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Luc Bauwens · Winfried Pohlmeier · David Veredas

Editor’s introduction: recent developments
in high frequency financial econometrics

“But there are several aspects of the quantitative approach to finance,
and no single one of these aspects, taken by itself, should be confounded
with financial econometrics. Thus, financial econometrics is by no
means the same as finance statistics. Nor is it identical with what we
call general financial theory…Not should be financial econometrics a
synonymous with the application of mathematics to finance. Experience
has shown that each of these three view-points, that of statistics, finan-
cial theory, and mathematics, is a necessary, but not sufficient, condition
for a real understanding of the quantitative relations of modern finan-
cial life. It is the unification of all the three that is powerful. And it is this
unification that constitutes financial econometrics.”

This paragraph is a virtual copy of the one in p. 2 of Frisch’s Editor Note on
Econometrica Vol. 1, No. 1. The only difference is that economics has been replaced
by finance, economic by financial, econometrics by financial econometrics.

It was written 74 years ago but it fully reflects the spirit of this special issue.
High frequency finance is an archetypical example of Ragnar Frisch’s words.
It represents a unification of (1) financial theory, in particular market microstruc-
ture, (2) mathematical finance, exemplified in derivative markets, and (3) statistics,
for instance the theory of point processes. It is the intersection of these three compo-
nents that yields an incredibly active research area, with contributions that enhance
the understanding of today’s complex intra-daily financial world.

“Theory, in formulating its abstract quantitative notions, must be inspired
to a larger extent by the technique of observations. And fresh statistical
and other factual studies must be the healthy element of disturbance
that constantly threatens and disquiets theorists and prevents them from
coming to rest on some inherited, obsolete set of assumptions.”

Here again high frequency finance is fully reflected in Ragnar Frisch’s
words. Its modus vivendi is a perfect combination of observed real facts, market
microstructure theory, and statistics and they all form a system in which each
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component nicely dovetails with the others. Market microstructure theory deals
with models explaining price and agent’s behavior in a market governed by certain
rules. These markets have different ways to operate (with/without market makers,
with/without order books), opening and closing hours, maximum price variations,
minimum traded volume, etc. On the other hand, empirical analysis deals with
the study of market behavior using real data. For example, what are the relations
between traded volume, price variations, and liquidity? What are the potential prob-
lems? Last, statistically speaking, high frequency data are realizations of so-called
point processes, that is, the arrival of the observations is random. This, jointly with
the fact that financial data has pathological and unique features (long memory,
strong skewness, and kurtosis) implies that new methods and new econometric
models are needed.

The econometric analysis of high frequency data permits us to answer to
questions that are of great interest for policy markers. For instance, how much
information should regulators disclose to market participants? Or, how do extreme
movements in the book affect market liquidity? Or is a market maker really
necessary?

On the other side, the practitioners, the traders that participate in the market
every day, also have a growing interest in the understanding of financial markets
that operate at high frequency. For instance, trading rules may be constructed
based on the markets conditions that, in turn, may be explained with financial
econometrics.

This volume presents some advanced research in this area. In order to document
the potential of high frequency finance, it is our goal to select a wide range of
papers, including studies of the order book dynamics, the role of news events, and
the measurement of market risks as well as new econometric approaches to the
analysis of market microstructures.

Bauwens, Rime, and Sucarrat shed new light on the mixture of distribution
hypothesis by means of a study of the weekly exchange rate volatility of the
Norwegian krone. They find that the impact of information arrival on exchange
rate volatility is positive and statistically significant, and that the hypothesis that an
increase in the number of traders reduces exchange rate volatility is not supported.
Moreover, they document that the positive impact of information arrival on volatil-
ity is relatively stable across three different exchange rate regimes, and in that the
impact is relatively similar for both weekly volatility and weekly realised volatility.

Despite its rather weak theoretical and statistical foundation, chart analysis
is still a frequently used tool among financial analysts. Omrane and van Oppens
investigate the existence of chart patterns in the Euro/Dollar intra-daily foreign
exchange market at the high frequency level. Checking 12 types of chart patterns,
they study the detected patterns through two criteria: predictability and profitability
and find an apparent existence of some chart patterns in the currency market. More
than one half of detected charts present a significant predictability. But only two
chart patterns imply a significant profitability which is, however, too small to cover
the transaction costs.

Tick data is, by market structure, discrete. Prices move by multiples of the tick,
the minimum price variation. Two approaches can be taken to account for price dis-
creteness. One, which stems from the realized variance literature, is to consider tick
changes as market microstructure noise. The other is to consider price discreteness
as structural information. Bien, Nolte, and Pohlmeier pursue this second line of
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research and propose a model for multivariate discrete variables. Econometric
models for univariate discrete price processes have been suggested recently but a
multivariate version of it was still missing. The multivariate integer count hurdle
model (MICH) proposed by Bien, Nolte, and Pohlmeier can be viewed as a com-
bination of the copula approach by Cameron et al. (2004) with the integer count
hurdle (ICH) model of Liesenfeld, Nolte and, Pohlmeier (2006), which allows the
dynamic specification of a univariate conditional distribution with discrete support.
They illustrate the usefulness of the model for estimating the joint distribution of
the EUR/GBP and the EUR/USD exchange rate changes at the 1-min level. Their
approach leaves the door open to other applications such as the measurement of
multivariate conditional volatilities, the quantification of intradaily liquidity and
value-at-risk applications, and the joint analysis of several marks of the trading
process (volumes, price and volume durations, discrete quote changes).

Escribano and Pascual propose a new approach of jointly modeling the trading
process and the revisions of market quotes. This method accommodates asymme-
tries in the dynamics of ask and bid quotes after trade-related shocks. The empirical
specification is a vector error correction (VEC) model for ask and bid quotes, with
the spread as the co-integrating vector, and with an endogenous trading process.
Contrary to some hypothesis implied from market microstructure theory, they
provide evidence against several symmetry assumptions and report asymmetric
adjustments of ask and bid prices to trade-related shocks, and asymmetric impacts
of buyer and seller-initiated trades. In general, buys are more informative than
sells.

Frey and Grammig analyze adverse selection costs and liquidity supply in a
pure open limit order book market using the Glosten/Sandas modeling frame-
work. Relaxing some assumptions of Sandas’ (2001) basic model, they show that
their revised methodology delivers improved empirical results.1 They find empir-
ical support for one of the main hypothesis put forth by the theory of limit order
book markets, which states that liquidity supply and adverse selection costs are
inversely related. Furthermore, adverse selection cost estimates based on the struc-
tural model and those obtained using popular model-free methods are strongly
correlated.

In the mid-1990s, financial institutions started implementing VaR type mea-
sures to meet the 1988 and 1996 Basel Accords’ capital requirements to cover
their market risk. Based on an internal model, they compute the “Value-at-Risk,”
which represents the loss they can incur over 10 trading days at a 1% confidence
level. However, most of these models do not account for the liquidity risk that has
been widely documented in the microstructure literature. Due to the price impact
of trades, which relies on trade size, there may indeed be a difference between the
market value of a portfolio, computed over “no-trade returns,” and its liquidation
value. Giot and Grammig propose an original way to shed light on the liquidity
discount that should be part of the evaluation of market risk borne by financial
institutions. They quantify the liquidity risk premiums over different time hori-
zons, for portfolios of different sizes, composed of three stocks traded on Xetra.
This paper thus not only contributes to the existing literature on market liquidity,

1 Sandås, P. (2001), “Adverse Selection and Competitive Market Making: Empirical Evidence
from a Limit Order Market”, Review of Financial Studies, 14, 705–734.
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but provides also an answer to practitioners’ concerns relative to the measurement
of market risk.

Hall and Hautsch study the determinants of order aggressiveness and traders’
order submission strategy in an open limit order book market. Applying an order
classification scheme, they model the most aggressive market orders, limit orders
as well as cancellations on both sides of the market employing a six-dimensional
autoregressive conditional intensity model. Using order book data from the Aus-
tralian Stock Exchange, they find that market depth, the queued volume, the bid-ask
spread, recent volatility, as well as recent changes in both the order flow and the
price play an important role in explaining the determinants of order aggressive-
ness. Overall, their empirical results broadly confirm theoretical predictions on
limit order book trading.

Liesenfeld, Nolte, and Pohlmeier develop a dynamic model to capture the fun-
damental properties of financial prices at the transaction level. They decompose
the price in discrete components—direction and size of price changes—and, using
autoregressive multinomial models, they show that the model is well suited to test
some theoretical implications of market microstructure theory on the relationship
between price movements and other marks of the trading process.

Intradaily financial data is characterized by its dynamic behavior as well by
deterministic seasonal patterns that are due to the market structure. Volatility is
known to be larger at the opening and closing than during the lunch time. Simi-
larly for financial durations: they are shorter at the opening and closing, indicating
higher activity at these times of the day. Any econometric model should there-
fore incorporate these features. Rodriguez-Poo, Veredas, and Espasa propose a
semiparametric model for financial durations. The dynamics are specified paramet-
rically, with an ACD type of model, while seasonality is left unspecified and hence
nonparametric. Estimation rests on generalized profile likelihood, which allows
for joint estimation of the parametric—an ACD type of model—and nonparamet-
ric components, providing consistent and asymptotically normal estimators. It is
possible to derive the explicit form for the nonparametric estimator, simplifying
estimation to a standard maximum likelihood problem.

Tay and Ting carry out an empirical analysis using high frequency data and more
specifically estimate the distribution of price changes conditional on trade volume
and duration between trades. Their main empirical finding is that even when con-
trolling for the trade volume level, duration has an effect on the distribution of price
changes, and the higher the conditioning volume level, the higher the impact of
duration on price changes. The authors find significant positive (negative) skewness
in the distribution of price changes in buyer (respectively seller)—initiated trades,
and see this finding as support of the Diamond and Verrecchia (1987) analysis of the
probability of large price falls with high levels of duration.2 The analysis is carried
out using up-to-date techniques for the nonparametric estimation of conditional
distributions, and outlines a descriptive procedure that can be useful in choosing
the specification of the relationship between duration, volume, and prices when
performing a parametric investigation.

2 Diamond, D.W. and Verrecchia, R.E. (1987), “Constraints on Short-Selling and Asset Price
Adjustment to Private Information”, Journal of Financial Economics, 18, 277–311.
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News is the driving force of price movements in financial markets. Veredas
analyses the effect of macroeconomic news on the price of the USA 10-year
treasury bond future. Considering 15 fundamentals, he investigates the effect of
their forecasting errors conditional upon their sign and the momentum of the busi-
ness cycle. The results show that traders react when the forecasting error differs
from zero. The reaction to a positive or negative forecasting error is different and,
most importantly, the reaction varies significantly depending on the momentum of
the economic cycle. Moreover, the time of the release matters: the closer it is to
the covering period, the more effect it has on the bond future.

Modeling and forecasting the covariance of a large number of financial return
series has always been a challenge due to the so-called “curse of dimensionality.”
For example, the multivariate GARCH models are heavily parameterized or the
dynamics of conditional variances and covariances must be restricted to reduce the
number of parameters, e.g., through factor structures. As an alternative, the sample
covariance matrix has often been used, based on rolling windows, e.g., a monthly
covariance is estimated from monthly returns of the last 5 years. Voev compare this
approach, and variants of it, with others that use higher frequency data (daily data),
the so-called realized covariance matrix. In each approach, there are different ways
to define forecasts. For example, the realized covariance matrix for month t may
serve to predict the covariance matrix of next month. A more sophisticated forecast
is obtained by taking a convex combination of the realized covariance of month t

and an equicorrelated covariance matrix, a technique known as “shrinkage.” The
previous forecasts are static. Another method consists in modeling the different
elements of the realized covariance matrix by using separate univariate time series
models to construct forecasts. This raises the difficulty to obtain always a positive
definite forecast. Voev measures the deviation of the forecast as a matrix from its
target by using the Frobenius norm, where the target or “true” covariance matrix
is the realized covariance matrix (observed ex post), and by Diebold–Mariano sta-
tistical tests. His main conclusion is that the dynamic models result in the smallest
errors in the covariance matrix forecasts for most of the analyzed data series.



Luc Bauwens . Dagfinn Rime . Genaro Sucarrat

Exchange rate volatility and the mixture
of distribution hypothesis

Abstract This study sheds new light on the mixture of distribution hypothesis by
means of a study of the weekly exchange rate volatility of the Norwegian krone. In
line with other studies we find that the impact of information arrival on exchange
rate volatility is positive and statistically significant, and that the hypothesis that an
increase in the number of traders reduces exchange rate volatility is not supported.
The novelties of our study consist in documenting that the positive impact of
information arrival on volatility is relatively stable across three different exchange
rate regimes, and in that the impact is relatively similar for both weekly volatility
and weekly realised volatility. It is not given that the former should be the case
since exchange rate stabilisation was actively pursued by the central bank in parts
of the study period. We also report a case in which undesirable residual properties
attained within traditional frameworks are easily removed by applying the log-
transformation on volatilities.

Keywords Exchange rate volatility . Mixture of distribution hypothesis
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1 Introduction

If exchange rates walk randomly and if the number of steps depends positively on
the number of information events, then exchange rate volatility over a given period
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should increase with the number of information events in that period. This chain of
reasoning is the essence of the so-called “mixture of distribution hypothesis”
(MDH) associated with Clark (1973) and others. Several versions of the MDH have
been put forward, including one that suggests the size of the steps depends
negatively on the number of traders, see for example Tauchen and Pitts (1983). In
other words, an increase in the number of traders, a measure of liquidity, should
decrease the size of the steps and thus volatility. Exchange rate volatility may of
course depend on other factors too, including country-specific institutional factors,
market conditions and economic fundamentals. Bringing such factors together in a
general framework and trying to disentangle their distinct effects on exchange rate
volatility leads to economic or explanatory volatility modelling as opposed to
“pure” forecast modelling, which may remain silent about the economic reasons for
variation in volatility.

When Karpoff (1987) surveyed the relationship between financial volatility and
trading volume (a measure of information intensity) during the mid-eighties, only
one out of the 19 studies he cited was on exchange rates. The increased availability
of data brought by the nineties has changed this, and currently we are aware of ten
studies that directly or indirectly investigate the relationship between exchange rate
volatility and information intensity. The ten studies are summarised in Table 1 and
our study of Norwegian weekly exchange rate volatility from 1993 to 2003 adds to
this literature in several ways. First, our study spans more than a decade covering
three different exchange rate regimes. Second, not only do we find that the impact
of changes in the number of information events on exchange rate volatility is
positive and statistically significant, recursive parameter analysis suggests the
impact is relatively stable across the different exchange rate regimes. Finally, our
results do not support the hypothesis that an increase in the number of traders
reduces exchange rate volatility.

Another contribution of our study concerns the economic modelling of ex-
change rate volatility as such. We report a case in which undesirable residual
properties are easily removed by applying the logarithmic transformation on
volatilities. In particular, we show that OLS-regressions of the logarithm of vol-
atility on its own lags and on several economic variables can produce uncorrelated
and homoscedastic residuals. Moreover, in the log of realised volatility case the
residuals are also normal. When Geweke (1986), Pantula (1986) and Nelson (1991)
proposed that volatilities should be analysed in logs it was first and foremost in
order to ensure non-negativity. In our case the motivation stems from unsatis-
factory residual properties and fragile inference results. Without the log-trans-
formation we do not generally produce uncorrelated residuals, and when we do the
results are very sensitive to small changes in specification.

The rest of this paper contains three sections. In Section 2, we review the link
between exchange rate volatility and the MDH hypothesis, and discuss mea-
surement issues. We also present our data and other economic variables that we
believe may impact on the volatility of the Norwegian exchange rate. In Section 3,
we present the models we use and the empirical results. We conclude in the
last section, whereas an Appendix provides the details of the data sources and
transformations.

8 L. Bauwens et al.



2 Exchange rate volatility and economic determinants

The purpose of this section is to motivate and describe our exchange rate volatility
measures, and the economic determinants that we use in our empirical study. In
Subsection 2.1, we define our volatility measures and present the Norwegian
exchange rate data. We make a distinction between period volatility on the one
hand and within or intra-period volatility on the other, arguing that analysis of both
is desirable since level-expectations may have an impact. In Subsection 2.2, we
review the link between volatility and the MDH, and after presenting our quote
frequency data we explain how we use them to construct the explanatory variables
we include in our volatility equations. In Subsection 2.3, we motivate and describe
the other economic determinants of volatility which we include as explanatory
variables in the empirical part.

2.1 Period vs. intra-period volatility measures

Conceptually we may distinguish between period volatility on the one hand and
within or intra-period volatility on the other. If {S0,S1,...,Sn,..., SN−1,SN} denotes a
sequence of exchange rates between two currencies at times {0,1,...,N}, then the
squared (period) return [log(SN/S0)]

2 is an example of a period measure of observ-

Table 1 Summary of empirical studies that investigate the impact of information intensity on
exchange rate volatility

Publication Data Period Supportive
of MDH?

Grammatikos and
Saunders (1986)

Daily currency futures contracts (DEM, CHF,
GBP, CAD and JPY) denominated in USD

1978–1983 Yes

Goodhart (1991) Intradaily quotes (USD against GBP, DEM,
CHF, JPY, FRF, NLG, ITL, ECU) and Reuters’
news-headline page

14/9–15/9
1987

No

Goodhart (2000) Intradaily quotes (USD against GBP, DEM, JPY,
FRF, AUD) and Reuters’ news-headline pages

9/4-19/6
1989

No

Bollerslev and
Domowitz (1993)

Intradaily USD/DEM quotes and quoting
frequency

9/4–30/6
1989

No

Demos and
Goodhart (1996)

Intradaily DEM/USD and JPY/USD quotes
and quoting frequency

5 weeks in
1989

Yes

Jorion (1996) Daily DEM/USD futures and options Jan. 1985–
Feb. 1992

Yes

Melvin and Xixi
(2000)

Intradaily DEM/USD and JPY/USD quotes,
quoting frequency and Reuters’ headline-news
screen

1/12 1993–
26/4 1995

Yes

Galati (2003) Daily quotes (USD against JPY and seven
emerging market currencies) and trading volume

1/1 1998–
30/6 1999

Yes

Bauwens et al.
(2005)

Intradaily EUR/USD quotes, quoting frequency
and Reuters’ news-alert screens

15/5 2001–
14/11 2001

Yes

Bjønnes et al.
(2005)

Daily SEK/EUR quotes and transaction volume 1995–2002 Yes

Exchange rate volatility and the mixture of distribution hypothesis 9



able volatility, and realised volatility
PN

n¼1 log Sn=Sn�1ð Þ½ �2 is an example of a
within-period measure of volatility. (Another example of a within-period measure
of volatility is high–low.) It has been showed that realised volatility is an unbiased
and consistent measure of integrated volatility under certain assumptions, see
Andersen et al. (2001). The reader should be aware though that nowhere do we rely
on such assumptions. Rather, our focus is on the formula of realised volatility. The
main difference between period volatility and realised volatility is that in addition
to time 0 to time N variation the latter is also capable of capturing variation between
0 and N. For example, if Sn fluctuates considerably between 0 and N but ends up
close to S0 at N, then the two measures may produce substantially different results.
Essentially this can be due to one of two reasons. If the random walk model
provides a decent description of how exchange rates behave, then it is due to
chance. On the other hand, if there are strong level-effects present among market
participants, then the return back to the level of S0 might be due to market ex-
pectations rather than chance. Although market participants’ views on exchange
rate level clearly matter, we believe most observers would agree that such level-
effects are relatively small or infrequent on a day-to-day basis for most exchange
rates. Differently put, at very short horizons the random walk model provides a
reasonably good description of exchange rate increments. However, the two mea-
sures are still qualitatively different, so that any eventual differences in their
relation with (say) the rate of information arrival should be investigated, in
particular for weekly data where level-expectations is more likely to play a role.

Our period measure will be referred to as “weekly volatility” whereas our
within-period measure will be referred to as “within-weekly volatility” or “realised
volatility.”Weekly volatility is just the squared return from the end of one week to
the end of the subsequent week. More precisely, if SN(t) denotes the closing value in
the last day of trading in week t and SN(t−1) denotes the closing value in the last day
of trading in the previous week, then weekly volatility recorded in week t is
denoted by Vt

w and defined as

Vw
t ¼ log SN tð Þ

�
SN t�1ð Þ

� �� �2
: (1)

On the other hand, realised volatility in week t, denoted by Vt
r, is the sum of

squared returns of the sequence {SN(t−1), S1(t), S2(t),.., SN(t)}, that is,

Vr
t ¼

XN tð Þ

n¼1 tð Þ
log Sn=Sn�1ð Þ½ �2; (2)

where 1(t)−1≔N(t−1). It should be noted though that we use only a small sub-set of
the within-week observations in the construction of realised volatility (typically ten
observations per week).

In order to distinguish between volatilities and logs of volatilities we use lower
and upper case letters. So vt

w=log Vw
t and vt

r=log Vt
r. Our data set span the period

from 8 January 1993 to 26 December 2003, a total of 573 observations, and before
1 January 1999 we use the BID NOK/DEM exchange rate converted to euro-
equivalents with the official conversion rate 1.95583 DEM=1 EURO. After 1
January 1999 we use the BID NOK/EUR rate.

L. Bauwens et al.10



The main characteristics of the two measures are contained in Table 2 and in
Fig. 1. At least three attributes of the graphs should be noted. First, although the
two measures of volatility are similar level-wise, that is, if plotted in the same
diagram they would be “on top of each other,” the sample correlation between the
log of weekly volatility and the log of realised volatility is only 0.55. In other
words, the two measures differ considerably and one of the differences is that the
realised volatility measure is less variable. Second, sustained increases in volatility
around 1 January 1999 and 29 March 2001 are absent or at least seemingly so. On
the first date the current central bank governor assumed the job and reinterpreted
the guidelines, which in practice entailed a switch from exchange rate stabilisation
to “partial” inflation targeting. On the second date the Norwegian central bank was
instructed by the Ministry of Finance to pursue an inflation target of 2.5% as main
policy objective. One might have expected that both of these changes would have
resulted in shifts upwards in volatility. However, if this is the case then this is not
evident by just looking at the graphs. Alternatively, the apparent absence of shifts
in volatility might be due to the fact that the markets had expected these changes
and already adapted to them. A third interesting feature is that there is a marked and
lasting increase in volatility around late 1996 or in the beginning of 1997. This is
partly in line with Giot (2003) whose study supports the view that the Asian crisis
in the second half of 1997 brought about a sustained increase in the volatility of
financial markets in general. In the case of Norwegian exchange rate volatility,
however, the shift upwards seems to have taken place earlier, namely towards the
end of 1996 or in the beginning of 1997. This may be attributed to the appreciatory
pressure on the Norwegian krone in late 1996 and early 1997.

Table 2 Descriptive statistics of selected variables

St Δ st ∣Δ st∣ Vt
w vt

w Vt
r vt

r qt

Mean 8.208 0.000 0.005 0.578 −2.489 0.488 −1.659 7.5115
Median 8.224 0.000 0.003 0.120 −2.121 0.209 −1.567 7.5192
Max. 9.063 0.044 0.044 19.365 2.963 16.033 2.775 9.1363
Min. 7.244 −0.035 0.000 0.000 −10.757 0.004 −5.497 5.6131
St. dev. 0.352 0.008 0.006 1.679 2.447 1.035 1.413 0.5739
Skew. 0.025 0.774 2.886 7.036 −0.845 8.418 −0.102 −0.3287
Kurt. 2.174 9.399 14.991 65.150 3.884 107.193 2.793 3.4512
Obs. 573 572 572 573 573 573 573 573

Δ qt ∣Δ qt∣ Mt Δ mt ∣Δ mt∣ mt
w ft

a ft
b

Mean 0.004 0.226 1.115 0.000 0.011 −0.556 0.007 0.010
Median −0.003 0.145 1.124 −0.001 0.009 −0.190 0.000 0.000
Max. 2.141 2.141 1.429 0.047 0.053 3.325 0.500 1.000
Min. −1.278 0.000 0.838 −0.053 0.000 −9.150 0.000 0.000
St.dev. 0.339 0.252 0.150 0.014 0.009 2.018 0.057 0.081
Skew. 0.530 2.722 0.025 0.099 1.228 −1.015 8.271 9.136
Kurt. 9.008 14.119 2.174 3.377 5.023 4.181 70.632 94.602
Obs. 572 572 573 572 572 573 573 573

Some zero-values are due to rounding, and the variables are explained in Subsection 2.3 and in
the Appendix
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2.2 MDH and quote frequency

If exchange rates follow a random walk and if the number of steps depends
positively on the number of information events, then exchange rate volatility over a
given period should increase with the number of information events in that period.
This chain of reasoning is the essence of the MDH, an acronym which is due to the

Fig. 1 Weekly and realised NOK/EUR volatilities from 8 January 1993 to 26 December 2003
(NOK/DEM before 1 January 1999) in the upper graph, log of weekly and realised volatilities in
the middle graph, and a scatter plot of the log-volatilities

L. Bauwens et al.12



statistical setup used by Clark (1973). Formally, focusing on the economic content
of the hypothesis, the MDH can also be formulated as

�st ¼
XN tð Þ

n¼1

�sn; n ¼ 1; . . . ;N tð Þ; s0 ¼ sN t�1ð Þ; (3)

�snf gIID; �sn � N 0; 1ð Þ; (4)

@E N tð Þ �tj½ �
@�t

> 0: (5)

where st=log St. The first line Eq. (3) states that the price increment of period t is
equal to the sum of the intra-period increments, Eq. (4) is a random walk
hypothesis (any “random walk” hypothesis would do), and Eq. (5) states that the
mean of the number of intra-period increments N(t) conditioned on the number of
information events vt in period t is strictly increasing in νt. Several variations of the
MDH have been formulated, but for our purposes it is the economic content of
Tauchen and Pitts (1983) that is of most relevance. In a nutshell, they argue that an
increase in the number of traders reduces the size of the intra-period increments.
Here this is akin to replacing Eq. (4) with (say)

�sn ¼ �n �nð Þzn; �0n < 0; znf gIID; zn � N 0; 1ð Þ; (6)

where ηn denotes the number of traders at time n and where σ0n is the derivative. But
markets differ and theoretical models thus have to be adjusted accordingly. In
particular, in a comparatively small currency market like the Norwegian an
increase in the number of currency traders is also likely to increase substantially the
number of increments per period, that is, N(t), resulting in two counteracting
effects. One effect would tend to reduce period-volatility through the negative
impact on the size of the intra-period increments, whereas the other effect would
tend to increase period-volatility by increasing the number of increments. So it is
not known beforehand what the overall effect will be. Replacing Eq. (5) with

@E N tð Þ �t;j �t½ �
@�t

> 0;
@E N tð Þ �t;j �t½ �

@�t
> 0; (7)

means the conditional mean of the number of increments N(t) is strictly increasing
in both the number of information events νt and the number of traders ηt. Taking
Eq. (7) together with Eqs. (3) and (6) as our starting point we may formulate our
null hypotheses as

@Var �st �t�tjð Þ
@�t

> 0 (8)

@Var �st �t; �tjð Þ
@�t

< 0: (9)

In words, the first hypothesis states that an increase in the number of
information events given the number of traders increases period volatility, whereas
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the second holds that an increase in the number of traders without changes in the
information intensity reduces volatility. That Eq. (8) is the case is generally
suggested by Table 1, whereas Eq. (9) is suggested by Tauchen and Pitts (1983).
However, it should be noted that the empirical results of Jorion (1996) and Bjønnes
et al. (2005) do not support the hypothesis that an increase in the number of traders
reduces volatility.

The most commonly used indicators of information arrival are selected samples
from the news-screens of Reuters or Telerate, quoting frequency, the number of
transacted contracts and transaction volume. The former is laborious to construct
and at any rate not exhaustive with respect to the range of information events that
might induce price revision, and the latter two are not readily available in foreign
exchange markets. So quote frequency is our indicator of information arrival. More
precisely, before 1 January 1999 our quote series consists of the number of BID
NOK/DEM quotes per week, and after 1 January 1999 it consists of the number of
BID NOK/EUR quotes per week. We denote the log of the number of quotes in
week t by qt, but it should be noted that we have adjusted the series for two changes
in the underlying data collection methodology, see the data Appendix for details.
Graphs of qt and Δqt are contained in Fig. 2. In empirical analysis it is common
to distinguish between “expected” and “unexpected” activity, see amongst others
Bessembinder and Seguin (1992), Jorion (1996) and Bjønnes et al. (2005). Ex-
pected activity is supposed to reflect “normal” or “everyday” quoting or trading
activity by traders, and should thus be negatively associated with volatility
according to Eq. (9) since this essentially reflects the number of active traders.
Unexpected activity on the other hand refers to changes in the rate at which relevant
information arrives to the market and should increase volatility. The strategy that is
used in order to obtain the expected and unexpected components is to interpret the
fitted values of an ARMA–GARCH model as the expected component and the
residual as the unexpected. In our case an ARMA(1,1) specification of Δqt with a
GARCH(1,1) structure on the error terms suffices in order to obtain uncorrelated
standardised residuals and uncorrelated squared standardised residuals. The model
and estimation output is contained in Table 3. The expected values are then
computed by generating fitted values of qt (not of Δqt) and are denoted bqt . The
unexpected values are defined as qt � bqt . It has been argued that such a strategy
might result in a so-called “generated regressor bias”-see for example Pagan
(1984), so we opt for an alternative strategy which yields virtually identical results.
As it turns out using qt directly instead of bqt , and Δqt instead of the residual, has
virtually no effect on the estimates in Section 3. The reason can be deduced by
looking at the bottom graph of Fig. 2. For statistical purposes qt is virtually
identical to bqt , andΔqt is virtually identical to the residual (the sample correlations
are 0.85 and 0.94, respectively). Summarised, then, we use qt as our measure of the
number of active traders and Δqt as our measure of changes in the rate at which
information arrives to the market. Both variables serve as explanatory variables in
the modelling of volatility in Section 3.

2.3 Other impact variables

Other economic variables may also influence the level of volatility and should be
controlled for in empirical models. In line with the conventions introduced above
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lower-case means the log-transformation is applied, and upper-case means it is not.
The only exceptions are the interest-rate variables, a Russian moratorium dummy
idt equal to 1 in one of the weeks following the Russian moratorium (the week
containing Friday 28 August 1998 to be more precise) and 0 elsewhere, and a step
dummy sdt equal to 0 before 1997 and 1 after.

Fig. 2 The log of weekly number of BID NOK/EUR quotes (BID NOK/DEM before 1999) in the
upper graph, the log-difference of weekly quoting in the middle graph, and scatter plots of qt vs.bqt and Δqt vs. residual in the bottom graph
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The first economic variable is a measure of general currency market turbulence
and is measured through EUR/USD-volatility. If mt=log (EUR/USD)t, then Δmt

denotes the weekly return of EUR/USD, Mt
w stands for weekly volatility, mt

w is its
log-counterpart, Mt

r is realised volatility and mt
r is its log-counterpart. The pe-

troleum sector plays a major role in the Norwegian economy, so it makes sense to
also include a measure of oilprice volatility. If the log of the oilprice is denoted ot,
then the weekly return isΔot, weekly volatility is Ot

wwith ot
w as its log-counterpart,

and realised volatilities are denoted Ot
r and ot

r, respectively. We proceed similarly
for the Norwegian and US stock market variables. If xt denotes the log of the main
index of the Oslo stock exchange, then the associated variables areΔxt, Xt

w, xt
w, Xt

r

and xt
r. In the US case ut is the log of the New York stock exchange (NYSE) index

and the associated variables are Δut, Ut
w, ut

w, Ut
r and ut

r.
The interest-rate variables that are included are constructed using the main

policy interest rate variable of the Norwegian central bank. We do not use market
interest-rates because this produces interest-rate based measures that are sub-
stantially intercorrelated with qt and sdt, with the consequence that inference results
are affected. The interest-rate variables reflect two important regime changes that
took place over the period in question. As the current central bank governor
assumed the position in 1999, the bank switched from exchange rate stabilisation to
“partial” inflation targeting. However, a full mandate to target inflation was not
given before 29 march 2001, when the Ministry of Finance instructed the bank to
target an inflation of 2.5%. So an interesting question is whether policy interest rate
changes contributed differently to exchange rate volatility in the partial and full
inflation targeting periods, respectively.1 This motivates the construction of our
interest rate variables. Let Ft denote the main policy interest rate in percentages and

Table 3 ARMA–GARCH model of Δ qt :
�qt ¼ b0 þ b1�qt�1 þ b2et�1 þ et;

et ¼ �tzt; �2t ¼ �0 þ �1e2t�1 þ �1�2t�1

Parameter Diagnostics

Est. Pval. Est. Pval.

b0 0.004 0.13 R2 0.19
b1 0.569 0.00 Log L -103.27
b2 −0.910 0.00 Q(10) 11.03 0.20
α0 0.034 0.02 ARCH1−10 0.29 0.98
α1 0.299 0.00 JB 691.45 0.00
β1 0.368 0.06 Obs. 571

Computations are in EViews 5.1 and estimates are ML with heteroscedasticity consistent standard
errors of the Bollerslev and Wooldridge (1992) type. Pval stands for p-value and corresponds to a
two-sided test with zero as null, Log L stands for log-likelihood, AR1−10 is the Ljung and Box
(1979) test for serial correlation in the standardised residuals up to lag 10, ARCH1−10 is the
F-form of the Lagrange-mulitplier test for serial correlation in the squared standardised residuals
up to lag 10, Skew. is the skewness of the standardised residuals, Kurt. is the kurtosis of the
standardised residuals, and JB is the Jarque and Bera (1980) test for non-normality of the
standardised residuals

1 Prior to 1999 central bank interest rates were very stable, at least from late 1993 until late 1996,
and it was less clear to the market what role the interest rate actually had.
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let ΔFt denote the change from the end of 1 week to the end of the next.
Furthermore, let Ia denote an indicator function equal to 1 in the period 1 January
1999–Friday 30 March 2001 and 0 otherwise, and let Ib denote an indicator
function equal to 1 after 30 March 2001 and 0 before. Then ΔFt

a=ΔFt×Ia and
ΔFt

b=ΔFt×Ib, respectively, and ft
a and ft

b stand for |ΔFt
a| and |ΔFt

b|, respectively.

3 Models and empirical results

In this section, we present the econometric models of volatility and their estimated
versions, together with interpretations. In Subsection 3.1 we use linear regression
models for the log of our volatility measures defined in Subsection 2.1, hence the
expression “log–linear analysis.” In Subsection 3.2 we use EGARCH models. Of
these two our main focus is on the results of the log–linear analysis, and the
motivation for the EGARCH analysis is that it serves as a point of comparison
since both frameworks model volatility in logs.

3.1 Log–linear analysis

In this part we report the estimates of six specifications:

vwt ¼ b0 þ b1v
w
t�1 þ b2v

w
t�2 þ b3v

w
t�3 þ b14idt þ b15sdt þ et (10)

vwt ¼ b0 þ b1v
w
t�1 þ b2v

w
t�2 þ b3v

w
t�3 þ b6qt þ b7�qt

þ b14idt þ b15sdt þ et
(11)

vwt ¼ b0 þ b1v
w
t�1 þ b2v

w
t�2 þ b3v

w
t�3 þ b6qt þ b7�qt þ b8m

w
t þ b9o

w
t

þ b10x
w
t þ b11u

w
t þ b12f

a
t þ b13f

b
t þ b14idt þ b15sdt þ et

(12)

vrt ¼ b0 þ b1v
r
t�1 þ b2v

r
t�2 þ b3v

r
t�3 þ b4v

r
t�4 þ b5v

r
t�5 ð13Þ

þ b14idt þ b15sdt þ b16et�1 þ et

vrt ¼ b0 þ b1v
r
t�1 þ b2v

r
t�2 þ b3v

r
t�3 þ b4v

r
t�4 þ b5v

r
t�5 þ b6qt ð14Þ

þb7�qt þ b14idt þ b15sdt þ b16et�1 þ et

vrt ¼ b0 þ b1v
r
t�1 þ b2v

r
t�2 þ b3v

r
t�3 þ b4v

r
t�4 þ b5v

r
t�5 þ b6qt þ b7�qt

þ b8m
r
t þ b9o

r
t þ b10x

r
t þ b11u

r
t þ b12f

a
t þ b13f

b
t þ b14idt

þ b15sdt þ b16et�1 þ et:

(15)
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The first three have log of weekly volatility vt
w as left-side variable and the latter

three have log of realised volatility vt
r as left-side variable. In each triple the first

specification consists of an autoregression augmented with the Russian mora-
torium dummy idt and the step dummy sdt for the lasting shift upwards in
volatility in 1997. In the realised case a moving average (MA) term et−1 is also
added for reasons to be explained below. The second specification in each triple
consists of the first together with the quote variables, and the third specification is
an autoregression augmented by all the economic variables. The estimates of the
first triple is contained in Table 4, whereas the estimates of the second triple is
contained in Table 5. The results can be summarised in five points.

1. Information arrival. The estimated impacts of changes in the rate at which
information arrives to the market Δqt carry the hypothesised positive sign and are
significant at all conventional levels. In the weekly case the estimates are virtually
identical and equal to about 1, whereas in the realised case the coefficient drops
from 0.88 to 0.73 as other variables are added. Summarised, then, the results

Table 4 Regressions of log of weekly NOK/EUR volatility

(10) (11) (12)

Est. Pval. Est. Pval. Est. Pval.

Const. −2.917 0.00 −3.887 0.01 −0.660 0.67
vt−1
w 0.019 0.64 0.023 0.59 0.007 0.87
vt−2
w 0.077 0.04 0.078 0.04 0.076 0.05
vt−3
w 0.096 0.03 0.105 0.02 0.099 0.02
qt 0.141 0.46 0.029 0.88
Δqt 0.995 0.00 0.986 0.00
mt
w 0.139 0.00

ot
w 0.015 0.74
xt
w 0.123 0.01
ut
w 0.112 0.01
ft
a −0.116 0.92
ft
b 3.545 0.00
id 4.745 0.00 4.400 0.00 3.563 0.00
sdt 1.396 0.00 1.306 0.00 1.037 0.00
R2 0.14 0.16 0.21
AR1−10 0.34 0.97 0.81 0.62 0.32 0.98
ARCH1-10 0.99 0.45 0.78 0.64 0.56 0.84
Het. 9.42 0.31 13.40 0.34 24.81 0.42
Hetero. 21.89 0.08 45.40 0.01 79.22 0.63
JB 120.94 0.00 117.12 0.00 146.16 0.00
Obs. 570 570 570

Computations are in EViews 5.1 and estimates are OLS with heteroscedasticity consistent
standard errors of the White (1980) type. Pval stands for p-value and corresponds to a two-sided
test with zero as null, AR1−10 is the F-form of the Lagrange-multiplier test for serially correlated
residuals up to lag 10, ARCH1−10 is the F-form of the Lagrange-multiplier test for serially
correlated squared residuals up to lag 10, Het. and Hetero. are White’s (1980) heteroscedasticity
tests without and with cross products, respectively, Skew. is the skewness of the residuals, Kurt. is
the kurtosis of the residuals, and JB is the Jarque and Bera (1980) test for non-normality in the
residuals
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support the idea that exchange rate variability increases with the number of in-
formation events, and the results suggest the impact is higher for weekly than for
realised volatility. There might be a small caveat in the realised case though. The
MA(1) term et−1 is needed in Eqs. (14) and (15) in order to account for residual
serial correlation at lag 1 induced by the inclusion of Δqt. We have been un-
successful so far in identifying why Δqt induces this serial correlation, and ex-
cluding Δqt from (15) also removes the signs of heteroscedasticity indicated by
White’s (1980) test with cross products in the sense that the p-value increases from
10% to 24%.

2. Number of traders. The hypothesised effect of an increase in the number of
traders as measured by qt is negative, but in all the four specifications in which it is
included it comes out positive. Moreover, it is significantly positive at 5% in
both realised specifications. Figure 3 aims at throwing light on why we obtain these
unanticipated results and contains recursive OLS estimates of the impact of qt with
approximate 95% confidence bands. In the weekly case the value starts out neg-
ative, but then turns positive and stays so for the rest of the sample. However, it
descends steadily towards the end. In the realised case, the value is positive all the

Table 5 Regressions of log of realised NOK/EUR volatility

(3) (14) (15)

Est. Pval. Est. Pval. Est. Pval.

Const. −1.012 0.00 −1.690 0.00 −1.916 0.02
vt−1
r 0.405 0.05 0.643 0.00 0.483 0.00

vt−2
r 0.078 0.29 0.014 0.81 0.047 0.36

vt−3
r 0.104 0.04 0.086 0.07 0.085 0.05

vt−4
r −0.059 0.25 −0.065 0.16 −0.050 0.28

vt−5
r 0.122 0.00 0.087 0.03 0.069 0.08

qt 0.139 0.03 0.173 0.02
Δ qt 0.876 0.00 0.725 0.00
mt

r 0.194 0.00
ot
r −0.021 0.62

xt
r 0.070 0.08

ut
r −0.007 0.85

ft
a −0.256 0.63
ft
b 1.403 0.00
id 4.275 0.00 3.777 0.00 3.985 0.00
sdt 0.659 0.00 0.382 0.00 0.532 0.00
et−1 −0.130 0.53 −0.380 0.00 −0.238 0.03
R2 0.53 0.57 0.60
AR1−10 0.86 0.57 1.17 0.31 0.81 0.62
ARCH1−10 0.44 0.93 1.34 0.20 1.15 0.32
Het. 6.16 0.91 10.91 0.82 33.69 0.21
Hetero. 30.94 0.27 50.15 0.24 128.63 0.10
JB 3.15 0.52 0.44 0.80 0.47 0.79
Obs. 568 568 568

See Table 4 for details
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time but for a short interval in the beginning, and exhibits the same downwards
tendency towards the end as in the weekly case. The recursive estimates are more
stable here though than in the weekly case. All in all, then, the recursive graphs
suggest the impact of qt over the sample is positive rather than negative, and this
may be explained in one of two ways: Either our measure of number of traders is
faulty, or the impact of number of traders is positive rather than negative.

3. Volatility persistence. The autoregressions Eqs. (10) and (13) were con-
structed according to a simple-to-general philosophy. The starting equation was
volatility regressed on a constant, volatility lagged once, the step dummy sdt and
the impulse dummy idt, and then lags of volatility were added until two properties
were satisfied in the following order of importance: (1) Residuals and squared
residuals were serially uncorrelated, and (2) the coefficient in question was sig-
nificantly different from zero at 5%. Interestingly such simple autoregressions are
capable of producing uncorrelated and almost homoscedastic residuals in the week-
ly case, and uncorrelated, homoscedastic and normal residuals in the realised case.
One might suggest that normality in the log-realised specifications comes as no
surprise since Andersen et al. (2001) have shown that taking the log of realised
exchange rate volatility produces variables close to the normal. In our data, how-
ever, the Russian moratorium dummy idt is necessary for residual normality. The

Fig. 3 Stability analysis of the impact of qt in the general unrestricted specification (12) and in
the parsimonious specification (17). Computations in PcGive 10.4 with OLS and initialisation at
observation number 50
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step dummy sdt is necessary for uncorrelatedness in all six specifications, but not
the impulse dummy idt. The MA(1) term in Eq. (13) is not needed for any of the
residual properties but is included for comparison with Eqs. (14) and (15).
However, it does influence the coefficient estimates and the inference results of the
lag-structure in all three specifications. Most importantly vt−2

r would be significant
if the MA(1) term were not included. Finally, when the lag coefficients are
significant at the 10% level, then they are relatively similar across the spec-
ifications in both the weekly and realised cases. The only possible exception is the
coefficient of the first lag in the realised case, which ranges from 0.41 to 0.64
across the three specifications.

4. Policy interest rate changes. One would expect that policy interest rate
changes in the full inflation targeting period – as measured by ft

b – increase
contemporaneous volatility, whereas the hypothesised contemporaneous effect in
the partial inflation period–as measured by ft

a – is lower or at least uncertain. The
results in both Eqs. (12) and (15) support this since they suggest a negative but
insignificant contemporaneous impact in the partial inflation targeting period, and a
positive, significant and substantially larger contemporaneous impact (in absolute
value) in the full inflation targeting period.

5. Other. The effect of general currency market volatility, as measured by mt
w

and mt
r, is positive as expected, significant in both Eqs. (12) and (15), but a little bit

higher in the latter specification. The effect of oilprice volatility, as measured by ot
w

and ot
r, is estimated to be positive in the first case and negative in the second, but

the coefficients are not significant in either specification. This might come as a
surprise since Norway is a major oil-exporting economy, currently third after Saudi-
Arabia and Russia, and since the petroleum sector plays a big part in the Norwegian
economy. A possible reason for this is that the impact of oilprice volatility is non-
linear in ways not captured by our measure, see Akram (2000). With respect to
the effects of Norwegian and US stock market volatility the two equations differ
noteworthy. In the weekly case both xt

w and ut
w are estimated to have an almost

identical, positive impact on volatility, and both are significant at 1%. In the
realised case on the other hand everything differs. Norwegian stock market vol-
atility xt

r is estimated to have a positive and significant (at 10%) impact albeit
somewhat smaller than in the weekly case, whereas US stock market volatility ut

r is
estimated to have an insignificant negative impact.

In order to study the evolution of the impact of Δqt free from any influence
of (statistically) redundant regressors, we employ a general-to-specific (GETS)
approach to derive more parsimonious specifications. In this way we reduce the
possible reasons for changes in the evolution of the estimates. In a nutshell GETS
proceeds in three steps. First, formulate a general model. Second, simplify the
general model sequentially while tracking the residual properties at each step.
Finally, test the resulting model against the general starting model. See Hendry
(1995), Hendry and Krolzig (2001), Mizon (1995) and Gilbert (1986) for more
extensive and rigorous expositions of the GETS approach. In our case we posited
Eqs. (12) and (15) without the MA(1) term as general models, and it should be
noted that a GETS “purist” would probably oppose to the use of the second
specification as a starting model, since it exhibits residual serial correlation. Then
we tested hypotheses regarding the parameters sequentially with a Wald-test (these
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tests are not reported), where at each step the simpler model was posited as null. In
the weekly case we used heteroscedasticity consistent standard errors of the White
(1980) type, and in the realised case we used heteroscedasticity and autocorrelation
consistent standard errors of the Newey andWest (1987) type. Our final models are
not rejected in favour of the general starting models when all the restrictions are
tested jointly, their estimates are contained in Table 6, and their specifications are

bvwt ¼ b2 vwt�2 þ vwt�3

� �þ b7�qt þ b8m
w
t þ b10 xwt þ uwt

� �þ b13f
b
t

þ b14idt þ b15sdt

(16)

bv r
t ¼ b1v

r
t�1 þ b2 vrt�2 þ vrt�3 þ vrt�5

� �þ b7�qt þ b8m
r
t þ b13f

b
t þ b14idt þ b15sdt:

(17)

In both cases the estimates of the impact of Δqt in the parsimonious spec-
ifications are close to those of the general starting specifications. In the weekly case
the estimates are equal to 0.99 in the general specification and 1.00 in the specific,
whereas in the realised case the estimate changes from 0.57 in the general spec-
ification Eq. (15) without the MA(1) term (not reported) to 0.56 in the par-
simonious specification Eq. (17). Figure 4 contains recursive OLS estimates of the
coefficients of Δqt in the parsimonious specifications. They are relatively stable
over the sample, but admittedly we do not test this formally. Also, the estimates
seems to be more stable in the realised case than in the weekly, in the sense that the
difference between the maximum and minimum values is larger in the weekly case

Table 6 Parsimonious log–linear specifications obtained by GETS analysis

vt
w vt

r

Est. Pval. Est. Pval.

Const. −2.526 0.00
vt−2
w +vt−3

w 0.095 0.00 3 vt−1
r + vt−2

r + vt−3
r + vt−5

r 0.091 0.00
qt 0.256 0.00

Δ qt 0.998 0.00 Δ qt 0.561 0.00
mt

w 0.141 0.00 mt
r 0.206 0.00

xt
w+ut

w 0.143 0.00 xt
r 0.075 0.07

ft
b 3.529 0.00 ft

b 1.635 0.00
idt 3.445 0.00 idt 3.878 0.00
sdt 0.951 0.00 sdt 0.628 0.00
R2 0.21 0.60
AR1−10 0.39 0.95 0.81 0.62
ARCH1−10 0.56 0.85 1.07 0.38
Het. 12.93 0.37 18.20 0.20
Hetero. 20.23 0.78 50.19 0.04
JB. 143.16 0.00 0.57 0.75
Obs. 570 568

See Table 4 for details
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(1.66−0.67=0.99) than in the realised (0.98−0.47=0.51). Both graphs appear to be
trending downward for most of the sample, the exception being towards the end in
the weekly case, and in both graphs there seems to be a distinct shift downwards as
the change to partial inflation targeting takes place in the beginning of 1999. One
should be careful however in attributing the shift to the change in regime without
further investigation. Indeed, another possible reason is the transition to the euro,
since Δqt attains both its maximum and minimum in the first weeks of 1999.

3.2 EGARCH analysis

The estimates of the three EGARCH specifications which we report have all equal
mean-specification rt=b�r ¼ �þ et ¼ �þ �tzt , where rt=log(St/St−1) is the weekly
return, b�r ¼ 0:007615 is the sample standard deviation of the returns, and where
{zt}t=1,572 is an IID sequence. For exchange rates it is also common to include an
AR(1) term in the mean-equation in order to account for the possibility of negative
serial correlation in the returns. In our data however there are signs that this term
induces serial correlation in either the standardised residuals or in the squared
standardised residuals or in both. So we do not include it in the specifications
reported here. The three EGARCH specifications can be considered as the ARCH

Fig. 4 Recursive estimates of b7 in the parsimonious specifications Eqs. (16) and (17).
Computations in PcGive 10.4 with OLS and initialisation at observation number 50
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counterparts of the weekly log–linear equations, that is, Eqs. (10)–(12), and their
log-variance specifications are

log �2t ¼ �0 þ �1 et�1

�t�1

���� ����þ �1 et�1

�t�1
þ �1 log �2t�1 þ c11idt þ c12sdt (18)

log �2t ¼ �0 þ �1 et�1

�t�1

���� ����þ �1 et�1

�t�1
þ �1 log �2t�1 þ c1q

�
t þ c2�q �

t ð19Þ

þc11 idt þ c12 sdt

log �2t ¼ �0 þ �1 et�1

�t�1

���� ����þ �1 et�1

�t�1
þ �1 log �2t�1 þ c1q

�
t þ c2�q �

t

þc3m
f �
t þ c4o

f �
t þ c5x

f �
t þ c6u

f �
t þ c7f

a
t þ c8f

a
t�1 þ c9f

b
t

þc10f
b
t�1 þ c11 idt þ c12 sdt

:

(20)

Specification Eq. (18) is an EGARCH(1,1) with the Russian moratorium
dummy idt and the step dummy sdt as only regressors, Eq. (19) is an EGARCH(1,1)
augmented with the quote variables and the dummies, and Eq. (20) is an EGARCH
(1,1) with all the economic variables as regressors. Note that * as superscript means
the variable has been divided by its sample standard deviation. Specifications Eqs.
(18)–(20) are analogous to the ARCH-specifications in Lamoureux and Lastrapes
(1990), but note that our results are not directly comparable to theirs since our
measure of information intensity Δqt does not exhibit strong positive serial
correlation (in fact, our measure Δqt exhibits weak negative serial correlation).
Strong positive serial correlation is an important assumption for their conclusions.

The estimates of Eqs. (18)–(20) are contained in Table 7 and are relatively
similar significance-wise to the results of the weekly log–linear analysis above, that
is, to the estimates of Eqs. (10)–(12). Note however that the magnitudes of the
coefficient estimates are not directly comparable since the variables are scaled
differently. The most important similarity is that the coefficient of Δqt

* is positive
and significant in both Eqs. (19) and (20), and that the coefficient estimates are
almost identical in Eqs. (19) and (20). Another important similarity is that the
measure of number of traders qt

* is insignificant in the two EGARCH specifications
in which it is included. There are three minor differences in the inference results
compared with the weekly log–linear analysis. The first is that the measure of US
stock market volatility ut

* is significant at 9% in the EGARCH specification
Eq. (20) containing all the variables, whereas it is significant at 1% in the weekly
log–linear counterpart Eq. (12). The second minor difference is that in the
EGARCH case the impacts of xt

w* and ut
w* respectively are not so similar as in the

weekly case. Finally, the step dummy sdt is not significant in the EGARCH spec-
ification that only contains the dummies as economic variables, whereas it is in its
weekly counterpart.

There are also some parameters particular to the EGARCH setup that merit
attention. The news term et�1=�t�1j j is estimated to be positive as expected and
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reasonably similar across the three specifications, but its significance is at the
borderline since the two-sided p-values range from 7 to 11%. The impact of the
asymmetry term et�1=�t�1 is not significant in any of the equations at conventional
significance levels, which suggest no (detectable) asymmetry as is usually found
for exchange rate data. Persistence is high as suggested by the estimated impact of
the autoregressive term log σt−1

2 since it is 0.91 in Eq. (18), but it drops to 0.79
when the quote variables are included, and then to 0.59 when the rest of the
economic variables are included, though it remains quite significant in all cases.
Finally, the standardised residuals are substantially closer to the normal distribution
in Eq. (20) compared with the other two EGARCH specifications.

4 Conclusions

Our study of weekly Norwegian exchange rate volatility sheds new light on the
mixture of distribution hypothesis in several ways. We find that the impact of
changes in the number of information events is positive and statistically significant
within two different frameworks, that the impact is relatively stable across three
different exchange rate regimes for both weekly and realised volatility, and that the
estimated impacts are relatively similar in both cases. One might have expected that
the effect of changes in the number of information events would increase with a
shift in regime from exchange rate stabilisation to partial inflation targeting, and

Table 7 EGARCH-analysis of NOK/EUR return volatility

(18) (19) (20)

Est. Pval. Est. Pval. Est. Pval.

Const. (mean) −0.025 0.37 −0.054 0.05 −0.065 0.01
Const. (var.) −0.303 0.11 −0.994 0.13 0.343 0.70
∣et−1/σt−1∣ 0.230 0.09 0.247 0.07 0.169 0.11
et−1/σt−1 0.005 0.95 0.085 0.21 0.084 0.18
log (σt−1

2) 0.906 0.00 0.789 0.00 0.587 0.00
qt* 0.038 0.38 0.037 0.49
Δqt* 0.373 0.00 0.356 0.00
mt

w* 0.148 0.03
ot
w* −0.057 0.29

xt
w* 0.312 0.00

ut
w* 0.098 0.09

ft
a −0.352 0.71
ft
b 1.611 0.00
idt 3.002 0.00 2.665 0.00 0.441 0.00
sdt 0.151 0.19 0.329 0.03 1.552 0.01
Log L. −710.16 −687.85 −656.38
Q(10) 11.88 0.29 10.95 0.36 11.91 0.29
ARCH1−10 0.88 0.55 11.69 0.31 12.46 0.26
JB 161.00 0.00 119.73 0.00 20.65 0.00
Obs. 572 572 572

See Table 3 for details
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then to full inflation targeting, since the Norwegian central bank actively sought to
stabilise the exchange rate previous to the full inflation targeting regime. In our
data however there are no clear breaks, shifts upwards nor trends following the
points of regime change. Moreover, our results do not support the hypothesis that
an increase in the number of traders reduces volatility. Finally, we have shown that
simply applying the log of volatility can improve inference and remove undesirable
residual properties. In particular, OLS-estimated autoregressions of the log of vol-
atility are capable of producing uncorrelated and (almost) homoscedastic residuals,
and in the log of realised volatility case the residuals are also Gaussian.

Our study suggests at least two avenues for future research. First, our results
suggest there is no impact of the number of traders on exchange rate volatility, but
this might be due to our measure being unsatisfactory. So the first avenue of re-
search is to reconsider the hypothesis with a different approach. The second ave-
nue of future research is to uncover why applying the log works so well. Pantula
(1986), Geweke (1986) and Nelson (1991) proposed that volatility should be
analysed in logs in order to ensure nonnegativity. In our case the motivation stems
from unsatisfactory residual properties and fragile inference-results. Before we
switched to the log–linear framework we struggled only to obtain uncorrelated
residuals within the ARCH, ARMA and linear frameworks, and when we did attain
satisfactory residual properties the results turned out to be very sensitive to small
changes in the specification. With the log-transformation, however, results are ro-
bust across a number of specifications. So the second avenue of further research
consists of understanding better why the log works. Is it due to particularities in our
data? For example, is it due to our in financial contexts relatively small sample of
573 observations? Is it due to influential observations? Is it due to both? Or is it just
due to the simple fact that applying the log is believed to lead to faster convergence
towards the asymptotic theory which our residual tests rely upon? Further ap-
plication of log–linear analysis is necessary in order to answer these questions, and
to verify the possible usefulness of the log–linear framework more generally.

Acknowledgements We are indebted to various people for useful comments and suggestions at
different stages, including Farooq Akram, Sébastien Laurent, an anonymous referee, participants
at the JAE conference in Venice June 2005, participants at the poster session following the joint
CORE-ECARES-KUL seminar in Brussels April 2005, participants at the MICFINMA sum-
mer school in Konstanz in June 2004, and participants at the bi-annual doctoral workshop in
economics at Université catolique de Louvain (Louvain la Neuve) in May 2004. The usual dis-
claimer about remaining errors and interpretations being our own applies of course. This work was
supported by the European Community’s Human Potential Programme under contract HPRN-CT-
2002-00232, Microstructure of Financial Markets in Europe, and by the Belgian Program on
Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science
Policy Programming. The third author would like to thank Finansmarkedsfondet (the Norwegian
Financial Market Fund) and Lånekassen (the Norwegian government’s student funding scheme)
for financial support at different stages, and the hospitality of the Department of Economics at the
University of Oslo and the Norwegian Central Bank in which part of the research was carried out.

L. Bauwens et al.26



Appendix: Data sources and transformations

The data transformations were undertaken in Ox 3.4 and EViews 5.1.

Sn(t) n(t)=1(t), 2(t),.., N(t), where S1(t) is the first BID NOK/1EUR opening exchange rate of
week t, S2(t) is the first closing rate, S3(t) is the second opening rate, and so on, with SN(t)
denoting the last closing rate of week t. Before 1.1.1999 the BID NOK/1EUR rate is
obtained by the formula BID NOK/100DEM×0.0195583, where 0.0195583 is the official
DEM/1EUR conversion rate 1.95583 DEM=1 EUR divided by 100. The first untrans-
formed observation is the opening value of BID NOK/100DEM on Wednesday 6.1.1993
and the last is the BID NOK/1EUR closing value on Friday 26.12.2003. The source of the
BID NOK/100DEM series is Olsen and the source of the BID NOK/1EUR series is Reuters.

St SN(t), the last closing value of week t
rt log St−log St−1
Vt

w {{log[St+I(St=St−1)×0.0009]−log(St−1)} ×100}2. I(St=St−1) is an indicator function equal to
1 if St=St−1 and 0 otherwise, and St=St−1 occurs for t=10/6/1994, t=19/8/1994 and
t=17/2/2000.

vt
w log Vt

w

Vt
r Σn [log(Sn/Sn−1)×100]

2, where n=1(t), 2(t),..., N(t) and 1(t)−1≔N(t−1)
vt
r log Vt

r

Mn(t) n(t)=1(t), 2(t),.., N(t), where M1(t) is the first BID USD/EUR opening exchange rate of
week t, M2(t) is the first closing rate, M3(t) is the second opening rate, and so on, with MN(t)
denoting the last closing rate of week t. Before 1.1.1999 the BID USD/EUR rate is obtained
with the formula 1.95583/(BID DEM/USD). The first untransformed observation is the
opening value of BID DEM/USD on Wednesday 6.1.1993 and the last is the closing value
on Friday 30.12.2003. The source of the BID DEM/USD and BID USD/EUR series is
Reuters.

Mt MN(t), the last closing value of week t
mt log Mt

Mt
w {{log[Mt+I(Mt=Mt-1)×kt]−log(Mt-1)}×100}

2. I(Mt=Mt−1) is an indicator function equal to 1
if Mt=Mt−1 and 0 otherwise, and kt is a positive number that ensures the log-transformation
is not performed on a zero-value. Mt=Mt−1 occurs for t=23/2/1996, t=19/12/1997 and
t=20/2/1998, and the value of kt was set on a case to case basis depending on the number of
decimals in the original, untransformed data series. Specifically the values of kt were set to
0.00009, 0.0009 and 0.00009, respectively.

mt
w log Mt

w

Mt
r Σn [log(Mn/Mn−1)×100]

2, where n =1(t), 2(t),.., N(t) and 1(t)−1≔N(t−1)
mt

r log Mt
r

Qt Weekly number of NOK/EUR quotes (NOK/100DEM before 1.1.1999). The underlying
data is a daily series from Olsen Financial Technologies, and the weekly values are obtained
by summing the values of the week.

qt log Qt. Note that this series is “synthetic” in that it has been adjusted for changes in the
underlying quote-collection methodology at Olsen Financial Technologies. More precisely
qt has been generated under the assumption that Δqt was equal to zero in the weeks
containing Friday 17 August 2001 and Friday 5 September 2003, respectively. In the first
week the underlying feed was changed from Reuters to Tenfore, and on the second a feed
from Oanda was added.

On(t) n(t)=2(t), 4(t),.., N(t), whereO2(t) is the first closing value of the Brent Blend spot oilprice in
USD per barrel in week t, O4(t) is the second closing value of week t, and so on, with On(t)

denoting the last closing value of week t. The untransformed series is Bank of Norway
database series D2001712, which is based on Telerate page 8891 at 16.00.

Ot ON(t), the last closing value in week t
ot log Ot

Ot
w {log[Ot+I(Ot=Ot−1)×0.009]−log(Ot−1) }

2. I(Ot=Ot−1) is an indicator function equal to 1 if
Ot=Ot−1 and 0 otherwise, and Ot=Ot−1 occurs three times, for t=1/7/1994, t=13/10/1995 and
t=25/7/1997.
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ot
w log Ot

w

Ot
r Σn [log(On/On−2)]

2, where n=2(t), 4(t),.., N(t) and 2(t)−2≔N(t−1)
ot
r log Ot

r

Xn(t) n(t)=2(t), 4(t),.., N(t), where X2(t) is the first closing value of the main index of the
Norwegian Stock Exchange (TOTX) in week t, X4(t) is the second closing value, and so on,
with XN(t) denoting the last closing value of week t. The source of the daily untransformed
series is EcoWin series ew:nor15565.

Xt XN(t), the last closing value in week t
xt log Xt
Xt

w [log (Xt/Xt−1)]
2. Xt=Xt−1 does not occur for this series.

xt
w log Xt

w

Xt
r Σn [log(Xn/Xn−2)]

2, where n=2(t), 4(t),.., N(t) and 2(t)−2≔N(t−1)
xt
r log Xt

r

Un(t) n(t)=2(t), 4(t),.., N(t), where U2(t) is the first closing value in USD of the composite index of
the New York Stock Exchange (the NYSE index) in week t, U4(t) is the second closing
value, and so on, withUN(t) denoting the last closing value of week t. The source of the daily
untransformed series is EcoWin series ew:usa15540.

Ut UN(t), the last closing value in week t
Ut

w [log (Ut/Ut-1)]
2. Ut=Ut-1 does not occur for this series.

ut
w log Ut

w

Ut
r Σn [log(Un/Un−2)]

2, where n=2(t), 4(t),.., N(t) and 2(t)−2≔N(t−1)
ut
r log Ut

r

Ft The Norwegian central bank's main policy interest-rate, the so-called “folio”, at the end of
the last trading day of week t. The source of the untransformed daily series is Bank of
Norway's web-pages.

ft
a |Δ Ft|×Ia, where Ia is an indicator function equal to 1 in the period 1 January 1999–Friday

30 March 2001 and 0 elsewhere
ft
b |Δ Ft|×Ib, where Ib is an indicator function equal to 1 after Friday 30 March 2001 and 0

before
idt Russian moratorium impulse dummy, equal to 1 in the week containing Friday 28 August

1998 and 0 elsewhere.
sdt Step dummy, equal to 0 before 1997 and 1 thereafter.
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A multivariate integer count hurdle model:
theory and application to exchange rate
dynamics

Abstract In this paper we propose a model for the conditional multivariate density
of integer count variables defined on the set Z

n. Applying the concept of cop-
ula functions, we allow for a general form of dependence between the marginal
processes, which is able to pick up the complex nonlinear dynamics of multivariate
financial time series at high frequencies. We use the model to estimate the con-
ditional bivariate density of the high frequency changes of the EUR/GBP and the
EUR/USD exchange rates.
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1 Introduction

In this paper we propose a model for the multivariate conditional density of integer
count variables. Our modelling framework can be used for a broad set of applica-
tions to multivariate processes where the primary characteristics of the variables
are: first, their discrete domain spaces, each being the whole space Z; and second,
their contemporaneous dependence.
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Although econometric modelling of univariate processes with a discrete support
has been studied extensively, the multivariate counterpart is still underdeveloped.
Most of the existing approaches (e.g. Kocherlakota and Kocherlakota (1992) and
Johnson et al. (1997)) concentrate on the parametric modelling of multivariate
discrete distributions with a non-negative domain and a non-negative contempora-
neous dependence only. Alternatively, Cameron et al. (2004) exploit the concept of
copula functions to derive a more flexible form of the bivariate distribution for non-
negative count variables that allows for both a positive or a negative dependence
between the discrete random variables. The multivariate integer count hurdle model
(MICH) proposed here can be viewed as an combination of the copula approach
by Cameron et al. (2004) with the Integer Count Hurdle (ICH) model of Liesenfeld
et al. (2006), which allows for the dynamic specification of a univariate conditional
distribution with discrete domain Z.

Quite a number of applications of the MICH model are conceivable in many
academic disciplines. Most apparent are applications to high frequent financial
data, which are characterized by a set of contemporaneously correlated trade marks,
many of them are discrete in nature at high or ultra high frequency. In empirical
studies on financial market microstructure, characteristics of the multivariate time-
varying conditional densities (moments, ranges, quantiles, etc.) are crucial. For
instance, with our model we are able to derive multivariate conditional volatility or
liquidity measures. As an application, we propose a model for the bivariate process
of exchange rate changes sampled at the 1 min frequency. Other possible appli-
cations would be, for example, modelling joint movements of stock transaction
prices or the changes of the bid and ask quotes of selected financial instruments.

The discreteness of price changes plays an important role for financial theory
and applications. Huang and Stoll (1994), Crack and Ledoit (1996) and Szpiro
(1998) among others show that discrete price changes imply a ray shaped pattern
in the scatter plot of returns against one period lagged returns, which is referred to as
the ‘compass rose’. The compass rose can be found for many financial instruments
on different markets, such as futures (Lee et al. (1999)), exchange rates (Gleason
et al. (2000) and Szpiro (1998)) and stocks (Crack and Ledoit (1996) and Antoniou
and Vorlow (2005)).

It has several implications for the dynamics of the data generating process of
asset returns which may render naively applied statistical tests such as the Brock
et al. (1996) test (Krämer and Runde (1997)), random walk tests or simple autocor-
relation estimates (Fang (2002)) invalid. Moreover, GARCH models estimated for
such data may be misspecified (Amilon (2003)) and the assumption of a geometric
Brownian Motion as the true price process can at least be questioned, which has
consequences, for instance, for option pricing (Ball (1988)) and the discrimination
between the market microstructure noise and the underlying price process in the
realized volatility literature (Andersen et al. (1999), Oomen (2005) and Hansen
and Lunde (2006)). Furthermore, Vorlow (2004) analyzes to which extent such
patterns can be exploited for forecasting issues. Our approach nicely contributes
to this literature since the MICH is able to pick up complex nonlinear structure
such as the compass rose in a multivariate setting.

The data used in the application part of the paper are 1 min changes of the
EUR/GBP and the EUR/USD midquotes. Figure 1 shows its bivariate histogram.
The changes of exchange rates are discrete, since bid or ask quotes of the GBP and
the USD against the EUR can jump by a multiple of a fixed tick size of 0.0001
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Fig. 1 Bivariate histogram of the tick changes of the EUR/GBP and the EUR/USD exchange
rates.

EUR only. The bid quotes (and the ask quotes, analogously) are aggregated to the
1 min level by taking the average of the highest and the lowest best bid within
that minute, resulting in a smallest bid quote change of 0.00005 EUR, so that the
smallest observable mid quote change amounts to 0.000025 EUR.

Due to the discreteness of the bivariate process, the surface of the histogram is
rough, characterized by distinct peaks with the most frequent outcome (0,0) having
a sample probability of 2.02%, that corresponds to the simultaneous zero move-
ment of both exchange rates. The discrete changes of the variables are positively
correlated, since the positive (negative) movements of the EUR/GBP exchange
rate go along with the positive (negative) movements of the EUR/USD exchange
rate more frequently.

The sequence of the paper is organized as follows. In Section 2 we describe
the general framework of our multivariate modelling approach. The description of
the theoretical settings customized with respect to modelling the bivariate density
of exchange rate changes follows in Section 3. There, we also present the results
of empirical application as well as some statistical inference. Section 4 discusses
the results and concludes.

2 The general model

Let Yt = (Y1t , . . . , Ynt )
′ ∈ Z

n, with t = 1, . . . , T , denote the multivariate process
of n integer count variables and let Ft−1 denote the associated filtration at time
t − 1. Moreover, let F(y1t , . . . , ynt |Ft−1) denote the conditional cumulative den-
sity function of Yt and f (y1t , . . . , ynt |Ft−1) its conditional density. Each marginal
process Ykt , k = 1, . . . , n is assumed to follow the ICH distribution of Liesenfeld
et al. (2006) and the dependency between the marginal processes is modelled with
a copula function.
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2.1 Copula function

The copula concept of Sklar (1959) has been extended by Patton (2001) to condi-
tional distributions. In that framework the marginal distributions and/or the copula
function can be specified conditional on Ft−1, so that the conditional multivariate
distribution of Yt can be modelled as

F(y1t , . . . , ynt |Ft−1) = C(F (y1t |Ft−1), . . . , F (ynt |Ft−1)|Ft−1), (1)

where F(ykt |Ft−1) denotes the conditional distribution function of the kth compo-
nent and C(·|Ft−1) the conditional copula function defined on the domain [0, 1]n.
This approach provides a flexible tool for modelling multivariate distributions as
it allows for the decomposition of the multivariate distribution into the marginal
distributions, which are bound by a copula function, being solely responsible for
their contemporaneous dependence.

If the marginal distribution functions are continuous, the copula function C is
unique on its domain [0, 1]n, because the random variables Ykt , k = 1, . . . , n are
mapped through the strictly monotone increasing functions F(ykt |Ft−1) onto the
entire set [0, 1]n. The joint density function can then be derived by differentiating
C with respect to the continuous random variables Ykt , as:

f (y1t , . . . , ynt |Ft−1) = ∂nC(F (y1t |Ft−1), . . . , F (ynt |Ft−1)|Ft−1)

∂y1t . . . ∂ynt
, (2)

However, if the random variables Ykt are discrete, F(ykt |Ft−1) are step func-
tions and the copula function is uniquely defined not on [0, 1]n, but on the
Cartesian product of the ranges of the n marginal distribution functions, i.e.⊗n

k=1 Range(Fkt ) so that it is impossible to derive the multivariate density function
using Eq. (2).

Two approaches have been proposed to overcome this problem. The first is the
continuation method suggested by Stevens (1950) and Denuit and Lambert (2005),
which is based upon generating artificially continued variables Y ∗

1t , . . . , Y
∗
nt by

adding independent random variables U1t , . . . , Unt (each of them being uniformly
distributed on the set [−1, 0]) to the discrete count variables Y1t , . . . , Ynt and
which does not change the concordance measure between the variables (Heinen
and Rengifo (2003)).

The second method, on which we rely, has been proposed by Meester and
MacKay (1994) and Cameron et al. (2004) and is based on finite difference
approximations of the derivatives of the copula function, thus

f (y1t , . . . , ynt |Ft−1) = �n . . .�1C(F (y1t |Ft−1), . . . , F (ynt |Ft−1)|Ft−1),

(3)

where �k , for k ∈ {1, . . . , n}, denotes the kth component first order differencing
operator being defined through

�kC(F (y1t |Ft−1), . . . , F (ykt |Ft−1), . . . , F (ynt |Ft−1)|Ft−1)

= C(F (y1t |Ft−1), . . . , F (ykt |Ft−1), . . . , F (ynt |Ft−1)|Ft−1)

− C(F (y1t |Ft−1), . . . , F (ykt − 1|Ft−1), . . . , F (ynt |Ft−1)|Ft−1).
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The conditional density of Yt can therefore be derived by specifying the cumulative
distribution functions F(y1t |Ft−1), . . . , F (ynt |Ft−1) in Eq. (3).

2.2 Marginal Processes

The integer count hurdle (ICH) model that we propose for the modelling of the
marginal processes is based on the decomposition of the process of the discrete
integer valued variable into two components, i.e. a process indicating whether the
integer variable is negative, equal to zero or positive (the direction process) and a
process for the absolute value of the discrete variable irrespective of its sign (the
size process). We present here the simplest form of the ICH model and we refer to
Liesenfeld et al. (2006), reprinted in this volume, for a more elaborate presentation.

Let πk
jt , j ∈ {−1, 0, 1} denote the conditional probability of a negative

P(Ykt < 0|Ft−1), a zero P(Ykt = 0|Ft−1) or a positive P(Ykt > 0|Ft−1) value
of the integer variable Ykt , k = 1, . . . , n, at time t . The conditional density of Ykt
is then specified as

f (ykt |Ft−1)

= πk
−1t

1{Ykt<0} · πk
0t

1{Ykt=0} · πk
1t

1{Ykt>0} · fs(|ykt | |Ykt �= 0,Ft−1)
(1−1{Ykt=0}),

where fs(|ykt | |Ykt �= 0,Ft−1) denotes the conditional density of the size process,
i.e. conditional density of an absolute change of Ykt , with support N \ {0}. To get
a parsimoniously specified model, we adopt the simplification of Liesenfeld et al.
(2006) that the conditional density of an absolute value of a variable stems from
the same distribution irrespective of whether the variable is positive or negative.

The conditional probabilities of the direction process are modelled with the
autoregressive conditional multinomial model (ACM) of Russell and Engle (2002)
using a logistic link function given by

πk
jt = exp(�k

jt )∑1
j=−1 exp(�k

jt )
(4)

where �k
0t = 0, ∀t is the normalizing constraint. The resulting vector of log-

odds ratios �k
t ≡ (�k

−1t , �
k
1t )

′ = (ln[πk
−1t /π

k
0t ], ln[πk

1t /π
k
0t ])′ is specified as a

multivariate ARMA(1,1) model:

�k
t = µ + B1�

k
t−1 + A1ξ

k
t−1. (5)

µ denotes the vector of constants, and B1 andA1 denote 2×2 coefficient matrices.
In the empirical application, we put the following symmetry restrictions µ1 = µ2,
as well as b(1)11 = b

(1)
22 and b

(1)
12 = b

(1)
21 on the B1 matrix to obtain a parsimonious

model specification. The innovation vector of the ARMA model is specified as a
martingale difference sequence in the following way:

ξkt ≡ (ξk−1t , ξ
k
1t )

′, where ξkjt ≡ xkjt − πk
jt√

πk
jt (1 − πk

jt )
, j ∈ {−1, 1}, (6)
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and

xkt ≡ (xk−1t , x
k
1t )

′ =
⎧⎨⎩ (1,0)′ if Ykt < 0

(0,0)′ if Ykt = 0
(0,1)′ if Ykt > 0,

(7)

denotes the state vector, whether Ykt decreases, stays equal or increases at time t .
Thus, ξkt represents the standardized state vector xkt .

The conditional density of the size process is modelled with an at-zero-
truncated Negative Binomial (NegBin) distribution:

fs(|ykt | |Ykt �= 0,Ft−1)

≡ �(κk + |ykt |)
�(κk)�(|ykt | + 1)

([κk + ωk
t

κk

]κk − 1

)−1(
ωk
t

ωk
t + κk

)|ykt |
, (8)

where |ykt | ∈ N \ {0}, κk > 0 denotes the dispersion parameter and scaling para-
meter ωk

t is parameterized using the exponential link function with a generalized
autoregressive moving average model (GLARMA(p,q)) of Shephard (1995) in the
following way:

lnωk
t = δD̃t + λ̃kt with λ̃kt = µ̃ + Sk(ν, τ,K) + β1λ̃

k
t−1 + α1ξ̃

k
t−1.

where D̃t ∈ {−1, 1} indicates a negative or positive value of Ykt at time t with the
corresponding coefficient denoted by δ. µ̃ denotes the constant term. β1 as well as
α1 denote coefficients and ξ̃ kt being constructed as

ξ̃ kt ≡ |Ykt | − E(|Ykt | |Ykt �= 0,Ft−1)

V(|Ykt | |Ykt �= 0,Ft−1)1/2
,

is the innovation term that drives the GLARMA model in λkt . The conditional
moments of the at-zero-truncated NegBin distribution are given by

E(|Ykt | |Ykt �= 0,Ft−1) = ωk
t

1 − ϑk
t

,

V(|Ykt | |Ykt �= 0,Ft−1) = ωk
t

1 − ϑk
t

−
(

ωk
t

(1 − ϑk
t )

)2 (
ϑk
t − 1 − ϑk

t

κk

)
,

where ϑk
t is given by ϑk

t = [κk/(κk + ωk
t )]κ .

Sk(ν, τ,K) ≡ ν0τ +
K∑
l=1

ν2l−1 sin(2π(2l − 1)τ ) + ν2l cos(2π(2l)τ ) (9)

is a Fourier flexible form used to capture diurnal seasonality, where τ is the intraday
time standardized to [0, 1] and ν is a 2K + 1 dimensional parameter vector.
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3 Bivariate modelling of exchange rate changes

Data description

We apply our model to 1 min mid quote changes of the EUR/GBP and the
EUR/USD exchange rates. The data has been provided by Olsen Financial Tech-
nologies and contains quotes from the electronic foreign exchange interbank
market. The period under study spreads between October 6 (Monday), 2003, 0:01
EST, and October 10 (Friday), 2003, 17:00 EST, resulting in 6,780 observations for
both time series. The sampling frequency of 1 min is, on the one side, sufficiently
high to maintain the discrete nature of the data, whereas on the other side, it is low
enough to preserve a significant correlation between the two marginal processes.

The histograms of the two marginal processes are presented in the Fig. 2.
Both distributions reveal a fairly large support between −20 and 20 ticks for
the EUR/GBP and between −30 and 30 ticks for the more volatile EUR/USD
exchange rate. Thus, the discreteness of the quote changes combined with a high
number of zero quote movements (about 13% for the EUR/GBP and about 7.5%
for the EUR/USD) justifies the ICH-model approach of Liesenfeld et al. (2006).

We associate Y1t and Y2t with the changes of the EUR/GBP and the EUR/USD
currency pairs, respectively, and present in Figs. 3 and 4 the dynamic features of
these variables in the form of the multivariate autocorrelograms of the vectors
x1
t and x2

t , which indicate the change of the direction of the EUR/GBP and the
EUR/USD exchange rates, as defined in Eq. (7).

We observe that there is a certain dynamic pattern, which should be explained
by theACM part of the ICH model.As indicated by the negative first-order autocor-
relation and the positive first-order cross correlation coefficients, the probability of
an upward movement of each exchange rate following a downward movement is
significantly more probable than two subsequent negative or positive movements.
In Fig. 5 the autocorrelograms for the absolute value of the non-zero exchange rate
changes are presented. The high degree of persistence characterizing the processes
should be explained by the GLARMA part of the ICH model.

The interdependence between the two marginal processes can be seen from
Fig. 6, where we plotted the multivariate autocorrelogram of Y1t and Y2t . The two
marginal processes are positively correlated, with the correlation coefficient of
about 0.35.
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Fig. 2 Histograms of the tick changes of the EUR/GBP and the EUR/USD exchange rates.
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Fig. 3 Multivariate autocorrelation function for the EUR/GBP mid quote direction. Upper
left panel: corr(x1−1,t , x

1−1,t−l ); upper right panel: corr(x1−1,t , x
1
1,t−l ); lower left panel:

corr(x1−1,t−l , x
1
1,t ) and lower right panel: corr(x1

1,t , x
1
1,t−l ). The dashed lines mark the approxi-

mate 99% confidence interval ±2.58/
√
T .

Fig. 4 Multivariate autocorrelation function for the EUR/USD mid quote direction. Upper
left panel: corr(x2−1,t , x

2−1,t−l ); upper right panel: corr(x2−1,t , x
2
1,t−l ); lower left panel:

corr(x2−1,t−l , x
2
1,t ) and lower right panel: corr(x2

1,t , x
2
1,t−l ). The dashed lines mark the approxi-

mate 99% confidence interval ±2.58/
√
T .
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Fig. 5 Autocorrelation function of the non-zero absolute EUR/GBP and EUR/USD mid quote

changes. The dashed line marks the approximate 99% confidence interval ±2.58/
√
T̃ , where T̃

is the number of non-zero quote changes.

Fig. 6 Multivariate autocorrelation function for the EUR/GBP and EUR/USD mid quote
changes. Upper left panel: corr(Y1t , Y1t−l ); upper right panel: corr(Y1t , Y2t−l ); lower left panel:
corr(Y1t−l , Y2t ) and lower right panel: corr(Y2t , Y2t−l ). The dashed lines mark the approximate
99% confidence interval ±2.58/

√
T .
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Bivariate model specification

The copula concept allows one to model the bivariate density without forcing
the direction of the dependence upon the data generating process. We choose the
standard Gaussian copula function since its single dependency parameter can easily
be estimated and it allows for a straightforward sampling algorithm of variables
from the bivariate conditional density, which is necessary to assess the goodness-
of-fit of our specification. The Gaussian copula is given by

C(ut , vt ; ρ) =
∫ �−1(ut )

−∞

∫ �−1(vt )

−∞
1

2π
√

1 − ρ2
exp

(
2ρuv − u2 − v2

2(1 − ρ2)

)
dudv,

(10)

where ut = F(y1t |Ft−1), vt = F(y2t |Ft−1) and ρ denotes the time-
invariant parameter of the Gaussian copula, which is the correlation
between �−1(ut ) and �−1(vt ). Since ρ is chosen to be fixed over time
C(F (y1t |Ft−1), F (y2t |Ft−1)|Ft−1) = C(F (y1t |Ft−1), F (y2t |Ft−1)) and the
conditional bivariate density of Y1t and Y2t can be inferred from Eq. (3) as

f (y1t , y2t |Ft−1) = C(F (y1t |Ft−1), F (y2t |Ft−1))

− C(F (y1t − 1|Ft−1), F (y2|Ft−1))

− C(F (y1t |Ft−1), F (y2t − 1|Ft−1))

+ C(F (y1t − 1|Ft−1), F (y2t − 1|Ft−1)). (11)

The cumulative distribution function F(y1t |Ft−1) (and analogously F(y2t |Ft−1))
can be written as

F(y1t |Ft−1)

=
y1t∑

k=−50

π1−1t
1{k<0} · π1

0t
1{k=0} · π1

1t
1{k>0} · fs(|k| |k �= 0,Ft−1)

(1−1{k=0})

where we set the lower bound of the summation to −50 and where the probabilities
of the downward, zero and upward movement of the exchange rate are specified
with the logistic link function, as shown in Eq. (4), and the density for the absolute
value of the change is specified along the conditional NegBin distribution, as
presented in Eq. (8).

Estimation and simulation results

Our estimates are obtained by a one-step maximum likelihood estimation, whereas
the log-likelihood function is taken as a logarithm of the bivariate density presented
in the Eq. (11). Estimation results for the ACM part of ICH model are presented in
Table 1 and for the GLARMA part of the ICH model in Table 2. The estimate of the
dependency parameter ρ̂ for the Gaussian copula equals to 0.3588 with standard
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Table 1 ML estimates of the ACM-ARMA part of ICH model. Multivariate Ljung-Box statistic
for L lags, Q(L), is computed as Q(L) = n

∑L
�=1 tr

[
�(�)′�(0)−1�(�)�(0)−1

]
, where �(�) =∑n

i=�+1 νt ν
′
t−�/(n − � − 1). Under the null hypothesis, Q(L) is asymptotically χ2-distributed

with degrees of freedom equal to the difference between 4 times L and the number of parameters
to be estimated

EUR/GBP EUR/USD

Parameter Estimate Standard deviation Estimate Standard deviation

µ 0.0639 0.0177 0.0837 0.0222

b
(1)
(11) 0.6583 0.0856 0.4518 0.0426

b
(1)
(12) 0.2910 0.0540 0.5054 0.0635

a
(1)
11 0.1269 0.0324 0.2535 0.0465

a
(1)
12 0.2059 0.0323 0.3739 0.0472

a
(1)
21 0.2009 0.0271 0.3350 0.0466

a
(1)
22 0.0921 0.0312 0.2586 0.0477

Resid. mean (−0.003, 0.002) (0.003, 0.009)

Resid. variance

(
0.655 0.803
0.803 2.631

) (
1.413 2.306
2.306 4.721

)
Resid. Q(20) 72.359 (0.532) 89.054 (0.111)
Resid. Q(30) 102.246 (0.777) 122.068 (0.285)

Log-lik. −6.2125

Table 2 ML estimates of the GLARMA part of ICH model

EUR/GBP EUR/USD

Parameter Estimate Standard deviation Estimate Standard deviation

κ0.5 0.7862 0.0192 0.7952 0.0130
µ̃ 0.3363 0.0438 0.7179 0.0814
β1 0.6567 0.0335 0.6085 0.0428
α1 0.1675 0.0100 0.1455 0.0097
ν0 0.0981 0.0633 −0.0396 0.0510
ν1 −0.0712 0.0117 −0.0430 0.0100
ν2 −0.0060 0.0091 0.0388 0.0099
ν3 −0.0501 0.0105 −0.0258 0.0093
ν4 0.0852 0.0238 0.0954 0.0215
ν5 −0.0100 0.0129 −0.0234 0.0120
ν6 0.0449 0.0115 0.0297 0.0108

Resid. mean 0.013 0.007
Resid. variance 1.001 1.025
Resid. Q(20) 26.408 (0.067) 42.332 (0.001)
Resid. Q(30) 64.997 (0.000) 87.641 (0.000)

Log-lik. −6.2125
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deviation 0.0099, representing a strong positive correlation between the modelled
marginal processes.

Regarding the estimates for the ACM submodel, we observe a significant per-
sistency pattern (B̂1 matrix) of the direction processes and we can conclude, that if
the probability of an exchange rate change has been high in the previous period, it
is also supposed to be considerably high in the next period. Moreover, the obtained
relations a(1)11 < a

(1)
12 and a

(1)
21 > a

(1)
22 between the innovation coefficients suggest

the existence of some bounce or mean-reverting pattern in the evolution of the
exchange rate process. The parsimonious dynamic specification seems to describe
the dynamic structure very well, as the multivariate Ljung-Box statistics for the
standardized residuals of the ACM model do not differ significantly from zero.

Regarding the estimation results for the GLARMA part of the ICH model, we
observe that the values of the dispersion parameters κk−0.5 are significantly dif-
ferent from zero, allowing the rejection of the null hypothesis of at-zero-truncated
Poisson distributions in favor of at-zero-truncated NegBin ones. The diagnostics
statistics of the GLARMA submodel are quite satisfying. Although some Ljung-
Box statistics (Q) for the standardized residuals still remain significantly different
from zero, a large part of the autocorrelation structure of the size processes has
been explained by the simple GLARMA(1,1) specification.

Jointly significant coefficients of the seasonal components S(ν, τ,K) for
K = 3 indicate that there exist diurnal seasonality patterns, which are plotted in
Fig. 7, in the absolute changes of the exchange rates. We observe for every minute
of the day that the mean of the non-zero absolute tick changes of the USD against
the EUR is considerably higher than the mean for the GBP against the EUR. It
confirms the results of the descriptive study presented previously, as the support
of the EUR/USD distribution is more dispersed and the exchange rate is more
volatile. The shapes of the diurnal seasonality functions for both exchange rates
are quite similar. They evidence the existence of at least two very active trading
periods, about 3.00 EST and 10.00 EST, which corresponds to the main trading
periods of the European and the American Foreign Exchange market, respectively.

In order to verify the goodness-of-fit of our model in a more elaborate
way, we simulate the conditional density of the bivariate process at every
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Fig. 7 Estimated diurnal seasonality function of the non-zero absolute EUR/GBP and EUR/USD
tick changes. The dashed line mark the approximate 99% confidence interval.
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point t , t = 1, . . . , T . Such an approach enables us to verify whether the pro-
posed density specification is able to explain the whole conditional joint density of
the underlying data generating process. Relying on the simulated distributions at
every time point available, we can easily address this point applying the modified
version of the Diebold et al. (1998) density forecasting test for discrete data of
Liesenfeld et al. (2006).
Moreover, we are able to compare the residuals of both marginal processes.
We use here the standard sampling method proposed for Gaussian copula functions,
which can be summarized as:

For every t :

– Compute the Cholesky decomposition Â (2×2) of estimated correlation matrix

R̂, where R̂ =
(

1 ρ̂

ρ̂ 1

)
– Simulate xt = (x1t , x2t )

′ from a bivariate standard normal distribution
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Fig. 8 Histogram of simulated tick changes of exchange rates.

Fig. 9 Bivariate histogram of the simulated tick changes of the EUR/GBP and the EUR/USD
exchange rates.
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– Set ẑt = Âxt
– Set û1t = �(ẑ1t ) and û2t = �(ẑ2t ) where � denotes the univariate standard

normal distribution function
– Set Ŷ1t = F̂−1

1 (û1|Ft−1)) and Ŷ2t = F̂−1
2 (û2|Ft−1)) where F̂1 and F̂2 denote

the estimated marginal cumulative distribution functions of the EUR/GBP and
the EUR/USD changes, respectively

Figure 8 contains the plots of the unconditional histograms of the simulated
marginal processes. Their shapes seem to agree with those of the raw data series
already presented in Fig. 2.

Fig. 10 Bivariate histogram of the positive differences between the empirical and the simulated
bivariate histogram of the EUR/GBP and the EUR/USD exchange rate changes.

Fig. 11 Bivariate histogram of the absolute values of the negative differences between the
empirical and the simulated bivariate histogram of the the EUR/GBPand the EUR/USD exchange
rate changes.
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The unconditional bivariate histogram of the simulated time series is presented
in Fig. 9. Although the positive dependence between the marginal processes is
reflected, the shape of the histogram does not correspond to the empirical one
in full (see Fig. 1). In particular the frequency of the outcome (0, 0) has been
considerably underestimated. We compute the differences between the histograms
of the empirical and the simulated data to infer in which points (i, j) the observed
and the estimated probabilities disagree. To assess these differences graphically,
we plotted in Fig. 10 only positive differences and in Fig. 11 only absolute negative
differences. Besides the outcome probability of (0, 0), the probabilities for points
(i, j) concentrated around (0,0) are a little bit underestimated (positive differences
in Fig. 10) as well, and the probabilities for points (i, j) which are a little further
away from (0,0) are a little overestimated (negative differences in Fig. 11). Thus,
we conclude that we underestimate the kurtosis of the empirical distribution. The
real data is much more concentrated in the outcome (0,0), as well as evidencing
much fatter tails. There is a clear signal for a tail dependency in the data generating
process, as the extreme positive or negative movements of the exchange rates take
place much more often than could be explained by a standard Gaussian copula
function (see Fig. 10).

Additionally, we can address the goodness-of-fit of the conditional bivariate
density by considering the bivariate autocorrelation function of the residual series
ε̂t = (ε̂1

t , ε̂
2
t )

′ depicted in Fig. 14 and the quantile–quantile (QQ) plots of the mod-
ified density forecast test variables for the implied marginal processes in Fig. 12.
We have mapped these modified density forecast test variables into a standard nor-
mal distribution, so that under the correct model specification, these normalized
variables should be i.i.d. standard normally distributed. Figure 13 plots the auto-
correlation functions of these normalized density forecast variables. Both plots
indicate that the processes are almost uncorrelated. The deviation from normal-
ity, especially for the EUR/USD exchange rate changes and in the upper tail of
the normalized density forecast variables indicated by the QQ-plots, reveals that
our specification has difficulties to characterize extreme exchange rate changes
appropriately.

The bivariate autocorrelation function of the residual series (Fig. 14) shows
significant cross-correlations at lag 1. Although, we manage to explain a large
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Fig. 12 QQ plot of the normalized density forecast variables.
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Fig. 13 Autocorrelation function of the normalized density forecast variables.

Fig. 14 Multivariate autocorrelation function for residuals of the EUR/GBP and the EUR/USD
tick changes. Upper left panel: corr(ε1

t , ε
1
t−l ); upper right panel: corr(ε1

t , ε
2
t−l ); lower left panel:

corr(ε2
t−l , ε

1
t ) and lower right panel: corr(ε2

t , ε
2
t−l ). The dashed lines mark the approximate 99%

confidence interval ±2.58/
√
T .

part of the correlation structure of the processes for the exchange rate changes
(compare Fig. 6), there is some room to improve the model specification. These
results are also emphasized by the multivariate Ljung-Box statistics for the bid and
ask change process and its residuals in Table 3.



A multivariate integer count hurdle model 47

Table 3 Multivariate Ljung-Box statistic for the residuals of
the simulated bivariate process

Real exchange rate changes Residuals

Q(20) 473.6279 159.8679
Q(30) 521.8745 207.2940
Q(50) 588.0909 296.7522

4 Conclusion

In this paper we propose an approach that is capable of modelling complex mul-
tivariate processes for discrete random variables. Combining the approach by
Cameron et al. (2004) for copulas of discrete random variables with the ICH
model by Liesenfeld et al. (2006), we model the joint process for two integer count
variables.

As an illustration of the explanatory power of our approach we estimate the
joint distribution of the EUR/GBP and the EUR/USD exchange rate changes at
the 1 min level. Even without detailed specification search, our model describes
the exchange rate dynamics fairly well. Moreover, the marginal distributions which
are characterized by inflated outcomes are also estimated satisfactorily.

In order to pick up the obvious excess kurtosis in the joint empirical distribution,
we have tried out more flexible parametric alternatives to the Gaussian copula,
such as the t-student copula, which allows for symmetric lower and upper tail
dependency and an excessive concentration in (0,0) and the symmetrized Joe–
Clayton copula, which has a quite parsimonious functional form and allows for
asymmetric tail dependence. Although both specifications improve the goodness-
of-fit of our model in some aspects the application of the t-student copula or the
symmetrized Joe–Clayton copula has been by no means clearly superior to the
simple Gaussian copula, so that we conclude that simply applying more flexible
copula functions is not the proper remedy to capture the large excess kurtosis. An
obvious alternative path of future research is to keep the Gaussian copula and to
inflate the outcome (0,0) along the lines of zero inflated count data models.

Last but not least, the potential merits of the approach should be checked in
the light of real world applications such as the measurement of multivariate con-
ditional volatilities and the quantification of liquidity or value-at-risk applications.
Obviously, our approach can easily be extended to the most general case of mixed
multivariate distributions for continuous and discrete random variables. For finan-
cial market research at the high frequency level, such an extension is attractive
for the joint analysis of several marks of the trading process (volumes, price and
volume durations, discrete quote changes, etc.).

Acknowledgements The work is supported by the European Community’s Human Potential
Program under contract HPRN-CT-2002-00232, Microstructure of Financial Markets in Europe;
and by the Fritz Thyssen Foundation through the project ‘Dealer-Behavior and Price-Dynamics
on the Foreign Exchange Market’. We thank Richard Olsen and Olsen Financial Technologies
for providing us with the data.



48 K. Bien et al.

References

Amilon H (2003) GARCH estimation and discrete stock prices: an application to low-priced
Australian stocks. Econ Lett 81(2):215–222

Andersen TG, Bollerslev T, Diebold FX, Labys P (1999) (Understanding, optimizing, using
and forecasting) realized volatility and correlation, New York University, Leonard N. Stern
School Finance Department Working Paper, No. 99–061

Antoniou A, Vorlow CE (2005) Price clustering and discreteness: is there chaos behind the noise?
Physica A 348:389–403

Ball C (1988) Estimation bias induced by discrete security prices. J Finance 43:841–865
Brock WA, Dechert WD, Scheinkman JA, LeBaron B (1996) A test for independence based on

the correlation dimension. Econ Rev 15(3):197–235
Cameron C, Li T, Trivedi P, Zimmer D (2004) Modelling the differences in counted outcomes

using bivariate copula models with application to mismesured counts. Econ J 7:566–584
Crack TF, Ledoit O (1996) Robust structure without predictability: the “compass rose” pattern

of the stock market. J Finance 51(2):751–762
Denuit M, Lambert P (2005) Constraints on concordance measures in bivariate discrete data. J

Multivariate Anal 93:40–57
Diebold FX, Gunther TA, Tay AS (1998) Evaluating density forecasts, with applications to

financial risk management. Int Econ Rev 39:863–883
Fang Y (2002) The compass rose and random walk tests. Comput Stat Data Anal 39:299–310
Gleason KC, Lee CI, Mathur I (2000) An explanation for the compass rose pattern. Econ Lett

68(2):127–133
Hansen PR, Lunde A (2006) Realized variance and market microstructure noise. J Bus Econ Stat

24:127–218
Heinen A, Rengifo E (2003) Multivariate autoregressive modelling of time series count data

using copulas, Center for Operations Research and Econometrics, Catholique University of
Luvain

Huang RD, Stoll HR (1994) Market microstructure and stock return predictions. Rev Financ
Stud 7(1):179–213

Johnson N, Kotz S, Balakrishnan N (1997) Discrete multivariate distributions. Wiley, New York
Kocherlakota S, Kocherlakota K (1992) Bivariate discrete distributions. Dekker, New York
Krämer W, Runde R (1997) Chaos and the compass rose. Econ Lett 54(2):113–118
Lee CI, Gleason KC, Mathur I (1999) A comprehensive examination of the compass rose pattern

in futures markets. J Futures Mark 19(5):541–564
Liesenfeld R, Nolte I, Pohlmeier W (2006) Modelling financial transaction price movements: a

dynamic integer count data model. Empir Econ 30:795–825
Meester S, MacKay J (1994) A parametric model for cluster correlated categorical data.

Biometrics 50:954–963
Oomen RCA (2005) Properties of bias-corrected realized variance under alternative sampling

schemes. J Financ Econ 3:555–577
Patton A (2001) Modelling time-varying exchange rate dependence using the conditional copula.

Discussion Paper, UCSD Department of Economics
Russell JR, Engle RF (2002) Econometric analysis of discrete-valued irregularly-spaced financial

transactions data. University of California, San Diego, Revised Version of Discussion Paper,
No. 98–10

Shephard N (1995) Generalized linear autoregressions. Working Paper, Nuffield College, Oxford
Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Public Institute of

Statistics at the University of Paris 8:229–231
Stevens W (1950) Fiducial limits of the parameter of a discontinuous distribution. Biometrika

37:117–129
Szpiro GG (1998) Tick size, the compass rose and market nanostructure. J Bank Finance

22(12):1559–1569
Vorlow CE (2004) Stock price clustering and discreteness: the “compass rose” and predictability.

Working Paper, University of Durham



Alvaro Escribano . Roberto Pascual

Asymmetries in bid and ask responses
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Abstract This paper proposes a new approach to jointly model the trading process
and the revisions of market quotes. This method accommodates asymmetries in the
dynamics of ask and bid quotes after trade-related shocks. The empirical spec-
ification is a vector error correction (VEC) model for ask and bid quotes, with the
spread as the co-integrating vector, and with an endogenous trading process. This
model extends the vector autoregressive (VAR) model introduced by Hasbrouck
(Hasbrouck J (1991) Measuring the information content of stock trades. J Finance
46:179–207). We provide evidence against several symmetry assumptions, very
familiar among microstructure models. We report asymmetric adjustments of ask
and bid prices to trade-related shocks, and asymmetric impacts of buyer and seller-
initiated trades. In general, buys are more informative than sells. The likelihood of
symmetric quote responses increases with volatility. We show that our findings are
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1 Introduction

In this paper, we propose a new econometric approach to jointly model the time
series dynamics of the trading process and the revisions of ask and bid prices. We
use this model to test the validity of certain symmetry assumptions very common
among microstructure models. Namely, we test whether ask and bid quotes respond
symmetrically to trade-related shocks, and whether buyer-initiated trades and
seller-initiated trades are equally informative. In essence, the procedure we propose
generalizes Hasbrouck’s (1991) vector autoregressive model for signed trades and
changes in the quote midpoint by relaxing the implicit symmetry assumptions in
his model.

The properties of the empirical model are derived from a structural dynamic
model for ask and bid prices. In this model, ask and bid prices share a common
lung-run component, the efficient price. The long-term value of the stock varies
due to buyer-initiated shocks, seller-initiated shocks, and trade-unrelated shocks.
The transitory components of ask and bid prices are characterized by two correlated
and trade-dependent stochastic processes, whose dynamics are allowed to differ.
The trading process is endogenous. Buyer and seller-initiated trades are generated
by two idiosyncratic but mutually dependent stochastic processes. The generating
processes of quotes and trades both depend on several exogenous variables that
feature the trades and the market conditions.

We demonstrate that the empirical counterpart of this theoretical model is an
extended vector error correction (VEC) model with four dependent variables:
changes in the ask price, changes in the bid price, buyer-initiated trades, and seller-
initiated trades. The bid–ask spread is the error correction term. Our VEC model
reverts to the Hasbrouck’s (1991) bivariate VAR model when: (a) ask and bid
responses to trade-related shocks perfectly match; (b) the generating processes of
buyer and seller-initiated trades are equivalent, and (c) the trade sign only matters
as far as the direction of the quote adjustments is concerned.

For robustness purposes, we implement the model using three different sub-
samples: the 11 most frequently traded NYSE-listed stocks in 1996 and 2000,
and the 11 most active stocks at the Spanish Stock Exchange (SSE) in 2000.
With the two NYSE subsamples, we show that our main findings are not period-
specific. We also show that our findings are unaltered by the dramatic increase in
trading activity and the progressive decrease in the minimum price variation
experienced by the NYSE from 1996 to 2000. With the Spanish data, we show
that our findings are not limited to the particular microstructure of the NYSE. We
perform additional robustness test considering alternative specifications of the
empirical model.

We find two main patterns characterizing the dynamics of market quotes. On
the one hand, ask and bid quotes do not respond symmetrically after trade-related
shocks. They tend to be revised in the same direction, but not by the same amount.
We show, however, that the likelihood of observing a symmetric response increases
with volatility. On the other hand, ask and bid prices error-correct after a trade,
which causes the spread to revert towards the minimum. The speed of reversion is
significantly non-linear. The wider the bid–ask spread, the quicker the response of
ask and bid quotes. These patterns result in two simultaneous but opposite effects
on the price dynamics: information-induced positive cross-serial correlation and
liquidity-induced negative cross-serial correlation.
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For the NYSE samples, we report that buyer-initiated trades are more
informative than seller-initiated trades. Namely, we find that the average long-term
impact of a buyer-initiated trade on the ask quote is larger than the average long-
term impact of a similar seller-initiated trade on the bid quote. In the SSE, however,
no statistical difference is found between the impact of buyer and seller-initiated
trades.

In general, our findings evidence that the dynamics between quotes and trades
are more complex than suggested by classical microstructure models of quote
formation. We also show that asymmetries are not exclusive of the NYSE, since
they are also found in an electronic order-driven market without market makers, the
SSE. In addition, our findings demonstrate that there is an important loss of
information in averaging the dynamics of ask and bid quotes through the quote
midpoint instead of jointly modeling them.

The remainder of the paper proceeds as follows. In Section 2, we review the
literature and motivate the model. In Section 3, we present the theoretical dynamic
model and its empirical counterpart. In Section 4, we describe the data. In Section
5, we analyze in detail a representative stock: IBM. In Section 6, we perform
several robustness tests. Finally, in Section 7, we conclude.

2 Motivation

A large part of market microstructure research builds on the notion that trades
convey new information that updates the market’s expectation about the long-run
value of the stock. This trade-related information causes simultaneous revisions of
market quotes (e.g., Hasbrouck 1996). Ask and bid quotes are usually modeled as
the result of adding a premium and subtracting a discount to the efficient price (e.g.,
Glosten 1987). The magnitude of these perturbations depends on certain market
frictions, such as price discreteness, and market making costs.1

For simplicity purposes, many classic theoretical models of price formation
impose, in some degree, what we will call in this paper the “symmetry as-
sumption”. First, the symmetry assumption implies that offer and demand quotes
are posted symmetrically about the efficient price. Thus, in some models the
transitory components of ask and bid prices are constant and equal-sized (e.g., Roll
1984; Madhavan et al. 1997; Huang and Stoll 1997); in some other cases, their
dynamics are characterized by the same stochastic process (e.g., Glosten and Harris
1988; Lin et al. 1995; Hasbrouck 1999b). Second, the symmetry assumption
implies that ask and bid quotes respond identically after a trade-related shock.
Thus, a common premise in theoretical models is that ask and bid prices are
simultaneously revised upward or downward, usually by the same amount, after a
trade-related shock (e.g., Glosten and Milgrom 1985; Stoll 1989). Finally, the
symmetry assumption implies that whether a trade is buyer or seller-initiated
matters to determine the direction, but not the magnitude, of ask and bid updates
(e.g., Easley and O’Hara 1992). That is, buys and sells are assumed to be equally
informative.2

1 See O’Hara (1995) for a review of the basics of this literature.
2 The symmetry assumption is sometimes relaxed. For example, Easley and O’Hara (1987) allow
different sequences of trades to have different price impacts.
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Jang and Venkatesh (1991) reports that, in the NYSE, one-step-ahead revisions
in ask and bid quotes right after trades do not generally support the theoretical
prediction of symmetry. Moreover, quote-revision patterns strongly depend on the
level of the outstanding spread, with more symmetric adjustments as the spread
augments. They argue the symmetry assumption may be violated in practice
because certain theoretical premises are simply unrealistic. Thus, it is usually
assumed that quotes can be adjusted in a continuous fashion, which is not possible
because of the minimum price variations. In addition, it is usually supposed that
posted quotes are always for the specialist own account. However, in most stock
exchanges, as is the case of the NYSE, quotes reflect the interest of several traders
that may be selectively offering one-sided liquidity (see Madhavan and Sofianos
1998; Kavajecz 1999; Chung et al. 1999). Since different agents may be subject to
different trading costs, the offer and demand components of the spread may vary
asymmetrically about the efficient price.

Hasbrouck (1999a) points out that the usual theoretical premise of equal market
making costs at the offer and demand sides of the market is reasonable if the same
quote-setter is active on both sides. However, even if the specialist would take all
trades, it is not clear that she would adjust quotes simultaneously and by the same
amount after a trade. Thus, if the trade signals the presence of informed traders, a
natural response of the specialist would be to post a wider spread. Therefore, she
would update ask and bid quotes asymmetrically. Moreover, the costs of ask and
bid exposure might not necessarily be balanced. Thus, a specialist offering liquidity
in times of an upward price pressure would suffer from higher exposure costs on
the ask side than on the bid side of the market.

Biais et al. (1995) shows that asymmetries between ask and bid quotes are not
an exclusivity of the NYSE. Using data on a pure order-driven market, the Paris
Bourse, they show that ask and bid one-step-ahead adjustments after trades are also
asymmetric. Their findings hint that the ask (bid) quote may lead the adjustment of
the bid (ask) price after an order to buy (sell). These authors conclude that “there is
additional information in analyzing the dynamics of ask and bid prices jointly
rather than averaging them through the quote midpoint” (pg. 1679).

There is also evidence suggesting that the impact of a buyer-initiated trade may
not be merely the reverse of the price impact of seller-initiated trade. Empirical
work on block trading (e.g., Holthausen et al. 1987; Griffiths et al. 2000; Koski and
Michaely 2000) shows that orders to sell and orders to buy may have different
permanent and transitory impacts on prices. Chan and Lakonishok (1993, 1995)
use a broad range of trade sizes to evidence differences in the behavior of prices
after institutional purchases and sales. Keim and Madhavan (1995) conclude that
large buys take longer to execute than equivalent sells because traders perceive that
price impacts of buys are greater than sells. Huang and Stoll (1996) report different
realized spreads for buyer and seller-initiated trades. Similarly, Lakonishok and
Lee (2001) observe that the information content of insider’s activities come from
purchases while insider selling appears to have no predictive ability.3

3 These asymmetries might not be exclusive of large-sized trades. Hasbrouck (1988, 1991),
Barclay and Warner (1993), Kempf and Korn (1999), among others, evidence the relationship
between trade size and price impact is increasing, but concave. Therefore, informed traders may
concentrate their trades in medium sizes.
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In all these papers, buyer-initiated trades are usually found to be more
informative than seller-initiated trades. Price responses to buyer-initiated versus
seller-initiated trades may be asymmetric for a variety of reasons. Firstly, short
selling restrictions may prevent insiders from exploiting negative information
(Kempf and Korn 1999). Secondly, since an investor typically does not hold the
market portfolio, the choice of a particular stock to sell does not necessarily convey
negative information. On the contrary, the choice of a particular stock to buy, out of
the numerous possibilities on the market, is likely to convey favorable firm-specific
news (Chan and Lakonishok 1993). Finally, a sell order representing a small
fraction of the initiator’s known position may be considered as more liquidity-
motivated than a similar buy order from an investor without current holdings in the
security (Keim and Madhavan 1995).4

Alternative empirical approaches have been proposed to jointly model the
generating processes of quotes and trades. The most influential is probably due to
Hasbrouck (1991).5 He suggests the following vector autoregressive (VAR)
specification,

�qt ¼
P1

i¼1 ai�qt�1 þ
P1

i¼0 bixt�i þ v1;t

xt ¼
P1

i¼1 ci�qt�1 þ
P1

i¼1 dixt�i þ v2;t ;
(2.1)

where Δqt=(qt−qt−1) represents the revision in the quote midpoint (qt) after a trade
at t and xt is a trade indicator that equals 1 for buyer-initiated trades and −1 for
seller-initiated trades. The terms v1,t and v2,t are mutually and serially uncorrelated
white noises that represent trade-unrelated and trade-related shocks respectively.
This econometric approach covers the dynamics of many structural microstructure
models as special cases (see Hasbrouck 1991, 1996).

Hasbrouck builds on a “weak symmetry assumption:” the quote midpoint must
revert to the efficient price as the end of trading approaches. Therefore, ask and bid
prices may not be symmetrically posted around the efficient price. However, since
the quote dynamics are averaged through the quote midpoint (qt), the VARmodel is
not a valid framework to accommodate and evaluate possible asymmetries in the
dynamics of ask and bid prices. Similarly, the trade dynamics are averaged through

4Other aspects of the trading process that may produce a lack of balance between the impact of
buys and sells are transitory market conditions and the trade durations. Thus, a larger market
pressure to sell than to buy might increase the expected impact of a seller-initiated market order
(e.g., Goldstein and Kavajecz 2004) versus a similar buyer-initiated order. Easley et al. (1997)
and Dufour and Engle (2000) show that trade durations (time between consecutive trades) partly
explain the long-term impact of trades, even when trade size is accounted for. If a market
overreacts to bad news, it might produce shorter time durations after seller-initiated trades than
after buyer-initiated trades, and therefore asymmetries in the responses of quotes between buys
and sells.
5 Other econometric approaches, parametric and semi-parametric respectively, to model the
relationship between the trading process and the price changes are Hausman et al. (1992), that
used ordered probit models, and Kempf and Korn (1999) that employed a neural networks type
model.
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the trade indicator (xt). Therefore, the expected impact of a buyer-initiated shock is
exactly the reverse of a seller-initiated shock.

So as to allow for asymmetric dynamics, next section modifies the structural
model used by Hasbrouck (1991) to motivate his VAR model. The empirical
counterpart of this most flexible structural model will be a VECmodel for ask and bid
revisions in response to buyer and seller-initiated shocks, which generalizes Eq. (2.1).
Given that ask and bid quotes have a common non-stationary long-run component,
the efficient stock price, they must be co-integrated time series (see Hasbrouck 1995).
The VEC model is the most common efficient parameterization of vector auto-
regressivemodels with co-integrated variables (e.g., Engle and Granger 1987). In this
case, the co-integration relationship is known a priori, which lets setting a very general
parameterization of the model. We will also allow quote revisions after trade-related
shocks to follow non-linear patterns due to trade features, such as size and durations,
and market conditions, such as volatility and liquidity.

Our approach connects with other econometric applications in microstructure
research. Hasbrouck (1995) uses a common-trend representation to simultaneously
model the quotes of both the NYSE and the regional markets. The model has an
associated VEC representation. Hasbrouck is aimed to measure relative con-
tributions to price discovery. Pascual et al. (2005) build on the model introduced in
the next sections to incorporate the markets’ trading processes into Hasbrouck’s
(1995) methodology. In this way, they are able to isolate, for each market, the trade-
related contribution from the trade-unrelated contribution.

Hasbrouck (1999b) estimates an unobserved-components model for the best
market quotes. In this model, ask and bid quotes have a common random walk
component, and the respective transitory terms are modeled as two unobserved and
identical first-order autoregressive processes. This model features discreteness,
clustering, and stochastic volatility effects. However, it does not incorporate the
trading process, and the transitory components of ask and bid quotes are assumed
mutually independent. This analysis does not deal with asymmetric dynamics either.
In a recent paper, Zhang et al. (2005) use Hasbrouck’s (1999b) methodology to
decompose the bid–ask spread of a single stock (General Electric) into its ask and
bid exposure costs constituents. They show that ask and bid components of the
spread change asymmetrically about the efficient price. Our findings, based on a less
sophisticated but more widespread econometric approach, are totally consistent.

Even closer to the purpose of this paper is the independent study by Engle and
Patton (2004). These authors (henceforth, EP) also estimate an error correction
model for ask and bid quotes using data on a large set of NYSE-listed stocks. There
are, however, remarkable differences between both empirical specifications. In
EP’s model, the trading process is exogenous. Thus, they model the dynamics of
ask and bid quotes, but not the feedback from quotes to trades. As shown by
Hasbrouck (1991), to accurately measure the informativeness of trades, we need to
model not only how quotes evolve after the trade, but also how trading responds to
the progressive adjustment in quotes. Since we are aimed to compare the
information content of buyer and seller-initiated trades, we propose a model that
accommodates a broader set of dynamic interactions between quotes and trades
than EP’s model. Moreover, EP’s model is quote-driven, meaning that there is a
new observation each time there is a change in quotes. Since we are interested in
the price impact of trades, it makes sense to define our model in trade time. In this
manner, we filter those quote changes that are not directly linked to the trading
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process.6 These technical disparities may explain the discrepant findings we will
report later on regarding the information content of buys versus sells. Nevertheless,
in our opinion, EP’s paper and the present paper are complementary, since both
evidence the relevance of modeling ask and bid prices jointly rather than averaging
them through the quote midpoint.

3 The model

3.1 A structural dynamic model of quote formation

In this subsection, we build on Hasbrouck (1991) to develop a dynamic model for
ask and bid quotes. The model allows for asymmetric adjustment paths going after
trades. Two main features differentiate our structural model from those previously
found in the literature. First, ask and bid prices share a common long-run com-
ponent, the efficient price, which is updated due to trade-related and trade-
unrelated informative shocks. The empirical evidence previously revised, however,
suggests that buyer and seller-initiated trades (henceforth, “buys” and “sells”) may
not be equally informative. To accommodate this empirical observation, we will
distinguish between trade-related shocks to buy and trade-related shocks to sell.
Second, quotes result from adding or subtracting a transitory component (wt), due
to market frictions and market-making costs, to the efficient price (mt). Since the
evidence at hand points to asymmetric short-term adjustments of the ask quote
versus the bid quote, in our specification we will allow the short-term components
of ask and bid quotes to differ (Δwt

a≠Δwt
b).

We use the same notation as in Hasbrouck (1991). The model is defined in trade
time. Thus, the subscript t denotes the t-th trade in the chronological sequence of
trades. Hereafter, the superscript a means “ask quote,” b means “bid quote,” B
refers to buys, and S refers to sells.mt is the efficient price after the t-th trade, which
could be either a buy (xt

B) or a sell (xt
S). Similarly, at and bt are the quotes posted

right after the t-th trade. The adjustment in the posted quotes after the t-th trade are
Δat=at−at−1 and Δbt=bt−bt−1.

The efficient price follows the random walk process in Eq. (3.1). Three types of
stochastic shocks update mt: trade-unrelated shocks (v1,t), and trade-related shocks
due to buyer-initiated trades (v2,t

B ) or seller-initiated trades (v2,t
S ). We let v1,t be

mutually and serially uncorrelated with v2,t
B and v2,t

S , while v2,t
B and v2,t

S are serially
uncorrelated but, perhaps, mutually correlated. The parameters �B and �S measure
the average amount of private information (adverse selection costs) conveyed by
buys and sells, respectively. If �B=�S buy shocks would have the same information
content than sell shocks.

mt ¼ mt�1 þ �BvB2;t þ �SvS2;t þ v1;t: (3.1)

6 Another minor difference is that, unlike EP’s model, the properties of our empirical specification
are derived from a theoretical framework presented in the next section. The empirical model we
derive from the structural model is an “extended” VECM, that is, it incorporates lagged values of
the error correction term. The EP’s model is a standard VEC.
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The generating processes of market quotes are given by Eqs. (3.2) and (3.3),

at ¼ mt þ wa
t ¼

¼ mt þ �am at�1 � mt�1ð Þ þ Ax;t Lð Þ0xt þ �ECa at�1 � bt�1ð Þ þ "at
(3.2)

bt ¼ mt � wb
t ¼

¼ mt þ �bm mt�1 � bt�1ð Þ þ Bx;t Lð Þ0xt þ �ECb at�1 � bt�1ð Þ þ "bt :
(3.3)

In Eqs. (3.2)–(3.3), at and bt are the result of adding a time-varying stationary
premium (wt

a) and subtracting a time-varying stationary discount (wt
b), re-

spectively, to the efficient price. These transitory components are time-varying
because we assume they are determined by the recent history of trades and quotes.
We allow the magnitudes of these two components to differ. Therefore, at and bt
may not be symmetrically posted about mt.

7 Moreover, we impose 0<�m
a <1 and

0<�m
b <1, implying that, in the absence of trading, at and bt revert to the efficient

price. The noise terms ɛt
a and ɛt

b are idiosyncratic errors reflecting market frictions
and model misspecifications. Finally, the vectors Ax,t(L)′=(Ax,t

B (L), Ax,t
S (L)) and Bx,t

(L)′=(Bx,t
B (L), Bx,t

S (L)) are finite order polynomials in the lag operator L(Lkyt=yt−k)
with time-varying components. These polynomials would capture the transitory
effect of trades on quotes. The dynamic structure denotes that at and bt adjustments
to trade-related shocks are progressive.8

The vector xt′=(xt
B,xt

S) in Eqs. (3.2)–(3.3) includes the time series of buys and
sells. The trading process is endogenous. The idiosyncratic, but mutually de-
pendent, stochastic processes in Eqs. (3.4) and (3.5) generate buys and sells,

xBt ¼ �B at�1 � mt�1ð Þ þ 	B at�1 � bt�1ð Þ þ vB2;t (3.4)

xSt ¼ �S mt�1 � bt�1ð Þ þ 	S at�1 � bt�1ð Þ þ vS2;t: (3.5)

In Eqs. (3.4)–(3.5), the likelihood of observing a new trade decreases with its
specific exposure costs (μB<0, μS<0) and the costs of executing a round-trip (πB<0,
πS<0), defining downward sloping demand schedules. The terms v2,t

B and v2,t
S are

the mutually correlated unexpected components of buys and sells, respectively.
The third element on the RHS of Eqs. (3.2)–(3.3) is decomposed in terms of

buys and sells as follows,

Ax;t Lð Þ0xt ¼ AB
x Lð Þf Ba MCt;Dtð ÞxBt þ AS

x Lð Þf Sa MCt;Dtð ÞxSt
Bx;t Lð Þ0xt ¼ BB

x Lð Þf Bb MCt;Dtð ÞxBt þ BS
x Lð Þf Sb MCt;Dtð ÞxSt ;

where Ax
B(L), Ax

S(L), Bx
B(L), and Bx

S(L) are finite time-invariant order polynomials in
the lag operator L, having all roots outside the unit circle.

7 Hasbrouck (1999b) models the exposure costs for bid and ask quotes as two independent
stochastic processes. In our case, the transitory components could be mutually correlated because
of the common components.
8 Stabilizing NYSE rules (see Hasbrouck et al. 1993) and heterogeneous priors among traders
(e.g., Harris and Raviv 1993) may explain the lagged effects of trades.
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The terns fi
B(MCt, Dt) and fi

S(MCt, Dt), i2{a,b}, are functional forms of two
vectors of variables. The first vector (MCt) includes exogenous variables that
characterize the trade and the market environment. The second vector (Dt) control
for trading-time regularities. The particular functional form considered is given in
Eq. (3.6). We impose linearity for simplicity reasons. The price impact of a given
trade is conditioned on these set of exogenous and deterministic variables, that we
will specify latter on.

f ji MCt;Dtð Þ ¼ 1þ
Xn
k¼1

�i;jk MCk
t þ

Xn0
h¼1

� i; jh Dh
t ; i 2 a; bf g; j 2 B; Sf g (3.6)

From Eqs. (3.1) to (3.3), at and bt are nonstationary, integrated of order one,
processes. Nonstationarity comes from the common long-run component (mt),
implying that the time series at and bt must be co-integrated.9 Our application has
the unusual advantage that the co-integration relationship has a known co-
integration vector (1,−1). The co-integration relationship is, therefore, at−bt, the
bid–ask spread (henceforth, st).

An increase in st represents a departure from the long-run equilibrium
relationship between at and bt. The error correction mechanism produces simul-
taneous revisions in both ask and bid quotes that correct such deviations. For this
reason, we incorporate st into Eqs. (3.2)–(3.3) as a determinant of the transitory
components of at and bt. The coefficients αa

EC and αb
EC show how quickly do at and

bt revert to their common long-run equilibrium value.

3.2 The empirical model

The most common efficient parameterization of a vector autoregressive (VAR)
model with co-integrated variables is, from Granger’s representation theorem in
Engle and Granger (1987), a vector error correction (VEC) model. In the Appendix I,
we give an explicit derivation of the VEC model in Eq. (3.7) from the structural
model in the previous subsection,

1 0 AaB;t* AaB;t*
0 1 AbB;t* AbS;t*
0 0 1 0
0 0 0 1

0BB@
1CCA

�at
�bt
xBt
xSt

0BB@
1CCA

¼
�ECa Lð Þ
�ECb Lð Þ
�B Lð Þ
�S Lð Þ

0BB@
1CCAst�1 þ At Lð Þ

�at�1

�bt�1

xBt�1
xSt�1

0BB@
1CCAþ

uat
ubt
uBt
uSt

0BB@
1CCA; (3.7)

9 Engle and Granger (1987), Stock and Watson (1988), Johansen (1991), and Escribano and Peña
(1994), among others, provide formal derivations of this result.
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with

At Lð Þ ¼
Aaa Lð ÞAab Lð ÞAaB;t Lð ÞAaS;t Lð Þ
Aba Lð ÞAbb Lð ÞAbB;t Lð ÞAbS;t Lð Þ
ABa Lð ÞABb Lð ÞABB;t Lð ÞABS;t Lð Þ
ASa Lð ÞASb Lð ÞASB;t Lð ÞASS;t Lð Þ

0BB@
1CCA:

This model echoes the main features of the structural model in the previous
subsection. First, the bid–ask spread st=a−bt is the error correction term. Second, the
matrix on the left-hand side of Eq. (3.7) reflects that the theoretical model is trade-
driven. Thus, trades have a contemporaneous effect on ask and bid quotes. The
reverse, however, is not true. Third, the matrix of autoregressive polynomials At (L)
depicts the dynamical structure of the theoretical model. Moreover, Aij (L), for all i,
j2{a,b,B,S}, has its roots outside the unit circle. Thus, the influence of past quotes
and trades decays with time. Finally, the polynomials Aij,t (L) are time-varying
because they depend on a set of exogenous variables (MCt) and trading-time
dummies (Dt). The following expression makes explicit the type of dependence,

Aij;t Lð Þxt�1 ¼ AB
ij Lð Þf Bij MCt�1;Dt�1ð ÞxBt�1 þ AS

ij Lð Þf Sij MCt�1;Dt�1ð ÞxSt�1:

The polynomials Aij,t
B (L) and Aij,t

S (L) have all the roots outside the unit circle.
Finally, Aij,t* =−Aij,t(0).

A salient feature of the VEC model Eq. (3.7) is the extra lags in the error
correction term. This type of specification is called an extended vector error
correction (EVEC) model. Arranz and Escribano (2000) show that extended
error correction models are robust to the presence of structural breaks under
partial co-breaking. Co-breaks represent those situations characterized by having
breaks (level shifts, changes in trend etc.) occurring simultaneously in some
variables, so that certain linear combinations of those variables have no breaks.
The common lung-run trend jointly with their discrete type of moves makes at
and bt the perfect example of co-integrated time series that are partially co-
breaking. Thus, this property of the model is consistent with the properties of
the time series of ask and bid prices. The error correction terms γa

EC(L)st−1 and
γb
EC(L)st−1 should be such that γa

EC(1)−γbEC(1)<0, in order to impose the error
correction characterization on the spread. Extended error correction parameter-
izations of VAR models with co-integrated variables could be formally justified
using the Smith-MacMillan decomposition introduced by Engle and Yoo (1991).

The individual error terms ut
i in Eq. (3.7) i={a,b,B,S} are assumed to be serially

uncorrelated random variables with zero mean and constant variance. We show in
Appendix I that they cannot be treated as mutually uncorrelated since they have
common components. Hence, the system of Eq. (3.7) is an example of seemingly
unrelated regression equations, which can be efficiently estimated by SURE (see
Zellner 1962). Estimating a system by SURE is equivalent to estimating it equation
by equation by OLS when all equations have the same number of variables. In
other case, all equations should be simultaneously estimated by SURE to get
efficiency. Notice also that, under the restrictions imposed on the structural model
in the previous section, Eq. (3.7) is exactly identified.

Next, we proceed with the estimation of the VEC model Eq. (3.7). In a
preliminary step, however, we consider a base-line version of Eq. (3.7) where
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fi
j(MCt,Dt)=1 for all i and j. In this case, the matrix of autoregressive polynomials is
time invariant, At(L)=A(L), and the impact of trades on quotes is perfectly linear.
We will show that this model suffices to illustrate the essentials of the dynamic
relationship between trades and quotes. However, some other aspects of this
relationship can only be captured by considering the more general case.

Following Hasbrouck (1991), we characterize the trading processes using
indicator variables. Namely, xt

B equals one for buys and zero otherwise, and xt
S

equals one for sells and zero otherwise. The discreteness of these variables,
however, may introduce some problems in the estimation process.10 To control for
these potential problems, we also estimate Eq. (3.7) using the trade size exit� � to
characterize each transaction. In particular, we define exit ¼ xit log Vtð Þ , where Vt is
the size of the t-th trade in shares.

4 Data

The database comprises high frequency data on trades and quotes from two
markets with remarkably different microstructures: the NYSE and the SSE. The
NYSE is a peculiar mixture of microstructure types. It combines an electronic limit
order book, only partially transparent, with monopolist market makers, and an
intensive trading activity at the floor market. The SSE, on the contrary, is a
representative example of an electronic order-driven venue. Liquidity provision
depends exclusively on a fully transparent open limit order book. Twenty levels of
the book are nowadays visible in real time for all market participants. There are no
market makers, no floor trading, price improvements are not possible, and all the
orders are submitted through vendor feeds, and stored or matched electronically.

We use data on two different markets to show that asymmetric dynamics
between ask and bid quotes in response to trades are not exclusive of the NYSE. In
addition, trades in the SSE always involve a market order (or equivalent), the
initiating side, and one or more limit orders stored on the book. Therefore, trades
are straightforwardly classified as either buyer or seller-initiated by simply
identifying the side of the book the market order hits. Thus, with the SSE data we
do not bear the ambiguity and misclassification problems that appear when tra-
ditional trade-direction algorithms, such as Lee and Ready (1991), are applied to
NYSE data (see Ellis et al. 2000, and Odders-White 2000). Finally, using Spanish
data we do not have reporting delays neither in trades nor in quotes since the book
and trade files are updated simultaneously and in real time. Therefore, we avoid the
use ad hoc rules to match trades and quotes, like the classical “five-second rule”
applied to NYSE data.11

NYSE data is obtained from the TAQ database. We consider two different
sample periods, January to March 1996 and 2000. Several details in the mi-

10 Our model is nonlinear and well behaved around the mean (nonlinear). Like standard linear
probability models (LPM), only in the extremes it can give predictions out of the zero and one
interval. The corresponding estimation theory for dynamic models with weakly dependent
variables is covered in White (1994) andWooldridge (1994). Park and Phillips (2000) extend it to
cover nonlinear cointegration cases with limited dependent variables.
11 Blume and Goldstein (1997) shows that the “five-second rule” could not be generalized to all
sample periods and markets. However, Odders-White (2000) shows that this rule does not seem to
explain much of the bias induced by the Lee and Ready’s (1991) algorithm.
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crostructure of the NYSE changed from 1996 to 2000. Particularly interesting for
the purposes of this paper is the progressive decrease of the minimum price
variation or tick, from US$1/8 in 1996 to 1 cent in 2000. Jang and Venkatesh
(1991) remarks that symmetric responses of ask and bid quotes are impaired by the
discreteness of quote changes. Therefore, a small tick should decrease the prob-
ability of observing asymmetric adjustments of ask versus bid quotes after trade-
related shocks. Trading activity in the NYSE has sharply increased since 1996. For
example, from January to March 1996 IBM transacted 130,620 times; during the
same interval in 2000 the number of trades was 234,766. For GE, the number of
trades increased from 106,347 in 1996 to 350,795 in 2000. By considering these
two NYSE subsamples, we have the opportunity to check whether microstructure
and trading activity changes have influenced the dynamical relationship between
trades and quotes.

The NYSE sample includes the 11 most frequently traded stocks in 1996 and
2000, respectively, excluding stocks that experienced splits. The complete set of
stocks is listed in Appendix II. We consider trades from both the primary market
(NYSE) and regional markets. However, we only keep NYSE quotes because the
evidence suggests that regional quotes only follow with some delay those of the
primary market (Blume and Goldstein 1997).12 Trades not codified as “regular
trades”, such as trades out of sequence or reported with error, have been discarded.
Trades from the same market, with the same price, and with the same time stamp
are treated as just one trade. All quote and trade registers prior to the opening and
after the close are dropped. The overnight changes in quotes are treated as missing
values. Quotes with bid–ask spreads lower than or equal to zero or quoted depth
equal to zero have also been eliminated. After these adjustments, around 3% of all
trades have been eliminated. Finally, we follow Blume and Goldstein (1997) in
deleting quoted spreads that exceed 20% of the quote midpoint, and quote updates
that exceed 50% of the prior quote. Prices and quotes are coupled using the “five-
second rule” (Lee and Ready 1991). This rule assigns to each trade the first quote
stamped at least fives before the trade itself.

A trade is classified as buyer (seller) initiated when the transaction price is
closer to the ask (bid) price than to the bid (ask) price. Trades with price equal to the
quote midpoint are not classified. The trade indictor xt

B (xt
S) equals one for buys

(sells) and zero otherwise; for a midpoint trade, both indicators equal zero. A
change in quotes, either Δat or Δbt, is the difference between the quote prevailing
right before the t-th trade takes place and the quote prevailing right before the next
trade in time.

The SSE database contains the 11 most frequently traded stocks in 2000, listed
in Appendix II. Spanish data is supplied by the SSE Interconnection System
(SIBE). We retrieve trades and quotes from July to September 2000 because data
from January to March is not available. We apply the same filters as for the US

12Hasbrouck (1995) concludes that the contribution of the regional markets to the price discovery
process of NYSE-listed stocks is negligible. Harris et al. (1995), however, observe that both the
NYSE and the regional markets error correct to deviations from each other, therefore suggesting
that the regional quotes do are informative. Tse (2000) compares the methodologies used in these
papers. He concludes that the discrepant findings are only due to the choice of quotes
(Hasbrouck) versus trade prices (Harris et al.). Tse suggests that trades in the regional markets
could contribute to price discovery even when quotes were non-informative. This conclusion
fundaments our choice of discarding regional quotes while keeping regional trades.
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data. Quote changes and trade indicators are computed analogously to the NYSE
case. Since price improvements are impossible in the SSE, there are no transaction
prices inside the bid–ask spread. Therefore, we do not require trade-direction
algorithms to classify the trades as either buys or sells.

We rely on the theoretical and empirical research in market microstructure to
determine the exogenous variables to be included in the vector MCt. Easley and
O’Hara (1987) formally show that large-sized trades are more informative.
Empirically, Hasbrouck (1991) and Barclay and Warner (1993), among others,
show that this relationship is increasing but concave. In Easley and O’Hara’s
(1992) model, higher trading intensity signals new information. Consistently,
Easley et al. (1997) and Dufour and Engle (2000) find that shorter trade durations
are associated with larger price impacts. Subrahmanyam (1997) finds that trades in
the regional markets are less informative than NYSE trades, arguably because they
attract liquidity-motivated traders (see Bessembinder and Kaufman 1997). Price
instability means uncertainty about the true value of the stock (e.g., Bollerslev and
Melvin 1994). Finally, a positive (negative) order imbalance between limit orders
to sell and limit orders to buy may signal an overvalued (undervalued) stock (e.g.,
Huang and Stoll 1994).

The following variables are defined so as to capture the relationships detailed
above. The trade size (Vt) is measured in shares. Trade durations (Tt) are computed
as the time in seconds between two consecutive trades. A dummy variable (Mt)
identifies regional trades. Order imbalance (OIt) is computed as the difference
between ask depth and bid depth. Finally, short-term volatility (Rt) is computed as
the sum of the square changes of the quote midpoint

Pz
k¼1 �qkð Þ2 in a 5-min

interval before each trade.13

Finally, we construct eight trading-time dummies for the NYSE session: one for
trades during the first half-hour of trading, five for each trading hour between 10:00
A.M. and 3:00 P.M. and, finally, two for the last trading hour, divided in two half-
hour intervals. Similarly, for the SSE session (9:00 A.M. to 5:30 P.M.), we construct
nine dummy variables: one for the first half-hour of trading, another one for the
second half-hour, six for each trading hour between 10:00 and 5:00 P.M. and, finally,
one for the last half-hour.

5 Estimation of the baseline model for IBM in 1996

In this section, we present the details of estimating a restricted version of model Eq.
(3.7) described in Section 3 where fi

j(MCt,Dt)=1 for all i and j. We use data on a
representative NYSE stock, IBM, in 1996. In the next section, we check whether
the dynamic patterns about to be reported for IBM can be generalized to other
stocks, other markets, other time periods, and other model specifications, including
the unrestricted model Eq. (3.7).

We consider two alternative specifications of the model. The first one uses
the trade-sign indicators xt

B and xt
S to represent the trading process. The second

one uses the trade-size indicators exBt ¼ xBt log Vtð Þ and exSt ¼ xSt log Vtð Þ. The
polynomials in the autoregressive matrix A(L) are all truncated at lag five, as in

13 This variable is not defined for trades performed during the first 5 min of trading. In these cases,
we treat volatility as missing.
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Hasbrouck (1991). The system is estimated by SURE, using the Feasible
Generalized Least Squares (FGLS) algorithm, described, for example, in Green
(1997, pp. 674–688).

Preliminary tests indicate that the following null,

A Lð Þ ¼
Aaa Lð Þ 0 AaB Lð Þ AaS Lð Þ

0 Abb Lð Þ AbB Lð Þ AbS Lð Þ
ABa Lð Þ 0 ABB Lð Þ ABS Lð Þ

0 ASb Lð Þ ASB Lð Þ ASS Lð Þ

0BB@
1CCA (5.1)

cannot be rejected. This null means that Δat (Δbt) depends of its own lags but not
on Δbt (Δat) lags. This restriction prevents for multicolinearity problems.
Additionally, buys (sells) do not depend on lagged values of Δbt (Δat).

Table 1 summarizes the estimation of the baseline version of Eq. (3.7) with the
restrictions in Eq. (5.1). Panel A (B) reports the estimated coefficients and the
residual correlation matrix for the model with trade-sign (trade-size) indicators.
The noise terms euat ;eubt� �

in Eq. (3.7) are positively correlated (0.4362 in Panel A
and 0.4324 in Panel B). This shows that the trade-unrelated shocks tend to move
ask and bid quotes in the same direction. The noise terms euSt ;euBt� �

are negatively
correlated (−0.6804 in Panel A and −0.6038 in Panel B). This shows that
unexpected increases in the buy pressure are usually coupled with unexpected
decreases in the sell pressure. All these correlations are statistically significant at
the 1% level. The remaining cross-equation correlation coefficients are statistically
equal to zero. Therefore, as Appendix I suggested, the coefficients of Eqs. (3.7)–
(5.1) cannot be efficiently estimated equation by equation.

The dynamics of ask and bid quotes after a trade are characterized by two
simultaneous effects. First, ask and bid quotes error correct after a trade. The
coefficients of the lagged bid–ask spread, s in Table 1, reveal that deviations
between quotes induce simultaneous corrections in ask and bid prices. This dynamic
effect causes the current spread to mean-revert as the ask decreases and the bid
increases. Therefore, the model shows that changes in the spread are transient. This
dynamic effect indicates that liquidity suppliers, either market markers or limit order
traders, provide liquidity when it is valuable (see Biais et al. 1995).14

Second, the estimated coefficients for the trading process, xB and xS in Table 1,
evidence that at least on dimension of the symmetry assumption is not satisfied at
all. Ask and bid prices do not move symmetrically through time. This finding
generalizes the one-step-ahead evidence in Jang and Venkatesh (1991). Table 1 –
Panel A reports that after a unitary buy shock, both the ask quote and the bid quote
tend to increase. However, on average, the ask price is raised an accumulated US
$0.0247 five trade-time periods later. The bid price is raised a remarkably lower US
$0.0038. Similarly, after a sell both quotes tend to be revised downwards.
Nonetheless, the accumulated decrease in the ask price after five trade-time
intervals is −US$0.0010 while the bid price decreases a far larger −US$0.0190.

14 The adjustment path that leads to the long-run equilibrium between the ask price and the bid
price is not necessarily linear. Following Escribano and Granger (1998), we have replaced the
linear error correction term in Eq. (3.7) by a non-linear one, a cubic polynomial on the
contemporaneous spread, η1,1

j st−1+η1,2
j st−1

2 +η1,3
j st−1

3 . We find that all the coefficients are
significant, indicating that the quote adjustment is faster the wider the quoted spread. However,
we do not get too much improvement in terms of model adjustment.
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Figure 1 represents the impulse–response function (IRF) of the model in Panel
A derived by dynamic simulation. These curves represent the responses of ask and
bid prices after both a unitary buyer-initiated shock (increasing curves) and a

Table 1 The base-line VEC model for IBM

Equation Variable Panel A: trade-sign indicators Panel B: trade-size indicators

�at s −0.0537 −0.0503
�a 0.0633 0.0285
xB 0.0247 0.0040
xS −0.0010 −0.0004

Δbt s 0.0490 0.0541
Δb 0.0940 0.0668
xB 0.0038 0.0007
xS −0.0190 −0.0035

xBt s 0.0934 0.6925
Δa −2.7348 −17.0895
xB 0.7042 0.6968
xS 0.1300 0.1265

xSt s 0.1575 1.1918
Δb 2.8268 18.0433
xB 0.1544 0.1267
xS 0.7422 0.7339
Obs. 130,620 130,620
R2

�a
t

0.0726 0.0826
�b

t
0.0604 0.0722

xBt 0.4586 0.4375
xSt 0.5123 0.4905

Residual correlation matrix
Cov(ut

a,ut
b) 0.4362 0.4324

Cov(ut
B,ut

S) −0.6804 −0.6038
Cov(ut

a,ut
S) 0.0000 0.0001

Cov(ut
b,ut

B) 0.0003 0.0002

This table summarizes the estimation of the VEC model,
1 0 AaB* AaB*
0 1 AbB* AbS*
0 0 1 0
0 0 0 1

0BB@
1CCA

�at
�bt
xBt
xSt

0BB@
1CCA ¼

�ECa Lð Þ
�ECb Lð Þ
�B Lð Þ
�S Lð Þ

0BB@
1CCAst�1 þA Lð Þ
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�bt�1

xBt�1

xSt�1

0BB@
1CCAþ

ua
t

ub
t

uB
t

uS
t

0BB@
1CCAwith the re-

strictions, A Lð Þ ¼
Aaa Lð Þ 0 AaB Lð Þ AaS Lð Þ

0 Abb Lð Þ AbB Lð Þ AbS Lð Þ
ABa Lð Þ 0 ABB Lð Þ ABS Lð Þ

0 ASb Lð Þ ASB Lð Þ ASS Lð Þ

0BB@
1CCA

The model is defined in trade time and truncated at 5 lags. We use data for IBM from January to
March 1996. The model is estimated by SURE. We report, for each variable, the sum of all lags
whenever the coefficients are statistically significant at the 1% level. We also provide the R2 for
each equation in the system and information about the residual correlation matrix. Panel A uses
trade-sign indicators to characterize the trading process. The trade-sign indictor xt

B (xt
S ) equals 1

for buys (sells) and zero otherwise. For midpoint trades both variables equal zero. The error-
correction term is the bid-ask spread; Δat (Δbt) is the change in the ask (bid) quote between two
consecutive trades. Panel B replaces the trade-sign indicators by the following trade-size
indicators, and , where Vt is the trade size in number of shares
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unitary seller-initiated shock (decreasing curves). These trade-related shocks occur
after a steady state period characterized by constant quotes, no trades, and a null
bid–ask spread. The IRF measure the long-run impact of a particular trade-related
shock on both quotes when the whole dynamic structure of the model is taken into
account. Always on average terms, buys have a larger impact on the ask quote and
sells have a larger impact on the bid quote. Statistical tests performed over the
estimated VECmodel corroborate that these differences are statistically significant.
Briefly, quotes tend to be revised in the same direction but not by the same amount
after a trade. This result suggests that ask (bid) quotes may lead the adjustment of
the quoted prices after a buy (sell) shock.

Table 1 evidences two opposite and simultaneous effects associated with trade-
related shocks on the time series dynamics ask and bid quotes. First, trade-related
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Fig. 1 Baseline VEC model for IBM: Impulse–Response Function after an unexpected unitary trade
related shock. This figure display s the Impulse–Response Function (IRF) of ask and bid quotes to an
unexpected unitary buyer-initiated shock (increasing paths) and seller-initiated shock (decreasing
paths) according to the following VECmodel, estimated using IBM data from January toMarch 1996,

1 0 AaB� AaB�
0 1 AbB� AbS�
0 0 1 0

0 0 0 1

0BBB@
1CCCA

�at
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0BBB@
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0BBB@
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1CCCAwith the

restrictions, A Lð Þ ¼
Aaa Lð Þ 0 AaB Lð Þ AaS Lð Þ

0 Abb Lð Þ AbB Lð Þ AbS Lð Þ
ABa Lð Þ 0 ABB Lð Þ ABS Lð Þ

0 ASb Lð Þ ASB Lð Þ ASS Lð Þ

0BB@
1CCAThe model is defined in trade time

and truncated at 5 lags. We use data for IBM from January to March 1996. The initial shock is
simulated after a steady state characterized by no trades, no changes in quotes, and a zero bid-ask spread
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shocks induce positive cross-serial correlation as both quotes tend to be adjusted in
the same direction. Second, a trade-related shock tends to increase the bid–ask
spread as ask and bid quotes adjust asymmetrically. This effect sets in motion
the error correction mechanism, which causes negative cross-serial correlation
between quotes. The first one is an information-motivated effect. The second one
is a liquidity-motivated effect. Our VEC model is able to identify and separate
these two effects. A model that would summarize the quote dynamics through the
quote midpoint, however, would confound them. Our model therefore supports
Biais et al. (1995) intuition that there is additional information in analyzing the
dynamics of ask and bid prices jointly rather than averaging them through the quote
midpoint.

Finally, we use classical Wald tests (e.g., Davidson and MacKinnon 1993) on
the coefficients of the two estimated VEC models for IBM to look for asymmetries
in the average price impact of buys and sells. Namely, we compare the accumulated
coefficients of xt

B in theΔat equation with the accumulated coefficients of xt
S in the

Δbt equation. In absolute terms, the impact of a buy shock on the ask price is larger
than an equivalent impact of a sell shock on the bid price. In Panel A, eAaB 1ð Þ ¼
24:72 vs. eAbS 1ð Þ ¼ �18:95 – estimated coefficients multiplied by 103. Similarly,
the average response of the bid price to a buy shock, eAbB 1ð Þ ¼ 3:822 , is sta-
tistically larger than the response of the ask price to a sell shock, eAaS 1ð Þ ¼ �0:551.
The results for the model in Panel B are similar. Based on this test, we should
conclude that on average, buyer-initiated shocks for IBM were more informative
that similar seller-initiated shocks. Nonetheless, this test does not take into account
the complete dynamics between trades and quotes captured in the VEC model (Eq.
3.7). In next sections, we will perform a more precise test based on IRFs to
compare the information content of buys and sells.

The dynamics of the trading process are not the focus of this paper, but they show
the patterns previously reported in other studies (e.g., Hasbrouck 1991). Particularly
relevant is the strong positive autocorrelation in signed trades. Purchases are
more likely followed by new purchases and sales are more likely followed by
additional sales. Clusters of signed trades may be explained by traders successively
reacting to new information, informed traders strategically splitting orders so as to
ameliorate the price impact, imitative behavior among different traders, etc.
Unfortunately, our model does not help in discerning the appropriate explanation.

Previous findings are unaltered when we control for intra-daily regularities by
letting fi

j(MCt, Dt)=1+∑h≠4γh
i,jDt

h.

6 Robustness

In this section, we perform several robustness analyses to assess the degree of
generality of the results obtained for IBM in the previous section. In the first
subsection, we summarize the estimation of the baseline model for the remaining
stocks in Appendix II. In the second subsection, we summarize the estimation of
the unrestricted model Eq. (3.7). In the third subsection, we simulate the dynamics
of the unrestricted model Eq. (3.7) to get a more precise understanding of the
asymmetries evidenced in preceding subsections. Finally, in the fourth subsection
we consider the effect of time aggregation.
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6.1 Estimation of the baseline model for the complete sample

Table 2 summarizes the estimation of the baseline model for the three sets of stocks
described in Appendix II. To be concise, we only report the results for the model
with trade-size indicators. Table 2 contains the average coefficients across the 11
stocks in each subsample. In addition, it includes the number of stocks for which
the aggregated coefficients for a given variable in the model are significant and
positive/negative.15

In general, the results are highly consistent with those previously reported for
IBM'96: (a) Ask and bid quotes error-correct, and (b) buys (sells) have a larger
impact on the ask (bid) quote than sells (buys); thus, ask and bid quotes react
asymmetrically to a trade-related shock. Table 2 corroborates the existence of the
simultaneous information-related effects and liquidity-related effects associated
trade-related shocks that were reported for IBM'96 in Section 5. Notice that these
two effects coexist because of the asymmetric adjustments of bid and ask quotes
after trades.

As with IBM'96, we have simulated unitary buyer and seller initiated shocks on
the estimated VEC models to obtain the IRF of ask and bid quotes. Table 3 reports
the main findings. Namely, we test the null of equality of the absolute IRFs of (a)
ask and bid quotes after a unitary buyer-initiated shock; (b) ask and bid quotes after
a unitary seller-initiated shock, and (c) ask quote after a unitary buyer-initiated
shock and bid quote after a unitary seller-initiated shock. The two first nulls are
strongly rejected. As previously shown in Table 2, buys (sells) have a larger impact
on the ask (bid) quotes. The third hypothesis, however, is only accepted for the
NYSE data, at the 5% for the 1996 sample and at the 10% level for the 2000
sample. Therefore, Table 3 shows that buys are more informative than sells in the
NYSE, but the same is not true for the SSE.16

6.2 Estimation of the unrestricted VEC model

We proceed now with the estimation of the unrestricted VEC model Eq. (3.7). We
test whether the asymmetries evidenced with the base-line model persist once we
add additional structure to the model. We consider the model with trade-size
indicators. Thus, the function fi

j(MCt ,Dt) includes trade durations (Tt), the dummy
for regional market trades (Mt), the order imbalance (OIt), and the short-term
volatility (Rt). These exogenous variables interact with the trade-size indicators,
introducing non-linear patterns in the impact of trades on ask and bid quotes. We
maintain the restrictions in Eq. (5.1), now applied to the time-variant auto-
regressive matrix At(L).

15More detailed results are available from the authors upon request.
16 In order to gauge the importance of modelling the trading processes, we have performed the
same exercise but considering only the dynamics captured by the quote equations. We find that,
on average, for the NYSE'00 sample, the impact of a unitary buyer-initiated shock is
underestimated by a 65%. Similarly, the impact of a seller-initiated shock is underestimated by a
59%. Similar percentages are found for the other subsamples. This evidences the relevance of
considering the complete set of dynamical interactions and fee-backs between trades and quotes.
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Estimated coefficients are not reported because of space limitations, but they
are consistent with theoretical predictions. They are also regular across markets.17

We have already shown in previous sections that a larger trade size increases the
price impact of trades. In addition, a buy (sell) of any size executed in a high
volatile period, as measured by Rt, has a larger impact on the ask (bid) quote. The
trading activity in the regional markets is less informative than in the NYSE; both
buys and sells have a lower impact on quotes when they are worked trough the
regional venues. A positive order imbalance on the book, that is, more volume on
the offer side than on the demand side, decreases (increases) the impact of an
incoming buy (sell) on quotes. Finally, shorter durations increase the impact of
buys (sells) on the ask (bid) quote, though this relationship is the weakest.

Next, we show that the asymmetries between ask and bid responses to trade
related-shocks evidenced with the baseline model persist with this more complex
specification. As in the previous subsection, we use the estimated coefficients of
the unrestricted VEC model to simulate the impact of unitary trade-related shocks
on ask and bid quotes. Also in this case, shocks occur after a steady state
characterized by no trades, no changes in quotes, and a zero bid–ask spread. In this
analysis, we are interested in the linear effect of a trade in quotes; hence, the
exogenous variables are set equal to zero. We will investigate the consequences of
altering the level of the exogenous variables in the next subsection.

Table 4 summarizes our findings. Compared with Tables 3, 4 not only
corroborates the asymmetries observed with the baseline model, but it reinforces
them since the statistical tests provide stronger support to the alternative hypothesis
that NYSE buys are more informative than sells. This hypothesis is this time reject
at the 1% level for the NYSE'96 subsample and at the 5% level for the NYSE'00
subsample. For the SSE, however, the null of equal informativeness of buys and
sells still cannot be rejected.

6.3 A closer look to the asymmetry assumption

In this subsection, we obtain the responses of ask and bid quotes to trade-related
shocks using model Eq. (3.7) when we let the level of the variables inMCt to vary.
The goal is to obtain additional insights on the asymmetries evidenced in previous
subsections. We consider the model with the trade-size indicators exBt and exSt .

We proceed as follows. As is previous simulation exercises, an unexpected trade
happens after a steady state period with no prior trades, stable quotes, and zero
spreads. For each exogenous variable, we compute the 25, 75, and 95% percentiles
of its stock-specific empirical distribution. These values define three different levels
of the variable: small (S), medium (M), and large (L) respectively. We assume that
each variable inMCt follows a general probabilistic process, exogenous to the VEC
model Eq. (3.7), that we approximate by an AR(p) model.18 This model is estimated

17 These results are available upon request from the authors.
18 For the regional dummy, we simply compare the impact of a regional trade with the impact of a
NYSE trade. The auto-regressive order p is determined using likelihood-ratio tests, starting with
p=7.
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Table 3 Simulation of the base-line VEC model for the entire sample

Absolute IRF×100

Buy/ask vs. buy/bid Ask Bid Ask-bid t-test

NYSE 1996 Mean 0.9749 0.1042 0.8707*
Std. (0.3889) (0.0964) (0.3241)

NYSE 2000 Mean 1.0570 0.2129 0.8441*
Std. (0.8160) (0.2195) (0.6900)

SSE 2000 Mean 0.3643 0.1239 0.2404*
Std. (0.4103) (0.1644) (0.2518)

Total Mean 0.7987 0.1470 0.6517*
Std. (0.6375) (0.1695) (0.5374)

Sell/ask vs. sell/bid Bid Ask Bid-ask

NYSE 1996 Mean 0.8844 0.1024 0.7821*
Std. (0.3028) (0.1102) (0.2147)

NYSE 2000 Mean 1.0043 0.3447 0.6596*
Std. (0.7174) (0.3187) (0.4584)

SSE 2000 Mean 0.3021 0.1026 0.1994*
Std. (0.2695) (0.1002) (0.1705)

Total Mean 0.7303 0.1832 0.5470*
Std. (0.5560) (0.2283) (0.3925)

Buy/ask vs. sell/bid Buy/ask Sell/bid Difference

NYSE 1996 Mean 0.9749 0.8844 0.0905**
Std. (0.3889) (0.3028) (0.1585)

NYSE 2000 Mean 1.0570 1.0043 0.0528***
Std. (0.8160) (0.7174) (0.1193)

SSE 2000 Mean 0.3643 0.3021 0.0622
Std. (0.4103) (0.2695) (0.1719)

Total Mean 0.8445 0.7935 0.0510**
Std. (0.6277) (0.5513) (0.1200)

This table reports statistical tests on the average impulse–response functions (IRFs) of the VECmodel
1 0 AaB� AaB�
0 1 AbB� AbS�
0 0 1 0
0 0 0 1

0BB@
1CCA

�at
�btexBtexSt

0BB@
1CCA ¼

�ECa Lð Þ
�ECb Lð Þ
�B Lð Þ
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1CCAþ
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with the restrictions, A Lð Þ ¼
Aaa Lð Þ 0 AaB Lð Þ AaS Lð Þ

0 Abb Lð Þ AbB Lð Þ AbS Lð Þ
ABa Lð Þ 0 ABB Lð Þ ABS Lð Þ

0 ASb Lð Þ ASB Lð Þ ASS Lð Þ

0BB@
1CCA

We compare (a) the impact of a unitary buyer-initiated shock on the ask and bid quotes; (b) the
impact of unitary seller-initiated shock on the ask and bid quotes, and (c) the impact of a unitary
buyer-initiated shock on the ask quote with the impact of a unitary seller-initiated shock on the bid
quote. We use data on 11 NYSE-listed stocks from January to March 1996, 11 NYSE-listed
stocks from January to March 2000, and 11 SSE stocks from July to September 2000. We report
statistical tests of the null of equality of the absolute IRFs against the alternative of a positive
difference. The error-correction term is the bid-ask spread.Δat (Δbt) is the change in the ask (bid)
quote between two consecutive trades. The trade-size indicators are exB

t ¼ xB
t log Vtð Þ andexSt ¼ xS

t log Vtð Þ, where Vt is the trade size in number of shares, and xt
B (xt

S ) equals 1 for buys
(sells) and zero otherwise. For midpoint trades both variables equal zero
*Statistically greater than zero at the 1% level
**Statistically greater than zero at the 5% level
***Statistically greater than zero at the 10% level
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by Generalized Least Squares (GLS), controlling for deterministic intraday patterns.
The AR(p) models are used in the simulation exercise to generate the future values of
each exogenous variable. Then, we compute the response of ask and bid quotes after a
unitary trade-related shock (either buyer or seller-initiated) conditional on the level of
one of the exogenous variables in MCt while the others are kept equal to zero.

We compare the IRF after a unitary shock when all the exogenous variables are
zero (Table 4) with the same IRF when the level of a given exogenous variable
increases from zero to S, from zero to M, and from zero to L. Table 5 reports the
relative change of the absolute value of the IRF 500 periods after the shock. We
also provide the number of stocks in each subsample for which the impact is
positive/negative and significantly different from zero.

Table 5 shows that asymmetries after regional trades are less important than
after NYSE trades. As previously indicated, the positive (negative) impact of a buy
(sell) shock on the ask (bid) quote is weaker when it comes from the regional
markets. Moreover, bid (ask) quotes are not usually altered after an unexpected
regional buy (sell). Therefore, after a regional trade ask and bid quotes do not move
symmetrically either, but the asymmetry is less remarkable than after a NYSE
trade.

Table 5 also evidences that the probability of observing asymmetric ad-
justments of ask and bid quotes decreases as volatility increases. For the NYSE'96
sample, the impact of a buyer-initiated shock on the ask quote is 3.41% larger when
volatility is high (L). The impact on the bid quote, however, is 50.84% larger.
Similarly, the impact of a seller-initiated shock on the bid quote is 5.38% larger in
the more volatile scenario, but the impact on the ask quote is 42.44% larger. A
similar finding is found for the SSE'00 sample. Therefore, the adjustments of ask
and bid quotes after a trade-related shock are more balanced in periods of high
volatility. This finding would suggest that trades executed during volatile periods
transmit more unambiguous signals, since they cause ask and bid quotes to be
adjusted symmetrically more often than usual.

The results for trade durations and order imbalances are not conclusive.

6.4 Time aggregation

So far, we have shown that asymmetries exist when ask and bid quotes measured in
trade-time respond to trade-related shocks. In this section, we study whether these
asymmetries persist when we consider different time scales. In particular, we
aggregate our time series of quotes and trades into 1-min and 5-min intervals. Thus,
a change in quotes in now given by the difference between the final and the initial
quote in each time interval. Similarly, the buyer (seller) initiated volume is the sum
of the size of all buys (sells) executed during each time interval. Finally, the bid–
ask spread is given by the posted quotes at the end of each time interval. We
estimate the baseline model Eq. (3.7) with the restrictions in Eq. (5.1) with t
meaning either a 1-min or a 5-min interval. The model is truncated at three lags and
estimated by SURE.

Table 6 provides our findings for the NYSE’00 sample. For the NYSE’96 and
SSE’00 samples, results are similar and available upon request. Table 6 shows that
the dynamics observed in trade-time remain in these alternative scales. Ask and bid
quotes error-correct to deviations between them, causing the bid–ask spread to
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revert towards narrow levels. Ask (bid) quotes are also more sensible than bid
quote to buys (sells) with aggregated data. In addition, buys are more informative
than sells at the 5% level in the 1-min frequency and at the 1% level at the 5-min
periodicity. This suggests that the asymmetry in ask and bid responses to trades is
not just a high frequency phenomena.

7 Conclusions

This paper has introduced a new econometric approach to jointly model the time
series dynamics of the trading process and the revisions of ask and bid prices. This
model represents a generalization of the VAR model introduced by Hasbrouck
(1991). We use this approach to check a very common theoretical assumption
among microstructure models: the symmetry assumption. The symmetry as-
sumption asserts that ask and bid quotes respond symmetrically to trades, that ask
and bid quotes are posted symmetrically about the efficient price, and that buys and
sells are equally informative.

Our model accommodates (not imposes) asymmetric responses of ask and bid
prices to trade-related shocks. It also captures asymmetric impacts of buyer and
seller-initiated trades. This is possible because it incorporates the co-integration
relationship between the ask price and the bid price, because buys and sells are
generated by idiosyncratic but mutually dependent processes, and because these
trading processes are endogenous. The properties of the empirical model are
derived directly from a structural dynamic model for ask and bid prices. The model
is estimated using data from two different markets, the NYSE and the SSE.

Table 4 Simulation of the unrestricted VEC model

Absolute IRF×100

Buy/ask vs. buy/bid Ask Bid Ask-bid t-test

NYSE 1996 Mean 1.0279 0.1423 0.8855*
Std. (0.3546) (0.1247) (0.2854)

NYSE 2000 Mean 1.1401 0.4990 0.6411*
Std. (0.8348) (0.3706) (0.5025)

SSE 2000 Mean 0.2843 0.0549 0.2294*
Std. (0.2840) (0.0832) (0.2350)

Total Mean 0.8174 0.2321 0.5853*
Std. (0.6565) (0.2966) (0.4441)

Sell/ask vs. sell/bid Bid Ask Bid-ask

NYSE 1996 Mean 0.9170 0.1741 1.0911*
Std. (0.3180) (0.1302) (0.4404)

NYSE 2000 Mean 0.9945 0.5595 1.5540*
Std. (0.6248) (0.4194) (1.0304)

SSE 2000 Mean 0.2412 0.0518 0.2930*
Std. (0.2087) (0.0573) (0.2575)

Total Mean 0.7176 0.2618 0.9794*
Std. (0.5341) (0.3310) (0.8324)
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The dynamics of ask and bid prices are characterized by two findings, robust
across markets, trading periods, and model specifications. First, we show that these
quotes do not follow symmetric patterns after trades. Ask and bid prices tend to be
revised in the same direction but not by the same amount. Ask (bid) quotes are
more sensible to buyer (seller) initiated shocks than bid (ask) quotes. We evidence,
however, that the likelihood of symmetric responses increases with volatility. In
addition, we show that asymmetries are less frequent in the NYSE after regional
trades. In addition to the former information-motivated trade-related effect, we also
observe a liquidity-motivated trade-related effect. Ask and bid quotes error correct
to mutual deviations, which causes a strong mean reversion in the bid–ask spread.
These two findings produce simultaneous but opposite effects in the dynamics of
ask and bid prices: information-induced positive cross-serial correlation and
liquidity-induced negative cross-serial correlation.

Table 4 (continued)

Absolute IRF×100

Buy/Ask vs. Sell/Bid Buy/Ask Sell/Bid Difference

NYSE 1996 Mean 1.0279 0.9170 0.1108*
Std. (0.3546) (0.3180) (0.1703)

NYSE 2000 Mean 1.1401 0.9945 0.1456**
Std. (0.8348) (0.6248) (0.2357)

SSE 2000 Mean 0.2843 0.2412 0.0431
Std. (0.2840) (0.2087) (0.1126)

Total Mean 0.8174 0.7176 0.0998*
Std. (0.6565) (0.5341) (0.1796)

This table reports statistical tests on the impulse–response functions (IRFs) of the VEC model,
1 0 AaB;t� AaB;t�
0 1 AbB;t� AbS;t�
0 0 1 0
0 0 0 1

0BB@
1CCA

�at
�btexB
texS
t

0BB@
1CCA ¼

�ECa Lð Þ
�ECb Lð Þ
�B Lð Þ
�S Lð Þ

0BB@
1CCAst�1 þAt Lð Þ

�at�1

�bt�1exB
t�1exS
t�1

0BB@
1CCAþ

ua
t

ub
t

uB
t

uS
t

0BB@
1CCAwith

the restrictions, At Lð Þ ¼
Aaa Lð Þ 0 AaB;t Lð Þ AaS;t Lð Þ

0 Abb Lð Þ AbB;t Lð Þ AbS;t Lð Þ
ABa Lð Þ 0 ABB;t Lð Þ ABS;t Lð Þ

0 ASb Lð Þ ASB;t Lð Þ ASS;t Lð Þ

0BB@
1CCA

We compare (a) the impact of a unitary buyer-initiated shock on the ask and bid quotes; (b) the
impact of unitary seller-initiated shock on the ask and bid quotes, and (c) the impact of a unitary
buyer-initiated shock on the ask quote with the impact of a unitary seller-initiated shock on the bid
quote. We use data on 11 NYSE-listed stocks from January to March 1996, 11 NYSE-listed
stocks from January to March 2000, and 11 SSE stocks from July to September 2000. We report
statistical tests of the null of equality of the absolute IRFs against the alternative of a positive
difference. We keep all the polynomials in the autoregressive matrix constant during the
simulation, even when they are time-variant due to exogenous variables. The error-correction
term is the bid-ask spread;Δat (Δbt) is the change in the ask (bid) quote between two consecutive
trades; exB

t ¼ xB
t log Vtð Þ, and exS

t ¼ xS
t log Vtð Þ, where Vt is the trade size in number of shares,

and xtB (xt
S ) equals 1 for buys (sells) and zero otherwise. For midpoint trades both variables

equal zero
*Statistically greater than zero at the 1% level
**Statistically greater than zero at the 5% level
***Statistically greater than zero at the 10% level
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We also show that NYSE buyer-initiated trades are more informative that seller-
initiated trades, both in 1996 and in 2000. This pattern persists even when we
consider different model specifications, including different time periodicities. This
finding, however, cannot be generalized to the SSE case.

This paper has also evidenced that market frictions like the minimum price
variation are not enough to explain the violation of the symmetry assumption. We
find similar asymmetric patterns in ask and bid responses in 1996, with a US$1/8
tick, and in 2000, with a US$0.01 tick. In addition, asymmetries are found in markets
with very different microstructures, like the NYSE and the SSE. Since the specialist
contribution is less essential in frequently traded NYSE stocks (Madhavan and
Sofianos 1998), it sounds interesting to extend the analysis in this paper by
considering a larger sample of NYSE and SSE stocks, stratified by trading
frequency. This analysis would clarify the role that market makers play in
explaining the asymmetric dynamics between ask and bid quotes. Moreover, our
findings suggest that ask (bid) quotes may lead the price discovery process after
buyer (seller) initiated trades. An interesting topic for future research would be
evaluating the relative contribution of ask and bid quotes to price discovery,
conditional on variables like recent market trends, accumulated net volume, order
imbalances, and so on. Finally, the intriguing finding that buys are more informative

Table 6 The base-line VEC model for aggregated data

Equation Variable Panel A: 1-minute intervals Panel B: 5-minute intervals

Coefficients
average

Std. (+) (−) Coefficients
average

Std. (+) (−)

�b
t

−0.2231 0.0752 0 11 −0.3290 0.1177 0 11
�a 0.0633 0.0556 10 1 −0.0297 0.0473 10 1
xB 0.0172 0.0089 11 0 0.1316 0.0886 11 0
xS −0.0133 0.0080 0 11 −0.1135 0.0746 0 11
�b

t
0.2608 0.0710 11 0 0.4421 0.0870 11 0

�b 0.0593 0.0696 9 2 −0.0326 0.0529 9 2
xB 0.0121 0.0074 11 0 0.1240 0.0846 11 0
xS −0.0173 0.0089 0 11 −0.1241 0.0819 0 11

xBt s 2.1055 2.3079 10 1 0.0361 0.4750 10 1
�a −1.2400 1.2389 0 11 0.0155 0.3778 0 11
x B 0.6748 0.1089 11 0 0.6472 0.1317 11 0
x S 0.2963 0.0879 11 0 0.3579 0.1307 11 0

xSt s 1.9812 2.0402 10 1 0.1100 0.6099 10 1
�b 0.4601 1.8280 4 7 0.0033 0.1560 4 7
xB 0.3985 0.1223 11 0 0.4275 0.1433 11 0
xS 0.5396 0.1476 11 0 0.5601 0.1496 11 0
Obs. 23,484 186 4,688 62

R2

�a
t

0.1621 0.0400 0.1913 0.0725
�b

t
0.1847 0.0387 0.2030 0.0730

xBt 0.9532 0.0222 0.9945 0.0015
xSt 0.9328 0.0382 0.9938 0.0015
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than sells in the NYSE but not in the SSE suggests that microstructure differences
may be playing a role. This is a possibility that deserves a more exhaustive analysis.

1 Appendix I

1.1 Derivation of the VEC model (3.7)

From Eq. (3.2)

1� �amL
� �

at � mtð Þ ¼ Ax;t Lð Þ0xt þ �ECa at�1 � bt�1ð Þ þ "at :

Table 6 (continued)

Absolute IRF×100

Buy/ask – buy/bid Diference p-value t-test Diference p-value t-test

Mean 1.7480 0.0017* 2.3780 0.0111**
Std. (1.5230) (2.9193)
Sell/bid – sell/ask
Mean 6.9870 0.0007* 49.1156 0.0024*
Std. (2.7803) (25.8798)
Buy/ask – sell/bid
Mean 1.9127 0.0105** 11.0851 0.0099*
Std. (2.3180) (13.2844)

This table summarizes the estimation of the VEC model,
1 0 AaB* AaB*
0 1 AbB* AbS*
0 0 1 0
0 0 0 1

0BB@
1CCA

�at
�bt
~xB
t

~xS
t

0BB@
1CCA ¼

�ECa Lð Þ
�ECb Lð Þ
�B Lð Þ
�S Lð Þ

0BB@
1CCAst�1 þA Lð Þ

�at�1

�bt�1

~xB
t�1

~xS
t�1

0BB@
1CCAþ

ua
t

ub
t

uB
t

uS
t

0BB@
1CCAwith the re-

strictions, A Lð Þ ¼
Aaa Lð Þ 0 AaB Lð Þ AaS Lð Þ

0 Abb Lð Þ AbB Lð Þ AbS Lð Þ
ABa Lð Þ 0 ABB Lð Þ ABS Lð Þ

0 ASb Lð Þ ASB Lð Þ ASS Lð Þ

0BB@
1CCA

The model is defined in 1-minute (Panel A) and 5-minute intervals (Panel B), and truncated at 3
lags. We use data on 11 NYSE-listed stocks from January to March 2000. The model is estimated
by SURE. We report for each variable the cross-sectional average of the sum of all lags whenever
the coefficients are statistically significant at the 1% level. We also provide the cross-sectional
average R2 for each equation in the system. We include the number of stocks for which the
coefficient of the corresponding variable is statistically positive/negative at the 1% level. Finally,
we compare (a) the impact of a unitary buyer-initiated shock on the ask and bid quotes; (b) the
impact of unitary seller-initiated shock on the ask and bid quotes, and (c) the impact of a unitary
buyer-initiated shock on the ask quote with the impact of a unitary seller-initiated shock on the bid
quote. We report the differences in the absolute impulse-response functions (IRF) and the result of
a t-test on the null of equal IRFs against the alternative of a strictly positive difference. The error-
correction term is the bid-ask spread. The endogenous variables are the change in the ask quote
(Δat) and the bid quote (Δbt) in each time interval, and trade-size indicators for buys exBt� �

and
for sells exS

t

� �
are computed as the accumulated volume of buyer-initiated trades and seller-

initiated trades, respectively, in each time interval
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As 0 < �am < 1; � Lð Þ ¼ 1� �amL
� �

is a stationary polynomial in L. Then,

at � mtð Þ ¼ � Lð Þ�1Ax;t Lð Þ0xt þ � Lð Þ�1�ECa st�1 þ � Lð Þ�1"at : (A.1)

Let Δ=(1−L) be the first differencing operator. Pre-multiplying in (A.1) by Δ,
and letting � Lð Þ�1Ax;t Lð Þ� ¼ eAx;t Lð Þ and � Lð Þ�1�ECa � ¼ e�ECa Lð Þ we obtain

�at ¼ �mt þ eAx;t Lð Þ0xt þ ~�ECa Lð Þst�1 þ 
 Lð Þ"at ; (A.2)

where θ(L)"t
a=(1−L)(1−αm

aL)"t
a which can be approximated by a moving

average polynomial of finite order, say q, 
 Lð Þ"at � e
 Lð Þ"at ¼ 1� e
1aL� e
2aL2�
�����e
qaLqÞ"at . Similar expansions are made with eAx;t Lð Þ and e�ECa Lð Þ . Substituting
Eq. (3.1) in (A.2) we have

�at ¼ eAx;t Lð Þ0xt þ e�ECa Lð Þst�1 þ �at : (A.3)

The error term �at ¼ e
 Lð Þ"at þ �BvB2;t þ �SvS2;t þ v1;t has an invertible moving
average (MA) representation. Inverting the MA or alternatively adding long-
enough dynamics of the regressors of (A.3), Δat and also Δbt (since they are
highly correlated), the moving average structure disappears. Therefore, Eq. (A.3)
could parsimoniously be approximated by

�at ¼ e�ECa Lð Þst�1 þ Aaa Lð Þ�at�1 þ Aab Lð Þ�bt�1 þ eAx;t Lð Þ0xt þ uat : (A.4)

The errors are white noise, E(ut
a)=0 and E(ut

a,ut−k
a)=0∀k ≠0, with the

autoregressive polynomials Aij(L) having all roots outside the unit circle. Let,

eAx;t Lð Þ0xt ¼ AB
aB Lð Þf BaB MCt�1;Dt�1ð ÞxBt þ AS

aS Lð Þf SaS MCt�1;Dt�1ð ÞxSt :
Equation (A.4) can now be written as

�at ¼ e�ECa Lð Þst�1 þ Aaa Lð Þ�at�1 þ Aab Lð Þ�bt�1 þ AaB;t Lð ÞxBt
þAaS;t Lð ÞxSt þ uat ;

(A.5)

which is the first equation of the system Eq. (3.7).
The corresponding equation for Δbt is similarly obtained by repeating the

previous steps for Eq. (3.3) obtaining the equivalent expression of Eq. (A.3) for bt

�bt ¼ eBx;t Lð Þ0xt þ e�ECb Lð Þst�1 þ �bt : (A.6)

Notice that ξt
a and ξt

b have a component in common (�Bv2,t
B+�Sv2,t

S+v1,t) and,
therefore, they are mutually correlated. This correlation depends on the importance
of the idiosyncratic components in each of the residuals. From the same arguments,
we can obtain the equivalent model to (A.5) for Δbt with white noise errors

�bt ¼ e�ECb Lð Þst�1 þ Aba Lð Þ�at�1 þ Abb Lð Þ�bt�1 þ AbB;t Lð ÞxBt
þAbS;t Lð ÞxSt þ ubt :

(A.7)
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As the errors ut
a and ut

b are mutually correlated and therefore efficient estimation
requires at least a joint estimation of (A.5) and (A.7).

From Eq. (3.4) using (A.1)–(A.2) we obtain,

xBt ¼ �B eBx;t Lð Þ0xt�1 þ �Be�ECa Lð ÞLþ 	B� �
st�1 þ � Lð Þ�1"at þ vB2;t ¼

¼ ’Bx;t Lð Þ0xt�1 þ ’Bs Lð Þst�1 þ �Bt
(A.8)

where the error term ξt
B=α(L)−1"t

a+v2,t
B has an invertible moving average (MA)

representation. As previously done, this moving average structure can be
approximated by,

xBt ¼ �ECB Lð Þst þ ABa Lð Þ�at�1 þ ABb Lð Þ�bt�1 þ ABB;t Lð ÞxBt�1

þABS;t Lð ÞxSt�1 þ uBt

(A.9)

where E(ut
B)=0 and E(ut

B,ut−k
B )=0∀k≠0.

The corresponding equation for xt
s is similarly obtained by repeating the

previous steps with Eq. (3.5). We first obtain,

xst ¼ ’Sx;t Lð Þ0xt�1 þ ’Ss Lð Þst�1 þ �St (A.10)

where the error term ξt
S=α(L)−1"t

b+v2,t
S . Following the argument stated right after

Eq. (A.8), we get the last equation of the system (Eq. 3.7),

xSt ¼ �ECS ðLÞst�1 þ ASaðLÞ�at�1 þ ASbðLÞ�bt�1 þ ASB;tðLÞxBt�1

þASS;tðLÞxSt�1 þ uSt

(A.11)

Notice that Eqs. (A.9) and (A.11) have correlated errors if either v2,t
S and v2,t

B or
"t
b and "t

a are correlated, which is a very likely event.

1 Appendix II

1.1 Sample

NYSE 1996 Stocks Company Observations (number of trades)
GE General Electric Co 106,347
GT Goodyear Tire Rubber Co 86,802
IBM Int Business Machines Corp 130,620
JNJ Jhonson & Johnson 64,607
KO Coca-Cola Co 72,620
MO Phillip Morris Companies Inc 91,938
MRK Merck & Co Inc 96,425
PG Procter & Gamble Co 52,326
T ATT Corp 87,882
TX Texaco Inc 76,912
WMT Wal-Mart Stores Inc 102,660
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NYSE 2000 Stocks
AOL America Online Inc 626,768
C Citigroup Inc 260,149
EMC EMC Corporation 282,196
GE General Electric Co 350,795
IBM Int Business Machines Corp 234,766
LU Lucent Technologies Inc 705,948
MOT Motorola Inc 195,067
NOK Nokia Corp 221,005
NT Nortel Networks Corp 239,094
PFE Pfizer Inc 233,658
T ATT Corp 236,662
SSE 2000 Stocks
AMS Amadeus Global Travel Distribution 49,824
BBVA Banco Bilbao-Vizcaya Argentaria 123,687
ELE Endesa 80,844
IBE Iberdrola 35,811
REP Repsol YPF 90,213
SCH Banco Santander Central Hispano 196,880
TEF Telefónica 424,327
TPI Telefónica Publicidad e Información 52,253
TPZ Telepizza 36,880
TRR Terra Networks 146,285
ZEL Zeltia 88,339
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1 Introduction

Ten years after the question phrased in Glosten’s (1994) celebrated paper: ‘Is the
electronic order book inevitable?’ seems to be answered, given the triumphal
procession of open order book systems in Continental Europe and recent
developments in US stock markets.1 A central feature of a pure limit order book
market is the absence of dedicated market makers. Liquidity is supplied voluntarily
by patient market participants who provide an inflow of limit buy and sell orders,
the lifeblood of the trading process. The non-executed orders constitute the limit
order book, the consolidated source of liquidity. As the viability and resiliency of
such a market structure is in the interest of regulators, operators and individual
investors it is not surprising that theoretical and empirical studies of limit order
markets abound in the literature.2 However, theoretical models explaining liquidity
supply and demand in limit order book markets have not been very successful
when confronted with real world order book data. Såndas (2001) extends the
methodology proposed by DeJong et al. (1996) and estimates a version of Glosten's
(1994) limit order book model allowing for real world features like discrete price
ticks and time priority rules. The empirical results obtained using data from the
Swedish stock exchange were not encouraging. Formal specification tests reject the
model, transaction costs estimates are significantly negative, and book depth is
systematically overestimated.

This paper shows how some potentially restrictive assumptions in the Glosten/
Såndas framework can be relaxed, while retaining suitable moment conditions for
GMM estimation. We show that the revised econometric methodology consider-
ably improves the empirical performance. The alternative approach is employed in
a cross sectional analysis of adverse selection costs and liquidity supply in a limit
order market.

Given the discontenting results reported in the previous literature, it is not
surprising that many recent empirical papers analyzing limit order book market
data have severed the close connection to the theoretical framework. Extending the
approach of the early papers by Biais et al. (1995), Hall et al. (2003), Coppejans
et al. (2003), Cao et al. (2004), Grammig et al. (2004), Pascual and Veredas (2004)
and Ranaldo (2004) employ discrete choice and count data models to analyze the
determinants of order submission activity and the interaction of liquidity supply
and demand processes in limit order markets. Beltran et al. (2004) advocate a
principal components approach to extract latent factors that explain the state of the
order book. Gomber et al. (2004) and Degryse et al. (2003) conduct intra-day event
studies to analyze the resiliency of limit order markets. These papers interpret the
empirical results in the light of predictions of microstructure models. However, a
structural interpretation of the parameter estimates cannot be delivered.

This paper returns to the theoretical basis for the empirical analysis of limit
order book markets. We hypothesize that the discontenting empirical model

1 In January 2002 the New York Stock Exchange (NYSE), known as a hybrid specialist market,
adopted the key feature of electronic order book markets, namely the public display of all limit
orders (NYSE open book program).
2 Traditionally, market microstructure theory focussed on quote driven markets with one or more
market makers (see O'Hara, 1995 for an overview). Recent papers by Parlour (1998), Seppi
(1997), Foucault (1999) and Foucault et al. (2003) have changed the focus to the analysis of price
and liquidity processes in order book markets.
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performance is due to the following problems. First, the real world trading process
might be organized in a way that deviates too much from the theoretical
framework. Second, some of the underlying theoretical model’s assumptions might
be too restrictive. The Glosten/Såndas model imposes a zero expected profit
condition for order book equilibrium which may not hold in a very active order
market with discrete price ticks and time priority rules. Furthermore, the parametric
distribution of market order sizes assumed by Såndas (2001), though leading to
convenient closed form liquidity supply equations and GMM moment conditions,
might be misspecified. Hasbrouck (2004) conjectures that the latter is responsible
for the empirical failure of the model.

The original methodological contribution of this paper is to propose alternative
estimation strategies which relax some allegedly restrictive assumptions in the
Glosten/Såndas framework. First, we show that the parametric distributional
assumption about market order sizes can be abandoned in favor of a straight-
forward nonparametric alternative that still delivers convenient closed form
unconditional moment restrictions that can be used for GMM estimation. Second,
we motivate a set of alternative moment conditions which replace the zero expected
marginal profit conditions used by Såndas (2001). These moment conditions,
referred to as average break even conditions, are derived from the assumption that
the expected profit of the orders placed on a specific quote is zero.

We estimate the model using both the standard and the revised methodology
based on reconstructed order book data from the Xetra electronic order book
system which operates at various European exchanges. The data are tailor-made for
the purpose of this paper since the trading protocol closely corresponds to the
theoretical trading process from which the moment conditions used for the
empirical methodology are derived.

We show that using average break even conditions instead of marginal break
even conditions delivers a much better empirical performance. Encouraged by this
result, we employ the methodology in a cross sectional analysis of adverse selection
effects and liquidity in the Xetra limit order market. This is the original empirical
contribution of the paper. The main results can be summarized as follows. First, we
provide new evidence, from a limit order market, that adverse selection effects are
more severe for smaller capitalized, less frequently traded stocks. This corroborates
the results of previous papers dealing with different theoretical backgrounds,
empirical methodologies, and market structures. Second, the empirical results
support one of the main hypothesis of the theory of limit order markets, namely that
book liquidity and adverse selection effects are inversely related. Finally, we
compare the adverse selection components implied by the structural model
estimates with popular ad hoc measures which are based on a comparison of
effective and realized spreads. The latter approach is model-free, frequently used in
practice and academia (see e.g. Boehmer (2004) and SEC (2001)) and requires pub-
licly available trade and quote data only. The first approach is based on a structural
model and permits an economic interpretation of the structural parameters, but the
demand on the data is higher as reconstructed order books are needed. We show
that both methodologies lead to quite similar conclusions. This result indicates the
robustness of the structural model approach. It also provides a theoretical under-
pinning for using the ad-hoc method for the analysis of limit order data.

The remainder of the paper is organized as follows. Section 2 describes the
market structure and data. Section 3 discusses the theoretical background and
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develops the empirical methodology. The empirical results are discussed in
Section 4. Section 5 concludes with a summary and an outlook for further research.

2 Market structure and data

2.1 The Xetra open limit order book system

In our empirical analysis we use data from the automated auction system Xetra
which operates at various European trading venues, like the Vienna Stock
Exchange, the Irish Stock Exchange, the Frankfurt Stock Exchange (FSE) and the
European Energy Exchange.3 Xetra is a pure open order book system developed
and maintained by the German Stock Exchange. It has operated since 1997 as the
main trading platform for German blue chip stocks at the FSE. Since the Xetra/FSE
trading protocol is the data generating process for this study we will briefly
describe its important features.4

Between an opening and a closing call auction—and interrupted by another
mid-day call auction—Xetra/FSE trading is based on a continuous double auction
mechanism with automatic matching of orders based on the usual rules of price and
time priority. During pre- and post-trading hours it is possible to enter, revise and
cancel orders, but order executions are not conducted, even if possible. During the
year 2004, the Xetra/FSE hours extended from 9 A.M. C.E.T to 5.30 P.M. C.E.T. For
blue chip stocks there are no dedicated market makers like the Specialists at the
New York Stock Exchange (NYSE) or the Tokyo Stock Exchange's Saitori. For
some small capitalized stocks listed in Xetra there may exist so-called Designated
Sponsors—typically large banks—who are required to provide a minimum li-
quidity level by simultaneously submitting competitive buy and sell limit orders. In
addition to the traditional limit and market orders, traders can submit so-called
iceberg (or hidden) orders. An iceberg order is similar to a limit order in that it has
pre-specified limit price and volume. The difference is that a portion of the volume
is kept hidden from the other traders and is not visible in the open book.

Market orders and marketable limit orders which exceed the volume at the best
quote are allowed to ‘walk up the book’.5 In other words, market orders are
guaranteed immediate full execution, at the cost of incurring a higher price impact
on the trades. This is one of the key features of the stylized theoretical trading
environment upon which the econometric modeling is based, but which may not
necessarily be found in the real world trading process.6

3 The Xetra technology was recently licensed to the Shanghai Stock Exchange, China's largest
stock exchange.
4 The Xetra trading system resembles in many features other important limit order book markets
around the world like Euronext, the joint trading platform of the Amsterdam, Brussels, Lisbon
and Paris stock exchanges, the Hong Kong stock exchange described in Ahn et al. (2001) and the
Australian stock exchange, described in Cao et al. (2004).
5 A marketable limit order is a limit order with a limit price that makes it immediately executable
against the current book. In our study, ‘real’market orders (i.e. orders submitted without an upper
or lower price limit) and marketable limit orders are treated alike. Henceforth, both real market
orders and marketable limit orders are referred to as market orders.
6 For example, Bauwens and Giot (2001) describe how the Paris Bourse’s trading protocol
converted the volume of a market order in excess of the depth at the best quote into a limit order at
that price which enters the opposite side of the order book.
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Xetra/FSE faces some local, regional and international competition for order
flow. The FSE maintains a parallel floor trading system, which bears some
similarities with the NYSE, and, like in the US, some regional exchanges
participate in the hunt for liquidity. Furthermore, eleven out of the thirty stocks we
analyze in our empirical study are also cross listed at the NYSE, as an ADR or,
in the case of Daimler Chrysler, as a globally registered share. However, the
electronic trading platform clearly dominates the regional and international com-
petitors in terms of market shares, at least for the blue chip stocks that we study in
the present paper.

2.2 Data and descriptive analyses

The Frankfurt Stock Exchange granted access to a database containing complete
information about Xetra open order book events (entries, cancelations, revisions,
expirations, partial-fills and full-fills of market, limit and iceberg orders) which
occurred during the first three months of 2004 (January, 2nd—March, 31st). The
sample comprises the thirty German blue chip stocks constituting the DAX30
index. Based on the event histories we perform a real time reconstruction of the
order book sequences. Starting from an initial state of the order book (supplied by
the exchange), we track each change in the order book implied by entry, partial or
full fill, cancelation and expiration of market, limit and iceberg orders in order to
re-construct the order book at each point in time. Our reconstruction procedure
permits distinguishing the visible and the hidden part of the order book. The latter
consists of the hidden part of the non-executed iceberg orders. To implement the
empirical methodology outlined below, we take snapshots of the visible order book
entries whenever a market order triggers an execution against the book.

Table 1 reports descriptive statistics of the cross section of stocks. The activity
indicators show an active market. Averaged across stocks, about 13,000 non-
marketable limit orders per stock are submitted each day. Among those, almost
11,000 get canceled before execution. This indicates that the limit order traders
closely monitor the book for profit opportunities which is in fact one of the core
assumptions of the underlying theoretical model. The large trade sizes (on average
over 40,000 euro per trade) indicate that Xetra/FSE is a trading venue for
institutional traders and not a retail market. Averaged across stocks, 2,100 trades
are executed per day. Table 1 also reports average effective and realized spreads.
Following Huang and Stoll (1996) the average effective spread is computed by
taking two times the absolute difference of the transaction price of a trade
(computed as average price per share) and the prevailing midquote and averaging
over all trades of a stock. Realized spreads are computed similarly, but instead of
taking the prevailing midquote, the midquote five minutes after the trade is used.7

Note that in an open order book market like Xetra, there is no possibility to trade
inside the bid-ask spread. Orders are either executed at the best quote or they walk
up the book until they are completely filled. Table 1 shows that on average 15% of
the order volume walks up the book, i.e. part of the order is matched by standing
limit orders beyond the best bid and ask. This implies that the effective spread
is then, by definition, larger than or equal to the quoted spread. To ensure

7 By choosing a five minutes lag we follow the previous literature, see e.g. SEC (2001).
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comparability across stocks, we compute effective and realized spreads relative to
the midquote prevailing at the time of the trade. Analyzing effective and realized
spreads is a straightforward way to assess and compare transaction costs and
adverse selection effects across stocks or trading venues. The realized spread can
be viewed as a transaction costs measure that is purged of informational effects
while the difference of effective and realized spread (referred to as price impact) is
a natural measure for the amount of informational content of the order flow.8

Average effective spreads range from 0.04% to 0.13%. Realized spreads are
considerably smaller. This implies that price impacts, computed as the difference
between effective and realized spreads, are relatively large. In other words, a large
fraction of the spread is due to informational order flow. This is not an unexpected
result. In an open automated auction market there is no justification for inventory
costs associated with market making or monopolistic power of a market maker, the
other factors that may explain the spread. Furthermore, order submission fees, i.e.
operational costs, are very small.

Table 1 shows that there is a considerable variation of price impacts, market
capitalization and trading activity across stocks. The Spearman rank correlation
between market capitalization and price impacts is −0.88 (p-value<0.001) and
the correlation between price impacts and daily number of trades is −0.87
(p-value<0.001). Price impacts thus tend to be larger for smaller capitalized, less
frequently traded stocks. We will come back to this result when discussing the
empirical results based on the structural model.

3 Methodology

3.1 Såndas’ basic framework

Såndas (2001) develops a variant of Glosten’s (1994) limit order book model with
discrete price ticks and time priority rules. The model delivers equations which
predict that order book depth and adverse selection effects are inversely related.
The associated empirical methodology is rooted in economic theory, and delivers
structural parameter estimates of transaction costs and adverse selection effects
in a limit order book market. Below we will briefly describe the assumptions of
the basic model and the estimation strategy proposed in Såndas (2001). The
fundamental asset value Xt is described by a random walk with innovations
depending on an adverse selection parameter α, which gives the informational
content of a signed market order of size mt,

Xtþ1 ¼ �þ Xt þ �mt þ �X ;tþ1: (1)

Negative values of mt denote sell orders, positive values buy orders. Fur-
thermore, it is assumed that E(Xt) = 0. ηX,t + 1 is an innovation orthogonal to Xt.

8 Boehmer (2004) and SEC (2001) conduct exhaustive comparisons of transaction costs and
adverse selection effects in US exchanges based on effective and realized spread analyses.
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μ gives the expected change in the fundamental value. Market buy and sell orders
are assumed to arrive with equal probability with a two-sided exponential density
describing the distribution of order sizes mt:

9

f mtð Þ ¼
1

2�
e
�mt
� if mt > 0 market buyð Þ

1

2�
e
mt
� if mt < 0 market sellð Þ:

8><>: (2)

Risk neutral limit order traders face a order processing cost γ (per share) and
have knowledge about the distribution of market order size and the adverse
selection component α, but not about the true asset price. They choose limit order
prices and quantities such that their expected profit is maximized. If the last unit at
any discrete price tick exactly breaks even, i.e. has expected profit equal to zero, the
order book is in equilibrium.

Denote the ordered discrete price ticks on the ask (bid) side by p+k (p−k) with
k=1,2, . . . and the associated volumes at these prices by q+k (q−k). Given these
assumptions and setting q0,t≡0, the equilibrium order book at time t can
recursively be constructed as follows:

qþk;t ¼ pþk;t � Xt � �� �
�

� Qþk�1;t � � k ¼ 1; 2; : : : ask sideð Þ
q�k;t ¼ Xt þ �� p�k;t � �

�
� Q�kþ1;t � � k ¼ 1; 2; : : : bid sideð Þ;

(3)

where Qþk;t ¼
Pþk

i¼þ1 qi;t and Q�k;t ¼
P�k

i¼�1 qi;t. Equation (3) contains the mod-
el’s key message. Order book depth and informativeness of the order flow are
inversely related. If the model provides a good description of the real world trading
process, and if consistent estimates of the model parameters can be provided, one
can use Eq. (3) to predict the evolution of the order book for a given stock and
quantify adverse selection costs and their effect on order book depth.

Såndas (2001) proposes to employ GMM for parameter estimation and
specification testing. Assuming mean zero random deviations from order book
equilibrium at each price tick, and eliminating the unobserved fundamental
asset value Xt by adding the resulting bid and ask side equations for quote +k
and −k, the following unconditional moment restrictions can be used for GMM
estimation,

E pþk;t � p�k;t � 2� � � Qk;t þ 2�þ Q�k;tð Þð Þ ¼ 0 k ¼ 1; 2; :::: (4)

Since Eq. (4) follows from the assumption that the last (marginal) limit order at
the respective quote has zero expected profit, it is referred to as ‘marginal break
even condition’. A second set of moment conditions results from eliminating Xt by

9 In an alternative specification we allowed for additional flexibility by allowing the expected buy
and sell market order sizes to be different. However, the parameter estimates and diagnostics
changed only marginally. We therefore decided to stick to the specification in Eq. (2) which is
more appealing both from a methodological and theoretical point of view.

Liquidity supply and adverse selection in a pure limit order book market 91



subtracting the deviations from equilibrium depths at the kth quote at time t+1 and t
and taking expectations which yields

E �pþk;tþ1 � � Qþk;tþ1 � Qþk;tð Þ � �� �mtð Þ ¼ 0
E �p�k;tþ1 þ � Q�k;tþ1 � Q�k;tð Þ � �� �mtð Þ ¼ 0

k ¼ 1; 2; : : :
k ¼ 1; 2; : : : ;

(5)

where Δpj,t+1=pj,t+1−pj,t . We refer to the equations in Eq. (5) as ‘marginal update
conditions’. They relate the expected changes in the order book to the market order
flow. An obvious additional moment condition to identify the expected market
order size is given by

E Xtj j � �ð Þ ¼ 0: (6)

Moment conditions Eqs. (4), (5) and (6) can conveniently be exploited for
GMM estimation a la Hansen (1982).

Såndas (2001) derives the moment conditions from the basic model setup
outlined by Glosten (1994). Both Glosten's framework and Såndas' empirical
implementation entail a set of potentially restrictive assumptions that may be
problematic when confronting the model with real world data. Maybe the most
crucial assumption of the Glosten framework is that limit order traders are assumed
to be uninformed and that private information is only revealed through the arrival
of market orders. Recent literature, however, suggests that limit orders may also be
information-motivated (Seppi (1997); Kaniel and Liu (2001); Cheung et al. (2003)).
Bloomfield et al. (2005) observe in an experimental limit order market that
informed traders use more limit orders than liquidity traders. Since both break even
and update conditions are derived from the assumption of uninformed limit order
traders, the rejection of the model when confronted with real world data might be a
result from a violation of this fundamental assumption.10 Another important con-
sideration is the number of active liquidity providers. Glosten (1994) assumes per-
fect competition. Biais et al. (2000) propose solutions for oligopolistic competition.

The following section proposes a revised set of moment conditions which are
derived from a relaxation of the expected marginal profit condition and the
parametric assumption of the market order distribution. However, we leave the
basic assumption of uninformed limit order traders intact. Its relaxation would
entail a fundamental revision of the theoretical base model. This is left for further
research.

3.2 Revised moment conditions

3.2.1 Alternatives to the distributional assumption on market order sizes

Reviewing the Såndas/Glosten framework Hasbrouck (2004) conjectures that the
parametric specification for the market order size distribution Eq. (2) may be
incorrect.11 Indeed, the plot of the empirical market order distribution against the
fitted exponential densities depicted in Figure 3 in Såndas (2001) sheds some doubt

10We are grateful to a referee for pointing this out.
11 It should be noted that the exponential assumption in DeJong et al.’s (1996) implementation of
the Glosten model did not seem to be a restrictive assumption.

S. Frey, J. Grammig92



on this distributional assumption. To provide a formal assessment, we have
employed the nonparametric testing framework proposed by Fernandes and
Grammig (2005) and found that the exponential distribution is rejected on any
conventional level of significance for our sample of stocks. Hasbrouck (2004)
argues that the misspecification of the exponential distribution could be responsible
for the discontenting empirical results which have been reported when the model is
confronted with real world data.

Of course, the exponential assumption is convenient both from a theoretical and
an econometric perspective. It yields the closed form conditions for order book
equilibrium (3) which, in turn, lend itself conveniently to GMM estimation. How-
ever, the parametric assumption can easily be dispensed with and a straightforward
nonparametric approach can be pursued for GMM estimation. In the appendix we
show that the zero expected profit condition for the marginal unit at ask price p+k
can be written as

pþk � � � �E m m � Qþkj½ � � X � � ¼ 0:12 (7)

Assuming exponentially distributed market orders as in Eq. (2) we have
E[m∣m ≥Q+k] =Q+k+λ. Hence, Eq. (7) becomes

Qþk ¼ pþk � X � � � �
�

: (8)

This is an alternative to Eq. (3) to describe order book equilibrium. Although
the closed form expression implied by the parametric distributional assumption is
convenient, it is not necessary for the econometric methodology to rely on it.
Instead, we can rewrite Eq. (7) to obtain

E m m � Qþkj½ � ¼ pþk � X � � � �
�

: (9)

In order to utilize Eq. (9) for GMM estimation, one can simply replace
E[m∣m ≥ Q+k] by the conditional sample means bE m m � Qþkj½ �. Since the number
of observations will be large for frequently traded stocks (which is the case in our
application), conditional expectations can be precisely estimated by the conditional
sample means. Nonparametric equivalents of the marginal break even and update
conditions (4) and (5) can be derived in the same fashion as described in the
previous section. GMM estimation is more computer intensive since evaluating the
GMM objective function involves computation of the conditional sample means,
but it is a straightforward exercise.

Empirical evidence suggests that market orders are timed in that market order
traders closely monitor the state of the book when deciding on the size of the
submitted market order (see e.g. Biais et al. (1995), Ranaldo (2004) and Gomber
et al. (2004)). To account for state dependency, Såndas (2001) proposed using a set
of instruments which scale the value of the λ parameter in Eq. (2). The
nonparametric strategy developed here can be easily adapted to account for a

12 For notational brevity we omit the subscripts. Market order size m and fundamental price X are
observed at time t, and the equation holds for any price tick p+k,t with associated cumulative
volume Q+k,t, k=1,2 . . . .
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market order distribution that changes with the state of the book. One only has to
base the computation of the conditional upper tail expectation on a vector of state
variables F, i.e. calculate bE m m � Qþkj ;F½ �. For the purpose of this study we focus
on the unconditional market order distribution and leave modeling the conditional
market order distribution as a topic for further research.

3.2.2 Average profit conditions

To justify the marginal zero expected profit assumption, one implicitly assumes a
repetitive two phase trading process. In phase one, agents submit and cancel limit
orders until the book is free of (expected) profit opportunities and no agent wants to
submit, revise or cancel her order. Limit orders are sorted by price priority and,
within the same price tick, by time priority. When the book is such an equilibrium
the order book should display no ‘holes’, i.e. zero volumes in between two price
ticks. In phase two, a single market order of a given size arrives and is executed
against the equilibrium order book. After this event we go back to phase one,
during which the book is replenished again until equilibrium is reached and another
market order arrives and so forth. Can this be a reasonable description of a real
world trading process? The descriptive statistics on the trading and order
submission activity reported in Table 1 indicate a dynamic trading environment.
For a large stock, like Daimler Chrysler, we have on average over 3,000 trade
events per day, about 19,000 submissions of limit orders, of which over 80% are
canceled before execution. One could argue that such an active limit order trader
behavior indicates a thorough monitoring of the book which eliminates any profit
opportunities. This is quite in line with the theoretical framework. However, with
on average 10 seconds duration between trade events (for Daimler Chrysler) the
time to reach the new equilibrium after a market order hits the book and before a
new order arrives, seems a short span.

The marginal break even conditions can also be challenged by the following
reasoning. The conditions imply nonzero expected profits for limit order units that
do not occupy the last position of the respective price ticks. On the other hand, this
implies that the whole book offers positive expected profits for traders acting as
market makers. If market making provides nonzero expected profit opportunities,
then this would attract new entrants and the competition between these would-be
market makers ultimately eliminate any profit opportunities.

These considerations lead us to consider an alternative to the marginal profit
conditions which does not rely on the assumption that limit order traders
immediately cancel or adjust all their orders which show negative expected profit
on a marginal unit, and that also acknowledges the effect of market maker
competition on expected profits. For this purpose we retain most of the
assumptions of the Glosten/Såndas framework. However, instead of evaluating
the expected profit of the marginal profit for the last unit at each quote k, we assume
that the expected profit of the whole block of limit orders at any quote is zero. The
marginal zero profit condition is thus replaced by an ‘average zero profit
condition’. This assumption allows to differentiate between two types of costs
associated with the submission of a limit order, a fixed cost component, like order
submission and surveillance costs, and marginal costs (per share), like execution or
clearing fees and opportunity costs of market making. In the appendix we show that
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the liquidity supply equations which are implied by the zero expected profit
condition can be written as

qþk;t ¼ 2
pþk;t � Xt � � � �

qþk;t

�
� �� �

0BB@
1CCA� Qþk�1;t k ¼ 1; 2; : : : ask sideð Þ

q�k;t ¼ 2
Xt � p�k;t � � � �

q�k;t

�
� �þ �

0BB@
1CCA� Q�kþ1;t k ¼ 1; 2; : : : bid sideð Þ:

(10)

ξ denotes the fixed cost component which is assumed to be identical for each price
tick in the order book. To derive the equations in Eq. (10), we have retained the
parametric assumption about the distribution of trade sizes. Considering a nonpara-
metric alternative along the lines described in the previous subsection is also feasible.
Proceeding as above, i.e. by eliminating the unobserved fundamental asset value Xt by
adding the bid and ask side equations for quote +k and −k yields the following
unconditional moment restrictions which we refer to as average break even conditions,

E �p�k;t � 2� � �

qþk;t
� �

q�k;t
� � 1

2
Qþk;t þ 2�þ 1

2
Q�k;t

� 	� 	
¼ 0 k ¼ 1; 2; : : : ;

(11)

where Δp± k,t=p+k,t − p − k,t. Subtracting deviations from the implied depths at the kth
quote at time t + 1 and t and taking expectation yields the following equations which
we refer to as average update conditions,

E �pþk;tþ1� �

qþk;t
þ �

qþk;t�1
� �

2
Qþk;tþ1 � Qþk;tð Þ� �� �mt

� 	
¼0 k¼1; 2; : : :

E �p�k;tþ1þ �

qþk;t
� �

qþk;t�1
þ �

2
Q�k;tþ1 � Q�k;tð Þ� �� �mt

� 	
¼0 k¼1; 2; : : : ;

(12)

where Δpj,t +1=pj, t + 1−pj ,t. The average break even and update conditions replace
the marginal break even and update conditions of Eqs. (4) and (5).

4 Empirical results

4.1 Performance comparisons

Using the DAX30 order book data we follow Såndas (2001) and estimate the
model parameters exploiting the marginal break even conditions (4) and the
marginal updating conditions (5) along with Eq. (6). To construct the moment
conditions we use the respective first four best quotes, i.e. k=1, . . . ,4 on the bid and
the ask side of the visible order book. This yields thirteen moment conditions: four
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break even conditions, eight update conditions, and the moment condition (6).
Order sizes Xt are expressed in 1,000 shares.

Table 2 contains the first stage GMM results.13

We report parameter estimates, t-statistics and the value of the GMM J-statistic
with associated p-values. Under the null hypothesis that the moment conditions are
correctly specified, the J-statistic is asymptotically χ2 with degrees of freedom
equal to the number of moment conditions minus the number of estimated

Table 2 First stage GMM results baseline specification

Ticker α γ λ μ J(9) p-value

LIN 0.0228 (118.1) −0.0185 (55.5) 0.5728 (134.6) 0.0003 (3.1) 0.5 1.000
DPW 0.0025 (149.8) −0.0063 (47.0) 1.8362 (150.0) −0.0001 (3.3) 21.0 0.013
HEN3 0.0415 (95.8) −0.0178 (40.1) 0.3937 (114.0) −0.0003 (1.9) 23.2 0.006
MEO 0.0132 (135.1) −0.0163 (66.1) 0.9066 (166.7) 0.0000 (0.4) 25.3 0.003
LHA 0.0019 (159.7) −0.0072 (63.6) 2.3210 (150.8) 0.0001 (4.4) 31.2 0.000
MAN 0.0104 (121.9) −0.0151 (61.8) 0.9445 (134.5) 0.0004 (5.2) 35.2 0.000
DB1 0.0162 (114.5) −0.0158 (46.7) 0.7739 (114.1) 0.0001 (1.1) 45.0 0.000
FME 0.0456 (85.0) −0.0210 (34.8) 0.3839 (96.4) 0.0000 (0.0) 53.2 0.000
TUI 0.0054 (130.3) −0.0095 (50.6) 1.3215 (127.0) −0.0002 (2.7) 57.4 0.000
ALT 0.0224 (121.9) −0.0144 (50.5) 0.5785 (142.4) −0.0002 (2.1) 79.8 0.000
CBK 0.0016 (164.0) −0.0048 (50.4) 2.4055 (152.0) −0.0001 (2.0) 81.1 0.000
CONT 0.0131 (116.6) −0.0168 (60.4) 0.8166 (139.6) 0.0002 (2.2) 85.8 0.000
ADS 0.0549 (113.2) −0.0183 (38.1) 0.3528 (141.0) −0.0002 (1.5) 118.2 0.000
BMW 0.0053 (173.8) −0.0087 (69.6) 1.2029 (203.0) −0.0001 (2.9) 173.7 0.000
TKA 0.0024 (148.6) −0.0075 (61.0) 1.9075 (158.9) 0.0000 (1.3) 206.6 0.000
SCH 0.0106 (135.3) −0.0101 (49.6) 0.8250 (168.8) 0.0000 (0.4) 232.6 0.000
RWE 0.0053 (212.2) −0.0095 (86.2) 1.2460 (210.3) 0.0001 (3.3) 239.4 0.000
DTE 0.0002 (303.0) −0.0010 (32.1) 5.0499 (232.7) 0.0000 (0.0) 292.8 0.000
IFX 0.0004 (196.7) −0.0023 (45.6) 4.5335 (170.6) 0.0000 (0.4) 360.9 0.000
HVM 0.0015 (109.0) −0.0043 (40.1) 2.8391 (130.9) 0.0000 (1.0) 363.8 0.000
VOW 0.0065 (21.2) −0.0099 (17.7) 1.0472 (195.8) 0.0001 (0.2) 429.9 0.000
BAY 0.0024 (216.9) −0.0046 (59.2) 1.6352 (225.8) 0.0000 (1.2) 458.2 0.000
BAS 0.0056 (219.9) −0.0077 (77.4) 1.1206 (244.1) 0.0000 (1.1) 683.1 0.000
EOA 0.0060 (219.2) −0.0070 (65.0) 1.0663 (252.7) 0.0000 (1.0) 1,011.3 0.000
DCX 0.0031 (258.2) −0.0049 (65.4) 1.5638 (254.9) 0.0002 (7.2) 1,376.9 0.000
SAP 0.0370 (212.6) −0.0147 (49.5) 0.5030 (237.4) 0.0006 (5.9) 1,609.9 0.000
MUV2 0.0196 (212.1) −0.0106 (60.4) 0.6476 (246.9) 0.0001 (1.0) 2,101.9 0.000
DBK 0.0065 (248.7) −0.0061 (57.7) 1.1517 (256.1) 0.0000 (0.9) 2,584.6 0.000
ALV 0.0187 (232.7) −0.0080 (35.9) 0.6453 (294.4) −0.0002 (4.5) 2,701.8 0.000
SIE 0.0052 (273.3) −0.0039 (36.4) 1.1442 (297.3) 0.0001 (2.9) 3,827.8 0.000

2×4 quotes from the bid and ask side of the visible book are used to construct update and break
even conditions derived from the zero marginal expected profit condition as in Såndas (2001).
The numbers in parentheses are t-values. The fifth and sixth column report the GMM J statistic
and the associated p-value. The stocks are sorted by ascending order of the J-statistic

13 Two stage and iterated GMM estimates are similar and therefore not reported to conserve space.
To compute the parameter standard errors and the J-statistic we employ the Bartlett Kernel with
bandwidth equal to ten lags when computing the spectral density matrix. We have tested various
lags and the results are robust with respect to bandwidth choice.
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parameters. The estimation results based on the Xetra data are in line with the
central findings reported by Såndas (2001). Only for two out of thirty stocks the
model is not rejected at 1% significance level. In Såndas' (2001) application
the model was rejected for all stocks. Like in Såndas' (2001) application, the
transaction cost estimates (γ) are significantly negative, a result that is difficult to
reconcile with the underlying theoretical model. Hence, even with a data gen-
erating process that corresponds very close to the theoretical framework, the model
does not seem to fit the data very well.

Tables 3 and 4 report the results that are obtained when the modified moment
conditions suggested in the previous section are used. As before, the first four

Table 3 First stage GMM results for the nonparametric specification

Ticker α γ μ J(9) p-value

TUI 0.0040 (140.1) −0.0091 (52.9) −0.0001 (2.3) 0.7 1.000
LIN 0.0169 (122.1) −0.0142 (49.8) 0.0003 (2.8) 3.4 0.945
DB1 0.0111 (110.2) −0.0123 (39.0) 0.0001 (1.1) 11.1 0.270
HEN3 0.0301 (95.2) −0.0120 (31.5) −0.0002 (1.5) 19.7 0.020
ALT 0.0169 (129.8) −0.0117 (47.9) −0.0002 (1.8) 33.5 0.000
HVM 0.0012 (134.2) −0.0058 (60.8) 0.0000 (0.8) 41.9 0.000
ADS 0.0403 (119.3) −0.0125 (30.1) −0.0002 (1.2) 68.3 0.000
MEO 0.0103 (141.2) −0.0139 (64.3) 0.0000 (0.3) 72.8 0.000
FME 0.0299 (79.8) −0.0119 (22.3) 0.0000 (0.2) 84.5 0.000
CONT 0.0094 (120.6) −0.0127 (52.6) 0.0001 (2.1) 87.5 0.000
IFX 0.0003 (235.2) −0.0032 (69.9) 0.0000 (0.2) 97.9 0.000
MAN 0.0076 (127.5) −0.0125 (58.8) 0.0003 (5.0) 101.3 0.000
BMW 0.0039 (188.1) −0.0072 (66.8) −0.0001 (2.7) 112.9 0.000
LHA 0.0015 (162.9) −0.0075 (68.5) 0.0001 (4.1) 165.3 0.000
VOW 0.0048 (28.4) −0.0092 (21.9) 0.0001 (0.2) 169.4 0.000
SCH 0.0078 (147.3) −0.0080 (45.9) 0.0000 (0.4) 173.0 0.000
DPW 0.0019 (168.3) −0.0064 (53.0) −0.0001 (2.9) 176.8 0.000
RWE 0.0038 (209.4) −0.0073 (74.0) 0.0001 (3.2) 189.2 0.000
BAY 0.0018 (196.6) −0.0034 (44.4) 0.0000 (1.3) 349.3 0.000
CBK 0.0013 (196.2) −0.0060 (68.0) 0.0000 (2.0) 427.8 0.000
BAS 0.0041 (222.3) −0.0057 (62.7) 0.0000 (0.8) 574.9 0.000
TKA 0.0019 (164.7) −0.0077 (68.7) 0.0000 (1.1) 721.3 0.000
DCX 0.0022 (235.6) −0.0036 (49.8) 0.0001 (5.8) 760.9 0.000
EOA 0.0043 (227.8) −0.0047 (50.3) 0.0000 (0.7) 1,050.8 0.000
SAP 0.0274 (228.6) −0.0099 (39.5) 0.0004 (4.9) 1,070.5 0.000
MUV2 0.0140 (219.1) −0.0074 (47.7) 0.0000 (0.7) 1,508.2 0.000
DTE 0.0001 (380.6) −0.0022 (73.5) 0.0000 (0.0) 1,514.1 0.000
DBK 0.0046 (265.3) −0.0046 (49.6) 0.0000 (0.7) 1,633.5 0.000
ALV 0.0134 (241.2) −0.0048 (22.7) −0.0002 (4.0) 2,152.3 0.000
SIE 0.0039 (312.6) −0.0032 (35.5) 0.0001 (2.6) 2,912.9 0.000

2×4 quotes from the bid and ask side of the visible book are used to construct update and break
even conditions derived from the zero marginal expected profit condition as in Såndas (2001). For
the construction of the moment conditions, the empirical distribution of the market order sizes is
used instead of the exponential distribution. The stocks are sorted by ascending order of the
J-statistic
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quotes on each market side are used for the construction of break even and update
conditions. Table 3 reports the estimation results for a specification that does not
rely on a parametric assumption on the distribution of the market order size when
constructing the marginal break even and the update conditions as described in
section 3.2.1. The results reported in Table 4 are obtained when using the average
break even and update conditions (11) and (12) for GMM estimation, while
maintaining the parametric assumption (2) about the trade size distribution. For
each parametric specification, the moment condition of Eq. (6) is employed, too.
The full set of eight update conditions is exploited.

The estimates reported in Table 3 show that abandoning the parametric
assumption concerning the market order size distribution improves the results only
marginally. For four of the thirty stocks the model is not rejected at the 1%
significance level. Hasbrouck’s (2004) conjecture that the distributional assump-
tion might be responsible for the model’s empirical failure is therefore not sup-
ported. Generally, the estimates of the adverse selection components, transaction
costs and drift parameters do not change dramatically compared to the baseline
specification. The transaction cost estimates remain negative.

Maintaining the distributional assumption, but using average break even
conditions instead of marginal break even conditions, considerably improves the
empirical performance. Table 4 shows that we have model non-rejection for 22 out
of the 30 stocks at the 1% significance level. With a single exception the estimates
of the marginal transaction cost parameter γ are positive for those stocks for which
the model is not rejected at 1% significance level. The size of the implied
transaction cost estimates are broadly comparable with the relative realized spreads
figures reported in Table 1. For example, the estimation results imply that
transaction costs account for 0.013% of the euro value of a median sized
DaimlerChrsyler trade. This value is quite comparable with the average relative
realized spread which amounts to 0.010% (see Table 1).

Figure 1 shows graphically the improved empirical performance delivered by
the revised methodology. The figure depicts means an medians of implied and
observed ask side price schedules of four selected stocks. The results obtained from
the baseline estimation which uses marginal moment conditions confirm the
disturbing findings reported in Såndas’ (2001). The price schedules implied by the
model estimates are below the observed price schedules at all relevant volumes.
The economically implausible negative price discount at small volumes is caused
by the negative transaction costs estimates. This suggests that the model is not only
rejected on the grounds of statistical significance, but that fundamentally fails to
explain the data. The model does a bad job even in describing the ‘average’ state of
the order book. However, Fig. 1 shows that when working with average break even
and update conditions the empirical performance of the model is considerably
improved. Especially the median observed price schedules correspond closely to
those implied by the model.14

14We have also estimated a specification that combines the nonparametric approach towards
trades sizes and average moment conditions, but the results (not reported) are not improved
compared to the parametric version. In this version, the model is not rejected for 16 out of 30
stocks. The following analysis therefore focuses on the parametric specification using average
moment conditions.
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4.2 Cross sectional analyses

Encouraged by the improved empirical performance of the revised methodology, this
section uses the estimation results reported in Table 4 to conduct a cross sectional
analysis of liquidity supply and adverse selection costs in the Xetra limit order book
market. To ensure comparability across stocks, we follow a suggestion by Hasbrouck
(1991) and standardize the adverse selection component α by computing

� ¼ � � m
P

; (13)

wherem is the average (non-signed), stock specific trade size expressed in number of
shares. P is the sample average of the midquote of the respective stock. τ (times 100)

Fig. 1 Comparison of implied and observed price schedules (visible book). The figure depicts
means and medians of implied and observed ask side price schedules of four selected stocks. In
each figure the values on the horizontal axis show trade volumes (number of shares) up to the 0.9
quantile of the respective stock. The vertical axis show the per share price decrease that a sell
trade of a given volume would incur if it were executed against the current book. The solid line
depicts sample means and the short dashed lines sample medians computed by using all order
book snapshots during the 3 month period. The bold long-dashed lines depict the mean slope
implied by the estimation results reported in Table 4 (baseline model that uses marginal break
even and update conditions). The dash-dot lines and the long-dashed lines are the mean and the
median of the book slope as implied by the estimation results reported in Table 4 (revised
specification which uses average break even and update restrictions). The stock in the left upper
panel is DaimlerChrysler (DCX, from the largest trade volume quartile), the stock in the right
upper panel is Bay. Hypo Vereinsbank (HVM, second volume quartile), the stock in the left lower
panel is Altana (ALT, third volume quartile) and the stock in the right lower panel is Deutsche
Boerse (DB1, fourth volume quartile)
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approximates the percentage change of the stock price caused by a trade of (stock
specific) ‘average’ size. This is a relative measure which is comparable across
stocks. The τ estimates are reported in the last column of Table 4. In the following
subsections we study the relation of τ and market capitalization, trading frequency,
liquidity supply and alternative adverse selections measures.

4.2.1 Adverse selection effects, market capitalization and frequency of trading

In their seminal papers Hasbrouck (1991) and Easley et al. (1996) have reported
empirical evidence that adverse selection effects are more severe for smaller
capitalized stocks. Easley et al. (1996) use a formal model assuming a Bayesian
market maker who updates quotes according to the arrival of trades while
Hasbrouck (1991) estimates a vector autoregression (VAR) involving trade and
midquote returns. Both methodologies have modest data requirements. To estimate
the model by Easley et al. (1996) one only needs to count the number of buyer and
seller initiated trades per trading day to estimate the probability of informed trading
(PIN), the central adverse selection measure in this framework. As it allows a
structural interpretation of the model parameter estimates the methodology is quite
popular in empirical research. Hasbrouck’s VAR methodology is not based on a
formal model, but the reduced form VAR equations are compatible with a general
class of microstructure models. The adverse selection measure is given by the
cumulative effect of a trade innovation on the midquote return. To estimate the
model, standard trade and quote data are sufficient.

Both methodologies are not specifically designed for limit order markets, but
rather for market maker systems. Accordingly, their main applications have been to
analyze NYSE and NASDAQ stocks. In the present paper, the data generating
process, the theoretical background and the empirical methodology are quite
different. However, we reach the same conclusion as Hasbrouck (1991) and Easley
et al. (1996). The Spearman rank correlation of the market capitalization and the
estimated standardized adverse selection component τ (using only the results for
those 22 out of 30 stocks for which the model is not rejected at 1% significance
level) is −0.928 (p-value <0.001). The correlation of τ and the daily number of
trades is −0.946 (p-value <0.001), and the correlation of τ and the daily turnover is
−0.966 (p-value <0.001). The estimation results thus confirm the previous
evidence also for an open limit order market: Adverse selection effects are more
severe for smaller capitalized stocks.

4.2.2 Adverse selection and liquidity supply

Many theoretical market microstructure models predict that liquidity supply and
informed order flow are inversely related. As the standard framework for
microstructure models is a stylized NYSE trading process with a single market
maker quoting best bid and ask prices and associated depths (the ‘inside market’),
liquidity in those models is usually measured by the inside spread set by the
specialist/market maker. Sequential trading models like Easley et al. (1996) and
spread decomposition models like Glosten and Harris (1988) predict that liquidity
(as measured by the spread) and informed order flow are inversely related. In the
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presence of informed order flow, the market maker widens the spread in order to
balance the losses that occur when trading with superiorly informed agents. More
informed order flow thus implies reduced liquidity. Empirical analyses of specialist
markets have confirmed this prediction. The results reported in Table 5 provide
evidence that the inverse relation of inside spread and informed order flow also
holds for open limit order book markets in which limit order traders, instead of
specialists, determine the inside market. The table reports the cross sectional
correlation (Spearman rank correlation) of the standardized adverse selection
component τ and the effective, quoted, and the realized spreads. Effective and
quoted spreads and τ are strongly positively correlated while the correlation with
the realized spread and τ is not significantly different from zero. Given the
interpretation of the realized spreads as a transaction costs measure which is purged
of any informational effects, this is an expected result.15

4.2.3 Ad hoc versus model-based estimates of adverse selection effects in a limit
order book market

In this subsection we investigate whether the adverse selection estimates obtained
from the formal model and those delivered by the simple analysis of effective and
realized spreads (see Section 2) point in the same direction. The two methodologies
differ in two main aspects. First, the estimation of adverse selection components by
taking the difference of effective and realized spread is not based on a specific
theoretical model. The economic intuition behind the methodology, however, is
quite clear, which explains the popularity of the approach. A large difference
between effective and realized spread indicates informational content of the order
flow as the midquote tends to move in the direction of the trade. If a market buy
(sell) order initiates a trade at time t, then the midquote 5 min after the trade is on
average above (below) the time t midquote. By contrast, the estimates of the
standardized adverse selection component reported in Table 4 are based on a formal
model assuming rational limit order traders who place their order submissions
explicitly taking into account the amount of informational content of the order
flow. Second, computation of price impacts by taking the difference of effective
and realized spread only requires publicly available trade and (best) quote data.

Table 5 Correlation of standardized adverse selection component τ with liquidity indicators

Liquidity variable Correlation p-value

Quoted spread (%) 0.873 <0.0001
Effective spread (%) 0.794 <0.0001
Realized spread (%) 0.050 0.824

The table reports the cross sectional Spearman rank correlations of the standardized adverse
selection component τ reported in Table 4 with average quoted, effective and realized spread
reported in Table 1. To compute the correlations we include the stocks for which the model is not
rejected at 1% significance level (22 out of 30 stocks). To obtain stock specific measures we take
averages over all order book snapshots

15 Huang and Stoll (1996) and DeJong et al. (1996) provide evidence for a negative correlation of
realized spread and adverse selection costs.
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To obtain the estimates in the formal framework considered in this paper,
reconstructed order book data are needed. The latter methodology thus uses richer
data, which are, however, more difficult to obtain.

But do the two different methodologies lead to the same conclusions? To
address this question we compute the Spearman rank correlation between the
standardized adverse selection components (τ) reported in Table 4 and the
difference of effective and realized spread. The cross sectional correlation (using
the 22 out of 30 stocks for which the model is not rejected at 1% significance level)
is 0.95. The two different methodologies thus point in the same direction. This
result indicates the robustness of the estimation results of the formal model and also
provides a theoretical justification to use the popular ad hoc method for the analysis
of adverse selection effects in limit order book markets.

5 Conclusion and outlook

An increasing number of financial assets trade in limit order markets. These
markets can be characterized by the following keywords: Transparency, anonymity
and endogenous liquidity supply. They are transparent, because a more or less
unobstructed view on the liquidity supply is possible and anonymous, because
prior to a trade the identity of none of the agents participating in the transaction is
revealed. Liquidity supply is endogenous, because typically there are no dedicated
market makers responsible for quoting bid and ask prices. The question how
liquidity quality and price formation in such a trading design is affected by
informed order flow is a crucial one, both from a theoretical and a practical point of
view. Glosten (1994) has put forth a formal model that describes how an
equilibrium order book emerges in the presence of potentially informed order flow.
Såndas (2001) has confronted the Glosten model with real world data and reported
quite discouraging results. His findings suggest that Glosten's model contains too
many simplifying assumptions in order to provide a valid description of the
intricate real world trading processes in limit order markets.

This paper shows that the ability of Glosten's basic framework to explain real
world order book formation is greater than previously thought. We estimate the
model using data produced by a DGP that closely corresponds to the Glosten's
theoretical framework and confirm the previous finding that the baseline
specification put forth by Såndas (2001) is generally rejected. However, relaxing
the assumption about marginal zero profit order book equilibrium in favor of a
weaker equilibrium condition considerably improves the empirical performance.
The equilibrium condition proposed in this paper does not assume that traders
immediately cancel a marginal order that shows non-positive expected profit. It
also acknowledges the fact that competition between potential market makers
will render the expected profit offered by the whole book ultimately to zero
(after accounting for opportunity costs). Employing the revised econometric
methodology, formal specification tests now accept the model in the vast
majority of cases at conventional significance levels. A comparison of implied
and observed order book schedules shows that the model estimated on the
revised set of moment conditions fits the data quite well. We conclude that
Glosten’s theoretical framework can also be transferred into a quite useful
empirical model.
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On the other hand, the conjecture put forth by Hasbrouck (2004), which states
that the distributional assumption regarding the market order sizes is responsible
for the empirical model failure is not supported. The paper has developed a
straightforward way to circumvent the restrictive distributional assumption and
proposes a nonparametric alternative. However, this modification does not deliver
an improved empirical performance.

Given the overall encouraging results, the empirical methodology is employed
for an analysis of liquidity supply and adverse selection costs in a cross section of
stocks traded in one of the largest European equity markets. The main results can
be summarized as follows:

– We have provided new evidence, from a limit order market, that adverse
selection effects are more severe for smaller capitalized, less frequently traded
stocks. This corroborates the results of previous papers dealing with a quite
different theoretical background, empirical methodology and market structure.

– The empirical results support one of the main hypothesis of the theory of limit
order markets, namely that liquidity and adverse selection effects are inversely
related.

– The adverse selection component estimates implied by the structural model and
ad hoc measures of informed order flow which are based on a comparison of
effective and realized spreads point in the same direction. This is a useful result,
because it is not always possible to estimate the structural model, most often
because of the lack of suitable data. The result also points towards the robustness
of the structural model.

Avenues for further research stretch in various directions. The results reported
in this paper have vindicated the empirical relevance of the Glosten type market
order model. Practical issues in market design can thus be empirically addressed
based on a sound theoretical framework. The revised methodology could be
employed to evaluate changes in trading design on liquidity quality, with the
advantage that the results can be interpreted on a sound theoretical basis. A
comparison of (internationally) cross listed stocks seems also promising, especially
after the NYSE's move towards adopting the key feature of an open limit order
market, the public display of the limit order book. An interesting question would be
to investigate whether the recently reported failures of cross listings (in terms of
insufficient trading volume in the foreign markets) are due to market design
features that aggravate potential adverse selection effects.

Second, a variety of methodological extensions could be considered. Såndas
(2001) has already addressed the issue of state dependence of the model pa-
rameters. He used a set of plausible instruments to scale the model parameters.
Recent papers on price impacts of trades point to alternative, powerful instruments
that could be used, and which might improve the empirical performance and
explanatory power. For example, Dufour and Engle (2000) have emphasized the
role of time between trades within Hasbrouck’s (1991) VAR framework. As the
Glosten/Såndas type model considered in this paper is also estimated on irregularly
spaced data, it seems natural to utilize their findings. Furthermore, the exogeneity
of the market order flow is a restrictive assumption that should be relaxed. Gomber
et al. (2004) and Coppejans et al. (2003) show that market order traders time their
trades by submitting larger trade sizes at times when the book is relatively liquid.
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Hence, using the liquidity state of the book as a scaling instrument for the expected
order size parameter seems a promising strategy. As in many GMM applications,
the number of moment conditions that are available is large, and the difficult task is
to pick both relevant and correct moment conditions. Recent contributions by
Andrews (1999) and Hall and Peixe (2003) could be utilized to base the selection of
moment conditions on a sound methodological basis. Another direction of future
research points to a further relaxation of the model's parametric assumptions.
Specifically, the linear updating function A.1 could be replaced by a nonlinear
relation of asset price and market order size. Combined with a conditional
nonparametric distribution for the market order sizes this would provide a quite
flexible modeling framework.
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Appendix: Derivation of revised moment conditions

This section outlines the background for the revised set of moment conditions
describing order book equilibrium. We start by writing the zero expected profit
condition for one unit of a limit sell order as

E Rt � Xtþ1ð Þ ¼ 0; (14)

where Rt denotes the net revenue (minus transaction costs) received from selling
one unit of a limit order at price pt to a market order trader who submitted a market
buy order of size mt.

16Xt +1 denotes the fundamental value of the stock after the
arrival of a (buy) market order. Xt +1 depends on the current value Xt and the signed
market order sizemt, i.e. Xt +1=g(mt , Xt). For brevity of notation we henceforth omit
the time t subscripts whenever it is unambiguous to do so.

The expected profit of the market order depends on the position of the limit
order in the order queue and the distribution of market orders, i.e. we can write
Eq. (14) as Z 1

Q
R� g m;Xð Þð Þf mð Þdm ¼ 0: (15)

Q is the cumulated sell order volume standing in the book before the considered
limit order unit and f (m) denotes the probability density function of m. Alter-
natively, Eq. (15) can be written as

R� E g m;Xð Þ m � Qj½ �ð Þ � P m � Qð Þ ¼ 0: (16)

16 The exercise is analogous for the bid side, but to conserve space, we focus on the sell side of the
book.
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Assuming the linear specification in Eq. (1) for g (m, X), and dividing by the
unconditional probability, P (m≥Q), Eq. (16) simplifies to

R� �E m m � Qj½ � � X � �� ¼ 0: (17)

Eq. (17) highlights that the expected profit of a limit order trader depends on the
upper tail expectation of the market order distribution.

Assuming exponentially distributed market order sizes as in Eq. (2) we have

E m m � Qj½ � ¼ Qþ � (18)

Using R=p−γ this yields

Q ¼ p� X � � � �
�

� �; (19)

which is a generalized form of Eq. (3). Without the distributional assumption, the
equivalent of Eq. (19) is

E m m � Qj½ � ¼ p� X � � � �
�

(20)

Replacing E[m∣m ≥ Q] by the conditional sample mean bE m m � Qj½ �, i.e. the
observed upper tail market order distribution in the sample, one can construct
update and break even moment conditions for GMM estimation which do not
require a parametric assumption of market order sizes.

So far, the results are valid for an order book with a continuous price grid. We
now focus on a specific offer side quote with price p+k and corresponding limit
order volume q+k. Abstracting from the discreteness of limit order size shares and
assuming that the execution probabilities for all units at the quote tick p+k are
identical, we calculate the expected profit of all limit orders with identical limit
price p+k by integrating the left hand side of equation, Eq. (17), viz17Z Qþk

Qþk�1

pþk � � � �E m m � Qj½ � � X � �ð ÞdQ � P m � Qþk�1ð Þ: (21)

Assuming exponentially distributed order sizes and subtracting quote specific
fixed execution costs ξ yields the total expected profit of the limit order volume at
price p+k. Dividing by the volume at quote q+k, yields the average expected profit
per share at the +kth quote,

pþk � X � �� � � �

qþk
� � Qþk þ �� qþk

2

� 
� 	
� P m � Qþk�1ð Þ: (22)

17 The same result can be derived using the precise probabilities and a first-order Taylor
approximation for the emerging exponential terms.
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In the main text we discuss the implications of the situation that the average profit
equals zero. This implies that

pþk � X � �� � � �

qþk
� � Qþk þ �� qþk

2

� 

¼ 0: (23)

Reordering Eq. (23) and replacing Q+k by Q+k−1+qk yields the average profit
conditions Eq. (10) from which average break even and update conditions can be
derived as described in the main text.
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Pierre Giot . Joachim Grammig

How large is liquidity risk in an automated
auction market?

Abstract We introduce a new empirical methodology that models liquidity risk
over short time periods for impatient traders who submit market orders. Using
Value-at-Risk type measures, we quantify the liquidity risk premia for portfolios
and individual stocks traded on the automated auction market Xetra. The spec-
ificity of our approach relies on the adequate econometric modelling of the
potential price impact incurred by the liquidation of a portfolio. We study the
sensitivity of liquidity risk towards portfolio size and traders’ time horizon, and
interpret its diurnal variation in the light of market microstructure theory.

1 Introduction

In economics and finance, the notion of liquidity is generally conceived as the
ability to trade quickly a large volume with minimal price impact. In an attempt to
grasp the concept more precisely, Kyle (1985) identifies three dimensions of
liquidity: tightness (reflected in the bid–ask spread), depth (the amount of one-
sided volume that can be absorbed by the market without causing a revision of the
bid-ask prices), and resiliency (the speed of return to equilibrium). In modern
automated auction markets, the liquidity supply solely depends on the state of the
electronic order book which consists of previously entered, non-executed limit buy
and sell orders. This set of standing orders determines the price-volume rela-
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tionship that a trader who requires immediacy of execution is facing.1 If few limit
buy or sell orders are present in the system or if many orders are present but for
small trade sizes only, liquidity is low and marketable limit order trades may incur
considerable price impacts. For example, Harris (2002) provides a complete tax-
onomy of the kinds of trades that can be submitted to exchanges and their impact
on market liquidity. Broadly speaking and focusing solely on order books, liquidity
providers (patient investors) submit non-aggressive limit orders, i.e. limit orders
which do not face immediate execution but which provide liquidity to the system
by filling the order book. Liquidity demanders (impatient traders) submit market
orders which are executed against standing limit orders and which thus deplete the
order book and decrease the overall liquidity.2 Recent studies which focus on the
interaction and dynamics of market orders vs limit orders in automated auctions
include Biais et al. (1995), Handa and Schwartz (1996), Ahn et al. (2001) or
Beltran et al. (2005a). Due to the interaction between limit and market orders, most
studies conclude that there exists a dynamical equilibrium between limit order
trading and transitory volatility. Examples of impatient traders include traders who
wish to transact near the close of the trading session (so that the price of their trade
is not far from the official closing price), see Cushing and Madhavan (2000), or
momentum traders who are keen on entering immediate long or short positions
(Keim and Madhavan 1997). In all cases, this behavior leads to increased volatility
and trading costs.

Because of the price and time priority rules implemented at automated auction
markets, the price impact of a buy (sell) side trade is an increasing (decreasing)
function of the trade size. As in recent studies focusing on liquidity in automated
auction markets (Gouriéroux et al. 1998; Irvine et al. 2000; Coppejans et al. 2004;
Domowitz et al. 2005), we model the available liquidity by focusing on the unit
price obtained by selling v shares at time t:

bt vð Þ ¼
P

k bk;tvk;t
v

(1)

where v is the volume executed at k different unique bid prices bk,t with cor-
responding volumes vk,t standing in the limit order book at time t. The unit price
at(v) of a buy of size v at time t can be computed analogously. Price impacts of buy
and sell trades defined as in Eq. (1) provide important measures of ex-ante liquidity
for impatient investors. As phrased in Irvine et al. (2000), “an ex-ante measure of
liquidity is useful to investors, because it indicates the cost at which a trade can be
immediately executed.” The most obvious measure of ex-ante liquidity is the
quoted inside spread. With full order book data, one can however do much better as
the price impact of buy and sell trades for any given volume v (i.e. for volumes
below or above the quoted inside depths) can be computed as in Eq. (1). In dealer
based trading system (such as the over-the-counter trading in FOREX markets for

1 That explains why market participants care about the whole information contained in the book
and why order book modelling is of paramount importance. Pascual and Veredas (2004), Cao
et al. (2004), Beltran et al. (2005b) or Beltran et al. (2005a), among others, focus on this issue.
2 Several authors, such as Biais et al. (1995), have put forward a scale of aggressiveness for
submitted orders. The most aggressive orders are market orders (also called marketable limit
orders) that are fully matched with possibly many standing limit orders that sit on the other side of
the book. On the other hand, the most patient investors submit limit orders that enter the order
book below/above the best bid/ask prices.

P. Giot, J. Grammig112



example), ex-ante measures of liquidity are limited to quoted inside spread and
quoted inside depths. It is also important to note that liquidity measures such as
defined in Eq. (1) characterize committed liquidity as given by the standing limit
orders only. With hybrid trading systems which mix characteristics of order book
and dealer systems, unit prices at(v) and bt(v) give an upper bound on the price to be
paid for the trade as the additional participants can add liquidity prior to the
execution of the trade, decreasing at(v) or increasing bt(v).

3 This is also the case for
automated auction markets which allow so-called hidden or iceberg orders (see
below). In order book markets which feature hidden orders, ex-ante costs of trading
measures and liquidity risk measures such as computed in this paper give an upper
bound on these trading and liquidity costs (see also Beltran et al. 2005a).4

In this paper we will show that, with suitable data at hand, it is possible to
quantify the liquidity risk over short term time horizons in automated auction
markets. More precisely, we introduce liquidity risk measures that take into account
the potential price impact of liquidating a portfolio. This approach is particularly
relevant for short term impatient traders who submit market orders. The core of our
methodology relies on the comparison of risk measures for so-called frictionless
returns (i.e. no-trade returns) and actual returns (which take into account the actual
trade price for a v-share trade). These actual returns are particularly relevant for
short-term impatient traders who currently hold the stock and who are committed to
shortly submit a marketable sell order. In contrast, frictionless returns refer to
traders who hold the stock over the same time period, but do not intend to sell their
shares. We rely on measures that originate from the Value-at-Risk methodology
(see Section 3) to characterize the liquidity risk. It should however be stressed that
our framework is not the usual 10-day VaR framework familiar to financial
regulators. Hence, we use the VaR methodology to define our intraday risk mea-
sures, but in our paper these risk measures are meant to assess the intraday
immediate liquidation risk faced by impatient traders. Consequently, we do not
derive implications for financial regulators. In contrast, our approach is more
similar to Andersen and Bollerslev (1997); Giot (2000, 2005) or Chanda et al.
(2005) who characterize volatility on an intraday basis.

In contrast to a standard (frictionless) VaR approach, in which one uses prices
based on mid-quotes, the Actual VaR approach pursued in this paper uses as inputs
volume-dependent transaction prices. This takes into account the fact that buyer
(seller) initiated trades incur increasingly higher (lower) prices per unit share as the
trade volume increases. The liquidity risk component naturally originates from the
volume dependent price impact incurred when the portfolio is liquidated. Our
approach relies on the availability of intraday bid and ask prices valid for the
immediate trade of any volume of interest. Admittedly, procuring such data from
traditional market maker systems would be an extremely tedious task. However,
the advent of modern automated auction systems offers new possibilities for em-

3 Examples are a combination of a limit order book and market markets who bring additional
liquidity (Euronext or Xetra, for non-actively traded stocks), or a combination of a limit order
book, a specialist and floor traders (NYSE), see Sofianos and Werner (2000) or Venkatamaran
(2001). Note that the German Stock Exchange recently adopted the price impact as defined in
Eq. (1) as the key liquidity indicator for the automated auction system Xetra (see Gomber et al.
2002).
4 Nevertheless, they do provide meaningful information as they characterize the worst-case
scenarios.

How large is liquidity risk in an automated auction market? 113



pirical research.5 Using a unique database (for three stocks traded on the Xetra
platform) containing records of all relevant events occurring in an automated
auction system, we construct real time order book histories over a three-month
period and compute time series of potential price impacts incurred by trading a
given portfolio of assets. Based on this data we estimate liquidity adjusted mea-
sures and liquidity risk premiums for portfolios and single assets. Our empirical
results reveal a pronounced diurnal variation of liquidity risk which is consistent
with predictions of microstructure information models. We show that, when as-
suming an impatient trader’s perspective, accounting for liquidity risk becomes a
crucial factor: the traditional (frictionless) measures severely underestimate the true
risk of the portfolio.

The remainder of the paper is organized as follows: in Section 2, we provide
background information about the Xetra system and describe our dataset. The
empirical method is developed in Section 3. Results are reported in Section 4.
Section 5 concludes and offers possible new research directions.

2 The dataset and the Xetra trading system

In our empirical analysis we use data from the automated auction system Xetra
which is employed at various European trading venues, like the Vienna Stock
Exchange, the Irish Stock Exchange and the European Energy Exchange.6 Xetra
was developed and is maintained by the German Stock Exchange and has operated
since 1997 as the main trading platform for German blue chip stocks at the
Frankfurt Stock Exchange (FSE). Whilst there still exist market maker systems
operating parallel to Xetra—the largest of which being the Floor of the Frankfurt
Stock Exchange—the importance of those venues has been greatly reduced, es-
pecially regarding liquid blue chip stocks. Similar to the Paris Bourse’s CAC and
the Toronto Stock Exchange’s CATS trading system, a computerized trading pro-
tocol keeps track of entry, cancellation, revision, execution and expiration of mar-
ket and limit orders. Until September 17, 1999, Xetra trading hours at the FSE
extended from 8.30 A.M. to 5.00 P.M. CET. Beginning with September 20, 1999
trading hours were shifted to 9.00 A.M. to 5.30 P.M. CET. Between an opening and a
closing call auction—and interrupted by another mid-day call auction—trading is
based on a continuous double auction mechanism with automatic matching of
orders based on clearly defined rules of price and time priority. Only round lot sized
orders can be filled during continuous trading hours. Execution of odd-lot parts of
an order (representing fractions of a round lot) is possible only in a call auction.
During pre- and post-trading hours it is possible to enter, revise and cancel orders,
but order executions are not conducted, even if possible.

5 As mentioned above, this approach is valid for all order book markets. For automated auction
markets which feature hidden orders, our approach delivers worst-case scenarios. This is however
the best one can do as hidden orders are by definition not visible.
6 Bauwens and Giot (2001) provide a complete description of order book markets and Biais et al.
(1999) describe the opening auction mechanism used in order book markets and corresponding
trading strategies. A lucid description of real world trading processes is found in Harris (2002).
Further information about the organization of the Xetra trading process is provided in Deutsche
Börse (1999).
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Until October 2000, Xetra screens displayed not only best bid and ask prices,
but the whole content of the order book to the market participants. This implies that
liquidity supply and potential price impact of a market order (or marketable limit
order) were exactly known to the trader. This was a great difference compared to
e.g. Paris Bourse’s CAC system where hidden orders (or ‘iceberg’ orders) may be
present in the order book. As the name suggests, a hidden limit order is not visible
in the order book. This implies that if a market order is executed against a hidden
order, the trader submitting the market order may receive an unexpected price
improvement. Iceberg orders have been allowed in Xetra since October 2000,
heeding the request of investors who were reluctant to see their (potentially large)
limit orders, i.e. their investment decisions, revealed in the open order book.

The transparency of the Xetra order book does not extend to revealing the
identity of the traders submitting market or limit orders. Instead, Xetra trading is
completely anonymous and dual capacity trading, i.e. trading on behalf of
customers and principal trading by the same institution is not forbidden.7 In
contrast to a market maker system there are no dedicated providers of liquidity, like
e.g. the NYSE specialists, at least not for blue chip stocks studied in this paper. For
some small cap stocks listed in Xetra there may exist so-called Designated
Sponsors—typically large banks—who are obliged to provide a minimum liquidity
level by simultaneously submitting buy and sell limit orders.

The German Stock Exchange granted access to a database containing complete
information about Xetra open order book events (entries, cancellations, revisions,
expirations, partial-fills and full-fills of market and limit orders) that occurred
between August 2, 1999 and October 29, 1999.8 Due to the considerable amount of
data and processing time to reconstruct the full order book in ‘real time,’ we had to
restrict the number of assets we deal with in this study. Event histories were
extracted for three blue chip stocks, DaimlerChrysler (DCX), Deutsche Telekom
(DTE) and SAP. By combining these stocks we also form small, medium and large
portfolios to compute the liquidity risk associated with trading portfolios. At the
end of the sample period the combined weight of DaimlerChrysler, SAP and
Deutsche Telekom in the DAX—the value weighted index of the 30 largest
German stocks—amounted to 30.4 percent (October 29, 1999). Hence, the
liquidity risk associated with the three stock portfolios is quite representative of the
liquidity risk that an investor faces when liquidating the market portfolio of
German Stocks.

Based on the event histories we perform a real time reconstruction of the order
book sequences. Starting from an initial state of the order book, we track each
change in the order book implied by entry, partial or full fill, cancellation and
expiration of market and limit orders. This is done by implementing the rules of the
Xetra trading protocol outlined in Deutsche Börse (1999) in the reconstruction
program.9 From the resulting real time sequences of order books snapshots at 10
and 30-min frequencies during the trading hours were taken. For each snapshot, the
order book entries were sorted on the bid (ask) side in price descending (price
ascending) order. Based on the sorted order book sequences we computed the unit

7 Grammig et al. (2001) and Heidle and Huang (2002) have recently shown how the anonymity
feature of automated auction systems can severely aggravate adverse selection effects.
8 Note that during this period hidden orders were not allowed, and that trading hours shifted in the
midst of the sample period.
9 GAUSS programs for order book reconstruction are available from the authors upon request.
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price bt(v), as defined in Eq. (1), implied by selling at time t volumes v of 1, 5,000,
20,000, and 40,000 shares, respectively. Our choice of volumes is motivated by the
descriptive statistics and trading statistics for the three stocks (see below). Mid-
quote prices were computed as the average of best bid and ask prices prevailing at
time t. Of course these are equivalent to bt(1) and at(1), respectively. If the trade
volume v exceeds the depth at the prevailing best quote then bt(v) will be smaller
than bt(1) (and at(v) >at(1)). By varying the trade volume v one can plot the slope of
the instantaneous offer and demand curves. Because Xetra did not allow iceberg
type orders during the time period under study, our reconstructed order book is the
actual order book faced by market participants. This implies that the computed
liquidity risk (see below) is the actual risk incurred by an impatient trader who
submits aggressive buy or sell orders for a v-share volume.

Table 1 reports descriptive statistics on trading and liquidity supply activity for
the three stocks. Trading activity is high, with 600 to 1,300 trades per day. The
large number of (nonmarketable) limit order submissions, of which on average
60% are cancelled before execution, reflects active and competitive liquidity
suppliers. The cumulative depth figures show that the order books can sustain large

Table 1 Data descriptives

DCX DTE SAP

Trade descriptives
Avg. no. of trades per day 1,297 922 661
Avg. transaction price (price per share in euros) 69.9 40.7 402.5
Avg. volume per trade (shares) 1,888 3,352 408
Median volume per trade (shares) 1,000 2,000 300
0.25 quantile volume per trade (shares) 500 900 100
0.75 quantile volume per trade (shares) 2,300 4,200 500
0.95 quantile volume per trade (shares) 5,000 9,900 1,000
Liquidity supply descriptives
Avg. inside spread (euros) 0.076 0.069 0.732
Avg. volume (shares) at best ask 2,908 4,855 467
Avg. cumulated volume (shares) first two ask quotes 6,230 10,130 986
Avg. cumulated volume (shares) first three ask quotes 9,781 15,575 1,558
Avg. total ask side volume (shares) 350,063 317,725 32,300
Avg. volume (shares) at best bid 2,378 4,648 452
Avg. cumulated volume (shares) first two bid quotes 5,168 9,993 936
Avg. cumulated volume (shares) first three bid quotes 8,145 15,745 1,456
Avg. total bid side volume (shares) 346,334 322,311 33,885
Daily avg. no. submitted non-marketable limit orders per day 3,139 2,311 3,038
Daily avg. no. limit order cancelations per day 1,968 1,395 2,346

The table reports descriptives of the liquidity demand reflected in trade events and liquidity
supply reflected in the Xetra order book for Daimler Chrysler (DCX), Deutsche Telekom (DTE)
and SAP. The sample period extends from August 2, 1999 to October 29, 1999 and comprises 65
trading days. The descriptives are computed using observations from the continuous trading
hours. Until September 17, 1999 the continuous trading period extended from 8.30 A.M. to 5.00 P.M.
CET. Beginning with September 20, 1999 the trading hours were shifted to 9.00 A.M. to 5.30 P.M.
CET. Except for the daily figures we compute averages over the trade events using the snapshots
of the order book immediately before the trade for the liquidity supply variables
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trades, also those hypothetical trade sizes that we consider in this paper. Looking at
the distribution of trade sizes one can see that the majority of the trades is relatively
small, and that the distribution is right-skewed. The hypothetical trade sizes that we
consider for the liquidity adjusted VaR method proposed in this paper can thus be
considered as large trades, i.e. beyond the 95% quantile of the trade size dis-
tribution. This is quite intended as we want to assess the risk associated with
liquidating large positions.

3 Methodology

In this section, we detail the econometric methodology used to characterize the
liquidity risk faced by impatient traders. We first present an existing model that
focuses on liquidity risk in the VaR framework. Then we put forward our new
methodology that capitalizes on the ex-ante known state of the order book to derive
actual measures of liquidity risk. Throughout this section, we focus on the mean
component of the liquidity risk and on the ‘uncertainty’ component (the standard
deviation combined with the quantile), with both measures being combined in a
single number akin to a VaR measure.

VaR type market risk measures can be traced back to the middle of the 1990s.
First, the 1988 Basel Accord specified the total market risk capital requirement for
a financial institution as the sum of the requirements of the equities, interest rates,
foreign exchange and gold and commodities positions.10 Secondly, the 1996
Amendment proposed an alternative approach for determining the market risk
capital requirement, allowing the use of an internal model in order to compute the
maximum loss over 10 trading days at a 1% confidence level. This set the stage for
Value-at-Risk models which take into account the statistical features of the return
distribution to quantity the market risk.11

Although the use of VaR models was a breakthrough with respect to the much
cruder models used earlier, the notion of liquidity risk has been conspicuously
absent from the VaR methodology until the end of the 1990s. Subramanian and
Jarrow (2001) characterize the liquidity discount (the difference between the mar-
ket value of a trader’s position and its value when liquidated) in a continuous time
framework. Empirical models incorporating liquidity risk are developed in Jorion
(2000), or Bangia et al. (1999), but none of the methods does explicitly take into
account the price impact incurred when liquidating a portfolio of assets. Bangia
et al. (1999), henceforth referred to as BDSS, suggest a liquidity risk correction
procedure for the VaR framework. BDSS relate the liquidity risk component to the
distribution of the inside half-spread. In the first step of the procedure, the VaR is
computed as the α percent quantile of the mid-quote return distribution (assuming
normality). This quantile is then increased by a factor based on the excess kurtosis
of the returns. In a second step, liquidity costs are allowed for by taking as inputs
the historical average half-inside-spread and its volatility. This adjusts the VaR for
the fact that buy and sell orders are not executed at the quote mid-point, but that

10 This sum is a major determinant of the eligible capital of the financial institution based on the
8% rule.
11 Further general information about VaR techniques and regulation issues are available in Dowd
(1998), Jorion (2000), Saunders (2000) or at the Bank of International Settlement website http://
www.bis.org.
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(extreme) variations in the spread may occur. BDSS assume a perfect correlation
between the frictionless VaR and the exogenous cost of liquidity. This yields the
total VaR being equal to the sum of the market VaR and liquidity cost. Switching
from returns to price levels, BDSS express the VaR at level α (including liquidity
costs) as:

Pt ¼ at 1ð Þ þ bt 1ð Þ
2

1� e�þZ��
� �þ 1

2
�S þ Z

0
��S

� 
� �
(2)

where μ and σ are the mean and volatility of the market (mid-quote) returns, μS and
σS are the mean and volatility of the relative spread, Zα and Z

0
α are the α percent

quantiles of the distribution of market returns and spread respectively and Pt is the
VaR at levelα (expressed as a price) taking into account market risk and liquidity costs.

The BDSS procedure offers the possibility to allow for VaR liquidity risk when
only the best bid and best ask prices are available. This is, for example, the case
when using the popular TAQ data supplied by NYSE. A volume dependent price
impact is, quite deliberately, not taken into account as such information is not
available from such standard databases. However, a more precise way to allow for
liquidity risk becomes feasible with richer data at hand. The approach pursued in
this paper relies on the availability of time series of intraday bid and ask prices valid
for the immediate trade of a given volume (thanks to the procedure detailed in
Section 2). In a market maker setting this requires a time series of quoted bid and
ask prices for a given volume. In an automated auction market, unit bid and ask
prices can be computed according to Eq. (1) using open order book data. Obtaining
such data for a market maker system will be almost impossible. As market makers
are obliged to quote only best bid and ask prices with associated depths, quote
driven exchanges can and will at best supply this limited information set for
financial market research. As a matter of fact, this is the situation where the BDSS
approach adds the greatest value in correcting VaR for liquidity risk. In a
computerized auction market much richer data can be exploited. As the automated
trading protocol keeps track of and records all events occurring in the system it is
possible to reconstruct real time series of limit order books from which the required
unit bid prices bt(v) can be straightforwardly computed. Furthermore and as
stressed above, the Xetra trading system we work with did not authorize hidden
orders at that time; thus, our reconstructed order book and unit prices computed
from Eq. (1) actually give the transaction prices relevant for impatient investors.

In order to compute the liquidity risk measures to be introduced below,
econometric specifications for two return processes are required. First, for mid-
quote returns (referred to as frictionless returns) which are defined as the log ratio
of consecutive mid-quotes:12

rmm;t ¼ ln
at 1ð Þ þ bt 1ð Þ

at�1 1ð Þ þ bt�1 1ð Þ :

12 Frictionless returns are, somewhat misleadingly, referred to as trading returns in the BDSS
framework.
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Second, for actual returns which are defined as the log ratio of mid-quote and
consecutive unit bid price valid for selling a volume v shares at time t:

rmb;t vð Þ ¼ ln
bt vð Þ

0:5 at�1 1ð Þ þ bt�1 1ð Þð Þ :

In the market microstructure framework discussed at the beginning of the paper,
the rmb,t (v) returns are relevant for short-term impatient traders who currently (i.e.
at time t−1) hold the stock and who are committed to submit a marketable sell order
for v shares at time t; in contrast, the rmm,t returns refer to a no-trade outcome at time
t. For the analysis of liquidity risk associated with a portfolio consisting of i=1,...,N
assets with volumes vi, actual returns are obtained by computing the log ratio of the
market value when selling the portfolio at time t, ∑i=1

N bt(v
i)vi, and the value of the

portfolio evaluated at time t−1 mid-quote prices. To compute frictionless portfolio
returns, the portfolio is evaluated at mid-quote prices both at t and t−1.

The computation of the liquidity risk faced by impatient traders relies on the
individual computation and then comparison of two VaR measures that pertain to
the rmm,t and rmb,t(v) returns.

13 For both types of returns the VaR is estimated in the
standard way, namely as the one-step ahead forecast of the α percent return
quantile. We refer to the VaR computed on the {rmb,t(v)}t=1

T returns sequence as the
Actual VaR. Our econometric specifications of the return processes build on
previous results on the statistical properties of intraday spreads and return volatility.
Two prominent features of intraday return and spread data have to be accounted
for. First, spreads feature considerable diurnal variation (see e.g. Chung et al.
1999). Microstructure theory suggests that inventory and asymmetric information
effects play a crucial role in procuring these variations. Information models predict
that liquidity suppliers (market makers, limit order traders) widen the spread in
order to protect themselves against potentially superiorly informed trades around
alleged information events, such as the open. Second, as shown by e.g. by
Andersen and Bollerslev (1997), conditional heteroskedasticity and diurnal
variation of return volatility have to be taken into account. When specifying the
conditional mean of the actual return processes we therefore allow for diurnal
variations in actual returns, since these contain, by definition, the half-spread. We
adopt the specification of Andersen and Bollerslev (1997) to allow for volatility
diurnality and conditional heteroskedasticity in the actual return process.
Furthermore, diurnal variations in mean returns and return volatility are assumed
to depend on the trade volume, as suggested by Gouriéroux et al. (1999). For
convenience of notation we suppress the volume dependence of actual returns and
write the model as:

rmb;t ¼  t þ 0 þ
Xr
i¼1

irmb;t�1 þ ut; (3)

13 See Giot (2005) for an application of VaR type market risk measures to high-frequency returns.
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where

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�tht"t;

p
(4)

ht ¼ !þ
Xq
i¼1

�iu
2
t�1 þ

Xp
i¼1

�iht�1: (5)

The innovations "t are assumed to be independently identically Student dis-
tributed with ν1 degrees of freedom. The functions  t and �t account for diurnal
variation in the level of actual returns and return volatility, respectively. We have
suppressed the volume dependence of actual returns only for brevity of notation.
The discerning reader will recognize that in a more extensive notation all Greek
letters would have to be written with a volume index v. Accordingly, the model
parameters are estimated for each volume dependent actual return process. We
employ a four-step procedure that is described as follows.

First, the diurnal component  t is estimated by a non-parametric regression
approach. Given returns available at the s-minute sampling frequency, we sub-
divide the trading day into s-minute bins, compute the average actual return (over
all days in the sample) by bin and smooth the resulting time series using the
Nadaraya–Watson estimator.14 In the second step, a time series of diurnally
adjusted returns is obtained by subtracting the estimate  ̂t from the actual return
rmb,t. The resulting time series is used to estimate the AR-parameters process by
OLS. The sequence of AR residuals provides the input for modelling actual return
volatility. In the third step, the diurnal volatility function �t is estimated non-
parametrically by applying the Nadaraya–Watson estimator to the estimated
squared AR residuals, û2t

� �
which are sorted in s-minute bins. In step four, the

squared AR residuals are divided by the estimates �̂t . The resulting series is finally
used to estimate the GARCH parameters by conditional Maximum Likelihood.15

This specification implies that the conditional standard deviation of the actual
return at time t, σt(rmb,t(v)), evolves as:

�t rmb;tð Þ ¼
ffiffiffiffiffiffiffiffi
�tht

p
: (6)

14 See for example Gouriéroux et al. (1998).
15 As the trading hours shifted during the sample period, the diurnal functions  ) and �t are
estimated separately for each sub-sample. When estimating the parameters of the autoregressive
model components, we have to account for non-trading periods (overnight, weekends) and
prevent that end-of-day observations shape the dynamics of the start-of-day returns. For this
purpose, we adopt a procedure proposed by Engle and Russell (1998) and re-initialize the AR
process at the start of each day. Sample average returns are used as initial values. We do not
consider joint estimation which, although feasible, would impose a considerable computational
burden. Recent research on related models of intraday price processes has shown that the joint
estimation results are quite similar to multi-step procedures like the one outlined above (see Engle
and Russell 1998, or Martens et al. 2002).
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Correspondingly, the Actual VaR at time t−1 for the actual return at time t given
confidence level α is then given by:

VaRmb;t ¼ �mb;t þ t�;�1�t rmb;tð Þ; (7)

where

�mb;t ¼  t þ 0 þ
Xr
i¼1

i rmb;t�1 �  t�1ð ÞÞ

and t�;�1 is the α-percent quantile of the student distribution with ν1 degrees of
freedom.16 We refer to μmb,t as the mean component and to t�;�1�t rmb;tð Þ as the
volatility component of the Actual VaR. With respect to the liquidity risk faced by
an impatient investor (over the [t−1, t] time interval), VaRmb,t thus provides one
number that both summarizes the expected cost (shaped by the mean component
μmb,t ) and the volatility cost (determined by t�;�1�t rmb;tð Þ ). This duality is central to
our methodology as it stresses that the liquidity risk for impatient investors
involves both an expected immediacy cost (which is strongly determined by the
volume dependent spread) and a second cost that is related to the uncertainty of the
trade price for the given traded volume over the [t−1, t] time interval.

In a second step, the computation of the relative (i.e. for an actual trade of v
shares vs a no trade situation) liquidity risk premium measures which will be
discussed below also requires a VaR estimate based on mid-quote returns (referred
to as frictionless VaR). The econometric specification corresponds to the Actual
VaR with the exception that there is no need to account for a diurnal variation in
mean returns.17 For notational convenience let us use the same greeks as for the
actual return specification:

rmm;t ¼ �mm;t þ ut;

�mm;t ¼ 0 þ
Xr
i¼1

irmm;t�1;

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� tð Þht"t;

p
ht ¼ !þ

Xq
i¼1

�iu
2
t�1 þ

Xp
i¼1

�iht�1:

(8)

The innovations "t are assumed to be independently identically Student dis-
tributed with ν2 degrees of freedom. �t accounts for diurnal variation in frictionless
return volatility. Parameter estimation is performed along the same lines as outlined
above. The frictionless VaR at α percent confidence level is:

VaRmm;t ¼ �mm;t þ t�; �2�t rmm;tð Þ: (9)

16 For notational simplicity we suppress the dependence of the VaR measures on α as we do not
vary the significance level in the empirical analysis.
17 In a weakly efficient market, frictionless returns are serially uncorrelated. However, for ultra-
high frequency time horizons, some small statistically significant autocorrelations can be
expected (see Campbell et al. 1997, or Engle 2000).
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where �t rmm;tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
� tð Þht

p
. As above we refer to the two terms on right hand side

of Eq. (9) as mean and volatility component of the frictionless VaR.
Besides the computation of VaRmb,t type liquidity risk measures, we thus also

propose to quantify the relative liquidity risk by comparing the frictionless and
Actual VaR. More precisely, two relative liquidity risk premium measures are used,
one based on the difference, the other on the ratio of frictionless and Actual VaR:

�t ¼ VaRmm;t � VaRmb;t; (10)

�t ¼ �t

VaRmm;t
: (11)

Omitting the economically negligible mean component of the frictionless VaR,
we can rearrange Eq. (11) and write the relative liquidity risk premium as:

�t ¼ �mb;t

t�;�2�t rmm;tð Þ
� �

þ t�;�1�t rmb;tð Þ
t�;�2�t rmm;tð Þ � 1

� �
: (12)

Equation (12) shows that �t can be conceived as the sum of two terms naturally
referred to as mean and volatility component of the relative liquidity risk premium.
Note that in a more extensive notation, one would write the dependence of both
liquidity premiums on portfolio size v and confidence level α.

We want to stress two points before applying the relative liquidity measures Λt

and �t to the three stocks in our dataset. First, �t is, by definition, a relative
conditional measure. If the VaR horizon is short and the volatilities of both actual
and frictionless returns are relatively small and of comparable size then the mean
component of the Actual VaR will be the most important determinant of �t. Ceteris
paribus, the importance of the actual return mean component will increase with
trade volume and so will both relative liquidity risk premium measures. At longer
VaR horizons, both actual and frictionless return volatility will naturally increase
due to non-liquidity related market risk (i.e. the common component that both
shapes the best bid and ask prices in the order book and the bid and ask prices
achievable for large volume trades).

This reduces the relative importance of the �-mean component as the de-
nominator of the first term in Eq. (12) grows. If both actual and frictionless return
volatility increase by the same factor then the relative liquidity risk premium is
expected to approach zero at longer VaR horizons. Second, when studying intraday
variations of the relative liquidity risk premium the difference measure Λt is more
appropriate. Both spreads and volatility of intraday returns are expected to exhibit
diurnal variation. By construction, small changes in the intraday frictionless return
volatility may exert a considerable impact on the diurnal variation of �t, whilst Λt is
robust against such fluctuations.
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4 Empirical results

4.1 Parameter estimates

The Nadaraya–Watson, OLS and Maximum likelihood estimates are obtained
using GAUSS procedures written by the authors. Table 2 reports the estimates of
the parametric model (AR-GARCH parameters) based on 10-minute returns of
equal volume stock (EVS) portfolios and individual stocks. Table 4 (deferred to the
Appendix) contains the half-hour frequency results.18 An EVS portfolio contains
the same number of shares for each stock in the portfolio. We will henceforth
generally use the notion portfolio both for EVS portfolios and single stocks, con-
ceiving the latter as a portfolio containing only a single stock. We report results on
small volume (v=5,000), medium volume (v=20,000) and big volume (v=40,000)
portfolios. Based on the Schwarz–Bayes-Criteria and Ljung–Box statistics, AR(1)-
GARCH(1,1) (half-hour frequency) and AR(3)-GARCH(1,1) (10-min frequency)
specifications were selected. Whilst the AR parameter estimates and the Ljung–
Box statistics computed on raw returns indicate only small autocorrelations of
frictionless returns (as expected in an at least weakly efficient market), the serial
dependence of the actual returns on the medium and big portfolios is more
pronounced. This results holds true especially at the higher frequency and indicates
that persistence in spreads increase with trade volume. After accounting for mean
diurnality and serial dependence in actual returns the AR residuals do not display
significant autocorrelations. Comparing the Ljung–Box statistic before and after
accounting for conditional heteroskedasticity and volatility diurnality reveals that
the model does a good job in reducing serial dependence in squared returns. The
GARCH parameter estimates and degrees of freedom are quite stable across
portfolio sizes and their order of magnitude is comparable to what is found when
estimating GARCH models on intraday returns (see Andersen and Bollerslev
1997). Based on the estimation results we compute the frictionless and Actual VaR
at α=0.05 as well as the sequence of relative and difference liquidity measures Λt

and �t.

4.2 The diurnal variation of liquidity risk

For the purpose of studying the intraday variation of the relative liquidity risk we
take sample averages of the difference measure Λt by time of day t, smooth the
resulting series by applying the Nadaraya–Watson estimator, and investigate its
diurnal variation during trading hours. Figure 1 displays the considerable diurnal
variation of the relative liquidity risk premium especially for big portfolios.
Liquidity risk is highest at the start of the trading day and sharply declines during
the next two hours whilst remaining at a constant level throughout the remainder of
the trading day. This pattern is stable across both sample sub-periods with different
trading hours. A trader who plans to sell large volumes at the start of the trading day

18 Diurnal variation in actual returns and volatility diurnality is taken into account employing
nonparametric regression techniques, hence no estimation results are presented regarding the
diurnal functions  t and �t. Our GAUSS procedures library is available upon request. The
MAXLIK or CML module is required.

How large is liquidity risk in an automated auction market? 123



Table 2 Estimation results at the 10-min frequency

Frictionless v=5,000 v=20,000 v=40,000

EVS portfolios
δ0 3.9E−05 (3.1E−05) 0.0E+00 (3.1E−05) 0.0E+00 (3.0E−05) 1.0E−06 (3.2E−05)
δ1 0.015 (0.018) 0.020 (0.018) 0.041 (0.018) 0.108 (0.018)
δ2 0.011 (0.018) 0.013 (0.018) 0.020 (0.018) 0.068 (0.018)
δ3 0.015 (0.018) 0.040 (0.018) 0.055 (0.018) 0.090 (0.018)
ω 0.054 (0.027) 0.061 (0.032) 0.072 (0.032) 0.104 (0.038)
α1 0.051 (0.015) 0.049 (0.015) 0.050 (0.014) 0.055 (0.014)
β1 0.868 (0.050) 0.863 (0.055) 0.850 (0.052) 0.807 (0.057)
ν 9.360 (1.437) 9.996 (1.625) 10.567 (1.784) 11.346 (1.995)
Q 0.06 [1.26] 0.06 [3.35] 0.18 [17.76] 1.05 [154.91]
Q2 4.60 [23.81] 2.49 [14.32] 0.69 [24.58] 0.17 [188.48]
DCX
δ0 3.0E−06 (3.7E−05) −2.0E−06 (3.6E−05) −1.0E-06 (3.6E−05) −2.0E−06 (4.0E−05)
δ1 0.025 (0.018) 0.033 (0.018) 0.082 (0.018) 0.189 (0.018)
δ2 0.001 (0.018) 0.004 (0.018) 0.020 (0.018) 0.069 (0.018)
δ3 0.011 (0.018) 0.024 (0.018) 0.036 (0.018) 0.079 (0.018)
ω 0.114 (0.036) 0.118 (0.051) 0.164 (0.049) 0.126 (0.048)
α1 0.105 (0.021) 0.089 (0.023) 0.098 (0.020) 0.081 (0.019)
β1 0.667 (0.079) 0.694 (0.104) 0.628 (0.089) 0.718 (0.085)
ν 5.249 (0.507) 5.666 (0.577) 6.312 (0.683) 7.230 (0.861)
Q 0.02 [2.96] 0.06 [5.65] 0.03 [34.57] 0.34 [258.85]
Q2 1.56 [58.49] 1.25 [42.07] 3.49 [47.48] 2.78 [228.73]
DTE
δ0 7.6E-05 (4.9E−05) 2.0E-06 (4.9E−05) 2.0E-06 (4.9E−05) 2.0E-06 (5.2E−05)
δ1 0.013 (0.018) 0.033 (0.018) 0.062 (0.018) 0.121 (0.018)
δ2 0.030 (0.018) 0.029 (0.018) 0.034 (0.018) 0.067 (0.018)
δ3 0.005 (0.018) 0.015 (0.018) 0.038 (0.018) 0.070 (0.018)
ω 0.052 (0.021) 0.040 (0.021) 0.056 (0.022) 0.082 (0.027)
α1 0.055 (0.013) 0.041 (0.013) 0.057 (0.014) 0.075 (0.015)
β1 0.841 (0.046) 0.883 (0.045) 0.843 (0.046) 0.789 (0.051)
ν 5.657 (0.578) 6.009 (0.657) 6.704 (0.784) 7.497 (0.917)
Q 0.19 [4.36] 0.26 [11.94] 0.46 [32.41] 0.27 [132.27]
Q2 12.42 [82.20] 12.55 [67.59] 6.52 [74.93] 4.55 [176.03]
SAP
δ0 7.3E−05 (4.7E−05) 1.0E−06 (4.7E−05) 2.0E−06 (4.8E−05) 4.0E−06 (5.1E−05)
δ1 0.017 (0.018) 0.050 (0.018) 0.109 (0.018) 0.204 (0.018)
δ2 −0.001 (0.018) 0.009 (0.018) 0.028 (0.018) 0.074 (0.018)
δ3 −0.011 (0.018) 0.008 (0.018) 0.038 (0.018) 0.071 (0.018)
ω 0.099 (0.028) 0.086 (0.029) 0.073 (0.027) 0.125 (0.047)
α1 0.089 (0.016) 0.067 (0.014) 0.065 (0.014) 0.093 (0.020)
β1 0.673 (0.067) 0.752 (0.063) 0.792 (0.057) 0.685 (0.089)
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is expected to incur a significant price impact, i.e. has to be ready to pay a
considerable liquidity risk premium. The diversification effect smoothes the
intraday variation, but the pronounced liquidity risk premium during the first half
hours after the open cannot be diversified away.

Figure 2 details this finding by displaying the intraday variation of the mean
and volatility components of the Actual VaR, i.e. both components of the liquidity

Frictionless v=5,000 v=20,000 v=40,000

ν 4.123 (0.338) 4.748 (0.421) 5.486 (0.543) 6.029 (0.634)
Q 0.14 [0.10] 0.15 [8.44] 0.07 [62.64] 2.72 [310.22]
Q2 3.80 [73.24] 7.10 [66.27] 6.26 [129.33] 4.66 [505.71]

Section 3 provides details of the estimation procedure. The first column gives estimation results
using frictionless returns. The other columns report estimation results based on actual returns.
Parameter standard errors are given in parentheses. The Q-rows report the Ljung–Box Q-statistic
computed on the AR residuals. For the computation of the Ljung–Box statistics the number of
autocorrelations included is equal to 2, and observations of different trading days where excluded
from the estimation of autocovariances. In brackets the Ljung–Box statistic of the raw return data
is reported. The Q2 rows reports the Ljung–Box statistic of the GARCH residuals. The figures in
brackets are Ljung–Box statistic of squared raw returns

Table 2 (continued)

Fig. 1 Diurnal variation of the relative liquidity risk premium Λt for equal volume stock
portfolios and individual stocks. Period 1 refers to the first half of the sample period, August, 2,
1999–September 17, 1999 when the Xetra continuous trading hours extended from 8.30 A.M. CET
—5.00 P.M. CET. Period 2 refers to the second half of the sample period, September 20, 1999–
October 29, 1999 when Xetra continuous trading hours extended from 9.00 A.M. CET—5.30 P.M.
CET. The numbers have been multiplied by 100 to represent percentages. α=0.05
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risk for impatient traders, for the big EVS portfolio (v=40,000).19 Both mean and
volatility component contribute to the diurnal variation of the Actual VaR and
hence to the time-of-day pattern of the liquidity risk premium. In the afternoon,
NYSE pre-trading exerts an effect on the volatility component of both frictionless
and Actual VaR, but as both VaR measures are affected by the same order of
magnitude, the relative liquidity risk premium is not affected.

The intraday pattern of the relative liquidity risk premium and Actual VaR
provides additional empirical support for the information models developed by
Madhavan (1992) and Foster and Viswanathan (1994). Madhavan (1992) considers
a model in which information asymmetry is gradually resolved throughout the
trading day implying higher spreads at the opening. In the Foster and Viswanathan
(1994) model, competition between informed traders leads to high return volatility
and spreads at the start of trading. Analyzing NYSE intraday liquidity patterns
using the inside spread, Chung et al. (1999) have argued that the high level of the
spread at the NYSE opening and its subsequent decrease provides evidence for
the information models à la Madhavan and Foster/Viswanathan. Accordingly, the
diurnal variation of liquidity risk is consistent with the predictions implied by those
models. Due to alleged information asymmetries, liquidity suppliers are initially
cautious, i.e. the liquidity risk premium is large. As the information becomes
gradually incorporated during the trading process, the liquidity risk premium
decreases with increasing liquidity supply.

4.3 Unconditional liquidity risk premiums from traders’ perspective

The aftermath of the LTCM debacle showed that disregard of liquidity risk asso-
ciated with intraday trading of large volumes can lead to devastating results even
from a macroeconomic perspective. Let us assess the importance of short term
liquidity risk in the present sample. The relative liquidity risk measure � as well as
the difference measure Λ are defined as conditional measures given information at
time t−1. One can estimate the unconditional liquidity risk premium � ¼ E �tð Þ by
taking sample averages:

� ¼ T�1
XT
t�1

�t ¼ T�1
XT
t¼1

�mb;t

t�;�2�t rmm;tð Þ þ T�1
XT
t¼1

t�;�1�t rmb;tð Þ
t�;�2�t rmm;tð Þ � 1 (13)

and study the dependence of the unconditional liquidity risk premium on the size of
the portfolio to be liquidated. Equation 13 shows that the decomposition of the
relative liquidity risk premium �t into mean and volatility component remains valid
for the unconditional liquidity risk premium.

Table 3 reports the estimated unconditional liquidity risk premium � . The
decomposition into mean and volatility component is contained in Table 5. The
results show that taking account of liquidity risk at the intraday level is quite
crucial. Even at medium portfolio size, the liquidity risk premium is considerable.
At half-hour horizon the underestimation of the VaR of the medium EVS portfolio
amounts to 34%. For the big EVS portfolio the VaR is underestimated at half-hour

19As above we take sample averages by time of day for each component and apply the Nadaraya–
Watson smoother.
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horizon by 61%. At the shorter horizon the underestimation becomes even more
severe with the medium EVS portfolio’s VaR being underestimated by 68%. The
decomposition exercise shows that when increasing portfolio size the volatility
component of the liquidity risk premium remains small relative to the mean com-
ponent since the price impact incurred by trading a large portfolio becomes the
dominating factor. The relative liquidity risk premium decreases, ceteris paribus, at
the longer VaR horizon. The reason is that both the frictionless and the Actual
VaR’s volatility components obey the square root of time rule, and increase (in
absolute terms) by about the same order of magnitude. This reduces the sig-

Fig. 2 Decomposition of relative liquidity premium Λt=VaRmm,t−VaRmb,t. The figure displays for
the big EVS portfolio (v=40,000) and for the first half of the sample period (August, 2, 1999–
September 17, 1999) the diurnal variation of the components of Λt. The Actual VaR (VaRmb,t) is
the sum of the mean component, μmb,t , and the volatility component, t�;�1�t rmb;tð Þ (see Eq. (7)).
The frictionless VaR (VaRmm,t) is defined in Eq. (9). The numbers are multiplied by 100 to
represent percentages. α=0.05

Table 3 Unconditional relative liquidity risk premium � estimates at different VaR time horizons

VaR horizon v=5,000 v=20,000 v=40,000

EVS portfolios
10-min 0.35 0.68 1.20
half-hour 0.17 0.34 0.61
DCX
10-min 0.30 0.64 1.21
half-hour 0.15 0.32 0.60
DTE
10-min 0.28 0.51 0.86
half-hour 0.11 0.22 0.39
SAP
10-min 0.29 0.50 0.83
half-hour 0.12 0.23 0.38

Table 5 (Appendix) contains the decomposition � into mean and volatility components
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nificance of the mean component while the order of magnitude of the volatility
component remains approximately constant. In other words, market risk compared
to liquidity risk becomes more important at longer horizons.

5 Conclusion and outlook

This paper quantified liquidity risk in an automated auction market by employing a
new empirical technique which extends the classical frictionless VaR methodology.
The notion of an Actual VaR measure was introduced which takes into account the
potential price impact of liquidating a portfolio. This Actual VaR measure is par-
ticularly relevant for impatient investors who submit market orders. Indeed it
provides one number that summarizes the expected cost of immediacy and the
volatility cost due to the market risk. This duality is central to our methodology as it
stresses that the liquidity risk for impatient investors over short time periods in-
volves both a spread dependent expected cost and a second cost that is related to the
variance of the price process (for the given traded volume) over the short time
interval being studied. Relative liquidity risk measures were also put forward that
are defined on the difference and ratio of Actual and standard (frictionless) VaR. It
was argued that automated auction markets, in which a computer manages order
entry and matching, provide suitable and accurate data for the task of estimating the
Actual VaR. In order to measure the liquidity risk using the methodology pursued
in this paper one has to provide a real time limit order book reconstruction from
which price impacts of trading a given volume can be computed. Using data from
the automated auction system Xetra, liquidity risk was quantified both for
portfolios and for individual stocks. The dependence of liquidity risk premiums on
time-of-day, trade volume and VaR time horizon was outlined.

The analysis revealed a pronounced diurnal variation of the liquidity risk
premium. The peak of the liquidity risk premium at the open and its subsequent
decrease is consistent with the predictions of the microstructure information mod-
els considered by Madhavan (1992) and Foster and Viswanathan (1994). The
results show that when assuming a trader’s perspective, accounting for liquidity
risk becomes a crucial factor: the traditional (frictionless) measures severely un-
derestimate the risk faced by impatient investors who are committed to trade. This
result is the more pronounced the bigger the portfolio size and the shorter the time
horizon.

Avenues for further research stretch in several directions. In the classification of
Dowd (1998), this paper has focused on the normal liquidity risk in contrast to
crisis liquidity risk. The latter refers to situations where “a market can be very
liquid most of the time, but lose its liquidity in a major crisis” (Dowd 1998). The
methodology applied in this paper could be readily used to evaluate crisis liquidity
risk using intraday data specific to such crisis periods where liquidity dried up for a
few days/weeks (for example during the Asian crisis of the summer months of 1997
or close to the LTCM debacle in September 1998). Second, in a cross section study
for a larger collection of stocks one could relate liquidity risk premiums to firm-
specific characteristics like e.g. the equity–debt ratio. This would facilitate inves-
tigating the question whether corporate financing decisions or ownership structure
affect firm specific liquidity risk. Thirdly, it would be interesting to look at how
investors adapt to the prevailing liquidity risk. Indeed, traders could decide to split

P. Giot, J. Grammig128



their orders into smaller chunks to avoid prohibitive trading costs. This paves the
way for dynamic strategies where market participants are interested in dynamic risk
measures which take into account the fact that large orders can be split into smaller
orders. To our knowledge, this however asks for much more complicated models
that are quite different from the literature on high-frequency volatility models such
as considered in this paper.
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1 Appendix

1.1 Additional tables

1.1.1 Table 4 Estimation results at the 30-min frequency

Frictionless v=5,000 v=20,000 v=40,000

EVS portfolios
δ0 1.2E−04 (9.3E−05) −3.0E−06 (9.2E−05) −3.0E−06 (9.0E−05) −2.0E−06 (9.0E−05)
δ1 0.052 (0.031) 0.065 (0.031) 0.067 (0.031) 0.081 (0.031)
ω 0.029 (0.019) 0.038 (0.024) 0.035 (0.021) 0.045 (0.026)
α1 0.029 (0.013) 0.031 (0.014) 0.030 (0.013) 0.027 (0.013)
β1 0.935 (0.031) 0.923 (0.037) 0.926 (0.033) 0.916 (0.039)
ν 9.386 (10.048) 20.167 (10.548) 16.230 (7.030) 13.687 (5.048)
Q 0.20 [3.46] 0.20 [4.45] 0.19 [4.87] 0.32 [7.69]
Q2 0.26 [4.99] 0.66 [1.13] 0.66 [1.62] 0.81 [2.34]
DCX
δ0 2.9E−02 (1.9E−02) −7.0E−06 (1.1E−04) −6.0E−06 (1.1E−04) −7.0E−06 (1.1E−04)
δ1 0.029 (0.013) 0.012 (0.031) 0.021 (0.031) 0.061 (0.031)
ω 0.122 (0.071) 0.129 (0.073) 0.194 (0.141) 0.274 (0.185)
α1 0.060 (0.024) 0.058 (0.023) 0.069 (0.031) 0.087 (0.037)
β1 0.744 (0.123) 0.744 (0.121) 0.647 (0.220) 0.535 (0.271)
ν 6.590 (1.396) 7.058 (1.585) 7.536 (1.756) 8.666 (2.159)
Q 2.94 [3.14] 3.03 [3.13] 2.40 [1.86] 1.96 [3.70]
Q2 0.60 [16.69] 0.09 [13.30] 0.12 [10.11] 0.14 [6.93]
DTE
δ0 2.3E−04 (1.5E−04) −2.0E−06 (1.5E−04) −1.0E−06 (1.5E−04) 3.0E−06 (1.5E−04)
δ1 0.036 (0.031) 0.042 (0.031) 0.054 (0.031) 0.070 (0.031)
ω 0.051 (0.023) 0.053 (0.024) 0.054 (0.025) 0.058 (0.027)
α1 0.029 (0.012) 0.030 (0.012) 0.029 (0.012) 0.028 (0.013)
β1 0.881 (0.042) 0.877 (0.042) 0.876 (0.045) 0.872 (0.049)
ν 5.889 (1.156) 5.944 (1.171) 5.631 (1.072) 5.766 (1.107)
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Frictionless v=5,000 v=20,000 v=40,000

Q 0.09 [1.52] 0.04 [2.05] 0.23 [3.53] 1.36 [6.93]
Q2 5.38 [5.42] 3.14 [2.30] 3.54 [1.66] 4.47 [1.57]
SAP

δ0 2.2E−04 (1.4E−04) 4.0E−06 (1.4E−04) 4.0E−06 (1.4E−04) 5.0E−06 (1.4E−04)
δ1 0.056 (0.031) 0.058 (0.031) 0.081 (0.031) 0.107 (0.031)
ω 0.233 (0.133) 0.233 (0.123) 0.252 (0.116) 0.304 (0.163)
α1 0.075 (0.034) 0.057 (0.028) 0.065 (0.029) 0.061 (0.031)
β1 0.592 (0.200) 0.626 (0.175) 0.595 (0.161) 0.528 (0.223)
ν 7.677 (1.771) 8.524 (2.157) 8.826 (2.324) 8.448 (2.134)
Q 1.99 [3.39] 1.96 [5.32] 1.84 [10.47] 1.67 [20.75]
Q2 2.16 [11.23] 0.97 [8.94] 0.39 [10.17] 0.46 [15.58]

See Table 2 for explanations.

1.1.2 Table 5 Decomposition of the unconditional relative liquidity risk premium �
at different VaR time horizons

The table reports the three parts of �¼T�1
PT

t¼1
�mb;t

t�;v2�tðrmm;tÞ
þT�1

PT
t¼1

t�;v1�tðrmb;tÞ
t�;v2�tðrmm;tÞ�1:

Because of rounding errors, the sum of mean and volatility components might
differ from the figures reported in Table 3.

VaR horizon v=5,000 v=20,000 v=40,000

EVS portfolios
10-min 0.36+0.99−1 0.70+0.98−1 1.16+1.04−1
half-hour 0.19+0.98−1 0.38+0.96−1 0.64+0.97−1
DCX
10-min 0.29+1.01−1 0.62+1.03−1 1.08+1.13−1
half-hour 0.17+0.99−1 0.35+0.98−1 0.60+1.00−1
DTE
10-min 0.27+1.01−1 0.49+1.02−1 0.77+1.08−1
half-hour 0.12+0.98−1 0.25+0.98−1 0.40+0.99−1
SAP
10-min 0.28+1.02−1 0.47+1.03−1 0.73+1.10−1
half-hour 0.13+0.99−1 0.23+1.00−1 0.37+1.02−1
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Order aggressiveness and order book
dynamics

Abstract In this paper, we study the determinants of order aggressiveness and
traders’ order submission strategy in an open limit order book market. Applying an
order classification scheme, we model the most aggressive market orders, limit
orders as well as cancellations on both sides of the market employing a six-
dimensional autoregressive conditional intensity model. Using order book data
from the Australian Stock Exchange, we find that market depth, the queued
volume, the bid-ask spread, recent volatility, as well as recent changes in both the
order flow and the price play an important role in explaining the determinants of
order aggressiveness. Overall, our empirical results broadly confirm theoretical
predictions on limit order book trading. However, we also find evidence for
behavior that can be attributed to particular liquidity and volatility effects.

Keywords Open limit order book . Aggressive market orders . Aggressive limit
orders and cancellations . Multivariate intensity
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1 Introduction

Limit order book data provide the maximum amount of information about financial
markets at the lowest aggregation level. A theme in the recent literature is to obtain
a better understanding of all of the aspects of a trader’s fundamental decision
problem: when to submit an order; which type of order to submit; and, on which
side of the market to submit the order.
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In this paper, we study traders’ order aggressiveness in an open limit order book
market. Applying an order categorization scheme, we model the arrival rate of most
aggressive market orders, limit orders as well as cancellations on both sides of the
market in dependence of the state of the book. The six-dimensional point process
implied by the random and irregular occurrence of the different types of orders is
modelled in terms of the (multivariate) intensity function, associated with the
contemporaneous instantaneous arrival rate of an order in each dimension. The
intensity function is a natural concept to overcome the difficulties associated with
the asynchronous arrival of individual orders and allows for a continuous-time
modelling of the simultaneous decision of when and which order to submit given
the state of the market.

In the previous literature on order aggressiveness, the trader’s decision problem
has typically been addressed by applying the order classification scheme proposed
by Biais et al. (1995). In this classification scheme, orders are categorized
according to their implied price impact and their implied execution probability
determined by their position in the book. The major advantage of this approach is
its ease of application since all of the information on order aggressiveness is
encapsulated into a (univariate) variable which permits modelling the degree of
aggressiveness using a standard ordered probit model with explanatory variables
that capture the state of the order book.1 However, there are three major drawbacks
of this model. First, it is not a dynamic model, so any dynamics within the
individual processes as well as all interdependencies between the processes are
ignored. Ignoring multivariate dynamics and spill-over effects can induce
misspecifications and biases. Second, Coppejans and Domowitz (2002) show
that with respect to particular order book variables, trades behave quite differently
from limit orders and cancellations. This raises the question as to whether it is
reasonable to treat these events as the ordered realizations of the same (single)
variable.2 Third, modelling order aggressiveness based on an ordered response
model ignores the timing of orders. Thus, the trader’s decision is modelled
conditional on the fact that there is a submission of an order at a particular point in
time while the question of when to place the order is ignored.

Our study avoids these difficulties and extends the existing approaches by
Coppejans and Domowitz (2002), Ranaldo (2004), and Pascual and Veredas (2004)
in several directions. First, the use of a multivariate autoregressive intensity model
explicitly accounts for order book dynamics and interdependencies between the
individual processes. Second, as we model them as individual processes, we allow
for the possibility that market orders, limit orders and cancellations behave
differently in their dependence on particular order book variables. Instead of trying
to capture order aggressiveness in terms of a single variable, we account for the
multiple dimensions of the decision problem. Third, the concept of the intensity
function implies a natural continuous-time measurement of a trader’s degree of
aggressiveness. As the multivariate intensity function provides the instantaneous
order arrival probability per time at each instant and in each dimension, it naturally

1 See e.g. Al-Suhaibani and Kryzanowski (2000), Griffiths et al. (2000), Hollifield et al. (2002),
Ranaldo (2004) or Pascual and Veredas (2004).
2 For this reason, Pascual and Veredas (2004) consider the decision process as a sequential process
with two steps. In the first step, the trader chooses between a market order, limit order and a
cancellation, while in the second step, he decides the exact order placement.
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addresses the question of where and when it is likely that an order will be placed
given the current state of the market.

In order to reduce the impact of noise in the data and to allow for a better
identification of systematic relationships, we explicitly focus on most aggressive
market orders, limit orders and cancellations. On top of the common classification
scheme proposed by Biais et al. (1995), we select only those orders whose volumes
are substantially larger than the average order volume.3 According to previous
studies in this field, these are the most aggressive and interesting orders. Note that
this classification scheme also applies to cancellations, and we define a
cancellation as aggressive whenever a large volume is cancelled. In this sense,
our approach can be seen as an extension of the study by Coppejans and Domowitz
(2002) who also focus on the arrival rate of trades, limit orders and cancellations.
However, they do not explicitly study high volume orders but consider all
incoming orders. Moreover, as they analyze the individual processes separately
using a generalized version of Engle and Russell’s (1998) (univariate) auto-
regressive conditional duration (ACD) model, their framework does not allow for
any multivariate interdependencies between the individual processes.

In this setting, we state the following research questions: (1) Can we confirm
previous results regarding the determinants of order aggressiveness and traders’
order submission strategies when the multivariate dynamics of limit order books
are fully taken into account? (2) How strong are the (dynamic) interdependencies
between the individual processes and how important is it to account for the order
book dynamics? (3) After modelling the multivariate dynamics, what is the
additional explanatory power of order book variables? (4) Can we confirm
theoretical predictions regarding the impact of order book variables on traders’
order submission strategies?

Our analysis is based on order book data from the five most liquid stocks traded
on the Australian Stock Exchange (ASX) during the period July–August 2002. By
replicating the electronic trading at the ASX, we reconstruct the complete order
book at each instant of time. The order arrival intensities are modelled using a six-
dimensional version of the autoregressive conditional intensity (ACI) model
introduced by Russell (1999), where we include explanatory variables that capture
the current state of the order book as well as recent changes in the book.

It turns out that market depth, the queued volume, the bid-ask spread, recent
volatility, as well as recent changes in both the order flow and the price play an
important role in explaining the determinants of order aggressiveness. We show
that the impact of these variables is quite stable over a cross-section of stocks.
Moreover, these results hold irrespective of the specification of the model
dynamics. Confirming the results of Coppejans and Domowitz (2002) we also
observe that the arrival rates of market orders and limit orders can behave quite
differently in their dependence of the state of the order book. Therefore, a limit
order should not necessarily be considered simply as a less aggressive version of a
market order. This finding motivates modelling the individual processes in a
multivariate setting. Moreover, we find clear evidence for multivariate dynamics
and interdependencies between the individual processes.

It is also shown that the inclusion of order book variables clearly improves the
goodness-of-fit of the model. In addition, we demonstrate that a model that

3 For more details, see Sect. 4.3.
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includes order book variables, but excludes dynamics, outperforms a dynamic
specification without covariates. This result clearly indicates that traders’ order
aggressiveness and order submission strategy is affected by the state of the book.

Regarding the impact of order book variables on order aggressiveness, our
results broadly confirm the theoretical results on traders’ optimal order submission
strategies as derived by Parlour (1998) and Foucault (1999). In particular, the
impact of depth on order aggressiveness can be explained by “crowding out”
effects as discussed in Parlour (1998). Moreover, our findings provide evidence for
the notion that traders use the order book information to infer expected future price
movements. Nevertheless, we also observe behavior that is not consistent with
predictions implied by theoretical dynamic equilibrium models. For instance, we
find evidence for liquidity driven order submissions after mid-quote changes in the
recent past. Furthermore, no support is found for the hypothesis that the current
volatility affects the mix between aggressive market and limit orders. Rather, we
observe that a rise in volatility increases the overall order submission activity in the
market.

The remainder of the paper is organized in the following way: In Sect. 2, we
discuss economic hypotheses on the basis of recent theoretical research on limit
order book trading. Section 3 presents the econometric approach. In Sect. 4, we
describe the data as well as descriptive statistics characterizing the limit order
books of the individual stocks traded at the ASX. The empirical results are reported
and discussed in Sect. 5 and Sect. 6 concludes.

2 Economic hypotheses

The desire for a deeper understanding of market participants’ order submission
strategies in a limit order book market has inspired a wide range of theoretical and
empirical research.4 In a limit order book market investors must choose between
limit orders and market orders and as a result traders face a dilemma. The ad-
vantage of a market order is that it is executed immediately. However, with a limit
order, while traders have the possibility of improving their execution price, they
face the risk of non-execution as well as the risk of being “picked off”. The latter
arises from the possibility that, as a result of new information entering the market, a
limit order can become mispriced. These economic principles form the basis of
numerous theoretical approaches in this area.

Parlour (1998) proposes a dynamic equilibrium model in which traders with
different valuations for an asset arrive randomly in the market. The endogenous
execution probability of a limit order then depends both on the state of the book and
how many market orders will arrive over the remainder of the day. She shows that
both the past, through the state of the book, and the future, through the expected
order flow, affect the placement strategy and cause systematic patterns in
transaction and order data. The major underlying idea is the mechanism of a
“crowding out” of market sell (buy) orders after observing market buy (sell) orders.
This is due to the effect that after a buy (sell) market order, a limit order at the ask

4 See e.g. Glosten (1994), Handa and Schwartz (1996), Harris and Hasbrouck (1996), Seppi
(1997), Harris (1998), Bisière and Kamionka (2000), Griffiths et al. (2000), Lo and Sapp (2003),
Cao et al. (2003), or Ranaldo (2004) among others.
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(bid) has a higher execution probability. Since the payoff to limit orders increases
with the probability of execution, a trader whowants to sell (buy) is nowmore likely
to submit a sell (buy) limit order instead of a sell (buy) market order. Because of this
crowding out of market orders on the opposite side, buy (sell) market orders are less
frequent after sell (buy) market orders than after buy (sell) market orders. This
trading behavior has been confirmed by the empirical work of Biais et al. (1995),
Griffiths et al. (2000) and Ranaldo (2004). Parlour’s model also predicts that the
probability of observing a limit buy order after the arrival of a limit buy order is
smaller than the probability of observing a limit buy order after any other tran-
saction. This is due to the fact that a lengthening of the queue at one level decreases
the execution probability of further limit orders at the same level and thus makes
them less attractive. Applying this theoretical underpinning, the “crowding out”
argument implies testable relationships between changes in the depth of the book
volume and their impact on traders’ incentive to post market orders, limit orders or
cancellations. As a result, we can formulate the following hypothesis:

(1)An increase of the depth on the ask (bid) side

– increases the aggressiveness of market trading on the bid (ask) side,
– decreases the aggressiveness of limit order trading on the ask (bid) side,
– increases the probability of cancellations on the ask (bid) side.

A traders’ order submission strategy does not only depend on the current state of
the book but also on recent movements in the price. Positive price movements
during the recent past indicate an aggressiveness in buy limit orders and buy
market trading leading to a relative decline of the ask depth compared to the bid
depth. Applying the crowding out concept from Parlour’s model we can formulate
Hypothesis (2) as follows:

(2)Past price movements are

– negatively (positively) correlated with the aggressiveness of market trading
on the bid (ask) side,

– positively (negatively) correlated with the aggressiveness of limit order
trading on the ask (bid) side,

– negatively (positively) correlated with the probability of cancellations on the
ask (bid) side.

Foucault (1999) proposes a dynamic equilibrium model to explain traders’ choice
between limit orders and market orders as a function of the asset’s volatility. In this
model, investors’ valuations of shares differ and traders’ order placement strategies
depend on their valuations as well as the best offers in the book. Foucault (1999)
shows that the volatility of the asset is a determinant of the mix between market and
limit orders. Since higher volatility increases the pick-off risk, this increases the
reservation prices of limit order traders, widening spreads and increasing the cost
of market trading. As a result traders’ incentive to post limit orders (market orders)
increases (decreases) leading to Hypothesis (3):

(3)A higher volatility decreases the aggressiveness in market order trading and
increases the aggressiveness in limit order trading.
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An important determinant of liquidity is the inside spread between the best ask and
bid price. The bid-ask spread determines the cost of crossing the market and thus
the cost of utilizing market orders. Cohen et al. (1981) show that the existence of a
bid-ask spread is a result of the “gravitational pull” of a limit order and is an
equilibrium property of the market. Handa et al. (2003) demonstrate that the size of
the spread increases with the degree of adverse selection and the difference in
valuation between low and high valuation investors. However, while these studies
focus on the existence and properties of the spread, Foucault’s model provides
testable implications regarding the impact of the spread on the aggressiveness in
market trading and limit order trading, and this is formulated as Hypothesis (4):

(4)The higher the bid-ask spread, the lower the aggressiveness in market trading
and the higher the aggressiveness in limit order trading.

These formulated hypotheses underpin the rationale for the construction of
appropriate explanatory variables in Sect. 5.

3 The econometric approach

The arrival of aggressive market orders, limit orders and cancellations is modelled
as a multivariate (financial) point process. The econometric literature on the
modelling of financial point processes was originated by the seminal paper by
Engle and Russell (1998) who introduced the class of autoregressive conditional
duration (ACD) models. While this model was successfully applied to univariate
duration processes,5 it is not easily extended to a multivariate framework. The
reason is that in a multivariate context the individual processes occur
asynchronously, which is difficult to address in a discrete time duration model.

A natural way to model multivariate point processes is to specify the
(multivariate) intensity function leading to a continuous-time framework. In this
paper, we apply a six-dimensional version of the autoregressive conditional
intensity (ACI) model proposed by Russell (1999).6 Following the notation of Hall
and Hautsch (2004), let t denote the calendar time and define ti

k, k=1, . . . , K, as the
arrival times of a K-dimensional point process. Let Nk tð Þ ¼Pi�1 1 tki 	tf g and

Mk tð Þ ¼Pi�1 1 tki <tf g respectively represent the right- and left-continuous

counting functions associated with the k-type process. Correspondingly, M tð Þ ¼

5 This model has been extended in several directions, see e.g. Bauwens and Giot (2000), Lunde
(2000), Dufour and Engle (2000), Grammig and Maurer (2000), Zhang et al. (2001), Fernandes
and Grammig (2001), Coppejans and Domowitz (2002) or Bauwens and Veredas (2004) among
others. For an overview, see Hautsch (2004).
6 An interesting alternative would be the latent factor intensity (LFI) model proposed by Bauwens
and Hautsch (2003), where the key idea is to allow for a common latent component which jointly
drives the individual processes. Even though such a specification would be particularly
interesting for the modelling of limit order book processes, its estimation requires substantial
computational effort. As the computational burden for a six-dimensional process with included
order book variables is already quite high, we leave the application of the LFI model in this
context to future research.
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P
i�1 1 ti<tf g is the left-continuous counting function regarding the pooled process

consisting of all individual points.
Define the multivariate intensity function as

� t;F tð Þ ¼ �1 t;F tð Þ; �2 t;F tð Þ; . . . ; �K t;F tð Þ� �
;

where

�k t;F tð Þ ¼ lim
�#0

1

�
Pr Nk t þ�ð Þ � Nk tð Þ� �

> 0jF t

� �
; k ¼ 1; . . . ;K; (1)

denotes the conditional intensity function associated with the counting process
Nk(t), given the information set F t consisting of the history of the complete order
and trading process up to t. In this framework �k t;F tð Þ corresponds to the
instantaneous arrival rate of an aggressive order or cancellation, and thus is a
natural continuous-time measure for the degree of order aggressiveness at each
instant.

Russell (1999) proposes parameterizing �k t;F tð Þ in terms of a proportional
intensity structure

�k t;F tð Þ ¼ �k
M tð Þ�

k
0 tð Þsk tð Þ; k ¼ 1; . . . ;K; (2)

where Ψi
k is a function capturing the dynamics of the k-type process, l0

k(t) denotes
a k-type baseline intensity component that specifies the deterministic evolution of
the intensity until the next event and sk(t) is a k-type seasonality component that
may be specified using a spline function. The basic idea of the ACI model is to
specify the dynamic component Ψi

k in terms of an autoregressive process. Assume
that Ψi

k is specified in log-linear form, i.e.

�k
i ¼ exp e�k

i þ z0i�1�
k

� 

; (3)

where zi denotes the vector of explanatory variables capturing the state of the
market at arrival time ti and γ

k the corresponding parameter vector associated with
process k. Then, the ACI(1,1) model is obtained by parameterizing the (K×1)

vector e�i ¼ e�1
i ;
e�2
i ; . . . ;

e�K
i

� 

in terms of a VARMA type specification,

e�i ¼
XK
k¼1

Akei�1 þ Be�i�1

� 

yki�1; (4)

where Ak={αk
j} denotes a (K×1) innovation parameter vector and B={β ij} is a

(K×K) matrix of persistence parameters. Moreover, yi
k defines an indicator variable

that takes the value 1 if the i-th point of the pooled process is of type k.
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The innovation term ei is computed from the integrated intensity function
associated with the most recently observed process. Hence,

ei ¼
XK
k¼1

1�
Z tk

Nk tið Þ

tk
Nk tið Þ�1

�k s;F sð Þds
0@ 1Ay k

i : (5)

Under fairly weak assumptions, the integrated intensity function corresponds to an
i.i.d. standard exponential variate.7 Therefore, ei is a random mixture of
exponential variates. For this reason, weak stationarity of the model depends on
the eigenvalues of the matrix B. If these lie inside the unit circle, the process e�i is
weakly stationary.

Since the intensity function has left-continuous sample paths,Ψi also has to be a
left-continuous function and predetermined, at least instantaneously before the
arrival of a new event. Therefore, Ψi is known instantaneously after the occurrence
of ti−1 and does not change until ti. Then �k t;F tÞð changes between ti−1 and ti only
as a deterministic function of time according to the functions l0

k (t) and sk(t).
The baseline intensity function l0

k(t) is specified in terms of the backward re-
currence times xk tð Þ ¼ t � t kMk tð Þ, k =1,. . . , K, of all processes and may be specified

using a Weibull-type parameterization depending on the parameters ωk and pr
k,

�k0 tð Þ ¼ exp !k
� �YK

r¼1

x r tð Þpkr�1; pkr > 0
� �

: (6)

Moreover, the seasonality functions sk(t) are parameterized as linear spline
functions given by8

sk tð Þ ¼ 1þ
XS
j¼1

�kj t � �j
� � � 1 t>�jf g; (7)

where τj, j=1,. . . , S, denote the S nodes within a trading day and νj
k the cor-

responding parameters.
As a result, by denoting W as the data matrix consisting of all points and

explanatory variables and denoting θ as the parameter vector of the model, the log-
likelihood function of the multivariate ACI model is given by

lnL W ; 
ð Þ ¼
XK
k¼1

Xn
i¼1

�
Z ti

ti�1

�k s;F sð Þdsþ yki ln �
k ti;F ti

� �� �
; (8)

where t0=0 and n denotes the number of points of the pooled process. Under correct
specification of the model, the resulting k-type ACI residuals

"̂ki ¼
Z tki

tki�1

�̂ k s;F sð Þds

7 See Brémaud (1981) and Bowsher (2002).
8 In order to identify the constant ωk, sk(t) is set to one at the beginning of a trading day.
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should be distributed as i.i.d. unit exponential. As a result, model diagnostics can
be undertaken by evaluating the dynamical and distributional properties of these
residuals. Engle and Russell (1998) have proposed a test against excess dispersion
based on the asymptotically normal test statistic

ffiffiffiffiffiffiffiffiffi
nk=8

p
�̂2"k � 1
� �

, where �̂2"k is the
empirical variance of the k-type residual series and nk denotes the number of points
observed for process k.

4 Data and descriptive statistics

4.1 Trading at the ASX

The Australian Stock Exchange (ASX) is a continuous double auction electronic
market. After a pre-opening period followed by a staggered sequence of opening
call auctions, normal trading takes place continuously between 10:00 A.M. and
16:00 P.M. The market is closed with a further call auction and a late trading period.
For more details regarding the daily market schedule of the ASX, see Hall and
Hautsch (2004). During normal trading, orders can be entered as market orders
which will execute immediately and limit orders which enter the queues. On the
ASX, as orders are not allowed to walk up (down) the book, a market order with a
large quoted volume will first be matched with the pending volume on the first
level of the opposite queue. Trades will be generated and traded orders deleted until
there is no more order volume at the posted price. The remaining part of the order
enters the queue as a corresponding limit order. When a market order is executed
against several pending limit orders, a trade record for each market order—limit
order pair is generated. Since these multiple trades are generated by a single market
order, we aggregate them into a single trade record.

Limit orders are queued in the buy and sell queues according to a strict price-
time priority order. During normal trading, pending limit orders can be modified or
cancelled without restrictions.9 All trades and orders are visible to the public.
Orders with a total value exceeding $200,000 can be entered with a hidden volume.
However, sufficient information is available to unambiguously reconstruct all
transactions.

4.2 Descriptive statistics

Our empirical analysis is based on the order book data from the five most liquid
stocks traded at the ASX during the period 1 July to 30 August 2002, namely
Broken Hill Proprietary Limited (BHP), National Australia Bank (NAB), News
Corporation (NCP), Telstra (TLS) and Woolworths (WOW). The samples are
extracted from the Stock Exchange Automated Trading System and contain time
stamped prices, volumes and identification attributes of all orders as well as
information about opening and closing auctions. By replicating the execution
engine of the ASX, with explicit consideration of all trading rules, we can fully
reconstruct the individual order books at any time. Our resulting samples consist of

9 Clearly, modifying the order volume or the order price can affect the order priority. For more
details, see Hall and Hautsch (2004).
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data covering the normal trading period, where we remove data from the opening
and closing call auctions as well as all market crossings and off-market trades. The
resulting samples consist of 147,552, 107,595, 252,009, 97,804, and 59,519
observations for BHP, NAB, NCP, TLS and WOW, respectively.

Table 1 shows descriptive statistics characterizing the order books of the five
individual stocks during the sample period. We observe an average bid-ask spread
ranging between 1.0 ticks for TLS and 2.2 ticks for NAB. For all stocks, the
average sell volume is slightly higher than the buy volume which may be explained
by a slightly down market during the period of analysis. However, comparing the
average posted as well as cancelled ask and bid volumes, there are no systematic
differences. The variables d_askp and d_bidp measure the difference between the
current posted price of a limit order and the current best ask and bid price,
respectively. Thus, we observe that on average limit orders are placed within a
distance of about five ticks to the current best ask and bid price. Again, smaller
spreads are set for TLS (around two to three ticks), whereas NAB and NCP reveal
relatively wide spreads of around six to eight ticks. The variables adiff_x and
bdiff_x represent the price difference between the mid-quote and the price
associated with the x-th quantile of the standing ask and bid volume, respectively.10

Therefore, they reflect the average piecewise steepness of the bid and ask reaction
curves. For most stocks, the average shape of both curves is relatively symmetric,
but for WOW we observe a slightly higher average depth on the bid side. Finally,
the variables adep_x measure the market depth in terms of the ratio of the volume
associated with the x-th quantile and the corresponding implied price impact. For
instance, adep_5=45.662 for BHP means that up to the 5%-quantile we observe on
average a standing ask volume of 45,662 shares per tick. Again, we observe
relatively symmetric shapes of the individual bid and ask queues.

4.3 Order aggressiveness at the ASX

Biais et al. (1995) propose a scheme that classifies orders according to their implied
price impact and their position in the order book. By setting the limit price, the limit
volume and attributes associated with specific execution rules traders implicitly
determine the aggressiveness of their order, and thus influence both the execution
probability and the implied price impact. Generally, the most aggressive order is a
market order which is allowed to be matched with several price levels on the
opposite side, i.e. an order which is allowed to “walk up” or “down” the book.
Accordingly, the least aggressive order is a cancellation where a pending limit
order is removed from the book. As explained above ASX market orders are not
allowed to walk up or down the ask or bid queues, respectively. Hence, at the ASX
the most aggressive order is an order which has a volume that exceeds the standing
volume on the first level of the opposite queue and results in an immediately
executed market order for the matched volume and a limit order for the remaining
volume. Accordingly, we define a “normal” market order as a buy or sell order
whose volume can be fully matched with pending limit orders. With respect to limit
orders, we apply the scheme proposed by Biais et al. (1995) and classify ask and
bid limit orders according to the distance between the posted limit price and the

10 Table 1 contains an exact definition of the variables.
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current best bid and ask price. Thus, we distinguish between “most aggressive”
limit orders (whose price undercuts or overbids the current best ask or bid limit
price, respectively), “aggressive” limit orders (which are placed directly in the
current first level of the ask or bid queue), and “normal” limit orders (which enter
the higher levels of the order book). Finally, cancelled limit orders are regarded as
the least aggressive orders. This classification is shown in Table 2.

Table 3 shows the average numbers of the different types of orders. We observe
that the proportions of the particular order types are not stable across stocks and
show clear variations. For instance, the percentage of aggressive market orders
varies between 2 and 7%. Accordingly, the proportion of most aggressive limit
order varies between 0.1 and 4%. On average, we observe a higher proportion of
the most aggressive ask limit orders than that of the corresponding bid limit orders.
Furthermore, it turns out that on average around 5% of all limit orders are
cancelled. An exceptionally high proportion of cancellations of around 11% is
observed for NCP.

In our empirical analysis, we focus on the three most interesting groups of
orders: aggressive buy and sell orders, most aggressive ask and bid limit orders as
well as ask and bid cancellations. Moreover, we introduce a further criterion for
order aggressiveness which goes beyond the scheme shown in Table 2. In
particular, we exclusively select only those orders which have a quoted volume
which is significantly above average. This additional selection criteria is applied
for two reasons: First, order aggressiveness is naturally linked to the size of the
posted volume. For economic significance, it makes a difference whether a small or
a high volume is quoted. For high volumes, the economic trade-off between the
costs of immediacy and the pick-off risk is much more relevant than for small
orders. Second, focussing exclusively on the big trades should reduce the noise in
the data and should help to identify distinct patterns and relationships. Since there
is a natural trade-off between focusing on orders whose order volumes are on the
one hand significantly above the average volume but, on the other hand, still

Table 2 Classification of order aggressiveness at the ASX

Aggressive buy order Quoted volume exceeds the first level of the standing ask volume
Normal buy order Quoted volume does not exceed the first level of the standing

ask volume
Most aggressive ask
order

Limit price undercuts the current best ask price

Aggressive ask order Limit price is at the current best ask price
Normal ask order Limit price is above the current best ask price
Cancelled ask order Cancellation of a standing ask order
Aggressive sell order Quoted volume exceeds the first level of the standing bid volume
Normal sell order Quoted volume does not exceed the first level of the standing

bid volume
Most aggressive bid
order

Limit price overbids the current best bid price

Aggressive bid order Limit price is at the current best bid price
Normal bid order Limit price is below the current best bid price
Cancelled bid order Cancellation of a standing bid order
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retaining sufficient observations in the individual dimensions, we use the 75%-
quantile as a natural compromise for the choice of the selection threshold. Hence,
we select those aggressive orders whose posted volume is equal or higher than the
75%-quantile of all order volumes. Correspondingly, aggressive cancellations are
cancellations of pending limit orders with a volume equal or higher than the 75%-
quantile of all order volumes. This selection rule leads to a significant reduction of
the sample size resulting in 9,316, 10,463, 9,142, 3,102, and 3,438 observations for
BHP, NAB, NCP, TLS, and WOW respectively (see Table 3).

Table 3 Descriptive statistics of trade and limit order arrival processes at the ASX

BHP NAB NCP TLS WOW

Num. Prop. Num. Prop. Num. Prop. Num. Prop. Num. Prop.

Total number 147,552 107,595 252,009 97,804 59,519
Aggr. Buys,
v ≥ 75%

1,946 0.013 2,657 0.025 2,385 0.009 522 0.005 838 0.014

Aggr. buys 5,998 0.041 8,057 0.075 7,700 0.031 1,761 0.018 3,359 0.056
Normal buys 28,349 0.192 14,303 0.133 21,402 0.085 19,142 0.196 10,125 0.170
Most aggr. asks,
v ≥ 75%

1,511 0.010 1,763 0.016 2,058 0.008 241 0.002 795 0.013

Most aggr. asks 4,092 0.028 4,695 0.044 6,879 0.027 909 0.009 2,460 0.041
Aggr. asks 15,065 0.102 11,632 0.108 14,544 0.058 12,595 0.129 6,787 0.114
Normal asks 10,306 0.070 7,963 0.074 50,769 0.201 9,565 0.098 4,106 0.069
Canc. asks,
v ≥ 75%

1,029 0.007 842 0.008 528 0.002 716 0.007 273 0.005

Canc. asks 6,689 0.045 5,912 0.055 30,390 0.121 4,572 0.047 2,763 0.046
Aggr. sells,
v ≥ 75%

2,338 0.016 2,867 0.027 2,372 0.009 551 0.006 892 0.015

Aggr. sells 6,133 0.042 8,016 0.075 7,711 0.031 1,747 0.018 3,559 0.060
Normal sells 15,455 0.105 13,100 0.122 17,249 0.068 17,707 0.181 7,329 0.123
Most aggr. bids,
v ≥ 75%

1,611 0.011 1,455 0.014 1,174 0.005 353 0.004 348 0.006

Most aggr. bids 5,772 0.039 4,626 0.043 5,903 0.023 1,249 0.013 2,109 0.035
Aggr. bids 17,441 0.118 12,967 0.121 15,333 0.061 13,848 0.142 8,010 0.135
Normal bids 14,900 0.101 8,504 0.079 42,375 0.168 9,125 0.093 5,594 0.094
Canc. bids,
v ≥ 75%

881 0.006 879 0.008 625 0.002 719 0.007 292 0.005

Canc. bids 7,329 0.050 6,265 0.058 27,624 0.110 5,584 0.057 3,318 0.056
All aggr. Orders,
v ≥ 75%

9,316 10,463 9,142 3,102 3,438

Descriptive statistics of order arrival processes of the BHP, NAB, NCP, TLS and WOW stock.
The order categories are defined in Table 2. “v ≥ 75%” means that the quoted volume is equal or
higher than the 75%-quantile of all order volumes. The table shows the number of orders in the
individual categories as well as their corresponding percentage with respect to the complete
sample of the individual stock. The sample contains all market and limit orders of the individual
stocks traded on the ASX during July and August 2002, corresponding to 45 trading days
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5 Empirical results

As the estimation of six-dimensional ACI processes is a challenging task requiring
the estimation of a large number of parameters, we estimate restricted ACI
specifications. In order to reduce the number of parameters, we specify the baseline
intensity functions in terms of a Weibull parameterization, where we do not allow
for interdependencies between the individual functions, i.e. pr

k=1∀k ≠ r. This
restriction is motivated by the fact that the consideration of interdependencies
would require estimating 30 additional parameters without significantly improving
the model’s goodness-of-fit in terms of the BIC. Similar arguments hold for the
specification of spill-over effects in the persistence terms, where we restrict the
matrix B to be specified as a diagonal matrix. In order to account for deterministic
intra-day seasonality patterns, we specify three linear spline functions for the
processes of aggressive market orders, limit orders, and cancellations based on 1 h
nodes.11 To ease the numerical optimization of the log-likelihood function, we
standardize the time scale by the average duration of the pooled process.

To test the economic hypotheses formulated in Sect. 2, we define several
explanatory variables to capture the state of the market. The market depth on the
ask side is measured by the (log) ratio between the current 5% ask volume quantile
and the corresponding price impact, formally given by AD=ln[0.05·avol/
(p0.05,a−mq)], where avol denotes the aggregated volume pending on the ask queue,
p0.05,a is the limit price associated with the 5% ask volume quantile andmq denotes
the mid-quote. Correspondingly, the bid depth is given by BD=ln[0.05·bvol/(mq−
p0.05,b)]. The choice of the 5% quantile is driven by the trade-off between a
parsimonious specification12 and an appropriate measurement of market depth.
However, recent studies (see e.g. Pascual and Veredas 2004 or Hall and Hautsch
2004) show that traders’ order submission is dictated by the depth in the lower
sections of the book. Therefore, we presume that the impact of market depth is well
approximated by the volume–price relation over the 5% volume quantile. In order
to account not only for the volume–price ratio solely, but also for the volume level
itself, we include AV=ln(avol) and BV=ln(bvol ) as separate regressors.
Furthermore, we capture the (signed) cumulative changes in the logarithmic
aggregated ask volume (DAV), the logarithmic aggregated bid volume (DBV) as
well as in the mid-quote (MQ) process during the past 5 min. Finally, we include
the current volatility (VL), measured by the average squared mid-quote changes
during the past 5 min as well as the current bid-ask spread (SP).

In order to analyze the importance of order book dynamics and the information
provided by the open limit order book for the goodness-of-fit and the explanatory
power of the model, we estimate three different specifications. Table 4 reports the
estimation results based on an ACI model including both dynamic variables as well
as order book variables. Table 5 is based on a specification which includes order
book information, but does not account for any dynamics in the multivariate
process. Hence, in this specification, e�i is set to zero. Finally, Table 6 gives the
results of a specification which accounts for dynamic structures but excludes any
order book covariates.

11 However, motivated by the results by Hall and Hautsch (2004), we assume identical seasonality
patterns on the ask and bid side.
12 Note that for each regressor six parameters have to be estimated.
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5.1 Statistical results

The ACI models were estimated by maximum likelihood using the MAXLIK-
procedure of GAUSS. It should be stressed that despite of the high-dimensionality
of the processes and the large number of parameters, the processes converged
smoothly and without numerical difficulties. The following statistical results can be
summarized. First, for all processes, we find significantly declining backward
recurrence functions as revealed by the estimated parameters pk<1. Thus, the event
arrival rates decline with the length of the spell which is a well known result for
financial duration data. However, as indicated by the residual diagnostics, the
specification of the backward recurrence function is not sufficient in all of the
models to completely capture the distributional properties of the processes. In
particular, the specifications of Tables 4 and 5 reveal significant excess dispersion,
which is not the case for the models reported in Table 6. This implies that the
inclusion of order book variables makes it more difficult to capture the
distributional properties of the data.

Second, as indicated by the significantly positive estimates of αk
j, we find

evidence for positive autocorrelation in the individual processes. This implies that
the individual arrival rates are clustered, and this is true for all of the individual
processes including cancellations. Nearly all processes show quite high
persistence, as revealed by parameter estimates of β ij close to unity.13 Moreover,
the estimates of the parameters αk

j indicate significant spill-over effects between
the individual processes. The strongest interactions seem to exist between the
individual sides of the market which is particularly true for market orders,14 but it
also holds for limit orders. Weaker interdependencies, but in most cases still
significant, are also found between the arrival rates of aggressive market orders and
aggressive limit orders. It is interesting that these spill-overs are primarily positive,
so we do not find evidence for the fact that a high aggressiveness on one side of the
market negatively influences the aggressiveness on the opposite side. These results
suggest that interdependencies between the particular order arrival processes are
obviously not driven by individual trading behavior as predicted by the economic
underpinnings outlined in Sect. 2. Rather, such effects seem to be driven by an
underlying process of general market activity which simultaneously affects all
individual processes. Similar results are also found for the ask and bid cancellation
intensity. In most cases, the parameters αi

5 and αi
6 are significantly positive,

indicating that a higher market activity also increases the intensity of order
cancellations. This is particularly true for the impact of aggressive market trading
on the cancellation intensity. However, since in most cases the parameters α5

i and
α6

i are insignificant, it turns out that the market and limit order processes do not
seem to be affected by the arrival rate of order cancellations.

Third, the estimates of the seasonality functions provide evidence of distinct
deterministic intra-day patterns in the intensities of aggressive market trading, limit
order trading and cancellations. The estimated individual intra-day seasonality

13 The only exceptions are found for TLS. Here, some of the persistence parameters are even
negative. These somewhat peculiar results might be explained by the fact that the dynamics in the
order and cancellation processes for TLS are relatively weak and obviously interfere with the
covariate processes.
14 This finding is consistent with the results of Hall and Hautsch (2004) who find similar results
when analyzing the continuous buy–sell pressure at the ASX.
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functions, reported in Fig. 1, reveal similar patterns in the form of the well known
U-shape. It appears that the intra-day seasonalities are induced by the general level
of trading activity implying relatively high intensities after the opening, a
significant decline around noon and a distinct increase before the closure of the
market.

Fourth, as indicated by the Ljung–Box statistics based on the ACI residuals,
the dynamic specifications (i.e. Tables 4 and 6) seem to appropriately capture the
dynamic properties of the data. Moreover, for four out of five stocks, the
inclusion of dynamics is absolutely essential in order to capture the serial
dependence in the data. This is illustrated by the diagnostics for the non-dynamic
specification (i.e. Table 5) where the Ljung–Box statistics reveal significant
dynamic misspecifications.15

Fifth, by comparing the BIC values of the three different specifications reported
in Tables 4, 5 and 6, we can conclude that the inclusion of both dynamic variables
as well as limit order book variables clearly improves the goodness-of-fit of the
model. However, for four out of five stocks, the specifications where order book
variables are omitted (i.e. Table 6) clearly underperform the non-dynamic models
(i.e. Table 5) in terms of explanatory power. This finding suggests that a

Fig. 1 Intraday seasonality functions. Estimated intraday seasonality functions of the processes
of aggressive market orders (solid line), aggressive limit orders (broken line), and aggressive
cancellations (dotted line) for the BHP, NAB, NCP, TLS and WOW stock traded at the ASX. The
estimates are based on the ACI specifications in Table 4

15 An exception is TLS. A shown by Table 5, even for a non-dynamic ACI model, the
corresponding Ljung–Box statistics associated with the ACI residuals are already quite low
indicating a reasonable goodness-of-fit.
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specification which includes order book information has a significantly higher
explanatory power than a pure dynamic model without covariates. Nevertheless, as
indicated by the BIC values in Table 4, in four of five cases the inclusion of
dynamics on top of order book variables leads to a further increase of the BIC.
Summarizing these findings, we conclude that the state of the order book plays a
particularly important role in explaining the degree of order aggressiveness in the
individual processes. Nonetheless, in addition order book dynamics have to be
taken into account in order to obtain a well-specified model.

5.2 Economic results

A particular important finding is that for most of our order book covariates, we find
a remarkable robustness over the cross-section of stocks with no systematic
differences between the individual stocks. Regarding our economic hypotheses, we
can summarize the following findings.

5.2.1 The impact of market depth

Our estimation results show a clear confirmation of Hypothesis (1). In fact, an
increase of the depth on the ask side (AD) increases the aggressiveness in sell
market order trading, decreases it in sell limit order trading and increases it in ask
cancellations. The converse is true for the depth on the bid side (BD) leading to a
rising intensity of aggressive buys as well as bid cancellations and a declining
intensity for aggressive buy limit orders. This finding clearly confirms the
crowding out concept as discussed in Parlour (1998). Furthermore, we also find a
significantly negative relation between the depth on a certain side of the market and
traders’ preference to post aggressive market orders on that side. Hence, trader’s
preference for aggressive buys (sells) increases when the ask (bid) depth declines.
This finding cannot be solely explained by a pure crowding out effect but supports
the idea that traders use information from the book to infer price expectations. As
discussed in Hall and Hautsch (2004), greater ask (bid) depth indicates that a
relatively higher proportion of volume is to be sold (bought) at a comparably low
(high) price. This induces a negative (positive) price signal which increases traders’
preference to post sell (buy) market orders. Interestingly, we do not observe a clear-
cut and significant impact of changes in the depth on the limit order and
cancellation activity on the opposite side of the market.

5.2.2 The impact of the conditional cumulated volume

The variables AD and BD measure market depth by the log volume-price ratio
associated with the 5% volume quantile. In addition, the cumulated (log) ask and
bid volume (AV and BV) control for the amount of volume pending in the queue.
Hence, the regressors associated with AV and BV reflect the impact of changes in
the cumulated volume given the corresponding market depth (as measured by AD
and BD). We find a positive impact of the cumulated ask (bid) volume on the
intensity of aggressive sell (buy) limit orders. Since we condition on the volume-
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price ratio, an increase of the volume must also imply a higher price impact leading
to a higher dispersion of limit prices and thus an increase of the execution
probability on that side of the market. Therefore, this result is consistent with the
theoretical predictions of the Parlour (1998) model and Hypothesis (1). However,
we also find slight evidence for a positive impact on market order aggressiveness
and a negative impact on the limit order aggressiveness at the same side of the
market. Hence, obviously a higher ask (bid) volume accompanied with a higher
dispersion of limit prices indicates that market participants expect increasing
(decreasing) prices leading to a rise (decline) in the preference for immediacy.
Overall, we observe a significant reduction of the order submission and
cancellation activity on the opposite side of the market.

Concerning the influence of changes in the cumulated volume during the
recent past we find that an increase in the cumulated volume on one market side
during the past 5 min decreases the intensity of market and limit orders on both
sides of the market, and simultaneously increases the cancellation intensity on
the same side. Hence, after periods in which substantial (one-sided) volume has
been accumulated in the queues, we observe a type of mean reversion effect
causing a reduction of the overall order flow and an increase in the tendency to
remove pending orders.

5.2.3 The impact of recent mid-quote movements

Mid-quote movements during the past 5 min have a significant impact on traders’
preference to post aggressive market and limit orders. Interestingly, we find a clear
rejection of Hypothesis (2). In particular, positive price movements decrease
(increase) traders’ overall activity on the ask (sell) side. This finding is not
explained by crowding out effects or the informational content of the book. A
possible reason for this effect could be that, after significant price movements,
traders’ order submission strategies are dominated by liquidity considerations. This
might be explained by the fact that a movement of the mid-quote accompanied by
the absorption of a substantial part of the pending volume on one side leads to an
increase of the costs of aggressive trading on that side. Then, traders obviously
become reluctant to post further aggressive orders on that market side. Moreover, it
also turns out that traders significantly reduce the cancellation intensity.

5.2.4 The impact of past volatility

No clear-cut confirmation of Hypothesis (3) is found. We observe an increase of the
overall order submission and cancellation activity in periods of a higher mid-quote
volatility. These results are highly significant and consistent over all stocks. These
results contradict the implications of Foucault (1999) since the notion of a
crowding out of market trading towards limit order trading is clearly rejected.
Rather, we find evidence that a higher volatility is accompanied by a higher limit
order book activity. A possible reason for this finding could be the well known
positive relation between volatility and order volumes. Since we explicitly focus on
large orders, our results could be driven by the fact that a higher volatility increases
the overall arrival rate of higher order volumes.
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5.2.5 The impact of the bid-ask spread

In this instance we find a clear confirmation of Hypothesis (4). Traders’ preference
for aggressive market trading significantly decreases when the bid-ask spread rises.
Conversely, the aggressiveness of limit order trading increases. Hence, the higher
the bid-ask spread, the lower traders’ incentive to cross the market and to post a
market order on the opposite side. In this case, market agents are willing to bear
execution risk by posting limit orders. Interestingly, we find weak evidence for the
fact that a widening of the bid-ask spread also leads to a decline of the cancellation
intensity on both sides of the market. Hence, the decrease of the risk of non-
execution induced by higher spreads reduces traders’willingness to cancel pending
orders.

5.3 Summarizing the results

Overall, we find clear evidence that the arrival rate of aggressive market orders,
limit orders, and cancellations is affected by the state of the order book and that
the inclusion of order book variables significantly increases the goodness-of-fit of
the model. Regarding the impact of changes in the market depth and the
cumulated pending volume on order and cancellation aggressiveness, we find
clear support for the “crowding-out” concept of Parlour (1998). These results are
in line with previous empirical studies such as Griffiths et al. (2000), Coppejans
and Domowitz (2002), Pascual and Veredas (2004) and Ranaldo (2004). In this
context, we also observe relationships which support the notion that the limit
order book has information value, i.e. that traders infer from the book with respect
to future price movements. However, Parlour’s model has no explanatory power
for the reaction of order aggressiveness after the occurrence of mid-quote
movements in the recent past. In this context, liquidity effects seem to prevail.
Furthermore, implications of the Foucault (1999) model regarding the impact of
volatility and the size of the bid-ask spread on traders’ order aggressiveness are
only partly confirmed. Whereas we find a significant crowding out of market
order aggressiveness towards limit order aggressiveness after a widening of the
spread (as theoretically predicted), we do not observe corresponding effects in
response to changes in the volatility. These peculiarities are not suggested by
existing equilibrium models.

Nevertheless, our findings suggest that a separate modelling of the single
processes in a multivariate setting is a valuable strategy providing a clear-cut
picture of how the particular processes are individually affected by the state of the
order book. Obviously, limit orders cannot necessarily be treated as less aggressive
versions of market orders since they respond in a different way to certain order
book variables. In this sense we confirm the results of Coppejans and Domowitz
(2002).

It is also demonstrated that the order book effects remain remarkably stable
irrespective of whether order book dynamics are taken into account or not. While
this finding illustrates the robustness of the results, it also implies that the economic
relations hold conditionally on the history of the individual processes as well as
unconditionally.
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6 Conclusions

We analyze the impact of order book information of traders’ order aggressiveness
in the electronic trading on the Australian Stock Exchange. The novel feature of the
paper is to analyze this issue using a multivariate dynamic intensity framework.
Therefore, order aggressiveness in market trading, limit order trading as well as in
order cancellations on both sides of the market is modelled on the basis of a six-
dimensional version of the autoregressive conditional intensity (ACI) model
proposed by Russell (1999). The multivariate intensity function gives the
instantaneous order arrival probability per time in each instant and for each
order process. Therefore, it has a natural interpretation as a (continuous-time)
measure for traders’ degree of aggressiveness in the individual dimensions. In this
sense, our setting merges approaches where order aggressiveness is modelled in
terms of a categorized variable on the basis of the order classification scheme
proposed by Biais et al. (1995) (see, for instance, Griffiths et al. 2000, or Ranaldo
2004), and, those approaches which model the intensity of aggressiveness using
univariate (ACD-type) dynamic duration models (see e.g. Coppejans and
Domowitz 2002, or Pascual and Veredas 2004). A novel feature of this study is
to determine order aggressiveness not only based on the type of the order and the
corresponding position in the book but also by the posted volume. Hence, we
explicitly focus on market and limit orders with volumes which are significantly
above the average. Correspondingly, we also classify cancellations by modelling
only those with high orders. This strategy allows us to concentrate on the
economically most relevant orders and to reduce the impact of noise.

The usefulness of the individual modelling of the single order processes in a
multivariate setting is confirmed by the finding that the intensities of market
trading, limit order trading, and cancellations have different responses in their
dependence on order book variables. This result questions the application of (too
simplified) order classification schemes and supports the use of sequential
classifications by distinctly distinguishing between market orders, limit orders and
cancellations as implemented by Pascual and Veredas (2004).

Our results show that order book information has significant explanatory power
in explaining traders’ degree of aggressiveness. In particular we find that the
inclusion of variables capturing the current state of the order book as well as recent
changes in the book improves the model’s goodness-of-fit considerably. Analyzing
the influence of fundamental market characteristics such as the depth, queued
volume, the bid-ask spread, recent movements in the order flow and in the price as
well as the recent price volatility during the last trading minutes, we broadly
confirm economic theory. Particularly with respect to market depth, clear evidence
is provided for “crowding out effects” (cf. Parlour 1998). Depth on one particular
side induces a crowding out of aggressive market and limit order trading on that
side towards the other side of the market. In addition to crowding out mechanisms
we also find evidence for liquidity and volatility effects which are not in line with
existing theoretical equilibrium models. These results indicate that traders’ order
aggressiveness is not only driven by expected execution probabilities but also by
price information revealed by the book as well as liquidity considerations.

Our results provide clear evidence that the timing of aggressive market orders,
limit orders as well as cancellations is influenced by the state of the order book
which is consistent with the findings of Coppejans and Domowitz (2002), but in
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contrast to those of Pascual and Veredas (2004). A possible explanation for these
conflicting results is that Pascual and Veredas (2004) apply a discrete-time duration
model which does not allow for time-varying covariates. However, particularly for
the processes of the infrequent highly aggressive orders, it seems to be essential to
account for changes of the order book during a spell.16

Clear evidence for the existence of multivariate dynamic structures in the order
arrival processes is found. We observe significant spill-over effects between the
both sides of the market and—in a weaker form—between market trading and limit
order trading. The fact that these interdependencies are primarily (significantly)
positive suggests that order book dynamics are driven by general market activity
which simultaneously influences all individual processes rather than by economic
“crowding out” arguments which would imply negative spill-over effects. These
findings support the notion that the arrival rates of aggressive orders are basically
driven by two pieces of information: (1) the state of the market as revealed by the
open limit order book and which directs traders’ order submission strategy, and (2)
general market activity which simultaneously influences the individual arrival
rates.17 Our findings show that order book information plays the dominant role in
explaining order aggressiveness. In particular, we observe that in terms of its
explanatory power, a model which excludes all dynamics but includes order book
covariates significantly outperforms a completely dynamic model that does not
account for the state of the market. Nevertheless, the dynamic variables are
absolutely necessary in order to obtain a well-specified model. These findings
provide support for advocates of greater transparency in electronic trading and
indicate that real benefits to traders may result from complete disclosure of the
order book.

Acknowledgement Special thanks are due to James McCulloch whose assistance in preparing
the data has made this research project feasible.
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Abstract In this paper we develop a dynamic model for integer counts to capture
fundamental properties of financial prices at the transaction level. Our model relies
on an autoregressive multinomial component for the direction of the price change
and a dynamic count data component for the size of the price changes. Since the
model is capable of capturing a wide range of discrete price movements it is
particularly suited for financial markets where the trading intensity is moderate or
low. We present the model at work by applying it to transaction data of two shares
traded at the NYSE traded over a period of one trading month. We show that the
model is well suited to test some theoretical implications of the market micro-
structure theory on the relationship between price movements and other marks of
the trading process. Based on density forecast methods modified for the case of
discrete random variables we show that our model is capable to explain large parts
of the observed distribution of price changes at the transaction level.
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1 Introduction

Financial transaction data, often called ultra high frequency data, is marked by two
main features: the irregularity of time intervals and the discreteness of price
changes. Based on the seminal work by Russell and Engle (1998) and Engle
(2000), a large body of studies has been centered around the further development
of autoregressive conditional duration (ACD) models in order to characterize the
transaction intensities. This paper is concerned with appropriately modelling the
discreteness of the price process at the transaction level within a count data
framework. While quantal response approaches seem to be more suitable in mod-
elling price changes on the transaction level if the outcome space consists only of
a few possible outcomes, the approach presented here is particularly designed for
shares where the possible outcome space for the price changes is a larger range
of integer values. This holds for most of the assets traded on European asset
markets. But our approach is also attractive for the analysis of transaction price
movements at more liquid markets such as the NYSE. With the decimalization on
the 29th January 2001, the minimum tick size at the NYSE was reduced from 1/16-
th of a US-Dollar to one cent for stocks selling at prices greater than or equal to US
$1. This leads to larger price jumps in ticks (the smallest possible price change) and
a larger range of observable discrete trade-by-trade price jumps. For example, in
the month before decimalization for the IBM stocks, 95% of all price changes at the
tick level were in a range of ±3 ticks, while this range changed to ±10 ticks in the
month thereafter.

Since transaction price changes are quoted as multiples of a smallest divisor, the
use of continuous distributions to characterize price changes is far from being
appropriate in particular for markets with high transaction intensities. Accordingly,
Hausman et al. (1992) proposed an ordered probit model with conditional heter-
oscedasticity to analyze stock price movements at the NYSE. The same approach is
used by Bollerslev and Melvin (1994) to model the bid-ask spread at FX-markets.
Contrary to the older rounding approaches by Ball (1988), Cho and Frees (1988)
and Harris (1990), conditioning information can be incorporated in the ordered
response models quite easily. A drawback of the ordered probit approach is that
the parameters result from a threshold crossing latent variable model, where the
underlying continuous latent dependent variable has to be given some more or
less arbitrary economic interpretation (e.g., latent price pressure). Moreover, since
the parameters are only identified up to a factor of proportionality, the estimates
of the moments of the latent price variable are only identifiable using additional
identifying restrictions.

An alternative to the ordered response models is the autoregressive conditional
multinomial (ACM) model proposed by Russel and Engle (2002). Similar to the
ordered response models, this approach also rests on the assumption that the dis-
tribution of observed transaction price changes is discrete with a finite number of
outcomes. A drawback of the ACM model is the necessity that all potential out-
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comes have to occur in the sample period to guarantee the identification and
estimation of the true dimension of the multinomial process. This creates a serious
limitation if the ACM is used for forecasting purposes. In the multinomial ap-
proaches, as well as in the ordered response models, the number of parameters
increases with the outcome space. As long as one is not willing to categorize the
outcomes at the expense of a loss of information, both approaches are more suited
for the empirical analysis of financial markets which are characterized by a limited
number of discrete price changes.

In the following we propose a model that does not suffer from the drawbacks of
the discrete response models sketched above. We propose a dynamic model which
is based on a probability density function for an integer count variable, and which
can be interpreted as a count data hurdle model. Our integer count hurdle (ICH)
model is closely related to the components approach by Rydberg and Shephard
(2003), who suggest decomposing the process of transaction price changes into
three distinct processes: a binary process indicating whether a price change occurs
from one transaction to the next, a binary process indicating the direction of the
price change conditional on a price change having taken place, and a count process
for the size of the price change conditional on the direction of the price change. By
combining the above mentioned two binary processes into one trinomial ACM
model (no price change or price movement downwards or upwards), and using a
count process for the size of the price change based on a dynamic count data
specification, our approach is more parsimonious than the one proposed by
Rydberg and Shephard. The distribution of price changes used is that of a count
data hurdle model extended for the domain of negative integer counts. For both
components of the price process, the dynamics are modelled using a generalized
ARMA specification.

Our model exhibits a number of desirable features and can be extended in many
respects. The decomposition allows for a detailed analysis of the price direction
process and volatility as well as the analysis of tail behavior. Inclusion of con-
temporaneous marks of the transaction price process as conditioning information
(e.g. transaction time and volume), can generate insights into the validity of various
hypotheses of market microstructure theory. In our empirical application of the
ICH model, we will analyze the distribution of price changes conditional on
transaction time and volume. Our model can also serve as a building block for the
joint process of transaction price and transaction times. In this sense, our approach
is more flexible than the competing risks ACDmodel by Bauwens and Giot (2003),
which focuses on the direction of the price process whereby neglecting information
on the size of the price changes.

For our empirical application of the ICH model, we use transaction data of the
stocks of the Halliburton Company (HAL) and Jack in the Box Inc. (JBX) traded at
the NYSE. Our sample period includes 35021 (HAL) and 4566 (JBX) transactions
observed from 1st to 30th March 2001.1 The two stocks are chosen for reasons of
representativeness. HAL is a stock with medium market capitalization (about US

1 The data used stems from the NYSE Trade and Quote database. We have removed all trades
outside the regular trading hours and each day’s first trade, to circumvent contamination due to
the opening call auction at the NYSE. Besides, all trades are treated as split transactions, if they
exhibited exactly the same timestamp. In this case we have aggregated their volume to one
transaction and we have assigned the last price in the sequence to the aggregated transaction.
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$17.5 billion) and considerable trade intensity, while JBX may be seen as rep-
resentative for a share with lower market capitalization (about US$2.5 billion) and
less trade intensity.

Figure 1 depicts the histograms for the transaction price changes for JBX and
HAL. Rather typical for transaction data is the large fraction of zero price changes
(around 60%). The remaining observations are proportioned between positive
(around 25%) and negative price changes (around 15%). With a significantly
higher frequency of positive one and two tick price jumps in comparison to the
negative one and two tick price changes, the distributions for both stocks turn out to
be somewhat skewed. Finally, we can observe price jumps of more than ±5 ticks for
11% (JBX) and 6% (HAL) of the transactions, which supports our view that both
modelling transaction returns as a continuous random variable and quantal re-
sponse representation, are too crude to pick up the true nature of the dependent
variable, and neglect valuable information about the true data generating process.
For JBX (HAL) the mean price change is given by 0.009 (−0.009) ticks, with
corresponding standard deviation of 3.367 (2.743) ticks. Figures 2 and 3 display
the autocorrelation functions of the price changes and the squared price changes for
both stocks. Considering the price changes, the few positive first autocorrelation
coefficients for JBX can be related to feedback trading and the first negative first
order autocorrelation coefficient for HAL can be related to the bid-ask bounce. The
bid-ask bounce refers to the fact that the transaction prices often bounce back and
forth between the ask and bid prices creating a negative autocorrelation in the
transaction price changes.2 Figure 3 shows that the second moments for both
stocks are subject to positive serial dependence, which represents an expression of
volatility clustering in the transaction price changes.

JBX HAL

Fig. 1 Histograms of the transaction price changes for Jack in the Box Inc. (JBX) and Halliburton
Company (HAL). The smallest possible price change is 0.01 US-Dollar

2 See, for example, Campbell et al. (1997), Chap. 3.2.
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The paper is organized as follows. In Section 2 the ICH model is introduced
in its basic form as a time series model, where we analyze the two components of
the price process separately. In Section 3 we augment the model by introducing
transaction volume and transaction time, which play a crucial role in the literature
on market microstructure. We use the ICH model to check some popular hypoth-
eses of market microstructure theory. In Section 4 we take a closer look on the
overall price process of discrete price changes by density forecast methods which
we extend to the case of discrete distributions. Section 5 concludes and gives an
outlook on possible extensions.

JBX HAL

Fig. 2 Autocorrelation function of the transaction price changes for Jack in the Box Inc. (JBX)
and Halliburton Company (HAL). The dashed lines mark off the approximate 99% confidence
interval �2:58
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JBX HAL

Fig. 3 Autocorrelation function of the squared transaction price changes for Jack in the Box
Inc. (JBX) and Halliburton Company (HAL). The dashed lines mark off the approximate 99%
confidence interval �2:58
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2 The hurdle approach to integer counts

Consider a sequence of transaction prices {P(ti), i: 1→n} observed at times {ti, i:
1→n}. Let {Yi, i: 1→n} be a sequence of price changes, where Yi = P(ti)−P(ti−1)
is an integer multiple of a fixed divisor (tick), then Yi 2 Z . Our interest lies in
modelling the conditional distribution of the discrete price changes YijF i�1; where
F i�1 denotes the information set available at the time transaction i takes place. For
this, we generalize the hurdle approach proposed byMullahy (1986) and Pohlmeier
and Ulrich (1995) for the Poisson and the negative binomial (Negbin) distribution,
respectively, to the domain of negative counts. The basic idea of this approach is to
decompose the overall process of transaction price changes into three components.
The first component determines the direction of the process (positive price change,
negative price change, or no price change) and will be specified as a dynamic
multinomial response model. Given the direction of the price change, count data
processes determine the size of positive and negative price changes, representing
the second and third component of our model. This yields the following structure
for the p.d.f. of YijF i�1 :

Pr Yi ¼ yi F i�1j½ �¼
Pr Yi < 0 F i�1j½ �Pr Yi ¼ yi Yi < 0;F i�1j½ � if yi < 0
Pr Yi ¼ 0 F i�1j½ � if yi ¼ 0
Pr Yi > 0 F i�1j½ �Pr Yi ¼ yi Yi > 0;F i�1j½ � if yi > 0:

8<:
(2.1)

The process driving the direction of the price changes is represented by
Pr Yi < 0jF i�1½ �; Pr Yi ¼ 0jF i�1½ � and Pr Yi > 0jF i�1½ �; while the two processes
for the size of the price changes conditional on the price direction, are defined
by Pr Yi ¼ yijYi < 0;F i�1½ � and Pr Yi ¼ yijYi > 0;F i�1½ �: Note that Pr Yi ¼ yij½
Yi > 0;F i�1� is a process defined over the set of strictly positive integers and
Pr Yi ¼ yijYi < 0;F i�1½ � is the corresponding p.d.f. for strictly negative counts.
This decomposition allows us to model the stochastic behavior of the transaction
price changes successively.

We follow Mullahy’s (1986) idea by modelling the size of positive price
changes as a truncated-at-zero count process.3 Let f +(·) be the p.d.f. of a standard
count data distribution, then the p.d.f. for the size of positive price changes
conditional on the fact that the prices are positive is a truncated-at-zero count data
distribution:

Pr Yi ¼ yijYi > 0;F i�1½ � ¼ hþ yi jF i�1ð Þ ¼ f þ yi jF i�1ð Þ
1� f þ 0jF i�1ð Þ� (2.2)

The process for the size of negative price jumps is treated in the same way:

Pr Yi ¼ yi jYi < 0;F i�1½ � ¼ h� yi jF i�1ð Þ ¼ f � �yi jF i�1ð Þ
1� f � 0jF i�1ð Þ; (2.3)

3 Alternatively, one could specify the p.d.f. of the transformed count Yi−1 conditional on Yi > 0
using a standard count data approach. This approach was adopted by Rydberg and Shephard
(2003) in their decomposition model.
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where f −(·) denotes the p.d.f. of a standard count data model. Combining the single
components leads to the following p.d.f. for the transaction price changes:

Pr Yi ¼ yi jF i�1½ � ¼
h
Pr Yi < 0jF i�1½ �h� yi jF i�1ð Þ

i�i h
Pr Yi ¼ 0jF i�1½ �

i0i


h
Pr Yi > 0jF i�1½ �hþ yijF i�1ð Þ

iþi
;

(2.4)

where �i ¼ 1 Yi<0f g; 0i ¼ 1 Yi¼0f g and þi ¼ 1 Yi>0f g are binary variables indicating
positive, negative, or no price change for transaction i.

A more parsimonious distribution results if one assumes that h−(·) and h+(·)
arise from the same parametric family of probability density functions. Based on
this assumption, the stochastic behavior of positive and negative price movements
can be summarized in a conditional p.d.f. for the absolute price changes Si≡∣Yi∣
conditional on the price direction:

Pr Si ¼ sijSi > 0;Di;F i�1½ � ¼ h sijDi;F i�1ð Þ with

Di ¼
�1 if Yi < 0;
0 if Yi ¼ 0;
1 if Yi > 0;

8<: (2.5)

where h(·) is the p.d.f. of a truncated-at-zero count data model. For the
parsimonious specification, the p.d.f. for a transaction price change is:

Pr Yi ¼ yijF i�1½ � ¼ Pr Yi < 0jF i�1½ ��i Pr Yi ¼ 0jF i�1½ �0i Pr Yi > 0jF i�1½ �þi

 h yij jjDi;F i�1ð Þ½ � 1�0ið Þ: ð2:6Þ

In this case, the resulting sample log-likelihood function of the ICH-model
consists of two additive components:

L ¼
Xn
i¼1

ln Pr Yi ¼ yijF i�1½ � ¼
Xn
i¼1

L1;i þ
Xn
i¼1

L2;i; (2.7)

where:

L1;i¼ �i ln Pr Yi < 0jF i�1½ � þ 0i ln Pr Yi ¼ 0jF i�1½ � þ þi ln Pr Yi > 0jF i�1½ �
(2.8)

L2;i ¼ 1� 0i
� �

ln h yij jjDi;F i�1ð Þ: (2.9)

The component ∑L1,i is the log-likelihood of the multinomial process
determining the direction of prices, while ∑L2,i is the log-likelihood of the
truncated-at-zero count process for the absolute size of the price change. If there
are no parametric restrictions across the two likelihoods, we can maximize the
complete likelihood (2.7) by separately maximizing its components (2.8) and (2.9).
This reduces the computational burden considerably. In the following, we now
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specify the parametric form of the p.d.f. for the price direction and the absolute size
of the price changes.

2.1 Dynamics of the price direction

The parametric model for the direction of the transaction price changeDi= j, (j=−1,
0, 1) is taken from the class of logistic ACM (autoregressive conditional multi-
nomial) models suggested by Russel and Engle (2002). In order to relate the
probability 	ji ¼ Pr Di ¼ jjF i�1½ � for the occurrence of price direction j to subsets
of F i�1 (and further explanatory variables), we use a logistic link function. This
leads to a multinomial logit model of the form:

	ji ¼
exp �ji

� �P1
j¼�1 exp �ji

� � ; j ¼ �1; 0; 1; (2.10)

where Λji represents a function of some subset of F i�1 to be specified below. As a
normalizing constraint, we use Λ0i=0, ∀i.

Due to the observed dynamic behavior of the transaction price changes
associated with the bid-ask bounce or the volatility clustering, one can expect that
the process of the price direction also exhibits serial dependence. In order to shed
light on this serial dependence, which has to be taken into account when modelling
the conditional distribution of the price direction, we define the following state
vector

xi ¼ x�1i; x1ið Þ0¼
1; 0ð Þ0 if Yi < 0
0; 0ð Þ0 if Yi ¼ 0
0; 1ð Þ0 if Yi > 0;

8<: (2.11)

and consider its corresponding sample autocorrelation matrix. For a lag length ‘,
this matrix is given by:

� ‘ð Þ ¼ D�1� ‘ð ÞD�1; ‘ ¼ 1; 2; . . . ; (2.12)

with

� ‘ð Þ ¼ 1

n� ‘� 1

Xn
i¼‘þ1

xi � xð Þ xi�‘ � xð Þ0:

D denotes a diagonal matrix containing the standard deviations of x−1i and x1i.
Figure 4 below depicts the cross-correlation function of up to 30 lagged

transactions. The significant, but not very large, first order cross-correlations pro-
vide empirical support for the existence of a bid-ask bounce: The probability of a
price reduction is significantly (HAL) positively correlated with the price increase
in the previous period (upper right panel), and also significant (both stocks), a price
increase is more likely if a negative price change is observed for the previous
transaction (lower left panel). The cross-correlation effects turn out to be asym-
metric, in the sense that the correlation of a negative price change with a previous
positive one is smaller than the effect vice versa. For HALwe observe negative first
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JBX

HAL

Fig. 4 Multivariate autocorrelation function for the price change directions for Jack in the Box
Inc. (JBX) and Halliburton Company (HAL). Upper left panel: corr x�1i; x�1i�‘ð Þ; upper right
panel: corr x�1i; x1i�‘ð Þ; lower left panel: corr x�1i�‘; x1ið Þ and lower right panel: corr x1i; x1i�‘ð Þ.
The dashed lines mark the approximate 99% confidence interval �2:58
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order serial correlation for price changes in the same directions (upper left and
lower right panel), which underpins the existence of a bid-ask bounce. For JBX an
analogue pattern is not observable. Moreover, for HAL the positive autocorrela-
tions at longer lags indicate that the bounce effect will be compensated in later
periods. Finally, note that the negative serial correlation caused by the bid-ask
bounce is a short-run phenomenon.

In order to capture the dynamics of the price direction variable, the vector of
log–odds ratios Λi= (Λ−1i, Λ1i)′ = (ln[π−1i/π0i], ln[π1i/π0i])′ is specified as a mul-
tivariate ARMA process. The final form including possible explanatory variables
is:

�i ¼
Pm
l¼0

GlZD
i�l þ �i

�i ¼ �þPp
l¼1

Cl�i�1 þ
Pq
l¼1

Al�i�l

(2.13)

with {Cl, l: 1→p} and {Al, l: 1→q} being matrices of dimension (2×2) with the
elements {c(l)hk} and {a(l)hk} and μ = (μ1, μ2)′. The vector Zi

D contains additional
explanatory variables capturing other marks of the trading process (market mi-
crostructure variables) with {Gl, l: 0→m} as the corresponding coefficient matrix
and typical element {ghk

(l)}.
The vector of log–odds ratios is driven by the martingale differences:

�i¼ ��1i; �1ið Þ0; with �ji ¼ xji � 	jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ji 1� 	ji
� �q ; j ¼ �1; 1; (2.14)

which is the standardized state vector xi. In this ACM-ARMA(p,q) specification,
the conditional distribution of the direction of price changes depends on lagged
conditional distributions of the process and the lagged values of the standardized
state vector.4 The process is stationary if all values of z that satisfy ∣I−C1z−
C2z

2−⋯−Cpz
p∣=0 lie outside the unit circle. Furthermore note, that the existence

of a bid-ask bounce would imply that a(1)12 > a
(1)
11 and a(1)21 > a

(1)
22, which means that

the probability of an immediate reversal of the price direction is higher than that of
an unchanged price direction.5 The log likelihood of the logistic ACM model, the

(2.13)

4 According to the classification by Cox (1981), our ACM model belongs to the class of
observationally driven models where time dependence arises from a recursion on lagged
endogenous variables. Alternatively, our model could be based on a parameter driven spec-
ification, in which the log–odds ratios Λi are determined by a dynamic latent process. However,
the estimation and the diagnostics of the latter approach results in a substantially higher
computational burden than for the ACM model. On the other hand, models driven by latent
processes are usually more parsimonious than comparable dynamic models based on lagged
dependent variables. A comparison of the two alternatives should be the subject of future
research.
5 See Russel and Engle (2002) for a more detailed discussion of the stochastic properties of the
ACM-ARMA(p,q) model.
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first component of the likelihood of the overall model, takes on the familiar form
presented below:

L1 ¼
Xn
i¼1

�i ln	�1i þ 0i ln	0i þ þi ln	1i
� �

: (2.15)

Concerning the coefficient matrix Al, our empirical analysis will be based on
two alternative specifications: an unrestricted one, and one including symmetry
restrictions as suggested by Russel and Engle (2002). In particular, we impose the
symmetry restriction a12

(1)=a21
(1). This implies that the marginal effect of a negative

price change on the conditional probability of a future positive price change is of
the same size as the marginal effect of a positive change on the probability of a
future negative change. Moreover, we impose the symmetry restriction a(1)11 = a

(1)
22

which guarantees that the impact of a negative change on the probability of a future
negative change is the same as the corresponding effect for positive price changes.
The symmetry of impacts on the conditional price direction probabilities will also
be imposed for all lagged values of the probabilities and normalized state variables.
Following Russel and Engle (2002), we set in the model with symmetry restrictions
c2
(l)=0, ∀l, which implies that shocks in the log–odds ratios vanish at an exponential
rate determined by the diagonal element c1

(l). This simplifies theARMA specification
(2.13) for the symmetric model to:

� ¼ �1

�2

� 	
; Cl ¼ c lð Þ

1 0

0 c lð Þ
1

 !
; Al ¼ a lð Þ

1 a lð Þ
2

a lð Þ
2 a lð Þ

1

 !
: (2.16)

Although the reasoning behind these restrictions seems appropriate due to the
explorative evidence of the state variable xi, the validity of these restrictions can, of
course, be easily tested by standard ML based tests.

2.2 Empirical results for the ACM model

In search of the best specification, we use the Schwarz information criterion (SIC)
to determine the order of the ARMA process. For the selected specification, its
standardized residuals will be subject to diagnostic checks. For the estimates of
the conditional expectations and the variances Ê xijF i�1½ � ¼ 	̂i and V̂ xijF i�1½ � ¼
diag 	̂ið Þ � 	̂i	̂0i , respectively, the standardized residuals can be computed as:

vi ¼ v�1i; v1ið Þ0¼ V̂
�
xijF i�1

��1=2
h
xi � Ê

�
xijF i�1

�i
; (2.17)

where V̂ xijF i�1½ ��1=2 is the inverse of the Cholesky factor of the conditional
variance. For a correctly specified model, the standardized residuals evaluated at
the true parameter values should be serially uncorrelated in the first two moments
with the following unconditional moments: E[vi]=0 and E[vivi′ ]=I. The null
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hypothesis of absence of serial and cross-correlation in vi can be tested by the
multivariate version of the Portmanteau statistic:6

Q Lð Þ ¼ n
XL
‘¼1

tr �v ‘ð Þ0�v 0ð Þ�1�v ‘ð Þ�v 0ð Þ�1
h i

; (2.18)

where �v ‘ð Þ ¼Pn
i¼‘þ1 viv

0
i�‘
�
n� ‘� 1ð Þ . Under the null hypothesis, Q(L) is

asymptotically χ2-distributed with degrees of freedom equal to the difference be-
tween four times L and the number of parameters to be estimated.

The ML-estimation results for the pure time series specifications (obtained
using the optimization procedure of Berndt et al. (1974) (BHHH)) and the results
of the corresponding diagnostic checks are summarized in Table 1. The Schwarz
criterion suggests to select an ARMA(1,1)-specification for JBX and an ARMA
(2,2)-specification for HAL regardless whether symmetry on the coefficient mat-
rices is imposed or not. All coefficient estimates are at least significant at the 5%
level. The LR-test for symmetry of the coefficient matrices rejects the null of
symmetric responses for both stocks.

Our estimates reveal some differences in the dynamics of the price direction
variable for the two stocks. For the JBX stock the estimate of 0.912 (0.888 for the
non-symmetric specification) for the coefficient c1

(1) indicates a high degree of
persistence in the price direction variable. Independent of the direction of the price
movement, the probability of a price change is comparatively high if the prob-
ability of a price change for the previous transaction was high. Because the prob-
ability of a non-zero price change can be interpreted as a specific measure of price
volatility, this finding reflects a clustering of volatility. Since under the estimated
non-symmetric specification a12

(1) < a11
(1) and a22

(1) < a21
(1) we can conclude that there

is no clear evidence for a bid-ask bounce. Hence, our estimates confirm the
explorative findings on the cross-correlations of the price direction variable
(Fig. 4) and the simple autocorrelation function of the transaction prices in Fig. 2.
The results for HAL are more along the lines of previous empirical findings on the
dynamics of the transaction price process. Since c1

(1)+c1
(2) is positive and close to

unity, a high degree of persistence can be found as well. Moreover, there is now
evidence for a negative first-order serial cross-correlation for the price change
indicators with a12

(1) > a11
(1) and a22

(1) < a21
(1), indicating the existence of a bid-ask

bounce.
Our diagnostic checks show that most of the dynamics of the price direction

variable is captured for the JBX data, but not for the HAL. For JBX the generalized
Portmanteau statistic Q(30) with a value of 132.9 (121.1) does not reject the null
hypothesis of no cross-correlations at the 10% significance level for the symmetric
and the nonsymmetric specification. For the raw data xi, the corresponding value of
the Q(30) statistic was found to be 303.9. For HAL the generalized Portmanteau
statistics indicate that the standardized residuals are still cross-correlated, although
the model reduces the value of the Q(30) statistic quite substantially from value of
3590.0 for the raw data to 163.6 (non-symmetric specification).

Figure 5 depicts the cross-correlation functions of the standardized residuals
v−1i and v1i. For JBX all but one correlations lie within the 99% confidence band

6 See, for example, Lütkepohl (1993).
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JBX

HAL

Fig. 5 Multivariate autocorrelation function for the residuals of the logistic ACM model for
Jack in the Box Inc. (JBX) and Halliburton Company (HAL) up to 30 lagged transactions.
The correlations are the following: upper left panel: corr v�1i; v�1i�‘ð Þ, upper right panel:
corr v�1i; v1i�‘ð Þ, lower left panel: corr v�1i�‘; v1ið Þ and lower right panel: corr v1i; v1i�‘ð Þ. The
dashed lines mark off the approximate 99% confidence interval �2:58

� ffiffiffi
n

p
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and for HAL all but two correlations lie inside the 99% band. The means of
standardized residuals reported in Table 1 are close to zero, which should be ex-
pected from a well specified model. However, the estimated variance–covariance
matrix of the standardized residuals deviate slightly from the identity matrix. This
may hint to a distributional misspecification or a misspecification of log–odds
ratios Λi, which is not fully compatible with the variation in the observed variation
of price change direction.

2.3 Dynamics of the size of price changes

In order to analyze the size of the non-zero price changes, we use a GLARMA
(generalized linear autoregressive moving average) model based on a truncated-at-
zero Negative Binomial (Negbin) distribution. The choice of a Negbin in favor of a
Poisson distribution is motivated by the fact, that the unconditional distributions of
the non-zero price changes show over-dispersion for both stocks. For JBX (HAL)
the dispersion coefficient7 is given by 3.770 (2.911). Moreover, note, that an at-
zero-truncated Poisson distribution would allow only for under-dispersion.

Similar to the ACMmodel, the dynamic structure of this count data model rests
on a recursion on lagged observable variables. A comprehensive description of this
class of models can, for instance, be found in Davis et al. (2003). Note that the time
scale for absolute price changes (defined by transactions associated with non-zero
price changes) is different from the one of the ACM model for the direction of the
price changes, which is defined on the ticktime scale. Let u be a random variable
following a Negbin distribution with the p.d.f.8

f uð Þ ¼ � �þ uð Þ
� �ð Þ� uþ 1ð Þ

�

�þ !
� 	� !

!þ �
� 	u

; u ¼ 0; 1; 2; : : : ; (2.19)

with E(u) =ω > 0 and Var(u) =ω+ω2/κ. The overdispersion of the Negbin distribu-
tion depends on parameter κ>0. As κ→∞, the Negbin collapses to a Poisson
distribution. The corresponding truncated-at-zero Negbin distribution is obtained
as h(u)=f (u) / [1−f (0)], (u=1, 2, 3, ...), with f (0) = [κ/(κ+ω)]κ. This flexible class of
distributions will be used to model the size of non-zero price changes conditional
on filtration F i�1 and price direction Di . Thus, for Si∣Si>0, Di, F i�1 we assume
the following p.d.f.:

h sijDi;F i�1ð Þ ¼ � �þ sið Þ
� �ð Þ� si þ 1ð Þ

�þ !i

�

h i�
�1

� 	�1 !i

!i þ �
� 	si

; si ¼ 1; 2; . . . ;

(2.20)

with the conditional moments:

E SijSi > 0;Di;F i�1½ � ¼ �Si ¼
!i

1� #i (2.21)

7 Computed as variance over mean.
8 See, for example, Cameron and Trivedi (1998) (Ch. 4.2.2.).
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V Si½ jSi > 0;Di;F i�1� ¼ �2Si ¼
!i

1� #i �
!2
i

1� #ið Þ2 #i � 1� #i
�

� 	
; (2.22)

where #i ¼ �
�
�þ !ið Þ� ��

: In this specification, both mean and variance are mono-
tonic increasing functions of the variable ωi that is assumed to capture the variation
of the conditional distribution depending on Di and F i�1 .

As noted above, volatility clustering of asset returns is a well-known property,
which also occurs at high frequencies. This is confirmed by the autocorrelation
function of the nonzero absolute price changes shown in Fig. 6, which reveals a
significant autocorrelation of this specific volatility measure. For the less fre-
quently traded stock JBX, the correlations die out quicker than for HAL where
significant but small correlations can be observed even after more than 25 trades.

In order to take into account the dynamics of Si we follow Rydberg and
Shephard (2002) and impose a GLARMA structure on ln ωi as follows:

9

ln!i ¼ �0d �Di þ
Pm
l¼0

BlZS
i�l þ �i

with �i ¼ �0 þ S �; �;Kð Þ þPp
l¼1

�l�i�lþ
Pq
l¼1

l"i�1þ
Pr
l¼1

�l "i�lj j:
(2.23)

Since it is a well-known stylized fact for high frequent financial data that there
exists intraday seasonality in price volatility, we introduce the seasonal component
S(ν, τ, K) =ν0τ+∑K

k=1ν2k −1sin (2π(2k−1)τ) +ν2k cos (2π(2k)τ). This Fourier flex-
ible form is to capture intraday seasonality in the absolute price changes, where τ is

JBX HAL

Fig. 6 Autocorrelation function of the non-zero absolute price changes Si|Si > 0 for Jack in the
Box Inc. (JBX) and Halliburton Company (HAL). The dashed lines mark the approximate 99%
confidence interval �2:58 =

ffiffiffienp
, where ñ is the number of non-zero price changes

9 Similar to the alternative specification discussed in the context of the ACM model one could
also specify a dynamic latent process forωi. See Zeger (1988) and Jung and Liesenfeld (2001) for
examples.
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the intraday trading time standardized on [0, 1] and ν is a 2K+1 dimensional
parameter vector.

In Eq. (2.23) the standardized absolute price change, "i ¼ Si � �Sið Þ��Si; drives
the extended ARMA process in λi. Similar to the dynamics structure in the
EGARCH model of Nelson (1991) we allow λi to depend on the innovation term,
and additionally on its absolute value to be able to capture a wide range of possible
news impact functions. The vector �Di ¼ Di;Di�1; . . .Di�lð Þ0 contains information
about the contemporaneous and lagged price directions with a corresponding
coefficient vector βd= (βd0, βd1 , . . . , βdl)′ . The inclusion of Di ∈ {−1, 1} is to
capture potential differences in the behavior of the absolute price changes
depending on the direction of the price process. Thus, a negative βd0 implies that
with negative price changes (Di= −1) large absolute price changes are more likely
to occur than with positive price changes (Di= 1). If one interprets the absolute
price changes as an alternative volatility measure, this asymmetry reflects a kind of
leverage effect, where downward price movements imply a higher volatility than
upward movements.10 The inclusion of lagged terms Di− l l =1, 2, . . . allows for a
dynamic variant of the leverage effect. Zi

S denote further explanatory variables,
which will be discussed below.

2.4 Empirical results for the GLARMA model

For estimation of parameters of the GLARMA(p,q) model, given by Eqs. (2.20)
to (2.23), we maximize the log-likelihood L2 ¼

Pn
i¼1 1� 0i
� �

ln h sijDi;F i�1ð Þ
using the BHHH algorithm. We use the Schwarz information criterion to determine
the optimal order of p and q. The diagnostic checks are based on the standardized
residuals

ei ¼ Si � �̂S i

�̂si
� (2.24)

For a correctly specified model, the residuals evaluated at the true parameter
values should be uncorrelated in the first two moments with E [ei] = 0 and E [ei

2] =1.
The ML-estimates of the pure time series component of the GLARMA model

for two specifications allowing for a plain (ζl = 0) and a more flexible news impact
curve (ζl ≠ 0) are given in Table 2. Since the coefficients of the seasonal component
S(ν, τ, K) are jointly significant for all specifications estimated, we refrain from
reporting the results for the models without any seasonal component in the absolute
price change variable. The diurnal seasonalities of the absolut price changes for
JBX and HAL are depicted in Fig. 7. We observe a standard intraday volatility (or
market activity) seasonality pattern: A high volatility when trading starts, which
declines until lunch-time (after around 9,000 s, 12:00 EST), a slight recovery in the
early afternoon, and another decrease when the European stock markets close (after
around 16,200 s, 14:00 EST). As for the price direction variable for the JBX data, a
parsimonious GLARMA(1,1)-specification turns out to be best specification, while

10 See, for instance, Nelson (1991).
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Table 2 ML estimates of the GLARMA model for Jack in the Box Inc. (JBX) and Halliburton
Company (HAL)*

Parameter JBX HAL

Plain news impact Flexible news
impact

Plain news impact Flexible news
impact

Estimate Std. dev. Estimate Std. dev. Estimate Std. dev. Estimate Std. dev.

γ0 0.2079 0.0545 −0.0133 0.0426 0.0806 0.0505 −0.0119 0.0039
γ1 0.8753 0.0356 0.9275 0.0292 0.3821 0.5177 1.5058 0.0717
γ2 0.3914 0.3761 −0.5219 0.0682
δ1 0.1643 0.0312 0.1234 0.0288 0.2240 0.0181 0.2053 0.0183
δ2 0.0262 0.1411 −0.1724 0.0164
ζ1 0.2008 0.0389 0.1602 0.0262
ζ2 −0.1307 0.0257
ν0 −0.0705 0.0507 −0.0879 0.0475 −0.2036 0.1452 −0.0143 0.0041
ν1 0.0078 0.0080 0.0045 0.0076 0.0097 0.0097 0.0008 0.0005
ν2 0.0169 0.0085 0.0165 0.0080 0.0115 0.0093 0.0012 0.0006
ν3 −0.0184 0.0183 −0.0251 0.0173 −0.0440 0.0330 −0.0027 0.0011
ν4 −0.0095 0.0119 −0.0154 0.0115 −0.0176 0.0147 −0.0011 0.0007

��
1
2 1.5755 0.1255 1.5078 0.1190 2.5513 0.1907 2.4963 0.1405

Log-likelihood −0.841361 −0.837540 −0.845520 −0.843532
SIC 0.849680 0.846783 0.847164 0.845474
Q(30) 124.8 (0.000) 57.6 (0.001) 187.8 (0.000) 43.5 (0.009)
Q(50) 160.7 (0.000) 84.5 (0.001) 215.4 (0.000) 61.5 (0.042)
Resid. mean 0.001 0.006 0.000 0.005
Resid. variance 0.974 0.953 1.167 1.152

*Dependent variable is the absolute value of the size of a non-zero price change, Si∣Si> 0,
ñ=1,809 (JBX), ñ=17,329 (HAL), p-values in parenthesis

JBX HAL

Fig. 7 Estimated diurnal seasonality function of the non-zero absolute price changes Si∣Si > 0 for
Jack in the Box Inc. (JBX) and Halliburton Company (HAL). The x-axes represents the 23,400
trading-seconds in the NYSE-trading period (from 9:30 to 16:00 EST)
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for HAL a richer GLARMA(2,2) yields the best goodness of fit in terms of the
Schwarz criterion.

For all estimates, the dispersion parameter κ−1/2 is significantly different from
zero so that we have to reject the null of a truncated-at-zero Poisson distribution in
favor of a Negbin distribution. The parameters for the ARMA components are
significant as well. For JBX the estimates for the roots of the AR components
are 0.8753 (plain model) and 0.9275 (flexible model), so that stationarity is
guaranteed. For HAL the implicit estimates for the two roots11 of the AR com-
ponents are 0.8452 and −0.4631 (plain model) and 0.9649 and 0.5409 (flexible
model), so that stationarity is guaranteed as well. Since for both stocks roots are
close to one, the GLARMA model predicts a strong persistence in the non-zero
absolute price changes.

For both data sets the specification allowing for more flexible news impacts are
superior to the ones with standard news impact curves. The coefficients on ∣ɛi−1∣
are significantly positive, but also the fit of the observed dynamics improves over
the specification ignoring the possibility of the additional news impact component.
For HAL the effect is considerably lowered by a negative effect on ∣ɛi − 2∣.

The value of Ljung-Box Q-statistics for the standardized residuals ei reported in
Table 2 indicate that the GLARMA(1,1)-dynamics chosen for the JBX absolute
price changes does not remove autocorrelation in the residuals completely. How-
ever, based on the Q(50)-statistic for the flexible GLARMA(2,2)-specification for
HAL the null of no serial correlation in the residuals cannot be rejected at the 1%
level.

3 Transaction price dynamics and market microstructure

One of the fundamental questions of the market microstructure theory of financial
markets is concerned with the determinants of the price process and the specific
role of the institutional set-up.12 Generally, the goal is to figure out how new price
relevant information affects the price process. Approaches based on the rational
expectation hypothesis typically assume some kind of heterogeneity among the
market participants with respect to their level of information. The corresponding
transaction process generally leads to successive revelations of price information.
This leads to empirically testable hypotheses about the joint process of transaction
price changes and other marks of the trading process, such as transaction intensities
and transaction volume.

Provided that short-selling is infeasible, Diamond and Verrecchia (1987) infer
that longer times between transactions can be taken as a signal for the existence
of bad news implying negative price reactions. The absence of a short selling
mechanism prevents market participants from profiting by exploiting the negative
information through corresponding transactions. Therefore, one can expect that
low transaction rates (longer times between transactions) are associated with
higher volatility in the transaction price process and vice versa.

11 Computed as z1;2 ¼ �1
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ 4�2

p
:

12 See O’Hara (1995) for a comprehensive survey on the theoretical literature on market
microstructure.

Modelling financial transaction price movements: a dynamic integer count data model 185



Easley and O’Hara (1992) provide an alternative explanation of the relationship
between transaction intensities and transaction price changes. In their model,
higher transaction rates occur when a larger share of informed traders is active,
which is anticipated by less informed traders. Consequently, the price reacts more
sensitively when the market is marked by high transaction intensities than at times
when the transaction intensity is low. Hence, contrary to Diamond and Verrechia,
Easley and O’Hara predict a negative relationship between transaction times and
volatility.

Similar predictions about the link between price dynamics and transaction
volume result from the model proposed by Easley and O’Hara (1987). In their
model, informed market participants try to trade comparatively large volumes per
transaction in order to profit from their current informational advantage. It is
assumed that this advantage exists only temporarily. The occurrence of those large
transactions are seen by uninformed traders as evidence for new information.
Hence, one can expect that the price reacts to larger orders more sensitively than
to smaller ones. In general, price volatility should be larger when larger trading
volumes are observed.

A further theoretical explanation for the positive association between trading
volume and volatility goes back to the mixture of distribution model of Clark
(1973) and Tauchen and Pitts (1983). In a standard set-up of the model, the positive
association results from a joint dependence on the news arrival rate.13

A suitable framework for quantifying the relationship between transaction price
changes and other marks of the trading process, such as trading volumes and
transaction rates, is their joint distribution. Let Zi be the vector representing the

marks of the trading process with the joint p.d.f. Pr Yi ¼ yi; ZijF y;zð Þ
i�1

h i
for trans-

action price changes and the marks conditional on partial filtration on y and z.
Without any loss of generality, the joint p.d.f. can be decomposed into the p.d.f.

of the price changes conditional on the marks and the marginal density of the marks

f ZijF y;zð Þ
i�1

� 

:

Pr Yi ¼ yi; ZijF y;zð Þ
i�1

h i
¼ Pr Yi ¼ yijZi;F y;zð Þ

i�1

h i
f ZijF y;zð Þ

i�1

� 

; (3.1)

where the p.d.f. of the ICH model can be used as the basis for specifying the
conditional p.d.f. of the price changes. In the following we correspondingly extend
the ICH model by introducing the transaction rate and trading volume as con-
ditioning information.

Let Ti be the time between transaction i−1 and i (measured in seconds) and Vi
the transaction volume (measured as the number of shares) we enrich the ACM
model by introducing in the ARMA specification of the log–odds ratios (2.13):

ZD
i ¼ ln Vi; ln Tið Þ0; (3.2)

without imposing any symmetry restriction on the coefficient matrix Gl. Imposing
such a restriction would mean, for example, that an increase in the transaction
intensity Ti has the same impact on the probability of a positive price response as
on a negative one. This, however, contradicts the implications of the theoretical

13 See Andersen (1996) and Liesenfeld (1998, 2001) for extensions of the mixture models.
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hypothesis of Diamond and Verrecchia (1987) who predict a negative correlation
between price changes and the time between transactions. Hence, one would
expect asymmetric effects on the probabilities of a certain price reaction.14

In a similar way, the transaction rate and the transaction volume are introduced
into the model as conditioning information for the size of the price changes (2.23):

ln!i ¼ �d0Di þ �d1Di�1 þ �v0Vi þ �v1Vi�1 þ �t0Ti þ �t1Ti�1 þ �i: (3.3)

Note that the conditional distribution of the price change Pr Yi ¼ yijZi;F y;zð Þ
i�1

h i
resulting from the specifications (3.2) and (3.3) does not explicitly rest on a
structural theoretical model for the joint process of price changes, volume, and
transaction rates, which would treat each of these variables as an endogenous
quantity. Equations (3.2) and (3.3), rather, reflect ad-hoc assumptions with respect
to the distribution of the price changes conditional on volume and transaction rate
(as it could result from a joint distribution of these variables). Correspondingly,
the estimated relations cannot be interpreted as structural economic relations.
Nevertheless, the augmented ICH model can serve as an instrument for capturing
and quantifying the relationship between important marks of the trading process.
This allows us to shed light on the empirical relevance of the theoretical im-
plications sketched above.

Tables 3 and 4 contain the estimation results for the augmented ICH model with
the transaction rate and trading volume as additional covariates. For the two sub-
models, we have chosen the same order of the process that was found to be optimal
for the pure time series specification. In the price direction model (Table 3) both log
trading volume Vi and the log time between transactions Ti have a significantly
positive impact on the log–odds ratios (i.e., the probability that the transaction price
changes increases with the size of the transaction volume and the time between
transactions). Since the probability of a nonzero price change can be interpreted as
a specific measure of price volatility, it implies that low transaction rates go along
with higher price volatility. This provides empirical support for the implications of
the model proposed by Diamond and Verrecchia (1987), where no transactions
indicate bad news, which contradicts the theoretical implications of Easley and
O’Hara (1992) where no transactions indicate lack of news in the market. Our
finding that high transaction volumes are positively correlated with volatility is
consistent with the implication of the model proposed by Easley and O’Hara
(1987), where large volumes correspond to the existence of additional news in the
market. The effect of volume on the probability of a price change is partly com-
pensated for by the subsequent transaction. The effect of the transaction time on the
probability of a price change is asymmetric in the sense that the major reaction for
negative price change occurs immediately, while parts of the reaction on log–odds
ratio for a positive price change occurs also with the subsequent transaction. This
interesting reaction pattern holds for JBX and HAL.

Finally, the inclusion of the microstructure variables greatly improves the value
of the Schwarz criterion, but worsens the dynamic properties of the model as
indicated by the Q-statistics. Our empirical results for the direction of the price
changes are in accordance with those put forth by Rydberg and Shephard (2003) for

14 The LR-test clearly rejects the null hypothesis of symmetric price reactions.
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IBM transaction prices. In particular, they also find a positive impact of transaction
volume and time between transactions on the activity of transaction prices.

Table 4 reports the estimation results of the augmented GLARMA model for
the absolute (non-zero) price changes. We find no evidence for a strong leverage
effect when accounting for lagged effects. For both shares the contemporaneous
effect of Di on the volatility measure Si is negative, supporting the hypothesis of a
leverage effect. But this effect is completely over-compensated for in JBX and
nearly compensated for in HAL by the positive effect of Di−1. This result stands in
contrast to the findings by Rydberg and Shephard (2003) who find a leverage effect
for transaction prices of the IBM share traded at the NYSE. Again, volume and
transaction rate have a positive impact on the size of the price changes. Since the
size of the price changes as well as the probability of a non-zero price change are
volatility measures, our previous conclusions based upon the ACM component

Table 3 ML estimates of the logistic ACM-ARMAmodel with microstructure variables and non-
symmetric response coefficients*

Par. JBX HAL

Estimate Std. dev. Estimate Std. dev.

μ1 −0.5443 0.2146 −0.0684 0.0079
μ2 −0.6294 0.2470 −0.0806 0.0087
c1
(1) 0.8319 0.0628 1.1283 0.0277
c1
(2) −0.1738 0.0275
a11
(1) 0.1494 0.0366 0.1157 0.0148

a12
(1) 0.0561 0.0269 0.1648 0.0138

a21
(1) 0.1798 0.0442 0.3795 0.0137

a22
(1) 0.1075 0.0233 0.0431 0.0146

a11
(2) −0.0047 0.0153

a12
(2) −0.1053 0.0139

a21
(2) −0.2967 0.0139

a22
(2) 0.0653 0.0150

gv1
(0) 0.1969 0.0316 0.1073 0.0111
gv2
(0) 0.2259 0.0312 0.1960 0.0112
gt1
(0) 0.3499 0.0251 0.2599 0.0132

gt2
(0) 0.3289 0.0253 0.1546 0.0133

gv1
(1) −0.0792 0.0327 −0.0761 0.0112

gv2
(1) −0.0262 0.0316 −0.0949 0.0114

gt1
(1) −0.0001 0.0238 −0.0106 0.0132

gt2
(1) 0.0546 0.0234 0.0298 0.0132

Log-lik. −0.885792 −0.990106
SIC 0.897808 0.993094
Q(30) 125.6 (0.106) 169.9 (0.000)
Q(50) 211.1 (0.109) 269.3 (0.001)
Res. mean (−0.003, −0.001) (0.001, −0.002)
Res. var.

�
0:898 0:035
0:035 1:092

	 �
0:886 0:044
0:044 1:141

	
*Dependent variable is the direction of the price changes, Di, p-values in brackets
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regarding the empirical confirmation of various implications from market micro-
structure theory are confirmed.

4 Diagnostics based on the predicted price change distribution

So far we have analyzed the individual components of the ICH model – the ACM-
ARMA part for the price direction and the GLARMA part for the price change size
given the price direction – separately. However, the ICH model is a specification
for the overall conditional distribution of the transaction price changes. Hence, in
this section, we check to what extend the merged components of the ICH model
are capable to capture the features of the observed price change distribution. In
particular, based on the estimates for the model components with microstructure
variables (see Tables 3 and 4), we analyze the goodness-of-fit of the ICH model.

Table 4 ML estimates of the GLARMA model with microstructure variables and leverage
effect*

Par. JBX HAL

Estimate Std. dev. Estimate Std. dev.

γ0 −0.1565 0.0439 −0.0279 0.0069
γ1 0.9321 0.0219 1.6822 0.0484
γ2 −0.6891 0.0468
δ1 0.1234 0.0183 0.1630 0.0112
δ2 −0.1445 0.0102
ζ1 0.1852 0.0282 0.1494 0.0158
ζ2 −0.1304 0.0153
ν0 −0.0491 0.0422 −0.0045 0.0016
ν1 0.0077 0.0071 0.0002 0.0003
ν2 0.0156 0.0074 0.0001 0.0003
ν3 −0.0140 0.0151 −0.0007 0.0005
ν4 −0.0095 0.0102 −0.0001 0.0003

��
1
2 1.2476 0.0808 1.3026 0.0349

βd0 −0.0699 0.0288 −0.0960 0.0109
βd1 0.0748 0.0390 0.0709 0.0157
βv 0 0.2227 0.0208 0.3212 0.0087
βv1 0.0561 0.0228 0.0809 0.0097
βt0 0.0427 0.0216 0.2723 0.0133
βt1 0.0214 0.0178 0.0297 0.0109
Log-lik. −0.824800 −0.811089
SIC 0.839589 0.813928
Q(30) 55.0 (0.000) 49.7 (0.000)
Q(50) 76.6 (0.001) 76.2 (0.000)
Res. mean 0.004 0.002
Res. var. 0.981 1.028

*Dependent variable is the absolute value of the size of a non-zero price change, Si|Si > 0,
p-values in brackets
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For this purpose, we use appropriate residuals obtained for the complete ICH
model.

First we consider the standardized residuals of the ICH model computed as

wi ¼ yi � bE YijF i�1; Zi½ �bV YijF i�1; Zi½ �12
;

where the estimated conditional mean is

bE YijF i�1; Zi½ � ¼
X
j2Z

j � bPr Yi ¼ jjFi�1; Zi½ �:

bPr �½ � represents the estimated counterpart of the conditional probability given
in Eq. (2.6) (augmented by the additional conditioning variable Zi). This prob-
ability is calculated according to Eqs. (2.10), (2.13), (2.20), and (2.23). The es-
timated conditional variance bV �½ � is obtained analogously. If the ICH model is
correctly specified, the standardized residuals evaluated at the true parameter
values should be uncorrelated in the first two moments with mean zero and unit
variance.

Figure 8 shows the autocorrelation function of the standardized residuals for
both stocks and Fig. 9 depicts the corresponding autocorrelation functions of the
squared standardized residuals. Comparing these autocorrelation functions with
those of the raw price changes (see Figs. 2 and 3), we observe that most of the serial
dependence in the first and second moments is captured by the ICH model.
Moreover, a comparison of the Ljung-Box Q-statistic for the residuals and squared
residuals with that for the price changes and squared price changes (see Table 5)
confirms that a large part of the dynamics can be explained by the ICH model.

JBX HAL

Fig. 8 Autocorrelation functions of the residuals of the entire ICH models for Jack in the Box
Inc. (JBX) and Halliburton Company (HAL). The dashed lines mark off the approximate 99%
confidence interval �2:58

� ffiffiffi
n

p
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However, the null of absence of serial correlation in wi and wi
2 has to be rejected at

all standard significance levels.
To assess the ability of the ICH model to characterize the density of the price

change process, we extend the density forecast test by Diebold et al. (1998)
originally developed for continuous densities processes to the case of discrete ones.
For discrete data generating processes the key assumption that the cumulative
density function of the true data generating process has to be invertible is violated.
Our modification of the density forecast test rests on the idea of a continuization by
adding random noise to the discrete random variable under consideration such that

Table 5 Properties of the raw series and the ICH model residuals for Jack in the Box Inc. (JBX)
and Halliburton Company (HAL)

JBX HAL JBX HAL

Price changes yi Squared price changes yi
2

Q(30) (p-value) 107.8 (0.000) 186.4 (0.000) 100.8 (0.000) 996.2 (0.000)
Q(50) (p-value) 134.9 (0.000) 212.4 (0.000) 141.2 (0.000) 1105.2 (0.000)
Mean 0.009 −0.009
Variance 11.34 7.526

Residuals wi Squared residuals wi

Q(30) (p-value) 50.9 (0.000) 44.9 (n.a.*) 31.3 (0.000) 29.2 (n.a.*)
Q(50) (p-value) 78.5 (0.000) 59.1 (0.000) 58.5 (0.000) 49.2 (0.000)
Mean 0.006 0.008
Variance 1.042 1.019

*Number of parameters are larger than the number of included lags

JBX HAL

Fig. 9 Autocorrelation functions of the squared residuals of the entire ICH models for Jack in the
Box Inc. (JBX) and Halliburton Company (HAL). The dashed lines mark off the approximate
99% confidence interval �2:58
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the invertibility condition holds. The proposed modified test procedure works as
follows:

i) Construct uui as the probability that Yi is less than the actually observed price
change yi:

uui � bPr Yi 	 yijF i�1;Zi½ � ¼
Xyi
j¼�1

bPr Yi ¼ jjF i�1; Zi½ � (4.1)

for each i: 1→n, and construct ui
l as the probability that Yi is less than the

actually observed price change minus one:

uli � bPr Yi 	 yi � 1jF i�1; Zi½ � ¼
Xyi�1

j¼�1
bPr Yi ¼ jjF i�1;Zi½ �: (4.2)

ii) Then use this sequence of probabilities to generate a sequence of artificial
random numbers from the conditional uniform distributions on the intervals
[ui

l, ui
u], i.e.,

ui � U uli; u
u
i

� �
; i : 1 ! n: (4.3)

If the model is correctly specified, the ui’s drawn under the true parameter
values (to calculate ui

l and ui
u) are i.i.d. following a uniform distribution on the

interval [0,1] (see the Appendix). Moreover, one can map the ui’s into a standard
normal distribution using ui* ≡Φ−1(ui). Under the correct model, the normalized
ui*’s are i.i.d. standard normal distributed.

Fig. 10 Autocorrelation function of the density forecast variable ui* for Jack in the Box Inc. (JBX)
and Halliburton Company (HAL). The dashed lines mark off the approximate 99% confidence
interval �2:58
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p
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Figures 10 and 11 plot the autocorrelation function for a sequence of nor-
malized residuals ui* and of squared normalized residuals (ui*)

2. The plots indicate
that for both stocks there is nearly no significant autocorrelation left in the first and
second moments. Table 6 represents summary statistics of the normalized resid-
uals. They are computed as the corresponding sample means based on 1,000
repeated draws of the trajectory {ui*, i: 1→N}. For JBX the Jarque-Bera statistic
indicates that we cannot reject the null of a normal distribution for ui*, whereas for
HAL we have to reject the null at 1% significance level.

The quantile–quantile (QQ) plot of a sequence of ui*’s against the standard
normal distribution displayed in Fig. 12 reveals that the ICH model approx-
imates the distributional properties of the transaction price changes for both stocks
fairly well. However, the deviation from normality in the tails of the distribu-
tion of the ui*’s indicates slight difficulties characterizing extreme price changes
appropriately.

Fig. 11 Autocorrelation function of the squared density forecast variable ui* for Jack in the Box
Inc. (JBX) and Halliburton Company (HAL). The dashed lines mark off the approximate 99%
confidence interval �2:58

� ffiffiffi
n

p

JBX HAL

Table 6 Properties of the density forecast variable ui* for Jack in the Box Inc. (JBX) and
Halliburton Company (HAL)

JBX HAL

Mean −0.003 [0.0000] −0.001 [0.0000]
Variance 1.000 [0.0000] 1.002 [0.0000]
Skewness 0.027 [0.0000] 0.029 [0.0000]
Kurtosis 2.989 [0.0000] 3.048 [0.0000]
Jarque-Bera 0.793 [0.0006] 9.910 [0.0019]
p-value (0.6727) (0.007)

The values of the statistics are sample means based upon 1,000 repeated draws of {ui*, i: 1→N}.
Values in brackets report the sampling standard error, due to repeated sampling of {ui*, i: 1→N} in
the density forecast procedure
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5 Conclusions

In this paper, we introduce a new approach to analyze transaction price movements
in financial markets. It relies on a hurdle count data approach that has been
extended to include negative counts. The parsimonious form of our model consists
of two processes: a process for the price direction, and one for the size of the price
movement. Our approach is particularly suited for financial markets where the
outcome space of the transaction returns is countable. Since the decimalization at
many stock exchanges, the model is applicable for a wide range of stocks.

We show the approach at work by analyzing the transaction price dynamics
of the frequently traded stocks of Jack in the Box Inc. and the stocks of the
Halliburton Company with considerably higher market capitalization and trade
intensity. The pure time series approach can easily be extended to test various
implications of market microstructure theory. We show that our approach does
fairly well in modelling the overall observed distribution of the transaction price
changes. Using a density forecast test designed for discrete distributions, we show
that for our two samples the vast majority of small and moderate price changes
can be well-explained while there is evidence for some misspecification with re-
spect to the tail behavior.

In order to assess the potential of our approach, the model has to be subjected to
intensive checks of its forecasting properties. Comparative studies with respect to
such properties of various approaches and applications to other financial assets and
to exchanges with different trading platforms should provide more insights into
the potential applicability of our approach. Alternatively, the quality of the model
could be assessed by using it as the basis for a trading strategy. Finally, the ICH
model should be embedded into a joint model of the transaction price movements
and trading times.

Fig. 12 QQ-Plot against std. normal quantiles of the density forecast variable ui* for Jack in the
Box Inc. (JBX) and Halliburton Company (HAL)

JBX HAL
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Appendix

This appendix shows that under a correctly specified model for Yi, the ui’s drawn
from the uniform distributions (4.3) follow a uniform distribution on the interval
[0, 1].15 Consider a discrete random variable Y with support � � Z , and let u be a
continuous random variable with the following conditional uniform distribution

u � U uly; u
u
y

� 

; (A.1)

where the boundaries are uy
l =Pr (Y ≤ y−1), uuy= Pr (Y≤ y) (for ease of notation we

ignore the index i for the variables u and Y). Then, the c.d.f. of the unconditional
distribution of u is

Pr u 	 cð Þ ¼
X
y2�

Pr u 	 cjY ¼ yð ÞPr Y ¼ yð Þ; c 2 0; 1½ �; (A.2)

with

Pr u 	 cjY ¼ yð Þ ¼ c� uly
uuy � uly

I uly;u
u
y½ Þ cð Þ þ I uuy ;1½ � cð Þ (A.3)

Pr Y ¼ yð Þ ¼ uuy � uly; (A.4)

where IA zð Þ is an indicator function which is 1 if z∈A and zero for z∉A. Inserting
Eqs. (A.3) and (A.4) into Eq. (A.2), we obtain

Pr u 	 cð Þ ¼
X
y2�

c� uly

� 

I uly;u

u
y½ Þ cð Þ þ uuy � uly

� 

I uuy ;1½ � cð Þ

n o
: (A.5)

Assuming that c ∈ [ujl, uju], j ∈Δ, we find

Pr u 	 cð Þ ¼ cI 0;1½ � cð Þ � Pr Y 	 j� 1ð Þ þ . . .
þPr Y 	 j� 3ð Þ � Pr Y 	 j� 4ð Þ
þPr Y 	 j� 2ð Þ � Pr Y 	 j� 3ð Þ
þPr Y 	 j� 1ð Þ � Pr Y 	 j� 2ð Þ

¼ cI 0;1½ � cð Þ;

(A.6)

which represents the c.d.f. of a uniform distribution on the interval [0, 1].

15 This technique of continuization is widely used to describe the properties of the p.d.f. of
discrete random variables, see e.g. Stevens (1950) and Denuit and Lambert (2005).
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The performance analysis of chart patterns:
Monte Carlo simulation and evidence
from the euro/dollar foreign exchange market

Abstract We investigate the existence of chart patterns in the euro/dollar intra-
daily foreign exchange market. We use two identification methods of the different
chart patterns: one built on 5-min close prices only, and one based on both 5-min
low and high prices. We look for twelve types of chart patterns and we study the
detected patterns through two criteria: predictability and profitability. We run a
Monte Carlo simulation to compute the statistical significance of the obtained
results. We find an apparent existence of some chart patterns in the currency
market. More than one half of detected charts present a significant predictability.
Nevertheless, only two chart patterns imply a significant profitability which is
however too small to cover the transaction costs. The second extrema detection
method provides higher but riskier profits than the first one.

Keywords Foreign exchange market . Chart patterns . High frequency data .

Technical analysis

JEL Classification C13 . C14 . F31

1 Introduction

Technical analysis is the oldest method for analyzing market behavior. It is defined
by Murphy (1999) as the study of market action, primarily through the use of
charts, for the purpose of forecasting future price trends. The term ‘market action’
includes three main sources of information available to the technician: price,
volume and open interest. Béchu and Bertrand (1999) distinguish three categories
of technical analysis. Traditional analysis is entirely based on the study of charts
and the location of technical patterns like the Head and Shoulders pattern. Modern

W. B. Omrane (*) . H. V. Oppens
IAG Business School, Université Catholique de Louvain, 1 place des Doyens,
1348 Louvain-la-Neuve, Belgium
E-mail: benomrane@fin.ucl.ac.be



analysis is composed of more quantitative methods like moving averages, oscil-
lators, etc. The third category, qualified as philosophical, has the ambition to ex-
plain more than the overall market behavior. One of the most famous examples is
the Elliot wave theory (for more details see Prost and Prechter (1985)) which
assumes that every price movement can be decomposed into eight phases or
waves: five impulse waves and three corrective ones.

In this paper, we focus on the traditional approach of technical analysis and
particularly on chart patterns. These patterns have been studied, among others, by
Levy (1971); Osler (1998); Dempster and Jones (1998a); Chang and Osler (1999),
and Lo et al. (2000) who have mainly focused on the profitability of trading rules
related to chart patterns and also on the informational content that could generate
such patterns. All these investigations conclude to the lack of profitability of
technical patterns. However, Lo et al. (2000) find that these patterns present an
informational content that affect stock returns.

We investigate twelve chart patterns in the euro/dollar foreign exchange market.
Currency markets seem especially appropriate for testing technical signals because
of their very high liquidity, low bid-ask spread, and round-the-clock decentralized
trading (Chang and Osler (1999)). As our empirical evidence is built upon high
frequency data, we rather focus on the speed of convergence to market efficiency
than on the hypothesis of market efficiency per se. As argued by Chordia et al.
(2002), information takes a minimum of time to be incorporated into prices so that
markets may be at the same time inefficient over a short-time (e.g. 5-min) interval
and efficient over a longer (e.g. daily) interval.

To test the existence of twelve chart patterns in the euro/dollar foreign exchange
market, we use two identification methods (M1, M2) for detecting local extrema.
The first method (M1), also used in the literature, considers only prices at the end of
each time interval (they are called close prices). The second method (M2), which is
new compared to those used in the literature, takes into account both the highest
and the lowest price in each interval of time corresponding to a detected pattern.

The detected extrema are analyzed through twelve recognition pattern algo-
rithms, each of them corresponding to a defined chart pattern. Our purpose is to
analyze the predictability and profitability of each type of chart pattern. In
addition, we intend to test the usefulness of our contribution regarding the
extrema detection method M2. Although Osler (1998) and Chang and Osler
(1999) briefly mention these prices, most of the previous studies focused on chart
patterns do not give much interest to high and low prices. This is in sharp contrast
to the majority of practitioners (in particular dealers and traders) who use high and
low prices in their technical strategies through bar charts and candlesticks. In
addition, Fiess and MacDonald (2002) show that high, low and close prices
carry useful information for forecasting the volatility as well as the level of future
exchange rates. Consequently, in our framework, we investigate also the sen-
sitivity of the chart patterns to the extrema detection methods M1 and M2. To
evaluate the statistical significance of our results, we run a Monte Carlo sim-
ulation. We simulate a geometric Brownian motion to construct artificial series.
Each of them has the same length, mean, variance and starting value as the
original observations.

Our results show the apparent existence of some chart patterns in the euro/dollar
intra-daily foreign exchange rate. More than one half of the detected patterns,
according to M1 and M2, seem to have a significant predictive success. Never-

W. B. Omrane, H. V. Oppens200



theless, only two patterns from our sample of twelve present a significant
profitability which is however too small to cover the transaction costs. We show,
moreover, that the extrema detection method M2 provides higher but riskier profits
than those provided by M1. These findings are in accordance with those found by
Levy (1971); Osler (1998); Dempster and Jones (1998b); Chang and Osler (1999).

The paper is organized as follows. In Section 2, we summarize the most recent
empirical studies which have focused on technical analysis, particularly on chart
patterns. Section 3 is dedicated to the methodology adopted for both the extrema
detection methods M1 and M2, and to the pattern recognition algorithms. The
section also includes details about the two criteria used for the analysis of the
observed technical patterns: predictability and profitability. In Section 4, we
analyze and describe the data. Empirical results are exposed in Section 5. We
conclude in Section 6.

2 Technical analysis

Technical analysis is widely used in practice by several dealers, also called
technical analysts or chartists. According to Cheung and Wong (1999), 25% to
30% of the foreign exchange dealers base most of their trade on technical trading
signals. More broadly, Allen and Taylor (1992) show, through questionnaire
evidence, that technical analysis is used either as the primary or the secondary
information source by more than 90% of the foreign exchange dealers trading in
London. Furthermore, 60% judge charts to be at least as important as
fundamentals. Most of them consider also chartism and fundamental analysis to
be largely complementary. Menkhoff (1998) shows in addition that more than half
of foreign exchange market participants in Germany give more importance to the
information coming from non-fundamental analysis, i.e. technical analysis and
order flows. Moreover, Lui and Mole (1998) show that technical analysis is the
most used method for short term horizon on the foreign exchange market in
Hong Kong.

Despite its broad use by practitioners, academics have historically neglected
technical analysis, mainly because it contrasts with the most fundamental hy-
pothesis in finance, namely market efficiency. Indeed, the weak form of the market
efficiency hypothesis implies that all information available in past prices must be
reflected in the current price. Then, according to this hypothesis, technical analysis,
which is entirely based on past prices (Murphy (1999)), cannot predict future
price behavior.

Recently, several studies have focused on technical analysis. Brock et al.
(1992) support the use of two of the simplest and most popular trading rules:
moving average and trading range break (support and resistance levels). They
show that these trading rules help to predict return variations in the Dow Jones
index. These simple trading rules were studied, amongst others, by Dooley and
Shafer (1984); Sweeney (1986); Levich and Thomas (1993); Neely (1997) and
LeBaron (1999) in the context of the foreign exchange rate dynamics. Moreover,
Andrada-Felix et al. (1995); Ready (1997) and Detry (2001) investigate the use of
these rules in stock markets. Still with the moving average trading rules, Gençay
and Stengos (1997); Gençay (1998) and Gençay (1999) examine the predictability
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of stock market and foreign exchange market returns by using past buy and sell
signals, and they find an evidence of nonlinear predictability of such returns.

In addition to these simple trading rules, technical analysis abounds of methods
in order to predict future price trends. These methods have also been considered in
empirical research. Jensen (1970) tests empirically the ‘relative strength’ trading
rule.1 The estimated profit provided by this trading rule is not significantly bigger
than the one obtained by the ‘Buy and Hold’ strategy.2 Osler (2000) finds that the
support and resistance technique provides a predictive success. Other studies make
use of genetic programs to develop trading rules likely to realize significant profits
(e.g., Neely et al. (1997); Dempster and Jones (1998a) and Neely and Weller
(1999)). Furthermore, Blume et al. (1994) demonstrate that sequences of volume
can be informative. This would explain the widespread use by practitioners of
technical analysis based upon volumes.

The different studies mentioned above have mainly focused on linear price
relations. However, other researchers have oriented their investigations to non-
linear price relations. Technical patterns, also called chart patterns, are considered
as non-linear patterns. Both Murphy (1999) and Béchu and Bertrand (1999), argue
that these kinds of patterns present a predictive success which allows traders to
acquire profit by developing specific trading rules. In most studies, technical
patterns are analyzed through their profitability. Levy (1971) focuses on the pre-
dictive property of the patterns based on a sequence of five price extrema and
conclude, after taking into account the transaction costs, to the unprofitability of
such configurations. Osler (1998) analyzes the most famous chart pattern, the head
and shoulders pattern.3 She underlines that agents who adopt this kind of technical
pattern in their strategy must be qualified as noise traders because they generate
important order flow and their trading is unprofitable. Dempster and Jones (1998b)
and Chang and Osler (1999) obtain the same conclusion regarding the non
profitability of the trading rules related to chart patterns. In contrast, Lo et al.
(2000) show that the informational content of chart patterns affects significantly
future stock returns.

Some studies go beyond the scope of testing the performance of trading models.
For example, Gençay et al. (2002, 2003) employ a widely used commercial real-
time trading model as a diagnostic tool to evaluate the statistical properties of
foreign exchange rates. They consider that the trading model on real data out-
performs some sophisticated statistical models implying that these latter are not
relevant for capturing the data generating process. They add that in financial
markets, the data generating process is a complex network of layers where each
layer corresponds to a particular frequency.

In our paper we choose to deal with high frequency data, believing that all our
results are sensitive to the time scale. The results carried out from 1 h or 30 min
time scale are certainly different from those triggered by 5 min frequency. How-
ever, the goal of our study is to analyze the performance of some chart pattern at
a specific time scale without generalizing our results to other frequencies. Our

1Once computing the ratio Pt= �Pt where �Pt corresponds to the mean of prices preceding the
moment t, the relative strength trading rule consists in buying the asset if the ratio is bigger than a
particular value and selling it when the ratio reaches a specific threshold.
2 This strategy consists in buying the asset at the beginning of a certain period and keeping it until
the end.
3 This chart pattern is defined in Section 3.2.
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choice of high frequency data, as emphasized by Gençay et al. (2003), is motivated
by two main reasons. First, any position recommended by our strategy (defined
below in subsection 3.3.2) have to be closed quickly within a short period
following the chart completion. The stop-loss objectives need to be satisfied and
the high frequency data provides an appropriate platform for this requirement.
Second, the trading positions and strategies, can only be replicated with a high
statistical degree of accuracy by using high frequency data in a real time trading
model.

However in practice, technical analysts often combine high and low time scales
in order to monitor their positions in the short (5-min to 1 h) and long run (one day
to one month).

3 Methodology

The methodology adopted in this paper consists in identifying regularities in the
time series of currency prices by extracting nonlinear patterns from noisy data.
We take into consideration significant price movements which contribute to the
formation of a specific chart pattern and we ignore random fluctuations considered
as noise. We do this by adopting a smoothing technique in order to average out the
noise. The smoothing technique allows to identify significant price movements
which are only characterized by sequences of extrema.

In the first subsection we present two methods used to identify local extrema.
Then, we explain the pattern recognition algorithm which is based on the quan-
titative definition of chart patterns. In the third subsection, we present the two
criteria chosen for the analysis of the detected charts: predictability and prof-
itability. The last subsection is dedicated to the way we compute the statistical
significance of our results. It is achieved by running a Monte Carlo simulation.

3.1 Identification of local extrema

Each chart pattern can be characterized by a sequence of local extrema, that is by a
sequence of alternate maxima and minima. Two methods are used to detect local
extrema. The first method, largely used in the literature, is based on close prices,
i.e. prices which take place at the end of each time interval. The second method,
which is one of the contribution of this paper to the literature, is built on the highest
and the lowest prices in the same time intervals. We examine the usefulness of
using high and low prices in the identification process of chart patterns. Taking
these prices into account is more in line with practice as dealers use bars or
candlestick charts to build their technical trading rules.4 Moreover, Fiess and
MacDonald (2002) show that high and low prices carry useful information about
the level of future exchange rates.

4 Béchu and Bertrand (1999) stipulate that line charts are imprecise because they do not display all
the information available as they are only based upon close prices of each time interval. In
contrast, bar charts and candlesticks involve the high, low, open and close prices of each time
interval.
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The extrema detection method based on closed prices (M1) works as follows.
The first step consists in smoothing the price curve to eliminate the noise in prices
and locate the different extrema on the smoothed curve. To smooth the estimated
curve we use the Nadaraya–Watson kernel estimator.5 We then determine different
extrema by finding the moments at which the kernel first derivative changes its
sign. We therefore guarantee the alternation between maxima and minima. This
smoothing technique has been also used by Lo et al. (2000). Other methods to
detect extrema have been adopted by Levy (1971); Osler (1998); Dempster and
Jones (1998b) and Chang and Osler (1999). The second step involves orthogonal
projections of the smoothed extrema on the original price curve. In other words,
we deduce corresponding extrema on the original curve through orthogonal
projection.

The second method (M2) is based on high and low prices. Local maxima must
be determined on the high price curve and local minima on the low one. We smooth
both curves and we select the corresponding extrema when there is a change of the
sign for the kernel first derivative function. In such a case, alternation between
extrema is not automatically obtained. Thus, we start by projecting the first
extremum on the corresponding original price curve. If this extremum is a
maximum (minimum), we project it into the high price curve (low price curve) and
then we alternate between a projection of a minimum (maximum) on the low price
curve (high price curve) and a projection of a maximum (minimum) on the high
price curve (low price curve).

To detect local extrema we use a rolling window which goes through all the
time periods with an increment of a single time interval. For each window, we
apply both extrema detection methods and the pattern recognition algorithms in
order to test if the detected sequence of extrema corresponds to one of our twelve
chart pattern definitions (see the following section). The advantage of a rolling
window is to concentrate on patterns that sequentially develop in the same window
and therefore to cancel the risk of look-ahead bias. This implies that the future
evolution of the price curve is not yet known at the time of detection of technical
patterns. A technical pattern is thus recorded only if all extrema have been detected
in windows of identical time duration. Furthermore, we add a filter rule to keep
only one record of each detected chart pattern. We present in Appendix B a detailed
description of the two extrema detection methods.

3.2 Chart patterns quantitative definitions

By looking at specialized books on technical analysis like Murphy (1999) and
Béchu and Bertrand (1999), which provide graphical descriptions of technical
patterns, we build twelve quantitative definitions corresponding to the most
famous chart patterns. Only the Head and Shoulders definition is presented in this
Section. This pattern (HS) is defined from a particular sequence of extrema
detected by the method presented in Appendix B. The other pattern definitions are
presented in Appendix C. The eleven remaining chart patterns are the following:
Inverse Head and Shoulders (IHS), Double Top (DT), Double Bottom (DB),
Triple Top (TT), Triple Bottom (TB), Rectangle Top (RT), Rectangle Bottom

5Details about this estimation are given in Appendix A.
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(RB), Broadening Top (BT), Broadening Bottom (BB), Triangle Top (TRIT) and
Triangle Bottom (TRIB).

From a series of price Pt, we denote by Ei (i = 1, . . , I) the local extremum i
from a sequence composed of I extrema and tEi the moment when it occurs. The
slope, p(Ei , Ej), of the line passing through Ei and Ej and the y-coordinate at tk
of a point of this line, Vtk Ei;Ej

� �
, are defined as follows:

p Ei;Ej

� � ¼ Ej � Ei

tEj � tEi

(1)

Vtk Ei;Ej

� � ¼ Ei þ tk � tEið Þ 
 p Ei;Ej

� �
: (2)

Figure 1 presents the theoretical Head and Shoulders chart pattern while Fig. 2
illustrates the observed pattern after implementing both extrema detection methods.
The theoretical figure serves mainly to help in the comprehension of the following
definition:

Fig. 1 The head and shoulders: theoretical chart pattern (HS). The quantitative definition for
such chart is presented in Section 3.2
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TheHS chart pattern is characterized by a sequence of five extrema Ei (i= 1, . . ,5)
such that:

hs �

E1 > E2 ðaÞ
E3 > E1;E3 > E5 ðbÞ
p E1;E5ð Þj j 	 tg 10ð Þ ðcÞ
p E2;E4ð Þj j 	 tg 10ð Þ ðdÞ
0:9 	 E1�VtE1

E2;E4ð Þ
E5�VtE5

E2;E4ð Þ 	 1:1 ðeÞ
1:1 	 h

s 	 2:5 ðf Þ
1
2 	

tE2�td
tf �tE4

	 2 ðgÞ
1
2 	

tE4�tE2
m 	 2 ðhÞ

Ptd � Ptmin
ð Þ � 2

3 
 h ðiÞ

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
where

– h is the height of the head: h ¼ E3 � VtE3
E2;E4ð Þ

– s is the average height of the two shoulders:

s ¼
E1�VtE1

E2; E4ð Þ
� 


þ E5�VtE5
E2; E4ð Þ

� 

2

Fig. 2 The head and shoulders: observed chart pattern. This figure shows an observation window
in which the Head and Shoulders chart pattern is detected through both M1 and M2 methods
(detailed in Appendix B). The dashed lines in both graphs illustrates the smoothed price curves
and the solid line, for the first graph, presents the original price curve. The second graph shows
the original price series through bar charts. Each of them involves the maximum, the minimum,
the open and the close price for each 5-min time interval
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– td is the starting time for the pattern: td ¼ maxt Pt 	 Vt E2;E4ð Þ; t < tE1ð Þ
– tf is the ending time for the pattern: tf ¼ mint Pt 	 Vt E2;E4ð Þ; t > tE5ð Þ
– td− (f− d) = td−(tf − td)
– tf+ (f − d) = tf +(tf − td)
– m is the average time that the shoulders take for their total completion:

m ¼ tE2�tdð Þþ tf �tE4ð Þ
2

– Ptmin
is the smallest price observed in the time interval

[td − (f − d), td]: Ptmin
¼ min Ptð Þ td� f�dð Þ

�� 	 t 	 td

If a sequence of five extrema satisfies the above conditions, they build up a
Head and Shoulders chart pattern. Theoretically, at the completion of this chart
pattern, the price must go down for at least the height of the head, h. Furthermore,
the objective price detected by the chart pattern has to be reached within the time
interval [tf , tf + (f − d)]. In other words, the price has to reach at least P(obj) such
that:

P objð Þ ¼ Ptf � h: (3)

3.3 The performance measures

Detected chart patterns are analyzed in terms of predictability and profitability. In
other words, we study the capability of each chart pattern to predict the future price
trend just after the chart completion and the profit that a dealer could realize when
he applies a trading rule.

3.3.1 Predictability

Following its completion, the chart pattern can be used to forecast the future price
trend. More precisely, it predicts the price objective which has to be reached. We
denote by h the predicted price variation, and by tf and td , respectively, the time at
the end and at the beginning of the chart pattern. If the pattern predicts a downward
trend, the price objective is given by Eq. (3). This price objective has to be reached
within the time interval [tf , tf + ( f − d )]. In such cases, we can measure the actual
price reached in this time interval by computing Pa such that:

Pa ¼ min Pt tf 	 t 	 tfþ f�dð Þ
��� �

: (4)

The value of the observed trend is then:

trend ¼ Ptf � Pa: (5)

The predictability criterion is defined as follows:

pred ¼ trend

h
: (6)
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We distinguish three possible cases:

– 0 ≤ pred < 1: the price does not reach its predicted objective. It goes in the
predicted direction but only for pred of the forecasted objective.

– pred = 1: the price reaches exactly its objective.
– pred > 1: the price exceeds its objective by (pred-1).

Consequently if pred ≥ 1, the chart pattern can be said to predict successfully
the future price trend.

3.3.2 Profitability

If a chart pattern presents a predictive success, is it sufficient to get a profit? To
answer this question, we investigate the profitability that technical patterns could
imply. When the price evolves in the direction predicted by the chart pattern, a
trader who takes a position at a precise time could realize a profit. Nevertheless,
if the price evolves in the opposite direction, the position taken at the same time
would involve a loss. A profit or a loss is the result of the implementation of a
trading rule chosen by a chartist trader at a given time according to the completion
of the chart pattern.

We propose the following strategy: the trader opens a position at the end of the
pattern (at the moment of its completion) and closes it according to the future price
direction. We distinguish two cases for the future trend:

– If the price evolves in the predicted direction, the trader closes his position when
the price reaches 50% of the predicted price variation, h.

– If the price evolves in the opposite direction, the trader closes his position after
a loss corresponding in absolute value to 20% of the forecasted price variation.

However, if at the end of the interval [tf , tf + (f − d)], the trader position is not yet
closed, this latter is automatically closed at tf + (f − d). In both cases, the trader can be
considered as risk averse. Indeed, he limits his eventual profit and accept only
small losses.

Once the predictability and the profitability criteria of each pattern are com-
puted, we compare the results for the two extrema detection methods M1 and M2.
We adopt a test of difference of means in order to infer the statistical significance of
such comparisons. It consists in computing the statistic, t, as follows:

t ¼ mM1 � mM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2M1
nM1

þ s2M2
nM2

� 
r ; (7)

wheremMi and s
2
Mi

are respectively the estimated mean and variance of the outputs
(i.e. the number of detected charts, the predictability or the profitability criteria)
obtained when method Mi (i=1,2) is adopted. The t-statistic follows a Student
distribution with nM1+nM2−1 degrees of freedom, where nM1 and nM2 are re-
spectively the number of observations resulting from the methods M1 and M2.
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The last step for the profitability analysis consists in taking into consideration
the risk incurred by the strategy. This latter is measured by the variability of the
achieved profits. We compute three measures in order to gauge our strategy
performance. We start by computing the ratio of mean profit to its standard
deviation. However, according to Dacorogna et al. (2001a,b), this kind of Sharpe
ratio is numerically unstable, exhibits a lot of deficiencies, and does not take into
consideration dealers risk-aversion. For a robust performance evaluation we adopt
two other performance measures, proposed by these authors, which are directly
related to the utility of a strategy to a risk-averse dealer. Both of them are based on
the maximization of the expected utility of a dealer. The first measure, called Xeff ,
considers a constant risk aversion, while the second one, named Reff , supposes an
asymmetric risk aversion (a higher risk-aversion when there is a loss). These
performancemeasures adjust themean profit from a kind of risk premium.6We have
adapted these two performance measures to our context: for instance, we have
computed Xeff and Reff using the profit levels instead of returns realized after the
completion of the chart pattern.

3.4 Monte Carlo simulation

In order to assess the statistical significance of the obtained results, we run a Monte
Carlo simulation. We create 200 artificial exchange rate series7 and we implement
both extrema detection methods and the pattern recognition algorithms. These
series follow a geometric Brownian motion process and are characterized by the
same length, mean, variance and starting value as the original observations.8

Nevertheless, there is an important difference between the artificial series and
the original one: the simulated series are built in such a way that any detected pattern
is meaningless, whereas in the original exchange rate series, this may or may not be
true. The existence of technical patterns in the original series could be generated by
trader behaviors which induce a particular pattern in the prices. We test the null
hypothesis of the absence of chart patterns in the observed series. This hypothesis
involves also the absence of both predictability and profitability. On the other hand,
if a chart pattern really exists in the observed series, then the number of chart
detections has to be significantly larger than those obtained when we deal with
artificial observations. Consequently, the probability of accepting the null hy-
pothesis is computed by the percentage of simulated series for which the results
obtained on the simulated series are greater than those obtained on the observed one.

4 Data description

The euro/dollar FOREX market is a market maker based trading system, where
three types of market participants interact around the clock (i.e. in successive
time zones): dealers, brokers and customers from which the primary order flow

6 The details about the computation of Xeff and Reff are given in Dacorogna et al. (2001a,b).
7We limit our simulation to 200 series because the recognition pattern algorithm needs a lot
of computer time.
8 The same methodology was adopted by Chang and Osler (1999); Osler (1998); Gençay (1998);
Gençay et al. (2002), and Gençay et al. (2003).
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originates. The most active trading centers are New York, London, Frankfurt,
Sydney, Tokyo and Hong Kong. A complete description of the FOREX market
is given by Lyons (2001).

To compute the mid prices used for the estimation of the models reported in
Appendix A, we bought from Olsen and Associates a database made up of ‘tick-by-
tick’ euro/dollar quotes for the period ranging from May 15 to November 14, 2001
(i.e. 26 weeks and three days). This database includes 3,420,315 observations. As
in most empirical studies on FOREX data, these euro/dollar quotes are market
makers’ quotes and not transaction quotes (which are not widely available).9 More
specifically, the database contains the date, the time-of-day time stamped to the
second in Greenwich mean time (GMT), the dealer bid and ask quotes, the iden-
tification codes for the country, city and market maker bank, and a return code
indicating the filter status. According to Dacorogna et al. (1993), when trading ac-
tivity is intense, some quotes are not entered into the electronic system. If traders
are too busy or the system is running at full capacity, quotations displayed in the
electronic system may lag prices by a few seconds to one or more minutes. We
retained only the quotes that have a filter code value greater than 0.85.10

From the tick data, we computed mid quote prices, where the mid quote is the
average of the bid and ask prices. As we use 5-min time intervals, we have a daily
grid of 288 points. Because of scarce trading activity during the week-end, we
exclude all mid prices computed between Friday 21 h 05 min and Sunday 24 h.
The mean of the mid-quotes is equal to 0.8853, the minimum and maximum are
0.8349 and 0.9329.

5 Empirical results

Table 1 presents the number of detected chart patterns for the extrema identification
methods (M1 and M2). The results show the apparent existence of some chart
patterns in the euro/dollar foreign exchange series. Using the first detection method
(M1), we have more detected charts in the original price series than in the simulated
one for six chart patterns (out of twelve), at the 5% significance level. When we
implement the M2 method, we detect significantly only four chart patterns, which
are also significantly detected by the method M1: DT, DB, RT and RB. By looking
at the last column which represents the total number of detections, we can see that
we have more detected chart patterns when only close prices are used (M1). These
results confirm the idea that the presence of such chart patterns does not occur
by chance, at least for some chart patterns, but it is due, amongst others, to a
determined behavior of the chartist dealers.

9 Danielsson and Payne (2002) show that the statistical properties of 5-min dollar/DM quotes
are similar to those of transaction quotes.
10 Olsen and Associates recently changed the structure of their HF database. While they provided
a 0/1 filter indicator some time ago (for example in the 1993 database), they now provide a
continuous indicator that lies between 0 (worst quote quality) and 1 (best quote quality). While a
value larger than 0.5 is already deemed acceptable by Olsen and Associates, we choose a 0.85
threshold to have high quality data. We remove however almost no data records (Olsen and
Associates already supplied us with data which features a filter value larger than 0.5), as most
filter values are very close to 1.
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The percentage of successful chart patterns (i.e. charts for which the price
objective has been met) is given by the third and the seventh rows in Table 1. For
example, 40% of Head and Shoulders (HS) detected by M1 succeed to meet their
objective, but this result is not significant since for 92% of the simulated series we
obtain more successful HS. For M1, only two charts, DT and DB present a
significant successful percentage.11 For M2, in addition to DT and DB, the chart
pattern BT presents a significant percentage of success.

Nevertheless, this measure of predictive power, i.e. the percentage of charts that
succeed to meet their price objective, is too drastic. It does not allow to capture to
what extent the price objective is not met or to what extent the price objective is
outclassed. That is why we quantified the predictability through the ratio pred.

Table 2 presents the average predictability pred for all detected chart patterns
which succeed or fail to meet their objectives. For example, in the case of M1, HS
has an average predictive power of 1,12. This average ratio is not significant at 5%
since for 79% of the artificial series, we obtain a higher average ratio. However, the
table shows that whatever the extrema detection methods implemented, more than
one half of the whole chart patterns sample presents a predictability success
statistically significant. At the 5% significance level, predictability varies from 0.86
to 9.45. The triangle chart patterns (TRIT and TRIB) offer the best predictability.

These results are consistent with those obtained in Table 1 in which M1 exhibits
more predictability. This observation is even more striking in Table 2. The last
column shows that M1 provide on average, a predicted value more than twice
larger than M2. This is confirmed by positive significant signs for the difference of
means test presented in the last line of the Table 2. Comparatively, Table 1 shows
a percentage of 63% of successful chart patterns using M1 against 42% provided
by M2.

Table 3 gives the maximum profitability that can be achieved by the use of chart
patterns. It is computed in basis points (i.e.: 1/10,000) and provided for each of the
twelve chart patterns. It corresponds to the implementation of the trading rule
related to each chart pattern whatever its success level. The maximum profit is

Table 1 Detected chart patterns

Meth HS IHS DT DB TT TB RT RB BT BB TRIT TRIB ∑

M1 78
(0.42)

4
(0.86)

7**
(0.00)

12**
(0.00)

5
(0.96)

12
(0.91)

107**
(0.00)

89**
(0.00)

57*
(0.02)

135
(0.09)

38
(0.18)

73*
(0.02)

617
(0.12)

40%
(0.92)

25%
(0.84)

57%**
(0.00)

33%**
(0.00)

60%
(0.51)

42%
(0.90)

58%
(0.79)

73%
(0.17)

72%
(0.39)

67%
(1.00)

76%
(0.38)

74%
(0.72)

63%
(0.66)

M2 28
(1.00)

14
(0.45)

35**
(0.00)

44**
(0.00)

16
(0.36)

20
(0.50)

24**
(0.00)

33**
(0.00)

26
(0.92)

57
(1.00)

15
(1.00)

23
(1.00)

335
(0.50)

21%
(0.44)

21%
(0.64)

29%**
(0.00)

43%**
(0.00)

19%
(0.69)

35%
(0.34)

46%
(0.19)

45%
(0.24)

69%**
(0.00)

49%
(0.10)

53%
(0.35)

61%
(0.60)

42%
(0.23)

Entries are the number of detected chart patterns and the percentage of chart patterns that reached
their price objective, according to the extrema detection methods M1 and M2 (described in
Appendix B). The p-values, computed through a Monte-Carlo simulation, and given in pa-
renthesis represent the percentage of times the results on the simulated series are greater than
the one of the original price series. The last column presents results for the whole sample,
whatever is the chart pattern
** and * indicate, respectively, significance at 1% and 5%

11 Both chart patterns DT and DB have not been detected in any artificial series, whatever the
extrema detection method implemented.
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equal to the difference, in absolute value, between the price at the end of the chart
and the minimum/maximum12 of the prices occurring after the chart pattern
( Ptf � Pa

�� ��). To compute these profits, we suppose that dealers are able to buy or to
sell the currency at the mid price. The computed profits vary between three and 52
basis points, but are significant for only three chart patterns: DT, DB and BT.

However, this profit cannot be realized surely by the chartists because they
cannot precisely guess if the price is at the end of its right trend or not. That is why
they adopt a strategy for their intervention according to their risk aversion. Table 4
presents the results for the strategy described in Section 3.3.2. Profits are computed
through the average of the whole detected chart patterns which succeed or fail to
meet their objectives. This profit is statistically significant for only two charts, DT
and DB whatever the detection method implemented. However, this profit more or
less equal to one basis point for three cases out of four, seems too small to cover the
transaction costs. Indeed, the transaction costs are often estimated as the observed
bid-ask spread which varies on average, in the euro/dollar currency market, be-
tween three to five basis points (Chang and Osler (1999)). Consequently, even by
choosing a particular risk averse trading rule, strategies using chart patterns seem
unprofitable.

Furthermore, the difference of means test shows that M2 is more profitable than
M1. For the majority of charts, profitability computed by adopting M2 is sig-

Table 2 Predictability of the chart patterns

Meth HS IHS DT DB TT TB RT RB BT BB TRIT TRIB μ

M1 1.12
(0.79)

0.88
(0.70)

1.93**
(0.00)

0.86**
(0.00)

1.72
(0.41)

1.33
(0.80)

2.56
(0.10)

3.52**
(0.00)

4.38**
(0.00)

4.00
(0.06)

9.35*
(0.03)

9.45**
(0.01)

4.15
(0.15)

M2 0.70
(0.14)

0.87
(0.14)

0.88**
(0.00)

1.19**
(0.00)

0.74
(0.42)

1.16
(0.08)

1.05
(0.17)

1.46*
(0.02)

2.52**
(0.00)

1.68**
(0.00)

2.58
(0.43)

3.42
(0.31)

1.50
(0.10)

M1–M2 +** + + – + + +** +** +** +** +** +** +**

This table shows the predictability of different chart patterns according to the extrema detection
methods M1 and M2 (described in Appendix B). The predictability criterion is detailed in Section
3.3.1. The last column shows the weighted average predictability for the whole sample of charts.
The p-values, computed through a Monte-Carlo simulation, are given in parenthesis. The last line
of the table reports the sign of the difference between both method’s outputs and its statistical
significance according to the difference of means test
** and * indicate respectively significance at 1% and 5%

Table 3 Maximum profitability of the chart patterns

Meth HS IHS DT DB TT TB RT RB BT BB TRIT TRIB μ

M1 8
(1.00)

14
(0.71)

9**
(0.00)

3**
(0.00)

6
(0.98)

9
(0.92)

11
(0.99)

13
(0.76)

16
(0.42)

14
(0.99)

52
(0.29)

37
(0.84)

17
(0.81)

M2 10
(0.99)

16
(0.51)

10**
(0.00)

12**
(0.00)

8
(0.90)

15
(0.49)

7
(0.98)

12
(0.84)

22*
(0.02)

16
(0.72)

28
(0.89)

51
(0.64)

16
(0.53)

This table shows the maximum computed profit, according to the extrema detection methods M1
and M2 (described in Appendix B), expressed in basis points. The p-values, computed through a
Monte-Carlo simulation, are given in parenthesis. The last column shows the weighted average
maximum profitability for the whole charts
** and * indicate respectively significance at 1% and 5%

12We adopt the minimum if the price evolves, after the completion of the chart, into downward
trend and we adopt the maximum when there is an upward trend.
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nificantly larger than the one provided by M1. We observe in Table 4 five sig-
nificant negative signs versus two positive. This observation is confirmed by the
significant negative sign for the weighted average profitability for all chart sample,
presented in the last column.

This finding is quite important since at the light of the predictability results,
we might conclude that only close prices matter. However, when the profitability
is taken into consideration, the use of high and low prices seems to have an im-
portance which is more in accordance with what is observed in practice (dealers use
bar charts and only profit matters).

Nevertheless, if we consider the profit adjusted for the inherent risk, the same
two mean profits of one basis point obtained for DT have different risk levels.
Taking into account the risk level by computing the three different performance
measures; Sharpe ratio, Xeff , and Reff , we obtain a smaller value for M2. This
means that the second method M2 generates riskier profits than M1. Moreover,
Xeff and Reff performance measures carry out the same outputs as the Sharpe
risk-adjusted profits which implies the robustness of our results in terms of
performance evaluation.

Table 4 Profitability of the trading strategy

Meth HS IHS DT DB TT TB RT RB BT BB TRIT TRIB μ

Profit
M1 1.42

(1.00)
2.80
(0.70)

1.10**
(0.00)

0.60**
(0.00)

−0.13
(0.99)

1.54
(0.92)

1.10
(1.00)

1.52
(0.98)

1.25
(1.00)

1.39
(1.00)

2.77
(0.82)

2.13
(1.00)

1.50
(0.95)

M2 0.07
(0.99)

0.05
(0.94)

1.10**
(0.00)

3.10**
(0.00)

0.99
(0.85)

3.23
(0.63)

0.70
(0.95)

1.87
(0.84)

4.15
(0.27)

2.20
(0.99)

2.44
(0.96)

5.18
(0.85)

2.16
(0.64)

M1–M2 +* +* − −** − −* + − −** −* + −** −**

Sharpe
M1 0.44

(0.99)
0.48
(0.65)

0.54**
(0.00)

0.37**
(0.00)

−0.05
(1.00)

0.50
(0.91)

0.61
(0.98)

0.98
(0.57)

0.78
(0.92)

0.79
(1.00)

0.74
(0.94)

0.76
(0.99)

0.71
(0.88)

M2 0.01
(1.00)

0.01
(0.95)

0.26**
(0.00)

0.73**
(0.00)

0.22
(0.78)

0.64
(0.33)

0.19
(0.91)

0.51
(0.57)

1.30**
(0.01)

0.53
(0.92)

0.42
(0.89)

0.78
(0.83)

0.50
(0.55)

Xeff
M1 0.92

(0.99)
1.56
(0.64)

0.89**
(0.00)

0.48**
(0.00)

−0.43
(0.99)

1.13
(0.91)

0.93
(0.99)

1.40
(0.96)

1.12
(1.00)

1.24
(1.00)

2.26
(0.84)

1.78
(0.99)

1.26
(0.95)

M2 −1.06
(0.94)

−1.93
(0.84)

0.29**
(0.00)

2.20**
(0.00)

0.13
(0.70)

2.01
(0.35)

0.10
(0.87)

1.22
(0.58)

3.64*
(0.04)

1.37
(0.93)

0.88
(0.81)

3.19
(0.75)

1.18
(0.54)

Reff

M1 0.99
(1.00)

1.90
(0.46)

0.94**
(0.00)

0.50**
(0.00)

−0.65
(0.99)

1.23
(0.91)

0.96
(0.99)

1.45
(0.97)

1.16
(1.00)

1.29
(1.00)

2.44
(0.82)

1.89
(0.99)

1.31
(0.95)

M2 −1.32
(0.94)

−2.59
(0.81)

0.32**
(0.00)

2.40**
(0.00)

0.13
(0.55)

2.24
(0.29)

0.03
(0.80)

1.33
(0.54)

3.83
(0.06)

1.49
(0.95)

0.80
(0.80)

3.74
(0.59)

1.25
(0.51)

This table includes the average profits, expressed in basis points, realized after adopting the
strategy detailed in Section 3.3.2, according to the extrema detection methods M1 and M2
(described in Appendix B). M1–M2 indicates the computed difference results between the two
methods. It shows the sign of this difference and its statistical significance through the difference
of means test. The Sharpe ratio measure the profit adjusted for risk. However, Xeff and Reff are
also a measure of profit adjusted for risk but they take into account respectively symmetric and
asymmetric dealers risk aversion (more details for the computation of these two measures are
provided in Dacorogna et al. 2001a). The p-values, computed through a Monte-Carlo simulation,
are given in parenthesis. The last column shows the weighted average profitability for the whole
charts
** and * indicate respectively significance at 1% and 5%
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6 Conclusion

Using 5-min euro/dollar mid-quotes for the May 15 through November 14, 2001
time period, we shed light on the predictability and profitability of some chart
patterns. We compare results according to two extrema detection methods. The first
method (M1), traditionally used in the literature, considers only prices which occur
at the end of each time interval (they are called close prices). The second method
(M2) takes into account both the highest and the lowest price of each interval of
time. To evaluate the statistical significance of the results, we run a Monte Carlo
simulation.

We conclude on the apparent existence of some technical patterns in the euro/
dollar intra-daily foreign exchange rate. More than one half of the detected
patterns, according to M1 and M2, seem to have some significant predictive
success. Nevertheless, only two out of twelve patterns present significant prof-
itability, which is however too small to cover the transaction costs. We also show
that the extrema detection method using high and low prices provides higher but
riskier profits than those provided by the M1 method.

To summarize, chart patterns seems to really exist in the euro/dollar foreign
exchange market at the 5 min level. They also show some power to predict future
price trends. However, trading rules based upon them seem unprofitable.
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Appendices

A. Price curve estimation

Before adopting the Nadaraya–Watson kernel estimator, we tested the cubic splines
and polynomial approximations but we conclude empirically that the appropriate
smoothing method is the kernel. Because the two first methods carry out too
smoothed results and they are not flexible as the kernel method.

From the complete series of the price, Pt (t= 1 , . . . , T), we take a window k
of l regularly spaced time intervals,13 such that:

Pj;k  Ptj k 	 t 	 kþ l� 1f g; (8)

j= 1 , . . . , l and k=1 , . . . , T−l+1. For each window k, we consider the following
relation:

Pj;k ¼ m XPj;k

� �þ �Pj;k ; (9)

where �Pj;k is a white noise and m XPj;k

� �
is an arbitrarily fixed but unknown non

linear function of a state variable XPj;k . Like Lo et al. (2000) to construct a smooth

13We fix l at 36 observations.
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function in order to approximate the time series of prices Pj,k , we set the state
variable equal to time, XPj;k ¼ t: For any arbitrary x, a smoothing estimator of
m(x) may be expressed as:

m̂ðxÞ ¼ 1

l

Xl
j¼1

!jðxÞPj;k; (10)

where the weight ωj(x) is large for the prices Pj,k with XPj;k near x and small for
those with XPj;k far from x. For the kernel regression estimator, the weight function
ωj(x) is built from a probability density function K(x), also called a kernel:

KðxÞ � 0;

Zþ1

�1
KðuÞdu ¼ 1: (11)

By rescaling the kernel with respect to a parameter h > 0, we can change its
spread:

KhðuÞ � 1

h
Kðu=hÞ;

Zþ1

�1
KhðuÞdu ¼ 1 (12)

and define the weight function to be used in the weighted average (10) as:

!j;h � Kh x� XPj;k

� �
=ghðxÞ (13)

ghðxÞ � 1

l

Xl
j¼l

Kh x� XPj;k

� �
: (14)

Substituting (14) into (10) yields the Nadaraya–Watson kernel estimator m̂hðxÞ
of m(x):

m̂hðxÞ ¼ 1

l

Xl
j¼l

!j;hðxÞPj;k ¼
Pl

j¼1 Kh x� XPj;k

� �
Pj;kPl

j¼1 Kh x� XPj;k

� � : (15)

If h is very small, the averaging will be done with respect to a rather small
neighborhood around each of the XPj;k’s. If h is very large, the averaging will be over
larger neighborhoods of the XPj;k’s. Therefore, controlling the degree of averaging
amounts to adjusting the smoothing parameter h, also known as the bandwidth.
Choosing the appropriate bandwidth is an important aspect of any local-averaging
technique. In our case we select a Gaussian kernel with a bandwidth, hopt,j ,
computed by Silverman (1986):

KhðxÞ ¼ 1

h
ffiffiffiffiffiffi
2	

p e�
x2

2h2 (16)

hopt;k ¼ 4

3

� 	1=5

�k l
�1=5; (17)
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where σk is the standard deviations for the observations that occur within the
window k. However, the optimal bandwidth for Silverman (1986) involves a fitted
function which is too smooth. In other words this optimal bandwidth places too
much weight on prices far away from any given time t, inducing too much
averaging and discarding valuable information in local price movements. Like Lo
et al. (2000), through trial and error, we found that an acceptable solution to this
problem is to use a bandwidth equal to 20% of hopt,k :

h� ¼ 0:2
 hopt;k : (18)

B. Extrema detection methods

Technical details for both extrema detection methods and projection procedure
are presented below:

B.1. M1

M1 is the extrema detection method using the close prices. After smoothing the
data by estimating the Nadaraya–Watson kernel function, m̂hðXPj;k Þ, we compute
maxima and minima respectively noted by maxm̂hðXPj;k

Þ and minm̂hðXPj;k
Þ :

maxm̂h
XPj;k

� � ¼ m̂h XPj;k

� �
S m̂

0
h XPj;k

� �� � ¼ þ1; S m̂
0
h XPjþ1;k

� �� � ¼ �1
��� �

minm̂h
XPj;k

� � ¼ m̂h XPj;k

� �
S m̂

0
h XPj;k

� �� � ¼ �1; S m̂
0
h XPjþ1;k

� �� � ¼ þ1
��� �

;

where S(X) is the sign function, equal to +1 (−1) when the sign of X is positive
(negative), and m̂ 0

h XPj;k

� �
is the first derivative of the kernel function m̂h XPj;k

� �
. By

construction we obtain alternate extrema. We denote respectively by tM m̂h XPj;k

� �� �
and tm m̂h XPj;k

� �� �
the moments correspondent to detected extrema such that:

tM m̂h XPj;k

� �� � ¼ j j 2 maxm̂hðXPj;k
Þ

���n o
(19)

tm m̂h XPj;k

� �� � ¼ j j 2 minm̂hðXPj;k
Þ

���n o
: (20)

After recording the moments of the detected extrema we realize an orthogonal
projection of selected extrema, from the smoothing curve, to the original one. We
deduce the corresponding extrema to construct the series involving both maxima,
maxPj;k and minima, minPj;k such that:

maxPj;k ¼ max PtM ðm̂hðXPj;k
ÞÞ�1;k; PtM ðm̂hðXPj;k

ÞÞ;k; PtM ðm̂hðXPj;k
ÞÞþ1;k

� 

minPj;k ¼ min Ptmðm̂hðXPj;k

ÞÞ�1;k; Ptmðm̂hðXPj;k
ÞÞ;k;Ptmðm̂hðXPj;k

ÞÞþ1;k

� 

:

For each window k we get alternate maxima and minima. This is assured by the
bandwidth h which provide at least two time intervals between two consecutive
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extrema. The final step consists to scan the extrema sequence to identify an
eventual chart pattern. If the same sequence of extremum was observed in more
than one window, only the first sequence is retained for the recognition study to
avoid the duplication of results.

B.2. M2

M2 is the extrema detection method built on high and low prices. According to this
method, maxima and minima have to be detected onto separate curves. Maxima on
high prices curve and minima on the low one.

Let Ht and Lt (t = 1, . . . ,T), be respectively the series for the high and the how
prices, and k a window containing l regularly spaced time intervals such that:

Hj;k  Ht k 	 t 	 kþ l� 1jf g (21)

Lj;k  Lt k 	 t 	 kþ l� 1jf g; (22)

j= 1, . . . ,l and k= 1, . . . ,T−l+1. We smooth these series through the kernel esti-
mator detailed in Appendix A to obtain m̂h XHj;k

� �
and m̂h XLj;k

� �
. We detect max-

ima on the former series and minima on the latter one in order to construct two
separate extrema series maxm̂hðXHj;k

Þ and minm̂hðXLj;k
Þ such that:

maxm̂hðXHj;k
Þ ¼ m̂h XHj;k

� � ��S m̂
0
h XHj;k

� �� � ¼ þ1; S m̂
0
h XHjþ1;k

� �� � ¼ �1
� �

minm̂hðXLj;k
Þ ¼ m̂h XLj;k

� � ��S m̂
0
h XLj;k

� �� � ¼ �1; S m̂
0
h XLjþ1;k

� �� � ¼ þ1
� �

;

where S(x) is the sign function defined in the previous Section.
We record the moments for such maxima and minima, denoted respectively by

tM m̂h XHj;k

� �� �
and tm m̂h XLj;k

� �� �
and we project them on the original high and how

curves to deduce the original extrema series maxHj;k and minLj;k , such that:

maxHj;k ¼ max HtM ðm̂hðXHj;k
ÞÞ�1;k;HtM ðm̂hðXHj;k

ÞÞ;k;HtM ðm̂hðXHj;k
ÞÞþ1;k

� 

minLj;k ¼ min Ltmðm̂hðXLj;k

ÞÞ�1;k; Ltmðm̂hðXHj;k
ÞÞ;k;Ltmðm̂hðXHj;k

ÞÞþ1;k

� 

:

However, this method does not guarantee alternate occurrences of maxima
and minima. It is easy to observe, in the same window k, the occurrence of two
consecutive minima on the low series before observing a maximum on high series.
To resolve this problem we start by recording the moments for the selected maxima
on high curve, tM(Hj,k), and minima in low curve, tm(Lj,k). Then we select, for
window k the first extremum from these two series, E1,k , and its relative moment,
tE1;k , such that:

tE1;k ¼ min
t

tM Hj;k

� �
; tm Hj;k

� �� �
(23)

E1;k ¼ maxH j;k

� � [ minLj;k

� � �� j ¼ tE1;k

� �
: (24)
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If we meet a particular case such that a minimum and a maximum occur at the
same first moment, then we retain arbitrarily the maximum. To build the alternate
series, we have to know the type of the last extremum introduced into the series.
If it is a maximum (minimum) then the next extremum has to be a minimum
(maximum) selected from the low (high) series such that:

E
j;kjEðj�1Þ;k2 maxH j;k

� � ¼ minLj;k
�� j ¼ min tm Lj;k

� �� �
; tm Lj;k
� �

> tEðj�1Þ;k

n o
E
j;kjEðj�1Þ;k2 minL j;k

� � ¼ maxHj;k

�� j ¼ min tM Hj;k

� �� �
; tM Hj;k

� �
> tEðj�1Þ;k

n o
;

where Ej,k is the extremum detected on original series.
Finally, the obtained series is scanned by the recognition pattern algorithms to

identify an eventual chart pattern.

C. Definition of chart patterns

C.1. Inverse head and shoulders (IHS):

IHS is characterized by a sequence of five extrema Ei (i=1, . . . , 5) such that:

IHS �

E1 < E2

E3 < E1;E3 < E5

p E2;E4ð Þj j 	 tgð10Þ
p E1;E5ð Þj j 	 tgð10Þ
0:9 	 VtE1

E2;E4ð Þ�E1

VtE5
E2;E4ð Þ�E5

	 1:1

1:1 	 h
s 	 2:5

1
2 	

tE2�td
tf�tE4

	 2
1
2 	

tE4�tE2
m 	 2

Ptmax � Ptdð Þ � 2
3 
 h

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
where

– h is the height of the head: h ¼ VtE3
E2;E4ð Þ � E3

– s is the height average of the two shoulders:

s ¼
VtE1

E2;E4ð Þ�E1

� 

þ VtE5

E2;E4ð Þ�E5

� 

2

– Ptmax is the highest price observed into the time interval [td−(f−d), td]:
Ptmax ¼ max Ptð Þ j td� f�dð Þ 	 t 	 td

– td is the starting time for the pattern
– tf is the ending time for the pattern
– td− (f−d)= td−(tf − td)
– tf+(f−d)= tf +(tf − td)
– m is the average time which the shoulders take for their total completion
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C.2. Double top (DT)

DT is characterized by a sequence of three extrema Ei (i=1 , . . , 3), such that:

DT �

E1 > E2
E1�E2

VtE2
E1;E3ð Þ�E2

¼ 1
E3�E2

VtE2
E1;E3ð Þ�E2

¼ 1

1
2 	

tE2�td

tf �tdð Þ
�
2
	 2

1
2 	

tf �tE2

tf �tdð Þ
�
2
	 2

Ptd � Ptminð Þ � 2
3 
 ðVtE2

E1;E3ð Þ � E2Þ

8>>>>>>>>>>><>>>>>>>>>>>:
C.3. Double bottom (DB)

DB is characterized by a sequence of three extrema Ei (i =1, . . . ,3), such that:

DB �

E1 < E2
E2�E1

E2�VtE2
E1;E3ð Þ ¼ 1

E2�E3
E2�VtE2

E1;E3ð Þ ¼ 1

1
2 	

tE2�td

tf �tdð Þ
�
2
	 2

1
2 	

tf �tE2

tf �tdð Þ
�
2
	 2

Ptmax � Ptdð Þ � 2
3 
 ðE2 � VtE2

E1;E3ð ÞÞ

8>>>>>>>>>>><>>>>>>>>>>>:
C.4. Triple top (TT)

TT is characterized by a sequence of five extrema Ei (i =1, . . . ,5) such that:

TT �

E1 > E2

p E1;E5ð Þj j 	 tgð10Þ
p E2;E4ð Þj j 	 tgð10Þ
0:9 	 h

E1�VtE1
E2;E4ð Þ 	 1:1

0:9 	 h
E5�VtE5

E2;E4ð Þ 	 1:1

1
2 	

tE2�td

tf �tdð Þ
�
3
	 2

1
2 	

tE4�tE2

tf �tdð Þ
�
3
	 2

1
2 	

tf �tE4

tf �tdð Þ
�
3
	 2

Ptd � Ptminð Þ � 2
3 
 h

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
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C.5. Triple bottom (TB)

TB is characterized by a sequence of five extrema Ei (i = 1, . . . ,5) such that:

TB �

E1 < E2

p E2;E4ð Þj j 	 tgð10Þ
p E1;E5ð Þj j 	 tgð10Þ
0:9 	 h

VtE1
E2;E4ð Þ�E1

	 1:1

0:9 	 h
VtE5

E2;E4ð Þ�E5
	 1:1

1
2 	

tE2�td

tf �tdð Þ
�
3
	 2

1
2 	

tE4�tE2

tf �tdð Þ
�
3
	 2

1
2 	

tf �tE4

tf �tdð Þ
�
3
	 2

Ptmax � Ptdð Þ � 2
3 
 h

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
C.6. Rectangle top (RT)

RT is characterized by a sequence of six extrema Ei (i =1, . . . ,6) such that:

RT �

E1 > E2

p E1;E5ð Þj j 	 0:001
p E2;E6ð Þj j 	 0:001
VtE3

E1;E5ð Þ
E3

¼ 1
E4

VtE4
E2;E6ð Þ ¼ 1

Ptd � Ptminð Þ � 2
3 
 h

8>>>>>>>><>>>>>>>>:
C.7. Rectangle bottom (RB)

RB is characterized by a sequence of six extrema Ei (i =1, . . . ,6) such that:

RB �

E1 < E2

p E2;E6ð Þj j 	 0:001
p E1;E5ð Þj j 	 0:001

E3
VtE3

E1;E5ð Þ ¼ 1

VtE4
E2;E6ð Þ
E4

¼ 1

Ptmax � Ptdð Þ � 2
3 
 h

8>>>>>>>><>>>>>>>>:
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C.8. Broadening Top(BT)

BT is characterized by a sequence of five extrema Ei (i=1, . . . ,5) such that:

BT �
E1 > E2

E3 > E1;E4 < E2;E5 > E3

Ptd � Ptminð Þ � 2
3 
 h

8<:
C.9. Broadening bottom(BB)

BB is characterized by a sequence of five extrema Ei (i=1, . . . ,5) such that:

BB �
E1 < E2

E3 < E1;E4 > E2;E5 < E3

Ptmax � Ptdð Þ � 2
3 
 h

8<:
C.10. Triangle Top (TRIT)

TRIT is characterized by a sequence of four extrema Ei (i = 1, . . . ,4) such that:

TRIT �

E1 > E2
p E1;E3ð Þ 	 tgð�30Þ
0:9 	 p E1;E3ð Þj j

p E2;E4ð Þ 	 1:1

tf 	 tE1 þ 0:75
 tint � tE1ð Þ
PtE1

� Ptmin

� 

� 2

3 
 h

8>>>>><>>>>>:
where tint is the moment of support and resistance lines intersection:

tint ¼ mint Vt E1;E3ð Þ 	 VtðE2;E4Þ; t > tE4ð Þ .

C.11. Triangle bottom(TRIB)

TRIB is characterized by a sequence of four extrema Ei (i =1, . . . ,4) such that:

TRIB �

E1 < E2
p E2;E4ð Þ 	 tgð�30Þ
0:9 	 p E2;E4ð Þj j

p E1;E3ð Þ 	 1:1

tf 	 tE1 þ 0:75
 tint � tE1ð Þ
Ptmax � PtE1

� 

� 2

3 
 h

8>>>>><>>>>>:
where tint is the moment of support and resistance lines intersection:

tint ¼ min t Vt E2;E4ð Þ 	 VtðE1;E3Þ; t > tE4ð Þ :
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Juan M. Rodríguez-Poo · David Veredas · Antoni Espasa

Semiparametric estimation for financial
durations

Abstract We propose a semiparametric model for the analysis of time series of
durations that show autocorrelation and deterministic patterns. Estimation rests on
generalized profile likelihood, which allows for joint estimation of the parametric—
an ACD type of model—and nonparametric components, providing consistent and
asymptotically normal estimators. It is possible to derive the explicit form for the
nonparametric estimator, simplifying estimation to a standard maximum likelihood
problem.

Keywords Generalized profile likelihood · ACD model · Seasonality

JEL Classification C14 · C15 · C22 · C32

1 Introduction

Modeling financial durations has been a very active area of research since Engle and
Russell (1998) introduced the autoregressive conditional duration (ACD) model.
Their analysis is justified from an economic and a statistical point of view. Market
microstructure theory shows that the time between events in stock markets conveys
information that is used by market participants. On the other hand, financial dura-
tions are one-dimensional point processes (with time as space) and the analysis of
these processes has a long tradition in statistics.

Since the ACD model, a plethora of modifications and alternatives have been
proposed. Bauwens and Giot (2000) introduce the Log-ACD model, an exponential
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version of the ACD. Grammig and Mauer (2000) use a Burr distribution in the
ACD model. Zhang et al. (2001) introduce a threshold ACD (TACD). Fernandes
and Grammig (2001) introduce the augmented ACD model, a very general model
that covers almost all the existing ones. Drost and Werker (2004) provide a method
for obtaining efficient estimators of the ACD model with no need to specify the
distribution. Meitz and Terasvirta (2005) introduce smooth transition ACD models
and testing evaluation procedures.Alternative models are the stochastic conditional
duration (SCD) model of Bauwens and Veredas (2004) and the stochastic volatility
duration (SVD) model of Ghysels et al. (2004), both based on latent variables.

In the application of most of the above studies, durations show a strong
intradaily seasonality, i.e., an inverted U shape pattern along the day, as it is shown
in Figs. 2 and 3 for price and volume durations of two stocks traded at the NYSE.
The study of seasonality for regularly spaced variables, i.e., observed at equidistant
periods of time, is well known. It has focused mainly on the intradaily behavior
of volatility either on stock markets or on foreign exchange markets—see, among
others, Baillie and Bollerslev (1990), Bollerslev and Domowitz (1993), Andersen
and Bollerslev (1997 and 1998) and Beltratti and Morana (1999). All these articles
used data sampled at different frequencies: hourly, half-hourly, every 15 min or
every 5 min.

Durations do not fit into this category as they are themselves the main char-
acteristic of irregularly spaced data. For tick-by-tick data, Engle and Russell
(1998) introduce a method for dealing with intradaily seasonality. It consists of
decomposing the expected duration into a deterministic part, that depends on the
time-of-the-day at which the duration starts, and a stochastic part. The determinis-
tic component accounts for the seasonal effect whereas the stochastic component
models the dynamics. If both components are assumed to belong to a parametric
family of functions, the two sets of parameters can be jointly estimated by maxi-
mum likelihood (ML) techniques. And, under standard regularity conditions, ML
estimators of the parameters of interest are consistent and asymptotically normal
(see Engle and Russell, 1998; corollary, p. 1135).

In many situations the researcher does not have enough information to fully
specify the seasonality functions or seasonality itself is not the main subject
of analysis but it has to be taken into account. In these cases, the choice of a
particular parametric function can be delicate. An alternative is to approximate
the seasonal component through nonparametric functions (mainly Fourier series,
spline functions, or other types of smoothers) and then estimate the parameters
of the dynamic component using maximum likelihood techniques. Unfortunately,
standard maximum likelihood for finite dimensional parameters, in the presence of
infinite “incidental” parameters, may yield inconsistency and slow rates of conver-
gence (see, for examples of inconsistency: Kiefer and Wolfowitz (1956); Grenander
(1981); and Shen and Wong (1994) and for examples of slow rates of convergence
Birgé and Massart (1994)). In order to solve this problem many alternative solu-
tions have been proposed. If the seasonal component is estimated through splines,
Fourier series, neural networks, or wavelets, then the method of sieve extremum
estimation can be used to make inference on the seasonal term. Chen and Shen
(1998) give sufficient conditions for splines and Fourier series under regularly
spaced dependent data. If, instead, other methods such as kernels or local polyno-
mials are used, then the sieve method is no longer valid and other nonsieve ML
estimation methods are needed. Among others, the so-called generalized profile
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likelihood approach (see Severini and Wong (1992) and Severini and Staniswalis
(1994)).

In this paper we propose a new method to jointly estimate the parametric
dynamic and nonparametric seasonal components in an ACD framework. Esti-
mation is based on generalized profile likelihood techniques. To make inference
on the parameters of interest, we need to extend some previous results on i.i.d.
data, Severini and Wong (1992), to a dependent data setup. Our estimation method
presents several advantages against other methods in the literature: (1) It presents
closed form seasonal estimators that are very intuitive. The resulting nonpara-
metric estimator of the seasonal component is a simple transformation of the
Nadaraya–Watson estimator. (2) The statistical properties of both the paramet-
ric and nonparametric estimators are well established. We present the asymptotic
distribution of both the nonparametric and the parametric estimator. This enables
us to make correct inference in the different components. (3) This methodology
provides a data driven method for computing the bandwidth. On the contrary,
polynomial spline techniques do not have a method for choosing the number and
location of nodes and the proportionality coefficients for the end-point restric-
tions. (4) Multivariate extensions of the seasonal estimator are straightforward.
For example, considering a multivariate exponential distribution, the estimator
is easily adapted to the multivariate case. (5) The decomposition presented in
the paper can be easily extended to cope with other specifications that are fre-
quently used in the econometric analysis of tick-by-tick data. For example, to
capture nonlinear relationships between financial durations and market microstruc-
ture variables (see, for instance, Spierdik et al. (2004), and references therein).
Likewise, it is also possible to replace the dependent variable by any other
tick-by-tick market microstructure variable and make it a function of its own
lags, through the parametric component, and any other variable through the non-
parametric component. In sum, although focused on durations and its nonlinear
dependency with the time-of-the-day, the potential applications of this model are
very ample.

As an illustration, we apply our method to price and volume durations of two
stocks traded on the NYSE. We show that the model is able to correctly capture
the seasonal pattern and it is able to adjust to changes on this pattern.

The structure of the paper is as follows. Section 2 develops a general ML
framework for analyzing tick-by-tick data, and proposes the new estimator for
seasonality. Its asymptotic properties are also analyzed. Second, it develops the
same method but in a generalized linear model (GLM) framework, which allows
us to use quasi maximum likelihood (QML). Section 3 is devoted to the empirical
application comparing the results with others existing in the literature. We use
density forecast to evaluate the out-of-sample goodness of fit. Section 4 concludes.
The assumptions and proofs of the main results are relegated to the Appendix.

2 Econometric model and estimators

Let ti be the time at which the ith event occurs and let di = ti − ti−1, where
ti−1 < ti , i = 1, . . . , n be the ith duration between two consecutive events. The
sequence of times ti is measured as accumulated seconds from the starting date of
the sample. At the time ti , the ith event occurs and k characteristics associated to
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this event are observed. We gather these characteristics in a k-dimensional vector
yi . Thus, the following set of observations is available

{(di, yi)}i=1,...,n.

One possible way to obtain information about the whole process is to assume that
the ith duration has a prespecified conditional parametric density di |Ii−1 ∼ p(
di |d̄i−1, ȳi−1; δ

)
, where (d̄i−1, ȳi−1) is the past information and δ is a set of

finite-dimensional parameters. Under these conditions it is possible to estimate
the parameter vector δ through maximum likelihood techniques. But sometimes
assumptions about the knowledge of the whole conditional density are too strong
and the researcher prefers to make assumptions about some of its conditional
moments. Let

E[di |d̄i−1, ȳi−1] = ψ(d̄i−1, ȳi−1;ϑ1) (1)

be the expectation of the ith duration conditional on the past filtration. The ACD
class of models consists of parameterizations of (1) and the assumption that

di = ψ(d̄i−1, ȳi−1;ϑ1)εi,

where εi is an i.i.d. random variable with density function p(εi; ξ) depending on a
set of parameters ξ and mean equal to one. The vector ϑ1 contains the parameters
that measure the dynamics of the scale and ξ contains the shape parameters. The
conditional log-likelihood function can be written as

Ln (d;ϑ1, ξ) =
n∑

i=1

log p
(
di |d̄i−1, ȳi−1;ϑ1, ξ

)
. (2)

If the conditional density is correctly specified and ϑ1 and ξ are finite-dimensional
parameters, then, under some standard regularity conditions, the maximum like-
lihood estimators of the parameters of interest are consistent and asymptotically
normal (for conditions see Engle and Russell (1998)).

The specification described above is sometimes too simple and/or rigid since the
expected duration can vary systematically over time and can be subject to many
different time effects. One way to extend the above model is to decompose the
conditional mean into different effects. In standard time series literature a stochastic
process can be decomposed into a combination of cycle and trend, seasonality and
noise. This decomposition, with a long tradition in time series analysis, has already
been used in volatility (see, among others, Andersen and Bollerslev (1998)) and
duration analysis (e.g. Engle and Russell (1998)). Instead of (1), the following
nonlinear decomposition is proposed:

E[di |d̄i−1, ȳi−1] = ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ(d̄i−1, ȳi−1;ϑ2)

)
. (3)

Durations are modeled as a possibly nonlinear function of two components,
ψ(·;ϑ1) and φ(·;ϑ2), that represent dynamic and seasonal behavior, respectively.
The function ϕ(u, v) nests a great variety of models. ϕ(u, v) = (u × v) forms an



Semiparametric estimation for financial durations 229

ACD-type of model whereas ϕ(u, v) = exp(u+ v) = exp(u)× exp(v) represents
a Log-ACD type of model with

ψ(d̄i−1;ϑ1) = ω +
J∑

j=1

αj ln di−j +
L∑
�=1

β�ψi−�. (4)

With respect to the seasonal component, φ(d̄i−1, ȳi−1, ϑ2), several alternatives
are available. In this class of models it is usually assumed that the seasonal term is
somehow related to ti . In order to make this dependence more explicit, we define
a rescaled time variable, t ′i , such that

t ′i =
{
ti −

⌊
ti−to
tc−to

⌋
(tc − to) if ti > tc,

ti otherwise,
(5)

where 
x� is the integer part of x. If the seasonal frequency is daily, to and tc
stand for the stock market opening and closing (in seconds), respectively; i.e.
to = 9.5 × 60 × 60 and tc = 16 × 60 × 60 if it opens at 09:30 and closes at
16:00. Note that defined in this way, t

′
i ∈ [to, tc] is of bounded support and is the

time-of-the-day (in seconds) at which the event has occurred. By changing the
values of to and tc, other possible types of seasonality (hourly, weekly, monthly,
etc.) can be considered.

In the context of regularly spaced variables, several functional forms for
φ(·; θ2) have been proposed in literature. If the function is assumed to fall within
a known class of parametric functions then, by substituting (3) into (2), we obtain
the following log-likelihood function

Ln (d;ϑ1, ϑ2, ξ) =
n∑

i=1

log p
(
di |d̄i−1, ȳi−1, t

′
i−1;ϑ1, ϑ2, ξ

)
, (6)

and the parameters ϑ1, ϑ2, and ξ can be estimated as in the one component case
(2). If the error density is correctly specified then standard ML estimation methods
apply.

But if very little information is available about the functional form that relates
seasonality and time-of-the-day, the risk of misspecification in choosing φ(·;ϑ2)

is high. Consequently, it is worth the use of nonparametric methods to approximate
the unknown seasonal function. Let φ(t ′i ) be the deterministic seasonal component
at time t ′i . Given the proposed specification for the components, (3) becomes

E
[
di |d̄i−1, ȳi−1, t

′
i−1

] = ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ(t

′
i−1)

)
, (7)

where ϑ1 and the function φ(·), evaluated at time points t ′1, . . . , t ′n, have to be esti-
mated. Following the standard approach (as in (2) or (6)), one would be tempted to
obtain estimators for ϑ1, ξ , φ(t ′1), . . . , φ(t ′n), by choosing the values that maximize
the following log-likelihood function

Ln (d;ϑ1, ξ) =
n∑

i=1

log p
(
di |d̄i−1, ȳi−1;ϑ1, φ

(
t ′i−1

)
, ξ

)
. (8)
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Standard ML techniques do not apply directly since the estimation of the para-
meter vector, ϑ1 and ξ , does not necessarily provide consistent estimators in the
presence of infinite dimensional nuisance parameters. In order to implement valid
inference not only on the parameter estimators of the dynamic component but on
the estimated seasonal curve as well, we propose the generalized profile likeli-
hood approach. It has been introduced, in an i.i.d. context, by Severini and Wong
(1992). The basic idea of this method is to estimate the nonparametric function φ(·)
by maximizing a local (and hence smoothed) likelihood function (see Staniswalis
(1989)), and simultaneously estimate the parameter vector ϑ1 and ξ by maximiz-
ing the unsmoothed likelihood function. For a given value of the time-of-the-day,
t ′0 ∈ [to, tc], and fixed values of ϑ1 and ξ , we estimate φ(t ′0) as the solution of the
problem

φ̂ϑ1,ξ (t
′
0) = arg sup

φ∈�
1

nh

n∑
i=1

K

(
t ′0 − t ′i
h

)
log p

(
di |d̄i−1, ȳi−1;ϑ1, φ, ξ

)
, (9)

where K(·) is a kernel function and h is the corresponding bandwidth. Note also
that all estimators depend on ϑ1 and ξ . Then, φ̂ϑ1,ξ (t

′
0) must fulfill the first order

condition

1

nh

n∑
i=1

K

(
t ′0 − t ′i
h

)
∂

∂φ
log p

(
di |d̄i−1, ȳi−1;ϑ1, φ̂ϑ1,ξ (t

′
0), ξ

)
= 0. (10)

Given the above estimates for the nonparametric part, a simple ML estimation for
ϑ1 and ξ is performed(

ϑ̂1n ξ̂n

)T = arg sup
ϑ1∈�

sup
ξ∈�

n∑
i=1

logp
(
di |d̄i−1, ȳi−1;ϑ1, φ̂ϑ1,ξ (t

′
i−1), ξ

)
(11)

and
(
ϑ̂1n ξ̂n

)
must fulfill the first order condition

n∑
i=1

∂

∂ (ϑ1 ξ)
T

logp
(
di |d̄i−1, ȳi−1; ϑ̂1n, φ̂ϑ̂1n,ξ̂n

(t ′i−1), ξ̂n

)
= 0. (12)

The procedure is implemented as follows: (1) For a given t ′0, fix the values of ϑ
and ξ , and find the φ̂ϑ1,ξ (t

′
0) that fulfills condition (9). Repeat it for all t ′i . (2) Plug

the vector φ̂ϑ1,ξ (t
′
i ) into (11). The log-likelihood is hence concentrated on ϑ and

ξ , which can be easily estimated. (3) Given the estimators ϑ̂n and ξ̂n come back to
(1). (4) Iterate until (10) and (12) are fulfilled. This procedure is computationally
intensive as the optimization in (1) has to be done n times. It would be significantly
alleviated if we would have a closed form expression for φ̂ϑ1,ξ (t

′
0). This is the case

for logp being one of the log-likelihoods that are typically assumed for financial
durations.

As an example, assume that p(·) in the log-likelihood function (2) is the
generalized gamma density function, i.e., εi ∼ GG(1, γ, ν) then

di ∼ GG
(
ϕ

(
ψ

(
d̄i−1, ȳi−1;ϑ1

)
, φϑ1,ξ

(
t ′i−1

))−1
, γ, ν

)
.
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Assuming that ϕ(u, v) = exp(u+v), the seasonal component is estimated through
the following expression

φ̂ϑ1,ξ (t
′
0) = 1

γ ν
log

⎧⎪⎪⎨⎪⎪⎩
1
nh

∑n
i=1 K

(
t ′0−t ′i
h

) (
di

exp
{
ψ(d̄i−1,ȳi−1;ϑ1)

})γ

1
nh

∑n
i=1 K

(
t ′0−t ′i
h

)
⎫⎪⎪⎬⎪⎪⎭ . (13)

This closed form estimator can be plugged into (11), reducing the simultaneous
optimization problem to a standard ML procedure. Two useful particular cases
are nested in this estimator. If ν = 1, we obtain the nonparametric estimator
when p(·) is a Weibull density function. And ν = γ = 1 corresponds to the
exponential density. In all cases, the nonparametric seasonal curve is estimated
by a transformation of the Nadaraya–Watson nonparametric regression estimator
of the duration—adjusted by the dynamic component—on the time-of-the-day at
time t ′0.

The results available in the earlier literature were obtained for independent
observations and hence do not hold for tick-by-tick data. The following Theorem
shows the equivalent statistical results that allows us to make correct inference
about the unknown parameters of the Log-ACD model (the proof is given in the
Appendix and Eq. (8) is simplified to logp (d;φ, η)):

Theorem 1: Let η = (ϑ1 ξ)
T , and η̂n be the vector of corresponding parametric

estimates. Under conditions (L.1), (L.2), (A.1) to (A.3), (B.1), and (B.3) to (B.6)
stated in the Appendix

√
n

(
η̂n − η

) →d N
(

0, I−1
η (φ, η)

)
, (14)

where

Iη (φ, η) = E

[
∂

∂η
logp (d;φ, η) ∂

∂ηT
logp (d;φ, η)

]
− E

[
∂

∂η
logp (d;φ, η) ∂

∂φ
logp (d;φ, η)

]

× E

[
∂2

∂φ2
logp (d;φ, η)

]−1

× E

[
∂

∂φ
logp (d;φ, η) ∂

∂ηT
logp (d;φ, η)

]

and

√
nh

(
φ̂η̂n(t

′
0) − φ(t ′0)

)
→d N

(
0, V

(
t ′0, η

))
, (15)
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where

V
(
t ′0, η

) =
∫
K2(u)du

f (t ′0)I
(
t ′0, η

) , (16)

I
(
t ′0, η

) = E

[
∂

∂φ
logp (d;φ, η)2

∣∣∣∣ t ′ = t ′0
]

(17)

and f (t ′0) is the marginal density function of t ′, as n tends to infinity.

This theorem is very appealing since it allows us to make inference on the
parametric and nonparametric components. However, the result depends on the
correct specification of the conditional density function of the error term. In Section
2.1 we weaken certain assumptions about the error density function and show that
our result remains valid.

2.1 The GLM Approach

As pointed out in Engle and Russell (1998) and Engle (2000), it is of inter-
est to have estimation techniques available that do not rely on the knowledge
of the functional form of the conditional density function. Two alternative
approaches that allow for consistent estimation of the parameters of interest
without specifying the conditional density are quasi maximum likelihood tech-
niques, QML, (see Gouriéroux, Monfort and Trognon (1984)) and generalized
linear models, GLM, (see McCullagh and Nelder (1989)). In both approaches it
is assumed that di , conditional on d̄i−1 and ȳi−1, depends on a scalar parameter
θ = h

(
d̄i−1, ȳi−1, t

′
i−1;ϑ1, ϑ2

)
, and its distribution belongs to a one-dimensional

exponential family with conditional density

q
(
di |d̄i−1, ȳi−1; θ

) = exp (diθ − b(θ) + c(di)) ,

where b(·) and c(·) are known functions. The main difference between the QML
and the GLM approaches is simply a different parameterization. We adopt the GLM
approach for the sake of convenience. By adopting the GLM parametrization, it is
straightforward to see that the ML estimator of θ solves the first order conditions∑n

i=1

{
di − b′(θ)

} = 0. The ML estimator of θ can also be obtained from the
solution of the following equation

n∑
i=1

{
di − ϕ

(
ψ(d̄i−1, ȳi−1;ϑ1), φ(t

′
i−1;ϑ2)

)}
ϕ′ (ψ(d̄i−1, ȳi−1;ϑ1), φ(t

′
i−1;ϑ2)

)
V

{
ϕ

(
ψ(d̄i−1, ȳi−1;ϑ1), φ(t

′
i−1;ϑ2)

)} = 0.

(18)

The parameter of interest θ (the so-called canonical parameter) can be estimated without
specifying the whole conditional distribution function. It is only necessary to specify the
functional form of the conditional mean, ϕ(·), and of the conditional variance V (·), but
not the whole distribution.

The relationship between the predictors in Eq. (7) and the canonical parameter is
given by the link function. This function depends on the member of the exponential
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family that we use. For the exponential distribution the link function is

θ = − 1

ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ(t

′
i−1;ϑ2)

) .
Since under this distribution E

[
di |d̄i−1, ȳi−1, t

′
i−1

] = −θ−1 and V
[
di |d̄i−1, ȳi−1,

t ′i−1

] = θ2, Eq. (18) specifies the first order conditions for the maximization of the
log-likelihood function for exponentially distributed random variables.

In order to estimate the parameters of interest we maximize the quasi-log-likelihood
function

Qn (d, ϕ) =
n∑

i=1

log q
(
di, ϕ

(
ψ(d̄i−1, ȳi−1;ϑ1), φ(t

′
i−1;ϑ2)

))
with respect to ϑ1 and ϑ2. As already indicated in the likelihood context, if the seasonal
component is assumed to fall within the class of known parametric function, φ(ti−1;ϑ2),
the properties of the QML estimators of ϑ1 and ϑ2 are well known (see Engle and Russell
(1998) and Engle (2000)). But if the seasonal component is approximated nonparamet-
rically, then standard quasi-likelihood arguments do not hold. For the standard i.i.d. data
case, Severini and Staniswalis (1994) and Fan et al. (1995) propose consistent estima-
tors of both parametric and nonparametric parts. The statistical results presented in these
papers do not apply directly in our case since they assume independence of observations
but at the end of the subsection equivalent statistical results are shown for the dependent
case.

As in the likelihood case, let us define φ̂ϑ1(t
′
0), for fixed values of ϑ1, as the solution

to the following (smoothed) optimization problem

φ̂ϑ1(t
′
0) = arg sup

φ∈�
1

nh

n∑
i=1

K

(
t ′0 − t ′i
h

)
log q

(
di, ϕ

(
ψ(d̄i−1, ȳi−1;ϑ1), φ

))
(19)

for t ′0 ∈ [to, tc]. Then φ̂ϑ1(t
′
0) must fulfill the following first order condition

1

nh

n∑
i=1

K

(
t ′0 − t ′i
h

)
∂

∂φ
log q

(
di, ϕ

(
ψ(d̄i−1, ȳi−1;ϑ1), φ̂ϑ1(t

′
0)

))
= 0.

The estimator ofϑ1 is obtained as the solution to the following (unsmoothed) optimization
problem

ϑ̂1n = arg sup
ϑ1∈�

n∑
i=1

log q
(
di, ϕ

(
ψ(d̄i−1, ȳi−1;ϑ1), φ̂ϑ1(t

′
i−1)

))
,

and ϑ̂1n must fulfill the following first order condition

n∑
i=1

∂

∂ϑ1
log q

(
di, ϕ

(
ψ(d̄i−1, ȳi−1; ϑ̂1n), φ̂ϑ̂1n

(t ′i−1)
))

= 0.



234 J. M. Rodríguez-Poo et al.

As an example, set ϕ(u, v) = exp(u+ v). Then, the quasi-likelihood function corre-
sponds to the log-likelihood function from an exponential distribution and a Log-ACD
representation, i.e.,

−
n∑

i=1

[{
ψ(d̄i−1, ȳi−1;ϑ1) + φϑ1(t

′
i−1)

} + di

exp
{
ψ(d̄i−1, ȳi−1;ϑ1) + φϑ1(t

′
i−1)

}] ,

and, after some derivations, the estimator (19) takes the explicit form

φ̂ϑ1(t
′
0) = log

⎧⎪⎨⎪⎩
1
nh

∑n
i=1 K

(
t ′0−t ′i
h

)
di

exp
{
ψ(d̄i−1,ȳi−1;ϑ1)

}
1
nh

∑n
i=1 K

(
t ′0−t ′i
h

)
⎫⎪⎬⎪⎭ .

The above expressions are obtained by assuming a seasonal component for a given period
(e.g., daily). But it is also possible to extend this method to cover several seasonal effects.
For example, we may be interested in looking at whether the seasonal patterns for each
day of the week are different and test the differences using confidence bands. For sth
day of the week, we have for the exponential density and the Log-ACD representation,

φ̂s(t
′
0) = log

⎧⎪⎨⎪⎩
1
nh

∑
n/5�
j=1

∑n

i=1 K
(
t ′0−t ′

i

h

)
I

(

 t−to
tc−to

+ 1� = js
)

di

exp{ψ(d̄i−1,ȳi−1;ϑ1)}
1
nh

∑
n/5�
j=1

∑n

i=1 K
(
t0−ti
h

)
I

(

 t−to
tc−to

+ 1� = js
)

⎫⎪⎬⎪⎭
for s = 1, . . . , 5. I (·) is the indicator function and 
x� is the integer part of x.

The following Theorem shows the equivalence of statistical results for making correct
inference (notation is simplified, as in Theorem 1, and the proof is given in theAppendix):

Theorem 2: Under conditions (A.1) to (A.5), and (B.1) to (B.6), provided in the
Appendix then,

√
n

(
ϑ̂1n − ϑ1

)
→d N

(
0, �−1

ϑ1

)
, (20)

where

�ϑ1 = −E

(
∂2

∂ϑ1∂ϑ
T
1

log q
(
d, ϕ

(
ψ(d̄, ȳ;ϑ1), φ(t

′)
)))

,

and
√
nh

(
φ̂
ϑ̂1
(t ′0) − φ(t ′0)

)
→d N

(
0, V

(
t ′0; η

))
, (21)

where

V
(
t ′0; η

) =
∫
K2(u)du

f (t ′0)

×
E

[{
d−ϕ(ψ(ϑ1),φ)
V (ϕ(ψ(ϑ1),φ))

∂
∂φ
ϕ (ψ(ϑ1), φ)

}2 ∣∣t ′ = t ′0
]

E
[

1
V0(ϕ(ψ(ϑ1),φ))

× ∂
∂φ
ϕ (ψ(ϑ1), φ)

2
∣∣t ′ = t ′0

]2
,

and f (t ′0) is the marginal density function of t ′, as n tends to infinity.
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2.2 Predictibility

We analyze the predictibility and specification of the model via density forecast, intro-
duced by Diebold et al. (1998) in the context of GARCH models and extensively used
by, among others, Bauwens et al. (2004) to compare different financial duration models.
Density forecast is more accurate than point, or even interval prediction, since it relies
on the forecasting performance of all the moments. The behavior of the out-of-sample
density function is evaluated via the probability integral transform. If the prediction is
correct, the probability integral transform over the out-of-sample should be i.i.d and
uniformly distributed.

Let p
(
dj

∣∣∣d̄j−1, ȳj−1; ϑ̂1n, φ̂ϑ̂1n,̂ξn

(
t ′j−1

)
, ξ̂n

)
for j = n + 1, . . . , m be a

sequence of one-step-ahead density forecasts given by the estimated model, and let
f

(
dj |d̄j−1, ȳj−1

)
be the sequence of densities defining the data generating process

of the duration process dj . n and m are the number of observations in-sample and
out-of-sample, respectively. Diebold et al. (1998) show that if the density is correctly
specified

p
(
dj

∣∣∣d̄j−1, ȳj−1; ϑ̂1n, φ̂ϑ̂1n,̂ξn

(
t ′j−1

)
, ξ̂n

)
= f

(
dj |d̄j−1, ȳj−1

)
.

To test this equality we use the probability integral transform

zj =
∫ dj

−∞
p

(
u

∣∣∣d̄j−1, ȳj−1; ϑ̂1n, φ̂ϑ̂1n,̂ξn

(
t ′j−1

)
, ξ̂n

)
du.

If the one-step-ahead density forecast equals the density defining the data generating
process, z must be independent and uniformly distributed. This happens if (1) the pre-
dicted density is correctly specified, (2) the dynamics are well captured, and (3) the
estimated seasonal component fits the out-of-sample seasonal pattern. If any of these
three elements fails, the integral probability transform is not independent and uniformly
distributed. Uniformity can be tested by using histograms based on the computed z

sequence. If the density is correctly specified, the histogram should be flat. Addition-
ally, the Spearman’s ρ of various centered moments of the z sequence may reveal some
dependency in z.

Last, a note on how we predict seasonality: Assuming a generalized gamma density,
the seasonal estimator is (13). It depends on (1) the current time-of-the-day t

′
0 and duration

di that come from the same arrival times—see Eq. (5)—and (2) the estimated parameters
ϑ̂1, ξ̂ . When forecasting, the parameters are fixed as they have been estimated using the
in-sample. But durations and the time-of-the-day are those of the out-of-sample. All this
translates into a forecasted seasonality that changes with the out-of-sample information
and adapts to changes in the intensity of the arrival times.

3 Illustration

3.1 Data and transformations

In this section we illustrate the method estimating the model for two duration processes—
price and volume—pertaining to two different stocks traded at NYSE. A price duration is
the minimum time interval required to witness a cumulative price change greater than a
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certain threshold. We define the threshold as $0.125. Following Engle and Russell (1998),
the price is defined as the mid-quote. A volume duration is defined as the time interval
needed to observe an accumulated change in volume greater than a given number of
shares. The threshold is defined to be 25,000 shares. The data sample covers September,
October, and November 1996, and the stocks are Boeing for price durations and Disney
for volume durations. The choice of these two stocks and its time horizon is motivated
by the fact that Bauwens et al. (2004) show, in a density forecast analysis, that they are
difficult to model, both in terms of expectation and density.

Price and volume durations provide an instantaneous overview of two important mar-
ket features. Price durations are strongly linked to the instantaneous volatility process,
see Engle and Russell (1998) and Gerhard and Hautsch (2002). By computing the con-
ditional expectation of the duration, it is possible to compute the instantaneous volatility
process. Volume durations are appealing as they convey information about two of the
three dimensions of the liquidity: time and volume. Therefore, price and volume dura-
tions provide measures of the instantaneous volatility and the liquidity of the market.
Prior to estimation we follow Engle and Russell (1998) and two transformations are
performed: (1) Trades and bid/ask quotes recorded before 09:30 am and after 4 pm are
ignored and (2) the time gaps between market closing and opening and weekends are also
ignored.

3.2 Descriptive analysis

Table 1 shows some basic statistics. There are 1,778 and 2,160 price and volume dura-
tions, respectively. The first two-thirds of the sample are used for estimation (in-sample),
while the last third of the sample is used for diagnosis and prediction (out-of-sample).
Price and volume durations show different properties. Price durations are overdispersed
(the ratio of standard deviation to mean is 1.49) while volume durations are underdis-
persed (0.81). The proportions of observations below the mode (% < mod) are 11% and
24% for price and volume durations, respectively. These high proportions translate into
humps in the density, even very close to the origin, as it is the case of price durations (see
Fig. 1). Furthermore, there are large durations, specially for price durations, inducing a
long right tail. A hump close to the origin and long right tails are important insights that
help to choose the density function.

Regarding seasonality, we estimate a preliminary nonparametric regression, allowing
for differences between the days of the week. For the sth day we define

φ̂s(t
′
0) =

1
nh

∑
n/5�
j=1

∑n
i=1 K

(
t ′0−t ′i
h

)
I

(

 t−to
tc−to

+ 1� = js
)
di

1
nh

∑
n/5�
j=1

∑n
i=1 K

(
t0−ti
h

)
I

(

 t−to
tc−to

+ 1� = js
) , s = 1, · · · , 5,

Table 1 Information on duration data

n nin nout Mean sd mode % < mod min max

Price (Boeing) 2,160 1,426 734 647 966 70.6 0.11 3 9,739
Volume (Disney) 1,778 1,173 605 801 648 304 0.24 6 4,621

Durations are measured in seconds. n denotes the total number of observations, nin the in-sample
number of observations,nout the out-of-sample number of observations, sd the standard deviation,
% <mod the proportion of observations smaller than the mode, min and max are the smallest
and the largest durations.
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Fig. 1 Kernel marginal densities for Boeing price durations (left box), and Disney volume dura-
tions (right box). The kernel is gamma, see Chen (2000), with optimal bandwidth (0.9sN−0.2)2

where N is the number of observations and s is the sample standard deviation.
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Fig. 2 Intradaily seasonal patterns (middle line) for the days of the week and 95% confidence
bands (side lines) for Boeing price durations. The straight line represents the mean of each curve.



238 J. M. Rodríguez-Poo et al.

9 10 11 12 13 14 15 16
Hours

S
ec

on
ds

20
0

50
0

80
0

11
00

14
00

9 10 11 12 13 14 15 16
Hours

S
ec

on
ds

20
0

50
0

80
0

11
00

14
00

9 10 11 12 13 14 15 16
Hours

S
ec

on
ds

20
0

50
0

80
0

11
00

14
00

9 10 11 12 13 14 15 16
Hours

S
ec

on
ds

20
0

50
0

80
0

11
00

14
00

9 10 11 12 13 14 15 16
Hours

S
ec

on
ds

20
0

50
0

80
0

11
00

14
00

Fig. 3 Intradaily seasonal patterns (middle line) for the days of the week and 95% confidence
bands (side lines) for Disney volume durations. The straight line represents the mean of each
curve

where I (·) is the indicator function and 
x� is the integer part of x. We use a quartic
kernel with bandwidth 2.78sn−1/5, where s is the sample standard deviation.

Figures 2 and 3 show the intradaily seasonality for each day of the week. They
also include pointwise confidence bands (see Bosq (1998), Theorem 3.1, p. 70) for the
different curves and, for comparison purposes, a straight line representing the mean
of each curve. Although a more formal test is needed, the hypothesis of differences
between the seasonal behavior over the days of the week is not supported. Confidence
bands increase through the day: Early in the morning, the bands are tighter than near
the closing. This indicates that the variance of the durations evolves through the day.
Indeed, Fig. 4 presents rolling means and standard deviations, in intervals of half an
hour, through the day. Each point represents the mean and standard deviation over half
an hour. They show an inverted U shape, i.e., as the day goes on, the variance increases
(with the exception of the half hour 13:00–13:30), widening the confidence bands with a
slight tightness near the closing. Incidentally, notice that for price durations the standard
deviation is above the mean while it is the opposite for volume durations. This is due to
the over and under dispersion, respectively.



Semiparametric estimation for financial durations 239

Fig. 4 Intradaily rolling means (solid lines) and standard deviations (dashed lines) for half hour
intervals. Boeing price durations in the left box and Disney volume durations in the right box

Fig. 5 Spearman’s ρ coefficients for serial dependence for price durations (left box), and volume
durations (right box)

Finally, Fig. 5 contains the Spearman’s ρ coefficients of serial dependence. They
indicate the presence of dependencies, justifying the dynamic component in the model.

3.3 Estimation results

Prior to estimation, we need to specify ϕ(u, v), the lag orders, and the form of g(·) in (4),
the conditional density of the error term and the nonparametric estimator φ(t

′
i−1). We

opt for a Log-ACD(1,1), which has been successfully used in the literature. As for the
density, we chose a generalized gamma as it is able to reproduce the features highlighted
earlier. We also provide the quasi maximum likelihood estimates using the exponential
density.

We estimate φ(t
′
i−1) in four different ways. Two of them are joint estimators, in the

sense that estimation is performed jointly with the parameters. One is Eq. (13) that we
denote by UniNW—standing for one step Nadaraya–Watson. The other is the polynomial
spline used by Engle and Russell (1995 and 1997) that we denote by UniSp—standing
for one step spline. We do not use their parametrization but

E
[
di |d̄i−1, t

′
i−1

] = ψi = exp

{
ω + α ln

di−1

φθ,δ(t
′
i−1)

+ βψi−1

}
,

φθ,δ(t
′
i−1) =

4∑
j=1

θj t
′j−1
i−1 +

G∑
g=1

δg
(
t ′i−1 − πg

)3
+ , (22)
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where (·)+ = max (·, 0), G is the number of knots, and πg is the gth knot. θj , j =
1, · · · , 4, and δg , g = 1, · · · ,G, are the parameters of the spline to be estimated. Further
details on the derivation of this form can be found in Eubank (1988, p 354). Knots are
set at every hour with an additional knot in the last half hour, as in Engle and Russell
(1998).

The two remaining estimators are two steps estimators, in the sense that they are
not estimated jointly with the finite dimensional parameters but independently: First the
seasonal curve is estimated, then durations are adjusted by seasonality and finally the
parameters are estimated using the deseasonalized durations. This procedure is often
followed in the literature (see, for instance, Engle and Russell (1998) and Bauwens and
Giot (2000)). The first of these two estimators is the plain Nadaraya–Watson estimator

φ̂(t ′0) =
1
nh

∑n
i=1 K

(
t ′0−t ′i
h

)
di

1
nh

∑n
i=1 K

(
t ′0−t ′i
h

) , (23)

which we denote by BiNW—standing for two steps and Nadaraya–Watson. The second
two-step estimator is the one used by Engle and Russell (1998); it is the seasonal com-
ponent that is estimated by averaging the durations over 30 min intervals, and smoothing
the resulting piece-wise constant function via cubic splines. We denote this estimator by
BiSp.

To construct pointwise confidence bands for the seasonal curve in UniNW, we need
to estimate the empirical counterparts of Eqs. (16) and (17):

φ̂ϑ̂1 ,̂ξ
(t ′0) ± z1− α

2

√√√√ ‖K‖2
2

f̂ (t ′0)Î (φ̂ϑ̂1 ,̂ξ
, t ′0)

, (24)

where

Î (φ̂ϑ̂1 ,̂ξ
, t ′0) =

1
nh

∑n
i=1 K

(
t ′0−t ′i
h

) ⎡⎣γ̂
⎛⎝(

di

exp
{
ψ(ϑ̂1)+φ̂ϑ̂1 ,̂ξ

(t ′0)
}
)γ̂

− ν̂

⎞⎠⎤⎦2

1
nh

∑n
i=1 K

(
t ′0−t ′i
h

) ,

f̂ (t ′0) = 1

nh

n∑
i=1

K

(
t ′0 − t ′i
h

)
,

z1− α
2

is the α
2 -quantile of the standard normal distribution, and ‖K‖2

2 is a known constant

that depends on the kernel. For the quartic kernel, ‖K‖2
2 = 5

7 . We can also compute
consistent estimators of the variance–covariance matrix of the parameters. For the other
three cases, no results in this direction are available and, therefore, the standard errors
we present for these three cases have unknown properties. Nonetheless, we present them
for the sake of comparison.

Table 2 presents the estimation results of the four specifications for price and volume
durations. Comparing UniNW with the other specifications we conclude: The estimated
parameters of the dynamic component are very similar under the exponential and the
generalized gamma distribution but the standard deviations are smaller under the gener-
alized gamma distribution. This supports the theory of ML and GLM in the sense that the
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Table 2 Estimation results

Boeing (price) Disney (volume)

BiNW BiSp UniNW UniSp BiNW BiSp UniNW UniSp

ω̂ 0.0954 0.2375 − 0.5867 0.0309 0.0894 − 1.5461
[0.0171] [0.0457] [0.0738] [0.0103] [0.0233] [0.0490]

α̂ 0.1436 0.2418 0.1598 0.1657 0.1054 0.1799 0.0875 0.1226
[0.0185] [0.0258] [0.0203] [0.0187] [0.0279] [0.0341] [0.0260] [0.0931]

β̂ 0.7591 0.5290 0.6309 0.5144 0.8255 0.6471 0.8875 0.6886
[0.0735] [0.0942] [0.0581] [0.0901] [0.0543] [0.0829] [0.0451] [0.0710]

α̂ + β̂ 0.9027 0.7708 0.7907 0.6801 0.9309 0.8270 0.9750 0.8112
[0.0820] [0.1183] [0.0801] [0.0997] [0.0824] [0.1154] [0.0711] [0.1638]

ω̂ 0.0501 0.2115 − 1.4121 0.0306 0.0896 − 1.5361
[0.0135] [0.0211] [0.0654] [0.0069] [0.0163] [0.0244]

α̂ 0.0611 0.1596 0.1761 0.1401 0.1003 0.1799 0.0875 0.1216
[0.0185] [0.0175] [0.0128] [0.0141] [0.0183] [0.0237] [0.0185] [0.0910]

β̂ 0.8039 0.5672 0.6834 0.5899 0.8236 0.6459 0.8798 0.7786
[0.0417] [0.0404] [0.0297] [0.0494] [0.0388] [0.0583] [0.0379] [0.0545]

γ̂ 0.2693 0.2900 0.2527 0.0675 1.4356 1.0180 1.3959 1.0653
[0.0605] [0.0579] [0.0518] [0.0401] [0.1328] [0.0972] [0.1328] [0.2376]

ν̂ 10.807 8.7329 10.332 17.852 1.2468 1.9952 1.2774 1.7702
[3.7263] [3.3737] [3.1208] [2.4329] [0.1912] [0.3373] [0.2020] [0.2453]

α̂ + β̂ 0.8650 0.7268 0.8595 0.7300 0.9239 0.8258 0.9673 0.9002
[0.0611] [0.0590] [0.0415] [0.0538] [0.0561] [0.0818] [0.0549] [0.1459]

Entries are GLM estimates—using the exponential distribution—(top part of the table) and ML
estimates—using a generalized gamma distribution—(bottom part) for the Log-ACD. Numbers
in brackets are heteroskedastic-consistent standard errors.

exponential density cannot fit the empirical density, which implies inefficient estimates
with respect to the ML ones. Second, the estimated parameters under BiSp and UniSp
are very similar, confirming the results shown in Engle and Russell (1998, p 1137), who
do not find very different results for BiSp and UniSp. By contrast, there are substantial
differences between the NW (UniNW and BiNW) and the Sp (UniSp and BiSp) groups,
meaning that the parameters and the nonparametric curve are not orthogonal when esti-
mating with kernels. Third, volume durations estimates have, in general, smaller α̂ and
bigger β̂ than price durations estimates. This is due to the persistence (see Spearman’s
ρ in Fig. 5) and the underdispersion of volume durations. Note that the constant of the
dynamic component is not present in UniNW as it is replaced by the seasonal curve.

As for the nonparametric curves (see Fig. 6), results in terms of smoothness are rather
different for UniSp and UniNW. UniSp curves are sharper with small humps and, for
volume durations, we also observe a rough increase (decrease) at the beginning (end) of
the day. This finding can be explained by the fact that UniNW provides a data-driven
method to compute the bandwidth, whereas the UniSp does not (location and number of
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Fig. 6 Estimated seasonal curves. Price durations in left column and volume durations in right
column. Rows from top to bottom: BiSp, BiNW, UniSP, and UniNW
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knots are chosen ad hoc). For UniNW and UniSp we show the seasonal curve φ̂ϑ1,ξ (t
′
0)

at a different scale than the other seasonal estimators. It is not possible to present them
at the same scale since it is a logarithmic function, see Eq. (13), and the argument of the
function is not the observed duration but the duration adjusted by the dynamics.

3.4 Predictibility

So far estimation results dovetail with the theory. We now check how well they predict the
probability distribution. Since density forecast is strongly dependent on the distributional
assumption, we only show results for ML (the exponential density does it worse than
the generalized gamma). Another reason for sticking to ML is because we want to study
the predictive capabilities of the model for different estimators of seasonality. Since the
density and the parametric component are the same, differences in density forecast may
exclusively come from the different specification of the seasonal component.

If εj ∼ GG
(
1, γ̂n, ν̂n

)
then

dj ∼ GG

(
ϕ

(
ψ

(
d̄j−1, ȳj−1; ϑ̂1n

)
, φ̂

ϑ̂1n,ξ̂n

(
t ′j−1

))−1
, γ̂n, ν̂n

)
,

for UniNW and UniSp. For the two-step methods, since d̃j = dj φ̂
(
t ′j−1

)−1
, the seasonal

curve is outside the function ϕ(·), that is

d̃j = dj

φ̂
(
t ′j−1

) ∼ GG

(
ϕ

(
ψ

(
d̄j−1, ȳj−1; ϑ̂1n

))−1
, γ̂n, ν̂n

)

or

dj ∼ GG

(
ϕ

(
ψ

(
d̄j−1, ȳj−1; ϑ̂1n

))−1
φ̂

(
t ′j−1

)−1
, γ̂n, ν̂n

)
.

Figures 7 and 8 show the density forecast results. The histograms for UniNW are
significantly better than for any other estimator. Although formal tests can be performed
to assess the accuracy of this statement, visual inspection of the figures reveals that
estimation in two steps (BiSp and BiNW) results in misspecification in the conditional
distribution of the durations—in line with Bauwens et al. (2004). Moreover, estimation in
one step with splines, UniSp, leads to similar results as the two step estimators. This fits
with the conclusions on estimation results that found similar estimates under BiSp and
UniSp. Second, for volume durations none of the specifications correctly captures the
dynamic component. This is expected as the dynamics are modeled in the same way for
all specifications and Bauwens et al. (2004) already show that a simple Log-ACD(1,1)
is unable to fit the dynamics.

The better performance of UniNW is a result of its flexibility, as already mentioned.
UniNW adapts to changes in the seasonal pattern. We can interpret the seasonal estimator
UniNW as a time-varying intercept that adapts the conditional expectation of the dura-
tions to changes in seasonality. This is because UniNW is a pure nonparametric estimator
and follows the principle of let the data speak. This is not the case of the polynomial
spline (22). In fact, Eq. (22) not only depends implicitly on ϑ̂1n and ξ̂n but also depends
on θ̂n and δ̂n. And these parameters are estimated using the in-sample to fit the in-sample
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Fig. 7 Out-of-sample density forecast evaluation for price durations. Rows from top to bottom:
BiSP, BiNW, UniSp, and UniNW
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Fig. 8 Out-of-sample density forecast evaluation for volume durations. Rows from top to bottom:
BiSP, BiNW, UniSp, and UniNW
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Fig. 9 Intradaily seasonal curves, and confidence bands, for in-sample (solid lines) and out-of-
sample (dashed lines). Price durations in the left box and volume durations in the right box

seasonality. Hence the spline will fail to fit the out-of-sample seasonality if its pattern
has changed. This is not the case of UniNW as it does not depend on parameters, other
than ϑ̂1n and ξ̂n, to capture the seasonality.

The empirical evidence supports this intuition. Figure 9 shows the in-sample and out-
of-sample intradaily seasonalities. We observe that the out-of-sample seasonal patterns
shift down compared with the in-sample patterns. This is especially visible for volume
durations. If we use BiSp, BiNW, or UniSp to evaluate the out-of-sample density forecast,
they all fail because none may capture changes in seasonality. By contrast, UniNW
adapts quickly to changes in the out-of-sample and this explains why the density forecast
produced by UniNW is better than for any other estimator.

4 Conclusions

We propose a component model for the analysis of financial durations. The components
are dynamics and seasonality. The latter is left unspecified and the former is assumed
to fall within the class of (Log-)ACD models. Joint estimation of the parameters of
interest and the smooth curve is performed through a local (quasi-)likelihood method.
The resulting nonparametric estimator of the seasonal component shows a closed form
expression.

Although the methodology is applied to intradaily seasonality, it could also be
used to measure relations between any other two variables. This is particularly use-
ful when the relation is nonlinear and we are not sure about the functional link. So, for
instance, the time-of-the-day may be replaced by some volatility measure, spread, or
any other microstructure variables. Alternatively, the nonparametric estimator could be
multivariate, including the time-of-the-day and any other variable of interest.

The model is applied to the price and volume duration processes of two stocks traded
on the NYSE. We show that the proposed method produces better predictions, in terms
of densities, since it adapts quickly to changes in the seasonal pattern.
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Appendix

A. Definitions and assumptions

In order to prove the results claimed in Theorems 1 and 2, we need to establish some
definitions and assumptions.

(L.1) For fixed but arbitrary η1, φ
+, where η ∈ �, and φ+ ∈ �, let

ρ
(
φ+, η

) =
∫

logp
(
ϕ(ψ, φ+); ξ) dF (

ϕ(ψ, φ+); ξ) .
If η �= η1, then

ρ (φ, η) < ρ
(
φ+, η

)
Let Iη (φ, η), denote the marginal Fisher information for η in the parametric

model. Then we assume that the matrix Iη (φ, η) is positive definite for all η ∈ � and
φ ∈ �.

(L.2) Assume that for all r, s = 0, . . . , 4, r + s ≤ 4, the derivative

∂r+s

∂ηr∂ηs
logp

(
ϕ(ψ, φ+); ξ)

exists for almost all d and that

E

{
sup
η

sup
φ

∣∣∣∣ ∂r+s

∂ηr∂ηs
logp

(
ϕ(ψ, φ+); ξ)∣∣∣∣2

}
< ∞.

(A.1) The marks y take values in a compact set Y ⊂ Rp .
(A.2) The observations {(di, yi)}i=1,...,n are a sequence of stationary and ergodic
random vectors.

(A.3) ϑ1 takes the values in the interior of �, a compact subset in Rp and φ takes the
values in the interior of �, a compact subset of R:

� =
{
g ∈ C2[to, tc] : g(t ′) ∈ int (�) for ∀t ′ ∈ [to, tc]

}
.

(A.4) Let � be a compact subset of R such that ϕ
(
ψ(d̄, ȳ;ϑ1), φ(t

′)
) ∈ � for all

t ′ ∈ [to, tc], y ∈ Y, ϑ1 ∈ �, and φ ∈ �.
(A.5) The matrix

�ϑ1 = E

(
∂2

∂ϑ1∂ϑ
T
1

log q
(
d, ϕ

(
ψ(d̄, ȳ;ϑ1), φ(t

′)
)))

is positive definite.
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(B.1) The kernel function K(·) is of order k > 3/2 with support [−1, 1] and it has
bounded k + 2 derivatives.

(B.2) For r = 1, . . . , 10 + k the functions ∂rϕ(m)/∂mr and ∂rV (µ)/∂µr exist and
they are bounded in their respective supports.

(B.3) d is a strong mixing process where the mixing coefficients must satisfy for some
p > 2 and r being a positive integer

∞∑
i=1

ir−1α(i)1−2/p < ∞.

Furthermore, for some even integer q satisfying (k+2)(3+2k)
(2k−3) ≤ q ≤ 2r

E
{|d|q} < ν,

where ν is a constant not depending on t ′.
(B.4) Let f denote the marginal density of t ′, and let f (·|t ′) denote the conditional
density function of d given t ′. f and f (·|t ′) has k + 2 bounded derivatives uniformly
in [to, tc].

(B.5) Let

M
(
φ;ϑ1, t

′) = E

{
∂

∂η
log q

(
d, ϕ

(
ψ(d̄, ȳ;ϑ1), φ

))∣∣∣∣ t ′} .

For each fixed ϑ1 and t ′, let φϑ1(t
′) the unique solution to M

(
φ;ϑ1, t

′) = 0. Then for
any ε > 0 there exists a δ > 0 such that

sup
ϑ1∈�

sup
t ′∈[tI ,tF ]

∣∣φϑ1(t
′) − φ(t ′)

∣∣ < ε

whenever

sup
ϑ1∈�

sup
t ′∈[tI ,tF ]

∣∣M (
φ(t ′);ϑ1, t

)∣∣ < δ.

(B.6) The sequence of bandwidths must satisfy h = O(n−α) where

1

4k
< α <

1

4

q − (2 + p)

q + (2 + p)
.

The following result is also needed to prove Theorems 1 and 2,

Lemma A.1: Consider the following expression

1

nh

n∑
i=1

[
K

(
τ − ti

h

)
ϕ

(
ψ(d̄, ȳ;ϑ1), φ

) − E

{
K

(
τ − t

h

)
ϕ

(
ψ(d̄, ȳ;ϑ1), φ

)}]

and define

Wi = 1

h
K

(
τ − ti

h

)
ϕ

(
ψ(d̄, ȳ;ϑ1), φ

) − E

{
K

(
τ − t

h

)
ϕ

(
ψ(d̄, ȳ;ϑ1), φ

)}
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Then, for ε > 0

P

{∣∣∣∣ 1

n

∑
Wj

∣∣∣∣ > ε

}
≤ E

[(∑
Wi

)q]
nqεq

≤ 1

nqεq
C

⎧⎨⎩nq/2
∞∑
i=P

iq/2−1α(i)1−2/p +
q/2∑
j=1

njP q−j νj

⎫⎬⎭
for any integers n and P with 0 < P < n.

B. Proof of Lemma A.1

Under assumptions (A.2) and (B.3) the process W1, . . . ,Wn is strong mixing and there-
fore Theorem 1 from Cox and Kim (1995) applies and the sequence of inequalities
holds.

C. Proof of Theorem 1

The proof is in two parts. First we show Eq. (14). In order to do this, we claim

sup
ϑ1

sup
t

|φ̂ϑ1(t) − φ(t)| = op

(
n−1/4

)
(25)

The proof of this expression follows the same steps as the proof of Lemma 5 from
Severini and Wong (1992), p. 1784. The bias term must be treated in the same way as
it is there. With respect to the variance term, an additional result must be included to
account for the dependence. In fact, under assumptions (A.2) and (B.3), Lemma A.1
applies and, proceeding as for Severini and Wong (1992) in the proof of Lemma 8, the
proof of Eq. (25) is completed.

Finally, the proof of Eq. (14) consists of verifying conditions I (Identification), S
(Smoothness), and NP (Nuissance Parameter) from Severini and Wong (1992). Condi-
tion NP(a) is the result already shown in Eq. (25). Condition NP(b) (least favorable curve)
is immediate from Lemma 6 of Severini and Wong (1992). By assuming (L.2) the smooth-
ness condition holds. Finally, assumption (L.1) implies I. Then, under assumptions (A.1)
to (A.3), a Uniform Weak Law of Large Numbers and a Central Limit Theorem for sta-
tionary and ergodic processes (see for example Wooldridge (1994)) holds, propositions
1 and 2 from Severini and Wong (1992) apply and the proof is completed.

The proof of Eq. (15) consists of taking a Taylor expansion around (ϑ1, ξ). This can
be done because of assumption (L.2). Then apply result (25), and the rest of the proof
follows the same lines as the proof of Theorem 1 in Staniswalis (1989). Note that instead
of using a standard Liapunov CLT here under assumption (A.2), we need to use one for
for stationary and ergodic processes.

D. Proof of Theorem 2

The proof of Eq. (20) follows exactly the same lines as the proof of Eq. (14) in Theorem 1,
but instead of using (L.1) for identification and (L.2) for smoothness, we use respectively
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(A.5) and (A.1) to (A.4). Condition NP(b) (least favorable curve) is immediate from
Lemma 6 of Severini and Wong (1992). This is due to the fact that we assume that the
conditional density function belongs to the exponential family.

The proof of Eq. (21) is equal to the proof of Eq. (15) except for that (L.2) is replaced
by (B.2).
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Anthony S. Tay . Christopher Ting

Intraday stock prices, volume, and duration:
a nonparametric conditional density analysis

Abstract We investigate the distribution of high-frequency price changes, con-
ditional on trading volume and duration between trades, on four stocks traded on
the New York Stock Exchange. The conditional probabilities are estimated non-
parametrically using local polynomial regression methods. We find substantial
skewness in the distribution of price changes, with the direction of skewness
dependent on the sign of trade. We also find that the probability of larger price
changes increases with volume, but only for trades that occur with longer du-
rations. The distribution of price changes vary with duration primarily when vol-
ume is high.

1 Introduction

Time—in the form of the duration between trades—matters in the formation of
stock prices. This has been demonstrated from both theoretical and empirical
perspectives. Durations may be negatively related to prices because short-selling
constraints prevent trading on private bad news whereas there are no similar
constraints to prevent trading on private good news (Diamond and Verrecchia
1987). Durations may also be negatively related to volatility of price changes
(Easley and O’Hara 1992). The connection between price change and duration has
been verified empirically (Engle 2000; Grammig and Wellner 2002). Further
investigations into the relationship between durations and prices have yielded
interesting insights. For instance, the size and speed of price movements increase
with decreasing duration (Dufour and Engle 2000), reflecting a link between
duration and market liquidity. There is also an interesting dynamic relationship
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between price changes and duration (Russell and Engle 2004) and within duration
itself (Engle and Russell 1998). Grammig and Wellner (2002) explore the inter-
dependence of transaction intensity and volatility, and find that lagged volatility has
significant negative effect on volatility in the secondary equity market following
a initial public offering. The economic interpretation of the (contemporaneous)
role of duration in the distribution, particularly the volatility, of price changes is
the subject of a study by Renault and Werker (2004) where, using a structural
model, the effect of duration on price is decomposed into a temporal effect and an
informational effect. This enables them to disentangle the effects of instantaneous
causality from Granger causality in the relationship between duration to prices.

As in Renault and Werker (2004) we are interested in the contemporaneous
relationship between duration and price changes. We report estimates of the entire
distribution of price change conditional on duration, and investigate the role of
volume and trade sign on these distributions. We explore these relationships from
a fully nonparametric perspective. In particular, we estimate nonparametrically
the probabilities of various price changes conditional on duration, volume, lagged
values of these three variables, and trade sign.

As the conditional distribution contains all probabilistic information regarding
the statistical behavior of a variable given values of a set of explanatory variables,
analyzing estimates of conditional distributions may reveal interesting and useful
structure in the data, and provide insights that would complement studies that focus
on the conditional mean or variance. The purpose for adopting a nonparametric
approach to estimating the conditional distribution is to allow the data to speak for
itself. There are numerous applications in the literature that highlight the value
of incorporating nonparametric density estimation into an analysis. For example,
Gallant et al. (1992) study the bivariate distribution of daily returns and volume
conditional on lagged values of these variables. Among other findings, their anal-
ysis indicates a positive correlation between risk and return after conditioning on
lagged volume. Other studies that highlight the usefulness of non-parametric
methods include Engle and Gonzalez-Rivera (1991), and Gallant et al. (1991).

We estimate the conditional distributions for four stocks traded on the NYSE
using intraday data from TAQ spanning a period of 1 year, from Jan 2, 2002 to Dec
30, 2002. We find substantial skewness in the distribution of price changes, with
the direction of skewness dependent on trade sign. On the whole, the relationship
between price changes and volume is much weaker than the relationship between
price changes and duration, and shows up most clearly at long durations. When
durations are long, the probability of large price changes increases with volume.

In the following section we describe the data used in this study, and explain
precisely all the adjustments made to the data to get it into a form suitable for
analysis. In Section 3, we describe the nonparametric conditional distribution es-
timation technique used in the paper, and discuss the practical issues we had to
address in order to the implement the technique. The results of our study are
presented in Section 4, followed by concluding comments.

2 Data and data adjustments

We estimate the conditional distributions of price changes for four NYSE stocks:
IBM (International Business Machines), GE (General Electric), BA (Boeing), and
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MO (the Altria Group, formerly Philip Morris.) The data are obtained from the TAQ
database, and cover the period Jan 2, 2002 to Dec 30, 2002. We extract, for each
stock, the time of trade of the t th transaction τt, from which we obtain the
duration of the tth transaction dt=τt−τt−1(τ0=34,200 s after midnight, i.e., 9:30 am),
the transacted price pt , from which we compute the price changeΔpt=pt−pt−1, and
volume vt in lots of 100 shares. Clearly, these are all discrete variables. Each trade
is then signed as in Lee and Ready (1991) to indicate if the transaction is buyer (+)
or seller (−) initiated, but without modifying the reported times of quotes as
developments in the NYSE trading procedures no longer warrant this. There are
newly proposed methods (e.g., Vergote 2005) that aim to determine the appropriate
adjustments to the times of quotes. We do not apply these techniques, but as the
analysis in Vergote (2005) suggests that a delay of 1 or 2 s may be appropriate in
the sample period that we work with, we check if adding 2 s to the quote time-
stamp affects our results.

We use data from 0930 to 1600 h, deleting all trades that occur outside of these
hours. Data from 4 days with unusual market openings and closings are dropped
from our sample. These are July 5, September 11, November 29, and December 24,
2002. The first of these dates is an early closing for Independence Day, the sec-
ond is a late opening, in respect of memorial events commemorating the 1-year
anniversary of the attacks on World Trade Center. The latter 2 days are early
closings for Thanksgiving and Christmas.

There are several noteworthy characteristics of the data set in our sample
period. One is that by the start of this sample period the NYSE had already
completed the move to decimal pricing. One benefit of this is that the bid-ask
spreads are small so that that the bid-ask bounce is less of an issue for our estimates.
Perhaps the more important characteristic of this sample period is that, in general,
trading is so active that for each stock in our study there are large numbers of trades
with zero duration. These may be trades that occur almost simultaneously, but are
recorded as having occurred at the same time because the TAQ database records
time of trade to an accuracy of 1 s. Some of these trades may also reflect large
trades that are broken up into smaller simultaneous trades. The exact number
of such trades for the stocks we analyze are presented in Table 1. The lowest
proportion of zero-duration trades is BA at 3.7%. About 5% of the IBM and MO
observations have zero duration, and almost 10% of the observations for GE have
zero duration. We aggregate in standard fashion all trades that occur with the same
time-stamp and consider the aggregate as a single trade. The price of the first trade
in the aggregate is taken as the price of the aggregate trade. Signed volume is

Table 1 Number of zero duration trades

IBM GE BA MO

Total number of observations 923,577 1,292,532 594,186 797,373
Number of zero durations 54,799

(5.9%)
121,924

(9.4%)
21,925

(3.7%)
41,651

(5.2%)
Number of observations after
aggregation

868,778 1,170,608 572,261 755,722
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simply aggregated. Even after aggregation we have a large number of observations
for each stock, ranging from 572,261 (BA) to 1,170,608 (GE). Finally, note that,
unlike many studies that work with intraday stock prices, we do not remove the
diurnal patterns that are present in durations. This is a more critical issue if the
focus of the study involves the dynamics in duration data, but our focus is on
the contemporaneous relationship between durations and price changes, and so
we choose to examine the data with as few adjustments as possible. In addition,
we do not estimate the distributions at a fine enough grid on durations for the
removal of diurnal patterns to affect our results in any important way.

In Fig. 1 we show histograms of price changes, duration, and signed volume for
IBM. Also displayed is the histogram for signed duration (duration multiplied
by the sign of the trade). The distribution of price change appears to be very
symmetric. The distribution of signed durations is symmetric, so the distribution of
durations is similar for both buyer- and seller-initiated trades. The histogram for
trading volume is not informative except to indicate the presence of a few outliers.
However, apart from these the distribution is also fairly symmetric. A more detailed
picture can be obtained from Table 2. Here we show every 10th percentile of price
change, (unsigned) duration, duration for buyer- and seller-initiated trades, (un-
signed) volume, and volume for buyer- and seller-initiated trades. For all stocks the
distribution of duration and volume across buyer- and seller-initiated trades are
very similar to the overall distribution. In fact there is almost no correlation be-
tween the sign of trade and duration. Volume is substantially larger for the more
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Fig. 1 Histograms of duration, price changes, and volume (IBM)
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frequently traded of the four stocks. The distribution of price changes is mostly
symmetric. Table 2 also provides a useful reference for interpreting our conditional
distribution plots, as our conditional probabilities will be estimated and plotted at
various percentile values of the conditioning information set.

3 Nonparametric estimation of conditional distribution functions

Let {Xt,Yt}
T
t=1 be observations from a strictly stationary process where Yt is a scalar

and Xt = (x1t, x2t, . . . xMt). In our first application, Yt=Δpt and Xt=(dt, svt). One non-
parametric approach to estimating the conditional distribution function

F y xjð Þ ¼ Pr Yt 	 y Xt ¼ xjð Þ

Table 2 Distribution of prices, duration, and volume

Percentiles

10 20 30 40 50 60 70 80 90

IBM Price change −3 −1 0 0 0 0 1 1 3
Duration 1 2 3 4 5 6 7 10 14
Duration (sell) 2 2 3 4 5 6 7 10 14
Duration (buy) 1 2 3 4 5 6 7 10 14
Volume 1 2 4 5 7 10 14 23 48
Volume (sell) 1 2 4 5 7 10 13 22 45
Volume (buy) 1 2 4 5 7 10 15 24 50

GE Price change −1 −1 0 0 0 0 0 1 1
Duration 1 1 2 2 3 4 5 7 11
Duration (sell) 1 1 2 2 3 4 5 7 11
Duration (buy) 1 1 2 2 3 4 5 7 11
Volume 1 3 5 8 10 15 24 42 94
Volume (sell) 1 3 5 8 10 15 24 40 90
Volume (buy) 1 3 5 8 10 15 24 43 99

BA Price change −2 −1 0 0 0 0 0 1 2
Duration 1 2 3 4 5 7 10 15 25
Duration (sell) 1 2 3 4 5 7 10 15 25
Duration (buy) 1 2 3 4 5 7 10 15 25
Volume 1 2 2 3 5 7 10 13 24
Volume (sell) 1 2 2 3 5 6 10 12 23
Volume (buy) 1 2 2 4 5 7 10 13 25

MO Price change −2 −1 0 0 0 0 0 1 2
Duration 1 2 3 3 5 6 8 11 18
Duration (sell) 1 2 3 3 5 6 8 11 18
Duration (buy) 1 2 3 3 5 6 8 11 17
Volume 1 2 3 5 6 9 12 20 42
Volume (sell) 1 2 3 5 6 9 12 20 41
Volume (buy) 1 2 3 5 6 9 12 20 43
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is to make use of the fact that if Zt=I(Yt ≤ y), where I(.) is the indicator function, then
E [Zt | Xt = x]=F(y | x). The particular technique we use is the Adjusted Nadaraya–
Watson estimator (Hall et al. 1999; Hall and Presnell 1999) which we state in its
multivariate ( M ≥ 1) form.

3.1 The Adjusted Nadaraya–Watson estimator

The Adjusted Nadaraya–Watson estimator of F(y|x) is given by

~F y xjð Þ ¼
PT

t¼1
ZtwtKH Xt�xð ÞPT

t¼1
wtKH Xt�xð Þ

(1)

where {wt}
T
t=1= arg max ∏T

t=1wt, with {wt}
T
t=1 satisfying the conditions (1) wt ≥ 0

for all t, (2) ∑T
t=1wt=1, and (3) ∑T

t=1wt(Xmt−xm) KH(Xt−x)=0 for all m=1,...,M, and
KH(.) is a multivariate kernel with bandwidth matrix H.

Although the Adjusted Nadaraya–Watson estimator is based on the biased
bootstrap idea of Hall and Presnell (1999), it is useful, as noted in Hall et al. (1999),
to view the estimator as the local linear estimator of F(y|x) with weights KH(Xt−x)
replaced by wtKH(Xt−x), i.e., ~F y xjð Þ ¼ â where â is obtained from the solution of

max a; b

XT
t¼1

Zt � a� Xt � xð Þbð Þ2wtKH Xt � xð Þ

(see Fan and Gijbels 1996, for an authoritative introduction to local linear and local
polynomial regression methods). It is easy to see from the first-order condition

@

@a

XT
t¼1

Zt � a� Xt � xð Þbð Þ2wtKH Xt � xð Þ ¼ 0

that â reduces to ~F y xjð Þ under condition (3).
Using the unmodified version of the local linear approach (wt=1) may result in

estimates of conditional distributions that are not monotonic in y, or that do not lie
always between 0 and 1. The Adjusted Nadaraya–Watson estimates, on the other
hand, always lie between 0 and 1, is monotonic in y, and yet share the superior bias
properties as estimates from local linear methods (Hall et al. 1999), and also
automatic adaptation to estimation at the boundaries (see e.g., Fan and Gijbels
1996). There is no requirement for the conditional distribution to be continuous
in y. Another justification for using the adjusted Nadaraya–Watson estimator is
provided by Cai (2002) who establish asymptotic normality and weak consistency
of the estimator for time series data under conditions more general than in Hall
et al. (1999).

3.2 Practical issues

Implementation of the estimator ~F y xjð Þ requires a number of practical issues to be
addressed. In particular, {pt}has to be computed, and KH(.)=∣H∣−1K(H−1x) has to
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be chosen. The choice of K in smoothing problems is usually not crucial (see e.g.,
Wand and Jones 1995) but the choice of H is important. For K we use the standard
M-variate normal distribution

K xð Þ ¼ 2	ð Þ�1=2 exp � xxk k2
.
2

� 

:

We take H=hIM where IM is theM-dimensional identity matrix. Other, possibly
non-symmetric kernels may be useful here (for instance, the gamma kernels in
Chen 2000), although we stay with the Gaussian kernel as the theoretical properties
for this specific method has been established for symmetric kernels only. As we are
effectively using only one bandwidth for multiple regressors, our regressors are
always scaled to a common variance before the estimator is implemented.

To obtain the optimal value of h, we adapt the bootstrap bandwidth selection
method suggested by Hall et al. (1999). This approach exploits the fact that, as we
are estimating distribution functions, there is limited scope for highly complicated
behavior. First, a simple parametric model is fitted to the data and used to obtain an
estimate F̂ y xjð Þ. We use

Yt ¼ a0 þ a1X1t þ . . .þ aMXMt þ aMþ1X
2
1t þ . . .þ a2MX

2
Mt þ "t (2)

and assume that ɛt is heteroskedastic, depending on the square of lagged price
changes. We then simulate from this model to obtain a bootstrap sample {Y1*,
Y2*,..., YT*}using the actual observations { x1,x2,...xT}. For each bootstrap sample
(and for a given value of h), we compute a bootstrap estimate ~F�

h y xjð Þ. We choose
h to minimize X

~F*
h y xjð Þ � F̂ y xjð Þ

��� ���
where the summation is over all bootstrap replications and over values of y for any
given x. We checked the sensitivity of our estimates to the choice of the
bandwidth, and we note that we obtained very similar results over a wide range of
bandwidth values.

Computation of the weights wt is carried out using the Lagrange Multiplier
method. The Lagrangian is

L ¼
XT
t¼1

log wtð Þ � �0
XT
t¼1

wt � 1

 !
�
XM
m¼1

�m
XT
t¼1

wt Xm;t � xmð ÞKH Xt � xð Þ;

which gives the first-order conditions

1

wt
� �0 �

XM
m¼1

�m Xm;t � xmð ÞKH XXt � xxð Þ ¼ 0; 8m ¼ 1; . . . ;M (3)
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together with the restrictions ∑T
t=1wt=1 and ∑T

t=1wt(Xmt−xm) KH Xt�xð Þ¼0
∀m=1,...,M. Solving these equations, we get �0=T with {�m}

M
m=1 satisfying the

equations

XT
t¼1

Xmt � xmð ÞKH XXt � xxð Þ
T þPM

m¼1 �m Xmt � xmð ÞKH XXt � xxð Þ ¼ 0; 8m ¼ 1; . . . ;M (4)

We obtain {�m}m=1
M by solving Eq. (4) numerically (we use the MATLAB

function fsolve to do this.) The weights {wt}t=1
T are then computed from Eq. (3).

4 Empirical results

For each of the four stocks in our sample, we estimate two sets of the conditional
distribution F(Δpt|dt,vt), one set for seller-initiated trades, and one for buyer-
initiated trades. For each set, the distribution is estimated at the 20th, 40th, 60th,
and 80th percentiles of dt and vt. That is, for each stock, we estimate 16 conditional
distributions. It is not worth the computational burden to estimate the conditional
distributions at a finer grid: it would be difficult to present that much information
clearly and simply, and the chosen values of the conditioning variables are suf-
ficient for highlighting important empirical regularities. For each pair (dt,vt) we
estimate the conditional cumulative distribution at values ofΔpt from −10 to 9. We
report the conditional probabilities Pr(Δpt≤−10|dt,vt), Pr(Δpt=i|dt,vt) for i=−9,
−8,...,8, 9, and Pr(Δpt ≥ 10|dt,vt). These conditional probabilities are obtained by
taking the difference of the estimated cumulative distribution between adjacent
points of the grid over Δpt. It is possible to go further and obtain estimates of the
bivariate conditional distribution Pr(Δpt,dt|vt) by first estimating Pr(dt|vt), and
getting the distribution Pr(Δpt,dt|vt) by multiplying the estimates of Pr(dt|vt) with
the estimates of Pr(Δpt|dt,vt) obtained previously. Our estimates of Pr(dt|vt) show
that more trades occur at short durations than at long durations, regardless of
volume, and as a result, much of the interesting structure in the conditional
probabilities Pr(Δpt|dt,vt) do not show up well in plots of the bivariate distributions.
We therefore discuss only our estimates of Pr(Δpt|dt,vt).

The results for IBM are presented in Fig. 2(a) and (b). In Fig. 2(a), we show the
distributions of Δpt conditional on dt and vt for seller-initiated trades, organized
into four panels. In each panel we have the conditional distribution at four per-
centile levels of duration (20th, 40th, 60th, and 80th percentiles—see Table 2 for
actual values.) The four panels correspond to four different levels of volume, with
volume at the 20th, 40th, 60th, and 80th percentile levels starting from the top left
panel and proceeding clockwise.) In Fig. 2(b) we have the same plots for buyer-
initiated trades. The most obvious pattern is that the distributions in Fig. 2(a) are
negatively skewed, whereas the distributions for buyer-initiated trades in Fig. 2(b)
are positively skewed. This skewness is also clear in the estimated probabilities
provided later in Table 3. As security prices tend to move in the direction of trade
sign, the skewness observed is not surprising. Buyer-initiated trades tend to move
the security price higher, especially when these trades exhaust the prevailing depth
in the limit-order book and NYSE specialists revise the quotes higher to reflect the
higher demand for the stock.
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More interesting is the observation, for both buyer- and seller-initiated trades,
that duration has a much stronger influence on the distribution of price change at
high volumes than at low volumes. Looking at panel (a) of Fig. 2(a) and (b) we see
a slight change in the distribution of price changes between the four duration levels
at low volume. Panel (d) of both figures on the other hand show that at high
volume, the probability of larger price changes increases substantially with du-
ration. The influence of volume on price change also depends on duration. At short
durations (i.e., when trading is very active), volume does not have very much
influence on the distribution of price changes; moving from panel (a) to panel (d),
in both diagrams, the distributions at the 20th percentile level of duration are very
similar. At long durations, volume matters. Again moving from panel (a) to panel
(d), the distribution of price change for duration at the 80th percentile shows that
the probability of larger prices changes (negative for seller-initiated trades, positive
for buyer-initiated ones) increases as volume increases. Duration between trades
influences the distribution of price changes, but the degree of influence appears to
depend on the volume.

This result suggests that at the intraday frequency, volume may have some
influence on the distribution of price changes, even after controlling for duration.
This contrasts with the result in Jones et al. (1994) that, at the daily frequency, the
relationship between volume and the volatility of stock returns actually reflects
the relationship between volatility and the number of transactions (thus, average
duration). The result is consistent with research on high-frequency stock prices
(e.g., Easley et al. 1997) and suggests the importance of the interaction between
volume and duration.

We repeat this exercise with the other three stocks in our sample. The figures
are qualitatively the same as Fig. 2, so we do not display them. Instead, the es-
timated probabilities Pr(Δpt≤−2|dt,vt), Pr(−1≤Δpt≤1|d t,vt), and Pr(Δpt≥−2|d t,vt)
are presented in Table 3. The top half of the table shows estimates for seller-
initiated trades, while the lower half shows estimates for buyer-initiated trades.

We see that for IBM at the 20th percentile of duration, Pr(Δpt,≤−2|d t,vt) remains
around 0.2 for seller-initiated trades, and Pr(Δpt≥−2|d t,vt) lies mostly around 0.17
for buyer-initiated trades, as volume increases. At the 80th percentile level of du-
ration, both probabilities increase substantially as volume increases. Focusing on
the 20th percentile level of volume, Pr(Δpt≤−2|d t,vt) increases from 0.243 to 0.374
as duration increases from the 20th percentile level to the 80th. At the 80th
percentile level of volume, Pr(Δpt≤−2|d t,vt) increases from 0.202 to 0.472 as du-
ration increases from the 20th to 80th percentile levels.

Looking over the estimates for other three stocks, we see that similar comments
can be made, with differences only in degree. These patterns appear to be strongest
in the case of IBM, and weakest for GE and BA. In addition to the estimates for the
full sample period, we also compute the estimates for two subsamples (Jan to June,
and July to December) to check if our results are robust across different sample
periods. The estimates for these two sample periods are very similar to the es-
timates for the full sample. We also checked if adding a 2 s delay to the reported
quote time when signing trades affects our results. Again, the estimates in this case
are very similar to what is reported here.

We have also computed 95% confidence intervals around the probability
estimates in Table 3 using formulas that exploit the local linear nature of the
estimates (see e.g. Fan and Yao 2003, Section 6.3.4). We do not display the
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intervals, because it suffices to note that they are all very narrow-the boundary of
the intervals differ from the estimated probabilities only in the third or fourth
decimal places-and therefore indicate that the difference between the estimated
probabilities conditional on long versus short durations are statistically significant.
For instance, the 95% confidence interval for Prob(Δpt≤−2) for IBM (volume
at 80th perc., duration 80th perc.) is (0.471, 0.474) whereas the corresponding
interval for IBM (volume at 80th perc., duration 20th perc.) is (0.201, 0.202).

It seems therefore that there are substantial interaction effects between duration
and volume, and the sign of trade. Any parametric analysis of the relationship
between duration, volume, and prices should take these interaction effects into
account. In addition, the high degree of skewness in the distributions indicates that
care should be taken in interpreting results concerning the volatility of price
changes. We interpret our results for seller-initiated trades as evidence in support
of the Diamond and Verrecchia (1987) analysis, where we expect larger probabili-
ty of price falls with higher levels of duration.

As a further robustness check, we re-estimate the conditional probabilities,
including lagged values of duration, price changes, and volume, in addition to con-
temporaneous duration and volume. We continue to report the estimated prob-
abilities at the 20th, 40th, 60th, and 80th percentile levels of duration and volume,
but only at the median values of the lagged variables. Estimates of Pr(Δpt≤−2) for
seller-initiated trades, and Pr(Δpt ≥ −2) for buyer-initiated trades are listed in
Table 4. We note that by conditioning on the median value of lagged price change
(which is zero), the estimated probabilities of price changes of −1 to 1 ticks
increase substantially; this is because trades at the same price tend to be following
by more trades at the same price. Nonetheless, it is still the case that among the
probabilities Pr(Δpt≤−2) for seller-initiated trades, and Pr(Δpt ≥ −2) for buyer-
initiated trades, the largest estimates occur when duration and volume are both at
the 60th or 80th percentiles.

The focus of this paper is on the contemporaneous relationships between du-
ration, volume, and price changes. Nonetheless, it is of interest to extend the
analysis to the dynamic interrelationships between these variables (beyond the
robustness check reported in the previous paragraph) as much of the interest in
these variables arise from the effect of information arrival, and changes over time
of durations are indicative of this. For instance, it is of interest to explore and
compare the densities of price changes when trading is becoming more frequent,
with the densities when trading is becoming less frequent.

In Fig. 3, we show the estimated probabilities for GE in these two situations.
The densities for the other three stocks are similar, and are omitted. The top row
shows the estimated price densities for seller-initiated trades, whereas the bottom
row shows the estimates for buyer initiated trades. The left column shows the
estimates for the situation when trades are getting more frequent (current duration
at the 20th percentile, lagged duration at the 80th percentile). Again the skewness
in the distributions is clear, although in the case of GE, the modal price change is
now −1 and 1 for seller and buyer initiated trades, respectively. In the other three
stocks, the probability of a price change also increases relative to the probability of
no price change.

In the right column, we show the estimated probabilities when current duration
is long relative to lagged duration (current duration at the 80th percentile, lagged
duration at the 20th percentile). Here the modal probability is clearly at zero price
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change. The distributions here are also much tighter than the corresponding distri-
butions in Fig. 2. This suggests that our results reported earlier are more appro-
priate at median values of the lagged variables, or when current durations are short
relative to lagged durations. These results are merely indicative; a more extensive
study of the dynamic relationships in the framework used here is left for future
research.

5 Concluding comments

We investigate the distribution, conditional on trading volume, duration between
trades, and the sign of trades of high-frequency price changes on four stocks traded
on the New York Stock Exchange. The conditional probabilities are estimated non-
parametrically using local polynomial regression methods. We find substantial
skewness in the distribution of price changes, with the direction of skewness
dependent on trade sign. We also find that the probability of larger price changes
increases with volume, but only for trades that occur with longer durations. Du-
rations affect prices, with a stronger effect when volume is high.

The evidence suggests substantial interaction effects between duration and
volume with respect to their effect on prices; parametric analyses of the relationship
between duration, volume, and prices should take these into account, such as in Tay
et al. (2004). The high degree of skewness in the distributions indicate that it is also
important to distinguish between seller- and buyer-initiated trades, and that care
should be taken in interpreting results concerning the volatility of price changes.
The results are consistent with theoretical research. Our findings for seller-initiated
trades provide direct evidence in support of the Diamond and Verrecchia (1987)
analysis, where larger probability of price falls is associated with a higher level
of duration.
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Macroeconomic surprises and short-term
behaviour in bond futures

Abstract This paper analyses the effect of macroeconomic news on the price of

depends on the sign of the forecast error, 3) their effect also depends on the
business cycle and 4) the timeliness of the releases is significant.
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1 Introduction

Researchers and security price analysts are in fundamental disagreement about

D. Veredas (*)
ECARES-Université Libre de Bruxelles and CORE, 50, Av Roosevelt CP114, B1050
Brussels, Belgium
E-mail: dveredas@ulb.ac.be

the ten yearUSATreasure bond future.We consider 15 fundamentals andwe analyse
the effect of their forecasting errors conditional upon their sign and the momentum
of the business cycle. To obtain a smooth effect of the news arrival we estimate a
Polynomial Distributed Lag model. Using 10 minutes sampled data during 9 years,
we conclude that 1) releases affect the bond future for only few hours, 2) their effect

the causes of price movements. Both groups, economic theorists and econometrics
practitioners, have produced a plethora of articles explaining the reasons for
volatility, trends, clustering, long memory and other price movements. But one
phenomenon in which they express common agreement is that when prices are
sampled at a sufficiently high frequency (i.e. at least intradaily), short term move-
ments can partly be attributed to news arrivals. In particular, to macroeconomic
announcements.



This paper explores the effect of macroeconomic announcements on the returns
of bond futures. The literature in the field tracks back to Berkman (1978) and a
series of articles published until mid 1980s (e.g. Grossman 1981; Roley 1983) that
focus on money supply announcements. Goodhart et al. (1993) analyse the effect of
the announcements of two macroeconomic numbers on the mean and variance,

McQueen and Roley (1993) study the effect of eight fundamentals on the mean
during eleven years, on a daily basis, of S&P500 price movements. Instead of using
the news itself, they use the forecasting error, i.e. the difference between the
released and the expected number. Moreover, they control for the momentum of
the business cycle (hereafter we will refer indistinctively to the economic cycle as
the business cycle or economic cycle). Flemming and Remolona (1999) study the
effect of 25 macroeconomic numbers on the US bond market (see Table 1 of this

Table 1 Information on macro numbers

Name Acronymic Rel. hour Details

Business inventories BI 08:30 NY %chg m/m
Consumer confidence CC 10:00 NY Index SA
Consumer price index CPI 08:30 NY %chg m/m SA
Durable goods orders DG 08:30 NY %chg m/m SA
Gross domestic product GDP 08:30 NY %chg q/q SAAR
Housing starts HS 08:30 NY Millions of units SA
Industrial production IP 09:15 NY %chg m/m SA
Industrial Production IP 09:15 NY %chg m/m SA
Institute for Supply Management ISM 10:00 NY Index
Non-Farms Payrolls NFP 08:30 NY K persons chg SA
Personal Income PI 08:30 NY %chg m/m SA
Producer Price Index PPI 08:30 NY %chg m/m SA
Retail Sales RS 08:30 NY %chg m/m SA
Trade Balance TB 08:30 NY $billions
Unemployment claims UNEMW 08:30 NY K persons as reported
Unemployment rate UNEM 08:30 NY Rate as reported

NY NY time, Rel. released, %chg percent change, SA seasonally adjusted, SAAR seasonally
adjusted annual rate, m/m month to month, q/q quarter to quarter
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using a GARCH-M and three months of tick-by-tick US-pound exchange rates.

article for a summary of the research done in macroeconomic announcements prior
to 1997). They employ standard regression using five minutes returns in absolute

on the volatility of US-Yen exchange rates using GARCH models. Li and Engle
(1998) work on the daily volatility of the 30 years note future (T-bond), via
GARCH and GARCH-M models, and how it is affected by the announcements
of just two fundamentals. Andersen and Bollerslev (1998) also study the effect
of announcements on volatility but using a slightly different approach to Engle

and usingweighted least squares. First, they estimate a standard GARCHmodel and,
second, they standardise the absolute residuals centered with the estimated volatility.

and Li’s. They analyse the Deutsche Mark-US exchange rate in a two-step procedure

nomic forecasting errors. DeGennaro and Shrieves (1997) look at the effect of con-
value, the number of transactions per hour as market measures and the macroeco-

temporaneous and expost announcements of 27 USA and Japan fundamentals



In this paper 1) the financial asset on which we base our analysis is the US
Treasury 10-year bond future, 2) we consider 15 fundamentals representing dif-
ferent sectors of the economy (inflation, real economy, supply and demand con-
fidence indexes and export–import measures), 3) we are interested in the effect of
news announcements on the mean rather than on volatility, 4) we consider the
forecasting errors rather than the released numbers, 5) we differentiate between
positive and negative forecasting errors, 6) we assume that the effect of the

bottom, expansion and contraction), and 7) we use an econometric model that
estimates contemporaneous and ex-post effects of the macroeconomic news
smoothly, that is, the parameters that measure the news effect vary smoothly

investigate whether these effects are robust within the economic cycle. If there are
variations, we may conclude that market’s behaviour depends on the mood of the
economy or how the market perceives the state of the economy. This is related to
the work in behavioural economics and, in particular, behavioural finance. Since
the introduction of prospect theory (Kanehman and Tversky 1979), it is well known
that individuals suffer from an asymmetry between the way they make decisions
involving gains (good news) and decisions involving losses (bad news). This leads
to a failure of invariance, i.e. inconsistent choices (or reactions to good and bad
news) when the same problem (a good or a bad news item) appears in different
frames (top, bottom, expansion and contraction of the business cycle). An alter-
native means of explaining why the market responds differently to good and bad
news in different phases of the business cycle is by means of uncertainty (Veronesi
1999): The market is uncertain about the state of the economy. For example, after a
period of economic boom, good news will have no effect as traders are already

market reacts because it is not no longer confident about the phase of the business
cycle. This introduces more uncertainty and causes an asymmetry in the response
to good and bad news. On this basis, Conrad et al. (2002) test this asymmetric
reaction to the news sign and the state of the stock market (the equivalent to the
business cycle in our paper). In a firm-specific study, and using earnings an-
nouncements, they conclude that price responses to negative earnings surprises
increase as the difference between the market value at the moment of the an-
nouncement and the average market value during the last 12 months, increases. In
other words, the effect of a negative earnings surprise is higher if the market feels
itself to be in expansion with respect to the previous 12 months, than in contraction.
Or, put differently, markets respond more strongly to bad news in good times. By
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They assume that this variable captures the intradaily seasonality and the news
effect that standard GARCHmodels are not able to capture. Finally, twopapers focus
on the mean of the returns of the Treasury bond future and several exchange rates.
Andersen et al. (2003) analyse, in a seven year period, the forecasting errors of 40
fundamentals using a very similar approach to Andersen and Bollerslev (1998)
but for the mean. Hautsch and Hess (2002) use the revision unemployment re-

and non-farms payrolls.
port numbers that include important variables such as the unemployment rate

fundamentals on the bond market differs depending on the business cycle (top,

through time.
One of the main features of the paper is the interaction between 5 and 6. That is,

wenot only permit good andbadnews to affect differently the bond future, butwe also

aware of the strength of the economy. If, by contrast, bad news start to arrive, the



contrast, price responses to positive earnings surprises do not necessarily increase
in bad times with respect to good times.

In this paper we find similar results to the above studies and more, as our set of
news is much richer. The basic conclusions we reach are: First, the signs of the
responses are all intuitive and the fundamentals that cause most the bond future
changes are (see Table 1 for the acronyms) CC, ISM, UNEM, NFP, PPI, CPI, RS
and IP. On the other hand, HS, GDP, PI, BI and TB have little or no statistical
significance on the bond future. Second, the responses to positive and negative
forecast errors are statistically different. This is the case, for instance, for UNEM,
NFP, CPI and RS. Third, and more importantly, we observe an asymmetry in
responses to positive and negative forecasting errors at different phases of the
business cycle. In fact, our findings agree with Conrad et al. (2002). Bad news has
the strongest effect when the business cycle is at the top and in contraction. This
suggests that when the economy is at the top of the cycle, traders know that sooner
or later the downward part of the cycle will start, and hence bad news may be a
signal of the beginning of the contraction. For equivalent (but inverse) reasons, the
smallest effect of bad news is when the economy is in expansion. Overconfidence
in the state of the economy may be an explanation. Our findings regarding positive
news also agree with Conrad et al. (2002): They are ambiguous. When the econ-
omy is expanding good news has barely any effect. This is again a sign that the
market is overconfident. However, when the economy is contracting, positive and
negative news have similar effect. This suggests that, regardless of the sign of the
error, news increases uncertainty. Fourth, timeliness matter, i.e. the sooner the
fundamental is released, the more it influences the bond future. This is strongly
related to the first conclusion. For example, CC is the first number released, at the
end of the month it is reporting on, and it has an important influence. On the
contrary, BI is released two months after the month it is covering and has barely
any influence. These findings are also found by Flemming and Remolona (1999)
and Hess (2004).

The rest of the paper is organized as follows; Section 2 shows the financial
model, Section 3 explains the econometric methodology, Section 4 discusses the
data, Section 5 shows and discusses the results and Section 6 draws conclusions.

2 On the components of short run price movements

The hypothesis underlying this paper is that temporary jumps observed in the
pricing of financial assets reflect: 1) the market expectation of fundamental factors
driving the asset valuation (e.g. inflation or unemployment) and 2) the time in the
business cycle where these expectations are formed (and potential signs of reversal
of the cycle) i.e. the idea of looking past the immediate macroeconomic release.

To measure the effect on market expectation of fundamentals driving asset
valuation, we need an asset and a set of fundamentals. Among all the financial
markets, we chose the bond market. Bonds are the most widely used of all the
financial instruments. In particular, we chose the 10 year Treasury Note 6% day
session Future (TY) because it is a liquid and important contract and reflects the
general response of the yield curve to news. The ten year future is a reflection of
the state of the US bond market with maturities between seven and ten years. It is
an efficient way of constructing a long time series that is not subject to the prob-
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lems encountered by taking a particular bond (for instance, when a bond matures its
price represents shorter and shorter yields). Regarding the fundamentals, we chose

omy, inflation, confidence indexes and export-import measures (we refer to Table 1
and Section 4 for further details).

momentum of the business cycle. Following recent literature on behavioural fi-
nance and Veronesi (1999), we conjecture that the effect of the fundamentals on TY
depends on the general economic situation of the economy. For example, it is
intuitive to believe that the effect of a positive surprise in the unemployment rate

Management Survey (ISM) index. The difference between ISM and other
measures of the business cycle, such as GDP, is that it is the most forward-
looking measure available of the market since it is based on expectations. The
ISM index is the result of a survey among 300 people selected from 20 manufac-
turing industries. The survey includes questions related to new orders, production,
employment, supplier deliveries and inventories (see Niemira and Zukowsky
(1998, chapter 19) for further details). In order to see the effect of the fundamentals
on the TY, we divide the ISM according to two criteria: 1) if it is expanding or
contracting and 2) if it is above, below or in between (differentiating as well
expansions and contractions) upper and a lower thresholds (further details are
given in Section 4).

Ideally, we would like to estimate a model like

1� Lð ÞTYt
¼ �1:þ �2 trend strength of the business cycletð Þ

3 t t t t (1)

where Nt t t t

forecasting error (or surprise or news).
The effect of the news in TY is caused by the news itself as well as by the trend

strength of the business cycle and the trend strength of the future bond. At each
point in time, the market has a working hypothesis as to where the economy is and
where it is going. Simplistically, the macroeconomic releases are testing the market
hypothesis. No drastic price response should be seen if the number falls in a
reasonable range around the expectations. If the macroeconomic releases fall
beyond the reasonable bounds, measured by the forecasting error, the re-pricing
effect should be proportional to the forecast error (coefficient α1).

In reality, more factors are at work and they should be evident mostly around
the changes in macroeconomic trends. In general, agents are not very good at
calling market tops or bottoms and when the economy is perceived to be turning,
one usually sees a rush to close or reverse existing positions. Agents are unsure of
whether a turn is occurring or whether the number is a statistical fluke in the
macroeconomic trend. So we expect an asymmetry in the market’s response to
positive or negative forecast errors at perceived phases of the economic cycle. This
is represented by coefficient α2.

This asymmetry can be exacerbated by the net positioning of the speculator and
hedgers community. The speculators community are usually trend followers and
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15 different numbers, representing wide areas of the economy such as real econ-

The second component that affects short run jumps in asset prices is the

in expansion. As measure of the business cycle we use the Institute for Supply

þ � ðtrend strength of TY Þ ðN � E½N �Þ þ " ;�
½

is the fundamental, E [N ] its expectation, and hence N � E N½ � is the

on the TY is not the same when the business cycle is in contraction as when it is



gradually accumulate positions in the direction of the trend whilst hedgers are
counter-trend followers. Trends by themselves tend to last in time and the cor-
rection to our equation coming from this momentum is represented by α3.

1=− 2

ð1� LÞTYt ¼
Xp
i¼0

�i;C;SðNÞðNt�i � E½Nt�i�Þ þ "t; (2)

where i is the time measured since the moment of the release, C is the variable
representing where we are in the business cycle and taking values ‘Top, Bottom,
Expansion, Contraction’, and S(N) is the sign of the forecast error N−E(N).

The fact that parameters depend on the moment of the business cycle and the
sign of the forecasting errors, will permit us to discover hidden relations that
otherwise are not possible to discern. For example, in an analysis of non-farms
payrolls for β independent of C and S(N) we find a very strong relation, as ex-
pected. However, if β depends on the business cycle, non-farms payrolls affect TY
only when the cycle is in the top and the bottom range and matters little when the
cycle is in expansion.

3 Methodology

Given the previous arguments, our interest is to model the effect of news arrivals in
the bond future market not only contemporaneously but also through time and
depending on the momentum of the business cycle and the sign of the forecast
error. We want to answer questions like: For how long does employment news

Fig. 1 Continuous line is the TY future (scale in the right axis). Piecewise line is ISM (scale in
the left axis)
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ααα

We can simplify model (1) above in the following way. First we notice that
the ISM and the TYprice are inversely correlated: −0.71 (see also Fig. 1). TY moves
up when ISM goes down, peaks close to when ISM bottoms then sells off when
ISM starts recovering again, until it reaches a top. So the price trend and the macro-
economic trend are strongly related and, in a way, represent the same explana-
tory variable. In other words, we can assume that . We therefore decide
to divide the business cycle into different phases, explained below, and estimate
the following equation:



affect the bond future market? Or how does the effect of a CPI release in the bond
future market change throughout the day?

Under the econometric viewpoint, several alternatives are available. We could
consider that the news arrivals and the bond future price are pure stationary time
series and hence, in a univariate context, build a transfer function model, where
the transfer function is the ratio of two finite polynomials yielding to an infinite
polynomial and hence an infinite response. In a more simplistic context, we could
consider a standard regression model with the news arrival and all its lags as
exogenous variables and returns of TY as endogenous variables, yielding a model

1� Lð ÞTYt ¼
Xp
i¼0

�i Nt�i � E Nt�i½ �ð Þ þ "t: (3)

Here we assume that just one news item, i.e. one macroeconomic number,
arrives to the market. Notice that p should not be fixed and should vary through the
macroeconomic number, i.e. the shock effect does not last for the same length of

reasons. First, we would like to have a smooth effect of the news shock through

In order to avoid these problems we use a Polynomial Distributed Lag (PDL)
model, also known as Almon’s model (1965). PDL models were introduced for a
different reason than the two aforementioned: often when contemporaneous and
past values of exogenous variables are introduced, the model may suffer of multi-
collinearity. This does not happen in our case since the exogenous variables take
zero value everywhere except when the news is released. The Almon’s model is
based on the assumption that the coefficients are represented by a polynomial of
small degree K

�i ¼ �0 þ i�1 þ i2�2 þ : : :þ iK�K ; i ¼ 0; : : : ; p > K; (4)

which can be expressed in matrix terms as β=Hα where

H¼

1 0 0 � � � 0
1 1 1 � � � 1
1 2 4 � � � 2K

1 3 9 � � � 3K

..

. ..
. ..

. ..
.

1 p p2 pK

0BBBBBB@

1CCCCCCA:
(5)

degree of the polynomial will determine its flexibility. For degree zero, all the β’s
will be equal and hence they form an horizontal straight line. For degree one, the
β’s decrease uniformly. For K=2 the β’s form a concave or convex bell. For K=3
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similar to (2)

be tested empirically. This model, although very simple, is not adequate for several

them to vary freely. Second, the number of parameters can become large if our
sample frequency is high and the effect of the fundamental on the TY stands for
long.

time for all macroeconomic numbers. The differences in p through fundamentals will

K coefficients. K is an integer number, usually between three and four. The
This specification permits us to calculate the p coefficients estimating only

time and, hence, some smoothness constraints between parameters instead of allowing



the β’s can form a convex shape during some periods and concave during others,
yielding a sort of wave with decreasing amplitude. Since a priori we believe that the
news release will affect the bond future price smoothly and with periods of positive
effect and periods of negative effect, we set three as the degree of the polynomial.

1� Lð ÞTYt ¼ �0
Pp
i¼0

Nt�i � E Nt�i½ �
� 	

þ �1
Pp
i¼0

i Nt�i � E Nt�i½ �ð Þ
� 	

þ : : :þ �3
Pp
i¼0

i3 Nt�i � E Nt�i½ �ð Þ
� 	

þ "t
¼ �0zt;0 þ �1zt;1 þ : : :þ �3zt;3 þ "t ¼ AZt þ "t;

(6)

classical assumptions. The variance/covariance matrix of bA0�bA , is estimated with
the White estimator.

t t

4 Data

TY and the macroeconomic numbers are sampled in 10 minutes segments from

61048 observations. TY is traded at the Chicago Board of Trade (CBOT) from
08:20 am to 03:00 pm, NY time. We use 15 fundamentals, summarized in Table 1.
The forecast of the fundamentals is generated (from surveys conducted before the
announcement) and released by MMS International.

The choice of the fundamentals is such that they represent the real economy
(UNEM, UNEMW, NFP, RS, HS and BI), inflation (PPI, CPI), supply and demand
confidence (ISM and CC) and export-import (TB). We do not consider monetary
fundamentals such as M1 and the Fed interest rates. The former does not affect the
TY and the latter is not a proper fundamental but rather a consequence of the
fundamentals, i.e. the Fed acts according to the fundamental releases.

For the futures contracts, some transformation is needed since they mature
every three months and hence often have different pricing, producing a discon-
tinuity. We rollover the future contracts when the open interest rate becomes greater
in the next contract (this usually means that the following contract is the more
liquid contract) using linear interpolation.

Further, notice that data are sampled from 08:20 a.m. to 12:30 p.m. NY time,
while the market closes at 03:00 p.m. We discard all the observations from
12:30 p.m. to 03:00 p.m. There are three reasons to consider the 08:20–12:30
interval. First, the aim of the paper is to analyze the news impact of macroeconomic
numbers on the bond future prices. If the news impact stands only for a few hours,
as we believe, and as most of the news is released at 08:30 a.m. NY time, the news
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The matrix of parameters A can be estimated by OLS if the error term fulfills the

It is worth making a note on stationarity and variance effects. The bond future
has a unit root. Hence (1−L)TY =ΔTY

08:20 to 12:30 NY time and from April 1992 to April 2001. The sample size is

Substituting (4) into (3) we obtain

will be stationary. The exogenous variables
are stationary since we are not analyzing the effect of the macroeconomic number
on the future prices but on the news. That is, the forecasting error is always stationary.

the forecast error is immediate and similar to (2).
Finally, conditioning the matrix of coefficients to the business cycle and the sign of



impact on TY should be hardly distinguishable after 12:30 p.m. Second, lunchtime
typically starts at 12:00, and hence the trading activity slows down sharply,
implying that necessarily the news effect vanishes. Finally, after lunch and before
03:00 p.m. (close) the price action may be somewhat distorted by the activity of
the bond pit locals whose activity is not related to the fundamentals releases but
they take intraday positions and close them towards the end of the session.

Where do an expansion and a contraction begin? A well known measure of
the momentum of the economy is the NBER dates of recessions and expansions.
However, as noticed by McQueen and Roley (1993), the NBER turning points
only classify the direction of the cycle rather than the level. Instead, we consider
the ISM. It is more widely used among fixed income traders than the NBER
indicator since it represents more accurately the cycles of the bonds and it has been
proven to provide a forward-looking indication of the business cycle direction. We
consider two different divisions of the business cycle: 1) expansions and con-
tractions and 2) top and bottom.

With respect to the first division, a change of trend is produced when it stands
for at least three periods, as commonly accepted among bank’s analysts (see top
plot of Fig. 2). The second division requires longer explanation. McQueen and
Roley (1993) analyse the news effect on the S&P500 in different phases of the
business cycle. They measure the business cycle with IP. The levels of high,
medium and low economic activity are determined by estimating a trend and then
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Fig. 2 Business cycle divisions with the symbols used in Tables 2 and A1–A12
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fixing some intervals around the trend. This is a purely statistical method subject to
the choice of bandwidth. By contrast, we believe that the right determination of the
business cycle phases would be the one commonly accepted by the fixed income
traders since they are the ones who generate the TY process.

The ISM is largely used among traders as a measure of the business cycle. It is
constructed from a survey that asks about the state of the economy. It has only three
possible answers: better, worse or equal than the previous period. With these answers
a percentage is built. A percentage equal to 50means that half of the respondents think
that the business conditions are good, while the other half believes the contrary. A
value below 50 is a sign of a weak economy. On the other hand, historical data shows
that an ISM above 54.5 is an indicator of expansion. Therefore, we consider the
following classification: Top if ISM is above 55, bottom if it is below 50,
expansion if it is between 50 and 55 and rising, and contraction if it is between 50
and 55 and falling. A graphical explanation is shown in the bottom plot of Fig. 2.

Finally, some autocorrelation is found on the TY and one lag suffices to take it
into account. This effect is usually found in stock prices. It does not necessar-
ily mean predictive capabilities but could be due to microstructure effects (see

5 Results

Results are shown in Table 2 and A1–A12 in the Appendix and Figs. 3, 4, 5.
Tables A1–A5 show full quantitative results for the fundamentals that have a higher
effect in TY, that is CC, ISM, UNEM and UNEMW. Results are full in the sense
that we consider a benchmark case (no business cycle division) and the afore-
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Fig. 3 Impulse respond function of a shock in CC on TY in division 1. Solid line considering all
forecasting errors. Dotted line when only considering negative forecasting errors. Dashed line
when considering positive forecasting errors. Vertical axis is the coefficient, horizontal are the
minutes (divided by ten) after the release
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–mentioned divisions. Results in Tables A6 A11 are for a second set of fundamentals
(PPI, CPI, RS, IP, HS and DG). They are qualitative in the sense that we do not
present the exact value of the effect but rather whether it is significant or not. For
this second set of fundamentals we do not present results for all the divisions of the
business cycle but only for the most exhaustive. We present very few results for
GDP, BI, TB and PI in Table A12 for reasons that will become clear. Last, Table 2
summarizes and gives further insights into the asymmetry of responses depending
on the sign of the forecasting error and the business cycle.

Andersen and Bollerslev, 1998, footnote 10).



Consumer Confidence. We then provide an analysis based on more general results.

5.1 A case study: consumer confidence

Consumer confidence is one of the fundamentals affecting the most bond futures. It
is an interesting fundamental to analyse because it is not an economic measure but
is rather an index of economic sentiment, not based on quantitative measures but
rather on feelings.

Results are in Table A1. The signs of the coefficients are intuitively correct.
Higher confidence than expected yields bond market sell-offs (column •). On
average, and especially during the first hour, the effect of a positive forecast error
is larger than the effect of a negative forecast error. See Fig. 3 and columns ✓ and

Table 2 Summary

46 37 42 27 30 21 33 18 30 22 27 17

Total number of significant coefficients for all the fundamentals. See legend Table A1
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Fig. 4 Impulse responses of TY to a shock in CC. Top left when the economy cycle is in the top.
Top right when the cycle is in the bottom. Bottom left when it is in expansion and bottom right
when it is in contraction. Solid, dotted and dashed lines are the same as in Fig. 3. Vertical axis is
the coefficient, horizontal are the minutes (divided by ten) after the release
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2002–37. In
Full results for all the fundamentals are available at core.ucl.ac.be, discussion paper

the sequel, we first present a detailed comment for one fundamental,



violent than a bond rally. And it holds for all the economic environments (i.e.
and vs. and ) except in an economic expansion ( vs. ) where it
seems that negative forecast errors (i.e. a weaker confidence than expected)
generate larger bond moves than a positive error (see Fig. 4). This is an
illustration that when CC comes ‘against the trend’, it tends to get more publicity
in the bond market. Also, when the economy is contracting, positive forecast
errors tend to impact on the market more than negative ones.

5.2 General results

5.2.1 Tables A2 to A5

All the signs, except in some pathological cases, are intuitively correct. ISM and
Non-farm payrolls higher than expected yield bond market sell-offs. And UNEM

, , ,

, ). Yet, as they are both released at the same time we would expect
similar effects on TY. The reasons for this different reaction are: 1) UNEM is not
seasonally adjusted by the US Census Bureau whilst the Bureau of Labour
Statistics adjusts NFP. We could adjust UNEM by seasonality but it is not what the
market observes. 2) The NFP survey has a larger sample size (390,000 estab-
lishments) than UNEM (60,000 households) and 3) in 1994 the questionnaire and
the collection method for UNEM changed, introducing some disturbances on the
sample. Regarding UNEMW, it is the only weekly released fundamental. It is not
based on a survey but on a complete register announced every week. It has there-
fore a short term ongoing view of the labour market and can provide the first
signals of some future change in the economy, i.e. it is a sort of leading indicator
of the state of the economy. But, although it can be very useful for discover
ongoing hidden problems, it is very erratic.

5.2.2 Tables A6–A11

These fundamentals have a smaller effect on the bond future than the previous
ones. Nevertheless, sings (not reported here) are intuitively correct and results are
robust to all economic environments. This is especially true for PPI, CPI, RS and
IP. By contrast, the effects of HS and DG are very limited. They last no longer than
half an hour with some rebound in some cases after one hour and a half. PPI and

ISM, released slightly earlier, is informative enough about the manufacturing sec-
tor. Traders still keep in mind the ISM results as a benchmark of the manufacturing

D. Veredas280

. That is for a given absolute value of forecast error, the bond sell-off is more

asymmetries and results are robust across divisions of the economic cycle.
NFP, represent the labour market. But NFP is the

variable that has the stronger effect. NPF has tendency to exacerbate the peaks
). By contrast, UNEMand bottoms of the business cycle (see

has a lower and different effect. It has a tendency to accelerate the bond trend
(see

CPI deserve a special comment. These two fundamentals are inflation measures
but PPI has a weak impact in TY, contrary to CPI. PPI is not significant because

and UNEMW higher than expected yields bond market rallies. Additionally,

UNEM and UNEMW



and industrial sector but wait for the CPI before gaining a precise idea of the
inflation.

5.2.3 Table A12

In summary, the market also seems to have a general bias when it approaches
certain numbers. We call a Bearish Bias a situation where the expected sell-off is
larger in magnitude than the expected rally for the same absolute value of the
forecast error and the opposite sign. Also the Bullish Bias is where the expected
rally is larger in magnitude than the expected sell-off for the same absolute value
of the forecast error and the opposite sign. Across the sample we draw the con-
clusions that there is a Bearish Bias for news coming from CC, CPI, and IP, and a
Bullish Bias for news coming from UNEM, ISM, NFP, RS and UNEMW.

Table 2 summarizes the effect of all the fundamentals in TY for each stage of
the business cycle. It shows the number of significant coefficients for each phase
of the business cycle. The left side of the Table (first four columns) indicates that
the market reacts more when the economy is in the top of the cycle and when it is
contracting. In other words, the market feels that the business cycle is at the top
and therefore sooner or later the cycle will start its downward trend, but they do
not know when. After the first signals of weakness, the economy starts to contract
and the market, which can feel the turn in the cycle, eagers for further signals that
confirm the negative trend. Any news therefore has an effect. By contrast, when
the economy is expanding, the market is confident about its strength and so news,
of any kind, affects the bond future much less.

columns show that the market responds more strongly to bad news in good times
than in bad times. This confirms the theories of behavioural finance and Veronesi

when the economy is contracting. This is again a confirmation that when the cycle

news does not have the largest impact in the bottom of the cycle, but when the
economy is contracting. It may be an indication that, when the business cycle is
downward, the market is uneasy and afraid that the negative trend may continue.
In this context, any forecasting error, positive or negative, introduces more
uncertainty to the market and in turn induces a reaction in prices. This result

with the results in the left columns. Conversely, when the
economy is expanding, the effect of positive news is smaller than in any other
phase of the cycle. This again dovetails with the equivalent result in the left
columns.

In summary, bad news has a stronger effect in good times than in bad times and
good news has little effect in bad times. And when the economic phase is down-
ward, any news has a strong effect but when the phase is upward, news has barely
any effect.
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PI,

below acceptance and we will not push the analysis further.

The right and middle parts of the Table give a more refined history. Last four

in the middle columns are not so enlightening. In particular, good

nicely dovetails

GDP, BI and TB do not have any effectEven in the less exhaustive case,

Results

(1999), as well as Conrad et al. (2002) findings. The market responds strongly

is downward, TY reacts to bad news more than when the economy is growing.

on TY except, very vaguely, PI. The statistical significance of the coefficients is



Last, there is still an important question to answer. Some fundamentals have a
definitive effect on TY while some others have no effect whatsoever. And some
of these innocuous fundamentals are rather basic. Could we expect that GDP, the
classical measure of the economy, is totally innocuous to TY, one of the most
heavily traded long-term interest rate contracts in the world? Or that the TB, the
most important indicator of import-exports, is irrelevant to the behaviour of TY?
Or that CC, a fundamental based in opinions, has more effect that PI?

temporally according to when they are released. The importance of the fundamental
decreases as the time interval between its release and the period it is covering
increases. This effect, called timeliness, has been acknowledged previously by
other authors (Flemming and Remolona 1999, and Hess 2004).

Timeliness, in this context, simply means that traders are not interested in
information about the state of the economy at some point in time if it is released
some months after. By contrast, the sooner the fundamental is released, the more it
is perceived as important by traders and hence the greater effect it has on TY. It is
the case with CC, released in the month that it is covering. Although CC is based
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TBBIPI
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Fig. 5 Timeliness. Each point represents the number of significative coefficients in division four,
the most exhaustive. The vertical lines represent the month when they are released. Fundamentals
are temporally ordered. For example, CC is released at the end of the month it is covering and BI
and TB two months later
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The answers are in Fig. 5. It shows the total number of significant parameters (in
the most exhaustive division of the business cycle) for each fundamental and is ordered

on opinions, rather than in tangible goods, workers or prices, it conveys fresh
information about the state of the economy that is rapidly absorbed by traders.
The counter example is GDP. It is released around a month and a half after the
period it refers. Given that it is the tenth fundamental to be released, it does not
really add information and hence agents do not react when it is released. Moreover,
GDP is quarterly released and continuously revised, being another reason for
the lack of interest in it.



6 Conclusions

Movements in intra-day bond prices are produced by small shocks, with effects that

events, natural catastrophes, rumours, macroeconomic releases, etc. Among all, the
macroeconomic releases are the only ones that arrive to the market systematically
every week, month or quarter. And as their arrival time is known with certitude,
agents can form systematic expectations about them. If a macroeconomic release is
far from the expected number, agents will react.

Results in this paper show that traders react when the forecasting error varies
from zero. The reaction to a positive or negative forecasting error is different and,
most importantly, the reaction varies significantly depending on the momentum of
the economic cycle. We also find that the time of the release matters and the closer
it is to the covering period, the more effect it has on the bond future.
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stand in the market for few hours. These shocks can be, among others, political
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Table A6 Producer price index

• ✓

10 min ▪ □ ▪ ▪ □ □ ▪ ▪ ▪ ▪
20 min ▪ ▪ ▪ ▪ ▪ □ □ □ □
30 min ▪ □ ▪ □ □ □
40 min □
50 min
60 min
70 min □ □ ▪ ▪
80 min ▪ ▪ ▪ ▪ ▪
90 min ▪ ▪ □ ▪
100 min ▪ □
110 min ▪ □
120 min □

See legend Table A1. Black (white) squares stand for significant effect at 5% (10%)

Table A7 Consumer price index

• ✓

10 min ▪ ▪ ▪ ▪ ▪ □ ▪ ▪
20 min ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪
30 min ▪ ▪ □ □ ▪ ▪ ▪ □
40 min ▪ ▪ ▪ ▪ ▪
50 min ▪ ▪ □ ▪
60 min ▪ ▪
70 min ▪ ▪ □
80 min ▪ ▪ ▪ ▪ ▪
90 min ▪ ▪ ▪ ▪ ▪
100 min ▪ ▪ ▪ ▪
110 min □ ▪
120 min

See legend in Tables A1 and A6
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Table A9 Industrial production

• ✓

10 min
20 min ▪ ▪ ▪ ▪ ▪ ▪ □
30 min ▪ ▪ ▪ □ ▪ ▪ ▪ ▪
40 min ▪ ▪ ▪ ▪ ▪ ▪ ▪
50 min ▪ ▪ ▪ ▪ □ ▪ ▪
60 min ▪ ▪
70 min □
80 min ▪ □ □ □
90 min ▪ □ ▪ ▪ □ ▪
100 min ▪ □ ▪ □ ▪
110 min □ □ ▪
120 min □ ▪

See legend in Tables A1 and A6

Table A8 Retail sales

• ✓

10 min ▪ ▪ ▪ ▪ ▪ ▪ □ □ □ ▪ ▪ □
20 min ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ □
30 min ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪
40 min ▪ ▪ ▪ ▪ ▪ □ ▪ ▪ ▪ ▪
50 min ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪
60 min □ □ ▪
70 min □ ▪
80 min ▪ ▪
90 min □ ▪ □ □
100 min □ ▪ □
110 min ▪
120 min ▪

See legend in Tables A1 and A6
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Table A10 Housing starts

• ✓

10 min ▪ □ ▪ ▪
20 min ▪ ▪ ▪ ▪ □ ▪
30 min ▪ ▪ □ ▪ ▪
40 min □ ▪ ▪ ▪
50 min □ ▪
60 min
70 min □ □ ▪
80 min ▪ □ ▪ □ ▪
90 min ▪ □ ▪ ▪
100 min ▪ □ ▪ ▪
110 min ▪ ▪
120 min

See legend in Tables A1 and A6

Table A11 Durable goods

• ✓

10 min ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ □ □
20 min ▪ ▪ ▪ ▪ ▪ ▪ □
30 min ▪ ▪ ▪ □ ▪ □
40 min □ □
50 min
60 min
70 min ▪ □
80 min □ ▪ ▪ □ ▪
90 min □ ▪ ▪ ▪ □ ▪
100 min □ ▪ ▪ □ ▪
110 min
120 min ▪ □

See legend in Tables A1 and A6
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Table A12 GDP, BI, TB and PI

• PI

GDP BI TB • ✓

10 min □
20 min
30 min ▪
40 min ▪
50 min ▪
60 min □
70 min
80 min
90 min
100 min □
110 min □
120 min

See legend in Tables A1 and A6
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Valeri Voev

Dynamic modelling of large-dimensional
covariance matrices

Abstract Modelling and forecasting the covariance of financial return series has
always been a challenge due to the so-called ‘curse of dimensionality’. This paper
proposes a methodology that is applicable in large-dimensional cases and is based
on a time series of realized covariance matrices. Some solutions are also pre-
sented to the problem of non-positive definite forecasts. This methodology is then
compared to some traditional models on the basis of its forecasting performance
employing Diebold–Mariano tests. We show that our approach is better suited
to capture the dynamic features of volatilities and covolatilities compared to the
sample covariance based models.

1 Introduction

Modelling and forecasting the variances and covariances of asset returns is crucial
for financial management and portfolio selection and re-balancing. Recently, this
branch of the econometric literature has grown at a very fast pace. One of the sim-
plest methods used is the sample covariance matrix.Astylized fact, however, is that
there is a serial dependence in the second moments of returns. Thus, more sophisti-
cated models had to be developed which incorporate this property, as well as other
well-known features of financial return distributions such as leptokurtosis or the
so-called ‘leverage effect’. This led to the development of the univariate GARCH
processes and their extension—the multivariate GARCH (MGARCH) models (for
a comprehensive review see Bauwens et al. (2006)), which include also the mod-
elling of covariances. One of the most severe drawbacks of the MGARCH models,
however, is the difficulty of handling dimensions higher than 4 or 5 (or with very
restrictive assumptions). Another more practically oriented field of research deals

Valeri Voev (�)
University of Konstanz, CoFE, Konstanz, Germany
PBox D-124, University of Konstanz, 78457 Konstanz, Germany
E-mail: valeri.voev@uni-konstanz.de
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with the problem of how to reduce the noise inherent in simpler covariance esti-
mators such as the sample covariance matrix. Techniques have been developed
to ‘shrink’ the sample covariance (SC) matrix, thereby reducing its extreme val-
ues in order to mitigate the effect of the so-called error maximization noted by
Michaud (1989). One of the shrinkage estimators used among practitioners is the
Black–Litterman model (Black and Litterman (1992)). This model uses a prior
which reflects investor’s beliefs about asset returns and combines it with implied
equilibrium expected returns to obtain a posterior distribution, whose variance is
a combination of the covariance matrix of implied returns and the confidence of
the investor’s views (which are reflected in the prior covariance). Further, Ledoit
and Wolf (2003) and (2004) use shrinkage methods to combine a SC matrix with
a more structured estimator (e.g. a matrix with equal pairwise correlations, or a
factor model). The idea is to combine an asymptotically unbiased estimator having
a large variance with a biased estimator, which is considerably less noisy. So the
shrinkage actually amounts to optimizing in terms of the well-known trade-off
between bias and variance.

Recently, with the availability of high-quality transaction databases, the
technique of realized variance and covariance (RC) gained popularity. A very com-
prehensive treatment of volatility modelling with focus on forecasting appears in
Andersen et al. (2006). Andersen et al. (2001a), among others, have shown that
there is a long-range persistence (long memory) in daily realized volatilities, which
allows one to obtain good forecasts by means of fractionally integrated ARMA
processes. At the monthly level, we find that the autocorrelations decline quite
quickly to zero, which led us to choose standard ARMA models for fitting and
forecasting.

The aim of this paper is to compare the forecasting performance of a set of mod-
els, which are suitable to handle large-dimensional covariance matrices. LettingH
denote the set of considered models, we haveH = {s, ss, rm, rc, src, drc, dsrc},
where the first two models are based on the sample covariance matrix, the third
model is a RiskMetricsTM exponentially weighted moving average (EWMA) esti-
mator developed by J.P. Morgan (1996), the fourth and the fifth represent simple
forecasts based on the realized and on the shrunk realized covariance matrix,
and the last two models employ dynamic modelling of the RC and shrunk RC,
respectively. We judge the performance of the models by looking at their ability
to forecast individual variance and covariance series by employing a battery of
Diebold–Mariano (Diebold and Mariano (1995)) tests. Of course, if we have good
forecasts for the individual series, then the whole covariance matrix will also be
well forecast. The practical relevance of a good forecast can be seen by considering
an investor who faces an optimization problem to determine the weights of some
portfolio constituents. One of the crucial inputs in this problem is a forecast of
future movements and co-movements in asset returns. Our contribution is to pro-
pose a methodology which improves upon the sample covariance estimator and
is easy to implement even for very large portfolios. We show that in some sense
these models are more flexible than the MGARCH models, although this comes at
the expense of some complications.

The remainder of the paper is organized as follows: Section 2 sets up the
notation and describes the forecasting models, Section 3 presents the data set used
to compare the forecasting performance of the models, Section 4 discusses the
results on the forecast evaluation and Section 5 concludes the paper.
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2 Forecasting models

In this section we describe each of the covariance forecasting models. First, we
introduce some notation and description of the forecasting methodology. We con-
centrate on one-step ahead forecasts of covariance matrices of N stocks, and
consider the monthly frequency. The information is updated every period and
a new forecast is formed. Thus, each new forecast incorporates the newest infor-
mation which has become available. Such a strategy might describe an active
long-run investor, who revises and rebalances her portfolio every month. Let the
multivariate price process be defined as P = {Pt (ω), t ∈ (−∞,∞), ω ∈ �},
where � is an outcome space.1 The portfolio is set up at t = 0 and updated
at each t = 1, 2, . . . , T̄ , where T̄ is the end of the investment period. The
frequency of the observations in our application is daily, which we refer to
as intra-periods. In this setup, we can formally define the information set at
each time t ≥ 0 as a filtration Ft = σ(Ps(ω), s ∈ T ) generated by P, with
T = {s : s = −L + j

M
, j = 0, 1, . . . , (L + t)M}, M – the number of intra-

periods within each period2 and L – the number of periods, for which price data
is available, before the investment period. It is important to note that not all infor-
mation is considered in the forecasts based on the sample covariance matrix.
For these models only the lower frequency monthly sampling is needed. Fur-
thermore, we define the monthly returns as rt = ln(Pt ) − ln(Pt−1), where Pt

is the realization of the price process at time t , and the j th intra-period return

by r
t+ j

M
= ln

(
P
t+ j

M

)
− ln

(
P
t+ j−1

M

)
. The realized covariance at time t + 1 is

given by

�RC
t+1 =

M∑
j=1

r
t+ j

M
r′
t+ j

M

. (1)

Assessing the performance of variance forecasts has been quite problematic,
since the true covariance matrix �t is not directly observable. This has long been
a hurdle in evaluating GARCH models. Traditionally, the squared daily return was
used as a measure of the daily variance. Although this is an unbiased estimator, it
has a very large estimation error due to the large idiosyncratic noise component
of daily returns. Thus a good model may be evaluated as poor, simply because
the target is measured with a large error. In an important paper, Andersen and
Bollerslev (1998) showed that GARCH models actually provide good forecasts
when the target to which they are compared is estimated more precisely, by means
of sum of squared intradaily returns. Since then, it has become a practice to take the
realized variance as the relevant measure for comparing forecasting performance.
In this spirit, we use the realized monthly covariance in place of the true matrix.
Thus we will assess a given forecast �̂(h)

t+1|t , h ∈ H by its deviation from �RC
t+1.

1 Of course, in reality the price process could not have started in the infinite past. Since we are
interested in when the process became observable, and not in its beginning, we leave the latter
unspecified.
2 This number is not necessarily the same for all periods and should be denoted more precisely
by M(t). This is not done in the text to avoid cluttering of the notation.
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2.1 A sample covariance forecast

In this section we describe a forecasting strategy based on the sample covariance
matrix, which will serve as a benchmark. The sample covariance is a consistent
estimator for the true population covariance under weak assumptions. We use a
rolling window scheme and define the forecast as

�̂
(s)
t+1|t = 1

T

t∑
s=t−T+1

(rs − r̄t,T )(rs − r̄t,T )′, (2)

where for each t , r̄t,T is the sample mean of the return vector r over the last T
observations. We will denote the sample covariance matrix at time t by �SC

t . For
T we choose a value of 60, which with monthly data corresponds to a time span of
5 years. As the near future is of the highest importance in volatility forecasting, this
number might seem too large. Too small a number of periods, however, would lead
to a large variance of the estimator; therefore other authors (e.g. Ledoit and Wolf
(2004)) have also chosen 60 months as a balance between precision and relevance
of the data. A problem of this approach, as simple as it is, is that new information is
given the same weight as very old information.Another obvious oversimplification
is that we do not account for the serial dependence present in the second moments
of financial returns.

2.2 A shrinkage sample covariance forecast

In this section we briefly present the shrinkage estimator, proposed by Ledoit and
Wolf (2003), in order to give an idea of the shrinkage principle.

The shrinkage estimator of the covariance matrix �t is defined as a weighted
linear combination of some shrinkage target Ft and the sample covariance matrix,
where the weights are chosen in an optimal way. More formally, the estimator is
given by

�SS
t = α̂∗

t Ft + (1 − α̂∗
t )�

SC
t , (3)

α̂∗
t ∈ [0, 1] is an estimate of the optimal shrinkage constant α∗

t .
The shrinking intensity is chosen to be optimal with respect to a loss function

defined as a quadratic distance between the true and the estimated covariance
matrices based on the Frobenius norm. The Frobenius norm of anN×N symmetric
matrix Z with elements (zij )i,j=1,...,N is defined by

‖Z‖2 =
N∑
i=1

N∑
j=1

z2
ij . (4)

The quadratic loss function is the Frobenius norm of the difference between �SS
t

and the true covariance matrix:

L(αt ) =
∥∥∥αtFt + (1 − αt )�

SC
t − �t

∥∥∥2
. (5)
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The optimal shrinkage constant is defined as the value of α which minimizes the
expected value of the loss function in expression (5):

α∗
t = argmin

αt

E [L(αt )] . (6)

For an arbitrary shrinkage target F and a consistent covariance estimator S, Ledoit
and Wolf (2003) show that

α∗ =
∑N

i=1
∑N

j=1

(
Var

[
sij

] − Cov
[
fij , sij

])∑N
i=1

∑N
j=1

(
Var

[
fij − sij

] + (φij − σij )2
) , (7)

where fij is a typical element of the sample shrinkage target, sij – of the covariance
estimator, σij – of the true covariance matrix, and φij – of the population shrinkage
target �. Further they prove that this optimal value is asymptotically constant over
T and can be written as3

κt = πt − ρt

νt
. (8)

In the formula above, πt is the sum of the asymptotic variances of the entries of

the sample covariance matrix scaled by
√
T : πt = ∑N

i=1
∑N

j=1 AVar
[√

T sij,t

]
,

ρt is the sum of asymptotic covariances of the elements of the shrinkage tar-
get with the elements of the sample covariance matrix scaled by

√
T : ρt =∑N

i=1
∑N

j=1 ACov
[√

T fij,t ,
√
T sij,t

]
, and νt measures the misspecification of

the shrinkage target: νt = ∑N
i=1

∑N
j=1(φij,t −σij,t )

2. Following their formulation

and assumptions,
∑N

i=1
∑N

j=1 Var
[√

T (fij − sij )
]

converges to a positive limit,

and so
∑N

i=1
∑N

j=1 Var
[
fij − sij

] = O(1/T ). Using this result and the
√
T con-

vergence in distribution of the elements of the sample covariance matrix, Ledoit
and Wolf (2003) show that the optimal shrinkage constant is given by

α∗
t = 1

T

πt − ρt

νt
+ O

(
1

T 2

)
. (9)

Sinceα∗ is unobservable, it has to be estimated. Ledoit and Wolf (2004) propose
a consistent estimator of α∗ for the case where the shrinkage target is a matrix in
which all pairwise correlations are equal to the same constant. This constant is
the average value of all pairwise correlations from the sample correlation matrix.
The covariance matrix resulting from combining this correlation matrix with the
sample variances, known as the equicorrelated matrix, is the shrinkage target. The
equicorrelated matrix is a sensible shrinkage target as it involves only a small
number of free parameters (hence less estimation noise). Thus the elements of the
sample covariance matrix, which incorporate a lot of estimation error and hence
can take rather extreme values are ‘shrunk’ towards a much less noisy average.

3 In their paper the formula appears without the subscript t . By adding it here we want to emphasize
that these variables are changing over time.
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Using the equicorrelated matrix as the shrinkage target Ft in Eq. (3) the forecast is
given by

�̂
(ss)
t+1|t = �SS

t . (10)

2.3 A RiskMetricsTM forecast

The RiskMetricsTM forecasting methodology is a modification of the sample
covariance matrix, in which observations which are further in the past are
given exponentially smaller weights, determined by a factor λ. For the generic
(i, j), i, j = 1, . . . , N element of the EWMA covariance matrix �RM

t we have

σRM
ij,t = (1 − λ)

t∑
s=1

λs−1 (
ri,s − r̄i

) (
rj,s − r̄j

)
, (11)

where r̄i = 1
t

∑t
s=1 ri,s . Again, the forecast is given by

�̂
(rm)
t+1|t = �RM

t . (12)

Methods to choose the optimal λ are discussed in J.P. Morgan (1996). In this
paper we set λ = 0.97, the value used by J.P. Morgan for monthly (co)volatility
forecasts. Note that contrary to the sample covariance matrix, for which we use
a rolling window scheme, in the RiskMetrics approach we use at each t all the
available observations from the beginning of the observation period up to t . Since
in the RiskMetrics approach the weights decrease exponentially, the observations
which are further away in the past are given relatively smaller weights and hence
do not influence the estimate as much as in the sample covariance matrix.

2.4 A simple realized covariance forecast

The realized covariance estimator was already defined in expression (1). Its uni-
variate and multivariate properties have been studied among others, by Barndorff-
Nielsen and Shephard (2004) and by Andersen et al. (2003). In the limit, when
M → ∞, Barndorff-Nielsen and Shephard (2004) have shown that realized covari-
ance is an error-free measure for the integrated covariation of a very broad class
of stochastic volatility models. In the empirical part we compute monthly real-
ized covariance by using daily returns (see also French et al. (1987)). The simple
forecast is defined by

�̂
(rc)
t+1|t = �RC

t . (13)

Thus an investor who uses this strategy simply computes the realized covariance
at the end of each month and then uses it as his best guess about the true covariance
matrix of the next month. A nice feature of this method is that it only uses recent
information which is of most value for the forecast, but unfortunately, it imposes
a very simple and restrictive time dependence. Practically, Eq. (13) states that all
variances and covariances follow a random walk process. However, as we shall
see later, the estimated series of monthly variances and covariances show weak
stationarity.
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2.5 A shrinkage realized covariance forecast

Although the estimator discussed in the previous section is asymptotically error-
free, in practice one cannot record observations continuously.Amuch more serious
problem is the fact that at very high frequencies, the martingale assumption needed
for the convergence of the realized covariances to the integrated covariation is
no longer satisfied. At trade-by-trade frequencies, market microstructure affects
the price process and results in microstructure noise induced autocorrelations in
returns and hence biased variance estimates. Methods to account for this bias and
correct the estimates have been developed by Hansen and Lunde (2006), Oomen
(2005), Aït-Sahalia et al. (2005), Bandi and Russell (2005), Zhang et al. (2005),
and Voev and Lunde (2007), among others. At low frequencies the impact of
market microstructure noise can be significantly mitigated, but this comes at the
price of higher variance of the estimator. Since we are using daily returns, market
microstructure is not an issue. Thus we will suggest a possible way to reduce
variance. Again as in Section 2.2, we will try to find a compromise between bias
and variance applying the shrinkage methodology. The estimator looks very much
like the one in expression (3). In this case we have

�SRC
t = α̂∗

t Ft + (1 − α̂∗
t )�

RC
t , (14)

where nowFt is the equicorrelated matrix, constructed from the realized covariance
matrix �RC

t in the same fashion as the equicorrelated matrix constructed from the
sample covariance matrix, as explained in Section 2.2. Similarly to the previous
section, the forecast is simply

�̂
(src)
t+1|t = �SRC

t . (15)

Since the realized covariance is a consistent estimator, we can still apply for-
mula (7) taking into account the different rate of convergence. In order to compute
the estimates for the variances and covariances, we need a theory for the distribution
of the realized covariance, which is developed in Barndorff-Nielsen and Shephard
(2004), who provide asymptotic distribution results for the realized covariation
matrix of continuous stochastic volatility semimartingales (SVSMc). Assuming
that the log price process ln P ∈ SVSMc, we can decompose it as ln P = a∗+m∗,
where a∗ is a process with continuous finite variation paths andm∗ is a local martin-
gale. Furthermore, under the condition thatm∗ is a multivariate stochastic volatility
process, it can be defined asm∗(t) = ∫ t

0 �(u)dw(u), where� is the spot covolatil-
ity process and w is a vector standard Brownian motion. Then the spot covariance
is defined as

�(t) = �(t)�(t)′, (16)

assuming that (for all t < ∞)∫ t

0
�kl(u)du < ∞, k, l = 1, . . . , N, (17)
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where �kl(t) is the (k, l) element of the �(t) process. With this notation, we will
now interpret the ‘true’ covariance matrix as

�t+1 =
∫ t+1

t

�(u)du. (18)

Thus the covariance matrix at time t + 1 is the increment of the integrated
covariance matrix of the continuous local martingale from time t to time t + 1.
The realized covariance as defined in expression (1) consistently estimates�t+1 as
given in Eq. (18). Furthermore, Barndorff-Nielsen and Shephard (2004) show that
under a set of regularity conditions the realized covariation matrix follows asymp-
totically, as M → ∞, the normal law with N ×N matrix of means

∫ t+1
t

�(u)du.
The asymptotic covariance of

√
M

{
�RC
t+1 −

∫ t+1

t

�(u)du

}

is �t+1, a N2 × N2 array with elements

�t+1 =
{∫ t+1

t

{�kk′(u)�ll′(u) + �kl′(u)�lk′(u)} du

}
k,k′,l,l′=1,...,N

.

Of course, this matrix is singular due to the equality of the covariances in the
integrated covariance matrix. This can easily be avoided by considering only its
unique lower triangular elements, but for our purposes it will be more convenient
to work with the full matrix. The result above is not useful for inference, since the
matrix �t+1 is not known. Barndorff-Nielsen and Shephard (2004) show that a
consistent, positive semi-definite estimator is given by a random N2 ×N2 matrix:

Ht+1 =
M∑
j=1

xj,t+1x
′
j,t+1 − 1

2

M−1∑
j=1

(
xj,t+1x

′
j+1,t+1 + xj+1,t+1x

′
j,t+1

)
, (19)

where xj,t+1 = vec

(
r
t+ j

M
r′
t+ j

M

)
and the vec operator stacks the columns of a

matrix into a vector. It holds that MHt+1
p→ �t+1 with M → ∞.

With the knowledge of this matrix, we can combine the asymptotic results for
the realized covariance, with the result in Eq. (7) to compute the estimates for πt ,
ρt and νt .

For the equicorrelated matrix F we have that4 fij = r̄

√
σ
(RC)
ii σ

(RC)
jj , where r̄

is the average value of all pairwise correlations, implied by the realized covariance
matrix, and σ

(RC)
ij is the (i, j) element of the realized covariance matrix. Thus �,

the population equicorrelated matrix, has a typical element φij = !̄
√
σiiσjj , where

σij is the (i, j) of the true covariance matrix � and !̄ is the average correlation

4 In the following exposition, the time index is suppressed for notational convenience.
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implied by it. Substituting σ
(RC)
ij for sij in Eq. (7) and multiplying by M gives for

the optimal shrinkage intensity:

Mα∗ =
∑N

i=1
∑N

j=1

(
Var

[√
Mσ

(RC)
ij

]
− Cov

[√
Mfij ,

√
Mσ

(RC)
ij

])
∑N

i=1
∑N

j=1

(
Var

[
fij − σ

(RC)
ij

]
+ (φij − σij )2

) . (20)

Note that this equation resembles expression (8). The only difference is the scaling
by

√
M instead of

√
T , which is due to the

√
M convergence. In this case πt ,

the first summand in the numerator, is simply the sum of all diagonal elements of
�t . By using the definition of the equicorrelated matrix, it can be shown that the
second term, ρt , can be written as (suppressing the index t)

ρ =
N∑
i=1

AVar
[√

Mσ
(RC)
ii

]

+
N∑
i=1

N∑
j=1,j �=i

ACov

[√
Mr̄

√
σ
(RC)
ii σ

(RC)
jj ,

√
Mσ

(RC)
ij

]
. (21)

Applying the delta method the second term can be expressed as5

r̄

2

⎛⎜⎝
√√√√σ

(RC)
jj

σ
(RC)
ii

ACov
[√

Mσ
(RC)
ii ,

√
Mσ

(RC)
ij

]

+
√√√√σ

(RC)
ii

σ
(RC)
jj

ACov
[√

Mσ
(RC)
jj ,

√
Mσ

(RC)
ij

]⎞⎠ .

From this expression we see that ρ also involves summing properly scaled terms
of the � matrix. In the denominator of Eq. (20), the first term is of order O(1/M),

and the second one is consistently estimated by ν̂ = ∑N
i=1

∑N
j=1

(
fij − σ

(RC)
ij

)2
.

Since we have a consistent estimator for �, we can now also estimate π and
ρ. In particular, we have

π̂ =
N∑
i=1

N∑
j=1

hij,ij

ρ̂ =
N∑
i=1

hii,ii + r̄

2

N∑
i=1

N∑
j=1

√√√√σ
(RC)
jj

σ
(RC)
ii

hii,ij +
√√√√σ

(RC)
ii

σ
(RC)
jj

hjj,ij ,

5 cf. Ledoit and Wolf (2004).
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where hkl,k′l′ is the element of H which estimates the corresponding element of �.

Thus we can estimate κt by κ̂t = π̂t−ρ̂t
γ̂t

and the estimator for the optimal shrinkage
constant is

α̂∗
t = max

{
0,min

{
κ̂t

M
, 1

}}
. (22)

The estimated optimal shrinkage constants for our dataset range from 0.0205
to 0.2494 with a mean of 0.0562.

2.6 Dynamic realized covariance forecasts

This model is an alternative to the one in Section 2.4. The most popular models
for time varying variances and covariances are the GARCH models. The most
significant problem of these models is the large number of parameters in large-
dimensional systems. The recent DCC models of Tse and Tsui (2002) and Engle
(2002) propose a way to mitigate this problem by using the restriction that all corre-
lations obey the same dynamics. Recently, Gourieroux et al. (2004) have suggested
an interesting alternative—the WAR (Wishart autoregressive) model, which has
certain advantages over the GARCH models, e.g. smaller number of parameters,
easy construction of non-linear forecasts, simple verification of stationarity condi-
tions, etc. Even quite parsimonious models, however, have a number of parameters
of the order N(N + 1)/2. With N = 15 this means more than 120 parameters,
which would be infeasible for estimation. We therefore suggest a simple approach
in which all variance and covariance series are modelled univariately as ARMA
processes and individual forecasts are made, which are then combined into a fore-
cast of the whole matrix. This approach can also be extended by including lags
of squared returns, which can be interpreted as of ARCH-effects. A theoretical
drawback of this model is that such a methodology does not guarantee the positive
definiteness of the forecast matrix. It turns out that this problem could be quite
severe, especially if we include functions of lagged returns in the specification.
Hence we propose two possible solutions. First, if the above mentioned problem
occurs relatively rarely, then in these cases we can define the forecast as in Section
2.4, which would ensure that all forecast matrices are positive definite. More pre-
cisely, instead of assuming a random walk process for the realized covariance series
(as in Section 2.4) we now model each of them as ARMAX(p, q, 1)6 processes as
follows:

σ
(RC)
ij,t = ω +

p∑
s=1

ϕsσ
(RC)
ij,t−s +

q∑
u=0

θuεij,t−u + αri,t−1rj,t−1, (23)

with θ0 = 1 and εij,t , a Gaussian white noise process. The model easily extends
to an ARMAX(p, q, k) specification with k lags of crossproducts. The parameters
ϕs , θu and α are estimated by maximum likelihood starting at t = 100 and the
forecasts σ̂ (RC)

ij,t+1|t are collected in a matrix�DRC
t+1 .At time t+1 the new information

6 The last parameter shows the number of lags of the X variable.
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is taken into account and the procedure is repeated. The best model for each series
is selected by minimizing the Akaike information criterion (AIC).

In this case the forecast is

�̂
(drc)
t+1|t =

{
�DRC
t+1 , if �DRC

t+1 is positive definite
�RC
t , otherwise.

(24)

A more robust solution is to factorize the sequence of realized covariance
matrices into their Cholesky decompositions, model the dynamics and forecast the
Cholesky series, and then reconstruct the variance and covariance forecasts. This
ensures the positive definiteness of the resulting forecast. In this case the Cholesky
series are modelled like in Eq. (23), the forecasts are collected in a lower triangular
matrix Ct+1 and the covariance forecast is given by

�̂
(drc−Chol)
t+1|t = Ct+1C′

t+1. (25)

Analogously, we can use these two strategies to model dynamically the series
of shrunk variance covariance matrices which defines the forecasts �(dsrc)

t+1|t and

�
(dsrc−Chol)
t+1|t .

3 Data

The data we have used consists of 15 stocks from the current composition of the
Dow Jones Industrial Average index from 1 January 1980 to 31 December 2002.
The stocks are Alcoa (NYSE ticker symbol: AA), American Express Company
(AXP), Boeing Company (BA), Caterpillar Inc. (CAT), Coca-Cola Company (KO),
Eastman Kodak (EK), General Electric Company (GE), General Motors Corpo-
ration (GM), Hewlett-Packard Company (HPQ), International Business Machines
(IBM), McDonald’s Corporation (MCD), Philip Morris Companies Incorporated
(MO), Procter & Gamble (PG), United Technologies Corporation (UTX) and Walt
Disney Company (DIS). The reason that we have considered only 15 stocks is due to
the fact that the realized covariance matrices are of full rank only ifM > N , where
M is the number of intra-period observations used to construct the realized covari-
ance, in our case number of daily returns used to construct each monthly realized
covariance. Usually there are 21 trading days per month, but some months have
had fewer trading days (e.g. September 2001). With intradaily data this problem
would not be of importance, since then we can easily have hundreds of observations
within a day. Such datasets are already common, but they still do not cover large
periods of time. Nevertheless, the dynamic properties of daily realized volatili-
ties, covariances and correlations are studied by, e.g. Andersen et al. (2001a) and
Andersen et al. (2001b). It has been shown that there is a long-range persistence,
which allows for construction of good forecasts by means of ARFIMA processes.

All the stocks are traded on the NYSE and we take the daily closing prices and
monthly closing prices to construct corresponding returns. The data is adjusted for
splits and dividends. We find the typical properties of financial returns: negative
skewness (with the exception of PG), leptokurtosis and non-normality. The average
(across stocks) mean daily return is 0.05% and the average daily standard deviation
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is 1.9%. From the daily data log monthly returns are constructed by using the
opening price of the first trading day of the month and the closing price of the last
day. These returns are then used to construct rolling window sample covariance
matrices, used in the first two forecasting models.

4 Results

In this section we present and discuss the results on the performance of the
forecasting models described in Section 2.

In order to asses the forecasting performance, we employ Diebold–Mariano
tests for each of the variance and covariance series. Then we measure the deviation
of the forecast as a matrix from its target by using again the Frobenius norm, which
gives an overall idea of the comparative performance of the models. Of course, if
the individual series are well forecast, so will be the matrix. As a target or ‘true’
covariance matrix, we choose the realized covariance matrix. First, we present
some graphical results. Out of the total of 120 variance and covariance forecast
series, Figure 1 plots nine representative cases, for the sample covariance and the
RiskMetricsTM model, against the realized series. The name, which appears above
each block in the figure, represents either a variance series (e.g. EK), or a covariance
one (e.g. GE,AA).

Both forecasts are quite close, and as can be seen, they cannot account properly
for the variation in the series. As the tests show, however, the RiskmetricsTM fares
better and is the best model among the sample based ones. It is already an acknowl-
edged fact that financial returns have the property of volatility clustering. This
feature is also clearly evident in the figure, where periods of low and high volatil-
ity can be easily distinguished, which suggests that variances and covariances tend
to exhibit positive autocorrelation. Figure 2 shows the autocorrelation functions
for the same nine series of realized (co)variances. The figure clearly shows that
there is some positive serial dependence, which usually dies out quickly, suggest-
ing stationarity of the series. Stationarity is also confirmed by running Augmented
Dickey–Fuller (ADF) tests, which reject the presence of an unit root in all series
at the 1% significance level.

The observed dependence patterns suggest the idea of modelling the variance
and covariance series as well as their shrunk versions as ARMA processes. This
resulted in a few cases in which the matrix forecast was not positive definite (16 out
of 176 for the original series and 8 out of 176 for the shrunk series). Thus the forecast
in expression (24) seems to be reasonable and as we shall see later, compares well
to the sample covariance based models. In a GARCH framework, the conditional
variance equation includes not only lags of the variance, but also lags of squared
innovations (shocks). When mean returns are themselves unpredictable (the usual
approach is to model the mean equation as an ARMA process), the shock is simply
the return. This fact led us to include lags of squared returns (for the variance series)
and cross-products (for the covariance series) as in the ARMAX(p, q, 1) model in
Eq. (23). This added flexibility, however, comes at the price of a drastic increase of
the non-positive definite forecasts (108 and 96 out of 176, respectively). Thus the
forecast in Eq. (24) comes quite close to the simple realized and shrunk realized
covariance models in Sections 2.4 and 2.5, respectively. A solution to this issue is
to decompose the matrices into their lower triangular Cholesky factors, forecast
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Fig. 1 Comparison of the sample covariance based (Sample) and RiskmetricsTM (RM) forecast
against the realized covariance (True).

the Cholesky series, and then reconstruct the matrix. This leads to the forecasting
formula in Eq. (25), which defines the drc − Chol and dsrc − Chol forecasting
models for the simple realized and shrunk realized covariance case, respectively.
A drawback of this approach is that the Cholesky series do not have an intuitive
interpretation. They are simply used as a tool to constrain the forecasts to satisfy the
complicated restrictions implied by the positive definiteness requirement. Another
drawback is that the Cholesky decomposition involves nonlinear transformations
of the original series. Thus, if one can adequately forecast the nonlinear transfor-
mation, this does not immediately mean that applying the inverse transformation
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Fig. 2 Autocorrelation functions of the realized variance and covariance series.

to the forecast will produce a good forecast of the initial series. So there is a
trade-off between the possibility of including more information in the forecast and
obtaining positive definite matrices on the one hand, and the distortions caused by
the non-linearity of the transformation on the other. It turns out that in our case
the beneficial effects outweigh the negative ones. Figure 3 shows the drc −Chol

and the RiskMetricsTM forecast for the same nine variance and covariance series.
From the figure it is evident that the dynamic forecasts track the true series much
closer than the RiskMetricsTM forecasts, especially at the end of the period when the
(co)volatilities were more volatile. The dsrc − Chol forecast looks quite similar
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Fig. 3 Comparison of the RiskmetricsTM forecast (RM) and the dynamic realized covariance
forecast based on Cholesky series (DRC-Chol) against the realized covariance (True).

to the drc − Chol (due to the usually small shrinkage constants), but as we shall
see later the forecasts are in fact somewhat better.

Turning to the statistical comparison of the forecasting methods, we first
briefly present the Diebold–Mariano testing framework as in Harvey et al.
(1997). Suppose a pair of l-step ahead forecasts h1 and h2, h1, h2 ∈ H have
produced errors (e1t , e2t ), t = 1, . . . , T . The null hypothesis of equality of fore-
casts is based on some function g(e) of the forecast errors and has the form
E [g(e1t ) − g(e2t )] = 0. Defining the loss differential dt = g(e1t ) − g(e2t ) and
its average d̄ = T −1 ∑T

t=1 dt , the authors note that ‘the series dt is likely to be
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autocorrelated. Indeed, for optimal l-steps ahead forecasts, the sequence of fore-
cast errors follows a moving average process of order (l − 1). This result can be
expected to hold approximately for any reasonably well-conceived set of forecasts.’
Consequently, it can be shown that the variance of d̄ is, asymptotically,

Var
[
d̄

] ≈ T −1

[
γ0 + 2

l−1∑
k=1

γk

]
, (26)

where γk is the kth autocovariance of dt . The Diebold–Mariano test statistic is

S1 = [
V̂ar

[
d̄

]]−1/2
d̄, (27)

where V̂ar
[
d̄

]
is obtained from Eq. (26) by substituting for γ0 and γk the sam-

ple variance and autocovariances of dt , respectively. Tests are then based on the
asymptotic normality of the test statistic. Noting that we only consider 1-step ahead
forecasts in this paper, the series dt should not be autocorrelated. As already noted
above, this is expected to hold for any reasonably constructed forecasts. Actually,
however, the sample based forecasts are not really reasonable in the sense that
they do not account for the serial dependence of the process they are supposed
to forecast. Thus, the degree of autocorrelation in the dt series, when either h1 or
h2 is a sample based forecast, will correspond to the degree of dependence in the
series to be forecast. For this reason, ignoring autocovariances in the construction
of the Diebold–Mariano tests will lead to an error in the test statistic. To correct
for this we include in V̂ar

[
d̄

]
the first k significant autocorrelations for each of the

120 series.
Table 1 summarizes the results of the Diebold–Mariano tests carried out

pairwise between all models for all 120 series.
The first entry in each cell of the table shows the number of series (out of

120) for which the model in the corresponding column outperforms the model in
the corresponding row. The second entry corresponds to the number of significant

Table 1 Results from the Diebold–Mariano tests

s ss rm rc src drc dsrc drc− dsrc−
Chol Chol

s – 85/28 106/50 14/1 16/1 47/20 89/37 93/49 100/55
ss 20/0 – 106/47 14/1 16/1 47/20 89/37 92/49 100/55
rm 14/0 14/0 – 7/1 11/1 37/7 73/29 85/33 89/37
rc 106/60 106/61 113/69 – 105/86 119/59 120/88 115/80 117/88
src 104/55 104/56 109/69 0/0 – 119/50 120/86 114/77 117/85
drc 73/12 73/12 83/26 1/0 1/0 – 104/31 98/47 103/58
dscr 31/3 31/3 47/8 0/0 0/0 1/0 – 69/28 83/35
drc (Chol) 27/8 28/8 35/10 5/1 6/1 22/7 51/12 – 91/19
dsrc (Chol) 20/7 20/7 31/8 3/1 3/1 17/6 37/11 29/3 –

Note: Due to the definition of the shrinkage target, the first numbers in the pairs highlighted in
bold do not sum up to 120, since the variance series are unchanged in their respective ‘shrunk’
versions. Thus, in these cases there are only 105 series forecasts to be compared.
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outperformances according to the Diebold–Mariano tests at the 5% significance
level. Hence, the table is in a sense symmetric, as the number of times model h1
outperforms model h2 plus the number of times model h2 outperforms model h1
(given by the first number in each cell) sum up to 120—the total number of series.
This is not the case, only for the pairs highlighted in bold, because the 15 variance
series are unchanged in their respective ‘shrunk’ versions.7 Thus, in these cases
there are only 105 covariance series forecasts to be compared.

At first glance one can notice that the worst performing models are the rc

and src models. Among the sample based forecasts the RiskMetricsTM is the one
which delivers the best performances. The comparison between the sample and
the shrinkage sample forecasts shows that shrinking has indeed improved upon the
sample covariance matrix. This holds also for the realized covariance matrix. Here,
the result is reinforced by the fact that shrinking also increases the probability of
obtaining a positive definite forecast. In fact, the quite poor performance of the drc
model is not due to the poor forecasting of the series themselves, but due to the
large error, introduced by taking the previous realized covariance matrix, in case
of a non-positive definite forecast (see Eq. (24)). Even though this only happens
in 16 out of 176 cases, it is enough to distort the forecast considerably. The main
result of this paper, however, arises from the comparison of the dynamic models
with the sample based ones, which can be drawn by considering the last three
columns of the table. For most of the series the dynamic models provide better
forecasts, which results in smaller errors in the covariance matrix forecasts, as will
be shown later. Despite the fact that the number of significant outperformances is
not strikingly high (due to the small number of periods for evaluation), it is still
clear that the dynamic models outperform decisively even the best model among the
sample based ones. Furthermore, as noted earlier, the forecasts using the Cholesky
decomposition appear to be better compared to those which model the variance
and covariance series directly. This result comes mainly as a consequence of the
considerable explanatory power of the lagged shocks in addition to the lagged
(co)variances, which could not have been utilized had not we assured the positive
definiteness of the forecasts.

In order to understand better the benefits from modelling the variance and
covariance series dynamically, we shall consider an alternative (but closely related)
measure of forecasting error. In Section 2.2 it was shown how the Frobenuis norm
can be used as a measure of distance between two matrices. Here we will utilize
this concept again by considering the following definition of the forecast error in
terms of a matrix forecast

e
(h)
t =

∥∥∥�̂(h)
t |t−1 − �RC

t

∥∥∥2
, h ∈ H. (28)

The root mean squared prediction errors (RMSPE) are collected in Table 2.
The ranking of the models according to this table is quite similar to the one

following from Table 1. The only difference is that now the dsrc model appears to
be somewhat better than the dsrc −Chol, which is most probably due to chance,
since as we saw earlier the latter model forecasts most of the series better. As a
conclusion, we can state again that in general the dynamic models outperform the
sample covariance based ones.

7 By shrinking towards the equicorrelated matrix, the variances do not change.
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Table 2 Root mean squared prediction
errors based on the Frobenius norm

RMSPEs 0.06021
RMSPEss 0.06016
RMSPErm 0.05887
RMSPErc 0.06835
RMSPEsrc 0.06766
RMSPEdrc 0.06004
RMSPEdsrc 0.05749
RMSPEsrc−Chol 0.05854
RMSPEdsrc−Chol 0.05799

5 Conclusion

Volatility forecasting is crucial for portfolio management, option pricing and other
fields of financial economics. Starting with Engle (1982) a new class of econo-
metric models was developed to account for the typical characteristics of financial
returns volatility. This class of models grew rapidly and numerous extensions were
proposed. In the late 1980s these models were extended to handle not only volatil-
ities, but also covariance matrices. The main practical problem of these models
is the large number of parameters to be estimated, if one decides to include more
than a few assets in the specification. Partial solutions to this ‘curse of dimen-
sionality’ were proposed, which impose restrictions on the system dynamics. Still,
modelling and forecasting return covariance matrices remains a challenge. This
paper proposes a methodology which is more flexible than the traditional sample
covariance based models and at the same time is capable of handling a large num-
ber of assets. Although conceptually this methodology is more elaborate than the
above mentioned traditional models, it is easily applicable in practice and actu-
ally requires shorter historical samples, but with a higher frequency. The gains
come from the fact that with high-frequency observations, the latent volatility
comes close to being observable. This enables the construction of realized vari-
ance and covariance series, which can be modelled and forecast on the basis of their
dynamic properties. Additionally, we show that shrinking, which has been shown
to improve upon the sample covariance matrix, can also be helpful in reducing the
error in the realized covariance matrices. A practical drawback which appears in
this framework is that the so constructed forecasts are not always positive definite.
One possible solution to this is to use the Cholesky decomposition as a method of
incorporating the positive definiteness requirement in the forecast.

The paper shows that on the monthly frequency this approach produces bet-
ter forecasts based on results from Diebold–Mariano tests. The possible gains
from a better forecast are, e.g. construction of mean-variance efficient portfolios.
Providing a more accurate forecast of future asset comovements will result in
better balanced portfolios. These gains will be most probably higher and more
pronounced if intradaily returns are used for the construction of daily realized
covariance matrices, which remains a possible avenue for further research. It has
been shown (e.g. by Andersen et al. (2001a)) that realized daily volatilities and
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correlations exhibit high persistence. Since by incorporating intra-daily informa-
tion these realized measures are also quite precise, this serial dependence can be
exploited for volatility forecasting. A possible extension of the methodological
framework suggested in the paper could be modelling the realized series in a vec-
tor ARMA system, in order to analyze volatility spillovers across stocks, industries
or markets, which however would again involve a large number of parameters.

A closely related area of research is concerned with the methods for evaluation
of covariance matrix forecasts. In this paper we have used purely statistical evalua-
tion tools based on a symmetric loss function. An asymmetric measure in this case
may have more economic meaning, since it is quite plausible to assume that if a
portfolio variance has been overestimated, the consequences are less adverse than
if it has been underestimated. In a multivariate context Byström (2002) uses as an
evaluation measure of forecasting performance the profits generated by a simu-
lated trading of portfolio of rainbow options. The prices of such options depend
on the correlation between the underlying assets. Thus the agents who forecast the
correlations more precisely should have higher profits on average.

Further, the models presented in this paper can be extended by introducing the
possibility of asymmetric reaction of (co)volatilities to previous shocks (leverage).
This can be achieved by introducing some kind of asymmetry in Eq. (23), e.g.
by including products of absolute shocks or products of indicator functions for
positivity of the shocks.
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