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Preface

The mathematics contained in this book for students of economics and finance
has, for many years, been given by the authors in two single-semester courses
at the University of Wales Aberystwyth. These were mathematics courses in
an economics setting, given by mathematicians based in the Department of
Mathematics for students in the Faculty of Social Sciences or School of Man-
agement. The choice of subject matter and arrangement of material reflect this
collaboration and are a result of the experience thus obtained.

The majority of students to whom these courses were given were study-
ing for degrees in economics or business administration and had not acquired
any mathematical knowledge beyond pre-calculus mathematics, i.e., elementary
algebra. Therefore, the first-semester course assumed little more than basic pre-
calculus mathematics and was based on Chapters 1–7. This course led on to
the more advanced second-semester course, which was also suitable for students
who had already covered basic calculus. The second course contained at most
one of the three Chapters 10, 12, and 13. In any particular year, their inclusion
or exclusion would depend on the requirements of the economics or business
studies degree syllabuses. An appendix on differentials has been included as an
optional addition to an advanced course.

The students taking these courses were chiefly interested in learning the
mathematics that had applications to economics and were not primarily in-
terested in theoretical aspects of the subject per se. The authors have not at-
tempted to write an undergraduate text in economics but instead have written
a text in mathematics to complement those in economics.

The simplicity of a mathematical theory is sometimes lost or obfuscated
by a dense covering of applications at too early a stage. For this reason, the
aim of the authors has been to present the mathematics in its simplest form,
highlighting threads of common mathematical theory in the various topics of

v



vi Elements of Mathematics for Economics and Finance

economics.
Some knowledge of theory is necessary if correct use is to be made of the

techniques; therefore, the authors have endeavoured to introduce some basic
theory in the expectation and hope that this will improve understanding and
incite a desire for a more thorough knowledge.

Students who master the simpler cases of a theory will find it easier to go on
to the more difficult cases when required. They will also be in a better position
to understand and be in control of calculations done by hand or calculator
and also to be able to visualise problems graphically or geometrically. It is
still true that the best way to understand a technique thoroughly is through
practice. Mathematical techniques are no exception, and for this reason the
book illustrates theory through many examples and exercises.

We are grateful to Noreen Davies and Joe Hill for invaluable help in prepar-
ing the manuscript of this book for publication.

Above all, we are grateful to our wives, Nesta and Gill, and to our chil-
dren, Nicholas and Christiana, and Rebecca, Christopher, and Emily, for their
patience, support, and understanding: this book is dedicated to them.

Vassilis C. Mavron Timothy N. Phillips
Aberystwyth Cardiff
United Kingdom United Kingdom

March 2006
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1
Essential Skills

1.1 Introduction

Many models and problems in modern economics and finance can be expressed
using the language of mathematics and analysed using mathematical tech-
niques. This book introduces, explains, and applies the basic quantitative meth-
ods that form an essential foundation for many undergraduate courses in eco-
nomics and finance. The aim throughout this book is to show how a range of
important mathematical techniques work and how they can be used to explore
and understand the structure of economic models.

In this introductory chapter, the reader is reacquainted with some of the
basic principles of arithmetic and algebra that formed part of their previous
mathematical education. Since economics and finance are quantitative subjects
it is vitally important that students gain a familiarity with these principles
and are confident in applying them. Mathematics is a subject that can only be
learnt by doing examples, and therefore students are urged to work through
the examples in this chapter to ensure that these key skills are understood and
mastered.

1



2 Elements of Mathematics for Economics and Finance

1.2 Numbers

For most, if not all, of us, our earliest encounter with numbers was when we were
taught to count as children using the so-called counting numbers 1, 2, 3, 4, . . ..
The counting numbers are collectively known as the natural numbers. The
natural numbers can be represented by equally spaced points on a line as shown
in Fig. 1.1. The direction in which the arrow is pointing in Fig. 1.1 indicates the
direction in which the numbers are getting larger, i.e., the natural numbers are
ordered in the sense that if you move along the line to the right, the numbers
progressively increase in magnitude.

X

1 2 3 4 5 6 7

Figure 1.1 The natural numbers.

It is sometimes useful and necessary to talk in terms of numbers less than
zero. For example, a person with an overdraft on their bank account essentially
has a negative balance or debt, which needs to be cancelled before the account
is in credit again. In the physical world, negative numbers are used to report
temperatures below 00 Centigrade, which is the temperature at which water
freezes. So, for example, −50C is 50 C below freezing.

If the line in Fig. 1.1 is extended to the left, we can mark equally spaced
points that represent zero and the negatives of the natural numbers. The nat-
ural numbers, their negatives, and the number zero are collectively known as
the integers. All these numbers can be represented by equally spaced points
on a number line as shown in Fig. 1.2. If we move along the line to the right,
the numbers become progressively larger, while if we move along the line to the
left, the numbers become smaller. So, for example, −4 is smaller than −1 and
we write −4 < −1 where the symbol ‘<’ means ‘is less than’ or, equivalently,
−1 is greater than −4 and we write −1 > −4 where the symbol ‘>’ means ‘is
greater than’. Note that these symbols should not be confused with the symbols
‘≤’ and ‘≥’, which mean ‘less than or equal to’ and ‘greater than or equal to’,
respectively.
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X

-4 -3 -2 -1 0 1 2 3 4 5

Figure 1.2 Integers on the number line.

1.2.1 Addition and Subtraction

Initially, numerical operations involving negative numbers may seem rather
confusing. We give the rules for adding and subtracting numbers and then
appeal to the number line for some justification. If a and b are any two numbers,
then we have the following rules

a + (−b) = a − b, (1.1)

a − (+b) = a − b, (1.2)

a − (−b) = a + b. (1.3)

Thus we can regard −(−b) as equal to +b.
We consider a few examples:

4 + (−1) = 4 − 1 = 3,

and
3 − (−2) = 3 + 2 = 5.

The last example makes sense if we regard 3 − (−2) as the difference between
3 and −2 on the number line. Note that a − b will be negative if and only if
a < b. For example,

−2 − (−1) = −2 + 1 = −1 < 0.

1.2.2 Multiplication and Division

If a and b are any two positive numbers, then we have the following rules for
multiplying positive and negative numbers:

a × (−b) = −(a × b), (1.4)

(−a) × b = −(a × b), (1.5)

(−a) × (−b) = a × b. (1.6)

So multiplication of two numbers of the same sign gives a positive number,
while multiplication of two numbers of different signs gives a negative number.
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For example, to calculate 2× (−5), we multiply 2 by 5 and then place a minus
sign before the answer. Thus,

2 × (−5) = −10.

It is usual in mathematics to write ab rather than a × b to express the multi-
plication of two numbers a and b. We say that ab is the product of a and b.
Thus, we can write (1.6) in the form

(−a)(−b) = ab.

These multiplication rules give, for example,

(−2) × (−3) = 6, (−4) × 5 = −20, 7 × (−5) = −35.

The same rules hold for division because it is the same sort of operation as
multiplication, since

a

b
= a × 1

b
.

So the division of a number by another of the same sign gives a positive number,
while division of a number by another of the opposite sign gives a negative
number. For example, we have

(−15) ÷ (−3) = 5, (−16) ÷ 2 = −8, 2 ÷ (−4) = −1/2.

1.2.3 Evaluation of Arithmetical Expressions

The order in which operations in an arithmetical expression are performed is
important. Consider the calculation

12 + 8 ÷ 4.

Different answers are obtained depending on the order in which the operations
are executed. If we first add together 12 and 8 and then divide by 4, the result
is 5. However, if we first divide 8 by 4 to give 2 and then add this to 12, the
result is 14. Therefore, the order in which the mathematical operations are
performed is important and the convention is as follows: brackets, exponents,
division, multiplication, addition, and subtraction. So that the evaluation of
expressions within brackets takes precedence over addition and the evaluation
of any number or expressions raised to a power (an exponential) takes prece-
dence over division, for example. This convention has the acronym BEDMAS.
However, the main point to remember is that if you want a calculation to be
done in a particular order, you should use brackets to avoid any ambiguity.
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Example 1.1

Evaluate the expression 23 × 3 + (5 − 1).

Solution. Following the BEDMAS convention, we evaluate the contents of
the bracket first and then evaluate the exponential. Therefore,

23 × 3 + (5 − 1) = 23 × 3 + 4

= 8 × 3 + 4.

Finally, since multiplication takes precedence over addition, we have

23 × 3 + (5 − 1) = 24 + 4 = 28.

1.3 Fractions

A fraction is a number that expresses part of a whole. It takes the form a/b

where a and b are any integers except that b �= 0. The integers a and b are known
as the numerator and denominator of the fraction, respectively. Note that
a can be greater than b. The formal name for a fraction is a rational number
since they are formed from the ratio of two numbers. Examples of statements
that use fractions are 3/5 of students in a lecture may be female or 1/3 of a
person’s income may be taxed by the government.

Fractions may be simplified to obtain what is known as a reduced fraction
or a fraction in its lowest terms. This is achieved by identifying any common
factors in the numerator and denominator and then cancelling those factors by
dividing both numerator and denominator by them. For example, consider the
simplification of the fraction 27/45. Both the numerator and denominator have
9 as a common factor since 27 = 9 × 3 and 45 = 9 × 5 and therefore it can be
cancelled:

27
45

=
3 × 9
5 × 9

=
3
5
.

We say that 27/45 and 3/5 are equivalent fractions and that 3/5 is a reduced
fraction.

To compare the relative sizes of two fractions and also to add or subtract
two fractions, we express them in terms of a common denominator. The com-
mon denominator is a number that each of the denominators of the respective
fractions divides, i.e., each is a factor of the common denominator. Suppose
we wish to determine which is the greater of the two fractions 4/9 and 5/11.
The common denominator is 9 × 11 = 99. Each of the denominators (9 and
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11) of the two fractions divides 99. The simplest way to compare the relative
sizes is to multiply the numerator and denominator of each fraction by the
denominator of the other, i.e.,

4
9

=
4 × 11
9 × 11

=
44
99

, and
5
11

=
5 × 9
11 × 9

=
45
99

.

So 5/11 > 4/9 since 45/99 > 44/99.
We follow a similar procedure when we want to add two fractions. Consider

the general case first of all in which we add the fractions a/b and c/d with b �= 0
and d �= 0:

a

b
+

c

d
=

a × d

b × d
+

c × b

d × b

=
a × d + b × c

b × d
.

Therefore, we have
a

b
+

c

d
=

ad + bc

bd
. (1.7)

For example,
2
7

+
3
5

=
2 × 5 + 3 × 7

7 × 5
=

10 + 21
35

=
31
35

.

The result for the subtraction of two fractions is similar, i.e.,

a

b
− c

d
=

ad − bc

bd
. (1.8)

Example 1.2

Simplify
13
24

− 5
16

.

Solution. The idea is to express each of these fractions as equivalent fractions
having a common denominator. Therefore, we have

13
24

− 5
16

=
13 × 16
24 × 16

− 5 × 24
16 × 24

=
208 − 120

384

=
88
384

=
11 × 8
48 × 8

=
11
48

.



1. Essential Skills 7

Note that a smaller common denominator, namely 48, could have been used in
this example since the two denominators, viz. 16 and 24, are both factors of
48. Thus

13
24

=
2 × 13
2 × 24

=
26
48

and
5
16

=
3 × 5
3 × 16

=
13
48

.

Therefore,
13
24

− 5
16

=
26 − 15

48
=

11
48

.

1.3.1 Multiplication and Division

To multiply together two fractions, we simply multiply the numerators together
and multiply the denominators together:

a

b
× c

d
=

a × c

b × d
=

ac

bd
. (1.9)

To divide one fraction by another, we multiply by the reciprocal of the divisor
where the reciprocal of the fraction a/b is defined to be b/a provided a, b �= 0.
That is

a

b
÷ c

d
=

a

b
× d

c
=

a × d

b × c
=

ad

bc
. (1.10)

Example 1.3

Simplify the following fractions

1.
5
8
× 16

27
,

2.
9
13

÷ 12
25

.

Solution.

1. The product is the fraction
5 × 16
8 × 27

.

To simplify this fraction, we note that 8 is a factor of the numerator and
denominator (since 16 = 8 × 2) and can be cancelled. Therefore, we have

5
8
× 16

27
=

5 × 16
8 × 27

=
5 × 8 × 2
8 × 27

=
10
27

.
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2. Using the rule (1.10) for the division of two fractions, we have

9
13

÷ 12
25

=
9
13

× 25
12

=
9 × 25
13 × 12

.

Then noting that 3 is a common factor of the numerator and denominator,
we have

5
8
× 16

27
=

3 × 3 × 25
13 × 4 × 3

=
3 × 25
13 × 4

=
75
52

.

1.4 Decimal Representation of Numbers

A fraction or rational number may be converted to its equivalent decimal rep-
resentation by dividing the numerator by the denominator. For example, the
decimal representation of 3/4 is found by dividing 3 by 4 to give 0.75. This is
an example of a terminating decimal since it ends after a finite number of
digits. The following are examples of rational numbers that have a terminating
decimal representation:

1
8

= 0.125,

and
3
25

= 0.12.

Some fractions do not possess a finite decimal representation – they go on
forever. The fraction 1/3 is one such example. Its decimal representation is
0.3333... where the dots denote that the 3s are repeated and we write

1
3

= 0.3̇,

where the dot over the number indicates that it is repeated indefinitely. This
is an example of a recurring decimal. All rational numbers have a decimal
representation that either terminates or contains an infinitely repeated finite
sequence of numbers. Another example of a recurring decimal is the decimal
representation of 1/13:

1
13

= 0.0769230769230 . . . = 0.07̇69230̇,

where the dots indicate the first and last digits in the repeated sequence.
All numbers that do not have a terminating or recurring decimal represen-

tation are known as irrational numbers. Examples of irrational numbers are√
2 and π. All the irrational numbers together with all the rational numbers
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form the real numbers. Every point on the number line in Fig. 1.2 corresponds
to a real number, and the line is known as the real line.

To convert a decimal to a fraction, you simply have to remember that the
first digit after the decimal point is a tenth, the second a hundredth, and so
on. For example,

0.2 =
2
10

=
1
5
,

and
0.375 =

375
1,000

=
3
8
.

Sometimes we are asked to express a number correct to a certain number
of decimal places or a certain number of significant figures. Suppose that
we wish to write the number 23.541638 correct to two decimal places. To do
this, we truncate the part of the number following the second digit after the
decimal point:

23.54 | 1638.

Then, since the first neglected digit, 1 in this case, lies between 0 and 4, then
the truncated number, 23.54, is the required answer. If we wish to write the
same number correct to three decimal places, the truncated number is

23.541 | 638,

and since the first neglected digit, 6 in this case, lies between 5 and 9, then
the last digit in the truncated number is rounded up by 1. Therefore, the
number 23.541638 is 23.542 correct to three decimal places or, for short, ‘to
three decimal places’.

To express a number to a certain number of significant figures, we employ
the same rounding strategy used to express numbers to a certain number of
decimal places but we start counting from the first non-zero digit rather than
from the first digit after the decimal point. For example,

72,648 = 70,000 (correct to 1 significant figure)

= 73,000 (correct to 2 significant figures)

= 72,600 (correct to 3 significant figures)

= 72,650 (correct to 4 significant figures),

and

0.004286 = 0.004 (correct to 1 significant figure)

= 0.0043 (correct to 2 significant figures)

= 0.00429 (correct to 3 significant figures).

Note that 497 = 500 correct to 1 significant figure and also correct to 2 signif-
icant figures.
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1.4.1 Standard Form

The distance of the Earth from the Sun is approximately 149,500,000 km. The
mass of an electron is 0.000000000000000000000000000911 g. Numbers such as
these are displayed on a calculator in standard or scientific form. This is a
shorthand means of expressing very large or very small numbers. The standard
form of a number expresses it in terms of a number lying between 1 and 10
multiplied by 10 raised to some power or exponent. More precisely, the standard
form of a number is

a × 10b,

where 1 ≤ a < 10, and b is an integer. A practical reason for the use of
the standard form is that it allows calculators and computers to display more
significant figures than would otherwise be possible.

For example, the standard form of 0.000713 is 7.13×10−4 and the standard
form of 459.32 is 4.5932 × 102. The power gives the number of decimal places
the decimal point needs to be moved to the right in the case of a positive
power or the number of decimal places the decimal point needs to be moved to
the left in the case of a negative power. For example, 5.914 × 103 = 5914 and
6.23 × 10−4 = 0.000623. Returning to the above examples, the Earth is about
1.495 × 108 km from the Sun and the mass of an electron is 9.11 × 10−28 g.
Similarly, a budget deficit of 257,000,000,000 is 2.57 × 1011 in standard form.

1.5 Percentages

To convert a fraction to a percentage, we multiply the fraction by 100%. For
example,

3
4

=
3
4
× 100% = 75%,

and
3
13

=
3
13

× 100% = 23.077% (to three decimal places).

To perform the reverse operation and convert a percentage to a fraction,
we divide the number by 100. The resulting fraction may then be simplified to
obtain a reduced fraction. For example,

45% =
45
100

=
9
20

,

where the fraction has been simplified by dividing the numerator and denomi-
nator by 5 since this is a common factor of 45 and 100.
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To find the percentage of a quantity, we multiply the quantity by the number
and divide by 100. For example,

25% of 140 is
25
100

× 140 = 35,

and
4% of 5, 200 is

4
100

× 5, 200 = 208.

If a quantity is increased by a percentage, then that percentage of the
quantity is added to the original. Suppose that an investment of £300 increases
in value by 20%. In monetary terms, the investment increases by

20
100

× 300 = £60,

and the new value of the investment is

£300 + £60 = £360.

In general, if the percentage increase is r%, then the new value of the invest-
ment comprises the original and the increase. The new value can be found by
multiplying the original value by the factor

1 +
r

100
.

It is easy to work in the reverse direction and determine the original value if the
new value and percentage increase is known. In this case, one simply divides
by the factor

1 +
r

100
.

Example 1.4

The cost of a refrigerator is £350.15 including sales tax at 17.5%. What is the
price of the refrigerator without sales tax?

Solution. To determine the price of the refrigerator without sales tax, we
divide £350.15 by the factor

1 +
17.5
100

= 1.175.

So the price of the refrigerator without VAT is

350.15
1.175

= £298.
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Similarly, if a quantity decreases by a certain percentage, then that percent-
age of the original quantity is subtracted from the original to obtain its new
value. The new value may be determined by multiplying the original value by
the quantity

1 − r

100
.

Example 1.5

A person’s income is e25,000 of which e20,000 is taxable. If the rate of income
tax is 22%, calculate the person’s net income.

Solution. The person’s net income comprises the part of his salary that is not
taxable (e5,000) together with the portion of his taxable income that remains
after the tax has been taken. The person’s net income is therefore

5,000 +
(

1 − 22
100

)
× 20,000 = 5,000 +

78
100

× 20,000

= 5,000 + 78 × 200

= 5,000 + 15,600

= e20,600.

1.6 Powers and Indices

Let x be a number and n be a positive integer, then xn denotes x multiplied
by itself n times. Here x is known as the base and n is the power or index
or exponent. For example,

x5 = x × x × x × x × x.

There are rules for multiplying and dividing two algebraic expressions or
numerical values involving the same base raised to a power. In the case of
multiplication, we add the indices and raise the expression or value to that new
power to obtain the product rule

xa × xb = xaxb = xa+b.

For example,
x2 × x3 = (x × x) × (x × x × x) = x5.



1. Essential Skills 13

In the case of division, we subtract the indices and raise the expression or value
to that new power to obtain the quotient rule

xa ÷ xb =
xa

xb
= xa−b.

For example,

x2 ÷ x4 =
x × x

x × x × x × x
=

1
x2

,

and using the quotient rule we have

x2

x4
= x2−4 = x−2.

More generally, we have
1
xn

= x−n.

Suppose now that we multiply an expression with a fractional power as
many times as the denominator of the fraction. For example, multiply x1/3 by
itself three times. We have

x1/3 × x1/3 × x1/3 = x1/3+1/3+1/3 = x1 = x.

However, the number that when multiplied by itself three times gives x is known
as the cube root of x, and an alternative notation for x1/3 is 3

√
x. The symbol

n
√

x, which sometimes appears on a calculator as x1/n, is known as the nth root
of x. In the case n = 2, the n is omitted in the former symbol. So we write

√
x

rather than 2
√

x for the square root x1/2 of x.
Suppose we wish to raise an expression with a power to a power, for example

(x2)4. We may rewrite this as

(x2)(x2)(x2)(x2) = x2+2+2+2 = x8,

using the product rule. More generally, we have

(xm)n = xmn.

These rules for simplifying expressions involving powers may be used to
evaluate arithmetic expressions without using a calculator. For example,

23 = 2 × 2 × 2 = 8,

34 = 3 × 3 × 3 × 3,√
81 = 9,

3
√

27 = 3,

2−3 =
1
23

=
1
8
.

Note the following two conventions related to the use of powers:
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1. x1 = x (An exponent of 1 is not expressed.)

2. x0 = 1 for x �= 0 (Any nonzero number raised to the zero power is equal to
1.)

To summarise, we have the following rules governing indices or powers:

Rules of Indices

xaxb = xa+b (1.11)
xa

xb
= xa−b (1.12)

(xa)b = xab (1.13)
1
xa

= x−a (1.14)

a
√

x = x
1
a (1.15)

a
√

xb = x
b
a (1.16)

Finally, consider the product of two numbers raised to some power. For
example, consider (xy)3. Now

(xy)3 = (x × y) × (x × y) × (x × y) = (x × x × x) × (y × y × y) = x3y3,

since it does not matter in which order numbers are multiplied. More generally,
we have

(xy)a = xaya.

Similarly, we have (
x

y

)a

=
xa

ya
.

Example 1.6

Simplify the following using the rules of indices:

1.
x2

x3/2
,

2.
x2y3

x4y
.
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Solution.

1. Using the quotient rule (1.12), we have

x2

x3/2
= x2−3/2 = x1/2 =

√
x

2. Using the quotient and reciprocal rules, we have

x2y3

x4y
=

(
x2

x4

)(
y3

y

)
= (x2−4)(y3−1) (using the quotient rule (1.12))

= x−2y2

=
y2

x2
(using the reciprocal rule (1.14))

=
(y

x

)2

.

Example 1.7

Write down the values of the following without using a calculator:
1. 3−3 2. 163/4 3. 16−3/4

4. 27−1/3 5. 43/2 6. 190.

Solution.

1. 3−3 =
1
33

=
1
27

.

2. 163/4 = (161/4)3 = ( 4
√

16)3 = 23 = 8.

3. 16−3/4 =
1

163/4
=

1
8
.

4. 27−1/3 =
1

271/3
=

1
3
√

27
=

1
3
.

5. 43/2 = (41/2)3 = (
√

4)3 = 23 = 8.

6. 190 = 1.

Note that we could also evaluate 43/2 as follows:

43/2 = (43)1/2 = 641/2 =
√

64 = 8.
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1.7 Simplifying Algebraic Expressions

In the algebraic expression
7x3,

x is called the variable, and 7 is known as the coefficient of x3. Expressions
consisting simply of a coefficient multiplying one or more variables raised to the
power of a positive integer are called monomials. Monomials can be added or
subtracted to form polynomials. Each of the monomials comprising a poly-
nomial is called a term. For example, the terms in the polynomial 3x2 +2x+1
are 3x2, 2x, and 1. The coefficient of x2 is 3, the coefficient of x is 2, and the
constant term is 1.

To add or subtract two polynomials, we collect like terms and add or sub-
tract their coefficients. For example, if we wish to add 7x + 2 and 5− 2x, then
we collect the terms in x and the constant terms:

(7x + 2) + (5 − 2x) = (7 + (−2))x + (2 + 5) = 5x + 7.

Example 1.8

Simplify the following:

1. (3x2 + 2x + 1) + (5x2 − x − 7),

2. (9x4 + 12x3 + 6x + 1) − (x4 + 2x2 − 4),

3. (x3 + 4x − 5) + (2x2 − x + 8).

Solution.

1. (3 + 5)x2 + (2 − 1)x + (1 − 7) = 8x2 + x − 6.

2. (9 − 1)x4 + 12x3 − 2x2 + 6x + (1 + 4) = 8x4 + 12x3 − 2x2 + 6x + 5.

3. x3 + 2x2 + (4 − 1)x + (−5 + 8) = x3 + 2x2 + 3x + 3.

1.7.1 Multiplying Brackets

There are occasions when mathematical expressions may be simplified by re-
moving any brackets present. This process, which is also known as expanding
the brackets or multiplying out the brackets, culminates in an equivalent ex-
pression without brackets. The removal of brackets is based on the following
basic rule:

a(b + c) = ab + ac, (1.17)
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where a, b, and c are any three numbers. Since the order in which multiplication
is performed is not important, we also have

(b + c)a = ba + ca, (1.18)

The rules (1.17) and (1.18), which are examples of what is known as the dis-
tributive law, may be generalized to include expressions involving polynomials.
For example,

3(x + 2y) = 3x + 6y,

and
−2(3x2 − 5y) = −6x2 + 10y.

It is important to take care multiplying out brackets when there is a negative
sign outside the brackets. In this case, the sign of each term inside the brackets
is changed when the brackets are removed. For example,

−(2x2 − 3x − 2y + 5) = −2x2 + 3x + 2y − 5.

We also have the following rule for multiplying two brackets:

(a + b)(c + d) = ac + bc + ad + bd, (1.19)

where a, b, c, and d are any three numbers. So to multiply out two brackets
we simply multiply each term in the second bracket by each term in the first
bracket and add together all contributions. For example,

(x + 2)(2x − 3) = (x)(2x) + (2)(2x) + (x)(−3) + (2)(−3)

= 2x2 + 4x − 3x − 6

= 2x2 + x − 6.

The rule (1.19) extends to brackets containing more than two terms. The impor-
tant thing to remember is that each term in the second bracket is multiplied by
each term in the first before all contributions are added together. For example,

(2x − y + 5)(x − 3) = (2x)(x) + (−y)(x) + (5)(x)

+(2x)(−3) + (−y)(−3) + (5)(−3)

= 2x2 − xy + 5x − 6x + 3y − 15

= 2x2 − xy − x + 3y − 15.

Example 1.9

Multiply out the brackets and simplify the following:

1. (2x + 3)(7 − 5x),

2.
(120 − 24x)

4.8
,

3. (x + 3y)(2x − 5y − 1).
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Solution.

1. Using the rule (1.19), we have

(2x + 3)(7 − 5x) = (2x)(7) + (3)(7) + (2x)(−5x) + (3)(−5x)

= 14x + 21 − 10x2 − 15x

= 21 − x − 10x2.

2. In this example, we just note that division of 120−24x by 0.48 is the same
as multiplication of 120−24x by 1/(4.8), and therefore we can use the rule
(1.17):

(120 − 24x)
4.8

=
1

4.8
(120 − 24x)

120
4.8

+
−24x

4.8
= 25 − 5x.

3. Using the generalization of rule (1.19), we have

(x + 3y)(2x − 5y − 1) = (x)(2x) + (3y)(2x) + (x)(−5y)

+(3y)(−5y) + (x)(−1) + (3y)(−1)

= 2x2 + 6xy − 5xy − 15y2 − x − 3y

= 2x2 + xy − 15y2 − x − 3y.

1.7.2 Factorization

Factorization is the reverse process to multiplying out the brackets. It involves
taking a mathematical expression and rewriting it by expressing it in terms of
a product of factors. There are a number of techniques that can be used to
factorize an expression:

1. The simplest technique is to identify a common factor in two or more
terms. The equivalent factorized expression can then be written in terms
of the common factor multiplying a bracketed expression. For example,

a) ab − ac = a(b − c),

b) 4x2 + 6x = 2x(2x + 3),

c) ax2 − a2x = ax(x − a),

d) −36x2 − 9x = −9x(4x + 1),
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e)
5x + 10y

10x − 5y
=

5(x + 2y)
5(2x − y)

=
x + 2y

2x − y
.

2. The second technique is based on the following identity involving the
difference of two squares:

a2 − b2 = (a − b)(a + b).

An identity is a formula valid for all values of the variables; in this case, a

and b. The following are examples of the application of this identity:

a) x2 − 36 = (x − 6)(x + 6);

b) 9a2 − 16x2 = (3a)2 − (4x)2 = (3a − 4x)(3a + 4x);

c) 9 − 36x2 = 9(1 − 4x2) = 9(12 − (2x)2) = 9(1 − 2x)(1 + 2x).

An additional technique that can be used for factorizing quadratic expressions
of the form ax2 + bx + c or ax2 + bxy + cy2 will be discussed in Chapter 3.

EXERCISES

1.1. Evaluate
35 − 8 ÷ 22 + 5 + 23 × 4.

1.2. Express the following fractions using decimal notation:

a)
3
10

,

b)
5
16

,

c)
3
4
,

d)
3
13

,

e)
2
7
,

f)
1
19

.

1.3. Simplify the following fractions:

a)
2
5

+
3
8
,

b)
5
16

− 3
32

,
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c)
15
54

× 18
35

,

d)
32
49

÷ 56
21

.

1.4. Find which is the larger of the two fractions: 11/32, 7/24 by express-
ing the numbers as:

a) fractions with the same denominator;

b) decimals.

1.5. Write each of the following numbers correct to two decimal places:

a) 51.2361

b) 7.896

c) 362.275

1.6. Write each of the following numbers correct to three significant fig-
ures:

a) 5,889

b) 0.0002817

c) 72,961

d) 0.09274

1.7. Write each of the following numbers in standard form:

a) 495,200

b) 0.000000837

1.8. The computing equipment belonging to a company is valued at
$45,000. Each year, 12% of the value is written off for depreciation.
Find the value of the equipment at the end of two years.

1.9. Death duties of 20% are paid on a legacy to three children of
£180,000. The eldest child is bequeathed 50%, the middle child 30%,
and the youngest child the remainder. How much does each child re-
ceive? What percentage of the original legacy does the youngest child
receive?

1.10. Simplify the following:

a) x2/3x7/3,

b)
x5

x2
,
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c) (x2/3)6,

d)
x3y2

x2y5
.

1.11. Write down the values of the following without using a calculator:

a) 165/4,

b) 811/4,

c)
(

27
125

)2/3

,

d) 81−3/4.

1.12. Multiply out the brackets and simplify the following:

a) (2x + 9)(3x − 8),

b) (x + 4)(6x + 3),

c) (3x − 2)(11 − 4x),

d)
(15 − 24x + 18y)

0.75
,

e) (x − 4y + 7)(5x − 2y − 3).

1.13. Factorize the following expressions:

a) 96x − 32,

b) −21x + 49x2,

c) 4x2 − 49.



2
Linear Equations

2.1 Introduction

In this book, we will be concerned primarily with the analysis of the relation-
ship between two or more variables. For example, we will be interested in the
relationship between economic entities or variables such as

– total cost and output,

– price and quantity in an analysis of demand and supply,

– production and factors of production such as labour and capital.

If one variable, say y, changes in an entirely predictable way in terms of an-
other variable, say x, then, under certain conditions (to be defined precisely
in Chapter 4), we say that y is a function of x. A function provides a rule
for providing values of y given values of x. The simplest function that relates
two or more variables is a linear function. In the case of two variables, the
linear function takes the form of the linear equation y = ax + b for a �= 0.
For example, y = 3x + 5 is an example of a linear function. Given a value of
x, one can determine the corresponding value of y using this functional rela-
tionship. For instance, when x = 2, y = 3 × 2 + 5 = 11 and when x = −3,
y = 3 × (−3) + 5 = −4. We will say more about functions in Chapter 4. Lin-
ear equations or functions may be portrayed by a straight line on a graph.
In this chapter, we introduce graphs and give a number of examples showing
how linear equations can be used to model situations in economics and how to
interpret properties of their graphs.

23
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2.2 Solution of Linear Equations

A mathematical statement setting two algebraic expressions equal to each other
is called an equation. The ability to solve equations is one of the most impor-
tant algebraic techniques to master. Equipped with this skill, you will be able
to solve a range of economic problems. The simplest type of equation is the
linear equation in a single variable or unknown, which we will denote by x

for the moment. In a linear equation, the unknown x only occurs raised to the
power 1. The following are examples of linear equations:

1. 5x + 3 = 11,

2. 1 − 4x = 3x + 7,

3.
2 + 3x

5
=

2x − 1
6

.

A linear equation may be solved by rearranging it so that all terms involving
x appear on one side of the equation and all the constant terms appear on
the other side. This is achieved by performing a series of algebraic operations.
The key is to remember that you must perform the same operations to both
sides of the equation. You must be completely impartial so that each stage of
the rearrangement process yields an equivalent equation. Two equations are
said to be equivalent if and only if when one holds then so does the other.
Equivalent equations, therefore, have precisely the same solutions if they have
any at all. However, it is important that you never multiply or divide through
an equation by 0. For example, take the equation 1 = 2, which is not valid, and
multiply both sides by 0. Then we obtain the equation 0 = 0, which is true. So
the two equations are not equivalent. If an equation contains a fraction, then
the equation may be simplified by multiplying through by the denominator.
Remember that the value of a fraction a/b is the same if the numerator and
denominator are multiplied (or divided) by the same nonzero number. That is,

a

b
=

ta

tb
,

for any number t �= 0. It is instructive to look at an example.

Example 2.1

Solve the equation
7x − 4

2
= 2x + 4.
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Solution. To determine the value of x that satisfies this equation, we rearrange
the equation so that all terms involving the unknown x appear on the one side
of the equation and all the constant terms appear on the other.

1. Multiply both sides by 2, which is the denominator of the fraction on the
left-hand side of this equation:

7x − 4 = 2 × (2x + 4)

= (2 × 2)x + (2 × 4)

= 4x + 8.

2. Subtract 4x from both sides so that all terms involving x are on the left-
hand side:

7x − 4 − 4x = 4x + 8 − 4x,

3x − 4 = 8.

3. Add 4 to both sides so that all the constant terms are on the right-hand
side:

3x − 4 + 4 = 8 + 4,

3x = 12.

4. Finally divide both sides by 3:

3x

3
=

12
3

,

x = 4.

So the solution to this equation is x = 4.
We can check to see if this answer is correct by replacing x by 4 in the

original equation. If x = 4 is the correct solution, then the left- and right-hand
sides of the equation should give the same numerical value.

LHS =
(7 × 4) − 4

2

=
28 − 4

2

=
24
2

= 12

RHS = 2 × 4 + 4

= 12.
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Example 2.2

Solve the equation
x

4
− 3 =

x

5
+ 1. (2.1)

Solution. Again, we go through the solution step-by-step. The idea is to
rearrange the equation so that all terms involving x appear on the left-hand
side and all the constant terms appear on the right-hand side. Once this is
done, the terms involving fractions are simplified.

1. Subtract x/5 from both sides:

x

4
− x

5
− 3 = 1

2. Add 3 to both sides
x

4
− x

5
= 1 + 3 = 4

3. Simplify the left-hand side by expressing it as a single fraction. This is
achieved by expressing each of the fractions in terms of their lowest common
denominator, 20. In the case of the first fraction, both the numerator and
denominator are multiplied by 5, and in the case of the second fraction
they are both multiplied by 4, i.e.,

x

4
=

5x

5 × 4
=

5x

20
and

x

5
=

4x

4 × 5
=

4x

20
.

Therefore

5x

20
− 4x

20
= 4

5x − 4x

20
= 4

x

20
= 4.

4. Finally multiply both sides by 20:

x = 80.

The solution to this equation is x = 80. Again we can check that this is the
correct solution by substituting x = 80 into the left- and right-hand sides of
(2.1).
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2.3 Solution of Simultaneous Linear Equations

A number of economic models are built on linear relationships between vari-
ables. For example, the economic concept of equilibrium requires the solution
of a system of equations.

The next degree of difficulty is to solve two linear equations in two un-
knowns. Suppose the two unknowns are denoted by x and y. The most general
form of system of simultaneous linear equations in the unknowns x and y is

a1x + b1y = c1, (2.2)

a2x + b2y = c2. (2.3)

where a1, b1, c1, a2, b2, and c2 are constants. In the first equation (2.2), the
coefficient of x is a1 and that of y is b1. We are going to describe the elim-
ination method for solving this system of equations. As its name suggests,
the method involves eliminating one of the variables from the system. This
allows us to determine the value of the unknown that remains by solving a
single linear equation in one unknown. The value of the eliminated unknown
is then determined by substituting the known value into either of the original
equations and solving another linear equation.

Suppose we wish to eliminate the variable y from (2.2)–(2.3). To do this, we
multiply (2.2) by b2 and (2.3) by b1 so that the coefficients of y in the equivalent
equations are the same:

b2a1x + b2b1y = b2c1, (2.4)

b1a2x + b1b2y = b1c2. (2.5)

Next we eliminate the variable y by subtracting (2.5) from (2.4):

(b2a1 − b1a2)x = b2c1 − b1c2, (2.6)

from which we deduce
x =

b2c1 − b1c2

b2a1 − b1a2
. (2.7)

Note that we can only perform this last step provided that (b2a1 − b1a2) �= 0.
The quantity (b2a1 − b1a2) is known as the determinant (see Chapter 10) of
the system of equations (2.2)–(2.3). The condition for this system to possess a
unique solution is that the determinant is nonzero.

Similarly, we can eliminate x from equations (2.2)–(2.3) to obtain

y =
c2a1 − c1a2

b2a1 − b1a2
; (2.8)

or we can obtain y by substituting the value of x we have obtained (2.7) in
either (2.2) or (2.3) and solving the resulting linear equation.
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There is no guarantee that a system of two or more simultaneous equations
will possess a unique solution. Consider the system of equations

2x + y = 10,

2x + y = 5.

This system of equations does not have a solution. In fact, the equations are
inconsistent. They cannot hold simultaneously since 10 �= 5! We shall see later
in this chapter that the solution of a system of simultaneous linear equations
may be interpreted as the point of intersection of two straight lines. For the
example under consideration, the two lines are parallel and therefore never
intersect.

Next consider the system of equations

2x + y = 10,

−6x − 3y = −30.

At first sight this might seem to be an innocuous system of equations. However,
the second equation is just a multiple of the first; obtained by multiplying the
first equation by −3. In this case, the equations are not independent. The
second equation does not provide any additional information over the first
equation. Since there are two unknowns to be determined, there is no unique
solution – in fact there are infinitely many solutions. For the above system one
can verify that x = s and y = 10 − 2s is a solution for any number s.

To obtain a unique solution to a system of simultaneous linear equations,
the equations must be consistent and independent and there must be as many
equations as unknowns (variables).

Example 2.3

Solve the system of equations

3x + 2y = 1
−2x + y = 2.

Solution. We solve this system of equations using the elimination method in
which we eliminate the variable x. To do this, we arrange for the coefficients
of x in both equations to differ only in sign by multiplying the two equations
by appropriate factors. The variable can then be eliminated by adding or sub-
tracting the two equations. For example, suppose we multiply the first equation
by 2 and the second by 3:

6x + 4y = 2
−6x + 3y = 6.
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The variable x is eliminated by adding the two equations:

7y = 8,

which, after division by 7, gives

y =
8
7
.

This value can now be substituted in either of the original two equations to
obtain the corresponding value of x. Let us use the first equation, then

3x + 2
(

8
7

)
= 1

3x +
16
7

= 1

3x = 1 − 16
7

3x =
7 − 16

7
(since 1 = 7/7)

3x = −9
7

x =
1
3
×
(
−9

7

)

x = −3
7

Therefore, the solution is x = −3/7, y = 8/7. Of course, we can check that
we have the correct solution by substituting it back into the original set of
equations and checking that the equations are satisfied.

An alternative but equivalent method for solving simultaneous linear equa-
tions is known as the substitution method. The idea is to rearrange one of
the equations in order to isolate one of the variables on the left-hand side. The
expression for this variable is then substituted into the second equation to yield
a linear equation for the other variable. We demonstrate this by means of an
example.

Example 2.4

At the beginning of the year, an investor had £50,000 in two bank accounts,
each of which paid interest annually. The interest rates were 4% and 6% per
annum, respectively. If the investor has made no withdrawals during the year
and has earned a total of £2,750 interest, what was the initial balance in each
of the two accounts?
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Solution. Let x and y denote the initial balances in the accounts with interest
rates 4% and 6%, respectively. Since the total amount invested at the start of
the year was £50,000, we have

x + y = 50,000.

The amount of interest earned on the two bank accounts during the year is
given by

0.04x and 0.06y,

respectively. Since the total amount of interest earned during the year is £2,750,

0.04x + 0.06y = 2,750,

or, after multiplying through by 100

4x + 6y = 275,000.

Therefore, we have two equations with which to determine initial balances in
the two bank accounts:

x + y = 50,000 (2.9)

4x + 6y = 275,000. (2.10)

Multiplying (2.9) by 4, we obtain

4x + 4y = 200,000. (2.11)

Then subtracting (2.11) from (2.10) yields

2y = 75,000,

so that y = 37,500. Finally, it follows from (2.9) that x = 12,500. Therefore,
the initial balance in each of the two accounts was £12,500 and £37,500, re-
spectively.

2.4 Graphs of Linear Equations

Consider the linear equation
y = 3x − 2.

Given a value of x, one can use this equation to determine the corresponding
value of y. For example, when x = 0, y = 3 × 0 − 2 = −2, and when x = 2,
y = 3 × 2 − 2 = 6 − 2 = 4. The collection of all such pairs of values of x and y

that satisfy this linear equation can be represented on a graph.
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Consider the two perpendicular lines shown in Fig. 2.1. The horizontal line
is referred to as the x-axis and the vertical line as the y-axis. The point where
these lines intersect is known as the origin and is denoted by the letter O. At
this point, both variables take the value zero. Each axis is assigned a numerical
scale that is chosen appropriately for the situation being considered. On the
x-axis, the scale takes positive values to the right of the origin and negative
values to the left. Moreover, the further we move away from the origin, the
larger these values become. On the y-axis, the scale takes positive values above
the origin and negative values below. Again, the further we move away from
the origin in the vertical direction, the larger these values become. These axes
enable us to define uniquely any point, P , in terms of its coordinates, (x, y).
We write the coordinates (x, y) alongside the point P as in Fig. 2.1. The first
number, x, denotes the horizontal distance along the x-axis and the second
number y denotes the vertical distance along the y-axis. The arrows on the
axis denote the positive direction. The collection of all points (x, y) satisfying
a linear equation lie on a straight line. That is, any equation of the form

y = ax + b, (2.12)

where a and b are constants is a linear equation and can be represented by a
straight line graph. We sometimes say that y is a linear function of x since in
the equation defining y, the variable x only occurs linearly.

Note also that the equation x = k, where k is any constant, is also repre-
sented by a straight line graph: the ‘vertical’ line, parallel to the y-axis, through
the point (k, 0).

Example 2.5

Plot the following points A : (−2, 3), B : (−3,−4), C : (3, 5), D : (1,−4).

Solution. The position of A is determined by the pair of values x = −2 and
y = 3, and therefore it is located 2 units in the negative x-direction and 3 units
in the positive y-direction as shown in Fig. 2.2. The other points are plotted in
a similar way.

The general form of a linear equation is

cx + dy = e, (2.13)

where c, d, and e are constants. We assume that c and d are not both zero.
This equation contains multiples of x and y and a constant. These are the only
terms involving x that are present in a linear equation; otherwise the equation
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x

y

P:(x,y)

x

y

0

Figure 2.1 The coordinate axes and the position of a general point P .

is said to be nonlinear. The values c and d are referred to as the coefficients
of x and y, respectively,. For example, the coefficients of the linear equation

2x − y = −3

are 2 and −1. More specifically, the coefficient of x is 2 and the coefficient of y

is −1.
Any equation of the form (2.13) can be rearranged into the form (2.12)

provided d �= 0. First subtract cx from both sides of (2.13):

dy = −cx + e.

Then divide both sides by d provided d �= 0:

y = − c

d
x +

e

d
. (2.14)

If we now compare this equation with (2.12) by comparing the coefficients of x

and the constant terms in both equations, we see that (2.14) is just (2.12) with

a = − c

d
, b =

e

d
.
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Figure 2.2 The location of the points specified in Example 2.5.

Note that when d = 0, the linear equation (2.13) reduces to

cx = e or x =
e

c
.

This is represented by a straight line parallel to the y-axis passing through the
point (e/c, 0) on the x-axis.

To sketch the graph of a straight line, it is sufficient to draw a line through
any two points lying on it.

Example 2.6

Sketch the graph of the straight line

y = 2x + 3,

for values of x lying between 0 and 4.

Solution. We determine the coordinates of two points on the line. When
x = 0, we have that y = 3 and when x = 4, we have y = 11. Therefore,
the points (0, 3) and (4, 11) lie on the line. The graph is formed by drawing a
straight line through these points as shown in Fig. 2.3.



34 Elements of Mathematics for Economics and Finance

x
1 2 3 4

0

2

4

6

8

10

12y
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Figure 2.3 The graph of the equation y = 2x + 3.

Example 2.7

Sketch the straight line
2x + y = 5.

Solution. Setting x = 0 gives y = 5. Hence (0, 5) lies on the line. Setting
y = 0 gives 2x = 5 or x = 5/2. Hence (5/2, 0) lies on the line.

2.4.1 Slope of a Straight Line

The coefficients a and b in the linear equation y = ax+ b of (2.12) have special
significance and can be related to features of its graph. When x = 0, y = b and
therefore the constant b represents the intercept on the y-axis, i.e., it is the
value of y corresponding to the point of intersection of the straight line with
the y-axis. The value of x for which y = 0 is the solution of the linear equation

ax + b = 0.

This equation has solution x = −b/a, provided a �= 0.
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Figure 2.4 The graph of the equation 2x + y = 5.

The coefficient a in the equation y = ax + b defines the slope or gradient
of the straight line with that equation. The slope of a straight line provides
important information about the behaviour of the relationship between the
variables x and y. Let A : (x1, y1) and B : (x2, y2) be any two distinct points
lying on a straight line as shown in Fig. 2.5. The slope or gradient of the line
measures the ratio of the change in the vertical direction with respect to the
change in the horizontal direction as one moves from A to B. We illustrate this
with reference to Fig. 2.5. Since y1 = ax1 + b and y2 = ax2 + b, then

y2 − y1 = ax2 − ax1 = a(x2 − x1).

Therefore,
BC

AC
=

y2 − y1

x2 − x1
=

a(x2 − x1)
x2 − x1

= a,

i.e.
a =

y2 − y1

x2 − x1
=

BC

AC
. (2.15)

The value of a is independent of the choice of points A, B on the line. Positive
values of a correspond to straight lines where y increases as x increases, while
negative values of a correspond to straight lines where y decreases as x increases.
Larger values of a correspond to straight lines with steeper slopes. For example,
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A:(x ,y )

B:(x ,y )
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2 2

Figure 2.5 The graph of a linear equation and its slope.

the slope of the straight line y = 6x−3 is steeper than that of y = x+3. Another
way of viewing the slope a is that it is the change in y when x increases by one
unit, as then x2 − x1 = 1 and therefore a = y2 − y1.

Example 2.8

Determine the slope and intercept of the straight line 9x + 3y = 4.

Solution. We need to write this equation in the form y = ax + b.

9x + 3y = 4

3y = −9x + 4

y = −3x +
4
3

One can say immediately that the slope of this straight line is −3 and the
intercept is 4/3.
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Example 2.9

Find the slope of the straight line that passes through the points (2,−1) and
(−2,−11).

Solution. The slope of a straight line passing through the points (x1, y1),
(x2, y2) is

a =
y2 − y1

x2 − x1
.

Therefore the required slope is

a =
−11 − (−1)

−2 − 2
=

−10
−4

=
5
2
.

2.5 Budget Lines

Suppose that a company or an individual has a given budget, B, that can
be used to purchase two goods. If the cost or price of each of these goods is
known, then it is possible to determine the different combinations of the two
goods that can be bought with the given budget. Suppose that the two goods
are denoted by X and Y , and their respective prices are PX and PY . The
quantities purchased of these goods is also denoted by X and Y . Then the
equation of the budget line is

PXX + PY Y = B. (2.16)

Example 2.10

An electrical company has a budget of £6,000 a week to spend on the manu-
facture of toasters and kettles. It costs £5 to manufacture a toaster and £12 to
manufacture a kettle. Write down the equation of the budget line and sketch
its graph.

Solution. Let T and K denote the number of toasters and kettles that are
manufactured each week. Then the cost of manufacture and the available bud-
get means that the budget line has the equation

5T + 12K = 6,000.
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Figure 2.6 The graph of the budget line 5T + 12K = 6,000.

To sketch the graph of this budget line, it is sufficient to determine the coor-
dinates of two points on the line. When T = 0, 12K = 6,000 and therefore
K = 500. Similarly, when K = 0, 5T = 6,000 and therefore T = 1,200. The
graph of the budget line is given by the straight line joining the points T = 0,
K = 500 and T = 1,200, K = 0. The graph of the budget line is sketched in
Fig. 2.6.

Example 2.11

A person has £120 to spend on two goods (X,Y ) whose respective prices are
£3 and £5.

1. Draw a budget line showing all the different combinations of the two goods
that can be bought with the given budget (B).

2. What happens to the original budget line if the budget falls by 25%?

3. What happens to the original budget line if the price of X doubles?

4. What happens to the original budget line if the price of Y falls to £4?

Draw the new budget lines in each case.
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Solution.

1. The general equation of a budget line is

PXX + PY Y = B

where PX is the price of X and PY is the price of Y . Now if PX = 3, PY =
5, B = 120, then the equation of the budget line is

3X + 5Y = 120.

We can rearrange this equation to give

Y = −3
5
X + 24.

The graph of this budget line is represented by the solid line in Fig. 2.7.

2. If the budget falls by 25% it is reduced by 25% of £120, i.e., £30. The new
budget B = £120 − £30 = £90. The equation for the new budget line is

3X + 5Y = 90,

which, after rearrangement, can be written in the form

Y = −3
5
X + 18.

This line has the same slope as the original budget line but lies to the left
of it. This is the dashed line in Fig. 2.7.

3. If PX = 6 the budget equation becomes

6X + 5Y = 120

or
Y = −6

5
X + 24.

This time the intercept remains the same as the original budget line but
the slope is steeper – the slope is −6/5 compared with the slope of −3/5
of the original budget line. The graph of this budget line is represented by
the long dashed line in Fig. 2.7.

4. If PY = 4 , then the budget equation is

3X + 4Y = 120,

or
Y = −3

4
X + 30.

This time both the slope and the intercept change. See the dash-dot line
in Fig. 2.7.
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Figure 2.7 The graph of the budget lines in Example 2.11.

2.6 Supply and Demand Analysis

Microeconomics is concerned with the analysis of the economic theory and
policy of individual firms and markets. The mathematics we have introduced
so far can be used to calculate the market equilibrium in which the demand
and supply of a particular good balance.

The quantity demanded, Q, of a particular good depends on the market
price, P . We shall refer to the way Q depends on P as the demand equation
or demand function. Functions will be defined in more detail later in the
book (Chapter 4). Economists normally plot the relationship between price
and quantity with Q on the horizontal axis and P on the vertical axis. We
assume that this relationship is linear, i.e.,

P = aQ + b,

for some appropriate constants (parameters) a and b. A graph of a typical linear
demand function is the dashed line in Fig. 2.8. Elementary theory shows that
demand usually falls as the price of the good rises so the slope of the line is
negative, i.e., a < 0. We say that P is a decreasing function of Q.

Similarly, the supply equation or supply function is the relation between
the quantity, Q, of a good that producers plan to bring to the market and
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Figure 2.8 The graph of typical linear demand and supply equations. The
point of intersection provides the point of equilibrium for the model.

the price, P , of the good. A typical linear supply curve is the solid line in
Fig. 2.8. Economic theory indicates that as the price rises, so does the supply.
Mathematically, P is then said to be an increasing function of Q. Note that the
supply Q is zero when P = b. It is only when the price exceeds this threshold
level that the producers decide that it is worth supplying any good whatsoever.

We are interested in the interplay between supply and demand. Of particular
significance is the point of intersection of the demand and supply curves (see
Fig. 2.8). At this point, the market is said to be in equilibrium because the
quantity demanded is equal to the quantity supplied. The corresponding price,
P0, and quantity, Q0, are called the equilibrium price and quantity. It is
also of interest to observe the effect of a shift of the market price away from
its equilibrium price.

Example 2.12

The demand and supply equations of a good are given by

4P = −Qd + 240,

5P = Qs + 30.



42 Elements of Mathematics for Economics and Finance

Determine the equilibrium price and quantity.

Solution. At market equilibrium, we have

Qd = Qs = Q, say ,

where Q is the equilibrium quantity. In this case, the demand and supply
equations become

4P = −Q + 240,

5P = Q + 30.

This is a system of two simultaneous equations in the unknowns P and Q. We
can eliminate Q from the system by adding the two equations. This gives

9P = 270.

Then, dividing both sides by 9 gives the equilibrium price

P = 30.

Finally, the equilibrium quantity Q is determined by substituting this value
into either of the demand or supply equations. The supply equation gives

5 × 30 = Q + 30,

which, after rearrangement yields the equilibrium quantity

Q = 120.

Example 2.13

The demand and supply functions of a good are given by

P = −Qd + 125,

2P = 3Qs + 30.

Determine the equilibrium price and quantity. Determine also the effect on the
market equilibrium if the government decides to impose a fixed tax of £5 on
each good. Who pays the tax?
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Solution. At market equilibrium, we have

Qd = Qs = Q, say ,

where Q is the equilibrium quantity. In this case, the demand and supply
equations become

P = −Q + 125, (2.17)

2P = 3Q + 30. (2.18)

This is a system of two simultaneous equations in the unknowns P and Q. We
can eliminate Q from the system by multiplying the demand equation (Eq.
(2.17)) by 3:

3P = −3Q + 375, (2.19)

and adding the resulting equation (2.17) to the supply equation (2.18). This
gives

5P = 405,

which, after dividing both sides by 5 gives the equilibrium price

P = 81.

Finally, the equilibrium quantity Q is determined by substituting this value
into either of the demand or supply equations. The demand equation gives

81 = −Q + 125,

which, after rearrangement yields the equilibrium quantity

Q = 125 − 81 = 44.

If the government imposes a fixed tax of £5 on each good, then the original
supply equation needs to be modified. This is because the amount the supplier
receives as a result of each sale is the amount that the consumer pays (P ) less
the tax (£5), i.e., P −5. Thus, the new supply equation is obtained by replacing
P by P − 5 in the original supply equation:

2(P − 5) = 3Qs + 30. (2.20)

This equation can be simplified by multiplying out the bracket on the left-
hand side and taking the constant term to the right-hand side. The new supply
equation becomes

2P − 10 = 3Qs + 30,

or
2P = 3Qs + 40. (2.21)



44 Elements of Mathematics for Economics and Finance

We then proceed as before to determine the equilibrium price and quantity for
the new situation. At market equilibrium, we have

Qd = Qs = Q, say ,

where Q is the equilibrium quantity. In this case, the demand and supply
equations become

P = −Q + 125, (2.22)

2P = 3Q + 40. (2.23)

We can eliminate Q from the system by multiplying the demand equation (Eq.
(2.22)) by 3:

3P = −3Q + 375, (2.24)

and adding the resulting equation (2.24) to the supply equation (2.23). This
gives

5P = 415,

which, after dividing both sides by 5 gives the equilibrium price

P = 83.

Finally, the equilibrium quantity Q is determined by substituting this value
into either of the demand or supply equations. The demand equation gives

83 = −Q + 125,

which, after rearrangement yields the equilibrium quantity

Q = 125 − 83 = 42.

The influence of government taxation on the equilibrium price is to increase
it from £81 to £83. Therefore, not of all of the tax is passed on to the consumer.
The consumer pays an extra £2 per good after tax has been imposed. The
remaining part of the tax is borne by the supplier.

2.6.1 Multicommodity Markets

At the beginning of this section, we looked at supply and demand analysis for a
single good. We extend these ideas now to a multicommodity market. Suppose
that there are two goods in related markets, which we call good 1 and good 2.
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The demand for either good depends on the prices of both good 1 and good 2.
If the corresponding demand functions are linear, then

Qd1 = a1 + b1P1 + c1P2

Qd2 = a2 + b2P1 + c2P2

where Pi and Qdi
denote the price and demand for the ith good, and ai, bi,

and ci are constants depending on the model. For the first equation a1 > 0,
because there is a positive demand when the prices of both goods are zero.
Also b1 < 0, because the demand of a good falls as its price rises. The sign of
c1 depends on the nature of the two goods. If the goods are substitutable,
then an increase in the price of good 2 would mean that consumers would
switch from good 2 to good 1, causing Qd1 to increase. Substitutable goods
are therefore characterized by a positive value of c1. On the other hand, if the
goods are complementary, then a rise in the price of either good would see
the demand fall so c1 is negative. Similar results apply to the signs of a2, b2

and c2.

Example 2.14

The demand and supply functions for two interdependent commodities are
given by

Qd1 = 145 − 2P1 + P2

Qs1 = −45 + P1

Qd2 = 30 + P1 − 2P2

Qs2 = −40 + 5P2

where Qdi
, Qsi

, and Pi denote the quantity demanded, quantity supplied, and
price of good i, respectively. Determine the equilibrium price and quantity for
this two-commodity model. Are these goods substitutable or complementary?
Give reasons for your answer.

Solution. At equilibrium, the quantity supplied is equal to the quantity de-
manded for each good, so that

Qd1 = Qs1 and Qd2 = Qs2 .

Let us write these respective common values as Q1 and Q2. Then for good 1
we have

Q1 = 145 − 2P1 + P2

Q1 = −45 + P1
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Therefore
145 − 2P1 + P2 = −45 + P1

which simplifies to give
3P1 − P2 = 190.

Similarly for good 2 we have

Q2 = 30 + P1 − 2P2

Q2 = −40 + 5P2

Therefore
30 + P1 − 2P2 = −40 + 5P2

which simplifies to give
−P1 + 7P2 = 70.

We have therefore shown that the equilibrium prices satisfy the simultaneous
equations

3P1 − P2 = 190 (2.25)

−P1 + 7P2 = 70 (2.26)

These equations can be solved by elimination. Multiply (2.26) by 3. This gives

3P1 − P2 = 190

−3P1 + 21P2 = 210

Adding these two equations yields

20P2 = 400,

and so P2 = 20. Substituting this value of P2 back into (2.25):

3P1 = 190 + 20 = 210,

which gives P1 = 70. Finally, substituting these values of P1 and P2 back into
the original supply equations, we obtain

Q1 = 145 − 140 + 20 = 25

and
Q2 = −40 + 100 = 60.

On inspection of the demand equation for good 1, we see that the demand
for this good increases when the price of good 2 increases. This is characterized
by a positive coefficient of P2 in this equation. Therefore, the two goods are
substitutable.
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EXERCISES

2.1. Solve the following linear equations:

a) 3x − 4 = 2,

b)
(

2x − 1
3

)
=
(

3x − 1
4

)
+ 1.

2.2. Solve the system of equations

3x − 2y = 4

x − 2y = 2.

2.3. Solve the system of equations

3x + 5y = 19

−5x + 2y = −11.

2.4. Sketch the graph of the straight line y = −x + 2 for −1 ≤ x ≤ 5.

2.5. Sketch the graph of the straight line y = 2x − 3 for 0 ≤ x ≤ 4.

2.6. Find the slope of the straight line passing through the points
(−1,−3) and (4, 2).

2.7. Find the slope of the straight line passing through the points (0, 0)
and (2, 1).

2.8. A person has e60 to spend on two goods, X and Y , whose respective
prices are e6 and e4.

a) Draw a budget line showing all the different combinations of the
two goods that can be bought within the given budget.

b) What happens to the original budget line if the budget is in-
creased by 20%?

c) What happens to the original budget line if the price of X is
halved?

2.9. The demand and supply equations for a good are given by

2P = −Qd + 125,

8P = Qs + 45,

where P , Qd, and Qs denote the price, quantity demanded, and
quantity supplied, respectively.
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a) Determine the equilibrium price and quantity.

b) Determine the effect on the market equilibrium if the govern-
ment decides to impose a fixed tax of £2.50 on each good. Who
pays the tax?

2.10. The demand and supply functions of a good are given by

P + 2Qd = 144

4P − 3Qs = 136

where P, Qd, and Qs, denote the price, quantity demanded, and
quantity supplied, respectively.

a) Determine the equilibrium price and quantity.

b) Determine the effect on the market equilibrium if the govern-
ment decides to impose a fixed tax of $11 on each good. Who
pays the tax?

2.11. The demand and supply functions of a good are given by

4P = −Qd + 102
5P = Qs + 6

where P, Qd, and Qs denote the price, quantity demanded, and
quantity supplied, respectively.

a) Determine the equilibrium price and quantity.

b) Determine the effect on the market equilibrium if the govern-
ment decides to impose a fixed tax of £9 on each good. Who
pays the tax?

2.12. The demand and supply equations for two complementary goods,
trousers (T) and jackets (J), are given by

QdT
= 410 − 5PT − 2PJ

QsT
= −60 + 3PT

and

QdJ
= 295 − PT − 3PJ

QsJ
= −120 + 2PJ

respectively, where QdT
, QsT

, and PT denote the quantity de-
manded, quantity supplied, and price of trousers, and QdJ

, QsJ
,

and PJ denote the quantity demanded, quantity supplied, and price
of jackets. Determine the equilibrium price and quantity for this
two-market model.



3
Quadratic Equations

3.1 Introduction

Linear equations and methods for their solution were introduced in the previous
chapter. As we have seen, the graphs of linear functions are straight lines and
therefore their slopes are constant. This means that the function changes by a
constant amount whenever the dependent variable changes by the same fixed
value. This type of behaviour is not always observed in real-life applications in
economics. It is, therefore, necessary to introduce an added level of sophistica-
tion to the mathematical modelling. This is achieved through the introduction
of nonlinear functions. The simplest nonlinear function is the quadratic func-
tion. This function takes the general form

f(x) = ax2 + bx + c, (3.1)

where a �= 0, b and c are constants. The condition a �= 0 is to prevent the
occurrence of the degenerate case in which (3.1) reduces to a linear function.

If the profit function for a firm is given by a quadratic expression, then one
can determine the level of output for which the firm breaks even by solving a
quadratic equation. Additionally, one can determine the maximum profit and
the level of output for which it is attained by algebraically manipulating the
expression for the function. For more general nonlinear functions, the maximum
and/or minimum values of a function can be determined using the techniques
of calculus (see Chapter 7), but for a quadratic function this can be achieved
using algebra.

49
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Certain total cost and total revenue functions are examples of quadratic
functions and are defined in terms of a quadratic expression involving the de-
mand.

3.2 Graphs of Quadratic Functions

In the case of a linear function of the form f(x) = dx+e, the parameters d and
e can be interpreted in terms of properties of the graph of the function. The
value of d, the coefficient of x, gives the slope or gradient of the function, and
the value of e, the constant term, tells us where the straight line intercepts the
y-axis. A natural question to ask is whether the parameters in the expression
defining the general quadratic function f(x) = ax2 + bx + c can be interpreted
in a similar way in order to help us sketch its graph.

If we evaluate the function f(x) = ax2 + bx + c when x = 0 we obtain
f(0) = c. Therefore, the quadratic function intercepts the y-axis at the location
y = c. The values of the other parameters cannot be interpreted in such a
simple manner. However, the sign of the parameter a tells us something about
the shape of the graph. If a > 0, then the graph of f(x) has a

⋃
shape, whereas

if a < 0 the graph of f(x) has a
⋂

shape. This information gives us a rough
idea of what the graph of a quadratic function looks like. An additional aid is to
tabulate the function at a sequence of integer values of x and to draw a smooth
curve through the set of points. For example, let us sketch the graph of the
quadratic function f(x) = x2 for −3 ≤ x ≤ 3. If we compare the coefficients of
this function with those of the general quadratic function, we find that a = 1,
and b = c = 0. Therefore, the graph of this function intercepts the y-axis at
the origin as c = 0 and has a

⋃
shape as a > 0. The values of this function are

tabulated in Table 3.1 for integer values of x for which −3 ≤ x ≤ 3, and the
graph of the function is shown in Fig. 3.1.

Now consider the function f(x) = 2x2 +3x− 2. Again comparison with the
general quadratic function (3.1) shows that a = 2, b = 3, and c = −2. The
graph is again of a

⋃
shape since a > 0 and it intercepts the y-axis at y = −2.

The values of this function for integer values of x between −4 and 2 are shown

Table 3.1 Table of values of the function f(x) = x2 for integer values of
x for which −3 ≤ x ≤ 3. The graph of this function is shown in Fig. 3.1.

x −3 −2 −1 0 1 2 3
f(x) 9 4 1 0 1 4 9
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Figure 3.1 The graph of the function f(x) = x2 for −3 ≤ x ≤ 3.

in Table 3.2, and the graph of the function is shown in Fig. 3.2. The graph of
this function crosses the x-axis in two places, at x = −2 and x = 1/2. These
values of x satisfy the quadratic equation 2x2 + 3x − 2 = 0 since y = f(x) = 0
at these two points. The values of x that satisfy the equation f(x) = 0 are
known as the roots or solutions of the equation. These two terms are used
interchangeably. Therefore, we say that x = −2 and x = 1/2 are the roots or
solutions of the quadratic equation 2x2 + 3x − 2 = 0.

The next function we consider is f(x) = 2x − x2. This function has a

Table 3.2 Table of values of the function f(x) = 2x2 + 3x − 2 for integer
values of x for which −4 ≤ x ≤ 2. The graph of this function is shown in Fig.
3.2.

x −4 −3 −2 −1 0 1 2
2x2 32 18 8 2 0 2 8
3x −12 −9 −6 −3 0 3 6
−2 −2 −2 −2 −2 −2 −2 −2

f(x) 18 7 0 −3 −2 3 12
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Figure 3.2 The graph of the function f(x) = 2x2 +3x−2 for −4 ≤ x ≤ 2.

negative coefficient of x2. In terms of the general quadratic function (3.1), we
have a = −1, b = 2, and c = 0. Since a < 0, the graph of the function has a

⋂
shape. The graph intersects the x-axis at the origin since y = 2x − x2 = when
x = 0. The other intercept (intersection) with the x-axis is the other root of the
equation 2x − x2 = 0, namely x = 2. This is evident since 2x − x2 = (2 − x)x.
Therefore, one of the roots of the equation 2x−x2 = 0 is x = 0. The other root
is x = 2. The values of this function for integer values of x between −2 and 4
are shown in Table 3.3, and the graph of the function is shown in Fig. 3.3.

Finally, we consider the function f(x) = x2 − 2x + 2. Comparison with
the general quadratic function (3.1) gives a = 1, b = −2, and c = 2. The

Table 3.3 Table of values of the function f(x) = 2x−x2 for integer values
of x for which −2 ≤ x ≤ 4. The graph of this function is shown in Fig. 3.3.

x −2 −1 0 1 2 3 4
2x −4 −2 0 2 4 6 8
−x2 −4 −1 0 −1 −4 −9 −16
f(x) −8 −3 0 1 0 −3 −8
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Figure 3.3 The graph of the function f(x) = 2x − x2 for −2 ≤ x ≤ 4.

values of this function at integer values of x between −2 and 4 are shown in
Table 3.4, and the graph of the function is shown in Fig. 3.4. Note that the
graph of this function does not cross the x-axis. It lies entirely above the x-
axis, i.e., f(x) > 0 for all values of x. Therefore, there are no real roots of the
corresponding equation x2 − 2x + 2 = 0.

The graph of a quadratic function is known as a parabola. On inspection
of Figs. 3.1–3.4, we observe that a parabola is symmetric about a vertical line
x = h, where h is some constant. This line is known as the axis of symmetry of

Table 3.4 Table of values of the function f(x) = x2 − 2x + 2 for integer
values of x for which −2 ≤ x ≤ 4. The graph of this function is shown in Fig.
3.4.

x −2 −1 0 1 2 3 4
x2 4 1 0 1 4 9 16
−2x 4 2 0 −2 −4 −6 −8

2 2 2 2 2 2 2 2
f(x) 10 5 2 1 2 5 10
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Figure 3.4 The graph of the function f(x) = x2 − 2x + 2 for −3 ≤ x ≤ 3.

the parabola. The point of intersection of a parabola with its axis of symmetry
is called the vertex. For example, the quadratic function f(x) = x2 − 3x + 2
has x = 3/2 as its axis of symmetry and (3/2,−1/4) as its vertex. If a > 0, then
the y component of the vertex provides the minimum value of the quadratic
function. Similarly, if a < 0, then the y component of the vertex provides the
maximum value of the quadratic function.

If a quadratic function can be expressed in the form

f(x) = a(x − h)2 + k, (3.2)

then the axis of symmetry is x − h = 0 and the vertex is the point with coor-
dinates (h, k). Let us rearrange the expression defining the general quadratic
expression so that it is in this form. To do this, we use a process known as com-
pleting the square. First, we extract a factor a from the quadratic expression
ax2 + bx + c, i.e.,

ax2 + bx + c = a

(
x2 +

b

a
x +

c

a

)
(3.3)

Then, we express the first two terms inside the bracket on the right-hand side
of (3.3), viz. x2 + (b/a)x as the difference between two squares:

x2 +
b

a
x =

(
x +

b

2a

)2

−
(

b

2a

)2

.
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Therefore,

ax2 + bx + c = a

[(
x +

b

2a

)2

− b2

4a2
+

c

a

]
(3.4)

= a

[(
x +

b

2a

)2

+
4ac − b2

4a2

]
, (3.5)

in which the last two terms in (3.4) have been combined to form a single
fraction. Finally, we arrive at

ax2 + bx + c = a

(
x +

b

2a

)2

+
4ac − b2

4a
. (3.6)

So comparing (3.6) with (3.2), we have

h = − b

2a
, k =

4ac − b2

4a
.

In the above example, rearrangement gives

f(x) =
(

x − 3
2

)2

− 9
4

+ 2 =
(

x − 3
2

)2

− 1
4
,

from which we deduce that the axis of symmetry is x− 3/2 = 0 and the vertex
is (3/2,−1/4). Next consider the function f(x) = 2x− x2. This expression can
be rearranged as follows to determine the axis of symmetry and vertex:

f(x) = 2x − x2

= −(x − 1)2 + 1

Therefore, for this function we have a = −1, h = 1, and k = 1, so the axis
of symmetry is the line x = 1 and the vertex is located at the point with
coordinates (1, 1).

Finally, we consider the function f(x) = 2x2 + 3x − 2. As before we write

f(x) = 2x2 + 3x − 2

= 2
[
x2 +

3
2
x − 1

]

= 2

[(
x +

3
4

)2

− 9
16

− 1

]

= 2
(

x +
3
4

)2

− 25
8

Therefore, for this function we have a = 2, h = −3/4, and k = −25/8, so the
axis of symmetry is the line x = −3/4 and the vertex is located at the point
with coordinates (−3/4,−25/8). In Table 3.5, we provide the axes and vertices
of the four quadratic functions we have investigated in this chapter.
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Table 3.5 Axes and vertices of some quadratic functions.

f(x) Axis Vertex
x2 x = 0 (0, 0)

2x − x2 x = 1 (1, 1)
2x2 + 3x − 2 x = −3/4 (−3/4,−25/8)
x2 − 2x + 2 x = 1 (1, 1)

3.3 Quadratic Equations

There are a number of techniques for determining the roots of a quadratic
equation. Knowledge of the roots of a quadratic equation can be an additional
aid to sketching the graph of a quadratic function. If the expression defining
a quadratic function can be factorised as a product of linear factors, then
equating each of the factors to zero and solving the resulting linear equations
will provide the roots.

Example 3.1

Solve x2 + 13x + 30 = 0 using factorization.

Solution. First, we factorize the quadratic expression x2 + 13x + 30 as a
product of two linear factors (x + A) and (x + B), where A and B are two
constants that need to be determined. Since

(x + A)(x + B) = x2 + (A + B)x + AB,

then the constants A and B need to be chosen so that

A + B = 13, AB = 30.

The possible combinations of integers whose product is 30 are 30 × 1, 15 × 2,
10×3, and 6×5. Of course, one also has the combinations in which the integers
have been negated such as (−30)×(−1), but out of these combinations the only
one for which the pair of integers sums to 13 is 10 × 3. Therefore, we choose
A = 10 and B = 3, i.e.,

x2 + 13x + 10 = (x + 10)(x + 3).

We now solve the equation (x + 3)(x + 10) = 0. For the product of the two
linear terms x + 3 and x + 10 to be zero, at least one of them must be zero. So
either x + 3 = 0 or x + 10 = 0.
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If x + 3 = 0 then x = −3, and if x + 10 = 0 then x = −10. Therefore, the
roots of the equation x2 + 13x + 30 = 0 are x = −3 and x = −10.

Example 3.2

Solve the quadratic equation 2x2 − 11x + 12 = 0 using factorization.

Solution. As in the previous example, the first step is to factorize the
quadratic expression 2x2 − 11x + 12 as a product of linear factors. These lin-
ear factors must be of the form (2x + A) and (x + B) in order to retrieve the
quadratic factor 2x2, where A and B are two positive constants. Since

(2x + A)(x + B) = 2x2 + (A + 2B)x + AB,

then the constants A and B need to be chosen so that

A + 2B = −11, AB = 12.

The possible combinations of integers whose product is 12 are 12 × 1, 6 × 2,
4 × 3, −4 × −3, −6 × −2, and −12 × −1. The only pair of integers amongst
these for which A + 2B = −11 is A = −3 and B = −4. Therefore, we have

2x2 − 11x + 12 = (2x − 3)(x − 4).

The problem now is to solve the equation

(2x − 3)(x − 4) = 0.

Either 2x − 3 = 0 or x − 4 = 0. If 2x − 3 = 0 then 2x = 3 and x = 3/2. If
x−4 = 0, then x = 4. Therefore, the two roots of the equation 2x2−11x+12 = 0
are x = 3/2 and x = 4.

Most quadratic expressions, however, do not factorise easily in the sense that
they cannot be expressed as a product of linear factors with integer coefficients,
even if the coefficients of the quadratic equation are integers. For example, the
quadratic equation 3x2 − 9x + 5 = 0 cannot be factored into a product of
linear factors with integer coefficients. Clearly, a more systematic approach is
required.

There is a formula for finding the solution to a quadratic equation

ax2 + bx + c = 0. (3.7)
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The formula may be derived by the process known as completing the square
that was introduced in Section 3.2. We assume that a �= 0. Using (3.6) we see
that (3.7) is equivalent to

a

(
x +

b

2a

)2

+
4ac − b2

4a
= 0.

Dividing both sides by a and taking the last term to the right-hand side yields(
x +

b

2a

)2

=
b2 − 4ac

4a2
.

Now taking the square root of both sides gives

x +
b

2a
= ±

√
b2 − 4ac

4a2
= ±

√
b2 − 4ac

2a
.

Finally, subtracting b/(2a) from both sides we arrive at the formula for the
roots of a quadratic equation:

x =
−b ±√

b2 − 4ac

2a
. (3.8)

This is an important formula for the roots (that is, solutions) of a quadratic
equation, which we highlight:

The solutions of the quadratic equation ax2 + bx + c = 0 are

x =
−b ±√

b2 − 4ac

2a
.

The number of solutions of a quadratic equation depends on the sign of the
expression under the square root sign in this formula. A quadratic equation
has two, one or no solutions depending on whether the expression b2 − 4ac is
positive, zero, or negative:

• If b2 − 4ac > 0, there are two solutions

x =
−b +

√
b2 − 4ac

2a
and x =

−b −√
b2 − 4ac

2a
.

• If b2 − 4ac = 0, then there is one solution

x = − b

2a
.

• If b2 − 4ac < 0, then there are no solutions since the square root of b2 − 4ac

does not exist in this case.
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Example 3.3

Solve the quadratic equation

4x2 − 11x + 6 = 0

using the formula.

Solution. Compare the coefficients of this equation with those of the general
quadratic equation. If we do this, we notice that a = 4, b = −11, and c = 6.
Inserting these values into the formula (3.8) gives

x =
−(−11) ±√(−11)2 − 4 × 4 × 6

2 × 4

=
11 ±√

121 − 96
8

=
11 ±√

25
8

=
11 ± 5

8
Therefore, the two solutions are

x =
11 + 5

8
=

16
8

= 2, and x =
11 − 5

8
=

6
8

=
3
4
.

Example 3.4

Solve the quadratic equation

x2 − 2x − 15 = 0

using the formula.

Solution. Compare the coefficients of this equation with those of the general
quadratic equation. If we do this, we notice that a = 1, b = −2, and c = −15.
Inserting these values into the formula (3.8) gives

x =
−(−2) ±√(−2)2 − 4 × 1 × (−15)

2 × 1

=
2 ±√4 − (−60)

2

=
2 ±√

64
2

=
2 ± 8

2
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Therefore, the two solutions are

x =
2 + 8

2
=

10
2

= 5, and x =
2 − 8

2
=

−6
2

= −3.

Example 3.5

Solve the quadratic equation

3x2 − 9x + 5 = 0

using the formula.

Solution. Compare the coefficients of this equation with those of the general
quadratic equation. If we do this, we notice that a = 3, b = −9, and c = 5.
Inserting these values into the formula (3.8) gives

x =
−(−9) ±√(−9)2 − 4 × 3 × 5

2 × 3

=
9 ±√

81 − 60
6

=
9 ±√

21
6

Note that 21 is not a perfect square, and therefore the roots of this equation can
only be expressed in decimal representation to a specified number of decimal
places. Therefore, to four decimal places the two solutions of this equation are

x =
9 +

√
21

6
= 2.2638, and x =

9 −√
21

6
= 0.7362.

Example 3.6

Solve the quadratic equation x2 − 18x + 45 = 0 by completing the square.

Solution. In this example a = 1, b = −18, and c = 45. Therefore, using (3.6)
we may write the equation in the form

(x − 9)2 − 81 + 45 = 0,

or
(x − 9)2 = 36.

Then taking the square root of both sides gives

x − 9 = ±6.
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Either x − 9 = 6, which means that x = 15. Or x − 9 = −6, which means
that x = 3.

3.4 Applications to Economics

One function of particular interest in economics is the profit function. We
denote this function by the Greek symbol π. The profit function is defined to
be the difference between total revenue, TR, and the total cost, TC, i.e.,

π = TR − TC.

The total revenue received from the sale of Q goods at price P is given by the
product of P and Q, i.e.,

TR = P × Q.

The total cost function relates the cost of production to the level of output, Q,
and is the sum of the fixed costs, FC, and variable costs, V C × Q, where V C

denotes the variable cost per unit of output. Fixed costs include, for example,
the cost of land, rental, equipment, and skilled labour. Variable costs include,
for example, the cost of raw materials, energy, and unskilled labour. The total
cost in producing Q goods is given by

TC = FC + (V C) × Q.

Thus the profit function is

π = P × Q − [FC + (V C) × Q] = PQ − FC − (V C) × Q.

Note that care needs to be exercised in removing the brackets. It is important
to remember that the negative sign outside the square brackets negates all
terms inside the brackets when the brackets are moved.

Example 3.7

If fixed costs are 18, variable costs per unit are 4, and the demand function is

P = 24 − 2Q

obtain an expression for π in terms of Q and hence sketch a graph of π against
Q.

1. For what values of Q does the firm break even?

2. What is the maximum profit?
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Table 3.6 Table of values of the profit function π = −2Q2 + 20Q− 18 for
even integer values of Q for which 0 ≤ Q ≤ 10.

Q 0 2 4 6 8 10
−2Q2 0 −8 −32 −72 −128 −200
20Q 0 40 80 120 160 200
−18 −18 −18 −18 −18 −18 −18
π −18 14 30 30 14 −18

Solution. The total revenue function is given by

TR = P × Q = (24 − 2Q)Q = 24Q − 2Q2,

where we have used the demand function P = 24 − 2Q to eliminate P in the
expression defining TR. We have expressed TR solely in terms of the level of
output, Q. The total cost function is given by

TC = FC + (V C) × Q = 18 + 4Q,

since FC = 18 and V C = 4. We can now obtain an expression for the profit
function by subtracting the expression for TC from the expression for TR, i.e.,

π = TR − TC

= 24Q − 2Q2 − (18 + 4Q)

= 24Q − 2Q2 − 18 − 4Q

= −2Q2 + 20Q − 18,

where we have taken care to change the sign of all terms inside the brackets on
their removal.

Since the coefficient of Q2 in the quadratic expression defining π is negative,
the graph of the profit function has a

⋂
shape. When Q = 0, π = −18. The

profit function is tabulated in Table 3.6 for 0 ≤ Q ≤ 10. From this information,
we are able to sketch the graph of the function. This is shown in Fig. 3.5.

1. The value of the profit function will be zero (i.e., π = 0) for values of Q

that satisfy the quadratic equation

−2Q2 + 20Q − 18 = 0.
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Solving this equation using the formula with a = −2, b = 20, and c = −18
yields

Q =
−20 ±√

400 − 144
−4

=
−20 ±√

256
−4

=
−20 ± 16

−4

Therefore, either

Q =
−20 + 16

−4
=

−4
−4

= 1,

or
Q =

−20 − 16
−4

=
−36
−4

= 9.

The profit is zero when Q = 1 and Q = 9. Therefore, the firm breaks even
when Q = 1 and Q = 9. For 1 < Q < 9, the profit function is positive (see
Fig. 3.5) and the firm is in profit. For values of Q outside this range, i.e.,
Q < 1 and Q > 9, the profit function is negative and therefore the firm
makes a loss at these levels of output.

Q
0 2 4 6 8 10 12

-50

-30

-10

10

30
π (5,32)

Figure 3.5 The graph of the profit function π = −2Q2 + 20Q − 18.
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2. To determine the maximum value of the profit function, we complete the
square.

π = −2
[
Q2 − 10Q + 9

]
= −2

[
(Q − 5)2 − 25 + 9

]
= −2

[
(Q − 5)2 − 16

]
= (−2) × (Q − 5)2 + (−2) × (−16)

= −2(Q − 5)2 + 32

Therefore, the maximum profit is π = 32 since the term −2(Q − 5)2 is
always negative except when Q = 5 when it is zero.

Finally, we return to supply and demand analysis. In Chapter 2, we con-
sidered examples in which both the supply and demand functions were linear
and determined the equilibrium price and quantity. Although linear models are
frequently used in economics because of the simplicity of their mathematical
structure, they can also be limiting in the sort of economic behaviour they
describe. As we shall see in the next example, it is not necessary for the supply
and demand functions to be linear, and, in the case when they are defined by
quadratic expressions, the market equilibrium can be determined by solving a
quadratic expression.

Example 3.8

Given the supply and demand functions

P = Q2
s + 12Qs + 32,

P = −Q2
d − 4Qd + 200,

calculate the equilibrium price and quantity.

Solution. At equilibrium, the quantity supplied is equal to the quantity de-
manded, so that

Qd = Qs = Q, say.

Then the supply and demand equations become

P = Q2 + 12Q + 32,

P = −Q2 − 4Q + 200.

Equating the expressions on the right-hand sides of these equations, we have

Q2 + 12Q + 32 = −Q2 − 4Q + 200.
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Q
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Figure 3.6 The graph of the supply and demand functions in Example
3.8.

We can do this since both expressions are equal to P . Rearranging this equation
and collecting like terms yields the quadratic equation

2Q2 + 16Q − 168 = 0.

This equation can be simplified by dividing throughout by 2. We then have the
quadratic equation

Q2 + 8Q − 84 = 0.

Solving this equation using the formula with a = 1, b = 8, and c = −84 yields

Q =
−8 ±√82 − 4 × 1 × (−84)

2 × 1

=
−8 ±√

64 + 336
2

=
−8 ±√

400
2

=
−8 ± 20

2
Therefore, either

Q =
−8 + 20

2
=

12
2

= 6,
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or
Q =

−8 − 20
2

=
−28
2

= −14.

So the quadratic equation has solutions Q = 6 and Q = −14. The solution
Q = −14 can be discarded because a negative quantity does not make sense.
Therefore, the equilibrium quantity is 6. The corresponding equilibrium price
can be determined by substituting Q = 6 into either the supply or demand
equation. If we substitute this value into the supply equation, we have

P = 62 + 12 × 6 + 32 = 36 + 72 + 32 = 140.

Therefore, the equilibrium price is 140.
The graphs of the supply and demand functions are shown in Fig. 3.6.

There are two points of intersection. The one for positive Q provides the market
equilibrium.

EXERCISES

3.1. Evaluate the function f(x) = 2x2−9x+4 when x = 0, 1, 2, 3, 4, 5.
Hence, sketch the graph of this function for 0 ≤ x ≤ 5.

3.2. Evaluate the function f(x) = −2x2 − 3x + 3 when x = −3, −2, −1,
0, 1, 2. Hence, sketch the graph of this function for −3 ≤ x ≤ 2.

3.3. Sketch the graphs of the following functions:

a) f(x) = 4x2 − 7x − 2, for −2 ≤ x ≤ 4; ,

b) f(x) = 9 − 6x − 8x2, for −3 ≤ x ≤ 3.

3.4. Solve the following quadratic equations using the formula:

a) x2 − 4x + 3 = 0,

b) 3x2 + 5x − 8 = 0,

c) 2x2 − 19x − 10 = 0.

3.5. Solve the following quadratic equations using factorization:

a) x2 + 7x + 10 = 0,

b) x2 − 4x − 5 = 0,

c) 6x2 + 19x + 10 = 0.

3.6. Write the quadratic function f(x) = x2 − 8x + 12 in the form

f(x) = a(x − h)2 + k.
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What is the equation for the axis of symmetry of this parabola, and
what is its vertex? Use this information to sketch the graph of this
function.

3.7. If fixed costs are 6, variable costs per unit are 2, and the demand
function is

P = 15 − 3Q

obtain an expression for the profit function π in terms of Q. Hence,
sketch a graph of π against Q.

3.8. If fixed costs are 4, variable costs per unit are 3, and the demand
function is

P = 45 − 4Q

obtain an expression for the profit function π in terms of Q. Hence,
sketch a graph of π against Q.



4
Functions of a Single Variable

4.1 Introduction

The concept of a function is fundamental to many of the applications that we
will encounter in economics. As we have already seen in Chapters 2 and 3, it is a
convenient way of expressing a relationship between two variables in terms of a
prescribed mathematical rule. More formally, we have the following definition:

Definition 4.1

A function f is a rule that assigns to each value of a variable x, called the
independent variable of the function, one and only one value f(x), referred
to as the value of the function at x. The variable y = f(x) varies with x

and is known as the dependent variable.

We sometimes write f(x) to denote the function f if we wish to indicate
that the variable is x. The function rule defines the dependent variable in terms
of the independent variable. A function of a single variable enables the value
of the dependent variable to be determined when the independent variable is
specified. A function may therefore be interpreted as a process f that takes
an input number x and converts it into only one output number f(x). For
example, the function defined by the rule f(x) = 6x + 2 is the rule that takes
an input number x, multiplies it by 6, and then adds 2 to the product to obtain
the output number. Given a value of x, the corresponding value of f(x) can be

69
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determined using this rule. For example, if x = 3

f(x) = 6 × 3 + 2 = 18 + 2 = 20.

We write f(3) = 20 and say ‘the value of f at x = 3 is 20’ or ‘f of 3 equals 20’.

Example 4.2

Evaluate f(x) = 2x − 5 when x = −1, x = 2 and x = 4.

Solution. When x = −1,

f(x) = 2 × (−1) − 5 = −2 − 5 = −7,

so that f(−1) = −7. When x = 2,

f(x) = 2 × 2 − 5 = 4 − 5 = −1,

so that f(2) = −1. When x = 4,

f(x) = 2 × 4 − 5 = 8 − 5 = 3,

so that f(4) = −3.

Functions are generally represented by algebraic formulae that are usually
expressed in the form

y = f(x),

where f defines the precise nature of the functional relationship. We say ‘y
equals f of x’ or ‘y is a function of x’. In mathematics, we usually denote
functions by letters such as f , g, and h. Examples of functions are :

1. the linear function y = f(x) = ax + b;

2. the quadratic function y = f(x) = ax2 + bx + c;

3. the power function y = f(x) = axn;

where a, b, c and n are constants.

Example 4.3

Given f(x) = x2 + 4x − 5, find f(2) and f(−3).
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Solution.
f(2) = 22 + 4(2) − 5 = 4 + 8 − 5 = 7

f(−3) = (−3)2 + 4(−3) − 5 = 9 − 12 − 5 = −8

There are occasions when the input number or value of the dependent vari-
able is not admissible in the sense that the function fails to process it. For
example, take the reciprocal function f(x) = 1/x and consider the input value
0. If we try to evaluate f(0) on a calculator, an error message will be given
because we cannot divide by zero. Some calculators will even deliver a repri-
mand and inform you that you cannot divide by zero! All the numbers that a
function can process are known collectively as the domain of the function.

Sometimes we may wish to restrict the domain to a smaller set of numbers
than are admissible. In many applications in economics, we are only interested
in domains that contain nonzero numbers. For example, the profit function
is only of interest for non-negative values of output even though it may well
be defined for negative values as well. The smaller set of numbers is called a
restricted domain. For example, the function defined by

f(x) = 2x + 1, −2 ≤ x ≤ 4, (4.1)

has a domain restricted to all the real numbers lying between −2 and 4 even
though this function is defined over all the real numbers. The range of a
function is the collection of all those values of f(x) that correspond to each
and every number in the domain of the function. For example, the function
f(x) = x2 has a domain that consists of all the real numbers and a range that
contains all the non-negative real numbers. The function f(x) defined by (4.1)
has domain −2 ≤ x ≤ 4 and range −3 ≤ f(x) ≤ 9.

Note that a function can take the same value for two different values of its
argument. For example, the function f(x) = x2 takes the value 4 when x = −2
and x = 2. Such functions are said to be many-to-one. Functions that are
such that each element x of the domain is assigned to a different value f(x)
are said to be one-to-one, i.e., the function f is one-to-one if

f(x1) = f(x2) implies x1 = x2.

Every linear function
f(x) = ax + b, a �= 0,

is one-to-one. Relationships which are one-to-many can occur, but from our
definition they are not functions. For example, y2 = 1 − x2 is an example of
a one-to-many relationship. When x = 0, y2 = 1, and so y = −1 and y = 1.
Therefore, there are two values of y that correspond to x = 0.
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4.2 Limits

Sometimes it is of interest to know how a function behaves as the value of its
argument tends to a fixed value. For example, in economics one may wish to
know how the average cost of producing a certain good decreases as the number
of goods produced increases. For example, suppose that the total cost to an
electronics company of producing Q flat screen televisions is

TC = 800Q + 1,000,000.

What is the average cost AC of producing Q televisions when Q is very large?
We can answer questions such as this using the concept of a limit.

The limiting behaviour of a function when the values in its domain are
larger than any finite number may be formalised by expressing the limit of a
function f(x) as x moves increasingly far to the right on the real line as

lim
x→∞ f(x).

So x → ∞ means x increases without bound, and we say x tends to ∞. Simi-
larly, the limit of f(x) as x moves increasingly far to the left on the real line is
expressed as

lim
x→−∞ f(x).

So x → −∞ means x decreases without bound, and we say x tends to −∞.
In the next section, the concept of the limit of a function will be explored and
explained for the reciprocal function f(x) = 1/x.

4.3 Polynomial Functions

The properties of linear and quadratic functions were described in Chapters 2
and 3, respectively. In this section, we look at other polynomial functions. First
of all, consider the power functions defined by

f(x) = xn,

where n is a positive integer. These are sometimes known as monomials since
they comprise only one term.

If n is even, the graph of f(x) = xn is similar to that of f(x) = x2 in terms
of its shape and its symmetry about the y-axis (see Fig. 4.1). The important
difference is that, for n > 2, f(x) increases more rapidly as x increases away
from x = ±1 in the positive and negative x-directions. Note that all the graphs
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pass through the three points (0, 0) (where they attain their minimum values),
(1, 1) and (−1, 1).

If n is odd, the graphs of f(x) = xn are similar, for positive values of x,
to those for which n is even. However, for negative values of x they are quite
different (see Fig. 4.2). The portion of the graph for negative values of x may
be formed as the result of two reflections of the positive portion of the graph,
first with respect to the y-axis and then with respect to the x-axis, i.e., if the
point (x, y) lies on the graph then so also does the point (−x,−y). All the
graphs pass through the points (0, 0), (1, 1), and (−1,−1).

If n is odd, the function f(x) = xn is an increasing function of x since

f(x1) ≤ f(x2) for x1 < x2.

If n is even, the function f(x) = xn is an increasing function of x for x ≥ 0.
However, for x ≤ 0, the function is decreasing since

f(x1) ≥ f(x2) for x1 < x2 ≤ 0.

The general cubic function has the form

f(x) = ax3 + bx2 + cx + d,

-1 0 1

5

10

15

n=2
n=4
n=6

y

x

Figure 4.1 The graphs of the even monomials f(x) = xn for n = 2, 4, 6.
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Figure 4.2 The graphs of the odd monomials f(x) = xn for n = 1, 3, 5.

with a �= 0. The simplest cubic function is f(x) = x3. Its graph is the green
curve in Fig. 4.2. More generally, the graph of a cubic function has one of the
two forms shown in Figs. 4.3 and 4.4 depending on the sign of a. If a > 0, f(x)
tends to ∞ as x tends to ∞ and tends to −∞ as x tends to −∞. The cubic
function f(x) = x3 + x2 − 2x has a = 1 > 0, and its graph is shown in Fig. 4.3.
If a < 0, f(x) tends to −∞ as x tends to ∞ and tends to ∞ as x tends to −∞.
The cubic function f(x) = −x3 + 5x2 − 2x− 15 has a = −1 < 0, and its graph
is shown in Fig. 4.4.

The graph of a cubic function crosses the x-axis at one, two, or three points.
Therefore, the equation f(x) = 0 has one, two, or three real roots. For example,
the graph of the cubic function f(x) = x3 + x2 − 2x (see Fig. 4.3) crosses the
x-axis when x = −2, x = 0 and x = 1, and the graph of the cubic function
f(x) = −x3 + 5x2 − 2x− 15 (see Fig. 4.4) crosses the x-axis at the single point
x = −3/2. The graph of the function f(x) = x3−x2 crosses the x-axis at x = 1
and x = 0. At x = 0 the function f(x) = x3 − x2 has two coincident roots.
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Figure 4.3 The graph of the function f(x) = x3 + x2 − 2x.

4.4 Reciprocal Functions

Consider the reciprocal function defined by

f(x) =
1
x

,

for x > 0. All the applications considered in this book are for x > 0. However,
for completeness we also sketch the function for x < 0 in Fig. 4.5. Here we
see that the part of the graph for x < 0 is obtained by reflecting the graph for
x > 0 in the line y = −x. As we have already noted, this function is not defined
for x = 0.

When x is large and positive, f(x) is small and positive, and as x takes
increasingly larger values, f(x) takes values that approach but never reach 0.
For example, f(10) = 0.1, f(100) = 0.01, f(1,000) = 0.001, etc. As x → ∞,
the graph of f(x) gets arbitrarily close to the x-axis and therefore

lim
x→∞

1
x

= 0.

When x is large and negative, f(x) is small and negative. As x → −∞, the
graph of f(x) gets arbitrarily close to the x-axis approaching it from below and
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Figure 4.4 The graph of the function f(x) = −x3 + 5x2 − 2x − 15.

therefore
lim

x→−∞
1
x

= 0.

The idea of a limit can also be used to describe the unbounded behaviour of
functions. For example, consider the limit of the reciprocal function f(x) = 1/x

for x �= 0 as x tends to 0 from the right (see Fig. 4.5), i.e., x takes only positive
values. As x takes increasingly smaller values, f(x) takes increasingly larger
values. For example, f(1) = 1, f(0.1) = 10, f(0.01) = 100, f(0.001) = 1,000,
etc. The values of f are positive and become arbitrarily large in this limit, i.e.,
given any positive number y we can always find a value of x for which f(x) > y.
We express this mathematically as

lim
x→0+

1
x

= ∞.

The superscript ‘+’ on 0 indicates that we are taking the limit as x approaches
0 from the right through positive values. Similarly, the values of f(x) as x tends
to 0 from the left are negative and become arbitrarily large in this limit, i.e.,
given any negative number z we can always find a value of x for which f(x) < z.
We express this mathematically as

lim
x→0−

1
x

= −∞.
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Figure 4.5 The graph of the function f(x) = 1/x.

The superscript ‘−’ on 0 indicates that we are taking the limit as x approaches
0 from the left through negative values.

Example 4.4

The fixed costs of producing a good are 10 and the variable costs are 4 per unit.
Find expressions for total cost TC and average cost AC. Sketch the graph of
AC as a function of Q.

Solution. The total cost function is

TC = FC + V C × Q

= 10 + 4Q.

The average cost function, AC, is given by

AC =
TC

Q
.
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Table 4.1 Tables of values of AC in Example 4.4.

Q 0.01 0.1 1 10 100
AC 1004 104 14 5 4.1

Therefore, using the above expression for TC we have

AC =
10 + 4Q

Q

=
10
Q

+
4Q

Q

=
10
Q

+ 4.

This function is tabulated in Table 4.1 and sketched in Fig. 4.6. The dashed
line in this figure corresponds to V C = 4. As Q tends to ∞, AC tends to 4,
i.e.,

lim
Q→∞

AC = 4.

In this example, it is no coincidence that AC approaches the value of V C,
i.e., 4, as Q becomes large. In fact, this result holds whenever V C is constant.
To see this, let us examine the expression for AC:

AC =
TC

Q

=
FC + V C × Q

Q

=
FC

Q
+ V C.

As Q becomes large, FC/Q approaches 0. Therefore, AC tends to V C as Q

tends to ∞, i.e.,
lim

Q→∞
AC = V C.

Example 4.5

The fixed costs of producing a good are 8, and the variable costs are 3 + 5Q
per unit. Find expressions for total cost TC and average cost AC. Evaluate
TC and AC when Q = 10. Sketch the graph of AC as a function of Q.
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Figure 4.6 The graphs of the average cost function AC = 10
Q + 4 and the

variable cost per unit V C = 4.

Solution. The total cost function is

TC = FC + V C × Q

= 8 + (3 + 5Q)Q

= 8 + 3Q + 5Q2.

The average cost function, AC, is given by

AC =
TC

Q
.

Therefore, using the above expression for TC we have

AC =
8 + 3Q + 5Q2

Q

=
8
Q

+
3Q

Q
+

5Q2

Q

=
8
Q

+ 3 + 5Q.

When Q = 10,

TC = 8 + 3 × 10 + 5 × 102 = 8 + 30 + 500 = 538,
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Table 4.2 Tables of values of AC in Example 4.5.

Q 0.01 0.1 1 10 100
AC 803.05 83.5 16 53.8 503.08

and
AC =

8
10

+ 3 + 5 × 10 = 0.8 + 3 + 50 = 53.8.

This function is tabulated in Table 4.2 and sketched in Fig. 4.7. The dashed
line in this figure is the straight line AC = 3 + 5Q. As Q tends to ∞, AC

tends to V C. This is because the term 8/Q in the equation for AC becomes
negligibly small for large values of Q. Since V C tends to ∞ as Q tends to ∞,
we have

lim
Q→∞

AC = ∞.

5 10 15
0
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40
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80
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Q

Figure 4.7 The graphs of the average cost function AC = 8
Q + 3 + 5Q

and the variable cost per unit V C = 3 + 5Q.
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Example 4.6

Suppose that the total cost to an electronics company of producing Q flat screen
televisions is

TC = 800Q + 1,000,000.

Obtain an expression for the average cost function. What is the average cost
of production when Q is very large?

Solution. The average cost function is given by

AC =
TC

Q
=

800Q + 1,000,000
Q

= 800 +
1,000,000

Q
.

The second term in this expression for the average cost function tends to 0 as
Q tends to ∞. Therefore, in the limit of arbitrarily large Q we have

lim
Q→∞

AC = 800.

4.5 Inverse Functions

Given a function y = f(x), consider the reverse process in which y becomes
the input and x the output. This reverse process, under certain conditions,
defines what is known as the inverse function of f . If we denote the inverse
function by, say g, then we can write x = g(y) (see Fig. 4.8). Thus, y is now the
independent variable and x the dependent variable. For example, consider the
determination of the inverse of the function y = f(x) = 6x+2. This is achieved
by reversing the input and output processes of the function. The inverse of the
function that multiplies the input by 6 and then adds 2 to the result is the
process that subtracts 2 from the input and then divides the result by 6. This
process defines the inverse of the function, i.e.,

x = g(y) =
y − 2

6
.

The inverse of a one-to-one function satisfies the definition of a function
and therefore is itself a function. Therefore, a necessary condition for a given
function to have an inverse is that it is one-to-one. Thus every linear function
f(x) = ax + b, a �= 0, has an inverse since it is one-to-one.

Nonlinear functions may not possess an inverse function. For example, the
function

y = f(x) = x2,
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y

g(y)

(g(y),y)

0

Figure 4.8 Graph of y = f(x) where g is the inverse function of f .

is a many-to-one function, i.e., there are two values of x that correspond to
each value of y (see Fig. 4.9 where x = ±2 both correspond to y = 4). If
we tried to find the inverse of this many-to-one function, we would obtain a
one-to-many relationship, which contravenes the definition of a function. Thus,
only a one-to-one function can possess an inverse. However, if the domain of f

is restricted to positive values of x, say, then f does possess an inverse defined
by

x = g(y) =
√

y.

This situation is shown in Fig. 4.10.

Example 4.7

Find the inverses of the functions

1. f(x) = 2x − 3,

2. f(x) = (x − 2)2, 2 ≤ x.
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Figure 4.9 Graph showing the many-to-one function y = x2.

Solution.

1. Let y = 2x − 3. We rearrange this equation so that x appears by itself on
the left-hand side. Adding 3 to both sides, we have

y + 3 = 2x.

Finally, dividing both sides by 2 yields the inverse function

x = g(y) =
y + 3

2
.

2. Let y = (x − 2)2. For x ≥ 2 this function is one-to-one and therefore
possesses an inverse. Taking the square root of both sides of this equation
gives

x − 2 =
√

y.

Finally, adding 2 to both sides yields the inverse function

x = g(y) =
√

y + 2.
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y=x2

y

√ y
_

0 x

Figure 4.10 Graph showing the inverse function of f(x) = x2 when the
domain of f is restricted to positive values of x.

The motivation for introducing inverse functions in this book is that in
economics, some functions are plotted with the dependent variable y on the
horizontal axis and the independent variable x on the vertical axis. The demand
function is one such example. The demand function expresses the dependence
of the quantity demanded, Q, of a good on the market price, P . We may write
this function as

Q = f(P ).

Given a particular rule for f , it is relatively simple to determine the value of Q

for a given value of P or to sketch the graph of the function. A mathematician
would plot this function with the independent variable (P ) on the horizontal
axis and the dependent variable (Q) on the vertical axis. However, economists
prefer to plot them the other way round with Q on the horizontal axis and P

on the vertical axis. To facilitate this, the demand equation is rearranged so
that P is expressed in terms of Q, i.e.,

P = g(Q),

for some function g. The functions f and g are said to be inverse functions.
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Example 4.8

For the demand function Q = f(P ), where

f(P ) = −P

3
+ 18

determine the value of Q when P = 30. Express P in terms of Q and hence
find the value of P when Q = 9.

Solution.
Q = f(P ) = −P

3
+ 18.

When P = 30,

Q = −30
3

+ 18 = −10 + 18 = 8.

To express P in terms of Q, we rearrange the terms to isolate P on the left-hand
side of the equation. Multiplying both sides by 3 gives

3Q = −P + 54.

A simple rearrangement of this equation yields the following expression for P

in terms of Q

P = −3Q + 54.

When Q = 9,
P = −3(9) + 54 = −27 + 54 = 27.

In determining P as a function of Q, we have found the inverse function of
f . We may write

P = g(Q), where g(Q) = −3Q + 54.

EXERCISES

4.1. Sketch the graph of the cubic function f(x) = 6 + 12x + 3x2 − 2x3

for −2 ≤ x ≤ 3.

4.2. Sketch the graph of the cubic function f(x) = 8x3 +30x2 +13x− 15
for −4 ≤ x ≤ 2.

4.3. The fixed costs of producing a good are 12 and the variable costs
are 7 per unit. Find expressions for TC and AC. Evaluate TC and
AC when Q = 4 and Q = 12. Sketch the graph of AC as a function
of Q.
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4.4. The fixed costs of producing a good are 9 and the variable costs are
4+3Q per unit. Find expressions for TC and AC. Evaluate TC and
AC when Q = 5 and Q = 10. Sketch the graph of AC as a function
of Q.

4.5. Suppose that the total cost to a furniture company of producing Q

desks is
TC = 50Q + 40,000.

Obtain an expression for the average cost function, AC. What value
does AC approach when Q is very large?

4.6. Find the inverses of the following functions:

a) f(x) = −3x + 2,

b) f(x) = 5x + 3,

c) f(x) = (x − 3)2 + 2, 3 ≤ x.

4.7. For the demand function

Q = −P

4
+ 25

determine the value of Q when P = 36. Express P in terms of Q

and hence find the value of P when Q = 5.



5
The Exponential and Logarithmic

Functions

5.1 Introduction

An important class of nonlinear functions that is of particular interest in eco-
nomics comprises the exponential and logarithmic functions. These functions
are useful for investigating problems associated with economic growth and de-
cay and mathematical problems in finance such as the compounding of interest
on an investment or the depreciation of an asset. For example, if a person in-
vests £3,000 in an investment bond for which there is a guaranteed annual rate
of interest of 5% for two years, the evaluation of an exponential function will
provide the return at the end of that period. If a credit card company charges
interest on an outstanding balance, the evaluation of an exponential function
will provide information on the AER (annual equivalent rate). We begin this
chapter by sketching the graphs of some exponential functions and highlight-
ing some of their important properties. Exponential functions are functions in
which a constant base a is raised to a variable exponent x. The general form
of an exponential function is given by

y = ax, where a > 0 and a �= 1. (5.1)

The parameter a is known as the base of the exponential function. The inde-
pendent variable x occurs as the exponent of the base.

87
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5.2 Exponential Functions

All exponential functions of the form f(x) = ax satisfy the following properties:

Properties

1. The domain of f(x) is the set of all real numbers; the range of f(x) is the
set of all positive real numbers.

2. For all a > 1, f(x) is increasing; for 0 < a < 1, f(x) is decreasing.

3. For all a > 0 with a �= 1, f(0) = 1.

4. For a > 1, f(x) tends to 0 as x tends to −∞; for 0 < a < 1, f(x) tends to
0 as x tends to +∞.

5. For a > 1, f(x) tends to +∞ (i.e., increases without bound) as x tends to
+∞; for 0 < a < 1, f(x) tends to +∞ as x tends to −∞.

In Fig. 5.1, the graphs of y = 2x and y = 2−x = (1
2 )x are sketched for

−4 ≤ x ≤ 4. These graphs illustrate some of the properties of exponential
functions. Clearly, the domain of both functions is the entire real line, and the
range is the set of all positive real numbers. The graph of f(x) = 2x is strictly
increasing and f(x) tends to +∞ as x tends to +∞. The graph of f(x) = 2−x

is strictly decreasing and f(x) tends to 0 as x tends to +∞. Note also that the
graphs of y = 2x and y = 2−x are reflections of each other in the y-axis under
the reflection (x, y) → (−x, y).

In Fig. 5.2, the graphs of two exponential functions with bases a = 2 and
a = 5 are sketched. This figure shows that, for bases a1, a2 satisfying a2 >

a1 > 1, ax
2 increases in value faster than ax

1 for x > 0.
An important base that is useful in many areas of mathematics as well as in

applications to problems in economics is the irrational number e, whose most
significant digits are given by

e = 2.7182818284 . . . .

This mathematical constant like the constant π does not have a finite decimal
representation and is another example of an irrational number. Its decimal form
is therefore never ending and is not a repeating decimal. It is interesting to see
how this number can be defined without going into the mathematical details.
Consider the function

f(x) =
(

1 +
1
x

)x

.
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Figure 5.1 The graph of the functions f(x) = 2x (continuous curve) and
f(x) = 2−x (dashed curve).

Let us evaluate this function for increasing values of x, for example x = 1, 10,
100, 1,000, and 10,000.

x f(x)

1
(

1 +
1
1

)1

= 2

10
(

1 +
1
10

)10

= 2.593742460

100
(

1 +
1

100

)100

= 2.704813829

1,000
(

1 +
1

1,000

)1000

= 2.716923932

10,000
(

1 +
1

10,000

)10000

= 2.71815

These calculations show that as x gets larger, the value of(
1 +

1
x

)x
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Figure 5.2 The graph of the functions f(x) = 2x (continuous curve) and
f(x) = 5x (dashed curve).

increases and approaches a limiting value of 2.718281828 . . ., which traditionally
is denoted by the letter e. Mathematically, we write

e = lim
x→∞

(
1 +

1
x

)x

,

i.e., as x approaches infinity, the value of the function f(x) =
(
1 + 1

x

)x ap-
proaches the constant e. The graph of this function is plotted in Fig. 5.3 where
the dotted line corresponds to the straight line y = e. In this figure we see that,
as x increases, f(x) gradually approaches the dashed line.

5.3 Logarithmic Functions

Logarithms have inspired a feeling of dread in generations of students on their
first encounter with them. Logarithmic functions are closely related to exponen-
tial functions and it is this relationship that we will exploit in our description of
some of their key properties. Logarithms are useful for simplifying calculations
involving economic functions. If we take the exponential function defined by
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Figure 5.3 The graph of the function f(x) =
(
1 + 1

x

)x. The dashed line
corresponds to the constant function f(x) = e.

y = ax and interchange the dependent variable y with the independent variable
x, we obtain

x = ay.

This defines a new function y = loga x, known as the logarithmic function
with base a, which is the exponent to which a must be raised to get x, i.e.,

x = ay ⇔ y = loga x.

Thus, the logarithmic function y = loga x is the inverse of the exponential
function y = ax. For example, if we wish to evaluate y = log10 100, then
100 = 10y. Since 100 = 102, we find that y = 2 so that log10 100 = 2. The
restrictions on the base are the same as for the exponential functions, i.e.,
a > 0, a �= 1.

There are two important bases:

• a = 10 gives rise to common logarithms, written simply as log x.

• a = e where e ≈ 2.71828 gives rise to natural logarithms, written as lnx.

Common and natural logarithms may be evaluated numerically by pressing
either the log or ln keys, respectively, on a scientific calculator. For example, to
evaluate log 2.5:
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Figure 5.4 The graph of the functions f(x) = log2 x (continuous curve)
and f(x) = log1/2 x (dashed curve).

1. Enter 2.5

2. Press the log key

You should obtain the answer 0.397940009 to 9 decimal places, i.e., log 2.5 =
0.397940009. Note that on some calculators you press the log key first, then
enter the number and finally press the = key. Similarly, to evaluate the natural
logarithm of 2.5:

1. Enter 2.5

2. Press the ln key

In this case, you should obtain the answer 0.916290732 to 9 decimal places, i.e.,
ln 2.5 = 0.916290732.

Properties of the function f(x) = loga x

1. The domain of the function is the set of all positive real numbers; the range
is the set of all real numbers.

2. For base a > 1, f(x) is increasing. For 0 < a < 1, f(x) is decreasing.
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Table 5.1 Table of values of log2 x and log1/2 x.

x 1/4 1/2 1 2 4
log2 x −2 −1 0 1 2

log1/2 x 2 1 0 −1 −2

3. At x = 1, y = 0 independent of the base.

The graphs of the logarithmic functions y = log2 x and y = log1/2 x are
shown in Fig. 5.4. These logarithmic functions may be written equivalently as
x = 2y and x = (1/2)y, respectively, and are tabulated in Table 5.1. Note that
these graphs are reflections of the graphs of y = 2x and y = 2−x, respectively,
in the line y = x.

Example 5.1

Evaluate the following:

1. log8 64,

2. log3(
1
81 ),

3. log16 2.

Solution.

1. Let y = log8 64, then 8y = 64 = 82 and so y = 2.

2. Let y = log3
1
81 , then 3y = 1

81 = 1
34 = 3−4 and so y = −4.

3. Let y = log16 2, then 16y = 2 or (24)y = 24y = 2 and so 4y = 1 and
therefore y = 1

4 .

Example 5.2

Solve the following for x:

1. log4 x = 3,

2. log81 x = 3
4 .

Solution.

1. x = 43 = 64.
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2. x = 813/4 = (811/4)3 = 33 = 27.

Rules of Logarithms

For a, x, y positive real numbers, and n a real number, and base a �= 1:

loga(xy) = loga x + loga y, (5.2)

loga(x/y) = loga x − loga y, (5.3)

loga xn = n loga x, (5.4)

loga
n
√

x = loga x1/n =
1
n

loga x. (5.5)

Note that loga x2 means the logarithm of x2 and not the square of loga x, which
is written as log2 x.

To prove the first two rules, let s = loga x and t = loga y. Using the rela-
tionship between the logarithmic and exponential functions, we have x = as

and y = at. Then using the product rule for exponents, we obtain

xy = asat = as+t.

So s + t is the power to which the base must be raised to give xy, i.e.,

s + t = loga x + loga y = loga(xy).

Similarly, using the quotient rule for exponents, we have

x

y
=

as

at
= as−t.

So s − t is the power to which the base must be raised to give x/y, i.e.,

s − t = loga x − loga y = loga(x/y).

Example 5.3

Solve the equation ln(x + 4)2 = 3 for x.

Solution.

2 ln(x + 4) = 3

ln(x + 4) =
3
2

x + 4 = e1.5

x + 4 = 4.48169 to 5 decimal places

x = 0.48169 to 5 decimal places
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Example 5.4

Express loga 3 + loga 4 − loga 6 as a single logarithm.

Solution.

loga 3 + loga 4 − loga 6 = loga(3 × 4) − loga 6

= loga

(
3 × 4

6

)
= loga 2

Example 5.5

Find the value of x satisfying

loga x = 3 loga 2 + loga 20 − loga 1.6.

Solution.

loga x = 3 loga 2 + loga 20 − loga 1.6

= loga 23 + loga 20 − loga 1.6

= loga

(
8 × 20

1.6

)
= loga 100

Therefore x = 100.

5.4 Returns to Scale of Production Functions

The output, Q, of any production process depends on a variety of inputs, known
as factors of production. These include land, capital, labour, and enterprise.
For simplicity, here we restrict our attention to capital, K, and labour, L. The
dependence of Q on K and L is indicated by writing

Q = Q(K, L).

Q is called a production function. It is an example of a function of two
variables – in this case K and L. Functions of two variables are described in
more detail in Chapter 8.
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If Q(K, L) = 100K1/3L1/2, then when K = 27 and L = 100 the output
Q(27, 100) is given by

Q = 100(27)1/3(100)1/2

= 100(3)(10)

= 3,000

Of particular interest is what happens to the output when the inputs are scaled
in some way. If capital and labour double, does the production level double,
does it go up by more than double, or does it go up by less than double? For
the above production function, we see that when K and L are replaced by 2K

and 2L, respectively, then using the rules of indices (see Section 1.6):

Q = 100(2K)1/3(2L)1/2

= 100(21/3K1/3)(21/2L1/2)

= (21/321/2)(100K1/3L1/2)

= 25/6(100K1/3L1/2)

The term in brackets is just the original output. So this is multiplied by 25/6 ≈
1.78 so output goes up by just less than double when capital and labour are
doubled.

In general, a function
Q = Q(K, L)

is said to be homogeneous if

Q(λK, λL) = λnQ(K, L), (5.6)

for some number n where λ is a general number. The power, n, is called the
degree of homogeneity. Let us take the previous example again:

Q(λK, λL) = 100(λK)1/3(λL)1/2

= (λ1/3λ1/2)100K1/3L1/2

= λ5/6Q(K, L)

This production function is homogeneous of degree 5/6.
In general, if the degree of homogeneity, n, satisfies

1. n < 1 the function is said to display decreasing returns to scale.

2. n = 1 the function is said to display constant returns to scale.

3. n > 1 the function is said to display increasing returns to scale.
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5.4.1 Cobb-Douglas Production Functions

Functions of the form
Q = AKαLβ

where A, α, β are constants are called Cobb-Douglas production functions.
These are homogeneous of degree α + β since if

Q(K, L) = AKαLβ

then

Q(λK, λL) = A(λK)α(λL)β

= λα+β(AKαLβ)

= λα+βQ(K, L)

Therefore, Cobb-Douglas production functions exhibit

1. decreasing returns to scale if α + β < 1.

2. constant returns to scale if α + β = 1.

3. increasing returns to scale if α + β > 1.

Example 5.6

Show that the production function

Q = K2 + 3KL,

is homogeneous and comment on its returns to scale.

Solution. In this example we are given that

Q = Q(K, L) = K2 + 3KL.

If we scale or multiply both K and L by λ, then the corresponding value of
output is

Q(λK, λL) = (λK)2 + 3(λK)(λL)

= λ2K2 + 3λ2KL

= λ2(K2 + 3KL)

= λ2Q(K, L).

Therefore, we have shown that

Q(λK, λL) = λ2Q(K, L),
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which on comparison with (5.6) demonstrates that the production function is
homogeneous of degree 2. Since the degree of homogeneity is greater than one,
the function displays increasing returns to scale.

The Cobb-Douglas production function is an example of a nonlinear func-
tion. However, it may be converted to a linear function through a simple loga-
rithmic transformation as follows. Take natural logarithms of both sides of the
equation

Q = AKαLβ .

Then

lnQ = ln(AKαLβ)

= ln A + ln Kα + ln Lβ

= ln A + α lnK + β lnL.

This is what we call a log-linear function. If we define Q̃ = lnQ, K̃ = ln K,
and L̃ = lnL, then

Q̃ = ln A + αK̃ + βL̃,

a linear function in the variables K̃ and L̃.

5.5 Compounding of Interest

There is a plethora of investment products and loan facilities available to an
individual in the financial market place. It is important for both an individual
or a business to make an informed choice between the financial products on
offer in order to maximize the return on their capital or to minimize the interest
on their loan repayments, for example. Suppose that a person wants to borrow
some capital and is offered two loan products. The first charges interest on the
loan at the annual rate of 12% while the second charges interest at a monthly
rate of 1%. Which product should the person go for? In this section, we show
how such decisions can be made.

Suppose that an individual wishes to invest a sum of £10,000 over a period
of three years and that the annual rate of interest is 5%. After one year, the
interest on the investment amounts to 5% of £10,000, which is £500. If the
investment is subject to simple interest, then the return on the investment
would be £500 per year for each subsequent year. The total amount of interest
earned over the five-year period in this case is 5 × £500 = £2,500. However,
most financial investment products use compound interest as a means of
enticing their customers not to withdraw the interest earned after the first and
subsequent years from the accumulated value of their investment. When interest
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is compounded annually, the amount of interest earned in the second year is 5%
of £10,500, which is the sum of the initial investment (£10,000) and the first
year’s interest (£500). The interest earned in the second year is therefore £525
and so the value of the investment at the end of the second year is £10,500 +
£525 = £11,025. Finally, at the end of the third year the investment is worth
£11,025 plus 5% of £11,025 interest giving a total of £11,571.25.

There is a formula that can be used to determine the future value of an
investment. Let P0 denote the value of the initial investment. This is sometimes
known as the principal. Let Pt denote the value of the investment after t years.
If the interest on the principal is compounded annually, at an interest rate r

(written as a decimal or fraction), then after one year the investment is worth

P1 = P0 + rP0 = P0(1 + r). (5.7)

Similarly, after the second year the investment is worth

P2 = P1 + rP1 = P1(1 + r). (5.8)

Substituting for P1 in (5.8) using (11.1) we have

P2 = [P0(1 + r)](1 + r) = P0(1 + r)2. (5.9)

In general, one can show that

Pt = P0(1 + r)t. (5.10)

Now suppose that the interest is compounded semi-annually (six monthly
intervals). In this case, (5.10) would have to be modified to

Pt = P0

(
1 +

r

2

)2t

. (5.11)

Note that the differences between this formula and the formula (5.10) when
the interest is compounded annually are that the interest rate is divided by 2
since the interest is added twice a year and t is replaced by 2t since this is the
number of times that the interest is added during t years. Similarly, one can
show that if interest is added monthly, the value of the investment after t years
is

Pt = P0

(
1 +

r

12

)12t

. (5.12)

If this argument is continued and interest is compounded n times a year,
then we have the formula

Pt = P0

(
1 +

r

n

)nt

. (5.13)
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If n is very large then we are approaching the situation in which interest is
added continuously (at every instant of time) instead of at discrete moments
in time. If we make the substitution m = n/r in (5.13), then we have

Pt = P0

(
1 +

1
m

)mrt

= P0

[(
1 +

1
m

)m]rt

(5.14)

We saw in Section 5.2 that(
1 +

1
m

)m

→ e as m → ∞.

If we allow m → ∞ in (5.14) (which is equivalent to allowing n → ∞ in
(5.13) since r is held constant), then we obtain the formula for the continuous
compounding of interest:

P (t) = P0e
rt. (5.15)

In this formula, t need no longer be a positive integer. It can take any positive
value.

For negative growth rates, such as depreciation or deflation, the same for-
mulae apply but with t or r negative.

Example 5.7

Suppose that the sum of e100 is invested at an annual rate of interest of
10%. Calculate the value of the investment in five years’ time if the interest is
compounded (a) annually, (b) semi-annually, (c) continuously.

Solution.

1. We apply the formula (5.10) with P0 = 100, r = 10% = 0.1 and t = 5.
Inserting these values into the formula gives

P5 = 100(1 + 0.10)5 = e161.05.

2. We apply the formula (5.11) with P0 = 100, r = 10% = 0.1 and t = 5.
Inserting these values into the formula gives

P5 = 100
(

1 +
0.10
2

)2×5

= 100(1.05)10 = e162.89.
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3. We apply the formula (5.15) with P0 = 100, r = 10% = 0.1 and t = 5.
Inserting these values into the formula gives

S = 100e0.10×5 = 100e0.2 = e164.87.

Example 5.8

The value of an asset, currently priced at $250,000, is expected to increase by
12% a year.

1. Find its value in ten years’ time.

2. After how many years will it be worth at least 1.25 million dollars?

Solution.

1. We use the formula (5.15) with P0 = 250, 000, r = 12% = 0.12, and t = 10.
Inserting these values into the formula yields

P10 = 250,000(1 + 0.12)10

= 250,000(1.12)10

= $776,462.05

Therefore, after 10 years the asset will be worth $776,462.05.

2. In this part of the question, we use the formula (5.10) again but this time
we know Pt = 1,250,000 and we need to determine the value of t. We need
to find the value of t for which

1,250,000 = 250,000(1 + 0.12)t

5 = (1.12)t

Take natural logarithms of both sides:

ln 5 = ln(1.12)t = t ln 1.12.

Therefore,
t = ln 5/ ln 1.12 = 14.20

So after 15 years, the asset will be worth at least 1.25 million dollars.

Example 5.9

A credit card company charges interest at 2% per month. What is the annual
equivalent rate correct to two decimal places?
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Solution. Suppose that the balance outstanding on the credit card is B then
the amount owing (loan plus interest) over one year is

B

(
1 +

2
100

)12

= B(1.02)12.

Here we have used the formula (5.12) but in which we have not divided r by
12 since the rate of interest is already a monthly one. Let R be the annual
equivalent rate. Then if interest is charged annually, the amount owing after a
year is

B

(
1 +

R

100

)
.

Equating these two expressions enables us to find R:

B(1.02)12 = B

(
1 +

R

100

)
.

Therefore,

(1.02)12 = 1 +
R

100
.

Rearranging this equation gives

R = [(1.02)12 − 1] × 100 = 0.2682 = 26.82%.

This is the annual equivalent rate.

5.6 Applications of the Exponential Function in
Economic Modelling

Example 5.10

During a recession, a firm’s revenue declines continuously at an annual rate of
10% so that total revenue (measured in millions of pounds) in t years’ time is
modelled by

TR = 8e−0.1t.

1. Calculate the current revenue and also the revenue in two years’ time.

2. Sketch the graph of TR against t.

3. Rearrange the formula to get t in terms of TR.

4. After how many years will revenue decline to below £5 million?
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Solution.

1. When t = 0, TR = 8e0 = 8. Therefore, the current revenue is £8 million.
When t = 2, TR = 8e−(0.1)(2) = 8e−0.2 = 6.55. Therefore, after two years
the revenue will have declined to £6.55 million.

2. The graph of the revenue function TR plotted as a function of time t is
shown in Fig. 5.5.

3. The first step in the process of rearranging the formula for TR is to divide
both sides by 8:

TR

8
= e−0.1t.

Then taking natural logarithms of both sides:

ln
(

TR

8

)
= ln e−0.1t = −0.1t.

Finally, dividing both sides by −0.1, we obtain the formula for t in terms
of TR:

t =
1

(−0.1)
ln
(

TR

8

)
= −10 ln

(
TR

8

)
.

4. We now use this formula to determine the number of years after which the
revenue will decline to £5 million. Inserting TR = 5 in this formula yields

t = −10 ln
(

5
8

)
= 4.700 (to 3 decimal places).

Therefore, after 5 years TR will decline to £5 million. An estimate for this
answer can be found from the graph in Fig. 5.5. The dashed line in this
graph corresponds to TR = 5. The intersection of this straight line with
the curve TR = 8e−0.1t provides the answer.

Example 5.11

The percentage, y, of Europeans possessing a mobile phone t years after it was
introduced is modelled by

y = 80 − 70e−0.2t.

1. Find the percentage of Europeans that have mobile phones

a) at the launch of the product;

b) after 3 years;

c) after 10 years.
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TR

Figure 5.5 The graph of the function TR = 8e−0.1t. The dashed line
corresponds to TR = 5.

2. What is the market saturation level?

3. After how many years will the percentage of Europeans possessing mobile
phones first reach 75%?

Solution.

1. a) The launch of the product corresponds to t = 0 since t measures the
time from the introduction of mobile phones into the market place. So
putting t = 0 into the expression for y gives

y = 80 − 70e0 = 80 − 70 = 10%.

b) After three years t = 3, the percentage of Europeans possessing mobile
phones is given by

y = 80 − 70e−0.2×3 = 80 − 70e−0.6 = 41.58%.

c) After ten years t = 10, the percentage of Europeans possessing mobile
phones is given by

y = 80 − 70e−0.2×10 = 80 − 70e−2 = 70.53%.
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Figure 5.6 The graph of the function y = 80 − 70e−0.2t.

2. The market saturation is the limiting value of y as t tends to ∞. Since

e−0.2t → 0 as t → ∞,

we have
y → 80 as t → ∞,

and so the market saturation level is 80% (see Fig. 5.6).

3. To determine the time after which 75% of Europeans possess a mobile
phone, we rearrange the equation and express t in terms of y and then put
y = 75 into the resulting formula. A simple rearrangement gives

e−0.2t =
(80 − y)

70
.

Taking natural logarithms of both sides yields

−0.2t = ln
(

80 − y

70

)
.
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Finally, multiplying both sides by 1/(−0.2) = −5 gives

t = −5 ln
(

80 − y

70

)

= −5 ln
(

5
70

)
= 13.20

Therefore, after 14 years the percentage of Europeans possessing mobile
phones will break through the 75% barrier.

EXERCISES

5.1. Sketch the functions y = 2x and y = 3x on the same graph for
−2 ≤ x ≤ 2.

5.2. Evaluate (a) log3 9, (b) log4 2, (c) log7(1/7).

5.3. Show that the following production functions are homogeneous and
comment on their returns to scale:

a) Q = 7KL2,

b) Q = 50K1/4L3/4.

5.4. Determine the annual rate of interest required for a principal of
£2,000 to produce a value of £10,000 after 8 years.

5.5. Determine the annual equivalent rate (AER) corresponding to a
monthly rate of 1.15%.

5.6. An economy is forecast to grow continuously at an annual rate of
3% so that the gross national product (GNP ), measured in billions
of euros, after t years is given by

GNP = 60e0.03t.

a) Calculate the current value of GNP and its future value in four
years’ time.

b) After how many years is GNP forecast to be 90 billion euros?

5.7. Determine the rate of interest required for an investment that is cur-
rently worth $1,000 to be worth $4,000 after 10 years if the interest
is compounded continuously.
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5.8. Determine the annual equivalent rate (AER) corresponding to a
monthly rate of 1%.

5.9. The percentage, y, of households possessing dishwashers t years after
they have been introduced in a country is modelled by

y = 30 − 25e−0.2t.

a) Find the percentage of households that have dishwashers

i. at their launch;

ii. after 1 year;

iii. after 10 years;

iv. after 20 years.

b) What is the market saturation level?

c) After how many years will the percentage of households possess-
ing dishwashers first reach 15%?

5.10. A firm’s turnover, y, measured in millions of pounds, after t years is
given by

y = 8e0.09t.

What is its turnover in its initial year of trading and after two years
of trading? After how many years will its turnover have doubled
since it started trading?



6
Differentiation

6.1 Introduction

Economists are interested in the effects of change. Therefore, the concept of
the derivative of a function, which provides information about how a function
changes in response to changes in the independent variable, is an important
one in economic analysis. For example, the derivative of a production function
provides information about the manner in which the output of a production
process changes as the number of workers employed by the company changes.
Differentiation is the mathematical tool that allows us to quantify such rates of
change. As we will see in Chapter 7, differentiation is also an important tool in
the determination of the maximum or minimum values of economic functions
such as profit and cost.

In Chapter 2, some linear functions in economics such as linear demand
and supply functions were introduced. These functions are characterized by
their graphs being lines having a constant slope, i.e., the gradient is constant
irrespective of the value of the independent variable. We say that the rate
of change of the function is independent of the point where it is measured.
Furthermore, the slope or gradient of a linear function may be determined
by taking any two points on the straight line and calculating the ratio of the
change in the vertical direction with respect to the change in the horizontal
direction as the value of the independent variable increases. The corresponding
situation for a nonlinear function is quite different, however, and the rate of
change of a nonlinear function varies as one moves along the curve given by its

109
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P

Q

∆x

tangent at P

R

y=f(x)

∆y

Figure 6.1 The graph of a nonlinear function in which the tangent at the
point P is drawn.

graph.
In Fig. 6.1, we show part of the graph of a nonlinear function y = f(x).

On this graph, we have drawn the tangent to the curve at the point P . The
tangent to a curve at a point P is the straight line that passes through P and
that just touches the curve at this point. The slope or gradient of a curve
y = f(x) at P is then defined to be the gradient of the tangent to the curve
at P . It is a measure of the prevailing rate of change of y relative to x at P .
We can see from Fig. 6.1 that the gradient of a nonlinear function varies as we
move along the curve.

In mathematics, we use the notation f ′(a) (pronounced f primed of a) to
represent the slope of the tangent to the function f at x = a. The slope of the
tangent to a function is called the derivative of the function – corresponding
to each value of x there is a uniquely defined derivative f ′(x). Therefore, the
derivative of a function of x is also a function of x.

If y = f(x), then an alternative notation for the derivative of a function is

dy

dx
.

This is pronounced ‘dee y by dee x’. Note that this is a single entity not to
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be manipulated in any sense and represents the derivative of y with respect to
x. If, for example, f(x) = x2, then it is natural to use f ′(x) to represent the
derivative of f(x), whereas if y = x2 is used then dy/dx is more appropriate.

Consider the function y = f(x). The graph of this function is shown in
Fig. 6.1. The slope or gradient of the function at the point P : (x, f(x)) is
the slope of the tangent to the graph of the function at P (see Fig. 6.1). This
slope can be approximated by the slope of the chord PQ where Q is the point
(x + ∆x, f(x + ∆x)). (A chord is a straight line joining any two points on a
curve.) So the horizontal distance from P to Q is ∆x. If x is a variable, the
notation ∆x will denote a small change in x. Therefore,

the slope of PQ =
QR

PR

=
f(x + ∆x) − f(x)

(x + ∆x) − x

=
f(x + ∆x) − f(x)

∆x

If Q is allowed to approach P in which case ∆x approaches 0, the slope of the
chord PQ approaches the slope of the tangent at P , i.e.,

Slope of the Tangent at P = lim
∆x→0

f(x + ∆x) − f(x)
∆x

. (6.1)

The value of this limit, if it exists, is known as the derivative of the function
f at x and is written f ′(x) or dy/dx. Thus, we have

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)
∆x

. (6.2)

So the derivative of a function at a point is the ratio of the change in y to the
change in x between the point and a point that it infinitesimally close to it. So
the derivative measures the instantaneous rate of change of the function.

If ∆y denotes the change y corresponding to the change ∆x in x, then

∆y = f(x + ∆x) − f(x),

with f(x + ∆x) being the value of y = f(x) when the value of x changes to
x + ∆x. Therefore,

f ′(x)
(

or
dy

dx

)
= lim

∆x→0

∆y

∆x
. (6.3)

Therefore, for a small change ∆x in x and corresponding small change ∆y in
y, we have that

dy

dx
≈ ∆y

∆x
,
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or

∆y ≈ ∆x

(
dy

dx

)
. (6.4)

This makes sense if dy/dx is regarded as the rate of change of y relative to x. In
particular, dy/dx can be regarded as approximately the change in y resulting
from a 1 unit increase in x (provided the value of x is relatively large so that
1 unit is relatively small). The approximation (6.4) is known as the small
increments formula.

The process of finding the derivative of a function is known as differenti-
ation. The definition of a function may be used to determine the derivative of
a given function. This process is known as differentiation from first principles.
For example, if f(x) = x2, then using (6.2) we have

f ′(x) = lim
∆x→0

(x + ∆x)2 − x2

∆x

= lim
∆x→0

(x2 + 2x∆x + (∆x)2) − x2

∆x

= lim
∆x→0

2x∆x + (∆x)2

∆x

= lim
∆x→0

(
2x∆x

∆x
+

(∆x)2

∆x

)

= lim
∆x→0

(2x + ∆x)

= 2x.

The process of determining the derivative of a function from first principles
can be quite time consuming and involve lengthy mathematical calculations.
Fortunately, there is a more rapid route to determining the derivative of the
sorts of functions that we encounter in economics based on a number of rules,
known as rules of differentiation. Some of these rules will be derived in the next
section using the definition of the derivative of a function (6.2), but others will
be stated simply without justification.

Example 6.1

Differentiate y = f(x) = x2 and use the small increments formula to estimate
the change in y if x changes from 1 to 1.01. Calculate also the actual change
in y.
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Solution. We have already shown that dy/dx = f ′(x) = 2x and so f ′(1) = 2.
If x increases from 1 to 1.01, then ∆x = 0.01. Therefore, we can estimate the
change in y using the small increments formula (6.4) as

∆y ≈ ∆x × f ′(1) = 0.01 × 2 = 0.02.

The actual change ∆y in y is f(1.01) − f(1) = 1.0201 − 1 = 0.0201.

6.2 Rules of Differentiation

In this section, we show how to differentiate functions without having to use
the definition (6.2). A few rules are sufficient to differentiate all the functions
encountered in this book.

6.2.1 Constant Functions

Consider the constant function f(x) = k, where k is a constant. Using the
definition of a derivative (6.2), we have

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)
∆x

= lim
∆x→0

k − k

∆x

= lim
∆x→0

0
∆x

= 0.

Thus, if f(x) = k then f ′(x) = 0. For example, if f(x) = 8, then f ′(x) = 0.
This rule is obvious if f ′(x) is regarded as the rate of change of f(x) relative
to x. In this case, f(x) is constant.
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6.2.2 Linear Functions

Consider the linear function f(x) = ax+ b, where a and b are constants. Using
the definition of a derivative (6.2), we have

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)
∆x

= lim
∆x→0

(a(x + ∆x) + b) − (ax + b)
∆x

= lim
∆x→0

a∆x

∆x

= lim
∆x→0

a

= a.

Thus, if f(x) = ax + b then f ′(x) = a. This is the linear function rule. For
example, if f(x) = 3x+2, then f ′(x) = 3, and if f(x) = 5− 1

4x, then f ′(x) = − 1
4 .

6.2.3 Power Functions

Consider the power function f(x) = kxn, where k is a constant and n is any
real number. The derivative of this power function is given by f ′(x) = knxn−1.
So to obtain the derivative of a power function, we multiply it by the power
and reduce the original power by one. For example, if f(x) = 4x3, then f ′(x) =
4× 3×x3−1 = 12x2, and if f(x) = x4, then f ′(x) = 4x4−1 = 4x3. When k = 1,
an important special case of this rule is realized, i.e., if f(x) = xn, then

f ′(x) = nxn−1. (6.5)

This rule, known as the power function rule, is derived using the definition
(6.2). Since it involves the expansion of (x + ∆x)n and some algebra, we omit
the details here.

6.2.4 Sums and Differences of Functions

The rules we have introduced so far can be used to generate the derivatives of
polynomials, the terms of which are power functions. Consider the function f ,
which is the sum of two functions g and h, i.e., f(x) = g(x) + h(x). Using the
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definition of a derivative (6.2) we have

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)
∆x

= lim
∆x→0

(g(x + ∆x) + h(x + ∆x) − (g(x) + h(x))
∆x

= lim
∆x→0

(g(x + ∆x) − g(x)) + (h(x + ∆x) − h(x))
∆x

= lim
∆x→0

(g(x + ∆x) − g(x))
∆x

+ lim
∆x→0

(h(x + ∆x) − h(x))
∆x

= g′(x) + h′(x).

Thus, if f(x) = g(x) + h(x), then

f ′(x) = g′(x) + h′(x).

This is intuitively clear when derivatives are viewed as rates of change: the rate
of change relative to x of two functions of x is the sum of their rates of change.
Similarly, we can show that if f is the difference of two functions g and h, i.e.,
f(x) = g(x) − h(x), then

f ′(x) = g′(x) − h′(x).

Thus, the derivative of a sum of two functions is equal to the sum of the
derivatives of the individual functions. Similarly, the derivative of the difference
of two functions is equal to the difference of the derivatives of the two functions.
For example, if f(x) = 12x5 − 4x4, then f ′(x) = 60x4 − 16x3, and if f(x) =
9x2 + 2x − 3, then f ′(x) = 18x + 2.

Example 6.2

Differentiate each of the following functions:

1. f(x) = 9x − 6,

2. y = −9x−4,

3. f(x) = x8 + 8x6 + 11.
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Solution.

1. This is a linear function (see Section 6.2.2) with a = 9 and b = −6. There-
fore, using the linear function rule, we have f ′(x) = 9.

2. This is a power function (see Section 6.2.3) with k = −9 and n = −4.
Therefore, using the power function rule, we have

dy

dx
= (−9)(−4)x−4−1 = 36x−5 =

36
x5

.

3. This is an example of a polynomial function comprising two power functions
and a constant function. Therefore, using the rule for the sum of functions
in conjunction with the power function and constant function (see Section
6.2.1) rules, we have

f ′(x) = 8x8−1 + 8 × 6x6−1 + 0 = 8x7 + 48x5.

Note that the linear function rule can be deduced from a combination of
the rule for the differentiation of the sum of two functions and the constant
function and power function rules.

6.2.5 Product of Functions

Suppose that y = uv where u and v are functions of x. Let ∆u, ∆v, and ∆y

denote very small changes in u, v, and y, respectively, that correspond to a
small change ∆x in x. Then

y + ∆y = (u + ∆u)(v + ∆v)

= uv + u∆v + v∆u + ∆u∆v.

Since y = uv,
∆y = u∆v + v∆u + ∆u∆v.

We can ignore the term ∆u∆v since it is the product of two very small changes
and therefore negligible. Therefore,

∆y

∆x
= u

∆v

∆x
+ v

∆u

∆x
+

∆u

∆x
∆v.

As ∆x → 0,
∆y

∆x
→ dy

dx
,

and
u

∆v

∆x
+ v

∆u

∆x
+

∆u

∆x
∆v → u

dv

dx
+ v

du

dx
,
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since (∆u/∆x)∆v → 0 as ∆x → 0. Thus, we obtain the product rule for
differentiation: if y = uv, then

dy

dx
= u

dv

dx
+ v

du

dx
. (6.6)

6.2.6 Quotient of Functions

Suppose that y = u/v where u and v are functions of x. Let ∆u, ∆v, and ∆y

denote small changes in u, v, and y, respectively, that correspond to a very
small change ∆x in x. Thus ∆u → 0 and ∆v → 0 as ∆x → 0. Then

y + ∆y =
u + ∆u

v + ∆v
.

Subtracting y = u/v from both sides of this equation yields

∆y =
u + ∆u

v + ∆v
− u

v
.

Simplifying the fraction on the right-hand side of this equation gives

∆y =
v(u + ∆u) − u(v + ∆v)

v(v + ∆v)

=
v∆u − u∆v

v(v + ∆v)
.

Therefore,
∆y

∆x
=

v ∆u
∆x − u∆v

∆x

v(v + ∆v)
.

Finally, letting ∆x → 0, we obtain the quotient rule for differentiation: if
y = u/v then

dy

dx
=

v du
dx − u dv

dx

v2
. (6.7)

6.2.7 The Chain Rule

Suppose that y is a function of u, i.e., y = f(u), and that u in turn is a function
of x, i.e., u = g(x). We say that y is a function of a function and to express y

as a function of x we write
y = f(g(x)).

If ∆y and ∆u denote changes in y and u, respectively, that correspond to a
small change ∆x in x, then

∆y

∆x
=

∆y

∆u

∆u

∆x
.
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Then, as ∆x → 0, we obtain the so-called chain rule:

dy

dx
=

dy

du

du

dx
= f ′(u)g′(x). (6.8)

We may also write this in terms of derivatives of f and g and then express the
result solely in terms of a function of x, i.e.,

dy

dx
= f ′(g(x))g′(x). (6.9)

As an illustration of the use of the chain rule to obtain the derivative of a
function, consider y = (x2 + 3x + 2)5. If we let u = x2 + 3x + 2, then y = u5.
Differentiating u with respect to x and y with respect to u, we obtain

dy

du
= 5u4,

du

dx
= 2x + 3.

Then using the chain rule yields

dy

dx
=

dy

du

du

dx

= 5u4(2x + 3)

= 5(x2 + 3x + 2)4(2x + 3).

If we put x = y in (6.8), we obtain

dy

dy
= 1 =

dy

du

du

dy
.

It follows that
du

dy
=

1
dy
du

. (6.10)

Example 6.3

Find the derivative of each of the following functions:

1. f(x) = (2x3 + 1)(x2 − 3x) and evaluate f ′(1),

2. f(x) =
5x2 + 3
x2 + 1

and evaluate f ′(0),

3. y = (7x4 + 2)6 and evaluate dy/dx when x = 0.
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Solution.

1. To differentiate this function, we use the product rule with u = 2x3 + 1
and v = x2 − 3x. Now du/dx = 6x2 and dv/dx = 2x − 3. Therefore, using
the product rule (6.6), we have

f ′(x) = (2x3 + 1)(2x − 3) + 6x2(x2 − 3x),

which, after some simplification, gives

f ′(x) = 10x4 − 24x3 + 2x − 3.

Finally, f ′(1) = 10 − 24 + 2 − 3 = −15.

2. To differentiate this function, we use the quotient rule with u = 5x2 + 3
and v = x2 + 1. Now du/dx = 10x and dv/dx = 2x. Therefore, using the
quotient rule (6.7), we have

f ′(x) =
(10x)(x2 + 1) − (5x2 + 3)(2x)

(x2 + 1)2

=
10x3 + 10x − 10x3 − 6x

(x2 + 1)2

=
4x

(x2 + 1)2
.

Evaluating this derivative when x = 0 gives f ′(0) = 0.

3. To differentiate y = (7x4 +2)6, we use the chain rule (6.8). Let u = 7x4 +2
then y = u6. Now

dy

du
= 6u5,

du

dx
= 28x3.

Therefore,
dy

dx
= (6u5)(28x3) = 168(7x4 + 2)5x3.

When x = 0, dy/dx = 0.

6.3 Exponential and Logarithmic Functions

Let f be the exponential function f(x) = eg(x), where g(x) is some function of
x. Then the derivative of f is

f ′(x) = g′(x) eg(x). (6.11)

For example, if f(x) = ex2
, then f ′(x) = 2xex2

since g(x) = x2 and g′(x) =
2x. When g(x) = 1, we have the important result that the derivative of the
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exponential function ex is itself, i.e., ex, since g′(x) = 1. More generally, if
f(x) = ekx, where k is a constant, then

f ′(x) = kekx.

For example, if f(x) = e−2x, then f ′(x) = −2e−2x.
Let f be the natural logarithmic function f(x) = ln g(x), then the deriva-

tive of f is

f ′(x) =
g′(x)
g(x)

. (6.12)

For example, if f(x) = ln 6x2 then

f ′(x) =
12x

6x2
=

2
x

since g(x) = 6x2 and g′(x) = 12x. When g(x) = x we have the result that the
derivative of lnx is 1/x since g′(x) = 1.

We display these rules in Table 6.1.

Example 6.4

Find the derivative of each of the following functions:

1. f(x) = 3e7−2x,

2. f(x) = ln(x2 + 6x + 2).

Solution.

1. If f(x) = 3e7−2x, then g(x) = 7 − 2x. Since g′(x) = −2, then

f ′(x) = 3g′(x)eg(x) = −6e7−2x.

Table 6.1 Derivatives of the exponential and logarithmic functions.

f(x) f ′(x)

eg(x) g′(x)eg(x)

ex ex

ln g(x)
g′(x)
g(x)

lnx
1
x
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2. If f(x) = ln(x2 + 6x + 2), then g(x) = x2 + 6x + 2. Since g′(x) = 2x + 6,
then

f ′(x) =
g′(x)
g(x)

=
2x + 6

x2 + 6x + 2
.

6.4 Marginal Functions in Economics

6.4.1 Marginal Revenue and Marginal Cost

Sometimes in economics, we are interested in the effect on total revenue, TR,
of a change in the value of Q. To do this, the concept of marginal revenue is
introduced. The marginal revenue of a good, MR, is defined by

MR =
d(TR)

dQ
.

The marginal revenue function measures the instantaneous rate of change in to-
tal revenue, TR, compared with demand, Q. For example, the marginal revenue
function, MR, corresponding to

TR = 100Q − 2Q2

is given by

MR =
d(TR)

dQ
= 100 − 4Q.

If the current demand is 15, say, then

MR = 100 − 4 × 15 = 40.

This means that when demand is changed slightly from its current value of 15,
the corresponding change in total revenue is 40 times as large. However, if the
demand is 20, then

MR = 100 − 4 × 20 = 20,

which means that when demand is changed slightly from Q = 20, the corre-
sponding change in total revenue is only 20 times as large.

Economists say that MR is approximately the change in TR resulting from
a one unit increase in demand Q. In general,

∆(TR) ≈ MR × ∆Q.

(This is just a consequence of the small increments formula (6.4).) This ap-
proximation is a good one provided the quantities of Q involved are very large



122 Elements of Mathematics for Economics and Finance

so that one unit is relatively very small. An analogous statement can be made
regarding marginal cost, MC.

The marginal cost function, MC, is defined by

MC =
d(TC)

dQ
. (6.13)

The average cost function, AC, is defined by

AC =
TC

Q
. (6.14)

Example 6.5

If the average cost function for a good is

AC =
24
Q

+ 15 + 3Q,

find an expression for the total cost function. What are the fixed costs in this
case? Write down an expression for the marginal cost function.

Solution. To find an expression for TC, we use the formula for AC given by
(6.14). Hence

TC = AC × Q

=
(

24
Q

+ 15 + 3Q

)
Q

= 24 + 15Q + 3Q2.

Since TC = FC + (V C)Q, the fixed cost element of the total cost function is
independent of Q. Therefore, in this example the fixed costs are 24. Finally,
an expression for the marginal cost function is obtained by differentiating TC

with respect to Q. Therefore,

MC =
d(TC)

dQ

= 15 + 6Q.

Note that the fixed costs have no influence on the marginal cost function since
the derivative of a constant is zero.
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6.4.2 Marginal Propensities

The relationship between consumption C and national income Y is sometimes
of the form

C = f(Y ),

where f is some appropriate consumption function. Of interest is the effect on
C due to variations in Y , i.e., if national income rises by a certain amount,
what effect does this have on the spending patterns of the population. This
is analyzed using the concept of marginal propensity to consume, MPC,
defined by

MPC =
dC

dY
,

i.e., the marginal propensity to consume is the derivative of consumption with
respect to income. For example, if the consumption function is

C = 0.01Y 2 + 0.2Y + 50

to calculate MPC when Y = 30, we have

MPC =
dC

dY
= 0.02Y + 0.2.

When Y = 30, MPC = (0.02)(30) + 0.2 = 0.8.

Economists say that MPC is approximately the change in consumption due
to a one unit increase in national income Y . More generally, if national income
increases by a small amount ∆Y , then the corresponding small change ∆C in
consumption is approximately MPC × ∆Y , i.e.,

∆C ≈ MPC × ∆Y.

If national income is used up only in consumption and savings, then

Y = C + S.

If we differentiate both sides of this equation with respect to Y :

dY

dY
=

dC

dY
+

dS

dY
,

i.e.,
1 = MPC + MPS,

where
MPS =

dS

dY

is the marginal propensity to save. Economists say that MPS is approxi-
mately the change in savings due to a one unit increase in national income Y .



124 Elements of Mathematics for Economics and Finance

More generally, we can show, using the small increments formula again, that
if national income increases by a small amount ∆Y , then the corresponding
small change ∆S in savings is given by

∆S ≈ MPS × ∆Y.

Thus if we know MPC, we can easily determine MPS. In the above example
the value of MPS when Y = 30 is given by

1 = 0.8 + MPS

i.e.,
MPS = 0.2.

This indicates that when income increases by one unit (from its current level of
30), consumption rises by approximately 0.8 units, whereas savings rise by ap-
proximately 0.2 units. At this level of income, the nation has a greater propen-
sity to consume than it has to save.

Example 6.6

If the consumption function is

C = 0.005Y 2 + 0.3Y + 20,

calculate the marginal propensities to consume and save when Y = 10 and give
an interpretation of the results.

Solution. The marginal propensity to consume is defined by

MPC =
dC

dY
= 0.01Y + 0.3.

When Y = 10,

MPC = 0.01 × 10 + 0.3 = 0.1 + 0.3 = 0.4.

If national income is used up in consumption and savings only, then

MPC + MPS = 1.

When Y = 10, the marginal propensity to save is

MPS = 1 − MPC = 1 − 0.4 = 0.6.

Therefore, at this level of national income, the nation has a greater propensity
to save than it has to consume.
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6.5 Approximation to Marginal Functions

The exact value of MR at the point Q0 is given by

d(TR)
dQ

,

and so is given by the slope of the tangent to the total revenue function at A

(see Fig. 6.2). The point B also lies on the curve – it corresponds to a one unit
increase in Q, i.e., ∆Q = 1. The vertical distance from A to B therefore equals
the change in TR when Q increases by one unit. The slope of the chord joining
A to B is

∆(TR)
∆Q

=
∆(TR)

1
= ∆(TR).

Note that the slope of the tangent is approximately the same as that of the
chord joining A and B. Therefore, the latter produces a reasonable approxima-
tion to MR in many cases.

This approximation holds for any value of ∆Q. Therefore, as we have seen
in Section 6.4.1

MR ≈ ∆(TR)
∆Q

, (6.15)

or
∆(TR) ≈ MR × ∆Q, (6.16)

i.e., change in total revenue ≈ marginal revenue × change in demand. Note
that if the total revenue function is linear, then we have equality: ∆(TR) =
MR × ∆Q.

TR

Q

A
B

tangent

Q Q + Qo o ∆

∆Q
(TR)∆

Figure 6.2 Approximation to marginal revenue.
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Example 6.7

If the total revenue function of a good is given by

100Q − Q2,

write down an expression for the marginal revenue function. If the current
demand is 60, estimate the change in the value of TR due to a two unit increase
in Q.

Solution. To determine the marginal revenue function, we differentiate the
total revenue function. Therefore,

MR =
d(TR)

dQ
= 100 − 2Q.

When Q = 60,

MR = 100 − 2 × 60 = 100 − 120 = −20.

When there is a two unit increase in Q, i.e., ∆Q = 2, then the estimated change
in TR is given by

∆(TR) ≈ MR × ∆Q = −20 × 2 = −40,

i.e., there is an estimated 40 unit reduction in TR.
A similar approximation to (6.15), using the small increments formula (6.4),

holds for the marginal cost function:

MC ≈ ∆(TC)
∆Q

, (6.17)

or
∆(TC) ≈ MC × ∆Q, (6.18)

i.e., change in total cost ≈ marginal cost × change in demand. Note that we
have equality if the total cost function is linear, then ∆(TC) = MC × ∆Q.

Example 6.8

Find the marginal cost function given the average cost function

AC =
100
Q

+ 2.

Deduce that a one unit increase in Q will always result in a two unit increase
in TC, irrespective of the current level of output.
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Solution. To determine the marginal cost function, it is first necessary to find
an expression for the total cost function, TC. Now TC and AC are related by

AC =
TC

Q
,

and therefore

TC = AC × Q =
(

100
Q

+ 2
)

Q = 100 + 2Q.

The corresponding marginal cost function is

MC =
d(TC)

dQ
= 2.

Since TC is a linear function, we have ∆(TC) = MC × ∆Q. Therefore, if
output increases by one unit, i.e., ∆Q = 1, then

∆(TC) = 2,

irrespective of the current level of output.

6.6 Higher Order Derivatives

We have already seen that the derivative of a function of x is itself a function of
x. This suggests the possibility of differentiating a second time to get the ‘slope
of the slope of a function’. This is written as f ′′(x) or d2y/dx2. This function
is known as the second order derivative of f(x). Higher order derivatives are
found by applying the rules of differentiation to lower order derivatives. The
third order derivative f ′′′(x) or d3y/dx3 measures the slope and rate of change
of the second order derivative, etc. Thus, if

f(x) = 2x4 + 5x3 + 3x2,

we have
f ′(x) = 8x3 + 15x2 + 6x

f ′′(x) = 24x2 + 30x + 6

f ′′′(x) = 48x + 30

f (4)(x) = 48

f (5)(x) = 0
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Example 6.9

For each of the following functions, find the second derivative and evaluate it
at x = 2.

1. f(x) = x6 + 3x4 + x,

2. y = 2x2 + 38x − 6,

3. y = (8x − 4)6.

Solution.

1. To differentiate this polynomial function, we use a combination of the rule
for the sum of functions and the power function rule. So

f ′(x) = 6x6−1 + 3 × 4x4−1 + 1

= 6x5 + 12x3 + 1.

Differentiating a second time gives

f ′′(x) = 6 × 5x5−1 + 12 × 3x2−1 + 0

= 30x4 + 36x2

Evaluating the second derivative when x = 2, we have

f ′′(2) = 30(24) + 36(22) = 624

2. To differentiate this quadratic function, we use a combination of the rule
for the sum of functions and the power function rule. So

dy

dx
= 2 × 2x2−1 + 38

= 4x + 38.

Differentiating a second time gives

d2y

dx2
= 4

At x = 2, d2y
dx2 = 4.

3. To differentiate this function, we use the chain rule. Let u = 8x − 4, then
y = u6. Since

dy

du
= 6u5, and

du

dx
= 8,
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we have, using the chain rule

dy

dx
=

dy

du

du

dx
= 6u5 × 8 = 48(8x − 4)5.

Applying the chain rule a second time gives

d2y

dx2
= 48 × 5u4 × 8 = 1920(8x − 4)4.

Evaluating the second derivative when x = 2 gives

d2y

dx2
= 39813120.

6.7 Production Functions

In one of the simplest models for production, the quantity of output produced,
Q, is assumed to be a function of capital, K, and labour, L. However, in the
short run K can be assumed to be fixed and so Q is then a function of L alone.
In this instance, Q is referred to as the short run production function. The
independent variable L is usually measured in terms of the number of workers
or the number of worker hours. The derivative of the production function with
respect to L, known as the marginal product of labour (MPL), measures
the rate at which output changes as the number of workers increases. Thus, we
have

MPL =
dQ

dL
. (6.19)

Economists say that MPL is approximately the change in output resulting from
a one unit increase in labour.

Example 6.10

For the production function
Q = 8

√
L,

find the marginal product of labour. Determine the output and the marginal
product of labour when

1. L = 1,

2. L = 4,

3. L = 100.
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40
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80Q

L

Figure 6.3 Graph of the production function Q = 8L1/2.

Solution. The marginal product of labour is found by differentiating Q =
8L1/2. This gives, using the power function rule,

MPL =
dQ

dL
= 8 × 1

2
L1/2−1 = 4L−1/2 =

4
L1/2

.

1. When L = 1, Q = 8 and MPL = 4.

2. When L = 4, Q = 16 and MPL = 2.

3. When L = 100, Q = 80 and MPL = 0.4.

As L increases from 0, so does output (see Fig. 6.3). However, MPL decreases
and therefore although output increases, it does so at a decreasing rate. In this
situation, we say that there are diminishing returns to labour.

Example 6.11

Consider the production function is

Q = 120
√

L − 5L,

where Q denotes output and L denotes the size of the workforce. Calculate the
value of MPL when

1. L = 1,

2. L = 16,

3. L = 100,

4. L = 900,

and discuss the implication of these results.
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Figure 6.4 Graph of the production function Q = 60
√

L − 5L.

Solution. The marginal product of labour, MPL, is found by differentiating
the production function with respect to L. This gives

MPL =
dQ

dL
= 120 × 1

2
L1/2−1 − 5 = 60L−1/2 − 5 =

60
L1/2

− 5.

1. When L = 1, MPL = 55.

2. When L = 16, MPL = 10.

3. When L = 100, MPL = 1,

4. When L = 900, MPL = −3.

In the last part of this example, we see that a size of workforce is reached that,
if exceeded, actually results in a decrease in output. This may seem counterin-
tuitive at first sight. However, this situation can occur in production processes
where productivity is diminished due to problems of overcrowding on the shop
floor or the need to create an elaborate administration to organize the larger
workforce. The graph of this production function is sketched in Fig. 6.4.

The production function in the last example satisfies what is known as the
law of diminishing marginal productivity. This law, also known as the law
of diminishing returns, states that the increase in output due to a one unit
increase in labour will eventually decline. A typical production function that
satisfies this law is shown in Fig. 6.5. The graph of the corresponding marginal
product of labour, MPL, is shown in Fig. 6.6. Note that the maximum value of
MPL is attained when L = L0 and MPL = 0 at the value of L corresponding
to maximum production.
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A
B

C D

Q

LLo

Figure 6.5 Graph illustrating a production function that satisfies the law
of diminishing marginal productivity.

Between L = 0 and L = L0, the curve bends upwards, becoming progres-
sively steeper and so the slope, MPL, of the production function increases.
Mathematically speaking,

d(MPL)
dL

> 0,

MP

LLo

L

Figure 6.6 Graph of marginal product of labour corresponding to the
production function shown in Fig. 6.5.
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or, since MPL = dQ/dL,
d2Q

dL2
> 0,

i.e., if we take any two points A: (L1, Q(L1)) and B: (L2, Q(L2)) on the curve
between the points (0, 0) and (L0, Q(L0)) with L1 < L2, then the slope of the
tangent at B is greater than that at A (see Fig. 6.5). Similarly, for L > L0 the
curve of the production function bends downwards and the slope of the slope
function decreases and is negative, i.e.,

d2Q

dL2
< 0,

i.e., if we take any two points C: (L3, Q(L3)) and D: (L4, Q(L4)) on the curve
beyond the point (L0, Q(L0)) with L3 < L4, then the slope of the tangent at C

is greater than that at D (see Fig. 6.5). The law of diminishing returns states
that this must happen eventually, i.e.,

d2Q

dL2
< 0,

for L > L0.

Example 6.12

Show that the law of diminishing marginal productivity holds for the produc-
tion function

Q = 15L2 − 0.2L3.

Solution. Differentiating the production function gives

MPL =
dQ

dL
= 30L − 0.6L2.

Differentiating a second times gives

d2Q

dL2
= 30 − 1.2L.

The expression defining the second derivative, i.e., 30− 1.2L becomes negative
when 30 − 1.2L < 0, i.e., when

L >
30
1.2

= 25.

Therefore, the law of diminishing marginal productivity holds for this produc-
tion function for L > 25, i.e., L0 = 25.
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EXERCISES

6.1. Find the derivatives of the following functions:

a) f(x) = 4,

b) f(x) = 4x3,

c) f(x) = x8,

d) f(x) = 2x3/2,

e) f(x) = 3x + 7.

6.2. Find dy/dx for each of the following:

a) y = 5 + 2x − 3x2,

b) y = x3 + 3x2 + 5,

c) y = x2 + 5,

d) y = x4 − 3x2 + 1.

6.3. Find the first and second derivatives of the following functions:

a) y = e4x,

b) y = 3e−2x.

Evaluate these derivatives when x = 0.

6.4. Find the first and second derivatives of the following functions:

a) y = ln 4x,

b) y = 2 ln 7x.

Evaluate these derivatives when x = 1.

6.5. If TC = 3Q2+7Q+12, find expressions for the marginal and average
cost functions. Evaluate them when Q = 3 and Q = 5.

6.6. For each of the following demand functions, find expressions for TR

and MR and evaluate them when Q = 4 and Q = 10.

a) Q = 36 − 2P,

b) 44 − 4P − Q = 0.

6.7. Find the first and second derivatives of the function

y = 6x3 − 20x2 − 9x + 12.

Evaluate these derivatives when x = 1.
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6.8. Find the marginal cost function for the average cost function given
by

AC = 3
2Q + 4 + 46

Q .

6.9. The fixed costs of producing a good are 50 and the variable costs
are 2 + 1

4Q per unit.

a) Find expressions for TC and MC.

b) Evaluate TC and MC when Q = 20. Hence estimate the change
in TC brought about by a 2 unit increase in output from the
current level of 20 units.

6.10. If the consumption function is

C = 0.03Y 2 + 0.1Y + 30

calculate MPC and MPS when Y = 4 and give an interpretation
of the results.

6.11. Show that the law of diminishing marginal productivity holds for
the production function

Q = 18L2 − 0.6L3.



7
Maxima and Minima

7.1 Introduction

In this book, the concept of the derivative of a function has been introduced,
and its application in economics has been described. However, the primary use
of the derivative in economic analysis is related to the process of optimization.
Optimization is defined to be the process of determining the local or relative
maximum or minimum of a function.

In this chapter, the process of determining and classifying the relative or
local extrema of a given function is described from a mathematical perspec-
tive by appealing to the local properties of the function near the extrema. The
application of this theory to a range of functions that arise in economics is
described in some detail together with an interpretation of the results. Opti-
mization is important and useful for solving a range of problems in micro and
macro economics. For example, in the theory of production, the firm wishes to
maximize the output. In microeconomics, a business wishes to maximize profit.
In macroeconomics, a government may wish to maximize revenue from taxa-
tion. The determination of the maxima and minima of a function also provides
invaluable information for the purpose of sketching its graph.

137



138 Elements of Mathematics for Economics and Finance

7.2 Local Properties of Functions

In this section, some local properties of functions are introduced that will be
useful in identifying and characterising the local maxima and minima of a given
function.

7.2.1 Increasing and Decreasing Functions

A function f(x) is said to be increasing on the domain a ≤ x ≤ b if, for any
two points x1, x2, where a ≤ x1 < x2 ≤ b, then f(x1) < f(x2) (see Fig. 7.1(a)).
That is, f increases as x increases. A function f(x) is said to be decreasing on
the domain a ≤ x ≤ b if, for any two points x1, x2, where a ≤ x1 < x2 ≤ b,
then f(x1) > f(x2) (see Fig. 7.1 (b)).

Since the first derivative of a function measures the slope of a function, a
function that is increasing on some domain is characterised by a positive first
derivative. That is, f(x) increases as x takes increasing values in the domain.
More precisely, if f ′(x) > 0 for all x belonging to some domain a ≤ x ≤ b, then
the function f is said to be increasing for values of x satisfying a ≤ x ≤ b.
Similarly, a function that is decreasing over some domain is characterised by a
negative first derivative. More precisely, if f ′(x) < 0 for all x belonging to some
domain a ≤ x ≤ b, then the function f is said to be decreasing for values of
x satisfying a ≤ x ≤ b. For example, the function f(x) = x2 (see Fig. 7.2) is a
decreasing function for x < 0 since f ′(x) = 2x < 0 for x < 0 and an increasing
function for x > 0 since f ′(x) > 0 for x > 0. The function f(x) = 4x − x2 (see
Fig. 7.3) is an increasing function for −1 ≤ x ≤ 2 since f ′(x) = 4 − 2x > 0
for −1 ≤ x ≤ 2 and a decreasing function for 2 ≤ x ≤ 5 since f ′(x) < 0 for
2 ≤ x ≤ 5.

7.2.2 Concave and Convex Functions

Consider a function f(x) defined on some domain. If the tangents to the graph
of this function at each point on this domain are such that the graph lies above
them, then the function is said to be convex on the domain. If the tangents to
the graph of this function at each point on this domain are such that the curve
lies below them, then the function is said to be convex on the domain. These
two situations are shown in Fig. 7.4. In the case of the convex function shown
in Fig. 7.4(a), we observe that the slope of the function increases as one moves
from the point x1 to the point x2. In this particular example, the slope of the
function is negative at x = x1 and gradually increases to take a positive value
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Figure 7.1 Examples of graphs of (a) an increasing function; (b) a de-
creasing function.

at x = x2. Thus, a function that is convex on a domain is characterised by
the condition f ′′(x) > 0 on the domain. Similarly, a function that is concave
on a domain is characterised by the condition f ′′(x) < 0 on the domain (see
Fig.7.4(b)).

For example, the function f(x) = x2 (see Fig. 7.2) is convex on the domain
−2 ≤ x ≤ 2. In fact, it is convex on any domain a ≤ x ≤ b since f ′′(x) = 2 > 0.
The function f(x) = 4x−x2 (see Fig. 7.3) is concave on the domain −1 ≤ x ≤ 5.
In fact, it is concave on any domain a ≤ x ≤ b since f ′′(x) = −2 < 0.

7.3 Local or Relative Extrema

A function of x possesses a local maximum or minimum at x = a if the function
is neither increasing nor decreasing at x = a. That is, the rate of change of y

relative to x is 0 when x = a. A local or relative extremum of a function is a
point at which the function attains a local maximum or minimum. This means
that the tangent to the curve y = f(x) is ‘horizontal’ at a local or relative
extremum and therefore has zero slope. Equivalently, since the slope is given
by the first derivative of the function, that derivative must be zero at x = a. A
point where f ′(x) = 0 is known as a critical point or value. It is also known
as a stationary point.

So the stationary or critical points of a function f(x) = 0 are the values of
x for which f ′(x) = 0. It remains to classify them as maxima or minima. This
is done by calculating the second derivative of the function and evaluating it
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Figure 7.2 The graph of the function f(x) = x2.
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Figure 7.3 The graph of the function f(x) = 4x − x2.
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Figure 7.4 Examples of graphs of (a) a convex function; (b) a concave
function.

at x = a.
To distinguish between a relative maximum and a relative minimum, it is

necessary to inspect the behaviour of the second derivative and, in particular,
to determine the sign of f ′′(a) where f ′(a) = 0. For points just to the left of a
local maxima at x = a, the slope of the tangent is positive, and for points just
to the right, the slope of the tangent is negative. So in the neighbourhood of
a local maxima, the first derivative of f(x) is a decreasing function of x, i.e.,
f ′′(x) < 0 and, in particular, f ′′(a) < 0. Therefore, if f ′′(a) < 0, which means
that the function is concave and the curve lies below the tangent at x = a,
then the function has a local maximum at x = a. For points just to the left of a
local minima at x = a, the slope of the tangent is negative, and for points just
to the right, the slope of the tangent is positive. So in the neighbourhood of
a local minima, the first derivative of f(x) is an increasing function of x (i.e.,
f ′′(x) > 0) and, in particular, f ′′(a) > 0. Therefore, if f ′′(a) > 0, which means
that the function is convex and the curve lies above the tangent at x = a, then
the function has a local minimum at x = a.

We now summarize the steps involved in finding and classifying the station-
ary points of a function f(x):

Second Derivative Test

Step 1.

Solve the equation
f ′(x) = 0

to find the stationary point(s).
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Step 2.

Suppose x = a gives a stationary point (i.e., f ′(a) = 0).

If f ′′(a) > 0 then the function has a local minimum at x = a.

If f ′′(a) < 0 then the function has a local maximum at x = a.

If f ′′(a) = 0 then the test is inconclusive.

A knowledge of the stationary points of a function is essential when sketch-
ing the graph of a nonlinear function since it provides information about its
general shape. The graph of a function can be sketched using a similar process
to that used to determine and classify the stationary points of a function. Once
the stationary points of a function have been determined and classified, the
graph of the function can be sketched by drawing a smooth curve through
these points. A more accurate representation of the graph may be obtained by
evaluating the function at a greater number of points and drawing a smooth
curve through them.

Example 7.1

Find and classify the stationary points of the following functions:

1. f(x) = x2 − 4x + 5,

2. f(x) = 2x3 + 3x2 − 12x + 4.

Solution.

1. We need to calculate the first and second order derivatives of f(x) = x2 −
4x + 5.

f ′(x) = 2x − 4

f ′′(x) = 2

Step 1. The stationary points are the solutions of the equation

f ′(x) = 0,

i.e.,
2x − 4 = 0.

Therefore x = 2 is a stationary point.

Step 2. To classify this point, we need to evaluate f ′′(2). In this case,
f ′′(2) = 2 > 0 so the function has a minimum at x = 2. The graph of this
function is shown in Fig. 7.5.
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Figure 7.5 The graph of the function f(x) = x2−4x+5 plotted for values
of x lying between −1 and 5.

2. In this example, we have f(x) = 2x3 + 3x2 − 12x + 4

f ′(x) = 6x2 + 6x − 12

f ′′(x) = 12x + 6

Step 1. The stationary points are the solutions of the equation f ′(x) = 0,
i.e.,

6(x2 + x − 2) = 0

6(x + 2)(x − 1) = 0

Therefore, the stationary points are x = −2 and x = 1.

Step 2. To classify these points, we need to evaluate f ′′(x) at x = −2 and
x = 1. Now,

f ′′(−2) = −24 + 6 = −18 < 0,

and so the function has a maximum at x = −2, and

f ′′(1) = 12 + 6 = 18 > 0,

so the function has a minimum at x = 1. The graph of this function is
shown in Fig. 7.6.
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Figure 7.6 The graph of the function f(x) = 2x3 + 3x2 − 12x + 4 plotted
for values of x lying between −4 and 3.

7.4 Global or Absolute Extrema

The functions we have investigated so far have either possessed a single sta-
tionary point (see Figs. 7.2 and 7.3) or two stationary points (see Fig. 7.6). In
general, however, we may encounter functions that possess several local extrema
of the same type. For example, the function f(x) = 2

5x5+ 3
4x4−8x3−3x2+12x

(see Fig. 7.7) has local maxima at x = −4 and x = 1/2 and local minima at
x = −1 and x = 3. The higher of the two local maxima occurs at x = −4.
However, the largest value of f(x) for values of x lying between −4 and 3 oc-
curs at the end point x = 3. We say that this point is a global or absolute
maximum. The lower of the two local minima occurs at x = 3. However,
the smallest value of f(x) for values of x lying between −4 and 3 occurs at
the other end point x = −4. We say that this point is a global or absolute
minimum. Note that the absolute maximum and absolute minimum values of
this function are not stationary points since the slope of the function is not
zero at either x = −4 or x = 3. This example demonstrates that the absolute
maximum or absolute minimum values of a function defined in a given interval
may not occur at local extrema.



7. Maxima and Minima 145

x
-5 -4 -3 -2 -1 0 1 2 3 4

-50

50

150

250y

Figure 7.7 The graph of the function f(x) = 2
5x5 + 3

4x4−8x3−3x2 +12x

plotted for values of x lying between −5 and 4.

There is no method for determining global extrema other than to evaluate
the function at all local extrema and the end points and to determine from
these calculations the values of x that generate the global extrema. For most of
the examples we encounter in economics, the local extrema will coincide with
the global extrema.

7.5 Points of Inflection

The local extrema of a function f(x) have been characterised by the solutions
x = a of the equation f ′(x) = 0 and classified as being local maxima or
local minima depending on whether f ′′(a) < 0 or f ′′(a) > 0, respectively.
So far, we have not asked what happens if f ′′(a) = 0. In this situation, the
second derivative test is inconclusive and the stationary point x = a is either
a local maxima, a local minima, or a point of inflection. At a stationary point
of inflection, the function is neither convex nor concave. The function crosses
its tangent at this point and changes from concave to convex or vice versa.
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Figure 7.8 The graph of the function f(x) = x3 plotted for values of x

lying between −2 and 2.

For example, the function f(x) = x3 (see Fig. 7.8) has a stationary point of
inflection at x = 0. For this function, we have f ′(0) = f ′′(0) = 0. In addition,
the function is increasing for all values of x, convex for x < 0 and concave for
x > 0. The function changes from being convex to concave at the point x = 0.

It is possible to have a point of inflection that is not a stationary point.
For example, the function f(x) = x3 − 3x2 + 2x (see Fig. 7.9) has a point of
inflection at x = 1. At this point, we have f ′′(1) = 0 but f ′(1) = −1 �= 0.

7.6 Optimization of Production Functions

Production functions were introduced in Chapter 5. Production depends on a
number of factors including capital and labour. However, in the short run we can
assume that a firm’s production depends solely on labour with all other factors
of production, including capital, constant. We can express this symbolically by
writing

Q = Q(L).
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Figure 7.9 The graph of the function f(x) = x3 − 3x2 + 2x plotted for
values of x lying between −1 and 3.

The marginal product of labour, MPL, is the derivative of the output with
respect to labour and is defined by

MPL =
dQ

dL
= Q′(L). (7.1)

Under the assumption that production depends on labour alone, it is possible
to calculate the size of the workforce that maximizes production. The following
example illustrates this process.

Example 7.2

A firm’s short run production function is given by

Q = 6L2 − 0.2L3

where L denotes the number of workers.

1. Find the size of the workforce that maximizes output and hence sketch a
graph of this production function.

2. Find the size of the workforce that maximizes the average product of
labour. Calculate MPL and APL at this value of L. What do you observe?
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Solution.

1. To solve the first part of this example, it is necessary to determine and
classify the stationary points of the production function.

Step 1. At a stationary point of the production function

dQ

dL
= 12L − 0.6L2 = 0.

Therefore
L(12 − 0.6L) = 0

and so L = 0 or L = 12/0.6 = 20.

Step 2. It is obvious on economic grounds that L = 0 gives the minimum
Q = 0. We can, of course, check this by differentiating a second time to get

d2Q

dL2
= 12 − 1.2L.

When L = 0,
d2Q

dL2
= 12 > 0,

which confirms that L = 0 gives a minimum for Q.
When L = 20,

d2Q

dL2
= 12 − 24 = −12 < 0,

thus L = 20 gives a maximum for Q.

The firm should therefore employ 20 workers to achieve a maximum output

Q = 6(20)2 − 0.2(20)3 = 800.

The graph of this production function is sketched in Fig. 7.10.

2. To solve the second part of the problem, it is necessary to determine and
classify the stationary point of the average product of labour, APL,
which is defined by

APL =
Q

L
. (7.2)

This is sometimes called labour productivity since it measures the av-
erage output per worker. In this example,

APL =
6L2 − 0.2L3

L
= 6L − 0.2L2.

Step 1. At a stationary point

d(APL)
dL

= 0,
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Figure 7.10 The graph of the production function Q = 6L2 − 0.2L3.

i.e.,
6 − 0.4L = 0,

and therefore L = 6/0.4 = 15.

Step 2. To classify this stationary point, we differentiate a second time to
get

d2(APL)
dL2

= −0.4 < 0

which shows that it is a maximum. The labour productivity is therefore
greatest when the firm employs 15 workers. The corresponding labour pro-
ductivity is

APL = 6(15) − 0.2(15)2 = 45.

So the largest number of goods produced per worker is 45.

To find an expression for MPL, we need to differentiate Q with respect to
L, which we have already done in the first part of the problem. We have

MPL =
dQ

dL
= 12L − 0.6L2.

When L = 15,
MPL = 12(15) − 0.6(15)2 = 45.

We observe that at L = 15, the values of MPL and APL are equal.
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In this example, we have discovered that:

At the point of maximum average product of labour,
marginal product of labour = average product of labour,

i.e., MPL = APL.

In fact, this result holds for any production function Q = Q(L) as we
shall demonstrate. If we differentiate the expression (7.2) defining the average
product of labour using the quotient rule, we obtain

d(APL)
dL

=
d(Q/L)

dL

=
LdQ

dL − QdL
dL

L2

=
Q′(L) − Q(L)/L

L

=
MPL − APL

L
. (7.3)

At a stationary point for the average product of labour, we have

d(APL)
dL

= 0. (7.4)

This means that MPL = APL, as required. This result shows that at a sta-
tionary point of the average product of labour, the marginal product of labour
is equal to the marginal product of labour. The analysis has shown that this
result is true for any function APL and is not restricted to certain choices.

At a stationary point of the average product of labour, we can obtain a
simple expression for the second derivative of APL with respect to L as follows:

d2(APL)
dL2

=
d

dL

(
MPL − APL

L

)

=
L
(

d(MPL)
dL − d(APL)

dL

)
− (MPL − APL)dL

dL

L2
.

At a stationary point, we know MPL = APL and also d(APL)/dL = 0. There-
fore,

d2(APL)
dL2

=
1
L

d(MPL)
dL

=
1
L

d2Q

dL2
,

since MPL = dQ/dL. So at a stationary point of the average product of labour
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d2(APL)
dL2

=
Q′′(L)

L
.

7.7 Optimization of Profit Functions

We turn our attention to the problem of determining the maximum profit for
a given firm. The profit function, π, which is the difference between the total
revenue and total cost functions, is expressed as a function of the output Q.
The function is then optimized with respect to Q.

Example 7.3

Maximize the profit for a firm, given that its total revenue function is given
by TR = 4,000Q − 33Q2 and its total cost function by TC = 2Q3 − 3Q2 +
400Q + 5,000, assuming Q > 0.

Solution. The profit function is given by

π = TR − TC

= 4,000Q − 33Q2 − (2Q3 − 3Q2 + 400Q + 5,000)

= −2Q3 − 30Q2 + 3,600Q − 5,000

Step 1. At a stationary point of the profit function,

dπ

dQ
= 0.

Now

dπ

dQ
= −6Q2 − 60Q + 3,600

= −6(Q2 + 10Q − 600)

= −6(Q + 30)(Q − 20).

Therefore, the stationary points of the profit function are Q = −30 or Q = 20.
(As an alternative to factorization, the equation

dπ

dQ
= 0

can also be solved using the quadratic formula (3.8).)
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Step 2. The stationary point Q = −30 has no economic significance since π

is only defined for Q > 0. Therefore, we can ignore it. To classify the second
stationary point, we differentiate a second time

d2π

dQ2
= −12Q − 60.

When Q = 20,
d2π

dQ2
= −240 − 60 = −300 < 0,

which shows that π has a local maximum when Q = 20. Therefore, the profit
is maximized when Q = 20 and the maximum profit is given by

π = −2(20)3 − 30(20)2 + 3,600(20) − 5,000

= −16,000 − 12,000 + 72,000 − 5,000

= 39,000.

Example 7.4

The demand equation for a good is

P + Q = 30

and the total cost function is

TC =
1
2
Q2 + 6Q + 7.

1. Find the level of output that maximizes total revenue.

2. Find the level of output that maximizes profit. Calculate MR and MC at
this value of Q. What do you observe?

Solution.

1. The total revenue function is defined by TR = P ×Q. Now P = 30−Q

by rearranging the demand equation. Therefore,

TR = (30 − Q)Q = 30Q − Q2.

Therefore,
d(TR)

dQ
= 30 − 2Q.

Step 1. At a stationary point of the total revenue function

d(TR)
dQ

= 0,
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so
30 − 2Q = 0.

Therefore Q = 15.

Step 2. To classify this point, we differentiate a second time to get

d2(TR)
dQ2

= −2 < 0,

so TR has a local maximum when Q = 15.

2. The profit function is defined by

π = TR − TC

= (30Q − Q2) − (
1
2
Q2 + 6Q + 7)

= −3
2
Q2 + 24Q − 7.

Therefore,
dπ

dQ
= −3Q + 24.

Step 1. At a stationary point of the profit function

dπ

dQ
= 0,

so
−3Q + 24 = 0,

which has the solution Q = 8.

Step 2. To classify the stationary point, we differentiate the profit function
a second time to get

d2π

dQ2
= −3 < 0,

so π has a local maximum at Q = 8. Now

MR =
d(TR)

dQ
= 30 − 2Q,

and
MC =

d(TC)
dQ

= Q + 6.

Therefore, when Q = 8, then MR = 14 and MC = 14. So then

At the value of Q that maximizes profit,
marginal revenue = marginal cost
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This result is true for any profit function irrespective of the market condi-
tions under which the firm operates since at a stationary point for the profit
function, we have

dπ

dQ
=

d(TR)
dQ

− d(TC)
dQ

= MR − MC = 0.

Therefore, MR = MC at a stationary point for the profit function.

7.8 Other Examples

Example 7.5

The cost of building an office block, x floors high, comprises three components:

1. £18 million for the land,

2. £200,000 per floor,

3. specialized costs of £20,000x per floor. (Thus if there are to be 4 floors,
the specialized cost per floor will be £80,000.)

How many floors should the block contain if the average cost per floor is to be
minimized?

Solution. First of all, we need to derive an expression for the total cost of
construction of the office block. Suppose that the building has x floors. Then the
£18 million is a fixed cost because it is independent of the number of floors.
The total cost involved in the second component is £200,000x. In addition,
there are specialized costs of £20,000x per floor. So if there are x floors, the
specialized costs will be

(20,000x)x = 20,000x2.

The total cost of construction in terms of monetary units of £1,000 is therefore

TC = 18,000 + 200x + 20x2.

The average cost per floor, AC, is formed by dividing the total cost by the
number of floors, i.e.,

AC =
TC

x

=
18,000 + 200x + 20x2

x

=
18,000

x
+ 200 + 20x
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Step 1. At a stationary point

d(AC)
dx

= 0.

Now
d(AC)

dx
= −18,000x−2 + 20.

So we need to solve the equation

−18,000x−2 + 20 = 0.

Therefore,

20 = 18,000x−2 =
1,800
x2

1 =
900
x2

(Divide both sides by 20.)

x2 =
900
x2

x2 (Multiply both sides by x2.)

x2 = 900

Therefore x2 = 900 and so x = ±√
900 = ±30.

Step 2. To confirm that x = 30 yields a minimum, we need to differentiate a
second time.

d2(AC)
dx2

= 36,000x−3

So obviously when x = 30,
d2(AC)

dx2
> 0.

Thus x = 30 gives a minimum for AC.
Therefore an office block 30 floors high produces the lowest average cost per

floor.

Example 7.6

The supply and demand equations of a good are

P = Qs + 8,

P = −3Qd + 80,

respectively. The government decides to impose a tax, et, per unit of good.
Find the value of t that maximizes the government’s total tax revenue on the
assumption that equilibrium conditions prevail in the market.
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Solution. To account for the imposition of tax, we replace P by P − t in the
supply equation. This is because the price that the supplier actually receives is
the price P that the consumer pays, less the tax t deducted by the government.
The new supply equation is then

P − t = Qs + 8,

so that
P = Qs + 8 + t.

In equilibrium,
Qs = Qd.

If this common value is denoted by Q then the demand and supply equations
are

P = −3Q + 80,

P = Q + 8 + t.

Hence,
Q + 8 + t = −3Q + 80.

Therefore
4Q = 72 − t,

and so
Q = 18 − 1

4
t.

Now if the number of goods sold is Q and the government raises t per good,
then the total tax revenue is given by

T = tQ

= t(18 − 1
4
t)

= 18t − 1
4
t2.

This is the function we wish to maximize.
Step 1. At a stationary point,

dT

dt
= 0,

so
dT

dt
= 18 − 1

2
t = 0,

which has the solution t = 36.
Step 2. To classify the stationary point, we differentiate a second time to get

d2T

dt2
= −1

2
< 0,

which confirms that it is a maximum. Hence the government should impose a
tax of e36 on each good.
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EXERCISES

7.1. For the following functions, determine the stationary point(s) and
classify them. Use this information to sketch graphs of these func-
tions.

a) f(x) = 2x2 − x + 6.

b) f(x) = x2 − 4x + 3.

c) f(x) = x3 − 3x + 3.

d) f(x) = 1 − 9x − 6x2 − x3.

7.2. The demand equation for a good is given by

P + 4Q = 96,

and the total cost function TC is

TC = Q3 − 13Q2 + 48Q + 17.

a) Find the level of output that maximizes total revenue.

b) Find the maximum profit and the level of output for which it is
achieved.

c) Sketch the graph of profit against Q, for Q ≥ 0.

7.3. The demand equation for a good is given by

P + 2Q = 20,

and the total cost function TC is

TC = Q3 − 8Q2 + 20Q + 2.

a) Find the level of output that maximizes total revenue.

b) Find the maximum profit and the level of output for which it is
achieved. Verify that, for this value of Q, MR = MC.

7.4. The prevailing market price for a good is 30. The total cost function
is

TC = 100 + 44Q − 5Q2 +
1
2
Q3.

What is the level of output that maximizes the profit?
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7.5. Find the first and second order derivatives, with respect to L, of the
short run production function

Q = 15L2 − 2L3.

Hence, determine and classify the stationary points of this function.

7.6. A firm’s short run production function is given by

Q = 12L2 − 1
2
L3,

where L denotes the number of workers.

a) Find the size of the workforce that maximizes output and hence
sketch a graph of this production function.

b) Find the size of the workforce that maximizes the average prod-
uct of labour, APL. Calculate MPL and APL at this value of L.
What do you observe?

7.7. The cost of building an office block, x floors high, is made up of three
components:

a) $20.16 million for the land,

b) $175,000 per floor,

c) specialized costs of $35,000x per floor.

How many floors should the block contain if the average cost per
floor is to be minimized?

7.8. The supply and demand equations for a good are

Qd = 500 − 9P,

and
Qs = −100 + 6P,

respectively. The government decides to impose a tax, t per unit of
good. Find the value of t that maximizes the government’s total tax
revenue on the assumption that equilibrium conditions prevail in the
market. For this level of tax find:

a) the equilibrium price,

b) the equilibrium quantity,

c) the total tax raised.
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Partial Differentiation

8.1 Introduction

Economic models that we have encountered so far have assumed that a quantity
under consideration depends only on the value of one variable; i.e., the quantity
is a function of one variable. For example, Q = 100− 5P, the demand equation
(or demand function) for some good describes a model where the demand Q

depends only on the price P of the good. In practice, Q will depend on other
variables such as consumer income or the price of a substitutable good. To take
into account all variables affecting the value of Q would make an economic
model too difficult to analyse or use. Useful models should lend themselves
readily to analysis, perhaps with the aid of computers, while at the same time
give a reasonably accurate model of the real situation.

The profit function of a firm producing only one good is of the form y =

f(x), where x is the output of the good. The derivative
dy

dx
gives a measure of

the rate of change of profit y relative to output and is itself a function of x.

The function f can be visualised geometrically as a graph and the slope of the

tangent at any point on the graph is the value of
dy

dx
at that point.

Suppose now that the firm produces two goods G1 and G2 with outputs x1

and x2, respectively. We expect the profit function f now to depend on x1 and
x2. This is an example of a function of two variables. The analysis of the rate
of change of f relative to x1 and x2 is done by considering the rate of change of
f relative to one variable while the other is assumed constant and vice versa.
This is the concept of a partial derivative.

159
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The utility of a consumer of the two goods G1 and G2 will also be a function
of x1 and x2. Partial derivatives enable us to analyse the marginal effects of
keeping, say, the output x1 of G1 at some fixed level while changing slightly
the output x2 of G2.

8.2 Functions of Two or More Variables

An expression such as f(x, y) = 3x2+xy+y+1 is a function of the two variables
x and y. The function notation is a natural extension of that for functions of
one variable. Thus, f(α, β) denotes the value of the function when x = α and
y = β. For example, for the function defined above:

f(1, 1) = 3 + 1 + 1 + 1 = 6, f(0, 0) = 0 + 0 + 0 + 1 = 1

and
f(2,−1) = 3 × 4 + 2 × (−1) + (−1) + 1 = 10.

We can simply write f for f(x, y) if there is no need to mention x and y.
These ideas extend in a natural way to functions of more than two variables.

For example, g(x, y, z) = x2 + yz − 2z2 + 8 is a function of the three variables
x, y, and z. The value of g when say x = 5, y = −2 and z = 3 is 52 +(−2)×3−
2× 32 + 8 = 25− 6− 18 + 8 = 9. This is more succinctly expressed in function
notation by g(5,−2, 3) = 9.

If we let z = f(x, y), then the two variables x, y are said to be the inde-
pendent variables and z is the dependent variable as its value depends on
the values of x and y. Thus z may be the value of some measurement or obser-
vation depending on the values of x and y; for instance, production Q depends
on the values of capital K and labour L in a simple production model (though
in more advanced models, Q will depend on additional input variables).

A useful notational device is the short-hand way of expressing, for example,
that ‘Q is regarded as a function of K and L’ by writing simply: ‘Q(K, L)’
for Q. Then if say Q = 5K

1
2 L

1
3 , writing Q(9, 8) = 30 is a quick way of saying

‘Q = 30 when K = 9 and L = 8’. In this notation, for instance, we have:
Q(4, 1) = 10, Q(4, 27) = 30 and so on.

8.3 Partial Derivatives

Let f(x, y) be any function of the two variables x and y. Then f may be
regarded as a function of one variable x if we were to treat y as a constant. In



8. Partial Differentiation 161

this case, its derivative with respect to x is called the partial derivative of f

with respect to x, denoted by
∂f

∂x
or fx.

Similarly the partial derivative

∂f

∂y
or fy

is obtained by differentiating f with respect to y, treating x as constant.
More generally, if f is a function of two or more variables and x is any one

of these variables, then the partial derivative fx is obtained by differentiating
f with respect to x, treating all the other variables as constants.

Example 8.1

Determine the partial derivatives of the following functions:

1. f(x, y) = 2x + 5y − 3,

2. g(u, v) = 3u2v,

3. z = x2 + 3xy2 + 5,

4. Q = 4K
1
2 L

1
3 ,

5. f(x, y, z) = xy2 − 3x2 + 4yz − 5z2 + 8,

6. z = xe2y.

Solution.

1. The partial derivatives of the function f(x, y) = 2x + 5y − 3 are

∂f

∂x
= 2 and

∂f

∂y
= 5.

To see why, for example,
∂f

∂y
= 5, note that when we partially differentiate

with respect to y, then 2x and −3 are both constants and therefore their
derivatives are zero.

2. For this example, recall that constant factors can be taken outside the
differentiation operator. For instance, if y is a function of x, then

d

dx
(ky) = k

dy

dx
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if k is a constant. In particular,

d

dx
(kx) = k

dx

dx
= k.

Thus
∂g

∂u
= 3v × ∂u2

∂u
= 3v × 2u = 6vu

since when we differentiate partially with respect to u, the factor 3v in

3u2v is constant and
∂u2

∂u
= 2u. Partially differentiating with respect to v,

we have
∂g

∂v
= 3u2 × 1 = 3u2

since now 3u2 is constant and
∂v

∂v
= 1.

Note that we could write gu for
∂g

∂u
and gv for

∂g

∂v
in this example. The

advantage with writing gu is that it allows us to use function notation. For
instance, gu(2, 5) = 60 expresses succinctly that the value of gu is 60 when
u = 2 and v = 5.

3. Here
zx = 2x + 3y2 × 1 + 0 = 2x + 3y2

and
zy = 0 + 3x × 2y + 0 = 6xy.

4. The production model described by this Cobb-Douglas function gives the
output Q as a function of only K (capital input) and L (labour input).

∂Q

∂K
= 4L

1
3 × 1

2
K

1
2−1 = 2K− 1

2 L
1
3

and
∂Q

∂L
= 4K

1
2 × 1

3
L

1
3−1 =

4
3
K

1
2 L− 2

3 .

In Example 4, we could also have used the alternative notation QK for
∂Q

∂K
for instance.

If we wish to use function notation in, for instance, Example 4, then for
the output Q, we can write Q(K, L) initially and then replace this simply
by Q whenever there’s no need to specify K or L. This also extends to the
partial derivatives QK and QL, so for instance,

QK(9, 8) = 2 × 9−
1
2 × 8

1
3 = 2 × 1

3
× 2 =

4
3
.
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5. This example is of a function of three variables.

fx = y2 − 3 × 2x + 0 − 0 + 0 = y2 − 6x

fy = x × 2y − 0 + 4z − 0 + 0 = 2xy + 4z

fz = 0 − 0 + 4y − 5 × 2z + 0 = 4y − 10z

6. zx = e2y (since e2y is treated as constant here) and

zy = x × 2e2y = 2xe2y.

(Recall that the derivative of eky with respect to y is keky for any constant
k.)

8.4 Higher Order Partial Derivatives

The discussion that follows is for functions of two variables. This is for the sake
of simplicity as the ideas extend to functions of more than two variables in a
natural way.

Consider any function f(x, y) in the variables x and y. The partial deriva-
tives fx and fy are themselves functions of x and y.

We say that fx and fy are the first order partial derivatives of f. Their
partial derivatives are the second order partial derivatives of f. They are

∂

∂x
(fx) =

∂

∂x

(
∂f

∂x

)
denoted by

∂2f

∂x2
or fxx

∂

∂x
(fy) =

∂

∂x

(
∂f

∂y

)
denoted by

∂2f

∂x∂y
or fxy

∂

∂y
(fy) =

∂

∂y

(
∂f

∂y

)
denoted by

∂2f

∂y2
or fyy

∂

∂y
(fx) =

∂

∂y

(
∂f

∂x

)
denoted by

∂2f

∂y∂x
or fyx

The second order partial derivatives fxy and fyx of f are known as cross-
derivatives.

For all functions of two variables that we shall consider, these two cross-
derivatives are always equal. That is

fxy = fyx.
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Example 8.2

Determine the first and second order partial derivatives of z = x2 + 3xy2 + 5
(see Example 8.1.3).

Solution. In Example 8.1.3, we determined

zx =
∂z

∂x
= 2x + 3y2 and zy =

∂z

∂y
= 6xy.

Therefore

zxx =
∂

∂x
(zx) =

∂

∂x
(2x + 3y2) = 2

zxy =
∂

∂x
(zy) =

∂

∂x
(6xy) = 6y

zyy =
∂

∂y
(zy) =

∂

∂y
(6xy) = 6x

zyx =
∂

∂y
(zx) =

∂

∂y
(2x + 3y2) = 3 × 2y = 6y

Observe that the cross-derivatives zxy and zyx are equal.

Example 8.3

Determine the first and second order partial derivatives of f(x, y) = 8x2y3.

Solution. The first and second order partial derivatives are

fx = 8 × 2x × y3 = 16xy3,

fy = 8x2 × 3y2 = 24x2y2,

fxx = 16y3,

fyy = 24x2 × 2y = 48x2y,

fyx = 48x × y2 = 48xy2 = fxy.

Example 8.4

A firm’s profit is given by the function

π = 800 − 4Q2 − 5Q + 3QY − 5Y 2 + 40Y

where Q denotes output and Y advertising expenditure. Determine the first
and second order partial derivatives of π.
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Solution. The first and second order partial derivatives of π, considered as
functions of Q and Y , are

πQ = −8Q − 5 + 3Y, πY = 3Q − 10Y + 40,

πQQ = −8, πY Y = −10, πY Q = 3 = πQY .

8.5 Partial Rate of Change

In the case of a function y = f(x) of one variable x, the derivative
dy

dx
or

f ′(x) can be thought of as the rate of change of y relative to x. (This rate of
change is itself a function of x and therefore can vary with x.) Therefore, if x

changes by a small increment 	x, then the corresponding change 	y in y is,
approximately,

dy

dx
×	x.

There is an analogous situation for partial derivatives. We consider the case
of a function of two variables as this extends to more variables in an obvious
way.

Suppose a quantity z is a function of two variables x and y. Then
∂z

∂x
can

be regarded as the rate of change of z relative to x. That is, if x changes by a
small increment 	x and we assume all the other variables remain fixed, then

the resulting change 	z in z is approximately
∂z

∂x
×	x. So �z

�x is close to
∂z

∂x
and gets closer to this partial derivative the smaller that 	x becomes.

Similarly,
∂z

∂y
×	y is the approximate change in z caused by a small change

	y in y.

If x and y change by small increments 	x and 	y, respectively, the resulting
change in z can be estimated by the following formula.

The Small Increments Formula (SIF)

	z =
∂z

∂x
×	x +

∂z

∂y
×	y

= zx	x + zy	y



166 Elements of Mathematics for Economics and Finance

Notes

1. Although we have written an equals sign in the SIF, the formula is in fact

an approximation. The reason is that as x changes so will
∂z

∂x
, in general.

Similarly for y. That is,
∂z

∂x
and

∂z

∂y
are functions of x and y and therefore,

in general, they vary as x, y vary.

2. An increment, say 	x, is negative if x decreases. So for example 	x =
−0.05 means that the current value of x is reduced by 0.05.

Example 8.5

Evaluate z = x2 + 3y when x = 5 and y = 8. Using the SIF, estimate the
change in z if x increases to 5.01 and y decreases to 7.98.

Solution. Since z = x2 + 3y, then

zx = 2x and zy = 3.

When x = 5 and y = 8 the value of z is 25 + 24 = 49.

Now suppose x increases to 5.01 and y decreases to 7.98. That is, 	x = 0.01
and 	y = −0.02. The SIF gives an estimate for the change in z as

	z = zx × (0.01) + zy × (−0.02).

Here the partial derivatives zx and zy are evaluated at the initial values x = 5
and y = 8. So zx = 2x = 10 and zy = 3.

Therefore
	z = 10 × (0.01) − 3 × (0.02) = 0.04.

This means z increases from its initial value of 49 to approximately the value
49 + 0.04 = 49.04 when x and y change as described. (The actual new value of
z is 49.041, which is quite close to the estimate.)

Example 8.6

The profit of a company producing two goods is given by

Y = 80A − (0.2)A2 + 150B − (0.1)B2 − 200

where Y is profit, A is the output of good 1, and B is the output of good 2.
Evaluate the profit when A = 10 and B = 6. Estimate the profit when the
output of good 1 increases by 2% and that of good 2 by 3%.
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Solution.

∂Y

∂A
= 80 − (0.2) × 2A = 80 − (0.4)A

∂Y

∂B
= 150 − (0.1) × 2B = 150 − (0.2)B

When A = 10 and B = 6 units of product, we have, after substituting these
values and simplifying, that

Y = 1476.4,
∂Y

∂A
= 76 and

∂Y

∂B
= 148.8.

If we increase production of good 1 by 2% and production of good 2 by 3%,
then 	A = 2

100 × 10 = 0.2 and 	B = 3
100 × 6 = 0.18. Using the SIF, we can

estimate 	Y by

	Y =
∂Y

∂A
×	A +

∂Y

∂B
×	B.

That is
	Y = 76 × 0.2 + 148.8 × 0.18.

Therefore
	Y = 41.984.

So Y increases by about 2.8%. (The actual change in Y is 41.973 to 3 decimal
places.)

Example 8.7

In a production model, output Q(K, L) is given by

Q = 5K
1
2 L

2
3

where K denotes labour and L labour costs. Evaluate output Q and the mar-
ginal costs of capital and labour when K = 4 and L = 8. Estimate output if K

increases to 4.1 and L decreases to 7.95.

Solution. The first order partial derivatives of Q are

∂Q

∂K
=

5
2
K− 1

2 L
2
3

∂Q

∂L
= 5K

1
2 × 2

3
L− 1

3 =
10
3

K
1
2 L− 1

3 .

When K = 4 and L = 8, the output Q = 5 × 2 × 4 = 40, and

∂Q

∂K
=

5
2
× 1

2
× 4 = 5 and

∂Q

∂L
=

10
3

× 2 × 1
2

=
10
3

.
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To estimate Q when K = 4.1 and L = 7.95, use the SIF with 	K = 0.1
and 	L = −0.05 to compute

	Q = QK ×	K + QL ×	L = 5 × (0.1) +
10
3

× (−0.05) =
1
3
.

Therefore, Q(4.1, 7.95) is approximately 401
3 . (To see how close an approxima-

tion this is, computing Q(4.1, 7.95) = 5× (4.1)
1
2 (7.95)

2
3 using a calculator gives

40.328 to 3 decimal places.)

8.6 The Chain Rule and Total Derivatives

Suppose y is a function of a single variable x and that x is a function of a single
variable t. Then y may be regarded as a function of the single variable t since
any value to t determines x, which in turn determines y. The chain rule for
functions of one variable (see (6.8)) is

dy

dt
=

dy

dx

dx

dt
.

For example, let y = x3 and x = t2. Then

dy

dt
=

dy

dx
.

dx

dt
= 3x2 × 2t = 6x2t.

In this case, one could have easily substituted for x in y to get y = (t2)3 = t6

giving y explicitly as a function of t. Then
dy

dt
= 6t5, which is the same as

6x2t, noting that x2 = t4. There is an analogous formula for functions of two
variables.

Suppose z is a function of two variables x and y. Further, suppose that
each of x and y is a function of a single variable t. Then z can be regarded as

a function of the single variable t. The derivative
dz

dt
is given by

Total Derivative Formula
dz

dt
=

∂z

∂x
.

dx

dt
+

∂z

∂y
.

dy

dt

(Notice that when we write
dx

dt
and not

∂x

∂t
, x is being regarded as a function

of just one variable, t. Similarly for y and z.)

The derivative
dz

dt
is known as the total derivative of z with respect to t.
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The total derivative formula follows from the SIF quite easily. We have

	z =
∂z

∂x
. 	x +

∂z

∂y
. 	y

for the incremental changes 	x, 	y, 	z caused by a change 	t in t. Therefore

	z

	t
=

∂z

∂x
.
	x

	t
+

∂z

∂y
.
	y

	t
.

As 	t tends to 0, the ratios
	x

	t
,
	y

	t
, and

	z

	t
tend, respectively to

dx

dt
,

dy

dt
,

and
dz

dt
to give the total derivative formula.

A special case of the total derivative equation is when t = x. Then putting

t = x in the total derivative formula and noting that
dx

dx
= 1, we have

The Total Derivative when z is a function of y and y is a function of x
dz

dx
=

∂z

∂x
+

∂z

∂y
.

dy

dx

Note the appearance of both
dz

dx
and

∂z

∂x
in the equation. The partial derivative

∂z

∂x
is the rate of change of z relative to x when z is considered a function of

two variables x and y; so it is implicit that y is constant when computing this

partial derivative. Thus
∂z

∂x
is the direct contribution of x to this rate of change,

while
∂z

∂y
.

dy

dx
is the indirect contribution of x through y (which is a function

of x).

Example 8.8

Given that
z = xy + 3y − 7x + 5

where x = t2 and y = 2t + 3, find

1.
dz

dt
,

2. the value of
dz

dt
when t = 5.
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Solution.

1. Substituting for x and y in terms of z, we can express z explicitly as a
function of t only. Then dz/dt is easily computed. However, it is not always
easy to substitute. The total derivative equation allows us to compute dz/dt

without substitution.

We have
∂z

∂x
= y − 7,

∂z

∂y
= x + 3,

dx

dt
= 2t and

dy

dt
= 2.

Therefore

dz

dt
=

∂z

∂x
.

dx

dt
+

∂z

∂y
.

dy

dt
= (y − 7) × 2t + (x + 3) × 2.

Finally, we obtain
dz

dt
= 2ty − 14t + 2x + 6.

2. When t = 5, then x = 25 and y = 13. Then

dz

dt
= 2 × 5 × 13 − 14 × 5 + 2 × 25 + 6 ≡ 116.

Example 8.9

Find dz/dx and the values of x for which dz/dx = 0, given that z = 4x2y3,

where y = x2 + 3.

Solution. Here
∂z

∂x
= 4y3 × 2x = 8xy3,

∂z

∂y
= 4x2 × 3y2 = 12x2y2, and

dy

dx
= 2x. Therefore,

dz

dx
=

∂z

∂x
+

∂z

∂y
.

dy

dx

= 8xy3 + 12x2y2 × 2x

= 8xy3 + 24x3y2 = 8xy2(y + 3x2).

Now
dz

dx
= 0 when x = 0, y = 0, or y = −3x2.

Since y = x2+3, the last two cases are, respectively, equivalent to x2+3 = 0
and 4x2 + 3 = 0, neither of which is possible since each of x2 + 3 and 4x2 + 3
is at least 3 for any value of x.
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Example 8.10

A monopolist’s total revenue TR is given by the formula TR = PQ, where P

is the price of the good being supplied and Q the quantity supplied. Determine
the marginal revenue MR if P = 120 − 6Q is the demand function.

Solution. The total derivative formula gives

MR =
d(TR)

dQ
=

∂(TR)
∂Q

+
∂(TR)

∂P
.

dP

dQ
.

Since TR = PQ, we have
∂(TR)

∂Q
= P and

∂(TR)
∂P

= Q, and since P = 120−6Q,

we have
dP

dQ
= −6.

Substituting in the expression for MR gives

MR = P + Q(−6) = P − 6Q.

Of course we could in this example easily express TR solely in terms of Q

by substituting P = 120 − 6Q in TR = PQ to get

TR = (120 − 6Q)Q = 120Q − 6Q2.

Then MR =
d(TR)

dQ
= 120 − 6 × 2Q = 120 − 12Q. This is the same answer as

before since P − 6Q = (120 − 6Q) − 6Q = 120 − 12Q.

8.7 Some Applications of Partial Derivatives

8.7.1 Implicit Differentiation

The equation y = x2 + 3x − 5 gives y explicitly as a function of x. That is, y

is presented as an expression in terms of x. However, an equation of the form

x2y3 − xy + 3x3 = 5

relates x and y but not explicitly as it is not possible by rearranging the equation
to express y just in terms of x. In this case, we say that y is implicitly a function
of x.

In the first equation when y is explicitly given in terms of x, it is easy to

determine the derivative of y with respect to x and it is given by
dy

dx
= 2x + 3;
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but not in the second equation where y is implicitly given in terms of x. The
second equation is of the form

f(x, y) = K

where f(x, y) is a function of x, y and K is a constant. Using the total derivative
formula, we have

df

dx
=

∂f

∂x
.

dx

dx
+

∂f

∂y
.

dy

dx

=
∂f

∂x
+

∂f

∂y
.

dy

dx

= fx + fy .
dy

dx
.

Since the value of f is constant (= K), then
df

dx
= 0 and so fx + fy

dy

dx
= 0.

Therefore
dy

dx
=

−fx

fy

This is the implicit differentiation formula. Observe that
dy

dx
is independent of

the value of the constant K.

Example 8.11

Use implicit differentiation to find dy/dx for the following:

1. x2y = 3,

2. x2y3 − xy + 3x3 = 5,

3. xy = y2 + 3x2 + 1.

Solution.

1. Here f(x, y) = x2y, fx = 2xy, and fy = x2, so

dy

dx
= −2xy

x2
= −2y

x
.

In this case, y could have been expressed explicitly in terms of x, since
y = 3/x2 = 3x−2.

Therefore
dy

dx
= 3 × (−2)x−3 = −6x−3, which is equal to −2y/x, since

y = 3x−2.
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2. In this case, f(x, y) = x2y3 − xy + 3x3, fx = 2xy3 − y + 9x2, and fy =
3x2y2 − x. So

dy

dx
= − (2xy3 − y + 9x2)

(3x2y2 − x)
.

3. Write this as f(x, y) = y2 + 3x2 − xy = −1. Then fx = 6x − y and
fy = 2y − x. Therefore

dy

dx
= − (6x − y)

2y − x
=

y − 6x

2y − x
.

8.7.2 Elasticity of Demand

This is an economic model for one good and an alternative (or related) good:
the demand Q for a particular good depends on its price P, the price PA of
the alternative good, and the income Y of consumers. Thus Q is regarded as a
function of the variables P , PA, and Y .

Examples are

1. The price of new cars is related to the price of fuel and the income of the
driving population.

2. The price of domestic gas and the price of domestic electricity are related.

3. The prices of DVD players and DVDs are related.

The own price (or direct price) elasticity of demand EP measures the
relative percentage changes of Q and P (with PA and Y assumed fixed).

If 	Q is the change in Q following a change 	P in P, the relative percentage
change of Q to that of P is

�Q
Q × 100
�P
P × 100

=
P

Q

	Q

	P
.

As 	P approaches 0, then
	Q

	P
approaches

∂Q

∂P
; so the relative percentage

change approaches
P

Q

∂Q

∂P
.

This is therefore approximately the percentage change in Q resulting from a

one percent increase in P. Since
∂Q

∂P
will, in practice, be negative (demand

normally decreases with increases in price), then in order to have a positive
number for the own price elasticity of demand, we define:

EP = −P

Q

∂Q

∂P
.
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Therefore:

The elasticity EP is approximately the percentage change in the demand Q

resulting from a 1% decrease in P .

The elasticity EP measures the sensitivity of the good to its own price.
Similarly, we can define the cross-price elasticity of demand EPA

by

EPA
=

PA

Q
.

∂Q

∂PA
.

The elasticity EPA
is approximately the percentage change in the demand Q

for the good following a 1% increase in the price PA of the alternative good.

The elasticity EPA
measures the sensitivity of the good to the price of the

alternative good (all else fixed).
Finally, the income elasticity of demand EY is defined by

EY =
Y

Q
.

∂Q

∂Y
.

The elasticity EY is approximately the percentage change in the demand Q

following a 1% increase in the income Y of consumers.

The elasticity EY measures the sensitivity of demand for the good to changes
in the income of consumers (assuming P, PA are fixed).

If Q increases as PA increases, the alternative good is substitutable (e.g.,

beef and lamb). Equivalently,
∂Q

∂PA
> 0 or EPA

> 0. (Think of partial deriva-

tives as rates of change.)

If Q decreases as PA increases (equivalently
∂Q

∂PA
< 0 or EPA

< 0), the

alternative good is complementary.

If
∂Q

∂PA
= 0, the goods are unrelated (essentially Q is constant relative to

PA).
For example, computers and printers are complementary. This is because

consumers who buy one will also buy the other. Therefore, the price of the
pair, as a whole, becomes more expensive. It is reasonable to consider cars and
pharmaceuticals as unrelated goods.

If Q increases when Y increases (equivalently
∂Q

∂Y
> 0 or EY > 0), the good

is superior (to the alternative good).

If Q decreases when Y increases, the good is inferior. (Equivalently,
∂Q

∂Y
<

0 or EY < 0.)
In the two examples below, the alternative good is substitutable but the

good is superior to the alternative good.
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Example 8.12

Given the demand function Q = 220 − 4P + 2PA +
Y

50
, find the own price,

cross-price, and income elasticities of demand. Evaluate these elasticities when
P = 5, PA = 6, Y = 1900. What happens to demand when:

1. P decreases by 0.25%

2. PA increases by 2%

3. Y increases by 10%?

Solution. The first order partial derivatives of Q are

∂Q

∂P
= −4,

∂Q

∂PA
= 2,

∂Q

∂Y
=

1
50

.

Therefore, the elasticities of demand are given by

EP =
4P

Q
, EPA

=
2PA

Q
, EY =

Y

50Q
.

Consider the case P = 5, PA = 6, Y = 1,900. Then Q = 250 and EP = 0.08,

EPA
= 0.048, and EY = 0.152.

1. If price P drops by 0.25%, then demand Q rises by

EP × 0.25% = 0.08 × 0.25% = 0.02%.

2. If PA increases by 8%, then Q rises by

EPA
× 8 = 0.048 × 8 = 0.384%.

3. If Y increases by 10%, then Q increases by

EY × 10 = 1.52%

(assuming the other variables, in this case P , PA, are fixed – similarly for
the previous two cases).

Example 8.13

For the demand function Q = 100− 4P 2 + 3PA + 0.04Y 1/2, find the own price,
cross-price and income elasticities of demand and evaluate them when P = 3,
PA = 1, and Y = 2,500. What happens to demand when:

1. P falls or rises by 3%

2. PA rises by 2%

3. Y rises by 10%.
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Solution. We have
∂Q

∂P
= −8P,

∂Q

∂PA
= 3,

∂Q

∂Y
= 0.02Y −1/2

and therefore

EP =
8P 2

Q
, EPA

=
3PA

Q
, EY =

0.02Y 1/2

Q
.

When P = 3, PA = 1, Y = 2500, then Q = 69. Therefore

EP =
24
23

, EPA
=

1
23

, EY =
1
69

.

1. If P falls or rises by 3%, then Q rises or falls by about 3 × 24
23

= 3.130

(correct to 3 decimal places).

2. If PA rises by 2%, then Q rises by about (in fact exactly)
2
23

= 0.087

(correct to 3 decimal places).

3. If Y rises by 10%, then Q rises by about
10
69

= 0.145 (correct to 3 decimal

places).

Note that in, for example, (1), the other variables, in this case PA and Y,

have not changed and are at their initial values. Also note that the percentage

change in Q in (2) is actually (not approximately)
2
23

%. The other two cases are

good approximations. For instance, the reader can easily verify that in (1) and
(3) the actual percentage changes in Q are, respectively, 3.1774% and 0.1415%
(correct to 4 decimal places).

8.7.3 Utility

Utility attempts to model a consumer’s satisfaction or benefit when buying var-
ious combinations of quantities of two goods GX and GY . A utility function
U(x, y) measures a consumer’s satisfaction if x units of GX and y of GY are
consumed.

Consider the utility function:

U(x, y) = 3x1/2y1/3.

We have

U(4, 8) = 3 × 2 × 2 = 12

U(9, 3) = 3 × 3 × 31/3
≈ 12.9803

U(8, 4) = 3 × 81/2 × 41/3
≈ 13.4695
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The consumer is more satisfied buying 8 units of GX and 4 of GY than buying
9 of GX and 3 of GY ; or 4 of GX and 8 of GY .

The marginal utility of good GX is
∂U

∂x
(or Ux). It is the rate of change of

U relative to x (y fixed). The marginal utility
∂U

∂x
is approximately the change

in U when x is increased by 1 unit and y is constant. It is a measure of the
additional utility that results due to the consumer buying one more unit of the

good GX . Similarly, we may define the marginal utility
∂U

∂y
of good GY .

The SIF gives the approximate change ∆U in U if x and y both change, by
amounts ∆x, ∆y, respectively, as

∆U =
∂U

∂x
∆x +

∂U

∂y
∆y.

Suppose we wish to keep the utility value U at some constant value, say k.
Then x, y satisfy the equation

U(x, y) = k.

This defines y implicitly as a function of x. Then by using implicit differentia-

tion, we can compute the derivative
dy

dx
, the rate of change of y relative to x.

Specifically
dy

dx
= −∂U

∂x
/

∂U

∂y

if U(x, y) = k, where k is any constant. (Observe that dy
dx does not depend on

the value of k.)
The marginal rate of commodity substitution (MRCS) is defined by

MRCS = −dy

dx
=

∂U

∂x
/

∂U

∂y
.

The minus sign is introduced to ensure that, in general, MRCS is positive.
Therefore

MRCS =
Marginal utility of x

Marginal utility of y

Since MRCS = −dy

dx
, where U(x, y) = k, where k is some constant, it

follows that, approximately

MRCS is the change in y that maintains the
value of U(x, y) following a unit decrease in x.

The MRCS reflects how much a consumer is willing to give up of good GX in
exchange for more of GY and be as satisfied as before.
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Example 8.14

For the utility function
U(x, y) = 3x1/2y1/3

find the marginal utilities and a simplified expression for MRCS in terms of x

and y. Evaluate U and MRCS when x = 100 and y = 27. Hence estimate the
increase in y required to maintain the current level of utility when x decreases
by 1.5 units.

Solution. The marginal utilities are

∂U

∂x
= 3 × 1

2
x−1/2y1/3 = (1.5)x−1/2y1/3

and
∂U

∂y
= 3x1/2 × 1

3
y−2/3 = x1/2y−2/3.

Therefore,

MRCS =
(1.5)x−1/2y1/3

x1/2y−2/3

= (1.5)x−1y

(using the quotient rule for indices (1.12).
When for example x = 100 and y = 27, then U = U(100, 27) = 3×10×3 =

90 and MRCS = 1.5 × 100−1 × 27 = 0.405.

If x decreases by 1.5 (so the ‘new’ x is 98.5), then, to maintain the value of
U at 90, y must change approximately by 1.5×MRCS = 1.5×0.405 = 0.6075.

So the ‘new’ y = 27.6075 to maintain U = 90.

The reader can check how accurate this is by computing U(98.5, 27.6075),
which equals 90.0558 (correct to 4 decimal places).

The law of diminishing marginal utility states that eventually the mar-
ginal utility of a good GX decreases as x increases. This means that for GX , for

instance, eventually
∂2U

∂x2
< 0, as x increases (since

∂2U

∂x2
is the rate of change

of
∂U

∂x
relative to x).

In the above example, for the good GX we have:
∂U

∂x
= (1.5)x−1/2y1/3 and

so
∂2U

∂x2
= (1.5) × (− 1

2 )x−3/2y1/3 = −(0.75)x−3/2y1/3

which is negative for all positive x and y.
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8.7.4 Production

In an economic model for production, the output Q(K, L) is considered a func-
tion only of capital K (buildings, tools, machinery, etc.) and labour L (paid
work for the production process) costs. The function Q is known as the pro-
duction function. The mathematical analysis of Q is similar to that for utility.

The marginal product of capital MPK is defined as
∂Q

∂K
, while the

marginal product of labour MPL is defined as
∂Q

∂L
. Thus MPK may be

regarded as the rate of change of output relative to capital, assuming labour
costs remain constant. Approximately, MPK is the change of output Q if K

increases by 1 unit and L is fixed. (The bigger K is relative to one unit of
capital, the better the approximation.) Similarly for MPL.

Suppose output Q is required to remain fixed at a constant level c. Then
the equation Q(K, L) = c defines K as an implicit function of L. As in the
analysis of utility, using implicit differentiation we have

dK

dL
= −∂Q

∂L
/

∂Q

∂K
= −MPL

MPK
.

This gives the rate of change of K relative to L. That is, if L changes by a
small amount ∆L, the corresponding change in K is

∆K ≈

dK

dL
× ∆L.

In practice for the type of function Q used to model productivity, a decrease
in labour ( ∆L < 0) requires an increase in capital ( ∆K > 0) to maintain

the value of Q at a constant level. Therefore
dK

dL
is normally negative. The

marginal rate of technical substitution (MRTS) is defined as −dK

dL
, so

that it is, in general, positive.
To sum up

The marginal rate of technical substitution,

MRTS = −dK

dL
=

∂Q

∂L
/

∂Q

∂K
= MPL / MPK ,

is the approximate change in K needed to
maintain the value of Q if L decreases by one unit.

Example 8.15

Given the production function Q(K, L) = K2 + 2K + 3L2, evaluate MPK and
MPL for K = 3, L = 1.5. Hence,
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1. Write down the value of MRTS;

2. Estimate the increase in capital needed to maintain the current level of
output given a 0.08 of a unit decrease (or increase) in labour.

Solution.

1. We have

MPL =
∂Q

∂L
= 6L,

MPK =
∂Q

∂K
= 2K + 2,

MRTS =
MPL

MPK
=

6L

2K + 2
=

3L

K + 1
.

When K = 3 and L = 1.5, then Q(3, 1.5) = 9 + 6 + 3 × 2.25 = 21.75 and
MPL = 9, MPK = 8, MRTS = 9/8.

2. If L is decreased (increased) by 0.08 units, then, to maintain value of Q at
21.75, K must increase (decrease) by 0.08×MRTS = 0.09, approximately.
The reader is left to evaluate the values Q(3.09, 1.42) and Q(2.92, 1.58) to
see how close they are to 21.75.

(Note that if L increases by 0.08 units and the value of K stays at 3, then
Q would increase in value by approximately MPL ×∆L = 9× 0.08 = 0.72.

The decrease of 0.09 for K computed using the MRTS is approximately
that needed to decrease Q by the same amount 0.72. That is, MPK×∆K =
8 × (−0.09) = −0.72 = ∆Q.)

Example 8.16

Given the production function Q(K, L) = 5K1/3L1/2, evaluate Q, MPK , MPL,
and MRTS for the case K = 8, L = 9. Estimate the value of K that will
maintain the current output if L is decreased by 1 unit.

Solution. We have

MPL =
∂Q

∂L
= 5K1/3 × 1

2
L−1/2 =

5
2
K1/3L−1/2

MPK =
∂Q

∂K
= 5 × 1

3
K−2/3L1/2 =

5
3
K−2/3L1/2

MRTS = MPL / MPK = 3KL−1

When K = 8 and L = 9, then Q = 30, MPL = 5/3, MPK = 5/4, and
MRTS = MPL / MPK = 4/3.
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If L is decreased by 1 unit so that L = 8, then to maintain Q = 30, the value
of K must increase by 1×MRTS = 4/3 units. That is, K = 91

3 , approximately.
(Of course, we could calculate the exact K from the equation 30 = 5K1/3L1/2

with L = 8. That is 30 = 5K1/3 × 81/2, so that K1/3 = 6 ÷ 81/2 and therefore
K = 638−3/2 ≈ 9.5459.)

8.7.5 Graphical Representations

If z = f(x, y) is a function of two variables x and y, then as in the case of
functions of one variable, we can plot the graph in three dimensions using
three axes Ox, Oy, Oz at right angles to each other. The result in general is a
surface.

Drawing or visualising such surfaces is not always easy. A simpler approach
is to consider the plane sections of this surface perpendicular to the Oz axis. To
explain this, consider a fixed particular value of z, say k. That is, f(x, y) = k.

This equation defines y implicitly as a function of x.

We can plot in two dimensions the graph of this function, consisting of all
points (x, y) satisfying f(x, y) = k. As k varies, the curves f(x, y) = k give a
series of parallel nested curves as in Fig. 8.1 for a production function. Each
curve has an equation of the form Q = k, where k is constant (for that curve).

In the case of utility functions, these curves are called indifference curves
because all combinations of x and y on a particular curve U = k result in the
same value for U, namely k. If for example U(x, y) = 2x1/2y1/3, then the
points (9,8), (36,1) lie on the same indifference curve U = 12. So the consumer
is indifferent whether he or she were to buy 9 units of good Gx and 8 of good
Gy, or 36 units of good Gx and 1 unit of good Gy. That is, it is assumed
the consumer is satisfied with either combination of goods, or indeed with any
combination on the same indifference curve.

For a given indifference curve with equation U = k, implicit differentiation,
as we saw earlier, gives dy/dx = −Ux/Uy = −MRCS. This gives the slope
of the tangent at any point on the indifference curve. Note that the MRCS

is minus dy/dx. The minus is to make MRCS positive, since normally the
tangent slope is negative for utility functions.

For a production function Q(K, L), the curves Q = k for different values of
k are called isoquants. At a point (x, y) of an isoquant Q = k, the tangent
slope gives −MRTS for those value of x and y. In Figs. 8.1 and 8.2, we show
isoquants for the production functions of Examples 8.15 and 8.16, respectively.

Graphical representations are discussed further in Section 9.4.
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L

K

Figure 8.1 Isoquants of the production function Q = K2 + 2K + 3L2 of
Example 8.15.

L

K

Figure 8.2 Isoquants of the production function Q = 5K1/3L1/2 of Ex-
ample 8.16.
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EXERCISES

8.1. Find all first and second order partial derivatives of the functions

a) 2x + y

b)
x

y

c) 3x2 + y

d)
√

xy

e) 3x2 + y2

f) xy2

g) xey

h) ex+y

i) ex + ey

j) y ln(2x)

k) ln(5xy).

8.2. Let f(x, y) = 10x2/5y1/2.

a) Find fx and fy.

b) Evaluate f(32, 9), fx(32, 9), fy(32, 9).

c) Estimate the value of f(32.1, 8.95).

d) Compute the actual value of f(32.1, 8.95).

8.3. Let z = x2 − 4xy + 5.

Evaluate z when x = 1.5, y = 1.

Estimate the percentage change in z if x is increased by 10% and y

decreased by 5%.

8.4. If f(x, y) = x2−4xy+3y2−y +8, determine x and y if fx = fy = 0.

8.5. Given that 3x2 − 2y2 + 4xy + 7y + 2 = 0, use implicit differentiation

to find
dy

dx
.

8.6. (a) Find the total derivative
dz

dt
when z = xy2, y = 3t2, x = t2 + 3.

Evaluate
dz

dt
when t = 2.
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(b) Find
dz

dx
if z = x2 +2xy +3y +5 and y = x2. Evaluate

dz

dx
when

x = 1.

8.7. Find the price, cross-price, and income elasticities of demand when
P = 10, PA = 15, and Y = 2,000, given the demand function is

Q = 80 − 3P + 2PA + (0.2)Y.

What is the percentage increase in demand if

(a) income rises by 10%;

(b) the price P drops by 20%?

8.8. Determine (as functions of x, y) the marginal utilities and MRCS

of the utility function U = 5x1/4y2/3.

(a) Evaluate: U, the marginal utilities and MRCS, when x = 16,

y = 8.

(b) Estimate U when x = 16.1 and y = 7.5 using the small incre-
ments formula.

(c) Estimate the value of y that would maintain the value of U

computed in (a) if x is decreased to 14. Evaluate U for this value of
y and x = 14 to check your answer.



9
Optimization

9.1 Introduction

Optimization is a concept of prime importance in economic analysis. Companies
endeavour to maximize profit and minimize costs. Governments hope to min-
imize unemployment and inflation while maximizing tax revenue. Consumers
are assumed to want to obtain maximum utility (satisfaction or benefit) from
their consumption of particular products.

In simplified models, the optimization is unconstrained. This can be of
theoretical interest, but, in practice, optimization is constrained. For instance,
a firm tries to maximize profit subject to constraints on costs. A government
may try to minimize interest rates while trying to keep inflation at a certain
level. A pilot may fly an aircraft so as to cover the maximum possible air miles
when the total fuel cost is stipulated. Consumers try to maximize utility subject
to a given budget.

In this chapter, we will describe techniques of optimization when there are
no constraints specified (unconstrained optimization) and subject to a con-
straint (constrained optimization).

185
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9.2 Unconstrained Optimization

The optimization of functions of one variable was discussed in Chapter 7. Op-
timization there meant finding the stationary (or critical or turning) points
of the function and then testing to see whether they were maxima or min-
ima. Maxima (or minima) are points where the function changes from being
increasing to decreasing (or vice versa).

For functions of two or more variables, the tests are more complicated, but
the case of two variables is the easiest to handle. It is mostly with this case
that we shall be concerned in this chapter.

A function f(x, y) of two variables x, y is said to have a stationary (or
critical) point where x = x0 and y = y0 if the first order partial derivatives of
f are both zero for these values. That is

fx(x0, y0) = fy(x0, y0) = 0.

More generally, a function of two or more variables has a stationary point where
all its first order partial derivatives are zero.

Example 9.1

Find the stationary point(s) of the following function:

f(x, y) = 3x2 + y2 + 4x − 4y + 7.

Solution. The first order partial derivatives of f are

fx = 6x + 4, fy = 2y − 4.

The stationary points are where fx = fy = 0. That is, x = − 4
6 = − 2

3 and y = 2.
There is therefore only one stationary point: it is given by x = − 2

3 , y = 2.

The use of the word ‘point’ as in ‘stationary point’ suggests that this concept
can be viewed geometrically. We can think of the function f as represented by
its three-dimensional graph consisting of all the points (x, y, z), where z =
f(x, y). The graph is, in general, a surface at each point of which there is a
tangent plane, which is ‘horizontal’ at a stationary point. That is, it is at right
angles to the z-axis and is therefore parallel to the plane containing the x and
y axes.

Our main interest is in the local minimum and maximum points. These are
collectively known as extrema and occur where the geometric surface repre-
senting f is, respectively, the top or the bottom of a bowl-like section of the
surface (see Figs. 9.1 and 9.2, respectively). At such points, all first order par-
tial derivatives (fx, fy) are necessarily zero (This is an extension of the case of a
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Figure 9.1 The graph of the function z = 1 − x2 − y2. The function has
a local maximum at the point x = y = 0, z = 1.

function of one variable where the requirement is that its first order derivative
is zero).

Thus the extrema of f are stationary points. However, not all stationary
points are extrema (i.e., maximum or minimum points). Any stationary point
that is not an extremum is called a saddle point (see Fig. 9.3).

To test whether a stationary point is a maximum or a minimum, we need
the idea of the discriminant of a function. The discriminant D of a function
of two variables x, y, f(x, y) is the function:

D = fxxfyy − (fxy)2.

For example, consider the function f(x, y) = x3 + 5xy + y3 + 4. Then

fx = 3x2 + 5y, fy = 5x + 3y2, fxx = 6x, fyy = 6y and fxy = 5.

Therefore, the discriminant of f is the function

(6x)(6y) − 52 = 36xy − 25.

To find the stationary points of a function f(x, y) and to determine their
nature (whether a maximum, minimum or a saddle point), follow these steps:

1. Find the stationary points of f . That is, find the pairs of values x0, y0 for
x, y for which simultaneously fx(x0, y0) = 0 and fy(x0, y0) = 0.

The remaining steps are to determine the nature of each stationary point.
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Figure 9.2 The graph of the function z = x2 + y2. The function has a
local minimum at the origin x = y = z = 0.

2. Determine all second order partial derivatives fxx, fyy, fxy of f .

3. Now consider a particular stationary point: say x = x0, y = y0.

Evaluate the second order partial derivatives for x = x0, y = y0 and then
evaluate the discriminant D = fxxfyy − (fxy)2.

4. a) If D < 0, the stationary point is a saddle point.

b) If D = 0, the test is inconclusive.

c) If D > 0, the stationary point is an extremum of f . It is a

maximum point if fxx < 0 and fyy < 0

and a

minimum point if fxx > 0 and fyy > 0.

(If the discriminant D is zero, the nature of the stationary point can be deter-
mined by more advanced techniques, but this will not concern us here.)

If fxx and fyy have different signs (one positive, the other negative), then it
is easy to see that D < 0 and the stationary point must be a saddle point. It fol-
lows that when D > 0, the partial derivatives fxx, fyy must have the same sign.
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Figure 9.3 The graph of the function z = y2 − x2. The function has a
saddle point at the origin x = y = z = 0.

Example 9.2

Determine and classify the stationary point(s) of the function

f(x, y) = x2 + 3y2 − 2xy + 1.

Solution. Here fx = 2x − 2y, fy = 6y − 2x, fxx = 2, fyy = 6, and fxy = −2.
The stationary points occur where fx = fy = 0. That is, when 2x − 2y = 0

and 6y − 2x = 0. The first equation gives x = y while the second gives 3y = x.
Since both equations hold, then 3y = x = y and therefore 3y = y. This means
y = 0 and so x = 3y = 0. Therefore, there is only one stationary point: namely
x = 0, y = 0.

To test whether this is a maximum or a minimum point for f , note that
the discriminant D = fxxfyy − (fxy)2 = 2× 6− (−2)2 = 12− 4 = 8 is positive.
Since fxx and fyy are both positive, the stationary point is a minimum. The
value of f is f(0, 0) = 1 at this point.
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Example 9.3

Determine and classify the stationary point(s) of the function

g(x, y) = x3 + 2y2 − 3x − 8y.

Solution. We have
gx = 3x2 − 3, gy = 4y − 8,

gxx = 6x, gyy = 4, gxy = 0.

To find the stationary points, solve the simultaneous equations:

gx = 0, gy = 0.

That is, solve 3x2 − 3 = 0 and 4y − 8 = 0. Equivalently, x2 = 1 and y = 2.
Therefore, g has two stationary points:

1. x = 1, y = 2;

2. x = −1, y = 2.

In case (1), gxx = 6, gyy = 4, gxy = 0, so that the discriminant is

6 × 4 − 0 = 24 > 0.

Since gxx > 0 and gyy > 0, this stationary point is a minimum. Then g(1, 2) =
−10 is a minimum value for g.

In case (2), gxx = −6, gyy = 4. Since gxx, gyy have different signs, the
stationary point is a saddle point.

Example 9.4

X and Y represent the outputs of two goods. The total cost function is

TC = 2 + 3X2 + 2Y 2 − (0.5)XY. (9.1)

The market prices for X and Y are 10 and 15 per unit of good, respectively.
Determine the outputs that give the maximum profit.
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Solution. The total revenue is TR = 10X + 15Y and the profit π is this
amount less TC. Therefore

π = 10X + 15Y − 2 − 3X2 − 2Y 2 + (0.5)XY, (9.2)

which is a function of X and Y .
Now, πX = 10−6X+(0.5)Y, πY = 15−4Y +(0.5)X, πXX = −6, πY Y = −4,

and πXY = 0.5.
Stationary points are determined by solving πX = 0, πY = 0; that is, the

simultaneous equations

10 − 6X + (0.5)Y = 0, (9.3)

15 + (0.5)X − 4Y = 0. (9.4)

Multiplying equation (9.3) by 8 gives

80 − 48X + 4Y = 0

and adding this to equation (9.4) gives

95 − (47.5)X = 0.

Therefore, X = 2, and then substituting into equation (9.4) gives Y = 4.
So X = 2, Y = 4 is the only stationary point of π. Since the discriminant
is (−6) × (−4) − (0.5)2 > 0 and πXX , πY Y are both negative, then π has a
maximum when X = 2, Y = 4. Then the maximum profit 38 is obtained by
substituting X = 2, Y = 4 into the expression (9.2) for π.

Example 9.5

A company wins a contract to produce rectangular open top boxes using ma-
terial costing the company £5 a square metre. The contract stipulates that the
boxes must all have volume 0.5 cubic metres. What dimensions should each
box have so that the cost of the material used is a minimum?

Solution. Suppose the base of the box is an x by y metres rectangle and its
height is z. Then the volume of the box is xyz = 0.5. The surface area of the
base of the box is xy, and the total surface area of the 4 sides is 2xz + 2yz. So
the total area A of material used to make one box is

A = xy + 2xz + 2yz.

This appears to be a function of three variables but because xyz = 0.5, we can
express A as a function of only x and y, as xz = (0.5)

y and yz = (0.5)
x . Therefore
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A = xy + 2
(0.5)

y
+ 2

(0.5)
x

or

A = xy +
1
y

+
1
x

.

Next, find the first and second order partial derivatives of A:

∂A

∂x
= y − x−2,

∂A

∂y
= x − y−2,

∂2A

∂x2
= 2x−3,

∂2A

∂y2
= 2y−3,

∂2A

∂x∂y
= 1.

For a stationary point of A, we require ∂A
∂x = ∂A

∂y = 0. That is, y = x−2 and
x = y−2. This means y = x−2 = (y−2)−2 = y(−2)×(−2) = y4. Therefore, either
y = 0 or 1 = y3. Clearly y �= 0 (otherwise we would have a flat box). So y3 = 1,
which means y = 1 and also x = y−2 = 1. Since xyz = 0.5, then z = 0.5 in this
case.

Now check whether this gives a minimum for A. At x = 1, y = 1,

∂2A

∂x2
= 2 > 0 and

∂2A

∂y2
= 2 > 0,

while the discriminant of A is given by

D = 2 × 2 − 12 = 3 > 0.

So we have a minimum. Therefore x = y = 1, z = 0.5 are the dimensions of a
box that is cheapest to produce with respect to the material used.

Notes

1. The test we described to determine the nature of a stationary point is
for functions of two variables. In the case of a function of more than two
variables, the situation is more complicated. However in this case, it is
still true that any maximum or minimum of the function will occur at a
stationary point.

2. It is important to note that we have used the terms maximum or minimum
for a function rather loosely. Strictly, we should say a local (or relative)
maximum or minimum: for they may not give the overall maximum or
minimum of a function. Within the locality of a maximum point x = x0,

y = y0 (that is, for any x and y sufficiently close to these values), the value
f(x, y) of f attains a maximum when x = x0 and y = y0. Similarly for a
minimum point.
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3. The problem stated in Example 9.5 above was initially a constrained opti-
mization problem in three variables. But, upon substitution for z, it became
an unconstrained optimization problem in the remaining two variables, x

and y.

9.3 Constrained Optimization

Optimization of a quantity in economic models, or indeed in many practical
situations, is rarely unconstrained. Usually there are constraints involving some
or all of the variables. For instance, in considering ways to maximize, say,
output, there will be constraints due to costs or of the available labour.

In this section, we shall look at two methods for optimizing subject to
constraints. We’ll restrict the discussion to functions of two variables, though
in both cases there is a generalization to functions of more than two variables.

The general problem is this. We have a function f(x, y) and want to find
its maximum or minimum values subject to a constraint. That is, we want to
optimize f(x, y) subject to a constraint expressed in the form of an equation
g(x, y) = k, where k is a constant and g is a function of x and y. We call f the
objective function, g the constraint function, k the constraint constant,
and g(x, y) = k the constraint equation (or simply the constraint).

There are various methods used for constrained optimization. We will con-
sider two important techniques: the substitution method and the Lagrange
Multiplier method.

9.3.1 Substitution Method

If the constraint equation allows one of the variables, say x, to be expressed
explicitly as a function of the other variables, then substitute for x in the
objective function. The optimization with constraint problem now reduces to
unconstrained optimization of a function of the other variables. Consider the
following simple illustrative examples.

Example 9.6

A developer wants to protect as much of his land as possible and has only one
kilometre of fencing available. What is the largest rectangular area that can be
enclosed?
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Solution. Here the objective function is

A = xy,

where x and y are the length and breadth of the paddock in kilometres. The
constraint equation is

2x + 2y = 1,

since the perimeter of the fence is 1 km. Therefore x+y = 0.5 and so x = 0.5−y,
giving x explicitly as a function of y. Substitute for x in A to obtain

A = (0.5 − y)y = 0.5y − y2.

So A is now a function of one variable, namely y. Then

dA

dy
= 0.5 − 2y and

d2A

dy2
= −2.

Since dA/dy = 0 when y = 0.25 and since d2A/dy2 < 0, then y = 0.25 gives
a maximum. In this case, x = 0.5 − y = 0.5 − 0.25 = 0.25, and A = (0.25)2 =
0.0625 square kilometres (= 62,500 square metres) is the maximum rectangular
area that can be enclosed.

Example 9.7

A firm’s production function is Q = 8K
1
4 L

1
2 , where K and L are respectively,

capital and labour costs. Unit capital and labour costs are 2 and 1, respectively.
What is the minimum total of input costs (that is, costs due to capital and
labour) if output Q is to be 240 units?

Solution. Denote the total input costs TC by C (fixed costs are not important
here because they are fixed). Then C = 2 × K + 1 × L = 2K + L. This is, the
objective function. So C is a function of K and L. The constraint equation is
Q = 240. That is 8K

1
4 L

1
2 = 240 or K

1
4 L

1
2 = 30. Therefore

L
1
2 =

30
K

1
4

= 30K− 1
4 .

Then
L = (L

1
2 )2 = 302(K− 1

4 )2 = 900K− 1
2

(using the rule (1.13)). Therefore

C = 2K + 900K− 1
2 .
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This expresses C as a function of the single variable K. Its derivatives are

dC

dK
= 2 + 900(−1

2
)K− 1

2−1 = 2 − 450K− 3
2 ,

d2C

dK2
= −450(−3

2
)K− 3

2−1 = 675K− 5
2 .

We have dC/dK = 0 when 2 = 450K− 3
2 = 450/K

3
2 . Therefore, K

3
2 = 450/2 =

225 and so (K
3
2 )

2
3 = 225

2
3 . That is, K1 = K = 225

2
3 , which is approximately

37.
Since d2C/dK2 is positive in this case, then K = 37 gives a minimum for

C. When K = 37, L = 900K− 1
2 , which is approximately 148, and C = 2K + L

is approximately 222.
In the previous example, we optimized total input costs while constraining

output. The next problem optimizes output while restraining input costs.

Example 9.8

A firm’s unit capital and labour costs are respectively 2 and 4. The production
function is Q = 6KL + 2L2.

1. If the total input costs are 200 units, what is the maximum possible output
Q?

2. If the output is fixed at 1,200, what are the minimum input costs?

Solution.

1. The objective function is

Q = 6KL + 2L2

and the constraint is
2K + 4L = 200

which simplifies to
K + 2L = 100.

Therefore, K = 100 − 2L and we can express Q as a function of the single
variable L by substituting for K in the formula for Q. Therefore,

Q = 6(100 − 2L)L + 2L2 = 600L − 12L2 + 2L2 = 600L − 10L2.

Then dQ/dL = 600 − 20L and d2Q/dL2 = −20. Since dQ/dL = 0 when
L = 30 and since the second derivative is negative, then L = 30 gives
a maximum for Q. In this case, K = 100 − 2L = 100 − 60 = 40. Then
Q = 9,000 is the maximum output when total input costs are 200 units.
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2. The objective function is now the total input costs

C = 2K + 4L,

while the constraint is

Q = 6KL + 2L2 = 1,200,

which implies 6KL = 1,200 − 2L2 and so

K =
1,200 − 2L2

6L
=

1200
6L

− 2L2

6L
.

Therefore,

K = 200L−1 − L

3
and so we can express C = 2K + 4L as a function of the single variable L

thus:
C = 400L−1 − 2L

3
+ 4L = 400L−1 +

10L

3
.

Then
dC

dL
= −400L−2 +

10
3

and
d2C

dL2
= −400 × (−2L−3) = 800L−3.

The stationary points of C (as a function of L) are given by solving

dC

dL
= 0.

Equivalently,
10
3

= 400L−2 =
400
L2

.

Therefore
L2 =

3 × 400
10

= 120

which means L = ±√
120. Ignore the negative labour costs (this would

mean the labour force pays to work!) then L =
√

120 = 10.95 (to 2 decimal
places) gives a minimum for C since the second derivative is positive. In
this case, K = 200L−1 − L

3 = 14.61 and C = 2K + 4L = 73.03 are the
minimum total input costs when production is constant at 1,200 units.
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9.3.2 Lagrange Multipliers

The method of Lagrange multipliers for constrained optimization can be applied
generally; unlike the substitution method. The latter requires that one variable
can be expressed explicitly in terms of the others, using the constraint equation.

For simplicity, we consider functions of only two variables, although the
Lagrange multiplier method easily extends to more general situations.

As before, we wish to optimize the objective function f(x, y), subject to
a constraint equation k = g(x, y). Here k is the constraint constant (constant
relative to x and y), known also as the constraint limitation.

The Lagrangian multiplier method introduces a new variable λ and intro-
duces a new function F , known as the Lagrangian, defined by:

F (x, y, λ) = f(x, y) + λ(k − g(x, y)).

The parameter λ is known as the Lagrange multiplier.
It may appear that by turning a two variable problem into a three variable

one makes the problem harder. However, the method transforms a problem of
constrained optimization to one of unconstrained optimization. We state this
as follows:

The pairs of values of x, y that optimize the function f(x, y), subject to
the constraint k = g(x, y), occur where the Lagrangian function

F = f(x, y) + λ(k − g(x, y))

in the three variables x, y, λ has its optimum values.

In other words, suppose f has an optimum value when, say, x = x0, y = y0.
Then the function F has a stationary point for x = x0, y = y0 and some
value λ0 of λ. So, by finding the stationary points of F , we obtain all the
possible pairs x, y that optimize f subject to the given constraint. However,
the methods covered in this book do not allow us to determine which of these
pairs give maxima or minima. Unlike the substitution method, for the Lagrange
multiplier method we rely on intuition or the particular nature of the problem
to say whether a stationary point gives a maximum or minimum.

Note. The Lagrange multiplier λ multiplies the expression k − g(x, y). This
expression is clearly 0 when the constraint equation holds, and then F = f . This
gives an intuitive idea why it is that, when the constraint holds, the optimum
values (maxima or minima) of f are those of F .

To sum up, here is how to apply the Lagrange multiplier method to optimize
a function f(x, y) subject to a constraint k = g(x, y).
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1. Form the Lagrangian F (x, y, λ) = f(x, y) + λ(k − g(x, y)).

2. Find the three first order partial derivatives ∂F
∂x , ∂F

∂y and ∂F
∂λ of F .

3. Solve the simultaneous equations

∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂λ
= 0.

(The last equation is just k − g(x, y) = 0 which is the constraint.) This
determines the stationary points of F and hence the possible maxima or
minima of f subject to the constraint k = g(x, y).

Example 9.9

A firm produces two goods G1 and G2. The output of G1 is denoted by by Q1

and its price by P1. Similarly for good G2. The production functions are

P1 = 20 − Q1 + 2Q2

and
P2 = 10 + Q1 − Q2.

The total costs are given as

TC = 12Q1 + Q1Q2 + 6Q2. (9.5)

The firm is contracted to produce a total of 20 units of goods of either type.
What is the maximum profit possible?

Solution. Essentially, we are to find the values of Q1 and Q2 that maximize
profit subject to the constraint Q1 + Q2 = 20. First we need to compute the
profit π = TR − TC. This is the objective function.

Since total revenue TR = P1Q1 + P2Q2, then

TR = (20 − Q1 + 2Q2)Q1 + (10 + Q1 − Q2)Q2.

After simplifying, we get that

TR = 20Q1 + 10Q2 + 3Q1Q2 − Q2
1 − Q2

2. (9.6)

The profit is given by π = TR − TC. Using equations (9.5) and (9.6) and
simplifying gives

π = 8Q1 + 4Q2 + 2Q1Q2 − Q2
1 − Q2

2. (9.7)
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This is our objective function. The constraint equation is

20 − Q1 − Q2 = 0.

Therefore the Lagrangian is

F = 8Q1 + 4Q2 + 2Q1Q2 − Q2
1 − Q2

2 + λ(20 − Q1 − Q2).

For stationary points we need:

0 = FQ1 = 8 + 2Q2 − 2Q1 − λ (9.8)

0 = FQ2 = 4 + 2Q1 − 2Q2 − λ (9.9)

0 = Fλ = 20 − Q1 − Q2. (9.10)

From (9.8) and (9.9) we have

8 + 2Q2 − 2Q1 = 4 + 2Q1 − 2Q2 = λ.

Therefore 4Q1 − 4Q2 = 4, which simplifies to

Q1 − Q2 = 1. (9.11)

From the constraint equation (9.10), we have

Q1 + Q2 = 20

which when added to (9.11) gives

2Q1 = 21.

Therefore Q1 = 10.5, and then from (9.11) we have Q2 = Q1 − 1 = 9.5. With
these values of Q1, Q2 we compute from (9.7) the maximum profit to be 121.

Example 9.10

Solve Example 9.8 using Lagrange multipliers.

Solution.

1. Here, we are to find the values of K and L that maximize production
subject to the constraint 2K + 4L = 200.

Objective function: Q

Constraint equation: 200 = 2K + 4L

Lagrangian: F = Q + λ(200 − 2K − 4L)
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Therefore F = 6KL + 2L2 + 200λ − 2λK − 4λL and so

FK = 6L − 2λ,

FL = 6K + 4L − 4λ,

Fλ = 200 − 2K − 4L.

The stationary points of F occur where all of these three first order partial
derivatives are zero. That is

6L − 2λ = 0 or λ = 3L; (9.12)

6K + 4L − 4λ = 0 or 2λ = 3K + 2L; (9.13)

200 − 2K − 4L = 0 or 2K + 4L = 200. (9.14)

Notice that equation (9.14) is just the constraint equation.

Eliminating λ between (9.12) and (9.13) gives 3K + 2L = 2 × 3L = 6L,
which implies 3K = 4L. Putting this in (9.14) gives 200 = 2K +3K = 5K.
Therefore K = 40. Since 3K = 4L, then L = 3

4K = 30. We also have
the corresponding Lagrange multiplier λ = 3L = 90, using (9.12). We
substitute K = 40, L = 30 into the production function Q in order to
obtain the optimal value:

Q(40, 30) = 6 × 40 × 30 + 2 × 302 = 9,000.

This is the maximum production Q subject to the constraint 2K + 4L =
200. (It’s obviously not the minimum production since K = 100, L = 0
satisfy the constraint and give zero production.)

2. Here we are to minimize input costs subject to the constraint

6KL + 2L2 = 1,200.

Objective function: C = 2K + 4L

Constraint equation: 1,200 = 6KL + 2L2

Lagrangian: F = 2K + 4L + λ(1,200 − 6KL − 2L2)

To find the stationary points of F , we equate all its first order partial
derivatives to zero.

0 = FK = 2 − 6λL, (9.15)

0 = FL = 4 − 6Kλ − 4Lλ, (9.16)

0 = Fλ = 1,200 − 6KL − 2L2. (9.17)
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First we eliminate λ between equations (9.15) and (9.16). From (9.15) and
(9.16) we have λ = 1

3L and λ = 2
3K+2L , respectively. Equating these values

of λ and simplifying gives 3K = 4L, whence K = 4
3L. Substituting for K in

(9.17), the constraint, gives 1,200 = 6KL + 2L2 = 6(4
3L)L + 2L2 = 10L2.

Therefore L2 = 120. Then L =
√

120 and so L = 10.95, correct to 2
decimal places. (We’ve ignored the negative solution L = −√

120. Then,
since K = 4

3L, we have K = 14.61 and C = 2K +4L = 73.03. We also have
from (9.15) that λ = 1

3L = 0.03. This information about λ is not needed to
optimise C but is nevertheless useful to know, as we shall see.

9.3.3 The Lagrange Multiplier λ: An Interpretation

The Lagrange multiplier λ used in constrained optimization appears at first
glance to have no use as it is eliminated from the equations determining a
stationary point and does not appear in the optimum value of the objective
function or in the values of the variables giving the optimum value. However,
λ does have an important and useful interpretation.

Consider the problem of optimizing a function f(x, y) subject to a constraint
k = g(x, y), where k is the constraint constant. (Here ‘constant’ means that k

is independent of the value of x or y.) The Lagrangian function

F = f(x, y) + λ(k − g(x, y))

is a function of x, y and λ.
For given f and g, the value M of any optimum (maximum or minimum)

of f depends only on the constraint constant k. So M can be considered as a
function of k. It can be shown that dM

dk = λ; that is, λ is the rate of change of
M relative to k. This means that:

The Lagrange multiplier λ is approximately the change in an optimum value
of the objective function resulting from a one unit increase in the constraint
constant.

In Example 9.10, if the total input costs were fixed at 201, the maximum
production would increase approximately by λ = 90 to 9,090. If we were to
carry out the computation with the new constraint constant of 201, we would
find the actual new maximum production to be 9,090.225, which is close to the
approximation.

If the input costs were fixed at 199, the maximum production would decrease
by approximately λ = 90 to 8,910.



202 Elements of Mathematics for Economics and Finance

For non-unit changes in the constraint constant, the computations are pro
rata. For instance, if the input costs are fixed at 205, the maximum production
would increase by about 5×90 = 450 to 9,450. (The actual figure is 9,455.625.)

Example 9.11

A company allocates £600,000 to spend on advertising and research. The com-
pany estimates that by spending x thousand pounds on advertising and y thou-
sand pounds on research, they will sell a total of approximately 30x4/5y1/3 units
of its product. How much should the company spend on research and advertis-
ing in order to maximize sales?

Solution. We work in units of £1,000. Then the objective function is

f(x, y) = 30x4/5y1/3

and the constraint equation is

x + y = 600 or 600 − x − y = 0.

The problem can be solved by the substitution method, but the Lagrange
multiplier method is used here: The Lagrangian is

F = 30x4/5y1/3 + λ(600 − x − y).

For stationary points:

0 = Fx = 24x−1/5y1/3 − λ, (9.18)

0 = Fy = 10x4/5y−2/3 − λ, (9.19)

0 = Fλ = 600 − x − y. (9.20)

Equations (9.18) and (9.19) give

λ = 24x−1/5y1/3 = 10x4/5y−2/3. (9.21)

Therefore x = 2.4y. Substituting in (9.20) gives 600−2.4y−y = 0 or y = 600
3.4 =

176.47 (to 2 decimal places). Then x = 423.53 and using (9.21) gives λ = 40.15.
The maximum sales total is therefore f(423.53, 176.47) = 21,257.83.

If in this example we change the advertising and research budget, we can
use the Lagrange multiplier λ to estimate the resulting maximum sales total.
For instance, suppose the budget is increased by 1% to £606,000: an increase of
6 in the constraint constant, since we are working in units of £1,000. Therefore
the maximum sales total will increase by about 6λ = 6 × 40.15 = 240.90. This
is an increase of about 1.13% on the previous sales maximum. (If you were to
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work through the problem again, with the new budget of £606,000, the actual
increase would be 241.08.)

If now the budget decreases by 1.5% to £591,000, the maximum sales total
would decrease by approximately 9λ = 9 × 40.15 = 361.35 (because the con-
straint constant decrease by 9). This is about a 1.7% decrease in the maximum
sales. (The actual decrease in maximum sales is 361.02 to 2 decimal places.)

Example 9.12

A consumer’s utility function U(x, y) is given by U = 30x2/5y1/3, where x is
the number of units of good GX and y the number of units of good GY . Each
unit of GX costs e1 and each of GY costs e2. If the consumer’s total income
Y = e1,100, find the maximum utility Umax for the consumer.

Solution. The objective function is U and the constraint is x + 2y = 1100.
The Lagrangian is therefore:

F = 30x2/5y1/3 + λ(1,100 − x − 2y).

Its stationary points occur where

0 = Fx = 30 × 2
5
x2/5−1y1/3 − λ; i.e., λ = 12x−3/5y1/3 (9.22)

0 = Fy = 30x2/5 × 1
3
y1/3−1 − 2λ; i.e., λ = 5x2/5y−2/3 (9.23)

and 0 = Fλ = 1,100 − x − 2y. (Constraint Equation) (9.24)

From equations (9.22) and (9.23), we eliminate λ to obtain:

5x2/5y−2/3 = 12x−3/5y1/3,

which simplifies to x = 2.4y. Substituting for x in the constraint equation (9.24)
gives (2.4 + 2)y = 1,100 and therefore

y =
1,100
4.4

= 250.

Then x = 2.4y = 600. Thus Umax = U(600, 250) = 2,441.72 (correct to 2
decimal places). From (9.22) we obtain λ = 1.63 in this case.

If, for instance, the total income Y increases to e1,101, the maximum utility
increases by approximately 1×λ = 1.63. If Y decreases to e1,050, the maximum
utility decreases, approximately, by 50 × 1.63 = 81.50. (The actual figures,
correct to 2 decimal places, are 1.63 and 81.89, respectively.)
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9.4 Iso Curves

If we have a function f(x, y) of two variables x and y, then (see Section 8.7.5)
we can visualise the function as a family of nested curves, each with equation
of the form:

f(x, y) = c,

where c is a constant. The curves are known generally as iso curves or iso
lines. (The word iso comes from the Greek for equal.)

The combinations of values for x and y that give the same value c for the
function f are all the coordinate pairs x, y of the points on the iso curve
f(x, y) = c. Each point on this iso curve corresponds to such a combination.

Iso curves may have specific names depending on what the function f rep-
resents. If f is a utility function, then, as noted in Section 8.7.5, the iso curves
are called indifference curves.

Other examples are when f is a production, profit, or cost function. Then
the iso curves are known respectively, as isoquants, isoprofit, or isocost
curves.

Using iso curves we can visualize constrained optimization. We illustrate
this using the utility function U = 30x2/5y1/3 of Example 9.12. The constraint
is the budget of e1,100 which requires x+2y = 1,100. This equation represents
the budget line. Its graph is given in Fig. 9.4.

For any given positive number c, the points (x, y) of the indifference curve
U = 30x2/5y1/3 = c provide all combinations x, y that give the same utility c

(see Fig. 9.5). The bigger c is, the further the curve is away from the origin.
For example, the indifference curve U = 2 lies between the indifference curves
U = 1 and U = 3 (see Fig. 9.6).

Every point (x, y), with x, y > 0, is on exactly one indifference curve. If c is
large enough, an indifference curve U = c will not meet the constraint/budget
line x+2y = 1,100. As c decreases, the indifference curve approaches the budget
line and for one value c = c0 the indifference curve U = c0 will touch the budget
line at one point P (see Fig. 9.7).

The coordinates of P satisfy the constraint x+2y = 1,100 since P is on the
budget line. The indifference curve U = c0 on P has maximum utility. We have
already computed c0 = 2,441.72 and found the coordinates of P to be x = 600,
y = 250.

Any indifference curve U = a with a > c0 misses the budget line; so no point
on the curve has coordinates satisfying the budget constraint. An indifference
curve U = b, with b < c0, meets the budget line in two points whose coordinates
satisfy the budget constraint (since the points are on the budget line) but the
corresponding utility b is less than c0 (see Fig. 9.8).
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Figure 9.4 The graph of the budget line x + 2y = 1100.
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U=c

Figure 9.5 An iso curve (or indifference curve) of the utility function
U = 30x2/5y1/3 for U = c where c is some constant.
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Figure 9.6 Iso curves of the utility function U = 30x2/5y1/3 corresponding
to U = 1, U = 2 and U = 3.
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Figure 9.7 The graphs of the budget line x + 2y = 1,100 and the indif-
ference curve U = c0.
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Figure 9.8 The graphs of the budget line x + 2y = 1,100 and the indif-
ference curves U = c0, U = a and U = b for b < c0 < a.

EXERCISES

9.1. Maximize 4 + xy subject to the constraint 2x + y = 1 using the
substitution method.

9.2. A firm’s total costs are given by

TC = 10L2 + 10K2 − 25L − 50K − 5KL + 1,500

where L is the workforce size (in thousands) and K the capital in-
vested (in thousands of dollars).

Use the substitution method to find the combination of labour and
capital that will minimize TC.

9.3. A firm’s production function is given by Q = 12K1/2L1/4. Unit capi-
tal and labour costs are respectively 6 and 4. If the firm must provide
120 units of output, find the minimum total cost of production using
the substitution method.

9.4. Optimize xy subject to the constraint x2+y2 = 2 using the Lagrange
multiplier method.
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9.5. Use the Lagrange multiplier method to maximize output

Q = 4KL + L2

subject to the constraint TC = K + 2L = 175.

a) Estimate the maximum output if TC is fixed at 174.5.

b) Estimate at what value TC should be fixed if the maximum
output is to be 17,600.

9.6. A digital media company has a budget of e120,000 to spend on
recording and promoting a new DVD.

The company estimates that if it spends x thousand euros on record-
ing and y thousand euros on promotion, it will sell approximately
6yx2/3 units of DVDs.

a) Use the Lagrange multiplier method to show how the company
should allocate its budget to maximize sales?

Evaluate the maximum sales.

b) Estimate the maximum sales if the budget is

i. increased by e1,000;

ii. decreased by e500.
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Matrices and Determinants

10.1 Introduction

Matrix theory is a powerful mathematical tool for dealing with data as a whole
rather than the individual items of data. Matrices are especially useful in the
theory of equations. They can be used to solve systems of simultaneous linear
equations. Determinants are related to matrices and are useful for determining
whether or not a unique solution exists. In some cases using determinants, the
solution for each unknown can be expressed explicitly in terms of the coeffi-
cients of the equations by applying what is known as Cramer’s rule. Systems
of simultaneous linear equations occur, for example, when optimizing a func-
tion using Lagrange multipliers or when trying to find the equilibrium prices
of interdependent commodities. As we shall see, matrices can be added and
in some cases multiplied together. In economics, business, and finance, many
basic theoretical models are linear in that they are described in some way by
linear functions. Analyzing these models is made simpler by matrix algebra.

10.2 Matrix Operations

A rectangular array of mn numbers in m rows and n columns is called a matrix
of size m×n (‘m by n’). The array is enclosed in square or, sometimes, curved
brackets. The (i, j)-entry of a matrix M is the entry in the ith row and jth

209
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column of M . This entry can be denoted simply by Mij . For example:

M =
[

3 −1 0
0 2 −5

]
is a 2 × 3 matrix

and

N =
[

5 1
2 −1

]
is a 2 × 2 matrix.

For the matrix M , we have M11 = 3, M13 = 0, M23 = −5, and so on.
An n× n matrix, that is one that has as many rows as columns, is called a

square matrix. The matrix N is square. A 1×n matrix is called a row matrix
or row vector of length n. An n × 1 matrix is called a column matrix or

column vector of height n. For example:
[

4
1

]
is a column matrix of height 2

and
[

0 1 −3
]

is a row matrix of length 3.
The transpose of an m×n matrix M is the n×m matrix whose ith row is

the ith column of M (i = 1, 2, . . . n). The matrix is denoted by M t and called
‘M transpose’. Another way to define M t is as the n × m matrix whose (i, j)-
entry is Mji. It is immediately clear that the transpose of M t is M . That is,
(M t)t = M . For example,

[
3 5 −1

]t
=

⎡
⎣ 3

5
−1

⎤
⎦ ,

[
4 3
0 −2

]t

=
[

4 0
3 −2

]
,

[
1 4 −1
2 0 −3

]t

=

⎡
⎣ 1 2

4 0
−1 −3

⎤
⎦ .

A matrix M that is its own transpose, so that M t = M , is said to be
symmetric. Obviously, only square matrices can be symmetric.⎡

⎣ 3 1 0
1 −2 6
0 6 2

⎤
⎦ is a symmetric matrix.

We shall introduce some operations that can be performed on matrices.
The three basic ones are: scalar multiplication, matrix addition, and matrix
multiplication.
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10.2.1 Scalar Multiplication

The term ‘scalar’ in this context simply means a number as opposed to a matrix.
The reasons for use of this term are historical. It is still a useful term if we wish
to distinguish scalar from matrix multiplication of matrices.

If λ is any number and M any matrix, the scalar multiple of M by λ is
the matrix, denoted by λM , obtained by multiplying each entry of M by λ, so
the (i, j)-entry of λM is λMij . Obviously, λM and M have the same size. The
following are some examples:[

36 −16
0 24

]
= 4
[

9 −4
0 6

]
,

−2
[

4 1 −2
−3 0 1

]
=
[ −8 −2 4

6 0 −2

]
.

We write −M rather than (−1) M . So, for instance

−
[

1 −3
−4 0

]
=
[ −1 3

4 0

]
.

Suppose that two firms A and B each produce two goods G1, G2. A con-
sumer is supplied with both goods by both firms. The quantities supplied over
a particular period can be represented by a matrix

Q =
[

Q11 Q12

Q21 Q22

]
,

which we shall call the supply matrix, where the first row gives the quantity
supplied of goods G1 and G2, respectively, by firm A and the second row that
by firm B. If the consumer increases all the quantities bought from each firm
by 20%, the new supply matrix would be (1.2)Q.

In theoretical discussions, it is sometimes useful to distinguish scalars from
matrices by denoting scalars by lowercase Greek letters and matrices by up-
percase latin letters. For instance, the following easy to see matrix rule

λ (µM) = (λµ)M

says that multiplying a matrix M by a scalar µ and then by a scalar λ is the
same as multiplying M by λµ. For example, 3 (5M) = 15M .
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10.2.2 Matrix Addition

Matrices of the same size can be added. If M and N are matrices of the same
size, then their sum M + N is the matrix whose (i, j)-entry is Mij + Nij . That
is M + N is obtained by adding corresponding entries of M and N . Clearly
M + N will have the same size as M and N . For example,[

5 −4
3 2

]
+
[ −2 4

1 −1

]
=
[

3 0
4 1

]
,

⎡
⎣ 5

−2
1

⎤
⎦+

⎡
⎣ 3

−4
−2

⎤
⎦ =

⎡
⎣ 8

−6
−1

⎤
⎦ .

Suppose

Q =
[

10 35
15 18

]
, and Q′ =

[
25 10
40 5

]
are the supply matrices (see Section 10.2.1) for two successive periods of a year.
Then their sum

Q + Q′ =
[

35 45
55 23

]
is the supply matrix for the combined two-year period.

We can also define a matrix M − N in an obvious way by subtracting
corresponding entries:[

5 −4
3 2

]
−
[ −2 4

1 −1

]
=
[

7 −8
2 3

]
.

It is clear that M − N = M + (−N).
Matrix addition is commutative. This is the formal way of saying that the

order in which addition is performed is unimportant. That is, M +N = N +M

for any two matrices M , N of the same size.
The m × n zero matrix is the m × n matrix with all zero entries. It is

denoted simply by 0, the size m×n being clear usually from the context. Clearly
M +0 = 0+M = M for any matrix M . We have also M −M = 0 = −M +M .

10.2.3 Matrix Multiplication

If A =
[

a1 a2 . . . am

]
is a 1 × m row matrix and B =

⎡
⎢⎢⎢⎣

b1

b2

...
bm

⎤
⎥⎥⎥⎦ is an

m × 1 column matrix , then we define the product AB to be the number
a1b1 + a2b2 + . . . + ambm.
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More generally, if M , N are matrices, then we can define their product MN

if the number of columns in M is the number of rows in N ; say M is m × p

and N is p×n. Then MN is the m×n matrix whose (i, j)-entry is the number
MiNj , where Mi is the ith row of M and Nj the jth column of N . The following
example illustrates this operation for some particular matrices.

Example 10.1

1. If M =
[

3 4 −1
]

and N =

⎡
⎣ 2

1
7

⎤
⎦, then

MN = 3 × 2 + 4 × 1 + (−1) × 7 = 6 + 4 − 7 = 3.

If M =
[

2 −3 1
]

and N =

⎡
⎣ 4

1
−5

⎤
⎦, then

MN = 2 × 4 + (−3) × 1 + 1 × (−5) = 8 − 3 − 5 = 0.

2. If M =

⎡
⎣ 2 −1 4

1 0 2
2 3 −8

⎤
⎦ and N =

⎡
⎣ 5 2

4 −3
1 0

⎤
⎦, then

MN =

⎡
⎣ 10 7

7 2
14 −5

⎤
⎦ ,

since

M1N1 = 2 × 5 + (−1) × 4 + 4 × 1 = 10,

M1N2 = 2 × 2 + (−1) × (−3) + 4 × 0 = 7,

M2N1 = 1 × 5 + 0 × 4 + 2 × 1 = 7,

M2N2 = 1 × 2 + 0 × (−3) + 2 × 0 = 2,

M3N1 = 2 × 5 + 3 × 4 + (−8) × 1 = 14,

M3N2 = 2 × 2 + 3 × (−3) + (−8) × 0 = −5.
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3. If A =
[

2 4
1 0

]
and B =

[
1 −1
2 1

]
, then

AB =
[

2 4
1 0

] [
1 −1
2 1

]

=
[

2 × 1 + 4 × 2 2 × (−1) + 4 × 1
1 × 1 + 0 × 2 1 × (−1) + 0 × 1

]

=
[

10 2
1 −1

]

and

BA =
[

1 −1
2 1

] [
2 4
1 0

]

=
[

1 × 2 + (−1) × 1 1 × 4 + (−1) × 0
2 × 2 + 1 × 1 2 × 4 + 1 × 0

]

=
[

1 4
5 8

]
.

4. If A =
[

5 1
]

and B =
[

3 1 2
−2 0 4

]
, then

AB =
[

5 × 3 + 1 × (−2) 5 × 1 + 1 × 0 5 × 2 + 1 × 4
]

=
[

13 5 14
]
.

5. If A =

⎡
⎣ 3 1 −4

0 2 1
5 −2 −3

⎤
⎦ and B =

⎡
⎣ 2

−1
1

⎤
⎦, then

AB =

⎡
⎣ 3 1 −4

0 2 1
5 −2 −3

⎤
⎦
⎡
⎣ 2

−1
1

⎤
⎦

=

⎡
⎣ 3 × 2 + 1 × (−1) + (−4) × 1

0 × 2 + 2 × (−1) + 1 × 1
5 × 2 + (−2) × (−1) + (−3) × 1

⎤
⎦

=

⎡
⎣ 1

−1
9

⎤
⎦ .
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6. If A =
[

1 1
−1 −1

]
and B =

[
1 −1

−1 1

]
, then

AB =
[

1 1
−1 −1

] [
1 −1

−1 1

]

=
[

1 × 1 + 1 × (−1) 1 × (−1) + 1 × 1
(−1) × 1 + (−1) × (−1) (−1) × (−1) + (−1) × 1

]

=
[

0 0
0 0

]
.

Example 10.2

Two firms A and B each produce three goods G1, G2, and G3. The prices
per unit for each good from the two firms are represented by the matrix P =[

PA1 PA2 PA3

PB1 PB2 PB3

]
, where the first row gives the prices per unit for goods

G1, G2, G3, respectively, supplied by firm A and the second row gives those
supplied by firm B.

A consumer wishes to buy quantities Q1, Q2, Q3, respectively, from one of

the firms. The matrix Q =

⎡
⎣ Q1

Q2

Q3

⎤
⎦ represents the quantities. Then PQ is the

2×1 column matrix
[

PA1Q1 + PA2Q2 + PA3Q3

PB1Q1 + PB2Q2 + PB3Q3

]
, where the top entry in the

column is the cost of buying the goods from firm A and the bottom entry the
cost from firm B.

Notes

1. To get the first row entries of the product MN of two matrices M and N ,
multiply the first row of M in turn by each column of N . Do this for the
second row and so on. This constructs MN row by row. So for instance, in
Example 10.1.2,

[
2 −1 4

] ⎡⎣ 5
4
1

⎤
⎦ = 10 − 4 + 4 = 10

and [
2 −1 4

] ⎡⎣ 2
−3
0

⎤
⎦ = 4 + (−1)(−3) + 0 = 7

are the entries of the first row of MN .
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2. If M and N are matrices, it is easy to see that the matrix products MN

and NM are both defined when and only when M , N are square matrices
of the same size. However, MN and NM are not in general the same.
See Example 10.1.3 for instance where AB �= BA. Thus, unlike matrix
addition, matrix multiplication is not commutative.

Note that in Example 10.1.2, we cannot define the product NM .

In Example 10.1.3, the matrices A, B can be multiplied in two ways to give
the products AB and BA. To specify AB, for instance, we can say this is
the product of A multiplied by B on the right or B multiplied on the left
by A.

The diagonal of a matrix M consists of all the entries of the form Mii. For
instance, the diagonal entries of the matrix

M =

⎡
⎣ 3 4 1 1

0 1 2 0
0 0 −5 1

⎤
⎦

are 3, 1, −5. For any matrix M , it is easy to see that M t and M will have the
same diagonal.

The square n×n matrix in which every diagonal entry is 1 and every entry
off the diagonal is 0 is called the identity n×n matrix. This matrix is denoted
by In; or simply by I if its size is clear from the context.

I2 =
[

1 0
0 1

]
, I3 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

Identity matrices act like ‘ones’ in the sense that AIn = ImA = A if A is any
m × n matrix.

A useful matrix rule is

(λM)N = M (λN) = λ (MN) .

Essentially, this means that when multiplying matrices together, any scalar
factor, such as λ, can be taken ‘outside’ the multiplication process. For example,
if A and B are as in Example 10.1.3, then(

1
3
A

)
(6B) =

(
1
3

)
(6) AB = 2AB =

[
20 4
2 −2

]
.

Two more rules, known as the distributive laws, allows us to ‘open’ brack-
ets:

A (B + C) = AB + AC
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and
(A + B)C = AC + BC.

Conversely, the rules can be regarded as one of factorization. For instance,
if A, B, C are matrices then:
(a) 2AB − AC = A (2B − C);
(b) BA − A = (B − I)A.
(Here, I is the m × m identity matrix, where m is the number of rows in A.)
This is true because ImA = A. (Why would it be wrong to write B − 1 instead
of B − I?)

If M is a square m × m matrix, we can define powers of M : M2 = MM ,
M3 = M2M = MMM , and so on. In general, for any integer n ≥ 1, we have
Mn = Mn−1M , where we take M0 = Im, the identity m × m matrix. It is
easy to see that Mn is just M multiplied by itself n times. This defines the
nth power Mn of a square matrix for any integer n ≥ 0, similar to the way in
which xn is defined for a number x.

Example 10.3

If A is the matrix defined by

A =
[

1 3
2 0

]

compute A2 and A3.

Solution.

A2 =
[

1 3
2 0

] [
1 3
2 0

]
=
[

7 3
2 6

]

A3 = AA2 =
[

1 3
2 0

] [
7 3
2 6

]
=
[

13 21
14 6

]

The question that naturally arises is whether this analogy of powers of
matrices with powers of numbers extends to negative integer exponents. In
particular, can we assign any meaning to M−1? It turns out that we can define
M−1 in certain cases and we can test whether or not M−1 exists.

We shall say that a square matrix M is invertible if there is a matrix N

such that MN = NM = I. If N exists, we write M−1 for N . We call M−1

the inverse matrix of M . (For short, we can say ‘M inverse’ for the matrix
M−1.) It is easy to see that

(
M−1

)−1 = M .
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It is important to note that not all square matrices are invertible. To de-
termine whether or not a matrix is invertible, we need the concept of the
determinant of a square matrix.

First we consider a 2 × 2 matrix

M =
[

a b

c d

]
.

The determinant of M denoted by |M | or∣∣∣∣ a b

c d

∣∣∣∣ ,
is the number ad − bc. For example:∣∣∣∣ 2 −1

3 5

∣∣∣∣ = 10 − (−3) = 13,

∣∣∣∣ 6 3
4 2

∣∣∣∣ = 12 − 12 = 0.

It can be shown that a 2 × 2 matrix is invertible if, and only if, its deter-
minant is not zero. If M is invertible, its inverse is obtained in the following
way.

If M =
[

a b

c d

]
and |M | = ad − bc �= 0, then M−1 =

1
ad − bc

[
d −b

−c a

]

The matrix M−1 is therefore a scalar multiple of the matrix[
d −b

−c a

]
;

the scalar being 1/|M |. To illustrate this, perform the matrix multiplication

1
M

[
d −b

−c a

] [
a b

c d

]
=

1
ad − bc

[
ad − bc 0

0 ad − bc

]

=
[

1 0
0 1

]
= I.

For example, ∣∣∣∣ 6 3
4 2

∣∣∣∣ = 0,
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so the matrix [
6 3
4 2

]
is not invertible.

Since ∣∣∣∣ 3 5
2 4

∣∣∣∣ = 12 − 10 = 2,

the matrix

M =
[

3 5
2 4

]
is invertible and

M−1 =
1
2

[
4 −5

−2 3

]
.

Example 10.4

Given that

A =
[

1 −2
3 4

]
and B =

[
4 1
0 −3

]
,

determine the 2 × 2 matrices X and Y satisfying

1. AX = B;

2. Y A = B.

Solution. Since |A| = 4 − (−6) = 10 �= 0, then A−1 exists and

A−1 =
1
10

[
4 2

−3 1

]
.

1. Multiply both sides of the equation AX = B on the left by A−1 to get
A−1AX = A−1B. That is, IX = A−1B and so X = A−1B. Therefore,

X =
1
10

[
4 2

−3 1

] [
4 1
0 −3

]
=

1
10

[
16 −2

−12 −6

]
.

(Here we used the fact that A−1A = I, the identity 2× 2 matrix, and that
IX = X.)

2. Multiply both sides of the equation on the right by A−1 to get Y AA−1 =
BA−1, which gives Y = BA−1. Therefore,

Y =
1
10

[
4 1
0 −3

] [
4 2

−3 1

]
=

1
10

[
13 9
9 −3

]
.
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10.3 Solutions of Linear Systems of Equations

Two simultaneous equations in two unknowns can be solved uniquely if the
matrix of coefficients is invertible. Specifically, if

ax + by = c

px + qy = r

are the equations in the unknowns x, y, the matrix of coefficients is

M =
[

a b

p q

]
.

Then

M

[
x

y

]
=
[

ax + by

px + qy

]
=
[

c

r

]

so that the two given simultaneous equations are equivalent to one matrix
equation:

M

[
x

y

]
=
[

c

r

]
.

If M is invertible, then multiplying both sides on the left by M−1 gives the
unique solution [

x

y

]
= M−1

[
c

r

]
.

Example 10.5

Solve the linear system of equations

7x + 3y = 41
3x + 2y = 19

(10.1)

Solution. The matrix form of (10.1) is[
7 3
3 2

] [
x

y

]
=
[

41
19

]
.

Since ∣∣∣∣ 7 3
3 2

∣∣∣∣ = 14 − 9 = 5 �= 0,



10. Matrices and Determinants 221

the matrix of coefficients M =
[

7 3
3 2

]
is invertible and M−1 =

1
5

[
2 −3

−3 7

]
.

The solution is[
x

y

]
= M−1

[
41
19

]
=

1
5

[
2 −3

−3 7

] [
41
19

]
=

1
5

[
25
10

]
.

So x = 25
5 = 5 and y = 10

5 = 2.

Example 10.6

The demand and supply equations for a good are given by P + 4QD = 70 and
P − QS = 5. Determine the equilibrium price and quantity.

Solution. To find the equilibrium price P and quantity Q = QD = QS , we
solve the equations

P + 4Q = 70

P − Q = 5.

In matrix form, this is equivalent to[
1 4
1 −1

] [
P

Q

]
=
[

70
5

]
.

There is a unique solution:[
P

Q

]
=
[

1 4
1 −1

]−1 [
70
5

]

= −1
5

[ −1 −4
−1 1

] [
70
5

]

= −1
5

[ −90
−65

]

=
[

18
13

]
.

The equilibrium values are therefore P = 18, Q = 13.
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10.4 Cramer’s Rule

This simple rule allows us to express the solution of two simultaneous equations
in two unknowns explicitly, assuming there is a unique solution. Given the
equations

ax + by = c

px + qy = r

then Cramer’s rule states that if
∣∣∣∣ a b

p q

∣∣∣∣ �= 0 (equivalently, if the matrix of

coefficients is invertible), then

x =

∣∣∣∣ c b

r q

∣∣∣∣∣∣∣∣ a b

p q

∣∣∣∣
and y =

∣∣∣∣ a c

p r

∣∣∣∣∣∣∣∣ a b

p q

∣∣∣∣
.

Observe that the determinant
∣∣∣∣ c b

r q

∣∣∣∣ in the equation for x is obtained by

replacing the column of coefficients of x in the determinant of the matrix of
coefficients by the column of constants on the right-hand side of the equation;
and similarly for y.

Example 10.7

Solve the simultaneous equations

6x + 7y = 10

4x + 5y = 8

using Cramer’s rule.

Solution. Using Cramer’s rule, we have

x =

∣∣∣∣ 10 7
8 5

∣∣∣∣∣∣∣∣ 6 7
4 5

∣∣∣∣
=

50 − 56
30 − 28

= −3

and

y =

∣∣∣∣ 6 10
4 8

∣∣∣∣∣∣∣∣ 6 7
4 5

∣∣∣∣
=

48 − 40
2

= 4.



10. Matrices and Determinants 223

(In geometric terms, x and y are the coordinates of the point of intersection of
the two lines with equations 6x + 7y = 10 and 4x + 5y = 8.)

10.5 More Determinants

In Section 10.2, we introduced for 2 × 2 matrices the idea of a determinant.
Now we consider 3 × 3 matrices. The determinant of a 3 × 3 matrix

M =

⎡
⎣ a b c

d e f

g h i

⎤
⎦

is the number

a

∣∣∣∣ e f

h i

∣∣∣∣− b

∣∣∣∣ d f

g i

∣∣∣∣+ c

∣∣∣∣ d e

g h

∣∣∣∣
which we denote by |M | or

∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣.

Example 10.8

Evaluate the determinant ∣∣∣∣∣∣
2 3 5
3 1 2
1 4 3

∣∣∣∣∣∣ .

Solution. Using the definition of a determinant of a 3 × 3 matrix∣∣∣∣∣∣
2 3 5
3 1 2
1 4 3

∣∣∣∣∣∣ = 2
∣∣∣∣ 1 2

4 3

∣∣∣∣− 3
∣∣∣∣ 3 2

1 3

∣∣∣∣+ 5
∣∣∣∣ 3 1

1 4

∣∣∣∣
= 2(3 − 8) − 3(9 − 2) + 5(12 − 1)

= −10 − 21 + 55

= 24.

As in the 2 × 2 case, it is true that a 3 × 3 matrix M is invertible if, and
only if, its determinant |M | �= 0; but it is not as easy to describe M−1 in the
3 × 3 case. A method for constructing M−1 (when it exists) is known as the
adjoint method. To describe this, we need the concept of a cofactor.
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The (i, j)-cofactor of a 3×3 matrix M is the determinant of the 2×2 matrix
obtained by deleting the ith row and jth column of M , multiplied by (−1)i+j .

Note that (−1)i+j is +1 or −1 according to whether i + j is even or odd,
respectively. The pattern

+ − +
− + −
+ − +

gives the (i, j) positions corresponding to +1 and −1. For example, the (3, 1)-
cofactor of the matrix

M =

⎡
⎣ 3 2 −4

1 3 2
4 1 −1

⎤
⎦

is

+
∣∣∣∣ 2 −4

3 2

]
= 4 + 12 = 16.

Similarly, the (2, 3)-cofactor is

−
∣∣∣∣ 3 2

4 1

]
= −(3 − 8) = 5.

Note The value of the (i, j)-cofactor does not depend on the value of the
(i, j)−entry.

The cofactor matrix of a 3× 3 matrix M is the 3× 3 matrix whose (i, j)-
entry is the (i, j)-cofactor of M . For example, the cofactor matrix of the matrix
M in the previous example is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 3 2
1 −1

∣∣∣∣ −
∣∣∣∣ 1 2

4 −1

∣∣∣∣
∣∣∣∣ 1 3

4 1

∣∣∣∣
−
∣∣∣∣ 2 −4

1 −1

∣∣∣∣
∣∣∣∣ 3 −4

4 −1

∣∣∣∣ −
∣∣∣∣ 3 2

4 1

∣∣∣∣∣∣∣∣ 2 −4
3 2

∣∣∣∣ −
∣∣∣∣ 3 −4

1 2

∣∣∣∣
∣∣∣∣ 3 2

1 3

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ −5 9 −11

−2 13 5
16 −10 7

⎤
⎦ .

The transpose of the cofactor matrix of a 3 × 3 matrix M is known as the
adjoint matrix, denoted by adjM .

The following statement describes how M−1 may be computed by the
method known as the adjoint method.

If M is a 3 × 3 matrix and |M | �= 0, then M−1 =
1

|M |adjM .
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Thus M−1 is a scalar multiple of adjM ; the scalar being the number 1
|M | .

Example 10.9

Find the inverse of the matrix

M =

⎡
⎣ 3 2 −4

1 3 2
4 1 −1

⎤
⎦ .

Solution. The determinant of M is∣∣∣∣∣∣
3 2 −4
1 3 2
4 1 −1

∣∣∣∣∣∣ = 3
∣∣∣∣ 3 2

1 −1

∣∣∣∣− 2
∣∣∣∣ 1 2

4 −1

∣∣∣∣+ (−4)
∣∣∣∣ 1 3

4 1

∣∣∣∣
= 3(−5) − 2(−9) − 4(−11)

= −15 + 18 + 44

= 47.

Since |M | = 47 �= 0, then M−1 exists and M−1 = 1
|M |adjM , where adjM is

the transpose of the cofactor matrix of M (see above). Therefore

M−1 =
1
47

⎡
⎣ −5 −2 16

9 13 −10
−11 5 7

⎤
⎦ .

If we look again at the definition of the determinant of a 3 × 3 matrix M ,
we see that |M |, the determinant of M , is obtained by multiplying each entry
in the first row of M by the corresponding cofactor and adding.

An interesting fact is that there is nothing special about the first row of M .
Multiplying each term in any row (or column) by the corresponding cofactor
and adding gives the same number; namely |M |. (This is a useful check that
the cofactor matrix has been computed correctly.)

For example, for the matrix

M =

⎡
⎣ 3 2 −4

1 3 2
4 1 −1

⎤
⎦ ,

the cofactor matrix is ⎡
⎣ −5 9 −11

−2 13 5
16 −10 7

⎤
⎦ .
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The determinant of M is |M | = 3(−5)+2(9)+(−4)(−11) = −15+18+44 = 47.
This is the expansion of the determinant of M by its first row. Expanding
by, say, the third column gives (−4)(−11) + 2(5) + (−1)(7) = 44 + 10− 7 = 47
again.

Incidentally, if we expand a row using the cofactor of another row, we will
always get 0. For example, expanding along the first row of M using the cofac-
tors of the third row gives 3(16) + 2(−10) + (−4)(7) = 48− 20− 28 = 0. These
expansion properties of determinants form the basis of the adjoint method for
finding inverses and of Cramer’s rule.

Example 10.10

Determine the inverse of the matrix M , where

M =

⎡
⎣ 1 −3 −2

4 1 2
0 6 5

⎤
⎦ .

Solution. The cofactor matrix of M is

C =

⎡
⎣ −7 −20 24

3 5 −6
−4 −10 13

⎤
⎦ .

The determinant is

|M | = 1(−7) − (−3)(20) + (−2)(24) = −7 + 60 − 48 = 5.

Therefore

M−1 =
1

|M |adjM =
1
5
Ct =

1
5

⎡
⎣ −7 3 −4

−20 5 −10
24 −6 13

⎤
⎦ . (10.2)

Solving a system of two simultaneous equations in two unknowns using in-
verse matrices or Cramer’s rule extends naturally to the case of three equations
in three unknowns. If the matrix

M =

⎡
⎣ a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤
⎦
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of coefficients of a system of three equations

a1x + a2y + a3z = p

b1x + b2y + b3z = q

c1x + c2y + c3z = r

has non-zero determinant and so is invertible, then the simultaneous equations
have a unique solution given by:⎡

⎣ x

y

z

⎤
⎦ = M−1

⎡
⎣ p

q

r

⎤
⎦ .

Alternatively, we can use Cramer’s rule, extended from Section 10.4 in an
obvious way to three equations in three unknowns. This gives

x =
|Mx|
|M | , y =

|My|
|M | , z =

|Mz|
|M | ,

where Mx is the matrix obtained by replacing the column

⎡
⎣ a1

b1

c1

⎤
⎦ of coefficients

of x in M by the column of constants

⎡
⎣ p

q

r

⎤
⎦. Similarly for My and Mz.

Example 10.11

Solve the system of three simultaneous equations

x − 3y − 2z = 5,

4x + y + 2z = 116,

6y + 5z = 47.

Solution. In matrix form, the system can be written as one equation:

M

⎡
⎣ x

y

z

⎤
⎦ =

⎡
⎣ 5

116
47

⎤
⎦ ,

where

M =

⎡
⎣ 1 −3 −2

4 1 2
0 6 5

⎤
⎦
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is the matrix of coefficients.
From Example 10.10, we know that M is invertible and M−1 is given in

(10.2). Therefore⎡
⎣ x

y

z

⎤
⎦ = M−1

⎡
⎣ 5

116
47

⎤
⎦ =

1
5

⎡
⎣ −7 3 −4

−20 5 −10
24 −6 13

⎤
⎦
⎡
⎣ 5

116
47

⎤
⎦

=
1
5

⎡
⎣ −35 + 348 − 188

−100 + 580 − 470
120 − 696 + 611

⎤
⎦ =

1
5

⎡
⎣ 125

10
35

⎤
⎦ =

⎡
⎣ 25

2
7

⎤
⎦ .

Therefore x = 25, y = 2, and z = 7.
Alternatively, we can use Cramer’s rule. Here,

Mx =

⎡
⎣ 5 −3 −2

116 1 2
47 6 5

⎤
⎦ ,

so
|Mx| = 5(5 − 12) − (−3)(580 − 94) − 2(696 − 47) = 125.

Therefore

x =
|Mx|
|M | =

125
5

= 25,

and then y, z are obtained in a similar way, noting that

My =

⎡
⎣ 1 5 −2

4 116 2
0 47 5

⎤
⎦

and

Mz =

⎡
⎣ 1 −3 5

4 1 116
0 6 47

⎤
⎦ .

Example 10.12

A consumer’s utility function is U(x, y) = xy + x + 2y, where x is the number
of units of good Gx and y the number of units of good Gy. The price per unit
of Gx is 2 (units of money), and the price per unit of Gy is 5. What is the
maximum utility if the consumer’s budget is 91?
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Solution. The objective function is U and the constraint is 2x + 5y = 91.
Form the Lagrangian function

F = xy + x + 2y + λ(91 − 2x − 5y).

The stationary points of F occur where

0 = Fx = y + 1 − 2λ,

0 = Fy = x + 2 − 5λ

and 0 = Fλ = 91 − 2x − 5y.

We therefore have the following three equations in the three unknowns x,
y, and λ:

−y + 2λ = 1,

x − 5λ = −2,

2x + 5y = 91.

We can easily solve these as before by eliminating λ between the first two
equations and then using the constraint equation to solve for x and y.

Another method is to use matrix inversion. The matrix of coefficients is

M =

⎡
⎣ 0 −1 2

1 0 −5
2 5 0

⎤
⎦ ,

so that

M

⎡
⎣ x

y

λ

⎤
⎦ =

⎡
⎣ 1

−2
91

⎤
⎦ .

Using the adjoint method, we can compute

M−1 =
1
20

⎡
⎣ 25 10 5

−10 −4 2
5 −2 1

⎤
⎦ .

Then ⎡
⎣ x

y

λ

⎤
⎦ = M−1

⎡
⎣ 1

−2
91

⎤
⎦ =

1
20

⎡
⎣ 25 − 20 + 455

−10 + 8 + 182
5 + 4 + 91

⎤
⎦ =

1
20

⎡
⎣ 460

180
100

⎤
⎦ .

Therefore, x = 23, y = 9, and λ = 5. So the maximum utility is U(23, 9) = 248.
Cramer’s rule could also have been used to solve the previous problem. We

use it for the next problem.
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Example 10.13

Find the equilibrium prices of three interdependent commodities whose prices
P1, P2, P3 satisfy:

P1 + P2 + 3P3 = 37,

3P1 + 2P2 + 4P3 = 79,

2P1 + 3P2 + 5P3 = 76.

Solution. The determinant of the matrix of coefficients is∣∣∣∣∣∣
1 1 3
3 2 4
2 3 5

∣∣∣∣∣∣ = (10 − 12) − (15 − 8) + 3(9 − 4) = 6.

Therefore by Cramer’s rule

P1 =

∣∣∣∣∣∣
37 1 3
79 2 4
76 3 5

∣∣∣∣∣∣÷ 6 = 90 ÷ 6 = 15,

P2 =

∣∣∣∣∣∣
1 37 3
3 79 4
2 76 5

∣∣∣∣∣∣÷ 6 = 42 ÷ 6 = 7,

P3 =

∣∣∣∣∣∣
1 1 37
3 2 79
2 3 76

∣∣∣∣∣∣÷ 6 = 30 ÷ 6 = 5.

10.6 Special Cases

The solutions of systems of simultaneous equations considered in this chapter
have been for the case when there are as many unknowns as equations and
also the matrix of coefficients is invertible (or, equivalently, has non-zero de-
terminant). In this case, the solution is unique. What happens if the matrix of
coefficients is not invertible; that is, if its determinant is zero? In this case, the
system is either inconsistent and has no simultaneous solution or else it has
infinitely many solutions.
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To illustrate this point with a very simple example, consider the two systems
of equations

(a) x + 3y = 4 (b) x + 3y = 5

2x + 6y = 8 2x + 6y = 9

In both cases, the matrix of coefficients is[
1 3
2 6

]

and its determinant is ∣∣∣∣ 1 3
2 6

∣∣∣∣ = 0.

In case (a), the second equation is twice the first equation. (The second
equation is therefore redundant.) Therefore, any solution of the equation

x + 3y = 4

will satisfy both equations simultaneously. So there are infinitely many solutions
because for any choice of value α for y, the equation x + 3y = 4 is satisfied by
x = 4 − 3α, y = α.

In case (b), multiplying the first equation by 2 gives 2x + 6y = 10, which is
inconsistent with the second equation. So the two given equations cannot have
any simultaneous solution.

For the case of three equations in three unknowns, a similar conclusion
holds. If the matrix of coefficients has zero determinant, then the equations
have either no simultaneous solutions or infinitely many. A method known as
Gauss-Jordan elimination can be applied to a system of equations to reduce it
to a simple form that eliminates redundant equations. The reduction is akin to
the usual process of simplifying equations; subtracting multiples of one equation
from another to eliminate variables between them. We shall say no more about
this in this book.

EXERCISES

10.1. Find the inverse, where it exists, of each of the matrices[
5 2
6 3

]
,

[
3 −1

−15 5

]
,

[
3 −2

−4 3

]
,

[ −2 2
4 −3

]
,

[
3 0
0 5

]
,

[
0 1
1 0

]
.
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10.2. The equilibrium prices P1, P2 for two goods satisfy the equations

4P1 − 3P2 = 11

−6P1 + 7P2 = 8.

Express these equations in matrix form. Hence, by inverting the
matrix, solve for P1, P2. Also solve these equations by Cramer’s
rule.

10.3. Let B =
[

3 2
0 −1

]
, C =

[
2 2

−1 −2

]
, D =

[
1 1
0 2

]
.

If B = ED, B = DF , and AB = AC + D, determine E, F , and A.

10.4. If XB = X +C, where B and C are as in the previous exercise, find
the 2 × 2 matrix X.

10.5. Determine which of the matrices⎡
⎣ 1 1 1

1 1 0
1 1 1

⎤
⎦ ,

⎡
⎣ 1 1 1

1 1 0
1 0 0

⎤
⎦ ,

⎡
⎣ 2 2 3

3 1 5
1 −7 3

⎤
⎦

are invertible.

(You do not have to find inverses.)

10.6. Find (i) |A|; (ii) the cofactor matrix of A; (iii) adj A, where A is the
matrix ⎡

⎣ 2 5 3
4 5 2
7 7 1

⎤
⎦ .

Hence find A−1.

10.7. Determine the equilibrium prices P1, P2, P3 of three interdependent
commodities that satisfy

2P1 + 5P2 + 3P3 = 136
4P1 + 5P2 + 2P3 = 132
7P1 + 7P2 + P3 = 160

using matrices or Cramer’s rule.



11
Integration

11.1 Introduction

Differentiating a function f(x) gives its derivative f ′(x), which is also a function
of x. Geometrically, we can view f ′(x) as giving the slope of the tangent at any
point on the graph of y = f(x) or, equivalently, the rate of change of f(x) with
respect to x at that point.

Integrating a function f(x) also gives a function F (x) of x whose derivative
F ′(x) = f(x). For this reason, integration can be used to recover an economic
function from its corresponding marginal. For instance, it can be used to find
the total revenue function TR given the marginal revenue MR.

A useful geometric interpretation of F (x) is as a measure of the area under
the graph of y = f(x). This can be used to compute either the consumer’s
or producer’s surplus. Another application is to compute the extra cost to a
company for increasing production, given the company’s marginal cost function.

Integration can be regarded as the inverse operation to differentiation in
that it operates on a function f(x) to produce a function F (x) whose derivative
F ′(x) = f(x). The function F (x) is the integral of f(x) with respect to the
variable x. Symbolically, we write

F (x) =
∫

f(x)dx

to mean
F ′(x) = f(x).

233
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Integrating a function f(x) means finding its integral; that is, finding a func-
tion whose derivative is f(x).

For example, to integrate the function f(x) = x, with respect to x, means
to find a function whose derivative is x. We know that

d

dx
(x2) = 2x;

so
d

dx

(
1
2
x2

)
=

1
2

d

dx
(x2) = x.

Therefore,

x2 =
∫

2xdx

and
1
2
x2 =

∫
xdx.

However, note that if k is any constant, then also

d

dx
(x2 + k) = 2x,

since the derivative of k is 0. Therefore, we should really write∫
2xdx = x2 + k,

where k is an arbitrary constant, known as a constant of integration.
More generally, if ∫

f(x)dx = F (x),

then F (x) is unique only to within the addition of an arbitrary constant. That
is, ∫

f(x)dx = F (x) + k,

where k is any constant. As we shall see later, in certain circumstances we can
determine k.

To sum up, if u, v are functions of x, then

u =
∫

vdx means
du

dx
= v.

Example 11.1

Determine u given that
du

dx
= 2x and that u = 5 when x = 1.
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Solution. Since du
dx = 2x, then u =

∫
2xdx = x2+k, where k is some constant.

When x = 1, then 5 = u = 12 +k = 1+k. Therefore, k = 4 and so u = x2 +4.

Our aim now is to see how to integrate polynomials in general. We have noted
already that 1

2x2 =
∫

xdx. More generally, we know from (6.5) that

d

dx
(xn) = nxn−1.

Therefore if n �= 0, then

d

dx

(
1
n

xn

)
=

1
n

d

dx
(xn) = xn−1.

It follows that 1
nxn =

∫
xn−1dx. If we write m for n − 1, so that n = m + 1,

then we can rewrite this as

1
m + 1

xm+1 =
∫

xmdx (m �= −1)

Thus we can now integrate any power of x, except x−1. However, from (6.12)
we know that

d

dx
(lnx) =

1
x

= x−1.

Therefore

lnx =
∫

x−1dx

Example 11.2

Integrate each of the following functions with respect to x

1. x5

2. x−2

3. x
1
2

4. 1.

Solution.

1.
∫

x5dx =
1

5 + 1
x5+1 =

1
6
x6.

2.
∫

x−2dx =
1

−2 + 1
x−2+1 = −x−1.



236 Elements of Mathematics for Economics and Finance

3.
∫

x
1
2 dx =

1
1
2 + 1

x
1
2+1 =

2
3
x

3
2 .

4.
∫

1dx =
∫

x0dx =
1

0 + 1
x0+1 = x.

Note that it is customary to write
∫

dx rather than
∫

1dx.
We can check each of these integrations by differentiating the right-hand

side to see if we get what is under the integral sign. For instance

d

dx

(
2
3
x

3
2

)
=

2
3

d

dx
(x

3
2 ) =

2
3
× 3

2
x

3
2−1 = x

1
2

in the third example and
dx

dx
= 1

in the last.

11.2 Rules of Integration

1. If f(x) is a function of x and α is any constant, then∫
αf(x)dx = α

∫
f(x)dx.

(Thus a constant factor may be taken outside the integral sign.)

2. If u, v are functions of x, then∫
(u + v)dx =

∫
udx +

∫
vdx.

That is, to integrate the sum of two functions, integrate each function and add
the two integrals. Similarly for differences:∫

(u − v)dx =
∫

udx −
∫

vdx.

These two rules combined give the rule that if u, v, . . . are functions of x and
if α, β, . . . are constants, then∫

(αu + βv + . . .)dx = α

∫
udx + β

∫
vdx + . . .

Example 11.3

Integrate each of the following functions with respect to x
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1. 4x2

2. 4x2 − 3x + 5

3. (3x − 1)x

4.
2x − 3

x

5. (8 −√
x).

Solution.

1.
∫

4x2dx = 4
∫

x2dx = 4 × 1
2+1x2+1 = 4

3x3. Strictly, the answer is 4
3x3 + k

where k is any constant. However in this and in subsequent examples, the
arbitrary constant is tacitly understood and only noted if required.

2.
∫

(4x2−3x+5)dx = 4
∫

x2dx−3
∫

xdx+5
∫

dx = 4× 1
3x3−3× 1

2x2 +5x =
4
3x3 − 3

2x2 + 5x. (Recall that
∫

dx =
∫

1dx = x.)

3.
∫

(3x−1)xdx =
∫

(3x2−x)dx = 3
∫

x2dx−∫ xdx = 3× 1
3x3− 1

2x2 = x3− 1
2x2.

4.
∫

2x − 3
x

dx =
∫ (

2 − 3
x

)
dx = 2

∫
dx − 3

∫
x−1dx = 2x − 3 lnx.

5.
∫

(8−√
x)dx =

∫
(8−x

1
2 )dx = 8

∫
dx−∫ x

1
2 dx = 8x− 1

1
2+1

x
1
2+1 = 8x− 2

3x
3
2 .

In the next three examples, integration is used to determine a standard
function in economics when the corresponding marginal function is given.

Example 11.4

A firm’s marginal cost function is MC = Q2 + 3Q + 8. Find the total cost
function TC if the fixed costs are 250 units of money.

Solution. By definition,

d

dQ
(TC) = MC = Q2 + 3Q + 8.

Therefore,

TC =
∫

(Q2 + 3Q + 8)dQ.

(Here the variable is now Q rather than x.) Therefore,

TC =
∫

Q2dQ + 3
∫

QdQ + 8
∫

dQ =
1
3
Q3 + 3

(
1
2
Q2

)
+ 8Q + k,
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where k is some constant. When the output Q is 0, the only costs are the fixed
costs. So TC = 250 when Q = 0. This means that 250 = k. Therefore,

TC =
1
3
Q3 +

3
2
Q2 + 8Q + 250.

Example 11.5

Given that the marginal propensity to consume

MPC = 0.15 +
0.2√
Y

,

where Y denotes income, find the consumption function C and savings function
S if consumption is 135 units when Y = 100 money units.

Solution. Since, by definition,

MPC =
dC

dY
,

then
dC

dY
= 0.15 +

0.2√
Y

= 0.15 + 0.2Y − 1
2 .

Therefore,

C =
∫

(0.15 + 0.2Y − 1
2 )dY

= 0.15
∫

dY + 0.2
∫

Y − 1
2 dY

= 0.15Y + 0.2 × 1
(− 1

2 ) + 1
Y (− 1

2 )+1 + k,

where k is some constant. Therefore,

C = 0.15Y + 0.4Y
1
2 + k.

Since C = 135 when Y = 100, then

135 = 0.15 × 100 + 0.4 × 100
1
2 + k = 19 + k.

So k = 116 and therefore

C = 0.15Y + 0.4
√

Y + 116.

Since Y = C + S, then S = Y − C. Therefore,

S = 0.85Y − 0.4
√

Y − 116.
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Example 11.6

If the marginal revenue function MR = 15 − 6Q, determine the total revenue
function TR and the demand function.

Solution. Since, by definition,

d

dQ
(TR) = MR = 15 − 6Q,

then

TR =
∫

(15 − 6Q)dQ = 15
∫

dQ − 6
∫

QdQ = 15Q − 6
(

1
2
Q2

)
+ k,

where k is some constant. Therefore,

TR = 15Q − 3Q2 + k.

Obviously TR = 0 when demand Q = 0. So k = 0 and therefore

TR = 15Q − 3Q2.

Since TR = PQ, where P is the unit price of the good, then

P =
TR

Q
=

15Q − 3Q2

Q
= 15 − 3Q.

The demand function is therefore P = 15 − 3Q.

Before ending this section, we mention one more standard integral. We saw
in (6.11) that

d

dx
(eax) = aeax

if a is a constant. It follows that if a �= 0, then

d

dx

(
1
a
eax

)
=

1
a

d

dx
(eax) = eax.

Therefore,

1
a
eax =

∫
eaxdx.

Example 11.7

Integrate the function 5e−2x with respect to x.
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Solution. ∫
5e−2xdx = 5

∫
e−2xdx = 5

(
1
−2

)
e−2x = −5

2
e−2x.

Example 11.8

A model for the population N (in millions) of a certain country over 10 years,
from the beginning of the year 2000 until the end of 2010, assumes the popu-
lation will decrease exponentially and that the rate of decrease is given by

dN

dt
= −15e−0.5t

where t is the number of years since the beginning of the year 2000.
Express N as a function of t, given that at the start of 2000, the population

is 100 million.
What will the population be at the end of 2010? In what year will the

population fall to 75 million? If we assume this model is valid indefinitely,
what population is predicted in the long run?

Solution. From the given expression for dN
dt we deduce

N =
∫

(−15e−0.5t)dt = −15
∫

e−0.5tdt.

Therefore,

N = −15
(

1
−0.5

)
e−0.5t + k = 30e−0.5t + k,

where k is a constant. Since we are given that N = 100 when t = 0, then
100 = 30e0 + k = 30 + k. So k = 70. Therefore

N = 30e−0.5t + 70.

At the end of 2010, t = 10. This means N = 30e−5+70 = 70.2 (to 1 decimal
place).

The population reaches 75 million when

75 = 30e−0.5t + 70.

That is
e−0.5t =

5
30

,

or
e0.5t =

30
5

= 6
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Figure 11.1 The graph of N(t) = 30e−0.5t + 70. The dashed line corre-
sponds to N = 70.

(since e−x = 1
ex ). Therefore 0.5t = ln 6 and so

t =
ln 6
0.5

= 3.6 (to 1 decimal place).

The population is therefore 75 million in 2004.
In the long run, the term e−0.5t approaches 0 and so N will approach the

value 70 million (see Fig. 11.1).

11.3 Definite Integrals

The integral of a function of a variable x, as discussed previously, is itself a
function of x. More precisely, it is called an indefinite integral. A definite
integral has, as the name might suggest, a definite numerical value.

To be more specific, let F (x) =
∫

f(x)dx. Then the function F (x) is the
indefinite integral of f(x) with respect to x. The definite integral of f(x) be-
tween x = a and x = b is denoted by

∫ b

a
f(x)dx and defined to be the number
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F (b) − F (a). The numbers a and b are the limits of the integration. For
short, we can write [F (x)]ba for F (b) − F (a).

Notice that although F (x) can have an arbitrary constant added to it, the
constant will disappear when evaluating F (b) − F (a). To sum up

The definite integral∫ b

a

f(x)dx = [F (x)]ba = F (b) − F (a),

where F (x) =
∫

F (x)dx is the indefinite integral.

Thus to evaluate a definite integral, one needs first to find the indefinite integral,
evaluate it at the two limits of integration, and then take the difference of these
values.

Example 11.9

Evaluate the following

1.
∫ 2

0
x2dx,

2.
∫ 1

0
e4xdx,

3.
∫ 3

1
1
xdx,

4.
∫ 2

1
(6x2 − 3x + 5)dx.

Solution.

1.
∫ 2

0
x2dx =

[
1
3x3
]2
0

(since 1
3x3 =

∫
x2dx).

Therefore
∫ 2

0
x2dx =

[
1
3x3
]2
0

= 1
3 (8 − 0) = 8

3 .

2.
∫ 1

0
e4xdx =

[
1
4e4x

]1
0

= 1
4 (e4−e0) = 1

4 (e4−1) = 13.400 (correct to 3 decimal
places).

3.
∫ 3

1
1
xdx (sometimes written as

∫ 3

1
dx
x ) = [lnx]31 = ln 3 − ln 1 = ln 3 = 1.099

(correct to 3 decimal places).

4.
∫ 2

1
(6x2−3x+5)dx =

[
2x3 − 3

2x2 + 5x
]2
1

= (16−6+10)−(2− 3
2 +5) = 14.5.
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11.4 Definite Integration: Area and Summation

The integral sign
∫

originated in the 17th century as an elongated S, suggestive
of the aspect of integration as a summation process, leading to a method for
calculating areas under graphs.

Given a function y = f(x), let A, B be two points on the x-axis with
coordinates (a, 0), (b, 0) respectively, where a ≤ b (see Fig. 11.2). We refer to
the area enclosed by the graph of y = f(x), the x-axis and the vertical lines
x = a and x = b, simply as the area under the graph between A and B (or
between x = a and x = b).

(For the following discussions, we assume that the function f(x) is contin-
uous between x = a and x = b, which essentially means that the graph of
y = f(x) for this range of x is continuous, that is has no breaks.)

It can be shown that the area under the graph of y = f(x) between x = a

and x = b is the value of the definite integral
∫ b

a
f(x)dx. Here is a rough outline

why this is so. Let P with coordinates (x, 0) be a general point on the x-axis
between A and B. Let S(x) be the area under the graph of y = f(x) between
A and P .

A B
x x+ x∆ x

y

(x,y)
y=f(x)

S S∆

0
P

Figure 11.2 An illustration of the definite integral as the area under a
graph.
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A very small vertical strip of width ∆x of this area can be regarded as
rectangular of width ∆x and height y (= f(x)). If ∆S denotes the area of this
strip, then ∆S = y∆x so that ∆S

∆x = y. As ∆x gets smaller and smaller (ap-
proaches 0), the ratio ∆S

∆x approaches, by definition, the derivative dS
dx . Therefore

dS
dx = y = f(x). So S(x) = F (x) + k, where F (x) is the (indefinite) integral∫

f(x)dx and k is some constant.
Obviously S(a) = 0, since S(a) is just the area under the graph between A

and A (the case P = A). Therefore 0 = S(a) = F (a) + k and so k = −F (a).
Therefore S(x) = F (x) + k = F (x) − F (a).

In particular the area under the graph between x = a and x = b (the case
P = B) is S(b) = F (b)−F (a), which, by definition, is

∫ b

a
f(x)dx, since F (x) is

the indefinite integral
∫

f(x)dx. To sum up:

The area under the graph of y = f(x) between x = a and x = b is the
definite integral ∫ b

a

f(x)dx.

Here are some rules for definite integrals. They follow easily from the definition.

1.
∫ b

a

f(x)dx = −
∫ a

b

f(x)dx;

2.
∫ a

a

f(x)dx = 0;

3.
∫ b

a

f(x)dx +
∫ c

b

f(x)dx =
∫ c

a

f(x)dx.

To see why these rules hold, let the indefinite integral
∫

f(x)dx = F (x). Then,
by definition,

∫ b

a
f(x)dx = F (b)−F (a) = −(F (a)−F (b)) = − ∫ a

b
f(x)dx. This

proves Rule 1. Since F (a)−F (a) = 0, Rule 2 follows immediately. Finally, Rule
3 follows easily from the fact that F (b) − F (a) + F (c) − F (b) = F (c) − F (a).

A brief word of warning. The mathematics involved treats areas below the x-
axis as negative (since y is negative there). Therefore, more precisely,

∫ b

a
f(x)dx

is the difference of the total area above the x-axis and that under the x-axis,
between x = a and x = b.

Example 11.10

Find the area under the graph of y = x2 + 5:

1. between x = 0 and x = 1;
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5

7

9

y

x

y=x +52

Figure 11.3 The graph of y = x2 + 5.

2. between x = 1 and x = 2;

3. between x = 0 and x = 2.

(See Fig. 11.3.)

Solution.

1.
∫ 1

0
(x2 + 5)dx =

[
1
3x3 + 5x

]1
0

= (1
3 + 5) − 0 = 51

3 ;

2.
∫ 2

1
(x2 + 5)dx =

[
1
3x3 + 5x

]2
1

= (8
3 + 10) − ( 1

3 + 5) = 71
3 ;

3.
∫ 2

0
(x2 + 5)dx =

[
1
3x3 + 5x

]2
0

= (8
3 + 10) − 0 = 12 2

3 ;

This illustrates Rule 3 for definite integrals since the value of the integral in
Example 11.10.3 is the sum of the values of those in Example 11.10.1 and
11.10.2.

Example 11.11

Find the area in the first quadrant enclosed by the graph of y = 4x2 and the
y-axis and the line y = 1 (the shaded area in Fig 11.4).
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0
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0.6

0.8
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y

x

Figure 11.4 The graph of y = 4x2.

Solution. Note that when y = 1 then x2 = 1
4 and so x = 1

2 in the first
quadrant. We want the area of the rectangle ABCO (see Fig. 11.4) less the
area under the graph between x = 0 and x = 1

2 . That is

1 × 1
2
−
∫ 1

2

0

4x2dx =
1
2
− 4
∫ 1

2

0

x2dx =
1
2
− 4
[
1
3
x3

] 1
2

0

=
1
2
− 4
(

1
24

− 0
)

=
1
2
− 1

6
=

1
3
.

Example 11.12

Find the area under the graph of y = e2x between x = 0 and x = 1 (the shaded
area in Fig. 11.5).

Solution.∫ 1

0

e2xdx =
[
1
2
e2x

]1
0

=
1
2
(e2 − e0)

=
1
2
(e2 − 1) = 3.19 (correct to 2 decimal places)
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Figure 11.5 The graph of y = e2x.

Example 11.13

Find the area under the graph of y = 1
x between x = 1 and x = 2.

Solution. Since
∫

1
xdx = lnx, then

∫ 2

1
1
xdx = [lnx]21 = ln 2− ln 1 = ln 2− 0 =

ln 2 = 0.69 (to 2 decimal places).

Example 11.14

Find the area that is enclosed completely between the graphs of y = x2 and
y = 8x − x2 (see Fig 11.6).

Solution. The graphs meet at (x, y) where x2 = y = 8x − x2. That is,
2x2 − 8x = 0, or 2x(x − 4) = 0. The only solutions to this equation are x = 0
and x = 4. So the graphs meet at the origin and at the point (4, 16). The
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Figure 11.6 The graphs of the functions y = x2 and y = 8x − x2.

required area is∫ 4

0

(8x − x2)dx −
∫ 4

0

x2dx =
∫ 4

0

(8x − 2x2)dx = 2
∫ 4

0

(4x − x2)dx

= 2
[
2x2 − 1

3
x3

]4
0

= 2
(

32 − 64
3

− 0
)

=
64
3

= 21
1
3
.

The summation aspect of definite integration can be seen from the sketched
proof that

∫ b

a
f(x)dx is the area under the graph of y = f(x) between x = a

and x = b.
In Fig 11.2, each small strip has area y∆x. Integrating gives the sum of all

these small areas in the limiting case as strip widths ∆x tend to 0. Put another
way, if for each value of x between a and b we evaluate f(x) and multiply it by
a small increment of x and sum, the total is the definite integral

∫ b

a
f(x)dx in

the limit as the increments approach 0.
(If we abuse notation and regard dx as an infinitesimal increment of x, then∫ b

a
f(x)dx ‘sums’ all the products f(x)dx as x ranges between a and b. We have

touched here on the subject of differentials that is discussed in Appendix A.
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Figure 11.7 The graph of the supply curve P = P0, where P0 is constant.
The area of the rectangle provides the revenue.

To illustrate this way of thinking, consider a good where the price P per
unit charged by the supplier is a function of Q, the quantity supplied. If P is
constant, say P = P0, the revenue from supplying Q0 units of the good is just
P0Q0. This is the area of the rectangle in Fig. 11.7 or equivalently the area
under the graph of P = P0 between Q = 0 and Q = Q0.

Consider the more general situation when the price P varies with Q, the
supply curve. If a quantity Q0 is supplied at the prevailing price P0, the revenue
is P0Q0. However, in practice, the quantity Q0 may be supplied in smaller
quantities totalling Q0. As each small quantity ∆Q is supplied, the price P

per unit changes. If ∆Q is very small we can assume the price per unit does
not change as Q increases to Q + ∆Q, so that the revenue for supplying the
quantity ∆Q is P × ∆Q (the shaded area in Fig. 11.8).

The revenue for supplying a total quantity Q0 in small quantities ∆Q is the
sum of all these small areas which, as ∆Q gets smaller and smaller (i.e., tends
to 0), approaches in value the area under the supply curve between Q = 0 and
Q = Q0. This area is ∫ Q0

0

PdQ.

This number can be regarded as, theoretically, the total revenue obtained
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Price

Quantity
∆Q Q0

P

Figure 11.8 Graph illustrating the supplier’s revenue as the area under
the supply curve.

for supplying Q0 units of the good in a continuous supply flow. More generally,∫ B

A

PdQ,

is the revenue produced as the quantity supplied, in this way, increases from A

to B.

11.5 Producer’s Surplus

This is a measure of the producer’s satisfaction or of willingness to supply a
good. We assume the price P is a function of quantity Q.

If the prevailing price for a quantity Q0 of the good is P0, then at that price
the producer’s revenue is P0Q0, the area of the rectangle OP0AQ0 in Fig. 11.9.
However, the producer was willing to supply the Q0 units of the good at lower
prices in smaller quantities. The area under the supply curve

∫ Q0

0
PdQ between

Q = 0 and Q = Q0 represents the producer’s revenue for supplying Q0 units
in a continuous supply flow.
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Figure 11.9 Graph showing the producer’s surplus.

The difference between these two revenues, represented by the shaded area
in Fig. 11.9, is

P0Q0 −
∫ Q0

0

PdQ

and is known as the producer’s surplus. It measures the benefit to the pro-
ducer of supplying all Q0 units at the prevailing price P0.

11.6 Consumer’s Surplus

This is a measure of consumer utility: benefit, satisfaction, or willingness to
buy a particular good at the prevailing price. Again we assume that the price
P per unit of the good is a function of the demand Q.

The following account is analogous to that for the producer’s surplus. If the
prevailing price for a quantity Q0 is P0, the consumer would pay P0Q0 for the
goods, which is the area of the rectangle OP0BQ0 in Fig. 11.10.

However, if the consumer were to buy the same quantity Q0 in a continuous
purchase flow, the cost would be

∫ Q0

0
PdQ, the area under the demand graph

between Q = 0 and Q = Q0.
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Figure 11.10 Graph showing the consumer’s surplus.

Therefore by buying at the prevailing price, the consumer benefits by the
difference of these two costs ∫ Q0

0

PdQ − P0Q0

which is known as the consumer’s surplus. It is represented by the shaded
area in Fig 11.10.

Example 11.15

Find the consumer’s surplus if the demand function is P = 17− 5Q, when the
demand Q is 2.

Solution. Here Q0 = 2, so P0 = 17−5Q0 = 17−10 = 7. Therefore P0Q0 = 14
and ∫ 2

0

PdQ =
∫ 2

0

(17 − 5Q)dQ =
[
17Q − 5

2
Q2

]2
0

= (34 − 10) − 0 = 24.

Therefore the consumer’s surplus is
∫ 2

0
PdQ − P0Q0 = 24 − 14 = 10.
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Example 11.16

If the demand equation is

P =
8√
Q

,

find the consumer’s surplus when P = 4.

Solution. We have P0 = 4, and Q0 is found from the equation 4 = P0 = 8√
Q0

.
Therefore

√
Q0 = 8

4 = 2, and so Q0 = 4, P0Q0 = 4 × 4 = 16, and
∫ 4

0

PdQ =
∫ 4

0

8√
Q

dQ

= 8
∫ 4

0

Q− 1
2 dQ

= 8
[

1
− 1

2 + 1
Q− 1

2+1

]4
0

= 8
[
2Q

1
2

]4
0

= 8[2 × 2 − 0]

= 32.

Therefore, the consumer’s surplus is∫ 4

0

PdQ − P0Q0 = 32 − 16 = 16.

Example 11.17

Find the producer’s surplus at Q = 5 if the supply function is P = 7 + 4Q.

Solution. Since Q0 = 5, then P0 = 7 + 4 × 5 = 27, so P0Q0 = 135 and∫ 5

0

PdQ =
∫ 5

0

(7 + 4Q)dQ = [7Q + 2Q2]50 = 35 + 50 − 0 = 85.

The producer’s surplus is

P0Q0 −
∫ Q0

0

PdQ = 135 − 85 = 50.

Figure 11.11 illustrates this example. The shaded area represents the producer’s
surplus.
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Figure 11.11 Producer’s surplus for Example 11.17.

Example 11.18

Given the demand function P = 70−4Qd and the supply function P = 5+Qs,
evaluate the consumer’s surplus and the producer’s surplus, assuming equilib-
rium.

Solution. In equilibrium, Qd = Qs. Let Q be this common value. Then the
equilibrium price is given by

70 − 4Q = P = 5 + Q.

Therefore 70− 5 = Q + 4Q and so 65 = 5Q and Q = 13. The equilibrium price
is then P = 5 + Q = 18.

To calculate the consumer’s surplus, we use the consumer’s demand function
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in equilibrium: P = 70 − 4Q. The consumer’s surplus is therefore:∫ 13

0

PdQ − 13 × 18 =
∫ 13

0

(70 − 4Q)dQ − 234

=
[
70Q − 2Q2

]13
0

− 234

= (910 − 338 − 0) − 234 = 338.

For the producer’s surplus, use the producer’s supply function in equilibrium:
P = 5 + Q. The producer’s surplus is therefore:

13 × 18 −
∫ 13

0

PdQ = 234 −
∫ 13

0

(5 + Q)dQ

= 234 −
[
5Q +

1
2
Q2

]13
0

= 234 − (65 + 84.5 − 0) = 84.5

Example 11.19

Given the demand function P = 25 − Q − 0.3Q2, by how much does the con-
sumer’s surplus change if Q increases from 5 to 6 units?

Solution. If Q = 5, then P = 12.5 and the consumer’s surplus is∫ 5

0

PdQ − 5 × 12.5 =
∫ 5

0

(25 − Q − 0.3Q2)dQ − 62.5

=
[
25Q − 1

2
Q2 − 0.1Q3

]5
0

− 62.5

= 125 − 12.5 − 12.5 − 62.5

= 37.5

When Q = 6, then P = 8.2 and the consumer’s surplus is∫ 6

0

PdQ − 6 × 8.2 =
∫ 6

0

(25 − Q − 0.3Q2)dQ − 49.2

=
[
25Q − 1

2
Q2 − 0.1Q3

]6
0

− 49.2

= 150 − 18 − 21.6 − 49.2

= 61.2
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The consumer’s surplus therefore increases by 23.7 units.

Integration may be used to reconstruct a function from its corresponding
marginal function. Put another way, given f ′(x), the rate of change relative to
x of a function f(x) of x, then integration can be used to determine f(x).

For instance, given a marginal cost function MC = d
dQ (TC), the total cost

function TC is given by TC =
∫

MCdQ. This indefinite integral is in general
a function of Q.

The extra costs as a result of raising production from Q = A to Q = B units
is the difference of the values of this indefinite integral evaluated at Q = A and
Q = B. From the definition of a definite integral, this difference is

∫ B

A
MCdQ.

This is a special case of the more general equation∫ b

a

f ′(x)dx = f(b) − f(a) (11.1)

which is obvious because the integral of the derivative f ′(x) of f(x) is f(x)
(since differentiation and integration are inverse operations). Then (11.1) fol-
lows by definition of the definite integral.

Example 11.20

A company’s marginal cost function is given by MC = 100 − 2Q + 0.6Q2.
Calculate the extra cost in increasing production from:

1. 5 to 10 units,

2. 10 to 15 units.

Solution.

1. ∫ 10

5

MCdQ =
∫ 10

5

(100 − 2Q + 0.6Q2)dQ

=
[
100Q − Q2 + 0.6 × 1

3
Q3

]10
5

= 1,000 − 100 + 200 − (500 − 25 + 25)

= 600
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2. ∫ 15

10

MCdQ =
∫ 10

5

(100 − 2Q + 0.6Q2)dQ

=
[
100Q − Q2 + 0.2Q3

]15
10

= 1,500 − 225 + 675 − (1,000 − 100 + 200)

= 850

Notes

1. The cost of raising production from 5 to 15 units is
∫ 15

5
MCdQ =∫ 10

5
MCdQ +

∫ 15

10
MCdQ = 600 + 850 = 1,450. Here we used property

3 of definite integrals in §11.4.

2. We have implicitly found the total cost function TC. For as mentioned
before, TC is the indefinite integral

∫
MCdQ. Therefore

TC = 100Q − Q2 + 0.2Q3 + k

where k is some constant.

Clearly when Q = 0, total costs TC = fixed costs FC. Therefore k = FC.
So we can determine TC exactly if the fixed costs are given.

The total revenue TR of a company may be regarded as a function of time t.
If we know the revenue the company receives each day, the total revenue over
t days is simply the sum of the revenues for each of these days. In this case, we
implicitly assume that t is a discrete variable.

If the company’s revenue is in continuous flow and we are given the marginal
revenue MR as a function of t, then to calculate the total revenue we use the
continuous analogue of discrete summation: integration.

Example 11.21

Find TR when output Q = 4 for each of the following MR functions:

1. MR = 15 − 0.6Q,

2. MR = 40Q−0.5.

In each case, compute the increase in TR as Q is raised from 4 to 9 units.



258 Elements of Mathematics for Economics and Finance

Solution.

1. When Q = 4,

TR =
∫ 4

0

MR dQ =
∫ 4

0

(15 − 0.6Q)dQ

=
[
15Q − 0.3Q2

]4
0

= 60 − 4.8 = 55.2.

The change in TR as Q increases from 4 to 9 is∫ 9

4

MR dQ =
[
15Q − 0.3Q2

]9
4

= (135 − 24.3) − 55.2 = 55.5

2. When Q = 4,

TR =
∫ 4

0

40Q−0.5dQ = 40
∫ 4

0

Q−0.5dQ

= 40
[

1
−0.5 + 1

Q−0.5+1

]4
0

= 80
[
Q0.5

]4
0

= 80(40.5 − 0) = 80 × 2 = 160.

The change in TR as Q increases from 4 to 9 is∫ 9

4

MRdQ = 80
[
Q0.5

]9
4

= 80(90.5 − 40.5)

= 80(3 − 2) = 80.

EXERCISES

11.1. Integrate each of the following functions with respect to x:

a) x7,

b) x−4,

c) 3x2 + 2x + 1,

d) 16x4 − 2
x2

,

e) e−4x,
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f) e2x + 4x − 7,

g)
(x2 + 4x + 2)

2x
,

h) x(x + 2)2,

i) x3 + x − 3.

11.2. Evaluate:

a)
∫ 1

0

x4dx,

b)
∫ 4

2

(3x + 2)dx,

c)
∫ 2

0

e−3xdx,

d)
∫ 1

0

(3x4 + 2x3 − x + 3)dx,

e)
∫ 2

1

(
3x +

2
x

)
dx.

11.3. Find the total revenue TR and demand functions corresponding to
each of the marginal revenue functions:

a) MR = 15 − 4Q,

b) MR =
9√
Q

.

11.4. Determine the total cost function TC if the marginal cost function
MC = 25 + 8Q and fixed costs are 12 units.

11.5. If the marginal propensity to consume

MPC = 0.75 +
0.1√
Y

and consumption is 15 when income is 16, determine the consump-
tion function and hence the corresponding savings function.

11.6. Evaluate the consumer’s surplus CS at Q = 1 for the demand func-
tion P = 5 − Q − 2Q2.

11.7. Evaluate the producer’s surplus PS at Q = 3 for the supply function
P = 40 + 3Q2. Find the change in PS if Q increases to 4.

11.8. Net investment I(t) is defined to be the rate of change of capital
stock K(t) relative to time t.
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If I(t) = 240t
3
5 and the initial stock of capital is 100, determine the

function K(t).



12
Linear Difference Equations

12.1 Introduction

Problems encountered so far have mostly been static in that the quantities
and equations involved are for a particular period of time. For instance, the
current price of a good depends on the current demand of consumers.

However, it may be that this year’s price for a good, such as a car, depends
on last year’s demand; or a manufacturing quota for a particular month depends
on the demand in that month in the previous year (or years). This is the concept
of a lagged response. These examples are not static but dynamic situations in
which economic models are viewed as a sequence of discrete periods. The value
of an economic quantity in one period may depend on data from the previous
period, or previous n periods for some integer n > 0.

Difference equations are used to analyse dynamic models. An nth order
difference equation, for instance, might express the price of a good as a function
of the demands in the previous n years.

12.2 Difference Equations

Consider a sequence X0, X1, . . . of quantities, which we denote simply by
{Xt}. By a sequence we mean a list in a specific order. In the economic situa-
tions that will concern us, t denotes time measured in discrete units 0, 1, 2, . . ..

261
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In this case, the period before time t + 1 starting at time t is referred to as
period t.

Thus, period 0 is the initial period. The sequence {Xt} can be regarded
as the values of a ‘step’ function X of a continuous time variable i, where
X(i) = Xt for all i in period t. Thus, X has constant value Xt in period t (see,
for example, Fig. 12.1).

One way of generating a sequence {Xt} is by using an nth order difference
equation, which relates the general term of the sequence to the previous n

terms. We shall only be concerned with the linear difference equations
(LDEs). They are of the form:

Xt + at−1Xt−1 + at−2Xt−2 + . . . + at−nXt−n = b,

where the coefficients ai and b are constants (independent of t). If b = 0, the
difference equation is said to be homogeneous; otherwise it is inhomoge-
neous.

By ‘solving’ a difference equation, we mean expressing the function X men-
tioned earlier explicitly as a function of t. An nth order difference equation
determines the sequence uniquely if the first n terms of the sequence are spec-
ified.

For example, consider the first order difference equation

Xt − 3Xt−1 = −1,

(or Xt = 3Xt−1 − 1) where X0 = 2. Using the difference equation, we can
generate successively the terms of the corresponding sequence {Xt}:

X1 = 3X0 − 1 = 3 × 2 − 1 = 5,

X2 = 3X1 − 1 = 3 × 5 − 1 = 14,

and so on. To compute the term X100 in this way would mean explicitly evalu-
ating X1, X2, . . . , X99 successively. This is laborious, but if we solve the linear
difference equation, the computation is simple. Accept for the moment (for rea-
sons that will be explained later) that the solution of this difference equation
is

Xt =
1
2
(1 + 3t+1).

Substituting t = 0 gives X0 = 1
2 (1 + 31) = 2 (as it should be); t = 1 gives

X1 = 1
2 (1 + 32) = 5, and t = 2 gives X2 = 1

2 (1 + 33) = 14, agreeing with our
previous computations. The term X100 is simply 1

2 (1 + 3101), which is a huge
number and best left expressed in this form.

Difference equations are sometimes known as time series (if t denotes time)
or recurrence relations. The sequence {Xt} is also known as the time path of
the function X being measured, giving the successive values in time of X.
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Figure 12.1 Graph representing the solution of the difference equation
Xt = 2Xt−1 − 1 with X0 = 2.

A sequence {Xt} may be visualised by plotting the graph of the corre-
sponding step function X. For instance, the sequence {Xt} given by the linear
difference equation

Xt = 2Xt−1 − 1,

where X0 = 2, has first four terms: 2, 3, 5, 9. This can be represented graphi-
cally as in Fig. 12.1. (On a line segment, the heavy dot represents the end point
that belongs to the graph.)

The values of X change only at discrete values of t. So for instance,

Xt = X0 = 2 for 0 ≤ t < 1,

Xt = X1 = 3 for 1 ≤ t < 2,

Xt = X2 = 5 for 2 ≤ t < 3,

Xt = X3 = 9 for 3 ≤ t < 4,

and so on.
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12.3 First Order Linear Difference Equations

First order linear difference equations can be dealt with as a special case of
second order linear difference equations. However, it is instructive to see them
analysed from basics.

Consider a general first order linear difference equation written in the form

Xt = aXt−1 + b. (12.1)

This means that each term is a times the previous term and then b is added to
this product. Therefore, Xt−1 = aXt−2 + b, Xt−2 = aXt−3 + b, and so on. It
follows that

Xt = a(aXt−2 + b) + b

= a2Xt−2 + (a + 1)b

= a2(aXt−3 + b) + (a + 1)b

= a3Xt−3 + (a2 + a + 1)b.

Eventually, we have

Xt = atXt−t + (at−1 + at−2 + . . . + a + 1)b.

The term
at−1 + at−2 + . . . + a + 1

is the sum of a geometric series and is equal to

(1 − at)
(1 − a)

if a �= 1;

otherwise the sum is equal to

1 + 1 + . . . + 1 + 1(t terms ) = t.

Therefore,

Xt =

⎧⎨
⎩ atX0 +

(
1 − at

1 − a

)
b if a �= 1,

X0 + bt if a = 1.

If a �= 1, we can rewrite the solution (collecting together the terms involving
at) in the form:

Xt = Aat +
b

1 − a
, (12.2)

where A is a constant that can be determined from X0. (The example given
earlier in Section 12.2 had a = 3 and b = −1.)
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Example 12.1

A bank customer borrows $15,000. Interest is 9.6% per annum on the outstand-
ing balance. The customer can afford to repay at most $400 each month.

1. How long will it take to repay the loan?

2. How much does the customer owe after 1 year?

Solution.

1. Let Xt be the amount owed after t months. Then X0 = 15,000. At the
end of t months, interest of 9.6

12 % = 0.8% of the current balance of Xt−1 is
added and a repayment made of $400, therefore

Xt =
(

1 +
0.096
12

)
Xt−1 − 400

= 1.008Xt−1 − 400.

From (12.2) we have (with a = 1.008 and b = −400):

Xt = A(1.008)t − 400
1 − 1.008

= A(1.008)t + 50,000,

where A is a constant.

Since X0 = 15,000, then putting t = 0 in this equation gives (as 1.0080 = 1)

15,000 = A + 50,000.

Therefore A = −35,000 and so

Xt = −35,000(1.008)t + 50,000.

This is explicitly the balance owing after t months. The balance is 0 at
time t if

35,000(1.008)t = 50,000,

that is
(1.008)t =

50,000
35,000

=
10
7

.

Taking natural logarithms of both sides:

t ln(1.008) = ln
(

10
7

)
.

Therefore

t =
ln
(

10
7

)
ln(1.008)

,

which is approximately 44.76 months. Therefore, the loan will be paid off
at the end of the 45th month.
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2. X12 = −35,000(1.008)12 + 50,000 ≈ $11,488.15.

Example 12.2

A bank savings account pays 5% per annum interest. Initially, a saver deposits
£1,000. After 10 years, what will be the value of this customer’s savings account
if

1. no further deposits are made;

2. £100 is deposited at the end of each year?

Solution. Let Xt be the value of the savings account after t years.

1. In this case
Xt = (1 + 0.05)Xt−1 = 1.05Xt−1.

Then from (12.2), with a = 1.05 and b = 0, we have

Xt = A(1.05)t,

where A is a constant.

Since X0 = 1,000, then 1,000 = X0 = A(1.05)0 = A. Therefore,

Xt = 1,000(1.05)t.

We want
X10 = 1,000(1.05)10 ≈ £1,628.89.

2. The difference equation is now

Xt = (1.05)Xt−1 + 100.

Then from (12.2), with a = 1.05 and b = 100, we have

Xt = A(1.05)t +
100

1 − 1.05
= A(1.05)t − 2,000.

Since 1,000 = X0, then

1,000 = X0 = A(1.05)0 − 2,000 = A − 2,000.

Consequently, A = 3,000 and

Xt = 3,000(1.05)t − 2,000.

The value after 10 years is

X10 = 3,000(1.05)10 − 2,000 ≈ £2,886.68.
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12.4 Stability

Suppose an economic model has associated with it the first order linear differ-
ence equation

Xt = aXt−1 + b (a �= 1).

We showed that this has solution:

Xt = Aat +
b

1 − a
,

where A is a constant (independent of time t).

1. If −1 < a < 1, then at tends to 0 as t tends to infinity (i.e., t increases
indefinitely). Then Xt converges to the value b

1−a , called the equilibrium
value.

The convergence is oscillatory if a is negative and is uniform if a is
positive. The model or difference equation in this case is said to be stable.
See Figs. 12.2 and 12.3, respectively.

2. If a < −1 or a > 1, then Xt diverges in that, numerically, Xt increases
without bound. If a is negative, the divergence is oscillatory, whereas if a

is positive, the divergence is uniform. See Figs. 12.4 and 12.5, respectively.
The model or difference equation is unstable in this case.

Example 12.3

Solve the following linear difference equations:

1. Xt = −0.5Xt−1 + 0.25, where X0 = 0.5,

2. Xt = 1
3Xt−1 + 1, where X0 = 1

2 ,

3. Xt = −2Xt−1 + 3, where X0 = 3,

4. Xt = 3Xt−1 + 5, where X0 = 3.5.

In each case, comment on stability and display the solution graphically for
0 ≤ t < 5.

Solution.

1.

Xt = A(−0.5)t +
0.25

1 − (−0.5)
= A(−0.5)t +

0.25
1.5

= A(−0.5)t +
1
6
.
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Figure 12.2 Graph of the solution of Example 12.3.1 showing oscillatory
convergence to the equilibrium value.

Since 0.5 = X0 = A + 1
6 , then A = 1

3 . Therefore

Xt =
1
3
(−0.5)t +

1
6
.

This is a stable linear difference equation, with oscillatory convergence to
the equilibrium value 1

6 as shown in Fig. 12.2.

2.

Xt = A

(
1
3

)t

+
1

1 − 1
3

= A

(
1
3

)t

+
3
2
.

Since 1
2 = X0 = A + 3

2 , then A = −1. Therefore,

Xt =
3
2
−
(

1
3

)t

.

This is a stable linear difference equation, uniformly converging to the
equilibrium value 3

2 as shown in Fig. 12.3.

3.
Xt = A(−2)t +

3
1 − (−2)

= A(−2)t + 1.
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Figure 12.3 Graph of the solution of Example 12.3.2 showing uniform
convergence to the equilibrium value.

Since 3 = X0 = A + 1, then A = 2 and

Xt = 2(−2)t + 1.

This is an unstable linear difference equation. The divergence is oscillatory
(see Fig. 12.4).

4.
Xt = A(3)t +

5
1 − 3

= A(3)t − 2.5.

Since 3.5 = X0 = A − 2.5, then A = 6. Therefore,

Xt = 6(3)t − 2.5.

This is an unstable linear difference equation. The divergence is uniform
(see Fig. 12.5).
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Figure 12.4 Graph of the solution of Example 12.3.4 showing oscillatory
divergence.

12.5 The Cobweb Model

The Cobweb model is an economic model for analysing periodic fluctuations
in price, supply, and demand that oscillate towards equilibrium. It is assumed
that the quantities involved change only at discrete time intervals and that
there is a time lag in the response of suppliers to price changes.

For instance, the supply this year of a particular agricultural product de-
pends on the price obtained from the previous year’s harvest. The demand for
the produce will depend of course on this year’s price. Another example is that
of package holidays. The holiday company’s supply of holidays for this season
will depend on the prices obtained for last season’s.

In general, we assume that the supply function at time t for a single good
is

QS,t = aPt−1 + b.

Here QS,t is the supply at time t and Pt−1 the price at time t− 1 (the previous
period). The demand equation is

QD,t = cPt + d.
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Figure 12.5 Graph of the solution of Example 12.3.3 showing uniform
divergence.

Here a, b, c, d are constants, with a > 0 and c < 0. Initially t = 0, and then t

increases one unit at a time.
Assuming equilibrium in period t, we have QD,t = QS,t. That is,

aPt−1 + b = cPt + d

or
Pt =

a

c
Pt−1 +

b − d

c
.

This is a first order linear difference equation, with a
c < 0, since a is positive

and c is negative. The sequence {Pt} generated gives the equilibrium prices
for each period. Since a/c �= 0, as a/c is negative, we can solve the difference
equation using (12.2) to obtain an expression for Pt in the form

Pt = A
(a

c

)t

+
(

b − d

c

)
/
(
1 − a

c

)

= A
(a

c

)t

+
b − d

c − a

where A is a constant.



272 Elements of Mathematics for Economics and Finance

If −1 < a
c < 0, we have stability and oscillatory convergence to an equilib-

rium value
Pe =

b − d

c − a
. (12.3)

Example 12.4

A car manufacturer’s supply and demand functions at time t for a particular
car model are

QS,t = 3Pt−1 − 12, QD,t = −4Pt + 28.

Show that over time, the car’s price will converge and give the equilibrium
value.

Solution. For equilibrium in period t,

3Pt−1 − 12 = −4Pt + 28,

which simplifies to

Pt =
(
−3

4

)
Pt−1 + 10. (12.4)

Since 0 > − 3
4 > −1, the prices Pt converge to the equilibrium value Pe, which

we can compute using the formula obtained earlier (equation (12.3)) or in §12.3.
Using the latter with a = − 3

4 and b = 10, we have

Pe =
b

1 − a
=

10
1 − (− 3

4

) =
40
7

= 5
5
7
.

Another way to compute Pe, when we know there is convergence, is to note
that in the limit as t tends to infinity, Pt = Pt−1 = Pe. Therefore,

Pe =
(
−3

4

)
Pe + 10.

Then
(
1 + 3

4

)
Pe = 10, from which it follows that Pe = 55

7 , as before.

Observe that the equilibrium price in this problem is independent of the value
of P0. The general solution of linear difference equation (12.4) is

Pt = A

(
−3

4

)t

+
10

1 − ( 3
4

) = A

(
−3

4

)t

+
40
7

where A is a constant.
From this equation it is again clear that the equilibrium price is 40

7 and that
this does not depend on the value of A (which depends on the value of P0).
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12.6 Second Order Linear Difference Equations

A time path sequence is uniquely determined, given a second order linear dif-
ference equation and the values of the first two terms.

Example 12.5

Find the first five terms of the sequence {Xt} given by

Xt − 5Xt−1 + 3Xt−2 = 1,

given that X0 = 1, X1 = 3.

Solution. Rearranging the linear difference equation gives

Xt = 5Xt−1 − 3Xt−2 + 1.

Therefore,

X2 = 5X1 − 3X0 + 1 = 5 × 3 − 3 × 1 + 1 = 13,

X3 = 5X2 − 3X1 + 1 = 5 × 13 − 3 × 3 + 1 = 57,

X4 = 5X3 − 3X2 + 1 = 5 × 57 − 3 × 13 + 1 = 247.

Therefore, the first five terms in order are 1, 3, 13, 57, 247.

The general second order linear difference equation is of the form

Xt + aXt−1 + bXt−2 = c (12.5)

where we assume a, b, c are constants (independent of t).
First order linear difference equations may be considered as the special case

b = 0. This explains the remark made in Section 12.3 when discussing first
order linear difference equations: that they are special cases of second order
linear difference equations. However, we gave a self-contained account of the
general solution for the first order case. The general solution for the second
order linear difference equations is a little more involved.

The associated homogeneous linear difference equation of (12.5) is

Xt + aXt−1 + bXt−2 = 0. (12.6)

If {Ut}, {Vt} are sequences satisfying the linear difference equation (12.5), then

Ut + aUt−1 + bUt−2 = c
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and
Vt + aVt−1 + bVt−2 = c.

Subtracting we have:

Ut − Vt + a(Ut−1 − Vt−1) + b(Ut−2 − Vt−2) = 0

or
Wt + aWt−1 + bWt−2 = 0

where Wt = Ut − Vt. Thus {Wt} satisfies the homogeneous linear difference
equation (12.6).

It follows that any two solutions of (12.5) differ by a solution of the associ-
ated linear difference equation (12.6). Thus if we manage to find a particular
solution of (12.5) by guesswork or from theory, then the general solution
of an inhomogeneous linear difference equation is obtained by adding the par-
ticular solution to the general solution of the associated homogeneous linear
difference equation (known as the complementary solution). In brief:

General Solution =Particular Solution +Complementary Solution.

(12.7)
This is true generally for linear difference equations and, in particular, for first
order ones. We saw in Section 12.3 that the general solution of a first order
linear difference equation

Xt = aXt−1 + b

is of the form
Xt = Aat +

b

1 − a
(if a �= 1).

It can be verified that Xt = Aat is the complementary solution (the general
solution of the associated linear difference equation Xt = aXt−1) and that
the sequence {Xt}, where Xt = b

1−a (for all t), is a particular solution of
Xt = aXt−1 + b since

b

1 − a
= a

(
b

1 − a

)
+ b.

12.6.1 Complementary Solutions

In analogy with the complementary solution for the homogeneous first order
case, suppose we try a similar solution of (12.6), of the form Xt = Aut, where
A is a constant and u a number to be determined. Then

Aut + aAut−1 + bAut−2 = 0.
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Dividing throughout by Aut−2 gives

u2 + au + b = 0.

So u is a root of the quadratic equation

x2 + ax + b = 0, (12.8)

known as the characteristic equation of the linear difference equation. Let
its roots be u, v (sometimes called the characteristic roots).

It can be shown that the general solution of the homogeneous linear differ-
ence equation (12.6) is of the form

Xt =
{

Aut + Bvt ifu �= v,

(A + tB)ut ifu = v,

where A and B are constants.

Example 12.6

Solve the homogeneous linear difference equation

Xt − 7Xt−1 + 10Xt−2 = 0

where X0 = 2, X1 = 13. Determine X10.

Solution. The characteristic equation is

x2 − 7x + 10 = 0

whose roots are 2 and 5. The general solution is therefore

Xt = A2t + B5t

where A and B are constants.
Since X0 = 2, then

2 = X0 = A20 + B50 = A + B.

Similarly, since X1 = 13, then

13 = X1 = A21 + B51 = 2A + 5B.

Thus, we have the simultaneous equations

A + B = 2, (12.9)

2A + 5B = 13. (12.10)
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Multiplying equation (12.9) by two and subtracting the result from equation
(12.10) gives

3B = 13 − 4 = 9.

Therefore B = 3 and so, from (12.9), A = −1. The general solution is therefore

Xt = −2t + 3(5t).

Then
X10 = −210 + 3(510) = 29,295,851.

Example 12.7

Solve the linear difference equation

Xt − 12Xt−1 + 36Xt−2 = 0

where X0 = 1 and X1 = 8. Determine X9.

Solution. The characteristic equation is x2 − 12x + 36 = 0 or (x − 6)2 = 0.
This equation has two equal roots 6, 6. So the general solution of the linear
difference equation is of the form

Xt = (A + tB)6t

where A and B are constants.
Since X0 = 1, then

1 = X0 = (A + 0)60 = A

and since X1 = 8, then

8 = X1 = (A + 1 × B)61 or 8 = 6(A + B).

Since A = 1, then 8 = 6 + 6B and therefore B = 1
3 .

The general solution of the linear difference equation is

Xt =
(

1 +
t

3

)
6t.

Therefore

X9 =
(

1 +
9
3

)
69 = 4 × 69 = 40,310,784.
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12.6.2 Particular Solutions

A particular solution for the general second order linear difference equation

Xt + aXt−1 + bXt−2 = c

where a, b, c are constants is as follows:

Xt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c

1 + a + b
if 1 + a + b �= 0;

ct

2 + a
if 1 + a + b = 0 and a �= −2;

1
2
ct2 if a = −2 and b = 1.

(12.11)

The conditions on a and b in the above are respectively that:

1. 1 is not a characteristic root (i.e., not a root of x2 + ax + b = 0);

2. One characteristic root is 1 and the other is not;

3. Both characteristic roots are 1.

That these are particular solutions is easily verified, but we will illustrate this
by example only.

It is not really necessary to remember the formulae for particular solutions.
For a second order linear difference equation with constant coefficients, only
one of the forms Xt = K, Xt = Kt, Xt = Kt2 will work as a solution with K

a constant. So one need only test three possibilities.
For instance, Xt = K (K constant) cannot be a solution of

Xt − 3Xt−1 + 2Xt−2 = 21,

since this would require K−3K+2K = 21 or 0 = 21, which is absurd. However,
trying Xt = Kt (so Xt−1 = K(t − 1), Xt−2 = K(t − 2)) we have:

Kt − 3K(t − 1) + 2K(t − 2) = 21

which simplifies to −K = 21. Therefore, K = −21 and so Xt = −21t is a
solution of the difference equation.

Example 12.8

Find particular solutions of the following difference equations:

1. Xt + 7Xt−1 + 12Xt−2 = 4,

2. Xt − 5Xt−1 + 4Xt−2 = 9,

3. Xt − 2Xt−1 + Xt−2 = 4.
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Solution.

1. In this difference equation 1 + a + b = 1 + 7 + 12 = 20 �= 0. Therefore,

Xt =
c

1 + a + b
=

4
20

=
1
5

is a particular solution. That is, the repeating sequence 1
5 , 1

5 , 1
5 , . . . satisfies

this difference equation. To check this, note that 1
5 + 7 × 1

5 + 12 × 1
5 = 4.

2. Here 1 + a + b = 1 − 5 + 4 = 0 and a = −5 �= −2. Then

Xt =
ct

a + 2
=

9t

−5 + 2
= −3t

is a particular solution. Thus X0 = 0, X1 = −3, X2 = −6, X3 = −9 and
so on.

3. In this case, a = −2, b = 1, c = 4 so a particular solution is

Xt =
1
2
4t2 = 2t2.

The general second order linear difference equation is solved by adding a
particular solution to the complementary solution. We illustrate this in the
next example.

Example 12.9

Solve the following difference equations:

1. Xt + 7Xt−1 + 12Xt−2 = 4;X0 = 1.2, X1 = 2.2,

2. Xt − 5Xt−1 + 4Xt−2 = 9;X0 = 0, X1 = 5,

3. Xt − 2Xt−1 + Xt−2 = 4.X0 = 1, X1 = 2.

Solution. Particular solutions were found for these equations in the previous
example; so we only need the complementary solutions.

1. The characteristic equation is

x2 + 7x + 12 = 0

whose roots are −3, −4. The complementary solution is therefore

Xt = A(−3)t + B(−4)t

with A, B constants.
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Therefore, the general solution (of the given inhomogeneous difference
equation) is obtained by adding the particular solution Xt = 1

5 = 0.2
found in the previous example:

Xt = 0.2 + A(−3)t + B(−4)t.

Since X0 = 1.2, then 1.2 = X0 = 0.2 + A + B, which gives

A + B = 1.

Since X1 = 2.2, then 2.2 = X1 = 0.2 + A(−3) + B(−4), which gives

3A + 4B = −2.

Solving these two simultaneous equations for A and B gives

A = 6, B = −5.

The solution is therefore

Xt = 0.2 + 6(−3)t − 5(−4)t.

2. The characteristic equation is

x2 − 5x + 4 = 0

with roots 1, 4. The complementary solution is

Xt = A1t + B4t = A + B4t

with A, B constants. A particular solution we found, in Example 12.8.2,
was Xt = −3t. Therefore the general solution is

Xt = A + B(4)t − 3t.

Since X0 = 0, then 0 = X0 = A + B40 − 0 = A + B. Therefore, A = −B.
Next X1 = 5, gives 5 = X1 = A + B41 − 3 × 1. That is A + 4B = 8. Since
A = −B, then 3B = 8 and so B = 8

3 and A = − 8
3 . The general solution is

therefore
Xt = −8

3
+

8
3
(4t) − 3t.
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3. The characteristic equation is

x2 − 2x + 1 = 0

which has two equal roots: 1, 1.

The complementary solution is therefore Xt = A+tB. A particular solution
we found was Xt = 2t2. Therefore the general solution is

Xt = A + tB + 2t2.

Now X0 = 1 gives 1 = A; while X1 = 2 gives

2 = A + 1 × B + 2(1)2 = A + B + 2.

Therefore A + B = 0. Since A = 1, then B = −1. The solution is therefore

Xt = 1 − t + 2t2.

Example 12.10

A simplified Samuelson model for a national economy is provided by the fol-
lowing difference equation, where Xt is the total national income in year t:

Xt − c(1 + w)Xt−1 + cwXt−2 = k.

Here c, w, k are positive constants and c < 1.
Find the general solution for the case c = 0.9, w = 0.5, k = 1, where X0 = 1

and X1 = 1.3.
Calculate the national income in years 10 and 20.

Solution. The difference equation for the given parameters is

Xt − 0.9(1.5)Xt−1 + 0.9(0.5)Xt−2 = 1,

that is
Xt − 1.35Xt−1 + 0.45Xt−2 = 1.

The characteristic equation is

x2 − 1.35x + 0.45 = 0

which has roots 0.75, 0.6. The complementary solution is therefore

Xt = A(0.75t) + B(0.6t)

where A and B are constants.
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A particular solution is (see 12.11)

Xt =
1

1 − 1.35 + 0.45
=

1
0.1

= 10.

The general solution is therefore of the form

Xt = A(0.75t) + B(0.6t) + 10.

Since X0 = 1, then 1 = X0 = A + B + 10, which gives

A + B = −9. (12.12)

Similarly, since X1 = 1.3, then 1.3 = X1 = A(0.75) + B(0.6) + 10. Therefore

0.75A + 0.6B = −8.7. (12.13)

Multiplying equation (12.12) by 0.6 and subtracting the result from equation
(12.13) gives

0.15A = −8.7 + 0.6 × 9 = −3.3.

It follows that A = −22 and, from (12.12), B = −9 − A = −9 + 22 = 13. The
general solution is therefore

Xt = −22(0.75t) + 13(0.6t) + 10. (12.14)

The national income in year 10 is

X10 = −22(0.7510) + 13(0.610) + 10 = 8.840 (to 3 decimal places).

(This is almost 9 times the first year’s national income X0 = 1.)
In year 20, the national income is

X20 = −22(0.7520) + 13(0.620) + 10 = 9.931 (to 3 decimal places).

If in the above example, we compute Xt for larger and larger t, the values
approach a limiting value of 10. This can be seen from equation (12.14). As t

increases, i.e., tends to ∞, the terms involving 0.75t and 0.6t tend to 0, so that
Xt tends to the value 10; see Fig. 12.6.
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Figure 12.6 Graph of the solution Xt of Example 12.10 in continuous
time, illustrating the simplified Samuelson model converging to the value 10.

12.6.3 Stability

A second order linear difference equation

Xt + aXt−1 + bXt−2 = c

where a, b, c are constants, is stable if both its characteristic roots are strictly
between −1 and 1. Otherwise it is divergent.

If the characteristic roots are α, β, this condition is the same as requiring
−1 < α < 1 and −1 < β < 1. The general solution of the difference equation
must then be one of the forms:

Xt =
{

Aαt + Bβt + C ifα �= β,

(A + tB)αt + C ifα = β,

where A, B are constants determined by the initial conditions (the values X0

and X1) and where
C =

c

1 + a + b
.

The particular solution is Xt = C and the complementary solution is either
Xt = Aαt + Bβt or Xt = (A + tB)αt.
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In either case; if −1 < α < 1 and −1 < β < 1, the complementary solution
will tend to 0 as t tends to ∞. Then the general solution will tend to the
particular solution.

The three difference equations in the second example of the previous section
are divergent. The difference equation in the simplified Samuelson model ex-
ample is stable and the solution converges on the particular solution Xt = 10,
as is illustrated in Fig. 12.6.

When a characteristic root is 1 or −1, convergence is still possible in certain
cases. One is when the sequence is constant: Xt = k for all t, where k is constant.
The other case occurs when one characteristic root is 1 and the other one α

satisfies −1 < α < 1.
In this case the homogeneous difference equation is

Xt − (1 + α)Xt−1 + αXt−2 = 0

and the general solution is of the form

Xt = A(1t) + B(αt) = A + Bαt

where A, B are constants.
Since −1 < α < 1, then αt tends to the value 0 as t tends to ∞ and

therefore Xt converges to the solution Xt = A. The convergence is oscillatory
if −1 < α < 0.

Example 12.11

Consider the difference equation

2Xt − Xt−1 − Xt−2 = 0

(So the value of Xt in period t is the average of its values in the previous two
periods, t ≥ 2.)

Find the general solution and comment on stability.

Solution. The characteristic equation is 2x2 − x − 1 = 0, whose roots are
1, − 1

2 . The general solution is therefore

Xt = A + B

(
−1

2

)t

where A, B are constants.
As t tends to ∞,

(− 1
2

)t will tend to the value 0 and therefore Xt converges
to the solution Xt = A. The value of A can easily be expressed in terms of X0

and X1. Since X0 = A + B and X1 = A − 1
2B, then A = 1

3 (X0 + 2X1).
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EXERCISES

12.1. Solve the following difference equations, commenting on stability.

a) Xt = −3Xt−1 + 5; X0 = 2

b) Xt = − 1
3Xt−1 + 5; X0 = − 1

4

c) Xt = 2Xt−1 − 8; X0 = 9

d) Xt = 3
2Xt−1

e) Xt = 2
3Xt−1 − 10

f) Xt = 0.95Xt−1.

Evaluate X10 in each case.

12.2. Calculate the equilibrium price of a single good in an isolated market
where the supply, QS,t, demand QD,t and price Pt in period t are
given by

QS,t = 4Pt−1 − 5,

QD,t = −5Pt + 10.

Show that the prices Pt converge and find the equilibrium price.

12.3. Solve the difference equations:

a) Xt = Xt−1 + 3; X0 = 0

b) Xt = 3 − Xt−1; X0 = 1

In each case, sketch the graph of the function Xt for t = 0, 1, 2, 3, 4.

12.4. Solve the following difference equations, commenting on stability in
each case:

a) Xt − 6Xt−1 + 9Xt−2 = 2; X0 = 1.5, X1 = 2

b) Xt + 2Xt−1 − 3Xt−2 = 7; X0 = 0, X1 = 4

c) Xt − 2Xt−1 + Xt−2 = 6; X0 = 1, X1 = 3

d) Xt − 2Xt−1 − 15Xt−2 = 8; X0 = 0, X1 = 1

e) 10Xt − 3Xt−1 − 4Xt−2 = 18; X0 = 2, X1 = 0

f) 4Xt − Xt−2 = 9; X0 = 5, X1 = 1

g) 3Xt − 4Xt−1 + Xt−2 = 0; X0 = 4, X1 = 0

12.5. Solve the difference equations:
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a) 2Xt − Xt−1 − Xt−2 = 0; X0 = 0, X1 = 1

b) 2Xt − Xt−1 − Xt−2 = 1; X0 = 0, X1 = 1

12.6. A simple model for total national income Xt in year t satisfies the
difference equation

Xt − 1.26Xt−1 + 0.36Xt−2 = 1.

Show that Xt converges and give the equilibrium value.

12.7. A population model for a population Xt in year t is given by the
difference equation

9Xt − 9Xt−1 + 2Xt−2 = 100.

Show that the population converges and give its equilibrium value.
Evaluate X10, given that X0 = 48 and X1 = 49.

12.8. A second order linear difference equation Xt + aXt−1 + bXt−2 = c

with b = 0 may be considered first order. Use this to deduce the
solution of a general first order linear difference equation as given in
Section 12.3, from the theory of solutions of second order equations
given in Section 12.6.



13
Differential Equations

13.1 Introduction

There are close similarities between the theories of linear difference equations
and linear differential equations. Indeed, differential equations may be regarded
as the continuous analogues of difference equations where the variable quantity,
such as time, is assumed to flow continuously rather than occurring in discrete
intervals.

In market models where supply, demand, and price vary continuously and
where each one is affected by the others, it is important to know their rates of
change and whether these rates are increasing or decreasing. For instance, if
the current price P (t) is a function of time t, the economist may wish to know
the first derivative P ′(t) = dP (t)

dt and the second derivative P ′′(t) = d2P (t)
dt2 .

A particular model may be described by an equation relating P and its
derivatives, known as a differential equation. Given the equation, the prob-
lem is to determine P .

Differential equations have already been encountered. Finding the indefinite
integral F (t) =

∫
f(t)dt is equivalent to solving the differential equation

dF

dt
= f

for F when f is given.
If y(t) is a function of a variable t, an nth order differential equation in y

is a differential equation in which n is the highest order of derivative of y that

287
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occurs in the equation. For instance, a second order differential equation can
only involve dy

dt and d2y
dt2 .

The equation is linear if no mth powers of y or its derivatives occur for any

m other than m = 0 or m = 1. Thus, no terms such as y− 1
2 , y2 or

(
dy
dx

)3

occur.
Solving a differential equation for y means expressing y as a function of t,

either implicitly or explicitly, using the equation.
Finally, we mention some simplified notation that is often used in the theory

of differential equations. If y is a function of t, then dy
dt and d2y

dt2 can be denoted
simply by y′ and y′′, respectively. An alternative notation, due to Newton, is ẏ

for dy
dt and ÿ for d2y

dt2 .

13.2 First Order Linear Differential Equations

If y(t) is a function of a variable t, an equation of the form

dy

dt
= ay + b (13.1)

where a, b are constants, not both 0, is known as a first order linear dif-
ferential equation. The equation is homogeneous if b = 0; otherwise it is
inhomogeneous.

The associated linear homogeneous differential equation of (13.1) is

dy

dt
= ay. (13.2)

If y1(t), y2(t) are solutions of (13.1), then y′
1 = ay1 + b and y′

2 = ay2 + b, which
implies y′

1 − y′
2 = a(y1 − y2). Let y = y1 − y2. Then y′ = y′

1 − y′
2 and therefore

y′ = ay, which means y is a solution of (13.2).
It follows that any two solutions of equation (13.1) differ only in a solution

of (13.2), the associated homogeneous equation. Therefore, the general solution
of y′ = ay + b is obtained by adding a particular solution of that equation to
the general solution of the homogeneous equation y′ = ay. The general solution
of (13.2) is known as the complementary solution of (13.1). The analogy
with the theory of difference equations is clear (see Section 12.6).

To find a particular solution of (13.1), try one that does not change with
t (i.e., one that is time invariant if t denotes time). Try y = k, where k is a
constant to be determined. In this case dy

dt = 0, since k is constant, and so for
(13.5) to hold, we require 0 = ak + b or k = − b

a (if a �= 0). Therefore,

y = − b

a
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is a particular solution if a �= 0. Next, we solve the homogeneous equation

dy

dt
= ay.

Since
dt

dy
=

1
dy
dt

,

(see (6.10) then
dt

dy
=

1
ay

and so
t =
∫

1
ay

dy =
1
a

∫
1
y
dy =

1
a

ln y + k,

where k is a constant. Therefore, putting c = ka, this simplifies to

ln y = at − c

y = eat−c = e−ceat

(using the product rule for indices (1.11)). Therefore,

y = Aeat

where A(= e−c) is a constant.
Therefore, the general solution of

dy

dt
= ay + b,

if a �= 0, is

y = Aeat − b

a
where A is a constant.

In the case a = 0, equation (13.1) reduces to

dy

dt
= b

whose solution is y =
∫

bdt = b
∫

dt = bt+K (remember b is a constant), where
K is a constant of integration. To sum up:

The general solution of the equation
dy

dt
= ay + b is:

y =

⎧⎨
⎩ Aeat − b

a
if a �= 0,

bt + K if a = 0,

where A and K are constants.
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Example 13.1

Solve the differential equation

dy

dt
= (3.4)y + 17

where y = 3 when t = 0.

Solution. Using the general solution in the box above,

y = Ae3.4t − 17
3.4

= Ae3.4t − 5.

When t = 0, 3 = y = Ae0 − 5 = A − 5 so that A = 8 and so the solution is

y = 8e3.4t − 5.

Example 13.2

A model for the population y(t), in millions, of some country at time t states
that the rate of change of the population is given by

dy

dt
= −0.05y + 4.5.

The population at time t = 0 is 100 million.

1. Evaluate y(10), correct to 2 decimal places.

2. Find the value of t for which y(t) = 91, correct to 1 decimal place.

Solution. We are given that

dy

dt
= −0.05y + 4.5.

The solution is

y = Ae−0.05t − 4.5
(−0.05)

= Ae−0.05t + 90.

1. Since 100 = y(0) = Ae0 + 90 = A + 90, then A = 10, so

y(t) = 10e−0.05t + 90.

Therefore,

y(10) = 10e−0.5 + 90 = 96.07 (correct to 2 decimal places).
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2. If 91 = 10e−0.05t + 90, it follows that 1 = 10e−0.05t, which gives

e−0.05t = 0.1.

Take the natural logarithm of each side:

ln 0.1 = ln e−0.05t = −0.05t.

Therefore,

t = − 1
0.05

ln 0.1 = 46.1 (correct to 1 decimal place).

A sketch of this solution is shown in Fig. 13.1. The dashed line corresponds to
the line y = 90.

0 10 20 30 40
80

85

90

95

100

y

t

Figure 13.1 The graph of the solution of Example 13.2 on population
decline. The population converges to 90 million.
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13.2.1 Stability

If α is any positive number, e−αt will tend to 0 and eαt will tend to ∞ (increase
without bound) as t tends to ∞. It follows that the solution

y = Aeat − b

a

of the differential equation

dy

dt
= ay + b (a �= 0),

will converge on the equilibrium value − b
a as t tends to ∞ when a < 0. In

this case, we say the solution of the equation is stable. Solutions that diverge
are said to be unstable; for instance, when a > 0.

In the case a = 0, the differential equation is dy
dt = b, where b �= 0. The

general solution y = bt+K, where K is a constant, is evidently divergent since
bt will tend to ±∞ with t. To sum up:

The solution of the differential equation
dy

dt
= ay + b is

1. unstable if a ≥ 0;

2. stable if a < 0. In this case the solution y converges on
the particular solution −b/a as equilibrium value.

The solution in Example 13.1 is unstable. The solution in Example 13.2 is
stable and the equilibrium value is 90. This means the population converges
towards this value as t increases (see Fig 13.1). It takes almost 46 years to reach
91 million (see the second part of Example 13.2). However, by decreasing one
of the parameters, namely changing 4.5 to 3.85, it takes less than 10 years to
fall from 100 to 91 million.

Note the equilibrium value − b
a is never realized by y = Aeat − b

a if A �= 0.
This is because eat never takes the value 0, since ex > 0 for any number x.

13.3 Nonlinear First Order Differential
Equations

Nonlinear differential equations are more difficult to analyse. For these equa-
tions, there are specialised techniques depending on the type of equation.
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One such equation that occurs in economics is the Bernoulli equation

dy

dt
= ay + byn (13.3)

where a, b, n are constants and n > 1.
This can be solved by linearizing it in the following way. Let z = y1−n.

Then by the chain rule (6.8)

dz

dt
=

dz

dy
× dy

dt
=

d(y1−n)
dy

× dy

dt
= (1 − n)y−n dy

dt
.

Therefore,

y−n dy

dt
=

1
(1 − n)

dz

dt
.

Multiplying equation (13.3) throughout by y−n gives

y−n dy

dt
= ayy−n + byny−n.

That is
1

(1 − n)
dz

dt
= ay1−n + b = az + b.

Therefore,
dz

dt
= (1 − n)az + (1 − n)b,

which is a linear first order differential equation. This can be solved by the
method discussed earlier in Section 13.2.

Example 13.3

Solve
dy

dt
= y − 2y2,

given that y(0) = 1
5 .

Solution. This is the Bernoulli equation (13.3) with a = 1, b = −2 and n = 2.
Let z = y1−n = y1−2 = y−1. Then following through the above technique, the
given differential equation transforms to

dz

dt
= −z + 2.

The general solution is

z = Ae−t − 2
(−1)

= Ae−t + 2.
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Since z = y−1, then
y−1 = Ae−t + 2.

We are given that y = 1
5 when t = 0. Therefore,

(
1
5

)−1

= Ae0 + 2 = A + 2.

It follows that A = 3, y−1 = 3e−t + 2, and therefore

y =
1

3e−t + 2
.

13.3.1 Separation of Variables

If a first degree differential equation can be expressed in the form

f(y)
dy

dt
= g(t),

where f is a function only of y and g a function only of t, we can sometimes
solve the equation by the method of separation of variables.

The technique is more easily understood if we treat dy and dt as individual
quantities (called differentials – see Appendix A) whose ratio is the derivative
dy
dt . For the purposes of our current discussion, it is enough just to accept dy

and dt can be regarded as separate entities. The usefulness of this idea will
become apparent from the following examples.

Example 13.4

Solve the differential equation

y2 dy

dt
= 8t + 1,

given that y(0) = 6.

Solution. Write the equation as

y2dy = (8t + 1)dt.

Integrate both sides: ∫
y2dy =

∫
(8t + 1)dt.
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Then
1
3
y3 = 4t2 + t + K,

where K is a constant.
When t = 0, y = 6 and so 1

3 (63) = 0+0+K, which gives K = 72. It follows
that

1
3
y3 = 4t2 + t + 72

which can also be written as

y3 = 3(4t2 + t + 72).

Example 13.5

Solve the equation
dy

dt
=

1
2
y3t2,

given that y(0) = 1.

Solution. Rearrange the equation to obtain

2y−3dy = t2dt.

Integrating both sides:

2
∫

y−3dy =
∫

t2dt,

gives
2

−3 + 1
y−3+1 =

1
3
t3 + K,

where K is a constant. Then

−y−2 =
1
3
t3 + K.

Since y = 1 when t = 0, then K = −1. Therefore

−y−2 =
1
3
t3 − 1.

Multiply throughout by −3 to get

3y−2 = −t3 + 3

or
3
y2

= 3 − t3.

We can also write this as
y2 =

3
3 − t3

.
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Example 13.6

Solve the equation

t
dy

dt
= y2,

where y(1) = − 1
2 .

Solution. Write the equation in the form

y−2dy = t−1dt

and integrate both sides to obtain∫
y−2dy =

∫
t−1dt.

That is,
−y−1 = ln t + K (13.4)

where K is a constant. When t = 1, y = − 1
2 ; so we have

−
(
−1

2

)−1

= ln 1 + K = 0 + K.

Therefore 2 = K, and substituting this in (13.4) gives

−y−1 = ln t + 2

which can be rearranged as

y = − 1
2 + ln t

.

13.4 Second Order Linear Differential Equations

The general second order differential equation is of the form

d2y

dt2
+ a

dy

dt
+ by = c, (13.5)

which can also be written as

y′′ + ay′ + by = c.
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Here a, b, c are constants,

y′ =
dy

dt
and y′′ =

d2y

dt2
.

The equation is homogeneous if c = 0; otherwise it is inhomogeneous.
The associated homogeneous differential equation to (13.5) is

d2y

dt2
+ a

dy

dt
+ by = 0. (13.6)

As in the first order case, it can easily be shown that any two solutions of
equation (13.5) differ by a solution of (13.6). Thus, the general solution of
(13.5) is any particular solution of (13.5) plus the general solution of (13.6).

As before, the general solution of the associated homogeneous differential
equation is known as the complementary solution of (13.5).

13.4.1 The Homogeneous Case

Consider the homogeneous linear differential equation (13.6). The general sec-
ond order homogeneous linear difference equation had solutions of the form
Xt = Aαt, where A, α are constants. So we might try solutions of this form for
the differential equations case.

However, as the function ex is easier to differentiate than the general expo-
nential αx (recall that dex

dx = ex), we shall try solutions of the form y = Aeαt,
with A, α constants. This is not a major change because αx can be expressed
as a power of e, noting that et ln α = αt (since t ln α = ln(αt) = loge(αt)).

If y = Aeαt (A �= 0), then y′ = A d
dt (e

αt) = Aαeαt and y′′ = Aα d
dt (e

αt) =
Aα2eαt. Therefore, y = Aeαt is a solution of the homogeneous equation if and
only if

Aα2eαt + aAαeαt + bAeαt = 0.

Dividing throughout by Aeαt gives

α2 + aα + b = 0.

This is the condition for α to be a root of the quadratic equation

x2 + ax + b = 0

which we will call the characteristic equation of the differential equation. Its
roots are the characteristic roots. The similarity with difference equations
is clear (see Section 12.6).

If we allow A = 0, then y = 0, which is still a solution of the homogeneous
differential equation. It follows that y = Aeαt is a solution for any constant
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A, where α is any one of the two characteristic roots. If α, β are the two
characteristic roots, there are two combinations of this basic type solution that
give the general solution of y′′ +ay′ + b = 0 depending on where α, β are equal
or not. They are as follows:

y =
{

Aeαt + Beβt if α �= β,

(A + tB)eαt if α = β,

where A, B are constants. The values of A, B can be determined from bound-
ary conditions; for instance the values of y(0) and y′(0) are given, or the
values of y(0) and y(1).

Example 13.7

Solve the differential equations

1.
d2y

dt2
+ 5

dy

dt
+ 6y = 0; y(0) = 0 and y′(0) = 4,

2.
d2y

dt2
− dy

dt
− 6y = 0; y(0) = 1 and y′(0) = 5,

3.
d2y

dt2
− 6

dy

dt
+ 9y = 0; y(0) = 1 and y′(0) = 1.

Solution.

1. The characteristic equation is

x2 + 5x + 6 = (x + 2)(x + 3) = 0.

The characteristic roots are therefore −2, −3. The solution is therefore

y = Ae−2t + Be−3t

and so y′ = −2Ae−2t − 3Be−3t. Since

0 = y(0) = Ae0 + Be0 = A + B,

then A = −B. Since also

4 = y′(0) = −2A − 3B

then
4 = −2A − 3(−A) = −2A + 3A = A.

Therefore A = 4 = −B, and the solution is

y = 4e−2t − 4e−3t.
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2. The characteristic equation is

x2 − x − 6 = (x + 2)(x − 3) = 0.

The characteristic roots are therefore −2, 3. The solution is therefore

y = Ae−2t + Be3t.

Then
y′ = −2Ae−2t + 3Be3t.

Since y(0) = 1, then
A + B = 1.

Since y′(0) = 5, then
−2A + 3B = 5.

Solving the simultaneous equations gives A = −0.4 and B = 1.4. The
solution is therefore

y = −0.4e−2t + 1.4e3t.

3. The characteristic equation is

x2 − 6x + 9 = (x − 3)2 = 0.

Therefore, there are two equal characteristic roots 3, 3. The solution is
therefore

y = (A + tB)e3t.

We have
1 = y(0) = (A + 0)e0 = A.

Since
y′ = Be3t + (A + tB)3e3t,

using the rule for differentiation of a product of functions (6.6), then

y′(0) = Be0 + (A + 0)3e0

= B + 3A

= B + 3 (since A = 1).

Therefore, since y′(0) = 1, then B = −2. It follows that the solution is

y = (1 − 2t)e3t.
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13.4.2 The General Case

We have shown how to solve homogeneous linear differential equations and
therefore we can find complementary solutions in the inhomogeneous case. All
we need now is to find particular solutions of equation (13.5):

y′′ + ay′ + by = c.

There are three cases of particular solutions:

y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c

b
if b �= 0,

c

a
t if b = 0, a �= 0,

1
2
ct2 if a = b = 0.

It is a simple exercise to show that these are indeed particular solutions of
equation (13.5). Note that the solution y = c

b is that obtained by assuming y

is constant (i.e., time invariant if t represents time).
The cases for a particular solution correspond, in order, to the cases when:

0 is not a characteristic root; exactly one characteristic root is 0; both char-
acteristic roots are 0. Compare this with the corresponding case for difference
equations in Chapter 12.

Example 13.8

If y = y(t) is a function of t, solve the following differential equations for y:

1. y′′ − y′ − 6y = 6; y(0) = 0 and y′(0) = 5,

2. y′′ + 5y′ + 6y = −12; y(0) = 2 and y′(0) = 3,

3. y′′ − 6y′ + 9y = 18; y(0) = 0 and y′(0) = 1,

4. y′′ − 4y′ = 8; y(0) = 0 and y(1) = 3.

Solution.

1. From Example 13.7.2, we know that the complementary solution is of the
form

y = Ae−2t + Be3t.

(We do not apply boundary conditions until we have the complete general
solution.)
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A particular solution is y = 6
−6 = −1, so the general solution is

y = Ae−2t + Be3t − 1.

Then
y′ = −2Ae−2t + 3Be3t.

Since
0 = y(0) = A + B − 1,

then A + B = 1. We also have

5 = y′(0) = −2A + 3B.

Solving the simultaneous equations A + B = 1 and −2A + 3B = 5 gives
A = −0.4 and B = 1.4. The solution is therefore

y = −0.4e−2t + 1.4e3t − 1.

2. From Example 13.7.1, the complementary solution is

y = Ae−2t + Be−3t.

A particular solution is y = −12
6 = −2. Therefore, the general solution is

y = Ae−2t + Be−3t − 2.

Then
y′ = −2Ae−2t − 3Be−3t.

Since y(0) = 2, then 2 = A+B−2 and since y′(0) = 3, then 3 = −2A−3B.
Solving the simultaneous equations A + B = 4 and 2A + 3B = −3 gives
A = 15 and B = −11. The solution is therefore

y = 15e−2t − 11e−3t − 2.

3. From Example 13.7.3, the complementary solution is

y = (A + tB)e3t.

A particular solution is y = 18
9 = 2. The general solution is therefore

y = (A + tB)e3t + 2.

Since 0 = y(0) = (A + 0)e0 + 2 = A + 2, then A = −2. Since

y′ = Be3t + (A + tB)3e3t,

using the rule for differentiation of a product of functions (6.6), then

y′(0) = B + 3A.

Therefore, since y′(0) = 1 and A = −2, then B = 7. The general solution
is therefore

y = (7t − 2)e3t + 2.
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4. The characteristic equation is

x2 − 4x = x(x − 4) = 0

and the characteristic roots are therefore 4, 0. The complementary solution
is

y = Ae4t + Be0t = Ae4t + B.

A particular solution is y = 8
−4 t = −2t. The general solution is therefore

y = Ae4t + B − 2t.

Since 0 = y(0) = A + B and 3 = y(1) = Ae4 + B − 2, then B = −A and
5 = Ae4 + B. Then 5 = Ae4 − A = A(e4 − 1). Therefore, A = 5

e4−1 = −B

and the general solution is

y =
5

e4 − 1
(e4t − 1) − 2t.

13.4.3 Stability

To discuss the stability of the second order linear differential equation

d2y

dt2
+ a

dy

dt
+ by = c,

we shall assume b �= 0 in order to simplify matters by avoiding degenerate cases.
The condition b �= 0 is equivalent to the condition that the characteristic roots
α, β �= 0.

The general solution of the differential equation is then

y =

⎧⎪⎨
⎪⎩

Aeαt + Beβt +
c

b
if α �= β,

(A + tB)eαt +
c

b
if α = β,

where A, B are constants.
Since eγt tends to 0 or ∞ according as γ < 0 or γ > 0, the solution

y will diverge if either α or β is positive; while if α, β are both negative, the
complementary solution tends to 0 and so y converges on the particular solution
c
b , the equilibrium value.

In Examples 13.8.1 and 13.8.3, the solution diverges, while in Example
13.8.2 it converges to the equilibrium value −2, the particular solution in that
case.
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EXERCISES

13.1. Solve the following differential equations for the function y = y(t) of
t.

a)
dy

dt
= 5y + 6; y(0) = 1,

b)
dy

dt
= −3y + 4; y(0) =

1
3
,

c)
dy

dt
= 0.8y + 12; y(0) = 5.

Comment on stability for each of these equations and sketch the
graph of y against t.

13.2. Solve the following differential equations for y = y(t) and sketch the
graph of y against t.

a)
dy

dt
= 4; y(0) = 7,

b)
dy

dt
= 4t; y(0) = 1.

13.3. In a population model, the population y(t) (thousands) at time t

(years) satisfies
y′ = −0.05y + 2.

The initial population is 100,000. What is the equilibrium value of
the population? When does the population fall to within 1,000 of
this equilibrium value? Sketch the graph of population against time.

13.4. Solve the following differential equations for y = y(t).

a) y′ = 1.2y − y2; y(0) = 2,

b) y′ = −2y + 5y1.2; y(0) = 1.

13.5. Solve the following differential equations for y = y(t).

a) y2 dy

dt
= 4t; y(0) = 3,

b) yt
dy

dt
= 1; y(1) = 1,

c)
dy

dt
= yt; y(0) = 3,

d)
dy

dt
=

2t + 1
6y2

; y(0) = 1,

e) et dy

dt
= y2; y(0) = 0.5.
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13.6. Solve the following differential equations for y = y(t). In each case,
comment on stability.

a)
d2y

dt2
− 2

dy

dt
− 15y = 0; y(0) = 5, y′(0) = 1,

b)
d2y

dt2
+ 8

dy

dt
+ 15y = 30; y(0) = 2, y′(0) = 1,

c)
d2y

dt2
− 8

dy

dt
+ 16y = 4; y(0) = 4, y′(0) = 10.

13.7. Solve the following differential equations.

a)
d2y

dt2
+ 3

dy

dt
= 0; y(0) = 1, y′(0) = 3,

b)
d2y

dt2
− 4y = 12; y(0) = 0, y′(0) = 6,

c)
d2y

dt2
− 10

dy

dt
= 5; y(0) = 0, y′(0) =

1
2
,

d)
d2y

dt2
= 10; y(0) = 1, y′(0) = 2.



A
Differentials

In defining the derivative dy
dx of a function y of x in Chapter 6, we said that

dy and dx should not be regarded as separate quantities. However, with the
appropriate interpretation, we can regard dx and dy individually (they are then
called differentials) and regard dy

dx as their ratio.
The geometric meaning of a differential can be seen in Fig. A.1, which

shows part of the graph of a function y = f(x). A general point P on the graph
has coordinates (x, y), where y = f(x). If x changes a small amount ∆x, the
corresponding point Q on the curve has coordinates (x + ∆x, y + ∆y), where
y + ∆y = f(x + ∆x). Since y = f(x), then ∆y = f(x + ∆x) − f(x). In Fig.
A.1, ∆x is the length PB and ∆y the length QB.

The tangent slope dy
dx at P is the rate of change of y relative to x at P ;

or approximately the change in y resulting from a unit increase in x. So an
estimate for ∆y is dy

dx × ∆x. This is the length AB in Fig A.1.
The differential dy of any function y = f(x) of x is defined by

dy =
dy

dx
× ∆x = f ′(x) × ∆x. (A.1)

In particular, since x is itself a function of x, then taking y = x we have
dx = dx

dx ×∆x = 1×∆x = ∆x. Therefore, dx = ∆x. It follows that if x changes
by a very small amount dx, then

dy =
dy

dx
× dx = f ′(x)dx

is the change in y, calculated using the current rate of change dy
dx of y relative

to x.

305
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P:

Q:

A

tangent

(x,y)

(x+ x,y+ y)

x

B

∆

∆∆

dy

∆y

Figure A.1 Geometric interpretation of a differential.

For example, for the function y = f(x) = x3, we have

dy

dx
= f ′(x) = 3x2.

Therefore
dy = 3x2dx.

Thus, if x = 2 and x increases to 2.001, the change in x is ∆x = dx = 0.001
and f ′(2) = 3 × 22 = 12. Therefore

dy = f ′(2) × dx = 12 × 0.001 = 0.012.

The actual change in y is

∆y = f(2.001)−f(2) = (2.001)3−23 = 0.012006 (correct to 6 decimal places).
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This concept of differentials extends to functions of two or more variables
in a natural way. If z = f(x, y), the differentials dx, dy, dz are related by

dz =
∂f

∂x
dx +

∂f

∂y
dy. (A.2)

This relation can be used to obtain the total derivative formula (see Chapter
8).

If x and y are functions of a variable t and if dx, dy, dz are the differentials
corresponding to a change dt in t, then dividing both sides of (A.2) by dt gives

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.
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average cost function, 77, 122
average product of labour, 148

base, 12
BEDMAS, 4
brackets
– expanding, 16
– multiplying, 16
budget lines, 37–39

capital, 95
chain rule, 168
chord, 111
Cobweb model, 270
cobweb model, 272
complementary goods, 45, 174
constant of integration, 234
constraint, 193
constraint constant, 193
consumer’s surplus, 251–258
consumption, 238
convergence
– oscillatory, 267
– uniform, 267
Cramer’s rule, 222–223
critical point, 186

decimal places, 9
decimals, 8
– recurring, 8
– scientific form, 10
– standard form, 10
– terminating, 8
degree of homogeneity, 96

demand equation, 40
demand function, 40, 84
denominator, 5
derivative, 111
– higher order, 127
– partial, 160
– second order, 127
– total, 168, 169
determinant, 27, 218, 223–230
– expansion of, 226
difference equation, 262
– characteristic equation, 275
– characteristic roots, 275
– complementary solution, 274–276
– divergent, 282
– equilibrium value, 267
– first order, 264–266
– general solution, 274
– homogeneous, 262
– inhomogeneous, 262
– linear, 262
– particular solution, 274, 277–281
– second order, 273–283
– stability, 267–269, 282–283
– stable, 267, 282
– unstable, 267
differential, 294, 305–307
differential equation, 287
– boundary conditions, 298
– characteristic equation, 297
– characteristic roots, 297
– complementary solution, 288
– equilibrium value, 292
– first order, 288–296
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– homogeneous, 288, 297–299
– inhomogeneous, 288, 297
– linear, 288–292, 296–302
– nonlinear, 292–296
– particular solution, 300
– paticular solution, 288
– second order, 296–302
– separation of variables, 294
– stability, 292, 302
– stable solution, 292
– unstable solution, 292
differentiation, 112
– chain rule, 117
– constant function, 113
– exponential function, 119
– implicit, 171–173, 177
– linear function, 114
– logarithmic function, 119
– power function, 114
– product of functions, 116
– quotient of functions, 117
– sums and differences of functions, 114
discriminant, 187
distributive law, 17

elasticity of demand, 173–176
– cross-price, 174
– income, 174
– own price, 173
elimination method, 27
equation
– constraint, 193
– roots, 74
equations
– equivalent, 24
– inconsistent, 28
– independent, 28
– roots, 51
equilibrium, 41
– price, 41
– quantity, 41
exponent, 12
exponential function, 88–90
– base, 87
– exponent, 87

factorization
– common factor, 18
– difference of two squares, 19
– quadratic expression, 56
factors of production, 95
fixed costs, 61
fractions, 5–8
– addition, 6

– division, 7
– equivalent, 5
– lowest terms, 5
– multiplication, 7
– reduced, 5
– subtraction, 6
function, 23, 69
– absolute extrema, 144
– absolute maximum, 144
– absolute minimum, 144
– concave, 139
– constraint, 193
– convex, 139
– cubic, 73
– decreasing, 73, 138
– dependent variable, 69, 160
– derivative, 110, 111
– domain, 71
– exponential, 87
– global extrema, 144
– global maximum, 144
– global minimum, 144
– homogeneous, 96
– increasing, 73, 138
– independent variable, 69, 160
– inverse, 81, 84, 91
– limit, 72
– linear, 23
– local extremum, 139
– many-to-one, 71
– objective, 193
– one-to-one, 71, 81
– point of inflection, 145
– quadratic, 49
– range, 71
– reciprocal, 75
– relative extremum, 139
– restricted domain, 71
– two variables, 160

gradient, 110

identity, 19
index, 12
indices
– rules of, 14
indifference curves, 181
inferior goods, 174
integral, 233
– definite, 241–242
– indefinite, 241
integration
– definite, 243–250
– limits of, 242
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– rules of, 236, 244
intercept, 34
interest
– annual, 99
– compound, 98
– continuous, 100
– semi-annual, 99
– simple, 98
isocost curves, 204
isoprofit curves, 204
isoquants, 181, 204

labour, 95
labour productivity, 148
Lagrange multipliers, 197–203
– interpretation of, 201–203
Lagrangian, 197
law of diminishing marginal productivity,

131
law of diminishing marginal utility, 178
law of diminishing returns, 131
linear equations, 24–30
– simultaneous, 27–30
linear functions
– graphs, 30–37
linear systems of equations, 220–221
logarithmic function, 90–95
logarithms
– common, 91
– natural, 91
– rules of, 94

marginal cost, 122, 237, 256
marginal product of capital, 179
marginal product of labour, 129, 179
marginal propensity to consume, 123,

238
marginal propensity to save, 123
marginal rate of commodity substitution,

177
marginal rate of technical substitution,

179
marginal revenue, 121, 239
marginal utility, 177
market saturation, 104
matrix, 209
– addition, 212
– adjoint, 224
– cofactor, 224
– cofactor of, 223
– determinant, 218
– diagonal, 216
– distributive law, 216
– identity, 216

– inverse, 217
– invertible, 217
– multiplication, 212–219
– row, 210
– scalar multiplication, 211
– square, 210
– symmetric, 210
– transpose, 210
– zero, 212
matrix of coefficients, 220
monomial, 16, 72
MRCS, 177
MRTS, 179

negative numbers
– division, 4
– multiplication, 3
numbers
– decimal, 8
– integers, 2
– irrational, 8, 88
– natural numbers, 2
– rational, 5
– real, 9
numerator, 5

optimization
– constrained, 193–203
– unconstrained, 186–193

parabola, 53
partial derivative, 160–163
– cross-derivatives, 163
– first order, 163
– higher order, 163–165
– second order, 163
partial differentiation
– chain rule, 168
percentages, 10–12
polynomial, 16
– addition, 16
– coefficient, 16
– subtraction, 16
– term, 16
power, 12, 24
principal, 99
producer’s surplus, 250–251
production function, 129–133, 179–181
– Cobb-Douglas, 97
– optimization of, 146–151
– returns to scale, 95–98
profit function, 61, 159
– optimization of, 151–154
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quadratic equations, 56–61
quadratic functions, 49, 54
– axis of symmetry, 53
– graphs, 50–55
– vertex, 54

real line, 9
reciprocal, 7
relationships
– one-to-many, 71
returns to scale
– constant, 96
– decreasing, 96
– increasing, 96

saddle point, 187
Samuelson model
– simplified, 280, 283
savings, 238
sequence, 261
significant figures, 9
small increments formula, 112, 165, 169
stability
– first order difference equation, 267–269
– first order differential equation, 292

– second order difference equation,
282–283

– second order differential equation, 302
stationary point, 186
straight line, 31
– slope, 34–37
substitutable goods, 45, 174
substitution method, 29, 193–196
superior goods, 174
supply and demand, 40–46, 64
– multicommodity, 44–46
supply equation, 40
supply function, 40

tangent, 110
total cost, 61, 237
total derivative formula, 168
total revenue, 61, 239
turning point, 186

utility function, 160, 176–178

variable, 16
variable costs, 61
vector
– row, 210
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