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Preface

The structure of the book was proposed in the lectures given by Aleskerov in
1998–2000 in Boĝaziçi University (Istanbul, Turkey), however, different parts of
the course were given by Ersel in 1975–1983 in the Ankara University (Turkey) and
by Piontkovski in 2004–2010 in the National Research University Higher School of
Economics (Moscow, Russia).

The main aim of the book is, naturally, to give students the fundamental notions
and instruments in linear algebra. Linearity is the main assumption used in all fields
of science. It gives a first approximation to any problem under study and is widely
used in economics and other social sciences. One may wonder why we decided
to write a book in linear algebra despite the fact that there are many excellent
books such as [10, 11, 19, 27, 34]? Our reasons can be summarized as follows.
First, we try to fit the course to the needs of the students in economics and the
students in mathematics and informatics who would like to get more knowledge in
economics. Second, we constructed all expositions in the book in such a way to
help economics students to learn mathematics and the proof making in mathematics
in a convenient and simple manner. Third, since the hours given to this course
in economics departments are rather limited, we propose a slightly different way
of teaching this course. Namely, we do not try to give all proofs of all theorems
presented in the course. Those theorems which are not proved are illustrated via
figures and examples, and we illustrated all notions appealing to geometric intuition.
Those theorems which are proved are proved in a most accurate way as it is done for
the students in mathematics. The main notions are always supported with economic
examples. The book provides many exercises referring to pure mathematics and
economics.

The book consists of eleven chapters and five appendices. Chapter 1 contains
the introduction to the course and basic concepts of vector and scalar. Chapter 2
introduces the notions of vectors and matrices, and discusses some core economic
examples used throughout the book. Here we begin with the notion of scalar product
of two vectors, define matrices and their ranks, consider elementary operations
over matrices. Chapter 3 deals with special important matrices – square matrices
and their determinants. Chapter 4 introduces inverse matrices. In Chap. 5 we
analyze the systems of linear equations, give methods how to solve these systems.
Chapter ends with the discussion of homogeneous equations. Chapter 6 discusses
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more general type of algebraic objects – linear spaces. Here the notion of linear
independence of vectors is introduced, which is very important from economic
point of view for it defines how diverse is the obtained information. We consider
here the isomorphism of linear spaces and the notion of subspace. Chapter 7
deals with important case of linear spaces – the Euclidean ones. We consider
the notion of orthogonal bases and use it to construct the idea of projection and,
particularly, the least square method widely used in social sciences. In Chapter 8
we consider linear transformations, and all related notions such as an image and
kernel of transformation. We also consider linear transformations with respect to
different bases. Chapter 9 discusses eigenvalues and eigenvectors. Here we consider
self-adjoint transformations, orthogonal transformations, quadratic forms and their
geometric representation. Chapter 10 applies the concepts developed before to the
linear production model in economics. To this end we use, particularly, Perron–
Frobenius Theorem. Chapter 11 deals with the notion of convexity, and so-called
separation theorems. We use this instrument to analyse the linear programming
problem.

We observe during the years of our teaching experience that induction argu-
ment creates some difficulties among students. So, we explain this argument in
Appendix A. In Appendix B we discuss how to evaluate the determinants. In
Appendix C we give a brief introduction to complex numbers, which are important
for better understanding the eigenvalues of linear operators. In Appendix D we
consider the notion of the pseudoinverse, or generalized inverse matrix, widely used
in different economic applications.

Each chapter ends with the number of problems which allow better understanding
the issues considered. In Appendix E the answers and hints to solutions to the
problems from previous chapters and appendices are given.

Fuad Aleskerov
Hasan Ersel

Dmitri Piontkovski
Moscow–Istanbul
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1Some Basic Concepts

1.1 Introduction

Suppose we study a number of firms by analyzing the following parameters: a1 –
number of workers, a2 – capital stock and a3 – annual profit. Then each firm can be
represented as a 3-tuple a D .a1; a2; a3/.

The set of all n-tuples .a1; : : : ; an/ of real numbers is denoted by Rn.
For n D 1, we have the real line R. A point a is represented by its value xa on

the real line R.

Example 1.1. Let a; b; c denote three different automobiles with the respective
prices pa > pb > pc > 0. One can order these three cars on the price axis, p,
as shown in Fig. 1.1.

Note that since prices are non-negative, p-axis coincides with nonnegative real
line RC in the above example.

1.1.1 Linearity

Price of the two cars a and b is equal to the sum of their prices:

p.a˚ b/ D pa C pb:

The addition is a linear operation.
But it can also be the case that

p.a˚ b/ D p2
a C p2

b:

This, however, is not a linear relation, and we will not study such nonlinear relations
in this book.

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 1,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1.1 Price axis �
0 pc pb pa p
� � � �

Fig. 1.2 Coordinates in the
plane R2
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1.1.2 System of Coordinates on the Plane R2

A point a can be represented in R2 by its coordinates, i.e. the ordered pair .xa; ya/,
see Fig. 1.2.

Distance on the plane between two points a and b is denoted by d.a; b/, where

d.a; b/2 D .xb � xa/2 C .yb � ya/2;

and
d.a; b/ D

p
.xb � xa/2 C .yb � ya/2:

Example 1.2. Let a be a firm, xa the number of workers, and ya the cost of the
output (say, in $) of the firm a.

Consider now an equation which relates the variable x to y as

y D kx C b;

where k; b are constants. The above equation represents an linear function.
Let us first study the case when k D 2; b D �1, so that y is an increasing

function of x. Since y D 2x� 1, for x D 0 we have y D �1 (Fig. 1.3). This means,
for example, that even in the absence of workers the factory should be kept in some
condition which, in turn, costs $1. This is called fixed cost.

Example 1.3. Consider a firm whose profit function is

y D �2x C 3;

where x is the output level (Fig. 1.4). It indicates that at some output level the firm’s
profit declines to zero, and beyond this point it incurs loss.
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Fig. 1.3 The linear cost
function: fixed cost case
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Fig. 1.4 The linear cost
function: the case of loss at
some output level
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Fig. 1.5 The linear demand
function

�

�

p

qd

qd D a � bp

a

a
b

�
�
�
�
�

�
�
�
�
�

Let us switch to a more realistic model. Consider a market with a single good,
and assume that the quantity demanded qd is a decreasing function of the price p of
the good, i.e.,

qd D a � bp;

where a; b > 0(Fig. 1.5).
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Fig. 1.6 The linear supply
function
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Fig. 1.7 An equilibrium

�

Assume next that the supplied quantity qs of the good is an increasing, linear
function of p, i.e.,

qs D �c C dp;

where c; d > 0, see Fig. 1.6.
Consider now the following general definition:

Definition 1.1. Equilibrium is a state of system in which there is no tendency to
change.

Example 1.4. Ball inside a bowl (see Fig. 1.7).

Let us define an “excess demand” as the difference between demand and supply.
A market is said to be in equilibrium at the price p if the excess demand for the
good is zero, i.e.,

qd .p/� qs.p/ D 0:

For the market example, the equilibrium price can be found by simultaneously
solving the two equations

qd .p/ D q D a � bp;

and
qs.p/ D q D �c C dp:

A typical equilibrium is illustrated in Fig. 1.8.
A unique solution for the equilibrium as in the above figure can arise only for

certain values of parameters a; b; c and d .
In general, two lines in a plane are either intersected or parallel or coincident as

depicted in Fig. 1.9.
Solving a system of three equations in two unknowns corresponds to intersecting

three lines on the plane. There may arise a number of possibilities as shown in the
figures below, see Fig. 1.10.
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Fig. 1.8 The market equilibrium
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Fig. 1.9 Two lines on a plane with different locational characteristics

In the first of the graphs in Fig. 1.10 three lines intersect at a unique point. In the
second graph every pair of the three lines intersects at a unique point, giving three
distinct intersection points. In the third graph, the lines l2 and l3 coincide while they
intersect with l1 at a unique point. In the fourth graph all lines coincide. In the fifth
graph lines l2 and l3 coincide which are parallel to the separate line l1. In the next
graph, the separate lines l2 and l3 are parallel to each other, intersecting with line l1
at two distinct points. Finally, in the last graph the three separate lines are parallel.

Solving the system of three equations in three unknowns

8
<

:

a11x1 C a12x2 C a13x3 D b1;

a21x1 C a22x2 C a23x3 D b2;

a31x1 C a32x2 C a33x3 D b3

is much more difficult than in the case of two equations with two unknowns.
It is obvious that in the case of higher dimensions the number of possibilities is

enormously increasing, so that graphical tools then become almost inapplicable.
Thus we need some analytical tools to solve and analyze arbitrarily large finite
systems of equations. To this end, in the following chapters we will deal with vectors
and matrices.
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Fig. 1.10 Three lines on a plane with different locational characteristics

Example 1.5. Consider the following three good economy. Suppose that all of these
goods are used in the production of others. Let xij denote the amount of the i -th
good used to produce good j , and let xi denotes the total amount of the produced
good i .

Let the amount of good i used to produce one unit of good j is given by

aij D xij =xj :

These are called input/output coefficients. Suppose also that each of these goods
demanded for final use (i.e., for the consumption of households).

Suppose we have the following statistical information.

x1 x2 x3

x1 a11 D 0:3 a12 D 0:2 a13 D 0:3

x2 a21 D 0:2 a22 D 0:3 a23 D 0:2

x3 a31 D 0:4 a32 D 0:6 a33 D 0:4
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The final demand for good 1 is y1 D 20, for good 2 is y2 D 30 and for good 3 is
y3 D 40. Then the total output level which satisfies the input requirements and final
demand can be found by solving the following system of linear equations

8
<

:

x1 D 0:3x1 C 0:2x2 C 0:3x3 C 20;

x2 D 0:2x1 C 0:3x2 C 0:2x3 C 30;

x3 D 0:4x1 C 0:6x2 C 0:4x3 C 40:

1.2 Microeconomics: Market Equilibrium

In Sect. 1.1 we have raised the problem about intersection of lines in a space. In
this and the next sections we give some micro- and macroeconomic reasons for this
problem.

In contemporary economies a wide variety of goods are produced to satisfy
the needs of people. These goods are produced by many different producers and
demanded by many different consumers (individuals or institutions). Throughout
history, societies developed various methods to find an answer to satisfy both con-
sumers and producers. One such method that is a widely used is price mechanism.
In this framework, both demand and supply are assumed to be influenced by prices
of goods plus other factors. When other factors are taken as given, a change in the
price of a good affects both its demand and its supply.

Economists therefore developed the partial-equilibrium approach to examine a
market for a particular good in isolation of the other goods. In this framework, by
taking factors other than price as given, quantity demanded and supplied for a good
can be considered as a function of its price. Using the supply and demand apparatus,
one can find the price and corresponding quantity at which both consumers and
producers are satisfied, i.e. the point at which demand equals supply. This problem
is discussed below.

Partial-equilibrium approach, however, fails to take into account the fact that
markets interact with each other. A change in the price of a good affects the
demand and/or the supply of another. Therefore in a more realistic framework,
where many goods simultaneously produced, demanded and exchanged, a more
general framework is needed. Multi-market equilibrium approach is a first step in
this direction.1

1Partial equilibrium analysis has a long history in economics. It was elaborated and widely used by
French economist Antoine Augustin Cournot (1801–1877) and English economist Alfred Marshall
(1842–1924). General equilibrium analysis in economics, on the other hand, seeks to explain the
behavior of supply, demand and prices in an economy with many markets. French economist
Marie-Esprit-Léon Walras (1834–1910) is considered as the father of this approach.
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1.2.1 Equilibrium in a Single Market

Let us consider an isolated market for good i . Suppose that both the demand (qd
i )

and supply (qs
i ) of this good is a function of its price (pi ), only.2

qd
i D ˛0 � ˛1pi (1.1)

qs
i D �ˇ0 C ˇ1pi (1.2)

These functions assume that there is a linear relation between the quantity
demanded (or supplied) and the price of the good i .

Remark 1.1. Although, in economics texts (1.1) and (1.2) are usually referred to as
linear demand and supply functions, from a strictly mathematical point of view, they
are not. They have an extra constant slope term. In mathematics linear functions with
a constant slope are called affine functions. Notice that in the case of affine functions,
when the explanatory variable (in this example price) in the equation is zero,
explained variable (in this example quantity demanded or supplied, respectively)
can take non-zero values. Linear function formulation, on the other hand, does not
allow it.

Question 1.1. Why in economics affine functions are used in formulating demand
and supply functions?

All of the coefficients in (1.1) and (1.2) are assumed to be positive. The negative
sign in front of the slope coefficient in the demand function indicates that, as price
of the good increases, its demand declines. The reverse holds for the supply. The
negative sign in front of the intercept term in the supply equation implies that supply
will become positive only after the price of the good in question is positive and
sufficiently high.

The market for good i is said to be in ‘equilibrium’ when the demand for good i
is equal to its supply, i.e.

qd
i D qs

i (1.3)

Recall that the difference between demand and supply is called excess demand.
Using this concept, market equilibrium can also be characterized as the point at
which excess demand is zero, i.e.

E.pi / D qd
i � qs

i D 0 (1.4)

2This basic demand and supply model is, obviously, an oversimplification. In economics, both
demand and supply of a good is treated as functions of many variables, including prices of other
goods, income etc. In the next section on multi-market equilibrium, prices of other goods will be
allowed to influence supply and demand.
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Suppose we want to find the equilibrium of the market described by (1.1), (1.3)
or (1.1), (1.4). Such an equilibrium point can be characterized by two variables,
equilibrium price and the quantity. An easy way to find this point, is to substi-
tute (1.1) and (1.2) into (1.4), i.e.

E.pi / D .˛0 � ˛1pi / � .�ˇ0 C ˇ1pi / D 0;

from which the equilibrium price Op can be derived as

Opi D ˛0 C ˇ0

˛1 C ˇ1

(1.5)

Equilibrium quantity level, on the other hand, can be obtained by substitut-
ing (1.5) either in (1.1) (or (1.2)), which gives

Oqi D ˛0ˇ1 � ˛1ˇ0

˛1 C ˇ1

(1.6)

Obviously, (1.6) gives an economically meaningful result, i.e. Oqi > 0 only if
˛0ˇ1 � ˛1ˇ0 > 0.

Example 1.6. Let
qd D 38� 2p

be the demand function and
qs D �6C 9p

be the supply function for some good. Find the equilibrium price and corresponding
quantity level.

Answer: Op D 4; Oq D 30.

1.2.2 Multi-Market Equilibrium

Consider an economy with two goods. Suppose that the supply and demand of each
good are functions of its own price as well as the price of other good. Such a system
can be represented by the following four equations:

qd
1 D ˛01 C ˛11p1 C ˛12p2 (1.7)

qs
1 D ˇ01 C ˇ11p1 C ˇ12p2 (1.8)

qd
2 D ˛02 C ˛12p1 C ˛22p2 (1.9)

qs
2 D ˇ02 C ˇ12p1 C ˇ22p2 (1.10)
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For such economy, multi-market equilibrium is the quadruple . Op1; Op2; Oq1; Oq2/ at
which

E1. Op1; Op2/ D qd
1 . Op1; Op2/� qs

1. Op1; Op2/ D 0 (1.11)

and
E2. Op1; Op2/ D qd

2 . Op1; Op2/� qs
2. Op1; Op2/ D 0 (1.12)

are simultaneously satisfied.

Exercise 1.1. (i) Using (1.7)–(1.12) find the equilibrium prices for goods 1 and 2;
(ii) what is the equilibrium quantity for good 1?

Hint. Use (1.11) and (1.12) to derive two equations with two unknowns (prices).
Using one of the equations express one price in terms of the other. Substituting this
relation in the other equation one gets an expression for one of the prices in terms
of the parameters of the model. The expressions for other variables can be obtained
in a similar fashion through substitution.

Example 1.7. Consider an economy with two goods .q1; q2/. Let supply and
demand functions for these goods be as follows. For good 1:

qd
1 D 3 � 2p1 C 2p2;

qs
1 D �4C 3p1:

For good 2:
qd

2 D 22C 2p1 � p2;

qs
2 D 20C p2:

Find the equilibrium prices for goods 1 and 2.

Answer: p1 D 3; p2 D 4.

1.3 Macroeconomic Policy Problem

After the Second World War, governments’ role in management of the economy
was widely accepted. The mode of government intervention varied from extensive
planning both at macro and micro levels in socialist economies to the more
market oriented monetary and fiscal policies adopted in advanced economies. Many
developing countries (such as India and Turkey) chose to implement development
planning which was less comprehensive than the socialist planning but still requires
much more intensive government intervention that the economic policies used in
advanced market economies.

As the commitment of the government became increasingly more extensive,
it became necessary to have a framework to deal with them simultaneously and
in a consistent manner. The seminal contribution in this field was made by Jan
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Tinbergen3’s celebrated book, [31], which became the cornerstone of the theory
of economic policy since then.

Tinbergen’s framework consists of three basic ingredients:
1. A set of instruments which are controlled by the policy maker.
2. A set of targets. They are not controlled by the policy maker, but they are of

interest to the policy maker due to their contribution to the welfare of the society.
3. A quantitative model describing the relationships between the targets, instru-

ments and other variables (i.e. endogeneous variable that are not important from
economic policy purpose and purely exogenous variables, i.e., those variables,
whose values are externally given and can not be controlled by the policy maker).

1.3.1 A Simple Macroeconomic Policy Model with One Target

Consider the following simple one sector macroeconomic model,

Y D C C I CG CX �M; (1.13)

C D cYd ; 0 < c < 1 (1.14)

Yd D Y � T (1.15)

T D tY; 0 < t < 1 (1.16)

G D T CD; (1.17)

M D mY; 0 < m < 1; (1.18)

where Y – Gross Domestic Product (GDP), C – Private Consumption, T – Tax
Revenues, I – Private Investment, G – Government Expenditure, X – Exports, M –
Imports, D – Budget Deficit.

The first equation (1.13) of the model, is definitional. It defines the GDP
from expenditure side. Equation (1.14) is a consumption function, which is a
behavioral equation. It relates private consumption to disposable income, which
is defined in (1.15) as the income that households can spend after paying their
taxes. In this equation c is marginal propensity to consume. It gives the increase
in aggregate private consumption, when GDP increased one unit. Equation (1.16)
is an institutional equation, reflects the tax code. A certain percentage (t) of the
GDP is collected as taxes. Equation (1.17) is another definitional equation which
indicates that government expenditures can be financed either through collecting
taxes or through borrowing. Equation (1.18) is import function, which connects
imports to GDP. It is a behavioral equation, which asserts that as GDP increases

3Jan Tinbergen (1903–1994) was a distinguished Dutch economist. He awarded the First Nobel
Prize in economics (1969), which he shared for having developed and applied dynamic models for
the analysis of economic processes.
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demand for foreign goods increase. In this equation m denotes marginal propensity
to import.

The model has six equations. Each one of these equations describes a different
variable. These are endogenous variables of the model. Their values are determined
by the model. Notice that the model has three exogenous variables, I; X and D.
Here the private investment I is treated as exogenous for the sake of simplicity.4

These are referred to as data variables. Let us assume that their exogenously
given values are denoted by I � and X�, respectively. Third exogenous variable
is budget deficit (D). It requires special attention. The magnitude of this variable
is determined by the parliament when it approves the national budget submitted by
the government. In other words, in contrast to I and X , D can be controlled by the
policy makers. Therefore it is called a policy instrument. Let us distinguish it from
other exogenous variables by denoting its value as QD, i.e. D D QD.

The following informal statement is called Tinbergen theorem.
In a Tinbergen type economic policy framework, the number of targets should be

equal to number of instruments.

Explanation. Tinbergen in [31, Chap. 4] discusses the meaning of the equality of
the number of instruments and targets is discussed. When this condition is satisfied,
the unique values of the instruments to achieve given targets can be determined. The
problems that arise when the number of instruments are not equal to the number of
targets is addressed in the following chapter of the Tinbergen’s book [31, Chap. 5].
The problem will be discussed from mathematical point of view in Chap. 5 of this
book. ut

In the light of this fundamental theorem, the macro model given above allows the
policy maker to choose one target variable. Suppose the policy maker chose GDP
as the target variable. Then the question at hand can be formulated as follows: How
much the government should borrow in order to achieve the targeted GDP level?

Substituting (1.14) to (1.18) in (1.13), and rearranging, we have

Y D 1

1� c.1 � t/ � t Cm

�
I � CX� C eD

�
(1.19)

When the target value of the GDP, say OY is given, the required amount of budget
deficit (i.e. the value of the instrument) is obtained from (1.19) as

eD D .1 � c.1 � t/ � t Cm/ OY � �I � CX�� (1.20)

Example 1.8. Consider the model given by (1.13)–(1.18). Suppose that the follow-
ing coefficients are estimated

4In fact, private investment is a very important component of the GDP and therefore any
macroeconomic model that claims to be characterizing of the working economy should be in a
position of explaining private investment activity.
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c D marginal propensity to consume D 0:9;

t D tax/GDP ratio D 0:15;

m D marginal propensity to import D 0:3:

Assume that I D $50 and X D $50 (billion). Suppose the authorities targeted the
GDP level as $320 billion.

How much the government should borrow?

Answer: $23:2 billion.

1.3.2 A Macroeconomic Policy Model with Multiple Targets
and Multiple Instruments

In most instances, governments have more that one target. For example, they find
themselves both attaining a satisfactory employment level and constraining the
current account deficit at a reasonable level. Suppose that it is the case for an
economy which is represented by the following model.

Y D C C I CG CX �M; (1.21)

G D GC CGI ; (1.22)

C D cY; 0 < c < 1 (1.23)

I D k1.Y � Y�1/C k2GI ; k1; k2 > 0 (1.24)

M D mC C CmI I CmGGI CmX X; 0 < mC ; mI ; mG; mX < 1; (1.25)

N D nY; n > 0 (1.26)

B D pxX � pmM: (1.27)

In this system of equations there are three groups of variables:
1. Endogenous variables

Y – GDP, C – Private Consumption, I – Private Investment, M – Imports, N –
Employment, B – Current Account of the Balance of Payments.

2. Exogenous Variables
(a) Data variables: exports X and last years GDP Y�1.
(b) Instruments: GC – Public Consumption Expenditures, GI – Public Invest-

ment Expenditures.
3. Target Variables The target variables and their values determined by the policy

maker are as follows

B D OB;

N D ON :
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The parameters are the following: c – share of consumption in income, t –
average tax rate, m – import per unit of output, n – employment per unit of output
(the reverse of productivity), px and pm – export and import prices, the coefficient
k1 shows how much investment will be undertaken by the private agents in response
to an increase in GDP from its previous period level by unit, and k2 shows how
much extra investment will be undertaken if government increases its investment by
unit.

Example 1.9. Consider the model given by (1.21)–(1.27). Let

c D 0:8; k1 D 0:2; k2 D 0:05; mC D 0:1; mI D 0:4; mGD 0:3; mX D 0:2; n D 0:4:

Suppose
Y�1 D 100; X D 30:

Suppose also that the government wants to achieve the following targets

B D 0; N D 60:

Find the amounts of GC and GI .

Solution. We have the system of linear equations:

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Y D C C I CG C 30 �M;

G D GC CGI ;

C D 0:8Y;

I D 0:2.Y � 100/C 0:05GI ;

M D 0:1C C 0:4I C 0:3GI C 0:2 � 30;

60 D 0:4Y;

0 D px30 � pmM:

After the elimination of all variables but GI and GC , we obtain

GI D 93:75r � 68:75 and GC D 62:1875� 68:4375r;

where r D pX =pM .

Question 1.2. Explain and categorize equations (1.21)–(1.27) (definitional, techni-
cal etc.)

Exercise 1.2. Find the values of the instruments that enable the system to achieve
the targeted levels of current account balance and employment.
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1.4 Problems

1. Plot each of the following pair of points on R2 and draw (and calculate the
length of) the line segment connecting them

(a) .4;�10/; .0; 1/; (b) .0; 0/; .�7;�8/; (c) .
p

2;
p

5/; .
p

2;�p5/

2. Consider two points on x-axis. Show that the distance between them is equal to
the absolute value of the difference of their coordinates.

3. Draw the following lines in R2

(a) 3x � 4y D 12; (b) x C y D 10; (c) 2x � 5y D 10; (d) x D 5.

4. Write the equation of the lines determined by the two points in each part of
problem 1.

5. Draw a line having (a) an x-intercept but no y-intercept, (b) a y-intercept but
no x-intercept, (c) x-intercept and y-intercept as coincident.

6. Show that if a ¤ 0, b ¤ 0, then the intercepts of the line

ax C by C c D 0

are .0;�c=b/ and .�c=a; 0/.
7. Show that

x

a
C y

b
D 1

is the equation of a straight line with the intercepts .0; b/ and .a; 0/.
8. Solve 7x � 10 D 0 graphically by considering y D 7x � 10.
9. Draw the lines for each of the following equations.

(a) jxj C jyj D 1; (b) jx C yj D 1.
10. Solve the following systems of equations.

(a)

�
3x � 5y D 15;

2x C y D 5I (b)

�
3x � 5y D 15;

6x � 10y D 30I (c)

�
6x � 10y D 30;

3x � 5y D 10:

11. Let �
z1 D a11y1 C a12y2

z2 D a21y1 C a22y2

and �
y1 D b11x1 C b12x2

y2 D b21x1 C b22x2:

Express z1 and z2 as functions of x1 and x2.



2Vectors and Matrices

2.1 Vectors

Ordered n-tuple of objects is called a vector

y D .y1; y2; : : : ; yn/:

Throughout the text we confine ourselves to vectors the elements yi of which are
real numbers.

In contrast, a variable the value of which is a single number, not a vector, is called
scalar.

Example 2.1. We can describe some economic unit EU by the vector

EU= (output, # of employees, capital stock, profit)

Given a vector y D .y1; : : : ; yn/, elements yi ; i D 1; : : : ; n are called
components of the vector. We will usually denote vectors by bold letters.1 The
number n of components is called the dimension of the vector y. The set of all
n–dimensional vectors is denoted by Rn and called n-dimensional real space2.

Two vectors x; y 2 Rn are equal if xi D yi for all i D 1; 2; : : : ; n.
Let x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ be two vectors. We compare these

two vectors element by element and say that x is greater than y if for all i xi > yi ,
and denote this statement by x > y. Analogously, we can define x � y.

Note that, unlike in the case of real numbers, for vectors when x > y does not
hold, this does not imply y � x. Indeed, consider the vectors x D .1; 0/ and y D
.0; 1/. It can be easily seen that neither x � y nor y � x is true.

1Some other notations for vectors are Ny and �!
y .

2The terms arithmetic space, number space and coordinate space are also used.

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 2,
© Springer-Verlag Berlin Heidelberg 2011
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A vector 0 D .0; 0; : : : ; 0/ (also denoted by N0) is called a null vector.3

A vector x D .x1; x2; : : : ; xn/ is called non-negative (which is denoted by x � 0)
if xi � 0 for all i .

A vector x is called positive if xi > 0 for all i . We denote this case by x > 0.

2.1.1 Algebraic Properties of Vectors

One can define the following natural arithmetic operations with vectors.
Addition of two n-vectors

xC y D .x1 C y1; x2 C y2; : : : ; xn C yn/

Subtraction of two n-vectors

x � y D .x1 � y1; x2 � y2; : : : ; xn � yn/

Multiplication of a vector by a real number �

�y D .�y1; �y2; : : : ; �yn/

Example 2.2. Let EU1 D .Y1; L1; K1; P1/ be a vector representing an economic
unit, say, a firm, see Example 2.1 (where, as usually, Y is its output, L is the number
of employees, K is the capital stock, and P is the profit). Let us assume that it is
merged with another firm represented by a vector EU2 D .Y2; L2; K2; P2/ (that is,
we should consider two separate units as a single one). The resulting unit will be
represented by a sum of two vectors

EU3 D .Y1 C Y2; L1 C L2; K1 CK2; P1 C P2/ D EU1 C EU2:

In this situation, we have also EU2 D EU3 � EU1. Moreover, if the second firm
is similar to the first one, we can assume that EU1 D EU2, hence the unit

EU3 D .2Y1; 2L1; 2K1; 2P1/ D 2 � EU1

gives also an example of the multiplication by a number 2.
This example, as well as other ‘economic’ examples in this book has an

illustrative nature. Notice, however, that the profit of the merged firm might be
higher or lower than the sum of two profits P1 C P2.

3The null vector is also called zero vector.
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The following properties of the vector operations above follow from the defini-
tions:

1a. xC y D yC x (commutativity).
1b. .xC y/C z D xC .yC z/ (associativity).
1c. xC 0 D x.
1d. xC .�x/ D 0.
2a. 1x D x.
2b. �.�x/ D ��.x/.
3a. .�C �/x D �xC �x.
3b. �.xC y/ D �xC �y.

Exercise 2.1. Try to prove these properties yourself.

2.1.2 Geometric Interpretation of Vectors and Operations
on Them

Consider R2 plane. Vector z D .˛1; ˛2/ is represented by a directed line segment
from the origin .0; 0/ to .˛1; ˛2/, see Fig. 2.1.

The sum of the two vectors z1 D .˛1; ˇ1/ and z2 D .˛2; ˇ2/ is obtained by
adding up their coordinates, see Fig. 2.2.

In this figure, the sum z1 C z2 D .˛1C˛2; ˇ1Cˇ2/ is represented by a diagonal
of a parallelogram sides of which being formed by the vectors z1 and z2.

Multiplication of a vector by a scalar has a contractionary (respectively, expan-
sionary) effect if the scalar in absolute value is less (respectively, greater) than unity.
The direction of the vector does not change if the scalar is positive, and it changes
by 180 degrees if the scalar is negative. Figure 2.3 plots scalar multiplication for a
vector x, two scalars �1 > 1 and �1 < �2 < 0.

The difference of the two vectors z2 and z1 is shown on Fig. 2.4.
The projection of the vector a on x�axis is denoted by prxa, and is shown in

Fig. 2.5 below.
Let z1; : : : ; zs be a set of vectors in Rn. If there exist real numbers �1; : : : ; �s not

all being equal to 0 and

Fig. 2.1 A vector on the
plane R2

�

�










�

˛1

˛2 z D .˛1; ˛2/

0
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Fig. 2.2 The sum of two
vectors
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Fig. 2.3 The multiplication
of a vector by a scalar
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Fig. 2.4 The difference
of vectors
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z2

z1

z2 � z1

�1z1 C �2z2 C � � � C �szs D 0;

then these vectors are called linearly dependent.

Example 2.3. Three vectors a D .1; 2; 3/, b D .4; 5; 6/ and c D .7; 8; 9/ are
linearly dependent because
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Fig. 2.5 The projection
of a vector a on the x-axis

�

�

	
	
	
	�

�

a

prxa x

y

Fig. 2.6 Unit vectors in R3

x

y

z

e1=(1,0,0)
e2=(0,1,0)

e3=(0,0,1) 

1a� 2bC 1c D 0:

The vectors z1; : : : ; zs are called linearly independent if

�1z1 C � � � C �szs D 0

holds only whenever �1 D �2 D � � � D �s D 0.
Note that the n vectors e1 D .1; 0; : : : ; 0/, e2 D .0; 1; : : : ; 0/, : : : , en D

.0; 0; : : : ; 1/ (see Fig. 2.6 for the case n D 3) are linearly independent in Rn.
Assume that vectors z1; : : : ; zs are linearly dependent, i.e., there exists at least

one �i , where 1 � i � s, such that �i ¤ 0 and

�1z1 C �2z2 C � � � C �i zi C � � � C �szs D 0:

Then

�i zi D ��1z1 � �2z2 � � � � � �i�1zi�1 � �iC1ziC1 � � � � � �szs;

and
zi D �1z1 C � � � C �i�1zi�1 C �iC1ziC1 C � � � C �szs; (2.1)

where �j D ��j =�i , for all j ¤ i and j 2 f1; : : : ; sg.
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A vector a is called a linear combination of the vectors b1; : : : ; bn if it can be
represented as

a D ˛1b1 C � � � C ˛nbn;

where ˛1; : : : ; ˛n are real numbers. In particular, (2.1) shows that the vector zi is a
linear combination of the vectors z1; : : : ; zi�1; ziC1; : : : ; zs .

These results can be formulated as

Theorem 2.1. If vectors z1; : : : ; zs are linearly dependent, then at least one of
them is a linear combination of other vectors. Vectors one of which is a linear
combination of others are linearly dependent.

2.1.3 Geometric Interpretation in R2

Are the vectors z and �z (see Fig. 2.7) linearly dependent?
Note from Fig. 2.8 that the vector �1z1 C �2z2 is a linear combination of the

vectors z1 and z2. Any three vectors in R2 are linearly dependent!

Remark 2.1. Consider the following n vectors in Rn.

Fig. 2.7 Are these vectors
linearly dependent? �

�

0
	
	
	
	
	
	
	
	�

	
	
	
	�z

�z

Fig. 2.8 A linear
combination of two vectors
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�1z1 C �2z2
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a1 D .1;�2; 0; 0; : : : ; 0/

a2 D .0; 1;�2; 0; : : : ; 0/

:: : :
:: : :
:: : :

an�1 D .0; 0; : : : ; 0; 1;�2/

an D .�2�.n�1/; 0; : : : ; 0; 0; 1/

These vectors are linearly dependent since

2�na1 C 2�.n�1/a2 C � � � C 2�1an D 0:

If n > 40 then 2�.n�1/ < 10�12, a very small number. Moreover, if n > 64, then
2�n D 0 for computers. So, for n > 64, we can assume that in our system an is
given by an D .0; : : : ; 0; 1/. Thus, the system is written as

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

a1 D .1;�2; 0; 0; : : : ; 0/

a2 D .0; 1;�2; 0; : : : ; 0/

:: : :

:: : :

:: : :

an�1 D .0; 0; : : : ; 0; 1;�2/

an D .0; 0; : : : ; 0; 0; 1/

But this system is linearly independent. (Check it!)
This example shows how sensitive might be linear dependency of vectors to

rounding.

Exercise 2.2. Check if the following three vectors are linearly dependent:
(a) a D .1; 2; 1/; b D .�2; 3;�2/; c D .7; 4; 7/;
(b) a D .1; 2; 3/; b D .0;�1; 3/; c D .2;�1; 2/.

2.2 Dot Product of Two Vectors

Definition 2.1. For any two vectors x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/, the dot
product4 of x and y is denoted by .x; y/, and is defined as

.x; y/ D x1y1 C x2y2 C � � � C xnyn D
nX

iD1

xi yi : (2.2)

4Other terms for dot product are scalar product and inner product.



24 2 Vectors and Matrices

Example 2.4. Let a1 D .1;�2; 0; : : : ; 0/ and a2 D .0; 1;�2; 0; : : : ; 0/. Then

.a1; a2/ D 1 � 0C .�2/ � 1C 0 � .�2/C 0 � 0C : : :C 0 � 0 D �2:

Example 2.5 (Household expenditures). Suppose the family consumes n goods. Let
p be the vector of prices of these commodities (we assume competitive economy and
take them as given), and q be the vector of the amounts of commodities consumed
by this household. Then the total expenditure of the household can be obtained by
dot product of these two vectors

E D .p; q/:

Dot product .x; y/ of two vectors x and y is a real number and has the following
properties, which can be checked directly:
1. .x; y/ D .y; x/ (symmetry or commutativity)
2. .�x; y/ D �.x; y/ for all � 2 R (associativity with respect to multiplication by a

scalar)
3. .x1 C x2; y/ D .x1; y/C .x2; y/ (distributivity)
4. .x; x/ � 0 and .x; x/ D 0 iff x D 0 (non-negativity and non-degeneracy).

2.2.1 The Length of a Vector, and the Angle Between
Two Vectors

Definition 2.2. The length of a vector x in Rn is defined as
p

.x; x/ and denoted by

j x j. If x D .x1; : : : ; xn/ then j x jD
q

x2
1 C � � � C x2

n. The angle ' between any
two nonzero vectors x and y in Rn is defined as

cos ' D .x; y/

j x j j y j ; 0 � ' � �: (2.3)

We will see below that this definition of cos ' is correct, that is, the right hand
side of the above formula belongs to the interval Œ�1; 1�.

Let us show first that the angle between two vectors x and y in the Cartesian
plane is the geometric angle (Fig. 2.9).

Take any two vectors x D .x1; x2/ and y D .y1; y2/ in R2. Then y � x D
.y1 � x1; y2 � x2/. By the law of cosines we have

jy � xj2 D jyj2 C jxj2 � 2 jyj jxj cos ';

or

.y1 � x1/2 C .y2 � x2/2 D y2
1 C x2

1 C y2
2 C x2

2 � 2

q
y2

1 C y2
2

q
x2

1 C x2
2 cos ':
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Fig. 2.9 The angle between
two vectors
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'

y

x

y � x

Then

cos ' D y1x1 C y2x2q
y2

1 C y2
2

q
x2

1 C x2
2

D .x; y/

j x j j y j :

Definition 2.3. Two vectors x and y in Rn are called orthogonal (notation: x ? y)
if the angle between them is �=2, i.e. .x; y/ D 0.

Theorem 2.1 (Pythagoras). Let x and y be two orthogonal vectors in Rn. Then

j xC y j2Dj x j2 C j y j2 : (2.4)

Proof. j xCy j2D .xCy; xCy/D .x; x/C .x; y/C .y; x/C .y; y/D j x j2 C j y j2
since x and y are orthogonal. �

The immediate generalization of the above theorem is the following one.

Theorem 2.2. Let z1; : : : ; zs be a set of mutually orthogonal vectors in Rn, i.e., for
all i; j and i ¤ j; .zi ; zj / D 0. Then

j z1 C z2 C � � � C zs j2Dj z1 j2 C j z2 j2 C � � �C j zs j2 : (2.5)

From the definition of the angle (2.3), it follows that

�1 � .x; y/

j x jj y j � 1;

since ' 2 Œ0; ��. The above inequalities can be rewritten as

.x; y/2

j x j2j y j2 � 1;

or
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.x; y/2 � .x; x/ � .y; y/: (2.6)

The inequality (2.6) is called Cauchy5 inequality.
Let us prove it so that we can better understand why the angle ' between two

vectors can take any value in the interval of Œ0; ��.

Proof. Given any two vectors x and y in Rn, consider the vector x� �y, where � is
a real number. By axiom 4 of dot product we must have

.x� �y; x� �y/ � 0;

that is,
�2.y; y/� 2�.x; y/C .x; x/ � 0:

But then the discriminant of the quadratic equation

�2.y; y/� 2�.x; y/C .x; x/ D 0

can not be positive. Therefore, it must be true that

.x; y/2 � .x; x/ � .y; y/ � 0:

�

Corollary 2.2. For all x and y in Rn,

j xC y j�j x j C j y j : (2.7)

Proof. Note that

j xC y j2D .xC y; xC y/ D .x; x/C 2.x; y/C .y; y/

Now using 2.x; y/ � 2 j .x; y/ j� 2 j x jj y j by Cauchy inequality, we obtain

j xC y j2 � .x; x/C 2 j x j � j y j C .y; y/

D .j x j C j y j/2

implying the desired result. �

5Augustin Louis Cauchy (1789–1857) was a great French mathematician. In addition to his works
in algebra and determinants, he had created a modern approach to calculus, so-called epsilon–delta
formalism.
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Exercise 2.3. Plot the vectors u D .1; 2/, v D .�3; 1/ and their sum w D u C v
and check visually the above inequality.

Exercise 2.4. Solve the system of equations

8
<

:

.0; 0; 1; 1/ ? x;

.1; 2; 0;�1/ ? x;

hx; ai D jaj � jxj;

where a D .2; 1; 0; 0/ and x is an unknown vector from R4.

Exercise 2.5. Two vectors a and b are called parallel if they are linearly dependent
(notation: akb). Solve the system of equations

�
.0; 0;�3; 4/kx;

jxj D 15:

Exercise 2.6. Find the maximal angle of the triangle ABC , where A D .0; 1; 2; 0/,
B D .0; 1; 0;�1/ and C D .1; 0; 0; 1/ are three points in R4.

Exercise 2.7. Given three points A.0; 1; 2; 3/, B.1;�1; 1;�1/ and C.1; 1; 0; 0/ in
R4, find the length of the median AM of the triangle ABC .

2.3 An Economic Example: Two Plants

Consider a firm operating two plants in two different locations. They both produce
the same output (say, 10 units) using the same type of inputs. Although the amounts
of inputs vary between the plants the output level is the same.

The firm management suspects that the production cost in Plant 2 is higher than
in Plant 1. The following information was collected from the managers of these
plants.

PLANT 1
Input Price Amount used

Input 1 3 9
Input 2 5 10
Input 3 7 8

PLANT 2
Input Price Amount used

Input 1 4 8
Input 2 7 12
Input 3 3 9
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Question 1. Does this information confirm the suspicion of the firm management?

Answer. In order to answer this question one needs to calculate the cost function. Let
wij denote the price of the i th input at the j th plant and xij denote the quantity of i th
input used in production j th plant (i D 1; 2; 3 and j D 1; 2). Suppose both of these
magnitudes are perfectly divisible, therefore can be represented by real numbers.
The cost of production can be calculated by multiplying the amount of each input
by its price and summing over all inputs.

This means price and quantity vectors (p and q) are defined on real space and
inner product of these vectors are defined. In other words, both p and q are in the
space R3. The cost function in this case can be written as an inner product of price
and quantity vectors as

c D .w; q/; (2.8)

where c is the cost, a scalar. Using the data in the above tables cost of production
can be calculated by using (2.8) as:

In Plant 1 the total cost is 133, which implies that unit cost is 13.3.
In Plant 2, on the other hand, cost of production is 143, which gives unit cost as

14.3 which is higher than the first plant.
That is, the suspicion is reasonable.

Question 2. The manager of the Plant 2 claims that the reason of the cost differences
is the higher input prices in her region than in the other. Is the available information
supports her claim?

Answer. Let the input price vectors for Plant 1 and 2 be denoted as p1 and p2.
Suppose that the latter is a multiple � of the former, i.e.,

p2 D �p1:

Since both vectors are in the space R3, length is defined for both. From the definition
of length one can obtain that

jp2j D �jp1j:
In this case, however as can be seen from the tables this is not the case. Plant I enjoys
lower prices for inputs 2 and 3, whereas Plant 2 enjoys lower price for input 3. For
a rough guess, one can still compare the lengths of the input price vectors which are

jp1j D 9:11; jp2j D 8:60;

which indicates that price data does not support the claim of the manager of the
Plant 2. When examined more closely, one can see that the Plant 2 uses the most
expensive input (input 2) intensely. In contrast, Plant 2 managed to save from using
the most expensive input (in this case input 3). Therefore, the manager needs to
explain the reasons behind the choice mixture of inputs in her plant.
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2.4 Another Economic Application: Index Numbers

One of the problems that applied economists deal with is how exactly the microe-
conomic information concerning many (in fact in millions) prices and quantities
of goods can be aggregated into smaller number of price and quantity variables?
Consider an economy which produces many different (in terms of quality, location
and time) goods. This means there will thousands, if not millions, of prices to be
considered.

Suppose, for example, one wants to estimate the rate of inflation for this
economy. Inflation is the rate of change in the general price level, i.e., it has to
be calculated by taking into account the changes in the prices of all goods. Assume
that there are n different goods. Let pi be the price and qi is the quantity of the good
i . Consider two points in time, 0 and t . Denote the aggregate value of all goods at
time 0 and t , respectively, as

V 0 D
nX

i

p0
i q0

i (2.9)

and

V t D
nX

i

pt
i q

t
i : (2.10)

If p0 D .p0
1; : : : ; p0

n/ and q0 D .q0
1; : : : ; q0

n/ are the (row) vectors characterizing
prices and quantities of goods, respectively, then V 0 D .p0; q0/ is just the dot
product of vectors p0 and q0. Then V t is the dot product of the vectors pt and
qt , i.e. V t D .pt ; qt /.

Notice that, in general, between time 0 (initial period) and t (end period) both
the prices and the quantities of goods vary. So simply dividing (2.10) by (2.9) will
not give the rate of inflation. One needs to eliminate the effect of the change in the
quantities. This is the index number problem which has a long history.6

In 1871, Laspeyres7 proposed the following index number formula to deal with
this problem

PL D
Pn

iD1 pt
i q

0
iPn

iD1 p0
i q0

i

(2.11)

Notice that in this formula prices are weighted by initial period quantity weights, in
other words, Laspeyres assumed that price changes did not lead to a change in the
composition of quantities.

6Charles de Ferrare Dutot is credited with the introduction of first price index in his book Refl Kexions
politiques sur les finances et le commerce in 1738. He used the averages of prices, without weights.
7Ernst Louis Etienne Laspeyres (1834–1913) was a German economist and statistician, a represen-
tative of German historical school in economics.
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In 1874, Paasche8, suggested using end-period weights, instead of the initial
period’s

Pp D
Pn

iD1 pt
i q

t
iPn

iD1 p0
i qt

i

Laspeyeres index underestimates, whereas Paasche index overestimates the actual
inflation.

Exercise 2.8. Formulate Laspeyres and Paasche indices in term of price and
quantity vectors.

Outline of the answer:

PL D
.pt ; q0/

.p0; q0/
;

PP D
.pt ; qt /

.p0; qt /
:

Exercise 2.9. Consider a three good economy. The initial (t D 0) and end period’s
(t D 1) prices and quantities of goods are as given in the following table:

Price (t D 0) Quantity (t D 0) Price (t D 1) Quantity (t D 1)

Good 1 2 50 1,8 90
Good 2 1,5 90 2,2 70
Good 3 0,8 130 1 100

i. Estimate the inflation (i.e. percentage change in overall price level) for this
economy by calculating Laspeyres index

ii. Repeat the same exercise by calculating Paasche index.

For further information on index numbers, we refer the reader to [9, 23].

2.5 Matrices

A matrix is a rectangular array of real numbers

2

66
6
6
6
4

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

am1 am2 : : : amn

3

77
7
7
7
5

:

8Hermann Paasche (1851–1925), German economist and statistician, was a professor of political
science at Aachen University.
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We will denote matrices with capital letters A,B,. . . The generic element of a
matrix A is denoted by aij ; i D 1; : : : ; mI j D 1; : : : ; n, and the matrix itself is
denoted briefly as A D kaij km�n. Such a matrix with m rows and n columns is said
to be of order m � n If the matrix is square (that is, m D n), it is simply said to be
of order n.

We denote by 0 the null matrix which contains zeros only. The identity matrix
is a matrix I D In of size n � n whose elements are ik;k D 1 and ik;m D 0 for
k ¤ m; k D 1; : : : ; n and m D 1; : : : ; n, that is, it has units on the diagonal and
zeroes on the other places. The notion of the identity matrix will be discussed in
Sect. 3.2.

Example 2.6. Object – property: Consider m economic units each of which is
described by n indices. Units may be firms, and indices may involve the output,
the number of employees, the capital stock, etc., of each firm.

Example 2.7. Consider an economy consisting of m D n sectors, where for all
i; j 2 f1; 2; : : : ; ng, aij denotes the share of the output produced in sector i and
used by sector j , in the total output of sector i . (Note that in this case the row
elements add up to one.)

Example 2.8. Consider m D n cities. Here aij is the distance between city i and
city j . Naturally, aii D 0, aij > 0, and aij D aj i for all i ¤ j , and i; j 2
f1; 2; : : : ; ng.
We say that a matrix A D ��aij

��
m�n

is non-negative if aij � 0 for all i D
1; : : : ; mI j D 1; : : : ; n: This case is simply denoted by A � 0.

Analogously is defined a positive matrix A > 0.

2.5.1 Operations on Matrices

Let A D �
�aij

�
�

m�n
and B D �

�bij

�
�

m�n
be two matrices. The sum of these matrices

is defined as
ACB D ��aij C bij

�
�

m�n
:

Example 2.9. 2

4
1 0

4 2

7 1

3

5C
2

4
3 2

7 3

4 1

3

5 D
2

4
4 2

11 5

11 2

3

5 :

Let A D ��aij

�
�

m�n
and � 2 R. Then

�A D ���aij

�
�

m�n
:
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Example 2.10.

2

2

4
3 0

2 4

1 9

3

5 D
2

4
6 0

4 8

2 18

3

5

Properties of Matrix Summation and Multiplication by a Scalar

(1-a) AC B D B C A.

(1-b) AC .B C C / D .AC B/C C .

(1-c) AC .�A/ D 0, where �A D .�1/A.

(1-d) AC 0 D A.

(2-a) 1A D A.

(2-b) �.�A/ D .��/A; �; � 2 R.

(3-a) 0A D 0.

(3-b) .�C �/A D �AC �A; �; � 2 R.

(3-c) � .AC B/ D �AC �B; �; � 2 R.

The properties of these two operations are the same as for vectors from Rn. We
will clarify this later in Chap. 6.

2.5.2 Matrix Multiplication

Let A D �
�aij

�
�

m�n
and B D �

�bjk

�
�

n�p
be two matrices. Then the matrix AB of

order m � p is defined as

AB D
2

4
nX

j D1

aij bjk

3

5

m�p

In other words, a product C D AB of the above matrices A and B is a matrix
C D ��cij

��
m�p

, where cij is equal to the dot product .Ai ; Bj / of the i -th row Ai of

the matrix A and the j -th column Bj of the matrix B considered as vectors from Rn.

Consider 2 � 2 case. Given

A D
�

a11 a12

a21 a22

�
and B D

�
b11 b12

b21 b22

�
;
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Fig. 2.10 A rotation

�

�

�
�
�
�
�
�
�
��

���
���

���
��

0

y

x

x0

x

'

we have

AB D
�

a11b11 C a12b21 a11b12 C a12b22

a21b11 C a22b21 a21b12 C a22b22

�
:

Example 2.11.

�
0 1 2

2 1 5

�
2

4
3 6 4

2 5 8

7 1 9

3

5 D
�

16 7 26

43 22 61

�
:

Example 2.12. Rotation of a vector x D .x; y/ in R2 around the origin by a fixed
angle ' (Fig. 2.10) can be expressed as a matrix multiplication. If x0 D .x0; y0/ is
the rotated vector, then its coordinates can be expressed as

�
x0
y0
�
D R˛

�
x

y

�
; (2.12)

where

R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�

is called a rotation matrix.
Note that if we consider the vectors x and x0 as 1 � 2 matrices, then (2.12) may

be briefly re-written as x0T D R˛xT .

Exercise 2.10. Using elementary geometry and trigonometry, prove the equal-
ity (2.12).

Properties of Matrix Multiplication

(1-a) ˛.AB/ D ..˛A/B/ D A.˛B/.
(1-b) A.BC / D .AB/C .
(1-c) A0 D 0.
(2-a) A.B C C / D AB C AC .
(2-b) .AC B/C D AC C BC .
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Remark 2.2. Warning. AB ¤ BA, in general.

Indeed, let A and B be matrices of order m � n and n � p, respectively. To
define the multiplication BA, we must have p D m. But matrices A and B may not
commute even if both of them are square matrices of order m � m. For example,
consider

A D
�

1 2

0 3

�
and B D

��1 2

1 3

�
:

We have

AB D
�

1 8

3 9

�
while BA D

��1 4

1 11

�
:

Exercise 2.11. Let A and B be square matrices such that AB D BA. Show that:
1. .AC B/2 D A2 C 2AB C B2.
2. A2 � B2 D .A � B/.AC B/.

Exercise 2.12.� Prove the above properties of matrix multiplication.

Hint. To deduce the property 1-b), use the formula
nP

iD1

 
mP

j D1

xij

!

D
mP

j D1

�
nP

iD1

xij

	
.

Remark 2.3. The matrix multiplication defined above is one of the many concepts
that are counted under the broader term “matrix product”. It is certainly the most
widely used one. However, there are two other matrix products that are of some
interest to economists.

Kronecker Product of Matrices

Let A D kaij k be an m � n matrix and B D kbij k be a p � q matrix. Then the
Kronecker9 product of these two matrices is defined as

A˝ B D
2

4
a11B : : : a1nB

: : : : : : : : :

am1B : : : amnB

3

5

which is an mp� nq matrix. Kronecker product is also referred to as direct product
or tensor product of matrices. For its use in econometrics, see [1, 8, 14].

9Leopold Kronecker (1823–1891) was a German mathematician who made a great contribution
both to algebra and number theory. He was one of the founders of so-called constructive
mathematics.
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Hadamard Product of Matrices

The Hadamard10 product of matrices (or elementwise product, or Shur11 product)
of two matrices A D kaij k and B D kbij k of the same dimensions m � n is a
submatrix of the Kronecker product

A ı B D kaij bij km�n:

See [1, p. 340] and [24, Sect. 36] for the use of Hadamard product in matrix
inequalities.

2.5.3 Trace of a Matrix

Given an n�n matrix A D kaij k, the sum of its diagonal elements Tr A DPn
iD1 ai i

is called the trace of the matrix A.

Example 2.13.

Tr

2

4
1 2 3

10 20 30

100 200 300

3

5 D 321

Exercise 2.13. Let A and B be two matrices of order n. Show that:

(a) Tr.AC B/ D Tr AC Tr B .
(b)� Tr.AB/ D Tr.BA/.

2.6 Transpose of a Matrix

Let A D �
�aij

�
�

m�n
. The matrix B D �

�bij

�
�

n�m
is called the transpose of A (and

denoted by AT ) if bij D aj i for all i 2 f1; 2; : : : ; mg and j 2 f1; 2; : : : ; ng.
Example 2.14.

2

4
3 0

2 4

1 9

3

5

T

D
�

3 2 1

0 4 9

�

10Jacques Salomon Hadamard (1865–1963), a famous French mathematician who contributed in
many branches of mathematics such as number theory, geometry, algebra, calculus and dynamical
systems, as well as in optics, mechanics and geodesy. His most popular book The psychology of
invention in the mathematical field (1945) gives a nice description of mathematical thinking.
11Issai Schur (1875–1941), an Israeli mathematician who was born in Belarus and died in Israel,
made fundamental contributions to algebra, integral and algebraic equations, theory of matrices
and number theory.
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The transpose operator satisfies the following properties:
1. .AT /T D A.
2. .AC B/T D AT C BT .
3. .˛A/T D ˛AT .
4. .AB/T D BT AT .

Proof. To prove the above properties, note that one can formally write

AT D ��aij

��T

m�n
D ��aj i

��
n�m

:

Then .AT /T D ��aj i

�
�T

n�m
D ��aij

�
�

m�n
D A. This proves the property 1.

Now, .A C B/T D �
�aij C bij

�
�T

m�n
D �

�aj i C bj i

�
�

n�m
D �

�aj i

�
�

n�m
C�

�bj i

�
�

n�m
D AT C BT . This gives the second property.

To check the third one, we deduce that .˛A/T D �
�˛aij

�
�T

m�n
D �
�˛aj i

�
�T

n�m
D

˛
�
�aj i

�
�T

n�m
D ˛AT .

Now, it remains to check the fourth property. Let M D AB and N D BT AT ,
where the matrices A and B are of orders m�n and n�p, respectively. Then M D�
�˛mj i

�
�

m�p
with mij D .Ai ; Bj / and N D ��˛nij

�
�

p�n
with nij D ..BT /i ; .AT /j /.

Since the transposition changes rows and columns, we have the equalities of vectors

.BT /i D Bi ; .AT /j D Aj :

Hence, mij D nj i for all i D 1; : : : ; m and j D 1; : : : ; p. Thus M T D N , as
desired. �

A matrix A is called symmetric if A D AT . A simple example of symmetric
matrices is the distance matrix A D Œaij �, where aij is the distance between the
cities i and j . Obviously, aij D aj i or A D AT .

Theorem 2.3. For each matrix A of order n � n, the matrix AAT is symmetric.

Proof. Consider .AAT /T . By the properties 3) and 4), we have .AAT /T D
.AT /T AT D AAT . �
Exercise 2.14. Let A and B be two matrices of order n. Show that Tr AT D Tr A.

2.7 Rank of a Matrix

Are the vectors x; y, and z in the Fig. 2.11 linearly dependent?
It is obvious that there exists � such that

uC �z D 0;

or
˛xC ˇyC �z D 0;
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Fig. 2.11 Are the vectors x,
y, and z linearly dependent?

�

�

�
�
�
���

�
���
���

���
����	
	
	
	
	
	�

	
	

	�

˛x

ˇy

x
y

z

u D ˛x C ˇy

i.e., these three vectors are linearly dependent.
Let us recall the notion of linear dependence of vectors. Consider vectors

˛ D .2;�5; 1;�1/

ˇ D .1; 3; 6; 5/

� D .�1; 4; 1; 2/ :

Are they linearly dependent? To answer, we construct a system of linear equations
as follows: suppose the above vectors are linearly dependent. Then

a˛ C bˇ C c� D 0

for some parameters a; b; c, which are not all zero. In component-wise form, we
obtain a homogeneous system of linear equation:

8
ˆ̂
<

ˆ̂
:

2a C 1b � c D 0

�5a C 3b C 4c D 0

a C 6b C c D 0

�a C 5b C 2c D 0

Here the system of linear equations is called homogeneous if every equation has the
form “a linear combination of variables is equal to zero”.

One can check directly that a solution of the above system is given by a D 7; b D
�3 and c D 11. Hence

7˛ � 3ˇ C 11� D 0:

Consider now a matrix A

A D

2

6
66
6
6
4

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

as1 as2 : : : asn

3

7
77
7
7
5

:
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Columns of this matrix can be considered as s-dimensional vectors, and maximal
number of linearly independent columns is called the rank of A.

Example 2.15. Consider the matrix A with columns being the above vectors ˛; ˇ

and �

A D

2

6
6
4

2 1 �1

�5 3 4

1 6 1

�1 5 2

3

7
7
5 :

Since A has 3 columns and the columns are linearly dependent, we have rank A � 2.
On the other hand, it is easy to see that the first two columns of A are linearly
independent, hence rank A � 2. Thus we conclude that rank A D 2.

Example 2.16. For the null matrix 0, we have the rank A D 0. On the other hand,
the unit matrix I of the order n � n has the rank n.

Theorem 2.4. The maximal number of linearly independent rows of a matrix
equals to the maximal number of its linearly independent columns. Recalling the
notion of the transpose, we have

rank A D rank AT

for every matrix A.

The proof of this theorem is given in Corollary 4.6.

Exercise 2.15. Check this statement for the above matrix A.

2.8 Elementary Operations and Elementary Matrices

In this section, we give a method to find linear dependence of columns of a matrix,
and hence, to calculate its rank.

Let A be a matrix of order m � n. Recall that its rows are n–vectors denoted by
A1; A2; : : : ; Am. The following simple transformations of A are called elementary
(row) operations. All of them transform A to another matrix A0 of the same order
one or two rows (say, i -th and j -th) of which slightly differs from those of A:
1. Row switching: A0

i D Aj , A0
j D Ai .

2. Row multiplication: A0
i D �Ai , where � ¤ 0 is a number.

3. Row replacement: A0
i D Ai C �Aj , where � ¤ 0 is a number.
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Example 2.17. Let us apply these operations to the unit matrix

In D

2

6
66
4

1 0 : : : 0

0 1 0
: : :

0 0 : : : 1

3

7
77
5

:

The resulting matrices are called elementary transformation matrices; they are:

1. Ti;j D

2

6
6
6
66
6
6
6
6
66
6
4

1

: : :

0 : : : 1
:::

: : :
:::

1 : : : 0
: : :

1

3

7
7
7
77
7
7
7
7
77
7
5

I

2. Ti .�/ D

2

6
6
6
66
6
4

1
: : :

�
: : :

1

3

7
7
7
77
7
5

I

3. Ti;j .�/ D

2

66
6
6
6
6
66
6
6
6
6
4

1
: : :

1 : : : �

: : :
:::

1
: : :

1

3

77
7
7
7
7
77
7
7
7
7
5

:

Exercise 2.16.� Show that any elementary operation of the second type is a
composition of several operations of the first and the third type.

Theorem 2.5. If A0 is a result of an elementary operation of a matrix A, then

A0 D TA;

where T is a matrix of elementary transformation corresponding to the operation.
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Exercise 2.17. Prove this Theorem 2.5.
(Hint: Use the definition of product of two matrices as a matrix entries of which

are the dot products of rows and columns of the multipliers.)

Let t1 and t2 be elementary operations with corresponding matrices T1 and T2.
The composition t D t1t2 of these two operation is another (non-elementary)
operation. It follows from Theorem 2.5 that t transforms any matrix A to a matrix

A0 D t.A/ D t1.t2.A// D TA; where T D T1T2:

So, a matrix T corresponding to a composition of elementary operations is a product
of matrices corresponding to the composers.

Another property of elementary operations is that all of them are invertible. This
means that one can define the inverse operations for elementary operations of all
three kinds listed above. For an operation of the first kind (switching), this inverse
operation is the same switching; for the row multiplication by �, it is a multiplication
of the same row by 1=�; finally, for the replacement of Ai by A0

i D Ai C �Aj the
inverse is a replacement of A0

i by A0
i � �A0

j D Ai . Obviously, all these inverses are
again elementary operations.

We obtain the following

Lemma 2.6. Suppose that some elementary operation transforms a matrix A to A0.
Then there is another elementary operation, which transforms the matrix A0 to A.

Another property of elementary operations is given in the following theorem.

Theorem 2.7. Suppose that some columns Ai1 ; : : : ; Aik of a matrix A are linearly
dependent, that is, their linear combination is equal to zero

˛1A
i1 C � � � C ˛kAik D 0:

Let B be a matrix obtained from A by a sequence of several elementary opera-
tions. Then the corresponding linear combination of columns of B is also equal
to zero

˛1B
i1 C � � � C ˛kBik D 0:

Proof. Let T1; : : : ; Tq be the matrices of elementary operations whose compositions
transforms A to B . Then B D TA, where T is a matrix product T D Tq : : : T2T1.
This means that every column Bj of the matrix B is equal to TAj . Thus,

˛1B
i1C� � �C˛kBik D ˛1TAi1C� � �C˛kTAik D T .˛1A

i1C� � �C˛kAik / D T 0 D 0:

�
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Corollary 2.8. Let a matrix B be obtained from a matrix A by a sequence of several
elementary operations. Then a collection Ai1 ; : : : ; Aik of columns of the matrix A is
linearly dependent if and only if corresponding collection Bi1 ; : : : ; Bik is linearly
dependent.

In particular, this means that rank A D rank B .

Proof. The ‘only if’ statement immediately follows from Theorem 2.7.
According to Lemma 2.6, the matrix A as well may be obtained from B via a

sequence of elementary operations (inverses of the given ones). Thus, we can apply
the ‘only if’ part to the collection Bi1 ; : : : ; Bik of columns of the matrix B . This
imply the ‘if’ part.

By the definition of rank, the equality rank A D rank B follows. �

Example 2.18. Let us find the rank of the matrix

A D
2

4
1 2 3

4 5 6

7 8 9

3

5 :

Before calculations, we apply some elementary operations. First, let us substitute
the third row: A3 with A3 � 2A2. We get the matrix

A0 D
2

4
1 2 3

4 5 6

�1 �2 �3

3

5 :

Now, substitute again: A0
3 7! A0

3 C A0
1 and then A0

2 7! A0
2 � 4A0

1. We obtain the
matrix

A00 D
2

4
1 2 3

0 �3 �6

0 0 0

3

5 :

Finally, let us substitute A00
1 ! A00

1 C .2=3/A00
2 and multiply A00

2 ! .�1=3/A00
2 . We

obtain the matrix

B D
2

4
1 0 �1

0 1 2

0 0 0

3

5 :

It is obvious that the first two columns of this matrix B are linearly independent
while B3 D �B1 C 2B2. Hence rank A D rank B D 2.

Definition 2.4. A matrix A is said to have a (row) canonical form (see Fig. 2.12),
if the following four conditions are satisfied:
1. All nonzero rows are above any rows of all zeroes.
2. The first nonzero coefficient of any row (called also leading coefficient) is always

placed to the right of the leading coefficient of the row above it.
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Fig. 2.12 Row echelon form
of a matrix

*

*

* *
* *

0

*

Fig. 2.13 Canonical form of
a matrix 1

*
*

0

*
1

1
1

0 0 0*

3. All leading coefficients are equal to 1.
4. All entries above a leading coefficient in the same column are equal to 0.

If only first two of the above conditions are satisfied, then the matrix is said to
have a row echelon form (see Fig. 2.13).

Example 2.19. In Example 2.18 above, the marix A00 has a row echelon form while
the matrix B has even a canonical form.

It is easy to calculate the rank of a matrix in an echelon form: it is simply equal
to the number of nonzero rows in it.

Theorem 2.9. Every matrix A can be transformed via a number of elementary
operations to another matrix B in a row echelon form (and even in a canonical
form). Then the rank of the matrix A is equal to the number of nonzero rows of the
matrix B .

Let us give an algorithm to construct an echelon form of the matrix. This
algorithm is called the Gaussian12 elimination procedure. It reduces all columns
of the matrix one-by-one to the columns of some matrix in a row echelon form. In a
recent step, we assume that a submatrix consisting of the first .j � 1/ columns has
an echelon form. Suppose that this submatrix has .i � 1/ nonzero rows.

In the j -th step, we provide the following:
1. If all elements of the j -th column beginning with aij and below are equal to zero,

the procedure is terminated. Then we go to the .j C 1/-th step of the algorithm.
2. Otherwise, find the first nonzero element (say, aij ) in the j -th column in the i -th

row and below. If it is not aij , switch two rows Ai and Aj of the matrix. (see
Fig. 2.14).

Now, we obtain a matrix A such that apk ¤ 0 (Fig. 2.15).

12Carl Friedrich Gauss (1777–1855) was a great German mathematician and physicist. He made
fundamental contribution to a lot of branches of pure and applied mathematics including geodesy,
statistics, and astronomy.
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Fig. 2.14 The Gaussian
elimination, row switching

*

*

*

* *

*

0

0

0 0

*

0 * * *

*

j

ak,j

ai,j

ak,j+1k

i

k+1

Fig. 2.15 The Gaussian
elimination, row subtraction

*

*

*

* *

*
0

0

ai,j+1

k

0 ai,j

* *

0

0

i

* * *

ak,j+1

j

-Ai*ak+1,j/ai,jk+1

Fig. 2.16 The Gaussian
elimination, the result of row
subtractions

*

*

*

* *

*

0

0

* *

ak,j+10

* *0

j

ai,j ai,j+1

0

k

i

k+1

3. For every p > i , provide the following row replacement: the row Ap ! Ap �
.apj =aij /Aj (Fig. 2.16).
These three types of operations are sufficient to construct a row echelon form. In

the next step of the algorithm, we take p C 1 in place of p and j C 1 in place of j .
Note that in the above Example 2.18 we used this algorithm to transform A0 to

A00. Another example is given below.

Example 2.20. Using Gauss algorithm, let us construct a row echelon form of the
matrix

A D
2

4
0 0 3

2 6 �2

4 12 �1

3

5 :

In the beginning, i D j D 1, that is, we begin with the first column. In operation
1, we find the first nonzero element of this column, that is, a21. In operation 2, we
switch the first and the second rows and get the matrix
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2

4
2 6 �2

0 0 3

4 12 �1

3

5 :

In operation 3, we subtract the doubled first row from the third one and get the
matrix 2

4
2 6 �2

0 0 3

0 0 3

3

5 :

Now, we provide the same three steps for the submatrix formed by the last two
rows. The first nonzero column of the submatrix is the third one, so, in operation 1
we put p D 3. In operation 2, we find the first nonzero element of the column of the
submatrix (a23 D 3). In operation 3, we replace the first row A1 by A1 C .1=3/A2

and the third row A3 by A3 � A2. We obtain a matrix in a row echelon form

2

4
2 6 �2

0 0 3

0 0 0

3

5 :

The next theorem gives a stronger version of Gaussian elimination.

Theorem 2.10. 1. Every matrix A can also be transformed via elementary opera-
tions to a matrix C in a canonical form.

2. The above canonical form C is unique for every matrix A, that is, it does not
depend on the sequence of elementary operations which leads to this from.

Exercise 2.18. Prove the above Theorem 2.10.

Hint. To prove the first part, extend the above algorithm in the following way.
To construct a canonical form, we need the same operations 1 and 2 as in the Gauss
algorithm, a modified version of the above operation 3 and an additional operation 4.

(3’) For every p ¤ i , provide the following row replacement: the row Ap !
Ap � .apj =aij /Aj .

(4) Replace the i -th row Ai by .1=aij /Ai , that is, divide the i -th row by its first
nonzero coefficient aij .

For the second part of the theorem, use Corollary 2.8.

Exercise 2.19. Find the canonical form of the matrix from Example 2.20.

2.9 Problems

1. Find a vector x such that:
(a) xC y D z, where y D .0; 3; 4;�2/, and z D .3; 2; 1;�5/.
(b) 5x D y � z, where y D .�1;�1; 2/ and z D .0; 1; 7/.
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2. Let x and y be two vectors in Rn. Prove that:
(a) xC y D x if and only if y D 0.
(b) �x D 0 and � ¤ 0 if and only if x D 0.

3. Prove that vectors z1; : : : ; zs in Rn are linearly dependent if one of them is the
null vector.

4. Are the vectors below linearly dependent?

a1 D .1; 0; 0; 2; 5/

a2 D .0; 1; 0; 3; 4/

a3 D .0; 0; 1; 4; 7/

a4 D .2; �3; 4; 11; 12/

5. Let z1; : : : ; zs be linearly independent vectors and x be a vector such that

x D �1z1 C � � � C �szs;

where �i 2 R for all i . Show that this representation is unique.
6. Show that n vectors given by

x1 D .1; 0; 0; : : : 0; 0/

x2 D .0; 1; 0; : : : 0; 0/

: : : : : : : :

xn D .0; 0; 0; : : : 0; 1/

are linearly independent in Rn.
7. Find the rank of the following matrices:

(a)

2

4
2 �1 3 �2 4

4 �2 5 1 7

2 �1 1 8 2

3

5; (b)

2

66
4

3 �1 3 2 5

5 �3 2 3 4

1 �3 �5 0 �7

7 �5 1 4 1

3

77
5.

8. Show that n vectors given by

x1 D .�11; �12; : : : �1;n�1; �1n/

x2 D .0; �22; : : : �2;n�1; �2n/

: : : : : : :

xn D .0; 0; : : : 0; �nn/

are linearly independent in Rn if �ii ¤ 0 for all i .
9. Check that in Definition 2.1 all axioms 1 � 4 are satisfied.

10. Show that the Cauchy inequality (2.6) holds with the equality sign if x and y
are linearly dependent.

11. How many boolean (with components equal to 0 or 1) vectors exist in Rn?
12. Find an example of matrices A; B and C such that AB D AC , A ¤ 0, and

B ¤ C .
13. Find an example of matrices A and B such that A ¤ 0, B ¤ 0, but AB D 0.
14. Show that A0 D 0A D 0.
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15. Prove that .˛A/.ˇB/ D .˛ˇ/ AB for all real numbers ˛ and ˇ, and for all
matrices A and B such that the matrix products exist.

16. Prove that .˛A/ B D ˛ .AB/ D A .˛B/ for each real number ˛ and for all
matrices A and B such that the matrix products exist.

17. Let A; B and C be n�n matrices. Show that ABC D CAB if AC D CA and
BC D CB .

18. Find a 2 � 3 matrix A and a 3 � 2 matrix B such that

AB D
�

1 0

0 1

�
:

19. Let

A D
�

1 �1

�3 3

�
:

(a) Find x ¤ 0 such that Ax D 0.
(b) Find y ¤ 0 such that yA D 0.

20. Let ˛ and ˇ be two angles. Prove the following property of rotation matrices:

R˛Cˇ D R˛Rˇ:

21. Prove the properties of matrix summation.
22. Calculate

2

4
0 2 �1

�2 �1 2

3 �2 �1

3

5

2

4
70 34 �107

52 26 �68

101 50 �140

3

5

2

4
27 �18 10

�46 31 �17

3 2 1

3

5 :

23. How A � B will change if:
(a) i th and j th rows of A are interchanged?
(b) a constant c times j th row of A is added to its i th row?

(c) i th and j th columns of B are interchanged?

(d) a constant c times j th column of B is added to its i th column?
24.* Show that rank.AB/ � rank A and rank.AB/ � rank B .
25.* Show that the sum of the entries of the Hadamard product AıB of two matrices

A and B of order n (so-called a Frobenius13 product) .A; B/F is equal to
Tr ABT .

26.* Prove that any matrix A can be represented as A D B C C , where B is
symmetric matrix and C is an anti-symmetric matrix (i.e., C T D �C ).

27. Find all 2 � 2 matrices A satisfying A2 D 0.
28. Find all 2 � 2 matrices A satisfying A2 D I2.

13Ferdinand Georg Frobenius (1849–1917) was a famous German algebraist. He made a great
contribution to group theory and also proved a number of significant theorems in algebraic
equations, geometry, number theory, and theory of matrices.
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29. Find a row echelon form and the rank of the matrix

2

4
0 0 �1 3

�2 �1 2 1

2 1 �4 5

3

5 :

30. Find the canonical form of the matrix

2

4
1 3 0 0

5 15 2 1

�2 �6 1 3

3

5 :



3Square Matrices and Determinants

The following section illustrates how a matrix can be used to represent a system of
linear equations.

3.1 Transformation of Coordinates

Let our ‘old’ coordinate system be .x; y/, and ‘new’ coordinate system be .x0; y0/,
see Fig. 3.1.

It is obvious that this transformation from .x; y/ to .x0; y0/ consists of two
moves: translation and rotation. Note that a translation after rotation also yields the
same transformation. Let us study these two moves separately.

3.1.1 Translation

We move the origin O D .0; 0/ to O 0 D .x0; y0/, without changing the direction of
axes (Fig. 3.2). Then each point X with coordinates .�; �/ with respect to the first
system get the coordinates .�; �/ with respect to the second system, where

�
� 0 D � � x0;

�0 D � � y0:

In the vector form, the above system can be re-written as an equality

.� 0; �0/ D .�; �/ � .x0; y0/:

After a translation has been made, rotation is applied.

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 3,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 3.1 Two coordinate
systems in a plane
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3.1.2 Rotation

We rotate the system by an angle ˛ around O 0 (Fig. 3.3). Then the point X with
the coordinates .� 0; �0/ (with respect to the old coordinate system) get the new
coordinates .� 00; �00/, where

�
� 00 D � 0 cos ˛ C �0 sin ˛;

�00 D �� 0 sin ˛ C �0 cos ˛:

In matrix notation the above system can be rewritten as

�
cos ˛ sin ˛

� sin ˛ cos ˛

� �
� 0
�0
�
D
�

� 00
�00
�

:
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Note that here the matrix

R�˛ D
�

cos ˛ sin ˛

� sin ˛ cos ˛

�

is the matrix of rotation by the opposite angle �˛, see Example 2.12.
Then the general transformation can be written as

�
� 00 D .� � x0/ cos ˛ C .�� y0/ sin ˛;

�00 D �.� � x0/ sin ˛ C .� � y0/ cos ˛;

or �
� 00
�00
�
D R�˛

��
�

�

�
�
�

x0

y0

�	
:

3.2 Square Matrices

3.2.1 Identity Matrix

As a very special matrix form, we can define the identity matrix, which will be used
in many matrix operations. In fact, we already defined the identity matrix but now
we do it in general form. Before that, let us first introduce Kronecker delta function
to be

ıij D
�

1; if i D j;

0; otherwise.

Identity matrix can, then, be defined as

In D
�
�ıij

�
�

n�n

or

In D

2

6
6
4

1 0 : : : : : : 0

0 1 : : : : : : 0

: : : : : : : : : : : : : : : :

0 0 : : : : : : 1

3

7
7
5 :

Lemma 3.1. Let A D ��aij

�
�

n�n
, then AIn D InA D A:

Proof. Consider AIn D
hPn

j D1 aij ıjk

i

n�n
. If j ¤ k then ıjk D 0 and aij ıjk D 0;

if j D k then ıjk D 1 and aij ıjj D aij : Analogously can be proved InA D A. �
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3.2.2 Power of a Matrix and Polynomial of a Matrix

Let A be a square matrix of order m. We can define the power of any square matrix
A in the following way

A0 D In

A1 D A

A2 D AA

: : : : : : : : : :

An D A � An�1

Usual polynomial is given by f .x/ D anxn C an�1xn�1 C � � � C a1x C a0. The
polynomial of the matrix A can be similarly defined as

f .A/ D anAn C an�1A
n�1 C � � � C a1AC a0Im:

Example 3.1. Let

A D
�

2 3

1 0

�

and f .x/ D x2 � 2x � 1. Then

f .A/ D A2 � 2A� I2 D
�

7 6

2 3

�
�
�

4 6

2 0

�
�
�

1 0

0 1

�
D
�

2 0

0 2

�
:

3.3 Systems of Linear Equations: The Case of Two Variables

Consider an arbitrary system of two linear equations in two variables

�
a11x1 C a12x2 D b1

a21x1 C a22x2 D b2

(3.1)

For the above system, let

A D
�

a11 a12

a21 a22

�

2�2

be the matrix of the known coefficients,

x D
�

x1

x2

�

2�1

be the vector of unknown variables, and
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b D
�

b1

b2

�

2�1

be the vector of constants. Hence in the matrix form, we can rewrite our system of
linear equations as

Ax D b: (3.2)

Now, let us try to solve the above system (3.1) in the ‘generic’ case provided that
no division by zero will appear in our calculations. We will solve it by the exclusion
of unknown variables.

Divide the first rows by a11 and the second row by a21 (we assume here that both
these numbers are non-zero!).

(
x1 C .a12=a11/ x2 D b1=a11

x1 C .a22=a21/ x2 D b2=a21

Subtract the second row from the first one.
�

a12

a11

� a22

a21

	
x2 D b1

a11

� b2

a21

Then x2 is obtained as

x2 D .b1=a11/ � .b2=a21/

.a12=a11/ � .a22=a21/

D b2a11 � b1a21

a11a22 � a12a21

: (3.3)

(We again assume that the denominator a11a22 � a12a21 is non-zero!)
Inserting the value of x2 into one of the original equations, and solving for x1, we
get

x1 D b1a22 � b2a12

a11a22 � a12a21

: (3.4)

3.4 Determinant of a Matrix

For the coefficient matrix

A D
�

a11 a12

a21 a22

�

let us define the function

det A D a11a22 � a21a12
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called determinant of the matrix A. It is equal to the denominators of the fractions
in the right-hand sides of the formulae (3.3) and (3.4) for the solution of the
system (3.1). Then the numerators of these fractions are equal to the determinants
of other matrices, b1a22 � b2a12 D det A0 and b2a11 � b1a21 D det A00, where

A0 D
�

b1 a12

b2 a22

�

and

A00 D
�

a11 b1

a21 b2

�
:

So, we can rewrite x1 and x2 as

x1 D det A0=det A

x2 D det A00=det A
(3.5)

Now we will study the properties of the function

det

�
a11 a12

a21 a22

�
:

We can denote a matrix A2�2 as a pair of its two columns A1 D
�

a11

a21

�
and A2 D

�
a12

a22

�
, i.e., A D ŒA1; A2�. Then the following are true.

Linearity:

(a) det ŒA1 C A0
1; A2� D detŒA1; A2�C detŒA0

1; A2�.

(b) det ŒA1; A2 C A0
2� D detŒA1; A2�C det ŒA1; A0

2�.

(c) det ŒcA1; A2� D c det ŒA1; A2�.

(d) det ŒA1; c A2� D c det ŒA1; A2�.

Anti-symmetry:

(e) det ŒA1; A2� D � det ŒA2; A1�.
(f) det ŒA1; A1� D 0.

Unitarity:

(g) det I2 D 1.

Geometrically, the absolute value of the determinant detŒA1; A2� is the area of the
parallelogram sides of which are the vectors A1 and A2 (Fig. 3.4).

Example 3.2. For example, let A1 D .�2; 0/T and A2 D .1; 3/T be two column
vectors. The area of the parallelogram with sides A1 and A2 is the product of the
length of the bottom side by the hight, that is, 2 � 3 D 6. On the other side, we have
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Fig. 3.4 The area of this
parallelogram is jdet[A1 , A2]j

0
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�
��
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�A2

�

detŒA1; A2� D det

��2 0

1 3

�
D �6;

a number with the same absolute value.

The determinant of an n � n matrix is defined as follows.

Definition 3.1. Let A D Œaij �n�n. The minor Mij of A is the determinant of the
matrix formed from A by removing the i -th row and the j -th column; the product
Aij D .�1/iCj Mij is called a cofactor of the element aij .

Then in terms of row i elements and the respective cofactors, the determinant of
A is

det A D
nX

j D1

aij Aij (3.6)

or in terms of column j elements and their cofactors, it is

det A D
nX

iD1

aij Aij : (3.7)

One could prove1 that all these formulae for different i give the same number
det A.

Example 3.3. Let

A D
2

4
1 2 3

5 0 6

7 8 9

3

5 :

Using the decomposition by, say, the second row (the relation (3.6) with i D 2), we
have

1See, e. g., [33, Theorem 2.4.5].
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det A D �5 det

�
2 3

8 9

�
C 0 det

�
1 3

7 9

�
� 6 det

�
1 2

7 8

�
D 30C 0C 36 D 66:

Example 3.4. Given any matrix A D Œaij �3�3, we can compute its determinant (in
terms of first row elements and their cofactors) as

det

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5 D a11 det

�
a22 a23

a32 a33

�
� a12 det

�
a21 a23

a31 a33

�

Ca13 det

�
a21 a22

a31 a32

�

D a11a22a33 � a11a23a32 � a12a21a33 C a12a23a31 C a13a21a32 � a13a22a31:

Example 3.5. Suppose that the matrix A is lower triangular, that is, all its entries
above the main diagonal are zero,

A D

2

6
6
6
66
4

a11 0 : : : 0

a21 a22 : : : 0

:: : : :
:: : : :
:: : : :

an1 an2 : : : ann

3

7
7
7
77
5

:

To calculate its determinant, we apply the formula (3.6) with j D 1 recursively for
the matrix A itself and its minors:

det A D a11 det

2

6
6
6
4

a22 : : : 0

: : :
: : : :
: : : :

an2 : : : ann

3

7
7
7
5
D a11a22 det

2

6
6
6
4

a33 : : : 0

: : :
: : : :
: : : :

an3 : : : ann

3

7
7
7
5

D � � � D a11a22 : : : ann:

�

Exercise 3.1. Using (3.7), prove that the determinant of an upper triangular matrix
(i.e., a matrix with zero entries below the main diagonal) is again equal to the
product of the elements of the main diagonal.

Let us represent the matrix A as an n-tuple of its columns: A D ŒA1; : : : ; An�. Then
the properties of the determinant of an n � n matrix A are the following.
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3.4.1 The Basic Properties of Determinants

Linearity:

.a/ det ŒA1; : : : ; Ai�1; Ai C A0
i ; AiC1; : : : ; An� D

det ŒA1; : : : ; Ai�1; Ai ; AiC1; : : : ; An�C detŒA1; : : : ; Ai�1; A0
i ; AiC1; : : : ; An�

.b/ det ŒA1; : : : ; Ai�1; cAi ; AiC1; : : : ; An�Dc det ŒA1; : : : ; Ai�1; Ai ; AiC1; : : : ; An�

Anti-symmetry:

.c/ det ŒA1; : : : ; Ai ; : : : ; Aj ; : : : ; An� D � det ŒA1; : : : ; Aj ; : : : ; Ai ; : : : ; An�

That is, switching the i -th and j -th columns of a matrix changes the sign of its
determinant.

Unitarity:

.d/ det In D 1

Many other properties of determinants (including the formulae (3.6) and (3.7) from
the definition) can be deduced from the above basic properties (a)–(d). For example,
one can obtain

Corollary 3.1. The following properties of determinants are also hold:

.e/ det ŒA1; : : : ; Ai�1; B; AiC1; : : : ; Aj �1; B; Aj C1; : : : ; An� D 0

.f / det ŒA1; : : : ; Ai�1; Ai C cAj ; AiC1; : : : ; An� D detŒA1; : : : ; An�

.g/ det ŒA1; : : : ; Ai�1; 0; AiC1; : : : ; An� D 0

Proof. .e/ Let A be the matrix ŒA1; : : : ; Ai�1; B; AiC1; : : :; Aj �1; B; Aj C1; : : :; An�.
According to the anti-symmetry property .e/ above, we have

det A D � det A;

hence det A D 0.
.f / Now, let A D ŒA1; : : : ; Ai�1; Ai C cAj ; AiC1; : : : ; An�. By the property .a/,

we have

det AD detŒA1; : : :; Ai�1; Ai ; AiC1; : : :; An�CdetŒA1; : : :; Ai�1; cAj ; AiC1; : : :; An�:

By the properties .b/ and .e/, the second component in the sum here is equal to

detŒA1; : : : ; Ai�1; cAj ; AiC1; : : : ; Aj ; : : : ; An�

D c detŒA1; : : : ; Ai�1; Aj ; AiC1; : : : ; Aj ; : : : ; An� D c � 0 D 0;

hence det A D detŒA1; : : : ; An�.
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.g/ Applying the property .b/ with c D 0, we have

detŒA1; : : : ; Ai�1; 0; AiC1; : : : ; An� D 0 � detŒA1; : : : ; Ai�1; 0; AiC1; : : : ; An� D 0:

�
Notation used below:

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

an1 an2 : : : ann

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

D det

2

6
6
66
6
4

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

an1 an2 : : : ann

3

7
7
77
7
5

:

Let us evaluate the following determinant using the properties given above.

Example 3.6. Let us evaluate the following determinant using the properties given
above.

ˇ̌
ˇ
ˇ
ˇ
ˇ

3 2 7

0 1 �3

3 4 1

ˇ̌
ˇ
ˇ
ˇ
ˇ
D
ˇ̌
ˇ
ˇ
ˇ
ˇ

3C .�1/ � 2 2 7

0C .�1/ � 1 1 �3

3C .�1/ � 4 4 1

ˇ̌
ˇ
ˇ
ˇ
ˇ
D
ˇ̌
ˇ
ˇ
ˇ
ˇ

1 2 7

�1 1 �3

�1 4 1

ˇ̌
ˇ
ˇ
ˇ
ˇ

D
ˇ̌
ˇ
ˇ
ˇ
ˇ

1 2C .�2/1 7C .�7/1

�1 1C .�2/.�1/ �3C .�7/.�1/

�1 4C .�2/.�1/ 1C .�7/.�1/

ˇ̌
ˇ
ˇ
ˇ
ˇ

D
ˇ̌
ˇ
ˇ
ˇ
ˇ

1 0 0

�1 3 4

�1 6 8

ˇ̌
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
3 4

8 6

ˇ
ˇ
ˇ
ˇ D 0

Here we have used the property .f / in order to obtain a matrix with many zeroes
in the first row. Then we calculate the determinant by the definition using the first
row, that is, we apply the formula (3.6) with i D 1.

The following two statements show what happens with the determinant after
applying standard matrix operations.

.h/ det.AB/ D det A � det B

.i/ det.AT / D det A (3.8)

Proof. We will illustrate that the both claims are true for 2 � 2 matrices. The
complete proof can be obtained by induction on the number of elementary trans-
formations which leads to a canonical form of the matrix A.
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(h) Let

A D
�

a11 a12

a21 a22

�
and B D

�
b11 b12

b21 b22

�
:

Then

AB D
�

a11b11 C a12b21 a11b12 C a12b22

a21b11 C a22b21 a21b12 C a22b22

�

and

det.AB/ D
ˇ
ˇ̌
ˇ
a11b11 a11b12

a21b11 a21b12

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ
a12b21 a11b12

a22b21 a21b12

ˇ
ˇ̌
ˇ

C
ˇ
ˇ̌
ˇ
a11b11 a12b22

a21b11 a22b22

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ
a12b21 a12b22

a22b21 a22b22

ˇ
ˇ̌
ˇ

D b11b12

ˇ
ˇ̌
ˇ
a11 a11

a21 a21

ˇ
ˇ̌
ˇ� b21b12

ˇ
ˇ̌
ˇ
a11 a11

a21 a21

ˇ
ˇ̌
ˇC b11b22

ˇ
ˇ̌
ˇ
a11 a11

a21 a21

ˇ
ˇ̌
ˇ

Cb21b22

ˇ
ˇ̌
ˇ
a12 a12

a22 a22

ˇ
ˇ̌
ˇ

D .det A/ .b11b22 � b21b12/

D det A det B:

(i) Again, let

A D
�

a11 a12

a21 a22

�
:

Then

AT D
�

a11 a21

a12 a22

�
;

so that det AT D a11a22 � a21a12 D det A:

For the complete proof see, e.g., [33, Sect. 2.4]. �

Warning. If A is an n�n matrix and c is a real number, then det.cA/ D cn det A,
not c det A!

The property .i/ implies that in the above properties .a/–.g/ one can replace the
columns of the matrix A by the columns of its transpose AT , that is, rows of A. We
get

Corollary 3.2. All the above properties .a/–.g/ of determinants remains true after
replacing the columns A1; : : : ; An of the matrix A by its rows.
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3.4.2 Determinant and Elementary Operations

Recall that there are three type of simplest operations under the rows of matrices
called elementary operations, see Sect. 2.8, “Elementary operations and elementary
matrices”.

Proposition 3.1. If a square matrix A is transformed to another matrix A0 via an
elementary operation e, then

det A0 D q det A;

where (according to the type of e) the number q is
1. �1, if e is a row switching;
2. �, if e is a row multiplication by a number �;
3. 1, if e is a row replacement.

Proof. By Corollary 3.2, we may apply the properties .a/–.g/ of determinants to
the rows of the matrix A.
1. By the anti-symmetry property .e/, the row switching multiplies the determinant

by �1.
2. By the linearity property .b/, we have det A0 D � det A, hence q D �.
3. By the linearity .f /, we have in this case det A0 D det A, i.e., q D 1.

�
The above properties .a/–.g/ and Proposition 3.1 allows to evaluate determinants

of arbitrary high order.

Example 3.7. Let us evaluate the determinant of the matrix

A D

2

66
6
6
6
66
6
4

0 1 1 : : : 1 1

1 1 1 : : : 1 1

1 0 1 : : : 1 1
:::

:::
:::

:::
:::

:::

1 0 0 : : : 1 1

1 0 0 : : : 0 1

3

77
7
7
7
77
7
5

of order n. Let us first apply to A elementary operations of the following kind: for
each i D 2; : : : ; n, replace i th row Ai by Ai � A1. Then

det A D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

0 1 1 : : : 1 1

1 0 0 : : : 0 0

1 �1 0 : : : 0 0
:::

:::
:::

:::
:::

:::

1 �1 �1 : : : 0 0

1 �1 �1 : : : �1 0

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

:
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Now, let us switch the first two rows; then switch the 2nd and the 3rd row, etc.

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

0 1 1 : : : 1 1

1 0 0 : : : 0 0

1 �1 0 : : : 0 0
:::

:::
:::

:::
:::

:::

1 �1 �1 : : : 0 0

1 �1 �1 : : : �1 0

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

D �

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

1 0 0 : : : 0 0

0 1 1 : : : 1 1

1 �1 0 : : : 0 0
:::

:::
:::

:::
:::

:::

1 �1 �1 : : : 0 0

1 �1 �1 : : : �1 0

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

1 0 0 : : : 0 0

1 �1 0 : : : 0 0

0 1 1 : : : 1 1
:::

:::
:::

:::
:::

:::

1 �1 �1 : : : 0 0

1 �1 �1 : : : �1 0

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

D � � � D .�1/n�2

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

1 0 0 : : : 0 0

1 �1 0 : : : 0 0
:::

:::
:::

:::
:::

:::

1 �1 �1 : : : 0 0

0 1 1 : : : 1 1

1 �1 �1 : : : �1 0

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

D .�1/n�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

1 0 0 : : : 0 0

1 �1 0 : : : 0 0
:::

:::
:::

:::
:::

:::

1 �1 �1 : : : 0 0

1 �1 �1 : : : �1 0

0 1 1 : : : 1 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

:

This matrix is upper triangular, so, by Exercise 3.1 its determinant is equal to the
product of its diagonal elements 1 � .�1/ : : : .�1/ � 1 D .�1/n�2. Thus

det A D .�1/n�1.�1/n�2 D �1:

For the methods of evaluation of more complicated determinants, see Appendix B.

3.5 Problems

1. Evaluate the following determinants.

(a)

ˇ
ˇ
ˇ̌ 1 2

3 4

ˇ
ˇ
ˇ̌; (b)

ˇ
ˇ
ˇ̌a

2 ab

ab b2

ˇ
ˇ
ˇ̌; (c)

ˇ
ˇ
ˇ̌nC 1 n

n n � 1

ˇ
ˇ
ˇ̌; (d)

ˇ
ˇ
ˇ̌a

2 C ab C b2 a2 � ab C b2

aC b a � b

ˇ
ˇ
ˇ̌;

(e)

ˇ
ˇ
ˇ
ˇ
sin ˛ cos ˛

sin ˇ cos ˇ

ˇ
ˇ
ˇ
ˇ ; (f)

ˇ
ˇ
ˇ
ˇ
sin ˛ C sin ˇ cos ˇ C cos ˛

cos ˇ � cos ˛ sin ˛ � sin ˇ

ˇ
ˇ
ˇ
ˇ :

2. Evaluate the following determinants.

(a)

ˇ
ˇ
ˇ
ˇ
ˇ̌

0 1 1

1 0 1

1 1 0

ˇ
ˇ
ˇ
ˇ
ˇ̌; (b)

ˇ
ˇ
ˇ
ˇ
ˇ̌

7 2 �1

�3 4 0

5 �8 1

ˇ
ˇ
ˇ
ˇ
ˇ̌; (c)

ˇ
ˇ
ˇ
ˇ
ˇ̌

a x x

x b x

x x c

ˇ
ˇ
ˇ
ˇ
ˇ̌;
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(d)

ˇ
ˇ
ˇ̌
ˇ
ˇ

˛2 C 1 ˛ˇ ˛	

˛ˇ ˇ2 C 1 ˇ	

˛	 ˇ	 	2 C 1

ˇ
ˇ
ˇ̌
ˇ
ˇ
; (e)

ˇ
ˇ
ˇ̌
ˇ
ˇ

sin ˛ cos ˛ 1

sin ˇ cos ˇ 1

sin 	 cos 	 1

ˇ
ˇ
ˇ̌
ˇ
ˇ
.

3. Consider a transformation of coordinates in the plane which translate the origin
to the point .2;�3/ and then rotates the coordinate system by angle �=4. Give a
matrix formula for the new coordinates .x0; y0/ of a point X in terms of its old
coordinates .x; y/.

4. Evaluate the polynomial f .x/ D x3 � 7x2 C 13x � 5 of the matrix

A D
2

4
5 2 �3

1 3 �1

2 2 �1

3

5 :

5. Let A be an arbitrary square matrix of order two, and let f .x/ be a polynomial
x2 � ax C b, where a D Tr A and b D det A. Show that f .A/ D 0.

6. Prove that
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

0 1 1 a

1 0 1 b

1 1 0 c

a b c d

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
D a2 C b2 C c2 � 2ab � 2bc � 2ac C 2d:

7. Evaluate the determinant ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

:

8. Given a number d D det.A1; : : : ; An/, find det.An; : : : ; A1/.

9. Evaluate the following determinants of matrices of order n.

(a)

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

1 1 1 : : : 1 1

1 1 1 : : : 1 0

1 1 1 : : : 0 0

� � � � � �
1 1 0 : : : 0 0

1 0 0 : : : 0 0

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

; (b)

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

2 1 : : : 1

1 2 : : : 1
:::

:::
: : :

:::

1 1 : : : 2

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

; (c)

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

1 2 0 : : : 0 0

0 1 2 : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : 1 2

2 0 0 : : : 0 1

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

.

10. Suppose X is a matrix such that

X CX2 D �In:

Find det X .
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11.* Suppose that a function f .A/ from the set of n�n matrices to the real numbers
satisfies the basic properties of determinants (a), (b) and (c) above with ‘det’
replaced by ‘f ’ (that is, f is a multilinear anti-symmetric function of the
vectors A1; : : : ; An). Show that there exist a number C such that

f .A/ D C det A

for all matrices A of order n.
This result leads to another definition of determinant: a determinant of an

n � n matrix is a multilinear anti-symmetric function of its columns which is
equal to one for the identity matrix In.

Hint. Follow the next plan.
(a) By the induction on k D 0; : : : ; n � 1, for all square matrices B of order

n � k define the functions fn�k.B/ such that

fsC1

��
a11 0

� B

�	
D a11fs.B/;

where B is an arbitrary matrix of order s D n � k and the star denotes an
arbitrary column.

(b) By the induction on s D 1; : : : ; n � 1, prove the following formula
analogous to (3.7):

fsC1.A/ D
nX

j D1

aij .�1/iCj fs.Mij /;

where A is a matrix of order sC1 and i is any row number from 1 to sC1.
(c) By the induction on s D 1; : : : ; n, show that fs.A/ D C det A, where

C D f1.1/.
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4.1 Inverse Matrix and Matrix Division

We have seen in Sect. 2.5 that matrices admit standard arithmetic operations, that is,
addition and multiplication. Now we discuss a division of matrices.

The division x D b=a for numbers gives the solution of the equation

ax D b:

Using reciprocal numbers, it can be explain via the multiplication: x D a�1b.
Similarly, for matrices one can consider an equation

AX D B; (4.1)

where the matrices A and B are given and X is an unknown matrix. Now we would
like to define an ‘inverse’ matrix A�1 such that X is equal to A�1B for each B . If
we substitute B D In, we have X D A�1In D A�1, so that AA�1 D In. This leads
us to the following definition.

Definition 4.1. For any matrix A, the matrix C is called an inverse of A if

AC D I and CA D I:

The inverse matrix is denoted as A�1 D C .

Exercise 4.1. Show that if A�1 exists, then the matrix A must be square matrix.

If the inverse A�1 exists, then the solution X of (4.1) exists and is unique. Indeed,
multiplying the both sides of (4.1) by A�1 from the left, we obtain A�1AX D
A�1B , that is,

X D InX D A�1B:

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 4,
© Springer-Verlag Berlin Heidelberg 2011

65



66 4 Inverse Matrix

Exercise 4.2. Solve the matrix equation XA D B ‘dual’ to (4.1) under the
assumption that A�1 does exist.

Theorem 4.1. If the inverse matrix exists, then it is unique.

Proof. Let A be a matrix with the inverse A�1, i.e.

AA�1 D I:

Suppose there exists another matrix A
0

such that

A
0

A D I:

Then multiplying each side of the second equality by A�1 yields

A
0

AA�1 D IA�1

A
0

I D A�1

A
0 D A�1:

�

Example 4.1. Let

A D
�

2 3

1 2

�
:

Then it easy to see that the matrix

C D
�

2 �3

�1 2

�

satisfies the conditions of Definition 4.1, that is, CA D AC D I2, so that A�1 D C .

Example 4.2. We have I �1
n D In, since InIn D In.

Let us now consider a matrix A, the inverse of which does not exist. Given

A D
�

0 1

0 1

�

and

B D
�

b11 b12

b21 b22

�
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let us calculate BA.

BA D
�

b11 b12

b21 b22

� �
0 1

0 1

�

D
�

0 b11 C b12

0 b21 C b22

�

We immediately note that BA D I2 can hold for no B . Hence, the matrix A does
not have the inverse. Such matrices which are not invertible are called singular.

Note that there exist a number of generalized versions of the concept of inverse
matrix. One of the most important of them, so-called ‘pseudoinverse’, is discussed
in Appendix D.

Theorem 4.2. If det A D 0, then the matrix A is singular.

Proof. Let A be a matrix with det A D 0 and suppose A�1 exists. Then

AA�1 D I; and

det A det A�1 D 1

0 det A�1 D 1;

which is a contradiction. �

Let us now give an algorithm to construct A�1 for a given non-singular matrix
A. Recall that for a matrix

A D

2

66
6
6
6
4

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

an1 an2 : : : ann

3

77
7
7
7
5

;

the sign Mij denotes the submatrix (minor) obtained from matrix A by deleting
i th row and j th column and Aij D .�1/iCj det.Mij / denotes the cofactor of the
element aij , see Definition 3.1. Let us construct the adjoint matrix A� of the matrix
A, using cofactors, as follows:

A� D

2

6
6
66
6
4

A11 A21 : : : An1

A12 A22 : : : An2

:: : : :
:: : : :
:: : : :

A1n A2n : : : Ann

3

7
7
77
7
5

(4.2)
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Note that the number Aij here replaces the element aj i of A, not aij !
Let d denote det A. Using the definition of the determinant one can obtain

AA� D A�A D

2

6
66
6
6
4

d 0 : : : 0

0 d : : : 0

:: : : :
:: : : :
:: : : :

0 0 : : : d

3

7
77
7
7
5

(4.3)

(Check the above equality for 2 � 2 case!)
One can also check that

det.AA�/ D det A det A� D d n:

Hence,
det A� D d n�1: (4.4)

In other words, if det A ¤ 0 then det A� ¤ 0 as well, and (4.4) holds.
Now from (4.3) we immediately obtain

AA� D dI;

and

A�1 D 1

d
A� D

2

6
6
66
6
4

A11=d A21=d : : : An1=d

A12=d A22=d : : : An2=d

:: : : :
:: : : :
:: : : :

A1n=d A2n=d : : : Ann=d

3

7
7
77
7
5

(4.5)

Note that we have constructed the inverse for any matrix A such that det A ¤ 0.
In view of Theorem 4.2, we get

Corollary 4.3. A matrix A is singular if and only if det A D 0.

Example 4.3.

A D
2

4
3 �1 0

�2 1 1

2 �1 4

3

5 ; det A D 5 ¤ 0

A� D
2

4
5 4 �1

10 12 �3

0 1 1

3

5
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A�1 D
2

4
1 4=5 �1=5

2 12=5 �3=5

0 1=5 1=5

3

5

In Example 2.12, the rotation of a vector in R2 around the origin is determined
by a matrix. Then one can say that the inverse matrix defines the inverse rotation
around the origin, due to

Exercise 4.3. For each angle ˛, we have

R�˛ D R�1
˛ :

Example 4.4. The matrix

A D
�

1 0

1 1

�

is applied to the vector x D Œ1; 0�T to yield the vector y D Œ1; 1�T (Fig. 4.1), that is,
y D Ax. Then one obtains x D A�1y. Here, A�1 exists and is equal to

A�1 D
�

1 0

�1 1

�

Note that y can also be obtained from x by the transformation matrix

B D
�

1 1

1 1

�
:

However, x cannot be obtained from y by the inverse rotation B�1, since B�1 does
not exist.

Fig. 4.1 y D
�
1 0

1 1

�
x

�

�

	
	
	
	�

y

x
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4.2 Rank and Determinants

Consider a matrix

A D

2

6
66
6
6
4

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

as1 as2 : : : asn

3

7
77
7
7
5

:

Recall that the columns of this matrix can be considered as s-dimensional vectors,
and maximal number of linearly independent columns is called the rank of A.

Let us choose an arbitrary set containing k columns and k rows of A. Elements in
these columns and rows altogether make a square matrix the determinant of which
is called a kth-ordered minor of A.

Lemma 4.4. If for any matrix A all minors of order k are equal to 0, then all minors
of higher orders are also equal to 0.

Proof. Assume that the hypothesis in the Lemma holds for some k, and consider
a submatrix AkC1 of A which contains k C 1 columns and k C 1 rows. Then
decomposing the determinant of AkC1 by any of its rows, we obtain that
det AkC1 D 0. �

Theorem 4.5. For any matrix, the highest order of non-zero minors is equal to the
rank of the matrix.

Proof. Take any matrix A D kaij ks�n. Let the highest order of non-zero minors of
A be equal to r. Clearly r � minfs; ng. Without loss of generality assume that the
first r rows and r columns of A yield a nonzero minor D, i.e., D D det kaij kr�r .
Then first r columns of A are linearly independent. (Why ?) If r D minfs; ng, then
the proof is complete. Consider the case in which r < minfs; ng. Let us show that
any l th column of A, with r < l � n, is linearly dependent on the first r columns.
Consider the matrix

Bi;l D

2

6
6
6
66
4

a11 : : : a1r a1l

: : : :
: : : :
: : : :

ar1 : : : arr arl

ai1 : : : air ail

3

7
7
7
77
5

:

If i > r , then det Bi;l is a minor of order greater than r . So, by the initial
assumption det Bi;l D 0. On the other hand, if i � r , then det Bi;l is not a minor
of A, but we still have that det Bi;l D 0 for Bi;l contains two identical rows. Using
det Bi;l D 0, we can consider its decomposition by the last row of Bi;l to obtain,
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ai1A1 C ai2A2 C � � � C airAr C ail D D 0;

where Ak is the minor associated with the element aik of the matrix Bi;l . Note that
the minor Ak is formed by the elements of the first r rows of A, so, the tuple of
coefficients A1; : : : ; Ar here is the same for all i . Since D ¤ 0, we get

ail D �A1

D
ai1 � � � � � Ar

D
air :

This equality holds for all i D 1; : : : ; s. So, i th column of A is the sum of first r

columns multiplied by coefficients .�A1=D; : : : ;�Ar=D/, respectively. �

In particular, a square matrix of order n has the maximal rank n if and only if its
determinant is non-zero. Such matrix is called a matrix of full rank.

Corollary 4.6. The maximal number of linearly independent rows of a matrix
equals the maximal number of its linearly independent columns, that is, to the rank
of the matrix.

Exercise 4.4. Consider the transpose matrix AT of A to prove the above claim
yourself.

4.3 Problems

1. For each of the following matrix, find the inverse.

(a)

�
1 2

3 4

�
; (b)

�
cos ˛ � sin ˛

sin ˛ cos ˛

�
; (c)

2

4
2 7 3

3 9 4

1 5 3

3

5;

(d)

2

4
1 2 2

2 1 �2

2 �2 1

3

5; (e)

2

6
6
4

0 �2 1 5

10 0 �1 0

0 1 �1 2

1 2 �2 3

3

7
7
5.

2. Find the inverse of

(a)

2

6
6
6
4

1 1 : : : 1 1

0 1 : : : 1 1
:::

:::
: : :

:::
:::

0 0 : : : 0 1

3

7
7
7
5

; (b)

2

6
6
6
4

1 1 1 : : : 1 1

1 0 1 : : : 1 1
:::

:::
:::

: : :
:::

:::

1 1 1 : : : 1 0

3

7
7
7
5

; (c)

2

6
6
6
4

0 1 1 : : : 1

1 0 1 : : : 1
:::

:::
:::

: : :
:::

1 1 1 : : : 0

3

7
7
7
5

.

3. Solve for the matrix X in the following equations

(a)

�
1 2

3 4

�
X D

�
3 5

5 a

�
; (b) X

�
3 �2

5 �4

�
D
��1 5

�2 6

�
;
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(c) X

2

4
5 3 1

1 �3 �2

�5 2 1

3

5 D
2

4
�8 3 0

�5 9 0

�2 15 0

3

5;

(d)

2

4
2 �3 1

4 �5 2

5 �7 3

3

5X

2

4
9 7 6

1 1 2

1 1 1

3

5 D
2

4
2 0 �2

18 12 9

23 15 11

3

5.

4. Let A and B be non-singular matrices of the order n. Show that the following
statements are equivalent.

(a) AB D BA,

(b) AB�1 D B�1A,

(c) A�1B D BA�1,

(d) A�1B�1 D B�1A�1.
5. Let A be symmetric non-singular matrix. Show that A�1 is also symmetric.
6. Let A be a lower triangular (or an upper triangular) matrix. Show that A�1 is

also lower (respectively, upper) triangular.
7. Find the rank of the matrix below for all possible values of �

(a)

2

4
1 � �1 2

2 �1 � 5

1 10 6 1

3

5;

(b)

2

6
6
4

0 �1 1 �1

� 0 �1 0

0 0 2� 2

1 2 �2 3

3

7
7
5.

8. Prove that adding a row to a matrix A either does not change the rank of A or
increases it by 1.

9. Find conditions which are necessary and sufficient for any three points
.x1; y1/; .x2; y2/ and .x3; y3/ to be on the same line.

10. What are the necessary and sufficient conditions for the three lines

8
<

:

a1x C b1y C c1 D 0

a2x C b2y C c2 D 0

a3x C b3y C c3 D 0

to intersect at one point?
11. Let A D ��aij

��
m�n

be a matrix, and write it as a set of columns

A D .A1; A2; : : : ; An/ :
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Consider a matrix A0 such that
(a) A0 D .A1; A2; : : : ; Ai�1; cAi ; AiC1; : : : ; An/ where c ¤ 0,
(b) A0 D �A1; : : : ; Ai�1; Aj ; AiC1; : : : ; Aj �1; Ai ; Aj C1; : : : ; An

�
.

Show that in both cases, matrix A0 has the same rank as A.
12.* Prove that the rank of the sum of two matrices is not greater than the sum of

their ranks.
13.* Matrix A is called nilpotent of degree k if Ak D 0.

Prove that if a square matrix A D �
�aij

�
�

2�2
of order two is nilpotent of some

positive degree k then A2 D 0.
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Remember the economic model given in Introduction. It is one of the main problems
in economics to find when (i.e, under what price) the demand and the supply of the
economic system will be in equilibrium. We now begin to find these conditions for
our model in the most general way.

A set of linear equations is called a system. It is of interest to find conditions under
which (a) the solution of a system exists, (b) the solution of a system is unique.

Example 5.1.

�
x1 C 5x2 D 1

x1 C 5x2 D 7
There is no solution of this system. Why?

�
x1 C 2x2 D 7

x1 C x2 D 4
The solution is unique: x1 D 1; x2 D 3:

�
3x1 � x2 D 1

6x1 � 2x2 D 2

This system has many solutions:
x1 D k 2 R; x2 D 3k � 1:

We will discuss three approaches to solutions of such systems. First of them,
so-called Cramer method, gives simple formulae for the solution, see Sect. 5.1.
However, this method is used only for special systems. The second approach is
based on a universal algorithm for solution of the system, see Sect. 5.2. However,
the dependence of the solution on the data is not clear in the algorithm. The third
approach gives an explicit formula for a particular or an approximate solution. It is
based on the concept of a pseudoinverse of a matrix, see Appendix D.

Consider now a system of linear equations

8
ˆ̂
<

ˆ̂
:

a11x1 C a12x2 C : : : C a1nxn D b1

a21x1 C a22x2 C : : : C a2nxn D b2

: : : : : : : : : : : : : : : :

as1x1 C as2x2 C : : : C asnxn D bs

(5.1)

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 5,
© Springer-Verlag Berlin Heidelberg 2011
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Let us discuss the conditions when the above system does have a solution.
For the above system, let A be the matrix containing coefficients of all unknown

variables
A D ��aij

�
�

s�n
;

and let eA be the matrix of all coefficients in the system

eA D
2

4
a11 a12 : : : a1n b1

: : : : : : : : : : : : : : : :

as1 as2 : : : asn bs

3

5 :

Lemma 5.1. Either rank.A/ D rank.eA/ or rank.eA/ D rank.A/C 1.

Proof. Left as an exercise. �
Now we can state the main theorem about the systems of linear equations.

Theorem 5.2 (Kronecker–Capelli1). A system of linear equations (5.1) has a
solution if and only if rank.A/ D rank.eA/.

Proof. Assume that the system (5.1) has a solution k1; : : : ; kn. Insert it in the system
for the unknown variables x1; : : : ; xn. Then, we have a system of s equalities such
that the column b D Œb1; : : : ; bs�

T is represented as a linear combination of columns
in A. Since all columns in eA, except for b, are columns in A, we must have the same
set of linearly independent columns in A and in eA, which means that rank.A/ D
rank.eA/.

Assume now that rank.A/ D rank.eA/, i.e. the maximal number of linearly
independent columns in A and in eA are equal. Then, the last column of eA can
be represented in terms of the submatrix containing maximal number of linearly
independent columns, i.e., there exist k1; : : : ; kn such that

Pn
j D1 kj aij D bi for all

i D 1; : : : ; s. Hence, k1; : : : ; kn are the solution of (5.1). �

By the above theorem, we have a criterion of the existence of the solution. But
we still have to answer the following questions: If a solution exists, how can we find
it? If there are several solutions, how can we find all of them?

Consider the system (5.1). Suppose the matrix A has rank r , i.e. r equals the
maximal number of linearly independent rows in A, and all other rows are linear
combinations of those r rows. Without loss of generality, assume that those are first
r rows of A. Then first r rows of eA are linearly independent as well (why?).

Since rank.A/ D rank.eA/, the first r rows in eA give a set of maximal number of
linearly independent rows. Then any equation in (5.1) can be represented as a linear
combination of first r equations, i.e., as a sum of those r equations multiplied by
some coefficients.

Moreover, any solution of first r equations will satisfy all other equations in (5.1),
as well. Hence it is sufficient to find the solutions of the system

1Alfredo Capelli (1855–1910), an Italian algebraist. He gave a modern definition of rank of matrix.
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8
ˆ̂
<

ˆ̂
:

a11x1 C a12x2 C : : : C a1nxn D b1

a21x1 C a22x2 C : : : C a2nxn D b2

: : : : : : : : : : : : : : : :

ar1x1 C ar2x2 C : : : C arnxn D br

(5.2)

We can rewrite the above system as A0x0 D b0, where A0 D kaij kr�n, x0 D
Œx1; : : : ; xn�T and b0 D Œb1; : : : ; br �

T . The matrix A
0

has a rank r . (Why?)
If r D n then the number of equations is equal to the number of variables, and

the system (5.2) has a unique solution

x0 D


A

0

��1

b0:

If r < n , then detkaij kr�r is not equal to 0. Then reconstruct (5.2) as

8
<

:

a11x1 C : : : C a1rxr D b1 � a1;rC1xrC1 � � � � � a1nxn

: : : : : : : : : : : : :

ar1x1 C : : : C arrxr D br � ar;rC1xrC1 � � � � � arnxn

(5.3)

or A
00

x
00 D b

00

where A
00 D kaij kr�r , x

00 D Œx1; : : : ; xr �T and b
00 D Œˇ1; : : : ; ˇn�T

with ˇi D bi � ai;rC1xrC1 � � � � � ainxn.
Choose some arbitrary (!) values crC1; : : : ; cn for variables xrC1; : : : ; xn. Then

we obtain the system of r equations in r unknown variables with det A
00 ¤ 0.

Hence the system (5.3) has a solution

x
00 D



A

00

��1

b
00

: (5.4)

Let x
00 D Œc1; : : : ; cr �

T . It is obvious that Œc1; : : : ; cr ; crC1; : : : ; cn�T is then a
solution of (5.2).

We can now formulate the general rule of obtaining the solutions of a system.
Let a system (5.1) be given such that rank.A/ D rank.eA/ D r . Choose r linearly

independent rows in A and retain in (4.3) only the equations associated with r

linearly independent rows that you chose. Keep at the left side of these equations
only r variables such that the determinant of the associated coefficients for these
variables is not equal to 0. For each equation, put all other variables, that are called
free, in the right side of the equations. Assign to the free variables arbitrary values,
and calculating values of all other variables by (5.4), we obtain all solutions of (4.3).

Example 5.2. Consider the following system of equations:

8
<

:

x1 C x2 � 2x3 � x4 C x5 D 1

3x1 � x2 C x3 C 4x4 C 3x5 D 4

x1 C 5x2 � 9x3 � 8x4 C x5 D 0
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Check that rank.A/ D rank.eA/ D 2. First and third equations are linearly
independent. So, we have to consider only:

(
x1 C x2 D 1C 2x3 C x4 � x5

x1 C 5x2 D 9x3 C 8x4 � x5

Then

x1 D 5

4
C 1

4
x3 � 3

4
x4 � x5

x2 D �1

4
C 7

4
x3 C 7

4
x4

where x1; x2; x3 2 R. This is the general solution.

Corollary 5.3. The solution of system (4.3), whenever exists, is unique if and only
if rank.A/ is equal to the number of variables.

5.1 The Case of Unique Solution: Cramer’s Rule

We have seen in (3.5) that the components of a solution for a system of two
linear equations with two variables is expressed as ratios of determinants of certain
matrices. Let us give analogous formulae for larger systems.

Theorem 5.4 (Cramer’s2 rule). Let

AX D B

be a system of linear equations such that the number of equations and the number
of variables are the same, that is, A is a square matrix of order n. Suppose that A is
not singular. Then the solution of the system is

xi D det Ai

det A

for all i D 1; : : : ; n, where Ai is the matrix formed from A by replacing its i -th
column by the column B .

Proof. From the equation
AX D B

2Gabriel Cramer (1704–1752) was a Swiss mathematician who introduced determinants and used
them to solve algebraic equations.



5.1 The Case of Unique Solution: Cramer’s Rule 79

we have

X D A�1B D 1

det A
A�B;

so,

xi D .i -th row ofA�; B/

det A
:

By the definition of the adjoint matrix (4.2), the denominator of the above fraction
is A1i b1 C � � � C Anibn D det Ai . �

Example 5.3. Solve the system

8
ˆ̂
<̂

ˆ̂
:̂

x C 3y � z D 4;

2x � y C z D 3;

3x � 2y C 2z D 5:

Here

A D

2

6
6
4

1 3 �1

2 �1 1

3 �2 2

3

7
7
5 ; det A D �2 ¤ 0:

The matrix A is not singular, so the system has a unique solution. We have

det A1 D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

4 3 �1

3 �1 1

5 �2 2

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

D �2; det A2 D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

1 4 �1

2 3 1

3 5 2

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

D �4;

det A3 D

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

1 3 4

2 �1 3

3 �2 5

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

D �6;

hence

x1 D �2=.�2/ D 1;

x2 D �4=.�2/ D 2;

x3 D �6=.�2/ D 3:
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5.2 Gauss Method: Sequential Elimination of Unknown
Variables

Consider a system of linear equations

8
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
:

a11x1 C a12x2 C : : : C a1nxn D b1

a21x1 C a22x2 C : : : C a2nxn D b2

a31x1 C a32x2 C : : : C a3nxn D b3

:: : : : :
:: : : : :
:: : : : :

am1x1 C am2x2 C : : : C amnxn D bm

(5.5)

Let us apply some operation to it – subtract from the second equation of (5.5),
the first one multiplied by some constant c ¤ 0. Then we get

8
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
:

a11x1 C a12x2 C : : : C a1nxn D b1

a
0

21x1 C a
0

22x2 C : : : C a
0

2nxn D b
0

2

a31x1 C a32x2 C : : : C a3nxn D b3

:: : : : :
:: : : : :
:: : : : :

am1x1 C am2x2 C : : : C amnxn D bm

(5.6)

where

a0
2k D a2k � ca1k;

b0
2 D b2 � cb1:

Example 5.4. Consider the system:

8
<

:

x1 C 2x2 C 5x3 D �9

x1 � x2 C 3x3 D 2

3x1 � 6x2 � x3 D 25

Let us subtract from the second equation the first one multiplied by one to obtain

8
<

:

x1 C 2x2 C 5x3 D �9

� 3x2 � 2x3 D 11

3x1 � 6x2 � x3 D 25:

We have the following question: Is the system (5.5) equivalent to the system (5.6)?
That is, is it true that if one of the systems does not have a solution, then the other
system does not have a solution as well? Do the two systems always have the same
solution(s)? The answer to both these questions is ‘yes’!
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Lemma 5.5. Systems (5.5) and (5.6) are equivalent.

Note that the matrix eA for the system (5.6) is obtained from the matrix eA of the
system (5.5) via an elementary transformation of the third type (see Sect. 2.8). So,
it follows from Lemma 5.5 that any elementary transformation, being applied to the
matrix eA of a system of linear equations, gives the matrix of an equivalent system.

Proof. Let .k1; : : : ; kn/ be a solution of (5.5). Let us show that it is also a solution
of (5.6). Then it remains to prove that .k1; : : : ; kn/ satisfies the second equation in
(5.6), for it clearly satisfies all other equations. Note that we have

a11k1 C a12k2 C � � � C a1nkn D b1

a21k1 C a22k2 C � � � C a2nkn D b2:

Multiplying the first equality by c and subtracting it from the second one gives

.a21 � ca11/k1 C .a22 � ca12/k2 C � � � C .a2n � ca1n/kn D b2 � cb1

or
a0

21k1 C a0
22k2 C � � � C a0

2nkn D b0
2:

So .k1; : : : ; kn/ is also a solution of (5.6). It is left as an exercise to show that any
solution of (5.6) is a solution of (5.5) as well. �

It is obvious that such transformations of a system, if applied several times, still
yield an equivalent system.

Remark 5.1. By this method, we can exclude step by step some variables from each
equation in the system. If, at the end, we obtain an equation, say the i th one, such
that all coefficients of unknown variables in it are equal to 0 as well as the right hand
side of it (call it Qbi ), then we can just omit this equation. But, if Qbi is not zero while
all unknown variables have zero coefficients in the i th equation, then that equation
can not be satisfied by any values of variables. In that case, the system (5.5) is called
inconsistent.

Now we are ready to give the Gauss method.
Let the system (5.5) be given. Relabel all coefficients aij by a0

ij and bi by b0
i , for

all i and j . Let i and j be two counters (i for rows and j for variables) with the
initial values being equal to 1, i.e., i WD 1 and j WD 1.

Procedure begins at
Step 1: Determine if ai�1

ij ¤ 0. If ai�1
ij D 0, then look for a row k 2 fi C 1; : : : ; mg

such that akj ¤ 0. If there is no such k, go to Step 4. Otherwise, choose
such a k; interchange rows i and k, and switch the labels of the coefficients,
i.e., ai�1

il $ ai�1
kl and bi�1

i $ bi�1
k , for all l D 1; : : : ; n.

Step 2: To exclude xj from all equations indexed by k D i C 1; : : : ; m, subtract
from the kth equation the i th one multiplied by ai�1

kj =ai�1
ij , and obtain the

reduced coefficients
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ai
kl D ai�1

kl � ai�1
il ai�1

kj =ai�1
i i ;

bi
k D bi�1

k � bi�1
i ai�1

kj =ai�1
ij ;

for all l D 1; : : : ; n.
Step 3: Increase i by 1 (i WD i C 1).
Step 4: Increase j by 1 (j WD j C 1).
Step 5: If either i D m or j D n then stop the procedure and solve for unknown

variables starting from the last equation. If i < m and j < n, go to Step 1.
Procedure ends.

Notice that after the procedure terminates, we get the following reduced system

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

a0
11x1 C a0

12x2 C : : : C a0
1nxn D b0

1

a1
22x2 C a1

23x3 C : : : C a1
2nxn D b1

2

:: : : : :
:: : : : :
:: : : : :

am�2
m�1;m�1xm�1 C am�2

m�1;mxm C : : : C am�2
m�1;nxn D bm�2

m�1

am�1
mm xm C am�1

m;mC1xmC1 C : : : C am�1
mn xn D bm�1

m

If in the above system there exists some row k (1 � k � m) such that ak�1
kj D 0

for all j D k C 1; : : : ; n while bk�1
k ¤ 0, then we conclude that system (5.5) is

inconsistent.
Now, assume that in the reduced system, ak�1

kk ¤ 0 for all k D 1; : : : ; m. Then
system (5.5) is consistent, and its solution can be obtained from the reduced system
as follows:

If m D n, then we can find xn from the last equation, xn�1 from the .n � 1/st
equation which contains only xn and xn�1, and so on.

If m < n, then we have free variables xmC1; : : : :; xn. Assigning to free variables
arbitrary values, we can then solve the system for the unknown variables x1; : : : ; xm.

Remark 5.2. Note that in the above algorithm we construct the row echelon form
of the matrix extended matrix ŒAjB�, where Ax D B is the matrix form of the
system (5.5). Then the algorithm itself is analogous to the one used in the proof of
Theorem 2.9.

Example 5.5. Problem. Solve the following system of linear equations:

8
<

:

x1 C 2x2 C 5x3 D �9

x1 � x2 C 3x3 D 2

3x1 � 6x2 � x3 D 25
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Solution. Let us construct extended matrix of this system and apply Gauss elimina-
tion procedure to get

2

4
1 2 5 �9

1 �1 3 2

3 �6 �1 25

3

5!
2

4
1 2 5 �9

0 �3 �2 11

0 �12 �16 52

3

5!

2

4
1 2 5 �9

0 �3 �2 11

0 0 �8 8

3

5 :

Thus, we have:
x1 C 2x2 C 5x3 D �9

� 3x2 � 2x3 D 11

� 8x3 D 8

From the last equation, we have x3 D �1. Substitute the value x3 D �1 in the
second equation and get �3x2 C 2 D 11, hence x2 D �3. Then substitute these
values of x2 and x3 to the first equation and get x1 � 6 � 5 D �9, or x1 D 2.

To avoid non-necessary fractions, one can multiply each row by a nonzero
number (say, by the denominator aij of the fractions in Step 2) in each stage of
algorithm.

Example 5.6. Problem. Solve the system of linear equations

8
ˆ̂
<

ˆ̂
:

x1 � 5x2 � 8x3 C x4 D 3

3x1 C x2 � 3x3 � 5x4 D 1

x1 � 7x3 C 2x4 D �5

� 11x2 C 20x3 � 9x4 D 2

Solution. Applying Gauss elimination procedure on the extended coefficient matrix
we obtain

2

6
6
4

1 �5 �8 1 3

3 1 �3 �5 1

1 0 �7 2 �5

0 11 20 �9 2

3

7
7
5!

2

6
6
4

1 �5 �8 1 3

0 16 21 �8 �8

0 5 1 1 �8

0 11 20 �9 2

3

7
7
5!
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2

66
4

1 �5 �8 1 3

0 16 21 �8 �8

0 0 �89 �56 �88

0 0 89 56 120

3

77
5!

2

6
6
4

1 �5 �8 1 3

0 16 21 �8 �8

0 0 �89 �56 �88

0 0 0 0 32

3

7
7
5 :

From the last row, we conclude that the system is inconsistent.

Example 5.7. Problem. Solve the following system of linear equations:

8
ˆ̂<

ˆ̂
:

� x2 C 2x3 D 1

x1 � 2x2 C x3 D 0

x1 � x2 � x3 D �1

2x1 � x2 � 4x3 D �3

Solution. Applying Gauss elimination procedure on the extended coefficient matrix
we obtain

2

6
6
4

0 �1 2 1

1 �2 1 0

1 �1 �1 �1

2 �1 �4 �3

3

7
7
5!

2

66
4

1 �2 1 0

0 �1 2 1

1 �1 �1 �1

2 �1 �4 �3

3

77
5!

2

6
6
4

1 �2 1 0

0 �1 2 1

0 1 �2 �1

0 3 �6 �3

3

7
7
5!

2

6
6
4

1 �2 1 0

0 �1 2 1

0 0 0 0

0 0 0 0

3

7
7
5
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Thus, we have �
x1 � 2x2 C x3 D 0

� x2 C 2x3 D 1

Take one of the variables in the last equation, say, x3, as a free variable. Then we
have x2 D 2x3 � 1, where x3 is an arbitrary real number. From the first equation,
we get x1 D 2x2 � x3 D 3x3 � 2.

5.3 Homogeneous Equations

Consider the system:

8
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
:̂

a11x1 C a12x2 C : : : C a1nxn D 0

a21x1 C a22x2 C : : : C a2nxn D 0

:: : : : :
:: : : : :
:: : : : :

as1x1 C as2x2 C : : : C asnxn D 0

(5.7)

By Kronecker-Capelli Theorem, it follows that the above system has a solution.
Indeed, it has a trivial solution given by .x1; x2; : : : ; xn/ D .0; 0; : : : ; 0/.

Any system which admits the zero vector as a solution is called a homogeneous
system. Obviously, if the right hand-side of any equation in (5.7) were not zero, then
the system could not admit the trivial solution, and will be called nonhomogeneous.

In the case of homogeneous system, the Kronecker-Capelli Theorem has a
simpler form.

Theorem 5.6. Let
Ax D 0

be a homogeneous system of linear equations of n variables. Then either rank A D n

and the system has the unique zero solution or rank A < n and the system has
infinitely many solutions.

Proof. Left as an exercise. (Hint. Use Gauss elimination procedure. How the row
echelon form of the matrix eA depends on rank A?) �

Consider an economy with m agents exchanging n kinds of goods. Let aij be the
quantity of good i received (sold) by an agent j . If aij is positive, then we consider
that the good i is sold by agent j ; if aij is negative, then the amount jaij j is bought
by agent j .

Then
.a1j ; a2j ; : : : ; anj /

is the vector showing the ‘exchanges’ of agent j of any good i D 1; : : : ; n.
Similarly, the components of the vector
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.ai1; ai2; : : : ; aim/

shows the exchanges of the good i by each agent.
Let now p1; : : : ; pm be the prices of some units of the goods 1; : : : ; m. If an agent

j sells first k goods and purchases the goods k C 1; : : : ; m, then the expression

p1a1j C p2a2j C � � � C pkakj � pkC1akC1;j � � � � � pmamj

exactly means the net revenue of the agent j from her trading activity.
If we put net revenue to be equal to 0, then we obtain

p1a1j C p2a2j C � � � C pkakj � pkC1akC1;j � � � � � pmamj D 0:

Returning back to the example one can say that the set of homogeneous linear
equations describes the problem how to find the prices of goods so that the net
revenue of each agent being equal to 0.

Example 5.8. Consider the following system:

8
<

:

4x1 C x2 � 3x3 � x4 D 0

2x1 C 3x2 C x3 � 5x4 D 0

x1 � 2x2 � 2x3 C 3x4 D 0

The system is homogeneous since .x1; x2; x3; x4/ D .0; 0; 0; 0/ is a solution. Since
the rank of the system is less than the number of unknown variables, we can seek
for other solutions, as well.

Let us construct the coefficient matrix (we can omit the last column of zeros) and
perform some elementary operations on it.

2

4
4 1 �3 �1

2 3 1 �5

1 �2 �2 3

3

5!
2

4
0 9 5 �13

0 7 5 �11

1 �2 �2 3

3

5!

2

4
0 2 0 �2

0 7 5 �11

1 �2 �2 3

3

5

Then, we have the reduced system of linear equations:

8
<

:

� 2x2 � 2x4 D 0

� 7x2 C 5x3 � 11x4 D 0

x1 � 2x2 � 2x3 C 3x4 D 0
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Take one of the variables, say x4, as a free variable, i.e., x4 D ˛ 2 R. Then x2 D ˛,
x3 D .4=5/˛ and x1 D .3=5/˛. (Note that for ˛ D 0 we get the trivial solution.)

5.4 Problems

5.4.1 Mathematical Problems

1. Find the solution of the following systems of linear equations.
(a) 8

ˆ̂<

ˆ̂
:

2x1 C 2x2 � x3 C x4 D 4

4x1 C 3x2 � x3 C 2x4 D 6

8x1 C 5x2 � 3x3 C 4x4 D 12

3x1 C 3x2 � 2x3 C 2x4 D 6

(b) 8
<

:

2x1 C 7x2 C 3x3 C x4 D 6

3x1 C 5x2 C 2x3 C 2x4 D 4

9x1 C 4x2 C x3 C 7x4 D 2

2. Find the solution of the following system in terms of �.

8
<

:

�x1 C x2 C x3 D 1

x1 C �x2 C x3 D 1

x1 C x2 C �x3 D 1

Solve the following systems of linear equations using different methods:
3. 8

ˆ̂
<

ˆ̂
:

3x1 � 2x2 � 5x3 C x4 D 3

2x1 � 3x2 C x3 C 5x4 D �3

x1 C 2x2 C x3 � 4x4 D �3

x1 � x2 � 4x3 C 9x4 D 22

4. 8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

2x1 C 3x2 C x3 C 2x4 D 4

4x1 C 3x2 C x3 C x4 D 5

5x1 C 11x2 C 3x3 C 2x4 D 2

2x1 C 5x2 C x3 C x4 D 1

x1 � 7x2 � x3 C 2x4 D 7
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5. 8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

8x1 C 6x2 C 5x3 C 2x4 D 21

3x1 C 3x2 C 2x3 C x4 D 10

4x1 C 2x2 C 3x3 C x4 D 8

3x1 C 5x2 C x3 C x4 D 15

7x1 C 4x2 C 5x3 C 2x4 D 18

6. 8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

x1 C 2x2 C 3x3 C 4x4 C 5x5 D 2

2x1 C 3x2 C 7x3 C 10x4 C 13x5 D 12

3x1 C 5x2 C 11x3 C 16x4 C 21x5 D 17

2x1 � 7x2 C 7x3 C 7x4 C 2x5 D 57

x1 C 4x2 C 5x3 C 3x4 C 10x5 D 7

7. 8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

6x1 C 6x2 C 5x3 C 18x4 C 20x5 D 14

10x1 C 9x2 C 7x3 C 24x4 C 30x5 D 18

12x1 C 12x2 C 13x3 C 27x4 C 35x5 D 32

8x1 C 6x2 C 6x3 C 15x4 C 20x5 D 16

4x1 C 5x2 C 4x3 C 15x4 C 15x5 D 11

8. 8
ˆ̂<

ˆ̂
:

2x1 C 3x2 � x3 C x4 D 1

8x1 C 12x � 9x3 C 8x4 D 3

4x1 C 6x2 C 3x3 � 2x4 D 3

2x1 C 3x2 C 9x3 � 7x4 D 3

9. Find a polynomial f .x/ D ax2 C bx C c such that

f .1/ D �1

f .�1/ D 9

f .2/ D �3:

10. Find a polynomial f .x/ of degree 3 such that

f .�1/ D 0

f .1/ D 4

f .2/ D 3

f .3/ D 16

11. Show that for any two different n-tuples x0; x1; : : : ; xn and any y0; y1; : : : ; yn

there exists unique polynomial f .x/ of degree at most n such that
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f .xi / D yi ; i D 0; 1; : : : ; n:

Give a geometric explanation of this problem.

5.4.2 Economic Problems

12. Consider the simple supply and demand model introduced in Chap. 1 by (1.1)–
(1.2). It can be written as a system of linear equations as follows

8
ˆ̂<

ˆ̂
:

qd
i D ˛0 � ˛1pi

qs
i D �ˇ0 C ˇ1pi

qd
i D qs

i

(5.8)

i. Using the Kronecker–Capelli theorem, write the conditions for this system
to have a solution;

ii. Solve the system by using Cramer’s rule;
iii. Find the solution of (5.8) using Gauss method.

13. Consider an economy with three goods, .q1; q2; q3/. Let Y denote the income.
Suppose the demand functions for these goods are as follows:

qd
1 D �0:05p1 C 0:02p2 � 0:01p3 C 0:02Y;

qd
2 D 0:01p1 � 0:04p2 C 0:01p3 C 0:04Y;

qd
3 D �0:03p1 C 0:02p2 � 0:06p2 C 0:01Y;

and the supply functions for these goods are given as

qs
1 D �20C 0:2p1

qs
2 D �14C 0:3p2

qs
3 D �25C 0:1p3

(5.9)

i. Interpret the signs of the coefficients of price and income variables in the
demand functions?
Hint. Why should the demand for a good is affected by a change in the price
of another good? Notice the symmetric nature of the signs of coefficients.

ii. Suppose Y D 1;000. Find the equilibrium prices for this three good
economy.

iii. What happens to the prices when income (Y ) increases to 1,200.
14. Following the model described in Chapter 1 by (1.13)–(1.18), consider the

following macroeconomic model:
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8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

Y D C C I CG CX �M;

C D 0:75Yd ;

Yd D Y � T;

T D G;

G D GC CGI ;

I D 0:25.Y � Y�1/C 0:1GI ;

M D 0:02C C 0:08I C 0:06GI C 0:03X;

N D 0:8Y;

B D 1:05X � 1:07M;

where Y – GDP, Y�1 – GDP of the previous year, C – Private Consumption, I –
Private Investment, M – Imports, X – Exports, Yd – Disposable Income, T –
Taxes, G – Government Expenditure, GC – Public Consumption Expenditures,
GI – Public Investment Expenditures, N – Employment, B – Current Account
of the Balance of Payments. All variables, except N , are measured in $ billion.
Employment (N ) unit of measurement is 1,000 persons.

Suppose the following data is given: Y�1 D 1;200, X D 200.
i. Identify the endogenous and exogenous variables of this model.

ii. Suppose that the government wants to target balance of payments and
employment. Is the structure of the model suitable for this purpose? Why?

iii. Can government use private investment (I ) as a policy instrument? Why?
iv. Can government use only public investment to reach its balance of payments

and employment targets? Why?
v. Eliminate the irrelevant endogenous variables and express the remaining

target variables in terms of the exogenous ones.
vi. Suppose that the government aims at achieving $160 billion surplus in the

balance of payments and an employment level of 1,100 by using public
consumption and public investment. How much should government spend?



6Linear Spaces

We now construct a generalization of the notions studied in the previous chapters.
Consider some set L of elements x; y; z; : : : . We call L a linear space1 if
i. for any x; y 2 L, there exists some z 2 L such that

z D xC yI

ii. for any x 2 L and any real number �, we have �x 2 L.
Elements of linear spaces are called vectors. (Here, the word ‘vector’ is used in

the abstract sense; it can represent a matrix, a function, a real vector, etc.) The linear
space is also called a vector space.

The vector operationsC (vector addition) and � (dot multiplication) must satisfy
the following axioms on L

I-(i) xC y D yC x (commutativity),
I-(ii) .xC y/C z D xC .yC z/ (associativity),

I-(iii) there exists a (null) element 0 such that xC 0 D 0C x D x for all x,
I-(iv) for all x, there exists the additive inverse, .�x/, such that xC .�x/ D 0.
II-(i) 1.x/ D x,

II-(ii) ˛.ˇx/ D .˛ˇ/x.
III-(i) .˛ C ˇ/x D ˛xC ˇx,

III-(ii) ˛.xC y/ D ˛xC ˛y.
Note that C and � are abstract operations, they are not necessarily addition and

multiplication defined on real numbers.

Example 6.1. Consider the set of all vectors in Rn. Show that under the standard
operations of vector addition and multiplication by a number (Sect. 2.1), this set is
a linear space; check that all 8 axioms above are satisfied.

1In mathematics, a space is an abstract set of points with some additional structure. Mathematical
spaces are often considered as models for real physical spaces. In addition to linear spaces, there
are so-called Euclidean spaces, metric spaces, topological spaces and many others.

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 6,
© Springer-Verlag Berlin Heidelberg 2011
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Example 6.2. Consider a set Mn, elements of which are square matrices of order n.
Summation of matrices, multiplication of a matrix by a scalar, and the null matrix
are defined as usual. Check that Mn is a linear space.

Example 6.3. Consider L D C Œa; b� to be the set of all continuous real-valued
functions on an interval Œa; b�. The sum of any two functions f .x/ and g.x/ is
defined in the usual way as

f .x/C g.x/:

Analogously is defined �f .x/. Show that L is a linear space.

Example 6.4. Let Pn be the set of all polynomials on a variable x of degree
at most n. Show that Pn is a linear space under the usual summation and dot
multiplication operations.

Remark 6.1. The set of all polynomials of degree n is not a linear space since

.tn C tn�1/C .�tn C tn�1/ D 2tn�1;

is not a polynomial of degree n, that is, the addition of vectors is not well-defined.

6.1 Linear Independence of Vectors

Definition 6.1. Let L be a linear space. Vectors x1; x2; : : : ; xk are called linearly
dependent if there are numbers ˛1; ˛2; : : : ; ˛k such that at least one of them is
different from 0 and

˛1x1 C ˛2x2 C � � � C ˛kxk D 0:

Vectors which are not linearly dependent are called linearly independent.

A linear combination of vectors x1; x2; : : : ; xk is a vector of the from ˛1x1 C
˛2x2 C � � � C ˛kxk , where ˛1; : : : ; ˛k are some numbers (referred as coefficients
of the linear combination). Thus the vectors are linearly independent if and only if
none of their linear combinations with at least one nonzero coefficient is equal to
null vector.

Definition 6.2 (Dimension of a Linear Space). The linear space L is called
n-dimensional if the maximal number of linearly independent vectors in it is
equal to n. We denote this as dim.L/ D n.

Here are some examples.

Example 6.5. The system of vectors

e1 D .1; 0; : : : ; 0; 0/

e2 D .0; 1; 0; ::; 0/

: : : : : : :

en D .0; 0; : : : ; 0; 1/
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in Rn is linearly independent, since any linear combination

˛1e1 C ˛2e2 C � � � C ˛nen D .˛1; ˛2; : : : ; ˛n/

is not equal to the zero vector provided that at least one coordinate ˛i is nonzero. It
follows that dim Rn � n.

On the other side, any m vectors v1; : : : ; vm in Rn with m > n form an n � m

matrix (as columns). Since the rank of the matrix is not greater than the number
n of its rows, it follows that the columns v1; : : : ; vm are linearly dependent. Thus
dim Rn D n.

Example 6.6. Consider the following matrices of order n:

Ak;l D Œa
k;l
i;j �n�n; k D 1; : : : ; nI l D 1; : : : ; n

where

a
k;l
i;j D

�
1 if i D k and j D l;

0 otherwise:

Check that these vectors (matrices) are linearly independent.

Example 6.7. In the linear space Pn of all polynomials of degree � n of variable t

(Example 6.4), see that the vectors

1; t; t2; : : : ; tn

are linearly independent.

Now we give an insight to ‘the construction’ of linear spaces.

Lemma 6.1. Let

f1; : : : ; fk:

be a set of linearly independent vectors, and let each of the vectors g1; : : : ; gl be
a linear combination of the vectors f1; : : : ; fk. If the vectors g1; : : : ; gl are linearly
independent, then l � k.

Above lemma can be equivalently stated as follows: there cannot be more
than k linearly independent vectors which are linear combinations of k linearly
independent vectors f1; : : : ; fk .
Proof by induction. For k D 1 the claim is obviously true. Suppose that the claim is
true for k� 1 vectors f1; : : : ; fk�1, and prove the statement for the case of k vectors.

Take any k linearly independent vectors f1; : : : ; fk. Consider l linear combina-
tions of f1; : : : ; fk such that
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g1 D ˛11f1 C � � � C ˛1kfk

g2 D ˛21f1 C � � � C ˛2kfk

:: : :
:: : :
:: : :

gl D ˛l1f1 C � � � C ˛lkfk:

Suppose that g1; : : : ; gl are linearly independent. We have to show that l � k. There
are two cases to consider.

Case 1. If ˛jk D 0, for all j D 1; : : : ; l , then Lemma 6.1 is proved, since in that
case l � k � 1 < k.

Case 2. Suppose there exists j 2 f1; : : : ; lg such that ˛jk ¤ 0. Without loss of
generality assume that ˛lk ¤ 0.

We will construct new l � 1 linearly independent vectors which in turn will
be linear combinations of f1; : : : ; fk�1. To do this, we solve for fk using the last
equality to get

fk D 1

˛lk

gl � ˛l1

˛lk

f1 � � � � � ˛l;k�1

˛lk

fk�1:

Now inserting fk into the above equalities and rearranging, we obtain

g1 � .˛1k=˛lk/gl D ˇ11f1 C � � � C ˇ1;k�1fk�1;

g2 � .˛2k=˛lk/gl D ˇ21f1 C � � � C ˇ2;k�1fk�1;

:: : :
:: : :
:: : :

gl�1 � .˛l�1;k=˛lk/gl D ˇl�1;1f1 C � � � C ˇl�1;k�1fk�1;

where ˇi;j D ˛i;j � ˛i;k˛l;j =˛l;k , for all i D 1; : : : ; l � 1 and j D 1; : : : ; k � 1.
Then the vectors

g0
i D gi � ˛ik

˛lk

gl ; i D 1; : : : ; l � 1;

are linear combinations of f1; : : : ; fk�1.
If we can prove that g0

1; : : : ; g0
l�1 are linearly independent, then by induction

assumption we will prove that l � 1 � k � 1, i.e. l � k.
Suppose towards a contradiction that g0

1; : : : ; g0
l�1 are linearly dependent, i.e.,

there are �1; : : : ; �l�1 such that

�1g0
1 C � � � C �l�1g0

l�1 D 0

or

�1.g1 � ˛1k

˛lk

gl /C : : : :C �l�1.gl�1 � ˛l�1;k

˛lk

gl / D 0
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which can be rearranged as

�1g1 C � � � C �l�1gl�1 �
�

�1

˛1k

˛lk

C � � � C �l�1

˛l�1;k

˛lk

	
gl D 0:

Since vectors g1; g2; : : : ; gl are linearly independent (by assumption), all coeffi-
cients in the last equality must be equal to 0. That is, �1 D �2 D � � � D �l�1 D 0,
and hence g0

1; : : : ; g0
l�1 are linearly independent.

Definition 6.3. A set of n linearly independent vectors e1; : : : ; en in an n-
dimensional space L is called a basis for L.

Definition 6.4. Two vectors e1; e2 are called collinear if they are parallel to the
same line, and non-collinear otherwise.

Example 6.8. In R2 any two non-collinear vectors are linearly independent.

Example 6.9. In two-dimensional space R2 any two non-collinear vectors x and y
form a basis.

Example 6.10. The n linearly independent vectors in Example 6.5 form a basis for
Rn.

This special basis is called the canonical basis for Rn.

Lemma 6.2. Any set containing k < n linearly independent vectors x1; : : : ; xk can
be completed up to form a basis for an n-dimensional space L.

Proof. Let e1; : : : ; en be a basis for L. If any of the vectors e1; : : : ; en is a linear
combination of x1; ::; xk , then by Lemma 6.1, n � k, but k < n by assumption.
Hence among the basis vectors e1; : : : ; en there is at least one vector, say ep, which
is not a linear combination of x1; : : : :; xk . Add ep to the system x1; : : : :; xk . Consider
now the system of k C 1 vectors

x1; : : : ; xk; ep:

These vectors are linearly independent. (Why?)
If kC1 D n; then Lemma 6.2 is proved. If kC1 < n, then one can proceed until

constructing the system of n linearly independent vectors which by construction
contains x1; : : : ; xk . �

Theorem 6.3. Given a basis in an n-dimensional linear space L, any vector in L
can be uniquely represented as a linear combination of basis vectors.

Proof. Let e1; : : : ; en be a basis in L. Add x to these vectors. Since we have now
nC 1 vectors, they are linearly dependent, i.e.,

˛1e1 C � � � � C˛nen C ˇx D 0:

We can state that ˇ ¤ 0 (why ?). Then
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x D �˛1

ˇ
e1 � � � � � ˛n

ˇ
en;

i.e., x is represented us linear combination of the vector e1; : : : ; en.
Let us show that the representation is unique. Assume on the contrary that there

exists two representations

x D �1e1 C � � � C �nen

and
x D �1e1 C � � � C �nen

Subtract the second equality from the first. Then

.�1 � �1/e1 C .�2 � �2/e2 C � � � C .�n � �n/en D 0:

Since e1; : : : ; en are linearly independent, we obtain �i D �i for all i . �
Definition 6.5. Given a basis E D fe1; : : : ; eng in A and the vector

x D �1e1 C � � � C �nen;

the numbers �1; : : : ; �n are called coordinates of x in the basis E:

The statement of Theorem 6.3 means that in a given basis e1; : : : ; en any vector
has uniquely defined coordinates.

6.1.1 Addition of Vectors and Multiplication of a Vector
by a Real Number

Let x D .�1; : : : ; �n/ and y D .�1; : : : ; �n/ in the basis e1; : : : ; en. Then

x D �1e1 C � � � C �nen

y D �1e1 C � � � C �nen

and
xC y D .�1 C �1/e1 C � � � C .�n C �n/en;

i.e., vector xCy has coordinates .�1C�1; : : : ; �nC�n/. Analogously, vector �x has
coordinates .��1; : : : ; ��n/.

Example 6.11. i. For R2 our definition of coordinates of a vector coincides with
the usual definition.

ii. Consider the space L with polynomials of degree � n � 1. As it was shown
before, a simplest basis in it is a system
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e1 D 1; e2 D t; : : : ; en D tn�1:

Then any polynomial is represented as

P.t/ D a0t
n�1 C a1tn�2 C � � � C an�1:

What are coordinates of the vector in this basis?
Consider now another basis

e0
1 D 1; e0

2 D t � a; e0
3 D .t � a/2; : : : :; e0

n D .t � a/n�1:

Any polynomial P.t/, by Taylor expansion, can be represented as

P.t/ D P.a/C P 0.a/.t � a/C � � � C P .n�1/.a/

.n � 1/Š
.t � a/n�1

What are the coordinates of P.t/ in this basis?

6.2 Isomorphism of Linear Spaces

Definition 6.6. Linear spaces L and L0 are called isomorphic if between vectors
x 2 L and x0 2 L0 there exists a one-to-one and onto correspondence x $ x0 such
that
(a) if x $ x0 ; y $ y0 then x C y $ x0 C y0I
(b) �x $ �x0:

Lemma 6.4. If L and L0 are isomorphic then linearly independent vectors in L are
linearly independent in L0; and vice versa.

Proof. Exercise. ut
Lemma 6.5. Two linear spaces L and L0 of different dimensions are not isomor-
phic.

Proof. Exercise (use Lemma 6.4). ut
Theorem 6.2. All linear spaces of dimension n are isomorphic.

Proof. Let L, L0 be two n-dimensional spaces. Choose in L a basis e1; : : : ; en, and
in L0 - a basis e0

1; : : : ; e0
n.

For any vector
x D �1e1 C � � � C �nen (6.1)

construct the corresponding vector

x0 D �1e0
1 C � � � C �ne0

n: (6.2)
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Note that coefficients are the same in both cases. This correspondence is a bijection
(one-to-one and onto). Indeed, any x 2 L can be represented as in (6.1). Then, all
�1; : : : ; �n and hence vector x0 are defined by x uniquely.

Change L and L0 in this reasoning and obtain a one-to-one and onto correspon-
dence between L and L0.

Now, if x$ x0 ; y $ y0 then by construction xC y $ x0 C y0, and �x$ �x0.
Hence, L and L0 are isomorphic. �

6.3 Subspaces

Subspace L0 of a linear space L is a subset of elements of L which itself is a linear
space with respect to operationsC and � defined in L.

In other words, if L0 � L, and C, and � are operations of addition and
multiplication by a real number defined in L, then all axioms I:.i/ � III:.i i/ are
satisfied for vectors in L0.

6.3.1 Examples of Subspaces

1. Null space and L itself.
2. Consider R2. Then the set of all vectors which lie on same line going through

the origin is a linear subspace (Fig. 6.1).
3. Consider L to be a set of n�tuples of real numbers:

x D .�1; : : : ; �n/:

The subset L0 of L such that

A D fx j .x D .�1; : : : ; �n/; �1 D 0/g

is a subspace of L:

Fig. 6.1 A one-dimensional
subspace in R2
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4. Let L be a space of all continuous functions on Œa; b� : Prove that the set of all
polynomials of degree less or equal to n � 1 is a subspace in L.

Since subspace of a linear space is a linear space itself, all notions introduced
above about linear independence, dimension, etc., are applied to the linear sub-
spaces.

Hence, the dimension of a subspaceL0 of L can not be greater than the dimension
of L itself.

6.3.2 A Method of Constructing Subspaces

Choose in L vectors g1; g2; : : : ; gn: Then the set S of all linear combinations

˛1g1 C ˛2g2 C � � � C ˛ngn

of these vectors is a subspace of A.

Exercise 6.1. Prove the last statement above.

This subspace S is called a subspace spanned by the vectors g1; g2; : : : ; gn

(or simply span of these vectors) and is the smallest linear space which contains
g1; g2; : : : ; gn: Notation: S D hg1; g2; : : : ; gni.
Theorem 6.7. Subspace L0 spanned by linearly independent vectors e1; : : : ; ek is
k-dimensional, and these vectors make a basis in L0.

Proof. Indeed, in L0 there is a set of linearly independent vectors, which are
e1; : : : ; en themselves.

On the other hand, if x1; : : : ; xl are arbitrary linearly independent vectors in L0,
they are linear combinations of e1; : : : ; ek; and by Lemma 6.1, l � k. Hence, L0 is
k-dimensional subspace. �

6.3.3 One-Dimensional Subspaces

A basis of such a subspace consists of one vector, say, e1, and all subspace consists
of vectors ˛e1 , where ˛ is an arbitrary real number.

Consider a set of vectors
x D x0 C ˛e1;

where x0 , e1 are fixed, ˛ is an arbitrary real number. The set of such vectors can be
called a line in L.

6.3.4 Hyperplane

Analogously to a line in L, we can define a set of vectors

x D x0 C ˛e1 C ˇe2
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where x0, e1, e2, are fixed, and ˛ and ˇ are arbitrary real numbers. This set by
analogy to the space R3 is called a plane in L.

Extending this construction we can obtain a set of vectors

x D x0 C ˛1e1 C ˛2e2 C � � � C ˛kek

which is called a hyperplane in L.

6.4 Coordinate Change

Suppose a vector x has some coordinates with respect to a given basis. It is a
common situation if we consider another basis in the same space. When the basis
changes, the coordinates change too. For example, let x be a vector with coordinates
.x; y/ in some basis e1; e2 in the plane R2. After the rotation of coordinates by
an angle ˛, we get another basis e0

1; e0
2. In this basis, same vector x has another

coordinates .x0; y0/, see Fig. 6.2. By (2.12), these coordinates are given by

�
x0
y0
�
D R�˛

�
x

y

�
:

In general, how do the coordinates of a vector change when the basis changes?
Let e1; : : : ; en and e0

1; : : : ; e0
n be two bases on n-dimensional space L. Let each e0

i

is represented through e1; : : : ; en as follows

e0
1 D ˛11e1 C ˛21e2 C � � � C ˛n1en;

e0
2 D ˛12e1 C ˛22e2 C � � � C ˛n2en;

: : : : : : : : : :

e0
n D ˛1ne1 C ˛2ne2 C � � � C ˛nnen:

(6.3)

In other words, the transformation from the basis feign1 to the basis
˚
e0

i

�n

1
is

defined by matrix A D k˛ikk, with det A ¤ 0 (Why?). The matrix A is called
a basis transformation matrix. By definition, its j -th column consists of the
coordinates of the j -th element of the new basis in the old one.

Let x has coordinates .�1; : : : ; �n/ in the first basis, and coordinates .� 0
1; : : : ; � 0

n/ –
in the second one. Let us find how � 0

i are expressed through �i ; i D 1; : : : ; n.

Fig. 6.2 Coordinates after
and before rotation
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So, we have

x D �1e1 C �2e2 C � � � C �nen D � 0
1e0

1 C � 0
2e0

2 C � � � C � 0
ne0

n

D � 0
1.˛11e1 C ˛21e2 C � � � C ˛n1en/C � 0

2.˛12e1 C ˛22e2 C � � � C ˛n2en/C
: : :

C� 0
n.˛1ne1 C ˛2ne2 C � � � C ˛nnen/:

Since e1; : : : ; en are linearly independent, coefficients for ei , i D 1; : : : ; n in the
left side of the above equation are equal to those in the right side.

Then we have
�1 D ˛11�

0
1 C ˛12� 0

2 C � � � C ˛1n� 0
n;

�2 D ˛21�
0
1 C ˛22� 0

2 C � � � C ˛2n� 0
n;

: : : : : : : : :

�n D ˛n1�
0
1 C ˛n2�

0
2 C � � � C ˛nn� 0

n:

(6.4)

Hence, this transformation is defined by AT , the transpose matrix of A.
We can now express � 0

i ; i D 1; : : : ; n , from (6.4) as

� 0
1 D b11�1 C b12�2 C � � � C b1n�n;

: : : : : : : : :

� 0
n D bn1�1 C bn2�2 C � � � C bnn�n;

where B D kbikk is a matrix inverse to AT . In other words, all coordinates
are transformed with respect to .AT /�1, where A is a matrix which defines a
transformation between the bases fei gn1 and

˚
e0

i

�n

1
.

6.5 Economic Example: Production Technology Set

Consider a firm that operates three plants to produce the same good, say y1. Each
plant is located in a different region. Both the production capacities of these plants
and their production techniques are different. The latter is reflected by differences
in the combination of input requirements of production techniques. Each technique
uses a fixed combination of inputs and these are invariant with respect to the scale
of the operation. Both output and inputs (denoted by y2; y3 and y4) are perfectly
divisible (i.e. fractions are allowed)

Suppose the technological information concerning these plants is given as
follows:

Plant 1 Plant 2 Plant 3

Capacity Output Level y1 100 80 120
Input y2 26 17 38
Input y3 25 19 30
Input y4 24 21 25
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In this table output and inputs are measured in their natural measurement units.
Input figures given in the table correspond to the levels that enable the plant to
produce its capacity output level. By assumption, plants can not produce output over
the corresponding capacity output levels given in the first row of table. However if
they need to produce less, they can do it by using less inputs, without changing their
combination.

Question 1. Suppose all plants are used at their capacity level. Find the total amount
of output and inputs used for its production.

Answer. This is simply calculated by summing capacity output and input levels over
plants. In other words, summation of the columns of the table that gives numerical
information is permitted.

Total capacity output y1: 100C 80C 120 D 300 units, total amount of input y2

used: 26C 17C 38 D 81 units, total amount of input y3 used: 25C 19C 30 D 74

units, total amount of input y4 used: 24C 21C 25 D 70 units.

Question 2. Suppose due to a decline in demand in the region where Plant 1 is
located, its output declined to 65. What will be the new input levels?

Answer. By assumption, each technique of production can be employed at the
desired level of intensity by keeping the input combinations intact. Therefore
multiplying the column that gives capacity level of output in Plant 1 by 65=100 D
0:65 we can find the new input levels:

Input y2: 0:65 � 26 D 16:9 units;
Input y3: 0:65 � 25 D 16:3 units;
Input y4: 0:65 � 24 D 15:6 units.
Now let’s rephrase what has been done in mathematical terms.
Let

yj D .y
j
1 ;�y

j
2 ;�y

j
3 ;�y

j
4 /; j D 1; 2; 3;

be the j th production technique for y1. For convenience, inputs are distinguished by
a negative sign. Let Y denote the production set for y1, that is, the set of all possible
value of the vector y D .y1;�y2;�y3;�y4/. Then

yj
1 2 Y; j D 1; 2; 3:

Note that the vectors y are 4-dimensional, so that Y 	 R4.

Question 3. Show that Y is a subset of some linear space L 	 R4 such that its
dimension dim L is equal to 3.

Answer. Notice that the assumption made concerning the production techniques
enabled us to sum the columns of the table above as well as multiplying them
by a scalar. By doing these two operations we create new feasible input/output
combinations, i.e. “production techniques”. In formal terms, Y consists of the
vectors
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3X

j D1

˛j yj 	 Y;

for ˛ 	 Œ0; 1�. Therefore, Y is a subset of the linear space L spanned by the vectors
y1; y2 and y3.

It remains to show that dim L D 3. By Theorem 6.7, it is sufficient to show
that three vectors y1; y2 and y3 are linearly independent. This means that the only
solution of the equation

x1y1 C x2y2 C x3y3 D 0

is x1 D x2 D x3 D 0. Otherwise (i.e., if a solution with at least some nonzero value
exists), these vectors are dependent.

The vector equation above is equivalent to the matrix equation Ax D 0, where

x D
2

4
x1

x2

x3

3

5 and A D

2

6
6
4

100 80 120

�26 �17 �38

�25 �19 �30

�24 �21 �25

3

7
7
5

is a matrix formed by the vectors y1; y2 and y3 from the above table as the columns.
By Theorem 5.6, we should prove that A is a matrix of full rank, that is, rank A D 3.
Indeed, the minor determinant formed by the first three rows of A is

ˇ
ˇ
ˇ
ˇ̌
ˇ

100 80 120

�26 �17 �38

�25 �19 �30

ˇ
ˇ
ˇ
ˇ̌
ˇ
D 680 ¤ 0;

thus, rank A D 3. Therefore, dim L D 3.
Interpretation of the result. In the above example each production technique was

represented by four figures. However, since the dimension of the technology set is
only three, which indicates that one of these figures is superfluous; it doesn’t add any
extra information to those supplied by the other three. This can be done by dividing
all the entities in one column by the figure in the first row. The new figures will,
then, give the input requirements per unit of output. These are called ‘input/output
coefficients’. In this example the set of input/output coefficients is given as

2

4
0:260 0:213 0:317

0:250 0:276 0:250

0:240 0:263 0:208

3

5

Notice that this information is sufficient to calculate total input requirements at
‘that particular output level’. The assumptions made so far, are not sufficient to
ensure that by using these coefficients one can get the amounts of inputs required
to produce the specified level of output. In order to reach that generalization
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level one needs to introduce another assumption, namely ‘constant returns to scale
technology’. This assumption means that these coefficient are independent from the
scale of production. Therefore, once they are computed, they can be safely used to
establish the input/output relation for any feasible production level.2

6.6 Problems

1. Does the set of all continuous functions on Œa; b�, such that jf .x/j � 1, form a
linear space?

2. Give geometric interpretation of axioms I:.i/ � III:.i i/.
3. Find coordinates �1; : : : ; �n of a vector x D .�1; : : : ; �n/ in the basis

e1 D .1; 0; : : : ; 0/

e2 D .0; 1; 0 : : : ; 0/

: : : : : : : : :

en D .0; : : : ; 0; 1/

if the linear space L consists of n-tuples of real numbers.
4. Repeat Problem 3 with the basis changed to:

e1 D .1; 1; : : : ; 1/;

e2 D .0; 1; : : : ; 1/;

: : : : : : : : : :

en D .0; : : : ; 0; 1/;

5. Let Mn be a set of all square matrices of order n with real elements. Define
addition and multiplication on real number in a usual way. Prove that Mn is a
linear space. Find a basis and dimension of Mn.

6. Let L be the linear space with n-tuples of real numbers x D .�1; : : : ; �n/. Prove
that

L0 D fxj˛1�1 C � � � C ˛n�n D 0 with some fixed ˛1; : : : ; ˛ng

is a subspace of L.

2Although widely used in economics, constant returns to scale assumption does not correspond
to reality in many instances. It has been observed, particularly in manufacturing industry, that
as the scale of production increases per unit input requirements may decline. This is the case of
‘increasing returns to scale’.

On the other hands, in some instances, production may also be subject to ‘decreasing returns to
scale’. Such phenomenon is observed in agriculture and occasionally in ‘oversized enterprises’.
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7. Let f be a map from R2 to R2 given by f .x1; x2/ D .2x1; x2 � x1/. Check if f

is an isomorphism or not.
8. Let f be a map from R3 to R3 given by f .x1; x2; x3/ D .x0

1; x0
2; x0

3/, where

2

4
x0

1

x0
2

x0
3

3

5 D
2

4
1 0 �1

2 5 10

0 �1 0

3

5

2

4
x1

x2

x3

3

5 :

Check is f an isomorphism or not.
9. Prove that the vector space M2 of 2 � 2 matrices and the vectors space P3 of

polynomials of degree at most 3 are isomorphic and give an explicit formula for
an isomorphism from M2 to P3.

10. Show that the set S of symmetric matrices of order n is a subspace in Mn. Find
the dimension of S .

11. Let L0 be a subspace of L , and dimension of L0 be equal to the dimension of L.
Then show that L D L0.

12. Let L be a space with n-tuples .�1; : : : ; �n/ of real numbers. Show that the set
of vectors which meet the condition

˛1�1 C ˛2�2 C � � � C ˛n�n D 0;

where ˛1; : : : ; ˛n are real numbers not all equal to 0, forms a linear subspace of
L.

13. Let L1 and L2 be two subspaces of L such that

L1 \ L2 D 0:

Then show that dimL1 C dimL2 � dimL.
14. Let L0 be a subspace spanned by vectors a; b; c; : : : . Show that dimL0 is equal

to the maximal number of linearly independent vectors in a; b; c; : : : .
15. Find the coordinates of vector

x D .7; 14;�1; 2/

in the basis
e1 D .1; 2;�1; 1/;

e2 D .2; 3; 0;�1/;

e3 D .1; 2; 1; 3/;

e4 D .1; 3;�1; 0/:

Show that e1; : : : ; e4 make a basis.
16. Let e1; e2; e3 and e0

1; e0
2; e0

3 be two bases for a linear space, and vectors e0
1; e0

2; e0
3

be defined trough e1; e2; e3 as:
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e0
1 D 5e1 � e2 � 2e3;

e0
2 D 2e1 C 3e2;

e0
3 D �2e1 C e2 C 3e3:

Find the coordinates of the vector

x D �7e1 C 11e2 C 3e3

with respect to the basis e0
1; e0

2; e0
3.

17. Prove that each of the following two systems of vectors make a basis. Find the
coordinates in the basis e0 of a vector y if its coordinates in the basis e are
ye D .1; 2; 3; 4/.

e1 D .1; 1; 1; 1/

e2 D .1; 2; 1; 1/

e3 D .1; 1; 2; 1/

e4 D .1; 3; 2; 3/

e0
1 D .1; 0; 3; 3/

e0
2 D .�2;�3;�5;�4/

e0
3 D .2; 2; 5; 4/

e0
4 D .�2;�3;�4;�4/

18. Is any of these a linear subspace?
(a) All vectors of n-dimensional space with integer coordinates?
(b) All vectors on plane which lie either on axis x or on axis y?
(c) All vectors of n-dimensional space with first coordinate equal to a given

number c?
19. List all geometric types of linear subspaces of a 3-dimensional subspace.

20. Prove that L0 which consists of vectors with equal first and last coordinates is a
linear subspace of n-dimensional space L D Rn. Find a basis and dimension of
this subspace. Give an illustration for n D 2 and n D 3.

21. Find a basis and dimension of linear space spanned by the following vectors

a1 D .1; 1; 1; 1; 0/;

a2 D .1; 1;�1;�1;�1/;

a3 D .2; 2; 0; 0;�1/;

a4 D .1; 1; 5; 5; 2/;

a5 D .1;�1;�1; 0; 0/:
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In this chapter, we will analyse how various metric concepts, such as the length of
a vector, the angle between two vectors etc., are related to linear spaces. It is to be
noted that one cannot directly define these concepts in linear spaces, since first a dot
product for a given linear space should be defined.

7.1 General Definitions

Definition 7.1. Let L be a linear space over the real numbers. Consider the vectors
x; y; z and the scalars ˛ and ˇ. Then, a function .x; y/ which transforms a pair of
vectors x and y to real numbers is called a dot product1 if it satisfies the following
conditions:
1. (symmetry) .x; y/ D .y; x/.

2. (bilinearity) .˛xC ˇy; z/ D ˛.x; z/C ˇ.y; z/.

3. (positivity) .x; x/ > 0 for all but one x.

Proposition 7.1. The only x 2 L such that .x; x/ D 0 is the null vector 0.

Proof. By condition 2, for null vector we have

.0; 0/ D .0 � 0; 0/ D 0.0; 0/ D 0:

It follows from condition 3 that for each x ¤ 0 we have .x; x/ > 0. �
Definition 7.2. An n-dimensional linear space L over the real numbers with the
inner-product function .x; y/ is called a Euclidean space.

1The dot product sometimes referred also as inner product and scalar product.

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 7,
© Springer-Verlag Berlin Heidelberg 2011
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Example 7.1. Consider the following spaces:
(a) Let x D .�1; : : : ; �n/ be an n-tuple of real numbers, and y D .�1; : : : ; �n/.

Consider the dot product

.x; y/ D
nX

iD1

�i �i :

Check that the corresponding space is Euclidean.
(b) Let x D .�1; : : : ; �n/ and y D .�1; : : : ; �n/ be n-tuples in Rn. Consider some

matrix kaikkn�n and the function

.x; y/ D
nX

iD1

nX

kD1

aik�i �i : (7.1)

Let us find some restrictions over the matrix kaikk so as to guarantee that the
above function is an inner-product. First note that condition 1 is met only if
kaikk is symmetric. Condition 2 is always satisfied. Let us check condition 3.
We note that

.x; x/ D
nX

iD1

nX

kD1

aik�i �i � 0 (7.2)

and .x; x/ D 0 if �1 D �2 D � � � D �n D 0. This property is called the positive
definiteness of the polynomial

nX

iD1

nX

kD1

aik�i �i :

Thus, if kaikk is symmetric and the corresponding polynomial (it is also called
quadratic form) is positively defined, then the function defined by (7.1) is an
inner-product.

(c) Consider the linear space defined by all continuous functions on Œa; b� 	 R.
Note that the function

.f; g/ D
Z b

a

f .x/g.x/dx

is an inner-product.

Definition 7.3. Given a Euclidean space E , the length of a vector x 2 E is denoted
by jxj and defined as

jxj D
p

.x; x/:

Definition 7.4. Given a Euclidean space E , the distance between two vectors x; y 2
E is denoted by d.x; y/ and defined as

d.x; y/ D
p

.x � y; x � y/:
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Definition 7.5. Given a Euclidean space E , the angle between two vectors x; y 2 E
is denoted by �x;y and defined as

cos �x;y D .x; y/

jxj jyj :

The expression cos �x;y is also called the correlation coefficient of the vectors x
and y.

Definition 7.6. The vectors x; y of a Euclidean space E are said to be orthogonal if
.x; y/ D 0.

Lemma 7.2 (Cauchy inequality). Let E be a Euclidean space. Then,

.x; y/2 � .x; x/ .y; y/:

for all x; y 2 E .

Proof. See the corresponding proof of equality 2.6 in Chap. 2. �

7.2 Orthogonal Bases

Consider a Euclidean space E . We say that a set of n non-zero vectors e1; : : : ; en 2 E
make an orthogonal basis for E if:
1. The vectors e1; : : : ; en span E .
2. All pairs of this set are mutually orthogonal, i.e. .ei ; ej / D 0 for all i; j D

1; : : : ; n such that i ¤ j .
See Fig. 7.1 for an orthogonal basis in the plane R2.
The orthogonal basis e1; : : : ; en is called orthonormal if pairs in e1; : : : ; en are

mutually orthogonal and each vector of this set has the unit length, i.e.,

.ei ; ej / D
�

1; if i D j;

0; otherwise;

for all i; j D 1; : : : ; n.
Two different orthonormal bases in the plane R2 are given in Fig. 7.2.

Fig. 7.1 An orthogonal basis
in the plane
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Fig. 7.2 Two orthonormal
bases on the plane

Now let us show that the elements of e1; : : : ; en are linearly independent if this
set is an orthogonal basis. In the view of condition 1 above, this implies that this set
of vectors forms also a basis of E as a linear space.

Suppose towards a contradiction that there exist �1; : : : ; �n, not all being equal
to zero, such that

�1e1 C � � � C �nen D 0;

i.e., e1; : : : ; en are linearly dependent. Then get the inner-product of the above
equality with ei for any i D 1; : : : ; n to obtain

�1.e1; ei /C � � � C �n.en; ei / D .0; ei / D 0:

Hence, we get �i.ei ; ei / D 0 by the assumption that e1; : : : ; en is an orthogonal
set. Since .ei ; ei / ¤ 0, it must be true that �i D 0. Since this is true for all i D
1; : : : ; n, we have obtained a contradiction. Hence the vectors e1; : : : ; en are linearly
independent.

Theorem 7.3. For any n-dimensional Euclidean space, there exists an orthogonal
basis.

Proof. Let E be a Euclidean space. Consider any basis f1; : : : ; fn for E . From this
basis, we will obtain an orthogonal basis e1; : : : ; en.

Let e1 D f1. Next construct e2 D f2 C ˛e1 such that e1 and e2 are orthogonal,
see Fig. 7.3. This means that .e1; e2/ D 0, i.e., .e1; f2 C ˛e1/ D 0, that is,

˛ D � .e1; f2/

.e1; e1/
:

Assume now that the orthogonal set e1; : : : ; ek�1 has already been constructed.
Define ek to be

ek D fk C �1e1 C � � � C �k�1ek�1;

where �1; : : : ; �k�1 will be determined by the fact that ek must be orthogonal to
each of the vectors e1; : : : ; ek�1, i.e.,

.ei ; fk C �1e1 C � � � C �k�1ek�1/ D 0;
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Fig. 7.3 A construction of
the second orthogonal basis
vector

e1

e2

f2

p1

Fig. 7.4 A construction of
the third orthogonal basis
vector

e1

e2

f3

e3

for all i D 1; : : : ; k � 1 (see Fig. 7.4 for the case k D 3). Since vectors e1; : : : ; ek�1

are pairwise orthogonal, we get

.ei ; fk/C �i.ei ; ei / D 0

for all i D 1; : : : ; k � 1. It then follows that

�i D � .ei ; fk/

.ei ; ei /

for all i D 1; : : : ; k � 1.
To show that ek ¤ 0, note that for all i < k

ei D fi C �1e1 C � � � C �i�1ei�1;

with �i ’s being appropriately defined. Then using the above equalities, we have

ek D fk C �1e1 C � � � C �k�1ek�1 D ˛1f1 C ˛2f2 C � � � C ˛k�1fk�1 C fk:

If ek D 0, then since the coefficient of fk D 1, vectors f1; : : : ; fk must be linearly
dependent, yielding a contradiction. Therefore ek ¤ 0.

By this process, we can construct n pairwise orthogonal vectors e1; : : : ; en which
are also linearly independent. So, e1; : : : ; en is an orthogonal basis for the Euclidean
space E . �

Here are some remarks in order.
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Remark 7.1. The process of constructing an orthogonal basis from any given basis
is called the Gram2–Schmidt3 orthogonalization process.

Remark 7.2. Given any orthogonal basis e1; : : : ; en, the set of vectors
e1=je1j; : : : ; en=jenj form an orthonormal basis.

Example 7.2. Let L be a subspace in R4 spanned by three vectors f1 D .1; 1; 0; 1/,
f2 D .3; 1; 1;�1/ and f3 D .�1; 2;�3; 2/. Let us construct an orthogonal and
orthonormal bases of V .

Note that the vector f1; f2 and f3 form a basis of L (since these vectors are
linearly independent), so that we can apply the Gram–Schmidt procedure. First, let
us construct an orthogonal basis. Let e1 D f1 D .1; 1; 0; 1/ be its first element. For
the second element, we put e2 D f2 C ˛21e1, where

˛21 D � .e1; f2/

.e1; e1/
D �3

3
D �1;

so that e2 D f2 � e1 D .2; 0; 1;�2/. To construct the third element of the basis, we
put

e3 D f3 C ˛31e1 C ˛32e2;

where

˛31 D � .e1; f3/

.e1; e1/
D �3

3
D �1 and ˛32 D � .e2; f3/

.e2; e2/
D ��9

9
D 1:

Thus e3 D f3 � e1 C e2 D .0; 1;�2;�1/. Now, the vectors e1; e2 and e3 form an
orthogonal basis for L.

By Remark 7.2, the vectors

e0
1D

1

je1je1D 1p
3

e1D
�

1p
3

;
1p
3

; 0;
1p
3

	
; e0

2D
1

je2je2D 1

3
e2D

�
2

3
; 0;

1

3
;�2

3

	

and

e0
3 D

1

je3je3 D 1p
6

e3 D
�

0;
1p
6

;� 1p
3

;� 1p
6

	

form an orthonormal basis of L.

2Jorgen Pedersen Gram (1850–1916) was a Danish mathematician who was famous because of
his works both in pure mathematics (algebra and number theory) and applications (such as a
mathematical model of forest management).
3Erhard Schmidt (1876–1959) was an Estonia born German mathematician, one of originators of
functional analysis.
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Remark 7.3. For any order of the basis vectors f1; : : : ; fn, we may get a different
orthogonal basis by the Gram-Schmidt orthogonalization process. So, it is obvious
that orthogonal bases for any Euclidean space are not necessarily unique.

Let L be a Euclidean space, and e1; : : : ; en be an orthonormal basis for it. Let
x; y 2 L be two vectors such that

x D �1e1 C � � � C �nen;

y D �1e1 C � � � C �nen:

Let us find the inner-product

.x; y/ D .�1e1 C � � � C �nen; �1e1 C � � � C �nen/

in terms of the coordinates of these two vectors. From the fact

.ei ; ej / D
�

1 if i D j

0 otherwise

it follows that

.x; y/ D
nX

iD1

�i �i ;

i.e., the inner-product of two vectors that are defined with respect to an orthonormal
basis is equal to the sum of the products of their coordinates.

Now, let us express any vector x 2 L with respect to the orthonormal basis
e1; : : : ; en. That is, we want to find �i for all i D 1; : : : ; n in the expression

x D �1e1 C � � � C �nen:

Multiplying x by ei , we get

.x; ei / D �1.e1; ei /C � � � C �n.en; ei / D �i .ei ; ei / D �i :

Hence we have
�i D .x; ei /

for all i D 1; : : : ; n.
The vector .x; ei /ei , where ei is a vector of unit length, is called the projection

of x on ei . Then, the coordinates of any vector with respect to an orthonormal basis
can be regarded as the lengths of projections of the vector on each basis vector.

Definition 7.7. Let L be a Euclidean space. Then a vector x 2 L is called
orthogonal to a subspace B of L if it is orthogonal to each vector y 2 B .
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Lemma 7.4. Let L be a Euclidean space. If a vector x 2 L is orthogonal to some
vectors e1; : : : ; en 2 L, then it is orthogonal to any linear combinations of these
vectors as well.

Proof. Since .x; ei / D 0 for all i D 1; : : : ; n, we have

.x; �1e1 C � � � C �nen/ D �1.x; e1/C � � � C �n.x; en/ D 0;

for any �1; : : : ; �m 2 R. �
An immediate result of the above Lemma is the following

Corollary 7.5. Let L be a Euclidean space and B be a subspace of L. If a vector
x 2 L is orthogonal to a basis for B , then it is orthogonal to B .

Now consider the following problem: given any (nontrivial) subspace B of a
Euclidean space L, and any vector x which is an element of L\B , can we find a
vector y in B such that the difference x � y is orthogonal to x? Such vector y is
called an (orthogonal) projection of x to B .

Lemma 7.6. Let L be an n-dimensional Euclidean space and B be an m-
dimensional subspace of L, where 0 < m < n. Pick any x 2 L. Let y be the
projection of x to B , that is, y 2 B and x � y is orthogonal to B . Then

jx � y1j > jx � y0j

for all y1 2 B\fyg, see Fig. 7.5.

Proof. Assume x � y is orthogonal to y � y1: By Pythagoras’ Theorem

jx � yj2 C jy � y1j2 D jx � yC y � y1j2 D jx � y1j2

which implies jx � y1j > jx � yj. �

The next Lemma shows that the projection of a vector to a subspace always
exists.

Lemma 7.7. Let L be an n-dimensional Euclidean space and B be an m-
dimensional subspace of L, with an orthonormal basis e1; : : : ; em, where

Fig. 7.5 The shortest way
from x to a subspace B
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Fig. 7.6 The projection
on a line
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e2

x

y=(x,e1)e1

Fig. 7.7 The projection
on a plane
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0 < m < n. Then the orthogonal projection of any vector x 2 L\B on B is

y0 D c1e1 C � � � C cmem

where ci D .x; ei / for all i D 1; : : : ; m.

The statement of Lemma 7.7 is illustrated in Fig. 7.6 for the case n D 2; m D 1 and
in Fig. 7.7 for the case n D 3; m D 2.

Proof. Let y D c1e1 C � � � C cmem be the orthogonal projection of x 2 L\B on B .
Then x� y is orthogonal to B , i.e., .x� y; ei / D 0, implying .x; ei / D .y; ei / for all
i D 1; : : : ; m. It follows that

.x; ei / D c1.e1; ei /C � � � C cm.em; ei / D ci .ei ; ei / D ci ; i D 1; : : : ; m:

�
The distance between a vector x and a subspace B in a Euclidean space L is the

minimal length of a vector of the form x � y, where y 2 B , that is, the distance

d.x; B/ D min
y2B
fjx � yjg:
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For example, we have d.x; B/ D 0 if and only if x 2 B . Then we can re-formulate
Lemma 7.6 as follows

Corollary 7.8. The distance between a vector x and a subspace B in a Euclidean
space L is equal to jx � yj, where y is the projection of x to B .

Remark 7.4. Let us now find the orthogonal projection of any vector x 2 L on B

with respect to an arbitrary basis e1; : : : ; em for B . Then following the argument in
the above proof, we obtain a system

2

6
6
4

.e1; e1/ .e2; e1/ : : : .em; e1/

.e1; e2/ .e2; e2/ : : : .em; e2/

: : : : : : : : : : : : :

.e1; em/ .e2; em/ : : : .em; em/

3

7
7
5

2

6
6
4

c1

c2

: : : :

cm

3

7
7
5 D

2

6
6
4

.x; e1/

.x; e2/

: : : :

.x; em/

3

7
7
5 :

The m � m matrix above, containing the inner-product of the basis vectors, is
called the Gram matrix of the vectors e1; : : : ; em. A system of m equations with
m variables has a unique solution if and only if the determinant of the coefficient
matrix is nonzero. On the other hand, the above equation system, when describes
the orthogonal projection of a vector x on B , must have a unique solution, since the
vector y, according to Lemmas 7.6 and 7.7, always exists and is unique. From here
we conclude that given any basis (linearly independent) vectors, the determinant
of the associated Gram matrix is nonzero. Note that this is obvious when the basis
vectors are orthonormal, since in that case the Gram matrix is the identity matrix
whose determinant is one.

Example 7.3. Problem. Given a vector x D .25; 0; 25/ 2 R3 and a subspace B 	
R3 spanned by the vectors a D .3; 4; 5/ and b D .�4; 3; 5/, find the orthogonal
projection of x on B and the distance between x and B .

Solution. Let y D c1aC c2b be the projection. By the above, we have

G

�
c1

c2

�
D
�

.x; a/

.x; b/

�
;

where G is the Gram matrix,

G D
�

.a; a/ .a; b/

.b; a/ .b; b/

�
D
�

50 25

25 50

�
:

We have �
50 25

25 50

� �
c1

c2

�
D
�

200

25

�
;

hence c1 D 5 and c2 D �2. Thus y D 5a� 2b D .23; 14; 15/.
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By Corollary 7.8, the distance between y and B is

d.y; B/ D jx � yj D j.2;�14; 10/j D 10
p

3 
 17:32:

7.3 Least Squares Method

We give below the linear algebraic interpretation of the least square method that
is widely used in econometrics. Another approach to the least square method is
discussed in Appendix D.

Let y be a linear function of m variables x1; : : : ; xm 2 R given by

y.x1; : : : ; xm/ D c1x1 C � � � C cmxm;

where c1; : : : ; cm are unknown real constants. Assume that c1; : : : ; cm are obtained
via n experiments, in which x1; : : : ; xm and y are measured. We accept that the
solution can be with error but we would like to minimize that error (see Fig. 7.8).

Let the result of k-th experiment give

xk1; : : : ; xkm and yk:

Then we can construct a system of linear equations for c1; : : : ; cm:

8
<

:

x11c1 C x12c2 C � � � C x1mcm D y1;

: : : : : : :

xn1c1 C xn2c2 C � � � C xnmcm D yn;

(7.3)

or
Ac D y; (7.4)

where A D .xij /n�m is the matrix of the system, c D .c1; : : : ; cm/ is the unknown
vector and y D .y1; : : : ; yn/ is the vector of right-hand sides.

Assume that n > m. Since xi -s and y are measured with errors, hoping to obtain
an exact solution for (7.3) or (7.4) is senseless. The aim should be to determine the

Fig. 7.8 The least square
approximation x

y

optimal line

“non-optimal” line
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set of constants c1; : : : ; cm which make the left and right sides of the equalities in
(7.3) as close as possible. As a distance of closeness, consider the functional

d.c1; : : : ; cm/ D
Xn

kD1
.xk1c1 C � � � C xkmcm � yk/2 (7.5)

for all k D 1; : : : ; n. Then the problem is to find c1; : : : ; cm such that d.c1; : : : ; cm/

is minimized.
To reformulate the problem, note that the sum xk1c1 C � � � C xkmcm is the k-th

component of the vector Ac in Rn. This means that d.c1; : : : ; cm/ D jAc � yj2, that
is, the square of the distance between y and Ac.

Consider the columns A1; : : : ; Am of the matrix A, where Ak D .x1k; x2k; : : : ;

xnk/. It follows that minimizing (7.5) corresponds to finding c1; : : : ; cm which make
the distance between y and

y0 D Ac D c1A1 C : : : cmAm

minimal. Let B be the linear span of the vectors A1; : : : ; Am in Rn. Then the problem
is to find the projection of y0 on B .

Let us assume now that the vectors A1; : : : ; Am are linearly independent.4 An
appeal to Lemma 7.7 implies

.A1; Ak/c1 C .A2; Ak/c2 C � � � C .Am; Ak/cm D .y; Ak/ (7.6)

for all k D 1; : : : ; m, where

.y; Ak/ D
nX

j D1

yj xjk

and

.Aj ; Ak/ D
nX

iD1

xij xik:

Thus the problem has been reduced from finding an approximated solution of
system (7.3) to finding an exact solution of (7.6).

Example 7.4. Consider least-squares estimation in the plane (Fig. 7.8). Given the
measurements x D .x1; x2; : : : ; xn/ and y D .y1; y2; : : : ; yn/ for the variables x

and y, respectively, the aim is to find the slope c of the line y D cx using the
system

4This means that the matrix A is of full rank. The general case of arbitrary matrix A will be
discussed in Appendix D.
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8
ˆ̂
<

ˆ̂
:

y1 D cx1;

y2 D cx2;

: : : : : : : : :

yn D cxn:

Using (7.6) we obtain

c D .x; y/

.x; x/
D
Pn

kD1 xkykPn
kD1 x2

k

:

For n D 4, .x1; x2; x3; x4/ D .1; 2; 3; 4/ and .y1; y2; y3; y4/ D .2; 3; 4; 10/,
check that c D 2.

7.4 Isomorphism of Euclidean Spaces

Definition 7.8. Any two Euclidean spaces L and L0 are said to be isomorphic if
they are isomorphic as linear spaces and if .x; y/ D .x0; y0/ whenever

L 3 x ! x0 2 L0;
L 3 y ! y0 2 L0;

Theorem 7.9. Any two n-dimensional Euclidean spaces are isomorphic.

Proof. It is sufficient to prove that any n-dimensional Euclidean space L is
isomorphic to Rn.

Isomorphism of L and L0 as linear spaces is obvious, so we will prove the rest.
Given any orthonormal basis e1; : : : en in L, let the dot product of two vectors

x D �1e1 C : : : :C �nen and y D �1e1 C � � � C �nen in L be defined as

.x; y/ D �1�1 C � � � C �n�n:

Now consider any n-dimensional Euclidean space L. Choose for it an orthonormal
basis e1; : : : en. (It must exist, why?) For any two vectors x0 D �1e1C� � �C �nen and
y0 D �1e1C � � �C �nen in L, pick the vectors x D .�1; : : : ; �n/ and y D .�1; : : : ; �n/

in Rn, and vice versa. (Note that we use the canonical basis for Rn.)
Then we have

.x0; y0/ D �1�1 C � � � C �n�n:

On the other hand,
.x; y/ D �1�1 C � � � C �n�n:

Thus,
.x0; y0/ D .x; y/;

completing the proof. �
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7.5 Problems

1. Check whether the function defined by equation (7.1) is an inner product for the
matrices:

(a)

�
1 1

1 2

�
; (b)

�
0 1

1 0

�
:

2. Consider any two vectors

x D .�1; : : : ; �n/;

y D .�1; : : : ; �n/

in Rn. Check whether any of the following functions is an inner-product:

(a) .x; y/ DPn
j D1 j�i j j�i j; (b) .x; y/ DPn

j D1 �2
i �2

i .
3. Consider the basis given by the vectors

f1 D .1; 1; : : : ; 1; 1/;

f2 D .0; 1; : : : ; 1; 1/;

:: : :

:: : :

:: : :

fn D .0; 0; : : : ; 0; 1/:

Is this basis orthogonal? If not, construct an orthogonal basis using Gram-
Schmidt process. For this basis, find the associated orthonormal basis.

4. Prove that for any Euclidean space L, any vectors x; y 2 L and � 2 R, if x D �y
then

jxj D j�j jyj :
5. Let L1 and L2 be linear subspaces of the Euclidean space R4 such that

dimL1 D dimL2:

Prove that there exists a non-zero vector x 2 L2 which is orthogonal to L1.
6. Check whether the following vectors are orthogonal and complete them up to a

basis for R4.
(a) f1 D .1;�2; 2;�3/ and f2 D .2;�3; 2; 4/.
(b) f1 D .1; 1; 1; 2/ and f1 D .1; 2; 3;�3/.

7. Consider the Euclidean space R4. Find the angles between the line �1 D �2 D
�3 D �4 and the vectors e1 D .1; 0; 0; 0/, e2 D .0; 1; 0; 0/, e3 D .0; 0; 1; 0/ and
e4 D .0; 0; 0; 1/.

8. Let L1 and L2 be two orthogonal subspaces of a Euclidean space L. Prove that
L1 \ L2 D 0.
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9. Given the space of polynomials of degree at most n, and any two polynomials
P and Q in this space, consider the mapping

.P.t/; Q.t// D
Z b

a

P.t/Q.t/dt:

(a) Check that the above mapping is an inner-product.

(b) Find the distance between the polynomials P.t/ D 3t2 C 6 and Q.t/ D
2t2 C t C 1 according to the above inner-product.

10. Using Gramm-Shmidt orthogonalization process construct an orthonormal
basis from the vectors

f1 D .2; 1; 3;�1/;

f2 D .7; 4; 3;�3/;

f3 D .1; 1;�6; 0/;

f4 D .5; 7; 7; 8/:

11. Find the distance between the vector x D .4;�1;�3; 4/ and a linear subspace
defined by the vectors

e1 D .1; 1; 1; 1/;

e2 D .1; 2; 2;�1/;

e3 D .1; 0; 0; 3/:

12. Let L be a subspace defined by the system of linear equations

8
<

:

2x1 C x2 C x3 C 3x4 D 0;

3x1 C 2x2 C 2x3 C x4 D 0;

x1 C 2x2 C 2x3 � 9x4 D 0:

Consider the vector x D .7;�4;�1; 2/. Find the orthogonal projection (call
it y) of x on L. Find also x � y.

13. (a) Find the distance between the vector x D .4; 2;�5; 1/ and the linear space
L defined by the system

�
2x1 � 2x2 C x3 C 2x4 D 9;

2x1 � 4x2 C 2x3 C 3x4 D 12:

(b) Find the distance between the vector x D .2; 4;�4; 2/ and the linear space
L defined by the system

�
x1 C 2x2 C x3 � x4 D 1;

x1 C 3x2 C x3 � 3x4 D 2:

14. Find the least square approximation for the function y.x1; x2/ D c1x1 C c2x2,
if its three measurements give y.0; 1/ D 3; y.1; 2/ D 8; y.�1; 0/ D 0.
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15. The market price (p) of some good in several dates are given in the following
table:

Date 12 January 14 January 15 January 20 January

p $13.2 $10.2 $9.8 $12.9

Using the least square approximation p.x/ D a C bx for the function p of
the day x of the year, give your prognosis for the price p in January 27.



8Linear Transformations

We will begin with a general definition of transformations and then study linear
transformations.1

Definition 8.1. A mapping F from a set S to another set S 0 is a relation which, to
every element x of S , associates an element y of S 0. This mapping is denoted by
F W S ! S 0.

If x is an element of S , then y D F.x/ is called the image of x under F .
Analogously, the set

B D fF.x/ j x 2 Sg
is called the image of S (or full image). Naturally, B � S 0. In the same way, for
W � S , the set

F.W / D fF.x/ j x 2 W g
is called the image of W under F .

Example 8.1. (a) Let S D S 0 D R and F.x/ D x2. Then the image of S is the set
of all non-negative numbers.
(b) Let L W R3 ! R be a mapping such that for all x 2 R3, L.x/ D .a; x/, where

a D .3; 2; 1/.

Given any set S , the identity mapping IS is defined such that IS.x/ D x for all
x 2 S .

Definition 8.2. A mapping F W S ! S 0 is said to have the inverse if there exists a
mapping G W S 0 ! S such that

G � F D IS and F �G D IS 0 ;

that is, G.F.x// D x and F.G.y// D y for all x 2 S; y 2 S 0.

1One may use the terms linear mapping, linear map, homomorphism and linear transformation
interchangeably.

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 8,
© Springer-Verlag Berlin Heidelberg 2011
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Example 8.2. (a) Let S D S 0DRC (the nonnegative real line) and f W S !
S 0 such that f .x/D x2. Then the inverse mapping g W S 0!S is given by
g.x/ D px.
(b) Let R be a linear space, and u be a fixed element of R. Define Tu W R! R such

that Tu.x/ D xC u for all x 2 R. The mapping Tu is called the translation by
u. For any S 	 R, it follows that

Tu.S/ D fxC u j x 2 Sg:

Definition 8.3. A mapping A from one linear R space to another linear space S is
called a transformation. If S is the same linear space as R, the transformation is
also called an operator.

Definition 8.4. A transformation (or an operator) A from a linear space R to a
linear space S is called linear if

A.�1x1 C �2x2/ D �1A.x1/C �2A.x2/

for all x1; x2 2 R and �1; �2 2 R.

Very often we will write Ax instead of A.x/.

Example 8.3. Some linear transformations:
(a) Rotation of vectors R2 around the origin by a fixed angle ' (see Fig. 2.10 and

Example 2.12).
(b) For any x 2 R2 consider the projection of x on the line y D Cx, where C 2 R

(Fig. 8.1).
(c) Let R D Rn and S D Rm. For each x D .�1; : : : ; �n/ 2 R, consider the

corresponding vector
y D Ax D .�1; : : : ; �n/;

where A D kaikkm�n is a matrix, and

�i D
nX

kD1

aik�k:

(Check that A is a linear transformation!)

Fig. 8.1 A projection
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(d) Let R be the linear space of all polynomials (over real numbers) having the
degree at most n � 1. Define A such that

A.P.t// D P 0.t/;

where P 0.t/ is the derivative of polynomial P.t/ with respect to t . Then A is a
linear operator on R, since

A.�1P.t/C �2Q.t// D .�1P.t/C �2Q.t//0

D �1P
0.t/C �2Q

0.t/

D �1A.P.t//C �2A.Q.t//:

for all P; Q 2 R and �1; �2 2 R.
(e) Let R be the linear space of all continuous functions f .t/ on Œ0; 1�. Let

A.f .t// D
Z 1

0

f .r/dr:

Then A is a linear transformation from R to a one-dimensional vector space R,
because

A.�1f1 C �2f2/ D
Z 1

0

Œ�1f1.r/C �2f2.r/�dr D �1A.f1/C �2A.f2/

for all f1; f2 2 R and �1; �2 2 R.
Two special transformations are the following
– Identity operator (I ): For all linear spaces R and x 2 R, I x D x.
– Null operator (‚): For all linear spaces R and x 2 R, ‚x D 0.

Theorem 8.1. Let R be an n-dimensional linear space, and let e1; : : : ; en be a basis
for R. Then for any set of vectors g1; : : : ; gn of another linear space S there exists
a unique linear transformation A from R to S such that

Aei D gi ; for all i D 1; : : : ; n:

Proof. Let us first prove that for any vector g1; : : : ; gn there exists a linear
transformation A such that

Aei D gi for all i D 1; : : : ; n:

For each
x D �1e1 C � � � C �nen 2 R
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construct the corresponding vector

y D �1g1 C � � � C �ngn 2 S:

Since x is defined through e1; : : : ; en uniquely, y is well defined. Then let Ax D y,
hence A is a transformation. It is not hard to check that the transformation A is linear.

To show that A is uniquely defined by gi ’s, suppose there exist two linear
transformations A1 and A2 such that for some x D �1e1C� � �C�nen 2 R, A1x ¤ A2x
while A1ei D A2ei D gi for all i D 1; : : : ; n. But notice that

�1g1 C � � � C �ngn D �1A1e1 C � � � C �nA1en

D �1A2e1 C � � � C �nA2en

implying A1x D A2x, which is a contradiction. So, the linear transformation defined
by gi ’s must be unique. �

Let f1; : : : ; fm be a basis of the linear space S . Denote the coordinates of each
gk D Aek with respect to the given basis by a1k; a2k; : : : ; amk , i.e.,

gk D Aek D
mX

iD1

aikfi ; k D 1; : : : ; n: (8.1)

All these coordinates make a matrix kaikkm�n which is called the matrix of linear
transformation A with respect to the bases e1; : : : ; en and f1; : : : ; fm.

Then the following result holds.

Lemma 8.2. Consider any two bases e1; : : : ; en and f1; : : : ; fm for an n–
dimensional linear space R and an m-dimensional linear space S , respectively.
Then for any linear transformation A from R to S , there exists a unique
transformation matrix kaikkn�m, and to each matrix kaikkn�m corresponds a
unique linear transformation A.

In particular, one can assign to any linear operator in R a square matrix of
order n.

Example 8.4. In what follows, we construct transformation matrices from the given
linear transformations.
(a) Let R D R3 and A be a linear operator which maps each vector a 2 R to its

projection on the XY plane (Fig. 8.2).
Consider the canonical basis for R3:

e1 D .1; 0; 0/

e2 D .0; 1; 0/

e3 D .0; 0; 1/
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Fig. 8.2 The operator of a
projection on the plane XY
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Then we have
Ae1 D e1

Ae2 D e2

Ae3 D 0:

So, the transformation matrix A is

A D
2

4
1 0 0

0 1 0

0 0 0

3

5 :

(b) Consider the identify operator I in an n dimensional space R, i.e., I ei D ei for
any i D 1; : : : ; n. Then, obviously, the associated transformation matrix is

I D

2

66
6
6
6
4

1 0 : : : 0

0 1 : : : 0
: : : :
: : : :
: : : :

0 0 : : : 1

3

77
7
7
7
5

:

Analogously, the transformation matrix for the null operator is given by ‚ D 0.

Let A be a linear transformation from R to S , let e1; : : : ; en be a basis for R ,
let f1; : : : ; fm be a basis for S , and let kaikk be the transformation matrix of A with
respect to the given bases. Consider

x D �1e1 C � � � C �nen;

Ax D �1f1 C � � � C �mfm:
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Let us find how the coordinates of Ax can be expressed through those of x. Observe
that

Ax D A.�1e1 C � � � C �nen/

D �1.a11f1 C a21f2 C � � � C am1fm/C �2.a12f1 C a22e2 C � � � C am2fm/

C � � � C �n.a1nf1 C a2nf2 C � � � C amnfm/

D .a11�1 C a12�2 C � � � C a1n�n/f1 C .a21�1 C a22�2 C � � � C a2n�n/f2

C � � � C .am1�1 C am2�2 C � � � C amn�n/em:

Then

�i D
nX

kD1

aik�k; i D 1; : : : ; n:

The last equality may be simply re-written in matrix from. Let � be the column
vector of coordinates of the vector x and let � be the column vector of coordinates
of the vector Ax in the given bases, that is,

� D

0

B
@

�1

:::

�n

1

C
A and � D

0

B
@

�1

:::

�m

1

C
A

Then
� D kaikk �:

Therefore, we have

Theorem 8.3. Given a linear transformation A from a linear space R to another
linear space S and some bases in R and S , let � be a column vector of coordinates
of a vector x 2 R, let � be the column vector of coordinates of the vector Ax 2 S ,
and let M denotes the matrix of A. Then � DM �.

Example 8.5. Let A be a linear transformation from R3 to R2 which transforms the
canonical basis vectors

e1 D .1; 0; 0/;

e2 D .0; 1; 0/;

e3 D .0; 0; 1/

to the vectors
Ae1 D .1; 2/;

Ae2 D .�1;�2/;

Ae3 D .11; 22/:

Then the matrix of A (in the canonical bases) is
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M D
�

1 �1 11

2 �2 22

	

Let us calculate the value of the transformation of the vector, say, x D .1; 2; 3/.
Note that, in the notation above, the vectors � D xT and � D .Ax/T are simply the
vectors as x and Ax in the column form, so that

� DM � D
�

1 �1 11

2 �2 22

	
0

@
1

2

3

1

A D
�

32

64

	

and Ax D .32; 64/.

Example 8.6 (Prices and Demand). Consider the following system of demand
equations for n goods. Notice that the demand for each good is not only a function
of its own price, but also the prices of other goods,

qi D
nX

iD1

˛ij pj ; j D 1; : : : ; n: (8.2)

This can be written is a more compact form as

q D Ap; (8.3)

where q is an n� 1 vector of quantities of goods demanded, p is the vector of prices
of these goods and A is the matrix of coefficients given in (8.2).

Let P; Q denote the price and quantity spaces, respectively. Assuming that both
variables are perfectly divisible, we can assume that the both are the subsets of the
n-dimensional Euclidean space Rn (in order to make sense from an economic point
of view, prices and quantities should be non-negative)

Question. Show that (8.3) is a linear transformation (isomorphism) from P space
to Q space

Answer. Equation (8.3) can be written as

q D f .p/ D Ap; (8.4)

p 2 P and q 2 Q, P and Q are Euclidean spaces. In order to show that the mapping

f W P ! Q

is a linear transformation it is sufficient to show that

f .˛p1 C ˇp2/ D f̨ .p1/C f̌ .p2/:
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From (8.4), by using matrix addition and multiplication of a matrix by a scalar, one
can easily obtain that

A.˛p1 C ˇp2/ D ˛A.p1/C ˇA.p2/:

Therefore, (8.4) is a linear transformation.

8.1 Addition and Multiplication of Linear Operators

Definition 8.5. Let R; S; T be 3 linear spaces and let A W R! S; B W S ! T and
C W R! T be 3 linear transformations. The transformation C is the product of the
transformations A and B if for all x 2 R

C x D A.Bx/:

The product transformation C in the above definition is also linear, since

C.�1x1 C �2x2/ D AŒB.�1x1 C �2x2/�

D A.B�1x1 C B�2x2/ D �1ABx1 C �2ABx2

D �1C x1 C �2C x2

for all x1; x2 2 R and �1; �2 2 R.
For example, one can multiply any linear operators acting in the same linear

space R. If I is the identity operator and A is an arbitrary operator in a linear space
R, then

AI D IA D A:

Of a special interest, the powers of an operator A are defined as

A2 D AA; A3 D AA2; : : : ; An D AAn�1; : : : :

with A0 D I .

Example 8.7. Let us denote the operator of rotation of the plane R2 by an angle ˛

by A˛ . It follows that the product of two such operators A˛ and Aˇ is the rotation
by the composite angle ˛ C ˇ

A˛Aˇ D A˛Cˇ:

Moreover, for every positive integer n the n-fold rotation by ˛ is the rotation by n˛,
that is,

An
˛ D An˛:
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Let A and B be two linear transformations as above while bA D kaikk and
bB D kbikk be the corresponding transformation matrices with respect to the basis
e1; : : : ; en of R. Then, let us find the transformation matrix bC of the operator
C D AB . By definition

C ek D
nX

iD1

cikei

and

ABek D A.

nX

j D1

bjkej / D
nX

j D1

bjkAej D
nX

iD1

nX

j D1

bjkaij ei :

Comparing the coefficients we obtain that C D AB if and only if

cik D
nX

j D1

aij bjk

for all i; k D 1; : : : ; n, that is, the matrix of a product of transformations is a product
of the matrices of the multipliers, bC D bAbB .

Example 8.8. Let A W R2 ! R2 and B W R3 ! R2 be two transformations with
matrices (denoted by the same letters)

A D
�

0 1

1 1

	
and B D

�
0 1 10

0 2 20

	

For example, for x D .1; 2; 3/ we have (in the column vector form)

Bx D
�

0 1 10

0 2 20

	
0

@
1

2

3

1

A D
�

32

64

	
and A.Bx/ D

�
0 1

1 1

	�
32

64

	
D
�

64

96

	
:

By the other hand, the matrix of the product transformation C D AB is

C D AB D
�

0 1

1 1

	�
0 1 10

0 2 20

	
D
�

0 2 20

0 3 30

	
;

so that

A.Bx/ D C x D
�

0 2 20

0 3 30

	
0

@
1

2

3

1

A D
�

64

96

	
;

as before.
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The addition of any two linear transformations A and B from R to S is also a
linear transformation acting in the same vector spaces, denoted by C , such that for
all x 2 R, C D .AC B/x � AxC Bx.

Let A and B be two linear transformations from R to S with A D kaikk and
B D kbikk being the associated transformation matrices with respect to some bases
e1; : : : ; en of R and f1; : : : ; fm of S . Then, let us find the transformation matrix C of
the operator C D AC B . We know that

Aek DPn
iD1 aikei

Bek DPn
iD1 bikei

C ek DPn
iD1 cikei :

On the other hand,

.ACB/ek D
nX

iD1

.aik C bik/ei :

Hence C D AC B if and only if

cik D aik C bik

for all i; k D 1; : : : ; n, that is, the matrix of a sum of transformations is again a sum
of their matrices.

Example 8.9. If A and B are two linear operators of R2 with matrices A D
�

0 1

2 3

	

and B D
�

10 20

30 40

	
with respect to the canonical basis, then the sum C D ACB is

the operator with matrix C D
�

10 21

32 43

	
.

Remark 8.1. Since there is a one-to-one correspondence between the transfor-
mations and transformation matrices, the properties of matrix multiplication and
addition (such as commutativity of addition, associativity of addition and multipli-
cation, distributive law, etc.) are pertained by the linear operators as well.

8.2 Inverse Transformation, Image and Kernel
under a Transformation

The next definition is a particular case of Definition 8.2.

Definition 8.6. An operator B in a linear space R is said to be the inverse of an
operator A in R if

AB D BA D I;

where I is the identity operator.
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Fig. 8.3 x is a projection of
both vectors a and b
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The inverse of the operator A is denoted by A�1. By definition we have

A�1.Ax/ D x;

for all x 2 R. That is, A transforms x to Ax; and A�1 transforms Ax back to x.

Example 8.10. Let A D A� be an operator of rotation of the plane R2 by an angle
� (see Example 8.3 a). Then the inverse operator A�1 is A�� , a rotation by the
opposite angle ��.

Does every operator have the inverse? To answer this question, consider an
operator in R2, which maps every vector t to its projection on the X axis. It is easy
to see that this operator does not have the inverse! This is best illustrated in Fig. 8.3:
the vector x is the projection of a on X , but it is also the projection of b on X .

Given an operator A, the associated transformation matrix of the inverse operator
A�1 is simply defined by

A�1A D AA�1 D I;

where I is the identity matrix.

Definition 8.7. Given two linear spaces R and S and a transformation A from R

to S , the set of vectors Ax, where x 2 R, is called the image of R under A, and
denoted by ImR.A/.

The image of R under a transformation A is often referred as image of the
transformation A and denoted simply by Im A.

Example 8.11. Let R D R2 and A be the projection of each vector z 2 R to X axis.
Then the image of R2 under A is R.

Lemma 8.4. Let A be a linear transformation from R to S . Then ImR.A/ is a
subspace of S .

Proof. Let y1; y2 2 ImR.A/. Then there exists x1; x2 2 R such that

y1 D Ax1; and y2 D Ax2:
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Take any �1; �2 2 R. We have

�1y1 C �2y2 D �1Ax1 C �2Ax2

D A.�1x1 C �2x2/ 2 ImR.A/

for �1x1 C �2x2 2 R. �

Lemma 8.5. Let R be a linear space and A be a linear operator in R. If A has an
inverse, then ImR.A/ D R.

Proof. Exercise. �

Definition 8.8. Given two spaces R and S and a transformation A from R to S , the
set of vectors x, satisfying Ax D 0, is called the kernel of A in R, and is denoted by
KerR.A/.

Lemma 8.6. Let R be a linear space and A be a linear transformation in R. Then
KerR.A/ is a subspace of R.

Proof. Exercise. �
Theorem 8.7. Let R and S be two linear spaces and let A be a linear transfor-
mation from R to S . Then the sum of the dimensions of the kernel and image of R

under A is equal to the dimension of R, that is

dim.ImR.A//C dim.KerR.A// D dim R

Proof. Let dim R D n and dim.KerR.A// D k � n. Select for KerR.A/, a basis
e1; : : : ; ek and complete it to a basis for R by the vectors ekC1; : : : ; en.

Consider the vectors AekC1; : : : ; Aen. The set of all linear combinations of these
vectors coincides with ImR.A/.

Now, take any y 2 ImR.A/. By definition, there exists x 2 R such that y D Ax.
Since e1; : : : ; en is a basis for R, we have

x D �1e1 C � � � C �nen

for some �i ’s. Notice that Ae1 D Ae2 D � � � D Aek D 0 since e1; : : : ; ek is a basis
for KerR.A/. Hence, we have

y D Ax D �kC1AekC1 C � � � C �nAen:

Now let us show that n � k vectors given by AekC1; : : : ; Aen are linearly indepen-
dent. Suppose on the contrary that there exist ˛1; : : : ; ˛n�k , not all being equal to
zero such that

˛1AekC1 C � � � C ˛n�kAen D 0:
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Consider now the vector x D ˛1ekC1 C � � � C ˛n�ken. We have

Ax D A.˛1ekC1 C � � � C ˛n�ken/ D ˛1AekC1 C � � � C ˛n�kAen D 0

implying x 2 KerR.A/. Thus we have obtained a contradiction, since x as an element
of the kernel can be represented through e1; : : : ; ek as well as the basis ekC1; : : : ; en

for the image, which is impossible as the vector x must have a unique representation
with respect to the basis e1; : : : ; en.

Hence, n� k vectors AekC1C � � � CAen are linearly independent, and therefore
any vector in ImR.A/ can be represented as a linear combination of n � k vectors,
i.e. dim.ImR.A// D n � k. �

Example 8.12. Let A be an operator in R D R3 with the matrix (in the canonical
basis)

A D
2

4
0 1 1

1 0 1

0 1 1

3

5

The vector space ImR.A/ by the vectors Ae1; Ae2 and Ae3, that is, by the columns
of the above matrix A. The maximal number of linearly independent vectors among
these three is 2 (because the third column is the sum of the first and second columns),
hence dim ImR.A/ D 2. The kernel KerR.A/ consists of all vectors x which satisfy
the equation Ax D 0, that is,

2

4
0 1 1

1 0 1

0 1 1

3

5 xT D
2

4
0

0

0

3

5

The solutions of this equation are x D �.1; 1;�1/, so that KerR.A/ is a one-
dimensional subspace spanned by the vector .1; 1;�1/.

8.3 Linear Transformation Matrices with Respect
to Different Bases

Let R be an n-dimensional linear space with two bases e1; : : : ; en and f1; : : : ; fn. Let
A be a linear operator in R, and C denote a matrix of transformation from e1; : : : ; en

to f1; : : : ; fn, i.e.,
f1 D c11e1 C c21e2 C � � � C cn1en;

f2 D c12e1 C c22e2 C � � � C cn2en;

: : :

: : :

: : :

fn D c1ne1 C c2ne2 C � � � C cnnen:
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Define a linear operator C as

Cei D fi ; i D 1; : : : ; n:

Let A D kaikk and B D kbikk be the transformation matrices of A with respect
to the bases e1; : : : ; en and f1; : : : ; fn, respectively. We have

Aek DPn
iD1 aikei ;

Afk DPn
iD1 bikfi :

It then follows that

AC.ek/ D
nX

iD1

bikC ei :

Multiply now both sides of the last equality by the inverse operator C �1, which
exists since f1; : : : ; fn are linearly independent, to get

C �1AC ek D
nX

iD1

bikC �1C ei D
nX

iD1

bikei :

Then B is a transformation matrix for the operator C �1AC with respect to the basis
e1; : : : ; en. Hence

B D C �1AC: (8.5)

Example 8.13. Problem. A linear operator has the following matrix with respect to
some basis e1; e2

A D
�

2 �1

3 8

�
:

Find its transformation matrix with respect to the basis f1 D 2e1Ce2, f2 D 3e1C2e2.

Solution. From the above definition of f1 and f2, the matrix C of the transformation
of coordinates has the form

C D
�

2 3

1 2

�
:

Then the matrix of the given linear operator with respect to the basis ff1; f2g is

B D C �1AC D
�

2 �3

�1 2

� �
2 �1

3 8

� �
2 3

1 2

�
D
��36 �77

33 46

�
:

Matrices A and B related by (8.5) are called similar. The matrix B is also said
to be obtained from A by a conjugation by C .
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Example 8.14. The matrices

A D
�

0 1

0 0

�
and B D

�
0 0

1 0

�

are similar under conjugation by

C D
�

0 1

1 0

�
:

Remark 8.2. If we consider transformation of one linear space to another one, the
above formula becomes a bit more complicated. Let R and S be two linear spaces,
let E and E 0 be two bases in R, let F and F 0 be two bases in S , and let C and
D be the matrices of basis transformations (as above) from E to E 0 and from
F to F 0, respectively. Suppose that A and A0 are the matrices of the same linear
transformation from R to S with respect to the bases E and F and the bases E 0 and
F 0, respectively. Then

A0 D D�1AC:

8.4 Problems

1. Let Tu be a translation. Prove that

Tu.xC y/ D TuxC Tuy:

2. Let a D .2; 4;�3/. Define F W R3 ! R such that for all x 2 R3, F.x/ D
3.a; x/C 1. What is the value of F.x/ if
(a) x D .3; 2; 1/; (b) x D .1; 2; 3/.

3. Determine which of the following mappings are linear:
(a) F W R3 ! R2, F.x; y; z/ D .x; z/.
(b) F W R4 ! R4, F.x/ D �x.
(c) F W R3 ! R3, F.x/ D xC .0;�1; 0/.
(d) F W R2 ! R2, F.x; y/ D .2x C 4; y/.
(e) F W R2 ! R, F.x; y/ D xy.

4. Prove that the rotation of the XY plane by an angle ˛ around the origin is a
linear transformation.

5. Let R be a three dimensional space with a basis e1; e2; e3. Consider the operator
which maps any x 2 R to its projection on the space spanned by e1. Prove
that this operator is linear. Find the transformation matrix with respect to the
canonical basis of R D R3.

6. Let F be the orthogonal projection of the vectors x 2 R3 on the XY plane. Prove
that F is a linear transformation. Find its transformation matrix with respect to
the canonical basis.
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7. Determine which of the following mappings F W R3 ! R3 are linear, and then
find the associated transformation matrix of F with respect to the same basis
through which x and F.x/ are represented.
(a) F.x/ D .x2 C x3; 2x1 C x3; 3x1 � x2 C x3/.
(b) F.x/ D .x1; x2 C 1; x3 C 2/.
(c) F.x/ D .2x1 C x2; x1 C x3; x2

3/.
(d) F.x/ D .x1 � x2 C x3; x3; x2/.

8. Consider the following operator which maps each ai to bi :

a1 D .2; 3; 5/! b1 D .1; 1; 1/;

a2 D .0; 1; 2/! b2 D .1; 1;�1/;

a3 D .1; 0; 0/! b3 D .2; 1; 2/:

Find the matrix of this operator with respect to the basis in which coordinates
of the vectors are given.

9. Let F W R3 ! R3 be such that F.x/ D .x; a/a, where a D .1; 2; 3/. Prove
that F is a linear operator, and find its transformation matrix with respect to the
canonical basis for R3, and also with respect to the basis:

b1 D .1; 0; 1/;

b2 D .2; 0;�1/;

b3 D .1; 1; 0/:

10. Assume a linear operator has the following matrix with respect to some basis
e1; e2; e3; e4 2

66
4

1 2 0 1

3 0 �1 2

2 5 3 1

1 2 1 3

3

77
5

Find the matrix of this operator with respect to the bases:
(a) e2; e3; e4; e1

(b) e1; e1 C e2; e1 C e2 C e3; e1 C e2 C e3 C e4

11. A linear operator has the following matrix with respect to some basis e1; e2; e3

2

4
15 �11 5

20 �15 8

8 �7 6

3

5

Find its transformation matrix with respect to the basis f1 D 2e1 C 3e2 C e3,
f2 D 3e1 C 4e2 C e3, f3 D e1 C e2 C e3.
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12. A linear operator has the following transformation matrix

2

4
1 �18 15

�1 �22 15

1 �25 22

3

5

with respect to the basis

a1 D .8;�6; 7/

a2 D .�16; 7;�13/

a3 D .9;�3; 7/

Find the operator matrix with respect to the basis

b1 D .1;�2; 1/

b2 D .3;�1; 2/

b3 D .2; 1; 2/

13. Let F1 W R2 ! R2 has the transformation matrix

�
2 �1

5 �3

�

with respect to the basis a1 D .�3; 7/, a2 D .1;�2/ and let F2 W R2 ! R2 have
the transformation matrix �

1 0

2 �1

�

with respect to the basis b1 D .6;�7/, b2 D .�5; 6/. Find the transformation
matrix of the product F1F2 with respect to the bases:
(a) a1; a2.
(b) b1; b2.
(c) The canonical basis of R2.

14. Prove that any linear operator F W R ! R can be represented as F.x/ D ˛x,
where ˛ is a real number.

15. Let Tu1 and Tu2 be two translations. Prove that

Tu1Tu2 D Tu1Cu2 :

16. Let A W R ! S and B W S ! T be two linear transformations such that
Ker B D Im A. Prove that

dim .Ker A/C dim .Im B/ D dim R � dim S C dim T:
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17. (a) Show that if the matrices A and B are conjugated, then the matrices B and
A (the order is opposite to the given one) are conjugated as well.

(b) Show that if the matrix A is conjugated to B and B is conjugated to some
C , then A is conjugated to C .

18. Let A and B be two conjugated matrices of order n. Prove that:
(a) det A D det B .
(b) rank A D rank B .
(c) Tr A D Tr B .



9Eigenvectors and Eigenvalues

Let L be a linear space, L1 be a linear subspace of L and A be a linear operator in L.
In general, for any vector x 2 L1, Ax may not belong to L1. The following example
makes this claim clear. Let L D R2 and L1 D fx D .�1; �2/ 2 R2 j �1 D �2g, i.e.,
L1 contains all vectors on the bisectrice of the Euclidean plane. Let A be a linear
operator in L such that for all x 2 L1, Ax D .�1; 2�2/. So, for all nonzero x 2 L1

we have Ax … L1 (Fig. 9.1).

Definition 9.1. Let A be a linear operator in a linear space L. Then the linear
subspace L1 of L is said to be invariant with respect to A if for all x 2 L1, Ax 2 L1.

Example 9.1. (a) Trivial invariant subspaces of any linear space L are f0g and L
itself.

(b) Let L D R2. Given any x D �1e1 C �2e2 2 R2, where e1 D .1; 0/ and e2 D
.0; 1/, we define

Ax D �1�1e1 C �2�2e2;

where �1; �2 2 R. Then, the axes of the Cartesian plane are invariant subspaces
under this operator.

(c) LetL be the set of all polynomials of degree at most n�1. Let A W P.t/! P 0.t/
map each polynomial to its derivative. Then the set of all polynomials of degree
at most k, where 0 � k � n � 1 is an invariant subspace of L.

(d) Let L be any linear space and A be any linear operator in L. Consider KerL.A/

and ImL.A/. Both of these subspaces are invariant with respect to A.
Let L1 be a one-dimensional subspace of the linear space L such that L1 D f˛y j

˛ 2 Rg for some nonzero y 2 L. Now L1 is invariant with respect to A if and only
if for any x 2 L1 we have Ax 2 L1, i.e., Ax D �x for some � 2 R.

Definition 9.2. The non-zero vector x 2 L satisfying

Ax D �x

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 9,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 9.1 Ax … L1 for all
nonzero x 2 L1
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for some � 2 R, is called the eigenvector, while the corresponding � is called the
eigenvalue, of the linear operator A.

Eigenvectors are also called characteristic vectors, and eigenvalues are also
called characteristic values of A.

Example 9.2. Let A D
�

1 2

0 3

�
be a linear operator. Let us find its eigenvectors x.

The equation Ax D �x gives

�
1 2

0 3

� �
x1

x2

�
D �

�
x1

x2

�
;

or �
.1 � �/x1 C 2x2 D 0;

.3 � �/x2 D 0:

It follows that there are two eigenvalues: � D 3 and � D 1. The eigenvectors are
x D c.1; 1/ (for � D 3) and x D c.1; 0/ (for � D 1), where c is an arbitrary nonzero
real number.

Example 9.3. (a) Let L be the set of all differentiable functions, and L1 be the set
of all infinitely many times differentiable functions. Then the function

f .t/ D e�t

with � 2 R, is an eigenvector of the linear operator A D d=dt since
df .t/=dt D �f .t/.

(b) Let 2

66
4

a1 0
:

:
:

0 an

3

77
5

be the transformation matrix of a linear operator A. Then for all i D 1; : : : ; n

the unit vector
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ei D

2

6
6
6
66
6
4

0
:::

1
:::

0

3

7
7
7
77
7
5

 i th row

is an eigenvector of A. Indeed, Aei D ai ei . So, ai is the eigenvalue associated
with the eigenvector ei .

Example 9.4. Consider an industry involving three firms which share the market for
a certain commodity. Let the market shares of firms in a given year is denoted by
the vector s, with its i th row being the market share of firm i .

Assume that the transition matrix of the economy is given by T D ˇˇtij
ˇ
ˇ, where tij

denotes the share of customers of firm i which go to firm j next year. Specifically,
we are given

T D
2

4
0:85 0:10 0:10

0:05 0:55 0:05

0:10 0:35 0:85

3

5 :

We are interested in finding whether there exists a vector v of current market shares
which will, under the transition operator T , remain unchanged next year, i.e.,

T v D v:

Here, we can consider v as an eigenvector if 1 is an eigenvalue of T . One can check
that

v D
2

4
0:4

0:1

0:5

3

5

is a solution to this problem, i.e., it is an eigenvector of T .

Remark 9.1. Let A be a linear operator and let x be an eigenvector of A. Then ˛x
is also an eigenvector of A.

Theorem 9.1. Let L be a linear space and A be a linear operator in L. Assume that
q1; : : : ; qm are eigenvectors of A with eigenvalues �1; : : : ; �m, respectively. Assume
that for all i ¤ j , �i ¤ �j . Then q1; : : : ; qm are linearly independent.

Proof (by induction). For m D 1, q1 ¤ 0 is linearly independent (since an
eigenvector is not a null vector, by definition). Assume m > 1, and that q1; : : : ; qm

are linearly dependent, i.e., there exist c1; : : : ; cm 2 R not all being equal to zero
such that

c1q1 C � � � C cmqm D 0: (9.1)
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Multiply (9.1) by �1 to get

c1�1q1 C � � � C cm�1qm D 0: (9.2)

Operating A on (9.1) yields

c1�1q1 C � � � C cm�mqm D 0: (9.3)

Subtracting (9.2) from (9.3) we obtain

c2.�2 � �1/q2 C � � � C cm.�m � �1/qm D 0;

implying now that the vectors q2; : : : ; qm are linearly dependent. Repeating the
above steps to remove the vectors q2; : : : ; qm�1, one by one, from the above linear
equation, yields in the end

cmqm D 0;

implying cm D 0. Then moving in the backwards direction, we get also
c2 D � � � D cm D 0, and finally c1 D 0, which is a contradiction, since we assumed
that c1; : : : ; cm are not all zero. Therefore, q1; : : : ; qm are linearly independent.

Corollary 9.2. Let L be an n-dimensional linear space, and A be a linear operator
in L with eigenvectors e1; : : : ; en and with distinct eigenvalues �1; : : : ; �n. Then
e1; : : : ; en is a basis for L.

How to find the eigenvalues and eigenvectors? Let us discuss conditions for an
arbitrary vector to be an eigenvector.

Let A is a linear operator in an n-dimensional linear space L, and let e1; : : : ; en be
a basis for L. Let the linear operator A in L corresponds the transformation matrix
kaikk. Pick an arbitrary vector

x D �1e1 C � � � C �nen

in L. Then the coordinates �1; : : : ; �n of the vector Ax can be represented as

8
<

:

�1 D a11�1 C a12�2 C � � � C a1n�n;

: : : : : : ::

�n D an1�1 C an2�2 C � � � C ann�n:

If x is an eigenvector then we have

8
<

:

a11�1 C a12�2 C � � � C a1n�n D ��1;

: : : : : : ::

an1�1 C an2�2 C � � � C ann�n D ��n;

or rearranging
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8
ˆ̂
<

ˆ̂
:

.a11 � �/�1 C a12�2 C � � � C a1n�n D 0;

a21�1 C .a22 � �/�2 C � � � C a2n�n D 0;

: : : : : : : : :

an1�1 C a22�2 C � � � C .ann � �/�n D 0:

(9.4)

We have a non-zero solution of (9.4) if and only if det A� D 0, where

A� D

2

66
6
4

a11 � � a12 : : : a1n

a21 a22 � � : : : a2n

: : : : : : :
: : : : : :

an1 an2 : : : ann � �

3

77
7
5
D A � �I:

The determinant det A� is a polynomial in � of degree n.
Suppose that �0 is a root of this polynomials. For � D �0, the matrix A�0 of the

system (9.4) of linear equations is degenerate, so, there exists a non-zero solution
�0

1 ; : : : ; �0
n of (9.4). Then

x D �0
1 e1 C � � � C �0

nen

is an eigenvector, while �0 is an eigenvalue, of A, since Ax0 D �0x0.
In contrast, if � is not a root of the above polynomial, then the system (9.4) has

non-degenerate matrix, so, the zero solution of the system is unique, therefore, � is
not an eigenvalue.

The polynomial
�A.�/ D det.A� �I/

is called the characteristic polynomial.

Example 9.5. Let

A D
�

a b

c d

�

be an arbitrary 2 � 2 matrix. Then

�A.�/ D det.A � �I/ D
ˇ
ˇ
ˇ
ˇ
a � � b

c d � �

ˇ
ˇ
ˇ
ˇ

D �2 � .aC d/�C ad � bc D �2 � .Tr A/�C det A:

Proposition 9.3. The coefficients of the characteristic polynomial �A.�/ do not
depend on the chosen basis for L.

Proof. Let A and A0 be the matrices of the same linear operator in the bases E and
E 0, respectively, and let C be a basis transformation matrix from E to E 0. Then
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�0
A.�/ D det.A0 � �I/ D det.C �1AC � �I/ D det.C �1AC � �C �1C /

D det
�
C �1.A� �I/C

� D det C �1 det.A� �I/ det C

D det.A� �I/ D �A.�/:

�
Hence, it is called the characteristic polynomial of the linear operator A, but not

that of the transformation matrix A.
Thus we obtain

Theorem 9.4. Let A be a linear operator in an n-dimensional linear space. Then
each eigenvalue of A is a root of the characteristic polynomial �A.�/, and each root
of this polynomial is an eigenvalue.

To describe the eigenvectors x corresponding to a given root �0, one should solve
the system (9.4) of linear equations, that is, the system

.A� �0I /x D 0:

Until now we have considered linear spaces over real numbers. In fact, our
results remain valid if we consider linear spaces over complex numbers (we discuss
complex numbers in Appendix C). We formulate this as our next result.

Corollary 9.5. For every complex vector space L, any linear operator A in L has
at least one eigenvector.

Proof. The polynomial �A.�/ is always of positive degree. Such a polynomial
is known to have at least one (complex) root �0 (the fundamental theorem of
algebra, see Theorem C.1). Then it is a (complex) eigenvalue, and the corresponding
eigenvector x (probably, with complex coefficients) may be obtained as a solution
of (9.4). �

Now let A be a linear operator in L and e1; : : : ; en be its linearly independent
eigenvectors, i.e.

Aei D �i ei ; i D 1; : : : ; n: (9.5)

Let us choose e1; : : : ; en as a basis for L. Then the above equalities imply that the
transformation matrix of A with respect to this basis is

2

66
6
4

�1 0 : : : 0

0 �2 : : : 0
:::

:::
: : :

:::

0 0 : : : �n

3

77
7
5

;

which is called the diagonal matrix. Hence, we prove the following

Theorem 9.6. If a linear operator A 2 L has n linearly independent eigenvectors,
then choosing them as a basis for L, we can represent the transformation matrix of
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A in diagonal form. Conversely, if with respect to some basis in L the transformation
matrix of a linear operator A is diagonal, then all vectors of this basis are the
eigenvectors of A.

By the above theorem, for any complex linear space and any linear operator in
that space, there exists an invariant one-dimensional linear subspace. But in the case
of real linear spaces this assertion is not correct.

Example 9.6. Consider the rotation of R2 by some angle � ¤ k� for any integer
k (see Example 8.3a). Observe that with respect to this linear operator, no one-
dimensional linear subspace of R2 is invariant.

Theorem 9.7. For any linear operator A in an n-dimensional linear space L over
the reals (n � 2), there exist either one- or two-dimensional invariant subspaces.

Proof. Let e1; : : : ; en be a basis for L and kaikk be the transformation matrix of the
linear operator A with respect to this basis. Consider the equation

Ax D �x (9.6)

in the unknowns x and �.
This matrix equation has a non-zero solution if and only if det.A� �I/ D 0. Let

�0 be a root of the characteristic polynomial. We have two cases to consider:

Case 1: �0 is a real root. Let the corresponding eigenvector be x, which generates a
one-dimensional linear subspace of L (recall that any multiple of x is an eigenvector
of A).

Case 2: �0 D ˛C iˇ is a complex root. Let xC iy be a solution of the (9.6). Insert
this solution and �0 into (9.6) and separate the real and imaginary parts to get

Ax D ˛x � ˇy
Ay D ˛yC ˇx:

(9.7)

Notice that x and y generate a two-dimensional subspace of L which is invariant
with respect to A. �
Example 9.7. Consider a operator A in R2 given by the transformation matrix

A D
�

�0 0

� �0

�

where � is an arbitrary nonzero real number.
The characteristic polynomial of A is .�0 � �/2, and it has the repeated

root �0. Then to find the eigenvector(s) x D .�1; �2/, we need to solve the
system of equations
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�
0�1 C 0�2 D 0

��1 C 0�2 D 0:

The above system adopts the unique non-zero solution �1 D 0, �2 D 1 (up to a
constant multiple). Then the corresponding invariant subspace of R2 is of dimension
one, which is less than the number of roots of the characteristic polynomial.

9.1 Macroeconomic Example: Growth and Consumption

9.1.1 The Model

Consider an n-sector economy that produces n goods denoted by the vector
x. All goods are both used as inputs in production and consumed by workers.
The commodity input requirements of production is given by n � n input/output
coefficients matrix A and labor requirements by labor/output coefficients row
vector a. (Notice that all the elements of A and a are non-negative). It is assumed
that the consumption basket of workers is given by the column vector c. (This can
be interpreted as a wage basket that reflects social minimum wage, determined by
social and historical conditions of the society in question.)

This system of production and its use can be summarized as follows:
OutputD input requirements of production+ consumption (of workers), or

x D AxC cax:

This economy uses all its output for current production and consumption,
therefore it is incapable of growing. Now let us introduce growth into this picture.
For the sake of simplicity suppose that policy makers aim at growing all sectors at
the same rate, i.e. on a ‘balanced growth path’. Therefore, the extra amount of goods
necessary for achieving this growth performance is given by

s D gŒAxC cax�; (9.8)

where g is the balanced growth rate (a scalar) of the economy. When (9.8) is taken
into account, the production system becomes

x D AxC caxC gŒAxC cax�; (9.9)

where the first term in the right hand corresponds to the input requirements for
current consumption and the second term stands for the input requirements of
growth. Let us define

B D AC ca
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As the ‘augmented input matrix’, i.e., that takes into account the consumption needs
of the labor, and treats the latter as an input of production. Therefore, (9.9) can be
rewritten as

x D .1C g/Bx: (9.10)

Question 1. Suppose that the policy makers want to know the maximum feasible
rate of growth of such economy, given the technology .A; a/ and exogenously given
consumption basket of the workers, c.

Answer. Notice that (9.10) can be rewritten as

Œ�I � B�x D 0; (9.11)

where � D .1C g/� 1, I is the n� n identity matrix and 0 is the n� 1 zero vector.
From (9.11) it is clear that the required answer can be obtained by the eigenvalues
and corresponding eigenvectors of the matrix B and picking the one that allows
maximum rate of growth. Obviously in this context a production system is feasible
if at least it can sustain itself, i.e., g is a non-negative scalar and corresponding
eigenvector is also non-negative.

9.1.2 Numerical Example

Suppose the technology of the economy is given by the following input/output
matrix A, and labor/output vector a

A D
2

4
0:120 0:170 0:120

0:140 0:110 0:140

0:110 0:130 0:110

3

5 ;

a D Œ0:36; 0:37; 0:40�:

Let the consumption vector be

c D
2

4
0:6

0:45

0:45

3

5 :

Using this information, the augmented input coefficients matrix can be
calculated as

B D AC ca D
2

4
0:336 0:392 0:360

0:253 0:277 0:320

0:272 0:297 0:290

3

5 :
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The eigenvalues of the matrix B are

�1 D 0;9458; �2 D �0;0003; �3 D �0;0425:

Only the first eigenvalue is positive. Therefore, the others have no economic
meaning. The eigenvector that corresponds to �1 is .0:6574; 0:5455; 0:5197/. The
technically maximum feasible growth rate for this economy is

g D .1 � �/=� D 5; 7

Question 1. Can this economy afford a 10% increase in the consumption good
vector of workers?

(Hint: Change the consumption vector by increasing its each component by
10%. Then calculate the eigenvalues of the augmented matrix and check if the
corresponding maximum feasible growth rate is non-negative or not.)

9.2 Self-Adjoint Operators

A linear operator A in a real Euclidean space E is called self-adjoint if for all
x; y 2 E

.Ax; y/ D .x; Ay/: (9.12)

Example 9.8. Let us show that the operator A D
��1 4

4 5

�
is self-adjoint. Indeed,

for x D .x1; x2/ and y D .y1; y2/ we have Ax D .�x1 C 4x2; 4x1 C 5x2/ and
Ay D .�y1 C 4y2; 4y1 C 5y2/, so that

.Ax; y/ D �x1y1 C 4x2y1 C 4x1y2 C 5x2y2 D .x; Ay/:

Theorem 9.8. Any linear operator A in a real Euclidean space E is self-adjoint
if and only if for any orthogonal basis of E , the transformation matrix of A is
symmetric.

Proof. Let e1; : : : ; en be an orthogonal basis for E . Pick any two vectors

x D �1e1 C � � � C �nen

y D �1e1 C � � � C �nen

in E . Let 	1; : : : ; 	n be coordinates of the vector z D Ax, i.e.

	i D
nX

kD1

aik�k;
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where kaikk is the transformation matrix of A with respect to e1; : : : ; en. Then

.Ax; y/ D .z; y/ D
nX

iD1

	i�i D
nX

kD1

nX

iD1

aik�k�i :

On the other hand, we have

.x; Ay/ D
nX

kD1

nX

iD1

�i aik�k:

We see that .Ax; y/ D .x; Ay/ provided aik D aki for all i; k D 1; : : : ; n, that is,
the operator with symmetric matrix is self-adjoint.

Now, suppose that the operator is self-adjoint, that is, .Ax; y/ D .x; Ay/ for all
x; y 2 E . Let us put x D ei and y D ek be two arbitrary elements of the basis.
Then .ei ; Aek/ D .Aei ; ek/, that is, aik D aki for arbitrary i; k D 1; : : : ; n. Thus
the matrix kaij k is symmetric. �

Now we will show that for any self-adjoint operator A in a real Euclidean space
E , there exists an orthogonal basis for E , with respect to which the transformation
matrix of A is diagonal. But let us first prove some useful lemmas.

Lemma 9.9. Any self-adjoint operator in a real Euclidean space has a one-
dimensional invariant subspace.

Proof. By Theorem 9.7 any linear operator has a one dimensional invariant
subspace if the root � of the characteristic polynomial is real and two-dimensional
invariant subspace if � is complex. So, consider the second case. Suppose that � is
complex, i.e. � D ˛Ciˇ, for some ˛; ˇ 2 R. Let xCiy be an eigenvector associated
with �. By the proof of Theorem 9.7 it follows that

Ax D ˛x � ˇy
Ay D ˇxC ˛y:

Hence
.Ax; y/ D ˛.x; y/� ˇ.y; y/

.x; Ay/ D ˇ.x; x/C ˛.x; y/:

Subtracting the first equation from the second yields

ˇ Œ.x; x/C .y; y/� D 0

since .Ax; y/ D .x; Ay/. Using .x; x/ C .y; y/ ¤ 0, we conclude that ˇ D 0, i.e.
� is real. Then the eigenvector associated with � is also real and creates a one-
dimensional invariant subspace. �
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Lemma 9.10. Let A be a self-adjoint operator in an n-dimensional real Euclidean
space E and e be an eigenvector of A. Then the set E 0 of all vectors which are
orthogonal to e is an .n � 1/-dimensional invariant subspace of E .

Proof. The fact that E 0 is a subspace of E is obvious. To show that E 0 is invariant
with respect to A, pick any x 2 E 0 such that .x; e/ D 0. Then .Ax; e/ D .x; Ae/ D
.x; �e/ D �.x; e/ D 0, implying Ax 2 E 0. �

Theorem 9.11. Let E be an n-dimensional real Euclidean space and A be a self-
adjoint operator in E . Then there exists orthonormal basis for E with respect to
which the transformation matrix of A is diagonal.

Proof. By Lemma 9.9, A has at least one eigenvector e1. Let E 0

be a space
containing vectors which are orthogonal to e1. By Lemma 9.10, E 0

is an invariant
subspace E . Then, again by Lemma 9.9, there exists an eigenvector e2 2 E 0

.
Repeating this procedure eventually yields the set of n eigenvectors e1; : : : ; en which
are pairwise orthogonal. Choose this set as a basis for E . Note that

Aei D �i ei ;

for some �i 2 R and for all i D 1; : : : ; n. So, the transformation matrix of A with
respect to the above basis is equal to

2

6
4

�1 0
: : :

0 �n

3

7
5 :

�
Theorem 9.11 can be reformulated as so-called Spectral Theorem of Algebra.

Spectral Theorem. Let L be a n-dimensional Euclidean space with n > 1. Let A

be a linear operator symmetric with respect to an inner-product defined in L. Then
there exists an orthogonal basis for L consisting of the eigenvectors of A.

Example 9.9. Consider the self-adjoint operator A D
��1 4

4 5

�
from Example 9.8.

Its characteristic polynomial has the form

�A.�/ D
ˇ
ˇ
ˇ
ˇ
�1 � � 4

4 5 � �

ˇ
ˇ
ˇ
ˇ D �2 � 4� � 21:

It has two roots (eigenvalues) �1 D �3 and �2 D 7. Pick any two eigenvectors
corresponding to these eigenvalues (that is, solutions of the corresponding versions
of the system (9.4)), say, v1 D .2;�1/ and v2 D .1; 2/. We have .v1; v2/ D 0, so
the vectors v1 and v2 form an orthogonal basis of R2. The matrix of the operator A

with respect to this basis has the form
��3 0

0 7

�
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9.3 Orthogonal Operators

Definition 9.3. A linear operator A in a real n-dimensional Euclidean space E is
called orthogonal operator if for all x; y 2 E

.Ax; Ay/ D .x; y/: (9.13)

Example 9.10. The matrix A D
�

1=2
p

3=2

�p3=2 1=2

�
is orthogonal.

Note that orthogonal operators preserves the inner-product. To see a special
implication of this observation, insert x D y into (9.13) to obtain

jAxj2 D jxj2 :

Hence orthogonal operator preserves the length of a vector.
Now pick any e1; : : : ; en orthogonal basis for E . Then we have

.Aei ; Aek/ D
�

1; if i D k;

0; otherwise.
(9.14)

Note that, on the other side, any operator A which satisfies (9.14) is orthogonal.
Let kaikk be the transformation matrix of A with respect to this basis. The i th

column of this matrix contains the coordinates of Aei , hence (9.14) can be rewritten
as

nX

j D1

aj i ajk D
�

1; if i D k;

0; otherwise.

But
Pn

j D1 aj i ajk is the ik-th element of the product AT A, hence it is also true that

AT A D I:

Thus, we have
det.A/ D ˙1;

i.e., the determinant of the orthogonal transformation matrix is either C1 or �1.
An orthogonal operator A is called non-singular if det.A/ D C1 and singular if
det.A/ D �1.

(Do not confuse with singular matrix A for which det A D 0!)

Lemma 9.12. Let L be a linear space, A be an orthogonal linear operator in L,
and L1 be a subspace of L invariant with respect to A. Then orthogonal complement
L2 of L1 (the set of all vectors y 2 L orthogonal to each x 2 L1) is also an invariant
subspace.
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Proof. Pick any y 2 L2. Then for all x 2 L1, .x; y/ D 0. Since A is orthogonal, we
have det.A/ ¤ 0, and hence the inverse of A exists. So, ImL1 .A/ D L1 by Lemma
9.3. Then any x 2 L1 is equal to

x D Az

for some z 2 L1. Thus

.x; Ay/ D .Az; Ay/ D .z; y/ D 0;

implying that Ay 2 L2. Therefore, L2 is an invariant subspace of L. �
We can now study orthogonal operators in one and two dimensional linear spaces.

Let e be a vector generating a one-dimensional linear space, and A be an orthogonal
operator in this space. Then Ae D �e, for some � 2 R. By the fact

.Ae; Ae/ D .e; e/;

it follows that
�2.e; e/ D .e; e/;

implying � D ˙1.
In other words, A is an orthogonal operator in a one-dimensional linear space if

and only if for all x in this space we have either Ax D x or Ax D �x.
Consider now a two-dimensional linear space L. Let e1; e2 be an orthogonal basis

for L and A be an orthogonal transformation in L. Then the transformation matrix
of A can be written as

A D
�

˛ ˇ

� ı

�
:

Since AT A D I , we must have

A�1 D
�

˛ ˇ

� ı

��1

D
�

˛ �

ˇ ı

�
D AT :

First consider the case det.A/ D �1, i.e., ˛ı � �ˇ D �1. Then we have

�
˛ ˇ

� ı

��1

D
��ı ˇ

� �˛

�
:

Hence we get

A D
�

˛ ˇ

ˇ �˛

�
:

Note that for any eigenvector e of A, it must be true that Ae D �e. The orthogonality
of A implies � D ˙1. One can check that the characteristic polynomial for the above
matrix A is �2 � 1, which adopts the roots˙1.
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Using the assumption �˛2 � ˇ2 D �1, we further get ˛; ˇ 2 Œ�1; 1�, so one can
introduce another parameter ' 2 Œ0; 2�� such that ˛ D cos ' and ˇ D sin '. Thus,
we can rewrite A as

A D
�

cos ' sin '

sin ' � cos '

�
:

In other words, any non-singular orthogonal operator with respect to an orthogonal
basis is a reflection with respect to the bisector of the angle (equal to ') between the
vectors e1 and Ae1.

Consider now the case of det.A/ D ˛ı � ˇ� D C1. Then we have

A�1 D
�

ı �ˇ

�� ˛

�
:

From the equation A�1 D AT we get

A D
�

˛ ˇ

�ˇ ˛

�
:

Using ˛2 C ˇ2 D 1 yields

A D
�

cos ' � sin '

sin ' cos '

�

for some ' 2 Œ0; 2�� such that ˛ D cos ' and ˇ D sin ', that is, A is a rotation by
the angle '.

It is possible to show that any orthogonal operator in the n-dimensional case can
be represented as the composition of these simple cases, that is, a composition of
reflections in some hyperplanes and rotation over some axes which are orthogonal
to the hyperplanes and to each other, see [33, Theorem 6.3.3]. In particular, there is a
famous theorem of Gauss saying that any orthogonal operator in the 3-dimensional
space R3 is either a rotation (see Fig. 9.2) over some axis or a composition of the
rotation and a reflection in a plane orthogonal to the axis, see Fig. 9.3.

Theorem 9.13. Let A be a symmetric matrix with different eigenvalues. Then the
matrix Q of eigenvectors of length one, which we call the modal matrix of A, is
orthogonal.

Proof. We already proved that if A is a symmetric matrix and if its eigenvalues are
distinct, then the corresponding eigenvectors are orthogonal (Theorem 9.11). Then,
consider the matrix Q containing these eigenvectors. Since the columns of Q are
pairwise orthogonal and have unit length, the conditions (9.14) hold. �

Example 9.11. Let us construct the modal matrix for the self-adjoint operator A D��1 4

4 5

�
from Examples 9.8 and 9.9. By Example 9.9, there are two orthogonal
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Fig. 9.2 A rotation over the
axis l

l

L
ϕ

x

Ax

Fig. 9.3 A composition of a
rotation over l and a reflection

l

L
ϕ

x

Ax

eigenvectors v1 D .2;�1/ and v2 D .1; 2/. To get eigenvectors of length 1, take
e1 D jv1j�1v1 D .2=

p
5;�1=

p
5/ and e2 D jv2j�1v2 D .1=

p
5; 2=
p

5/. Then the
modal matrix Q has the columns eT

1 and eT
2 , that is,

Q D
�

2=
p

5 1=
p

5

�1=
p

5 2=
p

5

�
:

This matrix has the form �
cos ' � sin '

sin ' cos '

�

with � D 2� � arcsin.1=
p

5/, that is, Q is a rotation by the angle '.

9.4 Quadratic Forms

Consider the matrix

A D
�

3 5

4 1

�

and any column vector x D Œx1 x2�. The quadratic form of A is a function

q.x/ D xT Ax D 3x2
1 C 5x1x2 C 4x1x2 C 1x2

2

D 3x2
1 C 9x1x2 C x2

2 :



9.4 Quadratic Forms 157

In general, for any matrix A D kaij kn�n and any row vector x D Œx1; : : : ; xn� of
variables, the quadratic form is defined as

q.x/ D
nX

iD1

nX

j D1

aij xi xj :

In the matrix form, this can be re-written as q.x/ D xAxT .
Quadratic forms are heavily used in calculus to check the second order conditions

in optimization problems. They have a particular use in econometrics, as well.
Before we consider some special issues on quadratic forms, let us introduce a

more general notion, namely, bilinear forms. Given the variables x1; : : : ; xn and
y1; : : : ; yn, bilinear form is defined as the sum


 D
nX

iD1

nX

j D1

aij xi yj ;

where aij are arbitrary numbers. Bilinear form is called symmetric if aij D aj i for
all i; j D 1; : : : ; n. The dot product of two vectors is obviously a bilinear form.

Bilinear form is reduced to quadratic form if xi D yi for all i D 1; : : : ; n. We
denote this form as ˆ. Then

ˆ D
nX

iD1

nX

j D1

aij xi xj

or

ˆ D
nX

iD1

xi �i ;

where

�i D
nX

j D1

aij xj

are linear combinations of variables. Here one can take

�i D 1

2

@ˆ

@xi

:

Conversely, for every function of the form ˆ.x1; : : : ; xn/ DPn
iD1

Pn
j Di bij xi xj

one can define a symmetric bilinear form 
.x; y/ and a symmetric matrix B such
that

ˆ.x/ D 
.x; x/ D xAxT :
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To do this, one can take the coefficients of the above linear combinations1 �i D
1

2

@ˆ

@xi

as the elements of the i -th row of the matrix A and then define 
.x; y/ D xAy.

Such symmetric matrix A is said to correspond to the quadratic form ˆ.

Example 9.12. For a quadratic form ˆ.x1; x2/ D x2
1 C 2x1x2 C 3x2

2 one has �1 D
1

2

@ˆ

@x1

D x1 C x2 and �2 D 1

2

@ˆ

@x2

D x1 C 3x2. Then

A D
�

1 1

1 3

�
;

so that 
.x1; x2; y1; y2/ D Œx1; x2�AŒy1; y2�T D x1y1 C x1y2 C x2y1 C 3x2y2.

While studying the properties of inner-products, we informally defined the
positive definiteness of matrices using the quadratic forms. Let us formalize it.

Definition 9.4. Let A be an n � n matrix. A is said to be positive definite (positive
semi-definite) if q.x/ D xT Ax > 0 (q.x/ D xT Ax � 0) for all nonzero column
vectors x of size n. Analogously, A is said to be negative definite (negative semi-
definite) if q.x/ D xT Ax � 0 (q.x/ D xT Ax � 0).

Theorem 9.14. Let A be a symmetric matrix. Then A is positive definite (negative
definite) if and only if all its eigenvalues are positive (negative). Moreover, A is
positive semi-definite (negative semi-definite) if and only if all its eigenvalues are
nonnegative (nonpositive).

Proof. Let Q be the orthogonal matrix containing eigenvectors of A. Then by
Theorems 9.11 and 9.13.

QT AQ D ƒ;

where ƒ is a diagonal matrix of eigenvalues. Consider an arbitrary vector x. Then
x D Qy for some y. It follows that

q.x/ D xT Ax D yT QT AQy

D
nX

iD1

�iy
2
i :

Then, xT AxT > 0 (xT AxT < 0) if and only if �i > 0 (�i < 0) for all i D 1; : : : ; n.
Analogously, xT AxT � 0 (xT AxT � 0) if and only if �i � 0 (�i � 0) for all
i D 1; : : : ; n. �

1Let us note for a reader who is not familiar with partial derivatives that the coefficients of the
linear combinations �i are calculated by the following rule: the coefficient of x1 in �i is equal to
the coefficient of x2

i in ˆ while the coefficient of xj for j ¤ i is equal to the coefficient of xi xj

in ˆ divided by two.
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It is sometimes hard to apply the above theorem to check if a quadratic form is
positive (or negative) definite, because there is no simple general method to calculate
the eigenvalues. The next criterion is more useful.

A k-th principal minor of a square matrix A is the determinant of its submatrix
A.k/ formed by the intersection of the first k rows and the first k columns of A, that
is, the upper left k � k corner of A. It is denoted by �k D det A.k/.

Theorem 9.15 (Sylvester2 criterion). A symmetric matrix A is positive definite if
and only if all its principal minors �k are positive. It is negative definite if and only
if all the numbers .�1/k�k are positive, that is, each principal minor �k is positive
for all even k and negative for all odd k.

We begin with the following

Lemma 9.16. Let A be an arbitrary square matrix and let L and U be a lower
triangular matrix and an upper triangular matrix, all of the same order n. Then for
all k D 1; : : : ; n we have

.LA/.k/ D L.k/A.k/ and .AU /.k/ D A.k/U.k/:

Proof. Left as an exercise. �
Proof of Theorem 9.15. Let us first consider the criterion for positive definite matrix.
Let q.x1; : : : ; xn/ be the quadratic form corresponding to the matrix A D kaij kn�n.
If n D 1, the criterion is obvious. By the induction argument, we assume that n � 2

and the criterion is true for all symmetric matrices of lower order.
Suppose that A is positive definite. For every k � n � 1, the quadratic

form qk.x1; : : : ; xk/ D q.x1; : : : ; xk; 0; : : : ; 0/ is positive definite as well. By the
induction assumption, it follows that the corresponding determinant �k is positive.
In order to show that �n D det A > 0, recall from (4.3) that A�A D �nE , where
A� is the transpose of the matrix of cofactors. Multiplying the both sides by A�, we
obtain A�AA� D �nA�. Let A�

n be the n-th row of A�. Since A� is symmetric, we
have

A�
nA.A�

n/T D �nAnn:

It follows that �nAnn D �n�n�1 D q.A�
n/ > 0 (here A�

n is a nonzero vector
because its n-th component is Ann D �n�1 > 0). By the induction assumption,
here �n�1 > 0, hence �n > 0.

To prove the criterion in the opposite direction, suppose that �1 > 0; : : : ; �n > 0.
The determinant �k of matrix A.k/ for each k D 1::n is nonzero, so that the system
of linear equations

2James Joseph Sylvester (1814–1897) was famous English and American mathematician of
nineteenth century.
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A.k/X D

2

6
66
4

0
:::

0

1

3

7
77
5
2 Rk

has a unique solution X.k/. Let B be the upper triangular matrix such that for each k

its k-th column has X.k/ as the first k elements and zeroes on the other n�k places.
By Lemma 9.16, for the lower triangular matrix

C D AB D

2

6
6
4

1 0 : : : 0

� 1 : : : 0

: : : : : :

� � : : : 1

3

7
7
5

(where stars denote arbitrary numbers) we have C.k/ D A.k/B.k/ for each k D
1; : : : ; n. The matrix BT is lower triangular, hence the product Q D BT C D
BT AB is lower triangular too,

Q D

2

6
6
4

˛1 0 : : : 0

� ˛2 : : : 0

: : :

� � : : : ˛n

3

7
7
5

for some ˛1; : : : ; ˛n. But QT D .BT AB/T D BT A.BT /T D Q, so that Q is
symmetric,

Q D

2

6
6
4

˛1 0 : : : 0

0 ˛2 : : : 0

: : :

0 0 : : : ˛n

3

7
7
5

By Lemma 9.16, we have

˛1 : : : ˛k D det Q.k/ D det.BT
.k/C.k// D det.BT

.k/A.k/B.k//

D det BT
.k/ det A.k/ det B.k/ D �k.det Bk/2 > 0:

Then ˛1 D det Q.1/ > 0 and ˛k D det Q.k/= det Q.k�1/ > 0 for all k > 1. Note
that the matrix B is non-singular because 1 D det C D det A det B , hence det B D
1=�n ¤ 0. Thus, for every nonzero (column) vector v 2 Rn we have

q.v/ D vT Av D vT
�
BT
��1

.BT AB/B�1v D yT Qy D ˛1y
2
1 C � � � C ˛ny2

n > 0;

where y D B�1v. This means that the matrix A is positive definite.
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To prove the Sylvester criterion for a negative definite matrix A just note that a
matrix A is negative definite if and only if the matrix B D �A is positive definite.
On the other side, the upper left minors of B are connected with the minors of A as

det B.k/ D .�1/k�k:

By the (just proved) Sylvester criterion for positive definite matrices, we conclude
that the condition that A is negative definite is equivalent to the conditions
det B.k/ D .�1/k�k > 0 for all k D 1; : : : ; n, as stated.

Example 9.13. Find all values of ˛ such that the quadratic form q.x1; x2; x3/ D
2x1x2 � x2

1 � 2x2
2 C 2˛x1x3 � x2

3 is positive or negative definite.
First, we construct the matrix of the quadratic form by the same way as in

Example 9.12. We obtain

A D
2

4
�1 1 ˛

1 �2 0

˛ 0 �1

3

5 :

Next, let us calculate the principal minors: �1 D �1, �2 D
ˇ
ˇ
ˇ̌�1 1

1 �2

ˇ
ˇ
ˇ̌ D 1 and

�3 D det A D �2˛2 � 1. To check if A is positive definite we have to check the
conditions �1 > 0; �2 > 0; �3 > 0 which are never hold simultaneously. Now, the
matrix is negative definite if and only if three inequalities �1 < 0; �2 > 0; �3 < 0

hold. These equalities are equivalent to the condition ˛2 < 1=2. So, A is never
positive definite and is negative definite for ˛2 < 1=2.

Theorem 9.17. The sum of all eigenvalues (each one is taken so many times as its
multiplicity) of any symmetric matrix A is equal to the trace of A.

Proof. Using the fact that the modal matrix Q of A diagonalizes A, i.e., QT AQ D
ƒ, we get

Tr ƒ D Tr.QT AQ/ D Tr.AQT Q/ D Tr A;

since for any two matrices A and B conformable for multiplication, we have
Tr.AB/ D Tr.BA/ (Exercise 2.13). �

9.5 Problems

1. Prove that the eigenvector of the matrix

�
1 a

0 1

�

where a ¤ 0, generates a one-dimensional space. Find a basis for this space.



162 9 Eigenvectors and Eigenvalues

2. Prove that the eigenvectors of the matrix

2

4
2 2 0

0 2 0

0 0 2

3

5

generate a two-dimensional space and find a basis for this space.
3. Find the eigenvalues and eigenvectors of the matrices

(a)

2

4
1 1 1

0 1 1

0 0 1

3

5 and (b)

2

4
1 1 0

0 1 1

0 0 1

3

5 :

4. Find all complex eigenvalues and eigenvectors of a linear operator in C2 given
by the matrix �

0 2

�2 0

�
:

5. Show that for any matrix A, eigenvalues of AT and A are the same.
6. Let L be an n-dimensional space, A be a linear operator in L. Let the

characteristic polynomial associated with the transformation matrix of A have
n distinct roots. Show that L has a basis consisting of the eigenvectors
of A.

7. Given

A D
�

a1 b1

c1 d1

�
and B D

�
a2 b2

c2 d2

�
;

show that the eigenvalues of AB are the same as the eigenvalues of BA.
8. Find the eigenvalues of the matrices

(a)

�
2 �1

�1 2

�
and (b)

�
1 1

1 0

�
:

9. Let

A D

2

6
6
6
4

�1 0 : : : 0

0 �2 : : : 0
:::

:::
: : :

:::

0 0 : : : �n

3

7
7
7
5

with �i � 0 for all i D 1; : : : ; n. Show that there exists an n� n matrix B such
that B2 D A.

10. Diagonalize the matrices

(a)

2

4
�1 3 �1

�3 5 �1

�3 3 1

3

5 and (b)

2

6
6
4

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

3

7
7
5 :
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11. Find the eigenvalues and eigenvector of the linear operator d=dt in the space of
polynomials of degree at most n with real coefficients.

12. Let A be a linear operator in a linear space L. Let L1 be a subspace of L
consisting of all linear combinations of the eigenvectors of A. Prove that L1

is invariant with respect to A.
13. Show that the angle between any two vectors does not change under orthogonal

operator.
14. (a) Construct the matrix of the bilinear form �.x; y/ D .x; 2y/� 4x1y2, where

x D .x1; x2/ and y D .y1; y2/ are two vectors in R2, in the basis fu D
.0;�1/ ; v D .1; 2/g.

(b) Find the correspondent quadratic form and construct its matrix in the same
basis u; v.

15. Find the values of a; b and c such that the quadratic form q.x1; x2; x3/ D ax2
1C

2x1x2 C bx2
2 C cx2

3 is positive or negative definite.
16. Let E and E 0 be two bases in Rn and let C be the basis transformation matrix

from E to E 0. Suppose that A and A0 be the matrices of the same quadratic
form in these two bases. Show that

A0 D C T AC:



10Linear Model of Production in a Classical
Setting

10.1 Introduction

In classic economics the interrelations in production are vital to understand the laws
of production and distribution, and therefore to understand how an economic system
works. Wassily Leontief1, a Russian born American economist made the greatest
contribution in this line of thought by developing the input/output analysis2.

In order to explore this idea in a simple way consider an economy consisting
three activities: coal mining, electricity generation and truck production. Outputs
of these activities are used in the production of others and are also demanded for
final use, i.e. consumption and/or investment. For example, extracting coal requires
energy. Part of its energy requirement can be satisfied in house, by using coal to
generate electricity. The rest is obtained from the power plant. The coal mine also
employs several trucks to deliver its output. In this setting, this plant is using coal,
energy and trucks to produce coal.

We can express this relation as follows

.Coal; Electricity; Truck/! Coal (10.1)

Coal output is used by other plants. Part of it, as was indicated above, used by
the coal mine to produce energy for its own use. Power plant’s thermal units may
be using coal for producing energy. However, truck production may not require coal
as an input. Therefore the remaining output is used to satisfy final consumption by

1Wassily Leontief (1906–1999) was born and educated in St. Petersburg. He received his Ph. D.
from Berlin University in 1929. He joined the famous Kiel Institute of World Economics in 1927
and worked there until 1930. He moved to the USA in 1931; worked at the Harvard University
(1932–1975) and New York University (1975–1991). Leontief was awarded with Nobel Prize in
Economics in 1973 for his contribution to input-output analysis.
2For a historical survey and review of the contributions of economists to input-output analysis
see [17, 18].

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 10,
© Springer-Verlag Berlin Heidelberg 2011
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households for heating. For these activities the above relation can be written as

.Coal; Electricity; Truck/! Electricity (10.2)

.Electricity; Truck/! Truck (10.3)

On the other hand, assuming supply of coal is equal to its demand we can then
write

Coal Output D Coal used in coal mine
CCoal used in energy plant
CCoal used by households for heating

(10.4)

The remaining production activities can be defined in a similar way. Electric
power is used to operate the power plant as well as in other production activities.
Households also demand electricity for lighting and/or heating. Trucks can be used
for all commercial activity. However, we may think that they may not be suitable as
family cars, and therefore they are not demanded for final consumption. Therefore
we can write

Electricity Output D Electricity used in coal mine
CElectricity used in power plant
CElectricity used in truck plant
CHousehold’s consumption of electricity

(10.5)

Truck OutputD Trucks used in coal mine
CTrucks used in power plant
CTrucks used in truck plant

(10.6)

Let Xij denote the amount of good i demanded by activity j and Di denote
households’ demand. Then (10.4)–(10.6) can be written as

8
<

:

X1 D X11 CX12 CD1;

X2 D X21 CX22 CX23 CD2;

X3 D X31 CX32 CX33;

(10.7)

where i D 1; 2; 3 denotes coal, electricity and truck production activities, respec-
tively. Notice that in (10.7), based on the explanation given above, X13 and D3 are
taken as equal to zero.

The description of production activity through such input-output relations delin-
eates following points:
(a) Production of a commodity requires the use of other commodities as inputs. But

as was the case above, a production activity need not use all the commodities
available in the system. (Coal was not an input in truck production)

(b) A commodity may also be demanded as a final product. In the example above
coal is demanded for heating. Again this may not be true for all commodities.
Trucks may be used only for commercial purposes, and not as family cars.



10.1 Introduction 167

Table 10.1 The use of output (in terms of physical quantities)

Sector 1 Sector 2 : : : Sector n Final Demand Total Output

Sector 1 X11 X12 : : : X1n d1 X1

Sector 2 X21 X22 : : : X2n d2 X2

W W W W W W
Sector n Xn1 Xn2 : : : Xnn dn Xn

Now let us generalize the example given above to an n-sector economy where
each sector produces only one commodity .Xi/ by one production technique. In
other words there is one-to-one correspondence between commodities produced
and the techniques used in their production. Therefore in this simple framework,
singling out a sector is equivalent to identifying a specific production technique and
a particular commodity. In the remainder of this chapter these terms will be used
interchangeably.

In such economy each sectors output is used either by other sectors as an input
or by households for final demand, i.e. for consumption, investment or exports. In
Table 10.1, each row represents the use of the output of the corresponding sector.
The first n entities give the inter-industry use of the output, i.e. the amounts allocated
to other sectors as inputs, .Xij /. The entries in the n C 1’th column represents the
final use (final demand) of the output (such as consumption, investment and exports)
of the corresponding sector.

If supply is equal to demand for all commodities, one can write the following set
of equations from Table 10.1.

Xi1 CXi2 C � � � CXin C di D Xi; i D 1; 2; : : : ; n: (10.8)

In each equation the sum of first n entities gives the interindustry demand for the
corresponding commodity and di is the final demand.

Let us define the proportion of commodity i used in the production of commodity
j by

aij D Xij

Xj

: (10.9)

Then for a given set of output values fX1; X2; : : : ; Xng, (10.8) can be written as3

nX

j D1

aij Xj C di D Xi; i D 1; 2; : : : ; n: (10.10)

3Notice that, in contrast to its row sums, no meaning can be attributed to column sums of
Table 10.1, since columns consists of elements with different units of measurement (for example,
coal is measured by tons, electricity by Kwh and trucks by numbers).
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Let us assume that input per output ratios, i.e. aij ’s, are constant for all
commodities. Then (10.10) can be written in a more compact form using matrices
and vectors, as

AxC d D x; (10.11)

where A D .aij / is an n � n matrix of input coefficients, x is an n � 1 vector of
industrial output levels and d is an n � 1 vector of final demand.

Let us denote the j -th column of the matrix A by aj ,

aj D

2

6
6
6
6
4

a1j

a2j

:::

anj

3

7
7
7
7
5

(10.12)

This vector represents the list of inputs used to produce one unit of commodity j

and will give the commodity input requirements of producing one unit of output j .
It is conveniently referred to as the production technique for j .

Example 10.1. Consider the following two sector economy. Let the input coeffi-
cient matrix A be given as

A D
�

0:3 0:7

0:4 0:1

�
:

Find the total output of each sector when the final demand is given by

d D
�

12

6

�
:

By rearranging (10.11) we get

.I � A/x D d

Applying it to the problem above the following two linear equation system is
obtained �

0:7X1 � 0:7X2 D 12

�0:4X1 C 0:9X2 D 6

Using Cramer’s rule

X1 D

ˇ
ˇ
ˇ
ˇ
12 �0:7

6 0:9

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ̌
ˇ
0:7 �0:7

�0:4 0:9

ˇ
ˇ̌
ˇ

D 6:6

0:35
D 18:86

and
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X2 D

ˇ̌
ˇ
ˇ
0:7 12

�0:4 6

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ̌0:7 �0:7

�0:4 0:9

ˇ
ˇ
ˇ̌
D 10:4

0:35
D 28:71

Exercise 10.1. Show that when the input coefficients matrix for a two sector
economy is given by

A D
�

0:9 0:7

0:8 0:8

�

no positive output levels satisfy (10.11). Why? (See below)

10.2 The Leontief Model

The inter-industry transactions table simply is a snapshot of the accounting relations
among sectors. In order to be able to derive results concerning the structure of
production of such economy stronger assumptions are needed to connect output
levels with the amount of inputs used. First the existence of relation between inputs
and output has to be assumed. This can be done by ruling out the unrealistic case of
production without any commodity input.

Assumption 1. Production of each commodity requires the use of at least one other
commodity as input.

Although Assumption 1 is sufficient for establishing a relation between the
commodity inputs and the output, the nature of this relation is not specified.
However, in the analysis of the production structure one needs to specify the
properties of such a relation. A historically important and widely used assumption
is the following.

Assumption 2 (Linearity). The amount of an input required is proportional to the
level of the output, i.e., for any input i (i D 1; : : : ; n)

Inputi D aij � Outputj ; i; j D 1; : : : ; n; (10.13)

where aij is assumed to be constant.
Linearity assumption, despite its simple and innocuous nature, has far more

reaching implications. First, as is stated above this assumption implies that the
inputs required per unit of output remains invariant as the scale of the production
changes. Therefore linearity assumption implies constant returns to scale in produc-
tion. In other words, by making this assumption production technologies that exhibit
decreasing (or increasing) returns to scale are excluded. Second, the fact that ai

is constant implies that substitution is not allowed among inputs. The production
technology allows only one technique to be operated. Although such assumption
may be assumed to hold in the (very) short run, it is too restrictive to represent the
actual choices that a production unit faces.
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Assumption 3 (No Joint Production). Each production technique produces only one
output.

One other assumption implicit in the above framework is the absence of joint
production. This means each production technique produces only one commodity.
In reality this may not be the case. Consider a petroleum refinery. Refining crude oil
is a technique that leads to multiple oil products, various types of fuel and liquid gas.
In this case, the production technique can not be labelled by referring to a specific
product. In this chapter we shall not deal with the problem of joint production4.

In terms of the symbols used in Table 10.1, (10.13) can be rewritten as

aij D Xij =Xi :

Obviously, aij � 0.
Under the assumptions (1)–(3), the production system characterized by (10.11)

satisfies the following conditions:
(a) All elements of the A matrix are non-negative, i.e., aij � 0 and for all j there

exists some i , such that aij > 0.
(b) Each commodity is produced only with one production technique, i.e. A is a

square matrix.
(c) There is no joint production.
(d) There are constant returns to scale for all production techniques, i.e. A remains

unchanged when the output vector x changes.
Note that the conditions (a) and (b) simply mean that A is a non-negative square

matrix.
It is rather easy to show that such system has a unique solution. Due to (b) each

commodity can be characterized by its production technique, i.e. the column vector
of A that corresponds to the commodity in question. Since commodities are distinct,
so are their corresponding production techniques. In addition, one can also assume
in generic case that the columns of A are linearly independent. Therefore A has full
rank, so .I � A/�1 exists, and by definition is unique. Then the solution to (10.11)
is given by

x D .I �A/�1d;

i.e., when the final demand vector is given, it is possible to calculate the output levels
that enables the system to satisfy it.

It is clear that output level has non-negative value. A production unit can decide
to produce the commodity in question (i.e., xi > 0) or may quit production (i.e.,
xi D 0). Negative output level has no economic meaning in this framework.
Does (10.8) and the assumptions that characterize input coefficients matrix A

guarantee such economically meaningful solution? The answer is no. In order to
see why, consider the following

4See [16, 22] for the discussion of joint production.
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Example 10.2. Consider a two-sector economy that operates under the assumptions
(1)–(3). Let the input coefficients matrix and the final demand vector be given as

A D
�

1:1 1:3

0:3 0:2

�
; d D

�
2

3

�

Notice that A satisfies the first condition (a) and the final demand is positive for
both commodities.

However since

.I � A/�1 

��2:58 �4:19

�0:97 �0:32

�
;

the output vector that satisfies the given final demand is obtained as

x 

��17:73

�2:9

�
;

i.e. negative output levels for both commodities is obtained, which is clearly
meaningless from economic point of view.

It is easy to show that this result is independent of the final demand vector. The
structure of the A matrix is such that for any reasonable (i.e. non-negative) final
demand vector, it is not possible to get non-negative total output levels for both
commodities.

Using the relation .I �A/x D d we can write

�
0:1x1 � 1:3x2 D d1;

�0:3x1 C 0:4x2 D d2:

By summing these two linear equations one can get

�0:2x1 � 1:1x2 D d1 C d2 � 0:

It is clear that, since right hand side is non-negative, x1 and x2 can not
simultaneously be non-negative, which is inconsistent with their economic meaning.

This result demonstrates that assumptions made so far are not sufficient to give an
economically meaningful characterization of the conditions of production. In order
to find the missing characteristic, let us look at the example given above. In this
example a11 D 1:1, i.e. it requires 1.1 units of commodity 1 to produce one unit
of itself. It is clear that such a production technique will not be operated, since it
is wasteful. In order to rule out such wasteful production techniques the following
assumption is introduced.

Assumption 4 (Non-wasteful Production Technique). Each production technique is
capable of producing more of its output than it consumes as an input. In terms of
the coefficients of the A matrix, this assumption can be expressed as

aii < 1

for all i .
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Although this assumption makes a logical point clear, it does not rule out the
possibility that a sector may not be capable of supplying the amount of output
required in producing other commodities and/or satisfying the final demand.

It is clear from (10.8) that the surplus output (i.e. the amount of output which
is not consumed as input in its own production) should be sufficient to satisfy input
requirements of the other sector and the final demand. In other words, the production
system should be capable of produce at least as much as it uses as inputs. Non-
wastefulness, although necessary, is not sufficient for guaranteeing such outcome.
A stronger condition on the production structure is required. This is achieved by
introducing a new assumption based on the following definition.

Definition 10.1. A non-negative matrix A is called productive if there exist x > 0
such that

x > Ax:

If the input coefficients matrix is productive, then the corresponding production
system AxC d D x is also called productive.

Assumption 5. Input coefficients matrix A is productive.

The five assumptions made thus far are sufficient to characterize a production
system that is capable of giving economically meaningful results.

Definition 10.2 (Leontief model). A production system

AxC d D x (10.14)

that satisfies the following assumptions:
(a) All the elements of the A matrix are non-negative, i.e. aij � 0 and for all j

there exists some i such that aij > 0.
(b) Each commodity is produced only with one production technique, i.e. A is a

square matrix.
(c) There is no joint production.
(d) There are constant returns to scale for all production techniques, i.e. A remains

unchanged when the output vector x changes.
(e) A is productive.
is called the Leontief model.

10.3 Existence of a Unique Non-Negative Solution
to the Leontief System

The purpose of this section is to demonstrate that for any d � 0 it is possible to get
a unique non-negative solution to the Leontief system.

In order to prove the existence and uniqueness of a non-negative solution to a
Leontief model when the input coefficients matrix is productive, we shall prove
some mathematical results that are needed to prove the main proposition. These
results are given as lemmas below.
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Lemma 10.1. Let x1 and x2 be two vectors such that x1 � x2 and let A be a non-
negative matrix. Then Ax1 � Ax2.

Proof. Let x1
i and x2

i be the i ’th components of the vectors x1 and x2, respectively.
Let aij denote the characteristic element of the matrix A. Then the i ’th element of
the vector Ax1 and Ax2 can be written as

aix1 D
nX

kD1

aikx1
k and ai x2 D

nX

kD1

aikx2
k for i D 1; : : : ; n;

where ai is the i th row of the matrix A considered as a row vector.
Since A is a non-negative matrix then aij � 0 for all i and k. Therefore,

ai x1 � ai x2 D
nX

kD1

aik.x1
k � x2

k/ for all i;

or shortly,
Ax1 � Ax2:

�

Lemma 10.2. If A is a productive matrix then all elements of the matrix As

converges to 0 as s !1.

Proof. It follows from Definition 10.1 that

x > Ax � 0

since A is a non-negative matrix. Then there exist �, 0 < � < 1, such that

�x > Ax � 0: (10.15)

Premultiplying (10.15) by A and using Lemma 10.1 we obtain

�.Ax/ > A.Ax/ D A2x � 0: (10.16)

On the other hand, premultiplying (10.15) by � we get,

�2x > �Ax � 0: (10.17)

Inequalities (10.16) and (10.17) together yield,

�2x > A2x � 0:

Analogously from
�s�1x > As�1x � 0
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we obtain
�sx > Asx � 0: (10.18)

Hence for any productive matrix A, (10.18) holds. If s !1, then �s ! 0, since
� 2 .0; 1/. Therefore, from (10.18) we get

lim
s!1 Asx D 0;

or

lim
s!1

nX

j D1

as
ij xj D 0; i D 1; : : : ; n; (10.19)

with as
ij being the elements of As . Since xj > 0, (10.19) holds only if

lim
s!1 as

ij D 0; i; j D 1; : : : ; n:

�

Lemma 10.3. If A is productive matrix and if

x � Ax (10.20)

for some x then
x � 0:

Proof. Multiplying (10.20) sequentially s � 1 times by the matrix A and using
Lemma 10.1 we get

x � Ax � A2x : : : � Asx

or
x � Asx (10.21)

When s !1, Asx! 0, so from (10.21) we get x � 0. �

Lemma 10.4. If A is a productive matrix then .I � A/ is a non-singular matrix.

Proof. Assume on the contrary that .I � A/ is a singular matrix, i.e.
det.I � A/ D 0. This means that some columns of .I � A/ are linearly dependent.
Thus there exists some x 6D 0 such that

.I � A/x D 0 (10.22)

or equivalently,
x D Ax:

From Lemma 10.3, we know that x � 0. Now consider the vector �x. It is clear
that this vector also satisfies (10.22), i.e.,

.I � A/.�x/ D 0
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Again from Lemma 10.3, it must be true that �x � 0. The inequalities �x � 0
and �x � 0 can jointly be satisfied only if x D 0, which is in contradiction with
x 6D 0. �

The preceding four lemmas allows us to prove the following theorem showing
that a Leontief model has a unique non-negative solution.

Theorem 10.5. Given any non-negative d, the system

.I � A/x D d (10.23)

has a unique non-negative solution if the matrix A is productive.

Proof. Let A be a productive matrix. Take any d � 0 and consider the equa-
tion (10.23).

By Lemma 10.4, .I �A/ is not singular, since A is productive. So, (10.23) has a
unique solution Qx. It is also true that

.I �A/Qx � 0:

since d � 0. Then by Lemma 10.3 we get Qx � 0.
Now, assume that the system (10.23) has a non-negative solution x for some

d > 0 and some A. Then x� Ax D .I �A/x D d > 0, that is, A is productive. �

Remark 10.1. Notice that the productivity of A is not necessary to get a non-
negative solution to (10.23). For example, for d D 0 this system has a solution
x D 0 for any matrix A. However, if d > 0, then a non-negative solution x exists if
and only if the matrix A is productive (because we have x D AxC d > Ax, that is,
the productivity condition holds).

Another criterion (the Hawkins-Simon condition) can be derived from the
following theorem.

Theorem 10.6. Let A be a non-negative matrix. Then the following conditions are
equivalent:

i. A is productive;
ii. the matrix .I �A/�1 exists and is non-negative;

iii. all successive principal minors of B D I �A are positive.

In the last condition, these principal minors are

B.1/ D b11 > 0;

B.2/ D
ˇ
ˇ
ˇ
ˇ
b11 b12

b21 b22

ˇ
ˇ
ˇ
ˇ > 0;

: : :

B.n/ D

ˇ̌
ˇ
ˇ
ˇ
ˇ̌

b11 : : : b1n

:::
: : :

:::

bn1 : : : bnn

ˇ̌
ˇ
ˇ
ˇ
ˇ̌

> 0:
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The condition (iii) is called Hawkins–Simon condition. The equivalence of this
condition (iii) and the condition (ii) of productivity of A is called Hawkins–Simon
theorem [12].

Proof. Let us first prove that the condition (i) implies (ii). Suppose that A is
productive. Then the matrix .I �A/�1 exists by Lemma 10.4. Let us define

‰s D I CAC A2 C A3 C : : :C As;

then
A‰s D AC A2 C A3 C : : :C AsC1:

Therefore
.I � A/‰s D I �AsC1:

Taking the limit of both sides as s !1 one gets

lim
s!1Œ.I �A/‰s� D I

since AsC1 ! 0 as s !1, by Lemma 10.2. Therefore,

‰s D I C AC A2 C A3 C : : :C As �! .I � A/�1;

and since A � 0, we have ‰s > 0 and

.I �A/�1 � 0:

Now let us show that (ii) implies (i). Assume that .I � A/�1 � 0. Take any
d > 0 (e. g., d D .1; : : : ; 1/). Then the system .I � A/x D d has a unique solution
x D .I � A/�1d � 0. By the Remark after Theorem 10.5, it follows that A is
productive.

For the equivalence of Hawkins–Simon condition (iii) and the productivity
condition (i), see, for example5, [30, pp. 384–385]. Another proof based on
economic intuition is given in [6]. �

10.4 Conditions for Getting a Positive (Economically
Meaningful) Solution to the Leontief Model

For practical purposes if a commodity is not demanded and supplied it can be
omitted. In other words, an economically meaningful solution to a Leontief model
should be the one that assigns positive output levels for all commodities, even when

5In [21], O’Neill & Wood dropped the continuity assumption and proved theorem by assuming
column sums of B are not greater than one. The latter assumption can be fulfilled in practice by
appropriately choosing the measurement units for each commodity.
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some commodities are not demanded for final use. This corresponds to the case
when some commodities are solely used in production (intermediary goods). The
question, then, is to find the conditions that the matrix A should satisfy in order
to get positive output levels for all commodities. Obviously such conditions should
also have an economic interpretation.

Before presenting a result that guarantees a positive solution to the Leontief
model, let us focus on the I � A matrix to delineate some of its properties. Notice
that

B D I �A D

2

6
6
6
4

1 � a11 �a12 : : : �a1n

�a21 1 � a22 : : : �a2n

:::
:::

: : :
:::

�an1 �an2 : : : 1 � ann

3

7
7
7
5

and let bij D 1 � aij be its characteristic element. Then:
• (i)

bii > 0 Œai i < 1�; (10.24)

in economic terms, each sector produces more of its output than it consumes as
input (non-wastefulness).

• (ii) Any commodity within the system can be used as an input, i.e.,

bij � 0 if i 6D j:

• (iii) For any column j of B we have either

bjj < 1 Œajj > 0�

or
bij < 0 Œaij > 0� for some i;

that is no output can be produced without using at least one produced input.
• (iv) Row sums of B are non-negative with at least one positive row sum, that is,

the system is capable of producing surplus to satisfy final demand.

Definition 10.3. An n � n matrix A is called reducible if it is possible to permute
some of its rows and some of its columns (the permutation of rows and the one of
columns must be the same) in such a way to obtain a matrix in the following form

A D
�

A11 A12

0 A22

�
;

where 0 is a zero submatrix.
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If the rows and columns of a matrix can not be ordered in the above form, then it
is called irreducible6.

The following lemma gives combinatorial conditions for reducible and irre-
ducible matrices.

Lemma 10.7. Let A D .aij / be an n � n matrix. Then
(a) A is reducible if and only if there is a subset S D fi1; : : : ; ing of the set

1; 2; : : : ; n such that aij D 0 for all i 2 S , j … S ;
(b) A is irreducible if and only if for each j ¤ k there exists a finite sequence

(“chain”)

j D i0; i1; : : : ; im�1; im D k

such that all entries aij �1;ij of A for j D 1; : : : ; n are nonzero.7

Proof. Left as an exercise. �
The next lemma gives an algebraic condition for irreducible matrix.

Lemma 10.8. A non-negative n � n matrix A is irreducible if and only if for each
j ¤ k there exist some m > 0 such that the .j; k/-th entry of the matrix Am is
positive.

Proof. Let Am D .am
j;k/n�n. We have a2

j;k D
Pn

iD1 aj;i ai;k , and (by the induction
on m)

am
j;k D

X
aj;i1ai1;i2 : : : aim�2;im�1aim�1;k;

where the sum is taken over all i1; : : : ; im�1 from 1 to n. Obviously, the inequality
am

j;k > 0 holds if and only if there is a positive summand in this sum, that is, there
are some i1; : : : ; im�1 such that all entries aj;i1 ; ai1;i2 ; : : : ; aim�1;k are positive. By
Lemma 10.7b, this is equivalent to say that A is irreducible. �
Problem 10.1. Prove that for an irreducible n�n matrix A and for each i ¤ j one
can choose the number in Lemma 10.8 to be not greater than n.

Hint. How large the number m can be chosen in Lemma 10.7b?

Theorem 10.9. For a non-negative matrix A, the following three conditions are
equivalent:

i. for each nonzero d � 0 the system x D AxC d has a positive solution, x > 0;
ii. the matrix .I �A/�1 is positive;

iii. the matrix A is productive and irreducible.

6Another term for reducible and irreducible matrices are decomposable and indecomposable
matrices.
7In terms of graph theory, the part (b) means that a directed graph G.A/ with vertices f1; : : : ; ng
and edges fj ! kjajk ¤ 0g is strongly connected, that is, for each two vertices j ¤ k there is a
path from j to k.
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Proof. Let us first prove the equivalence of (i) and (ii). If (i) holds, then for each
d > 0 there is x such that x � Ax D d > 0, hence A is productive. Then .I � A/�1

exists by Theorem 10.6. For each i D 1; : : : ; n, let d D ei D .0; : : : ; 1; : : : ; 0/T

(1 in i -th place). Then the solution xi of the system x � Ax D d must be positive.
Since xi D .I � A/�1ei is the i -th column of the matrix .I � A/�1, it follows that
all entries of each i -th column of this matrix are positive, that is, .I � A/�1 > 0.

Now, suppose that (ii) holds, that is, .cij / D .I � A/�1 > 0. Then for
each nonzero d D .d1; : : : ; dn/ � 0 the above system has a unique solution
x D .x1; : : : ; xn/: Here xi D ci1d1 C � � � C cindn, where at least one summand
is positive. Thus, each xi > 0, hence x > 0.

Let us now prove the equivalence of the conditions (ii) and (iii). Following the
proof of Theorem 10.6, let

‰s D I CAC A2 C A3 C : : :C As I

then
lim

s!1 ‰s D .I � A/�1:

Since the sequence of matrices f‰sg is non-decreasing in each entry, we have also

‰s � .I � A/�1 for all s:

It follows that the diagonal elements ci i of the matrix C D .I � A/�1 are always
nonzero. Moreover, each other element cij is nonzero if and only if the .ij /-th
element ak

ij of the matrix Am is nonzero for some m � 1. It now follows from
Lemma 10.8 that the matrix .I � A/�1 has no zero entry if and only if A is
irreducible. �

Note that a reducible productive matrix may also have a positive solution of the
above system for some particular d, but not for all d simultaneously.

10.5 Prices of Production in the Linear Production Model

In practice, data for physical quantities of outputs are rarely available. Inter-industry
flows tables, therefore, are based on accounting information. In other words, inter-
industry flows are expressed in their monetary values. Then each cell of the inter-
industry transactions table (Table 10.2 below) gives the value of monetary input i

used in the production of output j , i.e. vij D pi Xij . Therefore, in practice, the
actual input coefficients are unobservable. The observed coefficients are

Qaij D pi Xij

pj Xj

D
�

pi

pj

	
aij ;
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Table 10.2 The use of output (in terms of market value)

Sector 1 : : : Sector n Final Demand Total Output

Sector 1 p1X11 : : : p1X1n p1d1 p1X1

Sector 2 p2X21 : : : p2X2n p2d2 p2X2

. . . . . . . . . . . . . . . . . .
Sector n pnXn1 : : : pnXnn pndn pnXn

Input Cost c1 D nP

iD1

pi Xi1 : : : cn D nP

iD1

pi Xin

Value Added V1 : : : Vn V D
nP

jD1

Vj

Total Output p1X1 D c1 C V1 : : : pnXn D cn C Vn D D nP

iD1

pi di

in other words, they are affected as relative prices change.8

In this framework row sums gives the money value of the outputs of each sector,
whereas the column sums along sectors gives the total value of physical inputs used
in producing the corresponding commodity. The value added row refers to payments
to the primary inputs such as labor, capital and land, i.e. wages, profits and rent. By
definition

nX

j D1

.cj C Vj /CD D
nX

iD1

pi Xi C V:

Consider the j -th column of Table 10.2. It can be written as

nX

iD1

pi Xij C Vj D pj Xj :

Dividing both sides by Xj , one gets

nX

iD1

pi aij C vj D pj ; (10.25)

where

vj D Vj

Xj

is the value added per unit of output. Repeating the same procedure for all
commodities one gets the following set of linear equations

8For the sake of simplicity, in the remainder of the book, this distinction will be omitted and the
input coefficients will be denoted by aij .
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8
ˆ̂
<

ˆ̂
:

p1a11 C p2a21 C : : :C pnan1 C v1 D p1;

p1a12 C p2a22 C : : :C pnan2 C v2 D p2;

: : :

p1a1n C p2a2n C : : :C pnann C vn D pn;

which can be represented in matrix notation more compactly as

pT AC vT D pT : (10.26)

In (10.26) pT and vT are row vectors of commodity prices and value added per
unit coefficients. A, on the other hand, is the input coefficients matrix.

Referring to the discussion concerning Leontief model, if A is productive matrix
then there is a unique non-negative solution to (10.26) given by

p D .I � A/�1v;

where v is the vector with components .v1; : : : ; vn/.
Let us assume that the value added in each sector is distributed between profits,

…i , and wages, Wi , and introduce the following assumptions:
1. The system is productive.
2. Labor is homogenous and therefore the wage rate is uniform across industries,

i.e.,
Wi D !Li (10.27)

where Li is the total amount of labor used in industry i .
Now let us assume that the amount of labor used in industry i is a linear

function of the output produced, i.e.

Li D a0i xi : (10.28)

3. Competition prevails both in labor and product markets
4. There is only working capital (i.e. fixed capital is omitted)

Capital can freely move from one sector to another, therefore rate of profit on
capital is equal in all sectors

Let

Ki D
nX

j D1

pj aij xj ; i D 1; : : : ; n (10.29)

denote the working capital. The rate of profit in sector j is defined as

rj D …j

Kj

(10.30)

or
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…j D rj

 
nX

iD1

pj aij xj

!

j D 1; : : : ; n: (10.31)

Equal rate of profit assumption implies that

rj D r for j D 1; : : : ; n: (10.32)

5. Wage and profit earners share the net income after the completion of the
production9.
Using (10.26) and (10.27)–(10.32) the following system of equations can be

derived

pi D .1C r/

0

@
nX

j D1

pj aij

1

AC !a0i i D 1; : : : ; n

which can be expressed in matrix terms

pT D .1C r/pT AC !a0:

This model is akin to the one developed by Sraffa10 in his famous book [28] to
analyze the value and distribution along classical lines11.

Notice that in this model there are n C 2 unknowns. Namely n prices, wage
rate and profit rate. But there are n equations. In other words, the system is
underdetermined and it has two degrees of freedom (number of unknowns minus
number of equations). The number of degrees of freedom can easily be decreased
by taking a measure for prices. This is called numéraire (standard of value) of the
system. We can take it by defining a vector d 2 RnC such that

pT d D 1

or by taking
! D 1;

i.e., measuring prices in terms of wage unit. Whichever way is chosen the system
is still underdetermined. There are more (n C 1) unknowns than the number of
equations12 (n).

9The alternative assumption is that wages are paid in advance.
10Pierro Sraffa (1898–1983) was an Italian economist, who spent most of his life in Cambridge,
England. In his famous book [28] he launched a strong critique of marginalist theory and laid the
foundations of Neo-Ricardian school in economics.
11Sraffa analyzed the determination of prices at a given moment of time, given the prevailing
technology. Therefore, he did not make any assumptions concerning the returns to scale and did
not use input coefficients.
12Within the framework of [28] this is not a deficiency of the system. On the contrary it makes
clear that the distribution of income between wage and profit earners can not be solved within the
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For the sake of simplicity assume that the price of the first commodity is taken
as equal to 1. Then the full system can be written as follows

pT D .1C r/pT AC !a0; (10.33)

pT d D 1; (10.34)

dT D .1; : : : ; 1/ 2 RnC: (10.35)

Since one of the prices can be taken as numéraire, the system can be solved if
one of the distributive variables, r or !, is determined outside the model. From now
on (10.33)–(10.35) will be referred to as the Sraffa Model.

Then the question is to find a solution to (10.33)–(10.35) satisfying r > 0 and
pT � 0T under the following assumptions:

i. ! > 0, i.e. the given wage rate measured in terms of commodity 1 is positive.
ii. A � 0 (no output without some commodity input).

iii. a0 > 0 (labor is directly used in the production of all commodities).
In the light of these assumptions it is clear from (10.33) that

pT ŒI � .1C r/A� > 0

or

pT

��
1

1C r

	
I �A

�
> 0:

Example 10.3. Consider a two sector Sraffa model

pT D .1C r/pT AC !a0; (10.36)

where the input coefficients matrix is given as

A D
�

0:2 0:4

0:3 0:1

�

and the labor coefficient vector is

a0 D Œ0:1; 0:2�:

Suppose that for convenience the sum of prices is taken as equal to unity, that is, for
d D .1; 1/ we have

.d; p/ D 1: (10.37)

price system. It requires a much broader framework that may include politico-economic as well as
financial variables.
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i. Find the relation between wage rate and the rate of profit (wage-profit trade-off)
for this economy.

ii. Calculate the prices in terms of the numéraire.

Solution. i. Notice for any 0 < r < 1 the matrix .1 C r/AT is productive
(by Hawkins–Simon conditions, see Theorem 10.6) and positive, hence by Theo-
rem 10.9 the matrix .I � .1C r/A/�1 exists and is positive.13

By (10.36), we have

pT D !a0 .I � .1C r/A/�1 : (10.38)

Using (10.37), we get

1 D pT dT D !a0 .I � .1C r/A/�1 dT ;

thus,

! D 1

a0 .I � .1C r/A/�1 dT
: (10.39)

Notice that (10.39) indicates a trade-off between r and w. An increase in the rate of
profit leads to a decline in the wage rate. Substituting the given numerical values,
we have

! D 1

Œ0:1; 0:2�

�
1� 0:2.1C r/ �0:4.1C r/

�0:3.1C r/ 1 � 0:1.1C r/

��1 �
1

1

� D 2
6 � 5r � r2

7C r
:

ii. Substituting (10.39) in (10.38) one gets

pT D 1

a0 .I � .1C r/A/�1 dT
a0 .I � .1C r/A/�1 D

�
3C r

7C r
;

4

7C r

�
: (10.40)

Notice that (10.39) and (10.40) are in general non-linear.

10.6 Perron–Frobenius Theorem

In this section another mathematical tool that can be used to find a economically
meaningful solution to (10.33) is introduced. It is based on better understanding of
eigenvectors and eigenvalues of non-negative matrices (recall that we have discussed
eigenvectors and eigenvalues in general in Chap. 9). We are interested in non-

13For r � 1 the matrix .1 C r/A is not productive (again by Hawkins–Simon conditions), so, the
problem has no economical sense.
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negative real eigenvalues of A such that the associated eigenvectors are non-negative
as well, x � 0. The existence of such a pair can be assured under specific conditions.

The following theorem tells us that if A is a non-negative matrix such an
eigenvalue and corresponding eigenvector can be found. This is a version of a more
complicated theorem due to Perron14 and Frobenius (Theorem 10.12 below) for all
non-negative matrices.15

Theorem 10.10. Let A be a non-negative matrix. Then
i. A has a non-negative real eigenvalue O�A (called Perron–Frobenius eigenvalue).

If � is another eigenvalue of A, then O�A � j�j;
ii. There exists a non-negative eigenvector OxA associated with O�A (called a Perron–

Frobenius eigenvector).
iii. for � 2 R the matrix .�I � A/�1 exists and is non-negative if and only if

� > O�A.

Proof. [7, p. 600]. �
This theorem can be strengthened for the Leontief system, by taking into account

Theorem 10.6.

Theorem 10.11. Let A be a non-negative matrix and B D I � A. Then the
following statements are equivalent

i. the matrix A is productive, that is, there exists x � 0 such that Bx > 0;
ii. B�1 D .I � A/�1 exists and is non-negative;

iii. the Hawkins–Simon conditions hold;
iv. each eigenvalue � of A satisfies the inequality j�j < 1;
v. O�A < 1.

In this case, the Perron–Frobenius eigenvector of A satisfies the inequality
B OxA � 0.

Proof. The equivalence of the conditions (i), (ii) and (iii) is given in Theorem 10.6.
The equivalence of (ii) and (iv), and (v) follows from Theorem 10.10(iii).
The last statement of the theorem follows from (iv) and the equality AOxA DO�A OxA, because

B OxA D .I � A/OxA D . O�AI �A/OxA C .1 � O�A/OxA D .1 � O�A/OxA � 0:

�

14Oskar Perron (1880–1975) was a German mathematician who made a significant contribution in
algebra, geometry, analysis, differential equations, and number theory.
15In 1907, Perron proved Theorem 10.12 under the additional condition that the matrix A is positive
(or at least some its power is positive). In 1912, Frobenius extended this result to its complete form.
For the survey of these articles of Perron and Frobenius and for the history of the theorem, we refer
the reader to [13]. Theorem 10.10 (which is also sometimes referred as Perron–Frobenius theorem)
can be obtained from either Perron or Frobenius results by limit argument.
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Notice that Theorem 10.11 does not guarantee the existence of a positive solution
to the inequality Bx > 0, since it does not rule out the possibility of getting some
entries of OxA to be zero. A stronger result can be obtained if A is irreducible (see
Definition 10.3).

Theorem 10.12 (Perron–Frobenius theorem). Let A be a non-negative irre-
ducible matrix. Then
i. There exists a positive real eigenvalue O�A [called Perron–Frobenius Eigenvalue

of A] such that O�A is a simple (non-repeated) root of the characteristic
polynomial of A and for any other eigenvalue � of A we have O�A � j�j.

ii. There exists a positive eigenvector OxA > 0 associated with O�A. This eigenvector
OxA is unique up to a scalar multiple. In other words, there are no eigenvectors
associated with O�A but the vectors of the form OyA D �OxA with � 2 R.

Proof. See [3, p. 17]. �
Combining Theorems 10.12 and 10.9, we get the following corollary. It gives a

direct way to check if a given irreducible matrix is productive by calculating the
Perron–Frobenius eigenvalue. It also gives a positive solution of the inequality x �
Ax for an irreducible productive matrix A – this is a Perron–Frobenius eigenvector,
x D OxA.

Corollary 10.13. Let A be a non-negative irreducible matrix. Then the following
statements are equivalent

i. for each nonzero d � 0 the system x D AxC d has a positive solution, x > 0;
ii. the matrix A is productive;

iii. O�A < 1;
iv. .I � A/OxA > 0.

The next corollary gives a simple way to evaluate the Perron–Frobenius eigen-
value.

Corollary 10.14. Let A be a non-negative irreducible matrix and

Cmin D min
j

nX

iD1

aij

be its smallest column sum and

Cmax D max
j

nX

iD1

aij

be its largest column sum. Then

Cmin � O�A � Cmax;

and the both equalities hold only if and only if Cmin D Cmax.
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Proof. Let OxA be the eigenvector associated with O�A Then

O�A OxA D AOxA;

which means

O�A OxA
i D

nX

j D1

aij OxA
j for i D 1; : : : ; n;

where OxA
i is the i ’th element of the vector OxA. Summing this expression over i , we

have

O�A

nX

iD1

OxA
i D

nX

iD1

nX

j D1

aij OxA
j D

nX

j D1

OxA
j

nX

iD1

aij ;

which can be written as

O�A D
nX

j D1

OxA
j

nX

iD1

aij =

nX

iD1

OxA
i ;

i.e. O�A can be expressed as a non-negative weighted average of the column sums
of A. �

Remark 10.2. Same result holds for the row sums of A.

10.7 Linear Production Model (continued)

In this section the economic meaning of conditions required to guarantee a positive
solution to (10.25) will be discussed. The discussion is based on a classification
introduced by Sraffa in [28].

Sraffa makes a distinction between those commodities required directly or
indirectly in the production of every commodity (Basic Commodities) and those
that do not posses such a property (Non-Basic commodities). He demonstrates that
while the former type of commodities play a significant role in the determination of
the rate of profit and prices, the latter has no such influence.

It is clear that a commodity i is directly required in the production of commodity
j if and only if

aij > 0:

Now suppose that for a commodity pair .i; j /

aij D 0;

but there exist a commodity k such that
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akj > 0 and aik > 0:

In other words, although commodity i does not directly used as an input in the
production of the commodity j , it is required for the production of k, which is a
direct input in producing j . The commodity i is said to be indirectly required in
producing j .

Example 10.4. Let the input coefficient matrix be defined as follows

A D
2

4
a11 a12 a13

0 a22 a23

a31 a32 a33

3

5

where aij > 0 for all i; j , except a21.
Here second commodity is not directly required for the production of the

commodity 1. However in order to produce one unit of commodity 3, a23 > 0

amount of commodity 3 is required. On the other hand a31 > 0 amount of
commodity 3 is required in order to produce one unit of commodity 1. Therefore,
in order to produce one unit of commodity 1, a31a23 amount of commodity 2 is
indirectly required.

Now consider the following matrix multiplication

A2 D A � A:

Let the .i; j /’th element of A2 be denoted as a2
ij . Then it is easy to see that in the

above example that a21 D a32a31, hence for all i; j

either aij > 0 or a2
ij > 0:

This following definition is the generalization of the result obtained in the
example given above.

Definition 10.4. Let A be a non negative input coefficients matrix, whose j -th
column is associated with the commodity j . Then j is a basic commodity if for
some k � n

.AC A2 C : : :C Ak/ej > 0; (10.41)

where ej is the unit vector whose j -th component is equal to one.

Theorem 10.15. Consider an economy with n commodities, i D 1; : : : ; n. Let A

be the n � n input coefficients matrix of this economy. Then all commodities in this
economy are basic commodities if and only if A is irreducible.

Proof. Note that the inequality (10.41) in Definition 10.4 means that j -th column
of the matrix

AC A2 C : : :C An

is positive.
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If all commodities are basic, then from Definition 10.4 we get

ACA2 C : : :CAn D .AC A2 C : : :C An/I > 0;

hence for all i and j there is k � n such that ak
ij > 0. Then by Lemma 10.8 A is

irreducible.
Now suppose that A is irreducible. Then, by Lemma 10.8 for each i ¤ j

there exist m D m.i; j / such that am
ij > 0. By Problem 10.1 (the problem after

Lemma 10.8), we may choose m � n.
For each i and each j ¤ i , we have

a
m.i;j /Cm.j;i/
i i � a

m.i;j /
ij a

m.j;i/
j i > 0;

(since Am.i;j /Cm.j;i/ D Am.i;j /Am.j;i/), that is, there exists m > 0 such that am
ii > 0.

Following the proof of Lemma 10.8, this means that there exists a sequence

i D i0; i1; : : : ; im�1; im D i

of indexes such that all matrix entries aij ;ij C1
are nonzero. Consider such a sequence

of minimal length m. There is no repeated elements in it but i0 D im D i , therefore,
there are at most n pairwise different elements. Hence m � n.

So, for each i; j the .i; j /-th entry of some matrix Am for 1 � m � n is positive.
Hence,

AC A2 C : : :C An > 0:

Thus, each column of the matrix in the left hand side is positive, that is, each
commodity is basic. �

10.7.1 Sraffa System: The Case of Basic Commodities

Now let us turn to (10.33) and assume that A is irreducible. Then by Theorem 10.12
we know that A has a positive Perron–Frobenius eigenvalue and an associated
eigenvector which is also positive. Of course, the same is true for the transpose
matrix AT .

Let Op be the left Perron–Frobenius eigenvector of A, that is, the Perron–Frobenius
eigenvector of AT . Therefore for O�A > 0 and for the associated price vector OpT > 0
we have

OpT O�A D OpT A

or
OpT . O�AI �A/ D 0:

It follows that if
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1

1C r
D O�A

or
r D .1 � O�A/= O�A; (10.42)

then the associated price vector is positive. Notice that, in the light of (10.27) this
solution implies that the wage rate measured in terms of each commodity i is equal
to zero (i.e., ! D 0/. Therefore, this value R D .1 � O�A/= O�A of r is the maximum
rate of profit.

On the other hand, from Corollary 10.14 to Perron–Frobenius Theorem it is
known that the Perron–Frobenius eigenvector of A lies within a closed interval

O�A 2 ŒCmin; Cmax� 2 RC;

therefore the profit rate also lies in the closed interval

R 2
�

1 � Cmax

Cmax

;
1 � Cmin

Cmin

�
: (10.43)

Notice that (10.42) implies that the rate of profit derived from O�A is positive
provided that Cmin is less than 1. Now, by Theorem 10.11(v) O�A < 1, that is, R > 0.
If this condition is satisfied then (10.43) becomes

R 2
�

0;
1 � Cmin

Cmin

�

and the non-negativity of the maximum profit rate can be assured.
Finally, by Theorem 10.10iii, if r < R then

� D 1

1C r
>

1

1CR
D O�A

and

.�I � A/�1 D
�

1

1C r
I � A

	�1

> 0

will exist. This means for r < R the Sraffa system will have a positive solution
pT > 0 given by

pT D !pT

�
1

1C r
I �A

	�1

a0:
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10.7.2 Sraffa System: Non-Basic Commodities Added

From the definition of basic commodities, it is clear that once non-basic com-
modities are allowed, the input coefficients matrix becomes reducible. Under these
conditions Perron–Frobenius Eigenvalue of A may be equal to zero, and the
associated eigenvector may not be unique (Theorem 10.11).

Suppose now a production system has both basic and non-basic commodities.
Then the subsystem consisting solely of basic commodities will satisfy the condi-
tions of Theorem 10.12. Suppose that basic commodities are labelled as commodity
group-1, whereas the non-basics as commodity group-2. Then we can write the
system as



pT

1 pT
2

� D .1C r/


pT

1 pT
2

�
�

A11 A12

0 A22

�
C ! Œa01 a02� :

This system can be written in the following form

�
pT

1 D .1C r/pT
1 A11 C !a01;

pT
2 D .1C r/



pT

1 A12 C pT
2 A22

�C !a02:

It is clear that the prices of the basic commodities can be obtained only by using
information about their production technology (A11 and a01), i.e. independently
from the non-basics.

10.8 Problems

1. Consider a three sector economy where the interindustry sales (sectors selling to
each other) and total outputs given in the following table:

Interindustry sales ($ billion) Total output

Agriculture Manufacturing Services

Agriculture 200 50 150 1,000
Manufacturing 50 200 70 550
Services 150 100 100 600

i. Express the meaning of the figures that lie on the main diagonal (north-west
to south-east) of the interindustry sales part of the table.

ii. Calculate the final demand for each sector.
iii. Find the input coefficients matrix A and the Leontief inverse .I � A/�1 for

this economy.
iv. Does the A matrix satisfy the necessary conditions for guaranteeing positive

sectoral output levels?
2. Wage increase and relative prices. Consider the following input-output table of

interindustry flows of goods for a three sector economy (in $ billion):
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Total
Agriculture Manufacturing Services Final demand output

Agriculture 20 40 10 80 150
Manufacturing 30 200 100 150 480
Services 20 60 50 170 300
Value Added 80 180 140 400

Wages 30 80 50 160
Profit etc. 50 100 90 240

Total outlay 150 480 300 400 1,330

i. Calculate the input coefficients matrix A and the Leontief inverse .I �A/�1

for this economy.
ii. Calculate the Leontief prices for this economy.

iii. Suppose that the wage costs in manufacturing sector increased 20%. Assume
that in the new state the amount of profit generated in each sector remains
unchanged. How such a change affects the prices? Do relative prices (i.e.,
the price of one good in terms of the other) change?

3. Technical change and relative prices. Consider the following input coefficients
matrix for a three sector economy:

Agriculture Manufacturing Services

Agriculture 0.25 0.15 0.3
Manufacturing 0.3 0.2 0.1
Services 0.35 0.25 0.2

Suppose the value added is given by

V D Œ45; 50; 40�:

i. Suppose a technological change took place in the manufacturing sector and
all of its input coefficients declined by 10%. What will be the effect of such
a technological improvement on the relative prices and on the maximal rate
of profit?

ii. Express your finding as a general result for an n sector Leontief economy.
4. Find the Perron–Frobenius eigenvalue and the Perron–Frobenius eigenvector of

length 1 for the following matrices

(a)

�
2 4

4 8

�
; (b)

�
0:7 0:6

0:2 0:5

�
; (c)

2

4
0:1 0:0 0:0

0:1 0:3 0:3

0:1 0:3 0:0

3

5 ;

(d)

2

66
4

0 0 0:3 0:1

0:1 0:5 0:3 0:2

0 0 0:2 0:4

0:5 0:3 0:1 0:2

3

77
5 :

5. Which matrix from Problem 4 is:
i. Productive?

ii. Irreducible?
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6. Consider a three sector economy with the input coefficients matrix

A D
2

4
0:46 0:18 0:25

0:24 0:08 0:46

0:21 0:44 0:19

3

5

and the labor coefficients vector a0 D .0:3; 0:1; 0:2/.
Suppose that this economy is analysed in a Sraffian framework.

i. What is the maximum rate of profit for this economy? (Answer: 18.9%)
ii. What is the corresponding price vector?

iii. Normalize the price vector by taking sum of prices as equal to one. Using this
normalization rule find a relation between the rate of profit and the wage rate
for the Sraffa model. Calculate the wage rate when the rate of profit is 10%.

7. Suppose that the input coefficient matrix for a n-sector economy is as follows

A D
�

A11 A12

A21 A22

�
;

where A11; A12; A21; A22 are matrices of size m �m, n � .n �m/, .n �m/ � n,
.n � m/ � .n � m/, respectively. Suppose that A21 D 0, i.e., the first m sectors
do not use the outputs of the others as inputs. Show that in this economy the
maximum growth rate depends exclusively on the production technology of these
sectors and is independent from the production of other sectors.
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The linear programming problem is a general problem of finding the maximal value
of the function f .x/ D .a; x/, where x 2 Rn is a vector of n unknowns and a 2 Rn

is a constant vector, under the restrictions

x � 0 and Ax � d;

where A is a matrix and d is a constant vector. This problem has a lot of applications
to economic models and practice. Some simple and rather artificial applications are
discussed below.

In mathematical terms the problem is maximizing a linear objective function
under linear constraints where the relevant variables are restricted to be non-
negative. It was first solved by Kantorovich1. In 1947 Dantzig2 made an important
contribution by introducing a method to solve this kind of problems.

11.1 Diet Problem

Consider a person who has the n-tuple of foods G1; : : : ; Gn in her diet. Each
food in the diet has m different components (attributes), e.g., fat, protein, calory,
sodium, etc.

Let A D �
�aij

�
�

m�n
be a matrix such that aij is the quantity of component i in

one unit of food Gj , for all i D 1; : : : ; m and all j D 1; : : : ; n.

1Leonid Kantorovich (1912–1986) was a Russian mathematician and economist. He developed the
linear programming method in 1939 for a particular industrial problem. In 1975, he shared Nobel
Prize in Economics for his contributions to the theory of optimal allocation of resources.
2George Dantzig (1914–2005) was an American mathematician who made important contributions
in many fields. He developed simplex method which was the first and the most useful effective
method to solve linear programming problems.

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5 11,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 11.1 The diet problem
with two foods and two
components
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Let the vector c D .�1; : : : ; �m/ be such that �i denotes the minimal amount of
component i that should be in the diet. Then the problem is to find a diet (i.e., the
quantity of each good in the diet) such that no nutrition component in the diet is less
than the desirable level.

Let y D .�1; : : : ; �n/ be the unknown vector denoting the quantities of the goods
in the diet, i.e., �i is the quantity of food Gi .

The expression
nX

j D1

˛ij �j D .ai ; y/;

where ai is i -th row of matrix A, denotes the amount of component i in the diet.
Then, we have m constraints

.a1; y/ � �1;

: : : : : :

.am; y/ � �m;

or the inequality in matrix form
Ay � c (11.1)

to be satisfied by y. On the other hand, we must have

y � 0: (11.2)

If any row i in A has at least one component greater than 0, then for n D m D 2

the above inequalities can altogether be drawn as in Fig. 11.1, pointing to the
fact that there always exists sufficiently large numbers �1; : : : ; �n which satisfy
inequalities (11.1).

Let p D .p1; : : : ; pn/ denote the price vector for the n-tuple of goods, with pi

denoting the unit price of food Gi . Then the cost of the diet y is given by
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.p; y/ D
nX

j D1

pj �j : (11.3)

Now, in terms of the matrix A and the vectors c and p, the diet problem is to find
a vector y which satisfies (11.1) and (11.2) minimizing at the same time the cost
function (11.3), i.e. 8

<

:

Ay � c;

y � 0;

.p; y/! min :

11.2 Linear Production Model

The linear production model described in Example 1.5 assumed that each economic
unit produces only one type of good. Let us consider a slightly different version of
the same problem.

There are m economic units indexed by i D 1; : : : ; m which produce and
consume n goods indexed by j D 1; : : : ; n.

Let intensities of the units are given by the m-dimensional vector

x D .�1; : : : ; �m/ � 0

where �i denotes the intensity of unit i . Intensities may be measured in several ways,
e.g. the total work-hours and the number of employees or the quality of the goods
produced by an economic unit may be the indicators of its intensity.

We assume that if the intensity of a unit increases by any constant s, then the
production and the consumption of that unit will also rise by s.

Now, let
aj D .˛1j ; ˛2j ; : : : ; ˛mj /;

be a vector such that its i -th component is equal to the quantity of good j consumed
or produced by the unit i when it is working with the intensity 1. Define ˛ij to be
positive if good j is produced by unit i , and negative it if is consumed by i . Then
the matrix

A D ��˛ij

�
�

n�m

contains the production-consumption data for the economic system.
Note that given the intensity vector x, we can uniquely find the quantities of

goods produced and consumed by each unit. Indeed, the sum

�1˛1j C �2˛2j C � � � C �m˛mj D .x; aj /

is equal to the total production (consumption) of good j by the system if it is positive
(negative).
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Define the vector
d D .ı1; : : : ; ın/

such that ıj be the upper-bound for production (consumption) of good j if it is
positive (negative).

Then, the vector x is considered to be feasible if it satisfies the inequalities

.x; a1/ � ı1;

.x; a2/ � ı2;

: : : : : : :

.x; an/ � ın;

or
xA � d:

Finally, let the vector c D .�1; : : : ; �m/ be such that �i is the profit obtained by unit
i when it is working with intensity 1. The profit of unit i with intensity �i is just
�i �i , and hence the total profit of the system is

nX

iD1

�i �i D .x; c/:

Then the optimal program for the economic system at hand is a solution to

max
fxg

.x; c/:

subject to x � 0 and xA � d.
Consider now the set of feasible x’s. There are three possible cases: the feasible

set of intensity vectors is either empty or a bounded polytope or an unbounded
polytope (for the exact definition of polytope, see Definition 11.4 below).

In the second and the third case, let us first restrict ourselves to the two-
dimensional problem assuming that x 2 R2 and c 2 R2 are planar vectors and the
feasible set is a bounded (second case) or unbounded (third case) planar polygon.

Consider the second case. Through any point of a bounded polygon we can draw
a line which is orthogonal to c. Let .c; x/ D � denote such a line. Changing � we
can obtain a set of lines which are orthogonal to c. Then the maximal value of �,
ensuring that the line still intersects with the polygon is a solution to our problem
(Fig. 11.2).

It is possible to obtain a situation in which the line .c; x/ D �max passes through
a side of the polygon (Fig. 11.3). Then each point on this side is a solution.

Consider now the case in which the feasible set is an unbounded polygon
(Fig. 11.4). In this case we have a unique solution.

In the case from Fig. 11.5 there is no solution, since for each � satisfying .c; x/ D
� we can find some real number �0 > � such that .c; x/ D �0.
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Fig. 11.2 The case of
bounded feasible set
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Fig. 11.3 An infinite
number of solutions
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Fig. 11.4 The unique
solution
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One can conclude that whether the feasible set is bounded or not, the solution,
if exists, must always lie either at a corner point or on a side of the polygon. We
will show that this is true for spaces of any dimension. In order to do this, we first
study the multi-dimensional versions of polygons, that is, polytopes and convex sets
in Rn.

11.3 Convexity

Consider two vectors x and y in the n-dimensional vector space Rn. We can define
the line segment between the points x and xC y to be the set of all points

z D xC ty

where t 2 Œ0; 1�. For t D 1, we obtain z D x C y while for t D 0, we get z D x,
which are two boundary points of the line (Fig. 11.6).

Consider now the vector w D y� x. The line segment between x and y is the set
of all points defined as v D xC t.y � x/, where t 2 Œ0; 1�.

We can rewrite this expression as

v D .1 � t/xC ty:

Inserting � � 1 � t into v yields

v D �xC .1 � �/y:

where � 2 Œ0; 1� (Fig. 11.7).

Definition 11.1. Let S be a subset of the vector space Rn. S is called to be convex
if for any two elements x; y 2 S , the line segment between x and y is contained in
S , i.e., �xC .1 � �/y 2 S for all � 2 Œ0; 1�.

The examples of a non-convex set and a convex set are given on Fig. 11.8.
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Fig. 11.7 v D x C t w
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Fig. 11.8 Convex and non-convex sets

Theorem 11.1. Let x1; : : : ; xm be any vectors in the vector space Rn. Then the set
S of all linear combinations given by

t1x1 C � � � C tmxm

where ti � 0 for all i D 1; : : : ; m and
Pm

iD1 ti D 1, is convex.

Proof. For any vectors x1; : : : ; xm in Rn, let us define

a D t1x1 C � � � C tmxm

b D s1x1 C � � � C smxm

where ti � 0 , si � 0 ,
Pn

iD1 ti D 1 and
Pn

iD1 si D 1.
Consider 
 D .1 � ˛/aC ˛b for some ˛ 2 Œ0; 1�. We have


 D .1 � ˛/t1x1 C � � � C .1 � ˛/tmxm C ˛s1x1 C � � � C ˛smxm

D Œ.1 � ˛/t1 C ˛s1�x1 C � � � C Œ.1 � ˛/tm C ˛sm�xm

We note that .1 � ˛/ti C ˛si � 0 for all i D 1; : : : ; n since .1 � ˛/ � 0, ti � 0,
˛ � 0 and, si � 0. Moreover,

mX

iD1

.1 � ˛/ti C ˛si D .1� ˛/

mX

iD1

ti C ˛

mX

iD1

si D .1 � ˛/C ˛ D 1:

Hence, S is convex. �
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Theorem 11.2. Let x1; : : : ; xm be any m vectors in R. Any convex set S which
contains x1; : : : ; xm also contains all linear combinations

t1x1 C � � � C tmxm;

where ti � 0 for all i and
Pn

iD1 ti D 1.

Proof (by induction). For m D 1, we have t1 D 1 and the statement of the theorem
is obviously true. Assume the statement is true for some m � 1 � 1. Take any
x1; : : : ; xm 2 S , and any t1; : : : ; tm satisfying ti � 0 for all i D 1; : : : ; m andPm

iD1 ti D 1. If tm D 1, then the statement is trivially true, because in this case
t1 D � � � D tm�1 D 0. Assume now tm ¤ 1. Then we get

�m D t1x1 C � � � C tmxm D .1 � tm/

�
t1

1 � tm
x1 C � � � C tm�1

1 � tm
xm�1

	
C tmxm:

Define
si D ti

1 � tm

for all i D 1; : : : ; m � 1. Then the vector

z D s1x1 C � � � C sm�1xm�1;

by induction assumption, lies in S , since si � 0 and
Pm�1

iD1 si D Pm�1
iD1 ti =

.1 � tm/D 1. Thus
.1 � tm/zC tmxm D �

is an element of S by the definition of a convex set.
The minimal convex set which contains x1; : : : ; xm is called the convex hull of

the set fx1; : : : ; xmg, and is denoted by cofx1; : : : ; xmg. By Theorems 11.1 and 11.2,
we get

Corollary 11.3. For any (finite) set x1; : : : ; xm of vectors, its convex hull
cofx1; : : : ; xmg consists of all linear combinations given by

t1x1 C � � � C tmxm;

where ti � 0 for all i D 1; : : : ; m and
Pm

iD1 ti D 1.

Definition 11.2. For any a 2 Rn and ˇ 2 R, the set of points x 2 Rn satisfying

.a; x/ D ˇ;

is called a hyperplane. We denote this hyperplane as H.a; ˇ/Dfx 2 Rnj.a; x/Dˇg.
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Fig. 11.9 The vector a is
orthogonal to the hyperplane
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Lemma 11.4. For all ˇ 2 R, any vector a 2 Rn is orthogonal to the hyperplane
H.a; ˇ/ in Rn.

Proof. Take any ˇ 2 R. Then any vector a 2 Rn is orthogonal to the hyperplane
H.a; ˇ/ if and only if it is orthogonal to the vector x2 � x1 which connects two
arbitrary points x1; x2 2 H.a; ˇ/ (Fig. 11.9).

Indeed, .a; x2 � x1/ D .a1; x2/ � .a1; x1/ D ˇ � ˇ D 0, which completes the
proof. �

Example 11.1. The line x C 2y D �4 is a hyperplane in R2, and can be rewritten
as H..1; 2/;�4/ (Fig. 11.10).

Lemma 11.5. For all a 2 Rn and ˇ 2 R, the hyperplane H.a; ˇ/ is a convex set.

Proof. Indeed, for any a 2 Rn and ˇ 2 R, consider the hyperplane H.a; ˇ/. The
hyperplane is always non-empty. If Rn D R, then any hyperplane in R is a singleton,
and the Lemma is obviously true. For n > 1, take x1; x2 2 H.a; ˇ/. Consider
x˛ � .1� ˛/xC ˛x2 for any ˛ 2 Œ0; 1�. Note that

.a; x˛/ D .1 � ˛/.a; x1/C ˛.a; x2/ D .1 � ˛/ˇ C ˛ˇ D ˇ:

Thus, x˛ 2 H.a; ˇ/, and therefore H.a; ˇ/ is convex. �
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Let ˇ1; : : : ; ˇm 2 R, and a1; : : : ; am 2 Rn. Consider the set of points
x1; : : : ; xm 2 Rn which satisfy the system of equations

.a1; x/ D ˇ1

:: : :
:: : :
:: : :

.am; x/ D ˇm:

The solution of this system can be considered as the set of points defined by
the intersection of the hyperplanes H.a1; ˇ1/; : : : ; H.am; ˇm/. (Show that this set is
convex.)

If m D n and a1; : : : ; am are linearly independent, then the above system
has a unique solution - it is the unique point which lies in the intersection of n

hyperplanes.

Definition 11.3. Let H.a; ˇ/ be a hyperplane in Rn. The sets

H ŒC�.a; ˇ/ D fx 2 Rnj.a; x/ � ˇg

and
H Œ��.a; ˇ/ D fx 2 Rnj.a; x/ � ˇg

are called closed half-spaces that H.a; ˇ/ yields. Analogously,

H .C/.a; ˇ/ D fx 2 Rnj.a; x/ > ˇg

and
H .�/.a; ˇ/ D fx 2 Rnj.a; x/ < ˇg

are called open half-spaces that H.a; ˇ/ defines.

Example 11.2. The four halfspaces in R2 defined by the hyperplane H..1; 1/; 1/ are
illustrated in Fig. 11.11.

Definition 11.4. The intersection of a finite number of closed half-spaces in Rn is
called a polytope.

Example 11.3. The polytope defined by the three halfspaces H Œ��..1; 1/; 1);
H ŒC�..1; 0/; 0:3/; H ŒC�..0; 1/; 0:2/ is the triangular region at the center of
Fig. 11.12.

Theorem 11.6. Every bounded polytope P is a convex hull of some finite set of
vectors X .
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Fig. 11.12 A polytope defined by three halfspaces

If X is the minimal set of such vectors, then the elements of X are called vertices
of the polytope.3

3For a general (bounded or non-bounded) polytope P , one can also define a vertex. Namely, a
vector X is a vertex of P if it is the only element in the intersection of some of the hyperplanes
which define the half-spaces whose intersection is P . It is proved, e.g. in [33, Theorems 7.2.3
and 7.2.6], that for bounded polytopes this definition describes the same vertices as the given one.
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Example 11.4. The polytope defined by 2n hyperplanes H ŒC�.ei; 0/ and H ŒC�.ei; 1/

where i D 1; : : : ; n and ei D .0; : : : ; 1; : : : ; 0/ is the i -th vector of the canonical
basis, is called a hypercube. It consists of all vectors X D .x1; : : : ; xn/ such that
0 � xi � 1 for all i D 1; : : : ; n. Its vertices are 2n vectors of the form .a1; : : : ; an/,
where each ai is either 0 or 1.

The next corollary assures the existence of the solution of any linear program-
ming problem defined on a bounded polytope.

Corollary 11.7. Let f .x/ D .x; a/ be a linear function of x 2 Rn and let P D
co.v1; : : : ; vk/ be a bounded polytope in Rn. Then the maximal value of f on P is
equal to its value on one of the vertices v1; : : : ; vk.

Proof. Let x 2 P . Then x D t1v1 C � � � C tkvk for some ti � 0 such that
t1 C � � � C tk D 1, so that

f .x/ D .x; a/ D .t1v1 C � � � C tkvk; a/ D t1.v1; a/C � � � C tk.vk; a/:

Let .vj ; a/ D maxiD1::k.vi ; a/. Then

f .x/ � .t1 C � � � C tk/.vj ; a/ D .vj ; a/:

Thus
max
x2P

f .x/ D .vj ; a/ D f .vj /:

�

11.4 Transportation Problem

Assume that there are m producer-cities and n consumer-cities of some good, say,
potato. Consider the matrix X D �

��ij

�
�

m�n
, where �ij is the quantity of good sent

from producer-city i to consumer-city j (Fig. 11.13).
Note that we must have

�ij � 0; i D 1; : : : ; mI j D 1; : : : ; n:

Assume that the production of city i cannot exceed �i (due to capacity con-
straints), and the consumption of city j must be at least ıi (to survive). In other
words,

nX

j D1

�ij � �i ; i D 1; : : : ; m (11.4)
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Fig. 11.13 The transportation problem

and

mX

iD1

�ij � ıj ; j D 1; : : : ; n: (11.5)

Let the cost of transporting one unit of good from producer-city i to consumer-city
j is equal to �ij . Then, the optimal transportation program is a solution to

min
f�ij g

nX

iD1

nX

j D1

�ij �ij :

subject to (11.4) and (11.5).

11.5 Dual Problem

Let us return to the two-dimensional case of the linear programming problem.
Consider a case in which linear programming problem has the unique solution
(Fig. 11.14).

Clearly, the point x� in the above figure is a (unique) solution of the problem. Let
us rotate the line .c; x/ D �max around x� by an arbitrarily small angle, and obtain
a new line .c0; x/ D �0. The new line is not orthogonal to c. So, �0 cannot be the
maximum of .c; x/. By the fact that x� uniquely maximizes .c; x/, it follows that
there exists c0 such that x� maximizes .c0; x/ and .c0; x�/ D �0.
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Fig. 11.14 The dual
problem
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This observation can be generalized to the n-dimensional case as follows.
Consider the following linear programming model:

max
fxg

.c; x/ (11.6)

s.t. xA � d; (11.7)

x � 0; (11.8)

where

x D .�1; : : : ; �m/ - vector of intensities,
c D .�1; : : : ; �m/ - profits under unit intensities,
d D .ı1; : : : ; ın/ - restrictions on total production and consumption of the goods,
A D ��˛ij

��
m�n

- production-consumption matrix under unit intensities,
m - number of firms,
n - number of goods.

The following problem is called the dual of the problem (11.6)–(11.8):

min
fyg

.d; y/ (11.9)

s.t. yAT � c; (11.10)

y � 0; (11.11)

where y D .�1; : : : ; �n/.
We can rewrite the dual problem as follows:

max
fyg

.�d; y/

s.t. � yAT � �c;

y � 0;
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which looks like a direct problem. Then the dual of the last problem is given by

min
fxg

.�c; x/ (11.12)

s.t. � xA � �d; (11.13)

x � 0; (11.14)

which is equivalent to (11.6)–(11.8). So, the dual of the dual problem is the original
problem.

Lemma 11.8. Let x be a solution of the direct problem (11.6)–(11.8) and y be a
solution of the dual problem (11.9)–(11.11). Then

.c; x/ � .d; y/:

Theorem 11.9. Let x be a feasible vector in (11.6)–(11.8) and y be a feasible vector
in (11.9)–(11.11). If

.c; x/ D .d; y/;

then x and y are the solutions of the corresponding problems.

11.6 Economic Interpretation of Dual Variables

In this section we follow the analysis given in [4].
Consider the function

L.d/ D .c; x/ D .d; y/:

Note that by changing d and then solving, say, the direct problem (11.6)–(11.8), we
can get new values of L.d/. Assume that the solution of the direct problem, and
hence of the dual problem, is unique.

Then, for an increment4d in d, let us evaluate L.4d/. The total differentiation
of L.d/ D .d; y/ gives us

4L.d/ D 4.d; y/ D .4d; y/C .d;4y/C .4d;4y/:

When the solution to a given problem is unique, it follows that y is one of the
vertices of the polytope given by the equation yAT � c. Note that the set of vertices
is finite. By a standard analytical argument, y does not change under sufficiently
small perturbations of the objective function. So, we can assume 4y D 0, which
yields

4L.d/ D .4d; y/:

Let all components of4d, except for j -th one, are zero, i.e.,

4d D .0; : : : ; 0;4ıj ; 0; : : : ; 0/:
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Then we can write
4L.d/ D 4ıj �j :

For the profit maximization problem,4L.d/ is measured in monetary terms, say, in
dollars, while 4ıj is measured in units of production-consumption goods. So, �j

must be in dollars, and can be interpreted as the unit price of the goods.
Inequality (11.10) can be explicitly written as

nX

j D1

˛ij �j � �i ; .i D 1; : : : ; m/ (11.15)

for the optimal solution y. Since for all j , �j being a price is always nonnegative, the
left hand side of (11.15) may have both positive and negative components. Recall
that positive (negative) ˛ij ’s correspond to production (consumption). So, the sum
of positive components in the left hand side of (11.15) denote the revenues that unit
i obtains by selling goods when it works with intensity one. Analogously, the sum of
negative components in the left hand side of (11.15) denote the (minus) expenditures
for purchasing goods incurred by the unit i when working with intensity one. Thus,
for each unit (11.15) can be written as

revenues� expenditures � total profits, (11.16)

when the economic units work with the intensity 1. If, for some unit, (11.16) holds
with a strict inequality, we say that this unit is not fully utilizing its resources. In
that case, we claim that the intensity of this unit in the optimal solution must be 0.

Theorem 11.10 (Equilibrium Theorem). Let x and y are feasible vectors for the
direct and dual problems, respectively, which are described above. Then these
vectors are solutions to the corresponding problems if and only if for all i D
1; : : : ; m and j D 1; : : : ; n

�j D 0 if
mX

iD1

˛ij �i � ıj (11.17)

and

�i D 0 if
nX

j D1

˛ij �j � �i : (11.18)

Remark 11.1. Note that (11.18) validates our previous claim that if a unit is not
efficiently operating, then it does not take part in the optimal program. On the
other hand, from (11.17) we observe that if some resource is not fully utilized in
the optimal program, then its price equals zero. A natural question that follows is
whether it has been ever the case that a resource had a zero price. As it is emphasized
in [4], the answer is yes! In the ‘old days’ demand for water was much below of its
(natural) supply, and thus factories did not pay for it.
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11.7 A Generalization of the Leontief Model: Multiple
Production Techniques and Linear Programming

In Leontief model (Sect. 10.2) each production technique is assumed to be produc-
ing only one commodity (no joint production assumption) and each commodity is
produced only by one production technique (no alternative production techniques).
In this section, the second assumption will be relaxed to allow the model to deal
with the problem of choice of techniques. The remaining assumptions of the model
will be retained.

Suppose there are again m commodities, each can be produced by n.i/ different
techniques .i D 1; : : : ; m/. Let

X

i2I

n.i/ D n; n.i/ � 1; I D f1; : : : ; mg

Let us define
QA D . Qaij /m�n (11.19)

as the technology matrix that represent the available production techniques, where
m < n. The problem then is to identify a submatrix of QA that serves best for the
policy maker’s purpose. The solution of this problem requires a clear definition of
the purpose of the decision maker and the appropriate mathematical apparatus to
solve it. Consider the following example.

Example 11.5. Consider an economy that can be characterized by the following
conditions:
1. There are m commodities and n.> m/ techniques of production.

Let xi denote the activity level of production technique i . If it is found
meaningful to operate this activity then xj > 0, if not xj D 0.

2. The technology matrix is given by (11.19).
3. All commodities are treated as resources. At the beginning of the production

period t , the initial endowment of resources is given by the m-dimensional
column vector

! D

2

66
4

!1

!2

� � �
!m

3

77
5

each component of this vector gives the amount of commodity i .I D 1; : : : ; m/

available to be used for production.
4. Let

vT D .�1; : : : ; �n/

be the row vector of value added coefficients (value added created by the process
when one unit of output is produced).
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5. Suppose the policymaker’s problem is to maximize the total value added at time t,
under the conditions stated above.
Then this problem can be expressed as

max vT x

subject to
QA x � !;

and since activity level is non-negative, the solution should also satisfy the following
set of conditions

x � 0:

We see that this is a linear programming problem.

11.8 Problems

1. Show that Rn is a convex set.
2. Show that the intersection of any two convex sets in Rn is convex.
3. Let A W Rn ! Rn is a linear operator, and let X be a set of all vectors x 2 Rn

such that
A.x/ � 0:

Show that X is convex.
4. Let a 2 Rn and ˛ 2 R. Show that the sets

fx 2 Rnj.a; x/ � ˛g and fx 2 Rnj.a; x/ � ˛g

are convex.
5. Let X D fxg where x 2 Rn. Show that X is convex.
6. Draw the convex hull of the following sets of points:

(a) .�2; 0/; .0;�2/; .0; 0/; .0; 2/; .1; 0:5/; .2; 0/.

(b) .2; 2/; .�2; 2/; .0; 0/; .0; 1/; .0; 2/; .�2;�2/; .2;�2/; .1;�1/.
7. Determine whether the following sets are convex:

(a) X D f.x1; x2/ j x2
1 C x2

2 � 1g
(b) X D f.x1; x2/ j x1; x2 � 1; x1 � 0; x2 � 0g
(c) X D f.x1; x2/ j x2

1 C 2x2
2 � 4g

8. Consider the hyperplane

H D f.x1; x2; x3; x4; x5/ 2 R5 j x1 � x2 C 4x3 � 2x4 C 6x5 D 1g:
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In which half space does each of the following points lie?
a. .1; 1; 1; 1; 1/

b. .2; 7;�1; 0;�3/

c. .0; 1; 1; 4; 1/

9. Let .a; x/ D 0 be a hyperplane in Rn. Prove that it is a subspace of Rn.
10. Determine whether the union of any m convex sets X1; : : : ; Xm in Rn is convex.
11. Mr Holst has 100 acres (404,686 square meters) of land where he can plant

wheat and/or barley. His problem is to maximize his expected net revenue. His
capital is $1,000. It costs $7 to plant a acre of wheat and $5 to plant a acre of
barley. Mr Holst is able to secure 150 of days of labor per season. Wheat and
barley require, respectively, 2 and 3 days of labor per acre.

According to the existing information, revenue from an acre of wheat and
barley are $75 and $55, respectively.

How many acres of each cereal should be planted to maximize Mr Holst’s
net revenue?

12. Suppose that a fund manager is entrusted with $1 million to be invested in
securities. The feasible alternatives are government bonds, automotive and
textile companies. The list of alternatives and the expected returns are given
below

Expected return (%)
Government bonds 3.5
Auto producer A 5.5
Auto producer B 6.5

Textile company C 6
Textile company D 9

The following investment guidelines were imposed:
(a) Neither industry (auto or textile) should receive more than 50% of the

amount to be invested.
(b) Government bonds should be at least 35% of the auto industry investments.
(c) The investment in high yield, high risk Textile Company D can not be more

than 65% of the total textile industry investments.
Find the composition of the portfolio that maximizes the projected return, under
the conditions given above.

13. A research institute has an endowment fund of $10 million. The research
institute, naturally, concerned with the risk it is taking. On the other hand it also
needs to generate $400,000 to cover its expenses. The institute has two options:
Investing in low risk money market fund (x) or to high risk stock funds (y).

Money market fund’s risk scale is 4, whereas the stock funds’ is 9. The
return of these funds, on the other hand, is as follows: Money market fund 4%
and stock fund 10%. The price of a money market fund certificate is $50 and
the price of a stock fund certificate is $150.
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The management of the institute decided that, for liquidity purposes, the
amount invested in money markets should not be less than $90,000.

Using this information determine the optimal portfolio allocation for the
research institute.

14. Consider a simple two sector economy, where labor is the sole production
factor. The input coefficients matrix for this economy is given as

A D
�

0:1 0:2

0:3 0:15

�
;

which implies that both goods are used in production of itself and the other one.
The labor coefficients vector is given by

a0 D .0:05; 0:07/:

The total labor supply is 150 (million man-hours).
In the previous year the final consumption of first sector output C1 was

$1,000 (million), and the second sector output C2 was $440 (million).
Suppose that the social welfare is a linear function of consumption and given by

W.C1; C2/ D C1 C .1; 1/C2:

Suppose the government wants to maximize social welfare without reducing
the consumption of each good below their previous levels. What will be the
optimal solution?

15. Motivation. The following problem is a simple exercise in the two-gap growth
theory. This theory dates back to early 1960s and approaches the development
problem by observing the fact that developing countries need both savings to
invest and foreign exchange to import the necessary goods. Therefore they face
two problems: the first is the saving constraint and the second is the foreign
exchange constraint. Therefore for such countries using simple Harrod-Domar
type of framework, which takes into account only the savings constraint, may
not be sufficient.
Question. Suppose the economy at hand is described by the following set of
structural equations:
1. Aggregate Demand.

Y d D C C I CX �M;

where
Y d : Aggregate Demand (GDP measured from demand side).
C : Consumption.
I : Investment.
X : Exports.
M : Imports.
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2. Capacity Growth.
The increase in the production capacity of the economy depends on the

amount of investment. It is assumed that marginal capital output ratio, i.e.,
I=�Y D 4; this means that one unit of investment produces 0.25 units of
GDP. This relation can be expressed as

�Y D Y s � Y s�1 D 0:25I;

where Y s and Y s�1 are capacity aggregate output levels of present and the
previous periods. Suppose that

Y s�1 D 300:

Therefore the above equation can be written as

Y s D 0:25I C 300:

3. Saving and Investment.
Investments are either financed by domestic savings (S ) or external

borrowing (F ):
I D S C F:

Suppose that the domestic savings is a linear function of the GDP (Y ),

S D 0:2Y;

and foreign borrowing is forecasted to be at most 20, i.e.,

F � 20:

Therefore,
I � 0:2Y C 20:

4. Equilibrium Condition.
The economy is in equilibrium when aggregate supply (Y s) is equal to

aggregate demand (Y d ). Equilibrium output level is denoted by Y :

Y D Y s D Y d :

5. Import Equation.
The 5% of the total consumption and 15% of the investment goods are

imported. Therefore,
M D 0:05C C 0:15I:
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6. Foreign Exchange Constraint.
The country can get access to foreign exchange either by exports or

through borrowing from abroad. In other words, imports can not exceed the
sum total of them, i.e.,

M � X C F:

For the sake of simplicity lets assume that the maximum amount of
exports for the current year is estimated to be 100, that is,

X � 100:

Therefore, the foreign exchange constraint can be written as

M � 100C 20 D 120:

The government wants to maximize current GDP, under saving and
foreign exchange constraints. However, the government also does not want
the current consumption level to be lower than the one of the previous period.

How much investment is needed? What is the new GDP level? Will there
be an increase in total consumption?
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In this appendix, we discuss one powerful and general method to deduce theorems
and formulas depending on a natural parameter. This method, called induction,
could be illustrated by the domino effect: if dominoes are stood on end one slightly
behind the other, a slight push on the first will topple the others one by one.

As a toy example, let us prove that the area of the rectangle of the size 5 � n is
equal to 5n. For n D 1, the rectangle can obviously be cut up into 5 unit squares, so
its area is equal to 5 (the first domino falls down). Now, for n D 2 we explore the
domino effect and cut up the rectangle into two ones of size 5 � 1. This gives the
area 5C 5 D 5 � 2. For n D 3, we cut up the rectangle into the rectangles 5 � 2 and
5 � 1: this gives the area 5 � 2C 5 � 1 D 5 � 3. By the same way, we cut up any large
rectangle of the size 5 � n into two ones, that is, the rectangle 5 � .n � 1/ and the
‘ribbon’ 5 � 1 (see Fig. A.1). At some moment, we can assume that the area of the
first one is known to be Sn�1 D 5 � .n� 1/ (the .n� 1/-th domino has fallen down),
so, we calculate the area as Sn D 5 � .n � 1/C 5 � 1 D 5 � n.

Similar (and slightly more complicated) methods can be applied in many
problems. In order to give their formal description, we first discuss a formal
introduction to natural numbers.

A.1 Natural Numbers: Axiomatic Definition

Natural numbers are known as the main and the basic objects in mathematics. Many
complicated things such as rational and real numbers, vectors, and matrices can be
defined via the natural numbers. “God made the integers; all else is the work of
man”, said Leopold Kronecker, one of the most significant algebraists of nineteenth
century.

What are the natural numbers? This question admits a lot of answers, all in
different levels of abstraction. The naı̈ve definition says that these are just the
numbers used in counting, that is, 0; 1; 2; : : : In the geometry of the real line, the

F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5,
© Springer-Verlag Berlin Heidelberg 2011
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Sn-1

n-1

Fig. A.1 The area of a rectangle: proof by induction

set of natural numbers N is defined as the set of the following points in the line:
an initial point (say, O); the right-hand end of the unit segment whose left-hand
end is O ; the right-hand end of the unit segment whose left-hand end is the just
defined point; and so on. In the set theory, every natural number n is considered as
the simplest set of n elements: 0 D ;; 1 D f0g; 2 D f0; 1g; 3 D f0; 1; 2g etc. These
set-theoretical numbers play the role of etalons for counting all other finite sets.

Let us give the most general definition, that covers all previous ones. It is based
on the axioms due to Peano1 (1889). Assume the N is a set, 0 is an element of the
set N , and s W N ! N is a function (called ‘successor’). The set N is called a set
of natural numbers, if the following three Peano axioms are satisfied.
1. If s.m/ D s.n/, then m D n. (This means that the function s is injective).
2. There is no such n that s.n/ D 0.
3. (Induction axiom). Suppose that there is a subset A 	 N such that (1) 0 2 A and

(2) for every n 2 A we have s.n/ 2 A. Then A D N .
For example, one can define an operation n 7! nC 1 as nC 1 WD s.n/.

Exercise A.1. Define an operation s for the above versions of natural numbers,
that is, for the collection N1 of points in a real line and for the sequence of sets:
0 D ;; 1 D f0g; 2 D f0; 1g : : :

Let us define also an operation n 7! n C m via the two rules: n C 0 WD n and
nC .mC 1/ WD s.nC m/. Let A be the set of the numbers m 2 N for which we
can calculate the sum nC m using this rule. Then 0 2 A (by the first rule) and for
every m 2 A we have mC 1 2 A (by the second rule). It follows from the induction
axiom that the sum nCm is defined for all m; n 2 N .

1Giuseppe Peano (1858–1932) was a famous Italian mathematician. Being one of the founders of
mathematical logic and set theory, he was also an author of many analytical discoveries including
a continuous mapping of a line onto every point of a square. Another his discovery was Latino sine
Flexione (or Interlingua), an artificial language based on Latin with simpler grammar.
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Exercise A.2. Give definitions (in a similar way as the above definition of the
addition) of the following operations with natural number m and n:
1. m � n.
2. mn.

This way to define an operation (from each natural number m to the next
number m C 1 an so on) is called recursion. For example, a recursive formula
gives a definition of the determinant of a matrix of order n, see the formula (3.6).
The recursion definitions are appropriate for using in the induction reasonings, as
described below.

A.2 Induction Principle

In order to deduce any significant property of natural numbers from the above
axioms, one should use a special kind of reasoning, called the induction principle,
or mathematical induction.

Let P.n/ be an arbitrary statement concerning a natural number n (like, for
example, “n is equal to 5”, or nC 2 D 2C n, or “either n � 2 or xn C yn ¤ zn for
any natural x; y; z”).

Theorem A.1. Let P.n/ be a statement2 depending on element n of a set of natural
numbers N . Suppose that the following two assumptions hold:
1. (The basis, or The initial step) P.0/ is true.
2. (The inductive step) P.nC 1/ is true provided that P.n/ is true.

Then P.n/ is true for every n 2 N .

Note that the element n here is called induction variable, and the assumption that
P.n/ holds in the inductive step is called induction assumption.

Proof. Let A be a set consisting of all natural numbers n 2 N such that P.n/ is
true. According to the basis of induction, we have 0 2 A. By the induction step, for
every n 2 A we have also nC 1 2 A. Thus, we can apply the induction axiom and
conclude that A D N . �
Example A.1. Let us prove the formula

0C 1C 2C � � � C n D n.nC 1/

2
: (A.1)

Let P.n/ be the above equality. For n D 0 it is obviously true: 0 D 0�1
2

. This
gives the basis of the induction. To prove the induction step, let us assume that the
statement P.n/ is true for some n, that is, the equality (A.1) holds. We have to

2Note that we do not give here a strong mathematical definition of a term ‘statement’. At least, all
statements consisting of arithmetical formulas with additions like “for every natural n” or “there
exists natural x such that” are admissible.



220 A Natural Numbers and Induction

deduce the statement P.nC 1/, that is, the same formula with n replaced by nC 1.
Using the statement P.n/, we re-write the left hand side of the equality P.n C 1/

as follows:

0C 1C 2C � � � C nC .nC 1/ D n.nC 1/

2
C .nC 1/ D .nC 1/.nC 2/

2
:

This equality is equivalent to P.n C 1/, so, the induction step is complete. By the
induction principle, we conclude that P.n/ holds for all n.

Example A.2. In this example we deduce some standard properties of natural
numbers from Peano axioms.

First, let us consider the following statement P.n/: 0 C n D n. By the above
definition of addition, we have mC 0 D m for all m 2 N , hence 0C 0 D 0. This
gives the basis of the induction: P.0/ is true. To prove the induction step, let us
assume that the statement P.n/ is true for some n, that is, 0Cn D n. Using this fact
and the definition of addition, we obtain: 0C .nC 1/ D s.0C n/ D s.n/ D nC 1,
i.e., we have deduced the statement P.nC 1/. Since both the basis of the induction
and the inductive step are true, we conclude that P.n/ is true for all n.

Now, let us prove the associativity property

.l Cm/C n D l C .mC n/

for all natural l; m; n (we denote this statement by Sl;m.n/). Again, let us apply the
induction (on the number n). For n D 0, we get the trivial statement Sl;m.0/ W l C
m D l Cm, which is obviously true, so, the basis of the induction Sm.0/ is proved.
To show the induction step, it remains to show that Sl;m.n C 1/ is true for all l; m

provided that Sl;m.n/ is. Using the equalities Sl;m.n/, we have .l Cm/C .nC 1/ D
s..l Cm/Cn/ D s.l C .mCn// D lC s.mCn/ D l C .mC .nC 1//. This gives
Sl;m.nC 1/. Hence, the proof is complete.

Now, let us prove the following statement Qm.n/

mC .nC 1/ D .mC 1/C n:

We proceed by the induction on the variable n. For n D 0, we have mC1 D mC1:
this is the basis Qm.0/ of the induction. To show the induction step, let us assume
that for some n the statement Qm.n/ is true for all m. We have to show Qm.nC 1/.
Using the assumption, we have

mC .nC 2/ D s.mC .nC 1// D s..mC 1/C n/ D .mC 1/C .nC 1/:

So, we have deduced Qm.n C 1/. By the induction principle, the equality Qm.n/

holds for all m and n.
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Finally, let us show the commutativity property

mC n D nCm

for all m; n 2 N . We proceed by the induction on n. For n D 0 we get the above
statement P.m/, hence the initial step holds. To prove the induction step, we use the
induction assumption (the equality mC n D nCm) and the statement Qn.m/:

mC .nC 1/ D s.mC n/ D s.nCm/ D nC .mC 1/ D .nC 1/Cm:

Thus, the induction step is proved, and the induction is complete. �
Exercise A.3. Using the definition of multiplication of natural numbers given in
Exercise A.2, prove the following standard properties:
1. a.bc/ D .ab/c.
2. ab D ba.

The following version of Theorem A.1 is called a weak induction principle.

Corollary A.2. Let P.n/ be a statement depending on element n of a set of natural
numbers N . Suppose that the following two assumption hold:
1. P.n0/ is true for some n0 2 N .
2. P.nC 1/ is true provided that P.n/ is true, where n � n0.

Then P.n/ is true for every n � n0.

Proof. Let P 0.n/ be the following statement: ‘P.n0 C n/ is true’. Then the above
conditions on P.n/ are equivalent to the conditions of Theorem A.1 for the
statement P 0.n/. Hence, we apply the induction principle and deduce that P 0.n/

is true for all n. This means that P.n/ is true for all n � n0. �

Example A.3. Let us solve the inequality

2n > 3n; (A.2)

where n > 0 is an integer.
It is easy to check that the inequality fails for 0 < n � 3, while for n D 4 it

holds: 24 > 3 � 4. It is natural to assume that the inequality holds for all n � 4. How
to prove the assumption?

Let us apply the weak induction principle with n0 D 4. The statement P.n/ is
then the inequality (A.2). The initial step P.4/ is done. To prove the induction step,
we try to deduce P.n C 1/ from P.n/, where n � 4. Consider the left hand side
2nC1 of P.nC 1/. According to P.n/, we have

2nC1 D 2 � 2n > 2 � 3n D 6n:
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Since n � 4, we have 6n � 3n C 3n > 3nC 3 D 3.nC 1/. Thus, we obtain an
inequality 2nC1 > 3.nC 1/, which is equivalent to P.nC 1/. By Corollary A.2, the
inequality (A.2) holds for all n � 4.

A more general version of the induction principle is given by the following
Strongest Induction Principle.

Corollary A.3. Let P.n/ be a statement depending on element n of a set of natural
numbers N . Suppose that the following two assumption hold:
1. P.n0/ is true for some n0 2 N .
2. P.nC 1/ is true provided that P.k/ is true for all n � k � n0.

Then P.n/ is true for every n � n0.

Proof. Let P 0.n/ be the following statement: ‘P.k/ is true for all n � k � n0’.
Then we can apply Corollary A.2 to the statement P 0.n/. �

Example A.4. Problem. Evaluate the determinant of the following matrix of order
n � n

An D

0

B
B
B
B
B
@

3 2 0 : : : 0 0

1 3 2 : : : 0 0

0 1 3 : : : 0 0

: : :

0 0 0 : : : 1 3

1

C
C
C
C
C
A

Solution. Let us denote Dn D det An. By direct calculations, we have D1 D
3; D2 D 7. It is natural to formulate a conjecture, called P.n/:

Dn D 2nC1 � 1; where n � 1:

To prove the above conjecture, we apply the strongest induction principle
(Corollary A.3). We put n0 D 1: then the initial step P.1/ is given by the equality
D1 D 3. To show the induction step, let us evaluate DnC1. If n D 1, then
DnC1 D D2 D 7, and the conjecture holds. For n � 2 we have

DnC1 D det AnC1 D det

0

B
B
B
B
B
@

3 2 0 : : : 0

1 3 2 : : : 0

0 1

: : : : : : An�1

0 0

1

C
C
C
C
C
A

D 3 � det An � 2 � 1 � det An�1 � 2 � 2 � 0 D 3Dn � 2Dn�1:

Using P.n/ and P.n � 1/, we get

DnC1 D 3.2nC1 � 1/� 2.2n � 1/ D 3 � 2nC1 � 2nC1 � 1 D 2 � 2nC2 � 1:
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So, we have deduce P.nC1/. This complete the induction step. Thus, the conjecture
is true for all n � 1. �

Other methods of evaluating such determinants will be discussed in Appendix B.

A.3 Problems

1. Show that
1C 3C � � � C .2n � 1/ D n2:

2. Find the sum
1

1 � 2 C
1

2 � 3 C � � � C
1

.n � 1/ � n:

3. Prove the following Bernoulli’s inequality

.1C x/n � 1C nx for every natural n and real x � 0:

4. Show that the number xn C 1
xn is integer provided that x C 1

x is integer.

5. Describe all natural n such that 2n > n2.
6. Suppose that an automatic machine sells two type of phone cards, for $3 and

$5 (for 30 min and 70 min of phone calls, respectively). Show that any integer
amount greater than $7 can be exchanged for the cards without change.

7. Show that �
1 1

0 1

�n

D
�

1 n

0 1

�
:

8. Compute
(a) �

� 1

0 �

�n

(b) �
cos ˛ � sin ˛

sin ˛ cos ˛

�n

9. Show that the matrix �
a �b

b a

�n

C
�

a b

�b a

�n

has the form �
c 0

0 c

�

for some number c.
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10. Show that the determinant of order n

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

0 1 0 : : : 0 0

�1 0 1 : : : 0 0

0 �1 0 : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : �1 0

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

is equal to .1C .�1/n/=2.
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In addition to examples in Sect. 3.4, we discuss here some advanced methods of
evaluating the determinants of various special matrices. This Appendix is mainly
based on [25, Sect. 1.5]. For further methods of determinant evaluation, we refer the
reader to [15].

B.1 Transformation of Determinants

Sometimes we can prove some equalities of determinants without directly evaluat-
ing them.

Let us consider the following problems.

Example B.1. Problem. Prove that

ˇ
ˇ
ˇ̌
ˇ
ˇ

1 a bc

1 b ca

1 c ab

ˇ
ˇ
ˇ̌
ˇ
ˇ
D
ˇ
ˇ
ˇ̌
ˇ
ˇ

1 a a2

1 b b2

1 c c2

ˇ
ˇ
ˇ̌
ˇ
ˇ
:

Solution. We can add one column of a determinant with any other column multiplied
by some constant without changing the value of the determinant (see the property
(a) in Sect. 3.4). Let us use this method here to get

ˇ̌
ˇ
ˇ
ˇ
ˇ

1 a bc

1 b ca

1 c ab

ˇ̌
ˇ
ˇ
ˇ
ˇ
D
ˇ̌
ˇ
ˇ
ˇ
ˇ

1 a bc C a .aC b C c/ � 1 .ab C ac C bc/

1 b ac C b .aC b C c/ � 1 .ab C ac C bc/

1 c ab C c .aC b C c/ � 1 .ab C ac C bc/

ˇ̌
ˇ
ˇ
ˇ
ˇ

D
ˇ̌
ˇ
ˇ
ˇ
ˇ

1 a bc C a2 C ab C ac � ab � ac � bc

1 b ac C b2 C ab C ac � ab � ac � bc

1 c ab C c2 C ab C ac � ab � ac � bc

ˇ̌
ˇ
ˇ
ˇ
ˇ

225F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5,
© Springer-Verlag Berlin Heidelberg 2011
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D
ˇ
ˇ
ˇ̌
ˇ
ˇ

1 a a2

1 b b2

1 c c2

ˇ
ˇ
ˇ̌
ˇ
ˇ
:

Example B.2. Problem. Prove that

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

0 x y z
x 0 z y

y z 0 x

z y x 0

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

D

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

0 1 1 1

1 0 z2 y2

1 z2 0 x2

1 y2 x2 0

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

:

Solution. The answer follows from

1

x2y2z2

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

0 xyz xyz xyz
x 0 xz2 xy2

y yz2 0 x2y

z y2z x2z 0

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

D xyz � xyz

x2y2z2

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

0 1 1 1

1 0 z2 y2

1 z2 0 x2

1 y2 x2 0

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

:

B.2 Methods of Evaluating Determinants of High Order

B.2.1 Reducing to Triangular Form

One of useful methods of calculation determinant is to reduce a matrix to a triangular
form via elementary transformations and then calculate its determinant as a product
of diagonal elements by Example 3.5.

Example B.3. Reducing the below matrix

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

a1 x x : : : x

x a2 x : : : x

x x a3 : : : x
:::

:::
:::

: : :
:::

x x x : : : an

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

to the triangular form, subtract the first row from all other rows to get

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

a1 x x : : : x

x � a1 a2 � x 0 : : : 0

x � a1 0 a3 � x : : : 0
:::

:::
:::

: : :
:::

x � a1 0 : : : : : : an � x

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

:
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Take out a1 � x from the first column, a2 � x from the second one, and so on, to
obtain

.a1 � x/ .a2 � x/ : : : .an � x/ �

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

a1

a1�x
x

a2�x
: : : : : : x

an�x

�1 1 0 : : : 0

�1 0 1 : : : 0
:::

:::
:::

: : :
:::

�1 0 0 : : : 1

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

:

Put a1=.a1 � x/ D 1C x=.a1 � x/ and add all columns to the first one to get

.a1 � x/ .a2 � x/ : : : .an � x/ :

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

1C a1

a1�x
C � � � C x

an�x
x

a2�x
x

a3�x
: : : x

an�x

0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

The last matrix has an upper triangular form. It follows from Example 3.5 that its

determinant is the product of the diagonal entries


1C x

a1�x
C � � � C x

an�x

�
� 1n�1.

Thus,

det A D .a1 � x/ .a2 � x/ : : : .an � x/

�
1C x

a1 � x
C � � � C x

an � x

	
:

B.2.2 Method of Multipliers

Let D be the determinant of a matrix A D kaij kn�n of order n.

Proposition B.1. (a) D is a polynomial on n2 variables aij , and the degree of this
polynomial is equal to n.
(b) The polynomial D is linear as a polynomial on the elements ai1; : : : ; ain of the

i -th row of the matrix A.

Proof. Using decomposition by the i -th row, we have D D
nP

j D1

aij Aij , where

the cofactors Aij do not depend on the elements of the i -th row. So, D is linear
as a polynomial of ai1; : : : ; ain. This proves (b). To prove (a), one can assume,
by the induction arguments, that the minor determinants Mij of order n � 1 are
polynomials of degree n � 1. Since Aij D .�1/iCj Mij , we conclude that D is a
sum of polynomials of degree n. �

To calculate a determinant D, one can now consider it as a polynomial of
some variables. Then as a polynomial it can be divided on linear multipliers. Thus,
comparing elements of D with elements of multiplication of linear multipliers one
can evaluate we can find a formula for D.
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Example B.4. Let

D D

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

0 x y z
x 0 z y

y z 0 x

z y x 0

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

Consider the columns A1; A2; A3; A4 of D. Add all columns to the first one. Then
we obtain linear multiplier .x C y C z/.

Consider
A1 C A2 � A3 �A4

A1 C A3 � A2 �A4

A1 C A4 � A2 �A3

�multiplier
.y C z � x/

.x � y C z/

.x C y � z/

These multipliers are mutual. Hence, D is divisible by their product

eD D .x C y C z/ .y C z � x/ .x � y C z/ .x C y � z/

According to Proposition B.1 a), the degree of the polynomial D is 4, so, it is equal
to the degree of eD. It follows that D D ceD, where c is a scalar multiplier.

In the decomposition of eD, we obtain z4 with coefficient �1, and in D we have
z4 with coefficientC1. Hence c D �1, that is,

D D � .x C y C z/ .y C z � x/ .x � y C z/ .x C y � z/ :

B.2.3 Recursive Definition of Determinant

The method is to decompose determinant by row or column and reduce it to the
determinant of the same form but lower order. An example of application of this
idea has been given in Example A.4 in Appendix A. Here we give some general
formulae for determinants of that kind.

One of the possible forms is

Dn D pDn�1 C qDn�2 ; n > 2

If q D 0 then
Dn D pn�1D1:

If q D 0 then consider quadratic equation

x2 � px � q D 0:

If its roots are ˛ and ˇ, then

p D ˛ C ˇ;

q D �˛ˇ
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and
Dn D .˛ C ˇ/ Dn�1 � ˛ˇDn:

Suppose that ˛ ¤ ˇ. Then one can prove (by induction, see Appendix A) a
formula for Dn

Dn D c1˛
n C c2ˇn;

where

c1 D D2 � ˇD1

˛ .˛ � ˇ/
;

c2 D �D2 � ˛D1

ˇ .˛ � ˇ/
:

If ˛ D ˇ then we can obtain the following formula

Dn D .c1nC c2/ ˛n�2;

where

c1 D D2 � ˛D1;

c2 D 2˛D1 �D2:

This formula is again can be proved by induction.

Example B.5. Evaluate ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

5 3 0 0 : : : 0 0

2 5 3 0 : : : 0 0

0 2 5 3 : : : 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 2 5

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
n�n

Decompose by first row

Dn D 5Dn�1 � 6Dn�2:

Quadratic equation gives the following solution:

x2 � 5x C 6 D 0

˛ D 2 ˇ D 3

Hence
Dn D c1˛

n C c2ˇn D 3nC1 � 2nC1:
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B.2.4 Representation of a Determinant as a Sum of Two
Determinants

By the linearity property of determinants (see Property (a) in p. 57), a complicated
determinant can sometimes be presented as a sum of simpler ones.

Example B.6. Let

Dn D

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

a1 C b1 a1 C b2 : : : a1 C bn

a2 C b1 a2 C b2 : : : a2 C bn

:::
:::

: : :
:::

an C b1 an C b2 : : : an C bn

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

D

D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

a1 a1 : : : a1

a2 C b1 a2 C b2 : : : a2 C bn

:::
:::

: : :
:::

an C b1 an C b2 : : : an C bn

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
C

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

b1 b2 : : : bn

a2 C b1 a2 C b2 : : : a2 C bn

:::
:::

: : :
:::

an C b1 an C b2 : : : an C bn

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

So after n steps we obtain 2n determinants as summands.
If in each decomposition we take as first components the numbers ai , and for

second component numbers bj then the rows will be either of the form

ai ; : : : ; ai

or of the form
b1; b2; : : : ; bn:

In the first case two are proportional, and in the second case even equal. If n > 2

in each determinant we have at least two rows of one type, i.e., for n > 2 we have
Dn D 0. For n D 1 and 2, we have

D1 D a1 C b1

D2 D
ˇ
ˇ̌
ˇ
a1 a1

b1 b2

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ
b1 b2

a2 a2

ˇ
ˇ̌
ˇ D .a1 � a2/ .b2 � b1/ :

B.2.5 Changing the Elements of Determinant

Consider

D D

6
6
6
6
4

a11 : : : a1n

:::
: : :

:::

an1 : : : ann

7
7
7
7
5
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and

D0 D

2

6
4

a11 C x : : : a1n C x
:::

: : :
:::

an1 C x : : : ann C x

3

7
5 :

Using the method of Sect. B.2.4, one can deduce that

D0 D D C

6
6
6
6
66
4

x : : : x

a21 : : : a2n

:::
: : :

:::

an1 : : : ann

7
7
7
7
77
5
C

6
6
6
6
66
4

a11 : : : a1n

x : : : x
:::

: : :
:::

an1 : : : ann

7
7
7
7
77
5
C � � � C

6
6
6
6
66
4

a11 : : : a1n

a21 : : : a2n

:::
: : :

:::

x : : : x

7
7
7
7
77
5

:

It follows that

D0 D D C x

nX

i; j D1

Aij ;

where Aij are cofactors of aij .

Example B.7. Let us evaluate

D0 D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

a1 x : : : x

x a2 : : : x
:::

:::
: : :

:::

x x : : : an

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
:

Subtract x from all elements. Then

D D

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

a1 � x 0 : : : 0

0 a2 � x : : : 0
:::

:::
: : :

:::

0 0 : : : an � x

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
D .a1 � x/ : : : .an � x/:

For any i ¤ j we have Aij D 0, and for i D j

Aii D .a1 � x/ : : : .ai�1 � x/ .aiC1 � x/ : : : .an � x/

Hence

D0 D .a1 � x/ : : : .an � x/C x

nX

iD1

Aii D
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by simple algebraic transformations

D x .a1 � x/ .a2 � x/ : : : .an � x/

�
1

x
C 1

a1 � x
C � � � C 1

an � x

	
:

B.2.6 Two Classical Determinants

The determinant

V.x1; : : : ; xn/ D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

1 x1 x2
1 : : : xn�1

1

1 x2 x2
2 : : : xn�1

2

1 x3 x2
3 : : : xn�1

3
:::

:::
:::

: : :
:::

1 xn x2
n : : : xn�1

n

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

(B.1)

is called Vandermonde1 determinant.

Theorem B.2.
V.x1; : : : ; xn/ D

Y

1	i<j 	n

.xj � xi /:

Proof. By Proposition B.1 (b), the total degree of the polynomial V.x1; : : : ; xn/ is
equal to the sum

0C 1C � � � C .n� 1/ D n.n � 1/=2:

If we subtract the i -th row from the j -th one, we get a new matrix with j -th row
of the form .0; xj � xi ; x2

j � x2
i ; : : : ; xn�1

j � xn�1
i /T . Here each term xk

j � xk
i D

.xj �xi /.x
k�1
j Cxk�2

j xiC� � �Cxk�1
i / is divisible by .xj �xi /, hence V.x1; : : : ; xn/

is divisible by .xj � xi / for all 1 � i < j � n. It follows that D is divisible by a
polynomial

eV .x1; : : : ; xn/ �
Y

1	i<j 	n

.xj � xi /:

Since degeV .x1; : : : ; xn/ D n.n � 1/=2 D deg V.x1; : : : ; xn/, it follows that
V.x1; : : : ; xn/ D ceV .x1; : : : ; xn/, where c is a number.

Using the decomposition by the last row, we see that the coefficient of xn�1
n

in V.x1; : : : ; xn/ is V.x1; : : : ; xn�1/. At the same time, it is easy to see that the
coefficient of xn�1

n in eV .x1; : : : ; xn/ is eV .x1; : : : ; xn�1/. By the induction arguments
we conclude that c D 1. �

1Alexandre Theophile Vandermonde (1735–1796), French mathematician and musician, one of the
founders of the theory of determinants.
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The matrix

C D

2

6
6
6
6
6
4

a0 a1 a2 : : : an�1

an�1 a0 a1 : : : an�2

an�2 an�1 a0 : : : an�3

:::
:::

:::
: : :

:::

a1 a2 a3 : : : a0

3

7
7
7
7
7
5

is called circulant matrix.

Theorem B.3. The determinant C.a0; : : : ; an�1/ of the above matrix (circulant
determinant) is equal to

f ."0/ : : : f ."n�1/;

where f .x/ D an�1xn�1 C � � � C a1x C a0 and "0; : : : ; "n�1 are different complex
n-th roots of unity (for the definition of the complex roots, see Sect. C.2).

Proof. Consider the product Q D C V T , where V is the Vandermonde matrix (B.1)
on "0; : : : ; "n�1, that is,

V D

2

6
4

1 "0 : : : "n�1
0

:::
:::

: : :
:::

1 "n�1 : : : "n�1
n�1

3

7
5 :

Then Q D kqij kn�n, where q1j D f ."j / and qij D .Ci ; Vj / D
Pi�2

kD0 anC1Ck�i "
k
j �1 C

Pn�1
kDi�1 a1Ck�i "

k
j �1 D "i�1

j �1f ."j �1/ for i � 2. Therefore,

det Q D f ."0/ : : : f ."n�1/j"i�1
j �1jn�n D f ."0/ : : : f ."n�1/V ."0; : : : ; "n�1/:

On the other hand, we have

det Q D det.C V T / D det C det V D .det C /V."0; : : : ; "n�1/:

Since V."0; : : : ; "n�1/ ¤ 0, we have det C D f ."0/ : : : f ."n�1/. �

B.3 Problems

1. Prove that if all elements of a 3 � 3 matrix are equal ˙1, then the determinant
of this matrix is an even number.

2. Without evaluating the determinants, show that:
(a) ˇ

ˇ
ˇ
ˇ̌
ˇ

a1 b1 a1x C b1y C c1

a2 b2 a2x C b2y C c2

a3 b3 a3x C b3y C c3

ˇ
ˇ
ˇ
ˇ̌
ˇ
D
ˇ
ˇ
ˇ
ˇ̌
ˇ

a1 b1 c1

a2 b2 c2

a3 b3 c3

ˇ
ˇ
ˇ
ˇ̌
ˇ
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(b) ˇ
ˇ
ˇ̌
ˇ
ˇ

1 a bc

1 b ca

1 c ab

ˇ
ˇ
ˇ̌
ˇ
ˇ
D .b � a/ .c � a/ .c � b/

(c) ˇ
ˇ̌
ˇ
ˇ
ˇ

1 a a3

1 b b3

1 c c3

ˇ
ˇ̌
ˇ
ˇ
ˇ
D .aC b C c/

ˇ
ˇ̌
ˇ
ˇ
ˇ

1 a a2

1 b b2

1 c c2

ˇ
ˇ̌
ˇ
ˇ
ˇ
:

3. Evaluate the determinant
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 0 0 0

a41 a42 0 0 0

a51 a52 0 0 0

ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

:

4. Solve the equation

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

1 1 1 : : : 1

1 1 � x 1 : : : 1

1 1 2 � x : : : 1

: : : : : : : : : :
: : : : : :

1 1 1 : : : n � x

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

D 0:

5. Using the third row, evaluate the determinant

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

2 �3 4 1

4 �2 3 2

a b c d

3 �1 4 3

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

:

6. Evaluate the determinant

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

1 0 2 a

2 0 b 0

3 c 4 5

d 0 0 0

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

:

Evaluate the determinants in exercises 7–10 by reducing each of them to the
triangular form. (Corresponding matrices in 7–9 are of order n � n.)
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7. ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

1 1 1 : : : 1

1 1 0 : : : 0

1 0 1 : : : 0
:::

:::
:::

: : :
:::

1 0 0 : : : 1

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

:

8. ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

1 1 1 : : : 1

1 0 1 : : : 1

1 1 0 : : : 1
:::

:::
:::

: : :
:::

1 1 1 : : : 0

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

:

9. ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

3 2 2 : : : 2

2 3 2 : : : 2

2 2 3 : : : 2

: : : : : : : : : :
: : : : : :

2 2 2 : : : 3

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

:

10. ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

a0 a1 a2 : : : an

�x x 0 : : : 0

0 �x x : : : 0

: : : : : : : : : :
: : : : : :

0 0 0 : : : x

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

:

Evaluate the determinants in questions 11 and 12 (by using linear multipliers).
11. ˇ

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

a0 a1 a2 : : : an

a0 x a2 : : : an

a0 a1 x : : : an

:::
:::

:::
: : :

:::

a0 a1 a2 : : : x

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

12. ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

�x a b c

a �x c b

b c �x a

c b a �x

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

Evaluate the determinants in questions 13–15 by using the recursive definition.
(Corresponding matrices in Problems 14 and 15 are of order n � n.)
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13. ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

a1 1 1 : : : 1

1 a2 0 : : : 0

1 0 a3 : : : 0
:::

:::
:::

: : :
:::

1 0 0 : : : an

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

14. ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

2 1 0 : : : 0

1 2 1 : : : 0

0 1 2 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 2

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

15. ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

3 2 0 : : : 0

1 3 2 : : : 0

0 1 3 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 3

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

16. Evaluate the following determinant representing it as a sum of determinants:

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

x1 a2 : : : an

a1 x2 : : : an

:::
:::

: : :
:::

a1 a2 : : : xn

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

Hint: insert xi D .xi � ai /C ai .
17. Let x0; x1; : : : ; xn are variables and p0; p1; : : : ; pn are polynomials of the form

pj D aj xj C (lower terms). Show that

ˇ̌
ˇ
ˇ
ˇ
ˇ̌

p0.x0/ p1.x0/ : : : pn.x0/
:::

:::
: : :

:::

p0.xn/ p1.xn/ : : : pn.xn/

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
D a0 : : : anV .x0; : : : ; xn/:
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Besides the dot product, in the plane R2 there is another product of vectors, called
complex multiplication. In contrast to the dot product, the complex product of two
vectors is again a vector in R2. It is given by the formula

.x; y/.x0; y0/ D .xx0 � yy0; xy0 C yx0/:

The properties of complex multiplication (given below) are close to the usual
multiplication of real numbers, and the elements of R2 are referred as complex
numbers. The set R2 of complex numbers is also denoted by C. In particular, the
vectors in the horizontal axis are identified with real numbers, that is, the real
number x corresponds to the vector .x; 0/ (therefore, we have R 	 C). For example,
the number 1 is identified with the vector .1; 0/, the first vector of the canonical
basis. The horizontal axis is called a real axis. The sum (product) of two real
numbers a and b is identified with the sum (product) of corresponding complex
numbers .a; 0/ and .b; 0/, so that one can consider the complex numbers as an
extension of the real number system.

The second vector of the canonical basis .0; 1/, being considered as a complex
number, is denoted by i and called a imaginary unit, or the square root of �1

(because i 2 D .�1; 0/ D �1). The vertical axis is called an imaginary axis, and
every vector of the form .0; x/ D x � i is called a pure imaginary number. It follows
that any complex number z D .x; y/ is a sum of a real number and a pure imaginary
number, that is,

z D .x; y/ D x.1; 0/C y.0; 1/ D x C yi:

The first entry x is called a real part of z and denoted as <z. The second entry y is
called an imaginary part of z and denoted as =z.

237F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5,
© Springer-Verlag Berlin Heidelberg 2011
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Main Properties of Complex Multiplication

The next properties can easily be checked directly.
Let z D .x; y/; z0 D .x0; y0/ and z00 D .x00; y00/ be three complex numbers.

1. zz0 D z0z, (commutativity)
2. z.z0z00/ D .zz0/z00, (associativity)
3. z.z0 C z00/ D zz0 C zz00, (distributivity)
4. 1 � z D z; 0 � z D 0, where 0 D 0 D .0; 0/.

Example C.1. If z D .1; 2/ D 1 C 2i and z0 D .4; 3/ D 4 C 3i , then zz0 D
.1C 2i/.4C 3i/ D 4C 3i C 8i C 6i2 D 4C 3i C 8i C 6.�1/ D �2C 11i .

C.1 Operations with Complex Numbers

Let us introduce some other operations with complex numbers.

C.1.1 Conjugation

A conjugation is a reflection of a vector in the real axis, that is, the conjugated
complex number z D .a; b/ D aC bi is

Nz D .a;�b/ D a � bi

(see Fig. C.1).
In particular, z D z.
The conjugation has the following nice connections with the standard operations.

1. zC z0 D NzC Nz0.
2. zz0 D NzNz0.
3. If z D .a; 0/ 2 R, then Nz D z.
4. zNz D a2 C b2 2 RC.

Fig. C.1 A conjugation

x

y

z

z

a

-b

b
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One can express the real and imaginary parts of a complex number via conjuga-
tion as

<z D .1=2/.zC Nz/
and

=z D .i=2/.Nz� z/:

C.1.2 Modulus

The modulus jzj of a complex number z D .a; b/ is its length as a vector in R2, that
is,

jzj D
p

a2 C b2 D pzNz:
The modulus of the product of two complex numbers is the product of their moduli,
that is,

jzz0j D jzjjz0j
(because jzjjz0j D pzNz

p
z0z0 D

p
zz0zz0 D jzz0j).

Example C.2. j3 C 4i j D
q

.3C 4i/.3C 4i/ D p
.3C 4i/.3� 4i/ Dp

32 C 42 D 5.

C.1.3 Inverse and Division

The inverse of a nonzero complex number z D a C bi is defined as z�1 D jzj�2Nz.
Then z�1z D jzj�2Nzz D jzj�2jzj2 D 1, so that one can define a division of complex
numbers as z0=z D z0z�1 D jzj�2z0Nz, that is,

a0 C b0i
aC bi

D .a0 C b0i/.a � bi/

.aC bi/.a � bi/
D .a2 C b2/�1.a0 C b0i/.a � bi/:

Note that the denominator z D aC bi must be nonzero.

Example C.3.

18C i

3 � 4i
D .18C i/.3C 4i/

.3 � 4i/.3C 4i/
D 50C 75i

32 C 42
D 2C 3i:

C.1.4 Argument

An argument of a nonzero complex number z D aCbi is an angle ' between the real
axis and the vector z (see Fig. C.2). Obviously, sin ' D b=jzj and cos ' D a=jzj, so,
' is defined uniquely up to the period 2� . The set of all such possible � is denoted
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Fig. C.2 The angle ' is the
argument of z

x

y

a

b

z
ϕ

by Arg z, while the unique argument ' such that 0 � � < 2� is denoted by arg z.
This means that

Arg z D farg zC 2�kjk 2 Zg:

If ' 2 Arg z is one the values of the argument of z, then it follows from the above
sine and cosine values that

z D jzj.cos ' C i sin '/:

Let z and z0 be two complex numbers with arguments ˛ and ˇ. One can check that

zz0Djzj.cos ˛C i sin ˛/jz0j.cos ˇC i sin ˇ/Djzjjz0j.cos.˛Cˇ/C i sin.˛ C ˇ//;

(C.1)

so that the argument of the product of complex number is equal to the sum of their
arguments. Analogously, we have

z=z0 D jzj=jz0j.cos.˛ � ˇ/C i sin.˛ � ˇ//:

It follows that for each integer n we have

zn D jzjn.cos.n˛/C i sin.n˛//: (C.2)

Example C.4. Let us calculate z100, where z D i C 1. We have jzj D p12 C 12 Dp
2 and cos.arg z/ D sin.arg z/ D 1=

p
2, so that arg z D �=4. Therefore,

z100 D .
p

2/100

�
cos

100�

4
C i sin

100�

4

	
;

where 100�
4
D 25� D 12 � 2� C � . Thus,

z100 D 250.cos � C i sin �/ D �250:
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C.1.5 Exponent

The exponent of a complex number z D aC bi is defined as

eaCbi D ea.cosb C i sin b/

(Euler1 formula). It follows that for each nonzero complex z we have

z D jzjei arg z:

Example C.5. ei� D e0.cos� C i sin �/ D �1.

Other properties of exponents of complex numbers follows from the equa-
tion (C.1):

ezCz0 D ezez0

; e�z D 1=ez; ez�z0 D ez=ez0

:

C.2 Algebraic Equations

Many equations which have no real solutions have complex ones. The simplest
example is the equation z2 C 1D 0, which has two complex solutions, zD i and
zD � i , and no real ones. More generally, each quadratic equation

ax2 C bx C c D 0

with real coefficients a; b and c always have complex solutions xD
�b ˙

p
b2 � 4ac

2a
, where in the case DD b2 � 4ac < 0 we take

p
DD i

pjDj.
Moreover, some simple algebraic equations have quite more complex solutions

than real ones. Consider an equation

zn D c;

where c is a nonzero complex number. If arg z D ˛ and arg c D �, the formula (C.2)
gives the equation

jzjn.cos.n˛/C i sin.n˛// D jcj.cos � C i sin �/;

1Leonhard Euler (1707–1783) was a great Swiss mathematician who made enormous contributions
to a wide range of mathematics and physics including analytic geometry, trigonometry, geometry,
calculus and number theory. Most of his life he had been working in Russia (St. Petersburg) and
Prussia (Berlin).
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Fig. C.3 The fourth roots of
a complex number z

z

x

y

z0

z1

z2

z3

therefore,

jzj D n
p
jcj and ˛ D � C 2�k

n

for some integer k. Since 0 � ˛ < 2� , we get n different values for ˛, that is,
˛k D �C2�k

n
, where k D 0; : : : ; n � 1. This gives exactly n pairwise different

solutions of the above equation, that is,

zk D n
p
jcj.cos ˛k C i sin ˛k/ for k D 0; : : : ; n � 1:

All these n complex numbers could be referred as roots of degree n of c. All of
them belong to a circle centered in the zero of radius n

pjcj and placed in the vertices
of a regular polygon of n vertices inscribed to the circle (see Fig. C.3 for the case
n D 4).

Example C.6. Solve the equation z3 D i .
In the notation above, we have n D 3, jcj D 1 and � D �=2, so that

jzj D n
p

1 D 1, ˛0 D �=2C2�0

3
D �=6, ˛1 D �=2C2�

3
D 5�=6 and ˛2 D

�=2C4�

3
D 3�=2. We obtain three solutions of the from zk D 1.cos ˛k C i sin ˛k/

for k D 0; 1; 2, that is, z0 D 1
2
C i

p
3

2
, z1 D � 1

2
C i

p
3

2
and z2 D �i .

Theorem C.1 (Fundamental theorem of algebra). Every non-constant polyno-
mial with complex coefficients of a variable x has at least one complex root.

Proof. See [33, Theorem 3.3.1]. �
We have discussed the finding of the roots for the polynomials of degree two and

for polynomials of the form xn� z. For general polynomials of any degree d greater
than 4, there is no an universal formula for finding the root (Abel’s theorem2).

If x D x1 is a root of a polynomial f .x/ of degree d , then one can decompose

2Niels Henrik Abel (1802–1829) was a famous Norwegian mathematician. In spite of his short
life, he made an extremely important contribution both to algebra and calculus. One of the most
significant international prize for mathematician is called the Abel Prize. Abel had proved his
theorem at age of 19.
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f .x/ D .x � x1/g.x/;

where g.x/ is another polynomial of degree d � 1 (with complex coefficients). If
the degree d � 1 is positive, the polynomial g.x/ must have another complex root,
say, x2. Proceeding such decomposition up to degree 0, we get the decomposition
of the from

f .x/ D c.x � x1/.x � x2/ : : : .x � xd /;

where c is a complex number and x1; : : : ; xd are roots of the polynomial f .x/.
Combining the identical terms, we get (after a possible re-numerating of xi ’s) the
decomposition

f .x/ D c.x � x1/
k1.x � x2/k2 : : : .x � xs/

ks

for some s � d , where the sum of the powers k1C � � �C ks is d . Each number kj is
called a multiplicity of the corresponding root xj . The roots of multiplicity one are
called simple. One can check that each root xj of the polynomial should appear in
this decomposition.

We have

Corollary C.2. The number of roots of any polynomial p.x/ of degree d > 0 is not
greater than d . Moreover, the sum of all multiplicities of the roots is equal to d .

Example C.7. Problem. Solve the equation z2 � 4iz� 7 � 4i D 0.

Solution. By the well-known formula (which is easy to be checked), the number
z D �.�4i/Cd

2
satisfies the equation, where d 2 D .�4i/2� 4.�7� 4i/ D 12C 16i .

We need to find d . Let d D x C iy, where x and y are real numbers. Then d 2 D
.x2 � y2/C 2ixy, so that the equality of two 2-dimensional vectors d 2 D 12C 16i

gives a system of two equations

�
x2 � y2 D 12;

2xy D 16:

This system has two solutions for d D xCiy, that is, d1 D 4C2i and d2 D �4�2i .
This leads us to two roots of the equation above: z1 D .4i C d1/=2 D 2C 3i and
z2 D .4i C d2/=2 D �2C i . Since the equation has degree two, there are no other
roots but these two.

To find a decomposition of a polynomial with real coefficients, the following
statement is often useful.

Theorem C.3. If a complex number z is a root of a polynomial f .x/ with real
coefficients, then the conjugated number Nz is also a root of f .x/. Moreover, the
multiplicities of these roots are the same.

Proof. If f .x/ D ad xd C � � � C a1xC a0 and f .z/ D 0, then f .Nz/ D ad Nzd C � � � C
a1NzC a0 D Nad Nzd C � � � C Na1Nz C Na0 D ad zd C � � � C a1z C a0 D f .z/ D N0 D 0.
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The claim about the multiplicities follows from the induction argument applied to
the polynomial g.x/ of degree d � 2 such that f .x/ D .x � z/.x � Nz/g.x/. �

Example C.8. Let us find the decomposition of a polynomial f .z/ D z4 � 5z3 C
7z2�5zC6. One can check that f .i/ D 0, so that z D i is a root of the polynomial.
If follows that the number Nz D �i is another root. From the decomposition

f .z/ D .z� i/.zC i/g.z/

one can find g.z/ D z2 � 5zC 6. It follows that g.z/ D .z � 2/.z� 3/, so that

f .z/ D .z� i/.zC i/.z � 2/.z � 3/:

C.3 Linear Spaces Over Complex Numbers

Recall from the definition in the beginning of Chap. 6 that a linear space is a set
admitting two operations, that is, addition and multiplication by a real number (dot
product) such that these operations satisfies the linearity properties. One can extend
this definition by allowing the multiplication of by complex numbers, not only by
real ones. Such a vector space is called a vector space over complex numbers, or
simply a complex vector space. In contrast, the vector space in the sense of Chap. 6
is called a vector space over real numbers, or a real vector space. The definition of
complex vector space repeats the definition of real one literally but the world ‘real’
is replaced by ‘complex’.

The notions of linear dependence and independence of vectors, dimension and
basis of a vector space, subspace, isomorphism etc. for complex vector spaces repeat
the correspondent definitions given in Chap. 6 verbatim. The definition and the
properties of linear transformation and its matrix from Chap. 8 are transferred to
the case of complex vector spaces verbatim as well.

Example C.9. The set C itself is a one-dimensional complex vector space. Any its
nonzero element z D aC bi ¤ 0 form a basis of it, since for each w D xCyi 2 C

one has w D ˛z, where ˛ D w=z 2 C.

Example C.10. The set Cn of n-tuples of complex numbers x D .x1; : : : ; xn/ with
x1; : : : ; xn 2 C is an n-dimensional vector space with standard operations

.x1; : : : ; xn/C .y1; : : : ; yn/ D .x1 C y1; : : : ; xn C yn/

and
˛.x1; : : : ; xn/ D .˛x1; : : : ; ˛xn/:

Its dimension is equal to n by the same reason as for the real space Rn, see
Example 6.5.
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Given a real vector space V , one can embed it in a complex vectors space by
the following way. Let V C be the set of pairs of vectors from V . Each such pair we
denote by .u; v/ D uCiv. The addition of pairs and their multiplication by complex
numbers are defined as

.uC iv/C .u0 C iv0/ D .uC u0/C i.vC v0/

and
.aC bi/.uC iv/ D .au � bv/C i.avC bu/:

Exercise C.1. Show that V C is a linear space over complex numbers.

Such a complex vector space V C is called a complexification of V .

Example C.11. C D RC and Cn D .Rn/C.

Given a vector w D u C iv in a complexification V C, one can define its real
and imaginary parts as <w D u and =w D v, the both are vectors in the real
vector space V . Any basis of V is also a basis of the complexification V C, but
one can also construct other bases in V C which do not belong to V . For any linear
transformation f W U ! V of two real vector spaces U and V , one can also define
its complexification f C W U C ! V C by the obvious formula f C.u C iv/ D
f .u/C if .v/. Note that if we fix two bases in the real vector spaces U and V , then
the matrices of the linear transformations f and f C in these bases are the same.

In particular, we prove in Corollary 9.5 that any linear operator in a finite-
dimensional complex vector space has an eigenvector. This means that if f is
a linear operator in a real vector space V , then its complexification f C has an
eigenvector in V C. In particular, it follows that the matrix of f has an eigenvalue.

C.4 Problems

1. Calculate
.1C i/.2C i/

3 � i
:

2. Calculate
i � 3

2 � 3i
C i C 3

2C 3i
:

3. Calculate
.1C i/4

.i � 1/5
:

4. Solve the system of linear equations with complex coefficients

�
.1C 2i/x � 2iy D 5C 9i

.�1C 3i/x C .1C i/y D �6C 4i:
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5. Find all real solutions of the equation

.2i � 2/x � .i C 1/y D 2i � 10:

6. Solve the equation

z2 C 2zC 37 D 0:

7. Solve the equation

iz2 C .3i � 2/zC 12C 4i D 0:

8. Solve the equation

z2 C 6z � 4izC 5 � 12i D 0:

9. Solve the equation

z2 � 5zC 4izC 9 � i D 0:

10. Calculate i 100.
11. Calculate .1 � i/n, where n is a positive integer.
12. Solve the equation z6 D i .
13. Solve the equation z4 D �128C 128

p
3i .

14. Plot all the solutions of the equation z6 D 117C 44i in the complex plane.
15. Find all solutions of the equation z5 D 5e5i .
16. Find the multiplicity of the root z D 2 of the polynomial z5 � 6z4 C 13z3 �

14z2 C 12z� 8.
17. Find the multiplicity of the root z D i C 1 of the polynomial z5 � 6z4 C 16z3 �

24z2 C 20z� 8.
18. Prove that jz1 C z2j � jz1j C jz2j.
19. Prove the equation (C.1).
20. Let z and z0 be two nonzero vectors in R2 (that is, complex numbers) such that
jzj D jz0j and z ? z0. Find all possible values of z0=z.

21. Let "0; : : : ; "n�1 be different complex n-th roots of unity, where n � 2. Show
that "0 C � � � C "n�1 D 0 and "0 : : : "n�1 D .�1/n�1.

22. Prove that ez1Cz2 D ez1ez2 .
23. Solve the equation ez D e for a complex number z.
24. Let A be a linear operator in C2 given by the matrix

�
1 2

3 4

�
:
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Find its matrix in the basis

f1 D .i; 1/; f2 D .1; i/:

25. Let V be an n-dimensional complex vector space. Show that V is also a real
vector space, where the multiplication by the real numbers is defined by the
same way as the multiplication by complex ones (as the real numbers form a
subspace of complex numbers). Find the dimension of V as a real vector space.
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Consider a general linear system

Ax D b: (D.1)

If the matrix A is square and non-singular, we have the solution

x D A�1b:

But if A is singular or even non-square, problems of two types arise. First, if the
system (D.1) is consistent and the rank of A is less than the number of variables,
we have a multiple solution which can be found algorithmically by, say, Gaussian
elimination (see Sect. 5.2). But in many practical problems, we need an explicit
formula for a (particular) solution depending on the vector b in the right side. How
to get such an explicit formula?

Second, a problem arises if the system (D.1) is inconsistent. In practical
problems, we need in this case an approximate solution (see Sect. (7.3)). Is there
a formula for expressing it?

An answer to the both questions is given by a construction due to Moore1 and
Penrose2 called a pseudoinverse3. For many generalizations and applications of this
construction, we refer the reader to [2, 5].

1Eliakim Hastings Moore (1862–1932), an American mathematician who made a significant
contribution to algebra and logics. In 1935, he gave a definition pseudoinverse under the name
general reciprocal.
2Roger Penrose (1931) is a famous English physicists and mathematician. He was awarded the
Wolf foundation prise (1988, shared with Stephen Hawking) for the work which has “greatly
enlarged our understanding of the origin and possible fate of the Universe”. In 1955, he re-
discovered the Moore definition of the pseudoinverse and demonstrated its connection with the
least square approximation.
3The terms generalized inverse and Moore–Penrose inverse are also used.

249F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5,
© Springer-Verlag Berlin Heidelberg 2011
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D.1 Definition and Basic Properties

Definition D.1. Let A be an m�n matrix. The matrix AC is called a pseudoinverse4

of A if the following four conditions hold

1: AACA D A

2: ACAAC D AC

3:
�
AAC�T D AAC

4:
�
ACA

�T D ACA:

Later (see Theorem D.5) we will show that every matrix A admits a pseudoin-
verse.

Note that since both ACA and AAC exist, AC must be an m � n matrix.
The first property give us the right to call it the pseudoinverse.

Theorem D.1. Let A be a matrix. If its pseudoinverse exists, then it is unique.

Proof. Suppose B and C are two pseudoinverses of A, that is, both matrices B and
C satisfy the conditions (1–4) of Definition D.1. Then we have:

AB D .ACA/B D .AC /.AB/ D .AC /T .AB/T

D C T AT BT AT D C T .ABA/T D C T AT D .AC /T D AC:

By the same way, we have

BA D B.ACA/ D .BA/.CA/ D .BA/T .CA/T

D AT BT AT C T D .ABA/T C T D AT C T D .CA/T D CA:

Thus
B D BAB D .BA/B D .CA/B D C.AB/ D CAC D C:

�

Example D.1. Suppose that A is a non-singular square matrix. Then the pseudoin-
verse AC exists and

AC D A�1:

Proof. We have AA�1A D AI D A and A�1AA�1 D A�1I D A�1. If A is of
order n, then A�1 is of order n as well, so that

4There are other versions of definition of generalized inverse, or pseudoinverse, matrix. The most
useful of the definitions require only some of the Penrose conditions (1–4) from Definition D.1,
e.g., (1) and (2). On the definitions and properties of these more general versions of inverse matrix,
see [5, Chap. 6] and [2]; see also [8, pp. 94–98], [26, pp. 203–205].
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AA�1 D In D A�1A:

This means that the matrix A�1 satisfies the conditions (1–4) of Definition D.1. �

Example D.2. Let

A D

2

6
4

a1

:::

an

3

7
5

be a nonzero column vector. Then the row vector

C D �AT

is a pseudoinverse of A, where � D 1=.a2
1 C � � � C a2

n/.

Proof. We have AC D �.ai aj /n�n and CA D �.AAT / D 1, so that the
conditions (3) and (4) hold for the matrix C . In addition, we have ACA D A1 D A

and CAC D 1C D C , so that the conditions (1) and (2) hold as well. �

Example D.3. Suppose that an m � n matrix A has the form

A D
"

B 0

0 0

#

;

where B is an r � r non-singular submatrix. Then the pseudoinverse AC is an n�m

matrix of the form

C D
"

B�1 0

0 0

#

:

Proof. It is easy to see that AC and CA are square matrices of the form

"
Ir 0

0 0

#

of orders m and n, respectively. It follows that .AC /T D AC and .CA/T D CA.
According to Lemma 9.16, we have ACA D .AC /A D A and CAC D .CA/C D
C . By Definition D.1, this means that AC D C is the pseudoinverse. �

D.1.1 The Basic Properties of Pseudoinverse

5: .AC/C D A

6: .AT /C D .AC/T
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Proof. Exercise. �
7: rank AC D rank A

Proof. Recall that rank.AB/ � rank A and rank.AB/ � rank B for any two
matrices A and B conformable for multiplication (see Problem 24 in Chap. 2). Then

rank A D rank.AACA/ � rank.AAC/ � rank AC

and
rank AC D rank.ACAAC/ � rank.AAC/ � rank A:

�

Exercise D.1. Show that if rank A D 1, then AC D 1
Tr.AAT /

AT :

Hint. If rank A D 1, then all columns of A are linear combinations of a single
column, say, Ak , that is,

A D .�1A
kj : : : j�nAk/ D .�1; : : : ; �n/Ak:

D.2 Full Rank Factorization and a Formula for Pseudoinverse

Let us give the formula for a pseudoinverse of a matrix with linearly independent
columns.

Theorem D.2. Suppose that an m � n matrix A has full column rank, that is,
rank A D n. Then A has a pseudoinverse

AC D .AT A/�1AT :

We begin with

Lemma D.3. Let A be an m�n with full column rank. Then the n�n matrix AT A

is non-singular.

Proof. Suppose that rank.AT A/ < n. By Theorem 5.6, it follows that the system

AT Ax D 0

has a nonzero solution x. Then

xT AT Ax D 0;

.Ax/T Ax D 0;

that is, .Ax; Ax/ D 0. Hence Ax D 0. Since x ¤ 0, we have rank A < n, a
contradiction. �
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Proof of Theorem D.2. By Lemma D.3, the matrix .AT A/�1 exists. Let
C D .AT A/�1AT . We are going to show that C satisfies Definition D.1.
Then CAD In, hence .CA/T D I T

n DCA. Since C T DA.AT A/�1, we have
.AC /T DC T AT DA.AT A/�1AT DAC . Moreover, ACADAInDA and
CAC D InC DC . By Definition D.1, C DAC. ut
Example D.4. Let us calculate the pseudoinverse of the matrix

A D
2

4
1 0

1 2

�1 3

3

5 :

We have rank A D 2 is equal to the number of columns, so that we can use the above
formula. We have

AT A D
�

3 �1

�1 13

�
;

so that

AC D .AT A/�1AT D
�

3 �1

�1 13

��1 �
1 1 �1

0 2 3

�
D
�

13=38 1=38

1=38 3=38

� �
1 1 �1

0 2 3

�

D 1

38

�
13 15 �10

1 7 8

�
:

In order to obtain similar formula in the general case of arbitrary matrix A, we
need a presentation of A as a product of two matrices of full ranks, one of full
column rank and one of full row rank.

Theorem D.4 (Full rank factorization). Let A be an m�n matrix of rank r . Then
there exist an m � r matrix F and an r � n matrix G (both of rank r) such that

A D F G:

Proof. Consider any r linearly independent columns of A. Let F be the submatrix
of A formed by these columns. Then F has size m � r and rank r . Each column
Ak of A is a linear combination of columns of F , that is, Ak DF Gk , where Gk

is a column vector of dimension r . Then all n vectors G1; : : : ; Gn form a matrix
G of size r � n such that ADF G. According to Problem 24 in Chap. 2, we have
rank G � r . Since G has r rows, we have rank G � r , thus rank GD r . �

Note that for practical purposes, we may choose as F any matrix columns of
which form a basis of the linear span of the columns of A.
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Example D.5. Let

A D
2

4
1 2 3

4 5 6

7 8 9

3

5

Since det A D 0 and det A.2/ D
ˇ
ˇ
ˇ
ˇ
1 2

4 5

ˇ
ˇ
ˇ
ˇ D �3 ¤ 0, we conclude that rank A D 2

and the first two columns (which form the submatrix A.2/) are linearly independent.
Then one can choose

F D
2

4
1 2

4 5

7 8

3

5 :

Let us construct presentations of the columns of A as linear combinations of
columns F 1 and F 2 of F . For the first two columns of A, we have A1 D F 1 and
A2 D F 2, hence A1 D F G1 and A2 D F G2 with G1 D .1; 0/T and G2 D .0; 1/T .
To obtain a presentation of the third column A3 via the columns of F , we have the
system F G3 D A3 with unknown G3, or

2

4
1 2

4 5

7 8

3

5G3 D
2

4
3

6

9

3

5 :

We have the unique solution G3 D .�1; 2/T . Finally, we have A D F G, where F

is as above and

G D
�

1 0 �1

0 1 2

�
:

For another useful method to construct a full rank decomposition, see Problem 6
below.

Now, we a ready to deduce a general formula for pseudoinverse.

Theorem D.5. For an arbitrary m � n matrix A, its pseudoinverse AC exists. If
A D F G is a full rank decomposition of A, then

AC D GT .GGT /�1.F T F /�1F T :

Proof. By Lemma D.3, both matrices GGT and F T F are non-singular, so the
matrix C DGT .GGT /�1.F T F /�1F T exists. We will show that it satisfies the
conditions of Definition D.1. Let X DGGT and Y DF T F . Note that X DXT

and Y DY T are symmetric matrices. Then AC DFXX�1Y �1F T DF Y �1F T , so,
.AC /T DAC . Moreover, CADGT X�1Y �1Y GDGT X�1G, hence .CA/T DCA.
Finally, CAC DGT X�1Y �1F T F GGT X�1Y �1F T DGT X�1Y �1YXX�1Y �1F T

D GT X�1Y �1F T D C and ACADF GGT X�1Y �1F T F GDFXX�1Y �1Y GD
F GDA. By Definition D.1, C DAC. �
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Example D.6. Let us calculate the pseudoinverse of the matrix A from Exam-
ple D.5. We have

AC D GT .GGT /�1.F T F /�1F T ;

where

GGT D
�

1 0 �1

0 1 2

�
�
2

4
1 0

0 1

�1 2

3

5 D
�

2 �2

�2 5

�

and

F T F D
�

1 4 7

2 5 8

�
�
2

4
1 2

4 5

7 8

3

5 D
�

66 78

78 93

�
;

so that

AC D
2

4
1 0

0 1

�1 2

3

5
�

2 �2

�2 5

��1 �
66 78

78 93

��1 �
1 4 7

2 5 8

�

D
2

4
1 0

0 1

�1 2

3

5
�

5=6 1=3

1=3 1=3

� �
31=18 �13=9

�13=9 11=9

� �
1 4 7

2 5 8

�

D 1

36

2

4
�23 �6 11

�2 0 2

19 6 �7

3

5 :

For another useful method of pseudoinverse calculation, see [5, Theorem 1.3.1].

D.3 Pseudoinverse and Approximations

Suppose that the system Ax D b is inconsistent, that is, it has no exact solution.
If the values of the coefficients are considered as approximate ones, then it is
reasonable to find an approximate solution of the system, say, by the least-square
method.

Recall from Sect. 7.3 that a vector u 2 Rn is called a least square solution of the
system (D.1) if for every x 2 Rn we have jAu�bj � jAx�bj. In Sect. 7.3, we have
considered the case of full rank matrix A and shown that in this case the least square
solution is unique. In the general case of arbitrary A, the solution is not necessarily
unique. A least square solution u of the system (D.1) is called minimal if it has the
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smallest length among all others, that is, for any other least square solution v of the
same system we have juj � jvj.
Theorem D.6. The minimal least-squares solution of smallest length of the linear
system Ax D b, where A is an m � n-matrix, is unique and given by the formula

u D ACb;

where AC is the pseudoinverse of A.

Lemma D.7. For each m � n-matrix A, Im.AAC � I / ? Im A, where I is the
corresponding identity matrix.

Proof of Lemma D.7. For each matrix B , its kernel is the orthogonal comple-
ment to the span of its rows, that is, the span of columns of its transpose,

.ker B/? D Im BT . Therefore, we have Im.AAC � I / D �
Ker.AAC � I /T

�? D
�
Ker

�
.AAC/T � I T

��? D �
Ker.AAC � I /

�?
. So, it is sufficient to prove that

Im A 	 Ker.AAC � I /. Indeed, let y D Ax 2 Im A. Then

.AAC � I /y D .AAC � I /Ax D .AACA� A/x D 0x D 0;

hence y 2 Ker.AAC � I /. ut
Proof of Theorem D.6. First, let us proof that the vector u D ACb is a least square
solution. For each x 2 Rn, we have Ax�b D .Ax�AACb/C.AACb�b/ D cxCd;

where cx D Ax � AACb D A.x � ACb/ 2 Im A and d D .AAC � I /b 2
Im.AAC � I /. By Lemma D.7, we have cx ? d. By Pythagorean theorem,

jAx � bj2 D jcx C dj2 D jcxj2 C jdj2 � jdj2:

Put x D u. Then cx D Au�AACb D 0, so that the value of jAx�bj has its minimal
value jdj D j.AAC � I /bj. This means that u is a least square solution.

Now, let x be another least square solution of the same system Ax D b. By the
above, cx D 0, that is, x satisfies the linear system Ax�AACb D 0, or Ax D AACb.
Since u form a solution of the last system, any other solution has the form

x D uC w;

where w is a solution of the corresponding homogeneous system Aw D 0. Then we
have

.u; w/ D uT w D bT
�
AC�T w;

where
�
AC�T D �ACAAC�T D �AC�T �ACA

�T D �AC�T ACA. Hence

.u; w/ D bT
�
AC�T ACAw D 0;

that is, u ? w. By Pythagorean theorem, it follows that



D.3 Pseudoinverse and Approximations 257

jxj2 D juC wj2 D juj2 C jwj2 � juj2:

Thus, u is a least square solution of the smallest possible length, and any other least
square solution x D uC w, where w is nonzero, has strictly larger length. ut
Example D.7. Consider the following macroeconomic policy model

Y D C C I CG CX �M; C D 0:9Yd ; Yd D Y � T;

T D 0:15Y; I D 0:25.Y � Y�1/C 0:75GI ; G D GC CGI ;

M D 0:02C C 0:08I C 0:06GI C 0:03X;

N D 0:8Y; B D X �M; D D G � T;

where Y – GDP, Y�1 – GDP in the previous year, Yd – Disposable Income, C –
Private Consumption, T – Tax Revenues, I – Private Investment, M – Imports,
N – Employment, B – Current Account of the Balance of Payments, D – Budget
Deficit, X – Exports, GC – Public Consumption Expenditures (instrument), GI –
Public Investment Expenditures (instrument).

All variables, except N , are measured in $ million. Employment (N ) unit of
measurement is 1,000 persons.

Suppose the following data is given: Y�1 D $1;200 million, X D $320 million.

The problem is the following.
i. Suppose that the government is interested in three targets: Employment (N ),

Balance of Payments .B/ and Public Sector Deficit (D). Reduce the model into
three equations by eliminating the ‘irrelevant endogenous variables’.

ii. Does this model satisfy the Tinbergen’s Theorem on the equality of the number
of instruments and the number of targets? Why?

iii. Suppose that the government wants employment level (N ) is 1,000. On the
other hand the government is aware that the external borrowing limit of the
country is 100 million, i.e., the country can not increase its current account
deficit beyond this figure. Finally, government is eager to reduce public sector
debt, and therefore aims at creating a budget surplus of $120 million. In other
words, the government’s targets are as follows:

N D 1;000;

B D �100;

D D �120:

How should government determine the values of its instruments, i.e., government
investment and government consumption, under these circumstances?
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Partial Solution

Tinbergen’s approach requires ‘targets’ to be given. Starting from this data and using
the model, the solution gives the necessary magnitudes of the instruments to achieve
the desired target levels.

i. The reduced form of the model looks like

8
<

:

N D ˇ10 C ˇ11GI C ˇ12GC ;

B D ˇ20 C ˇ21GI C ˇ22GC ;

D D ˇ30 C ˇ31GI C ˇ32GC ;

or in matrix terms
2

4
N

B

D

3

5 D
2

4
ˇ10

ˇ20

ˇ30

3

5C
2

4
ˇ11 ˇ12

ˇ21 ˇ22

ˇ31 ˇ32

3

5
�

GI

GC

�
:

Using the above equations and through substitution the system can be
reduced to the following form

8
<

:

N D 1355:665C 64:236GI C 39:409GC ;

B D 274:581� 2:954GI � 1:739GC ;

D D �254:187� 11:044GI � 6:389GC ;

or in matrix terms

2

4
N

B

D

3

5 D
2

4
1355:665

274:581

�254:187

3

5C
2

4
�3:161 �1:861

64:236 39:409

�11:044 �6:389

3

5
�

GI

GC

�
:

This may be re-written as
y D b� Ax

with

y D
2

4
N

B

D

3

5 ; b D
2

4
1355:665

274:581

�254:187

3

5 ; x D
�

GI

GC

�
;

or
Ax D c;

where

c D b � y D
2

4
1355:665�N

274:581� B

�254:187�D

3

5 :

The problem is then to find y, given c.
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ii. No, it does not. The number of instruments (=2) is less than the number of targets
(D3). The matrix of coefficients

A D
2

4
�3:161 �1:861

64:236 39:409

�11:044 �6:389

3

5

is an 3 � 2 matrix and rank A D 2. Therefore it does not have an inverse.
iii. In [31, pp. 37–42] the problem of inequality of targets and instruments is

discussed. Tinbergen [31, pp. 39–40] correctly points out that when the number
of targets exceed the number of instruments, an inconsistency problem arises.

In this case, one can calculate the pseudoinverse of the matrix A, which always
exists. Notice that the rank of A is 2, i.e., A has full column rank. Then by
Theorem D.2 the matrix A has the pseudoinverse of the following form

AC D .AT A/�1AT D
��0:261 �0:288 �1:532

0:451 0:470 2:498

�
:

A least square approximate solution can be obtained by calculating

x� D ACc;

that is,

x� D
��0:261 �0:288 �1:532

0:451 0:470 2:498

�
2

4
1355:665� 1000

274:581C 100

�254:187C 120

3

5 D
�

4:701

1:231

�
:

Thus GI D $4:701 million and GC D $1:231 million. These figures indicate that
the government has to target extremely low levels for government expenditures.

D.4 Problems

1. Calculate Œ1; 0�C.
2. Calculate 2

66
4

0

1

2

3

3

77
5

C

:

3. Calculate Œ3; 2; 1; 0�C :
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4. Calculate 2

6
6
4

1 0

�1 0

�1 0

2 1

3

7
7
5

C

:

5. Calculate �
1 2 3

0 �1 �2

�C
:

6.� Let A be an m � n matrix of rank r and let

K D
"

G

0

#

be its canonical form (see Definition 2.4), where G is an upper r � n submatrix
without zero rows and 0 denotes a zero submatrix. Let i1; : : : ; ir be the numbers
of columns where the leading coefficients of the echelons appears, and let F be
a submatrix of A formed by its columns i1; : : : ; ir . Prove that

A D F G

and this is a full rank factorization of A.
7. Find a full rank factorization of the matrix

A D

2

6
6
4

1 1 1

2 2 2

3 3 3

1 2 3

3

7
7
5 :

8. Calculate 2

4
1 0 0

1 1 1

0 1 1

3

5

C

:

9. Let Eij be an n � n matrix such that its element in i -th row and j -th column
is unit and all other elements are zeroes. Find its full rank decomposition and
pseudoinverse.

10. Prove the formulae:
(a) Im.AAC/ D Im.AAT / D Im A.
(b) Ker.AAC/ D Ker.AAT / D Ker AT .
(c) Im AC D Im AT .
(d) Ker AC D Ker AT .
(e) Im AC D .Ker A/?.
(f) Ker AC D .Im A/?.
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11. Find the solution of smallest length of the linear system

�
2x C 3y C 2z D 7;

3x C 4y � z D 6:

12. Find the least-square solution of smallest length of the linear system

8
ˆ̂
<

ˆ̂
:

x � 3y C t D �1;

2y � 3z D �1;

x � 2y C zC t D 0;

x � 2zC t D 8:
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Chapter 1

1. (a)
p

137; (b)
p

113; (c) 2
p

5; 4. (a) y D �2:25x C 1; (b) y D .8=7/x; (c)
x D p2. 8. x D 10=7. 10. (a) x D 40=13; y D �15=13; (b)y D 0:6x � 3; (c) no
solutions. 11. z1 D .a11b11 C a12b21/x1 C .a11b12 C a12b22/x2; z2 D .a21b11 C
a22b21/x1 C .a21b12 C a22b22/x2.

Chapter 2

1. (a) x D .3;�1;�3;�3/; (b) x D .�0:2;�0:4;�1/. 4. Yes. 7. (a) 2; (b) 3.

11. 2n. 12. For example, A D B D
�

0 1

0 0

�
and C D 0. 13. For example,

A D
�

1 1

1 1

�
; B D

�
0 0

0 0

�
and C D

�
1 1

�1 �1

�
. 17. Hint. Use the property

(1-b) of matrix multiplication. 18. For example, A D
�

1 0 0

0 1 0

�
and B D

2

4
1 0

0 1

1 1

3

5.

19. (a) x D
�

a

a

�
for a 2 R; (b) y D 


3b b
�

for b 2 R. 22.

2

4
1 16 0

0 10 0

0 �180 5

3

5.

23. (a) In AB , the i -th and j -th rows are interchanged as well; (b) c times j -th row
of AB will be added to i -th row of AB; (c) i -th and j -th columns of AB are inter-
changed as well; (d) c times j -th column of AB will be added to i -th column of AB .

24. Hint. Use Problem 23. 27.
�

a b

c �a

�
, where bc D �a2. 28. Either A D

�
a b

c a

�
,

where a2 C bc D 1, or A D ˙I2.

263F. Aleskerov et al., Linear Algebra for Economists, Springer Texts in Business
and Economics, DOI 10.1007/978-3-642-20570-5,
© Springer-Verlag Berlin Heidelberg 2011
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29.

2

4
2 1 �4 5

0 0 1 �3

0 0 0 0

3

5, rank D 2. 30.

2

4
1 3 0 0

0 0 1 0

0 0 0 1

3

5.

Chapter 3

1. (a) �2; (b) 0; (c) �1; (d) �2b3; (e) sin.˛ � ˇ/; (f) 0. 2. (a) 2; (b) 30; (c) abc C
2x3� .aCbCc/x2 ; (d) ˛2Cˇ2C	2C1; (e) sin.ˇ� 	/C sin.	�˛/C sin.˛�ˇ/.

3.
�

x0
y0
�
D
"

1p
2

1p
2

� 1p
2

1p
2

#�
x

y

�
�
"p

2 � 3p
2p

2 � 3p
2

#

4. f .A/ D 0. 7. 1875. 8. .�1/nd .

9. (a) 1 for n D 4k and n D 4k C 1, �1 for n D 4k C 2 and n D 4k C 3, where k

is an integer; (b) nC 1; c) 1C .�1/n�12n. 10. det X D 1. Solution. We have

X3 � In D .X � In/.X2 CX C In/ D .X � In/0 D 0;

hence X3 D In. Then det.X3/ D det In D 1, that is, .det X/3 D 1 and det X D 1.

Chapter 4

1. (a)

��2 1

1:5 �0:5

�
; (b)

�
cos ˛ sin ˛

� sin ˛ cos ˛

�
; (c)

2

4
�7=3 2 �1=3

5=3 �1 �1=3

�2 1 1

3

5;

(d) 1
9
�
2

4
1 2 2

2 1 �2

2 �2 1

3

5; (e)

2

6
6
4

�1 1 16 �9

�8 7 125 �70

�10 9 160 �90

�1 1 18 �10

3

7
7
5. 2. (a)

2

6
6
6
6
6
4

1 �1 0 : : : 0

0 1 �1 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

3

7
7
7
7
7
5

;

(b)

2

6
6
6
66
4

2 � n 1 1 : : : 1

1 �1 0 : : : 0

1 0 �1 : : : 0
:::

:::
:::

: : :
:::

1 0 0 : : : �1

3

7
7
7
77
5

; (c) 1
n�1

2

6
6
6
66
4

2 � n 1 1 : : : 1

1 2 � n 1 : : : 1

1 1 2 � n : : : 1
:::

:::
:::

: : :
:::

1 1 1 : : : 2 � n

3

7
7
7
77
5

.

3. (a)

��1 a � 10

2 7:5 � 0:5a

�
; (b)

�
10:5 6:5

11 �7

�
; (c)

2

4
1 2 3

4 5 6

7 8 9

3

5; (d)

2

4
1 1 1

1 2 3

2 3 1

3

5.

7. (a) 3; (b) 3 for � D ˙1, 4 for � ¤ ˙1. 9. rank

�
x2 � x1 x3 � x1

y2 � y1 y3 � y1

�
� 1.
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10. rank

2

4
a1 b1

a2 b2

a3 b3

3

5 D rank

2

4
a1 b1 c1

a2 b2 c2

a3 b3 c3

3

5 D 2.

Chapter 5

1. (a) .x1; x2; x3; x4/ D .1; 1;�1;�1/. (b) x1 D .x3 � 9x4 � 2/=11, x2 D .�5x3 C
x4C10/=11, x3; x4 2 R. 2. x1 D 1�x2�x3 for � D 1, x1 D x2 D x3 D 1=.�C2/ for
� ¤ 1. 3. x1 D �53=208, x2 D 59=16, x3 D �29=16, x4 D 27=13. 4. No solution.
5. .x1; x2; x3; x4/ D .3; 0;�5; 11/. 6. .x1; x2; x3; x4; x5/ D .3;�5; 4;�2; 1/. 7.
.x1; x2; x3; x4; x5/ D .1=2;�2; 3; 2=3;�1=5/. 8. x1 D .�15x2 C x4 � 6/=10,
x3 D .4x4C 1/=5, x2; x4 2 R. 9. f .x/ D x2 � 5xC 3. 10. f .x/ D 2x3 � 5x2C 7.
12. No solution if ˛1 C ˇ1 D 0 and ˛0 C ˇ0 ¤ 0; unique solution pi D
˛1ˇ0�˛0ˇ1

˛1Cˇ1
; qd

i D qs
i D ˛0Cˇ0

˛1Cˇ1
(can be obtained by Kramer’s rule); infinitely many

solutions qd
i D qs

i D ˛0 � ˛1pi , pi is arbitrary if ˛1 C ˇ1 D ˛0 C ˇ0 D 0.
13. i. For ‘normal’ goods, one expects demand to increase (decline) as its price

falls (increases). This explains the negativity of the coefficients of own prices
of all three goods. If the coefficient of the price of another good is positive
(negative) in its demand function, this implies these two goods are substitutes
(complements)1.

ii. Equate supply and demand for each good, and rearrange the equations and
express the linear equation system in matrix form as

2

4
�0; 25 �0; 02 0; 01

0; 01 �0; 34 0; 01

�0; 03 0; 02 �0; 16

3

5

2

4
p1

p2

p3

3

5 D
2

4
�40

�54

�35

3

5

The solution is
p1 
 154:87

p2 
 169:58

p3 
 210:91

(The values are rounded)
iii. p1 
 169:44, p2 
 193:92, p3 
 223:72 (the values are rounded).

14. i. Y; C; I; G; M; N and B are endogenous, GC ; GI , Y�1; X are exogenous.
ii. Yes, both are endogenous variables.

iii. No, because it is an endogenous variable. It can not be controlled by the policy
maker.

1For a further discussion of substitutes and complements, see, for example, [29, pp. 57–58] or [32,
pp. 111–112].
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iv. No, Tinbergen’s theorem asserts that the number of instruments should be equal
to the number of targets. See (vi).

v. Through substitution one gets

B D �0:375GI � 0:268GC C 317;

N D 6:789GI C 5:829GC � 1874:

vi. Notice that the equations given in (v) can be expressed as

y D bC Ax

where y is the vector of target variables, x is the vector of instruments, A is the
coefficients matrix and b is the vector of intercept terms that are fixed. A unique
solution to the above system can be obtained, if A�1 exists. The matrix A has an
inverse if it is a square matrix, i.e. the number of rows (which is equal to the number
of targets) should be equal to the number of columns (which is equal to number of
instruments). This condition is Tinbergen’s theorem. Secondly, A should have full
rank, i.e. target variables, as well as instruments, should not be linearly dependent,
i.e. they must be different.

For the given values of target variables the solution of the above system is
obtained by calculating

x D A�1.y � b/

which gives GI 
 $325:64 billion and GC 
 $131:02 billion.

Chapter 6

1. No. 3. .�1; �2; : : : ; �n/. 4. .�1; �2 � �1; �3 � �2; : : : ; �n � �n�1/. 5. dim Mn D n2.
All matrices with all zero entries but one entry equal to 1 (“matrix units”) form

a basis of Mn. 7. Yes. 8. Yes. 9. E. g., f W
�

a b

c d

�
7! ax3 C bx2 C cx C d .

10. n.n C 1/=2. 15. .1=3; 11=6; 7=6; 11=6/. 16. .�7; 11; 3/. 17. .�2;�1;�2;�7/.
18. (a) No. (b) No. (c) Yes for c D 0, no for all other c. 19. Point (dim D 0),
line (dim D 1), plane (dim D 2), the space R3 itself (dim D 3). 20. The n � 1

vectors .1; 0; : : : 0; 1/; .0; 1; 0; : : : ; 0/; : : : ; .0; 0; : : : ; 1; 0/ form a basis of L0, so that
dimL0 D n�1. 21. The dimension is equal to 3; some possible bases are fa1; a2; a5g,
fa1; a3; a5g and fa1; a4; a5g.

Chapter 7

1. (a) Yes. (b) No. 2. (a) No. (b) No. 3. e1 D f1, e2 D
�

1�n
n

; : : : ; 1
n
; 1

n

�
, e3 D�

0; 2�n
n�1

; 1
n�1

; : : : ; 1
n

�
; : : : ; en D

�
0; : : : ; 0;� 1

2
; 1

2

�
. 6. (a) E.g., f3 D .2; 2; 1; 0/,

f4 D .�2; 5; 6; 1/. (b) E.g., f3 D .1;�2; 1; 0/, f4 D .�25;�4; 17; 6/. 7. All 4 angles
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are equal to �=3. 10. e1 D


1=
p

15
�

.2; 1; 3; 1/, e2 D


1=
p

23
�

.3; 2;�3;�1/,

e3 D


1=
p

127
�

.1; 5; 1; 10/. 11. 2
p

7. 12. y D .2; 1; 1; 3/, x�y D .5;�5;�2;�1/.

13. (a) 5; (b) 2. 14. Œ1=3; 11=3�. 15. p.x/ D 10:13C 0:091x; p.27/ D 12:6.

Chapter 8

2. (a) 34. (b) 4. 3. (a) Yes. (b) Yes. (c) No. (d) No. (e) No. 5.

2

4
1 0 0

0 0 0

0 0 0

3

5. 6.

2

4
1 0 0

0 1 0

0 0 0

3

5.

7. (a)

2

4
0 1 1

2 0 1

3 �1 1

3

5. (b) Non-linear. (c) Non-linear. (d)

2

4
1 �1 1

0 0 1

0 1 0

3

5. 8.

2

4
2 �11 6

1 �7 4

2 �1 0

3

5.

9. In the canonical basis:

2

4
1 2 3

2 4 6

3 6 9

3

5, in the given basis:

2

4
20=3 �5=3 5

�16=3 4=3 �4

8 �2 6

3

5.

10. (a)

2

6
6
4

0 �1 2 3

5 3 1 2

2 1 3 1

2 0 1 1

3

7
7
5; (b)

2

6
6
4

�2 0 1 0

1 �4 �8 �7

1 4 6 4

1 3 4 7

3

7
7
5. 11.

2

4
1 0 6

0 2 �2

0 0 3

3

5. 12.

2

4
16 47 �88

18 44 �92

12 27 �59

3

5.

13. (a)

� �70 17

�243 59

�
; (b)

�
23 �29

27 �34

�
; (c)

��10 �9

�1 �1

�
.

Chapter 9

1. Basis: e1 D .1; 0/. 2. Basis: e1 D .1; 0; 0/, e2 D .0; 0; 1/. 3. (a) �1 D 1, e1 D
.1; 0; 0/. (b) �1 D 1, e1 D .1; 0; 0/. 4. �1 D �2i , e1 D c.1;�i/ and �1 D 2i , e1 D
c.1; i/, where c 2 C. 8. (a) �1 D 1, �2 D 3; (b) �1 D 1�p

5
2

, �2 D 1Cp
5

2
. 9. Hint.

Put B D

2

6
6
6
4

p
�1 0 : : : 0

0
p

�2 : : : 0
:::

:::
: : :

:::

0 0 : : :
p

�n

3

7
7
7
5

: 10. (a)

2

4
1 0 0

0 2 0

0 0 2

3

5. (b)

2

6
6
4

�2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

3

7
7
5. 11. The only

eigenvalue is � D 0; the eigenvectors are constant polynomials. 14. (a)

�
2 0

�4 2

�
;

(b) 2x2
1 � 4x1x2 C 2x2

2 ,

�
2 �2

�2 2

�
. 15. Positive definite if a > 0; b > 1=a; c > 0;

negative definite if a < 0; b < 1=a; c < 0.
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Chapter 10

1. i. The total sales of firms of a sector to another firms of the same sector;

ii. d1 D 600; d2 D 230; d3 D 250; iii. A D
2

4
0:2 0:05 0:15

1=11 4=11 7=55

1=4 1=6 1=6

3

5 

2

4
0:2 0:05 0:15

0:091 0:364 0:127

0:25 0:167 0:167

3

5, .I � A/�1 D
2

4
1:355 0:177 0:271

0:286 1:674 0:307

0:464 0:388 1:343

3

5; iv. Yes (by

Theorem 10.9, because .I � A/�1 > 0).

2. i. A D
2

4
20
150

40
480

10
300

30
150

200
480

100
300

20
150

60
480

50
300

3

5 

2

4
0:133 0:083 0:033

0:2 0:417 0:333

0:133 0:125 0:167

3

5 ; .I � A/�1 

2

4
1:220 0:202 0:130

0:580 1:971 0:812

0:282 0:328 1:342

3

5 :

ii. By (10.26), pT D vT .I �A/�1 D .80=150; 180=480; 140=300/ .I � A/�1 D
Œ1; 1; 1�:

iii. From the information given in flow of funds table, the price equation can be
written by reading the columns of the table as

OutlayD payments made inputsC wageC profit.
Since outlay is price times quantity, by dividing each side by corresponding

output levels we can get the price equation for the Leontief model as

p D pAC wC �; (E.1)

where p is the prices vector as in (ii), w is the row vector of wage payments per
unit of output, � is the row vector of profits per unit of output, and A is the input
coefficients matrix as in (i). From (E.1) one gets

pT D .wC �/.I � A/�1: (E.2)

In (iii) the question is to find the effect of a change in wage payments, on relative
prices. We know that only w changes. So the new wage cost vector is w0, substituting
it to (E.2) we get

p0T D .w0 C �/.I � A/�1: (E.3)

From (E.2) and (E.3) we get

p0T � p D .w0 � w/.I � A/�1:

We have here w0 D 1:2w, so that p0T D pT C 0:2w.I � A/�1 

Œ1:078; 1:085; 1:077�. We see that the relative prices are changed.
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3. i. From the original data the relative price vector (in terms of the price of the first
commodity, pj =p1) can be computed as

p D .1; 0:7754; 0:7537/:

Notice that in this example p2=p3 D 1:0288.
When the technological progress takes place, all the coefficients in the second

column of the above matrix declines by 10%.
Using the new matrix, we can calculate the relative price vector as

p D .1; 0:7297; 0:7466/:

Notice that in this example p2=p3 D 0; 9774.
Notice that the technological progress led to a decline in the relative price of the

manufacturing good, with respect to other two goods. On the other hand, relative
price of the agricultural good increased with respect to other two goods.

ii. The Perron–Frobenius root of the matrix given in the table is 0.703 which
gives the maximum rate of profit as 0.4225. After the technological change,
the Perron–Frobenius root of the new matrix is 0.687, which corresponds to a
higher rate of maximum profit 0.4556.

The finding indicates that, assuming competition which equalizes the rate of
profit among sectors, an input saving technological progress in one sector, leads
to an increase of the maximum rate of profit of the system as a whole.

4. (a) O� D 10; Ox D Œ1; 2�; (b) O� D 0:961; Ox D Œ0:917; 0:398�; (c) O� D 0:485; Ox D
Œ0; 0:851; 0:526�; (d) O� D 0:828; Ox D Œ0:247; 0:912; 0:448; 0:703�.
5. productive matrices: b,c,d; irreducible matrices: a,b,c. 6. (i) 18.9%; (ii)
Œ0:625; 0:539; 0:565�; (iii) Let w be the wage rate, r the rate of profit, a0 the
labor coefficients vector and d0 D .1; 1; 1/ the summation vector. Then the general
expression for the wage rate can be derived as

w D d0ŒI � .1C r/A��1a0:

Substituting 10% for r one gets 5.379. 7. Let p D .p1; p2/ (price vector) and a0 D
.a01; a02/ (labor coefficients vector) with dimensions defined in accordance with the
partition of the matrix A. Then it can be shown that (show this!) that

�
p1 D .1C r/p1A11 C wa01;

p2 D .1C r/Œp1A12 C p2A22�C wa02:

Here the first equation is sufficient to determine the maximum rate of profit.
Therefore it is independent from the production technology of the second group
of sectors (in technical terms, non-basics).
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Chapter 11

6. (a) Square with vertices .0; 2/; .�2; 0/; .0;�2/; .2; 0/; (b) square with vertices
.2; 2/; .�2; 2/; .�2;�2/; .2;�2/. 7. (a) Yes; (b) Yes; (c) Yes. 8. (a) H ŒC�; (b) H Œ��;
(c) H . 10. Not necessary. For example, the union of two lines l1 W y D 0 and
l2 W x D 0 in R2 is not convex. 11. Hint. The problem can be posed in the following
way:

max
x1;x2

75x1 C 55x2

under the conditions 8
ˆ̂
<

ˆ̂
:

x1 C x2 � 100;

7x1 C 5x2 � 1000;

2x1 C 3x2 � 150;

x1; x2 � 0;

where x1 acres of land should be allocated to wheat and x2 acres of land should be
allocated to barley.
Answer. x1 D 50; x2 D 0. Net revenue will be $450.

12. Hint. Let X1 be the amount invested in government bonds, X2 the amount
invested in auto company A, X3 the amount invested in auto company B, X4

the amount invested in textile company C, and X5 the amount invested in textile
company D.

Then the objective function is

max 0:035X1 C 0:055X2 C 0:065X3 C 0:06X4 C 0:09X5

with the constrains
8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

X1 CX2 CX3 CX4 CX5 D 1000000;

X2 CX3 � 500000;

X4 CX5 � 500000;

X1 � 0:35.X2 CX3/ � 0;

X5 � 0:65.X4 CX5/ � 0

and
X1; X2; X3; X4; X5 � 0:

Answer. Projected return (value of the objective function): $68, 361, X1 D 129; 630,
X2 D 0, X3 D 370;370, X4 D 175; 000, X5 D 325; 000. Thus the LP solution
suggests that the portfolio manager should not invest in auto company A.

13. Hint. The problem can be formulated as follows.
The objective is to minimize risk under the conditions given above.
Objective function: min 4x C 9y.
Fund availability constraint: 50x C 150y � 10;000;000.
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Required revenue constraint: Since the return in money market is 4%, one money
market certificate will earns 0:04 �50 D 2. The same calculation leads to 0:1 �150 D
15 for the stock market certificate. Therefore the constraint can be written as

2x C 15y � 400;000:

Liquidity Constraint: x � 90;000.
The problem therefore can be formulated as

min 4x C 9y

under the constrains 8
ˆ̂
<

ˆ̂
:

50x C 150y � 10;000;000;

2x C 15y � 400;000;

x � 90;000;

x; y � 0:

Answer. The solution is x D 90;000; y D 14;667: The value of the objective
function is 492,000.
14. Hint. This is a linear programming problem. It can be formulated as

max W D C1 C 1:1C2

subject to 8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

X1 � 0:1X1 � 0:2X2 � C1;

X2 � �0:3X1 C 0:15X2 � C2;

0:05X1 C 0:07X1 � 150;

C1 � 1000;

C2 � 440;

where Ci is the consumption of the output produced by sector i (i D 1; 2), Xi is the
output of sector i (i D 1; 2).
Answer. W D 1643:53, C1 D 11159:53; C 2 D 440; X1 D 1522:83; X2 D
1055:12.
15. Hint. All functions are linear. Therefore the problem can be formulated as
a linear programming problem (using the given constraints and the assumption
that all variables are non-negative). After making substitutions the problem can be
formulated as

max Y

subject to
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8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

�4Y � �1200;

0:05C C 0:6Y � 300;

0:95C C 2:4Y � 1020;

�0:95C � 2:4Y � �920;

3:8Y � 1220;

�3:8Y � �1200;

C C 3Y � 1220;

�C � 3Y � 1200;

Y; C � 0;

where, in particular, I D 4Y � 1200.
Answer. Y D 321:053; C D 157:341; I D 4Y � 1200 D 84:211:

Appendix A

2. 1 � 1=n. 5. n D 1; n � 5. 8. (a)

�
�n n�n�1

0 �n

�
; (b)

�
cos.n˛/ � sin.n˛/

sin.n˛/ cos.n˛/

�
.

Appendix B

3. 0. 4. x D 0; 1; : : : ; n � 1. 5. 8a C 15b C 12c � 19d . 6. abcd . 7. .�1/n. 8.
2n C 1 9. 2n C 1. 10. .a0 C a1 C � � � C an/xn. 11. a0.x � a1/ : : : .x � an/. 12.
.a � b C c C x/.a C b C c � x/.a C b � c C x/.a � b � c � x/. 13. a1 : : : an �
a3 : : : an � � � � � a2 : : : ai�1aiC1 : : : an � � � � � a2 : : : an�1. 14. nC 1. 15. 2nC1 � 1.

16.
nP

j D1

aj

Q

i¤j

.xi � ai /C
nP

j D1

.xj � aj /

Appendix C

1. i . 2.�.14=13/i . 3.�0:5. 4. x D 1:72�0:04i; y D �2=6C1:6i . 5. x D 3; y D 4.
6. z D �1˙ 6i . 7. z1 D �4� 4i; z2 D 1C 2i . 8. z D �3C 2i . 9. z1 D 1C i; z2 D
4�5i . 10. 1. 11. 24k for n D 8k, 24k.1�i/ for n D 8kC1,�24kC1i for n D 8kC2,
�24kC1.1Ci/ for n D 8kC3,�24kC2 for n D 8kC4, 24kC2.i�1/ for n D 8kC5,
24kC3i for n D 8k C 6, 24kC3.1 C i/ for n D 8k C 7. 12. z D cos

�
� 4kC1

12

� C
i sin

�
� 4kC1

12

�
for k D 0; 1; : : : ; 5. 13. z D 4

�
cos

�
� 3kC1

6

�C i sin
�
� 3kC1

6

��
for

k D 0; 1; 2; 3, that is, either z D ˙2

p

3C i
�

or z D ˙2


�1Cp3i

�
. 15. z D

5
p

5ei D 5
p

5 .cos .1/C i sin .1//. 16. 3. 17. 2. 20. ˙1. 23. 1 C 2�ki; k 2 Z. 24."�5C i �6

4 5C i

#

: 25. 2n.
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Appendix D

1.
�

1

0

�
. 2.



0 1

14
1
7

3
14

�
. 3.

2

6
6
4

3
14
1
7
1
14

0

3

7
7
5. 4.

�
1
3
� 1

3
� 1

3
0

� 2
3

2
3

2
3

1

�
. 5.

2

4
5
6

4
3

1
3

1
3

� 1
6
� 2

3

3

5.

6.

2

66
4

1 1

2 2

3 3

1 2

3

77
5

�
1 0 �1

0 1 2

�
. 8.

2

4
2
3

1
3
� 1

3

� 1
6

1
6

1
3

� 1
6

1
6

1
3

3

5 9.

2

6
6
66
6
6
4

0
:::

1i

:::

0

3

7
7
77
7
7
5



0 : : : 1j : : : 0

�
. 11.



71
93

; 109
93

; 91
93

� 


Œ0:763; 1:172; 0:978�. 12. Œ3:7; 2:8; 1:2; 3:7� :
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Index

Adjoint matrix, 67
Argument of a complex number, 239

Basic commodity, 187, 189
Basis, 95

canonical for Rn, 95
orthogonal, 109
orthonormal, 109

Basis transformation matrix, 100
Bilinear form, 157

symmetric, 157

Canonical basis for Rn, 95
Canonical form (of a matrix), 42
Cauchy inequality, 26
Characteristic polynomial, 145
Closed half-space, 204
Cofactor, 55
Collinear vectors, 95
Commodity

basic, 187, 189
Complex multiplication, 237
Complex number, 237
Complex vector space, 244
Complexification, 245
Component of a vector, 17
Condition

Hawkins–Simon, 176
Constant returns to scale technology, 104
Convex set, 200
coordinates, 96

Decreasing returns to scale, 104
Determinant, 55

Dimension of a linear space, 92
Direct product of matrices, 34
Distance

between a vector and a subspace, 115
between two vectors, 108

Dot product, 23, 107

Eigenvalue, 142
Perron–Frobenius, 185

Eigenvector, 142
Perron–Frobenius, 185

Elementary operations of matrices, 38
Elementwise product of matrices, 35
Exponent of a complex number, 241

Full image, 123
Full rank, 71
Full rank factorization, 253
Fundamental theorem of algebra, 242

Gaussian elimination procedure, 42, 43
Gram–Schmidt orthogonalization process, 112

Hadamard product of matrices, 35
Half-space

closed, 204
open, 204

Hawkins–Simon condition, 176
Hawkins–Simon theorem, 176
Homogeneous system of linear equations, 37
Homomorphism, 123
Hypercube, 206
Hyperplane, 100, 202
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Identical operator, 125
Identity matrix, 31, 51
Image, 123, 133

full, 123
Imaginary axis, 237
Imaginary part of a complex number, 237
Imaginary unit, 237
Inconsistent system of linear equations, 81
Increasing returns to scale, 104
Indecomposable matrix, 178
Induction, 217
Induction assumption, 219
Induction principle, 219
Induction variable, 219
Inner product, 23, 107
Invariant subspace, 141
Inverse of a mapping, 123
Inverse of a matrix, 65
Inverse of an operator, 132
Irreducible matrix, 178
Isomorphic linear spaces, 97

Kernel, 134
Kronecker delta function, 51
Kronecker product of matrices, 34
Kronecker–Capelli theorem, 76

Leading coefficient (of a row of a matrix), 42
Leontief model, 172
Linear combination, 92
Linear mapping, 123
Linear operator, 124
Linear programming problem, 195
Linear space, 91

dimension of, 92
Linear spaces

isomorphic, 97
Linear transformation, 124
Linearly dependent vectors, 20, 92
Linearly independent vectors, 21, 92
Lower triangular matrix, 56

Mapping, 123
Mathematical induction, 219
Matrices

similar, 136
Matrix, 30

symmetric, 36
transpose of, 35
adjoint, 67
basis transformation, 100

canonical form of, 42
elementary operations, 38
full rank factorization of, 253
identity, 31, 51
indecomposable, 178
inverse, 65
irreducible, 178
lower triangular, 56
modal, 155
nilpotent, 73
non-negative, 31
null, 31
of a full rank, 71
of a linear transformation, 126
order, 31
polynomial of, 52
positive, 31
power of, 52
productive, 172
rank, 38
reducible, 177
row echelon form of, 42
singular, 67
upper triangular, 56

Minor, 55
Modal matrix, 155
Multiplication

complex, 237
Multiplicity of a root, 243

Natural numbers, 217
Nilpotent matrix, 73
Non-collinear vectors, 95
Non-negative matrix, 31
Non-negative vector, 18
Non-singular orthogonal operator, 153
Null matrix, 31
Null operator, 125
Null vector, 18
Numéraire, 182
Number

complex, 237
pure imaginary, 237

Open half-space, 204
Operator, 124

identical, 125
linear, 124
null, 125
orthogonal, 153
orthogonal non-singular, 153
orthogonal singular, 153
self-adjoint, 150
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Order of the matrix, 31
Orthogonal basis, 109
Orthogonal operator, 153
Orthonormal basis, 109
Oversized enterprise, 104

Peano axioms, 218
Perron–Frobenius eigenvalue, 185
Perron–Frobenius eigenvector, 185
Polynomial of a matrix, 52
Polytope, 204
Positive matrix, 31
Positive vector, 18
Power of a matrix, 52
Product of matrices, 32

direct, 34
elementwise, 35
Frobenius, 46
Hadamard, 35
Kronecker, 34
Shur, 35
tensor, 34

Productive matrix, 172
Productive system, 172
Projection of a vector to a subspace, 114
Projection of a vector to a unit vector, 113
Pseudoinverse, 250
Pure imaginary number, 237

Quadratic form, 157

Rank of a matrix, 38
Real axis, 237
Real part of a complex number, 237
Real space, 17
Real vector space, 244
Reducible matrix, 177
Root

simple, 243
Rotation matrix, 33
Row echelon form (of a matrix), 42

Scalar, 17
Scalar product, 23, 107
Self-adjoint operator, 150
Set

convex, 200
Shur product of matrices, 35

Similar matrices, 136
Simple root, 243
Singular matrix, 67
Singular orthogonal operator, 153
Span, 99
Sraffa Model, 183
Strongest Induction Principle, 222
Subspace, 98

invariant, 141
spanned by given vectors, 99

Sylvester criterion, 159
Symmetric matrix, 36
System

productive, 172
System of linear equations

homogeneous, 37
inconsistent, 81

Tensor product of matrices, 34
Theorem

Hawkins–Simon, 176
Trace of a matrix, 35
Transformation, 124

linear, 124
Translation, 124
Transpose of a matrix, 35

Upper triangular matrix, 56

Vandermonde determinant, 232
Vector, 17, 91

components, 17
non-negative, 18
positive, 18
projection of, 113, 114

Vector space, 91
Vector space over complex numbers, 244
Vector space over real numbers, 244
Vectors

collinear, 95
linearly dependent, 20, 92
linearly independent, 21, 92
non-collinear, 95
orthogonal, 25
parallel, 27

Vertex of a polytope, 205

Zero vector, 18
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