact parameter causes a smaller
scattering angle. To compute the cross section, we note that there is an area 2πb db contained between the impact
parameters b and b + db. The number of particles passing through this area per unit time is jin2πb db. According
to our above treatment, the number of particles scattered into dΩ per unit time is then:

jin2πb db = jinb
∣∣∣db
dθ

∣∣∣ dΩ

sin θ
. (6.9)

Using our definition of the differential scattering cross section, we obtain the final result:

dσ

dΩ
=

b(θ)

sin θ

∣∣∣db(θ)
dθ

∣∣∣. (6.10)

To compute dσ/dΩ, one thus has to identify b(θ).

Example 10. Coulomb-potential scattering. Two charges Ze and Z ′e interact via the well-known V (r) =
ZZ′e2

4πε0r
. To find b(θ), we then have to compute:

1

2
(π ± θ) =

∫ ∞

rmin

b/r2√
1− ZZ ′e2/(4πε0Er)− b2r−2

dr. (6.11)

Upper sign: attraction (ZZ ′ < 0). Lower sign: repulsion (ZZ ′ > 0). Introducing x = b/r and g =
ZZ ′e2/(8πε0Eb), we obtain

1

2
(π ± θ) =

∫ √
1+g2−g

0

dx√
1 + g2 − (x+ g)2

. (6.12)

As commented on previously, xmax (or equivalently rmin) is determined by √
. . . = 0. This integral can be evaluated

and yields (after rearranging the equation):

b = ∓ZZ ′e2

8πε0E
cot(θ/2). (6.13)

Thus, after differentiating b with respect to θ, we obtain the differential scattering cross section (known as the
Rutherford cross section):

dσ

dΩ
=

( ZZ ′e2

16πε0E

)2 1

sin4(θ/2)
. (6.14)

For small angles θ, dσ/dΩ ∝ 1/θ4, causing the integral to diverge

σ =

∫ π

0

dσ

dΩ
2π sin θdθ → ∞. (6.15)

Small θ corresponds to large impact parameter b, and so this result reflects the fact that the Coulomb-potential has
infinite range, causing scattering of all incident particles.

More generally, a potential V (r) �= 0 for r ≤ a and V (r) = 0 for r > a will have σ = πa2 classically. In QM,
this is different: σ can be infinite or finite when the range a → ∞, depending on how fast the potential V (r) goes
to zero when r → ∞. The Coulomb-interaction is arguably the most important interaction in physics, and we will
treat it quantum mechanically in what follows.

C. Scattering as a stationary problem

We have seen an example of such a scenario (scattering as a stationary problem) in elementary QM courses:
scattering on a potential barrier in 1D. We thus seek the solution of the time independent SE:

[−�2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r), (6.16)
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and use appropriate boundary conditions for the solution ψ in order to describe an incident flux of particles and an
outgoing stream of scattered particles. Let E = �2k2/2m and U(r) ≡ 2mV (r)/�, and obtain

(∇2 + k2)ψ = Uψ. (6.17)

Near the scattering center S, the behavior of ψ may be complicated. However, for r → ∞ we can neglect U(r)
and the resulting free particle solution should then describe an incident plane-wave and radially outgoing particles:

ψ � ψin + ψscatt for r → ∞. (6.18)

r = 0

S

Inc. plane-wave

Outgoing
spherical wave

The incident wave: ψin = Ceik·r where C is a constant and �k = pi =
√
2mE.

The scattered wave: Must be a spherical wave with the same energy (wavenumber k) as the incident one, hence
ψscatt = Cf(θ, φ) e

ikr

r .

INSERT ADVERTISEMENT HERE

Dedicated Analytical Solutions
FOSS
Slangerupgade 69
3400 Hillerød
Tel. +45 70103370

www.foss.dk

The Family owned FOSS group is 

the world leader as supplier of 

dedicated, high-tech analytical 

solutions which measure and 

control the quality and produc-

tion of agricultural, food, phar-

maceutical and chemical produ-

cts. Main activities are initiated 

from Denmark, Sweden and USA 

with headquarters domiciled in 

Hillerød, DK. The products are 

marketed globally by 23 sales 

companies and an extensive net 

of distributors. In line with 

the corevalue to be ‘First’, the 

company intends to expand 

its market position.

Employees at FOSS Analytical A/S are living proof of the company value - First - using 
new inventions to make dedicated solutions for our customers. With sharp minds and 
cross functional teamwork, we constantly strive to develop new unique products - 
Would you like to join our team?

FOSS works diligently with innovation and development as basis for its growth. It is 
reflected in the fact that more than 200 of the 1200 employees in FOSS work with Re-
search & Development in Scandinavia and USA. Engineers at FOSS work in production, 
development and marketing, within a wide range of different fields, i.e. Chemistry, 
Electronics, Mechanics, Software, Optics, Microbiology, Chemometrics.

Sharp Minds - Bright Ideas!

We offer
A challenging job in an international and innovative company that is leading in its field. You will get the 
opportunity to work with the most advanced technology together with highly skilled colleagues. 

Read more about FOSS at www.foss.dk - or go directly to our student site www.foss.dk/sharpminds where 
you can learn more about your possibilities of working together with us on projects, your thesis etc.

http://www.foss.dk


INTERMEDIATE QUANTUM MECHANICS

49

quantum meChaniCal sCatterinG theory

49

The factor 1/r ensures that the outgoing current density jscatt is proportional to 1/r2. Now, since the surface
element corresponding to a solid angle element dΩ increases with distance as r2dΩ, this means that for large
distances it is the same number of particles passing through any cross-section of the given, solid angle element, as
expected and shown in the figure.

The factor f(θ, φ) determines the angular distribution and is known as the scattering amplitude, which in turn is
determined by V (r). We shall return to this issue. Let us now determine the differential scattering cross section
expressed in terms of f(θ, φ). We know that a quantum mechanical probability current density is given as:

j = Re{ψ∗ �
im

∇ψ}. (6.19)

This means that

jin = Re{ψ∗
in

�
im

∇ψin} =
�k
m

|C|2,

jscatt = |C|2|f(θ, φ)|2 �k
mr2

. (6.20)

Since the definition of dσ is:

dσ =
jscattr

2dΩ

jin
, (6.21)

we obtain by insertion:

dσ

dΩ
= |f(θ, φ)|2.

Since C turned out to be insignificant, we set C = 1 in what follows, for simplicity. Note how we have obtained
an expression for dσ/dΩ using only the asymptotic (large r) form of the wavefunction. Summarizing the idea so
far:

• We seek a solution of the time independent SE

(∇2 + k2)ψ(r) = U(r)ψ(r), (6.22)

• For large r, the solution should have the form

ψ(r) � eik·r + f(θ, φ)
eikr

r
. (6.23)

• The diff. scattering cross section is then:

dσ

dΩ
= |f(θ, φ)|2. (6.24)

The remaining task is to determine f . First, a few comments:

1. We have here assumed elastic scattering, thus neglecting the possibility of the particles making energy tran-
sitions during the collision.

2. We have assumed free particle behavior at r → ∞. For potentials with infinite range, it is essential how
fast V → 0 when r → ∞. It turns out that if rV (r) → 0 for r → ∞, we obtain the free particle
asymptotic behavior. The Coulomb-potential does not satisfy this and we shall later see how this influences
the asymptotic form.
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3. In a real experiment, one does not send in an infinite plane-wave toward S, but rather a beam that is colli-
mated (focused) in space. The localized nature (let li be the width of the beam in the i-direction) causes an
uncertainty in the momentum ∆pi � �/li. However, li will usually be much larger than atomic distances,
and the lack of precision in momentum should thus be negligible compared to the change in momentum
(direction) caused by the potential. We may thus disregard finite-size effect of the beam and model it with a
plane-wave.

4. In practice, one scatters particles on a macroscopic collection of particles rather than a single scattering
center S, e.g. a gas of particles. To use our approach, the thickness of the target has to be large enough to
cause sufficient scattering intensity, but small enough to keep multiple scattering at a minimum.

D. Integral equation for the scattering amplitude

Our strategy here will be to transform the SE into an integral equation in order to incorporate the correct asymptotic
behavior ψ(r) � eik·r + f(θ, φ)eikr/r. This transformation is done with the aid of the Green function G(r− r′),
defined by

(∇2 + k2)G(r − r′) = δ(r − r′). (6.25)

If G is known, then the SE is equivalent to:

ψ(r) = ψ0(r) +

∫
G(r − r′)U(r′)ψ(r′)dr′, (6.26)

where ψ0 is a general solution of the homogeneous equation (∇2 + k2)ψ0 = 0. To establish this equivalence,
operate with ∇2 + k2 on Eq. (6.26):

(∇2 + k2)ψ = 0 +

∫
δ(r − r′)U(r′)ψ(r′)dr′ = U(r)ψ(r) (6.27)

which is precisely the SE. The second order differential equation for G has two independent solutions:

G(r − r′) = − e±ik|r−r′|

4π|r − r′| . (6.28)

To see this, it is sufficient to demonstrate that G(r) = − e±ikr

4πr satisfies (∇2 + k2)G(r) = δ(r). Since ∇2 =
∂2

∂r2 + 2
r

∂
∂r+ angular derivatives, we obtain for r > 0:

d

dr

e±ikr

r
=

(±ik

r
− 1

r2

)
e±ikr (6.29)

and

d2

dr

e±ikr

r
=

(
− k2

r
∓ 2ik

r2
+

2

r3

)
e±ikr. (6.30)

Combined, this yields (∇2 + k2) e
±ikr

r = 0. This is consistent since δ(r) = 0 for r �= 0. To justify the presence of
the δ-function, we integrate (∇2 + k2)G over a spherical volume with radius R by using the formula:

∫

V

∇2Gdr =

∫

f(V )

∇G · df = 4πR2(∂rG)r=R (6.31)

where f(V ) is the surface of the volume V . We then get:

∫

r≤R

(∇2 + k2)G = 4πR2
(± ke±ikr

−4πR
+

e±ikr

4πR2

)
+ k2

∫ R

0

e±ikr

−4πr
4πr2dr

= ∓ikRe±ikr + e±ikr + k2
[∓r

ik
e±ikr − e±ikr

k2

]R
0
= 1. (6.32)

Since the integral over (∇2 + k2)G is 1 for any finite radius R, we must have (∇2 + k2)G = δ(r), which
completes the proof. Now that we know exactly what G(r − r′) is, we can insert it into Eq. (6.26) in order
to find ψ(r). The choice of ψ0(r) is dictated by the boundary conditions and the fact that it has to satisfy
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(∇2 + k2)ψ0 = 0. We therefore set ψ0(r) = eik·r since U = 0 should give precisely this wavefunction as there is
no scattering in this case.

Secondly, we choose the + solution for G so that we recover the correct form eikr/r for large r. With these two
choices, the solution for ψ(r) then becomes:

ψ(r) = eik·r − 1

4π

∫
eik|r−r′|

|r − r′| U(r′)ψ(r′)dr′. (6.33)

Note that |r − r′| � r for large r. If we now look at the behavior of the above equation in the large-r limit, we
will be able to identify f(θ, φ) by comparing directly with the form ψ(r) � eik·r + eikrf(θ, φ)/r.

First, we do the large-r expansion more accurately. We have:

k|r − r′| = k
√
r2 − 2r · r′ + (r′)2 = kr

√
1− 2r · r′

r2
+

(r′)2

r2
= kr − k′ · r′ +O(1/r), (6.34)

where k′ ≡ kr/r points in the direction that the particle has after scattering. The momentum of the final state is
thus pf = �k′. Note that |pf | = �|k| = �|k′|: conservation of momentum. Using our expansion, the integral
equation then takes the form

ψ(r) � eik·r − 1

4π

eikr

r

∫
e−ik′·r′

U(r′)ψ(r′)dr′. (6.35)

Now, we can finally read out the scattering amplitude:

f(θ, φ) = − 1

4π

∫
e−ik′·r′

U(r′)ψ(r′)dr′.
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It may appear as if we still have not accomplished much since this expression still depends on the unknown ψ(r).
However, it turns out that our formulation is still useful, because we have now set up the problem in a manner
which makes it suitable for an iterative treatment.

E. Born-approximation

If the scattering potential is weak (and we shall later specify what this means quantitatively), we can solve our
integral equation for ψ by iteration. The n-th approximation is obtained by using the (n− 1)-th approximation on
the r.h.s. of

ψ(r) = eik·r − 1

4π

∫
eik|r−r′|

|r − r′| U(r′)ψ(r′)dr′. (6.36)

The most basic approximation, ψ(0)(r), is simply to set it equal to the incident plane wave. Thus, we obtain

ψ(0)(r) = eik·r,

ψ(1)(r) = eik·r − 1

4π

∫
eik|r−r′|

|r − r′| U(r′)eik·r
′
dr′,

ψ(2)(r) = eik·r − 1

4π

∫
eik|r−r′|

|r − r′| U(r′)ψ(1)(r′)dr′,

ψ(3) = . . . (6.37)

and so forth. In this manner, we can obtain better and better approximations for f(θ, φ) by inserting approxima-
tions for ψ(r). This expansion is known as the Born-approximation and one often settles for the lowest order
correction. We now examine this in more detail.

First order Born-approximation.
Using ψ(0) = eik·r , we obtain

fB(θ, φ) = − 1

4π

∫
ei(k−k′)·rU(r)dr, (6.38)

where the B superscript indicates that this result has been obtained in the first-order Born-approximation. Intro-
ducing q = k′ − k and reinstating U = 2mV/�2, we get:

fB = − m

2π�2

∫
V (r)e−iq·rdr.

In other words, the scattering amplitude fB is essentially the Fourier-transform of the potential. The physical
meaning of q is that it is the momentum-transfer during the collision: q = 2k sin(θ/2) according the figure.

θ
qk′

k

Note that so far, we have not made any assumption about the potential being spherically symmetric. If it is,
however, we may simplify the expression for fB as follows. Let V (r) = V (r) and let r point along the polar axis.
We then obtain

∫ π

ν=0

∫ 2π

ζ=0

e−iq·rdζ sin νdν = 2π
[e−iqr cos ν

iqr

]ν=π

ν=0
=

4π sin(qr)

qr
. (6.39)

The result for fB is then:

fB(θ) = − 2m

�2q

∫ ∞

0

V (r) sin(qr)rdr. (6.40)

Note that ζ and ν are just integration variables without any special significance. In the forward scattering case
(θ = 0), fB becomes independent on q and thus the energy of the particle. This might appear strange at first
glance and in fact it is physically incorect: it is an artifact of the perturbation expansion of the Born treatment.
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Going to 2nd order in the perturbation V (r) fixes the problem. The point is that one must account for interfer-
ence between the incoming wave and the outgoing wave for θ = 0 in order to correctly describe forward scattering.

In contrast, this interference is not as important for θ �= 0. For such directions, the oscillating term sin(qr) renders
the integral small when qa � 1 where a is a measure for the spatial range of the potential. This means that for
high energies (large k), the differential scattering cross section is very small except when qa = 2ka sin(θ/2) � 1,
which for large k means θ � 1/(ka). We then conclude that high-energy particles do not change their direction
much, keeping their trajectory close to θ � 0.

For the total scattering cross section, we have that σB =
∫

dσB

dΩ dΩ =
∫
|fB(θ, φ)|2dΩ. For a spherically symmet-

ric potential, we obtain

dΩ = 2π sin θdθ = 4π sin(θ/2) cos(θ/2)dθ =
2π

k2
q dq (6.41)

where we utilized that 2k sin(θ/2) = q so that dq = k cos(θ/2)dθ. σb can then be obtained by integrating over q:

σB =
2π

k

∫ 2k

0

|fB(q)|2q dq. (6.42)

Since the integral grows as E = �2k2/2m increases, σB cannot decrease faster than 1/E. More precisely, if the
integral converges at high energies, one obtains σB ∝ 1/E. We are treating this problem non-relativistically, so
"high energies" still means that E � mc2.

When is the Born-approximation valid?
The iteration procedure that we have utilized is based on the assumption that the incident plane wave is not severly
altered. In effect, we require that |ψ(r) − eik·r| � 1. Using our expression for ψ in the Born-approximation
provides:

∣∣∣∣∣
1

4π

∫
eik|r−r′|

|r − r′| U(r′)eik·r
′
dr′

∣∣∣∣∣ � 1. (6.43)

The modification of the incident wave is expected to be largest at the scattering center r = 0, so the strictest
requirement is:

∣∣∣∣∣
1

4π

∫
eikr

′

r′
U(r′)eik·r

′
dr′

∣∣∣∣∣ � 1. (6.44)

If we want an even stricter requirement, we take the absolute value of all factors in the integrand:
∫ ∞

0

|U(r)|r dr � 1 (6.45)

where we used that dr = 4πr2dr for U(r) = U(r). When this inequality is satisfied, the Born-approximation is
expected to be good for all energies.

Example 11. Bound-state in a constant potential. For a constant potential V0 with range R, the criterion of
validity takes the form

m|V0|R2

�2
� 1. (6.46)

At the same time, we know that a negative potential −|V0| can bind states if m|V0|R2 > π2�2/8 from introductory
QM. This is in agreement with the criterion: we expect the Born-approximation to be valid when |V0| is sufficiently
weak to be unable to bind a particle with mass equal to the incident particles.

For a finite-range potential with finite magnitude, one can always use the Born-approximation at sufficiently high
energies. To see this, let us go back to the k-dependent criterion

∣∣∣∣∣
1

4π

∫
eikr

′

r′
U(r′)eik·r

′
dr′

∣∣∣∣∣ � 1. (6.47)
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Assume now a spherically symmetric potential U(r) = U(r), in which case we can perform the angular integra-
tion: ∫ π

0

eikr
′ cos ν sin ν dν =

2 sin(kr′)
kr′

. (6.48)

This then gives:
∣∣∣∣∣
1

k

∫ ∞

0

U(r′)eikr
′
sin(kr′)dr′

∣∣∣∣∣ � 1. (6.49)

Since |eikr′ sin(kr′)| ≤ 1, the criterion

k �
∫ ∞

0

|U(r)|dr (6.50)

is sufficient to guarantee that the original k-dependent criterion is fulfilled. We conclude that for large enough k,
we can always fulfill the above equation. Note that using the Born-approximation, we have actually obtained the
same result for dσ/dΩ for a weak potential V as we did using time dependent perturbation theory in chapter 4:

dσ

dΩ
=

∣∣∣∣∣
m

2π�

∫
V (r)ei(pi−pf )·r/�dr

∣∣∣∣∣
2

, (6.51)

which is reasonable since the Born-approximation is good when the potential is weak or the particle energy is high.

Example 12. Scattering on the Yukawa-potential. Let us apply our scattering framework on a screened
Coulomb-potential which is known as a Yukawa potential:

V (r) =
ZZ ′e2

4πε0r
e−αr. (6.52)

Here, α determines the screening radius. Using our derived result for the Born scattering amplitude gives:

fB(θ) = − 2m

�2q
ZZ ′e2

4πε0

∫ ∞

0

e−αr sin(qr)dr = −2m

�

2ZZ ′e2

4πε0

1

α2 + q2
. (6.53)

Using the relations introduced previously: q = 2k sin(θ/2), k = p/� =
√
2mE/�, we can write down the

differential scattering cross section:

dσB

dΩ
= |fB |2 =

( ZZ ′e2/4πε0
α2�2(2m)−1 + 4E sin2(θ/2)

)2

. (6.54)

It is interesting to note that since dΩσ
B is finite for all angles when α �= 0, the total σB will also be finite. This

is in contrast to the classical value σ for this potential which becomes infinite. In the limit α → 0, we obtain the
usual unscreened Coulomb-potential. Remarkably, the QM Born-result for dΩσ ≡ dσ/dΩ is not only identical to
the classical result, but it is even identical to the exact QM Coulomb cross section! The derivation is not shown
here, but one finds in the exact treatment that

f exact(θ) =
n

2k sin2(θ/2)
e−2iln sin(θ/2)+iδ, (6.55)

where we defined

n =
m

k�2
ZZ ′e2

4πε0
(6.56)

and where δ is a constant (independent on θ). Since |eiδ| = 1, this phase-factor has no consequence for the cross
section. However, we will later show that when scattering identical particles on each other, it will have an effect.
The result that

dσclassical

dΩ
=

dσB

dΩ
=

dσexact

dΩ
(6.57)

for the Coulomb-potential must be regarded as a coincidence, since the criteria we listed for the Born-
approximation are not expected to be valid for the Coulomb-potential.
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Elastic scattering on atoms.
If the electrons are fast (energetic), we can treat scattering on neutral atoms via the potential

V (r) = − Ze2

4πε0r
+

e2

4πε0

∫
n(r′)
|r − r′|dr

′. (6.58)

This consists of the Coulomb repulsion from the core +Ze in addition to the potential from the electron
distribution −en(r). Charge neutrality dictates that

∫
n(r)dr = Z. The reason for why the electrons must be

fast in order for us to use the above potential is that the true antisymmetrized ψ gives a correction to the result
otherwise. ψ must be antisymmetrized for scattering of electrons on an electron, since these are identical parti-
cles quantum mechanically. Recall that r is the relative coordinate between the potential and the scattered particles.

We use the Born-approximation, meaning that the incident electron E satisfies 13.6Z2 eV � E � 500 000 eV:
it is much larger than the typical potential energy scale, while still non-relativistic (mec

2 � 0.5 MeV). Now, we
seek the scattering amplitude fB = − m

2π�2

∫
V (r)e−iq·rdr. Introducing s = r − r′ and using our result for the

Yukawa-potential without screening (α = 0), we get:
∫

e−iq·r

|r − r′|dr = e−iq·r′ 4π

q2
. (6.59)

INSERT ADVERTISEMENT HERE
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It follows that

fB =
e2

4πε0

2m

�2
Z − F (q)

q2
, (6.60)

where F (q) =
∫
n(r)e−iq·rdr is known as the atom form-factor. It is the Fourier-transformation of the electron

distribution. If n(r) is spherically symmetry, it follows that F (q) = F (q). With q = 2k sin(θ/2) and E =
�2k2/2m as usual, the differential scattering cross section becomes:

dσB

dΩ
= |f |2 =

( e2

16πε0E

)2

sin−4(θ/2)[Z − F (2k sin(θ/2))]2. (6.61)

By measuring dσB/dΩ, we can thus obtain information about F (q) and, in turn, the electronic distribution of the
atom. The idea is thus to scatter a simple particle on a complex structure (potential) to gain info about the complex
structure.

Two particular limiting cases are of interest:

1. When the scattering angle θ is not small, q = 2k sin(θ/2) is sizable when k is large (energetic electrons).
The result is that F becomes small since the integrand oscillates around zero. Quantitatively, this requires
that 1/q � atomic dimensions, i.e. ∼ 1 Å. If we thus can neglect F compared to Z, dΩσ is essentially the
Rutherford cross section. This result makes sense physically: a particle with high E can only scatter a large
angle θ if it comes close to the core.

2. In the opposite regime, for very small angles, we can expand F in powers of q:

F (q) =

∫
n(r)[1− iq · r − 1

2
(q · r)2 + . . .]dr = Z − q2

6

∫
r2n(r)dr. (6.62)

The second term ∝ iq · r vanishes due to symmetery. For the third term, we used that the integral with
q2xx

2 + q2yy
2 + q2zz

2 is 1/3 of the integral with (q2x + q2y + q2z)r
2 = q2r2. Define now the average atomic

radius R:

R2 =

∫
r2n(r)dr∫
n(r)dr

=
1

Z

∫
r2n(r)dr. (6.63)

This yields Z − F (q) � ZR2q2/6, which in turn is � Z for small angles (small q). This means that

dσB

dΩ
�

(ZR2

3a0

)2

(6.64)

with a0 = 4πε0�2/me2. The scattering is then independent on θ and small when θ is small. This may
be physically interpreted as the electron cloud effectively screening the core Ze at small scattering angles
(classically, this corresponds to a large impact parameter).

F. The method of partial waves

So far, we have seen that the Born-approximation is good when E of the incident particle is large. Now, we will
consider a method which is good in the opposite case, namely the partial wave method which is useful for low
energies (for instance scattering of sound) and was developed in 1927 by Holtsmark and Faxen.

Scattering amplitude
We know that the energy eigenfunctions for a spherically symmetric potential V (r) can be written generally as

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

clmRl(r)Ylm(θ, φ) (6.65)

where k2 = 2mE/�2 and U(r) = 2m�−2V (r) where R satisfies:

d2

dr2
(rRl) +

[
k2 − U(r)− l(l + 1)

r2

]
(rRl) = 0. (6.66)
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We are interested in E > 0 (continuous part of the spectrum) and cylinder symmetric (no φ-dependence) solutions,
as is often the case in scattering problems. Choose ẑ as the incident axis. Eq. (6.65) is independent on φ when
m = 0. The function Ylm(θ, φ) then reduces to Legendre-polynomials Pl(cos θ). These form a complete set for
cylinder symmetric functions, so that:

ψ(r, θ) =
∞∑
l=0

clRl(r)Pl(cos θ) (6.67)

where cl are constants. We may then also express f(θ) =
∑∞

l=0 flPl(cos θ) where fl are constants. This is the
announced expansion in "partial waves", each characterized by a quantum number l. Keep in mind that Pl(cos θ)

is an eigenfunction for L̂
2

with eigenvalues �2l(l+1). We recall that the scattering amplitude f(θ) is defined from
the asymptotic behavior: ψ(r) − eik·r � f(θ) e

ikr

r valid for r → ∞. To expand f in partial waves, we must first
expand ψ(r) and eik·r in Legendre polynomials. Start with the incident wave:

eik·r = eikr cos θ =
∞∑
l=0

dl(kr)Pl(cos θ). (6.68)

Introduce x ≡ cos θ and use the orthogonality of Pl(cos θ):
∫ 1

−1

Pl(x)Pn(x)dx =
2

2l + 1
δln. (6.69)

Applied on Eq. (6.68), we obtain by multiplying with Pn(x) on both sides and integrating:

∫ 1

−1

Pn(x)e
ikrxdx =

∞∑
l=0

∫ 1

−1

dl(kr)Pl(x)Pn(x) dx. (6.70)

Therefore, we see that

dl(kr) =
2l + 1

2

∫ 1

−1

eikrxPl(x)dx. (6.71)

We want to see how this behaves for large r. To do so, consider general integrals of the form I ≡
∫ 1

−1
eisxg(x)dx

for large s. Consecutive partial integrations, where the exponential function is integrated, provides:

I =
[
g(x)

eisx

is

]1
−1

−
∫ 1

−1

g′(x)
eisx

is
dx =

[
g(x)

eisx

is
− g′(x)

eisx

(is)2

]1
−1

+

∫ 1

−1

g′′(x)
eisx

(is)2
dx (6.72)

and so forth. Since s is presumed to be large, we obtain smaller and smaller terms. The dominating term for large
s is then:

I =

∫ 1

−1

eisxg(x)dx = g(1)
eis

is
− g(−1)

e−is

is
+O(s−2). (6.73)

In our case, s = kr and g(x) = Pl(x). Moreover, Pl(1) = 1 and Pl(−1) = (−1)l by definition. Hence, the
asymptotic behavior of dl is:

dl �
2l + 1

2ikr
[eikr − (−1)le−ikr]. (6.74)

Using (−1)l = eiπl and 2i sin y = eiy − e−iy , we rewrite this to dl(kr) � (2l + 1)il
sin(kr− 1

2 lπ)

kr for large r. We
have now managed to identify how eik·r is expanded for large r. It remains to find the asymptotic behavior of
ψ(r). We have ψ(r, θ) =

∑∞
l=0 clRl(r)Pl(cos θ) where the equation determining Rl in the limit r → ∞ reads:

d2

dr2
(rRl) + k2(rRl) = 0. (6.75)

Hence, we disregarded l(l+1)/r2 and U(r) [this is fine when U(r) drops faster than 1/r for large r]. The solution
of Eq. (6.75) is sine and cosine functions. With two arbitrary constants cl and δl, we can write the general solution:

rRl � (2l + 1)ilcl sin(kr − πl/2 + δl) (6.76)
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for large r. We have written the solution in this form to look as similar as possible to the expansion of eik·r obtained
previously. The quantity δl is the phase picked up by the wavefunction as a consequence of the scattering potential
and is referred to as the l-th scattering phase. In the absence of any potential U(r), one finds δl = 0. To determine
δl in the general case, one has to solve the radial equation for all r and then inspect Rl for large r. Inserting our
expansions, we have thus found

ψ(r)− eik·r � Pl(cos θ)(2l + 1)il[cl sin(kr − lπ/2 + δl)− sin(kr − lπ/2)]/kr. (6.77)

In order to finally identify f(θ), we should now focus on the conditon that the above expression should only
contain spherical waves of the form eikr/r according to the asymptotic expression for the wavefunction. This is
accomplished by noting that:

[. . .] =
1

2i
(cle

iδl − 1)ei(kr−lπ/2) − 1

2i
(cle

−iδl − 1)e−i(kr−lπ/2). (6.78)

It is clear that we must choose cl = eiδl to remove the e−ikr term, which leaves us with

ψ(r)− eik·r � eikr

2ikr

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ). (6.79)

Since e2iδl − 1 = 2ieiδl sin δl, we can now identify f(θ):

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ).

where, as usual dΩσ = |f(θ)|2. We have not solved the problem entirely yet, but we have established a connection
between the solution of the radial equation (i.e. determining δl) and f(θ). We will look at a concrete application
later where δl is determined and hence solving the problem.
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Total scattering cross section.
Our expression for f(θ) determines σ:

σ =

∫ π

0

|f(θ)|22π sin θdθ =
2π

k2

∑
ll′

(2l + 1)(2l′ + 1)eiδl−iδ′l sin δl sin δ
′
l

∫ 1

−1

Pl(x)Pl′(x)dx. (6.80)

Using the aforementioned orthogonality of Pl(x), we obtain:

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl. (6.81)

We may note an interesting relation between σ and the forward-scattering amplitude (θ = 0). Setting θ = 0 in
f(θ) = 1

k

∑∞
l=0(2l+ 1)eiδl sin δlPl(cos θ) and using that Pl(1) = 1, we obtain f(0) = 1

k

∑∞
l=0(2l+ 1)eiδl sin δl.

It follows that we may write generally:

σ =
4π

k
Im{f(0)}.

This relation is known as the optical theorem. We will later give a general proof of the theorem. The fact that f(0)
appears is related to that in order to cause scattering, the incident beam must be weakened. This is achieved via
destructive interference between the incident beam and the outgoing forward-scattered beam, described precisely
via f(0).

Number of significant phases.
If particles with momentum �k approach a potential with range R, only particles with angular momentum �kR or
less should be scattered from a classical perspective. Since the angular momentum size is �

√
l(l + 1), we obtain

that
√

l(l + 1) ≤ kR. (6.82)

For low energies kR � 1 (particle wavelength 2π/k � R), we see that only l = 0 contributes. In this case,
f � k−1eiδ0 sin δ0 as only the l = 0 partial wave contributes and we obtain isotropic scattering since

dσ

dΩ
� k−2 sin2 δ0 → σ =

4π

k2
sin2 δ0. (6.83)

This shows why the partial wave method is so useful for low energies. The scattering amplitude has dimension
length, and the low energy limit for f (which for finite-range potentials is independent on the angle) is often called
the scattering length a:

lim
k→0

f = −a. (6.84)

This results in σ = 4πa2. To be more specific about what "low energies" means, note that kR � 1 gives:

E =
�2k2

2m
� �2

2mR2
=

m

me

(a0
R

)2

× 13.6 eV (6.85)

by using the energy expression for the n = 1 Coulomb potential.

Ramsauer-Townsend effect: sign of the phase-change.
The phase-change δ0 determines the scattering cross section at low energies. sign(δ0) is related to the sign of the
potential U(r). To see this, recall that δ0 was defined by writing the solution of

d

dr2
u0 + [k2 − U(r)]u0 = 0, (6.86)

where u0 = rR0(r), on the form u0 ∝ sin(kr+ δ0) for large r. If U < 0, the effective wavenumber
√

k2 − U(r)
is larger than for U = 0. In turn, this means that the particle wavelength λ inside the potential becomes shorter,
so that u0 will have a stronger curvature. The wavefunction is then "pulled" closer to r = 0, corresponding to a
positive phase-change as shown in the figure.



INTERMEDIATE QUANTUM MECHANICS

60

quantum meChaniCal sCatterinG theory

60

Range of potential V (r)

rR0(r)

V (r) < 0 V (r) = 0 V (r) > 0

r

Conversely, a positive potential gives a negative δ0. Outside of the range of U , the wavelength is of course the
same in all cases. If the attractive potential (U < 0) is sufficiently strong to "pull in" the partial wave l = 0 to the
extent that δ0 = π, then sin δ0 = π and σ → 0: the scattering cross section vanishes. For a given potential, this
effect (Raumsauer-Townsend) requires a specific energy. It has been experimentally observed, for instance as an
extremely low minimum in the cross section of electrons scattering on noble gas atoms (Xe, Kr, Ar) at energies
E � 0.7 eV.

Example 13. Low-energy scattering on a hard-sphere potential. Consider a hard-sphere potential with range
R, such that the wavefunction u0(r) = 0 for r ≤ R while it is a free particle u0(r) ∝ sin(kr − kR) for r > R.
As required by continuity, we see that uo(r = R) = 0. The phase-shift δ0 = −kR is thus negative as expected for
positive (repulsive) potentials. The total cross section contribution from l = 0 valid for any energy is then

σ0 =
4π

k2
sin2(kR). (6.87)

For low energies, the partial wave l = 0 gives the dominant contribution. In this case, k � 1/R so that
sin(kR) � kR, which gives σ � 4πR2. It is interesting to note that this QM expression is four times as large
as the classical limit for this potential, σclassical = πR2. What is the physical reason for this? We can understand
this result by realizing that in QM, particles have a wave character. Therefore, the particles will probe the entire
surface area of the hard spheres rather than just their cross-section, similarly to how water waves would interact
with an object. For the opposite limit of high energies, one obtains σ = 2πR2, which still is different from σclassical.

Resonant scattering.
To illustrate this phenomenon, consider low-energy scattering on a well-potential:

V (r) =

{
−V0 for r ≤ R

0 for r > R
(6.88)

We know by now that at low energies kR � 1, only the partial wave l = 0 contributes significantly to the cross
section σ, according to σ = 4π

k2 sin2 δ0. The task is to determine δ0. To do so, we must relate the solution for
r ≤ R, u0(r) = A sin(κr) with κ =

√
2m(E + V0)/�2, with the solution for r > R, u0(r) = B sin(kr + δ0)

with κ =
√

2mE/�2. This is accomplished by continuity of u0 and u′
0 (usual boundary conditions) at r = R,

which yields

tan(δ0 + kR) =
k

κ
tan(κR). (6.89)

Now, neglecting the small term kR compared to δ0, we obtain

sin2 δ0 =
tan2 δ0

1 + tan2 δ0
=

k2 tan2(κR)

κ2 + k2 tan2(κR)
. (6.90)
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The total cross section finally takes the form

σ =
4π

k2 + ξ2
, where ξ =

κ

tan(κR)
. (6.91)

For a given k, the cross section is maximal when ξ = 0, i.e. when κR = (n+ 1/2)π and n is an integer. Inserting
the definition of κ, we get:

E = −V0 +
�2π2

2mR2

(
n+

1

2

)2

. (6.92)

Physically, this means that when the incident particle has just the right resonant energy satisfying the above equa-
tion, it will have a tendency to be bound by the potential and remain at r ≤ R, thus causing a major disturbance of
the wavefunction → large σ.

G. The optical theorem

We previously proved the relation σ = 4π
k Im{f(0)} for a spherically symmetric potential V (r). Now, we will

demonstrate that this theorem is in fact a direct consequence of particle conservation: for a stationary problem,
the net flux of particles into any volume has to equal the net flux out. Choosing the volume as a sphere of radius
r centered around the scattering center, this means that

∫
jrr

2dΩ = 0 where jr is the radial probability current
density. We know that this is given by

jr = Re{ψ∗ �
im

∂rψ}. (6.93)

To compute this, we choose r to be so large that we can use the asymptotic expression ψ = eik·r + f(θ, φ)eikr/r.
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We begin by computing

r2ψ∗∂rψ = ikr2 cos θ + ikre−ikr(1−cos θ) cos θf∗ + (ikr − 1)eikr(1−cos θ)f + (ik − 1/r)|f |2. (6.94)

By now multiplying with �/im, taking the real part of the expression and integrating over all angles, we should
obtain zero according to

∫
jrr

2dΩ = 0. Now, the last term ( �
imr |f |2) in Eq. (6.94) becomes purely imaginary and

gives no contribution. The first term ∝ cos θ gives zero upon integration since
∫ π

0
cos θ sin θ = 0. Finally, we also

get rid off the term ∝ k|f |2 by using that
∫
|f |2dΩ = σ. Dividing the remaining terms in the equation by �k/m

gives:

Re
{∫ 2π

φ=0

∫ π

θ=0

[re−ikr(1−cos θ) cos θf∗ + (r + i/k)eikr(1−cos θ)f ]dφ sin θdθ
}
+ σ = 0. (6.95)

Introducing cos θ = x and using that 1 + i/kr � 1 for large r, this equation becomes

σ = −rRe
{∫ 2π

0

∫ 1

−1

[e−ikr+ikrxf∗ + eikr−ikrxf ]dx dφ
}
. (6.96)

We now make use of a previously derived result, namely Eq. (6.73). This expansion can be used with s = kr in
the first term of the l.h.s. in Eq. (6.96) and s = −kr for the second term. The result is

σ =
1

k

∫ 2π

0

2Imf(0, φ)dφ =
4π

k
Imf(0). (6.97)

We here used that in the forward-scattering direction θ = 0, there can be no φ-dependence → φ-integration merely
gives a factor 2π. We have thus proven the optical theorem. We note that:

1. In contrast to our previous derivation using the method of partial waves, we now did not maky any assump-
tion about the potential being spherically symmetry.

2. The expression we found in the Born-approximation for a spherically symmetric potential, fB(θ) =
− 2m

�q2
∫∞
0

V (r) sin(qr)rdr is real. This means that it cannot be used in the optical theorem, since it gives
σ = 0.

3. We have assumed elastic scattering. If inelastic processes occur, e.g. exciting internal degrees of freedom
in the particle or fragmentation of particles, the net current through a volume is no longer zero. Instead, it
must be negative since inelastic scattering processes remove particles from their original state. In this more
general case, the optical theorem reads

σel + σinel =
4π

k
Im{fel(0)}. (6.98)

H. Lab- and CM-system

In our scattering theory so far, we have considered a particle scattering on a stationary potential. In fact, this
corresponds to the center of mass (CM) frame of a two-particle problem with potential V (r1 − r2) since such a
scenario can be reduced to an effective one-body problem. We now want to analyze the difference between the lab
and CM frames for two particles scattering off each other, defined in the figure below.

Lab

CM

BEFORE AFTER

θ

θL
m2m1

v0

v0 −V −V

v′

m1

m2
v′ V

θ
θL

(a)

(b)
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Consider the lab-frame where particle 1 with mass m1 and velocity v0 scatters on mass m2 with zero velocity. The
CM velocity in the lab-frame is then:

V =
m1v0

m1 +m2
. (6.99)

We seek the relation between the scattering angles θ and θL in the CM and lab frame, respectively. The above
figure shows that:

tan θL =
v′ sin θ

v′ cos θ + V
. (6.100)

Note that v′ = |v′| = v0 − V (magnitude of velocity of the scattered and incident particle in the CM frame is the
same). Inserting v′ and V into the above expression for tan θL yields:

tan θL =
sin θ

cos θ +m1/m2
. (6.101)

Thus, when the target mass m2 → ∞, we obtain θL = θ, as expected. Moreover, for equal masses m1 = m2, one
obtains tan θL = tan θ/2, so that θL = θ/2 is maximally π/2.

To identify a relation between the scattering cross sections in the two frames, we will need:

cos θL =
1√

1 + tan2 θL
=

cos θ + γ√
1 + 2γ cos θ + γ2

(6.102)

where we defined γ ≡ m1/m2. Moreover, the relation between the solid angles is:

dΩL

dΩ
=

sin θLdθL
sin θdθ

=
d cos θL
d cos θ

=
1 + γ cos θ

(1 + 2γ cos θ + γ2)3/2
. (6.103)

Now, the particle flux incident toward the target should only depend on the relative velocity between 1 and 2 in
both systems and is thus the same. Also, the same number of particles have to be scattered into dΩ and dΩL:
the physics cannot be different by changing referenc frame. Because of the above two facts, it follows from the
definition of the differential scattering cross section that

dσL(θL, φ) = dσ(θ, φ). (6.104)

Hence, we find that

dσL

dΩL
=

dσ

dΩ

(1 + 2γ cos θ + γ2)5/2

1 + γ cos θ
. (6.105)

I. Scattering of identical particles

We now consider what happens when two identical particles are scattered on each other. It is known that the two-
particle state satisfies ψ(1, 2) = ψ(2, 1) for bosons and ψ(1, 2) = −ψ(2, 1) for fermions where 1 = (r1, s1) and
2 = (r2, s2). Consider only the spatial part of the wavefunction to begin with and focus on the CM frame. In this
case, a two-particle state ψ that is symmetric (antisymmetric) in r1 and r2 must be an even (odd) function of the
relative-coordinate r ≡ r1− r2. In spherical coordinates, r → −r means that (r, θ, φ) → (r, π− θ, φ+π). Now,
our asymptotic wavefunction is neither symmetric nor antisymmetric in the form that we have used it. Therefore,
for identical particles it must be replaced with

ψ(1, 2) = eik·r ± e−ik·r + [f(θ)± f(π − θ)]eikr/r. (6.106)

The upper sign is used for a symmetric wavefunction, and the lower for an antisymmetric wavefunction. Note how
the spherical part eikr/r accounts for scattering of particlecs in diamatrically opposite directions. As before, dσ is
defined by the ratio of the particle flux into dΩ and the incident particle stream for one of two plane waves:

dσ

dΩ
= |f(θ)± f(π − θ)|2. (6.107)

It makes sense physically that the scattering of both particles must be taken into account when they are identical,
because we cannot distinguish between the following scenarios shown in the figure.
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(a) (b)

Eq. (6.107) is consistent with the standard QM treatment: add "wavefunctions", then take absolute value squared
to compute probabilities. Note that this is different from how we would classically allow for the two possibilities:
dΩσ = |f(θ)|2 + |f(π − θ)|2, which has no interference term between f(θ) and f(π − θ). Whether or not to use
symmetric or antisymmetric states ψ depends on the spin configuration. We now proceed to illustrate this.

Scattering of spin-0 particles.
Spin-0 particles: bosons → spatially symmetric wavefunction. We thus use the upper sign in dΩσ. Assume for
concreteness that the bosons interact via the Coulomb-potential, for which case we have

fC(θ) =
n

2k sin2(θ/2)
e−2iln sin(θ/2)+iδ. (6.108)

Here, n = Z2m/(ka0me). Inserting this into dΩσ:

dσ

dΩ
=

( Z2e2

4πε0ET

)2[
sin−4(θ/2) + cos−4(θ/2) +

2 cos[n ln tan2(θ/2)]
sin2(θ/2) cos2(θ/2)

]
(6.109)

where ET = �2k2/2m. The last term is a purely QM effect stemming from the interference between f(θ) and
f(π − θ). This effect due to identical particles in QM has been verified experimentally for C12 scattering on
carbon [see Phys. Rev. Lett. 4, 365 (1960)].

Scattering of particles with spin.
Even if the interaction between two spinful particles does not depend on the spin itself, we must consider the fact
that the particles have spin to obtain the correct dΩσ. To see this, consider e − e scattering (spin 1/2). Now, two
spin 1/2 states may be combined into one singlet (↑↓ − ↓↑) or three triplet (↑↑, ↓↓, ↑↓ + ↓↑) states. If the particles
are randomly polarized: probability 1/4 for singlet and probability 3/4 for triplet state. This yields:

dΩσ =
3

4
|f(θ)− f(π − θ)|2 + 1

4
|f(θ) + f(π − θ)|2. (6.110)

From this, we can infer that particles scattered into θ = π/2 must be singlets, since the triplet contribution is zero
for this angle. Moreover, if the spins are not initially random, but fully polarized in the same direction (i.e. triplets),
there can be no scattering into θ = π/2.
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VII. MAGNETIC FIELDS IN QUANTUM MECHANICS

Learning goals. After reading this chapter, the student should:

• Be able to write down how the presence of a magnetic field, and thus vector potential, can modify the
Hamiltonian of a system, and what the physical meaning of each corresponding term is.

• Be able to explain what Landau levels are, how they behave physically, and what type of physical conse-
quences they lead to.

• Be able to explain what the Aharanov-Bohm effect is and to mathematically outline the basic equations
describing it.

We shall consider here the influence of magnetic fields on QM systems. This is extremely important because it is
one of the simplest and most common experimental ways to manipulate eigenfunctions and energy levels.

A. Zeeman effect

Normal Zeeman effect.
To incorporate a B-field into the SE, we know from earlier treatment (e.g. classical mechanics) that we should
include a gauge field A. For B = Bẑ, we may use e.g. A = B

2 (−y, x, 0). The difference between Hamiltonians
with and without a magnetic field becomes

Ĥ − Ĥ0 =
(p̂− qA)2

2m
− p̂2

2m
= − q

m
A · p̂+

q2

2m
A2

= − qB

2m
(xp̂y − yp̂x) +

q2B2

8m
(x2 + y2). (7.1)

Since xpy − ypx = Lz is the angular momentum component in the z-direction, we may write

Ĥ ′ ≡ Ĥ − Ĥ0 = − q

2m
BL̂z +

q2B2

8m
(x2 + y2) = Ĥ ′

1 + Ĥ ′
2. (7.2)

Focus now on the term Ĥ ′
1 ≡ −µL · B since Ĥ ′

2 is quadratic and negligible for small B. We treat Ĥ ′
1 as a

perturbation and we defined µL = qL/2m. Ĥ ′
1 describes the coupling between external field and the induced

field of a charged particle with orbital angular momentum.

For a spherically symmetric potential, Rnl(r)Ylm(θ, φ) are eigenfunctions for L̂z with eigenvalue �m. Considering
an electron (q = −e and m = me), the added energy due to Ĥ ′

1 becomes

∆E =
e�B
2me

m = µBBm (m = −l, . . . , l). (7.3)

We defined the Bohr-magneton µB = e�/2me. Every energy level is thus split into 2l + 1 levels with a spacing
depending on B and not on the quantum numbers n or l. This is the normal Zeeman effect, but when we take into
account spin we obtain the experimentally observed anomalous Zeeman effect.

Anomalous Zeeman effect.
A particle with spin has an additional internal angular momentum µs which also couples to the magnetic field.
The total perturbation then becomes Ĥ ′

1 = eB
2me

(L̂z +2Ŝz) where we used gs = 2 as the Lande g-factor. However,
we must also consider how spin influences Ĥ0, i.e. the B-independent part. This part gains a spin-orbit interaction

Ĥso = f(r)L · S (7.4)

so that the eigenfunctions now depend on J2 and Jz where J = L + S, as L and S are no longer conserved
separately (the Hamiltonian does not commute with either in the presence of Ĥso). We proceed to distinguish
beween weak and strong magnetic fields.
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Strong fields: In this case, we may disregard Ĥso relative the magnetic term Ĥ ′
1. The resulting splitting is then

simply

∆E =
e�
2me

(m+ 2ms)B = µBB(m+ 2ms). (7.5)

A given energy level is then split into 2l + 3 levels for l > 0 since m + 2ms takes values between −l − 1 and
l + 1. For l = 0, the splitting is into two levels.

Weak fields: This is a more complicated situation since we cannot disregard Ĥso anymore. Thus, the eigenstates
of the unperturbed Hamiltonian are |j,mj , l〉. This is because Ĥ0 + Ĥso commutes with both J2, Jz, and L2.
Thus, the perturbation energy becomes:

∆E = µBB〈j,mj , l|Lz + 2Sz|j,mj , |l〉 = muBB(�mj + 〈j,mj , l|Sz|j,mj , l〉). (7.6)

Here, j and mj are the quantum numbers determining the eigenvalues for the operators J2 and Jz . For s = 1/2,
there are two possible values for j: j = l ± 1/2. To compute the expectation value of Sz , we want to express
|j.mj , l〉 in terms of eigenspinors for Sz . This is a length but straightforward calculation which we do not show
here (see introductory QM course and angular momentum operator algebra), but simply state the final result:

〈j,mj , l|Sz|j,mj , l〉 = ± �mj

2l + 1
. (7.7)

Inserted into ∆E, we obtain:

∆E = µBB
2j + 1

2l + 1
mj , (j = l ± 1/2,mj = −j, . . . , j). (7.8)

This gives rise to a different energy splitting with a spacing that is no longer independent on the quantum numbers.
We show the magnetic field splitting for the hydrogen n = 1 and n = 2 levels in the figure below.

mj = 3/2

mj = 1/2

mj = 1/2

2∆/3

∆/3

∆

n = 2

n = 1

2P3/2

2P1/2,
2S1/2

2S1/2

n = 2 ∆/3

∆/3

2∆/3

2∆/3

1/2

−1/2

−1/2

−1/2

1/2

−3/2

−1/2

We have introduced the notation 2S+1LJ to characterize the levels, where S is the quantum number for total spin
(1/2 in our case), L is the quantum number for total orbital angular momentum (S : l = 0, P : l = 1, D : l =
2, . . .), while J is the quantum number for total angular momentum J . Moreover, ∆ ≡ 2µBB. For instance,2P1/2

then means s = 1/2, l = 1, j = 1/2.

B. Landau levels

The Zeeman effect is concerned with the effect of B on bound electrons, such as the coupling between spin S and
field B. We consider free electrons, neglecting spin for now, and show that for a constant B, the SE can be solved
exactly. We use a Landau-gauge A = (−By, 0, 0) so that the Hamiltonian for q = −e becomes:

Ĥ = − �2

2m
∇2 +

ie�B
m

y∂x +
e2B2

2m
y2. (7.9)
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This Ĥ commutes with p̂x and p̂z and thus admits common eigenstates with these operators. The general solution
should then have the form ψ(r) = eikxx+ikzzφ(y). Inserted into Ĥψ = Eψ, we obtain the following equation for
φ:

− �2

2m
φ′′ +

[�2k2x
2m

− �eBkx
m

y +
e2B2

2m
y2
]
φ+

�2k2z
2m

φ = Eφ. (7.10)

This can be written in a more compact manner:

− �2

2m
φ′′ +

1

2
mω2

c (y − y0)
2φ = Ẽφ. (7.11)

where E = Ẽ + �2k2z/2m, y0 = �kx/eB, and ωc = eB/m. We see that ωc is the cyclotron frequencey: classical
angular frequency for the circular motion of an electron in a B field. Now, Eq. (7.11) has a familiar form: a
harmonic oscillator centered around y0. We immediately know what the eigenvalues are according to our detailed
previous treatment of such a system:

Ẽ = (n+ 1/2)�ωc → E = (n+ 1/2)�ωc + �2k2z/2m (n = 0, 1, 2, . . .). (7.12)

The belonging eigenfunctions are:

ψ(r) = eikxx+ikzzφn(y − y0) (7.13)

where φn is the n-th harmonic oscillator function. The energy E for our particle thus has two parts: free particle
motion along the B field (z-axis) and quantized motion perpendicularly to B (xy-plane).

Landau-levels: quantized levels for fixed kz (varying n).

Landau-bands: continuous energy bands for fixed n (varying kz).
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An important aspect is that since the energy does not depend on the quantity y0 ∝ kx, the Landau levels are
massively degenerate. To see this, consider a large but finite volume V = LxLyLz . Using periodic boundary
conditions, e.g. ψ(x + Lx) = ψ(x), the allowed values of the momenta are kx = 2πnx/Lx and kz = 2πnz/Lz

where ni are integers. Note that using periodic boundary conditions allows us to use free-particle wavefunctions
to count the number of states in contrast to hard-wall boundary conditions where ψ = 0 at the edges, while still
obtaining the same density of states. In turn, this means that the allowed values for y0 = �kx/eB are separated by
∆y0 = h/eBLx. The number of available positions for y0 then becomes:

Ly

∆y0
= LxLy

eB

h
=

Φtot

h/e
. (7.14)

Here, Φtot = LxLyB is the total magnetic flux through the area Lx × Ly . We may conclude that each Landau
level contains the same number of states: Φtot/(h/e). Each state then carries a flux quantum Φ0 = h/e.

Oscillation of the Fermi level.
We saw above that the degree of degeneracy of Landau levels was LxLyBe/h per level. Taking spin into account,
the degeneracy is doubled.

Thus, if the 2D electron density of the system is n2, meaning there are in total n2LxLy electrons, they can all
reside in the same Landau level if the field is so strong that

B > B0 =
1

2
n2

h

e
. (7.15)

Consider in fact a 2D electron gas, which is typically studied experimentally in the context of Landau levels. We
thus disregard excitations in the z-direction. Let us compute the Fermi energy EF as a function of B. Note
that: both the degeneracy of Landau levels (LL) and the Landau level energy itself [En = (n + 1/2)�eB/m] are
proportional to B.

• For B > B0, all electrons are in the lowest LL so that EF = 1
2e�B/m.

• If B0/2 < B < B0, the electrons that can’t fit into the lowest LL have room to be in the second lowest LL:
EF = 3e�B/2m.

This argument is repeated as B decreases. At B = B0, EF jumps from 1
2e�B0/m to 3

2e�B0/m. At B = 1
2B0,

EF jumps from 3
4e�B0/m to 5

4e�B0/m, et.c.

In general: discontinuities at B = B0/k where EF jumps between (1− 1
2k )e�B0/m and (1 + 1

2k )e�B0/m.

B

EF

eh̄B0

m

B0
1
2B0

For a 3D system, this picture is slightly modified. When B < B0, the electrons that don’t fit into the 0th LL will
not directly go into the 1st LL, but instead populate states kz �= 0 with energy

E =
1

2
�ωc +

�2k2z
2m

(7.16)

This energy will increase until it equals the energy of the 1st LL, and then this level is starting to fill up. We
still have a sharp peak in EF vs. B every time a new LL is activated. Since the transport properties of metals
are determined by the electrons at the Fermi level, the strong variation of EF vs. B is manifested e.g. in the
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conductivity ρ which oscillates with B. This is the Shubnikov-de Haas effect.

Total energy as a function of magnetic field.
When B is lowered just below B0, one electron jumps up to E1 and we now know that EF should make a jump.
But what happens to the total system energy? Naively, one might first think that since energy is supplied by the
external field, we should simply see a decrease in Etot when B is reduced. However, it turns out that the physics is
a bit more interesting than that.

Consider a system of size L2 = LxLy and we have N electrons in total. We have seen that the degeneracy of a
LL is 2L2B0e/h when spin is taken into account. Thus, all e− in our system fit into E0 when 2L2B0e/h = N
meaning that B0 = Nh/2L2e. Thus, we have the situation shown in the figure when we start out with B0 and then
lower the field so that one e− jumps up to E1.

BEFORE AFTER

E1

E′
1

E′
0

E0

(B = B0) (B = B′
0)

The question is now: what is the change in the total energy of the system, in effect ∆E = Etot − E′
tot? We know

that E0(B) = �eB/2m and E1(B) = 3�eB/2m. Moreover, the field B0 that forces one electron to leave the
lowest LL must by definition satisfy

2L2B′
0e

h
= N − 1 → B′

0 = B0 −
h

2L2e
< B0. (7.17)

Now, we may evaluate ∆E:

∆E = NE0 − [(N − 1)E′
0 + E′

1] =
π�2

2L2m
(2−N). (7.18)

The energy thus increases if N > 2. If N = 2, there is no change since B′
0 = B0/2. For large N , the total energy

will in general oscillate as shown in the figure.

Etot

B/B0

11
2

1
3

1
4

So energy decreases, but non-monotonically. Note that this picture changes if we account for the Zeeman-splitting
of the electrons, since it removes the factor 2 in the spin degeneracy of the states.
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C. Aharonov-Bohm effect

Wavefunction in space with B = 0.
Assume that B(r) �= 0 is present in some region of space, whereas other regions have B = 0. An example is a
very long coil with a current running through it, which to a very good approximation only has B �= 0 inside it. In
the regions where B = 0, we have A = ∇λ since ∇×A = 0 there. This means that (up to a constant):

λ(r) =

∫ r

r0

A(s) · ds (7.19)

where r0 is an arbitrary point in the region where B = 0. The integration path is arbitrary, as long as we stay
inside the B = 0 region. The wavefunction is obtained from the SE:

i�∂tψ =
1

2m

(�
i
∇− qA

)2

ψ + V (r)ψ (7.20)

where V (r) is potential energy stemming from other effects than the field. The physics must be gauge-invariant.
Thus, let us perform a gauge-transformation:

A′ = A+∇χ, φ′ = φ− ∂tχ, ψ
′ = ψeiqχ/�. (7.21)

Now choose χ = −λ so that:

i�∂tψ′ =
1

2m

(�
i
∇
)2

ψ′ + V (r)ψ′. (7.22)
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This is the same equation as if A = 0 in the first place. However, we cannot in general just set A = 0 in a region
where B = 0 if the field-free area encloses a region where B �= 0. To see this, consider the geometry shown in
the figure.

B = 0

B �= 0

If we integrate along the dashed line, we obtain
∮

A(s) · ds =

∫ ∫

S

∇×A dS = ΦS . (7.23)

where S is the shaded region and ΦS is the flux through it. This equation shows that A cannot be zero everywhere
in the white region where B = 0.

Interference experiment.
Does this mean that an electron moving only in an area with B = 0 can still be affected by the presence of B �= 0
in the inaccessible region? Aharanov and Bohm suggested the following interference experiment to clarify this.
The figure shows an electron source that emits e− from the point s0, and the electrons consequently pass through
the slits 1 and 2 and hit the screen at r1 having taken the paths P1 and P2, respectively.

e-source

B �= 0

P2

P1

r

screen

s0

2

1

Assume that the shaded region is completely inaccessible to the electrons. The total wavefunction is a superposition
of the contribution from paths P1 and P2:

ψtot = ψP1(r, t) + ψP2(r, t). (7.24)

According to our previous treatment, we have:

ψP1 = ψ0(r, t)e
i e�

∫
P1

A(s)·ds
,

ψP2 = ψ0(r, t)e
i e�

∫
P2

A(s)·ds
. (7.25)

ψ0(r, t) is as before the wavefunction for Φ = 0. Note that the relative phase between ψP1
and ψP2

is:
∫

P1

A(s) · ds−
∫

P2

A(s) · ds =

∮
A(s) · ds = Φ. (7.26)
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Here, Φ is the flux through the shaded region. We may then rewrite

ψtot(r, t) = (ψ0e
ieΦ/� + ψ0)e

i e�
∫
P2

A(s)·ds
, (7.27)

so that the probability density of electrons hitting the screen becomes

|ψtot|2 = |ψ0e
ieΦ/� + ψ0|2. (7.28)

This means that the interference pattern changes with Φ even if the electrons never move in the shaded region!
This is the Aharonov-Bohm effect, measured in 1960 by Chambers. We learn therefore that A plays a fundamental
role. However, note that the physically measurable quantity |ψtot|2 is gauge-independent (only depends on Φ and
not A).

D. Flux quantization in superconductors

An interesting case where electrons move in field-free space is in a superconductor, which besides having zero
electrical resistance also expels B from its interior. For a superconducting cylinder, a flux Φ can pass through the
hollow middle, meaning again that A cannot be zero in the superconductor despite B = 0 there.

Φ

r0

Superconducting
cylinder

The wavefunction ψ inside the superconductor can again be expressed as the Φ = 0 wavefunction times a phase
factor:

ψ(r) = ψ0(r)e
−i q�

∫ r
r0

A(s)·ds
. (7.29)

If the integral path now is taken to form a closed loop inside the superconductor (as shown in the figure), the
wavefunction is multiplied with e−iqΦ/�. Since the wavefunction has to be single-valued, it follows that

e−iqΦ/� = e2inπ, n = 0,±1,±2, . . . (7.30)

so that

Φ =
2π�
q

n.

The flux has to be quantized. This has been experimentally observed and one found the flux to be quantized in units
of π�/e. This corresponds to q = −2e, suggesting that in superconductors the fundamental entity is an electron
pair (in accordance with so-called BCS theory).
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VIII. QUANTIZED RADIATION THEORY

Learning goals. After reading this chapter, the student should:

• Be able to qualitatively describe how to quantize the electromagnetic field quantum mechanically.

• Be able to explain the physical significance of coherent states for the radiation field modes.

• Be able to schematically write down the state vector for a fully quantized radiation theory and explain what
spontaneous and stimulated emission means.

We have treated the EM field classically so far. However, the EM field is also governed by QM and we now want
to treat both the atomic system and the field quantum mechanically.

A. Quantization of the radiation field

The starting point for determining the QM Hamilton-operator of a system is to know the classical Hamiltonian.
Hence, that is where our investigation begins.

Classical Hamiltonian for the field.
Consider the existence of an EM field without any source terms (charges and currents) in a cubic volume V = L3

with periodic boundary conditions. V is introduced for convenience so that we can quantify the number of modes
in the system.
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It is A that couples the atomic system with the EM field. In a Coulomb gauge with ∇ ·A = 0, we may write A as
a superposition of plane-waves:

A(r, t) =
∑
k,λ

ekλ

√
�

2ε0V ck
[ãkλe

ik·r−iωkt + ã∗kλe
−ik·r+iωkt], (8.1)

where ωk = kc and ãkλ are amplitude factors. Note that the photon A is transversely polarized since ekλ ⊥ k,
guaranteeing that ∇ ·A = 0. The sum

∑
k,λ goes over discrete wavevectors k = 2π

L (nx, ny, nz) and over the two
polarization vectors ek,1 and ek,2 (both ⊥ k). Let akλ ≡ ãkλe

−iωkt for brevity of notation. Now, the energy of
the field itself is

H =
1

2

∫

V

[ε0E
2 +

1

µ0
B2]dr =

ε0
2

∫

V

[(∂tA)2 + c2(∇×A)2]dr. (8.2)

Inserting our expression for A gives:

H = − �
4V

∑
kλ

∑
k′λ′

√
ωkωk′ [ekλ · ek′λ′ + (k̂ × ekλ) · (k̂

′ × ek′λ′)]

×
∫

V

(akλe
ik·r − a∗kλe

−ik·r)(ak′λ′eik
′·r − a∗k′λ′e−ik′·r)dr. (8.3)

We introduced k̂ = k/|k|. Using the vector identity

(A×B)(C ×D) = (A ·C)(B ·D)− (A ·D)(B ·C) (8.4)

and

1

V

∫
ei(k1−k2)·rdr =

{
1 if k1 = k2

0 if k1 �= k2
(8.5)

since the allowed k-values are such that an integer number of wavelengths fit into each side L of the volume, we
see that there is only a contribution to the sum

∑
kk′ from k′ = ±k. Moreover, since ekλ ⊥ k, we actually only

get a contribution from k′ = k since

1 + k̂ · k̂′
=

{
2 if k′ = k

0 if k′ = −k.
(8.6)

Finally, since ekλ · ekλ′ = δλλ′ (orthogonal polarization vectors), we obtain in total

H =
1

2

∑
kλ

�ωk(akλa
∗
kλ + a∗kλakλ) =

∑
kλ

�ωkakλa
∗
kλ (8.7)

where we used that a∗kλ is just a scalar amplitude and thus commutes with akλ. It is now useful to introduce the
real and canonical variables:

qkλ =

√
�

2ωk
(akλ + a∗kλ), pkλ =

1

i

√
�ωk

2
(akλ − a∗kλ). (8.8)

To prove that these are indeed canonical, recall that akλ ∝ e−iωkt which provides

q̇kλ = −i

√
�ωk

2
(akλ − a∗kλ) = pkλ =

∂H
∂pkλ

,

ṗkλ = −
√

�ωk

2
(akλ + a∗kλ) = −ω2

kqkλ = − ∂H
∂qkλ

, (8.9)

which are precisely Hamilton’s equations for canonical variables. To show the last equality in each equation, note
that

akλ =
1√
2�ωk

(ωkqkλ + ipkλ), a
∗
kλ =

1√
2�ωk

(ωkqkλ − ipkλ). (8.10)
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This is a key result: the classical radiation field is formally equivalent to a set of independent harmonic oscillators
with mass 1 in our variables.

Quantization.
Having established the equivalence to harmonic oscillators, the procedure to go quantum mechanical is clear: we
replace the classical oscillators with QM oscillators. The energy of the system then becomes

E =
∑
kλ

(nkλ +
1

2
)�ωk (8.11)

where nkλ = 0, 1, 2, . . . is the number of photons in the mode (k, λ). The corresponding state of the system is the
product:

|nk1,λ1
, nk2,λ2

, . . .〉 = |nk1,λ1
〉 · |nk2,λ2

〉 · . . . =
∏
k,λ

|nk,λ〉. (8.12)

Moreover, we introduce (as for the standard QM harmonic oscillator) creation and annihilation operators (a†, a)
via:

qkλ =

√
�

2ωk
(akλ + a†kλ), pkλ =

1

i

√
�ωk

2
(akλ − a†kλ). (8.13)

From the commutator [pkλ, qkλ] = �/i, it follows that [akλ, a
†
kλ] = 1. The operators for two different modes

commute, as they are independent of each other. The operators have the known properties (omitting indices for
brevity):

a†|n〉 =
√
n+ 1eiωt|n+ 1〉, a|n〉 = √

ne−iωt|n− 1〉, (8.14)

so that a†kλ creates a photon in the mode (k, λ) while akλ removes one such photon. The number operator Nkλ =

a†kλakλ counts the number of photons in mode (k, λ):

Nkλ| . . . , nkλ, . . .〉 = nkλ| . . . , nkλ, . . .〉. (8.15)

The QM operator for the vector potential can now be expressed via creation and annihilation operators:

A =
∑
kλ

ekλ

√
�

2ε0V ωk
[akλe

ik·r + a†kλe
−ik·r]. (8.16)

Calculating the Hamilton-operator in the same way as the classical procedure then yields:

H =
1

2

∑
kλ

(akλa
†
kλ + a†kλakλ). (8.17)

Note that we cannot any longer freely exchange the order of a and a†, since they are operators that do not commute.
Instead, we get:

H = E0 +
∑
kλ

�ωka
†
kλakλ where E0 =

1

2

∑
kλ

�ωk.

Here, E0 is the ground-state energy (sometimes referred to as the zero-point energy) of the radiation field. Note that
the generator for the electric field E is obtained via E = −∂tA. The constant E0 can usually simply be removed
since we can choose the reference level for energy where we like. However, there are interesting exceptions such as
the Casimir effect. The essence of this phenomenon is that altering the geometry of a system (such as two metallic
plates) changes the allowed frequency spectrum {ωkλ} and thus changes E0. If E0 is reduced, it causes the system
to try to alter its geometry, leading e.g. to an attraction of the metallic plates.

B. Coherent states

If we compute the expectation value of E in a state |nkλ〉 for a mode of the radiation field, we obtain

〈nkλ|E |nkλ〉 = 0, (8.18)
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since 〈n|a|n〉 = 〈n|a†|n〉 = 0. That does not seem very encouraging in terms of correctly describing an EM
wave. The question becomes: what kind of QM state for the radiation field gives a description which seems more
reconcilable with the classical picture?

Our previous treatment of a harmonic oscillator again provides the solution: coherent states |α〉 =
∑∞

n=0 cn|n〉
corresponded to a classical oscillation. Due to our established analogy between the QM treatment of the A field
and a harmonic oscillator, we can in the same way construct coherent photon states for each mode (k, λ). Using
our previously derived result

〈α|a|α〉 = αe−iωt, 〈α|a†|α〉 = a∗eiωt, (8.19)

it follows that the expectation value of the electric field operator E in a coherent state for the mode (k, λ) becomes:

〈α|E |α〉 = iekλ

√
�ωk

2ε0V
[αeik·r−iωkt − α∗e−ik·r+iωkt]. (8.20)

The correspondence to a classical harmonic wave becomes more clear if we write α = |α|eiΘ:

〈α|E |α〉 = −ekλ

√
2�ωk

ε0V
|α| sin(k · r − ωkt+Θ). (8.21)

The importance of coherent states lies not only in the fact that they provide a clear, formal similarity between
the expectation value of E in the QM treatment and a classical wave, but also because a monochromatic (fixed
wavelength) laser can generate such coherent excitations. Thus, these states have direct experimental relevance.
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An interesting observation is that the standard deviation:

∆E =

√
〈E2〉 − 〈E〉2 (8.22)

from the expectation value is independent of the field amplitude α. One finds ∆E =
√

�ωk

2ε0V
which thus becomes

less and less relevant as 〈E〉 increases as shown in the figure.

〈E〉

t

∆E

We can also compute the average number of photons in a coherent state |α〉 for the mode (k, λ):

〈n〉 = 〈α|Nkλ|α〉 = |α|2. (8.23)

The entire distribution of photons [the probability P (n) to find the mode excited with n photons] is found in the
usual way: projecting the total state |α〉 on the state |n〉 with n photons,

P (n) = |〈n|α〉|2 = e−|α|2 |α|2n
n!

. (8.24)

The photon-number in a monochromatic coherent state is thus Poisson-distributed:

P (n) = e−〈n〉 〈n〉n
n!

. (8.25)

C. Fully quantized radiation theory

We are now in a position to treat both subsystems which are part of radiation theory (atoms and photons) quantum
mechanically. We do so using perturbation theory. The unperturbed Hamiltonian H0 contains no interaction
between the two subsystems. We may then write the total state as the product of independent states for each part.
It is natural to use the energy states as basis vectors:

|atomic + photon system〉 = |atomic system〉 · |radiation field〉 = |ψ〉 · |nk1,λ1
, nk2,λ2

, . . .〉. (8.26)

The two subsystems are coupled via interaction terms such as

H ′
1 = − q

m
A · p̂ and H ′

3 = − q

m
S · (∇×A), (8.27)

causing transitions between the unperturbed states. The transition rates can be computed via time-dependent
perturbation theory. We now consider some examples.

Spontaneous and stimulated emission.
Spontaneous (stimulated) emission is the emission of light from an excited atom in the absence (presence) of
photons in the initial state. Let (k, λ) be wavevector and polarization for the emitted photon. The excited state
|ψ2(t)〉 has energy E2 and the final state |ψ1(t)〉 has energy E1. Thus, we may write:

|i〉 = |ψ2〉 · | . . . , nkλ, . . .〉, |f〉 = |ψ1〉 · | . . . , nkλ + 1, . . .〉. (8.28)

Assume that the dominant perturbation term is:

H ′
1 =

e

m
A · p̂ =

e

m

∑
kλ

√
�

2V ε0ωk
[akλe

ik·r + a†kλe
−ik·r]ekλ · p̂. (8.29)
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Matrix elements involving the photon states are simple since only the term with a†kλ contributes:

〈. . . , nkλ + 1, . . . |H ′
1| . . . , nkλ, . . .〉 =

e

m

√
�

2V ε0ωk
e−ik·r+iωkt

√
nkλ + 1(ekλ · p). (8.30)

This means that (now including the time dependence from |ψi〉):

〈f |H ′
1|i〉 =

e

m

√
�(nkλ + 1)

2V ε0ωk
ekλ ·Me−i(E2−E1−�ωk)t/�, (8.31)

where M = 〈ψ1|e−ik·rp|ψ2〉. Using our results derived previously in chapter 4 for the transition rate between
two states, we obtain:

W2→1 =
2π

�
e2

m2

�
2V ε0ωk

(nkλ + 1)|ekλ ·M |2δ(E2 − E1 − �ωk). (8.32)

The δ-function ensures energy conservation. We can also obtain the total transition rate from atomic state 2 to
atomic state 1, regardless of the mode of the emitted photon, by performing a summation over all possible modes.
We use that there are V/(2π)3d3k modes with wavevector k in the element d3k for a given polarization, which
yields:

ω2→1 =
∑
λ

∫
W2→1V

d3k

(2π)3

=
e2

m2

∑
λ

∫
d3k

(2π)3
π

ε0ωk
(nkλ + 1)δ(E2 − E1 − �ωk)|ekλ ·M |2. (8.33)

Using that d3k = dk = 2π sin θdθk2dk and δ(E2 − E1 − �ωk) = δ(�ω21 − �kc) where �ω21 ≡ E2 − E1, we
obtain

ω2→1 =
∑
λ

e2ω21

4πε0m2�c3

∫ π

0

sin θdθ|ekλ ·M |2(nkλ + 1), (8.34)

where k = ω21/c. The angle θ specifies the direction of k relative M as shown in the figure.

k

M
θ

ek1

ek2

Spontaneous emission.
Let us for now focus on the case of spontaneous emission nkλ = 0. The summation over polarization directions is
easy if we assume that ek1 lies in the plane spanned by k and M , so that ek2 is ⊥ this plane. Since ek2 ⊥ M , we
obtain

∑
λ

|ekλ ·M |2 = |ek1 ·M |2 = sin2 θ|M |2. (8.35)

Performing the resulting angular integration yields as our final result:

ω2→1 =
e2ω21

3πε0m2�c3
|〈ψ1|e−ik·rp|ψ2〉|2. (8.36)

The name "spontaneous emission" was given during a time when one believed that the process was truly not
caused by any interaction. We now see that this point of view is incorrect: the emission occurs as a result of
stimulation by the EM field in vacuum.

Stimulated emission.
By setting nkλ = 0 in the factor (nkλ + 1), we omitted the possibility of stimulated emission: the presence of
photons. A key difference from spontaneous emission is that stimulated photons will have the same direction and
polarization as the stimulation, rather than being arbitrary. This is a crucial principle behind how a laser works.
The opposite process, stimulated absorption, has a transition rate proportional to nkλ since:

|〈nkλ − 1|akλ|nkλ〉|2 = nkλ. (8.37)
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IX. DENSITY MATRIX AND QUANTUM STATISTICS

The lecture notes forming the basis for this chapter follow roughly the same structure as the beginning of the
corresponding chapters in "Quantum Mechanics" by Bransden & Joachain.

Learning goals. After reading this chapter, the student should:

• Be able to describe the difference between mixed states and pure states (in particular a superposition of
states).

• Know how to define the density matrix, density operator, and how these quantities can be used to tell apart
mixed states from pure states and compute expectation values of operators.

• Be able to qualitatively sketch how information about the polarization of a spin-1/2 system can be obtained
using the density matrix.

So far, we have considered quantum systems described by a single wavefunction (or state vector). Such systems
are said to be in a pure state. These have been assumed prepared in a specific way so that the state vector is
completely known. We will now study quantum systems that have states which are incompletely known: mixed
states. Instead of a single wavefunction, one must use a statistical mixture of wavefunctions to describe such
systems.

Thus: quantum statistics dealing with such quantum systems as mixed states is the quantum analogue of classical
statistical mechanics. A crucial fact that must be strongly emphasized is:

A mixed state is not the same as a superposition of states.

Let us illustrate this with a concrete example. Two identical boxes A and B contain a large number of spin-1/2
particles.

A B

100% of the particles are

in the state 1√
2
(|+〉z + |−〉z)

50% of the particles are in state |+〉z
50% of the particles are in state |−〉z

Which statement is then true?

1. The boxes are the same: the difference is just semantics.

2. The boxes are technically different, but experimentally indistinguishable.

3. The boxes are experimentally different.

Take a minute to think about this. The correct answer is 3, since A is in a pure state (superposition of states) while
B is in a mixed state. We can prove this as follows.

Consider a so-called Stern-Gerlach (S-G) device which effectively measures spin in a given direction. If we use a
S-G device oriented in the z-direction, A and B give identical results. However, if the S-G device is oriented in the
x-direction (so that it measures spin polarized along the x-axis), all particles in box A are measured to be spin-up
whereas approximately half the particles in box B are measured to be spin-up. The other half in box B is measured
to be spin-down. In effect, boxes A and B give experimentally different results. This can be understood by noting
that |+〉z + |−〉z is the +�/2 eigenstate of Ŝx while |+〉z and |−〉z individually may be written as 50-50 linear
combinations of the ±�/2 eigenstates of Ŝx, in effect:

|+〉z =
(|+〉z + |−〉z) + (|+〉z − |−〉z)

2
. (9.1)

In order to be able to distinguish clearly mathematically between pure states (which can be superpositions) and
mixed states, we will begin by introducing the density matrix formalism. As a concrete application, we shall
analyze spin-1/2 particles.
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A. The density matrix

Consider a system consisting of an ensemble (collection) of N sub-systems α = 1, 2, . . . N . Suppose that each
sub-system is described by a pure state ψ(α). Using Dirac notation, we denote this pure state by |α〉. All state
vectors are assumed normalized to unity, but need not be orthogonal to each other.

Next, select a complete set of basis vectors |n〉, i.e. orthonormal eigenvectors of some complete set of operators.
We then know that 〈n′|n〉 = δn′n and

∑
n |n〉〈n| = 1. We expand the pure state |α〉 in these basis states |n〉:

|α〉 =
∑
n

c(α)n |n〉 → c(α)n = 〈n|α〉. (9.2)

Moreover, since 〈α|α〉 = 1 → ∑
n |c

(α)
n |2 = 1. Consider an observable represented by an operator A. The

expectation value in state |α〉:

〈A〉α = 〈α|A|α〉 =
∑
nn′

〈n|α〉〈α|n′〉〈n′|A|n〉. (9.3)

Now, the average value of A in the ensemble of pure states is called the ensemble (or statistical) average of A and
is given by:

〈A〉 =
N∑

α=1

Wα〈A〉α (9.4)

where Wα is the statistical weight of each pure state |α〉, i.e. the probability of finding the system in this state
(0 ≤ Wα ≤ 1). Clearly,

∑N
α=1 Wα = 1. We then have:

〈A〉 =
N∑

α=1

∑
nn′

〈n|α〉Wα〈α|n′〉〈n′|A|n〉. (9.5)

Let us now introduce the density operator ρ̂:

ρ̂ =

N∑
α=1

|α〉Wα〈α|. (9.6)

Taking matrix elements of the density operator between basis states |n〉, we obtain the density matrix ρ in the {n}
representation whose elements are:

ρnn′ ≡ 〈n|ρ̂|n′〉

=
N∑

α=1

〈n|α〉Wα〈α|n′〉 =
N∑

α=1

Wα[c
(α)
n′ ]∗c(α)n . (9.7)

We emphasize that we are denoting the density operator by ρ̂ while the density matrix is ρ. Note that the density
operator is independent of the choice of the representation, but the density matrix has a different form in different
representations. We can thus express 〈A〉 as follows:

〈A〉 =
N∑

α=1

∑
nn′

Wα[c
(α)
n′ ]∗c(α)n 〈n′|A|n〉

=
∑
nn′

〈n|ρ̂|n′〉〈n′|A|n〉

=
∑
n

〈n|ρ̂A|n〉

= Tr(ρA) (9.8)

according to our definition of the matrix elements Eq. (9.7). We have then found that:

Knowing the density matrix enables us to obtain the ensemble average of a quantity A.



8383

density matrix and quantum statistiCsINTERMEDIATE QUANTUM MECHANICS

83

We see that a normalization condition Tr(ρ) = 1 is obtained by setting A = 1 (identity operator). If we had pure
states |α〉 that were not normalized to unity, then the calculation would have given:

〈A〉 = Tr(ρA)

Tr(ρ)
. (9.9)

The density matrix is Hermitian, as seen from its definition: 〈n|ρ̂|n′〉 = 〈n′|ρ̂|n〉∗.

A consequence of this is that we can always diagonalize ρ by means of a unitary transformation. Its diagonal
elements ρnn =

∑N
α=1 Wα|c(α)n |2 have a simple physical interpretation. They are the probability of finding a

member of the ensemble in the pure state |n〉. We also see from the equations that ρnn ≥ 0: ρ̂ is a so-called
positive semi-definite operator.

Since Tr(ρ) = 1 and ρnn ≥ 0, it follows that 0 ≤ ρnn ≤ 1. Moreover, Tr(ρ2) ≤ Tr(ρ) = 1 because of this.
This relation holds regardless of which representation we write the density matrix in, since Tr is invariant under a
unitary transformation due to its cyclic property:

Tr(UρU†) = Tr(UU†ρ) = Tr(ρ). (9.10)

Consider the special case such that the system is in a particular pure states |λ〉. Then, Wα = δαλ and from our
definition ρ̂ =

∑N
α=1 |α〉Wα〈α|, we have ρ̂λ ≡ ρ̂ = |λ〉〈λ|. This is called a projection operator onto the state |λ〉

which satisfies (ρλ)2 = ρλ → Tr[(ρλ)2] = Tr(ρλ) = 1.

The equation Tr[(ρλ)2] = 1 in fact gives us a criterion for deciding whether a state is pure or not, and this criterion
is invariant under all unitary transformations since Tr is invariant under these. It also follows that

Tr(ρλA) =
∑
nn′

〈n|ρ̂λ|n′〉〈n′|A|n〉 = 〈λ|A|λ〉. (9.11)
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Suppose that we use a representation {|k〉} in which ρλ is diagonal. Then, the above equation is satisfied if:

ρλkk = δkλ. (9.12)

Then, ρλ only has one non-vanishing matrix element which is equal to 1 in the λ-th row and column. In turn,
this means that all eigenvalues of the pure state density matrix ρλ are equal to zero in any representation except
one eigenvalue which is equal to unity (since eigenvalues don’t change under unitary transformations). This is an
equivalent way of characterizing a pure state via the density matrix.

Upon labelling the rows and columns of ρ with indices n and n′, both n and n′ generally refer to a set of indices
(such as quantum numbers). Often times, however, we are only interested in a particular property of the system,
such as its spin. We then omit the dependence of ρ on all other variables, keeping only the relevant spin variables
and in this manner define a reduced density matrix.

B. Spin 1/2 system density matrices and polarization

We shall now apply the general methods presented above on the case of spin-1/2 particles, e.g. a beam of electrons.
The pure states of a spin-1/2 particle are labelled by momentum eigenvalues (px, py, pz) and the spin projection
eigenvalues ms� with ms = ±1/2. Let z be the quantization axis. The states are then |px, py, pz,ms〉 and the
density matrix elements are:

〈n|ρ̂|n′〉 = 〈px, py, pz,ms|ρ̂|p′x, p′y, p′z,m′
s〉. (9.13)

The momentum indices are continuous whereas the spin indices are discrete. We focus here on the spin properties
- disregard the momentum labels and look at the reduced density matrix 〈ms|ρ̂|m′

s〉, which then is a 2× 2 matrix
in spin space.

Consider two beams of electrons. One beam has Na electrons in the pure state |χa〉. The other beam has Nb

electrons in the pure state |χb〉. The density operator describing the joint beam is:

ρ̂ = Wα|χa〉〈χa|+Wb|χb〉〈χb| (9.14)

where the statistical weights are

Wa =
Na

Na +Nb
, Wb =

Nb

Na +Nb
. (9.15)

We now choose a basis set of two states |χ1〉 and |χ2〉, for instance the two basic spinors:

|χ1〉 =
[
1
0

]
, |χ2〉 =

[
0
1

]
(9.16)

and expand our pure states in terms of these:

|χa〉 = ca1 |χ1〉+ ca2 |χ2〉, |χb〉 = cb1|χ1〉+ cb2|χ2〉. (9.17)

It follows that the density matrix in the {|χi〉} representation is given by

ρ =

[
Wa|ca1 |2 +Wb|cb1|2 Wac

a
1(c

a
2)

∗ +Wbc
b
1(c

b
2)

∗

Wa(c
a
1)

∗ca2 +Wb(c
b
1)

∗cb2 Wa|ca2 |2 +Wb|cb2|2
]
. (9.18)

If our mixture consisted of N1 electrons in the |χa〉 = |χ1〉 state and N2 electrons in the |χb〉 = |χ2〉 state, the
joint beam would be represented by the density operator

ρ̂ = W1|χ1〉〈χ1|+W2|χ2〉〈χ2| (9.19)

where W1 = N1/(N1 + N2) and W2 = N2/(N1 + N2). Since now ca1 = cb2 = 1 and cb1 = ca2 = 0, the density
matrix becomes diagonal in the {|χi〉} representation:

ρ =

[
W1 0
0 W2

]
. (9.20)
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Polarization.
Let ρ be a general 2×2 density matrix describing a spin-1/2 system. The unit matrix and three Pauli matrices form
a complete set of 2× 2 matrices, so we may write in general

ρ = a0I + axσx + ayσy + azσy = a0I + a · σ. (9.21)

Here, {a0, ax, ay, az} are presently unknown parameters and I is the identity matrix. Since we know that
Tr(ρ) = 1 is always satisfied, it follows that a0 = 1/2 by using TrI=2 and Trσi = 0.

The coefficients ai, i = x, y, z give information about the polarization of the mixture of states described by ρ. To
see this, first note that 〈σi〉 = Tr(ρσi) as we have previously derived. Inserting our general expression for ρ and
using that Tr(σiσj) = 2δij , we find 〈σi〉 = 2ai. We can then write:

ρ =
1

2
(I + σ · P ) (9.22)

where P = 〈�σ〉 is the polarization vector. Since ρ is Hermitian, we may always diagonalize it by choosing an
appropriate set of basis states. We have

ρ =
1

2

[
1 + Pz Px − iPy

Px + iPy 1− Pz

]
→ ρdiag =

1

2

[
1 + P 0

0 1− P

]
, (9.23)

where P ≡ ±|P | = ±
√
P 2
x + P 2

y + P 2
z . We see that in the representation where ρ is diagonal, one has Px =

Py = 0 and P = Pz . Thus, if we let | ↑〉 and | ↓〉 correspond to the kets for spin-up and spin-down with P along
the z-axis, we obtain:

σ · P | ↑〉 = P | ↑〉, σ · P | ↓〉 = −P | ↓〉. (9.24)

We previously established the physical interpretation of the elements ρnn: the probability of finding a member of
the ensemble in the pure state |n〉. It follows in our case that (1 +P )/2 is the probability of finding in our mixture
the pure states with spin-up along P .

This probability may also be expressed as N+/(N+ +N−) where N± is the number of spin measurements giving
the value ±�/2 in the P -direction. It follows that

1

2
(1± P ) =

N±
N+ +N−

→ P =
N+ −N−
N+ +N−

. (9.25)

In effect, we have proven that the polarization P is quite naturally the probability of finding the system in the state
| ↑〉 minus the probability of finding the system in the state | ↓〉.

If P = 0, then ρ = diag(1/2, 1/2) and the system is in a completely unpolarized and random state. In contrast,
we have previously shown that if ρ2 = ρ, the system is in a pure state. When is this the case? We see that:

ρ2 = [
1

2
(I + σ · P )]2 =

1

4
(I + 2σ · P + P 2). (9.26)

This is equal to 1
2 (I +σ ·P ) if P 2 = 1, which means that there are two pure states corresponding to P = +1 and

P = −1. The physical interpretation is clear: the system is then totally polarized in the direction of P (P = +1)
or oppositely to P (P = −1). The corresponding density matrices for pure states with spin projection ±�/2 along
z is:

ρ =

[
1 0
0 0

]
for P = +1 and ρ =

[
0 0
0 1

]
for P = −1. (9.27)

For intermediate values, 0 < |P | < 1, the system is partially polarized. We conclude this analysis of spin-
1/2 systems by commenting on the number of parameters required to determine the density matrix. From our
parametrization ρ = 1

2 (I + σ · P ), it is clear that the 2 × 2 density matrix for a spin-1/2 mixed state is entirely
specified by three real independent parameters P = (Px, Py, Pz). In effect, three independent measurements are
required to determine ρ for a spin-1/2 system. On the other hand, in the special case of pure states, our previous
discussion showed that P 2 = 1 is satisfied. This means that only two real independent parameters are required in
that case since the third is fixed by the condition P 2 = 1.


