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Preface

Most of the existing portfolio selection models are based on the probability
theory. Though they often deal with the uncertainty via probabilistic ap-
proaches, we have to mention that the probabilistic approaches only partly
capture the reality. Some other techniques have also been applied to handle
the uncertainty of the financial markets, for instance, the fuzzy set theory
[Zadeh (1965)]. In reality, many events with fuzziness are characterized by
probabilistic approaches, although they are not random events. The fuzzy
set theory has been widely used to solve many practical problems, including
financial risk management. By using fuzzy mathematical approaches, quanti-
tative analysis, qualitative analysis, the experts’ knowledge and the investors’
subjective opinions can be better integrated into a portfolio selection model.

The contents of this book mainly comprise of the authors’ research results
for fuzzy portfolio selection problems in recent years. In addition, in the book,
the authors will also introduce some other important progress in the field of
fuzzy portfolio optimization. Some fundamental issues and problems of port-
folio selection have been studied systematically and extensively by the authors
to apply fuzzy systems theory and optimization methods. A new framework
for investment analysis is presented in this book. A series of portfolio selec-
tion models are given and some of them might be more efficient for practical
applications. Some application examples are given to illustrate these models
by using real data from the Chinese securities markets. The main innovative
results of this book include: portfolio selection models with fuzzy liquidity
constraints in a frictional securities market are proposed; based on the fuzzy
decision theory, fuzzy portfolio selection models with S shape fuzzy numbers
are formulated; an estimation approach for interval returns of securities is pro-
posed; the concept of semi-absolute deviation interval risk function is given,
portfolio selection models with interval returns and interval risk are formu-
lated; and the semi-definite programming approach for estimating possibility
distribution of returns of securities is proposed. Moveover, the center spread
possibility distribution portfolio selection models in a frictional securities mar-
ket are formulated, and the four fuzzy index tracking portfolio selection models
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are formulated, based on the four different measuring methods for tracking
index error.
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Part I

Literature Review



1

Survey for Portfolio Selection Under Fuzzy
Uncertain Circumstances

1.1 Introduction

Uncertainties about future events make the behavior of economic indicators
unpredictable and, at times, brings about turbulence to financial markets.
Assumptions about their behavior, while allocating resources, under an un-
certain and ever-changing environment, are the building blocks for theories of
economics and finance. The theories have been used to apply mathematical
analytical tools to model both the behavior of the economic agents, and future
events in financial markets. Resource allocation methods derived from mod-
ern mathematical models, in turn, play an influential role in work practices
of financial institutions, and in a way, become a not-insignificant tool used in
the financial markets.

It has been suggested that the origin of modern mathematical models in
finance can be traced back to Louis Bachelier’s dissertation on the theory of
speculation. However, without doubt, the ground-breaking work of Markowitz
(1952) in portfolio selection has been the most impact-making development in
modern mathematical finance management. The Markowitz theory of portfo-
lio management deals with individual agents in the financial markets. It com-
bines probability and optimization theories to model the behavior of agents of
economic change. The agents are assumed to strike a balance between max-
imizing the return and minimizing the risk of investment decisions. Return
is quantified as the mean, and risk as the variance, of the portfolio of se-
curities. These mathematical representations of return and risk have allowed
optimization tools to be applied to studies of portfolio management. The twin
objectives of investors - profit maximization and risk minimization - are thus
quantified, so as to maximize the expected value and to minimize the variance
of the portfolio value. The exact solution will depend on the level of risk (in
comparison with the rate of return) they would bear. Even though many later
models have different views on mathematical definitions of risk and return of
economic agents, the trade-off between return and risk has always been the
major problem for the theories to solve.
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Although we have seen that the basic portfolio analysis problem in the
mean-variance model can be solved in polynomial time, historically, major
efforts have been made to reduce computational requirements. The single
index model of Sharpe (1963) is an early breakthrough in this direction - it
reduces the estimation of O(N2) variance-covariance coefficients to a total
of O(N) parameters. Based on the observation that investors may only be
concerned with the risk (of return) being lower than the mean (downside risk),
the Mean-Semivariance (E-S) method was proposed to design the model (see,
e.g., Markowitz (1959), Mao (1970) and Swalm(1966). Semivariance is defined
as the expected value of squared ”positive(or negative)” deviations from the
mean (or more generally, a value chosen by the decision-maker as a critical
value).

In order to solve large-scale portfolio optimization problems, Konno and
Yamazaki (1991) considered mean-absolute deviation as the risk of portfolio
investment. Using the historical data of Tokyo Stock Exchange, Konno and
Yamazaki compared the performance of the Mean Variance Model and the
Mean Absolute Deviation Model and found that the performance of the two
models was very similar. Feinstein and Thapa presented a reformulation of
the MAD model, which is equivalent to the model of Konno and Yamazaki,
and at the same time, reduces the bound on the number of non-zero assets
in the optimal portfolio by half. While Konno and Yamazaki showed that
the mean absolute deviation model did not require the covariance matrix,
Simaan (1997) found that this would result in greater estimation risk, which
outweighed the benefits.

The third moment of a return distribution is called skewness, which mea-
sures the asymmetry of the probability distribution. A natural extension of
the mean-variance model is to add the skewness as a factor for consideration
in portfolio management. There will be three goals: maximizing mean and
skewness, and minimizing variance. People interested in considering skew-
ness prefer a portfolio with a higher probability of large payoffs, when mean
and variance remain the same. The importance of higher order moments in
portfolio selection has been suggested by Samuelson (1958) as early as late
1950’s. However, because of the difficulties in estimating the third order mo-
ment for a large (over a few hundred) number of securities, and in solving the
non-concave function by using standard computational methodologies, quan-
titative treatments of the third order moment have been neglected for a long
time. Since high performance computers are becoming cheaper, considering
skewness in portfolio analysis is now expected to become feasible in the near
future. The main question here is whether introducing skewness would sig-
nificantly improve the quality of the chosen portfolios. Starting in the 1990s,
several quantitative analysis have been carried out to study the optimal port-
folio, taking skewness into consideration. Konno and Suzuki (1995) applied
piecewise linear approximation to obtain solutions in this model. But this has
only resulted in approximating the solutions. Chunhachinda, et al. (1997),
have found that the returns of major stock markets all over the world are
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not normally distributed. They have shown that taking skewness into con-
sideration in portfolio selection will result in a major change in the optimal
portfolio.

Most of the existing portfolio selection models are based on the probability
theory. One can refer to Wang and Xia (2002) for details of portfolio modelling.
Though often applied to deal with uncertainty, the probabilistic approaches
only partly capture the reality. Some other techniques have also been applied
to handle the uncertainty of the financial markets; for instance, the fuzzy
set theory [Zadeh (1965)]. In reality, although many events are characterized
as fuzzy by probabilistic approaches, they are not random events. The fuzzy
set theory has been widely used to solve many practical problems, including
financial risk management. By using fuzzy approaches, quantitative analysis,
qualitative analysis, experts’ knowledge and investors’ subjective opinions can
be better integrated into a portfolio selection model. Recently, a few authors,
such as Ramaswamy (1998), Tanaka and Guo (1999) and Inuiguchi and Ramik
(2000), studied fuzzy portfolio selection.

This chapter surveys the main progress in fuzzy portfolio selection. In
the next section, we introduce portfolio selection models based on the fuzzy
decision theory. Portfolio selection approaches using possibilistic programming
and interval programming are reviewed in Sections 3 and 4, respectively.

1.2 Portfolio Selection Based on the Fuzzy Decision
Theory

The fuzzy decision theory was formulated by Bellman and Zadeh (1970). Let
X denote a set of alternatives to a fuzzy decision-making problem. If there
are m fuzzy goals G̃i (i = 1, · · · ,m) and n fuzzy constraints C̃j (j = 1, · · · , n),
then the fuzzy decision is defined by the following fuzzy set of X

D̃ = G̃1

⋂
· · ·
⋂

G̃m

⋂
C̃1

⋂
· · ·
⋂

C̃n

with the membership function

µD̃(x) = min{µG̃1
(x)
⋂

· · ·
⋂

µG̃m
(x)
⋂

µC̃1
(x)
⋂

· · ·
⋂

µC̃n
(x)}.

Furthermore, the optimal decision is defined by the following non-fuzzy subset

DO = {x∗ ∈ X|x∗ ∈ argmax µD̃(x)}.
One can refer to Bellman and Zadeh (1970) and Zimmermann (1985) for a
detailed discussion on the fuzzy decision theory.

Ramaswamy (1998) presented a portfolio selection method using the fuzzy
decision theory. The main idea is as follows. An investor can construct a port-
folio based on m potential market scenarios from an investment universe of n
assets with xmin

i and xmax
i being the minimum and the maximum weight of
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the ith asset, respectively. Let Rik denote the return of the ith asset for the

kth market scenario and let Rk(x) =
n∑

i=1

Rikxi denote the portfolio return for

the kth scenario, at the end of the investment period. For each scenario, the
investor may have a target range for the expected return, over the investment
period. Denoting Rmin

k and Rmax
k as the minimum and the maximum expected

returns, respectively, for the kth market scenario, and characterizing the de-
gree of the investor’s satisfaction with portfolio x for the kth scenario as the
following linear membership function

µk(Rk(x)) =

⎧⎪⎨⎪⎩
0, if Rk(x) ≤ Rmin

k
Rk(x)−Rmin

k

Rmax
k

−Rmin
k

, if Rmin
k < Rk(x) ≤ Rmax

k

1, if Rk(x) > Rmax
k

Ramaswamy (1998), based on the fuzzy decision theory, formulated the fol-
lowing portfolio selection model:

max
x

µ1(R1(x))
⋂ · · ·⋂µm(Rm(x))

subject to
n∑

i=1

xi = 1

xmin
i ≤ xi ≤ xmax

i , i = 1, · · ·n,

which is equivalent to the following linear programming problem:

max
x,λ

λ

subject to
µk(Rk(x)) ≥ λ, k = 1, · · · ,m
n∑

i=1

xi = 1

xmin
i ≤ xi ≤ xmax

i , i = 1, · · ·n.

Ramaswamy (1998) gave a numerical example in which the investor is
only allowed to hold government bonds and plain vanilla options, and only
two scenarios are assumed: “bullish” and “bearish”.

A similar approach for portfolio selection, using the fuzzy decision theory,
was proposed by León et al. (2000, 2002). Using the fuzzy decision princi-
ple, Östermark (1996) proposed a dynamic portfolio management model by
fuzzifying the objectives and the constraints.

Watada (2001) presented another type of portfolio selection model, using
the fuzzy decision principle. The model is directly related to the mean-variance
model, where the goal rate (or the satisfaction degree) for an expected return,
and the corresponding risk, are described by logistic membership functions.
Characterizing the goal rate for an expected return as the membership func-
tion

µE(rT x) =
1

1 + exp(−βE(rT x − EM ))
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and the goal rate for risk as the membership function

µV (xT Σx) =
1

1 + exp(βV (xT Σx − VM ))
,

Watada formulated the following portfolio selection model:

max
x,λ

λ

subject to
λ + exp(−βE(rT x − EM ))λ ≤ 1
λ + exp(βV (xT Σx − VM ))λ ≤ 1
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · ·n.

where βE and βV are two positive parameters to determine the shapes of the
membership functions, and EM and VM are the mid points, whose membership
values are 0.5. The larger the values of βE and βV are, the lower will be the
fuzziness.

Watada’s model can be further simplified; the portfolio strategy generated
by the model is also a mean-variance efficient strategy.

1.3 Portfolio Selection Based on Possibilistic
Programming

In the possibility theory, proposed by Zadeh (1978) and advanced by Dubois
and Prade (1988), fuzzy variables are associated with possibility distribu-
tions, similar to the way random variables are associated with probability
distributions in the probability theory. According to the possibility theory,
a possibility variable is represented as a convex and normal fuzzy set. The
possibility distribution function of a fuzzy variable is usually defined by the
membership function of the corresponding fuzzy set.

Now we introduce several notions for consequent discussion. Denote πA(x)
as the possibility distribution function of fuzzy variable a and denote µB(x)
as the membership function of fuzzy set B. Possibility and necessity measures
of the event a being in fuzzy set B are defined as:

ΠA(B) = sup
x

min{πA(x), µB(x)},

and
NA(B) = inf

x
max{1 − πA(x), µB(x)},

where ΠA(B) measures the extent to which it is possible that the fuzzy vari-
able a is in fuzzy set B, and NA(B) measures the extent to which it is certain
that the fuzzy variable a is in fuzzy set B. Clearly, while B is a crisp set,
ΠA(B) and NA(B) reduce to
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ΠA(B) = sup
x∈B

πA(x)

and
NA(B) = inf

x/∈B
[1 − πA(x)].

Let g be a real number, let Pos(a ≥ g) and Nec(a ≥ g) denote the possibil-
ity and the necessity of event a ≥ g; then we can easily obtain the Possibility
and Necessity Measures

Pos(a ≥ g) = ΠA([g, +∞))
= sup

x
{πA(x)|x ≥ g}

and

Nec(a ≥ g) = NA([g, +∞))
= 1 − sup

x
{πA(x)|x < g}.

Pos(a ≤ g) and Nec(a ≤ g) can be similarly deduced.

1.3.1 The Center-Spread Model

Suppose that the uncertain return vector R of n assets in a financial market is
a fuzzy vector denoted by A. Assume that A follows a possibility distribution
characterized by the following exponential distribution function

πA(R) = exp{−(R − c)T D−1
A (R − c)} = (c,DA)e,

where c is a center vector and DA is a symmetric positive-definite matrix. The
possibility return of a portfolio x = (x1, · · · , xn)T can be written as z = RT x.
The possibility distribution function of z, denoted by πZ(z), can be defined
by the extension principle as

πZ(z) = max
R

{πA(R)|z = RT x}.

Solving the above optimization problem, we can easily get

πZ(z) = exp{−(z − cT x)2/(xT DAx)},
where cT x is the center value and xT DAx is the spread of the possibility
return z.

Obviously, the value of the possibility measure of cT x is 1, i.e., cT x is
the most possible portfolio return. xT DAx is a measure of uncertainty (risk)
of the possibility return. The larger the value of xT DAx is, higher will be
the uncertainty of the portfolio’s return. The center value and spread of a
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possibility return are analogous to the mean and variance of a probability
return in the Markowitz model.

Following Markowitz’s mean-variance methodology, Tanaka and Guo (1999)
formulated the following portfolio selection model:

min
x

xT DAx

subject to
cT x ≥ rc
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · ·n.

Another form of the possibility portfolio selection model that maximizes the
center return subject to a given spread level, can also be easily formulated as
the Markowitz’s model.

According to the mean-variance efficiency, Tanaka and Guo (1999) defined
the center-spread efficiency. Varying rc and solving the above problem, we can
obtain the efficient frontier in the center-spread plane which is very similar to
the mean-variance efficient frontier.

In the original model of Tanaka and Guo (1999), cT x ≥ rc is replaced by
cT x = rc. But, we believe that the above model should be more suitable since
the original one may generate an inefficient portfolio if the specified value rc

is too small.
In the mean-variance model, the mean vector and the covariance matrix

can be easily estimated by the historical data, statistically. However, the para-
metric matrix DA of the possibility distribution is much more difficult to es-
timate. For the given data (xi, hi) (i = 1, · · · ,m), where xi = (xi1, · · · , xin)T

is a vector of returns of n assets at the ith period and hi is an associated
possibility grade given by some experts to reflect the degree of between the
future state of the financial market and the ith sample, Tanaka and Guo
(1999) and Tanaka et al. (2000) proposed lower and upper approximations of
the exponential possibility distribution.

Suppose that c∗ is the estimation of c (it can be easily estimated). The
estimation of DA by the lower approximation (the upper approximation is
similar) is determined by solving the following optimization problem:

min
DA

m∑
i=1

yT
i D−1

A yi

subject to
yT

i D−1
A yi ≥ − ln(hi), i = 1, · · · ,m

DA � 0

where yi = xi − c∗, and DA � 0 means that DA is positive definite.
It is difficult to solve the above optimization problem. Tanaka and Guo

(1999) and Tanaka et al. (2000) proposed a method based on orthogonal
conditions and a rotation method, using the principal component analysis
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(PCA) to simplify and relax the optimization problem, and then solve the
relaxed problem to get an approximate solution. However, the rapidly devel-
oping semi-definite programming seems to be a powerful method that can be
used to solve the above problem (one can refer to Vandenberghe and Boyd
(1996) and Sturm (1999) for details).

One may ask how we can determine the possibility grade hi properly.
Analytic Hierarchy Process (AHP) [Saaty (1980)] may be a good alternative,
since it combines the qualitative and quantitative analysis efficiently.

Carlsson, Fullér and Majlender (2002) assume that (i) each investor can
assign a welfare, or utility, score to competing investment portfolios based
on the expected return and risk of the portfolios; and (ii) the rates of return
on securities are modelled by possibility distributions rather than probability
distributions. They presented an algorithm of complexity O(n3) for finding an
exact optimal solution (in the sense of utility scores) to the n-asset portfolio
selection problem under possibility distributions.

1.3.2 Models Using the Necessity Measure

In the same year when Markowitz’s mean-variance formulation appeared, Roy
(1952) published his safety-first model for portfolio selection, which minimizes
the probability of a random event causing the return of a portfolio to drop be-
low a predetermined level. Although Roy’s work did not attract as much atten-
tion as that of Markowitz’s work, it is not only a pioneering work in stochastic
programming, but also something like the Value-at-Risk (VaR) methodology
that is widely used in modern financial risk management [Philippe (1997)].
Stochastic optimization approaches such as Roy (1952) and Kataoka (1963)
can be directly used in possibility portfolio selection.

In contrast with the criterion of Roy (1952), one can maximize the necessity
of the fuzzy event when the portfolio return is greater than or equal to a
predetermined value. With this idea, we can formulate a portfolio selection
model as

max
x

Nec(
n∑

i=1

Rixi ≥ γ)

subject to
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , n,

where γ ∈ (0, 1] is a predetermined value.
Similar to the approach of Kataoka (1963), one can formulate a portfolio

selection model which maximizes γ such that the necessity of the event that
the portfolio return is greater than or equal to γ is, at least, λ. Mathematically,
that is
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max
x,γ

γ

subject to Nec(
n∑

i=1

Rixi ≥ γ) ≥ λ

n∑
i=1

xi = 1

xi ≥ 0, i = 1, · · · , n,

where λ ∈ (0, 1] is a predetermined value.
Different from Tanaka and Guo (1999) and Tanaka et al. (2000), Inuiguchi

and Ramik (2000) assumed that the fuzzy variables of returns of n assets are
mutually independent, and follow the exponential distributions as

πri
(Ri) = exp(−(Ri − ci)2/w2

i ), i = 1, · · · , n,

where ci and wi are the center and spread of the possibility distribution of
return of asset i (the spread can be also defined by w2

i in accordance with
the definition of Tanaka et al.). Under this assumption, the above two mod-
els can be easily transformed into two linear programming models [Inuiguchi
and Ramik (2000)]. Generally, these similar models, based on the criteria of
Roy (1952) and Kataoka (1963), using probability theory, can not be trans-
formed into any linear programming model, even when the random returns
are independently distributed.

Unfortunately, the above two models usually generate only a concentrated
investment strategy, i.e., they allow only one asset as the optimal portfolio,
since they are actually two linear optimization models with one constraint,
except the non-negative constraints on the variables xi (i = 1, · · · , n). There-
fore, these two models can not meet the needs of an investor who wants to
diversify his/her investment risk with a distributive investment strategy.

However, Inuiguchi and Ramik (2000) also presented a spread minimiza-
tion model, which is similar to the center-spread model proposed by Tanaka
and Guo (1999) and Tanaka et al. (2000), except the assumption independence
of the possibility distribution. It was shown that the model is equivalent to the
mean-variance model where the coefficients of correlation between the random
return variables are all equal to 1, which can be interpreted as the correlations
being unknown and the portfolio risk, as measured by the variance, being an
estimate of the worst case scenario only. In the model of Inuiguchi and Ramik
(2000), the spread of a portfolio return is expressed as a linear term, under
the assumption of independence of the possibility distribution, whereas it is
a quadratic term in the model of Tanaka and Guo (1999) and Tanaka et al.
(2000), without the independence assumption. The model suggests, at the
most, two assets for an investor to hold, which is still a concentrated invest-
ment strategy.

Inuiguchi and Tanino (2000) discussed the cases where the uncertain re-
turns independently follow more general possibility distributions. The models
can also be transformed into linear programming models with one or two
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constraints, except the non-negativity restriction on the variables xi (i =
1, · · · , n). Thus, the issue of concentrated investment remains.

To model the issue of portfolio choice under a pessimistic environment, or
the option of a conservative portfolio manager, Inuiguchi and Ramik (2000)
and Inuiguchi and Tanino (2000) presented a minimax regret model. The
optimal investment strategy generated by the model is always a dispersive
one.

When an investor is informed about the determined returns R̄ on his/her
investment x at the end of the planning investment horizon, he/she will have
a regret θ(x; R̄), which can be quantified as

θ(x; R̄) = max
y

{R̄T y − R̄T x|
n∑

i=1

yi = 1, yi ≥ 0, i = 1, · · · , n}.

It is the difference between return on the optimal portfolio and the real one.
However, at the decision-making stage, an investor cannot know exactly the
real return R̄, revealed in the future.

Denote the possibility distribution function of the uncertain return vector
as πr(R). By the extension principle, the possibility distribution of regret with
respect to x, denoted by πΘ(x)(θ), can be defined by

πΘ(x)(θ) = max
R

{πr(R)|θ = θ(x;R)}.

Minimizing γ such that the necessity of the regret being less than or equal
to γ is at least some predetermined value, we can formulate a portfolio selec-
tion model as

min
x,γ

γ

subject to Nec(θ ≤ γ) ≥ λ
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , n,

where λ ∈ (0, 1] is a predetermined value.
The minimax regret model can be transformed into a linear programming

model, under an independent distribution assumption [Inuiguchi and Ramik
(2000) and Inuiguchi and Tanino (2000)].

As the necessity measure used in the above models, the possibility measure
can also be similarly used to model portfolio selection problems. However, it is
clear, a fuzzy event may fail, even though its possibility achieves 1, and holds,
even though its necessity is 0. The credibility measures, defined by the average
of possibility and necessity measures, might deserve to be used in portfolio
modeling. A fuzzy event must hold if its credibility achieves 1, and fail if its
credibility is 0. One can refer to Liu (2002) for details.
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1.4 Portfolio Selection Based on Interval Programming

Interval [a, b] is a special fuzzy number whose membership function takes value
1 over [a, b], and 0 anywhere else, which is named as the interval number in
terms of fuzzy mathematics. In this section, we discuss portfolio selection
using interval programming. Here, we call a programming problem involving
intervals as an interval programming problem. Some interval programming
problems are a special type of possibilistic programming problems.

Compared with probability variables or fuzzy variables with complex dis-
tribution functions, intervals can be treated more easily. Thus it is a good
alternative to formulate an optimization problem with an interval model un-
der some uncertain environments.

Lai et al. (2002) extended the Markowitz model to an interval program-
ming model by quantifying the expected return and the covariance as intervals
[also see Zeng et al. (2002)]. Denote the inexact expected return and covari-
ance as the following intervals:

r̃i = [ri − δil, ri + δir],
σ̃ij = [σij − δijl, σij + δijr].

By interval computing, the interval portfolio return and portfolio variance are
as follows:

r̃(x) = [r(x) − δRL(x), r(x) + δRR(x)],

σ̃2(x) = [σ2(x) − δV L(x), σ2(x) + δV R(x)],

where

r(x) − δRL(x) =
n∑

i=1

(ri − δil)xi,

r(x) + δRR(x) =
n∑

i=1

(ri + δir)xi,

σ2(x) − δV L(x) =
n∑

i=1

n∑
j=1

(σij − δijl)xixj ,

σ2(x) + δV R(x) =
n∑

i=1

n∑
j=1

(σij + δijr)xixj .

According to the Markowitz model, to strike a trade-off between the mean
and variance, an investor can construct his/her portfolio by solving the fol-
lowing optimization problem:

min
x

σ̃2(x) − αr̃(x)

subject to
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , n,
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where the objective function is an interval function [Fl(x), Fr(x)] satisfying

Fl(x) = σ2(x) − δV L(x) − α(r(x) + δRR(x)),
Fr(x) = σ2(x) + δV R(x) − α(r(x) − δRL(x)),

and the minimization can be interpreted as an optimization problem defined
on the basis of some order of relations between intervals. One can refer to Lai
et al. (2002) and its references for details on interval programming.

The following are two simple models. The first is as follows:

min
x

Fl(x)

subject to
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , n.

From the objective function Fl(x), we can observe that the investor estimates
the return and risk optimistically. The second model is

min
x

Fr(x)

subject to
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , n.

In contrast to the first model, here, the investor estimates return and risk
pessimistically.

If the investor estimates the future financial market neither too optimisti-
cally nor too pessimistically, he/she can combine the two models to construct
his/her portfolio. In the above interval programming model, the probability
theory and the fuzzy set theory are integrated.

Given a fuzzy number Ñ , the expected interval defined by Heilpern (1992)
is

EI(Ñ) =
[∫ 1

0

nL
αdα,

∫ 1

0

nR
αdα

]
,

where nL
α and nR

α are the left and right ends, of α-cut of the fuzzy number.
Parra et al. (2001) developed a goal programming (GP) model for portfolio
selection, based on the expected intervals of fuzzy numbers that define the
objectives and target values. Given fuzzy objectives Z̃k (k = 1, · · · , p) and
fuzzy target values g̃k (k = 1, · · · , p), Parra et al.’s GP approach is to find a
solution such that

EI(Z̃k) ≈ EI(g̃k), k = 1, · · · , p,

where “≈” means “approximately equal”.
By introducing some concepts and operations of intervals, such as “dis-

tance” and “difference”, Parra et al. transformed their model into the following
one (the model takes into account three criteria: return, risk and liquidity):
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min
x,nL,nR,pL,pR,v

3∑
k=1

vk

subject to pL
k ≤ vk, pR

k ≤ vk, k = 1, 2, 3
rT x + nL

1 − pL
1 = EI(r̃)L

rT x + nR
1 − pR

1 = EI(r̃)R

xT Σx + nL
2 − pL

2 = EI(σ̃)L

xT Σx + nR
2 − pR

2 = EI(σ̃)R

n∑
i=1

EI(l̃(g(i)))Lxi + nL
3 − pL

3 = EI(l̃)L

n∑
i=1

EI(l̃(g(i)))Rxi + nR
3 − pR

3 = EI(l̃)R

n∑
i=1

xi = 1

x ∈ F
nL

k − pL
k ≤ nR

k − pR
k , nL

k , pL
k , nR

k , pR
k ≥ 0, k = 1, 2, 3

xi ≥ 0, i = 1, · · · , n

where F represents a special requirement of x, g(i) denotes the asset group
that asset i belongs to, and l(g(i)) denotes the liquidity measure of an asset
that belongs to group g(i).

An application of the GP model to Spanish mutual funds is given in Parra
et al. (2001). It is obvious that the above GP model is also an integrated
model, which combines probability and fuzzy approaches.

The objectives of return and risk are not treated as fuzzy in the above GP
model. It might be a good idea to combine the Lai et al.’s model and Parra
et al.’s model [Lai et al. (2001a) and Parra et al. (2001)], which allows the
objectives to be fuzzy.

Konno and Yamazika (1991), Speranza (1993) and Mansini and Speranza
(1999) investigated linear programming models for portfolio selection by us-
ing absolute or semi-absolute deviation as the measure of risk. Taking the
uncertain returns of assets as intervals, Lai et al. (2002) gave a linear interval
programming model for portfolio selection. The model takes the maximum
semi-absolute deviation of the samples of return as the measure of risk. Us-
ing the average semi-absolute deviation measure of risk, Fang et al. (2001)
proposed another linear interval programming model. Based on some order
of relationships between intervals, their model can be transformed into a tra-
ditional linear programming problem. Applications to portfolios of stocks in
China stock markets were given in Lai et al. (2002) and Fang et al. (2001,
2005, 2006).



Part II

Portfolio Selection Models Based on Fuzzy
Decision Making
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Fuzzy Decision Making and Maximization
Decision Making

Due to incomplete knowledge and information, it is not enough to use precise
mathematics to model a complex system. In order to represent the vagueness
in everyday life, Zadeh introduced the concept of fuzzy sets in 1965. Based on
this concept, Bellman and Zadeh presented the fuzzy decision theory. They
defined decision-making in a fuzzy environment with a decision set which
unifies a fuzzy objective and a fuzzy constraint.

Suppose that fuzzy sets are defined on a set of alternatives, X. Let the
fuzzy set for the fuzzy objective be identified as G, the fuzzy set for the
constraints as C, and let decision set D be a unifying factor between G and
C. Then, decision set D can be defined as an intersection set between fuzzy
objective G and fuzzy constraint C, D = G ∩ C. Decision set D is a fuzzy
set, named a fuzzy decision. The corresponding membership function of the
decision set D is given by:

µD(x) = min(µG(x), µC(x)),∀x ∈ X. (2.1)

More generally, if there are m fuzzy goals Gi (i = 1, · · · ,m) and n fuzzy con-
straints Cj (j = 1, · · · , n), then the fuzzy decision is defined by the following
fuzzy set

D = {G1 ∩ G2 ∩ · · · ∩ Gm} ∩ {C1 ∩ C2 ∩ · · · ∩ Cn}. (2.2)

Its membership function is characterized as in the following.

µD(x) = min(µG1(x), · · · , µGm
(x), µC1(x), · · · , µCn

(x)),∀x ∈ X. (2.3)

The above concepts illustrate that there is no difference between the objective
and the constraint in a fuzzy environment.

Bellman and Zadeh proposed a maximization decision. The maximization
decision is defined by the following non-fuzzy subset.

D∗ = {x∗ ∈ X|x∗ = argmax{µD(x)} = argmax{min(µG(x), µC(x))}}. (2.4)
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Where m fuzzy objectives and n fuzzy constraints are given, the maximization
decision can be denoted as follows:

D∗ = {x∗ ∈ X|x∗ = argmax{µD(x)}
= argmax{min(µG1(x), · · · , µGm

(x), µC1(x), · · · , µCn
(x))}}.

The maximization decision can be considered to be an optimal decision.
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Portfolio Selection Model with Fuzzy Liquidity
Constraints

3.1 Introduction

In 1952, Markowitz published his pioneering work which laid the foundation
of modern portfolio analysis. Markowitz’s model has served as a basis for de-
velopment of the modern financial theory over the past five decades. However,
contrary to its theoretical reputation, it is not used extensively to construct
large-scale portfolios. One of the most important reasons is the computational
difficulty associated with solving a large-scale quadratic programming prob-
lem with a dense covariance matrix. Konno and Yamazaki (1991) used the
absolute deviation risk function, to replace the risk function in Markowitz’s
model, and thus formulated a mean absolute deviation portfolio optimization
model. It turns out that the mean absolute deviation model retains the useful
properties of Markowitz’s model and removes most of the principal compu-
tational difficulties in solving Markowitz’s model. Simaan (1997) provided a
thorough comparison of the mean variance model and the mean absolute de-
viation model. Furthermore, Speranza (1993) used semi-absolute deviation to
measure the risk and formulated a portfolio selection model.

Transaction cost is one of the main sources of concern to portfolio man-
agers. Arnott and Wagner (1990) found that ignoring transaction costs would
result in an inefficient portfolio. Yoshimoto’s empirical analysis (1996) also
drew the same conclusion. Mao (1970), Jacob (1974), Brennan (1993), Levy
(1978), Patel and Subhmanyam (1982), Morton and Pliska (1995) and Mansini
and Speranza (1999) studied portfolio optimization with fixed transaction
costs; Pogue (1986), Chen, Jen and Zionts (1971) and Yoshimoto (1996) et al.
studied portfolio optimization with variable transaction costs; Dumas and Lu-
ciano (1991), Mulvey and Vladimirou (1992) and Dantzig and Infanger (1993)
incorporated the transaction costs into the multi-period portfolio selection
model. Very recently, Li, Wang and Deng (2000) gave a linear programming
algorithm to solve a general mean variance model for portfolio selection with
transaction costs. Konno and Wijayanayake (2001) studied portfolio optimiza-
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tion with transaction costs which can be expressed approximately as a D.C.
function.

Usually, expected return and risk are the two fundamental factors which
investors consider. In some cases, investors may consider other factors such as
liquidity. Liquidity has been measured as the degree of probability of having
the option of conversion of an investment into cash without any significant
loss in value. Parra, Terol and Uŕıa (2001) took into account three criteria
(return, risk and liquidity) and used a fuzzy goal programming approach to
solve the portfolio selection problem.

In this chapter, we will propose portfolio selection models with fuzzy liquid-
ity constraints. At first, we construct a risk function - Minimax semi-absolute
deviation risk function. Then we will formulate two optimization models for a
portfolio selection problem with fuzzy liquidity constraints, based on the new
risk function and semi-absolute deviation risk function, respectively.

3.2 Minimax Semi-absolute Deviation Risk Function

Speranza and Mansini used the mean semi-absolute deviation to measure the
risk and formulated a mean semi-absolute deviation portfolio selection model.
In the following we will propose a new risk function based on the Minimax
rule.

Let x+ = (x+
1 , x+

2 , · · · , x+
n ) and x− = (x−

1 , x−
2 , · · · , x−

n ), where x+
i is the

amount of the asset i, i = 1, 2, · · · , n bought by the investor, x−
i is the amount

of the asset i, i = 1, 2, · · · , n for which the asset has been sold by the investor.
Let portfolio x = (x1, x2, · · · , xn), where xi is the proportion of the security

owned by the investor, such that
n∑

i=1

xi = 1.

Assume we have observed historical data of n securities, over T horizons. Let
rit be the historical return of security i (i = 1, 2, · · · , n) at t (t = 1, 2, · · · , T )
, ri is the expected return of security i (i = 1, 2, · · · , n), i.e.,

ri =
1
T

T∑
t=1

rit, i = 1, 2, · · · , n,

Then the expected return of portfolio x = (x1, x2, · · · , xn) is

r(x) =
n∑

i=1

rixi.

The semi-absolute deviation of return on portfolio x = (x1, x2, · · · , xn)
below the expected return over the past period t, t = 1, 2, · · · , T can be rep-
resented as
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wt(x) =

∣∣∣∣∣min

{
0,

n∑
i=1

(rit − ri)xi

}∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(rit − ri)xi

∣∣∣∣∣−
n∑

i=1

(rit − ri)xi

2
.

So the expected semi-absolute deviation of the return on portfolio x =
(x1, x2, · · · , xn), below the expected return, can be represented as

Smad(x) =
1
T

T∑
t=1

wt(x).

Smad(x) is the semi-absolute deviation risk function proposed by Speranza.
Based on the Minimax rule, we define the maximum of T semi-absolute

deviations of return on portfolio x = (x1, x2, · · · , xn), below the expected
return, over all the past period t, t = 1, 2, · · · , T as risk, i.e.,

Minimaxmad(x) = max
t

{wt(x), t = 1, 2, · · · , T}

= max
t

{∣∣∣∣∣min{0,
n∑

i=1

(rit − ri)xi}
∣∣∣∣∣ , t = 1, 2, · · · , T

}
.

It is obvious that the minimax semi-absolute deviation risk function is
more pessimistic than the semi-absolute deviation risk function.

3.3 Fuzzy Liquidity of Securities

Liquidity has been measured as the degree of probability of having an option
to convert an investment into cash without any significant loss in value. The
turnover rate of a security is the proportion of turnover volume to tradable
volume of the security, and is a factor which may reflect the security’s liquidity.
Generally, investors prefer greater liquidity, especially since in a bull market
for securities, returns on securities with high liquidity tend to increase with
time. Here, we use the turnover rates of securities to measure their liquidity.
It is known that turnover rates of securities in the future cannot be accurately
predicted in a securities market. The possibility theory has been proposed by
Zadeh and advanced by Dubois and Prade where fuzzy variables are associated
with the possibility distribution. In this study, we assume that the turnover
rates of securities are modeled by possibility distributions rather than by
probability distributions. That is, the turnover rates of the securities will be
represented by fuzzy numbers. In many cases, it might be easier to estimate
the possibility distributions of turnover rates of securities, rather than the
corresponding probability distributions. In this study, we regard trapezoidal
possibility distribution as the possibility distribution of the turnover rates of
the securities.

A fuzzy number A is called trapezoidal with tolerance interval [a, b], left
width α and right width β, if its membership function takes the following
form:
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A(t) =

⎧⎪⎪⎨⎪⎪⎩
1 − a−t

α if a − α ≤ t ≤ a,
1 if a ≤ t ≤ b,

1 − t−b
β if a ≤ t ≤ b + β,

0 otherwise

(3.1)

and we denote A = (a, b, α, β). It can easily be shown that

[A]γ = [a − (1 − γ)α, b + (1 − γ)β],∀γ ∈ [0, 1], (3.2)

where [A]γ denotes the γ-level set of A.
Let [A]γ = [a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)] be fuzzy numbers and

let k ∈ R be a real number. Using the extension principle we can verify the
following rules for addition and scalar multiplication of fuzzy numbers:

[A + B]γ = [a1(γ) + b1(γ), a2(γ) + b2(γ)], (3.3)

[kA]γ = k[A]γ . (3.4)

Carlsson and Fullér (2001) introduced the notation of crisp possibilistic
mean value and crisp possibilistic variance of continuous possibility distribu-
tions, which are consistent with the extension principle. The crisp possibilistic
mean value of A is

E(A) =
∫ 1

0

γ(a1(γ) + a2(γ))dγ. (3.5)

It is clear that if A = (a, b, α, β) is a trapezoidal fuzzy number, then

E(A) =
∫ 1

0

γ[a − (1 − γ)α + b + (1 − γ)β]dγ =
a + b

2
+

β − α

6
(3.6)

Denote the turnover rate of security j by the trapezoidal fuzzy number
l̂j = (laj , lbj , αj , βj). Then the turnover rate of portfolio x = (x1, x2, · · · , xn)

is
n∑

j=1

l̂jxj .

By the definition, the crisp possibilistic mean value of the turnover rate of
security j is represented as follows:

E(l̂j) =
∫ 1

0

γ[laj −(1−γ)αj + lbj +(1−γ)βj ]dγ =
laj + lbj

2
+

βj − αj

6
. (3.7)

Therefore, the crisp possibilistic mean value of the turnover rate of port-
folio x = (x1, x2, · · · , xn) can be represented as

E(l̂(x)) = E(
n∑

j=1

l̂jxj) =
n∑

j=1

(
laj + lbj

2
+

βj − αj

6
)xj . (3.8)

In the study, we use the crisp possibilistic mean value of the turnover rate to
measure the portfolio liquidity.
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3.4 Model Formulation

Suppose an investor allocates his/her wealth among n securities offering ran-
dom rates of return and a risk-less asset offering a fixed rate of return. The
investor starts with an existing portfolio and decides how to reallocate assets.
We introduce some notations as follows.
ri: the expected rate of return of risky asset i (i = 1, 2, · · · , n);
rn+1: the rate of return of risk-free asset n + 1;
xi: the proportion of the total investment devoted to risky asset i (i =
1, 2, · · · , n) or risk-free asset n + 1;
x0

i : the proportion of the risky asset i (i = 1, 2, · · · , n) or risk-free asset n + 1
owned by the investor;
rit: the historical rate of return of risky asset i (i = 1, 2, · · · , n), t (t =
1, 2, · · · , T );
ki: the rate of transaction costs for asset i (i = 1, 2, · · · , n + 1);
ui: the upper bound of proportion of the total investment devoted to risky
asset i (i = 1, 2, · · · , n) or risk-free asset n + 1.

We use V shape function to express transaction costs, so the transaction
costs of the asset i (i = 1, 2, · · · , n + 1) can be denoted by

Ci(xi) = ki|xi − x0
i |. (3.9)

So the total transaction costs of portfolio x = (x1, x2, · · · , xn, xn+1) can
be denoted by

C(x) =
n+1∑
i=1

Ci(xi) =
n+1∑
i=1

ki|xi − x0
i |. (3.10)

The expected return of portfolio x = (x1, x2, · · · , xn+1) in the future can
be represented as

r(x) =
n+1∑
i=1

rixi.

We can use the arithmetic mean of historical data as the expected return, i.e.,

ri =
1
T

T∑
t=1

rit, i = 1, 2, · · · , n.

After removing the transaction costs, the net expected return of portfolio
x = (x1, x2, · · · , xn+1)can be represented as

f(x) =
n+1∑
i=1

(rixi − ki|xi − x0
i |).

The semi-absolute deviation of the return of portfolio x = (x1, x2, · · · , xn+1)
below the expected return at the past period t, t = 1, 2, · · · , T can be repre-
sented as
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Smad(x) =
1
T

T∑
t=1

∣∣∣∣∣min{0,

n∑
i=1

(rit − ri)xi}
∣∣∣∣∣ .

The Minimax semi-absolute deviation of the return of portfolio x =
(x1, x2, · · · , xn+1) below the expected return at the past period t, t =
1, 2, · · · , T can be represented as

Minimaxmad(x) = max
t

{∣∣∣∣∣min{0,
n∑

i=1

(rit − ri)xi}
∣∣∣∣∣ , t = 1, 2, · · · , T

}
.

Denote the turnover rate of security j by trapezoidal fuzzy number l̂j =
(laj , lbj , αj , βj). Then the turnover rate of portfolio x = (x1, x2, · · · , xn) is
n∑

j=1

l̂jxj .

Assume the investor wants to maximize return and minimize risk after pay-
ing transaction costs. Based on the above discussions, the portfolio selection
problem is formulated as the following bi-objective programming problems.

If we use the semi-absolute deviation risk function to measure risk, then
we can get the following bi-objective programming problem

(BP3-1) max f(x) =
n+1∑
i=1

(rixi − ki|xi − x0
i |),

min Smad(x) = 1
T

T∑
t=1

∣∣∣∣∣min{0,

n∑
i=1

(rit − ri)xi}
∣∣∣∣∣

s.t.
n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
n+1∑
j=1

l̂jxj ≥ l̂0,

where l̂0 is the tolerance level of the fuzzy turnover rate given by the investor.
If we use the Minimax semi-absolute deviation risk function to measure

risk, then we can get the following bi-objective programming problem

(BP3-2) max f(x) =
n+1∑
i=1

(rixi − ki|xi − x0
i |),

min
x

max
t

{∣∣∣∣∣min{0,
n∑

i=1

(rit − ri)xi}
∣∣∣∣∣ , t = 1, 2, · · · , T

}

s.t.
n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
n+1∑
j=1

l̂jxj ≥ l̂0,
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where l̂0 is the tolerance level of fuzzy turnover rate given by the investor.
A fuzzy number A is called trapezoidal with tolerance interval [a, b], left

width α and right width β if its membership function takes the following form:

A(t) =

⎧⎪⎪⎨⎪⎪⎩
1 − a−t

α if a − α ≤ t ≤ a,
1 if a ≤ t ≤ b,

1 − t−b
β if a ≤ t ≤ b + β,

0 otherwise

(3.11)

and we denote A = (a, b, α, β). It can easily be shown that

[A]γ = [a − (1 − γ)α, b + (1 − γ)β],∀γ ∈ [0, 1], (3.12)

where [A]γ denotes the γ-level set of A.
Let [A]γ = [a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)] be fuzzy numbers and

let k ∈ R be a real number. Using the extension principle, we can verify the
following rules for addition and scalar multiplication of fuzzy numbers:

[A + B]γ = [a1(γ) + b1(γ), a2(γ) + b2(γ)], (3.13)

[kA]γ = k[A]γ . (3.14)

Carlsson and Fullér introduced the notation of crisp possibilistic mean
value and crisp possibilistic variance of continuous possibility distributions,
which are consistent with the extension principle. The crisp possibilistic mean
value of A is

E(A) =
∫ 1

0

γ(a1(γ) + a2(γ))dγ. (3.15)

It is clear that if A = (a, b, α, β) is a trapezoidal fuzzy number, then

E(A) =
∫ 1

0

γ[a − (1 − γ)α + b + (1 − γ)β]dγ =
a + b

2
+

β − α

6
(3.16)

Denote the turnover rate of security j by the trapezoidal fuzzy number
l̂j = (laj , lbj , αj , βj). Then the turnover rate of portfolio x = (x1, x2, · · · , xn)

is
n∑

j=1

l̂jxj .

By the definition, the crisp possibilistic mean value of the turnover rate of
security j is represented as follows:

E(l̂j) =
∫ 1

0

γ[laj−(1−γ)αj +lbj +(1−γ)βj ]dγ =
laj + lbj

2
+

βj − αj

6
. (3.17)

Therefore, the crisp possibilistic mean value of the turnover rate of port-
folio x = (x1, x2, · · · , xn) can be represented as

E(l̂(x)) = E(
n+1∑
j=1

l̂jxj) =
n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj .
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In the study, we use the crisp possibilistic mean value of the turnover rate
to measure the portfolio liquidity.

The fuzzy inequations in (BP3-1) and (BP3-2)

n+1∑
j=1

l̂jxj ≥ l̂0

can be transformed into

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0).

Hence, (BP3-1) and (BP3-2) can be transformed into (BP3-3) and (BP3-4)

(BP3-3) max f(x) =
n+1∑
i=1

(rixi − ki|xi − x0
i |),

min Smad(x) = 1
T

T∑
t=1

∣∣∣∣∣min{0,

n∑
i=1

(rit − ri)xi}
∣∣∣∣∣

s.t.
n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0);

(BP3-4) max f(x) =
n+1∑
i=1

(rixi − ki|xi − x0
i |),

min
x

max
t

{∣∣∣∣∣min{0,
n∑

i=1

(rit − ri)xi}
∣∣∣∣∣ , t = 1, 2, · · · , T

}

s.t.
n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

The above bi-objective programming problem can be solved by transform-
ing it into a single objective programming problem.

Assuming the investor has a minimal return level on the portfolio, (BP3-3)
can be transformed into (P3-1)
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(P3-1) min 1
T

T∑
t=1

∣∣∣∣∣min

{
0,

n∑
i=1

(rit − ri)xi

}∣∣∣∣∣
s.t. f(x) =

n+1∑
i=1

(rixi − ki|xi − x0
i |) ≥ r0,

n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

where r0 is a given constant representing the minimal return level on the
portfolio required by the investor, and E(l̂0) is the level of fuzzy turnover
rate.

Similarly, (BP3-4) can be transformed into (P3-2)

(P3-2) min
x

max
t

{∣∣∣∣∣min{0,
n∑

i=1

(rit − ri)xi}
∣∣∣∣∣ , t = 1, 2, · · · , T

}

s.t.
n+1∑
i=1

(rixi − ki|xi − x0
i |) ≥ r0,

n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

where r0 is the minimum level of return, and E(l̂0) is the required level of
fuzzy turnover rate.

If the investor has a tolerance level of risk of the portfolio, we can get (P3-
3) and (P3-4)
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(P3-3) max f(x) =
n+1∑
i=1

(rixi − ki|xi − x0
i |)

s.t. 1
T

T∑
t=1

∣∣∣∣∣min

{
0,

n∑
i=1

(rit − ri)xi

}∣∣∣∣∣ ≤ w0,

n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0);

(P3-4) max f(x) =
n+1∑
i=1

(rixi − ki|xi − x0
i |)

s.t. max
t

⎧⎨⎩
∣∣∣∣∣∣min{0,

n∑
j=1

(rit − ri)xi}
∣∣∣∣∣∣ , t = 1, 2, · · · , T

⎫⎬⎭ ≤ w0,

n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0).

where w0 is a given constant representing the tolerance level of risk, and
E(l̂0) is the required level of fuzzy turnover rate.

(P3-1), (P3-2) and (P3-3), (P3-4) can be used interchangeably to gener-
ate the efficient frontier of portfolios. In this sequel, we only discuss (P3-3)
and (P3-4). To solve (P3-3) and (P3-4), we consider the following transfor-
mation.

At first, introducing a new variable xn+2, let

n+1∑
i=1

ki|xi − x0
i | ≤ xn+2,

we can get the following model
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(P3-5) max f(x) =
n+1∑
i=1

rixi − xn+2

s.t. max
t

{∣∣∣∣∣min{0,

n∑
i=1

(rit − ri)xi}
∣∣∣∣∣ , t = 1, 2, · · · , T

}
≤ w0,

n+1∑
i=1

ki|xi − x0
i | ≤ xn+2,

n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6
)xj ≥ E(l̂0).

Theorem3.1 The portfolio (x∗
1, · · · , x∗

n+1) is an optimal solution of (P3-4),
if and only if there is a variable x∗

n+2, such that (x∗
1, · · · , x∗

n+1, x
∗
n+2) is an

optimal solution of (P2-5).
Proof If (x∗

1, · · · , x∗
n+1) is an optimal solution of (P3-4), let

x∗
n+2 =

n+1∑
i=1

ki|x∗
i − x0

i |,

then (x∗
1, · · · , x∗

n+1, x
∗
n+2) is a feasible solution of (P3-5).

If (x∗
1, · · · , x∗

n+1, x
∗
n+2) is not an optimal solution of (P3-5), then there is

a feasible solution of (P3-5) (x
′
1, · · · , x

′
n+1, x

′
n+2), such that

n+1∑
i=1

rix
′
i − x

′
n+2 >

n+1∑
i=1

rix
∗
i − x∗

n+2.

For any feasible solutions, we have xn+2 ≥
n+1∑
i=1

ki|xi − x0
i |, so

n+1∑
i=1

rix
′
i − ki|x′

i − x0
i | ≥

n+1∑
i=1

rix
′
i − x

′
n+2 >

n+1∑
i=1

rix
∗
i − x∗

n+2

=
n+1∑
i=1

rix
∗
i − ki|x∗

i − x0
i |,

(3.18)

i.e., we can find a feasible solution (x
′
1, · · · , x

′
n+1), such that

n+1∑
i=1

rix
′
i − ki|x′

i − x0
i | >

n+1∑
i=1

rix
∗
i − ki|x∗

i − x0
i |.
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It contradicts that (x∗
1, · · · , x∗

n+1) is an optimal solution of (P3-4).
Contrarily, if (x∗

1, · · · , x∗
n+1, x

∗
n+2) is an optimal solution of (P3-5), then it

is obvious that (x∗
1, · · · , x∗

n+1) is a feasible solution of (P3-4). If it is not an
optimal solution of (P3-4), then there is a feasible solution (x

′′
1 , · · · , x′′

n+1),
such that

n+1∑
i=1

rix
′′
i − ki|x′′

i − x0
i | >

n+1∑
i=1

rix
∗
i − ki|x∗

i − x0
i |.

Let x
′′
n+2 =

n+1∑
i=1

ki|x′′
i − x0

i |, then we have

n+1∑
i=1

rix
′′
i − x

′′
n+2 =

n+1∑
i=1

rix
′′
i − ki|x′′

i − x0
i | >

n+1∑
i=1

rix
∗
i − ki|x∗

i − x0
i |

=
n+1∑
i=1

rix
∗
i − x∗

n+2.

i.e., we can find a feasible solution (x
′′
1 , · · · , x′′

n+2), such that

n+1∑
i=1

rix
′′
i − x

′′
n+2 >

n+1∑
i=1

rix
∗
i − x∗

n+2

It contradicts that (x∗
1, · · · , x∗

n+1, x
∗
n+2) is an optimal solution of (P3-5).

Since∣∣∣∣∣∣min

⎧⎨⎩0,

n∑
j=1

(rit − ri)xi

⎫⎬⎭
∣∣∣∣∣∣ = max

⎧⎨⎩0,

n∑
j=1

(ri − rit)xi

⎫⎬⎭
=

∣∣∣∣∣
n∑

i=1

(rit − ri)xi

∣∣∣∣∣−
n∑

i=1

(rit − ri)xi

2 ,

t = 1, 2, · · · , T.

(P3-5) can be transformed into the following problem
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(P3-6) max f(x) =
n+1∑
i=1

rixi − xn+2

s.t.

∣∣∣∣∣
n∑

j=1

(rit − ri)xi

∣∣∣∣∣−
n∑

i=1

(rit − ri)xi

2 ≤ w0, t = 1, 2, · · · , T,
n+1∑
i=1

ki|xi − x0
i | ≤ xn+2,

n+1∑
i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0).

Let

d+
i =

|xi − x0
i | + (xi − x0

i )
2

,

d−
i =

|xi − x0
i | − (xi − x0

i )
2

,

y+
t =

∣∣∣∣∣
n∑

i=1

(rit − ri)xi

∣∣∣∣∣+
n∑

i=1

(rit − ri)xi

2
,

y−
t =

∣∣∣∣∣
n∑

i=1

(rit − ri)xi

∣∣∣∣∣−
n∑

i=1

(rit − ri)xi

2
.

Then we have
d+

i + d−i = |xi − x0
i |,

d+
i − d−i = xi − x0

i ,
d+

i d−i = 0,
d+

i ≥ 0, d−i ≥ 0,

y+
t + y−

t =

∣∣∣∣∣
n∑

i=1

(rit − ri)xi

∣∣∣∣∣ ,
y+

t − y−
t =

n∑
i=1

(rit − ri)xi,

y+
t y−

t = 0,
y+

t ≥ 0, y−
t ≥ 0.

Thus, (P3-6) can be rewritten as the following problem
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(P3-7) max f(x) =
n+1∑
i=1

rixi − xn+2

s.t. y−
t ≤ w0, t = 1, 2, · · · , T,

n+1∑
i=1

ki(d+
i + d−i ) ≤ xn+2,

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n + 1,
d+

i d−i = 0, i = 1, 2, · · · , n + 1,

y+
t − y−

t =
n∑

i=1

(rit − ri)xi, t = 1, 2, · · · , T,

y+
t y−

t = 0, t = 1, 2, · · · , T,
n+1∑
i=1

xi = 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
d+

i ≥ 0, d−i ≥ 0, i = 1, 2, · · · , n + 1,
y+

t ≥ 0, y−
t ≥ 0, t = 1, 2, · · · , T.

Hence, we can obtain the following theorem:
Theorem3.2 Portfolio (x∗

1, · · · , x∗
n+1) is an optimal solution of (P3-6),

if and only if d+∗
1 , · · · , d+∗

n+1, d
−∗
1 , · · · , d−∗

n+1, y
+∗
1 , · · · , y+∗

T , y−∗
1 , · · · , y−∗

T , such
that (x∗

1, · · · , x∗
n+2, d

+∗
1 , · · · , d+∗

n+1, d
−∗
1 , · · · , d−∗

n+1, y
+∗
1 , · · · , y+∗

T , y−∗
1 , · · · , y−∗

T )
is an optimal solution of (P3-7).

Eliminating all the complementarity constraints d+
i d−i = 0, i = 1, 2, · · · , n+

1 and y+
t y−

t = 0, t = 1, 2, · · · , T, in (P3-7), we can get the following problem

(P3-8) max f(x) =
n+1∑
j=1

rixi − xn+2

s.t. y−
t ≤ w0, t = 1, 2, · · · , T,

n+1∑
i=1

ki(d+
i + d−i ) ≤ xn+2,
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d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n + 1,

y+
t − y−

t =
n∑

i=1

(rit − ri)xi, t = 1, 2, · · · , T,

n+1∑
i=1

xi = 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
d+

i ≥ 0, d−i ≥ 0, i = 1, 2, · · · , n + 1,
y+

t ≥ 0, y−
t ≥ 0, t = 1, 2, · · · , T.

Theorem3.3 Let (x∗
1, · · · , x∗

n+2, d
+∗
1 , · · · , d+∗

n+1, d
−∗
1 , · · · , d−∗

n+1, y
+∗
1 , · · · ,

y+∗
T , y−∗

1 , · · · , y−∗
T ) is an optimal solution of (P3-7), then (x∗

1, · · · , x∗
n+2,

d+′
1 , · · · , d+′

n+1, d
−′
1 , · · · , d−′

n+1, y
+′
1 , · · · , y+′

T , y−′
1 , · · · , y−′

T ) is an optimal solution
of (P3-8), where

d+′
i =

{
d+∗

i − d−∗
i , if d+∗

i > d−∗
i > 0,

0, if d−∗
i ≥ d+∗

i > 0,

d−
′

i =
{

0, if d+∗
i > d−∗

i > 0,
d−∗

i − d+∗
i , if d−∗

i ≥ d+∗
i > 0,(

d+′
i

d−
′

i

)
=
(

d+∗
i

d−∗
i

)
, if d+∗

i d−∗
i = 0, (3.19)

y+′
t =

{
y+∗

t − y−∗
t , if y+∗

t > y−∗
t > 0,

0, if y−∗
t ≥ y+∗

t > 0,

y−′
t =

{
0, if y+∗

t > y−∗
t > 0,

y−∗
t − y+∗

t , if y−∗
t ≥ y+∗

t > 0,(
y+′

t

y−′
t

)
=
(

y+∗
t

y−∗
t

)
, if y+∗

t y−∗
t = 0.

Proof Since the objective functions of (P3-7) and (P3-8) are the same, and
it is obvious that each feasible solution of (P3-7) is a feasible solution of (P3-8)
also, we only need to prove that (x∗

1, · · · , x∗
n+2, d

+′
1 , · · · , d+′

n+1, d
−′
1 , · · · , d−′

n+1,

y+′
1 , · · · , y+′

T , y−′
1 , · · · , y−′

T ) is a feasible solution of (P2-7). It is easy to ver-
ify that the constraint conditions 3–8 are satisfied. Since d+′

i , d−
′

i , i =
1, 2, · · · , n + 1, y+′

t , y−′
t , t = 1, 2, · · · , T and (x∗

1, · · · , x∗
n+2, d

+∗
1 , · · · , d+∗

n+1,

d−∗
1 , · · · , d−∗

n+1, y
+∗
1 , · · · , y+∗

T , y−∗
1 , · · · , y−∗

T ) is feasible. Due to

d+′
i + d−

′
i =

⎧⎨⎩
d+∗

i − d−∗
i ≤ d+∗

i + d−∗
i , if d+∗

i > d−∗
i > 0,

d−∗
i − d+∗

i ≤ d+∗
i + d−∗

i , if d−∗
i ≥ d+∗

i > 0,
d+∗

i + d−∗
i , if d−∗

i d+∗
i = 0
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and
n+1∑
i=1

ki(d+′
i + d−

′
i ) ≤

n+1∑
i=1

ki(d+∗
i + d−∗

i ) ≤ x∗
n+1.

We can prove that constraint condition 2 of (P3-7) is satisfied. By (3.19), it
is easy to verify that constraint condition 1 is satisfied too.

By Theorem 3.3, we can get the solution of (P3-7) by solving (P3-8).
Let y = max{y−

t , t = 1, 2, · · · , T}, and eliminate y+
t , we can get the follow-

ing problem

(P2-9) max f(x) =
n+1∑
i=1

rixi − xn+2

s.t. y ≤ w0,
n+1∑
i=1

ki(d+
i + d−i ) ≤ xn+2,

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n + 1,

y +
n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, · · · , T,

n+1∑
i=1

xi = 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
d+

i ≥ 0, d−i ≥ 0, i = 1, 2, · · · , n + 1,
y ≥ 0.

Thus, (P3-4) is transformed into a standard linear programming prob-
lem (P3-9). In the same way, (P3-3) can be transformed into the following
problem
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(P3-10) max f(x) =
n+1∑
i=1

rixi − xn+2

s.t. 1
T

T∑
t=1

yt ≤ w0,

n+1∑
i=1

ki(d+
i + d−i ) ≤ xn+2,

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n + 1,

yt +
n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, · · · , T,

n+1∑
i=1

xi = 1,

n+1∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

0 ≤ xi ≤ ui, i = 1, 2, · · · , n + 1,
d+

i ≥ 0, d−i ≥ 0, i = 1, 2, · · · , n + 1,
yt ≥ 0, t = 1, 2, · · · , T.

(P3-9) and (P3-10) are linear programming problems. A few linear pro-
gramming algorithms, for example, the simplex method, can be used to solve
it efficiently.

3.5 Numerical Example

Chinese securities markets comprise the Shanghai Stock Exchange, the Shen-
zhen Stock Exchange, the Hong Kong Stock Exchange and the Taipei Stock
Exchange. In this section, we give an example to illustrate the model for port-
folio selection proposed in this chapter. We suppose that an investor wants to
choose twelve different types of stocks and a kind of risk-less asset from the
Shanghai Stock Exchange for his investment. The names of the twelve kinds
of stocks are given in Table 12.1.

Table 3.1. Name of Stocks

Handan Gangtie Qilu Shihua Shanghai Jichang

Wukuang Fazhan Gezhouba Jiangnan Zhonggong

Guangzhou Konggu Qinghua Tongfang Shanghai Jiche

Dongfang Hangkong Dongfang Jituan Diyibaihuo

The rate of transaction costs for risk-less assets is 0.142 5%. The rate of
transaction costs for risky assets is 0.0055.

Since we assume that the future turnover rates of the securities are trape-
zoidal fuzzy numbers, we need to estimate the tolerance interval, left width
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and right width of the fuzzy numbers. In the real world of portfolio manage-
ment, the investor can obtain values of these parameters by using the Delphi
Method, based on experts’ knowledge. In our example, based on historical
data of the securities turnover rates, we adopt the frequency statistic method
to estimate these parameters. In the following, we give the estimation method
for the fuzzy turnover rates for Stock Guangzhou Konggu in detail. First, we
use historical data (daily turnover rates from March, 2000 to April, 2003) to
calculate the frequency of historical turnover rates. Fig 4 shows the frequency
distribution of historical turnover rates for the stocks. Note that most of the
historical turnover rates fall into the intervals [0.020, 0.030], [0.030, 0.040] and
[0.040, 0.050]. We assume mean values 0.033 and 0.047 of historical turnover
rates fall into intervals [0.020, 0.030] and [0.040, 0.050], as the left and the
right endpoints of the tolerance intervals, respectively. Therefore, the toler-
ance interval of the fuzzy turnover rate is [0.033, 0.047]. By observing all the
historical data, we use 0.006 and 0.194 as the minimum and the maximum
possible values of uncertain turnover rates in the future. Thus, the left width
is 0.027 and the right width is 0.147. The fuzzy turnover rate of Stock 1
is (0.033, 0.047, 0.027, 0.147). Using a similar method, we obtain the fuzzy
turnover rates of all the 12 stocks. These are listed in Table 4.

Fig. 3.1. Frequency distribution of historical turnover rates for StockGuangzhou
Konggu
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We collect historical data of the twelve stocks from January, 1999 to De-
cember, 2002. The data are downloaded from the web-site www.stockstar.com.
Then we use one month as a period to obtain the historical rates of returns for
forty-eight periods. With these historical data, the expected rates of returns
of the stocks are listed in Table3.3.

Based on the above data, we can get investment strategies by applying
the proposed models. Assume the minimum level of liquidity is 0.050. We
can obtain the optimal investment strategy by solving (P3-9) or (P3-10). The
risk and return of the portfolio obtained by (P3-9), are listed in Table3.4, the
detailed investment is listed in Table3.5; risk and return of portfolio obtained
by (P3-10) is listed in Table3.6, the detailed investment is listed in Table3.7.
Based on the data in Table 3.4, we can get the efficient frontier of the mean-
Minimax Semi-absolute deviation model (see Fig 3.2); based on the data in
Table 3.6, we can get the efficient frontier of the mean-Semi-absolute deviation
model (see Fig 3.3).

3.6 Conclusion

In addition to the more usual factors of expected return and risk, liquidity
is considered in portfolio selection problems. The turnover rates of securities
are used to measure their liquidity. Considering the three factors, a portfolio
optimization model with fuzzy liquidity constraints is proposed. An example
is given to illustrate the behavior of the proposed portfolio selection model,
using real data from the Shanghai Stock Exchange. The computation results
show that the portfolio selection model with fuzzy liquidity constraints can
generate a favorite portfolio selection strategy, according to the investor’s
degree of satisfaction.

Table 3.2. Fuzzy turnover rate of stocks

Stock tolerance left width right width

HDGT [0.022, 0.034] 0.018 0.111

QLSH [0.032, 0.044] 0.027 0.110

SHJC [0.014, 0.025] 0.012 0.101

WKFZ [0.016, 0.034] 0.012 0.082

GZB [0.012, 0.026] 0.010 0.082

JNZG [0.032, 0.096] 0.018 0.099

GZKG [0.033, 0.047] 0.027 0.147

QHTF [0.025, 0.037] 0.022 0.119

SHQC [0.031, 0.057] 0.026 0.081

DFHK [0.023, 0.046] 0.017 0.139

DFJT [0.016, 0.045] 0.012 0.101

DYBH [0.023, 0.036] 0.020 0.111
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Table 3.3. Expected return of stocks

Stock HDGT QLSH SHJC WKFZ GZB

Expected return 0.006 3 0.006 6 0.010 7 0.023 4 0.007 1
Stock JNZG GZKG QHTF SHQC DFHK

Expected return 0.009 4 0.016 7 0.026 3 0.008 1 0.016 0
Stock DFJT DYBH

Expected return 0.022 6 0.012 4

Fig. 3.2. Efficient frontier of Mean-Minimax Semi-absolute Deviation Model

Table 3.4. Risk, return and liquidity by (P2-9)

portfolio 1 2 3 4 5 6

return 0.001 54 0.002 82 0.004 24 0.005 66 0.007 08 0.008 50

risk 0.001 0.010 0.020 0.030 0.040 0.050

liquidity 0.099 5 0.095 2 0.090 4 0.085 7 0.080 9 0.076 1
portfolio 7 8 9 10 11 12

return 0.009 92 0.011 34 0.014 18 0.016 54 0.018 28 0.019 7
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Table 3.5. Investment by (P3-9)

Stock HDGT QLSH SHJC WKFZ GZB

portfolio 1 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

portfolio 4 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

portfolio 6 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
Stock JNZG GZKG QHTF SHQC DFHK

portfolio 1 0.001 9 0.000 0 0.001 8 0.000 0 0.000 0

portfolio 4 0.056 0 0.000 0 0.055 3 0.000 0 0.000 0

portfolio 6 0.093 4 0.000 0 0.092 1 0.000 0 0.000 0
Stock DFJT DYBH Saving

portfolio 1 0.006 3 0.000 0 0.990 0

portfolio 4 0.184 7 0.000 0 0.704 0

portfolio 6 0.307 8 0.000 0 0.506 7

Table 3.6. Risk, return and liquidity by (P3-10)

portfolio 1 2 3 4 5 6

return 0.001 93 0.002 46 0.004 06 0.006 72 0.009 38 0.012 05

risk 0.001 0.002 0.005 0.010 0.015 0.020

liquidity 0.098 2 0.096 5 0.091 4 0.082 8 0.074 2 0.065 6
portfolio 7 8 9 10 11 12

return 0.014 71 0.017 27 0.018 43 0.019 00 0.019 54 0.020 02

risk 0.025 0.030 0.035 0.040 0.045 0.050

liquidity 0.056 9 0.050 0 0.050 0 0.050 0 0.050 0 0.050 0

Table 3.7. Investment by (P3-10)

Stock HDGT QLSH SHJC WKFZ GZB

portfolio 1 0.000 0 0.000 0 0.000 0 0.003 0 0.000 0

portfolio 8 0.000 0 0.000 0 0.000 0 0.046 0 0.000 0

portfolio 12 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
Stock JNZG GZKG QHTF SHQC DFHK

portfolio 1 0.000 0 0.000 0 0.006 6 0.000 0 0.000 0

portfolio 8 0.000 0 0.000 0 0.267 7 0.000 0 0.000 0

portfolio 12 0.000 0 0.000 0 0.894 9 0.000 0 0.000 0
Stock DFJT DYBH Saving

portfolio 1 0.021 6 0.000 0 0.968 8

portfolio 8 0.050 2 0.000 0 0.083 8

portfolio 12 0.120 0 0.000 0 0.054 9
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Fig. 3.3. Efficient frontier of Mean-Semi-absolute Deviation Model

Fig. 3.4. The effect of transaction costs on the efficient frontier
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Fig. 3.5. The effect of liquidity on the efficient frontier
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Ramaswamy’s Model

4.1 Introduction

Ramaswamy (1998) presented a bond portfolio selection method using the
fuzzy decision theory in a BIS (Bank for international settlements) working
paper. The proposed approach can ensure that investors get a given minimum
rate if return.

In order to meet the return target for assets under management, fund
managers have to constantly judge the direction of financial market moves.
Due to the inherent uncertainty of financial market, fund managers are very
cautious in expressing their views about the market. Ramaswamy described
the information content in such cautious views as fuzzy or vague, in terms of
both the direction and the size of market moves. Ramaswamy assumed that
the investment horizon is typically one to three months and the investment
universe consists of government debt securities and plain vanilla options on
these securities in his paper. The target rate of return were assumed to be a
certain number of basis points above Libor over the given investment horizon.
Considering the investment horizon and the selected securities, the methodol-
ogy is suitable for central banks managing their short-term liquidity portfolio
especially.

Ramaswamy pointed out that a fund manager structuring a fixed-income
portfolio may have only vague views regarding future interest rate scenar-
ios and these can broadly be described as being bullish, bearish or neutral.
The vague views are based on decision maker’s intuitive opinions. Under these
fuzzy uncertain circumstances, the decision maker could characterize the range
of acceptable solutions to the portfolio selection problem as a fuzzy set. Fuzzy
set theory is a very efficient tool when dealing with problems in which the
source of imprecision is the absence of sharply defined criteria of class mem-
bership rather than the presence of random variables. In next section, we will
introduce the fixed-income portfolio selection problem in the framework of
fuzzy decision theory.
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4.2 Model Formulation

Assume that a fund manager who has to choose a structured portfolio from
an investment universe of n assets with xmin

i and xmax
i being the minimum

and maximum weight of asset i (i = 1, 2, · · · , n) in the portfolio. In order to
select the structured portfolio, the fund manager may examine m potential
market scenarios, and for each of these scenarios he/she may wish to maximize
the portfolio return. Rik denotes the return from asset i (i = 1, 2, · · · , n) in
market scenario k (k = 1, 2, · · · ,m) at the end of the investment period. So

Rk(x) =
n∑

i=1

Rikxi denote the portfolio return for scenario k (k = 1, 2, · · · ,m).

Denote by Rmin
k and Rmax

k the minimum and the maximum expected re-
turn for market scenario k (k = 1, 2, · · · ,m). Note that it is quite easy for the
fund manager to provide information on the expected target range of return
for various scenarios, rather than to define the a priori probabilities for dif-
ferent scenarios. Using the linear membership function µRk

(x), it is possible
to compute the degree of satisfaction for any given portfolio x for market
scenario k (k = 1, 2, · · · ,m).

µRk
(x) =

⎧⎪⎨⎪⎩
0, ifRk(x) ≤ Rmin

k ,
Rk(x)−Rmin

k

Rmax
k

−Rmin
k

, ifRmin
k < Rk(x) ≤ Rmax

k ,

1, ifRk(x) > Rmax
k .

To achieve the return objective the fund manager could formulate the
following optimization problem:

max min {µR1(x), µR2(x), · · · , µRm(x)}
s.t. bmin

j ≤
n∑

i=1

aijxi ≤ bmax
j , j = 1, · · · , P.

By introducing λ, the above optimization problem can be transformed
into the following problem

max λ
s.t. µRk

(x) ≥ λ, k = 1, 2, · · · ,m,

bmin
j ≤

N∑
i=1

aijxi ≤ bmax
j , j = 1, · · · , P.

For obtaining the goal of portfolio return, the fund manager can get in-
vestment strategy by solving the following problem

max Rk =
n∑

i=1

Rikxi, k = 1, 2, · · · ,m

s.t.
n∑

i=1

xi = 1,

xmin
i ≤ xi ≤ xmax

i , i = 1, · · · , n.
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The above problem is a multi-objective programming problem; one can
get a Pareto optimal solution by solving the following problem

max λ
s.t. wkRk ≥ λ, k = 1, 2, · · · ,m,

n∑
i=1

xi = 1,

xmin
i ≤ xi ≤ xmax

i , i = 1, · · · , n.

Thus, Ramaswamy proposed the following portfolio selection model based
on the fuzzy decision making theory

max
x,λ

λ

s.t. µRk
(x) ≥ λ, k = 1, · · · ,m,

n∑
i=1

xi = 1,

xmin
i ≤ xi ≤ xmax

i , i = 1, · · · , n.

4.3 Conclusion

In this chapter, we introduce Ramaswamy’s Model. Ramaswamy (1998) gave
a numerical example in which the investor is only allowed to hold govern-
ment bonds and plain vanilla options, and only two scenarios are assumed:
“bullish” and “bearish”. One can refer to Ramaswamy (1998) for details of
the numerical example.
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León-Liern-Vercher’s Model

5.1 Formulations of Portfolio Selection Problem

Markowitz (1952) proposed the mean variance model for the portfolio se-
lection problem. The model is a quadratic programming problem (MV), in
which risk variance is minimized and investment diversification is treated in
computational terms

(MV) min
n∑

i=1

n∑
j=1

σijxixj

s.t.
n∑

i=1

E(Ri)xi ≥ ρ,

n∑
i=1

xi = 1,

li ≤ xi ≤ ui, i = 1, · · · , n,

where xi represents the percentage of money invested in asset i, Ri is the
random variable representing the return of asset i, σij is the covariance be-
tween returns of asset i and of asset j, and ρ is a parameter representing the
minimal rate of return required by an investor. Also, ui(li) is the maximum
(minimum) amount of money which can be invested in asset i.

The average vector of returns, and the elements of the covariance matrix
over T periods, can be approximated by

E(Ri) =
1
T

T∑
k=1

rik, i = 1, 2, · · · , n

and

σ̂ij =
1
T

T∑
k=1

(rik − E(Ri))(rjk − E(Rj)), i, j = 1, 2, · · · , n,



50 5 León-Liern-Vercher’s Model

where rik is the realization of the random variable Ri during period k (k =
1, 2, · · · , T ) and is obtainable through historical data.

Sharpe (1963) formulated the MV problem as a simplified quadratic pro-
gramming model by using market indices to express assets’ returns. The sim-
plified quadratic model is called the single index model. It is well known that
the mean variance portfolio models proposed by Markowitz gave rise to a va-
riety of regression models, including the extensively used CAPM, which was
subsequently developed by Sharpe and Lintner.

Konno and Yamazaki (1991) proposed a linear portfolio optimization
model: the L1 risk model. The measure of risk is minimizing the sum of ab-
solute deviations from the averages associated with xi choices. By using the
same notation as in the (MV) problem, we have

min E

(∣∣∣∣∣
n∑

i=1

Rixi − E

(
n∑

i=1

Rixi

)∣∣∣∣∣
)

s.t.
n∑

i=1

E(Ri)xi ≥ ρM0,

n∑
i=1

xi = M0,

li ≤ xi ≤ ui, i = 1, · · · , n.

The above problem can be transformed into

(LMAD) min 1
T

T∑
k=1

yk

s.t. yk +
n∑

i=1

(rik − E(R̂i))xi ≥ 0, k = 1, 2, · · · , T,

yk −
n∑

i=1

(rik − E(R̂i))xi ≥ 0, k = 1, 2, · · · , T,

n∑
i=1

E(R̂i))xi ≥ ρM0,

n∑
i=1

xi = M0,

li ≤ xi ≤ ui, i = 1, · · · , n.

It has been shown that the MV and LMAD models usually generate similar
portfolios. If the expected return, ρ, belongs to

[ min
1≤i≤n

{E(Ri)}, max
1≤i≤n

{E(Ri)}],

and there are no diversification conditions (bound-type constraints on the
assets) it is well known that the (MV) and (LMAD) problems are always
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feasible. But in many situations, when attempting to reflect the diversification
proposed by the investor, infeasibility surfaces.

León, Liern and Vercher (2002) proposed an algorithm to repair infeasi-
bility by using a fuzzy method. Results of the numerical example show that
the conditions in this new feasible instance are valid and reasonable for the
investor.

5.2 Analysis of Infeasibility of Portfolio Selection
Problem

Denote the linearly constrained portfolio selection problem by

(P) min{f(x) : A1x ≥ B1,A2x ≤ B2,A3x = B3, x ≥ 0},

where x ∈ Rn,Ai ∈ Mpi×n(R),Bi ∈ Rpi (i = 1, 2, 3), f is a real-valued
function in Rn, and assume that P is an infeasible instance. A conceptual
assumption underlying León, Liern and Vercher’s approach is that problem P
is correctly formulated. In particular, assume that the investor diversification
conditions are logical in the sense that the set of bounds verifies that

{x ∈ Rn : li ≤ xi ≤ ui, 1 ≤ i ≤ n,
n∑

i=1

xi = 1} 	= Φ.

It would be natural for every reasonable investor to provide a set of bounds
like this. When the expected benefit is not compatible with the diversification
constraints, the infeasibility appears. Then, removing or changing one single
constraint (that associated to q, for instance) is not specially attractive.

Denote by X the set of hard constraints, i.e.

X := {x ∈ Rn : H1x ≥ β1,H2x ≤ β2,A3x = B3, x ≥ 0},

where Hi ∈ M(pi−mi)×n(R), βi ∈ Rpi−mi (i = 1, 2) and A3 ∈ Mp3×n(R),
B3 ∈ Rp3 .

Assume X is a nonempty set, then P can be rewritten as

(P) min f(x)
s.t. A1x ≥ b1,

A2x ≤ b2,
x ∈ X,

where A1 ∈ Mm1×n(R), A2 ∈ Mm2×n(R), b1 ∈ Rm1 , b2 ∈ Rm2 .
In order to attain feasibility in P, León, Liern and Vercher relax these

constraints in a certain degree. Assume that m1 greater or equal type
fuzzy constraints B̃1, B̃2, · · · , B̃m1 , m2 less or equal type fuzzy constraints
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C̃1, C̃2, · · · , C̃m2 , mi ≤ pi (i = 1, 2). Denote by µB̃i
(x) and µC̃i

(x) the mem-
bership functions for B̃i and C̃i, respectively. León, Liern and Vercher gave
the following concept of feasibility:
Definition5.1 Define the fuzzy set of feasible solutions of P Ẽ :=

{(x, µẼ(x)), x ∈ X}, where µẼ(x)

µẼ(x) = min{µB̃1
(x), · · · , µB̃m1

(x), µC̃1
(x), · · · , µC̃m2

(x)}.

Notice that the fuzzy set Ẽ is non-empty, so the following fuzzy program
is consistent: (FP) find {x ∈ X : A1x ≥ b1, A2 ≤ b2}.

The solution with the highest degree of membership is given by

xmax = arg(max
x∈X

min
i,j

{µB̃i
(x), µC̃j

(x)}).

If the investor accepts the solution xmax, ones have a viable portfolio se-
lection. In the proposed approach, the objective function does not intervene
in the proposed selection associated with a degree of investor satisfaction with
respect to the constraints. We can find that if a decision maker also has aspi-
ration levels for the risk, a symmetric fuzzy multi-objective formulation that
no longer distinguishes between objectives and constraints can be used.

5.3 Fuzzy Portfolio Selection Model

Assume that the decision maker has target values for both the expected return
rate ρ and the diversification conditions (li, ui) and the targets lead to an
infeasible instance of the problem. León, Liern and Vercher used an interactive
system to solve the problem of getting a viable portfolio selection.

At the first stage, one can apply the scheme introduced in above section,
which associates certain related membership functions to the soft inequality
constraints while leaving the hard constraints, unchanged. At the second stage,
investor’s opinion can be used to select a portfolio in the framework of the
trade-off analysis.

If one use (Ax)i ≥ bi, x ∈ Rn to represent a fuzzy inequality relation, the
degree of satisfaction of this ith constraint is

µB̃i
(x) =

⎧⎨⎩
0, if (Ax)i < bi − ri,

gi((Ax)i), if bi − ri ≤ (Ax)i ≤ bi,
1, if (Ax)i ≥ bi,

where ri is the maximum violation allowed for the ith constraint and it is
usually assumed that gi((Ax)i) ∈ [0, 1] is such that the higher the violation
of the constraint, the lower the value of gi((Ax)i).

Analogously for the fuzzy relation (Ax)i ≤ bi, x ∈ Rn the membership
function is
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µC̃j
(x) =

⎧⎨⎩
0, if (Ax)j > bj + sj ,
gj((Ax)j), if bj ≤ (Ax)j ≤ bj + sj ,
1, if (Ax)j ≤ bj .

Several types of function gi((Ax)i) and gj((Ax)j) can be used to construct
the membership functions for the fuzzy constraints. Then, the decision maker
provides or the analyst determines the tolerances (ri, sj). One can compute
the tolerances by means of the shadow prices of the solution of the Phase I
problem (PI), associated to the infeasible instance P:

(PI) min
m1∑
i=1

ai

s.t. A1x − Im1h + Im′
h + Im1a = b1(ω),

A2x + Im2h
′
= b2(π),

H1(x) ≥ β1(q),
H2(x) ≤ β2(p),
A3x = B3(y),
h, h

′
, a ≥ 0, x ∈ X.

where h are the slack variables, and a are the artificial ones. The dual vari-
ables associated to the soft constraints are ω and π and the dual variables
corresponding to the hard constraints are denoted by q, p and y.

Let z∗ be the optimal value of (PI) that provides the sum of infeasibilities
and let (ω∗, π∗, q∗, p∗, y∗) be an optimal solution of its dual. The tolerances
are defined by:

ri =

{
0, if ω∗

i = 0,
z∗
ω∗

i
, if ω∗

i > 0.

sj =

{
0, if π∗

i = 0,

− z∗
π∗

i
, if π∗

i < 0.

For each soft constraint, ones have both the goal and the tolerance of
the investor. ones can therefore construct their membership functions, except
for those with nil tolerance, which do not need to be perturbed. Concerning
membership functions for the soft diversification constraints, xi ≥ li or xj ≤
uj for some i; j, León, Liern and Vercher propose to use linear functions, i.e.,

µB̃i
(x) = gi((Ax)i) = 1 − li − xi

ri
, li − ri < xi < li

and
µC̃j

(x) = gj((Ax)j) = 1 − xj − uj

sj
, uj < xj < uj + sj .

Denote the expected return constraint,
n∑

i=1

E(Ri)xi ≥ ρ.
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. Ones will also use a linear membership function for this constraint. In case
the decision maker should want to assign higher preference to the expected
return than the diversification goals, another type of membership function
should be used; but this must be done at the second stage of the proposed
algorithm.

León, Liern and Vercher proposed a procedure to make an infeasible in-
stance of P viable. At the first stage, a feasible portfolio selection is deter-
mined; then ones ask for investor opinion in order to modify the proposal, if
required.

Stage I: Viability
Step 1: Classifying the constraints. Firstly determining which soft and hard

constraints are prescribed in the linearly constrained problem P. They could
be different depending on the considering model (MV, LMAD, etc.).

Step 2: Computing the tolerances and defining the membership functions.
Let z∗ be the optimal value of (PI), and let (ω∗

1 , · · · , ω∗
m1

, π∗
1 , · · · , π∗

m2
)

be an optimal solution of its dual. Calculate the tolerances and the vectors:
R = (r1, r2, · · · , rn) and S = (s1, s2, · · · , sn),
where

ri =

{
0, if ω∗

i = 0,
z∗
ω∗

i
, if ω∗

i > 0.

sj =

{
0, if π∗

i = 0,

− z∗
π∗

i
, if π∗

i < 0.

As it will be shown in Theorem 1, if the user considers it acceptable to modify
the RHS terms of the soft constraints by at least 1/k in the direction (R, S),
where k is the number of non-null components of vector (R, S) , it makes sense
to construct the membership functions in order to obtain a viable instance.
A linear membership function for every soft diversification constraint with a
non-null shadow price is considered.

µB̃i
(x) = gi((Ax)i) = 1 − li − xi

ri
, li − ri < xi < li

and
µC̃j

(x) = gj((Ax)j) = 1 − xj − uj

sj
, uj < xj < uj + sj .

Step 3: Auxiliary linear problem. In order to determine the best solution,
i.e. the solution with the highest degree of satisfaction in Ẽ, the following
auxiliary crisp problem is need to solve:

(AP) max φ
s.t. A1x + φR ≥ b1,

A2x − φS ≤ b2,
x ∈ X.
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Let (xmax, φmin) be the optimal solution of (AP), the degree of satisfaction
of xmax is λ∗ = 1 − φ∗ where φ∗ = min{φmin, 1}.

Step 4: Solving the fuzzy reformulation. Applying a parametric program-
ming formulation for the resource set to the models,

(FP) min f(x)
s.t. A1x + φR ≥ b1,

A2x − φS ≤ b2,
x ∈ X.

and then one can obtain a set of solutions φ∗ ≤ φ ≤ 1, x(φ) = Argmin{f(x) :
A1x ≥ b1 − φR, A2x ≤ b2 + φS, x ∈ X} depending on the values of
parameters φ, and φ∗ ≤ φ ≤ 1.

Stage II: Investor opinion
Option 1: Satisfying solution. One can ask the decision maker for reason-

able values of parameter φ and solve the corresponding crisp problem (MV or
LMAD). Notice that for any solution x∗

0, obtained for a given φ0, its degree
of satisfaction is λ0 = 1 − φ0.

Option 2: Non-satisfying solution.
(a) Because of the constraints, suppose that at the original stage one had

the condition xi0 ≤ ui0, and that the new values proposed at the end of Stage
I, [ui0, ũi0], do not seem appropriate to the decision maker, then choosing a
quantity u

′
i0. Then fixing xi0 = u

′
i0, and substituting it into the model. These

arguments are clearly extensible to cases involving more than one constraint.
These new modifications could provoke other disagreements.

(b) Because of the risk in this case, one think that a fuzzy multi-objective
decision approach would be the most appropriate. The following results justify
that the algorithm is well defined.

Theorem5.1 If problem (AP) is feasible, then φmin ≥ 1/k, where k
denotes the number of non-null components of vector (R, S).

Proof. It suffices to construct a feasible solution for the dual of (AP) with
objective value 1/k, because this provides us with a lower bound for the
optimal value of (AP).

Considering the dual problem of (PI):

(DPI) max ωb1 + πb2 + qβ1 + pβ2 + yB3

s.t. ωA1 + πA2 + qH1 + pH2 + yA3 ≤ 0,
0 ≤ ωi ≤ 1, πj ≤ 0, ∀i, j,
q ≥ 0, p ≤ 0.

whose optimal solution was denoted by (ω∗, π∗, q∗, p∗, y∗) and its optimal
value as z∗.

And considering the dual problem of (AP):
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(DAP) max γb1 + τb2 + gβ1 + tβ2 + vB3

s.t. γA1 + τA2 + gH1 + tH2 + vA3 ≤ 0,
γR − τS ≤ I,
γ ≥ 0, τ ≤ 0,
g ≥ 0, t ≤ 0.

Fixing

γ =
ω∗

kz∗
, τ =

π∗

kz∗
, g =

q∗

kz∗
, t =

p∗

kz∗
, v =

y∗

kz∗
,

one has a feasible solution (γ, τ, g, t, v) for (DAP) with objective value 1/k.

Corollary 5.1 Given an infeasible instance of the portfolio selection
problem (P), our algorithm obtains a solution with satisfaction degree λ∗ ∈
[0, 1 − 1/k].

5.4 Numerical Example

In order to show the performance of our method, León, Liern and Vercher use
the set of historical data shown in Table 1, used by Markowitz in 1959. The
columns 2-10 represent American Tobacco, A.T.& T., United States Steel,
General Motors, Atcheson & Topeka & Santa Fe, Coca-Cola, Borden, Fire-
stone and Sharon Steel securities data.

Suppose that an investor wants to allocate one unit of wealth among each
of the nine assets. Their expected return q must be greater than or equal
to 16.5%. The portfolio must be selected in such a way that the minimum
investments in assets 1, 3 and 6 must be of 5%, 7.5% and 7.5% of the total,
respectively, and the maximum investments in assets 4 and 5 will be 33%
and 25% of the total, i.e.,

l1 = 0.05, l3 = l6 = 0.075, u4 = 0.33, u5 = 0.25.

So P is an infeasible instance. The Phase I linear program associated to
P.

(PI) min a1 + a3 + a6 + a
′
1

s.t. E(x) + a
′
1 − h

′
1 = ρ,

xi − hi + ai = li, i = 1, 3, 6,
xj + hj = uj , j = 4, 5,
9∑

i=1

xi = 1,

xi, hi, h
′
i, ai, a

′
1 ≥ 0, i = 1, · · · , 9.

The optimal value of (PI) is z∗ = 0.771 861 × 10−2, and the dual prices
are

ω1 = 1, ω2 = 0.080 111, ω3 = 0,
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Table 5.1. Historical returns of securities 1

1 2 3 4 5

Am.T A.T.T U.S.S G.M. A.T.Sfe

1937 −0.305 −0.173 −0.318 −0.477 −0.457

1938 0.513 0.098 0.285 0.714 0.107

1939 0.055 0.200 −0.047 0.165 −0.424

1940 −0.126 0.03 0.104 −0.043 −0.189

1941 -0.280 −0.183 −0.171 −0.277 0.637

1942 −0.003 0.067 −0.039 0.476 0.865

1943 0.428 0.300 0.149 0.225 0.313

1944 0.192 0.103 0.260 0.290 0.637

1945 0.446 0.216 0.419 0.216 0.373

1946 −0.088 −0.046 −0.078 −0.272 −0.037

1947 −0.127 −0.071 0.169 0.144 0.026

1948 −0.015 0.056 −0.035 0.107 0.153

1949 0.305 0.038 0.133 0.321 0.067

1950 −0.096 0.089 0.732 0.305 0.579

1951 0.016 0.090 0.021 0.195 0.040

1952 0.128 0.083 0.131 0.390 0.434

1953 −0.010 0.035 0.006 −0.072 −0.027

1954 0.154 0.176 0.908 0.715 0.469

ω4 = 0.090 944, π1 = −0.027 389, π2 = −0.052 056.

Then, the tolerances that define the vectors R, S are:

R = (0.007 719, 0.096 349, 0, 0.084 872),

S = (0.281 815, 0.148 276).

The optimal value of the associated auxiliary problem (AP) is φmin =
1/5, the lower bound in 5.3. If the investor accepts this proposal, the new
RHS values appear in Table 5.4. These results are valid both for MV and
LMAD objectives, because the objective function has not intervened until
now. Table 5.5 and Table 5.6 show the portfolio selection obtained by applying
the parametric programming formulation, for both MV and LMAD models.

Suppose that the investor wants to reduce the risk associated to the portfo-
lio with satisfaction 0.8 by approximately 10%, i.e. desired risk is 0.058. How-
ever, it is more important not to decrease (too much) the expected return. As
the risk value associated with 0.7 is lower than DS, a portfolio selection with
a satisfaction level greater than 0.7 and lower than 0.8 could be determined
by considering a grid for λ ∈ [0.7, 0.8]. As the investor considers the expected
benefits constraint more important than the remaining constraints, one can
consider the risk as a soft constraint, with a non-linear membership function.

León, Liern and Vercher calculate the tolerances analogously in Step 2 (it
is not exactly the same because in this case we have a non-linear constraint).



58 5 León-Liern-Vercher’s Model

Table 5.2. Historical returns of securities 2

6 7 8 9

C.C Bdn Frstn. S.S

1937 −0.065 −0.319 −0.400 −0.435

1938 0.238 0.076 0.336 0.238

1939 −0.078 0.381 −0.093 −0.295

1940 −0.077 −0.051 −0.090 −0.036

1941 −0.187 0.087 -y0.194 −0.240

1942 0.156 0.262 0.113 0.126

1943 0.351 0.341 0.580 0.639

1944 0.233 0.227 0.473 0.282

1945 0.349 0.352 0.229 0.578

1946 −0.209 0.153 −0.126 0.289

1947 0.355 −0.099 0.009 0.184

1948 −0.231 0.038 0.000 0.114

1949 0.246 0.273 0.223 −0.222

1950 −0.248 0.091 0.650 0.327

1951 −0.064 0.054 −0.131 0.333

1952 0.079 0.109 0.175 0.062

1953 0.067 0.210 −0.084 −0.048

1954 0.077 0.112 0.756 0.185

Table 5.3. Results of the procedure of viability

original values transformed values

ρ = 0.165 ρ̃ = ρ − r1φ
∗ = 0.163 456

l1 = 0.05 l̃1 = 0.05 − r2φ
∗ = 0.030 730

l3 = 0.075 l̃3 = 0.075 − r3φ
∗ = 0.075 000

l6 = 0.075 l̃6 = 0.075 − r4φ
∗ = 0.058 026

u4 = 0.33 ũ4 = 0.33 + s1φ
∗ = 0.386 363

u5 = 0.25 ũ5 = 0.25 + s2φ
∗ = 0.279 655

They add to (PI) the following constraint: V (x) + h∗ = DS, where V (x) =
n∑

i=1

n∑
j=1

σ̃ijxixj , h∗ is a non-negative slack variable. The new shadow prices

and tolerances are included in Table 5.7.
In order to introduce the decision maker’s level of preference for the risk

constraint one can use an exponential membership function, i.e.

µṼ (x) = g(V (x)) =
1 − exp

(
−k(V −−V (x))

tol

)
1 − exp(−k)

,
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Table 5.4. Parametric portfolio selection 1

φ 0.2 0.3 0.4

Return 0.163 46 0.162 68 0.161 91

ObjMV 0.064 50 0.054 23 0.050 03

ObjLMAD 0.210 51 0.193 71 0.184 61

Investment

x1 0.030 73 0.021 10 0.011 46

x2 0.000 00 0.000 00 0.000 00

x3 0.245 23 0.075 00 0.075 00

x4 0.386 36 0.388 83 0.322 79

x5 0.279 66 0.294 48 0.309 31

x6 0.058 03 0.049 54 0.041 05

x7 0.000 00 0.171 05 0.240 39

x8 0.000 00 0.000 00 0.000 00

x9 0.000 00 0.000 00 0.000 00

Table 5.5. Parametric portfolio selection 2

φ 0.5 0.6 0.7

Return 0.161 14 0.160 37 0.159 60

ObjMV 0.046 67 0.044 75 0.043 20

ObjLMAD 0.175 51 0.169 79 0.165 93

Investment

x1 0.001 83 0.000 00 0.000 00

x2 0.000 00 0.000 00 0.000 00

x3 0.075 00 0.075 00 0.075 00

x4 0.256 76 0.215 92 0.209 02

x5 0.324 14 0.329 41 0.314 22

x6 0.032 56 0.024 08 0.015 59

x7 0.309 72 0.355 59 0.386 20

x8 0.000 00 0.000 00 0.000 00

x9 0.000 00 0.000 00 0.000 00

where DS < V (x) < V − = DS + tol, tol = 0.036 476. Take k = −5, and solve
the crisp problem:

(MAP) max α
s.t. V (x) − tol

k ln (1 − α(1 − exp(−k))) ≤ V −,
A1x + (1 − α)R ≥ b1,
A2x − (1 − α)S ≥ b2,
x ∈ X.

Let (x∗, α∗) be the optimal solution of this non-linear programming prob-
lem. The degree of satisfaction of x∗ is α∗. Table 5.8 shows the optimal
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Table 5.6. Parametric portfolio selection 3

φ 0.8 0.9 1

Return 0.158 80 0.158 05 0.157 28

ObjMV 0.041 76 0.040 50 0.039 70

ObjLMAD 0.162 06 0.158 49 0.156 42

Investment

x1 0.000 00 0.000 00 0.000 00

x2 0.000 00 0.000 00 0.000 00

x3 0.075 00 0.075 00 0.075 00

x4 0.202 12 0.195 55 0.190 64

x5 0.299 03 0.285 05 0.277 29

x6 0.007 10 0.000 00 0.000 00

x7 0.416 75 0.444 40 0.457 06

x8 0.000 00 0.000 00 0.000 00

x9 0.000 00 0.000 00 0.000 00

Table 5.7. Tolerances of soft constraints

RHS prices Shadow price tolerance

DS = 0.058 049 −0.226 865 0.036 476

ρ = 0.165 1.0 0.008 275

l1 = 0.05 0.068 907 0.120 092

l3 = 0.075 0.0 0.0

l6 = 0.075 0.074 182 0.111 553

u4 = 0.33 −0.023 036 0.359 230

u5 = 0.25 −0.049 085 0.168 588

portfolio selection associated to α∗ = 0.804 713, where V (x∗) = 0.059 623
and the expected return is 0.163384. They have reduced the risk by 8% and
the expected benefit by less than 0.1%.

Table 5.8. Investment

x1 = 0.026 548 x2 = 0.000 000 x3 = 0.161 655

x4 = 0.400 153 x5 = 0.282 923 x6 = 0.053 215

x7 = 0.075 506 x8 = 0.000 000 x9 = 0.000 000
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5.5 Conclusion

In this chapter, we introduce León, Liern and Vercher’s model (2002). They
propose to use a specialized a fuzzy method that they have developed to repair
infeasibility in linearly constrained problems. Their version takes into account
the special structure of the constraints in linear and quadratic programming
models for the portfolio selection problem, in such a way that the diversifi-
cation and the expected return conditions are considered as soft constraints,
while the remaining are hard constraints.
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Fuzzy Semi-absolute Deviation Portfolio
Rebalancing Model

6.1 Introduction

In 1952, Markowitz published his pioneering work which laid the foundation
of modern portfolio analysis. Markowitz’s model has served as a basis for de-
velopment of the modern financial theory over the past five decades. However,
contrary to its theoretical reputation, it is not used extensively to construct
portfolios at a large-scale. One of the most important reasons for this is the
computational difficulty associated with solving a large-scale quadratic pro-
gramming problem with a dense covariance matrix. Konno and Yamazaki used
the absolute deviation risk function to replace the risk function in Markowitz’s
model and formulated a mean absolute deviation portfolio optimization model.
It turns out that the mean absolute deviation model maintains the favorable
properties of Markowitz’s model and removes most of the principal difficulties
in solving Markowitz’s model. Simaan provided a thorough comparison of the
mean variance model and the mean absolute deviation model. Furthermore,
Speranza used the semi-absolute deviation to measure the risk and formulated
a portfolio selection model.

Transaction cost is one of the main concerns for portfolio managers. Arnott
and Wagner found that ignoring transaction costs could result in an ineffi-
cient portfolio. Yoshimoto’s empirical analysis also drew the same conclusion.
Mao, Jacob, Patel and Subhmanyam and Morton and Pliska studied portfo-
lio optimization with fixed transaction costs. Pogue, Chen, Jen and Zionts,
and Yoshimoto studied portfolio optimization with variable transaction costs.
Mulvey and Vladimirou and Dantzig and Infanger incorporated transaction
costs into the multi-period portfolio selection model. Li, Wang and Deng gave
a linear programming algorithm to solve a general mean variance model for
portfolio selection with transaction costs. Behavior of the financial markets
and investors’ attitudes towards risks and returns have changed drastically
over the past five decades and, therefore, most of portfolio optimization exer-
cises involve a revision of an existing portfolio, i.e., portfolio rebalancing.
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In this study, we consider the liquidity angle, and we propose a linear
programming model for portfolio rebalancing, after considering transaction
costs; based on the fuzzy decision theory, a portfolio rebalancing model with
transaction costs is proposed.

6.2 Linear Programming Model for Portfolio
Rebalancing with Transaction Costs

Suppose an investor allocates his/her wealth among n securities offering ran-
dom rates of return. The investor starts with an existing portfolio and decides
how to reallocate assets.

The expected rate of return ri of security i without transaction costs is
given by

ri =
1
T

T∑
t=1

rit, i = 1, 2, · · · , n, (6.1)

where rit can be determined by historical or forecast data.
Let x+ = (x+

1 , x+
2 , · · · , x+

n ) and x− = (x−
1 , x−

2 , · · · , x−
n ), where x+

i is the
proportion of security i, i = 1, 2, · · · , n bought by the investor, x−

i is the pro-
portion of security i, i = 1, 2, · · · , n sold by the investor. Then the transaction
costs of security i, i = 1, 2, · · · , n can be expressed as

Ci(x+
i , x−

i ) = p(x+
i + x−

i ), i = 1, 2, · · · , n, (6.2)

where p is the rate of transaction costs for the securities. So the total trans-
action costs can be expressed as

C(x+, x−) =
n∑

i=1

p(x+
i + x−

i ). (6.3)

We assume that the investor does not wish to invest additional capital in
the portfolio rebalancing process. Thus, we have

n∑
i=1

(x0
i + x+

i − x−
i ) +

n∑
i=1

p(x+
i + x−

i ) = 1. (6.4)

where x0
i is the proportion of security i, i = 1, 2, · · · , n owned by the investor

before portfolio rebalancing.
The expected net return on the portfolio after paying transaction costs is

given by
n∑

i=1

ri(x0
i + x+

i − x−
i ) −

n∑
i=1

p(x+
i + x−

i ). (6.5)

The semi-absolute deviation of return on portfolio x = (x1, x2, · · · , xn)
below the expected return over the past period t, t = 1, 2, · · · , T can be rep-
resented as



wt(x) = |min{0,
n∑

i=1

(rit − ri)xi}| =
|

n∑
i=1

(rit − ri)xi| +
n∑

i=1

(ri − rit)xi

2
(6.6)

where xi = x0
i + x+

i − x−
i .

So the expected semi-absolute deviation of the return on portfolio x =
(x1, x2, · · · , xn) below the expected return can be represented as

w(x) =
1
T

T∑
t=1

wt(x) =
T∑

t=1

|
n∑

i=1

(rit − ri)xi| +
n∑

i=1

(ri − rit)xi

2T
(6.7)

where xi = x0
i + x+

i − x−
i .

We use w(x) to measure the portfolio risk.
A fuzzy number A is called trapezoidal with tolerance interval [a, b], left

width α and right width β if its membership function takes the following form:

A(t) =

⎧⎪⎪⎨⎪⎪⎩
1 − a−t

α if a − α ≤ t ≤ a,
1 if a ≤ t ≤ b,

1 − t−b
β if a ≤ t ≤ b + β,

0 otherwise

(6.8)

and we denote A = (a, b, α, β). It can easily be shown that

[A]γ = [a − (1 − γ)α, b + (1 − γ)β],∀γ ∈ [0, 1], (6.9)

where [A]γ denotes the γ-level set of A.
Let [A]γ = [a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)] be fuzzy numbers and

let k ∈ R be a real number. Using the extension principle we can verify the
following rules for addition and scalar multiplication of fuzzy numbers:

[A + B]γ = [a1(γ) + b1(γ), a2(γ) + b2(γ)], (6.10)

[kA]γ = k[A]γ . (6.11)

Carlsson and Fullér introduced the notation of crisp possibilistic mean
value and crisp possibilistic variance of continuous possibility distributions,
which are consistent with the extension principle. The crisp possibilistic mean
value of A is

E(A) =
∫ 1

0

γ(a1(γ) + a2(γ))dγ. (6.12)

It is clear that if A = (a, b, α, β) is a trapezoidal fuzzy number, then

E(A) =
∫ 1

0

γ[a − (1 − γ)α + b + (1 − γ)β]dγ =
a + b

2
+

β − α

6
(6.13)
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Denote the turnover rate of security j by trapezoidal fuzzy number l̂j =
(laj , lbj , αj , βj). Then the turnover rate of portfolio x = (x1, x2, · · · , xn) is
n∑

j=1

l̂jxj .

By the definition, the crisp possibilistic mean value of the turnover rate of
security j is represented as follows:

E(l̂j) =
∫ 1

0

γ[laj−(1−γ)αj +lbj +(1−γ)βj ]dγ =
laj + lbj

2
+

βj − αj

6
. (6.14)

Therefore, the crisp possibilistic mean value of the turnover rate of port-
folio x = (x1, x2, · · · , xn) can be represented as

E(l̂(x)) = E(
n∑

j=1

l̂jxj) =
n∑

j=1

(
laj + lbj

2
+

βj − αj

6
)xj . (6.15)

In the study, we use the crisp possibilistic mean value of the turnover rate to
measure the portfolio liquidity.

Assume the investor wants to maximize return and minimize risk after
paying transaction costs. At the same time, he/she requires that the portfolio
liquidity is not less than a given constant, after rebalancing of the existing
portfolio. Based on the above, the portfolio rebalancing problem is formulated
as follows:

(P1) max
n∑

i=1

ri(x0
i + x+

i − x−
i ) −

n∑
i=1

p(x+
i + x−

i )

min
T∑

t=1

|
n∑

i=1

(rit−ri)xi|+
n∑

i=1

(ri−rit)xi

2T

s.t.
n∑

j=1

( laj+lbj

2 + βj−αj

6 )xj ≥ l,

n∑
i=1

(x0
i + x+

i − x−
i ) +

n∑
i=1

p(x+
i + x−

i ) = 1,

xi = x0
i + x+

i − x−
i , i = 1, 2, · · · , n,

0 ≤ x+
i ≤ ui, i = 1, 2, · · · , n,

0 ≤ x−
i ≤ x0

i , i = 1, 2, · · · , n.

where l is a constant given by the investor.

Eliminating the absolute function of the second objective function, the
above problem can be transformed into the following problem:
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(P2) max
n∑

j=1

rj(x0
j + x+

j − x−
j ) −

n∑
j=1

p(x+
j + x−

j )

min 1
T

T∑
t=1

yt

s.t.
n∑

j=1

( laj+lbj

2 + βj−αj

6 )xj ≥ l,

yt +
n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, · · · , T,

n∑
i=1

(x0
i + x+

i − x−
i ) +

n∑
i=1

p(x+
i + x−

i ) = 1,

xi = x0
i + x+

i − x−
i , i = 1, 2, · · · , n,

0 ≤ x+
i ≤ ui, i = 1, 2, · · · , n,

0 ≤ x−
i ≤ x0

i , i = 1, 2, · · · , n,
yt ≥ 0, t = 1, 2, · · · , T.

where l is a constant given by the investor.

The above problem is a bi-objective linear programming problem. One
can use several multiple objective linear programming algorithms to solve it
efficiently.

6.3 Portfolio Rebalancing Model based on Fuzzy
Decision

Since investment is generally influenced by changes in social and economic cir-
cumstances, an optimization approach is not always the best. In some cases,
a satisfaction approach is much better than an optimization one. An investor
always has aspiration levels for expected return and risk. In the real world of
financial management, expert’s knowledge and experience are very important
in decision-making. Based on experts’ knowledge, the investor may decide
his/her aspiration levels for expected portfolio return and risk. Watada em-
ployed a logistic function, i.e., a non-linear S shape membership function, to
express aspiration levels of an investor’s expected return rate and risk. The S
shape membership function is given by:

f(x) =
1

1 + exp(−αx)
. (6.16)

The function has a shape similar to the tangent hyperbolic function employed
by H. Leberling, but it is more easily handled than the tangent hyperbolic
function. Therefore, it is more appropriate to consider the logistic function
to denote a vague goal level, which an investor may consider. According
to the maximization principle, and using variance to measure the portfolio
risk, Watada proposed a fuzzy portfolio selection model. The model extended
Markowitz’s mean-variance model to the fuzzy case.
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In the portfolio rebalancing model proposed in Section 3, the two objec-
tives (return and risk) and the constraint on the liquidity of the portfolio are
considered. Since the expected return, the risk and the liquidity are vague and
uncertain, we use the non-linear S shape membership functions proposed by
Watada to express the aspiration levels of expected return, risk and liquidity
of the portfolio. Using the semi-absolute deviation risk function to measure
the portfolio risk, we propose a fuzzy portfolio rebalancing model based on
Bellman-Zadeh’s maximization principle.

The membership functions of the goals for expected return, risk and liq-
uidity are given as follows.

• a) Membership function of the goal for expected portfolio return

µr(x) =
1

1 + exp(−αr(E(r(x)) − rM ))
. (6.17)

where rM is the mid-point where the membership function value is 0.5 and
αr can be given by the investor based on his/her own degree of satisfaction
for the expected return. rM represents the middle aspiration level for the
portfolio return. Fig 1 shows the membership function of the goal for
expected return.

Fig. 6.1. Membership function of the goal for expected return

• b) Membership function of the goal for portfolio risk

µw(x) =
1

1 + exp(αw(w(x) − wM ))
. (6.18)

where wM is the mid-point where the membership function value is 0.5 and
αw can be given by the investor based on his/her own degree of satisfaction
regarding the level of risk. wM represents the middle aspiration level for
portfolio risk. Fig 2 shows the membership function of the goal for risk.

• c) Membership function for the goal for portfolio liquidity
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Fig. 6.2. Membership function of the goal for risk

µl̂(x) =
1

1 + exp(−αl(E(l̂(x)) − lM ))
. (6.19)

where lM is the mid point where the membership function value is 0.5 and
αl can be given by the investor based on his/her own degree of satisfac-
tion regarding liquidity. lM represents the middle aspiration level for the
portfolio liquidity. Fig 3 shows the membership function of the goal for
liquidity.

Fig. 6.3. Membership function for the goal for liquidity

Remark: αr, αw and αl determine the shapes of membership functions
µr(x), µw(x) and µl̂(x) respectively, where αr > 0, αw > 0 and αl > 0. As
parameters αr, αw and αl become larger, their vagueness declines.

According to Bellman and Zadeh’s maximization principle, we can define

η = min{µr(x), µw(x), µl̂(x)}. (6.20)

The fuzzy portfolio rebalancing problem can be formulated as follows:
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(P3) max η
s.t. µr(x) ≥ η,

µw(x) ≥ η,
µl̂(x) ≥ η,
n∑

i=1

(x0
i + x+

i − x−
i ) +

n∑
i=1

p(x+
i + x−

i ) = 1,

xi = x0
i + x+

i − x−
i , i = 1, 2, · · · , n,

0 ≤ x+
i ≤ ui, i = 1, 2, · · · , n,

0 ≤ x−
i ≤ x0

i , i = 1, 2, · · · , n,
0 ≤ η ≤ 1.

By (6.17), (6.18) and (6.19), the fuzzy portfolio rebalancing problem can
be rewritten as follows:

(P4) max η
s.t. η + exp(−αr(E(r(x)) − rM ))η ≤ 1,

η + exp(αw(w(x) − wM ))η ≤ 1,

η + exp(−αl(E(l̂(x)) − lM ))η ≤ 1,
n∑

i=1

(x0
i + x+

i − x−
i ) +

n∑
i=1

p(x+
i + x−

i ) = 1,

xi = x0
i + x+

i − x−
i , i = 1, 2, · · · , n,

0 ≤ x+
i ≤ ui, i = 1, 2, · · · , n,

0 ≤ x−
i ≤ x0

i , i = 1, 2, · · · , n,
0 ≤ η ≤ 1.

where αr, αw and αl are parameters which can be given by the investor based
on his/her own degree of satisfaction regarding the three factors.

Substituting θ = log η
1−η , then η = 1

1+exp(−θ) . The S shape membership
function is monotonously increasing, so maximizing η maximizes θ. Therefore,
the above problem may be transformed to an equivalent problem, as follows:
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(P5) max θ

s.t. αr(
n∑

i=1

rixi −
n∑

i=1

p(x+
i + x−

i )) − θ ≥ αrrM ,

θ + αw

T

T∑
t=1

yt ≤ αwwM ,

αl

n∑
j=1

( laj+lbj

2 + βj−αj

6 )xj − θ ≥ αllM ,

yt +
n∑

i=1

(rit − ri)xi ≥ 0, t = 1, 2, · · · , T,

n∑
i=1

(x0
i + x+

i − x−
i ) +

n∑
i=1

p(x+
i + x−

i ) = 1,

xi = x0
i + x+

i − x−
i , i = 1, 2, · · · , n,

0 ≤ x+
i ≤ ui, i = 1, 2, · · · , n,

0 ≤ x−
i ≤ x0

i , i = 1, 2, · · · , n,
yt ≥ 0, t = 1, 2, · · · , T,
θ ≥ 0.

where αr, αw and αl are parameters which can be given by the investor based
on his/her own degree of satisfaction regarding the three factors.

Problem (P5) is also a standard linear programming problem. One can use
several linear programming algorithms to solve it efficiently; for example, the
simplex method.
Remark: The non-linear S shape membership functions of the three factors
may change shape according to parameters αr, αw and αl. By selecting the
values of these parameters, the aspiration levels of the three factors can be de-
scribed accurately. On the other hand, different parameter values may reflect
investors’ different aspiration levels. Therefore, the proposed portfolio rebal-
ancing model is convenient for different investors to formulate their individual
investment strategies.

6.4 Numerical Example

In this section, we give a numerical example to illustrate the proposed portfolio
rebalancing model. Assume that an investor chooses 30 different stocks from
the Shanghai Stock Exchange for his/her investment. The exchange codes of
the 30 stocks are given in Table 1.

The rate of transaction costs for stocks is 0.0055 in the two securities
markets in the Chinese mainland. Assume that the investor already owns an
existing portfolio and he/she will not invest additional capital in the portfolio
rebalancing process. The exchange codes of the stocks in the existing portfolio
and the proportions of the stocks are listed in Table 2.

The financial market situation changes, meaning that the investor needs
to change his/her investment strategy. In our example, we assume that the
upper bound of the proportion of Stock j owned by the investor is 1. Now
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Table 6.1. Exchange codes of 30 stocks

Stock 1 2 3 4 5 6 7 8
Code 600058 600061 600062 600070 600071 600073 600079 600081

Stock 9 10 11 12 13 14 15 16
Code 600085 600091 600094 600098 6000100 600619 600621 600624

Stock 17 18 19 20 21 22 23 24
Code 600630 600636 600637 600827 600831 600834 600843 600847

Stock 25 26 27 28 29 30
Code 600850 600853 600857 600860 600864 600874

Table 6.2. The exchange codes and the proportions of stocks in the existing port-
folio

Code 600058 600061 600062 600070 600071 600073 600079

Proportions 0.05 0.08 0.05 0.35 0.1 0.12 0.25

we use the fuzzy portfolio rebalancing model proposed in this study to re-
structure the investor’s assets. First, we collect historical data on the thirty
stocks from January, 1999 to January, 2002. The data are downloaded from the
web-site www.stockstar.com. Then we use one month as a period to obtain
the historical rates of returns for thirty-six periods. The expected rates of
returns based on these historical data are listed in Table 3.

Table 6.3. The expected return rates of the stocks

Stock 1 2 3 4 5 6 7 8 9 10

r 0.0376 0.0314 0.0326 0.0226 0.0285 0.0495 0.0220 0.0478 0.0271 0.0344

Stock 11 12 13 14 15 16 17 18 19 20

r 0.0225 0.0293 0.0411 0.0214 0.0225 0.0285 0.0241 0.0274 0.0295 0.0318

Stock 21 22 23 24 25 26 27 28 29 30

r 0.0463 0.0391 0.0244 0.0326 0.0366 0.0229 0.0361 0.0274 0.0312 0.0321

Since we assume that the future turnover rates of the securities are
trapezoidal fuzzy numbers, we need to estimate the tolerance interval, left
width and right width of the fuzzy numbers. In the real world of port-
folio management, the investor can obtain values of these parameters by
using the Delphi Method based on experts’ knowledge. In our example,
based on historical data of the securities’ turnover rates, we adopt the fre-
quency statistical method to estimate these parameters. In the following,
we give the estimation method for the fuzzy turnover rates for Stock 1
in detail. First, we use historical data (daily turnover rates from January,
1999 to January, 2002) to calculate the frequency of historical turnover
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rates. Note that most of the historical turnover rates fall into the intervals
[0.008, 0.010], [0.010, 0.012], [0.012, 0.014], [0.014, 0.016] and [0.016, 0.018]. We
regard the midpoints of the intervals [0.008, 0.010] and [0.016, 0.018] as the
left and the right endpoints of the tolerance interval, respectively. Therefore,
the tolerance interval of the fuzzy turnover rate is [0.009, 0.017]. By observing
all the historical data, we use 0.001 and 0.035 as the minimum and the max-
imum possible values of uncertain turnover rates in the future. Thus, the left
width is 0.008 and the right width is 0.018. The fuzzy turnover rate of Stock
1 is (0.009, 0.017, 0.008, 0.018). Using a similar method, we obtain the fuzzy
turnover rates of all 30 stocks. These are listed in Table 4.

Table 6.4. The fuzzy turnover rates of the stocks

stock 1 2

l̂ (0.009, 0.017, 0.008, 0.018) (0.012,0.025, 0.01, 0.023)

Stock 3 4

l̂ (0.009, 0.017, 0.0082, 0.017) (0.010, 0.019, 0.008, 0.018)

Stock 5 6

l̂ (0.013, 0.027, 0.010, 0.019) (0.010, 0.025, 0.008, 0.018)

Stock 7 8

l̂7 (0.010, 0.020, 0.009, 0.019) (0.008, 0.016, 0.007, 0.015)

Stock 9 10

l̂ (0.005, 0.015, 0.0045, 0.017) (0.007, 0.017, 0.006, 0.016)

Stock 11 12

l̂ (0.011, 0.019, 0.009, 0.018) (0.009, 0.024, 0.008, 0.025)

Stock 13 14

l̂ (0.007, 0.016, 0.0064, 0.018) (0.013, 0.032, 0.011, 0.030)

Stock 15 16

l̂ (0.011, 0.026, 0.009, 0.028) (0.012, 0.031, 0.011, 0.030)

Stock 17 18

l̂ (0.006, 0.031, 0.005, 0.026) (0.008, 0.015, 0.0076, 0.017)

Stock 19 20

l̂ (0.011, 0.050, 0.0095, 0.047) (0.008, 0.025, 0.006, 0.026)

Stock 21 22

l̂ (0.010, 0.023, 0.008, 0.021) (0.011, 0.031, 0.010, 0.030)

Stock 23 24

l̂ (0.012, 0.046, 0.010, 0.043) (0.009, 0.026, 0.008, 0.019)

Stock 25 26

l̂ (0.007, 0.027, 0.0065, 0.025) (0.010, 0.036, 0.009, 0.028)

Stock 27 28

l̂ (0.011, 0.029, 0.010, 0.026) (0.008, 0.043, 0.007, 0.035)

Stock 29 30

l̂ (0.007, 0.035, 0.006, 0.034) (0.006, 0.031, 0.0045, 0.029)
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In the following, we present two kinds of computational results derived
from conservative and aggressive techniques. First, we assume that the in-
vestor has a conservative and pessimistic mind. Then the values of rM , wM

and lM , given by the investor are small. They are as follows:

rM = 0.029, wM = 0.030, lM = 0.0225.

Considering the three factors (return, risk and liquidity) as fuzzy numbers
with a non-linear membership function, we obtain a portfolio rebalancing
strategy by solving (P5). In the example, we give three different values of
parameters αr, αw and αl. The corresponding computational results are listed
in Tables 5-8.

Table 6.5. Membership grade η, obtained risk, obtained expected return and ob-
tained liquidity when rM = 0.029, wM = 0.030 and lM = 0.0225

η θ αr αw αl obtained risk obtained expected return obtained liquidity

0.811 1.454 600 800 600 0.0282 0.0314 0.0304
0.806 1.425 500 1000 500 0.0286 0.0319 0.0303
0.785 1.295 400 1200 400 0.0289 0.0322 0.0302

Table 6.6. Portfolio rebalancing ratio when rM = 0.029, wM = 0.030, lM = 0.0225,
αr = 600, αw = 800 and αl = 600

Stock 1 2 3 4 5 6 7 8 9 10
Purchase ratio 0.000 0.000 0.092 0.000 0.000 0.000 0.000 0.294 0.000 0.021

Sell ratio 0.016 0.000 0.000 0.035 0.100 0.051 0.250 0.000 0.000 0.000

Stock 11 12 13 14 15 16 17 18 19 20
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stock 21 22 23 24 25 26 27 28 29 30
Purchase ratio 0.100 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.177

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Next, we assume that the investor has an aggressive and optimistic mind.
Then the values of rM , wM and lM , given by the investor, are large. They are
as follows:

rM = 0.032, wM = 0.034, lM = 0.026.

Considering the three factors (return, risk and liquidity) as fuzzy numbers
with a non-linear membership function, we obtain a portfolio rebalancing
strategy by solving (P5). In the example, we give three different values of
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Table 6.7. Portfolio rebalancing ratio when rM = 0.029, wM = 0.030, lM = 0.0225,
αr = 500, αw = 1000 and αl = 500.

Stock 1 2 3 4 5 6 7 8 9 10
Purchase ratio 0.000 0.000 0.086 0.000 0.000 0.000 0.000 0.291 0.000 0.009

Sell ratio 0.014 0.000 0.000 0.035 0.100 0.040 0.250 0.000 0.000 0.000

Stock 11 12 13 14 15 16 17 18 19 20
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stock 21 22 23 24 25 26 27 28 29 30
Purchase ratio 0.110 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.171

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.8. Portfolio rebalancing ratio when rM = 0.029, wM = 0.030, lM = 0.0225,
αr = 400, αw = 1200 and αl = 400.

Stock 1 2 3 4 5 6 7 8 9 10
Purchase ratio 0.000 0.000 0.079 0.000 0.000 0.000 0.000 0.289 0.000 0.000

Sell ratio 0.013 0.000 0.000 0.035 0.100 0.030 0.250 0.000 0.000 0.000

Stock 11 12 13 14 15 16 17 18 19 20
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stock 21 22 23 24 25 26 27 28 29 30
Purchase ratio 0.117 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.166

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

parameters αr, αw and αl. The corresponding computational results are listed
in Tables 9-12.

Table 6.9. Membership grade η, obtained risk, obtained expected return and ob-
tained liquidity when rM = 0.032, wM = 0.034 and lM = 0.026.

η θ αr αw αl obtained risk obtained expected return obtained liquidity
0.849 1.726 600 800 600 0.0318 0.0349 0.0295
0.836 1.630 500 1000 500 0.0324 0.0353 0.0293
0.802 1.396 400 1200 400 0.0328 0.0355 0.0295

Since it is possible that the non-linear S shape membership function
changes its shape according to the values of the parameters, the non-linear
membership function can reflect the investor’s mind accurately and suitably.
From the above results, we find that we can obtain the different portfolio re-
balancing strategies by solving (P5) in which the different values of parameters
( αr, αw and αl ) are given. By choosing the values of the parameters αr, αw
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Table 6.10. Portfolio rebalancing ratio when rM = 0.032, wM = 0.034, lM = 0.026,
αr = 600, αw = 800 and αl = 600.

Stock 1 2 3 4 5 6 7 8 9 10
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.311 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.035 0.100 0.000 0.250 0.000 0.000 0.000

Stock 11 12 13 14 15 16 17 18 19 20
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stock 21 22 23 24 25 26 27 28 29 30
Purchase ratio 0.185 0.098 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.081

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.11. Portfolio rebalancing ratio when rM = 0.032, wM = 0.034, lM = 0.026,
αr = 500, αw = 1000 and αl = 500.

Stock 1 2 3 4 5 6 7 8 9 10
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.324 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.035 0.100 0.000 0.250 0.000 0.000 0.000

Stock 11 12 13 14 15 16 17 18 19 20
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stock 21 22 23 24 25 26 27 28 29 30
Purchase ratio 0.196 0.099 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.061

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.12. Portfolio rebalancing ratio when rM = 0.032, wM = 0.034, lM = 0.026,
αr = 400, αw = 1200 and αl = 400.

Stock 1 2 3 4 5 6 7 8 9 10
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.344 0.000 0.000

Sell ratio 0.020 0.000 0.000 0.035 0.100 0.000 0.250 0.000 0.000 0.000

Stock 11 12 13 14 15 16 17 18 19 20
Purchase ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stock 21 22 23 24 25 26 27 28 29 30
Purchase ratio 0.214 0.101 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.038

Sell ratio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

and αl according to the investor’s frame of mind, it is possible to achieve a
favorite portfolio rebalancing strategy.
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6.5 Conclusion

In addition to the more usual factors of expected return and risk, portfolio liq-
uidity is considered in the portfolio rebalancing process. The turnover rates of
securities are used to measure their liquidity. Considering all the three factors,
a linear programming model for portfolio rebalancing with transaction costs
is proposed. An investor’s aspiration levels for the expected return, risk and
liquidity are vague in an uncertain environment. The vague aspiration levels
are considered to be fuzzy numbers with a non-linear S shape membership
function. Furthermore, based on the fuzzy decision theory, a fuzzy portfolio
rebalancing model with transaction costs is proposed. An example is given to
illustrate the behavior of the proposed fuzzy portfolio rebalancing model using
real data from the Shanghai Stock Exchange. The computation results show
that the portfolio rebalancing model with a non-linear S shape membership
function can generate a favorite portfolio rebalancing strategy according to
the investor’s degree of satisfaction.
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Fuzzy Mixed Projects and Securities Portfolio
Selection Model

7.1 Introduction

During the past decade, there has been a dramatic increase in institutional
investments. Although most of those investments remain focused on tradi-
tional securities, there is an increase in various forms of alternative investment
classes, e.g., venture capital, private equity, private debt and real estate, etc.
With the diversification into different types of assets, the overall portfolio risk
can be lowered while the potential for more benefits can be increased over the
long term.

The mean variance methodology for portfolio selection has been central
to research activities in the traditional securities investment field and has
served as a basis for development of the modern financial theory over the
past five decades. Konno used the absolute deviation risk function to replace
the risk function in Markowitz’s model to formulate a mean absolute devia-
tion portfolio optimization model. In today’s extremely competitive business
environment, investors may consider investing their funds in other kinds of
assets, besides securities. Byrne and Lee and Keng found that mixed assets
portfolio, including listed property trusts, direct property and financial as-
sets always dominated the financial assets portfolio. Selection of projects for
portfolio selection is one of the most important decision problems which the
corporations face. In recent years, some researchers studied project portfolio
selection problems by using mathematical programming methods, e.g., Cof-
fin and Taylor III, and Ringuest, Graves and Case, etc. Some securities and
projects can be integrated into a mixed assets portfolio. Reyck, Degraeve
and Gustafsson proposed a mixed assets portfolio selection model involving
projects and securities. Transaction cost is one of the main sources of concern
to portfolio managers. Arnott and Wagner found that ignoring transaction
costs would result in an inefficient portfolio. Yoshimoto’s empirical analysis
also drew the same conclusion. However, transaction costs are not considered
in Reyck, Degraeve and Gustafsson’s mixed asset portfolio selection model.
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In this chapter, considering the proportional transaction costs, we will use
the expected return and the semi-absolute deviation risk as objective functions
and shall propose a bi-objective programming model for the mixed assets
portfolio selection problem. Furthermore, we use fuzzy numbers to describe
investors’ vague aspiration levels for the expected return and the semi-absolute
deviation risk and propose a fuzzy mixed assets portfolio selection model.

7.2 Bi-objective Programming Model for Mixed Asset
Portfolio Selection

We assume that an investor allocates his/her wealth among traditional se-
curities and projects. Hence, in the mixed assets portfolio selection problem,
assets available for investment are divided into two types of assets. The first
class of assets consists of traditional securities. The second class of assets con-
sists of projects. The main difference between these two types of investments
is that the decision variables for projects are binary, while those for securities
are continuous. There is a capital budget for each project before investment.
The capital budgets can be given by investors or some experts. We assume
that the cost of carrying out a project will be the corresponding capital bud-
get once the project is started. That is, once the investor decides to invest in a
project, the amount earmarked for the project must be the capital budget of
that project. In addition, investment in these projects cannot be reallocated
at any time, while investments in securities can be reallocated at any time.

We assume that the securities component of the mixed asset is composed
of n risky securities Si, i = 1, 2, · · · , n, offering random rates of returns and a
risk-free security Sn+1 offering a fixed rate of return. The projects component
is composed of m projects Pj , j = 1, 2, · · · ,m. Assume the investor starts with
an existing portfolio, which only includes securities, and then decides how
to reconstruct a new mixed asset portfolio with securities and projects. We
introduce some notations as follows.
r̃i: the random variable representing the rate of return on the security Si, i =
1, 2, · · · , n without transaction costs;
rn+1: the rate of return of the risk-free security Sn+1;
ri: the rate of expected return on the security Si, i = 1, 2, · · · , n without
transaction costs;
R̃j : the random variable representing the random net return on the project
Pj , j = 1, 2, · · · ,m after removing the cost (the budget);
Rj : the expected net return on the project Pj , j = 1, 2, · · · ,m after removing
the cost (the budget);
M : the total amount of assets owned by the investor;
Xi: the amount of the total investment devoted to the risky security Si, i =
1, 2, · · · , n and the risk-free security Sn+1;
xi: the proportion of the total investment devoted to the risky security Si, i =
1, 2, · · · , n and the risk-free security Sn+1, i.e., xi = Xi

M ;



7.2 Bi-objective Programming Model for Mixed Asset Portfolio Selection 81

X0
i : the amount of the total investment devoted to the risky security Si, i =

1, 2, · · · , n and the risk-free security Sn+1 in the existing portfolio;
x0

i : the proportion of the total investment devoted to the risky security Si, i =
1, 2, · · · , n and the risk-free security Sn+1 in the existing portfolio;
ki: the rate of transaction costs for the risky security Si, i = 1, 2, · · · , n and
the risk-free security Sn+1;
zj : the binary variable indicating whether project Pj , j = 1, 2, · · · ,m is started
or not,

zj =
{

1 if project Pj is selected for funding,
0 otherwise.

We assume that the vector of random variables (r̃1, r̃2, · · · , r̃n, R̃1, R̃2, · · · , R̃m)
is distributed over the finite sample space {(r1t, · · · , rnt, R1t, · · · , Rmt), t =
1, 2, · · · , T} and the probabilities

pt = Pr{(r̃1, · · · , r̃n, R̃1, · · · , R̃m) =(r1t, · · · , rnt, R1t, · · · , Rmt)}, t = 1, 2, · · · , T
are known. Then the expected rate of return ri of the risky security Si, i =
1, 2, · · · , n without transaction costs is given by

ri =
T∑

t=1

ptrit, i = 1, 2, · · · , n,

where rit can be determined by forecast data. The expected net return Rj on
the project Pj , j = 1, 2, · · · ,m is given by

Rj =
T∑

t=1

ptRjt, j = 1, 2, · · · ,m,

where Rjt can be determined by forecast data.
Given a mixed asset portfolio (x1, x2, · · · , xn, xn+1, z1, z2, · · · , zm), the ex-

pected return of the portfolio without transaction costs can be expressed by

n+1∑
i=1

riXi +
m∑

j=1

Rjzj =
n+1∑
i=1

T∑
t=1

ptritXi +
m∑

j=1

T∑
t=1

ptRjtzj ,

where Xi = Mxi, i = 1, 2, · · · , n + 1 and rn+1,t = rn+1, t = 1, 2, · · · , T.
We use a V shape function to express the transaction costs. Specifically

we let the transaction costs of the security Si, i = 1, 2, · · · , n, n + 1 be given
by

Ci(Xi) = ki|Xi − X0
i |.

Hence the total transaction costs of the mixed asset portfolio are expressed as

n+1∑
i=1

Ci(Xi) =
n+1∑
i=1

ki|Xi − X0
i |.



82 7 Fuzzy Mixed Projects and Securities Portfolio Selection Model

Let x = (x1, · · · , xn+1), z = (z1, · · · , zm) and X = (X1, · · · , Xn+1). Then
the expected net return on the mixed asset portfolio after paying the trans-
action costs is given by

f(X, z) =
n+1∑
i=1

riXi +
m∑

j=1

Rjzj −
n+1∑
i=1

Ci(Xi)

=
n+1∑
i=1

T∑
t=1

ptritXi +
m∑

j=1

T∑
t=1

ptRjtzj −
n+1∑
i=1

ki|Xi − X0
i |.

If we use x1, · · · , xn, xn+1, x
0
1, · · · , x0

n, x0
n+1 instead of X1, · · · , Xn, Xn+1, X

0
1 ,

· · · , X0
n, X0

n+1, respectively, then the expected net return on the mixed asset
portfolio after paying the transaction costs, is also given by

f(x, z) =
n+1∑
i=1

T∑
t=1

ptritxiM +
m∑

j=1

T∑
t=1

ptRjtzj −
n+1∑
i=1

kiM |xi − x0
i |.

Maximizing the expected net return f(x, z) on the mixed asset portfolio after
paying the transaction costs can be considered an objective of the mixed asset
portfolio selection problem.

In the traditional securities portfolio selection, Markowitz used variance
to measure the risk of a portfolio, which is the first quantitative measure
of a risk. Subsequently, several other risk measures have been proposed in
the literature on financial portfolio selection. These methods include semi-
variance, absolute deviation, semi-absolute deviation and so on. Since the
semi-absolute deviation seems more suitable to measure the risk of a portfolio
in practice, we will use the semi-deviation risk function in our mixed asset
portfolio selection model.

The semi-absolute deviation of return on the mixed asset portfolio below
the expected return at state t, t = 1, 2, · · · , T can be represented as

Wt(X, z) =
∣∣min{0,

n∑
i=1

(rti − ri)Xi +
m∑

j=1

(Rtj − Rj)zj}
∣∣.

So the expected semi-absolute deviation of the return on the mixed asset
portfolio below the expected return can be represented as

W (X, z) =
T∑

t=1
ptWt(X, z)

=
T∑

t=1
pt

∣∣min{0,
n∑

i=1

(rti − ri)Xi +
m∑

j=1

(Rtj − Rj)zj}
∣∣.

Let w(x, z) = W (X,z)
M . Then we have

w(x, z) =
T∑

t=1
pt

∣∣min{0,
n∑

i=1

(rti − ri)xi +
m∑

j=1

zj
Rtj−Rj

M }∣∣.
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In this paper, we adopt the function w(x, z) to measure the risk of the
mixed asset portfolio. Minimizing the risk of the mixed asset portfolio can be
considered another objective of the mixed asset portfolio selection problem.

In the mixed asset portfolio selection problem with securities and projects,
we consider the following constraints. First, we introduce some notations.
Bj : the capital budget of project Pj , j = 1, 2, · · · ,m, i.e., the cost that the
investor pays once the project is decided and started;
B: the maximum amount of investment devoted to the projects component in
the mixed asset portfolio;
Yj : the amount of the total investment devoted to project Pj , i.e.,

Yj = Bjzj , j = 1, 2, · · · ,m;

S: the maximum amount of investment devoted to the securities component
in the mixed asset portfolio;
• Capital budget constraint on projects component:

m∑
j=1

Yj =
m∑

j=1

Bjzj ≤ B.

• Capital constraint on securities component:

n+1∑
i=1

xiM ≤ S.

• Total capital constraint:

m∑
j=1

Yj +
n+1∑
i=1

xiM =
m∑

j=1

Bjzj +
n+1∑
i=1

xiM ≤ M.

• No short selling of securities:

xi ≥ 0, i = 1, 2, · · · , n + 1.

Using the objectives and the constraints introduced in the previous sub-
section, the mixed asset portfolio selection problem can be formally stated as
follows:
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(BOP) max f(x, z) =
n+1∑
i=1

T∑
t=1

ptritxiM +
m∑

j=1

T∑
t=1

ptRjtzj −
n+1∑
i=1

kiM |xi − x0
i |

min w(x, z) =
T∑

t=1
pt|min{0,

n∑
i=1

(rti − ri)xi +
m∑

j=1

zj
Rtj−Rj

M }|

s.t.
m∑

j=1

Bjzj ≤ B,

n+1∑
i=1

xiM ≤ S,

m∑
j=1

Bjzj +
n+1∑
i=1

xiM ≤ M,

xi ≥ 0, i = 1, 2, · · · , n + 1,
zj = {0, 1}, j = 1, 2, · · · ,m.

This problem is a bi-objective mixed-integer nonlinear programming prob-
lem.

The problem (BOP) can be reformulated as a bi-objective mixed-integer
linear programming problem by using the following technique. Note that∣∣min{0,

n∑
i=1

(rti − ri)xi +
m∑

j=1

zj
Rtj−Rj

M }∣∣
=
∣∣ n∑

i=1

(rti−ri)xi

2 +
m∑

j=1

zj(Rtj−Rj)
2M

∣∣− n∑
i=1

(rti−ri)xi

2 −
m∑

j=1

zj(Rtj−Rj)
2M .

Then, by introducing auxiliary variables a+
i , a−

i , i = 1, 2, · · · , n + 1, and
xi+t , xi−t , t = 1, 2, · · · , T , such that

a+
i + a−

i = |xi − x0
i |,

a+
i − a−

i = xi − x0
i ,

a+
i ≥ 0, a−

i ≥ 0, i = 1, 2, · · · , n + 1,

xi+t + xi−t =
∣∣ n∑

i=1

(rti − ri)xi

2
+

m∑
j=1

zj(Rtj − Rj)
2M

∣∣,
xi+t − xi−t =

n∑
i=1

(rti − ri)xi

2
+

m∑
j=1

zj(Rtj − Rj)
2M

,

xi+t ≥ 0, xi−t ≥ 0, t = 1, 2, · · · , T,

we may consider the following bi-objective mixed-integer linear programming
problem:
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(BILP) max f(x, z) =
n+1∑
i=1

T∑
t=1

ptritxiM +
m∑

j=1

T∑
t=1

ptRjtzj −
n+1∑
i=1

kiM(a+
i + a−

i )

min w(x, z) =
T∑

t=1
2ptxi−t

s.t. a+
i − a−

i = xi − x0
i , i = 1, 2, · · · , n + 1,

xi+t − xi−t =
n∑

i=1

(rti−ri)xi

2 +
m∑

j=1

zj(Rtj−Rj)
2M , t = 1, 2, · · · , T,

m∑
j=1

Bjzj ≤ B,

n+1∑
i=1

xiM ≤ S,

m∑
j=1

Bjzj +
n+1∑
i=1

xiM ≤ M,

xi ≥ 0, i = 1, 2, · · · , n + 1,
a+

i ≥ 0, a−
i ≥ 0, i = 1, 2, · · · , n + 1,

xi+t ≥ 0, xi−t ≥ 0, t = 1, 2, · · · , T,
zj = {0, 1}, j = 1, 2, · · · ,m.

It is not difficult to see that (BILP) is equivalent to (BOP). Thus the investor
may determine his/her investment strategies by computing efficient solutions
of (BILP).

7.3 Fuzzy Mixed Asset Portfolio Selection Model

In an investment, knowledge and experience of experts are very important
in an investor’s decision-making. Based on experts’ knowledge, the investor
may decide his/her levels of aspirations for the expected return and risk of
a mixed asset portfolio. Watada employed a non-linear S shape membership
function, to express aspiration levels of return and risk, which the investor
would expect, and proposed a fuzzy active portfolio selection model. The S
shape membership function is given by:

f(x) =
1

1 + exp(−αx)
.

In the bi-objective programming model of mixed asset portfolio selection
proposed in Section 2, the two objectives, the expected return and the risk, are
considered. Since the expected return and the risk are vague and uncertain,
we use the non-linear S shape membership functions proposed by Watada to
express the aspiration levels of the expected return and the risk.

The membership function of the expected return is given by

µf (x, z) =
1

1 + exp (−αf (f(x, z) − fM ))
,
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where fM is the mid-point where the membership function value is 0.5 and
αf can be given by the investor based on his/her own degree of satisfaction
for the expected return.

The membership function of the risk is given by

µw(x, z) =
1

1 + exp(αw(w(x, z) − wM ))
,

where wM is the mid-point where the membership function value is 0.5 and
αw can be given by the investor based on his/her own degree of satisfaction
regarding the level of risk.
Remark1: αf and αw determine the shapes of membership functions µf (x, z)
and µw(x, z) respectively, where αf > 0 and αw > 0. The larger the parame-
ters αf and αw, the lower is their vagueness.

According to Bellman and Zadeh’s maximization principle, we can define

λ = min {µf (x, z), µw(x, z)} .

The fuzzy mixed asset portfolio selection problem can be formulated as follows:

(FP) max λ
s.t. µf (x, z) ≥ λ,

µw(x, z) ≥ λ,
and all constraints of (BILP).

Let η = log 1
1−λ , then λ = 1

1+exp(−η) . The logistic function is monoto-
nously increasing, so maximizing λ makes η maximize. Therefore, the above
problem can be transformed to an equivalent problem as follows:

(FLP) max η
s.t. αf (f(x, z) − fM ) − η ≥ 0,

αw (w(x, z) − wM ) + η ≤ 0,
and all constraints of (BILP),

where αf and αw are parameters which can be given by the investor based on
his/her own degree of satisfaction regarding the expected return and the risk.

(FLP) is a standard linear programming problem. One can use one of
several algorithms of linear programming to solve it efficiently, for example,
the simplex method.
Remark2: The non-linear S shape membership functions of the two factors
may change their shape according to parameters αf and αw. Through selecting
the values of these parameters, the aspiration levels of the two factors may
be described accurately. On the other hand, different parameter values may
reflect different levels of investors’ aspiration. Therefore, it is convenient for
different investors to formulate investment strategies by using the proposed
fuzzy mixed asset portfolio selection model.
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7.4 Numerical Example

Assume that the total value of assets M owned by an investor is $300000.
Originally, all the assets were invested in the risk-free security S6. The rate
r6 of return of a risk-free security is 1.5%. Generally, the return of the risk-
free security is less than the return of risky securities and projects. To obtain
more profits, the investor reallocates his/her wealth among five risky securities
S1, · · · , S5, five projects P1, · · · , P5 and the risk-free security S6, where the rate
ki, i = 1, 2, · · · , 6 of transaction costs is 0.4% for all securities.

Assume that there are eight possible scenarios of business environment in
the future. Possible rates of returns on the five risky securities in these sce-
narios and the corresponding probabilities are listed in Table 1. Possible net
returns on the five projects in these scenarios and the corresponding probabil-
ities are listed in Table 2. The capital budgets of projects are listed in Table
3. The investor may stipulate the values of the maximum amounts of the in-
vestment, B and S, devoted to projects and securities components, according
to his/her investment preference. In the following, we examine a case.

Table 7.1. Possible rates of returns and the expected rates of returns on the secu-
rities

State t pt rt1 rt2 rt3 rt4 rt5

1 0.100 -0.089 -0.007 -0.020 -0.011 -0.022

2 0.120 -0.042 0.043 0.036 -0.117 -0.053

3 0.120 0.120 0.047 0.128 -0.054 0.008

4 0.125 -0.062 -0.126 -0.090 0.109 0.057

5 0.125 0.147 0.230 -0.018 0.368 0.124

6 0.130 0.210 0.640 0.271 -0.135 0.277

7 0.130 0.011 -0.053 0.047 0.060 -0.105

8 0.150 0.005 -0.051 -0.017 0.014 -0.060

Expected Return (ri) 0.041 0.092 0.043 0.030 0.028

Suppose that the maximum amount S of investment allocated to securi-
ties component is $240000 and the maximum amount B of investment allo-
cated to projects component is $150000. We give the values of fM and wM ,
i.e., fM = 0.04, wM = 0.0375. In the example, we give three different values
of parameters αf and αw. Using the above data, we computed satisfactory
investment strategies by solving (FLP). All computations were carried out
on a WINDOWS PC, using the LINDO solver. The membership grade, the
obtained risk and the obtained return are listed in Table 7.4. The detailed
allocations of the three optimal portfolios are shown in Table 7.5.
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Table 7.2. Possible net returns and the expected net returns on the projects

State t pt Rt1 Rt2 Rt3 Rt4 Rt5

1 0.100 $20000 -$20000 $2000 -$10000 $20000

2 0.120 $0 $10000 -$10000 $20000 -$20000

3 0.120 $40000 -$15000 $10000 -$20000 $10000

4 0.125 -$10000 $35000 $40000 $40000 $30000

5 0.125 -$5000 $40000 -$15000 $60000 $40000

6 0.130 -$15000 -$18000 $50000 -$15000 -$10000

7 0.130 $15000 $20000 -$8000 $10000 -$40000

8 0.150 $10000 $8000 $16000 -$30000 -$25000

Expected Return (Rj) $6425 $8235 $10625 $10000 $11875

Table 7.3. The capital budgets of projects

B1 B2 B3 B4 B5

$40000 $50000 $80000 $100000 $120000

Table 7.4. Membership grade λ, obtained risk and obtained expected return

λ η αf αw obtained risk obtained expected return

0.999 14.0529 600 800 0.0146 0.0629
1.000 16.0195 500 1000 0.0215 0.0720
1.000 16.2212 400 1200 0.0240 0.0790

Since it is possible that the non-linear S shape membership function
changes its shape according to the values of the parameters, the non-linear
membership function can reflect the investor’s mind accurately and suitably.
From the above results, we can find that we get the different investment
strategies by solving (FLP) in which the different values of the parameters
αf and αw are given. Through choosing the values of the parameters αr and
αw according to the investor’s frame of mind, the investor may get a favorite
investment strategy.

7.5 Conclusion

In today’s extremely competitive business environment, investors have already
invested in various classes of assets to keep their competitive advantages. Some
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Table 7.5. The allocations of three optimal portfolios and the corresponding returns

Portfolio x1 x2 x3 x4 x5 x6

Portfolio 1 0.0000 0.0316 0.2880 0.0000 0.3363 0.0440

Portfolio 2 0.0000 0.2343 0.0505 0.0000 0.3105 0.1048

Portfolio 3 0.0000 0.3862 0.0000 0.0000 0.1743 0.1395

Portfolio z1 z2 z3 z4 z5

Portfolio 1 1 1 0 0 0

Portfolio 2 1 1 0 0 0

Portfolio 3 1 1 0 0 0

securities and projects can be integrated into a mixed assets portfolio. The
mixed asset portfolio increases the investors’ benefit opportunities. Regard-
ing the expected return and the risk, the two objective functions, we have
proposed a bi-objective programming model for the mixed assets portfolio
selection problem with transaction costs. Furthermore, investors’ vague aspi-
ration levels for the return and the risk are considered as fuzzy numbers. Based
on the fuzzy decision theory, we have proposed a fuzzy mixed projects and
securities portfolio selection model. A numerical example is given to illustrate
the proposed fuzzy mixed assets portfolio selection model. The computation
results show that the proposed model can generate a favorite mixed assets
portfolio strategy, according to the investor’s satisfaction degree.
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Linear Programming Model with Interval
Coefficients

8.1 Introduction

Traditionally, it has been assumed that the distribution functions of possi-
bility returns are known, while solving portfolio selection models. However,
new securities and classes of assets have emerged in recent times and now, it
is not always possible for an investor to specify them. In some cases, for in-
stance, historical data of stocks are not available. In such cases, the uncertain
returns of assets may be determined as interval numbers by using experts’
knowledge. In recent years, some approaches for solving interval linear pro-
gramming problems have been proposed by Ishibuchi and Tanaka, Tong, Liu.

In this chapter, we propose an interval semi-absolute deviation model for
portfolio selection, where the expected returns of securities are treated as in-
terval numbers. By introducing the concepts of pessimistic satisfaction index
and optimistic satisfaction index of interval inequality relation, we convert the
interval semi-absolute deviation portfolio selection problem into two paramet-
ric linear programming problems.

This chapter is organized as follows. In Section 2, we give some notations
for interval numbers and briefly introduce some interval arithmetics. An order
of relations over intervals is introduced. The concepts of pessimistic and opti-
mistic satisfaction indices of interval inequality relations are given. Based on
these concepts, an approach to compare interval numbers is proposed. In Sec-
tion 3, an approach is presented for estimating the intervals of rates of returns
of securities. In Section 4, an interval semi-absolute deviation model for port-
folio selection is proposed. According to the approach proposed in Section
2, which concerns about comparing interval numbers, the interval portfolio
selection problem is converted into two parametric linear programming prob-
lems. In Section 5, an example is given to illustrate our approach by using
real data from the Shanghai Stock Exchange. A few concluding remarks are
finally given in Section 6.
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8.2 Notations and Definitions

Denote the set of all the real numbers by R. An order pair in a bracket defines
an interval

a = [a, a] = {x : a ≤ x ≤ a, x ∈ R} (8.1)

where a is the lower bound and a is the upper bound of interval a. The center
and the width of a can be easily calculated as

m(a) =
1
2
(a + a) and w(a) =

1
2
(a − a). (8.2)

a can also be denoted by its center and width as

a = 〈m(a), w(a)〉 = {x : m(a) − w(a) ≤ x ≤ m(a) + w(a), x ∈ R}. (8.3)

Extension of ordinary arithmetic to closed intervals is known as interval
arithmetic. For a detailed discussion, one can refer to Alefeld and Hansen.
First, we quote a basic concept, as follows.

Definition 8.1(Alefeld): Let ◦ ∈ {+,−,×,÷} be a binary operation on
R. If a and b are two closed intervals, then

a ◦ b = {x ◦ y : x ∈ a, y ∈ b} (8.4)

defines a binary operation on the set of all the closed intervals. In the case of
division, it is always assumed that 0 is not in b.

The operations on intervals used in this paper are as follows:

a + b = [a + b, a + b], (8.5)

a − b = [a − b, a − b], (8.6)

a ± k = [a ± k, a ± k], (8.7)

ka = k[a, a] =
{

[ka, ka] for k ≥ 0
[ka, ka] for k < 0,

(8.8)

where k is a real number.
An interval number can be viewed as a special fuzzy number whose mem-

bership function takes value 1 over the interval, and 0 anywhere else. It is
clear that the above three operations of intervals are equivalent to the opera-
tions of addition, subtraction and scalar multiplication of fuzzy numbers via
the extension principle. Rommelfanger, Hanscheck and Wolf investigated the
interval programming problem as a fuzzy programming problem.

Ishibuchi and Tanaka suggested an order relation 
 between two intervals
as follows.

Definition 8.2: If intervals a and b are two profit intervals, the order
relation 
 between a and b is defined as

a 
 b if and only if a ≤ b and a ≤ b; (8.9)



8.3 The Expected Return Intervals of Securities 95

a ≺ b if and only if a 
 b and a 	= b. (8.10)

For describing the interval inequality relation in detail, we give three new
concepts, as follows:

Definition 8.3: For any two interval numbers a = [a, a] and b = [b, b],
there is an interval inequality relation a ≤ b between the two interval numbers
a and b if and only if m(a) ≤ m(b). Furthermore, if a ≤ b, we say the interval
inequality relation a ≤ b between a and b is optimistic satisfactory; if a > b,
we say the interval inequality relation a ≤ b between a and b is pessimistic
satisfactory.

Definition 8.4: For any two interval numbers a = [a, a] and b = [b, b], if
the interval inequality relation between them is pessimistic satisfactory, the
pessimistic satisfaction index of the interval inequality relation a ≤ b can be
defined as

PSD(a ≤ b) = 1 +
b − a

w(a) + w(b)
(8.11)

Definition 8.5: For any two interval numbers a = [a, a] and b = [b, b],
if the interval inequality relation between them is optimistic satisfactory, the
optimistic satisfaction index of the interval inequality relation a ≤ b can be
defined as

OSD(a ≤ b) =
b − a

w(a) + w(b)
(8.12)

Remark 8.1: According to definitions of the pessimistic satisfactory and
the optimistic satisfaction indices, we can see that the domain of the pes-
simistic satisfaction index can be [0, 1) and the domain of the optimistic satis-
faction index can be [0,∞). The larger the values of the pessimistic satisfaction
and optimistic satisfaction indices are, the larger are the satisfaction degrees
of the interval relations.

8.3 The Expected Return Intervals of Securities

It is well known that future returns of securities cannot be accurately pre-
dicted in any emerging securities market. Traditionally, researchers consider
the arithmetic mean of historical returns as the expected return of the secu-
rity. So the expected return of the security is a crisp value in this way. However
for this technique, two main problems need to be solved:

(1) If the time horizon of the historical data of a security is very long, the
influence of the earlier historical data is the same as that of the recent data.
However, recent data of a security most often indicate that the performance
of a corporation is more important in recent data than in the earlier historical
data.

(2) If the historical data of a security are not enough, one cannot accurately
estimate the statistical parameters, due to data scarcity.
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Considering these two problems, perhaps it is a good idea to consider the
expected return of a security as an interval number, rather than a crisp value,
based on the arithmetic mean of historical data. Investors may make use of a
corporation’s financial reports and the security’s historical data to determine
the expected return interval’s range.

To determine the range of change in expected returns of securities, we will
consider the following three factors:

(1) Arithmetic mean: Although arithmetic means of returns of securities
should not be expressed as expected returns directly, they are a good ap-
proximation. Denote the arithmetic mean return factor as ra, which can be
calculated with historical data.

(2) Historical return tendency: If recent returns of a security have been
increasing, we can believe that the expected return of the security is greater
than the arithmetic mean based on historical data. However, if recent returns
of a security have been declining, we can assume that the expected return
of the security is smaller than the arithmetic mean based on historical data.
Denote the historical return tendency factor as rh, rh, which reflects the ten-
dency of the return on the security. We can use the arithmetic mean of recent
returns as rh.

(3) Forecast of future returns of a security: The third factor influencing
the expected return of a security is its estimated future returns. Based on
the financial reports of a corporation, if we believe that the returns on this
corporation’s stock will increase, then the expected returns of this security
should be larger than the arithmetic mean based on historical data. On the
contrary, if we think that returns of this corporation’s stock will decrease in
future, the expected return of this security will be smaller than the arithmetic
mean. Denote the forecast return factor as rf . Computation of derivation of rf

requires some forecasts based on the financial reports and experts’ individual
experiences.

Based on the above three factors, we can derive lower and upper limits
of the expected return of the security. We can put the minimum of the three
factors, ra, rh and rf , as the lower limit of the expected return, while we can
put the maximum values of the three factors ra, rh and rf as the upper limit
of the expected return of the security.

8.4 The Interval Programming Models for Portfolio
Selection

Assume that an investor wants to allocate his wealth among n risky assets
offering random rates of returns and a risk-free asset offering a fixed rate of
return. We introduce some notations as follows.
r̃j : the expected rate of return interval of risky asset j (j = 1, 2, · · · , n);
rn+1: the rate of return of risk-free asset n + 1;
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xi: the proportion of the total investment devoted to risky asset i (i =
1, 2, · · · , n) or risk-free asset n + 1;
x0

i : the proportion of the risky asset i (i = 1, 2, · · · , n) or risk-free asset n + 1
owned by the investor;
rtj : the historical rate of return of risky asset j (j = 1, 2, · · · , n), t (t =
1, 2, · · · , T );
ki: the rate of transaction costs for the asset i (i = 1, 2, · · · , n + 1);
ui: the upper bound of proportion of the total investment devoted to risky
asset i (i = 1, 2, · · · , n) or risk-free asset n + 1.

We use a V shape function to express the transaction costs, so the trans-
action costs of the asset i (i = 1, 2, · · · , n + 1) can be denoted by

Ci(xi) = ki|xi − x0
i |. (8.13)

So the total transaction costs of the portfolio x = (x1, x2, · · · , xn, xn+1)
can be denoted by

C(x) =
n+1∑
i=1

Ci(xi) =
n+1∑
i=1

ki|xi − x0
i |. (8.14)

Denote

raj =
1
T

T∑
t=1

rtj . (8.15)

The uncertain expected return of the risky asset j (j = 1, 2, · · · , n) can be
represented as the following interval number:

r̃j = [rj , rj ] = [min{raj , rhj , rfj},max{raj , rhj , rfj}], (8.16)

where raj is the arithmetic mean factor of risky asset j, rhj is the historical
return tendency factor of risky asset j and rfj is the forecast return factor of
risky asset j. They can be derived by using the above method.

So the expected return interval of portfolio x = (x1, x2, · · · , xn+1) in the
future can be represented as

r̂(x) =
n∑

j=1

r̃jxj + rn+1xn+1. (8.17)

After removing the transaction costs, the net expected return interval of
portfolio x = (x1, x2, · · · , xn+1)can be represented as

r̃(x) =
n∑

j=1

r̃jxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |. (8.18)

If the expected returns of securities are crisp values, the semi-absolute
deviation of the return of portfolio x = (x1, x2, · · · , xn+1) below the expected
return at the past period t, t = 1, 2, · · · , T can be represented as
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wt(x) = |min{0,
n∑

j=1

(rtj − rj)xj}| = max{0,
n∑

j=1

(rj − rtj)xj} (8.19)

where rj is the expected return of security j.
Because the expected returns on securities are considered as interval num-

bers, we may consider the semi-absolute deviation of the rates of return of
portfolio x = (x1, x2, · · · , xn+1) below the expected return over all the past
periods as an interval number too.

Since the expected return interval of portfolio x = (x1, x2, · · · , xn+1) is

r̂(x) = [
n∑

j=1

rjxj + rn+1xn+1,
n∑

j=1

rjxj + rn+1xn+1], (8.20)

we can get the semi-absolute deviation interval of return of portfolio x =
(x1, x2, · · · , xn+1), below the expected return over the past period t, t =
1, 2, · · · , T . It can be represented as

w̃t(x) = [max{0,
n∑

j=1

(rj − rtj)xj},max{0,
n∑

j=1

(rj − rtj)xj}]. (8.21)

Then the average value of the semi-absolute deviation interval of return of
portfolio x = (x1, x2, · · · , xn+1), below the uncertain expected return over all
the past periods, can be represented as

w̃(x) = 1
T

T∑
t=1

w̃t(x)

= 1
T

T∑
t=1

[max{0,
n∑

j=1

(rj − rtj)xj},max{0,
n∑

j=1

(rj − rtj)xj}]
(8.22)

We use w̃(x) to measure the risk of portfolio x. Suppose that the investor
wants to maximize the return of a portfolio after removing the transaction
costs within some given level of risk. If the risk tolerance interval w̃ is given,
the mathematical formulation of the portfolio selection problem is

(ILP1) max r̃(x) =
n∑

j=1

r̃jxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. w̃(x) ≤ [w,w],
n+1∑
j=1

xj = 1,

0 ≤ xj ≤ uj , j = 1, 2, · · · , n + 1

where w and w are two given constants, w represents the pessimistic tolerated
risk level, and w represents the optimistic tolerated risk level.

(ILP1) is an optimization problem with interval coefficients and, therefore,
techniques of classical linear programming can not be applied unless the above
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interval optimization problem is reduced to a standard linear programming
structure. In the following, we perform this conversion.

We introduce the order relation 
 in the interval objective function of
(ILP1). Based on the concepts of pessimistic and optimistic satisfaction indices
proposed by us in Section 2, the interval inequality relation w̃(x) ≤ [w,w] in
(ILP1) is sure to be expressed by one of the two crisp equalities. The two crisp
equivalent equalities of the interval constraint condition w̃(x) ≤ [w,w] can be
represented as follows:

PSD(w̃(x) ≤ [w,w]) = α (8.23)

and
OSD(w̃(x) ≤ [w,w]) = β. (8.24)

Then the interval linear programming problem (ILP1) can be decomposed
into two interval linear programming problems in which the objective func-
tions are interval numbers and the constraint conditions are crisp equalities
and inequalities. The two interval objective function linear programming prob-
lems are represented as follows:

(PO1) max� r̃(x) =
n∑

j=1

r̃jxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. PSD(w̃(x) ≤ [w,w]) = α,
n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
α ∈ [0, 1).

where α is given by the investor.

(PS1) max� r̃(x) =
n∑

j=1

r̃jxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. OSD(w̃(x) ≤ [w,w]) = β,
n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
β ∈ [0,∞).

where β is given by the investor.

We can see that the constraint conditions of (PO1) are stricter than those
of (PS1). Hence, we can get an optimistic investment strategy by solving
(PO1), and a pessimistic investment strategy by solving (PS1).

Denote F1 as the feasible set of (PO1) and F2 as the feasible set of (PS1).
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Definition 8.6: x ∈ F1 is a satisfactory solution of (PO1) if and only
if there is no other x′ ∈ F1 such that r̃(x) ≺ r̃(x′); x ∈ F2 is a satisfactory
solution of (PS1) if and only if there is no other x′ ∈ F2 such that r̃(x) ≺ r̃(x′).

By Definition 8.6, the satisfactory solution of (PO1) is equivalent to the
non-inferior solution set of the following bi-objective programming problem:

(BLP1) max
n∑

j=1

rjxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

max
n∑

j=1

rjxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. PSD(w̃(x) ≤ [w,w]) = α,
n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
α ∈ [0, 1).

The satisfactory solution of (PS1) is equivalent to the non-inferior solution
set of the following bi-objective programming problem:

(BLP2) max
n∑

j=1

rjxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

max
n∑

j=1

rjxj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. OSD(w̃(x) ≤ [w,w]) = β,
n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
β ∈ [0,∞).

By the multi-objective programming theory, the non-inferior solution to
(BLP1) can be generated by solving the following parametric linear program-
ming problem:

(PLP1) max
n∑

j=1

[λrj + (1 − λ)rj ]xj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. PSD(w̃(x) ≤ [w,w]) = α,
n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
α ∈ [0, 1).

The non-inferior solution to (BLP2) can be generated by solving the fol-
lowing parametric linear programming problem:
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(PLP2) max
n∑

j=1

[λrj + (1 − λ)rj ]xj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. OSD(w̃(x) ≤ [w,w]) = β,
n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
β ∈ [0,∞).

Introducing the concrete form of PSD(w̃(x) ≤ [w,w]), (PLP1) may be
rewritten as follows:

(PLP3) max
n∑

j=1

[λrj + (1 − λ)rj ]xj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. 1
T

T∑
t=1

[(1 + α) max{0,
n∑

j=1

(rj − rtj)xj}

+(1 − α) max{0,
n∑

j=1

(rj − rtj)xj}]
= (1 − α)w + (1 + α)w,
n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
α ∈ [0, 1).

Introducing the concrete form of OSD(w̃(x) ≤ [w,w]), (PLP2) may be
rewritten as follows:

(PLP4) max
n∑

j=1

[λrj + (1 − λ)rj ]xj + rn+1xn+1 −
n+1∑
i=1

ki|xi − x0
i |

s.t. 1
T

T∑
t=1

[(2 + β) max{0,
n∑

j=1

(rj − rtj)xj}

−β max{0,
n∑

j=1

(rj − rtj)xj}] = (2 + β)w − βw,

n+1∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, · · · , n + 1,
β ∈ [0,∞).

To solve (PLP3) and (PLP4), we consider the following transformation.
Introducing a new variable xn+2 such that

xn+2 ≥
n+1∑
i=1

ki|xi − x0
i |. (8.25)

Let
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d+
i =

|xi − x0
i | + (xi − x0

i )
2

; (8.26)

d−
i =

|xi − x0
i | − (xi − x0

i )
2

; (8.27)

y+
t

=
|

n∑
j=1

(rtj − rj)xj | +
n∑

j=1

(rtj − rj)xj

2
; (8.28)

y−
t

=
|

n∑
j=1

(rtj − rj)xj | −
n∑

j=1

(rtj − rj)xj

2
; (8.29)

y+
t =

|
n∑

j=1

(rtj − rj)xj | +
n∑

j=1

(rtj − rj)xj

2
; (8.30)

y−
t =

|
n∑

j=1

(rtj − rj)xj | −
n∑

j=1

(rtj − rj)xj

2
. (8.31)

Thus, (PLP3) can be rewritten as follows:

(PLP5) max
n∑

j=1

[λrj + (1 − λ)rj ]xj + rn+1xn+1 − xn+2

s.t. 1
T

T∑
t=1

(1 + α)y−
t + (1 − α)y−

t
= (1 − α)w + (1 + α)w,

n+1∑
j=1

kj(d+
i + d−i ) ≤ xn+2,

y−
t +

n∑
j=1

(rtj − rj)xj ≥ 0,

y−
t

+
n∑

j=1

(rtj − rj)xj ≥ 0,

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n + 1,
n+1∑
j=1

xj = 1,

d+
i ≥ 0, d−i ≥ 0, i = 1, 2, · · · , n + 1,

y−
t
≥ 0, y−

t ≥ 0, t = 1, 2, · · · , T,

xj ≥ 0, j = 1, 2, · · · , n + 1,
α ∈ [0, 1).

(PLP4) can be rewritten as follows:
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(PLP6) max
n∑

j=1

[λrj + (1 − λ)rj ]xj + rn+1xn+1 − xn+2

s.t. 1
T

T∑
t=1

(2 + β)y−
t − βy−

t
= (2 + β)w − βw,

n+1∑
j=1

kj(d+
i + d−i ) ≤ xn+2,

y−
t +

n∑
j=1

(rtj − rj)xj ≥ 0,

y−
t

+
n∑

j=1

(rtj − rj)xj ≥ 0,

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n + 1,
n+1∑
j=1

xj = 1,

d+
i ≥ 0, d−i ≥ 0, i = 1, 2, · · · , n + 1,

y−
t
≥ 0, y−

t ≥ 0, t = 1, 2, · · · , T,

xj ≥ 0, j = 1, 2, · · · , n + 1,
β ∈ [0,∞).

(PLP5) and (PLP6) are two standard linear programming problems. One
can use several algorithms of linear programming to solve them efficiently, for
example, the simplex method. So we can solve the original portfolio selection
problem (ILP1) by solving (PLP5) and (PLP6).

8.5 Numerical Example

In this section, we suppose that an investor chooses twelve componential stocks
in the Shanghai 30 index and a risk-less asset for his investment. We use a kind
of saving account as the risk-less asset and the term of the saving account is
three months. So the rate of return of the risk-less asset is 0.0014 per month.
We collect historical data of the twelve stocks from January, 1999 to December,
2002. The data are downloaded from the web site www.stockstar.com. Then
we use one month as a period to obtain historical rates of return, during
forty-eight periods. The names of the twelve stocks are given in Table 1.

Because the securities markets in mainland China are very young, the
arithmetical methods do not produce good estimates of the actual returns that
the investor will receive in the future. According to our method in Section 3,
we can obtain the expected rate of return interval of each stock. The intervals
are given in Table 2.

Suppose the investor stipulates risk level interval w̃ = [0.015, 0.040]; by
the method proposed in the above section, we can solve the portfolio selection
problem by solving (PLP5) and (PLP6).

For the given risk level interval w̃, more optimistic portfolios can be gen-
erated by varying the values of the parameters λ and α in (PLP5); more



104 8 Linear Programming Model with Interval Coefficients

Table 8.1. The exchange codes and the names of the twelve stocks

600001 Handan Steel 600002 Qilu Petrochemical

600009 Shanghai Airdrome 600058 Longteng Technology

600068 Gezhou Dam 600072 Jiangnan Heavy Industry

600098 Guangzhou Holding 600100 Tsinghua Tongfang

600104 Shanghai Auto 600115 East Airways

600120 Zhejiang East 600631 First Department Store

Table 8.2. The expected rates of returns intervals

Exchange Code 600001 600002 600009

Return Interval [0.0060, 0.0068] [0.0062, 0.0069] [0.0104, 0.0114]

Exchange Code 600058 600068 600072

Return Interval [0.0231, 0.0238] [0.0067, 0.0078] [0.0089, 0.0098]

Exchange Code 600098 600100 600104

Return Interval [0.0164, 0.0173] [0.0261, 0.0268] [0.0078, 0.0087]

Exchange Code 600115 600120 600631

Return Interval [0.0156, 0.0167] [0.0223, 0.0229] [0.0120, 0.0128]

pessimistic portfolios can be generated by varying the values of the parame-
ters λ and β in (PLP6).

The return intervals, the risk intervals and the values of parameters of
optimistic portfolios are listed in Table 3. The optimistic portfolios are listed
in Table 4. The return intervals, the risk intervals and the values of parameters
of pessimistic portfolios are listed in Table 5. The pessimistic portfolios are
listed in Table 6.

Table 8.3. The return intervals, the risk intervals and the values of parameters of
optimistic portfolios

Return Interval Risk Interval λ α

Portfolio 1 [0.0145, 0.0149] [0.0273, 0.0276] 0.60 0

Portfolio 2 [0.0140, 0.0145] [0.0248, 0.0251] 0.50 0.2

Portfolio 3 [0.0106, 0.0110] [0.0178, 0.0180] 0.30 0.8

The investor may choose his own investment strategy from the portfolios
according to his attitude towards the securities’ expected returns and the
degree of portfolio risk with which he is comfortable. If the investor is not
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Table 8.4. The allocation of Portfolio 1, 2, 3

Exchange Code 600001 600002 600009 600058 600068

Portfolio 1 0.0000 0.0000 0.0000 0.0000 0.0000

Portfolio 2 0.0000 0.0000 0.0000 0.0730 0.0000

Portfolio 3 0.0000 0.0000 0.0000 0.0572 0.0000

Exchange Code 600072 600098 600100 600104 600115

Portfolio 1 0.0000 0.0000 0.4146 0.0000 0.0000

Portfolio 2 0.0000 0.0000 0.2886 0.0000 0.0000

Portfolio 3 0.0000 0.0000 0.1825 0.0000 0.0000

Exchange Code 600120 600631 Saving

Portfolio 1 0.3078 0.0000 0.2776

Portfolio 2 0.3610 0.0000 0.2774

Portfolio 3 0.2938 0.0000 0.4665

Table 8.5. The return intervals, the risk intervals and the values of parameters of
pessimistic portfolios

Return Interval Risk Interval λ β

Portfolio 4 [0.0091, 0.0094] [0.0148, 0.0150] 0.60 0

Portfolio 5 [0.0066, 0.0068] [0.0144, 0.0147] 0.50 0.8

Portfolio 6 [0.0049, 0.0052] [0.0132, 0.0138] 0.30 1.5

satisfied with any of these portfolios, he may obtain more by solving the two
parametric linear programming problems (PLP5) and (PLP6).

8.6 Conclusion

An approach is presented for estimating intervals of rates of returns of se-
curities. The semi-absolute deviation risk function is extended to an interval
case. An interval semi-absolute deviation model with no short selling and no
stock borrowing in a frictional market is proposed for portfolio selection. By
introducing the concepts of pessimistic and optimistic satisfaction indices of
the interval inequality relation, an approach to compare interval numbers is
given. By using the approach, the interval semi-absolute deviation model can
be converted into two parametric linear programming problems. One can find
a satisfactory solution to the original problem by solving the corresponding
parametric linear programming problems. An investor may choose a satisfac-
tory investment strategy according to an optimistic or pessimistic attitude.
The model is capable of helping the investor to find an efficient portfolio that
is closest to his/her targets.
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Table 8.6. The allocation of Portfolio 4, 5, 6

Exchange Code 600001 600002 600009 600058 600068

Portfolio 4 0.0000 0.0000 0.0189 0.0472 0.0000

Portfolio 5 0.0000 0.0000 0.0000 0.0000 0.0000

Portfolio 6 0.0000 0.0000 0.0000 0.0000 0.0000

Exchange Code 600072 600098 600100 600104 600115

Portfolio 4 0.0090 0.0000 0.0839 0.0000 0.0000

Portfolio 5 0.0000 0.0000 0.2662 0.0000 0.0000

Portfolio 6 0.0000 0.0000 0.1850 0.0000 0.0000

Exchange Code 600120 600631 Saving

Portfolio 4 0.3274 0.0000 0.5136

Portfolio 5 0.0000 0.0000 0.7338

Portfolio 6 0.0000 0.0000 0.8150



9

Quadratic Programming Model with Interval
Coefficients

9.1 Introduction

Markowitz’s mean-variance model for portfolio selection, proposed in 1952,
assumed that the stock market is frictionless. However, the real stock market
is imperfect. Though the probability theory is a major tool used for ana-
lyzing uncertainty in financial markets, it can not describe the uncertainty
completely since there are many other uncertain factors that differ from the
random ones. As an alternative tool, the fuzzy set theory is gradually being
used in this area. In this chapter, we present a model where expected return
and risk (variance) are treated as interval numbers.

9.2 Crisp Model and Algorithm

We consider a financial market with n risky assets offering random rates of
return and a risk-free asset offering a fixed return rate. An investor allocates
his/her wealth among the risky assets and the risk-free asset. A portfolio can
be described by the following scalar-values:

xi, the proportion invested in the risky asset i, i = 1, · · · , n;
xn+1, the proportion invested in the risk-less asset;
ri, the random rate of return of risky asset i;
Rn+1, the return rate of the risk-free asset ;
Ri = E(ri), the expected rate of return of the risky asset i;
σij = cov(ri, rj), the covariance between ri and rj , i, j = 1, · · · , n, and the

variance-covariance matrix (σij)n∗n which is semi-positive definite;
ci, the transaction cost of the risky asset i, i = 1, · · · , n;
ki, the constant cost per change in a proportion of the risky asset i, ki ≥

0, i = 1, · · · , n.
In this chapter, the transaction cost ci is assumed to be a V-shaped func-

tion of the difference between a given portfolio x0 = (x0
1, x

0
2, · · · , x0

n, x0
n+1)

T
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and a new portfolio x = (x1, · · · , xn, xn+1), and is incorporated explicitly
into the portfolio return. Thus, the transaction cost of risky asset i can be
expressed as ci = ki|xi − x0

i |, i = 1, · · · , n, and the total transaction cost is

n∑
i=1

ci =
n∑

i=1

ki|xi − x0
i | (9.1)

the expected return and variance of portfolio x = (x1, x2, · · · , xn, xn+1) are

R(x) =
n+1∑
i=1

Rixi −
n∑

i=1

ki|xi − x0
i | (9.2)

and

σ2(x) =
n∑

i=1

n∑
j=1

σijxixj (9.3)

respectively. For a new investor, it can be taken that x0
i = 0, i = 1, · · · , n, n+1.

The investor expects to maximize the expected portfolio return R(x) and
to minimize the risk σ2(x). Mathematically, the portfolio selection problem
can be formulated as the following bi-objective problem:

max R(x) =
n+1∑
i=1

Rixi −
n∑

i=1

ki|xi − x0
i |

min σ2(x) =
n∑

i=1

n∑
j=1

σijxixj

s.t.
n+1∑
i=1

xi = 1

xi ≥ 0, i = 1, · · · , n + 1. (9.4)

According to the multi-objective programming theory, the efficient solution
to above problem can be obtained by solving the following problem:

min σ2(x) − αR(x)

s.t.
n∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , n + 1, (9.5)

where α ∈ [0,+∞).

Theorem 1 x∗ = (x∗
1, · · · , x∗

n+1)
T is an optimal solution to (5) if and

only if there exists (y∗
1 , · · · , y∗

n)T such that (x∗
1, · · · , x∗

n+1, y
∗
1 , · · · , y∗

n)T is an
optimal solution to the following problem (6):
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min
n∑

i=1

n∑
j=1

σijxixj − α[
n+1∑
i=1

Rixi −
n∑

i=1

kiyi]

s.t.
n+1∑
i=1

xi = 1

yi + xi − x0
i ≥ 0, i = 1, · · · , n

yi − xi + x0
i ≥ 0, i = 1, · · · , n

xj ≥ 0, j = 1, · · · , n + 1, (9.6)

where α ∈ [0,+∞).

The convex quadratic programming problem can be solved by several ef-
ficient numerical methods.

9.3 The Model with Interval Coefficients and Its
Extension

In a fuzzy environment, the expected return and risk can not be predicted
accurately, so the investor usually makes his portfolio decision according to
his experience and his economic sense. Based on this fact, we propose a fuzzy
model under the assumption that the expected return and risk are interval
numbers. One can refer to Alefeld and Herzberger for a detailed discussion on
interval number operations.

Denote the fuzzy expected return and covariance as the following interval
numbers:

R̃i = [Ri − δil, Ri + δir],
σ̃ij = [σij − δijl, σij + δijr], (9.7)

where δil, δir, σijl, δijr are positive constants given by the investor such that
δil ≤ Ri, δijl ≤ σij . Then, the fuzzy expected return and fuzzy risk are defined
by

R̃(x) =
n+1∑
i=1

R̃ixi −
n∑

i=1

ki|xi − x0
i | (9.8)

and

σ̃2(x) =
n∑

i=1

n∑
j=1

σ̃ijxixj . (9.9)

Since xi ≥ 0, we have fuzzy numbers

R̃(x) = [R(x) − δRL(x), R(x) + δRR(x)],

σ̃2(x) = [σ2(x) − δV L(x), σ2(x) + δV R(x)], (9.10)
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where

R(x) − δRL(x) =
n+1∑
i=1

(Ri − δil)xi −
n∑

i=1

ki|xi − x0
i |,

R(x) + δRR(x) =
n+1∑
i=1

(Ri + δir)xi −
n∑

i=1

ki|xi − x0
i |,

σ2(x) − δV L(x) =
n∑

i=1

n∑
j=1

(σij − δijl)xixj ,

σ2(x) + δV R(x) =
n∑

i=1

n∑
j=1

(σij + δijr)xixj .

Corresponding to the optimization problem, the fuzzy optimization invest-
ment problem becomes:

min σ̃2(x) − αR̃(x)

s.t.
n+1∑
i=1

xi = 1

xi ≥ 0, i = 1, · · · , n. (9.11)

Denote

Fl(x) = σ2(x) − δV L(x) − α(R + δRR(x)),
Fr(x) = σ2(x) + δV R(x) − α(R − δRL(x)),
F (x) = σ2(x) − αR(x),

then σ̃2(x) − αR̃(x) = [Fl(x), Fr(x)].
From the above problem, we construct the following three models.

Model 1

min Fl(x)

s.t.
n+1∑
i=1

xi = 1

xi ≥ 0, i = 1, · · · , n. (9.12)

From the objective function Fl(x), we can observe that the investor es-
timates the return and risk optimistically, and aims to optimize the total
objective in this case.

Model 2
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min Fr(x)

s.t.
n+1∑
i=1

xi = 1

xi ≥ 0, i = 1, · · · , n (9.13)

In contrast to model 1, the investor estimates the return and risk of risky
assets pessimistically, and the investor aims to optimize the total objective
based on his estimation.

Model 3

min F (x) = λFr(x) + (1 − λ)Fl(x)

s.t.
n+1∑
i=1

xi = 1

xi ≥ 0, i = 1, · · · , n, (9.14)

where λ ∈ (0, 1).
This model covers the scenario where the investor makes his portfolio

selection neither too optimistically nor too pessimistically; to some extent he
is optimistic, but to some extent he is pessimistic also.

Remark 9.1 This section provides three models for portfolio selection. The
investor selects a different model on the basis of different estimations of return
and risk.

Remark 9.2 The investor’s subjective factor has an important impact on
portfolio selection since fuzzy inputs R̃i and σ̃ij influence the output and the
investor selects his portfolio model either pessimistically or optimistically.

9.4 Numerical Example

To illustrate the approach presented in the previous section, we consider a
portfolio selection problem with three risky assets and a risk-free asset.

In the crisp case, the vector of their expected rates of return is:

(R1, R2, R3, R4) = (0.066, 0.0616, 0.055, 0.050)T

and the covariance matrix of the return rates of three risky assets is:

(σij) =

⎛⎝ 0.062 0.0151 0.0130
0.0151 0.0534 0.0126
0.0130 0.0126 0.0401

⎞⎠
Let ki = 0.001, x0

i = 0 for i = 1, 2, 3.
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The efficient frontier of the crisp model is shown in Fig 9.1(in the figure,
return and risk are the expected return and the variance of the portfolio
respectively).

Fig. 9.1. Efficient frontier of the crisp model

Now, we consider the fuzzy case that the return and risk are given in the
form of interval numbers by the investor as follows:

R̃1 = [0.0540, 0.0726] R̃2 = [0.0544, 0.0678]

R̃3 = [0.0495, 0.0605] R̃4 = [0.0500, 0.0500]
σ̃11 = [0.0560, 0.0682] σ̃12 = [0.0136, 0.0166]
σ̃13 = [0.0117, 0.0143] σ̃22 = [0.0481, 0.0587]
σ̃23 = [0.0113, 0.0139] σ̃33 = [0.0361, 0.0441]

The efficient frontiers of model 1-3 in the fuzzy case are shown in Figs
9.2-9.4.

From the above discussion and Figs. 9.1-9.4, we can observe that the in-
vestor’s subjective outlook has a great impact on his portfolio selection. Given
a certain risk level, the expected return in the optimistic case is the highest
of the four models; in the pessimistic case, it is the lowest; and the returns
both in the crisp case and the situation between the optimistic case and pes-
simistic case are between the former two cases. For example, we can observe
from Figures 1-4 that given a risk level 0.02, the return in the crisp case is
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Fig. 9.2. Efficient frontier of Model 1

Fig. 9.3. Efficient frontier of Model 2
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Fig. 9.4. Efficient frontier of Model 3

about 0.059 ; the return in the optimistic case is greater than 0.063, the return
in the pessimistic case is lower than 0.053, the return in the situation between
the optimistic and pessimistic cases is about 0.06.

9.5 Conclusion

In this section, we first propose a crisp non-smooth model for portfolio selec-
tion with transaction costs. We show an efficient approach that can transform
this model into a quadratic programming problem. Next, we extend the crisp
model to the fuzzy case where the return and risk are assumed to be interval
numbers. Three interesting models, which can reflect the investor’s objective
opinion, are derived from this extended model. Finally, we give a numerical
example to illustrate our methods.
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Part IV

Portfolio Selection Models with Possibility
Distribution



10

Tanaka and Guo’s Model with Exponential
Possibility Distributions

10.1 Introduction

In the possibility theory (proposed by Zadeh and advanced by Dubois and
Prade), fuzzy variables are associated with possibility distributions while the
way random variables are associated with probability distributions. Possi-
bility distributions are described as normal convex fuzzy sets, such as LR
fuzzy numbers, quadratic and exponential functions. The theory of exponen-
tial possibility distributions has been proposed and applied to possibilistic
data analysis. As an application of possibility theory to portfolio analysis,
possibility portfolio selection models were initially proposed in Tanaka and
Guo (1999) where portfolio models are based on exponential possibility distri-
butions, rather than the mean-variance form in Markowitz’s model. Although
there are some similarities between Markowitz’s model and possibility port-
folio selection models, these two kinds of models analyze the security data
in very different ways. Markowitz’s model regards the portfolio selection as a
probability phenomenon so that it minimizes the variance of portfolio return,
subject to a given average return. On the contrary, possibility models based on
possibility distributions reflect portfolio experts’ knowledge, which is charac-
terized by the given possibility grades to security data. The basic assumption
for using Markowitz’s model is that the situation of stock markets in future
can be correctly reflected by security data of the past, that is, the mean and
covariance of securities in future are similar to the past number. It is hard
to justify this kind of assumption in the ever-changing stock markets. On the
other hand, possibility portfolio models integrate the past security data and
experts’ judgement to catch variations of stock markets more plausibly. Be-
cause experts’ knowledge is very valuable for predicting the future state of
stock markets, it is reasonable that possibility portfolio models are useful in
the real investment world.

The upper and lower possibility distributions have some similarities to
upper and lower approximations in rough set theory. Multi-source knowledge
from multiple experts is represented by a set of exponential possibility dis-
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tributions. Based on the consistency index defined by the possibility measure
of each pair of possibility distributions, Tanaka and Guo (2003) proposed a
fusion model to integrate multiple possibility distributions into a new one
representing a refined knowledge.

10.2 Possibility Distributions in Portfolio Selection
Problems

Give data (ri, hi) (i = 1, 2, · · · ,m) where ri = (r1i, · · · , rni)T is a vector of
returns of n securities i at the ith period and hi are an associated possibility
grades assigned by expert knowledge to reflect a degree of similarity between
the future state of stock markets and the state of the ith sample. These grades
hi are assumed to be expressed by a possibility distribution A, defined as

πA(R) = exp{−(R − a)TD−1
A (R − a)} = (a,DA)e, (10.1)

where a is a center vector and DA is a symmetric positive definite matrix,
denoted as DA > 0

Given the data, the problem is to determine an exponential possibility dis-
tribution, i.e., a center vector a and a symmetric positive definite matrix DA.
According to two different viewpoints, two kinds of possibility distributions of
A, namely, the upper and the lower possibility distributions are introduced in
this paper. The upper and the lower possibility distributions, denoted as πu

and πl, respectively, should satisfy the inequality πu(x) ≥ πl(x), considering
some similarities between our proposed methods and the rough sets.

From the formulation (10.1), it is obvious that the vector r with the high-
est possibility grade should be closest to the center vector a among all ri (i =
1, 2, · · · ,
m). Thus, the center vector a can be approximately estimated as

a = ri∗ , (10.2)

where ri∗ denotes the vector with grade hi∗ = maxk=1,2,···,m hk.
The associated possibility grade of ri∗ is revised to be 1. Taking the trans-

formation y = r − a, the possibility distribution with a zero center vector is
obtained as:

πA(y) = exp{−yTD−1
A y}.

The upper and the lower distributions are used to reflect two kinds of
distributions from the upper and the lower directions. In order to determine
the matrix πu in the upper distribution, the following assumptions are given:

1. πu(yi) ≥ hi, i = 1, 2, · · · ,m(the constraint conditions),
2. minimize πu(y1) × πu(y2) × · · · × πu(ym)(the objective function).
Furthermore, the constraint condition can be represented by

πu(yi) ≥ hi ⇐⇒ yT
i D−1

u yi ≤ − lnhi.
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The objective function can be represented by

max
m∑

i=1

yT
i D−1

u yi.

Hence, one can get Du by solving the following optimization problem:

(Du) max
Du

m∑
i=1

yT
i D−1

u yi

s.t. yT
i D−1

u yi ≤ − ln(hi), i = 1, 2, · · · ,m,
Du � 0,

where, Du � 0 denotes Du is a definite matrix.
Similarly, in order to determine the matrix πl in the lower distribution,

the following assumptions are given:
1. πl(yi) ≤ hi, i = 1, 2, · · · ,m(the constraint condition)
2. maximize πl(y1) × πl(y2) × · · · × πl(ym)(the objective function).
Furthermore, the constraint condition can be represented by:

πl(yi) ≤ hi ⇐⇒ yT
i D−1

l yi ≥ − lnhi.

The objective function can be represented by

min
m∑

i=1

yT
i D−1

l yi.

Hence, we can get Dl by solving the following optimization problem

(Dl) min
Dl

m∑
i=1

yT
i D−1

l yi

s.t. yT
i D−1

l yi ≥ − ln(hi), i = 1, 2, · · · ,m,
Dl � 0,

where, Dl � 0 denote Dl is a definite matrix.
If one solves these two optimization problems separately, it can not be

ensured that πu(y) ≥ πl(y) holds for an arbitrary y. Tanaka and Guo consider
the following model, which integrates (Du) and (Dl) to find out Du and Dl,
at the same time, adding a constraint condition, i.e., Du−Dl is a semi-definite
matrix. The optimization problem is represented by

(Dul) min
Du,Dl

m∑
i=1

yT
i D−1

u yi −
m∑

i=1

yT
i D−1

l yi

s.t. yT
i D−1

u yi ≤ − ln(hi), i = 1, 2, · · · ,m,
yT

i D−1
l yi ≥ − ln(hi), i = 1, 2, · · · ,m,

Du − Dl � 0,
Dl � 0.
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In this case, πu(y) and πl(y) are similar to the rough set concept because
Du − Dl � 0 ensures πu(y) ≥ πl(y). It is obvious that (Dul) is a nonlinear
optimization problem which is difficult to solve.

In order to solve the problem (Dul) easily, firstly considering a simple
linear programming problem without the conditions Du −Dl � 0 and Dl � 0
in (Dul).

If the obtained matrices Du and Dl cannot satisfy the conditions Du −
Dl � 0 and Dl � 0, we introduce the following auxiliary conditions to the
constraint conditions of the problem, to obtain positive definite matrices Du

and Dl such that Du − Dl � 0 holds by the linear programming.

for i ∈ E, yT
i D−1

u yi ≥ ε, (10.3)

for alli 	= j, i, j ∈ E, yT
i D−1

u yj = 0, (10.4)

for i ∈ E, yT
i (D−1

l − D−1
u )yi ≥ 0, (10.5)

for alli 	= j, i, j ∈ E, yT
i D−1

l yj = 0, (10.6)

where E is the index set of n selected independent vectors {y1, y2, · · · ,
yn} among yi (i = 1, 2, · · · ,m), while considering the condition m � n,
and ε is a small positive number. It should be noted that the center vector
yi∗ = 0 is not included in {y1, y2, · · · , yn}. The equalities (10.3)∼(10.6) are
called the orthogonal conditions. It is proved afterwards that the constraint
conditions can ensure that Du � 0, Dl � 0 and Du � Dl hold. Thus, the
following LP problem is formed.

(LP10-1) min
Du,Dl

m∑
i=1

yT
i D−1

u yi −
m∑

i=1

yT
i D−1

l yi

s.t. yT
i D−1

u yi ≤ − ln(hi), i = 1, 2, · · · ,m,
yT

i D−1
l yi ≥ − ln(hi), i = 1, 2, · · · ,m,

yT
i D−1

u yi ≥ ε, i ∈ E,
yT

i D−1
u yj = 0, i 	= j, i, j ∈ E,

yT
i (D−1

l − D−1
u )yi ≥ 0, i ∈ E,

yT
i D−1

l yj = 0, i 	= j, i, j ∈ E.

Theorm10.1 The matrices Du and Dl obtained from the equalities (10.3)∼(10.6)
satisfy the condition Du � 0, Dl � 0 and Du − Dl � 0.
Proof Because {y1, y2, · · · , yn} are independent vectors in the n-dimensional
space, an arbitrary vector z can be represented as

z = λ1y1 + λ2y2 + · · · + λnyn,

where λi is a real number.
Thus, by using (10.3) and (10.4), for z 	= 0, we have
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zTD−1
u z = (λ1y1 + λ2y2 + · · · + λnyn)TD−1

u (λ1y1

+λ2y2 + · · · + λnyn)

=
n∑

i=1

λ2
i y

T
i D−1

u yi > 0.

It means that Du � 0.
From (10.5) one can get

yT
i D−1

l yi ≥ yT
i D−1

u yi > 0. (10.7)

Thus, by using (10.6) and (10.7), one have

zTD−1
l z = (λ1y1 + λ2y2 + · · · + λnyn)TD−1

l (λ1y1

+λ2y2 + · · · + λnyn)

=
n∑

i=1

λ2
i y

T
i D−1

l yi > 0.

It means that Dl � 0. In a similar way, one have

zT(D−1
l − D−1

u )z = (λ1y1 + λ2y2 + · · · + λnyn)T(D−1
l

− D−1
u )(λ1y1 + λ2y2 + · · · + λnyn)

=
n∑

i=1

λ2
i y

T
i (D−1

l − D−1
u )yi ≥ 0.

It means that Du − Dl � 0.
Theorem10.2 An optimal solution of (LP10-1) always exists.

Proof Let us consider a n × n matrix K, by which a set of linearly
independent vectors {y1, y2, · · · , yn} are transformed into a set of orthonormal
vectors {z1, z2, · · · , zn}, where zT

i = [0, · · · , 0, 1, 0, · · · , 0]T. Thus,

K(y1, y2, · · · , yn) = I,

where I is the identical matrix.
If we take positive definite matrices

D−1
u = q1K

TK,

and
D−1

l = q2K
TK,

where q1 ≤ q2, it is obvious that Du and Dl satisfies (10.4) and (10.6),
in addition D−1

l − D−1
u = (q2 − q1)KTK. Thus, the constraint conditions

of (LP5-1) are transferred into

q1(Kyi)T(Kyi) ≤ −ln hi, i = 1, 2, · · · ,m,
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q2(Kyi)T(Kyi) ≤ −ln hi, i = 1, 2, · · · ,m,

q1(Kyi)T(Kyi) ≥ ε, i ∈ E,

(q2 − q1)(Kyi)T(Kyi) ≥ 0, i ∈ E,

q1(Kyi)T(Kyj) = 0, i 	= j, i ∈ E,

q2(Kyi)T(Kyj) = 0, i 	= j, i ∈ E. (10.8)

If taking

q1 = min
i=1,···,m−1,i �=i∗

(
−ln

hi

(Kyi)T(Kyj)

)
, (10.9)

q2 = max
i=1,···,m−1,i �=i∗

(
−ln

hi

(Kyi)T(Kyj)

)
, (10.10)

and a very small positive value for ε, the obtained Du, Dl satisfy all of
constraint conditions. It means that there is an admissible set in the constraint
conditions of (NLP10-1). It should be noted that the center vector yi∗ = 0
is omitted in the two inequalities of Eq. (10.8), because (Kyi∗)T(Kyi∗) =
−ln1 = 0. Thus, one considers {1, 2, · · · ,m − 1} without i∗ in determining
q1, q2.

Here, orthogonal conditions are added to constraint conditions that can
confine the matrices Du, Dl to positive definite matrices and Du − Dl to
a semi-positive definite matrix. However, since there are many orthogonal
conditions among independent vectors, it is very hard to select appropriate
ones.

To cope with this difficulty, Tanaka and Guo use principle component
analysis (PCA) to rotate the given data (yi, hi) to obtain a positive defi-
nite matrix easily. The data can be transformed by linear transformation T .
Columns of T are eigenvectors of the matrix Σ = [σij ], where

σij =

m∑
k=1

(xki − ai)(xkj − aj)hk

m∑
k=1

hk

.

Without loss of generality, assume that the rank of Σ is n. It should be
noted that TTT = I. Using the linear transformation, the data y can be
transformed into {z = TTy}. Then we have

ΠA(z) = exp{−zTTTD−1
A Tz}.

According to the feature of PCA, TTD−1
A T is assumed to be a diagonal

matrix as follows:
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TTD−1
A T = CA =

⎛⎜⎜⎜⎝
C1 0 0 · · · 0
0 C2 0 · · · 0

0 0 C3

...
0 0 0 · · · Cn

⎞⎟⎟⎟⎠ .

Denote CA as Cu and Cl for the upper and the lower possibility distri-
bution cases, respectively and denote cuj and clj (j = 1, 2, · · · , n) as the
diagonal elements in Cu and Cl, respectively. The integrated model can be
rewritten as follows.

(LP10-2) min
Cu,Cl

m∑
i=1

zT
i C−1

l zi −
m∑

i=1

zT
i C−1

u zi

s.t. zT
i C−1

l zi ≥ − ln(hi), i = 1, 2, · · · ,m,
zT

i C−1
u zi ≤ − ln(hi), i = 1, 2, · · · ,m,

cuj ≥ ε, j = 1, 2, · · · , n,
clj ≥ cuj , j = 1, 2, · · · , n,

where, the condition clj ≥ cuj ≥ ε > 0, such that the matrix Du − Dl is
semi-definite, the matrices Du and Dl are definite. Thus, we have

Du = TC−1
u TT, (10.11)

Dl = TC−1
l TT. (10.12)

This identification procedure is called as the PCA method. It is simpler
than the method based on orthogonal conditions.
Theorem10.3 In the linear programming problem (LP10-2), the matrices Cu

and Cl always exist.
Proof Take Cu = qI and Cl = pI in (LP10-2). Thus, the constraint condi-
tions of (LP5-2) can be represented by

pzT
i zi ≥ −lnhi, i = 1, 2, · · · ,m,

qzT
i zi ≤ −lnhi, i = 1, 2, · · · ,m,

q ≥ ε,
p ≥ q.

(10.13)

If takeing ε ≤ q and

p = max
i=1,···,m−1,i �=i∗

(
−ln

hi

zT
i zi

)
,

q = min
i=1,···,m−1,i �=i∗

(
−ln

hi

zT
i zi

)
,

such that (10.13) holds.
Therefore, there is an admissible set in the constraint conditions of (LP10-

2). It should be noted that vector zi∗ = 0 is omitted, because zT
i∗zi∗ =

− ln 1 = 0 in Eq. (10.13). Thus, we consider {1, 2, · · · ,m−1} without i∗ = 0.
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This theorem implies that using PCA method we always can obtain the
matrices Du and Dl in upper and lower possibility distributions.

Assume that the given data (yi, hi)(i = 1, 2, · · · ,m) are obtained from an
exponential possibility distribution Y = (0, A∇)e where the center vector is
zero. In other words, the following equations hold.

ΠY (yi) = exp{−yT
i A∇−1

yi} = hi, i = 1, 2, · · · ,m. (10.14)

Considering the following optimization problem for finding out the upper
possibility matrix Au and the lower possibility matrix Al from the above
given data.

(LP10-3) min
Au,Al

J(Al, Au) =
m∑

i=1

yT
i A−1

l yi −
m∑

i=1

yT
i A−1

u yi

s.t. yT
i A−1

l yi ≥ − ln(hi), i = 1, 2, · · · ,m,
yT

i A−1
u yi ≤ − ln(hi), i = 1, 2, · · · ,m.

Theorem10.4 The optimal solutions of Au and Al in (LP10-3) are A∇.
Proof The optimization problem (LP10-3) can be separated into the follow-
ing two optimization problems:

(LP5-3U) max
Au

J1(Au) =
m∑

i=1

yT
i A−1

u yi

s.t. yT
i A−1

u yi ≤ − ln(hi), i = 1, 2, · · · ,m.

(LP10-3L) min
Al

J1(Al) =
m∑

i=1

yT
i A−1

l yi

s.t. yT
i A−1

l yi ≥ − ln(hi), i = 1, 2, · · · ,m.

Since data (yi, hi)(i = 1, 2, · · · ,m) are obtained from the exponential
possibility distribution Y = (0, A∇)e, the data (yi, hi)(i = 1, 2, · · · ,m) satisfy
(10.14). Therefore, Ar is an admissible solution of (LP10-3U) and (LP10-
3L). Assume that there is another matrix A∇ such as J1(A

′
) > J1(A∇) in

(LP10-3U). Then, for some i,

yT
i A

′−1
yi > yT

i A∇−1
yi = −lnhi.

which shows that A
′

is not admissible. Thus, A∇ is the optimal solution
of (LP10-3U). In the same way, we can prove that the optimal solution of
(LP10-3L) is also A∇. Therefore, both Au and Al are A∇.

This theorem means that the methods for determining an exponential
possibility distribution can obtain the actual matrix A∇ if the given data are
governed by an exponential possibility distribution with a distribution matrix
A∇. Moreover, the upper and the lower possibility distributions are equal to
A∇.
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10.3 Model Formulation

Return of the portfolio x = (x1, · · · , xn) can be represented by z = rTx.
Denote the possibility distribution of z by πZ(z).

Because r is governed by a possibility distribution (a,DA)e, z is a possi-
bility variable Z. According to the extension principle, the possibility distri-
bution of a portfolio return Z is defined by

πZ(z) = max
{r|z=rTx}

exp{−(r − a)TD−1
A (r − a)}. (10.15)

By solving the above optimization problem, we can get the possibility
distribution

πZ(z) = exp{−(z − aTx)2(xTDAx)−1} = (aTx, xTDAx)e,

where aTx is center value, xTDAx is the spread of possibility return Z. Given
the lower and the upper possibility distributions, the corresponding portfolio
selection models are given as follows:
• Portfolio selection model based on upper possibility distributions

(QP10-1) min
x

xTDux

s.t. aTx = c,
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · ·n.

• Portfolio selection model based on lower possibility distribution:

(QP10-2) min
x

xTDlx

s.t. aTx = c,
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, · · ·n,

where c is the center value of portfolio possibility return given by the investor.
It is straightforward that the above models are quadratic programming

problems minimizing the spread of a possibility portfolio return.
Theorem10.5 The spread of the possibility return based on the lower pos-

sibility distribution is not larger than the one based on the upper possibility
distribution.
Proof Suppose that the optimal solutions obtained from the problems
(QP10-1) and (QP10-2) are denoted as x∗

u and x∗
l respectively, with con-

sidering the same center value. According to the feature of the upper and
lower possibility distributions, i.e. Du − Dl � 0, the following inequality
holds.
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x∗T
u Dux∗

u ≥ x∗T
u Dlx

∗
u.

Since x∗
l is the optimal solution of (QP5-2), we have

x∗T
u Dlx

∗
u ≥ x∗T

l Dlx
∗
l .

Thus,
x∗T

u Dux∗
u ≥ x∗T

l Dlx
∗
l .

The nondominated solutions with considering two objective functions, i.e.,
the spread and the center of a possibility portfolio in the possibility portfolio
selection models can form efficient frontiers.
Definition10.1 Efficient frontiers from the upper and lower possibility port-
folio selection models are called possibility efficient frontier I and possibility
efficient frontier II, respectively.
Definition10.2 Two spreads of possibility portfolio returns from the upper

and lower possibility distributions with the same given center value form an
interval. This interval is called a possibility risk interval.

The possibility risk interval is used to reflect the uncertainty in portfolio
selection problems.

10.4 Numerical Example

In order to illustrate the proposed approaches, Tanaka and Guo consider an
example shown in Table 10.1 and Table 10.2 introduced by Markowitz. In
this example, since we can consider that the recent sample is more similar to
the like scenario(s) in the future, it is assumed that the possibility grade hi
can be obtained as

hi = 0.2 + 0.7(t − 1)/17 (t = 1, 2, · · · , 18).

When taking ε = 0.001, by (10.2), we have the center value variable

a = (0.154, 0.176, 0.908, 0.715, 0.469, 0.077, 0.112, 0.756, 0.185)T.

Using models (QP10-1) and (QP10-2), they obtained two possibility effi-
cient frontiers shown in Fig 10.1. We can find that the spread of the possibility
portfolio return from (QP10-1) is always larger than that from (QP10-2).
This fact stems from the concept of the lower and the upper possibility dis-
tributions. They can be regarded as two extreme opinions playing a reference
role for an investor. The corresponding risk with c = 0.3 is an interval value,
i.e., [0.17978, 0.67318], which reflect the uncertainty in real investment prob-
lems. Table 10.3 and Table 10.4 show the securities selected by the possibility
portfolio selection models (QP10-2) and (QP10-1) in the case of c = 0.3, re-
spectively. The result shows that the number of the obtained securities from
(QP10-2) is more than the one from (QP10-1). It implies that the portfolio
from model (48) tends to take more distributive investment than the one from
(QP10-1).



10.4 Numerical Example 127

Table 10.1. Historical returns of securities 1

1 2 3 4 5

hi Am.T A.T.T U.S.S G.M. A.T.Sfe

1937 0.2 −0.305 -0.173 −0.318 −0.477 −0.457

1938 0.241 0.513 0.098 0.285 0.714 0.107

1939 0.282 0.055 0.200 −0.047 0.165 −0.424

1940 0.324 −0.126 0.03 0.104 −0.043 −0.189

1941 0.365 −0.280 −0.183 −0.171 −0.277 0.637

1942 0.406 −0.003 0.067 −0.039 0.476 0.865

1943 0.447 0.428 0.300 0.149 0.225 0.313

1944 0.488 0.192 0.103 0.260 0.290 0.637

1945 0.529 0.446 0.216 0.419 0.216 0.373

1946 0.571 −0.088 −0.046 −0.078 −0.272 −0.037

1947 0.612 −0.127 −0.071 0.169 0.144 0.026

1948 0.653 −y0.015 0.056 −0.035 0.107 0.153

1949 0.694 0.305 0.038 0.133 0.321 0.067

1950 0.735 −0.096 0.089 0.732 0.305 0.579

1951 0.776 0.016 0.090 0.021 0.195 0.040

1952 0.818 0.128 0.083 0.131 0.390 0.434

1953 0.859 −0.010 0.035 0.006 −0.072 −0.027

1954 0.9 0.154 0.176 0.908 0.715 0.469

Fig. 10.1. Efficient frontier of possibility model
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Table 10.2. Historical returns of securities 2

6 7 8 9

hi C.C Bdn Frstn. S.S

1937 0.2 −0.065 −0.319 −0.400 −0.435

1938 0.241 0.238 0.076 0.336 0.238

1939 0.282 −0.078 0.381 −0.093 −0.295

1940 0.324 −0.077 −0.051 -y0.090 −0.036

1941 0.365 −0.187 0.087 −0.194 −0.240

1942 0.406 0.156 0.262 0.113 0.126

1943 0.447 0.351 0.341 0.580 0.639

1944 0.488 0.233 0.227 0.473 0.282

1945 0.529 0.349 0.352 0.229 0.578

1946 0.571 −0.209 0.153 −0.126 0.289

1947 0.612 0.355 −0.099 0.009 0.184

1948 0.653 −0.231 0.038 0.000 0.114

1949 0.694 0.246 0.273 0.223 −0.222

1950 0.735 −0.248 0.091 0.650 0.327

1951 0.776 −0.064 0.054 −0.131 0.333

1952 0.818 0.079 0.109 0.175 0.062

1953 0.859 0.067 0.210 −0.084 −0.048

1954 0.9 0.077 0.112 0.756 0.185

Table 10.3. Investment by (QP10-1)

x1 = 0.000 x2 = 0.000 x3 = 0.000

x4 = 0.233 x5 = 0.111 x6 = 0.160

x7 = 0.312 x8 = 0.000 x9 = 0.184

Table 10.4. Investment by (QP10-2)

x1 = 0.000 x2 = 0.101 x3 = 0.000

x4 = 0.201 x5 = 0.152 x6 = 0.143

x7 = 0.250 x8 = 0.000 x9 = 0.153

10.5 Conclusion

In this chapter, we introduce Tanaka and Guo’s model (2003). Different from
probability distributions for reflecting the statistic characteristics of the past
data, possibility distributions are used to characterize human knowledge so
that knowledge from multiple experts can be represented by a set of exponen-
tial possibility distributions. Based on consistency indices defined by possibil-
ity measure of each pair of possibility distributions, a fusion model is proposed
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to integrate multiple possibility distributions into a new one representing a
refined knowledge.



11

Carlsson-Fullér-Majlender’s Trapezoidal
Possibility Model

11.1 Introduction

In traditional portfolio selection models, uncertainty is regarded as random-
ness. The probability theory is very useful to deal with observable random
events. Though often applied to deal with uncertainty, the probabilistic ap-
proaches only partly capture the reality. In reality, although many events
are characterized as fuzzy by probabilistic approaches, they are not random
events. Carlsson, Fullér and Majlender (2002) have found cases where assign-
ment of probabilities is based on very rough, subjective estimates and then the
subsequent calculations are carried out with a precision of two decimal points.
The routine use of probabilities is not a good choice is shown. The choice of
the utility theory, which builds on a decision maker’s relative preferences for
artificial lotteries, is a way to anchor portfolio selection in the von NeumannC-
Morgenstern axiomatic utility theory. Carlsson, Fullér and Majlender showed
that using the utility theory has proved to be problematic: (i) utility measures
cannot be validated inter-subjectively, (ii) the consistency of utility measures
cannot be validated across events or contexts for the same subject, (iii) utility
measures show discontinuities in empirical tests (as shown by Tversky), which
should not happen with rational decision makers if the axiomatic foundation
is correct, and (iv) utility measures are artificial and intuitive and, thus, hard
to use. As the combination of probability assessments with the utility theory
has these well-known limitations, Tanaka and Guo (1999) have explored the
use of the possibility theory as a substituting conceptual framework. Carlsson,
Fullér and Majlender assume that (i) each investor can assign a welfare, or
utility, score to competing investment portfolios based on the expected return
and risk of the portfolios; and (ii) the rates of return on securities are mod-
eled by possibility distributions rather than probability distributions. They
presented an algorithm of complexity O(n3) for finding an exact optimal so-
lution (in the sense of utility scores) to the n-asset portfolio selection problem
under possibility distributions.
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11.2 Model Formulation

A fuzzy number A is called trapezoidal with tolerance interval [a, b], left width
α and right width β if its membership function takes the following form:

A(t) =

⎧⎪⎪⎨⎪⎪⎩
1 − a−t

α if a − α ≤ t ≤ a,
1 if a ≤ t ≤ b,

1 − t−b
β if a ≤ t ≤ b + β,

0 otherwise

(11.1)

and we denote A = (a, b, α, β). It can easily be shown that

[A]γ = [a − (1 − γ)α, b + (1 − γ)β],∀γ ∈ [0, 1], (11.2)

where [A]γ denotes the γ-level set of A.
Let [A]γ = [a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)] be fuzzy numbers and

let k ∈ R be a real number. Using the extension principle we can verify the
following rules for addition and scalar multiplication of fuzzy numbers:

[A + B]γ = [a1(γ) + b1(γ), a2(γ) + b2(γ)], (11.3)

[kA]γ = k[A]γ . (11.4)

Carlsson and Fullér (2001) introduced the notation of crisp possibilistic
mean value and crisp possibilistic variance of continuous possibility distribu-
tions, which are consistent with the extension principle. The crisp possibilistic
mean value of A is

E(A) =
∫ 1

0

γ(a1(γ) + a2(γ))dγ. (11.5)

It is clear that if A = (a, b, α, β) is a trapezoidal fuzzy number, then

E(A) =
∫ 1

0

γ[a − (1 − γ)α + b + (1 − γ)β]dγ =
a + b

2
+

β − α

6
(11.6)

In many important cases, it might be easier to estimate the possibility
distributions of rates of return on securities, rather than the corresponding
probability distributions. Carlsson, Fullér and Majlender suppose that return
of the portfolio P is rP , the expected return is E(rP ), variance of return
is σ2(rP ), and the utility function is

U(P ) = E(rP ) − 0.005 × A × σ2(rP ),

where A is an index of the investors risk aversion (A ≈ 2.46 for an average
investor in the USA). Consider the following portfolio selection problem with
possibility distributions
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(UP11-1) max U

(
n∑

i=1

rixi

)
= E

(
n∑

i=1

rixi

)

−0.005 × A × σ2 ×
(

n∑
i=1

rixi

)

s.t.
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · · , n,

where ri = (ai, bi, αi, βi)(i = 1, 2, · · · , n) is a trapezoidal fuzzy number.
One can compute easily

E

(
n∑

i=1

rixi

)
=

n∑
i=1

1
2

[
ai + bi +

βi − αi

3

]
xi

and

σ2

(
n∑

i=1

rixi

)
=

(
n∑

i=1

1
2

[
bi − ai +

1
3
(αi + βi)

]
xi

)2

+ 1
72

[
n∑

i=1

(αi + βi)xi

]2

.

Introducing the notations:

ui = 1
2

[
ai + bi + 1

3 (βi − αi)
]
,

vi =
√

0.005A
2

[
bi − ai + 1

3 (αi + βi)
]
,

wi =
√

0.005A√
72

(αi + βi),

Thus, they represent the ith asset by a triplet (vi, wi, ui), where ui denotes its
possibilistic expected value, and v2

i + w2
i its possibilistic variance multiplied

by the constant 0.005A. Assume that there are at least three distinguishable
assets, with the assumption that if two assets have the same expected value
and variance then they are considered indistinguishable (or identical in the
framework of mean-variance analysis). That is, assume that ui 	= uj or v2

i +
w2

i 	= v2
j + w2

j for i 	= j.
Carlsson, Fullér and Majlender presented the following possibilistic port-

folio selection problem

(UP11-2) max 〈u, x〉 − 〈v, x〉2 − 〈w, x〉2

s.t.
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · · , n.

The convex hull of {(vi, wi, ui) : i = 1, 2, · · · , n}, denoted by T ,
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T = conv{(vi, wi, ui) : i = 1, 2, · · · , n}
=

{(
n∑

i=1

vixi,
n∑

i=1

wixi,
n∑

i=1

uixi

)
:

n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , n
}

T is a convex polytope in R3.
Then (UP11-2) turns into the following three-dimensional non-linear pro-

gramming problem:

(UP11-3) max −(v2
0 + w2

0 − u0)
s.t. (v0, w0, u0) ∈ T,

or, equivalently,

(UP11-4) min v2
0 + w2

0 − u0

s.t. (v0, w0, u0) ∈ T,

where T is a compact and convex subset of R3, and the implicit function

gc(v0, w0) := v2
0 + w2

0 − c

c is strictly convex for any c ∈ R. This means that any optimal solution to
(UP11-4) must be on the boundary of T .

Carlsson, Fullér and Majlender presented an algorithm for finding an op-
timal solution to (UP11-2) on the boundary of T . Note that, T is a compact
and convex polyhedron of R3 and that any optimal solution to (UP11-4)
must be on the boundary of T , which imply that any optimal solution can be
obtained as a convex combination of at most 3 extreme points of T . In the
algorithm, by lifting the non-negativity conditions for investment proportions
one shall calculate: (i) the (exact) solutions to all conceivable 3-asset problems
with non-colinear assets, (ii) the (exact) solutions to all conceivable 2-assets
problems with distinguishable assets, and (iii) the utility value of each asset.
Then one can compare the utility values of all feasible solutions (i.e. solutions
with non-negative weights) and portfolios with the highest utility value will
be chosen as optimal solutions to the portfolio selection problem (UP11-4).
Their algorithm will require o(n3) steps, where n is the number of available
securities.

Consider three assets (vi, wi, ui)(i = 1, 2, 3), which are not colinear: there
are not exist (α1, α2, α3) ∈ R3, (α1, α2, α3) 	= 0, such that

α1

⎡⎣ v1

w1

u1

⎤⎦+ α2

⎡⎣ v2

w2

u2

⎤⎦− (α1 + α2)

⎡⎣ v3

w3

u3

⎤⎦ = 0,

Then the 3-asset optimal portfolio selection problem with not-necessarily non-
negative weights reads

(UP11-5) min (v1x1 + v2x2 + v3x3)2 + (v1x1 + v2x2 + v3x3)2

−(u1x1 + u2x2 + u3x3)
s.t. x1 + x2 + x3 = 1.
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Let

L(x, λ) = (v1x1 + v2x2 + v3x3)2 + (v1x1 + v2x2 + v3x3)2

−(u1x1 + u2x2 + u3x3) + λ(x1 + x2 + x3 − 1). (11.7)

L(x, λ) is the Lagrange function of the constrained optimization problem
(UP11-5). The KuhnCTucker necessity conditions are

2v1(v1x1 + v2x2 + v3x3) + 2w1(w1 + w2 + w3) − u1 + λ = 0,

2v2(v1x1 + v2x2 + v3x3) + 2w2(w1 + w2 + w3) − u2 + λ = 0,

2v3(v1x1 + v2x2 + v3x3) + 2w3(w1 + w2 + w3) − u3 + λ = 0,
x1 + x2 + x3 = 1.

which leads to the following linear equality system:[
q2
1 + r2

1 q1q2 + r1r2

q1q2 + r1r2 q2
2 + r2

2

] [
x1

x2

]
=
[

1/2(u1 − u3) − q1v3 − r1w3

1/2(u2 − u3) − q2v3 − r2w3

]
,

(11.8)

where q1 = v1 − v3, q2 = v2 − v3, r1 = w1 − w3 and r2 = w2 − w3.
They prove that, if (vi, wi, ui)(i = 1, 2, 3) are not co-linear, then (11.8)

has a unique solution. Suppose the solution of (11.8) is not unique, i.e.,

det
[

q2
1 + r2

1 q1q2 + r1r2

q1q2 + r1r2 q2
2 + r2

2

]
= 0,

i.e.,

det
[

q2
1 + r2

1 q1q2 + r1r2

q1q2 + r1r2 q2
2 + r2

2

]
= (q2

1 + r2
1)(q

2
2 + r2

2) − (q1q2 + r1r2)2

= (q1r2 − q2r1)2 =
(

det
[

q1 r1

q2 r2

])2

= 0.

Thus, the rows of
[

q1 r1

q2 r2

]
are not linearly independent ∃(α1, α2) 	= 0, such

that
α1[q1, r1] + α2[q2, r2] = 0

⇔ α1[v1 − v3, w1 − w3] + α2[v2 − v3, w2 − w3] = 0.
(11.9)

We can find that (11.8) turns into

(q2
2 + r2

2)
[

α2
2 −α1α2

−α1α2 α2
1

] [
x1

x2

]
= α1

[
1/2α1(u1 − u3) + α2(q2v3 + r2v3)
1/2α1(u2 − u3) − α1(q2v3 + r2v3)

]
.



136 11 Carlsson-Fullér-Majlender’s Trapezoidal Possibility Model

Multiplying both sides by [α1, α2], we get that u1, u2 and u3 have to
satisfy the equation

α2
1

[
1
2
α1(u1 − u3) +

1
2
α2(u2 − u3)

]
= 0.

If α1 	= 0, then we obtain α1(u1 − u3) + α2(u2 − u3) = 0, and from (11.9)
it follows that

α1

⎡⎣ v1

w1

u1

⎤⎦+ α2

⎡⎣ v2

w2

u2

⎤⎦− (α1 + α2)

⎡⎣ v3

w3

u3

⎤⎦ = 0,

i.e., (vi, wi, ui)(i = 1, 2, 3) were colinear.
If α1 = 0, then α2 	= 0, and from (11.9) we can get q2 = r2 = 0. Now we

find (11.8) turns into[
q2
1 + r2

1 0
0 0

] [
x1

x2

]
=
[

1/2(u1 − u3) − q1v3 − r1v3

1/2(u2 − u3)

]
.

Multiplying both sides by [0, 1], we obtain

1
2
(u2 − u3) = 0.

we can find
v2 − v3 = w2 − w3 = u2 − u3 = 0,

it means (vi, wi, ui)(i = 1, 2, 3) were colinear.
Using the general inversion formula,[

t1 t2
t3 t4

]−1

=
1

t1t4 − t2t3

[
t4 −t2
−t3 t1

]
,

One can find the optimal solution of (11.8)

[
x∗

1

x∗
2

]
= 1

(q1r2−q2r1)2
×
[

q2
2 + r2

2 −(q1q2 + r1r2)
−(q1q2 + r1r2) q2

1 + r2
1

]
×
[

1/2(u1 − u3) − q1v3 − r1v3

1/2(u2 − u3) − q2v3 − r2v3

]
.

(11.10)

It is shown that x∗ = (x∗
1, x

∗
2, 1− x∗

1 − x∗
2) satisfies the Kuhn-Tucker suffi-

ciency condition, i.e. L
′′
(x, λ) is a positive definite matrix at x = x∗ . in the

subset defined by

{y = (y1, y2, y3) ∈ R3 : y1 + y2 + y3 = 0}.
In fact, from (11.7) one can get
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M : = 1
2L

′′
(x∗, λ)

=

⎡⎣ v2
1 + w2

1 v1v2 + w1w2 v1v3 + w1w3

v1v2 + w1w2 v2
2 + w2

2 v2v3 + w2w3

v1v3 + w1w3 v2v3 + w2w3 v2
3 + w2

3

⎤⎦
=

⎡⎣ v1

v2

v3

⎤⎦⎡⎣ v1

v2

v3

⎤⎦T

+

⎡⎣w1

w2

w3

⎤⎦⎡⎣w1

w2

w3

⎤⎦T

,

Hence,

yTMy = (v1y1 + v2y2 + v3y3)2 + (w1y1 + w2y2 + w3y3)2 ≥ 0, (11.11)

holds for any y ∈ R3. So M is a semi-definite matrix. If yTMy = 0 for some
y = (y1, y2, y3) 	= 0, y1 + y2 + y3 = 0, then from (11.11) one can find

v1y1 + v2y2 + v3y3 = 0, w1y1 + w2y2 + w3y3 = 0,

and one can get

det

⎡⎣ v1 v2 v3

w1 w2 w3

1 1 1

⎤⎦ = det
[

q1 q2

r1 r2

]
= det

[
q1 r1

q2 r2

]
= 0,

which would lead to a contradiction with the noncolinearity condition. So L
′′

is positive definite. Thus x∗ is the unique optimal solution to (UP11-5) and x∗

is an optimal solution to (UP11-4)(n = 3) if x∗
1 > 0, x∗

2 > 0 and x∗
3 > 0,(the

Kuhn-Tucker regularity condition). The optimal value of (UP11-5) will be
denoted by U∗.

Consider a 2-asset problem with two assets, say (v1, w1, u1) and (v2, w2,
u2), such that (v1, w1, u1) 	= (v2, w2, u2). The portfolio selection problem is
presented by

(UP11-6) min (v1x1 + v2x2)2 + (v1x1 + v2x2)2 − (u1x1 + u2x2)
s.t. x1 + x2 = 1.

Let

L(x, λ) = (v1x1 + v2x2)2 + (v1x1 + v2x2)2 − (u1x1 + u2x2) + λ(x1 + x2 − 1),

L(x, λ) is the Lagrange function of the constrained optimization problem
(UP11-6). The KuhnCTucker necessity conditions are

2v1(v1x1 + v2x2) + 2w1(w1 + w2) − u1 + λ = 0,
2v2(v1x1 + v2x2) + 2w2(w1 + w2) − u2 + λ = 0,
x1 + x2 = 1.

Thus, one can get:
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[(v1−v2)2 +(w1−w2)2]x1 =
1
2
(u1−u2)− (v1−v2)v2− (w1−w2)w2. (11.12)

If (v1 − v2)2 + (w1 − w2)2 	= 0, one can find

x∗ = (x∗
1, 1 − x∗

1),

where
x∗

1 = 1
(v1−v2)2+(w1−w2)2

[ 12 (u1 − u2)
−(v1 − v2)v2 − (w1 − w2)w2],

(11.13)

x∗ is the unique solution of (11.12). If v1 = v2 and w1 = w2, then from (11.12)
one can find u1 = u2, u2, which would contradict the initial assumption that
the two assets are not identical. It can be easily found that L

′′
(x∗, λ) is a

positive definite matrix in the subset defined by

{y = (y1, y2, y3) ∈ R3 : y1 + y2 = 0}.

Therefore, x∗ is the unique solution of (UP11-6), and if x∗
1 > 0, x∗

2 > 0, x∗ is
the optimal solution of (UP11-4)(n = 2).

11.3 Algorithm

Carlsson, Fullér and Majlenderan proposed an algorithm for finding an opti-
mal solution to the n-asset possibility portfolio selection problem (UP11-4)
is proposed, The algorithm will terminate in o(n3) steps.

Step 1: Let c := +∞ and xc := [0, · · · , 0].
Step 2: Choose three points from the bag {(vi, wi, ui) : i = 1, 2, · · · , n}

which have not been considered yet. If there are no such points then go to Step
9, otherwise denote these three points (vj , wj , uj), (vk, wk, uk) and (vl, wl, ul).
Let (v1, w1, u1) := (vj , wj , uj), (v2, w2, u2) := (vk, wk, uk) and (v3, w3, u3) :=
(vl, wl, ul).

Step 3: If

det
[

q1 r1

q2 r2

]
= det

[
v1 − v3 w1 − w3

v2 − v3 w2 − w3

]
= 0,

then go to Step 2, otherwise go to Step 4.
Step 4: Using (11.10), compute the two component, x∗

1, x
∗
2 of the optimal

solution of (UP5-6).
Step 5: If [x∗

1, x
∗
2, 1− x∗

2 − x∗
1] > 0, then go to Step 6, otherwise go to Step

2.
Step 6: If U∗ < c, then go to Step 7, otherwise go to Step 2.
Step 7: Let c = U∗, where U∗ is the optimal value of (UP11-6), and let xc =

[0, · · · , 0, x∗
1, 0, · · · , 0, x∗

2, 0, · · · , 0, x∗
3, 0, · · · , 0], where x∗

1 is the jth component
of xc, x∗

2 is the kth component of xc, x∗
3 is the lth component of xc.
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Step 8: go to Step 2.
Step 9: Choose two points from the bag {(vi, wi, ui) : i = 1, 2, · · · , n}

which have not been considered yet. If there are no such points then go to
Step 16, otherwise denote these two points by (vj , wj , uj) and (vk, wk, uk).
(v1, w1, u1) := (vj , wj , uj) and (v2, w2, u2) := (vk, wk, uk).

Step 10: If (v1 − v2)2 + (w1 − w2)2 	= 0, then go to Step 9, otherwise go
to Step 11.

Step 11: Using (11.13), compute x∗
1 the first component of optimal solution

of (UP5-6).
Step 12: If [x∗

1, x
∗
2] = [x∗

1, 1 − x∗
1] > 0, then go to Step 13, otherwise go

to Step 9.
Step 13: If U∗ < c, then go to Step 14, otherwise go to Step 9.
Step 14: Let c = U∗, where U∗ is the optimal value of (UP5-6), and let xc =

[0, · · · , 0, x∗
1, 0, · · · , 0, x∗

2, 0, · · · , 0], where x∗
1 is the jth component of xc, x∗

2 is
the kth component of xc.

Step 15: go to Step 9.
Step 16: Choose a point from the bag {(vi, wi, ui) : i = 1, 2, · · · , n} which

has not been considered yet. If there is no such points then go to Step 20,
otherwise denote this point by (vi, wi, ui).

Step 17: If v2
i + w2

i − ui < c, then go to Step 18, otherwise go to Step 16.
Step 18: Let c = v2

i + w2
i − ui and let xc = [0, · · · , 0, 1, 0, · · · , 0], where 1 is

the ith component of xc.
Step 19: Go to Step 16.
Step 20: xc is the optimal solution and −c is the optimal value of the

original portfolio selection problem (UP11-4).

11.4 Numerical Example

Carlsson, Fullér and Majlender illustrate the proposed algorithm by a simple
example. Consider a 3-asset problem with A = 2.46 and with the following
possibility distributions:

r1 = (−10.5, 70.0, 4.0, 100.0),
r2 = (−8.1, 35.0, 4.4, 54.0),
r3 = (−5.0, 28.0, 11.0, 85.0),

Hence,
(v1, w1, u1) = (6.386, 1.359, 45.750),

(v2, w2, u2) = (3.469, 0.763, 21.717),

(v3, w3, u3) = (3.604, 1.255, 23.833).

Since

det
[

q1 r1

q2 r2

]
= det

[
2.782 0.105

−0.135 −0.491

]
= −1.352 	= 0,
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we can get[
x∗

1

x∗
2

]
=

1
−1.3522

[
0.259 0.427
0.427 7.751

] [
0.800
0.044

]
=
[

0.124
0.373

]
.

Since [x∗
1, x

∗
2, x

∗
3] = [0.124, 0.373, 0.503] > 0, we can get (Step 7)

U∗ = −9.386 and x∗ = [0.124, 0.373, 0.503].
Thus, x∗ = [0.124, 0.373, 0.503] is a qualified candidate for being an optimal
solution to (UP11-2). Consider all conceivable 2-asset problems (1, 2), (1, 3)
and (2, 3), where the numbers stand for the corresponding assets chosen from
the bag {(v1, w1, u1), (v2, w2, u2), (v3, w3, u3)}.

Select (1, 2)since (v1 − v2)2 + (w1 − w2)2 = 8.864 	= 0, we can get

U∗ = −9.336and [x∗
1, x

∗
2] = [0.163, 0.837].

Thus, [0.163, 0.837] is a qualified candidate for being an optimal solution to
(UP11-2).

Select (1, 3)since (v1 − v3)2 + (w1 − w3)2 = 7.751 	= 0, we can get

U∗ = −9.352and [x∗
1, x

∗
3] = [0.103, 0.897].

Thus, [0.103, 0.897] is a qualified candidate for being an optimal solution to
(UP11-2).

Select (2, 3)since (v2 − v3)2 + (w2 − w3)2 = 0.259 	= 0, we can get

U∗ = −9.277and [x∗
1, x

∗
3] = [0.171, 0.829].

Thus, [0.171, 0.829] is a qualified candidate for being an optimal solution to
(UP11-2).

Finally, one can get the utility values of all the three vertexes of the triangle
generated by the three assets:

v2
1 + w2

1 − u1 = −3.122, [1, 0, 0] is the corresponding feasible solution
to (UP11-2);

v2
2 + w2

2 − u2 = −3.122, [0, 1, 0] is the corresponding feasible solution
to (UP11-2);

v2
3 + w2

3 − u3 = −3.122, [0, 0, 1] is the corresponding feasible solution
to (UP11-2).

Comparing the utility values of all feasible solutions, one can find that the
only solution to the 3-asset problem is x∗ = [0.124, 0.373, 0.503] with a utility
value of 9.386. The optimal risky portfolio will be preferred to the risk-free
investment (by an investor whose degree of risk-aversion is equal to 2.46 if
rf < 9.386%.

11.5 Conclusion

In the chapter, we introduce Carlsson-Fullér-Majlender’s trapezoidal possibil-
ity Model. They assign a welfare, or utility, score to competing investment
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portfolios based on the expected return and risk of the portfolios. Assume the
rates of return on securities are modeled by trapezoidal possibility distribu-
tions. They present an algorithm of complexity O(n3) for finding an exact
optimal solution.



12

Center Spread Model in Fractional Financial
Market

12.1 Estimation of Possibility Distribution by Using
Semi-definite Programming

Assume that we have the given data (ri, hi) (i = 1, 2, · · · ,m) where ri =
(r1i, · · · , rni)T is a vector of returns of n securities i at the ith period and
hi is an associated possibility grade given by expert knowledge to reflect a
similarity degree between the future state of stock markets and the state of
the ith sample. These grades hi are assumed to be expressed by a possibility
distribution A defined as

πA(R) = exp{−(R − a)TD−1
A (R − a)} = (a,DA)e, (12.1)

where a is a center vector and DA is a symmetric positive definite matrix,
denoted as DA > 0

Given the data, the problem is to determine an exponential possibility dis-
tribution, i.e., a center vector a and a symmetric positive definite matrix DA.
According to two different viewpoints, two kinds of possibility distributions of
A, namely, the upper and the lower possibility distributions, are introduced
in this paper. The upper and the lower possibility distributions denoted as
πu and πl, respectively, should satisfy the inequality πu(x) ≥ πl(x), while
considering some similarities between our proposed methods and rough sets.

Similarly, we can get πu and πl by solving the following optimization
problem:

(Dul) min
Du,Dl

m∑
i=1

yT
i D−1

u yi −
m∑

i=1

yT
i D−1

l yi

s.t. yT
i D−1

u yi ≤ − ln(hi), i = 1, 2, · · · ,m,
yT

i D−1
l yi ≥ − ln(hi), i = 1, 2, · · · ,m,

Du − Dl � 0,
Dl � 0.
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It is difficult to solve the above optimization problem. Tanaka and Guo
(1999) and Tanaka et al. (2000) proposed a method based on orthogonal con-
ditions and a rotation method using the principal component analysis (PCA)
to simplify and relax the optimization problem, and then solve the relaxed
problem to get an approximate solution. However, the rapidly developing semi-
definite programming seems to be a powerful method that can be used to solve
the above problem (one can refer to Vandenberghe and Boyd (1996) and Sturm
(1999) for details).

One may ask how we can determine the possibility grade hi properly. The
Analytic Hierarchy Process (AHP) [Saaty (1980)] may be a good alternative,
since it combines the qualitative and quantitative analysis efficiently.

Based on the semi-definite programming theory, we can get a relaxation
of (Dul) as follows

(Duls) min
Dus,Dls

m∑
i=1

yT
i Dusyi −

m∑
i=1

yT
i Dlsyi

s.t. yT
i Dusyi ≤ − ln(hi), i = 1, 2, · · · ,m,

yT
i Dlsyi ≥ − ln(hi), i = 1, 2, · · · ,m,

Dus − Dls � 0,
Dls � 0,

where, Dls � 0 denotes Dls, a semi-definite matrix.
If we relax the condition that the optimal solution D∗

ls and D∗
us is positive

definite, then D∗−1
ls , D∗−1

us is the optimal solution of the original problem,
let D∗

l = D∗−1
ls and D∗

u = D∗−1
us . Otherwise, if it is semi-definite, then we can

add some distribution and fix D∗
ls, D

∗
us as follows:

Dld = D∗
ls +

⎛⎜⎜⎜⎝
ε1 0 0 · · · 0
0 ε2 0 · · · 0
...

...
...

...
0 0 0 · · · εn

⎞⎟⎟⎟⎠ ,

Dud = D∗
us +

⎛⎜⎜⎜⎝
ε1 0 0 · · · 0
0 ε2 0 · · · 0
...

...
...

...
0 0 0 · · · εn

⎞⎟⎟⎟⎠ ,

where εi(i = 1, 2, · · · , n) is small enough to be considered non-negative, which
satisfies that inverse matrices of Dld and Dud exist. Then D−1

ld and D−1
ud are

the better approximate solutions of the original problem; let D∗
l = D−1

ld , D∗
u =

D−1
ud .

12.2 Model Formulation

We assume that an investor allocates his wealth among n risky assets. The
investor starts with an existing portfolio and decides how to reconstruct a
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new portfolio. The investor pays taxes and transaction costs when trading
stocks and attempts to maximize the return on the portfolio after paying the
taxes and the transaction costs. Return of the portfolio x = (x1, · · · , xn) can
be represented by z = rTx. Denote the possibility distribution of z by πZ(z).
x0

i is the proportion of the security i, i = 1, 2, · · · , n owned by the investor.
ki is the rate of transaction costs for risky asset i (i = 1, 2, · · · , n). Then the
transaction costs of the risky assets can be expressed as

C(x) =
n∑

i=1

Ci(xi) =
n∑

i=1

ki|xi − x0
i |.

The center value is
n∑

i=1

aixi, the spread is xTD∗
Ax. Considering the trans-

action costs, the most possible value of portfolio return after removing trans-
action costs is

n∑
i=1

(aixi − ki|xi − x0
i |).

Carlsson and Fullér introduced the notation of crisp possibilistic mean
value and crisp possibilistic variance of continuous possibility distributions,
which are consistent with the extension principle. The crisp possibilistic mean
value of A is

E(A) =
∫ 1

0

γ(a1(γ) + a2(γ))dγ. (12.2)

It is clear that if A = (a, b, α, β) is a trapezoidal fuzzy number, then

E(A) =
∫ 1

0

γ[a − (1 − γ)α + b + (1 − γ)β]dγ =
a + b

2
+

β − α

6
(12.3)

Denote the turnover rate of security j by trapezoidal fuzzy number l̂j =
(laj , lbj , αj , βj). Then the turnover rate of portfolio x = (x1, x2, · · · , xn) is
n∑

j=1

l̂jxj .

By the definition, the crisp possibilistic mean value of the turnover rate of
security j is represented as follows:

E(l̂j) =
∫ 1

0

γ[laj−(1−γ)αj +lbj +(1−γ)βj ]dγ =
laj + lbj

2
+

βj − αj

6
. (12.4)

Therefore, the crisp possibilistic mean value of the turnover rate of port-
folio x = (x1, x2, · · · , xn) can be represented as

E(l̂(x)) = E(
n∑

j=1

l̂jxj) =
n∑

j=1

(
laj + lbj

2
+

βj − αj

6
)xj . (12.5)

In the study, we use the crisp possibilistic mean value of the turnover rate to
measure the portfolio liquidity.
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The upper possibility distribution portfolio selection model is represented
by:

(PU12-1) max
n∑

i=1

(aixi − ki|xi − x0
i |)

s.t. xTD∗
ux ≤ d0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · · , n,

where d0 is the tolerance level given by the investor.
The other form of the upper possibility distribution portfolio selection

model is represented by

(PU12-2) min xTD∗
ux

s.t.
n∑

i=1

(aixi − ki|xi − x0
i |) ≥ r0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · · , n,

where r0 is the required return level given by the investor.
In the same way, the lower possibility distribution portfolio selection model

is represented by:

(PL12-1) max
n∑

i=1

(aixi − ki|xi − x0
i |)

s.t. xTD∗
l x ≤ d0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · · , n.

The other form of the lower possibility distribution portfolio selection
model is represented by:
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(PL12-2) min xTD∗
l x

s.t.
n∑

i=1

(aixi − ki|xi − x0
i |) ≥ r0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, · · · , n.

Introducing xn+1, let

n∑
i=1

ki|xi − x0
i | ≤ xn+1,

d+
i =

|xi − x0
i | + (xi − x0

i )
2

, d−
i =

|xi − x0
i | − (xi − x0

i )
2

.

then (PU12-1) can be transformed into

(PU12-3) max
n∑

i=1

aixi − xn+1

s.t. xTD∗
ux ≤ d0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

n∑
i=1

ki(d+
i + d−i ) ≤ xn+1,

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n,
n∑

i=1

xi = 1

xi, d
+
i , d−i ≥ 0, i = 1, 2, · · · , n.

Similarly, (PU12-2) can be transformed into

(PU12-4) min xTD∗
ux

s.t.
n∑

i=1

[aixi − ki(d+
i + d−i )] ≥ r0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n,
n∑

i=1

xi = 1

xi, d
+
i , d−i ≥ 0, i = 1, 2, · · · , n.
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(PL12-1) can be transformed into

(PL12-3) max
n∑

i=1

aixi − xn+1

s.t. xTD∗
l x ≤ d0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

n∑
j=1

ki(d+
i + d−i ) ≤ xn+1,

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n,
n∑

i=1

xi = 1

xi, d
+
i , d−i ≥ 0, i = 1, 2, · · · , n.

(PL12-2) can be transformed into

(PL12-4) min xTD∗
l x

s.t.
n∑

i=1

[aixi − ki(d+
i + d−i )] ≥ r0,

n∑
j=1

(
laj + lbj

2
+

βj − αj

6

)
xj ≥ E(l̂0),

d+
i − d−i = xi − x0

i , i = 1, 2, · · · , n,
n∑

i=1

xi = 1,

xi, d
+
i , d−

i ≥ 0, i = 1, 2, · · · , n.

Both (PL12-3) and (PL12-4) can be used to formulate the efficient frontier
of the lower possibility center-spread portfolio selection.

12.3 Numerical Example

In this section, we give an example to illustrate the model for portfolio selec-
tion proposed in this chapter. We suppose that an investor wants to choose
twelve stocks and a kind of risk-less asset from the Shanghai Stock Exchange
for his investment.

The names of the twelve stocks are given in Table 12.1.
In this example, since we can consider that the recent sample is more

similar to the future state, it is assumed that the possibility grade hi can be
obtained as

hi = 0.2 + 0.7(t − 1)/17 (t = 1, 2, · · · , 18).
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Table 12.1. Name of Stocks

Handan Gangtie Qilu Shihua Shanghai Jichang

Wukuang Fazhan Gezhouba Jiangnan Zhonggong

Guangzhou Konggu Qinghua Tongfang Shanghai Jiche

Dongfang Hangkong Dongfang Jituan Diyibaihuo

Using the semi-definite programming method, we estimate Du and Dl. By
solving (PL12-4), we get some optimal portfolios in Table 12.2. The detailed
investment strategies are listed in Table 12.4. Based on table 12.2, we can
describe the lower possibility center spread efficient frontier in Fig 12.1.

Table 12.2. Risk, return and liquidity of the lower possibility portfolio

1 2 3

return 0.001 0.003 0.004

risk 0.300 7 0.371 7 0.446 4

liquidity 0.056 6 0.047 0 0.047 5
4 5 6

return 0.005 0.006 0.007

risk 0.547 2 0.672 4 0.832 9

liquidity 0.047 4 0.047 2 0.046 2

By solving (PU12-4), we get some optimal portfolios in Table 12.3. The
detailed investment strategies are listed in Table 12.5. Based on table 12.3, we
can describe the upper possibility center spread efficient frontier in Fig 12.2.

Table 12.3. Risk, return and liquidity of the upper possibility portfolio

1 2 3

return 0.001 0.003 0.004

risk 0.702 5 0.712 1 0.843 3

liquidity 0.049 9 0.047 8 0.045 6
4 5 6

return 0.005 0.006 0.007

risk 1.129 5 1.622 2 2.896 7

liquidity 0.044 5 0.043 2 0.042 7
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Fig. 12.1. The efficient frontier of lower possibility center spread

Fig. 12.2. The efficient frontier of upper possibility center spread
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Table 12.4. The detailed investment strategies of lower possibility portfolio

Stock 1 2 3

Handan Gangtie 0.560 8 0.317 8 0.203 6

Qilu Shihua 0.000 0 0.000 0 0.000 0

Shanghai Jichang 0.339 3 0.077 8 0.138 6

Wukuang Fazhan 0.000 2 0.000 1 0.003 4

Gezhouba 0.123 7 0.043 1 0.000 0

Guangzhou Konggu 0.000 0 0.000 0 0.000 0

Qinghua Tongfang 0.000 0 0.000 0 0.000 0

Shanghai Qiche 0.315 3 0.478 4 0.518 9

Dongfang Hangkong 0.000 0 0.000 0 0.000 0

Dongfang Jituan 0.000 0 0.082 8 0.138 8

Diyibaihuo 0.000 0 0.000 0 0.000 0
Stock 4 5 6

Handan Gangtie 0.082 0 0.000 1 0.000 0

Qilu Shihua 0.000 0 0.000 0 0.000 0

Shanghai Jichang 0.188 1 0.221 4 0.242 6

Wukuang Fazhan 0.000 0 0.041 1 0.129 7

Gezhouba 0.000 0 0.000 0 0.000 0

Jiangnan Zhonggong 0.000 0 0.000 0 0.000 0

Guangzhou Konggu 0.000 0 0.000 0 0.000 0

Qinghua Tongfang 0.000 0 0.000 0 0.000 0

Shanghai Qiche 0.530 3 0.493 3 0.338 5

Dongfang Hangkong 0.032 0 0.089 0 0.209 8

Dongfang Jituan 0.164 2 0.155 1 0.079 4

Diyibaihuo 0.000 0 0.000 0 0.000 0

12.4 Conclusion

In the chapter, based on the semi-definite programming theory, we present an
approach to estimate the possibility distribution of return of security. Then we
propose a quadratic programming model for the portfolio selection problem
in fractional financial markets. An example is given to illustrate the proposed
portfolio selection model.
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Table 12.5. The detailed investment strategies of upper possibility portfolio

Stock 1 2 3

Handan Gangtie 0.162 9 0.422 8 0.097 8

Qilu Shihua 0.133 0 0.000 0 0.052 4

Shanghai Jichang 0.095 0 0.016 7 0.136 7

Wukuang Fazhan 0.000 0 0.000 1 0.000 0

Gezhouba 0.129 0 0.103 4 0.105 1

Jiangnan Zhonggong 0.129 0 0.000 0 0.208 7

Guangzhou Konggu 0.089 7 0.000 0 0.087 5

Qinghua Tongfang 0.000 0 0.000 0 0.000 0

Shanghai Qiche 0.084 4 0.434 8 0.109 1

Dongfang Hangkong 0.069 5 0.000 0 0.124 6

Dongfang Jituan 0.000 8 0.022 2 0.000 0

Diyibaihuo 0.106 7 0.000 0 0.078 3
Stock 4 5 6

Handan Gangtie 0.046 8 0.000 0 0.000 0

Qilu Shihua 0.000 0 0.000 0 0.000 0

Shanghai Jichang 0.168 4 0.210 4 0.295 8

Wukuang Fazhan 0.000 0 0.000 0 0.000 0

Gezhouba 0.084 6 0.032 8 0.000 0

Jiangnan Zhonggong 0.267 9 0.334 6 0.225 0

Guangzhou Konggu 0.086 1 0.081 9 0.000 0

Qinghua Tongfang 0.000 0 0.000 0 0.000 0

Shanghai Qiche 0.124 5 0.111 6 0.000 0

Dongfang Hangkong 0.166 7 0.226 5 0.483 2

Dongfang Jituan 0.000 0 0.000 0 0.000 0

Diyibaihuo 0.055 0 0.002 2 0.000 0
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Fuzzy Index Tracking Portfolio Selection Model

13.1 Introduction

In financial markets, investment strategies can be divided into two classes: pas-
sive investment strategies and active investment strategies. Investors adopting
active investment strategies trade in securities actively, so that they can find
profit opportunities on a running basis. Active investors take it for granted
that they can beat markets continuously. Investors who adopt passive invest-
ment strategies consider that the securities market is efficient. Therefore, they
cannot go beyond the average return level of the market continuously. Index
tracking investment is a kind of passive investment strategy, i.e., investors
purchase all or some securities which are contained in a securities market in-
dex and construct an index tracking portfolio. The securities market index is
considered as a benchmark. The investors want to obtain a return similar to
that of the benchmark, through index tracking investment.

Roll used the sum of the squared deviations of returns on an index repli-
cating portfolio as the tracking errors and proposed a mean variance index
tracking portfolio selection model. Clarke, Krase and Statman defined a linear
tracking error, which is the absolute deviation between the managed portfolio
return and the benchmark portfolio return. Based on the linear objective func-
tion, in which absolute deviations between portfolio and benchmark returns
are used, Rudolf, Wolter and Zimmermann proposed four alternative defin-
itions of a tracking error. Furthermore, they gave four linear optimization
models for index tracking portfolio selection problem. Consiglio and Zenios
and Worzel, Vassiadou-Zeniou and Zenios studied the tracking of indices of
fixed-income securities problem. In this chapter, we will use the excess return
and the linear tracking error as objective functions and propose a bi-objective
programming model for the index tracking portfolio selection problem. Fur-
thermore, we use fuzzy numbers to describe investors’ vague aspiration levels
for the excess return and the tracking error and propose a fuzzy index tracking
portfolio selection model.



156 13 Fuzzy Index Tracking Portfolio Selection Model

The chapter is organized as follows. In Section 2, we present a bi-objective
programming model for the index tracking portfolio selection problem. In Sec-
tion 3, regarding investors’ vague aspiration levels for the excess return and
linear tracking error as fuzzy numbers, we propose a fuzzy index tracking port-
folio selection model. In Section 4, a numerical example is given to illustrate
the behavior of the proposed fuzzy index tracking portfolio selection model.
Some concluding remarks are given in Section 5.

13.2 Bi-objective Programming Model for Index
Tracking Portfolio Selection

We assume that an investor wants to construct a portfolio which is required to
track a securities market index. The investor allocates his/her wealth among n
risky securities which are component stocks contained in the securities market
index. We introduce some notations as follows.
rit: the observed return of security i (i = 1, 2, · · · , n) at time t (t = 1, 2, · · · , T );
xi: the proportion of the total amount of money devoted to security i (i =
1, 2, · · · , n);
It: the observed securities market index return at time t (t = 1, 2, · · · , T ).

Let x = (x1, x2, · · · , xn). Then the return of portfolio x at time t (t =
1, 2, · · · , T ) is given by

Rt(x) =
n∑

i=1

ritxi.

An excess return is the return of index tracking portfolio x above the return
on the index. The excess return of portfolio x at time t (t = 1, 2, · · · , T ) is
given by

Et(x) = Rt(x) − It.

The expected excess return of index tracking portfolio x is given by

E(x) =
T∑

t=1

1
T

(Rt(x) − It) .

Roll used the sum of squared deviations between the portfolio and bench-
mark returns to measure the tracking error of the index tracking problem.
Rudolf, Wolter and Zimmermann used linear deviations instead of squared
deviations, to give four definitions of the linear tracking errors. We adopt the
tracking error based on the mean absolute downside deviations, to formulate
the index tracking portfolio selection model in this paper. The tracking error
based on the mean absolute downside deviations can be expressed as

TDMAD(x) =
T∑

t=1

1
T
|min{0, Rt(x) − It}|.
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Generally, in the index tracking portfolio selection problem, the tracking
error and the excess return are two important factors considered by investors.
An investor tries to maximize the expected excess return. At the same time,
the investor hopes that the return of portfolio equals the return of the index
approximately, to some extent, in the investment horizon. Hence, the expected
excess return and the tracking error can be considered as two objective func-
tions of the index tracking portfolio selection problem.

In many financial markets, short selling of securities is not allowed. So we
add the following constraints:

x1, x2, · · · , xn ≥ 0, i = 1, 2, · · · , n.

We assume that the investor pursues maximization of the excess return
of portfolio and to minimize the tracking error, under the ’no short selling’
constraint. The index tracking portfolio selection problem can be formally
stated as the following bi-objective programming problem:

(BP) max E(x)
min TDMAD(x)

s.t.
n∑

i=1

xi = 1,

x1, x2, · · · , xn ≥ 0, i = 1, 2, · · · , n.

The problem (BP) can be reformulated as a bi-objective linear program-
ming problem by using the following technique. Note that∣∣min{0, a}∣∣ = 1

2

∣∣a∣∣− 1
2
a

for any real number a. Thus, by introducing auxiliary variables b+
t , b−t , t =

1, 2, · · · , T such that

b+
t + b−t =

∣∣Rt(x) − It

∣∣
2

,

b+
t − b−t =

Rt(x) − It

2
, (13.1)

b+
t ≥ 0, b−t ≥ 0, t = 1, 2, · · · , T, (13.2)

we may write

TDMAD(x) =
T∑

t=1

2b−t
T

.

Hence, we may rewrite problem (BP) as the following bi-objective linear pro-
gramming problem:
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(BLP) max E(x)

min
T∑

t=1

2b−t
T

s.t. (13.1), (13.2) and all constraints of (BP).

Thus the investor may get the index tracking investment strategies by com-
puting efficient solutions of (BLP). One can use one of the existing algorithms
of multiple objective linear programming to solve it efficiently.

13.3 Fuzzy Index Tracking Portfolio Selection Model

As in case of other investments, knowledge and experience of experts are im-
portant, for the investor to decide his/her levels of aspiration for the expected
excess return and the tracking error of index tracking portfolio also. Watada
employed a non-linear S shape membership function, to express aspiration
levels of expected return and of risk which the investor would expect, and
proposed a fuzzy active portfolio selection model. The S shape membership
function is given by:

f(x) =
1

1 + exp(−αx)
.

In the bi-objective programming model of index tracking portfolio selec-
tion proposed in Section 2, the two objectives, the expected excess return and
the tracking error, are considered. Since the expected excess return and the
tracking error are vague and uncertain, we use the non-linear S shape mem-
bership functions proposed by Watada to express the aspiration levels of the
expected excess return and the tracking error.

The membership function of the expected excess return is given by

µE(x) =
1

1 + exp (−αE (E(x) − EM ))
,

where EM is the mid-point where the membership function value is 0.5 and
αE can be given by the investor based on his/her own degree of satisfaction
for the expected excess return. Figure 13.1 shows the membership function of
the goal for the expected excess return.

The membership function of the tracking error is given by

µT (x) =
1

1 + exp(αT (TDMAD(x) − TM ))
,

where TM is the mid-point where the membership function value is 0.5 and
αT can be given by the investor based on his/her own degree of satisfaction re-
garding the level of tracking error. Figure 13.2 shows the membership function
of the goal for the tracking error.
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Fig. 13.1. Membership function of the goal for expected excess return

Fig. 13.2. Membership function of the goal for tracking error

Remark1: αE and αT determine the shapes of membership functions µE(x)
and µT (x) respectively, where αE > 0 and αT > 0. The larger the parameters
αE and αT get, the lower is their vagueness.

According to Bellman and Zadeh’s maximization principle, we can define

λ = min {µE(x), µT (x)} .

The fuzzy index tracking portfolio selection problem can be formulated as
follows:

(FP) max λ
s.t. µE(x) ≥ λ,

µT (x) ≥ λ,
and all constraints of (BLP).

Let η = log 1
1−λ , then λ = 1

1+exp(−η) . The logistic function is monoto-
nously increasing, so maximizing λ makes η maximize. Therefore, the above
problem can be transformed into an equivalent problem as follows:

(FLP) max η
s.t. αE (E(x) − EM ) − η ≥ 0,

αT (TDMAD(x) − TM ) + η ≤ 0,
and all constraints of (BLP),
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where αE and αT are parameters which can be given by the investor, based on
his/her own degree of satisfaction regarding the expected excess return and
the tracking error.

(FLP) is a standard linear programming problem. One can use one of
several algorithms of linear programming to solve it efficiently; for example,
the simplex method.
Remark2: The non-linear S shape membership functions of the two factors
may change their shape according to parameters αE and αT . By selecting the
values of these parameters, the aspiration levels of the two factors may be de-
scribed accurately. On the other hand, different parameter values may reflect
different aspiration levels. Therefore, it is convenient for different investors to
formulate investment strategies by using the proposed fuzzy index tracking
portfolio selection model.

13.4 Numerical Example

In this section, we will give a numerical example to illustrate the proposed
fuzzy index tracking portfolio selection model. We suppose that the investor
considers Shanghai 180 index as the tracking goal. We choose thirty com-
ponent stocks from Shanghai 180 index as the risky securities. We collect
historical data of the thirty stocks and Shanghai 180 index from January,
1999 to December, 2002. The data can be downloaded from the web-site
www.stockstar.com. We use one month as a period to get the historical rates
of returns of forty eight periods.

The values of the parameters αE , αT , EM and TM can be given by the
investor according to his/her aspiration levels for the expected excess return
and the tracking error. In the example, we assume that αE = 500, αT = 1000,
EM = 0.010 and TM = 0.009. Using the historical data, we get an index
tracking portfolio selection strategy by solving (FLP). All computations were
carried out on a WINDOWS PC using the LINDO solver. Table 13.1 shows
the expected excess return and tracking errors of the portfolio, obtained by
solving (FLP). Table 13.2 shows the investment ratio of the obtained fuzzy
index tracking portfolio. Figure 13.3 shows the deviations between the returns
of the obtained index tracking portfolio and the returns on the benchmark
Shanghai 180 index for each month from January, 1999 to March, 2003. From
Figure 13.3, we can find that the fuzzy index portfolio obtained by solving
(FLP) tracks Shanghai 180 index efficiently.

13.5 Conclusion

Regarding the expected excess return and the tracking error as two objective
functions, we have proposed a bi-objective programming model for the index
tracking portfolio selection problem. Furthermore, investors’ vague aspiration
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Table 13.1. Membership grade λ, obtained expected excess return and obtained
tracking error

λ η excess return tracking error

0.9431 2.8095 0.0152 0.0062

Table 13.2. Investment ratio of the obtained fuzzy index tracking portfolio

Stock 1 2 3 4 5 6 7 8 9 10

Ratio 0.0000 0.0000 0.0620 0.0254 0.0000 0.0408 0.0180 0.1389 0.0324 0.0082

Stock 11 12 13 14 15 16 17 18 19 20

Ratio 0.1440 0.1488 0.0130 0.0000 0.0000 0.0000 0.1889 0.0000 0.0000 0.0000

Stock 21 22 23 24 25 26 27 28 29 30

Ratio 0.0276 0.0000 0.0000 0.0124 0.1001 0.0000 0.0395 0.0000 0.0000 0.0000

Fig. 13.3. The deviations between the returns of the obtained index tracking port-
folio and the returns on the benchmark Shanghai 180 index

levels for the excess return and the tracking error are considered as fuzzy
numbers. Based on the fuzzy decision theory, we have proposed a fuzzy index
tracking portfolio selection model. The computation results of the example
show that the proposed model can generate a favorite index tracking portfolio
strategy according to the investor’s satisfaction degree expectations.
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