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Preface

In this book, I show how agents can learn private information about partners

from asset prices by analyzing the arbitrage opportunities of financial markets. I
show that we can define an equilibrium that embeds the way agents infer informa-
tion from asset prices. Its properties will are presented under asymmetric informa-
tion conditions. Such unobserved information improves output distribution by im-
proving agents’ ability to perceive relative prices. This can help to reduce the
social loss usually encountered through the variance of local output that arises
from perception errors at the local level regarding the general price level. Some
settings of prospective and contemporaneous feedback rules increase such price-
perception errors, while other settings enable very low price-perception errors, and
also produce arbitrarily high inflation forecasts.
The benefits of hierarchy flow from the fact that it attenuates opportunism, limits
the problem stemming from bounded rationality, and reduces bargaining cost de-
riving from asset-specificity; this explains why free agents have chosen to re-
nounce part of their freedom of action. We model how cooperation and trust
emerge and shift adaptively as relations evolve in a context of a system of buyer-
supplier relations. The methodology of adaptive agents seems to deal with this in-
terrelated structure of processes of interaction in which future decisions are
adapted to past experience. A model is developed in which interactions between
agents—in the making and breaking of relations on the basis of a bounded ra-
tional, adaptive and mutual evaluation of transaction partners—takes into account
trust, costs, and utility.

We analyze the existence of such equilibria in economies having a measured
space of agents and a continuum of agents and commodities. Excessive homoge-
neity with respect to agent productivity leads to instability and non-uniqueness of
a given stationary state and the indeterminacy of the corresponding stationary state
equilibrium. Sufficient heterogeneity leads to global saddle-path stability, unique-
ness of a given stationary state and the global uniqueness of the corresponding
equilibrium. The variety and variance of agent capabilities is reflected in such
constructions as culture, social relations, ideology, politics, and preferences that
change continuously with historical development. Information variety is an effica-
cious companion of systemic variety, and can support the performance of an
economy, and can be an economically efficient cradle for adaptation to environ-
mental and individual change and systemic evolution.

This book is founded on the research supported by grant VEGA of Slovak Re-
public No. 1/223/04.

Jaroslav Zajac, Bratislava, Slovakia, May 2006
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1 Rational Expectations of Efficiency and
Incentive Schemes

It is in general necessary to use contemporaneous and prospective feedback
policy to get on the efficient frontier as well as to move along it. Agents may op-
erate limited financial transfers across periods and states via finitely many nomi-
nal assets. Each consumer receives a private information signal about which state
will prevail at the next period. This is the main reason why agents may need to re-
fine their information up to an information structure precluding arbitrage. We pre-
sent the framework and recall the concepts of arbitrage-free information struc-
tures, refinements, and no-arbitrage prices. We also define the notion of
equilibrium in an asymmetric setting, which explicitly presents consumers’ behav-
ior and the need for a refinement of information when it is not arbitrage-free at the

. . S, . .

outset. We show that every information structure ( l)has a unique coarsest arbi-
) S, . : .

trage-free refinement, denoted by “"!/, which does not contain any wrong signals

_ 'S =N, S, , :
since ﬂ’ ! ﬂ’ ‘, such that ~* coincides with agents’ pooled information,
market completeness and symmetric information.

When the initial information structure (Si)is arbitrage-free, consumers may
keep their initial information sets. Hence, agents may always update their beliefs
through prices, and neither the presence of another agent, nor any knowledge of
other agents’ characteristics is required. Constant risk aversion and a stationary
state of technology imply that a market maker can observe outcome paths of the
optimal incentive scheme in profits by imposing the additional assumption that the
market maker observes only the time path of total profits. By subtracting total

profits at time =1 from total profits at time ¢, he can easily compute the incre-
ment in profits. The market maker is thus able to recover the time paths and im-
plement the same solution he would if he could observe these time paths directly.
Based on the profit values that are associated with different outcomes in a given
period, this may even be possible if he observes only the cumulative final value of
total profits. Moreover, by the time he observes this aggregate, the agent may have
destroyed some profits by actually realizing them. The stationary of solutions to
the time problem plays no role, and the agent controls the drift rate vector of a
multi-dimensional Brownian motion with a diffusion process. To relate the differ-
ent processes, we consider the deviations of the processes of counting variables in
the time model from some suitably chosen norms and show that they converge to a
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Brownian motion as period length goes to zero. If the market maker fully observes
the time paths of outcomes, an optimal incentive scheme can be present if the
market maker wants to implement action in the relative interior of the admissible
set and if the agent’s effort costs depend only on the drift in cumulative total prof-
its that is induced by his actions. A compact set of admissible controls for the im-
plementation of a boundary action, which is subject to weaker incentive compati-
bility requirements, provides scope for reducing the agent’s risk. The incentive
scheme is approximately optimal if the market maker only observes cumulative
total profits (possibly after some profits have been destroyed by the agent).

Rational Expectations and Efficiency

A simple way to represent the systematic components of the supply of 7, is
m, = [V, + &, + P,

1
where the # 5 represent responses 10 =1 shocks which were unobserved

during period t "1, but will be assumed to be known during period ¢, following

Bali and Thurston (2002). The parameter ¢ is interest rate information based on

: . . i . L =c, -
interest rate policy; the coefficient on * will take the form €2 =6 ¢ The
model is:

D, =Ty + TV, + &, + TgVi o T gy
L, =Tyt TV, T & + 73V, + 74€,
Yo =T ¥ Vi ¥ Tn&, + T3V + 048,

The 7 ’s must follow:

! ! !
_ a6 - 70(“161 * Cz) G, —Nao _ - al(l - ﬂ1) - V1%
00 = > o1 - s Ty =
a, d d
1 1 Yo~ b ~1-7¢(-o,)
Ty = o Ty = s Ty = s Iy =
!
1-¢ l-c, a, d
__71(1_a0)_a1,30 M _ T H _
Ty = s T3 = T Ty = s Ty =70
d 1-c, 1-c,

71[a1+cé(1—a0)] u =71al[ﬁoal_(1_/81)(1'ao)]

T =
21 > 22
d d
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where
d= al(]‘_ ﬁl)[l + 7/1C1(1 - 0‘0)]"’ 71[0‘1 + C;(l" 0{0)]+ alﬂO(C; - 71C1a1)
and C; =G —¢.

We consider that agents’ forecasts of future prices are determined on the basis

of period ¢ information, ¢ ( ! ”), the interest rate is a signal in the output equa-
tion, and the authorities have no information advantage over the public. The policy
objective has been to minimize the variance of the zth-island price-perception er-

ror b EZ” (p ! ), or equivalently to minimize the variance of zth-island output
deviation from the local full-information level. An obvious source of inefficiency
in bond markets is forecast error in real interest rate projections, which is entirely
due in this context to the uncertainty and heterogeneity of inflation forecasts.
These errors create uncertainty about returns from lending, and costs of borrowing
over time. They create a wedge between expected and perceived returns across is-
lands. We take notion of the zth-island forecast error in aggregate inflation fore-
casting and apply it to:

(pz+1 - P:) -E,, (Pm - Pz) =TV t Tp€a t (”03 - 7701)‘1 + (”04 - ”oz)gt

m_Et_l(pf) _IBI[it _Et—l(iz)]

whose variance is conditional on information available at ¢, which induces the
following interest rate observation:

2 2| 2
v, = [7701 + (71'03 =y = BoFtor = 181”11) JJV

2 2] 2
+ [”02 + (7704 = oy = BoToy = ﬂ17[12) ]O-e +

_180 bt

2 2
Oo-z

[1+7(-a)f .

The last term on the right side of this equation is the variance of inflationary
expectations as they differ across markets, while the first two terms combined rep-
resent the errors in inflation common to all islands. The setting is in effect just
that, which makes the interest rate shock irrelevant as a signal about relative price.
Rules of this type make output and price outcomes independent of policy settings,
and are in general socially inferior to interest rate policies that are accompanied by
specified money processes.
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Coalition Structure

Majumdar and Rotar (2000) consider the case of » random agents. A subset S
containing an agent i is a dependency neighborhood of i if i is independent of all

agents not in S . If the agents are stochastically independent, for each agent i, one

S,:

[ ) . E
has 7! { } Consider a sequence of economies ~ " where the number of ele-
ments in the dependency neighborhoods of any agent remains the same as n gets

larger, and let us take a sequence of prices Pr such that we expect excess de-

p

mands in E, at prices . If Zis the total amount of control produced by all

Z - c(z)

agents, then the payoff to some region that produces z of it is , where

C(Z) gives the cost its generation involves. If all agents agree to this arrangement,
this results in a coalition, which is then bound to jointly decide on extent of its
control activity. Ray and Vohra (2001) assumed the free-rider problem across the
agents in a coalition to be solved by the act of signing such a binding agreement.
The aggregate payoff to coalition S with cardinality s when each of its members

produces z is S[Sz - C(Z) * Z“'], where Z, , is the aggregate level of agents not
included in S. The problem facing a coalition with cardinality s is to produce con-

trol of z per member, where z solves max sz = C(Z). All the interest centers on a

description of which coalition structure will actually form, because a coalition
agreement may specify not just production levels but also transfers across coali-
tion members. In such a structure, a coalition of size s will produce z = s per
L.
5 —s
member or S in all, and will incur a cost per agent of 2 . It follows, that if

. R R n=135,5,....,8
there are m coalitions with sizes { 1272500

enjoy a payoff per agent of

n) then a coalition of size s will

The reason is that the asymmetric payoftf per agent to the coalition would al-
ways dominate the payoffs for such a structure. So while there may be some inef-
ficiency as the number of agents grows, and while enlarging the ability of coali-
tions to divide their surplus unequally makes no difference, the exercise has value
ex post when some agent has already committed to standing alone but is open to
re-negotiation. Let z(s) be its output per agent:

f(s) = sz(s), hls) = e(ls)), 8(s)= f(s)-hls)
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If f(s) denotes the aggregate output of coalition s, A(s) the corresponding cost
per member, and g(s) the payoff per member from the activity of the coalition

w = . .
structure mJ then the average worth of the agent in S is

o(s,7)= 3 £ls,)-

Because all worth depends only on the sizes of the coalitions involved, we can
note that

afs,n) =i ( ) h(s)

j=1

bl

where n is some numerical coalition structure and SEM  Let

=1'

}be a collection of increasing positive integers, where "y

For any integer /7 = 2, we define the 7 decomposition of a as a collection
s(n) = (t,eeen.

where (tl’ """ ’t") is the T decomposition of If
d(n) = (nl,....,nk), where k = 2, then n, = n,

o i E ek i IFT = (e e }’

mo=1 my=2 . My< 2m,, for all i = 2.

then

This means that

f (m) & (m) > 8 (Zm) Suppose that the number of agents is a and the grand
coalition does not form. The equilibrium coalition structure is

d(n) = (n,,.....,n, ), where k = 2, then o Al
i, j EQ,.....k} and n, > n/2

, and a coalition S that forms will do so with the

intention of maximizing its average worth, which we have denoted by a(S’”).
This prediction is assisted by the understanding that other coalitions, when they
form, will have the same motivation as S does. Full efficiency also obtains if the
number of agents does not exceed some upper bound. Then the initial range of
populations for which full efficiency obtains is just all the values of n for which a
single agent does not want to be on its own under the assumption that all the other
agents stay together. This boils down to the condition that

f (n _1)+ g (1) =8 (n) The cost function takes the constant elasticity form

tod
C(Z) _( a)z for some @ > 1. This is equivalent to the requirement that
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An-1) -n* +1=0

> where A= a/(a - 1)' For each n, let e(n) denote the

k <log,n+1.

ratio of equilibrium to potential surplus, then This shows that the
coalition structure of the algorithm conforms to the equilibrium and thus the algo-
rithm follows. Formally, to each integer n we assign a choice of integer

T(n) < {1""" n} ; applying T to n and then repeatedly to n= T(n) will allow us

to break up any integer n into a numerical structure. Let C(n’T) denote this nu-
merical structure.

Set T(1)=1.
Recursively, for any integer n > 1, suppose that we have defined

T(m) for all m ={l,...,n-1}  Choose T(n)

{1"""”} that maximizes a{t’tc( -t T)} Let & (n) be this maximum value.
Complete this recursive definition so that T is now defined on all the positive
integers. Define a numerical coalition structure for a situation with » agents as

c(n,T)‘

Imagine a game involving agents i and j. Goering, et al. (1999) assume

i,j=12, buti=j
T, = f(xi,xj

where the conjecture v symbolizes the perception the agent-manager of the ith
agent has concerning the way the agent-manager of the jth agent will react to a
change in the ith agent’s second stage choice variable, x. Assume strict concavity

to be the largest integer ¢ in

, and describe a second stage profit function:

ViV,

X . . X
in ¢ and assume that for the rival’s choice of 7, we have

f, =0, fx,‘x‘ < 0.
and v

In the second stage, the conjectures J enter as parameters in the

agent’s maximization, and =f ( ( ) (VI’V ))

If agents lack information on how rivals choose managers, the following de-
scribes the first-order conditions facing agents maximizing first stage profits:

i

drv,v ox;
_(l’_) = f +f, —L=0
dv, v, T v,
and this simplifies to the first equality:
ax;/dv,  ox;

v, =
ax, /ov,  ox,

We identify the agent with respect to i , producing
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ax, Ty
i
axi XiX;

Implicitly differentiating these first-order conditions, we get

ox .

Jo_ J j
- Z”x]x[ﬂx,-vj

v,
ox. . )
ubdht Sy j
oy - Zﬁxjx]ﬂ-x,v[
i , where
1
T j i j
ﬂx,xiﬂ’-xjx} —ﬂ.x,x-ﬂ.x x

7 7% This illustration of the fruitfulness of examin-
ing joint equilibrium results in first-order conditions isomorphic to the consistent
conjectures condition as an exogenous constraint on such an equilibrium. Mone-

. =nr\a,.a . . a.
tary payments, = ¥ ‘( le> 2‘) with action ¥, are assumed to be common

knowledge. Utility payoffs, Ui (ﬂ“ ’ EZ’), are regarded as private information, and
Mason and Philips (2001) assume utility functions are combinations of two mone-
tary payments:

Ui(ﬂlt’ﬂ21)= ﬂit +}/i7z-jt ] == 1,2

We allow for Vi 10 be drawn from a range of values between —1 and 1. Letting

! represent the weight agent / places on payoffs during one period, the dis-
counted flow of expected utility for the repeated game is:

Vi(Si) = EEUi(ﬂlzaﬂzz)5it7

where E is the expectation operator, and the agent’s goal is to maximize *:
maxV, =7z, +y7, + SEV, .,

Ay

>

V. . . E |.

where “ represents the agent’s value function for period ¢ and ’H represents

expectations taken at time ¢ concerning effects realized in ¢ + 1. Suppose that agent
at

i predicts agent j will choose ~# in period ¢ and that j’s period ¢ + 1 choice is tied

=s\a;,a;

a.
jrl 7 then agent

to period ¢ behavior according to the strategy

. . . a., .
"'s optimal period ¢ choice, "%, is:
aﬂiz(ai?’ajt)/aair +7,07,, (ai}aajt)/aair +E, [aﬂim/ajm +yiaﬂjt+1/aajt+1]
(aajz+0/aait)+ éEtla”im/aauu + 7ia7rj:+1/aaiz+1kaaiz+1/aiz) = 0'
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The solution to this difference equation determines agent i’s optimal strategy
for period ¢ action and period ¢ — 1 action. In the event that each agent knows the
other agent’s strategy, these Markov strategies lead to a Nash equilibrium for the

repeated game. At long-run equilibrium, agent i takes action ‘, and agent i cor-

rectly predicts that agent j will choose 4; , and agent i correctly identifies the im-
pact of i’s current action upon j’s next period action. If agents do not know their
rivals’ preferences, then each agent’s optimal action depends upon the strategy
they predict their rival will play. For these reasons each agent has an incentive to
devote time and energy to predicting each rival’s behavior; upon acquisition of
new information an agent will update her beliefs about all rivals. In this frame-
work an agent may be regarded as learning about either a rival’s preferences or be-
liefs, but the lack of common priors renders the successful construction of a Nash
equilibrium unlikely. The scope of possible functions from the set of histories to
the action set is so large as to render the analysis intractable. Each agent selects his
or her output based on the immediate financial reward and the potential informa-
tion that may accrue by obtaining more precise information on each rival’s behav-
ior. Describing the optimal strategy requires a formal description of belief forma-
tion. We assume that agents use Markov strategies:

a,=a; + ﬁiajt—l T8
and in the experimental design they take the form:

7zl.=(A—Ba.)al.—Bai2 . . o
/ for all i, and with these parameterizations, we may

describe the long-run equilibrium actions by:
(1 + 51771)[14 _B(l + 71)‘1; - ZBa;]“” 13251[7114 _B(1+ Vl)a; - 2B7/1a;] =0,
(1 + 52772)[‘4 _B(l + 72)a; - ZBaz] + 13152[7/2‘4 _B(1+ 7/2)‘1; - 2372‘1;] =0.

Let X be agent k’s choice in period ¢ (k =i or j) and let Vi be agent i’s predic-

tion of agent j’s period # choice, and 7 is the disturbance associated with agent
j’s choice; we denote agent j’s strategy as:
X, =0;+px,  tnx, +&,

and we obtain the following prediction rule with Ei (where E is expectation
operator) at the end of period £ - 1:

Vi = Et—lxjt =, + IBjxit—l LT
In essence, agent i is trying to identify the slopes and intercept of a plane in

Xig-p = Xjor = Xy . . 1o -
7 space; at the end of period ¢, agent i learns rival j’s period ¢

choice. Combined with the choices the agents made in period ¢ — 1, this determines

e Ky T X T Xy . . .
a point in space, and agent i then uses the information con-
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tained in this combination to revise prior beliefs regarding potential values of

(8, and n,)

i a. . ,
slopes and intercept * //. Based on the new information, the pre-

diction of *'7 at time ¢ is:
=a;,+ ,B]t w1 T %5
b

and the parameter Hi and the precision matrix R, are:
-1
:ut = Rl (Rt—l:ut—l + Xt—lxjt )’
R =R_ +rX_X,_
The evolution of these recursion relations depends on the data and the initial
conditions. Following Bala and Sorger (1998), we assume that each agent naively

predicts the future level of spillover to be the same as its current value, and then
chooses his educational investment to maximize discounted-temporal utility. Let

L={,..,N}

denote the set of agents in the society; for an agent ZEL, the

t=1;

: . h, =0
capital stock of the agent at time is represented by a number ¥ , where

a higher value of hy represents a greater stock of effective knowledge than a
lower value. The effective stock of knowledge in the next period is given by:

hi,t+1 = (1 - 5)hit + g, (hi)ait
s€(0,1)

where is the rate at which his capital will depreciate in the absence

=\h h
of learning effort, and * ( gives the human capital stocks of all

e Py
agents at time ¢, and g captures the spillover effects provided by other agents of

the society upon the marginal productivity of the agent’s learning effort % The
agents to the left and right of agent i plus agent j constitute the peer group fori. Let

h. . ) .
i denote the local average of capital for agent i at time ¢, 1. e.

—  h_, +h +h
hl.].=
3

i+1,¢

We assume:

q, (ht) (hz 1t’hz t’hl” f) (h h ) . The agent’s wages are assumed

to be competitively determined at @ per unit of effective knowledge, with con-
sumption given by:

Copn =R, = a){(l_ 5)hi,t + qi(hi,t _l;i,t)ait }

In the course of his lifetime, the agent faces the problem:
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max E'B (c”,l a)

hi,t+l =(1_5)h1t+q1< hlthll’

a;, € [0,1], t=1

Since every agent is simultaneously solving this optimization problem, i’s
learning behavior indirectly influences the capital stocks of the remaining agents

over time and vice versa. We suppose that each agent’s single period utility func-
tion u has a form given by:

u(cl-a)=c+0In(l-a)

. . a;
where @ > 05 2 parameter . Then each chooses an educational effort “° to
maximize his predicted discounted utility, given by:

2 34 omli=a,)
=wh g, s=z1
hi,s+1 = (1_ 5)h,'7s + ai,sai,si s=t

a,, € [0,1], s=t

The optimal strategy for the agents is to choose a learning effort @is < (0’1)
satisfying
; o\1-pll-o 0 1-6
a . =1- ( ﬁ( ))=1 ( ’B( ))forallszt

i,s
@i,s ﬂq (hz s i, ) .
If agents have to determine in advance their supply and demand in reaction to
different markets, we assume that there are k suppliers having marginal costs
which are normalized to zero, and that the suppliers do not have capacity con-
straints. Following Bolle (2001), we assume:
N(p,n)=n-mp, m=z0, n€[n,n|

where N is consumer, which may depend on the spot price p, and which has a
stochastic component n. Let us define

S(p) = i (o) 5.(p)=35,(p)

D(p) = Ed d_(p)= Zdj(p)

We get profits of suppliers and users according to:
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=)

6D, = [{oo= p (), (" (o)) )i

N . ()
So we can pose i’s maximization problem as one of choosing that p ,
which is maximizes

68, = [ O)Dp )+ n - mp* )= 5. (" 1) ki,

For every n.p * , we get the necessary conditions: .

D(p*)+ n-mp - S_i(p*)-k px[D'(px>— m-— S’_i(p*)] =0 or
slp )+ pD(p)-m-s(p7)|= 0.

Sufficient conditions for reply demand functions dj (p ) are given by:
-d (p)+(w-plS'(p)+m-d.,)=0

-2ls'(p)+ m-a. (p)]+ (w-p)s” -dl;[< 0

Summing for all j we get:

b = rm+rS’—(r—1)D/.
w—-p

The general solution for k> 0,7 >0,and k+ 1 > 2 is:

D=D{p < H{pat) =" w-p clv-pi" Dl T’)y(w-p)p-ﬁw-p)

k -1 -rof
T p-= pw-p)"D{(p)+bp7S,(w-p)

S=5%p)+S"(pab)=-
(P)+5"(prat) =" p-~

r r-1
o = }/=
with k+r-1 k+r—1’
where Dl(p) and Sl(w_ P)

D(p) = i}j;aip"
Sl(w - p) = zbi(w - p)i

>

are given by the series:
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a,=1,a,<0and by=1, b, <0; i =1.

with We get:

Dl(()) = Sl(w) =1, 0= Dl(p), Sl(p) sl O0=sp=w,

D)(p)<0, D/(p)<0; S(w-p)= _9 0, S/(w-p)<0,
a(w-p)

Di(p) =~ for p = w,

S/(w— p)— - for p — 0.

The functional form of the equilibrium is determined, and the equilibrium ex-
ists for every finite spread of autonomous demand, in contrast with the case of

competition with supply functions alone; however, there is no tendency for market
prices to converge to 0 if the spread of autonomous demand increases infinitely.

Asymmetric Information and Incomplete Markets

Cornet and De Boisdeffre (2002) consider an economy with private informa-
tion, and nominal assets in which there are finite sets 1, S, and J, respectively, of

agents, states of nature, and nominal assets. Each agent * ET pas private informa-
tion during a given period about the possible states of nature of the next period;
of S

. S,
that is, she knows that the true state will be in a subset * , and that the true

state will not belong to the complementary set of S; . Agents may operate finan-

!
cial transfers across states in S , by exchanging a finite number of nominal assets
JE€J , contingent on the realization of the state of nature. In the first period,
; L .S, CS .
each agent ! €1 has some private information ! about which states of the
world may occur in the next period, and agents are assumed to receive no wrong

. N Y, =®
information signals. A collection ( ! )’E’ such that = < 2’ is called

an information structure and E i 7 is said to be a refinement of (Si) . The order
)
> =2

relation ( i on the set of information structures is defined by

2 .
S c3 a3
! i for every i, and we say the non-empty subset /- is called

the pooled information of the information structure, and it is obtained by agents
when they decide to share their private information. Consider an economy where
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S =\5,,\S; }. .
the random state of nature ( 0’( l)l@) is the product of a component
S0 € 2 e

0 whose probability distribution is known and common to all agents,

= 2
and of components { . The individual risk of agent i, whose realization

5 is known by each agent I, is revealed to the other agents at the next period.

. o . S, CS . .
Each consumer i receives a private information set ! , and this information
may be refined to a set E i " The consumption sets, endowment and pref-
erences are defined conditional to the information set E" that each agent

may infer. The condmonal utility is defmed as follows:

w3, )- %n 12 Mx0)s)

s

and the economy can be summarized bjr the collection:

E= [(I7HSaJ)7V7(Si’Xi’ui’ei =

Blpar.3, )

The agent i will then maximize her utility in her budget set
defined as follows:

(x,2) €@ 2 x| p(0)[x,(0) - &,0)]
(p q,VE ) —qzl,VsEE .p(s [x(s (E X ]s Is)z,

A no-arbitrage financial equilibrium of the economy E is a collection

(5 M e b iy 07 0, ) 0

3

such that:
q €0 [V’(Si )] and (Si ) is self-attainable, that is, ﬂie’ S; = m’E’ S ;
. Sz ullS’ )
for every el , (x‘ ’Z’) maximizes the utility !
B/(p.q.V.S;).

21’61 X (S) = 21’6] ei(Si*XS) for every S€NerS;
Eia z =0

Agents have no private information at time I=¢ andwe propose refinements

in the budget set

bl

that agents can implement at equilibrium in a decentralized way through
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prices. By observing the given asset price q , each agent will infer the information
set S as the outcome of rational behavior, consisting in inferring the largest g-

. S, . L
arbitrage-free subset of ~! or any particular knowledge of characteristics of the
endowments and preferences of other agents. The equilibrium condition requires

that the revealed information structure Si be self-attainable, that is,
ﬂia Si = ﬂiEISi = ﬂiEISi‘
sier

. The assumption that the initial information sets

) convey no wrong information ensures that agents will make no wrong

* *

inferences at equilibrium. For every agent i€l , the strategy X0 Zi maximizes
Bz(p >q*7V7S:)’ with q‘ E Qc [V’<Sz )]

The structure [V’(Si)] is arbitrage-free if satisfies the following condition:

there is no (Zi)e(gﬁj)l such that E‘E’ z =0 and V[Si]Zi =0 for all
SAY

1€1 ang an % t, with at least one strict inequality. We suppose that the con-
dition of absence of bilateral future arbitrage opportunities holds, and define the

W) =R xR <[], R

U\

the utility in the budget set

by:

woAZa-Zalvlikal, | ore- e cbr)

. V.S, . . .
Given the structure [ ’( ’)], there is a unique coarsest element in S, denoted

by (§z [V7(Si)])i such that: <§i)ES , and (2‘ )S (S ) , for every i . The upper

mapping

bound of a finite family of information structures (2’ Ei , denoted by
h
Ik
(2 ):= V;—l(Eé ) Ei B Uh:lz
L - t 7 is defined by the relations ¢ for every
el

If the upper bound of a finite family of arbitrage-free information structures is

( ) ( 1 ) ( 2 )
=0 VD)
also an arbitrage-free information structure, then El El L/ s

. . . V. (S, ..
also an information structure. Given a structure [ ’( l)], we can define, in the set

S, the interval (§‘ )’ S , that is, the set of arbitrage-free refinements of (Si),
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which is then said to be fully-revealing when this interval is reduced to a unique
element.

V.S, . . . .
The structure [ ’( ’)] satisfies one of the following equivalent assertions:
the pooled refinement and the coarsest arbitrage-free refinement coincide,

(ii)i = (§t )i :

the coarsest arbitrage-free refinement (S" [V’ (Si )])l is symmetric;

every self-attainable arbitrage-free refinement of (S" ) is symmetric.
The following conditions are equivalent:

the financial markets are complete, that is rank V =#S :

for every information structure (S" ) , the structure [V’ (Si )] is fully-revealing;
every arbitrage-free information structure ( i) is symmetric.

Let (Si ) be an information structure, then its coarsest arbitrage-free refinement

S, ) . . . CAS) s . :
( ’) is symmetric by assertion. Then the family ( l) defines an information
structure that is arbitrage-free, since one can choose for a common no-arbitrage

eVl 3 aloWbl=VIs)- 3 alowl

Let the information structure (Si) of Sbe given. Then the following are
equivalent:

. . S.) . .
the information structure ( ’) is symmetric;

v, [v.(s)l

for every finite set J and every S xJ _financial matrix is fully-

revealing; [ ( )]
v, V.,

Assuming the information structure (Si) is symmetric, hence is arbitrage-free,
. V.S, . . !
and given the structure [ ’( ’)], every no-arbitrage price 9 R presents a de-

for every S x {1} -financial return matrix is fully-revealing.

fined information structure, denoted by (Si (q)), which is the coarsest g-arbitrage-

free refinement of ( ’). This is a refinement process in the sense that the price g
conveys enough information for each agent to update her beliefs up to the refine-

ment (S" (q)), without any information from the other agents. Given the structure
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[V’(Si )], for every agent i we define the information set revealed by the price
J
q< R as the set:

Si(Va(Si iaQ) = S(V>Si>q)

k]

S (q)

sV,
We now define the set ’ *4) 4 the union of all the sets in the non-
empty finite set that is g-arbitrage free, where the agents need to refine their in-
J
formation and reach an arbitrage-free structure. The price q€ R is said to be a

and the revealed information set may be empty.

no-arbitrage price of the structure [V’ (Si )] if ¢ is a common no-arbitrage price of

. E of (Si) .o : i E
some refinement : , that is, if there exists a refinement t

and (S") such that 1€C. lV’(Ei )J

Optimal Incentive Schemes

At the beginning of the period the agent chooses an action that gives rise to a

T Va
random profit N With Hellwig and Schmidt
(2002), we assume that the agent chooses the probability distribution p over possi-

ble profit levels = R directly at personal cost C(p ) =0 . The agent’s action is

assumed to have ¢ coefficient of absolute risk aversion ' > 0. Given an incentive

. S, . T, )
scheme associating the payment ! with the outcome "!, he chooses action

pEP

so as to maximize his expected utility:

N
_ 2 <o)

The market maker is assumed to be risk neutral, his payoff from implementing

. . . s = Svil: .
an action p by an incentive scheme { PN } is given by:

21’;’(”:’ —Si)

. . eP,
In an m-period model, the agent chooses a new action (p 0>+ Py ) in
each period. This action determines outcome probabilities for that period, as sums
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of realized incentive payments, effort costs, and profits. We assume that in a pe-
A

Clevels (p*)
riod of length Athe profit levels "! and effort cost function are given
by:

1
b= 1A Yie(0,..,N}

A
and that the choice # entails expected profits are equal to:

Zpl, Zpl - plm -,) s = Agﬂ ] lp’ AEM
AZ

and that effort costs are equal to:

n - '

The tradeoff between expected profits and effort costs is thus not affected by

the choice of m, and with period-length A=1/m_ The agent chooses
AT AT A
)

in period , and expected gross profits

A 3o H
are equal to ET:l 1 H , and effort costs are equal to

A A
E ( ) . The probability vector p ('u ) that is associated with a given

H depends on A In the m-period with length A, the market maker’s problem is
AT

7 S

to choose a time path of actions and an incentive scheme so as to

maximize:
m

S5 pi e - AE 2”‘ S Sl

=] 1= T=1 =1

subject to incentive compatibility and individual rationality.



2 Dynamic Adjustment Processes and the Effect
of the Economic System

If agents’ features are different, they produce different economic systems that
may still be equivalent in their economic efficiency. When environmental and
agent features change, economic systems also change along their own characteris-
tic paths. Indeed, the most important feature of an economic system is the coordi-
nation it provides among different institutions, and following from this is the need
for selection from amongst alternative institutions. Coordination is, in fact, the
necessary condition to govern interactions among agents in the many fields of
economic activity (and to mutual advantage). Investments in institutions have ex-
ternalities and produce lock-ins and irreversibility, and these features have an ap-
propriate economic value and give rise to multiple systemic equilibria and path
dependence. Their efficacy is determined by cost minimization of decision-
making and production, effectiveness of incentives, and the allocation of agent
features to their best possible use.

It follows that differently efficacious economic systems produce permanently
different structures, and each attempt at transformation or convergence may be
better described as a deep restructuring of that system necessary to adapt to envi-
ronmental change and to pursue new goals. In this case, institutions may nor con-
verge because the variant forms may affect efficiency only weakly and individuals
and interest groups can resist institutional change, and neither may have an edge
over the other. One might be better, but the inferior one may persist if the costs of
transformation exceed the benefits. One form may more efficient in one economy
than in another because of the different features of that economic system or the
lack of relevant capabilities compared to the other. This makes replacing the vari-
ants economically inefficient if the value lost to externalities is greater than the ef-
ficiency gains from the new variants.

The set of agents who own a positive portion of the aggregate endowments are
the set of non-negligible agents, and economists have proved the existence of
equilibria with incomplete and intransitive preferences in many cases. In finite
dimensional economies, various conditions have been given for the existence of an
equilibrium:
¢ the assumption of the existence of a no-arbitrage price;

* the assumption of an absence of unbounded and utility-increasing trades;

* the assumption that the individually rational utility set is compact.
Since we assume that success on each agent task is uncertain and dependent on
the amount of time allocated to the task, the probability of success on all tasks is
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relatively small. The problem is that of an agent’s allocation of effort across mul-
tiple tasks, and in an environment in which this choice is necessary. The agent
chooses how to allocate his time, and his allocation, together with a random shock,
determines the selection of the structure of the agent’s compensation beforehand
(and later makes the payment promised for the realized production).

We prove the existence and efficiency of equilibria in infinite economies with
many agents who own a positive portion of the aggregate endowment.

The Pareto optimality of a competitive equilibrium and the existence of indi-
vidually rational Pareto optimal allocations suggest that it might be necessary to
work with the assumption that only agents with rational Pareto optimal allocations
are involved. Along the optimal decision path, convergence to the optimal steady
state is from above in the high endowment treatment and from below in the low
endowment treatment. In the basic design we impose an exogenous probability of
terminating the economy at each time ¢, which is equivalent, from the point of
view of the agent, to an infinite horizon with discounting.

Comparative Efficiency of Economic Systems

Different economies adopt diverse formal institutions; often they rapidly end up
with the same structures. Dallago (2002) supposes that institutional liberalization
produces institutional convergence and that countries now share the same eco-
nomic institutions (for example, prohibition of universal banking, accounting
rules, regulation of insider trading, labor mobility, and competitive labor markets).
There can also be different efficacious institutions and organizational structures,
depending on the economic system, and including the environmental and individ-
ual features that influence the capabilities they have, the overall costs that agents
have to pay, and the returns they obtain. This explains why the existence of diver-
sity can be an efficacious adaptation to variety, variance, and variability of differ-
ent environments and agent features.

Acquisitions of firms are part of a strategy of investors, so that these firms
lessen their integration with other agents and markets. The development of group
agreements is sometimes implemented through the initiative of firms; the process
is aimed at creating greater dimensions through reintegration within productive
stages that were previously externalized. This is usually made possible by techno-
logical developments and is rendered convenient by the high costs of quality and
time controls over third parties or increased prices of externalized functions. We
live with differences: different unit costs, different market sizes, different tastes
and preferences, different resource endowment, different levels of development,
and different institutions and economic systems. From this interaction between
agents and conditions results a permanent renewal of differences between costs,
market sizes, and preferences in various economies and economic environments,
and thus also between different economic systems.

This is particularly so if the environment changes in opposite directions for dif-
ferent systems: if a period of adaptation follows accelerated technological innova-
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tions, if the consolidation of new markets ensues after the abrupt opening up of
those markets, if stability follows a period of price shocks, and if stagnation fol-
lows the rapid expansion of capital markets, and so on. Environmental variability
in the presence of different economic systems is revealed by lack of synchroniza-
tion of economic performance, even if there are good returns in financial and capi-
tal markets, and gives rise to evolution of institutions and a coordination frame-
work.

In any given economic system, agents have to invest in system-specific assets;
investment in system-specific assets gives rise to individual systemic capital,
which in turn influences the agents’ choices and in the long run their individual
features. The asymmetric distribution of systemic capital creates asymmetries in
bargaining power, knowledge, and information. All this diminishes the possibility
of capturing potential social gains from systemic change, and individual gain de-
pends largely on re-distributive actions.

Systemic capital, asymmetries, and transformation costs cause path dependence
of systemic change as a rational behavior due to transformation costs. All these
changes are motivations for the evolution of economic systems along their particu-
lar path, e.g. the size structure of firms and the existence of configurations of firms
and other agents that are characterized by cooperation and interaction and so on.
The same holds for the utilization of resources and the ability to adapt to various
factors and react to random events; such capabilities depend upon the features of
the economic system, the agents it is based on, the interaction and coordination
between them, the incentives, and the costs, risks, and uncertainties. In fact, each
particular economic system generates, due to its coordinating and selecting effects,
characteristic and consistent patterns of transactions and compliance costs and re-
quirements that make stable organizational forms and configurations convenient.
However, agents may be inefficient and ineffective in dealing with all the implica-
tions of variance and variability through time, under conditions of imperfect, im-
balanced, or missing knowledge and information.

To avoid all this and keep variance and variability of individual features within
limits that are manageable to agents, the coordinating, knowledge standardizing,
and disciplining effect of the economic system is necessary. In a world of uncer-
tainty, limits to individual capabilities, opportunism, various kinds of asymmetry,
missing and imperfect knowledge, divergent goals of agents, and other forms of
variety, variance, and variability, distinct agents must sustain different transaction
and compliance costs and difficulties in order to coordinate their decisions and ac-
tivities. The allocation and costs of defining, implementing, and controlling effec-
tive contracts, incentives, agency relations, trust, and reputation, and coordination
costs to streamline divergent interests and goals and to manage externalities, and
the incompatibilities and lock-ins that these create must be managed. The costs of
and barriers to information collection, elaboration, and transmission and knowl-
edge production and diffusion, and individual features in the long run take form
under the coordinating effect of the system including a typical way of producing
and diffusing information and knowledge, and consistent arrangements of resource
allocation.
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The economic system creates connections between agents and actions that can
further reduce costs and disadvantages and strengthen incentives by coordinating
and selecting institutions that manage the benefits and gains and the disadvantages
and costs of economic activity.

This uncertainty and cost of coordination stimulates and supports the speciali-
zation of agents and the production and diffusion of knowledge and information.
Specialization produces results at the cost of foregone opportunities in other direc-
tions and the cost of investment in system-specific assets. As for the implications
for the interaction of agents, interaction takes place following rights and duties
within specialized structures. Gains offset the disadvantages, costs, and limitations
that agents sustain in order to operate (such as learning costs, the costs borne to in-
ternalize and conform to rules and to set up appropriate structures).

Simultaneous Equilibrium

We derive this from the characterization of the simultaneous equilibrium of the
market process, and we assume that agents generate beliefs with reference to their
immediate history of interaction. We follow Herrendorf, et al. (2000), denoting

the agent’s discount rate by p E(O,oo), and the relevant information for the

=

.. . . ns .
agent’s decision at time ¢ is the future path of { ( )}S=f , so the formal condition
that agent of type i born at time ¢ chooses to work is:

x

E,| fexp(~ p(s - 1)ds | s E,| [a(n(s))e(i)exp(~ p(s - ))ds
t t
where E, () denotes the agent’s expectation at ¢, and agent output is assumed
to be a(n)e(l)' Given that the death rate is p, the probability that an agent born at
time ¢ lives at least until time s > ¢ equals “XP\™ P\S -t , S0 we have:

=V O o+ p)fale(oDespl- o+ p)s s

>

where V (¢) represents the annuity value of the output stream that one unit of la-

bor produces. A competitive equilibrium is an initial no, paths {n (t)’V(t)}‘=0

.. nl0)=n, . L .V
with ( ) 0 and agent choices such that at any point in time ¢, given V(t)
each newborn agent’s choice maximizes its expected lifetime outcome, and the

(). V (t)) . . . o
paths { ( )’ ( ) =0 are consistent with the newborn’s decision, and it satisfies:
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)= 0)+ pflF76)- (ks

where agents’ choices are taken into account. The equilibrium dynamics behav-
ior is characterized by the laws of motion for V and n, and we get the following
equations:

V=(p+plv-aln)]
i = plF(V)-n]
n*,Vx)

A stationary state of the economy is a pair ( such that all variables are
constant if the world’s interest rate r, equals the effective discount rate:

"'=P* P To ensure that an interior state exists, we make the following as-

la.a]clije.ve] or [1/2.1/e] C [a.a]

sumption: either .

Let {ﬁ(t )’V (t )}I=O be a competitive equilibrium with

n(O) - ﬁo’ {f_l(t),V(t)}ZO is unique at ﬁ(t) if V(t) is the only Ve [Q,E]

nit

for which ( ( )’V) is on an equilibrium path, and {ﬁ(t),V (t)}’ =0 is determinate

at n(t) if it is locally unique; that is, there exists an >0 such that V(t) is the

only Ve (‘7(1‘)—— 8,\7(1‘)+ 5) for which (ﬁ(t),V) is on an equilibrium path.

Noussair and Matheny (2000) assumed that each agent maximizes the present dis-
counted value of current and future utility, to a sequence of source constraints and

. iy . k, :
given positive capital stock 0

max 2 (1 + p)_’u(cl)

1=

¢, +k = flk)+(1-6k, V=0,

where depreciation occurs at the rate o€ (0’1), utility and production func-
tions u and f are increasing, concave, and differentiable. The agent’s rate of time
preference p is positive. Necessary and sufficient conditions for optimal choices of
consumption and capital stock include the Euler equation

wle) =+ p) -5+ £k e Vi 20,
tim(i+ p)ue ., =0

and the condition

, where

k., =flk)+Q-6)k -c, Vi=0.
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The  steady-state  solution is a  time-invariant one  where

c,=c and k,, =k, Vt=0

¢ = flk)-ok |

f'k)=p+o.

The functions G(kt) and H(k‘) are for capital and consumption:
koazk = s flk)-& =Glk)

zc eC = f(k,)—5kz +(k[ —I€)=H(kt).

In finite dimensional economies, a no-arbitrage price for the economy is a price

w, >0, Vw, €W, \ (0 :
such that pWi ’ ! ! \( ) where W denotes the asymptotic cone of
the agent’s preferred set. The existence of a no-arbitrage price is known to be

int EWZO = .
equivalent to J

Az <, VZ cU. \(O) where U. denotes the asymptotic code of the agent’s
utility set, and there are utility weights for which the agent problem has a Pareto-
optimal solution. We may then similarly define in the space of utility weights, the
excess utility correspondence and use it to prove the existence of the equilibrium.

of ", intC, oC, and
Given a subset C of V", intC, oC, ¢ Dana and Van (2000) denote its

L . CCHR", intC . . .
interior, its boundary, and its closure. For a subset is its relative
interior, when C is regarded as a subset of its hull. Space F is assumed to be a lo-

Cz+1

Similarly there exists a A such that

cally convex, topological space with dual F /, and there are m agents. The agent i

cX

. . , X, i w, .
is described by a consumption set = ! , the initial endowment ! and
the preference of agent i. They are represented by a utility function

w X, =R (x,p)EMX, x F'\(0)

, and the pair is a quasi-equilibrium if

Vi () > (%) px, = pw, % =W

, which implies , and ¢ A pair

(%, p)EMX, x F'\(0) equilibrium if * () = 1, (x)

- — X, =W
such that px; = pWi, and I Assume PE anh(ﬁ'ao)

X
for every "

and let (x’n) be

u\w, +x;' )= .

a sequence such that Then

A [”i (6,(1) -, (Wz‘ + X )] = P(fi - (Wi + X ))

H
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px; —> e . . .
and ! , which implies that p is an arbitrage-free price for the econ-
omy. We shall maintain the following assumptions: =~ ' = " is close and convex

vi 4 X, —R

, , is concave and continuous and does not have a point and

o (Wi) =0, w is not weakly Pareto-optimal. However, without an assumption
such as the existence of finite number of non-negligible agents, each agent’s in-
come in the quasi-equilibrium may be zero. Barut (2000) assumes that the agent
set A is countable, and that the commodity space E is endowed with a convex to-

pology 7. so the price space E'is the dual space of E. The consumption set of

each agent i is E, and the initial endowment of each agent i
o, €E, 0=>» o, P(x)
€A s the aggregate endowment for the economy. Let = !

xeFE

be the set of commodities in E, that are strictly preferred to > and let

Q (x) be the set of commodities in E, that x is preferred to:
B(x) ={y el 1y, x} and Qi(x)= {y €E, 1 x>, y}.

An economy with a commodity-price dual space (E’E ) and an agent set A

whose preferences are i for every IEA , and whose endowments are @ , will
!

be denoted by ((E E )’A’(>_i)i’(a)i )i ) An allocation (xi )iEA and a price

pPEE,p=0

are said to be a competitive equilibrium for the economy if
X = p.o, and p.w, >0 : .
p P, o, for some i, and if y EP(xl) implies Py = DpX;.

p’xi = pa)i7 ((xi)iEA’p)

If the budget equality is not satisfied, is called a trans-
fer payment equilibrium. An allocation (xi )i@‘ is said to be a weakly Pareto op-
timal allocation if there is no other allocation (y ! )IEA such that Y1 7% for all
IE€A. An allocation (xi )ZEA 1s said to be Pareto optimal if there is no other allo-
cation (y : )ZEA such that V' ZXi for cach 1€ A and Y1 7 % for at least one

. o o . , & Plx, .

agent £, and it is said to be individually rational ~* ¢ ’( l) for any i. There ex-
w, > Ea)l.

ists a finite set of agents B C A and ascalar € > 0 such that I=A

and we obtain a competitive equlhbrlum from a transfer payment equilibrium in

infinite economies, where B is the set of non-negligible agents. Let i)iEA’p
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be a competitive equilibrium for the economy ((E’E /)’A’(>i)i7(wi )i), Muller

P <®

(2000) supposes that if the aggregate value of the economy is and

agent preference is complete, transitive and convex, then ( ’)’EA is Pareto opti-
mal.

Allocation and Control

In the time interval [0,1] the agent controls a publicly observable output proc-
ess X with boundary condition <0 —

dX, = f(u, )dt + odB,

under a stochastic differential equation:

u ). , u =ult,X) .
where f ( ‘) is the instantaneous mean, ' ! ( ’ ) is the agent’s control
at time ¢, O is the diffusion rate, and B represents standard Brownian motion. The

agent weakly prefers the random allocation (S(X),u) to the certain income WA,
and given the sharing rule S(X), the agent’s optimal control is u:

max E[X, - S(X)]
dX, = f(u,)dt + odB,,

S.t.
(r-ny/1

E —exp{—r(S(X)— Ec(u,)At)} = —exp{- W, }

t=0
, and

w € argmaxE| - exp{_ r(S(X)— "%2@)&)} |

sy

Sip = W, + C(uFB)

The sharing rule is R

=Upg

where the control = 8 is constant over time. In a discrete-time model

in which the agent repeatedly chooses the mean f (‘u ! )At of a distributed random

AX X, X,
variable ! the agent will choose a low control, if = ¥ 2is high, and if = ¥ 2
is low he will choose a high control. At time 1, the agent randomly selects one of

=X X

. AX - . .
the T output increments ! A ', and the agent is compensated with a

function based on ¢, and knows the entire history of the output process X. Ac-
cordingly the agent’s overall control problem can be expressed as a simple multi-
variate optimization problem. The agent’s overall control problem is:
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max - %F(A)?Euo )exp{— r(g - c(uO)At - c(u] ; 2)At)}

- %(1 ~ F(AXug Jlexp{- (5 - cluy)Ar = c{u, A1)}

- —;—F(Aﬂul/z)exp{— r(s - clu,)At - clu, , )At)}

- %(1 — F(AX|u, , )Jexp{- r(5 - c(uy JAt - ¢, )AE)),

where AX denotes the cutoff, & is the payment if ~X! = AX, s i the pay-

AX, > AX, and F(Af'ut)

. . " AX, = AX .
ment if is the probability that ! , condi-
tional upon the fact that u is chosen. The agent’s expected utility if the selected in-
crement is ! 0% weighted with a probability of 1/2 that the subinterval is
selected, and random spot checks provide the agent with constant incentives over
time. Given an arbitrary constant control ¥ | there exists a random spot check

with payments

s =W, +c(it)- %111[1 —re'(@)1- F(AXz))/ F,(AX i )|

and
§=W, +clu)- %ln[l + rc'(ﬁ)F(A)—(—'L_‘)Fu (Af‘ﬁ)]

such that the agent chooses u in each subinterval, then the agent’s participation
constraint holds with equality. The agent’s control problem is
(r-y/r

RN )exp{— r(g ) <T2’é(ut )AI)}

max
ugett(T-1)/T T <

(r-ny/1

_%(T_l)/r(l_F(AA—"MZ))CXP{_ r(g- ;du,)m)}.

<
The agent’s participation _constraint is then _

—expl- (s - i (A%t - expl—r(s - a1 - Fla¥)) = ~oxi- ;)
The agent’s expected _utility is then _

E[Xl‘uFB ] . §F(AX;uFB )‘ §<1 - F(AX‘MFB ))

MacDonald :ind Marx (2001) assumed that payment to the agent is bounded

from above by S, which implies
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F(AX |u,
E[Xl‘uFB]—WA "C(um)"‘%ln 1+ rC,(uFB)ﬂ‘(ﬁL:Z‘)) .

Because the tasks involve competing uses of time, the agent views time spent
on them as part of the relative cost she attaches to the various tasks. Thus, given

!
an arbitrary contract ¢ (n,p f ) and effort allocation (t’t) an agent earns ex-

pected utility
Vitt,c) = ttu(f) + [l =1)+ (1= 200 u(p) + (1= )1 - Juln) - (& + 1)
where she achieves full success and utility u(f) with probability it ,, achieves
partial success and utility u(p) with probability t(l B t/) + (1 h t)t/ , and achieves
no success and utility u(n) with probability (1_ t)(l_ t/), incurring effort cost

14
ot from time spent on the low-cost activity and ! from time spent on the high-

cost activity. Schonhofer (2001) assumes that an adaptive learning rule LR, isa
2

map that projects past realizations {xi }i=0 into the set of predictors P:
!
= x . ) . . . :
v, = LR, (( l)1=1 . An adaptive learning process is a sequence of predictors

(Wf )f=0 induced by a sequence {LR’ }’=0, and following it results in a non-
autonomous dynamical system on X:

xt+l = Fy/, (xz):= F(x[al//l (x,)),xt EX t= 0,1 .....
B,

{
. T
B, =argmin ¥ (y, - #'x,. ),
B =1
which yields a sequence of predictors with

w,(x)=B"x x €€X,

and its transformation leads to:

At each period, "' is determined by the adaptive learning rule

-1

B, = [Ex/mx/f-l} Zxk—lyk'
=

i=1

Define
t
,__ T
R =% x._x
=1 . Furthermore,
T
Rz—l = Rz - X% 1
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A=K [2&_% +x,_1y,] ~RR. A3y ) =RR )8, +x_y)
1t follows that:

Yo = Flx,w,(x,) = Flx,. ,)
& = v, () -w,(x),

stochastic process in which:

Vi = l//t(xt)+ & where {gt}zx:l

- Agents believe that is a sequence of

, with forecast errors given by:
T

. & .
where agents think { }f=1 are realizations of a

random variables with mean 0.
. . ye, =, (x,) . .
- Agents make the point estimate 7 #+! 37 and apply a certainty equiva-

lence principle and replace the realization of Yis by its expected value given
their belief.

7
. . &
- Inperiod T + 1, agents observe their past forecast errors { ‘ }f =1 and they use

these observations to test their hypotheses.

We assume that agents use the adaptive learning rule with prices:
i1
. 2
ﬁl = arg?IHZ(pi - ﬂpz—l) :
This yields
-1 5 Tria
ﬁt = [E ps—lj! [E ps-—lps‘|
s=1 s=1

means in inflation terms

, and the prediction pia=hp, , which

e
e pt+1
o, =t - p.
t
e

We show that O can be written as a sequence of predictors (l’//’) with:
0 = '//z_z(ez-l)7
Y is indexed by ¢ — 2, because:

tz—lps‘lps = ips—lps + p,_zﬁl_l.
s=1

s=1
Then, we have the trajectories of a dynamical system:
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0,,= f('//z-z(ez—l))> '//z-l(ez) = fz—l(eﬂet—l)'

-1

B, = [ipf_l} [ips_lpx]-

Consider

s=1 s=1
 [Q B
8= pz-z[zpsq]
Defining s=1 , yields

:Bz = IBl—l + gl—l

L

P - t-l] = ﬁt-—l + gt—][et—l - ﬁt—ll

For g we have:
-1

! -1 -
6 - p, [zp;] - pf_l[jpf.l ' pf_l] oz +1)
s=1 s=1

We have seen that agents cannot reject forecast errors, and any adaptive learn-
ing process with these properties is called consistent, and in this case agents do not
have any incentive to switch to another learning rule. The dependence of the cur-

. X .
rent value of the steady state-variable ~*, assumed to be a real number, on its
e

. . . X,
point expectation for the next period, “**lis denoted by:

e
xt = F xt+1

Temporary Equilibrium

Chatterji and Chattopadhyay (2000) assume the steady state value of the state
variable is 0, which is the fixed point of the map F(.). The temporary equilibrium

map I *R = R has 0 as a fixed point, F(0)=0, and satisfies the condition
Fix) =alx

‘ ( )‘ l ‘ for all x, for some a4 > 0, and the agent’s predictions are given by :
¢ . 2

Yoo = B, and to fully specify the system with learning:

B, =mlo,_x,_)B._, +[1- m(w[_lxt_l)]iﬂj_@)
X,

t-1

a)tz = m(a)t-lxt—l)a)tz—l ’
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-1
o7 = / 2
with ™ (Z ) = 1/<1 + 22) . Subject to the initial conditions ’ 2 ] and

-1 -1
2
L -t we obtain the following representation:

To see why the existence of a global stability interval is useful, consider the

dynamics:
2
xt _ F(ﬂz—lxt—l)‘ﬁz < 2
'_ 2 -1 ap,_,
xt—l /Bz—lxt—l

2 :
<la

B,

and suppose that for some #,

Bl

< 1/a and ]ﬂn B . Then for tzn,

X =05 —=p, 0 -0

the sequence is decreasing and .Moreover,
’ p ’ 1.
This comes from the property
o’ x’
‘ﬁ’ <]
f 2 w,x, —> 0. . .
and the fact that 7 By summation over j of
-1 =1 -1 2
EXX SZ‘XX <2x2+x—’
2 2 i jrye| = j :
21xjxj_1;sx]. +X7 & & & 2

, one gets

F(x){ < a'x| for

for some K>0 and all x, and

The temporary equilibrium map is globally a contraction, [
some 0<a<1 404 for all x, and F(x) z-K
with a positive upper bound, for some F(x) =Q for some Q > 0 and every x>0.
Agent predictions are given by

e . 2
X1 = max t—lxt—17_K .

We can say that every agent i is trying to learn the decision function
Apiw al, which maps the state w of the world into the action 4 that the
agent should take in that state. This function will not be fixed throughout the life-
time of the agent because other agents are also engaged in some kind of learning

themselves. Vidal and Durfee (1998) refer to those agents who try to directly learn

A (w) as 0-level agents, because they have no-explicit models of other agents.
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Knowledge and Preferences

. . .0, iw—aq .
Any agent i will learn a decision function © where w is what agent
i knows about the external world and g is its rational action in that state. Agents at
l-level with other agents have two kinds of knowledge — a set of functions
o, 1w—a, N :
1 J that capture agent i’s knowledge of each of the other agents j, and

S, :(w,,a_,)—a

{ which captures i’ s knowledge of what action to take given w

and the collective actions a.; the others will take. We define

L= wd_a.a .
4. {a1 d1Giny ”}, where n is the number of agents. Agents at 2 -level

are assumed to have deeper knowledge about other agents; they have knowledge
5.':(w,a_.)—>a. .

of the form ¥ J /. We decided that 0-level agents would learn all
their knowledge by tracking solely their own actions and the rewards thereby ob-
tained; they receive no extra domain knowledge and learn everything from experi-

o, w

ence. The 2-level agents learn their ’1( ) knowledge from observations of oth-
ers’ actions, under the already stated assumption that there is common knowledge
of everyone’s actions; all agents see the actions taken by all others. The rest of

o.\w,a_, o, \w,a .

knowledge 7"’/ and ’( ’ ") is built into the 2-level agents a priori,
and these agents get some input, take some action, then receive some reward. The
value of € is initially 1, but decreases with time to some chosen, fixed minimum

value &min . That is,
}/gi lf }/81' > gmin’
Eia = .
£, . otherwise,

min

where O<y<l is some annealing factor.
Kaplan and Wettstein (2000) consider a surplus-sharing problem where there

are three agents that consume two goods, x and y; agents are endowed with

Wi > Oof good x and none of good y, and agent i’s preferences, can be repre-

1
sented by a utility function u that is

lim, _oue(x.y,) =tim, 26 (. 3,) = e im, (. y,) =lim, _.18(x,3) =0}

_ . X, Y .
An allocation consisting of the agents’ consumption levels ( ’y’) and input-

Xps ¥y . oy
output levels 7 Yp is feasible if
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3
x,+ S =
i=1

and if this condition characterizes a Pareto-optimal allocation; it can be derived

11

3
W,
=1
b

1/.1 2/.2 _ 3/.3 _ pt
in a straightforward manner given by U / Uy =upjuy =ufuy = f,

3
;yi =Y,

y, = flx,)

Each agent is fully informed about the environment, and follows a mechanism
where the other agents send messages to the agent in question, who in turn decides
on production and consumption plans, and the equilibrium of the mechanism gives
rise to efficient outcomes. In the first stage all agents simultaneously announce
prices, which determine how much agents must pay for the consumption of good
x. Next, the agents choose suggested consumption levels of good x, and if the sum
of suggested consumption is less than the total aggregate endowment, the differ-
ence is used as the production input. In stage 1, the prices announced by the agents

p;

1 1
are P> Py , where 7 refers to the price chosen by agent i that agent kK must
pay agent j for each unit of good x. In stage 2, agents simultaneously announce
x’s; if the sum of the x’s is greater than the sum of endowments W, the mechanism
finds agents that could have prevented the sum of x’s from being greater than W

1

. w;,0 o w;,0
and assigns them ( v ) If no such agents are found, it assigns ( o ) to all
agents submitting x’s larger than w. The mechanism then determines the set of

X +x,+x,=W, let S, = iEx].<W

J=1

agents. In the case where and

S, = {ixl. = wi}

. . . X .
The mechanism produces outputs using an input level 7 that is equal to

j(wi - xi)

i=1 and sets up the following system
) v
Vi =a,f\x,)=\ps + Py X, + piox, + pix,
1 3 3 1
Y, azf(xp)‘ (p32 + plZ)XZ T DXt PyXs
1 2 2 1
Vs a3f<xp>_ (p23 T P )’% T PaXy + PpXs

. . . aj\x
The a’s can be interpreted as interim output shares ‘f( L ) , and the outcome
function is individually feasible by construction but is only weakly balanced for
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some cases of punishment, and could make it impossible for another agent to re-
spond optimally in the fist stage.

Contract Choice

We argue if the market makers and agents they choose to contract with are
matched with each other according to economic variables, and if risk effects are an
important determinant, then very risky crops will be more likely to be associated
with share contracts. For social welfare it would be best for risk-neutral agents to
work on the most risky crops; if equilibrium were to be the desired the outcome,
the more risky crops would be associated with fixed-rent contracts, whereas the
less risky crops, cultivated by risk-averse agents, would be associated with share
contracts. Market makers with more ability to measure output might end up
matching with agents with more risk-aversion, more credit constraints, or higher
effort costs. Following Ackerberg and Botticini (2002), we assume that contract
choice is given by the probity:

i = ]<IB(;( + Bic; + pow, + gil > 0)

The matching equation is given by the ordered probity:
1 if  yiw+e >C*

ci(wi,k,giz)= 05 if C'<yiw+é <C*
0 if Csyfw+el,

.. . C.. . W, .
where Yi is the contract choice dummy, is the crop type variable, *is the
agent’s wealth, and & indexes the different towns.
: C* and C k)

The slopes 71 and cutoffs in the ordered probity matching
equation are allowed to depend on town &, and on the variances of the assumed es-
12
i @

timate biases , which include the unobservable component of agent’s risk.
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Space and Decision

The market maker is able to recover the time paths and implement the same so-
lution he would if he could observe these time paths directly. The solution to the
time problem plays no role, and the agent controls the drift rate vector of a multi-
dimensional Brownian motion with a diffusion process. A compact set of admissi-
ble controls, via the implementation of a boundary action subject to weak incen-
tive compatibility requirements, provides scope for reducing the agent’s risk. The
incentive scheme is approximately optimal if the market maker only observes cu-
mulative total profits, possibly after some profits have been destroyed by the
agent. Agents anticipate outcomes, and they factor their expectations into pricing
decisions. An agent can revise his control only at the beginning of each subinter-
val by selecting one of the T subintervals and the agent is compensated with a step
function based on the output produced in this subinterval, and he optimally
chooses as a constant control the mean of a normally distributed random variable.
Local instability is attributable to the fact that agents extrapolate all irends in de-
viations from the steady state in past data. Agents’ strategies consist of learning
nested models of the other agents. Agents might try to manipulate the interactions
for their individual benefit at the cost of global efficiency. Agents may have incen-
tive to acquire technology, as with free-rider problem in markets, average-cost
pricing, marginal cost, and serial-cost sharing. The externalities present in the en-
vironment stem from the fact that the input made by one agent affects the produc-
tivity of the input contributed by another. The agent may secure rents from his
privileged knowledge of his wealth endowment, and as his wealth increases, an
agent can make a larger up-front payment to the agent-owner, retail a large share
of realized profit, and supply more effort.

Distribution of Wealth

The distribution of wealth among agents affects the market maker’s welfare,
which is distributed widely among agents rather than concentrated in the hands of
a single agent. When there is only one agent qualified to operate the market
maker’s project, the latter can capture all the agent’s wealth only by reducing his
profit share. Multiple agents are qualified to operate the project; however, in this
case the optimal mechanism differs from an all-pay. Potential competition among
agents can help the market maker to collect information about all the agents’
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wealth conditions in the absence of asymmetric information. The convergence of
the market to equilibrium lags the convergence of behaviors to equilibrium, but
the markets then settle into the equilibrium that would exist given rational expec-
tations, assuming agents are able to predict perfectly. In the first stage of each
round agents buy or sell rights to participate in a second stage of strategic interac-
tions. Plott and Wiliamson (2002) assume that market equilibrium shares a com-
mon structure, given unit payoffs (b, s) to buyers and sellers in the second stage:

Pe[D(Q)+b]U[s(Q)- s}

where D(Q) is inverse demand correspondence and S(Q) is inverse supply cor-
respondence,

b is unit payoff to buyers, under some solution concept, s is unit payoff to sell-
ers.

Risky Activities

At the beginning of the period, the agent chooses an action that gives rise to a

T = a
random profit ¥ Hellwig and Schmidt (2002)
assume that the agent chooses the probability distribution p over possible profit

levels ﬁiemdirectly at personal cost C(p )20. The agent’s action is

.....

assumed to have ¢ coefficient of absolute risk aversion 7 > 0. Given an incentive

.. S, . T, .
scheme associating the payment ~/with the outcome "/, he chooses action

pEP so as to maximize his expected utility:

N
_ 2 pe el

The market maker is assumed to be risk neutral, and his payoff from imple-

. . . . Snvf. .
menting an action p by an incentive scheme »"NJ {s given by:

Zpi(ﬂ-i - Sz’)

. . epP.
In an m-period model, the agent chooses a new action (p 0> Py ) in
each period, and this action determines outcome probabilities for that period, as

sums of realized incentive payments, effort costs, and profits. We assume that in a
A

& (p*)
period of length Athe profit levels ~ ! and effort cost function are given
by:
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A
and the choice # entails expected profits equal to:

A _ ﬁ N
2 2 b’ -plm - 7,) N AZ 7 -7 %=A2uf

N "
and the effort cost is equal to:

CA(pA)=ACﬁ+i’uAl@ =Ac(ﬁ0—‘N%,f?,- /ZIA’ Dy + ) AC{luA)
IS o

The tradeoff between expected profits and effort costs is thus not atfected by
the choice of m and with period length A=1/m ; if the agent chooses
AT A, A,
;u =(:ul T: """ JIuNT) 3 i T=13 """ ,m

in period , then expected gross profits
are equal (o ET=1 1 Hi , and effort costs are equal to

A A
E ( ) . The probability vector p ('u ) that is associated with a given
H depends on A In the m-period with length A , the market maker’s problem is

b}
to choose a time path of actions H " Jee12,m a0 an incentive scheme so as o
maximize:
m N
A, acY A RAW
Y ot fap - s AE 2/4 S (s
t=11i=

>

subject to incentive compatibility and individual ratlonahty.
Conditional on the agent’s choices of actions, the random variables

Zf’f and A?’Tl, =7

are stochastically independent. We consider the incen-
tive payments S"A, 1=0L...N that the market maker needs to implement a
given action p ’ of the agent if the period length is A, and for the agent’s maxi-
mization problem this implies that an incentive scheme § = Voo SV with

period length A must satisty:

sl.A = cA<pA>—-lln(1— rcl.A + rz pfcf]
r

>
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. A A
for t = 0L.....N , where €i refers of the effort cost function € with respect

A

to P , and
1 1 N 1
A —( A - A
= A¢(u )-;111(1— rek A + erj cjij2)
“

=
If the market maker wants to implement the time path of actions o feetm ,
the total remuneration that has to be offered is given by:

'AE ) 22 (2 Y = 2 Joa®
R

2 =1 i=
If outcome i is realized in period 7, this raises the agent’s overall incentive

- AT 1/2
G (ﬂ ;

payment by an amount , reflecting the marginal cost of shifting
the probability mass towards outcome i. The Brownian motion with probability
can be written in the form:

= s(z0)u)

where Z() is he stochastic process satisfying:

- fulear + X0

A7Az'

Thus for all ¢ and for any N-dimensional process of the formZ('), and any

adapted process H () we get'

A0 ) e el S )

The agent controls the drift rate process H () of the N-dimensional Brownian

A

motion Z('), the market maker observes the realizations of the process Z('), but

A

not the control process H () or the disturbance process X() In the agents con-
trol lies only the drift rate, while the higher moments of the cumulative output



38 3 Optimal Incentive Schemes with a Measure Space and Decision

process are determined by the vector p , and these are
1 N
A _ 2 A
= A (ki —Ep/.k].)
7=t

af _af, A S
and the cost to the agent in each period is given by ¢ (p ('u )) = Ac ('u ) .
The dimension N of the Brownian motion refers to different activities of the
agent, and the market maker’s problem has a solution in which he induces the

A/
agent to take action in each period. To ensure that the sequence { ()} of opti-

mal control paths have a limit path H (), we assume that controls are restricted

to a compact set K C mN. For 2 and
m=1/A, let u* €R"

A*
with the value #  solves the market maker’s problem in the m-period problem

A*
be a control vector such that the control path {,u ()}

with period length A when controls are restricted to lic in K . The optimal incen-
tive schemes are:

m N
s Ar A*
s =22Ai s,
1=
2

=1

which implement the optimal control paths H v ()

For the limiting incentive scheme:

S(Z()) = c(,u )+ Eci(:u )Zi(l) - E ci(/u ):ui + EE E C0C;
i=1 i=1 =t

J

2

LAy ,
with Y, to implement the control path H (), as a function of the market

$2,0)

maker’s cumulative total gross profits =1 , we should require that:

El(ﬂ)= ..... =EN(,u” '
The market maker cannot observe the time paths of the individual accounts:

Z\At), i=1..,N
‘( )’ 77 contributing to total profits, but only the time path of the ag-

N
)= 32
gregate i= , and hence of total profits. The disturbance terms are in-

dependent of the agent’s actions, and any change of the control process H () that
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i H; ()

leaves the drift rate process -1 of the accounting aggregate Z() unchanged
will remain undetected by the market maker and will leave the distribution of

payments to the agent unchanged. The agent will choose the control process H ()
wve s given g E0) Sl
so as to achieve a given target for the aggregate drift rate process !

minimal cost to himself. Suppose also that E maximizes the expression:
r i 2 2
-E)-Sr(EY o

over [E’E] Then fU(E*)EK and, for all i, El('u(E))= 7/’<E*>2 0, and

the control path H () with the value # (t) H (E) solves the market

z( 2 Z
maker’s problem and observes the aggregate process i=

In terms of the cumulative profits process Z\. , the optimal incentive scheme

T

S has the representation:

- ¥ .
Zl +—y'\E | o’
=B ) A 320 |+ 5y E o
We assume that the market maker does not observe the time path of profits, and

that the agent is able to destroy profits before he reports them to the market maker.
The market maker could ask for a message w from some general message space

A —_

and make the payment S (W’Z), which makes the payment to the agent. Then
A

there exists an incentive scheme > () such that, when the agent is willing to

A
choose the control path H () and truthfully report total profits as

z= ZZA(I)
i= , the resulting payoff for the agent is same and for the market
A
maker is no less than under the implementation of H () through the scheme

S4(,.)

If an incentive scheme implements a control path H (), then note that the in-
centive scheme is feasible for the market maker because it depends only on total
profits. If the incentive scheme has to be seen to make a difference, the market
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7t =(1/e)A"?

maker would like to penalize outcomes and to reward outcomes

A 1/2
Tt =AM any period. Suppose that, in a model with period length A, the
A
market maker can implement a control process H () .
The control processes chosen by the agent converge to the control process that
he chooses when he is faced with the limit scheme. Instead of processes

pt (), )

at the associated cumulative processes

tefo].

, which refer to the time paths of actions taken by the agent, we look

M*() and M ()

where, for any

t

M= [ M= [ulWe

0 and
() e e R
Suppose also that the processes "/ take values in the interior of the set 1%,

IN A }
and are satisfied for some subsequence {S ()} of the sequence {S () . The mar-
ket maker can implement incentive schemes that take the form:

@) = 7(E)+ 7'(5*12 ~E']+ %7'(E*)202 +17

i
%

where £ s the optimal value of the aggregate drift, to avoid running afoul of
the agent’s participation constraint.

What if the market maker is restricted to using incentive schemes that can be
represented as functions of cumulative total gross profits? Because profits are ag-
gregated over time and across accounts and because the agent can destroy profits
unnoticed, the market maker has to use an incentive scheme that is a function of
total profits. As the number of periods increases, this severely restricts his ability
to infer actual profit realizations by exploiting the structure of game. The market
maker cannot distinguish between profits generated by different accounts. He can-
not prevent the agent from spreading his effort across accounts, and the choice of
an optimal incentive scheme is eventually driven by the preferences and technolo-
gies that push the market maker to provide the agent with stationary incentives
that are independent of time and histories. Note that the market maker’s inability
to obtain the relevant information about individual accounts stems not only from
the fact that he observes only an aggregate across accounts, but the aggregation
over time also plays a role in the continuous-time analysis. When the market
maker is said to observe the time path of a Brownian motion

N
Z() =(z,()nrn 2,y () 0 2() = Zzi(.)
i= , he is not actually observing any

incremental changes that could be interpreted as rates of growth of cumulative
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profits at any given instant. The stochastic differential equation 1=l is
meaningful only in terms of the integral version:

z(t,) =z E f dz,

lltl

involving aggregation over t1me as well as across accounts.

Strategy Games and Equilibrium

The strategy of an agent can be described as a choice of prices. For each possi-
ble set of prices, the choices of x’s are a Nash equilibrium and, given the contin-
gent future choices of x’s, the choice of prices is a Nash equilibrium, and the equi-
libria are Pareto optimal. The externality agent i imposes on agent j by consuming

more input goods is the reduction of the share of output 4 . This externality is in-
ternalized, because in equilibrium the price he pays to each agent for consuming
input goods is equal to the marginal externality he imposes on them, and these
prices are chosen because each agent only chooses prices that other agents must
pay each other. Any sub-game-perfect equilibrium allocation is interior, and all
sub-game-perfect equilibria satisfy the following equations:

ull = u;lalf,(xp>+ p321 + p;l]
”12 = uzz[azf/(xp>+ péz + pfz]
u13 = ”;[a3f/(xp)+ p;3 + p123]

a,f'(x,) = iy = ph
azf (xp) = p;l = p;3
af (xp)= p321 = piz'

11 .2 2 3 3
Denote by i (p23’p32’p13’p31’plz’pzl) the quantities demanded by agent i
at the second stage of the game. The problem that faces agent I in the first stage is

to choose an optimal pair of prices p ;3’ p ;2 :
1 xl(piS’p;P“”)’alf[EWi _xi(p;37p;2""")]
b | = (P321 + Pgl)xl(p§3,p§2,....>+pfzxz(p§3,p;2,...>+p123x3<p;3,p;2,....)

Pé3 and piz

Differentiating with respect to yields the following:



42 3 Optimal Incentive Schemes with a Measure Space and Decision

[ull —ui(alf' + P321 + p;)];;; +( 132 _alf')jji + (p123 - alf)(jxi =0
[ul1 —u;(alf' + pi+ p;)]—axlT + (sz _alf’) axf + (p123 _alf,) ax13 =0.
ops, op3, aps,

All sub-game-perfect equilibrium allocations are Pareto optimal, and we take a
competitive economy with such preferences and technology as our environment,

so that the agents own their firms with shares given by a’s and initial endowments
N

wo=a; ) W,
by t= ; the budget constraint of agent i is
X, +qy, =W, +al.[qf xp)—pr

. . . X, . L

where g is the price of good y in terms of good x, and 7 is the production in-
put. Since agents are maximizing their utility, the budget constraints are satisfied
with equality:

+ay = w+aaf )~

X, +qy, =w+a,|qf x,)-x,

We want to show that for any set of prices announced in stage I, the second-
stage game will always have a Nash equilibrium. In the new game, the x outcome

X;

coincides with the announced "7, and except for contingencies, and the following

determine the Vi oufcomes:
2 3 3 2
S f e ) (0 = i e+ pi + pie
34 S p) 7 \Ps1 T P 0 + PppXo + D3 3 and so on.

In this new game, the agents can guarantee a strictly positive consumption of
goods, and we must show that no agent has incentive to deviate, and we must
show that afent 1 is choosing a strategy that would solve the following:

(/) (——2 —S)x =3 =2 /]
maxu, | x,,a, f\x, )= Py + P>y Ji + PiX, + X
X1

U, = u12<a1f’(x;,)+ 5321 + ﬁgl)

!

’
X, and x
2 3 solves the problems

Similarly, it can be shown that announcing
'

t !’
faced by agents 2 and 3. Hence the strategies (xl’xz’x3) constitute a Nash equi-
librium for the second stage of the game. We have solved the mechanism whose
sub-game-perfect equilibria exist and give rise to efficient outcomes, which are
independent of the initial distribution of endowments. All agents have unit costs of
effort, which is normalized to unity; each chooses his effort e to maximize

p (e)T ~ €. Each agent’s effort of supply is determined by:
pler-1=0.

; an agent’s expected rent IT when he supplies effort e, re-
ceives T for success, post bond B, and is sure to operate is:
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IT = p(e)T -e-B.
We will employ 7 to denote the agent’s expected profit from production, so

7z=p(e)T—e=H+B a

nd

_ ple(z))
T PEm) T s )

p defines €V , the level of effort the agent will deliver

when he is promised. Levis and Sappington (2000) suppose the rate at which the

agent’s effort increases as his expected profit from production increases,

h(e) = de/ dr = (de/ dT )(dT/ dﬂ), is non-increasing in effort, and :

h/(e) =0 for all €= O, where h(e) = _[p/(e)]z /[p"(e)p(e)]’ and each
agent | alone knows his wealth endowment L& [L’L]
problem is following:

L

max imize { p(el. )V -e - [7Z'(LI») -B (Li )]}dG(Li)

. So the agent-owner’s

{B(L; )»”(L[ )}
, subject to, all

L elLL]
where the wealth of each agent is an independent draw of a random variable

with the distribution G(Li ) and corresponding density & (Li ), reflecting the
agent-owner’s goal of maximizing her expected return, which is the difference be-
tween total expected surplus and the agent’s rent. The next equation ensures the
agent’s participation by guaranteeing him nonnegative rent:

n(L,) = #(L,)- B(L,) = 0
ML= max T

Lelr,

This identifies a profit-sharing option that the agent with wealth L will select:

B(Li)s L

6 = eln(L,))

which: defines the agent’s self-interested effort choice, given the selected
profit-sharing.

If L denotes the wealth of agent i (l - 1"""N) and (Li’L‘i) denotes the
L, =Ll L, s Ly)

wealth realization for all N agents, =~ will denote

the wealth realizations for all agents other than agent i. E, will denote expecta-

E L_.
tions over L, and -/ will denote expectations over ~~i. Each agent knows his
own wealth endowment and determines agent ’'s effort supply:
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I,(L) = A (L p(e)r(e)-e]- BAL) = 2(L [ple)s p'(e)- €] - B(L)

The market maker’s problem is following:

max /1 V — e IT.(L
DS | APV (L)1)

which reflects the agent’s desire to maximize her expected return, i.e. the dif-
ference between the expected surplus and the rent afforded the agents.

B(L;’L—i) +11; (Li,’L—i) = Ai(Li,’L—i){p(e(Li"L—i))/pr(e(Li/’L—i)) - e(LiI’L—i)}
identifies the self-interest effort choice of the agent who is selected to operate,
and following ensures nonnegative rent for each agent:

E, TI(L,L,)=0.
! '
EL_,Hi(LiaL—i) = EL_iHi(Li’L—i) for all L <L
This ensures that each agent will truthfully reveal his wealth realization, pro-
vided all other agents do the same, by providing rents to agents who reveal higher
wealth realizations.

The following give each agent’s bond at the level of his wealth, and ensure that
operating probabilities are defined:

B(L)=L,
A(L)=0

ia,.(L)g

Consider a sequence of economies " where the number of elements in the de-
pendency neighborhoods of any agent remains uniformly bounded as 7 gets larger.

>

Let us take a sequence of prices Dy such that we expect excess demand, and con-

struct a sequence of random market-clearing prices Py (w), where @ refers to a
particular state of the environment.

Majumdar and Rotar (2000) consider an exchange economy with £ + 1 com-
modities, and an agent participating in the exchange of commodities is described

f+1
§x R++ with values in R+ , and its satis-
fied continuity f is continuous on SR,

(p.f(p.w)) = for p ?S’ wER++, and desirability
— pES-S, , = w >0 then |f(p,,0,] = =

by its demand function f defined on
+, and its budget constraint

P, ES, w,ER,_,

are such that = "
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Effect of the Economic System

An economic system is a coordinated set of formal and informal institutions,
including among the formal aspects:

¢ cconomically important laws and codified rights and duties and their enforce-
ment;

¢ specific features allowed to exist in a given context, and their internal structure;

¢ normal relations among the suppliers of resources;

¢ codified practices and provisions;

* the nature, role, instruments, and goals of government.

Dallago (2002) assumes economically informal institutions include the role of
the household as provider of capital and entrepreneurs, work and payment habits,
consumption habits, tax morale and ethical standards, the role of ideology, and re-
ligion and belief. The system is the network of rules of the game that structures the
interaction with the environment. This may develop spontaneously, by design, or
by imposition, following the action of a political authority, or a powerful social
class, a dictator, an ideology, a religion, or a foreign occupant. Compared with in-
stitutions, the economic system adds coordination that strengthens the impact of
institutions upon activities, gives stability to social interaction, and reduces costs
and problems that could derive from contradictory institutions. Therefore, the eco-
nomic system supports the agents of a society by coordinating their knowledge,
choices, production, and transactions. Economic activity without the economic
system is certainly possible but not necessarily economically advantageous. The
system reduces their costs of economic interaction and allows them to capture ex-
ternalities and take advantage of coordination, and we must be able to afford the
learning, adaptation, and compliance costs of operating within the system. Beyond
a certain level of systemic complexity a general solution must be found to avoid
rapidly increasing interaction costs and prevent the failure of interaction. Coordi-
nation and interaction among agents requires a certain degree of coherence within
the system. If agents internalize norms of conduct and rules of the game, and have
institutions that are mutually compatible and possibly coherent, the costs of inter-
action will be lower and interactions will be more effective in promoting adapta-
tion to environmental variability and change. Although this never produces mono-
lithic constructions, though time these processes give the economic system a well-
defined structure that makes the system easily distinguishable from other systems.
This means that the features and role of the government must be in line with the
features of the economic system, and in a competitive market economy based on
private enterprises the possibility for the government to intervene directly in the
economic domain is limited. Reform is always a complex and delicate undertak-
ing; the host of unforeseen and unwanted consequences of reform processes is tes-
timony to the ignorance of reforms and resistance of interest groups. The eco-
nomic system, through the action of agents, tries to keep the compatibility and
coherence that make economic interaction easier and more effective. At any given
point in time, technology is part of the environment. Technology as part of the en-
vironment means that technological change promotes systemic evolution, and ex-
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isting features of the economic system contribute to select the technology that is
most proper in that particular system. Stability derives from the fact that within an
economic system institutions do not emerge randomly but are bundled in an or-
derly interaction. Since the latter features externalities, complementation, and
lock-ins, the path dependence of each institution is and must related to other insti-
tutions of a particular brand. A full understanding of the way in which different
economic systems and different economies adapt to such environmental transfor-
mations requires a dynamic analysis. In a sense, this is an infra-systemic compari-
son that may help in devising reforms to fill that gap. Different economic systems
are more or less efficient depending on their proximity to this organizational struc-
ture, the types and sizes of firms and configurations of economic agents. The eco-
nomic system defines relative advantages and disadvantages, which include costs,
incentives, and access to markets, and network externalities, complementarities,
and lock-ins, and hence ultimately the efficacy of structures.

The economic subject is exclusively the individual; by isolating the individual
from his or her environment and other individuals, individualism consecrates the
economic subject as sovereign over a world of objects. This world of objects is the
world of alienable commodities, a world built on property relations and contracts.
To postulate a sovereign, purposeful, and pre-constituted individual is to imply
that an ontology of contracts is the normal state of the economy. The informal
substitutes for modern insurance arrangements can only de sustained in communi-
ties where members interact frequently, so that the reputation effects will have an
impact. We must note that the risks covered under such arrangements must be lim-
ited: as the scale of the damage increases and/ or as the frequency of interacting
among community members decreases, such arrangements will dissolve. The evo-
lutionary construct of taking the formal insurance markets, and the universalizing
construct of taking the formal institutions for the egoistic nature of human subject,
fails to demonstrate the superior rationality of modern market institutions. Posed
instead as a mutual gain game, cooperative interactions appear to be efficiency
enhancing alternatives to the anonymity of markets with their imperfect natures.
The cooperative strategy dominates the non-cooperative one: through the institu-
tions of reputation and punishment, the selfish economic subjects are able to en-
force their contracts. The reciprocal interactions are inter-temporal exchanges
within the domain of the family, showing that private intergenerational transfers of
income, wealth, and in-kind services are motivated by exchange consideration.
Current fransfers from parents to children may be made with the expectation of fu-
ture reciprocation, the most crucial among the mechanisms of enforcement that
sustain such reciprocal interactions. Mutual-gain games can be treated as a sup-
plement to the market mechanism, as a variant of exchange, thereby collapsing the
former into the later through utility-maximizing selfish agents who are usually as-
sumed to consume private and public goods. Each individual’s utility then de-
pends on his or her consumption of private goods and the sum of everyone’s vol-
untary contribution. This use of selfish behavioral assumptions takes it for granted
that each individual holds a zero conjecture (Nash) regarding the effect of his or
her contribution on the contributions of others. It is particularly interesting that the
economic subject remains intact in its exogenous nature and that institutions are
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seen as exterior to the subject, figuring is only as constraints. Observations that
agents do make voluntary contributions have motivated those who want to explain
these institutions by conceiving the very act of giving (the behavioral essence of
the economic subject) as a commodity. Introducing ad hoc institutional framework
as constraints renders the institutions of morality and ethics as constraints. The
economic process of voluntary contribution does not shape the economic subject
but simply constraints him or her. The household becomes a site of economic rea-
son: reaping benefits of division of labor, extending credit for investment activi-
ties, sharing of collective goods, and risk pooling: none of these activities neces-
sarily occurs, and there is no need to form to enjoy increasing returns or to pool
risks.

The altruist’s utility then depends on private and public goods, and the level of
satisfaction of those who consume the public goods. This is the consideration even
when the motivations of the economic subject from kind responses in repeated in-
teractions are entirely motivated by future gains. While the cost-inefficiency of
acting under competitive markets is acknowledged, in an economy with market
imperfections the efficiency of market transactions is applied to the sphere of pri-
vate goods/services and the agency problem between the market maker and agent,
with the condition that the game provides direct punishment opportunities. Players
are ready to punish, even at their own cost, those selfish types who opt for free-
riding, and can induce the selfish to contribute to the provision of public goods.
Enforcement becomes a problem for all economic processes only if an ontology of
contracts is rendered as the horizon of the economy and the contractual fiction of a
sovereign, purposeful, agent is naturalized. With reciprocity as the alternative
mechanism for organizing inter-temporal exchanges, it is claimed that whether or
not reciprocity is enforceable depends on the market size and agent’s preferences.
When agents require many different goods, a reciprocal-exchange arrangement
has fewer benefits, and the market is an attractive alternative while reciprocity
cannot be enforced. Reciprocal institutions that still operate in these cases can be
found in providing the enforcement mechanisms that guarantee the fulfillment of
contractual relations. In the case of market failures, when it is impossible to write
fully enforceable contracts, reciprocities reemerge as the point of departure, also
appealed to as economic comparisons need to be made between alternatives. The
relative costs of making transactions in market versus in non-market institutions
(family) vary, and when contracts cannot be written easily/fully, reciprocity sur-
faces as a usable supplementary institution. With competitive markets with com-
plete contracts as the alternative, reciprocal activities will be represented as en-
dowed with an inferior rationality compared to markets.

The position of markets as the gravitational center, or the implicit postulation of
the ontology of contracts as the normal state of economy is assumed, although
each economic agent is unified, heterogeneous, and centered around a particular
essence. In order to secure the plurality of economic discourses and conceptions,
we need to acknowledge the heterogeneity of the behavioral orientations with
which an economic subject can identify. The distribution of different behavioral
orientations in a given population is an effect of a structural mechanism. The dis-
tribution of different behavioral patterns among a population becomes an outcome
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of a set of structural mechanisms, and the plurality of behavioral traits in this
manner entails leaving the terrain of individualism and entering that of structural-
ism.

Assuming for a moment these behavioral orientations, social phenomena must
be explained at the level of the individual. Once the formation of the subject is ex-
plored, the boundaries between subject and object are broken, and the ways in
which each shapes the other will need to be accounted for; only then can true het-
erogeneity be considered. We assume that our proposed taxonomy comprises all
possible configurations in comparison to competitive markets with complete con-
tracts (or it acts as a supplement to markets with imperfections). This market-
centric view, structured as it is around the question of enforcement remains to be
structured by an ontology of contracts, and subordinates the multiple logic and ra-
tionality of the diverse economic activities that comprise the representation of the
economy once all existing alternatives to the market exchange and calculated be-
havior couplet are deemed either supplements or variants of market exchange.
Therefore the need for a heterogeneous economy persists, not only in order to
make sense of the past and the present but also to be able to propose alternatives
for the present and the future. To understand the peculiarities of such socioeco-
nomic forms requires us to recognize that the subject is shaped and constructed by
the diverse set of economic and non-economic processes he or she participates in,
even as he shapes and constructs them.

Organizational structures vary according to firm size and type and configura-
tions of economic agents. Organization structures features basic coherence and
permanence in time, together with evolution. Different agents rarely come as iso-
lated entities, and they are usually in stable relations with other agents; comple-
mentary functions are the subcontracting and outsourcing relations that many
firms have with other firms, or financial relations they have with financial institu-
tions. The necessary conditions for this are that they provide agents with proper
incentives, keep coordination costs low, and evolve over time following environ-
mental changes. If only one of these elements shows variability, variety, or vari-
ance multiple equilibrium follow that make use of largely the same or similar
technological devices that exchange production factors, information, knowledge,
and even skills. This may produce patterns of convergence and divergence of eco-
nomic performance without necessarily causing systemic convergence. The envi-
ronment does not influence the economic system directly and its efficiency and the
features of economic agents are as unique as the set of optimal institutions. The
environment includes many variables that may differ, even in their development
levels and technology. These variables are resources, external factors and the im-
pact of random events on each of these; the variety and variance of capabilities
and personalities is reflected in such constructions as culture, social relations, ide-
ology, politics, and preferences.

When different environments and individual features change, economic sys-
tems also change along their own characteristic paths with specific externalities;
through this process, the most important feature of an economic system is the co-
ordination it provides among different institutions. Coordination is in fact the nec-
essary condition for governing interactions among agents, and between them and
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the environment, for mutual advantage. Investment in institutions, and the exter-
nalities generated by such investments produce lock-ins and irreversibility. These
features have an appropriate economic value and give rise to multiple systemic
equilibria and path dependences. Since economic agents invest resources to oper-
ate in the given system and internalize the coordination among different institu-
tions, economic agents in different economic systems develop different capabili-
ties and personalities and have different cost structures. Hence efficacious
organizational structures are different, even if one follows the convergence in
adopting the restrictive supposition that systems are purely efficiency driven.
Their efficacy is determined by cost minimization of decision making and produc-
tion, incentive effectiveness, and the allocation of individual features to their best
possible use.



4 Dynamics and Information

To achieve the goal of systemic change, access to agents’ preferences is
needed. But the information may not be publicly known and agents may behave
strategically. A mechanism that consists of a set of strategies for each agent and a
function that assigns each strategy profile an alternative characterization is
needed. When agents choose whether to learn or not, avoiding costless informa-
tion can be their optimal strategy, and strategic ignorance predicts a systematic
bias in the agent’s perceived payoff. When information flows as an investment
under uncertainty, agents may undertake irreversible investments anticipating ex-
pected losses. Such decisions are taken as commitment devices against the acqui-
sition of future information undesirable from the current perspective. Several equi-
libria coexist, and the agent will succeed in avoiding investments with losses (or
not) depending on the degree of trustworthiness of his future behavior, and under
learning abstention can be part of an equilibrium strategy. When agents have the
same convex capacity, the set of Pareto-optima is independent of them and identi-
cal to the set of optima, and we focus on a pure-exchange economy in which
agents are uncertain about future endowments and consume after uncertainty is re-
solved. We construct a stationary Markov equilibrium for an economy with fiat
money, non-durable commodities, countably many time periods, and a continuum
of agents. In order to hedge against random fluctuations, agents find it useful to
hold fiat money, which they can borrow or deposit at appropriate rates of interest.
Equilibrium analysis yields the stationary distribution of wealth across agents as a
real possibility in an individual agent’s optimization problem. Consider an agent
facing a risky distribution of losses who can change this distribution by exerting
some effort. Effort is shown to increase with risk-aversion if conditional on the
occurrence of a loss; this condition in fact seems to be the main information dif-
ference between self-insurance and self-protection. Agents’ specificity of informa-
tion, assets, economies of scale and learning by doing develops through ongoing
relationship, and agents adapt their trust in a partner as a function of that partner’s
loyalty, exhibited by continuation of their relationship. We let the distribution of
economic activity across different organizational forms emerge from processes of
interaction between these agents as they adapt future decisions to past experiences.
What the agents subsequently do in that interaction is their own — possibly sub-
optimal — decision, which they make on the basis of their locally available, in-
complete information and as a result of their own processing of that information.
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Preferences and Matching

Agents are assumed to have differential preferences for different potential part-
ners, and when a buyer is assigned to an agent this means that he makes rather
than buys. A matching algorithm produces a set of matches on the basis of indi-
vidual agents’ preference ranking over other agents. Klos and Nooteboom (2001)
suppose that each agent assigns a score to all agents he can possibly be matched
with, and the product of potential profitability and trust (interpreted as a probabil-
ity of realization) would constitute expected profit, and allow agents to attach
varying weights to profitability versus trust. Both economies of scale and experi-
ence effects are modeled with the following function:

y= max[O,l - #],
forl=f

and the way profits are made, then, is that suppliers may reduce costs by gen-
erating efficiencies for buyers, while buyers may increase returns by selling more
varied products. On top of that basic level of trust one can develop partner-specific
trust on the basis of experience in dealing with individual partners, and this yields
the following specification, to reflect the increase of trust with the duration of an
ongoing relation:

y = b+(1—b)(1—;),
frel-f

where b is the base-level of trust and x is the number of consecutive matches
the agents have been involved in. After the calculation of scores the matching al-
gorithm is applied, and the outcome is determined by the agents’ preference rank-
ing over acceptable alternatives. The agents decide how much of risky information
to purchase, and the asset is sold at a price, p, and issues a random dividend next
period paying, d.

Random Dividends and Equilibrium

Assume, that each agent compares two sets (4, B) by comparing the locations

X, yea”

in the two sets that he prefers, all . We write XRiY, if for some

reMm and all kEM, xRy, For each feasible interval and each chosen al-
ternative Y. There does not exist another alternative X consisting of locations
taken from this interval such that all agents weakly prefer X to Y and some agent
strictly prefers X to Y for all B, and this called Pareto optimality. If m = 1, then
Pareto-optimality is equivalent to the requirement that the solution chooses from

=Ry . N
all RER and ol B : For all R S and all B, there exists no XxeA"
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such  that XC Bfor all LEN, XRi¢(R’B)

&N, XP.o\R,B
J S (0( ) are under Pareto-optimality. We assume that 7 = 7 =1,
if the feasible interval shrinks in such a way that the previous choice remains fea-

N I
sible, then both choices are the same. For all ReNR and all B,B

BC B,, if go(R,B') C B, then (D(R’B) = ¢(R’B,)' are under Nash’s inde-

pendence of irrelevant alternatives. For each feasible interval and for each pair of
preference profiles that coincide on the set of alternatives that are subsets of that

R,RERY

, and for some

such that

interval, the social choice is the same. For all

RB=R'|B = ’
‘ ’ , then (/)(R’B) - gD(R ’B) are under Arrow’s independence of ir-
relevant alternatives. A small change in the feasible interval does not affect the

RERY, o(R,B)

and all B, if

choice too much, and for all is continuous with respect to B,

and under interval continuity. Let ? be a solution satisfying Nash’s condition and

B = [a,b].

N
interval continuity, and ReR and For

xE[a,b], (ol(R,[x,b]) and gom(R,[a,x])’

. Let m = 2; the extreme peaks so-
lution is the only solution satisfying Pareto-optimality, Nash’s, Arrow’s and conti-

nuity. Let P
be a decision rule and (pa solution, the pair ((D’go)is dual, then for all

ReERY, ®(R) = o(R,|0,1]).
( ) (ﬂ( ’[ ’ ]) The agents can never gain by misreporting their
preferences, and one requires that small changes in preferences do not affect the

; N
option set too much. For all IEN, all RE%, and all

R ER, ®(R)RD(R,R_,)

are under thestrategy. For all

RERY, alliEN, and (R))_, CR '
( l)’EN , if R, =R, , then
(I)(R" ’R‘l) - (D(R) are under preference continuity. Let me {1""”1 B 1} and

(q)’¢) be a dual pair, and under Pareto-optimality; the solution P satisfies
Nash’s condition, Arrow’s independence of irrelevant alternatives, and interval

continuity if the decision rule D satisfies strategy and preference continuity.
Each agent i has preferences R, a binary relation on A which is complete, transitive

and reflexive, and let i be the preference relation and I be the indifference re-

lation. A mechanism I isa pair (S,g) of a list of strategy sets

g:S—>A

S, . . . .
, where ! is the strategy set for agent i , and a function which asso-



Random Dividends and Equilibrium 53

ciates with each strategy an alternative in A. Suh (2001) supposes for a mechanism

§= (Sl,....,Sn)ES

I'= (S’ g ) , the outcome of the strategy profile is an alter-

native g(s). Given a preference profile RER and a mechanism I'= (S,g ) ,a

strategy profile § €S s a Nash equilibrium of the game (F’R), if there is no

; 5. €8, gls,,s ) Pgls
€N guch that for some ' t g( P ‘1) lg( ) A strategy profile SES s

a strong Nash equilibrium of the game (F’R) if there is no coalition TCN
; S E 5 E ,S fe . S
and I= ¢such that for all ¢ €71 and for some T S g( >N )Rg( )

; L{i,a,R)=\bE AaRb
For all (a,R)EAx?R and for all lEN,let (’ ’ ) { i : } be
the set of all alternatives which are less preferred to a by agent i under profile R.

0 =((a".R')....(a",R"))€ O TEN,T =N

For all , for all and for all

iENT
(0.1,))= jeN\T|a' )= (a’,R")}

(. pi F
Forall T EN and foran ¢ = (" R )iENEQ

,let
A yfT=N,
B/9)= a ifT=¢and(ai,R)=(a*,R*) foralliEN,
Nevr L(N \ r(@,T ) i), d,R ) otherwise
For all ¢ €5, (0) and for all [ENAT , at least one agent

J ENA T(Q’T’l) does not prefer alternative a to alternative a under profile
. l l' * *® .
R’ and if (a R )= (a R ) for all LENNT  hen for all aEBT(e) at

least one agent in T does not prefer alternative a to alternative ¢ under profile

R we study here an infinite-horizon strategic market game with a continuum of

(Q,F,P)

agents. Uncertainty is captured by a probability space

a€l =[0]]

, and there is a

continuum of agents , distributed according to a non-atomic prob-

ability measure ? on the collection B(I). On each time period, each agent

Y? (w) =Y

| (@w) .
a€l receives a random endowment ~ AN in units of a commod-

a a
ity, the endowments N e for a given agent a are assumed to be nonnega-

a
tive, integral, and independent, with common distribution A Geanakoplos, et al.
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(2000) suppose the variables Y, (a’ W) are jointly measurable in (a, w), so that the
total endowment is given by

0,(w) = [Y,(a.wolda) > 0.

which is a well-defined, positive and finite random variable for every n. The
bank sets interest rates, rl”(w)=1+p ln(w) to be paid by borrowers and

r, \w)=1+ w . . .

2”( ) p 2"( ) to be paid to depositors. Agents bid money for consump-
tion of the commodity, thereby determining its price p, and the interest rates are
assumed to satisfy:

l=r, (w) <r, (w) and rzn(w) < l

N WEQ, where ,BE(E),l)

for all ne is a fixed discount factor. Each

a . a
agent has a utility function ¥ - R — m, for x < 0, u (x) is negative and
measures the disutility for agent a of going bankrupt by an amount x, for x > 0,

da
u (x) is positive and measures the utility derived from the consumption of x
units of the commodity. At the beginning of time ¢ = a, the price of the commod-

ity is p”‘l(w) and the total amount of money held in the bank is M”'](w). If an
s . (w), if S“,(w)<0

agent @ €1 enters with wealth "1
unpaid debt from the previous time. If S”‘l(w) = 0, then the agent a has fiat
money on hand and plays from position S; an agent @ will play from the wealth

, then agent a has an

a

¥ a
position (S”‘l(w)) = maX{S”‘l(w)’O}' Agent q also begins time # with infor-
Pr

na—l C F’

O

mation a O -algebra of events that measures past prices , past to-

. .t C e .
, and interest rates %°'2k as well as past individual-levels,

S¢.S8 Y bt

k>"k for k-1,....,n-1. Based on this informa-

tal endowments

endowments, and actions
tion, agent g bids an amount

a a * aL
b, (W)E {0’(S”"1(W)) +k of fiat money for the commodity at time #.
The total utility that agent a receives during the period is:

o) u’ (x;‘ (w)), if S°,(w)=0
SO o))z ), ) 5,0 <0
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The total payoff for agent a during the entire duration is the discounted

o

Zﬁ“{;’ (w) .

a
n ,and a strategy 7 for an agent a specifies the bids ~~ as random

variables, which are F”‘1 measurable. A collection IT = {ﬂ-"’a EI} of strate-
gies for all the agents and the collection of strategies played by the agents are ad-

missible. There are three possible situations for agent a in a given period:
a

(1) Agent a is a depositor, this means that #’s bid b, (w) is strictly less than his

wealth (S:‘l(w)) = S’?‘l(w) and he deposits or lends the difference:
I2(w) = 57, 0)= () = (57, (w)) =62 (w)

At the end of the period, a gets back his deposit with interest, as well as his en-
dowment’s worth in fiat money and, moves to the new wealth level:

S2(w) = r, (W) (W) + p, (W)Y (w) > 0.
(2) Agent a is a borrower: this means that a’ s bid : (w) exceeds his wealth

(S'jl (W)> , S0 he must borrow the difference:
;i (w) = b ()= (S ()

At the end of time, a owes the bank Tin (W)d” (w), and his new wealth position
is:
Sy w)=p, W, (w)-r, (Wi (w)

a quantity which may be negative. Agent a is then required to pay back, from

his endowment by (W)Y" (w), as much of his debt Fin (W)d" (W) as he can, and
agent a pays back the amount:

B (v) = minds, (o) Ow). p, ()12 ()]

and his cash holdings at the end of the period are
(S:00)) = p, ()7 ()= it ()

(3) Agent a neither borrows nor lends, and agent bids his entire cash-holdings

a a u
b" (w) - <S"‘1(W)) and ends the time with his endowment’s worth in fiat

money:
S, (W)= p, (W)} (w)=0
and agent’s wealth position at the end of the period is:

S, ()= p, (W), (w)+ 1, (W) (w) = 1, (W (),

and another formula for agent’s cash-holdings is:
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(5200)" = P, (W, () + 13, (W2 (w) = B2 ().

N i : .
Let { 102125 P }"‘1 be a system of interest rates and prices. The total expected

a

utility to an agent a from a strategy 7 ’ when So =s , is given by:
1(zYs) = EY 5 (w)
n-1

An admissible collection of strategies
a

{ﬂ“,aEI}

together with an initial dis-

o ac] .
tr1but10n for n? determines the random measures

f 1 ( )W da) A EB(SR) that describe the distribution of

wealth across agents forn = 0,1, ... ... A stationary Markov equilibrium is an equi-

librium {rln’an’pn}:f:p {ﬂ'a,a el

tions the following are also satisfied:

} such that, in addition to previous condi-

. . K, F,, and
- the interest rates r and prices p have constant values !” %’ P

Y vV, W
- the wealth distributions ”( ’ ) are equal to a constant measure H ;

Mn(w) and M, (w)

- the quantities have constant values M and M , and

a
- each agent ¢ €1 follows a stationary Markov strategy 7 , which means

a

that the bids b, specified by 7 * can be written in the form:

a a a u
b, (W) =c (( n—l(w)) ) for every wEL, nEN . In a stationary Markov

equilibrium, then an individual agent faces a sequential optimization problem with
fixed price and fixed interest rates.

Heterogeneous Expectations

The economy is populated by utility-maximizing, infinitely-lived, forward-
looking agents, whose solution are the perfect-foresight equilibrium laws of mo-
tion of all choice variables. Bomfin (2001) expresses the evolution of these vari-
ables as a function of past, current, and future states of the economy, and the as-
sumption of heterogeneous expectations amounts to saying that agents use the
same mechanism to solve their dynamic optimization problem:
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max 2 B {”(Ci,z 1- ni71)+ A [exp(AI P! —c,, - k., + (1- 5)ki’l_1]},

where ¢ determines the extent to which individual output y depends on aggre-

: lim Ak, =0
gate output Y, subject to "', the condition a B AR

{Al’ l}?—()’ ﬂ“t : . T . .

- is the discounted Lagrange multiplier relevant for time ¢. After im-
posing a symmetry condition that says that agents who rely on the same forecast-
ing mechanism make identical decisions, the equilibrium laws of motion take the
form

,and given

xi,z = Hi,kK

where

" o
YIS > -k
Xip = ]vi,t’I{i%z’Ci,t]> €= [Ar’Y]z] , and /1?,: = Zﬂi (E,lei,z+h+1 +E,2ei,t+h)'
=

For each period ¢, we assume that all agents follow a decision process where
agents make their labor supply and capital accumulation decisions before being
able to observe the current value of productivity shifter A, or the current output
decision of the other agents in the economy. The allocation decision rules take the
form:

+ Hi,;ﬂi,l +1I1. e

it-1 i,ein?

2, =7, K+ ﬂ-i,AE(i)[Z,z Q ]+ ﬂ-i,eE(i)[ei,t 91-1]7

-1

/

Zig = [Ni,nKi,z

] 7, .
where , and the ! parameters correspond to the appropriate

elements of the ~ ¢ matrices; ~ ‘! is the information set available at the begin-
(0)
ning of period ¢, ‘ =1 denotes the expectation of a type i agent conditioned

on ~ ‘71, Therefore, the consumption decision is based on a larger information set
Q,, = 1Q. LAY, Yo, |

0.1 =T ESOTRE)  Agents of different types are information-ally
linked, and generate their own decision rules they must forecast the behavior of

the other agents in the economy, and ~ /* is an element of € , and the channel

through which agents’ expectations affect their behavior. The different expecta-
EY) and EW

tions rules embedded in can lead to potentially different re-

sponses to the same fundamental shocks. Consider an agent with an increasing

utility function U, this agent faces a risk of loss or accident and can engage efforts,

chosen from an interval [O’e]. Jullien et al. (1999) assume for a level e of effort,
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his wealth is ¥ =W = cle) with probability (- P(e)), w=W -d(e) with
probability p (e), where the function “\¢/ can be thought of as the cost of effort.

The difference ie) = d(e)-cle) is the loss, and W is the initial wealth, and the
expected utility of the agent is

p (e)U (W - d(e)) + (1 -P (e))U (W - c(e)). For a level of effort e, the end
wealth is 0 ifW <W- d(e), p(e) ifw - d(e) <w<W- C(e)
w > W - c(e).

R[Nl (1= E[ v, el

w, and w,

, and 1 if

Let us add risk to final wealth, so that the expected utility of the

where are the stochastic variables whose distribution may depend
on ¢, and then a more risk-averse agent chooses a higher level of effort. Let

e), cle . . . .
p ( ) ( ), and d(e) be continuously differentiable, and assume U is increas-
ing and continuously differentiable and that the agent characterized by U strictly

prefers effort € = [O’e] to any other effort, with 0< p (60) < 1. In this case,
the final wealth w is a random variable with compact support, and the single-
crossing condition ensures that more risk averse agent chooses a higher level of
information effort.

Dynamics of Prices

We consider groups of traders with different trading strategies, who are risk-

neutral have a reasonable knowledge of value of the stock p (t , and we assume
that buying or selling order is given by:

x"(t) = am(lnp*(t) ~1In p(t))

>

where m is the number of agents, and a characterizes the strength of the reac-
tion of the discrepancy between agents price and the market price. Kaizoji et al.
(2002) suppose the investment attitude of agent i is represented by the random

variable Si of agent is updated with a heat-bath dynamics according to:

1
1+ exp(- 21, (1))
st +1) = -1 with 1- p

Si([ +1) =+1 with p =

where h (t) is the local field governing the strategic choice of the agent.
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The local strategy changes of an agent, that is the decision that an agent makes,
is influenced by local information as well as global information. Global informa-
tion includes the information about whether the agent belongs to the majority
group or the minority group of sellers or buyers at a time period. The asymmetry
in size of majority versus minority groups can be captured by the value:

M= -3 s50)

The goal of the interacting agents is to obtain capital gains through trading; the
majority group has to expand over the next trading period. To sum up, the prob-
ability with which increasing agents in the group, withdraw from their coalition,

h(t) = zjiij(t)—aS‘j(t)(M(t)f

bl

and the local field

with a coupling constant & > O, with nearest neighbor interactions

4 and Y for all other pairs. We assume that the agent excess demand
for the stock is approximated as:
!
X (t) = bnM (t)

and in the system a market maker mediates the trading and adjusts the market
price to the market clearing values. The balance of demand and supply is written
as:

x(t)+x'(t) = amllnp*(t)— In p(t)J +bnM(t)=0

Hence the market price and the trading volume are calculated as:

In p(t) = In p'(0) + AM (), 4 =2
am ,
and
V(t) = bnw
If M(t) > 0, the market price p (t) exceeds the optimal price p (t) (bull

market regime), and the opposite scenario is a bear market regime. The relative
change of price, the so-called log-return, is defined as:

In p(t) - In plt ~1) = (In p' (¢ = 1))+ 2(M (r) - M (t -1))
The meta-stable phases are the analog of speculative bubbles; for example, the

bull market is defined as a large deviation of the market price from the optimal
price. That is, there is a higher probability for extreme values to occur as com-

i rit .
pared to the case of a distribution for absolute returns ‘ ( )‘ , which report asymp-
totic behavior:
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PQr(t)‘ > x) ~ xi”

>

with an exponent H petween about 2 and 4 for stock returns, and the volatility

i) . - . ) .
‘ ( )‘ is called clustered volatility. Let us consider a timescale 7 at which we ob-
serve price fluctuations. The log-return for duration 7is then defined as

i (t) - 1n(P(t)/P(t - T)), and volatility clustering as described above is this

observable defined for any interval 7 ranging from minutes to more than a month
or even longer. The model reproduces observations of markets as distributed re-
turns, clustered volatility, positive correlation between volatility and trading vol-
ume, as well as self-similarity in volatility at different time-scales.

Bounded Rationality

What we learn from experiments is that subjects often fail to play the equilib-
rium strategy, especially if the equilibrium notion is fairly refined, even when
agents can acquire some experience through repeated play. However, for some
games, players may still fail to play an equilibrium, even with experience. Among
the relevant variables are those that specify the environment in which the mecha-
nism is supposed to operate, as well as initial conditions including the learning
protocols agents may use, and a social choice rule will be said to be dynamically
implemented by a mechanism. For all possible environments, preferences, adjust-
ment processes, initial conditions, and the limiting set of outcomes coincide with
the first-best and is also asymptotically stable, that is, robust when subjected to ar-
bitrarily small perturbations. Then many equilibria in the inefficient Nash equilib-
rium component can be limit points of the adjustment process. The sustainability
of incredible threats under evolutionary dynamics for any way of simulation was
first pointed put,by Ponti (2000), who shows that mechanisms pass the stability
test for initial conditions sufficiently close to the desired stability iroperties.

o~ _ k

For a given formal game P = {“S’S"’u"}, denote by %= p kES,

a generic mixed strategy for player i. We formalize player’s behavior in terms

of the mixed strategy profile, x(t) = (xA (t)’ *p (t))E © , played at each point in
time ¢, where © denotes the set of mixed strategy profiles of 9.

The evolution of x(t) is given by the following system of continuous-time
equations:

i = fH(e))y kES,, i= AB

11

=R : .
with /¢ satisfying standard regularity conditions.
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k
A function f= <f’ ) said to yield a regular monotonic dynamic if

STRITE PR S
( ) lk( ) eSs.

where xi denotes the growth rate of strategy k L

This condition is commonly used to capture the essence of a selective process,
and the strategy played at each point in time, strategies with higher expected pay-
off grow faster than poorly performing ones. The implicit assumption is that
agents from each population are randomly present, so which action is to be used
depends on the order of statements, which is randomly determined by the match-
ing technology. By asymptotic stability, every trajectory starting arbitrarily close
stays sufficiently close and eventually converges to the solution, and every trajec-
tory converges to the first-best. If repeated play evolves according to such dynam-

M,(M,)

ics, then the first-best can (not) be dynamically implemented by The

failure of global convergence in the case of M, can be shown as follows: if
4 denotes the inefficient Nash equilibrium component of the game induced by

Ml

>

Np = {r,) €0 (s« (1= 2)sP Y syt + (- 0)sle )

vy 1]
1+, and ,uE[O,l].

All strategy profiles in Ng are outcome equivalent to the Nash equilibrium in
(B,A) _(B.A

pure strategies \"4 -5

AE
with

)
) by which the first-best is attained in sub-game 2

and the inefficient equilibrium is attained in sub-game 9 2. Ng is reachable
from a non-zero measure set of initial conditions, as follows:

Q={(xA,xB)E®O:x 4 5q1- gA,( A= gz0< ¢ sr],z—AB}

with 77 sufficiently small. To show that all trajectories starting from Q con-
v+v
x(B’A) > - B
N . Vre@’ A V+Vg +0
verge to , notice that VX such that B
(8.4) (B,4)
true that 7B ( ) > 0, since 5B is the unique best response to xA, and im-

, it must be

(8,4) (B.4)
plies that X (t) is increasing, provided Xa (t) is arbitrarily high.
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(B.4)
For all XEQ, it must be true that /A (x) > O, with the differences

(@) -7 ) )-8 @) @ = A8

(B.4)
When *8 is sufficiently high, all results are positive and bounded away from

gB’A)(x) >0 ng’A) t

zero. This, in turn, implies g , and ( ) is also increasing, pro-
(B.4)

videa %5 ) i arbitrarily high.

Imperfect Commitment

This involves the range of outcomes that give no incentive to the agent to mis-
represent his type, and the problem is that of finding an optimal mechanism within
the set of all conceivable mechanisms to a straightforward problem of incentive
compatibility constraints. In a long-term relationship the mechanism designer has
to specify a contract that covers the entire time horizon of the relationship. The
revelation principle for environments in the form of the mechanism designer can-
not fully commit to the outcome induced by the mechanism, and the revelation
principle, is the guiding principle for the theory of implementation and mechanism
design under imperfect information. The designer must be able to resist re-
negoliation away inefficiencies, and any action that he may take must be verifiable
so that it can be specified as part of the mechanism. Since the agent anticipates
this, he may realize that truthfully reporting his private information is required,
and if he fails due to imperfect commitment, the result is mechanisms whose out-
come cannot be replicated by a direct mechanism. We are able to prove that the
payoffs on the Pareto frontier of an arbitrary mechanism may also be obtained by
a direct mechanism, in which the agent’s message space is the set of his types.
Under this mechanism it is an optimal strategy for the agent to reveal his type
truthfully and he will use this strategy with high probability; also in the presence
of imperfect commitment an optimal mechanism can still be found in the set of in-
centive compatible direct mechanisms. The agent has to be kept indifferent be-
tween truthfully revealing his information and cheating, which may occur with
nonzero probability. Bester and Strausz (2001) show this for a message set of the
same dimensionality as the set of the agent’s types. The mechanism designer can
get the required payoff just as from a contracting problem with an arbitrary mes-
sage set, and the optimality of a direct mechanism under which the agent has a
weak incentive to reveal his type truthfully can be shown. All allocation consists
of types of decision X, by which we denote all those decisions to which the market
maker can contractually commit himself, and ¥, which describes all those deci-
sions that are not contractible and are chosen at the market maker"” discretion. The

yEF(x)

market maker has to select when he is committed to the decision
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XEX The agent is privately informed about his type

tET = ,.-..,t- ......t: < T
ill v 1) and we assume that 1 1 .
The market maker knows the probability distribution

}/ = (}/1’ ..... ’7i7 ------ ,7/11-‘) Ofthe agent’S type'

The payoffs of players depend on the allocation (x’y ) and the agent’s type.
When the agent is of the type t", the market maker’s payoff from

x,y)is Vi x o U,

( ’ y) l( ’y), and the agent’s payoff in this situation is U, (x’y). The mar-
ket maker will require the agent to provide some kind of information, and there-
fore chooses a message set M so that the agent has to select some message

meM . The market maker can commit himself to a measurable decision func-
tion XM = X und the agent can enforce the decision x(m) by sending the
[ =(M,x)

message m, and a mechanism specifies a message set M in combina-

tion with a decision function x()

The agent selects some message meM ; this determines the contractually

specified decision x(m)E X , and the market maker uses the agent’s message to
update his beliefs about the agent’s type and chooses some decision

Y EF(x(m)) . For given r , the market maker is constrained to the allocations
that can be obtained through the perfect Bayesian equilibria of this game, and the

expected payoffs for the market maker and the g -type agent are defined as:

)- 3 fV ). y(m)dg,(m)
)= [0, (sl (g )

The market maker’s strategy has to be optimal given his beliefs about the

U,-(,

agent’s type, and for all every M € M.

Z b (m)Vz (x(m),y(m)) = 2 D; (m)Vl (x(m), y’)

for all yl EF(x(m)).

The agent anticipates the market maker’s behavior y and chooses g to maximize

t,eT, q,
his payoff, and for each * > 4 has to satisfy:
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[0, sl )= 0 ) ) or it ] <0

The market maker’s belief has to be consistent with Bayes’ rule on the support

of the agent’s message strategy, for alt 4 ET and all H €M with q(H) >0 it
is required that:

fpi (m)d‘?(m) =74 (H)
/4 .
The left-side represents the market maker’s belief that he confronts agent

t . . .
" upon receiving a message from the set H, and the right-hand side expresses the

conditional probability that the agent is actually of type f given that, under the
reporting strategy g, a message in the set H is realized. For a given message set

M. (g,

is said be incentive efficient if it is incentive feasible and
(q/’ p/’ yl’x/IM)
M)
M)

there is no incentive feasible such that:

V*(q*,y*,x*lM) > V*(q,y,x
Ui*(q*’y*’x"M)= Ui*(q’yax

for all LET . The agent has the option to refuse to contract with the market

and

maker; if we let o denote the payoff that the type must also satisfy individual-
rationality constraints:

U;(q,y,xM)z[I X L ET

for all

for each type L there is a message EM guch that Ui (x(m) 24 (m)) =U, .

The market maker’s overall problem includes the choice of an appropriate mes-
sage set M. For unobservable actions, the market maker’s decision y may not be
contractible because it is not publicly observable. He can perform an audit to ver-
ify the agent’s type, but commitment to a specific auditing strategy is problem. If
imperfect commitment arises in contracting parties for the current period after the
contract x expires, we will suppose that the market maker offers a new contract y,

i.e. that the contract * (m) is inefficient, and a new contract y is offered, which
the agent can either accept or reject. When Z= Y, the market maker faces no

commitment and so the agent’s message m has no direct impact on the allocation;
it does not affect the market maker’s decision via his beliefs about the agent’s

type.
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I =(M,x)

and in the game induced by r, when the agent announces some type, the market
maker may be able to commit himself to all relevant decisions. The market
maker’s problem allows him to select as his message set of the agent’s type, and

With a direct mechanism the message set is the agent’s type set,

he can restrict his choice to an allocation function 217 —> X that gives the
agent the constraint denoted by the following incentive compatibility conditions:

Ui (Z(ti )) z Ui (Z(tj )) for all t]' = .

This incorporates the restrictions that the market maker faces because he is un-
informed about the agent’s type. The design of efficient mechanisms or optimal
contracts is supported by the fact that all outcomes that are implement-able

(¢, p,y, M)

through some other type of mechanism; any incentive efficient

(¢ p. v, xM)

T
support of the agent’s reporting strategy 4 contains at most ’ I elements.
'

The idea for the reporting strategy 9 can be explained for the case where

can be replaced by some payoff-equivalent in such a way that the

7 is a finite set if we assume asserts that:

as this allows us to define the reporting strategy 9 by setting

Cli,(mh) =a,q; (mh)/a(mh)

— '
The support of 9 contains at most \ ‘ messages and p and 4 are consistent

'
with Bayesian updating, since replacing g by 49 does not alter the market maker’s
belief, his choice of y remains optimal. The reason is that applying above proce-
dure to the reporting behavior of one of the agents may reduce the expected re-
porting of another agent so that individual rationality be violated. These observa-
tions allow us to formulate the market maker’s contracting problem:

ggngZ%%(ﬁ)‘/i(z(t;»

>

U= 0,6l )
U,-(Z(ti)) = l7",

o e(e)- U1l e, ) - 0
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y{t)Sargmax E p, eV, (x(t). )

yEF
plt 2 ralt)=ral,)
L ET . . ) . -
forall ** "/ . The first constraints represent the usual incentive compatibil-

ity and individual rationality restrictions, and the market maker faces additional
constraints.

The lack of commitment any incentive constraint could turn out to be binding at
the optimum, and one may have to result to the straightforward but tedious proce-
dure of solving the problem by examining all possible constellations. We denote

the decisions that have been implemented in the periods up to date 7 by

X . .
( -1 P 7‘1); the market maker uses the agent’s message m 