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Preface

Mathematics is both a language of its own and a way of thinking; applying
mathematics to economics reveals that mathematics is indeed inherent to eco-
nomic life. The objective of this book is to teach mathematical knowledge and
computational skills required for macro and microeconomic analysis, as well as
econometrics. In addition, I hope it conveys a deeper understanding and appreciation
of mathematics.

Examples in the following chapters are chosen from all areas of economics
and econometrics. Some have very practical applications, such as determining
monthly mortgage payments; others involve more abstract models, such as sys-
tems of dynamic equations. Some examples are familiar in the study of micro and
macroeconomics; others involve less well-known and more recent models, such as
real business cycle theory.

Increasingly, economists need to make complicated calculations. Systems of
dynamic equations are used to forecast different economic variables several years
into the future. Such systems are used to assess the effects of alternative policies,
such as different methods of financing Social Security over a few decades. Also,
many theories in microeconomics, industrial organization, and macroeconomics
require modeling the behavior and interactions of many decision makers. These
types of calculation require computational dexterity. Thus, this book provides an
introduction to numerical methods, computation, and programming with Excel and
Matlab. In addition, because of the increasing use of computer software such as
Maple and Mathematica, sections are included to introduce the student to differenti-
ation, integration, and solving difference and differential equations using Maple and
to the concept of computer-aided mathematical proof.

The second edition differs from the first in several respects. Parts of the book
are rearranged, some materials are deleted and some new topics and examples are
added. In the first edition most computational examples used Matlab and some
Excel. In the present edition, Excel and Matlab are given equal weights. These are
done in the hope of making the book more reader friendly. Similarly, more use
is made of the Maple program for solving non-numerical problems. Finally, many
errors had crept into the first edition, which are corrected in the present edition. I am
indebted to students in my math and stat classes for pointing out some of them.
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Chapter 1
Mathematics, Computation, and Economics

1.1 Mathematics

Many believe that mathematics is one of the most beautiful creations of humankind,
second only to music. The word creation, however, may be disputed. Have humans
created something called mathematics? Then how is it that we increasingly discover
that the world, and indeed the universe around us, obey one or another mathematical
law? Perhaps to the faithful, the answer is clear: A higher power is the greatest
mathematician of all. A worldly answer may be that humans discovered, rather than
created, mathematics. Thus, wherever we look, we see mathematical laws at work.
Whether humans created mathematics and it just so happened that the world seems
to be mathematical, or the universe is a giant math problem and human beings are
discovering it, we cannot deny that mathematics is extremely useful in every branch
of science and technology, and even in everyday life. Without math, most likely we
would be still living in caves. But what is mathematics? And why are so many afraid
of it?

To begin with, for the greatest part mathematics is nothing but logical think-
ing. Indeed, mathematics consists of three parts: definitions, logical thinking, and
axioms. We will take up each of these parts in turn, but let’s clear up one confu-
sion right away: What about all those dreaded Greek and other strange symbols?
First, we use Greek symbols because Greeks started the systematic study of math-
ematics and some reward must accrue to pioneers. Second, the Greek alphabet
and symbols simply serve as a shorthand that makes understanding mathematics
easier. If you don’t believe this, consider how one of the great mathematicians
of the Middle Ages, Omar Khayyam,1 explained the solution of a quadratic
equation.

1Omar Khayyam (1048–1131), the great Iranian mathematician, is better known in the West for
his Rubaiyat, a book of poetry freely translated by Edward J. Fitzgerald. Khayyam has several
treatises on mathematics including Treatise on Demonstration of Problems of Algebra, from which
the quotation in the text is taken. He worked with a group of learned men on the compilation
of astronomical tables and the reform of the calendar, which resulted in the Jalali calendar (after
Jalaleddin Malik Shah Seljuq), a quite accurate calendar for his time and for many centuries to
come. Khayyam measured the length of a year with amazing accuracy. He also knew the Pascal

3K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_1, C© Springer-Verlag Berlin Heidelberg 2011
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The second species. A square and a number equal a root. It is necessary in this class that
the number should not be greater than the square of half the number of roots, otherwise
the problem would be impossible to solve. If the number is equal to the square of half the
root-number, then half the root-number is equal to the root of the square. If the number is
less than the square of half the root, subtract it from the square of half the roots and extract
the square root of the remainder, adding the result to half the roots or subtracting it from the
latter. The sum, in case of addition, or the remainder, in case of subtraction, is the root of the
square. The arithmetical proof of this theorem is known when its geometrical demonstration
is known.2

Translation, please! Put more clearly, the question is finding the solution of a
quadratic equation of the form

x2 + c = bx or x2 − bx+ c = 0

The solution to this equation, which we shall discuss in Chap. 2, is

x = b±√b2 − 4c

2

Khayyam argues that the equation does not have a solution if (b/2)2 < c or
b2−4c < 0 because this would result in a complex number and at the time complex
numbers were not known. But if (b/2)2 = c, then x = b/2 and if (b/2)2 > c, then
the solutions are

x1 = b+√b2 − 4c

2
and x2 = b−√b2 − 4c

2

Thus, Khayyam had correctly solved the problem, yet a modern reader would
have difficulty understanding it. Nevertheless, if you think that 1000 years after
Khayyam you can do better, then please write down a description of the problem
and its solution in plain English. Clarity and economy require the use of symbols
and conventions.

One other important lesson from the above quotation is that mathematics and
symbols are two different things. Khayyam was doing mathematics; the fact that he
did not use symbols made no difference. Symbols cannot make a banal statement
about mathematics, and not using symbols cannot detract from the essence of a
mathematical argument.

Going back to our discussion, the necessity of definitions should be clear. If we
are to have a logical discussion, we should all speak the same language. In other

triangle and the coefficients of the binomial expansion, but because of the limitation of mathe-
matics in his time, he could not express them in the general form of today. Khayyam was also a
philosopher, and his poetry is mostly musings on the meaning of life.
2The Algebra of Omar Khayyam, translated by Daoud Kasir, New York, Teachers College,
Columbia University, 1931, p. 61.
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words, an expression or statement should mean the same thing to all of us. A math-
ematical definition should be such that, in no uncertain terms, it includes all of the
items that conform to the definition and excludes all that do not. In this matter, math-
ematicians are a bit obsessive-compulsive. They go to great lengths to make sure we
are speaking about the same items and situations. But there are exceptions. In every
branch of mathematics, a number of concepts are deemed too fundamental or basic
to be defined. For example, in geometry, concepts such as point and line are at best
vaguely defined. We assume that all are well aware of what we are talking about.
The same is true about the concept of a set in set theory and a random event in
probability theory. The rationale should be clear. Every concept has to be defined in
terms of some other concept or object. We cannot start from nothing and expect to
create a host of meaningful definitions. We may end up trying to define the meaning
of the word word.

By far the largest part of mathematics is logical thinking, that is, starting with
assumptions and deriving implications from them. In mathematics, every statement
flows logically from another. As such, you do not get anything from math unless
you have already put it in. It is like the work of a magician, who pulls a rabbit out of
the hat as if it materialized out of thin air. But the rabbit was there all along, except
that the audience could not see it—perhaps because of distraction or you did not pay
enough attention to see something that was in full view. Of course, let us not forget
the skill of the magician. Not everyone can perform a magic trick like Houdini or
Siegfreid and Roy.

Let us try some such trick. If you have seen it before, humor me. If you haven’t,
please do not look up the answer until you have answered all my questions.

1. Pick a number between one and nine (the number of movies you would like to
see in a week or the number of times you prefer to eat out).

2. Multiply the number by 2 (what the heck?).
3. Add 5.
4. Multiply the result by 50.
5. If you have already had your birthday this calendar year, add 1750; or else add

1749.
6. Now, what year is this? 2011? 2012? 2013? Whatever it is, add the last digit of

the year, say, 11 if it is 2011 or 13 if it is 2013.
7. Now, subtract the year you were born (all four digits, e.g., 1989).
8. You should have a three-digit number. The first digit is your original number; the

next two numbers are your age!

To solve the mystery, let x be the number you chose. Then the steps taken were

1. x
2. 2x
3. 2x +5
4. 50(2x+ 5) = 100x+ 250
5. 100x+ 250+ 1750 = 100x+ 2000
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6. 100x + 2000 + 11 = 100x + 2011 = 100x + current year (assuming the
year is 2011)

7. 100x+ current year− your birth year = 100x+ your age

“Elementary, my dear Watson!”
Similarly, the solution of the quadratic equation we mentioned earlier was

already inside the equation. We could write

(
x− b+√b2 − 4c

2

)(
x− b−√b2 − 4c

2

)
= 0

If you carry out the multiplication, you will get the original equation.
Two issues remain to be resolved. First, logical thinking on its own is not ade-

quate to build the magnificent edifice of mathematics. Logical thinking derives the
implications of assumptions, and from nothing one cannot derive something. This
points out the importance of axioms. Every field of mathematics starts with a num-
ber of axioms that cannot be proved. We assume such axioms to be self-evident,
or at least we shall treat them as such. Consider the axioms of natural numbers as
defined by Peano.3

1. Zero is a natural number.
2. Every natural number a is followed by another natural number a + 1.
2. Zero is not a successor to a natural number.
3. For any two natural numbers a �= b, we have a+ 1 �= b+ 1.
4. If zero has a property and if a having that property implies the same for a + 1,

then all natural numbers have that property.

These axioms seem unassailable and one cannot dispute them. Of course, natural
numbers are not the only numbers in the world. We can think of real or imaginary
numbers that do not correspond to the above axioms. Perhaps the most famous and
talked about set of axioms are those of Euclidean geometry. Originally they were
formulated about 2300 years ago by Euclid,4 whose brilliant work commands the
admiration of modern-day mathematicians.

1. Only one straight line passes through two distinct points.
2. Given three distinct points on a straight line, only one lies between the other two.
3. If two line segments AB and CD are both congruent to EF, then AB and CD are

congruent.
4. Given any real number d > 0, there exists a line segment of length d.

3Gioseppe Peano (1858–1932), an Italian mathematician, contributed to the study of differential
equations and was a founder of mathematical logic. Bertrand Russell wrote in his autobiography
that the 1900 International Congress of Philosophy “was the turning point of my intellectual life,
because there I met Peano.”
4Euclid of Alexandria (~325BC–~265BC) was the most famous mathematician of antiquity, whose
book The Elements brought together the mathematical knowledge of his day with rigor and clarity.
Indeed, the geometry we learn and use in high schools today is based on Euclid’s axioms and,
therefore, referred to as Euclidean geometry. The Elements is still available in bookstores and from
online bookshops.
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5. Given a line and a point outside it, exactly one and only one line passes through
the point and is parallel to the line.

These axioms correspond to our experiences in the real world. They seem to be
self-evident. Of course, axioms require definitions of many terms such as congruent
or between that are parts of the system of axioms. We did not present them here, as
our objective is not a thorough discussion of geometry. Euclid’s axioms or postulates
were not complete or 100% rigorous. The present-day axioms of geometry are due
to Hilbert,5 who published them in his 1899 book Grundlagen der Geometrie.

For many years, mathematicians wondered if the axioms of geometry could be
further reduced. In particular, the fifth postulate (or axiom) was the subject of intense
scrutiny. If it could be deduced from the other axioms, then it would be redundant.
All attempts in this direction failed. Then in the eighteenth and nineteenth centuries,
mathematicians tried changing the last axiom to see if it resulted in a contradiction.
If that happened, it meant that the fifth postulate followed from the other four and
therefore was not needed. This line of work led to surprising discoveries: the non-
Euclidean geometries.

Replacing the fifth postulate with the hyperbolic axiom—given a line and a
point off the line, more than one line can pass through the point and are parallel
to the line—Lobachevsky6 discovered the hyperbolic or Lobachevsky’s geometry.
Reimann7 replaced the fifth postulate with the elliptic axiom—that is, there exists
no line that passes through a point outside a line and is parallel to the line—that
resulted in elliptic geometry.

Finding the bare minimum axioms upon which a field of mathematics could be
founded requires nothing short of mathematical genius. The mathematicians’ names
attached to the axioms of different fields of mathematics bear this out. In addition
to those mentioned previously, we can add Cantor8 (set theory) and Kolmogorov
(probability theory).

5David Hilbert (1862–1943), one of the greatest mathematicians of the twentieth century, is best
known for his work for infinite dimensional space referred to as Hilbert space. In a speech he
challenged mathematicians to solve 23 fundamental problems, a challenge that is still partly open.
Hilbert also contributed to mathematical physics. For more on Hilbert’s problems, which have been
solved, and who has solved them, see The Honors Class, Hilbert’s Problems and Their Solvers by
Ben H. Yendell (2002).
6Nikolai Ivanovich Lobachevsky (1792–1856), the great Russian mathematician, presented his
results on non-Euclidean geometry in 1826, although not many of his contemporaries understood
it. János Bolyai (1802–1860), a Hungarian mathematician, independently discovered hyperbolic
geometry.
7German mathematician Georg Friedrich Berhard Riemann (1826–1866), who despite his short
life made brilliant contributions to mathematics. Of him it is said that “he touched nothing that he
did not in some measure revolutionize.” [Men of Mathematics, by E. T. Bell (1937)].
8Set theory was founded in the late nineteenth century by Georg Cantor (1845–1918). He based his
analysis on three axioms. But soon these axioms ran into paradoxes, the discovery of the the most
famous of them being due to Bertrand Russell. The interested reader is referred to Mathematics,
The Loss of Certainty, by Morris Kline (1980). To avoid paradoxes and to assure consistent deduc-
tions, set theory is based on Zermelo-Frankel axioms plus the axiom of choice. A discussion of
these axioms is well beyond this book.
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Aside from axioms, to find the appropriate assumptions and work out their
implications, that is, to prove a theorem or lemma,9 requires mathematical intu-
ition, ingenuity, and knowledge. The process is usually the reverse of what appears
in math books. The mathematician “sees” the proposition in the same way that
a musician “hears” the as-yet-unwritten music or Michelangelo “saw” the sculp-
ture of David in the massive stone he had in front of him. Then in the same way
that the musician composes what he has conceived and Michelangelo extracted
his masterpiece, the mathematician works out the necessary assumptions and
proofs.

Mathematical work follows the strict rules of logic to deduce a proposition from
a set of assumptions. Thus, every statement is either true or false. But this does
not mean that we can prove the truth of each and every statement. Gödel10 proved
that in any mathematical structure based on a set of consistent axioms, there are
statements that are true but cannot be proved or disproved within that system of
axioms. Cohen,11 using a method called forcing, showed that the truth or falsity of
some statements cannot be decided. Cantor had proved that the set of all integers
and the set of all rational numbers have the size ℵ0, which is the same as the size
of the set of all positive integers. The set of all real numbers is bigger; perhaps
its size is ℵ1,ℵ2,ℵ3, or .... This is Cantor’s continuum problem, which he himself
was unable to solve. Gödel showed that one cannot prove that the size of the set of
all real numbers is not ℵ1. Cohen showed that this issue cannot be decided within
the axioms of set theory. Thus, mathematical statements are either true, false, or
undecided.

Economists in the course of their research may never come into contact with
a mathematical statement that cannot be decided. Nevertheless, the subject is an
important one for understanding mathematics. Suppose we add another axiom to
the axioms of set theory by which we can decide that the continuum hypothesis is
true, or another axiom that renders it false. It seems that, like geometry, we can have
not one, but many set theories. It may be tempting to conclude that mathematics
is invented; otherwise how could we account for the variety of geometries? Such a
conclusion is not 100% warranted, as each geometry could be relevant to one set of
circumstances or one part of the universe. For example, as long as we are on Earth
and concerned with short distances, Euclidean geometry rules. On the other hand,
non-Euclidean geometry may be relevant for the study of outer space and distances
measured in millions of light years. We may have discovered math.

9Usually, a lemma is a mini-theorem.
10Kurt Gödel (1906–1978) was born in Brno, Czech Republic, but spent more than half of his life
in the United States doing research at the Institute for Advanced Study and at Princeton University,
although he did not have lecturing duties. Gödel’s fame rests on his three theorems in mathemat-
ical logic: the completeness theorem for predicate calculus (1930), the incompleteness theorem
for arithmetic (1930), and the theorem on consistency of the axiom of choice with continuum
hypothesis (1938).
11Paul Joseph Cohen (1934-2007) was a professor in the mathematics department at Stanford
University. He received a Fields Medal (the equivalent of a Nobel Prize in mathematics) in 1966.
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1.2 Philosophies of Mathematics

Philosophies of mathematics are concerned with the meaning of mathematics and
the nature of mathematical truth. As such, many working mathematicians never find
a need for nor find the time to spend on the subject. Perhaps the same is true for other
professionals regarding their own discipline. Economists may have more reason to
be aware of the issues raised in philosophies of mathematics because they have a
bearing on the modeling activity and the application of mathematics in economics.
Nevertheless, we shall be brief; there are many interesting books on the subject that
the reader may want to consult12 and, in allocation of the limited resource of time,
the subject cannot be assigned high priority.

The first question to consider is whether mathematical reality has an indepen-
dent existence or is only a construction of humans and their minds (or cultures). In
other words, are there such things as circle, line, number 431, the number π , the
Pythagoras theorem, and Taylor formula, or have humans made them up like the
king, bishop, rook, and the rules of their movements in the game of chess? Those
who believe that such entities really do exist are referred to as Platonists or realists
whereas those who are not of such persuasion are in two camps of intuitionists and
formalists.

The first group do not believe in the existence of Plato’s world of ideal forms but
believe that abstractions such as those mentioned above are indeed independent of a
person’s mind and have a real existence. Thus, mathematicians are really discover-
ing relationships between these abstract entities. Among the realists are such great
mathematicians as Gödel, Alfred North Whitehead,13 and Bertrand Russell.14

Intuitionists believe that such entities are our own creation because they are the
results of our perception of time and space. Thus, they do not exist unless we per-
ceive them.15 The formalists, on the other hand, say that the whole mathematics is
manipulation of symbols. Those symbols have no particular meaning and therefore
need not have any connection to anything in the real world.

The second question is with regard to the nature of truth in mathematics. Based
on their answers, mathematicians are divided into logicists, formalists, and con-
structivists. To clarify this issue note that laws of physics say that one thing leads

12In particular, I recommend the following books: Philosophy of Mathematics: A Contemporary
Introduction to the World of Proofs and Pictures (2008) by James Robert Brown; The Mathematical
Experience (1981) by Philip Davis and Reuben Hersh; and The Road to Reality, A Complete
Guide to the Laws of the Universe (2005) by Roger Penrose. The last book is concerned with
the applications of mathematics to physics.
13Alfred North Whitehead (1861–1947) was a British mathematician and a collaborator of Russell.
14British mathematician and philosopher, Bertrand Arthur William Russell (1872–1970) is con-
sidered one of the most important logicians of the last century. In 1950, he won the Nobel Prize in
literature “in recognition of his varied and significant writings in which he champions humanitarian
ideals and freedom of thought.”
15A prominent intuitionist is Luitzen Egbertus Jan Brouwer (1881–1966) of the Netherlands.
Economists will become familiar with his name and work through his fixed point theorem that
is crucial for proving the existence of equilibrium.
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to another, for example, water at sea level starts boiling when heated to 100 degrees
centigrade. The same is true in economics; for example, if income increases, so
does consumption. These are observed relationships and there is no logical reason
that one thing should follow from the other. We can logically think of a situation
that water starts to boil at 135 centigrade or an increase in income would leave
consumption unchanged. Mathematical relationships, on the other hand, are logi-
cal. Conclusions perforce follow from the assumptions: 2 + 2 is always 4, given the
axioms of Euclidean geometry, the angles of a triangle sum to π radians, and it is
always true that (a − b)3 = a3 − 3a2b + 3ab2 − b3. In other words, mathemati-
cal propositions are derived by the application of logic to axioms and nothing else.
In this regard logicists and formalists do not differ except that the former started
from a realist point of view and applied logic to axioms while the latter insisted on
defining everything formally as symbols and rules of deduction. The third group are
constructivists, who start from the intuitionist point of view but accept a proof only
if it can be constructed from the ground up. In other words, it is not enough to prove
such and such exists; it has to be shown how to find that which exists.

Logicism and formalism were a reaction to some loose ends mathematicians of
the nineteenth century found in calculus and other branches of mathematics. On the
other hand, both groups went too far in trying to show that every step follows from
the previous one by the application of formal logic.16 The formalist project was
championed by David Hilbert, and later on a group of French mathematicians under
the pen name of Nicholas Bourbaki published several volumes presenting different
areas of mathematics in completely formal fashion. The volumes are self-sufficient
in that there are no references to external sources, and everything is formally defined
and proved before it is used in later sections or volumes. Moreover, there is no
reference to any geometrical figure or form as an aid for imagining or understanding
a concept. It is generally believed that the books are not appetizing nor are they
good pedagogically. Nevertheless, the Bourbaki approach had great influence on a
generation of mathematicians and, perhaps through them, on economics.17

It is believed that most mathematicians are realists and while all believe in rig-
orous proof, they think that pure formalism is cumbersome and wasteful of time
and paper. It is also said that most mathematicians are realists but would defend
their profession against outsiders and philosophers by resorting to formalism.
Constructivists are a tiny minority.

But what can we make of all these? For the most part we can go about
doing mathematics without worrying about these issues. In those rare philosophi-
cal moments, I am a realist believing in the existence of mathematics independent of
our minds. As recounted in this book, mathematics has been an international project:
Greeks started it; Iranians, French, Germans, Russians, Poles, British, Americans,

16It took 362 pages in Russell’s Principia Mathematica to show that 1 + 1 = 2.
17A glimpse of the history of the evolution of mathematics in the twentieth century and its relation
to economics is captured in E. Roy Weintraub, How Economics Became a Mathematical Science
(2002).
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Norwegians, and others contributed to it. If their work were not based on some
external reality, how could we have only one mathematics? If mathematics were
completely the result of mental and cultural activity, we should have a Greek, a
Russian, an American, and perhaps a Christian, a Judaic, a Buddhist, and a Moslem
mathematics. We don’t. Perhaps we have only one mathematics, because all math-
ematicians or all reasonable people would agree on the same set of assumptions
and derivation rules. After all, mathematics cannot simply be the product of just
one mind. But how did we reach this consensus, and who is eligible to vote in this
process? We cannot allow just everyone to express opinion on mathematical issues,
from the Pythagoras theorem to tensor analysis. But if we only allow those who
know mathematics to participate in the process of building a consensus, we shall
be guilty of circuitous argument. In other words, mathematics is what mathemati-
cians agree on and mathematicians are those who do mathematics. If mathematics
were simply a game invented by mathematicians, how could we find it so useful? If
mathematics is simply a game, it is not a spectators’ game nor has it a high enter-
tainment value as do soccer and baseball. Therefore, if it were just a game for a
few, why would different societies spend so many resources in operating mathe-
matics departments and research institutes? This last argument should win over the
economists.

Finally, whereas mathematics has to be rigorous and has no room for hand-
waving arguments, the Bourbaki’s and formalists’ way of doing mathematics was
both extreme and wasteful.

1.3 Women in Mathematics

In this book, we encounter a number of mathematicians. It turns out that all are men.
This may give the impression that mathematics is a man’s sport. That is a wrong con-
clusion. From the beginning, women have shown great aptitude for mathematics.
The first known woman mathematician is Hypatia (360–415), who wrote treatises
on algebra and commentary on Euclid’s Elements. During the Enlightenment, there
were Sophie Germain (1776–1831), who contributed to the solution of Fermat’s
last theorem and whose work was admired by Gauss. In the nineteenth century, Ada
Augusta Byron Lovelace (1815–1852) was a pioneer in the development of the com-
puter; Mary Fairfax Grieg Somerville (1780–1872), the author of The Mechanism
of the Heavens; Sofya Korvin-Krukovskaya Kovalevskaya (1850–1891), who made
original contributions to the study of partial differential equations, astronomy, and
mechanics; and Emmy Noether (1882–1935) of whom Albert Einstein said, “the
most significant creative mathematical genius thus far produced since the higher
education of women began.”

The achievements of these women are more remarkable because for a long
time women were barred from pursuing mathematics. Perhaps men were afraid
of competition. With the changes in the role of women in science and society in
the twentieth and twenty-first centuries, a number of prominent women mathe-
maticians have emerged. Lenore Blum (1942), Sylvia Bozeman (1947), Marjorie
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Lee Browne (1914–1979), Fan King Chung (1949), Evelyn Boyd Granville (1924),
Rhonda Hughes (1947), Nancy Kopell (1942), Cora Sadosky (1940), and Ingrid
Daubechies (1954), who is famous for her work on wavelets.18 It is noteworthy
that among the women mathematicians mentioned above are African Americans,
Chinese, Europeans, and Latin Americans. So neither sex nor race have anything to
do with mathematics.

1.4 Computation

In everyday life experience and in running any small or large business, numbers and
computation play significant roles. From deciding where to take a vacation, how
much money you need, whether to buy or lease a car, to the amount to contribute
to the retirement account, you need to use numbers and calculations. Similarly, in
running a business, no matter how small, you need to have hard data and num-
bers. A restaurateur has to figure out how much it costs to prepare a dish in the
restaurant and how much should be charged for it. A farmer needs to know how
to allocate his land to different crops. When we get to giants of industry such as
General Motors, Microsoft, and the Marriott Hotel chain, questions of where to
locate each site of activity, where to procure material, and how much to outsource
require quite sophisticated computations.

A common question at the time of refinancing a mortgage is whether it is worth
the cost. Suppose you have a $200,000 mortgage with an interest rate of 6% that has
to be paid in the next 15 years. Is it advisable to refinance if you could get a rate
of 5.5%? Let’s calculate. Staying with the old mortgage would give you a monthly
payment of $1,687.71, which includes interest and principal but not property taxes.
In a year, you will pay $11,769.23 in interest and in 2 years $23,015.23. If you
refinance, you pay $1,634.17 per month. Your interest payment in the first year will
be $10,779.60 and in 2 years $21,061.10. Thus, in the first year you save $989.63
and in 2 years $1,954.13. If your marginal tax rate is 15%, then your total saving is
$841.18 for 1 year and $1,661.01 for 2 years. Now you can compare these numbers
to the cost of refinancing and take into account if there is any chance of selling the
house within the next 2 years. Without these calculations we can only philosophize.

We can illustrate the importance of computation with many more examples, but
nowhere is the result as dramatic as in economic policy analysis. What is the effect
of a tax cut? What is the effect of a quarter percentage point increase in the federal
funds rate on investment, consumer expenditures, and on the government budget
deficit? Without numbers, the discussion can degenerate into ideological rant. A
similar situation arises in analyzing economic models. It would be nice if we could
simply say that an increase in government expenditures or taxes, or money supply
will unequivocally have such and such effects. But especially in an open economy,

18For a more comprehensive list, the reader may want to consult Notable Women in Mathematics,
A Biographical Dictionary (1998), edited by Charlene Morrow and Teri Perl.
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any change could have ambiguous effects. The only way to come up with an estimate
of the net effects is to assign numbers to different coefficients and elasticities.

The difficulties with models increase tremendously when we analyze dynamic
models over time. Suppose we take up the question of Social Security reform. The
whole story depends on computation: Is the system viable and can it function in the
foreseeable future? Will it break sometime in the future? If so, when? In such an
eventuality, what is the amount of deficit? What does it take to fix the system now?
Ten years hence? in 2035? What would be the effect of a rise in Social Security tax?
A cut in benefits? Partial privatization? The answers to all these questions require
computation. Even if we do not agree on the assumptions or the coefficients of the
model used, we can pinpoint the areas of dispute and get a sense of the order of
magnitude of difference in our estimates of shortfall in the Social Security fund.
Thus, the importance of computation cannot be exaggerated, and all economists
need to know where their data come from and how the numbers and quantities are
calculated. It is imperative to make sure that data are verified and reliable and that
computations are correct.

Modern computation requires two complementary skills. First, we must know, or
at least be familiar with, the methods of numerical analysis. Second, we must know
the art of computer programming, or at least be familiar with a programming lan-
guage and a couple of software packages. Numerical analysis is that part of applied
mathematics concerned with obtaining accurate numerical values. In ordinary life
we simply add two numbers or even take the logarithm of a number. In elementary
calculus we learn to find the maximum and minimum of a function. It is possible
to imagine, for example, that every calculator has a filing system and that, when
we punch in 2.374 and then the ln function, the file cabinets are ransacked to find
the correct logarithm. Or when we use an optimization program to find the max-
imum or minimum of a function, we might imagine that the computer takes the
partial derivatives of the function, sets them equal to zero, and finds the values of
the variables that maximize or minimize the function. Neither perception is correct.
Computation is an iterative process. To find the maximum of a function, we start
with an initial guess, and step-by-step get closer to the maximum point. We stop
when the improvement in our approximation from one step to another is so small as
to be negligible by a preset standard.

Numerical analysis is a science and an art in its own right that economists need
to learn. Computer programming is also an art and a science. The tendency may be
to program an algorithm as an exact replica of its mathematical version. Yet this
may be an inefficient use of computing power. An efficient program minimizes the
number of evaluations to be performed, saving time and computing power. This
issue gains tremendous importance when the problem is large and complicated.

On the other hand, a program should be reusable; a program that can compute
only the mortgage payment when the rate is 5.5% is of not much use. A program
should be designed so that it can easily be used with any set of parameter values.
It should also be portable in the sense that its whole or modules could be used
in other programs. Finally, a program should be clear and well documented. The
document will help others, but mostly the author of the program herself. It is not



14 1 Mathematics, Computation, and Economics

unusual to look at one’s own program after a few months and wonder whoever wrote
this program, hence the importance of extensive documentation and comments in
programming.

1.5 Mathematics and Economics

Theorizing in economics as in other sciences starts with a set of assumptions and
proceeds to logically draw conclusions that will explain the phenomena of interest
and make predictions as to future outcomes or the effects of different interventions.
Because this is an exercise in logic and given our definition of mathematics, it should
come as no surprise that mathematics has become an indispensable tool of eco-
nomics, nor that we have a specialized field of mathematical economics. If theory
is how we organize our thought and mathematics is an efficient and parsimonious
process of logical thinking, it seems rational to use mathematics in economics. This
is the road that all sciences have followed and economics hasn’t been an exception.

Mathematics forces us to be explicit and precise about our assumptions and con-
clusions. The precision allows us and others to see if our ideas offer anything of
substance. It is always easy to talk oneself or others into believing that something of
substance has been said or that a model unequivocally predicts one thing or another.
Mathematics takes away the means of such chicanery. In the meantime, mathemat-
ics enables the theorist to dispense with extraneous assumptions, basing a model on
the minimum assumptions required. Furthermore, the theorist is forced to show that
the conclusions and predictions of a model mathematically (logically) follow from
her assumptions. Mathematics enables us to verify the validity of a logical argument
and detect inconsistencies or double-talk. Last but not least, mathematics allows us
to formulate models in such a way that they can be estimated using quantitative data.
This, in turn, allows researchers to statistically test different hypotheses. The impor-
tance of this function will be better appreciated considering the quantitative nature of
economics and the role of computation in the theory and application of economics.

Since World War II, mathematics has occupied an increasingly prominent place
in economic analysis. The use of mathematics in economics, however, dates back
to the early days of this science, and many great economists were either trained
as mathematicians or well versed in the subject. Mathematics and statistics have
been used in the work of almost all economists: Cournot’s work in the early nine-
teenth century employed mathematics in an essential way, as did Irving Fisher’s
dissertation published in 1892.

1.6 Computation and Economics

Joseph Schumpeter noted that economics was the only science that is inherently
quantitative. He wrote

There is, however, one sense in which economics is the most quantitative, not only of
“social” or “moral” sciences, but of all sciences, physics not excluded. For mass, velocity,
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current, and the like can undoubtedly be measured, but in order to do so we must always
invent a distinct process of measurement. This must be done before we can deal with these
phenomena numerically. Some of the most fundamental economic facts, on the contrary,
already present themselves to our observation as quantities made numerical by life itself.
They carry meaning only by virtue of their numerical character. There would be move-
ment even if we were unable to turn it into measurable quantity, but there cannot be prices
independent of the numerical expression of every one of them, and of definite numerical
relations among all of them [emphases in the original].19

Even Karl Marx felt the need for quantitative analysis. In 1873 he wrote to Engels,
“You know the diagrams in which changes over time occurring in prices, discount
rates, etc., are presented as rising and falling zig-zag lines. When analyzing crises, I
have tried, on various occasions, to compute these ups and downs by fitting irregu-
lar curves and I believe that the main laws of the crises could be mathematically
determined from such curves. I still believe this to be feasible given sufficient
data.”20

Indeed, quantitative analysis and computation play a pivotal role in economics.
Computation is pivotal in three areas of economic practice: verification or

falsification of economic theories, policy evaluation, and forecasting.
When we assert that a higher price results in lower quantity demanded or that the

cause of inflation is the growth of money supply, we have to show that indeed there
exists statistically significant relationship between quantity demanded and price or
between the rate of inflation and growth rate of money supply. Furthermore, we have
to be able to document that price negatively affects quantity demanded and money
supply positively affects inflation. The tool for such verification is econometrics.
Throughout this book we use many examples from econometrics.

Decision making in economics involves forecasting even if it is implicit. Not to
carry an umbrella means you are not expecting rain. Buying any asset including
real estate, stocks, bonds, and others means that the buyer is forecasting a stream
of income and perhaps an appreciation in value of the asset. Further, she must be
estimating that it is the best among the alternative purchases. The same can be said
about the sale of an asset except that now the seller assumes that there will be little
or no appreciation. The Federal Reserve has to base its monetary policy on a forecast
of the future course of the economy. Without such a forecast the board of governors
would resemble a driver who is driving with windshield covered with snow.

On many occasions the question of policy choice revolves on the orders of mag-
nitude of different effects of the policies being considered. Every economic policy
has more than one effect and, of course, many policies impose costs on citizens.
To what extent we are ready to accept adverse effects and costs of such policies
in order to attain the stated goals. Consider an economy that is experiencing high
rates of inflation. A restrictive monetary policy is the remedy. But in the short run
it will cause unemployment. To what extent are we ready to endure unemployment

19Joseph A. Schumpeter, “The Common Sense of Econometrics,” Econometrica, 1, 1933, pp. 5–6.
20Quoted in Leon Smolinski, “Karl Marx and Mathematical Economics,” Journal of Political
Economy, 81, 1973, p. 1200.
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to bring under control the rate of inflation and to dampen inflationary expectations?
Based on verified relationships in the economy (as discussed above) we should esti-
mate the effects of each policy, as there may be more than one option conducive to
our goal. It is only with such computations that we can have an intelligent policy
assessment.

In general any economic action, change, and policy initiative has two or more
opposing effects. Consider a time of recession when many workers may become
unemployed. Leaving them in cold would hurt them and their families. Furthermore,
their lack of income would reduce the aggregate demand which, in turn, would
aggravate the employment situation. Thus, paying unemployment benefits and
extending them would be desirable from both a welfare and macroeconomic point
of view. On the other hand, such payments may rob the receiving workers and even
others of their incentives to seek jobs or work. It is the job of an economist to assess
the two effects and pronounce which is the dominant and if the net effect is ben-
eficial or harmful. To say: “on the one hand and then on the other,” is a copout.
Similarly, in any intervention it is not whether to intervene or not but to what extent.



Chapter 2
Basic Mathematical Concepts and Methods

This chapter and the next two have three objectives. First, to introduce the reader to
some basic concepts and formulas that will be needed in later chapters. Second, to
serve as an introduction to computation and numerical methods and the use of Excel
and Matlab procedures. The present chapter is devoted to mathematics and Chap. 3
is an introduction to computation and Chap. 4 will concentrate on probability theory
and statistics. Those who are familiar with the material may want to glance through
these chapters and move on. A third function of the chapters is to provide a handy
reference for readers who, in reading later chapters, might feel a need to refresh
their understanding of a concept or to check a formula.

2.1 Functions of Real Variables

In studying economic phenomena, we frequently come across cases in which varia-
tion in one variable induces variation in another. For example, an increase in income
increases consumption, and an increase in price of a good or service reduces its
demand. In other words, one variable, say y, depends on another, say x. Such depen-
dencies are not confined to economics; they are observed in physical sciences and in
everyday life. For example, the area of a circle, denoted by A, depends on its radius
R, that is, A = πR2. Similarly, the distance traveled by a car depends on the speed
and time traveled.

If the relationship is such that every value of x leads to a unique value of y, then
we can write y = f (x) and say that y is a function of x. Note that the same y can
be attached to more than one x, but that each x should be attached to only one y.
Functions of real variables can be written as a mapping from the extended real line
to itself. In other words, every real number in the domain corresponds to a unique
real number in the range.

f : � → � (2.1)

Needless to say, a function need not be confined to one argument. We can write
y as a function of x and z or as a function of x1, . . . , xk. We can write them as

17K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_2, C© Springer-Verlag Berlin Heidelberg 2011
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f : �2 → � or y = f (x, z) (2.2)

and

f : �k → � or y = f (x1, . . . , xk) (2.3)

We will encounter many kinds of functions in this chapter, and more functions
yet throughout this book (examples of functions appear in Fig. 2.1a–c). Among them
are polynomial functions, which are of the general form

y =
k∑

i=0

aix
i (2.4)

Letting k =0, 1, 2, 3, we have

y = a0 Constant function
y = a0 + a1x Linear function
y = a0 + a1x+ a2x2 Quadratic function
y = a0 + a1x+ a2x2 + a3x3 Cubic function

Example 2.1 (Utility Function). The utility function is an important tool of eco-
nomic analysis. But as a function, it has a special feature that we would like to
emphasize. The function attaches a real number to any bundle of goods and services.
For instance, if the amount of each good or service is denoted by xi, i = 1, · · · , n,
then

U = U(x1, · · · , xn)

This function is such that if a particular bundle, say, bundle a, is preferred to another
bundle b, then the utility, Ua, attached to a, is a bigger number than the utility
attached to b. That is, Ua > Ub. But the numbers themselves do not have any
significance in the following sense. Suppose Ua = 10 and Ub = 5. Clearly, the
bundle a is preferred to bundle b. But we could also assign Ub = 9.5 to the bundle
b and it would make no difference, in the sense that it conveys the same informa-
tion as Ub = 5. The only important consideration is that Ua > Ub. Because of the
property just described, utility is an ordinal number and utility function is an ordi-
nal function. An ordinal number is different from a cardinal one like the amount of
income. If a person makes $50,000 a year and another person $25,000, then there is
a $25,000 difference between their incomes, and the first one makes twice as much
as the second. But the difference between U = 10 and U = 5 does not convey
any information, nor does it mean that one bundle is preferred twice as much as the
other. Another important property of the utility function is that if we keep all xi’s
constant and increase only one of them, then the new bundle is preferred to the old
one. To put it simply, the utility function is based on the idea that more is preferred
to less.
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y = x2 + 2x − 20
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y = x − 1
x + 1
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x

Fig. 2.1 (a) Quadratic function or parabola; (b) cubic function; (c) hyperbola

Example 2.2 (Cobb Douglas Production Function). A production function relates
services of labor (L) and capital (K) to the maximum amount of output (Q) attainable
from their combination. There are a number of production functions, which
we shall discuss in Chap. 9. An important production function is the Cobb Douglas,
which has the form

Q = AKαLβ

Graphing functions with Matlab is straightforward
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Matlab code

% Define the domain of the function from -3 to 3 with

% increments of 0.1

x = -3:0.1:3;

% Define the function

y = x.ˆ3;

% Plot the function

plot(x, y)

% You can plot more than one function on the

% same graph

hold on

for k=1:3
y = x.ˆ3 + 3∗k;
plot(x, y);

end

hold off

If you plot the function y = x3, you will get a graph similar to Fig. 2.1b above. The
same can be accomplished using Excel. To graph the function y = x3+3, create the
following on an Excel sheet. Highlight column B and use
>Insert→ Line
You can use Select Data and use column A as the horizontal axis.

A B

−3.0 =A1ˆ3+3
−2.9 =A2ˆ3+3
−2.8 =A3ˆ3+3
. . . . . .

2.9 =A60ˆ3+3
3.0 =A61ˆ3+3

Plotting three-dimensional graphs is slightly different. In Matlab use the follow-
ing code:

Matlab code

% Define the domain of the function

[x, y] = meshgrid(-2:0.1:2,-2:.1:2);

% Define the function

z = x.∗exp(-x.ˆ2 - y.ˆ2);

% Plot the function

mesh(x, y, z)

You will get the following graph (Fig. 2.2):
Similarly, we can plot the Cobb-Douglas production function.
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Fig. 2.2 Graph of the function z = x exp(−x2 − y2).

A B C . . . AQ

−2.0 −1.9 . . . 2.0
−2.0 = A2*exp(−

A2∧2− B 2∧2)
= A2*exp(−
A2∧2− C 2∧2)

. . . = A2*exp(−
A2∧2−AQ 2∧2)

−1.9 = A3*exp(−
A2∧2− B 2∧2)

= A3*exp(−
A2∧2− C 2∧2)

. . . = A3*exp(−
A2∧2−AQ 2∧2)

−1.8 = A4*exp(−
A2∧2− B 2∧2)

= A4*exp(−
A2∧2− C 2∧2)

. . . = A4*exp(−
A2∧2−AQ 2∧2)

. . .

1.9 = A41*exp(−
A2∧2− B 2∧2)

= A41*exp(−
A2∧2− C 2∧2)

. . . = A41*exp(−
A2∧2−AQ 2∧2)

2.0 = A42*exp(−
A2∧2− B 2∧2)

= A42*exp(−
A2∧2− C 2∧2)

. . . = A42*exp(−
A2∧2−AQ 2∧2)

Matlab code

% Define the domain of the function

[K, L] = meshgrid(0:0.1:2, 0:0.1:4);

% Define the production function

Q = 5.∗(K.ˆ0.4).∗(L.ˆ0.6);
% Plot the function

mesh(K, L, Q)

Creating a three dimensional graph in Excel is a bit more time consuming and the
result not as expressive as that of Matlab. Create the above worksheet in Excel.
Highlight the square containing the computed numbers but not the values assigned
to x and y. Then click Insert→ Other Charts and choose one of the options.
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2.1.1 Variety of Economic Relationships

In economics, we encounter three types of relationships:

1. Identities or definitions
2. Causal relationships
3. Equilibrium conditions

Identities or definitions are relationships that are true by definition or because we
constructed them as such. Examples are the national income identity, in which GDP
(Y) is defined as the sum of consumption (C), investment (I), government expen-
ditures (G), and the difference between exports and imports, that is, net exports
(X −M):

Y = C + I + G+ X −M

Similarly, we define profit as revenues (quantity sold times price) net of cost:

π = PQ− C

Given their nature, such identities are not subject to empirical verification; they
are always true. If we estimate the national income identity above using data from
any country, we get an R2 = 1 and coefficients that are highly significant and are
usually 0.99999 (or −0.99999) and 1.00001 (or −1.00001). More important, since
identities do not posit any hypothesis, no amount of algebraic manipulation of them
will result in new insights into the workings of an economy.

Causal relationships are the mainstay of economics. They incorporate hypothe-
ses regarding the behavior of economic agents, or technical and legal characteristics
of the economy. Therefore, they are subject to empirical testing. Examples of behav-
ioral relationships are consumption function, demand function, demand for imports,
production functions, and tax revenues as a function of aggregate income.

By writing one variable as a function of a set of other variables, we implicitly
declare that causation runs from the right-hand side (RHS) or explanatory variables
to the left-hand side (LHS) or dependent variable. But how do we know this? How
could we substantiate such a statement? Unlike physics and chemistry where exper-
iments are the main source for accepting or rejecting a hypothesis, experiments play
a very limited role in economics. Economics is an observational science.

Having been denied experiments and knowing well that correlation does not
imply causation, econometricians have devised statistical tests of causality. The
most widely used test of causality is due to Clive Granger (Nobel Laureate 2003).
The test is for the necessary, but not sufficient, condition of the existence of causal-
ity in the strict sense. Thus, failing to reject the null hypothesis of no causality via
the Granger test shows that x does not cause y in the strict sense. On the other hand,
rejecting the null hypothesis establishes the necessary, but not sufficient, condition
for causation. Most economic variables mutually affect each other. Money supply
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affects prices, which in turn affect the demand for money and indirectly the supply of
money. Given that many economic variables are measured over arbitrary intervals of
a month, quarter, or year, we may observe the mutual causation in the form of simul-
taneity. Of course, we may also observe simultaneity among economic variables
because they are simultaneously determined through interdependent processes.

Equilibrium conditions describe the situation or condition when two or several
variables are in such configuration that they need not change. Unlike identities, equi-
librium conditions do not always hold. On the other hand, equilibrium conditions
differ from causal relations in that a change in one variable does not automatically
bring a change in another. Only if equilibrium is restored would a change in one vari-
able bring about a change in the other. An equilibrium condition, if stable, implies
that any deviation from equilibrium sets in motion forces that will bring back equi-
librium. Therefore, stable equilibrium conditions are subject to statistical testing.
Such tests, referred to as tests of cointegration, were proposed by Robert Engle
(Noble Laureate 2003) and Granger, and by Søren Johansen. Furthermore, because
there must be a force to restore the equilibrium, cointegration implies an error-
correction mechanism. Thus, a delayed causation arises through error correction
if the equilibrium is stable. We will encounter all these types of economic relation-
ships in this book, and the reader will get a better sense of them after working with
several specific examples.

2.1.2 Exercises

E.2.1. Graph the following functions for −5 < x < 5.

i. y = 10+ 2x
ii. y = 5+ 2x+ 3x2

iii. y = 7x3 − 14x+ 5

iv. y = 1− x

1+ x
E.2.2 Make a list of economic relationships that you recall from economics
courses and classify them as identities, causal relationships, and equilibrium
conditions.

2.2 Series

The sequence of numbers

x1 x2 x3 . . . xn−1 xn (2.5)

is called a series.

Example 2.3 The following are examples of series
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i. 1 2 3 . . . n
ii. 2 22 23 . . . 2n

iii.
1

2

1

22

1

23
. . .

1

2n−1

1

2n

Two issues are of importance here. First, could we write a series in a more com-
pact format instead of enumerating its members? This can be done in two ways: by
writing a general expression for its n-th term or by writing its recurrence relation.
For instance, the n-th terms of series in Example 2.3 can be written as

i. xn = n ii. xn = 2n iii. xn = 1

2n

Not all series can be written in this format. An alternative is to write their
recurrence relation. For the above series the recurrence relations are

i. x1 = 1, xn = xn−1 + 1
ii. x1 = 2, xn = 2xn−1

iii. x1 = 1

2
, xn = 1

2
xn−1

Example 2.4 Consider the Fibonacci sequence

1 1 2 3 5 8 13 21 . . .

It starts with 1 and 1 and then each term is the sum of its two previous numbers.
Thus, the recurrence relation is

x0 = x1 = 1 and xn = xn−1 + xn−2 n = 2, 3, . . . ,

We cannot always find recurrence relations for a series. For example, if the series is
the realization of a random variable, we would not be able to find such a formula.

The second question is whether the sum of a series exists and if so, how we could
calculate it. Note that mathematically speaking, when we say something exists, we
mean that the entity in question has a finite value. Thus, here the question is whether
the sum of a series is finite or tends to infinity. Before discussing these questions,
however, we need to learn about the summation notation � and the concept of limit.

2.2.1 Summation Notation �

We are all familiar with summing a set of specific numbers. But suppose we would
like to talk of the sum of x1, x2, x3, x4, x5, x6, x7, and x8. Of course, we can always
write it as

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
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But such a formula is cumbersome and inefficient. It is even more cumbersome
when we have 20 or 100 values to add. Even worse is when we want to represent
the sum of an infinite series of numbers. We make the following convention:

n∑
i=1

xi (2.6)

by which we mean the sum of numbers x1 to xn inclusive. Note that i is simply a
counter and can easily be exchanged with j or k or any other symbol, although by
usage, i, j and k are the most commonly used letters for counters. Other examples of
summation are

∞∑
i=0

xi,
n∑

j=−n

xj,
T∑

t=1

x2t

A few properties of sums should be noted:

n∑
i=1

a = (a+ a+ . . .+ a︸ ︷︷ ︸
n

) = na where a is a constant (2.7)

n∑
i=1

axi = ax1 + ax2 + . . .+ axn = a(x1 + x2 + . . .+ xn)

= a
n∑

i=1
xi

(2.8)

(
n∑

i=1
xi

)2

=
n∑

i=1

n∑
j=1

xixj =
n∑

i=1
x2

i +
n∑

i �=j

n∑
j=1

xixj

=
n∑

i=1
x2

i + 2
n∑

i<j

n∑
j=2

xixj

(2.9)

2.2.2 Limit

Consider the series (ii) in Example 2.3. As n increases, the last term of the series
gets increasingly large. As n tends to∞, so does the last term of the series. In such
cases we say that the series has no limit. Note that ∞ is not a number. On the other
hand, as n increases, the last term in (iii) in the same example becomes smaller and
smaller as depicted in Table 2.1:

It can be seen that as n increases, 1/2n tends to zero and, for all practical pur-
poses, we can take it to be zero. In such cases, we say that the limit of the series
exists and as n tends to∞, 1/2n tends to zero, and we write

lim
n→∞

1

2n
= 0 (2.10)
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Table 2.1 Approaching limit
N 1/2n

1 0.5
2 0.25
... ...
10 0.0009765
11 0.0004882
... ...
100 7.8886×

10−31

101 3.9443×
10−31

... ...

Note that the limit needs not always be zero. It can be any number L < ∞. Now
that we have an intuitive notion of a limit, let us present a formal definition.

Definition 2.1 Let x1, x2, x3, . . . be a sequence of points on the real line. L is called
the limit of this sequence if, for any number ε > 0, we could find a number N such
that |xn − L| < ε if n > N.

If we apply the above definition to series (ii) in Example 2.3, we can reason that
the series does not have a limit, because no matter what values we choose for L and
N and no matter how large or small ε is, we cannot have |2n − L| < ε for all n > N.
The reason: As n gets larger, so does 2n and there is no limit to how large it can get.
For the series (iii) the story is different. Let L= 0 and set ε = 0.001, then for all n >
9 we have 1/2n < 0.001. For example, 1/210 = 0.0009765. We can set ε = 10−33,
that is the decimal point followed by 32 zeros and then one. Now for all n > 109, we
have 1/2n < 10−33. The following properties of limits will prove quite useful.

Property 2.1 Let xn and yn represent two series and assume that both

lim
n→∞ xn and lim

n→∞ yn

exist. Then

lim
n→∞(xn + yn) = lim

n→∞ xn + lim
n→∞ yn (2.11)

The proposition is also true for the sum of any finite number of series. If c is a
constant, it follows from (2.11) that

lim
n→∞(c+ xn) = c+ lim

n→∞ xn (2.12)

and

lim
n→∞ cxn = c lim

n→∞ xn (2.13)
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It is evident that the limit of the series

c c c . . .

is c.

Property 2.2 Let the series xn and yn be as in Property 2.1, then

lim
n→∞ xnyn = lim

n→∞ xn lim
n→∞ yn (2.14)

Also

lim
n→∞

xn

yn
= lim xn

lim yn
(2.15)

provided lim
n→∞ yn �= 0.

2.2.3 Convergent and Divergent Series

Consider the sum of the first n terms of a series

Sn =
n∑

i=1

xi (2.16)

Clearly, for every value of n we have a different sum. These sums, referred to as
partial sums, form a series themselves. The question is whether the sum Sn exists as
n →∞. In other words, is the following statement true?

S = lim
n→∞ Sn <∞ (2.17)

The answer is that the sum exists if

lim
n→∞ xn = 0 (2.18)

If S exists, then the series is called convergent, or else it is called divergent.

Example 2.5 The sum

S = lim
n→∞

n∑
i=1

1

2i

exists because lim
n→∞(1/2n) = 0. Later in this chapter we will show how such sums

can be calculated.
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Example 2.6 Is the sum

1

3
+ 2

5
+ 3

7
+ . . .+ n

2n+ 1
+ · · ·

convergent or divergent? Because

lim
n→∞

n

2n+ 1
= lim

n→∞
1

2+ 1/n
= 1

2
�= 0

we conclude that the series is divergent.
An alternative way of determining if a series is convergent or divergent when all

terms are positive is the d’Alembert1 test.

Property 2.3 (d’Alembert test). The sequence of positive numbers

x1 x2 x3 . . . xn . . . (2.19)

is convergent and the limit

S = lim
n→∞ Sn = lim

n→∞

n∑
i=1

xn (2.20)

exists, if

lim
n→∞

xn+1

xn
< 1 (2.21)

If the above limit is greater than one, then the series is divergent. The case of the
limit being equal to one is indeterminate.

Let us apply this test to some of the series we have encountered in this section.
Note that all terms in these series are positive.

Example 2.7 The series in (ii) in Example 2.3 is divergent because:

lim
n→∞

2n+1

2n
= 2 > 1

1Probably the most dramatic event in the life of the French mathematician Jean Le Rond
d’Alembert (1717–1783) was that as a newborn he was left on the steps of a church. He was
found and taken to a home for homeless children. Later, his father found him and provided for
his son’s living and education. D’Alembert made contributions to mathematics, mechanics, and
mathematical physics. The eighteenth century was the age of European enlightenment and nothing
represented the spirit of that age better than the Encyclopédistes, a group of intellectuals gath-
ered around Diderot including Voltaire, Condorcet, and d’Alembert. They published the 28-volume
Encyclopedia that contained articles on all areas of human knowledge including political economy.
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But, the series in (iii) is convergent because

lim
n→∞

1/2n+1

1/2n
= 1

2
< 1

For the series in Example 2.6 we have:

lim
n→∞

n+ 1

2(n+ 1)+ 1
n

2n+ 1

= 1

Thus, in this case the d’Alembert test cannot resolve the issue.
In the following two subsections we will discuss two examples of series:

arithmetic and geometric progressions.

2.2.4 Arithmetic Progression

The series

a a+ d a+ 2d a+ 3d . . . a+ (n− 1)d (2.22)

is called arithmetic progression. We can write it more compactly as

xn = a+ (n− 1)d n = 1, 2, . . . (2.23)

or

x1 = a xn = xn−1 + d n = 2, 3, . . . (2.24)

Thus, every member of the series is equal to its predecessor plus a constant
number.

Example 2.8 The following are arithmetic series:

i. 1 2 3 4 . . . 20
ii. 5 8 11 14 . . .

To calculate the sum of arithmetic series in (i), above, we can write

S = 1 + 2+ 3+ · · · + 20
S = 20+ 19+ 18+ · · · + 1
2S = 21+ 21+ 21+ · · · + 21

Thus,

2S = 20× 21

and

S = 20× 21

2
= 210
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This can be generalized to the sum of any n consecutive integers starting with 1.

1+ 2+ 3+ . . .+ n = n(n+ 1)

2
(2.25)

Following the same line of reasoning for the general case, the sum of n
consecutive terms in an arithmetic progression is,

S = n

[
a+ (n− 1)d

2

]
(2.26)

Example 2.9 For the sum of the first 20 integers, we have a = d = 1 and n = 20.
Plugging the numbers into (2.26), we get the sum of 210.

Example 2.10 For the sum of the first 10 integers divisible by 3, we have a = d = 3
and n = 10. Plugging the numbers into (2.26), we get the sum of 165.

These formulas can be programmed in Matlab in two ways. First, we can sim-
ply write a procedure that adds up, one by one, the n terms in a particular series.
Alternatively, we can use (2.26) to evaluate the sum of the series.

Matlab code

% Initialize n, a, d, and S

n = 20;

a = 1;

d = 3;

S = 0;

% Compute S by adding the 20 terms

for i = 1:n

S = S + a + (i-1)∗d;
end

% Call S

S

% Alternatively you can write

S = n∗(a + (n-1)∗d/2)

Note that you can change n, a, and d to any number and run the procedure again
and again.

The same can be accomplished using Excel. By replacing n, a, and d with the
desired values, you will get the sum of the arithmetic series in two different ways.

Note that in the illustration below and in subsequent Excel illustrations we make
reference to cell numbers. In the next chapter we learn how to name variable in
Excel and to refer to them by name.
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A B C D E

=C1 1 3 20
=A1+D$1
=A2+D$1 =E1∗(C1+(E1−1)∗D1/2)
...
=SUM(A1:A20)

2.2.5 Geometric Progression

The series

a aq aq2 aq3 . . . aqn−1 . . . (2.27)

is called a geometric progression. The recurrence relation is

x1 = a xn = qxn−1 n = 2, 3, . . . (2.28)

We are interested in finding the sum of the first n terms of this series. Let

S =
n−1∑
i=0

aqi = a+ aq+ aq2 + aq3 + . . .+ aqn−1 (2.29)

Multiplying S by q and subtracting it from S, we have

S = a+ aq+ aq2 + aq3 + · · · + aqn−1

−Sq = −aq− aq2 − aq3 − · · · − aqn−1 − aqn

S− Sq = a− aqn

Thus,

S = a
1− qn

1− q
(2.30)

Example 2.11 Find the following sum:

S = 2+ 6+ 18+ 54+ 162+ 486+ 1458

Because a = 2, q = 3, and n = 7, we have

S = 2
1− 37

1− 3
= 2186

Geometric progression finds a few applications in macroeconomics including
aggregate demand multiplier, money multiplier, and present value.



32 2 Basic Mathematical Concepts and Methods

Example 2.12 (Keynesian multiplier) When discussing the effect of an increase
in government expenditures on aggregate demand and income, the following argu-
ment is offered. Suppose the government increases its expenditures by $100 billion.
These additional expenditures by the government will become the income of indi-
viduals who provide the goods and services to the government. Assuming a marginal
propensity to consume of 0.92, the additional consumption will be $92 billion. This
consumption, in turn, forms the income of those who produce consumer goods and
services. But then they will spend 0.92×92 or $84.64 billion on consumption which
in turn will be the income of those who produce consumption goods and services.
You get the idea. The stream of income generated in different stages is shown in
Table 2.2:

The sum of the first 20 terms of the addition to national income can be calculated
as

S = 100
1− 0.9220

1− 0.92
= 1014.13

If we repeat the same calculation for the first 40 terms, we get a total of $1205
billion. The second 20 terms add less than a quarter of the first 20. The sum of
the first 100 terms equals 1249.7. The reason: 0.92 < 1 and when a number whose
absolute value is less than one is raised to increasing exponents, it becomes smaller
and smaller. The smaller the absolute value of the number, the sooner it reaches
zero. For example, if the marginal propensity to consume was 0.5 instead of 0.92,
the sum of the first 44 terms would be $250 billion and additional terms would have
no effect. Indeed, terms beyond the first 20 would have no practical significance.
Thus, if we allow the process to continue indefinitely, that is, letting n → ∞, we
will have

S = 100
1

1− 0.92
= 1250

Note 0.92 is marginal propensity to consume, and 1/(1−0.92) is our good old
multiplier.

Table 2.2 Multiplier effect
at work: the effect of
government expenditures on
income

Steps Increase in income

0 100 = 100
1 92 = 100 × 0.92
2 84.64 = 100 × 0.922

3 77.8688 = 100 × 0.923

. . . . . .

. . . . . .
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We can generalize the results of the last example by noting that

lim
n→∞ qn = 0 if |q| < 1 (2.31)

It follows that

lim
n→∞ S = lim

n→∞ a
1− qn

1− q
= a

1

1− q
if |q| < 1 (2.32)

As in arithmetic progression we can use Matlab to carry out the necessary
calculations:

Matlab code

% Initialize n, a, q, and S

n = 7;

a = 2;

q = 3;

S = 0;

% Compute S by adding the 20 terms

for i = 1:n

S = S + a.∗q.ˆ(i-1);
end

% Call S

S

% Alternatively you can write

S = a.∗(1-q.ˆn)./(1-q)

If you use the second method, you may want to define a function and call it when
needed. First you create an M-file in Matlab containing the function.

Matlab code

function G = Geoprog(v);

n = v(1);

a = v(2);

q = v(3);

G = a.*(1-q.ˆn)./(1-q);

Then you can call this function for different values of n, a, and q.

Matlab code

v = [7 2 3];

S = Geoprog(v);



34 2 Basic Mathematical Concepts and Methods

We can perform these computations in Excel as illustrated below:

A B C D E

=C1 2 3 7
=A1∗D$1
=A2∗D$1 =C1∗(1−D1ˆE1)/(1−D1)
...
=SUM(A1:A7)

2.2.6 Exercises

E.2.3 Find the sum of all odd numbers from 1 to 451.

E.2.4 Find the sum of all even numbers from 2 to 450.

E.2.5 Find the sum of the following geometric series:

1
1

2

1

4

1

8
. . .

1
1

3

1

9

1

27
. . .

E.2.6 The present value (PV) of a stream of income is Dt, t = 0, 1, . . . , T is defined
as

PV =
T∑

t=0

Dt

(1+ r)t

where t = 0 is the current year and r is the rate of interest.

i. Compute the present value of a winning lottery ticket that will pay
$200,000 per year for 20 years starting in the present year. Assume
an interest rate of 12%. Solve the same problem assuming interest rates
of 15% and 20%. [Hint: For interest rate of 12%, r = 0.12.]

ii. Compute the value of a government bond that pays one dollar every
year in perpetuity (i.e., forever) given the interest rate of r.

E.2.7 Show that
∞∑

i=0

(i+ 1)λi = 1

(1− λ)2
, |λ| < 1

[Hint: lim
n→∞ nλn = 0.]
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2.3 Permutations, Factorial, Combinations, and the Binomial
Expansion

Counting rules discussed in this section are the elementary building blocks of com-
binatorics, a branch of mathematics that has applications in many areas including
cryptography, computer science, probability theory, statistics, econometrics, and
economics. Consider a collection of n items denoted by A = {A1, A2, . . . , An}.
Suppose we choose r ≤ n items from A and arrange them in the order they are
chosen. A typical arrangement will look like

r︷ ︸︸ ︷
A3, A7, . . . , Ar+2

How many such collections can we form that are different from each other at least
in one item or in the position of one item? We can argue as follows. For the first item,
we can choose from n items; for the second place, from among the remaining n − 1
items, because one item has already been taken for the first place. Continuing in this
way, for the r-th item we can choose from among the remaining n − (r−1) items.
Thus, the total possible arrangements are

n× (n− 1)× . . .× (n− r + 1) (2.33)

For example if we have five objects, we can make 5 × 4 × 3 = 60 different
arrangements containing three elements. If we allow r = n, then we have

1× 2× 3× . . .× n =
n∏

i=1

i = n! (2.34)

n! is called “n factorial,” and its meaning is quite obvious. 	 is similar to the sum-
mation notation, except that it stands for the product of a set of numbers or variables.
Note that 0!=1. The reason: We can arrange or permute in only one way the ele-
ments of a null set (the set with zero elements). Using the convention of (2.34) we
can write (2.33) as

n!
(n− r)! (2.35)

Now suppose we ask, in how many ways can we pick r elements from the set
containing n elements? The number of combinations is
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(
n
r

)
= n!

r!(n− r)! (2.36)

Example 2.13 Suppose five soccer teams are playing in a tournament. How many
games will be played? Let us designate our teams by letters A, B, C, D, and E. Here
is the list of games to be played:

AB, AC, AD, AE, BC, BD, BE, CD, CE, DE

which makes a total of 10 games. Note that we do not have both AB and BA because
when A has played against B, the reverse is also true. The problem is the same as
choosing two out of a set of five. Based on (2.36) we have,

(
5
2

)
= 5!

2!3! =
5× 4

2
= 10

Example 2.14 A mutual fund is a portfolio consisting of a number of equities held
in different proportions. For example, it may have 5% of its assets in IBM stock,
6% in Verizon, 10% in Microsoft, and so on. Assume that 1000 stocks in the market
are deemed to be appropriate for inclusion in such funds. Further suppose that each
fund consists of 30 stocks. How many different portfolios can one form from the
1000 stocks? (

1000
30

)
= 1000!

30!970! = 242960819217375× 1043

A very large number indeed. As can be seen, the precision of these numbers is 15
digits; that is, the first 15 digits are accurate and the rest give the order of magnitude.
What is interesting is that the number of potential mutual funds far exceeds the
number of stocks. Note that a mutual fund needs not consist of exactly 30 stocks; it
can have 40, 50, 100, 200, or any other number of stocks. For each of those numbers,
a large number of funds could be formed. Thus, the total number of potential mutual
funds is astronomical.

Two functions in Matlab allow calculations of n! and

(
n
r

)
.

Matlab code

% for n!

factorial(n)

% for

nchoosek(n,r)

Excel has a function for factorial and for combination. In Formulas choose Insert
Function and then choose Math & Trig, Finally choose FACT for factorial and
COMBIN for combination. Alternatively you could type in:
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=FACT(n) =COMBIN(n,r)

Combinations prove useful in writing the binomial expansion.

(a+ b)n =
(

n
0

)
an +

(
n
1

)
an−1b+

(
n
2

)
an−2b2 + · · · +

(
n

n− 1

)
abn−1

+
(

n
n

)
bn =

n∑
i=0

(
n
i

)
an−ibi

(2.37)

Example 2.15 We can illustrate the general formula in (2.37) by applying it to
n = 2, 3, 4.

(a+ b)2 =
(

2
0

)
a2 +

(
2
1

)
ab+

(
2
2

)
b2 = a2 + 2ab+ b2

(a+ b)3 =
(

3
0

)
a3 +

(
3
1

)
a2b+

(
3
2

)
ab2 +

(
3
3

)
b3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 =
(

4
0

)
a4 +

(
4
1

)
a3b+

(
4
2

)
a2b2 +

(
4
3

)
ab3 +

(
4
4

)
b4

= a4 + 4a3b+ 6a2b2 + 4ab3 + b4

2.3.1 Exercises

E.2.8 Evaluate the following expressions using a calculator, the Excel function
COMBIN, and the Matlab function nchoosek.(

14
3

)
,

(
9
6

)
,

(
23
8

)
,

(
33
12

)

E.2.9 There are 50 delegates at a convention, 32 men and 18 women. In how
many ways can we choose a committee of eight equally divided between men
and women?
E.2.10 There are 9 potential judges for a contest including 5 women and four
men. In how many ways can we choose 5 judges provided that at least two
of them are women?
E.2.11 Show that

n∑
j=0

(
n
j

)
=
(

n
0

)
+ . . .+

(
n
n

)
= 2n

[Hint: Consider the binomial expansion of (1+ 1)n.]
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2.4 Logarithm and Exponential Functions

Most likely you are already familiar with logarithm and exponential functions,
because both play important roles in mathematics. In addition, they find many uses
in economics, especially in dynamic models and growth theory. Many economet-
ric models involve logarithms of both dependent (endogenous) and explanatory
(exogenous) variables.

2.4.1 Logarithm

Suppose

y = ax y > 0, a > 1 (2.38)

then x is the logarithm2 of y in the base a, which we denote as

x = loga y (2.39)

Note that both a and y are positive real numbers. Logarithms of negative numbers
are complex numbers. In this book we confine ourselves to logarithm of positive
numbers. Whereas a could be any positive real number, the three important bases
are 2, 10, and e. Base 2 is used in information science and communication. Base 10
is convenient for certain calculations; note that the logarithm of 1, 10, 100, 1000, ...
in base 10 are 0, 1, 2, 3, ... .

The base we will be dealing with in this book is e, an irrational number approx-
imately equal to 2.7182818285. This unusual number somewhat like π , will prove
quite useful and will play a significant role in mathematics and computation. In the
next section, we have more to say about e, but for the time being consider it a num-
ber. The logarithm in base e is referred to as the natural logarithm and sometimes
(to avoid confusion) is denoted by ln—a practice we will adopt in this book.

A basic property of logarithm that makes manipulation and calculations easier is
that

ln(xy) = ln x+ ln y (2.40)

Let

x = eα , y = eβ

then

2John Napier (1550–1617), a Scottish nobleman, conceived the idea of the logarithm. The first
tables using base 10 were calculated by Henry Briggs (1561–1631), a professor of geometry at
Gresham College.
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xy = eαeβ = eα+β

and

ln(xy) = α + β = ln x+ ln y

Repeated application of (2.40) results in

ln
(
xn) = n ln x (2.41)

Combining (2.40) and (2.41), we have

ln

(
x

y

)
= ln(xy−1) = ln x+ ln(y−1) = ln x− ln y (2.42)

Thus, logarithm turns multiplication into addition, division into subtraction,
raising to a power into multiplication, and finding the roots of a number into
division.

Logarithmic functions are programmed in every calculator and in software such
as Excel. In Matlab one can get the logarithm of a positive number in three bases.

Matlab code

% Natural logarithm

log(x)

% In base 10

log10(x)

% In base 2

log2(x)

Excel has three functions for logarithm: LN for the natural logarithm, LOG10 for
the base 10, and LOG for any base the user specifies.

You will hardly ever need the logarithm of a number in any other base, but should
such a need arise, the calculation is simple. Suppose you are interested in finding the
logarithm of y in the arbitrary base of b > 1. Let x, and z be, respectively, logarithms
of y in bases e and b. We can write

y = ex = bz

and

ln y = x = z ln b

Therefore,

logb y = z = x

ln b
= ln y

ln b
(2.43)
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Example 2.16

ln 45 = 3.8066625 ln 10 = 2.3025851

log10 45 = ln 45

ln 10
= 3.8066625

2.3025851
= 1.6532125

Example 2.17

log2 1024 = ln 1024

ln 2
= 6.9314718

0.6931471
= 10

2.4.2 Base of Natural Logarithm, e

Next to π , the base of natural logarithm, e, is the most famous irrational number
among mathematicians and those who apply mathematics. It is approximately equal
to 2.71828182845905 and more precisely

e = lim
x→∞

(
1+ 1

x

)x

(2.44)

We need not dwell on the origin and the logic behind this number. Rather, we can
gain an intuitive understanding of it through an example from economics. Suppose
you deposit $1000 in an interest-bearing account with an interest rate of 12%. After
a year, your money would be $1000 (1+0.12) = $1120. But the underlying assump-
tion in this calculation is that the interest accrues to your money at the end of the
year. Why should it be that way? Suppose at the end of 6 months you receive half of
the annual interest and increase your account to $1060. For the next 6 months you
earn interest on this new amount and, at the end of the year, your balance would be

$1000

(
1+ 0.12

2

)2

= $1123.60

Why should we stop there? Why not ask for the interest to accrue every season,
every month, or even instantaneously? Table 2.3 shows the amount of principal plus
interest when interest accrues at different frequencies. The last amount is approxi-
mately equal to $1000× e0.12 = $ 1127.50. This is the amount you would have had
if interest accrued every second. As a matter of notation, sometimes ex is written as
exp(x). Matlab has a ready-made function for exp(x).

Matlab code

% Exponential function
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Table 2.3 Effect of the frequency of interest accrual on the total amount of interest

Frequency Total interest

Annual 1000(1+ 0.12) = 1120.00

Semiannual 1000
(

1+ 0.12
2

)2 = 1123.60

Seasonal 1000
(

1+ 0.12
4

)4 = 1125.51

Monthly 1000
(

1+ 0.12
12

)12 = 1126.83

Daily 1000
(

1+ 0.12
365

)365 = 1127.47

exp(x)

The Excel function for exponential is EXP.

2.4.3 Exercises

E.2.12 Graph the following functions for 0.1 < x < 6:

y = ln(x) y = ex y = e−2x

E.2.13 For the annual interest rates 20, 18,15, 12, 10, 8, 5, and 2%,

i. Compute the corresponding daily rates.
ii. Compute the corresponding effective annual rates if the interest is

compounded daily.
iii. Compute the corresponding effective annual rates if the interest is

compounded instantaneously.
iv. How close are the results in ii and iii?

E.2.14 Given the following equations, find x and y.

yx = xy

y = 2x
x > 0
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2.5 Mathematical Proof

In many math books proofs of theorems end with the abbreviation QED that stands
for the Latin phrase “Quod Erat Demonstrandum,” meaning “which was to be
shown.” But what is to be shown and what do we mean by a mathematical proof?

2.5.1 Deduction, Mathematical Induction, and Proof by
Contradiction

Mathematicians prove their propositions in one of three ways: deduction or direct
proof, mathematical induction, or by contradiction. As we mentioned in Chap. 1,
mathematical propositions are tautologies, although the connection between the
assumptions (the starting point) and proposition (the end point) may not be easy
to see. The goal of Mathematics is to find and substantiate such connections. The
genius of a great mathematician is in discerning an important proposition and in
proving how it can be derived from a minimal set of assumptions. On many occa-
sions it is easier to start from a proposition and work backward. Other times,
mathematicians must refine the assumptions or add to or subtract from them. In still
other cases, the proposition may need adjustment. Once a proposition is proved,
others may find easier proofs, discover that the proposition needs less strict assump-
tions, or that the proposition is simply a special case of a more general theorem.
Finding implications of a general proposition, finding interesting applications and
special cases for it, and discovering its connections to other propositions provide
avenues for further research.

Proof by Deduction. Direct proofs or deductions start with assumptions and lead
to the proposition. We have to show that every statement follows logically from
the previous one. In other words, we have to show that each step is implied by
what we knew in the previous step. In this process we can use any theorem or
lemma that has already been proved because by having proved them, we know
they are logically correct. Our derivation of the formula for the sums of arithmetic
and geometric series, although elementary, are examples of direct proof. Similarly,
many propositions you remember from high school geometry are proved by direct
reasoning.

Proof by Induction. Another way of proving a proposition is by induction, in which
we first prove the validity of a proposition for the case of n = 1; then assuming that
the proposition is true for the case of n − 1, we show that it is also true for n. Since
we already know that the theorem or lemma is true for n = 1, then it should be true
for n = 2, and therefore, n = 3, and indeed for any n.

Example 2.18 We have already seen that the sum of integers from 1 to n is equal to
n(n+ 1)/2. We can verify that this formula is correct for n= 1 and indeed for n= 2
and n = 3. Suppose we know that the formula is true for the sum of n − 1 numbers,
that is,
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Sn−1 = (n− 1)n

2

Then for the sum of n consecutive integers we have

Sn = Sn−1 + n = (n− 1)n+ 2n

2
= n(n+ 1)

2

Example 2.19 Similarly we showed that the sum of n terms of geometric progres-
sion is

S = a
1− qn

1− q

We can verify that this sum is correct for the first term, and the sum of the first
two terms. Now let us assume that the formula is correct for the first n−1 terms.
Then

Sn = Sn−1 + aqn−1

= a 1−qn−1

1−q + aqn−1

= a 1−qn−1+qn−1−qn

1−q

= a 1−qn

1−q

Proof by Contradiction. In proving a proposition by contradiction, we first assume
that the proposition is false. Then, deriving the implications of the proposition being
false, we show that they contradict some proven theorems or known facts. The
conclusion is that the proposition cannot be false.

Example 2.20 One of Euclid’s theorems states that the number of primes is infinite.
Recall that a prime number is divisible only by one and itself. To prove the theorem,
we assume the contrary, that prime numbers are finite. Therefore, we can write them
as

p1 p2 p3 . . . pn

But now consider

pn+1 = p1 × p2 × p3 × . . .× pn + 1

This number is not divisible by other primes because the division will have a
remainder of one, therefore, it is a prime. Thus, no matter how many numbers we
have, we can add one more and then another. This contradicts the assumption that
there are only a finite number of primes.3

3Alternatively, the fact that pn+1is not divisible by any prime contradicts the fundamental theorem
of arithmetic that states that any integer k > 1 has a unique factorization of the form
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2.5.2 Computer-Assisted Mathematical Proof

Proofs of mathematical propositions rely on logical steps that are convincing, if not
to all ordinary mortals, at least to all who have the proper training. Moreover, such
proofs are general in the sense that they apply to a class of problems. For instance,
the proof of the solution of the quadratic equation does not rely on any particular
values of the coefficients. Rather it is correct for all equations with real coefficients.
But suppose we make a statement about all integers less than a particular finite
number n. Could we use the computer and check the statement for all such numbers
and show that it is true and call it a mathematical proof? Well, it did not happen
exactly like that, but in 1976 computers made their first nontrivial appearance in the
realm of mathematical proofs. It involved the famous four-color problem.

Consider a map of the world on a flat surface or on a globe.4 We want to color
the map with the condition that no two countries with a common border are of the
same color. To make the problem more specific, the areas of all countries have to be
contiguous, and no common boundary can be only a single point. The first condition
rules out countries with two or more pieces; for instance, the United States (because
Alaska and Hawaii are not attached to the mainland). The question is, how many
colors do we need? Cartographers have dealt with this problem for ages. It was
conjectured that the feat could be accomplished with four or fewer colors. But proof
of this conjecture seemed to be out of reach.

In 1976 Kenneth Appel and Wolfgang Haken5 proved the theorem with partial
help from a computer. The proof relies on old-fashioned mathematical work, but
1200 hours of computer time were used to check certain difficult cases.

Computer-assisted mathematical proofs are still exceptions and most mathemati-
cians go about their work in the old-fashioned way. It is said that computer proofs
are uncertain and cannot be checked and verified. The uncertainty arises because
there may be faults in the hardware, problems with the operating system, or bugs
in the program. Assuming that these issues have been thoroughly checked, we can
be sure with a high probability of the validity of the proof. This is different from
traditional proofs that are offered with certainty and there can be no doubt about
them, even an infinitesimal one. If computer-assisted proofs become the prevalent
mode of work, mathematics would resemble physics, in which laws are tested and
either rejected or not rejected, but never 100% accepted. Furthermore, it is said that

k = p1 × p2 × · · · × pr

Therefore, pn+1must be a prime.
4Technically, we are talking about a planar map or graph. Suppose we represent every country by
a node and connect each pair of the nodes representing adjacent countries by a line. If we are able
to draw such a graph without the lines crossing, then the graph is planar.
5For a better idea of the problem and its solution you may want to check Appel and Haken’s article
in Scientific American (October 1977) or their book Every Planar Map is Four Colorable (1989).
A more technical understanding of the subject could be gained from textbooks on graph theory or
discrete mathematics.
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computer-assisted proofs that involve thousands of lines of codes cannot be veri-
fied; no one would spend her energy on the thankless job of checking a complicated
computer program.

One may think of these issues as a matter of degree. After all, complicated
proofs such as Gödel’s theorem or Fermat’s last theorem (conjecture)6 cannot easily
be checked even by many mathematicians. On the other hand, if computers make
headway in proving mathematical theorems, we can imagine that in the future math-
ematical proofs will not be checked but confirmed through independent replications
and then held to be true with a high probability. There is another way that com-
puters could help in the advancement of mathematics. A computer program could
be written to carry out all logical steps necessary for the proof of a theorem. This
doesn’t mean that the computer is proving the theorem. Rather it is carrying out the
instructions of the mathematician. Such a step-by-step operation would be time con-
suming and too tedious for human beings, but computers don’t mind. The procedure
would be especially beneficial when the proof runs into tens and perhaps hundreds
of pages. Such activities are already under way, but the role of computers in the
mathematics of the future is a matter of speculation.

2.5.3 Exercises

E.2.15 Use mathematical induction to show that

i. 12 + 22 + 32 + . . .+ n2 = n(n+ 1)(2n+ 1)

6
ii. n! ≥ n2, ∀ n ≥ 4

iii.
n∑

j=1
(2j− 1) = n2

6Consider the equation xn+yn = zn. If n= 2, we can find integers satisfying the equation 32+42 =
52. But could the same be done for n ≥ 3? French mathematician Pierre de Fermat (1601–1665)
claimed that he could prove that no such solutions could be found. But because he was writing on
the margin of a book, he said he could not write it out. In all likelihood he did not have such a proof.
Over the years, many contributed to the solution of the problem. In 1993, the British mathematician
Andrew John Wiles (1953) (now at Princeton University in the United States) announced that he
had proved the theorem. But there was a significant gap in the proof that took Wiles and a co-worker
one and a half years to fill. There are two books written for the public on this subject: Fermat’s Last
Theorem: Unlocking the Secret of an Ancient Mathematical Problem (1996) by Amir Aczel, and
Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem (1997) by
Simon Singh. Both are available in paperback.
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Fig. 2.3. Geometric
representation of
trigonometric functions

2.6 Trigonometry

Trigonometry, one of the most fun areas of mathematics,7 has many practical appli-
cations in engineering, statistics, and econometrics, as well as in everyday life. What
is more, it requires learning only a few basic relationships and the rest is a matter
of deduction. Consider the circle in Fig. 2.3. It has a radius of unity. We define the
following functions8 of the angle θ :

sin θ = ab

oa
= ab, cos θ = ob

oa
= ob, tan θ = dc

od
= dc (2.45)

Thus, for the angle θ and the point a on the unit circle, cos θ and sin θ are,
respectively, the coordinates of the point a on the x-and y-axes. If we consider
the right-angle triangle oab, then sin θ is the ratio of the side opposing the angle
to the hypotenuse. Similarly, cos θ is the ratio of the side forming the angle to
the hypotenuse. This definition applies to all right-angle triangles regardless of the
length of the hypotenuse. In the case depicted in Fig. 2.3, the hypotenuse has a
length of one and, therefore, we can ignore the denominator of the ratios.

A graph of sin(x) is shown in Fig. 2.4. As Figs. 2.3 and 2.4 show, both sine and
cosine functions take values between −1 and 1. The tangent function, however, is
bounded neither from below nor from above. If we multiply sine or cosine functions
by ρ, the range of the functions is changed from [−1, 1] to [−ρ, ρ] and ρ is referred
to as the amplitude.

7The interested reader is referred to Trigonometric Delights by Eli Maor (1998).
8Other trigonometric functions exist, but we will not discuss them here because economists rarely
if ever come across them and, therefore, we have no reason to clutter the subject with many
unfamiliar notations.
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Using elementary geometry the following relationships can be deduced:

tan θ = sin θ

cos θ
(2.46)

sin2 θ + cos2 θ = 1 (2.47)

The first is based on the Thales theorem9 and the second on the Pythagoras theo-
rem.10 Observe the notation for the square of a trigonometric function. It is written
sin2 θ and not sin θ2, as the latter means the angle θ is raised to the power 2. Of
course, we could write it as (sin θ )2, but we prefer the economy in the universally
accepted convention. Recall that angles can be measured in terms of degrees, radi-
ans, and grads. A circle spans 360 degrees, 2π radians, and 400 grads. Thus, a right
angle would be 90 degrees, π/2 radians, and 100 grads. In this book and in most
mathematics books, angles are measured in radians.

From Fig. 2.3 it is evident that

sin 0 = sin π = sin 2π = 0,

sin
π

2
= 1,

sin
3π

2
= −1

(2.48)

Similarly

cos 0 = cos 2π = 1,

cos
π

2
= cos

3π

2
= 0,

cos π = −1

(2.49)

In addition, using well-drawn circles and a ruler, the reader should convince
herself of the following identities:

sin
(
θ + π

2

)
= cos θ , cos

(
θ + π

2

)
= − sin θ ,

sin(θ + π ) = − sin θ cos(θ + π ) = − cos θ ,
sin(θ + 2π ) = sin θ , cos(θ + 2π ) = cos θ

sin(−θ ) = − sin θ , cos(−θ ) = cos(θ )

(2.50)

Trigonometric functions are programmed in all scientific calculators. In addi-
tion, software such as Excel, Matlab, and Maple also have these functions. Matlab’s
trigonometric functions follow.

9The theorem is named after Thales de Miletos (624 B.C.–547 B.C.) although the germ of the idea
dates back to 1650 B.C. and the building of the Pyramids.
10This is the famous Pythagoras theorem that the square of hypotenuse is equal to the sum of the
squares of the other two sides of a right-angle triangle. Egyptians who built the Pyramids clearly
had an empirical understanding of this theorem. Pythagoras (569 B.C.–475 B.C.), for whom the
theorem is named, is one of the great mathematicians of antiquity and pioneers of mathematics.
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Matlab code

% sin, cos and tan of x are obtained using

sin(x)

cos(x)

tan(x)

% Matlab assumes that x is expressed in terms of

% radians. Thus, the sin of π/6 or 30◦ can be

% calculated in one of the the following ways

sin(pi./6)

% or

x = 30;

sin(x.∗pi./180)
% Both return

ans =
0.5000

In Excel the sine, cosine, and tangent of an angel, say π/4, can be obtained as

=SIN(PI()/4) =COS(PI()/4) =TAN(PI()/4)

The fact that sin(θ + π/2) = cos(θ ) shows that the sine and cosine functions
are out of phase by π/2 radians. In other words, it takes π/2 angle rotations for
the sine function to catch up with the cosine function. Similarly, the two functions
y1 = sin(θ ) and y2 = sin(θ+π/4) (see Fig. 2.4) are out of phase by π/4. In general,
when we have sin(φ + θ ) or cos(φ + θ ) with φ being a constant, then φ is referred
to as the phase.

In many applications we need to find trigonometric functions of sums or
differences of two or more angles. The following relationships exist between
trigonometric functions of sums and differences of angles, and the trigonometric
functions of the angles themselves.

sin(θ ± φ) = sin θ cos φ ± sin φ cos θ (2.51)

cos(θ ± φ) = cos θ cos φ ∓ sin θ sin φ (2.52)

Letting φ = θ , we have

sin 2θ = 2 sin θ cos θ (2.53)

and

cos 2θ = cos2 θ − sin2 θ (2.54)
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Fig. 2.4 Sin functions with different phases and frequencies

Recalling (2.47), (2.54) can be written as

cos 2θ = 2 cos2 θ − 1 = 1− 2 sin2 θ (2.55)

Example 2.21

sin
(π

5

)
= 0.588 cos

(π

5

)
= 0.809

sin
(

2
π

5

)
= 2 sin

(π

5

)
cos
(π

5

)
= 2× 0.588× 0.809 = 0.951
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cos
(

2
π

5

)
= cos2

(π

5

)
− sin2

(π

5

)
= 0.8092 − 0.5882 = 0.309

2.6.1 Cycles and Frequencies

Trigonometric functions are cyclical because as the point on the circle travels coun-
terclockwise, it comes back to the same point again and again (see Fig. 2.4). As a
result, the sine and cosine functions assume the same values for angles θ , 2π + θ ,
and, in general, 2 kπ + θ . Similarly, the tan function has the same value for θ and
θ + π . These functions are called periodic.11 Compare the two functions

y1 = sin(x) = sin(x+ 2 kπ )

and

y2 = sin(2x) = sin(2x+ 2 kπ ) = sin[2(x+ kπ )]

Clearly y2 returns to the same value—or completes a cycle—twice as fast as y1.
In general,

y = sin(fx) (2.56)

completes a cycle f times faster than sin(x). We call f the frequency of the function.
Alternatively we can write (2.56) as

y = sin

(
x

p

)
(2.57)

Because p = 1/f , it is clear that every p periods the function will have the same
value. In other words, the function completes a cycle in p periods or the cycle length
is p. These concepts are better understood if we take the argument of the function to
be time, measured in discrete values for a given time interval, that is, t = 1, . . . , T .
Let

y = sin

(
2π t

p

)
(2.58)

If p = T, then it takes T time periods to complete the cycle and the frequency is
1/T. On the other hand, if frequency is 4/T, then the length of the cycle is T/4. As
an example, let time be measured in months and the period under consideration be
a year, that is, T = 12. If p= 3, then we have four cycles per year and the frequency
is 1/3 of a cycle per month. On the other hand, if p = 1/2, there are 24 cycles in a
year and the frequency per month is two.

11A function y = f (x) is called periodic if f (x) = f (x+ c), c �= 0.
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2.6.2 Exercises

E.2.16 Find the numerical value of the following:

i. sin
3

2
π , ii.

cos2 7

2
π − sin

2

3
π

2 cos
5

4
π

, iii.
sin3 5

3
π − tan

3

4
π

sin
3

4
π

E.2.17 Graph the following functions in the interval 0 ≤ x ≤ 2π .

i. y = cos
(

x+ π

2

)
, ii. y = sin

(
x+ π

2

)
iii. y = cos

(
x+ π

2

)
+ sin

(
x+ π

2

)
, iv. y = cos

(
x+ π

2

)
−sin

(
x+ π

2

)
v. y = tan

(
x+ π

2

)
, vi. y = sin x+ sin 2x+ sin 3x

vii. y = sin x+ 0.5 sin 2x+ 0.25 sin 3x

E.2.18 Show that

tan 2θ = 2 tan θ

1− tan2 θ

E.2.19 Write sin 3x in terms of sin x and its powers.
E.2.20 Write sin 4x in terms of sin x and its powers.
E.2.21 Show that

i.
1

tan θ + 1

tan θ

= sin θ cos θ ii.
1− sin x

cos x
= cos x

1+ sin x

iii.
1+ sin θ

1− sin θ
− 1− sin θ

1+ sin θ
= 4

1

cos θ
tan θ iv.

1− sin θ

1+ sin θ
=
(

tan θ − 1

cos θ

)2

2.7 Complex Numbers

Complex numbers are two-dimensional numbers where one dimension is on the
real axis and the other on the imaginary axis.12 We are already familiar with real
numbers and the real line. The imaginary number is

i = √−1 (2.59)

12It is customary to introduce complex numbers in the context of the solution to quadratic equations
involving the square root of a negative number. This practice has the unfortunate consequence that
students may get the impression that somewhere among the real numbers or along the real line
there are caves where complex numbers are hiding and once in a while show their faces.
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Fig. 2.5 Point z in the
complex plane

i is an imaginary number because i2 = −1, and there is no real number whose
square is a negative number. Geometrically, a complex number is a point in the
two-dimensional complex space. Any function of complex variables maps these
variables into the two-dimensional complex plane.

Figure 2.5 depicts point z in the complex plane where the horizontal axis is the
real line and the vertical axis the imaginary line. Thus, we can write z as

z = x+ iy (2.60)

Two complex numbers are equal if they are equal in both real and imaginary
dimensions. That is, z1 = x1 + iy1 is equal to z2 = x2 + iy2 if x1 = x2 and y1 = y2.
Real numbers are a special case of complex numbers when the imaginary dimension
is set equal to zero. Similarly, an imaginary number is a complex number with its
real dimension set equal to zero.

Example 2.22 The following are examples of complex numbers:

z1 = 3+ i, z2 = 5− 3i, z3 = 6+ 0.5i

Complex numbers come in pairs. Every complex number has its twin, called a
conjugate. If z = x+iy, then its conjugate complex number is z̄ = x−iy. It follows
that ¯̄z = z. In other words, z is the conjugate of z̄.

Example 2.23 The conjugates of the complex numbers in Example 2.22 are

z̄1 = 3− i, z̄2 = 5+ 3i, z̄3 = 6− 0.5i

Operations of addition, subtraction, and multiplication of complex variables are
defined as
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z1 + z2 = (x1 + x2)+ (y1 + y2) i
z1 − z2 = (x1 − x2)+ (y1 − y2) i

z1z2 = (x1 + iy1) (x2 + iy2)

= (x1x2 − y1y2)+ (x1y2 + x2y1) i

(2.61)

Example 2.24

(3− i)+ (5+ 3i) = 8+ 2i
(5+ 3i)− (6+ 0.5 i) = −1+ 2.5 i

(6− 0.5i) (3+ i) = 18.5+ 4.5 i

Addition, subtraction, and multiplication of a complex number by its conjugate
result in

z+ z̄ = 2x
z− z̄ = 2iy

zz̄ = x2 + y2 = ρ2
(2.62)

where the last equality refers to Fig. 2.5 and is based on the Pythagoras theorem.
Division of complex numbers is a bit more involved:

z1

z2
= z1z̄2

z2z̄2
= x1x2 + y1y2

x2
2 + y2

2

+ i
x2y1 − x1y2

x2
2 + y2

2

(2.63)

Example 2.25

6− 0.5i

5+ 3i
= 28.5

34
− i

20.5

34
≈ 0.838− 0.603i

Referring again to Fig. 2.5, we observe that

x = ρ cos θ and y = ρ sin θ

which implies that

ρ2 = x2 + y2

tan θ = y
x

These relationships enable us to write a complex variable either in terms of its
Euclidean coordinates or in terms of ρ and θ , that is, its polar coordinates:

z = x+ iy = ρ(cos θ + i sin θ ) (2.64)

where

ρ = √x2 + y2

θ = tan−1 y
x

(2.65)
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Example 2.26 Let us rewrite complex numbers in Example 2.22 using polar
coordinates.13 For

z1 = 3+ i

we have

ρ = √32 + 12 = √10

θ = tan−1 1

3
= 0.32175 = 0.102416π

therefore,

z1 =
√

10(cos 0.102416π + i sin 0.102416π )

Similarly,

z2 =
√

34(cos 0.54042− i sin 0.54042)
= √34(cos 0.17202π − i sin 0.17202π )

z3 =
√

36.25(cos 0.08314+ i sin 0.08314)
= √36.25(cos 0.02646π + i sin 0.02646π )

Note that because sin(−θ ) = − sin θ , (2.64) implies

z̄ = ρ(cos θ − i sin θ )

We have a third way to write complex numbers. For this, we state without proof
the following relationships14:

exp(iθ ) = cos θ + i sin θ

exp(−iθ ) = cos θ − i sin θ
(2.66)

Therefore,

x+ iy = ρ exp(iθ )
x− iy = ρ exp(−iθ )

(2.67)

Where ρ and θ are as defined in (2.65).

13Angles are measured in radians. If you use a calculator, you need to set it in the radian mode to
get the same numbers as in the text. If your calculator is in the degree mode, then in order to get
the same numbers as in the text, θ = tan−1(x/y) needs to be converted into radians by multiplying
it by π/180.
14We shall provide a proof of these relationships in Chap. 10.
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Example 2.27 Again using complex numbers in Example 2.22, we have

z1 =
√

10 exp(0.32175i)
z2 =

√
34 exp(−0.54042i)

z3 =
√

36.25 exp(0.08314i)

Using the following program, the reader could check the validity of the formulas
in (2.66) for different values of the angle t.

Matlab code

% Set the value of the angle

t = pi./3;

% Trigonometric version

cos(t)+i∗sin(t)
% Exponential version

exp(i∗t)
% Trigonometric version

cos(t)-i∗sin(t)
% Exponential version

exp(-i∗t)

The idea of the equivalence of circular sine and cosine functions with the expo-
nential function may bother the intuitive sense of some readers. But exp(iθ ) is indeed
a circular function in the complex plane that traces a circle as θ changes from
0 to 2π . On the other hand, ρ determines the distance of the point from the ori-
gin. Indeed, we can define trigonometric functions in terms of the exponentials of
complex numbers.

cos θ = exp(iθ )+ exp(−iθ )

2

sin θ = exp(iθ )− exp(−iθ )

2i

(2.68)

An important consequence of (2.66) is De Moivre’s theorem.15

Theorem 2.1

zk = [ρ(cos θ + i sin θ )]k

= ρk(exp(iθ ))k

= ρk exp(ikθ )
= ρk(cos kθ + i sin kθ )

(2.69)

15Abraham De Moivre (1667–1754), a French mathematician who spent most of his life in
England, was a pioneer in the development of probability theory and analytic geometry. He was
appointed to the commission set up to examine Newton’s and Leibnitz’s claims for the discovery
of calculus.
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Example 2.28

(cos θ + i sin θ )3 = cos 3θ + i sin 3θ

(cos θ − i sin θ )3 = cos 3θ − i sin 3θ

Example 2.29 Let θ = π/4, then

(
cos

π

4
+ i sin

π

4

)5 = (0.7071+ 0.7071i)5

= −0.7071− 0.7071i

cos
5π

4
+ i sin

5π

4
= cos

(
π + π

4

)
+ i sin

(
π + π

4

)
= − cos

π

4
− i sin

π

4= −0.7071− 0.7071i

2.7.1 Exercises

E.2.22 Write the following complex numbers in alternative forms of (2.64) and
(2.67)

i. z1 = 1+ i ii. z2 = 1− i
iii. z3 = 5i iv. z4 = 3.5− 2.6i
v. z5 = 7+ 4i

E.2.23 Referring to E.2.21, compute

i. z1z2 ii.
z1

z2
iii. z3z4

iv.
z4

z5
v. z̄3z5 vi.

z̄5

z̄3

E.2.24 We already know that eaeb = ea+b where a and b are real numbers.
Show that for real numbers a and b,

eai+bi = eaiebi



Chapter 3
Basic Concepts of Computation

3.1 Iterative Methods

The importance of computation in engineering, communication, economics, econo-
metrics, finance, and everyday life needs no elaboration. Numerical analysis is the
branch of mathematics dealing with computation. But one might question the need
for such a specialized field. Computation is easy and we all know how to perform
it. For instance, if we are given the equation

2x = 10

isn’t it clear that x = 5? You are right. We are even able to obtain the solutions of a
quadratic equation such as

x2 − x+ 6 = 0

We even have formulas, although more complicated ones, for equations involving
polynomials of third and fourth degrees. You just plug in the numbers in the formula
and get the exact answer. You wish life was that easy. It ain’t!

To begin with, polynomials of degree n ≥ 5 cannot be solved using a closed
form general solution. By a closed form we mean a simple formula that involves
only addition (and subtraction), multiplication (and division), and roots of expres-
sions (radicals) and does not require the summation of an infinite number of terms.
Because polynomials are the simplest types of equations that we may be inter-
ested in solving, it follows that no general closed form solutions exist for arbitrary
nonlinear equations. But we still need to solve such equations.

Because an exact solution is not available, we approximate the solution in a
number of steps. Starting from a set of inputs that include the knowledge of the
equation and an initial solution (perhaps an informed guess) and applying a pro-
cedure, we get closer and closer to the solution. The steps that take us from the
initial input to the solution or the output form an algorithm.1 A numerical algorithm

1The word comes from the name of the Iranian mathematician, Mohammad Al-Khwarizmi (780–
850), when it was translated into Latin as Algoritmi. He clearly spelled out a way to solve quadratic
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is judged by its stability, accuracy, efficiency, and reliability. Numerical algorithms
are not confined to solving equations. We need algorithms to evaluate functions,
to generate random numbers (called pseudo-random generating algorithms), to find
the maximum and minimum of functions and to perform many other mathematical
operations. Many algorithms use recursion. A simple recursive algorithm is of the
form

xj+1 = g
(
xj
)

(3.1)

Here we need a starting point, say, x0, and the function g, which is chosen for
the problem at hand. Then it is straightforward to compute x1, x2, · · ·. But we need
a stopping rule for the recursion. Usually we stop the calculation when the change
in x from one step to the next is not appreciable. Thus, we stop when

∣∣xj+1 − xj
∣∣ < 
 (3.2)

Where 
 is a preset number that determines the computation accuracy.
With present-day computers, we can reach very high levels of accuracy in most

of our computational problems. Let us illustrate these concepts not with the solution
of an equation (a subject we shall discuss in Chap. 10), but with a simpler example.
Suppose we are interested in finding the square root of a number—say 76459. We
need an initial guess; here we take x0 = 100. We could have done better, but we
choose this arbitrary number to show the power of iterative methods. In more com-
plicated computations, mathematicians base the initial guess on some information
contained in the problem or by using a simpler algorithm. If this guess of x0 = 100
was a good one, then 76459/100 would be very close to our initial guess. But it is
not. Nevertheless, we know that the correct answer lies between 100 and 76459/100.
It seems reasonable to compute their average as a better guess in the sense of coming
closer to a correct answer.

x1 =
(

x0 + 76459

x0

)/
2

The next number is x1 = 432.295. If we repeat the step above, we get

x2 =
(

x1 + 76459

x1

)/
2 = 304.5813241

A few more iterations and we have our number
√

76459 = 276.5122059. This
procedure can be programmed in Matlab or Excel. In an Excel worksheet, make
the entries shown in the Table 3.1. Highlight the squares B2 and C2 and drag them
down a few rows.

equations, although it works only for the cases when the solutions are real. The word “algebra” is
also taken from the title of his influential book Hisab al-Jabr wal-Muqabala, which was the first
book on algebra.
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Table 3.1 Using the iterative method in Excel to compute the square root

A B C

76459 100 =A$1/B1
=(B1+C1)/2 =A$1/B2
... ...
... ...

You will get the answer.

Table 3.2 Computation results for the square root of a number using the iterative method in Excel

A B C

76459 100 764.59
432.295 176.8676
304.5813 251.0298
277.8056 275.2249
276.5152 276.5092
276.5122 276.5122
276.5122 276.5122
276.5122 276.5122

You can check the accuracy of your results by typing in a cell in an Excel sheet:
=sqrt(76459).

A short Matlab program accomplishes the same task.

Matlab code

% Specify the number

A = 76459

% Initialize x

x = 100

% Find the square root in 6 iterations

for j=1:6
x = (x + A./x)./2

end

In finding the square root of a number, we arbitrarily chose six iterations, thus
avoiding a crucial question: when to stop the iterative process. Alternatively, we
could have chosen to stop the algorithm when

∣∣xj − xj−1
∣∣ < 0.0001. In general,

depending on the problem at hand, we should set a limit that reflects our desired
precision of results and terminate the process when the results obtained in two con-
secutive iterations differ by less than our preset limit 
. Of course, this limit should
not be less than the precision of Matlab or any other software we may be using. To
summarize, an iterative algorithm consists of the following steps:

1. Choose a 


2. Choose a starting point x0
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3. Calculate xj based on xj−1
4. Repeat step 3 until

∣∣xj − xj−1
∣∣ < 


In many areas of computation, solutions are obtained through approximation. In
particular, whenever we have to deal with the sum of an infinite number of terms,
we have to resort to approximation. Evaluation of definite integrals, about which we
shall learn in Chap. 11, is a case in point.

Integrals play an important role in calculus, yet (for reasons that we will dis-
cuss in Chap. 11) direct computation of many integrals is impossible and we have
to evaluate them using approximation. The same is true about many other areas
of mathematics. Indeed, hardly an area of computation exists in which we do not
use approximation. The fact that our results are approximately correct makes it
necessary to be aware of computation error.

3.1.1 Naming Cells in Excel

In this section and in Chap. 2 we have used Excel to carry out computation. In
specifying commands we referred to different cells as A39 or C$7. Such references
are prone to error. It would be much better if we could refer to variable names in
the formulas used. For instance in computing the sum of the terms in a geometric
progression, we had

S = a
1− qn

1− q

It would be much better if we could refer to a or q in our computation rather than
the cell number. This can be accomplished by naming cells in Excel.

Chose a cell (or even an array of cells) and then in Formulas click on Define
Name. In the window that appears name the cell as you wish. You can even add a
comment or description.

Let us assume that we have named the cells as follows:

Table 3.3 Name of variables and their designated cells in Excel

Cell A2 B1 C1 D1

Name S a q n

Then we can enter any value we desire in those cells and carry out the
computation as shown in Table 3.4:

Table 3.4 Computation with named cells in Excel

A B C D E

12 0.85 20
=a∗(1−qˆn)/(1−q)
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3.2 Absolute and Relative Computation Errors

Computation error is a fact of life. In addition to the necessity of approximation,
any computation involving irrational numbers will, of necessity, involve truncation
error. Recall that an irrational number cannot be expressed in terms of the ratio of
two integers. If we write it in decimals, we will have an infinite number of digits to
the right of the decimal point. Therefore, no matter how many decimal places we
include in our computation, a truncation occurs and the irrational number we use
in our calculations will be an approximation. This point is of importance because
many more irrational numbers exist than do rational numbers.

As the above sketch of an algorithm shows, in order not to fall into a never-
ending loop of recalculation, we need to set a standard and accept some level of
approximation error. All errors are not created equal. Suppose I have $4.95 in my
pocket and I am asked how much money I have. If I answer “five dollars,” the
answer is, of course, incorrect. On the other hand, it is a much better answer than
“four dollars,” and far better than “95 dollars.”

It seems that the error in the first answer is forgivable, less so in the second
answer, and the third is an outright lie. The first answer is off by 0.05/4.95= 0.0101
or slightly more than 1%, whereas the second answer is in error by 19%, and the
last one by more than 1800%.

Thus, we need to be concerned with error of computation in relation to the actual
value. The relative error of computation is defined as

|x̃− x|
|x| (3.3)

where x is the actual value and x̃ its approximate value. We determine the acceptable
level of the relative error by the nature of the problem at hand. For some problems,
for example, computing the solvency of Social Security 40 years from now, a bil-
lion or even a 10 billion dollar discrepancy is nothing to worry about. But in some
physics and engineering problems, an error involving a millionth of a millimeter
may be catastrophic.

In setting the tolerance level for the error of a numerical algorithm, we should
be aware of the capacity of the computer to distinguish between two numbers. The
smallest difference between two numbers that software can detect should be taken
into account in setting 
. In Matlab, such a number is represented by eps, which
in the current version is equal to 2.2204 × 10−16. In writing a recursive algorithm,
one has to make sure that 
 > eps. Needless to say, this level of error is more than
acceptable for any economics or econometrics calculation.

We must also avoid the pitfall of infinite loops. This brings up the very important
issue of the convergence of an algorithm. To implement an algorithm, we have to
have assurances that it will converge to the true value of the variable we are seeking.
In other words, we should be able to show that in successive iterations, the quantity∣∣xj − xj−1

∣∣ gets smaller and smaller and this occurs relatively quickly. The proof of
algorithm convergence starts with the initial value and shows that in a finite number
of steps, the method reaches the desired result.
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3.3 Efficiency of Computation

Today we have enormous computing powers—witness the fact that the simple cal-
culator you carry around with you has more computing power than that which was
available to all physicists working at Los Alamos to build the atomic bomb dur-
ing World War II. Similarly, the computing power possessed by an average family
today surpasses the computing power available to NASA when it landed a man on
the moon. Yet efficiency of computation is still an issue, especially in complicated
models in physics, economics, econometrics, and other disciplines. The smaller the
number of additions and sign changes in an algorithm, the faster we can get the
result and the more accurate our computation will be. One goal of numerical analy-
sis is to devise efficient algorithms. Let us illustrate this with an example. Suppose
we are interested in evaluating the following function:

f (x) = 5x3 + 4x2 − 7x+ 9

at the point x = 3. Such a calculation can be performed in the following way:

5× 3× 3× 3
+

4× 3× 3
+

−7× 3
+
9

159

As we can see, this calculation involves six multiplications, three additions, and
one change of sign. We should remember that the operation of raising a number to
a power is repeated multiplications and multiplication is repeated addition. Here,
for simplicity, we count in terms of multiplications and additions. Now let us try an
algorithm known as Horner’s method.2

b0 = 5
b1 = 4+ b0 × 3 = 19
b2 = −7+ b1 × 3 = 50
b3 = 9+ b2 × 3 = 159

In this simple calculation Horner’s method reduces the number of multiplications
by three. Because each multiplication consists of a number of additions, we save
significant computation time. Of course, this is a very simple example and numer-
ical algorithms are generally much more complicated, so the gains in efficiency
become that much greater. Furthermore, to evaluate nonpolynomial functions, we

2Named after William Horner (1786–1837) although apparently the method was discovered
centuries before by the Chinese mathematician, Zhu Shijie (~1260–~1320).
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approximate them by a polynomial, hence the importance of an efficient method for
evaluating polynomials.

To understand the rationale behind this method, note that we could write the
function as

f (x) = 5x3 + 4x2 − 7x+ 9
= 9+ x(−7+ 4x+ 5x2)
= 9+ x(−7+ x(4+ 5x))
= 9+ x(−7+ x(4+ x(5)))

Thus, we start from the rightmost parenthesis and proceed to evaluate the terms
inside each parenthesis and add it to the next term on the left. More generally, sup-
pose we want to evaluate an n-th order polynomial function at the point x = x∗. We
can write the function as

f (x∗) = anxn∗ + an−1xn−1∗ + . . .+ a1x∗ + a0

= (a0 + x∗(a1 + x∗(a2 + . . . x∗(an−1 + x∗an) . . .)
(3.4)

and the method takes the form

b0 = an

b1 = an−1 + b0x∗
· · ·

bn = a0 + bn−1x∗

3.4 o and O

Two very useful symbols frequently used in mathematics and computation are o
and O. They signify the order of magnitude of a term or function.3 Consider the two
series an and bn:

1 2 ... n

an
1

2

1

4
...

1

2n

bn
1

4

1

16
...

1

22n

The ratio of the two series takes the form

bn

an
= 1

2n

3These notations were introduced by the German mathematician Edmund Georg Hermann Landau
(1877–1938).
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It follows that

bn

an
→ 0, as n →∞ (3.5)

In such a case we write

bn = o (an) (3.6)

More formally, if for every ε > 0, which can be made arbitrarily small, we can
find a number N such that when n > N, we have

bn

an
< ε (3.7)

then we can write

bn = o (an) (3.8)

Note that N depends on ε.

x = o(x2) x →∞

Indeed, we can write

xα = o(xβ ) α < β x →∞

because

xα

xβ
= 1

xβ−α

and as long as β − α > 0, we have

lim
x→∞

1

xβ−α
= 0

As another example consider

ln x = o(x) x →∞

Again, we can write

ln x = o(xα) α > 0 x →∞

The concept is not always applied to the case of x → ∞, as the following
examples suggest.
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Example 3.1

cos x = 1+ o(x) x → 0

and

e−1/x = o(xα) α > 0 x → 0

Example 3.2 (Stirling’s Formula). One of the most famous and important approxi-
mation formulas in mathematics and statistics is Stirling’s formula:

n!√
2πnn+1/2e−n

→ 1 as n →∞ (3.9)

In other words, for large n we can approximate n! by

√
2πnn+1/2e−n (3.10)

Stirling’s formula can be written as

n!√
2πnn+1/2e−n

− 1 = o(1) as n →∞ (3.11)

The notation O is used to denote that the ratio of two series or two functions is
bounded, provided that the denominator is not zero. Thus, when we write

an = O (bn) (3.12)

it means

|an| < Abn, ∀n, (3.13)

where A is some constant. Similarly

f (x) = O(φ(x)) (3.14)

means

|f (x)| < Aφ(x), ∀x, (3.15)

again for some constant A.

Example 3.3

x2 = O(x) x → 0
e−x = O(1) x →∞
ex − 1 = O(x) − 1 < x < 1

1
ln x = O(1) x →∞
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3.5 Solving an Equation

On many occasions we have an equation of the form f (x) = 0 and we need to find
the roots of this equation, that is, to find the value(s) of x that satisfy this equation.

Example 3.4 If we have the following equation

(x− a) (x+ b) = 0

Clearly x = a and x= −b are its roots, because substitution of these numbers for x
make the LHS of the equation equal to its RHS. Some equations, like the one above,
can be solved easily. Others can be solved, but with more difficulty. Examples of the
first kind are linear equations of the form

a+ bx = 0

Then, provided b �= 0,

x = −a

b

Note that this solution is general and applies to any equation with real coefficients
a and b. Even the restriction b �= 0 is not much of a restriction because if b = 0 so
would a = 0 and we would have no equation to solve.

It is not surprising, therefore, that mathematicians have tried to find general solu-
tions to polynomial equations. Of course as the degree of the polynomial increases,
the problem gets harder. For example, for a quadratic equation

ax2 + bx+ c = 0 (3.16)

the situation is slightly more involved. First, note that we should have a �= 0 other-
wise we will be dealing with a linear equation. Furthermore, divide (3.16) through
by a

x2 + b

a
x+ c

a
= 0 (3.17)

It is clear that the solution of (3.16) and (3.17) are the same. Finally, note that if
we could turn the equation into a format like (x + h)2 − g = 0, then the solution

would be x = −h± g
1
2 . This is what we will do:

x2 + b

a
x+ b2

4a2
− b2

4a2
+ c

a
= 0

Rearranging the terms (
x+ b

2a

)2

−
(

b2

4a2
− c

a

)
= 0
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Therefore

x = − b

2a
±
√

b2 − 4ac

4a2
= −b±√b2 − 4ac

2a
(3.18)

We can try to solve cubic and quartic equations (polynomial equations of degrees
three and four) in which we will encounter some difficulty. Still a general solu-
tion in terms of polynomials and radicals (the roots of polynomials, for example,
square root, third root, etc.) could be found. But, that’s it. In 1824, Abel4 showed
that quintic and higher order equations do not have a general solution in terms of
radicals.

If polynomial equations don’t have a general solution, other more involved equa-
tions could not possibly have such general solutions. But in applied work we need
to solve polynomial equations of degree five and higher as well as equations involv-
ing exponential, logarithmic, and trigonometric functions. Such equations could be
solved numerically, and we shall present a general framework for solving such
equations in Chap. 10. Here we confine ourselves to a Matlab routine for solving
polynomial equations.

Example 3.5 Suppose we would like to solve the equation

x3 − 2.15x2 − 0.67x+ 0.7475 = 0

You may want to try the familiar tricks of checking for x= 0, x= 1, and so on
before using Matlab. Let us save time; they won’t work. But here is the function that
will get us the solution.

Matlab code

% define the equation by specifying its coefficients.

% Note that order is important

g =[1 -2.15 -0.67 0.7475];

r = roots(g)

4Neils Henrik Abel (1802–1829) was a handsome man and a brilliant mathematician from Norway.
Despite his short life he made great contributions to mathematics. He lived in poverty and died of
tuberculosis. His teacher Bernt Holmboe helped Abel gain financial support for his studies, as
did the German mathematician August Leopold Crelle (1780–1855), who founded the first jour-
nal devoted exclusively to mathematics and who published many of Abel’s papers. Indeed Crelle
secured a nice job for him, but it was too late. There is a sentence in the middle of one of Abel’s
notebooks that I have found it haunting: “Our Father who art in Heaven, give me bread and beer.
Listen for once.” The French mathematician Èveriste Galois (1811–1832) generalized Abel’s work
on solvability of equations. Galois also had a tragic life. He was imprisoned for his political views
and lost his life in a duel; it is not clear if it was over love or politics. The modern or abstract
algebra is based on the work of Abel and Galois. A good source on both men (but with some
amount of math included) is Peter Pesic’s Abel’s Proof (2003); see also Men of Mathematics (1937)
by E. T. Bell.
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Matlab will return the roots x1 = 2.3, x2 = −0.65, and x3 = 0.5. Roots of poly-
nomials of second and higher orders are not all necessarily real. Many of them have
complex roots. Matlab can handle both types of roots.

3.6 Exercises

E.3.1 Evaluate the following polynomials at x = 5 with and without Horner’s
method and determine how many multiplications and additions you save.

i. f (x) = x4 + 12x3 − x2 + 7x− 8
ii. f (x) = x5 − 5x4 + 10x3 + 3x2 − x+ 15
iii. f (x) = x6 − 6x5 + 2x4 + 9x3 + 9x2 − 11x− 56

E.3.2 Use Excel to calculate n! directly and via Stirling’s approximation. Calculate
the ratio of the two and see if indeed the ratio approaches one. Also determine the
highest n for which the calculation of n! is feasible by either method.

E.3.3 Repeat Exercise E.3.1 using a Matlab program.

E.3.4 Solve the following equations using (3.18):

i. x2 − 2.25x+ 2.25 = 0
ii. x2 + 6x+ 9 = 0
iii. x2 − 4x+ 5 = 0

E.3.5 Check your results for E.3.4 using the Matlab function roots.

E.3.6 Program the formula in (3.18) in Matlab using only the operators
+,−, ∗, \ , and the exponent ˆ. Make sure that the program checks whether b2−4ac
is positive, zero, or negative and writes out the solutions accordingly. Apply your
program to problems in E.3.4.

E.3.7 Use the Matlab function roots to solve the following equations:

i. x3 − 4x2 + 2x− 3 = 0
ii. x4 + 2x3 − 7x2 + 5x+ 17 = 0
iii. x5 + x4 + 8x3 − 6x2 + 6x− 33 = 0



Chapter 4
Basic Concepts and Methods of Probability
Theory and Statistics

4.1 Probability

Probability theory is the branch of mathematics that deals with random events, that
is, events whose occurrence we cannot predict with certainty. Random phenomena
are a feature of every sphere of natural and social existence and of life. From the
genetic makeup of plants, animals, and human beings to planetary configurations,
from games such as poker and backgammon to movements in financial markets, and
from weather patterns to social and political events (such as elections results), we
witness stochastic or random phenomena.

We can think of three reasons for randomness. First, by nature, some or per-
haps all features of our world are stochastic. Quantum mechanics and the evolution
of such an immense variety of life forms from a single source are witnesses to
unpredictability in the universe and environment. A second source of randomness is
that many events are the result of a very large number of actions or decisions. For
example, thousands and sometimes millions of individuals who decide to buy or
sell a particular asset at a particular price and in a certain quantity—these deci-
sions determine that asset’s price. The same is true in an election result that is
too close to call. Even if we could enumerate and measure each and every influ-
ence upon these processes, we could not predict the outcome with certainty. Also,
some events, like a coin flip, are affected by a small number of forces wherein
the initial force, shape, and weight of the coin, its initial position, and the force
of gravity determine whether the coin lands on heads or tails. Yet the outcome
of any one flip of a fair coin is random because we simply cannot determine
the outcome a priori. Third, some variables may appear random because they
are measured with error. You can measure your height or weight a number of
times and, while you may get approximately the same number, each measure-
ment will show a small discrepancy from previous measurements. The result is
that your measured height or weight may resemble a random variable. The same
happens with counting the population of a city or estimating the U.S. per capita
consumption.

Each random event results in a set of outcomes, which we shall call the space of
elementary events or the sample space.

69K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
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Example 4.1 Excluding the possibility of the coin standing on its edge or leaning
on a wall, the set of possible outcomes of flipping a fair coin is

� = {H, T}

The corresponding set for flipping two coins

� = {HT , TH, TT , HH}

Next we form the set F that contains all elements of the set � as well as their
unions and complements. In other words, if A and B are in F , so are A ∪ B, Ac,
and Bc. Furthermore, this set contains both the certain events � and the impossible
event ø We call F , which is closed under the operations of union and complements,
an algebra. An algebra that is closed under enumerable union is called a σ-algebra.

Example 4.2 The algebra for the outcome of the flip of one coin is

F = {∅, {H, T}, {H}, {T}}

and for the flip of two coins

F = {∅, �, {TT}, {HH}, {HT , TH}, {HH, TT},
{HH, HT , TH}, {TT , HT , TH}}

Whereas we are not sure about the outcomes of a random event, we can attach
to each outcome a number called a probability. More formally, we can define
a probability measure by assigning to each element of the sample space, �, a
probability P.

Example 4.3 To each event in the flip of a coin we can attach a probability, for
example:

P(H) = P(T) = 0.5

And in the case of flip of two coins:

P(HH) = P(HT) = P(TH) = P(TT) = 0.25

Definition 4.1 The set function P is called a probability measure if

i. P(∅) = 0
ii. P(�) = 1
iii. P(A ∪ B) = P(A)+ P(B),

∀A, B ∈ �, A ∩ B = ∅
(4.1)
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The conditions stated in Definition 4.1 are the axioms of probability theory.1 The
triple of the set of outcomes, the algebra, and the probability measure, (�,F , P) is
referred to as a probability model.

So far so good, but what do we mean by these mathematical terms and what have
they got to do with the real world? The fact is that probability theory is silent as to
how to assign probabilities to different events. But we have three sources for attach-
ing probabilities to the outcomes of random events: They can be based on equally
likely events, based on long-run frequencies (classical or frequentist approach), and
based on the degree of confidence (subjective or Bayesian approach). Note that how-
ever we assign probabilities to different events, the mathematical theory for dealing
with random events and their probabilities remain the same.

1. Equally likely events. This is the oldest and simplest definition of probability.
If an event has n equally likely outcomes, then each outcome has probability 1/n. For
instance, in flipping a fair coin, the probability of heads is the same as the probability
of tails. Thus, both have the probability of 0.5. Similarly, in throwing a fair die, the
probability of each side showing up is 1/6. The problem with this definition is that
the notion of “equally likely” makes the definition circular. We define probability
by referring to equally likely outcomes, and equally likely outcomes are those that
have the same probability of occurring.

2. Frequency of occurrence. In the examples above, suppose we do not know
if the coin or die is fair. In such cases, we can determine the probability of heads
by flipping the coin a million times. If heads shows up 499,963 times, we can cal-
culate the probability of heads as 499963/1000000 = 0.499963. This definition or
way of assigning probabilities is empirical and quite appropriate for events that can
be repeated a large number of times under identical circumstances. In particular, it
is appropriate for many phenomena in the physical sciences and engineering. This
notion of probability should be applied with care to economics, social sciences,
political life, or, indeed, to any discipline that studies human behavior. Some events
and issues are amenable to being classified as one in a large, reasonably, homoge-
neous set of events. Household income and consumption in an economy, and prices
of different goods and services fit this characterization. Even events like recessions
and recoveries, if considered only as periods of output decline or growth, may be
treated as appropriate to the application of probability theory. But each recession
and recovery is a unique event and cannot be treated as one observation in a large
set of similar events. In the same way we must be careful not to think that all wars
can be lumped into one category. Wars certainly exhibit similarities, but even greater
differences.

We can think of some aspects of elections—such as voter participation rates, the
division of votes between parties in total, and divisions based on gender and race—
that can be studied within the frequentist framework. But again, each election as a
historical event is unique and not subject to repetition. Once we get to issues like

1The axioms of probability theory were formulated by the great Russian mathematician Andrey
Nikolaevich Kolmogorov (1903–1987) and published in 1933.
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the development path of a country or transition to democracy, we should note that
such events are unique and one-time affairs; thinking about them in frequentist terms
would be misleading. This observation leads us to the third definition of probability.

3. Degree of confidence or subjective probability. When political commentators
predict an 80% chance that Governor Sarah Palin will run for president in 2012,
they are expressing their degree of confidence or subjective probability in the event
occurring. The same is true when researchers say that, at a 95% level of confidence,
worsening economic conditions do not increase the crime rate, or forecasters say that
next year’s inflation rate will be between 2.5 and 3.5%. An important case happens
in criminal trials. The jury is asked to find the defendant guilty only if they are sure
“beyond a reasonable doubt.” Now you readers can ask yourselves how confident
you would be in the guilt of a defendant to call it beyond a reasonable doubt: 80,
90, or 95%? The important point to remember here: The mathematical theory of
probability is equally applicable to all three definitions of probability.

4.2 Random Variables and Probability Distributions

Suppose we attach a number to each outcome of a random event. Because the event
is random, so are the numbers. The rule that specifies what number should attach
to which outcome is called a random variable. More formally, a random variable
is a set function that maps the set of outcomes of a random event to the set of real
numbers. Such a function is not unique, and depending on the purpose at hand, we
may define one or many random variables corresponding to the same random event.

Example 4.4 Let us define the random variable X as the number of heads in the flip
of two coins. We have

X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0

We could have defined the random variable as the number of tails, in which case

X(HH) = 0, X(HT) = 1, X(TH) = 1, X(TT) = 2

Example 4.5 In collecting labor statistics we are interested in the characteristics
of respondents. For example, we may ask if a person is in the labor force or not,
employed, or unemployed. In addition, we would like to know about the demo-
graphic characteristics of respondents such as gender, race, and age. For each answer
we can define one or more binary variables. For example, we can define X = 1
if a respondent who is in the labor force is unemployed and X = 0 if employed.
Alternatively, we can define Y = 1 if the person is employed and Y = 0 otherwise.
We can define X = 1 if the respondent is a woman and employed and X = 0 oth-
erwise. We could define a variable called “years of schooling,” which would take
values 1, 2,..., 11, 12, ... depending on how many years the respondent went to
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school. On the other hand, we may define a variable “high school,” which would
take the value of one if the respondent finished high school and zero, otherwise.

A random variable together with its probabilities is called a probability
distribution.

Example 4.6 Let us define the random variable X as the number of heads in the flip
of three coins. The probability distribution is

X P(X)

0 0.125
1 0.375
2 0.375
3 0.125

This is a discrete probability distribution. Probability distributions become unwieldy
if the number of outcomes is large or infinite, as in the case of continuous random
variables (see Sect. 4.6).

One way to summarize the information about a probability distribution is through
its moments such as the mean, which measures the central tendency, and variance,
which measures the dispersion or variability of the distribution. Another moment
reflects the skewness of the distribution to the right or left and yet another, its kur-
tosis, is an indicator of how peaked is the distribution of outcomes; the more values
are concentrated near the mean, the taller is the peak of the distribution.

Definition 4.2 The first moment of the distribution around zero, which is the
expected value or the mean of the distribution, is defined as2

E(X) = μ =
n∑

i=1

xiP(xi) (4.2)

Example 4.7 For the distribution of number of heads in Example 4.6, we have

μ = 0(0.125)+ 1(0.375)+ 2(0.375)+ 3(0.125) = 1.5

Definition 4.3 In the same fashion, we may define the r-th moment of a distribution
around zero as

E(Xr) = mr =
n∑

i=1

xr
i P(xi) (4.3)

2We shall denote the random variable, that is, the rule that assigns a real number to a particular out-
come, by the capital letter X. Every realization of this variable, that is, the particular value assigned
to an outcome, shall be denoted by xi, and by x when referring to such realizations generically.
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Example 4.8 The second moment of the distribution in Example 4.6 is

E(X2) = 0(0.125)+ 1(0.375)+ 4(0.375)+ 9(0.125) = 3

Definition 4.4 A second measure, which is of great importance, is the variance or
the second moment around the mean

E(X − μ)2 = σ 2 =
n∑

i=1

(xi − μ)2P(xi) (4.4)

Using the binomial expansion, we can write the formula for the variance in an
alternative form, which would make the computation easier.

E(X − μ)2 =
n∑

i=1

(xi − μ)2P(xi)

=
n∑

i=1

x2
i P(xi)− 2μ

n∑
i=1

xiP(xi)+ μ2

=
n∑

i=1

x2
i P(xi)− μ2

(4.5)

Example 4.9 Continuing with the distribution in Example 4.6 we have

σ 2 = E(X2)− μ2 = 3− 1.52 = 0.75

Mean is a measure of central tendency of a distribution showing its center of
gravity, whereas variance and its square root, called standard deviation, measure
the dispersion or volatility of the distribution. The advantage of standard deviation
is that it measures dispersion in the same measurement unit as the original variable.
But in probability theory and statistical analysis, variance is the main player because
it is algebraically and statistically easier to handle. In finance, the variance of the
return of an asset is used as a measure of risk.

4.3 Marginal and Conditional Distributions

A random event may give rise to a number of random variables, each defined by
a different set function whose domains are the same set. Table 4.1 displays such a
case where random variables X and Y and their probabilities are reported. We may
think of Y as the annual income in $1000 of a profession and X as gender, with
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Table 4.1 Joint distribution
of X and Y X Y P(X,Y)

0 55 0.02
0 65 0.04
0 75 0.07
0 85 0.09
0 95 0.10
0 105 0.06
0 115 0.03
0 125 0.02
0 135 0.01
0 145 0.01
1 75 0.01
1 85 0.02
1 95 0.04
1 105 0.08
1 115 0.11
1 125 0.11
1 135 0.09
1 145 0.05
1 155 0.03
1 165 0.01

X = 0 denoting men and X = 1 denoting women. The information in Table 4.1 con-
tains the probability of joint events, that is, the probability of X and Y each taking a
particular value. For instance, the probability of X= 1 and Y= 115 is 0.11, which is
denoted as

P(X = 1, Y = 115) = 0.11

Such a probability is referred to as joint probability because, in our example, it
shows the probability of a woman making $115,000 a year. If we are interested
only in X, then we can sum up over all relevant values of Y and get the marginal
probability of X. For example,

P(X = 1) = P(X = 1, Y = 75)+ · · · + P(X = 1, Y = 165)
= 0.01+ 0.02+ 0.04+ 0.08+ 0.11+ 0.11+ 0.09+ 0.05+ 0.03+ 0.01
= 0.55

In general, we can write

P(X = xk) =
n∑

j=1

P(X = xk, Y = yj) (4.6)

In the same vein we can calculate the probability of X = 0, which would be 0.45.
Thus, the marginal distributionof X is
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X P(X)

0 0.45
1 0.55

A similar procedure yields the marginal probability of Y. For example,

P (Y = 85) = P (Y = 85, X = 0)+ P (Y = 85, X = 1)

= 0.09+ 0.02

= 0.11

The marginal distribution of X shows the distribution of men and women in that
profession (45% men, 55% women), whereas the marginal distribution of Y would
show the distribution of income for both sexes, that is, the profession as a whole.

Definition 4.5 (Conditional probability) Consider two events A and B whose joint
probability is P(A∩B). The conditional probability of A given B denoted by P(A|B)
is the probability of A given that the event B has already happened:

P(A|B) = P(A ∩ B)

P(B)
(4.7)

If P(A|B) = P(A), or equivalently P(A ∩ B) = P(A)P(B), then we say that the
events A and B are independent.

Example 4.10 Continuing with our example of distribution of income of men and
women, we may be interested to know the probability of a woman earning $105,000,
that is, the probability of Y=105 when we already know that X=1. That is, we are
interested in the conditional probability of Y=105, given that X=1.

P(Y = 105|X = 1) = P(Y = 105, X = 1)

P(X = 1)

= 0.08

0.55
= 0.145

In general

P(Y = yj|X = xk) = P(Y = yj, X = xk)

P(X = xk)
(4.8)

Indeed we can compute the conditional distribution of Y|X = 0 and Y|X = 1
(Table 4.2).

Example 4.11 Continuing with the data in Table 4.1, the conditional distribution
of Y, given X = 0, is the distribution of income for the male population while
P(Y|X = 1) is the conditional distribution of income for the female population.
A conditional distribution has a mean, variance, and other moments. We compute
its mean as
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Table 4.2 Conditional distribution of Y given X

Y P(Y | X= 0) Y P(Y | X= 1)

55 0.044 75 0.018
65 0.089 85 0.036
75 0.156 95 0.073
85 0.200 105 0.145
95 0.222 115 0.200

105 0.133 125 0.200
115 0.067 135 0.164
125 0.044 145 0.091
135 0.022 155 0.055
145 0.022 165 0.018

E(Y|X = xk) =
n∑

j=1

yjP(yj|X = xk) (4.9)

Variance and other moments of the conditional distribution are computed
similarly.

Example 4.12 For the conditional distributions in Table 4.2, we have

E (Y|X = 0) = 91.4, E (Y|X = 1) = 121.4

Example 4.13 (Expected Utility). In Chap. 2, we talked about utility function. In
a world of certainty, and when choices are simple, one may be able to easily rank
different alternatives. But we live in a world of uncertainty and we have to choose
between prospects, not sure alternatives. In buying a car, you may be able to find
out about all its characteristics such as gas mileage, speed, and reliability, but you
would not know the future prices of gasoline or the resale value of the car. Similarly,
in making an investment, you may have some idea about probable returns, but no one
is promised tomorrow and any investment involves risk. To handle such uncertain
or risky decisions, we introduce the concept of expected utility. To make matters
simple, we shall assume that we are interested in only one variable: income.

Let Table 4.3 describe choices open to us. Two prospects or actions a1 and a2
are open to the decision maker or investor. Under the first, the investor receives $50,
regardless of the state of nature. Under the second, he would receive $35 if s = 1

Table 4.3 Income prospects
of two investment options States

Actions s = 1 s = 2

a = 1 x11 = 50 x12 = 50
a = 2 x21 = 35 x22 = 85
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happens and $85 if s= 2 happens. One can think of the states as boom and recession
in the economy, or the Federal Reserves decision to raise or leave unchanged the
interest rate, or the price of oil increasing and decreasing. As it stands, making a
choice would be difficult. We need more information. Suppose s = 1 occurs with
probability p1 = 0.7 and s = 2 with probability p2 = 0.3.

Before going further, make a note of two important points. First, probabilities
are defined over states (of nature, market, etc.). States happen and you have no
control over them; you only have information on the probability of their occurrence.
Second, you decide on actions, therefore, we can rank the desirability or utility of
each action. One way to decide is to look at the expected return of each action. But
first we need to define a function representing our valuation or utility of each xas.
Let U (xas) denote the utility of each outcome. Then the expected utility conditional
on the action can be written as

E[U(x)|a] = p1U(xa1)+ p2U(xa2), a = 1, 2 (4.10)

To illustrate, let us assume in this case that

U(xas) = √xas, ∀a, s

Thus, for the two possible actions, we have

E[U(x)|a = 1] = 0.7 (
√

50)+ 0.3 (
√

50) = 7.071
E[U(x)|a = 2] = 0.7 (

√
35)+ 0.3 (

√
85) = 6.907

Based on our utility function, clearly the first option is preferred to the second.
Recall that in Chap. 2 we said that the utility function assigns ordinal values to each
bundle of goods and services. In other words, the actual number is not important,
but values should be assigned in such a way that the preferred bundle has a larger
number. This is not true for the expected utility function; it has a cardinal value. The
reason is that each U enters the computation of E[U(x) | a] and the latter is the utility
of a whole prospect and not just one particular amount of income. Some changes in
U that will preserve the ordering of xas’s will change the ordering of the prospects.
To see this point, change the utility function to U (xas) = xas.

Now we have

U(a = 1) = 0.7(50)+ 0.3(50) = 50

U(a = 2) = 0.7(35)+ 0.3(85) = 50

We are indifferent between the two options. Indeed, the two utility functions rep-
resent two different behaviors. If U(xxs) = √

xas represents your utility function,
then you are risk averse because you prefer a sure outcome—receiving $50 regard-
less of the state of the economy—to a risky situation with the same expected value
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of return. On the other hand, an investor with a U function that makes the two invest-
ments equivalent is called risk neutral. Finally, if your U function is such that you
prefer the second option to the first, then you are a risk-loving person.

4.4 The Bayes Theorem

The Bayes theorem is an extremely important proposition because not only it is
the foundation of Bayesian statistics and econometrics but it describes the pro-
cess by which we do science and in general understand the world. Its mathematical
derivation is straightforward. Recall that

P(A ∩ B) = P(A|B)P(B)

But also

P(A ∩ B) = P(B|A)P(A)

It follows that

P(A|B) = P(B|A)P(A)

P(B)
(4.11)

Let Ā denote the complement of event A, then we have

P(B) = P(B|A)P(A)+ P(B|Ā)P(Ā)

Thus,

P(A|B) = P(B|A)P(A)

P(B|A)P(A)+ P(B|Ā)P(Ā)
(4.12)

More generally, if we have

P(Ai ∩ B) = P(Ai|B)P(B), i = 1, . . . , n

Then

P(Aj|B) = P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)

(4.13)
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Let us illustrate the theorem with an example and then we shall discuss its
meaning and importance.

Example 4.14 Suppose we have two boxes, K and N. One is chosen by a blindfolded
person and then she randomly picks a ball from that box, which turns out to be black
(an event denoted by B1). What is the probability that she had picked box K?

P(K|B1) = P(B1|K)P(K)

P(B1|K)P(K)+ P(B1|N)P(N)

We know that P(B1|K) = 0.9, and P(B1|N) = 0.2. But what about P(K) and P(N)?
Of course, if we already knew these probabilities, there was nothing left to compute.
The only thing we have is the data that the first ball was black. It is possible that we
have some hunch or guess as to the value of these probabilities. Such information
could serve as the prior probability. In our example we have no particular informa-
tion. Therefore, we can assume that the events of K and N are equally likely. Such
priors are called uninformative or diffuse. Now we have:

P(K|B1) = 0.9× 0.5

0.9× 0.5+ 0.2× 0.5
= 0.818

Thus, we have revised our probability of K being chosen from 0.5 to 0.818. Our
new estimate is called posterior probability. Similarly

P(N|B1) = 0.2× 0.5

0.9× 0.5+ 0.2× 0.5
= 0.182

Now suppose the person still being blindfolded, replaces the ball, and again ran-
domly chooses another ball from the same box. What is the probability that the
chosen box is K if the second ball is also black (an event denoted by B2)? Note
that we now have some information about the chosen box being K, that is, we have
estimated the probability to be 0.818. This probability can now serve as our prior
and we can revise our estimate as:

P(K|B2) = 0.9× 0.818

0.9× 0.818+ 0.2× 0.182
= 0.947

Thus, as a result of two consecutive drawing of black balls we are pretty sure
(more than 90%) that the chosen box is K. Note that the Bayes theorem allows us
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to combine information from data P(B1|K), which we shall call likelihood function,
with the prior knowledge. Also note that since

P(K|B1)+ P(N|B1) = 1

We only need the knowledge of numerator in (4.11) and (4.13). We can normalize
the probabilities such that the sum of P(K|B1) and P(N|B1) is equal to one. Thus,

P(K|B1) ∝ P(B1|K)P(K)

In words: Posterior probability (distribution) is proportional to likelihood func-
tion times prior probability (distribution).

The scheme depicted above, indeed describes the way we learn about different
natural and social phenomena and revise our understanding of them. For instance,
we can think of K as the Keynesian and N as the New Classical model, where black
and white balls are statistical and historical evidence in favor of one or the other
theory. The more evidence in favor of a theory the more confident we are that it
indeed describes the real world.

As a final point, let us assume that after two consecutive black balls, our blind-
folded individual randomly draws a white ball (after replacing the previous one).
Then, denoting this event by W3, we have:

P(K|W3) = 0.1× 0.947

0.1× 0.947+ 0.9× 0.053
= 0.691

Thus, a contrary piece of evidence will shake our conviction

4.5 The Law of Iterated Expectations

The law of iterated expectations finds many applications in economics—for exam-
ple, in rational expectations models—and in econometrics. The law of iterated
expectations pertains to the relationship between conditional and unconditional
expectations. In general,

E(Y) = EXE(Y|X) =
n∑

j=1

E(Y|X = xj)P(X = xj) (4.14)

Example 4.15 For the X and Y in Table 4.1, we have

E(Y) = E(Y|X = 0)P(X = 0)+ E(Y|X = 1)P(X = 1)

= 91.4× 0.45+ 121.4× 0.55

= 107.9
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The law of iterated expectations can be applied to cases when the expectation is
conditional on more than one variable. As a matter of notation, the same way that we
write P

(
X = xj

)
as P(xj)or sometimes even P(x), we write E (Y|X = xk) as E(Y | x)

which means the expectation of Y given all values of X. Suppose we know or assume
that E(Y|x) = 0. This means that for all values of x, the conditional expectation of
Y equals zero. Then it follows that

E (Y) = EXE (Y|x) = 0 (4.15)

Needless to say, the reverse is not true: E(Y) = 0 does not imply that E(Y|x) = 0
for all values of x.

4.6 Continuous Random Variables

So far we have been discussing only discrete random variables, that is, variables
that take a countable number of values. Such variables need not be whole numbers
as long as we are dealing with a finite number of them (see E.4.1). Many variables
in nature, industry, science, economics, and society are continuous—their values
cannot be enumerated. Heights and weights of different species, the amount of fuel
a country uses, the amount of steel a region produces, and U.S. household incomes
are examples of such variables. In assigning probabilities to continuous variables,
we run into the problem that an interval, no matter how small, contains an infinite
number of points. If we assign to each of them a positive probability, no matter
how small, then the sum of an infinite series of positive numbers would not be
bounded and the axiom of probability theory—that the sum of probabilities should
be one—will be violated.

To overcome this problem, we assign probabilities to segments of the interval
within which the random variable is defined. For example, we can write

P(X ≤ 12.6) = 0.59, or P(−1 < X ≤ 1.2) = 0.13

Example 4.16 A simple example of a continuous variable is the uniform distribution
(see Fig. 4.1). Variable X can take any value between a and b, and the probability
of X falling within the segment [a, c] is proportional to the length of the interval
compared to the interval [a, b].

P(a < X ≤ c) = c− a

b− a
(4.16)

More generally,

P(X ≤ x) = x− a

b− a
(4.17)

Thus, the probability of an interval is equal to the area over the interval restricted
from below by the x-axis and from above by the line at 1/(b− a). The straight line
at 1/(b−a) is the density function. Whereas in this case the connection between the
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Fig. 4.1 Uniform
distribution

probability distribution and its density function is simple, the derivation of one from
the other involves differentiation and integration, topics which we shall discuss in
Part III (Chaps. 8, 9, 10, and 11) of this book.

Because an infinite number of points lie between a and b, it follows that each
point will have probability zero.3 Alternatively, we can say that the probability of
point c is

P(x = c) = c− c

b− a
= 0

That is, the width of a point is zero. The distribution function of X is denoted by

F(x) = P(X ≤ x) (4.18)

and has to conform to the following conditions:

1. F(x) is continuous. We shall discuss the concepts of continuity and continuous
functions in Chap. 8. Suffice it here to say that a continuous function has no
break. In other words, you could draw the function without lifting the pen from
the paper.

2. F(x) is nondecreasing; that is,

F(x1) ≤ F(x2), if x1 < x2 (4.19)
3.

F(−∞) = lim
x→−∞F(x) = 0, and F(∞) = lim

x→∞F(x) = 1 (4.20)

These conditions are the counterparts of the discrete case, which stipulates that
probability is always positive and the sum of probabilities add up to one.

3An impossible event has probability zero, but an event with probability zero may still happen.
Similarly, a sure event has probability one, but an event with probability one may still fail to
happen.
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Example 4.17 Note that conditions 1 and 2 are fulfilled for the uniform function.
For the third condition, we have

F(a) = a− a

b− a
= 0, and F(b) = b− a

b− a
= 1

Note also that we can write

P(x1 < X ≤ x2) = F(x2)− F(x1)

Example 4.18 For the uniform distribution, we have

P(x1 < X ≤ x2) = x2 − x1

b− a

= x2 − a

b− a
− x1 − a

b− a
= F(x2)− F(x1)

Example 4.19 Another example of a continuous distribution is the famous Gaussian
or normal distribution, the bell-shaped curve that is depicted in Fig. 4.2. Its density
function is

f (x) = 1

σ
√

2π
e
− 1

2

(
x−μ
σ

)2

(4.21)

Normal distributions have two parameters: mean μ and variance σ 2 Once we
know these two parameters, the entire distribution is specified. In particular, when
μ = 0 and σ 2 = 1, we have the standardized normal distribution.

The definitions of mean and of variance of continuous distributions are similar to
those of discrete distributions, but they require knowledge of integral calculus (the
subject of Chap. 11) and, therefore, we do not discuss them here.

Fig. 4.2 Gaussian or normal
distribution
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In addition to uniform and normal distributions, several continuous distribu-
tions play important roles in probability theory, statistics, and econometrics. These
include t, χ2, F, beta, and exponential distributions. For all of them, we can write
density functions some of which may be involved functions. Nevertheless, we
should not assume that all continuous distributions have density functions.

Now that we have gained an intuitive understanding of continuous distributions,
we may want to have a more formal definition of probability models that parallels
the definition we had for discrete distributions. We start with the extended real line
� = (−∞, ∞), which shall play the same role for continuous variables that Ω the
set of outcomes, played for discrete random variables. Consider half-closed intervals
on �:

(a, b] = {x ∈ � : a < x ≤ b} (4.22)

and form finite sums of such intervals provided the intervals are disjoint—that is,
they do not overlap.

A =
n∑

j=1

(aj, bj], n <∞ (4.23)

A set consisting of all such sums plus the empty set ∅ is an algebra, because it
is closed under the operations of union and complement. If the set is closed under
enumerable union then it is a σ-algebra. The smallest σ-algebra that contains the set
of half-closed intervals on � is called the Borel set and denoted by B(�). Finally,
we define the probability measure

F(x) = P(−∞, x] (4.24)

The triple (�, B(�), P) is our probability model for continuous variables.

4.7 Correlation and Regression

Economics is an observational rather than an experimental science. Economists
discover relationships between different sets of variables by examining data and
using econometric techniques. The main workhorse of econometrics is regression
analysis that allows economists to find correlation between different sets of vari-
ables. Examples are the relationship between consumption, income, and wealth; the
relationship between investment, income, and the cost of capital; and the relation-
ship between demand for different commodities and services and their prices and
aggregate income.

The three reasons for observing randomness (Sect. 4.1)—randomness in nature
and society, influence of many factors and decision makers, and measurement with
error—apply to all economic variables. Thus, in studying economics we can treat
all the variables as random and try to discern their connections using methods of
probability theory and statistics.
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If two or more random variables depend on the same random event, we may
be interested in measuring the degree of their connection. This is done with two
measures of association: covariance and correlation coefficient.

Definition 4.6 The covariance for two variables X and Y, whose probability
distribution is P(X, Y), is defined as

Cov(X, Y) = E[(X − E(X))(Y − E(Y))]

=
n∑

j=1

(xj − μX)(yj − μY )P(xj, yj)
(4.25)

where μX = E(X) and μY = E(Y). We can simplify this formula:

Cov(X, Y) =
n∑

j=1

(xj − μX)(yj − μY )P(xj, yj)

=
n∑

j=1

xjyjP(xj, yj)− μX

n∑
j=1

yjP(xj, yj)

−μY

n∑
j=1

xjP(xj, yj)+ μXμY

n∑
j=1

P(xj, yj)

=
n∑

j=1

xjyjP(xj, yj)− μXμY

(4.26)

Example 4.20 Table 4.4 shows the number of heads in five flips of a coin and the
winning associated with each case. The cost of buying a ticket to play this game is
fixed at $8. The covariance of the number of heads and the amount of winnings is

Cov(X, Y) = 25− 2.5(7.5) = 6.25

A covariance greater than zero shows a positive connection between the two
variables, whereas a covariance less than zero signifies a negative relationship. A

Table 4.4 Probability distribution of the number of heads in five flips of a coin

No. of heads Winnings Probability
X Y P(X, Y)

0 0 0.03125
1 1 0.15625
2 4 0.31250
3 9 0.31250
4 16 0.15625
5 25 0.03125
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zero covariance shows that the two variables are statistically unrelated. For exam-
ple, the covariance between the ticket cost and the winnings equals zero, because
the cost remains the same regardless of the number of heads or the amount of win-
nings. Whereas the covariance between two variables shows a statistical connection
between them, it says nothing about the strength of that relationship. The correlation
coefficient measures the strength of co-movement between two variables.

Definition 4.7 The correlation coefficient is obtained by normalizing the covariance,
that is, dividing it by the product of the standard deviations of the two variables
involved.

Corr(X, Y) = Cov(X, Y)

σXσY
(4.27)

Correlation coefficients are always within the [−1, 1] interval. The larger the
absolute value of the coefficient, the stronger the connection between the two
variables involved.

Example 4.21 In Example 4.20, the correlation coefficient between X and Y is

Corr(X, Y) = 6.25√
1.25

√
33.75

= 0.96225

Definition 4.8 A simple regression model represents a relationship between two
random variables4 y and x. But this relationship is not exact; the magnitude of inex-
actness appears as a third random variable, u. As examples, we may think of y as
the height of a son, which depends on the height of the father x, or consumption of
a household y depending on its income x. We can observe variables x and y, but u
is unobservable. Indeed, if we could observe u, then the relationship between y and
x would be exact. Suppose we have n observations. If the relationship is linear, the
simple regression model can be written as

yi = α + βxi + ui, i = 1, · · · , n (4.28)

4Some econometrics textbooks speak of x being fixed in repeated sampling. This cryptic assertion
is a reference to the use of regression models in experimental sciences. Suppose you have 10
flowerpots filled with the same type of soil. In each you plant the same type of seed and water
them the same amount. However, each plant is given a different amount of fertilizer x and the yield
for each plant, y, is measured. You can repeat the same experiment keeping all variables affecting
the growth of the plant in each pot constant. In particular, the amount of fertilizer in each pot
remains constant. Such experiments have hardly anything to do with economic issues and the use
of regression analysis in economics, so we speak more generally of two random variables.
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E(ui|xi) = 0

E(u2
i ) = σ 2 ∀ i, j i �= j

E(uiuj) = 0

We offer three reasons for the inexactitude of the relationship in (4.28). First, we
may have left the effects of other variables out of the equation. A son’s height may
also be influenced by the height of the mother, nutrition, environment, and other
variables. Consumption of a household may be affected by wealth, the number of
individuals in the household, and so on. If these influences are numerous and none
have a definite impact, then we may observe random variations around the exact
part of the equation. Second, errors in measuring the variables x and y may arise.
In economics, measured variables are often not the exact counterparts of theoretical
constructs. For example, we do not measure consumption, but rather consumers’
expenditures; we do not measure demand, but rather the amount purchased. Finally,
it may be that the inexactitude or the random variation is intrinsic to the relationship.

A number of methods have been developed to estimate α and β based on obser-
vations of y and x. These include the least squares, maximum likelihood, and
generalized method of moments.

The restrictions imposed on u are needed to make inference about α and β based
on their estimated counterparts α̂ and β̂. In addition, when we make statistical infer-
ence, we usually assume that ui, i = 1, · · · , n are normally distributed. If the data
violate any of the restrictions on u, such violations affect our inferences about α and
β. Hence, a great part of classical econometrics seeks to remedy such deviations
from the assumptions of the model in order to make inferences about α and β pos-
sible. A regression model need not have only one explanatory variable x. A multiple
regression model will be of the form

yi = β0 + β1x1i + β2x2i + · · · + βkxki + ui, i = 1, · · · , n (4.29)

The same restrictions as in (4.28) are imposed on u in (4.29). In addition, no exact
or nearly exact linear relationship may exist between the explanatory variables, that
is, between x1, x2, · · · , xk. We would use the same methods mentioned above to
estimate the model parameters. Note that β j measures the effect of xj on y when all
other variables are held constant.

4.8 Markov Chains

In recent years, Markov chains5 have been applied to many economic problems
including the study of business cycles. The subject is vast and very interesting. Here
we introduce the reader to the rudiment of Markov chains theory and will come back
to it in Chaps. 6 and 7.

5For the renowned Russian mathematician, Andrei Andreyevich Markov (1856–1922), who
studied and made contributions to the subject.
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Consider an individual’s present employment situation and, for simplicity, let us
assume that the person could be in only one of three states: employed, unemployed,
and out of the labor force. If a person is employed, what is the probability that in
the next period, say, next month, she still will be employed? What is the probability
that she will be unemployed? Out of the labor force? We can list such probabilities
for a hypothetical individual (see Table 4.5).

Table 4.5 Transition probabilities for different employment states

Present state

Next period Employed Unemployed Out of labor force

Employed 0.960 0.350 0.060
Unemployed 0.039 0.600 0.120
Out of labor force 0.001 0.050 0.820

For example, if a person is employed in this period, the probability that she stays
employed is 0.96, whereas the probability of her leaving the labor force altogether
is 0.001. Thus, each entry (i, j) shows the probability, Pij of the individual transiting
from state i in the current period to state j in the next period. In general, we can
write the matrix of transition probabilities as in Table 4.6.

Table 4.6 Matrix of
transition probabilities Time t

Time t + 1 1 2 . . . n

1 P11 P21 · · · Pn1
2 P12 P22 · · · Pn2
...

...
...

. . .
...

n P1n P2n · · · Pnn

Note that regardless of its state at time t, the system will be in one of the n states
at time t+1. Therefore, the sum of transition probabilities from any state to all other
states should add up to one.

n∑
j=1

Pij = 1, ∀i

Some probabilities may equal one or zero. A probability zero, for example,
Pik = 0 signifies that no transition from state i to state k can take place, whereas
Pis = 1 means that if we are in state i at time t, we will certainly be in state s at time
t+1. In particular, Pii = 1 means that once we are in state i, we shall remain in that
state forever. To make these ideas more precise, let the variable Xt = i denote that
at time t a system is in state i. Then the transition probabilities are defined as

P(Xt+1 = j|Xt = i) = Pij, ∀i, j
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Thus, {Xt} is a stochastic (or random) process. It would be a Markov process if two
conditions are met:

1. The number of states is finite, hence we have n <∞ possible states.
2. Transition probabilities remain constant; hence P (Xt+1 = j|Xt = i) = Pij, and

would not change over time.

Two parts attend the second property. First, the probability of transition to a state,
j, at time t+1 depends only on Xt. Thus, previous values of X, that is, Xt−1, Xt−2, · · ·
have no bearing on the probability of Xt+1 being in a particular state. This short
memory is the essence of a Markov process. Second, the probability remains
constant and does not change over time, which makes the process stationary.

Example 4.22 As another example, consider the American economy’s cyclical
behavior, which gives rise to periods of boom and recession. Between 1854 and
2010, the economy experienced 33 cycles. By a cycle, we mean a period of reces-
sion followed by a boom period. On average, recessions have lasted 16 months and
booms 42 months. If we confine ourselves to the post-World War II era, the United
States has experienced 11 cycles, with recessions lasting, on average, 11 months and
booms lasting, on average, 59 months. Of course, as a boom continues, the proba-
bility of a peak increases. The same is true for a trough. Moreover, other indications
in the economy warn of the impending onset of a recession or herald the beginning
of a recovery. But for a moment suspend your disbelief and assume that the proba-
bility of transition from a recession to recovery and from boom to recession remains
constant. Table 4.7 reflects these transition probabilities.

Table 4.7 Transition
probabilities between booms
and recessions in the U.S.
economy

t

t + 1 Boom Recession

Boom 0.98 0.10
Recession 0.02 0.90

4.9 Exercises

E.4.1 Find first, second, third, and fourth moments around zero of the following
distributions.

X P(X) Y P(Y)

−100 0.075 1.5 0.09
−50 0.244 1.6 0.13

10 0.328 1.7 0.20
60 0.236 1.8 0.21

110 0.095 1.9 0.18
175 0.020 2.0 0.11
245 0.002 2.1 0.08
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E.4.2 Calculate variances and standard deviations of the distributions in E.4.1.

E.4.3 Show that if X is a random variable and Y = a + bX, then

E(Y) = a+ bE(X), and σ 2
Y = b2σ 2

X

E.4.4 In the simple regression model, show that

E(yi|xi) = α + βxi

and

Var(yi|xi) = Var(ui)

E.4.5 You are given the joint distribution of X and Z in the following table.

X Z P(X, Z)

0 −5 0.08
0 −3 0.16
0 −1 0.17
0 0 0.07
0 1 0.04
1 −3 0.03
1 −1 0.08
1 0 0.19
1 1 0.14
1 3 0.04

i. Compute the marginal distribution of Z.
ii. Compute the conditional distributions P(Z | X = 0) and P(Z | X = 1).

iii. Compute the conditional expectations E(Z | X = 0) and E(Z | X = 1).
iv. Use this example to verify the law of iterated expectations.

E.4.6 Consider a test for a particular disease such as HIV, which detects the infection
in 99% of those who have HIV. But it also has a 10% rate of false positive.
Furthermore, assume that 2% of total population has HIV. What is the probability
of having HIV if a person tests positive? Solve the problem once using the Bayes
Theorem and once by making a frequency table assuming a total population of
100,000 people.

E.4.7 In a game show the host and contestant face three closed doors. Behind one
door is a very valuable prize, say, a sports car. Behind the other two are duds like a
baseball bat or a goat. The contestant chooses a door. Before the door is opened, the
host opens one of the two doors not chosen by the contestant and shows that the
main prize is not there. Then the contestant is offered the opportunity to change her
choice. Should the contestant change the door chosen?
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[Hint: Find the probability of winning with and without changing the door. Make
the computation once using the Bayes Theorem and once assuming that the whole
process is repeated 1,000 times.]

Height Shoe size # of siblings +1 Height Shoe size # of siblings +1

69 10 3 67 12 2
70 10 2 67 10 4
68 10 2 66 8 2
74 12 3 68 9.5 5
75 13 2 67 8.5 3
66 9 3 72 11 3
63 6.5 2 70 9.5 1
71 13 2 70 10 2
72 12 1 69 9.5 5
67 9 2 71 12 1
71 10.5 3 69 10 1
69 10 3 71 13 2
68 9 3 68 13 5
64 8 9 72 13 2
71 11 3 70 10.5 3

E.4.8 The above table gives the data on the heights and shoe sizes of 30 students. In
addition, the number of students’ siblings plus one is given in the last column.

i. Using Excel

Insert → Chart → XY(Scatter)

to make a scatter diagram of height against shoe size.
ii. Use the tool bar menu

Chart → Add Trendline

to draw the regression line.
iii Repeat i. and ii. for height and number of children in the students’ families.
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Chapter 5
Vectors

We have already encountered two-dimensional numbers and variables in the case
of complex variables. Two, three,..., and n dimensional numbers are simply exten-
sions of the concept of a number. For example, we can speak of the length of a
string, which would be a one-dimensional number. Or we could talk of the length
and width of a page, which would be two-dimensional. A three-dimensional num-
ber could represent length, width, and height of a room. Multidimensional numbers
are of great importance in all sciences including economics. Such numbers pro-
vide economy in exposition and facilitate the manipulation and analysis of complex
questions.

Multidimensional numbers and variables are indispensable in economics; many
economic variables and quantities are essentially multidimensional. Consider any
goods or service that you buy. Although we may use a simple word or expression
such as computer, telephone service, or health care, each of these goods and services
can only be described by an array of characteristics. In case of a computer, we
have its price, its speed, technical support, warranty, and on-site service, to name
only a few. A telephone service is even more complicated. In addition to its cost,
there are features such as call waiting, call forwarding, caller ID, and long-distance
rates.

The fact that we do not buy a simple goods, but a bundle of characteristics, is best
seen in financial assets. Each financial asset is characterized by two variables: risk
and return. If we include all assets including those with a thin market or even without
daily functioning markets, then each asset will have at least three characteristics:
risk, return, and liquidity.

But the story does not end here. In every facet of the economy opposing forces
interact to determine, simultaneously or in rapid succession, several variables. Think
of supply and demand forces that determine both price and quantity of a product.
Ignoring this fact and treating some variables in isolation could potentially take us
down a fallacious path and result in wrong arguments and conclusions. On many
occasions you have heard on radio or television someone opines that “there was a
selloff in the market and the index fell by so many points.” But if some sold their
stocks, didn’t some others buy them? So why not speak of buy-off? The fact is that
we are dealing with a two-dimensional variable that describes the situation in the
market: the volume of trade and the change in the index.

95K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_5, C© Springer-Verlag Berlin Heidelberg 2011
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Another example is the question of oil reserves around the world. If we are speak-
ing from a purely geological point of view, a number such as 900 or 1000 billion
barrels may make sense. But from an economic point of view, the amount of crude
oil reserves is not independent of the price of oil. If the price of oil is $80 per barrel,
it makes sense to extract oil from areas with extraction costs of $25 per barrel. But
if the price of crude falls to $25, it does not. Under such circumstances, speaking of
reserves in areas of high extraction costs is meaningless. An analogy would be if we
include metal deposits on Mars or the Moon in the reserves of such metals because
they are there and one day we may be able to get them.

Vectors are the mathematical equivalents of many-dimensional numbers and vari-
ables. They prove very handy in simplifying complicated notations and analysis.
But if we are dealing with multidimensional numbers and variables, then we need
devices for manipulating them. When dealing with one-dimensional variables, a
function simply maps a point in one-dimensional space to another point in a one-
dimensional space. Once we allow for more than one dimension, old transformations
become more complicated and new possibilities present themselves. If we are map-
ping from a two-dimensional space to another two-dimensional space, then the
question is how any of the two coordinates in the domain affect each coordinate
in the range. A linear transformation requires four parameters. On the other hand, a
linear mapping from a three-dimensional space to a two-dimensional space would
require six parameters. Thus, we require new tools to handle these problems. To
represent linear relationships we will use matrices, which are rectangular arrays of
numbers and will greatly facilitate the presentation and manipulation of mathemat-
ical, economic, and statistical models. Matrix algebra, the subject that deals with
these issues, will be covered in the next two chapters.

5.1 Vectors and Vector Space

A vector of order n > 0 is a set of ordered numbers.

Example 5.1 The following are examples of vectors:

a =
[

4
3

]
, e1 =

⎡
⎣1

0
0

⎤
⎦ , x =

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦

These are column vectors. In this book we follow the convention of writing all
vectors as column vectors and write row vectors as the transpose of column vectors.

Example 5.2 If we transpose the column vectors in Example 5.1, we have the
following row vectors:

a′ = [4 3
]

e′1 =
[

1 0 0
]

x′ = [ x1 x2 x3 x4
]

Vectors have an intuitively appealing geometrical representation (see Fig. 5.1).
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Fig. 5.1 Geometric
representation of
two-dimensional vectors

As can be seen, a vector has a direction. But so does a number. If on the real
line we mark the point of zero and a number such as 5, we get a one-dimensional
vector that starts at point zero and ends at point five and has a positive direction. On
the other hand the number −3 has a negative direction. Vectors in-two dimensional
space have a much larger variety of directions than just negative and positive. On
the other hand a three-dimensional vector can have many more directions than a
two-dimensional one.

Two vectors are said to be equal if they are of the same dimension and all their
elements are equal. In this regard, we should hasten to add that a row vector does not
have the same dimensions as a column vector. The former is a 1× n vector and the
latter n × 1. A number of operations on vectors, including addition of two or more
vectors, multiplication of a vector by a scalar, and the difference of two vectors, are
the generalization of operations on numbers.

Definition 5.1 Let

x =
⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ , y =

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ , z =

⎡
⎢⎣

z1
...

zn

⎤
⎥⎦

and λ be a scalar. Then

x+ y =
⎡
⎢⎣

x1 + y1
...

xn + yn

⎤
⎥⎦ , λz =

⎡
⎢⎣

λz1
...

λzn

⎤
⎥⎦ (5.1)

The difference of two vectors is multiplying one by −1 and adding it to the other
(see Figs. 5.2 and 5.3).
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Fig. 5.2 Sum of two vectors

Fig. 5.3 Multiplication of
vectors by scalars

Example 5.3 Let

a =
⎡
⎣−14

8
3

⎤
⎦ , b =

⎡
⎣ 6

0
32

⎤
⎦ , c =

⎡
⎣ 7

9
55

⎤
⎦

then

a+ b =
⎡
⎣−8

8
35

⎤
⎦ , 2.5c =

⎡
⎣ 17.5

22.5
137.5

⎤
⎦ , b− 2c =

⎡
⎣ −8
−18
78

⎤
⎦



5.1 Vectors and Vector Space 99

The operations of addition and subtraction necessitate that we define a zero
vector 0 whose elements are all zero with the following property:

x+ 0 = x ⇒ x+ (−x) = 0 (5.2)

Two vectors can be multiplied together and, in order to do justice to the subject,
we need to wait until the next chapter when we have become familiar with matrices
and matrix operations. Here we first define one particular multiplication operation
called the inner product of two vectors.

Definition 5.2 Let

x =
⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ , y =

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦

Then the inner product of x and y denoted by 〈x, y〉 is defined as1

〈x, y〉 =
n∑

j=1

xjyj (5.3)

Example 5.4 Going back to Example 5.3 we have

〈a, b〉 = −14× 6+ 8× 0+ 3× 32 = 12

and

〈a, c〉 = 139, 〈bc〉 = 1802

The inner product has the following properties:

i. 〈x, αy〉 = α〈x, y〉
ii. 〈x, x〉

{
> 0 if x �= 0
= 0 if and only if x = 0

(5.4)

In the next chapter we shall define vector products x′y and xy′, which are two
different entities. Here we only define the first and leave the second for the next
chapter. Let

x = [x1, . . . , xn]′, y = [y1, . . . , yn]′

1The inner product can be defined for both real and complex vectors. Here we confine ourselves to
real vectors.
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Then

x′x =
n∑

i=1

x2
i , y′y =

n∑
i=1

y2
i , x′y = y′x =

n∑
i=1

xiyi

5.1.1 Vector Space

Definition 5.3 Let Sn be a set of n-vectors. It is called a vector space if it is closed
under the operations of addition and scalar multiplication. That is,

x, y ∈ Sn ⇒ x+ y ∈ Sn (5.5)

and given a scalar λ

x ∈ Sn ⇒ λx ∈ Sn (5.6)

The two-dimensional space of Figs. 5.2 and 5.3 is an example of a vector space.
As can be seen, both the sum of two vectors and the scalar product are in the same
space. Similarly, we can have three-dimensional and, in general, n-dimensional vec-
tor spaces. To characterize S2 we need two vectors, for instance, the two vectors

e1 =
[

1
0

]
and e2 =

[
0
1

]

because we can write every two-vector in terms of e1 and e2. We say that these two
vectors span the vector space. To span an n-space we need n independent vectors.

Example 5.5 [
5
−2

]
= 5

[
1
0

]
− 2

[
0
1

]
= 5e1 − 2e2

Similarly, we can write

⎡
⎣ 6
−5

2

⎤
⎦ = 6

⎡
⎣ 1

0
0

⎤
⎦− 5

⎡
⎣ 0

1
0

⎤
⎦+ 2

⎡
⎣ 0

0
1

⎤
⎦ = 6e1 − 5e2 + 2e3

We need not always use the unit vectors, ej’s, to span a vector space.

Example 5.6 The following vectors span S3 :

⎡
⎣2

1
2

⎤
⎦ ,

⎡
⎣ 4
−3

5

⎤
⎦ ,

⎡
⎣ 3

0
4

⎤
⎦
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because they are independent and we can write any three-vector in terms of them.
For example, ⎡

⎣ 6
−5
2

⎤
⎦ = 7

⎡
⎣ 2

1
2

⎤
⎦+ 4

⎡
⎣ 4
−3
5

⎤
⎦− 8

⎡
⎣ 3

0
4

⎤
⎦

Several times we made reference to the independence of vectors; what do we
mean by independence?

Definition 5.4 A set of k-vectors x1, . . . , xk are linearly dependent if there are k
constants c1, . . . , ck not all of them zero such that

c1x1 + . . .+ ckxk = 0 (5.7)

Otherwise they are independent.

Example 5.7 The following vectors are dependent:

x1 =
⎡
⎣ 4
−5

1

⎤
⎦ , x2 =

⎡
⎣−3

7
2

⎤
⎦ , x3 =

⎡
⎣−1

11
8

⎤
⎦

because

2x1 + 3x2 = x3

Vectors that spanned S2 and S3 in Examples 5.5 and 5.6 are independent. A
way to test whether the set of k-vectors x1, . . . , xk are independent is to write the
following system of equations:

c1x1 + . . .+ ckxk = 0

and solve it for cj’s. If we get a unique solution with all cj’s equal to zero, then the
vectors are independent; otherwise, if the solution is not unique or not all cj

′s are
zero, the vectors are dependent.

Example 5.8 The vectors [
5
2

]
,

[
10
4

]

are dependent because the system

5c1 + 10c2 = 0
2c1 + 4c2 = 0
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has infinitely many solutions. Any pair of c1, c2 that satisfies the condition c1 =
−2c2 is a solution to the above system. On the other hand, the vectors

⎡
⎣4

1
6

⎤
⎦ ,

⎡
⎣3

2
5

⎤
⎦ ,

⎡
⎣−4

7
0

⎤
⎦

are independent because the system

4c1 + 3c2 − 4c3 = 0
c1 + 2c2 + 7c3 = 0
6c1 + 5c2 = 0

has a unique solution, c1 = c2 = c3 = 0.
In the next chapter we will find an easy way to determine if a set of vectors are

independent and, if all are not independent, to find out how many among them are
independent.

5.1.2 Norm of a Vector

It would make life much easier if we think of the norm of a vector as its length;
indeed, the length called the Euclidean norm of a vector is a particular instance of a
norm. If we consider Fig. 5.4, by the Pythagoras theorem, the length of vector a is
equal to

‖a‖ =
√

a2
1 + a2

2 (5.8)

Fig. 5.4 Norm of a vector
and angle between two
vectors
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where ‖a‖ denotes the norm of vector a. In general, we can write

‖a‖ =
⎛
⎝ n∑

j=1

a2
j

⎞
⎠

1
2

= 〈a, a〉 1
2 (5.9)

Example 5.9 Let

x =
[

3
4

]
, y =

⎡
⎣ 6
−6

7

⎤
⎦ , z =

⎡
⎢⎢⎣

4
−10

0
6

⎤
⎥⎥⎦

‖x‖ = √9+ 16 = 5
‖y‖ = √36+ 36+ 49 = 11
‖z‖ = √16+ 100+ 0+ 36 = √152 ≈ 12.33

The length of a vector is only one possibility; there are other measures that can
serve as a norm. In general, a norm should possess the following attributes:

i. ‖x‖ ≥ 0
ii. ‖x‖ = 0, iff x = 0
iii. ‖αx‖ = |α| ‖x‖ ∀α
iv. ‖x+ y‖ ≤ ‖x‖ + ‖y‖

(5.10)

Thus, the following measures can also serve as a norm:

‖x‖l =
n∑

j=1

∣∣xj
∣∣ (5.11)

which is referred to as the �1-norm, and
‖x‖∞ = max

j
{∣∣xj
∣∣} (5.12)

which is called the sup-norm. In this book, however, we shall use the Euclidean
norm as defined in (5.9). On occasions we need to normalize the length of a vector,
that is, make sure that ‖x‖ = 1. This can be accomplished by dividing each element
of the vector by the norm.

Example 5.10 Consider the following vectors:

x =
[

1
1

]
, y =

⎡
⎣ 3
−√6

7

⎤
⎦

Then

‖x‖ = √2, and ‖y‖ = 8
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The normalized vectors are

x̃ =
[

1/
√

2
1/
√

2

]
, ỹ =

⎡
⎣ 3/8
−√6/8

7/8

⎤
⎦

5.1.3 Metric

The concept of the norm immediately leads to the definition of a metric or distance
between two vectors or points. The norm measures the distance of a point from the
origin. Because the difference of two vectors is itself a vector, then its Euclidean
norm measures the distance from the end of one vector to the end of the other, that
is, the distance between two points.

d(x, y) = ‖x− y‖ =
√√√√ n∑

j=1

(xj − yj)2 (5.13)

Example 5.11 Let

x =
[

3
1

]
, y =

[−4
7

]

Then

d(x, y) =
√

(3− (−4))2 + (1− 7)2 ≈ 9.22

Example 5.12 Let

x =
⎡
⎣2

8
1

⎤
⎦ , y =

⎡
⎣ 9
−5

5

⎤
⎦

Then

d(x, y) =
√

(2− 9)2 + (8− (−5))2 + (1− 5)2 ≈ 15.3

In one-dimensional analysis the distance between two points is measured as the
straight line between them. Indeed, it is difficult to imagine any other measure that
would not look strange. But once we are in two-, three-, ... dimensional spaces,
there are other measures of distance that may be appealing. Of course, the most
intuitively appealing measure is the length of a straight line between two points—
the Euclidean metric discussed above. Any metric, however, has to have certain
properties.
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Definition 5.5 A metric is a function that maps Sn×Sn into� and has the following
characteristics:

d(x, y) ≥ 0
d(x, y) = 0 if x = y
d(x, y) = d(y, x)
d(x, y) ≤ d(x, z)+ d(z, y)

(5.14)

Definition 5.6 Based on this definition, there are other measures that qualify as
metrics. For example,

d1(x, y) =
n∑

j=1

∣∣xj − yj
∣∣ (5.15)

In probability theory we encounter another metric. Let x, y ∈ �; then

d0(x, y) = |x− y|
1+ |x− y| (5.16)

is a metric with two interesting properties. First it is confined to the interval [0,
1] and second it is defined for (x − y) → ±∞, a property not shared by other
metrics discussed here. While all of the above measures have their place in math-
ematical analysis, in this book, we will use the Euclidean metric. We have already
encountered a vector space. A metric space is a vector space Sn with a metric.

5.1.4 Angle Between Two Vectors
and the Cauchy-Schwarz Theorem

Two vectors are perpendicular if the angle between them is π/2 or 3π/2, which
means that the cosine of their angle is zero.

Example 5.13 The vectors

e1 =
⎡
⎣1

0
0

⎤
⎦ , and e3 =

⎡
⎣0

0
1

⎤
⎦

are perpendicular and so are the vectors

a =
⎡
⎣1

1
0

⎤
⎦ , and − e3 =

⎡
⎣ 0

0
−1

⎤
⎦

Note that in both cases, their inner product is zero. (Draw each pair of vectors and
ascertain that they are perpendicular. Moreover, calculate their inner products and
verify that they are zero.) This is interesting because cos(π/2) = cos(3π/2) = 0.
Thus, we may suspect a connection between the inner product of two vectors and
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the angle between them. But what about the general case where the angle between
two vectors can take any value and is not necessarily equal to 0 or π/2? Indeed,
we can determine the angle between any two vectors. We derive the formula for the
case of two-dimensional vectors, but the argument can be generalized to n > 2.

Consider vectors a and b in Fig. 5.4. We are interested in finding cos α. Let
θ = α + β. Then

cos θ = a1

‖a‖ , sin θ = a2

‖a‖ (5.17)

cos β = b1

‖b‖ sin β = b2

‖b‖
Now

cos α = cos(θ − β)

= cos θ cos β + sin θ sin β

= a1

‖a‖
b1

‖b‖ +
a2

‖a‖
b2

‖b‖
= 〈a, b〉
‖a‖ ‖b‖

(5.18)

Example 5.14 The vector x = [1 1]′ makes a 45◦ angle with the x-axis that is
represented by e1 = [1 0]′.

cos α = 1+ 0√
2× 1

= 1√
2
= cos

π

4

Example 5.15 Consider the vectors

[
4
3

]
,

[−3
1

]

The angle between them is

cos α = −9

5
√

10
≈ −0.596 ⇒ α ≈ 0.69π

Example 5.16 For the vectors

x =
[

3
2

]
, and y =

[
9
6

]

we have

cos α = 27+ 12√
13
√

117
= 1 ⇒ α = 0

In other words, the two vectors are parallel (verify this by drawing the vectors).
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The conclusion of Example 5.16 is quite general. The angle between two parallel
vectors is either 0 (if they have the same direction) and π (if they have opposite
directions). In the first case, cos α = 1 and in the latter cos α = −1. Consider two
parallel vectors x and y. Because they are parallel, we have

y = αx (5.19)

and

cos α = 〈x, y〉
‖x‖ ‖y‖ =

α 〈x, x〉
|α| ‖x‖ ‖x‖ = sgn(α)× 1 (5.20)

But

sgn(α)× 1 =
{

1 if α > 0
−1 if α < 0

(5.21)

Example 5.17 Consider the vectors

a =
[

3
4

]
, and b =

[−15
−20

]

We have

cos α = −45− 80√
25
√

625
= −1 ⇒ α = π

Calculation of the angle between two vectors, incidentally, leads us to a proof
of the famous Cauchy-Schwarz inequality that finds many uses in mathematics and
statistics.

Theorem 5.1 (Cauchy-Schwarz) Let x and y be two vectors of order n. Then

|〈x, y〉| ≤ ‖x‖ ‖y‖ (5.22)

or, equivalently

∣∣∣∑ xjyj

∣∣∣ ≤ (∑ x2
j

) 1
2
(∑

y2
j

) 1
2

(5.23)

Proof Let α denote the angle between the two vectors. We have

〈x, y〉
‖x‖ ‖y‖ = cos α ≤ 1 (5.24)

Multiplying both sides of inequality by ‖x‖ ‖y‖ proves the proposition.



108 5 Vectors

5.1.5 Exercises

E.5.1 Given the following vectors,

a =
⎡
⎣ 6

11
2

⎤
⎦ , b =

⎡
⎣ 5

14
3

⎤
⎦ , c =

⎡
⎣−1

0
−1

⎤
⎦

d =
⎡
⎣ 7
−4
9

⎤
⎦ , e =

⎡
⎣ 18
−15
10

⎤
⎦

Find

a+ b+ c, a− 2d+ 3e, 4e− 4b+ c

E.5.2 Compute the Euclidean norm of the vectors in E.5.1.

E.5.3 Find the distance between the following vectors in E.5.1.

a and b, a and d, b and c, c and e, d and e

E.5.4 Find the angle between the following vectors in E.5.1.

a and b, a and d, b and c, c and e, d and e

E.5.5 Normalize the vectors in E.5.1 to have unit length.

E.5.6 Prove the properties of the inner product in (5.4).

E.5.7 Show that the following vectors are independent and form the basis for a
vector space.

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

E.5.8 Check if the following vectors are independent.

⎡
⎣12

2
7

⎤
⎦ ,

⎡
⎣ 6

14
−3

⎤
⎦ ,

⎡
⎣ 27
−28

32

⎤
⎦
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E.5.9 Show that

d0(x, y) = |x− y|
1+ |x− y|

i. Satisfies the requirements of a metric,
ii. it is confined to the interval [0, 1], and

iii.

lim
(x−y)→±∞ d0(x, y) = 1

5.2 Orthogonal Vectors

Definition 5.7 Two vectors that are perpendicular to each other, that is, their product
is zero are called orthogonal and if, in addition their length is equal to one, they are
called orthonormal.

Example 5.18 The vectors

x1 =
[

2
−5

]
and x2 =

[
5
2

]

are orthogonal and the vectors

x1 =
⎡
⎣2/

√
6

1/
√

6
1/
√

6

⎤
⎦ and x2 =

⎡
⎣−1/

√
5

0
2/
√

5

⎤
⎦

are orthonormal.
Orthogonal vectors and matrices (see Chap. 7) play important roles in mathemat-

ics, econometrics, and computation. Here we shall discuss an algorithm to create a
set of orthogonal and orthonormal vectors from a set of independent vectors.

5.2.1 Gramm-Schmidt Algorithm

Suppose we have a set of independent vectors x1, . . . , xk. Can we construct a set
of k orthogonal or orthonormal vectors from them? Let such vectors be z1, . . . , zk.
They are constructed as follows:



110 5 Vectors

z1 = x1

z2 = x2 − z′1x2

‖z1‖2 z1

z3 = x3 − z′1x3

‖z1‖2 z1 − z′2x3

‖z2‖2 z2

...

zk = xk −
k−1∑
j=1

z′jxk

‖zj‖2 zj

(5.25)

The formulas may look a bit complicated, but as the examples below illustrate,
their application is straightforward.

Example 5.19 Consider the following vectors

x1 =
⎡
⎣ 1

2
−1

⎤
⎦ , x2 =

⎡
⎣ 4
−7

1

⎤
⎦ , x3 =

⎡
⎣5

0
6

⎤
⎦

We have

z1 = x1 =
⎡
⎣ 1

2
−1

⎤
⎦

To get z2, we first calculate

z′1x2 = −11

and

‖z1‖2 = 6

and then

z2 =
⎡
⎣ 4
−7

1

⎤
⎦+ 11

6

⎡
⎣ 1

2
−1

⎤
⎦ = 1

1.2

⎡
⎣ 7
−4
−1

⎤
⎦

To find z3 , we calculate

z′1x3 = −1

z′2x3 = 24.1667

and

‖z2‖2 = 6.77
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Thus,

z3 =
⎡
⎣5

0
6

⎤
⎦+ 1

6

⎡
⎣ 1

2
−1

⎤
⎦− 24.1667

6.77

1

1.2

⎡
⎣ 7
−4
−1

⎤
⎦ = 1

0.4783

⎡
⎣1

1
3

⎤
⎦

Our three vectors are

z1 =
⎡
⎣ 1

2
−1

⎤
⎦ , z2 = 1

1.2

⎡
⎣ 7
−4
−1

⎤
⎦ , z3 = 1

0.4783

⎡
⎣1

1
3

⎤
⎦

and normalizing them, we have a set of orthonormal vectors.

z̃1 = 1√
6

⎡
⎣ 1

2
−1

⎤
⎦ , z̃2 = 1√

66

⎡
⎣ 7
−4
−1

⎤
⎦ , z̃3 = 1√

11

⎡
⎣1

1
3

⎤
⎦

5.2.2 Exercises

E.5.10 Check if the following sets of vectors are orthogonal. If they are not orthog-
onal, use the Gramm-Schmidt algorithm to find a set of orthogonal vectors based on
them.

i. x1 =
⎡
⎣3

2
5

⎤
⎦ , x2 =

⎡
⎣ 1

0
−1

⎤
⎦ , x3 =

⎡
⎣ 6
−1

4

⎤
⎦

ii. y1 =
⎡
⎣1

0
0

⎤
⎦ , y2 =

⎡
⎣0

1
1

⎤
⎦ , y3 =

⎡
⎣3

3
3

⎤
⎦

iii. z1 =
⎡
⎣−7

12
15

⎤
⎦ , z2 =

⎡
⎣ 11
−2

8

⎤
⎦ , z3 =

⎡
⎣ 14

1
−9

⎤
⎦



Chapter 6
Matrices and Matrix Algebra

6.1 Basic Definitions and Operations

A matrix A consists of m×n numbers aij’s that are arranged in m rows and n columns
and looks like the following:

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ (6.1)

Example 6.1 The following are examples of matrices:

A =
[

1 3 −9
7 2 0

]
B =

⎡
⎣14 6 5

13 18 3
7 21 44

⎤
⎦ C =

⎡
⎣ c11 c12

c21 c22
c31 c32

⎤
⎦

Definition 6.1 Two matrices A = [aij] and B = [bij] are equal, if they have the same
dimensions and

aij = bij,
i = 1, . . . , m, j = 1, . . . , n

(6.2)

Definition 6.2 The transpose of the m × n matrix A = [aij] is the n × m matrix
A′ = [aji] whose rows are the columns of A and its columns are the rows of A.

Example 6.2 The transposes of matrices in Example 6.1 are

A′ =
⎡
⎣ 1 7

3 2
−9 0

⎤
⎦ B′ =

⎡
⎣14 13 7

6 18 21
5 3 44

⎤
⎦ C′ =

[
c11 c21 c31
c12 c22 c32

]

It should be clear that

(A′)′ = A (6.3)

113K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_6, C© Springer-Verlag Berlin Heidelberg 2011
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Definition 6.3 A square matrix, that is, a matrix that has the same number of rows
and columns, is called a symmetric matrix, if it is equal to its transpose:

A = A′ (6.4)

Thus, the elements below the diagonal are the mirror image of the elements
above it.

Matrix operations of addition, subtraction, and multiplication by a scalar are quite
straightforward.

Definition 6.4 The sum of two matrices A = [aij] and B = [bij] both of them of
order m× n is defined as

A+ B = C (6.5)
such that

C = [cij], cij = aij + bij (6.6)

i = 1, . . . , m, j = 1, . . . , n

Example 6.3 [
1 3 −9
7 2 0

]
+
[

14 6 5
13 18 3

]
=
[

15 9 −4
20 20 3

]

Definition 6.5 Let A = [aij] be a matrix and λ a scalar. Then

λA = [λaij] (6.7)

In other words, each and every element of A is multiplied by λ.

Example 6.4

3×
⎡
⎣−1 4

0 7
8 −5

⎤
⎦ =

⎡
⎣−3 12

0 21
24 −15

⎤
⎦

It follows that subtraction of two matrices denoted by A − B consists of
multiplying B by λ = −1 and then adding it to A.

Example 6.5 ⎡
⎣10 26

14 −31
48 19

⎤
⎦−

⎡
⎣ 4 23

36 17
−52 89

⎤
⎦ =

⎡
⎣ 6 3
−22 −48
−100 −70

⎤
⎦

The m× n matrix 0 all of whose elements are equal to zero plays the role of zero
among matrices. It has the following property:

A+ 0 = 0+ A = A (6.8)
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Matrix addition obeys commutative and associative laws.

Commutative law A+ B = B+ A
Associative law (A+ B)+ C = A+ (B+ C)

(6.9)

Scalar multiplication obeys commutative, associative, and distributive laws.

Commutative law λA = Aλ

Associative law (λγ )A = λ(γ A)

λ(AB) = (λA)B

Distributive law λ(A+ B) = λA+ λB

(λ+ γ )A = λA+ γ A

(6.10)

Multiplication of two matrices is a bit tricky. First, not all matrices can be mul-
tiplied together. AB is defined only if the number of columns of A is the same as
the number of rows of B. For instance if A is m × n, then B must be n × r and
the resulting matrix will be m× r. Furthermore while in multiplication of numbers
we had

ab = ba

that is not true in the case of matrices. Except for special cases,

AB �= BA (6.11)

Indeed, unless both matrices are square and of the same dimension, that is, both
are of order n× n, one of the two products will be undefined.

Definition 6.6 The product of two matrices

A = [aij], i = 1, . . . , m, j = 1, . . . , n

and

B = [bjk], j = 1, . . . , n, k = 1, . . . , r

is the matrix

C = [cik] =
⎡
⎣ n∑

j=1

aijbjk

⎤
⎦ , i = 1, . . . , m, k = 1, . . . , r (6.12)
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More completely

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1jbj1

n∑
j=1

a1jbj2 . . .
n∑

j=1
a1jbjn

n∑
j=1

a2jbj1

n∑
j=1

a2jbj2 . . .
n∑

j=1
a2jbjn

...
...

...

n∑
j=1

amjbj1

n∑
j=1

amjbj2 . . .
n∑

j=1
amjbjn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.13)

Example 6.6 Given the matrices

A =
[

12 3 6
9 −1 −4

]
, B

⎡
⎣ 7 8
−2 0
1 11

⎤
⎦ , C =

⎡
⎣ 1 −1 0
−1 1 1
0 1 1

⎤
⎦

we have

AB =
[

12× 7+ 3× (−2)+ 6× 1 12× 8+ 3× 0+ 6× 11

9× 7+ (−1)× (−2)+ (−4)× 1 9× 8+ (−1)× 0+ (−4)× 11

]

=
[

84 162
61 28

]

CB =

⎡
⎢⎢⎣

1× 7+ (−1)× (−2)+ 0× 1 1× 8+ (−1)× 0+ 0× 11

(−1)× 7+ 1× (−2)+ 1× 1 (−1)× 8+ 1× 0+ 1× 11

0× 7+ 1× (−2)+ 1× 1 0× 8+ 1× 0+ 1× 11

⎤
⎥⎥⎦

=
⎡
⎣ 9 8
−8 3
−1 11

⎤
⎦

AC =
[

9 −3 9
10 −14 −5

]

C′C =
⎡
⎣ 2 −2 −1
−2 3 2
−1 2 2

⎤
⎦ CC′ =

⎡
⎣ 2 −2 −1
−2 3 2
−1 2 2

⎤
⎦
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The identity matrix, I, is a square matrix whose diagonal elements are all one and
all off-diagonal elements zero. It comes in different sizes.

[
1 0
0 1

]
,

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , . . .

The identity matrix plays the role of 1 in matrix algebra and has the property

IA = A, BI = B (6.14)

assuming that the products exist.

Example 6.7 [
1 0
0 1

] [
x11 x12 x13
x21 x22 x23

]
=
[

x11 x12 x13
x21 x22 x23

]

Example 6.8 ⎡
⎣3 5 9

4 0 4
3 2 8

⎤
⎦
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣3 5 9

4 0 4
3 2 8

⎤
⎦

Matrix multiplication, with some exceptions, does not obey the commutative law,
but associative and distributive laws apply.

Associate law (AB)C = A(BC)

Distributive law A(B+ C) = AB+ AC
(6.15)

Another important characteristic of matrix multiplication relates to the transpose
of two matrices

(AB)′ = B′A′ (6.16)

This can be extended to several matrices

(ABC)′ = C′(AB)′ = C′B′A′ (6.17)

Vectors can be considered as matrices, one of whose dimensions is equal to one.
Thus, we can define vector multiplication more generally. Consider the n×1 vectors
x and y, then

x′y = y′x =
n∑

j=1

xjyj (6.18)



118 6 Matrices and Matrix Algebra

Thus,

x′y = 〈x, y〉, and x′x = 〈x, x〉 (6.19)

But

xy′ =

⎡
⎢⎢⎢⎣

x1y1 x1y2 . . . x1yn

x2y1 x2y2 . . . x2yx
...

...
...

xny1 xny2 . . . xnyn

⎤
⎥⎥⎥⎦ (6.20)

It is of interest to note that

xy′ �= yx′ (6.21)

but

xy′ = (yx′)′ (6.22)

Example 6.9 Let

x =
⎡
⎣3

1
5

⎤
⎦ , y =

⎡
⎣2

4
7

⎤
⎦

Then

x′y = 45

and

xy′ =
⎡
⎣ 6 12 21

2 4 7
10 20 35

⎤
⎦

6.1.1 Systems of Linear Equations

One of the great advantages of matrix algebra is allowing us to write many lin-
ear equations and relationships in a compact way and manipulate them. In other
words, matrix notations can serve as shorthand. Let us illustrate this with the help
of examples from mathematics, economics, and econometrics.

Example 6.10 Consider the following system of linear equations:

5x1 + 3x2 + 2x3 = 4

x1 − 2x2 − x3 = 5

4x1 − 7x2 + 2x3 = −37
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Writing it in matrix form we have⎡
⎣5 3 2

1 −2 −1
4 −7 2

⎤
⎦
⎡
⎣ x1

x2
x3

⎤
⎦ =

⎡
⎣ 4

5
−37

⎤
⎦

or compactly

Ax = d

Example 6.11 Consider the Keynesian model:

Y = C + I + G
C = α0 + α1(Y − T) 0 < α0, 0 < α1 < 1,
I = β0 + β1Y + β2r 0 < β0, 0 < β1 < 1, β2 < 0

where Y, C, I, G, T and r are, respectively, aggregate income, consumption,
investment, government expenditures, taxes, and real interest rate. Government
expenditures, taxes, and interest rates are given, that is, they are determined outside
this model and are called exogenous variables. We are concerned with determining
the endogenous variables of the system: income, consumption, and investment in
terms of the exogenous variables. Indeed, the purpose of the model is to explain the
endogenous variables in terms of the exogenous variables.

Of particular interest to us is finding the relationship between income and the
interest rate, given government expenditures and taxes, that is, the IS curve (see
Example 6.27). Moving the endogenous variables to the LHS and putting the system
in matrix form, we have⎡

⎣ 1 −1 −1
−α1 1 0
−β1 0 1

⎤
⎦
⎡
⎣ Y

C
I

⎤
⎦ =

⎡
⎣ G

α0 − α1T
β0 + β2r

⎤
⎦

Example 6.12 In econometrics we learn about the regression model

yi = β1 + β2x2i + . . .+ βkxki + ui

where y is the dependent variable, x1, . . . , xk, the explanatory variables, where
x1 ≡ 1 represents the constant term, β ′s, the parameters of the model, and u is
the stochastic term. Let us assume that we have n observations on y and x’s. We can
organize our information and the model in the following way:

y =
⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ , X =

⎡
⎢⎣

1 x21 . . . xk1
...

... . . .
...

1 x2n . . . xkn

⎤
⎥⎦ , β =

⎡
⎢⎣

β1
...

βk

⎤
⎥⎦ , u =

⎡
⎢⎣

u1
...

un

⎤
⎥⎦
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Now we can write all n equations in the following compact form which, as will
be seen in later chapters, facilitates the derivation of estimators of the parameter
vector.

y = Xβ + u (6.23)

Example 6.13 In Chap. 4 we discussed the Markov chains. Matrix algebra provides
a convenient way for presenting and manipulating the transition matrix.1

P =

⎡
⎢⎢⎢⎣

p11 p12 . . . pn1
p12 p22 . . . pn2

...
...

...
p1n pn2 . . . pnn

⎤
⎥⎥⎥⎦

where pij denotes the probability of transition from state i to state j, and

n∑
j=1

pij = 1, i = 1, . . . , n.

Note also that the transition probabilities are assumed to remain constant over
time. Now if we denote the vector of probabilities of being in each state i at time t by

π t =

⎡
⎢⎢⎢⎣

π1t

π2t
...

πnt

⎤
⎥⎥⎥⎦

then the vector of probabilities at time t + 1 would be

π t+1 = Pπ t (6.24)

Again from Chap. 4, the transition matrix for the recession and boom in the U.S.
economy can be written as

P =
[

0.98 0.10
0.02 0.90

]

where state 1 is boom and state 2, recession. Thus, the first column shows the prob-
abilities of the continuation of the boom or transition from boom to recession,
whereas the second column shows the probabilities of transition from recession
to boom or staying in recession. Thus, p11 = 0.98 shows the probability of the

1As can be seen, the notation for this matrix is different from our usual notation in that the first
subscript of an element denotes its column and the second, its row. Some books reverse the notation
and, as a result, the elements of each row add up to one. In such cases P′ is the transition matrix.
The reason for our choice of this notation is that it is preferred by econometricians.
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continuation of the boom if the economy is in boom, whereas p12 = 0.02 is the
probability of transition from boom to recession. Similarly, p22 = 0.90 is the prob-
ability of staying in recession if the economy is already in recession, whereas
p21 = 0.10 is the probability of ending the recession. We should again repeat that
the transition matrix here is only for illustration; by all accounts the transition prob-
abilities from boom to recession and vice versa are duration dependent and do not
stay constant. Also note that we rounded the probability of staying in a boom from
0.9831 to 0.98. Now suppose we are sure that we are in a recession. What are the
probabilities of staying in recession or transiting to a boom period in the next month?
We have

πt+1 = Pπt =
[

0.98 0.10
0.02 0.90

] [
0
1

]
=
[

0.10
0.90

]

and after a year [
0.98 0.10
0.02 0.90

]12 [0
1

]
=
[

0.6536
0.3464

]

In other words, if we are sure that we are in a recession today, there is a two-to-
one-chance that we will be out of it in a year.

6.1.2 Computation with Matrices

Matlab is user-friendly for matrix operations. You can either specify the matrices
in the program, which is appropriate if your matrices are small or they will be used
only in one program. Alternatively, you can produce a file that contains the data and
read your matrices from it. This is preferred for large matrices or when you will be
using the same data in different programs. We take up each option in turn.

Matlab code

% You can either specify the matrices in the program

A = [12 3 6; 9 -1 -4]

B = [7 8; -2 0; 1 11]

C = [1 -1 0; -1 1 1; 0 1 1]

% Transpose of A

A’

% Add A’ and B

D = A’ + B

% Note that if you try to add A and B, Matlab

% will print an error message because the matrices

% are not of the same dimensions

% Premultiply B by C

E = C*B

% you can combine several operations

F = C*(A’+B)
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Table 6.1 File containing
data A B C D E

1 5.0 12 15.32 1
2 6.5 18 18.45 1
8 8.2 27 19.77 0

12 10.3 32 26.60 0
...

...
...

...
...

Alternatively, you can read the data for matrices from a file and form your matri-
ces inside the program. As an example suppose you have prepared an Excel file
called Ad.xls (see Table 6.1).

Matlab code

% Read the data

D = xlsread(’Ad.xls’);

% Form the desired matrices. For instance, suppose we

% are interested in forming a matrix containing

% columns 1, 3, and 4 of the data

A = [D(:,1) D(:,3) D(:,4)]

% For the second matrix, we choose the first three

% rows of the data

B = [D(1,:); D(2,:); D(3,:)];

% Indeed we can form a matrix from any combinations

% of our data. For example, the following matrix will

% contains the first three elements in the first row

% and the last three elements in the third and fourth

% rows

C = [D(1,1) D(1,2) D(1,3); D(3,3) D(3,4) D(3,5);

D(4,3) D(4,4) D(4,5)]

6.1.3 Exercises

E.6.1 Given the following matrices,

A =
[

5 −3
0 3

]
, B =

[
3 0
0 −2

]
, C =

[
5 4
−3 11

]

D =
[

12 14 13
7 −8 −10

]
, E =

[
1 1 1
4 2 −7

]

F =
⎡
⎣ 2 7
−6 3
4 1

⎤
⎦ , G =

⎡
⎣17 19

21 12
6 8

⎤
⎦
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compute
i. A(B+ C) ii. B(D+G′) iii. GF′
iv. GD v. EF vi. B′C′

E.6.2 Given the following matrices

A =
⎡
⎣1 5 4

0 3 2
0 0 1

⎤
⎦ , B =

⎡
⎣7 0 0

9 1 1
2 3 8

⎤
⎦ , C =

⎡
⎣ 1 −5 14
−7 1 −6
14 −3 1

⎤
⎦

compute
i. AB ii. BCA iii. BA iv. CC′ v. (CC′)′

E.6.3 Check the results of your computation for E.6.1 and E.6.2 using Matlab.

6.2 The Inverse of a Matrix

We learned about addition, subtraction, and multiplication of matrices, but what
about division? Recall that for ordinary numbers we have

a

b
= ab−1, b �= 0

Is there a counterpart to b−1 for matrices? Indeed, there is.

Definition 6.7 Let A be a square matrix. Then its inverse A−1 is a square matrix2

such that
AA−1 = A−1A = I (6.25)

Not all square matrices have an inverse. Much the same way that in the case of
real numbers we excluded b = 0, we exclude all singular matrices. Consider the
following system of two equations:

2x1 + x2 = 5
x1 − 3 x2 = −8

We can write it in matrix form as
Ax = b (6.26)

where

A =
[

2 1
1 −3

]
, x =

[
x1
x2

]
, b =

[
5
−8

]

2Non-square matrices do not have an inverse in the sense defined here. But in the next chapter we
will define a generalized inverse for them.
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If the inverse of A exists, and I can assure you that it exists, then we can
premultiply (6.26) by A−1.

A−1Ax = x = A−1b (6.27)

In other words, finding the inverse of A and solving this system of equations are
the same. Because once we have the inverse, we premultiply the RHS by A−1 and
have the solution. Thus, let us solve the equations step by step the old-fashioned
way, the way we know from elementary algebra.

1. The first step is to divide the first equation by 2 and make the coefficient of x1
equal to 1.

x1 + 1

2
x2 = 5

2
x1 − 3x2 = −8

2. Subtract the first equation from the second to eliminate x1 from the second
equation.

x1 + 1

2
x2 = 5

2

−7

2
x2 = −21

2

3. Multiply the second equation by −2/7.

x1 + 1

2
x2 = 5

2
x2 = 3

4. Finally, subtract one-half of the second equation from the first to obtain

x1 = 1, x2 = 3

The four steps above could be accomplished using matrices. But since solving the
equations is equivalent to finding the inverse of A, we also learn the method by
which we could find the inverse of a matrix.[

2 1

1 −3

][
x1

x2

]
=
[

1 0

0 1

][
5

−8

]

1 Divide the first row of A by 2 and do the same to the identity matrix on the right.⎡
⎣ 1

2
0

0 1

⎤
⎦
[

2 1

1 −3

][
x1

x2

]
=
⎡
⎣ 1

2
0

0 1

⎤
⎦
[

1 0

0 1

][
5

−8

]
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2. Subtract the first row from the second.[
1 0

−1 1

]⎡⎣1
1

2
1 −3

⎤
⎦[ x1

x2

]
=
[

1 0

−1 1

]⎡⎣ 1

2
0

0 1

⎤
⎦[ 5

−8

]

3. Multiply the second row by −2/7.

⎡
⎣1 0

0 −2

7

⎤
⎦
⎡
⎢⎣1

1

2

0 −7

2

⎤
⎥⎦
[

x1

x2

]
=
⎡
⎣1 0

0 −2

7

⎤
⎦
⎡
⎢⎣

1

2
0

−1

2
1

⎤
⎥⎦
[

5

−8

]

4. Subtract 1/2 of the second row from the first row.

⎡
⎣1 −1

2
0 1

⎤
⎦
⎡
⎣1

1

2
0 1

⎤
⎦
[

x1

x2

]
=
⎡
⎣1 −1

2
0 1

⎤
⎦
⎡
⎢⎣

1

2
0

1

7
−2

7

⎤
⎥⎦
[

5

−8

]

Voilà! We have both the solution to the equations and the inverse of A.

[
1 0

0 1

][
x1

x2

]
=
[

x1

x2

]
=
⎡
⎢⎣

3

7

1

7
1

7
−2

7

⎤
⎥⎦
[

5

−8

]
=
[

1

3

]

In other words, there are a series of row operations that transform matrix A into
an identity matrix. If we do the same exact transformations, and in the same order,
on an identity matrix, we transform it into A−1. Of course, instead of row oper-
ations, we could have done column operations to turn A into an identity matrix
and the resulting inverse would have been identical to the one obtained above. The
row operations, in view of emulating the solution of a system of equations, appear
intuitively appealing.

Example 6.14 Let us repeat the process for a matrix of order three. Below, Ri refers
to the i-th row of the matrices.

We start with the matrix to be inverted and an identity matrix ⇒
⎡
⎢⎣

2 1 2

4 2 0

−1 5 3

⎤
⎥⎦⇒

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦
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Subtract2× R1 from R2 ⇒
⎡
⎢⎣

2 1 2

0 0 −4

−1 5 3

⎤
⎥⎦⇒

⎡
⎢⎣

1 0 0

−2 1 0

0 0 1

⎤
⎥⎦

Add 2× R3 to R1 ⇒
⎡
⎢⎣

0 11 8

0 0 −4

−1 5 3

⎤
⎥⎦⇒

⎡
⎢⎣

1 0 2

−2 1 0

0 0 1

⎤
⎥⎦

Exchange R2 withR3 then the new R2 with R1 ⇒
⎡
⎢⎣
−1 5 3

0 11 8

0 0 −4

⎤
⎥⎦⇒

⎡
⎢⎣

0 0 1

1 0 2

−2 1 0

⎤
⎥⎦

Multiply R1 by −1, add 2× R3 to R2, and divide
R3 by −4

⇒
⎡
⎢⎣

1 −5 −3

0 11 0

0 0 1

⎤
⎥⎦⇒

⎡
⎢⎢⎣

0 0 −1

−3 2 2
2

4
−1

4
0

⎤
⎥⎥⎦

Add 3× R3 to R1, and divide R2 by 11 ⇒
⎡
⎢⎣

1 −5 0

0 1 0

0 0 1

⎤
⎥⎦⇒

⎡
⎢⎢⎢⎢⎢⎣

6

4
−3

4
−1

− 3

12

2

11

2

11
2

4
−1

4
0

⎤
⎥⎥⎥⎥⎥⎦

Add 5× R2 to R1 ⇒
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦⇒

⎡
⎢⎢⎢⎢⎢⎣

6

44

7

44
− 4

44

− 3

11

2

11

2

11
2

4
−1

4
0

⎤
⎥⎥⎥⎥⎥⎦

Cleaning up the inverse is

1

44

⎡
⎢⎣

6 7 −4

−12 8 8

22 −11 0

⎤
⎥⎦
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While the above operations may look to you “so twentieth century,” they are
actually good for the soul and you will want to make sure that you can carry
out such operations with ease. They will be handy in manipulating linear eco-
nomic models. But as far as numerical computations are concerned we definitely
need something more efficient. First, in most applications the order of the matri-
ces involved is much larger than 2 or 3. Once we go beyond a matrix of order
5, computation with a calculator becomes time consuming and prone to errors.
Second, rarely in the real world do we encounter matrices with one-digit whole
numbers. We usually have large numbers or numbers with decimals. This adds to
the likelihood of errors in computation. But matrix inversion with Matlab is quite
easy.

Matlab code

% Specify the matrix

A = [2 1 2; 4 2 0; -1 5 3]

% Calculate its inverse

A1 = inv(A)

The inverse of a matrix has the following properties:

(A−1)−1 = A

(AB)−1 = B−1A−1

(A′)−1 = (A−1)′
(6.28)

Proof and numerical verification of the first and third properties are left to the
reader (see E.6.8). Here we show the second property. Let

C = (AB)−1 (6.29)

Because C is the inverse of AB, we have

C(AB) = I (6.30)

Postmultiplying both sides by B−1A−1 we get

C(AB)B−1A−1 = IB−1A−1 ⇒ C = B−1A−1 (6.31)

6.2.1 A Number Called the Determinant

Attached to every square matrix is a number called the determinant. It is denoted by


 = |A| (6.32)
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and its calculation for a determinant of order two is:


 =
∣∣∣∣∣ a b

c d

∣∣∣∣∣ = ad − bc

Example 6.15 ∣∣∣∣∣ 1 2

6 5

∣∣∣∣∣ = 1× 5− 6× 2 = −7

For a determinant of order three the trick is to write it in terms of smaller
determinants called minors. Note the alternate plus and minus signs. Thus,


 =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣− a21

∣∣∣∣ a12 a13
a32 a33

∣∣∣∣+ a31

∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a23a12 − a13a22a31 − a23a32a11 − a33a21a12

Example 6.16

∣∣∣∣∣∣∣
9 11 2

0 17 5

−1 2 10

∣∣∣∣∣∣∣ = 9

∣∣∣∣∣ 17 5

2 10

∣∣∣∣∣− 11

∣∣∣∣∣ 0 5

−1 10

∣∣∣∣∣+ 2

∣∣∣∣∣ 0 17

−1 2

∣∣∣∣∣
= 9× 160− 11× 5+ 2× 17 = 1419

When dealing with determinants of size three, it is easier to skip the expansion in
terms of minors and directly compute the determinant. The schematic representation
of Fig. 6.1 may help memorizing the rule for such a direct computation.

Computation of a determinant through expansion using minors can be extended
to determinants of higher order. For a determinant of order four we have

Fig. 6.1 Schematic
calculation of determinants of
order three
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|A| =

∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣
Expanding it in terms of minors,

|A| = a11

∣∣∣∣∣∣∣
a22 a23 a24

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣∣− a21

∣∣∣∣∣∣∣
a12 a13 a14

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣∣
+a31

∣∣∣∣∣∣∣
a12 a13 a14

a22 a23 a24

a42 a43 a44

∣∣∣∣∣∣∣− a41

∣∣∣∣∣∣∣
a12 a13 a14

a22 a23 a24

a32 a33 a34

∣∣∣∣∣∣∣
= a11M11 − a21M21 + a31M31 − a41M41

(6.33)

Thus, the minor Mij, which is a mini-determinant, is formed by deleting the i-
th row and the j-th column. The same can be repeated for any of the minors. For
instance, we can write

M11 = a22

∣∣∣∣∣ a33 a34

a43 a44

∣∣∣∣∣− a23

∣∣∣∣∣ a32 a34

a42 a44

∣∣∣∣∣+ a24

∣∣∣∣∣ a32 a33

a42 a43

∣∣∣∣∣
The rest of calculations should be clear to the reader. In expanding the determi-

nant |A| we first used column one of the determinant and in expanding the minor
M11 we used the first row. There is no magic about the first row or the first column.
We could have used any row or column in each case. The important point, however,
is to keep in mind the change in the sign of each term. The rule is that you start at
the upper-left corner and move right, left, up or down, but not diagonally. There will
be no change for the first element in the upper-left corner. But the next element will
have its sign changed, that is, if it is positive, it will become negative and vice versa.
The next one will undergo no sign change, and so on. The scheme of change-no
change sign for each determinant or minor would be like the following:

∣∣∣∣∣∣∣
no change change no change

change no change change

no change change no change

∣∣∣∣∣∣∣
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Alternatively you can write the expansion of the determinant in (6.33) as

|A| = a11(−1)1+1M11 + a21(−1)2+1M21 + a31(−1)3+1M31 + a41(−1)4+1M41

= a11C11 + a21C21 + a31C31 + a41C41

(6.34)
Where

Cij = (−1)i+j Mij (6.35)

is called cofactor. We can generalize (6.33), and write

|A| =
n∑

i=1

aij(−1)i+jMij =
n∑

i=1

aijCij (6.36)

Furthermore,
n∑

i=1

aijCkj = 0, ∀ k �= i (6.37)

which is called expansion in terms of alien cofactors.

Example 6.17 Evaluate the following determinant:

|A| =

∣∣∣∣∣∣∣∣∣∣

3 6 7 12

−9 0 15 2

0 −9 1 −4

8 8 5 1

∣∣∣∣∣∣∣∣∣∣
It can be expanded into

|A| = −6

∣∣∣∣∣∣∣
−9 15 2

0 1 −4

8 5 1

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
3 7 12

0 1 −4

8 5 1

∣∣∣∣∣∣∣+ 9

∣∣∣∣∣∣∣
3 7 12

−9 15 2

8 5 1

∣∣∣∣∣∣∣+ 8

∣∣∣∣∣∣∣
3 7 12

−9 15 2

0 1 −4

∣∣∣∣∣∣∣
= −6(−685)+ 0(−257)+ 9(−1790)+ 8(−546) = −16368

Matlab can be used to evaluate a determinant:

Matlab code

% Specify the matrix

A = [9 11 2; 0 17 5; -1 2 10]

% Calculate its determinant

det(A)
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Determinants have a number of properties that are quite interesting and prove
useful in economics and econometrics (the reader is asked to prove and numerically
verify these properties, see E.6.11 and E.6.12).

1. The determinant of a matrix and its transpose are the same:

|A| = ∣∣A′∣∣ (6.38)

For example, ∣∣∣∣∣ a b

c d

∣∣∣∣∣ = ad − bc =
∣∣∣∣∣ a c

b d

∣∣∣∣∣
2. If we multiply a row (column) of a matrix by λ, its determinant is multiplied by

λ. If we multiply all rows (columns) by λ or, equivalently, multiply the matrix
by λ, then

|λA| = λn |A| (6.39)

where n is the order of the matrix. Consider the example

∣∣∣∣∣∣∣
λa11 a12 a13

λa21 a22 a23

λa31 a32 a33

∣∣∣∣∣∣∣ = λa11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣+ λa21

∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣+ λa31

∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣

= λ

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
This example also shows that if one of the rows (columns) consists of zeros,

then the determinant is equal to zero because we can set λ = 0, which would
make the elements of the first column zero. Also multiplying any of the rows
(columns) by −1 will change the sign of the determinant.

3. If two rows (columns) are identical, then the determinant is equal to zero. For
example, ∣∣∣∣∣ a a

b b

∣∣∣∣∣ = ab− ab = 0,

∣∣∣∣∣∣∣
1 1 4

1 1 −9

1 1 13

∣∣∣∣∣∣∣ = 0

Note that this property together with the previous one implies that if a column
(row) is a multiple of another column (row), then the determinant is equal to
zero.

4. If a column (row) is equal to a linear combination of some of the other columns
(rows), then the determinant is equal to zero. I suggest that you make a note of
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this property as it plays an important part in least squares estimation which we
shall learn in the coming chapters. Verify that the following is correct:

∣∣∣∣∣∣∣
a1 + 2b1 a1 b1

a2 + 2b2 a2 b2

a3 + 2b3 a3 b3

∣∣∣∣∣∣∣ = 0

5. If places of two columns (rows) are interchanged, the sign of the determinant
changes. For example,∣∣∣∣∣ a b

c d

∣∣∣∣∣ = ad − bc,

∣∣∣∣∣ b a

d c

∣∣∣∣∣ = bc− ad

An application of the determinant is in determining if a matrix is invertible. If
|A| = 0, then the matrix A is not invertible and is called a singular matrix. A
matrix whose determinant is not equal to zero is a nonsingular matrix and is invert-
ible. Another application involves determining the independence of a set of vectors.
Suppose we have a set of k-vectors. Needless to say, that only k of them could be
independent. We can arrange them in a k× k matrix and calculate its determinant. If
the determinant is nonzero, then they are independent; otherwise they are dependent.

6.2.2 Rank and Trace of a Matrix

Consider an m×n matrix, that is, a matrix that has m rows and n columns. How many
of the rows are independent of each other? How many columns are independent?
The number of independent rows and columns of a matrix is called the rank of that
matrix. Denoting the rank of matrix A by ρ(A), it is obvious that

ρ(A) ≤ min(m, n) (6.40)

The rank of a matrix is equal to the order of the largest nonzero determinant
inside that matrix.

Example 6.18 Consider the following matrices:

A =
⎡
⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎦ , B =

[
2 3 −9

7 14 1

]
, C =

⎡
⎢⎣

1 0 3

0 5 0

2 7 8

⎤
⎥⎦

Matrix A has rank zero. Indeed, if only all of the elements of a matrix are zero,
then its rank is zero. B has rank 2, because the largest nonzero minor we can form,
for example, ∣∣∣∣∣ 2 −9

7 1

∣∣∣∣∣
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is of order two. On the other hand, C has rank three because its determinant is not
equal to zero.

If ρ(A) = m, we say that the matrix has full row rank and if ρ(A) = n, we
say it has full column rank. In the case of a square matrix we simply speak of
rank. A square matrix that has full rank has a nonzero determinant and, therefore, is
invertible. The rank of a matrix has the following properties some of which will be
quite handy in econometric analysis:

i. ρ(A) = ρ(A′) = ρ(AA)′ = ρ(A′A)

ii. ρ(AB) ≤ min{ρ(A), ρ(B)}
iii. ρ(A+ B) ≤ ρ(A)+ ρ(B)

(6.41)

The trace of a square matrix is defined as the sum of its diagonal elements. Let
A = [aij] be of order n. Then its trace denoted by tr(A) is defined as

tr(A) =
n∑

i=1

aii (6.42)

Rank and trace of a matrix can be obtained using Matlab

Matlab code

% Specify the matrix

A = [6 7 -4; -12 8 8; 22 -11 0]

% Calculate its rank

k = rank(A)

% Calculate its trace

s = trace(A)

6.2.3 Another Way to Find the Inverse of a Matrix

Whereas our previous method of inverting a matrix, which relied on manipulating
rows and columns works fine, there is another way to find the inverse that may be
appealing for the case of low-dimension matrices. First, recall that if we eliminate
the i-th row and the j-th column of the determinant of a matrix, the resulting smaller
determinant Mij is called a minor. We defined the cofactor of the ij-th element in a
matrix as

Cij = (−1)i+jMij

The following algorithm leads us to the inverse of a matrix.

1. Calculate the determinant of the matrix.
2. Transpose the matrix.
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3. Replace each element of the transposed matrix by its cofactor.
4. Divide the resulting matrix by the determinant.

Example 6.19 Consider the matrix

A =
[

2 7

1 5

]

Applying the algorithm we have

1. |A| = 3

2. A′ =
[

2 1

7 5

]

3. C11 = 5, C12 = −7, C21 = −1, C22 = 2 ⇒
[

5 −7

−1 2

]

4. A−1 = 1
3

[
5 −7

−1 2

]

Example 6.20 Consider the matrix in Example 6.14:

B =
⎡
⎢⎣

2 1 2

4 2 0

−1 5 3

⎤
⎥⎦

Applying the algorithm

|B| = 4

B′ =
⎡
⎢⎣

2 4 −1

1 2 5

2 0 3

⎤
⎥⎦

and the inverse is

B−1 = 1

44

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣ 2 5

0 3

∣∣∣∣∣ −
∣∣∣∣∣ 1 5

2 3

∣∣∣∣∣
∣∣∣∣∣ 1 2

2 0

∣∣∣∣∣

−
∣∣∣∣∣ 4 −1

0 3

∣∣∣∣∣
∣∣∣∣∣ 2 −1

2 3

∣∣∣∣∣ −
∣∣∣∣∣ 2 4

2 0

∣∣∣∣∣
∣∣∣∣∣4 −1

2 5

∣∣∣∣∣ −
∣∣∣∣∣ 2 −1

1 5

∣∣∣∣∣
∣∣∣∣∣ 2 4

1 2

∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

44

⎡
⎢⎣

6 7 −4

−12 8 8

22 −11 0

⎤
⎥⎦
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Now it has become clear why
|B| = 0 implies that |B| is not invertible. Note also that if |B| is too close to zero,

a situation called near singularity, the elements of B−1 will be very large and their
computation will be less precise. This problem is of importance in econometrics and
we will come back to it in the next chapter.

6.2.4 Exercises

E.6.4 Given the following matrices:[
3 0

0 7

]
,

[
5 1

0 −6

]
,

[
12 4

9 8

]
,

[
6 −5

−12 10

]

[−11 2

4 5

]
,

[
14 3

21 −12

]
,

[
a 2a

2a 4a

]

i. Compute their determinants and traces
ii. Find their ranks

iii. Find their inverses

E.6.5 Given the following matrices:⎡
⎢⎣

4 0 0

0 5 0

0 0 17

⎤
⎥⎦ ,

⎡
⎢⎣
−13 0 0

8 2 0

9 10 −19

⎤
⎥⎦ ,

⎡
⎢⎣

1 3 7

−2 9 4

1 −2 5

⎤
⎥⎦

⎡
⎢⎢⎣

1 −2 1

3 9 −2

7 4 5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

17 15 11

22 −30 19

−10 29 −18

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

11 −3 21

2 −4 12

7 5 −3

⎤
⎥⎥⎦

i. Compute their determinants and traces
ii. Find their ranks

iii. Find their inverses

E.6.6 Given the following matrices:⎡
⎢⎢⎢⎢⎣
−5 7 1 −2

0 10 9 8

−1 4 4 3

0 1 6 −6

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

8 1 5 13

−2 0 14 7

−3 −4 0 1

16 9 6 2

⎤
⎥⎥⎥⎥⎦
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i. Compute their determinants and traces
ii. Find their ranks

iii. Find their inverses

E.6.7 Check your results for Exercises 6.4 – 6.6 using Matlab.

E.6.8 Show that the following equalities hold. Use Matlab and matrices of different
orders to numerically verify them.

(A−1)−1 = A

(A′)−1 = (A−1)′

E.6.9 Solve the following systems of equations using matrix inversion.

i. 3x+ 4y = 11, ii. 2x− 9y = 2.8, iii. x− y = −11.5

−2x+ y = 0, 5x+ 4y = 1.7, x+ y = −1.5

iv. 7x1 + 10x2 − 6x3 = −167 v. x1 + 6x2 + 3x3 = 0

5x1 − 9x2 + x3 = 2677 x1 − 4x2 + 5x3 = 0

2x1 + 5x2 − 4x3 = −118 12x1 + 9x2 − 13x3 = 0

vi. 3x1 − 8x2 + 10x3 = −36 vii. x1 + 10x2 − x3 = 21.00

7x2 + 12x3 = 11 4x1 − 3x2 + 2x3 = 5.25

x3 = −2 6x1 + 9x2 + 11x3 = 64.25

E.6.10 Check your results for E.6.9 using Matlab.

E.6.11 Make up square matrices of order four and use Matlab to verify the
following properties of the determinant:

i. |A| = ∣∣A′∣∣
ii. If a column or a row of a matrix consists of zeros, then the determinant is

equal to zero.
iii. If two rows (columns) are identical, then the determinant is equal to zero.
iv. If a column (row) is equal to a linear combination of some of the other

columns (rows), then the determinant is equal to zero.
v. If a row (column) is multiplied by λ, the determinant is multiplied by λ.

Repeat your computation with λ = −1.
vi. |λA| = λn |A| , where n is the order of the matrix.

vii. If the place of two columns (rows) are interchanged, the sign of determinant
changes.
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E.6.12 Prove iv and vi in E.6.11. Show that ii and iii are special cases of iv. [Hint:
Use (6.36) and (6.37).]

6.3 Solving Systems of Linear Equations Using Matrix Algebra

By a linear system we mean a group of linear equations that hold simultaneously.
The meaning of a system is different from each equation in isolation or even if we
consider all of the equations without considering their connections.

Example 6.21 Consider the equation

y− 5x = 2

It means that, whatever the value of x, then y is equal to 5 times x plus 2. For
example, if x = 3, then y = 17. Similarly, if we know the value of y to be equal to
32, then x= 6. In other words, there are infinitely many combinations of x and y that
satisfy this equation. But now suppose we have the following system of equations:

y− 5x = 2

3y+ x = 38

This system means x = 2 and y = 12. There is only one pair of x and y that
satisfies these equations.

Example 6.22 Systems of simultaneous equations play an important role in
economics. The operation of the market for a product can be modeled as

Qd = 100− 2P+ 0.1Y

Qs = −10+ 4P

Qd = Qs

where Qd, Qs, P, and Y are, respectively, quantity demanded, quantity supplied,
price, and income. The three equations depict the point of equilibrium in the market,
where quantity demanded equals quantity supplied. Note that for each level of Y, we
have a different point of equilibrium or combination of Qd, Qs, and P that satisfy
the three equations.

In economics and in other sciences nonlinear systems play significant roles. In
this section, however, we are concerned only with linear systems. The designa-
tion linear doesn’t mean that the equations will not involve nonlinear functions of
variables, but it requires that a variable appear in all equations in only one form.

Example 6.23 The Cobb-Douglas production function has the form

Q = AKαLβ

where Q is output, K capital, and L labor. Taking the logarithm of both sides

ln Q = ln A+ α ln K + β ln L
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The equation is linear in the arguments ln Q, ln K, and ln L. But in all other
equations they have to appear in this form and, for example, we cannot have K, L,
or Q in any other equation.

In econometrics a system of equations that describes the economy or a part of
it is referred to as a structural model because it describes the structure of the econ-
omy. Coefficients of the structural models are not known, and usually economic
theory imposes very few specific restrictions on these coefficients. Thus, they are
free parameters and their values have to be estimated from the data or somehow
gleaned from available information. The variables of the model are divided into
endogenous and exogenous variables.3 The former are those variables that are deter-
mined within the system given the values of the latter variables and coefficients. That
is, the structural system is designed to determine and explain endogenous variables.
Exogenous variables are determined outside the system under study.

For example, if we are studying the market for oranges, price and quantity are
endogenous but income is not because it is preposterous to think that the per-
sonal disposable income of the whole country is determined by supply and demand
of oranges. On the other hand, in a macroeconomic model, aggregate income is
endogenous whereas government expenditures, money supply, and income of other
countries are exogenous.

Example 6.24 The Keynesian model in Example 6.11 is a structural model:

Y = C + I + G

C = α0 + α1(Y − T) 0 < α0, 0 < α1 < 1,

I = β0 + β1Y + β2r 0 < β0, 0 < β1 < 1, β2 < 0

If we solve this model for the endogenous variables, we get the reduced form of the
model⎡

⎢⎣
Y

C

I

⎤
⎥⎦ =

⎡
⎢⎣

1 −1 −1

−α1 1 0

−β1 0 1

⎤
⎥⎦
−1⎡
⎢⎣

G

α0 − α1T

β0 + β2r

⎤
⎥⎦

= 1

1− α1 − β1

⎡
⎢⎣

1 1 1

α1 1− β1 α1

β1 β1 1− α1

⎤
⎥⎦
⎡
⎢⎣

G

α0 − α1T

β0 + β2r

⎤
⎥⎦

= 1

1− α1 − β1

⎡
⎢⎣

α0 + β0 + β2r + G− α1T

α0(1− β1)+ α1(β0 + β2r)+ α1G− α1(1− β1)T

α0β1 + β0(1− α1)+ β2(1− α1)r + β1G− β1α1T

⎤
⎥⎦

3A better categorization is endogenous and predetermined variables. The latter includes exogenous
and lagged endogenous variables. In dynamic models, past values of an endogenous variable, say,
consumption, have an effect on its value at the present time. But these values are known at the time
of analysis or forecasting and could be treated, for certain purposes, as exogenous variables.
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As can be seen, we can go from the structural model to the reduced form. In
addition, a knowledge of the magnitude of the coefficients of the structural model
enables us to uniquely determine the coefficients of the reduced form.

As is discussed in econometrics, the estimation of structural models poses some
problems. In particular, it requires imposing restriction on some of the coefficients.
But if we know the reduced form, could we uniquely determine the coefficients of
the structural model?4 The answer is “not necessarily.” We again require restrictions
on structural coefficients. In all sciences, including economics, a reduced form could
be consistent with a number of structural models. Because the structural model rep-
resents our theory, but the reduced form is what we usually observe or we are able
to estimate its parameters, it may not be always possible to definitely choose among
the competing theories.

6.3.1 Cramer’s Rule

In the previous section we learned how to solve a system of equations using the
inverse of a matrix. An alternative way is by Cramer’s rule, which is easier to
understand through examples.

Example 6.25 Let us write the system of equations

6x− 7y = 5

5x+ 3y = 13

in matrix form [
6 −7

5 3

][
x

y

][
5

13

]

and consider the following determinants:


 =
∣∣∣∣∣6 −7

5 3

∣∣∣∣∣ = 53 
1 =
∣∣∣∣∣

5

13

−7

3

∣∣∣∣∣ = 106 
2 =
∣∣∣∣∣ 6

5

5

13

∣∣∣∣∣ = 53


 is the determinant of the matrix of the coefficients on the LHS of the system
of equations.
1 is formed by replacing the first column of 
 with the vector of
constants on the RHS of the system. Finally, 
2 is formed by replacing the second
column of 
 with the column of constant coefficients. Cramer’s rule states that

x = 
1



= 2, y = 
2



= 1

Now we can state Cramer’s rule in more general terms. Consider the system of
equations

Ax = d (6.43)

4This is the famous identification problem in econometrics.
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Write the matrix A in terms of its columns

A = [A1 . . . Ak] (6.44)

Cramer’s rule states

xj = |A1 . . . Aj−1 d Aj+1 . . . Ak|
|A| , j = 1, . . . , k (6.45)

where xj is the j-th element of x.

Example 6.26 Let

⎡
⎢⎣

2 9 4

7 −8 6

5 3 −6

⎤
⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣
−13

63

6

⎤
⎥⎦

Calculating the relevant determinants, we have


 =

∣∣∣∣∣∣∣
2 9 4

7 −8 6

5 3 −6

∣∣∣∣∣∣∣ = 952 
1 =

∣∣∣∣∣∣∣
−13

63

6

9 4

−8 6

3 −6

∣∣∣∣∣∣∣ = 4284


2 =

∣∣∣∣∣∣∣
2

7

5

−13

63

6

4

6

−6

∣∣∣∣∣∣∣ = −2856 
3 =

∣∣∣∣∣∣∣
2 9

7 −8

5 3

−13

63

6

∣∣∣∣∣∣∣ = 1190

Thus,

x1 = 4284

952
= 4.5, x2 = −2856

952
= −3, x3 = 1190

952
= 1.25

Example 6.27 Let us use Cramer’s rule to solve for Y in Example 6.11

Y =

∣∣∣∣∣∣∣
G −1 −1

α0 − α1T 1 0

β0 + β2r 0 1

∣∣∣∣∣∣∣
1− α1 − β1

= α0 + β0

1− α1 − β1
+ β2r

1− α1 − β1
+ G− α1T

1− α1 − β1

In obvious change of notation, we can write

Y = φ0 + φ1r + φ2(G− α1T), 0 < φ0, φ1 < 0, φ2 > 0
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which is the IS curve. Note that since 1−α1−β1 > 0, the effect of each variable on
Y is theoretically known. For instance φ1 < 0 and the IS curve is downward sloping.
Whereas an increase in government expenditures results in an increase in income,
the same effect will be obtained by reducing taxes. Let us now add the LM curve

γ1Y + γ2r = M

P
, 0 < γ1, γ2 < 0

where M is the money supply and P the price level. Our complete system, that is the
IS plus LM, in matrix notation will be

[
1 −φ1

γ1 γ2

][
Y

r

]
=
[

φ0 + φ2(G− α1T)

M/P

]

Again we can solve for Y using Cramer’s rule:

Y =

∣∣∣∣∣φ0 + φ2(G− α1T) −φ1

M/P γ2

∣∣∣∣∣
γ2 + φ1γ1

= φ0γ2 + γ2φ2(G− α1T)+ φ1(M/P)

γ2 + φ1γ1

Again the effect of each exogenous variable on the income can be unequivocally
determined.

Before closing the subject of linear systems, we should state a few general results.
The linear system

Ax = b

has a unique solution if A is square, that is, there are as many equations as the
number of variables we want to determine and |A| �= 0. It follows that under such
conditions, if b = 0, then x = 0. When b = 0, the system is called homogeneous.

On the other hand, if the determinant of A is equal to zero, then we have infinitely
many solutions. The same is true if the number of equations is less than the number
of variables. In contrast, if there are more equations than unknowns, the system has a
unique solution if there are enough redundant equations—that is, equations that are
linear combinations of other equations in the system—so that by discarding them
we can get a square matrix A. But if equations are contradictory, then the system
has no solution.

Example 6.28 Below (i) has a redundant equation, but (ii) is contradictory.

i. 2x + 3y = 4 ii. 2x + 3y = 4

7x+ 4y = 1 7x+ 4y = 1

−3x+ 2y = 7 x+ y = 5

Cramer’s rule can be programmed in Matlab
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Matlab code

% Specify the coefficients matrix and the RHS vector

A = [2 9 4; 7 -8 6; 5 3 -6]

d = [-13; 63; 6]

% Calculate the relevant determinants

delta = det(A)

delta1 = det([d A(:,2) A(:,3)])

delta2 = det([A(:,1) d A(:,3)])

delta3 = det([A(:,1) A(:,2) d])

% Find the solutions

x1 = delta1./delta

x2 = delta2./delta

x3 = delta3./delta

6.3.2 Exercises

E.6.13 Solve the problems in E.6.9 using Cramer’s rule.

E.6.14 Check your results in E.6.13 using Matlab.

E.6.15 Use Cramer’s rule to solve for C and I in the Keynesian model of
Example 6.24.

E.6.16 Use Cramer’s rule to solve for r in the IS-LM model:[
1 −φ1

γ1 γ2

][
Y

r

]
=
[

φ0 + φ2(G− α1T)

M/P

]



Chapter 7
Advanced Topics in Matrix Algebra

In this chapter we build on the basic matrix theory we learned in Chap. 6 and present
a number of advanced topics. The techniques and tools we acquire will prove quite
useful in many areas of mathematics, economics, computation, and particularly,
econometrics. The knowledge of eigenvalues and eigenvectors in Sect. 7.4 are cru-
cial for understanding and solving systems of differential equations in Chap. 17.
Such equations, in turn, play an important role in macroeconomic analysis. We shall
learn several ways of factoring a matrix into two matrices, techniques which are of
immense importance for efficient computation.

Topics discussed in this chapter include the Moore-Penrose generalized inverse
of a matrix, positive and negative definite matrices, projection matrices, decomposi-
tion of a positive definite matrix, orthogonal complements, Cholesky factorization,
and others, all of which find many applications in and are indeed indispensable
tools of econometric analysis. The chapter, in addition to being expository, is also
intended as a reference for students and practitioners of econometrics.

7.1 Quadratic Forms and Positive and Negative
Definite Matrices

When the exponents of every term in an expression sum to the same number, the
expression is referred to as a form. The following are forms:

f (x, y) = ax+ by

f (x, y) = x2 − 3xy+ 2y2

f (x, y, z) = a11x2 + a22y2 + a33z2 + 2a12xy+ 2a13xz+ 2a23yz

f (x, y, z) = αx3y+ βy2z2 + γ x2yz+ δy4 + λxyz2

The first is a linear form and the fourth a quartic (that is, of degree four) form. We
are interested in the second and third expressions that are quadratic (i.e., of degree
two) forms. We can rewrite them as

f (x, y) =
[

x y
] [ 1 −3

0 −2

][
x

y

]

143K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_7, C© Springer-Verlag Berlin Heidelberg 2011
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and

f (x, y, z) =
[

x y z
]⎡⎢⎣

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎤
⎥⎦
⎡
⎢⎣

x

y

z

⎤
⎥⎦

More generally, the quadratic form can be written as

f (x) = x′Ax (7.1)

where x is a k-vector, and A is a k × k matrix. It is always possible to make A
symmetric. In the example above the second matrix is symmetric, and the first can
be made symmetric by writing it as

f (x, y) =
[

x y
] [−1 − 3

2

− 3
2 −2

][
x

y

]

Now we can define positive and negative definite matrices.

Definition 7.1 A symmetric matrix A is called

positive definite if x′Ax > 0, ∀ x �= 0
positive semidefinite if x′Ax ≥ 0, ∀ x �= 0
negative definite if x′Ax < 0, ∀ x �= 0
negative semidefinite if x′Ax ≤ 0, ∀x �= 0

(7.2)

But, how do we know if a matrix is positive or negative definite? For this we rely
on principal minors. For any matrix

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎥⎦

the increasingly larger determinants

a11,

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ ,
∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ , . . . , |A|
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are called the principal minors. The symmetric matrix A is positive definite if all its
principal minors are positive.

a11 > 0,

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ > 0, . . . |A| > 0 (7.3)

If one or more (but not all) of the above are equal to zero, then the matrix is
positive semidefinite. The symmetric matrix A is negative definite if its principal
minors alternate in sign starting with negative.

a11 < 0

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ > 0

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ < 0 . . . (7.4)

If one or more (but not all) of the above are equal to zero, then the matrix is
negative semidefinite.

Example 7.1 Matrices [
9 2

2 7

]
and

⎡
⎢⎣

14 05 −1

05 14 −1

−1 −1 0.2

⎤
⎥⎦

are positive definite whereas[−7 0.5

0.5 −6

]
and

⎡
⎢⎣
−29 −4 −13

− 04 −6 −02

− 13 −2 −11

⎤
⎥⎦

are negative definite.

Example 7.2 Consider the n-vector of random variables

y =

⎡
⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎥⎦ (7.5)

and let

ỹ =

⎡
⎢⎢⎢⎢⎣

y1 − E(y1)

y2 − y(y2)
...

yn − E(yn)

⎤
⎥⎥⎥⎥⎦ (7.6)
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The covariance matrix of y is defined as

V = E

⎡
⎢⎢⎢⎢⎣

ỹ2
1 ỹ1ỹ2 . . . ỹ1ỹn

ỹ2ỹ1 ỹ2
2 . . . ỹ2ỹn

...
...

. . .
...

ỹnỹ1 ỹnỹ2 . . . ỹ2
n

⎤
⎥⎥⎥⎥⎦ (7.7)

The covariance matrix is symmetric and positive semidefinite. To show the latter,
first note that V can be written as

V = E(ỹỹ′) (7.8)

Thus, for any x �= 0 we have

x′Vx = x′E(ỹỹ′)x

= Ex′(ỹỹ′)x

= E

(
n∑

j=1
xjỹj

)2

= E

(
n∑

j=1
xj(yj − E(yj))

)2

≥ 0

(7.9)

Note that for all practical purposes, the covariance matrix is positive definite.
The equality to zero in the above formula can be ignored as the trivial case
when there is no variation in y. Such a situation is of no interest in statistics and
econometrics.

7.1.1 Exercises

E.7.1 Determine which of the following matrices is positive or negative definite and
which are positive or negative semidefinite.

A =
⎡
⎢⎣

6 −6 12

6 −6 −12

12 −12 24

⎤
⎥⎦ , B =

⎡
⎢⎣
−6 +6 −12

−6 −6 12

−12 12 −24

⎤
⎥⎦ , C =

⎡
⎢⎣

3 −6 −2

−6 18 5

−2 5 14

⎤
⎥⎦

D =
⎡
⎢⎣
−3 6 2

6 −18 −5

2 −5 −14

⎤
⎥⎦ , E =

⎡
⎢⎣

14 3 7

3 0 11

7 11 9

⎤
⎥⎦



7.2 Generalized Inverse of a Matrix 147

F =

⎡
⎢⎢⎢⎣

10 4 −5 5

4 20 2 11

−5 2 18 −1

5 11 −1 7

⎤
⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎣
−10 −4 5 −5

−4 −20 −2 −11

5 −2 −18 1

−5 −11 1 −7

⎤
⎥⎥⎥⎦

E.7.2 Show that the identity matrix I is positive definite.

E.7.3 Show that any matrix of the form X′X is positive semidefinite.

E.7.4 Show that if A is positive definite, then−A is negative definite and vice versa.

7.2 Generalized Inverse of a Matrix

In Chap. 6, we defined the inverse of a square nonsingular matrix A to be A−1 such
that

AA−1 = A−1A = I (7.10)

For the nonsquare matrix A with dimensions n× k where k < n, the generalized
inverse is defined as A− such that

AA−A = A (7.11)

The generalized inverse is not unique. Let B be any n × k matrix such that the
matrix product B′A is not singular and its inverse exists. Then

(B′A)−1B′ (7.12)

is also a generalized inverse of A.A more useful concept is the Moore-Penrose gen-
eralized inverse denoted by A+. The Moore-Penrose generalized inverse is defined
only for matrices with full column rank. Such an inverse has to satisfy the following
conditions:

AA+A = A
A+AA+ = A+

(AA+)′ = AA+

(A+A)′ = A+A

(7.13)

Based on these conditions, the Moore-Penrose generalized inverse of the n×k matrix
A is uniquely defined as

A+ = (A′A)−1A′ (7.14)

where A has full column rank. It is left as an exercise for the reader to check that
(7.14) indeed has the properties listed in (7.13) and that A+ is a special case of A−.
See Exercises E.7.6 and E.7.8.
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Example 7.3 The Moore-Penrose generalized inverse of the matrix

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −5 0

1 7 1

1 −3 1

1 4 0

1 −3 0

1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is

X+ =
⎡
⎢⎣
−0.2848 0.0795 −0.0530 −0.4040 −0.3113 −0.0265

−0.0364 0.0596 −0.0397 −0.0530 −0.0166 −0.0199

−0.2483 0.1943 − 0.4260 −0.4570 −0.2947 −0.3797

⎤
⎥⎦

Use Matlab to verify the above result.

Example 7.4 (Least Squares Method). Least squares method is one of the principal
techniques of estimation in econometrics. You may be familiar with its derivation as
the solution to an optimization problem (see Chap. 12 for such a derivation). Here,
we would like to introduce it somewhat differently, that is, as an approximation to
the solution of a system of equations. Let us start with the standard classical model
of regression

y = Xβ + u (7.15)

where y is an n × 1 vector of dependent variable, x an n × k matrix of explana-
tory variables, β a k × 1 vector of unknown parameters, and u an n × 1 vector of
unobservable random disturbances. For instance, y may represent data on the con-
sumption of n households in the country or in a particular city. The elements of
the first column of X are all one, representing the constant term in the relationship
between consumption and its determinants. Other columns of X are factors such as
income, wealth, and the number of individuals in the household that determine the
amount of a household’s consumption.

The objective is to estimate β and get an order of magnitude of the effect of
different variables on household consumption. Because X is not square, it cannot
be inverted and we have to estimate β by some method. The least squares method
achieves this by minimizing the quadratic objective function

(y− Xβ)′(y− Xβ) (7.16)

Alternatively, we could premultiply (7.15) by X′

X′y = X′Xβ + X′u (7.17)
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and then solve for β.

β = (X′X)−1X′y− (X′X)−1X′u (7.18)

In other words, we have solved for β using the Moore-Penrose generalized
inverse of matrix X:

β = X+y− X+u (7.19)

Because u is unobservable, there is no way that we can find the exact value of β.
But we can estimate (approximate) it by taking the first term in (7.18) and dropping
the second term, which involves u, and write

β̂ = X+y = (X′X)−1X′y (7.20)

Under the following assumptions,

1. The stochastic process {X, y} follows the linear model in (7.15).
2.

E(u|X) = 0 (7.21)

3. Except for the first column of X, no other variable is constant and X has full
column rank (no perfect collinearity).

β̂ is an unbiased estimator of β. That is,

E(β̂) = β (7.22)

Example 7.5 (Gauss1-Markov Theorem). If we add the following to assumptions
1–3 above,

E(uu′) = σ 2I (7.23)

we shall have the Gauss-Markov theorem, which states that β̂ is the best linear
unbiased estimator of β conditional on X. That is, in the class of linear unbi-
ased estimators, it has the lowest variance. More precisely, the covariance matrix
of any other estimator in this class exceeds that of β̂ by a positive semidefinite
matrix.

1The great German mathematician Johann Carl Friedrich Gauss (1777–1855) made contribu-
tions to many areas of mathematics including algebra, number theory, geometry, and differential
equations.
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7.2.1 Exercises

E.7.5 Using Matlab, find the Moore-Penrose generalized inverse of the following
matrices:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 12 −1

3 14 0

3 18 −1

5 23 0

5 28 0

7 34 −1

7 40 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17 4 1

15 7 1

13 6 2

10 6 2

7 8 2

5 4 3

3 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −32 10 3

1 −33 15 7

1 −33 20 0

1 −34 25 4

1 −38 30 9

1 −34 35 0

1 −30 40 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E.7.6 Show that the matrix in (7.14) satisfies all the conditions in (7.13).

E.7.7 Verify (7.12).

E.7.8 Show that X+ is a special case of X− by showing that ifx has full column rank,
then X− = X+. Further show that X−1 is a special case of X+ by showing that
when X is not singular, then X+ = X−1.

E.7.9 Prove the Gauss-Markov theorem in the following steps:

i. Define an alternative linear estimator of β̂ as

β∗ = Ay

ii Derive the conditions under which β∗ is an unbiased estimator.
iii. Find the covariance matrix of this estimator (call itσ 2H).
iv. Show that H− (X′X)−1 is equal to a positive semidefinite matrix.

7.3 Orthogonal Matrices

7.3.1 Orthogonal Projection

Orthogonal projection is related both to the Moore-Penrose generalized inverse and
the least squares method, and perhaps it is easier to introduce it in the context of
the latter. Recall that in (7.15) we tried to model an economic phenomenon, say,
the household consumption. After estimating β, we may want to see how the model
predicts the amount of consumption, given the characteristics of household such as
size and income. Denoting the model prediction of y by ŷ, we have

ŷ = Xβ̂ = X(X′X)−1X′y (7.24)
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The matrix
Px = X(X′X)−1X′ (7.25)

is called the orthogonal projector, that is, it projects y on the matrix X. In statistical
sense, all the information that is common between y and X is reflected in ŷ =
Pxy = Xβ̂. The difference between y and its predicted value is called the residual;
thus,

e = y− ŷ

= y− Xβ̂

= [I− X(X′X)−1X′] y

(7.26)

Vectors ŷ and e have several interesting characteristics that are left to the reader
to verify (see E.7.11 and E.7.12).

X′e = 0 ⇒ ŷe = 0 (7.27)

That is, the orthogonal projector PX breaks the vector y into two orthogonal
vectors. Because y = ŷ+ e, it follows that

y′y = ŷ′ŷ+ e′e (7.28)

and

‖y‖ = ∥∥ŷ
∥∥+ ‖e‖ (7.29)

Example 7.6 Let

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −5 0

1 −7 1

1 −3 1

1 −4 0

1 −3 0

1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.9

−6.2

−1.1

−5.8

−1.1

−2.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then

PX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4669 −0.2185 −0.1457 −0.1391 −0.3940 −0.0728

−0.4669 −0.2185 −0.1457 −0.1391 −0.3940 −0.0728

−0.2185 −0.6909 −0.0949 −0.3179 −0.0993 −0.2141

−0.1457 −0.0949 −0.4923 −0.2119 −0.0662 −0.4128

−0.1391 −0.3179 −0.2119 −0.6159 −0.2450 −0.1060

−0.3940 −0.0993 −0.0662 −0.2450 −0.3609 −0.0331

−0.0728 −0.2141 −0.4128 −0.1060 −0.0331 −0.3731

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1927

6.8547

0.8746

5.1894

1.0033

2.0706

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7073

−0.6547

0.2254

0.6106

0.0967

0.4294

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is left to the reader to verify that the above results satisfy conditions (7.21) and
(7.22).

7.3.2 Orthogonal Complement of a Matrix

The concept of orthogonal complement proves especially handy in the study of coin-
tegration in time series analysis. Consider the matrix X whose dimensions are n× k
where k < n and has rank k. Then X⊥ whose dimensions are n× (n− k) and has the
rank n − k is called the orthogonal complement of X if

X′X⊥ = 0 (7.30)

Where 0 has dimensions k × (n − k). It follows that X′⊥X = 0 where now 0 has
dimensions (n− k)× k.

Example 7.7 Let

X =
⎡
⎢⎣

1 2

1 3

1 4

⎤
⎥⎦

Then an orthogonal complement of X is

X⊥ =
⎡
⎢⎣

0.1667

−0.3333

0.1667

⎤
⎥⎦

The orthogonal complement of a matrix is not unique. For example,

X⊥ =
⎡
⎢⎣
−0.3333

0.6667

−0.3333

⎤
⎥⎦
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is also an orthogonal complement of X. The practical way to find X⊥ for an n × k
matrix where n > k is to form the matrix

T = I− X(X′X)−1X′ (7.31)

Then the n× (n− k) matrix X⊥ can be formed from any n − k columns of T.

7.3.3 Exercises

E.7.10 Find the orthogonal projectors of matrices A, B, and C in E.7.5.

E.7.11 Given the vector

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

28

28

24

19

16

10

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

find the projection of y on A, B, and C in E.7.5.

E.7.12 For each of the projections above, calculate the residual vector e and verify
that relationships (7.27) and (7.28) hold.

E.7.13 Verify that relationships (7.27) and (7.28) hold for predicted values and
residuals in Example 7.6.

E.7.14 Show that

X′e = 0

and

y′y = ŷ′ŷ+ e′e

E.7.15 Find orthogonal complements of A, B, and C in E.7.5.

7.4 Eigenvalues and Eigenvectors

Dear reader, some mathematical concepts have immediate physical and economic
counterparts. The concept of derivatives that we shall learn in the next chapter can be
illustrated by the speed of a moving object or by marginal cost and marginal revenue
in microeconomics. Not all mathematical concepts are so fortunate. Eigenvalues and
eigenvectors that we shall learn about in this chapter have physical counterparts; for
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example, frequencies of a vibrating string are eigenvalues. But there are no easy and
intuitively appealing (at least for economists) examples for them. Similarly, as we
shall see, eigenvectors have a counterpart in Markov chains, but that requires some
explanation. Therefore, the following material, at least in the beginning, will look
too abstract. But fasten your seat belt and bear with me because this is one of the
most fruitful parts of any book you may read.

Eigenvalues and eigenvectors in themselves are of importance and immense help
in matrix algebra, and what is more important, they allow a factoring of matrices
into three, and in the case of certain matrices into two (something akin to taking
the square root of a matrix). This device greatly facilitates the understanding of
many estimation techniques in econometrics and the solution of systems of linear
differential equations (Chap. 17).

Definition 7.2 Let A be a square matrix of order n. If we could find a scalar λ and a
vector x such that

Ax = λx (7.32)
or

(A− λI)x = 0 (7.33)

then λ and x are called, respectively, eigenvalue and eigenvector of A. They are also
referred to as characteristic value and characteristic vector of A.

As (7.33) shows, we have a system of linear homogeneous equations. Therefore,
if the matrix (A−λI) is invertible, then we have the trivial solution x = 0. We don’t
want this; therefore, we force A−λI to be singular, that is, set its determinant equal
to zero:

|A− λI| = 0 (7.34)

P(λ) = |A − λI| is a polynomial of degree n, called a characteristic polynomial of
A, and (7.34) determines all eigenvalues of A. Corresponding to each eigenvalue is
an eigenvector that is determined through (7.33). Note, however, that eigenvectors
are not unique and they are determined up to a scalar. Before we hear ringing in our
ears, let us have a few numerical examples, first, the old-fashioned way and then
with the help of Matlab.

Example 7.8 Find all eigenvalues and eigenvectors of the matrix

A =
[

3 6

4 1

]

Using (7.34), we have

|A− λI| =
∣∣∣∣∣
[

3 6

4 1

]
− λ

[
1 0

0 1

]∣∣∣∣∣
=
∣∣∣∣∣ 3− λ 6

4 1− λ

∣∣∣∣∣
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Setting the characteristic polynomial equal to zero, we have

P(λ) = λ2 − 4λ− 21 = 0

therefore,

λ1 = 7, λ2 = −3

As long as we are dealing with 2 × 2 or 3 × 3 matrices, computation of eigen-
values is not difficult. But once we are dealing with matrices of higher order,
especially when matrix elements are not all integers, the process borders on the
macabre. Indeed, numerical calculation of eigenvalues follows an iterative proce-
dure. Fortunately, Matlab has a simple routine by which eigenvalues (and later we
will see eigenvectors) can be obtained.

Matlab code

% Define a matrix

A = [3 6; 4 1]

% Find its eigenvalues

D = eig(A)

Example 7.9 Try the code on the following matrix:

B =

⎡
⎢⎢⎢⎣

39 3 26 36

3 6 2 7

26 2 51 9

36 7 9 50

⎤
⎥⎥⎥⎦

Example 7.10 Find the eigenvalues of the following matrix:

C =
[

2 0

0 5

]

Again using (7.34), we find

λ1 = 2 and λ2 = 5

Although this is just an example, it illustrates the general proposition that eigen-
values of a diagonal matrix are its diagonal elements. The same is true for all
upper and lower triangular matrices. Once we have the eigenvalues of a matrix,
(7.33) enables us to compute its eigenvectors. Let us illustrate this with a few
examples.

Example 7.11 Find the eigenvalues of matrix A in Example 7.8. Using (7.33), we
have [

3− 7 6

4 1− 7

][
x11

x12

]
=
[

0

0

]
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or

−4x11 + 6x12 = 0

4x11 − 6x12 = 0

As can be seen, we have only one equation and two unknowns. We can choose
one of the two elements of the eigenvector arbitrarily and the other will be deter-
mined. For instance, if we choose x12 = 2, then the eigenvector corresponding to
λ1 = 7 will be

x1 =
[

3

2

]

Repeating the procedure with the second eigenvalue λ2 = −3, we get

x21 = −x22

Setting x22 = 1 we have

x2 =
[−1

1

]

Example 7.12 The reader should repeat the procedure in Example 7.11 and show
that the eigenvectors of C in Example 7.10 are

x1 =
[

1

0

]
and x2 =

[
0

1

]

Because eigenvectors are not unique, sometimes a normalization rule is adopted
to uniquely determine them. The most widely used normalization rule is to make
the length of the vector unity. That is, for any eigenvector we have

√
x′x =

(
n∑

i=1

x2
i

) 1
2

= 1 (7.35)

Example 7.13 In Example 7.11, the first eigenvector was

x1 =
[

3

2

]

the length of which is √
x′1x1 =

√
13

We apply the normalization rule in (7.35) by dividing the eigenvector by its
length. Thus, the normalized eigenvector is
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x1 = 1√
13

[
3

2

]
=
⎡
⎣ 3

√
13

13
2
√

13
13

⎤
⎦

Repeating the same procedure for the second eigenvalue, we get

x2 =
⎡
⎣−

√
2

2√
2

2

⎤
⎦

and putting the two eigenvectors together, we have

P =
⎡
⎣ 3

√
13

13 −
√

2
2

2
√

13
13

√
2

2

⎤
⎦

If calculating eigenvalues is difficult, computation of eigenvectors is even more
so. Again, a number of algorithms exist for this purpose, and one can program them
or use a ready-made routine. Here, we utilize Matlab, which already has such a
routine. Note that in calculating eigenvectors, Matlab normalizes their lengths to
unity.

Matlab code

% Define a matrix

A = [3 6; 4 1]

% Find its eigenvalues and eigenvectors

[P, D]= eig(A)

[0]

If we run this program on Matlab, we get matrix D whose diagonal elements are
eigenvalues of A:

D =
[

7 0

0 −3

]

and the matrix P made of eigenvectors

P =
[

0.8321 −0.7071

0.5547 0.7071

]

Eigenvectors associated with distinct eigenvalues are independent of each other
and, therefore, form a linear vector space. This point can be checked by calculating
the determinants of the matrices composed of eigenvectors in this and the next two
subsections. A nonzero determinant signifies that the vectors are independent.
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Example 7.14 (Markov Chains). In Chaps. 4 and 6 we became familiar with Markov
chains and the transition probability matrix

P =

⎡
⎢⎢⎢⎢⎣

p11 p12 . . . pn1

p12 p22 . . . pn2

...
...

...

p1n pn2 . . . pnn

⎤
⎥⎥⎥⎥⎦ (7.36)

Because columns of P add up to one, we have

P′1 = 1 (7.37)

where 1 is a column vector of 1s. In other words, one eigenvalue of P′ is equal to
one and its associated eigenvector is

1 =

⎡
⎢⎢⎣

1
...

1

⎤
⎥⎥⎦ (7.38)

Because P and its transpose have the same eigenvalues (see E.7.18), it follows
that one eigenvalue of P is also unity. Let π∗ be the eigenvector associated with this
unity eigenvalue, we can write

Pπ∗ = π∗ (7.39)

Indeed, π∗ is the vector of long-run probabilities of different states because (see
E.7.20)

Pkπ∗ = π∗ (7.40)

In other words, if we are to predict the probabilities of each state far into the
future, we would pick π∗. Moreover, these probabilities remain unchanged. In com-
puting π∗ we have to make sure that the probabilities add up to one. To ensure this,
we should use the normalizing rule

1′π∗ = 1 (7.41)

For the transition matrix of boom and recession of Chaps. 4 and 6, we have

[
0.98 0.10

0.02 0.90

][
0.8333

0.1667

]
=
[

0.8333

0.1667

]
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7.4.1 Complex Eigenvalues

So far we have been dealing with a matrix whose eigenvalues are real and distinct.
This is not always the case. A matrix could have an eigenvalue with multiplicity
r or have complex eigenvalues. Indeed, a matrix could have a combination of real
eigenvalues with different multiplicities and complex eigenvalues. In this and the
next subsections we will consider these cases.

Example 7.15 Find the eigenvalues of the matrix

C =
[

1 9

−1 1

]

The characteristic polynomial is

P(λ) = λ2 − 2λ+ 10

and the eigenvalues are

λ1 = 1+ 3i, λ2 = 1− 3i

Note that complex eigenvalues come in pairs and are conjugate complex of each
other. For eigenvectors, we have

[−3i 9

−1 −3i

][
x11

x12

]
=
[

0

0

]

Again, we have only one equation:

− 3ix11 + 9x12 = 0

or

ix11 = 3x12

Setting x12 = i, we have x11 = 3. Thus,

x1 =
[

3

i

]
=
[

3

0

]
+
[

0

i

]
= u1 + iv1

The second eigenvector could be found in the same manner, and this time we
have

3ix11 + 9x12 = 0
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or

− ix11 = 3x12

Letting x22 = −i, we have x21 = 3. The second eigenvector is

x2 =
[

3

−i

]
=
[

3

0

]
−
[

0

i

]
= u2 − iv2

Putting them together in a matrix,

P =
[

3 3

i −i

]

or after normalizing,

P =
[

0.9487 0.9487

0.3162i −0.3162i

]

The Matlab commands that would produce normalized eigenvectors are the same
as before.

7.4.2 Repeated Eigenvalues

There are instances when an eigenvalue occurs with multiplicity k > 1. In such
cases calculation of eigenvalue remains unaffected, but a complication arises in
finding eigenvectors. That is, in some cases it is possible to find k independent
eigenvectors, but, on many occasions this is not possible and the number of inde-
pendent eigenvectors is less than k. This could cause a problem, and we need to
think of a solution. We illustrate these possibilities and the solution with a few
examples.

Example 7.16 Use Matlab to find eigenvalues and eigenvectors of the matrix

B =

⎡
⎢⎢⎢⎣

1 3 6 0

−3 −5 −6 0

3 3 4 0

0 0 0 4

⎤
⎥⎥⎥⎦

You will get

D =

⎡
⎢⎢⎢⎣
−2 0 0 0

0 −2 0 0

0 0 4 0

0 0 0 4

⎤
⎥⎥⎥⎦
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and

P =

⎡
⎢⎢⎢⎣
−0.5774 −0.5774 −0.9086 0

−0.5774 0.5774 0.2681 0

0.5774 −0.5774 0.3203 0

0 0 0 1

⎤
⎥⎥⎥⎦

As can be seen, there are four independent eigenvectors. Another example would
be the identity matrix I, which has λ = 1 as its eigenvalue with multiplicity n (its
dimension) and has n independent eigenvectors, namely, e1, . . . , en.

Example 7.17 Find eigenvalues and eigenvectors of the matrix

A =
[

2 −1

1 4

]

The characteristic polynomial is

P(λ) = (λ− 3)2 = 0

and therefore,

λ1 = λ2 = 3

that is, A has eigenvalue 3 with multiplicity 2. As to the eigenvector, using λ = 3
we have the equation

x11 = −x12

and the eigenvector is

x1 =
[−1

1

]

or after normalizing

x1 =
[−0.7071

0.7071

]

In this case only one independent eigenvector is associated with eigenvalue 3. To
get a second one, we define a new concept.
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Definition 7.3 (Generalized Eigenvector). Let the n×n matrix A have an eigenvalue
λ with multiplicity J ≤ n. Then any vector vj �= 0, j = 1, . . . , J is the generalized
eigenvector of A if

(A− λI)jvj = 0 (7.42)

Note that if we already have computed vj , then we can find vj+1 as

(A− λI)vj+1 = vj (7.43)

There is no difference between (7.42) and (7.43) as the latter is a necessary and
sufficient condition for the former. On the other hand, it is easier to use (7.43).
Moreover, when there is only one eigenvalue and it has multiplicity n, then

(A− λI)n = 0 (7.44)

Example 7.18 Now we can find a second independent eigenvector for the matrix in
Example 7.17: [−1 −1

1 1

][
x21

x22

]
=
[−1

1

]

One solution for x2 would be

x2 =
[

1

0

]

Then we have two independent eigenvectors for A.
When dealing with cases of repeated eigenvalues, the Matlab routine used above

is not the appropriate one. Instead, if Symbolic Math Toolbox is available, one
should use

Matlab code
% Define a matrix

A = [2 -1; 1 4]

% Find its eigenvalues and (generalized) eigenvectors

[P, J]= jordan(A)

P is the matrix of eigenvectors, which is not normalized, and J is an upper triangular
matrix whose diagonal elements are eigenvalues of A. The off-diagonal elements
are equal to one. The next example shows that the same considerations apply to the
cases of repeated complex roots.

Example 7.19 Find the eigenvalues and eigenvectors of the matrix
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C =

⎡
⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 0 −1

2 0 1 0

⎤
⎥⎥⎥⎦

The characteristic polynomial

λ4 + 2λ2 + 1 = 0

or

(λ2 + 1)2 = 0

whose solutions are

λ = ±i

Note that the solutions have multiplicity of two. For the first eigenvector we
have ⎡

⎢⎢⎢⎣
−i −1 0 0

1 −i 0 0

0 0 −i −1

2 0 1 −i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

w11

w12

w13

w14

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦

One solution would be

w1 =

⎡
⎢⎢⎢⎣

0

0

i

1

⎤
⎥⎥⎥⎦

or

u1 + v1 =

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦+ i

⎡
⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎦

For the second eigenvector we have to use (7.38):⎡
⎢⎢⎢⎣
−i −1 0 0

1 −i 0 0

0 0 −i −1

2 0 1 −i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

w21

w22

w23

w24

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

i

1

⎤
⎥⎥⎥⎦
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One solution would be

w2 =

⎡
⎢⎢⎢⎣

1

−i

0

−i

⎤
⎥⎥⎥⎦

or

u2 + v2 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦+ i

⎡
⎢⎢⎢⎣

0

−1

0

−1

⎤
⎥⎥⎥⎦

Needless to say, a matrix may have any combination of real, complex, and
repeated eigenvalues. A matrix may have all of its roots real or complex, but it may
also have some complex and some real eigenvalues. Similarly, each real or complex
eigenvalue may have a different multiplicity.

7.4.3 Eigenvalues and the Determinant and Trace of a Matrix

Eigenvalues have many interesting properties. Among them are the connections
between eigenvalues and the determinant and trace of a matrix. The determinant
of a matrix is equal to the product of its eigenvalues. For the matrix A = [aij],

n∏
i

λi = |A| (7.45)

Example 7.20 For the matrix

A =
[

3 6

4 1

]

we have
λ1 = 7, λ2 = −3

and

|A| = λ1λ2 = 7(−3) = −21

Example 7.21 For the matrix

B =
[

3 16

−1 3

]
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we have

λ1 = 3+ 4i, λ2 = 3− 4i

and

|B| = (3+ 4i)(3− 4i) = 25

Example 7.22 For the matrix

C =
[

3 1

−1 1

]

we have
λ1 = λ2 = 2

and

|C| = 22 = 4

An implication of the above is that if any eigenvalue of a matrix is equal to zero,
then the determinant is equal to zero, and the matrix is singular. The reverse is also
true. The trace of a matrix is equal to the sum of its eigenvalues. For the matrix
A = [aij],

n∑
i

λi =
n∑
i

aii (7.46)

Example 7.23 For the matrices A, B, and C in Examples 7.20, 7.21, and 7.22, above,
we have

tr(A) = 7− 3 = 4

tr(B) = 3+ 4i+ 3− 4i = 6

tr(C) = 2+ 2 = 4

The following Matlab routine performs the numerical verification of the proper-
ties of eigenvalues discussed above. Try it with the matrix of your choice.

Matlab code

% Define a matrix:

B = [39 3 26 36;3 6 2 7; 26 2 51 9;36 7 9 50]

% Specify its dimension

n = 4

% Find its eigenvalues

D = eig(B)

% Let s1 and s2 be the sum and product of eigenvalues

% Initialize them
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s1 = 0;

s2 = 1;

% Find the sum and product of eigenvalues

For i=1:n
s1 = s1 + D(i);

s2 = s2*D(i);

end

% Find the trace of B

trace(B)

% Retrieve s1

s1

% Find the determinant of B

det(B)

% Retrieve s2

s2

7.4.4 Exercises

E.7.16. Find eigenvalues and eigenvectors of the following matrices:

[
1 1

3 −1

] [
3 12

−9 7

] [
2 3

0 2

] [
8 7

−1 12

]

⎡
⎢⎣
−2 4 −1

3 2 0

1 6 −1

⎤
⎥⎦

⎡
⎢⎣

3 −2 0

0 9 −2

0 0 1

⎤
⎥⎦

⎡
⎢⎣

6 5 21

5 10 13

21 13 114

⎤
⎥⎦

E.7.17. Given the transition probability matrix of employment states from Chaps. 4
and 6

P =
⎡
⎢⎣

0.960 0.350 0.060

0.039 0.600 0.120

0.001 0.050 0.820

⎤
⎥⎦

where state 1 is employed, state 2 unemployed, and state 3, out of the labor force.
Compute the long-run probability of each state.

E.7.18. Show that a matrix and its transpose have the same eigenvalues.

E.7.19. Let λ and x denote the eigenvalue and eigenvector of A. Show that if A−1

exists, then 1/λ and x are its eigenvalue and eigenvector.
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E.7.20. Let λ and x denote the eigenvalue and eigenvector of A. Show that λk and x
are the eigenvalue and eigenvector of Ak.

E.7.21. (Cayley-Hamilton Theorem). Using numerical examples of matrices of
order 2, 3, and 4, verify that P(A) = 0 where P(λ) = 0 is the characteristic equation
of matrix A.

7.5 Factorization of Symmetric Matrices

Symmetric matrices play important roles in optimization and statistical estimation.
The foundation of microeconomic theory is maximization of utility by consumers
and maximization of profit by producers. In order to establish that we have a max-
imum, we have to rely on the symmetric matrix of second order derivatives (see
Chap. 13). In estimation techniques, the covariance matrix, which is a positive def-
inite matrix, plays a significant role. At the same time symmetric matrices have
a number of interesting characteristics that make manipulating them easier. These
properties relate to their eigenvalues and eigenvectors. In particular, all eigenvalues
of symmetric matrices are real and a symmetric matrix can be factored into three
matrices. Let A be a symmetric matrix and P the matrix whose columns are the
eigenvectors of A. Then

A = PDP′ (7.47)

or equivalently

P′AP = D (7.48)

where D is a diagonal matrix with eigenvalues of A as its diagonal elements.
Furthermore, if A is positive definite, then it can be factored into two matrices

A = QQ′ (7.49)

These properties will make it easier to determine if a matrix is positive or negative
definite and facilitate derivation of many results in econometrics.

7.5.1 Some Interesting Properties of Symmetric Matrices

Theorem 7.1 All eigenvalues of a real symmetric matrix are real.

Proof Let A be a real symmetric matrix with eigenvalue λ and the associated
eigenvector x = u+ iv. Then

A(u+ iv) = λ(u+ iv) (7.50)
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Multiplying both sides by the conjugate complex of x, we get

(u− iv)′A(u+ iv) = λ(u− iv)′(u+ iv) (7.51)

The LHS is

u′Au+ iu′Av− iv′Au+ vAv = u′Au+ vAv (7.52)

Because

iv′Au = iu′A′v = iu′Av (7.53)

the RHS is

λ(u′u+ v′v) (7.54)

Because all elements of the LHS as well as u′u+ v′v on the RHS are real, it follows
that λ must be real.

Example 7.24 Eigenvalues of the symmetric matrix

A =
[

2 −1

−1 2

]

are 1 and 3.

Example 7.25 Eigenvalues of the symmetric matrix

B =
⎡
⎢⎣

2 7 −6

7 8 0

−6 0 4

⎤
⎥⎦

are −5.4516, 5.5366, and 13.9150.
The rank of a symmetric matrix is equal to the number of nonzero eigenvalues of

that matrix (this does not necessarily hold for nonsymmetric matrices). We can illus-
trate this with two examples. The matrix in Example 7.24 has rank 2, and the one in
Example 7.25 has rank 3. This can be ascertained by computing their determinants
that are not equal to zero. On the other hand, the matrix

C =
⎡
⎢⎣

2 7 9

7 8 15

9 15 24

⎤
⎥⎦
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has only two nonzero eigenvalues. Computation of its determinant shows that it does
not have rank 3. But, inside it we could find the 2× 2 matrix[

2 7

7 8

]

that is nonsingular. Hence, its rank is 2.

Theorem 7.2 For a symmetric matrix, eigenvectors associated with distinct eigen-
values are orthogonal to each other.

Proof Let xi and xj be eigenvalues of the symmetric matrix A associated with λi

and λj, respectively. Then we have

Axi = λixi

Axj = λjxj

Multiplying both sides of the first equation by x′j and both sides of the second by
x′i and then subtracting both sides of the second equation from the first, we have

x′jAxi − x′iAxj = x′jλixi − x′iλjxj (7.55)

Because A is symmetric, the LHS is equal to zero. Therefore,

λix′jxi − λjx′ixj = (λi − λj)x′ixj = 0 (7.56)

Because eigenvalues are distinct, it follows that

x′ixj = 0 (7.57)

Example 7.26 The normalized eigenvectors of matrix A in Example 7.24 are

x1 =
[−0.7071

−0.7071

]
, x2 =

[−0.7071

0.7071

]

Because x′1x2 = 0, the two vectors are orthogonal.

Example 7.27 The normalized eigenvectors of B in Example 7.25 are

x1 =
⎡
⎢⎣

0.7729

−0.4022

0.4907

⎤
⎥⎦ , x2 =

⎡
⎢⎣

0.2028

−0.5762

−0.7918

⎤
⎥⎦ , x3 =

⎡
⎢⎣
−0.6012

−0.7115

0.3638

⎤
⎥⎦

Multiplying them together shows that they are orthogonal.
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Theorem 7.3 Let P be a matrix whose columns are normalized eigenvectors of a
symmetric matrix A. Further assume that all eigenvalues of A are distinct. Then

P−1 = P′ (7.58)

Let xi, i = 1, . . . , n be the normalized eigenvectors of a symmetric matrix. We
have

P′P =

⎡
⎢⎢⎣

x′1
...

x′n

⎤
⎥⎥⎦ [x1, . . . xn]

= [x′ixj] i, j = 1, . . . , n

= I

(7.59)

The last equality is based on the fact that because xi, i = 1, . . . , n are normalized
vectors, x′ixi = 1 and, by Theorem 7.2, x′ixj = 0 when i �= j.

Example 7.28 For the matrix in Example 7.26, we have

P−1 = P′ =
[−0.7071 −0.7071

−0.7071 0.7071

]

Example 7.29 For matrix B in Example 7.27,

P−1 = P′ =
⎡
⎢⎣

0.7729 −0.4022 0.4907

0.2028 −0.5762 −0.7918

−0.6012 −0.7115 0.3638

⎤
⎥⎦

The reader may want to use Matlab to check that indeed P′ = P−1.

7.5.2 Factorization of Matrix with Real Distinct Roots

Here we first show how a matrix with real distinct roots can be factored into three
matrices, and then consider the special case of symmetric matrices. Let A be a
matrix whose eigenvalues are all real and distinct. Recall that

Axi = λixi (7.60)

Therefore,

A[x1 . . . xi . . . xn] = [λ1x1 . . . λixi . . . λnxn] (7.61)
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or

AP = PD (7.62)

where

D =

⎡
⎢⎢⎢⎢⎢⎣

λ1

. . .

λj

. . .

⎤
⎥⎥⎥⎥⎥⎦ (7.63)

Postmultiplying (7.62) by P−1, we have

A = PDP−1 (7.64)

or equivalently

D = P−1AP (7.65)

Example 7.30 From Examples 7.8 and 7.13, we had

A =
[

3 6

4 1

]
, P =

[
0.8321 −0.7071

0.5547 0.7071

]
, D =

[
7 0

0 −3

]

and

P−1 =
[

0.7211 0.7211

−0.5657 0.8485

]

Direct calculation shows that both (7.64) and (7.65) hold.
We showed that in the case of symmetric matrices P−1 = P′. Therefore, in case

of A being a symmetric matrix, (7.64) and (7.65) become

A = PDP′ (7.66)

and

D = P′AP (7.67)

Example 7.31 Continuing with Examples 7.26 and 7.28, we have

[
2 −1

−1 2

]
=
[−0.7071 −0.7071

−0.7071 0.7071

][
1 0

0 3

][−0.7071 −0.7071

−0.7071 0.7071

]

and [
1 0

0 3

]
=
[−0.7071 −0.7071

−0.7071 0.7071

][
2 −1

−1 2

][−0.7071 −0.7071

−0.7071 0.7071

]
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The reader is encouraged to use Matlab and check the above relationships in
the cases of the matrices of Examples 7.28 and 7.29. Now we can revisit positive
and negative definite and semidefinite matrices and use (7.64) and (7.65) to identify
them based on their eigenvalues. Let A be a symmetric matrix, then for any vector
x �= 0, we can write

x′Ax = x′PDP′x = z′Dz =
n∑

j=1

λjz
2
j (7.68)

where z = P′x and zj
′s are elements of z. Because z2

j , j = 1, . . . , n are positive, it
follows that the sign of x′Ax is determined by the sign of λj

′s. Thus,

x′Ax > 0 ∀x �= 0. (7.69)

and A is positive definite, if all its eigenvalues are positive. Similarly, A is positive
semidefinite if all its eigenvalues are nonnegative with at least one, but not all, being
equal to zero. On the other hand, a symmetric matrix is negative definite if all its
eigenvalues are negative, and it is negative semidefinite if all its eigenvalues are
nonpositive with at least one, but not all, being equal to zero.

7.5.3 Factorization of a Positive Definite Matrix

In the previous section, we showed that for a symmetric matrix B, we have

B = PDP′ (7.70)

For a positive definite matrix, D is a diagonal matrix with positive elements.
Therefore, we can write

B = PD1/2D1/2P′ (7.71)

where D1/2 is a diagonal matrix with its diagonal elements equal to the square roots
of the diagonal elements of D. Let Q = PD1/2 then

Q′Q = D (7.72)

and

QQ′ = B (7.73)

Furthermore,

Q′B−1Q = I (7.74)
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Example 7.32 Consider the following matrix:

B =
[

9 2

2 6

]

and then

D =
[

5 0

0 10

]
and P =

[
0.4472 −0.8944

−0.8944 −0.4472

]

Simple computation results in

D
1
2 =

[
2.2361 0

0 3.1623

]

and

Q =
[

1.0000 −2.8284

−2.0000 −1.4142

]

To check our results, we have

QQ′ =
[

1.0000 −2.8284

−2.0000 −1.4142

][
1.0000 −2.0000

−2.8284 −1.4142

]
=
[

9 2

2 6

]

and

Q′Q =
[

1.0000 −2.0000

−2.8284 −1.4142

][
1.0000 −2.8284

−2.0000 −1.4142

]
=
[

5 0

0 10

]

Finally, because

B−1 =
[

0.12 −0.04

−0.04 0.18

]

we have

Q′B−1Q =
[

1.0000 −2.0000

−2.8284 −1.4142

][
0.12 −0.04

−0.04 0.18

][
1.0000 −2.8284

−2.0000 −1.4142

]

=
[

1 0

0 1

]
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Example 7.33 Run the following Matlab code to verify (7.72)–(7.74) for a positive
definite matrix. Try the program on other positive definite matrices.

Matlab code

% Define a matrix

B = [39 -3 14 36; -3 6 2 0; 14 2 51 -7; 36 0 -7 50]

[P, D]= eig(B)

% Check that P’ is the inverse of P

P’*P

% Define Q

Q = P*sqrt(D)

% Check (7.72) and (7.73)

Q’*Q

Q*Q’

% Check (7.74)

Q’*inv(B)*Q

Example 7.34 (Generalized Least Squares). We noted that a necessary condition for
the Gauss-Markov theorem is

E(uu′) = σ 2I (7.75)

Now, suppose that this assumption is violated and we have

E(uu′) = σ 2V (7.76)

where V is a positive definite matrix. The Gauss-Markov theorem does not hold
anymore. But because V is positive definite, so is its inverse (see E.7.26). Based on
what we learned in factoring a positive definite matrix, we can find a matrix Q such
that

QQ′ = V−1 (7.77)

Premultiplying the regression model in (7.15) by Q′, we have

Q′y = Q′Xβ+Q′u (7.78)

The new regression equation meets all the assumptions of the Gauss-Markov
theorem. In particular, we have

E(Q′uu′Q) = Q′E(uu′)Q

= σ 2Q′VQ

= σ 2I

(7.79)
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Following the same line of reasoning as in Example 7.4 we obtain the generalized
least squares estimator as

β̂g = (X′QQ′X)−1X′QQ′y
= (X′V−1X)−1X′V−1y

(7.80)

which will be both unbiased and best.
The generalized least squares estimator is applicable to many situations including

models with heteroscedasticity or serial correlation in the error term, pooling cross-
section and time series data, and seemingly unrelated regressions. These models
differ only in the structure of V. In practice V is an n × n unknown matrix. But
because it is symmetric, there are n(n + 1)/2 parameters to be estimated. Given n
observations, it is ludicrous to even attempt such estimation. Therefore, in each case
the structure of the model should contain enough restrictions on the elements of V to
enable its efficient estimation. For example, in case of first-order serial correlation
in the error term, one needs to estimate only the autocorrelation parameter ρ in
addition to σ 2.

Example 7.35 (Ridge Regression). The least squares method requires the inversion
of the matrix X′X; therefore, a basic assumption of the regression model is that
X has full column rank. If, however, a linear relationship exists between different
columns of X, then we have the problem of multicollinearity and the least squares
method breaks down. If the relationship between columns of X is not exact, but
there is a high level of correlation, we face the problem of near collinearity. In this
case, our estimated coefficients are imprecise and their variances are quite high. We
know that in case of multicollinearity the matrix X′X is singular and, in the case
of near collinearity, it is near singular. Thus, at least one of its eigenvalues is either
zero or near zero. In case of near collinearity a way to improve the efficiency of
the estimates is to add a small number to the eigenvalues of the matrix. Because the
matrix X′X is positive definite, we can write

X′X = PDP′ (7.81)

where again D is a diagonal matrix whose diagonal elements are eigenvalues and
P the matrix whose columns are eigenvectors of X′X. Adding a quantity k to each
eigenvalue results in

P(D+ kI)P′ = PDP′ + kPIP′

= X′X+ kI
(7.82)

Therefore, the ridge regression would be

β̂R = (X′X+ kI)−1X′y (7.83)

Note that the new estimator is biased, but compared to the ordinary least squares,
variances of the estimated coefficients are smaller. Thus, ridge regression trades off
unbiasedness for efficiency.
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7.5.4 Exercises

E.7.22 Show that the following matrices are positive definite, and then factor them
into QQ′form. [

25 −6

−6 13

] [
100 −90

−90 85

] [
2 −1

−1 13

] [
8 0

0 2

]

⎡
⎢⎣

3 0 0

0 6 1

0 1 6

⎤
⎥⎦

⎡
⎢⎣

98 −8 −10

−8 3 1

−10 1 10

⎤
⎥⎦

⎡
⎢⎣

10 −5 3

−5 9 1

3 1 10

⎤
⎥⎦

E.7.23 Show that X′X where X is n× k is always positive semidefinite. Moreover,
show that it is positive definite if X has full column rank.

E.7.24 Show that Eqs. (7.64) and (7.65) are equivalent.

E.7.25 Show that if

QQ′ = B

then
Q′B−1Q = I

and vice versa.

E.7.26 Show that if V is positive definite, so is V−1. [Hint: Use the result
of E.7.19.]

7.6 LU Factorization of a Square Matrix

The motivation for this factorization is the interesting and useful characteristics of
triangular matrices. An upper triangular matrix is a square matrix with all of its
below diagonal elements equal to zero:

T =

⎡
⎢⎢⎢⎢⎣

t11 t12 . . . t1n

0 t22 . . . t2n

...
...

. . .
...

0 0 . . . tnn

⎤
⎥⎥⎥⎥⎦ (7.84)

Similarly, a lower triangular matrix is a square matrix with all of its above
diagonal elements equal to zero:
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S =

⎡
⎢⎢⎢⎢⎣

s11 0 . . . 0

s21 s22 . . . 0
...

...
. . .

...

sn1 sn2 . . . snn

⎤
⎥⎥⎥⎥⎦ (7.85)

The determinant of a triangular matrix is equal to the product of its diagonal
elements, and the sum and product of several upper (lower) triangular matrices are
also an upper (a lower) triangular matrix. But most important, the inverse of an
upper (a lower) triangular matrix is also an upper (a lower) triangular matrix. The
last characteristic facilitates the computation of the inverse of a triangular matrix as
shown in the following example.

Example 7.36 Consider the upper diagonal matrix (see Exercise E.7.27 for the case
of a lower triangular matrix)

T =
⎡
⎢⎣

1 3 5

0 2 −3

0 0 1

⎤
⎥⎦

Denote its inverse by

T−1 =
⎡
⎢⎣

t11 t12 t13

0 t22 t23

0 0 t33

⎤
⎥⎦

we then have

⎡
⎢⎣

1 3 5

0 2 −3

0 0 1

⎤
⎥⎦
⎡
⎢⎣

t11 t12 t13

0 t22 t23

0 0 t33

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

It follows that

t11 = 1, t12 + 3 t22 = 0, t13 + 3t23 + 5t33 = 0,

2t22 = 1, 2t23 − t33 = 0, t33 = 1

Solving the equations recursively from last to first, we get

t33 = 1, t23 = 3

2
, t22 = 1

2
, t13 = −19

2
, t12 = −3

2
, t11 = 1



178 7 Advanced Topics in Matrix Algebra

Thus, the inverse is

T−1 =
⎡
⎢⎣

1 − 3
2 − 19

2

0 1
2

3
2

0 0 1

⎤
⎥⎦ = 1

2

⎡
⎢⎣

2 −3 −19

0 1 3

0 0 2

⎤
⎥⎦

As can be seen, the inverse of a triangular matrix can be found with a few simple
additions and multiplications. But now we arrive at the pièce de résistance of the
topic. Any square matrix that satisfies certain conditions can be written as the prod-
uct of a lower triangular matrix L and an upper triangular matrix U. Furthermore,
if we fix the diagonal elements of either matrix, then the factorization is unique. As
we shall see, this operation is rather simple and recursive, therefore, for a large class
of matrices, we can first factor them into two triangular matrices, find the inverses
of U and L, and finally obtain the inverse of the original matrix as the product of the
two inverses. We next present these ideas as a theorem. We shall skip the proof but
illustrate the process with an example.

Theorem 7.4 Let A be a square matrix

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎥⎦ (7.86)

such that its principal diagonal minors are not zero. That is,

a11 �= 0,

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ �= 0, . . . , |A| �= 0 (7.87)

Then A can be written as

A = LU (7.88)

where L is a lower triangular matrix and U is an upper triangular matrix. Thus,

A =

⎡
⎢⎢⎢⎢⎣

�11 0 . . . 0

�21 �22 . . . 0
...

...
. . .

...

�n1 �n2 . . . �nn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u11 u12 . . . u1n

0 u22 . . . u2n

...
...

. . .
...

0 0 . . . unn

⎤
⎥⎥⎥⎥⎦ (7.89)

If we let �11 = �22 = �nn = 1, then this factorization is unique. The same would
also be true if we set the diagonal elements of U all equal to 1.



7.6 LU Factorization of a Square Matrix 179

Example 7.37 Let

A =
[

2 4

−6 1

]

To find matrices L and U, we write[
2 4

−6 1

]
=
[

1 0

�21 1

][
u11 u12

0 u22

]

which gives us the following four equations to calculate the elements of matrices L
and U:

u11 = 2 u12 = 4

�21u11 = −6 ⇒ �21 = −3

�21u12 + u22 = 1 ⇒ u22 = 13

Thus,

L =
[

1 0

−3 1

]
, U =

[
2 4

0 13

]

Example 7.38 Let

B =
⎡
⎢⎣

2 −1 3

−1 5 6

3 6 14

⎤
⎥⎦

To find matrices L and U, we write⎡
⎢⎣

2 −1 3

−1 5 6

3 6 14

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

�21 1 0

�31 �32 1

⎤
⎥⎦
⎡
⎢⎣

u11 u12 u13

0 u22 u23

0 0 u33

⎤
⎥⎦

which gives us the following nine equations to compute the elements of matrices L
and U:

u11 = 2, u12 = −1, u13 = 3

�21u11 = −1 ⇒ �21 = − 1
2

�21u12 + u22 = 5 ⇒ u22 = 9
2

�21u13 + u23 = 6 ⇒ u23 = 15
2

�31u11 = 3 ⇒ �31 = 3
2

�31u12 + �32u22 = 6 ⇒ �32 = 5
3

�31u13 + �32u23 + u33 = 14 ⇒ u33 = −3



180 7 Advanced Topics in Matrix Algebra

Thus,

L =
⎡
⎢⎣

1 0 0

− 1
2 1 0

3
2

5
3 1

⎤
⎥⎦ , U =

⎡
⎢⎣

2 −1 3

0 9
2

15
2

0 0 −3

⎤
⎥⎦

LU factorization with Matlab is a bit tricky. For computational reasons, Matlab
factors a matrix into an upper triangular matrix and “psychologically lower trian-
gular" matrix. The latter is a lower triangular matrix whose rows are interchanged.
Thus, using the following routine on matrix A of Example 7.37,

Matlab code

% define the matrix

A =[2 4; -6 1]

[L,U] = lu(A)

we get the following matrices:

L =
[−0.3333 1

1 0

]
, U =

[−6 1

0 4.3333

]

An alternative would be to use the routine

Matlab code

% define the matrix

A =[2 4; -6 1]

[L,U,P] = lu(A)

in which case we get the matrices

L =
[

1 0

−0.3333 1

]
, U =

[−6 1

0 4.3333

]

and

P =
[

0 1

1 0

]

where P is the transformation matrix such that

LU = PA (7.90)

Similarly, if we apply the Matlab function lu() to matrix B of Example 7.38,
we get the following matrices
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L =
⎡
⎢⎣

1 0 0

−0.3333 1 0

0.6667 −0.7143 1

⎤
⎥⎦ , U =

⎡
⎢⎣

3 6 14

0 7 10.6667

0 0 1.2857

⎤
⎥⎦

and the transformation matrix

P =
⎡
⎢⎣

0 0 1

0 1 0

1 0 0

⎤
⎥⎦

7.6.1 Cholesky Factorization

Cholesky factorization can be considered a special case of LU factorization when
applied to positive definite matrices. Cholesky factorization is quite useful in econo-
metric analysis, particularly in VAR modeling of time series. This should not be
surprising because as we showed in Example 7.2 all covariance matrices are positive
definite.

Let A be a positive definite matrix. Recall that such matrices are symmetric. Then
we can write A as the product of an upper triangular matrix and its transpose. Thus,

A = C′C (7.91)
that is, ⎡

⎢⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c11 0 . . . 0

c12 c22 . . . 0
...

...
. . .

...

c1n c2n . . . cnn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c11 c12 . . . c1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . cnn

⎤
⎥⎥⎥⎥⎦ (7.92)

Example 7.39 Let

A =
[

4 2

2 10

]

Check that this matrix is positive definite. It can be factored into

A =
[

2 0

1 3

][
2 1

0 3

]

Example 7.40 Let

B =
⎡
⎢⎣

9 −3 6

−3 2 3

6 3 45

⎤
⎥⎦
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Again check that the matrix is positive definite. It can be factored into

B =
⎡
⎢⎣

3 0 0

−1 1 0

2 5 4

⎤
⎥⎦
⎡
⎢⎣

3 −1 2

0 1 5

0 0 4

⎤
⎥⎦

Calculation of Cholesky factorization with Matlab is straightforward.

Matlab code

% define the matrix

B = [9 -3 6; -3 2 3; 6 3 45]

% Calculate the Cholesky factorization

C = chol(B)

% Program returns the upper triangular matrix C

7.6.2 Exercises

E.7.27 Find the inverses of the following triangular matrices using the method
outlined in Example 7.36. Check your results using Matlab.

⎡
⎢⎣

2 0 0

−3 10 0

−4 −9 −1

⎤
⎥⎦ ,

⎡
⎢⎣

7 −0 0

2 −6 0

5 −8 2

⎤
⎥⎦ ,

⎡
⎢⎣

0.7 0 0

0.5 −0.8 0

0.2 −0.9 −0.3

⎤
⎥⎦

⎡
⎢⎣

1 2 −1

0 11 −4

0 0 −1

⎤
⎥⎦ ,

⎡
⎢⎣

5 −6 2

0 −1 9

0 0 3

⎤
⎥⎦ ,

⎡
⎢⎣

0.6 −0.5 −0.4

0 −0.9 −0.7

0 0 −1

⎤
⎥⎦

E.7.28 Compute the LU factorization of the following matrices first by direct
calculation and then using Matlab.

[
10 3

−1 7

]
,

[
14 8

9 11

]
,

[
6 2

2 1

]
,

[−13 −1

−7 −8

]

⎡
⎢⎣

8 8 12

−11 9 4

−3 0 7

⎤
⎥⎦ ,

⎡
⎢⎣

3 −1 9

−1 11 5

9 5 −7

⎤
⎥⎦
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E.7.29 Compute the Cholesky factorization of the following matrices.

[
10 4

4 8

]
,

[
5 1

1 10

]

⎡
⎢⎣

3 0 −1

0 2 2

−1 2 5

⎤
⎥⎦ ,

⎡
⎢⎣

62 32 24

32 59 40

24 40 32

⎤
⎥⎦

7.7 Kronecker Product and Vec Operator

The Kroenker2 product of two matrices is a useful concept in some econometrics
estimation. Consider the two matrices A = [aij] with dimensions m×p and B = [bkl]
with dimensions n× q. Their Kronecker products are defined as

A⊗ B =

⎡
⎢⎢⎢⎢⎣

a11B a12B . . . a1pB
a21B a22B . . . a2pB

...
...

. . .
...

am1B am2B . . . ampB

⎤
⎥⎥⎥⎥⎦ (7.93)

and

B⊗ A =

⎡
⎢⎢⎢⎢⎣

b11A b12A . . . b1qA
b21A b22A . . . b2qA

...
...

. . .
...

bn1A bn2A . . . bnqA

⎤
⎥⎥⎥⎥⎦ (7.94)

Example 7.41 Let

A =
[

a11 a12 a13

a21 a22 a23

]
I =

[
1 0

0 1

]

2Named after the German mathematician Leopold Kronecker (1823–1891), who studied and made
contributions to number theory and elliptic functions. He also held views on mathematics contrary
to those of his contemporaries such as Cantor and Dedekind.
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Then their Kronecker products are

I⊗ A =

⎡
⎢⎢⎢⎣

a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

0 0 0 a11 a12 a13

0 0 0 a21 a22 a23

⎤
⎥⎥⎥⎦

and

A⊗ I =

⎡
⎢⎢⎢⎣

a11 0 a12 0 a13 0

0 a11 0 a12 0 a13

a21 0 a22 0 a23 0

0 a21 0 a22 0 a23

⎤
⎥⎥⎥⎦

You can numerically calculate Kroneker product with Matlab.

Matlab code

% Specify the matrices

A = [9 11 2; 0 17 5; -1 2 10]

B = [3 2; -1 -4]

% To compute

kron(A, B)

% and to compute

kron(B, A)

Several properties of the Kroneker product will prove useful in econometric anal-
ysis. We state them here without proof. The reader is encouraged to verify these
properties (see E.7.32).

i. (A⊗ B)′ = A′ ⊗ B′

ii. (A⊗ B)(C⊗ D) = AC⊗ BD
iii. A⊗ (B+ C) = A⊗ B+ A⊗ C
iv. (B+ C)⊗ A = B⊗ A+ C⊗ A
v. A⊗ (B⊗ B) = (A⊗ B)⊗ B

vi. (A⊗ B)−1 = A−1 ⊗ B−1

(7.95)

In (7.95i) it is assumed that AC and BD exist. Similarly in (7.95iii) and (7.95iv) it
is assumed that B+C exists, and in (7.95vi) both A and B are square and nonsingular
matrices. Note that (7.95vi) and (7.95ii) imply

(A⊗ B)(A−1 ⊗ B−1) = AA−1 ⊗ BB−1

= Im×m ⊗ In×n

= Imn×mn

(7.96)
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7.7.1 Vectorization of a Matrix

Vectorization of a matrix, which proves useful in both econometric analysis and
differentiation of vectors and matrices, is the simplest of the operations dis-
cussed in this chapter. To vectorize an m × n matrix A = [aij], we stack its
columns on top of each other. Column 1 will go on top and column n to the
bottom. Thus,

Vec(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

...

am1

a12

...

am2

...

a1n

...

amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.97)

Example 7.42 Let

A =
[

a b c

d e f

]
, B =

[
12 −6

3 15

]

Then

Vec(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

d

b

e

c

f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Vec(B) =

⎡
⎢⎢⎢⎣

12

3

−6

15

⎤
⎥⎥⎥⎦

7.7.2 Exercises

E.7.30 Given the following matrices

A =
[

4 17 −9

12 0 −1

]
, B =

⎡
⎢⎣
−6 08

−1 11

−5 08

⎤
⎥⎦ , C =

[
3 3

8 7

]
, I =

[
1 0

0 1

]
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find

i. A⊗ B, ii. C⊗ B, iii. A⊗ B⊗ C
iv. I⊗ B, v. C⊗ I, vi. A⊗ B⊗ I
vii. Vec(C), viii. Vec(B⊗ I), ix. Vec(A⊗ B⊗ C)

E.7.31 Use Matlab to verify your results for i- vi in E.7.30.

E.7.32 Given the following matrices, verify the relationships in (7.95i)–(7.95vi).
Check your results using Matlab.

A =
⎡
⎢⎣
−1 3 1

−2 5 2

−3 6 1

⎤
⎥⎦ , B =

⎡
⎢⎣
−3 −2 −1

−1 −1 0

−5 −6 −1

⎤
⎥⎦ ,

C =
⎡
⎢⎣
−7 4 8

−9 2 2

−3 7 4

⎤
⎥⎦ , D =

⎡
⎢⎣

1 1 1

0 1 1

0 0 1

⎤
⎥⎦
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Chapter 8
Differentiation: Functions of One Variable

8.1 Marginal Analysis in Economics

In the early 1870s three economists, William Stanley Jevons, Carl Menger, and
Léon Walras, in three different countries, England, Austria, and Switzerland, simul-
taneously, but independently, made discoveries that profoundly changed economics.
They broke with classical economics in terms of the basis for valuation of goods and
services.1

The classical economists based the value of a commodity on its production cost,
thus bestowing on it a kind of intrinsic value. Similarly, from the consumer point of
view, the value depended on the amount of need for a commodity or pleasure derived
from its consumption. But the marginalists or neoclassical economists, as they came
to be known, based the value of a commodity or service on the cost of producing
the last unit produced or the utility of the last unit consumed—hence the ideas of
marginal cost and marginal utility. This way of thinking explained why a good for
which there was no demand would be disposed of regardless of its production cost,
and why air that is so vital for our survival is free, but diamonds that we can live
without are so expensive.

The main idea of neoclassical economics was the maximization of utility by con-
sumers and profit by producers. At the same time marginal cost and marginal utility
had a ready-made counterpart in calculus in the form of the derivative. Maximizing
utility or minimizing cost was a special case of optimization. Hence the use of math-
ematics in economics intensified. In 1892 Irving Fisher published his dissertation,
which extensively used mathematics. Many economists used the tools of calcu-
lus and tackled different economic problems. It was Paul Samuelson who, in his
Foundations of Economic Analysis (1947), presented the marginal analysis in a uni-
fied manner. Today, marginal analysis and the use of calculus permeate every corner
of economics.

The importance of differentiation is not confined to microeconomics.
Differentiation is the foundation of dynamic optimization and differential equations,

1These discoveries had their origins in the early nineteenth century and the ideas of Johan Heinrich
von Thünen, Antoine Augustin Cournot, and Hermann Heinrich Gossen.

189K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_8, C© Springer-Verlag Berlin Heidelberg 2011
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which are the main tools of dynamic analysis in macroeconomics. Finally, as we
will see in Chaps. 12 and 13, derivatives and optimization play a significant role in
statistical and econometric estimation and inference.

8.1.1 Marginal Concepts and Derivatives

We shall illustrate the connection between the derivative of a function and marginal
concepts in economics such as marginal cost, marginal revenue, and marginal utility,
through a few examples.

Example 8.1 Suppose a company’s cost function can be written as

C = C (Q) = a+ bQ (8.1)

where C represents total cost, Q, output, and a and b are known constants. If the
company produces 350 units of output, its total cost will be

C1 = a+ 350 b

Now suppose the company increases its output to 400. The cost will be

C2 = a+ 400b

The additional cost of the extra 50 units is


C = C2 − C1 = a+ 400b− a− 350b = 50b

The total additional cost is 50b and because we have 50 additional units of output,
b represents the additional cost of each unit.


C


Q
= C2 − C1

Q2 − Q1
= 50b

50
= b (8.2)

Thus, the ratio of the additional cost to additional output is constant. This makes
life easy because whether we add 50, 100, or 1 or even one-tenth of a unit of output,
the ratio of additional cost to additional output remains constant and equal to b. Let
us make the game a bit more interesting. Suppose the total cost function is

C = C(Q) = a+ bQ+ cQ2

Now if we go from 350 units to 400 units, the ratio of additional cost to additional
output is
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C


Q
= a+ 400b+ 160000c− a− 350b− 122500c

400− 350

= 50b+ 37500c

50
= b+ 750c

This ratio is not constant and depends on the number of additional units
produced. For instance, if output is increased from 350 to 360, we have


C


Q
= b+ 710c

The idea of marginal cost is to measure the additional cost resulting from an
infinitesimal increase in output. To see how this works, let us consider the general
case of output increasing from Q to Q+
Q. We have


C


Q
= a+ b(Q+
Q)+ c(Q+
Q)2 − a− bQ− cQ2


Q

= b
Q+ 2cQ
Q+ c(
Q)2


Q

The idea of marginal cost is to make 
Q as small as possible, indeed make it
go to zero and then calculate the ratio. At this point you might say, wait a minute,
something divided by zero goes to infinity. That is true, but we have one more trick
up our sleeve. Let us simplify the ratio. We get


C


Q
= b+ 2cQ+ c
Q

Now if we let 
Q to approach zero, the limit (in the next section we shall clarify
what we mean by this) of the ratio is the marginal cost:

MC = b+ 2cQ

Note that the marginal cost, MC, depends on the level of output. Thus, as soon
as we know the level of output, we can calculate the additional cost of increas-
ing output by an infinitesimal amount. As we shall see in this chapter, the limit of
the ratio
C/
Q when 
Q goes to zero is the derivative of the cost function with
respect to output. What we showed in the case of cost function can be repeated for
revenue function (see Exercise E.8.1).

Example 8.2 Consider the utility function of a worker or consumer, which solely
depends on income, x. We can write

U = U(x) (8.3)
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When income increases from x1 to x2, the utility increases from U(x1) to U(x2), and
the marginal utility is

U(x2)− U(x1)

x2 − x1
(8.4)

Because both numerator and denominator are positive, marginal utility is also
positive. For example, let

U = ln x

then, marginal utility will be

ln x2 − ln x1

x2 − x1
= 1


x
ln

(
x2

x1

)
= 1


x
ln

(
1+ 
x

x1

)

Because 
x > 0 and the logarithm of any number greater than one is also positive,
it follows that marginal utility is positive.

Now, you may wonder why we need these concepts in economics in the first
place. Calculus deals with continuous variables and infinitesimal changes. But most
economic variables such as the number of cars produced or houses sold, as well as
the number of workers hired are discrete variables. Furthermore, no one hires an
infinitesimal amount of extra labor and no one cares about an infinitesimal extra
income.

It is true that a factory uses discrete units of input and produces discrete units
or even discrete batches of output. But the range of possible amounts of inputs and
output is quite wide. In a factory the installed capacity may allow for the production
of between 1 to 1.5 million units of output. Even if the amount of actual production
could be manipulated at batches of 100 units, the available range—500,000 divided
by 100—involves 5000 possible points that can practically be treated as a continuous
variable (make a graph with even 500 data points to see this).

Moreover, in economics we are usually interested in the behavior of an average
firm in the industry or average consumer in the economy. Although the output or
input of one particular firm may take only discrete values, the average for the whole
industry or economy very much resembles a continuous variable. The same is true
for the demand of an average consumer.

Finally, recall that science is an approximation of reality and marginal analysis
has proved a potent approximation to economic reality. Calculus is an immensely
powerful tool both in representing different marginal concepts and in optimization,
which is the backbone of economic analysis (see Part IV). On the other hand, work-
ing with discrete changes could be quite cumbersome with little or no advantage in
furthering economic analysis.

8.1.2 Comparative Static Analysis

We are familiar with the concept of equilibrium in economics, which describes the
state where there is no tendency for change in the system. In other words, the forces
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in the system are in such a configuration that their resultant is zero. The analysis of
equilibrium points in isolation is referred to as static analysis because it studies the
system when it is at rest and has no tendency to change. Calculus and the concept
of derivatives allow us to study the effects of a change in one or more forces acting
on the system.

Suppose the supply of and demand for a product are in equilibrium. What hap-
pens if consumers’ incomes are increased? Or what happens if the government
imposes a 5% tax on this product? By using calculus, we can investigate the effects
of a change in one variable on other variables. The method is called comparative
static because it compares two or more equilibrium points.

Comparative static does not concern itself with how we got from one equilib-
rium to the other or what were the features of the system when in disequilibrium.
Comparative static looks at the characteristics of the system after all changes are
affected and there is no more tendency for change. Because most economic models
consist of several equations and many variables, the method also allows for tracing
the effects of a change in one variable through a multitude of equations to determine
its effects on other variables. We discuss this latter method in the next chapter in the
context of functions of several variables.

Dynamic analysis, which we shall discuss in Chaps. 14 through 17, introduces
time in the model in an essential way. In dynamic analysis we shall study the move-
ment of a system over time and from one equilibrium to another, as well as the
behavior of the system in disequilibrium.

8.1.3 Exercises

E.8.1 Let the revenue function of a monopolistic firm be

R = (A− Q)Q, A > 0

where R denotes revenue and Q, output. Use the same method as in Example 8.1 to
derive the marginal revenue of the firm.

E.8.2 Profit is defined as the difference between revenue and costs:

	 = R(Q)− C(Q)

Using the method of Example 8.1 write the “marginal profit” in terms of marginal
revenue and marginal cost. Under what conditions does marginal profit equal zero?

E.8.3 Suppose the cost function of a firm can be written as

C = α + βQ+ γ Q2 + δQ3

Using the method described in the text, derive the marginal cost of the firm.
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8.2 Limit and Continuity

In the above discussion we came across the concepts of limit and continuity of a
function. Later in this chapter, we shall encounter the concept of differentiability of
a function. These concepts are quite important in mathematics and in the advanced
study of economics. We shall first present them intuitively and then more formally
and rigorously.

8.2.1 Limit

In Chap. 2, we became familiar with the limit of a series. For example, if |q| < 1,

lim
n→∞ qn = 0 (8.5)

We briefly discussed the limiting behavior of a function of a continuous variable,
that is, a variable that takes all real values and not just integers.

lim
r→∞

(
1+ 1

r

)r

= e (8.6)

In this chapter we discuss in more detail the idea of limits of functions of contin-
uous variables. Consider the function f (x) = x2 + 3x − 7 and the point x0 = 2. We
can allow x to gradually approach x0. Table 8.1 reflects the process of approaching
x0 from values both larger and smaller than 2. As x gets closer and closer to x0 = 2,
f (x) gets closer and closer to f (x0) = 3. This occurs whether we approach x0 from
above or from below.

Table 8.1 Approaching the limit of f(x) at x = x0

X f(x) x f(x)

3 11 1 −3
2.5 6.75 1.5 −0.25
2.2 4.44 1.8 1.64
2.1 3.71 1.9 2.31
2.05 3.3525 1.95 2.6525
2.03 3.2109 1.97 2.7909
2.01 3.0701 1.99 2.9301
2.001 3.007001 1.999 2.993001
2.0001 3.00070001 1.9999 2.99930001

When we approach x0 from above, we write

lim
x→x+0

f (x) = f (x0) = 3

and approaching it from below
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lim
x→x−0

f (x) = f (x0) = 3

In this case, the two limits are identical, and f (x) has a limit at x0. We denote the
limit as

lim
x→x0

f (x) = f (x0) = 3

We can put the above process in more general terms. At each stage, we can make
the difference between f (x) and f (x0) smaller than any prespecified positive number
ε (for example, in the last stage we had ε = 0.00070002). Note that the difference
could be in both the positive and negative direction:

|f (x)− f (x0)| < ε (8.7)

But no matter how small ε is, we can find a positive number δ such that the
difference between x and x0 is less than it. Again, the difference could be in both the
positive and negative direction (in the last stage we had δ = 0.0001001):

|x− x0| < δ (8.8)

Once we have established that, we can say that the lim
x→x0

f (x) exists. Such a case

is depicted in Fig. 8.1.

Fig. 8.1 Continuity and
discontinuity of a function

We can state this concept in a slightly different language. If we consider a neigh-
borhood of size δ on either side of x0, we can find a corresponding neighborhood
of size ε around f (x0) that encompasses the interval [f (x0 − δ), f (x0 + δ)]. We can
make the first neighborhood as small as possible, but there is still a neighborhood
[f (x0 − δ), f (x0 + δ)] that contains f (x0). In mathematics, we state this condition
the other way around. We say that f (x) has a limit at the point f (x0), if for every
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ε neighborhood around it (no matter how small), we can find a corresponding δ

neighborhood around x0.
Not all functions have a limit for all points. Consider the function

f (x) = x+ 3

x− 2

As x gets closer and closer to the point x0 = 2, the numerator gets closer and
closer to 5. But the ratio gets larger and larger. For example, for x = 2.1, we get
f (x) = 51 and when x = 2.01, f (x) = 501. Thus,

lim
x→2

x+ 3

x− 2
→∞

The function does not have a limit at x0 = 2. This is true whether we approach
the point from below or above. In some cases the limit from above and the limit
from below do not coincide. For example, at the point x = x1, the function

f (x) =
{

x2 + 3x− 7 if x ≤ x1

x2 + 3x− 15 if x ≥ x1

has the left limit

lim
x→x−1

f (x) = x2
1 + 3x1 − 7

and the right limit

lim
x→x+1

f (x) = x2
1 + 3x1 − 15

and the two limits do not coincide. Such a case is also depicted in Fig. 8.1.

8.2.2 Continuity

Intuitively, continuity is an easy concept to grasp. For example, the function depicted
in Fig. 8.1 is clearly continuous everywhere except at the point x1. One can simply
say that as long as you can graph a function without lifting the pencil from the
paper, the function is continuous. If you have to lift the pencil to get from one point
to another, then the function is not continuous at that point. But we need a more
precise definition.

Definition 8.1 (Continuity). The function f (x) is continuous at the point x0 if for
any real number ε > 0 there exists a real number δ > 0 such that |x− x0| < δ

implies that |f (x)− f (x0)| < ε.
In other words, all the points within the ε radius of f (x0) have been mapped by

f from the points within δ radius of x0 no matter how small we choose ε to be. This
is not possible if the function is not continuous at x0. If a function is discontinuous
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at a point, say x1, as we make ε smaller and smaller, we reach a point where the
points around f (x1) on the y-axis are not mapped from the points within δ radius of
x1. (see Fig. 8.1). The function is continuous at point x0, but it is not continuous at
the point x1.

A function that is continuous at all points in its domain is called a continu-
ous function. A function that is continuous over different segments of its domain,
but discontinuous at the connecting points of these segments, is called piecewise
continuous.

Another way of looking at continuity is quite instructive. Consider the function
y = f (x) and assume that x0 is in its domain and f (x0) in its range. Furthermore, let


x = x− x0


y = f (x0 +
x)− f (x0)
(8.9)

Then continuity implies

lim

x→0


y = lim

x→0

[f (x0 +
x)− f (x0)] = 0 (8.10)

Because x = x0 +
x, we have

lim

x→0

f (x0 +
x) = lim

x→0

f (x) = f (x0) (8.11)

or

lim

x→0

f (x) = f ( lim

x→0

x) (8.12)

because

x0 = lim

x→0

x (8.13)

Thus, the limit of a continuous function is the function evaluated at the limit. To
summarize, the function f is continuous at the point x0 if this point is in its domain,
f (x0) is in the function’s range, and lim

x→x0
f (x) exists and is equal to f (x0).

Example 8.3 The function y = x2 is continuous at the arbitrary point x0:


y = (x0 +
x)2 − x2
0 = 2x0
x+ (
x)2

Therefore,

lim

x→0


y = 2x lim

x→0


x+ lim

x→0

(
x)2 = 0
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Example 8.4 y = ex is continuous at the arbitrary point x0.


y = ex0+
x − ex0 = ex0 (e
x − 1)

Therefore,

lim

x→0


y = lim

x→0

ex0 (e
x − 1) = ex0 lim

x→0

(e
x − 1) = 0

8.2.3 Exercises

E.8.4 Find the limits of the following functions at the point x0 = 5.

i. f (x) = x3 − 2x2 + 5x+ 17

ii. f (x) = x+ 4

x− 5

iii. f (x) = 3 ln x

iv. f (x) = xe−2x

v. f (x) =
{

x− 8 if x ≤ 4

x− 5 if x > 4

E.8.5 Graph the functions in E.8.4 and determine if they are continuous.

8.3 Derivatives

The derivative is one of the most fundamental concepts in calculus and indeed in
mathematics. It measures the ratio of change in one variable to the change in another
when the change in the former has been caused by an infinitesimal change in the
latter. In other words, a derivative is the instantaneous rate of change of one variable
per change in the other.

As an illustration, consider an automobile that has traveled the 200 miles from
Boston to New York City in 4 hours. Evidently it has traveled at an average speed
of 50 mph. Had the car traveled at a constant speed, we could say that its speed
at every moment had been 50 mph. But it is conceivable, indeed more than likely,
that the car’s speed varied during the trip. We can compute its average speed during
any 1 hour, half hour, minute, or even second. Indeed, the odometer measures the
instantaneous speed of the car at every moment during the trip. What the odometer
shows corresponds to the idea of the derivative of distance traveled with respect to
time. Of course it is expressed in terms of mph, that is, it shows the distance that the
car would have traveled if it continued at that speed for an hour.

Mathematically, the derivative of a function is the change in the value of the
function (in the dependent variable) as a result of an infinitesimal change in its
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argument (the independent variable). Consider the continuous function

y = f (x) (8.14)

and the two points (x1, y1) and (x2, y2) , where y1 = f (x1) and y2 = f (x2). The ratio
of the change in y = f (x) to the change in x is

y2 − y1

x2 − x1
= 
y


x

Now we let 
x get smaller and smaller and indeed tend to zero. The limit of the
ratio when 
x → 0 (assuming the limit exists) is the derivative of the function at
the point x1. or the derivative of y with respect to x at the point x = x1 :

dy

dx
= lim


x→0


y


x
(8.15)

We shall use dy/dx, f ′(x), and y′ interchangeably to denote the derivative of a
function.

Example 8.5 Consider the function

f (x) = a + bx

then

f (x+
x)− f (x) = a+ b(x+
x)− a− bx

it follows that

f (x+
x)− f (x)


x
= b
x


x
= b

Because the limit of a constant term is itself, we have

f ′(x) = b

Example 8.6 Let

y = a+ bx+ cx2

we have


y


x
=

a+ b(x+
x)+ c(x+
x)2 − a− bx− cx2


x

= b
x+ 2cx
x+ c(
x)2


x

= b+ 2cx+ c
x
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taking the limit

dy

dx
= lim


x→0


y


x
= lim


x→0
(b+ 2cx+ c
x) = b+ 2cx

A comparison of the above result with Example 8.1 shows that marginal cost is
the derivative of the total cost function with respect to output.

Example 8.7 Letting y = x3, we have


y


x
= (x+
x)3 − x3


x

= 3x2
x+ 3x(
x)2 + (
x)3


x
= 3x2 + 3x
x+ (
x)2

Taking the limit, we have

dy

dx
= lim


x→0


y


x
= 3x2 + 3x lim


x→0

x+ lim


x→0
(
x)2 = 3x2

Example 8.8 Let the consumption function be of the form

C = C(Y)

where C denotes consumption and Y, income. We define marginal propensity to
consume as the ratio of change in consumption divided by the change in income:

MPC = 
C


Y

In the limit when 
Y → 0, we have:

MPC = lim

Y→0


C


Y
= C′(Y)

8.3.1 Geometric Representation of Derivative

Let us make the concept of derivatives clearer with the help of geometric represen-
tation. In Fig. 8.2

y2 − y1

x2 − x1
= 
y


x

Measures the ratio of change in y to change in x.
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Fig. 8.2 Geometric
representation of derivative

If we move the point x2 closer and closer to point x1, point b slides down along the
curve and gets closer and closer to point a. In the limit, when the distance between
x2 and x1. approaches zero, point b moves to point a and the line ab coincides with
ac, which is the tangent to the curve at point a. This process is the same as letting

x approach zero. If the limit exists, we will have the derivative of y with respect
to x

dy

dx
= lim


x→0


y


x
(8.16)

which is the equation of the tangent to the curve at the point a. Because the deriva-
tive is the equation of the tangent to the curve, it follows that when the derivative is
positive, the function is increasing and when it is negative, the function is decreas-
ing. The case of a zero derivative, which will prove quite important in later chapters,
signifies a flat point (or segment) in a function.

8.3.2 Differentiability

Continuity is a necessary but not a sufficient condition for differentiability. That
is, a differentiable function is continuous, but the reverse is not necessarily true.
In Fig. 8.3a the function is continuous at x0 but is not differentiable at that point.
The reason is the sharp point of the function at x0. On the other hand, the function
in Fig. 8.3b is differentiable at the point x0. Intuitively, therefore, a differentiable
function is smooth.

Definition 8.2 The continuous function y = f (x) is differentiable at the point x0 if

lim

x→0


y


x
= lim


x→0

f (x0 +
x)− f (x0)


x
(8.17)
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a b

Fig. 8.3 (a) Continuous but not differentiable at x0; (b) continuous and differentiable at x0

exists. This means that for every ε > 0, there exists a number δ > 0 such that

|
x| < δ

implies

∣∣∣∣
y


x
− f ′(x0)

∣∣∣∣ < ε

The limit denoted by f ′(x0) is the derivative of f at the point x0. A function that is
differentiable at all points in its domain is called continuously differentiable. Within
the domain where f is differentiable, the derivative itself is a function and is denoted
in one of the following ways:

dy

dx
= f ′(x) = y′

Recall that as 
x → 0 so does 
y. Therefore, the derivative exists if 
y/
x
does not take the form 0/0 or the indeterminacy could be resolved. In particular,
we require that the limit of 
y/
x be the same whether 
x approaches zero from
above or below. We illustrate this point with two examples.

Example 8.9 In Fig. 8.3a we have

y =
{

x if x ≤ x0

2x0 − x if x ≥ x0

Therefore, when approaching x0 from below, we have

lim

x→0+


y


x
= lim


x→0+
x0 +
x− x0


x
= 1
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whereas when approaching it from above, we get

lim

x→0−


y


x
= lim


x→0−
(2x0 − x0 −
x)− (2x0 − x0)


x
= −1

Thus the two limits do not coincide, and the function is not differentiable at the
point x0.

Example 8.10 Letting y = x2, we have


y


x
= (x+
x)2 − x2


x
= 2x
x+ (
x)2


x
= 2x+
x

Taking the limit, we have

lim

x→0


y


x
= 2x+ lim


x→0

x = 2x

Here the limit exists irrespective of how we approach x0. As mentioned before,
a differentiable function is continuous. Let us first get an intuitive understanding of
this point. Recall that

lim

x→0


y


x
= f ′(x0)

Multiplying through by 
x, we have

lim

x→0


y = lim

x→0

[f (x0 +
x)− f (x0)] = f ′(x0) lim

x→0


x = 0

which is the same as (8.1). More rigorously, we have the following theorem.

Theorem 8.1 If f is differentiable at x0, then f is continuous at x0.

Proof From the definition of differentiability we have

∣∣
y−
xf ′(x0)
∣∣ < ε |
x|

|
y| ≤ ∣∣
y− f ′(x0)
x
∣∣+ ∣∣f ′(x0)
x

∣∣ < (ε + ∣∣f ′(x0)
∣∣) |
x|

Now define

δ′ = min

(
δ,

ε′

ε + |f ′(x0)|
)

Then whenever |
x| < δ′, we have |
y| < ε′. Therefore, f is continuous at x0.
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8.3.3 Rules of Differentiation

There are a number of basic rules for differentiation, the mastery of which is essen-
tial for both macroeconomic and microeconomic analysis. We shall introduce these
rules and prove some of them. Given the importance of differentiation in all fields
of economics, I recommend that the reader memorize the rules and apply them to
a large number of problems, starting with those at the end of this section. For easy
reference, the most important rules are collected in Table 8.2.

Table 8.2 Rules of differentiation and properties of derivatives

y = c y′ = 0

y = bx y′ = b

y = xn y′ = nxn−1

y = ln x y′ = 1

x

y = ax y′ = ax ln a

y = ex y′ = ex

y = sin x y′ = cos x

y = cos x y′ = − sin x

y = u(x)+ v(x)+ w(x) y′ = u′ + v′ + w′

y = f (u), u = ϕ(x) y′ = f ′(u)ϕ′(x)

y = u(x)v(x) y′ = u′v+ v′u

y = u(x)

v(x)
y′ = u′v− v′u

v2

c, b, n, a are all real constants and a > 0

The first rule is that the derivative of a constant function is zero. The reason is
that a constant function does not change, hence its derivative (or its rate of change)
is zero. In Examples 8.5, 8.6, and 8.7, we have shown how derivatives of linear,
quadratic, and cubic functions are calculated. Here we show the general rule for
the function y = xn. The formula shown in Table 8.2 is quite general and pertains
to all real values of n for which xn is also real. But we will prove the rule for the
case where n is a positive integer. The case of a negative integer can be similarly
proved.

Theorem 8.2 Let y = xn where n is a positive integer. Then y′ = nxn−1.

Proof Consider


y = (x+
x)n − xn
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Using binomial expansion, we have


y = xn +
(

n

1

)
xn−1
x+

(
n

2

)
xn−2(
x)2 + · · · + (
x)n − xn

= nxn−1
x+
(

n

2

)
xn−2(
x)2 + · · · + (
x)n

where (
n

r

)
= n!

(n− r)!r!
Dividing through by 
x


y


x
= nxn−1 +

(
n

2

)
xn−2(
x)+ · · · + (
x)n−1

and letting 
x → 0

dy

dx
= lim


x→0


y


x
= nxn−1 + lim


x→0

n∑
i=2

(
n

i

)
xn−i(
x)i−1 = nxn−1

Example 8.11 Using rules of differentiation, the derivative of the function

y = x3

is

dy

dx
= 3x2

Example 8.12 Derivative of the function

y = x1/2

is
dy

dx
= 1

2
x−1/2

Example 8.13 (Marginal Cost). In microeconomics we learn that cost function
relates the total cost of production to the amount of output. In the short run, cost
function consists of two parts: fixed cost, which is constant irrespective of the
amount of production, and variable cost, which depends on output. In the long run
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all costs are variable costs. Letting C, C0, and Q denote total cost, fixed cost, and
output, respectively, the short-run cost function will be

C = C0 + C (Q)

The average cost will be

AC = C

Q
= C0 + C(Q)

Q

The marginal cost is the incremental change in total cost as a result of an
incremental change in output. That is,

MC = dC

dQ
= C′(Q)

Note that marginal cost is marginal variable cost. We return to the rules of
differentiation and prove the following theorem.

Theorem 8.3 Let f (x) = ln(x), then
dy

dx
= 1

x
.

Proof


y


x
= ln(x+
x)− ln(x)


x

= 1


x
ln

(
x+
x

x

)

= 1

x

x


x
ln

(
1+ 
x

x

)

= 1

x
ln

(
1+ 
x

x

) x


x

Taking the limit

dy

dx
= 1

x
ln lim


x→0

(
1+ 
x

x

) x


x = 1

x
ln e = 1

x

Example 8.14 If the utility function depends on income alone, we can find the
marginal utility as

dU

dx
= U′(x)

For example, if U = ln x, we have
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U′(x) = d

dx
ln x = 1

x

Note that marginal utility is positive, as the logarithm is defined only for x > 0.
But as income increases, marginal utility declines.

8.3.4 Properties of Derivatives

Differentiation will become much simpler once we learn some properties of
derivatives.

Theorem 8.4 Let y = u(x)+v(x)+w(x) where u, v, and w are differentiable functions
of x. Then

dy

dx
= y′(x) = u′(x)+ v′(x)+ w′(x) (8.18)

Indeed, the theorem is true for any number of functions of x. Proof of this theorem
is left to the reader.

Example 8.15 Let

y = 2+ 5x− x1/2

Applying the rules of differentiation

y′ = 5− 1

2
x−1/2

Example 8.16 Let

y = x6 − ex

Again applying the rules of differentiation

y′ = 6x5 − ex

Theorem 8.5 (Chain Rule).2 Let y = f (u) and u = φ(x). Then

dy

dx
= dy

du

du

dx
= f ′(u)φ′(x) (8.19)

2Also known as the composite function rule.
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Proof We know that

dy

du
= lim


x→0


y


u

Therefore, we can write

y


u
= dy

du
+ η

or


y = f ′(u)
u+ η
u

where η depends on 
u. Dividing through by 
x and taking the limit and noting
that


x → 0 ⇒ 
u → 0 ⇒ η → 0

we have

dy

dx
= lim


x→0


y


x
= f ′(u) lim


x→0


u


x
+ lim


x→0
η lim


x→0


u


x
= f ′(u)φ′(x)

Example 8.17 Find dy/dx given

y = u4, u = x2 − 1

Because
dy

du
= 4u3,

du

dx
= 2x

we have
dy

dx
= 4u3(2x) = 8x(x2 − 1)3

Example 8.18 Given

y = 5e4x2

Find dy/dx. To solve the problem, let u = 4x2 and v = eu. Then

y = 5v

and using the chain rule
dy

dx
= dy

dv

dv

du

du

dx
= 5eu(8x) = 40xe4x2

The chain rule is a useful device for finding derivatives and one has to practice it
often so that the intermediate steps can be skipped.
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Theorem 8.6 (Product Rule). Let y = uv where u and v are both differentiable
functions of x. Then

y′ = u′v+ v′u (8.20)
Proof

dy

dx
= lim


x→0


y


x

= lim

x→0

(u+
u)(v+
v)− uv


x

= lim

x→0

u
v+ v
u+
u
v


x

= lim

x→0

v

u


x
+ lim


x→0
u

v


x
+ lim


x→0


u


x
lim


x→0

v

= v
du

dx
+ u

dv

dx
= vu′ + uv′

Example 8.19 Consider the function

y = xe2x

Let

u = x, v = e2x

Then

y′ = u′v+ v′u = e2x + 2xe2x

Example 8.20

y = (x3 − 2x) ln x

Let

u = (x3 − 2x), v = ln x

y′ = u′v+ v′u

= (3x2 − 2) ln x+ x3 − 2x

x
= (3x2 − 2) ln x+ x2 − 2

Example 8.21 The quantity theory of money provides a link between money, M,
output, Y, and price level, P:

MV = PY
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where V is the velocity of circulation. Let us assume that all variables in the equation
are functions of time, t, except V, which is assumed to be constant. Then

V
dM

dt
= Y

dP

dt
+ P

dY

dt

Dividing both sides of the above equation by the MV = PY, we have

dM/dt

M
= dP/dt

P
+ dY/dt

Y

Thus, the rate of growth of the money supply is equal to the real growth rate of
the economy plus the inflation rate. We could derive the same relationship by first
taking the logarithm of both sides of the quantity theory equation:

ln M + ln V = ln P+ ln Y

and then differentiating both sides with respect to t

dM/dt

M
= dP/dt

P
+ dY/dt

Y

In other words, the derivative of the logarithm of a variable with respect to time
equals its rate of growth.

The product rule can be extended to the case of three and more functions.
Consider

y = uvw (8.21)

And let z = uv, then
y′ = z′w+ w′z

Because z′ = u′v+ v′u, we have

y′ = z′w+ w′z
= (u′v+ v′u

)
w+ w′z

= u′vw+ v′uw+ w′uv
(8.22)

Example 8.22 Let

y = uvw

and

u = t2, v = et, w = 1− t

1+ t

Because

u′ = 2t, v′ = et, w′ = −2

(1+ t)2
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we have

y′ = u′vw+ v′uw+ w′uv

= 2tet 1− t

1+ t
+ ett2

1− t

1+ t
+ −2

(1+ t)2
t2et

= − tet

(1+ t)2
(t3 + 2t2 + t − 2)

The product rule also allows us to prove another rule of differentiation.

Theorem 8.7 Let

y = uv (8.23)

where u and v are differentiable functions of x and u > 0. Then

dy

dx
= u′vuv−1 + v′uv ln u (8.24)

Proof Let

z = ln y

which implies

dz

dx
= 1

y

dy

dx

On the other hand, because

ln y = v ln u

we have

dz

dx
= v′ ln u+ u′

u
v

Therefore,

dy

dx
= y

dz

dx

= y(v′ ln u+ u′

u
v)

= uv(v′ ln u+ u′

u
v)

= v′uv ln u+ u′vuv−1

Note that rules proved in Theorems 8.2 and 8.3 are special cases of this theorem.
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Example 8.23 For the function

y = (2x2 + 3)5x+1

we have

dy

dx
= 5(2x2 + 3)5x+1 ln(2x2 + 3)+ 4x(5x+ 1)(2x2 + 3)5x

Theorem 8.8 (Quotient Rule). Let u and v be differentiable functions of x and

y = u

v
(8.25)

Then

dy

dx
= u′v− v′u

v2
(8.26)

Proof Write the function as

y = uv−1

and let w = v−1.
Then

y = uw

Applying the product rule and the chain rule, we have

dy

dx
= u′w+ w′u = u′v−1 + (−v′v−2)u = u′

v
− uv′

v2
= u′v− v′u

v2

Example 8.24 We use the quotient rule to find the derivative of the following
function:

y = x2 − 3

1+ 2x

Let

u = x2 − 3, v = 1+ 2x

We have

y′ = u′v− v′u
v2

= 2x(1+ 2x)− 2(x2 − 3)

(1+ 2x)2
= 2x2 + 2x+ 6

(1+ 2x)2
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Example 8.25 The derivative of the function

y = sin x

cos x
is

y′ = cos2 x+ sin2 x

cos2 x
= 1

cos2 x
Recall that

sin x

cos x
= tan x

Therefore, 1/ cos2 x is the derivative of the tangent of an angle.

Example 8.26 Let Y denote national income and P the population of a country. Per
capita income is defined as

y = Y

P
(8.27)

Let us assume that both Y and P are functions of time t. Then

dy

dt
=

P
dY

dt
− Y

dP

dt
P2

(8.28)

Divide both sides of (8.28) by (8.27)

1

y

dy

dt
= 1

Y

dY

dt
− 1

P

dP

dt
(8.29)

In words, the instantaneous rate of growth of per capita income is equal to the
rate of growth of national income less the growth rate of population.

A very important theorem pertaining to derivatives is the mean value theorem.

Theorem 8.9 (Mean Value). Suppose y = f (x) is a continuously differentiable
function on the interval [a, b]. Then there is a point a < x∗ < b such that

f (b)− f (a) = f ′(x∗)(b− a)

We will not prove this theorem and instead illustrate it with two examples.

Example 8.27 Let f (x) = x2 and a = 2, b = 5. We have

52 − 22 = 2x∗(5− 2)



214 8 Differentiation: Functions of One Variable

and

x∗ = 21

6
= 3.5

Example 8.28 Let f (x) = e2x and a = 0, b = 1.
We have

e2 − 1 = 2e2x∗

and

x∗ = 1

2
ln

(
e2 − 1

2

)
= 0.58072

8.3.5 l’Hôpital’s Rule

Consider the following limit:

lim
x→2

x− 2

x2 − 4

This limit is not defined because we get 0/0. We can however find the limit by
noting that

lim
x→2

x− 2

x2 − 4
= lim

x→2

1

x+ 2
= 1

4

Such a simple solution doesn’t always exit, that is why l’Hôpital’s rule3 is so
useful. It says that faced with a limit that is undetermined, we can compute it as

lim
x→a

u(x)

v(x)
= lim

x→a

u′(x)

v′(x)
(8.30)

In other words, in such cases, the limit can be obtained by taking the derivatives
of numerator and denominator separately and then compute the imit. In the above
example, the derivative of numerator is 1 and that of the denominator 2x, thus

lim
x→2

x− 2

x2 − 4
= lim

x→2

1

2x
= 1

4

Example 8.29 Consider the following limit

lim
x→0

x

ex − 1

3After the French mathematician Guillaume l’Hôpital (1661–1704) who was a student of john
Bernoulli.
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which is undetermined. Using l’Hôpital’s rule we have

lim
x→0

x

ex − 1
= lim

x→0

1

ex
= 1

Example 8.30 l’Hôpital’s rule finds an interesting application in econometrics. One
issue in estimating a model is its functional form. For instance, should the variables
enter in linear or log form in the equation. In other words, which of the following
equations fits the data best?

y = α1 + β1x+ u, or log y = α2 + β2 log x+ v

Needless to say there can be more variables in the equation. One way to test
between the two models is to use Box-Cox transformation and estimate the model:

yλ − 1

λ
= α + β

xλ − 1

λ
+ w (8.31)

Using nonlinear methods, we can estimate λ, α, and β. If we cannot reject the
null hypothesis of λ = 1, the appropriate model is linear. On the other hand, if we
cannot reject the null hypothesis of λ = 0, then the logarithmic model is preferred.
The reason is that

y0 − 1

0
= 0

0

But using l’Hôpital’s rule and taking the derivative of numerator and denominator
with respect to λ, we have

lim
x→0

yλ − 1

λ
= lim

x→0

yλ ln y

1
= ln y (8.32)

8.3.6 Exercises

E.8.6 Find the derivative of the following functions:

i. y = 1

x2
ii. y = √2x

iii. y = 2x− 1√
x

iv. y = 3x1/2 + x1/3 + x−1

v. y = x

1+ x2
vi. y = sin x

1+ cos x
vii. y = ln(x3 + 2x− 5) x > 2

viii. y = xe−x ix. y = 5(x− 4) sin x

E.8.7 Using l’Hôpital’s rule show that lim
n→∞ nλn = 0.
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8.4 Monotonic Functions and the Inverse Rule

A monotonic function is always heading up or down and does not reverse course.
Such functions play an important role in economic analysis, particularly in utility
theory. A monotonically increasing function is always upward sloping, that is, as x
increases so does f (x). With a monotonically decreasing function as we move right-
ward along the x-axis, we observe lower and lower f (x). A nondecreasing function
is the same as an increasing function except that it contains flat segments where the
function is neither increasing nor decreasing. Similarly, a nonincreasing function is
the same as a decreasing function except that it has flat segments. More formally,

Definition 8.3 Let y = f (x) be a function defined over the domain D ⊂ � and let x1
and x2 be two arbitrary points such that x1 < x2. Let y1 = f (x1) and y2 = f (x2).
Then f is called

Monotonically increasing if y2 > y1 ∀x1, x2, x ∈ D
Monotonically decreasing if y2 < y1 ∀x1, x2, x ∈ D
Monotonically nondecreasing if y2 ≥ y1 ∀x1, x2, x ∈ D
Monotonically nonincreasing if y2 ≤ y1 ∀x1, x2, x ∈ D

By graphing a function, we can see if it is monotonic or not as well as deter-
mining if it is increasing, nondecreasing, decreasing, or nonincreasing. Therefore, I
encourage the reader to use Matlab, Maple, or Excel to graph the functions in the
examples below and verify that they are correctly classified. But we cannot solely
rely on this device. Recall that if a function is increasing, its derivative is positive,
and vice versa. Similarly, a decreasing function has a negative derivative and a neg-
ative derivative signifies a decreasing function. Thus, we have a ready-made tool to
determine the monotonicity of a function and its nature.

Monotonically increasing if ⇔ f ′(x) > 0, x ∈ D
Monotonically decreasing if ⇔ f ′(x) < 0, x ∈ D
Monotonically nondecreasing if ⇔ f ′(x) ≥ 0, x ∈ D
Monotonically nonincreasing if ⇔ f ′(x) ≤ 0, x ∈ D

Example 8.31 The function

y = a+ bx b > 0

is monotonically increasing because

dy

dx
= b > 0
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On the other hand the function

y = a+ kx k < 0

is monotonically decreasing because

dy

dx
= k < 0

Example 8.32 The function

f (x) = e2x

is monotonically increasing because

f ′(x) = 2e2x > 0, ∀x

On the other hand, the function

f (x) = e−2x

is monotonically decreasing because

f ′(x) = −2e−2x < 0, ∀x

Example 8.33 Trigonometric functions are periodic and, therefore, are not mono-
tonic. Let us check this fact for f (x) = sin x.

d

dx
sin x = cos x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 −π

2
< x <

π

2

< 0
π

2
< x <

3π

2

Example 8.34 A utility function is a monotonically increasing function because it is
assumed that more is preferred to less. Let us assume that utility depends solely on
income x. If x2 > x1, then we have U(x2) > U(x1). Any monotonically increasing
transformation of the utility function could also serve as the utility function because
it leaves this characteristic unchanged. Let f be a monotonic transformation and
V(x) = f (U(x)). Then

V ′ = f ′U′

Because both f′ and U′ are positive, so is V′, which means that V is monotonically
increasing and, if U(x2) > U(x1), then V(x2) > V(x1). Because utility is an ordinal
variable, it would make no difference whether we measure it in units of U or V.
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Thus, if U represents the utility function of a consumer so does lnU, eU and any
other monotonically increasing function of U. We should note that the same is not
true for an expected utility function.

Definition 8.4 (Inverse Function). Let y = f (x). Then the function x = f−1(y) =
ϕ(y) is called the inverse function of f, which when applied to f we have

ϕ(f (x)) = f−1(f (x)) = f−1(y) = x (8.33)

We state, without proof, the following results regarding monotonic functions.

Theorem 8.10 If f is monotonic (increasing or decreasing) and continuous in the
domain D, then its inverse is continuous over the range of f.

Theorem 8.11 (Inverse Function Rule). Let y = f (x) be a differentiable function
within its domain D, and suppose that its inverse x = φ(y) exists. Further assume
that f ′(x) �= 0, x ∈ D. Then

dx

dy
= φ′(y) = 1

dy/dx
= 1

f ′(x)
(8.34)

Example 8.35 Let

y = 3x+ 7

which implies

x = y− 7

3

Thus,

dx

dy
= 1

3
= 1

dy

dx

Example 8.36 Consider the function

y = 1

x
, x > 1

Taking the derivative

dy

dx
= − 1

x2
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Thus,

dx

dy
= −x2 = − 1

y2

The result could be verified by solving for x in terms of y

x = 1

y
, 0 < y < 1

and taking the derivative of x with respect to y.
As these examples show, for a monotonically increasing or decreasing function

f ′(x)φ′(y) = 1 (8.35)

A corollary of the theorem on inverse function is the following theorem on the
derivative of exponential functions.

Theorem 8.12 Let y = ex, then dy/dx = ex.

Proof First note that

x = ln y

which implies

dx

dy
= 1

y

Using the inverse function rule, we have

dy

dx
= 1

dx/dy
= 1

1/y
= y = ex

8.4.1 Exercises

E.8.8 Determine if the following functions are monotonic, and if they are, determine
the nature of monotonicity.

i. y = ln x, x > 0

ii. y = 3x3 + 2x+ 5

iii. y = − ln x

iv. y = −3x3 − 2x+ 5

E.8.9 Determine the domain over which the following functions are monotonically
increasing or decreasing.

i. y = 5x2 ii. y = cos x iii. y = tan x
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E.8.10 Graph the functions in E.8.8 and E.8.9 to verify your answers to these
problems.

8.5 Second- and Higher-Order Derivatives

The derivative of a function is itself a function. As such it could be continuous and
differentiable. If the derivative is differentiable, we could take its derivative, which
would be the second derivative of the original function.

Example 8.37 Let

y = 5x6 − 3e2x

Then

y′ = dy

dx
= 30x5 − 6e2x

and

y′′ = d

dx

dy

dx
= d2y

dx2
= 150x4 − 12e2x

We need not stop at the second derivative. In this example the second derivative
can be differentiated

y′′′ = d3y

dx3
= 600x3 − 24e2x

A function may be once, twice, three times, four times, and indeed n times
differentiable. For n > 3 we write the derivative as

y(n) = f (n)(x) = dny

dxn

Recall that we could learn about the behavior of a function by examining its
derivative. In particular, a positive derivative signifies an increasing function and
a negative derivative a decreasing one. The second derivative tells us the same
thing about the first derivative. For example, if the function determines the dis-
tance traveled as a function of time, then the first derivative is the speed and the
second acceleration. A positive (negative) second derivative means that the speed
is increasing (decreasing). Figure 8.4 shows a few configurations of the first and
second derivatives and the resulting behavior of the function.

Example 8.38 (Marginal Cost). Marginal cost is assumed to be first decreasing and
then increasing. The supply curve of a firm is the increasing portion of its marginal
cost function. Thus, for the first portion of the marginal cost curve we have C′′ (Q) <

0 and for the second portion or the supply function we have C′′ (Q) > 0.

Definition 8.5 (Concave and Convex Functions). Consider a function y = f (x), x ∈
D and let D1 ⊂ D be a subset of its domain. If f ′′ (x) > 0, whenever x ∈ D1, the
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Fig. 8.4 First and second
derivatives and shapes of
functions

function is convex in D1. If f ′′ (x) < 0, whenever x ∈ D1, the function is concave
in D1.

A function can be globally convex (concave) if D1 = D or it can be convex
(concave) in some subsets of its domain and concave (convex) in others. We will
have more to say on this subject in Chaps. 12 and 13.

Example 8.39 (Utility Function). Within the relevant range for economic analysis,
marginal utility is positive, but decreasing. That is, U′′ < 0.

It follows that the utility function is convex.

8.5.1 Exercises

E.8.11 Find second-order derivatives of the functions in E. 8.6.

8.6 Differential

So far we have treated dy/dx as one entity. In other words we have applied the
operator d/dx to a function y = f (x) to obtain its derivative. This need not be the
case; we can separate the two. dy, called the differential of y, measures the change
in y as a result of an infinitesimal change in x. It is equal to

dy = f ′ (x) dx (8.36)
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The rules of differentiation can be modified to apply to differentials. We illustrate
this with a few examples.

Example 8.40 To find the differential of the function

y = 3(x− 9)2

we note that f ′ (x) = 6 (x− 9) . Therefore, the differential is

dy = f ′ (x) dx = 6 (x− 9) dx

Example 8.41 For the function

f (x) = 7e3x

we have

df (x) = f ′(x)dx = 21e3xdx

Rules of differentiation are all carried to differentials.

y = u(x)+ v(x), dy = u′dx+ v′dx

y = u(x)v(x), dy = vu′dx+ v′udx

y = u(x)

v(x)
, dy = vu′ − v′u

v2
dx

(8.37)

Example 8.42 The differential of the function

y = x3 − 3x

is

dy = 3x2dx− 3dx

Example 8.43 To find the differential of the function f (x) = 5x ln x, we let

u = 5x, v = ln x

Then
dy = vu′dx+ v′udx

= 5 ln xdx+ 1

x
5xdx

= 5(ln x+ 1)dx
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Example 8.44 Consider the function

y = 1− 3x

(x+ 1)2

and let

u = 1− 3x, v = (x+ 1)2

Then

dy = vu′dx− v′udx

v2

= −3(x+ 1)2dx− 2(x+ 1)(1− 3x) dx

(x+ 1)4

= 3x− 5

(x+ 1)3
dx

Note that we can derive the inverse function rule from (8.36) because if f ′(x) �= 0
it follows that

dx

dy
= 1

f ′(x)
(8.38)

provided that f ′(x) �= 0 in the interval for which we define dx/dy.

8.6.1 Second- and Higher-Order Differentials

Similar to derivatives, we can compute second- and higher-order differentials.

d2y = f ′′(x)dx2 (8.39)

and, in general,
dny = f (n)(x)dxn (8.40)

assuming that second- and higher-order derivatives exist.

Example 8.45 The second-order differential of the function

y = 3(x− 9)2

is
d2y = d(6(x− 9)dx) = 6dx2

Example 8.46 For the functions

f (x) = 7e3x
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We have

d2f (x) = df ′(x)dx = d(21e3xdx) = 63e3xdx2

Example 8.47 Consider the function

f (x) = 5x ln x

We have

d2f (x) = d[5(ln x+ 1)dx] = 5

x
dx2

8.6.2 Exercises

E.8.12 Write the differentials of the functions in E.8.6.

E.8.13 Write the second-order differentials of the functions in E.8.6.

8.7 Computer and Numerical Differentiation

8.7.1 Computer Differentiation

According to a joke dating back to a time when universities had a single large com-
puter, a university president had complained that students weren’t learning anything
anymore, because the computer solved all their problems. It’s not such a joke any-
more. If you need to find the derivative or integral (see Chap. 11) of a function, you
can simply ask the computer to find it for you. Here are examples of the Maple code
for finding the derivative of a function. But it should be noted that you still need to
know how to find derivatives and integrals and their meanings and applications.

Maple code

Specify the function

f := 5*xˆ2 - 3*x + 14

# Find the first derivative

diff(f, x)

# But if you type

Diff(f, x)

# you get

d

dx
(5x2 − 3x+ 14)

# Find the second derivative

diff(f, x, x)

# Higher order derivatives could be found in a

# similar way.
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8.7.2 Numerical Differentiation

There are rare occasions when numerical calculation of a derivative at a particular
point is needed for its own sake. But as will be seen in Chaps. 10, 12, and 13, both
for solving nonlinear equations and for optimization, we need to evaluate derivatives
of a function at different points. As it turns out this is a simple task. Suppose we are
interested in evaluating the derivative of y = f (x) at the point x0. Let

y−1 = f (x0 − h) , y1 = f (x0 + h) (8.41)

where h is a predetermined constant. Then

f ′(x0) ≈ y1 − y−1

2 h
(8.42)

The precision of this formula for different values of h is depicted in Tables 8.3
and 8.4. Table 8.3 shows derivatives of polynomials, exponential, and logarithmic
functions at the point x0 = 3, for different values of h. Table 8.4 displays the same
information for derivatives of trigonometric functions, sin, cos, and tan, evaluated
at π/5.

Table 8.3 Precision of computed derivative for selected functions

h x x2 x3 exp(x) ln(x)

1.00 1 6 28.0000 23.6045470 0.3465736
0.50 1 6 27.2500 20.9329580 0.3364722
0.25 1 6 27.0625 20.2954161 0.3341082
0.10 1 6 27.0100 20.1190296 0.3334569
0.05 1 6 27.0025 20.0939069 0.3333642
0.02 1 6 27.0004 20.0868760 0.3333383
0.01 1 6 27.0001 20.0858717 0.3333346
Exact value 1 6 27.0000 20.0855369 0.3333333

Table 8.4 Precision of computed derivative for selected trigonometric functions

h sin(x) cos(x) tan(x)

π/5 0.7568267 −0.5498668 2.4491427
π/10 0.7957747 −0.5781642 1.6734541
π/20 0.8056941 −0.5853711 1.5612290
π/50 0.8084848 −0.5873986 1.5330811
π/100 0.8088839 −0.5876886 1.5291641
π/250 0.8089957 −0.5877698 1.5280719
π/500 0.8090117 −0.5877814 1.5279160
Exact value 0.8090170 −0.5877853 1.5278640
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As can be seen, one can decrease the error of computation to the desired degree
by the choice of appropriate h value. The precision of this simple formula should
not be surprising. Recall the mean value theorem

f ′(x∗) = f (b)− f (a)

b− a
a < x∗ < b

and let

a = x0 − h, b = x0 + h

By making the interval b − a smaller and smaller, we make the arbitrary point
x∗ closer and closer to the midpoint of [a, b], that is x0, and thus reduce the error of
computation. Intuitively, for a small value of h the line connecting two points y−1
and y1 is more or less parallel to the tangent at the midpoint (x0, y0).

For the second derivative, the formula is

f ′′(x0) ≈ f (x2)− 2f (x0)+ f (x−2)

4 h2
(8.43)

where x2 = x0 + 2 h, and x−2 = x0 − 2 h. Checking the accuracy of this formula
for different functions is left to the reader (see E. 8.16).

8.7.3 Exercises

E.8.14 Use Maple to verify your solutions to E.8.6.

E.8.15 Use formulas in (8.42) and (8.43) on Matlab or Excel to numerically evaluate
the first and second derivatives of the following functions at the indicated points.
Use the exact formulas to check the accuracy of your results.

y = x3 − 2x2 + 3x− 8 at x = 6.75

y = x

1+ x2
at x = 2.2

y = ln(x3 + 2x− 5) at x = 5.8

E.8.16 Evaluate the accuracy of (8.43) for computing the second derivatives of
functions in Tables 8.3 and 8.4. Use the same values of x0 and h as in those
tables.



Chapter 9
Differentiation: Functions of Several Variables

In this chapter we shall extend the concept and methods of differentiation to func-
tions of several variables. Most economic relationships involve more than one
variable and their analysis require the methods of this chapter. In addition, many
economic models consist of several equations. Tracing the effect of a change in one
variable in an equation throughout the model is a preoccupation of economics. In
later sections we shall learn how to solve such problems. Differentiation plays an
important role in statistics and econometrics as well. In particular, derivation of least
squares and maximum likelihood estimators rely on differentiation. Differentiation
of functions of several variables brings up the issues of continuity and differentia-
bility. We discussed these subjects in the previous chapters and their extension to
the case of functions of several variables, using notations developed in this chapter,
is straightforward. Therefore, we will not revisit these topics in this chapter.

9.1 Partial Differentiation

The idea of differentiation of a function of one variable can be extended to functions
of several variables. Consider the function

y = f (x1, x2) (9.1)

The partial derivative of y with respect to x1 is the derivative of y with respect to
x1 when x2 remains constant and, therefore, can be treated as such. The same is true
for the derivative of y with respect to x2 holding x1 constant. Partial derivatives are
written as

∂y

∂x1
= f1(x1, x2)

∂y

∂x2
= f2(x1, x2)

(9.2)

Example 9.1 Consider the function

y = 3x2
1 − 6x1x2 + 4x2

227K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_9, C© Springer-Verlag Berlin Heidelberg 2011
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We have

∂y

∂x1
= 6x1 − 6x2

∂y

∂x2
= −6x1 + 4

Example 9.2 The partial derivatives of the function z = x2 sin2 y are

∂z

∂x
= 2x sin2 y

∂z

∂y
= 2x2 sin y cos y

= x2 sin 2y

Partial differentiation is not confined to the functions of two variables. The
function may have many variables.

Example 9.3 The function

u = xeyz

has three partial derivatives:

∂u

∂x
= eyz,

∂u

∂y
= zxeyz,

∂u

∂z
= yxeyz

All the rules of differentiation for derivatives apply to partial derivatives and we
need not repeat them here. As mentioned before, the derivative is an important tool
of economic analysis. The following examples illustrate this point.

Example 9.4 (Marginal Utility). The utility function measures total satisfaction
derived from the consumption of different bundles of goods and services. Letting
U denote utility and xi, i = 1, . . . , n the amount of commodities 1 through n
consumed, we have

U = U(x1, x2, . . . , xn) (9.3)

The marginal utility of good i is the additional satisfaction derived from the
consumption of an incremental amount of that good. Thus,

Ui = ∂U

∂xi
(9.4)

Marginal utilities are assumed to be positive:

Ui > 0, i = 1, . . . , n (9.5)
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Because marginal utilities of all goods and service are positive, the utility
function will be a monotonically increasing function in all of its arguments.

Example 9.5 (Marginal Product). The production function relates the maximum
attainable output Q from a combination of inputs x = [x1, . . . , xk] to those inputs

Q = f (x) (9.6)

The function f is nondecreasing. The partial derivative of output with respect
to each input is called the marginal product of that input, that is, the increment to
output resulting from a small change in an input. All marginal products are assumed
to be positive:

∂Q

∂xi
> 0, i = 1, . . . , k (9.7)

In a production function with two inputs, say, labor (L) and capital1 (K),

Q = f (K, L)

the marginal product of labor is fL = ∂Q/∂L and the marginal product of capital is
fK = ∂Q/∂K.

In experimental sciences such as physics and chemistry, in order to measure the
effect of a change in one variable on another, all other variables are held constant.
Economics is mainly an observational science and is denied the luxury of “holding
everything else constant.” But suppose that somehow we are able to approximate
the connection between the variable of interest and a group of variables affecting it
by a function. Further assume that we have data on the variables of interest, are able
to specify the form of the function, and estimate its parameters using econometric
methods. Then the partial derivatives measure the effect of each RHS variable on
the variable of interest while everything else is held constant. Needless to say, this
measurement is an approximation because the function on which it is based is an
approximation and its parameters are estimates.

Example 9.6 The process of Money supply can be formalized as2

M = cu+ 1

(cu+ x)
(F + G+ H(i− id))

where M is money supply, cu currency deposit ratio, x required reserves ratio, F net
foreign assets of the central bank, G net government borrowing, i market interest
rate, and id the discount rate. Thus, H would be the net borrowing by commercial
banks from the central bank.

1We mean, of course, services rendered by labor and capital because neither workers nor capital
goods themselves go into the output.
2See Kamran Dadkhah, The Evolution of Macroeconomic Theory and Policy, Springer, 2009,
Chap. 9.
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Suppose we are interested in finding the effects of the central bank’s policy
instruments on money supply. If the required reserves ratio is increased, we have

∂M

∂x
= − cu+ 1

(cu+ x)2
(F + G+ H(i− id)) < 0

In other words, an increase in the required reserves ratio will decrease money
supply. On the other hand, since

∂M

∂G
= cu+ 1

cu+ x
> 0

An open market operation that increases the central bank’s holding of govern-
ment debt will increase M. But if the central bank sells government bonds and
reduces its holding of government debt, money supply will decrease. If the discount
rate is increased:

∂M

∂id
= −cu+ 1

cu+ x
H′ < 0

H′ > 0 because as the difference between market rate of interest and discount rate
increases, banks will lend more. Therefore, the effect of an increase in the discount
rate is a reduction of money supply. Finally, let us consider the effect of a change in
the public’s attitude toward cash and deposits:

∂M

∂cu
= x− 1

(cu+ x)2
(F + G+ H(i− id)) < 0

In other words, as the public relies less on cash and more on deposits, money
supply shows a gradual upward trend.

9.1.1 Second-Order Partial Derivatives

In the same manner that we had second and higher order derivatives of functions of
one variable, we have second- and higher-partial derivatives for functions of several
variables. Note, however, that whereas a function of one variable has at most one
first order, one second order, ..., and one n-th order derivative, a function of two
variables has at most two first-order, at most four second order, ..., and at most 2n

n-th order derivatives. In general, a function of k variables has at most ki i-th order
derivatives. In the case of a function of two variables y = f (x1, x2) , we have

∂2y

∂x1∂x1
= ∂2y

∂x2
1

= f11(x1, x2),
∂2y

∂x2∂x2
= ∂2y

∂x2
2

= f22(x1, x2)

∂2y

∂x1∂x2
= ∂2y

∂x1∂x2
= f12(x1, x2),

∂2y

∂x2∂x1
= ∂2y

∂x2∂x1
= f21(x1, x2)

(9.8)

These derivatives are not necessarily all distinct. Indeed, under fairly general
conditions, many cross derivatives of the same order are equal. Specifically, for the
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function z = f (x, y), if first-order derivatives fx and fy and cross derivatives fxy and
fyx all exist and are continuous, then

∂2z

∂x∂y
= fxy = fyx = ∂2z

∂y∂x
(9.9)

Thus, assuming the existence and continuity of first-order and second-order cross
derivatives, a function of two variables has three and a function of three variables
has six distinct second-order derivatives. In general, a function of k variables has(

k

2

)
+ k distinct second-order derivatives.

Example 9.7 For the function in Example 9.2, we have

∂2y

∂x2
1

= 6,
∂2y

∂x2
2

= 0,
∂2y

∂x1∂x2
= ∂2y

∂x2∂x1
= −6

Example 9.8 In Example 9.5 we have

∂2u

∂x2
= 0,

∂2u

∂y2
= z2xeyz,

∂2u

∂z2
= y2xeyz

∂2u

∂x∂y
= ∂2u

∂y∂x
= zeyz ∂2u

∂x∂z
= ∂2u

∂z∂x
= yxeyz

∂2u

∂y∂z
= ∂2u

∂z∂y
= xeyz + yzxeyz

Example 9.9 In Example 9.5 we discussed marginal utilities and noted that they are
positive. We should add now that they are decreasing, that is,

∂2U

∂x2
i

= Uii < 0 i = 1, . . . , n (9.10)

On the other hand if

∂2U

∂xi∂xj
= Uij < 0 (9.11)

then goods i and j are substitutes
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Example 9.10 Returning to Example 9.6, recall that marginal products are positive.
An increase in the utilization of an input is assumed to result in a decrease in its
marginal output:

∂2Q

∂x2
i

< 0 i = 1, . . . , k (9.12)

On the other hand an increase in one input enhances the marginal product of
others:

∂2Q

∂xi∂xj
> 0, i, j = 1, . . . , k, j �= i (9.13)

9.1.2 Differentiation of Functions of Several
Variables Using Computer

In Chap. 8 we became familiar with differentiation using Maple program. Maple
can be used for partial differentiation too. Consider the function:

z = x exp(2y)

Using the following code we can compute its first and second derivatives:

Maple code

# Specify a function

z := x*exp(2*y)

# Find the partial derivative of z with respect to y

diff(z, y)

# and x

diff(z, x)

# Second derivatives with respect to x and y can be

# obtained by the following commands

diff(z, x, x)

diff(z, y, y)

# We can also find the cross derivative ∂2z/∂x∂y using

diff(z, y, x)

9.1.3 The Gradient and Hessian

The gradient and Hessian are two important concepts in analyzing functions of sev-
eral variables as well as systems of equations. They also provide compact notations
when dealing with functions of several variables.

Definition 9.1 (Gradient). Let
y = f (x) (9.14)

x = [x1, x2, . . . , xn]′
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Then the vector of first-order partial derivatives of f with respect to all its
arguments

∇f (x) =

⎡
⎢⎢⎣

∂f /∂x1

...

∂f /∂xn

⎤
⎥⎥⎦ (9.15)

is called the gradient of f. The gradient is a vector and as such it has both a direction
and length (see Chap. 5). We illustrate these points with an example.

Example 9.11 Let

z = x+ y

∇z =
[

∂z/∂x

∂z/∂y

]
=
[

1

1

]

In this case ∇z is a vector pointing at the (1,1) direction and it has the length of√
2.

Example 9.12 For the equation

f (x, y, z) = xz− 2xy+ y2 + 6yz2

we have

∇f =
⎡
⎢⎣

z− 2y

−2x+ 2y+ 6z2

x+ 12yz

⎤
⎥⎦

Definition 9.2 (Hessian). Let f be the same as in Definition 9.1. The matrix of its
second-order partial derivatives is called its Hessian3 matrix.

∇2f (x) =
[

∂2f

∂xi∂xj

]
i, j = 1, . . . n (9.16)

Example 9.13 Let
y = x2

1x2
2

Then

∇f (x) =
[

2x1x2
2

2x2
1x2

]

3After German mathematician Ludwig Otto Hesse (1811–1874), who was a student of Jacobi.
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and

∇2f (x) =
[

2x2
2 4x1x2

4x1x2 2x2
1

]

Example 9.14 For the equation

f (x, y) = x sin2 y

we have

∇f =
[

sin2 y

x sin 2y

]

and

∇2f =
[

0 sin 2y

sin 2y 2x cos 2y

]

9.1.4 Exercises

E.9.1 Find all partial derivatives of the following functions:

i. u = x2 + 2xy+ y3 ii. z = x

x2 + y2
iii. z = x sin2 y

iv. y = x3
1 − 4x2

1x2 + 5x2x2
3 + 2x3

3 v. z = ln(x+ y)

vi. z = x2y2

x+ y
vii. u = ex2+y2+z2

viii. y = ln(x1 + x2 + x3)

ix. u = zxy x. z = ex ln y xi. u = ln(x2 + y2 + z2)

xii. f (x, y) = x3 + 3x2 + 4xy+ y2

E.9.2 Find all second-order partial derivatives of the functions in E.9.1.

E.9.3 Check your results for E.9.1 and E.9.2 using Maple.

E.9.4 Write your results in E.9.1 and E.9.2 using the gradient and Hessian notations.

E.9.5 Find the marginal products of labor and capital using the following widely
used production functions and show that they are all positive.

Q = min(αK, βL) Leontief Production Function

Q = AKαLβ Cobb-Douglas Production Function

Q = (αKρ + βLρ)1/ρ Constant Elasticity of Substitution (CES)

Production Function

α, β, ρ, A > 0
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E.9.6 Take the second partial derivatives of the production functions in E.9.5.
Show that the marginal product of a factor decreases when the utilization of a factor
increases but increases when the utilization of another factor is increased.

9.2 Differential and Total Derivative

9.2.1 Differential

In Chap. 8 we became familiar with the concept of differentials:

dy = f ′ (x) dx (9.17)

Here we extend it to functions of several variables. The differential becomes
more important when dealing with functions of several variables. In such instances
it measures the change in the dependent variable y when all independent variables
x = [x1, . . . , xk] change infinitesimally and simultaneously. Let

y = f (x) (9.18)
Then

dy =
k∑

i=1

∂f

∂xi
dxi (9.19)

Thus, all independent variables x = [x1, . . . , xk]′ have changed and the amount of
change is dx = [dx1, . . . , dxk]′ The response of the dependent variable y is equal to
the weighted sum of these changes where weights are partial derivatives of f with
respect to each xi.

Example 9.15 The differential dy of the function

y = x2
1x2

2

dy = 2x1x2
2dx1 + 2x2

1x2dx2

Example 9.16 For the function

y = x1 − 3

x2 + 3

we have

dy = (x2 + 3)dx1 − (x1 − 3)dx2

(x2 + 3)2

Example 9.17 The differential of the function

z = xey
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is

dz = eydx+ xeydy

Example 9.18 For the utility function

U = U(x1, . . . , xn) (9.20)

the differential is

dU =
n∑

j=1

∂U

∂xj
dxj (9.21)

Thus, the change in total utility is the sum of changes in the consumption of each
good and service in the utility function weighted by its marginal utility.

Example 9.19 For the production function

Q = f (x1, . . . , xk) (9.22)

the differential is

dQ =
k∑

j=1

∂Q

∂xj
dxj (9.23)

The change in total output is the sum of changes in the utilization of each input
weighted by its marginal product.

Similar to second- and higher-order derivatives, we can compute second- and
higher-order differentials. For the function

y = f (x1, . . . , xk) (9.24)

the second-order differential is

d2y = ∂2f

∂x2
1

dx2
1 +

∂2f

∂x1∂x2
dx1dx2 + . . .+ ∂2f

∂xk−1∂xk
dxk−1dxk + ∂2f

∂x2
k

dx2
k

=
k∑

i=1

k∑
j=1

∂2f

∂xi∂xj
dxidxj

(9.25)

Note that when i = j, dxidxj = dx2
i .

Example 9.20 The second-order differential of the function

y = x2
1x2

2
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is

d2y = 2x2
2dx2

1 + 4x1x2dx1dx2 + 4x1x2dx2dx1 + 2x2
1dx2

2

= 2x2
2dx2

1 + 8x1x2dx1dx2 + 2x2
1dx2

2

Example 9.21 For the function in Example 9.16, we have

y = x1 − 3

x2 + 3

we have

d2y = −1

(x2 + 3)2
dx2dx1 + −1

(x2 + 3)2
dx1dx2 + 2(x1 − 3)

(x2 + 3)3
dx2

2

= −2

(x2 + 3)2
dx1dx2 + 2(x1 − 3)

(x2 + 3)3
dx2

2

and for the function in Example 9.17

z = xey

the second-order differential is

d2z = eydydx+ eydxdy+ xeydy2

= 2eydxdy+ xeydy2

9.2.2 Total Derivative

We noted that the differential measures the change in the dependent variable when
all independent variables change. Now suppose that the change in the independent
variables is caused by a change in another variable. More specifically let

x1 = x1(t), . . . , xk = xk(t) (9.26)

and therefore

dxi = x′i(t)dt i = 1, . . . , k (9.27)

Substituting (9.27) in (9.26) and dividing through by dt, we will have the total
derivative of y with respect to t:

dy

dt
=

k∑
i=1

∂f

∂xi

dxi

dt
=

k∑
i=1

∂f

∂xi
x′i(t) (9.28)

A total derivative measures the ratio of change in the dependent variable to
an infinitesimal change in the ultimate independent variable. It is called a total
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derivative as opposed to a partial derivative. The latter measures the ratio of
the change in the dependent variable to an infinitesimal change in one of the
independent variables. Variable t could be time in which case dy/dt signifies
the instantaneous change in y as all independent variables change and affect it.
Alternatively, t could be a policy variable such as money supply. An increase
in money affects the GDP, but the influence may be transmitted through several
different channels.

Example 9.22 Consider the function

y = x2
1x2

2

and let

x1 = 2t, x2 = 1

t

We have
dy

dt
= 2x1x2

2
dx1

dt
+ 2x2

1x2
dx2

dt

Because
dx1

dt
= 2, and

dx2

dt
= − 1

t2

the total derivative of y with respect to t is

dy

dt
= 4x1x2

2 −
2x2

1x2

t2
= 0

Example 9.23 For the function

z = xey, x = t, y = ln t

we get
dz

dt
= ey dx

dt
+ xey dy

dt
= eln t + teln t 1

t
= 2t

Example 9.24 Consider the following model depicting the connection between
foreign assets of a country and domestic price index.

F = F0 + θV

M = μ[F + G+ H(i− id)]

P = k

y
M
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The second equation is the money supply process of Example 9.6 where μ =
(cu + 1)(cu + x) is the money multiplier and here we have added an equation that
links the amount of net foreign assets F to a constant V and an exogenously deter-
mined variable θ . For example, V could be the capacity of oil exports and θ the
internationally determined oil price. The model would be applicable to the case of
Saudi Arabia. Or V could be the exchange rate fixed by the government and θ the
exogenously determined net exports, whereas F0 is the previously accumulated for-
eign assets. Such a model may depict the case of China. Finally, the third equation
is Cambridge version of the quantity theory of money.

Suppose θ increases. The implication for the economy would be an increase in
net foreign assets leading to an increase in money supply, which would result in an
increase in the price level. Can the central bank do something about this situation?

Let us assume that μ is fixed and the bank does not want to change the discount
rate. The only policy instrument would be open market operation and the goal is to
make dM/dθ = 0, that is, to neutralize the effect of an increase in oil price or net
exports on the price level. Then we should have

dM

dθ
= μ

(
dF

dθ
+ dG

dθ

)
= 0

which implies

dG

dθ
= −dF

dθ

In other words, the central bank should decrease its net holding of government
securities by the same amount that its net foreign assets are increased and avoid any
adverse effects on the domestic economy. Such a policy is called sterilization.

It may not always be possible to reduce the central bank’s holdings of government
securities by the same amount as an increase in net foreign assets. In such cases
the bank may resort to selling foreign exchange to the public and companies or
encourage investment abroad. Of course, the central bank can use more than one
instrument to neutralize the effect of an increase in θ . Let us consider a combination
of open market operation and increase in the discount rate:

dM

dθ
= μ

(
dF

dθ
+ dG

dθ
− H′ did

dθ

)
= 0

which implies

dG

dθ
− H′ did

dθ
= −dF

dθ

Whereas decreasing the central bank holdings of government assets by the same
amount as an increase in F involves a simple calculation, devising a policy to partly
restrict credit to the private sector and partly sell government bonds requires an
estimate of H′ through econometric analysis.
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9.2.3 Exercises

E.9.7 Find the differentials of the functions in E.9.1.

E.9.8 Find the second-order differentials of the functions in E.9.1.

E.9.9 Find the total derivatives of the following functions:

i. y = x1 − 3

x2 + 3
where x1 = γ1t, x2 = γ2t

ii. y = x3
1 − 4x2

1x2 + 5x2x2
3 + 2x3

3

where x1 = h1(t), x2 = h2(t), x3 = h3(t)

iii. u = zxy where x = t, y = t2, z = 1

t

9.3 Homogeneous Functions and the Euler Theorem

Homogeneous functions play an important role in economics, especially in the the-
ory of production and growth. Such functions serve as a counterpart to economic
concepts of decreasing, constant, and increasing returns to scale. The Euler theorem
brings out the economic implications of modeling production with homogeneous
functions.

Definition 9.3 A function f (x) = f (x1, . . . , xn) is said to be homogeneous of degree
γ if for all λ > 0, we have

f (λx) = f (λx1, . . . , λxn) = λγ f (x) (9.29)

Example 9.25 y = axz, where a is a constant, is homogeneous of degree two
because

a(λx)(λz) = λ2axz = λ2y

Example 9.26 The Cobb-Douglas production function

Q = AKαLβ

is homogeneous of degree α + β because

A(λK)α(λL)β = λα+βAKαLβ
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Now if

α + β < 1, the production function shows decreasing returns to scale.
α + β = 1, the production function shows constant returns to scale.
α + β > 1, the production function has increasing returns to scale.

An interesting property of homogeneous functions is the Euler theorem.

Theorem 9.1 (Euler Theorem). Let the function f (x) = f (x1, x2, . . . , xn) be
homogeneous of degree γ . Then

γ f (x) = x′∇f (x) =
n∑

j=1

xj
∂f

∂xj
, γ > 0 (9.30)

The proof of this theorem is instructive and we prove it first for a special case and
then for the general case. Let f (x) be the function of one variable and homogeneous
of degree one. Thus, for any given value of x, say x∗ we can write

1

λ
f (λx∗) = c (9.31)

where c is a constant. Taking the derivative of the LHS with respect to λ, we have

d

dλ

[
1

λ
f (λx∗)

]
= 0 (9.32)

Therefore,

− 1

λ2
f (λx∗)+ x∗

λ
f ′(λx∗) = 0

letting λ = 1,

f (x∗) = x∗f ′(x∗) (9.33)

Note that whereas we showed this for a particular value of x, namely x∗ the proposi-
tion can be proved for all values of x. Thus, without causing confusion we shall drop
the superscript ∗ in the proof of the general case. Let f (x1, . . . , xn) be a homogeneous
function of degree γ . Then

d

dλ

[
1

λγ
f (λx1, . . . , λxn)

]
= 0
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Carrying out the differentiation, we have

− γ

λγ+1
f (λx1, . . . , λxn)+ 1

λγ

n∑
j=1

xj
∂f

∂xj
= 0

Again, setting λ = 1 and rearranging the equation, we get

γ f (x1, . . . , xn) =
n∑

j=1

xjfj (9.34)

where fj = ∂f /∂xj.

Example 9.27 In the case of Cobb-Douglas production function, we have

∂Q

∂K
= αAKα−1Lβ ,

∂Q

∂L
= βAKαLβ−1

and

K
∂Q

∂K
+ L

∂Q

∂L
= KαAKα−1Lβ + LβAKαLβ−1

= (α + β)AKαLβ

= (α + β)Q

Economically, the Euler theorem has an important implication for production
functions with constant returns to scale. As we shall learn in Chap. 13, the optimal
decision for a firm is to employ each factor of production to the point where the
marginal product of that factor equals its remuneration. Specifically, the work force
of the firm is expanded to the point where the value of the marginal product of labor
becomes equal to the wage rate. Similarly, capital is employed by the firm to the
point where the value of its marginal product is equal to the rate of interest. The
same would be true for all factors of production.

If the production process has constant returns to scale, that is, the production
function is homogeneous of degree one, then by virtue of (9.30) and setting γ = 1,
paying each factor the value of its marginal product will exhaust the revenue of the
firm. We shall return to this point in Chap. 12. Another implication of the Euler
theorem is that if a function is homogeneous of degree γ , then its partial derivatives
are homogeneous functions of degree γ −1. Again, we show this first for the case of
a function of one variable that is homogeneous of degree one. In (9.33), we replace
x with λx on both sides of the equation:

f (λx) = λxf ′(λx) (9.35)

Because f (λx) = λf (x), (9.35) can be rewritten as

f (x) = xf ′(λx) (9.36)
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Comparing (9.36) and (9.33), we conclude that

f ′(λx) = f ′(x) = λ0f ′(x) (9.37)

which means that the derivative is homogeneous of degree zero. Extending the same
argument to (9.34), we have

γ f (λx) = γ λγ f (x) =
n∑

j=1

λxjfj(λx) (9.38)

Dividing through by λγ , we get

γ f (x) =
n∑

j=1

1

λγ−1
xjfj(λx) (9.39)

Comparing (9.39) and (9.34) and noting that both equations have to hold for all
values of x, we conclude that

fj(λx) = λγ−1fj(x), j = 1, . . . , n (9.40)

which shows that partial derivatives of a homogeneous function are also homoge-
neous but of a degree one less than the original function. Again, this implication of
the Euler theorem has an important economic interpretation that we shall return to
in Chap. 12.

9.3.1 Exercises

E.9.10 Determine if the following functions are homogeneous and, if so, of what
degree.

i. f (x1, x2, x3) = x1x2x3

ii. f (x1, x2, x3) = (x1 − a1)(x2 − a2)(x3 − a3),

iii. f (x, y) = xa

yb
, y �= 0

iv. f (x, y) = xey

v. f (x, y, z) = ln(x+ y+ z)

E.9.11 Verify that the Euler theorem holds for the homogeneous functions in E.9.9.

E.9.12 Determine if the Leontief and the CES production functions of E.9.4 are
homogeneous and of what degree. Verify that the Euler theorem holds for these
functions.
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9.4 Implicit Function Theorem

Let us first illustrate this theorem with an example and then give it a formal
treatment.

Example 9.28 Consider the following function

xy = D, x, y �= 0

This function has two branches (as an exercise, graph this function), with domains

x > 0 and x < 0

Suppose that we are interested in finding dy/dx. One way is to solve for y in terms
of x

y = D

x

and take the derivative

dy

dx
= −D

x2
= −y

x

But there are cases where it is not possible to explicitly solve for y in terms of x.
Would it still be possible to find dy/dx? Consider taking the total differential of the
function

xdy+ ydx = 0

which implies
dy

dx
= −y

x

This gives us the same answer as before without requiring an explicit solution of
y in terms of x.

To make our answer more general, let us write the function as

F(x, y) = 0, Fy �= 0 (9.41)

Under what conditions can we write

dy

dx
= −Fx

Fy
(9.42)

The answer: Whenever a function y = φ(x) exists, even if we cannot explicitly
find it. But then under what conditions does φ(x) exist? The answer is given by the
implicit function theorem.



9.4 Implicit Function Theorem 245

Theorem 9.2 Consider the real-valued continuous function F(x, y) on an open set
V ∈ �2. Further assume that it is continuously differentiable with respect to its
arguments and

F(x0, y0) = 0, (x0, y0) ∈ V
∂F

∂y
(x0, y0) = Fy(x0, y0) �= 0

(9.43)

Then there exists an open set W ∈ �2 such that (x0, y0) ∈ W and a unique
continuously differentiable function φ(x) such that

y0 = φ(x0) (9.44)

and

F(x, φ(x)) = 0 x ∈ W (9.45)

The implicit function theorem can be extended to functions of more than two
variables. We simply need to replace x with the vector x = [x1, . . . , xk]′ and the
Theorem holds for F(x, y).

There are two circumstances under which we may not be able to find the explicit
form of φ(x). The first is when the form of the function won’t allow us to explicitly
solve for y in terms of x. An example would be the function

y+ ln y− x1x2 = 0

The second, which is particularly true in economics, is when we are reluctant to
specify the exact functional form of the relations between different variables. The
reason may be uncertainty about such forms or a desire to make the analysis as
general as possible.

Example 9.29 Find dy/dx for the function

y3 − 3y+ 5x = 0 y > 1

We have

3y2dy− 3dy+ 5dx = 0

Therefore,

dy

dx
= −5

3y2 − 3
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Example 9.30 Suppose we are interested in finding dy/dx for the function

ey − e2x + xy = 0 x > 0

Taking the differential of both sides of the function, we get

eydy− 2e2xdx+ ydx+ xdy = 0

and the derivative is
dy

dx
= 2e2x − y

ey + x

Example 9.31 For the function

ln(x2 + y2)− 1 = 0 y > 0

we have
2xdx+ 2ydy

x2 + y2
= 0

and
dy

dx
= −x

y

Example 9.32 (The Slope of an Indifference Curve). For the utility function

U = U (x1, x2) (9.46)

If we set the level of utility at a certain value U0, we get the indifference curve

U0 = U (x1, x2) (9.47)

which can be rearranged into

U0 − U (x1, x2) = 0 (9.48)

Because marginal utility functions are assumed to be continuous, the conditions
of the implicit function theorem are met for every point on the indifference curve.
Thus,

dx2

dx1
= −∂U/∂x1

∂U/∂x2
(9.49)

which shows that the indifference curves for normal goods are downward sloping,
because the marginal utilities of such goods are positive. The slope of the indiffer-
ence curve is called the marginal rate of substitution and is equal to the ratio of
marginal utilities of the goods involved.
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Example 9.33 (Marginal Product and Marginal Rate of Technical Substitution). Let
us concentrate on a production function with two inputs, say, labor L and capital K.
If we consider all combinations of the inputs that give rise to a given level of output
Q̄, then we have a curve depicting the trade-off between the inputs. These curves
are called isoquants and are similar to indifference curves of the consumer choice
theory. They are also downward sloping and convex. Differentiating the production
function

Q̄ = f (K, L) (9.50)

we get

fKdK + fL dL = 0 (9.51)

Therefore,
dK

dL
= − fL

fK
< 0 (9.52)

The slope of the isoquants, which is called the marginal rate of technical substi-
tution (MRTS), measures the amount of one input needed to replace a unit of the
other input so as to keep the amount of output constant. The higher the MRTS, the
more flexible the production process in substituting one input for another. Another
measure of the flexibility of production is the elasticity of substitution

σ = d ln(K/L)

d ln(fL/fK)
= d(K/L)

K/L

fL/fK
d(fL/fK)

(9.53)

σ = 0 means no substitution between inputs and σ →∞ signifies perfect substitu-
tion. In general the higher the σ , the higher is the substitutability between inputs. In
case of the Cobb-Douglas production function with constant returns to scale,

Q = AKαL1−α

We have

fK = αAKα−1L1−α fL = (1− α)AKαL−α

Letting k = K/L, we have

fK =αAk−(1−α)

fL =(1− α)Akα

Thus,

MRTS = α − 1

α
k

and

σ = 1
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9.4.1 Exercises

E.9.13 Find the slope of the indifference curves for the utility functions

i. U = (x1 − α)(x2 − β)

ii. U = xα
1 xβ

2

where α and β are positive constants.

E.9.14 Find the slope of isoquants (MRTS) and elasticity of substitution of the
production functions in E.9.5.

9.5 Differentiating Systems of Equations

In many sciences and particularly in economics, a phenomenon or process is mod-
eled not by just one equation, but by a system of equations. Thus, any change in
an independent or exogenous variable is transmitted through several channels to
dependent or endogenous variables. Therefore, in taking derivatives in the context
of a system of equations we should deal with the interdependencies among the
variables. It is not enough for the derivative to reflect only the direct impact of a
variable on another. It should be the sum total of all direct and indirect effects of the
change in one variable on another. When dealing with a system of m equations with
n variables, some of the equations may be redundant or inconsistent with each other.
Surely if m > n, unless m − n equations are redundant, we will have inconsistency
among the equations.

When dealing with linear equations, we checked for the independence of equa-
tions by inspecting the determinant of the matrix of their coefficients. Could we
check for the independence among m functions of n variables when m = n? The
answer is yes. But for this purpose we need to define the Jacobian matrix and
determinant.

9.5.1 The Jacobian and Independence of Nonlinear Functions

Definition 9.4 (Jacobian). Let there be m functions

yi = gi(x), i = 1, . . . , m (9.54)

where x is an n-vector. Then the Jacobian4 matrix is defined as

4Carl Gustav Jacob Jacobi (1804–1851) was one of the nineteenth century’s great mathematicians.
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J =

⎡
⎢⎢⎢⎢⎢⎣

∂g1

∂x1
. . .

∂g1

∂xn
...

. . .
...

∂gm

∂x1
. . .

∂gm

∂xn

⎤
⎥⎥⎥⎥⎥⎦ (9.55)

Now we can answer the independence question. If the determinant of the
Jacobian matrix |J| �= 0, then the functions are independent.

Example 9.34 Consider the functions

z1 = xey

z2 = 3y3 − 2x4

Then

|J| =
∣∣∣∣∣ ey xey

−8x3 9y2

∣∣∣∣∣ = ey(9y2 + 8x4) �= 0

As can be seen the determinant is not zero regardless of the values taken by x and
y. Of course this is not the case for all systems of equations. We may encounter
situations where the determinant is not zero for some values of the independent
variables and equal to zero for some other values. On the other hand, if two functions
are dependent, then the determinant of the Jacobian will be identically zero.

Example 9.35 Let

z1 = xey

z2 = ln x+ y

|J| =
∣∣∣∣∣ ey xey

1/x 1

∣∣∣∣∣ = ey − ey = 0

Therefore, the two functions are not independent. But that should not be surpris-
ing because z2 = ln z1. To understand the rationale behind the use of the Jacobian
to test for the independence of functions, note that two functions are equal if they
intersect at least in one point and their derivatives are identical. Thus starting at the
point of intersection, they move together in both directions. Even if the functions do
not intersect at a point, the fact that their derivatives are the same means that over
their domain they will be moving together in the same direction and, therefore, are
not independent. We can generalize this notion to the case of functions of several
variables. Note that the Jacobian of a system of equations can be written as

J = [∇g1(x) . . .∇gn(x)]′ (9.56)
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Each of the vectors specifies the direction in which the function will move. If
|J| = 0, it means that these directions do not span an n-space and at least one of
them is dependent on (or is a combination of) the others. Hence, we do not have n
independent functions.

9.5.2 Differentiating Several Functions

In some cases tracing the effects of a change through the system may be straightfor-
ward. Consider our model in Example 9.24. To find the effect of an increase in θ on
P, we need only follow the chain rule

∂P

∂θ
= ∂P

∂M

∂M

∂F

dF

dθ
= k

y
μV

The reason is that we have a recursive model. When dealing with systems of
simultaneous equations, the situation is a bit more involved. Consider the system of
equations

f1(y1, . . . , ym, x1, . . . , xk) = 0
...

...

fm(y1, . . . , ym, x1, . . . , xk) = 0

(9.57)

There are m endogenous variables and m equations. Therefore, in principle,
we should be able to solve for the endogenous variables y1, . . . , ym in terms of
the exogenous variables. But it may be that either because of the complexity of
the equations or our reluctance to specify the forms of equations, we are unable
to do so. Could we find the effects of a change in an exogenous variable, say
xj, on the endogenous variables? The answer is yes, provided the conditions of
the general form of the implicit function theorem for systems of equations are
satisfied.

These conditions require the determinant of the Jacobian composed of partial
derivatives of the functions with respect to endogenous variables be different from
zero. We will show the method for the case of three equations with two exogenous
variables. But it will be clear that the method can be extended to any number of
equations and any number of exogenous variables.

Note also that we need not have all our equations in implicit form. Indeed,
we may have functions for which either some or all variables could be separated.
The implicit form is used here to show the generality of the method. Consider the
following system of equations:

f (y1, y2, y3, x, z) = 0

g (y1, y2, y3, x, z) = 0

h (y1, y2, y3, x, z) = 0
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Partially differentiating with respect to z, we have

f1
∂y1

∂z
+ f2

∂y2

∂z
+ f3

∂y3

∂z
+ fz = 0

g1
∂y1

∂z
+ g2

∂y2

∂z
+ g3

∂y3

∂z
+ gz = 0

h1
∂y1

∂z
+ h2

∂y2

∂z
+ h3

∂y3

∂z
+ hz = 0

Or in matrix form

⎡
⎢⎣

f1 f2 f3
g1 g2 g3

h1 h2 h3

⎤
⎥⎦
⎡
⎢⎣

∂y1/∂z

∂y2/∂z

∂y3/∂z

⎤
⎥⎦ =

⎡
⎢⎣
−fz
−gz

−hz

⎤
⎥⎦ (9.58)

Now we solve these equations for ∂y1/∂z, ∂y2/∂z, and ∂y3/∂z using the methods
of Chap. 6. The solutions will depend on the partial derivatives fi′s, gi

′s, hi
′s, and

fz, gz, hz. These in turn may be simple coefficients or themselves functions of vari-
ables in the equations. A numerical solution will require a knowledge of the exact
form of these partial derivatives and their numerical values at the point where we
wish to evaluate our solutions. On the other hand, if we have qualitative informa-
tion regarding the signs of these partial derivatives, in some cases we may be able
to determine the directions of the effects of exogenous variables on the dependent
variables. This is especially true when we have a simple model with a few variables
and equations.

When we allow for different channels of influence between variables, the deter-
mination of the direction of effects of a change in one variable on others will depend
on the relative magnitude of partial derivatives. Thus, it may not be possible to deter-
mine such effects without a knowledge of the numerical values of coefficients and
partial derivatives. As a result, the effects of a change in exogenous variables on
endogenous variables will be ambiguous.

Example 9.36

y1 + y2 − 2x = 0

y1 − y2 + 5 = 0

Differentiating the equations with respect to x,

∂y1

∂x
+ ∂y2

∂x
= 2

∂y1

∂x
− ∂y2

∂x
= 0



252 9 Differentiation: Functions of Several Variables

or in matrix notation, [
1 1

1 −1

][
∂y1/∂x

∂y2/∂x

]
=
[

2

0

]

Solving the equations,

∂y1

∂x
= 1,

∂y2

∂x
= 1

Example 9.37

y1 + y2 + y3 + x− z = 0

y1 − 2y2 + ln x = 0

y2
2 + 5y3 + z2 = 0

In this model there are three endogenous variables y1, y2, and y3 and two exoge-
nous variables x and z. Suppose we want to find the effects of x on the endogenous
variables. To isolate these effects, we set dz = 0, that is, we hold z constant.
Differentiating the equations with respect to x and writing the results in matrix form,
we get

⎡
⎢⎣

1 1 1

1 −2 0

0 2y2 5

⎤
⎥⎦
⎡
⎢⎣

∂y1/∂x

∂y2/∂x

∂y3/∂x

⎤
⎥⎦ =

⎡
⎢⎣
−1

−1/x

0

⎤
⎥⎦

Example 9.38 (A Model of Supply and Demand). Consider the simple demand and
supply function of a particular commodity:

QD = D(P, Y) DP < 0, DY > 0

QS = S(P, R) SP > 0, SR < 0

QD = QS

where Q, P, Y, and R are, respectively, quantity demanded, quantity supplied, price,
income, and the price of a resource, say oil, used in the production of the good under
study. Combining the equations and letting Q be the equilibrium quantity demanded
and supplied,

Q− D (P, Y) = 0

Q− S (P, R) = 0
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We may be interested in analyzing the effects of a change in exogenous variables
on quantity and price in this market. Let us set dY = 0 and analyze the effect of an
increase in the price of oil on quantity and price (analyzing the effect of income is
left as an exercise, see E.9.15).

∂Q

∂R
− DP

∂P

∂R
= 0

∂Q

∂R
− SP

∂P

∂R
= SR

Solving the equations

∂Q

∂R
= −SRDP

SP − DP
< 0

∂P

∂R
= −SR

SP − DP
> 0

In other words an increase in the price of oil or any factor of production will
result in a higher price and lower quantity of the good. Note that assuming contin-
uously differentiable demand and supply functions, and Dp and Sp having opposite
signs, the conditions of the implicit function theorem are met for the model. If
Dp and Sp did not have the opposite signs, we could not rule out the possibility
of a zero Jacobian determinant at the point of equilibrium. In such an eventual-
ity, we could not have solved for ∂Q/∂R and ∂P/∂R as the denominator would
be zero.

Example 9.39 (An Open Economy Macroeconomic Model). Consider the following
model of an open economy

Y − C(Y)− I(r)− X(e) = G IS

L(Y , r) = M LM

X(e)+ F(r) = 0 BOP

0 < C′ < 1 X′, LY , F′ > 0, I′, Lr < 0

where it is assumed that the net exports (exports minus imports), X, depends only on
the exchange rate, e, and the net inflow of capital, F, depends on the interest rate r.
The exchange rate is the price of foreign currency in terms of domestic currency.
Thus, an increase in e means the depreciation of domestic currency. The balance
of payments equation states that the sum of the net current account and net capital
account is zero. Let us analyze the effects of an expansionary monetary policy on
the three endogenous variables Y, r, and e. Letting dG = 0, while allowing M to
change, we have
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∂Y

∂M
− C′ ∂Y

∂M
− I′ ∂r

∂M
− X′ ∂e

∂M
= 0

LY
∂Y

∂M
+ Lr

∂r

∂M
= 1

X′ ∂e

∂M
+ F′ ∂r

∂M
= 0

Rearranging the equations in matrix format,

⎡
⎢⎣

1− C′ −I′ −X′

LY Lr 0

0 F′ X′

⎤
⎥⎦
⎡
⎢⎣

∂Y/∂M

∂r/∂M

∂e/∂M

⎤
⎥⎦ =

⎡
⎢⎣

0

1

0

⎤
⎥⎦

The determinant of the matrix on the LHS is


 = (1− C′)LrX′ − LYF′X′ + X′LYI′ < 0

Because the determinant is not zero, we can solve for the vector of unknowns as

⎡
⎢⎣

∂Y/∂M

∂r/∂M

∂e/∂M

⎤
⎥⎦ = 1




⎡
⎢⎣

X′Lr I′X′ − F′X′ X′Lr

−X′LY X′(1− C′) −X′LY

LYF′ −(1− C′)F′ Lr(1− C′)+ I′LY

⎤
⎥⎦
⎡
⎢⎣

0

1

0

⎤
⎥⎦

Thus, an expansionary monetary policy results in an increase in income, a
lowering of the interest rate, and the depreciation of domestic currency because

∂Y

∂M
= I′X′ − F′X′



> 0,

∂r

∂M
= X′(1− C′)



< 0,

∂e

∂M
= −(1− C′)F′



> 0

In Example 9.39 we arrived at unequivocal conclusions regarding the effects of
monetary policy on variables of interest. This was possible because of our restrictive
assumptions. For example, if we assume that net exports depend on both income
and the exchange rate, we cannot determine the sign of ∂e/∂M. It will depend on
the value of partial derivatives involved.
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9.5.3 Exercises

E.9.15 Referring to our model of supply and demand, assume that income and the
price of oil are constant. Under what conditions are functions representing supply
and demand independent? What is the economic meaning of these conditions?

E.9.16 Using the model of supply and demand, find the effects of an increase in
income on quantity and price.

E.9.17 Show that in the y− r plane the IS curve is downward sloping.

E.9.18 Show that in the y− r plane the LM curve is upward sloping.

E.9.19 Show the effects of an increase in government expenditures on income, the
interest rate, and the exchange rate.

E.9.20 Change the net export function to X = X(Y , e) with XY < 0 and Xe > 0.
Find the effects of money supply and government expenditures on income,
the interest rate, and the exchange rate.



Chapter 10
The Taylor Series and Its Applications

Apparently it started with a discussion in Child’s Coffeehouse where Brook Taylor
(1685–1731) got the idea for the now famous series. He was talking with his friend
John Machin about solving Kepler’s problem. As it turned out, the Taylor series was
of such importance that Lagrange called it “the basic principle of differential cal-
culus.” Indeed, it plays a very important part in calculus as well as in computation,
statistics, and econometrics. As it is well known, a calculator or computer can only
add and, in fact, can deal only with 0s and 1s. So how is it possible that you punch in
a number and then press a button, and the calculator finds the logarithm or exponen-
tial of that number? Similarly, how can a machine capable of only adding give you
the sine and cosine of an angle, find solutions to an equation, and find the maxima
and minima of a function? All these and more can be done due to the Taylor series.

Furthermore, frequently in statistics and econometrics we estimate a set of
parameters but need to make an inference on nonlinear functions of them. For exam-
ple, we may estimate the reduced form of a system of simultaneous equations, but
we need to make inference about the structural parameters. The inference has to be
based on the distributions of the estimators of the latter parameters, the derivation
of which may be difficult or impossible. One alternative is to approximate moments
of these distributions via the Taylor series.

Still there are other issues in economics—such as measuring risk aversion or the
connection of expected utility function and mean-variance analysis in finance—that
can be fully understood only with the help of the Taylor expansion.

10.1 The Taylor Expansion

Consider a function f (x) that is differentiable n + 1 times, that is, its (n + 1)-th
derivative exists. Would it be possible to find a polynomial Pn (x) of degree less
than or equal to n with the following properties:

1. Its value at the point a is f (a).
2. The value of its j-th derivative j = 1, . . . n at point a is the same as the derivatives

of f (x). In other words,

257K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_10, C© Springer-Verlag Berlin Heidelberg 2011
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d jPn

dx j

∣∣∣∣
x=a

= f (j)(a), j = 1, . . . , n (10.1)

Because the polynomial has to pass through point (a, f (a)), we may write it in terms
of x− a as

Pn(x) = C0 + C1(x− a)+ C2(x− a)2 + . . .+ Cn(x− a)n (10.2)

From condition (1) above, it follows that

C0 = Pn (a) = f (a) (10.3)

and from condition (2),

C1 = f ′(a)

C2 = f ′′(a)

2

C3 = f ′′′(a)

3!
· · · = · · ·
Cn = f (n)(a)

n!

(10.4)

The reason is that

P′n(x) = C1 + 2C2(x− a)+ 3C3(x− a)2 + . . .+ nCn(x− a)n−1

and evaluating P′n (x) at point a causes all the terms involving x − a to vanish.
Therefore,

P′n(a) = C1 ⇒ C1 = f ′(a)

The second equality is condition (2) above. Similarly

P′′n(a) = 2C2 ⇒ C2 = f ′′(a)

2

In general,

P(j)
n (x) = j× (j− 1)× . . .× 2 Cj + (j+ 1)× j× . . .× 2 Cj+1(x− a)

+(j+ 2)× (j+ 1)× . . .× 3 Cj+2(x− a)2 + . . .

+n× (n− 1)× . . .× (n− j+ 1)Cn(x− a)n−j

At point x = a, we have
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P(j)
n (a) = j!Cj ⇒ Cj = f (j)(a)

j!
Thus we can write

Pn(x) = f (a)+ f ′(a)(x− a)+ 1

2
f ′′(a)(x− a)2

+ 1

3! f
′′′(a)(x− a)3 + . . .+ 1

n! f
(n)(a)(x− a)n

(10.5)

Let us call the difference between the polynomial Pn (x) and f (x), the remainder,
that is,

f (x) = Pn (x) + Rn (x) (10.6)

If Rn (x) is small, then Pn (x) is a good approximation for f (x). Indeed, we could
derive the Taylor formula as an approximation of the difference between f (x) and
f (a). Geometrically, we could try to approximate the segment of the curve between
the two points (x, f (x)) and (a, f (a)) by a line (see Fig. 10.1). Of course it would not
be a good approximation. Perhaps a parabola or a cubic function, or more gener-
ally, a polynomial of degree n would be better. Incidentally note that the segment
[(x, f (x)), (b, f (b))] can reasonably be approximated by a line because the two points
are much closer. Because we are approximating the difference between the values of
the function at points x and a, the polynomial has to be in terms of their difference
x− a. Therefore,

f (x)− f (a) =
n∑

j=1

Cj(x− a) j + Rn(x) (10.7)

Using the same procedure as before we have

f (x)− f (a) =
n∑

j=1

f (j)(a)
(x− a) j

j! + Rn(x) (10.8)

or

Fig. 10.1 Approximating f
(x) near point a with a
polynomial
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f (x) ≈
n∑

j=0

f (j)(a)
(x− a) j

j! (10.9)

Example 10.1 Finding the Taylor expansion of a polynomial function is pointless
in that we already have the expansion. Nevertheless, such an exercise is quite useful
in terms of illustrating the procedure and its objective. Here we write the Taylor
expansion1 of the function y = x3 − 2x, first near point x0 = 0 and then near point
x1 = 1. We start with the derivatives of the function

y′ = 3x2 − 2

y′′ = 6x

y′′′ = 6

Therefore, the Taylor series near point x0 is

y = 0− 2x+ 0+ 6

6
x3 = x3 − 2x

and near x1

y = 1− 2+ (x− 1)+ 6

2
(x− 1)2 + 6

6
(x− 1)3 = x3 − 2x

Example 10.2 Write the first five terms of the Taylor series of y = ln x near point
x0 = 1.

y′ = 1

x
, y′′ = − 1

x2
, y′′′ = 2

x3
, y(4) = − 6

x4

Thus,

ln x = 0+ (x− 1)− 1

2
(x− 1)2 + 1

3
(x− 1)3 − 1

4
(x− 1)4

Example 10.3 Consider the Taylor expansion of f (x) = ex near point a = 0. We
already know that f (j)(x) = ex, j = 1, . . . , n, and e0 = 1.

Therefore,

ex ≈
n∑

j=0

xj

j! (10.10)

We can program this formula in Matlab or Excel and calculate the value of e by let-
ting x = 1. The formula uses nothing but addition because multiplication is addition
repeated so many times and division is the inverse of multiplication. The results are
reported in Table 10.1. As n increases, the precision of the computation increases.

1The Taylor expansion around point 0 is referred to as Maclaurin expansion after Colin Maclaurin
(1698–1746), a brilliant mathematician who derived it as a special case of Taylor series.
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Table 10.1 Evaluating e
using the Taylor expansion n e

0 1.00000000000000
1 2.00000000000000
2 2.50000000000000
3 2.66666666666667
4 2.70833333333333
5 2.71666666666667
6 2.71805555555556
7 2.71825396825397
8 2.71827876984127
9 2.71828152557319

10 2.71828180114638
11 2.71828182619849
12 2.71828182828617
13 2.71828182844676
14 2.71828182845823
15 2.71828182845899
16 2.71828182845904
17 2.71828182845905

Check the result obtained against the value of e that you can get from your calcula-
tor. Note that the result of the Matlab expression factorial() is accurate for the
first 15 digits, that is, for n ≤ 21.

Matlab code

% Initialize an array of length 20

e = zeros(20,1);

% Set the first entry equal to 1 which

% corresponds to e0

e(1) = 1;

% calculate e by adding in each step 1/i! to the

% result of the previous step. Note that we have

% to adjust the counter because Matlab counters

% cannot be zero.

for j=2:20
e(j) = e(j-1) + 1/(factorial(j-1));

end

% We will use the long format to get as many decimals

% as possible

format long

% Print e

e
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Table 10.2 Computing e
using Excel A B

0 =1/FACT(A1)
1 =B1+1/FACT(A2)
2 =B2+1/FACT(A3)
3 =B3+1/FACT(A4)
4 =B4+1/FACT(A5)
...

...

For the Excel program, we have (Table 10.2).

Example 10.4 (Mean-Variance Analysis in Finance). Following the seminal work of
Harry Markowitz, financial economists and financial analysts have used the mean-
variance analysis. The idea is to represent the risk of an asset or portfolio with the
variance of its rate of return. By balancing expected return against risk, the investor
or analyst can choose an optimal portfolio. At first glance such an analysis seems ad
hoc. But indeed it has its roots in the expected utility analysis. Let

U = U (x) (10.11)

where U denotes utility and x is the return of an asset that we assume to be a random
variable distributed with mean μ = E(x) and variance σ 2 = E(x−μ)2. The return of
an asset is considered a random variable because it cannot be forecast with certainty.
It depends on many factors, including the economic condition of the country and the
world as well as the specific workings of the firm issuing the security. In the case
of U.S. government bonds, the probability distribution is concentrated at one point,
namely the yield that has probability one. Using the Taylor formula, we can write

U(x) = U(μ)+ (x− μ)U′(μ)+ 1

2
(x− μ)2U′′(μ)+ R (10.12)

Assuming that the remainder is negligible, we can write the expected utility as

E(U) = U(μ)+ 1

2
σ 2U′′(μ) (10.13)

Thus, the expected utility depends only on the mean and variance of the return. If
the assumptions made are valid, then decisions based on mean-variance analysis are
equivalent to decisions based on expected utility maximization. Finally, note that
for a fixed value of an expected utility, say, E (U) = U0, we have

U′dμ+ 1

2
U′′dσ 2 = 0 (10.14)
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because all higher derivatives of U are assumed to vanish. Thus,

dμ

dσ 2
= −1

2

U′′

U′
(10.15)

The above equation shows the trade-off between risk and return. In order to remain
indifferent to an infinitesimal change in risk, σ 2, the investor requires a −U′′/2U′
increase in return. The higher the required compensation, the higher the degree of
risk aversion on the part of the investor. Thus,

v = −U′′

U′
(10.16)

is taken as the measure of risk aversion. Furthermore, if we normalize it by the
amount of income, x, or the expected return μ, then we have the measure of relative
risk aversion:

ε = −μ
U′′

U′
(10.17)

Example 10.5 Consider a random variable X with mean E(X) = μ and variance
E(X − μ)2 = σ 2. Suppose we are interested in the variable Y = f (X) where f is a
nonlinear function. What are the mean and variance of Y?

If the distribution of X is known and if we could explicitly derive the resulting
distribution of Y, then we can come up with the mean and variance of Y. Usually,
however, the derivation of the resulting distribution is rather involved and we may
not end up with a known distribution. In such cases, if we know the distribution
of the original variable still we can simulate the new distribution and compute its
mean and variance. If we don’t know the distribution of X then this option is also
unavailable. In such cases we can resort to Taylor approximation.

Let X have mean and variance μ and σ 2, and let Y = f (X). We can write:

Y ≈ f (μ)+ (X − μ) f ′(μ) (10.18)

Taking the expected value of both sides, we have

E(Y) ≈ f (μ) (10.19)
Further,

E[Y − E(Y)]2 ≈ σ 2f ′(μ)2 (10.20)

This, procedure, as the next example will show, proves quite useful in the theory
and practice of econometrics.

Example 10.6 (Nonlinear Functions in Econometrics). On many occasions we esti-
mate a parameter, say, θ by θ̂ , but we are interested in making inference about f (θ )
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where f is nonlinear. In such cases we may try to derive the distribution of f (θ̂) based
on the distribution of θ̂ . This is not always easy, nor is it guaranteed that the resulting
distribution is tractable. An alternative would be to approximate moments of f (θ̂),
in particular its mean and variance, using the Taylor expansion near the point θ̂ .

f (θ̂) ≈ f (E(θ̂))+ (θ̂ − E(θ̂ )) f ′(E(θ̂ )) (10.21)

Taking the expected value of both sides of (10.21) and dropping the approximation
sign, we have

E[f (θ̂)] = f (E(θ̂)) (10.22)

Moreover,

Var f (θ̂) = E[f (θ̂)− Ef (θ̂)]2

= E[θ̂ − E(θ̂ )]2[f ′(θ̂ )]2

= Var(θ̂ )[f ′(θ̂)]2

(10.23)

Example 10.7 In elementary econometrics, the following model is used to illus-
trate the issues regarding identification and estimation of systems of simultaneous
equations:

Y = C + I

C = βY + ε

where Y, C, and I are, respectively, income, consumption, and investment, or
autonomous expenditures. β is the marginal propensity to consume, and ε is a
stochastic term. Because Y is endogenous, if we estimate β directly using the second
equation, the result will be a biased and inconsistent estimate. To get a consistent
estimate of β we write the reduced form of the equation

C = β

1− β
I + ε

1− β
= kI + η

where k = β/(1 − β) and η = ε/(1 − β). Now we can obtain an unbiased and
consistent estimate of k together with Var(k̂). But we still want to make inference
about β = k/(1+ k). We can estimate β as

β̂ = k̂

1+ k̂

and its variance as

Var(β̂) = Var(k̂)

(
dβ

dk

)2

= Var(k̂)
1

(1+ k̂)4

β̂ is a biased but consistent estimator because
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plim β̂ = plim k̂

1+ plim k̂
= k

1+ k

plim is short for probability limit and plim k̂ = k, means that k̂ converges to k in
probability. That is,

lim
N→∞P [|k − k̂| < ε] = 1 (10.24)

Example 10.8 (Equivalence of Different Forms of Complex Variables). In Chap. 2
we noted that a complex variable can be written in three forms:

z = x± iy

= ρ(cos θ ± i sin θ )

= ρe±iθ
(10.25)

where

ρ =
√

x2 + y2 (10.26)

and

tan θ = y

x
or θ = tan−1 y

x
(10.27)

Whereas the first equality in (10.28) follows from the Pythagoras theorem and
definitions of trigonometric functions (see Fig. 10.2), the second equality is
not self-evident. Here we will show the second equality with the help of the
Taylor expansion. First, let us write the Maclaurin expansions of the sin θ and
cos θ .

cos θ = cos(0)− θ sin(0)− θ2

2
cos(0)+ θ3

3! sin(0)+ θ4

4! cos(0)− · · ·

Noting that cos(0) =1 and sin(0) =0, we have

Fig. 10.2 Point z in the
complex plane
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cos θ = 1− θ2

2
+ θ4

4! −
θ6

6! − · · · =
∞∑

k=0

(−1)k θ2 k

(2 k)! (10.28)

Similarly,

sin θ = sin(0)+ θ cos(0)− θ2

2
sin(0)− θ3

3! cos(0)+ θ4

4! sin(0)+ · · ·

and

sin θ = θ − θ3

3! +
θ5

5! −
θ7

7! + · · · =
∞∑

k=1

(−1)k−1 θ2 k−1

(2 k − 1)! (10.29)

Therefore,

cos θ + i sin θ = 1+ iθ − θ2

2
− i

θ3

3! +
θ4

4! + i
θ5

5! − · · ·

Recalling that

i0 = 1, i2 = −1, i4 = 1, . . .

we can write

cos θ + i sin θ =
∞∑

k=0

(iθ )k

k! (10.30)

But we already know that

eiθ =
∞∑

k=0

(iθ )k

k! (10.31)

Hence the equality is verified. In a similar fashion we can show that cos θ− i sin θ =
e−iθ . Incidentally, we have shown how the sine and cosine functions are calculated.

10.1.1 Exercises

E.10.1 Write the first four terms of the Taylor expansion of the following functions
near the point x0

i. f (x) = 5x4 − 3x3 − x2 + 7x+ 14

ii. f (x) = √2x

iii. f (x) = e3x

iv. f (x) = xex

E.10.2 Write the first four terms of the Taylor expansion of the following functions
near the point x0 = π/2:

i. f (x) = cos 2x, ii. f (x) = sin 2x, iii. f (x) = tan 3x
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E.10.3 Use the Taylor series to evaluate the following expressions:

i.
√

54 ii. e2 iii. ln 6

E.10.4 Program the Taylor formula in Matlab to calculate a table of logarithms for
numbers between 0.001 and 9.999.

E.10.5 Write a program to calculate the sine and cosine functions of different angles
based on the Taylor expansion.

E.10.6 Given the mean μ, and variance σ 2 of the variable X > 0, find the mean and
variance of variable Y = ln(X).

10.2 The Remainder and the Precision of Approximation

Although by increasing n the precision of the computation is increased, the process
cannot continue indefinitely. Therefore we might ask, what is the nature of this
approximation or, to put it differently, what is the order of magnitude of Rn (x)? We
have a good approximation formula and we can replace f (x) by Pn (x) if Rn(x) → 0
as n → ∞. To find an expression for Rn (x), we need the basic result of Rolle’s
theorem.

Theorem 10.1 (Rolle’s2 Theorem). Let f (x) be a continuous function on the interval
[a, b] with f (a) = f (b) = 0. Further, assume that f (x) is differentiable on the open
interval (a, b). Then there exists at least one point x∗ such that a < x∗ < b and
f ′(x∗) = 0.

Proof Because the function f is continuous in the interval [a, b], then it has a maxi-
mum and a minimum. First note that if the maximum and minimum coincide, then
we have a horizontal line and f ′(x) = 0 for all values of x in the interval and the the-
orem holds. If the maximum and minimum are not equal, then at least one of them is
not equal to zero. For the sake of simplicity, let us assume that the maximum M > 0.
Note that this excludes the maximum occurring either at a or b. Thus, let

f (x∗) = M

It follows that at all points on both sides of the point x = x∗, we have:

f (x∗ +
x)− f (x∗) ≤ 0 (10.32)

(10.32) holds both when 
x < 0 and 
x > 0. Therefore,

f (x∗ +
x)− f (x∗)

x

≤ 0, 
x > 0

f (x∗ +
x)− f (x∗)

x

≥ 0, 
x < 0
(10.33)

2The self-taught French mathematician Michel Rolle (1652–1719) is best known for this theorem.
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Taking the limits of both relationships in (10.33), we have

lim

x→0+

f (x∗ +
x)− f (x∗)

x

= f ′(x∗) ≤ 0

lim

x→0−

f (x∗ +
x)− f (x∗)

x

= f ′(x∗) ≥ 0
(10.34)

which implies f ′(x∗) = 0.
Going back to our question, we note that because the last term of (10.9) is

f (n) (x− a)n

n!
we can surmise the remainder to be of the form

Rn(x) = (x− a)n+1

(n+ 1)! Q(x) (10.35)

Q(x) depends on x and a. Therefore, for particular values of x, and a, Q(x) has a
fixed value. Let us denote it by Q∗ and try to determine it. Consider the expansion
of f (x) about a point z that lies somewhere between a and x.

f (x) ≈
n∑

j=0

f (j) (x− z) j

j! (10.36)

and define
F(z) = f (x)−

n∑
j=0

f (j) (x− z) j

j! − (x− z)n+1

(n+ 1)! Q∗ (10.37)

Note that for fixed values of a and x, F is a function of z alone and is differentiable.
Therefore,

F′(z) = − f ′(z)+ f ′(z)− (x− z)f ′′(z)+ 2(x− z)

2! f ′′(z)

− (x− z)2

2! f (3)(z)+ . . .+ (x− z)n−1

(n− 1)! f (n)(z)

+ n(x− z)n−1

n! f (n)(z)− (x− z)n

n! f (n+1)(z)

+ (n+ 1)(x− z)n

(n+ 1)! Q∗

(10.38)

Simplifying,

F′(z) = − (x− z)n

n! f (n+1)(z)+ (x− z)n

n! Q∗ (10.39)

Furthermore, because F(x) = F(a) = 0, the conditions of Rolle’s theorem hold and
for some value of z, say, ξ , F′(ξ ) = 0. Therefore,
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Q∗ = f (n+1)(ξ ) (10.40)

and

Rn(x) = (x− a)n+1

(n+ 1)! f (n+1)(ξ ) (10.41)

Recall that ξ lies somewhere between x and a. Therefore we can write

ξ = a+ θ (x− a) 0 < θ < 1 (10.42)

Substituting (10.42) in (10.41) we have Lagrange’s3 form of the remainder:

Rn(x) = (x− a)n+1

(n+ 1)! f (n+1)(a+ θ (x− a)) (10.43)

and when a = 0

Rn(x) = xn+1

(n+ 1)! f
(n+1)(θx) (10.44)

Now we can assess the accuracy of the Taylor approximation. For example, in the
case of calculating e, the remainder will be

Rn = xn+1

(n+ 1)!e
θx

The first question is whether Rn → 0 as n →∞, that is, if the Taylor series of e is
convergent. For a fixed x the value of eθx is constant. Therefore we should look at

lim
n→∞

xn+1

(n+ 1)! = lim
n→∞

x

1
× x

2
× . . .× x

n
× x

n+ 1

For a finite fixed x, the last term approaches zero as n → ∞. Therefore, the series
is convergent. We can estimate the error of calculation by finding an upper limit for
it. For x = 1 and θ < 1 we have

eθx < 3

Therefore, the upper limit of the error of calculation is

Rn <
1

(n+ 1)!3

3After Joseph-Louis Lagrange (1736–1813), who was considered a great mathematician at 23 and
whom Napoleon Bonaparte referred to as “The Lofty Pyramid of the mathematical sciences.”
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Thus,

Rn <

⎧⎪⎨
⎪⎩

8.2672× 10−6

4.68576× 10−16

3.64838× 10−34
for n =

⎧⎪⎨
⎪⎩

8

17

30

10.2.1 Exercises

E.10.7 Write the remainder term for the function in E.10.1 and E.10.2.

E.10.8 Compute an order of magnitude for the accuracy of your results in E.10.3.

10.3 Finding the Roots of an Equation

Finding the roots of an equation, that is, computing x∗ such that f (x∗) = 0, can be
accomplished with several different algorithms. One effective algorithm, Newton’s4

method, is based on the Taylor expansion. Here we will discuss this method and
compare it to another method called the bisection method. Both are members of the
family of iterative methods.

10.3.1 Iterative Methods

In Chap. 3, we briefly discussed the idea behind iterative methods. Because the
subject is of importance both in computation and econometrics, we illustrate it once
more with a similar example. This time we will try to find the cubic root of a number.
Suppose we are interested in finding the cubic root of the number, say, 91125. Let
us start with an initial guess and for the time being we make an off-the-wall guess,

4Sir Isaac Newton (1643–1727) is a giant in the history of science; indeed, the publication of
his Philosophiae Naturalis Principia Mathematica, usually referred to as Principia, is a turning
point in the history of humankind. He invented calculus, discovered important laws of physics,
and showed that the universe works on mathematical principles. Yet, he found time to improve the
operation of the Royal Mint. He also served as the president of the Royal Society and shaped it to
become the leading scientific society in the world. Newton was a loner and secretive. He did not
acknowledge the contribution of other scientists and got into a bitter dispute with Leibnitz over
the invention of calculus and with Robert Hooke (1635–1703), another pioneer scientist, over the
theory of light. There are many good books on the history of science. I suggest John Gribbin’s
Science, A History 1543–2001 (2002). On the life of Newton, the reader may be interested in
reading Isaac Newton: The Last Sorcerer by Michael White (1997). The German mathematician,
Gottfried Wilhelm Leibnitz (1646–1716), independently invented calculus. His exposition was eas-
ier to understand than Newton’s. The two engaged in a bitter dispute over who had priority. Leibnitz
organized the Berlin Academy of Sciences and served as its first president. He had other interests,
including law and economics, and for a time served as a diplomat.
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Table 10.3 Iterative method
to find the cubic root of a
number in Excel

A B

91125 20
=(1/3)∗(2∗B1+(A$1/(B1ˆ2)))
=(1/3)∗(2∗B2+(A$1/(B2ˆ2)))
...

say, y0 = 20. If this guess is a good one, then 91125/(202) will be very close to
our initial guess. But it is not. How can we get closer to the correct number? Let
us consider the weighted average of our initial guess and the number 91125/(202)
where the initial guess has the weight of 2.

y1 = 1

3

(
2y0 + 91125

y2
0

)

Our next result is y1 = 89.270833. If we repeat the step above, we have

y2 = 1

3

(
2y1 + 91125

y2
1

)
= 63.325399

A few more iterations and we have our number: 3
√

91125= 45. This procedure can
be programmed in Matlab or Excel. In an Excel worksheet make the entries shown
in Table 10.3. Highlight the square B2 and drag it down a few rows.

You will get the answer.

A B

91125 20
89.270833
63.325399
49.791545
45.446310
45.004369
45
45

A Matlab program accomplishes the same task.

Matlab code

% Specify the number

A = 91125

% Initialize y

y = 20

z = 0
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% specify the degree of precision, delta

delta = 0.00001

% Find the cubic root of A

while abs(z-y) > delta

z = y;

y = (2*y + A./(y.ˆ2))./3;

end

The above routine illustrates the process of all iterative algorithms, which have three
basic ingredients: a starting point, a desired level of accuracy, and a recurrence
formula.

yj = 1

3

(
2yj−1 + 91125

y2
j−1

)
(10.45)

The speed of computation is greatly enhanced by choosing a starting point closer to
the final result (see E.10.11). The desired level of accuracy depends on the purpose
of computation. In general, depending on the problem at hand, we should set a limit
reflecting the desired precision of the results and terminate the process when the
results obtained in two consecutive iterations differ by less than the preset limit 
.
Of course, this limit should not be less than the precision of Matlab or any other
software we may be using. Finally, we need a recurrence formula that is convergent,
that is, in every step it gets closer to the final answer.

The algorithm is implemented in four steps:

1. Choose a 


2. Choose a starting point x0
3. Calculate xj based on xj−1
4. Repeat step 3 until

∣∣xj − xj−1
∣∣ < 


In the next two sections, we flesh out these concepts by discussing two algorithms
for finding the roots of an equation.

10.3.2 The Bisection Method

Suppose we are looking for the roots of the equation f (x) = 0 where f is a continuous
function. Further suppose that within the interval [a, b] the function changes sign
such that f (a)f (b) ≤ 0. Then clearly one root lies in that interval. Calculate the
function at the midpoint m = (a+ b)/2 If the function changes sign between a and
m, then the solution lies in the interval [a, m], or else it lies in the interval [m, b].
Either way, we divide the interval within which the root lies into two equal segments
and repeat the procedure until we are as close as we wish to the root. Because this is
an iterative method, we need a starting point and a tolerance level or a stopping rule
for ending the iteration. The following Matlab program illustrates the algorithm.
First, we specify the function



10.3 Finding the Roots of an Equation 273

Matlab code

function y = f(x)

y = x.ˆ2 - exp(x)

and save it in an m.file. The solution based on bisection can be obtained using
the following program:

Matlab code

% Specify the interval containing the solution

a = -3;

b = 3;

% check that the interval contains the root

if f(a).∗f(b) > 0

disp(′The interval does not contain the root

of the equation.′)
return

end

% specify delta

delta = 0.00001 + eps.∗max(abs(a), abs(b))

while abs(a-b) > delta

m = (a+b)/2;

if f(a).∗f(m) <= 0

b = m;

else

a = m;

end

end

x = (a+b)/2

We could make this program more efficient by cutting down the number of times
the function f has to be evaluated. This can be accomplished by storing f(a),
f(b) and f(m) once they are evaluated in, say, fa, fb, and fm. Note also that
you can change the function in m.file as well as a, b, and the Delta in the body
of the program.

10.3.3 Newton’s Method

Suppose we are interested in finding the roots of the function y = f (x), that is, x∗
such that f (x∗) = 0. Consider the first two terms of the Taylor expansion of this
function

P (x) = f (x0) + (x− x0) f ′ (x0) (10.46)

If P(x) is a good approximation for f (x) and if x∗ is the root of this function, then

P(x∗) = 0 (10.47)
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and we have

f (x0)+ (x∗ − x0)f ′(x0) = 0 (10.48)

which implies

x∗ = x0 − f (x0)

f ′(x0)
(10.49)

But this would be true if either x0 = x∗or P(x) was exactly equal to f (x). Because
P(x) is only an approximation and we may not have been lucky to pick x0 = x∗,
our first result will be only an approximation. Let us call it x1 and ask if we could
improve upon it. Certainly x1 is closer to x∗ than x0. But if we now take x1 as our
initial guess and repeat the process, we will get even closer to x∗. This observation
suggests that we should start with some initial guess, x0 and at every stage replace
xj−1 by

xj = xj−1 − f (xj−1)

f ′(xj−1)
(10.50)

and stop the process when
|xj − xj−1| < 
 (10.51)

where again 
 is a preset precision level. The method can be illustrated geomet-
rically. In Fig. 10.3 we start with the initial guess x0. The tangent to the curve at
point (x0,f (x0)) when extended to intersect the x-axis provides us with the next point
x1. The length |x1 − x0| is equal to f (x0) /f ′ (x0), but because we are moving in the
negative direction, we have x1 − x0 = −f (x0) /f ′ (x0). We repeat the same process
for point x1 and gradually approach x∗.

Fig. 10.3 Geometric
representation of Newton’s
method
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Example 10.9 In Chap. 3, we showed that the following recurrence formula can be
used to compute the square roots of a number:

xj = 1

2

(
xj−1 + A

xj−1

)

We can show that this formula is a special case of Newton’s method. Consider the
equation

f (x) = x2 − A = 0

whose solution is the square root of A. Since f ′ = 2x, applying Newton’s method,
we have

xj = xj−1 − f (xj−1)

f ′(xj−1)

= xj−1 −
x2

j−1 − A

2xj−1

= 1

2

(
xj−1 + A

xj−1

)

The same can be shown for the recurrence formula of computing the cubic root (see
E.10.11).

In order to program Newton’s method in Matlab we need to evaluate the deriva-
tive of the function. This can be done in three ways. We can use another m.file to
define the derivative or, alternatively, we can use programs that calculate the deriva-
tive of a function. But the simplest way is to use the approximation of derivatives
discussed in Chap. 8, that is,

f ′(x) ≈ f (x+ h)− f (x− h)

2 h
(10.52)

Matlab code
% Specify the initial guess

xi = 0.1;

% specify delta and h

delta = 0.00001 + eps.∗f(xi)
h = 0.001

while norm(f(xi)) > delta

% Watch the parentheses as they are important

xi = xi-f(xi)./((f(xi+h) - f(xi-h))./(2.∗h));
end

Again the program can be refined and its parameters reset. Matlab has a ready-made
function for finding the roots of a nonlinear equation. It is based on a combination
of methods including bisection. Recall that we already have specified the f function.
Then we can find the solution as
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Matlab code
z = fzero(@f,0.1)

10.3.4 Exercises

E.10.9 Solve the following equations using both bisection and Newton’s methods.

i. x3 − 5x+ 14 = 0

ii. x3 − 4x2 + 7x− 8 = 0

iii. xex − 12 = 0

iv. x4 − 3x3 + 5x2 + x− 12

E.10.10 Use the Matlab fzero function to check your results in E.10.9.

E.10.11 Use the Excel routine to find the cube of the following numbers:

i. 456987, ii. 312701, iii. 8123455

After finding the cube root, move your initial guess closer to the final result and see
the effect on the number of iterations needed.

E.10.12 Show that the formula in (10.45) for calculating the cubic root of a number
is a special case of Newton’s method. [Hint: Consider the solution of the equation
y3 − A = 0 by Newton’s method.]

10.4 Taylor Expansion of Functions of Several Variables

The Taylor formula can readily be applied to functions of several variables. Consider
the function

z = f (x, y) (10.53)

To write its Taylor expansion near the point (x0, y0), let
δx = x− x0

δy = y− y0

Then
f (x, y) = f (x0, y0)+ fx(x0, y0)δx+ fy(x0, y0)δy

+1

2

[
fxx(x0, y0)(δx)2 + 2fxy(x0, y0)(δxδy)+ fyy(x0, y0)(δy)2

]
+ 1

3!
[
fxxx(x0, y0)(δx)3 + 3fxxy(x0, y0)(δx)2δy

+3fxyy(x0, y0)(δy)2δx+ fyyy(x0, y0)(δy)3
]+ · · ·

(10.54)
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Example 10.10 Consider the function

f (x, y) = 2x2 − 4xy+ 3y2

and the point

x0 = 1, y0 = 1

because

fx = 4x− 4y fy = −4x + 6y

fxx = 4 fxy = −4 fyy = 6

Evaluating the first two derivatives at point (x0, y0), we have fx (1, 1) = 0 and
fy (1, 1) = 2. The last three derivatives are constant. Thus, the Taylor expansion is

f (x, y) = (2− 4+ 3)+ (x− 1)(0)+ (y− 1)(2)

+ 1

2
[(x− 1)2(4)+ 2(x− 1)(y− 1)(−4)+ (y− 1)2(6)]

= 2x2 − 4xy+ 3y2

Example 10.11 Let us write the Taylor expansion of the function

f (x, y) = ex+y

near the point

x0 = y0 = 0

The first- and second-order derivatives of the function are

fx = fy = ex+y, fxx = fxy = fyy = ex+y

Evaluated at point (0, 0), they are all equal to 1. Thus,

f (x, y) = 1+ x+ y+ 1

2
(x2 + 2xy+ y2)+ 1

3! (x
3 + 3x2y+ 3xy2 + y3)+ R3

Example 10.12 For the function z = yex the first three terms of the Taylor series
near the point (x0 = 0, y0 = 1) are

z ≈ 1+ x+ (y− 1)+ 1

2
[x2 + 2x(y− 1)]+ 1

6
[x3 + 3x2(y− 1)]
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because

fx = yex, fy = ex, fxx = yex, fxy = ex, fyy = 0

and

fxxx = yex, fxxy = ex, fxyy = 0, fyyy = 0

Using the notation developed in Chap. 9, we can write the Taylor series in a very
compact form. Recall that we defined the gradient of the function

y = f (x) x = [x1, x2, . . . , xk]′ (10.55)

as

∇f (x) =

⎡
⎢⎢⎣

∂f /∂x1

...

∂f /∂xk

⎤
⎥⎥⎦ (10.56)

and its Hessian as

∇2f (x) =
[

∂2f

∂xi∂xj

]
i, j = 1, . . . k (10.57)

Using the above notation, we can write the Taylor series of y = f (x) near point
a = [a1, a2, . . . , ak]′ as

f (x) = f (a)+ (x− a)′∇f (x) + (x− a)′∇2f (a)(x− a)+ R3 (10.58)

Note that we stopped at the terms involving second derivatives. The first derivatives
are represented by a vector which is a k×1 column. The Hessian is a matrix and has
two dimensions. The set of third-order derivatives have to be presented by a cube
of three sides to which a vector of the form [x − a] will be attached. The fourth-
order derivatives have to be presented in a four-dimensional space that we cannot
even visualize. A discussion of symbols to represent such entities is well beyond the
scope of this book. But the good news is that for most analytical purposes the first
three terms of the Taylor series are all we need. Of course, we can always resort to
the form of (10.54) for any number of terms that we may need.

Example 10.13 We can extend the results regarding the mean and variance of a
nonlinear function of estimated parameters (Examples 10.5 and 10.6) to the case of
a vector of parameters �.

Then

Ef (�̂) = f (E(�̂)) (10.59)
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and denoting the covariance matrix of �̂ by V(�̂) we have

Var(f (�̂)) = E[f (�̂)− Ef (�̂)][f (�̂)− Ef (�̂)]′

= ∇f (�̂)E[�̂− E(�̂)][�̂− E(�̂)]′(∇f (�̂))′

= ∇f (�̂)V(�̂)(∇f (�̂))′
(10.60)

10.4.1 Exercises

E.10.13 Write the first eight terms of the Taylor series of the following functions:

i. z = x− y

x+ y
, ii. z = e2x−3y, iii. z = ln(x+ y)

E.10.14 Write the Taylor expansion of the following functions near point (K0, L0).

i. Q = AKαLβ

ii. Q = (αKρ + βLρ)1/ρ

E.10.15 Suppose we have a model and have estimated E(y) by ŷ. Further assume
that var(ŷ) = σ̂ 2. What would be a reasonable estimate of E(ey) and its variance?



Chapter 11
Integration

In Chap. 8 we saw that by taking the derivative of the total cost function with respect
to the amount of output, we can obtain the marginal cost function. Because an inte-
gral is the inverse of the derivative, we may ask if the reverse is true. The answer is,
yes, almost. By taking the integral of the marginal cost function we can get the total
cost function up to an additive constant (indefinite integral). Whereas the mathemat-
ical logic for this will become clear later, the economic logic should be evident to
the reader. A knowledge of fixed cost is not contained in the marginal cost function,
and, therefore, we will know the total cost function, except for the amount of the
fixed cost that we will show by the unknown constant C.

In Chap. 4 we discussed probability distributions and moments of discrete ran-
dom variables, but we could not do the same for continuous random variables.
Suppose there are n random events A1, . . . , An and we assign to each event the prob-
ability P (Ai) = Pi, (i = 1, . . . , n). In order for Pi

′s to be probabilities, we should
have n∑

i=1

Pi = 1

But when dealing with continuous random variables, which may take any real
number between 0 and 1 (e.g., uniform distribution) or on the extended real line
(e.g., normal distribution), we cannot use summation and should resort to definite
integral. Integration is the counterpart of summation for continuous variables. It
allows us to derive probability distributions and moments of continuous random
variables. The same device will help us when we deal with continuous time models
in economics.

For example, in the continuous time analysis of a compounding interest rate or
in discounting future utilities, we need to replace summation with integration. Other
applications of integration are in continuous dynamic analysis and in many problems
in economics and econometrics that require numerical integration.

There are two types of integrals. One represents the area under a curve1 with
a sign (definite integral). The other is the inverse of a derivative and represents a

1Or the volume under a surface in case of a double integral and a 4-, 5-, . . . dimensional space in
case of triple, . . . integrals.

281K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_11, C© Springer-Verlag Berlin Heidelberg 2011



282 11 Integration

family of functions (indefinite integral). Whereas the two are related, they are con-
ceptually different. In this chapter we will discuss both and outline their connection
and their differences. Certainly it is easier to visualize the definite integral as the
area under a curve, but for the ease of exposition we start with the indefinite integral
and then present the definite integral. After learning the mathematics of integration,
we will show how to conduct numerical integration using Matlab; needless to say,
the algorithm can be programmed using other software and languages as well. Then
we discuss the very useful subject of differentiation of an integral.

11.1 The Indefinite Integral

Definition 11.1 Consider the function f (x). If we can find a function F(x) (and this
may not always exist) such that dF(x)/dx = f (x), the integral of f(x) is defined as

∫
f (x)dx = F(x)+ C (11.1)

F(x) is called the indefinite integral, f (x) the integrand, and C the constant of
integration.

The qualifier “indefinite" is used because the result of the integration is a fam-
ily of functions when C is not determined, and a function when the value of C is
determined. By contrast we shall see later that a definite integral could be a number.
The reader should satisfy herself that the derivative of the RHS is indeed f (x). This
integral is referred to as the Riemann integral.2 If a function is continuous over an
interval [a, b], then it has an integral over that interval. Evidently, not all functions
have integrals.

Example 11.1 Find the integral of f (x) = 3ax2. Solution:

F(x) =
∫

3ax2dx = ax3 + C

Because taking the derivative is the inverse of finding an integral, we can check
the correctness of our results by taking the derivative of the function F(x) = ax3+C.

dF(x)

dx
= d

dx
ax3 + d

dx
C

= 3ax2 + 0

2After the German mathematician Georg Friedrich Berhard Riemann. There are other types of
integrals: the Riemann-Stieltjes integral, which we shall discuss briefly later in this chapter, and
the Lebesgue integral, a discussion of which is beyond the scope of the present book. We shall
refer to the Riemann integral as the integral.
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11.1.1 Rules of Integration

In Table 11.1 are the integrals of several simple functions. Check their validity by
taking the derivatives of the RHSs and comparing them to the function under the
integral sign. There are a number of publications3 where the reader can find the inte-
grals of a vast array of simple and very complicated functions, although it is quite
unlikely that one would encounter more than a handful of these in the first 100 years
of life. In addition, computer software such as Mathematica, Maple, and Matlab
provide routines for finding integrals of different functions. Still, it is strongly rec-
ommended that the reader memorizes these and a few other integrals. In addition to
these rules, two properties of the indefinite integral should be mentioned.

Property 11.1 The integral of the sum of two functions is equal to the sum of their
integrals, that is, ∫

[f1(x)+ f2(x)]dx =
∫

f1(x)dx+
∫

f2(x)dx (11.2)

Example 11.2 Let f1 (x) = 5x and f2(x) = 9x2.
Then ∫

(5x+ 9x2)dx =
∫

5xdx+
∫

9x2dx = 5

2
x2 + 3x3 + C

Example 11.3 For the functions f1(x) = sin 2x and f2(x) = 1/x, we have

∫ (
sin 2x+ 1

x

)
dx =

∫
sin2xdx+

∫
1

x
dx = −1

2
cos 2x+ ln x+ C

Table 11.1 Rules of integration

∫
xndx = xn+1

n+ 1
+ C where n is an integer and n�= − 1

∫
x−1dx = ∫ dx

x
= ln |x| + C∫

exdx = ex + C∫
axdx = ax

ln a
+ C where a is a positive constant∫

sinxdx = − cos x+ C∫
cosxdx = sin x+ C∫
tanxdx = − ln |cos x| + C

3For example, Table of Integrals, Series and Products by Gradshteyn and Ryzhik, translated by
Alan Jeffrey, 1980.
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Property 11.2 A multiplicative constant can be factored out of an integral, that is,∫
af (x)dx = a

∫
f (x)dx (11.3)

Example 11.4

i.
∫

2x5dx = 2
∫

x5dx

ii.
∫

b cos
(

x+ π

2

)
dx = b

∫
cos
(

x+ π

2

)
dx

Example 11.5 (Harrod-Domar Growth Model). The Harrod-Domar model of
economic growth consists of the following equations4:

Y(t) = 1

α
K(t) (11.4)

dK

dt
= I(t)− ρK(t) (11.5)

I(t) = i(t)Y(t) (11.6)

where Y is output, K capital stock, I investment, t time, α the capital-output ratio,
ρ depreciation rate, and i the portion of income devoted to investment. Y, K and
I are in constant price monetary units. If we let i(t) = s where s is the marginal
propensity to save-assumed to be constant over time—then these three equations
represent relaxation of basic short-run Keynesian assumptions: (1) Output is depen-
dent on the productive capacity, and therefore aggregate supply is no more infinitely
elastic; (2) capital stock changes as a result of investment; and (3) investment is
not autonomous but depends on savings. In this manner, Harrod-Domar adapted the
short-run Keynsian model to serve as a long-run growth model. It should be noted
that despite its shortcomings and the many criticisms levied at it, the Harrod-Domar
model, because of its tractability, for a long time served as a useful tool of macroeco-
nomic planning and policy analysis. Taking the derivative of income, Y, with respect
to time and substituting for dK/dt from (11.5) and for I from (11.6), we have

dY

dt
= 1

α

dK

dt

= 1

α
(I − ρK)

= 1

α
(iY − ραY)

4The Harrod and Domar models are similar in their mechanics, but Harrod’s model involves expec-
tations that are absent from Domar’s model. See “An Essay in Dynamic Theory,” by Roy F. Harrod
in Economic Journal (1939) and “Capital Expansion, Rate of Growth and Employment,” by Evsey
D. Domar, Econometrica (1946).
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Thus, the output will grow at the actual rate of

dY/dt

Y
= i

α
− ρ

Rearranging, we have

dY

Y
=
(

i

α
− ρ

)
dt

Integrating both sides,

ln Y =
∫ (

i

α
− ρ

)
dt + C

or
Y = Ae

∫
( i
α
−ρ) dt where A = eC

Because i depends on time and we do not know the explicit form of the
dependence, we have to leave the integral as it is. If, however, i(t) = s, then

Y = Ae( s
α
−ρ)t

s

α
− ρ is referred to as the warranted rate of growth.

11.1.2 Change of Variable

Suppose we want to find the following integral:

∫
f (g(x))g′(x)dx (11.7)

Set u = g(x), which implies du = g′ (x) dx, and we have

∫
f (g(x))g′(x)dx =

∫
f (u)du (11.8)

The change of variable is intended to simplify the integration; therefore, the
choice of the substitute variable has to be made with this purpose in mind. We
illustrate this with a few examples.

Example 11.6 Find the following integral:

z =
∫

cos x

sin x
dx



286 11 Integration

If we choose y = sin x as a substitute variable, we have dy = cos xdx. The
integration is simplified to

z =
∫

dy

y
= ln |y| + C = ln | sin x| + C

Example 11.7

z =
∫

5x

x2 + 1
dx

Make the following change of variable:

y = x2 + 1

which implies

dy = 2x dx

Now we have

z = 5

2

∫
2xdx

x2 + 1

= 5

2

∫
dy

y

= 5

2
ln y+ C

= 5

2
ln(x2 + 1)+ C

Example 11.8 Find the following integral:

z =
∫

(ln x)2

x
dx

Make the substitution y = ln x, which implies dy = (1/x) dx, hence

z =
∫

y2dy

= 1

3
y3 + C

= 1

3
(ln x)3 + C
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11.1.3 Integration by Parts

There are times when the integrand is not easily integrable. In such cases we may
resort to integration by parts, that is, finding an equivalent expression that is easier
to integrate. Let us first have an example.

Example 11.9 Find the following integral:

z =
∫

x cos xdx

This is not an easy one; at least, we don’t find it among our formulas in
Table 11.1. Let us replace it with something easier to integrate (don’t ask how I
know they are equivalent; it will become clear soon).

z =
∫

x cos xdx

= x sin x− ∫ sinxdx

= x sin x+ cos x+ C

Thus, the integration by parts allowed us to get rid of the multiplicative form x cos x
and have an easier integrand. To verify that indeed the integration is correct, we take
the derivative of z:

d

dx
(x sin x+ cos x+ C) = sin x+ x cos x− sin x

= x cos x

The rationale for the above exercise goes back to Chap. 8. There we had

d (uv) = vdu+ udv (11.9)

It follows that ∫
d(uv) =

∫
vdu+

∫
udv (11.10)

or ∫
udv = uv−

∫
vdu (11.11)

Thus, anytime we have a situation where an integrand poses difficulty, we can try
to see if it is in the form of udv and replace it with vdu. In the example above we had

u = x, dv = cos xdx
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Therefore,

du = dx, v = sin x

Note that there is nothing mechanical here; if we choose our substitution differ-
ently, not only will the integration not be easier, it may even be more difficult. For
example, instead of what we did above, try

u = cos x and dv = xdx

and see that the integrand is even more intractable. Sometimes we need to use inte-
gration by parts twice or more to find the integral. The next two examples illustrate
this point.

Example 11.10 Find the following integral:∫
xexdx

Let
u = x, ⇒ du = dx,

dv = exdx ⇒ v = ex

Now we have ∫
xexdx = xex −

∫
exdx

= xex − ex + C

Example 11.11 Find the following integral:∫
x2exdx

Let
u = x2, du = 2xdx

dv = exdx, v = ex

Now we have ∫
x2exdx = x2ex − 2

∫
xexdx

The integral on the RHS again requires integration by parts, which we already
did in Example 11.11. Thus,∫

x2exdx = x2ex − 2(xex −
∫

exdx)+ C

= x2ex − 2(xex − ex)+ C

= ex(x2 − 2x+ 2)+ C
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We can check the correctness of our answer by taking the derivative of F(x):

d

dx
F(x) = d

dx
(ex(x2 − 2x+ 2)+ C)

= ex(x2 − 2x+ 2)+ ex(2x− 2)

= x2ex

11.1.4 Exercises

E.11.1 Find the following indefinite integrals.

i.
∫

dx

x ln x
ii.
∫

(x2 + x+√x)dx iii.
∫

6x5dx

iv.
∫

dx

cos2 3x
v.
∫

dx

2x− 4
vi.

∫
xdx√

3x2 + 4

vii.
∫

ax2

√
x3 + 8

dx viii.
∫

cos xdx

sin2x

ix.
∫

ln(2x+ a)

2x+ a
dx for a > 0

11.2 The Definite Integral

Consider Fig. 11.1 and let us assume that we want to calculate the area under the
solid straight line and above the x-axis, that is, the area of the trapezoid h1h2x1x2.
From elementary geometry we know that the area is equal to

A = (y1 + y2)

2
× (x2 − x1)

Fig. 11.1 Area under a
straight line
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The equation for a line is of the form

y = a+ bx

which implies
y1 = a+ b x1

y2 = a+ b x2

Therefore, the area is

A = 2a+ b(x1 + x2)

2
(x2 − x1)

= a(x2 − x1)+ 1

2
b
(

x2
2 − x2

1

)

=
(

ax2 + 1

2
bx2

2

)
−
(

ax1 + 1

2
bx2

1

)

=
[

ax+ 1

2
bx2
]x2

x1

where the last equality is a shorthand that indicates the difference between the
expression inside the bracket evaluated at x2 and x1.

The above is an example of integration and a definite integral. A definite inte-
gral is a number, the area of the trapezoid5h1h2x1x2. Note that if we take the
derivative of the expression inside the brackets, we get the equation of the line
we started with, that is, y = a + bx. Having the function inside the brackets,
we could evaluate it at any two points and obtain the area under that segment of
the line. Indeed, we can do this for any curve and not just a straight line. On the
other hand, if we concentrate on the function inside the bracket and do not think of
any area or points at which to evaluate it, we have the basic idea of the indefinite
integral.

You might say that this was easy, I have known how to find the area of a trape-
zoid since elementary school and there was no point in resorting to the concept of
an integral. You are right. We are going to make it more interesting. Consider the
function y = f (x) depicted in Fig. 11.2a. Suppose we want to find the area under
this curve and above the closed interval [a, b] on the x-axis. We can obtain an esti-
mate of the lower bound of this area by dividing the [a, b] interval into n segments,
calculating the areas of the resulting rectangles, and adding them up. Consider the
intervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn],

5Strictly speaking, it is the area under a curve with a sign because the area under the x-axis is sub-
tracted from the area above it. Moreover, as we will see later, interchanging the limits of integration,
that is, changing the place of x1 and x2 in the last expression will change the sign of A.



11.2 The Definite Integral 291

(a) (b)

Fig. 11.2 (a) Estimating the area under a curve S−n ; (b) Estimating the area under a curve S+n

where
a = x0 < x1 < x2 . . . < xn = b

Let

xi = xi − xi−1 i = 1, . . . , n

Because the height of each interval is Li, i = 1, . . . n, we have our estimate of
the lower bound of the area as

S−n =
n∑

i=1

Li
xi (11.12)

Going to Fig. 11.2b, we can repeat the same process to get an upper bound for
the area. Because the height of rectangles are Hi, i = 1, . . . n, we have

S+n =
n∑

i=1

Hi
xi (11.13)

Now for each interval pick a point ui such that

xi−1 < ui < xi i = 1, . . . , n

Because for each interval, Li is the lowest value and Hi the highest value of the
function f (x), we have

Li ≤ f (ui) ≤ Hi (11.14)

It follows that

S−n =
n∑

i=1

Li
xi ≤
n∑

i=1

f (ui)
xi ≤
n∑

i=1

Hi
xi = S+n (11.15)



292 11 Integration

The idea is to increase n and make 
xi
′s smaller and smaller, which will result

in S−n and S+n getting closer and closer to each other. In the limit, the two bounds are
equal and we will have the integral.

Example 11.12 Evaluate

∫ b

a
kxdx.

This is the same problem as in Fig. 11.1 except that the new line passes through
the origin. Let us divide the interval [a, b] into n subintervals of the length 
x =
b− a

n
. Then we have

x0 = a

x1 = a+
x

. . .

xi = a+ i
x

. . .

xn = a+ n
x = b

Form the lower sum as

S−n =
n−1∑
i=0

k(a+ i
x)
x = k

[
na+

(
n−1∑
i=0

i

)

x

]

x

Because

n−1∑
i=0

i = n(n− 1)

2

and


x = b− a

n

we have

S−n = k

[
na+ n(n− 1)(b− a)

2n

]
b− a

n

= k

[
a+ (n− 1)(b− a)

2n

]
(b− a)
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When we take the limit of S−n and n →∞, we get the integral of the function kx
in the interval [a, b]:

∫ b
a kxdx = lim

n→∞ S−n

= k

[
a+ (b− a) lim

n→∞
n− 1

2n

]
(b− a)

= k
b2 − a2

2

Example 11.13 Evaluate

∫ b

a
kexdx

Following the same procedure as in the previous example, we have

S−n =
n−1∑
i=0

kea+i
x
x = kea

(
n−1∑
i=0

ei
x

)

x.

Because

n−1∑
i=0

ei
x = en
x − 1

e
x − 1

and

S−n = kea en
x − 1

e
x − 1

x = kea eb−a − 1

e
x − 1

x = k(eb − ea)


x

e
x − 1

we have

lim

x→0

S−n = k(eb − ea) lim

x→0


x

e
x − 1

By l’Hôpital’s rule (see Chap. 8), the limit of the RHS is the same as the limit of
the ratio of the derivative of the numerator to the derivative of the denominator with
respect to the variable going to the limit. That is,

lim

x→0


x

e
x − 1
= lim


x→0

1

e
x

Hence, we have

∫ b

a
kexdx = k(eb − ea) = kex

∣∣b
a
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As can be seen, the function under the integral sign is the derivative of the right-
hand-side function.

11.2.1 Properties of Definite Integrals

Below we state without proof a number of properties of definite integrals that will
prove handy.

Theorem 11.1 (Fundamental Theorem of Calculus). Let f (x) be a continuous
function over the interval [a, b] and

F(x) =
∫ x

a
f (t)dt (11.16)

Then
d

dx

∫ x

a
f (t)dt ≡ F′(x) = f (x), ∀x ∈ [a, b] (11.17)

Moreover, if f is differentiable and if f ′ is integrable, that is, if the following
integral exists ∫ x

a
f ′(t)dt, ∀x ∈ [a, b] (11.18)

then ∫ x

a
f ′(t)dt = f (x)− f (a) (11.19)

Example 11.14 Consider the function f (x) = 3x2 and consider the interval [1, 3],
and let

F(x) =
∫ x

1
3t2dt

From the rules of integration F(x) = x3 − 1. Thus,

d

dx

∫ x

1
f (t)dt = d

dx
[x3 − 1]

= 3x2

= f (x)

Moreover, f ′ (x) = 6x and

∫ x

1
6tdt = 3t2

∣∣∣x
1
= 3x2 − 3 = f (x)− f (1)
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Example 11.15 Consider the function f (x) = e2x that is continuous over the
extended real line (−∞, ∞). Let

F(x) =
∫ x

−∞
e2tdt

Using the rules of integration and recalling that

lim
x→−∞ e2x = 0

we have

F(x) = 1

2
e2x

It follows that
d

dx
F(x) = e2x = f (x)

Because f ′(x) = 2e2x is also continuous over the extended real line, we have

∫ x

−∞
2e2tdt = e2x = f (x)

Property 11.3 Let F(x) be an antiderivative of f (x), that is, f (x) = dF(x)/dx. Then

∫ b

a
f (x)dx = F(b)− F(a) (11.20)

Example 11.16 The antiderivative of f (x) = 2x is F(x) = x2. Thus,

∫ 1

0
2xdx = x2

∣∣∣1
0
= (1)2 − (0)2 = 1

Example 11.17 Let f (x) = ex. Then F(x) = ex, and

∫ b

a
exdx = ex

∣∣b
a = eb − ea

Example 11.18 Consider the function f (x) = cos x. Then

∫ 2

1

5

x
dx = 5 ln |x||21 = 3.4657359
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Example 11.19 For f (x) = cos x we have

∫ π
2

0
cosxdx = sin x|

π
2
0

= sin
(π

2

)
− sin(0)

= 1

Property 11.4 If we exchange the place of the lower and upper limits of an integral,
its sign will change. That is, ∫ b

a
f (x)dx = −

∫ a

b
f (x)dx (11.21)

Property 11.5 If the interval over which the function is integrated has length zero,
that is, b = a, the definite integral is zero:∫ a

a
f (x)dx = 0 (11.22)

Property 11.6 The integral of the sum of two functions is the sum of their integrals

∫ b

a
[f1(x)+ f2(x)]dx =

∫ b

a
f1(x)dx+

∫ b

a
f2(x)dx (11.23)

Property 11.7 A multiplicative constant can be factored out of the integral sign

∫ b

a
cf (x)dx = c

∫ b

a
f (x)dx (11.24)

Property 11.8 If function f (x) is less than or equal to another function φ(x) for
all points in the interval [a, b], then the definite integral f (x) over that inter-
val is less than or equal to the definite integral of φ(x) over the same interval.
That is, if

f (x) ≤ φ(x) x ∈ [a, b]

then ∫ b

a
f (x)dx ≤

∫ b

a
φ(x)dx (11.25)

In particular, if

f (x) ≥ 0 x ∈ [a, b]
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then

∫ b

a
f (x)dx ≥ 0 (11.26)

This property has an application in probability theory. Let f (x) be a density
function, which implies that it is nonnegative. Hence its definite integral, called
the probability distribution function, is always nonnegative, satisfying the axiom of
probability theory.

Property 11.9 (Mean Value Theorem). For the continuous function f (x), and the
closed interval [a, b], there exists

a ≤ u ≤ b

such that ∫ b

a
f (x)dx = (b− a)f (u) (11.27)

In other words, there is a point u such that the area of a rectangle with the width
b− a and the height f (u) is equal to the outcome of the definite integral of f (x) over
the interval [a, b].

Property 11.10 The definite integral of a function over the interval [a, b] is equal
to the sum of the definite integrals of the same function over two contiguous
subintervals [a, c] and [c, b].

∫ b

a
f (x)dx =

∫ c

a
f (x)dx+

∫ b

c
f (x)dx

a ≤ c ≤ b
(11.28)

Property 11.11 Limits of integration need not be fixed; they can be functions of x.
For example, ∫ h(x)

g(x)
f (t)dt (11.29)

When limits of integration are functions of x, it is better to designate the variable
of integration by another symbol, for example, t, to avoid confusion. Note that the
variable of integration plays a role similar to that of the counter-variable in summa-
tion, and therefore, change of symbol does not signify a change in the function. A
special case of the above property occurs when the upper limit of integration is x.
We have ∫ x

a
f (t)dt = F(x)− F(a)

= F(x)+ C
(11.30)
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Now the above integral is a function of x and is not a fixed value. Previously, we
noted that an indefinite integral evaluated over an integral [a, b] gives us the definite
integral. Now we see that a definite integral with the upper limit equal to x results in
an indefinite integral.

11.2.2 Rules of Integration for the Definite Integral

Rules of integration for the definite integral, with some adjustments, are the same as
for the indefinite integral presented in Table 11.1 and in Sect. 11.1.1. First calculate
the integral and then apply Property 11.3. The following examples illustrate the
point.

Example 11.20 Evaluate the following integral:

∫ b

a
xndx n �= −1

We already know that

F(x) =
∫

xndx = xn+1

n+ 1
+ C

Thus, we have ∫ b

a
xndx = F(b)− F(a)

= bn+1

n+ 1
+ C − an+1

n+ 1
− C

= bn+1 − an+1

n+ 1

As can be seen, the constant of integration drops out.

Example 11.21 Evaluate the following integral:

∫ 3π
2

π
2

cosxdx

Again, we have ∫ 3π
2

π
2

cosxdx = sin x|
3π
2

π
2

= sin

(
3π

2

)
− sin

(π

2

)
= −2



11.2 The Definite Integral 299

11.2.3 Change of Variable

Change of variable in the definite integral is the same as in the indefinite integral
with a major difference. Here we need to change the limits of integration as well.
We illustrate this with two examples.

Example 11.22 Evaluate the following integral:

∫ 3

0

5x

x2 + 1
dx

We make the following change of variable:

y = x2 + 1

which implies
dy = 2xdx

Also note that
x = 0 ⇒ y = 1

x = 3 ⇒ y = 10

Therefore, we have ∫ 3

0

5x

x2 + 1
dx = 5

2

∫ 10

1

ln y

y
dy

= 5

2
ln y

∣∣∣∣
10

1

= 5

2
ln(x2 + 1)

∣∣∣∣
3

0

= 5.7564627

Similarly when one or both limits of integration are functions of x, we have to
make the necessary adjustment(s) as in the next example.

Example 11.23 Evaluate the integral

∫ ex

1

(ln t)2

t
dt

Let y = ln t then dy = dt/t, and note that ln(1) = 0 and ln ex = x. We have

∫ x

0
y2dy = 1

3
y3
∣∣∣∣
x

0
= 1

3
(ln x)3

∣∣∣∣
ex

1
= 1

3
x3
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11.2.4 Integration by Parts

For a definite integral is the same as for an indefinite integral, that is,

∫ b

a
udv = uv|ba −

∫ b

a
vdu (11.31)

Example 11.24 Find the following integral:

∫ 2

1
xexdx

We have ∫ 2

1
xexdx = xex

∣∣2
1 −
∫ 2

1
exdx

= xex
∣∣2
1 −ex

∣∣2
1

= 2e2 − e2 − e+ e

= 7.3890561

Example 11.25

z =
∫ π

2

0
x cos xdx

= x sin x|
π
2
0 −

∫ π
2

0 sinxdx

= x sin x|
π
2
0 + cos x|

π
2
0

= π

2
− 1

Example 11.26 (Consumers’ Lifetime Utility). Most applications of the integral in
macroeconomics involve discounting future values to the present. For instance, it is
posited that consumers maximize their lifetime utility, U, where

U =
∫ ∞

0
e−ρtu(c(t))dt (11.32)

In (11.32), c(t) is consumption at time t, u(.) the instantaneous utility function,
and ρ the discount rate. Thus, the lifetime utility is the integral (sum) of all instan-
taneous utilities derived from consumption over time discounted to the present.
Sometimes the instantaneous utility function is assumed to be of the form

u(c(t)) = c(t)1−θ

1− θ
(11.33)

Example 11.27 (Price of a Bond). In Chap. 2 we showed that in case of continuous
compounding of interest, the value of A dollars of investment at time 0 would be
AerT at time T when the interest rate is r. It follows that the present value of H
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dollars at time T would be He−rT . In the same chapter, we showed that the value of
a bond that pays A dollars per year in perpetuity is A/r. This result has a continuous
time counterpart. Let ρ be the rate of interest in continuous time. Then, the value of
the bond would be

P = A
∫ ∞

0
e−ρtdt = A

e−ρt

−ρ

∣∣∣∣
∞

0
= A

ρ

Example 11.28 (Consumer and Producer Surplus). Consumer surplus, CS, is the
area below the demand curve and above the horizontal line P∗. Conceptually, it is
the difference between the sum of maximum prices consumers would have been
willing to pay for the good or service and the sum of what they paid in the market.
Producer surplus, PS, is the area above the supply curve and below the horizontal
line P∗ (see Fig. 11.3a). Again, conceptually, it is the difference between the sum
of what producers received in the market and the sum of minimum amounts they
would have been willing to settle for when supplying the same good or service, that
is, if each unit had been supplied at production cost. Thus,

CS =
∫ q

0
(D(t)− P∗)dt

PS =
∫ q

0
(P∗ − S(t))dt

where the upper limit of integration is q = D−1(p∗). The sum of consumer and
producer surplus is a social welfare function W if we agree to give all individuals
equal weights:

W = CS+ PS =
∫ q

0
(D(t)− S(t))dt

As can be seen in Fig. 11.3b, W is maximized when price is equal to the market
equilibrium price Pe, and q = D−1(pe) = S−1(Pe). Let us denote this maximum

(a) (b)

Fig. 11.3 (a) Consumer and producer surplus at disequilibrium price; (b) consumer and producer
surplus at equilibrium price
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by We and any other value of W by W∗;then We − W∗, that is, the area ABE
in Fig. 11.3a, is called the deadweight loss. Finally, because the supply curve in
the case of a single producer is the increasing segment of the marginal cost curve,
welfare maximization, in the above sense, requires marginal cost pricing.

Example 11.29 (Mean and Variance of Continuous Distributions). Integration is
an essential tool of probability theory when dealing with continuous variables.
Deriving probability distributions from density functions, showing that indeed a
function qualifies as a probability density function, and calculating the mean and
variance of a distribution all require integration. Here, we illustrate these applica-
tions using uniform and normal distributions. But first let us define a few concepts.
Let X ∈ (−∞,∞) be a random variable with density function f (x). Then its
probability distribution function F(x), mean E(X), and variance E[X − E(X)]2are
defined as6

P(X ≤ x) = F(x) =
∫ x

−∞
f (t)dt (11.34)

μ = E(X) =
∫ ∞

−∞
xf (x)dx (11.35)

σ 2 = E[X − E(X)]2 =
∫ ∞

−∞
(x− μ)2f (x)dx (11.36)

Example 11.30 (Mean and Variance of the Uniform Distribution). The random
variable X ∈ [a, b] whose density function is

f (x) =
⎧⎨
⎩

1

b− a
if a ≤ x ≤ b

0 otherwise.

is uniformly distributed. A special case of the uniform distribution is when X ∈
[0, 1]. Then f (x) = 1. Because f (x) ≥ 0, in order to show that f (x) is indeed a
density function, we have only to show that its integral is equal to 1.

∫ b

a
f (x)dx =

∫ b

a

1

b− a
dx = x

b− a

∣∣∣∣
b

a
= 1.

The probability distribution function, the mean, and variance of the uniform
distribution are

F(x) =
∫ x

a

1

b− a
dt = t

b− a

∣∣∣∣
x

a
= x− a

b− a

6In this definition and in what follows we use X as the random variable and x as its value or
realization. For instance, P(X ≤ x) = p means that the probability of random variable X being less
than or equal to the number x is p.
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Again note that, if X ∈ [0, 1], then F(x) = x.

μ =
∫ b

a
x

1

b− a
dx = x2

2(b− a)

∣∣∣∣
b

a
= a+ b

2

σ 2 =
∫ b

a
(x− μ)2 1

b− a
dx

Let

y = x− μ, dy = dx

σ 2 = 1

b− a

∫ b−a
2

a−b
2

y2dy = 1

3(b− a)
y3
∣∣∣∣

b−a
2

a−b
2

= (b− a)2

12

Example 11.31 (Mean of the Normal Distribution). The normal distribution has the
density function

f (x) = 1√
2πσ

exp

{
−1

2

(
x− μ

σ

)2
}

Hence the probability distribution function will be

F(x) =
∫ x

−∞
1√

2πσ
exp

{
−1

2

(
t − μ

σ

)2
}

dt

The above integral does not have a closed form and its values for different x have
to be calculated numerically. To show that indeed F(x) is a probability distribution,
we note that

f (x) ≥ 0 ∀x
implies

F(x) =
∫ x

−∞
f (t)dt ≥ 0 ∀x

Next we have to show that F(∞) = 1. This is a bit tricky. First, make the
following change of variable:

z = t − μ√
2σ

which implies

dz = dt√
2σ
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Thus,

∫ ∞

−∞
1√

2πσ
exp

{
−1

2

(
t − μ

σ

)2
}

dt = 1√
π

∫ ∞

−∞
e−z2

dz

The last integral is equal to
√

π . On this point you have to trust me. Showing this
result is not difficult, but it takes us off our track. Once you accept it, it follows that
F(∞) = 1 and the normal distribution is indeed a probability distribution function.
Next we show that

E(X) =
∫ ∞

−∞
x

1√
2πσ

exp

{
−1

2

(
x− μ

σ

)2
}

dx

=
∫ ∞

−∞
x
μ+√2σ z√

π
e−z2

dz

= μ√
π

∫ ∞

−∞
e−z2

dz+
√

2σ√
π

∫ ∞

−∞
ze−z2

dz

= μ−
√

2σ

2
√

π
e−z2

∣∣∣∣
∞

−∞

= μ

11.2.5 Riemann-Stieltjes Integral

So far we have been concerned with integration with respect to changes in the
variable x, that is, dx. We can generalize the notion of an integral by evaluat-
ing it when there is a change in an increasing function of x, that is, α(x). Thus,
the Riemann-Stieltjes integral is a generalization of the Riemann integral. We
have

z =
∫ b

a
f (x)dα(x) (11.37)

An example of the application of Riemann-Stieltjes integral is in probability the-
ory. Suppose the random variable x has the probability distribution function F(x)
over the interval [a, b]. Then

E(x) =
∫ b

a
xdF(x)
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Indeed, the expectation of any function of x, say, g (x), can be written

E(g(x)) =
∫ b

a
g(x)dF(x)

Example 11.32 Evaluate the integral

∫ 2

0
x3d(x2)

Because x2 is continuous and d(x2) = 2xdx, we have

∫ 2

0
x3d(x2) =

∫ 2

0
2x4dx = 2

5
x5|20 = 12.8

You might ask: “What is the big idea?” This seems to be another case of count-
ing legs of sheep and dividing by four to find the number of sheep. You are right,
but not totally. As long as we are dealing with continuously differentiable func-
tions, the Riemann-Stieltjes integral reduces to the Riemann integral. Thus, if g(x)
is continuously differentiable, we have

∫ b

a
f (x)dg(x) =

∫ b

a
f (x)g′(x)dx (11.38)

But there are times that g′(x) does not exist and in such cases the Riemann-
Stieltjes integral is a generalization of the Riemann integral.

Example 11.33 Evaluate the integral

∫ 10

0
xd(x− [x])

where [x] denotes the integer part of x and therefore x− [x] is the part of x after the
decimal point. Thus, if x = 5.367, [x] = 5, and x− [x] = 0.367,

∫ 10

0
xd(x− [x]) =

∫ 10

0
xdx−

∫ 10

0
xd[x]

= x2

2

∣∣∣∣
10

0

−
10∑

i=1

i

= 50− 55

= −5
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As can be seen, because of the discontinuity of [x], the Riemann integral does
not exist, but the more general Riemann-Stieltjes integral does.

11.2.6 Exercises

E.11.2 Evaluate the following definite integrals:

i.
∫ 2

0
x3dx ii.

∫ 1

0
2exdx iii.

∫ π

π
2

cosxdx

iv.
∫ 0

−π

2

sinxd xv.
∫ 3

0

dx

1+ x
vi.

∫ e

1

dx

x

vii.
∫ 5

−5
(x3 + 3x)dx viii.

∫ 5

1

dx

2x− 1
ix.
∫ π

2

0
cos2xdx

E.11.3 Show that σ 2 is the variance of normal distribution.

11.3 Computer and Numerical Integration

11.3.1 Computer Integration

As in the case of derivatives, you can use a computer program to find both the
definite and indefinite integral of a function. Below we discuss the Maple commands
for this purpose. In order to take an integral, you may define the function first and
then take the integral, or simply specify the function within the integral command.

Maple code

# Specify the function

f := 5∗xˆ2 - 3∗x + 14 ;

# Find the indefinite integral

int(f, x);

# The result will be

5

3
x3 − 3

2
x2 + 14x

# Note that the constant of integration does not

# appear in the answer. More important, the command

# is case sensitive. For example, if you type

Int(f, x);

# then instead of the indefinite integral above,

# you get
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∫
5x2 − 3x+ 14dx

# To find the definite integral of the function

# from x = 1 to x = 3, use the command

int(f, x=1..3);
# the result will be

178

3

# Again if you use the command Int(f, x=1..3);
# the result would be ∫ 3

1
5x2 − 3x+ 14dx

# You need not specify the function outside the

# Integration command. The following commands will

# result, respectively, in the indefinite and

# definite integral of the function specified above.

int(5∗xˆ2 - 3∗x + 14 , x);

int(5∗xˆ2 - 3∗x + 14 , x=1..3);

11.4 Numerical Integration

On many occasions we need to numerically evaluate a definite integral because the
integral cannot be written in a closed form or the problem may not lend itself to
analytical solution. For example, the following function can be written in closed
form and evaluated: ∫ b

a
xdx = x2

2

∣∣∣∣
b

a
= b2 − a2

2

But the following integral has no closed form and has to be evaluated
numerically: ∫ 2

0
e−t2 dt

Recall that a closed form is a simple formula that does not involve integrals or
infinite sums. For example,∫ u

0
e−t2 dt =

∞∑
j=0

(−1)ju2j+1

j!(2j+ 1)

and, therefore, the integral does not have a closed form. On the other hand,

∫ ∞

0
e−t2 dt



308 11 Integration

has a closed form because it is equal to
√

π/2. Similarly, in Bayesian statistics
and econometrics some problems involving multivariate integration may not be
analytically tractable and one has to resort to numerical integration.

We shall introduce the reader to numerical integration by first discussing the
trapezoid method that has the advantage of being simple and intuitively appealing.
The trapezoid method is a special case of Newton-Cotes,7 which is the most popular
method of numerical integration. The method is based on the Lagrange interpola-
tion formula and, therefore, we shall discuss it before presenting the Newton-Cotes
method. We leave it to the reader to show that indeed the trapezoid method is a
special case of the Newton-Cotes method (see E.11.6). We shall also discuss the
Simpson’s rule and show that it, too, is a special case of Newton-Cotes method.

11.4.1 The Trapezoid Method

This is perhaps the simplest method of numerical integration and is based on approx-
imating the area under the curve by the sum of the areas of trapezoids that can be
fitted under it (see Fig. 11.2a). Our objective is to find the integral

∫ b

a
f (x)dx

Let us divide the interval of integration [a, b] into n equal subintervals

[x0, x1], [x1, x2], . . . , [xn−1, xn]

and define

h = xi+1 − xi = b− a

n

that is, the width of each trapezoid under the curve is h. The area of the trapezoid is

h

2
[f (xi+1)+ f (xi)]

Summing over all intervals, we have

∫ b

a
f (x)dx ≈

n∑
i=0

h

2
[f (xi+1)+ f (xi)]

= h

[
f (x0)+ f (xn)

2
+ f (x1)+ f (x2)+ . . .+ f (xn−1)

]

7The British mathematician Roger Cotes (1682–1716) was a professor of astronomy in Cambridge
and made contributions to the study of logarithms, Newton’s method of interpolation, and numer-
ical integration. He also edited the second edition of Newton’s Principia. Cotes died young and
Newton who was 40 years his senior said “if he had lived we might have known something.”
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It is clear that the precision of the result increases with the number of subin-
tervals. To illustrate the effect of fineness of interval length on the precision of
the result, below we will first write a routine in Matlab that evaluates the above
expression using different subdivisions. The function we will evaluate is the stan-
dard normal distribution and the interval of integration starts at the mean and extends
to two standard deviations above it. Recall that the mean of this distribution is equal
to zero and its standard deviation one.

∫ 2

0

1√
2π

e
−1

2
t2

dt

Matlab code

% Define a function. In this case normal density

% function.

F=inline(′(1/sqrt(2∗pi))∗exp(-0.5∗x.ˆ2)′);
% Specify the limits of integration

a=0;
b=2;
% Define a counter to keep track of number of

% intervals

k=0;
% We are going to compute the integral with

% 4, 6, ..., 22 subintervals. That is, 2∗j.
for j=2:11

k = k + 1;

x = 0;

% Compute the length of each subinterval

H = (b-a)/(2∗j);
% calculate [f (x0)+ f (xn)/2]
S(k) = 0.5∗(F(a) + F(b));

% Add f (x1), f (x2), ..., f (xn−1)
for i=1:(2∗j-1)

x = x+h;

S(k) = S(k) + F(x);

end

% Multiply the sum by the length of

intervals h.

S(k)=S(k)∗h;
end

% Print the result

S

If you run the preceding Matlab program, you get the results in Table 11.2.
Because we know from the table of normal distribution that a reasonable
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Table 11.2 Numerical
integration with increasing
subintervals

Number of subintervals Area under the curve

4 0.4750
6 0.4763
8 0.4767

10 0.4769
12 0.4770
14 0.4771
16 0.4771
18 0.4771
20 0.4772
22 0.4772

approximation is 0.4772, it is clear that with about 20 subintervals, we get the
desired result. Of course the above is for illustration; otherwise Matlab has two
built-in functions that evaluate the integral. We will discuss them at the end of this
section.

11.4.2 The Lagrange Interpolation Formula

Suppose we have n + 1 points

(x0, y0), (x1, y1), . . . , (xn, yn)

Can we find a polynomial of degree n such that it passes through all the points
above? One answer to this question is the Lagrange interpolation formula. Consider
the polynomial

Pn(x) = C0(x− x1)(x− x2) . . . (x− xn)

+ C1(x− x0)(x− x2) . . . (x− xn)

+ . . .

+Cn(x− x0)(x− x1) . . . (x− xn−1)

(11.39)

Letting x = x0 makes all terms except the first one equal to zero. This allows us
to determine C0 as

C0 = y0

(x0 − x1)(x0 − x2) . . . (x0 − xn)

Similarly,

C1 = y1

(x1 − x0)(x1 − x2) . . . (x1 − xn)

and



11.4 Numerical Integration 311

Cn = yn

(xn − x0)(xn − x2) . . . (xn − xn−1)

Thus, we can write the polynomial as

Pn(x) = (x− x1)(x− x2) . . . (x− xn)

(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0

+ (x− x0)(x− x2) . . . (x− xn)

(x1 − x0)(x1 − x2) . . . (x1 − xn)
y2

+ . . .

+ (x− x1)(x− x2) . . . (x− xn−1)

(xn − x0)(xn − x1) . . . (xn − xn−1)
yn

or in a more compact form

Pn(x) =
n∑

k=0

yk

n∏
j = 0

j �= k

x− xj

xk − xj

=
n∑

k=0

Lk(x)yk

(11.40)

where
Lk(x) =

n∏
j = 0

j �= k

x− xj

xk − xj
, k = 0, . . . , n

Example 11.34 Consider the two points (x0 = 1, y0 = 3) and (x1 = 2, y1 = 5). Let
us fit a first degree polynomial, that is, a linear function to these points. We have

C0 = 3

−1
C1 = 5

1

and the polynomial is

P2(x) =−3 (x− 2)+ 5 (x− 1)

=2x+ 1

Example 11.35 Consider the three points

x0 = 1 y0 = 4

x1 = 2 y1 = 6

x2 = −1 y2 = 18
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For the coefficients of a second-degree polynomial that passes through these
points, we have

C0 = −4

2
, C1 = 6

3
, C2 = 18

6

and the polynomial is

P3(x) = −2(x− 2)(x+ 1)+ 2(x− 1)(x+ 1)+ 3(x− 1)(x− 2)

= 3x2 − 7x+ 8

11.4.3 Newton-Cotes Method

To numerically evaluate the integral ∫ b

a
f (x)dx

we divide the interval [a, b] into m subintervals:

[α0, α1], [α1, α2], . . . , [αm−1, αm]

In each subinterval [αj, αj+1] select n + 1 equidistance points

(x0, f (x0)) , . . . , (xn, f (xn))

Consider the approximation to the value of the integral over the j-th subinterval

∫ xn

x0

f (x)dx ≈
∫ xn

x0

Pn(x)dx (11.41)

Substituting for Pn(x) from (11.40),

∫ xn

x0

f (x)dx ≈
∫ xn

x0

n∑
k=0

Lk(x)f (xk)dx

=
n∑

k=0

f (xk)
∫ xn

x0

Lk(x)dx

=
n∑

k=0

wkf (xk)

(11.42)

where wk =
∫ xn

x0
Lk(x)dx.

The formula in (11.42) gives the value of the integral over one of the subintervals.
In order to obtain the value of the integral over [a, b], we repeat the same process
for all subintervals and add up the results. Let the value of the integral over the j-th
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subinterval be denoted by sj. Then

∫ b

a
f (x)dx ≈

m∑
j=1

sj (11.43)

11.4.4 Simpson’s Method

If we choose Pn(x) to be of degree three, we will have Simpson’s method.8 Here we
are approximating the area under the curve with a series of parabolas instead of a
series of trapezoids. First, we divide the interval [a, b] into 2m subintervals of length

h = b− a

2m

Thus,
x0 = a

x1 = x0 + h

. . .

x2m = x0 + 2mh = b

The reason we have an even number of subintervals is that we approximate the
function f (x) in two contiguous subintervals by a parabola. Let us consider the
first three points, (x0, f (x0)), (x1, f (x1)), and (x2, f (x2)). Because they are equally
distanced, we can write

x0 = x1 − h, x2 = x1 + h

Then

Pn(x) = (x− x1)(x− x1 − h)

−h(2 h)
f (x0)+ (x− x1 + h)(x− x1 − h)

h(−h)
f (x1)

+ (x− x1 + h)(x− x1)

h(2 h)
f (x2)

(11.44)

Let

z = x− x1

8Thomas Simpson (1710–1761) worked on many areas of mathematics including calculus, numer-
ical methods, astronomy, and probability theory. He is the author of several high-quality textbooks.
Simpson was a self-taught mathematician and for a time he lectured in London coffee houses. This
may seem strange today, but coffee houses were known as Penny Universities where customers
could listen to lectures on mathematics, art, law, and other subjects while drinking coffee. See A
History of the World in Six Glasses by Tom Standage (2005). Simpson’s rule discussed in the text
is due to Newton not Simpson. Justice, however, has prevailed as the Newton method discussed in
Chap. 10 is due to Simpson.
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Then

Pn(x) = 1

2 h2
[z(z− h)f (x0)− 2(z+ h)(z− h)f (x1)+ z(z+ h)f (x2)]

Thus, ∫ x2

x0

f (x)dx ≈
∫ x2

x0

Pn(x)dx =
∫ h

−h
Pn(z)dz (11.45)

We now evaluate the last integral:∫ h

−h
Pn(z)dz =

∫ h

−h

1

2 h2
[z(z− h)f (x0)− 2(z+ h)(z− h)f (x1)+ z(z+ h)f (x2)]dz

= 1

2 h2

[
f (x0)− 2f (x1)+ 2f (x2)

3
z3 + (f (x2)− f (x0))hz2

2
+ 2 h2f (x1)z

]∣∣∣∣
h

−h

= h

3
[f (x0)+ 4f (x1)+ f (x2)]

Similarly, for the next three points we have

∫ x4

x2

f (x)dx ≈ h

3
[f (x2)+ 4f (x3)+ f (x4)]

and for the entire interval [a, b]

∫ b

a
f (x)dx ≈ b− a

6m
{f (x0)+ f (x2m)+ 4[f (x1)+ f (x3)+ . . .+ f (x2m−1)]

+2[f (x2)+ f (x4)+ . . .+ f (x2m−2]}
(11.46)

Of course, you do not need to program Simpson’s method. Matlab already has a
function for integration.

Example 11.36 Find the following integral:

∫ π
2

0
cosxdx

Matlab code

% Define the function

F = inline(′cos(x)′)
% Find the integral

q = quad(F,0,pi/2)

Matlab has another procedure based on the Gaussian quadrature method. We next
use this function to calculate the standardized normal table.
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Matlab code

% Define the function

F=inline(′(1/sqrt(2∗pi))∗exp(-0.5∗x.ˆ2)′)
% Find the integral for x=0 to 3

for j=1:31
for i=1:10

% Compute the value of x

h=(j-1).∗0.1+(i-1).∗.01;
% Compute the integral

B(j,i)=quadl(F,0,h);
end

end

% Matlab will give you a Warning. This does not

% affect your result. To understand its meaning look

% up Matlab help under Integration, Numerical, quadl.

% Print the table

B

After printing the table, compare it to the normal table at the end of your statistics
or econometrics book. The function computes the area under the curve to the right
of the mean.

11.4.5 Exercises

E.11.4 For each of the following two sets of points find a second-degree polynomial
that passes through them.

i. x f (x) ii. x f (x)

1 6 1 0
2 7 −1 −10
3 10 2 −1

E.11.5 For each of the following two sets of points find a third-degree polynomial
that passes through them

i. x f (x) ii. x f (x)

1 2 1 0
−1 14 −1 16

2 8 2 13
−4 2 −2 21

E.11.6 Show that the trapezoid rule is a special case of the Newton-Cotes method.

E.11.7 Use Matlab’s quadl function to numerically evaluate integrals in E. 11.2.
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11.5 Special Functions

Two functions play prominent roles in probability theory and econometrics, neither
of which has a closed form. We discuss them here and show how Matlab can be
used to calculate them.

Definition 11.2 (Gamma Function). The gamma function has one parameter α and
has the form

�(α) =
∫ ∞

0
e−ttα−1dt α > 0 (11.47)

α need not be real, but if it is complex, then its real part must be positive. The gamma
function has some interesting properties:

i. �(α + 1) = α �(α)
ii. If the argument of the function is an integer, that is, if α = n, then

�(n+ 1) = n! n = 0, 1, 2, . . . (11.48)
iii.

�

(
1

2

)
= √π (11.49)

The gamma function can be evaluated using a Matlab function

Matlab code
gamma(a)

Definition 11.3 (Beta Function). The beta function has the form

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt α, β > 0 (11.50)

The beta function is related to the gamma function

B(α, β) = �(α)�(β)

�(α + β)
(11.51)

Matlab can be used to evaluate the beta function

Matlab code
beta(a,b)

11.5.1 Exercises

E.11.8 Prove the properties of the gamma function listed in Definition 11.2.
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E.11.9 The density of the t-distribution is

f (t) = 1
√

νB(
1

2
,

1

2
ν)

(
1+ t2

ν

)− 1
2 (ν+1)

where ν is the degrees of freedom. Write a program in Matlab that reads the value
of t and ν and calculates

P(T > t) = 1− P(T ≤ t)

Note that the t-distribution is symmetric around zero.

11.6 The Derivative of an Integral

In certain instances one has to find the derivative of an integral. In particular if the
objective function of an optimization problem is in the form of an integral, we need
to calculate such derivatives. Below we state the rules of such differentiations and
illustrate them with examples.

Property 11.12 The derivative of a definite integral with fixed limits with respect to
the variable of integration is zero because

d

dx

∫ b

a
f (x)dx = d

dx
[F(b)− F(a)] = 0 (11.52)

Property11.13 The derivative of an indefinite integral with respect to the variable of
integration is the integrand. This property follows from the definition of indefinite
integral:

d

dx

∫
f (x)dx = d

dx
[F(x)+ C] = f (x) (11.53)

Property 11.14 The derivative of a definite integral with a fixed lower limit and
variable upper limit is equal to the integrand evaluated at the point of upper limit
times the derivative of the upper limit. That is,

d

dx

∫ h(x)

a
f (t)dt = d

dx
[F(h(x))− F(a)]

= f (h(x))h′(x)

(11.54)
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Example 11.37

d

dx

∫ 2x

a

dt

t
= 1

x

Let us check this result:

d

dx

∫ 2x

a

dt

t
= d

dx

[
ln t|2x

a

]
= d

dx
(ln 2x− ln a) = 1

x

Example 11.38 Check the following result first by using Property 11.14 and then
by actually carrying out the integration and taking the derivative.

d

dx

∫ ln x

a
t2etdt = (ln x)2

Consider the function f (x, y). Suppose we want to integrate this function with
respect to x and then take its derivative with respect to y. If the limits of integration
do not depend on x, then the result of integration would be a function of y alone.
Therefore, we can first integrate with respect to x and then differentiate with respect
to y. There are, however, cases where the integral does not exist. In such cases we
have the following results.

Property 11.15 In the case where both limits of integration are fixed,

d

dy

∫ b

a
f (x, y)dx =

∫ b

a

∂f (x, y)

∂y
dx (11.55)

Example 11.39 Find

d

dy

∫ b

a
x ln ydx

Using Property 11.15, we have

∫ b

a

∂(x ln y)

∂y
=
∫ b

a

x

y
dx = x2

2y
|ba =

b2 − a2

2y

We can verify this result by first carrying out the integration with respect to x and
then taking the derivative with respect to y:

∫ b

a
x ln ydx = ln y

∫ b

a
xdx = (ln y)

b2 − a2

2
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Then

(
d

dy
ln y

)
b2 − a2

2
= b2 − a2

2y

Property 11.16 In the case where both limits of integration are functions of y,

d

dy

∫ h(y)

g(y)
f (x, y)dx =

∫ h(y)

g(y)

∂f (x, y)

∂y
dx

+ f (h(y), y)
dh(y)

dy

− f (g(y), y)
dg(y)

dy

(11.56)

Example 11.40 Let us evaluate the following expression in two ways. First, by
using Property 11.16 and, second, in the old-fashioned way of integrating and then
differentiating.

d

dy

∫ 3y+1

y
xy2dx

Using Property 11.16, we have

d

dy

∫ 3y+1

y
xy2dx =

∫ 3y+1

y
2xydx+ 3(3y+ 1)y2 − y3

= x2y
∣∣∣3y+1

y
+ 9y3 + 3y2 − y3

= 16y3 + 9y2 + y

On the other hand, we can integrate the function to obtain

d

dy

∫ 3y+1

y
xy2dx = 1

2
x2y2

∣∣∣∣
3y+1

y

= 1

2
[(3y+ 1)2y2 − y4]

Taking the derivative of the RHS, we get

d

dy

1

2
[(3y+ 1)2y2 − y4] = 16y3 + 9y2 + y
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11.6.1 Exercises

E.11.10 Evaluate the following expressions.

i.
d

dx

∫ 3x

0
(t3 − 2t2 + 5t + 17)dt ii.

d

dx

∫ x

1

dt

2t − 1

iii.
d

dx

∫ ex

1
5

dt

t
iv.

d

dy

∫ y

0
xeydx

v.
d

dy

∫ y

−y
x ln ydx vi.

d

dy

∫ y2+y

y

x2

y
dx



Part IV
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Chapter 12
Static Optimization

A theory or model is the tool by which we organize our thought about a phenomenon
and has to have the ability to explain or forecast. Economic processes are the out-
come of the interaction of decisions made by many economic agents. It follows
that any economic theory has to be based on some model of decision making by
economic agents, be it individual, household, firm, or government. Preferably the
behavioral assumptions underlying such a model are applicable to a variety of agents
and do not vary in an ad hoc manner, because a science worthy of the name cannot
consist of a bunch of unrelated models, each of which is applicable to only a special
case. Indeed, it is quite easy to find a rationalization for any event or phenomenon
after the fact.

The work of marginalists in the nineteenth and early twentieth centuries laid
the foundation of a unified economic theory. Antoine Augustin Cournot studied the
profit maximizing firm, Johann Heinrich von Thünen applied it to cost minimiza-
tion by firms, and Hermann Heinrich Gossen studied utility maximizing consumers.
In the latter part of the nineteenth century the first generation of professional
economists, Léon Walras, William Stanley Jevons, and Carl Menger, developed
these ideas into a comprehensive theory of the economy. Many others including
Alfred Marshall contributed to this endeavor.

The neoclassical theory found its most eloquent statement in John Hicks’s Value
and Capital and Paul Samuelson’s Foundations of Economic Analysis. The behav-
ioral assumption underlying the neoclassical theory is that all decision makers in
the economy try to maximize an objective function subject to the constraints put
on them by resources, technology, regulations, and market forces. Individuals and
households maximize their utility subject to their budget constraint, firms try to
minimize their cost for each level of output, and then given the market price try to
maximize their profit. The objective of the theory is to explain the behavior of indi-
viduals, households, and firms, and through their interactions the behavior of the
economy as a whole.

In the second half of the twentieth century the neoclassical model was extended
to analyze areas once deemed outside the realm of economics. These include deci-
sions as to the number of children a family would produce, allocation of time
between work, entertainment, and spiritual activities, behavior of criminals, and the
political process.

323K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_12, C© Springer-Verlag Berlin Heidelberg 2011
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There is little doubt that in the real world decisions are made differently than
what the theory assumes. Thus, if the idea is to study the way businesses behave
or to advise them on how to improve their performance, one has to appeal to deci-
sion sciences, statistical decision theory, and behavioral economics. But if the goal
is to understand the behavior of an industry or market, one can ask if there is
another theory that is tractable and yields as many insights and testable hypothe-
ses as the neoclassical theory. There has been talk of theories based on bounded
rationality and satisficing instead of optimizing behavior, but it is hard to find a
body of theory based on these assumptions that produces hypotheses and conclu-
sions that are materially different from neoclassical predictions. Thus, pending an
unforeseen breakthrough in economics, optimization theory remains the cornerstone
of economic analysis.

Static optimization is concerned with finding the optimum point of a function.
In contrast, dynamic optimization (Chap. 14) tries to find a function of time that
maximizes (minimizes) an objective functional. In economic application, static opti-
mization applies when we are making a decision for a point in time, abstracting from
what might happen in the future. Alternatively we can say that the decision is made
on the assumption that no significant changes will occur in the environment and
parameters of our decision problem. Thus, suppose we know the price and marginal
cost of our product. Then the question is, how many units should we produce? In
the real world consumers’ tastes, technology, and laws change over time and so do
the price and marginal cost of our product. Furthermore, our information about the
present and future demand for our product are estimates and, therefore, subject to
forecast error. Finally, we should take into account the reaction of our competitors,
who may surprise us with their innovation or cost-cutting strategies. But for the time
being our goal is modest, static optimization within a deterministic model.

Neoclassical theory is only one place where optimization theory proves quite
useful. Economists have many more reasons to make sure that they are well versed
in the subject. In statistics, econometrics, and decision analysis, optimization plays
a pivotal role. In this chapter we deal with static optimization when no constraints
limit our choice variables. The next chapter is devoted to constrained optimization,
when we try to maximize an objective function while our decision variables have to
satisfy one or more constraints.

12.1 Maxima and Minima of Functions of One Variable

One has little trouble in intuitively understanding the concept of the maximum
and minimum of a function or even to distinguish between a local and the global
maximum or minimum of a function. The maximum is the highest point and the
minimum the lowest. If a point is the highest within a subset of the domain of a
function, then it is a local maximum. On the other hand, if it is the highest over the
entire domain of the function, that is, the highest of the high points, then it is the
global maximum. The same applies to the case of local and global minima. Some
functions have only one maximum (minimum) and the local and global maxima
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(minima) coincide. Other functions may have one global and several local maxima
(minima). We are interested in maxima and minima that are finite.

Definition 12.1 The real-valued function f (x) whose domain is D ∈ � has its local
maximum at the point x∗ ∈ D if

f (x∗) ≥ f (x) ∀x �= x∗ (12.1)

where ∣∣x− x∗
∣∣ < δ and δ > 0

In the above definition the real number δ defines a neighborhood within which
x∗ is the maximum. If (12.1) holds for all x ∈ D, then f (x∗) is the global maximum.
We can define local and global minima in a similar fashion except that in this case
x∗ ∈ D is a local minimum1 if

f (x∗) ≤ f (x) ∀x �= x∗ (12.2)

where

|x− x∗| < δ, δ > 0

and is the global minimum if the relationship holds for all x ∈ D.
Figure 12.1 depicts both local and global maxima as well as the local minimum

of a function. It is easy to determine the maximum or minimum of a function on
its graph just as it is easy to see the summit of a mountain and the deepest point

Fig. 12.1 Local and global
maxima and minima

1If f (x) < f (x∗), then f (x∗) is referred to as the strict maximum and if f (x) > f (x∗), then it is the
strict minimum.
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of a valley. Carrying on with the analogy a bit further, we can say that as long as
you are moving upward you have not reached the summit, and as soon as you start
downward, you have passed it. A function is increasing as long as its derivative is
positive and decreases when the derivative turns negative. It follows that maximum
is reached at the point of transition between a positive and negative derivative, that
is, at the point when the derivative is zero. Thus, a necessary condition for a maxi-
mum is that the first derivative be zero. But this is not sufficient, because at a trough,
too, the derivative would be zero. Note, however, that a summit is reached when we
ascend and then descend. That requires the derivative to be declining, going from
positive to zero to negative. In other words, the derivative of the derivative, the sec-
ond derivative, is negative. For the minimum the opposite holds and the second
derivative should be positive.

These ideas are summarized in the following theorems. They are stated for the
case of maxima but, mutatis mutandis, they hold for minima. Before getting formal,
however, let us take a casual tour of the argument.

Let (x∗, f (x∗)) be the maximum point of a function (the same argument with
appropriate changes would apply to the point of minimum). Using Taylor expansion
we can write

f (x) = f (x∗)+ (x− x∗)f ′(x∗)+ 1

2
(x− x∗)2f ′′(ζ ) (12.3)

where x can be any point on either side of x∗ such that |x− x∗| < ε and ζ is a point
between x and x∗.

If x∗ is to be the maximum, we should have

f (x)− f (x∗) = (x− x∗)f ′(x∗)+ 1

2
(x− x∗)2f ′′(ζ ) ≤ 0 (12.4)

for all x within ε distance of x∗.
But this is not guaranteed because (x− x∗)f ′(x∗) could be both positive and neg-

ative unless we require f ′(x∗) to be equal to zero, thus eliminating the possibility of
(x− x∗)f ′(x∗) > 0 spoiling the game. Thus,

f ′(x∗) = 0 (12.5)

is the necessary condition for x∗ being a maximum. Now note that (x − x∗)2 is
always positive, therefore, for the inequality in (12.4) to hold we need f ′′(ζ ) <

0. Furthermore, f ′′(x) cannot change sign, otherwise we do not have a maximum.
Recall that f ′(x) has to be decreasing, be positive, become zero, and then negative. If
f ′′(x) changes sign, then the pattern is disrupted. Of course we may have f ′′(x∗) = 0,
but then we will have to restate the same condition for the fourth derivative. Thus,
within the neighborhood under consideration, including at the point of maximum
we should have

f ′′(x∗) < 0 (12.6)

which is our sufficient condition.
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Theorem 12.1 Let f (x) be a real-valued function that is at least twice continu-
ously differentiable over its domain D. The necessary condition for f (x∗) to be a
maximum is

f ′(x∗) = 0 (12.7)

Proof We need to show that if f (x) ≤ f (x∗) for all x ∈ D such that |x− x∗| ≤ δ,
then f ′(x∗) = 0.We show that if f ′(x∗) �= 0, then it contradicts the assumption of the
theorem. By the mean value theorem,

f (x) = f (x∗)+ (x− x∗)f ′(ξ ) (12.8)

where ξ is a point between x and x∗. Let

θ = x− x∗

ξ = x∗ + λθ , λ ∈ (0, 1)

Then

f (x∗ + θ ) = f (x∗)+ θ f ′(x∗ + λθ ) (12.9)

If f ′(x∗) > 0, then by continuity there will be a θ > 0 and |θ | < ε such that

f ′(x∗ + λθ ) > 0

for all λ′s between 0 and 1. But that contradicts the assumption of the theorem
because θ f ′(x∗+λθ ) > 0 implies that f (x∗+θ ) > f (x∗). Alternatively, if f ′(x∗) < 0,
then we can find a θ < 0 and |θ | < ε such that

f ′(x∗ + λθ ) < 0

and again we have a contradiction because θ f ′(x∗ + λθ ) > 0. The only alternative
left is f ′(x∗) = 0. Note that this proof equally applies to the case of a minimum.

Intuitively, the theorem says that if f ′(x∗) �= 0, then it is either positive or nega-
tive. Because x− x∗ could be either positive or negative, there are points within the
neighborhood |x− x∗| < δ where x − x∗ and f ′(x∗) have the same sign resulting in
(x − x∗)f ′(x∗) > 0, which violates the assumption that f (x∗) > f (x) everywhere in
the neighborhood.

Theorem 12.2 Let f (x) be a real-valued, at least twice differentiable function over
its domain D. Further assume that f ′′(x) �= 0.2 Then the sufficient condition for
f (x∗)to be a maximum is

f ′′(x∗) < 0 (12.10)

2The case where the second and higher derivatives are zero is taken up later.
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Proof The Taylor expansion of the function near point x∗ with the Lagrange
remainder is

f (x) = f (x∗)+ (x− x∗)f ′(x∗)+ 1

2
(x− x∗)2f ′′(ξ ) (12.11)

where |x− x∗| < δ and ξ is a point between x and x∗.
If x∗ is a maximum, then f ′ (x) = 0, and we can write

f (x) = f (x∗)+ 1

2
θ2f ′′(x∗ + λθ ) (12.12)

Now suppose f ′′(x∗) > 0. Then by continuity we can find a |θ | < ε such that
f ′′(x∗ + λθ ) > 0 for all λ between 0 and 1, which would contradict the assumption
that f (x∗) is a maximum, therefore, f ′′(x∗) ≤ 0. Because we ruled out f ′′ (x) = 0, it
follows that f ′′(x∗) < 0. The proof of the theorem for the case of a minimum follows
the same line of argument.

Example 12.1 Find the maximum of the function

y = −2x2 + 3

Setting the first derivative equal to zero we have

− 4x = 0

which results in
x = 0, y = 3

This is indeed a maximum because the second derivative is negative

y′′ = −4 < 0

Example 12.2 Find the minimum of the function

y = 5x2 − 10x+ 8

We have

10x− 10 = 0

with the minimum point being

x = 1, y = 3

This is a minimum because
d2y

dx2
= 10 > 0
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Example 12.3 Find the extrema3 of the function

f (x) = x3 − 9x2 + 15x+ 3

Setting the first derivative equal to zero

3x2 − 18x+ 15 = 0

we have

x1 = 1, f (x1) = 10

and

x2 = 5, f (x2) = −22

because the second derivative of the function is

f ′′ (x) = 6x− 18

Evaluating it at the extrema points, we find

f ′′ (1) = −12, f ′′ (5) = 12

Thus, the point x = 1, f (x) = 10 is a local maximum and the point x = 5,
f (x) = −22 a local minimum. The reader is urged to graph the functions in
Examples 12.1, 12.2, and 12.3 and ascertain that we indeed have found the maxima
and minima of the functions.

Optimization of functions of one variable finds many applications in economics,
as the next few examples illustrate.

Example 12.4 Consider the short-run decision problem of a competitive firm
whose capital stock is fixed at K = K0. The production function of the firm is
represented by

Q = F (K0, L)

where Q and L are, respectively, output and labor.

dQ

dL
= FL > 0 and

d2Q

dL2
= FLL < 0

That is, the marginal product of labor is positive, but decreasing. Because the
firm is a price taker, the prices of its product, P, the rental cost of capital, R, and the

3Extremum is a generic word for any point on the function where the first derivative is equal to
zero and includes maximum, minimum, and as will be seen later, the inflection point.
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wage rate, W, are all given and fixed. A profit maximizing firm faces the decision of
how much to produce and how many workers to hire. Let π denote the profit. Then

π = PF(K0, L)− RK0 −WL

Maximization of profit requires setting the derivative of profit with respect to
labor input equal to zero:

dπ

dL
= PFL −W = 0

which results in

PFL = W ⇒ FL = W

P

That is, the firm expands its production and hires additional labor to the point
where the value of marginal product of labor equals the wage rate. Alternatively, we
could say that production will expand until the marginal product of labor is equal to
the real wage. We can ascertain that this indeed is the maximum profit by examining
the second derivative

d2π

dL2
= PFLL < 0

Example 12.5 A famous proposition in microeconomics involves the equality of
average and marginal cost at the point of minimum average cost. Intuitively the
argument is that average cost will be decreasing as long as it is above marginal cost
and will be increasing as long as it is below marginal cost. It follows that the two will
be equal when average cost is neither increasing nor decreasing. Because average
cost can increase indefinitely, the point of equality must be the minimum.

To show this rigorously, we need to be more specific about our assumptions. Let
C = C(Q) denote the total cost function that depends on output. It is assumed that
the marginal cost C′(Q) is first decreasing and then increasing, which implies that
on the increasing portion of the marginal cost function C′′ (Q) > 0. Minimizing the
average cost, we get

d

dQ

C(Q)

Q
= QC′(Q)− C(Q)

Q2
= 0

which leads to

C′(Q∗) = C(Q∗)
Q∗

where Q∗ denotes the output level at which the average cost is minimized. That this
point corresponds to the minimum average cost is confirmed by noting that

d2

dQ2

C(Q)

Q
= Q2[C′(Q)+ QC′′(Q)− C′(Q)]− 2Q[QC′(Q)− C(Q)]

Q4
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Evaluating it at the point of Q = Q∗, we have

d2

dQ2

C(Q)

Q

∣∣∣∣
Q=Q∗

= C′′(Q∗)
Q

> 0

Example 12.6 A competitive firm maximizes its profit, that is, the difference
between its revenue and cost. Thus, the problem is

max π = PQ− C(Q)

The necessary and sufficient conditions are

P = C′(Q) and − C′′(Q) < 0

The first condition states that the firm will expand its output to the point where
marginal cost equals the market determined price. The second condition states that
such a point entails maximum profit if marginal cost is on the rise. Because marginal
cost is assumed to be first declining and then increasing, the meaning of the suffi-
cient condition is that the maximum profit happens on the rising portion of marginal
cost function.

12.1.1 Inflection Point

In proving Theorem 12.2 we assumed that the second derivative was not equal to
zero. We now consider the possibility that the second- and higher-order derivatives
may be zero. First, let us assume that not only the second derivative, but also the
third derivative is zero, and the fourth-order derivative is nonzero. Then we can
rewrite (12.4) as

f (x) = f (x∗)+ (x− x∗)f ′(x∗)+ 1

4! (x− x∗)4f (4)(ξ ) (12.13)

We can apply the same argument for the proof of Theorem 12.2 to (12.13). Thus,
if the second and third derivatives are zero, we look to the fourth derivative. If it is
negative, we have a maximum, and if it is positive, we have a minimum. Indeed,
the same argument applies if the fourth, fifth, . . . derivatives are zero and the first
nonzero derivative is even numbered.

Example 12.7 Consider the function

y = (x− 2)4 + 7
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Fig. 12.2 Inflection point

Setting the first derivative equal to zero, we get x = 2 and y = 7. However, at the
extremum point, y′′ and y′′′ are also zero. For the fourth derivative we have

y(4) = 24 > 0

Therefore, we have a minimum. The reader should verify the conclusion by
graphing the function.

The case where the first nonzero derivative is odd numbered is a different story.
The third derivative is the derivative of f ′′(x), therefore, a nonzero third derivative
tells us that either the second derivative is increasing (f ′′′(x) > 0) or decreasing
(f ′′′(x) < 0). Because f ′′(x) passes through zero, it follows that either f ′′(x) goes
from negative to positive or from positive to negative, implying that the first deriva-
tive goes from decreasing to increasing or vice versa. Thus, the function itself has
an inflection point (see Fig. 12.2). The same is true if the third, fourth, ... derivatives
are zero, and the first nonzero derivative is odd numbered.

Example 12.8 Let y = x3 + 3. Then

y′ = 3x2

Setting it equal to zero yields x = 0, y = 0, then

y′′ = 6x

which is equal to zero at the point x = 0. Turning to the third derivative, we get

y′′′ = 6 �= 0

Thus, we have an inflection point. This function is shown in Fig. 12.2.
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Inflection points are not confined to the points of extremum. We could have points
of inflection without the first derivative being zero.

Example 12.9 The function y = e−x2
has two points of inflection. The first

derivative is

y′ = −2xe−x2

and the second derivative

y′′ = −2e−x2 + 4x2e−x2 = 2(2x2 − 1)e−x2

Setting the second derivative equal to zero and confining ourselves to finite
points, we have

x1 = −
√

2

2
, y1 = e

−1

2

and

x2 =
√

2

2
, y2 = e

−1

2

12.1.2 Exercises

E.12.1 Find the extrema of the following functions and determine their nature.

i. y = x2 − 2x+ 5, ii. y = x3

3
− 3x2 + 2x+ 1,

iii. y = 7− (x− 4)2/3, iv. y = x

ln x
,

v. y = −2x4 + 6x2, vi. y = x2 − 3x+ 2

x2 + 3x+ 2
,

vii. y = (x− 2)(3− x)

x2
, viii. y = 1

1+ x2
,

ix. y = x4, x. y = a2

x
+ b2

a− x

E.12.2 Suppose a firm’s technology can be represented by the Cobb-Douglas
production function Q = AKα

0 L1−α , where K0 is fixed. The price of firm’s product
is P, the wage rate W, and the rental price of capital R. Find the optimum conditions
for the firm’s production decision.

E.12.3 Consider the case of a monopoly firm whose cost and price functions are

C = C (Q)

P = P (Q)

Find the conditions for profit maximization of the firm.
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12.2 Unconstrained Optima of Functions of Several Variables

The definition of optimum points for functions of several variables is very similar
to the case of functions of one variable

Definition 12.2 The real-valued function f : D → �, where D ⊂ �n has its local
maximum at the point x∗ ∈ D if

f (x∗) ≥ f (x) ∀x �= x∗ (12.14)

where
d(x, x∗) < δ and δ > 0

In Definition 12.2 the real number δ defines a neighborhood within which x∗ is
the maximum. If (12.14) holds for all x ∈ D, then f (x∗) is the global maximum. If it
holds with strict inequality, then the maximum is a strict maximum. We can define
the local and global minimum in a similar fashion except that in this case x∗ ∈ D is
the local minimum if

f (x∗) ≤ f (x), ∀x �= x∗ (12.15)

where

d(x, x∗) < δ, δ > 0

and x∗ is the global minimum if the relationship holds for all x ∈ D. The theorems
establishing the necessary and sufficient conditions for the maximum and minimum
of functions of several variables are stated below without proof, as the proofs are
very similar to the case of functions of one variable.

Theorem 12.3 Let the function f in Definition 12.2 be at least twice continuously dif-
ferentiable over its domain D. The necessary condition for f (x∗) to be a maximum is

∇f (x∗) = 0 (12.16)

Theorem 12.4 Let f be as in Theorem 12.3. Then the sufficient condition for f (x∗) to
be a maximum is that its Hessian matrix (the matrix of its second-order derivatives)
be negative definite.

z′∇2f (x∗)z = z′H(x∗)z < 0 (12.17)

for all vectors z �= 0. For a minimum, the Hessian has to be positive definite.

Example 12.10 Find the extremum point of the function

z = (x− 1)2 + (y− 3)2 − 5
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We have

∂z

∂x
= 2(x− 1)

∂z

∂y
= 2(y− 3)

Setting the partial derivatives equal to zero, we have

x = 1, y = 3, z = −5

Second-order partial derivatives are

∂2z

∂x2
= 2,

∂2z

∂y2
= 2,

∂2z

∂x∂y
= ∂2z

∂y∂x
= 0

Therefore, the Hessian is [
2 0

0 2

]

Because both principal minors are positive, the matrix is positive definite and we
have a minimum.

Example 12.11 For the function

z = −2x2 + xy− y2 + 3x+ y+ 6

we have

−4x+ y+ 3 = 0

x− 2y+ 1 = 0

Thus,
x = 1, y = 1, z = 8

and the Hessian is [−4 −1

−1 −2

]

which is negative definite, and we have a maximum.

Example 12.12 We can visualize the maximum and minimum of a function of two
variables, for example

z = x exp(−x2 − y2)
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Fig. 12.3 Maximum and minimum of the function z = x exp(−x2 − y2)

which is depicted in Fig. 12.3. We cannot, however, visualize the extrema of func-
tions of more than two variables. Finding the maximum and minimum of the
function above is left to the reader as an exercise (see E.12.4 vi).

Example 12.13 Let us revisit Example 12.4 and this time consider the long-run
problem when the firm can decide on its capital stock as well as its labor force.
Then the problem of profit maximization will be

max π = PF(K, L)− RK −WL

where, as before, P is the market determined price of the firm’s product, K is the
services of capital, L, the labor force, R, the rental price of capital, and W, the wage
rate. Furthermore, it is assumed that

FK = ∂F

∂K
> 0, FL = ∂F

∂L
> 0

where FK is marginal product of capital and FL, marginal product of labor. Also

FKK = ∂2F

∂K2
< 0, FLL = ∂2F

∂L2
< 0

FKL = ∂2F

∂K∂L
= FLK = ∂2F

∂L∂K
> 0

First-order conditions require
PFK − R = 0

PFL −W = 0

The above equations imply that each factor should be paid the value of its
marginal product. Alternatively, it means that at the point of maximum profit, real
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wage equals the marginal product of labor, and real rental of capital equals the
marginal product of capital. Moreover, in order to have a maximum, we require
the matrix [

FKK FKL

FLK FLL

]

to be negative definite, which means we should have

FKKFLL − F2
KL > 0

Example 12.14 In elementary econometrics, we encounter the problem of estimat-
ing the parameters of the linear equation

yi = α + βxi + ui

where y is the dependent variable, x, the explanatory variable, α and β unknown,
but constant parameters of the model, and u the error term. Suppose we have n
observations on y and x. How can we estimate our parameters? One way is the
method of least squares. It is based on minimizing the sum of squared residuals.
The i-th residual is defined as

ei = yi − α̂ − β̂xi

Squaring and summing over all n observations,
n∑

i=1

e2
i =

n∑
i=1

(yi − α̂ − β̂xi)
2

Note that now y’s and x’s are data and variables to be determined are α̂ and β̂.
Taking partial derivatives with respect to α̂ and β̂, we get

∂
∑

e2
i

∂α̂
= −2

n∑
i=1

(yi − α̂ − β̂xi)

and ∂
∑

e2
i

∂β̂
= −2

n∑
i=1

xi(yi − α̂ − β̂xi)

Setting them equal to zero results in the normal equations of least squares

n∑
i=1

yi = nα̂ + β̂

n∑
i=1

xi

n∑
i=1

xiyi = α̂

n∑
i=1

xi + β̂

n∑
i=1

x2
i
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Solving the equations, we have

β̂ =
∑

xi(yi − ȳ)∑
x2

i

α̂ = ȳ− β̂ x̄

where ȳ =
∑

yi/n and x̄ =
∑

xi/n are sample means of y and x, respectively. We
can make sure, that this is indeed a point of minimum by calculating the Hessian
matrix:

H = 2

⎡
⎣ n

∑
xi∑

xi

∑
x2

i

⎤
⎦

This matrix is positive definite because its principal minors are positive

n > 0

and

n
∑

x2
i −
(∑

xi

)2 = n
∑

(xi − x̄)2 > 0

Example 12.15 We can generalize the results of Example 12.14 to the case of k
variables. Let the regression model be

y = Xβ + u

Letting e = y− Xβ̂, the sum of squared residuals would be

e′e = (y− Xβ̂)′(y− Xβ̂)

The first-order conditions for minimizing e′e are

2X′Xβ̂ − 2X′y = 0

which result in the least squares estimator of β

β̂ = (X′X)−1X′y

and the Hessian matrix is 2X′X which is positive definite.

12.2.1 Convex and Concave Functions

In our definitions we made a distinction between local and global optima. But our
necessary and sufficient conditions referred simply to maxima and minima. In this
section we shall talk about conditions under which a local maximum or minimum
will be the global maximum or minimum. Whether a local optima is also a global
optima depends on the shape of the objective function, and we shall look for classes
of functions with the property that local and global optima coincide. The long and
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short of the story is that if we have a convex function (to be defined below), then
the local minimum is also the global minimum. On the other hand if we have a
concave function (again, to be defined below), then the local maximum is the global
maximum.

Definition 12.3 The function f : D → �, where D ∈ �n is convex if for any two
points x1, x2 ∈ D and any real number λ ∈ [0, 1]

f (λx1 + (1− λ)x2) ≤ λf (x1)+ (1− λ)f (x2) (12.18)

If in (12.18) the inequality is strict and λ ∈ (0, 1), the function is strictly convex.

Definition 12.4 If f is convex, then -f is a concave function. Similarly, if a function
is strictly convex, then -f is strictly concave.

These ideas for the case of D ⊂ � are depicted in Figs. 12.4 and 12.5. Observe
that a convex function carves out a convex set above the curve, whereas a concave
function carves out a convex set below the curve.

Fig. 12.4 Convex function

Fig. 12.5 Concave function
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Example 12.16 The function f (x) = x2 is convex. For two arbitrary points x1 and
x2, we have

[λx1 + (1− λ)x2]2 − λx2
1 − (1− λ)x2

2

= (λ2 − λ)x2
1 + [(1− λ)2 − (1− λ)]x2

2 + 2λ(1− λ)x1x2

= −λ(1− λ)(x1 − x2)2 ≤ 0

Numerically, consider two points x1 = −1 and x2 = 3. Let λ = 0.4 and consider
the point

λx1 + (1− λ)x2 = −0.4+ 1.8 = 1.4

Then

1.42 < 0.4f (x1)+ 0.6f (x2) = 5.8

Example 12.17 On the other hand, the function f (x) = −x2 is concave. If we take
the same points as in Example 12.15 and, as before, choose λ = 0.4, we have

− (1.4)2 > 0.4 f (x1)+ 0.6 f (x2) = −5.8

The importance of convex and concave functions stems from the fact that they
facilitate the analysis of optimal points. But before presenting our results, and in
order to be mathematically kosher, let us rule out the improper convex and concave
functions. A convex (concave) function is said to be improper if it is either identical
to ∞ or somewhere in its domain takes the values −∞ or ∞. Ruling out such
functions, we will be dealing with proper convex and concave functions, although
we shall drop the designation proper and simply refer to these functions as convex
and concave. The following theorems, stated without proof, contain the important
results regarding convex and concave functions.

Theorem 12.5 Let f : D → � be a convex and differentiable function over its
convex domain where D ⊂ �n. Then all its partial derivatives are continuous in D.

Theorem 12.6 Let f be as in Theorem 12.5 with continuous second derivatives. f is
convex (concave) if and only if its Hessian is positive (negative) semidefinite for all
x ∈ D. That is,

f is convex if z′∇f (x)z ≥ 0

f is concave if z′∇f (x)z ≤ 0
∀ x ∈ D, ∀z ∈ �n (12.19)

Theorem 12.7 If f is a convex (concave) function, then every local minimum
(maximum) of it is the global minimum (maximum).

The importance of convexity and concavity, especially in theoretical work,
should be clear by now. We can ensure the existence of a global minimum or
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maximum by requiring some functions to be convex or concave. For example, we
require indifference curves to be convex and production frontier to be concave.

12.2.2 Quasi-convex and Quasi-concave Functions

Whereas the properties of convex and conave functions facilitate our analysis, some-
times they are too restrictive. For one, they do not allow for flat portions in the
curve or surface of a function. In economic analysis, for technological reasons or
institutional requirements, a function may be nonincreasing or nondecreasing over
a segment of its domain. Similarly, in statistical and econometric estimation, one
encounters likelihood functions that are flat for a range of parameter values. Second,
to be convex or concave, a function has to be continuous. Again, there are instances
when we may want to allow discontinuity in the function to be optimized or at least
we may not be able to rule out discontinuity. To accommodate such eventualities,
we define quasi-convex and quasi-concave functions. Figure 12.6 shows a quasi-
concave function of one variable with a flat segment and a point of discontinuity.

Definition 12.5 The real-valued function f : D → � where D ⊂ �n is quasi-
convex if

f (λx1 + (1− λ)x2) ≤ max[f (x1), f (x2)], x1, x2 ∈ D (12.20)

In other words, if f (x2) ≥ f (x1), then f (x2) is greater than or equal to f at any
point that is a convex combination of x1 and x2. If we look at any cross section of
this function (i.e., by holding some of its arguments constant), then the function will
be monotone or unimodal. Thus, starting at any point, if f increases in a direction,
then it will remain nondecreasing in that direction.

Fig. 12.6 Quasi-concave
function
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Definition 12.6 The real-valued function f : D → � where D ⊂ �n is quasi-
concave if

f (λx1 + (1− λ)x2) ≥ min[f (x1), f (x2)], x1, x2 ∈ D (12.21)

It follows that if f is quasi-convex, then -f is quasi-concave. For quasi-concave
functions the local maximum is not necessarily the global maximum, and the same
is true for quasi-convex functions and the minimum. This is the price we pay for
relaxing the assumption regarding the behavior of the objective function. But if
we define our functions on a convex set, that is, if the domain of the function is
a convex set, then a strict local maximum of a quasi-concave function will also be
the global maximum. Again the same would be the case for a quasi-convex function
and a strict local minimum. Alternatively, if the functions are strictly quasi-convex
or strictly quasi-concave, that is, when we rule out a flat segment or surface for the
function, we have the following theorems.

Theorem 12.8 Let f : D → � where D is a convex set, be a strictly quasi-concave
function, that is,

f (λx1 + (1− λ)x2) > min[f (x1), f (x2)], x1, x2 ∈ D (12.22)

Then if x∗ ∈ D is a local maximum, it is also global maximum.
Indeed, we can note that a strictly quasi-concave function defined over a con-

vex set will have only one maximum. The above results, mutatis mutandis, apply to
quasi-convex functions.

12.2.3 Exercises

E.12.4 Find the extremum points of the following functions and determine their
nature.

i. z = (x− 2)2 + (y− 5)2 − 3 ii. z = x2 − 3xy+ y2 + 5x− 2y+ 2

iii. z = x3 + y3 − 3xy iv. z = x2 + xy+ y2 + 2

x
+ 2

y

v. z = x2y3(1− x− y) vi. z = x exp(−x2 − y2)

E.12.5 Determine which of the functions in E.12.4 are convex and which are
concave.

E.12.6 Show that a convex (concave) function is also quasi-convex (quasi-concave)
function.
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12.3 Numerical Optimization

In applied work we frequently need to find numerical solutions to optimization
problems. Even in theoretical work, an analytical solution may be difficult or impos-
sible to find, and one has to resort to approximation. More importantly, a number
of estimation techniques, such as least squares and maximum likelihood, require
numerical optimization. Whereas the methods we discussed in previous sections
are powerful in finding optimal solutions, they are not appropriate for numerical
optimization. For one, they require the computer to calculate partial derivatives and
then solve a system of possibly nonlinear equations. In contrast numerical methods
start from an initial guess and move toward the optimal solution. Suppose we are
interested in minimizing4 the function f (x). Let the initial guess be x0. Then the pro-
cedure would be to move toward the optimal point x∗ by revising our initial guess
in accordance with

xk = xk−1 + λkdk (12.23)

where λk is a scalar and dk is a vector that determines the direction of our movement.
Below we will first discuss a method for finding dk and then a technique for finding
a reasonably good λk. We continue the discussion with other methods of finding dk.

12.3.1 Steepest Descent

The idea here is to take the step that results in the fastest movement toward the
minimum. Such a direction is provided by the gradient of the function. Thus, we set

dk = −∇f (xk) (12.24)

which implies
xk = xk−1 − λk∇f (xk) (12.25)

To see the rationale behind this choice, consider the function f (x) = x2 that
attains its minimum at x0 = 0. Let the starting point be x0 = −5. It is clear that a
move toward the minimum requires an increase in x. The derivative of the function
at x0 = −5 is 2x0 = −10 and therefore the direction of steepest descent is positive.
On the other hand, at the point of x0 = 5, the direction of steepest descent will be
negative. As another example consider the function f (x, y) = x2 + y2 that attains its
minimum at x = y = 0. The direction of steepest descent is[−2x

−2y

]

4Procedures for maximizing a function are similar to minimization discussed in this section. Note
that minimizing −f (x) results in maximizing f (x).
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Thus, at any point xk, yk, the direction of the steepest descent requires the variable
that has a positive (negative) value to decrease (increase).

The algorithm for the steepest descent is:

1. Specify x0 and the convergence criterion 
.
2. Compute dk = −∇f (xk).
3. If ‖dk‖ ≤ 
 stop.
4. Find λk that minimizes f (xk + λkdk) (see 12.3.2 below).
5. Compute xk = xk−1 + λkdk and go back to step 2.

Other optimization methods differ from the steepest descent in the choice of dk.
But before discussing other methods, let us find out how we can choose λk.

12.3.2 Golden Section Method

The idea is to find λk that minimizes f (xk+λkdk). But, as the problem is auxiliary to
our main mission, we want to accomplish this cheaply, that is, with minimum effort.
First, note that this is a unidimensional optimization problem, and because we are
looking at a small segment of the function, it is reasonable to assume that there is
only one minimum. Thus, we can define our problem as finding the minimum of a
function of one variable g(z) where z ∈ [z1, z2] (see Fig. 12.6). Let b = 0.618034
which is the reciprocal of the golden ratio (1+√5)/2. The following is the golden
section algorithm.

1. Let
z3 = b z1 + (1− b) z2

z4 = bz2 + (1− b) z1

2. If f (z3) > f (z4), then the minimum is in [z3, z2] . Replace z1 with z3 and go to
step 1; else if f (z4) > f (z3), then the minimum is in [z1, z4]. Replace z2 with z4
and go to step 1 (see Fig. 12.7).

12.3.3 Newton Method

In this method

dk = −[∇2f (x)]−1∇f (x) (12.26)

The rationale behind this choice is the Taylor formula. Recall that we can write
the Taylor expansion of ∇f (x) as

∇f (x) ≈ ∇f (x0)+ (x− x0)∇2f (x0) (12.27)
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Fig. 12.7 The golden section
method

At the point of optimum, ∇f (x) = 0, therefore, a reasonable iterative method
would be

∇f (x) ≈ ∇f (x0)+ (x− x0)∇2f (x0) (12.28)

The problem with this algorithm is the calculation of the inverse of the
Hessian matrix. Algorithms known as quasi-Newton differ in their suggestion as
how to approximate [∇2f (x0)]−1. Here we mention the Davidson-Fletcher-Powell
algorithm.

1. Specify x0, the convergence criterion 
, and H1 = I, where I is the identity
matrix.

2. Compute dk = −Hk∇f (xk).
3. Find λk that minimizes f (xk + λkdk).
4. Compute xk+1 = xk + λkdk.
5. If ‖∇f (xk+1)‖ ≤ 
 stop.
6. Compute qk = ∇f (xk+1)−∇f (xk), pk+1 = −Hk+1∇f (xk+1), and

Hk+1 = Hk + λk
p′kpk

pkqk
− Hkqkq′kHk

q′kHkqk

Go back to step 2.

12.3.4 Matlab Functions

Matlab has two procedures for finding the minimum of a function. fminbnd finds
the minimum of a function of one variable. Suppose you have defined the following
function in an M.file called clara:

f (x) = 2x3 − 7x+ 13
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Moreover, suppose that we would like to conduct the search over the interval
[1, 5].

Matlab code

% To find x at which the function attains its minimum

x = fminbnd(@clara,1,5)

% To find both x and the minimum value of the

% function

[x, fval] = fminbnd(@clara,1,5)

The minimum of functions of several variables is found using fminsearch.
Again, suppose that we have defined the function of interest

f (x) = 7(x1 − x2)2 + 6x2
3 + 3(1− x2)2

in an M.file called nigel. The function fminsearch requires a starting point.
Let [x0

1, x0
2, x0

3] = [−1, 2, 0.5].

Matlab code

% To find x at which the function attains its minimum

x = fminsearch(@nigel, [-1, 2, 0.5])

% To find both x and the minimum value of the

% function

[x, fval] = fminsearch(@nigel, [-1, 2, 0.5])

12.3.5 Exercises

E.12.7 Implement the golden section method on Matlab.

E.12.8 Use the Matlab function fminbnd to solve problems in E.12.1.

E.12.9 Use the fminsearch to solve problems in E.12.4.



Chapter 13
Constrained Optimization

In a scene in The Godfather, the late Marlon Brando, playing Don Vito Corleone,
tells his son, “Well, this wasn’t enough time, Michael. It wasn’t enough time.”
There is never enough time, nor is there ever enough money. In personal life,
in the affairs of a company or university, and in the government budget, there
are never enough resources, be it time, money, or energy. Economics has always
been concerned with optimal allocation of scarce resources to competing and
unbounded wants. We can imagine that if resources were infinite or wants were
limited, there would be no economic problems. Thus, in deciding the family con-
sumption, the hiring for a university, the number and types of courses to offer
in a discipline, the amount of R&D expenditures in the company, the allocation
of the federal budget among national defense, education, and welfare programs,
we face the same problem of allocating scarce resources to achieve the best
result possible. But if the behavior of economic decision makers is determined
by choosing the best allocation subject to budget constraints, then the start-
ing point of economic theory of households and firms ought to be constrained
optimization.

13.1 Optimization with Equality Constraints

Constraints come in two different forms of equality and inequality. We have a theory
that can handle a combination of both types of constraints. Whereas starting with a
unified general theorem is mathematically appealing, we will lose the opportunity
to gain an intuitive understanding of the issues involved. Thus, in accordance with
our policy to have a kinder, gentler math book, we start with equality constraints,
then discuss inequality constraints, and finally present the Karush-Kuhn-Tucker
(KKT) theorem that handles both types of constraints. The constrained optimization
problem is formally defined as

max f (x), x ∈ �n

subject to gi(x) = 0, i = 1, . . . , m
(13.1)

347K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_13, C© Springer-Verlag Berlin Heidelberg 2011
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or

min f (x), x ∈ �n

subject to gi(x) = 0, i = 1, . . . , m
(13.2)

where f : D → � is a twice continuously differentiable function, and D ⊂ �n.

Example 13.1

max z = xy

s.t. x+ y = 12

An old-fashioned way of solving this problem is to start with the constraint and
write y in terms of x. By substituting the result in the objective function, we will
have a function of one variable to maximize. Because

y = 12− x

we can change our problem to

max z = x(12− x) = −x2 + 12x

Taking the first derivative and setting it equal to zero

dz

dx
= −2x+ 12 = 0

we get

x = 6, y = 6, z = 36

This is a maximum because the second derivative is negative.

d2z

dx2
= −2

The above solution runs into two problems. First, it is not always easy to solve
for y in terms of x or, in general, to solve for as many variables as there are con-
straints and substitute them in the objective function. Second, by eliminating the
constraint, we can only indirectly study its effect on the optimal solution. In other
words, the value of relaxing the constraint just a bit is not part of the solution to the
problem. This is an important issue, especially in economics, because a constraint
means scarce resources and, as will be seen later, Lagrange multipliers are marginal
valuations or shadow prices of these resources. Hence, the widespread use of the
Lagrange method in economics.

We will discuss the Lagrange method twice. First, when there is only one con-
straint, which is by far the most recurring problem in economics. Then we will
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describe the general method with m constraints. The essence of the Lagrange
method is the observation that we can replace the objective function in problems
in (13.1) and (13.2), when m = 1 with

L(x, λ) = f (x)+ λg(x) (13.3)

L s called the Lagrangian and λ is called the Lagrange multiplier. For the new prob-
lem we have the following theorem that we state without proof. Whereas proof of
the theorem is not difficult, it hardly adds anything for those who are interested in
its applications. Instead, we will provide an intuitive justification for the theorem.

Theorem 13.1 Let f : D → � and g(x) be twice continuously differentiable func-
tion. Then the necessary conditions for f to be optimum subject to g (x) = 0 are

∇L(x∗, λ∗) = 0

g(x∗) = 0
(13.4)

What Theorem 13.1 says is that by taking the first-order derivatives of L with
respect to x′s and λ and setting them equal to zero, we will reach an optimum. Thus,
to find the optimum point, we need to solve the following system of equations:

∂f (x∗, λ∗)
∂x1

+ λ∗ ∂g(x∗, λ∗)
∂x1

= 0

...
∂f (x∗, λ∗)

∂xn
+ λ∗ ∂g(x∗, λ∗)

∂xn
= 0

g(x∗) = 0

(13.5)

Example 13.2 Let us solve the problem in Example 13.1 using the Lagrange
method. We have

L = xy+ λ(x+ y− 12)

Taking derivatives and setting them equal to zero result in the following equations:
y+ λ = 0

x+ λ = 0

x+ y− 12 = 0

Solving the equations, the optimal point is reached at

x = y = 6, xy = 36

and

λ = −6



350 13 Constrained Optimization

The equations in (13.5) define the necessary condition for L to reach its optimum,
that is, its total differential to be equal to zero.

dL =
n∑

i=1

∂f (x∗)
∂xi

dxi + λ∗
n∑

i=1

∂g(x∗)
∂xi

dxi + g(x∗)dλ = 0 (13.6)

To see why the above equations result in the constrained optimum of f, note that
such an optimum requires, as a necessary condition, df = 0 when evaluated at the
point x∗ subject to g(x∗) = 0. The fulfillment of the constraint makes the last term
in (13.6) equal to zero. Furthermore, because there is only one constraint when x
has n elements, the constraint defines a large set of values that are consistent with
it. As a matter of fact, because of continuity there are an infinite number of points
that satisfy the constraint. Let us denote this set by Dg ⊂ D. Moving within this set
requires

dg(x)|x∈Dg =
n∑

i=1

∂g(x∗)
∂xi

dxi

∣∣∣∣∣
x∈Dg

= 0 (13.7)

This leaves us with
n∑

i=1

∂f (x∗)
∂xi

dxi = 0

which is the optimal condition for f (x), but now the optimum is found not in D
but in Dg.

Example 13.3 The most important example of constrained maximization occurs in
consumer theory. An individual or household maximizes its utility U (x1, x2) subject
to the budget constraint y = p1x1 + p2x2, where p1 and p2 are prices of the first
and second commodities, respectively, and y is the household’s income. We are
assuming two consumer goods, but extension to n goods is straightforward. The
Lagrangian is

L = U(x1, x2)+ λ(p1x1 + p2x2 − y) (13.8)

The first-order conditions are

U1 + λp1 = 0

U2 + λp2 = 0

p1x1 + p2x2 = y
(13.9)

Solving the first two equations, we get

U1

U2
= p1

p2
(13.10)

In other words, the ratio of marginal utilities should be the same as the ratio of
respective prices. Because the slope of the budget line is −p1/p2 and the slope of
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Fig. 13.1 Tangency of
indifference curve and the
budget constraint

the indifference curves −U1/U2, (13.10) states that the maximum utility subject to
the budget constraint is reached when the two curves have the same slope, mean-
ing that they are tangents (Fig. 13.1). The last equation in (13.9) requires the total
expenditures to be equal to the available resources, y.

Example 13.4 Let the technology of a firm be represented by

Q = AKαL1−α (13.11)

where, in familiar notation, Q, K, and L are, respectively, output, capital, and labor.
Let us consider the problem of minimizing cost subject to producing a given level
of output Q̄. The problem is

min rK + wL

s.t. AKαL1−α − Q̄ = 0
(13.12)

where r is the rental cost of capital and w the wage rate. The Lagrangian is

L = (rK + wL)+ λ(AKαL1−α − Q̄) (13.13)

The optimality conditions are

r + λαAKα−1L1−α = 0

w+ λ(1− α)AKαL−α = 0

AKαL1−α = Q̄

Solving these equations, we get

K = Q̄

A

(
α

1− α

w

r

)1−α

, L = Q̄

A

(
1− α

α

r

w

)α
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The case of more than one constraint does not differ substantively from the above,
except that we have to incorporate the additional constraints. The sufficient condi-
tions, however, are a bit tricky, and the reader is advised to pay particular attention.
Again we will form the Lagrangian

L(x, λ) = f (x)+
m∑

i=1

λig(x) (13.14)

Let
λ = [λ1 . . . λm]′

The necessary condition for optimum requires

∇L(x∗, λ∗) = 0 (13.15)

which implies

∂f (x∗, λ∗)
∂x1

+
m∑

i=1

λ∗i
∂gi(x∗, λ∗)

∂x1
= 0

...

∂f (x∗, λ∗)
∂xn

+
m∑

i=1

λ∗i
∂gi(x∗, λ∗)

∂xn
= 0

g1(x∗) = 0
...

gm(x∗) = 0

(13.16)

Example 13.5 Frequently in econometrics we face the problem of estimating the
parameters of a model subject to constraints either because such constraints are
inherent in the theory or because we would like to test such restrictions. As an
example of the former, suppose we want to estimate a Cobb-Douglas production
function with constant returns to scale. That is,

Q = AKαLβ

subject to the constraint

α + β = 1

Of course we can incorporate the restriction by estimating

ln Q = ln A+ α ln K + (1− α) ln L

The same is true if we would like to test zero restrictions on the effects of specific
variables. We can estimate the model once with the variable in the equation and
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once excluding it. Then a test could be conducted using, say, the likelihood ratio.
But there are instances when such simple tricks don’t work and we need constrained
least squares. The problem is to estimate the parameters of the model

y = Xβ+ u (13.17)

subject to restrictions

Rβ = c (13.18)

For example, if β has three components and we want β1 = β3 and β2 + β3 = 1,
the restrictions would be

[
1 0 −1

0 1 1

]⎡⎢⎣
β1

β2

β3

⎤
⎥⎦ =

[
0

1

]

To solve the problem, we form the Lagrangian

L = (y− Xβ̂r)′(y− Xβ̂r)+ λ(Rβ̂r − c) (13.19)

First-order conditions for a minimum are

−2X′y+ 2X′Xβ̂r + R′λ = 0

−c+ Rβ̂r = 0
(13.20)

Premultiplying both sides of the first equation in (13.17) by R(X′X)−1, we can solve
for λ:

λ = −2[R(X′X)−1R′]−1[c− R(X′X)−1y] (13.21)

Substituting λ from (13.21) back into the first equation of (13.20) and pre-
multiplying both sides by (X′X)−1, we have the restricted least squares estimator

β̂r =(X′X)−1X′y + (X′X)−1R′[R(X′X)−1R′]−1[c− R(X′X)−1y]

=β̂+ (X′X)−1R′[R(X′X)−1R′]−1[c− Rβ̂]
(13.22)

The interesting point to observe is that the truer the restrictions imposed, that is,
the more support the restrictions get from the data, the closer will be the restricted
least squares to ordinary least squares estimator and, therefore, the more difficult to
reject the restrictions.
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13.1.1 The Nature of Constrained Optima
and the Significance of λ

We stated that maximizing f (x) subject to a constraint is equivalent to maximizing
the Lagrangian. Let us do an experiment: Take any of the functions with numerical
coefficients in this section, form their Lagrangian, and try to maximize them using a
computer routine for maximization, for example, fminbnd or fminsearch. You
will get a strange result. The computer will set λ = 0 and you will get an error
message because the maximum is not finite. The same will happen for minimiza-
tion. This anomalous result is obtained because the routine will try to maximize
the objective function with respect to all of its arguments including λ. But that is
not what the Lagrange method is about. In fact, the Lagrangian is maximized with
respect to x and minimized with respect to λ. Therefore, we have a saddle point
solution. This is best understood by saying

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) (13.23)

But, what is this λ? Its meaning is best understood in the context of Example
13.3. Referring to (13.8) we have

∂L

∂y
= −λ (13.24)

For any infinitesimal relaxation of the constraint the objective function is
increased by that amount times −λ. Loosely speaking, a one unit increase in the
amount of resources, y, has a reward of −λ. Thus, −λ is the opportunity cost or
price of the resource, which was scarce and formed a constraint. In optimizing our
resource allocation, we were minimizing the cost of resources we used. Thus, we
solved two problems as if one was the twin or dual of the other. Indeed, cost mini-
mization and optimal allocation of resources are dual problems and the solution of
one is tantamount to the solution of the other.

13.1.2 Exercises

E.13.1 Solve the following constrained optimization problems. In all these problems
we have the additional constraints x ≥ 0 and y ≥ 0.

i. min z = (x− 2)2 + 2(y− 5)2 − 7 s.t. x+ y = 12

ii. max z = (x− 2)2 + 2(y− 5)2 − 7 s.t. x+ y = 12

iii. min z = x2 − 3xy+ y2 + 5x− 2y+ 2 s.t. x+ y = 44

iv. min z = x3 + y3 − 3xy s.t. x+ y = 3

v. max z = ln(x)+ ln(y) s.t. x+ y = 15

vi. max z = 2 ln(x)+ ln(y) s.t. x+ y = 26
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E.13.2 Solve the following constrained optimization problems. In these problems
we have the additional constraints x1, x2, x3 ≥ 0.

i. max ln(x1)+ 0.9 ln(x2)+ 0.81 ln(x3)

s.t. x1 + x2 + x3 = 125

ii. max x1 + x2 + x3

s.t. x1 + 2x2 + 5x3 = 150

E.13.3 Solve the minimum cost function when production technology does not
exhibit constant returns to scale.

min rK + wL

s.t. AKαLβ − Q̄ = 0

13.2 Value Function

The assumption of optimizing behavior on the part of economic players is intended
to lead to testable hypotheses and an explanation of economic behavior. In particu-
lar, we may be interested in the effects of a change in relative prices or the budget
constraint on the behavior of the consumer or the effects of a change in input or
product prices on the behavior of the firm. The optimization by the consumer or
firm leads to a function where any configuration of the parameters of the problem
uniquely determine the behavior of the economic player. Thus, we can investigate
the effects of a change in any parameter on the variables of interest. The emphasis
is on the uniqueness of connections between parameters such as prices, which are
outside the control of the firm or consumer on the one hand, and quantities such as
the amount of output or consumption of a particular good that are under the con-
trol of the decision makers. Without a unique relationship between the two sets of
variables, no conclusion can be reached regarding the effects of the former on the
latter.

The function that uniquely connects parameters and decision variables in an opti-
mization problem is called the value function. We shall explore this function. But
the interesting point is that the optimization problem itself has a twin called the
dual problem. The dual problem also leads to a value function of its own. In some
problems, using the value function from the dual problem leads to a function whose
elements are observable while the same is not true for the value function of the
primal problem.

Consider the optimization problem

maxx f (x, θ )

s.t. g(x, θ ) = 0

x ≥ 0
(13.25)
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where θ = (θ1, . . . , θk)′ are parameters of the model. The solution of the problem
in (13.25) will depend on the parameters and can be written as x = x(θ). The value
function is defined as

V(θ ) ≡ max
x

[f (x, θ ) | g(x, θ ) = 0, x ≥ 0] (13.26)

Thus,

V(θ ) ≡ f (x(θ), θ ) (13.27)

Example 13.6 The consumer problem is

maxx U(x)

s.t. p′x = y

x ≥ 0

where x = (x1, . . . , xn)′ is the vector of the quantities of each good or service con-
sumed, p = (p1, . . . , pn)′ is the vector of prices of the same goods and services,
and y is the consumer’s income. The solution of this problem will be of the form
x = x(p, y), which is the system of the Marshallian demand functions. For example,

xj = xj(p, y) (13.28)

is the Marshallian demand function for the j-th commodity. Substituting the solu-
tions back into the objective function, V(p, y) = U(x(p, y)), we get the indirect
utility function.

Example 13.7 Consider the utility function

U (x1, x2) = x1x2

and the budget constraint

p1x1 + p2x2 = y

The consumer problem is

max x1x2

s.t. p1x1 + p2x2 = y

x1, x2 ≥ 0

The problem can be reformulated as

max L = x1x2 + λ(p1x1 + p2x2 − y)
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The optimality conditions are

x2 + λp1 = 0

x1 + λp2 = 0

p1x1 + p2x2 = y

solving the equations we get

x1 = 1

2p1
y

x2 = 1

2p2
y

λ = − 1

2p1p2
y

The first two equations are Marshallian demand functions for the first and second
commodities. Substituting these results in the utility function, gives us the indirect
utility function.

V(p1, p2, y) = 1

4p1p2
y2

Example 13.8 Let us assume that the utility function of the consumer has constant
elasticity of substitution (CES), which for the case of two goods is

U(x1, x2) = (xρ
1 + xρ

2 )1/ρ

Then the utility maximization problem will be

max
(
xρ

1 + xρ
2

)1/ρ

s.t. p1x1 + p2x2 = y

x1, x2 ≥ 0
or

max L = (xρ
1 + xρ

2

)1/ρ + λ(p1x1 + p2x2 − y)

The first order conditions are

xρ−1
1

(
xρ

1 + xρ
2

)(1/ρ)−1 + λp1 = 0

xρ−1
2

(
xρ

1 + xρ
2

)(1/ρ)−1 + λp2 = 0

p1x1 + p2x2 = y
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Solving these equations we get

x1 = p1/(1−ρ)
1 y

pρ/(ρ−1)
1 + pρ/(ρ−1)

2

= pβ−1
1 y

pβ

1 + pβ

2

x2 = p1/(1−ρ)
2 y

pρ/(ρ−1)
1 + pρ/(ρ−1)

2

= pβ−1
2 y

pβ

1 + pβ

2

where in obvious notation β = ρ/(ρ − 1). Now we can find the indirect utility
function by plugging the optimal values of x1 and x2 in the utility function. Thus,

V(p1, p2, y) =
[(

pβ−1
1 y

pβ

1 + pβ

2

)ρ

+
(

pβ−1
2 y

pβ

1 + pβ

2

)ρ]1/ρ

An important proposition regarding the value function is the Envelop Theorem,
which is quite useful in comparative static analysis.

Theorem 13.2 Let L be the Lagrangian, x(θ) and λ(θ) the solutions, and V(θ) the
value function in (13.26). Further assume that x >> 0, which means x is much
greater than zero.1 Then

∂V(θ)

∂θj
= ∂L

∂θj

∣∣∣∣
x(θ), λ(θ)

(13.29)

We will not prove this theorem but illustrate it with Example 13.7. Taking the
derivative of the value function with respect to its parameters p1, p2, and y, we have

∂V

∂p1
= − 1

4p1p2
y2

∂V

∂p2
= − 1

4p1p2
y2

∂V

∂y
= 1

2p1p2
y

1This assumption is made so that we rule out the possibility of a corner solution.
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Taking the derivative of the Lagrangian, we have

∂L
∂p1

= λx1

∂L
∂p2

= λx2

∂V

∂y
= −λ

Substituting the optimal values of x1, x2 and λ in the above equations, completes
our illustration. For example, for the first equation,

∂L
∂p1

= − 1

2p1p2
y · 1

2p1
y

= − 1

4p2
1p2

y2

Showing the other two equalities are left to the reader. Another interesting
characteristic of the value function is the Roy’s identity.

Theorem 13.3 (Roy’s Identity). If xj = xj(p, y) is the Marshallian demand function,
then

xj(p, y) = −
∂V(p, y)

∂pj

∂V(p, y)

∂y

(13.30)

Again, we shall illustrate this proposition with Example 13.7. Note that

∂V(p, y)

∂p1
= − 1

4p2
1p2

y2 (13.31)

and
∂V(p, y)

∂y
= 1

2p1p2
y (13.32)

substituting (13.31) and (13.32) in (13.30), we get the demand function for
commodity 1.

An alternative way of solving the consumer problem is to minimize the expendi-
tures, subject to a given level of utility.

min
x

p′x

s.t. U(x) = U∗

x ≥ 0
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The value function resulting from this problem is called the expenditure function
and depends on prices and the preselected level of utility U∗.

e = e(p, U∗)

The demand functions for different goods will also depend on prices and util-
ity and they are called the Hicksian demand functions. We shall illustrate these
concepts with Example 13.7.

Example 13.9 The Lagrangian function is

L = p1x1 + p2x2 + μ(x1x2 − U∗)

First-order conditions are

p1 + μx2 = 0

p2 + μx1 = 0

x1x2 = U∗

Again we can solve for x1, x2, and μ:

x2
1 =

p2

p1
U∗, x2

2 =
p1

p2
U∗

Recalling that only positive values of commodities are allowed, we have the
Hicksian demand functions for commodities 1 and 2 as

x1 =
(

p2

p1
U∗
)1

2

x2 =
(

p1

p2
U∗
)1

2

and

μ = −
(p1p2

U∗
)1

2

Substituting the optimal values of x1 and x2 into the objective function, we get the
expenditure function.

e(p, U∗) = p1

(
p2

p1
U∗
)1

2 + p2

(
p1

p2
U∗
)1

2

= 2
(
p1p2 U∗

)1

2

Note that the Hicksian demand functions depend on unobservable U∗



13.2 Value Function 361

whereas the Marshallian functions can be estimated using observations on income
and prices. But there is a connection between the Marshallian and Hicksian demand
functions. Let us denote the latter by hj(p, U∗). Then

hj(p, U∗) = xj(p, e(p, U∗)) (13.33)

Example 13.10 (Slutsky2 Equation). A benefit of having the expenditure function
is that we can derive the Slutsky equation in a different and perhaps more straight-
forward way. Consider (13.33) and let us differentiate it with respect to pj. Then

∂hj(P, U∗)
∂pj

= ∂xj(P, y)

∂pj
+ ∂xj(P, y)

∂y

∂e(p, U∗)
∂pj

(13.34)

The last term on the RHS is the partial derivative of the expenditure function
with respect to pj. Because the expenditure function is the optimal value of p′x. its
derivative with respect to pj is equal to the optimal value of xj. Making the substitu-
tion and rearranging terms, we have the Slutsky equation decomposing the effect of
a price change into substitution and income effects:

∂xj(P, y)

∂pj
= ∂hj(P, U∗)

∂pj
− ∂xj(P, y)

∂y
xj (13.35)

Example 13.11 Going back to Example 13.4, we can substitute the optimal values
of K and L into the cost function to get

C = Q̄

A

[
r

(
1− α

α

r

w

)α−1

+ w

(
1− α

α

r

w

)α
]

(13.36)

The above equation allows us to illustrate Shephard’s lemma.

Theorem 13.4 (Shephard’s Lemma). Let q be the vector of input prices and
C(q, Q), the cost function. Suppose C is differentiable. Then the demand function
for the j-th input xj(q, Q) can be obtained as

xj(q, Q) = ∂C(q, Q)

∂qj
(13.37)

2Evgeny Evgenievich Slutsky (1880–1948), Russian mathematician, economist, and statistician,
published this result in a highly mathematical article “Sulla teoria del bilancio del consuma-
tore,” in Giornali degli Economisti in 1915. Because of the war, it received little attention. In the
1930s, economists R. G. D. Allen, John Hicks, and Henry Schultz, working on consumer theory,
rediscovered it.
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Note that from (13.36) we have

∂C

∂r
= Q̄

A

(
1− α

α

r

w

)α−1

and

∂C

∂w
= Q̄

A

(
1− α

α

r

w

)α

which are demand functions for K and L.

13.2.1 Exercises

E.13.4 Show that the indirect utility function is homogeneous of degree zero. Show
this first for the functions in Examples 13.7 and 13.8 and then for a general consumer
problem.

E.13.5 Show that the expenditure function is homogeneous of degree one in prices.
Show this first for the function in Examples 13.9 and then for a general consumer
problem.

E.13.6 Verify the Slutsky equation using utility functions in Examples 13.7 and
13.8.

E.13.7 Verify Shephard’s lemma when the firm’s technology is represented by

Q = AKαLβ

E.13.8 Derive the indirect utility and expenditure functions for the consumer
problem in part i. of E.13.2.

13.3 Second-Order Conditions and Comparative Static

So far we have been discussing the first-order or the necessary conditions for the
solution of an optimization problem. We still need to distinguish between maximum
and minimum. The distinction is made through the second-order or the sufficient
conditions that are presented in the following two theorems.

Theorem 13.5 Let x∗ be the optimum point of f subject to g(x∗) = 0. It will be a

maximum if ∇2
x L(x∗, λ∗) is negative definite

minimum if ∇2
x L(x∗, λ∗) is positive definite

(13.38)
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subject to g(x∗) = 0. The constraint implies

z′∇g(x∗) = 0 (13.39)
for all vectors z.

Theorem 13.6 The conditions of Theorem 13.5 for a minimum are realized if the
bordered Hessians

∣∣Hp
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2L(x∗, λ∗)
∂x2

1

· · · ∂2L(x∗, λ∗)
∂x1∂xp

∂g(x∗)
∂x1

...
...

...
...

∂2L(x∗, λ∗)
∂xp∂x1

· · · ∂2L(x∗, λ∗)
∂x2

p

∂g(x∗)
∂xp

∂g(x∗)
∂x1

· · · ∂g(x∗)
∂xp

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

< 0 (13.40)

for p = 2, . . . , n. For a maximum we should have

(−1) p
∣∣Hp
∣∣ > 0 (13.41)

for p = 2, . . . , n.

Example 13.12 Recall the first-order conditions of the optimization problem in
Example 13.2:

y+ λ = 0

x+ λ = 0

x+ y− 12 = 0

The solution is a maximum because

∣∣∣∣∣∣∣
0 1 1

1 0 1

1 1 0

∣∣∣∣∣∣∣ = 2 > 0

Note that for a maximum the determinant has to be positive, because p = 2 and
(−1) p > 0.

Example 13.13 In Example 13.3, the first-order conditions were

U1 + λp1 = 0

U2 + λp2 = 0

p1x1 + p2x2 = y
(13.42)
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The bordered Hessian

|H2| =

∣∣∣∣∣∣∣
U11 U12 p1

U21 U22 p2

p1 p2 0

∣∣∣∣∣∣∣ (13.43)

has to be positive and, indeed, it is. Because marginal utilities are declining, but
marginal utility of one commodity increases if the consumption of the other is
increased,

U11 < 0 U22 < 0 U12 = U21 > 0

and

|H2| = p1p2(U12 + U21)− p2
1U22 − p2

2U11 > 0 (13.44)

The first-order conditions allow us to solve, at least in principle, for the optimal
values of each good or service as well as λ in terms of the parameters of the model.
The parameters of the consumer choice model consist of prices of goods and the
income of consumer. Thus, for the case of two goods we can write

x∗1 =x1(p1, p2, y)

x∗2 =x2(p1, p2, y)

λ∗ =λ(p1, p2, y)

Were we able to find the exact form of the above functions, we could have con-
ducted a comparative static analysis gauging the effects of changes in prices and
income on the amount of each good consumed. But even without an explicit solution
we are able to perform such an analysis.

Example 13.14 Let us take the total differentials of all three equations in (13.42):

U11dx∗1 + U12dx∗2 + p1dλ∗ =−λ∗dp1

U21dx∗1 + U22dx∗2 + p2dλ∗ =−λ∗dp2

p1dx∗1 + p2dx∗2 =dy− x∗1dp1 − x∗2dp2

(13.45)

Now we take up the parameters one at a time and consider their effect on the
three decision variables.3 First, we set dp2 = dy = 0 and divide all equations by
dp1. Because we are holding p2 and y constant, all derivatives will be partial. Writing
the result in matrix form, we have

3In this problem parameters play the same role as exogenous variables in Chap. 9 and variables of
interest or decision variables play the role of endogenous variables.



13.3 Second-Order Conditions and Comparative Static 365

⎡
⎢⎣

U11 U12 p1

U21 U22 p2

p1 p2 0

⎤
⎥⎦
⎡
⎢⎣

∂x∗1/∂p1

∂x∗2/∂p1

∂λ∗/∂p1

⎤
⎥⎦ =

⎡
⎢⎣
−λ∗

0

−x1

⎤
⎥⎦ (13.46)

Using one of the methods of Chap. 6, we can solve for the unknowns. In particular,
let us solve for the effect of p1 on x∗1 :

∂x∗1
∂p1

= −x∗1p2U12 + x∗1p1U22 + p2
2λ
∗

|H2|
=−x∗1

p2U12 − p1U22

|H2| + p2
2λ
∗

|H2|
(13.47)

If we let dp1 = dp2 = 0, we get

⎡
⎢⎣

U11 U12 p1

U21 U22 p2

p1 p2 0

⎤
⎥⎦
⎡
⎢⎣

∂x∗1/∂y

∂x∗2/∂y

∂λ∗/∂y

⎤
⎥⎦ =

⎡
⎢⎣

0

0

1

⎤
⎥⎦ (13.48)

and we can compute the effect of income on x1 as

∂x∗1
∂y

= p2U12 − p1U22

|H2| (13.49)

Furthermore, going back to the last equation in (13.45), recall that we set dp2 =
dy = 0. Instead, let us make dy = x∗1dp1 while keeping dp2 = 0. In other words, let
us compensate the consumer for any change in income due to a change in p1.

Under this assumption, if we solve the equations in (13.45), we get

∂x∗1
∂p1

∣∣∣∣
dy=x∗1dp1

= ∂x∗1
∂p1

∣∣∣∣
compensated

= p2
2λ
∗

|H2| (13.50)

Substituting (13.49) and (13.50) in (13.47) we have

∂x∗1
∂p1

= −x∗1
∂x∗1
∂y

∣∣∣∣
dp1=0

+ ∂x∗1
∂p1

∣∣∣∣
compensated

(13.51)

which is the Slutsky equation. We derived this equation from the expenditure func-
tion in previous sections, but this alternative way of deriving the Slutsky equation
allows us to better understand its meaning and significance. What can we say about
the sign of ∂x∗1/∂p1?

Intuitively, the formula states that an increase (decrease) in the price of a good in
your consumption basket affects your demand for that good through two channels:
income effect and substitution effect. First, the price increase (decrease) acts like a
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reduction (expansion) in the amount of resources at your disposal. As such it will
affect your demand for all goods including the one under consideration. If the sign
of the first term is negative, that is, when an increase in real income, with relative
prices held constant, increases the demand for a good, then that good is called a
normal good. Otherwise it is called an inferior good. The second term is definitely
negative (why?) and it states that if the change in your income is neutralized—
by compensating you for the loss or by taking away your extra resources—then
an increase in the price of a good reduces its demand. Putting the two effects
together, we can state that for a normal good, ∂x∗1/∂p1 < 0. The effect of a change
in p2 on x∗2, as well as the effects of p1 on x∗2 and p2 on x∗1 can be similarly
analyzed. Indeed, the Slutsky equation is more general. If there are n goods, we
can write

∂x∗i
∂pj

= −x∗j
∂x∗i
∂y

∣∣∣∣
dpj=0

+ ∂x∗i
∂pj

∣∣∣∣
compensated

∀i, j (13.52)

So far we have been dealing with optimization problems that had only one con-
straint. Here we turn to sufficient conditions for problems with m constraints. It turns
out that the sufficient conditions depend on the number of constraints.

Theorem 13.7 If the first-order conditions are satisfied, we will have a minimum if

(−1)m
∣∣Hp
∣∣ > 0 (13.53)

for p = m+ 1, . . . , n. Where

∣∣Hp
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2L(x∗, λ∗)
∂x2

1

· · · ∂2L(x∗, λ∗)
∂x1∂xp

∂g1(x∗)
∂x1

· · · ∂gm(x∗)
∂x1

...
...

...
...

∂2L(x∗, λ∗)
∂xp∂x1

· · · ∂2L(x∗, λ∗)
∂x2

p

∂g1(x∗)
∂xp

· · · ∂gm(x∗)
∂xp

∂g1(x∗)
∂x1

· · · ∂g1(x∗)
∂xp

0 · · · 0

...
...

...
...

∂gm(x∗)
∂x1

· · · ∂gm(x∗)
∂xp

0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The condition for a maximum is the same as above except that (−1)m should be

replaced with (−1) p. That is, if

(−1) p |Hp| > 0 (13.54)
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for p = m+ 1, . . . , n.

Example 13.15 max f (x, y, z) = xyz

s.t. y+ 2x = 15

2z+ y = 7

We can still solve this problem the old-fashioned way by substituting for y and z
to maximize

f (x, y, z) = x (15− 2x) (x− 4)

The solution is

x = 6, y = 3, z = 2

Of course, the function has a minimum, too at

x ≈ 1.67, y ≈ 11.66, z ≈ −2.33

The reader is urged to solve the problem and check the results. Next, we solve
this problem using Lagrange multipliers:

max xyz+ λ1(y+ 2x− 15)+ λ2(2z+ y− 7)

Setting the derivatives equal to zero, the first-order conditions are

yz+ 2λ1 = 0

xz+ λ1 + λ2 = 0

xy+ 2λ2 = 0

y+ 2x = 15

2z+ y = 7

Solving the above equations, we get two sets of solutions

i. x = 6, y = 3, z = 2,

λ1 = −3, λ2 = −9

ii. x ≈ 1.67, y ≈ 11.66, z ≈ −2.33,

λ1 ≈ 13.58, λ2 ≈ −6.80
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The second-order condition for a maximum requires the bordered Hessian to be
negative:

|H3| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 z y 2 0

z 0 x 1 1

y x 0 0 2

2 1 0 0 0

0 1 2 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −16x+ 8y− 16z

Evaluated at the point of solution in (i), the bordered Hessian is negative, there-
fore, we have a maximum. On the other hand, evaluated at the point of (ii), |H3| is
positive, signifying a minimum.

13.3.1 Exercises

E.13.9 Check the second-order conditions for problems E.13.1, 13.2, and E.13.3.

E.13.10 Show that the constrained least squares estimator of (13.24) indeed
minimizes the sum of squared residuals.

13.4 Inequality Constraints
and Karush-Kuhn-Tucker Conditions

There are many instances when because of technical necessity, legal restrictions,
policy imperatives, and other reasons, inequality constraints are imposed on an
optimization problem. A simple example is the fact that many economic variables,
including prices and quantities, are positive or at least nonnegative. Wages cannot
go below the minimum prescribed by law, no one can work more than 52 weeks
a year, and many production processes cannot be maintained unless a certain mini-
mum production is scheduled. As far as resources are concerned, they pose an upper
limit, but there is no imperative to utilize any resource to the fullest. For example,
in solving the consumer problem, we assumed that the individual or the household
exhausts their income on the goods available. There is no reason why any fam-
ily should spend exactly the amount of their income. A family can save for future
consumption or borrow and live beyond its present means.

Inequality constraints complicate the optimization problem and the Lagrangian
method has to be modified. Karush-Kuhn-Tucker (KKT) conditions provide the nec-
essary conditions for the optima with inequality and equality constraints. Because
we are dealing with inequality constraints, they are not necessarily binding. In the
language of resource allocation, we may not exhaust a resource and may have some
slack. If a constraint is not binding, then it cannot have an effect on the optimum and
its Lagrange multiplier will be zero. But if a constraint is binding, then it turns into
an equality. It follows that the product of a constraint and its Lagrange multiplier
has to be zero.
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Note also that if a Lagrange multiplier is different from zero, then the optimal-
ity conditions deviate from the unconstrained optimum. The amount and sign of
deviation depend on the Lagrange multiplier. It follows that the multiplier should
have opposite signs in the case of a minimum and maximum. Before stating these
conditions formally, let us get an intuitive understanding through a simple example
involving one variable and one constraint. Consider the following problem:

max f (x)

s.t. x ≥ x0
(13.55)

Three possibilities can be envisaged. First, the unconstrained optimum is greater
than the constraint x∗>x0 in which case the constraint is nonbinding, the Lagrangian
multiplier is zero, and f ′(x∗) = 0. This situation is depicted in Fig. 13.2a. The second

a b

c

x0 < x∗,  f ′(x∗) = 0

x∗ =  x0 ,  f ′(x∗) = 0

x∗ < x0 ,  f ′(x∗) = λ < 0r

Fig. 13.2 Three possible configurations in a simple optimization problem with inequality
constraint
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possibility occurs when x0 > x∗. Although f ′(x∗) = 0, this point is excluded because
it violates the constraint. Hence the solution is at x∗r = x0 where f ′(x∗r ) = λ < 0
(see Fig. 13.2b). Finally, we have the special case where the unconstrained optimum
point and the constraint coincide, x∗ = x0. This situation is depicted in Fig.13.2c. In
practice this is unlikely to happen, but it poses no problem for our analysis. Because
the constraint is binding, λ ≤ 0, but because we are at the unconstrained optimum,
the value of relaxing the constraint a bit is zero, hence λ = 0 and f ′(x∗) = 0.

All these possibilities are subsumed under the Karush-Kuhn-Tucker conditions.

Theorem 13.8 Consider the problem

min f (x)

s.t. gi(x) ≤ 0 i = 1, . . . , m

hj(x) = 0 j = 1, . . . , J
(13.56)

If x∗ is a solution to this problem, then there exists a set of multipliers λ∗i , i =
1, . . . , m and μ∗j , j = 1, . . . , J, such that

∇f (x∗)+
m∑

i=1

λ∗i ∇gi(x∗)+
J∑

j=1

μ∗j ∇hj(x∗) = 0

λ∗i ≥ 0, gi(x∗) ≤ 0, λ∗i gi(x∗) = 0 i = 1, . . . , m

hj(x∗) = 0 j = 1, . . . , J

(13.57)

For the maximization problem, we can either minimize −f (x) and keep the KKT
conditions as in (13.57) or alternatively, we can write them as

∇f (x∗)+
m∑

i=1

λ∗i ∇gi(x∗)+
J∑

j=1

μ∗j ∇hj(x∗) = 0

λ∗i ≤ 0, gi(x∗) ≤ 0, λ∗i gi(x∗) = 0 i = 1, . . . , m

hj(x∗) = 0 j = 1, . . . , J

(13.58)

Note that if there are no inequality constraints, KKT conditions specialize to
Theorem 13.1. On the other hand, we may have no equality constraints, only
inequalities, in which case the part involving μj

′s and equality constraints is
omitted.

Example 13.16 Find

max f (x) = −(x− 3)2

s.t. x ≥ 5
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The Lagrangian will be

L = −(x− 3)2 + λ(5− x)

The optimality conditions are

−2x+ 6− λ = 0,

λ ≤ 0, λ(5− x) = 0

Starting with the last equation, either x = 5 or λ = 0. If x = 5, then λ = −4 and
all conditions are satisfied. Thus, x = 5 is the point of constrained maximum. But,
if we set λ = 0, the first equation implies x = 3, which violates the constraint. Now
suppose that we change the constraint to

max f (x) = −(x− 3)2

s.t. x ≥ 1

The KKT conditions are

−2x+ 6− λ = 0

λ ≤ 0, λ(1− x) = 0

Starting with the last equation, if we set x = 1, we get λ = 4 > 0, which violates
the second condition. Hence, we should set λ = 0, which results in x = 3 where all
conditions are satisfied.

Karush-Kuhn-Tucker conditions pertain to local optima, but under certain condi-
tions a local optima will also be the global optima.

Theorem 13.9 If

1. f is convex (concave),
2. gi, i = 1, . . . , m are concave,
3. hj, j = 1, . . . , J are linear.

Then the local minimum (maximum) satisfying the conditions of Theorem 13.8 is
also the global minimum (maximum). Alternatively, if

1. f is convex (concave),
2. gi, i = 1, . . . , m and hj, j = 1, . . . , J define a convex set.

Then the local minimum (maximum) satisfying the conditions of Theorem 13.8
is also the global minimum (maximum). Indeed, we can somewhat relax the above
conditions. For this purpose we need to define a pseudo-convex function.
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Definition 13.1 A differentiable function f : D → � is called pseudo-concave if for
all x1, x2 ∈ D

∇f (x1)′(x2 − x1) ≤ 0 (13.59)

implies that

f (x2) ≤ f (x1) (13.60)

If f is pseudo-convex, then -f is pseudo-concave.

Theorem 13.10 The local minimum (maximum) obeying KKT conditions is the
global minimum (maximum) if

1. f is pseudo-convex (pseudo-concave),
2. gi, i = 1, . . . , m are quasi-concave,
3. hj, j = 1, . . . , J are quasi-concave or quasi-convex.

13.4.1 Duality

Every optimization problem has a twin or dual. Under certain conditions, the solu-
tion of one entails the solution of the other. Intuitively, suppose we are allocating the
available quantities of three resources, labor, capital, and energy, say, to two activi-
ties (outputs). Given the price of outputs, the primal problem is to find the amount
of each resource to be allocated to each activity so as to maximize an objective func-
tion. On the other hand, we may pose a dual problem asking how we could price
our resources to minimize the cost of producing at least a given level of each output.
The importance of duality in economics is to understand the underlying meaning of
an optimization problem, in particular, the role of Lagrange multipliers as optimal
prices of resources.

Example 13.17 Consider the following linear programming4 problem involving
two products and three resources. We shall denote the amount of each output
by xj, j = 1, 2 and the amount of each resource by ri, i = 1, 2, 3. The following
table shows how much of each resource is needed for every unit of each output.

4It is called linear programming because both the objective function and constraints are linear.
Russian mathematician Leonid Vitalyevich Kantorovich (1912–1986) was the first to formulate the
linear programming problem in response to a request by a Soviet enterprise wanting to optimize
the use of its resources. He solved the problem using Lagrange multipliers. His work received
scant attention at the time, but he later received the Nobel Prize in economics for his contribu-
tion to this subject. The simplex method for solving linear programming problem was discovered
by the American mathematician and statistician George Dantzig (1914–2005). In 1984, Narendra
Karmarkar discovered a different method for solving such problems.
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Resources

Outputs 1 2 3

1 6 3 3
2 3 3 6

Let us suppose that 50 units of the first resource, 40 of the second, and 75 of the
third are available. Finally, assume that the first product brings $15 of profit while
the second brings $12 of profit. Our problem is to maximize the total profit subject
to resource constraints.

max π = 15x1 + 12x2

s.t.

⎡
⎢⎢⎣

6 3

3 3

3 6

⎤
⎥⎥⎦
[

x1

x2

]
≤
⎡
⎢⎣

50

40

75

⎤
⎥⎦

x1, x2 ≥ 0

The dual of this problem is

min c = 50y1 + 40y2 + 75y3

s.t.

⎡
⎣6 3 3

3 3 6

⎤
⎦
⎡
⎢⎢⎣

y1

y2

y3

⎤
⎥⎥⎦ ≥

[
15

12

]

y1, y2, y3 ≥ 0

More generally, we can write a linear programming problem and its dual as

max π = p′x

s.t. Ax ≤ r

x ≥ 0

(13.61)

and

min c = r′y

s.t. A′y ≥ p

y ≥ 0

(13.62)

where p is the vector of output prices and y the vector of input (resource) prices.
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The issue of duality is not confined to linear models. For a nonlinear primal
problem with one equality and one inequality constraint,

max f (x)

s.t. g(x) ≤ 0

h(x) = 0

x ≥ 0

(13.63)

The dual problem is

min �(λ, μ)

s.t. μ ≥ 0
(13.64)

where

�(λ, μ) = inf
x

[f (x)+ μg(x)+ λh(x)] (13.65)

Example 13.18 Let us consider the following maximization problem and this time
use numerical values for prices and income:

max 2x2
1 + x2

2

s.t. 3x1 + x2 ≤ 110

x1, x2 ≥ 0

The Lagrangian is

L = 2x2
1 + x2

2 + λ(3x1 + x2 − 110)

The first-order conditions imply

x1 = −3

4
λ

x2 = −1

2
λ

Combining the above equations with the constraint, we get

x1 = 30, x2 = 20, λ = −40

Now, we can form the Lagrangian of the dual problem:

�(λ) = 2

(
−3

4
λ

)2

+
(
−1

2
λ

)2

+ λ

(
−3

3

4
λ− 1

2
λ− 110

)
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or

�(λ) = −11

8
λ2 − 110λ

Minimizing this function with respect to λ will give the same answer as the
primal problem.

Under certain conditions, the optimal values of objective functions in the primal
and dual problems are equal. In particular, if all constraints are differentiable and
convex and we can find a vector x such that

gj(x) < 0, ∀j

then the optimal values of the objective functions for primal and dual problems are
equal. This is known as the Slater constraint qualification. It can be modified by
saying that equality constraints should be affine5 and inequality constraints convex.
If the optimal values of the two objective functions are not equal, then there exists a
duality gap.

13.4.2 Exercises

E.13.11 Solve the following optimization problems:

i. max xy

s.t. x+ y = 12

x ≥ 7

ii. max xy

s.t. x+ y = 12

x ≥ 5

E.13.12 Solve the following problem:

max f (x, y, z) = xyz

s.t. y+ 2x = 15

2z+ y = 7

y ≥ 5, x, z ≥ 0

5An affine equation is linear but it is not homogeneous; that is, it has a constant term or intercept.
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E.13.13 Solve the following problem:

max f (x, y, z) = xyz

s.t. y+ 2x = 15

2z+ y ≤ 7

y ≥ 5, x, z ≥ 0

E.13.14 Show that a convex (concave) function is also a pseudo-convex (pseudo-
concave) function.

E.13.15 Write the dual problems of the primal optimization problems in E.13.11,
E.13.12, and E.13.13.



Chapter 14
Dynamic Optimization

14.1 Dynamic Analysis in Economics

In the real world time passes and, if you think about it, you will agree with me that
the only truly exogenous variable in economic models is time. Dynamic analysis
takes time into consideration in an essential way. In this chapter we shall discuss
dynamic optimization and, in the next three chapters, the modeling of economic
behavior over time. In Chaps. 12 and 13, we studied static optimization to find
the maximum or minimum point of a function with or without constraints on the
variables involved. In this chapter we are interested in optimization over time.

Examples of optimization over time abound in economics. A consumer can spend
his entire current income on consumption or save some for the future that will earn
him future income and enhance his future consumption possibilities. On the other
hand, he can borrow against his future earnings and expand his current budget at
the expense of future consumption when the debt has to be paid back. The ques-
tion, then, is how can a consumer balance consumption, savings, and borrowing to
achieve the highest lifetime utility?

As another example, we can consider an oil producer, be it a small firm in Texas
or as large an operation as the entire oil industry of Saudi Arabia. Profit from an
oil well depends on the total output of the well, oil prices over time, and the rate
of extraction. How can the extraction rate be regulated so as to result in the highest
profit over the lifetime of the well?

A worker can spend her entire lifetime working and earning money. On the other
hand, she can set aside time to learn new skills and enhance her human capital,
which would cut into her current income because there is less time to work and
because of education expenses. How does a worker maximize her lifetime earnings
or utility by allocating her time between work and education?

All of the above problems can be formulated as a dynamic optimization or control
problem. Let us have some specific examples.

Example 14.1 (Ramsey Problem). The objective is to maximize discounted social
utility that depends on per capita consumption over the infinite horizon.

max U =
∫ ∞

0
u(c)e−θ tdt (14.1)

377K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_14, C© Springer-Verlag Berlin Heidelberg 2011
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where c(t) is the per capita consumption, u the utility function, and θ is the discount
factor. The technology is represented by a production function that depends on labor
and capital and is homogeneous of degree one:

Y = F(K, L) = 1

L
F

(
K

L
, 1

)
= 1

L
f (k) (14.2)

where Y is output, K, capita, L, labor, and k = K/L. Output is divided between
consumption and capital formation.

Y = C + dK

dt
(14.3)

or in per capita form

f (k) = c+ 1

L

dK

dt
= c+ dk

dt
+ k

dL/dt

L
(14.4)

Denoting the rate of growth of labor by n, we have

dk

dt
= f (k)− c− nk (14.5)

and the control problem can be written as

max U =
∫ ∞

0
u(c)e−θ tdt

s.t.
dk

dt
= f (k)− c− nk

c, k ≥ 0, ∀t

(14.6)

Example 14.2 Human Capital Accumulation.1 Consider a worker who enters the
labor market at time t = 1 with human capital stock k1 and retires at t = T . Her
earnings depend on the number of hours worked, ht, and the wage rate, wt, which is
proportional to the worker’s human capital kt. That is,

wt = αkt (14.7)

For simplicity, we assume α = 1. Given the discount factor β = 1/(1+ r) where
r is the interest rate, the worker’s objective is to maximize the present value of her
lifetime earnings.

max
{kt+1}T−1

t=1

T∑
t=1

β thtkt (14.8)

1This problem is from Recursive Methods in Economic Dynamics by Nancy Stokey and Robert
Lucas (1989).
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The worker can use all the time at her disposal to work and earn income in which
case her human capital diminishes or can devote part or all of her time to enhancing
the capital stock which would diminish earnings. In general, we can write

ht = φ

(
kt+1

kt

)
, φ′ < 0 (14.9)

Moreover the worker’s human capital can grow at most at the rate λ, for which
she has to devote all her time to education causing ht to be equal to zero. On the
other hand, as the result of working full time, ht = 1, the worker’s human capital
would diminish at most at the rate δ. Thus, we have

(1− δ)kt ≤ kt+1 ≤ (1+ λ)kt

0 = φ(1+ λ) ≤ φ

(
kt+1

kt

)
≤ φ(1− δ) = 1, ∀t

(14.10)

Combining all the elements above, we have the following control problem:

max
{kt+1}T−1

t=1

T∑
t=1

β tktφ

(
kt+1

kt

)

s.t. (1− δ)kt ≤ kt+1 ≤ (1+ λ)kt, ∀t

k1 > 0, given

(14.11)

14.2 The Control Problem

The aim of a dynamic optimization problem is to find the maximum or minimum
of an objective functional (see Sect. 14.1.1 for the meaning of the term functional),
which is either an integral (continuous time) or sum of future terms (discrete time).
The objective functional depends on the variable of interest called the state vari-
able. In the Ramsey problem the state variable is the per capita capital, kt, and
in the accumulation of human capital, the state variable is the number of hours
worked, ht.

Because we are interested in optimization over time, a crucial component of the
problem is the equation of motion, which describes the evolution of the state variable
over time. In Example 14.1, the equation of motion is (14.5) and in Example 14.2,
it is (14.9). The solution to a control problem is a path for the state variable, which
results in the maximum or minimum of the objective functional. Such a path depends
on the equation of motion and, therefore, we need an instrument, called a control
variable, to make sure that the motion of the state variable does not deviate from the
optimal path. In Example 14.1 the control variable is the per capita consumption,
c(t), and in Example 14.2, it is the worker’s human capital, kt. In some problems (see
Sect. 14.3 on the calculus of variations), the control variable is the derivative of the
state variable and therefore, we do not have an equation of motion. To these elements
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of a dynamic optimization problem, we could add initial and terminal conditions,
that is, restrictions on state variables at the beginning and endpoint of the path. In
addition, in some problems the admissible values of state and control variables may
be restricted to a particular set.

It should be pointed out that in a deterministic control problem, it is assumed that
future variables are either known or they can be determined by the decision maker.
Usually in stochastic dynamic optimization, all random variables are replaced by
their expected values, and the expected value of the objective functional is max-
imized or minimized. As a result, the control problem deals with a future that
is known in advance. The nature of control problems is different from real-world
problems where the decision maker has to respond to evolving situations.

The real-life problems involve uncertainty about the future that entails evaluat-
ing risk against return. Moreover, the decision maker may face an evolving situation
where other decision makers’ moves affect the outcome of his or her decisions.
In such cases one may only be able to adopt a strategy and respond to short-term
changes with moves consistent with the adopted strategy. Among games, backgam-
mon epitomizes such situations. Not only does a player not know what will be the
outcome of the next throw of the dice, but he also cannot be sure of the oppo-
nent’s reaction. Thus, a player, at best, can devise a strategy and revise it as events
unfold. The real-world situation in politics, business, diplomacy, and war resembles
backgammon. Dynamic optimization is a step closer to decision making in the real
world because it incorporates time. But it does not emulate real-world situations. On
the other hand, even in devising a strategy that has to be revised at every stage, one
needs to use dynamic optimization for formulating such a strategy, be it a business
venture, diplomatic negotiation, or economic policy.

At this point, the reader may ask, why do we need special methods for dynamic
optimization? Why can’t we simply take the best possible route when dealing with
a continuous time problem? And if we have a multistep problem, why can’t we
simply take the best decision at every point? As the examples in this chapter will
show, an important lesson of dynamic optimization is that a piecemeal approach to
such problems will result in suboptimal outcomes. In optimizing over time and in
multistage decision-making problems, one has to seek the global optimum.

Suppose that we have a bead on a string that connects two points (see Fig. 14.1).
If we allow the bead to slide down the string under the force of gravity, and assuming
zero friction, what is the fastest path between the high and low points? This is the
famous Brachistochrone2 problem. It may seem that the fastest route is the straight
line. It is not. A curved line allowing the bead to first pick up speed would result in a
shorter travel time. The suboptimality of one-step-at-a-time decisions for multistage
problems is illustrated in the traveling salesman problem of Sect. 14.4.

Three methods for solving control problems will be discussed in this book:
the calculus of variations, which is the oldest method for tackling such problems;
dynamic programming, which is usually applied to problems where time is treated

2It consists of two Greek words meaning the shortest time.
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Fig. 14.1 The
Brachistochrone problem

as a discrete variable; and the maximum principle, which has been the favorite and
most useful method for economic analysis. Before presenting these methods, how-
ever, we need to discuss the general setup of a dynamic optimization problem and
clarify a few useful concepts.

14.2.1 The Functional and Its Derivative

In Example 14.1, the lifetime utility is a functional. For each path of consumption,
lifetime utility assumes a particular value. In other words, a path or a function is
mapped to a unique number. Recall that a function maps every point in its domain
to a unique point in its range, where the domain may be the set of real or complex
numbers. Now suppose that we define the domain as a set of functions and define
a mapping from each function in our domain to a unique point in the set of real
numbers. Such mapping is called a functional. For instance, consider a family of
functions

φ(β), β ∈ � (14.12)

and define

v = V[φ], v ∈ � (14.13)

Then V[φ] is a functional. Notice the difference in notation: We write a func-
tion as y = φ(x), but we denote a functional as v = V[φ] to avoid confusion.
Alternatively, we can look at Fig. 14.2 where each curve represents one path. In
order to choose among the set of available paths, we attach a number to each one—
in the example of a bead on a string, the number is the time it takes for the bead to
reach the end of line. The mapping between those paths and the time elapsed is a
functional.
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Fig. 14.2 Different paths
between points (t0, y0) and
(t1, y1)

Example 14.3 Consider definite integrals of functions that depend on one or more
parameters. For example, the following is a functional:

v[β] =
∫ 1

0
e−βtdt

because for every value of β, we have a different function e−β and for every such
function we have a different value for v[β]. Similarly,

v[σ ] =
∫ ∞

−∞
(x− μ)2 1

σ
√

2π
e
− 1

2

(
x−μ
σ

)2

dx

is a functional. For every value of σ , we have a different normal distribution and
each results in a different value of the functional.

In order to maximize the functional, v = V[φ], we need to search among the
admissible functions φ and choose the one that maximizes v. In Chap. 12, we were
searching for the maximum point on a function. This was accomplished by taking
the derivatives of the function with respect to its arguments and setting them equal
to zero. Needless to say, we cannot take the derivative with respect to a function.
Recall that the derivative is the limit of (f (x+
x)− f (x))/
x as 
x tends to zero.
But we cannot say that the change in a function tends to zero.

Suppose we are interested in finding the maximum of a functional that depends
on a family of functions that we generically represent as y(t). We define the family of
functions in a way that each member is identified by the value of a single parameter:

y(t) = y∗(t)+ εh(t) (14.14)

For every value of ε we get a different function. Thus, by varying the value of
ε we create a neighborhood around the function y∗(t) (see Fig.14.3), similar to the
neighborhood around the extremum of a function. Within this neighborhood we can
search for the function that results in the extremal for the functional, thus arriving at
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Fig. 14.3 Creating a
neighborhood around the
function y∗(t)

the conditions that the optimal function should satisfy. The technique is called the
variational method. Let us illustrate this variational method with an example from
static optimization. We are not implying that dynamic optimization is the same as
static optimization; this example is for illustrative purposes only.

Example 14.4 Consider the problem of maximizing lifetime utility:

max U =
T∑

t=0

(1+ δ)−tu(ct)

s.t.
T∑

t=0

(1+ r)−t(ct − yt) = A0

(14.15)

where ct and yt are, respectively, consumption and income at time t, δ is the constant
rate of time preference, r, the constant interest rate, T, the lifetime of the consumer,
and A0, initial wealth.

The problem can be solved by forming the Lagrangian

max L =
T∑

t=0

(1+ δ)−tu(ct)+ λ

[
T∑

t=0

(1+ r)−t(ct − yt)− A0

]
(14.16)

and setting partial derivatives of L with respect to ct, t = 0, . . . , T and with respect
to λ equal to zero. We arrive at the following optimality conditions:

u′(ct+1) = 1+ δ

1+ r
u′(ct), t = 0, . . . , T − 1

T∑
t=0

(1+ r)−t(ct − yt) = A0

(14.17)

We can solve this problem with the variational method and arrive at the same
results. Let c∗t , t = 0, . . . , T denote the optimal sequence of consumptions. Let us
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change two elements of this sequence:

cs = c∗s + x, cs+1 = c∗s+1 − (1+ r)x (14.18)

Thus, our lifetime utility maximization problem will become

maxx V(x) =
s−1∑
t=0

(1+ δ)−tu(c∗t )+ (1+ δ)−su(c∗s + x)

+(1+ δ)−s−1u(c∗s+1 − (1+ r)x)+
T∑

t=s+2

(1+ δ)−tu(c∗t )

(14.19)

First note that (14.19) satisfies the budget constraint. Next, minimize the variation
around the optimal path by taking the derivative of V with respect to x and set it equal
to zero. We get

(1+ δ)−su′(c∗s + x)− (1+ r)(1+ δ)−s−1u′(c∗s+1 − (1+ r)x) = 0 (14.20)

Evaluating (14.20) at point x = 0, we have

u′(ct+1) = 1+ δ

1+ r
u′(ct) (14.21)

Because this process can be repeated for all pairs of time periods, we can obtain
all of the conditions in (14.17).

14.3 Calculus of Variations

The calculus of variations3 is the oldest method of dynamic optimization. In its
simplest form, the problem of the calculus of variations can be written as

3The calculus of variations has its origin in the challenge that the Swiss mathematician
John Bernoulli (1667–1748) issued to mathematicians in 1696. He asked them to solve the
Brachistochrone problem. Prominent mathematicians of the day, Newton, Leibnitz, l′Hôpital, as
well as John and his elder brother James Bernoulli (1654–1705) solved the problem. But it was
James′s solution and his call for the solution of the more general problem of the calculus of varia-
tions that led the way in the development of the subject. Leonhard Euler (1707–1783), one of the
great mathematicians and the most prolific of them all, came up with the general solution embodied
in the differential equation bearing his name. It was Joseph Lagrange (1736–1813) who devised the
method of variation of a function, considering y(t) = y∗(t)+ εh(t), which Euler promptly adopted
for finding the generalized solution of the problem of the calculus of variations; hence sometimes
the equation is referred to as the Euler-Lagrange equation. It should also be noted that the genesis
of the problem of the calculus of variations can be found in the work of Newton and even Galileo.
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max J =
∫ t1

t0
f (y(t), y′(t), t)dt

y(t0) = y0, y(t1) = y1

(14.22)

Example 14.5 Consider the problem of the shortest distance between two points,[
t0, y0

]
and

[
tn, yn

]
, in a plane. We can divide the interval [t0, tn] into n equal

subintervals

[ti−1, ti], i = 1, . . . , n

with


ti = ti − ti−1 = tn − t0
n

= 
t, i = 1, . . . , n

Now the distance (the Euclidean norm) between (ti−1, yi−1) and (ti, yi) is√
(
yi)2 + (
t)2, and for the whole interval,

J(n) =
n∑

i=1

√
(
yi)2 + (
t)2 (14.23)

We can rewrite (14.23) as

J(n) =
n∑

i=1

√(

yi


t

)2

+ 1 
t (14.24)

Letting n →∞, we have

J = lim
n→∞ J(n) =

∫ t1

t0

√
y′2 + 1 dt (14.25)

The problem is to minimize J.

Example 14.6 A company has to make the delivery at time T of yT units of its
product. Suppose the marginal cost of production is proportional to the rate of pro-
duction, c1y′, and the cost of inventory is proportional to the level of inventory. Thus,
the total cost function can be written as

C(t) = c1[y′(t)]2 + c2y(t) (14.26)

The problem facing the company is

min J[y] =
∫ T

0
[c1[y′(t)]2 + c2y(t)]dt (14.27)
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14.3.1 The Euler Equation

In order to solve the problem of the calculus of variations we resort to the variational
method. Suppose the optimal path for y(t) is y∗(t). We consider deviations from this
path and note that if indeed y∗(t) is the path that maximizes J, then for all other paths
we should have


J = J[y∗]− J[y] =
∫ t1

t0
f (y∗, y′∗, t)dt −

∫ t1

t0
f (y, y′, t)dt ≥ 0 (14.28)

For the path that minimizes J the inequality sign is changed to ≤. Let us write all
possible paths in relation to the optimal path y∗(t). In other words, let us create a
neighborhood around y∗(t) :

y(t) = y∗(t)+ εh(t) (14.29)

Note that because we have fixed the initial and terminal points of the optimal
path, we require all paths to start and end at the same points (see Fig. 14.3).
Thus,

h (t0) = h (t1) = 0 (14.30)

Now the objective functional can be written as

J[ε] =
∫ t1

t0
f (y∗ + εh(t), y∗′ + εh′(t), t) (14.31)

and our problem is to maximize J[ε] with respect to ε and evaluate the result at
ε = 0, that is, at y(t) = y∗(t) to obtain the properties of the optimal path:

∂J

∂ε
=
∫ t1

t0

[
fyh(t)+ fy′h

′(t)
]

dt = 0 (14.32)

The second term on the RHS of (14.32) could be integrated by part:

∫ t1

t0
fy′h

′dt = fy′h(t)
∣∣∣t1
t0
−
∫ t1

t0

(
d

dt
fy′
)

h(t)dt

= −
∫ t1

t0

d

dt
fy′h(t)dt

(14.33)

where the last equality is based on (14.30). Substituting (14.33) in (14.32),
we have ∫ t1

t0

[
fy − d

dt
fy′
]

h(t)dt = 0 (14.34)
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which would hold for all h(t) if and only if

fy − d

dt
fy′ = 0 (14.35)

This is the Euler equation and the necessary condition for solving the problem
of the calculus of variations.

Example 14.7 Consider the problem of finding the extremal of the following
functional:

J =
∫ 1

0
(4ty+ y′2) dt,

y(0)= 2

3
, y(1) = 2

The Euler equation is

4t − d

dt
(2y′) = 0, ⇒ y′′ = 2t

Thus,

y′ = t2 + c1, and y = 1

3
t3 + c1t + c2

Using the initial and terminal conditions, we have

c2 = 2

3
, c1 = 1

Combining the results, we have

y = 1

3
t3 + t + 2

3

Example 14.8 In Example 14.5, our problem was

min J =
∫ t1

t0

√
y′2 + 1 dt

y(t0) = y0, y(t1) = y1

Applying the Euler equation to the above problem, we have

− d

dt

⎡
⎣ y′√

y′2 + 1

⎤
⎦ = 0

which implies

y′√
y′2 + 1

= constant
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which in turn requires y′ to be constant. But if the derivative of the function y is
constant, then

y = a+ bt

In other words, the shortest distance between two points is a straight line. You
don’t look surprised! We can determine the free parameters a and b using the initial
and terminal conditions. Thus,

b = yn − y0

tn − t0
, a = tny0 − t0yn

tn − t0

Example 14.9 In Example 14.6, our problem is

min C =
∫ T

0
(c1y′2 + c2y)dt

y(0) = 0, y(T) = yT

Applying the Euler formula, we get

c2 − d

dt
(2c1y′) = c2 − 2c1y′′ = 0

Thus, we have

y′′ = c2

2c1

Integrating both sides twice, we have

y = c2

4c1
t2 + θ1t + θ2

where θ1 and θ2 are constants of integrations. Using the initial and terminal
conditions

θ2 = 0, and
c2

4c1
T2 + θ1T = yT

Solving for θ1, we can write the production schedule as

y = c2

4c1
t2 +

(
yT

T
− c2

4c1
T

)
t, 0 ≤ t ≤ T



14.3 Calculus of Variations 389

14.3.2 Second-Order Conditions

In static optimization we had second-order conditions that distinguished between
maxima and minima. The corresponding condition for the calculus of variations is
called the Legendre condition.4 The proof of the Legendre theorem is too involved
to be presented here. We simply state, without proof, that a necessary condition for
the functional

J =
∫ t1

t0
f (y(t), y′(t), t)dt (14.36)

to have a minimum is

fy′y′ ≥ 0, t0 ≤ t ≤ t1 (14.37)

Similarly for a maximum, the necessary condition is

fy′y′ ≤ 0, t0 ≤ t ≤ t1 (14.38)

Two points deserve attention. First, the minimum condition (14.37) and the max-
imum condition (14.38) should hold for all points on the function y(t). Second,
whereas in static optimization the second-order condition was a sufficient condition,
the Legendre condition is necessary, but not sufficient.

Example 14.10 In Example 14.7, we had

fy′ = 2y′

Therefore,

fy′y′ = 2 ≥ 0

which is the necessary condition for a minimum.

Example 14.11 In Example 14.8, we had

fy′ =
y′√

y′2 + 1

Taking the second derivative with respect to y′,

4For the French mathematician Adrien-Marie Legendre (1752–1833).
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we get

fy′y′ =
(y′2 + 1)

1
2 − y′2(y′2 + 1)

−1
2

y′2 + 1

= y′2 + 1− y′2

(y′2 + 1)
√

y′2 + 1

= 1

(y′2 + 1)
√

y′2 + 1
≥ 0

which is the necessary condition for a minimum. Thus, we indeed have found the
minimum distance between two points.

Example 14.12 In Example 14.9, we had

fy′ = 2c1y′

Therefore,

fy′y′ = 2c1 ≥ 0

Thus, the path we found represents the minimum cost production schedule.

14.3.3 Generalizing the Calculus of Variations

The calculus of variations can be generalized in several directions. These subjects,
however, are beyond the scope of the present chapter, and we simply mention
them here.5 These include the transversality condition, generalizing the functional
to depend on several state variables, and introducing constraints. So far we have
assumed that the terminal condition is in the form of y(t1) = y1, that is, we know
exactly where the curve ends. Suppose instead we only know that the curve should
land on a particular line. Then the terminal value of the function y∗(t1) has to con-
form to the restriction and at the same time obey the optimality condition. The
equation that incorporates these conditions for the terminal value of y∗(t1) is called
the transversality condition.

The problem of the calculus of variations in (14.22) can be generalized to include
many state variables. We can consider a vector of state variables

y(t) =(y1(t), y2(t), . . . , yk(t))

y′(t) =(y′1(t), y′2(t), . . . , y′k(t))
(14.39)

5The interested reader may want to consult more specialized texts, for example, Gelfand and Fomin
(1963), Intriligator (1971), Bryson and Ho (1975), Kamien and Schwartz (1991), and Chiang
(1992).
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Then the k dimensional problem can be written as

max J =
∫ t1

t0
f (y(t), y′(t), t)dt

y(t0) = y0, y(t1) = y1

(14.40)

Finally, once we have several state variables we may impose a constraint on them.
For example, we may impose the constraint∫ t1

t0
g(y, y′, t)dt = c (14.41)

Then the constraint could be incorporated into the objective functional using
costate variables, which are the counterparts of Lagrange multipliers in dynamic
optimization.

14.3.4 Exercises

E.14.1 Write the Euler equation for the following problems:

i.
∫ 1

0
(ty′ + y′2)dt, ii.

∫ 1

0
(y2 + 4yy′ + 3y′2)dt

iii.
∫ 1

0
(t − y)2dt, iv.

∫ 1

0
(y2 + y′2 + 2yet)dt

E.14.2 Check the Legendre condition for all functionals in E.14.1.

E.14.3 Show that the following optimization problem has no solution. [Hint: Show
that the function that satisfies the Euler equation does not meet other conditions.]

min J =
∫ 1

0
yy′tdt

y(0) = 0, y(1) = 1

14.4 Dynamic Programming

Optimization models involving time as a discrete variable are dynamic program-
ming problems.6 To illustrate the technique, it is best to start with a simple problem
that has become a classic. Suppose a salesman has to travel from point A to point

6Dynamic programming is the brainchild of the brilliant American mathematician Richard
Bellman (1920–1984).
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Fig. 14.4 The traveling salesman problem

J, as in Fig. 14.4. He has to travel through four stages and in each stage he has a
number of options. The cost of travel on each route is shown as a number near the
line connecting one point to another. Which route should he choose to minimize his
cost?

Before embarking on a systematic solution, observe two important points. First,
whereas starting at point A and choosing the least expensive route at every stage
seems an intuitively appealing solution, it is not necessarily the optimal solution.
In our example, such a route is ACDHJ at a cost of 31. As we shall see below, we
can do better. Second, evaluating all possible routes is not an appealing option. In
our example we have two options in stage 1 and three options in stages 2 and 3,
resulting in a total of 18 possible routes. It is clear that in a larger problem, the
number of routes would be far greater. For example, if there are 11 stages, and in
each of the first 10 stages we have 9 options, then there would be close to 3.5 billion
routes to evaluate. It seems that we need a more efficient way of finding the optimal
path. Let us denote the cost between every two points by f (Xt, Xt+1) where t denotes
the stage. For example,

f (A, B) = 7, f (C, F) = 11, and f (E, I) = 9

The method we shall employ here, which will be generalized later, is a recursive
one. We start at the endpoint n and work our way backward to point 0. At each stage
i we choose the best option for the path from point i to point n and assume that the
decisions for all previous stages up to that point have been optimal. In our example
we start at point J and consider all our options. They are
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J

G 5
H 7
I 5

It is clear that if in the penultimate stage we are at G or I, then the optimal path
to the last stage would cost 5, whereas if we are at H, then the last stage would cost
7. Now suppose that we are at a particular point, say, G at stage t = 3. Let us denote
the optimal value of the travel cost for the remaining stage by v(G). Thus, we have

v(G) = 5, v(H) = 7, and v(I) = 5

Next, we move one step backward and consider the cost of moving from stage 3
to point J. We have

f (X2, X3) f (X1, X2)+ v(X3)

G H I GJ HJ IJ min[f + v]

D 12 8 11 17 15 16 15
E 11 14 9 16 21 14 14
F 10 12 10 15 19 15 15

From the vantage point of stage 2, therefore, optimum paths and costs are

Path Cost

DHJ 15
EIJ 14
FGJ or FIJ 15

We need only concern ourselves with the four paths listed in the table above.
Thus, we eliminate from consideration all other paths. Stepping back to stage 1, we
repeat the exercise

f (X2, X3) f (X1, X2)+ v(X3)

D E F DHJ EIJ FGJ or FIJ min[f + v]

B 8 8 9 23 22 24 22
C 10 13 11 25 27 26 25

At this stage for optimal paths and costs we have
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Path Cost

DEIJ 22
CDHJ 25

Again we retain the two optimal paths and discard the other four. There is one
more step to take.

f (X0, X1) f (X0, X1)+ v(X1)

B C BEIJ CDHJ min[f + v]

A 7 6 29 31 29

Thus, the optimal path is ABEIJ and the cost is 29. Note that we did not evaluate
the cost for all possible paths as some routes were eliminated along the way. Yet
we had to evaluate all the admissible options at every stage. It is not difficult to
see that increasing the number of stages and available options in each stage will
cause a tremendous increase in the number of required calculations, making the
task of finding the optimal route time consuming, costly, and at times impossible.
This is the famous curse of dimensionality, which precludes the use of dynamic
programming in many real-world numerical problems.

In economics, however, we are more interested in the general construct of
dynamic programming and its solution. The general setup is to minimize or max-
imize the sum of f (xt, xt+1), t = 0, . . . , n, where xt is the value of the variable of
interest at time t to be decided by the optimizing agent. The problem has a starting
and an end point and the value of x has to be chosen from an admissible set. The
general format of the problem when seeking a minimum, therefore, can be written as

min
{xt+1}n−1

t=0

n∑
t=0

β tf (xt, xt+1)

s.t. x0 ∈ X0, xt+1 ∈ �(xt), t = 0, 1, 2, . . .

(14.42)

and for a maximum problem as7

max
{xt+1}n−1

t=0

n∑
t=0

β tf (xt, xt+1)

s.t. x0 ∈ X0, xt+1 ∈ �(xt), t = 0, 1, 2, . . .

(14.43)

7A more general formulation recognizes that min or max of an objective function may be
unattainable; therefore, they are replaced by inf and sup, respectively.
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Based on the example of traveling salesman, we can define the optimal function
at time t as

v(xt) = min
z∈�(xt)

[f (xt, z)+ βv(z)] (14.44)

where v (xt) is the optimal value of the functional at time t. The variable z ranges
over all possible values of xt+1, which denotes the optimal value of x at stage t+1.
The same could be written for the case of maximization:

v(xt) = max
z∈�(xt)

[f (xt, z)+ βv(z)] (14.45)

Thus, the solutions to (14.42) and (14.43) require working recursively the
formulas in (14.44) and (14.45), respectively.

Example 14.13 (Human Capital Accumulation). Now it can be recognized that
the problem of human capital accumulation in Example 14.2 is one of dynamic
programming. Thus, the solution to the problem

max
{kt+1}T−1

t=1

T∑
t=1

β tktφ

(
kt+1

kt

)

s.t. (1− δ)kt ≤ kt+1 ≤ (1+ λ)kt, ∀t, k1 > 0, given

(14.46)

is
v(kt) = max

(1−δ)kt≤ z≤(1+λ)kt
[ktφ(z/kt)+ βv(z)] (14.47)

Example 14.14 (Job Search). Consider a worker who lives n periods and in each
period faces two alternatives: She is offered a job that pays x income that she can
take or she can stay unemployed in that period and search for a possibly better
job. Income, y, from jobs among which the worker is searching, is randomly dis-
tributed with density function ϕ(y). Therefore, the expected income for the next
period is

E(y) =
∫

Y
yφ(y)dy (14.48)

where Y is the set of all possible values of y. There is no point in staying unemployed
and searching in the last stage of one’s working life. Therefore, the worker accepts
the job offered and her income is x. But in one period before the last, there are two
options: to accept the job and have an income of x + δx or search for a job with an
expected income of δE(y) where δis the discount rate. The recursion formula is

vn−1(x) = max[(1+ δ)x, δE(y)] (14.49)
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If we go back k periods, her choices are to accept the job in which case her
earnings for the remainder of her working life will be

(1+ δ + δ2 + . . .+ δk−1)x = x
1− δk

1− δ
(14.50)

Or stay unemployed and search with the prospect being

δE[vn−k+1(y)] (14.51)

Thus, the recursion formula is

vn−k(x) = max

{
x

1− δk

1− δ
, δE[vn−k+1(y)]

}
(14.52)

14.4.1 Exercises

E.14.4 Figure 14.5 shows the routes from A to J together with the costs of each
segment of the road. Using the method outlined in Sect. 14.4, find the least expensive
route from A to J.

Fig. 14.5 The traveling salesman problem
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E.14.5 In Example 14.14 find the reservation wage of the worker, which is the wage
rate that makes the worker indifferent between accepting the job and staying
unemployed and continuing the search in the next period.

14.5 The Maximum Principle

The control problem8 in its simplest form can be written as

max
∫ t1

t0
f (t, y, u)dt

s.t. y′ = g(y, u, t)

y(t0) = y0, y(t1) = y1

(14.53)

where y is the state variable, u, the control variable and, t, time. By letting u = y′
we get the calculus of variations problem. In other words, calculus of variations is
a special case of the control problem where the control variable is the derivative of
the state variable. The problem in (14.53) is one of constrained maximization and
we use the method of Lagrange multipliers. Thus, our problem becomes

max L =
∫ t1

t0

{
f (t, y, u)dt + λ(t)[g(y, u, t)− y′]

}
dt (14.54)

We have to maximize this function by choosing λ(t), y(t), and u(t). Because these
are all functions, we should resort to the same device we used in solving the problem
of the calculus of variations, that is, by defining a family of functions or creating a
neighborhood for each of them. Because this would make for a cluttered equation
with many variables, we proceed one function at a time. First let

λ(t) = λ∗(t)+ εp(t) (14.55)

where λ∗(t) is the path of λ that would maximize L. Substituting (14.55) in (14.54),
we have

L[ε] =
∫ t1

t0

{
f (t, y, u)dt + (λ∗(t)+ εp(t))[g(y, u, t)− y′]

}
dt (14.56)

Taking the derivative of L[ε] with respect to ε and setting it equal to zero, we get∫ t1

t0
p(t)[g(y, u, t)− y′] dt = 0 (14.57)

8Russian mathematician Lev Semenovich Pontryagin (1908–1988) and his colleagues proposed
the method of maximum principle.
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(12.57) will hold for all functions p(t) if and only if

y′ = g (y, u, t) (14.58)

In other words, the constraint or the equation of motion is a necessary condition
for maximizing L. Before tackling the other two functions, note that λ is a function
of time and we can integrate the term λy′ by part

∫ t1

t0
−λy′dt = −λy|t1t0 + λ′y (14.59)

Substituting (14.59) in (14.54), we have

max L =
∫ t1

t0

{
f (t, y, u)dt + λg(y, u, t)+ yλ′

}
dt

−[y(t1)λ(t1)− y(t0)λ(t0)]
(14.60)

Now let us define the Hamiltonian as

H(t, y, u, λ) = f (t, y, u)+ λg(y, u, t) (14.61)

Then our problem becomes

max L =
∫ t1

t0

{
H(t, y, u, λ)+ yλ′

}
dt − [y(t1)λ(t1)− y(t0)λ(t0)] (14.62)

But again we are dealing not with a function but a functional. Thus, as before,
we define

y(t) = y∗(t)+ εh(t) (14.63)

Substituting (14.63) in (14.62) we have

L[ε] =
∫ t1

t0

{
H
(
t, y∗(t)+ εh(t), u, λ

)+ (y∗(t)+ εh(t)
)
λ′
}

dt

−[y(t1)λ(t1)− y(t0)λ(t0)]
(14.64)

Taking the derivative of L[ε] with respect to ε, setting it equal to zero, and
evaluating the resulting function at ε = 0, we have

∫ t1

t0

[
∂H

∂y
+ λ′

]
h(t)dt = 0 (14.65)

which again would hold for all h(t) if and only if

∂H

∂y
+ λ′ = 0 ⇒ ∂H

∂y
= −λ′ (14.66)
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Finally, repeating for u what we did for y, we write

u(t) = u∗(t)+ εq(t) (14.67)

Substituting (14.67) in (14.62) results in

L[ε] =
∫ t1

t0

{
H(t, y∗(t), u∗(t)+ εq(t), λ)+ y∗(t)λ′

}
dt

−[y(t1)λ(t1)− y(t0)λ(t0)]
(14.68)

Taking the derivative of L[ε] with respect to ε and setting it equal to zero,

∫ t1

t0

∂H

∂u
q(t)dt = 0 (14.69)

which would hold for all q(t) if

∂H

∂u
= 0 (14.70)

Putting all the conditions together, we have

∂H

∂y
= −λ′

∂H

∂u
= 0

y′ = g(y, u, t)

(14.71)

In addition, the initial and terminal conditions have to be satisfied. Note that we
assumed that both the initial and terminal values of the state variable y(t) are fixed.
If, however, the terminal condition is left free, that is, y (t1) is not fixed, then we
need the transversality condition

λ(t1) = 0 (14.72)

Example 14.15

max
∫ 4

0
−(3t2 + 2u2)dt

y′ = 4u,

y(0) = 8, y(4) = 28

The Hamiltonian is

H(t, y, u, λ) = −3t2 − 2u2 + 4λu
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and the optimality conditions are

∂H

∂u
= −4u+ 4λ = 0, ⇒ u = λ

∂H

∂y
= 0 = λ′ ⇒ λ = c1

It follows that u = c1 and because y′ = 4u, we have

y = 4c1t + c2

Using the initial and terminal conditions, we can determine the values of c1 and c2:

c2 = 8, 4c1 = 5

and the solution is

y = 8+ 5t

Example 14.16

max J =
∫ 2

0
(2y+ u)dt

y′ = 5− u2, y(0) = 1

The Hamiltonian is

H = 2y+ u+ λ(5− u2)

and the optimality conditions are

Hu = 1− 2λu = 0

−Hy = λ′ = −2

First we can solve for λ(t)

λ = c1 − 2t

Using the transversality condition in (14.73) we can determine c1. Thus,

λ = 4− 2t

and

u(t) = 1

2λ(t)
= 1

4(2− t)

On the other hand,

y′ = 5− u2 = 5− 1

16(2− t)2

Integrating both sides, the solution is
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y(t) = 5t − 1

16(2− t)
+ c

Using the initial condition y(0) = 1, we obtain the specific solution as

y(t) = 5t − 1

16(2− t)
+ 33

32

Example 14.17 (Ramsey Problem). Our discussion of the Ramsey problem at the
beginning of this chapter ended with the following control problem:

max U =
∫ ∞

0
u(c)e−θ tdt

s.t.
dk

dt
= f (k)− c− nk

c, k ≥ 0, ∀t

(14.73)

where, k, is the state variable and, c, the control variable. The Hamiltonian is

H = u(c)e−θ t + μ[f (k)− c− nk] (14.74)

The optimality conditions are

∂H

∂c
= u′(c)e−θ t − μ = 0,

∂H

∂k
= μ[f ′(k)− n] = −μ′

(14.75)

To make life a bit easier, let λ = μeθ t. Then the optimality conditions will be

λe−θ t = u′(c)e−θ t ⇒ u′(c) = λ (14.76)

and

μ′ = λ′e−θ t − θλe−θ t = λe−θ t[n− f ′(k)] (14.77)

The last equation can be rewritten as

λ′ = λ[n+ θ − f ′(k)] (14.78)

Substituting (14.76) in (14.78) and noting that

λ′ = u′′(c)
dc

dt
(14.79)

the solution to our problem is
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u′′(c)

u′(c)

dc

dt
= n+ θ − f ′(k) (14.80)

As a specific example, if u(c) = ln c

1

c

dc

dt
= f ′(k)− n− θ (14.81)

In plain English, the optimal plan requires the rate of growth of per capita con-
sumption to be equal to the marginal product of per capita capital less the rate of
growth of population, less the rate of time preference. The transversality condition
requires some explanation. Recall from (14.62) that the term y(t1)λ(t1) appears in
the objective functional. We noted, however, that for problems in which the state
variable has a free terminal value, the transversality condition is λ(t1) = 0. In the
Ramsey problem we do not have a fixed terminal value for the state variable and, in
addition, the time horizon is infinite. In such a problem the transversality condition is

lim
t1→∞

y(t1)λ(t1) = 0 (14.82)

In this way we can find a finite solution to the problem. In the Ramsey problem,
the equivalent of (14.82) is

lim
t→∞ k(t)μ(t) = lim

t→∞ k(t)λ(t)e−θ t = 0 (14.83)

Example 14.18 (Ramsey Model in an Open Economy). Our previous example dealt
with a closed economy in that no allowances were made for international trade and
investment. For an open economy the per capita income is defined as

f (k)− nk = c+ i+ x

where x is per capita net export—the difference between per capita export and
import. If we let b to denote the amount of capital U.S. nationals hold abroad less the
amount of capital foreigners hold in the United States, then the net per capita income
from abroad is rb where r is the international rate of interest. Note that b and, as a
result, rb can be negative if the claim of the rest of the world on the United States
exceeds the claims of U.S. citizens on the rest of the world. The current account
would be equal to net export plus the net income from abroad. Because the current
account would be the change in b, we can write

db

dt
= x+ rb

= f (k)− nk − c− i+ rb
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Now we can reformulate the Ramsey problem as

max U =
∫ ∞

0
u(c)e−θ tdt

s.t.
dk

dt
= i

db

dt
= f (k)− nk − c− i+ rb

c, k, i ≥ 0, ∀t

We leave it to the reader to form the Hamiltonian and solve this problem (see
E.14.9).

Example 14.19 (Tobin’s q). Consider a firm whose profit 	 is a function of its
capital stock K:

	 = 	(K) (14.84)

Change in capital stock is equal to investment I less depreciation δK :

dK

dt
= I − δK (14.85)

A profit maximizing firm will expand its capital stock until the marginal profit is
equal to the cost of obtaining an additional unit of capital. The cost of an additional
unit of capital is equal to investment cost plus adjustment cost:

C(I) = I + α(I) (14.86)

We have set the price of the capital good equal to one, which causes no loss of
generality because the model has only one good. The adjustment cost α(I) can be
justified on the ground that installing additional machinery, expanding the buildings,
and using new equipment require planning, installation, training, and usually disrupt
the operation of a firm. The profit maximization problem can be formulated as

max
∫ ∞

0
[	(K)− I − α(I)]e−rtdt

s.t.
dK

dt
= I − δK

I, K ≥ 0, ∀t

(14.87)

where r is the real rate of interest. The Hamiltonian for this problem is

H = [	(K)− I − α(I)]e−rt + λ(I − δK)
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The first optimality condition is

∂H

∂K
= e−rt	′(K)− λδ = −λ′

Let
λ = qe−rt

which implies

λ′ = −rqe−rt + q′e−rt

Therefore, the first optimality condition can be written as

q′ − (r + δ)q = −	′(K) (14.88)

This is a differential equation whose solution we shall discuss in Chap. 15. Here
we simply state that the solution is

q(t) =
∫ T

ζ=t
e−(r+δ)(ζ−t)	′(K)dζ + e−(r+δ)(T−ζ )q(T) (14.89)

You can check that indeed the above is the solution of our differential equation
by computing dq/dt and plugging q and q′ in (14.88). The transversality condition
requires that

lim
t→∞ e−rtq(t)K(t) = 0 (14.90)

This requires that as T → ∞, the second term in (14.89) go to zero. Therefore,
we can write

q(t) =
∫ ∞

ζ=t
e−(r+δ)(ζ−t)	′(K)dζ

Because the value of any asset equals the present value of the income stream
it generates, then q is the value of an additional unit of capital. Returning to our
optimization problem, the second condition requires

∂H

∂I
= (−1− α′(I))e−rt + λ = 0

Or substituting for λ,
q = 1+ α′(I)

that is, q is also equal to marginal cost (including adjustment cost) of one unit of
additional capital. Because adjustment cost increases with the size of investment I,
it follows that α′(I) > 0 and q > 1. This is the q theory of investment introduced
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by James Tobin (Nobel Laureate, 1981). The rate of investment, according to the
theory, is a function of the ratio of market value of new additional investment goods
to its cost of replacement (average q). We derived the marginal q that is the ratio of
the market value of additional units of capital to its replacement cost (recall that we
set the price of a unit of capital good at 1).

14.5.1 Necessary and Sufficient Conditions

In addition to the necessary conditions derived above, a maximum should also
satisfy the condition

Huu = ∂2H

∂u2
≤ 0 (14.91)

and a minimum should satisfy

Huu = ∂2H

∂u2
≥ 0 (14.92)

It is important to keep in mind that the above conditions are necessary and not
sufficient conditions. Based on a theorem due to the Nobel prize-winning economist
Kenneth Arrow, it turns out that with certain restrictions on the Hamiltonian, the
necessary conditions for the solution of the control problem are also sufficient con-
ditions. Consider the Hamiltonian in which u is replaced by its optimal value u∗

H0(t, y, u∗, λ) = f (t, y, u∗)+ λg(t, y, u∗) (14.93)

Note that other arguments are not replaced by their optimal values. Now if H0 is
concave in the variables y and t at all points in the interval [t0, t1], then the necessary
conditions of optimality in (14.71) are also sufficient conditions.

14.5.2 Exercises

E.14.6 Write the first-order optimality conditions for the following control
problems:

i. max
∫ 10

0
(yu− 2y2 − 5u2)dt

y′ = y+ 3u, y(0) = 6

ii. max
∫ 10

0

√
3y+ u2dt

y′ = 2u, y(0) = 1
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E.14.7 Check the second-order necessary condition for problems in E.14.6 and for
Examples 14.15 and 14.16.

E.14.8 Redo the Ramsey problem with the Cobb-Douglas production function

Y = AKαL1−α

E.14.9 Solve the Ramsey problem for an open economy in Example 14.18.



Part V
Differential and Difference Equations



Chapter 15
Differential Equations

The mathematical device that epitomizes the birth of modern sciences is the differ-
ential equation.1 Newton’s second law states that the acceleration of a particle is
inversely proportional to its mass and is directly related to the force applied to it.
Thus,

d2x

dt2
= 1

m
F(x) (15.1)

where m is mass of the particle, x is its location, and F denotes the force field.
Differential equations model the dynamics of a system and show how the variables
of interest evolve over time.

Economic life is a dynamic process and it seems natural to model economic
phenomena using differential equations. An objection may be raised here that in
economics all variables are measured at discrete time intervals. Therefore, models
that treat time as a continuous variable may not be suitable for economic analysis.
We can offer two counterarguments.

First, in economic life, time is a continuous variable; it is the measurement con-
vention that is artificial. At every moment numerous decisions are made, many
transactions are concluded, and many production processes never stop. It is always
possible to model an economic process using continuous time and differential equa-
tions and then approximate it with the discrete time model for estimation and
simulation. Second, mathematical theory of differential equations is too rich and
powerful to forego it in economic analysis.

15.1 Examples of Continuous Time Dynamic Economic Models

Equilibrium analysis in economics produces a benchmark against which to gauge
actual events and the workings of an economy. Comparative static analysis compares
two equilibrium points in order to determine the effects of a change in exogenous
variables or parameters of a model on endogenous variables. Yet we know that in the

1Of course today the equation that symbolizes science is Einstein’s E = mc2.
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real world the economy is always in the process of adjustment and, therefore, out of
equilibrium. It is as if the economy is chasing an equilibrium and before reaching
it, the position of the equilibrium has changed. To model the movement from one
equilibrium to another and to study the path of different variables when the system
is out of equilibrium, we need dynamic models.

Example 15.1 The purchasing power parity (PPP) model of exchange rates deter-
mination in its absolute version postulates that the exchange rate is equal to the ratio
of the price indices in the two countries involved. Because any two countries have
different base years for their price indices and the indices may contain nontradable
goods and services, we write the model as

Se = a
Pd

Pf
(15.2)

where S is the exchange rate, that is, the price of foreign currency in terms of domes-
tic currency, say the number of dollars (domestic currency) exchanged for one Swiss
franc (foreign currency). Pd and Pf are, respectively, domestic and foreign price
indices. Let ρd and ρf be domestic and foreign inflation rates, respectively. Then we
can write

Pd

Pf
= Pd

0

P f
0

e(πd−πf )t = P0eπ t (15.3)

where Pd
0 and P f

0 are, respectively, the domestic and foreign price indices at time

t = 0, P0 = Pd
0/P f

0 , and π = πd − πf . Combining (15.2) and (15.3) we can write

se = ln Se = ln a+ ln P0 + π t (15.4)

Research on international finance has shown that the PPP is an equilibrium con-
cept, not a causal relationship. If that is true, then for the theory to make sense we
need to have an adjustment process or an error correction mechanism. A continuous
time error correction model would be

ds

dt
= γ (se − s) (15.5)

or

ds

dt
+ γ s = β0 + β1t (15.6)

where β0 = γ (ln a + ln P0) and β1 = γπ . This is a first-order linear differential
equation.
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Example 15.2 Excess demand—that is, the difference between demand and supply
of a good or service—would cause the price of that good or service to rise:

dP

dt
= γ (D− S) (15.7)

Let
D =D (P, Y)

S = S (P)

Y =Y (t)
Then

dP

dt
= γ (D(P, Y)− S(P)) = γ E(P, t) (15.8)

which is a nonhomogeneous differential equation.

Example 15.3 The most famous model in economics using differential equations is
Solow′s growth model. Solow assumed that output depends on labor and capital and
the production function to be homogeneous of degree one. Thus,

Q = F(K, L) = LF

(
K

L
, 1

)
= Lf (k) (15.9)

Because

FK > 0, FKK < 0

we have

f ′ > 0, f ′′ < 0

where Q, K, and L are, respectively, output, capital and labor, and k = K/L.
Furthermore, he assumed that a portion s of income is saved and invested, which
immediately turns into additional capital:

dK

dt
= I = S = sQ = sLf (k) (15.10)

where the marginal propensity to save is assumed to be positive and less than one:
0 < s <1. Labor is assumed to grow at the constant rate n, thus,

dL

dt
= nL (15.11)

Note that

dk

dt
= d

dt

(
K

L

)
= 1

L2

[
L

dK

dt
− K

dL

dt

]
(15.12)
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Substituting for dK/dt and dL/dt, we get Solow’s famous first-order differential
equation:

dk

dt
= sf (k)− nk (15.13)

We will analyze this equation later in this chapter.

15.2 An Overview

To model a dynamic process with continuous time we need differential equations
that connect the change in a variable with its position at any moment in time. In
other words, differential equations involve both a variable and its derivatives.

Definition 15.1 The equation

F

(
t, y,

dy

dt
,

d2y

dt2
, . . . ,

dny

dtn

)
= 0 (15.14)

is called an ordinary differential equation of order n.
It is called ordinary because it involves only one independent variable, t. If, in

addition, it involves another variable say, x, then it is a partial differential equation.

Example 15.4 The equation

d2y

dt2
− 3ty+ 6 = 0 (15.15)

is an ordinary differential equation of order two, Whereas

t
∂y

∂t
= x

∂y

∂x
(15.16)

is a partial differential equation. If the equation has a linear form such as

d2y

dt2
+ b1

dy

dt
+ b2y = g(t) (15.17)

it is called a linear differential equation. Nonlinear differential equations involve
nonlinear terms of y and its derivatives.

Example 15.5 The following are nonlinear differential equations:

d2y

dt2
+ αy

dy

dt
+ β

dy

dt
+ y = 0

d2y

dt2
+ a

(
dy

dt

)2

− by = 0

d2y

dt2
+ 2

dy

dt
− 3 ln y = 0
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If the equation in (15.14) does not explicitly depend on t, then the equation is
called homogeneous; else it is called nonhomogeneous. For example, the equation
in (15.17) is nonhomogeneous but if we replace g(t) on the RHS in (15.17) with
zero, then it will become a second-order linear homogeneous equation. If in a linear
differential equation the coefficients of y and its derivatives are constant, then we
are dealing with a linear differential equation with constant coefficients.

By the solution of a differential equation we mean a function of the form y = φ(t)
such that the substitution of φ(t) and its derivatives in the original equation will
turn it into an identity, in other words, a function φ(t) that satisfies the differential
equation.

Example 15.6 The function

y = Ae−ρt

where A is an arbitrary constant, is the solution to the differential equation

dy

dt
+ ρy = 0

This can be checked. Because dy/dt = −ρAe−ρt, we have

− ρAe−ρt + ρAe−ρt = 0

Example 15.7 The function

y = A1e−t + A2e2t

is the solution to the equation

d2y

dt2
− dy

dt
− 2y = 0

We can check this by noting that

dy

dt
= −A1e−t + 2A2e2t

d2y

dt2
= A1e−t + 4A2e2t

Substituting in the original equation, we get

A1e−t + 4A2e2t + A1e−t − 2A2e2t − 2A1e−t − 2A2e2t = 0

The reader can verify that both e−t and e2t are solutions to the differential
equation. Thus, y = A1e−t + A2e2t is a linear combination of the two solutions.
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Based on the way we found the solution of second-order homogenous equations,
we can infer that a third-order linear homogeneous equation has three solutions, a
fourth-order equation, four solutions, and so on. In the same vein, the solution of a
third-order equation involves three arbitrary constants, the solution of a fourth-order
equation, four arbitrary constants, and so on.

To understand the nature of a differential equation and its solution, let us ponder
its geometric meaning. Consider the differential equation

dy

dt
= f (t, y) (15.18)

and its solution

y = φ(t) (15.19)

At any point on the t-axis, say t1, f (t1, y)is the equation of tangent to the curve
φ(t). Because the differential equation provides us with such an equation for all the
points along the curve, it enables us to trace out the curve itself. As Fig. 15.1 shows,
such a curve is not unique because we know only the slope of the curve and not its
exact location. But if we know the location of one point on the curve, we can obtain
a specific solution and pinpoint the curve.

Fig. 15.1 A differential
equation traces out a family
of functions

15.2.1 Initial Value Problem

A differential equation with as many initial conditions as needed to get one specific
solution is referred to as an initial value problem. Thus,

dy

dt
= f (t, y), y(t0) = y0 (15.20)

is an initial value problem. Among all the curves that are tangent to f (t, y) for all
values of t, only one passes through the point (t0, y0) (Fig. 15.2). This is called



15.2 An Overview 415

Fig. 15.2 Solution of an
initial value problem with
y (t0) = y0

the specific solution, which depicts the trajectory of the variable of interest y over
time.

Example 15.8 To solve the initial value problem

dy

dt
+ ρy = 0, y(0) = 2

we recall that the solution to the homogeneous equation was

y = Ae−ρt

Letting t = 0 and y = 2, we have

2 = Ae−ρ0, ⇒ A = 2

and the specific solution is

y = 2e−ρt

Example 15.9 Consider the initial value problem

d2y

dt2
− dy

dt
− 2y = 0

y (0) = 4, y′ (0) = 0.5

Recalling the general solution of the equation from Example 15.7, we can
write

y(0) = A1 + A2 = 4

y′(0) =−A1 + 2A2 = 0.5
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from which we obtain A1 = 2.5 and A2 = 1.5, and the specific solution as

y = 2.5e−t + 1.5e2t

The examples above make it clear that to obtain the specific solution of a first-
order equation, we need one initial condition because there is only one arbitrary
constant to determine. The solution of a second-order equation involves two arbi-
trary constants and, therefore, requires two initial conditions. In general, we need as
many initial conditions as there are arbitrary constants to obtain a specific solution.

Not all differential equations can be solved. Indeed, the number of differential
equations whose solutions are not known is far greater than the number of differen-
tial equations with known solutions. In addition, in economics, oftentimes the shape
of a function is not known (see Example 15.3). One way to qualitatively analyze
such equations is to draw the phase diagram of the equation. In particular, a phase
diagram enables us to analyze dynamic economic models where the shape of func-
tions involved is unspecified. An alternative is to compute the numerical solution of
the equation, which is suitable when coefficients of an equation can be estimated or
calibrated from the available data.

Three important issues regarding the solutions of differential equations are
existence, uniqueness, and stability. We take up these issues in the next two
subsections.

15.2.2 Existence and Uniqueness of Solutions

Does a differential equation have a solution, or more properly, under what con-
ditions does it have a solution? To answer this question we need the following
definition.

Definition 15.2 (Lipschitz Condition). A function f (t, y) is said to satisfy the
Lipschitz condition in its domain D if for some L ≥ 0

| f (t1, y)− f (t2, y)| ≤ L |t1 − t2| , ∀t1, t2 ∈ D (15.21)

f is said to satisfy the one-sided Lipschitz condition if for some L ≥ 0

t2 > t1 ⇒ f (t2, y)− f (t1, y) ≤ L(t2 − t1) (15.22)

Intuitively, the Lipschitz condition rules out the functions that have a vertical
segment, because the condition guarantees that the ratio

f (t2, y)− f (t1, y)

t2 − t1
(15.23)

is finite. Therefore, at no point the slope of the curve or a line connecting two points
of the function (in case of discontinuity) can become infinite. This condition is
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automatically satisfied for continuously differentiable functions in a bounded closed
convex domain. Recall the mean value theorem: For a continuously differentiable
function f on an interval [a, b], we can write

f (b)− f (a) = (b− a) f ′(ξ ), a < ξ < b (15.24)

Letting L = sup
D

f ′ shows that the Lipschitz condition is fulfilled. Needless to

say, the reverse is not true. A function that satisfies the Lipschitz condition is not
necessarily continuously differentiable. Indeed, it may have discontinuity. Now we
state, without proof, an important result regarding differential equations.

Theorem 15.1 If the function f (t, y) satisfies the Lipschitz condition, then the
differential equation

dy

dt
= f (t, y) (15.25)

has a unique solution.2

15.2.3 Equilibrium and Stability

A differential equation describes the motion of an object or variable. Thus, the equi-
librium is the point of the rest of the object or variable, that is, when dy/dt = 0 or
alternatively when f (t, y) = 0. We may not always be able to explicitly find the
point of equilibrium but we are interested in knowing its properties. In particular,
we are interested in knowing if the equilibrium is stable or not. Stability involves
the question of whether deviations from the equilibrium point remain small and the
system shows a tendency to return to equilibrium.

Formally, if every solution remains bounded and thus deviations from equi-
librium remain bounded, the solution is called stable. If every solution tends to
zero as t → ∞, that is, if the system returns to equilibrium, it is called strictly
stable.

Example 15.10 The equilibrium point of the equation in Example 15.7 is not stable
because

lim
t→∞A1e−t = 0

lim
t→∞A2e2t →∞

2This is not the only existence and uniqueness theorem regarding differential equations, but for a
deeper discussion of the subject the reader is referred to specialized books.
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Example 15.11 The solution of the equation

d2y

dt
+ 5.5

dy

dt
+ 2.5y = 0

is

y = A1e−5t + A2e−0.5t

Because

lim
t→∞A1e−5t = 0, and lim

t→∞A2e−0.5t = 0

the solution is strictly stable.

15.3 First-Order Linear Differential Equations

Consider the following first-order linear homogeneous differential equation:

dy

dt
+ ay = 0 (15.26)

By a solution we mean an equation of the form y = φ(t) that turns (15.26) into
an identity. That is,

φ′(t)+ aφ(t) = 0 (15.27)

Rewriting the equation in (15.26) in the following form makes the solution
apparent:

dy

dt
y
= −a (15.28)

The equation in (15.28) states that the instantaneous rate of growth of y is –a. It
follows that

y = Ae−at (15.29)

Despite the fact that the solution is self-evident, let us check that indeed it is a

solution to (15.26). Because
dy

dt
= −aAe−at, we have

dy

dt
+ ay = −aAe−at + aAe−at = 0 (15.30)

Example 15.12 The solution to the differential equation

dy

dt
− 2y = 0
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is

y = Ae2t

As can be seen, instead of one equation, we have a family of equations. For every
value of A we have a different equation. The reason is that the differential equation
in (15.26) specifies the rate of change of y. Thus, the position of y after the lapse of
time t will depend on where it was at the outset. If a denotes the speed of a car and
we started in Boston going at 60 miles an hour in a southerly direction, three hours
later we are close to New York City. But if we started in Houston, Texas, we are
close to San Antonio where the Alamo is located.

Example 15.13 Suppose y is the population of a country with the growth rate of
1.1% a year. The differential equation expressing the dynamic of population is

dy

dt
− 0.011y = 0

Now if the country is China and starts with a population of 1.35 billion, then in
30 years its population will be

1.35e0.011×30 = 1.878 billion

But the same equation applied to the United States with a population of 310 million
will result in

310e0.011×30 = 431.300 million

To pinpoint the exact trajectory of y, we need an initial condition, the location of
y at one particular value of t. Because y is a function of t, we can denote its value at
time t by y(t). Let

y (0) = y0 (15.31)

Then

y = y0e−at (15.32)

Example 15.14 In Example 15.12, let y (0) = 5. Then the specific solution will be

y = 5e2t

Example 15.15 The solution to the initial value problem

dy

dt
+ 3y = 0, y(0) = 7
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is

y = 7e−3t

Note that y(0) = 7e−3(0) = 7, and we can verify that the solution satisfies the
differential equation.

dy

dt
+ 3y = −21e−3t + 21e−3t = 0

As discussed above, an important issue in the study of differential equations is
the behavior of the resulting function. In particular, does the function have an equi-
librium where it will come to rest? And if this equilibrium point is disturbed, would
the function return to it or would it forever diverge from it? In other words, is the
equilibrium stable?

lim
t→∞ y = y0 lim

t→∞ e−at (15.33)

Therefore the behavior of the function depends on the sign of a.

lim
t→∞ e−at =

⎧⎪⎨
⎪⎩

0

1

∞
if a

⎧⎪⎨
⎪⎩

> 0

0

< 0
(15.34)

We have a stable equilibrium if a > 0 and an unstable one if a < 0. In the case
of a = 0, dy/dt = 0, and y is a constant function.

Example 15.16 The solution to the equation in Example 15.14 is not stable because
lim

t→∞ 5e2t → ∞. On the other hand, the equation in Example 15.15 has a stable

equilibrium because lim
t→∞ 7e−3t = 0.

15.3.1 Variable Coefficient Equations

The method of solving first-order linear homogeneous equations described
above can be extended to an equation with variable coefficients. Consider the
equation

dy

dt
+ a(t)y = 0 (15.35)

We can write it as

dy

y
= −a(t)dt (15.36)
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Thus,

y = Ae−
∫

a(t)dt (15.37)

The fact that (15.37) is a solution to (15.35) can be ascertained. First note that

dy

dt
= −a(t)Ae−

∫
a(t)dt

and
dy

dt
+ a(t)y = −a(t)Ae−

∫
a(t)dt + a(t)Ae−

∫
a(t)dt = 0

Example 15.17 The solution of the differential equation

dy

dt
+ 2ty = 0

is

y = Ae−
∫

2tdt = Ae−t2

The reader is urged to verify the above result.

Example 15.18 The solution to the differential equation

dy

dt
+ (3t2 − cos t)y = 0

is

y = A−
∫

(3t2−cos t)dt = Ae−t3+sin t

15.3.2 Particular Integral, the Method
of Undetermined Coefficients

The solution of nonhomogeneous differential equations of the form

dy

dt
+ ρy = g(t) (15.38)

is the sum of two parts: the complementary function, yc, and the particular inte-
gral, yp. The complementary function is the solution to the homogeneous part of
the equation that we have already discussed. The particular integral deals with the



422 15 Differential Equations

nonhomogeneous part. In this subsection we discuss the method of undetermined
coefficients and in the next, the alternative method of separable equations.

The method of undetermined coefficients starts by assuming that the particular
integral yp is of the same form as the nonhomogeneous part of the equation, that
is, g(t). For example, if g(t) is a linear function of t, then we start by assuming
yp = α + βt, and if g(t) is a trigonometric function, we start with yp = α cos wt +
β sin wt. By substituting yp and its derivative in the differential equation and com-
paring the coefficients to those of g(t), we determine the specific values of the
parameters of yp.

Example 15.19 Consider the nonhomogeneous equation

y′ − 2y = 4t, y(0) = 2

The solution to the homogeneous part is yc = Ae2t. To find the particular
integral—the solution to the nonhomogeneous part—we start by assuming

yp = α + βt

Substituting yp and its derivative in the equation, we have

β − 2α − 2βt = 4t

Equating the coefficients on both sides of the equation, we have

−2β = 4 ⇒ β = −2

β − 2α = 0 ⇒ α = −1

The complete solution is

y = Ae2t − 1− 2t

and the specific solution is

y = 3e2t − 1− 2t

Let us check the result. First, note that the initial condition is satisfied because
y(0) = 2. Next, we have y′ = 6e2t − 2. Substituting y and y′ in the differential
equation, we have

6e2t − 2− 2(3e2t − 1− 2t) = 4t

Example 15.20 Consider the initial value problem:

y′ − 2ty = 4t, y(0) = 2
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To solve the homogeneous part of the equation, we rewrite it as

dy

dt
− 2ty = 0, ⇒ dy

y
= 2tdt

Integrating both sides

ln |y| = t2 + C ⇒ yc = Aet2

where A = eC. Again, we assume yp to be of the form

yp = α + βt

Substituting yp and its derivative in the differential equation, we have

β − 2αt − 2βt2 = 4t

and, therefore,

α = −2, β = 0

Thus, the complete solution is

y = 4et2 − 2

Example 15.21 The solution to the homogeneous part of the differential equation

y′ + 5y = 8 sin 3t

is

yc = Ae−5t

For the particular integral, we start with

yp = α cos 3t + β sin 3t

To determine α and β, we substitute yp and its derivative in the differential
equation:

− 3α sin 3t + 3β cos 3t + 5α cos 3t + 5β sin 3t = 8 sin 3t

It is easy to see that yp satisfies the differential equation if

−3α + 5β = 8

3β + 5α = 0
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Solving the for α and β, we obtain the particular integral

yp = −12

17
cos 3t + 20

17
sin 3t

and the complete solution is

y = yc + yp = Ae−5t − 12

17
cos 3t + 20

17
sin 3t

Example 15.22 Solve the initial value problem

y′ + 2y = 5e−7t, y(0) = 3

We have yc = Ae−2t and for yp we start with

yp = αe−7t

Substituting yp and its derivative in the differential equation

− 7αe−7t + 2αe−7t = 5e−7t

we obtain α = −1. The complete solution is

y = Ae−2t − e−7t

From the initial condition, we obtain

3 = A− 1, ⇒ A = 4

and the specific solution is

y = 4e−2t − e−7t

It is important to remember that in solving initial value problems one has to find
the complete solution before trying to find the arbitrary constant. Had we tried to
find A using the complementary function, we would have gotten A=3, which would
have been the wrong answer. You can verify that setting A=3 would contradict the
initial condition y(0) = 3.

15.3.3 Separable Equations

This is the second method for solving a nonhomogeneous differential equation. It
appears a bit involved, but it is easier than it looks. If you find it difficult to follow,
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study the examples to see how the general formula is applied. Consider the initial
value problem

y′ + a(t)y = g(t), y(0) = y0 (15.39)

Define the related system

x′ − a(t)x = 0, x(0) = 1 (15.40)

We already know that the solution to this second problem is

x = exp

(∫ t

0
a(s)ds

)
(15.41)

Now consider the function xy and its total derivative with respect to t:

d

dt
(xy) = x′y+ y′x

= a(t)xy+ xg(t)− a(t)xy

= xg(t)

(15.42)

It follows that

xy =
∫ t

0
xg(s)ds+ C (15.43)

Because x(0) y(0) = 1× y0, we have C = y0. Thus,

y = 1

x

∫ t

0
xg(s)ds+ y0

x
(15.44)

Substituting for x in (15.44), the solution is

y = exp

(
−
∫ t

0
a(s)ds

)[
y0 +

∫ t

0
g(ξ )

(
exp

(∫ t

0
a(s)ds

)
dξ

)]
(15.45)

Although it does not look appetizing, it is still easy to apply.

Example 15.23 Consider the initial value problem

y′ − 2ty = 4t, y(0) = 2
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Applying (15.45) to this problem we have

y = et2
[

y0 +
∫

4te−t2 dt

]

= et2
[
2− 2e−t2

]
= 2et2 − 2

We can check that this is indeed the solution. First, note that at t = 0, y = 2.
Next, we have

y′ = 4et2

Thus,

y′ − 2ty = 4tet2 − 2t
[

2et2 − 2
]
= 4t

Example 15.24 Applying (15.45) to the differential equation

y′ − 2y = sin t, y(0) = y0

we have

y = e2t
(

y0 +
∫

e−2t sin tdt

)

The integral in the above equation is a bit complicated. Looking up the tables of
integrals or using Maple, the solution is

y = e2t
[

y0 − 1

5
(2 sin t + cos t)e−2t

]

= y0e2t − 2

5
sin t − 1

5
cos t

Solving this problem with the method of undetermined coefficients gets us the
same answer.

15.3.4 Exact Differential Equations

Taking the differential of the function u(t, y) = C we can write

∂u(t, y)

∂t
dt + ∂u(t, y)

∂y
dy = 0 (15.46)
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Let

M(t, y) = ∂u(t, y)

∂t
, and N(t, y) = ∂u(t, y)

∂y

Then

M(t, y)dt + N(t, y)dy = 0 (15.47)

or

dy

dt
= −M(t, y)

N(t, y)
(15.48)

The differential equation in (15.47) is called an exact differential equation and,
obviously, its solution is

u (t, y) = C (15.49)

Example 15.25 The equation

t
dy

dt
+ y = 0, t > 0

is an exact differential equation with the solution ty = c where c is a constant. First,
note that its differential is equal to our original equation. Moreover, we can check
that, it is indeed a solution.

dy

dt
= −y

t

and we have

− t
y

t
+ y = 0

The question how do we determine if a differential equation is exact is answered
by the following theorem.

Theorem 15.2 The differential equation in (15.47), where M(t, y) and N(t, y) are
continuous and continuously differentiable functions, is exact iff

∂M(t, y)

∂y
= ∂N(t, y)

∂t

To prove the necessary part of the proposition, suppose that indeed

M(t, y) = ∂u(t, y)

∂t
, and N(t, y) = ∂u(t, y)

∂y
(15.50)
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Then differentiating M(t, y) with respect to y and N(t, y)) with respect to t
results in

∂M(y, t)

∂y
= ∂2u(t, y)

∂t∂y
= ∂2u(t, y)

∂y∂t
= ∂N(t, y)

∂t
(15.51)

which shows that the equation is an exact differential equation. The proof of the
sufficient condition is by construction. Because

∂u(t, y)

∂t
= M(t, y) (15.52)

we can integrate the RHS of (15.52) to find u:

u(t, y) =
∫ t

t0
M(s, y)ds+ φ(y) (15.53)

The reason for the inclusion of the second term on the RHS is that in integrating
we assume y to remain constant. Therefore, the arbitrary constant of integration can
possibly depend on y. On the other hand,

∂u

∂y
=
∫ t

t0

∂M(s, y)

∂y
ds+ φ′(y) = N(t, y) (15.54)

Because ∂M(t, y)/∂y = ∂N(t, y)/∂t, we can write

∫ t

t0

∂N(s, y)

∂t
ds+ φ′(y) = N(s, y)|tt0 + φ′(y)

= N(t, y)− N(t0, y)+ φ′(y)
(15.55)

Because the LHS of (15.55) and the middle expression in (15.54) are equal, the
upshot is that φ′(y) = N(t0, y), which, in turn, implies

φ(y) =
∫ y

y0

N(t0, z)dz+ C1 (15.56)

Substituting (15.56) in (15.53)

u(t, y) =
∫ t

t0
M(s, y)ds+

∫ y

y0

N(t0, z)dz+ C1 (15.57)

Because u(y, t) is equal to an arbitrary constant, we have

∫ t

t0
M(s, y)ds+

∫ y

y0

N(t0, z)dz = C (15.58)
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Example 15.26 Solve the differential equation

y dt + t dy = 0

This is an exact differential equation because M = y and N = t and we have

∂M

∂y
= 1 = ∂N

∂t

We solve the problem with the following steps:

1. u =
∫

ydt + φ(y) = yt + φ(y)

2.
∂u

∂y
= t + φ′(y) = t

which results in
φ′(y) = 0, ⇒ φ(y) = C1

3. u = yt + C1

Because u = C and C is an arbitrary constant, the solution is

yt = C

Example 15.27 Consider the differential equation

2t

y3
dt + y2 − 3t2

y4
dy = 0

This is an exact equation because

∂M

∂y
= −6t

y4
= ∂N

∂t

Again we take the following steps to solve the problem

1. u =
∫

2t

y3
dt + φ(y) = t2

y3
+ φ(y)

2.
∂u

∂y
= −3t2

y4
+ φ′(y) = y2 − 3t2

y4
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which implies

φ′(y) = 1

y2
, ⇒ φ(y) = −1

y
+ C1

3. u = t2

y3
− 1

y
+ C1

Again we can write the solution as

t2

y3
− 1

y
= C

Example 15.28 Verify that the following differential equation is exact:

(2t + y) dt + (6y+ t) dy = 0

It is, because

∂(2t + y)

∂y
= 1 = ∂(6y+ t)

∂t

Furthermore,

u = t2 + yt + φ(y)

and

φ(y) = 3y2

Thus, the solution is

t2 + yt + 3y2 = C

15.3.5 Integrating Factor

There are equations of the form

M (t, y) dt + N (t, y) dy = 0 (15.59)

that are not exact, but it is possible to find a function μ(t, y) such that

μ(t, y)M(t, y)dt + μ(t, y)N(t, y)dy = 0 (15.60)

is an exact differential equation. In such a case we should have

∂(μM)

∂y
= ∂(μN)

∂t
(15.61)
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Carrying out the differentiation, we have

μ
∂M

∂y
+M

∂μ

∂y
= μ

∂N

∂t
+ N

∂μ

∂t
(15.62)

Rearranging,

M
∂μ

∂y
− N

∂μ

∂t
= μ

[
∂N

∂t
− ∂M

∂y

]
(15.63)

Dividing through by μ and recalling that

∂μ/∂y

μ
= ∂ ln μ

∂y
∂μ/∂t

μ
= ∂ ln μ

∂t

(15.64)

we have

M
∂ ln μ

∂y
− N

∂ ln μ

∂t
= ∂N

∂t
− ∂M

∂y
(15.65)

We are really in a proper mess now. We have traded an ordinary differential
equation (15.59) for a partial differential equation (15.65). But there is hope. If μ

depends only on either t or y, we may be able to solve the equation.
If μ does only depend on y, then

d ln μ

dy
=

∂N

∂t
− ∂M

∂y
M

(15.66)

On the other hand, if If μ does only depend on t, then

d ln μ

dt
=

∂M

∂y
− ∂N

∂t
N

(15.67)

The next two examples illustrate the use of integrating factor.

Example 15.29 The differential equation

ydt − tdy = 0

is not exact because M = y and N = −t and

1 = ∂M

∂y
�= ∂N

∂t
= −1
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but

d ln μ

dy
=

∂N

∂t
− ∂M

∂y
M

= −2

y

depends only on y. It follows that μ = 1/y2 and the solution to the equation is:

t

y
= C

Example 15.30 Let us solve the differential equation

− tdy+ (y+ ty2)dt = 0

First, let us check if the equation is exact. Because M = y+ ty2 and N = −t, we
have

∂M

∂y
= 1+ 2ty,

∂N

∂t
= −1

which shows

∂M

∂y
�= ∂N

∂t

Next let us check if we can find an integrating factor.

∂N

∂t
− ∂M

∂y
M

= −1− 1− 2ty

y+ ty2
= −2

y

Because μ depends on y alone, we have

d ln μ

dy
= −2

y
⇒ ln μ = −2 ln y ⇒ μ = 1

y2

Multiplying both sides of the original equation by μ, we have the exact
differential equation

(
1

y
+ t

)
dt − t

y2
dy = 0

whose solution is

t

y
+ t2

2
= C
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15.3.6 Exercises

E.15.1 Solve the following differential equations.

i.
dy

dt
+ 4y = 0 ii.

dy

dt
− 0.4y = 0 iii.

dy

dt
− 2y = 0

iv.
dy

dt
+ 3y = cos t v.

dy

dt
− 4y = 2t vi.

dy

dt
= 2ty

vii.
dy

dt
+ y = et viii. y′ − y = e2t ix. y′ + t cos t = 1

2
sin 2t

x. y′ + ety = et xi. (y− 2)dt − 2t2dy = 0 xii. ydt − tdy = 0

E.15.2 Solve the following initial value problems.

i.
dy

dt
+ 0.4y = 0, y(0) = 3 ii.

dy

dt
+ 0.4y = 2t, y(0) = 4

iii.
dy

dt
= 2ty, y(0) = 1 iv.

dy

dt
= t

y
, y(1) = 1

v.
dy

dt
= e−y, y(0) = 2.5 vi.

dy

dt
− 2y = sin t, y(0) = y0

vii. y′ + 5
y

t
= 6t, y(1) = 3 viii. t3y′ + 2y = t3 + 2t, y(1) = e+ 1

ix. y′ + y = t, y(0) = 5

E.15.3 In Solow’s model assume that the production function is Q = AKαL1−α .
Derive the differential equation and solve it. [Hint: A differential equation of
the form

dy

dt
+ b1yα + b2y = 0

is called the Bernoulli equation. A simple trick facilitates its solution. Divide the
equation by yα and let z = y1−α . Substituting z and its derivative into the Bernoulli
equation results in a first-order linear nonhomogeneous equation.]

15.4 Phase Diagram

There are many differential equations for which we cannot find an explicit solution.
In addition, in many economic applications the functional form of the equation is
unspecified. Still, we could analyze the behavior of such equations using a phase
diagram. Let us graph the equation

dy

dt
= f (y) (15.68)
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Fig. 15.3 Stable equilibrium
at y1 and unstable equilibrium
at y2

with dy/dt on the vertical axis and y on the horizontal axis. As long as f (y) > 0,
we have dy/dt > 0 and, therefore, y is increasing. This is shown with rightward
pointing arrows above the horizontal axis in Fig. 15.3. On the other hand, when
f (y) < 0—that is, in the area below the horizontal axis—we have dy/dt < 0 and
y is decreasing. This is shown by leftward pointing arrows. Equilibrium is reached
when dy/dt = 0, that is, when the function f (y) intersects with the horizontal axis.
In Fig. 15.3, both y1 and y2 are points of equilibrium.

An equilibrium is called stable if when there is a slight disturbance and y is
moved away from its equilibrium value, the system corrects itself and the equilib-
rium is restored. In Fig. 15.3 y1 is a stable equilibrium. It can be seen that when
y < y1, dy/dt > 0, and y moves toward y1 as shown by the arrows. If y > y1, then
dy/dt < 0 and y decreases, as shown by leftward pointing arrows.

On the other hand, the point y2 is an unstable equilibrium. Once the equilib-
rium is disturbed, regardless of the direction of the disturbance, y moves away from
equilibrium, as shown by the arrows pointing away from the equilibrium in both
directions.

There may be more than one equilibrium point (Fig. 15.4). In such cases, two
adjacent equilibrium points cannot both be stable. In Fig. 15.4, y2 is a stable
equilibrium, but y1 is unstable.

Example 15.31 In Example 15.3 we discussed Solow’s growth model and derived
the differential equation

dk

dt
= sf (k)− nk (15.69)

For some forms of the production function f (k), we are able to solve the equa-
tion (see Exercise E.15.3). But because the functions F and f are not specified, this
equation cannot be solved. Still, we can study its behavior using a phase diagram.
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Fig. 15.4 Unstable
equilibrium at y1 and stable
equilibrium at y2

Note that because F is homogeneous of degree one, F(0, L) = F(K, 0) = f (0) = 0.
Thus, one equilibrium point is at k = 0. It is conceivable that for all k > 0 the curve
sf (k) remains below the line nk, in which case dk/dt < 0 for all values of k and we
will have one equilibrium point that will be stable. Ruling this possibility out, we
note that by (15.9) f (k) and sf (k) are positive and increasing, but at a decreasing
rate because f ′ (k) > 0 and f ′′ (k) < 0. Therefore, there must be another point k∗
where sf (k∗) = nk∗(see Figs. 15.5 and 15.6). In that case we have two equilibrium
points: one unstable, at k = 0, and the other stable, at k = k∗.

Because L is growing at the rate of n, a constant k implies that K is also growing
at the rate n. Because we have constant returns to scale in production, the growth
rate of output is also n.

dQ/dt

Q

∣∣∣∣
k=k∗

= f (k)(dL/dt)+ Lf ′(k)(dk/dt)

Lf (k)

∣∣∣∣
k=k∗

= dL/dt

L
= n (15.70)

Fig. 15.5 Equilibria of
Solow’s model
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Fig. 15.6 Phase diagram of
Solow’s model

It follows that savings sLf (k) is also growing at the same rate. When all variables
are growing at the same rate and are on their long-run trajectory, the system is in its
steady state. The fact that k = k∗ is a stable equilibrium means that, should the cap-
ital output ratio k differ from the equilibrium k∗, then economic forces cause a move
toward equilibrium. This points to the conclusion that, in the long run, economies
that use the same technology or are at the same stage of technological progress,
should converge and grow at the same rate.

15.4.1 Exercises

E.15.4 Draw the phase diagram of the following differential equations, find their
stationary points, and determine if they are stable or unstable.

i.
dy

dt
= y3 − 4y ii.

dy

dt
= y2 − 3y+ 2

iii.
dy

dt
= 4− 2y+ ln y iv.

dy

dt
= 2e3y − 5y+ 1

15.5 Second-Order Linear Differential Equations

A second-order linear differential equation is of the form

d2y

dt2
+ b1

dy

dt
+ b2y = g(t) (15.71)
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Again, if g(t) = 0, we have a second-order homogeneous equation. In line with
what we learned from solving a first-order differential equation, we may start with
the solution

y = Aert (15.72)

for the homogeneous part of the equation. Then we have

r2Aert + b1rAert + b2Aert = 0 (15.73)

Dividing through by Aert �= 0, we get the characteristic equation

r2 + b1r + b2 = 0 (15.74)

This is is a second-order equation and, therefore, will have two solutions. Let us
denote them by r1 and r2 and recall that

r1 + r2 = −b1, and r1r2 = b2 (15.75)

Because r1 and r2 are solutions of a quadratic equation, we may have two real
and distinct solutions, a repeated root solution, or a complex solution. We take up
each case in turn.

15.5.1 Two Distinct Real Roots

In this case both y = er1t and y = er2t are solutions of the equation. But we need
not choose between them as a linear combination of them is also a solution. Thus,
the solution would be

y = A1er1t + A2er2t (15.76)

which can easily be checked. The first and second derivatives are

dy

dt
= A1r1er1t + A2r2er2t

d2y

dt2
= A1r2

1er1t + A2r2
2er2t

Substituting in (15.71) when g(t) = 0, we have

A1r2
1er1t + A2r2

2er2t + b1
(
A1r1er1t + A2r2er2t

)+ b2
(
A1er1t + A2er2t

)
= A1er1t

(
r2

1 + b1r1 + b2
)+ A2er2t

(
r2

2 + b1r2 + b2
) = 0
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The last equality is based on the fact that r1 and r2 are indeed solutions of
the equation r2 + b1r + b2 = 0 and therefore, the expressions in parentheses are
identically equal to zero.

Example 15.32 For the following differential equation

y′′ − 3

2
y′ − y = 0

the characteristic equation is

r2 − 3

2
r − 1 = 0

with the roots

r1 = 2, r2 = −1

2

Thus, the solution is

y = A1e2t + A2e
−1

2
t

At this point we may ask, how do we determine if two (or more) solutions of
a differential equation are independent and therefore, can they be combined as in
(15.76)? To answer this question, we first define the Wronskian3 of two (or more)
equations.

Definition 15.3 The Wronskian of functions f1(x), f2(x), . . . , fn(x) is the determinant

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 f3 . . . fn
f ′1 f ′2 f ′3 . . . f ′n
f ′′1 f ′′2 f ′′3 . . . f ′′n

...
...

... . . .
...

f (n−1)
1 f (n−1)

2 f (n−1)
3 . . . f (n−1)

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(15.77)

In particular, for the case of two solutions we have

W =
∣∣∣∣∣

A1er1t A2er2t

A1r1er1t A2r2er2t

∣∣∣∣∣ = A1A2e(r1+r2)t(r2 − r1) (15.78)

Two or more functions are independent if their Wronskian is not zero. Evidently,
in (15.78) W �= 0 if r1 �= r2, that is, as long as the two roots are distinct.

3After the Polish mathematician Hoëné Wronski (1778–1853).
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Example 15.33 Consider the equation

y′′ + 7y′ + 10y = 0

with the initial conditions

y (0) = 10, y′ (0) = −29

whose solution is

y = 3e−5t + 7e−2t

Computing the Wronskian, we have

W =
∣∣∣∣∣

3e−5t 7e−2t

−15e−5t −14e−2t

∣∣∣∣∣ = −63e−7t �= 0

We now turn to the question of stability of the equilibrium point of the equation.
Because

lim
t→∞ y = lim

t→∞A1er1t + lim
t→∞A2er2t (15.79)

it follows that, the equilibrium is stable iff r1 < 0 and r2 < 0, because in that case
the RHS of (15.79) will be zero when t →∞. Thus, the solution of the equation in
Example 15.32 is unstable whereas the solution of the equation in Example 15.33 is
stable.

15.5.2 Repeated Root

In this case, the differential equation is of the form

d2y

dt2
+ b

dy

dt
+ b2

4
y = 0 (15.80)

and we have r1 = r2 = r = −b/2. Therefore, we do not have two independent
solutions, and we cannot form the solution of the homogenous equation as

y = A1ert + A2ert = (A1 + A2)ert (15.81)

because A1 and A2 and, therefore, A1 + A2 are arbitrary constants and one solution
will get lost. On the other hand, we cannot allow the solution of a second-order
equation to degenerate into the solution of a first-order equation. Here we form the
second solution as

A2tert (15.82)
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and the complete solution is

y = A1ert + A2tert (15.83)

The logic behind this choice will become clear in Chap. 17. Here, we show that
the two solutions are independent and (15.83) is indeed a solution to (15.80). First,
note that

dy

dt
= rA1ert + rA2tert + A2ert (15.84)

and

d2y

dt2
= r2A1ert + r2A2tert + 2rA2ert (15.85)

The Wronskian of the functions is∣∣∣∣∣
A1ert A2tert

rA1ert rA2tert + A2ert

∣∣∣∣∣ = A1A2e2rt �= 0 (15.86)

Therefore, the two functions are independent. Moreover, substituting (15.83) and
its derivatives in (15.80), and recalling that r = −b/2, we have

r2A1ert + r2A2tert + 2rA2ert + b(rA1ert + rA2tert + A2ert)

+b2

4
(A1ert + A2tert)

=
b2

4
A1ert + b2

4
A2tert − bA2ert − b2

2
A1ert − b2

2
A2tert

+bA2ert + b2

4
A1ert + b2

4
A2tert = 0

(15.87)

Example 15.34 To find the solution of differential equation

d2y

dt2
− 3

dy

dt
+ 9

4
y = 0

we solve the characteristic equation

r2 − 3r + 9

4
= 0 ⇒ r = 3

2
and the solution is

y = A1e1.5t + A2te1.5t

If we add the initial conditions y(0) = 5 and y′ (0) = 9, we have

A1 = 5, and 1.5A1 + A2 = 9, ⇒ A2 = 1.5
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and the specific solution is

y = 5e1.5t + 1.5te1.5t

Example 15.35 Find the solution of the initial value problem

d2y

dt2
+ 2
√

2
dy

dt
+ 2y = 0, y(0) = √2, y′(0) = 3

The characteristic equation is

r2 + 2
√

2r + 2 = 0 ⇒ r = −√2

The solution is

y = A1e−
√

2t + A2te−
√

2t

Utilizing the initial conditions, we have

A1 =
√

2

and

√
2A1 + A2 = 3, ⇒ A2 = 1

and the specific solution is

y = √2e−
√

2t + te−
√

2t

The condition for the stability of the equilibrium when we have a repeated root
is similar to the case of two distinct roots, except that now we have only one root
and it should be less than one. It is not difficult to see that one solution converges to
zero if r < 0, because

lim
t→∞Aert → 0, if r < 0 (15.88)

For the second solution we can write

lim
t→∞Atert = lim

t→∞
At

e−rt
(15.89)

Using l’Hôpital’s rule we get

lim
t→∞

At

e−rt
= lim

t→∞
A

−re−rt
= 0, if r < 0 (15.90)
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15.5.3 Complex Roots

In this case the roots will be complex conjugates, that is,

r1 = ρ + iθ , r2 = ρ − iθ (15.91)

Therefore the solution is

y = A1e(ρ+iθ)t + A2e(ρ−iθ)t (15.92)

Recall that

e±iθ t = cos θ t ± i sin θ t (15.93)

and

y = eρt[A1(cos θ t + i sin θ t)+ A2(cos θ t − i sin θ t)]

= eρt[(A1 + A2) cos θ t + (A1 − A2)i sin θ t]

= eρt[B1 cos θ t + B2 sin θ t]

(15.94)

Note that because y is real, A1 − A2 has to be complex, hence B2 is real. Indeed,
A1 and A2 are complex conjugates (see Exercise E.15.8).

Example 15.36 Consider the equation

y′′ + 6y′ + 10y = 0

The auxiliary equation

r2 + 6r + 10 = 0

yields the roots

r1 = −3+ i, r2 = −3− i

Thus, the solution is

y = e−3t(B1 cos t + B2 sin t)

Example 15.37 Solve the initial value problem

y′′ − 2y′ + 17y = 0, y(0) = 2, y′(0) = −6

The characteristic equation
r2 − 2r + 17 = 0

yields the roots

r1 = 1+ 4i, r2 = 1− 4i
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Thus, the solution is

y = et(B1 cos 4t + B2 sin 4t)

Applying the initial conditions, we get

B1 = 2, B2 = −2

and we obtain the specific solution as

y = et(2 cos 4t − 2 sin 4t)

Example 15.38 To analyze the stability of the equilibrium in the case of complex
roots, we consider the two parts of the solution in turn. First, note that

B1 cos θ t + B2 sin θ t

is a circular or trigonometric function. Therefore, it will fluctuate over time. Left
to itself, it will have the same amplitude and will stay within certain bounds. In
particular recall that cos θ t and sin θ t oscillate between 1 and –1. The second part,
eρt, determines the amplitude and, therefore, the extent of oscillations. If ρ > 0,
the fluctuations amplify as time goes by. But if ρ < 0, then y gradually approaches
zero. The case of ρ = 0 corresponds to constant amplitudes oscillations. Thus,

ρ

⎧⎪⎨
⎪⎩

< 0, damped oscillations

= 0, constant oscillations

> 0, explosive oscillations
(15.95)

The solution in Example 15.36 exhibits damped oscillation whereas the solution
in Example 15.37 is explosive. We can summarize what we have learned so far about
the stability of the equilibrium of second-order homogeneous differential equations
(real and distinct roots, repeated roots, and complex roots) in the following theorem.

Theorem 15.3 A second-order differential equation is stable if the roots of its
characteristic equation are real and negative or complex and their real part is
negative.

15.5.4 Particular Integral

The solution of second-order nonhomogeneous equations follows the same proce-
dure we used to find the particular integral of the first-order equations. We illustrate
this with a few examples.

Example 15.39 Consider the differential equation

y′′ − 3

2
y′ − y = 1

2
t
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The complementary function is

y = A1e2t + A2e−0.5t

To find the particular integral, we start with

yp = α + βt

Then y′ = β and y′′ = 0. Substituting them in the differential equation

− 3

2
β − α − βt = 1

2
t

Equating the coefficients on the left and right sides of the equation we get
α = −3/4 and β = −1/2. Thus, the complete solution is

y = A1e2t + A2e−0.5t − 3

4
− 1

2
t

Let us now add the initial conditions y (0) = 8, y′ (0) = 15. The specific
solution is

y = 8e2t + 1.5e−0.5t − 3

4
− 1

2
t

Again note that the arbitrary constants are determined using the complete
solution.

Example 15.40 To find the particular integral of the differential equation

y′′ + 6y′ + 10y = 2 cos t

we start with

yp = α cos t + β sin t

Substituting the particular integral and its first and second derivatives in the
differential equation, we have

− α cos t − β sin t − 6α sin t + 6β cos t + 10α cos t + 10β sin t = 2 cos t

By equating the coefficients on both sides of the equation, we obtain the
particular integral as

yp = 2

13
cos t + 4

39
sin t



15.5 Second-Order Linear Differential Equations 445

and the complete solution is

y = e−3t(B1 cos t + B2 sin t)+ 2

13
cos t + 4

39
sin t

Example 15.41 Consider an investment model where investors balance the costs
and benefits of an investment today as opposed to the next period.4 There are two
industries, one producing capital goods and the other consumer goods. All capital
goods are bought by those who produce consumer goods. The price of capital goods
and consumer goods are, respectively, q and p. We shall assume that p is constant
and can be treated as a parameter:

dq

dt
+ pfK = (δ + φ)q (15.96)

The LHS is the benefit of investing today, which consists of the change in the
price of capital goods and the value of the marginal product of capital. The RHS is
composed of the interest foregone due to investment today and the depreciation of
capital, where δ is the rate of interest, and φ the depreciation rate. Let us assume that
the marginal product of capital starts at a very high level but decreases in proportion
to the amount of capital:

fK = θ0 − θ1K (15.97)

Thus,

dq

dt
= (δ + φ)q− p(θ0 − θ1K) (15.98)

Suppose that the demand for an investment good depends on the ratio of the price
of capital goods and consumer goods:

I = dK

dt
+ φK = α

q

p
(15.99)

or

dK

dt
= α

q

p
− φK (15.100)

Now we have two differential equations. In Chap. 17 we will learn how to
solve and analyze a system of differential equations. But now we approach the
problem differently and will merge the two first-order differential equations into

4David, K. H., Begg, The Rational Expectations Revolution in Macroeconomics, Theories and
Evidence, (1982), Chap. 7.
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one second-order differential equation. Let us take the derivative of both sides of
(15.100):

d2 K

dt2
= α

p

dq

dt
− φ

dK

dt
(15.101)

Substituting for dq/dt in (15.99),

d2 K

dt2
= α

p
(δ + φ)q− α(θ0 − θ1K)− φ

dK

dt
(15.102)

Because

q = p

α

(
dK

dt
+ φK

)
(15.103)

we have

d2 K

dt2
− δ

dK

dt
− (φ2 + δφ + αθ1)K = −αθ0 (15.104)

which is a second-order differential equation.

15.5.5 Exercises

E.15.5 Solve the following homogeneous differential equations.

i. y′′ − y′ − 12y = 0 ii. y′′ − 2y′ + y = 0

iii. y′′ + y′ + 1

4
y = 0 iv. y′′ − 12y′ + 9y = 0

v. y′′ + 7

2
y′ − 15y = 0 , vi. y′′ + y′ + 6y = 0

vii. y′′ − 2y′ + 9y = 0

E.15.6 Solve the following nonhomogeneous equations.

i. y′′ − y′ − 12y = 5 ii. y′′ − 2y′ + y = 2t

iii. y′′ + y′ + 1

4
y = e−t iv. y′′ − 12y′ + 9y = sin t

v. y′′ + 7

2
y′ − 15y = cos t vi. y′′ + y′ + 6y = 5+ 3t

vii. y′′ − 2y′ + 9y = 2
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E.15.7 Solve the following initial value problems.

i. y′′ − y′ − 12y = 0 y(0) = 2, y′(0) = 3

ii. y′′ − 2y′ + y = 0 y(0) = 7, y′(0) = 4

iii. y′′ + 7

2
y′ − 15y = cos t y(0) = 1, y′(0) = 2

iv. y′′ + y′ + 6y = 5+ 3t y(0) = 3, y′(0) = 6

v. y′′ + y′ + 6y = 0 y(0) = 1, y′(0) = 1

E.15.8 Show that in (15.94) A1 and A2 are complex conjugates.

15.6 Computer Solution of Differential Equations

Computer programs such as Maple and Mathematica include functions for solv-
ing differential equations. In this section with the help of a few examples we shall
illustrate the use of dsolve function in Maple for solving differential equations.

Consider the first order differential equation

dy

dt
= a+ by

You input the equation in Maple as

ode := diff (y(t), t) = 2+ 3 · y(t)

You get
d

dt
y(t) = a+ b y(t)

To get the solution, you input

dsolve(ode)

Maple returns

y(t) = −a

b
+ eb t_C1

Note that C1 is the constant of integration.
Now consider the second order equation:

d2y

dt2
= 5+ 3y

We can input it as:

ode := diff (y(t), t, t) = 5+ 3 · y(t)

and solve it
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dsolve(ode)

Which will result in

y(t) = e
√

3 t_C2+ e−
√

3 t_C1− 5

3

Note that we now have two constants of integration. As a final example consider the
following equation:

ode := diff (y(t), t, t) = 2+ 7 · t + 5 · y(t)

d2

dt2
y(t) = 2+ 7 t + 5 y(t)

dsolve(ode)

y(t) = e
√

5 t_C2+ e−
√

5 t_C1− 2

5
− 7

5
t

Come to think of it, life was not this easy when I went to school.

15.7 Numerical Analysis of Differential Equations

Many differential equations cannot be solved with our present mathematical knowl-
edge. As we saw, phase diagrams afford us a way for qualitatively analyzing
differential equations and gaining insight into their behavior. But if we are ready
to specify the shape of the functions involved and assign numerical values to the
parameters of the equation, then we can use numerical algorithms to simulate
differential equations and study their exact behavior.

15.7.1 The Euler Method

This is the easiest and the most intuitively appealing algorithm for the numerical
solution of differential equations. Consider the following initial value problem:

dy

dt
= f (t, y), y(t0) = y0 (15.105)

Recall that
dy

dt
= lim

t→∞
y(t2)− y(t1)

t2 − t1

We can write

y(t2) ≈ y(t1)+ (t2 − t1)f (y(t1), t1) (15.106)
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Let [t0, tn] be the interval in the domain of the function over which we would
like to study the behavior of the equation. We divide this interval into n equal
subintervals of the length h:

[t0, t1], [t2, t3], . . . , [tn−1, tn]

Then we can recursively calculate the values of y starting with y0 in the following
way:

y1 = y0 + hf (y0, t0)
...

yn = yn−1 + hf (tn−1, yn−1)

(15.107)

To gauge the accuracy of Euler’s formula, consider the Taylor expansion of y(tn)
near yn,

y(tn) = yn + (tn − tn−1)y′(tn−1)+ (tn − tn−1)2

2
y′′(τ ) (15.108)

where τ ∈ [tn−1, tn]. The error of calculation for yn, therefore, is

y(tn)− yn = (tn − tn−1)2

2
y′′(τ ) (15.109)

Recall that tn − tn−1 = h and let

M ≥ y′′(τ ), τ ∈ [t0, tn] (15.110)

In other words, M is the upper limit of the second derivative of the function in the
[t0, tn] interval. Thus, the maximum error of calculation for any value of y would be
Mh2/2. This is referred to as local truncation error. Under certain circumstances,
the sum of such errors is equal to the global error of computation. Thus, we can take
the sum of absolute local errors, that is, nMh2/2, as an estimate of the global error.
This allows us to determine the number of intervals based on the total error we are
ready to tolerate. Let the acceptable error be d. Recalling that h = (tn − t0) /n,
we have

nMh2

2
= M(tn − t0)2

2n
≤ d

which means

n ≥ M(tn − t0)2

2d
(15.111)

Thus, we can reduce the error of computation to an acceptable level by increasing
the number of intervals n. Euler’s formula can be programmed in Matlab. Let us
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assume that you have already programmed the function f (y, t) in an m.file named
horatio.m. To be specific, suppose we would like to solve the equation

dy

dt
= −2y+ 0.4t, y(0) = 1 (15.112)

for the interval [0, 3]. The reason for choosing this equation, which is an easy one to
solve, is that the solution obtained from numerical analysis can be checked against
the exact solution. The horatio.m file will look like

Matlab code

function z = horatio(t,y)

z = -2∗y + 0.4∗t;

Because we know the solution to (15.112), we can find the largest value of
d2y/dt2 over the interval of interest, which turns out to be 4. The main program
will call the function horatio and solves the problem.

Matlab code

% Set the parameters of the problem

t0 = 0;

tn = 3;

M = 4;

D = 0.0001;

n = ceil(((tn-t0).ˆ2.∗M)./(2.∗d))+1;
H = (tn-t0)./(n-1);

% The number of y and t values is one more than the

% number of intervals. That is why we first added 1

% to n and then calculated n-1 intervals. Note also

% that Matlab starts its counter from 1 not 0.

% Now define a vector to hold y values.

y = zeros(n,1);

% Define n equally spaced values of t.

t = linspace(t0,tn,n);

% Set the initial value of y.

y(1) = 1;

% Recursively use the Euler method.

for i=1:n-1
fval = feval(@horatio,t(i),y(i));

y(i+1) = y(i) + h.∗fval;
end

15.7.2 Runge-Kutta Methods

The essence of the Runge-Kutta methods is to reevaluate the function f in the
interval tn, tn+1. Thus, depending on the number of points at which the function
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is reevaluated, we have the second-order, third-order, ..., Runge-Kutta method.
Let us consider the second-order method. Here we evaluate the function at
points

k1 = f (tn, yn)

k2 = f (tn + αh, yn + βhk1)
(15.113)

and yn+1 is computed as

yn+1 = yn + h (ak1 + bk2) (15.114)

By comparing (15.114) to the Taylor expansion in (15.108), it is also clear that f
is approximated by a weighted average of k1 and k2. To make the method operational
we have to determine four parameters α, β, a and b. First, note that

y′ = f (y, t)

y′′ = fyy′ + ft = fyf + ft
(15.115)

Therefore,

y(tn+1) = y(tn)+ hf + h2

2
( fyf + ft)+ O(h3) (15.116)

On the other hand, (15.112) can be written as

yn+1 = yn + ahf (tn, yn)+ bhf (tn + αh, yn + βhk1)

= yn + ahf (tn, yn)+ bhf (tn, yn)+ αbh2ft

+βbh2fyf + O(h3)

= yn + (a+ b)hf (tn, yn)+ bh2(αft + βfyf )+ O(h3)

(15.117)

Comparing (15.117) and (15.116), it follows that for the method to be consistent
and the error to be O(h3), we should have

a+ b =1

2bα = 2bβ =1
(15.118)

One solution to the above system would be α = β = 1 and a = b = 1/2, which
results in the improved Euler method.

z(k + 1) =y(k)+ hf (tk, y(k))

y(k + 1) =y(k)+ h

2

[
f (tk+1, z(k + 1))+ f (tk, y(k))

] (15.119)

We can use the improved Euler formula by modifying our previous program.
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Matlab code

for i=1:n-1
fval=feval(@horatio,t(i),y(i));
z = y(i) + h.∗fval;
fval=feval(@horatio,t(i),z);
y(i+1) = y(i) + (h./2).∗(fval+z);

end

The fourth-order Runge-Kutta method is the most popular. In this method

yn+1 = yn + 1

6
h(k1 + 2k2 + 2k3 + k4) (15.120)

where

k1 = f (yn, tn)

k2 = f

(
yn + 1

2
h, yn + 1

2
hk1

)

k3 = f

(
yn + 1

2
h, yn + 1

2
hk2

)
k4 = f (yn + h, yn + hk3)

(15.121)

This method is available as ode45 function in Matlab. Again suppose that we
have already defined the function in the file horatio.m.

Matlab code

[T, Y] = ode45(@horatio,[0 3],1);

% [0 3] is the range of t and 1 is the initial value

% of y.

% Call T and Y

[T, Y]

15.7.3 Exercises

E.15.9 Use the Euler method to solve the differential equations in E.15.1

E.15.10 Use the ode45 function in Matlab to solve the differential equations
in E.15.1



Chapter 16
Difference Equations

Change is the essence of economic life. Production, income, prices, money in circu-
lation, exchange rates, and other economic variables are increasing or decreasing all
the time. Jobs are created and destroyed, some activities and products disappear, and
new ones replace them. On a longer horizon, economic institutions undergo grad-
ual evolution and sometimes abrupt changes. Yet it is rare that we observe a clean
break with the past as if yesterday did not exist. The past exerts an influence on the
present.

Dynamic economic models reflect one aspect of this dynamism by positing that
the behavior of a variable is determined, among other things, by its own past values.
For example, consumption of a family or a nation is determined not only by its cur-
rent income but also by its past consumption. Similarly, the inflation rate is affected
by its past levels as well as changes in the money supply.

There are several sources for this influence of the past on the present. First, there
may be a gestation period. It takes time for an investment to turn into capital, and
it takes time for a product to become known to the public. Second, there may be
inertia in attaining new equilibrium levels; an immediate adjustment to new cir-
cumstances could be costly. It is not easy to shut down all offshore oil operations
because demand and price have declined or build a new platform because prices are
on the rise. Third, decisions imply action in the future and, therefore, are based on
the expectation of the future behavior of relevant variables. Decisions to buy or sell
a stock are based on the expectation of its future values, future interest rates, and the
future earnings and dividends of the company. When the expectations of the future
are formed based on the past behavior of a set of variables, decisions and behav-
ior are affected by the past. Finally, optimization over time takes into account the
values of different variables at different times. The optimal solutions and decisions
based on that, therefore, tie together the values of variables at different time periods.
Differential and difference equations are mathematical tools to model this dynamic
phenomenon of economic life. If we are concerned with more than one variable, we
need a system of differential or difference equations (see the next chapter). In the
previous chapter we dealt with differential equations. Difference equations are usu-
ally described as the discrete version of differential equations and have received
scant attention from mathematicians. This is not surprising given the immense
task of solving differential equations and their wide applicability in physics. In

453K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8_16, C© Springer-Verlag Berlin Heidelberg 2011
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economics a good deal of theoretical work is conducted within the framework of
differential equations. But economic variables are measured in discrete time inter-
vals and, in applied work, estimation, forecasting, simulation, and policy evaluation,
we rely on difference equations.

16.1 An Overview

The first order of business is terminology and definitions. An ordinary linear
difference equation of order n with constant coefficients is defined as

yt = b1yt−1 + b2yt−2 + . . . bnyt−n + γ xt (16.1)

It is called ordinary because it involves only one independent variable t. If another
variable were also involved, it would be called a partial difference equation. It is lin-
ear as it does not involve any nonlinear functions of y. And it is a constant coefficient
because bi, i = 1, . . . , n are constant and do not vary with t. In this book we are con-
cerned only with ordinary linear difference equations; therefore, the term difference
equation will be used in place of the longer designation, and whenever there is no
fear of ambiguity, the term will be shortened to equation.

If γ = 0, the equation is homogeneous and when γ �= 0, it is called nonhomo-
geneous. xt could take many different forms including an explicit function of time
xt = f (t) , or a member of a deterministic or stochastic series where xt ∈ {xt}∞t=−∞.
f (t), in turn, could be a polynomial in t, or a trigonometric, or exponential function
of time.

Example 16.1 The following are examples of difference equations:

yt = 2

3
yt−1

yt = 2

3
yt−1 + 2

yt = 5yt−1 − 1

2
yt−2

yt = 0.85yt−1 + 0.35yt−2 + 3+ 2t

yt = 0.9yt−1 + 2xt + 0.5xt−1 + 1

Definition 16.1 By a solution of a difference equation we mean a function of the
form yt = g (t) that satisfies the equation. That is, the substitution of y with the
solution makes the difference equation an identity.

Example 16.2

yt = A

(
2

3

)t
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is a solution to the equation yt = 2

3
yt−1 (we will shortly learn how to find such

solutions). We have

A

(
2

3

)t

= 2

3
A

(
2

3

)t−1

Example 16.3 Let

yt = 2

3
yt−1 + 2

Then

yt = A

(
2

3

)t

+ 6

is a solution because

A

(
2

3

)t

+ 6 = 2

3
A

(
2

3

)t−1

+ 2

3
× 6+ 2

A characteristic of such solutions is that if both A1λ
t
1 and A2λ

t
2 with λ1 �= λ2 are

both solutions of a difference equation, then

yt = A1λ
t
1 + A2λ

t
2 (16.2)

is also a solution. This is particularly important in the case of second- and higher-
order difference equations. We illustrate this with an example.

Example 16.4 Check that

yt = A13t and yt = A2

(
1

2

)t

are both solutions to the equation

yt = 3.5yt−1 − 1.5yt−2

But so is

yt = A13t + A2

(
1

2

)t

As can be seen, such solutions are not unique because they involve the free
parameter A (in the case of a first-order equation) and parameters A1 and A2 (in
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the case of a second-order equation).1 In other words, they define a family of solu-
tions. In order to have a specific solution we need to know the value of y in as many
points as there are free parameters. These values are referred to as initial conditions.

Example 16.5 In Example 16.2, let y0 = 5. Then

y0 = A

(
2

3

)0

= A = 5

and the specific solution is

yt = 5

(
2

3

)t

Example 16.6 In the case of Example 16.4, we need two points. Thus, let

y0 = 7, y1 = 6

Then
A1 + A2 = 7

3A1 + 0.5 A2 = 6

Verify that the following is a specific solution:

yt = 3t + 6

(
1

2

)t

Once we have found a specific solution for a linear difference equation with
initial conditions, the solution is unique. To get an intuitive understanding of
the uniqueness of the solution, consider an n-th order difference equation of the
form

yt = b1yt−1 + . . .+ bnyt−n + f (t) (16.3)

with the initial conditions

yj = y∗j , j = 0, . . . , n− 1 (16.4)

Given the values of b’s and the function f, we substitute the values of y∗j ’s and
t in the equation and compute y∗n. This value of y is unique. Next we substitute the
values of y∗1 to y∗n in the equation and compute y∗n+1. Again this value is unique. We
can continue in this fashion and trace the path of yt for as long as we desire. The
path is unique because each and every value of y is uniquely determined. Therefore,

1In general, the solution of an n-th order linear difference equation involves n free parameters.
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the solution of the difference equation with initial conditions that depict this path
has to be unique as well. Incidentally, this argument shows how a difference equa-
tion is numerically simulated, a practice prevalent in present-day dynamic economic
analysis.

The solutions of stochastic difference equations are unique in an expected value
or conditional expected value sense. That is, they are unique if we are interested in
the expected value E (yt) or when we have observed the value of stochastic terms
and therefore, our solution is conditional on the realization of the random variables.

An important issue is to determine the point at which the difference equation
may come to rest, that is, once at that point, there is no tendency in the variable y to
change. Such points are referred as the equilibrium points. A dynamic system may
not have such a point. Instead, it may have a steady-state path on which it can stay
forever.

A related question we are interested in is if for some reason, the equilibrium
is disturbed or the variable has left the steady state, would it return to equilibrium
or steady state? This is the question of the stability of the equation. If an equation
converges to a particular value or a path, it is called stable; else it is unstable. The
issue is of significance for economic analysis in that every economic equilibrium
is constantly disturbed by external forces. Every economy is constantly subjected
to shocks from within and without the system. Examples include inventions and
innovations in production processes such as the introduction of new products and
new technology, changes in consumer tastes, political changes both at home and
abroad; and economic changes in other countries. These changes are not predictable
and influence the economy in unforeseen ways; hence, the stochastic nature of eco-
nomic variables and relationships. Consumers, producers, and government officials
are cognizant of these shocks and have to make decisions based on their expectations
and with imperfect information.

Since the 1960s and the seminal work of John Muth, Robert Lucas, and Thomas
Sargent on models of rational expectations, random components have explicitly
been introduced into economic models. The work of Finn Kydland and Edward
Prescott and others on real business cycle theory has also been instrumental in mak-
ing stochastic difference equations an integral part of economic theory. What are the
short- and long-term effects of these shocks? Will the economy return to its long-
run growth path? Or is the long-term trajectory of the economy itself shaped by the
shocks and innovations? These are some of the questions whose answers require
dynamic models and the use of difference equations.

16.2 Examples of Discrete Dynamic Economic Models

That economic life is a dynamic process is self-evident. To capture this dynamism
in a model which is based on plausible behavior on the part of economic actors is a
challenge for economists. In this section we will discuss a few such models and will
encounter more in later sections, including models reflecting more recent directions
in economic theory.
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Everyday experience indicates that obtaining information, processing it, making
decisions, and implementing them take time. Therefore, it is not stretching things
too far if we simply start by noting that a variable y at time t depends on x at time
t–1. For example, some Keynesian models of business cycles (see Example 16.29)
assume that consumption depends on income in the previous period:

Ct = βYt−1

or investment depends on changes in consumption:

It = γ (Ct − Ct−1)

On the other hand, some models start from plausible assumptions regarding
economic behavior that lead to dynamic economic models. We discuss three such
models here.

16.2.1 Adaptive Expectations

Commenting on Keynes’s General Theory, Schumpeter pointed out that, if expec-
tations are assumed to be exogenous to the model, they would resemble a deux
ex machina that would save the theorist when the model cannot explain a phe-
nomenon. Therefore, if expectations are introduced into a theory, they should be
endogenous to the model. In other words, the mechanism or the model for their for-
mation should be specified. Economists have proposed two models of expectations
formation: adaptive expectations and rational expectations.

The adaptive expectations model was suggested by Cagan in 1946 in relation
to money and hyperinflation. It posits that people revise their expectations in light
of their recent experience. If x e is the expectation of the variable x, then adaptive
expectation model is

xe
t+1 − xe

t = λ(xt − xe
t ) 0 < λ < 1 (16.5)

Note that this model implies that expectations formed at time t for one period
ahead is a weighted average of the expectation of the same variable formed one
period earlier for time t and the actual realization of that variable.

xe
t+1 = λxt + (1− λ)xe

t (16.6)

Because the same relationship holds for one period earlier, we have

xe
t = λxt−1 + (1− λ)xe

t−1 (16.7)

Substituting (16.7) in (16.6) we have

xe
t+1 = λxt + λ(1− λ)xt−1 + (1− λ)2xe

t−1 (16.8)



16.2 Examples of Discrete Dynamic Economic Models 459

Continuing in this fashion, we get

xe
t+1 = λ

∞∑
j=0

(1− λ) jxt−j (16.9)

Now suppose a variable y depends on the expectation of x. For example, we can
think of xe to be permanent income and y consumption. Then

yt = β0 + β1xe
t+1 (16.10)

Substituting for xe
t+1 we have

yt = β0 + β1λ

∞∑
j=0

(1− λ) jxt−j (16.11)

Subtracting

(1− λ)yt−1 = (1− λ)β0 + β1λ

∞∑
j=1

(1− λ) jxt−j (16.12)

from both sides of (16.10) and rearranging terms. We have

yt = β0λ+ (1− λ)yt−1 + β1λxt (16.13)

Thus, the magnitude of the variable y at any time period t is determined by its
values in the past, and we have a first-order nonhomogeneous difference equation.
It is a nonhomogeneous equation because in addition to the dynamic of the process
itself, in every period the exogenous variables xt affects the variable yt.

Economic relationships hardly, if ever, can be captured by deterministic equa-
tions like (16.10) and (16.13). In both theoretical and applied work we usually deal
with the stochastic version of a dynamic relationship. For example, (16.10) could
include a random component, that is

yt = β0 + β1xe
t+1 + εt (16.14)

where εt is white noise. In this case the final equation would be

yt = β0λ+ (1− λ)yt−1 + β1λxt + εt − (1− λ)εt−1 (16.15)

16.2.2 Partial Adjustment

This model takes into account the fact that sometimes adjustment to an optimal or
planned level of output, investment, consumption, and many other variables may



460 16 Difference Equations

be costly or altogether impossible. Therefore, there may be a partial move toward
the desired level of a variable. Suppose the desired or optimal level of variable y
denoted by y∗ depends on variable x:

y∗t = α0 + α1xt + νt (16.16)

where μ is white noise. But the move toward the optimal level is gradual,

yt − yt−1 = γ (y∗t − yt−1) 0 < γ < 1 (16.17)

Therefore,

y∗t =
1

γ
yt − 1− γ

γ
yt−1 (16.18)

Substituting (16.18) in (16.17), we have

yt = γα0 + (1− γ )yt−1 + γα1xt + γ νt (16.19)

Again we have a first-order nonhomogeneous difference equation.

16.2.3 Hall’s Consumption Function

In 1978 Robert E. Hall literally shook the economics profession by presenting
results that showed aggregate consumption follows a random walk. He started with
the lifetime utility function

T∑
j=t

U(Cj)

(1+ δ) j−t
(16.20)

and the budget constraint

T∑
j=t

Cj −Wj

(1+ r) j−t
= At (16.21)

and

δ = rate of time preference
T = the length of economic life
Ct = consumption in year t
U = utility function
r = real rate of interest
Wt = earnings at time t
At = Assets excluding human capital
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Furthermore he assumed r to be constant over time and r ≥ δ. Maximizing
the conditional expectation of the utility function subject to budget constraint, he
arrived at

EtU′(Ct+1) = 1+ δ

1+ r
U′(Ct) (16.22)

where Et denotes conditional expectation—conditional on all information avail-
able at time t. Using different utility functions, he concluded that (16.22) can be
approximated by the simple function

Ct = λCt−1 + εt (16.23)

which is a first-order difference equation.
By now it should be obvious that in order to analyze and understand economic

dynamics, make forecasts, and evaluate different policies within a dynamic context,
we need to understand the behavior of deterministic and stochastic difference equa-
tions. This in turn requires us to find and analyze the nature of solutions of difference
equations.

16.2.4 Exercises

E.16.1 Verify the solution of each of the following equations.

Equation Solution

yt = −3yt−1 + 4 yt = A(−3)t + 1
yt = yt−1 + 6 yt = A+ 6t
yt = 7yt−1 − 10yt−2 yt = A1(2t)+ A2(5t)
yt = 0.1yt−1 + 0.3yt−2, y0 = 1, y1 = 1.7 yt = 2(0.6t)− (−0.5)t

yt = 2yt−1 − yt−2, y0 = 2, y1 = 5 yt = 2+ 3t

E.16.2 Show that the solution to the maximization problem

max Et

T∑
j=t

U(Cj)

(1+ δ) j−t

subject to
T∑

j=t

Cj −Wj

(1+ r) j−t
= At

is

EtU′(Ct+1) = 1+ δ

1+ r
U′(Ct)
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E.16.3 In Exercise 16.2, show that we can write

U′(Ct+1) = 1+ δ

1+ r
U′(Ct)+ εt+1

where εt+1 is white noise.

E.16.4 In Exercise 16.2, let

U(Ct) = −1

2
(C̄ − Ct)

2

where C̄ is a constant. Show that the solution to the utility maximization problem is

Ct+1 = C̄(r − δ)

1+ r
+ 1+ δ

1+ r
Ct − εt+1

16.3 First-Order Linear Difference Equations

A first-order linear difference equation is of the form

yt = λyt−1 + γ xt (16.24)

where xt can be a known function of time such as

xt = α0 + α1t (16.25)

or be a deterministic or stochastic sequence of variables, that is xt ∈ {xj}∞j=−∞.
Because of γ xt on the RHS the equation is called non-homogeneous. The homo-
geneous part reflects the internal dynamics of the system when no external force is
applied to it, whereas xt is an external force that could be in the form of a stochastic
shock to the system or a policy or any other exogenous factor affecting y. The solu-
tion of a nonhomogeneous difference equation consists of the sum of the solutions
of the homogeneous and the nonhomogeneous parts. We start with the solution of
the homogeneous part and an analysis of its behavior.

16.3.1 Solution of First-Order Linear Homogeneous
Difference Equations

The first-order linear homogeneous equation

yt = λyt−1 (16.26)

has a straightforward solution. Observe that

yt

yt−1
= λ
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Therefore,

yt = yt

yt−1

yt−1

yt−2
. . .

y1

y0
y0

= λ λ . . . λ y0

= y0λ
t

(16.27)

In the above solution, we implicitly assumed that we know that the value of y at
time t = 0 is y0. Lacking such knowledge, we simply can write the solution as

yt = Aλt (16.28)

We can verify that a function of the form yt = Aλt is a solution of (16.26) because

yt = Aλt = λAλt−1 = λyt−1

In accordance with our previous chapter terminology we shall call yt = Aλt the
complementary solution. If, in addition, we have an initial condition that specifies
the value of y for some t, say, y0 for t = 0, then we can find a specific solution for
the equation.

Example 16.7 The solution of the difference equation

yt = 1

2
yt−1

is

yt = A

(
1

2

)t

We can verify that the above is indeed the solution by checking that

1

2
A

(
1

2

)t−1

= A

(
1

2

)t

= yt

Now suppose that the initial condition is

yt = y0 for t = 0.

Then the specific solution will be

yt = y0

(
1

2

)t

Example 16.8 Given the difference equation

yt = 3.5 yt−1
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and the initial condition

y0 = 2.5

the solution is

yt = 2.5(3.5)t

The nature of a complementary solution will prove important in analyzing the
behavior of a difference equation. If |λ| > 1, yt keeps growing, whereas for |λ| < 1
it will approach zero as t →∞. On the other hand, when λ > 0, yt does not change
sign and if, say, y0 > 0, then yt > 0, ∀t, but if λ < 0, yt switches back and forth
from negative to positive and positive to negative values. The cases of λ = 1 and
λ = −1 result in

yt =
{

A if λ = 1

(−1)tA if λ = −1

These possibilities are illustrated in Fig. 16.1. An intuitively appealing way to
verify the solution of a difference equation is by tracing the trajectory of yt using
both the original equation and its solution, and comparing them. In addition, such
an exercise will allow us to explore the nature of the solution. We can perform the
necessary computation using Matlab or Excel. The code is written for the problem

yt = 0.5yt−1,

y0 = 2.5

but you may want to experiment with different equations and initial values.

Matlab code
% Specify the number of periods y is to be computed

n = 15;

% Initialize two arrays to hold the computed

% values of y one from the original equation and one

% from the solution

y1 = zeroes(n,1);

y2 = zeroes(n,1);

% specify the equation and the initial condition

lambda = 0.5;

y1(1) = 2.5;

% Note that Matlab starts its index of an

% array with 1

for i=2:n
y1(i) = lambda.∗ y1(i-1);

end

for i=1:n
t = i;

y2(i) = y1(1).∗(lambda.ˆ(i-1));
end
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Fig. 16.1 Behavior of a first-order homogeneous difference equation

y1

y2

plot(t,y1)

plot(t,y2)

16.3.2 Solution of First-Order Nonhomogeneous Equations

In solving a nonhomogeneous equation, we can follow the same procedure as we
did for homogeneous equation. Let

yt = λyt−1 + γ xt (16.29)
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By successive substitutions, we have

yt = λ2yt−2 + γ xt + λγ xt−1

= λ3yt−3 + γ xt + λγ xt−1 + λ2γ xt−2

= . . .

= Aλt + γ

t−1∑
i=0

λixt−i

(16.30)

Let us now consider different possibilities for xt.
1. Nonhomogeneous part is a constant. We have

yt = λyt−1 + α (16.31)

In other words, xt takes a constant value for all periods equal to x0, and α = γ x0.
The solution is

yt = Aλt + γ

t−1∑
j=0

λjx0

= Aλt +
t−1∑
j=0

λjα

= Aλt + α
1− λt

1− λ

=
(

A− α

1− λ

)
λt + α

1− λ

(16.32)

If we add the initial condition yt = y0, for t = 0, the specific solution will be

yt =
(

y0 − α

1− λ

)
λt + α

1− λ
(16.33)

If the equation is stable, that is, if |λ| < 1, then

lim
t→∞ yt = α

1− λ
(16.34)

which in economics is referred to as intertemporal equilibrium. That is, if yt =
α/(1− λ), there is no reason for it to change

Example 16.9 Let

yt = 0.75yt−1 + 4, y0 = 18
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The solution is

yt =
(

18− 4

1− 0.75

)
(0.75t)+ 4

1− 0.75
= 2(0.75t)+ 16

Example 16.10 (Monthly Payments of a Loan). We are already familiar with the
formula to calculate the monthly payment D of a loan of A dollars borrowed for n
years at the rate r percent. It is

D = A
(1+ r/12)12n(r/12)

(1+ r/12)12n − 1

For example, the monthly payment of a $200,000 loan borrowed for 15 years at
6% is

200000
(1+ 0.06/12)180(0.06/12)

(1+ 0.06/12)180 − 1
= 1687.71

You can check this with the PMT function in Excel. Note that the payment is made
at the end of the month; therefore, the command line is

PMT(6%/12,15∗12,200000„0)
We can derive the formula using difference equations. Let y0 be the amount bor-
rowed and yt the amount owed at the end of the month t, t = 1, . . . , 12n. Then

yt = yt−1 (1+ r/12)− D

Solving this equation we have

yt =
(

y0 − D

r/12

)
(1+ r/12)t + D

r/12

Noting that y0 = A and y12n = 0, we have

0 =
(

A− D

r/12

)
(1+ r/12)12n + D

r/12

which upon solving for D gives the monthly payment formula.

Example 16.11 (A Model of Real Business Cycles). In this model the main driving
forces of the economy are technological change and population growth. The model
assumes a Cobb-Douglas production function, where output (Y) depends on capital
(K), labor (L), and technology (A).

Yt = Kα
t (AtLt)

1−α (16.35)
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What is not consumed is saved and capital accumulation is the result of saving,
and it takes one period for saving to turn into capital. Unrealistically, however, it is
assumed that capital lasts only one period, that is, it is totally used up in the process
of production.

Kt = Yt−1 − Ct−1 = sYt−1 (16.36)

Population (N) grows at the rate η and labor participation rate (l̄) is constant.
Therefore,

Lt = l̄N̄eηt

which implies

ln Lt = ln l̄+ ln N̄ + ηt (16.37)

There are two main sources of technological growth: a constant accumulation
of knowhow, improvements, and innovations, γ t, and a random component of
innovations, ut. Thus,

At = Āeγ t+ut

or

ln At = ln Ā+ γ t + ut (16.38)

We will deal with this model in three stages of increasing complexity. First, let
us, for the time being, set ut = 0, ∀t. In other words, technological progress has
a constant rate of growth γ . Taking the logarithm of the production function and
substituting for ln Lt and ln At, we have

ln Yt = α ln Kt + (1− α) ln At + (1− α) ln Lt

= α ln s+ α ln Yt−1 + (1− α)(Ā+ γ t)+ (1− α)(ln l̄+ N̄ + ηt)

= B+ α ln Yt−1 + (1− α)(η + γ )t
(16.39)

where

B = α ln s+ (1− α)(Ā+ ln l̄+ N̄)

The model is now reduced to a first-order difference equation in ln Yt. We shall
discuss the solution of this model below.
2. The nonhomogeneous part is a linear trend. We have

yt = λyt−1 + α + βt (16.40)
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that is,

γ xt = α + βt (16.41)

Substituting (16.41) in (16.30), the solution is

yt = Aλt + α

t−1∑
j=0

λj + β

t−1∑
j=0

λj(t − j) (16.42)

But

t−1∑
j=0

λj(t − j) = t
t−1∑
j=0

λj −
t−1∑
j=0

jλj

= t
1− λt

1− λ
− 1

1− λ
tλt − λ

1− λt

(1− λ)2
+ 1

1− λ
tλt + 1

1− λ
tλt

= 1

1− λ
t − λ

(1− λ)2
+ λ

(1− λ)2
λt

Therefore, the solution is

yt = Aλt + α

1− λ
− α

1− λ
λt + β

[
1

1− λ
t − λ

(1− λ)2
+ λ

(1− λ)2
λt
]

Using the initial condition yt = y0, for t = 0, we have

yt =
(

y0 − α

1− λ
+ βλ

(1− λ)2

)
λt + α

1− λ
− β

λ

(1− λ)2
+ β

1

1− λ
t (16.43)

We can now solve the equation in Example 16.10. Letting the output at time t = 0
be Y0, the solution to the equation (16.39) is

ln Yt =
(

ln Y0 − B

1− α
+ α(η + γ )

1− α

)
αt + B

1− α
− α(η + γ )

1− α
+ (η + γ )t

Suppose the economy starts at the point

ln Y0 = B

1− α
− α(η + γ )

1− α

Then the long-run rate of growth of Yt, in the absence of any stochastic techno-
logical shock, would be η + γ , that is, the rate of growth of population plus the
long-term growth rate of technology.
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What the solution in (16.43) tells us is that yt has a trend. Let us assume that in
(16.40) |λ| < 1 and the first term in (16.43) vanishes as t increases. Then yt con-
verges to a linear trend. Many economic variables behave in this way. In such cases,
it would be desirable to estimate the trend and study the deviation of y from this
trend. In (16.40) we can define:

β∗ = β

1− λ
α∗ = α

1− λ
− λβ

(1− λ)2
(16.44)

Therefore,

β = (1− λ)β∗ α = (1− λ)α∗ + λβ∗ (16.45)

Substituting (16.45) in (16.40) and rearranging terms, we have

yt − α∗ − β∗t = λ[yt−1 − α∗ − β∗(t − 1)] (16.46)

Define

zt = yt − α∗ − β∗t (16.47)

(16.46) can now be written as a first-order homogeneous difference equation

zt = λzt−1 (16.48)

Such a transformation is particularly interesting for economic analysis because,
instead of analyzing the variable of interest, say, GDP, we can analyze its fluctua-
tions around a deterministic trend.

Example 16.12 (A Model of Real Business Cycles, continued) Going back to
(16.39),

ln Yt = B+ α ln Yt−1 + (1− α)(η + γ )t

Define

zt = ln Yt − (η + γ )t

We have

zt = B+ αzt−1 (16.49)

By subtracting the growth rate from ln Yt we are able to study the fluctuations of
the output around its long-run trend. We still have a first-order difference equation
and the solution is left to the reader.
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3. The nonhomogeneous part is an exogenous deterministic or stochastic variable.
The equation and its solution are

yt = λyt−1 + γ xt (16.50)

and

yt = Aλt + γ

t−1∑
i=0

λixt−i (16.51)

From an economic point of view the stability of this equation is of great impor-
tance. If λ > 1, then the impact of past values of xt become more and more important
as time passes. For example, if y is the GDP and x, government expenditures, then
λ > 1 implies that one dollar of government expenditures in 1945 had a greater
impact on the GDP in 2011 than a dollar spent in 2010 or 2011. Similarly, if xt rep-
resents innovation in the production process, then an innovation in 1900 would have
a greater effect on the well-being of Americans in 2011 than a similar innovation
in 1995. This is hard to accept. It seems more reasonable to assume that the oppo-
site is true, and the effect of a shock or an exogenous variable dies down as time
passes.

Example 16.13 (A Model of Real Business Cycles, continued). We now go back to
our original assumption that technological progress has a deterministic trend and a
stochastic shock:

At = Āeγ t+ut

or in logarithmic form

ln At = ln Ā+ γ t + ut (16.52)

In this case the final difference equation becomes

zt = B+ αzt−1 + (1− α)ut (16.53)

with solution

zt =
(

z0 − B

1− α

)
αt + B

1− α
+ (1− α)

t−1∑
j=0

α jut−j (16.54)

Because 0 < α < 1, the model is stable and as time goes by the effects of shocks
to the aggregate production function subside. Thus, the model has a deterministic
trend, but fluctuations around the long-run trend are caused by innovations.
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16.3.3 Exercises

E.16.5 Solve the following first order difference equations.

i. yt = 0.5yt−1 + 6

ii. yt = 1.75yt−1 + 0.3t

iii. yt = 1.3yt−1 + 5− 0.6t

iv. yt = 0.85yt−1 + 0.4xt

v. yt = 0.6yt−1, y0 = 2.6

vi. yt = 0.75yt−1 + 2, y0 = 3

vii. yt = 2yt−1 + 5+ 0.5t, y0 = 7.5

viii. yt = 1.5yt−1 + xt, y0 = 2

E.16.6 Solve the first order difference equation resulting from Hall’s model,

Ct = λCt−1 + εt

and discuss the implications of different values of λ for the behavior of consumption.

E.16.7 Determine if the solutions to equations in E.16.5 are stable.

E.16.8 Write a program that calculates the monthly payment of a loan given the
amount borrowed, the interest rate, and the life of the loan in month.

E.16.9 Write a program that given the information about a loan, generates a monthly
report informing the borrower how much is owed after the last payment and how
much she has paid in interest so far.

E.16.10 Write a program that, given the information about the loan, at any instance
can tell the borrower how much is owed. In other words, how much the customer
needs to pay to pay off the loan right away? Assume that interest is accrued on a
daily basis.

16.4 Second-Order Linear Difference Equations

In studying second-order difference equations, we will follow the same procedure
as we did for the first-order equations. That is, we first deal with homogeneous
equations and then nonhomogeneous equations. In finding the solution of the latter,
the lag operator will prove very useful. We will take a short detour to cover this
subject. Of course, the subject is useful in its own right, because the lag operator
finds many uses in econometrics.
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16.4.1 Solution of Second-Order Linear
Homogeneous Difference Equations

A second-order linear difference equation has the general form

yt = b1yt−1 + b2yt−2 (16.55)

In view of the solution of the first-order equations, we may try a solution of the form
y = Aλt on (16.55):

Aλt = b1Aλt−1 + b2Aλt−2 (16.56)

Dividing through by Aλt−2 �= 0, we get the characteristic equation or auxiliary
equation

λ2 − b1λ− b2 = 0

which has the solutions

λ1 =
b1 +

√
b2

1 + 4b2

2
, λ2 =

b1 −
√

b2
1 + 4b2

2

As a result, we have two solutions,

yt = A1

⎛
⎝b1 +

√
b2

1 + 4b2

2

⎞
⎠

t

and

yt = A2

⎛
⎝b1 −

√
b2

1 + 4b2

2

⎞
⎠

t

We need not choose between the two but take a linear combination of them as
the solution to (16.55):

yt = A1

⎛
⎝b1 +

√
b2

1 + 4b2

2

⎞
⎠

t

+ A2

⎛
⎝b1 −

√
b2

1 + 4b2

2

⎞
⎠

t

(16.57)
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To see that this is a solution that satisfies the original equation, consider

λt
1 =

⎛
⎝b1 +

√
b2

1 + 4b2

2

⎞
⎠

2

λt−2
1

=
⎛
⎝b1

b1 +
√

b2
1 + 4b2

2
+ b2

⎞
⎠ λt−2

1

= b1

⎛
⎝b1 +

√
b2

1 + 4b2

2

⎞
⎠

t−1

+ b2

⎛
⎝b1 +

√
b2

1 + 4b2

2

⎞
⎠

t−2

(16.58)

Similarly,

λt
2 = b1

⎛
⎝b1 −

√
b2

1 + 4b2

2

⎞
⎠

t−1

+ b2

⎛
⎝b1 −

√
b2

1 + 4b2

2

⎞
⎠

t−2

(16.59)

Substituting (16.58) and (16.59) in (16.57), shows that it is indeed the solution to
(16.55).

Example 16.14 Find the solution of the difference equation

yt = 7

2
yt−1 − 3

2
yt−2

Solving the characteristic equation

b2 − 7

2
b+ 3

2
= 0

we have

b1 = 3 and b2 = 1

2
and

yt = A13t + A2

(
1

2

)t

Because the solution of second-order equation has two free parameters, A1 and A2,
we need two initial conditions to turn our solution into a specific solution.

Example 16.15 In Example 16.14, let

y0 = 1, y1 = 3

2
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Then

A1 + A2 =1

3A1 + 1

2
A2 =

3

2

Thus, the specific solution is

yt = 2

5
3t + 3

5

(
1

2

)t

Example 16.16 Let

yt = 3yt−1 + 28yt−2

with initial conditions

y1 = 23, y2 = 293

The complementary function is

yt = A1(−4)t + A27t

and the specific solution

yt = 3(−4)t + 5(7t)

16.4.2 Behavior of the Solution of Second-Order Equation

We noted that the behavior of the solution of the first-order equation depends on the
sign and magnitude of λ. The same is true for the case of the second-order equation
except that here we have two magnitudes, λ1 and λ2, and they are solutions to a
quadratic equation. They may be real and distinct roots, repeated roots, or conjugate
complex roots.
1. Real Distinct Roots. In this case both λ1 and λ2 are real and λ1 �= λ2. Examples
16.14 and 16.15 depict this case. The solution is stable iff

max{|λ1| , |λ2|} < 1 (16.60)

because in that case

lim
t→∞ yt = lim

t→∞A1λ
t
1 + lim

t→∞A2λ
t
2 = 0 (16.61)

Equations in Examples 16.14 and 16.15 are both unstable, but the following is an
example of a stable equation
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Example 16.17 The equation

yt = 0.4 yt−1 + 0.21 yt−2

is stable because its solution is

yt = A10.7t + A2(−0.3)t

2. Repeated Real Roots. In this case, both λ1 and λ2 are real, but because

b2
1 + 4b2 = 0

we have

λ1 = λ2 = λ = b1

2
= √−b2

If we follow our procedure above, we get

yt = A1λ
t + A2λ

t = (A1 + A2)λt (16.62)

Thus, something is lost and the solution has been reduced to that of a first-order
equation. When we have a repeated root, the solution becomes

yt = A1λ
t + A2tλt (16.63)

To verify that indeed this is a solution, we write

A1λ
t + A2tλt = b1A1λ

t−1 + b1A2(t − 1)λt−1 + b2A1λ
t−2 + b2A2(t − 2)λt−2

Recalling that b1 = 2λ and b2 = −λ2 we have

A1λ
t + A2tλt = 2A1λ

t + 2A2(t − 1)λt − A1λ
t − A2(t − 2)λt

= A1λ
t + A2tλt

Example 16.18 Let

yt = 4yt−1 − 4yt−2

Check that the solution is

yt = A12t + A2t2t

Example 16.19 Let

yt = 5yt−1 − 6.25yt−2
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Check that the solution is

yt = A12.5t + A2t2.5t

Example 16.20 Given

yt = 0.6 yt−1 − 0.09 yt−2

and

y0 = 2, y1 = 2.1

the solution is

yt = 2(0.3t)+ 5t(0.3t)

For a difference equation with repeated real roots, the criterion for stability is the
same as for the case of distinct roots except that we have only one λ. That is,

|λ| < 1

3. Conjugate complex roots. In this case, we have

b2
1 + 4b2 < 0

and the solution to the characteristic equation is of the form λ = h1 ± h2i, that is,

λ1 = b1

2
+ i

√
−(b2

1 + 4b2)

2
, λ2 = b1

2
− i

√
−(b2

1 + 4b2)

2

Recall that complex numbers can be written as

λ1 = ρ(cos θ + i sin θ ), λ2 = ρ(cos θ − i sin θ )

where

ρ =
√

h2
1 + h2

2 =
√−b2

θ = tan−1 h2

h1
= tan−1

√√√√−
(

1+ 4b2

b2
1

)
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Thus,

yt = A1[ρ(cos θ + i sin θ )]t + A2[ρ(cos θ − i sin θ )]t

= A1[ρt(cos θ t + i sin θ t)]+ A2[ρt(cos θ t − i sin θ t)]

= ρt[(A1 + A2) cos θ t + (A1 − A2)i sin θ t]
(16.64)

where the second equality is based on De Moivre’s theorem (Chap. 2). Because yt

is a real variable and the RHS of (16.64) involves complex variables, it necessitates
that A1 and A2 be complex numbers. Moreover, they are complex conjugates (see
Exercise E.16.11). Note that

cos θ t = cos(θ t + 2 kπ )

sin θ t = sin(θ t + 2 kπ )

Therefore, we can write (16.64) as

yt = ρt[(A1 + A2) cos(mod(θ t, 2π ))+ (A1 − A2)i sin(mod(θ t, 2π ))]

where mod(θ t, 2π ) is the remainder of the division of θ t by 2π . Let

A1 = a(cos B+ i sin B)

A2 = a(cos B− i sin B)
(16.65)

where a and B are real constants

B = tan−1
(
− (A1 − A2)i

A1 + A2

)

a = A1 + A2

2 cos B

Because A1 + A2 = 2a cos B and A1 − A2 = 2ai sin B, combining (16.65) and
(16.64), we have

yt = 2aρt(cos B cos θ t − sin B sin θ t)

= Cρt cos(θ t + B)

where C = 2a.
Trigonometric functions are cyclical and oscillating. If ρ < 1 then we have damped
oscillation; if ρ > 1 the model has explosive oscillations; and when ρ = 1 we
observe constant oscillation.

Example 16.21 Consider the equation

yt = 2yt−1 − 5yt−2
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We have

λ1 = 1+ 2i λ2 = 1− 2i

Therefore,

ρ = √5θ = tan−1(2) ≈ 0.352π

Thus,

yt = 5t/2[(A1 + A2) cos(0.352π t)+ i(A1 − A2) sin(0.352π t)]

As before, we need values of yt at two points to find a specific solution. Let

y0 = 2, y1 = 4

Then

A1 + A2 = 2, (A1 − A2)i = 1

Therefore,

A1 = 1− 0.5i, A2 = 1+ 0.5i

and

yt = 5t/2[2 cos(0.352π t)+ sin(0.352π t)]

Alternatively,

A1 + A2 = 2 cos B (A1 − A2)i = −2 sin B

Therefore,

B = tan−1
(
− (A1 − A2)i

A1 + A2

)
= tan−1

(
−1

2

)
≈ −0.148π

and

C = 2a = A1 + A2

cos B
= 2

0.894
= 2.236

Thus,

yt = 2.236(5t/2) cos(0.352π t − 0.148π )
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The reader should convince herself that indeed the three versions of the equation
in the above example depict the same trajectory for yt. This can be done in Matlab.
Note that here the solution is explosive because ρ > 1.

Matlab code

% Define three arrays

y = zeros(15,1);

y1 = zeros(15,1);

y2 = zeros(15,1);

% Specify the equation and the initial conditions

b1 = 2;

b2 = -5;

y(1) = 2;

y(2) = 4;

h1 = b1./2;

h2 = ((-(b1.ˆ{2+4∗b2)).ˆ0.5)./2;
rho = (-b2).ˆ0.5;

theta = atan((-(1+4∗b2./(b1.ˆ2))).ˆ0.5);
A1A2 = y(1);

A2A1= (y(2)-rho.∗y(1)∗cos(theta))./(rho.∗sin(theta));
B = atan(-A2A1./A1A2);

C = A1A2./cos(B);

for i=1:13
y(i+2) = b1∗y(i+1)+b2∗y(i);

end

for i=1:15
t=i-1;
y1(i)=(rho.ˆt).∗(A1A2.∗cos(mod(theta.∗t,2∗pi))

+ A2A1.∗sin(mod(theta.∗t,2∗pi)));
y2(i)=C.∗(rho.ˆt).∗cos(mod((theta.∗t+B),2∗pi));

end

y

y1

y2

Example 16.22 Solve the following difference equation

yt = 1.2 yt−1 − yt−2

with the initial conditions

y0 = 3, y1 = 2.5

We have

ρ = 1, θ ≈ 0.295π
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Thus,

yt = 3 cos(0.295tπ )+ 0.875 sin(0.295tπ )

Writing the solution in terms of a cosine only is left to the reader (see E.16.13).
Note that the equation has constant fluctuations because ρ = 1.

16.4.3 Computer Solution of Difference Equations

The function rsolve in Maple can be used to solve difference equations. We shall
illustrate its use with a few examples. Consider the first order difference equation

yt = 2yt−1 + 7

To solve this equation in Maple you input

rsolve (y(t) = 2 y(t − 1)+ 7, y(t))

You get

y(0) 2t + 7 2t − 7

Which should be read as

yt = (y0 + 7)2t − 7

The reader should check to see that this is indeed the solution. We could also specify
an initial condition, for example let y0 = 5. We have:

rsolve ({y(t) = 2 y(t − 1)+ 2, y(0) = 5}, {y(t)})

We get

{y(t) = 12 2t − 7}

The coefficients need not be numerical, we can input:

rsolve ({y(t) = a · y(t − 1)+ b, y(0) = B}, {y(t)})

Make sure that you input a∗y(t–1), you get:

{
y(t) = Bat − b

−1+ a
+ b at

−1+ a

}

Higher order equations can be solved in a similar manner. For example,
inputting

rsolve ({y(t) = 3.5 y(t − 1)− 1.5 y(t − 2)}, {y(t)})
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We get the solution:

y(t) = −
(

1

5
y(0)− 2

5
y(1)

)
3t − 1

2

(
−12

5
y(0)+ 4

5
y(1)

)(
1

2

)t

16.4.4 The Lag Operator

The lag operator is a very useful device in the study of discrete dynamic economic
and econometric models. Like any other linear operator, it can be treated like a
variable or number. Thus, instead of working with long expressions, we can perform
all of the necessary operations and transformations on a polynomial of lag operators.

Definition 16.2 Let {xt}∞t=−∞ be a sequence of real numbers.2 Then the lag operator
L is such that

L xt = xt−1 (16.66)

It follows that

L2xt = Lxt−1 = xt−2

and in general

Lnxt = xt−n (16.67)

Thus, the first-order nonhomogeneous difference equation

yt = λyt−1 + a (16.68)

can be rewritten as

yt = λLyt + a (16.69)

or, rearranging

(1− λL)yt = a (16.70)

Let us assume that λ < 1. Then dividing through, we have

yt = a

1− λL
= a

∞∑
j=0

λj (16.71)

2Not all series go as far back as the time of the Big Bang. We have used the notation for generality.
If a series starts at time t = t0, then we can simply write xt = 0, ∀t < t0.
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Because the lag operator can be treated as a variable, we can use it as an argument
in a function. In particular we can have lag polynomials.

Example 16.23

yt = μ+ a1yt−1 + a2yt−2 + . . .+ anyt−n

can be written as

(1− a1L− a2L2 − . . .− anLn)yt = A(L)yt = μ

where A(L) is the shorthand for the lag polynomial. Lag polynomials have roots and
can be factored out

Example 16.24

A(L) = 1+ L− 6L2 = (1− 2L)(1+ 3L)

Again, as polynomials they can be added, subtracted, multiplied, and divided.

Example 16.25 Let

A(L) = 1− φL

B(L) = 1+ θL+ θ2L2

Then

A(L)+ B(L) = 1+ (θ − φ)L+ θ2L2

A(L)− B(L) = −(φ + θ )L− θ2L2

A(L)B(L) = 1+ (θ − φ)L+ θ (θ − φ)L2 − φθ2L3

B(L)

A(L)
= 1+ θL+ θ2L2

1− φL

Lag polynomials that can be written as the ratio of two polynomials are called
rational lag polynomials. The following are examples of such polynomials:

∞∑
j=0

(λL) j = 1

1− λL
, |λ| < 1
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n−1∑
j=0

(λL) j = 1− (λL)n

1− λL

∞∑
j=0

( j+ 1)(φL) j = 1

(1− φL)2
, |λ| < 1

1+ 2
∞∑

j=1

(φL) j = 1+ φL

1− φL
, |φ| < 1

1+ φ − θ

φ

∞∑
j=1

(φL) j = 1− θL

1− φL
, |φ| < 1

Lag operators not only make the description of a difference equation easier but
will also make the solution quite straightforward. Consider the following difference
equation:

yt = λyt−1 + γ xt (16.72)

with initial conditions

yt = y0, for t = 0

Rewrite the equation as

(1− λL)yt = γ xt (16.73)

Multiply both sides by

1− (λL)t

1− λL
(16.74)

We get

yt = y0λ
t + γ

1− (λL)t

1− λL
xt

= y0λ
t + γ

t−1∑
j=0

λjxt

(16.75)

which is the solution we found by successive substitutions. We will see that a similar
shortcut can be applied to the case of a second-order nonhomogeneous equation with
boundary conditions.
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16.4.5 Solution of Second-Order Nonhomogeneous
Difference Equations

A nonhomogeneous second-order equation is of the form

yt = b1yt−1 + b2yt−2 + γ xt (16.76)

Using lag operators, we can rewrite the equation as

yt = (b1L+ b2L2)yt + γ xt (16.77)

or

(1− b1L− b2L2)yt = γ xt (16.78)

Let λ1 and λ2 be the solutions of the characteristics equation:

1− b1L− b2L2 = (1− λ1L)(1− λ2L) (16.79)

Furthermore, assume that max{|λ1| |λ2|} < 1; in other words, the model is stable.
Dividing both side of (16.78) by (16.79), we have

yt = 1

(1− λ1L)(1− λ2L)
γ xt = 1

λ1 − λ2

(
λ1

1− λ1L
− λ2

1− λ2L

)
γ xt (16.80)

where the second equality is based on the decomposition of proper rational fractions.
The particular solution is

yt = λ1γ

λ1 − λ2

∞∑
j=0

λ
j
1xt−j + λ2γ

λ2 − λ1

∞∑
j=0

λ
j
2xt−j (16.81)

and the general solution

yt = A1λ
t
1 + A2λ

t
2 +

λ1γ

λ1 − λ2

∞∑
j=0

λ
j
1xt−j + λ2γ

λ2 − λ1

∞∑
j=0

λ
j
2xt−j (16.82)

Of course, from a practical point of view, writing xt for an economic variable and
then letting t →−∞ (that is, a couple years after the Big Bang) stretches credulity.
We may want to think of a time to start in the reasonable past and assume the value
of xt for all periods prior to that date to be zero.

Example 16.26 Solve the following equation:

yt = 1.2 yt−1 − 0.35 yt−2 + 0.9 xt
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Because λ1 = 0.7 and λ2 = 0.5, the solution is

yt = A1(0.7)t + A2(0.5)t + 3.15
∞∑

j=0

0.7jxt−j − 2.25
∞∑

j=0

0.5 jxt−j

Now suppose we have the following initial conditions:

yt =
{

y0 t = 0

y1 t = 1

Then we can determine the specific solution

y0 = A1 + A2 + λ1γ

λ1 − λ2

∞∑
j=0

λ
j
1x−j + λ2γ

λ2 − λ1

∞∑
j=0

λ
j
2x−j (16.83)

and

y1 = A1λ1 + A2λ2 + λ1γ

λ1 − λ2

∞∑
j=0

λ
j
1x1−j + λ2γ

λ2 − λ1

∞∑
j=0

λ
j
2x1−j (16.84)

Solving for A1 and A2, we get

A1 = 1

λ1 − λ2

⎛
⎝y1 − λ2y0 − γ x1 − γ λ1

∞∑
j=0

λ
j
1x−j

⎞
⎠

A2 = 1

λ2 − λ1

⎛
⎝y1 − λ1y0 − γ x1 − γ λ2

∞∑
j=0

λ
j
2x−j

⎞
⎠

(16.85)

Therefore the complete solution is

yt =
y1 − λ2y0 − γ x1 − γ λ1

∞∑
j=0

λ
j
1x−j

λ1 − λ2
λt

1

+
y1 − λ2y0 − γ x1 − γ λ1

∞∑
j=0

λ
j
1x−j

λ1 − λ2
λt

2

+ λ1γ

λ1 − λ2

∞∑
j=0

λ
j
1xt−j + λ2γ

λ2 − λ1

∞∑
j=0

λ
j
2xt−j

(16.86)
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Simplifying, we have

yt =
(

y1 − λ2y0

λ1 − λ2

)
λt

1 +
(

y1 − λ1y0

λ2 − λ1

)
λt

2

+ λ1γ

λ1 − λ2

t−2∑
j=0

λ
j
1xt−j + λ2γ

λ2 − λ1

t−2∑
j=0

λ
j
2xt−j

(16.87)

Example 16.27 In Example 16.26, let

y0 = 1, y1 = 2

Then we have A1 = 7.5 and A2 = −6.5. And the specific solution is

yt = 7.5(0.7)t − 6.5(0.5)t + 3.15
t−2∑
j=0

0.7jxt−j − 2.25
t−2∑
j=0

0.5 jxt−j

In solving the problem of second-order nonhomogeneous equations we assumed
that max{|λ1| , |λ2|} < 1 and the equation is stable. Indeed, the solution we obtained
is more general and applies to both stable and unstable cases. To see this, let us
consider the following problem:

yt − b1yt−1 + b2yt−2 = α + γ xt (16.88)

yt =
{

y0 t = 0

y1 t = 1

Let λ1 and λ2 be solutions to the equation z2 − b1z− b2 = 0. We have

(1− λ1L)(1− λ2L)yt = α + γ xt (16.89)

Multiply both sides of the equation by

λ1

λ1 − λ2
(1− λ2L)

[
1− (λ1L)t−1

]
+ λ2

λ2 − λ1
(1− λ1L)

[
1− (λ2L)t−1

]
(16.90)

and divide both sides by (1− λ1L)(1− λ2L). On the LHS, we get

yt −
(

y1 − λ2y0

λ1 − λ2

)
λt

1 −
(

y1 − λ1y0

λ2 − λ1

)
λt

2 (16.91)
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On the RHS, we get

λ1

λ1 − λ2

(1− λ2L)[(1− (λ1L)t−1]

(1− λ1L)(1− λ2L)
(α + γ xt)

+ λ2

λ2 − λ1

(1− λ1L)[1− (λ2L)t−1]

(1− λ1L)(1− λ2L))
(α + γ xt)

(16.92)

Simplifying, we have

α

λ1 − λ2

[
λ1

1− λ1
− λ2

1− λ2

]
− αλt

1

λ1 − λ2
− αλt

2

λ2 − λ1

+ λ1γ

λ1 − λ2

t−2∑
j=0

λ
j
1xt−j + λ2γ

λ2 − λ1

t−2∑
j=0

λ
j
2xt−j

(16.93)

Thus, the complete equation is

yt = 1

λ1 − λ2

(
y1 − λ2y0 − α

1− λ1

)
λt

1

+ 1

λ2 − λ1

(
y1 − λ1y0 − α

1− λ2

)
λt

2

+ α

λ1 − λ2

[
λ1

1− λ1
− λ2

1− λ2

]

+ λ1γ

λ1 − λ2

t−2∑
j=0

λ
j
1xt−j + λ2γ

λ2 − λ1

t−2∑
j=0

λ
j
2xt−j

(16.94)

Example 16.28 (The Real Business Cycle Model continued).

The last time we visited this model we were still dealing with a first-order dif-
ference equation. But now let ut, the random technological innovation, follow a
first-order Markov process

ut = ρut−1 + νt, |ρ| < 1

where νt is white noise. Recall that

zt = B+ αzt−1 + (1− α)ut (16.95)

Therefore,

ρzt−1 = ρB+ ραzt−2 + ρ(1− α)ut−1 (16.96)



16.4 Second-Order Linear Difference Equations 489

Subtracting (16.96) from (16.95), we get

zt = B(1− ρ)+ (ρ + α)zt−1 − ραzt−2 + (1− α)νt (16.97)

or

(1− (ρ + α)L+ ραL2)zt = B(1− ρ)+ (1− α)νt (16.98)

Now we have a second-order difference equation whose solution is left to the
reader (see Exercise E.16.15). Note that the roots of the lagged polynomial are ρ

and α, both of which are real and less than one. Therefore, the homogeneous part
will not generate sinusoidal fluctuations: rather it will gradually diminish. All the
fluctuations around the trend will come from stochastic innovations.

Example 16.29 (A Keynesian Business Cycle Model). Samuelson suggested the
following model to explain fluctuations in the economy. It is based on the interaction
of multiplier and acceleration principles:

Yt =Ct + It + G

Ct =βYt−1

It =γ (Ct − Ct−1)

Combining the equations,

Yt = β(1+ γ )Yt−1 − βγ Yt−2 + G

The particular solution is

Yp = 1

1− β
G

and the roots of the characteristic equation are

λ = β(1+ γ )±√β2(1+ γ )2 − 4βγ

2

Thus, the model will produce oscillations if

β2(1+ γ )2 − 4βγ < 0

or equivalently

β <
4γ

(1+ γ )2
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the nature of fluctuations depends on the magnitude of βγ . Thus, the amplitude of
the function will

increase

be constant

decrease
as βγ

⎧⎪⎨
⎪⎩

> 1

= 1

< 1
⇒ β

⎧⎪⎨
⎪⎩

> 1/γ

= 1/γ

< 1/γ

John Hicks proposed a similar model. In his model the fluctuations are increas-
ing, but Hicks’s model exhibits fluctuations within an upper and a lower bound. The
upper bound is full employment output, which is fixed at any point in time, but it
is growing over time. The lower limit is provided by the fact that investment has
a lower bound. If no new investment is undertaken, the change in capital stock is
equal to depreciation.

16.4.6 Exercises

E.16.11 Solve the following second order difference equations.

i. yt = −2yt−1 + 3yt−2

ii. yt = 0.8yt−1 − 0.12yt−2

iii. yt = 0.4yt−1 − 0.77yt−2

iv. yt = 3yt−1 − 2.25yt−2

v. yt = 1.2yt−1 − 0.36yt−2

vi. yt = 2yt−1 − 2yt−2

vii. yt = 3yt−1 − 2.61yt−2

viii. yt = 4yt−1 − 4.25yt−2

E.16.12 Show that when λ1 and λ2 are complex conjugates, so are A1 and A2.

E.16.13 Write the solution of the equation in Example 16.22 in the form

yt = Cρt cos(θ t + B)

E.16.14 Let

A(L) = 1− aL

B(L) = 1− b1L− b2L2

C(L) = 1− (b1 + c)L+ b1cL2

D(L) = 1− 2aL+ a2L2
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Find

i. A(L)+ B(L) ii. B(L)+ C(L)

iii. A(L)− B(L) iv. B(L)C(L)

v. A(L)D(L) vi. B(L)D(L)

vii.
A(L)

D(L)
viii.

B(L)

C(L)

E.16.15 Solve the second-order difference equation of the real business cycle model
in Example 16.28.

E.16.16 Write a Matlab program that solves a second-order homogeneous differ-
ence equation with numerical coefficients. [Hint: First write three functions for
the cases of real distinct roots, repeated real roots, and complex roots. Then write
a function that solves the characteristic equation and determines the type of solution.
Finally tie all four pieces together in a main program.]

16.5 n-th-Order Difference Equations

Empirical models that use monthly or weekly time series data on occasions involve
a large number of lags resulting in a difference equation of order 12 or more. But it
is quite rare to encounter a difference equation of more than order two in theoretical
work. Even if we encounter them, there is little interest in solving them. Such models
are better analyzed by numerical simulation. Here we present a Matlab routine for
the simulation of a difference equation of order 12 with a linear trend and an exoge-
nously determined variable x. The routine is written in a way that can be adapted to
any equation. Suppose we want to calculate the trajectory of the following equation:

yt+1 = c1yt−1 + c2yt−2 + . . .+ c12yt−12 + a+ bt + hxt (16.99)

Further assume that we have set up an Excel file that contains the values of
xt, t = 13, . . . , T , where T is the last period for which we would like to find yt.
The data in this file called x.xls are arranged as shown below.

File Containing xt

A

x13
x14
...
xT
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A second file contains the initial values, yj, j = 1, . . . , 12, and the coeffi-
cients, cj’s. This file is called yc.xls and the data are arranged as shown below.
Note the order of yj’s and cj’s that is chosen for the convenience of programming.
Moreover, remember that Matlab’s index starts with one and does not allow index-
ing from zero. Therefore, t starts from 1. If your data are such that t should start
from zero, you need to adjust the code by defining t = i–1. Now we can have our
Matlab code.

File Containing yj’s and cj’s

A B

y1 c12
y2 c11
...

...
y12 c1

Matlab code

% Specify T, n, and parameters a, b, and h

T = 30;

n = 12;

a = 1.5;

b = 0.03;

h = 1.1;

% Define the arrays to hold y′s, x′s and c′s
y = zeros(T,1);

x = zeros(T-n,1);

c = zeros(n,1);

% Read from Excel files

x = xlsread(′x.xls′);
A = xlsread(′yc.xls′);
for i=1:n

y(i) = A(i,1);

c(i) = A(i,2);

end

for i=n+1:T
t = i;

S = 0;

for j=1:n
S = S + c(j)∗y(j+i-n-1);

end

y(i) = S + a + b∗t + h∗x(i-n);
end

y
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16.5.1 Exercises

E.16.17 Using the code in the book or your own program, calculate the trajectory
of the following equations for T = 30 periods.

yt = 0.8yt−1 + 0.64yt−2 + 0.512yt−3 + 10+ 0.06t

y0 = 100, y1 = 110, y2 = 125

yt = 0.9yt−1 − 0.5yt−2 + 0.09yt−3 + 0.06t

y0 = 100, y1 = 110, y2 = 125

yt = 1.1yt−1 − 0.65yt−2 + 0.17yt−3 − 0.04yt−4

y0 = 65, y1 = 70, y2 = 74, y3 = 79

E.16.18 In E.16.17 change the initial conditions one at a time to observe the effect
of the starting points on the trajectory.



Chapter 17
Dynamic Systems

17.1 Systems of Differential Equations

The rationale behind dynamic models in general and in economic analysis in partic-
ular was discussed in Chaps. 14, 15, and 16. The reason for a system of difference
or differential equations follows the same logic, except that here more than one
dynamic process is at work and, therefore, we need more than one equation to
describe these processes. Analysis of dynamic systems is a vast field of inquiry
and could be the subject of a multivolume book. Here we confine ourselves to
two topics that are deemed most useful for economic analysis: the solution of lin-
ear systems of homogeneous differential equations with constant coefficients and
qualitative analysis of a system of differential equations using phase portrait.

The solution of linear systems of differential equations is greatly facilitated if
you are already familiar with Jordan canonical form, which involves the diagonal-
ization of an arbitrary matrix (we learned of such an operation regarding positive
definite matrices in Chap. 7), and the exponential of a matrix, that is, exp(A). Thus,
we will take up these two topics as a prelude to the subjects of this chapter. It is
recommended that the reader reread the topics of eigenvalues and eigenvectors in
Chap. 7 as they are used extensively in this chapter.

A system of first-order differential equations is of the form

ẏ1 = f 1(y1, . . . , yn)

ẏ2 = f 2(y1, . . . , yn)

· · ·
ẏn = f n(y1, . . . , yn)

(17.1)

where ẏi = dyi/dt, i = 1, . . . , n. The system is called linear if functions f 1, . . . , f n

are all linear. In that case we can write the system as⎡
⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

...

ẏn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

h1(t)

h2(t)
...

hn(t)

⎤
⎥⎥⎥⎥⎥⎦ (17.2)
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If hi, i = 1, . . . , n are equal to zero, then the system is called homogeneous.1 In
compact matrix notation such a system can be written as

ẏ = Ay (17.3)

Example 17.1 In Chap. 15 we encountered the two-equation model

dq

dt
= (δ + φ)q+ pθ1K − pθ0

dK

dt
= α

q

p
− φK

where q and p are, respectively, the price of capital goods and consumer goods,
whereas K is the capital stock, φ the depreciation rate, and δ is the rate of interest.

Example 17.2 In Chap. 14 we discussed the Ramsey problem and derived the
following differential equations:

dc

dt
= cσ (c)[f ′(k)− θ − n]

dk

dt
= f (k)− c− nk

where c and k are, respectively, per capita consumption and the capital-labor ratio,
θ , rate of time preference, and n, rate of growth of labor.

An important concept regarding systems of differential equations is that of the
equilibrium (critical) point. In an equilibrium point the system comes to rest, and
there is no tendency for its components to change. Such a point is characterized by
ẏ = 0.

Example 17.3 The system in Example 17.2 attains its equilibrium when

c∗σ (c∗)[f ′(k∗)− θ − n] = 0

and

f (k∗)− c∗ − nk∗ = 0

because c∗σ (c∗) �= 0, the equilibrium point c∗, k∗ is characterized by

f ′(k∗) = θ + n

f (k∗) = c∗ + nk∗

1Whereas the theory developed in this chapter is quite general and pertains to a system of two and
more differential equations, for the ease and clarity of exposition, with a few exceptions, we will
confine ourselves to systems of two equations.
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Example 17.4 In Chap. 14 we also discussed the derivation of Tobin’s q as
a dynamic optimization problem. We can summarize the model in a system of
differential equations:

K̇ = I(q)− δK

q̇ = (r + δ)q−	′(K)

where K is the capital stock of the firm, I, investment, δ, the depreciation rate, q, the
ratio the market value of additional units of capital to its replacement cost (price of
capital was set at 1), r, interest rate, and 	′ the marginal profit of capital.

In this chapter we will concentrate on the solution of first-order linear homo-
geneous equations. Such models have a much wider range of applications than
it may seem at first glance. In addition to many phenomena that can be modeled
using first-order linear models, any linear differential equation of higher order can
be transformed into a system of first-order differential equations. For example, a
second-, third-, . . ., n-th-order linear differential equation can be transformed into a
system of two, three, . . ., n first-order linear differential equations.

Equally important, when dealing with nonlinear differential equations, on many
occasions, we are interested in the behavior of the system near the equilibrium or
critical point. When the neighborhood (around the equilibrium) in which we are
interested is small, we can linearize the system. Before going any further we will
elaborate on these two points, equivalence of a second-order linear differential equa-
tion and a system of two first-order linear equations, and the linearization of a system
of nonlinear differential equations.

17.1.1 Equivalence of a Second-Order Linear Differential
Equation and a System of Two First-Order
Linear Equations

An n-th order linear homogeneous differential equation can be transformed into a
system of n first-order linear homogeneous equations and vice versa. Whereas the
relationship holds for any finite n, we shall illustrate it for the case of n= 2. Consider
the equation

d2y

dt2
+ a1

dy

dt
+ a2y = 0 (17.4)

Let dy/dt = x, then d2y/dt2 = dx/dt, and we can write

dx

dt
+ a1x+ a2y = 0

dy

dt
− x = 0

(17.5)



498 17 Dynamic Systems

or in matrix form [
dx/dt

dy/dt

]
=
[−a1 −a2

1 0

][
x

y

]
(17.6)

Alternatively, suppose we have a system of equations of the form

dx

dt
= a11x+ a12y

dy

dt
= a21x+ a22y

(17.7)

Take the derivative of the second equation,

d2y

dt2
= a21

dx

dt
+ a22

dy

dt
(17.8)

Substituting for dx/dt from the first equation and for x from the second equation,

d2y

dt2
= a21(a11x+ a12y)+ a22

dy

dt

= a11

(
dy

dt
− a22y

)
+ a21a12y+ a22

dy

dt

(17.9)

Rearranging

d2y

dt2
− (a11 + a22)

dy

dt
+ (a21a12 − a11a22)y = 0 (17.10)

which is a second-order differential equation.

Example 17.5 The angular momentum of a pendulum moving in a medium with
friction is given by the second-order differential equation

mL2 d2θ

dt2
+ cL

dθ

dt
+ mgL sin θ = 0 (17.11)

where m is the mass of the pendulum attached to a solid, weightless rod (see
Fig. 17.1), g = 9.8 is acceleration due to gravity, and θ is taken to be positive in the
counterclockwise direction. The term cLdθ/dt measures the friction and c depends
on the viscosity of the medium in which the pendulum moves. For example, if the
pendulum is moving in the air, then c is taken to be zero and the equation reduces to

mL2 d2θ

dt2
+ mgL sin θ = 0 (17.12)
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Fig. 17.1 Pendulum

We can simplify (17.11) by dividing both sides of the equation by mL2 :

d2θ

dt2
+ c

mL

dθ

dt
+ g

L
sin θ = 0 (17.13)

and in obvious change of notation,

d2θ

dt2
+ γ

dθ

dt
+ ω2 sin θ = 0 (17.14)

(17.14) is a second-order differential equation, but we can transform it to a system
of first-order equations. Let

y1 = θ , y2 = dθ

dt
(17.15)

Then

d2θ

dt2
= dy2

dt
(17.16)

Combining (17.14), (17.15), and (17.16), we can write our system

ẏ1 = y2

ẏ2 = −ω2 sin y1 − γ y2
(17.17)

Example 17.6 In Chap. 15 we showed that the system of equations

dq

dt
= (δ + φ)q+ pθ1K − pθ0

dK

dt
= α

q

p
− φK

(17.18)
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can be transformed into the second-order equation

d2 K

dt2
− δ

dK

dt
− (φ2 + δφ + αθ1)K = −αθ0 (17.19)

We can transform the second-order equation into a system of two first-order
equations. Let

y1 = K, y2 = dK

dt
(17.20)

Then (17.19) can be written as

dy2

dt
= δy2 + (φ2 + δφ + αθ1)y1 − αθ0 (17.21)

and transformed into a system of two first order equations:

ẏ1 = y2

ẏ2 = (φ2 + δφ + αθ1)y1 + δy2 − αθ0
(17.22)

Although the system in (17.22) is quite different from the equation in (17.19), the
solutions are identical. Furthermore, while the solution of the latter involves only K,
because dq/dt depends on K we can solve for q as well.

17.1.2 Linearizing Nonlinear Systems of Differential Equations

A nonlinear system can be written as

ẏ1 = f (y1, y2)

ẏ2 = g(y1, y2)
(17.23)

Let the point (y∗1, y∗2) be the equilibrium or critical point, that is,

f (y∗1, y∗2) = 0

g(y∗1, y∗2) = 0
(17.24)

Using Taylor expansion near the equilibrium point, we can write

f (y1, y2) = f (y∗1, y∗2)+ f1(y∗1, y∗2)(y1 − y∗1)+ f2(y∗1, y∗2)(y2 − y∗2)+ R1

g(y1, y2) = g(y∗1, y∗2)+ g1(y∗1, y∗2)(y1 − y∗1)+ g2(y∗1, y∗2)(y2 − y∗2)+ R2
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where fi = ∂f /∂yi and gi = ∂g/∂yi, i = 1, 2, and R1 and R2 are Lagrange
remainders. We can approximate (17.23) with the linear system

d

dt
(y1 − y∗1) = f1(y∗1, y∗2)(y1 − y∗1)+ f2(y∗1, y∗2)(y2 − y∗2)

d

dt
(y2 − y∗2) = g1(y∗1, y∗2)(y1 − y∗1)+ g2(y∗1, y∗2)(y2 − y∗2)

(17.25)

Letting z1 = y1−y∗1 and z2 = y2−y∗2, we can rewrite the system in the approximate
linear form as [

ż1

ż2

]
=
[

f1(y∗1, y∗2) f2(y∗1, y∗2)

g1(y∗1, y∗2) g2(y∗1, y∗2)

][
z1

z2

]
(17.26)

If the functions f and g are twice differentiable, and we confine ourselves to
very small deviations from the equilibrium point, then the remainders tend to zero,
and the linearized system is a very good approximation. Thus, as long as we are
interested in analyzing the behavior of the model at or near the equilibrium, the
system is almost linear and (17.26) is all we need.

Example 17.7 Consider the following system of nonlinear differential equations:

ẋ = x+ a1x2 + a2xy

ẏ = y+ b1y2 + b2xy

The equilibrium point of the system is (0, 0). Using Taylor expansion, we can
linearize the model as [

ẋ

ẏ

]
=
[

1 0

0 1

][
x

y

]

Example 17.8 Consider the system of equations in (17.17) for the angular momen-
tum of a pendulum. The equilibrium point of this system is (0, 0). Let us linearize
the model near this point. We have

f (y1, y2) = y2

g(y1, y2) = −ω2 sin y1 − γ y2

Therefore,

f1(0, 0) = 0, f2(0, 0) = 1

g1(0, 0) = −ω2, g2(0, 0) = −γ
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and the linearized system is

ẏ1 = y2

ẏ2 = −ω2y1 − γ y2

Example 17.9 To linearize the economic model in Example 17.2, note that the
Taylor expansion of dc/dt near the equilibrium point (c∗, k∗) is

(
σ (c∗)+ c∗ dσ

dc

)
[ f ′(k∗)− θ − n](c− c∗)+ f ′′(k∗)c∗σ (c∗)(k − k∗)

= f ′′(k∗)c∗σ (c∗)(k − k∗)

The Taylor expansion of dk/dt is

([ f ′(k∗)− n](k − k∗)− (c− c∗) = θ (k − k∗)− (c− c∗)

Denoting f ′′(k∗)c∗σ (c∗) by −β, we can write the linearized system as

[
dc/dt

dk/dt

]
=
[

0 −β

−1 0

][
c− c∗

k − k∗

]

17.2 The Jordan Canonical Form

Solution of systems of linear differential equations and estimation of some econo-
metric models are considerably facilitated if we can diagonalize certain matrices
or factorize them into two or three matrices. In Chap. 7 we discussed the diago-
nalization of a symmetric matrix. Here we extend the analysis to the case of an
arbitrary matrix. Because our main objective is application, we shall not give a proof
of Jordan form; rather we illustrate the proposition with many examples.

17.2.1 Diagonalization of a Matrix with Distinct
Real Eigenvalues

Let A be an n× n matrix, P a matrix whose columns are eigenvectors2 of A, and D
a diagonal matrix whose diagonal elements are eigenvalues of A. That is,

2To obtain the Jordan canonical form one can use either normalized eigenvectors—that is, vectors
of unit length—or eigenvectors of any length. In the text both normalized and nonnormalized
eigenvectors are used. Normalized eigenvectors, however, are required for the radial decomposition
of a positive definite matrix, discussed in Chap. 7. Note that the eig function in Matlab returns
normalized eigenvectors.
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D =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1

. . .

λj

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(17.27)

and

P = [x1 x2 . . . xn] (17.28)

Then we have

P−1AP = D

PDP−1 = A
(17.29)

Example 17.10 Consider the matrix

A =
[

3 6

4 1

]

whose eigenvalues are 7 and -3 and its eigenvectors are

x1 =
[

3

2

]
, and x1 =

[
1

−1

]

Then

P =
[

3 1

2 −1

]
, D =

[
7 0

0 −3

]

and

P−1 =
[

0.2 0.2

0.4 −0.6

]

It can be checked that the relationships in (17.29) hold. The reader is urged to
try the same procedure with other matrices and using a Matlab program, verify the
validity of relationships in (17.29).
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17.2.2 Block Diagonal Form of a Matrix
with Complex Eigenvalues

Let A be an n × n matrix whose eigenvalues are complex. Its eigenvectors will be
of the form

xj = uj + ivj j = 1, . . . , n.

Let us form the matrix P as

P = [v1 u1 v2 u2 . . . vn un]

Note that v′s precede u′s. Then

P−1AP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 −b1

b1 a1

. . .

aj −bj

bj aj

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

That is, P−1AP is a block diagonal matrix with off-diagonal elements all equal
to zero. Note that if we define P as

P = [u1 v1 u2 v2 . . . un vn]

that is, if the places of u′s and v′s are interchanged, the diagonal block of the P−1AP
will be

a1 b1

−b1 a1

Example 17.11 Consider the matrix

A =
[

1 9

−1 1

]

The eigenvalues of A are 1± 3i, and the eigenvectors are

[
3

0

]
,

[
0

1

]
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Thus, we can write

P =
[

0 3

1 0

]

P−1AP =
[

0 1

1/3 0

][
1 9

−1 1

][
0 3

1 0

]
=
[

1 −3

3 1

]

and

PDP−1 =
[

0 3

1 0

][
1 −3

3 1

][
0 1

1/3 0

]
=
[

1 9

−1 1

]

17.2.3 An Alternative Form for a Matrix with Complex Roots

We can decompose a matrix with complex eigenvalues into three matrices in an
alternative way, which indeed simplifies its applications in systems of linear differ-
ential equations. Here instead of restricting eigenvectors to have real elements, we
allow them to be complex. As a result, P, P−1, and D will all be complex.

Example 17.12 For the matrix in Example 17.11 we have

P =
[

3 3

i −i

]
, P−1 =

[
1/6 −0.5i

1/6 0.5i

]

and

D =
[

1+ 3i 0

0 1− 3i

]

Calculation shows that
P−1AP = D

and
PDP−1 = A

Example 17.13 For the matrix,

B =
[

6.0 2.8

−3.6 1.1

]

P =
[−0.5104− 0.4207i −0.5104+ 0.4207i

0.7500 0.7500

]

P−1 =
[

1.1885i 0.6667+ 0.8089i

−1.1885i 0.6667− 0.8089i

]
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and

D =
[

3.5500+ 2.0193i 0

0 3.5500− 2.0193i

]

Again we can ascertain that

PDP−1 = B
and

P−1BP = D

17.2.4 Decomposition of a Matrix with Repeated Roots

Let A be an n × n matrix with eigenvalues λ1, . . . , λn repeated with different
multiplicities and with v1, . . . vn its generalized eigenvectors.3 Let

P = [v1 v2 . . . vn] (17.30)
Then

P−1AP = D+ N (17.31)

where again D is a diagonal matrix whose diagonal elements are eigenvalues of A,
and N is a nilpotent matrix of order k, where k is the highest multiplicity among its
eigenvalues. N is of the form

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1 . . . 0

. . .

0 0 0 . . . 1

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17.32)

Because N is a nilpotent of order k, we have

Nk−1 �= 0 and Nk = 0

Alternatively, we can write A as

A = S+ N∗ (17.33)

where S can be diagonalized with diagonal elements equal to the eigenvalues of A:

P−1SP = D or S = PDP−1 (17.34)

and N∗ is a nilpotent matrix such that

P−1N∗P = N or N∗ = PNP−1 (17.35)

3The generalized eigenvector is explained in Chap. 7.
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Example 17.14 Consider the matrix

A =
⎡
⎢⎣

2 1 4

0 2 1

0 0 2

⎤
⎥⎦

which has λ = 2 as its eigenvalue with multiplicity 3. We have

P =
⎡
⎢⎣

1 0 0

0 1 −4

0 0 1

⎤
⎥⎦ , P−1 =

⎡
⎢⎣

1 0 0

0 1 4

0 0 1

⎤
⎥⎦

P−1AP =
⎡
⎢⎣

2 1 0

0 2 1

0 0 2

⎤
⎥⎦ =

⎡
⎢⎣

2 0 0

0 2 0

0 0 2

⎤
⎥⎦+

⎡
⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎦ = D+ N

The same would be true in the case of repeated complex eigenvalues, except that
in such cases we have

P−1AP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a −b 1 0

b a 0 1

a −b 1 0

b a 0 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a −b

b a

a −b

b a

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

1 0

0 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= D+ N

Example 17.15 For the matrix

A =

⎡
⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 0 −1

2 0 1 0

⎤
⎥⎥⎥⎥⎦
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The characteristic polynomial is

λ4 + 2λ2 + 1 = (λ2 + 1)2

and the eigenvalues are λ = ±i with multiplicity two. Calculating the genera-
lized eigenvalues (for details, see Chap. 7) and forming the P matrix,
we have

P =

⎡
⎢⎢⎢⎢⎣

0 0 0 1

0 0 −1 0

1 0 0 0

0 1 −1 0

⎤
⎥⎥⎥⎥⎦

Thus,

P−1AP =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 −1 0 1

0 −1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 0 −1

2 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 0 1

0 0 −1 0

1 0 0 0

0 1 −1 0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 −1

1 0

0 0

0 0

0 0

0 0

0 −1

1 0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

17.2.5 Exercises

E.17.1 Find the Jordan canonical form of the following matrices.

[
1 1

0 −1

] [
3 −1

1 −2

] [
3 4

2 7

] [
1 −5

−4 0

]

[
2 −3

−5 4

] [
2.5 1.5

−1.5 3.0

] [
12 −11

10 21

] [
5 3

−2 9

]

[
1 −1

0 1

] [
1 −1

1 4

]
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E.17.2 Find the Jordan canonical form of the following matrices.

⎡
⎢⎣
−2 1 0

0 −2 1

0 0 −2

⎤
⎥⎦

⎡
⎢⎣

2 3 −2

0 5 4

1 0 −1

⎤
⎥⎦

⎡
⎢⎣

1 2 3

−2 3 2

−3 −1 1

⎤
⎥⎦

E.17.3 Use Matlab to check your results for E.17.1 and E.17.2. Recall that Matlab
normalizes the eigenvectors. You need to normalize your eigenvectors or reverse the
normalizing process of Matlab to be able to check your results.

17.3 Exponential of a Matrix

In some applications, particularly for the solution of a system of linear differential
equations, the exponential of a matrix plays a crucial role. We are interested in
finding

exp(At) (17.36)

where A is an n× n matrix and t is a variable. The Taylor series of (17.47) near the
point t = 0 is

exp(At) =
∞∑

j=0

1

j!A
jt j (17.37)

If A is a diagonal matrix with diagonal elements ak, k = 1, . . . , n, then because

∞∑
j=0

1

j!A
jt j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
j=0

1

j! a
j
1t j 0 . . . 0

0
∞∑

j=0

1

j! a
j
2t j . . . 0

...
...

. . .
...

0 0 . . .

∞∑
j=0

1

j! a
j
nt j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17.38)

exp(At) will also be diagonal with diagonal elements of the form

∞∑
j=0

1

j!a
j
kt j = eakt k = 1, . . . , n (17.39)
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Example 17.16 Let

A =
[

7 0

0 −4

]

Then

exp(At) =
[

e7t 0

0 e−4t

]

If A is not diagonal, then we can consider its Jordan canonical form which
we recall, depending on the nature of eigenvalues, can take three different forms
(Sect. 17.2). We discuss each case in turn.

17.3.1 Real Distinct Roots

Suppose we have a nondiagonal matrix A with real distinct eigenvalues, and we are
interested in finding exp(At). If we can transform A into a diagonal matrix, we are
home free. Because the matrix has real and distinct eigenvalues, we know that we
can write its Jordan canonical form as

A = PDP−1 (17.40)

where D is diagonal with its diagonal elements equal to eigenvalues of A.
Substituting (17.40) in (17.37), we can write

exp(At) =
∞∑

j=0

1

j! (PDP−1) jt j (17.41)

Now note that

(PDP−1) j = PDP−1PDP−1 . . . PDP−1︸ ︷︷ ︸
j

= PD jP−1 (17.42)

Thus,

exp(At) =
∞∑

j=0

1

j! PD jP−1t j = P exp(Dt)P−1 (17.43)

That is,
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exp(At) = P

⎡
⎢⎢⎢⎢⎢⎣

eλ1t 0 . . . 0

0 eλ2t . . . 0
...

...
. . .

...

0 0 . . . eλnt

⎤
⎥⎥⎥⎥⎥⎦P−1 (17.44)

where λj
′s are eigenvalues of A.

Example 17.17 Let A be the same as in Example 17.10. Then

exp(At) = P exp(Dt)P−1

=
[

3 1

2 −1

][
e7t 0

0 e−3t

][
0.2 0.2

0.4 −0.6

]

=
[

0.6e7t + 0.4e−3t 0.6e7t − 0.6e−3t

0.4e7t − 0.4e−3t 0.4e7t + 0.6e−3t

]

17.3.2 Complex Roots

We are interested in finding exp(At) where A is a matrix with complex eigenvalues,
that is, the k-th eigenvalue is of the form λk = ak ± bki. We can write A as

A = PDP−1, D = P−1AP (17.45)

where D is a block diagonal matrix and each block is of the form

ak −bk

bk ak

Now

exp(At) =
∞∑
j

1

j!
(

PDP−1
)j

t j = P

⎛
⎝ ∞∑

j

1

j!D
jt j

⎞
⎠P−1 (17.46)

Recall that D is a block diagonal matrix with blocks of the form

[
a −b

b a

]
=
[�(λ) −%(λ)

%(λ) �(λ)

]
(17.47)

where �(λ) and %(λ) are, respectively, the real and imaginary parts of λ.
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Using induction, we can show that

[
a −b

b a

]j

=
[�(λj) −%(λj)

%(λj) �(λj)

]
(17.48)

Therefore, for a 2× 2 matrix, we have

exp(At) = P

⎛
⎝ ∞∑

j=0

1

j!

[�(λj) −%(λj)

%(λj) �(λj)

]
t j

⎞
⎠P−1

= P
∞∑

j=0

⎡
⎢⎢⎢⎣
�
(

λjt j

j!
)
−%
(

λjt j

j!
)

%
(

λjt j

j!
)
�
(

λjt j

j!
)
⎤
⎥⎥⎥⎦P−1

= P

[�(eλt) −%(eλt)

%(eλt) �(eλt)

]
P−1

(17.49)

But,

eλt = e(a+bi)t = eat(cos bt + i sin bt)

Thus, (17.49) can be written as

exp(At) = Peat

[
cos bt − sin bt

sin bt cos bt

]
P−1 (17.50)

Example 17.18 Consider the matrix in Example 17.11:

A =
[

1 9

−1 1

]

whose eigenvalues were 1± 3i. Using the first method, we had

P =
[

0 3

1 0

]
D =

[
1 −3

3 1

]

Thus,

exp(At) =
[

0 3

1 0

]
et

[
cos 3t − sin 3t

sin 3t cos 3t

][
0 1

1/3 0

]
= et

[
cos 3t 3 sin 3t

−1/3 sin 3t cos 3t

]



17.3 Exponential of a Matrix 513

Recall that we learned of two methods of diagonalizing a matrix with complex roots.
Using the second method, we arrive at an identical result:

D =
[

1+ 3i 0

0 1− 3i

]

Therefore,

exp(Dt) =
[

e(1+3i)t 0

0 e(1−3i)t

]
= et

[
cos 3t + i sin 3t 0

0 cos 3t − i sin 3t

]

and

exp(At) =
[

3 3

i −i

]
et

[
cos 3t + i sin 3t 0

0 cos 3t − i sin 3t

][
1/6 −0.5i

1/6 0.5i

]

= et

⎡
⎣ cos 3t 3 sin 3t

−1

3
sin 3t cos 3t

⎤
⎦

17.3.3 Repeated Roots

Recall that in the case of repeated roots the P matrix consists of generalized
eigenvectors and we have

A = P(D+ N)P−1 (17.51)

where D is diagonal and N is as shown in (15.42). Thus,

exp(At) = P

( ∞∑
k=0

1

j! (D+ N) jt j

)
P−1

= P exp[(D+ N)t]P−1

= P exp(Dt) exp(Nt)P−1

(17.52)

We have already discussed the form of exp(Dt) and, therefore, we concentrate on
the term exp(Nt). Write

exp(Nt) =
∞∑

j=0

1

j!N
jt j (17.53)
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You can check that because N is nilpotent,

N j = 0, ∀j ≥ k

where k is the highest multiplicity of any repeated eigenvalue of the matrix N. Thus,

exp(Nt) =
k−1∑
j=0

1

j!N
jt j

= I+ Nt + . . .+ 1

(k − 1)!N
k−1tk−1

(17.54)

Substituting (17.54) in (17.52) we have

exp(At) = P exp(Dt)

(
I+ Nt + . . .+ 1

(k − 1)!N
k−1tk−1

)
P−1 (17.55)

Example 17.19 Let us find exp(At) where

A =
[

2 1

0 2

]

Then λ1 = λ2 = 2, and

P = P−1 =
[

1 0

0 1

]

Thus,

exp(At) =
[

1 0

0 1

][
e2t 0

0 e2t

]{[
1 0

0 1

]
+
[

0 t

0 0

]}[
1 0

0 1

]

=
[

e2t 0

0 e2t

][
1 t

0 1

]
=
[

e2t te2t

0 e2t

]

Example 17.20 In Example 17.14, we had

A =
⎡
⎢⎣

2 1 4

0 2 1

0 0 2

⎤
⎥⎦ , P =

⎡
⎢⎣

1 0 0

0 1 −4

0 0 1

⎤
⎥⎦ , P−1 =

⎡
⎢⎣

1 0 0

0 1 4

0 0 1

⎤
⎥⎦
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and matrix A had eigenvalue λ = 2 with multiplicity of three. Using (17.55),
we can write exp(At) as

P

⎡
⎢⎣

e2t 0 0

0 e2t 0

0 0 e2t

⎤
⎥⎦
⎧⎪⎨
⎪⎩
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦+

⎡
⎢⎣

0 t 0

0 0 t

0 0 0

⎤
⎥⎦+

⎡
⎢⎣

0 0 t2

0 0 0

0 0 0

⎤
⎥⎦
⎫⎪⎬
⎪⎭P−1

=
⎡
⎢⎣

1 0 0

0 1 −4

0 0 1

⎤
⎥⎦
⎡
⎢⎣

e2t 0 0

0 e2t 0

0 0 e2t

⎤
⎥⎦
⎡
⎢⎣

1 t t2

0 1 t

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0

0 1 4

0 0 1

⎤
⎥⎦

=
⎡
⎢⎣

e2t te2t 4te2t + t2e2t

0 te2t te2t

0 0 e2t

⎤
⎥⎦

17.3.4 Exercises

E.17.4 Find the exponential of all matrices in E.17.1 and E.17.2.

17.4 Solution of Systems of Linear Differential Equations

A system of linear homogeneous equations can be written as

ẏ = Ay (17.56)

where

y(t) =

⎡
⎢⎢⎣

y1

...

yn

⎤
⎥⎥⎦ , ẏ =

⎡
⎢⎢⎣

dy1/dt
...

dyn/dt

⎤
⎥⎥⎦

and A is a square matrix of order n. We can also have a set of initial conditions that
will turn (17.56) into an initial value problem:

ẏ = Ay, y(0) = y0 (17.57)

The solution to (17.57) is

y(t) = exp(At)y0 (17.58)
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Furthermore, this solution is unique. More formally we have the fundamental
theorem of linear systems.

Theorem 17.1 The unique solution to the initial value problem in (17.57) where A
is an n× n matrix and y(0) ∈ �n is given by (17.58).

Proof First, letting t = 0 results in y(0) = y0, satisfying the initial conditions.
Second, note that

ẏ = A exp(At)y0

Substituting the solution and its derivative in (17.57), we have an identity,
verifying that (17.58) is indeed the solution:

ẏ = A exp(At)y0 = Ay

To prove that this solution is unique, first we show that if y(t) is a solution, then
z(t) = exp(−At)y(t) is a constant because

ż = −A exp(At)y(t)+ exp(−At)ẏ(t)

= −A exp(At)y(t)+ exp(−At)Ay(t)

= 0

The second equality is based on the fact that if y(t) is a solution, then ẏ(t) = Ay(t).
In addition, because the solution has to satisfy the initial condition, then z = y0.
Thus, any solution will be equal to

exp(At)z = exp(At)y0

and therefore, the solution is unique. Given our preparatory work in the previ-
ous sections, we should have no difficulty in solving systems of linear differential
equations. We have the general form of the solution and in each case the specific
form of the solution depends on exp(At), which in turn hinges on the nature of the
eigenvalues of matrix A. We take up each case in turn and illustrate with examples.

17.4.1 Decoupled Systems

A decoupled system is of the form

ẏ1 = a1y1

ẏ2 = a2y2
(17.59)

or in matrix form
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[
ẏ1

ẏ2

]
=
[

a1 0

0 a2

][
y1

y2

]
(17.60)

More compactly

ẏ = Ay (17.61)

A is diagonal and the diagonal elements are the eigenvalues of the matrix. The
solution is

y = exp(At)c =
[

ea1t 0

0 ea2t

][
c1

c2

]
=
[

c1ea1t

c2ea2t

]
(17.62)

Example 17.21 Solve the following system of equations:

[
ẏ1

ẏ2

]
=
[

3 0

0 −2

][
y1

y2

]

The solution is [
y1

y2

]
=
[

c1e3t

c2e−2t

]

If initial conditions are given, then we can also determine c.

Example 17.22 In Example 17.20 let

y(0) =
[

5

2

]

Then the solution is [
y1

y2

]
=
[

5e3t

2e−2t

]

Figure 17.2 shows the time path of variables y1 and y2. Note that the equilibrium
(critical) point of the system is y1 = 0, y2 = 0. As t increases y1 moves away from
equilibrium, but y2 approaches it. If both coefficients a1 and a2 were negative, both
functions would approach equilibrium. A system whose components approach the
equilibrium point as t increases is called stable. In other words, when a system is
stable, a deviation from equilibrium causes the system to return to its equilibrium. It
is clear that the system in Example 17.21 is unstable. But if both diagonal elements
of matrix A were negative, the system would have been stable. Finally note that the
coefficients a1 and a2 are also the eigenvalues of A. We shall return to this issue in
the next few subsections and finally will generalize the condition for the stability of
a system.
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Fig. 17.2 Time path of
variables in a decoupled
system

17.4.2 Systems with Real and Distinct Roots

Consider the system of equations

ẏ1 = a11y1 + a12y2, y1(0) = y10

ẏ2 = a21y1 + a22y2, y2(0) = y20
(17.63)

Here we are dealing with the same system as in (17.60) except that the matrix

A =
[

a11 a12

a21 a22

]

is not diagonal, but it has real and distinct roots. Based on what we know about the
exponential of such a matrix, the solution is

y(t) = exp(At)y0

= P exp(Dt)P−1y0

= P

[
eλ1t 0

0 eλ2t

]
P−1y0

(17.64)

where λ1 and λ2 are eigenvalues of the matrix A.

Example 17.23 Consider the dynamic system

ẏ1 = 3y1 + 6y2 y1(0) = 1

ẏ2 = 4y1 + y2 y2(0) = 2
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The matrix

A =
[

3 6

4 1

]

is not diagonal but has real and distinct eigenvalues λ1 = 7 and λ2 = −3. Using the
result obtained in Example 17.17, the solution to the system is

[
y1

y2

]
=
[

0.6e7t + 0.4e−3t 0.6e7t − 0.6e−3t

0.4e7t − 0.4e−3t 0.4e7t + 0.6e−3t

][
1

2

]
=
[

1.8e7t − 0.8e−3t

1.2e7t + 0.8e−3t

]

The equilibrium point of the system is y1 = 0, y2 = 0. It is clear that because
one of the eigenvalues is positive, the system is not stable. Consider that

lim
t→∞ y1 = lim

t→∞
(

1.8e7t − 0.8e−3t
)
= lim

t→∞ 1.8e7t →∞

The same is true for y2. Now it should be clear that the stability of a system
with real roots requires that both eigenvalues be negative. This conclusion will be
generalized further in the following subsection.

17.4.3 Systems with Complex Roots

For a system with complex roots λ = a± bi, the solution will take the form

y(t) = Peat

[
cos bt − sin bt

sin bt cos bt

]
P−1y(0) (17.65)

Example 17.24 The solution to the system of equations

ẏ1 = y1 + 9y2 y1(0) = 3

ẏ2 = −y1 + y2 y2(0) = 1

Is [
y1

y2

]
= et

[
cos 3t 3 sin 3t

−1/3 sin 3t cos 3t

][
3

1

]
=
[

3et(cos 3t + sin 3t)

et(cos 3t − sin 3t)

]

Figure 17.3 shows the time path of the branches of the system. The equilibrium
point of the system is attained at y1 = 0, y2 = 0, but although each branch crosses
the horizontal line periodically, the two do not coincide. Moreover, amplitudes of the
functions increase as t increases. But were the real part of the eigenvalues negative,
then amplitudes would be decreasing and gradually both functions would converge
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Fig. 17.3 Time path of a
system with complex roots

to zero. Thus, the condition for the stability of the system is that the real part of the
eigenvalues should be negative.

We can now combine all we have said so far and generalize the condition for the
stability of a system.

Proposition 17.2 A system is stable if the real parts of its eigenvalues are negative.
This proposition also applies to the case of repeated roots discussed below.

17.4.4 Systems with Repeated Roots

The solution of a system with repeated roots is

y(t) = P exp(Dt)

(
I+ Nt + . . .+ 1

(n− 1)!N
k−1tk−1

)
P−1y(0) (17.66)

where k is the highest multiplicity of the eigenvalues of A

Example 17.25 Consider the system of equations

ẏ1 = 2y1 + y2 y1(0) = 4

ẏ2 = y2 y2(0) = 7

Applying the general formula in Example (17.2), we can write the solution as

[
y1

y2

]
=
[

e2t te2t

0 e2t

][
4

7

]
=
[

4e2t + 7te2t

7e2t

]
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Example 17.26 Solve the system of equations

ẏ1 = 2y1 + y2 + 4y3 y1(0) = 1

ẏ2 = 2y2 + y3 y2(0) = 1

ẏ3 = 2y3 y3(0) = 1

Using the results obtained in Example 17.20, we can write the solution as

⎡
⎢⎣

y1

y2

y3

⎤
⎥⎦ =

⎡
⎢⎣

e2t te2t 4te2t + t2e2t

0 te2t te2t

0 0 e2t

⎤
⎥⎦
⎡
⎢⎣

1

1

1

⎤
⎥⎦

or

y1 = e2t + 5te2t + t2e2t

y2 = 2te2t

y3 = e2t

17.4.5 Exercises

E.17.5 Solve the following systems of equations

i. ẏ1 = y1 + y2 ii. ẏ1 = 3y1 − y2 iii. ẏ1 = 3y1 + 4y2

ẏ2 = −y2 ẏ2 = y1 − y2 ẏ2 = 2y1 + 7y2

iv. ẏ1 = y1 − 5y2 v. ẏ1 = 2y1 − 3y2 vi. ẏ1 = 12y1 − 11y2

ẏ2 = −4y1 ẏ2 = −5y1 + 4y2 ẏ2 = 10y1 + 21y2

vii. ẏ1 = 5y1 + 3y2 viii. ẏ1 = y1 − y2 ix. ẏ1 = y1 − y2

ẏ2 = −2y1 + 9y2 ẏ2 = y2 ẏ2 = y1 + 4y2

17.5 Numerical Analysis of Systems of Differential Equations

The numerical techniques for solving differential equations, which we discussed in
Chap. 15, are applicable to systems of differential equations without modification.
Consider Euler’s method. Here we have[

ẏ1

ẏ2

]
=
[

f (y1, y2)

g(y1, y2)

]
(17.67)
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Using the Taylor formula, we can write

[
y1(tn+1)

y2(tn+1)

]
=
[

y1(tn)

y2(tn)

]
+
[

ẏ1(tn)hn

ẏ2(tn)hn

]

=
[

y1(tn)

y2(tn)

]
+
[

f (y1(tn), y2(tn))hn

g(y1(tn), y2(tn))hn

] (17.68)

where the step hn is the interval tn+1 − tn and determines the accuracy of
approximation.

Example 17.27 Consider the following system:

[
ẏ1

ẏ2

]
=
[

y2

−α sin y1 − βy2

]

Starting from the point of y1 (t0) = y10 and y2 (t0) = y20, we can simulate the
model as [

y1(tn+1)

y2(tn+1)

]
=
[

y1(tn)

y2(tn)

]
+
[

y2(tn)hn

−[α sin y1(tn)+ βy2(tn)]hn

]

In the same fashion other methods such as Runge-Kutta can be extended to sys-
tems of differential equations. Matlab has a number of functions for simulating
systems of differential equations. We shall illustrate one of these functions with the
help of the example above. First, we need to specify the system in a function file.

Matlab code

function dy = pendulum(t,y)

% Define a vector of zeros

dy = zeros(2,1);

% Define the system

dy(1) = y(2);

dy(2) = -0.5∗sin(y(1))- 3∗y(2);

Now we can simulate the model using one of several solvers in Matlab.

Matlab code

[T, Y] =ode15s(@pendulum, [0 20], [1, 1])

% [0 20] is the interval of solution, and [1, 1] are

% the initial conditions.

There are other functions available in Matlab and there are a number of refine-
ments one can make to the procedures. We leave these issues to the reader and the
help function of Matlab.
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17.5.1 Exercises

E.17.6 Write a program to simulate the systems in E.17.5 based on (17.68).

E.17.7 Use one of Matlab’s ode15s to solve the systems in E.17.5.

17.6 The Phase Portrait

There are many instances where we cannot explicitly solve a system of differential
equations because either the system is nonlinear or because the specific forms of
the functions are not specified. The latter instance happens with many economic
models, such as those described in Examples 17.1 and 17.2. The reason is that
economists are generally reticent about specifying the exact form of many func-
tions, such as the utility and production functions. But we may still be interested
in analyzing the behavior of the model. In particular, we may want to know if the
equilibrium is stable or not, or under what initial conditions we may return to equi-
librium and under what conditions the system may diverge forever. A tool for this
kind of analysis is the phase portrait. In the solutions of the systems of differential
equations obtained in Sect. 17.4, both y1 and y2 were functions of t. We may try to
eliminate t and write y2 as a function of y1.

Example 17.28 In Example 17.21 the solutions were

y1(t) = c1e3t, y2(t) = c2e−2t

Solving for y2 in terms of y1 we have

y2 = c2
3

√(
c1

y1

)2

The same argument holds, in principle, for all linear and nonlinear systems of
two differential equations because the solutions will be of the form y1 = F1 (t) and
y2 = F2 (t) . Although we may not be able to solve explicitly for one in terms of the
other, we can write

y2 = F2(F−1
1 (y1))

where F−1
1 is the inverse function of F1 although we may not be able to write it in

closed form.
Practically, given the initial conditions for any value of t, we can obtain a unique

pair of y1, y2 and graph the point on the y1, y2 plane. A plane whose axes are y1
and y2 is called the phase plane, and the geometric representation of pairs of y1
and y2 together with the direction of their movement as t increases is called a phase
portrait. The phase portrait of the decoupled system in Example 17.21 is depicted in
Fig. 17.4. As can be seen the system is generally unstable. Only if the initial position
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Fig. 17.4 Phase portrait of a
decoupled system

of the system is on the vertical axis, that is, if we start from a point where y1 = 0,
then we return to the equilibrium point; else we move away from it. Figure 17.5
shows the phase portrait of the system in Example 17.24. Here we have two complex
eigenvalues and the nature of the relationship between y1 and y2 is different from
that of the previous example. But, again the system is unstable because the real
part of the eigenvalues is positive. Thus, a small deviation from equilibrium starts a
motion away from equilibrium.

Example 17.29 In contrast, the system

ẏ1 = −y1

ẏ2 = −2y2

Fig. 17.5 Phase portrait of a
system with complex roots
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Fig. 17.6 Phase portrait of a
stable system with real roots

whose phase portrait is shown in Fig. 17.6, is stable. Note that here we can write

y2 = c2

c2
1

y2
1

where c1 and c2 are the initial values of y1 and y2, respectively.
To extend the use of a phase portrait to the stability analysis of nonlinear models,

consider the system of equations

ẏ1 = f (y1, y2)

ẏ2 = g(y1, y2)

For all combinations of y1 and y2 for which f (y1, y2) > 0, ẏ1 > 0 and, therefore,
for those combinations y1 is increasing. The reverse is true for all combinations for
which f (y1, y2) < 0. The same statements hold for the function g and y2, that is,
y2 is increasing when g (y1, y2) > 0 and decreasing when g

(
y1, y2

)
< 0. Thus,

based on the knowledge of the functions f and g, we can determine the direction of
the movement of the system at any point in the phase plane. The direction of such
movements is shown by horizontal and vertical arrows.

Example 17.30 Consider the following system:

ẏ1 = −y1

ẏ2 = y1 − y2

It follows that whenever y1 is positive, it is decreasing and whenever y2 is less
than y1, then y2 is increasing. The movement of the system in different regions is
shown in Fig. 17.7. As can be seen, the system is stable, because in every region
it is directed toward the equilibrium. This is not true for an unstable system. For
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Fig. 17.7 Stability analysis of the model in example

example, if we replace the first equation with ẏ1 = y1, the system will not be stable
in all regions. The reader may want to follow the procedure of Fig. 17.7 and ascertain
that indeed the altered system is not stable everywhere.

Example 17.31 The phase portrait of the Ramsey model is shown in Fig. 17.8. As
can be seen, the model is not stable everywhere. There are three equilibrium points,
k = k∗, c = c∗ (point E), k = c = 0, and the point to the right of k = k∗ where

Fig. 17.8 Stability analysis
of the Ramsey model
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the curve dk/dt = 0 intersects the horizontal axis. Among the three points only E
is stable. There are only two regions in which the movements of both k and c are
toward the equilibrium point E. In these regions we can find a path (shown with the
arrows passing through E) that converges to the equilibrium. All other paths will
either diverge or end up in an unstable equilibrium.

17.6.1 Exercises

E.17.8 Draw the phase portraits of the systems in E.17.5, and analyze their stability.
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Chapter 2

E.2.3 51076
E.2.5 2, 1.5
E.2.6 For 12% interest rate it is equal to $1,673,155.37
E.2.9 110,037,600
E.2.13 For the interest rate of 8%

i. 0.0219%, ii. 8.3278%, iii. 8.3287%

E.2.14 x = 0, y = 0, and x = 2, y = 4
E.2.16 i. − 1, ii. 0.6124, iii. 0.4957
E.2.21

i.
1

tan θ + 1

tan θ

= 1
sin θ

cos θ
+ cos θ

sin θ

= sin θ cos θ

sin2 θ + cos2 θ
= sin θ cos θ

E.2.22

i. z1 =
√

2
(

cos
π

4
+ i sin

π

4

)
= √2 exp(iπ/4)

ii. z2 =
√

2
(

cos
π

4
− i sin

π

4

)
= √2 exp(−iπ/4)

Chapter 3

E.3.10

i. x1 = 1.1250+ 0.9922i, x2 = 1.1250− 0.9922i
ii. x1 = x2 = −3
iii. x1 = 2+ i, x2 = 2− i

529K. Dadkhah, Foundations of Mathematical and Computational Economics, 2nd ed.,
DOI 10.1007/978-3-642-13748-8, C© Springer-Verlag Berlin Heidelberg 2011
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E.3.13

x1 = 3.678, x2 = 0.161+ 0.8887i, x3 = 0.161− 0.8887i
x1 = −3.8554, x2 = −1.1803, x3 = 1.5178+ 1.1968i, x4 = 1.5178− 1.1968i
x1 = 1.4726, x2 = −0.8133+ 2.5405i, x3 = −0.8133− 2.5405i
x4 = −0.4231+ 1.7234i, x5 = −0.4231− 1.7234i

Chapter 4

E.4.1

E(X) = 12.18, E(X2) = 4124.45,
E(X3) = 208848.75, E(X4) = 51959603.8
E(Y) = 1.791, E(Y2) = 3.2363,
E(Y3) = 5.899, E(Y4) = 10.8441

E.4.5

iii. E(Z|X = 0) = −1.9421, E(Z|X = 1) = 0.1874
iv. E(Z) = E(Z|X = 0)P(Z|X = 0)+ E(Z|X = 1)P(Z|X = 0)

= −1.9421× 0.52+ 0.1874× 0.48 = −0.92

Chapter 5

E.5.2 Rounded to 2 decimal places, the norms are

‖a‖ = 12.69, ‖b‖ = 15.17, ‖c‖ = 1.41, ‖d‖ = 12.08, ‖e‖ = 25.78

E.5.3 Rounded to 2 decimal places, the distances are

d(a, b) = 3.32, d(a, d) = 16.58, d(b, c) = 15.75
d(c, e) = 26.59, d(d, e)| = 15.59

E.5.4

θab = 0.051π , θad = 0.467π , θbc = 0.622π

θce = 0.783π , θde = 0.146π

E.5.10 Denoting the orthogonal vectors by wi, i = 1, 2, 3, we have:

i. w1 =
⎡
⎣3

2
5

⎤
⎦ w2 =

⎡
⎣1.1579

0.1053
0.7368

⎤
⎦ w3 =

⎡
⎣−2.8246
−3.4388
−4.5436

⎤
⎦
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Chapter 6

E.6.1

ii. B(D+G′) =
[

87 105 57
−52 −8 4

]
, vi. B′C′ =

[
15 −9
−8 −22

]

E.6.5 For the third matrix, we have


 = 60, tr = 15, ρ = 3

and the inverses is

1

60

⎡
⎣ 53 −29 −51

14 −2 −18
−5 −18 15

⎤
⎦ =

⎡
⎣ 0.8833 −0.4833 −0.85

0.2333 −0.0333 −0.3
−0.0833 −0.3 0.25

⎤
⎦

E.6.9

i. x = 1, y = 2,
iv. x1 = 15, x2 = −20, x3 = 12,
v. x1 = x2 = x3 = 0

Chapter 7

E.7.1 C is positive definite, because

3 > 0,

∣∣∣∣ 3 −6
−6 18

∣∣∣∣ = 18 > 0,

∣∣∣∣∣∣
3 −6 −2
−6 18 5
−2 5 14

∣∣∣∣∣∣ = 225 > 0

E.7.3 Matrix X′X is positive semidefinite because for any vector z, we can write:

z′X′Xz = y′y =
n∑

i=1

y2
i ≥ 0

E.7.14

X′e = X′[y− X(X′X)−1X′y] = X′y− X′y = 0

y′y = (ŷ′ + e′)(ŷ+ e) = ŷ′ŷ+ e′e+ 2ŷ′e

but

ŷ′e = y′X(X′X)−1X′e = 0
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E.7.16 Eigenvalues and eigenvectors of the last matrix are:

λ1 = 1.1816, λ1 = 9.1665, λ1 = 119.6519

v1 =
⎡
⎣−0.9344
−0.3042
0.1856

⎤
⎦ , v2 =

⎡
⎣ 0.3293
−0.9360
0.1240

⎤
⎦ , v3 =

⎡
⎣0.1360

0.1770
0.9748

⎤
⎦

E.7.17

π∗ = [0.8743 0.0946 0.0311
]′

E.7.19 Since Ax = λx, we have

A−1Ax = x = λA−1x ⇒ A−1x = 1

λ
x

Chapter 8

E.8.4

i. 117, ii. doesn’t exist, iii. 4.828314, iv. 0.000227, v. 0

E.8.6

i. − 2

x3
, ii.

1√
2x

, iii.
2x+ 1

2
√

x3
, iv.

3

2
x−1/2 + 1

3
x−2/3 − x−2

E.8.8 i. Monotonically increasing because for x > 0

dy

dx
= 1

x
> 0

iv. Monotonically decreasing because

dy

dx
= −9x2 − 2 < 0

E.8.11

i.
6

x4
, ii. − 1√

(2x)3
, iii. − 2x+ 3

4
√

x5
, iv. − 3

4
x−3/2 − 2

9
x−5/3 + 2x−3
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Chapter 9

E.9.1

i.
∂u

∂x
= 2x+ 2y, ii.

∂z

∂x
= y2 − x2

(x2 + y2)2
, iii.

∂z

∂x
= sin2 y

∂u

∂y
= 2x+ 3y2,

∂z

∂y
= − 2xy

(x2 + y2)2
,

∂z

∂y
= x sin 2y

E.9.2

i.
∂2u

∂x2
= 2, ii.

∂2z

∂x2
= 2x3 − 6xy2

(x2 + y2)3
, iii.

∂2z

∂x2
= 0

∂2u

∂y2
= 6y,

∂2z

∂y2
= −2y3 + 6x2y

(x2 + y2)3
,

∂2z

∂y2
= 2x cos 2y

∂2u

∂x∂y
= 2

∂2z

∂x∂y
= −2x3 − 6xy2

(x2 + y2)3

∂2z

∂x∂y
= sin 2y

E.9.5 For the CES production function, we have

fK = αKρ−1(αKρ + βLρ)
1−ρ
ρ fL = βLρ−1(αKρ + βLρ)

1−ρ
ρ

σ = d(K/L)

d(fL/fK
· fL/fK

K/L
= 1

1− ρ

E.9.9

i.
dy

dt
= 3(γ1 + γ2)

(γ2t + 3)2
, iii.

du

dt
= tt

2
(

(1+ 2 ln t − 1

t2

)

E.9.10 ii., iv. and v. are not homogeneous. i. is homogeneous of degree 3, and iii. of
degree a - b.

E.9.13

i.
dx2

dx1
= −x2 − β

x1 − α
, ii.

dx2

dx1
= −αx2

βx1

Chapter 10

E.10.1

ii.
√

2x = √2x0 + 1√
2x0

(x− x0)− 1

2
√

(2x0)3
(x− x0)2 + 1

2
√

(2x)5
(x− x0)3

iii. e3x = e3x0 [1+ 3(x− x0)+ 9

2
(x− x0)2 + 9

2
(x− x0)3]
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E.10.2

i. cos(2x) = −1+ 0+ 2
(
x− π

2

)2 + 0,

ii. sin(2x) = 0− (x− π
2

)+ 0+ 8
6

(
x− π

2

)3
E.8.15

E(ey) = eŷ, var(ey) = σ̂ 2e2ŷ

Chapter 11

E.11.1

i.
∫ dx

x ln x
= ∫ d ln x

ln x
= ln | ln x| + C

ii.
∫

(x2 + x+√x)dx = 1

3
x3 + 1

2
x2 + 2

3
x3/2 + C

iii.
∫

6x5dx = x6 + C

iv.
∫ dx

cos3 3x
= 1

3

∫ d3x

cos3 3x
= 1

3

∫
sec23xd3x = 1

3
tan 3x+ C

v.
∫ dx

2x− 4
= 1

2

∫ d(2x− 4)

2x− 4
= 1

2
ln |2x− 4| + C

E.11.2

i.
∫ 2

0 x3dx = x4

4

∣∣∣∣
2

0
= 4

ii.
∫ 1

0 2exdx = 2ex|10 = 2e− 2

iii.
∫ π

π/2 cosxdx = sin x|ππ/2 = 0− 1 = −1

iv.
∫ 0
−π/2 sinxdx = (− cos x)|0−π/2 = −1

v.
∫ 3

0
dx

1+ x
= ln(1+ x)|30 = ln 4 = 1.3862944

E.11.8

i. �(α + 1) = ∫∞0 e−ttαdt

= (−e−ttα)
∣∣∞
0 − ∫∞0 (−e−t)αtα−1dt

= α
∫∞

0 (−e−t)tα−1dt

= α�(α)

E.11.10

ii.
1

2x− 1
, iii. 5, v.

∫ y

−y

x

y
dx+ 2y ln y
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Chapter 12

E.12.1

i. x = 1, y = 4, min
ii. x1 = 5.6458, y1 = −23.3468, min

x2 = 0.3543, y2 = 1.3468, max
viii. x = 0, y = 1, max
ix. x = 0, y = 0, min

E.12.4

i. x = 2, y = 5, z = −3 min

v. x = 1

3
, y = 1

2
, z = 1

432
max

Chapter 13

E.13.1

i. x = 16

3
, y = 20

3
, z = 29

3
, λ = −20

3

ii. x = 7.5, y = 7.5, z = 4.0298, λ = − 2

15

E.13.2

x1 = 46.12546 , x2 = 41.51292, x3 = 37.36162, z = 10.1175, λ = 0.02168

E.13.11

i. x = 7, y = 5, μ = −7, λ = −2
ii. x = 6, y = 6, μ = −6, λ = 0

E .13.12

x = 5, y = 5, z = 1, μ1 = −5

2
, μ2 = −25

2
, λ = −10

Chapter 14

E.14.1

i. − d

dt
(t + 2y′) = 0 ⇒ y′′ = −1

2
ii. 2y+ 4y′ − d

dt
(4y+ 6y′) = 0 ⇒ 6y′′ − 2y = 0
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iii. − 2(t − y) = 0 ⇒ y = t

iv. 2y+ 2et − d

dt
(2y′) = 0 ⇒ y′′ − y = et

E.14.2

i. fy′y′ = 2, min, ii. fy′y′ = 6, min

iii. fy′y′ = 0, min, iv. fy′y′ = 2, min

E.14.4 The least cost paths are: ABFIJ and ADEIJ.

E.14.5

x
1− δk

1− δ
= δE[vn−k+1(y)] ⇒ x = δ(1− δ)

1− δk
E[vn−k+1(y)]

E.14.6

i. H = yu− 2y2 − 5u2 + λ(y+ 3u) ii. H = (3y+ u2)1/2 + 2λu

u− 4y+ λ = −λ′ 3

2
√

y+ u2
= −λ′

y− 10u+ 3λ = 0
u√

y+ u2
+ 2λ = 0

y′ = y+ 3u y′ = 2u

Chapter 15

E.15.1

i. y = Ae−4t, vi. y = Aet2 ,

vii. y = Ae−t + 1

2
et, xii.

t

y
= C

E.15.2

i. y = 3e−0.4t

v. y = ln(t + 12.1825),

vi. y =
(

y0 + 1

5

)
e2t − 2

5
sin t − 1

5
cos t

E.15.5

i. y = A1e−4t + A2e−3t

vi. y = e−0.5t(B1 cos 2.4t + B2 sin 2.4t)
= e−0.5t(B1 cos 0.76π t + B2 sin 0.76π t)
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E.15.6

i. y = A1e−4t + A2e−3t − 5

12
vi. y = e−0.5t(B1 cos 2.4t + B2 sin 2.4t)+ 3

4
+ 1

2
t

E.15.7

i. y = 9

7
e−4t + 5

7
e−3t

v. y = e−0.5t(cos 2.4t + 0.625 sin 2.4t)

Chapter 16

E.16.2

L = Et

T∑
j=t

U(Cj)

(1+ δ) j−t
+ λ

(
T∑

j=t

Cj −Wj

(1+ r) j−t
− At

)

∂L

∂Cj
= Et

U′(Cj)

(1+ δ) j−t
+ λ

(1+ r) j−t
= 0

for j = t + 1 : Et
U′(Cj)

1+ δ
+ λ

1+ r
= 0

for j = t : U′(Ct)+ λ = 0

∴ EtU′(Ct+1)
1+ r

1+ δ
= U′(Ct), EtU′(Ct−1) = 1+ δ

1+ r
U′(Ct)

E.16.5

i. yt = (A− 12)0.5t + 12
ii. yt = (A+ 0.93)1.75t − 0.4t − 3.11
vii. yt = 14.5(2)t − 0.5t − 6

viii. yt = 2(1.5)t +
t−1∑
i=0

1.5ixt−i

E.16.11

i. yt = A1(−3)t + A2
ii. yt = A1(0.6)t + A2(0.2)t

iii. yt = 1.71t[(A1 + A2) cos(1.45t)+ (A1 − A2)i sin(1.45t)]
iv. yt = A1(1.5)t + A2t(1.5)t

v. yt = A1(0.6)t + A2t(0.6)t
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Chapter 17

E.17.5

i.

[
y1
y2

]
=
[

1 −1
0 2

] [
et 0
0 e−t

] [
1 0.5
0 0.5

][ y10
y20

]

=
[

y10et + 1

2
y20et − 1

2
y20e−t

y20e−t

]

v.

[
y1
y2

]
=
[

1 −3
1 5

] [
e7t 0
0 e−t

] [
5 3
−1 1

] [
y10
y20

]

=
[

(5y10 + 3y20)e−t + 3(y10 − y20)e7t

(5y10 + 3y20)e−t − 5(y10 − y20)e7t

]

vii.

[
y1
y2

]
=
[−i i

1 1

] [
e7(cos 2t + i sin 2t) 0

0 et(cos 2t − i sin 2t)

]
[

0.5i 0.5
0.5i 0.5

] [
y10
y20

]

=
[

et(y10 cos 2t + y20 sin 2t)
et(y20 cos 2t − y10 sin 2t)

]
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495
first order, 412, 445, 447, 481, 495, 497
homogeneous, 411, 418, 421, 424, 443,

446, 495, 497
Discrete random variables, 82, 85, 281
Duality, 372–374

gap, 375
Dynamic optimization, 189, 324, 377–406, 497

E
Eigenvalues, 143, 153–170, 172, 175, 495,

502–508, 510–512, 514–520, 524,
532

Eigenvectors, 143, 153–167, 169–170, 175,
495, 502–506, 509, 513, 532

Elliptic geometry, 7
Endogenous variables, 119, 138, 248, 250–253,

364, 409
Envelop theorem, 358
Equality constraints, 347–355, 368–376
Error correction, 23, 410
Euclidean coordinates, 53
Euclidean geometry, 6–8, 10
Euclidean norm, 102–104, 108, 385
Euler’s method, 521
Euler theorem, 240–243
Exogenous variables, 38, 119, 138, 141, 248,

250–253, 364, 377, 409, 459, 471

Expected utility, 77–78, 218, 257, 262
Expected value, 73, 78, 263–264, 380, 457
Expenditure function, 360–362, 365
Explosive oscillations, 443, 478
Exponential function, 38–41, 55, 219, 454
Exponential of a matrix, 495, 509–515

F
Factorial, 35–37, 261
Fermat’s last theorem, 11, 45
Fibonacci sequence, 24
Formalists, 9–11
Four-color problem, 44
Frequentist (classical) definition of probability,

71–72
Functional, 215, 245, 324, 379–384, 386–387,

389–391, 395, 398, 402, 433
Fundamental theorem of calculus, 294

G
Gamma function, 316
Gauss-Markov theorem, 149–150, 174
Generalized eigenvector, 162, 506, 513
Generalized inverse, 123, 143, 147–150
Generalized least squares, 174–175
Geometric progression, 29, 31–34, 43, 60
Gödel, 8–9, 45

theorem, 8, 45
Golden ratio, 344
Golden section method, 344–346
Gradient, 232–234, 278, 343
Gramm-Schmidt algorithm, 109–111

H
Hamiltonian function, 398–401, 403, 405
Harrod-Domar model, 284
Hessian, 232–234, 278, 334–335, 338, 340,

345, 363–364, 368
Hicksian demand functions, 360–361
Homogeneous functions, 240–243
Horner’s method, 62, 68
Hyperbolic geometry, 7

I
Identification problem, 140
Identities, 22–23, 47
Identity matrix, 117, 124–125, 147, 161, 345
Implicit function theorem, 244–248
Increasing returns to scale, 240–241
Indefinite integral, 281–290, 298–300, 306,

317
Independence of nonlinear functions, 248–250
Indirect utility function, 356–358, 362
Inequality constraints, 347, 368–376
Inflection point, 329, 331–333
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Initial value problem, 414–416, 419, 422,
424–425, 433, 441–442, 447–448,
515–516

Inner product, 99, 105, 108
Integral, 60, 84, 224, 281–310, 312, 314–315,

317–320, 379, 382, 421–424, 426,
443–446, 457

Integrand, 282, 287–288, 317
Integrating factor, 430–432
Integration by parts, 287–289, 300–304
Intuitionists, 9–10
Inverse function, 523

rule, 218–219, 223
Inverse of a matrix, 123–137, 139, 143,

147–150
Irrational numbers, 38, 40, 61
IS curve, 119, 141, 255, 290

J
Jacobian function, 248–250, 253
Joint distribution, 75, 91
Joint probability, 75–76
Jordan canonical form, 495, 502–510

K
Karmarkar, 372

method, 372
Karush-Kuhn-Tucker, 347, 368–376
Kronecker product, 183–186
Kurtosis, 73

L
Lag operator, 472, 482–485
Lag polynomial, 483
Lagrange interpolation, 308, 310–312
Lagrange multiplier, 348–349, 367–369, 372,

391, 397
Lagrangian function, 349–354, 358–361,

368–369, 371, 374, 383
Law of iterated expectations, 81–82, 91
Least squares, 88, 132, 148–150, 174–175,

227, 337–338, 343, 353, 368
Legendre condition, 389, 391
l’Hôpital’s rule, 214–215
Linear programming, 372–373
Lipschitz condition, 416–417
LM curve, 141, 255
Local truncation error, 449
Logarithm, 13, 38–41, 67, 137, 192, 207, 210,

215, 225, 257, 267, 308, 468, 471
Logicists, 9–10
LU factorization, 176–183

M
Maclaurin expansion, 260, 265
Marginal probability, 75–76
Marginal rate of technical substitution

(MRTS), 247–248
Marginal utility, 189–190, 192, 206–207, 221,

228, 236, 246, 364
Markov chains, 88–90, 120, 154, 158
Markov process, 90, 488
Mathematical induction, 42–43, 45
Matrix

addition, 115
multiplication, 117
nonsingular, 132, 147, 169, 184
singular, 123, 132, 165, 175
square, 114, 117, 123, 127, 133, 136, 141,

147, 154, 176–183, 515
symmetric, 114, 144–145, 167–176, 502

Matrix of transition probabilities, 89
Maximum, 13, 19, 58, 88, 167, 227, 229, 267,

301, 324–331, 334–340, 342–343,
348, 351, 354, 362–363, 366,
368–369, 371–372, 377, 379, 382,
389, 394, 449

principle, 381, 397–406
Mean value theorem, 213, 226, 297, 327, 417
Mean-Variance analysis, 257, 262
Metric, 104, 109

space, 105
Minimum, 7, 13–14, 58, 267, 301, 324–332,

334–336, 338–340, 342–346, 353,
355, 362–363, 366–369, 371–372,
377, 379, 389–390, 394, 405

Moments, 10, 73–74, 76–77, 88, 90, 198, 257,
264, 281, 409, 412, 498, 501

Monotonic functions, 216–220
Moore-Penrose generalized inverse, 143,

147–150

N
Natural numbers, 6
Negative definite matrix, 143–147
Negative semidefinite matrix, 144–146, 172,

340
Newton-Cotes method, 308, 312–313, 315
Newton’s method, 273–276, 308
Nilpotent, 506, 514

matrix, 506
Non-Euclidean geometries, 7–8
Normal (Gaussian) distribution, 84–85, 281,

302–304, 306, 309, 382
Norm of a Vector, 102–104
Numerical differentiation, 224–226
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Numerical integration, 281–282, 307–315
Numerical optimization, 343–346

O
O and O, 63–65
Ordinal number, 18
Orthogonal complement of a matrix, 152–153
Orthogonal projection, 150–152
Orthogonal vectors, 109–111, 151, 530
Orthonormal vectors, 109, 111

P
Partial adjustment, 459–460
Partial differentiation, 227–235
Particular integral, 421–424, 443–446
Periodic function, 50, 217
Permutations, 35–38
Phase diagram, 416, 433–436, 448
Phase plane, 523, 525
Phase portrait, 495, 523–537
Philosophies of mathematics, 9–11
Piecewise continuous function, 197
Platonists (realists), 9–10
Polar coordinates, 53–54
Positive definite matrix, 143, 167, 172–175,

181, 495, 502
Positive semidefinite matrix, 149–150
Present value, 31, 34, 300, 378, 404
Primal problem, 355, 372, 374–375
Principal minors, 144–145, 335, 338
Probability limit (plim), 265
Probability measure, 70–71, 85
Probability model, 71, 85
Producer surplus, 301–302
Product rule, 209–212
Proof by Contradiction, 42–43

Q
Quadratic form, 143–147
Quasi-concave functions, 341–342
Quasi-convex functions, 342
Quotient rule, 212

R
Ramsey problem, 377, 379, 401–403, 406, 496
Random variable, 24, 69, 72–74, 82–87, 91,

145, 262–263, 281, 302, 304, 380,
457

Rank of a matrix, 132–133
Rational numbers, 8, 38, 40, 61
Real numbers, 6, 8, 17–18, 38, 51–52, 56,

72–73, 123, 196, 281, 325, 334,
339, 381, 482

Recurrence relation, 24, 31
Reduced form, 138–139, 257, 264
Relative error, 61
Ridge regression, 175
Riemann integral, 282, 304–306
Riemann-Stieltjes integral, 282, 304–306
Risk aversion, 257, 263
Rolle’s theorem, 267–268
Roy’s identity, 359
Runge-Kutta methods, 450–452

S
Shephard’s lemma, 361–362
Simplex method, 372
Simpson’s method, 313–315
Skewness, 73
Slater constraint qualification, 375
Slutsky equation, 361–362, 365–366
Solow’s growth model, 434
State variable, 379–380, 390–391, 397, 399,

401–402
Static analysis, 192–193, 358, 364, 409
Steepest descent, 343–344
Stirling’s formula, 65
Subjective probability, 72
Summation notation, 24–25, 35

T
Taylor expansion (series), 257–279, 326, 328,

344, 449, 451, 500–502, 509
T-distribution, 317
Total derivative, 235–240, 425
Trace of a matrix, 132–133, 164–166
Transversality condition, 390, 399–400, 402,

404
Trapezoid method, 308–310
Traveling salesman problem, 380, 392, 396
Triangular matrix, 162, 176–178, 180–182
Trigonometry, 46–51

U
Undetermined coefficients, method of,

421–424, 426
Uniform distribution, 82–84, 281, 302

V
Value function, 355–362
Variational method, 383, 386
Vec operator, 183–186
Vector space, 96–109, 157

W
Wronskian, 438–440
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